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Zusammenfassung

Das Ziel vorliegender Dissertation ist es, geeignete Werkzeuge für die quantitative Spektroskopie

von O-Sternen im optischen Spektralbereich bereitzustellen, um deren Kohlenstoff-, Stickstoff- und

Sauerstoffhäufigkeiten zu bestimmen, und zwar mittels automatisierter Methoden, die auch auf große

Stichproben anwendbar sind. Solche Häufigkeiten erlauben uns dabei, Vorhersagen aktueller Sternent-

wicklungsmodelle massereicher Sterne zu überprüfen, und insbesondere den Einfluss von Rotations-

mischung und verwandter Prozesse einzugrenzen. Bereits auf der Hauptreihe können massereiche

Sterne chemische Häufigkeitsvariationen auf kurzen Zeitskalen aufweisen, wobei der CNO-Zyklus

Stickstoff auf Kosten von Kohlenstoff und - später - Sauerstoff produziert. Diese Variationen stellen

ein Schlüsselmerkmal dar, um die Zuverlässigkeit entsprechender theoretischer Modelle zu bewerten,

und sind eines der Hauptthemen vorliegender Arbeit.

Zur Durchführung dieser Studie benötigen wir einen Code, der es uns erlaubt, Spektren heißer

Sterne zu synthetisieren. Zu diesem Zweck verwendeten (und erweiterten) wir den NLTE (nicht

lokales thermodynamisches Gleichgewicht) Atmosphären- und Windcode FASTWIND, vor allem

wegen seiner geringen Rechenzeiten, verglichen mit anderen Codes, die für den gleichen Zweck

entwickelt wurden. Bevor wir unser eigentliches Ziel angehen konnten, mussten wir zunächst je-

doch (i) die Röntgenemission von Shockregionen im Wind implementieren, und (ii) ein zuverlässiges

Kohlenstoffmodellatom entwickeln, das für die Analyse von O-Sternen geeignet ist.

(i) Extrem ultraviolette (EUV) und Röntgenstrahlung von Shockregionen in den Winden heißer,

massereicher Sterne kann das Ionisationsgleichgewicht in deren äußeren Atmosphären beeinflussen,

und kann für die Erzeugung hochionisierter Elemente verantwortlich sein, die vor allem in den wind-

beeinflussten UV-Spektren sichtbar sind. Um diese Prozesse zu simulieren und zu untersuchen,

haben wir die entsprechende Shockemission in den FASTWIND-Code implementiert. Anschließend

studierten wir die Bedingungen, unter denen sich solche Shockemission als wesentlich für die

Beschreibung von Ionen wie z.B. C v, N v und O vi erweist. In fast allen betrachteten Fällen hat dabei

die direkte Ionisation (d.h., die Abtrennung des Valenzelektrons) aufgrund der verstärkten kurzwelli-

gen Strahlung den größten Einfluss auf die Ionisationsraten von niedrig ionisierten Stufen (z.B. C ii,

N iii und O iii), wohingegen die Augerionisation N vi und O vi signifikant beeinflusst. Zusätzlich un-

tersuchten wir die Frequenzabhängigkeit und das radiale Verhalten des Massenabsorptionskoeffizien-

ten (κν(r), wichtig im Zusammenhang mit der Röntgenlinienentstehung in den Winden massereicher

Sterne), und fanden, dass zumindest für r & 1.2R∗ und λ . 18 Å die Näherung eines radial konstanten

κν gerechtfertigt ist.

(ii) Unter NLTE-Bedingungen erfordert die Bestimmung chemischer Häufigkeiten eine detail-



lierte Beschreibung aller Strahlungs- und Stoßprozesse, die die Ionisation und Anregung der unter-

suchten Elemente bestimmen. Dazu entwickelten wir ein neues Kohlenstoffmodellatom (für die Ionen

C ii/iii/iv/v) und überprüften, in wie weit beobachtete Spektren reproduziert werden können. Mit un-

serem neuen Modellatom konnten wir tatsächlich die meisten der beobachteten (optischen) Linien

einer kleinen, aber representativen Stichprobe reproduzieren, und diejenigen Kohlenstoffhäufigkeiten

ableiten, die die Linien verschiedener Kohlenstoffionen in Übereinstimmung bringen. Ein wichtiges

Resultat unserer Tests betrifft den Einfluss von Röntgenstrahlen, vor allem auf C iv Linien: Die

Auswirkung (starker) Shockemission ist ähnlich wie die einer hohen Kohlenstoffhäufigkeit, und kann

daher die Kohlenstoffhäufigkeitsbestimmung affektieren.

Nach diesen Schritten war es dann möglich, CNO-Oberflächenhäufigkeiten in O-Sternen mit-

tels FASTWIND zu bestimmen (Modellatome für N und O waren bereits verfügbar). Da schon

gegenwärtige Stichproben äußerst umfangreich sind, entwickelten wir eine automatisierte Pipeline

für die Analyse der strategischen optischen C-, N- und O-Linien verschiedener Ionen. Besonderes

Augenmerk wurde dabei auf die (signifikanten) Fehlerintervalle gelegt, die durch die typischen Un-

sicherheiten in den stellaren Parametern resultieren. Wir studierten das Leistungsvermögen unserer

neu entwickelten Werkzeuge anhand hochqualitativer Spektren einer Probe von achtzehn (vermutlich

einzelnen) galaktischen O-Sternen mit niedriger projizierter Rotationsgeschwindigkeit. Die meisten

unserer Ergebnisse für Kohlenstoff und Stickstoff stimmen innerhalb der Fehler sowohl mit Litera-

turwerten (soweit vorhanden) überein, als auch mit theoretischen Vorhersagen massereicher Sternent-

wicklung einschließlich Rotationsmischung. Dasselbe gilt für die Sauerstoffhäufigkeit in frühen O-

Überriesen. Besonders bei späten O-Zwergen sind die abgeleiteten Sauerstoffhäufigkeiten jedoch

unerwartet niedrig, was vermutlich auf Defizite im verwendeten Sauerstoffmodellatom hinweist, das

in zukünftigen Studien überprüft und verbessert werden muss.

Zusammenfassend stellt die hier beschriebene Arbeit eine Methode zur Verfügung, die prinzipell

für die CNO-Häufigkeitsanalyse großer O-Stern Stichproben verwendet werden kann, und die sicher-

lich dazu beitragen wird, unser Wissen über massereiche Sterne und deren Entwicklung zu erweitern.



Abstract

This work aims at advancing current tools for the quantitative optical spectroscopy of O-stars, in

order to derive carbon, nitrogen and oxygen abundances using an automatized method applicable also

to large samples of spectra. These abundances allow us to check current predictions on massive star

evolution, and to establish tighter constraints on the impact of rotational mixing and other processes.

Already on the Main Sequence, massive stars might display chemical abundance variations on short

time-scales, where the CNO cycle produces nitrogen at the expense of carbon and - later on - oxygen.

These variations represent a key feature to evaluate the reliability of corresponding theoretical models,

and are one of the main topics investigated in the present thesis.

To accomplish this study, we need a code that allows us to synthesize hot star spectra. To this end,

we used (and extended) the NLTE (non local thermodynamic equilibrium) atmosphere and wind code

FASTWIND, mainly because of its low turn-around times compared to other codes developed for the

same purpose. Before tackling our immediate objective, however, we needed to implement (i) the

X-ray emission from wind-embedded shocks, and (ii) a reliable carbon model suited for the analysis

of O-stars:

(i) Extreme ultraviolet (EUV) and X-ray radiation from wind-embedded shocks in hot, massive

stars can affect the ionization balance in their outer atmospheres, and can be responsible for produc-

ing highly ionized atomic species in the stellar wind UV spectra. To simulate and investigate these

processes, we implemented such emission into the FASTWIND code. Subsequently, we estimated the

conditions under which the inclusion of these shocks turned out to be essential for the description of

ions as C v, N v, and O vi in the UV spectra of massive stars. In almost all considered cases, direct ion-

ization (i.e., the strip of the valence electron) by the enhanced short-wavelength radiation field has the

major influence in the ionization rates of low ionized stages (e.g., C ii, N iii, and O iii), whereas Auger

ionization affects N vi and O vi significantly. Additionally, we investigated the frequency dependence

and radial behavior of the mass absorption coefficient (κν(r), important in the context of X-ray line

formation in the winds of massive stars), and concluded that at least for r & 1.2R∗ and λ . 18 Å, the

approximation of a radially constant κν is justified.

(ii) Under NLTE conditions, chemical abundance determinations require a detailed description

of all radiative and collisional processes that determine the ionization and excitation of the analyzed

element(s). We developed a new carbon model atom including C ii/iii/iv/v, and verified to which extent

observational constraints can be reproduced. We were able to reproduce most of the observed lines

from a small but representative stellar sample, and to estimate the carbon abundances required to bring

the lines from different carbon ions into agreement. Another important finding concerns the impact of



X-rays particularly on C iv lines. The presence of (strong) shock radiation may mimic the effects of a

high carbon abundance, and therefore potentially affects the carbon abundance determination.

After these steps, CNO surface abundance determinations in O-type stars by means of FAST-

WIND became possible (model atoms for N and O were already available). However, with the advent

of large samples of spectra, we needed to set up an automatized pipeline for the analysis of strategic

optical C, N and O lines from different ions. We paid special attention to the (significant) errors in-

troduced by typical uncertainties in stellar parameters. We investigated the performance of our newly

developed tools using a set of high-quality spectra of a sample of eighteen presumably single Galac-

tic O-type stars with low projected rotational velocities. Most of our results for carbon and nitrogen

agree, within the errors, both with literature values (where available), and with theoretical expecta-

tions of massive star evolution including rotational mixing. The same is true for oxygen abundances

in early-O supergiants. Particularly in late-O dwarfs, however, the derived oxygen abundances are un-

expectedly low, presumably indicating deficiencies in the adopted oxygen model atom, which needs

to be checked and improved in future studies.

In summary, the work described in this thesis provides us with a method basically ready to be

applied to the CNO abundance analysis of much larger O-star samples, and will certainly help to

expand our knowledge about massive stars and their evolution.



Chapter 1

Introduction

Massive stars are physically defined as stars which finally end their lives as core collapse supernovae,

and have masses roughly larger than eight solar masses (M⊙) at the beginning of their lives, i.e., at

the start of their regular main sequence1 (MS). The highest mass of a star remains an open question,

but initial masses of a few hundred M⊙ were already suggested (e.g., Crowther et al. 2016 who found

masses of 315M⊙ and 230M⊙ for R136a1 and R136c, respectively, both stars in the Large Magellanic

Cloud (LMC) ). The higher the mass, the shorter the lifetime: high-mass stars complete their evolu-

tion in a few million years, while low- and intermediate-mass stars (MZAMS < 8M⊙; zero-age main

sequence, ZAMS) may live for hundred of millions to billions of years. Although completing their

evolution faster, massive stars can easily be observed, since stellar luminosity scales with initial mass

as L ∼ Mα, where 2.3 <∼ α <∼ 4.0 depending on stellar mass (see Kuiper 1938, Duric 2003), and thus,

the rare stars born with masses above ∼15M⊙ outshine the larger number of stars with lower masses.

From their birth to their death, high-mass stars have a fundamental influence on different aspects

of the Cosmos. Massive stars on the main sequence are characterized by high temperatures and

radiative intensities that drive a stellar wind, thus impacting their surroundings in form of radiative

and mechanical energy feedback via UV radiation and stellar winds. Additionally, supernova2 (SN)

explosions mix the interstellar gas, which drives turbulences and possibly triggers the formation of

new generations of stars (Bresolin et al. 2008). Thus, the deaths of massive stars in form of supernovae

represent both the end and the beginning of new stellar evolution.

Furthermore, the collapse of a rapidly rotating high-mass star yields the most energetic explosions

so far observed in the Universe, known as (long duration) gamma-ray bursts (GRBs, Woosley 1993).

After an initial flash of gamma rays, a longer-lived “afterglow” is usually emitted at longer wave-

lengths (X-rays, ultraviolet, optical, infrared, microwave and radio). These afterglows are thought

to be the best probes for the metallicity3 and ionization state of the intergalactic medium during the

reionization epoch (Bromm et al. 2001, Matteucci & Calura 2005, Morales & Wyithe 2010).

1 The main sequence (MS) is the longest and the most stable phase in the life of a star. During this time, the fusion

of hydrogen forms helium in the stellar core and produces an outward pressure (provided by the nuclear fusion) that

balances the inward gravitational force. This equilibrium will last until the H-core is exhausted.
2 Regarding the last phase in the life of a massive star, we refer to supernovae after the collapse of the iron core. But

supernovae can also result from pair instabilities or electron capture for stars with lower masses (8-10M⊙).
3 The abundances of elements heavier than He.
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The epoch of reionization refers to a period in the history of the Universe when most of the neutral

hydrogen (that had formed shortly (∼ 380.000 years) after the Big Bang and that filled the Universe)

was ionized by UV radiation. Massive stars may have played an important role in producing these

UV photons.

The above mentioned points illustrate some of the ways how advances in our knowledge of mas-

sive stars will also lead to a better understanding of the Universe as a whole. The present work has

exactly this objective. By improving how we can extract the information about massive stars encoded

in their spectra, we take one step further to a better description of these objects. Our innovative method

that automatizes spectral analysis brings more consistency and scalability to future works with large

samples of stellar spectra.

This introduction briefly describes the key topics of this work. We mostly describe and discuss

the evolution of single (isolated) stars4.

1.1 Massive star evolution

The initial mass of a star basically determines how the object will evolve. After hydrogen and helium

in the stellar core is exhausted, the evolution of massive stars differs significantly from those with

lower masses. In massive stars, the weight of the outer layers compresses the carbon-oxygen core

until it becomes hot enough to fuse carbon and oxygen into heavier nuclei. This cycle of contraction

and heating repeats, successively producing heavier elements like neon, magnesium, silicon, sulfur,

argon, calcium and, finally, iron. An “onion-like” structure develops, where each layer is composed

by a different chemical element. The last fusion processes happen extremely fast (years) compared to

the million years a massive star spends in its main-sequence phase.

The limit for the fusion of elements is ion; after that, stellar collapse is inevitable, since iron is the

most tightly bound nucleus, and no further energy can be extracted by fusing to even heavier nuclei

(in fact, fusing to heaver nuclei takes energy). The synthesis of iron is the last step in the sequence

of element production. Until that, every fusion reaction produces energy since each product of the

process is more stable than the atom(s) that formed it. In other words, a light nuclei gives up some

of its energy in the fusion process to form stronger bound, heavier nuclei. This release of energy

counteracts the inward pushing gravity. This balance of forces is named hydrostatic equilibrium.

When the nuclear reactions cease, the core is supported by the outward pressure originating from the

compressed electrons, similar to the physics seen in white dwarfs5. In case of stars with initial mass

higher than 10M⊙, this core is mainly made of iron6. At some point the iron core becomes too heavy

(hundred billion times the density of water) and it forces the remaining electrons to combine with

protons, forming neutrons and neutrinos. Depending on the stellar mass at this point, the neutron core

can stop the infalling nuclei with an outward pressure even stronger than that from the compressed

4 Due to interaction with their companion, (close) binaries may evolve differently (e.g, Vanbeveren et al. (1998),

Langer et al. (2008), de Mink et al. (2013)).
5 These are the final evolutionary stages of stars without enough mass to form a neutron star. They are very dense with a

mass comparable to the Sun, however, compressed to an Earth-like volume.
6 Low mass stars never become hot enough to form iron, and their core is likely formed by oxygen, neon and magnesium.
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electrons. Then a relatively stable state, called a neutron star (this is not valid for stars with initial

mass higher than 40M⊙, see below), is reached.

The core of the star remains stable when the collapse is stopped by the process forming neutrons,

while the outer layers of the star are repelled. During the formation of the neutron core, each time

an electron and a proton merge to make a neutron, energy is released by neutrino particles. The

neutrinos interact only weakly with matter. However, the matter in the collapsing star envelope is

so dense, that neutrinos can interact with it and input their energy in the layers of the star near the

core. This energy, again produced in the stellar core, stops the infall of the external layers and may

actually reverse it outwards. Apart from the mass concentrated in the neutron core, all the rest is

blown away in a core collapse supernova. This is one of the basic mechanisms through which massive

stars influence chemically the Universe, and how these stars (in their late evolutionary phases) may

trigger star formation through the shock wave turbulence caused in the nearby molecular clouds. The

Universe is also enriched due to nuclear reactions produced in the shock wave. But even more, the

supernovae eject energy, and particles that combined with heavy elements (iron for example) produce

heavier elements like gold, silver and uranium. The chemical enrichment of the interstellar medium

(ISM) plays also a role in the formation of Earth-like planets.

What if the neutron formation energy is not strong enough to stop the infalling star envelope? For

very massive stars not even the newly formed neutrons can stop the collapse of the core. In this case

the stellar core collapses to a black hole. The recently created black hole swallows the outer envelopes

of its progenitor star. Theoretically, mass and energy may be released along the rotation axis of the

black hole when the matter of the just-extinguished star is gravitationally attracted to the center of the

singularity, yielding then a gamma-ray burst.

1.1.1 Phases of evolution

The term “high-mass stars” comprises different types of stars. Stellar evolution theory uses the

Hertzsprung-Russel diagram (HRD, Hertzsprung 1911, Russell 1913) to compare evolutionary predic-

tions with observed quantities of actual stars. The main idea is to study the relation between absolute

magnitude or luminosity and stellar spectral type or effective temperature (Teff). There are also alter-

native diagrams that follow the method of the HRD, but use different quantities as for example the

spectroscopic HR diagram (sHRD, see Langer & Kudritzki 2014). These diagrams can be used for

characterizing the evolutionary stage of an object, since the stars follow an unique track through these

diagrams mostly depending on their initial masses, and also significantly influenced by their mass-loss

and rotation (further details in Chapter 4). We quickly review the different phases in the life of the

massive stars before describing the physics along their evolution.

OB stars are hot massive main-sequence stars with O or (early) B spectral type7. O stars have

masses above 15M⊙, and effective temperature between 30 to 55kK. Their spectra display mostly

absorption lines of H/He and different stages of ionization for different metals (C ii/iii/iv, N ii/iii/iv/v,

O ii/iii). Giants and supergiants may also display emission by the so-called the P-Cygni lines, whose

7 Based on their spectral features, stars are divided into different spectral types. These types indicate the temperature of the

star and form the sequence OBAFGKM running from the hottest to the coolest.
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characteristic profiles are shaped by a stellar wind. On the other hand, early B dwarfs (B0-B2) have

lower temperature (from 22kK to 30kK) and are less massive (between 8 and 15M⊙). For these

stars the higher ionization stages of metals are rarely seen, but it is still possible to identify different

ionization stages of one atomic species. Recently, Smith (2014) published a complete review of the

evolution and fate of these objects. Example for an O-type supergiant: ζ Puppis.

Blue Supergiants (BSG) are evolved stages from the previously described (O and early B) stars,

when those finish their H-burning phase and begin to process helium in their cores. For stars with

initial mass between 10 and 40 M⊙, BSG form a transitional phase before the red supergiants (see

below). Otherwise, in case of very massive stars (>40M⊙), a BSG episode may not happen (Maeder

1999 and references therein) and the star evolves directly to a Wolf-Rayet star (described below).

Their spectral type are late B and early A. Example: Rigel.

Yellow Supergiants (YSG) is a short and transitional phase for binaries and single-stars also during

the helium burning. When a blue supergiant expands, its temperature decreases and the star becomes

redder passing then briefly to a yellower color along this transition, which repeats when a RSG evolves

back to BSG. These are rare objects and appear in the “middle” of the HR diagram, possibly as post-

RSG stars and usually with strong mass loss (see next section). These stars are normally classified

spectroscopically as F0-G9. Our present knowledge of these objects was recently summarized by

Drout et al. (2012). Example: α Leporis.

Red supergiants (RSG) are also in a He-burning stage of their evolution that has begun as an

intermediate-mass OB-star. RSGs have the largest radii among the phases here described (although,

they are far from being the most massive), and are of spectral type K to M with a spectrum dominated

by molecular absorption lines. They are the coolest evolved massive stars. In the lower mass regime

(10 M⊙ ≤ M < 25 M⊙), this is the last phase before a supernova. On the other hand, for initial

stellar masses ∼40M⊙, the RSG phase is brief, and evolves back to the BSG or a Wolf-Rayet phase

(see below). Levesque (2010) summarized recently the latest advances in our understanding of these

objects. Example: Betelgeuse.

Luminous Blue Variable (LBV) is also a transitional phase, in this case from O-type to Wolf-Rayet

stars (see Vink 2009 for a concise review). With large masses and high luminosity, their lifetime is

short (only a few million years), mostly with strong winds and an emission-line spectrum. This

evolutionary phase takes place in the latest phases of core hydrogen burning (LBV with high Teff),

hydrogen shell burning (LBV with low Teff) and the earliest part of He-burning (LBV with high Teff),

again before transitioning to Wolf-Rayet stars. These objects evolve in observable timescales and have

been observed as the progenitor stage of massive stars supernovae, at least for stars with initial masses

between 20 to 25M⊙. Example: η Carinae.

Wolf-Rayet (WR) stars are the cores of a progenitor that lost its envelope by a strong stellar wind

(Ṁ ∼ 5 ·10−6 to a few 10−5M⊙yr−1). WR-stars themselves have the strongest winds. Their spectrum
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Table 1.1: The different phases of evolution during the lifetime of massive stars, depending mainly on

their initial masses, but also on initial rotational speed (as summarized by Maeder & Meynet 2010).

Initial Mass (M⊙) Finish its evolution as a Stages of evolution

10 - 25 Supernova that leaves a neutron star O-RSG-SN

25 - 30 Supernova that leaves a black hole O-BSG-RSG↔BSG(blue loop)-RSG-SN

30 - 40 ” O-BSG-RSG↔WN-WC-SN

40 - 60 ” O-BSG-LBV↔WN-WC-SN

60 - 90 ” O-WN↔LBV-WC-SN

> 90 ” O-WN-WC-SN

is dominated by emission lines partly from an optically thick stellar wind. Depending on the strength

of these lines, the WR-stars have different classifications, basically separated into carbon (WC) or

nitrogen (WN) rich8. In the case of WR stars, the nitrogen enrichment is a product of the H-burning

while the C is a sign of He-burning, and therefore WC stars are believed to be more evolved than

WNs. Crowther (2007) summarized our modern knowledge about these objects. Example: WR 22

Table 1.1 details which of these evolutionary stages (described above) a star will most probably

pass, depending on its initial mass. The objects analyzed throughout this work (with minimum mass

∼20M⊙) will most probably finish their life the same way, as core-collapse SNe. Maeder & Meynet

(2010) detail the fate of massive stars.

In contrast to low-mass stars (Shu et al. 1987), there is no well established evolutionary sequence

to describe the formation of massive stars. A key difference between the formation of low and high

mass stars is the radiation field, which plays a remarkable role in hot stars since it heats and eventually

ionizes the gas and dust of the protostellar envelope. This surrounding shell of heated dust is observ-

able in the infrared, but makes the direct observation of the proto-massive embryo difficult. Indeed,

high-mass prestellar cores have still to be observed. Thus, in the case of hot stars, the term “protostar”

refers not only to the very young massive star but also to its birth cocoon. The massive star becomes

finally observable only when its radiation field is strong enough to dissipate its surrounding dust. A

potential consequence of that point is the lack of present observation of hot stars close to the ZAMS

(we return to this discussion in Chapter 4).

The evolutionary paths described so far consider the scenario of single stars. However multiple

factors can influence the evolution of a star besides its initial mass, as for example the presence of

one (or more) companion(s) forming a binary (or multiple) system, strong stellar winds and rotational

velocity (inherited from the molecular cloud that formed the star). We concentrate on the study of

presumably single stars along this work.

The population III stars, also called “first stars”, are worth to be noted in the discussion of massive

8 there are also WO stars and WNh-stars.
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star evolution. These ancient objects are theoretically born out of primordial material from the Big

Bang with virtually no metals, maybe except for some trace of nearby (previous) population III su-

pernovae products. Their existence is inferred theoretically, but they have not been observed directly.

However, indirect evidences of these objects have been found in gravitationally lensed distant galaxies

(see Fosbury et al. 2003). Obviously, many points differ in the physical description of the population

III and population I objects (that we study in this work). Still, the first stars are believed to also have

been massive and played a crucial role in the formation of the Universe as we presently observe, in

particular regarding reionization and first chemical enrichment.

1.2 Mass loss through stellar winds

All hot stars expel part of their mass through radiatively driven winds. Massive stars of spectral type

O, B and A with luminosity higher than 104 L⊙ show spectroscopic evidences of winds throughout

their lifetime (Abbott 1980). The radiative output of high-mass stars is so intense that photon momen-

tum transfer can drive a strong wind via spectral line scattering and absorption. The wind features are

observable over the whole wavelength range, from X-rays to the radio. These spectral features can be

analysed in medium or high resolution spectra of blue supergiants out to ∼20 Mpc (Kudritzki & Puls

2000) as well as in starburst regions of distant galaxies (out to redshifts z∼4, Steidel et al. 1996). In

extreme cases, massive stars can lose 90% of their mass through winds, which obviously influences

the structure and evolution of those stars considerably. This last part calls the attention to the im-

portance of understanding such winds and the impact on stellar evolution, in order to enable also the

interpretation of these winds in more complex cases and for distant objects. Stellar winds can pro-

vide outstanding information about different objects, and deserve a quick overview before we proceed

further.

Line scattering is the main contributor to the overall radiative acceleration. In the wind of a

massive star, momentum is transferred from the photospheric radiation to the gas through absorption

and scattering by UV metal lines (Lucy & Solomon 1970, Castor et al. 1975). Therefore, the rate of

mass lost by the star through this mechanism (radiative acceleration) should in principle scale with

luminosity, temperature (i.e, ionization stages) and metallicity (Puls et al. 2008). The main concept

in momentum transfer by line scattering is that the incoming photons move in a particular direction

(roughly radial), while the subsequent re-emission is nearly isotropic. The angle formed by these two

directions leads to a transfer of momentum (detailed by Puls 1987),

∆P =
h

c
(νincosθin− νout cosθout) (1.1)

and is the key for radiative line acceleration. Integrating this momentum change over all scattering

events, the losses and gains due to re-emission cancel (almost9) because of symmetry, and it results in

a total (radial) acceleration (Puls et al. 2008 present a concise description of the physics involved).

The hot star winds are mainly characterized by two parameters: the terminal velocity (v∞) and the

mass-loss rate (Ṁ). Since these winds are initiated and then continuously accelerated by spectral line

9 there is only partial cancellation when lines overlap
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absorption and scattering of photons, the velocity reached at large distances from the star corresponds

to the maximum velocity of the stellar wind (v∞). Afterwards the radiative acceleration should tend

to zero due to geometrical dilution of the radiation field. Assuming that winds are stationary and

spherically symmetric (within the so-called standard model), the continuity equation reads:

Ṁ = 4πr2ρ(r)V(r), (1.2)

where ρ(r) and V(r) are the average mass density and the velocity at a particular radius, respectively.

The high mass loss imprints a characteristic signature on the spectral energy distribution (SED) and

spectral lines of these objects. To obtain the wind parameters from observations is non-trivial, and

requires detailed models including realistic opacities.

Stellar wind parameters are no direct observables. Their determination relies on stellar atmosphere

models including the effects of winds. Therefore any “observed wind property” is based on comparing

observed spectra with synthetic spectra from theoretical models, and the reliability of results strongly

depends on the wavelength regime used and on the reliability of the adopted code. The theoretical

reproduction of some parts of the observed spectra (quantitative spectroscopy) provides a good illus-

tration for such discussions. Recombination lines like Hα and He ii 4686, for example, may be used

as indicator of wind density, as well as the strength of blueshifted P-Cygni absorption features in UV

resonance lines (e.g, Puls et al. 2008). However quantitative spectroscopy has its own difficulties, e.g.:

rotation and atmospheric turbulent motions act as broadening mechanisms for the shape of a spectral

line; radial motions of the star in relation to the observer (Earth) shift the observed wavelengths as a

whole; the quality of the observing equipment itself reflects in the resolution of the spectra. Finally,

the wind parameter diagnostics have also their own challenges, e.g, due to wind instabilities induced

by the line acceleration itself.

Because of these instabilities, winds may be inhomogeneous and deviate from spherical symmetry

(see Owocki et al. 1988, Owocki & Puls 1999, Hillier 1991). Hα, He i, and He ii emission lines are

(mostly) formed from recombination processes, such that their emissivity varies with ρ2, while the

P-Cygni absorption though depends linearly on ρ. This raises a problem. If only small-scale inhomo-

geneities (known as “clumps”) are considered, then recombination emission arising in dense clumps

is stronger than if the same mass was distributed homogeneously through the wind (mathematically,

〈ρ2〉 > 〈ρ〉2). In other words, many diagnostic methods of the wind features may rely on processes

with opacities proportional to ρ, but the determination of Ṁ, for example, is usually done through ρ2

dependencies (Hα, IR or radio).

Nowadays it is generally accepted that hot star winds have a time-dependent and inhomogeneous

structure consisting of shocks and clumps. Thus, if determined by Hα and assuming a smooth wind,

the mass-loss rate is overestimated by a factor of
√

fcl, which is typically defined as fcl = 〈ρ2〉/〈ρ〉2 and

called the “clumping factor” (always greater or equal than 1, see Puls et al. 1996, Kudritzki & Puls

2000 for further discussion). In this case, the analysis of the UV part of the spectrum may be of

great help since it is less affected by clumps. Fullerton et al. (2006) proposed a reduction by a factor

of 10 or more from previous Ṁ determinations using the optical wavelength regime (adopting fcl

values of ∼100), while Bouret et al. (2005) estimated reductions by factor of ∼3 also analyzing the

optical. Additionally, microclumping assumes that the structures are optically thin. However, there

are also processes which become optically thick (e.g., UV lines) in these clumps, leading to so-called
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porosity effects (e.g., Oskinova et al. 2007, Sundqvist et al. 2011, Šurlan et al. 2013, Sundqvist et al.

2014, Sundqvist & Puls 2018).

Sophisticated model atoms become imperative for a better description of ionization and excitation

stratification in the stellar atmosphere. Recently, much work has been invested in the description of

radiative and collisional transitions in order to properly reproduce the observations (Pauldrach et al.

2001, Nieva & Przybilla 2008, Rivero González et al. 2012a, Carneiro et al. 2018). In this respect, the

precision of the data plays a main role in the quality of the results. A sequence of choices have to

be made before and during the development of model atoms, mainly regarding the temperature range

of the stars that will be analyzed, as for example, the number of energy levels that will be accounted

for (we discuss this topic further in Chapter 3). The reproduction of P-Cygni profiles formed by the

so-called super-ionized ions (e.g, O vi) challenges the completeness of atomic models as well.

Stellar winds are X-ray emitters. O stars as soft X-ray emitters were among the first detec-

tions from the EINSTEIN observatory (Harnden et al. 1979, Seward et al. 1979). Subsequently, it

was found that the X-ray luminosity is closely correlated with stellar luminosity by Lx/Lbol ≈ 10−7

in O stars (Chlebowski et al. 1989, Sana et al. 2006, Nazé et al. 2011). Stellar wind embedded

shocks are thought to be responsible for this X-ray emission (Lucy & White 1980, Lucy 1982,

Cassinelli & Swank 1983), and result from the strong hydrodynamic instability of radiation driven

winds (see above). Hillier et al. (1993) determined shock temperatures, filling factors10 and onset of

X-ray emission, assuming randomly distributed isothermal11 shocks in the stellar wind, where the hot

shocked gas is collisionally ionized and excited, and the emitted photons might then be absorbed by

the cooler wind material (in Chapter 2, we explore the description of emission from such embedded

shocks). This first model was able to reproduce the soft X-ray emission, but not the hard X-ray tail.

Feldmeier (1995) relaxed the assumption of isothermal shocks and extended these models accounting

for a structured wind with radiative and adiabatic cooling parts. Feldmeier et al. (1997a,b) stratified

the shocks including post-shock cooling zones for radiative and adiabatic shocks and concluded that

cloud collisions produce a significant part of the X-ray emission. These models retain the possibility

of reproducing the previous stationary models, while also solving known problems as for example

the reproduction of hard X-rays plus the superionization. The inclusion of X-rays in the atmospheric

models affect the ionization balance of many atoms ( Pauldrach et al. 1994, Krtička & Kubát 2009,

Bouret et al. 2012, Carneiro et al. 2016), therefore its effect, even if indirect, becomes significant.

In our case, the ionization energy of the ions we will study is basically what guides the necessity

of including wind embedded shocks or not. When analyzing the first to the third ionization stage of

any atom, the splitting of the outermost (valence) electron plays the main role in the description of the

ionization fraction. However, to interact with electrons closer to the atomic nuclei, higher energies

are required for the ionization process, and might be provided by X-ray photons. Nevertheless, for

many early-B and late-O stars, the fraction of high ionization stages (e.g., C v, N v, O vi) is almost

negligible, and the inclusion of X-ray emission may be relaxed in the analysis. In other words, the

necessity of including shock radiation in the chemical abundance determination is basically set by the

temperature range of the studied object, and the considered atoms.

10 (Volume) Fraction of X-ray emitting material.
11 These shocks are named isothermal due to their almost immediate cooling in the post-shock region.
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The reproduction of two or more ions of the same atomic species in a chemical abundance analysis

increases considerably the reliability of the obtained results. As written previously, a precise descrip-

tion of X-rays in the atmospheric models impacts the ionization balance of mainly higher ionized

atoms, and the simultaneous reproduction of lines of multiple ions is only possible with a plausi-

ble description of the stellar and wind parameters. Additionally, the combination of UV and optical

analysis gives a very strong evidence about the consistency of the results, where the UV analysis par-

ticularly demands the inclusion of shock radiation and clumps in the atmospheric models since strong

UV-lines are formed in the wind.

Due to the (often) large mass-loss rates, the inclusion of stellar winds turns out to be essential

for the understanding of stellar evolution. Thus a big effort was made in the end of the last cen-

tury to include the mass-loss in stellar evolutionary models (Schaller et al. 1992, Bressan et al. 1993,

Meynet et al. 1994, Fagotto et al. 1994a,b,c, Girardi et al. 1996, are some examples from different

groups), and some problems have been solved, e.g., the better agreement with the observed number

ratio of WR-stars to O stars at different metallicities (Maeder & Meynet 1994). On the other hand,

other problems were still not solved, as for example the observed abundance anomalies in several

OB-stars, mostly referring to a nitrogen enrichment (Herrero et al. 1992, 2000). With the inclusion of

rotation, the ambiguous abundances as observed in O-type stars have been better understood.

1.3 CNO evolution and internal mixing

Indeed, rotation plays a key role in the determination of stellar lifetimes, evolutionary tracks in

the HRD, chemical yields, final stellar masses, etc. Usually, hot massive stars are fast rotators

(e.g., Simón-Dı́az & Herrero 2014), even though rotation was considered a second-order effect for

a long time. New evolutionary models including mass-loss and rotation (Meynet & Maeder 2000,

Heger & Langer 2000, Heger et al. 2000, Maeder & Meynet 2001) were calculated and could solve,

at least basically, the problem of atypical abundances. Rotationally induced chemical mixing then

became a key feature to understand stellar chemical evolution.

Rotation modifies the evolution of stars through different physical effects: it lowers the effec-

tive gravity (due to centrifugal acceleration), it flattens the chemical gradient in the stellar interior,

enhances the mass-loss rates, and distorts the stellar photosphere, since it induces deviations from

spherical symmetry. Direct consequences are, e.g.:

• Rotational mixing transports fresh hydrogen from the stellar envelope into the core, resulting in

a more massive He-core at the end of the MS and producing evolutionary tracks that extend to

lower Teff .

• As hydrogen is transported to the stellar interior, rotating stars have a (∼40%) longer MS life

compared to non-rotating models.

• At the same time rotational mixing transports H-burning products to the stellar envelope and

photosphere. In particular He decreases the opacity and leads to an increase in luminosity.
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• Compared to non-rotating models, the mass loss of rotating stars is increased, mainly due to

the higher luminosity, which in combination with the longer MS phase produces smaller final

masses.

The effects of rotation on the stellar models were detailed by Heger & Langer (2000),

Maeder & Meynet (2000b), and Meynet & Maeder (2000).

Rotational induced mixing is one of the major consequences of including rotation in the calcula-

tion of atmospheric models, and plays a key role in our study. Due to mixing, CNO-cycle processed

material produced in the stellar interior may reach the stellar surface at early evolutionary stages and

consequently modify the observed photospheric abundances.

The CNO-cycle is one of the two processes by which stars convert hydrogen to helium; the other

is called the proton-proton chain. The first is present in high (and intermediate) mass stars, and is a

catalytic process, i.e., the total number of C, N, and O nuclei is not changed, but the different isotope

concentrations are modified. This leads to an increase of nitrogen in parallel with a depletion of carbon

and oxygen, the latter to a lesser extent and mainly at later phases.

Figure 1.1: Schematic picture of the CNO cycle. The left rectangle (I) represents the CN-cycle while

the right rectangle (II) stands for the NO cycle. The notation between the atoms in the form of X(a,b)Y

means that the nucleus X captures the particle “a” and emits “b”, resulting in Y. β+ indicates a beta

plus decay (positron emission). Arrows indicate the nuclear reactions sequence for both cycles. Figure

adapted from Maeder (2009).

Figure 1.1 displays a scheme of the CNO-cycle which is the combination of two (almost) indepen-

dent cycles: the CN-cycle represented in the left rectangle (I) of the figure and the NO-loop displayed

by the right rectangle (II). The first cycle converts the initial carbon nucleus into 14N which becomes

the most abundant isotope. Within the first reactions, 14N + 1H → 15O +γ is the slowest one, and
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while the abundant 14N ‘waits’ to be transformed into 15O, it can be mixed from the upper core into

the stellar surface. Therefore during the CN-cycle, the nitrogen is enriched at the expense of carbon,

while oxygen remains constant. As the conversion of 14N to 15O is the slowest reaction, it acts as a

“bottleneck” and:

• some of the “fresh” nitrogen may reach the stellar surface due to rotational mixing;

• some of the nitrogen will form 15N and eventually, the nitrogen-15 nucleus captures a fast-

moving proton and breaks down into a carbon-12 nucleus plus a helium nucleus (alpha particle);

• a small fraction of 15N triggers the formation of 16O, and the NO-cycle starts.

The amount of 16O produced after the proton capture by 15N is low. Approximately 103 cycles are

required before a significant number of CN nuclei are transfered to the NO-loop. Consequently, the

CN-cycle reaches equilibrium before the ON-cycle reactions become efficient and both are largely

decoupled. Overall, the final surface abundance of carbon decreases, the same is valid for oxy-

gen however less efficiently, whereas nitrogen becomes enhanced. Finally, the ratio of abundances

may then be used to trace stellar evolution and rotational mixing efficiency (e.g., Langer et al. 1997,

Meynet & Maeder 2000, Heger et al. 2000, Paxton et al. 2013).

As the CN-cycle is considerably faster compared to the ON-loop, the N/C abundance ratio changes

already in the initial phase of the MS. The O/N ratio is also affected during the MS, but its variation

from ZAMS is flatter than N/C. In the case of non-rotating stellar models, on the other hand, surface

chemical abundances remain unchanged throughout most of the stellar lifetime (Brott et al. 2011,

Ekström et al. 2012).

Theoretically then, we should see distinct values of N/C and O/N ratios when studying a set

of dwarfs and supergiant stars (tested in Chapter 4). It is worth noting, though, that after observa-

tional campaigns as the VLT-FLAMES Survey of Massive Stars (Evans et al. 2005, 2006, hereafter

FLAMES-I), the OWN survey (Barbá et al. 2010) and the IACOB survey (Simón-Dı́az et al. 2011a),

there are still problems to reproduce the observational findings with theoretical models even when stel-

lar winds and rotation effects are included. Most likely, the deviations are due to other effects such as

binarity (e.g., Langer et al. 2008, Sana et al. 2009, 2011) and magnetic fields (e.g., Maeder & Meynet

2003, 2004, 2005, Morel et al. 2008, Maeder et al. 2009).

Recent studies pointed out that a significant fraction of massive stars are part of binary systems

(e.g., Sana et al. 2008, 2009, 2011, Mason et al. 2009). In the case of close binaries, the primary star

(the one with higher mass) may fill the Roche lobe12 during its MS and transfer mass from its envelope

to the companion. Due to this process, the surface nitrogen abundance of the companion may become

enriched by a factor of 3 to 5 independent of rotational mixing (Langer et al. 2008).

Magnetic fields may be responsible for the existence of slowly rotating and highly enriched stars.

Martins et al. (2012) found evidences for nitrogen enrichments in magnetic slowly rotating Galactic

O-stars, and magnetic breaking is a potential mechanism to explain such populations (Townsend et al.

2010).

12 Roche lobe (or Roche limit) is the region around a star in a binary system within which the orbiting material is gravita-

tionally bound to that star. Any material outside this approximately teardrop-shaped region may, depending on its initial

location, energy and momentum, either escape the system completely, orbit both stars, or fall onto the binary companion.
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1.4 Motivation of this thesis

Taking the previous sections into account, it becomes apparent that quantitative spectroscopy inherits

multiple challenges, particularly in the case of massive stars. Modeling their atmospheres (a prereq-

uisite for quantitative spectroscopy) is especially complex due to the strong radiative field emitted by

these objects, which leads to departures from local thermodynamic equilibrium (so-called non-LTE or

NLTE, which means that the atomic level population no longer follows a Saha-Boltzmann distribution

as in cool stars, but must instead be computed explicitly from individual populating and depopulating

rates), and the presence of strong, radiation-driven winds (see above). Precise atomic data turn out to

be mandatory for a realistic estimate of the ionization stratification throughout the star’s atmosphere,

which might demand the inclusion of X-ray emission from wind embedded shocks. This chain of

dependencies must be split into the specific processes, and each of them investigated separately in

order to reach a sufficiently precise model.

One of the major objectives of our research group (namely the Munich massive star group) is

the derivation of stellar and wind parameters (particularly, chemical abundances in this thesis) for

statistically complete samples, to check and provide constraints for stellar evolutionary models. This

thesis gives a first step in this direction, since it extends the present capabilities of our fast performance

model atmosphere/spectrum synthesis code fastwind.

fastwind was developed in close collaboration between the Munich and the Tenerife hot-star

groups (see Santolaya-Rey et al. 1997, Puls et al. 2005, and Rivero González et al. 2012a). One of

the reasons for doing so is that the alternative atmosphere code cmfgen (Hillier & Miller 1998) is

roughly a factor of 10 slower, which prohibits the analysis of larger samples as planned for the current

and future projects. We accounted for high quality observations described later in this work.

The present thesis is a first step towards our goal to analyze large samples of massive stars and

constrain evolutionary models. This is done by means of quantitative spectroscopy, particularly re-

garding CNO abundances. Throughout this work, we improve the tools developed by our working

group, test our new implementations and derive state-of-the-art surface chemical abundances.

Once we are in a position to obtain reliable values for carbon, nitrogen and oxygen abundances,

we investigate the theoretical predictions with respect to the N/C and N/O abundance ratios within

stellar evolution models. This kind of analysis reveals certain problems of our methodology that are

still fragile and require further developments. Regarding the analysis, we have a multitude of input

parameters for the calculation of atmospheric models, and also large samples to be analyzed. Thus it

becomes essential to invest time in automatizing a pipeline for the sake of scalability, efficiency and

consistency of our methodology.

Besides a newly developed methodology and the produced results, this work should deliver the

tools for eventual future works to explore other complex topics, as for example, quantitative spec-

troscopy in the ultraviolet range and the consistency of chemical abundances obtained from the optical

and the UV.
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1.5 Outline of this thesis

In the following, we give an outline of the studies presented within the framework of this thesis.

The next three chapters are copies of publications produced within this thesis, which is closed by

summarizing the major findings and the possibilities for future investigations.

Chapter 2: Atmospheric NLTE models for the spectroscopic analysis of blue stars with

winds: X-ray emission from wind-embedded shocks

The ionization balance in the atmospheres of hot massive stars may be affected by extreme ultraviolet

and X-ray radiation. To understand these processes, we included the emission from wind embedded

shocks in the fastwind code. We tested exhaustively our implementation and compared it to similar

results published recently. We investigate under which conditions the effects of X-rays are more ex-

treme. In the end, we provide an extensive discussion regarding the use of a constant mass absorption

coefficient that may simplify the analysis of the soft X-ray regime.

Chapter 3: Carbon line formation and spectroscopy in O-type stars

Chemical abundance plays a key role in the description of stellar evolution. Mainly in high-mass

stars, the CNO abundances are of main importance, because of the CNO-cycle and rotational mixing.

We present a detailed description of the carbon atom developed in this chapter, and discuss specific

problems related to carbon spectroscopy in O-type stars. We test the sensibility of carbon lines to the

variation of different parameters, and demonstrate our capability of reproducing prototypical observa-

tions.

Chapter 4: Surface abundances of CNO in Galactic O-stars: A pilot study with FAST-

WIND

Rotational mixing is a key feature of rotating star models, and there are a variety of theoretical predic-

tions for the chemical evolution of hot-stars. In this chapter, we present a set of semi-automatic tools

for measuring and analyzing the observed equivalent widths of strategic optical C, N, O lines from

different ionization stages. We compare our results with different theoretical predictions, and provide

a pipeline that automatizes many steps of the chemical abundance analysis based on the equivalent

width of the observed lines.

Chapter 5: Summary and Conclusions

To close this work, we summarize our main findings and describe the open questions that may be the

subject of future investigations thanks to the improvements made in this work.





Chapter 2

Atmospheric NLTE models for the

spectroscopic analysis of blue stars with

winds: X-ray emission from

wind-embedded shocks

This chapter is a copy of Carneiro, Puls, Sundqvist, & Hoffmann (2016), Astronomy & Astrophysics,

590, A88, 2016.

Abstract Extreme ultraviolet (EUV) and X-ray radiation emitted from wind-embedded shocks in

hot, massive stars can affect the ionization balance in their outer atmospheres and can be the mecha-

nism responsible for producing highly ionized atomic species detected in stellar wind UV spectra.

To allow for these processes in the context of spectral analysis, we have implemented the emission

from wind-embedded shocks and related physics into our unified, NLTE model atmosphere/spectrum

synthesis code FASTWIND.

The shock structure and corresponding emission is calculated as a function of user-supplied pa-

rameters (volume filling factor, radial stratification of shock strength, and radial onset of emission).

We account for a temperature and density stratification inside the postshock cooling zones, calculated

for radiative and adiabatic cooling in the inner and outer wind, respectively. The high-energy absorp-

tion of the cool wind is considered by adding important K-shell opacities, and corresponding Auger

ionization rates have been included in the NLTE network. To test our implementation and to check

the resulting effects, we calculated a comprehensive model grid with a variety of X-ray emission

parameters.

We tested and verified our implementation carefully against corresponding results from various

alternative model atmosphere codes, and studied the effects from shock emission for important ions

from He, C, N, O, Si, and P. Surprisingly, dielectronic recombination turned out to play an essential

role for the ionization balance of O iv/O v (particularly in dwarfs with Teff ∼ 45,000 K). Finally, we

investigated the frequency dependence and radial behavior of the mass absorption coefficient, κν(r),
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which is important in the context of X-ray line formation in massive star winds.

In almost all of the cases considered, direct ionization is of major influence because of the en-

hanced EUV radiation field, and Auger ionization only affects N vi and O vi significantly. The ap-

proximation of a radially constant κν is justified for r & 1.2R∗ and λ . 18 Å and also for many models

at longer wavelengths. To estimate the actual value of this quantity, however, the He ii opacities need

to be calculated from detailed NLTE modeling, at least for wavelengths longer than 18 to 20 Å, and

information on the individual CNO abundances has to be present.

2.1 Introduction

Most of our knowledge about the physical parameters of hot stars has been inferred by means of

quantitative spectroscopy, i.e., the analysis of stellar spectra based on atmospheric models. The com-

putation of such models is very challenging, mostly because of the intense radiation fields of hot stars

leading to various effects that are absent in the atmospheres of cooler stars, such as the requirement

for a kinetic equilibrium description (also simply called NLTE = non-LTE) and the presence of strong,

radiation-driven winds.

In recent decades, a number of numerical codes have been developed that enable the calculation

of synthetic profiles/spectral energy distributions (SEDs) from such hot stars. Apart from plane-

parallel, hydrostatic codes, which can be used to analyze those atmospheres that are less affected

by the wind (e.g., tlusty, Hubeny 1998; Detail/Surface, Giddings 1981, Butler & Giddings 1985),

all of these codes apply the concept of unified (or global) model atmospheres (Gabler et al. 1989),

which aims at a consistent treatment of both photosphere and wind, i.e., including (steady-state) mass

loss and velocity fields. Examples of such codes are CMFGEN (Hillier & Miller 1998), PHOENIX

(Hauschildt 1992), PoWR (Gräfener et al. 2002), WM-basic (Pauldrach et al. 2001), and FASTWIND

(Puls et al. 2005, Rivero González et al. 2012a).1 A brief comparison of these different codes can be

found in Puls (2009).

In the present paper, we report on recent progress to improve the capabilities of FASTWIND,

which is widely used to analyze the optical spectra of hot massive stars (e.g., in the context of the VLT-

flames survey of massive stars, Evans et al. 2008; and the VLT-flames Tarantula Survey, Evans et al.

2011). One of the most challenging aspects of these surveys was the analysis of the atmospheric nitro-

gen content, which is processed in the stellar core by the CNO cycle and transported to the outer layers

by rotational mixing, to derive stringent constraints for up-to-date evolutionary calculations. Though

the optical nitrogen analysis of B-stars (dwarfs and supergiants with not too dense winds) could still

be performed by a hydrostatic code (in this case TLUSTY, e.g., Hunter et al. 2007, 2008), a similar

analysis of hotter stars with denser winds required the application of unified model atmospheres, due

to the wind impact on the strategic nitrogen lines (Rivero González et al. 2011, 2012a, Martins et al.

2012). Moreover, because of the complexity of the involved processes, the precision of the derived

nitrogen abundances2 is still questionable. To independently check this precision and to obtain fur-

1 The multicomponent code developed by Krtička & Kubát (2001) that is referred later, was designed to calculate the wind

properties and has not been used for diagnostic purposes so far.
2 For early-type O stars, this suggests very efficient mixing processes at quite early stages (Rivero González et al. 2012b)
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ther constraints, a parallel investigation of the carbon (and oxygen) abundances is urgently needed,

since at least the N/C abundance ratio as a function of N/O might be predicted almost independently

from the specific evolutionary scenario (Przybilla et al. 2010), and thus allows individually derived

spectroscopic abundances to be tested (see also Martins et al. 2015a).

As shown by Martins & Hillier (2012), however, the optical diagnostics of carbon in O stars is

even more complex than the nitrogen analysis, since specific, important levels are pumped by a variety

of UV resonance lines. Thus, an adequate treatment of UV lines is inevitable, both for the optical

diagnostics and to constrain the results by an additional analysis of carbon lines located in the UV.

If at least part of these lines are formed in the wind, the inclusion of X-ray and EUV emission from

wind-embedded shocks turns out to be essential (see below); this is the main reason (though not the

only one) for our current update of FASTWIND. Other codes such as CMFGEN, PoWR, and WM-

basic already include these processes, thus enabling the modeling of the UV (e.g., Pauldrach et al.

2001, Crowther et al. 2002, Hamann & Oskinova 2012) and the analysis of carbon (plus nitrogen and

oxygen, e.g., Bouret et al. 2012, Martins et al. 2015a,b for the case of Galactic O stars).

X-ray emission from hot stars has been measured at soft (0.1 to >∼ 2 keV) and harder energies,

either at low resolution in the form of a quasi-continuum, or at high resolution allowing the in-

vestigation of individual lines (e.g., Oskinova et al. 2006, Owocki & Cohen 2006, Hervé et al. 2013,

Leutenegger et al. 2013b, Cohen et al. 2014b, Rauw et al. 2015). The first X-ray satellite observatory,

EINSTEIN, has already revealed that O stars are soft X-ray sources (Harnden et al. 1979, Seward et al.

1979), and Cassinelli & Swank (1983) were the first to show that the observed X-ray emission is due

to thermal emission, dominated by lines. Follow-up investigations, particularly by ROSAT, have sub-

sequently allowed us to quantify X-ray properties for many OB stars (see Kudritzki & Puls 2000 and

references therein). Accounting also for more recent work based on CHANDRA and XMM-Newton,

it was found that the intrinsic X-ray emission of “normal” O stars is highly constant w.r.t. time (e.g.,

Nazé et al. 2013), and that the level of X-ray emission is strictly related to basic stellar and wind pa-

rameters, e.g., Lx/Lbol ≈ 10−7 for O stars (Chlebowski et al. 1989, Sana et al. 2006, Nazé et al. 2011).

Such X-ray emission is widely believed to originate from wind-embedded shocks, and to be

related to the line-driven instability (LDI; e.g., Lucy & Solomon 1970, Owocki & Rybicki 1984,

Owocki et al. 1988, Owocki 1994, Feldmeier 1995). In terms of a stationary description, a sim-

ple model (e.g., Hillier et al. 1993, Cassinelli et al. 1994) assumes randomly distributed shocks

above a minimum radius, Rmin ≈ 1.5 R∗ . This is consistent with X-ray line diagnostics ( e.g.,

Leutenegger et al. 2013b; see also Rauw et al. 2015) in which the hot shocked gas (with temperatures

of a few million Kelvin and a volume filling factor on the order of 10−3 to a few 10−2) is collisionally

ionized/excited and emits X-ray/EUV photons due to spontaneous decay, radiative recombinations,

and bremsstrahlung. The ambient, cool wind then reabsorbs part of the emission, mostly via K-shell

processes. The strength of this wind absorption has a strong frequency dependence. For energies

beyond 0.5 keV (e.g., the CHANDRA bandpass), the absorption is very modest (e.g., Cohen et al.

2011), whilst for softer X-rays and the EUV regime the absorption is significant, even for winds with

low mass-loss rates (e.g., Cohen et al. 1996). In the latter case, only a small fraction of the produced

radiation actually leaves the wind.

This simple model, sometimes extended to account for the post-shock cooling zones of radiative

and adiabatic shocks (see Feldmeier et al. 1997a, but also Owocki et al. 2013), is used in the previ-
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ously mentioned NLTE codes, particularly to account for the influence of X-ray/EUV emission on the

photoionization rates.

Since the detection of high ionization stages in stellar wind UV spectra, such as O vi, S vi, and N v

(Snow & Morton 1976, Lamers & Morton 1976, Lamers & Rogerson 1978), that cannot be produced

in a cool wind (thus, denoted “superionization”), the responsible mechanism was, and partly still is,

subject to debate. Because the X-ray and associated EUV luminosity emitted by the shocks is quite

strong, it can severely affect the degree of ionization of highly ionized species by Auger ionization

(Macfarlane et al. 1993) and even more by direct ionization in the EUV (Pauldrach et al. 1994, 2001).

A first systematic investigation of these effects on the complete FUV spectrum, as a function of stellar

parameters, mass loss, and X-ray luminosity was performed by Garcia (2005).

In this paper, we present our approach for implementing wind-embedded shocks into FASTWIND

to allow for further progress as outlined above, and report on corresponding tests and first results. In

Sect. 2.2, our model for the X-ray emission and cool-wind absorption is described along with coupling

to the equations of statistical equilibrium. In Sect. 2.3 we present our model grid, which constitutes

the basis of our further discussion. Sect. 2.4 provides some basic tests and Sect. 2.5 presents first

results. In particular, we discuss how the ionization fractions of specific, important ions are affected

by X-ray emission, and how these fractions change when the description of the emission (filling

factors and shock temperatures) is varied (Sect. 2.5.1). We compare with results from other studies

(Sect. 2.5.1) and investigate the impact of Auger compared to direct ionization (Sect. 2.5.2). We

discuss the impact of dielectronic recombination in O v in Sect. 2.5.3, and comment on the radial

behavior of the mass absorption coefficient (as a function of wavelength), which is an important issue

for X-ray line diagnostics (Sect. 2.5.4). Finally, we present our summary and conclusions in Sect. 2.6.

2.2 Implementation of X-ray emission and absorption in FASTWIND

Our implementation of the X-ray emission and absorption from wind-embedded shocks closely fol-

lows the implementation by Pauldrach et al. (2001) for WM-basic (see also Pauldrach et al. 1994),

which in turn is based on the model for shock cooling zones developed by Feldmeier et al. (1997a,

see Sect.2.1). Except for the description of the cooling zones, this implementation is similar to the

approaches by Hillier & Miller (1998, CMFGEN, but using a different definition of the filling fac-

tor, see below), Oskinova et al. (2006, POWR), and Krtička & Kubát (2009, hereafter KK09). In the

following, we summarize our approach.

2.2.1 X-ray emission

Following Feldmeier et al. (1997a), the energy (per unit of volume, time, and frequency), emitted by

the hot gas into the full solid angle 4π can be written as3

ǫν = fX(r)np(r)ne(r)Λν(ne(r),Ts(r)), (2.1)

where np(r) and ne(r) are the proton and electron density of the (quasi-)stationary, cool (pre-shock)

wind, Ts(r) is the shock temperature, and fX(r) the filling factor related to the (volume) fraction

3 The corresponding emissivity is lower by a factor 1/4π.
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of the X-ray emitting material.4 Indeed, this definition differs from the formulation suggested by

Hillier et al. (1993, their Eq. 2), since we include here their factor 16 into fX (accounting for the

density jump in a strong adiabatic shock). This definition is then identical with that used in WM-

basic, POWR (presumably5), and by KK09, whilst the relation to the filling factor used in CMFGEN,

es, is given by

fX = 16e2
s . (2.2)

In principle, Λν is the frequency-dependent volume emission coefficient (“cooling function”) per pro-

ton and electron, calculated here using the Raymond-Smith code (Raymond & Smith 1977, see also

Smith et al. 2001), with abundances from the FASTWIND input, and neglecting the weak dependence

on ne. We evaluate the cooling function at a fixed electron density, ne = 1010 cm−3 (as also done, e.g.,

by Hillier et al. 1993 and Feldmeier et al. 1997a), and have convinced ourselves of the validity of this

approximation. We note here that the only spectral features with a significant dependence on electron

density are the forbidden and intercombination lines of He-like emission complexes, and even there

(i) the density dependence is swamped by the dependence on UV photoexcitation, and (ii) in any case

the flux of the forbidden plus intercombination line complex (f+i lines are very closely spaced) is

conserved.

In contrast with the assumption of a hot plasma with a fixed postshock temperature and density

(as adopted in some of the above codes), in our implementation we account for a temperature and

density stratification in the postshock cooling zones, and we note that the decreasing temperature

and increasing density should significantly contribute to the shape of the emitted X-ray spectrum

(Krolik & Raymond 1985). To this end, we adopt the structure provided by Feldmeier et al. (1997a),

and integrate the emitted energy (Eq. 2.1) over the cooling zone,

ǫν = fX(r)np(r)ne(r)Λν(1010 cm−3,Ts(r)), (2.3)

with

Λν(Ts(r)) = ± 1

Lc

∫ r±Lc

r

f 2(r′)Λν(Ts(r) ·g(r′)) dr′, (2.4)

where r is the position of the shock front and Lc the spatial extent of the cooling zone. In this formu-

lation, the ‘+’ sign corresponds to a reverse shock, and the ‘−’ sign to a forward shock. The functions

f and g provide the normalized density and temperature stratification inside the cooling zone, and are

calculated following Feldmeier et al. (1997a), accounting for radiative and adiabatic cooling in the

inner and outer wind, respectively (see Sect. 2.2.3). We integrate over 1,000 subgrid points within Lc,

finding identical results for both f (r) and g(r) as well as for Λν, compared to the original work (Figs. 1

and 7; 2 and 8 in Feldmeier et al. 1997a). By setting f = g = 1, we are able to return to nonstratified,

isothermal shocks.

In our implementation, the (integrated) cooling function and, thus, the emissivity is evaluated in

the interval between 1 eV and 2.5 keV for a bin-size of 2.5 eV. These emissivities are then resampled

4 The actual, local preshock density may be different from its quasi-stationary equivalent, but this difference gets absorbed

in the fX-factor.
5 We were not able to find a definite statement, but Oskinova et al. (2006) also refer to Feldmeier et al. (1997a).
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onto our coarser frequency grid as used in FASTWIND in such a way as to preserve
∫

εν dν in each

of the coarser subintervals, thus enabling correct photo integrals for the rate equations.

The immediate postshock temperature, Ts(r), entering Eq. 2.4, follows from the Rankine-

Hugoniot equations

Ts(r) =
3

16

µmH

kB

(

u2+

[

14

5
a2

s

(

1−
3

14

a2
s

u2

)])

, (2.5)

where u is the jump velocity, µ the mean atomic weight, and as the adiabatic upstream sound speed.

For simplicity, we calculate the shock temperature from a more approximate expression, neglecting

the term in the square bracket, i.e., assuming the strong shock scenario (u2≫ a2
s ),

Ts(r) =
3

16

µmH

kB
u2. (2.6)

To derive Ts, we thus need to specify the jump velocity u, adopted in accordance with Pauldrach et al.

(1994, their Eq. 3) as

u(r) = u∞

[

v(r)

v∞

]γx

, (2.7)

where u∞ is the maximum jump speed, which in our implementation is an input parameter (on the or-

der of 300 to 600 kms−1, corresponding to a maximum shock temperature, T∞s ≈ 106 to 5 ·106 K for O

stars), together with the exponent γx (in the typical range 0.5. . . 2) that couples the jump velocity with

the outflow velocity, controlling the shock strength. A parameterization such as Eq. 2.7 is motivated

primarily by the observed so-called “black troughs” in UV P-Cygni profiles. Namely, when modeled

using a steady-state wind6, such black troughs can only be reproduced when assuming a velocity dis-

persion that increases in parallel with the outflow velocity, which is interpreted as a typical signature

of wind structure (e.g., Groenewegen & Lamers 1989, Haser 1995). However, Eq. 2.7 only represents

one possible implementation of the radial distribution of wind-shock strengths, and ultimately the user

is responsible for her/his choice of parameterization (see also discussion in Sect. 2.6).

The last required parameter is the onset radius of the X-ray emission, Rmin. This value is controlled

by two input parameters, R
input

min
and a factor mx (the latter in accordance with Pauldrach et al. 1994).

From these values, Rmin is calculated via

Rmin =min
(

R
input

min
,r(vmin)

)

with vmin = mx as. (2.8)

For all radii r > Rmin, the X-ray emission is switched on. Rmin values from 1.1 to 1.5 R∗ are, e.g.,

supported by Pauldrach et al. (1994) from their analysis of the O vi resonance lines. Hillier et al.

(1993) analyzed the sensitivity to Rmin, pointing to indistinguishable X-ray flux differences when the

onset is varied between 1.5 and 2 R∗. Recent analyses of X-ray line emission from hot star winds also

point to values around 1.5 R∗(e.g., Leutenegger et al. 2006, Oskinova et al. 2006, Hervé et al. 2013,

Cohen et al. 2014b), although Rauw et al. (2015) derived a value of 1.2 R∗ for the wind of λ Cep.

6 See Lucy (1982), Puls et al. (1993) and Sundqvist et al. (2012b) for the case of time-dependent, nonmonotonic velocity

fields.
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2.2.2 X-ray absorption and Auger ionization

Besides the X-ray emission, we need to compute the absorption by the cold background wind; the

optical depths inside the shocked plasma are so low that absorption can be neglected there.

In FASTWIND, the cool wind opacity is computed in NLTE. To include X-ray absorption requires

that we (i) extend the frequency grid and coupled quantities (standard7 opacities and emissivities,

radiative transfer) into the X-ray domain (up to 2.5 keV ≈ 5 Å), and (ii) compute the additional

absorption by inner shell electrons, leading to, for example, Auger ionization. So far, we included

only K-shell absorption for light elements using data from Daltabuit & Cox (1972). L- and M-shell

processes for heavy elements, which are also present in the considered energy range, have not been

incorporated until now, but would only lead to marginal effects, as test calculations by means of WM-

basic have shown.

We checked that the K-shell opacities by Daltabuit & Cox (1972) are very similar (with typical

differences less than 5%) to the alternative and more modern dataset from Verner & Yakovlev (1995),

at least in the considered energy range (actually, even until 3.1 keV).8

While the provided dataset includes K-shell opacities from the elements C, N, O, Ne, Mg, Si, and

S, the last element (S) has threshold energies beyond our maximum energy, 2.5 keV; hence, K-shell

absorption and Auger ionization for this element is not considered in our model.

After calculating the radiative transfer in the X-ray regime, accounting for standard and K-shell

opacities and standard and X-ray emissivities, we are able to calculate the corresponding photo rates

required to consider Auger ionization in our NLTE treatment. Here, we do not only include the

transition between ions separated by a charge difference of two (such as, e.g., the ionization from O iv

to O vi), but we follow Kaastra & Mewe (1993) who stressed the importance of cascade ionization

processes, enabling a sometimes quite extended range of final ionization stages. For example, the

branching ratio for O iv to O v vs. O iv to O vi is quoted as 96:9904, whilst the branching ratios for

Si iii to Si iv/Si v/Si vi are 3:775:9222; i.e., here the major Auger-ionization occurs for the process

III to VI. In our implementation of Auger ionization, we accounted for all possible branching ratios

following the data provided by Kaastra & Mewe.

Finally, we reiterate that in addition to such inner shell absorption/Auger ionization processes,

direct ionization due to X-rays/enhanced EUV radiation (e.g., of O v and O vi) is essential and au-

tomatically included in our FASTWIND modeling. The impact of direct vs. Auger ionization is

compared in Sect. 2.5.2.

2.2.3 Radiative and adiabatic cooling

As pointed out in Sect. 2.2.1, the shock cooling zones are considered to be dominated by either

radiative or adiabatic cooling, depending on the location of the shock front. More specifically, the

transition between the two cooling regimes is obtained from the ratio between the radiative cooling

time, tc, i.e., the time required by the shocked matter to return to the ambient wind temperature, and

7 = outer electron shell
8 We used data from Daltabuit & Cox (1972) to ensure compatibility with results from WM-basic to allow for meaningful

comparisons. In the near future, we update our data following Verner & Yakovlev (1995).
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the flow time, t f , the time for the material to cross Lc (expressions for these quantities can be found in

Feldmeier et al. 1997a; but see also Hillier et al. 1993). In the inner part of the wind, the cooling time

is shorter than the flow time and the shocks are approximated as radiative. Further out in the wind, at

low densities, tc≫ t f , and the cooling is dominated by adiabatic expansion (see also Simon & Axford

1966). In our approach, we switch from one treatment to the other when a unity ratio is reached, where

tc/t f ∝ Ts(r)1.5r v2(r)/Ṁ. For typical O supergiants and shock temperatures, the transition occurs in

the outermost wind beyond r > 50 R∗, whilst for O dwarfs the transition can occur at much lower radii,

r > 2.5 R∗ or even lower for weak-winded stars.

Basically, each cooling zone is bounded by a reverse shock at the starward side and a forward

shock at the outer side. Time-dependent wind simulations (e.g., Feldmeier 1995) show that in the

radiative case the forward shock is much weaker than the reverse shock and, thus, is neglected in

our model. In the adiabatic case, we keep both the reverse and forward shock and, for lack of better

knowledge, assume equal Ts for both components (Θ = 1 in the nomenclature by Feldmeier et al.

1997a), and an equal contribution of 50% to the total emission.

2.3 Model grid

In this section, we describe the model grid used in most of the following work. To allow for a grid

of theoretical models that enables us to investigate different regimes of X-ray emission for different

stellar types and to perform meaningful tests, we use the same grid as presented by (Pauldrach et al.

2001, their Table 5) for discussing the predictions of their (improved) WM-basic code.9 Moreover,

this grid has already been used by Puls et al. (2005) to compare the results from an earlier version of

FASTWIND with the WM-basic code.

For convenience, we present the stellar and wind parameters of this grid in Table 2.1. For all

models, the velocity field exponent has been set to β = 0.9. The FASTWIND and WM-basic models

display a certain difference in the velocity field10.

All entries shown in Table 2.1 refer to homogeneous winds, however, for specific tests (de-

tailed when required) we have calculated microclumped models as well (i.e., assuming optically thin

clumps). Although clumping is not considered in our standard model grid, a (micro-)clumped wind

could be roughly compared to our unclumped models as long as the mass-loss rate of the clumped

model corresponds to the mass-loss rate of the unclumped model divided by the square root of the

clumping factor. We note, however, that the K-shell opacities scale linearly with density, i.e., ∝ Ṁ,

and as such are not affected by microclumping.

All models in the present work were calculated by means of the most recent version (as described

in Rivero González et al. 2012a) of the NLTE atmosphere/spectrum synthesis code FASTWIND, in-

cluding the X-ray emission from wind-embedded shocks as outlined in Sect. 2.2. We further point

out that FASTWIND calculates the temperature structure of the photosphere and cold wind from the

electron thermal balance (Kubát et al. 1999), and its major influence in the wind is via recombination

9 This grid, in turn, is based on observational results from Puls et al. (1996), which at that time did not include the effects

of wind inhomogeneities, so that the adopted mass-loss rates might be too large by factors from ∼3. . . 6.
10 WM-basic calculates the velocity field from a consistent hydrodynamic approach.
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Table 2.1: Stellar and wind parameters of our grid models with homogeneous winds, following

Pauldrach et al. (2001). For X-ray emission parameters, see text.

Model Teff logg R∗ v∞ Ṁ Rmin

(kK) (cms−2) (R⊙) (kms−1) (10−6 M⊙yr−1) (R∗)

Dwarfs

D30 30 3.85 12 1800 0.008 1.24

D35 35 3.80 11 2100 0.05 1.29

D40 40 3.75 10 2400 0.24 1.20

D45 45 3.90 12 3000 1.3 1.20

D50 50 4.00 12 3200 5.6 1.23

D55 55 4.10 15 3300 20 1.21

Supergiants

S30 30 3.00 27 1500 5.0 1.51

S35 35 3.30 21 1900 8.0 1.43

S40 40 3.60 19 2200 10 1.33

S45 45 3.80 20 2500 15 1.25

S50 50 3.90 20 3200 24 1.25

rates. In most cases, this temperature structure is only slightly or moderately affected by X-ray/EUV

emission, since the overall ionization balance with respect to main ionization stages11 remains rather

unaffected (see Sect. 2.5), except for extreme X-ray emission parameters. In any case, the change of

the net ionization rates for ions with edges in the soft X-ray/EUV regime is dominated by modified

photo rates (direct and Auger ionization), whilst the changes of recombination rates (due to a modified

temperature) are of second order.

In FASTWIND, we used detailed model atoms for H, He, and N (described by Puls et al.

2005, Rivero González et al. 2012a) together with C, O, P (from the WM-basic data base, see

Pauldrach et al. 2001) and Si (see Trundle et al. 2004) as “explicit” elements. Most of the other

elements up to Zn are treated as background elements. For a description of FASTWIND and the

philosophy of explicit and background elements, see Puls et al. (2005) and Rivero González et al.

(2012a).

In brief, explicit elements are those used as diagnostic tools and treated with high precision by

detailed atomic models and by means of comoving frame transport for all line transitions. The back-

ground elements (i.e., the rest) are needed only for the line-blocking/blanketing calculations, and are

treated in a more approximate way, using parameterized ionization cross sections following Seaton

11 These stages dominate the heating/cooling of the cold wind plasma via corresponding free-free, bound-free, and colli-

sional (de-)excitation processes.



2.4. TESTS 23

(1958) and a comoving frame transfer only for the most important lines, whilst the weaker ones are cal-

culated by means of the Sobolev approximation. We employed solar abundances from Asplund et al.

(2009), together with a helium abundance, by number, NHe/NH = 0.1.

Besides the atmospheric and wind parameters shown in Table 2.1, our model of X-ray emission

requires the following additional input parameters: fX, u∞, γx, mx, and R
input

min
, as described in the

previous section.

For most of the models discussed in Sect. 2.5, we calculated, per entry in Table 2.1, 9 different

sets of X-ray emission: fX (adopted as spatially constant) was set to 0.01, 0.03, and 0.05, whilst the

maximum shock velocity, u∞, was independently set to 265, 460, and 590 kms−1, corresponding to

maximum shock temperatures of 1, 3, and 5·106 K.

For all models, we used γx = 1.0, R
input

min
= 1.5 R∗, and mx= 20. This corresponds to an effective

onset of X-rays, Rmin, between 1.2 and 1.5 R∗, or 0.1 and 0.2 v∞, respectively (see Table 2.1, last

column). Thus, our current grid comprises 9 times 11 = 99 models, and has enough resolution to

compare this grid with previous results from other codes and to understand the impact of the X-ray

radiation onto the ionization fractions of various elements.

2.4 Tests

In this section, we describe some important tests of our implementation, including a brief parameter

study. A comparison to similar studies with respect to ionization fractions (also regarding the impact

of Auger ionization) is provided in Sect. 2.5. Of course, we tested much more than described in the

following sections. For example, we also tested the following:

(i) The impact of γx (see also Pauldrach et al. 2001), particularly when setting γx to zero and

consequently forcing all shocks, independent of their position, to emit at the maximum shock tem-

perature, T∞s . In this case and compared to our standard grid with γx = 1, the dwarf models that are

cooler than 50 kK display a flux increase of 2 dex shortward of 100 Å (this increase is barely notice-

able already for D50), whilst the supergiant models display a similar increase for wavelengths around

10 Å and below. In terms of ionization fractions, setting γx to zero results in an increase of highly

ionized species (e.g., O vi and N vi) by roughly one dex from the onset of X-ray emission throughout

the wind. For all other dwarf models, this increase appears only out to ∼4.0 R∗. The same effect is

present in the supergiant models, except for a smaller radial extent.

(ii) We compared the ionization fractions of important atoms when they are either treated as ex-

plicit (i.e., “exact”) or as background (i.e, approximate) elements (cf. Sect. 2.3), and we mostly found

an excellent agreement (in all cases, the agreement was at least satisfactory) between both approaches

for the complete model grid.

(iii) During our study on the variations of the mass absorption coefficient with Teff and r in the

X-ray regime (see Sect. 2.5.4), we also compared our opacities with those predicted by KK09 (their

Fig. 15, showing mass absorption coefficient versus wavelength), and we were able to closely repro-

duce their results at least shortward of 21 Å (including the dominating O iv/O v K-shell edge). Our

model, however, produces lower opacities on the longward side, thus indicating a different He ion-

ization balance (see Sect. 2.5.4). When comparing the averaged (between 1.5 and 5 R∗) absorption
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coefficients in the wavelength regime shortward of 30 Å, KK09 found a slight decrease of 8% after

including X-rays in their models because of the induced ionization shift. This is consistent with our

findings, which indicate, for the same range of r and λ, a decrease by 9%.

2.4.1 Impact of various parameters

First, we study the impact of various parameters on the emergent (soft) X-ray fluxes, in particular

Rmin, fX, and T∞s . For these tests, we used the model S30 (see Table 2.1, similar to the parameters

of α Cam (HD 30614, O9.5Ia)) since this object has been carefully investigated by Pauldrach et al.

(2001, their Table 9) as well.

Before going into further details, we would like to clarify that the soft X-ray and EUV shock

emission are composed almost entirely of narrow lines and that the binning and blending make the

spectral features look more like a pseudo-continuum, which is clearly visible in the following figures

(though most of them display the emergent fluxes and not the emissivities themselves).12

Impact of Rmin. The sensitivity of the X-ray fluxes on Rmin is shown in Fig. 2.1, where the other

parameters were fixed at their center values within our small X-ray grid (i.e., fX = 0.03 and T∞s =

3·106 K). In particular, the shock temperature is quite high for such a stellar model, but was chosen

deliberately to allow for somewhat extreme effects.

Indeed, the only visible differences are present in the range between the He ii edge and roughly

330 Å. Shortward of the He ii edge, all fluxes are identical (though only shown down to 100 Å to allow

for a better resolution), since the (cool) wind already becomes optically thick far out in the wind at

these wavelengths (He ii, O iv, etc. continua, and K-shell processes). For λ ¿ 350 Å, on the other hand,

the shock emissivity becomes too low to be of significant impact.

In this context, it is interesting to note that in ǫ CMa (B2II, the only massive hot star with EUVE

data) the observed EUV emission lines in the range between 228 to 350 Å each have a luminosity

comparable to the total X-ray luminosity in the ROSAT bandpass (Cassinelli et al. 1995), which also

stresses the importance of this wavelength region from the observational side.

In Fig. 2.2, we show the ratio of the shock emissivity to the total emissivity (including averaged

line processes and Thomson scattering), evaluated at the outer boundary of the wind (solid) and at

1.2 R∗ (dash-dotted), corresponding to the onset of X-ray emission in this model. A number of inter-

esting features are visible:

(i) The total emissivity in the outer wind is dominated by shock emission from just shortward of the

He ii edge until 2.5 keV (the highest energy we consider in our models). The emissivity in the lower

wind, however, is dominated by shock emission only until 200 eV, whilst for larger energies the (local)

shock contribution decreases drastically because the assumed shock temperatures (∝ (v(r)/v∞)2) are

rather low here (<∼ 100 kK). The question is then: Which process dominates the total emissivity at high

energies in the lower wind? Indeed, this process is the re-emission from electron scattering because it

is proportional to the mean intensity and quite high owing to the large number of incoming photons

12 As shown by Pauldrach et al. (1994), the total shock emissivity is roughly a factor of 50 larger than the corresponding hot

plasma free-free emission from hydrogen and helium.
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Figure 2.1: Emergent Eddington fluxes for model S30, with T∞s = 3·106 K and fX = 0.03, for different

onset radii of X-ray emission, Rmin, and for a model with an unshocked wind. The vertical dotted

lines refer to the He ii, C iii, and N iii ionization edges, respectively.

from above, i.e., from regions where the shock temperatures are high. This effect becomes also visible

in the local radiative fluxes at these frequencies, which are negative, i.e., directed inward.

(ii) Both in the outer and inner wind, the shock emission is also significant longward from the He ii

edge, until λ ≈ 350 Å, thus influencing the ionization balance of important ions. Whilst the fluxes of

models without shock emission and those with Rmin >∼ 2R∗ display a significant absorption edge for

C iii and N iii (see Fig. 2.1), these edges have almost vanished in the models with Rmin = 1.2 . . . 1.5 R∗
because of the dominant shock emissivity increasing the degree of ionization. Even more, all models

display fluxes in this region that lie well above those from models without shock emission because of

the higher radiation temperatures compared to the cool wind alone.

(iii) Beyond 350 Å, the shock emissivity becomes almost irrelevant (below 10%), so that the corre-

sponding fluxes are barely affected.

(iv) For the two models in which Rmin = 1.2 and 1.5 R∗, a prominent emission feature between roughly

300 and 320 Å is visible in Fig. 2.1. A comparison with Fig. 2.2 (note the box) shows that this emission

is due to the dominating shock emission of the lower wind, increasing the temperatures of the radiation

field beyond those of the unshocked wind.
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Figure 2.2: Ratio of shock emissivity to total emissivity for model S30 from Fig. 2.1 with Rmin= 1.2 R∗.

Solid line: emissivity ratio at the outer boundary, r ≈ 130 R∗; dash-dotted line: emissivity ratio at the

lower boundary of X-ray emission, r ≈ 1.2 R∗. The box located between 300 and 320 Å highlights the

strong shock emissivity leading to the corresponding emission feature present in Fig. 2.1.

Coming back to Fig. 2.1, significant flux differences between the shocked and unshocked models

are visible for all values of Rmin (even for Rmin = 2 or 10 R∗) below λ <∼ 350 Å, particularly below the

N iii and C iii edges as a result of higher ionization.

On the other hand, the models with Rmin = 1.2 and 1.5 R∗ are almost indistinguishable, at least

regarding the pseudo-continuum fluxes. This turns out to be true also for He ii 1640 and He ii 4686,

although these lines become sensitive to the choice of Rmin if we change Rmin from 1.5 to 2 R∗ because

of the different intensities around the He ii edge and around He ii 303 (Lyman-alpha) in the line-

forming region. We come back to this point in Sect. 2.5.1.

Impact of fX. In Fig. 2.3, we investigate the impact of fX, which has a most direct influence on the

strength of the X-ray emission (cf. Eqs. 2.1 and 2.3). Having more X-ray photons leads to higher

X-ray fluxes/luminosities and to less XUV/EUV-absorption from the cool wind because of higher

ionization stages. The latter effect becomes particularly visible for the model with fX = 0.1, which was

used to check at which level of X-ray emission we start to change the overall ionization stratification.
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Figure 2.3: Emergent Eddington fluxes for model S30, with T∞s = 3·106 K and R
input

min
= 1.5 R∗, for

different values of fX, and for a model with an unshocked wind. The histogram-like flux distribution

at highest energies results from our resampling of X-ray emissivities (see Sect. 2.2.1).

Most importantly, helium (with He ii as the main ion beyond 1.2 R∗ for S30 models with typical values

0.03 <∼ fX <∼ 0.05) becomes more ionized, reaching similar fractions of He ii and He iii between 2.2 R∗
(∼0.5 v∞) and 8.7 R∗ (∼0.8 v∞). Also, the main ionization stage of oxygen, which is O iv in S30

models with typical X-ray emission parameters, switches to O v between 1.8 R∗ (∼0.4 v∞) and 4.0 R∗
(∼0.7 v∞) when fX is set to 0.1. The change in the ionization of helium (and oxygen) becomes clearly

visible in the much weaker He ii edge and much higher fluxes in the wavelength range below 228 Å,

compared to models with lower fX.

Impact of T∞s . As shown in Fig. 2.4 (see also Pauldrach et al. 2001), the change in the maximum

shock temperature, T∞s , becomes mostly visible for the fluxes shortward of ≈ 60 Å (of course, the

hard X-ray band is even more affected, but not considered in our models). While for the highest

maximum shock temperature considered here, T∞s = 5 ·106 K (corresponding to u∞ ≈ 590 kms−1), we

significantly increase the population of the higher ionized atomic species, this temperature is still not

sufficient to change the main ionization stages present in the wind.
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Figure 2.4: Emergent Eddington fluxes for model S30, with fX = 0.03 and R
input

min
= 1.5 R∗, for different

values of maximum shock temperature, T∞s

2.4.2 Scaling relations for Lx

From an analytical point of view, Owocki & Cohen (1999) showed that for a constant volume filling

factor and, neglecting the effects of radiative cooling (see below), the optically thin (with respect to

the cool wind absorption) wind X-ray luminosity depends on the square of the mass-loss rate, Lx ∝
(Ṁ/v∞)2, whilst the X-ray luminosity of optically thick winds scales linearly with the mass-loss rate,

Lx ∝ Ṁ/v∞. This is the case provided that one compares models with the same shock temperatures

and assumes a spatially constant X-ray filling factor. These relations become somewhat modified if

there is a dependence of Ts on the wind terminal velocity, as adopted in our standard X-ray description

(see also KK09).

However, in a more recent study Owocki et al. (2013) derived, again from an analytic perspective,

scaling relations for Lx for radiative and adiabatic shocks embedded in a cool wind. At first glance,

their assumptions seem quite similar to those adopted by Feldmeier et al. (1997a), which is the basis

of our treatment, but in the end Owocki et al. predict different scaling relations for radiative shocks

than those resulting from our modeling. This discrepancy might lead to somewhat different scaling

relations for Lx, and needs to be investigated in forthcoming work; for now, we simply compare our
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Figure 2.5: Emergent X-ray luminosities (in erg s−1) as a function of Ṁ/v∞. Supergiant models S30

(asterisks), S40 (triangles) and S50 (squares) with Teff= 30, 40 and 50 kK, respectively, and mass-loss

rates between 10−9 and 2 · 10−5M⊙/yr. All models have the same X-ray properties, fx = 0.025, γx

= 0.5, mx = 20, and a maximum jump-velocity, u∞ = 400 kms−1, corresponding to maximum shock

temperatures of 2.3 · 106 K. We calculated the X-ray luminosities in the range 0.1 − 2.5 keV (black,

green, and turquoise) and in the range 0.35 to 2.5 keV (blue, red, and magenta). The dashed lines (no

fits) serve as guidelines to check the predicted behavior for optically thin (red and green) and optically

thick (black) conditions. (See text.)

models to the earlier results by Owocki & Cohen (1999). A similar test was carried out by KK09.

To this end, we calculated S30, S40, and S50 wind models with a fixed X-ray description: fX

= 0.025, mx = 20, and γx = 0.5. For our tests, we used a constant maximum jump velocity, u∞
= 400 kms−1 (corresponding to maximum shock temperatures of 2.3 · 106 K) for all models to be

consistent with the above assumptions.

For these models (with parameters, except for Ṁ, provided in Table 2.1), we varied the mass-

loss rates in an interval between 10−9 and 2 · 10−5M⊙/yr. and integrated the resulting (soft) X-ray

luminosities in two different ranges: 0.1 to 2.5 keV and 0.35 to 2.5 keV.

From Ṁ >∼ 10−7M⊙yr−1 on, the wind becomes successively optically thick at higher and higher

energies, although, for example, for Ṁ= 10−6M⊙yr−1 the wind is still optically thin below ∼ 10 Å, i.e.,
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above 1.24 keV. Indeed, the X-ray luminosities of our corresponding models are linearly dependent

on (Ṁ/v∞), as can be seen in Fig. 2.5 by comparing them with the black dashed line. For lower

Ṁ, the wind is optically thin at most high energy frequencies and also our results closely follow the

predictions (Lx ∝ (Ṁ/v∞)2), when comparing the corresponding X-ray luminosities with the red or

green dashed lines.

A second finding of Fig. 2.5 relates to the optically thin scaling for model S50, when either starting

the integration at 100 eV (turquoise squares) or at 350 eV (red squares). Whilst for S30 (asterisks) and

S40 (triangles) the X-ray luminosities just increase by roughly one dex when including the range from

100 to 350 eV but still follow the predicted scaling relation, the S50 models show an increase of four

orders of magnitude for the lowest Ṁ/v∞ values in this situation (and do not follow the predictions).

To clarify this effect, Fig. 2.6 shows the scaled (scaling proportional to R2
∗ and v2

∞) Eddington

flux as a function of wavelength and energy for supergiant models S30 (black), S40 (green), and S50

(turquoise) with identical, low mass-loss rates, 10−8M⊙/yr. Additionally, energies of 100, 150, and

350 eV are indicated with dotted vertical lines. Beyond 150 eV, all models, independent of their

specific parameters, display the same scaled fluxes, thus verifying the optically thin scaling of X-ray

luminosities (in this case, only with respect to v∞). For the S50 model, however, the energy range

below 150 eV is contaminated by “normal” stellar/wind radiation, which increases as a function of

Teff (see also Macfarlane et al. 1994; their Fig. 5), leading to the strong deviation from the optically

thin X-ray scaling law as visible in Fig. 2.5. The same contamination already appears for energies

higher than 150 ev for other X-ray parameter sets. Thus, the total X-ray luminosity (regarding the

wind emission) of hotter objects might be overestimated when integrating until 100 eV.

In summary, we conclude that our implementation follows the predicted scaling relations, but we

also suggest choosing a lower (in energy) integration limit of 0.15 keV (or even 0.3 keV, to be on the

safe side) when comparing the X-ray luminosities of different stars (both with respect to models and

observations).

In this context, we note that there is a clear distinction between the observable soft X-ray and

the longer-wavelength, soft X-ray, and XUV/EUV emission that is almost never directly observed,

but, as already outlined, is very important for photoionizing relevant ions. Modern X-ray observato-

ries, such as XMM-Newton/RGS and CHANDRA/HETG, do not have a response below 0.35 keV

and 0.4 keV, respectively; even a modest ISM column makes it functionally impossible to see X-ray

emission below 0.5 keV. We note, however, that ROSAT observed down to 0.1 keV, and EUVE also

made a few important measurements relevant for massive stars, in particular, for ǫ CMa (B2II), e.g.,

Cassinelli et al. (1995).

2.4.3 Comparison with WM-basicmodels

Finally, we also checked the quantitative aspect of our results, by comparing with analogous WM-

basic models (we note the difference in the velocity fields). As already pointed out, the X-ray descrip-

tion in both codes is quite similar, and there is only one major difference. In WM-basic, the user has

to specify a certain value for Lx/LBol (e.g., 10−7 as a prototypical value) and the code iteratively deter-

mines the corresponding fX, which is a direct input parameter in the updated version of FASTWIND.

In both cases, we used a frequency range between 0.1 to 2.5 keV.
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Figure 2.6: Logarithmic, scaled Eddington flux (in units of erg cm−2 s−1 Hz−1) as a function of wave-

length/energy, for the supergiant models S30 (black), S40 (green), and S50 (turquoise) with identical

mass-loss rates, 10−8M⊙/yr. All models have the same X-ray properties, as denoted in Fig. 2.5. The

Eddington fluxes have been scaled by (R∗/R⊙)2 and (v∞/1000 kms−1)2 to ensure theoretically similar

values of optically thin X-ray emission. The dotted lines denote energies of 350, 150, and 100 eV,

corresponding to 35, 83, and 124 Å. (See text.)

Thus, we first calculated WM-basic models with stellar/wind parameters from Table 2.1 and X-

ray emission parameters from Table 2.2. For the maximum jump velocity we assumed, as an extreme

value, u∞/v∞ = 0.3, together with X-ray luminosities as shown in the sixth column of Table 2.2. These

values then correspond to the fX values provided in the second column of the same table, which are

acquired from the WM-basic output. We note here that the input values of Lx/LBol (to WM-basic)

were not chosen on physical grounds, but were estimated in such a way as to result in roughly similar

values for fX (in the range between 0.01 to 0.03).

To check the overall consistency, we calculated a similar set of FASTWIND models, now using

the fX values from Table 2.2 as input. In case of consistent models, the resulting Lx values (from the

output) should be the same as the corresponding input values used for WM-basic. Both these values

are compared in the last two columns of Table 2.2. Obviously, the agreement is quite good, with

differences ranging from 0.0 to 0.2 dex and an average deviation of 0.12 dex.



32

CHAPTER 2. ATMOSPHERIC NLTE MODELS FOR THE SPECTROSCOPIC ANALYSIS OF

BLUE STARS WITH WINDS: X-RAY EMISSION FROM WIND-EMBEDDED SHOCKS

Table 2.2: Left side: X-ray emission parameters used to compare FASTWIND and WM-basic models

(u∞/v∞ = 0.3 and γx = 1.0). For stellar and wind parameters, see Table 2.1. Right side: Lx/Lbol

(logarithmic) provided as input for WM-basic (WMB), compared with the corresponding output value

from FASTWIND (FW), integrated in the frequency range between 0.1 to 2.5 keV. See Sect. 2.4.3.

Model fX Rmin u∞ T∞s Lx/Lbol Lx/Lbol

(%) (R∗) (kms−1) (106 K) (WMB) (FW)

Dwarfs

D30 2.00 1.24 532 3.90 −9.4 −9.4

D35 0.96 1.29 622 5.27 −8.3 −8.5

D40 1.44 1.21 715 6.98 −7.0 −7.0

D45 1.38 1.20 894 10.9 −6.4 −6.5

D50 2.11 1.22 950 12.4 −5.6 −5.8

Supergiants

S30 1.99 1.50 453 2.93 −6.3 −6.4

S35 1.24 1.43 577 4.54 −6.2 −6.3

S40 0.80 1.33 663 6.00 −6.3 −6.5

S45 0.93 1.25 754 7.76 −6.2 −6.3

S50 3.13 1.26 941 12.1 −5.2 −5.4

In a second step, we compared the supergiant fluxes resulting from this procedure in Fig. 2.7. For

clarity, the fluxes were shifted by −3, −6, −9, and −18 dex (S35, S40, S45, S50), where the solid lines

correspond to the FASTWIND and the dashed lines to the WM-basic results.

The comparison shows a remarkably good agreement with no striking differences. Smaller dif-

ferences in the lower wavelength range (λ < 100 Å) are related to a different frequency sampling

(without an effect on the total X-ray luminosity). At longer wavelengths, these differences are related

to the fact that WM-basic provides high-resolution fluxes, whilst FASTWIND calculates fluxes using

averaged line opacities. For details, see Puls et al. (2005). Most important, however, is our finding

that the fluxes are not only similar at high frequencies (indicating similar emissivities and cool-wind

opacities), but also longward from the He ii edge, indicating a similar ionization equilibrium (modified

in the same way by the emission from shocked material).

At this stage, we conclude that our implementation provides results that are in excellent agreement

with the alternative code WM-basic, both with respect to integrated fluxes as well as frequency edges,

which moreover follow the predicted scaling relations. Having thus verified our implementation, we

now examine important effects of the X-ray radiation within the stellar wind.
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Figure 2.7: Logarithmic Eddington fluxes as a function of wavelength for supergiant models (see

Table 2.1 and Table 2.2). The solid lines refer to results from our updated version of FASTWIND and

the dashed lines to WM-basic results (Pauldrach et al. 1994, 2001). For clarity, the S35, S40, S45, and

S50 model fluxes have been shifted by −3, −6, −9, and −18 dex, respectively.
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Figure 2.8: Ionization fractions of important ions at v(r) = 0.5 v∞, as a function of Teff , for models

with typical X-ray emission (triangles, fX = 0.03, T∞s = 3 ·106 K, corresponding to u∞ = 460 kms−1),

and without X-rays (asterisks). The solid lines refer to supergiant models, and the dashed lines to

dwarf models. For clarity, the ionization fractions of dwarf models were shifted by one dex. For

stellar parameters and onset radius, Rmin, see Table 2.1.

2.5 Results

In this section, we discuss the major results of our model calculations. In particular, we study the

impact of X-ray emission on the ionization balance of important elements, both with respect to direct

(i.e., affecting the valence electrons) and Auger ionization. We also discuss the impact of dielec-

tronic recombination and investigate the radial behavior of the high-energy mass absorption coeffi-

cient, which is an essential issue with respect to the analysis of X-ray line emission.

All of the following results refer to our specific choice of the run of shock temperature (see

Eqs. 2.6 and 2.7), which, in combination with our grid-parameter γx = 1, leads to shock tempera-

tures of Ts(v∞/2) = 0.25 T∞s in the intermediate wind at v(r) = 0.5 v∞.
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2.5.1 Ionization fractions

General effects

Even though they are only indirectly observable (particularly via UV resonance lines), ionization frac-

tions provide useful insight into the various radiative processes in the atmosphere. In the following,

we compare, for important ions (i.e., for ions with meaningful wind lines), the changes due to the

combined effects of direct and Auger ionization, whilst the specific effects of Auger ionization are

discussed in Sect. 2.5.2. We perform these comparisons for our supergiant (solid) and dwarf models

(dashed) from Table 2.1 and for the center values of our X-ray emission parameter grid (Sect. 2.3),

fX = 0.03, T∞s = 3 ·106 K, which are prototypical in many cases. Such maximum shock temperatures

might be too high for models around Teff= 30 kK, and certain effects (as discussed in the following)

might thus be overestimated in this temperature range. We discuss the reaction from different param-

eters in the next section. We evaluated all of the ionization fractions at a representative velocity, v(r)

= 0.5 v∞, and these are shown in Fig. 2.8. To check the influence of X-ray emission, one simply needs

to compare the triangles (with) and asterisks (without X-ray emission).

Carbon. Our model atom for carbon will be improved soon, but the present one (from the WM-basic

data base) is already sufficient to study the impact of shock radiation. The upper panels of Fig. 2.8

show the results, which indicate an effect only for cooler supergiant models with Teff < 40 kK. For

these objects, C iii and C iv become somewhat depleted (less than a factor of ten), whilst C v (which

is, without X-ray emission, a trace ion at 30 kK) becomes significantly enhanced. For dwarfs in this

temperature range, only C v is increased, since the emission (scaling with ρ2) is still too weak to affect

the major ions. However, the actual filling factor in dwarfs might be much larger than 0.03; see,

for example, Cassinelli et al. (1994), Cohen et al. (1997, 2008) and Huenemoerder et al. (2012). For

models with Teff > 40 kK, on the other hand, the temperature is already hot enough that the ionization

balance is dominated by the normal stellar radiation field and no effect from the X-ray emission is

visible.

Nitrogen (2nd row) and oxygen (third row of Fig. 2.8) suffer most from the inclusion of shock

radiation. In the following, we concentrate on the differences produced by X-ray ionization in general,

whilst in subsequent sections we consider specific effects.

Nitrogen. In the cool range, the behavior of N iii, N iv and N v is very similar to the corresponding

carbon ions (i.e., a moderate depletion of N iii and N iv, and a significant increase of N v, particularly

at Teff between 30 and 35 K), whereas in the hot range it is different. Here, N iii and N iv continue to

become depleted, but N v increases only as long as Teff < 45 kK and decreases again at 45 and 50 kK.

In other words, when N v is already the main ion for non-X-ray models, it becomes (slightly) depleted

when the X-rays are switched on, in contrast to C v which remains unmodified beyond 40 kK. This

difference, of course, relates to the fact that C v has a stable noble-gas (He-) configuration with a

high-lying ionization edge (31.6 Å) compared to the N v edge at roughly 126 Å, which allows for a

more efficient, direct ionization by emission from the shock-heated plasma.

Oxygen. For almost every temperature considered in our grid, the inclusion of X-rays has a dramatic

effect on the ionization of oxygen. At 30 kK, O iv becomes the dominant ion13, when for non-X-ray

13 This is also true for models with different X-ray emission parameters.
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models the main ionization stage is still O iii, whereas at the hot end O iv becomes somewhat depleted.

The behavior of O v is similar to N v (although the final depletion is marginal), and O vi displays the

largest effect at all temperatures. At cool temperatures, the ionization fraction changes by 15 orders

of magnitude, but there is still an increase by three to four dex even at the hottest Teff . As is well

known, this has a dramatic impact on the corresponding resonance doublet.

Silicon. In almost all hot stars, the dominant ion of silicon is Si v (again a noble-gas configuration),

and Si iv forms by recombination, giving rise to the well-known Si iv luminosity/mass-loss effect

(Walborn & Panek 1984, Pauldrach et al. 1990). The bottom left panel of Fig. 2.8 shows an analogous

dependence. Whilst for dwarfs (low ρ2) no X-ray effects are visible for Si iv, this ion becomes depleted

for cool supergiants (Teff <∼ 35 kK) at most by a factor of ten.

Phosphorus. In recent years, the observed P v doublet at λ 1118,1128 has been important14 for deriv-

ing mass-loss rates from hot star winds in parallel with constraining their inhomogeneous structure

(Fullerton et al. 2006, Oskinova et al. 2007, Sundqvist et al. 2011, Šurlan et al. 2013, Sundqvist et al.

2014). Thus, it is of prime importance to investigate the dependence of phosphorus on X-rays, since

a strong dependence would contaminate any quantitative result by an additional ambiguity.

As already found in previous studies (e.g., KK09; Bouret et al. 2012), our results also indicate that

P v is not strongly modified by X-ray emission (middle and right lower panels of Fig. 2.8). However,

more extreme X-ray emission parameters, for example, fX = 0.05 and/or T∞s = 5 ·106 K, can change

the situation (see section 2.5.1). Furthermore, the apparently small change in the ionization fraction

of P v at typical X-ray emission parameters (decrease by a factor of two to three) can still be of

significance, given the present discussion on the precision of derived mass-loss rates (with similar

uncertainties).

Regarding the ionization of P vi, cold models (30 and 35 kK) change drastically when X-ray

emission is included, both for supergiants and dwarfs. Since we find less P vi in hot models with

shocks (compared to models without), this indicates that the ionization balance is shifted toward even

higher stages (P vii).

In this context, we note that Krtička & Kubát (2012) investigated the reaction of P v when incor-

porating additional, strong XUV emissivity (between 100 and 228 Å) and microclumping into their

models. The former test was driven by a previous study by Waldron & Cassinelli (2010) who argued

that specific, strong emission lines in this wavelength range could have a significant impact. Indeed,

Krtička & Kubát (2012) were able to confirm that under such conditions15 P v becomes strongly de-

pleted in parallel with changes in the ionization fractions of, for example, C iv, N iv, and O iv (see also

Sect. 2.5.1). Further work is certainly required to identify the source of such additional emissivity,

and, if necessary, to incorporate this mechanism into our FASTWIND models.

14 This is because it is the only UV resonance line(-complex) that basically never saturates owing to the low phosphorus

abundance.
15 Enhanced emissivity in the XUV range; however, the lines referred to by Waldron & Cassinelli (2010) are included in

standard plasma emission codes.
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Figure 2.9: Helium ionization fractions as a function of local velocity, for an S30 model with ( fX =

0.03 and T∞s = 3 ·106 K) and without X-rays; see text.

Impact on helium

During our analysis, we noted that helium can also be affected by shock emission (see also Sect. 2.4.1),

a finding that has been rarely discussed in related literature. In particular, He ii (and He i) can become

depleted in the intermediate wind; however, this is only the case for our cooler supergiant models

with 30 kK <∼ Teff <∼ 40 kK. The effect is strongest for S30 models, but it is barely noticeable even at

S40, independent of the specific X-ray emission parameters. For all our dwarf models, no changes are

visible at all.

Figure 2.9 shows the helium ionization fractions for an S30 model with typical X-ray emission

parameters as a function of local velocity. The depletion of He ii (and, in parallel, of He i that is not

displayed) is significant in the region between 0.2v∞ <∼ v(r) <∼ 0.8v∞, and results from the increased

ionization due to the increased radiation field (in the He ii Lyman continuum) in models with shocks

(note also the corresponding increase of He iii).

In Fig. 2.10, we compare the helium ionization fractions from our solution and a corresponding

WM-basic S30 model, but now with X-ray emission parameters as tabulated in Table 2.2 (the major

difference is a filling factor of 0.02 instead of 0.03). Here, we show the fractions as a function of
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Figure 2.10: Helium ionization fractions as a function of τRoss, for S30 models calculated by FAST-

WIND and WM-basic, both with X-ray emission parameters from Table 2.2. The agreement is excel-

lent.

τRoss to enable a comparison of the photospheric regions as well. Again, the depletion of He ii (now

located between τRoss≈ 0.1. . . 0.01) is visible, and our results coincide perfectly with those predicted

by WM-basic.

Since the ionization balance already changes at very low velocities, this might affect at least two

important strategic lines: He ii 1640 and He ii 4686. Most other He ii and He i lines are formed in the

photosphere and remain undisturbed. From Fig. 2.11, we see that He ii 4686 shows stronger emission,

whilst He ii 1640 shows a stronger emission in parallel with absorption at higher velocities compared

to the non-X-ray model (dotted). This is readily understood since He ii 4686 is predominantly a re-

combination line, such that the increase in He iii leads to more emission; this is also true for He ii 1640

to a lesser extent. The lower level of this line, n = 2 (responsible for the absorption), is primarily fed

by pumping from the ground-state via He ii 303. We convinced ourselves that the increased pumping

because of the strong EUV radiation field leads to a stronger population of the n = 2 state (even if He ii

itself is depleted), so that also the increased absorption is explained.

As already pointed out in Sect. 2.4.1, changing Rmin from 1.5 to 1.2 R∗ does not make a big

difference. Increasing Rmin to 2 R∗, however, changes a lot, as visible from the dash-dotted profiles
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in Fig. 2.11. Except for slightly more emission (again because of increased He iii in regions with

r > 2R∗), the difference to profiles from models without shock emission becomes insignificant, simply

because both lines predominantly form below the onset radius.

Dependence on filling factor and shock temperature

As we have already seen above, each ion reacts somewhat differently to the imposed shock radiation.

In this section we describe how a change of important X-ray characteristics affects important ions.

The figures related to this section are enclosed in Appendix 2.A. The top figure on each page shows

specific ionization fractions with and without X-rays, as a function of Teff , for our supergiant and

dwarf models (S30 to S50 and D30 to D50, respectively). We evaluated the ionization fractions at the

location where the impact of shock radiation is most evident for the considered ion. Each of these

figures contains nine panels, in which both the filling factor and maximum shock temperature are

varied according to our grid, i.e., fX = 0.1, 0.3, 0.5 and T∞s = 1,3,5·106 K. The onset radius, Rmin,

was set to its default value for all models. The lower two figures on each page display the ionization

fractions for our dwarf (left) and supergiant models (right), evaluated at the same location as above,

but now overplotted for all values of fX (different colors) and T∞s (different symbols), and without

a comparison to the non-X-ray case. Thus, the top figure allows us to evaluate the X-ray effects in

comparison to models without shock emission, whilst the bottom two figures provide an impression

on the differential effect, i.e., the range of variation.

Carbon. C iii and C iv are significantly affected in supergiant models with 30 kK <∼ Teff <∼ 40 kK for

intermediate to large values of fX and T∞s . The depletion of C iii and C iv reaches a factor of 10 (or

even more) in cooler supergiant models when the highest values of X-ray emission parameters are

adopted, which is reflected in a corresponding increase of C v. On the other hand, C iii and C iv are

barely modified in supergiant models with the lowest values of fX or T∞s , which is also true for dwarf

models with any value of our parameter grid (see Figs. 2.21/2.22). The ionization fraction of C v also

increases for the lowest values of X-ray emission parameters, again for cooler supergiant (and dwarf)

models. C v remains unmodified beyond 40 kK due to its stable noble-gas configuration, as previously

noted.

Nitrogen. The behavior of N iii, N iv, and N v in the colder models is similar to the corresponding

carbon ions for all different X-ray descriptions. For higher Teff , increasing fX enhances the depletion

of N iii and N iv in both supergiants and dwarfs, whilst the impact of T∞s is rather weak. At the

largest values of X-ray emission parameters, both stages become highly depleted (one to two orders

of magnitude) for all models but D30 and D35.

Shock radiation is essential for the description of N v at almost any temperature, particularly for

models with Teff < 45 kK (Figs. 2.23/2.24). Here, the increase of N v (compared to non-X-ray models)

can reach 4 to 5 dex at the lowest temperatures. At 45 kK, only a weak impact of shock radiation can

be noted, whilst for 50 kK a high depletion of N v for extreme parameters values becomes obvious.

Once more, the impact of fX is more prominent than of T∞s , mainly for the coldest models where

N v becomes enhanced by one order of magnitude when increasing fX from 0.01 to 0.05 and keeping

T∞s constant. The hottest models with moderate to high parameters ( fX >∼ 0.02 and T∞s >∼ 2 · 106 K)

indicate that N vi also becomes strongly affected by changes in the X-ray ionization.
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Figure 2.11: Synthetic He ii 1640 and He ii 4686 profiles for our S30 model. Each profile corresponds

to a different X-ray description. Solid: fX = 0.03, T∞s = 3 · 106 K, Rmin = 1.5 R∗; dash-dotted: as

solid, but with Rmin = 2 R∗; dotted: no shock emission.

Oxygen. Independent of the X-rays description, the depletion of O iv for hot models happens only

in a specific range of the wind, between 0.4 to 0.8 v∞ (similar to the case of He ii discussed in the

previous section). Also for X-ray emission parameters different from the central value of the grid,

the behavior of O v is still very similar to N v, where mainly the cold models are quite sensitive to

variations of fX (Figs. 2.25/2.26). The shock radiation increases the ionization fraction of O v by 5

to 6 dex (when fX varies between 0.01 and 0.05, independent of T∞s ) for the coolest models, whilst

these factors decrease as Teff approaches 40 to 45 kK. Models with Teff = 45 kK are barely affected,

independent of the specific X-ray emission parameters. Similar to the case for N v at highest values

of fX, T∞s , and Teff , the corresponding depletion of O v points to the presence of a significant fraction

of higher ionization stages.

As already pointed out in Sect. 2.5.1 (see also Sect. 2.5.2), the X-ray radiation is essential for the

description of O vi, which shows, particularly in the cold models, a high sensitivity to both fX and T∞s
(Figs. 2.27/2.28).

Silicon. Also when varying the X-rays description, Si iv still remains unaffected from shock emission
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in dwarf models. On the other hand, for cool supergiants (Teff <∼ 35 kK), Si iv becomes even more

depleted when fX increases (though T∞s has a negligible influence). No variation is seen in Si v, as

expected because of its noble-gas configuration.

Phosphorus. P v shows a sensitivity to both fX and T∞s , but in this case T∞s is more relevant. Although

no difference between models with and without shocks is seen for the lowest values of T∞s , particularly

the supergiant models develop a depletion with increasing shock temperature, even at lowest fX. As

noted already in Sect. 2.5.1, for extreme X-ray emission parameters the depletion of P v is significant

for all models (both supergiants and dwarfs), except for D30 (Figs. 2.29/2.30). Finally, even P vi

becomes highly depleted for hot models (Teff >∼ 40 kK) at intermediate and high values of T∞s , which

indicates the presence of even higher ionization stages.

To summarize our findings: When increasing the values for fX and T∞s , the effects already seen in

Fig. 2.8 become even more pronounced, as to be expected. For most ions, the impact of fX appears

to be stronger than the choice of a specific T∞s provided the latter is still in the range considered here.

However, P v and O vi (for the cooler models) show a strong reaction to variations of T∞s . Overall, the

maximum variation of the ionization fractions within our grid reaches a factor of 10 to 100 (dependent

on the specific ion), where lower stages (e.g., C iv, N iv, O iv, and P v) become decreased when fX and

T∞s are increased, whilst the higher stages (e.g., N v, O v, O vi) increase in parallel with the X-ray

emission parameters. For Si iv alone, the impact of X-rays remains negligible in all models except for

S30 and S35.

Comparison with other studies

Since the most important indirect effect of shock emission is the change in the occupation numbers of

the cool wind, it is worthwhile and necessary to compare the ionization fractions resulting from our

implementation with those presented in similar studies.

To this end, (i) we recalculated the models described in KK09 (ii) compared with two models (for

HD 16691 and HD 163758) presented in Bouret et al. (2012), who used CMFGEN and SEI (Sobolev

with exact integration, Lamers et al. 1987) fitting to calculate and derive the ionization fractions of

phosphorus, and (iii) compared our results with the ionization fractions predicted by WM-basic.

Regarding the first point, we recalculated the 14 O-star models (in the temperature range between

30 and 40 kK) presented by KK09, using parameters from their Tables 2 and 3, both without and

with shock emission ( fX = 0.02 and u∞/v∞=0.3), by means of FASTWIND using H, He, C, N, O, Si,

and P as explicit ions. Figure 2.12 shows our results for the ionization fractions of selected ions, as

a function of Teff , and evaluated at v(r) = 0.5v∞. The layout of this figure is similar to Figure 8 in

KK09, and has been augmented by O vi evaluated at v(r) = 0.05v∞ and N v evaluated at v(r) = 0.8v∞,

corresponding to their Figures 9 and 10.

Indeed, there are only a few ions that display similar fractions over the complete temperature range

of the O-star models considered by KK09 (which still omits the hotter O stars beyond 40 kK). For

C iv, an agreement is only present for the coolest regime (Teff ≤ 32 kK) where both studies predict C iv

as the main ion, independent of whether X-rays are present or not. Whilst the fractions for non-X-ray

models are also comparable for hotter temperatures, the X-ray models by KK09 show a much larger

depletion of C iv (fractions of 10−2 to 10−3 for Teff > 34 kK) than our models reveal(still above 10−1).
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Figure 2.12: Ionization fractions of selected ions as a function of Teff , for 14 O-star models, as de-

tailed in Krtička & Kubát (2009, KK09); we recalculated these models here using FASTWIND. If not

indicated otherwise, fractions are shown at v(r) = 0.5v∞. As in previous figures, triangles represent

models with shocks and crosses indicate those without shocks. This figure largely reproduces the

layout of Figure 8 from KK09, such that differences and similarities between our and their results can

be easily recognized. For details, see text.

For O vi, agreement between both results is present only at the hottest temperatures, whilst be-

tween 30 kK < Teff <∼ 37 kK our models display a factor of ∼100 lower fractions for both the non-

X-ray models and the models with shock emission. The same factor is visible in the lower wind

(v(r) = 0.05v∞) for the X-ray models, but the non-X-ray models are similar here.

For nitrogen (N iv and N v), on the other hand, the results are quite similar in most cases. The

exception is N v for models without shocks, where our results are lower (by ∼1 dex) in the intermediate

and outer wind (v(r) = 0.8v∞).

For Si iv, both results fairly agree for the X-rays models, though we do not see a significant effect

from including the shock emission in our calculations; in other words, X-ray and non-X-ray models

yield more or less identical results. In contrast, the models by KK09 indicate a small depletion of

Si iv, by a factor of roughly 2 to 3 , when including the shock emission. Thus, our non-X-ray models
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Figure 2.13: Radial stratification of phosphorus ionization fractions, as a function of τRoss, for our

model of HD 203064 at Teff = 34.5 kK (see KK09 for stellar, wind, and X-ray emission parameters).

In our implementation, P v is barely modified by the X-ray radiation field, whilst a considerable impact

is seen for P vi.

have less Si iv than those by KK09.

Again, phosphorus (in particular, P v) has to be analyzed in more detail. Comparing the last two

panels of Fig. 2.12 with Fig. 8 from KK09, we see that our ionization fractions for P v agree with

KK09 in the coolest models and in the hottest models regarding P vi. In the other temperature ranges,

however, differences by a typical factor of 2 (regarding P v) and 2 to 5 (regarding P vi) are present. In

their Fig. 12, KK09 show the radial stratification of the phosphorus ionization fractions for their model

of HD 203064, whilst the corresponding results from our implementation are shown in Fig. 2.13. Both

codes yield quite similar fractions for P iv and P v (with and without X-rays) in the external wind. The

same is true for P vi in the model with X-rays, but we have considerably less P vi for the non-X-ray

model. Prominent differences are visible in the lower wind and close to the lower boundary. We

attribute this difference to a boundary condition (in the models by KK09) at very low optical depths,

where the electron temperature is still close to the effective temperature. (Indeed, we were not able to

find statements or figures related to the photospheric structure of the models in papers by Krtička and

coworkers, so our argument is somewhat speculative.) Thus far, it is conceivable that a low ionization
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Figure 2.14: Ionization fractions of P iv (asterisks) and P v (triangles) as a function of normalized

velocity for an S35 (solid) and S40 (dashed) model. Both models were calculated with a clumping

factor fcl = 20, and a mass-loss rate reduced by a factor of ∼4 compared to the values provided in

Table 2.1. Compare with Fig. 10 in Bouret et al. (2012).

stage (P iv) dominates their internal atmosphere (followed by P v and negligible P vi), whilst in our

case it is the reverse, and P vi dominates owing to much higher temperatures.

To check these discrepancies further, we also compared our results with calculations performed

with CMFGEN. In particular, we concentrated on two supergiant models at roughly 35 kK and 40 kK

(HD 163758 and HD 16691, respectively), as described by Bouret et al. (2012). These models used

an X-ray emitting plasma with constant shock temperature, Ts(r) = 3·106 K, a filling factor corre-

sponding to Lx/Lbol = 10−7, and an onset radius corresponding to 200 to 300 kms−1 (J.-C. Bouret,

priv. comm.). In Fig. 14, we present our results for P iv and P v; these can be compared with Fig. 10

of Bouret et al., showing P v alone. Though our models S35 and S40 (here we use a clumped wind

with reduced mass-loss rates to ensure comparable wind structures) do not have identical parameters,

and in particular, our shock temperatures increase with velocity, the ionization fractions behave simi-

larly. In the cooler model (solid), the ionization of P v decreases with velocity and in the hotter model

(dashed), this ionization increases outward. This is because in the cooler model, P v is the dominant

ion at low velocities, recombining to P iv, whilst in the hotter model P vi dominates at low velocities,
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Figure 2.15: Ionization fractions of ions most affected by Auger ionization, at different depth points.

All models have typical X-ray emission parameters ( fX = 0.03 and T∞s = 3·106 K). The triangles rep-

resent models including Auger ionization (standard approach, similar to Fig. 2.8), and squares models

without (i.e., only direct ionization has been considered). Solid lines refer to supergiant models, and

dashed ones to dwarf models. For clarity, the ionization fractions of dwarf models have been shifted

by one dex.

recombining to P v in the run of the wind. Of course, there are some quantitative differences, partic-

ularly in the intermediate wind16, but we attribute these to a different stratification of the clumping

factor, fcl, and to a different description of the X-ray emitting plasma; concerning the reaction of P v

on various X-ray emission parameters, see Fig. 2.30.

As a final test, we compared our solutions to the predictions by WM-basic, using our dwarf and

supergiant models (Table 2.1 and X-ray emission parameters from Table 2.2). The results are shown

in Figs. 2.31 and 2.32 (Appendix 2.B). The range of comparison extends from 30 to 50 kK, i.e., to

much hotter temperatures than in the comparison with KK09.

Overall, the agreement between FASTWIND and WM-basic is satisfactory and all trends are re-

produced. However, we also find discrepancies amounting to a factor of 10 in specific cases, particu-

16 J.-C. Bouret provided us with an output of the ionization fractions for P iv and P v.
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larly for Si iv. Typical differences, however, are on the order of a factor of two or less. We attribute

these discrepancies to differences in the atomic models, radiative transfer, and the hydrodynamical

structure, but conclude that both codes yield rather similar results with the possible exception of Si iv,

which needs to be reinvestigated in future studies.

In Fig. 2.33 we see how some of the encountered differences (compared at only one depth point,

v(r) = 0.5v∞, except for N v) translate to differences in the emergent profiles. As prototypical and im-

portant examples, we calculated line profiles for N iv 1720, N v 1238,1242, O v 1371, O vi 1031,1037,

and P v 1117,1128 and compare them with corresponding WM-basic solutions for models S30, D40,

S40, D50, and S50 (for model D30, all these lines are purely photospheric and thus were not part

of this comparison). Both the WM-basic and FASTWIND profiles were calculated with a radially

increasing microturbulence with maximum value vturb(max) = 0.1v∞, which allows for reproducing

the blue absorption edge and black trough (see Sect. 2.2.1) in the case of saturated P-Cygni profiles.

This comparison clearly shows that in almost all considered cases the agreement is satisfactory;

WM-basic includes the photospheric background, whilst FASTWIND only accounts for the consid-

ered line(s). Larger differences are present only (i) for N iv and O v in the outer wind, where FAST-

WIND produces more (N iv) and less (O v) absorption, respectively, and (ii) for strong P v lines, where

FASTWIND predicts higher emission.

2.5.2 Impact of Auger ionization

All X-ray models discussed so far include the effects from direct and Auger ionization, which was

shown to play an important role for the ionization balance in stellar winds (e.g., Cassinelli & Olson

1979, Olson & Castor 1981, Macfarlane et al. 1994, Pauldrach et al. 1994). In the following, we in-

vestigate the contribution of Auger ionization to the total ionization in more detail, particularly since

this question is still under debate.

Figure 2.15 shows how specific ions are affected throughout the wind for dwarf and supergiant

models with different Teff and typical X-ray emission parameters ( fX = 0.03 and T∞s = 3·106 K). Each

ion is shown at three different locations: v(r) = 0.3 v∞ (close to the onset of the shock emission), v(r)

= 0.6 v∞ (intermediate wind), and v(r) = 0.9 v∞ (outer wind).

Two general comments: (i) Significant effects are to be expected only for very high ionization

stages, since in the majority of cases Auger ionization couples ions with a charge difference of two

(but see Sect. 2.2.2). For example, C iv should remain (almost) unmodified, since C ii is absent in O

and, at least, early B stars. In addition, the K-shell absorption of C iv (with a threshold at 35.7 Å),

resulting in the formation of C v (with a charge difference of one), is in most cases (but see below)

negligible compared to the direct ionization of C iv (with a threshold of ∼192 Å for the ground-state

ionization). Given the radiation field is stronger at longer wavelengths, this favors direct versus Auger

ionization. In contrast, O vi should become significantly affected, since O iv is strongly populated in

O stars, and the transition threshold for the direct ionization from O v (at ∼109 Å) is now closer to the

K-shell edge. Consequently, the transition rates (depending on the corresponding radiation field) are

more similar than in the case of C iv.

(ii) In the same spirit, Auger ionization should become negligible, at least in most cases, for the

hotter O stars (see also Sect. 2.4). Once Teff is high, more direct ionization is present because of the
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stronger radiation field at the corresponding, lower frequency edges, and consequently the impact of

Auger ionization should decrease. This argumentation is basically correct, but the actual results also

depend on the wind-strength, since higher densities lead to more X-ray emission (for identical fX),

which increases the impact of Auger ionization. For example, if we check for the behavior of N vi at

0.9 v∞ in Fig. 2.15, we see that for D40, D45, and D50 there is indeed no effect, whilst for S40 and

S45 Auger ionization still has a certain influence.

We now examine Auger ionization in greater detail. First, we note that all ions from C, N, O,

Si, and P that are not shown in Fig. 2.15 are barely changed by Auger ionization with a maximum

difference of ±0.08 dex (corresponding to factors of 0.8 to 1.2) in the fractions calculated with and

without Auger.

For carbon, C v is the only ion that under specific conditions becomes affected by Auger ioniza-

tion. As visible in the first line of Fig. 2.15, cold supergiant models show an increase of C v in the

outer wind when Auger is included, since in this case the radiation field at the corresponding K-shell

edge becomes very strong, compared to the radiation field around 192 Å (see Fig. 2.7). This increase

is compensated by a similar decrease of C iv, which, in absolute numbers, is quite small.

N vi (second line in Fig. 2.15) is the only nitrogen ion where larger changes are noted. In cool

dwarfs, it already becomes influenced at 0.3 v∞, and also in the intermediate wind, which is also true

for model S30. In the outer wind, differences appear clearly for all models, except for dwarfs with

Teff >∼ 40 kK. The corresponding change in N iv, on the other hand, is marginal, again because N vi

itself has a low population, even when Auger is included.

O v behaves similar to N v (mostly no changes), but now a weak effect appears in the outer wind of

cool supergiants (third line of Fig. 2.15), and even for O vi (compare to the reasoning above), changes

in the lower and intermediate wind are barely visible (if at all, then only for the S30 model; see last

line of Fig. 2.15). In the outer wind, however, considerable differences in O vi (up to three orders of

magnitude) can be clearly spotted for all supergiants and cooler dwarf models, similar to the case of

N vi. The effect only becomes weak for the hottest models. Fig. 2.16 shows an example for an S40

model where the second-most populated oxygen ion (O v) changes to O vi after the inclusion of Auger

ionization.

Finally, the K-shell edges for phosphorus (not implemented so far) and silicon (with quite low

cross sections) are located at such high energies (> 2 keV or > 6 Å) that the corresponding Auger

rates become too low to be of importance, at least for the considered parameter range.

To conclude, in most cases the effects of Auger ionization are only significant in the outer wind (for

a different run of shock temperatures, they might become decisive already in the lower or intermediate

wind), and for highly ionized species. The effect is essential for the description of N vi and O vi,

particularly in the outer wind. Thus, and with respect to strategic UV resonance lines, it plays a

decisive role only in the formation of O vi 1031,1037 (but see also Zsargó et al. 2008).

2.5.3 Dielectronic recombination of O v

After comparing the results from our first models accounting for shock emission with correspond-

ing WM-basic results, we found that in a specific parameter range (for dwarfs around 45 kK) both

codes delivered largely different fluxes around the O iv edge at ∼160 Å; these different fluxes could
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Figure 2.16: Radial stratification of oxygen ionization fractions, as a function of τRoss, for an S40

model with fX = 0.03 and T∞s = 3·106 K. Auger ionization notably affects the presence of O vi in

the outer wind (τRoss 6 10−2 corresponding to r > 4 R∗ or v(r) > 0.7 v∞). The model without Auger

ionization has more O v than O vi and vice versa when the effect is included.

be tracked down to completely different ionization fractions of oxygen. In particular, our models

displayed more O v and less O iv than calculated by WM-basic.

After investigating the origin of this discrepancy, we found that we had inadvertently not included

the data for dielectronic recombination17 (hereafter DR) in our oxygen atomic model. Thus, DR

processes had not been considered for oxygen. (For Si, P, and C v, corresponding data are still missing

in our database.)

A series of studies had recently reconsidered the effects of DR with respect to nitrogen

(Rivero González et al. 2011, 2012a,b), however no significant effects were found, particularly con-

cerning the formation of the prominent N iii λλ 4634-4640-4642 emission lines that were previously

attributed to DR processes (Bruccato & Mihalas 1971, Mihalas & Hummer 1973).

Nevertheless, we subsequently included DR in our oxygen atomic model and were surprised by

the consequences. In a large region of our model grid, we found the changes to be negligible for the

17 This process can be summarized as “the capture of an electron by the target leading to an intermediate doubly excited

state that stabilizes by emitting a photon rather than an electron” (Rivero González et al. 2012a).
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Figure 2.17: Ionization fractions of oxygen, as a function of τRoss, for a D45 model with fX = 0.03

and T∞s = 3·106 K, with and without dielectronic recombination (DR). We note the large differences

for all the stages when τRoss 6 10−2 (v(r) > 0.05v∞), particularly the change in the main ionization

stage (from O v/O vi to O iv) when DR is included.

fluxes. However, in all of the supergiant models and in the dwarf models around 45 kK, the ionization

fractions were strongly affected, which led to a decrease of O v, typically by a factor of 10 to 50.

For our most problematic D45 model, DR proved to be essential even to predict the correct main

ion throughout the wind and to produce a reliable SED around the O iv edge. Fig. 2.17 shows the

impact of DR for this model. Indeed, the population of every ionization stage becomes modified in

the wind, but for O iv this difference is large enough to change it to the main stage of the model.

The reason for such drastic impact in the region around D45 is based on the fact that only here the

X-ray ionization is potentially able to allow for the dominance of O v (see Fig. 2.8), which then can

be compensated by quite strong dielectronic recombination rates.18

Nevertheless, since in the majority of models O v becomes severely depleted (see above), inde-

pendent of whether it is a main ion or not, and because also O vi is affected, this leads to considerable

changes in the corresponding UV lines. Thus, we conclude that DR is inevitable for a correct treat-

18 As an independent check of our findings, we also calculated WM-basic models without DR and these turned out to be

consistent with our non-DR models.
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ment of oxygen. Moreover, because of this strong impact, the precision of corresponding data needs

to be rechecked. As a final remark, we note that the inclusion of DR also has an impact on non-X-ray

models, but to a much lower extent.

2.5.4 Mass absorption coefficient

As already mentioned in Sect. 2.1, in recent years the X-ray line emission (observed by means of

CHANDRA and XMM-Newton) has also been modeled and analyzed by various groups. Such anal-

ysis particularly allows us to obtain constraints on the presence, structure, and degree of wind inhomo-

geneities at X-ray wavelengths (e.g., Oskinova et al. 2006, Sundqvist et al. 2012a, Leutenegger et al.

2013b). These models also allow us to independently “measure” the mass-loss rates of O-star winds

(e.g., Hervé et al. 2013, Cohen et al. 2014b, Rauw et al. 2015) and even to derive nitrogen and oxygen

abundances (Oskinova et al. 2006, Zhekov & Palla 2007, Nazé et al. 2012, Leutenegger et al. 2013a;

primarily, these abundance determinations involve measuring the strengths of corresponding emission

lines in the soft X-ray regime, and possibly correcting them for absorption. However, these diag-

nostics are not wind absorption diagnostics, but absorption is only a correction needed to derive line

luminosities).

One of the assumptions made by various authors is to consider the mass absorption coefficient of

the cool wind material, κν(r), as spatially constant, which simplifies the analysis (Owocki & Cohen

2006, Leutenegger et al. 2013b, Cohen et al. 2014b). Other groups include detailed predictions for

the spatial and frequency dependence of κν(r), calculated by means of POWR (e.g., Oskinova et al.

2006) or CMFGEN (e.g., Hervé et al. 2013, Rauw et al. 2015), and there is an ongoing discussion

about whether the assumption of a spatially constant κν is justified and how far it affects the precision

of the deduced mass-loss rates. Though Cohen et al. (2010, 2014b) investigated the variation of κν(r)

and its influence on the derived parameters based on selected CMFGEN models (also accounting for

variations in the CNO-abundances), a systematic study has not been performed so far; in this section

we carry out this study.

At first, we consider why and under which conditions κν should become more or less spatially

constant. The prime reason for this expectation is the fact that the K-shell cross sections (at threshold

and with respect to wavelength dependence) of the various ions of a specific atom are quite similar,

and that the corresponding edges (for these ions) lie close together. Provided now that (i) all ions that

are present in the wind are actually able to absorb via K-shell processes, and (ii) that there are no

background opacities from other elements, κν(r) indeed becomes (almost) spatially constant, since the

total opacity is then the simple sum over the K-shell opacities from all contributing atoms,

κν(r) ≈
∑
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∑
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where αk is the elemental abundance, YHe the helium abundance (both quantities normalized to hy-

drogen), and mH the hydrogen mass. The parameter k denotes the atomic species, j is the ion, nk, j

is the occupation number of ion (k, j), and σk, j ≈ σk is the K-shell cross section because it is almost

independent of j. In the last step of the above derivation, we assumed that the atmosphere consists

mostly of hydrogen and helium.

Thus, we have to check under which conditions restrictions (i) and (ii) might no longer be valid.

For the light and abundant elements CNO, K-shell absorption is no longer possible for C v, N vi, and

O vii. For these ions, only ordinary, outer-shell ionization is present, but also here the cross sections

are not too different from the K-shell processes (both with respect to strength and location of edge).

Thus, even for highly ionized winds (hot or with strong X-ray emission), where C v, N vi, and O vii are

actually present somewhere, the above approximation is still justified. In so far, restriction (i) should

play no role, since even higher ionization stages are not too be expected to be significantly populated.

Regarding restriction (ii), the situation is different. The prime background is given by the He ii

bound-free opacity, which becomes strong in cool and/or helium-recombined winds19, where in the

following we always refer to the recombination of He iii to He ii. Hillier et al. (1993) already showed

the importance of outer-wind helium recombination on wind opacity and emergent soft X-ray emis-

sion.

We now check the maximum influence of the He ii bound-free opacity at important K-shell edges.

For a crude estimate, we approximate its frequency dependence by (ν0/ν)
3 = (λ/λ0)3, and assume the

worst case that He ii is the only He ion present in the wind. Then, a lower limit for the opacity ratio at

specific K-shell edges can be approximated by

κk

κHeII

(

λ0(k)
)

≈ nk

nHeII

σ0(k)

σ0(HeII)

(λ0(HeII)

λ0(k)

)3
>∼

>∼
αk

αHe

σ0(k)

σ0(HeII)

(228 Å

λ0(k)

)3
, (2.10)

where σ0 is the cross section at the corresponding edge. Using solar abundances from Asplund et al.

(2009), λ0(C) ≈ 35 Å and λ0(O) ≈ 20 Å, σ0 ≈ 1.6, 0.9, and 0.5·10−18 cm2 for the threshold cross

sections of He ii, carbon (K-shell), and oxygen (K-shell), respectively, we find κC/κHeII(35 Å) >∼ 0.42

and κO/κHeII(20 Å) >∼ 2.3. Thus, for cool and/or He-recombined winds, the He ii opacity dominates at

the carbon K-shell edge, whilst at the oxygen edge the K-shell opacities are substantially larger than

the background. Thus, we would predict that somewhat below ≈ 20 Å (beyond 620 eV) restriction

(ii) becomes valid, and that κν should become depth independent. Vice versa, the mass absorption

coefficient should vary with radius longward from the oxygen or carbon K-shell edge whenever the

background mass absorption coefficient varies, which is is mostly due to changes in the He ii ionization

throughout the wind.

In the following, we discuss these issues by means of our grid models; all of these models have

shock emission described by our typical parameters (T∞s = 3 ·106 K and fX = 0.03). In particular, we

provide estimates for suitable means of κν, as a function of Teff .

19 Additionally, the outer-shell ionization of O iv with edge at ≈ 160 Å and the bound-free opacities from other, strongly

abundant ions can play a minor role, particularly if He ii is weak or absent.
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Figure 2.18: Contour plots illustrating the radial dependence of the mass absorption coefficient, κν(r),

as a function of wavelength. The top panel refers to model D30, and the bottom panel indicates model

S40, which both have typical X-ray emission parameters (T∞s = 3 ·106 K and fX = 0.03). The positions

of the C v edge (outer-shell ionization) and the C iv and O iv K-shell edges are indicated.

Figure 2.18 shows contour plots of the radial dependence of the mass absorption coefficient in

the D30 model (upper panel) and in the S40 model (lower panel) as a function of wavelength. In

accordance with our expectation from above, in both panels we note that κν becomes constant when

r >∼ 1.2 R∗and the wavelength is lower than 20 Å (log λ <∼ 1.3), to be on the safe side. In most cases,

the radial limit, arising from fluctuations in the opacity background, is even lower.

Longward of the O iv K-shell edge (λ > 21 Å), the radial variation of κν depends on effective

temperature and wind density. For the D30 model, κν increases significantly with wavelength, but
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nevertheless does not vary with radius because in this case the dominating ionization fraction of He ii

remains constant throughout the wind. In contrast, somewhat hotter models (e.g., D35), but partic-

ularly models with denser winds such as S40 display a different behavior. Here, the lower wind is

dominated by He iii, so that the background is weak, and one can already discriminate the C iv and

C v edges around 10 R∗ (indicated as dashed lines). Compared to the dwarf models, the total κν in the

inner wind is much lower, shows much more structure, and is influenced by the carbon and nitrogen

opacities. Once helium begins to recombine in the outer wind, the background begins to dominate

again and the K-shell features vanish.

Fig. 2.19 (upper part) illustrates the radial variation of the mass absorption coefficient for different

wavelengths, and for our dwarf models with Teff from 30 to 50 kK. Independent of Teff , the radial

variation of κν is marginal at (and below) 10 Å. Around 20 Å, the variations in the inner/intermediate

wind (until 10 R∗) are somewhat larger, due to changes in the oxygen ionization, where the specific

positions of the corresponding edges play a role (see also Fig. 2.20, upper panel). At 30 Å, we see a

separation between D30 (black) with high values of κν (He ii dominating), hot models with low values

of κν (C v + low background, since helium completely ionized), and D35 (green) with a significantly

varying κν, due to the recombination of He iii in the external wind. At 40 Å, finally, the behavior

is similar, and only the κν values for the cooler models are larger, because of the increasing He ii

background.

The analogous situation for supergiants is shown in Fig. 2.19, lower part. Whilst for dwarfs the

variation of κν (when present) vanishes at around 10 R∗, here it is visible throughout the wind up to

large radii for all but the coolest (black) and hottest (red) models. The limiting values (at the outermost

radius) are similar to those of the corresponding dwarf models at Teff = 30 and 35 kK (recombined)

and at Teff = 50 kK (He iii). In contrast, for models with Teff = 40 and 45 kK the opacity continues to

increase outward, since the recombination is still incomplete.

Hervé et al. (2013) provided a similar figure to investigate the radial variation of κν, in this case for

a model of ζ Pup calculated by CMFGEN. While the stellar parameters roughly agree with our S40

model, these authors considered a clumpy wind (with volume filling factor fV = 0.05), and nuclear

processed CNO abundances. Because this model shows an earlier recombination of helium with a

larger nitrogen and weaker oxygen K-shell edge, the actual values of κν are somewhat different from

our results (except at shortest wavelengths), but the basic trends are quite similar. In particular, our

results support the idea of Hervé et al. (2013) of parameterizing the run of κν: In any of the κν(r)-

curves shown in Fig. 2.19, these curves either increase or slightly decrease, but eventually reach

a plateau from a certain radius on (which differs for each model). This radius then separates two

different regimes of κν that might be parameterized in an appropriate way (see Hervé et al. 2013 for

details).

Instead of a parameterization, it is also possible to calculate meaningful averages of κν and the

corresponding scatter. The size of this scatter then allows us to conclude when (w.r.t. wavelength

and Teff) a spatially constant mass absorption coefficient might be used to analyze X-ray line profiles.

Instead of a straight average, we use a density-weighted average (and a corresponding variance) to

account for the fact that the optical depth, τν, is the quantity that needs to be calculated with high
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precision

τν =

∫ Rmax

Rmin

κν(r)ρ(r)dr =: κ̄ν

∫ Rmax

Rmin

ρ(r)dr ⇒

κ̄ν =

∫ Rmax

Rmin

κν(r) f (r)dr, (2.11)

Var(κν) =

∫ Rmax

Rmin

(κν(r)− κ̄ν)2 f (r)dr (2.12)

with p.d.f. f (r)dr = ρ(r)dr/

[

∫ Rmax

Rmin

ρ(r)dr

]

.

In this approach, the density weights correspond to a probability distribution function (p.d.f.). The

quantity Rmin indicates the lower boundary for the averaging process and must not be confused with

the onset radius of the X-ray emission.

Fig. 2.20 (upper panel) shows such mean mass absorption coefficients, κ̄ν, as a function of wave-

length, averaged over the interval between 1.2 and 110.0 R∗, for our dwarf models; the impact of

this chosen interval is discussed below. The lower panel denotes the relative standard deviation,√
Var(κν)/κ̄ν. Also here, cold and hot models are clearly separated with D35 in between (cf. with

Fig. 2.19, upper part): For λ >∼ 21 Å, the cold models are affected by a strong He ii-background, whilst

this background is weak for the hotter models. In this long wavelength region, the radial variation

of κν is large for model D35, as a result of recombining helium. There is also a considerable scatter

between 18 and 21 Å because of radial changes in the oxygen ionization. Overall, however, the as-

sumption of a constant mass absorption coefficient (suitably averaged) is not too bad for the complete

wavelength range (scatter below 20%), if we exclude model D35. Below 18 Å, the scatter becomes

negligible, except at the Ne, Mg, and Si edges.

Even if κν(r) can be approximated by a single number, κ̄ν, the question is then about its value. For

comparison, the dashed line in Fig. 2.20 shows the (analytic) estimate, κ
appr
ν as provided by Eq. 2.9,

using only solar abundances and K-shell opacities with cross sections from C iv, N iv, O iv, Ne iv,

Mg iv, and Si iv. At least for hotter dwarf models, this estimate is quite appropriate when comparing

to the actual case, except for a somewhat erroneous description of the carbon edge(s): Since C v

dominates in the hotter models and there is a ∼ 4 Å difference between the C iv K-shell and the C v

edge, this region is badly described by our approximation. For cooler dwarf models, on the other hand,

the difference between the dashed and solid curves is (mostly) due to the helium background, which

varies as a function of Teff , logg, and wind density, thus affecting the actual value of κ̄ν. Even below

18 Å, this background is still non-negligible for model D30 with a maximum deviation of roughly 30%

close to the oxygen edge. Nevertheless, we conclude that for all dwarf models with Teff ≥ 35 kK, the

assumption of a constant mass absorption coefficient approximated by κ
appr
ν is justified when λ ≤ 18 Å

(at least within our present assumptions, i.e., solar abundances and unclumped winds with optical

depths that are not too large, such that the averaging down to 1.2 R∗ is reasonable). In all other cases,

results from NLTE-atmosphere modeling should be preferred.

The situation for our supergiant models is displayed in Fig. 2.20, lower panel. Below 20 Å, the

situation is similar to the dwarf case, although here the background is lower, even for the coolest

model, and the approximation of κ̄ν by κ
appr
ν might now be applied at all temperatures. For λ > 30 Å,
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however, almost all models (except for S50) can no longer be described by a radially constant κ, since

all models with Teff ≤ 45 kK show recombining helium of different extent, leading to strong variations

throughout the wind.

Thus far, we considered models with solar abundances and unclumped winds. To illustrate the

variation of the total and K-shell opacities with abundance (already investigated for particular models

by, e.g., Cohen et al. 2010, 2014b), the dotted lines in Fig. 2.20 denote the approximate K-shell opac-

ities, κ
appr
ν , for the case of highly processed CNO material based on the abundances derived for ζ Pup

by Bouret et al. (2012). Here, the carbon and oxygen abundances are depleted by 0.8 and 0.6 dex,

respectively, whilst the nitrogen abundance is extremely enhanced (by ∼ 1.3 dex) compared to the

solar values. Such a composition leads to weak C and O K-shell edges, but to an enormous nitrogen

edge (dotted vs. dashed line).

Now, if the individual abundances are known during an analysis, there is no problem, and κν might

be approximated by either κ
appr
ν below 18 Å or calculated by means of NLTE-model atmospheres, sim-

ply accounting for these abundances. However, considerable uncertainties even in the low wavelength

regime might result when the abundances are not known. From comparing the dashed and dotted

line, we estimate this uncertainty as roughly 50% for κ̄ν, and thus for τν and Ṁ (when the mass-loss

rate shall be derived). A similar value has already been estimated by Cohen et al. (2014b). In the

range between the oxygen and carbon edge (20 to 35 Å), the situation is even worse and we conclude

that the corresponding absorption coefficients are prone to extreme uncertainties when the abundances

have to be adopted without further verification. In particular, getting κν right around 25 Å is important

for measuring the N emission lines at and close to that wavelength (e.g., N vi 24.9, N vii 24.78), and

thus measuring the N abundance directly. At longer wavelengths, however, where κν varies even more

strongly with radius, and even though nitrogen emission lines are not directly affected, the (direct)

ionization of elements such as CNO is affected, and so optical and UV line strengths are affected too,

as discussed in the previous sections.

The impact of clumping is less severe. Comparing Fig. 2.34 (Appendix) with Fig. 2.20, we see

that models accounting for optically thin clumping (“micro-clumping”) with typical clumping factors

( fcl = 20 corresponding to a volume filling factor, fV = 0.05) and adequately reduced mass-loss rates

give rather similar results compared with unclumped models. Again, the scatter of κν is negligible

below 18 Å. ‘The region longward of 20 Å is the only region that is more strongly contaminated by

the He ii background, since the clumped models recombine earlier than the unclumped models. The

K-shell mass absorption coefficients themselves are not affected by optically thin clumping, since the

opacities scale linearly with density.

Finally, Fig. 2.35 (Appendix) investigates the consequences of averaging κν in the outer wind

alone (in the interval between 10 and 110 R∗), which would be adequate if the wind would become

optically thick at such radii (which for short wavelengths and O-star winds is quite unlikely because

of the low value of κν). Anyway, below 18 Å the differences to the original values are small. The hot

dwarf models now behaves almost exactly as estimated by κ
appr
ν because He ii vanishes in the outer

regions of these objects. Further conclusions on this topic are provided in the next section.
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Figure 2.19: Upper four panels: radial variation of the mass absorption coefficient in dwarf models

for specific values of wavelength. Black: Teff = 30kK; green: 35 kK; blue: 40 kK; magenta: 45 kK;

and red: 50 kK. All models have been calculated with T∞s = 3 · 106 K and fX = 0.03. We note the

different scales for κν. Lower four panels: as above, but for supergiant models.
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Figure 2.20: Upper panel, top: density-weighted mean (Eq. 2.11) of the mass absorption coefficient,

κ̄ν, for the interval between 1.2 and 110 R∗, as a function of wavelengths and for dwarf models with T∞s
= 3·106 K and fX = 0.03. Solar abundances following Asplund et al. (2009) were adopted. Dashed:

approximate, radius-independent κ
appr
ν (Eq. 2.9), using only solar abundances and K-shell opacities

with cross sections from C iv (with threshold at 35.7 Å), N iv (27.0 Å), O iv (20.8 Å), Ne iv (13.2 Å),

Mg iv (9.0 Å), and Si iv (6.4 Å). The C v edge (at 31.6 Å) appears to be unresolved in our frequency

grid. Dotted: same as dashed, but with nuclear processed CNO abundances as derived for ζ Pup

by Bouret et al. (2012). The nitrogen abundance is more than a factor of 10 larger than the solar

abundance. Dashed and dotted lines also serve as a guideline for comparison with similar figures.

Bottom: relative standard deviation,
√

Var(κν)/κ̄ν (see Eq. 2.12), for the same models. The dotted line

denotes a relative scatter of 15%.

Lower panel: as above, but for supergiant models.
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2.6 Summary and conclusions

In this paper, we described the implementation of X-ray emission from wind-embedded shocks into

the unified, NLTE atmosphere/spectrum synthesis code FASTWIND, discussed various tests, and

presented some initial results.

Our implementation follows closely corresponding work by Pauldrach et al. (2001) for WM-basic,

which in turn is based on the shock cooling zone model developed by Feldmeier et al. (1997a) with

the additional possibility of considering isothermal shocks. The (present) description of the shock

distribution and strength is provided by four input, “X-ray emission parameters”, controlling the filling

factor, the run of the shock temperature, and the radial onset of the emitting plasma. We account for

K-shell absorption and Auger ionization, allowing for more than one final ionization stage due to

cascade ionization processes.

Most of our test calculations are based on a grid of 11 models (supergiants and dwarfs within

Teff= 30 to 55 kK), each of them with nine different X-ray emission parameter sets, but we calculated

many more models for various comparisons, including models with optically thin clumping.

A first test investigated the reaction when varying important X-ray emission parameters. For

radially increasing shock strengths, the emergent flux remains almost unaffected if the onset radius is

lowered compared to its default value (roughly 1.5 R∗), whilst increasing the onset has a considerable

effect in the range between ∼350 Å and at least the He ii edge. Filling factor and maximum shock

temperature affect the ionization fractions, particularly of the highly ionized species. We confirm

some earlier predictions for scaling relations for X-ray luminosities (as a function of Ṁ/v∞) in the case

of optically thin and thick continua, (though a discrepancy with recent work by Owocki et al. 2013

was identified, which needs to be investigated further), but we noted that for our hottest models these

luminosities can become contaminated by normal stellar radiation for energies below ∼150 eV. Thus,

we suggested choosing a lower integration limit of 0.15 keV (or even 0.3 keV, to be on the safe side)

when comparing the X-ray luminosities of different stars or theoretical models. Finally, we found an

excellent agreement between FASTWIND and WM-basic fluxes, demonstrating a similar ionization

balance, and a satisfactory agreement between corresponding X-ray luminosities. Overall, the impact

of typical shock emission affects the radiation field in the wind for all wavelengths λ < 350 Å, thus

modifying all photo rates for ions with ionization edges in this regime.

Investigating the ionization fractions within our model grid allowed us to study the impact of

shock radiation for the proper description of important ions, i.e., those with meaningful wind lines

(e.g., C iv, N iv, N v, O v, O vi, Si iv, and P v). If we denote models with Teff= 30 to 35 kK as “cool”,

models with Teff= 35 to 45 kK as “intermediate”, and models with Teff= 45 to 55 kK as “hot” (note

the overlap), we can summarize our findings as follows. Those ions not (or only marginally) affected

by shock emission (with typical parameters and our parameterization of the shock strengths) are

• in dwarfs: C iii, C iv, N iii (cool), N iv (cool), O iv (intermediate), Si iv, P v (cool+intermediate)

• in supergiants: C iii (hot), C iv (hot), N iv (cool), O iv (intermediate), Si iv (hot).

In almost all of the other cases, the lower stages (C iii, C iv, N iii, N iv, O iv (hot), Si iv, and P v) are

depleted, i.e., corresponding wind lines become weaker, and the higher stages (N v, O iv (cool), O v,
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O vi) become enhanced, i.e., corresponding wind lines become stronger when accounting for shock

emission.

We studied in some detail how the ionization fractions change when the two most important

parameters, filling factor and maximum shock temperature, are varied. For most ions, the filling

factor has a larger influence than T∞s , but particularly O vi and P v (the latter only for higher filling

factors and shock temperatures) show a strong reaction to both parameters.

As a result of the importance of P v with respect to mass loss and wind-structure diagnostics,

we reinvestigated the behavior of P v and confirm previous results that for typical X-ray emission

parameters this ion is only weakly or moderately affected (by factors of two for intermediate and hot

supergiants at v(r)/v∞ = 0.5 and by factors of 10 at v(r)/v∞ = 0.8). For a strong X-ray radiation field,

however, the depletion can reach much higher factors. A comparison of P v ionization fractions with

results from CMFGEN (Bouret et al. 2012) provided a reasonable agreement.

Not only metals. but also He can be affected by shock emission because of the location of the

He ii edge and He ii 303 in the EUV. Significant effects, however, have only been found in the winds of

cool supergiants, where particularly He ii 1640 (emission and high-velocity absorption) and He ii 4686

(emission) become stronger because of increased recombination cascades and increased pumping of

the n = 2 level in the case of He ii 1640.

When comparing our ionization fractions with those calculated by WM-basic, we found a good,

though not perfect, agreement, which we found to be true for various UV line profiles as well. When

comparing with Krtička & Kubát (2009), on the other hand, a similar agreement over the complete

covered temperature range was found only for few ions; for the majority, such agreement is present

only at specific temperatures.

It is well known that Auger ionization can play an important role for the ionization balance of spe-

cific ions. To further investigate this issue, we compared the ionization fractions of all ions considered

in this study when including (default) or excluding this process in our NLTE treatment. Overall, we

found that only N vi and O vi (as previously known) are significantly affected by Auger ionization, but,

at least in our models (with radially increasing shock temperatures), these ions are only affected in the

outer wind. For the inner and intermediate wind, direct EUV/XUV ionization due to shock emission

dominates, which is generally true for all other considered ions. (Additionally, the presence of a low-

density interclump medium is essential for the formation of O vi in clumped winds; see Zsargó et al.

2008.)

As an interesting by-product of our investigation, we found that dielectronic recombination of O v

can have a considerable influence on the ionization balance of oxygen (O iv vs. O v), particularly for

dwarfs around 45 kK.

In the last part of this paper, we provided an extensive discussion of the high-energy mass absorp-

tion coefficient, κν, regarding its spatial variation and dependence on Teff . This topic is particularly

relevant for various approaches to analyzing X-ray emission lines. To summarize and conclude, we

found that (i) the approximation of a radially constant κν can be justified for r >∼ 1.2R∗ and λ <∼ 18 Å,

and also for many models at longer wavelengths. (ii) In order to estimate the actual value of this quan-

tity, however, the He ii background and, to a lesser extent, the bound-free background from highly

abundant metals needs to be considered from detailed modeling, at least for wavelengths longer than

18 to 20 Å. Moreover, highly processed CNO material can change the actual value of κν considerably,
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particularly for λ >∼ 20 Å, and estimates for the optical depth, τν, become highly uncertain in this

regime if the individual abundances are unknown.

In this context, it is reassuring to note that, for example, the mass-loss determinations by

Cohen et al. (2014b) using X-ray line spectroscopy (via determining the optical depths of the cool

wind material, under the assumption of spatially constant κν) rely on 16 lines observed by CHAN-

DRA, where 14 out of these 16 lines are shortward of 19 Å. The issues summarized above will be a

much bigger problem for O vii and nitrogen X-ray emission line measurements (O vii at 21.6-22.1 Å,

N vii at 24.78 Å, and N vi at 24.9 Å), which are planned to independently constrain, with high preci-

sion, the nitrogen/oxygen content in (a few) massive O stars (Leutenegger et al. 2013a). To this end,

a detailed modeling of κν (particularly regarding the helium ionization) will certainly be advisable for

such an analysis.

Now that we have finalized and carefully tested our implementation of emission from wind-

embedded shocks, we are in a position to continue our work on the quantitative spectroscopy of

massive stars. As outlined in the introduction, we will concentrate on determining the carbon and

oxygen abundances in O and early B stars observed during the two VLT-flames surveys conducted

within our collaboration, by means of optical and, when available, UV spectroscopy. During such an

analysis, the X-ray emission parameters need to be derived in parallel with the other, main diagnostics,

at least in principle. We then have to check how far the derived abundances depend on corresponding

uncertainties.

We further note that any such UV analysis also needs to consider the effects of optically thick

clumping (e.g., Oskinova et al. 2007, Sundqvist et al. 2011, Šurlan et al. 2013, Sundqvist et al. 2014).

In parallel with the implementation of wind-embedded shocks presented here, we have updated fast-

wind to account properly for such optically thick clumping (porosity in physical and velocity space),

following Sundqvist et al. (2014); these models will be presented in an upcoming (fourth) paper of

this series.

Regarding quantitative spectroscopic studies accounting for X-ray ionization effects, the param-

eterization represented by Eq. 2.7 is certainly not the final truth, and is actually not the best encap-

sulation of the results from current numerical simulations. Though this probably does not matter too

much for most applications, it might be worth considering a better representation and how our results

would change if the stronger and weaker shocks were allowed to be more spatially mixed.

LDI simulations (e.g., Feldmeier et al. 1997b, Dessart & Owocki 2003, Sundqvist & Owocki

2013) indicate that the velocity dispersion peaks quite close to Rmin (∼ 1.5-2.0 R∗) and then falls

off. And the same simulations also show some strong shocks near Rmin. From the observational

side, f/i ratios of ions that form at higher temperatures (e.g., Si xiii) indicate a substantial amount of

high-temperature plasma (∼107 K) near Rmin (e.g., Waldron & Cassinelli 2001, Waldron & Cassinelli

2007), and Leutenegger et al. (2006) found an onset radius of 1.1+0.4/−0.1 R∗ for the S xv line. On

the other hand, Cohen et al. (2014a) showed that the shock temperature distribution is very strongly

skewed toward weak shocks and our parameterization Eq. 2.7 already allows us to include that feature

now.
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2.A Appendix A: Ionization fractions of selected ions: Dependence on

X-ray filling factor and shock temperature

Figures 2.21 to 2.30 show the reaction of C iv, N v, O v, O vi, and P v on varying the X-ray filling

factors and shock temperatures within our supergiant and dwarf models as a function of Teff . For

further explanation and discussion, see Sect. 2.5.1.
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Figure 2.21: Ionization fractions of C iv (at v(r) = 0.5v∞), as a function of Teff , and for different

X-ray emission parameters. Solid: supergiant models; dashed: dwarf models; black: models with

shock emission; magenta: models without shock emission. For clarity, the ionization fractions of

dwarf models have been shifted by one dex.

Figure 2.22: Left panel: As above (C iv at v(r) = 0.5v∞), but now for dwarf models alone and for

all X-ray emission parameters included in our grid. The fractions have not been shifted here. Right

panel: as left, but for supergiant models.
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Figure 2.23: As Fig. 2.21, but for N v at v(r) = 0.6v∞

Figure 2.24: As Fig. 2.22, but for N v (v(r) = 0.6v∞)
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Figure 2.25: As Fig. 2.21, but for O v at v(r) = 0.6v∞.

Figure 2.26: As Fig. 2.22, but for O v (v(r) = 0.6v∞).
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Figure 2.27: As Fig. 2.21, but for O vi at v(r) = 0.6v∞.

Figure 2.28: As Fig. 2.22, but for O vi (v(r) = 0.6v∞).
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Figure 2.29: As Fig. 2.21, but for P v at v(r) = 0.5v∞.

Figure 2.30: As Fig. 2.22, but for P v (v(r) = 0.5v∞).
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Figure 2.31: Ionization fractions of specific ions, as calculated by FASTWIND (black) and WM-basic

(magenta) for our dwarf models and as a function of Teff . If not stated explicitly inside the individual

panels, the fractions were evaluated at v(r) = 0.5v∞. See Sect. 2.5.1.

2.B Appendix B: Comparison with WM-basic: Ionization fractions and

UV line profiles

In Figs. 2.31 and 2.32, we compare the ionization fractions of specific ions, as calculated by FAST-

WIND and WM-basic, for dwarf and supergiant models, respectively. Fig. 2.33 compares corre-

sponding strategic UV-line profiles for N iv 1720, N v 1238,1242, O v 1371, O vi 1031,1037, and

P v 1117,1128. Further explanation and discussion is provided in Sect. 2.5.1.
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Figure 2.32: As Fig. 2.31, but for supergiant models.



2
.B

.
A

P
P

E
N

D
IX

B
:

C
O

M
PA

R
IS

O
N

W
IT

H
W

M
-B

A
S

IC
:

IO
N

IZ
A

T
IO

N
F

R
A

C
T

IO
N

S
A

N
D

U
V

L
IN

E
P

R
O

F
IL

E
S

6
9

Figure 2.33: Emergent line profiles for strategic UV lines (N iv 1720, N v 1238,1242, O v 1371, O vi 1031,1037, and P v 1117,1128),

as calculated by WM-basic (green) and FASTWIND (black), for models S30 (top), D40, S40, D50, and S50 (bottom). All profiles were

calculated with a radially increasing microturbulence, with maximum value vturb(max) = 0.1v∞, and have been convolved with a typical

rotation velocity, v sin i = 100 kms−1. The absorption feature between the two P v components is due to Si iv 1122. See Sect. 2.5.1.
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2.C Appendix C: Averaged mass absorption coefficients: Clumped

winds and dependence on averaging interval

Fig. 2.34 shows the density-weighted mean (Eq. 2.11) of the mass absorption coefficient as a func-

tion of wavelength for dwarf (left) and supergiant (right) models. The figure has a similar layout as

Fig. 2.20, but has been calculated for clumped models ( fcl = 20) and mass-loss rates reduced by a

factor of
√

20. Fig. 2.35 is also analogous to Fig. 2.20, but now the absorption coefficient has been

averaged over the interval between 10 and 110 R∗. For details and discussion, see Sect. 2.5.4.

Figure 2.34: As Fig. 2.20, but for clumped models with fcl= 20 (corresponding to fV = 0.05) and

mass-loss rates reduced by a factor of
√

20. Left: dwarf models; right: supergiant models.

Figure 2.35: As Fig. 2.20, but averaged over the interval between 10 and 110 R∗. Left: dwarf models;

right: supergiant models.





Chapter 3

Carbon line formation and spectroscopy

in O-type stars

This chapter is a copy of Carneiro, Puls, & Hoffmann (2018), Astronomy & Astrophysics, 615, A4,

2018.

Abstract The determination of chemical abundances constitutes a fundamental requirement for ob-

taining a complete picture of a star. Particularly in massive stars, CNO abundances are of prime

interest, due to the nuclear CNO-cycle, and various mixing processes which bring these elements to

the surface. The precise determination of carbon abundances, together with N and O, is thus a key

ingredient for understanding the different phases of stellar evolution.

We aim to enable a reliable carbon spectroscopy for our unified NLTE atmosphere code FAST-

WIND.

We have developed a new carbon model atom including C ii/iii/iv/v, and we discuss specific prob-

lems related to carbon spectroscopy in O-type stars. We describe different tests we have performed to

examine the reliability of our implementation, and investigate which mechanisms influence the carbon

ionization balance. By comparing with high-resolution spectra from six O-type stars, we verified to

what extent observational constraints can be reproduced by our new carbon line synthesis.

Carbon lines are even more sensitive to a variation of Teff , logg, and Ṁ, than hydrogen and helium

lines. We are able to reproduce most of the observed lines from our stellar sample, and to estimate

those specific carbon abundances which bring the lines from different ions into agreement (three stages

in parallel for cool objects, two for intermediate O-types). For hot dwarfs and supergiants earlier

than O7, X-rays from wind-embedded shocks can have an impact on the synthesized line strengths,

particularly for C iv, potentially affecting the abundance determination. Dielectronic recombination

has a significant impact on the ionization balance in the wind.

We demonstrate our capability to derive realistic carbon abundances by means of FASTWIND,

using our recently developed model atom. We find that complex effects can have a strong influence

on the carbon ionization balance in hot stars. For a further understanding, the UV range needs to

be explored as well. By means of detailed and available nitrogen and oxygen model atoms, we will

be able to perform a complete CNO abundance analysis for larger samples of massive stars, and to
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provide constraints on corresponding evolutionary models and aspects.

3.1 Introduction

Quantitative spectroscopy provides decisive constraints on our understanding of stellar evolution,

chemical composition, and nucleosynthesis. The analysis of stellar spectra using atmospheric models

tests the accuracy of present theoretical knowledge in this regard. Therefore, any further theoretical

development relies, to a significant part, on the accuracy of data which describe the atomic processes

present in a thermodynamic system. Any inconsistency or imprecision of the data directly affects a

realistic representation of nature.

However, the calculation of atmospheric models is complex. In our working field – hot stars –

the strong radiation field leads to non-LTE effects and causes a radiation-driven wind. This situation

can be handled by different codes, as for example CMFGEN (Hillier & Miller 1998), PHOENIX

(Hauschildt 1992), PoWR (Gräfener et al. 2002), WM-basic (Pauldrach et al. 2001), and FASTWIND

(Puls et al. 2005, Rivero González et al. 2012a). A brief comparison of these different codes is given

by Puls (2009).

Precise spectroscopic analysis (by means of accurate atmospheric models) can lead to important

conclusions about the chemical composition of galaxies (Chiappini 2001, 2002) and corresponding

metallicity gradients (Daflon & Cunha 2004), especially when performed using observations of early-

type stars. Furthermore, it can also give insights into mixing processes. At least in single stars, the

surface chemical composition is controlled by the efficiency of mixing processes, which to a large

part are associated with stellar rotation. A high rotational velocity favors the transport of metals

from the stellar core to the surface, and consequentially the chemical enrichment of the photosphere

(Maeder & Meynet 2000a, Meynet & Maeder 2000).

In massive stars, nitrogen is a decisive indicator of such enrichment. Rivero González et al. (2011)

investigated the formation of N iii 4634-4640-4642, and derived nitrogen abundances of O stars in the

Magellanic Clouds with a set of N ii- iii- iv lines. However, even more precise constraints on stellar

evolution can be obtained using the N to C ratio, since it is less sensitive to the initial metal con-

tent, compared to N/H (Martins et al. 2012). In particular the combination of N/C vs. N/O (see

Przybilla et al. 2010, Maeder et al. 2014) gives strong constraints on the enrichment and mixing his-

tory of CNO material (Martins et al. 2015a), and allows individual spectroscopic abundances to be

tested. For these (and other) objectives, we have developed a new carbon model atom to be used in

spectroscopic analysis by means of FASTWIND, suitable for the early B- and the complete O-star

regime.

Carbon plays a special role within the light elements. It is the basis of all organic chemistry, but

it is also essential for the nucleosynthesis of H into He through the CNO cycle in massive hot stars.

Unfortunately, however, the analysis of carbon in such stars is difficult, mainly because the number of

carbon lines detectable in O-type spectra is even smaller to the number of nitrogen lines.

Unsöld (1942) pioneered the analysis of carbon spectra from early-type stars. Since then, numer-

ous studies aimed at the same objective, and we highlight here the contribution by Nieva & Przybilla

(2008), which is the last in a series of three publications dedicated to developing and applying a car-
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bon model atom within the spectrum analysis code detail/surface (Giddings 1981, Butler & Giddings

1985). By means of this new model atom, Nieva & Przybilla were able to establish a consistent carbon

ionization balance for a sample of early B-type stars1. Later on, Martins & Hillier (2012) explored

the formation of C iii 4647-50-51 and C iii 5696 in detail, and found a tight coupling of these lines to

UV-transitions that regulate the population of the associated levels.

Though data and observations improved with time, some “classical” problems are still discussed

and partly an issue even to-date, particularly regarding the establishment of a consistent ionization

equilibrium for C ii/iii/iv: Often, C ii provides solar, but also subsolar abundances in early-type main

sequence stars (Daflon et al. 1999 or Daflon et al. 2001a); C iii might display solar abundances in OB

dwarf stars and O supergiants (Daflon et al. 2001b and Pauldrach et al. 2001); and C iv can lead to

all sorts of results, mostly because of the very restricted number of lines (four in the optical, but

only in the rarely observed range between 5,000 and 6,000 Å; furthermore, two of these four lines are

weak, and seldom, if at all, discussed and analyzed). Differences in abundance from C ii vs. C iii can

reach a factor of 5 to 10 (Hunter et al. 2007), and even when considering C ii lines alone, there can be

significant line-by-line variations.

In B4-O6 stars, C ii 4267 might indicate a very low abundance when compared with weaker lines

such as the doublet at 6578-6582 Å (Kane et al. 1980). The latter problem had already been tackled

by Nieva & Przybilla (2006), and solved for a sample of early B-type stars.

Recent studies (e.g., Najarro et al. 2006, Nieva & Simón-Dı́az 2011, Rivero González et al.

2012a) have called the attention to the importance of implementing precise atomic data when some

of these and other problems are addressed: Inadequate data might produce systematic discrepancies

in the final results, independent of the specific atmospheric model used, since these data describe

interactions governed by the laws of quantum mechanics, independent of their environment.

On the other hand, this dependence can be used to test specific atomic models regarding their

capability to reproduce the observed spectral features. Prior to this final proof of reliability, though,

a series of tests should be performed, including a comparison with alternative models, in order to

investigate the impact of the various components of the model atom on the final result. For our

purpose, the atmospheres of late to early O-type stars represent suitable testbeds, because within

this temperature range the main ionization stage of carbon changes drastically. Therefore, a grid of

representative O-type stars permits us to examine the quality of the results produced by our newly

developed carbon model atom.

Obviously, a spectroscopic analysis does not only depend on the atomic data and the atmospheric

model, but also on the quality of the observational data. This even more for the tests outlined above:

High S/N spectra are needed, preferably from slowly rotating single stars. The projected rotational

velocity, v sin i, is one of the major broadening agents capable of making the majority of carbon

lines almost invisible in the entire optical spectrum, recognizing that these are mostly weak lines

(Wolff et al. 1982). v sin i also affects the blending of a set of diagnostic lines by lines from other

atoms, (e.g., the strong C iii 4647-50-51 complex blended by many O ii lines).

As already pointed out, the optical diagnostics of carbon in O-type stars is also influenced by a

1 The study presented here might be considered as an extension of their work, applying a new model atom within a different

atmosphere code (FASTWIND) to the analysis of O-type stars.
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variety of UV transitions. Thus, a proper treatment of the UV radiation is necessary, both for the

optical analysis and for an independent or combined investigation of UV carbon lines. If at least part

of these lines are formed in the wind, the inclusion of X-rays and extreme ultraviolet (EUV) emission

from wind-embedded shocks becomes essential. As a first step of this complex analysis, we can

identify those optical lines that have levels pumped by UV transitions, and investigate how strong the

radiation from wind-embedded shocks must be to influence the line shapes significantly.

Besides the X-ray emission, the UV region is also influenced by micro- and macro-clumping, and

porosity in velocity space, which makes the analysis even more complex. This issue, however, will be

addressed in a forthcoming study, after we have convinced ourselves of the reliability of our carbon

model.

This paper is organized as follows. Sect. 3.2 summarizes important characteristics of our atmo-

sphere code, FASTWIND, and details our newly developed carbon model atom, the set of diagnostic

lines used, and the model grid adopted as testbed. In Sect. 3.3 we provide various tests performed

to check our model atom. Sect. 3.4 presents all relevant results from comparing synthetic carbon

spectra with observed ones, for the case of six slowly-rotating O-type stars of various spectral type

and luminosity class. Moreover, we discuss the potential impact of X-ray and EUV radiation from

wind-embedded shocks on the optical carbon lines. In Sect. 3.5 we conclude with an overview of the

present work as the basis for a more detailed future analysis.

3.2 Prerequisites for a carbon diagnostics

All the calculations described in this work have been performed with the latest update (v10.4.5)

of the NLTE model atmosphere and spectrum synthesis code FASTWIND (Puls et al. 2005,

Rivero González et al. 2012a). It includes the recent implementation of emission from wind-

embedded shocks and related physics, which will be used here to investigate potential effects of

X-rays/EUV radiation on the selected optical carbon lines. A detailed description of the X-ray imple-

mentation in FASTWIND is given by Carneiro et al. (2016).

3.2.1 The code

For the diagnostics of early-B and O-type stars, FASTWIND thus far used models atoms for H, He, N

(developed by Puls et al. 2005 and Rivero González et al. 2012b), Si (see Trundle et al. 2004), while

data for C, O, and P have been taken from the WM-basic database (Pauldrach et al. 2001). We call

these elements ”explicit” (or foreground) elements. Briefly2, such foreground elements are used as

diagnostic tools and treated with high precision by detailed atomic models and by means of comoving

frame radiation transport for all line transitions. Most of the other elements up to Zn are treated as

so-called background elements. Since these are necessary ‘only’ for the line-blocking and blanket-

ing calculations, they are treated in a more approximate way, using parameterized ionization cross-

sections in the spirit of Seaton (1958). Only for the most important lines from background elements, a

comoving frame transfer is performed, while the multitude of weaker lines is calculated by means of

2 For a more detailed description of FASTWIND, and the philosophy of explicit and background elements, see Puls et al.

(2005) and Rivero González et al. (2011).
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the Sobolev approximation. The latter approximation is applicable for the wind regime, but it may fail

for regions with a curved velocity field (transition between photosphere and wind), and in the deeper

photosphere. The Sobolev approximation, when applied to regions with a pronounced velocity field

curvature, yields too highly populated upper levels in line transitions (see, e.g., Santolaya-Rey et al.

1997). This could directly affect our carbon analysis, and is one more reason to use carbon as an

explicit element and to develop a corresponding, more detailed carbon model.

3.2.2 The carbon model atom

The first step regarding the development of a new model atom concerns the decision of how many

and which states shall be included into each ion. We established a sequence of criteria to define our

choice of levels. At first, as suggested by Hubeny (1998), the gap of energy between the highest ion

level and the ground state of the next ionization stage should be less than kT . Since our conventional

O-star grids include a minimum Teff of ∼28 kK, this temperature was chosen to establish a first guess

for the uppermost levels of C iii and C iv. In the case of C ii, we used a temperature of 22 kK to obtain

a better representation of this ion in B stars.

With a first list of levels, the second criterium was to account for all levels within a given subshell,

up to and including the subshell considered by criterium one, which extends our previous list by a

few more levels. Subsequently, a third and final criterium was to re-check the Grotrian diagram and

to include higher lying levels with multiple transitions downward.

At this point, the uppermost considered level has an energy far beyond the limit established by

the first criterium. Even though, the second criterium was revisited for completeness, and few more

levels (partly with very weak cross-sections) included as a final step.

Basically, the list, configuration and energies of levels were taken from NIST3 (for individual

data, see following references), but we cross-checked with other databases relying on independent

calculations. In particular, the list of levels used in this work agrees to a large part with the WM-

basic database 4 and also with the OPACITY Project online database 5 (TOPbase hereafter, see

Cunto & Mendoza 1992 for details). The order of levels may appear, in few cases, interchanged

in different databases, due to slightly different energies.

Oscillator strengths were mainly taken from NIST, though this database only provides data for

allowed transitions. For a given radiative bound-bound transition, the gf-values are very similar in

the different databases inspected by us: NIST, WM-basic, and data from an application of the Breit-

Pauli method (Nahar 2002). Data for forbidden transitions were essentially taken from the WM-basic

database. Radiative intercombinations have been neglected, because of negligible oscillator strengths.

TOPbase displays photoionization cross-section data from calculations by Seaton (1987) for al-

most all the levels included in our model atom. Already Nieva & Przybilla (2008) presented a compar-

ison between the radiative bound-free data from TOPbase and Nahar & Pradhan (1997), concluding

3 http://www.nist.gov/physlab/data/asd.cfm, described in Kelleher et al. (1999)
4 See Pauldrach et al. (1994). Briefly, the atomic structure code superstructure (Eissner & Nussbaumer 1969, Eissner

1991) has been used to calculate all bound state energies in LS and intermediate coupling as well as related atomic data,

particularly oscillator strengths including those for stabilizing transitions.
5 http://cdsweb.u-strasbg.fr/topbase/topbase.html
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that the use of TOPbase reproduces more accurately the C ii 4267, 6151 and 6462 transitions, which

are also of our interest. On the other hand, within the OPACITY Project no data were calculated for

highly excited terms (e.g., C2 37: 2G or C2 38: 2H0, see Table 3.4), because the quantum defect is

zero, which means that such levels can be approximated as hydrogen-like. For these cases, we used

the resonance-free cross-sections provided in terms of the Seaton (1958) approximation

α(ν) = α0[β(ν0/ν)
s+ (1−β)(ν0/ν)s+1], (3.1)

with α0 being the threshold cross-section at ν0, and β and s fit parameters, all taken from the WM-basic

database.

The radiative bound-free data from TOPbase, which is our primary source, include the numerous

complex resonance transitions relevant for the description of dielectronic recombination and reverse

ionization processes. For the few levels where no data are present (see above), we used the explicit

method accounting for individual stabilizing transitions (see, e.g., Rivero González et al. 2011), with

data from WM-basic (a further discussion on this approach will be provided in Sect. 3.3).

Collisional ionization rates are calculated following the approximation by Seaton (1962). The

corresponding threshold cross-sections are taken from WM-basic and Nahar (2002), which present

similar values for the majority of levels, and these also in agreement with TOPbase.

For collisional excitations, we used a variety of suitable data-sets, discussed in the following

together with particularities for each carbon ion:

C ii is described by 41 LS-coupled levels (Moore 1993), roughly up to principal quantum number

n = 7 and angular momentum l = 5, with all fine-structure levels being packed6. These levels are

displayed in Table 3.4. For the 16 lowermost levels of this boron-like ion, effective collision strengths

were taken from R-matrix computations by Wilson et al. (2005, 2007). For the remaining transitions

without detailed data, collisional excitation is calculated using the van Regemorter (1962) approxima-

tion for optically allowed transitions, and by means of the Allen (1973) expression for the optically

forbidden ones. For the latter, corresponding collision strengths Ω vary from 0.01 (∆n ≥ 4) to 100

(∆n = 0). Over 300 radiative (Nussbaumer & Storey 1981, Yan et al. 1987, Tachiev & Fischer 2000

and 1000 collisional transitions have been included.

C iii consists of 70 LS-coupled levels (Moore 1993), until n= 9 and l= 2, with fine-structure levels

being packed. The levels are detailed in Table 3.5. For electron impact excitation of the lowest 24

levels, we used the Maxwellian-averaged collision strengths calculated by Mitnik et al. (2003) through

R-matrix computations. The collisional bound-bound data for the other levels were treated in analogy

to corresponding C ii transitions. This Be-like ion comprises approximately 700 radiative (Glass 1983,

Allard et al. 1990, Tully et al. 1990) and 2000 collisional transitions.

C iv includes 50 LS-coupled terms (Moore 1993), until n = 14 and l = 2, with fine-structure levels

again being packed, and described in Table 3.6. Aggarwal & Keenan (2004) provide electron impact

excitation data for the lowest 24 fine-structure levels, which have been added up in such a way as to

be applicable for our first 14 terms. All remaining collisional bound-bound transitions were treated

6 To calculate the final synthetic profiles by means of the formal integral, these levels are unpacked. To this end, we have

assumed that ni/gi (occupation number divided by statistical weight) is similar within each of the sublevels belonging to

a packed level, due to collisional coupling.
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Table 3.1: Diagnostic carbon lines in the optical spectra of early B- and O-type stars, together

with potential blends. Lines with wavelengths written in bold-face are visible in a wide temperature

range, and quite sensible to carbon abundance variations. Therefore, they are most important for an

optical carbon analysis (see also Sect. 3.4.3). The labels displayed in Column 3 (“transition”) are

detailed in Tables 3.4, 3.5, and 3.6. The last column provides a short comment on the specific lines.

“Weak” and “strong” refers here to the observed line strength in a high resolution O-star spectrum,

with intermediate v sin i (∼50kms−1), and parameters such that the considered ion is clearly present.

“X-ray sensitive” indicates lines which might be affected by emission from wind-embedded shocks

(see Sect. 3.4.4).

Ion Wavelength(Å) Transition f log(g f ) Blends Comment

C ii 3918.98 C2 7 - C2 11 0.1470 -0.533 N ii λ3919.00, O ii λ3919.2 weak doublet

3920.69 C2 7 - C2 11 0.1460 -0.232 S iii λ3920.29 ”

4267.00 C2 9 - C2 16 0.9140 0.563 S ii λ4267.76 strong doublet

4267.26 C2 9 - C2 16 0.8670 0.716 Fe ii λ4267.82 ”

4637.63 C2 12 - C2 27 0.0295 -1.229 Fe i λ4637.50 region dominated by O iiλ4638.9

4638.91 C2 12 - C2 27 0.0266 -0.973 Si iii λ4638.28 ”

4639.07 C2 12 - C2 27 0.00295 -1.928 Ti i λ4639.94 ”

5132.94 C2 13 - C2 33 0.3070 -0.211 - weak doublet

5133.28 C2 13 - C2 33 0.1660 -0.178 - ”

5139.17 C2 13 - C2 33 0.0491 -0.707 - visible in slow rotators

5143.49 C2 13 - C2 33 0.1530 -0.212 - ”

5145.16 C2 13 - C2 33 0.2580 0.189 - ”

5151.09 C2 13 - C2 33 0.1100 -0.179 - ”

5648.07 C2 13 - C2 31 0.0943 -0.249 Fe ii λ5648.89 not visible

5662.47 C2 13 - C2 31 0.0939 -0.249 Ti i λ5662.14, Fe i λ5662.51 ”

6151.53 C2 14 - C2 28 0.0049 -1.310 - ”

6461.94 C2 16 - C2 29 0.1150 0.161 Mn ii λ6462.21 ”

6578.05 C2 6 - C2 7 0.7140 0.154 - strong doublet

6582.88 C2 6 - C2 7 0.2380 -0.323 N ii λ6582.60 ”

C iii 4056.06 C3 24 - C3 44 0.3700 0.267 Ti i λ4055.01, Mn i λ4055.54 strong line

4068.90 C3 20 - C3 39 0.9830 0.838 Sc iii λ4068.66, O ii λ4069.62 strong doublet

4070.26 C3 20 - C3 39 0.9960 0.953 O ii λ4069.88 ”

4152.51 C3 23 - C3 43 0.2580 -0.112 N iii λ4152.13, Ne iii λ4152.58 strong line

4156.50 C3 23 - C3 43 0.2290 0.059 Li ii λ4156.45,Fe i λ4156.67 strong doublet

4162.86 C3 23 - C3 43 0.2360 0.218 S vi λ4162.28,S ii λ4162.66 ”

4186.90 C3 22 - C3 40 1.1800 0.918 Fe i λ4187.03, Fe i λ4187.59 X-ray sensitive

4647.42 C3 7 - C3 10 0.3920 0.070 S ii λ4648.17 ”

4650.25 C3 7 - C3 10 0.2350 -0.151 Ti i λ4650.01, O ii λ4650.84 ”

4651.47 C3 7 - C3 10 0.0783 -0.629 ” ”

4663.64 C3 13 - C3 26 0.0984 -0.530 Al ii λ4663.05 strong doublet

4665.86 C3 13 - C3 26 0.2210 0.044 Si iii λ4665.87 ”

5253.57 C3 13 - C3 25 0.0654 -0.707 Fe ii λ5253.46 weak line

5272.52 C3 13 - C3 25 0.0653 -0.486 N v λ5272.18, Fe ii λ5372.22 X-ray sensitive

5695.92 C3 9 - C3 12 0.3460 0.017 Al iii λ5696.60 ”

5826.42 C3 24 - C3 34 0.5220 0.417 Fe ii λ5826.52 weak line

6731.04 C3 13 - C3 23 0.1700 -0.293 O iii λ6731.13 ”

6744.38 C3 13 - C3 23 0.1900 -0.022 - not visible

8500.32 C3 8 - C3 9 0.3280 -0.484 Fe ii λ8499.61 X-ray sensitive

C iv 5801.33 C4 3 - C4 4 0.3200 -0.194 - X-ray sensitive

5811.98 C4 3 - C4 4 0.1600 -0.495 O ii λ5011.79 ”

5016.62 C4 11 - C4 15 0.1750 -0.456 Ar ii λ5016.47 weak line

5018.40 C4 11 - C4 15 0.1750 -0.155 Fe ii λ5018.43 ”



78 CHAPTER 3. CARBON LINE FORMATION AND SPECTROSCOPY IN O-TYPE STARS

in analogy to C ii. Overall, this Li-like ion is described by roughly 200 radiative (Lindgård & Nielsen

1977, Bièmont 1977, Peach et al. 1988) and 1000 collisional transitions.

Thus far, C v consists of only one level, the ground state (C5 1: 1s2 1S), required for ionization

and recombination processes from and to C iv. Anyhow, this is a suitable description, since (i) a

further ionization is almost impossible under O-star conditions, due to a very high ionization energy,

and (ii) the excitation energies of already the next higher levels are also quite large, so that C v should

remain in its ground state.

To summarize, our carbon model atom comprises 162 LS-coupled levels, basically ordered follow-

ing NIST. In few cases, we interchanged the order and adapted the corresponding energies, to obtain a

compromise with the level-lists from WM-basic and TOPbase, which have been used for a large part

of bound-bound and the majority of bound-free data, respectively. We note that such a task has to be

done with specific care, since any wrong labeling would lead to spurious results. The definition of

C ii/iii/iv/v accounts all together for more than 1000 radiative and 4000 collisional transitions.

3.2.3 Diagnostic optical carbon lines

We selected a set of 43 carbon lines visible (at least in principle) in the optical spectra of OB-stars,

which allow us to approach some of the classical problems already mentioned in Sect. 3.1, as for

example: (i) inconsistent carbon abundances implied by C ii 4267 and C ii 6578-82 (Grigsby et al.

1992, Hunter et al. 2007), (ii) abundances derived from C ii and C iii may differ by a factor of 5-

10 (Daflon et al. 2001b, Hunter et al. 2007), (iii) the difficulty to establish a consistent ionization

equilibrium for C ii/iii/iv (Nieva & Przybilla 2006, 2007, 2008).

The NIST database identifies all relevant lines in the spectrum, together with corresponding oscil-

lator strengths. This was our first source for building a prime sample of lines. We inspected various

observed spectra (partly described below) to identify which of these lines are blended, and to find

additional lines not included so far. In the end, we defined a set of lines similar to the ones used

by Nieva & Przybilla (2008), with some relevant additions. For the final synthetic spectra, we adopt

Voigt profiles, with central wavelengths from NIST, radiative damping parameters from the Kurucz

database7, and collisional damping parameters computed according to Cowley (1971).

Table 3.1 presents three different blocks, divided into C ii, C iii, and C iv. The second column dis-

plays the wavelengths of the lines, followed by the lower and upper level of the considered transition.

Columns 4, 5, and 6 display the oscillator strengths, the log(g f )-values, and potential blends. The last

column provides a short comment about each line.

3.2.4 Model grid

In this study, we have used the “theoretical” O-star model grid originally designed by Pauldrach et al.

(2001, their Table 5)8, revisited by Puls et al. (2005) to compare results from an earlier version of

FASTWIND with the outcome of WM-basic calculations, and again revisited by Carneiro et al. (2016)

7 e.g., www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html
8 This grid, in turn, is based on observational results from Puls et al. (1996), which at that time did not include the effects

of wind inhomogeneities, so that the adopted mass-loss rates might be too large, by factors from ∼3 . . . 6.
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Table 3.2: Stellar and wind parameters of our grid models with homogeneous winds, following

Pauldrach et al. (2001). For all models, the velocity field exponent has been set to β= 0.9, and a

micro-turbulent velocity, vturb = 15 kms−1, has been used.

Model Teff logg R∗ v∞ Ṁ

(kK) (cms−2) (R⊙) (kms−1) (10−6 M⊙yr−1)

Dwarfs

D30 30 3.85 12 1800 0.008

D35 35 3.80 11 2100 0.05

D40 40 3.75 10 2400 0.24

D45 45 3.90 12 3000 1.3

D50 50 4.00 12 3200 5.6

D55 55 4.10 15 3300 20

Supergiants

S30 30 3.00 27 1500 5.0

S35 35 3.30 21 1900 8.0

S40 40 3.60 19 2200 10

S45 45 3.80 20 2500 15

S50 50 3.90 20 3200 24

to test our recently developed X-ray implementation. Table 3.2 displays the stellar and wind parame-

ters of the grid models. The adopted models allow us to study, for a certain range of spectral types, how

changes in stellar parameters (e.g., Teff , logg, carbon abundance) will affect the shape and strength of

significant carbon lines. At the same time, these models define a reasonable testbed for a series of tests

described in Sect. 3.3. We have adopted solar abundances from Asplund et al. (2009), together with a

helium abundance, by number, NHe/NH = 0.1. Carbon abundances different from the solar value are

explicitly mentioned when necessary.

The main focus of this work is set on the analysis of photospheric carbon lines, which should

not be affected by wind clumping. In the scope of this work, we thus only consider homogeneous

wind models. Nevertheless, our unclumped models with mass-loss rate Ṁuc roughly correspond to

(micro-)clumped models with a lower mass-loss rate, Ṁc,

Ṁc = Ṁuc/
√

fcl, (3.2)

where fcl ≥ 1 is the considered clumping factor.
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3.2.5 Observational data

In Sect. 3.4, we use optical spectra (kindly provided by Holgado et al. 2018) from prototypical O-

type stars, to from prototypical O-type stars, to compare with the carbon line profiles as calculated

using our new model atom. These stars are included in the grid of O-type standards, as defined in

Maı́z Apellániz et al. (2015)9. From the observed sample, we selected six presumably single stars in

different ranges of temperature and with low v sin i. The spectra have been collected by means of

three different instruments: HERMES (with a typical resolving power of R = 85,000, see Raskin et al.

2004) at the MERCATOR 1.2 m telescope, FEROS (R = 46,000, see Kaufer et al. 1997) at the ESO

2.2 m telescope, and FIES (R = 46,000, see Telting et al. 2014) at the NOT 2.6 m telescope. Table 3.3

lists the instrument and S/N of each spectrum analyzed in this work. More details are provided in

Sect. 3.4.2.

For the temperature range considered in this work, we expect that carbon line profiles from ioniza-

tions stages C ii/iii/iv are visible around ∼30 kK. On the other hand, for the hottest objects (∼50 kK),

we will have to rely on estimates using C iv lines alone.

3.3 Testing the atomic model

This section describes some of the tests we performed after having constructed a new carbon model

atom using high quality data, to investigate the outcomes from using this model atom in an atmo-

spheric code, for various stellar conditions. Specific tests are briefly summarized below:

(i) As outlined in Sect. 3.2.1, previous FASTWIND calculations used the carbon model atom from

the WM-basic database, independent of whether carbon was treated as a foreground or background

element. Thus we were able to compare the results from our former practice and our new (and more

detailed) description (see also Fig. 3.1). As expected, in terms of ionization fraction, both methods

display the same results in the stellar photosphere. Irrespective of wind-strength, significant differ-

ences appear only in the outer wind (e.g., for model S30, around τRoss 6 10−4, corresponding to r >

6 R∗ or v(r) > 0.8 v∞) for all considered ions except for C ii, for which differences begin to appear

deeper in the wind (again for model S30, around τRoss 6 10−2, corresponding to r > 3 R∗ or v(r) >

0.2 v∞). Our new carbon description displays consistently less C ii for a wide range of temperatures

(for both dwarf- and supergiant-models), where the maximum difference (0.7 dex) is reached in our

coolest model at 30 kK. This behavior is due to less C iii and C iv (see below), though the differences

for these ions are lower (less than 0.5 dex), and appear only in the outer wind.

As an example of the issues just discussed, Fig. 3.1 compares the ionization fractions of our former

(using explicit dielectronic recombination data, see below) and new description of each carbon ion,

as a function of τRoss. This is done for model D45, since this model will be closer inspected in

the following subsection. For C iv, the ratio between former and new ionization fraction is close to

unity within the whole atmosphere, and the same is true for C ii and C iii in the photosphere. For

both ions, however, the situation is different in the outer wind, where, as outlined above, our new

treatment results in lower populations. To assess the effects described here and in the following on

9 covering 131 Galactic stars in the spectral range from O2 to O9.7 (all luminosity classes) in the northern and southern

hemisphere.
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Figure 3.1: Ratios of ionization fractions resulting from our former and our new model atom, as a

function of τRoss, for model D45. The major changes appear for C ii and C iii ions in the outer wind.

The dashed lines enclose the typical line-forming region of optical photospheric lines.

the optical carbon lines, we have also indicated the line-forming region of the lines described in

Table 3.1. The cores of weak lines are formed at τRoss >∼ 1, and that of strong lines at τRoss <∼ 0.07. For

the displayed dwarf model, this means that essentially all lines are formed in the photosphere, whilst

for a corresponding supergiant model (e.g., Fig. 3.5), the strong line cores are already formed in the

wind. Obviously, in the case considered here, only the strongest photospheric carbon lines should be

affected by our new model atom.

(ii) In our model atom, we use the expression from Allen (1973), with individual Ω values from

0.01 to 100, to describe those collisional bound-bound transitions where the radiative ones are forbid-

den and where we lack more detailed data (usually, between quite highly excited levels). We tested

the impact of uncertainties in Ω on the final results, by setting Ω = 1.0 for all these transitions, and

found that this has a negligible impact on our results regarding the optical lines. Indeed, the “exact”

value of the collisional strength is only important for a specific part of the atmosphere in between the

LTE regime and the much lesser dense wind. Since we use Allen’s expression only for those transi-

tions where the radiative ones are forbidden, meaning those which have a very low oscillator strength

(6 10−5), the weak impact of Ω is understandable when considering the dominating effect of the other

radiative transitions included in the model atom. We expect, however, that specific IR-transitions

might be influenced though.

In this context, we also refer the reader to Nieva & Przybilla (2008, their Sect. 3.2) where they

discuss the impact of ab initio collisional data (contrasted to approximations), and showed that the
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use of approximate data might yield completely inconsistent abundances when derived from either

NLTE-sensitive lines (usually the stronger ones) or from (weaker) lines that are insensitive to NLTE

effects. The reason for this discrepancy is that the former react on the specific values of the collision

strengths (which might be erroneous when approximations are used, particularly when applying Ω = 1

in general – what we are not doing), whilst the latter are (almost) insensitive to any detail of the model

atom.

(iii) We also tested a possible interplay between nitrogen and carbon, which might arise when

combining different foreground elements in FASTWIND. To this end, we considered three different

model series: one with H/He + carbon + nitrogen as foreground elements, one with H/He + only

carbon, and one with H/He + only nitrogen. In the latter two cases, either nitrogen or carbon are

used as background elements, respectively, with atomic data from WM-basic. These tests resulted

in irrelevant differences regarding the carbon ionization stratification (∼ 0.1 dex in the outer wind),

when comparing the HHeCN and the HHeC models. The same, now regarding nitrogen, holds when

comparing HHeCN vs. HHeN: we found no visible difference in the nitrogen description, whether

carbon is included or not. We emphasize though that this test does not consider potential C/N line

overlap effects, particularly regarding the EUV resonance lines from C and N at ∼321 Å10. This issue

deserves a separate investigation.

These first tests confirm our expectations, illuminating specific aspects that have low interference

on the final results. We have also tested our model atom much more extensively than presented in this

paper. In the following, some of these tests are discussed in more detail.

3.3.1 Dielectronic recombination

One advantage of testing our carbon description is the availability of two independent codes in our

scientific group (FASTWIND and WM-basic), which can be used to calculate the same atmospheric

models but employing different atomic models. A comparison of the carbon ionization stratification

then, for a set of models calculated with FASTWIND and WM-basic, gives a quick overview about

differences between our results and former work (see Pauldrach et al. 1994, 2001).

In this spirit, we calculated all grid models described in Table 3.2 also with WM-basic. After

comparing these models with corresponding FASTWIND ones, we find a rather similar run of C iv

and C v, both in the stellar photosphere and also in the wind. In contrast, C ii and C iii displayed a

recurrent difference for all the models: in the wind part, our results lay consistently one or two dex

below the outcome from WM-basic.

Though this finding does not allow for premature conclusions (at least at this stage, we do not

know what is the better description), it nevertheless caught our attention, especially since the same

discrepancy had been found for a wide range of temperatures. We thus recalculated the FASTWIND

models, but this time using the complete WM-basic dataset for carbon. Comparing with our initial

models, we found the same difference in C ii and C iii as described in the previous paragraph. Thus the

differences need to be attributed to the different datasets and not to the different atmospheric models,

and we set out to compare both datasets in detail.

10 similar to the case of overlap between N and O resonance lines at ∼374 Å, which is decisive for the formation of N iii 4634-

40-42 (see Rivero González et al. 2011).
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Figure 3.2: Bound-free cross-section of the C iii ground state including resonances (from OPACITY

Project, used in our new model atom, black line), and the resonance-free data (from WM-basic, red

line).

In the end, we identified the origin of the discrepancy within the radiative bound-free transitions,

where each of both datasets describes these transitions differently. While within our new model atom

we have used an implicit method to define the dielectronic recombination (henceforth DR11) data

within the photoionization cross-sections, the WM-basic database adopts an explicit method. Both

methods are implemented into FASTWIND: Within the implicit method, the resonances appear “nat-

urally” in the photoionization cross-sections (from OPACITY Project data, Cunto & Mendoza 1992),

whereas the explicit method considers explicitly the stabilizing transitions from autoionizing levels

together with the resonance-free cross-sections. As an example, Fig. 3.2 displays the data available

from the OPACITY Project (black line) with the numerous complex resonances for the ground state

of C iii, together with the Seaton (1958) approximation using data from WM-basic (red line), to which

the stabilizing transitions (data input: frequencies and oscillator strengths) would need to be added.

For further details, and advantages and disadvantages of both methods, we refer to Hillier & Miller

11 Dielectronic recombination can be summarized as “the capture of an electron by the target leading to an intermediate

doubly excited state that stabilizes by emitting a photon rather than an electron” (Rivero González et al. 2011).
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Figure 3.3: Ionization fractions of carbon ions, as a function of τRoss, for model D45. Note the impact

of DR onto C ii and C iii in the wind region. The dashed lines enclose the typical line-forming region

of optical photospheric lines. For details, see text.

(1998) and Rivero González et al. (2011). The important point with respect to this work is the fol-

lowing: Since in the explicit method one defines each stabilizing transition by corresponding data, we

have the possibility to remove any of those transitions by setting the corresponding oscillator strengths

to a very low value.

Figure 3.3 shows the ionization fraction of different carbon ions in the atmosphere, for model

D45 (see Table 3.2). We calculated three different models, where only the bound-free dataset for

carbon was changed, leaving all other data at their original value, defined by our new carbon model

atom. In the first model, we used the implicit method with bound-free cross-sections from OPACITY

Project data, in the second we used corresponding WM-basic data (explicit method), and in the third

model we discarded the DR-processes in the WM-basic data, that is, we used only the resonance-free

cross-sections by excluding all stabilizing transitions.

As displayed in Fig. 3.3, the effect of DR is irrelevant or marginal in the stellar photosphere,

where due to the high temperatures and densities the “normal” ionization/recombination processes

dominate. In the wind part, the impact of DR remains irrelevant for C iv, but becomes crucial for a

precise description of C iii. In the case of C ii, the difference is mostly a consequence of changes in
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Figure 3.4: Impact of dielectronic recombination on C ii/iii lines, for our D35 model (same color-

coding as in Fig. 3.3). The displayed lines are those which are the most influenced ones within our

complete set, all others show basically no reaction. Each color represents a different treatment of DR.

See text.

C iii: Without DR, less ions are recombining from C iv to C iii, and thus also from C iii to C ii, due to

the lower population. Thus, the differences seen in C iii are reproduced in C ii, whether DR is present

or not. Since C iv is the main ionization stage, the slight increase in its ionization fraction (without

DR) is almost invisible.

All models described in Table 3.2 produce the same effect for C iii and C ii when DR data are

removed. Here we have concentrated on model D45, since for this model we already investigated the

effect of DR on the ionization of oxygen in a previous study (Carneiro et al. 2016).

We also investigated which transitions (regarding their lower levels – C iii) are responsible for

such a change in the wind ionization. It turned out that almost all of the first 40 states are involved,

but that levels C3 19, C3 29, and C3 30 (for configuration and term designation, see Table 3.5) are

responsible for already half of the total effect, where these levels ionize to the second state of C iv.

As shown in Figs. 3.3 and 3.5 (see next section), a different treatment of DR can affect the ion-

ization balance of C ii and C iii in the line-forming region of corresponding optical lines, particularly

if this region extends into the wind. Even if such impact is expected to be weak, it should be visible in

the synthetic profiles. To see a clear-cut effect, we will concentrate on our (cooler) model D35, where

the C ii/iii lines are certainly visible. Figure 3.4 compares such lines arising from models calculated

with our three different approaches for DR as discussed above (same color-coding as in Fig. 3.3).
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In general, the omission of DR leads to more, while the explicit method leads to less absorption,

and our current description lies in between (slightly closer to the non-DR profiles). For most lines, the

differences are weak (roughly at the 5 to 10% level at the core), except for C iii 4665 (roughly 20%)

and C iii 5696. The impact of DR on the latter has been already explored by Martins et al. (2012)

for a similar model, however with a much lower logg, which turns the line into emission (see also

Fig. 3.6 for a similar behavior in our models). Qualitatively, the effect displayed by both studies is

very similar: a larger strength of the stabilizing transitions or resonances leads to more line emission,

while reducing these quantities (until a final omission) leads to more absorption.

In conclusion, DR will have no big impact on our and forthcoming spectroscopic analyses, except

for C iii 5696, which is also affected by other processes such as X-ray emission. For UV-lines that

may form throughout the complete atmosphere, however, a realistic description of DR is essential, not

only to obtain a fair representation of the observations, but also to achieve consistency with the optical

regime.

Finally, we note that also the models calculated with WM-basic show the same reaction when DR

is excluded (with respect to all or individual stabilizing transitions). We conclude that the two codes

independently show a lower degree of C ii and C iii, once DR is neglected. On the other hand, when

actually accounting for DR, the detected differences can be attributed to different strengths of the

stabilizing transitions or resonances, where according to our tests all recombining states are relevant,

though specific transitions (see above) have a particularly strong impact. As a final test on this issue,

we explicitly compared the strengths for the latter transitions (see also Rivero González et al. 2011,

Sect. A3), finding a discrepancy of roughly a factor of two (with WM-basic data providing larger

values).

3.3.2 Further comparison with WM-basic

Once the importance of DR in transitions from C iv to C iii and its indirect impact on C ii has been

understood, we can continue in our comparison between FASTWIND and WM-basic results.

We remind the reader that both codes are completely independent (except that FASTWIND uses

WM-basic data for the background elements, i.e., for all elements different from H, He, and C in

the case considered here), and use different methods and assumptions. In addition to the different

treatment of metal-line blocking, WM-basic calculates the velocity field from a consistent hydro-

dynamic approach, leading to certain differences particularly in the transonic region. Furthermore,

while WM-basic uses the Sobolev approximation for all line transitions and depths, FASTWIND uses

a comoving-frame transport for the transitions from explicit elements and for the strongest lines from

the background ones. As we have already mentioned, this can lead to significant discrepancies for

those lines that are formed in the region between the quasi-static photosphere and the onset of the

wind.

Figure 3.5 displays the comparison of ionization fractions for carbon ions in the photosphere

and wind (as a function of τRoss) for our S45 model (see Table 3.2). Red lines represent the carbon

ionization stratification as derived by WM-basic, black lines show the FASTWIND solution using our

new model atom, and blue lines display FASTWIND models, where the carbon bound-free transitions

including DR are calculated using the explicit method with WM-basic data.
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Figure 3.5: Ionization fraction of carbon ions, as a function of τRoss, for the S45 model, as calculated

by WM-basic and FASTWIND using different approaches for DR. The dashed lines enclose the typical

line-forming region of optical photospheric lines. For details, see text.

For this grid model, C iii and C iv (the main ionization stage in the wind) are of major relevance

regarding a carbon line diagnostics, though we also display C ii (irrelevant at this Teff) and C v, ap-

proximated by only one ground-state level in our atomic model. Within the photosphere, differences

become visible at certain depths, mostly because of deviations in the density, and due to differences

in the line transfer method (see above). In the wind, the standard FASTWIND and the WM-basic so-

lution disagree, not only for S45, but also the other grid-models. These differences have been already

described in Sect. 3.3.1, and are due to the different description of DR. When we then manipulated

our new model atom to use the bound-free data from WM-basic with their larger strengths for the

stabilizing transitions, we indeed see much more similar fractions in the outer wind, except for C v,

which remains unaffected by DR, since it is insignificant for the C iv/C v balance.

In conclusion, we find a reasonable agreement between results from FASTWIND and WM-basic

in the photosphere (at least for C iii/iv/v). The differences apparent in the wind are due to the fact

that the stabilizing transitions in WM-basic are larger (or considerably larger for specific transitions)

than implied by the resonances provided by the OPACITY Project data. Since we are no experts in

this field, we cannot judge which data set is the more realistic one, but until further evidence becomes
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Figure 3.6: C ii 5145, C iii 5696, and C iv 5801 line profiles for model D35 (black lines) and similar

models with relatively small changes in effective temperature (Teff) and gravity (logg). In the upper

panels, the red lines correspond to a D35 model with Teff increased by 1500 K, the green lines to a

model with Teff decreased by the same value, while the blue lines display the reaction to a decrease

of Ṁ by a factor of three. In the lower panels, the red lines correspond to a D35 model with logg

increased by 0.2 dex, and the green lines with logg decreased by 0.2 dex.

available we prefer to use the OPACITY Project data, since they are well documented, tested, and

applied within a variety of codes and studies.

3.3.3 Optical carbon lines – dependence on stellar parameters

The typical precision of a spectral analysis of massive stars using H/He lines is on the order of ±1.5 kK

in effective temperature and ±0.1 dex in logg (e.g., Repolust et al. 2004). Since we aim for a non-LTE

carbon abundance determination by line profile fitting, we need to test the sensitivity of our set of

strategic lines to a variation of these parameters.

Due to the distinct complexity in each line formation process, almost each of the carbon lines will

react differently. Figure 3.6 (and analogous figures) displays one spectral line per each carbon ion in

each of the three columns. The first column shows C ii 5145, the middle column C iii 5696, and the

third one C iv 5801. These lines have been chosen because they are strong (highlighted in Table 3.1),

often discussed in the literature (e.g., Nieva & Przybilla 2008 or Daflon et al. 2004), and visible in

different temperature ranges (see Figs. 3.9 to 3.14).

In each panel of Fig. 3.6, the black profiles refer to model D35. In the upper panels, red profiles
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Figure 3.7: As Fig. 3.6, but for model S35. Since the C ii lines are absent in such a model, we display

another strategic line for this temperature range, C iii 4068-70. We note that logg has only been varied

by +0.2 dex (red profiles) in the lower panel. See text for details.

correspond to the same model, however with Teff increased by 1.5 kK, while the green profiles, in

turn, correspond to a Teff reduced by 1.5 kK. Thus, we are able to study the variation of important

carbon lines within the typical uncertainty of Teff . Moreover, the upper panels also display profiles

corresponding to model D35, but now with a mass-loss rate (Ṁ) reduced by a factor of three, to

estimate the impact of variations in this parameter. The effect of this reduction becomes most obvious

for supergiant models (as for example displayed in Fig. 3.7). In the lower panels, finally, we study the

reaction to variations in logg (± 0.2 dex).

As shown in the upper left panel, the decrease of temperature leads to a deeper C ii absorption,

while rising Teff results in a shallower C ii profile. This effect is easily understood: lower temperatures

increase the fraction of low ionized stages, while higher temperatures favor the presence of higher

ions, in this case C iv. From the lower left panel, we see that for the C ii profile a decrease of logg

leads to a shallower line (less recombination), while the opposite is seen once logg increases (red

line).

The panels on the right present the reversed effects for C iv, as expected. For C iii 5696 (middle

panel), on the other hand, the behavior is quite complex, and has been explored comprehensively by

Martins & Hillier (2012). Briefly, the strength of C iii 5696 depends critically on the UV C iii lines

at 386, 574, and 884 Å, because these lines control the population of the lower and upper levels of

specific optical C iii lines including C iii 5696. Indeed, we find a very sensitive reaction of this line on

small variations in Teff (upper middle panel), and a similar effect when varying logg (lower middle
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panel). Without going into further details, during our tests we were able to reproduce all basic effects

described by Martins & Hillier (2012), both regarding C iii 5696, and also for the triplet C iii 4647-50-

51.

The consequences of a reduction in Ṁ are clearly seen in the corresponding ionization fractions,

where our D35 model with lower Ṁ displays less C ii and C iii (less recombination) in the wind (∼
1 dex). Though these differences do not affect the line profiles in a notable way, the weak effect seen

in the middle and right panel indicates that these lines are not completely photospheric.

Figure 3.7 displays a similar study on the reaction of specific carbon lines, now for the supergiant

model S35. Since for supergiants the C ii lines are already very weak or absent in this temperature

range, we display another important C iii line instead of the C ii profile. Indeed, C iii 4068-70 behave

similarly to what has been discussed for the C ii line in the previous figure. C iii 5696 (the one with

complex formation) is now in emission, for all cases shown, and C iv 5801 starts to display a P-

Cygni shape. For this specific model, a reduction of logg by 0.2 dex brings the model very close to

the Eddington limit (Γe ≈ 0.77 already for a pure Thomson scattering opacity). The corresponding

stratification becomes very uncertain, and we refrain from displaying corresponding profiles.

Since a supergiant (model) exhibits a denser wind than a dwarf, the effects of a mass-loss reduction

on the line profiles are more obvious than for model D35. Also here, the model with reduced Ṁ

displays a lower fraction of C ii and C iii in the outer wind. Particularly in the line forming region,

however, the ionization fractions of all ions become larger. The leftmost panel shows that a reduction

of Ṁ leads to a stronger C iii 4068-70 absorption, where the effect is even more pronounced than the

effect of the temperature reduction or the gravity increase. In the middle panel, the effect is similar,

now acting on an emission profile. Again, we see a larger response than on the temperature decrease,

which is also true for the right panel. Additionally, the P-Cygni shape almost vanishes, due to the

inward shift of the line-forming region.

Finally, and for completeness, Appendix 3.B provides the same analysis, now for the cooler and

hotter dwarf and supergiant models at 30 kK and 40 kK, and for partly lower changes in Teff and logg.

In addition to mostly similar reactions as described above, we note the different reaction of C iii 5696

on the variation of logg in the supergiant models: While for largest logg both S30 and S35 yield the

lowest emission, this behavior switches for S40, where the highest logg results in the largest emission.

Again, this nonmonotonic behavior is due to the complex formation process of this line. Additionally,

Fig. 3.20 displays the reaction of our complete set of lines on a change of stellar parameters.

Overall, the tests performed in the section indicate that most of our strategic carbon lines are

quite sensitive to comparatively small variations of the stellar parameters, variations that are within

the precision of typical atmospheric analysis of massive stars performed by means of H and He.

Moreover, some of them depend on UV transitions (as, e.g., C iii 5696). Since X-ray emission affects

UV lines, we need to check which of our optical lines indirectly depend on the strength of the X-ray

emission (see Sect. 3.4.4).

By the end of this test, we are able to conclude that even in those cases where the stellar parameters

are “known” from a H/He analysis, a small model grid needs to be calculated for each stellar spectrum

which should be analyzed with respect to carbon. This grid needs to be centered at the (previously)

derived Teff and logg values found from H/He alone, and should extend these values in the ranges
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considered above12. One of these models should then allow for a plausible fit for the majority of

our C ii/iii/iv lines (and not destroy the H/He fit quality), for a unique abundance and micro-turbulent

velocity, vturb.

Finally, we emphasize that all the tests discussed thus far only give a first impression on the

capabilities of our new model atom. The quality and reliability of these results can be estimated only

via a detailed comparison with observations, for a large range of stellar parameters. A first step into

this direction is the main topic of the next section.

3.4 First comparison with observed carbon spectra

3.4.1 Basic considerations

For our comparison with observations and a first analysis, we used six spectra of presumably single

Galactic O-type stars in different temperature ranges. Because of the weakness of most lines and the

blending problem, rotational broadening is of major concern for a meaningful comparison of synthetic

and observed spectra. Usually, hot massive stars are fast rotators (e.g., Simón-Dı́az & Herrero 2014),

and any large value of v sin i (particularly in combination with a significant extra-broadening due to

“macroturbulence”, vmac) makes the majority of carbon lines very shallow or even too shallow to be

identified. Thus, we restricted ourselves to comparatively slow rotators.

Our subsample comprises three dwarf and three supergiant O stars, observed with different instru-

ments. However, all spectra cover the wavelength range relevant for this work. As in our previous

tests, we cover the same interval of temperature, from ∼30 kK to ∼50 kK. Thus, we expect to analyze

C ii /C iii for the coldest stars, while the hotter stars provide an opportunity to check our precision in

reproducing C iii and C iv lines.

The reduced and normalized13 spectra were kindly provided and extracted from the work by

Holgado et al. (2018). In this work, the parameters of a large sample of Galactic O-stars were ob-

tained by quantitative H/He spectroscopy using FASTWIND, where we have already summarized

some observational details in Sect. 3.2.5.

For our subsample, we double-checked their results by an independent FASTWIND analysis (fit-

ting by-eye, contrasted to the semi-automatic fitting method applied by Holgado et al. (2018) using

precalculated grids of synthetic spectra and the GBAT-tool, Simón-Dı́az et al. 2011b), and found an

agreement of photospheric and wind parameters (in particular, Teff , logg, log Q – see below –, v sin i,

and vmac) on a 1-σ level. We also checked the radial velocities using the H/He lines, and confirmed

the values provided by Holgado et al. (2018) for almost all subsample stars (differences less than

10 kms−1), except for CygOB2-7, where we found a difference of 20 kms−1.

Holgado et al. (2018) estimated the wind-strength parameter, Q = Ṁ/(R∗v∞)1.5 (e.g., Puls et al.

2005) for each star in their sample, though they did not provide individual values for Ṁ, R∗, and v∞
as required for the FASTWIND input. We estimated these quantities using their Q-values, an estimate

12 We note that a variation of the wind-strength might be required as well.
13 For some of the spectra, certain problems in normalization (e.g., for C ii 6578 in HD 35612), and overall shape, partly due

to the difficulty of connecting different orders (reduction by the available pipelines), are obvious. In this work, however,

we refrain from a corresponding renormalization, but will comment on such problems when necessary.
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Figure 3.8: Fine-tuning of stellar parameters (here, Teff), for the case of HD 36512 (O9.7V). The

stellar parameters initially estimated from the H/He lines (green) still need some additional fine tuning,

since some of the carbon lines are much more sensitive to small changes than H/He. The color coding

for Teff is as follows. Green: 33 kK (see Holgado et al. 2018), blue: 33.6 kK, turquoise: 33.8 kK, and

red: 34 kK (the latter displaying too much C iv).

of v∞ (via vesc, using logg, R∗, and Teff , see Kudritzki & Puls 2000), and an adopted stellar radius, R∗,

following the Martins et al. (2005) calibration between spectral type and radius.

As shown in Sect. 3.3.3, the uncertainties (error bars) on the stellar and wind parameters derived

from H/He alone are quite large when accounting for the sensitivity of the carbon lines. Therefore,

after having defined a first guess of these parameters, there is still a sufficiently large interval in Teff

and logg to vary those parameters and to find the best matching carbon ionization balance (in those

cases where more than one ion is present), while preserving the overall fit-quality of the H/He lines.

To this end, we varied Teff and logg inside intervals of ±1,000 K and ±0.1 dex, respectively, centered

at the initial values derived by Holgado et al. (2018).

Figure 3.8 displays the Teff -sensitivity of important diagnostic carbon lines (right two columns)

in comparison to H/He lines (left two columns). For this example, we have chosen our coldest dwarf
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object (HD 36512, O9.7V), where further details will be discussed in the next section. On the figure

we plot the initial model calculated with the values obtained by Holgado et al. (2018). Obviously,

this model has much stronger C ii and weaker C iv than the observations. Evidently, the effective

temperature needs to be adjusted, even though it reproduces well the H/He profiles. In this case, C iii

does not display a remarkable sensitivity, since it is the main ion throughout the atmosphere.

All colored lines represent models with the same logg, v sin i, vmac, Q, and [C/H] = log C/H +

12 (by number) values (see Table 3.3), but with different Teff . We note that [C/H] had already been

reduced by 0.2 dex with respect to solar abundance (see below), to obtain reasonable fits. The color

coding is described in the figure legend. All models reproduce equally well the H/He lines, though

the variation in carbon is significant. We conclude that in this case, the Teff= 33.8 kK profiles are

closest to observations, and that it is possible to represent all three ionization stages in parallel with

the adopted abundance. We note that here we did not have to change logg.

As we have double-checked all stellar and wind-parameters (but varied Teff and logg to improve

on the carbon ionization balance), and these parameters turned out to be sufficient to reproduce the

H/He and C profiles, we have not performed an independent error analysis, and refer to the values

suggested by Holgado et al. (2018).

Regarding the carbon abundances, we used, at least in principle, all the lines from our set as

indicators, through a by-eye fit, but lines which eventually displayed an unexpected behavior (e.g.,

too much emission), were discarded. In this context, we remind on the complexity of spectroscopic

analyses for hot stars, compared to cooler ones. Due to the presence of, for example, strong NLTE

effects, winds, and possibly clumping, which might “contaminate” individual lines, our goal is to

obtain a best compromise solution from lines of the available carbon ions, and to constrain the carbon

abundance within a reasonable range. In our opinion, it is better to obtain such a compromise solution

for as many lines and ions as possible, instead of aiming at perfect fits for few lines only. We note

here that deviations between synthetic and observed profiles are not as strongly related to inadequate

atomic data as it is the case in cooler stars, but also depend on all the other uncertainties mentioned

above.

The above compromise solution was achieved as follows. At first, we calculated a model with

solar carbon abundance14, and two more models with this abundance varied by ±0.2 dex. This first

step allowed us to identify if, in general, the visible carbon lines agree better with a solar, supersolar,

or subsolar abundance. In a second step, we fine-tuned Teff and logg as outlined above. To specify the

final carbon abundances and their uncertainties (i.e., the above range), we used the first estimate of

[C/H], and calculated, if necessary, one further model, with [C/H] enhanced or decreased by 0.2 dex

(in dependence of the result from step one). In case – this was not necessary for our sample –, this

process needs to be repeated, and the final range should comprise reasonable fits for all lines of our

set. As quoted abundance then, we adopt the center of this range. The chosen interval of ±0.2 dex

allows us also to obtain a rough estimate on the associated uncertainty. If a step of ±0.2 dex was too

large, the process was repeated with abundances increased or decreased by only 0.1 dex, as indicated

by the line fits, Figs. 3.9 to 3.14.

14 For reference, the solar carbon abundance is 8.43±0.15 dex in terms of number density according to Asplund et al. (2009),

while Przybilla et al. (2008) estimated, from quantitative spectroscopy of B-dwarfs, a carbon abundance of 8.32±0.03 dex

as a cosmic abundance standard for the solar neighborhood.
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Table 3.3: Stellar and wind parameters adopted for and derived from fitting the H/He plus carbon

lines displayed in Figs. 3.9 to 3.14. The two values for Teff and logg refer to the values provided by

Holgado et al. (2018) and our final values, respectively. The carbon abundances derived for our two

hottest objects (HD 93128 and CygOB2-7) rely mostly on only two lines from C iv, and should be

considered with caution. See text.

Name SpType-LC Instrument S/N v sin i vmac Teff log g YHe log Q [C/H]

at 4500 Å (kms−1) (kms−1) (kK) [dex] [dex] [dex]

HD 36512 O9.7V HERMES 210 13 33 33.0 — 33.8 4.02 — 4.06 0.105 −13.4 8.25 ± 0.22

HD 303311 O6V FEROS 148 47 61 40.1 — 41.2 3.91 — 4.01 0.107 −13.0 8.33 ± 0.25

HD 93128 O3.5V FEROS 186 58 56 49.3 — 48.8 4.09 — 4.09 0.103 −12.7 8.23 ± 0.30

HD 188209 O9.5Iab/I HERMES 207 54 93 30.1 — 30.3 3.03 — 3.03 0.145 −12.4 8.23 ± 0.25

HD 169582 O6Ia FEROS 71 66 97 38.9 — 39.0 3.70 — 3.70 0.225 −12.3 8.53 ± 0.20

CygOB2-7 O3I FIES 31 75 10 50.3 — 51.0 4.09 — 4.09 0.139 −12.1 8.03+0.3
−0.4

Table 3.3 summarizes the final values derived from our fits to the optical H/He15 and C-lines, for

all objects considered. The table includes two values for Teff and logg, corresponding to the initial

(from Holgado et al. 2018, partly priv. comm.) and updated values.

3.4.2 Details on individual spectra

In the following, each of the spectra and corresponding fits will be discussed in fair detail. Figures 3.9

to 3.14 present the observed spectra and our best compromise solution, corresponding to the parame-

ters as given in Table 3.3. The colors in the figure refer to a carbon abundance increased and decreased

by 0.2 dex (see figure caption). These profiles not only provide us with an estimate on the error of our

finally derived abundance (see above), but also allow us to identify which of the lines are more or less

sensitive to abundance variations.

The source HD 36512 (υ Ori) is an O9.7V slow rotator, observed with the HERMES spectrograph

(see Fig. 3.9). We fitted the H/He and C lines with a temperature of 33.8 kK and logg = 4.02. The

obtained stellar parameters agree well with the values derived by Holgado et al. (2018). This is one

of the stars where all the carbon ions have well-defined observable lines.

Our synthetic spectra reproduce quite well the C ii and C iv lines. C ii 4637 is absent (O ii 4638.9

dominates the range), as well as C ii 5133. The region around C ii 6578 is badly normalized, but even

with a renormalization the line would still be reproduced inside the adopted range. For C iii, most lines

are reproduced, except for C iii 5272 and the C iii 4068-70 doublet, which always seems to indicate a

lower carbon abundance than inferred from the other lines. At least for this object, the discrepancy

seems to be stronger for the C iii 4068 component than for its λ4070 Å companion, but we note that

the blue component is strongly influenced by O ii 4069.8. Finally, C iii 6744 is too weak in comparison

to our models.

As a compromise, we derive a carbon abundance of [C/H] = 8.25 dex, which brings most carbon

lines into agreement. Few of our lines point to slightly higher abundances (e.g., C iii 4056-5696-

15 including Hα and He ii 4686
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8500), and therefore we estimate a range of ±0.22 dex for the involved uncertainties. This spectrum

is an example for an ideal scenario, mainly due to the low rotation rate (v sin i = 13 kms−1) and

low macroturbulence (vmac= 33 kms−1), where our carbon model produces very satisfactory results.

Martins et al. (2015a) have analyzed this star as well, and they derived, in addition to rather similar

stellar parameters, also a carbon abundance ([C/H] = 8.38 ± 0.15) that is consistent with our result.

The star HD 303311 is an O6V star with a projected rotational velocity of 47 kms−1, and a macro-

turbulence of 61 kms−1 (Fig. 3.10). The spectrum has been collected with the FEROS spectrograph.

We obtained a final value of 41.2 kK for the temperature and of 4.01 for logg, both slightly adjusted

after the reproduction of the H/He lines to the best agreement with the different carbon lines. At this

temperature (and rotational velocity), the lines of C ii already vanish, and the C iii profiles are weak,

while the C iv lines are still easily detectable. In this case, however, C iv is the main ionization stage,

and therefore not as sensitive to variations in the stellar parameters as the other carbon ions16. Our

synthetic lines show a good reproduction of the C iii lines. Once more, C iii 4068-70 indicate a lower

abundance when compared to the other C iii profiles, however the difference is not larger than 0.2 dex.

C iii 6731 surprisingly displays an emission profile. There seems to be a disagreement between the

carbon abundance indicated by the C iii and C iv lines. Both C iv profiles point to a higher [C/H]-

value, but again the difference is not larger than 0.22 dex. The best compromise was found for a

carbon abundance of 8.33±0.25 dex.

The star HD 93128 is an O3.5V star rotating with 58 kms−1, a macroturbulence of 56 kms−1,

and was observed with the FEROS spectrograph (Fig. 3.11). The temperature has been decreased by

300 K from the value obtained by the pure H/He analysis, but is still in agreement with the value

from Holgado et al. (2018) when considering their 1-σ interval. We used 48.8 kK for the temperature,

and 4.09 for logg. In this temperature regime, some weak signs of C iii might be seen only by chance.

Furthermore, also the C iv-analysis becomes difficult, because the lines start to switch from absorption

to emission, and a distinction from the continuum is harder in this case. Additionally, He ii 5800

broadens C iv 5801.

Nevertheless, at least a rough estimate for the carbon abundance might be provided, mostly from

C iv. In Fig. 3.11, we fit the weak sign of C iii 4650, and also C iv 5812, and we infer [C/H] ≈ 8.23 dex.

Due to the very low number of available lines, we adopt a larger uncertainty in our estimate, ± 0.3 dex.

The star HD 188209 is an O9.5Iab star with v sin i of 54 kms−1, a macroturbulence of 93 kms−1,

and has been observed with the HERMES spectrograph (Fig. 3.12). The temperature and gravity

obtained from fitting the H/He lines agree well with the stellar parameters derived from Holgado et al.

(2018) (∆Teff = 200 K), and were used in our final model including the carbon line diagnostics (Teff=

30.3 kK, logg = 3.03). C iii and C iv lines are easily identified, while C ii lines are not present in

this case, except a subtle sign of C ii 4267, which is well reproduced by our synthetic profile. The

C iii and C iv lines, even being weak, are well described by the synthetic profiles, and the discrepancy

of C iii 4068-70 is somewhat lower than found in the cases above. Here, C iii 4650 shows the largest

deviations. We note also the poor normalization around C iii 4070 and C iii 5800. Our final solution

for [C/H] is 8.23 dex, and due to nonfitting lines we increase our error budget to ±0.25 dex. Also

this star has been analyzed by Martins et al. (2015a). Again, the stellar parameters are in very good

16 an analogous behavior of C iii in a cooler model was shown in Fig. 3.8.
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agreement, but here the derived carbon abundance ([C/H] = 7.85 ± 0.3 dex) only marginally overlaps

with our value within the quoted error intervals.

The star HD 169582 (O6Ia) rotates with v sin i = 66 kms−1, has a macroturbulence of 97 kms−1,

and was observed with the FEROS spectrograph (Fig. 3.13). A temperature of 39 kK and logg of 3.7

were used to synthesize the carbon lines. Both values agree with the ones suggested by Holgado et al.

(2018). C iii is very weak and almost invisible, and only the C iv profiles are easily visible. Firm

conclusions about C iii are not possible, though we note that the synthetic lines indicate a weak signal.

A carbon abundance of 8.53 dex gives a fair compromise for the C iii/C iv lines, though C iv seems

to indicate a slightly higher abundance than C iii. We note however that none of the lines requires an

abundance outside the ±0.2 dex interval.

The star CygOB2-7 is one of the few O3I stars in the Milky Way. Its spectrum (Fig. 3.14) has been

recorded by the FIES-spectrograph, and extends “only” to a maximum of 7000 Å, so that C iii 8500 is

not available. We note that this spectrum has the lowest S/N within our subsample. A Teff of 51 kK

and a logg of 4.09 (together with v sin i = 75 kms−1 and an astonishingly low vmac = 10 kms−1)

enable a satisfactory fit to the H/He lines. In this temperature regime, only C iv is visible, switching

from absorption to emission (at least at the given Ṁ). This behavior complicates the reproduction of

the C iv profiles, and forbids any stringent conclusions. Especially in this case, one would also need

to analyze the UV spectrum. If we believe in the ionization equilibrium and the mass-loss rate, we

derive an abundance around [C/H] ≈ 8.0, which would be the lowest value in our sample. From the

fit quality and since we have to firmly rely on our theoretical models (no constraint on the ionization

equilibrium), we adopt an asymmetric error interval, −0.4 and +0.3 dex.

As mentioned in Sect. 3.2.3, one of the “classical” problems in carbon spectroscopy is an in-

consistent abundance implied by C ii 4267 and C ii 6578-82. Once more, we remind on the work by

Nieva & Przybilla (2006) who thoroughly investigated and solved this problem for a set of stars cooler

(with stronger C ii lines) than the ones considered in this work. These C ii lines are clearly visible and

well reproduced with the same value of [C/H] in our coldest dwarf, HD 36512. This provides strong

evidence that our present data are sufficient to overcome this issue. Also for our coldest supergiant,

HD 188209, C ii 4267 is present and well reproduced. On the other hand, C ii 6578-82 is absent, and

thus no further conclusions can be asserted.

We finish this section by noting that part of the problems in fitting certain lines might be related

to our assumption of a smooth wind (and neglecting X-ray effects, but see Sect. 3.4.4). Effects due

to clumping etc. will be investigated in a forthcoming paper. In this regard, the abundance estimates

presented in Table. 3.3 should be taken with caution: Contrasted to cooler-type stars where the syn-

thetic profiles depend primarily on the precision of atomic data, for early type stars with winds much

more uncertainties have to be accounted for (and approximated in a reasonable way).

3.4.3 Which lines to use?

After our first analysis, we acquired enough experience to judge in which lines to “trust” when deriving

carbon abundances. In Table 3.1, we provided a comprehensive list, comprising many more lines than

previously studied, which are strong enough to be easily identified in different temperature ranges.

Instead of describing which of these lines are the most useful, we summarize which may be discarded,
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since this results in a shorter list.

For C ii, the range around C ii 4637 is dominated by O ii 4638, and therefore the carbon lines are

barely visible. C ii 5648-62 are isolated lines which can be important, but are not visible in the range

of spectral types studied in this work (O9-O3). The same is true for C ii 6461. The lines at 5139 and

6151 Å are formed by transitions with low oscillator strength, and might be too weak for a meaningful

spectral diagnostics. Excluding these lines, we were able to identify all the other C ii lines as listed in

Table 3.1 in the observed spectra (for the cooler spectral types), and to use them within our analysis.

The largest number of lines is provided by C iii, when considering the complete O-star range.

Particularly, all the listed lines are visible in the coldest dwarf of our sample (Fig. 3.9). C iii 4068-70

always (i.e., for the complete temperature range) point to lower abundances (compared to the majority

of other lines), and it might be that particularly the λ4068 Å component is either mistreated by our

approach, or that there is a problem with its oscillator strength. The lines at 4650 and 5696 Å always

deserve special attention, because of their complex formation process, even though we were able to

reproduce these lines well in the majority of cases studied here. The lines at 5826, 6731, and 6744 Å

are also good diagnostics, but vanish quickly for spectral types earlier than O9.

For C iv, basically four lines are available in the optical range, but the ones at 5016-18 Å are

outshone by He i 5015. Therefore, and to our knowledge, all optical C iv analysis performed until

to-date have concentrated on C iv 5801-12, and this most likely will not change in future.

Discarding the lines quoted above, we end up with a list of 27 lines from C ii/iii/iv that are useful

for determining reliable carbon abundances, indicated in boldface in Table 3.1.
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Figure 3.9: Observed carbon spectrum of HD 36512 (O9.7V, green), and synthetic lines (black),

calculated with [C/H] = 8.25 dex. The red and blue profiles have been calculated with an abundance

increased and decreased by 0.2 dex, respectively.
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Figure 3.10: As Fig. 3.9, but for HD 303311 (O6V), and a carbon abundance of 8.33 dex. The optical

C ii lines are not visible, and thus not displayed.

Figure 3.11: As Fig. 3.10, but for HD 93128 (O3.5V), and a carbon abundance of [C/H] = 8.23 dex.
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Figure 3.12: As Fig. 3.9, but for HD 188209 (O9.5Iab), and a carbon abundance of 8.23 dex.
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Figure 3.13: As Fig. 3.10, but for HD 169582 (O6Ia), and carbon abundance of 8.53 dex.

Figure 3.14: As Fig. 3.10, but for CygOB2-7 (O3I), and a carbon abundance of 8.03 dex.
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3.4.4 Impact of X-rays

In a previous paper (Carneiro et al. 2016), we already discussed the impact of X-ray radiation on the

ionization stratification of different ions, including carbon. Here we investigate which of the optical

lines are affected by emission from wind-embedded shocks, and how intense the X-ray radiation must

be to have a relevant impact on the lines. As pointed out before, purely photospheric lines without

any connection to UV-transitions should not be affected by X-rays, at least in principle. However,

lines that are purely photospheric for thin winds are partly formed in the wind when the mass-loss rate

becomes larger, and also the lower boundary of the X-ray emitting volume is important in controlling

how much X-ray/EUV radiation can reach the photosphere. Even more, since the X-ray luminosity

scales with the mass-loss rate (or, equivalently, with the stellar luminosity, e.g., Owocki et al. 2013),

carbon lines in high-luminosity objects might become affected by X-ray emission even when they are

not connected with UV-transitions.

The main idea of our study is to adopt the strongest possible (and plausible) shock radiation, and

to check which lines will change. For the present analysis, few parameters will describe the shock

radiation in each model, leaving the others at their default (see Carneiro et al. 2016 for details). These

are the X-ray filling factor, fx, which is related to (but not the same as) the (volume) fraction of X-

ray emitting material, and the maximum shock temperature, T∞s . Both are set here to the maximum

values used in our previous analysis: fx= 0.05, and T∞s = 5·106 K. Besides this “maximum-model”,

we checked also the impact for intermediate values of the X-rays parameters ( fx= 0.03, and T∞s =

3·106 K). Another important parameter is the onset of X-ray emission, Rmin. Guided by theoretical

models on the line-instability and/or by constraints from X-ray line diagnostics, Rmin is conventionally

adopted as ∼1.5 R∗ (e.g., Hillier et al. 1993, Feldmeier et al. 1997a, Cohen et al. 2014b). Since we

want to maximize any possible effect from the X-ray radiation, we set Rmin= 1.2 R∗.

Before turning to the general results of our simulation, we remind on the sensitivity of C iii 5696

and C iii 4647-50-51, showing significant changes in strength and shape for small variations of local

conditions in the 30-40 kK regime (see Fig. 3.6 and Martins et al. 2012 for a thorough analysis). As

expected (both transitions are connected to UV resonance lines), these lines are indeed sensitive to the

presence of X-rays.

After checking all lines tabulated in Table 3.1 regarding a potential influence of X-ray emission,

no changes were found for the 30 kK and 35 kK dwarf and supergiant models. Even for C ii in these

coolest models, no impact was seen, which indicates that either the X-ray radiation is still too weak

(because of low mass-loss rates), or that it cannot reach the photosphere.

From 40 kK on, however, the situation changes. In almost all cases, only the C iv lines become

weaker, and by a considerable amount for supergiants (see below) and our D50 model. Most C iii lines

become only marginally stronger or weaker, if at all, and the only more significant reaction is found

for the strongly UV-influenced C iii 4647-50-51 and C iii 5696 lines. When including shock radiation,

their strength increases at hottest temperature(s), comparable to an increase in carbon abundance of

0.1 dex,

Beyond 40 kK, the ionization fraction of C iv decreases (both in the line-forming region and the

wind) when the X-ray emission is included. For dwarfs, the corresponding line-strengths of C iv 5801-

5811 (in emission) decrease in parallel, by an amount still weaker than 0.1 dex in [C/H].
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For the supergiants, this effect becomes stronger in the 40 to 45 kK regime, while for S50, finally,

the impact of X-rays on the C iv lines becomes weak again, presumably because in this temperature

range the stellar radiation field dominates in controlling the ionization equilibrium. We note that for

the D50 dwarf model the changes remain considerable though.

In Fig. 3.15, we detail this behavior, for our S40 model, where the effect is strongest. On the

figure we plot a model without X-rays, a model with intermediate shock radiation, and the model with

our strongest X-ray emission. The dotted profiles give an impression of a corresponding decrease in

carbon abundance which would be necessary to mimic the X-ray effect, which is 0.3 and 0.6 dex,

respectively. The other way round, for stars that have been analyzed without X-rays but exhibit a

strong X-ray radiation field, the originally derived carbon abundance might need to be increased by

such an amount to compensate for the missing X-ray field. Our investigation clearly indicates that X-

rays may be important for the C iv analysis of supergiant stars with temperatures around 40 to 45 kK

(e.g., the prototypical ζ Pup) and for (very) hot dwarfs, in particular if no lines from other carbon ions

are present.

In summary, the changes are marginal for not too hot dwarfs, and affect only a few C iii lines (the

triplet at 4647-50-51, the doublet at 4663-65, and C iii 4186, 5272, 5696, 5826, 6744, 8500 Å) which

might be used with a lower weight in abundance analysis.

In contrast, and at least for supergiants in the range between 40 to 45 kK, various lines become

substantially modified when accounting for strong emission from wind-embedded shocks, in particu-

lar the two C iii lines that are strongly coupled to the UV, and the C iv lines. The potential differences

in abundances derived from these lines (∼0.1 dex from C iii 4647-50-51 and C iii 5696, and ∼0.3 to

0.6 dex from C iv 5801-5811) may complicate the analysis considerably, and we conclude that the

carbon analysis of supergiants earlier than O7 should include X-ray radiation using typical default

values, as already standard for CMFGEN modeling. We note (i) that this problem might have also

affected our analysis of HD 169582, and (ii) that X-rays might need to be considered in the analysis

of (very) hot dwarfs as well, due to their impact on C iv.

3.5 Summary and conclusions

In this work, we aimed to enable a reliable carbon spectroscopy by means of our unified NLTE atmo-

sphere code FASTWIND. To this end, we developed a new carbon model atom using high-accuracy

data from different databases. The data adopted to describe the radiative and collisional transitions

have been cross-checked (with similar data from alternative databases) to ensure their reliability. We

implemented an adequate number of levels following certain rules, though additional levels might be

required for the analysis of IR-transitions in future studies. In total, we considered 162 LS-coupled

levels, more than 1000 radiative, and more than 4000 collisional transitions.

One major issue for this study was a rigorous test of our new model atom. For this purpose,

we calculated a sufficiently spaced grid of atmospheric models, to investigate the carbon ionization

structure, and to compare with previous results using more simplified model atoms.

Interestingly, dielectronic recombination (DR) turned out to be of major importance for the de-
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Figure 3.15: Impact of X-ray radiation on the C iv 5801-12 lines, for a supergiant model with Teff

= 40 kK (S40). Black: Line profiles for the “standard” model without shocks; green: model with

an intermediate X-ray strength; red: model with strong X-ray radiation. The dotted profiles refer to

alternative, no-shock models with reduced carbon abundance, mimicking the effect of shock radiation.

We note that the displayed sensitivity is strongest for the considered lines and parameter range, see

text.

scription of C ii and C iii in the wind, for almost all temperatures17. When DR is neglected, we find

less recombination from C iv to C iii, and consequently also less C ii. Typical differences amount to

1 dex. Similar results were reproduced with WM-basic, though we found an important difference

between the underlying data: The strengths of the stabilizing transitions used in WM-basic are typ-

ically larger (up to a factor of approximately two) than those corresponding to the strengths of the

resonances included in the OPACITY Project data we have used, leading to stronger recombination in

WM-basic models. Even though this potential uncertainty will not affect the majority of optical lines

formed in the photosphere, it can be influential in upcoming analysis of UV wind lines. In the end,

we prefered to use the OPACITY Project data, for reasons outlined in Sect. 3.3.1.

Unfortunately, optical carbon lines are rare, and often blended by other lines, which hampers

17 except for Teff >∼ 50 kK



3.5. SUMMARY AND CONCLUSIONS 105

the spectral diagnostics, particularly for large v sin i and/or vmac. Thus, we compiled and selected

a maximum set of potential diagnostic lines, including blended ones and also those with a complex

formation mechanism controlled by UV transitions (as decribed by Martins et al. 2012).

Since the majority of metal lines are weak, they are very sensitive to comparatively small varia-

tions of stellar parameters, and this is particularly true for carbon lines. A change of ±1000 to 1500 K

in effective temperature, or ±0.2 dex in logg, results in considerable changes of line strength. Addi-

tionally, some of the lines are also sensitive to Ṁ variations. Mainly in supergiants (and hot dwarfs),

due to their dense winds, a decrease in Ṁ by a factor of three produces an effect stronger than a de-

crease of 1500 K in Teff or an increase of 0.2 dex in logg. Thus one needs to precisely determine Ṁ

by reproducing, for example Hα and He ii 4686, before aiming at a carbon analysis.

As a first application of our “new” capability to analyze carbon lines by means of FASTWIND,

using our newly developed model atom, we investigated the spectra of a sample of six O-type dwarfs

and supergiants, kindly provided to us by Holgado et al. (2018). We first convinced ourselves that

the stellar and wind parameters derived by Holgado et al. (2018) are reproduced by our own H and

He analysis. Thereafter, we varied Teff and logg inside a range where the fit quality of the H/He

lines could be preserved (roughly, ±1000 K and ±0.1 dex, respectively), while fitting the carbon lines

from different ions in an optimum way, with an (almost) unique abundance in most cases. The finally

quoted abundance was taken, if necessary, from the best-compromise solution, and from the reaction

of the carbon lines when varying the abundances, we obtained a rough estimate on the corresponding

error, typically in the range ±0.2 to ±0.3 dex.

Only for the coolest (O9.7) dwarf, lines from all three ionization stages are present in parallel,

and our analysis resulted in a satisfactory reproduction of the ionization balance. In most other stars,

only C iii and C iv are visible in parallel. For one object with Teff ≈ 40 kK (HD 169582), these C iii/ iv

lines disagree by ∼0.2 dex in [C/H], which might be related to the influence from X-ray radiation (see

below). The hottest (O3) supergiant, CygOB2-7, displays only C iv, which renders the analysis quite

uncertain (and there are only two suitable C iv lines in the optical).

We were, nevertheless, able to derive carbon abundances for all the considered objects, and found

in most cases a moderate depletion compared to the solar value by Asplund et al. (2009), except for

CygOB2-7, where a larger depletion by 0.4 dex was derived (though more uncertain than the other

values). Two of our cool objects had already been analyzed by Martins et al. (2015a). For both of

them we confirmed rather similar stellar parameters, but only for one of them (a dwarf) also the

carbon abundances are quite similar, while for the other (a supergiant), there is an only marginal

overlap within the errors.

To obtain further constraints on the reliability of our new set of synthetic carbon lines, we have

to repeat the same exercise in particular for cooler stars, since C ii already disappears for Teff>∼ 30 to

35 kK, in dependence of luminosity class.

From our accumulated experience of analyzing basically all optical carbon lines, we finally pro-

vided a list of more than 25 lines of different strength and from different ions, which we consider as

reliable carbon abundance indicators.

As a first step toward future work, we studied the direct and indirect (via UV-lines) impact of

X-ray emission from wind-embedded shocks onto our sample of optical carbon lines, by simulating

an X-ray radiation field that is at the upper limit of realistic values.
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For the dwarf models, we found an almost negligible impact, except for very hot objects (>∼50 kK).

In contrast, carbon lines from supergiants with Teff ≈ 35 kK already show changes due to shock

radiation, and at 40 to 45 kK the impact of X-rays is strong enough to complicate a reliable abundance

measurement. Mostly, the C iii lines become stronger (corresponding to an increase of up to 0.1 dex

in [C/H]; the largest changes occur in the UV-influenced C iii 5696 and C iii 4647-50-51), and the C iv

lines become weaker (corresponding to a decrease of 0.3 to 0.6 dex in [C/H]). Consequently, it might

become more difficult (or even impossible) to find a value of [C/H] which brings different carbon lines

into agreement, when strong X-ray emission would be present. Thus we concluded that in the spectral

regime earlier than O7 I, it might be necessary to include the impact of X-rays by default (though a

deeper understanding of typical X-ray parameters might be required as well). For supergiants with

Teff >∼ 50 kK, the X-rays lose their impact, since direct ionization due to the stellar radiation field

dominates over Auger-ionization and ionization from the EUV-component of the shock radiation (see

Carneiro et al. 2016).

This study has been performed as a first step toward a complete CNO analysis. Particularly the

investigation of the ratio N/C vs. N/O (as already begun by Martins et al. 2015a,b) will allow us to

derive better constraints on the mixing history and chemical enrichment in massive stars than from

a pure nitrogen analysis alone. We intend to continue such work, also by including the information

provided by UV carbon lines, and by investigating the impact of wind inhomogeneities, which might

play an important role also in the UV range, due to porosity effects and because of affecting the

ionization balance in the wind.
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Table 3.4: C ii levels: label, electronic configuration, and term designation.

C2 # Configuration Term C2 # Configuration Term

1 1s22s22p 2P 22 1s22s25g 2G

2 1s22s2p2 4P 23 1s22s26s 2S

3 1s22s2p2 2D 24 1s22s2p(3P0)3p 4D

4 1s22s2p2 2S 25 1s22s2p(3P0)3p 2P

5 1s22s2p2 2P 26 1s22s26p 2P0

6 1s22s23s 2S 27 1s22s26d 2D

7 1s22s23p 2P0 28 1s22s26f 2F0

8 1s22p3 4S0 29 1s22s26g 2G

9 1s22s23d 2D 30 1s22s26h 2H0

10 1s22p3 2D0 31 1s22s2p(3P0)3p 4S

11 1s22s24s 2S 32 1s22s27s 2S

12 1s22s24p 2P0 33 1s22s(3P0)3p 4P

13 1s22s2p(3P0)3s 4P0 34 1s22s27p 2P0

14 1s22s24d 2D 35 1s22s27d 2D

15 1s22p3 2P0 36 1s22s27f 2F0

16 1s22s24f 2F0 37 1s22s27g 2G

17 1s22s25s 2S 38 1s22s27h 2H0

18 1s22s25p 2P0 39 1s22s2p(3P0)3p 2D

19 1s22s2p(3P0)3s 2P0 40 1s22s28g 2G

20 1s22s25d 2D 41 1s22s2p(3P0)3d 4F0

21 1s22s25f 2F0

3.A Appendix A: Electronic states of each carbon ion

This section provides a short description of each ion considered in our new carbon model atom, except

for C v which is described by the ground level only (see Sect. 3.2.2). All the next three tables have

the same format: the first column displays the label of the level, the second column the electronic

configuration of that level, and the third column presents the term designation. Table 3.4 refers to C ii,

Table 3.5 to C iii, and Table 3.6 to C iv.
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Table 3.5: As Table 3.4, but for C iii.

C3 # Configuration Term C3 # Configuration Term

1 1s22s2 1S 36 1s22s5p 3P0

2 1s22s2p 3P0 37 1s22p(2P0)3p 1S

3 1s22s2p 1P0 38 1s22s5d 3D

4 1s22p2 3P 39 1s22s5g 3G

5 1s22p2 1D 40 1s22s5g 1G

6 1s22p2 1S 41 1s22s5d 1D

7 1s22s3s 3S 42 1s22p(2P0)3d 1P0

8 1s22s3s 1S 43 1s22s5f 3F0

9 1s22s3p 1P0 44 1s22s5f 1F0

10 1s22s3p 3P0 45 1s22s6s 3S

11 1s22s3d 3D 46 1s22s6s 1S

12 1s22s3d 1D 47 1s22s6p 3P0

13 1s22p(2P0)3s 3P0 48 1s22s6p 1P0

14 1s22s4s 3S 49 1s22s6d 3D

15 1s22p(2P0)3s 1P0 50 1s22s6g 1G

16 1s22s4s 1S 51 1s22s6g 3G

17 1s22s4p 3P0 52 1s22s6d 1D

18 1s22p(2P0)3p 1P 53 1s22s6h 3H0

19 1s22s4d 3D 54 1s22s6h 1H0

20 1s22s4f 3F0 55 1s22s6f 3F0

21 1s22s4f 1F0 56 1s22s6f 1F0

22 1s22s4p 1P0 57 1s22s7s 3S

23 1s22p(2P0)3p 3D 58 1s22s7p 1P0

24 1s22s4d 1D 59 1s22s7d 3D

25 1s22p(2P0)3p 3S 60 1s22s7g 3G

26 1s22p(2P0)3p 3P 61 1s22s7d 1D

27 1s22p(2P0)3d 1D0 62 1s22s7f 3F0

28 1s22p(2P0)3p 1D 63 1s22s8p 1P0

29 1s22p(2P0)3d 3F0 64 1s22s8d 3D

30 1s22p(2P0)3d 3D0 65 1s22p9d 3D

31 1s22s5s 1S 66 1s22p(2P0)4s 3P0

32 1s22s5s 3S 67 1s22p(2P0)4p 1P

33 1s22p(2P0)3d 3P0 68 1s22p(2P0)4p 3D

34 1s22p(2P0)3d 1F0 69 1s22p(2P0)4p 3P

35 1s22s5p 1P0 70 1s22p(2P0)4p 1D
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Table 3.6: As Table 3.4, but for C iv.

C4 # Configuration Term C4 # Configuration Term

1 1s22s 2S 26 1s27i 2I

2 1s22p 2P0 27 1s27h 2H0

3 1s23s 2S 28 1s28s 2S

4 1s23p 2P0 29 1s28p 2P0

5 1s23d 2D 30 1s28d 2D

6 1s24s 2S 31 1s28f 2F0

7 1s24p 2P0 32 1s28g 2G

8 1s24d 2D 33 1s28h 2H0

9 1s24f 2F0 34 1s28i 2I

10 1s25s 2S 35 1s29s 2S

11 1s25p 2P0 36 1s29p 2P0

12 1s25d 2D 37 1s29d 2D

13 1s25f 2F0 38 1s29f 2F0

14 1s25g 2G 39 1s29g 2G

15 1s26s 2S 40 1s29h 2H0

16 1s26p 2P0 41 1s29i 2I

17 1s26d 2D 42 1s210p 2P0

18 1s26f 2F0 43 1s210d 2D

19 1s26g 2G 44 1s211p 2P0

20 1s26h 2H0 45 1s211d 2D

21 1s27s 2S 46 1s212p 2P0

22 1s27p 2P0 47 1s212d 2D

23 1s27d 2D 48 1s213p 2P0

24 1s27f 2F0 49 1s213d 2D

25 1s27g 2G 50 1s214d 2D
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3.B Appendix B: Dependence on stellar parameters

This appendix displays the sensitivity of synthetic carbon spectra from dwarf and supergiant models at

30 and 40 kK, with respect to variations in Teff , logg, and Ṁ. Figs. 3.16 to 3.19 have the same layout

as Fig. 3.6, and refer to Sect. 3.3.3, where also the corresponding discussion has been provided. For

completeness, Fig. 3.20 displays the sensitivity with respect to variations in Teff and logg for our

complete set of lines, with the same color coding as in Fig. 3.6.

The general behavior is similar to the lines already discussed in this Appendix and Sect. 3.3.3, but

not identical, due to different formation regions and processes. (We note that C ii 5648 is absent for

this model.) The major exception is C ii 6461, where the emission displayed by the central model is

reduced when any kind of variation in Teff or logg is applied. However, the predicted line is so weak

that an actual understanding of the actual origin of this behavior is difficult to obtain.



3.B. APPENDIX B: DEPENDENCE ON STELLAR PARAMETERS 111

Figure 3.16: C ii 5145, C iii 5696, and C iv 5801 line profiles for model D30 (black lines, see Table 3.2)

and similar models with relatively small changes in effective temperature (Teff) and gravity (logg). In

the upper panels, the red lines correspond to a D30 model with Teff increased by 1000 K, the green

lines to a model with Teff decreased by the same value, while the blue lines display the reaction to a

decrease of Ṁ by a factor of three. In the lower panels, the red and green lines correspond to a D30

model with logg increased and decreased by 0.15 dex, respectively

Figure 3.17: As Fig. 3.6, but for model D40, and C iii 4068-70, instead of C ii 5145.
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Figure 3.18: As Fig. 3.16, but for model S30, and ∆ logg = 0.1.

Figure 3.19: As Fig. 3.17, but for model S40.
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Figure 3.20: Carbon line profiles for model D35 (black), and dependence on stellar parameters, for

our complete set of lines. The red and green solid line profiles correspond to an increase and decrease

by 1500 K in Teff , respectively, whereas the red and green dashed profiles correspond to a variation of

+0.2 dex and -0.2 dex in logg.





Chapter 4

Surface abundances of CNO in Galactic

O-stars:

A pilot study with FASTWIND

This chapter is a copy of Carneiro et al. (2018b), recommended for publication in Astronomy &

Astrophysics by the referee.

Abstract Rotational mixing is known to significantly affect the evolution of massive stars; however,

we still lack a consensus regarding the various possible modelling approaches and mixing recipes

describing this process. The empirical investigation of surface abundances of carbon, nitrogen, and

oxygen (CNO) in large samples of O- and B-type stars will be essential for providing meaningful

observational constraints on the different available stellar evolution models.

Setting up and testing adequate tools to perform CNO surface abundance determinations for large

samples of O-type stars, by means of the fast performance, NLTE, unified model atmosphere code

FASTWIND.

We have developed a set of semi-automatic tools for measuring and analyzing the observed equiv-

alent widths of strategic optical C, N, and O lines from different ions. Our analysis strategy is based

on a χ2 minimization of weighted differences between observed and synthetic equivalent widths, the

latter computed from tailored model grids. We pay special attention to the (significant) errors intro-

duced by typical uncertainties in stellar parameters. In this pilot study, we describe these tools, and

test their performance and reliability using a set of high quality spectra of a sample of 18 presum-

ably single Galactic O-type stars with low projected rotational velocities (v sin i <∼ 100 kms−1), and

previously determined stellar parameters. In particular, we compare the outcome of our analysis with

results from existing studies and theoretical stellar evolution models.

Most of our results for carbon and nitrogen agree, within the errors, with both theoretical expec-

tations and literature values. While many cooler dwarfs display C and N abundances close to solar,

some of the early- and mid-O dwarfs – and most supergiants – show significant enrichment in N and

depletion in C. Our results for oxygen in late-O dwarfs are, however, unexpectedly low, possibly indi-

cating deficiencies in the adopted oxygen model atom. For all other objects, no systematic problems
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in their oxygen content have been identified. Specific stars in our sample show peculiarities in their

abundances, and we suggest hypotheses regarding their origin.

Our method is (almost) ready to be applied to large samples of late and mid O-type stars – although

the oxygen model atom needs to be improved and carefully tested first. For early O-type stars (O4

and hotter), a simultaneous UV analysis seems to be inevitable, due to the scarcity and weakness of

optical C and O lines. This will necessarily imply a more complex modeling, additionally accounting

for the effects of X-rays from wind-embedded shocks and wind inhomogeneities.

4.1 Introduction

Nucleosynthesis is the primary agent that controls stellar evolution. Although the nuclear processes

are well understood (also quantitatively), the transport and mixing (if there is any) of nuclear processed

material into the envelope and stellar surface is still disputed. If present, such mixing is significant not

only because it alters the surface abundances, but also, e.g., since it might change the mean molecular

weight and opacity, giving rise to larger convective cores and higher luminosities (see Maeder 2009).

In massive stars, this transport can be particularly strong, mostly due to rotational mixing (e.g.,

Langer et al. 1997, Meynet & Maeder 2000, Heger et al. 2000, Paxton et al. 2013): rotation may trig-

ger internal instabilities, leading to flows that transport material from the core to the stellar surface and

vice versa. Indeed, many massive stars are rapidly rotating (e.g., Howarth et al. 1997, Dufton et al.

2013, Ramı́rez-Agudelo et al. 2013, Simón-Dı́az & Herrero 2014 and references therein), resulting in

longer main-sequence lifetimes (e.g., Brott et al. 2011, Ekström et al. 2012, Köhler et al. 2015) and

different evolutionary tracks in the Hertzprung-Russell diagram. In parallel, rotation may also affect

mass loss and consequently angular momentum loss (see Maeder 2009 and Langer 2012).

State-of-the-art evolutionary codes do account for such rotational mixing, but the various mixing

“recipes” are different from code to code, as is the treatment of angular momentum transport which

governs the internal angular velocity profile. This induces significant differences in the predicted

evolution, not only with respect to surface abundances, but also with respect to the evolution of lu-

minosities, mass-loss, rotational speed, and, most importantly, the dependence of the end products

(supernova types, GRBs, neutron stars, black holes) on the initial masses.

Massive star nucleosynthesis shows that during the main sequence the nitrogen content increases

at the expense of carbon and – later on – oxygen, through the CNO cycle, and rotation-induced mixing

may display the altered composition at the surface. Helium may also serve as a tracer of rotationally

induced mixing. However, as the second-most abundant element, its surface enrichment is more

difficult to identify than the N-enrichment and C/O-depletion.

Adding to the complexity, binary interactions can also modify the surface abundances (e.g.,

Langer et al. 2008). For example, in short-period binaries, the more massive component fills its Roche

lobe first, dumping processed material onto the surface of the secondary component (de Mink et al.

2013). The peculiar surface abundances of specific objects (e.g., the so-called ON-stars) might be

explained by such binary interactions (see Bolton & Rogers 1978, Boyajian et al. 2005, Martins et al.

2015b).

Observational studies of surface abundances can provide us with important clues on the valid-
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ity of the various hypotheses and modeling approaches. The tool for such studies is quantitative

spectroscopy, i.e., the comparison of observed and synthetic spectra. This is a complex task for

early-type stars, due to their strong radiation fields which lead to severe non-LTE effects and cause

radiation-driven winds. The numerical computation of their spectra becomes even more difficult and

ambiguous when considering wind inhomogeneities and emission from wind-embedded shocks, due

to the numerous parameters and assumptions which enter the corresponding modeling. Both pro-

cesses have a particularly strong effect in the UV (e.g., Pauldrach et al. 1994, Crowther et al. 2002,

Hamann & Oskinova 2012) due to optically thick clumping1 (Oskinova et al. 2007, Sundqvist et al.

2010, Šurlan et al. 2013), in parallel with porosity in velocity space (Owocki 2008, Sundqvist et al.

2014) and the circumstance that X-ray emission typically starts around 1.4 R∗ (e.g., Hillier et al. 1993,

Cohen et al. 2014b), thus mostly affecting the conditions in the outer wind where the UV P Cygni

lines still form.

The optical CNO lines, on the other hand, are comparatively weak, and thus mostly form in photo-

spheric regions, remaining uncontaminated by such ambiguities. While many analyses of CNO abun-

dances of B-type stars (negligible winds, only weak departures from LTE) can be found in the litera-

ture, the situation for O-type stars is different, particularly regarding their optical spectra.

For these stars, the complete set of CNO abundances has been mostly derived by means of the

model atmosphere / spectrum synthesis code CMFGEN (Hillier & Miller 1998), e.g., by Bouret et al.

(2012, 2013) for Galactic and SMC O-stars (optical and UV, small samples), and by Martins et al.

(2015a,b, 2016, 2017), for Galactic O-stars (optical, small and intermediate size samples, up to ∼70

objects).

While these authors argue that, on the whole, the observed surface abundances are consistent

with the theoretical predictions (particularly those from Ekström et al. 2012), the size of the analyzed

samples is still too small to allow for final conclusions (see, e.g., Markova et al. 2018 for problems

regarding nitrogen alone), given the large variety of O-type stars and the multitude of parameters

(initial rotational speed, mass-loss rate, environment) which affect the actual and predicted values.

To get more insight into these problems (highlighted by Hunter et al. 2008, who found, already in

early B-type stars, a significant fraction of slowly-rotating, but strongly nitrogen-enriched objects; but

see also Maeder et al. 2014), the CNO analysis of larger O-star samples is urgently required. From

an observational point of view, high quality data from such larger samples already exist, for example

the VLT-FLAMES survey of massive stars (Milky Way, LMC, SMC, summarized by Evans et al.

2008), the VLT-FLAMES Tarantula survey (LMC, Evans et al. 2011), the IACOB survey (Milky Way,

Simón-Dı́az et al. 2011b, 2014, 2015), and the OWN survey (Milky Way, Barbá et al. 2010, 2017).

However, the analysis of such large samples also requires comparatively fast codes and (at

least semi-) automatic analysis tools. For this end, spectrum synthesis using the FASTWIND code

(Puls et al. 2005, Rivero González et al. 2012a) has proven advantageous, either in combination with

a genetic algorithm (Mokiem et al. 2005), or for calculating huge model grids which are subsequently

compared with observations using minimization methods (e.g., Lefever 2007, Simón-Dı́az et al.

2011b).

Thus far, FASTWIND has only been used to infer stellar and wind-parameters, and for pure nitro-

1 Sometimes referred to as “macro-clumping”.



4.2. OBSERVATIONS AND TARGET SELECTION 117

gen analyses. Examples for the latter are Rivero González et al. (2012a,b), Grin et al. (2017), and

Markova et al. (2018). Carbon and oxygen have not been studied with FASTWIND in the O-star

regime, since corresponding model atoms were not available. Meanwhile, Carneiro et al. (2018) have

developed and tested a suitable carbon model atom, and we are now in a better position to tackle the

analysis of CNO elements.

The present work is intended to serve as a pilot study for future investigations concentrating on

such analyses for large, statistically significant samples, and tries to show what can be done with

FASTWIND in this respect. Although a carefully tested oxygen model atom suitable for hot star

conditions is still missing (to be developed soon), in order to prepare for these future investigations

we have here opted for a compromise, namely to use the oxygen model atom and data set from the

WM-basic database (Pauldrach et al. 2001), which has been shown to deliver sensible results at least

in the UV (e.g., Pauldrach et al. 1994, 2001).

To enable a clear-cut test, we have concentrated in this work on favorable conditions, i.e., we

have analyzed high-quality, optical CNO-spectra from a small sample of presumably single Galactic

O-stars with different spectral types, and low v sin i. In this way, we avoid, as far as possible, the

contamination by blends, and enable a comparison with single-star evolutionary predictions. Our

sample, even being small, allows us then to test the reliability of our method and to automatize some

of the steps for an eventual future work on much bigger datasets, which will very likely suffer from

those problems avoided by our selection criteria in the present work.

This paper is organized as follows. Sect. 4.2 introduces our observational dataset and the target

selection. The basic strategy of our abundance analysis is outlined in Sect. 4.3, including a list of

the diagnostic lines used throughout this work. In Sect. 4.4, we provide a detailed description of

our analysis method, which bases on a χ2 minimization between observed and synthetic equivalent

widths. Sect. 4.5 discusses our results, particularly in view of some basic theoretical expectations, and

compares with results from previous studies on overlapping targets. In Sect. 4.6, we perform a more

detailed comparison with specific evolutionary calculations, also regarding the expected evolution of

the individual abundances. In Sect. 4.7, we conclude by providing an overview of the present work as

the basis for future analysis of statistically significant samples.

4.2 Observations and target selection

Our spectroscopic sub-sample has been drawn from the much larger sample of Galactic O-stars

analyzed by Holgado et al. (2018), which is based on optical, high resolution spectra collected

within the IACOB (Simón-Dı́az et al. 2011b, 2014, 2015) and OWN (Barbá et al. 2010, 2017) sur-

veys. The objects of the original sample are included in the grid of O-type standards, as defined in

Maı́z Apellániz et al. (2015), covering 128 Galactic stars in the spectral range from O2 to O9.7 (all

luminosity classes, and located both in the Northern and in the Southern hemisphere).

All the spectroscopic observations considered by Holgado et al. (2018) were obtained with any

of the following high-performance spectrographs: HERMES (with a typical resolving power of R =

85,000 and wavelength coverage of 3770–9000 Å, see Raskin et al. 2004) at the MERCATOR 1.2 m

telescope, FEROS (R = 48,000 and range 3530–9210 Å, see Kaufer et al. 1997) at the ESO 2.2 m
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telescope, and FIES (R = 46,000 and range 3750–7250 Å, see Telting et al. 2014) at the NOT 2.56 m

telescope. As stated by Holgado et al. (2018), most of the O-type stars in the IACOB and OWN

spectroscopic databases include more than two spectra, obtained at different epochs. All available

spectra were used by Holgado et al. to check for spectroscopic variability, though they considered

only the spectrum with the highest signal-to-noise ratio to perform the quantitative spectroscopic

analysis presented there. We note that the same “best” spectra have been also used in the current

work.

In the spirit outlined in Sect. 4.1, we selected ten dwarfs and ten more evolved objects (6 super-

giants and 4 bright giants, summarized as “supergiants” in the following) that match the following

criteria: (i) the complete O-star temperature range should be covered; (ii) the maximum projected ro-

tational velocity (v sin i) was restricted to 120 kms−1, to allow for a clear signal and to avoid (as far as

possible) blending; (iii) the stars are neither classified as line-profile variable, nor as a spectroscopic

binary; (iv) all H/He lines could be fitted in parallel by Holgado et al., without major problems (their

quality flags Q1 or at least Q2).

After having defined our core sample in this way, during the equivalent width (Weq) measurements

it turned out that two of the originally chosen supergiants had to be discarded: HD 191781 (ON9.7Iab),

due to its low-quality spectrum (SNR of 28 at 4500 Å) which hindered the identification of most

metal lines, and HD 190429 (O4 If), because of its high temperature together with a rather large line-

broadening (v sin i≈ 90 kms−1, vmac ≈ 113 kms−1), giving rise to absent or extremely weak lines from

low and intermediate ions.

For the rest of our sample, we expected and indeed found that (in almost all cases) at least two

different ionization stages from each element (carbon, nitrogen and oxygen) are visible. Table 4.1

provides the name, spectral type, and stellar, wind, and line-broadening parameters for each object,

where part of the latter have been (re-)evaluated by us in the course of our analysis.

Obviously, our final sample is certainly statistically incomplete, and, most important, heavily

biased due to our selection criteria regarding v sin i.

4.3 Abundance analysis: strategy

4.3.1 Basic considerations

A spectroscopic determination of abundances can be performed by analyzing either line profiles or the

corresponding equivalent widths (Weq). In this work, we used the latter method, since Weq’s are insen-

sitive (or only weakly sensitive) to broadening by rotation, v sin i, and macroturbulence, vmac (when

adopting standard assumptions, such as that broadening preserves the equivalent width). On the other

hand, both processes have a major impact on the line shape, particularly in the core. Thus, a meaning-

ful comparison of line-profiles to infer abundances can be only performed if v sin i and vmac (together

with the radial velocity, vrad) have been precisely determined (even if they are not large). Though in

high S/N spectra v sin i can be measured with high precision, by using a Fourier-transform method

(e.g., Simón-Dı́az & Herrero 2007, 2014), the determination of vmac is more difficult, and is usually

done in parallel with the minimization of the differences between observed and theoretical profiles.

For the analysis of abundances, this might lead to certain ambiguities, and we have thus opted for the
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Table 4.1: Stellar, wind, and line-broadening parameters for the 18 sample stars. Stellar and wind

parameters (the latter condensed in the wind-strength parameter, log Q) together with v sin i as derived

by Holgado et al. (2018). The helium abundance is given as the number fraction YHe = NHe/NH.

Macroturbulence (vmac) values as obtained by Holgado et al. (first entry), and during the present work

(second entry). We note that stars #11 and #20 from our original sample were discarded during the

course of our analysis, due to reasons described in the text.

# Name Sp. class. Teff logg YHe log Q v sin i vmac

(kK) (dex) (dex) (kms−1) (kms−1)

Dwarfs

1 HD36512 O9.7 V 33.0 4.02 0.10 −13.4 13 33 — 25

2 HD34078 O9.5 V 34.5 4.07 0.12 −13.0 13 32 — 20

3 HD46202 O9.2 V 34.9 4.13 0.10 −13.1 11 38 — 20

4 HD214680 O9 V 35.2 3.89 0.10 −13.5 14 43 — 30

5 HD97848 O8 V 35.6 3.67 0.10 −13.3 41 77 — 65

6 HD46966 O8.5 IV 35.9 3.84 0.10 −13.0 40 66 — 66

7 HD93222 O7 V((f)) 36.8 3.63 0.11 −12.9 50 90 — 90

8 HD12993 O6.5 V((f)) Nstr 39.2 3.89 0.16 −13.2 70 79 — 60

9 HD303311 O6 V((f))z 40.1 3.91 0.11 −13.0 47 61 — 50

10 HD96715 O4 V((f))z 45.2 3.91 0.13 −12.8 59 86 — 86

Supergiants and Bright Giants

12 HD195592 O9.7 Ia 28.0 2.91 0.12 −12.1 38 100 — 100

13 HD152249 OC9 Iab 31.1 3.20 0.10 −12.5 71 70 — 70

14 HD71304 O8.7 II 32.0 3.30 0.11 −12.7 52 100 — 100

15 HD207198 O8.5 II(f) 33.1 3.31 0.15 −12.7 52 97 — 97

16 HD225160 O8 Iabf 33.2 3.34 0.13 −12.2 77 103 — 90

17 HD171589 O7.5 II(f) 36.5 3.65 0.15 −12.6 100 86 — 86

18 HD151515 O7 II(f) 36.0 3.55 0.13 −12.6 67 98 — 98

19 HD169582 O6 Iaf 38.9 3.70 0.23 −12.3 66 97 — 97
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Weq method, since equivalent widths depend almost exclusively on abundance and microturbulence.

We note that also Grin et al. (2017) used an Weq method to analyze the nitrogen content of O-type

giants and supergiants observed in the VLT-FLAMES Tarantula survey.

The synthetic spectra and equivalent widths used in this work have been calculated with the latest

update (v10.4.5) of the NLTE model atmosphere / spectrum synthesis code FASTWIND (Puls et al.

2005, Rivero González et al. 2012a), which includes (though it is not used here, see below) the

most recent implementation of X-ray emission from wind-embedded shocks and related physics

(Carneiro et al. 2016).

Since in this work we focus on the analysis of photospheric CNO lines, wind clumping should play

a minor role, if at all. Thus, we have only considered homogeneous wind models. Though clumping

is not considered here, the unclumped models with mass-loss rate Ṁuc would roughly correspond to

(micro-)clumped models with a lower mass-loss rate of

Ṁc = Ṁuc/
√

fcl, (4.1)

where fcl ≥ 1 is the considered clumping factor.

Although we used the most recent version of FASTWIND in this work, its X-ray module

(Carneiro et al. 2016) required to account for the X-ray emission from wind-embedded shocks was

not used in our calculations. In the latter publication, the authors examined in detail the effects of

X-ray emission; with respect to CNO, the ionization fractions of C v, N v, O v, and O vi are the most

affected when including X-rays (Carneiro et al. 2016, their Fig. 8). However, within our present sam-

ple, only for one star (the hottest dwarf, HD 96715 [O4 V((f))z]), the results derived in the following

depend on one of these ions (N v). Furthermore, the corresponding lines are quite weak and still form

in the photosphere, so that they should remain uncontaminated (the typical onset of X-rays is around

1.4 R∗, e.g., Hillier et al. 1993, Cohen et al. 2014b). One may argue about the impact on N iv, but as

also seen in our previous work, this impact becomes visible only for objects hotter than ∼45 kK, which

again does not affect our current sample. Meanwhile, our group has tested different descriptions of

the shock structure responsible for the high energy emission (in particular, Feldmeier et al. 1997b vs.

Owocki et al. 2013), and in our planned work on larger samples including many hotter objects we will

certainly check and account for corresponding effects regarding a CNO surface abundance analysis.

To this end, however, we will also need to analyze the UV spectrum (if available) in parallel, to con-

strain the multitude of X-ray parameters required as input (X-ray luminosity, filling factors, onset and

radial run of shock temperatures).

4.3.2 Stellar parameters and model grids

At first, we convinced ourselves that the stellar and wind parameters already derived by Holgado et al.

(2018) from fits to the hydrogen and helium line profiles2 could be reproduced by the “Munich-

version” of the FASTWIND code.

Reliable photospheric parameters are of major importance, since, as discussed in our previous

work on optical carbon diagnostics (Carneiro et al. 2018), most diagnostic metal lines are weak and

2 By means of pre-calculated grids of synthetic spectra and the GBAT-tool (Simón-Dı́az et al. 2011b).
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sensitive to relatively small variations of stellar parameters: a change of ±1000 to 1500 K in effective

temperature, or ±0.2 dex in logg can result in considerable changes of line strength.

Moreover, some of the lines are also sensitive to mass-loss rate. For carbon lines from supergiants

and hot dwarfs (dense winds), for example, a decrease in Ṁ by a factor of three produces an effect

stronger than a decrease of 1500 K in Teff or an increase of 0.2 dex in logg. Thus, a quite precise

determination of Ṁ (e.g., by reproducing Hα and He ii 4686) is required before an abundance analysis

of other elements can be tackled.

In their study, Holgado et al. quote only the wind-strength parameter, Q = Ṁ/(R∗v∞)3/2 (e.g.,

Puls et al. 2005) resulting from their analysis, but do not provide individual values for the mass-loss

rate Ṁ, stellar radius R∗, and terminal velocity v∞ required for FASTWIND input. We obtained these

quantities using their Q-values, an estimate of v∞ (via escape velocity vesc, using logg, R∗, and Teff , see

Kudritzki & Puls 2000), and an adopted stellar radius following the Martins et al. (2005) calibration

between spectral type and radius.

For all sample stars, we found no problems in reproducing the final synthetic spectra displayed by

Holgado et al. when using their stellar and wind parameters, and thus we used these parameters as the

center points in our own model grid constructed to infer the CNO abundances.

We note that during these first comparisons of H/He spectra, we adopted the values for v sin i,

vmac (first entries in the corresponding column of Table 4.1, but see below), and vrad as provided

by Holgado et al. Moreover, at this point, all profiles were calculated using a single value for the

microturbulence, vmic = 10 kms−1.

With the stellar and wind-parameters defined, we were able to set up an intermediate-size model

grid accounting for a variety of CNO compositions, where the individual abundances were centered

at the solar values from Asplund et al. (2009) (Table 4.4). Since the interference of the CNO ions

in the model atmospheres is rather weak (as long as their abundances remain well below the He

abundance, and except for specific effects between N iii and O iii resonance lines as discussed by

Rivero González et al. (2011), which are anyhow neglected in the current FASTWIND version), we

could set up a grid where more than one abundance is changed per grid point. Basically, instead of

using three models with identical parameters where only the abundance of either C, N, or O has been

changed, we can use one model where C, N, and O abundances have been changed simultaneously.

We convinced ourselves that this approach is valid, by comparing with models where the abundances

had been changed individually.

Initially, we considered an interval of ±0.5 dex around the central value (solar) for the three

elements, with grid-points separated by 0.1 dex. Later on, we had to increase this interval, when

required by the analysis.

Almost equally important, one has to consider that the value adopted for vmic has a decisive impact

on the derived abundance. Since this value can be only vaguely derived from H and He line profiles

(see, e.g., Holgado et al. 2018), and anyhow might be different for different atomic species (variation

as a function of formation depth), one has to determine this parameter in parallel with the abundance.

This can be done either by semi-automatic methods, requiring the search to find the same abundance

from different lines of different ions for the same vmic (e.g., Urbaneja 2004, Markova & Puls 2008), or,

as done in this work, by including vmic as a fit-parameter in the analysis. In particular, each synthetic

line was calculated for a variety of vmic-values, in our case 5, 7.5, 10, 15, and 20 kms−1. Fortunately,
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Table 4.2: Diagnostic carbon, nitrogen, and oxygen lines in the optical spectrum, used to derive

corresponding abundances of O-type stars. Rest wavelengths (in air) taken from NIST.

Ion Wavelength (Å)

C ii 3918.98 3920.69 4267.00 6578.05 6582.88

C iii 4186.90 4647.42 4650.25 4651.47 5695.92

C iv 5801.33 5811.98

N ii 3995.85 4447.03 4601.47 4607.16 4621.39

N iii 4097.35 4379.11 4510.88 4514.85 4518.18

4634.13 4640.64 4641.85

N iv 4057.76 6380.77

N v 4603.74 4619.97

O ii 3954.36 4075.86 4414.90 4416.97 4661.63

O iii 3961.59 4081.02 5268.30 5508.24 5592.37

the occupation numbers for optical lines do not depend significantly on the value of vmic used in the

model atmosphere (in contrast to the corresponding quantities for specific IR transitions such as Brα,

e.g., Najarro et al. 2011), and thus we are able to simulate the variation of the line-profiles / equivalent

widths as a function of vmic by calculating the final formal integrals for the different vmic values alone.

To obtain sensible errors on the derived abundances, one has also to account for the inaccuracy

of stellar parameters. Typical uncertainties on the order of 1000 K in Teff and 0.1 dex in logg (for

O-type stars) affect the photospheric H and He profiles only marginally, at least when Teff and logg

are changed in the same direction, since lower temperatures are then compensated by a lower density

– lower logg –, and vice versa. On the other hand, such changes might affect the derived abundances

significantly, as pointed out above. To include these effects into our error-analysis, we calculated two

additional grids with similar abundances and the same vmic values as in our initial grid, but with either

Teff and logg decreased by 1000 K and 0.1 dex, respectively, or with Teff and logg values increased

by the same amount. The resulting equivalent widths were then compared with the observed ones in

the same way as done for the original models with parameters from Holgado et al., and the differences

in the derived abundances accounted for in the total error budget (see below).

4.3.3 Diagnostic lines in the optical

When performing an abundance analysis, the selection of the most sensitive lines is of prime impor-

tance, as well as the consideration of at least two ionization stages for each element (if possible).

The reproduction of lines from different ions of the same element verifies a proper ionization balance,

which depends on the validity of the atmospheric parameters (and the quality of the code and the

atomic data). For hotter objects, the scarcity of metal lines sometimes precludes the presence of lines
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from different ions, and larger rotational rates give rise to very shallow lines, which often vanish in

the noise. If more than one element is analyzed though, the chances are higher that at least one of

them displays lines from two ions, allowing to check the corresponding ionization balance and thus

the validity of the stellar parameters (or the code/data).

Carbon. In a recent study, Carneiro et al. (2018) enabled the carbon spectroscopy of hot stars by

means of FASTWIND, in parallel with testing the effects of various physical processes on the outcome.

To this end, they also developed a new carbon model atom, and implemented it into the FASTWIND

code. Based on this knowledge and the experience acquired from analyzing the carbon abundance

of a relatively small sample of O-stars (six objects)3, we selected a sub-sample of meaningful lines

from C ii to C iv that are visible at different temperatures and sensitive to abundance variations. These

lines are listed in Table 4.2, and have been used throughout this work. We note that this list includes

the triplet C iii 4647/4650/4651 and C iii 5696, which both have a quite complex formation mechanism

(due to a strong coupling with EUV lines), as detailed by Martins & Hillier (2012) (and revisited by

Carneiro et al. 2018).

Nitrogen. Nitrogen is visible in a wide range of ionization stages (N ii to N v) in the optical spectra of

O/B-stars, and important lines (in particular, N iii 4634/4640/4641 and N iv 4057) have a rather com-

plicated formation mechanism that has been explored by Rivero González et al. (2012a,b), extending

the work by Mihalas & Hummer (1973). Rivero González et al. presented a detailed nitrogen model

atom, which has been also used in our calculations. The set of lines used in our analysis (Table 4.2)

includes all the typical transitions that have been also analyzed in previous studies. In particular,

Grin et al. (2017) tested the sensitivity of the corresponding equivalent widths to justify their spe-

cific choice of lines, and the lines used in the present work coincide with their primary diagnostic

indicators.

Oxygen. In comparison to carbon and nitrogen, oxygen presents more difficulties, since only O ii and

O iii have optical lines that are visible in O/B-stars (some hotter O-stars might have few O iv lines that

are marginally visible; whether these can be used diagnostically needs to be checked, though). As

O ii quickly vanishes with increasing temperatures, and as many O iii lines are not visible already at

intermediate values of v sin i (> 90 kms−1), there are cases where the oxygen abundance needs to

be obtained from only one or two lines. Besides these complications, oxygen is the only element for

which we did not develop and test our “own” model atom. Instead (see also Sect. 4.1), we used the

model atom from the WM-basic database (Pauldrach et al. 2001), and note that those model atoms

describe radiative bound-free transitions “only” by means of the Seaton-parameterization (Seaton

1958), while resonances leading to dielectronic recombination are treated as line transitions to the

continuum (e.g., Nussbaumer & Storey 1983). Moreover, these models also lack a detailed description

of specific collisional bound-bound transitions. At least for the formal integrals, we used wavelengths

and oscillator strengths taken from NIST4, and broadening parameters, if available, from VALD5.

3 In contrast to the present approach, Carneiro et al. (2018) used a by-eye fitting method.
4 http://www.nist.gov/physlab/data/asd.cfm, described by Kelleher et al. (1999).
5 http://vald.astro.uu.se/∼vald/php/vald.php, described by Piskunov et al. (1995), Ryabchikova et al. (1997, 2015), and

Kupka et al. (1999, 2000).



124

CHAPTER 4. SURFACE ABUNDANCES OF CNO IN GALACTIC O-STARS:

A PILOT STUDY WITH FASTWIND

4.4 Analysis of CNO abundances

As already stated above, the general idea of our analysis is to derive abundances from a comparison

of observed and synthetic equivalent widths. In the more recent literature on O-star abundances,

Grin et al. (2017) explored such an equivalent-width method for the analysis of nitrogen, and we

follow their approach in certain aspects. Since in our case we additionally analyze the carbon and

oxygen abundances, and have to deal with substantially more lines, the method needed to be adapted,

though. In particular, we aimed to reproduce the Weq of observed lines for the highest number of lines

possible.

4.4.1 Equivalent width measurements

In a first step, the equivalent widths of all target lines were measured. We developed an interactive

algorithm (in IDL) that determines the equivalent widths from both a Gaussian fit to the observed

profiles (both absorption and emission), and from direct integration. In this procedure, the continuum

neighboring the considered line is renormalized, then the start and end points of the line wings are

defined (by clicking-events), and finally the Weq measured, either from the parameters of the fitted

Gaussian, or from the direct integral. We refer to Appendix 4.A for a typical example of such a fit.

Generally, the Weq values obtained from the Gaussian fit and from direct integration turned out to be

very similar, and for the most part deviate by less than 5%. This convinced us that a Gaussian shape

is indeed applicable for the considered lines. Whenever there was a larger discrepancy, we considered

the problem in detail, and re-measured the corresponding line.

Mainly due to blending with neighboring lines, it was not always possible to obtain the Weq from

direct integration. In these cases, we fitted only the uncontaminated part of the profile (usually the

central region) by a corresponding Gaussian, and checked that the wings (not visible in the obser-

vations) of the synthetic profile are reasonable (again, see Appendix 4.A for an example). From the

parameters of the fitted Gaussian, we then obtained an Weq as if the analyzed line was isolated. For

consistency, all finally used values were taken from the Gaussian fits.

The described method works nicely for almost all considered lines (including emission lines),

except for N iii 4097. This is an important indicator of nitrogen abundance, however difficult to analyze

with respect to Weq, due to its location in the wing of Hδ, which at 4097 Å is already well below the

continuum. In this case, we proceeded as follows. Though somewhat unphysical, here also we derived

the observed “equivalent width”, now from renormalizing the Hδ line wing to unity. Unphysical,

because the measured quantity does not depend on the nitrogen line alone, but also on the strength

and opacity-stratification of Hδ. Nevertheless, we then determined the corresponding theoretical Weq

analogously by renormalizing the theoretical spectrum (with overlapping Hδ and N iii 4097) in the

same way, and measuring the “equivalent width” of the renormalized theoretical line by numerical

integration. Thus, the measured observed and theoretical quantities are not real equivalent widths, but

they contain the same information (unless theory would not reproduce the observed Hδ profile, which

was never the case), and can be compared to infer the abundance information.

To determine the error of our Weq measurements, we assumed that the major error source is given

by the uncertainty of the continuum and the photon noise, and performed two additional Weq deter-
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minations; one were we placed the continuum at the top of the continuum noise, and one were it was

placed at the corresponding lower limit.

At the end of our measurements, we had an (automatically created) table for every star, containing

the Weq of each renormalized line and the uncertainty of the measurement due to uncertainties in the

continuum placement. After analyzing the errors, we found that in more than 70% of all cases they

were larger than 10% (typically, on the order of 20 to 30%, depending on the signal-to-noise ratio),

and this 10% threshold was used as a lower limit in our follow-up analysis, to avoid unrealistically

low errors.

4.4.2 Which lines to use?

Before continuing with the quantitative analysis, we needed to check which lines were reliable (from

an observational point of view) for our objective. As unreliable we considered those lines which

displayed either an anomalous shape (blends!), or were too weak (rotation, temperature, gravity) to

be considered in our χ2-minimization (see below).

For each star, such lines were sorted out manually. We also checked the impact of including all

measurable lines, and usually the differences were small, except for specific targets. We note already

here that we never sorted out those lines which might not be fitted by our approach (in particular, the

N iii triplet lines for cooler objects, see Sect. 4.5.1).

The number of lines finally used for the analysis (see Table 4.3) decreases with Teff of the con-

sidered object, and supergiants provide usually less useful lines than dwarfs: as the ionization shifts

to higher ionization stages (due to higher Teff and/or lower logg), fewer lines become visible in the

optical regime, at least for carbon and oxygen6. This becomes particularly critical in our hottest su-

pergiant, HD 169582 (star #19, see Table 4.1), for which only C iv is clearly present among the carbon

ions – though some very weak or absent C iii lines give additional constraints –, and where only one

oxygen line (O iii 5592) is easily distinguishable from the continuum. Rotation also plays an important

role in determining the number of lines that can be clearly identified and analyzed. As an example,

HD 171589 (star #17) has a v sin i of 100 kms−1, and just a few carbon and oxygen lines are clearly

visible. These problems point already here to some limits for a reliable C and O abundance determi-

nation: since our hottest supergiant still has a spectral type of O6, it is clear that for earlier spectral

types, particularly if they have a significant v sin i, an optical analysis alone might prove to be very

difficult or even impossible, and one might have to include the information from the UV, with its own

innate set of problems (see Sect. 4.1). We remind the reader that the hottest supergiant in our original

sample, HD 190429, was discarded from a final analysis precisely because of too weak lines, due to

ionization and rotation.

4.4.3 χ2-minimization and error estimates

Having (i) defined the equivalent widths plus errors for all lines and objects, (ii) calculated the three

model-grids (at, above, and below the central stellar parameters provided by Holgado et al.), for a

6 For nitrogen, there is still a variety of N iii, N iv, and N v lines present at early spectral types.
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variety of CNO abundances and vmic values, and (iii) sorted out unreliable/weak lines, we are now in

a position to derive the abundances for the individual objects.

To this end, we have used a χ2-minimization, in the spirit of the IACOB-GBAT tool described

by Simón-Dı́az et al. (2011b) and in Appendix A of Holgado et al., which we have here applied to

the deviation between observed and theoretical7 equivalent widths (and not to the deviation between

observed and theoretical line profiles as done in those studies).

All the following calculations/visualizations have been performed with a custom IDL script writ-

ten by the authors. Without going into too much details, for each of our objects K we calculate, for

each of the considered elements C, N, and O, the (reduced) χ2 for all models M ∈ MK of our central

grid (described by Teff , logg and log Q from Holgado et al., and a variety of specific abundances and

vmic values),

χ2
red(K,M) =

1

Nlines(K)

Nlines(K)
∑

i=1

(

EWobs
i

(K)−EW theo
i

(K,M)
)2

σ2
i

(K)
. (4.2)

Nlines(K) is the number of useful lines for the considered object K, and σi the uncertainty of the

equivalent width for line i. Taken at face value, this expression would be simply the standard defini-

tion of a χ2
red

, if σi were a (normally distributed) Gaussian measurement error. However, to account

for potential and actual problems in the theoretical spectra to reproduce certain lines (particularly

N iii 4634/4640/4641, C iii 4647/4650/4651, and C iii 5696, see Sect. 4.3.3), we used a method in anal-

ogy to the one described by Holgado et al. (2018, Appendix A). This method accounts for an (implicit)

weighting factor for “problematic” lines that cannot be reproduced by the spectrum synthesis within

the observed errors (see Eqs. A.2, A.3, and the corresponding text of Holgado et al.). In our case,

σi(K) =max
[

σobs
i (K),σfit

i (best-fitting model ∈ MK)
]

, (4.3)

where σobs
i

(K) is the uncertainty of the measured EWobs
i

as derived from our equivalent width mea-

surements (Sect. 4.4.1), and

σfit
i (best-fitting model) =

∣

∣

∣EWobs
i −EW theo

i (best-fitting model)
∣

∣

∣ (4.4)

among all models M ∈ MK . The “best-fitting model” (i.e., the one with the lowest χ2
red

) needs to be

determined from an iterative procedure, as described by Holgado et al. In this way, we renormalize

the individual contribution of line i (to a value of unity for the best-fitting model, and to a larger

or smaller value for the others) if the corresponding equivalent width cannot be reproduced by the

best-fitting model within the observational errors. The other way round, this line becomes implicitly

weighted by a factor

wi =min










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

, (4.5)

7 For a detailed investigation of the sensitivity of theoretical Weq values as a function of abundance for nitrogen lines, we

refer to Grin et al. (2017), who also discuss certain limitations and the impact of varying vmic.
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if χ2
red

is expressed as

χ2
red =

1

Nlines(K)

Nlines(K)
∑

i=1

wi

(

EWobs
i
−EW theo

i

)2

(σobs
i

)2
. (4.6)

For most lines and stars, our simulations give theoretical Weq’s that are well within the observational

errors (with an adopted minimum of 10%), i.e., wi = 1, but in “bad” cases, wi can reach values of 0.25

or even less8.

The above procedure gives a fair “compromise solution”, by limiting, after convergence and for

the best-fitting model, the impact of non-reproducible lines to a value of unity in the sum defining

χ2 (Eq. 4.2). If we would not apply such a weighting, the finally derived χ2 would be dominated by

non-reproduced lines, due to their large deviation compared to the observational uncertainty.

Having calculated the reduced χ2
red

for all theoretical models MK (i.e., for all abundances and vmic-

values present in the grid), and independently for C, N, and O, the resulting abundance corresponds

to the model with the lowest χ2
red

,

χ2
red,min(K) = min

M∈MK

[

χ2
red(K,M)

]

, (4.7)

and the errors on the abundances and microturbulences can be derived from analyzing the projected

(roughly corresponding to the marginalized) χ2
red

distribution, with n-σ errors corresponding to the

location where

χ2
red(K,M ∈ MK) := χ2

red,min(K)+
n2

Nlines(K)
. (4.8)

We note that the resulting error estimates would be strictly valid only for a large number of terms

in the χ2 sum (for a more rigorous study of the properties of a weighted sum of chi squares, see

Feiveson & Delaney 1968). For our purpose, however, the limiting expression is sufficient, given the

fact that, as we will discuss below, the impact of uncertain stellar parameters is usually of similar size

or even larger.

Our IDL script not only provides the final values plus (asymmetric) errors for abundances and vmic,

but also displays the corresponding χ2 iso-contours in the abundance–vmic plane9, together with the

projected distributions. Moreover, it tabulates also those lines where the weighting factor is lower than

0.5, to check for problematic lines. Examples for the described analysis are given in Appendix 4.B.

From the above description, it should be clear that we determined the best-fitting vmic-values

individually, i.e., per element. Reassuringly, for almost all objects these values are identical or quite

similar for C, N, and O, so that in Table 4.3 we quote only one value per object. One might argue

that different vmic-values would be “allowed” if vmic varies with height (which is most likely true), but

then all those lines from different elements/ions that have the same formation depth should display

the same vmic. Since in our approach we investigate different lines from different ions of one atomic

8 wi = 0.25 means that the deviation between observation and theory is twice as large as the observational error.
9 This allows identifying whether the suggested minimum is located at one of the grid-boundaries; if the abundance was

affected, additional grid models have been calculated, and the procedure repeated.
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species, such a variation should be present already within one such species. Thus, the derived vmic-

values are certainly only representative averages, and their similarity within C, N, and O tells that the

overall formation depths are not too different (or that vmic varies only mildly, if at all, with depth).

Subsequent to the χ2 minimization, we compared the synthetic profiles from the best-fitting model

with observations, to check the overall representation of the line profiles, and to check for the prob-

lematic lines already identified within the script. This step also allows to constrain the macroturbu-

lence vmac (see corresponding entry in Table 4.1), by varying – if necessary – this quantity until the

line-shape is matched. This is possible here, since we have reliable values for v sin i and vrad (from

Holgado et al.) already at our disposal: if the observed and theoretical Weq’s are identical/similar (as

true for the majority of analyzed lines in the best-fitting model), the solution is unique, as long as a

variation of vmac preserves the equivalent width. Examples for the agreement between observed and

theoretical line profiles are provided in Appendix 4.C.

In the last step of our analysis, we investigated the errors due to uncertain stellar parameters (we

remind the reader that we have here concentrated on Teff and logg, leaving log Q at the value suggested

by Holgado et al.). In this step, we repeat the above procedure, now using the two additional model

grids with either Teff and logg increased or decreased. For most objects, this indeed results in different

abundances (vmic mostly remains at the original value), where typically the derived abundances for the

hotter and higher-gravity models turned out to be larger by 0.1 dex, and lower by 0.1 dex for the cooler

and lower-gravity models. The corresponding (intrinsic) uncertainties were found to be quite similar

to the values derived for the original grid. Thus, we estimate the total error from both sources of error

– (1) from the χ2 distribution, and (2) from uncertain stellar parameters – as the direct sum of both

quantities, where for error (1) we used the corresponding 1-σ error. In rare cases (e.g., star #1), the

contribution of error (2) is negligible, and for a few other cases both the hotter and the cooler models

produce changes in the same direction, so that the total error becomes strongly asymmetric (e.g., for

carbon in star #13). For a comparison of the total errors and error (1) alone, see Fig. 4.1.

4.5 Results

4.5.1 Basic considerations

Our final sample comprises 18 presumably single O-type stars with spectral types in the range O9.7 –

O4, including ten dwarfs and eight supergiants/bright giants. Our sample is biased by our selection of

objects with comparatively low v sin i, and by most of the stars being in a different stage of evolution

(see Sect. 4.6.1): if at all, our sample comprises only one object per spectral type, which might be

atypical.

Regarding our equivalent width analysis, microturbulence plays a major role due to its impact

on Weq, and consequently on the derived chemical abundance. Each profile/equivalent width was

calculated for multiple vmic, and by our χ2 minimization we searched for the best compromise for

all the lines of the different elements. Table 4.3 displays the final estimated vmic value for each star,

collecting the information from C, N, and O.

Lines for which it was not possible to measure the observed Weq due to their weakness or absence,

and lines with atypical shape due to blends were discarded from our statistical analysis, though in all
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Table 4.3: Carbon, nitrogen and oxygen abundances obtained from our analysis, and the best fitting

vmic for the CNO lines. For each abundance, the (asymmetric) errors refer to the 1-σ errors derived

from the χ2
red

distribution (first number), and to the total error estimated from additionally accounting

for typical uncertainties in the stellar parameters (second number, separated by |). The table also pro-

vides the number of lines used for the χ2 analysis of a specific object/atomic species. For comparison,

the maximum number of lines (for all ions) considered in our spectrum synthesis is 12 for carbon, 17

for nitrogen, and 10 for oxygen. The oxygen abundances for (at least) the cooler dwarfs (#1 to #5)

should be considered with caution, since they might be affected by an imperfect model atom (see text).

# Name Sp. class. vmic ǫC # C ǫN # N ǫO # O

Dwarfs

1 HD36512 O9.7 V ≤ 5 8.13
+0.07| +0.17
−0.07| −0.17

7 7.83
+0.07| +0.07
−0.07| −0.07

10 8.39
+0.06| +0.06
−0.08| −0.08

10

2 HD34078 O9.5 V 7.5 8.23
+0.06| +0.16
−0.09| −0.29

6 7.93
+0.10| +0.10
−0.10| −0.30

8 8.39
+0.20| +0.30
−0.20| −0.30

7

3 HD46202 O9.2 V 7.5 8.13
+0.20| +0.30
−0.20| −0.20

7 7.83
+0.13| +0.13
−0.13| −0.23

8 8.29
+0.20| +0.40
−0.20| −0.40

8

4 HD214680 O9 V 7.5 8.33
+0.10| +0.10
−0.10| −0.30

8 8.03
+0.11| +0.11
−0.11| −0.11

9 8.39
+0.07| +0.17
−0.07| −0.27

9

5 HD97848 O8 V 7.5 8.53
+0.16| +0.26
−0.16| −0.26

5 8.13
+0.10| +0.10
−0.20| −0.20

7 8.39
+0.12| +0.22
−0.05| −0.05

8

6 HD46966 O8.5 IV 7.5 8.23
+0.20| +0.30
−0.20| −0.30

9 7.93
+0.13| +0.23
−0.13| −0.13

7 8.59
+0.07| +0.17
−0.10| −0.20

9

7 HD93222 O7 V((f)) 10 8.43
+0.20| +0.30
−0.20| −0.30

7 7.73
+0.12| +0.22
−0.12| −0.12

8 8.69
+0.20| +0.80
−0.20| −0.20

4

8 HD12993 O6.5 V((f)) Nstr ≥ 20 7.93
+0.12| +0.22
−0.12| −0.12

6 8.33
+0.16| +0.26
−0.10| −0.10

7 8.19
+0.20| +0.30
−0.06| −0.06

3

9 HD303311 O6 V((f))z ≥ 20 8.23
+0.05| +0.15
−0.11| −0.21

6 7.73
+0.08| +0.18
−0.13| −0.33

5 8.29
+0.19| +0.39
−0.19| −0.19

3

10 HD96715 O4 V((f))z 20 7.73
+0.10| +0.30
−0.10| −0.10

3 8.43
+0.10| +0.30
−0.10| −0.10

8 8.49
+0.27| +0.37
−0.25| −0.45

2

Supergiants and Bright Giants

12 HD195592 O9.7 Ia 15 8.13
+0.10| +0.10
−0.10| −0.10

6 8.63
+0.20| +0.40
−0.46| −0.66

7 8.39
+0.30| +0.30
−0.18| −0.18

5

13 HD152249 OC9 Iab 15 8.53
+0.23| +0.43
−0.04| −0.04

8 7.63
+0.15| +0.35
−0.09| −0.09

8 8.59
+0.06| +0.16
−0.06| −0.06

10

14 HD71304 O8.7 II 15 8.13
+0.10| +0.20
−0.10| −0.10

7 8.33
+0.18| +0.38
−0.12| −0.12

7 8.39
+0.10| +0.20
−0.12| −0.12

6

15 HD207198 O8.5 II(f) 15 8.43
+0.22| +0.32
−0.11| −0.11

5 8.23
+0.09| +0.09
−0.11| −0.11

7 8.49
+0.10| +0.20
−0.10| −0.20

7

16 HD225160 O8 Iabf 10 8.23
+0.09| +0.09
−0.14| −0.24

5 8.53
+0.18| +0.28
−0.32| −0.42

6 8.59
+0.19| +0.29
−0.29| −0.29

3

17 HD171589 O7.5 II(f) 15 8.43
+0.08| +0.18
−0.19| −0.19

7 8.63
+0.16| +0.26
−0.09| −0.19

7 8.39
+0.15| +0.15
−0.15| −0.25

3

18 HD151515 O7 II(f) ≥ 20 8.43
+0.28| +0.38
−0.23| −0.23

4 8.33
+0.23| +0.33
−0.18| −0.28

8 8.49
+0.20| +0.20
−0.20| −0.20

2

19 HD169582 O6 Iaf ≥ 20 8.33
+0.06| +0.26
−0.25| −0.45

5 8.83
+0.08| +0.28
−0.11| −0.31

8 8.39
+0.30| +0.50
−0.40| −0.60

1
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cases we tried to keep the highest number of lines possible. Table 4.3 displays the number of lines

used to obtain the abundance of each atom in our targets. Considering all measurable lines (partly with

different weights determined by our minimization algorithm, see Sect. 4.4.3), we obtained our final

estimates for the individual abundances, also displayed in Table 4.3. Hereafter, we use the notation

ǫX = log10(NX/NH)+ 12, where NX is the particle number density of element X (here: C, N, O), and

NH is the number density of hydrogen.

The corresponding (logarithmic) uncertainties (first error entry) range between 0.1 and 0.2 dex,

and result from the properties of the χ2 distribution when assuming that the stellar parameters are

perfectly known. Accounting also for corresponding errors, the second entry (usually larger than the

first one) gives the resulting total error.

These quite large uncertainties in the abundances are typical for massive, early-type stars, since

for these objects it is more difficult to obtain precise constraints on the stellar parameters, due to the

presence of (inhomogeneous) winds and the NLTE conditions, contrasted to the conditions in late-

type stars, which moreover display significantly more optical lines and rotate slower. Finally, when

evaluating the abundance errors, many investigations do not account for the propagation of errors

associated with the uncertainty in the stellar parameters.

Table 4.3 is divided into dwarfs (upper part) and supergiants/bright giants (lower part), with a

subdivision into hotter and cooler objects denoted by different colors in the figures in the following

sections.

4.5.2 General comments

Though most of our diagnostic lines could be consistently reproduced, both with respect to Weq and

line profile, there are also some lines which would indicate different abundances than the majority

of the others. The triplet N iii 4634/4640/4641 (in emission for hotter objects) is an example well

documented by Rivero González et al. (2012a) and Grin et al. (2017). From our results, we confirm

their findings, at least for the cooler stars of our sample (Fig. 4.12), while for most hotter objects we

have not found particular difficulties, and were able to fit the corresponding emission line complex

either well or at least qualitatively (Figs. 4.13 and 4.14). Presumably, the former problem relates to

an inaccurate description (in FASTWIND) of the population of the upper levels of these transitions,

which depend, in the “cooler” domain of our sample, on the interaction between two overlapping

nitrogen and oxygen resonance lines in the EUV (see Rivero González et al. 2011). In terms of our

fitting procedure, the N iii triplet lines receive a low weight when they cannot be reproduced.

We also suspect (again mostly for the cooler objects) that O iii 5592 tends to imply higher oxygen

abundances compared to its peers. This would be even more dangerous than in the former case, since

this line, due to its strength, is often used as main abundance indicator (e.g., Martins et al. 2015a,

2017). We will come back to this problem in Sect. 4.5.6.

Finally, also C iii 4647/4650/4651 and C iii 5696 (see previous sections) often cannot be satisfac-

torily reproduced (here, both in the cooler and hotter domain), and often receive a low weight as

well.

At the end of this section, we note that Table 4.1 compares the values of vmac as derived by

Holgado et al. and by us. Basically, both works used different methods: regarding vmac, Holgado et al.
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mostly concentrated on O iii 5592, whereas in our work we adapted, if necessary10, vmac to fit the

shape of all visible CNO lines as well as possible (see Sect. 4.4.3). Overall, both results are quite

consistent, and the mean deviation is vmac(ours)−vmac(Holgado et al.)=−5.9 kms−1, with a dispersion

of ±7.0 kms−1. The fact that our values are systematically lower than those from Holgado et al. (at

least for the dwarfs; for the supergiants, the values are basically equal) might be partly explained as

follows (see also Fig. 5 in Simón-Dı́az & Herrero 2014): whereas Holgado et al. assumed a delta-

function for the intrinsic profile, our theoretical profiles already include a thermal + micro-turbulent

broadening, giving rise to lower vmac compared to observations.

4.5.3 Microturbulence

Before concentrating on the results for the individual abundances, we briefly discuss our findings for

the vmic values (see Table 4.311). Interestingly, the majority of the values are consistent with those

estimated by Holgado et al. from a pure H/He analysis, though our results show a clearer trend:

except for one case, all supergiants display (in CNO) a vmic = 15 to 20 kms−1, where the larger value

only appears for the two hottest objects. For the dwarfs, a clear increase with temperature, from 5

to 20 kms−1, seems to be present, where, again, only the (three) hottest objects reach the maximum

value. We note here that since both 5 kms−1 and 20 kms−1 are located at the borders of our grids, these

values must be considered as upper or lower limits only, with the exception of star #10. In this case,

the quoted vmic = 20 kms−1 value is not a lower limit but a typical value, derived from a compromise

between our results for C, N, and O.

The analysis of much larger samples than the present one might allow for tighter constraints on

this quantity (as a by-product of the CNO analysis), and might provide useful insights into the question

whether there is a physical interpretation for this quantity (in the photosphere!), and whether indeed

it might be related to sub-surface convection as suggested by Cantiello et al. (2009).

4.5.4 Stellar evolutionary models

In the next sections, we will compare the outcome of our study with theoretical predictions. In par-

ticular, we will compare with two well-known evolutionary grids for single massive stars, namely

the tracks from Ekström et al. (2012), henceforth referred to as Geneva tracks, and from Brott et al.

(2011), referred to as the Bonn models. Details on the differences between these two investigations

can be found, e.g., in Keszthelyi et al. (2017) and Markova et al. (2018). Both grids include rotation

(adopting different descriptions for angular momentum transport and mixing), with a variety of initial

velocities (Bonn grid), or one specific initial rotation rate, corresponding to 40% of critical rotation

(Geneva). The Bonn tracks additionally adopt magnetic fields, which have been accounted for in the

angular momentum transport, but not for mixing. For our concern, important distinctions between

both tracks are initial metallicities and the core overshooting parameter.

Table 4.4 compares the different initial CNO compositions used in each of the tracks, together with

the solar abundances from Asplund et al. (2009), which serve as central values for our atmospheric

10 i.e., if the value provided by Holgado et al. resulted in problematic line shapes.
11 In this table, we do not provide the individual errors, but note here that the typical uncertainties in vmic are on the order of

2.5 to 5.0 kms−1.
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Table 4.4: Initial values of CNO abundances adopted in the evolutionary grids referred to in this

work, and corresponding solar values from Asplund et al. (2009). The abundances from Brott et al.

(2011) have been tailored to represent the CNO abundances from the young open cluster NGC 6611

(see text).

solar Brott et al. (2011) Ekström et al. (2012)

ǫC 8.43 8.13 8.39

ǫN 7.83 7.64 7.78

ǫO 8.69 8.55 8.66

Figure 4.1: The relation between nitrogen-to-carbon and nitrogen-to-oxygen ratios. The left panel

displays our results with errors when including the uncertainties in Teff and logg, while on the right

panel we display only those uncertainties that arise from our method when relying on the Teff and

logg values provided by Holgado et al. (see Sect. 4.5.1). “Hot” and “cold” dwarfs are denoted by

blue and red squares, and “hot” and “cold” supergiants/bright giants by cyan and magenta asterisks.

For our division between hot and cold objects, and the correspondence between number and object,

see Table 4.3. The solid lines represent the theoretical limits for the early phases of the CNO cycle

(less massive stars), and for the conversion of O to N after a fast establishment of CN equilibrium

(most massive stars). Both curves adopt the initial abundances from the Geneva models.
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model grids. While the chosen initial conditions from the Geneva grid are quite similar to the solar

ones (for details, see Ekström et al. 2012), the values adopted in the Bonn tracks have been tailored

to represent the conditions in the young open cluster NGC 661112, basically using data from early

B-type stars and H ii regions located in this cluster (for details, see Brott et al. 2011).

The initial metallicity has a moderate effect on the individual abundances and abundance ratios

when evolving with time. Since the mixing efficiency parameter is larger in the Bonn tracks (at least

for the mass range of our sample), also the time-scales of the chemical evolution at the surface differ

in both models. On the other hand, overshooting plays a major role for the duration of the main

sequence, and a larger overshooting (Bonn models) results in a more extended main sequence phase

(reaching into the B-supergiant regime), compared to the Geneva tracks.

4.5.5 A consistency check – mixing-sensitive ratios

Due to their sensitivity to mixing, the nitrogen-to-carbon (N/C) and nitrogen-to-oxygen (N/O) ratios

allow us to obtain constraints on the evolutionary stage of a star, particularly since the CN cycle and

the ON loop might not happen simultaneously. In the most massive stars, for example, the conversion

of C to N occurs on very fast time-scales, and these objects spend most of their subsequent life in

converting O to N (e.g., Maeder 2009, Maeder et al. 2014). Thus, it is also important to study the

individual C, N, and O abundances in the light of the evolutionary tracks, and to identify any atypical

over- or underabundances.

Before concentrating on these issues in Sect. 4.6, at first we will investigate the (N/C) ratios as a

function of (N/O). This behavior is tightly constrained, independent of specific evolutionary tracks,

and thus allows us to check the reliability of our data.

Basically, two limiting scenarios can be formulated analytically (see Przybilla et al. 2010 and

Maeder et al. 2014). In the case of the most massive stars (>∼ 40 M⊙), the CN equilibrium is quickly

established through the CN cycle (12C→ 14N), and thereafter the number of carbon atoms can be

adopted as constant. Then,

d(N/C)

d(N/O)
=

N/C

N/O

1

1+N/O
, (4.9)

and integration (with C = constant) yields13

N

C
=

(

N

C

)

init

1+ (N/O)init

(N/O)init

N/O

1+N/O
. (4.10)

The second scenario applies to lower mass stars (though still massive), for which one may assume

that during the first phase of the CNO cycle (the CN sub-cycle) 16O remains constant while 12C is

converted to 14N. Following again Przybilla et al. (2010) and Maeder et al. (2014),

d(N/C)

d(N/O)
=

N/C

N/O

(

1+
N

C

)

, (4.11)

12 to enable a comparison with objects from this cluster within the VLT-FLAMES survey on massive stars, the latter sum-

marized by Evans et al. (2008).
13 Assuming the so-called dilution factor – i.e., the fraction of the mass with initial composition divided by the total mass

which is mixed – as close to unity, the initial values of the ratios can be used instead of the abundances after CN equilib-

rium (for further details, see Maeder et al. 2014).
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which has a solution symmetric to Eq. 4.10,

N

O
=

(

N

O

)

init

1+ (N/C)init

(N/C)init

N/C

1+N/C
. (4.12)

To express (N/C) as a function of (N/O), this can be rewritten as

N

C
=

N/O
(

(N/O)init+
(N/O)init

(N/C)init

)

−N/O

. (4.13)

Both limits, Eqs. 4.10 and 4.12, are represented by solid black lines in Fig. 4.1, and actual objects

should be located in the area between these two lines. We stress that the actual location of this area

depends on the initial composition, where in Fig. 4.1 we have used the values adopted by the Geneva

models, which are close to the solar ones. We note that a similar comparison has been provided by

Martins et al. (2015a, their Fig. 5), also for a sample of Galactic O-type stars (see next section).

The right panel of this figure displays our results with error bars from considering only the uncer-

tainties within our statistical analysis, keeping Teff and logg at the values provided by Holgado et al.

The left panel accounts for a more complete error propagation, considering also the typical uncertain-

ties of the former parameters. This panel shows clearly that the actual uncertainties in abundances can

be much larger than conventionally quoted.

Inspecting now the “observed” ratios, we see that most of the dwarfs are indeed located at or

close to the beginning of the limiting curves, as should be expected (initial phase of their chemical

evolution), though the values also indicate that the cooler dwarfs might suffer from too low values of

oxygen. We will return to this problem in the next section. HD 96715 (#10), our hottest dwarf, is

separated from its peers and close (at least with respect to its central value) to the early CNO cycle

limit which means that most probably this star is still within the CN sub-cycle, though already in a

later phase with depleted C together with a high N abundance. Cases in analogy to HD 96715 were

discussed by Rivero González et al. (2012a), who also found a few, highly nitrogen-enriched early

O-type dwarfs, within a sample of LMC O-stars. Taken at face value, the location of this object seems

to be reasonable. In Sect. 4.6.1, however, we will see that this object has quite a large mass (from

its position in the HRD), and should thus be located closer to the lower limiting curve. We stress,

however, that part of this peculiarity might vanish when accounting for the considerable error bars.

The supergiants are mainly located close to the lower limit (at or close to CN equilibrium), with

different stages of nitrogen enrichment. Since all of them turn out to be quite massive (Sect. 4.6.1

and Table 4.5), this behavior is as expected. At first glance, the position of HD 152249 (#13) is

quite intriguing, and in the next section we provide further details on this object. Anyhow, the large

error bars also suggest that the actual position of this star is compatible with a (close to) solar initial

composition.

In summary, except for the cooler dwarfs and few specific objects, the derived abundance ratios

of our targets are consistent with the theoretical expectations related to their classification. Further

constraints on the reliability of our data will be provided in the next section.
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Figure 4.2: Differences between the logarithmic chemical abundances obtained in the present work

and those from Martins et al. (2015a, 2017) (colored symbols as in Fig. 4.1) and Markova et al. (2018)

(nitrogen only, black circles). Errors of own data include typical uncertainties in stellar parameters.

4.5.6 Comparison with previous studies

Three objects of our present sample were already studied (with respect to ǫC) in our previous work

(Carneiro et al. 2018), to test the reliability of our carbon model atom. Back then we used a simple

by-eye fitting method, and reassuringly our new results (based on a more objective method) are fairly

similar (and overlap within the error bars) for all three objects. In particular, for HD 36512 (#1)

and HD 303311 (#9), our previously derived carbon abundances were 0.1 dex higher, while for

HD 169582 (#19) we found identical values (significantly constrained by the absence or weakness

of specific C iii lines, cf. Carneiro et al. 2018, their Fig. 10).

Half of our sample overlaps with objects investigated by Martins et al. (2015a) and Martins et al.

(2017), both by means of a complete CNO analysis. Moreover, for five of our objects, we can also

compare with the nitrogen abundances derived by Markova et al. (2018). We refrain from a detailed

comparison of stellar parameters, and only note that there is a reasonable agreement14. In the follow-

14 Remember that specific deviations – even if considered as minor – can have a significant effect on the resulting abun-
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ing, we focus on a comparison of the derived abundances.

Fig. 4.2 displays the differences between the logarithmic C, N, and O abundances obtained in the

present work and those from Martins et al., for the stars common to both samples (IDs on the x-axis),

#1, #2, #3, #4, #6, #13, #15, #17, and #18 (see Table 4.1). Since the target IDs follow the spectroscopic

designation (with dwarfs below #10, and supergiants/bright giants above), this figure enables the

identification of potential trends in the differences: though in most cases the results coincide within

the error bars, our values for the C and O abundances of the cooler dwarfs are generally lower, on

average by 0.17 and 0.32 dex, respectively. Moreover, our C abundances for the supergiants are

generally larger, by a mean of 0.18 dex. For other elements/objects, no clear pattern can be identified.

Large differences in nitrogen (middle panel) are found for HD 152249 (#13) and HD 151515 (#18).

Though it is difficult to find the actual reason for this disagreement, we note that star #13 is an OC-star,

characterized (among other features) by having little nitrogen enrichment. Indeed, our abundance is

much closer to solar than the value obtained by Martins et al. (2015a) (see also Martins et al. 2016 for

a study of the four presently known Galactic OC-stars).

On the other hand, our nitrogen abundance for star #18 basically relies on N iii (and one weak line

of N iv), and has quite a large uncertainty.

In this panel, we also compare (via black dots) our nitrogen abundances with the values estimated

by Markova et al. (2018). These authors obtained ǫN through a by-eye fit of the nitrogen line profiles

(synthesized also by FASTWIND, using the same model atom), giving a larger weight to those lines

that are stronger and not affected by stellar winds. The comparison was possible for stars #3, #5, #7,

#13, and #19. Markova et al. (2018) did not quote individual uncertainties, but provide a typical error

of ±0.2 dex, which has been considered in the black error bars. The values derived by Markova et al.

(2018) are consistently higher than ours (on average by 0.19 dex), both for the three dwarfs and the

two supergiants, but still agree within the 1-σ range, where HD 97848 (#5) just marginally touches this

range, due to a quite low positive error from our side. Their nitrogen abundance for HD 152249 (#13),

the OC-star, is also closer to the solar value than that of Martins et al. (2015a), but still 0.25 dex larger

than ours. This example instructively quantifies typical deviations in derived abundances from hot

stars even when using identical synthesis tools, but different methods15 to infer the parameters and

abundances.

As already pointed out, our oxygen abundances for the cooler dwarfs are considerably lower than

those derived by Martins et al., while for the other objects there is no clear trend. Here also, however,

two objects show considerably less oxygen. There might be (at least) two reasons for this discor-

dance: (i) as mentioned in Sect. 4.3.3, our present oxygen model atom lacks a detailed description

for specific transitions, and thus might lead to an inaccurate description of certain level populations.

(ii) Martins et al. (in both papers) provide an extensive list of lines used for their oxygen analysis, but

most of these refer to O ii, and only O iii 5592 is used for O iii. Thus, at least for higher Teff and/or

higher v sin i, O iii 5592 is the only diagnostic oxygen line in their analyses. From our own experi-

ence accumulated in the present study, this line almost always indicates larger oxygen abundances

than the other O iii lines used by us in addition to O iii 5592 when possible (see Table 4.2). Since our

dances.
15 and, when comparing results obtained via by-eye fits, different persons
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diagnostic method always searches for a “compromise solution”, this leads to lower derived oxygen

abundances. We have checked that using O iii 5592 exclusively would result in ǫO values rather close

to those derived by Martins et al., but presently we have no reason to exclude the other lines.

From the comparisons performed in the previous and this section, we conclude that our carbon and

nitrogen abundances should be, overall and within the error bars, reliable, and significant differences

to the studies by Martins et al. are present only in the N abundance of two stars.

For the cooler dwarfs, the comparison with the theoretical limits of CNO burning points towards

too low oxygen abundances, and the discrepancies with Martins et al. are systematic. Moreover, it

would be difficult to explain why our cooler dwarf sample should display (on average) considerably

less oxygen than B-stars in the solar neighborhood (ǫO ∼ 8.76, Przybilla et al. 2008) or at least B-stars

in the young open cluster NGC 6611 (ǫO ∼ 8.55). We note here that problems with FASTWIND itself

are unlikely, since Simón-Dı́az (2010) analyzed 16 B-type stars in the Ori OB1 association with this

code, and found highly homogeneous oxygen abundances, in good agreement with the quoted work by

Przybilla et al. (2008). Unfortunately, their oxygen model atom was tailored for early B-type dwarfs,

and could not been used for the analyses of the hotter sample investigated here.

Since the identified, systematic discrepancies in the oxygen abundance are specific for our cooler

dwarfs (dense atmospheres), it is quite possible that this problem – if there is one – is indeed rooted

in our current model atom, since (i) problematic ionization cross-sections can lead to an erroneous

ionization balance, which might explain our almost perfect fits for O ii (Fig. 4.12), and (ii) imperfect

collisional strengths have a major effect particularly at high densities and comparatively cool temper-

atures. Although the situation for the other objects is more promising, both in terms of the location

of these objects in Fig. 4.1, and in comparison to Martins et al., the validity of our oxygen analysis as

a whole needs to be clarified in forthcoming work. We stress, however, that our results do reproduce

the observed oxygen lines – admittedly, O iii 5592 to a lesser extent – but we advise considering our

oxygen results with caution until further evidence.

4.6 Comparison with evolutionary calculations

Already with our inspection of the abundance ratios (Fig. 4.1), we obtained some insights into the

evolutionary phases of our targets. However, the correlation between evolutionary stage and nu-

cleosynthesis evolution is complex, due to the many processes to be considered. Stars of different

masses experience different phases of the CNO cycle at different times, where, e.g., carbon reaches

equilibrium considerably faster in more massive stars. Before proceeding with our investigation of

the abundance evolution, we therefore briefly constrain the evolutionary stages of our sample stars by

comparing with suitable diagrams, which then allows us to cross-check with our first and following

conclusions obtained from the abundance analysis. Since we have used the stellar parameters from

Holgado et al., and since part of our sample overlaps with the samples from Martins et al. (2015a,

2017) and Markova et al. (2018), corresponding conclusions on masses etc. can be already found in

these studies.
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Figure 4.3: Left: Kiel diagram (logg vs. Teff) for our sample stars. Overplotted are the rotating

Geneva (Ekström et al. 2012) (black) and Bonn (Brott et al. 2011) (red) tracks for the mass range 20

to 60 M⊙, with initial rotation velocities of 40% of their critical speed. Right: Corresponding spec-

troscopy HR diagram (sHRD, see text), with both ordinate-axes proportional to L/M. The Eddington

Γe has been calculated with solar Helium content, assumed to be completely ionized. Symbols in both

panels as in Fig. 4.1.

4.6.1 Evolutionary stages

To avoid any uncertainty induced by uncertain distances (in the same spirit as Holgado et al.), we

consider only those diagrams/variables that are independent of stellar radius, and only depend on

quantities derived by means of quantitative spectroscopy.

To this end, we examined the location of our sample stars in the logg–Teff (Kiel) diagram, and,

because of the clearer separation of the theoretical tracks, in the spectroscopic HR diagram (sHRD,

Langer & Kudritzki 2014). The latter uses as ordinate the variable log(L /L⊙), where

logL = 4logTeff − loggtrue ∝ log(L/M). (4.14)

and gtrue is the (spectroscopic) gravity, corrected for centrifugal acceleration16. Since logL ∝
log(L/M), it is also proportional to the Eddington Γe for electron scattering, which we have addi-

tionally indicated on the right ordinate of the corresponding figures.

As already outlined in Sect. 4.5.4, we have based our investigations on the rotating Geneva and

Bonn evolutionary tracks, which are represented in the next figures by black and red lines, respectively,

with an initial rotation velocity of 40% (or close to this value) of the critical speed. For the mass range

considered (20 to 60 M⊙), this corresponds to ∼270 to 350 kms−1. We note that the Geneva tracks do

not include a track for 30 M⊙, but for 32 M⊙.

As evident from the left (Kiel diagram) and the right panel (sHRD) of Fig. 4.3, our stars popu-

late the considered mass range, with the majority of dwarfs being in the early main sequence phase.

16 gtrue = gspec + gcent, with gcent ≈ (v sin i)2/R∗ (Repolust et al. 2004). In our sample, the maximum difference between

loggtrue and loggspec is <∼ 0.02 dex when the stellar radius has been estimated from typical calibrations (e.g., Martins et al.

2005).
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Figure 4.4: Modified sHRD, with abscissa logg (instead of Teff), providing a clearer separation

between the tracks. Two distinct gravity regimes populated by our sample stars become obvious (see

text).

The early supergiants are mostly located in the intermediate phase, around 40 M⊙, while the cooler

supergiants (together with the hot supergiant HD 225160 (#16)) are either in the late MS phase (Bonn

tracks, with larger overshooting), or already at or close to the TAMS (Geneva tracks). Star #12 is

the most evolved star, which according to the Geneva tracks might be already in the hydrogen shell-

burning phase.

From Figs. 4.3 and 4.4 (discussed below), a clear lack of massive stars close to the ZAMS is obvi-

ous. Though this might be pure coincidence due to our small sample, such findings have been reported

already previously, for different samples (e.g., Herrero et al. 1992, Repolust et al. 2004, Martins et al.

2005, Simón-Dı́az et al. 2014). More recently, and for much larger samples, Sabı́n-Sanjulián et al.

(2017) (with respect to the VFTS, Evans et al. 2011) and Holgado et al. (with respect to the Galactic

O-type standards) identified the same problem17.

In addition to our present lack of knowledge of how pre-main-sequence stars initiate

their evolution on the main-sequence (e.g, Bernasconi & Maeder 1996, Behrend & Maeder 2001,

Haemmerlé et al. 2016), very young massive stars could still be enshrouded by the dust from their

birth cocoon, which would hide these targets from optical observations (e.g, Garmany et al. 1982,

17 Recall that our sample is a subsample from the objects studied by Holgado et al., thus our finding is not surprising.
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Herrero et al. 2007, Castro et al. 2014), and might explain the observed deficit of massive stars close

to the ZAMS. A more detailed discussion on this topic will be presented in a forthcoming paper of the

IACOB series (Holgado et al., in prep.).

Regarding the implied stellar masses, both tracks basically agree for all dwarfs, with the exception

of HD 97848 (#5: 32 M⊙ from the Geneva, and 40 M⊙ from the Bonn tracks). For the supergiants,

however, there are clear differences. From the Geneva tracks, our most evolved stars range from 32 to

40 M⊙, while from the Bonn tracks they range from 40 to ∼65 M⊙. In particular, for HD 195592 (#12)

the Geneva tracks imply a mass of ∼40 M⊙, contrasted with ∼65 M⊙ from the Bonn models. These

disagreements presumably relate to the different treatment of angular momentum transport and mixing

(in particular, the effects from mean molecular weight barriers), which results, in the Geneva models,

in higher luminosities and consequently higher mass loss. Accounting for the higher luminosities and

the increased mass loss, both the actual and the initial masses of more evolved objects are lower than

in the Bonn models. For more details on these discrepancies, we refer to Markova et al. (2018).

Concentrating now on the sHR diagram (right panel of Fig. 4.3), which provides a distance-

independent luminosity-to-mass ratio18, we note that L increases in parallel with the ID numbers

of our dwarfs, and two of them (HD 93222 (#7), and HD 96715 (#10)) belong to the stars with the

highest luminosity-to-mass ratio, headed by HD 195592 (#12).

For the sake of clarity, we display L also as a function of logg in Fig. 4.4, which shows an

even better distinction between the tracks for the individual masses, and provides an impression of

the different location of the TAMS in the alternative evolutionary models. From this figure, we can

divide our sample in two regimes, divided around logg ∼ 3.65. On the left side, we find the stars with

higher gravities and mostly lower luminosities (dwarfs). In this regime, the atmospheres are denser,

and the ionization balance is shifted towards lower ionization stages. Since these have more lines in

the optical (which improves the abundance analysis), the stars in this regime are also the stars with

the most precise results, i.e., with the smallest uncertainty ranges (see Table 4.3).

4.6.2 CNO evolution

The different evolutionary stages occupied by our sample provide us with a well-suited laboratory

for the analysis of general trends (and outliers). The division into two regimes, particularly seen in

Fig. 4.4, should be also present when comparing ǫC vs. ǫN as done in Fig. 4.5. Lower-mass dwarfs

should be still passing through the CN cycle (and in most cases, through its early phases), with carbon

and nitrogen abundances not too different from their initial values (which might vary as a function

of environment, see Table 4.4), while the supergiants and the more massive dwarfs should become

significantly nitrogen-enriched and carbon-depleted.

Even though we already discussed the behavior of mixing-sensitive abundance ratios in Sect. 4.5.5,

there are indeed good reasons to study at first the ǫC vs. ǫN relation, without relying on the oxygen

abundance: (i) at least for the cooler dwarfs, the ǫO values derived in the present work need to be

rechecked (potential deficiencies within our oxygen model atom, see Sect. 4.5.6). (ii) At least from

intermediate O-types on, the oxygen abundance is the most difficult to determine among the three

18 For a comparison between results from the conventional and the spectroscopic HR diagram, see again Markova et al.

(2018).
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Figure 4.5: The relation ǫC vs. ǫN in the light of evolutionary tracks. The black and red lines display

the corresponding Geneva and Bonn tracks with vinit
rot ≈ 0.4 vcrit, respectively, where the solid lines

refer to the 60 M⊙, and the dashed lines to the 40 M⊙ tracks. The dotted lines represent the solar C and

N abundances, and their intersection the position of the sun in this diagram. Symbols as in Fig. 4.1.

Error bars include typical uncertainties in the stellar parameters.

elements C/N/O, due to the restricted number of ions (only O iii) and corresponding lines in the optical,

and the potentially peculiar behavior of O iii 5592 (Sect. 4.5.2).

Together with the relation of ǫC vs. ǫN for our sample stars, Figure 4.5 displays the evolution

of these (surface) abundances as predicted by the Geneva (black) and Bonn (red lines) tracks (again

with vinit
rot ≈ 0.4vcrit). Except for the different initial conditions, the predicted evolutionary paths are

similar, with only slightly diverging curves for the 60 M⊙ tracks, though the evolution of the individual

abundances as a function of other parameters (evolutionary time or Teff) is quite different, as we will

see in Fig. 4.6. This clearly shows that the evolution of the surface abundance ratios is mainly triggered

by nucleosynthesis when mixing is efficient.

In Fig. 4.5, we only display the tracks for 60 M⊙ and 40 M⊙, which provides a fair representation

also for less massive stars, except that in the case of lower masses, the range of abundance variation

becomes somewhat smaller. For example, for the 20 M⊙ Geneva track, ǫC decreases from 8.39 to

∼8.12, and ǫN increases from 7.78 to ∼8.43 (see below).
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In general, our sample follows, within the error bars, the trend suggested by the tracks, with the

majority of the stars in between the two curves, which might be indicative for the potential variation

of (initial) CN abundances in the solar surroundings.

Concentrating at first on nitrogen, the majority of the dwarfs have ǫN values much closer to solar19

than the supergiants, as expected. Two dwarfs (#8 and #10) and one supergiant (#13) are an exception

to this behavior. Regarding the dwarfs, HD 12993 (#8) has been classified with the suffix “Nstr”20,

implying an increased nitrogen and decreased C abundance (as derived here). HD 96715 (#10), our

hottest and most massive dwarf, and already referred to in Sect. 4.5.5, displays even more ǫN and

less ǫC, indicating the products of a rapid CN cycle, which, following Fig. 4.1, has not yet reached

equilibrium though. The OC-supergiant HD 152249 (#13) has already been mentioned in Sect. 4.5.6.

Turning now to carbon, here also most of the dwarfs have ǫC close to initial values. For the hotter

supergiants and bright giants (except for #16), however, the predicted depletion is not (or at least

not clearly) visible, contrasted to the cooler supergiants (except for the OC-star) which follow the

predicted trend.

Accounting for the uncertainties, one might argue that also our hotter supergiants are still compat-

ible with the Geneva tracks, except maybe for #17 (HD 171589), which shows the largest difference

to the predictions (all hotter supergiants need to be compared with the 40 M⊙ track, see Table 4.5).

We remind the reader that regarding the abundance ratios (Fig. 4.1), #17 “fits” perfectly, which em-

phasizes the importance of considering the individual abundances as well.

At this point, we stress the prime role of rotation in defining the position of each target in Fig. 4.5,

and the position of the theoretical tracks. Initial rotational rates lower than 0.4vcrit will decrease the

range of predicted enhancements and depletions (and a very low initial rotation results in a negligible

evolution of CNO surface abundances), which might explain the position of our OC-supergiant #13

with v sin i ≈ 70 kms−1 (see also Martins et al. 2016, who suggested the same scenario). Indeed,

according to our selection criteria, most of our objects should be in a present state of slow rotation

(if, as reasonable, only few of them were observed close to pole-on). Nevertheless, almost all hotter

supergiants plus the dwarfs #8 and #10 show a significant abundance evolution, and this would imply

that there is a significant loss of angular momentum already before the potential bi-stability braking

(Vink et al. 2010) around 25 to 20 kK. Moreover, at least for those few stars that show a very strong

enrichment, there is the chance that they rotate much faster than suggested by their v sin i, and for

those stars a higher initial rotation than assumed here might be possible, with consequences for the

predicted CNO evolution.

Thus far, our investigations have concentrated on surface-abundance ratios, where, assuming that

the mixing-processes are similar for the considered elements, Figs. 4.1 and 4.5 mostly reflect the con-

version of elements due to the CNO cycle, in dependence of initial composition. Thus, these diagrams

are (almost) independent of the actual evolution as a function of time, which is strongly affected by the

description of the mixing processes themselves, which in turn depend on the stratification of physical

quantities such as internal velocity fields (rotation, turbulence, meridional circulation).

To obtain some insight into this temporal evolution, and to allow a comparison with the alternative

19 Within the two alternative tracks, the differences in initial ǫN are much lower than in initial ǫC.
20 Defined by Sota et al. (2011, their Table 3) as a moderate case of enhanced N absorption, with C and O deficient.
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Table 4.5: Ranges in initial evolutionary mass and initial masses for the objects analyzed in this

study, roughly estimated from the sHRDs for vinit
rot ≈ 0.4vcrit (Figs. 4.3 and 4.4). For identification and

parameters, see Table 4.1.

star # symbol in Minit (M⊙) Minit (M⊙)

figures (Geneva) (Bonn)

1–5 red squares 20–30 20–30

6–10 blue squares 30–60 30–65

12–15 magenta asterisks 32–40 40–65

16–19 cyan asterisks 32–40 40–60

8 ∼40 ∼40

10 ∼60 ∼65

13 ∼32 ∼60

19 ∼40 ∼55

approaches from the Geneva and Bonn models, Fig. 4.6 displays the theoretical predictions (with Teff

as a proxy for time) for the individual elements (from top to bottom: C, N, O) and different mass

regimes, together with our results. The dotted lines represent the solar abundance for each element,

and the dashed and the dashed-dotted lines show the initial abundances of the Geneva (left side panels)

and Bonn (right side panels) tracks, respectively.

Comparing both evolutionary tracks in all panels, the consequences of the distinct mixing descrip-

tions used in each of the two sets becomes evident. In the Bonn tracks, all surface abundances reach

their equilibrium value considerably faster, due to the larger mixing efficiency used. A consequence

of this rapid mixing in the Bonn tracks is that the “hooks” (when the stars begin to contract at the end

of the main sequence) are not visible, even if we would extend our Teff range to lower temperatures,

while in the Geneva tracks they are clearly visible, independent of mass regime. Moreover, although

the predicted maximum depletion of C is similar in the Geneva and Bonn tracks (though the numbers

are different because of different initial conditions), the Geneva models predict both a larger maxi-

mum N-enrichment and a larger maximum O-depletion21. For more details on the differences in the

ǫN evolution, see Markova et al. (2018).

Before further comments are given, we provide in Table 4.5 some typical mass ranges to be ac-

counted for when comparing our data with the predictions. These ranges in initial mass have been

estimated from the sHRDs (Figs. 4.3 and 4.4) referring to the Geneva and Bonn tracks with initial

rotation ≈ 0.4vcrit. In addition, this table also displays the initial masses for specific objects discussed

in the following. As already mentioned in Sect. 4.6.1, the initial (and also the actual) masses for more

evolved stars as derived from the Bonn tracks are larger than those from the Geneva ones.

21 These similar ǫC and different ǫN values that are finally reached lead to the slightly diverging curves found in Fig. 4.5.
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Figure 4.6: Evolution of C/N/O abundances for different masses (from left to right: 60, 40, ∼30,

25, and 20 M⊙) as a function of Teff , as predicted by the rotating Geneva (black lines, left panels)

and Bonn tracks (red lines, right panels). The dotted line represents the solar abundance. The dashed

and the dash-dotted lines display the initial abundances used in the Geneva and in the Bonn calcula-

tions, respectively. Our results (symbols as in Fig. 4.1) are shown with errors accounting for typical

uncertainties in stellar parameters. For initial evolutionary masses of sample stars, see Table 4.5.
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Overall, Fig. 4.6 is compatible with typical expectations. Most dwarfs present abundances close

to the initial values, except for HD 12993 (#8) which is our “Nstr” object, and HD 96715 (#10), our

hottest and most massive dwarf, both discussed already previously. The supergiants and bright giants

show different degrees of chemical evolution, except for HD 152249 (#13, see above), which shows a

close-to-solar abundance also for oxygen, consistent with our hypothesis (and the one by Martins et al.

2016) that this star should have formed with a low rotational speed. A closer look into the specific

elements and objects reveals the following:

Carbon. While the carbon abundances of the cooler dwarfs and the cooler supergiants (the most-

evolved objects in this study) are consistent with the predictions, for both the hotter dwarfs (except for

#8 and #10) and the hotter supergiants (i.e., higher mass stars at early or intermediate MS-phases), the

derived carbon abundance is larger than predicted, i.e., the “observed” depletion is lower. The least

evolved stars have ǫC similar to the solar abundance, and are thus located closer to the Geneva than to

the Bonn tracks.

Nitrogen. The cooler dwarfs agree with both tracks, while the hotter ones (again except for #8 and

#10) mostly display less nitrogen than predicted. This could be a selection effect, since at least in

the LMC there are many early O-dwarfs that show the opposite, see Rivero González et al. (2012b).

Comparing with the nine Galactic O-dwarfs earlier than O8 analyzed by Markova et al. (2018), they

found a significant nitrogen enrichment in five out of these nine stars, while the other four objects

displayed values close to solar. Thus, a final conclusion on typical nitrogen abundances in early O-

dwarfs is still not possible, and this discussion needs to be revisited after the analysis of a larger

dataset. Anyhow, in combination with the discrepancies found for carbon in this work, our results

might indicate that either the carbon depletion sets in later than expected, or, more likely, that these

sample stars had a lower initial vrot than considered in the tracks.

Regarding the cooler and hotter supergiants, the agreement is better, particularly compared with

the Bonn tracks.

Oxygen. Here, most of the hotter objects are in fair agreement with the predicted depletion, and also

the cooler supergiants follow the predicted trend, though they are more consistent with the Bonn tracks

(which start from a lower initial O-abundance). The cooler dwarfs, however, display too little oxygen,

compared with both tracks (Minit ≈ 20 . . .30 M⊙), again indicating problems with the abundances as

derived for these objects (Sect. 4.5.6). Taken together, it is quite likely that the deficits in our oxygen

analysis mostly concern the cooler O-dwarf domain, while for the rest the analysis appears to deliver

reasonable results.

We end this discussion by pointing out that our two hottest stars within the dwarfs and supergiants,

#10 and #19, are in very good agreement with the Geneva tracks, particularly regarding nitrogen and

oxygen, though at least the latter two elements are also matched by the Bonn tracks within the errors.

Our final diagram, Fig. 4.7, displays the mixing-sensitive ratio nitrogen-to-carbon vs. v sin i, and

is a variant of the meanwhile well-known “Hunter diagram” (ǫN vs. v sin i, Hunter et al. 2008), where

in this variant the surface enrichment of N becomes amplified by the parallel depletion of C. This kind

of analysis was recently applied to a set of Galactic giants by Martins et al. (2017), who found no

clear trend for their sample.
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Figure 4.7: Nitrogen-to-carbon ratio vs. v sin i for our sample stars. The dotted line represents the

solar value.

For the further discussion, two remarks might be necessary: (i) since the inclination sin i is un-

known, the provided abscissa values are lower limits on the actual rotational speed vrot. (ii) the untyp-

ically low (for O-type stars) values of v sin i are a consequence of one of our selection criteria.

Though Fig. 4.7 implies no obvious trend (such a trend would certainly not have been expected for

our sample), it underpins some of our previous conclusions and hypotheses. All cool dwarfs have close

to initial surface abundances (whether solar or somewhat different), and this is consistent with any kind

of track, be it rotating or not. Three of the five hotter dwarfs also have close to initial abundances,

while they should have, if beginning their lives with vinit
rot ≈ 0.4vcrit, already a well developed N/C ratio.

Thus, for these stars it is quite likely that they have started their evolution as slow rotators, in line with

the arguments from above. Except for object #18, all hotter supergiants plus the dwarfs #10 and #8

have a well-developed N/C pattern (consistent with or lower than the predictions from the rotating

tracks), which indicates that a considerable braking mechanism (presumably due to the significant

mass loss of these objects) must be present already at relatively early phases. We refrain here from

discussing the theoretical predictions regarding the evolution of vrot, and only refer to Keszthelyi et al.

(2017) and Markova et al. (2018) for a closer study on this topic. Similar conclusions (i.e., previous

braking) might be also drawn for the cooler supergiants (except for #13 and #15, which most likely
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started their life with low vrot as well). In both tracks, these objects are still far away from the bi-

stability jump with potential bi-stability braking. At least in the Geneva models, however, they are

very close to the “hook” (end of the MS phase), where mass-loss and angular momentum might

change strongly, due to the significant changes in stellar structure.

4.7 Summary, conclusions, and future work

In this work, we presented a pilot study on the optical analysis of CNO surface abundances in O-

type stars by means of FASTWIND, to be applied to large, statistically significant samples in future

investigations (where an analysis by this code is advantageous due to the low computational costs).

We have concentrated on targets and observations which should favor a straightforward abundance

analysis: high-quality spectra from presumably single Galactic O-stars (which allows us to compare

with single-star evolutionary tracks), and low v sin i (to avoid blending).

In particular, we selected a subsample of 18 O-type stars with low v sin i (≤ 100 kms−1) from

the original sample by Holgado et al. (2018), covering ten dwarfs (O4 to O9.7) and eight super-

giants/bright giants (O6 to O9.7), with well-determined stellar and wind-strength parameters.

The required model grids for the synthetic spectra have been calculated with the most recent

version of FASTWIND, using our well-tested model atoms for nitrogen (Rivero González et al. 2011,

2012a) and carbon (Carneiro et al. 2018). For oxygen, we applied the model atom from the WM-basic

database (Pauldrach et al. 2001), since thus far we have no “own” oxygen model atom suitable for

O-star conditions at our disposal, and since the quoted one has been successfully used in various UV

analyses (but not in the optical). When calculating the model grid(s), it turned out that a variation of all

three C/N/O-abundances in parallel (per model) is possible, which saves a factor of three computation

time and storage.

To derive the CNO abundances, we developed a semi-automatic method accounting for observa-

tional and systematic uncertainties, the latter arising due to problems in reproducing specific lines in

specific spectral regimes. This method is based on a χ2-minimization of the (weighted) deviation be-

tween observed and theoretical equivalent widths. We have chosen such an equivalent width method

to avoid problems related to line-broadening (rotation and macroturbulence) which might occur if al-

ternatively fitting the profile shape. The minimization accounts for abundance and microturbulence in

parallel, where the latter quantity is important for the final outcome. In our method, we also account

for typical uncertainties in the stellar parameters, which introduces a significant contribution to the

total error budget.

After analyzing the observed equivalent widths by means of our minimization method, we found

that the derived vmic-values are fairly similar for each of the considered elements, and were thus able

to provide, per star, a unique value for this quantity. For all supergiants, we obtained values between

15 and ≥ 20 kms−1, whereas the dwarfs displayed a clear trend, with vmic increasing from ≤ 5 kms−1

to ≥ 20 kms−1 with spectral type.

After the best-fitting model for each star had been identified, we compared the corresponding

line profiles with the observed ones, to check their consistency. This step allowed us to obtain final

constraints on vmac, which were found to be similar to the values provided by Holgado et al.
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To check the reliability of our analysis, at first we investigated the abundance ratios (N/C) as a

function of (N/O), where this relation is tightly constrained from theoretical considerations, indepen-

dent of actual evolutionary calculations (Przybilla et al. 2010, Maeder et al. 2014). Most of our targets

display abundance ratios consistent with the theoretical limits, though already here the OC9 Iab star

HD 152249 caught our attention, due to an abundance pattern indicating a very early stage of evolu-

tion, though spectroscopically classified as supergiant. More severe deviations (though still within the

total errors) were “only” found for the cooler (lower-mass) dwarfs within our sample, with too low

oxygen abundances compared to the limits.

Part of our sample overlaps with the samples studied by Martins et al. (2015a, 2017) using the

CMFGEN code. Except for specific differences that have been discussed in detail, the only major sys-

tematic discrepancy refers again to the oxygen abundance of the cooler O-dwarfs, where Martins et al.

found much larger values than we did. Though part of this discrepancy might be attributed to the be-

havior of O iii 5592 (which in our simulations implied larger abundances than the other O iii lines, but

was exclusively used by Martins et al. for this ion), we suspect that certain deficiencies of the oxy-

gen model atom adopted in our work (see above) might be responsible for this deviation, and caution

against using our oxygen results (at least in this spectral domain) until further tests are performed. To

this end, we certainly need to develop our own, detailed, and well-tested oxygen model atom that is

suitable for O-star conditions also in the optical.

Interestingly, five stars of our sample also overlap with the sample investigated by Markova et al.

(2018), including a nitrogen analysis, by means of the same code and the same nitrogen model atom.

Though the results of both works are compatible within their 1-σ ranges, the central values differ by

roughly 0.2 dex, which tells about the accuracy of abundance determinations in hot stars that can be

achieved using different methods.

The outcome of our study was compared with two well-known evolutionary grids for massive

single stars, namely the rotating (vinit
rot ≈ 0.4vcrit) tracks from Ekström et al. (2012) (“Geneva models”),

and from Brott et al. (2011) (“Bonn models”). Most important for our concerns are the different

overshooting parameters, initial metallicities, and chemical mixing recipes/efficiencies used, due to

their impact in prescribing stellar and chemical evolution.

Using the corresponding Kiel and spectroscopic HR diagrams, we obtained an overview on the

evolutionary stage of our sample, and on the initial masses, ranging in between 20 to 60 M⊙, where

the Bonn tracks imply higher masses for the more evolved objects, compared to the Geneva tracks.

According to the tracks, part of our sample is at the beginning or in an intermediate phase of the

MS, while another is at later MS-phases (Bonn) or already close or even beyond the TAMS (Geneva).

This division is also found in an ǫC vs. ǫN diagram: lower-mass dwarfs are passing through the early

CN cycle, while massive supergiants have become significantly nitrogen-enriched. Few objects with

particular compositions (e.g., the OC-star) have been discussed, but our major finding on more system-

atic discrepancies regards the hotter supergiants: though well-enriched in nitrogen, the corresponding

depletion in C remains below the predictions. At this stage, it is difficult to interpret this case, also

because we do not know the initial vrot of these objects.

In addition to the ǫC vs. ǫN diagram, we studied the individual C/N/O abundances as a function of

Teff (as a proxy of time) in the light of the evolutionary tracks. Many sample stars follow the theoretical

expectations, though certain objects are better represented by the Geneva tracks (e.g., our hottest dwarf



4.7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 149

and supergiant), and others by the Bonn tracks (oxygen in most supergiants). Chances are high that

our “oxygen problem” mostly affects the cooler dwarfs, since we found no real discrepancies for the

other objects.

Due to the small sample size and our selection criterion regarding v sin i, however, definite con-

clusions are not yet possible, and many questions remain, such as: Is there a fast (Bonn) or slower

(Geneva) enrichment? What is the “typical” nitrogen content (if there is any) of early O-dwarfs? To

answer these and related questions, many more more objects per spectral type need to be analyzed.

Nevertheless, and in combination with Fig. 4.7 (N/C as a function of v sin i), some hypotheses could

be formulated: Three of the five hotter dwarfs are located close to the initial abundances, while they

should already have a well-developed N/C ratio if their initial vrot was significant. Thus, it is likely

that these stars started their evolution as slow rotators. From the derived abundance pattern, the same

should be true for the OC-supergiant, in line with an identical hypothesis by Martins et al. (2016).

Except for HD 151515, all hotter supergiants plus two hotter dwarfs (HD 12993 and HD 96715) have

a well-developed N/C pattern, which indicates that an efficient braking mechanism must be present

already at relatively early phases (at least if most of these stars were not observed pole-on). Simi-

lar conclusions (i.e., previous angular momentum loss, well before the potential bi-stability braking)

might also be drawn for two (of four) cooler supergiants (HD 195592 and HD 71304). These notions

might provide indirect clues on the “true”22 mass-loss rates of O-stars, assuming that this braking is

due to mass loss.

Since in this work we focused on photospheric CNO lines, clumping and X-rays should play a

minor role, particularly since the ions that are most influenced by the emission from wind-embedded

shocks (C v, N v, O v, and O vi, Carneiro et al. 2016) are basically not included in our present analysis.

On the other hand, an optical CNO analysis of the hottest O-stars is significantly hampered by the

absence or weakness of corresponding C and O lines (which is the reason that the hottest supergiant

in our sample has spectral type O6). For these objects, which are particularly interesting because of

their higher masses, a UV analysis is inevitable, and at least then X-ray and clumping effects will

need to be accounted for. This is possible already now, thanks to the work by Carneiro et al. (2016)

and Sundqvist & Puls (2018), respectively, where the latter included a suitable treatment of porosity

effects (also in velocity space) into the FASTWIND code, which might be essential for analyzing

abundances from UV lines.

We end our study by concluding that we have developed and tested a method that is big-data-ready,

and that FASTWIND is now (almost) well-equipped to be useful in the CNO analysis of statistically

significant O-star samples, such as the already available VLT-FLAMES, IACOB, and OWN surveys.

On the technical side, we still have to work on the oxygen model atom and to perform careful tests,

particularly in the cooler O-dwarf domain. On the scientific side, we note that though the analysis of

large samples is of prime importance, also the analysis of individual, peculiar objects such as, e.g.,

HD 12993 (the “Nstr” star) and HD 152249 (the OC-star) can lead to considerable progress in our

understanding of massive stars, since often one might learn more from the deviations than from the

consistencies with current theories.

22 i.e., uncontaminated by inhomogeneity-effects
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4.A Appendix A: Equivalent width measurements – three typical exam-

ples

As discussed in Sect. 4.4.1, we have developed an interactive algorithm (in IDL) to measure the Weq’s

of all target lines. Figure 4.8 displays three typical examples, namely for an emission (C iii 5696), an

absorption (N iii 4514), and a blended line (O iii 3961), all in the spectrum of HD 46966 (#6). The blue

line shows the Gaussian fit (line center of the Gaussian indicated in blue as well), while the red color

indicates the wavelength interval used for the fitting procedure and for a direct integration, which was

applied to obtain a second, independent measurement. The Weq’s resulting from these two methods

are usually very similar (less than 5% difference). In the cases displayed in the upper two panels, we

measured, for example, for C iii 5696, Weq(Gaussian) = −62 mÅ vs. Weq(direct) = −57 mÅ, and for

N iii 4514, Weq(Gaussian) = 112 mÅ vs. Weq(direct) = 117 mÅ. In cases of blended lines (as in the

lowermost panel), we fitted the uncontaminated part of the profile by a corresponding Gaussian, and

extended the line wings to simulate the blended part. In this case, a direct integration makes no sense.

For the displayed example, O iii 3961, we found Weq(Gaussian) = 141 mÅ. For consistency between

the first two and the latter cases, we finally used only the values obtained by the Gaussian fit for all

lines. Our procedure to derive an estimate on the corresponding errors is described in Sect. 4.4.1.

4.B Appendix B: χ2 minimization – exemplary cases

To determine the optimum set of abundances and microturbulence(s) for each of our objects, we cal-

culated and analyzed the (reduced) χ2 for C, N, and O, via a self-written IDL script (see Sect. 4.4.3).

In Figs. 4.9, 4.10, and 4.11, we exemplify our analysis by means of the plots produced by this script.

These examples refer to the analysis of different elements in different objects, chosen to obtain a fair

impression on the general results and problems. The first figure shows our “best” case with many lines

available, the second an intermediate one, and the last a case where only few lines are visible.

All three figures have the same organization: The upper panel displays the reduced χ2 iso-contours

in the abundance–vmic plane, where the 1-, 2-, and 3-σ iso-contours (Eq. 4.8) are indicated by the

thick lines. The middle panel provides a comparison between the measured and the theoretical Weq’s,

including error bars. In particular, the black bars display the measurement uncertainties, while the

colored ones correspond to those finally used in our minimization, following Eq. 4.3. Thus, if both

bars are equal, the line has been considered with full weight (Eq. 4.5). In this middle panel, the colored

squares correspond to the measured Weq, with red for ion ii, green for ion iii, and blue for ion iv. The

theoretical Weq’s are plotted as black asterisks, and are always (by definition) located inside the used

error bars. The lower panel is divided into two sub-plots, resulting from projecting the reduced χ2

distribution. On the left, we show χ2 as a function of abundance, and on the right, as a function of

vmic. Each black square represents a model within our grid. The red dash-dotted line refers to the

minimum χ2 value, and the red dashed lines the corresponding 1-, 2-, and 3-σ limits.

Figure 4.9 shows the analysis of oxygen in HD 36512 (O9.7 V) (#1). The upper and lower panels

illustrate that the lowest χ2 is found for ǫO ∼ 8.4, with an upper limit of 5 kms−1 for vmic. The mid-

dle panel verifies the generally good agreement between theoretical and observed equivalent widths,
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Figure 4.8: Examples for equivalent width measurements via Gaussian fits (blue) and direct integra-

tion (with respect to the interval indicated in red): C iii 5696, N iii 4514, and O iii 3961, in the spectrum

of HD 46966 (#6).
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except for O iii 5592, which indicates a larger ǫO value (see discussion in Sect. 4.5.6).

An example for our nitrogen analysis is displayed in Fig. 4.10, for HD 12993

(O6.5 V((f)) Nstr) (#8). The innermost contour occurring in the upper panel, at ǫN ∼ 8.35 and

vmic ∼ 16, represents the model with the lowest χ2. The middle panel stresses the good reproduction

of the observed lines used in the χ2-minimization. The lower panel confirms the estimate of the

upper plot: the lowest χ2 is found for the model calculated with ǫN = 8.33, and from a broad

distribution centered at vmic = 15 kms−1. Since, for this target, the carbon and oxygen analysis

suggests vmic = 20 kms−1 as the best fitting value, we decided to quote this higher vmic as a general

value (see discussion in Sect. 4.4.3).

Finally, Fig. 4.11 provides an example for our carbon analysis, in this case for HD 151515

(O7 II(f)) (#18). The upper panel displays a somewhat degenerate solution, with lowest χ2 between

8.3 < ǫC < 8.6, and a large range of possible vmic values. In the middle panel, the restricted number

of carbon lines is clearly visible, which are well reproduced. The lower panel allows us to find tighter

constraints than the uppermost one. The best-fitting model is given by ǫC ∼ 8.43, and the optimum vmic

can be limited by >∼ 15 kms−1, though the other two elements require an even higher limit, >∼ 20 kms−1.

4.C Appendix C: Line profiles

After identifying the best-fitting model (regarding equivalent widths) via our χ2-minimization, we

compared the corresponding synthetic profiles with the observed ones. Since now the equivalent

widths should agree (on average, and except for non-reproducible lines), also the profiles should

agree, if rotational and macroturbulent broadening are accounted for. Since we relied on the v sin i

values inferred by Holgado et al., we only checked for vmac, and adapted this value when necessary

(see Sect. 4.5.2), by means of a simple by-eye inspection.

Figures 4.12, 4.13, and 4.14 provide instructive examples for the agreement or disagreement be-

tween synthetic and observed line profiles, for the same stars used in the previous appendix 4.B, but

now for all analyzed elements. For the sake of clarity, the theoretical profiles have different colors,

black for carbon, blue for nitrogen, and red for oxygen.

Figure 4.12 shows the comparison for basically all of our target lines from HD 36512 (#1). For this

star, just a few lines have not been used in our χ2 minimization, namely: C ii 3918, 6582; C iii 4650,

4651, 5696; N ii 4601, 4621; N iii 4379, 4641. Moreover, N iv 6380, and the N v lines are not visible

in the observed spectrum, and are therefore not included in our analysis.

The carbon and nitrogen lines are generally well reproduced, except for the triplet

N iii 4634/4640/4641, which, particularly in this temperature range, shows a transition from being

refilled into weak emission, and cannot be reproduced by the current FASTWIND version. For details

and the origin of this problem, we refer to Rivero González et al. (2011). Also for all of our oxygen

target lines there is a satisfactory agreement, aside from O iii 5592 which indicates a higher oxygen

abundance, as already obvious from the comparison of equivalent widths (Fig. 4.9, middle panel).

For hotter objects as HD 12993 (#8), the analysis becomes more challenging. From Fig. 4.13, it is

obvious that C ii, N ii, and O ii lines can no longer be used. Rotation adds to these difficulties. In this

case, we used the following lines for the χ2 minimization: C iii 4186, 4647, 4650, 5696; C iv 5801,
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Figure 4.9: Oxygen analysis for HD 36512 (O9.7 V) (#1). The upper panel displays the χ2
red

iso-

contours in the ǫO–vmic plane. The middle panel compares the observed and theoretical equivalent

widths including error bars (see text), and visualizes the quality of the best-fitting model. In this case,

major discrepancies are only found for O iii 5592, which indicates a larger value of ǫO. The lower

panels display the χ2 distribution projected onto the ǫO (left) and the vmic (right) axis.
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Figure 4.10: As Fig. 4.9, but for nitrogen in HD12993 (O6.5 V((f)) Nstr) (#8). In this case, all

nitrogen lines are well reproduced.
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Figure 4.11: As Fig. 4.9, but for carbon in HD151515 (O7 II(f)) (#18). The middle panel clearly

shows the restricted number of carbon lines available in hotter supergiants. Only a lower limit can be

estimated for vmic (see text).
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5811; N iii 4097, 4379, 4511, 4515, 4518; N iv 4058, 6380; O iii 3961, 4081, 5592. Though the C ii

lines are basically indistinguishable from the continuum, most of the C iii and C iv lines are reproduced

(except for C iii 5696, which is in a transition phase from absorption to emission, and would require

a fine-tuning of the wind description to become improved, if at all). The triplet N iii 4634/4640/4641

is in emission, but even though we did not use these lines in our minimization, since the equivalent

widths are difficult to estimate, they agree reasonably well with our best-fitting model. As pointed out

(and discussed) in the main section, for hotter objects the oxygen abundance estimated from O iii 5592

(mostly) agrees with the one derived from the other O iii lines, as visible in the last panels. For this

and similar objects, we have to rely on the calculated oxygen ionization balance, and have no means

to check it, except for the fact that all O ii lines should be absent in the theoretical spectra.

For HD 151515 (O7 II(f)) (#18), the number of suitable lines is even more restricted than for

the hot dwarf described just above. From Fig. 4.14, we see that only few lines are detectable,

whereas the majority is embedded in the noise. In this case, we could use C iii 4186, 5696; C iv 5801,

5811; N iii 4097, 4379, 4511, 4515, 4518, 4634, 4640; N iv 4058; O iii 5508, 5592. In comparison

to the observations, the synthetic C iii 4647 profile is too strong, while C iii 5696 is too weak. The

C iv lines show a slight asymmetry, but even though we have a fair representation. The triplet

N iii 4634/4640/4641 is clearly in emission, and our theoretical emission lines are too weak (improved

wind description required!), but all other nitrogen lines are well reproduced. Oxygen displays only

few lines, but all of them as calculated from our best-fitting model, and including O iii 5592, show a

good agreement.
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Figure 4.12: HD 36512 (O9.7 V) (#1). Comparison of observed (green) and synthetic line profiles: black – carbon; blue – nitrogen; red –

oxygen. The lines N iv 6380, N v 4603, and NV 4619 are not visible (neither in the observations nor in the synthetic spectra), and are not

displayed in this figure.



1
5
8

C
H

A
P

T
E

R
4
.

S
U

R
F
A

C
E

A
B

U
N

D
A

N
C

E
S

O
F

C
N

O
IN

G
A

L
A

C
T

IC
O

-S
T

A
R

S
:

A
P

IL
O

T
S

T
U

D
Y

W
IT

H
F
A

S
T

W
IN

D

Figure 4.13: As Fig. 4.12, but for HD 12993 (O6.5 V((f)) Nstr) (#8). N ii 3995, 4601, and the N v lines are not visible (neither in the

observations nor in the synthetic spectra), and have been skipped in this figure.
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Figure 4.14: As Fig. 4.12, but for HD 151515 (O7 II(f)) (#18). As in the previous figure, the lines N ii 3995, 4601 and N v 4447 are not

visible and therefore not displayed.
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Summary and Conclusions

The complex physics governing the life of massive stars can be studied from many points of view.

In this work, we detailed from the smallest impact of a single radiative transition to large structures

as the shocks embedded in stellar winds. Independent of the particular relevance on the final results,

both need to be precisely described in order to obtain a better reproduction of observations. By the

end of this thesis, we are able to obtain CNO abundances with a robust and scalable method, ready to

be applied to large samples, which produces results in agreement with theoretical expectations as well

as with alternative studies.

Throughout this work, we presented various improvements of the fastwind code, and we can clas-

sify these in two categories: at first, the front-end developments where we implemented the possibility

of including shock radiation in the calculation of atmospheric models, and secondly the back-end de-

velopments, where we improved the database used for the calculation of carbon collisional and radia-

tive transitions. This last part is hidden from the user inputs, but essential for the realistic description

of carbon ionization. In the end, we performed an extensive set of tests to reassure the quality of our

results and tested if these were in agreement with theoretical assumptions.

In the first part of this work, we developed, implemented and tested a module to provide the in-

clusion of X-ray radiation in the calculation of stellar atmospheric models using the fastwind code.

The setup is basically done by three (user-provided) input values, called the X-ray emission parame-

ters: the filling factor, which gives an estimate of the volume fraction that actually emits high energy

radiation; the maximum shock temperature, and the radial onset of the emitting plasma. Afterwards

we investigated the most affected ions in different stellar conditions. Remarkably, we found that not

only metals but also He can be affected by shock emission (Sect. 2.5.1). We also presented a detailed

discussion regarding the usage of a radially constant mass absorption coefficient, and estimated under

which conditions such approximation is plausible to be adopted (Sect. 2.5.4).

In the second part of this thesis, we improved the data describing the radiative and collisional

transitions that control the carbon ionization and excitation stratification. Our new carbon atom was

thoroughly tested, including a first spectrum synthesis where we estimated, through a by-eye fit, the

carbon abundances of five stars. Another remarkable result was the indirect effect that X-rays can have

on the shape of optical carbon (mainly C iv) lines, which is similar to a reduction of the abundance

itself (depending on the strength of the X-ray emission, the effect may be similar to a reduction of
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0.6 dex). At this point our group had a detailed description of carbon and nitrogen, the latter from

the work done by Rivero González et al. (2012a,b). Therefore we were equipped with the tools for

analyzing chemical-mixing evolution through the N/C ratio. In order to do a quantitative analysis and

to increase the number of objects studied, our methodology had to be automatized.

In the last part we obtained CNO surface abundances for a sample of 18 O-type stars with a

new and semi-automatized method, which, after our tests, can now be applied to larger samples.

While developing and testing our pipeline for the data analysis at this point, we selected targets which

should favor a straightforward abundance analysis: high quality spectra from presumably single and

slowly rotating stars. Our method is based on a χ2-minimization of the (weighted) deviation between

observed and theoretical equivalent widths. This technique allowed us to obtain the best fitting value of

abundance and microturbulence in parallel. After obtaining the CNO abundances for all the stars in our

sample, we presented an extensive investigation of the evolutionary stage of each target by analyzing

their N/C and N/O ratios. The majority of our results were in accordance with the predicted theoretical

evolution of massive stars considering chemical mixing, and agreed well with recent results obtained

for the same targets by other groups. Briefly summarized, the early-type objects have abundances

closer to the solar one, while the evolved targets present a nitrogen enrichment with a clear sign for

chemical mixing (see Sect. 4.6.2 for details).

Now that we acquired a considerable knowledge regarding the quality and reliability of our tools

(at least for the N/C ratio, see below), our chemical analysis may be extended to more complex

objects as fast rotating stars, or using spectra with lower quality. We concentrated our study on

spectra showing lines of different ionization stages of the same atomic species, which is limited by

the effective temperature range of the selected targets. As we now trust the results produced by our

semi-automatized method, we may also extend our analysis to cooler and hotter objects, for which

only one ion has identifiable spectroscopic lines in the observations.

As for the science, also our code evolves continuously, and with this work we are in a position to

provide state-of-the-art results with a particularly fast, stable and effective methodology. Considering

the results and conclusions reached throughout this thesis, our research group has made a further

step in the chemical analysis of massive stars, by providing a stable code, plus a semi-automatized

methodology that can be used for large samples. In parallel, along the last chapters, we also discussed

how our conclusions enable further evidences of many theoretical predictions, again contributing to

the progress of our knowledge about O-stars.

However this is by no means a finished work. One of the main open questions is whether the

abundances obtained from the UV and from the optical agree, and how well they do. This investigation

itself requires many other studies, as for example, the development of a detailed model atom for

oxygen (similar to the study presented in Chapter 3 for carbon), a study of the X-ray parameters

scalability throughout the winds, and to understand the impact of clumping and porosity on the UV

spectrum of massive stars. With the UV analysis, we finally will be able to determine the best fitting

values of the X-ray parameters using the module described in Chapter 2. With the method presented in

Chapter 4, we will be able to distinguish how well the optical metal lines still agree with observations

after including the shock radiation. Summarizing, this work lays the basis for many relevant future

studies, besides all the new results presented in the last chapters.

Any new investigation will produce newer versions of the fastwind code which then requires
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the repetition of some of the tests presented in this thesis. This last point shows the necessity of

continuous revision and enlargement of pipelines, not only to automatize tests, but also to calculate

model grids and to understand the role of each parameter in the model description. Ultimately, the

complete work presented in this thesis and all future steps taken from the results obtained here, will

make our knowledge closer to our final objective: the precise reproduction of what is observed in

nature and to obtain a precise virtual representation of objects (presently) impossible to be observed.
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