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Z U S A M M E N FA S S U N G

Das aktuelle Standardmodell der Kosmologie beruht auf zwei grundle-
genden Fundamenten: zum einen auf dem Vorkommen einer nicht-
relativistischen (kalten), nur gravitativ wechselwirkenden (dunklen)
Form der Materie - besser bekannt als Kalte Dunkle Materie (CDM) -
und zum anderen auf der Existenz eines unbekannten Fluids, welches
das gesamte Universum durchsetzt und dessen späte Dynamik auf
sehr großen Skalen dominiert. Die CDM ist für die Erschaffung der
Potentialtöpfe verantwortlich, in denen Baryonen kühlen und kon-
densieren können, um all die Galaxien zu bilden, welche wir am
Himmel beobachten. Das unbekannte Fluid ist die sogenannte Dun-
kle Energie (DE) - welche die Beschleunigung der derzeitigen Aus-
dehnung des Universums antreibt - in ihrer einfachsten Form: eine
Konstante, L.

Dieses LCDM-Modell ist allerdings sehr erfolgreich, da es genaue
Vorhersagen macht und den Großteil aller verfügbaren Beobachtun-
gen korrekt beschreibt. Die sechs Parameter, auf denen das LCDM-
Modell fußt, können mit derart hoher Genauigkeit gemessen wer-
den, dass Physiker heute von einer ära der "Präzisionskosmologie"
sprechen. Obwohl die Leistungsfähigkeit dieses Modells ausgespro-
chen bemerkenswert ist wird oft vergessen, dass die Errungenschaften
von LCDM auf den zwei obigen Fundamenten basieren, deren Ur-
sprung immer noch völlig unbekannt ist.

Sowohl DE, als auch CDM können mithilfe großräumiger Struk-
turen (LSS) des Kosmos erforscht werden. Insbesondere der Ein-
fluss von L auf die LSS des Universums wird schon seit Jahrzehnten
studiert, wobei der Fokus hauptsächlich auf die statistischen Eigen-
schaften der massivsten Objekte (Galaxienhaufen) gelegt wurde. Seit
einigen Jahren ist es auch möglich geworden dieses Bestreben auf
die Statistik großer Regionen geringer Materiedichte im Universum
auszuweiten, sogenannter kosmischer Leerräume. In diesen Gebi-
eten, wo kaum Materie vorhanden ist, dominiert DE, ein Umstand
der Leerräume möglicherweise zu den besten Kandidaten macht, um
Licht auf den Ursprung der DE zu werfen.

Um die Statistik der Leerräume für kosmologische Zwecke gänz-
lich ausschöpfen zu können ist ein umfassendes Verständnis darüber
vonnöten, wie diese von den begrenzten Informationen beeinflusst
wird, welche wir direkt von Beobachtungen leuchtender Himmelsob-
jekte erhalten; dies ist der Gegenstand dieser Dissertation. Vor einer
derartigen Analyse ist es jedoch hilfreich, sich zunächst den Grund-
aufbau des LCDM-Modells ins Gedächtnis zu rufen.
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Der erste Teil dieser Doktorarbeit ist der Zusammenfassung von
den theoretischen Konzepten und Beobachtungen gewidmet, die zur
Etablierung des heutigen Standardmodells geführt haben. Nach ei-
nem kurzen überblick zu allen Annahmen des Standardmodells wird
in Kapitel 1 die Beschreibung des Universmums als Ganzes bespro-
chen, indem die Theorie der Gravitation und die wichtigsten Ent-
deckungen diskutiert werden, auf welchen diese Beschreibung auf-
baut. In Kapitel 2 wird das Thema der Strukturbildung behandelt:
wir umreißen die Entwicklung kleiner Dichteschwankungen zu kol-
labierten Halos und ausgedehnten Leerräumen, fassen die theoreti-
schen Grundlagen zusammen, die für die Erforschung großräumiger
Strukturen in unserem Kosmos notwendig sind, und führen schließ-
lich das Konzept des tracer bias ein.

Im zweiten Teil dieser Arbeit wird der eigenständige Beitrag zu
diesem Themengebiet präsentiert. In Kapitel 3 wird ein Test basierend
auf Simulationen konkurrierender kosmologischer Modelle behan-
delt. Wir zeigen auf, dass obwohl Leerraum-Statistiken formal die Ef-
fekte einer möglichen (fünften Kraft) modifizierten Gravitation wahr-
nehmen, diese nicht zwischen verschiedenen Modellen der dunklen
Energie unterscheiden können, wenn die Leerräume mithilfe von nicht
repräsentativen Objekten der Materieverteilung identifiziert werden,
wie beispielsweise kollabierten Halos aus dunkler Materie. Das Er-
gebnis der Forschungsarbeit in Kapitel 3 ist, dass ein Modell zur Ein-
bindung des tracer bias in die Leerraum-Statistik notwendig ist, um
Leerräume zur Erforschung des Ursprungs der dunklen Energie zu
verwenden.

In Kapitel 4 wird ein erster Versuch vorgestellt, wie die Eigen-
schaften von Leerräumen, welche in der Verteilung leuchtender Ob-
jekte identifiziert werden, mit Leerräumen in der gesamten Materiev-
erteilung in Verbindung gebracht werden können. Durch Analyse
des mittleren Dichteprofils von Leerräumen, welche in der Verteilung
leuchtender tracer einer hydrodynamischen Simulation definiert wur-
den, ermitteln wir eine lineare Beziehung zu der zugrunde liegenden
Materieverteilung. Wir stellen fest, dass für die größten Leerräume
lediglich der lineare bias als einziger Parameter vonnöten ist, um die
beiden Verteilungen zu verknüpfen.

In Kapitel 5 wird eine erstmalige experimentelle überprüfung der
Resultate aus Kapitel 4 vorgestellt. Zu diesem Zweck verwenden
wir Daten des Dark Energy Survey, der derzeit größten Beobach-
tungskampagne für LSS. Da die räumliche Verteilung der gesamten
Materie im Universum nicht direkt beobachtbar ist, beruht unsere
Analyse auf den relativen Eigenschaften von Leerräumen, welche
durch unterschiedlich repräsentative Haufen definiert sind. Es wird
nachgewiesen, dass das lineare Verhalten in diesem Falle ebenfalls
besteht. Als Nebenprodukt dieser Arbeit beurteilen wir den Einfluss
photometrischer Messungenauigkeiten auf die Identifikation von Leer-
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räumen in drei Dimensionen und schlagen eine konsistente Methode
vor, welche den Fehler von Distanzmessungen in Leerraum-Statistiken
vermindert.

Kapitel 6 fasst alle Resultate zusammen und gibt einen Ausblick
auf zukünftige Forschungsarbeit.
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A B S T R A C T

The current standard cosmological model is based on two fundamen-
tal pillars: the existence of a non-relativistic (Cold) gravitationally
interacting only (Dark) type of Matter - better know as Cold Dark
Matter (CDM) - and the presence of an unknown fluid that perme-
ates the Universe and dominates its late-time dynamics on very large
scales. The CDM is responsible for the production of the potential
wells in which baryons can cool and condense to form the galaxies
that we observe in the sky. The unknown fluid is the so-called Dark
Energy (DE) - which powers the acceleration in the present expansion
of the Universe - in its simplest form: that of a constant, L.

LCDM is indeed a successful model, capable of making sensible
predictions and correctly describing most of the available observa-
tions. The six parameters which LCDM relies on can be measured to
such a high accuracy that physicist often refer to the current epoch as
"precision cosmology" era. Although the effectiveness of this model is
incredibly remarkable, we tend to forget that the accomplishments of
LCDM lay on top of the two pillars we introduced earlier, the nature
of which remains completely unknown.

Both DE and CDM can be studied via the Large Scale Structure
(LSS) of the Cosmos. In particular, the impact of L on the LSS of
the Universe has being studied for decades, mainly focusing on how
statistical properties of the most massive objects (clusters of galaxies)
are affected by it. Nevertheless in recent years it was possible to
extend this effort to the statistics of the very large and low density
regions of the Universe, known as cosmic voids. In such locations,
mostly devoid of matter, DE is dominant, possibly indicating that
voids are the best candidates to shed light on its nature.

To fully exploit void statistics for cosmological purposes, it is nec-
essary to have a comprehensive understanding of how they are in-
fluenced by the limited information we can access directly observing
luminous tracers, which is the subject of this dissertation. Before de-
scribing such effort, it is convenient to recall how the LCDM frame-
work is constructed.

The first part of this thesis is dedicated to the summary of the
theoretical concepts and observational evidence that has led to the
establishment of the current concordance model. More specifically,
after a brief synopsis of all the assumptions of the standard model,
in Chapter 1 we review the description of our Universe as a whole,
by revising the theory of gravity and the major discoveries on which
such description is based. In Chapter 2 we outline the topic of struc-
ture formation: we will sketch the evolution of a small density fluc-
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tuations to collapsed halos and empty voids, sum up the theoretical
background necessary to study of the LSS of our Cosmos, and finally
introduce the concept of tracer bias.

In the second part of this work, we present our original contribu-
tion on these matters. Namely, in Chapter 3 we describe a test run
with simulations of competing cosmological models. We demonstrate
that while void statistics are formally sensible to the effect of a possi-
ble deviation from a vanilla LCDM, they are unable to discriminate
between different dark energy models if voids are traced in a sample
of biased objects, such as collapsed dark matter haloes. The conclu-
sion of the research project presented in Chapter 3 is that a paradigm
to include the tracer bias into the void statistics is needed, if we want
to employ voids to study the nature of dark energy.

In Chapter 4 we present a first attempt to model how properties of
under-densities traced in luminous objects can be linked to the matter
under-density. Studying the average density profiles of voids defined
in samples of luminous tracers extracted from a hydro-dynamic simu-
lation, we assessed its linear relation to the underlying matter density.
We determine that, for the largest voids in the sample, the only pa-
rameter necessary to link the two statistics is the linear bias.

In Chapter 5, we report a first observational test of the findings
presented in Chapter 4. To this end we employ data by the Dark
Energy Survey, currently the largest LSS survey available. As the
three-dimensional distribution of matter in the Universe is not di-
rectly observable, we rely on the relative properties of voids traced
with differently biased clusters. We establish that the linearity in
this case also holds. As a by-product of our work, we evaluate the
impact of photometric uncertainty on three-dimensional void-finding
and propose a consistent method to trace voids, which mitigates the
error from distance estimation in void statistics.

In Chapter 6 we review all results and provide an outlook to future
work.
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Part I

I N T R O D U C T I O N

In the first part of this thesis is dedicated to the summary
of classical cosmological topics.





1
T H E H O M O G E N E O U S U N I V E R S E

Cosmology is arguably among the most challenging branches of physics
that mankind has ever dared to confront: the quest of explaining the
whole Universe - the totality of existing things - from the beginning
of time, up to when these words are written, cannot be described
differently. Perhaps by capturing the task of Cosmology with these
words, we might understand why the current standard cosmological
model, incapable of assessing the nature of ⇡ 95% of the Cosmos,
is considered incredibly successful. In fact, although many funda-
mental constituents of this model remain greatly mysterious from a
fundamental physics point of view, the effectiveness of the minimal
6-parameter LCDM model is striking to the limit of the unthinkable:
spanning from the last scattering surface to the present day, from
few Mpc scale to the Hubble Scale, all the information we have gath-
ered in the last two decades about our Cosmos reasonably fit into the
prescriptions of LCDM, and have delineated its indisputable estab-
lishment.

The major general assumptions which the concordance model re-
lies on are the following:

• physics is the same throughout the observable Universe, which
- on large scales - is statistically homogeneous and isotropic ev-
erywhere (see the Section 1.1);

• General Relativity provides an adequate description of gravity
all over the Cosmos;

• the Universe has been expanding since early times, and it was
once hotter and denser;

• there are 5 basic cosmological ingredients:

– Dark Energy, which behaves like energy density of the vac-
uum;

– Cold Dark Matter, which interacts with regular matter only
gravitationally, and it is pressure-less for structure forma-
tion purposes;

– atomic matter, that behaves just like on Earth;

– photons;

– neutrinos, that are almost mass-less;

3
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• the early Universe was endowed with density fluctuations at
early times, that are Gaussian, adiabatic, and nearly scale in-
variant;

• the observable Universe has a simple topology (i. e. trivial like
IR3);

• the Cosmos is (very close to) flat1;

Relying on these assumptions a large variety of observations can
be predicted with a small number of parameters.

In this first part of the thesis we provide an overview on how these
assumption were placed and tested, leading to the construction of
the concordance model. In this chapter we focus in particular on the
description of the Universe as a single entity. In the summary of the
topics covered in Chapter 1, we follow the work of Baldi [12] (chapter
1), Mana [126] (chapter 1), Weller [218] (chapter 1), Komatsu [109]
(chapter 1).

1.1 the cosmological principle

The cosmological
principle: why

gravity is our only
concern (for now)

The very first assumption on which cosmology is based has some-
what an historical and philosophical taste. The cosmological principle,
in fact, states that there is no privileged position nor direction in
the space-time, or, analogously, that the Universe is homogeneous and
isotropic. In our everyday life we have the clear experience that does
not apply locally and, in fact, such assumption has to be intended
true on very large scales (larger than ⇡ 1000 Mpc/h). In perfect con-
tradiction with the geocentric and anthropocentric view of the World
in place for hundreds of years, the cosmological principle states that
there are no "special locations" in the Universe, which is remarkably
helpful to make a first step in the direction of modeling it.

The cosmological principle furthermore guarantees that to describe
the background evolution of the Universe our only concern should
be gravity, i. e. the only interaction that can play a role at such large
scale. The most general and comprehensive theory of gravity at our
hands is General Relativity (GR) [70]. We shall thereby present how,
starting from the General Theory of Gravitation, we can write down
the equations that follow the evolution of the Universe.

1 Generally speaking, LCDM allows deviation from a flat Universe. However, curva-
ture is measured to be very small. Therefore, this might be considered an assump-
tion as much as constraint, but operatively one might simply assume the Universe
to be flat as a consequence of an early inflationary expansion stage of the Cosmos.
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notation choice In this thesis we will always assume that:

• greek indeces span over the space-time components, e. g. n =
(0, 1, 2, 3);

• latin indeces span over the space-space component, e. g. i =
(1, 2, 3);

• our convention for the metric signature is (�,+,+,+);

• the Planck system of units is valid (unless otherwise stated),i. e.
} = c = 1;

• a dot on top of a function indicates its derivative with respect
of time, e. g. ẋ ⌘ dx

dt , ẍ ⌘ d2x
dt2 .

1.2.1 General Relativity

The equation at the very basis of the dynamic of the Universe is the
field equation of GR, that links the geometrical properties of the space
time with its energy content. Such equation reads as follows: The field equation of

general relativity

Gµn = k2Tµn (1.2.1)

where k2 ⌘ 8pG, G being the Newton’s gravitational constant.
On the left hand side of Equation 1.2.1 the geometrical properties of

the space-time are reported. They are encoded in the Einstein Tensor,
defined as: The left-hand side:

the geometrical
properties of the
UniverseGµn ⌘ Rµn �

1
2

Rgµn (1.2.2)

where two contraction of the Riemann Tensor Rs
lµn that appear in Equa-

tion 1.2.1 are the Ricci Tensor

Rµn ⌘ Rs
µsn , (1.2.3)

and the Curvature Scalar

R ⌘ Rµ
µ = gµnRµn , (1.2.4)

while gµn is the 4 ⇥ 4 metric tensor constituted by ten independent
components (the time-time component g00, three space-time compo-
nents g0i and six space-space components gij).
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The geometry of the space-time is determined by the term on the
right hand side of Equation 1.2.1, where all the information on the
energy distribution of the Universe are reported within the Stress-
Energy Tensor. For a perfect fluid in its own rest-frame with pressure p,
energy density r and 4-velocity uµ the Stress-Energy Tensor is givenThe right-hand side:

the energy content of
the Universe

by:

Tµn = (r + p)uµun + prµn . (1.2.5)

The Equation of State (EoS) of perfect fluids is given by the ratio of
their pressure and energy density:

w ⌘ p
r

. (1.2.6)

Different kind of fluids are present in the Universe, each of them with
its own EoS. The stress energy tensor incorporates all of the compo-
nents in the Cosmos so it simply amounts to the sum of multiple
terms like Equation 1.2.5, each with its specific value of p and r. For
future purposes, it is worth recalling that ordinary perfect fluids ful-
fill the Strong Energy Condition:The Strong Energy

Condition

r + 3p > 0 . (1.2.7)

Equation 1.2.1 clarifies how the energy content (or matter) and ge-
ometry (or space) interact in the GR framework: matter takes care of
bending the space, determining its curvature; the space-time geome-
try, on the other hand, configures the dynamic of its matter content.
Ultimately, the Field Equation of GR sets a general perspective of Cos-
mology: by determining the content of the Universe we can deduce
its intrinsic properties.

1.2.2 Friedmann-Lemaître-Robertson-Walker Metric

To completely determine how the Universe evolves we must choose
a metric and solve Equation 1.2.1. The metric tensor gµn defines the
line element of the space time as:

ds2 = gµndxµdxn . (1.2.8)

The cosmological principle allows us to slice the Universe in space-
like hypersurfaces that are homogeneous and isotropic on large scales.
This defines a global time-like parameter called Cosmic Time, t, whichCosmic Time and

Scale Factor is constant for all hypersurfaces and, for all practical purposes, can
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be considered a global time variable. This furthermore allows us
to simply express the line element of space-time by confining the
time dependency of the metric tensor within a single function of the
cosmic time, also known as the Scale Factor a(t):

ds2 = dt2 � a2(t)dl2 . (1.2.9)

When switching to comoving spatial polar coordinates (r, q, f), the The line element in
comoving spatial
polar coordinates

line element can be re-written as

ds2 = dt2 � a(t)


dr2

1 � Kr2 + r2(dq2 + sin2qdf2)

�
, (1.2.10)

known as the Friedmann-Lemaître-Robertson-Walker metric [FLRW, 80,
83, 119, 177]. K embodies the Curvature of the space-like hypersur-
faces of constant cosmic time. The three values that K can assume Curvature and

geometrycorrespond to different curvatures and geometries, namely:

K = �1: negative curvature, hyperbolic geometry
K = 0: no curvature, Euclidean geometry

K = +1: positive curvature, spherical geometry

(1.2.11)

1.2.3 The Friedman equations

Employing the FLRW metric (Equation 1.2.10), Christoffel symbols,
Ricci Tensor and Ricci Scalar can be computed and inserted in the
Field Equation, Equation 1.2.1. By solving the time-time component
G00 and the space-space components Gij we obtain the Friedmann
Equations (FE), that, following the evolution of a(t), describe the dy-
namic of the Universe as whole. These equations read:

ȧ2

a2 =
k2

3

 
rk + Â

i
ri

!
, (1.2.12)

ä
a
= �k2

6 Â
i
(ri + 3pi) , (1.2.13)

where rk is the curvature density, defined as

rk ⌘ � 3
k2

K
a2 , (1.2.14)

and ri and pi are the energy density and the pressure of each fluid2

in the Universe, respectively. Since ordinary perfect fluids obey the
Strong Energy Condition presented in Equation 1.2.7, it is straight
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forward to understand that the Friedman Equations as written in
Eqs. 1.2.12 and 1.2.13 cannot have a static solution: the second deriva-Static solution

missing tive of the scale factor will always be negative if ordinary perfect flu-
ids only are included in the left hand side of the second Friedmann
Equation.

1.2.4 The cosmological constant

The lack of static solutions to the Friedmann Equations led Einstein
to introduce, in 1917, a Cosmological Constant term, L, in the field
equation [71]. L must effectively produce a negative pressure capable
of balancing the pull of gravity. With this revision, the field equation
Equation 1.2.1 becomes:The field equation of

GR revisited

Ĝµn ⌘ Rµn �
1
2

Rgµn + Lgµn = Gµn + Lgµn . (1.2.15)

The introduction of the cosmological constant might look like a
mere artefact, advocated ad hoc by Einstein to enforce the possibility
of recovering a static solution to the Friedmann Equations. Neverthe-
less, a Cosmological Constant term is formally allowed by the theory,
since it can arise as a constant of integration. In fact the most generalThe Cosmological

Constant as a
constant of
integration

action, S, that can be written in terms of the metric tensor gµn (being
g its determinant) and of its first and second derivatives with respect
to the space-time coordinate xµ is:

S =
1

2k2

Z
d4x
p
�g(R � 2L + L) (1.2.16)

where L is a constant and L is the Lagrangian density of all the
various energy fields in the Universe. The field equation of General
Relativity can be obtained by applying the Least Action Principle to
Equation 1.2.16 in the following form

Ĝµn = k2Tµn , (1.2.17)

where Ĝµn is defined as presented in Equation 1.2.15. The field equa-
tion we initially introduced in Equation 1.2.1 is derivable by setting
L = 0.

The Cosmological Constant term can be moved to the right hand
side of Equation 1.2.17: in this case L is formally treated like newA fluid-component

named L fluid in the Universe, i. e. an additional component to those described
by the Lagrangian L. By doing so the field equation can be further
rewritten as follows

2 Typically i = (r, m), i. e. radiation, r and matter m.
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Gµn = k2T̂µn ⌘ k2
✓

Tµn �
L
k2 gµn

◆
. (1.2.18)

The energy density and pressure to be associated to L, rL and pL
respectively, are determined applying stress energy tensor equation
presented in Equation 1.2.5 to T̂µn and they amount to

rL =
L
k2 , (1.2.19)

pL = � L
k2 , (1.2.20)

implying for the L-fluid an EoS Equation of State of
the L-component

w =
pL

rL
= �1 (1.2.21)

which violates the Strong Energy Condition presented in Equation 1.2.7.
Such property constitutes a peculiarity of the Cosmological Constant
and describes its impact on the dynamic of the Universe: L accom-
plishes the goal for which it was advocated, namely it counteracts the
gravitational pull of other ordinary fluids modifying the Friedmann The Friedmann

Equations with the
Cosmological
Constant

Equations as follows:

ȧ2

a2 =
k2

3

 
rk + rL + Â

i
ri

!
, (1.2.22)

ä
a
= �k2

6

"
�2rL + Â

i
(ri + 3pi)

#
. (1.2.23)

The Friedmann Equations presented in Eqs. 1.2.22, 1.2.23 have static
solutions, albeit unstable, for a geometrically spherical, close Uni-
verse (K = +1) and for non-negative values of ri, pi and L.

After the discovery of the expansion of the Universe by Hubble
[102], the necessity for a static solution ceased to exist, and the whole
concept of a Cosmological Constant was abandoned. Rumor has it,
Einstein himself called the introduction of L “the biggest blunder” of
his scientific career [144]; while it is not of interest whether Einstein
really said or wrote those words, it is worth mentioning that the intro-
duction of L was probably one of the most notorious cases of confir-
mation bias in Cosmology: at the beginning of the 20th century it was
a common belief among scientist (at least) that the Universe was static,
and Einstein did want to provide a cosmological solution that could
meet such a requirement. Twenty years ago our Weltanschauung was
subverted again by a new striking evidence, and the Cosmological
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Constant’s odyssey took another unpredictable twist: thanks to the
discovery of the present acceleration in the expansion of the Universe
[154, 176], the interest in the the L term was renewed. Its role was to
provide an (anti-)pressure stronger than the gravitational pull on the
matter content of the Universe, driving the accelerating expansion of
the Cosmos. We will revise these discoveries in Section 1.3.

It is worth emphasising that the choice of L as dominant compo-
nent opens up to an unpleasant conundrum. In fact, if we associate
the Cosmological Constant to the energy vacuum density (i. e. theThe Cosmological

Constant problem
and the Coincidence

problem

background energy in absence of matter), we find that the observed
value of L is smaller by a factor ⇠ 10120 than the value of the vacuum
energy predicted by quantum field theory. This catastrophic discrep-
ancy is known as Cosmological Constant Problem. Another enigma of
the current cosmological paradigm is that we are living in a very pe-
culiar moment of the Universe’s history, namely the epoch in which
the Dark Energy is taking over as dominant component of the Uni-
verse. The latter peculiar conjunction is referred to as the Coincidence
Problem. These two long-standing difficulties are still far from being
solved.

1.2.5 The critical density and the energy density components

The continuity
equation The Friedmann Equations can be rearranged into a single equation by

differentiating Equation 1.2.22 and inserting it in Equation 1.2.23. The
resulting equation represents the mass-energy conservation and it is
better known as continuity equation, which, for a single component
(with pressure p and energy density r), reads:

ṙ + 3
ȧ
a
(r + p) = 0 . (1.2.24)

It is convenient to introduce the Hubble parameterThe Hubble
parameter

H ⌘ ȧ
a

(1.2.25)

which quantifies the relative expansion rate of a homogeneous and
isotropic FLRW Universe. The scale factor a(t) today, i. e. at t = t0
is conventionally set to unity: a(t0) = 1. Substituting the Hubble pa-
rameter in the first Friedmann Equation, Equation 1.2.22, and in the
continuity equation Equation 1.2.24 rewritten to include all compo-
nents in the Universe, we obtain

H2 +
K
a2 =

k2

3

 

Â
i

ri + rL

!
, (1.2.26)

Â
i

ṙi + 3H Â
i
(ri + pi) = 0 . (1.2.27)
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By considering a flat Universe (K = 0), Equation 1.2.26 defines the The critical density
of the Universecritical density of the Universe as:

rc(t) =
3H2(t)

k2 . (1.2.28)

If a sphere of radius a(t) is filled with matter at critical density,
then the gravitational potential of the sphere is equal to its kinetic
energy: this means that such a sphere contains just enough matter
to halt its expansion at infinite time. The curvature and geometry of
the Universe depend on the balance between expansion rate and the
counter action of gravity (produced by rm); depending on the relation
between rc and rm we expect that:

• if rm > rc then the Universe is closed, with positive curvature
(sphere). Gravity will eventually win: the Universe will stop
expanding and start collapsing on itself in a Big Crunch;

• if rm = rc then the Universe is flat with zero curvature (plane
surface). It will expand forever, with a decreasing expansion
rate (virtually stopping at t ! •);

• if rm < rc then the Universe is open with negative curvature
(saddle surface). Expansion is fated to dominate the Universe,
which will be expanding forever.

Wi , the
dimensionless
parameters of energy
densities

The critical density provides a natural unit for the energy density,
thus it is convenient to define dimensionless parameters of the energy
density contents of the Universe by expressing them in units of the
critical density, rc, as follows:

Wi(t) ⌘
ri(t)
rc(t)

, (1.2.29)

Wi,0 ⌘ ri(t0)
rc(t0)

⌘ ri,0
rc,0

, (1.2.30)

where the subscript 0 always refers to the Universe today. Consider-
ing Equation 1.2.19, we can write down the dimensionless Cosmolog-
ical Constant parameter as:

WL(t) ⌘
rL

rc
=

L
3H2(t)

, (1.2.31)

WL,0 =
L

3H2
0

, (1.2.32)

and, since Wtot = Âi Wi = 1 the dimensionless parameter associated
with the curvature, can be defined as:
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Wk(t) = 1 � Wm(t)� Wr(t)� WL(t) = � K
H2(t)a2(t)

, (1.2.33)

Wk,0 = � K
H2

0
, (1.2.34)

or it can be simply computed using Equation 1.2.14. Using this nota-
tion it is easy to calculate explicitly solutions to the Friedmann Equa-
tions for each component of the Universe. Specifically, assuming
that each component is separately conserved, the continuity Equa-
tion 1.2.27 can be integrated, giving the evolution of the energy den-
sity component with the scale factor:

ri _ a�3(1+wi) . (1.2.35)

By combining this result with Equation 1.2.26 we furthermore obtain
the evolution of the scale factor as a function of the cosmic time:

a(t) _ t�3(1+wi)/2 . (1.2.36)

Substituting in Eqs. 1.2.35 and 1.2.36 the EoS of each component we
can write down the evolution of the scale factor and of the cosmic
time in a single component universe.

1.2.6 Single component universes

Let us consider how the Universe would evolve in specific cases, in
which only one of its component is relevant. We might begin by ex-
ploring a Universe constituted exclusively by radiation. The radiationA universe of

radiation only component (typically photons) has a large pressure, which amounts
to:

pr = (1 + e)rr
kBT
hEi

where
e ⇡ 0.05

for Bosons, kB is Boltzmann’s Constant, T is the temperature and hEi
is the mean energy per particle, which is given by hEi = 3(1 + e)kBT.
By substituting this last expression of hEi in that of the pressure of
relativistic fluids, we obtain:

pr =
r

3
) w =

1
3

, (1.2.37)

thus finally we get that the energy density of the radiation component,
rr, is

rr(t) µ
1

a4(t)
, (1.2.38)
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component pressure p eos w r( t) a( t)

matter 0 0 _ a�3 ( t) _ t2/3

radiation r/3 1/3 _ a�4 ( t) _ t1/2

curvature -r/3 �1/3 _ a�2 ( t) _ t
L -r �1 _ a0 ( t) exp(HL t)

Table 1.1: Summary of the evolution of single component universes.

and consequently the evolution of the scale factor in a radiation only
Universe is:

ar(t) µ t1/2 (1.2.39)

The matter component (baryons, cold dark matter, or any other non-
relativistic fluid) has a negligible pressure compared to its energy
density, pm ⌧ rm. With this assumption we obtain that the energy Einstein – De Sitter

Universedensity of the matter component is:

rm(t) µ
1
a3 , (1.2.40)

and that the scale factor of a single component Universe filled with
matter only is given by

am(t) µ t2/3 (1.2.41)

In a L dominated Universe, we obtain from the Friedmann Equations A L only Universe
that H(t) ⌘ ȧ/a = constant. Therefore:

aL = exp(HLt) (1.2.42)

where HL is an integration constant.

Finally, we consider a very simple (albeit non-physical) Universe, in
which there is no matter, no radiation and no Cosmological Constant,
i. e. an empty Universe. The Friedmann Equations in this case allow The Milne Universe
either a flat (K = 0), static universe or closed (K = �1) universe with
ȧ = constant implying a µ t.

We summarize the solutions in Table 1.1.

Thanks to Eqs. 1.2.35 and 1.2.36 we can rewrite Equation 1.2.26 in
a much compact manner:

H 2 (z) = H 2
0 E2 (z) , (1.2.43)
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Figure 1.1: Energy density evolution of various components. Credit www.virginia.edu

where E2 is defined as

E2 (z) ⌘ Wm (1 + z)3 + WL + Wk (1 + z)2 + Wr (1 + z)4 .(1.2.44)

Knowing how the energy density of each single component evolvesDominant
component over the

history of time
as a function of the scale factor (and as a function of the Cosmic
Time), we can infer which was the dominant component in the Uni-
verse during its history. Soon after decoupling the Universe entered
a radiation dominated era, its expansion was following the regime
a µ t1/2. After the time of equality between matter and radiation (i. e.
teq : rr ( teq ) = rm ( teq )) the dominant component of the Universe
becomes matter: the scale factor of the Universe evolves following
a µ t2/3. In very recent time the constant value of rL began to be
significant enough to take over the dynamics of the Universe leading
to its current accelerated expansion (See Figure 1.1).

1.3 observing the universe’s expansion

So far we have discussed an overall very theoretical view of the Uni-
verse, which, as mentioned at the end of Section 1.2.4, was profoundly
influenced by two observational facts: the Universe is expanding, and
there is an increasing rate in this expansion. In this subsection we re-
view such discoveries.

www.virginia.edu
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Figure 1.2: Original Hubble diagram, from the 1929 paper. It displays the velocities (in km/s, mistak-
enly reported in km in the original figure) of galaxies outside the Local Group as function
of their distances (in parsec). In some cases the velocities of the galaxies (black dots) were
corrected for the motion of the Sun: the best fit for these points is shown by the solid
line. Circles represent galaxies for which such correction was not possible: these points
are interpolated by the dashed line. The slope of the linear fit provides the value the value
of H0.

1.3.1 The Hubble law

In 1929 Edwin Hubble observed that the galaxies outside the Local
Group were receding from the Earth with a rate proportional to their
distance from it. More specifically, Hubble measured that the galaxy
radial recession (v) is proportional to the distance from the observer
D; hence, the Hubble Law reads:

v = H0D (1.3.1)

where H0 ⌘ H(t0) is the value of the Hubble parameter (constant)
today (in Hubble’s paper something around ⇡ 500 h kms�1Mpc�1,
where h is a dimensionless number). The value of H0 was estimated
with linear regression from the Hubble diagram, see Figure 1.2, in
which v was plotted as function of D and H0 was inferred as the
slope of the line that interpolates the points. The results presented The discovery of the

expansion of the
Universe

by Edwin Hubble are inconsistent with a static Universe, but they are
compatible with an expanding Universe for which H0 is providing
the scaling factor for such expansion. Many follow up observations
independently confirmed this last possibility.

This effect can be quantified in terms of a shift of each galaxy spec-
trum toward its red end, hence the definition redshift, z. Such shift is
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associated to the linear stretch of the intrinsic wavelength (l) of the
light coming from the emitting galaxies due to the expansion of the
Universe, implying that l(t) µ a(t). More quantitatively, for galax-
ies that emit photons with wavelength lem and frequency nem, the
observed redshift can be defined as:

z ⌘ lobs
lem

� 1 =
nem

nobs
� 1 =

a(tobs)
a(tem)

� 1 (1.3.2)

where lobs and nobs are the observed wavelength and frequency. If
the receiver (observer) is located today (t = t0), then a(tobs) = a(t0) =
a0 = 1, we find:

a =
1

1 + z
. (1.3.3)

The more a galaxy is further away from the observer, the greater is
the redshift observed on Earth.

1.3.2 Cosmological distances

As a consequence of the Hubble law, the Euclidean concept of dis-
tance has to be generalised in order to account for the expansion of
the space-time. In a flat Universe, photons travel to us on a null
geodesic, cdt = a(t)dr, (where in this case dr = dl in Equation 1.2.9,
and we have explicitly reported c). Therefore, the comoving radial dis-
tance can be defined as:

r = c
Z t0

t

dt0

a(t0)
= c

Z a0

a

da0

a02H(a0)
= c

Z z

0

dz0

a0H(z0)
, (1.3.4)

where H as function of redshift is given by Equation 1.2.43.

The angular diameter distance of an object, DA is defined as its phys-
ical size, c, over its angular size q. In a flat universe DA can be
computed as the scale factor times the comoving radial distance:Angular diameter

distance

DA(z) = a(z)r =
c

1 + z

Z z

0

dz0

H(z0)
. (1.3.5)

Such definition can be used to measure H(z). In fact, if the comoving
separation between two objects A and B (or the intrinsic size of an
object) xAB is known, then (for z ⌧ 1):

H(z) =
cDz
xAB
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where H(z) is the Hubble parameter at redshift z = (zA + zB)/2 (be-
ing zA and zB the redshift at A and B), and Dz is equal to zB � zA.
Unfortunately the intrinsic size or separation of two object is com-
monly not known.

Another method to constrain H(z) was proposed by Alcock and
Paczynski [6] (also known as AP test). This method relies on the stat-
ical isotropy of the Universe and, although it does not require prior
knowledge on intrinsic size or separation, it can only be performed
with a population of spheres of diameter L. By measuring the redshift Alcock Paczyński

testdifference along the line of sight, Dz, we find H(z) = cDz/[L(1 + z)].
Furthermore, the angular extension of this spherical distribution, q, is
related to the the intrinsic physical size, L, via the angular diameter
distance: q/DA(z). Therefore by measuring the angular extension,
q, and the redshift difference, Dz, and combining them, we finally
obtain (for z ⌧ 1):

DAH(z) =
cDz

q(1 + z)
. (1.3.6)

The right hand side of Equation 1.3.6 contains observables, hence
the AP test allows to determine DAH. A challenge for this method
is to find a population of spherically symmetric objects. Recently,
large empty regions of the Universe have been advocated as such
population with promising results [see e.g. 127, 205, 206].

Finally, we recall the definition of luminosity distance, DL, which
links the bolometric observable flux F (i. e. the energy per unit of time
per unit of area from the source to the observer) to the bolometric
intrinsic luminosity of the source, L: Luminosity distance

DL =

r
L

4pF
. (1.3.7)

This implies that farther objects appear dimmer to us. Nevertheless,
if the intrinsic luminosity of an object is known (i. e. we are observing
a standard candle) we are able to infer the luminosity distance form its
apparent luminosity. On top of that, in a FLRW metric, it is possible
to link the luminosity distance to the angular distance with a rather
simple relation. By considering that

• The energy emitted by a luminous object is diluted by the sur-
face area 4pr2a2

0;

• Each emitted photon loses energy as E µ a/a0 = 1/(1 + z);

• The rate at which photons are received per unit of time is di-
lated by a factor a/a0 = 1/(1 + z) (compared to the rate at
light-emission);
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we can write down the cosmological inverse squared law formula, that
is:

F =
L/(1 + z)2

4pr2a2
0

. (1.3.8)

Considering the definition of luminosity distance Equation 1.3.7 and
Equation 1.3.8, we conclude that the following relation applies:

DL(z) = a0(1 + z)r = (1 + z)2DA(z) . (1.3.9)

If Equation 1.3.9 is applied to a population of standard candles (such
as Supernovae Type Ia, as we will later describe in Section 1.3.3) at
known redshift, it can be used to measure H(z).

1.3.3 The accelerating expansion of the Universe

After the discovery of the Hubble law and of the consequent expan-
sion of the Universe, the common (and sensible) belief was that, due
to the effect of gravity on matter, such expansion had to slow down.
With no evidence for positive or negative curvature, the only known
components were matter and radiation. The contribution of the latter
was irrelevant after the time of matter-radiation equality. Therefore
the model typically in auge from the thirties till the nineties was that
of a flat, matter dominated Universe.First evidence-based

discrepancy from a
matter dominated

Universe

It is worth recalling that the first observational measurement dis-
playing inconsistency with Standard Cosmological Model at that time,
came from the study of the large-scale structure of the Universe in
1990. In particular the large-scale angular correlation function of
galaxies in the APM Galaxy Survey [125], was not compatible with
the theoretical predictions produced by a flat, matter dominated Uni-
verse. Later the same year, Efstathiou, Sutherland, and Maddox [69]
displayed that such discrepancy could be removed by assuming a
flat Universe in which the matter content was very low, ⇡ 20% of
the total energy density, and in which the remaining missing energy
was provided by a Cosmological Constant L. Furthermore, in their
conclusions, Efstathiou, Sutherland, and Maddox [69] solicited fur-
ther investigations on these matters, such as new geometrical tests to
measure the deceleration rate of the Cosmos, in order to confirm or
constrain the hypothesis of a Cosmological Constant dominating the
dynamic of the Universe.The Supernovae

experiment A few years later two independent observational campaigns, The
Supernova Cosmology Project [176] and The High-z Supernova Search
Team [154], provided the invoked evidence. The two groups employed
Supernovae Type Ia (SNIa) to study the relation between magnitude
and redshift. This particular kind of Supernova is originated by a
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binary system, in which one of the stars is a white dwarf (WD): as
the evolution of a binary system proceeds, the companion massive
star might expand touching its Roche lobes, losing mass to the WD,
which undergoes an accretion fase. WD’s hydrostatic equilibrium is SNIa as standard

candlesvery well understood: such a compact object does not collapse thanks
to the electron degeneration pressure, which balances the strong grav-
itational pull exerted by the WD itself3. Such equilibrium can be
reached only within a certain mass range, to which an upper limit
is given by the Chandrasekhar mass (⇡ 1.36M�). As soon as the
accretion breaks this mass limit, the WD explodes in a SNIa: the ad-
vantage for cosmological purposes is that, knowing the mass of the
progenitor, it is possible to characterize with extremely high accuracy
the intrinsic magnitude of such supernovae explosions (i. e. SNIa are
standard candles).

The SNIa magnitude evolution with redshift is incompatible with
a decelerating Universe: in fact, both groups found evidence for neg-
ative values of the deceleration parameter today, q0, defined as

q0 ⌘ � ä0a0

ȧ2
0

= � Ḣ0 + H2
0

H2
0

. (1.3.10)

Fluids fulfilling the strong energy condition - presented in Equa-
tion 1.2.7 - cannot account for positive values of ä: therefore, the
evidence for negative values of q0 reported by Riess et al. [176] and
Perlmutter et al. [154] suggests the presence in the Universe of a un-
known component that violates Equation 1.2.7 and factually drives
such acceleration in the expansion. The simplest fluid meeting these
requirements is L. Many other probes in last 20 years confirmed the
accelerated expansion, and, so far, there is no particular evidence for
ruling out an elementary Cosmological Constant as late time domi-
nant component.

3 WDs are objects with sizes similar to that of the Earth but with typical masses around
one solar mass, M�.
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T H E L A R G E S C A L E S T R U C T U R E O F T H E U N I V E R S E

In Chapter 1 we have clarified how the Universe behaves as a whole,
by assuming the Cosmos to be homogeneous and isotropic. However,
the skies are populated with a plethora of structures: stars are usu-
ally embed in globular clusters or in galaxies, galaxies are distributed
over the Cosmic Web of the Universe, in filaments or clumped together
in cluster of galaxies, leaving some other regions mostly under-dense
or empty. We shall revise how this large variety of structures materi-
alized.

This Chapter is entirely devoted to the summary of the processes
that led to the formation of structure in the Cosmos. We will review
how, starting from small fluctuations in the energy density content
of the Universe, over-densities grew by means of a gravitational col-
lapse and under-densities expanded to form large and almost empty
regions. The treatment of these subjects is mostly based on the fol-
lowing books, notes and reviews (including references therein): Coles
and Lucchin [54] (Chapter 10), Mana [126] (Chapter 1), Tormen [216]
(Chapters 1-5), Weller [218] (Chapters 4, 5), Komatsu [109] (Chapters
3), Hamaus [91] (Chapter 1-3), Zentner [223].

Let’s start back where we left after the discovery of the Hubble
law in Section 1.3.1. If the Universe is expanding, it is reasonable
to assume that in the past the Cosmos was smaller, denser and hot-
ter than now. The early Universe was in fact so hot and dense that
ordinary matter was ionised and radiations tightly coupled to elec-
trons via Thomson scattering. As the expansion of the Universe pro- “...And there was

light”ceeded, when the Universe was roughly 380000 year old (z ⇡ 1100),
(its temperature ⇡ 3000 K) was small enough to finally allow pro-
tons and electrons to form hydrogen, the Cosmos to become optically
thin, and photons to free stream across the Universe. These photons
can be observed today as a relic of the decoupling process, better
known as Cosmic Microwave Background (CMB). The discovery of
the CMB radiation is perhaps one of the best known examples of
serendipity in science: in 1964 two radio-astronomers, Penzias and
Wilson [153], while calibrating their antenna, accidentally found a
background noise coming from every direction of the sky. The ex-
cess of temperature detected by their instrument was "isotropic, un-
polarised and free from seasonal variations" [153]. The origin of the
noise discovered by Penzias and Wilson [153] was cosmic microwave
background itself, as speculated soon after its detection. The discov- The CMB as proof of

a Hot Big Bangery of the CMB is fully predicted by The big bang theory, which pro-

21
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poses that our Cosmos was originated by a singularity with infinite
density and temperature, in which all forces were unified. In such
picture the coupling between electrons and photons occurs naturally
in the early Universe. When the recombination process is finally over,
it is expected to leave a relic at the last scattering surface. The exis-
tence cosmic microwave background radiation is still considered one
of most important successes of the big bang theory.

The CMB appears to us as an isotropic radiation filling the whole
Universe, a thermal bath of photons, with a characteristic black body
spectrum at the temperature of TCMB = 2.73K. It is of vital impor-
tance that the CMB radiation has very small fluctuations in its tem-
perature, that, under adiabatic conditions, produce also density per-
turbations:

DT
T

=
Drm

rm
⇡ 10�5 . (2.0.1)

The general idea is that thanks to these small fluctuations in the initial
conditions, we now see the structures that form the cosmic web.

The discovery of such primordial anisotropies was made by the
COsmic microwave Background Explorer (COBE) in 1992 [195]. The
CMB is today one of the most important cosmological probes, exten-
sively studied by 2 major missions in recent years [110, 159, WMAP,
Planck], that exploited its cosmological potential: the constraints pro-
vided by the study of the CMB are currently the ones with highest
precision. However, the CMB also represents the very end (or be-
ginning) of the observational Universe: currently we cannot look at
anything that happened before z ⇡ 1100.

Hence, we can try to infer stages occurring earlier than CMB time
only with theoretical speculation. It is possible and plausible that theOn the inflationary

expansion of the
very early universe

Universe underwent a phase of inflationary expansion before CMB
time, which would explain a number of things: why the whole Uni-
verse was causally connected at z ⇡ 1100 (as shown by the uniform
temperature of the CDM), why the Universe is flat, why the magnetic
monopoles cannot be observed. Moreover, some predictions made by
the inflation theory were successful (small Gaussian fluctuations of
the CMB, spectral index ns close to unity but smaller than 1). Nev-
ertheless, the details of such theory pose a lot of questions that can
not be easily addressed, such as what drove that expansion and how
and why did it start. The CMB could provide a further test to inflac-
tionary theories: if an exponential growth of the universe occurred
at very early stage, it should be possible to find an imprinting of the
gravitational waves produced by it in the polarization of the cosmic
microwave background. Such measurement is possible, but compli-
cated by dust contamination in the foreground.
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2.1 structure formation : linear theory

Provided that small fluctuations of the density field did exist at early
times, we should now understand under which condition they col-
lapsed. In a static, homogeneous and isotropic fluid, small perturba-
tions in density and velocity will generally evolve as follows: if pres-
sure is negligible, an over-dense region - attracting the surrounding
material - tends to become denser and denser, eventually collapsing
into a gravitationally bound system. The threshold in the length scale The Jeans lenght
that a fluid (with mean density r) should exceed to experience such
collapse is given by the Jeans lenght of a fluid:

lJ = cs

r
p

Gr
, (2.1.1)

where cs is the speed of sound.

There are different ways to qualitatively understand why lJ has
this form: the easiest is probably provided by the comparison of the
free fall time tff µ 1/

p
Gr (i. e. the typical time that a fluctuation

needs to collapse under its own gravity) with the hydrodynamical
time th µ l/cs (i. e. the typical time needed by the perturbation to
adjust its pressure and density variations) of the fluid. By imposing
tff = th we can estimate that l ⇡ lJ, and we obtain that lJ µ cs/

p
Gr

as more precisely displayed in Equation 2.1.1. If l > lJ, then the
fluctuation will grow. Otherwise (if l < lJ) fluctuations will oscillate
as acoustic waves. To study the collapse of cosmological objects this
simple theory is generally employed, although further complications
(expanding background, average density evolving with time, horizon
scales) must be included.

The first over-densities to form were those of dark matter: in fact,
before decoupling, the radiation pressure was preventing the collapse
of the fluctuation in the radiation component (which was dominant in
the early Universe), and baryonic matter, being coupled to radiation,
could not collapse as well. The interplay between gravitation and ra-
diation pressure produced oscillations in the baryon-photon plasma,
known as Baryonic Acoustic Oscillations (BAO). Cold Dark Matter in-
homogeneities, on the other hand, were able to start to condensate
and grow earlier, as radiation pressure did not impede them to do so.

After recombination, when the baryons fully decoupled from ra-
diation, the first local over-densities of ordinary matter could finally
form, but, at that stage, dark matter was already providing some po-
tential wells in which baryons could collapse, forming structure much
faster. In a Universe with baryonic matter only, structures would form
at a much later time than we observe, or, in other words, the existence
of CDM boosted structure formation.
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Figure 2.1: Evolution of perturbations, corresponding to a mass-scale of 1015M�, for the cold com-
ponent dx, the baryonic component dm and radiation component dn. Credit: Coles and
Lucchin [54]

Although after recombination it is possible to treat the evolution of
matter over-densities with the same physical description, regardless
if baryons or dark matter are under study, the power spectrum of fluc-
tuations in baryonic matter or in dark matter are quite different: BAO
dominate the power spectrum of baryonic fluctuations at early time,
while such signature is almost negligible in the dark matter power
spectrum. In Figure 2.1 it is shown how the evolution of density per-
turbation in dark matter dx is not significantly altered by the other
components, while dm and dr are oscillating before decoupling. After
that, dm rapidly catches up with the dark matter evolution.

2.1.1 Jeans instability

In order to understand more generally how lJ was derived by Jeans,
we must follow the evolution of a inhomogeneity of a fluid with mean
density r̄(t); it is convenient to define its density contrast asThe density contrast

d(~x, t) =
r(~x, t)� r̄(t)

r̄(t)
. (2.1.2)

In order to simplify the study of the evolution of density fluctuations,
we make the following assumptions:
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• dark matter and baryons evolve together, i. e. we treat them as
a single fluid;

• the fluctuations collapse only gravitationally;

• the process is adiabatic;

• the fluctuations are small (d ⌧ 1), which allows us to treat
them linearly (considering only first order terms in d) and to
ignore general relativistic effects (i. e. we can treat gravity in a
Newtonian fashion);

• the fluctuations arise in an ordinary perfect fluid (that we fully
know how to treat).

To analyse the evolution of a Newtonian perfect fluid with density
r = r(~x, t), flow velocity u = u(~x, t), we generally need five equations,
that link the five field (density r, velocity ~u, pressure p, entropy S and
gravity F) of the fluid as follows: The five Equations

that describe a
Newtonian perfect
fluid

• the Continuity Equation expressing mass conservation

∂r

∂t
+ ~5 · (r~u) = 0 ; (2.1.3)

• the Euler Equation, signifying the momentum conservation

∂~u
∂t

+ (~u · ~5)~u = �1
r
~5p � ~5F ; (2.1.4)

• the Poisson equation, that links the gravitational field to its
source

52F = 4pGr ; (2.1.5)

• An equation that describes the evolution in time of the entropy,
S, which, assuming the adiabatic condition is simply

dS
dt

= 0 ; (2.1.6)

• Finally we need and Equation of State, that - since S = constant,
does not depend on the entropy - simply relates pressure and
density

p = p(r) . (2.1.7)
Static solution

A static solution to this set of equation is given by1:

1 Please note that such set of solutions is formally inconsistent, as a constant gravi-
tational potential it is not allowed by the Poisson Equation unless r = 0. Anyway
this simplified treatment still allows to find reasonable solutions in case of small
perturbations.
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8
>>>>>><

>>>>>>:

r = constant ⌘ r0

p = constant ⌘ p0

~u = 0

F = constant = F0

, (2.1.8)

plus the obvious S = constant that from now on we are going to ig-
nore. The static solution presented in Equation 2.1.8 can be perturbed
by adding small fluctuation to it, as follows:

8
>>>>>><

>>>>>>:

r = r0 + dr

p = p0 + dp

~u = d~u

F = F0 + dF

. (2.1.9)

By inserting the perturbed equations (Equation 2.1.9) into the sys-
tem of equations provided by the continuity equation, the Euler’s
equation and Poissons equation, neglecting terms with order higher
than linear, we obtain the following system of equations:

8
>>>>><

>>>>>:

∂dr

∂t
+ r0~5d~u = 0

∂d~u
∂dt

= � c2
s

r0
~5dr � ~5dF

52dF = 4pGdr

(2.1.10)

which can be recast into a single differential equation: Wave equation

d̈r � c2
s 52 (dr) = 4pGr0(dr) . (2.1.11)

Equation 2.1.11 is a wave equation with solution:

dr(~x, t) µ d(~x, t) exp(�i~k ·~x + iwt) , (2.1.12)

where w and~k satisfy the dispersion relation:

w2 = c2
s k2 � 4pGr0 , (2.1.13)

with k = |k|. By imposing this equation to be zero, we obtain the
Jeans wave number

kJ =
p

4pGr0/cs = 2p/lJ ,

from which Equation 2.1.1 can be derived. If w is imaginary, the
perturbations will oscillate as sound waves, while, if w is real, we
will have exponentially growing and decaying modes.
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2.1.2 Gravitational instability in an expanding Universe

The treatment we presented in the previous Section, Section 2.1.1, has
to be adapted to an expanding Universe. This means we shall link
the evolution of small fluctuations with the scale factor. Furthermore
the Jeans length should be computed under different regimes and
for various typical scales: the relevant epochs in this framework are
separated by the equality time teq and the recombination time trec,
while, besides lJ, important scales to consider in this context are the
dissipation scale lD (below which the acoustic waves are cancelled
by micro-physics processes), and the horizon scale

RH = a(t)
Z t0

0

cdt
a(t)

,

outside of which there is no causal connection. Before introducing
how the Jeans length may be computed in all of these cases, it is
useful to present a very qualitative but rather general solution (which
will be presented following the notes by Tormen [216]). If we consider A simple and yet

general perspectivean over-dense fluctuation as a closed locally over-dense universe (to
which we refer to with the suffix loc) immersed in a flat, matter only
Universe, then the two Friedmann equations to consider in order to
describe this system are:

8
><

>:

H2 =
k2r

3
, K = 0

H2
loc =

k2rloc
3

� a�2 , K = 1
. (2.1.14)

If we decide to study the behaviour of such fluctuation at t = t0 :
H(t0) = Hloc(t0), we obtain

k2rloc
3

� a�2 =
k2r

3
,

from which, by defining d = (rloc � r)/r, we can write:

d(t) =
3

k2ra2 , d µ a�2r�1 (2.1.15)

which is valid if d ⌧ 1. Remembering Equation 1.2.35, we finally get

d(t) µ a3(1+w)�2 = a1+3w .

For scales l > RH, as no causal connection is possible, gravity is the
only interaction in place therefore all components follow the domi-
nant component. Thus, we conclude that, before equality:

t < teq, l > RH ) r ⇡ rrad ) w = 1/3 )d ⇡ drad µ a2 µ t
dbar µ drad

dm µ drad
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and, after equality:

t > teq, l > RH ) r ⇡ rm ) w = 0 )d ⇡ dm µ a µ t2/3 .
dm µ dm

dbar µ dm

These qualitative solutions might also be valid for scales lJ � l <
RH, but, in general, for scales l < RH, perturbations in the non-
dominant components behave differently, as other interactions have
to be considered.

To determine more quantitatively the evolution of small fluctuations
at all scales and time in an expanding Universe, we shall include the
expansion in the system of equations including Poisson’s, Euler’s and
Continuity Equation. In this case it also convenient to use comoving
coordinates i. e. ~xcom = ~x = a~xphys. The velocity of the fluid, that
can be obtain by taking the derivative with respect to time of ~x. This
is ~u = H~x + ~uint, i. e. is given by an intrinsic velocity ~uint term and
by the expansion of the Universe. Using this notation the system ofA perturbed static

solution in the
expanding Universe

equations we should solve reads as follow:
8
>>>><

>>>>:

∂r

∂t
+ ~5 · (r~u) = 0

∂~u
∂t

+ (~u · ~5)~u = �1
r
~5p � ~5F

52F = 4pGr

. (2.1.16)

A perturbation of a static solution to the system of Eqs. 2.1.16 is given
by:

8
>>>>>><

>>>>>>:

r = r0(1 + d)

~u = H~x +~v

p = p0 + dp

F = F0 + f

. (2.1.17)

Substituting these perturbed solutions in the system of Eqs. 2.1.16,
and selecting only the linear terms, the system to be solved reads:

8
>>>>><

>>>>>:

∂dr

∂t
+

r0

a
~5~uint + 3Hdr = 0

∂~v
∂t

+ H~v = � c2
s
a
~5d � 1

a
~5f

1
a2 52 f = 4pGr0d

. (2.1.18)

To solve system of Eqs. 2.1.18 we move to Fourier space, and we recast
the system into a single differential equation. In this case, the system
depends on the scale factor and on its first derivative over time:
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d̈k + 2
ä
a

ḋk + dk

✓
k2c2

s
a2 � 4pGr0

◆
= 0 . (2.1.19)

Equation 2.1.19 is a damped wave equation. If we neglect the ex-
pansion term and identify |k|/a as the physical wave number, with
~k being the the comoving wavenumber, we recover the wave equation
we formerly obtained in a static Universe. Similarly to what we have
seen in the previous , the Jeans wave number

k2
J ⌘

4pGr0a2

c2
s

(2.1.20)

separates the stable modes from the gravitationally unstable ones.
If we assume that the Universe is flat (K = 0) and matter domi-

nated, with
ȧ
a
=

2
3

t�1 , and r0 = (6pGt2)

we obtain
d̈ +

4
3t

ḋ � 2
3t2 d = 0 ,

where, as already motivated earlier, the pressure term was neglected
being not relevant in a matter dominated Universe (c2

s k2/a2 ⌧ 4pGr0).
This last equation has two independent solutions, a growing mode,
d+, and a decaying mode, d�, that, by choosing a time ti conveniently
for normalization purposes, can be written as follows:

d+(t) = d+(ti)

✓
t
ti

◆2/3
, (2.1.21)

and

d�(t) = d�(ti)

✓
t
ti

◆�1
. (2.1.22)

From Eqs. 2.1.21 and 2.1.22 we see the effect of the background expan- The effect of
expansion on EdS
Universe

sion of the Universe: it slows down the otherwise exponential growth
of the perturbation, resulting in a power law growth of the unstable
modes. Generally speaking, Equation 2.1.19 has to be solved in all
specific conditions occur at various scales and epochs of interest to
determine how the growing modes behave.

2.2 non-linear theory

In the previous Section we have recapped under which condition
the collapse can happen and what is the impact of the expansion
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of the Universe on it. We saw that gravitational instability produces
growing and decaying modes, whose evolution should be followed
to further investigate the formation of the large scale structure of the
Universe.

During the matter dominated era (or, analogously, in a Einstein-
De Sitter Universe), the linear density fluctuation, d, grows as d µ a,
as depicted in previous . The linear treatment, though, break down
quite fast: it is valid only for d ⌧ 1 hence it cannot be used to follow
the evolution of non-linear density fluctuations that will eventually
grow from the initially small fluctuations. Specifically, when d � 1,
density fluctuations collapse into gravitationally bound objects i. e. a
haloes, where galaxies that we observe in the sky are hosted.

Since the total matter must be conserved, the fact that some regions
have d � 1 implies that other regions have d < 0. We have a limit to
how under-dense these region can be in terms of density contrast, as
the minimum value of d ⌘ r/r� 1 is �1 indeed. Such empty regions,
or nearly so, are called voids. In the followings we will summarize
what are the key results coming from non-linear theory evolution of
over-dense and under-dense fluctuations.

2.2.1 Spherical collapse of dark matter halos

Following the non-linear regime of structure formation is rather com-
plicated. Its precise treatment is very hard, and usually N-body sim-
ulations are the most appropriate instrument to study the formation
and evolution of haloes. We will describe some of these simulations
in the second part of this thesis (see e. g.Section 3.2.2).

Despite that, it is useful to work out a simplified case known as
spherical collapse for a gravitationally bound objects. Consider a spher-
ical region of mass M and radius r. Due to the expansion of the
Universe, initially ṙ > 0. As the mass enclosed within r must be con-
served, Ṁ = 0 holds. During the matter dominated era, the equation
of motion is given by Newton’s law,

r̈ = �GM
r

; (2.2.1)

after multiplying both sides by ṙ and integrating them, we obtain that
the kinetic energy and the potential energy:

1
2

ṙ2 � GM
r

= E , (2.2.2)

sum up to E, which is an integration constant. Since we would like
to evaluate the case in which the expansion of this region eventually
stops, turns around, and collapses, we shall consider the case in which
E < 0. In this particular case the solution to Equation 2.2.2 is knownThe turn around



2.2 non-linear theory 31

as the cycloid, and it is given by

8
>>><

>>>:

r = A(1 � cos q)

t = B(q � sin q)

A3 = GMB2

, (2.2.3)

where A and B are constants, and the zero point of time was chosen
such as t ! 0 as q ! 0. The evolution of matter density within this
region is expressed as a function of a new parameter q as:

r =
M

4p
3 r3

=
3

4pGB2(1 � cosq)3 . (2.2.4)

To understand how the mean density r depends on q, we recall
that the Friedmann equation during the matter dominated era reads Spherical collapse in

the matter
dominated era

H2 =
8pG

3
r =

4
9

1
t2 , (2.2.5)

therefore:

r =
1

6pGt2 =
1

6pGB2(q � sin q)2 . (2.2.6)

By considering the ratio between r (Equation 2.2.4) and r (Equa-
tion 2.2.6), we obtain the following result

d =
9
2
(q � sin q)2

(1 � cosq)3 � 1 . (2.2.7)

The collapse time corresponds to q = 2p, at which d approaches in-
finity. In practice this is an artefact of the spherical symmetry: a finite
angular momentum makes it impossible for particles to fall straight
down to the centre r = 0, forming an object with finite size. If we A sanity check for

small fluctuationsconsider an early time limit to this treatment, then q ⌧ 1, and

d ⇡ 3
20

q, (q ⌧ 1) . (2.2.8)

As d in Equation 2.2.8 is also ⌧ 1, we should be able to recover the
linear limit (d µ a µ t2/3), and, if fact, looking at the second equation
of the cycloid, we get that t µ q3 for small q, and thus d µ t2/3 µ q2.

The time at which the density fluctuation collapses (q = 2p; d ! •)
is given by
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tc = 2pB . (2.2.9)

To summarise, following the non-linear spherical collapse, we find
that at t = tc, the overdensity becomes a bound halo d ! •. It
is interesting to determine which value would d have in the linear
treatment at the same time. Using d ⇡ (3/20)q2 and t ⇡ (B/6)q3 (for
q ⌧ 1), the linear evolution is given byA linear threshold to

the non-linear
collapse

dL =
3
20

✓
6
B

◆2/3
t2/3 , (2.2.10)

and, finally, by inserting Equation 2.2.10 in the expression for the
collapse time Equation 2.2.9, we derive

dc ⌘ dL(tc) =
3(12p)2/3

20
⇡ 1.686 . (2.2.11)

This last result is quite interesting because it allows us to link the
non-linear evolution of the density fluctuations, which is remarkably
difficult to model, to the linear evolution, which is known. If we start
evolving small fluctuations, we know that some of them will collapse,
and some other will not. But, more specifically, some density peaks
collapse, which, in the real world have a very high density (! •). In
the corresponding linear world, though, this collapsed regions have
dL(~x) > dc ⇡ 1.686. This simple property will be of help in the
calculation of the number of collapsed object at a given time.

2.2.2 Shell-crossing of empty regions

In analogy to what we saw in Section 2.2.1, we shall find a way to link
the non-linear theory of void expansion to its linear model. Under-
densities never reach a turn-around time, and they keep expanding
forever unless they encounter an over-density at larger scales that
embeds them (void-in-cloud scenario). Furthermore, their density
has a lower limit, as there is nothing less dense than empty.

A possible way to determine the moment in which non-linearity
kicks in during void evolution is constituted by the so-called shell-
crossing: two adjacent shells of different initial radius start crossing
each other, leading to the formation of a void and of its ridge. TheVoids as

shell-crossing
regions

shell-crossing condition depends on the initial slope of the under-
density. In the simplest case this could be an inverted top-hat. Fol-
lowing such evolution we find that the typical density contrast of a
shell crossing region is [191]



2.3 statistical properties of the large-scale structure 33

d0,sc w �0.795 (2.2.12)

and compared to its initial size, the comoving void radius has ex-
panded of a factor 1.697. Also in this case, we may compute the
linear approximation for the average density contrast, using an ap-
proach analogous to that reviewed for the halo-case. The correspond-
ing density contrast inside a top-hat is known as the linear density
threshold for void-formation

dv ⌘ �2.717 , (2.2.13)

which, due to linear extrapolation, amounts to an non-physical neg-
ative density. Nevertheless, also in this case, such quantity will be
important to predict the number of voids that we expect to see in
data.

The derivation of Equation 2.2.13 relies on the assumption of an in-
verted top-hat, which is not representative of a realistic initial under-
density. It is possible to demonstrate numerically that - in a Gaussian
random field - density profiles around minima evolve similarly, and
evolve in a top-hat like configuration by the time of shell crossing
[20, 191]. Despite the similarities, the final density contrast becomes
more negative in the centre and the void radius grows slightly less in
a more realistic case [191].

Bernardeau [22] provides a useful relation to link linear and non-
linear densities inside voids

dv = C[1 � (1 + d0,sc)
(�1/C)] , (2.2.14)

where C is a constant with value ⇡ 1.594. Equation 2.2.14 will be
helpful to relax some of the hypothesis we made so far in the context
of evaluating the abundances of voids.

2.3 statistical properties of the large-scale structure

To study the statistical properties of the Large Scale Structure it is
convenient to introduce some definitions and revise some seminal
work that pioneer these studies. In this Section we particularly make
use of Hamaus [91], Zentner [223] and references therein.

Correlation function and power spectrum We consider fluctuation
in the density field r(~x) described by the density contrast d(~x). As
previously depicted, the Universe is endowed with primordial den-
sity fluctuations, with the primordial density contrast being a statisti-
cally homogeneous and isotropic Gaussian random field.



34 the large scale structure of the universe

The homogeneity condition requires that both the mean of the dis-
tribution, hd(~x)i, and the two point correlation function,

hd(~x1)d(~x2)i ⌘ x(~x1, ~x2) ,

to be translation invariant: this implies the two-point function to be
a function of the separation vector between points, i. e.

x(~x1, ~x2) = x(~x1 � ~x2) .

Furthermore, the assumption of isotropy requires the two-point cor-The correlation
function is

translation and
rotation invariant

relation function to be invariant under rotation. Hence, x(~x) is only
a function of the distance between the two points, i. e.:

hd(~x1)d(x2)i ⌘ x(~x1, ~x2) = x(|~x1 � ~x2|) = x(r) , (2.3.1)

where r ⌘ |~x1 � ~x2|. By definition, the Fourier transform of the den-
sity contrast is given by

d(~k) =
Z

d3x d(~x)ei~k·~x , (2.3.2)

with the inverse transform being

d(~x) =
1

(2p)3

Z
d3k d(~k)e�i~k~x . (2.3.3)

It is possible to compute the correlation function in terms of Fourier
coefficients, averaging over the whole space. As we argued at the
beginning of this Section, the two point function depends only on the
amplitude of~r due to the cosmological principle. Thereby, employing
the latest equation we can re-write the correlation function as follows:

x(r) =
1

2p2

Z
k3V�1|d(k)|2 sin(kr)

kr
d log k . (2.3.4)

The correlation function is the Fourier transform of the power spec-
trum:

P(k) ⌘ V�1h|d(k)|2i , (2.3.5)

where the average is over an ensemble of universes with the same sta-
tistical properties. The correlation function hd2(~x)i is therefore simply
the variance of the field.

The power spectrum has the dimension of a volume, but it is con-
venient to define its dimensionless form, the Dimensionless Power Spec-
trum which is more easily lent to direct interpretation
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D2(k) ⌘ k3P(k)/2p2 . (2.3.6)

Typically, D2(k) increases with wave-number (until some exceedingly
small scales), but, in practice, we observe the density field smoothed
with some finite resolution, due to observational or computational
limits. Hence, we are interest in defining the density field smoothed
on a particular scale RW ,

d(~x, RW) ⌘
Z

d3~x0W(|~x0 �~x|; RW)d(~x0) , (2.3.7)

where the function W(x; RW) is the window function that filters the The window
functiondensity field in the desired manner. One of the most commonly em-

ployed window functions is the real-space top-hat filter

W(x; RW) =

8
<

:
const , |x|  Rw

0 , elsewhere
, (2.3.8)

which has the following Fourier transform

W(k; RW) =
3[sin(kRW)� kRW cos(kRW)]

(kRW)3 . (2.3.9)

The density field of fluctuations is assumed to be a Gaussian ran-
dom variable. Therefore, the smoothed density fluctuation field d(~x; R)
is also a Gaussian random variable, as it stands for a sum of Gaussian
random variables. The variance of d(~x, R) hence amounts to: The variance

s2
R = hd2(~x; R)i =

Z
d log k D2(k)|W(k; R)|2 . (2.3.10)

If we consider, for example, a power spectrum P(k) µ kn and a Fourier
space top-hat filter, we get

s2
R µ

Z •

0
P(k)W2

R(k; R)k2dk µ
Z 1/R

0
kn+2 µ R�n�3 . (2.3.11)

By associating a mass M = 4p
3 R3r to regions of size R, we can write The hierarchical

clustering scenario

s2
R µ M� n

3 �1 ; (2.3.12)

this implies that as long as n > �3, s2
R is a decreasing function of M.

Smaller objects arise from larger density fluctuations, and therefore
form at earlier times. Such picture is referred to as the hierarchical
clustering scenario.
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2.3.1 Abundances of halos

As mentioned at the beginning of this Section, we seek a statistical ap-
proach to the subject of Structure Formation. The first-order statistic
we might investigate is the number counts of haloes and voids. Let us
start by describing how to forecast the abundances of the collapsed
haloes.

Press and Schechter
formalism for
over-densities

Press and Schechter [167] calculated a relation for the abundances
of virialized objects from a hierarchical density field. We consider the
smoothed density contrast dR to be initially a Gaussian random field
with probability distribution function as described by:

P(d; R)dd =
1q

2ps2
R

exp
�
�d2/2s2

R
�

dd . (2.3.13)

where P(d; R) is the probability of attaining a value of d(~x; R) between
d and d + dd.

In a hierarchical model, there are structures on all scales and the
variance tends to infinity as the smoothing scale, R, approaches zero.The
Press and Schechter [167] hypothesis is that objects will collapse on a
scale within regions of R, once the smoothed density on that partic-
ular scale exceeds a threshold value. We may pick as critical density
dc = 1.686, which - as presented in Equation 2.2.11 - is the threshold
for the non-linear collapse in the linear theory.

The mass within a region in which the smoothed density fluctua-
tion reaches the critical value dc, corresponds to an object that has just
virialized with mass M(R). The relation between mass and scale is
set by the volume of the window function (e.g. M = 4prMR3/3 for
a top-hat filter). Any region that exceeds the threshold dc, will have
density equal to dc if smoothed on a larger scale R0, where R0 > R.
Thus, the fraction of collapsed objects with size equal to or larger than
R can be calculated as cumulative probability for a region to have a
smoothed density above the threshold; by integrating Equation 2.3.13
we find this probability to be:

F(M) =
Z •

dc

p(dR)ddR =
1
2

erfc
✓

np
2

◆
, (2.3.14)

where erfc is the complimentary error function and n ⌘ dc/sR is
the height of the threshold in units of the standard deviation of the
smoothed density field.

Since F(R ! 0, dc) = F(sR ! 0, dc) = 1/2, this approach seems
to neglect half of the collapsed objects. In order to solve this issue,
we might argue as follow. Let us consider a large value of R that is
decreasing step-wise and the associated set of values for dR. Accord-
ing to Equation 2.3.13 and assuming a Fourier-space top-hat window
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Figure 2.2: Schematic random walks performed by dR for decreasing values of R (i. e. increasing values
of sR). The upper horizontal line shows the threshold barrier dR = dc while the lower line
shows the limit dR = 0. Credit: Bond et al. [30].

function (case in which the smoothed density at scales R and R0 are
independent – if R 6= R0), dR performs a random walk as presented in
Figure 2.2. Every walk that crosses the threshold upwards at a given
R0 has a mirror-symmetric “partner” that goes below the threshold
once more after dR0 = dc. Therefore, when estimating Equation 2.3.14
we have to include all walks that have already crossed the threshold
and collapsed at R0 > R, which produces a factor of two [see 30]

The random walks that up-cross the threshold multiple times (cloud-
in-cloud) are not effecting this calculation: as they will fall into a larger
collapsing region, they will be sub-summed by the latter, and should
not be counted as individual objects (for void counting this will in-
stead constitute an issue). Thus, the essential quantity to describe the
number of collapsed objects of size R is given by the first crossing
distribution:

f (sR, dc) ⌘
dF
ds2

R
=

dcp
2ps3

R
exp

✓
� d2

c
2s2

R

◆
. (2.3.15)

Equation 2.3.15 can be directly related to the number density of halos
using dn = r

M |dF|, hence:
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dn
dM

=
r

M
f (sR, dc)

����
ds2

R
dM

���� , (2.3.16)

where dn
dM is the halo mass function, expressing the expected number

of density of halos in mass range between M and M + dM. If we
formulate this in terms of n = dc/sR, and note that

d log s2
R =

ds2
R

s2
R

=
1

s2
R

d
✓

d2
c

s2
R

◆
= � 2

sR

d2
c

n3 dn = �2
dn

n
= �2d log n ,

we can then write:

dn
dM

=
r

M2 s2
R f (sR, dc)

����
d log s2

R
d log M

���� =
r

M2 n f (n)
d log n

d log M
, (2.3.17)

where

n f (n) =
r

2
p

exp
✓
�n2

2

◆
. (2.3.18)

Unlike sR, the functional form of this expression is independent of
cosmology, so it is referred to as universal halo mass function.

The Press and Schechter mass function gives us a reasonable un-
derstanding of how many collapsed halos we should find at a given
mass, but it fails to predict the abundances of halos with high pre-
cision. Namely, this framework underestimates the number of lowLimitations of the

Press and Schechter
mass function

mass halos and over-predicts the abundances of high mass halos. Fol-
lowing the method of Bond et al. [30], Sheth, Mo, and Tormen [188]
and Sheth and Tormen [189, 190], incorporated into the Press and
Schecher mass function the effect of non-linear collapse approxima-
tion, together with a more sophisticated ellipsoidal collapse, achiev-
ing a better agreement with simulated data.

2.3.2 Abundances of voids

In order to assess the number function of voids, it should be possible
to follow the formalism presented in the previous subsection albeit
changing the threshold, from dc to the under-density dv. This rep-
resentation is accurate initially, but eventually gravitational evolution
destroys the symmetry between under- and over-densities. In fact, we
may consider a random walk that up-crosses dc at some scale R and
then down-crosses dv at scale R0 < R. Such possibility correspond
to a void embedded in a larger-scale over-density, a phenomenon
known as void-in-cloud process. Analogously we can also define the
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void-in-void phenomenon, which refers to the formation of sub-voids,
the cloud-in-voids process and the cloud-in-cloud phenomenon, already
discussed in the previous Section.

The trajectories of the random-walks are depicted in Figure 2.3
where also their corresponding regions in an N-body simulation are
displayed. In the interest of selecting only the voids that survives all
possible crossings, Equation 2.3.15 has to be modified, excluding all
of the voids that are affected by the void-in-cloud process. The num-
ber of voids of size R is determined by the fraction of walks that cross
the threshold dv at R, minus the fraction of those that – before reach-
ing dv – had crossed dc at all R0 > R . This last term is a product of
the fraction of all walks that cross dc at R0 times the fraction of walks
that crossed dv at R (under the condition of having already crossed dc
at R0) and needs to be integrated over all R0; i. e.

f (sR, dv, dc) = f (sR, dv)�
Z s2

R

0
f (sR0 , dc) f (sR, dv|sR0 , dc)ds2

R0 .(2.3.19)

As shown by Sheth and van de Weygaert [191], the solution to Equa-
tion 2.3.19 can be found employing Laplace transforms and including
in such calculation the variable D, defined as void-and-cloud parameter: The void-and-cloud

parameter

D ⌘ |dv|
dc + |dv|

. (2.3.20)

D quantifies the importance of the void-in-cloud process by means of
the relative difference between the values of dc and dv. To name an
example, the total mass fraction inside voids is:

Z
f (sR, dv, dc)ds2

R = 1 � D =
dc

dc + |dv|
. (2.3.21)

For dc � |dv|, D is very small and voids include almost all the mass
in the Universe. Vice-versa, if dc ⌧ |dv|, nearly all mass is bounded
inside halos.

Equation 2.3.19 can be manipulated into a simpler approximate
form for dc/|dv| & 1/4 [see 191]

n f (n) ⇡
r

2
p

n exp
✓
�n2

2

◆
exp

"
|dv|
dc

✓
D
2n

◆2
� 2

✓
D
n

◆4
#

, (2.3.22)

where, in this case, n = |dv|/sR. The first term of the left hand side
corresponds to Equation 2.3.15, while the second term accounts for
the void-in-cloud phenomenon. The two exponential terms rapidly
decay at very low and very high values of n, therefore the void-
distribution is peaked around n ⇡ 1, as presented in Figure 2.4 for
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Figure 2.3: Random walks performed by dR in four distinct cases. The right panels show the associated
evolution of the particle distribution in an N-Body simulation. Credit: Sheth and van de
Weygaert [191].
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Figure 2.4: Equation 2.3.22 with dc = 1.06 (dashed), dc = 1.69 (solid) and dc ! • (dotted); dv = �2.81
in each case. Credit: Sheth and van de Weygaert [191].

three different values of dc. The value of dc mostly effects small voids
through the void-in-cloud process, while the abundances of large
voids is determined by dv only.

The typical comoving size of voids can be roughly estimated using
Equation 2.3.11, which states that s2

R µ R�n�3. If n ⇡ 1 then sR ⇡ |dv|
and therefore the size of the excursion set region when it crosses the
threshold dv is:

R ⇡ 8h�1Mpc
✓

s8

|dv|

◆ 2
n+3

. (2.3.23)

After the shell crossing the void expands non-linearly; according
to spherical evolution, it stretches by a factor of 1.697. Assuming
s8 = 0.83, |dv| = 2.717, n = �1.5 we then obtain rv ⇡ 3h�1Mpc.
In analogy to Equation 2.3.16, we could define a void mass function.
Nevertheless, a more fitting quantity to describe voids is their volume
Vv, or, simply their effective radius

rv ⌘
✓

3
4p

Vv

◆1/3
. (2.3.24)

The comoving volume of a void can be linked to its mass M and
initial excursion set scale R through:
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Vv =
M
r

⇣ rv

R

⌘3
(2.3.25)

where rv/R ⇡ 1.697 is found following the spherical evolution. In
this manner Equation 2.3.17 can be manipulated into

dM =

✓
R
rv

◆3
rdVv =

✓
R
rv

◆3
r4pR2

vdrv = 3Md log rv ,

leading to
M = 3 log rv.

This provide the following void size function:

dn
d log rv

=
1

Vv

⇣ rv

R

⌘3
n f (n)

d log n

d log rv
. (2.3.26)

We can also predict the cumulative fraction of voids with a size greater
than a fixed size rv,

Fv(rv) =
Z •

0

dn
d log R0

v
Vvd log R0

v =

⇣ rv

R

⌘3 Z •

n(rv)
n f (n)d log n , (2.3.27)

which, expressed for voids of all sizes (i. e. rv = 0), turns into:

Fv(0) =
⇣ rv

R

⌘3
(1 � D) . (2.3.28)

Considering the following values dv = �2.717, dc = 1.686, and rv/R =
1.697 we obtain Fv(0) ⇡ 1.871, which, exceeding the unity, is non-
physical. To prevent this, we might relax the shell-crossing condition
by choosing a less negative value for dv and calculating the corre-
sponding non-linear void-stretch rv/R with Equation 2.2.14. In this
manner F(0) becomes smaller, but, on the other hand, the number of
large voids increases. Only for dv ! 0 ) D ! 0 andrv/R ! 1 we
recover physicality with Fv(0) = 1.

It is worth stressing that in the derivation of Equation 2.3.28 we
have assumed that the number density of voids is conserved during
non-linear evolution. However, due to the finite amount of available
volume in the Universe, many voids will end up merging with each
other. This suggests the total volume to be conserved, rather than
their number density as proposed by Jennings, Li, and Hu [105]. If
we request Fv(rv) = Fv(R) during the non-linear evolution, we obtain
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Vvdn(rv) = Vdn(R) , (2.3.29)

which alters Equation 2.3.26 into

dn(rv)
d log rv

=
V
Vv

dn(R)
d log R

d log R
d log rv

=
1

Vv
n f (n)

d log n

d log rv
. (2.3.30)

In this case though we have assumed that d log(rv)/d log rv = 1,
which applies in the spherical evolution model, but may not be realis-
tic in general. Anyhow, under this assumption the total void volume
fraction becomes Fv(0) = 1 � D, obeying physicality for all values
of dv and dc and in particular Fv(0) ⇡ 0.383 for dv = �2.717 and
dc = 1.686.

2.3.3 The bias of tracers

We have summarized a way to predict the number of voids and haloes
in the matter distributed among the Cosmos. Since our goal is to
compare our prediction with observations, we must consider a fur-
ther complication: the matter we have discussed so far is not visible,
as, by definition, it interacts only gravitationally. What we can indeed
observe directly is the light, emitted by the stars in galaxies. Galaxies
are hosted in matter halos, which, as we have explained in this Chap-
ter, are peaks in the density field. Hence, by employing galaxies or
clusters of galaxies to trace the matter in the Universe, we expect our
statistical analysis to be biased toward the highest peaks of the den-
sity field. This was pointed out for the first time in a seminal paper
by Kaiser [106], who studied the properties of the spatial correlation
of Abell clusters. Perhaps the easiest manner to express the halo bias
is provided by the comparison of the clustering properties of matter
and halos. In fact, being xmm the matter-matter correlation function
and xhm the correlation function between halos and matter-particles,
we can write:

xhm = bhxmm (2.3.31)

where bh is the halo bias, which, for the time being, is just an un-
known function of space and time.

The excursion set formalism provides a neat framework in which
to understand the relative clustering of halos. The idea is to count the
number of collapsed haloes within a scale S0 with smoothed density
d0, and then compare this number with that of all collapsed haloes.
The fraction of mass embed in collapsed haloes with Mh > M, of
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density d0 within a smoothing scale S0 is given by Equation 2.3.14,
and reads:

F(M|d0, S0) = erfc
✓

dc � d0

2DS

◆
.

where DS ⌘ S � S0 (Please note that we have defined S ⌘ s2R). As
the density of the region increases, F increases, and finally if d0 ! dc
then F ! 1, i. e. the whole region within the smoothing scale is then
interpreted as a collapsed halo.

The fraction of mass in halos within mass range M and M + dM is
given by:

f (M|d0, S0)

����
dS
dM

���� dM ⌘ F(M|d0, S0)
dM

dM =

=
1p
2p

dc � d0

DS

����
dS
dM

���� exp

� (dc � d0)2

2DS

�
dM, (2.3.32)

and regions with smoothed density d0 on scale S0 contain (on aver-
age), a number of haloes given by:

N(M|d0, S0)dM =
M0

M
f (M|d0, S0)

����
dS
dM

���� dM . (2.3.33)

With Equation 2.3.33, we can estimate our quantity of interest, i. e.
the relative over-abundance of halos in denser regions compared to
the mean density of all halos, which is given by:

dL
h =

N(M|d0, S0)
(dN(M)/dM)V0

� 1 (2.3.34)

where the superscript L indicates that dL
halo is calculated in the initial

Lagrangian space, and it is determined by the mass distribution at
some early stage (ignoring the dynamical evolution). If the relative
over-density is computed with respect to sufficiently large regions
(S0 ⌧ S and d0 ⌧ dc) it has a rather simple expression. This can be
calculated by expanding at the first order in the variables S0/S and
d0/dc and reads:

dL
h =

n2 � 1
dc

d0 (2.3.35)

where n = dc/
p

S = dc/s(M) .
The final step requires a paradigm to properly map the initial La-

grangian space into the Eulerian space. Such model was provided by
Mo and White [133], who, in the limit of small over-density, conclude
that:
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Figure 2.5: Large scale bias of dark matter halos as a function of n. The solid line shows the excursion
set result presented in Equation 2.3.37. The dashed line displays the bias calculated em-
ploying a modified form for the barrier criterion by Sheth and Tormen [189] and finally the
dotted line represents an empirical fit to N-body simulation results by Seljak and Warren
[187]. The points in red are numerical data provided by J. L. Tinker. Credit: Zentner [223].
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dh =

✓
1 +

n2 � 1
dc

◆
d0 , (2.3.36)

where d0 ⌧ 1, V ⇡ V0(1 + d), d ⇡ d0, being V and d the Eulerian
space variables corresponding to the Lagrangian space variables V0
and d0. We can thereby define the halo bias bh as

bh ⌘ 1 +
n2 � 1

dc
) dh = bhd0 . (2.3.37)

The halo over-density is proportional to the matter over-density. Larger
halos will have a larger value of n because s(M) decreases with
mass, therefore larger halos cluster significantly more strongly than
the overall clustering of mass.

In Figure 2.5 we report the bias presented in Equation 2.3.37 as a
function of n with a solid line, and we compare its prediction with
the dotted red points that are computed from a suite of N-body sim-
ulations. Equation 2.3.37 provides a good understanding of the bias
features, but the standard excursion set formalism fails to reproduce
the halo bias in details. A possible improvement consists of modify-
ing the shape of the barriers as a function of the smoothing scales,
as presented by Sheth and Tormen [189]: we plot this result with
the dashed line. Seljak and Warren [187] provide an empirical fit to
simulated data, which is graphed by the dotted line.

We have finally arrived at the pivot point of this thesis: voids in the
observable Universe can only be traced using the galaxies population
that we can map in large surveys. But galaxies are biased tracers of
the underlying matter density. Therefore, prediction on void statistics
(such as those presented in Section 2.3.2) to forecast the number of
voids), have to be corrected for the impact of the bias. The second part
of this thesis is devoted to the description of this effort. Namely we
research if and how the bias of tracers impacts the void definition and
their statistics.



Part II

O R I G I N A L W O R K

In the second part of the thesis our novel results are pre-
sented and discussed.





3
C O S M I C V O I D S I N C O U P L E D D A R K E N E R G Y
C O S M O L O G I E S : T H E I M PA C T O F H A L O B I A S

This Chapter was written in collaboration with Marco Baldi, Federico
Marulli and Lauro Moscardini. Its results are published in Pollina
et al. [164].

In the analysis we are about to present, we study the properties of
cosmic voids in standard and coupled dark energy cosmologies. Us-
ing large numerical simulations, we investigate the effects produced
by a possible dark energy coupling on three statistics: the filling fac-
tor, the size distribution and the stacked profiles of cosmic voids. We
find that the bias of the tracers of the density field used to identify
the voids strongly influences the properties of the void catalogues,
and, consequently, the possibility of using the identified voids as A summary of this

Chaptera probe to distinguish coupled dark energy models from the stan-
dard LCDM cosmology. In fact, on one hand coupled dark energy
models are characterised by an excess of large voids in the cold dark
matter distribution as compared to the reference standard cosmology,
due to their higher normalisation of linear perturbations at low red-
shifts. Specifically, these models present an excess of large voids with
rv > 20, 15, 12 h�1 Mpc , at z = 0, 0.55, 1, respectively. On the other
hand, we do not find any significant difference in the properties of
the voids detected in the distribution of collapsed dark matter haloes.
These results imply that the tracer bias has a significant impact on the
possibility of using cosmic void catalogues to probe cosmology.

We will proceed as follows. In Section 3.1 we provide an overview
of the state-of-the-art related to this analysis. In Section 3.2 we briefly
describe the cDE models considered in the this Chapter and we recall
the main features of the CoDECS runs. In Section 3.3 we describe the Organisation of this

Chaptervoid finder algorithm and our method of analysis, and in Section 3.4
we present the properties of voids in the CoDECS simulations. Our
conclusions are summarised in Section 5.5.

3.1 introduction

Despite the fact that the presently accepted standard cosmological
model, the so-called LCDM scenario, appears to be fully consistent
with most of the available observations [see e.g. 160, and Part I of this
Thesis], it still presents some open issues in the detailed description
of the distribution of matter at small scales.

49
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One of such properties that still appears problematic is the ob-
served abundance of dwarf galaxies in the underdense regions of
the Universe, which is found to be significantly lower than what pre-
dicted by large N-body simulations carried out within the LCDMThe void

phenomenon cosmology. This problem, that was pointed out for the first time by
Peebles [152], goes under the name of the void phenomenon, and it has
been discussed by several authors over the past years [see e.g. 209,
214].

Besides the poor theoretical understanding of a Cosmological Con-
stant as source of the observed accelerated expansion of the Universe
[217], the void phenomenon is therefore one of the few observational
tensions that motivate the investigation of alternative cosmologicalProblems of LCDM
scenarios, together with the so-called cusp-core problem [224], the satel-
lite problem [34], the too big to fail problem [32], and the recently de-
tected tension between the CMB- and cluster-based estimations of
s8, the r.m.s. of the mass density field within a sphere of radius 8
h�1 Mpc [159].

A relevant class of alternative cosmological models that has been
widely investigated in recent years is given by the so-called coupled
dark energy scenario [cDE hereafter, see e.g. 9, 10, 16, 76, 220]. In
these models a dynamical scalar field sourcing the accelerated cos-
mic expansion [see e.g. 170, 219] is coupled to cold dark matter (CDM)
particles resulting in a direct exchange of energy-momentum between
these two cosmic components. Such interaction gives rise to a newStrong coupling and

fifth force fifth force acting on CDM particles, possibly capable to make the
voids emptier [143]. Other possible ways to address the void phe-
nomenon have been proposed, such as, for example, a modification
of gravity at very large scales [49, 120, 196].

The main effects of cDE models on the large-scale matter distribu-
tion in the Universe, as well as on the structural properties of highly
non-linear collapsed objects (such as galaxies and galaxy clusters),
have been widely investigated in the recent past by several works
mostly based on dedicated large N-body simulations [see e.g. 13, 15,
18, 41, 42, 46, 85, 122, 124, 128, 134]. However, in these rich and high-
dense environments the effects produced by cDE are expected to be
significantly modified by the complex and not yet fully understood
baryonic processes occurring within astrophysical objects. Therefore,
studying the properties of underdense regions of the universe might
represent a complementary approach to investigate cDE scenarios,
and might provide a direct test of such cosmological models through
a direct comparison with the properties of the observed cosmic voids.

While the first models for void evolution [23, 98] have been devel-
oped soon after their earliest observations [88, 108], it is only in re-
cent years that systematic studies about voids have become possible
thanks to the increasing depth and volume of current galaxy surveys
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and to the advent of large numerical simulations that allow to predict
with high accuracy the topology of the cosmic web.

The recent interest for cosmic voids is mostly related to their yet
unexploited potential to probe cosmological models and constrain
cosmological parameters, thanks to the claimed universality of their
general statistical and structural properties [see e.g. 52, 92, 174, 175].
In particular, voids might represent a population of ideal spheres
with a homogeneous distribution in the Cosmos at different redshifts,
so that their size evolution can be used to characterise the expansion
history of the Universe by means of the Alcock & Paczynski (AP) test
[6, and see Section 1.3.2], as already pointed out by recent works [204,
206].

Furthermore, voids might have an impact on the observed proper-
ties of the CMB. It has been investigated whether the observed Cold The many

intriguing aspects of
voids

Spot in the Cosmic Microwave Background (CMB) could be explained
as Integrated Sachs-Wolfe (ISW) imprint caused by very large voids
along the line of sight [e.g., 77, 111, 113, 139, 171], and a final con-
clusion on this topic is yet to be reached; the potential of the ISW by
voids is nevertheless important and still being actively investigated
[e.g. 37, 87, 112, 135]. The next generation of large galaxies surveys
such as the ESA Euclid mission [8, 116] are expected to detect gravita-
tional lensing from medium size voids with which it will be possible
to directly constrain the void density profiles without resorting on lu-
minous tracers like galaxies, which would require to model their bias
[50, 104, 114, 132].

Cosmic voids are therefore one of the most appealing and promis-
ing cosmological probes: being almost empty, their growth during
the cosmic history should be at most weakly non-linear and their
properties could be possibly affected by the nature of DE and by the
properties of the primordial density field in which they evolve [31, 57,
84, 145]. In particular, the shape of voids has been shown to be very
sensitive to the equation of state of the DE component [117]. Defin-
ing the properties of voids in different cosmological models can then
represent an important handle to discriminate between these models.

In this Chapter we focus on the investigation of the properties of
voids in the standard LCDM cosmology, as well as in a series of com-
peting cDE models. This has been done by extracting the population
of voids from both the cold dark matter and the halo distributions
arising in large cosmological N-body simulations of these different
cosmological scenarios. To this end, we made use of the publicly
available data of the CoDECS simulations [14], including three differ-
ent models of DE interaction besides a LCDM reference run. We iden-
tified cosmic voids in the CoDECS runs with VIDE [Void IDentification
and Examination toolkit, 210], a substantially modified version of the
publicly-available void finder ZOBOV [ZOnes Bordering On Voidness,
141], and compared the statistical and structural properties of the re-



52 cosmic voids in coupled dark energy cosmologies : the impact of halo bias

sulting void catalogues. Our results show that cDE models are char-Goals and results
acterised by an excess of large voids in the CDM distribution with
respect to the reference LCDM cosmology, as expected from their
higher normalisation of linear perturbations at low redshifts. This is
consistent with the theoretical predictions on the abundance of voids
presented in Pisani et al. [156], while the latter work seems to be in
contrast with the recent findings of Sutter et al. [209] for the case of
coupled dark energy simulations normalised to the same perturba-
tions amplitude. In fact the simulations analysed in this Chapter are
normalized at CMB time, therefore they have different values of s8
today: this feature, following Pisani et al. [156], leads to an excess of
large voids (that we observe). On the other hand Sutter et al. [209]
focus on simulations which are normalized at z = 0: therefore the
excess of large voids detected by Sutter et al. [209] at z = 0 appears
to be in contrast with Pisani et al. [156].

Nonetheless, we also found that the differences in the cosmic-void
properties among these different models significantly change when
voids are identified in the distribution of collapsed haloes rather than
in the CDM distribution itself. Namely, the deviation from LCDM is
no longer significant. A similar result has been found by Cai, Padilla,
and Li [36] for f (R) models and by Barreira et al. [21] for Galileon
and Nonlocal gravity cosmologies: these works focus on lensing sig-
nals by empty regions but, studying the basic statistical properties
of voids, they both conclude that voids in CDM show significant
variations while voids in haloes do not. This is a quite remarkableComparison with

similar studies agreement considering that our work, Cai, Padilla, and Li [36] and
Barreira et al. [21] use different void finders: VIDE, an improved ver-
sion of Padilla, Ceccarelli, and Lambas [147] and the Watershed Void
Finder (WVF) algorithm [161] respectively. It is in fact well known
that the “large number of quite different void-finding algorithms has
so far got in the way of groups comparing their results without wor-
rying about whether this comparison makes sense” [53]. While Bar-
reira et al. [21] relate the drop of deviation between models for the
case of voids in haloes to the poor statistic of haloes as tracers of
the density, Cai, Padilla, and Li [36] have already suggested that the
source of the effect might be the halo bias. In this Chapter we will
demonstrate convincingly by sub-sampling the dark matter distribu-
tion to the same number density as the halo catalogue that the poor
statistic of haloes is not enough to explain the different properties
shown by voids in haloes and voids in CDM. Furthermore, Nadathur
and Hotchkiss [137] independently drew the same conclusion using a
LCDM N-body simulation. All of these results suggest that, contrary
to what has been claimed in some other recent works [see e.g. 209],
the bias of the tracers of the density field employed to identify voids
might have a significant impact on the possibility of using the ob-
tained void catalogues to probe cosmology. Therefore, in the present
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work we will show that a random sub-sampling of a simulated CDM
distribution to match the density of tracers expected for any given
galaxy survey does not actually provide a faithful representation of
the discriminating power of the survey with respect to different com-
peting cosmological models.

3.2 coupled dark energy cosmologies

3.2.1 The models

We aim at studying the statistical and structural properties of voids in
the context of coupled dark energy (cDE) cosmologies. In these mod-
els, dark energy is represented by a classical scalar field f moving in
a self-interaction potential V(f) and directly interacting with CDM
particles through an exchange of energy-momentum, quantified by a
coupling function b(f). We will give only a very essential summary
of the main features of cDE models, and we refer the reader to Amen-
dola [9], Baldi [13], and Baldi [16] for a more thorough discussion.

The background dynamics of cDE cosmologies is described by the
set of equations: Background

evolution
ṙr + 4Hrr = 0 , (3.2.1)
ṙb + 3Hrb = 0 , (3.2.2)

ṙc + 3Hrc = �
r

2
3

bc(f)
rcḟ

MPl
, (3.2.3)

f̈ + 3Hḟ + V 0(f) =

r
2
3

bc(f)
rc

MPl
, (3.2.4)

where the subscripts r, b, c and f, indicate the energy densities r of
radiation, baryons, CDM, and the dark energy field f, respectively,
and where the Hubble function is given as usual by

H2 =
8pG

3
�
rr + rc + rb + rf

�
, (3.2.5)

with M2
Pl ⌘ 1/8pG being the reduced Planck mass. In the above

equations the field f is expressed in units of MPl and an overdot
represents a derivative with respect to cosmic time while a prime
denotes a derivative with respect to the field itself. The source terms
on the right-hand side of Eqs. 3.2.3 and 3.2.4 define the interaction
between the dark matter and the dark energy components, with a
strength given by the coupling function bc(f).

At the level of linear density fluctuations, the interaction modifies
the gravitational instability processes that govern the evolution of per-
turbations as a consequence of a long-range fifth force mediated by
the dark energy field and acting between CDM fluid elements. In the
Newtonian limit and on sub-horizon scales, these effects turn into the
following set of modified linear equations [7, 17, 155]: Linear evolution
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Table 3.1: A summary of the cosmological models investigated in the
present work and their main parameters. See Baldi [13] for de-
tails.

Model Potential a b(f) wf(z = 0) s8(z = 0)

LCDM V(f) = A – – �1.0 0.809
EXP003 V(f) = Ae�af 0.08 0.15 �0.992 0.967
EXP008e3 V(f) = Ae�af 0.08 0.4 exp[3f] �0.982 0.895
SUGRA003 V(f) = Af�aef2/2 2.15 -0.15 �0.901 0.806

d̈c = �2H


1 � bc
ḟp
6H

�
ḋc + 4pG[r̄bdb + r̄cdcGc] , (3.2.6)

d̈b = �2Hḋb + 4pG[r̄bdb + r̄cdc] , (3.2.7)

where r̄i represents the background density of the i-th fluid and
di ⌘ dri/r̄i its density perturbation. The factor Gc ⌘ 1 + 4b2

c/3 repre-
sents the additional fifth force appearing only in the CDM equation
while the term bcḟ is a velocity-dependent acceleration arising as a
consequence of momentum conservation. Similar additional terms
characterise the interaction among a discrete set of CDM particles in
the non-linear regime [see 18].

3.2.2 The CoDECS simulations

For our investigation we will make use of the publicly available data
of the CoDECS simulations [13]. These simulations are carried out
with a suitably modified version of the TreePM N-body code GADGET
[201] that self-consistently implements all the above mentioned effects
characterising cDE cosmologies [18].

For the present work, we will employ the outputs of the L-CoDECS
simulations, which follow the evolution of 10243 CDM particles and
as many baryonic particles in a periodic cosmological box of 1 co-
moving Gpc/h a side. Both CDM and baryonic particles are treated
as collisionless particles, but they experience different accelerations
as a consequence of the interaction between the CDM and the dark
energy fields.

The CoDECS suite includes six different cosmological models, four
of them are considered in this Chapter: the reference LCDM cosmol-
ogy, a cDE model (EXP003) characterised by a constant positive cou-
pling bc > 0 and an exponential self-interaction potential of the form
V(f) = A exp (�af), a further model (EXP008e3) with the same po-
tential but with an exponential coupling, bc(f) = b0 exp (b1f), and a
final scenario (SUGRA003) with a constant negative coupling, bc < 0
and a SUGRA [33] self-interaction potential V(f) = Af�a exp (�f2/2).
A summary of the models parameters is shown in Table 3.1. All the
models have the same amplitude of perturbations at z = zCMB, re-
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sulting in a different amplitude of linear density perturbations at the
present epoch (and consequently different values of s8).

In the present work we will also make use of the public halo cata-
logues of the CoDECS simulations, that have been generated through
a Friend-of-Friend (FoF) algorithm with a linking length of 0.2 times
the mean inter-particle separation.

3.3 void finding

We employ the publicly available void finder VIDE [210] to identify
voids in the CDM and halo distributions extracted from the snapshots
of the CoDECS simulations within the different cosmological models
described above. VIDE embeds the ZOBOV algorithm, which allows
to identify depressions in the density distribution of a set of points.
In the following, we provide a very short summary of how ZOBOV
works, and we refer to the original ZOBOV paper [141] for a more
detailed discussion.

Firstly, ZOBOV associates a cell to each tracer (a CDM particle or
a halo) using a Voronoi tessellation scheme, i.e. the cell c associated
to the particle (or halo) p is defined as the region of the box which is
closer to p than to any other particle (or halo) in the box. Secondly, The three steps of

void-findingthe algorithm identifies local density minima among these cells: a
density minimum is defined as a Voronoi cell with a lower density (i.e.
a larger volume) than all other cells around it. Thirdly, ZOBOV joins
together the Voronoi cells surrounding a local density minimum until
cells with larger and larger density are found, and it identifies voids
as the union of these cells. Cosmic voids are joined together via the
Watershed Transform [see 162], which naturally creates a hierarchy
in the structures of voids. All these procedures are performed also by
the ZOBOV version included in the VIDE toolkit. Additionally, VIDE
provides several different void catalogues for which various types of
sample selections (as e.g. different cuts on the void density contrast
or on the void central overdensity) are applied on top of the original
ZOBOV sample. In particular, as voids are found to define a complex
hierarchy, with smaller voids being embedded in larger ones, VIDE
provides for each identified void the corresponding hierarchy level,
and according to this classification a sample of main voids (i.e. those
cosmic voids that are not embedded in larger voids and that repre-
sent the top of their own void hierarchy) is produced. We employed a
slightly modified version of this selection procedure to remove patho-
logical voids from the catalogue and obtain a more statistically robust
and convergent sample of main voids. More specifically, we observed Sample selection
that occasionally VIDE identifies as main voids (i.e. voids at the top
of their own hierarchy) structures that nearly encompass the whole
simulation volume. Such structures cannot obviously be real voids as
their mean density must be close to the average cosmological density.



56 cosmic voids in coupled dark energy cosmologies : the impact of halo bias

Nonetheless, being classified as main voids by VIDE, all the smaller
(and more likely “real”) voids embedded in these pathological struc-
tures would be discarded as sub voids in our void counting proce-
dure. We have therefore applied a preliminary sanity check on all the
voids that are classified as main voids by requesting that the diameter
of the void must not exceed a half of the simulation box, besides the
standard requirements on the void density contrast to be higher than
1.57 (see below). After removing from the sample of main voids all
the objects not fulfilling these criteria, we have updated the classifica-
tion of all their sub-voids, thereby obtaining a new set of main voids
candidates, and repeated this procedure until no pathological voids
are found1.

Finally, since local density minima can also be found in over-dense
regions, we decide to remove from the main void catalogues the voids
with a density minimum larger than 20% of the mean density of the
Universe (which is one of the standard cuts provided by VIDE). For
each identified void, ZOBOV also calculates the probability that the
void might arise in a uniform Poissonian distribution of points, which
is directly related to the density contrast between the minimum den-
sity of the void and its boundary. As this density contrast is provided
for each void also by the VIDE catalogue, we remove voids with a
density contrast below 1.57, corresponding to a probability of arising
as Poisson noise larger than 2s [see 141].

VIDE defines voids as spherical regions centred in the barycenter,
~xc, of the underdense regions provided by ZOBOV, where:Void-centre and void

radius

~xc =

N
Â

i=1
~xp

i · Vp
i

N
Â

i=1
Vp

i

, (3.3.1)

and ~xp
i and Vi are the positions of the i � th tracer and the volume of

its associated Voronoi cell, while N is the number of tracers included
in the void. The radius of the sphere (i. e. the effective radius of
the void, rv) is then computed from the overall volume of the under-
dense region by assuming sphericity:

VVOID ⌘
N

Â
i=1

Vp
i =

4
3

pr3
v . (3.3.2)

It has been shown that different void finders based on dynamical
criteria, instead of density or geometry criteria, might reduce the shot
noise error [74]. Nevertheless, the void finder used here is accurate
enough for the purpose of the present analysis, as we investigate

1 For the analyses presented in the next two Chapters this was no longer necessary.
Either the problem was fixed in an updated of the software, or something cause this
issue specifically in the data employed in this Chapter.
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Figure 3.1: The redshift evolution of the volume fraction of voids identified
in the CDM distribution for the LCDM (black solid line) and
EXP003 (blue dashed line) models. The shaded area (shown only
for LCDM) represents the uncertainty, computed with the jack-
knife method.

the main properties of large voids extracted from dense numerical
simulations.

3.4 the statistics of voids in the codecs

With the catalogues of void extracted from the CoDECS simulations
as described in the previous Section at hand, we perform some ba-
sic analyses of the statistical and structural properties of the voids
in the different cosmologies, namely the voids filling factor (i.e. the
fraction of the cosmic volume occupied by voids), their size distribu-
tion (i.e. the abundance of voids as a function of their size), and their
stacked radial density profiles, and compare these observables to the
reference LCDM case [see also 121]. We perform such comparison
for voids identified both in a randomly sub-sampled CDM density
field and in the distribution of collapsed haloes, to highlight how the
use of tracers with different bias might result in a different relative
behaviour of the models.

3.4.1 Void statistics in the CDM distribution

Let us start by considering the voids catalogues extracted from the
CDM density field, i. e.directly from the CoDECS snapshots at differ-
ent redshifts. To better handle the simulation data we have made
use of the sub-sampling routine included in VIDE to randomly sub-
sample the CDM particles of the simulation snapshots down to an
average density of 2 ⇥ 107 particles per cubic h�1 Gpc . For this com-
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parison we will focus only on two out of the four models, namely the
reference LCDM cosmology and the EXP003 scenario, which is the
most extreme realisation (in terms of deviations at the background
and linear perturbations level) of cDE models that we have at our
disposal.

First of all, we compare the evolution of the volume fraction occu-
pied by voids at different cosmic times, also known as the void filling
factor, to check whether the interaction between DE and CDM parti-
cles implemented in our extreme cDE model has an impact on such
fraction. Fig. 3.1 displays the evolution of the voids volume fraction,Filling-factor
VVOIDS/VTOT, where VVOIDS is the sum of all the main voids volumes
in a given snapshot of the simulation and VTOT is the total volume of
the box, i.e. 1 h�3 Gpc3. The statistical error, shown in Fig. 3.1 by the
shaded grey region around the LCDM line, has been computed with
a jackknife method.

As expected, the volume fraction of voids increases with time, ir-
respectively of the underlying cosmological model, due to gravita-
tional instability. Moreover, as one can see from Fig. 3.1, the volume
fraction occupied by voids in the cDE model EXP003 is significantly
larger than in the reference LCDM cosmology, reflecting the higher
normalisation of the amplitude of linear perturbations at low red-
shifts in EXP003. More quantitatively, the volume fraction in EXP003
is roughly 40% larger than the corresponding LCDM fraction, at all
redshifts between z = 1 and z = 0. Clearly, the observed differences
between the cDE model and the standard LCDM cosmology are sta-
tistically significant.

As a second step, we compare the relative abundance of voids as a
function of their size, by computing in the two cosmological models
the differential size distribution, defined as the number of voids with
an effective radius rv falling within a set of size bins. In the upperVoid size function
panels of Figure 3.2 we show the differential size distribution at three
different redshifts (z = {0 , 0.55 , 1}, from left to right) for the two
cosmological models (black solid lines for LCDM and blue dashed
lines for EXP003), while in the bottom panels we show the relative
difference with respect to the reference LCDM cosmology (in units
of its statistical error s). As one can see in the figure, at z = 0 the
number of voids in the cDE cosmology with rv & 20 h�1 Mpc is at
least 50% larger than in LCDM: this difference corresponds to more
than 4s. At z = 0.55 the same ratio applies to cosmic voids with
rv & 15 h�1 Mpc , and at z = 1 to cosmic voids with rv & 12 h�1 Mpc ,
with differences corresponding to 5s and 7s, respectively. Therefore,
also in this statistic the two models are clearly distinguishable from
each other.

As a third statistic of our voids samples, we investigate the aver-
age stacked density profiles of voids having a comparable size. ManyAveraged density

profiles recent works [e.g. 92, 174, 175] suggested that the average profile of
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Figure 3.2: Top panels: the size distribution of voids in the CDM distribution for the LCDM (black
solid line) and EXP003 (blue dashed lines) models. Bottom panels: the relative differences
between the two models in units of the standard deviation s, computed for the LCDM
model.

voids is self-similar in the standard LCDM cosmology, which makes
voids an ideal target for geometrical tests such as the AP test. There-
fore, we now aim at investigating whether the interaction between
DE and CDM particles might induce some additional features on the
density profile of voids.

To this end, we first compute the spherically-averaged radial den-
sity profile of each individual void by estimating the CDM density
within a series of logarithmically equispaced spherical shells centred
in the barycentre of each void and normalised to the void effective
radius rv. The profiles are then stacked for voids with similar rv.
Since the profiles of each void is calculated in units of rv in the first
place, the stacking procedure basically consists in the calculation of
the mean profile in each logarithmic radial bin. We randomly in-
cluded 100 voids for each bin. The results are presented in Figure 3.3,
where we show the comparison of the stacked density profiles ob-
tained using the CDM void catalogue in the standard LCDM cosmol-
ogy and in the EXP003 model. In the upper panels the error bars
represent the corrected sample standard deviation computed on the
100 randomly selected voids. The shape of the profiles is qualitatively
the same as found in previous works [92, 174, 175]: we observe a deep
underdensity at r ! 0 and a compensative overdensity at r ! rv. At
r > 1.5 · rv the profiles reach the mean density of the Universe. In the
lower panels, we plot the relative difference between the models in
units of the statistical significance s computed as the sample standard
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deviation propagated to the relative difference. The grey shaded area
represents a ±1s significance.

As the figure clearly shows, the stacked profiles of EXP003 do
not show significative differences from LCDM at the considered red-
shifts, with deviations always lying well within the mean square error.
Nonetheless, we can observe that, at r ! 0, EXP003 generally shows
a density 10 � 25% smaller than LCDM, thereby showing that voids
are emptier in cDE. Therefore, although with a low statistical signifi-
cance, the central regions of the main voids appear to be more under-
dense in cDE models than in LCDM, which is expected to result in a
corresponding stronger signal in void lensing surveys.

3.4.2 Void statistics in the halo distribution

We will now compute the same three void-statistics discussed in Sec-
tion 3.4.1 for the voids catalogues obtained by running VIDE on the
distribution of FoF haloes extracted from the CoDECS simulations at
the same three redshifts investigated before (i.e. z = {0 , 0.55 , 1}).
The use of the FoF haloes as tracers of the matter distribution has
the appealing property to mimic real observations, where voids are
identified in the distribution of luminous galaxies. In particular, we
have made use of the publicly available CoDECS halo catalogues that
have been obtained through a FoF algorithm with a linking length 0.2
times the mean inter-particle separation. As we will show below, the
differences between the cDE model EXP003 and the standard LCDM
cosmology in all the three statistics are much weaker than what pre-
viously found for the CDM distribution. For this reason, we will in-
clude in this comparison also other two cDE models available within
the CoDECS suite, namely the EXP008e3 and the SUGRA003 models
(introduced in Section 3.2.2), in order to verify whether different re-
alisations of the cDE scenario might have a stronger impact on the
voids defined by the FoF halo distribution than the EXP003 model.
Our comparison will show that this is actually not the case, as ex-
pected from the fact that EXP003 is the most extreme of the CoDECS
models in terms of background and linear deviations from LCDM.

First of all, in Fig. 3.4 we compare the void filling factor for these
new void catalogues, as already done in Fig. 3.1 for the voids in the
CDM distribution. The void volume and the dispersion indicatedFilling factor of

voids traced in
haloes

by the grey shaded area are computed as outlined above. The fig-
ure shows, as expected, that the void volume fraction increases in
time, and that the LCDM model has generally the lowest volume
fraction with respect to the other cDE models that are characterised
by a higher normalisation of the linear power spectrum. Nonetheless,
as the figure clearly shows, these differences are now much smaller
and lie within the 3s statistical dispersion so that no significant dif-
ferences in the voids filling factor appear among the various cDE
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Figure 3.3: The stacked profiles of voids in the CDM distribution for the LCDM (black solid lines)
and EXP003 (blue dashed lines) models. Results are displayed at two different redshifts,
z = 0 and z = 1 (top and bottom blocks of panels, respectively) for four ranges of rv, as
labeled. The error bars indicate the corrected sample standard deviation in each radial bin
computed on the 100 randomly selected voids, while the sub-panels display the relative
difference between the profiles in units of the statistical significance of the averaged profile.
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Figure 3.4: The redshift evolution of the volume fraction of voids identi-
fied in the halo distribution for different cosmological models:
LCDM (black solid line), EXP003 (blue dashed line), EXP008e3
(dot-dashed orange line), SUGRA003 (red dotted line). The
shaded area (shown only for LCDM) represents the uncertainty,
computed with the jackknife method.

models and the standard LCDM cosmology at all redshifts. This re-
sult is starkly different from what found for the voids traced in the
CDM distribution for the EXP003 model.

In Figure 3.5 we then display the differential size distribution for
voids identified in the distribution of FoF haloes, analogously to what
done in Figure 3.2 for the CDM distribution. The size distribution isThe void-size

function of
halo-traced voids

shown for the different models (LCDM by black solid line, EXP003 by
blue dashed line, EXP008e3 by orange dot-dashed line and SUGRA003
by red dotted line) in the upper panels, while the bottom panels re-
port the percent deviation in units of the statistical significance s
from the reference LCDM case. While at z = 0 and z = 0.55 no
significant differences appear among the models, one can observe an
excess of small voids for the EXP003 model at z = 1. At this redshifts
EXP003 shows ⇠ 50% more voids with rv < 30 h�1 Mpc than LCDM,
although within a confidence of 1s.

This is again a very different result with respect to what previously
found for the voids identified in the CDM distribution, where the
largest differences with respect to the standard cosmological model
appeared at the large size tail of the distribution. It should however
be noticed that due to the different density of the tracers between the
sub-sampled CDM distribution adopted in the previous Section and
the FoF halo distribution shown here, the mean separation between
particles and hence the average size of voids is different in the two
cases. Therefore, the size range that appeared as the large-size tail
for the CDM voids (20 < rv[h�1 Mpc ] < 30) is now representing
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Figure 3.5: Top panels: the size distribution of voids in the halo distribution for the LCDM (black solid
line), EXP003 (blue dashed lines), EXP008e3 (orange dot-dashed lines) and SUGRA003 (red
dotted lines) models. Bottom panels: the relative differences between the cDE models and
the LCDM one, in units of the standard deviation s, computed for the LCDM model.

the small-size part of the void samples of the FoF halo distribution.
For this reason, the two results might still appear consistent with
each other despite their different qualitative trends. To address this
issue, in Section 3.4.3 below we will compare the differential size
distribution of voids identified in a different random sub-sample of
the CDM particles distribution with the same density of tracers as
the FoF halo catalogue. Nonetheless, the clear differences between
the background evolution of LCDM and cDE models (see Figure 3.2)
are not expected to be detected and do not appear for voids in haloes.

Before moving to this additional comparison, we conclude our anal-
ysis of the voids extracted from the FoF halo distribution by compar-
ing the void stacked density profiles as we did in Figure 3.3 for the
voids in the CDM distribution. In Figure 3.6 we show the analogous
to Figure 3.3 for these new voids samples at z = 0 and z = 1. Averaged density

profile of voids
traced in the halo
sample

For both redshifts we do observe significative deviations from the
LCDM profile only in the inner part of the voids, where shot noise
can strongly affect the profiles. We also observe that the
over-compensative region around ⇠ 1rv is not as prominent as in the
CDM voids (see Figure 3.3), once again showing differences between
tracers of density.
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Figure 3.6: The stacked profiles of voids in the halo distribution for the LCDM (black solid lines),
EXP003 (blue dashed lines), EXP008e3 (orange dot-dashed lines) and SUGRA003 (red dot-
ted lines) models. Results are displayed at two different redshifts, z = 0 and z = 1 (top
and bottom blocks of panels, respectively) for four ranges of rv, as labeled. The error bars
in the upper panels are computed as for Figure 3.3, and the sub-panels display again the
relative difference of the profiles with respect to the LCDM one in units of the statistical
significance of the averaged profile.
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Figure 3.7: Top panels: the size distribution of voids in the CDM distribution diluted to the same
density of the halo catalogue, for the LCDM (black solid lines) and EXP003 (blue dashed
lines) models. Bottom panels: the relative differences between the two models, in units of
the standard deviation, s, computed for the LCDM model.

3.4.3 The impact of halo bias

As introduced in Section 3.4.2, it is interesting to compare the abun-
dance of voids as a function of their effective radius, rv, for voids
samples extracted from the FoF halo catalogues and from a random
sub-sampling of the CDM distribution having the same number of
tracers in the simulation box as the number of FoF haloes. This will
ensure that the mean inter-particle separation of the two samples of
tracers is the same such that the corresponding average size of voids
will be comparable in the two cases, thereby allowing for a direct
comparison of the statistical properties of the two voids catalogues
over a similar range of void sizes. This approach has been followed
in several recent works [see e.g. 92, 156, 209], where the discriminat-
ing power of voids in future galaxy surveys has been inferred from
the expected properties of voids identified in a random sub-sample of
a simulated CDM distribution having the same density of the survey
under investigation. To this end, we have randomly sub-sampled the
CDM distribution of the CoDECS snapshots at the relevant redshifts
to a total number of 1.5 · 106 particles, corresponding to the total num-
ber of objects in the FoF halo catalogue of the LCDM simulation at
z = 0.

In Figure 3.7 we show the equivalent to Figure 3.2 for this new
random sub-sampling and compare the abundance of voids in the
LCDM and EXP003 models. We observe that, although the range of A test to isolate the

bias impact from
sparse sampling

void sizes is now comparable to what was shown in Figure 3.5, the
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LCDM EXP003

z b s8 b · s8 b s8 b · s8

0.00 1.2 0.809 0.971 1.046 0.967 1.011
0.55 1.584 0.618 0.979 1.310 0.733 0.960
1.00 2.049 0.504 1.033 1.633 0.595 0.972
1.60 2.903 0.398 1.155 2.235 0.468 1.046
2.00 3.630 0.348 1.263 2.739 0.408 1.118

Table 3.2: The bias b(z) and the normalisation of the linear perturbations am-
plitude s8(z) for the LCDM and EXP003 cosmologies. The right-
most column for each model displays the combination b(z) · s8(z),
showing how this combination is much similar for the two models
as compared to s8 alone. As a consequence, the differences in the
void populations extracted from the biased tracers within the two
scenarios are significantly suppressed with respect to the case of
the voids in the CDM distribution.

comparison between LCDM and EXP003 still appears starkly differ-
ent in the two cases. Also in this case, as already shown for a denser
sample of CDM tracers, the EXP003 scenario includes a larger num-
ber of voids of large sizes at all redshifts with respect to the standard
LCDM cosmology, with a qualitatively different trend with respect to
what shown in Figure 3.5. The comparison of Figs. 3.5 and 3.7 clearly
indicates that voids in the CDM distribution and voids in the distri-
bution of haloes are characterised by different statistical properties.
As the density of the two tracers is the same, these different prop-
erties must be associated with the different bias of the two samples
with respect to the underlying true density field: while a random sub-
sampling of the CDM distribution is an unbiased tracer of the density
field, haloes are biased and the bias is expected to evolve differently
in cDE models than in LCDM [128, 134]. More quantitatively, the
lower bias of the EXP003 model compensates for the higher value of
the perturbations amplitude. A degeneracy between bias and s8In Ta-
ble 3.2 we display the value of the bias [as computed in 128] and of s8
at various redshifts for the two models. As one can see from the last
column, the combination b(z) · s8(z) is substantially closer between
the two models compared to the value of s8 alone. This result sug-
gests that the assumption (implicitly adopted in many recent works)
that the properties of voids in a sub-sampled set of CDM particles ex-
tracted from a cosmological simulation can faithfully reproduce the
statistics of voids identified in a galaxy survey is not valid.

In order to further validate this result, we compute the size distribu-
tion of voids identified in the distribution of FoF haloes with masses
M > 5 · 1012M�, thus considering tracers with larger masses and,
therefore, with higher bias. This comparison is shown in the upper
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Figure 3.8: Top panels: the size distribution of voids identified in the distribution of haloes with mass
M > 5 · 1012MJ, for the LCDM (black solid lines), EXP003 (blue dashed lines), EXP008e3
(orange dot-dashed lines) and SUGRA003 (red dotted lines) models. Bottom panels: the
relative differences between the cDE models and the LCDM one, in units of the standard
deviation s, computed for the LCDM model.

panels of Figure 3.8, while the bottom panels display the deviation (in
units of s) between the models. At z = 0 we do not observe any sig-
nificative difference between models (in agreement with Figure 3.5),
while at larger redshifts we find that the EXP003 cDE model features a
larger number of small voids (30 < rv[h�1 Mpc ]< 60) as compared to
LCDM, though the effect is small. The comparison between Figs. 3.2
and 3.8 indicates again that voids in the CDM distribution and in the
distribution of haloes are characterised by different statistical proper-
ties. This result clearly shows that the bias of the tracers from which
voids are identified has a non-trivial impact on the relative statistical
properties of the voids sample between two competing cosmologi-
cal scenarios. Therefore, when comparing voids in LCDM and cDE
models, voids in haloes (which are biased tracers of the underlying
density field) will not provide a faithful representation of how the
models might differ in the properties of voids in the CDM distribu-
tion.

3.5 summary, discussion and conclusion

In this Chapter we analysed the statistical properties of voids in LCDM
and cDE models. In particular, we compared the properties of voids
detected in the distribution of CDM and in collapsed haloes, by means
of a suite of large cosmological simulations, the CoDECS. We focused Summary of the

results of this
Chapter
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on three void statistics: the filling factor, the size distribution and the
stacked density profiles.

In Section 3.4.1 we investigate the properties of voids in the CDM
distribution, considering the LCDM and the cDE model EXP003,
which represents – among the available CoDECS models – the most ex-
treme case showing the largest discrepancies with respect to LCDM
in several other observables [see e.g. the results of 13, 25, 40, 56, 85, 86,
118, 128, 134, 146]. Our main results can be summarised as follows.

1. The filling factor of voids detected in the CDM distribution in
the EXP003 model is significantly larger than in the LCDM case,
as expected due to the higher normalization of the amplitude
of linear perturbations at low redshift (Fig. 3.1). More quantita-
tively, the volume fraction in EXP003 is ⇠ 40% larger than the
corresponding LCDM fraction: based on a jackknife approach,
this is detectable with a very high statistical significance.

2. For what concerns the differential size distribution (Figure 3.2),
we found an excess of large voids in the EXP003 model with
respect to the reference LCDM cosmology, consistently with the
general findings of Pisani et al. [156]. Quantitatively, the excess
is around 50% with a difference larger than 4s. The radius at
which this excess starts to be significant decreases with redshift,
being r ⇠ 20, 15, 12 h�1 Mpc at z = 0, 0.55, 1, respectively.

3. The shape of the stacked density profile (Figure 3.3) is quali-
tatively similar to what previously found in the literature (i.e
density minima around the centres of the voids and over-dense
compensation regions at r ⇠ rv). The void profiles in cDE mod-
els are not significantly different from what observed in the stan-
dard cosmology. Nonetheless, we can observe that close to the
voids centres, the EXP003 model generally displays a density
10 � 25% smaller than LCDM, thus showing that voids tend to
be emptier in cDE models. On the other hand, the compensative
over-density at r ⇠ rv in the EXP003 case looks more prominent
than in LCDM. All of these features are expected considering
that the evolution of the background perturbations in cDE sce-
narios is faster than LCDM due to the fifth force associated with
the coupling.

In Section 3.4.2 we then focused on voids identified in the halo
distribution, finding that the comparison between cDE models and
the reference cosmology is very different from what found for CDM.
More specifically, we find the following results:

1. The filling factor of voids in haloes is not strongly dependent on
the considered cDE model (Fig. 3.4). Only minor, not significant
differences are found in the volume fractions at all redshifts con-
sidered in this analyses. This last result is starkly different from
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what observed in void samples detected in the CDM distribu-
tion.

2. The comparison of differential size distribution (Figure 3.5) in
the halo distribution does not reveal sensible differences be-
tween cDE models and the reference one. This result is again
substantially different from what found in Section 3.4.1. We con-
nect this discrepancy with the impact of the halo bias on void
properties. To test such effect, we compare size distribution of
voids in a random sub-sample of the CDM distribution with
the same density of tracers as the FoF halo catalogue. Again, in
this last case voids in CDM do not show the same relative trend
in the differential size distribution as for the voids in the halo
distribution (Figure 3.7). The impact of the halo bias can be ob-
served also by increasing the minimum mass of haloes used as
tracers: in Figure 3.8 we show that including only haloes with
large masses (> 5 · 1012 · M�) the cDE models show an excess
of voids with 30 < rv[h�1 Mpc ]< 60 at z = 0.55, 1, which is not
seen in Figure 3.5.

3. The density profile of voids in haloes does not look like an ef-
fective probe to discriminate among cDE models. Indeed, as
shown in Figure 3.6, the stacked profiles of voids in cDE mod-
els are only marginally distinguishable from the LCDM case,
and only in the very innermost parts.

To conclude, the main result of this Chapter is that the properties
of voids in different cosmological models are strongly affected by the
choice of the tracers of the underlying density field used to detect
them (haloes or CDM particles). This is caused by the impact of the
halo bias on the structural properties of voids: as the bias evolves
differently for different cDE models, this is reflected in a non-trivial
way on the properties of the associated void sample.

Our results indirectly challenge the assumption made in several
recent works that a sub-sampled distribution of simulated CDM par-
ticles with the same density of the expected tracers of a real galaxy
survey might provide reliable predictions about the effective discrim-
inating power of voids in that survey.

In the next Chapter we will try to address this issue more closely
in the LCDM scenario.





4
O N T H E L I N E A R I T Y O F T R A C E R B I A S A R O U N D
V O I D S

The analysis presented in this Chapter has been developed in collab-
oration with Nico Hamaus, Klaus Dolag, Jochen Weller, Marco Baldi
and Lauro Moscardini. Its results are published in an article [165].

The large-scale structure of the universe can only be observed via
luminous tracers of the dark matter. However, the clustering statistics
of tracers are biased and depend on various properties, such as their
host-halo mass and assembly history. On very large scales this tracer
bias results in a constant offset in the clustering amplitude, known
as linear bias. Towards smaller non-linear scales, this is no longer A summary of this

Chapterthe case and tracer bias becomes a complicated function of scale and
time. We focus on tracer bias centred on cosmic voids, depressions
of the density field that spatially dominate the universe. We consider
three types of tracers: galaxies, galaxy clusters and AGN, extracted
from the hydrodynamical simulation magneticum Pathfinder. In con-
trast to common clustering statistics that focus on auto-correlations
of tracers, we find that void-tracer cross-correlations are successfully
described by a linear-bias relation. The tracer-density profile of voids
can thus be related to their matter-density profile by a single num-
ber. We show that it coincides with the linear tracer bias extracted
from the large-scale auto-correlation function and expectations from
theory, if sufficiently large voids are considered. For smaller voids
we observe a shift towards higher values. This has important conse-
quences on cosmological parameter inference, as the problem of un-
known tracer bias is alleviated up to a constant number. The small-
est scales in existing datasets become accessible to simpler models,
providing numerous modes of the density field that have been dis-
regarded so far, but may help to further reduce statistical errors in
constraining cosmology.

This Chapter is organized as follows: in Section 4.1 we provide a
short introduction to the specific analysis presented, in Section 4.1.1
we describe the simulations employed in this analyses, in Section 4.2 Chapter’s

organizationwe present the commonly used bias estimators in observations and
theory and discuss the void-finder we employ, in Section 4.3 we ex-
plain how we conducted our analysis and in Section 5.5 we recap all
of our result and draw our conclusions.
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4.1 summary of the relevant state-of-the-art

As revised in Chapter 2, in the present standard cosmological model
the large-scale structure of the Universe forms in a hierarchical pro-
cess that begins with the gravitational collapse of over-dense fluctu-
ations of the matter density field into virialised and gravitationally
bound objects, known as dark matter haloes. Such objects provide
the potential wells in which baryons can cool and condense to create
galaxies that are now observed in the sky [151]. The understanding
of modern cosmology and structure formation is thereby deeply con-
nected to the statistical properties of dark matter haloes and their
hosted galaxies, which represent the final stage of the evolution of
primordial fluctuations and can be directly observed and used to con-
strain theory. Studying the clustering properties of galaxies, it was
discovered that they do not precisely mirror the clustering of the
bulk of the dark matter distribution: such evidence brought Kaiser
[106] to introduce the concept of galaxy bias to indicate that galaxies
are biased tracers of the underlying matter density field, as reviewed
in Section 2.3.3. Bias is now a known property of luminous tracers
on very large scales, where density fluctuations are within the linear
regime: in this case tracer bias is a simple constant offset in the clus-
tering amplitude, known as linear bias. Towards small scales, this el-
ementary relation does not stand and bias becomes an unestablished
function of scale and time.

In this Chapter we focus on the bias of tracers inside and around
cosmic voids, large under-dense regions in the large-scale structure of
the Universe that together with clusters, filaments and walls define
the topology of the cosmic web as predicted in a cold dark matter
cosmology [29, 163]. Voids are another peculiarity of the large scale
structure of the Universe, representing the result of the evolution of
under-densities in the primordial density field.

The growing interest for cosmic voids in the literature is partly due
to their not yet fully explored potential to constrain cosmology, while
the known properties of voids suggest they are very promising cos-
mological probes (see discussion in Section 3.1 and reference therein).

Despite that, a lack of understanding in how to link void properties
to theory, simulations and observations persists. For what concernsHow to relate void

in theory,
simulations and

observations?

the theoretical comprehension of voids, one of the pioneering works
in the field is presented in Sheth and van de Weygaert [191], where
the authors provide a theory to model the void-size distribution and
its evolution assuming spherical initial conditions, as commonly done
in void evolution models [27, 151, and see Sections 2.2.2 and 2.3.2 for a
summary of these topics]. However, assuming voids to start evolving
from spherical under-densities might not be representative of objects
developing from Gaussian underdense fluctuations of arbitrary shape.
The number function of voids identified in cosmological simulations
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is in fact not well represented by the model proposed by Sheth and
van de Weygaert [191], as recently argued (see e.g [75, 105, 136]; but
see [157] for how to take this into account). Many studies have been
conducted to better understand the evolution of voids over cosmic
time [3, 61, 221] and their number function [169].

Similarly, another gap that still has to be bridged concerns the re-
lation between the properties of voids in simulations with potentially
observable voids. Numerous catalogues of voids identified in spec-
troscopic data are now available [see e.g. 45, 127, 140, 149, 205] and
recently the largest galaxy survey to date, the Dark Energy Survey
(DES), has detected a trough and void lensing signal in a photometric
survey of galaxies [89, 185], opening up new possibilities to exploiting
the potential of voids in observations. In the future the next genera-
tion of large galaxy surveys, such as the ESA Euclid mission [8, 116],
are expected to provide a tremendous amount of new information
concerning the large-scale structure of the Universe. The detection
of gravitational lensing from medium-size voids in these surveys will
possibly constrain the void density profiles without having to rely on
luminous tracers like galaxies, which would require to model their
bias [50, 104, 114, 132]. Nevertheless, the vast majority of available
void-finders [see e.g. 141, 147, 161, 210] rely on the position of dark
matter particles in simulations, which cannot be directly compared to
observables. The same finders can be adapted to use galaxies as trac-
ers but one will eventually need to model the tracer bias to compare
observational results with predictions from simulations and to fully
understand properties of voids in the dark matter. For example, sev-
eral recent works study how redshift-space distortions around void-
centres provide constraints on cosmological parameters [4, 38, 48, 95,
96, 99]: all of these analyses are based on the assumption that bias is
linear in void environments. Nonetheless, a detailed study to investi-
gate and validate this assumption is still missing.

With the analyses presented in this Chapter, we aim to directly
determine the relation between luminous tracers of the large-scale
structure (such as galaxies, clusters and AGN) and their underly-
ing matter distribution in voids to directly test the linear bias as-
sumption. Thanks to state-of-the-art simulations that feature a full
hydrodynamical treatment, the so-called magneticum Pathfinder sim-
ulations [Dolag et al. in prep; see also 63, 100, 172, 186, 212], we
are able to perform this test with very high accuracy. The general
idea is to run a void finder on samples of luminous objects and to
extract both the distribution of luminous tracers and matter around
void-centres, in order to compare them against each other.
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4.1.1 Simulations

The hydrodynamical simulation suite magneticum pathfinder1 (Dolag
et al, in prep.) has already been employed successfully in a wide num-
ber of numerical studies. magneticum showed so far a remarkably
good agreement with observations for various probes, such as for
the pressure profiles of the intra-cluster medium [130, 158], the ex-
pected Sunyaev Zeldovich signal [63], the imprint of the intergalactic
medium onto the dispersion signal of Fast Radio Bursts [66], vari-
ous characteristics of AGN populations [100, 202, 203], the dynamical
features of massive spheroidal galaxies [172, 173], and the angular
momentum signatures of galaxies [212].

In this Chapter we employ the largest cosmological volume simu-
lated within that project, it covers a box of side length 2688h�1 Mpc,Cosmology, box size,

number particles simulated using 2 ⇥ 45363 particles [for details, see 28]. We adopted
a WMAP7 [110] LCDM cosmology with s8 = 0.809, h = 0.704, WL =
0.728, Wm = 0.272, Wb = 0.0456, and an initial slope for the power
spectrum of ns = 0.963. The simulation is based on P-GADGET3 [197],
a parallel cosmological tree Particle-Mesh (PM) Smoothed-Particle
Hydrodynamics (SPH) code. It uses an entropy-conserving formu-
lation of SPH [198] and follows the gas using a low-viscosity SPH
scheme to properly track turbulence [64]. Halos and sub-haloes areHalo definition
identified using the subfind algorithm [65, 199]. subfind identifies
sub-structures as locally overdense, gravitationally bound groups of
particles, starting from a main halo which is identified through the
Friends-of-Friends (FoF) algorithm with a linking length of 0.16 times
the mean inter-particle separation. After this first step a local density
is estimated for each particle via adaptive kernel estimation, mak-
ing use of a prescribed number of smoothing neighbours. After iso-
lated density peaks are identified, additional particles of decreasing
density are added. When a saddle point that connects two disjoint
overdense regions in the global density field is reached, the smaller
structure between the two is treated as a sub-structure candidate, and
the two overdensities are then merged. An iterative unbinding proce-
dure with a tree-based calculation of the potential is then run on all
sub-structure candidates. These structures are finally associated with
galaxies, and their integrated properties (such as stellar mass, M⇤)
are computed. Galaxies in magneticum can have stellar masses as
low as 4⇥ 108h�1M�, but in this study we will consider as main sam-
ple only galaxies with M⇤ � 1011h�1M�, which are more realistically
observable.

The virial radius of the main haloes identified by the FoF algorithm
is calculated using a density contrast built on the top-hat model [72].
To allow a better comparison with observations, we additionally use
an overdensity with respect to 500 times the critical density to define

1 http://www.magneticum.org

http://www.magneticum.org


4.2 methodology 75

Table 4.1: Properties of the galaxy, cluster and AGN populations extracted
from the magneticum simulations. We report the minimum mass
of the object included, Mmin, in terms of stellar masses M⇤ for
the galaxies, M500c for clusters and MBH for AGNs, as well as the
number of tracers Nt and of identified voids Nv

Tracers Mmin[M�/h] Nt Nv

Galaxies M⇤ = 4 ⇥ 108 9.5 ⇥ 106 36430
Clusters M500c = 1 ⇥ 1013 2.6 ⇥ 106 16970

M500c = 5 ⇥ 1013 3.5 ⇥ 105 3125
M500c = 1 ⇥ 1014 1.0 ⇥ 105 1053

AGNs MBH = 4 ⇥ 106 5.3 ⇥ 106 26265

M500c, which is the mass we will refer to as cluster mass in this and in
the next Chapter. Clusters are identified as main haloes with M500c >
1013h�1M�. For our analysis we make use of the galaxy and cluster
samples extracted from the simulation at redshift z = 0.14 with the
criteria explained above. In Table 4.1 we summarise some properties
of the tracers relevant for this analysis.

4.2 methodology

In this Section we will briefly recap how the tracer bias is defined
in observations and theory. We will also present some properties
of void profiles that are relevant for this analysis. This section is
mostly written for the benefit of the reader interested only in the
present Chapter, as most of the topic are presented with more details
in Section 2.3.

4.2.1 Correlation functions and bias estimation

The tracer correlation function is a measure of the degree of clustering
of the tracer itself. Being d2P the probability that a tracer A in the
volume dVA and another tracer B in the volume dVB are separated
by a distance r, the spatial two-point correlation function, xAB(r), is
defined as the deviation of such probability from that expected from a
random marginparThe correlation function: a brief recapdistribution
of tracers:

d2P = hnAihnBi[1 + xAB(r)]dVAdVB (4.2.1)

where hnAi and hnAi are the mean densities of the tracers [151].
When we compare tracers of the same population we refer to x as
the auto-correlation function while, if we compare two kind of trac-
ers, we refer to x as cross-correlation function.
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In general there is no reason to assume that the distribution of
baryons in the Universe traces exactly the distribution of mass. In
fact, on small scales, galaxy formation involves many dissipative pro-
cesses such as the radiative cooling of hot gas, so the efficiency of
galaxy formation is related to how deep the potential wells created by
haloes were; hence, on small scales, bias between matter and tracers
is a complicated function of space and time. By looking the distri-
bution of tracers on very large scales, we can only observe the most
luminous galaxies which are hosted by the most massive haloes [106]
i.e. by the highest peaks in the density-field. Thereby, in the latter
regime, tracers still do not perfectly mirror the same distribution as
matter, but, since the density fluctuations are small, the relation be-
tween matter and luminous tracers result in a constant offset in the
clustering amplitude, the linear bias, which, in terms of spatial corre-Linear bias
lations, can be written as:

b = xtm/xmm , (4.2.2)

or

b =
p

xtt/xmm (4.2.3)

where xtm is the tracer-matter cross-correlation function, xmm is the
matter auto-correlation function and xtt is the tracer auto-correlation
function (the tracers being galaxies, clusters and AGNs for our pur-
poses). We make use of these two definitions to calculate the value of
the linear bias of tracers in the magneticum simulation.

4.2.2 Theoretical bias

The excursion set formalism, introduced by Press and Schechter [167]
to predict the number of virialized dark matter haloes in the Universe
and fully developed by Bond et al. [30], provides a solid foundation
to build a simple theoretical model to calculate the clustering of dark
matter haloes and how their spatial distribution is biased with respect
to that of the mass. As revisited in Section 2.3.3 with this approach,
Mo and White [133] estimated the bias to be given by Equation 2.3.37),
which, for convinience we report here. Mo and White [133] bias, bMW,
is given by

bMW = 1 +
n2 � 1

dcrit
, (4.2.4)

where dcrit is the critical density exceeding which the collapse occurs
and n ⌘ dcrit/s(M) is the height of the threshold in units of the
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variance of the smoothed density distribution, s(M), at a given halo
mass, M:

s2(M) =
1

2p

Z •

0
dkk2Pm(k, z)W̃2

R(k) , (4.2.5)

Pm(k, z) being the matter power spectrum at redshift z and W̃R(k) the
Fourier transform of the top hat filter function [for a review of these
topics we refer to 223].

However, the bias as expressed by Equation 4.2.4 fails to predict
with high accuracy the value of the bias measured in numerical sim-
ulations. For this reason various corrections to Equation 4.2.4 have
been proposed in order to improve the consistency with simulation
results [see e.g. 187–190, 215]. In particular, Tinker et al. [215] shows
how, by calibration with a large set of simulations, it is possible to
estimate bias to great accuracy. Following the results of Tinker et al.
[215], the linear bias bTinker reads as:

bTinker = 1 � A
na

na + da
crit

+ Bnb + Cnc . (4.2.6)

where a, A, b, B, c, C are the calibrated parameters.
We will compute the theoreatical value of the linear bias in the

magneticum simulations using both the formula by Mo&White and
its correction by Tinker. In order to calculate the theoretical mean
value of the bias associated to our cluster sample we will average
its value using the number of objects as function of their mass (the
cluster mass function) dn

dM , i.e.:

hbi = 1
hnti

Z Mmax

Mmin

dn
dM

b(M)dM , (4.2.7)

where Mmin and Mmax are the lowest and largest masses in the sam-
ple, respectively.

4.2.3 On void definition and void-finding

The biggest criticism concerning void studies is generally related to
the ambiguity of the void definition: there are in fact many differ-
ent available finders and, in some circumstances, the usage of such a
variety of recipes to identify voids can lead to results almost impos-
sible to compare [53]. Although the void definition can be a serious Bias effects are

independent of
void-definition

obstacle on the way to establish a coherent picture on void proper-
ties, previous works proved that some statistical properties of voids
(such as their number function or profile) are strongly affected by
galaxy bias independently of the finder in use. In particular, recent
papers exploiting the differences between voids in a LCDM cosmol-
ogy and modifications of gravity [36], Galileon or non-local gravity
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[21], or possible couplings between cold dark matter and dark energy
[164] conclude that, while voids identified by matter particles exhibit
a clear deviation from the LCDM case, it is impossible to discrimi-
nate between models looking at the statistics of voids identified by
haloes. While Barreira et al. [21] connect the latter result with the
poor statistic of the halo-sample, Cai, Padilla, and Li [36] suggest that
this feature is related to the halo bias in agreement with Pollina et al.
[164], where the authors verified that the poor statistic of haloes is
not sufficient to justify the dissimilar properties displayed by voids
in haloes and voids in matter. A similar conclusion has been drawn
independently by Nadathur and Hotchkiss [137] using a LCDM sim-
ulation. It is a quite remarkable fact that all of these works reach the
same conclusion using different void-finders, namely: an improved
version of the finder presented in [147] (employed by [36]), the Water-
shed Void Finder algorithm ([162], used by [21]), VIDE ([210], utilised
by [164]) and a modified version of ZOBOV ([141], employed by [137]).
So, although it has been pointed out that a dynamical approach in
void-finding (in which there is no reliance on particle positions) can
reduce the impact of shot noise in void-identification [see e.g. 74],
this is not relevant for the present study where we look directly at
bias effects, which, as clarified above, are visible independently of
the finder in use. That said, it is crucial to be as clear as possible in
the description of the void finder and of a possible selection applied
on top of the void catalogue to ensure that conclusions and results
attained are plausible and can be reproduced by other parties.

We make use of the publicly available void finder VIDE [210, Void
IDentification and Examination toolkit] to identify voids. VIDE is a
wrapper for ZOBOV [ZOne 141, ZOnes Bordering On Voidness], an
algorithm that identifies depressions in the density distribution of a
set of points and merges them in voids with a watershed transform.
Details on the functioning of the void finder are reported in Section
3.3.

VIDE provides many catalogues in which various types of sample
selections (as e.g. cuts on the void hierarchy or on the void central
density) are applied on top of the original ZOBOV sample. SinceVoid selection
for observations it is often undesirable to perform a selection on the
void sample due to poor statistics, we will apply no selection regarding
void hierarchy or central density, thereby allowing also voids-in-clouds
(voids in overdense environment) in our analysis.

The ZOBOV code was originally intended for void-finding in simu-
lations, but VIDE also provides a flag for void-identification in light
cones from observations including the survey mask into the analysis
[see the VIDE paper 210, for further information] and, in fact, several
catalogues of voids in spectroscopic samples are already available [45,
127, 140, 149, 205]. Computationally we therefore have no problem
in handling void-finding in observations. The issue left to address is
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how to incorporate the bias into our framework, since we will need
to relate properties of voids identified in the distribution of luminous
tracers of the dark matter with voids in the dark matter distribution
itself, that are usually under study in simulations. We will elucidate
this relation in the following Sections of this Chapter.

4.2.4 Density profile of cosmic voids

The void density profile is one of the basic void statistics. From
previous studies it is known that the spherically averaged profile of
voids exhibits a very simple structure [see e.g. 92, 174, 175]: voids
are deeply under-dense in the vicinity of their center and feature an
over-dense compensation wall at r ⇡ rv, where r is the radial distance
from the void center. Such a density profile can be described with a Self-similar void

density profile and
void-tracer
correlation

simple fitting formula [92]:

nvt

hnti
� 1 = dc

1 � (r/rs)a

1 + (r/rv)b
, (4.2.8)

where dc is the central density contrast, rs is a scale radius at which
the profile density, nvt, is equal to the average density of tracer hnti;
a and b describe the inner and outer slopes of the void profile.

It is possible to show that the density profile of voids encodes the
same information as the void-tracer cross correlation function. In fact
the radial profile of voids is nothing but a procedure by means of
which we count tracers at a given distance from the void center per
units of volume, i.e. the cross-correlation between centers and tracers
by definition [see, e.g., 95]. Nt being the number of tracers, Nv the
number of voids, dD Dirac’s delta function, V the total volume, ~xc

i the
coordinates of the center of the i � th void, and ~xt

j the coordinates of
the j� th tracer we can show explicitly that the radial spherically aver-
aged void tracer-density profile compared to the mean tracer density
of the Universe, is:

nvt(r)
hnti

=
1

Nv
Â

i

ni
vt(r)
hnti

=

1
Nv

Â
i

1
Nt

V Â
j

dD(~xc
i �~xt

j +~r) =

V Â
i,j

Z 1
Nv

dD(~xc
i �~x)

1
Nt

dD(~x �~xt
j +~r)d3x =

1
V

Z nv(~x)
hnvi

· nt(~x +~r)
hnti

d3x = 1 + xvt(r)

thereby proving that:

nvt(r)
hnti

� 1 = xvt(r). (4.2.9)
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as we wanted to show.

4.3 the statistics of voids in the magneticum pathfinder
simulations

The aim of the analysis presented in this Chapter is to study the dis-
tribution of matter around potentially observable voids, i.e. voids
identified in the distribution of luminous tracers, such as galaxies,
clusters, or AGNs. The basic idea is to run our void-finder (described
in Section 5.3.1) on the galaxy, cluster and AGN catalogues extracted
from a large fully-hydro simulation (the magneticum see Section
4.1.1) and calculate both the density-profile of dark matter and of its
tracers around voids. A similar study has been conducted by Sutter
et al. [208], although the main purpose there was to show that voidsComparison with a

similar study in galaxies coincide with underdense regions of the dark matter dis-
tribution, which is indeed a crucial study to investigate potentially ob-
servable properties of voids. The authors also perform a void-to-void
comparison for voids identified by galaxies and by matter particles.
They conclude that it is always possible to identify a matter void in
the vicinity of a galaxy void, although an offset between their centers
is usually present. At that stage it has been concluded that potentially
observable voids are indicative of the presence of an under-density of
matter in our Universe. As we have now evidence that the tracer bias
is playing a fundamental role in void-analysis (see the discussion at
the beginning of Section 5.3.1), we need to further investigate the rela-
tion between tracers and the matter distribution around voids, which
is the goal of the present analysis.

In the following, we will refer to galaxy-voids, cluster-voids or
AGN-voids to indicate voids which are defined by applying the finder
on the galaxy-sample, the cluster-sample or the AGN-sample. More
generally we will refer to tracer-voids to indicate the three of them at
the same time.

4.3.1 Dark matter distribution around void centers

To have a first overview of the void catalogues we are about to use, we
look at the size distribution of voids which is displayed in This figure
shows the number of voids as a function of rv. Voids in magneticumVoid-size functions

of Magneticum have sizes between 15 Mpc/h and 150 Mpc/h (we refer to the largest
volume simulated, where the box-size is 2688 Mpc/h). As we could
have expected due to the number of tracers available in each sample
(see Table 4.1) and its effect on void-finding [see 207] we resolve the
smallest voids in the galaxy sample, where we see twice as many
voids of size within 15 � 60 Mpc/h as in the AGN-sample and four
times as many as in the cluster sample.
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Figure 4.1: Abundances of voids in the magneticum simulation. Voids are identified in the distribu-
tion of galaxies (solid red line), clusters (dashed blue line) and AGN (dotted green line).
The shaded area represents the error, calculated as Poisson uncertainty on the number
counts. Using galaxies as tracers of the underlying density field of the Universe we are
able to resolve and to find a sample of voids with a typical size between 15 � 60 Mpc/h,
twice as many as the sample of AGN-voids and 4 times as many as cluster-voids in the
same range of size. We expect such a result due to the effect of the tracer sparsity on void
finding [see 207]: with a low number of tracers (see Table 4.1) we are not able to resolve
voids of small size.
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Figure 4.2: Top panels: measured over-density of tracers (short dashed line) and of matter (dotted
line) around tracer-void centres (tracers being galaxies, clusters and AGNs from the left
to the right). The solid lines show the fit of the tracer-profile using Equation 4.2.8. The
same formula can be used to fit the matter-profiles (long dashed lines). The shaded areas
are the uncertainty computed as the standard deviation from the mean profiles. In the
mid panels we plot the ratios between tracer-profiles and matter-profiles around tracer-
void centres, which look fairly constant. In the bottom panels we display the signal-to-
noise ratios of the mid-panels. As the values of the measured profiles encounter zero,
the signal-to-noise drops dramatically. These profiles are obtained by stacking voids with
80 Mpc/h < rv < 90 Mpc/h.

After this preliminary check, we can look at the distribution of mat-
ter around void-centres identified by the tracers. In the top panel of
Figure 4.2 we show the stacked density profiles (i.e. the average den-
sity profile of voids of similar size) for tracer-voids with 80 Mpc/h <
rv < 90 Mpc/h (the tracers being galaxies, clusters and AGNs from
the left to the right). Each profile is calculated by counting objects
(tracers or dark matter particles) in the volume of spherical shells;
the distances from void-centers are expressed in units of rv and the
profile density, nvt, is expressed in terms of the mean density of trac-
ers in the Universe hnti. The errors are calculated as the standard
deviation from the average density profile. We use full catalogues
(for matter and tracers) without applying any sub-sampling in orderMatter over-density

inside galaxy-traced
voids

to reduce as much as possible the impact of noise caused by sparsity.
In the top panels of Figure 4.2, the short dashed lines show the

measured tracer-density profiles of tracer-voids in magneticum sim-
ulations and the solid lines are their fits computed with the formula
given in Equation 4.2.8: as expected the fitting formula describes cor-
rectly the tracers’ distribution around tracer-voids [207]. The dotted
lines represent the matter distribution around tracer-void centers, and
the long-dashed lines are their fits again with Equation 4.2.8. The for-
mula by Hamaus, Sutter, and Wandelt [92] describes correctly the
matter distribution around voids defined in tracers, too. The dis-
crepancy in the inner regions is due to some residual sparsity ef-
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Figure 4.3: Over-density of luminous tracers around voids as a function of the matter over-density
around tracer-void centres (both taken from Figure 4.2). The measured points are fitted
with the linear function (dotted line) from Equation 4.3.1, in which the offset is consistent
to zero within 5% (see Table 4.2). The error bars show the standard deviation from the
mean profiles. From left to right the tracers are galaxies, clusters and AGNs.

fect, which becomes more important in the vicinity of void-centres.
The fact that Equation 4.2.8 describes correctly also the dark matter
under-densities around tracer-voids is a first interesting result; in fact,
although Equation 4.2.8 has been already successfully tested both on
matter voids and galaxy voids separately, in this particular case we
are not defining voids in the matter itself: the void-finder is run only
on top of observable tracers and we then look at the matter distri-
bution around these potentially observable voids. So the profiles
of voids are always self-similar and describable by Equation 4.2.8
although the finder is not directly run on the particles with which
the profile is computed. Furthermore, in principle, once a relation
between the tracer-density profile and the matter-density profile is
established, we can link the latter to a potentially observable void-
profile, therefore opening up the possibility of testing this finding
with observations of voids where we can use the relative bias between
tracers to calibrate this feature. Going back to the top panels of Fig-
ure 4.2, we observe that, as expected from theory and previous works
[208], the tracer distributions around tracer-voids show a steeper pro-
file when compared to the matter: in the vicinity of the void-centres
we measure a larger matter density than tracer density, while on the
edge of voids (i.e around r ⇡ rv) the tracer density is higher than the
matter density.

In the middle panels of Figure 4.2, we display the ratio between the
measured matter-profiles and tracer-profiles (dashed line). Although
all ratios look fairly constant, there is a large signal-to-noise drop at
r ⇡ 0.75rv, i.e. where profiles have over-densities close to zero. This
is shown clearly in the bottom panels of Fig. 4.2, in which the signal-
to-noise ratio (where the noise is computed using error propagation,
starting with the error on the density profiles) for the mid-panels is
displayed. The fact that the ratios between tracer profiles and mat-
ter profiles look fairly constant is very promising, but it can be too
naive to trust the values given by the profile-ratios as indicators of
the matter-tracer relation considering the large signal-to-noise drop
just discussed.
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Table 4.2: Values of fit-parameters in Equation 4.3.1 for each tracer and void-size. We do not resolve
enough cluster-voids with 20 Mpc/h < rv < 30 Mpc/h to perform our analysis, hence we
can not report the values of the parameters in that case.

Voids Galaxies Clusters (M500c � 1013 M�/h) AGNs

rv in Mpc/h bslope coffset bslope coffset bslope coffset

20 � 30 2.164 ± 0.061 �0.098 ± 0.012 � � 2.395 ± 0.107 �0.086 ± 0.020

30 � 40 2.046 ± 0.026 �0.057 ± 0.004 2.415 ± 0.046 �0.041 ± 0.005 2.305 ± 0.052 �0.070 ± 0.007

40 � 50 1.890 ± 0.014 �0.023 ± 0.003 2.259 ± 0.027 �0.020 ± 0.003 2.125 ± 0.026 �0.030 ± 0.004

50 � 60 1.800 ± 0.012 �0.011 ± 0.003 2.144 ± 0.016 �0.011 ± 0.002 2.006 ± 0.021 �0.021 ± 0.003

60 � 70 1.751 ± 0.011 �0.007 ± 0.002 2.089 ± 0.011 �0.007 ± 0.001 1.925 ± 0.014 �0.007 ± 0.002

70 � 80 1.738 ± 0.008 �0.005 ± 0.002 2.030 ± 0.010 �0.005 ± 0.001 1.875 ± 0.012 �0.006 ± 0.002

80 � 90 1.746 ± 0.006 �0.004 ± 0.001 2.001 ± 0.010 �0.004 ± 0.001 1.840 ± 0.011 �0.005 ± 0.001

90 � 100 1.725 ± 0.008 �0.003 ± 0.001 1.972 ± 0.015 �0.003 ± 0.002 1.841 ± 0.010 �0.004 ± 0.001

100 � 110 1.767 ± 0.010 �0.002 ± 0.001 1.953 ± 0.014 �0.001 ± 0.002 1.852 ± 0.014 �0.002 ± 0.001

110 � 120 1.751 ± 0.007 �0.002 ± 0.001 1.908 ± 0.017 �0.003 ± 0.002 1.862 ± 0.022 �0.001 ± 0.002

120 � 130 1.735 ± 0.021 �0.002 ± 0.001 1.958 ± 0.019 �0.003 ± 0.002 1.892 ± 0.020 �0.001 ± 0.001

130 � 150 1.764 ± 0.012 �0.004 ± 0.001 1.951 ± 0.065 �0.007 ± 0.008 1.869 ± 0.021 �0.004 ± 0.002

Another way to look at the dependence between matter and tracer
distributions around voids is to plot one as function of the other. In
Figure 4.3 we show the matter distribution around tracer-voids as aA linear relation

between matter- and
tracer- overdensity

function of tracer distributions where the measured points are dis-
played as points with error-bars in both directions. We can fit these
points with a simple linear function (dotted line):

nvt

hnti
� 1 = bslope ·

✓
nvm

hnmi
� 1
◆
+ coffset , (4.3.1)

where nvt is the measured tracer-density profile around tracer-voids,
hnti is the mean tracer density, nvm is the measured matter-density
profile around tracer-voids, hnmi is the mean matter density of the
Universe, and bslope and coffset are the two free parameters of the linear
fit, i.e. the slope and the offset, respectively. We find that the value of
coffset is always consistent with zero within 5% (except, due to sparsity,
for small voids with 20Mpc/h < rv < 30Mpc/h, in which coffset ⇡ 0
only within the 10%, see Table 4.2). Therefore, bslope provides a single
value which fully describes the relation between matter and tracer
distributions: hence, we expect bslope to be related to the linear bias. In
the following we will show that bslope in fact coincides with the linear
bias, if sufficiently large voids are considered. This result suggests
two main consequences: not only can we link the tracer-profiles and
matter-profile of voids using the linear bias, but also we can think of
bslope as a novel way to measure the bias. We will discuss this latter
possibility in Section 4.3.2.

What we have shown so far refers to voids with an effective radius
rv within 80 Mpc/h and 90 Mpc/h as a guiding example, but we did
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Figure 4.4: Value of bslope from Figure 4.3 for galaxies (left-panel), clusters (mid-panel) and AGNs
(right-panel) around galaxy-voids, cluster-voids and AGN-voids respectively, in various
void-radius bins (i.e. as a function of void-size). The shaded area represents the uncer-
tainty, obtained from the error on the fit. We see an impact of void-size on the measure-
ment of bslope, which becomes larger for small voids.

perform our analysis using voids of various sizes. We report the bins
in which the analysis is repeated in the first column of table 4.2. The
bins are selected such that:

1. a sufficient number of voids is included in each bin so that the
averaged profile is accurate enough to make the profile-fit and
the linear-fit converge (i.e. at least ⇡ 50 voids per bin);

2. the physical dimension of each single bin is not too extendend,
in order to work under the hypothesis of considering voids of
similar sizes, which is required by Equation 4.2.8;

3. all void-sizes are covered.

We verified that in each bin we can always fit the relation between
matter and tracers around voids with a simple linear relation. In
Figure 4.4, we show the values for bslope (see Equation 4.3.1) as a func-
tion of void-size (the tracers being, from the left, galaxies, clusters
and AGNs). We see a trend: the value of bslope decreases with the Dependence of bslope

on the void-sizeincrease of void-size, showing that small voids yield a larger bias. As
the size of voids surpasses a critical size, the value of bslope stabilises
asymptotically to a constant value. The critical void-size at which
bslope becomes stable seems to be dependent on the tracer proper-
ties (clusters, mid-panel, seem stable only starting at rv ⇡ 80 Mpc/h,
while galaxies and AGNs show a stable value of bslope for roughly
rv > 50Mpc/h) and on the number of tracers (i.e. on the sparsity of
the sample). The shaded areas in Figure 4.4 represent the uncertainty
obtained from the linear fits.
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Figure 4.5: Comparison between different bias estimators: starting from the left panel, we plot the
bias of galaxies calculated as the saturated value of the slopes from Figure 4.4, and the
usual galaxy bias estimators presented in Equation 4.2.2 (dashed line) and Equation 4.2.3
(dotted line). The central and right panel show the cases of clusters and AGNs in blue and
green respectively. We find a good consistency between bl

slope and other bias estimators
in the large-scale limit. The shaded area is the error, computed as the standard deviation
from the mean value of bslope from all void sizes.

4.3.2 Linear bias

To demonstrate convincingly that bslope from our fit with Equation 4.3.1
is an indicator of the tracer bias, we compare its values with the most
commonly used bias estimators (discussed in Section 4.2.2). In Fig-
ure 4.5 we show the bias computed with eqs. 4.2.2 (dashed lines) and
4.2.3 (dotted lines) and bl

slope (solid lines), defined as the value of bslope
calculated in the bin that includes the largest voids of each sample (i.e.
130 Mpc/h < rv < 150 Mpc/h): the aim is to confront the asymptotic
measured value of bslope (see Figure 4.4) with the linear bias. The
shaded areas show the error on the mean value of bslope from all void
sizes.

As we can see in Figure 4.5, for all tracers (from the left to the
right: galaxies, clusters and AGNs) bl

slope agrees well with the bias
calculated by eqs. 4.2.2 and 4.2.3 in the large-scale limit, but devi-
ates on small scales. This result confirms that the linear bias gives aA comparison of

bslope and linear
bias values

good description of the relation between luminous tracers and mat-
ter around voids, as long as sufficiently large voids are under study.
Hence, computing the slope in Equation 4.3.1 with a simple linear fit,
as described in Section 4.3.1, provides another technique to estimate
the linear bias in simulations, if sufficiently large voids are analysed.
Such a technique, in principle, allows to extend the measurement of
linear bias to smaller scales inside voids. A caveat is the large uncer-
tainty: close to void-centers Poisson noise increases and we should
carefully consider how to further test this extension.

To additionally examine the consistency of our procedure to cal-
culate the bias, we verify how bslope changes after imposing various
mass-cuts on the cluster sample. Namely, we demand the cluster
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Figure 4.6: Distribution of clusters around cluster-void centers as a function of the matter-distribution
around cluster-voids measured after applying various mass cuts: from the left to the right
M500c > 1013 M�/h (full sample), M500c > 5 ⇥ 1013 M�/h and M500c > 1014 M�/h. The
measured points (blue) are fitted with a linear function (dotted line) presented in Equa-
tion 4.3.1. The slope increases from the left to the right panel as expected due to the increas-
ing mass of the objects included in the analysis. We are showing the plot for the largest
voids included in each sample, i.e. from left to right for voids with size 130 � 140 Mpc/h,
170 � 200 Mpc/h and 220 � 290 Mpc/h

mass to be M500c � 5 ⇥ 1013 M�/h and M500c � 1014 M�/h. To be
conservative we rerun the void finding algorithm after applying each
selection cut on top of the cluster-sample and we repeat the stack- A consistency check
ing procedure. By imposing these cuts we include a smaller number
of clusters in the analysis (see Table 4.1), which implies that we are
not able to resolve the smallest voids due to the sparsity of the tracers
[see e.g. 207]. In order to include a sufficient number of voids we need
to modify the binning employed in the stacking procedure. In fact,
since we are not able to resolve the smallest voids, it is necessary to
remove, shift, or enlarge some of the bins. Being able to resolve only
very large voids in the sample of clusters with M500c � 1014 M�/h,
we do not expect to find a high accuracy result; however we aim to
find at least a qualitative indication that the bias that we measure
using bl

slope increases as expected in this case.
In Figure 4.6 we show the distribution of clusters around cluster-

void centers as a function of their matter distribution (in analogy to
Figure 4.3); we are displaying the relation for the largest voids in
each sample, i.e. for voids with a rv in the bin-size range (from the
left to the right), of 130 � 140 Mpc/h, 170 � 200 Mpc/h and 220 �
290 Mpc/h. After applying the mass-cuts we are still able to fit the
matter-tracer relation with a simple linear dependency (i.e. using
Equation 4.3.1) where the offset value is consistent with zero. The
exclusion of low-mass clusters from our main samples increases the
noise on our measurement, which is now not as well determined as
in Figure 4.3: the error bars are larger than in the full cluster-sample
case and the simulation points are sometime further away from the
fit (dotted line). However, we can clearly see that bslope increases from
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Figure 4.7: Values of bslope after applying different mass cuts on the cluster sample as a function of
void-size. The shaded area represents the uncertainty, obtained from the error on the fit.
In agreement with previous findings we see an impact of void-size on the measurement of
bslope, which becomes largest for small voids. In the cases in which a mass cut is applied
(central and right panel, M500c � 5⇥ 1013 M�/h and M500c � 1014 M�/h) we observe that
bslope decreases as the void-size increases, although in a noisy manner. It is also not clear
whether the convergence to the value of the linear bias is reached as in the full cluster
sample (left panel).

the left to the right panels of Figure 4.6, following an expected trend,
since we are imposing a larger and larger threshold on the mass-cut
(therefore including only objects with higher and higher bias).

As previously done with the other tracers under study, we per-
formed our analysis on voids of various size. We show how the
value of bslope changes as a function of void-size in Figure 4.7: go-
ing from the left to the right we display the curve for clusters with
M500c � 1013 M�/h (same as Figure 4.5, central panel, reported here
for comparison), M500c � 5 ⇥ 1013 M�/h and M500c � 1014 M�/h.
For what concerns the cases in which a mass cut is applied (central
and right panels) we see, in agreement with our previous findings,
that small voids yield a higher value of bslope, although the trend is
not as clearly saturating as in the full-cluster sample (left panel). For
the samples in which clusters have a mass M500c � 5 ⇥ 1013 M�/h
and M500c � 1014 M�/h we were also expecting an increasing criti-
cal void-size at which bslope converges to a constant value, due both
to the inclusion of highly biased tracers and due to their increased
sparsity. However, in this cases bslope does not converge to a constant
value. It is therefore not clear whether we resolve voids large enough
to reach the convergence value in the central and right panels.

We can now compare bl
slope with the bias calculated using eqs. 4.2.2,

4.2.3. Since we are only considering clusters we can now include
theory predictions to our plot, using the Mo&White formula (Equa-
tion 4.2.4) and its extension by Tinker (Equation 4.2.6). To estimate
the mean value of bMW and bTinker we use as weight the theoretical
mass function calculated with Press and Schechter [167] and the Tin-
ker et al. [215] respectively.
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Figure 4.8: Comparison between different bias estimators and theory after applying various mass-
cuts: we plot the bias of clusters calculated as bl

slope (solid line), and the classical bias
estimator (Equation 4.2.2, dashed-dotted line). The value predicted by Equation 4.2.6 and
Equation 4.2.4 is shown by the dashed line and the long dashed line respectively. The
shaded areas represent the standard deviation from the mean values of bslope.

In Figure 4.8 we plot the values of linear bias calculated with all of
these methods. Namely:

• bl
slope (solid line, the shaded area represents the error on the

mean value of bslope for voids of various sizes);

• b from Equation 4.2.2 (dashed-dotted line);

• bMW from Equation 4.2.4 (long dashed line);

• bTinker from Equation 4.2.6 (dashed line).

For the most numerous cluster sample under study (M500c � 1013M�/h,
left panel), we are showing the same plot as Figure 4.5 (central panel)
for the comparison. In this case and for M500c � 5 ⇥ 1013 M�/h
(central panel) we find a good agreement of bl

slope, both with theory
and with theoretical bias computed with eqs. 4.2.2 and 4.2.3. Values
predicted by other bias estimators are within the uncertainty. As we
commented before, the agreement is remarkable on large scales while
on small scales the traditional bias estimators deviate from bl

slope. For Issues with a very
sparse samplewhat concerns the analysis in the sample which includes only clusters

with M500c > 1014M�/h (right panel), we see a significant deviation
of bl

slope from other bias predictions. We expected the latter case to be
the most problematic, given the large noise due to the extreme mass
cut applied (see Table 4.1). Beside this, there is a practical motivation
for such a discrepancy: as we suspected, we did not resolve enough
large voids to determine the convergence of bslope. We are, in fact,
forced to include voids of a wide range of sizes in the bin that con-
tains the largest voids in this sample (220 � 290 Mpc/h) in order to
obtain sufficiently smooth profiles and reach the convergence in the
linear fit between matter-void profile and cluster-void density profile.
This is absolutely necessary: if we would include only voids with
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sizes between e.g. 225 � 290 Mpc/h the linear fit would not converge.
Apparently, for this particular case, voids with rv ⇡ 220 Mpc/h are
too small to attain the convergence of bslope to the value of the linear
bias. Ideally, if we had resolved a sufficient number of very large
voids (rv > 250 Mpc/h) we would recover the value of the linear bias
also in this case, but the simulation box is too small to get a suffi-
ciently large number of voids of that size. This is indeed a critical
point as, the only way to tell if the bslope converged to a saturated
value is by looking at Figure 4.4 and Figure 4.7. Moreover, for practi-
cal purposes we can use the relative bias between different tracers for
that matter, which is accessible in observations.

As we commented before, it is not clear by Figure 4.7 whether bslope
converges to a constant value for the cluster samples with M500c �
5 ⇥ 1013 M�/h and M500c � 1014 M�/h: looking at Figure 4.8 we can
conclude that the convergence is reached for M500c � 5 ⇥ 1013 M�/h
but not for the most extreme mass cut. It is remarkable that, in the
latter case, we understand why the convergence of bl

slope can not occur.
However, we have demonstrated that our method of calculating the
bias with bl

slope is quite consistent when applied on samples with
various masses which was the aim of this test.

To summarize this Section, we have shown that the relation be-
tween matter and matter-tracers in voids is always linear and deter-
mined by a single number bslope. This result was established by di-
rectly measuring the distribution of matter and tracers around voids
and incidentally validates recent work that simply assumed the bias
of tracers to be linear in the vicinity of voids. Furthermore we showed
that, by measuring the matter profile and the matter-tracer profiles
around large voids in simulations, we can estimate the value of the
linear bias via the slope of a simple linear fit between the two distri-
butions, if sufficiently large voids are considered.

4.4 summary, discussion and conclusions

With the help of a suite of state-of-the art hydro-simulations we have
investigated the stacked tracer-density profile of cosmic voids and
linked it to their underlying matter-density profile. Before discussing
the implications of our findigs, we recap all major results presentedSummary of the

results in this Chapter:

• The underlying matter-density profile of tracer-voids is well

described by the fitting formula presented in Hamaus, Sutter,

and Wandelt [92]. Such a formula was known to describe the
profile of tracer-voids and matter-voids separately, but in this
Chapter we have successfully tested it on depressions of the
matter-density field around tracer-voids, i.e. without running
the void finder on dark matter particles. This result points out
once again the degree of self-similarity of underdense regions
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in our Universe, as they can always be described by the same
fitting function.

• The relation between the density of tracers and matter around

voids is always linear and determined by a multiplicative con-

stant (bslope). This remarkably simple relation was tested using
galaxy, cluster and AGN samples extracted from magneticum
Pathfinder, including voids of various sizes and applying differ-
ent mass cuts on top of the cluster sample. The linear relation
between matter and tracers always stands, regardless of tracer
type and host-halo mass range.

• The value of the multiplicative constant decreases with the

increase of the size of voids and asymptotes to the linear bias.

For sufficiently large voids, bslope is shown to match the linear
bias extracted from the usual tracer auto-correlation, the tracer
cross-correlation with dark matter, and the expectations from
theory, such as the bias functions proposed by Mo&White and
Tinker. The critical void-size at which bslope converges to the lin-
ear bias is dependent on the clustering properties of the tracers
under study (and on their sparsity). In fact, we find that for
the full cluster sample the critical void-size is around 80 Mpc/h
while for AGNs it is around 60 Mpc/h and for galaxies about
50 Mpc/h. In order to eliminate the effect of sparsity, we sub-
sampled all tracers to the density of our full cluster sample. This
test reveals that the critical void size at which bslope reaches a
saturated value also depends on tracer properties other than
density, such as their bias. If a highly biased and very sparse
population is used as tracer of the density field, it can be possi-
ble that not enough large voids are available and hence we can
not establish the constant value to which bslope converges. The
large values of bslope obtained by small voids show that they
yield a biased result. We leave further investigations on the ori-
gin of this effect to future studies.

The correspondence between bslope and linear bias is expected at
linear order in the density fluctuations, because we can consider the
stacked tracer-density profile of voids as a void-tracer cross-correlation
function xvt(r) (see Equation 4.2.9), and express it in terms of the void-
matter cross-correlation function,

xvt(r) = bxvm(r) , (4.4.1)

via the linear tracer bias b. We find that Equation 4.4.1 is in principle
valid for arbitrarily small values of r, as long as large enough voids
are considered, in stark contrast to the common two-point statistics
of tracers appearing in eqs. 4.2.2 and 4.2.3. For the latter, the linear
bias model can break down below scales on the order of ⇠ 50Mpc/h



92 on the linearity of tracer bias around voids

at low redshift and is therefore not applicable for a dominant fraction
of available Fourier modes of the density field.

Furthermore, this technique can yield important advantages for the
analysis of survey data. In order to maximize the amount of cosmo-
logical information contained within the common two-point statisticsDiscussion
of large-scale structure one has to make use of sophisticated perturba-
tion theory frameworks to consistently include all higher-order bias
parameters [e.g. 24, 82, 131, 184]. Alternatively, one can marginalize
over the unknown free parameters of an empirical function that mod-
els non-linear bias in a phenomenological way. However, both ap-
proaches are very limited, they quickly break down towards smaller
scales and the total information gain does not scale with the addi-
tional number of modes included.

As long as tracer bias remains scale-independent, as shown to be
the case in void-tracer cross-correlations, these limitations do not ap-
ply. An example for such a cosmological analysis is the study of
redshift-space distortions around voids [4, 38, 48, 95, 96, 99], but the
interpretation of many other observables, such as void abundance,
void lensing, void clustering and the void ISW effect may benefit
from a linear bias treatment as well. An exciting perspective is to
look out for additional physical effects that induce a non-linear scale-
dependent tracer bias around voids, and are typically neglected in
standard LCDM. One such example is the effect of massive neutri-
nos [19, 39, 43, 123]. Similar signatures can be expected in scenarios
of modified gravity [5, 36] or coupled dark energy [164]. While we
leave further research along these lines for future work, we describe
a first attempt at testing Equation 4.4.1 with observational data in the
next Chapter.
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O N T H E R E L AT I V E B I A S O F V O I D T R A C E R S I N T H E
D A R K E N E R G Y S U RV E Y

This Chapter was written in collaboration with Nico Hamaus, Kerstin
Peach, Klaus Dolag, Jochen Weller and the Dark Energy Survey (DES)
collaboration. Its results are included in a paper currently submitted
to MNRAS [166]

As widely summarised in this thesis, luminous tracers of large-
scale structure are not entirely representative of the distribution of
mass in our Universe. As they arise from the highest peaks in the
matter density field, the spatial distribution of luminous objects is bi-
ased towards those peaks (see Section 2.3.3). On large scales, where
density fluctuations are mild, this bias simply amounts to a constant
offset in the clustering amplitude of the tracer, known as linear bias
(see Section 4.1). In this Chapter we focus on the relative bias be- A summary of this

Chaptertween galaxies and galaxy clusters that are located inside and in the
vicinity of cosmic voids, extended regions of relatively low density in
the large-scale structure of the Universe. Firstly - employing hydro-
dynamical simulations - we verify that the relation between galaxy
and cluster over-density around voids remains linear. Hence, the
void-centric density profiles of different tracers can be linked by a
single multiplicative constant. This amounts to the same value as the
relative linear bias between tracers for the largest voids in the sam-
ple. For voids of small sizes, which typically arise in higher density
regions, this constant has a higher value, possibly showing an en-
vironmental dependence similar to that observed for the linear bias
itself. We confirm our findings by analysing mocks and data obtained
during the first year of observations by the Dark Energy Survey. As
a side product, we present the first catalogue of three-dimensional
voids extracted from a photometric survey with a controlled photo-z
uncertainty. Our results will be relevant in forthcoming analyses that
attempt to use voids as cosmological probes.

This Chapter is organized as follows: in Section 5.1 we recall some
introductory knowledge (to the benefit of the reader who might be
interested in this chapter only) in Section 5.2 we present all the data
employed in our study (hydro-sims, DES mocks and DES data); in Structure
Section 5.3 we describe the void finding algorithm, as well as all the
methods employed to estimate the relative bias of tracers; in Section
5.4 we present the results of our analysis; finally we discuss our con-
clusions in Section 5.5.

93



94 on the relative bias of void tracers in the dark energy survey

5.1 introductory matters

The bias of tracers has been typically studied via the correlation func-
tion or the power spectrum of all tracers as a whole, regardless of
their cosmic-web environment [see, e.g., 35, 68, 193, 194, 200, and
references therein]. Recently, however, the properties of bias were in-Summary of the

hypothesis we want
to test

vestigated focusing on tracers located in the vicinity of cosmic voids,
as reviewed in Chapter 4.

To summarise the results presented in the previous Chapter we
may simply write that the void-tracer cross-correlation function xvt(r)
exhibits a linear relation with the corresponding void-matter cross-
correlation function xvm(r), with a proportionality constant bslope,

xvt(r) = bslope xvm(r). (5.1.1)

Furthermore, the best-fit value for bslope decreases monotonically to-
wards larger voids, and saturates to a constant number for the largest
voids. This number was shown to coincide with the linear tracer bias
bt, which can be either calculated from theory, or determined using
the common bias estimators. Hence, bslope in Equation 5.1.1 can be
expressed as follows:

bslope(rv)

8
<

:
> bt , for rv < r+v

= bt , for rv � r+v ,
(5.1.2)

where rv is the average, and r+v the critical effective void radius of
the sample. In other words, Equation 5.1.1 linearly relates tracer and
matter densities around voids in all cases, but bslope coincides with
the linear bias bt only when voids of size rv > r+v are considered in
the measurement [for visualization please refer to Figure 4.4 in Chap-
ter 4 or Figure 4 of 165]. The precise value of r+v depends on various
properties of the tracer distribution itself, such as its sparsity and bias.
Nevertheless, Equation 5.1.1 provides a very simple guideline of how
to infer the distribution of mass around voids in the tracer distribu-
tion1. The aim of this Chapter is to show that the same applies when
relating different types of tracers around voids, both in simulations,
and for the first time in observational data as well.

The results of Pollina et al. [165] provide a first step to connect
theory with practice, as Equation 5.1.1 allows us to bridge the gap be-
tween the matter- and tracer density profiles around observationally
defined voids. In fact, these results have already been employed to
this end by Ronconi and Marulli [178], who extended their theoretical
void size function to voids traced in haloes thanks to Equation (

1 Note that Nadathur and Percival [138] find a residual from the linearity of Equa-
tion 5.1.1 when bslope is fixed to the linear bias bt, while Pollina et al. [165] and this
analysis treats it as a free parameter.
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Despite the fact that Equation 5.1.1 has a number of interesting con-
sequences and applications, it is challenging to test experimentally,
as the dark matter density cannot be observed directly in all three
dimensions. However, voids can also be used as weak gravitational
(anti-)lenses to infer their projected surface mass density [50, 114, 132,
185]. Either a deprojection of the void lensing profiles to 3D, or a
projection of tracer density profiles to 2D then allows us to constrain
the bias relation in voids (Fang et al., in prep). Another possibility is
to apply Equation 5.1.1 to different tracers of the matter distribution.
As long as every individual tracer obeys a linear clustering bias with
respect to the dark matter, the relative clustering bias between the
tracers should remain linear as well.

In this analysis we will make use of galaxies and galaxy clusters
as two distinct tracer types. These are the most commonly available
and abundant tracers in current surveys, and at the same time ex-
hibit very different clustering properties. We will use the distribution
of galaxy clusters to define our void sample, thanks to their higher fi-
delity in providing photometric redshifts and thus accurate distance
estimates. The relative bias relation between galaxies and galaxy clus-
ters will be thoroughly investigated in the vicinity of those voids.
In order to provide a controlled setup, we first develop our analy-
sis techniques based on state-of-the-art hydrodynamical simulations
(magneticum). Our methods are then applied to the redMaGiC
galaxy– and redMaPPer galaxy cluster catalogues originating from
the first year of observations by the DES collaboration. Realistic mock
catalogues provided by the mice 2 project that have been constructed
to specifically mimic the observations which will be used to validate
our conclusions.

5.2 simulations , data and mocks

5.2.1 Simulations

The hydrodynamical simulation suite magneticum pathfinder2 (Dolag
et al, in prep.) has already been presented in Section 4.1.1, to which
we refer the reader for a thorough understanding. In this Chapter we
only consider magneticum clusters above 1014h�1M� for purposes of
void finding. For our analysis we make use of the galaxy and cluster
samples extracted from the simulation at redshift z = 0.14 with the
criteria explained in Section 4.1.1. In Table 5.1 we summarise some
properties of the tracers relevant in this work.

2 http://www.magneticum.org

http://www.magneticum.org
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Table 5.1: Properties of the galaxy and cluster samples in the magneticum
simulations. The minimum mass Mmin is given in terms of stellar
mass M⇤ for galaxies, and in terms of M500c for clusters. Nt is
the total number of tracers and Nv the corresponding number of
identified voids.

Tracers Mmin[M�/h] Nt Nv

Galaxies M⇤ = 1 ⇥ 1011 6.5 ⇥ 106 -
M⇤ = 5 ⇥ 1011 2.6 ⇥ 106 -
M⇤ = 1 ⇥ 1012 3.5 ⇥ 105 -

Clusters M500c = 1 ⇥ 1014 1.0 ⇥ 105 1053

5.2.2 Data

The Dark Energy Survey [DES, see 213] is an on-going 5 year ob-
servational campaign supported by an international collaborative ef-
fort. It employs the 570 megapixel Dark Energy Camera [DECam, see
78, 101] mounted on the Blanco telescope at the Cerro Tololo Inter-
American Observatory (CTIO). At the end of its operations, DES will
have mapped approximately 300 million galaxies and tens of thou-
sands of clusters over a 5000 square degree footprint in the southern
hemisphere. DES provides photometric data using five filters (grizY)The Dark Energy

Survey to the limiting magnitude of 24th i-band [107], although the relevant
limiting magnitude for this study is 22.5 in i-band, as it constrains the
observations of galaxies [67]. In this work we employ data obtained
during the first year of observation (Y1) taken between Aug. 31 2013
and Feb. 9 2014, that have already shown their potential in constrain-
ing cosmology [58]. DES Y1 wide-field observations scanned a large
region extending approximately between �60� < d < �40� overlap-
ping the South Pole Telescope (SPT) survey footprint, screening an
area of 1321 deg2 (A1). A much smaller area overlapping the “Stripe
82" of the Sloan Digital Sky Survey (SDSS) was also mapped by DES,
but this region will not be included in our analysis. From the Gold
catalogues [67], 26 million galaxies were selected for the weak lensing
sample. Recently the first three years of the observational campaign
were made public with the first DES data release [2].

5.2.2.1 Galaxy clusters

We make use of red-sequence Matched-filter Probabilistic Percolation
(redMaPPer) Y1A1 clusters [129], both to use them as tracers of the
large-scale structure, and to identify cosmic voids in the latter. The
photometric red-sequence cluster finder redMaPPer is specifically
developed for large photometric surveys. It identifies galaxy clus-
ters by searching for a bulk of its population to be made up of old,
red galaxies with a prominent 4000Å-break. Focusing on this spe-Redmapper clusters
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cific galaxy population the algorithm increases the contrast between
cluster and background galaxies in colour space, and it enables ac-
curate and precise photometric redshift estimates, with a scatter of
sz/(1 + z) = 0.01 level for z < 0.7 [183], which includes the redshift
window employed for this data analysis. The associated cluster rich-
ness estimator, l, is the sum of the membership probability of every
galaxy in the cluster field, and has been optimized to reduce the scat-
ter in the richness-mass relation [179, 180, 182]. For a more detailed
description of the algorithm we refer to [183]. In this work we will
employ cluster samples with l > 5, which corresponds to a mini-
mum mean mass of about ⇠ 1013h�1M� following the mass-richness
relation of McClintock et al. [129]. This low richness cut that does
not guarantee the purest cluster selection. In the analyses presented
in this Chapter, however, we are not interested in the detailed prop-
erties of individual clusters. Rather, we desire the selected sample
to be used as a tracer of large-scale structure, regardless of whether
some of its objects are true clusters or not. The resulting full cata-
logue contains 103423 clusters and has proven to be optimal for the
task of void identification, owing to its relatively high cluster density
of about 10�4h3Mpc�3.

5.2.2.2 Galaxies

We also employ red-sequence Matched-filter Galaxy Catalog (redMaGiC)
Y1A1 galaxies [73] as tracers of large-scale structure. The redMaGiC Redmagic galaxies
algorithm [181] is automated for selecting Luminous Red Galaxies
(LRGs) and was specifically designed to minimize photometric red-
shift uncertainties in photometric large-scale structure studies, result-
ing in a photo-z bias zspec � zphoto better than 0.005 and in a scatter
sz/(1 + z) of 0.017. redMaGiC achieves this goal by self-training
the colour cuts necessary to produce a luminosity-thresholded LRG
sample of constant comoving density. In this work we will distin-
guish among three different redMaGiC samples, denoted as high den-
sity (brighter than 0.5 L⇤ and density 10�3h3Mpc�3), high luminosity
(brighter than 1 L⇤ and density 4 ⇥ 10�4h3Mpc�3), and higher luminos-
ity (brighter than 1.5 L⇤ and density 10�4h3Mpc�3).

5.2.3 DES Mocks

In order to validate our results, we make use of mock catalogues ex-
tracted from the mice 2 project. mice 2, based on the original mice
(MareNostrum - Instituto de Ciencias del Espacio) project [55, 79], is a
suite of large high-resolution N-body simulations that have been run
with the gadget 2 code [197]. Including 40963 particles in a box size
of 3.072h�1Gpc, mice 2 resolves haloes with even lower mass resolu-
tion (2.93 ⇥ 1010 h�1M�) than mice, making this particular simulation
a perfect tool in providing mocks for deep and sensitive surveys such
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as DES. FoF halo catalogues extracted from the simulations are popu-
lated by galaxies using a Halo Occupation Distribution (HOD), whichMocks of the 5-year

DES observations assigns luminosities to the central and satellite galaxies so that their
observed luminosity function is preserved. The mice 2 galaxy cata-
logue is forced to match luminosity, colours and clustering properties
of DES at redshift z = 0.1, from where a light cone is then extrapo-
lated by replicating and translating the simulation box, allowing one
to build an output with negligible repetition up to redshift z = 1.4.
In this work we are going to employ the largest available light cone,
which reproduces a full octant of the sky with the same properties
as the DES Y1 observations, such as photometry. More specifically,
we will employ the redMaGiC galaxy and redMaPPer cluster cat-
alogues extracted from mice 2 to asses the impact of photometric
redshift uncertainty on our results.

5.3 methods

5.3.1 Void finder

We employ the Void IDentification and Examination toolkit vide [210]
to construct our void catalogues. vide implements an enhanced ver-
sion of zobov [ZOnes Bordering On Voidness, 141], an algorithm that
identifies density depressions in a 3-dimensional set of points. The
void finding procedure has been summarised in Section 3.3. In this
Chapter we will employ the most general void catalogue produced
by vide, without applying any further selection cuts on density orVoid-selection,

centre and radius hierarchy levels of voids. We recall that we define the void centre as
the volume-weighted barycentre ~X of the N Voronoi cells that define
each void,

~X =
N

Â
i=1

~xi · Vi

,
N

Â
i=1

Vi , (5.3.1)

where ~xi are the coordinates of the i-th tracer of that void, and Vi the
volumes of their associated Voronoi cells. The effective void radius rv
is calculated from the total volume of the void Vv. It is defined as the
radius of a sphere with the same volume,

Vv ⌘
N

Â
i=1

Vi =
4p

3
r3

v . (5.3.2)

5.3.2 Correlation functions

In order to explore the clustering statistics around voids we will
employ correlation functions. For the analyses based on the hydro-
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simulations, that admit periodic boundary conditions, we will em-
ploy the same method as presented in Section 4.2.1 to compute the
correlation function.

However, in real observations we are detecting tracers inside ir-
regular boundaries of a survey mask on the past light cone. In that
situation it is helpful to employ a catalogue of randoms to isolate true
from fake correlations in the data. To this end the Landy-Szalay estima- Landy-Szalay

estimatortor [115] provides a way to calculate the void-tracer cross-correlation
function from data catalogues D and random catalogues R for each
tracer and void sample,

xvt(r) =
hDvDti � hDvRti � hDtRvi+ hRvRti

hRvRti
, (5.3.3)

where angled brackets symbolize normalized pair counts at separa-
tion r in units of rv. They can be calculated as histograms in analogy
to Equation 4.2.9.

We recall that void density profiles exhibit a few very characteris-
tic features (see Section 4.2.4): a deep under-dense core in the very
centre, and an over-dense ridge (compensation wall) close to the ef-
fective radius rv. The empirical function presented in Equation 4.2.8
was shown to capture these features accurately [92]. We report it here
for convenience,

nvt(r)
hnti

� 1 = dc
1 � (r/rs)a

1 + (r/rv)b
, (5.3.4)

where dc is the central density contrast at r = 0, rs a scale radius at
which the density equals the average density of tracers hnti, and a, b
describe the inner and outer slopes of the profile.

5.3.3 Bias estimation

In simulations the clustering bias of any tracer can directly be calcu-
lated, because the dark matter particle locations are available. There-
fore, it is simply given by the ratio of tracer and matter correlation
functions (see Section 4.2.1). Therefore, it is simply given by the ratio
of tracer and matter correlation functions,

bt =

s
xtt(r)

xmm(r)
' xtm(r)

xmm(r)
. (5.3.5)

The second equality only holds on large scales in the linear regime,
where bt is a constant number. In a similar manner we can define the
relative bias between a tracer t1 and a tracer t2 as
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brel ⌘
bt1

bt2

=

s
xt1t1(r)
xt2t2(r)

' xt1t2(r)
xt2t2(r)

, (5.3.6)

where, without loss of generality, we may choose tracer t1 to be the
more highly biased one, such that brel > 1. In this analysis we will
associate the highly biased tracer with galaxy clusters, and the less
biased tracer with galaxies.

In observational data, where we do not have direct access to the
mass distribution, the absolute clustering bias of tracers can only be
determined indirectly. We follow the approach of Paech et al. [148]A technique to

estimate the relative
bias in observational

data

and calculate the angular power spectra between tracer t1 and tracer
t2 using the public code class3 [26] and its extension classgal [62],

Ct1t2
` = 4p

Z dk
k

Pini(k)Dt1
` (k)D

t2
` (k) . (5.3.7)

Here, Pini(k) is the dimensionless primordial power spectrum at wavenum-
ber k and

Dt
`(k) =

Z
dz bt

dNt(z)
dz

j` [k r(z)] D(z)T(k) , (5.3.8)

where dNt(z)/dz is the redshift distribution and r(z) the comoving
distance of tracer t, j` the spherical Bessel function, D(z) the growth
factor, and T(k) the transfer function. Assuming a fiducial flat LCDM
cosmology with the parameters h = 0.678, Wb = 0.048, Wm = 0.308,
s8 = 0.826, zre = 11.3 and ns = 0.96 [159], we can then infer the
effective values of bt1 , bt2 and their ratio (averaged within the consid-
ered redshift range) from the angular auto-power spectra of the two
tracers. The angular power spectra are determined using the public
code polspice4 [47, 211] from a pixellated map of the projected tracer-
density contrast on the sky. As in Paech et al. [148], we treat the shot
noise contribution to the angular power spectra as a free parameter,
and consider a multipole range of 20 < ` < 500. The covariance of
the C`’s is estimated via applying a jack-knife sampling of the map,
splitting up the map area into 100 contiguous regions of equal size.

5.4 analysis

In this section we present the results of our analysis pipeline, applied
to magneticum simulations, mice 2 mocks, and finally DES data. We
emphasize that all void catalogues employed in this Chapter are iden-
tified in the cluster samples at hand, regardless of the nature of the

3 http://class-code.net
4 http://www2.iap.fr/users/hivon/software/PolSpice

http://class-code.net
http://www2.iap.fr/users/hivon/software/PolSpice
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data set analysed. If needed, we refer to those voids as cluster-voids,
to distinguish them from voids identified in a different tracer popula-
tion5.

5.4.1 Hydro-simulations

With the help of the fully hydro-dynamical simulations magneticum
we investigate whether it is possible to use a similar approach to
that presented by Pollina et al. [165], albeit only considering clusters
and galaxies as tracers. In this manner the relative bias is expected to
obey similar properties as the linear bias, in analogy to Equation 5.1.1.
The idea is to only use void catalogues that are defined in the most
highly biased population available and then compute the average
tracer-density profiles around voids of similar size using clusters and
galaxies separately. The latter are hence exclusively used to compute
galaxy-density profiles around cluster-voids. Step I: validation

with hydro-simsWe apply a conservatively high mass cut of Mmin = 1014h�1M� to
our magneticum clusters, firstly to make sure that we do not include
objects that are of too low detection significance in the observed data,
and secondly to achieve a relative bias between our cluster and galaxy
sample that is significantly larger than unity. Since the lower limit for
the bias of the galaxy sample is set by the mass resolution of the
simulation, we can only boost the relative bias by increasing Mmin for
the cluster sample. This implies a lower resolution for smaller voids
due to tracer sparsity [for further details on sparse sampling and void
finding, see 207], so the resulting void catalogue contains rather large
objects. However, as we are only interested in the relation between
tracer-density profiles around a fixed void population, the absolute
distribution of void sizes does not matter for our purposes.

In the top panel of Figure 5.1 we show the stacked density profile of
such cluster-voids computed twice: once using the same cluster pop-
ulation they were identified in (dashed black line), and once using the
full galaxy sample extracted from magneticum (red dotted line). The
shaded areas represent the uncertainty on the mean density profile,
computed as the standard deviation of all individual void profiles
from their mean. The void density profiles are calculated following
the procedure explained in the beginning of Section 5.3.2, including
voids of effective radii in the range 190h�1Mpc < rv < 220h�1Mpc.
The function from Equation 5.3.4 is used to fit the density profiles
(solid black for clusters and long-dashed red for galaxies), yielding a
good match in both cases. This corroborates the universal character
of Equation 5.3.4 with respect to tracer type. The very characteris-

5 The procedure can also be inverted, i.e. it is possible define voids in the galaxy
sample and then use those voids to measure the density of galaxies and clusters
around them. For consistency with the approach in Pollina et al. [165] presented in
the previous Chapter, and for the advantage that will be presented in section 5.4.2.1,
we use the more highly biased tracer to identify voids.
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Figure 5.1: Top: Tracer-density profiles (dashed black for clusters, dotted red for galaxies) around
cluster-defined voids of radius 190h�1Mpc < rv < 220h�1Mpc in the magneticum simula-
tion. Solid black and long-dashed red lines show the best fits obtained via Equation 5.3.4.
Bottom: Cluster- and galaxy-density profiles from the left panel plotted against each other
(black points with error bars). The dotted black line shows the best fit using Equation 5.4.1.

tic features are a clear under-dense core close in the void centre and
a compensation wall around r ' rv, which are most pronounced
in the cluster-density profile. When the density profile of galaxies
around the same cluster-voids is computed, those features are less
pronounced, but still clearly visible. Because clusters have a higher
clustering bias than galaxies, this behaviour is expected.

Our aim is to constrain the detailed relation between the two void
density profiles. In particular, we want to check whether it is linear,
similar to the relation between tracers and mass found in [165]. To
this end we plot the cluster-density profile xvc(r) as a function of the
corresponding galaxy-density profile xvg(r) of the same cluster-voids.
The results are depicted as red dots in the bottom panel of Figure 5.1,
where the error bars show the uncertainty on the mean density pro-
files from the left panel. The following simple linear function is used
to fit those data points (black dotted line):

xvc(r) = bslopexvg(r) + coffset , (5.4.1)

where bslope and coffset are the only two free parameters of the fit. The
linear relation between xvc(r) and xvg(r) is evident, and in concor-
dance with the linearity between xvc(r) and the matter-density profile
xvm(r) from earlier work [165]. The best-fit values for bslope and coffset,
including their 1s uncertainties can be found in Table 5.2. coffset is
compatible with zero within the error, while bslope attains a value of
about 2.7. We expect bslope to be related to the relative bias between
clusters and galaxies, in analogy to Equation 5.3.6.A preliminary

confirmation coming
from hydro-sims

We repeated the previous analysis for voids of different size, and
confirmed the linear relation in Equation 5.4.1 to provide a good fit
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Table 5.2: Best-fit values and 1s uncertainties on the parameters of Equation 5.4.1 for cluster-defined
voids of various size and for different stellar-mass cuts in the galaxy sample from the mag-
neticum simulation.

Voids Gal. (M⇤ > 1 ⇥ 1011h�1 M�) Gal. (M⇤ > 5 ⇥ 1011h�1 M�) Gal. (M⇤ > 1 ⇥ 1012h�1 M�)

Bins in rv [h�1Mpc] bslope coffset bslope coffset bslope coffset

90 < rv < 110 3.43 ± 0.39 �0.033 ± 0.089 2.02 ± 0.33 �0.013 ± 0.095 1.20 ± 0.21 �0.005 ± 0.022

110 < rv < 130 3.01 ± 0.10 �0.009 ± 0.070 1.80 ± 0.21 �0.003 ± 0.064 1.12 ± 0.14 �0.001 ± 0.020

130 < rv < 150 3.11 ± 0.26 �0.009 ± 0.063 1.76 ± 0.20 �0.005 ± 0.063 1.12 ± 0.14 �0.000 ± 0.055

150 < rv < 170 2.83 ± 0.22 �0.007 ± 0.045 1.77 ± 0.22 �0.003 ± 0.063 1.11 ± 0.14 �0.001 ± 0.045

170 < rv < 190 2.82 ± 0.26 �0.003 ± 0.063 1.77 ± 0.20 �0.001 ± 0.061 1.15 ± 0.14 �0.002 ± 0.045

190 < rv < 220 2.71 ± 0.22 �0.009 ± 0.045 1.72 ± 0.17 �0.004 ± 0.060 1.10 ± 0.14 �0.002 ± 0.055

220 < rv < 250 2.59 ± 0.33 �0.035 ± 0.105 1.68 ± 0.28 �0.017 ± 0.101 1.15 ± 0.22 �0.000 ± 0.095

in all cases. The best-fit values of bslope and coffset are summarized
in Table 5.2. Furthermore, we explored the impact of various mass
cuts in our galaxy sample. The overall clustering amplitude of galax-
ies is expected to depend on their stellar mass, which should be re-
flected in our best fit for bslope as well. While our original sample
contained all galaxies with stellar mass above 1 ⇥ 1011h�1M�, we
impose two more restrictive cuts with M⇤ > 5 ⇥ 1011h�1M� and
M⇤ > 1 ⇥ 1012h�1M�. Also for these cases we can confirm the linear
relation of Equation 5.4.1 to perform a good fit. The corresponding
parameter constraints are reported in Table 5.2. In Figure 5.2 the best-
fit values of bslope are shown as a function of the mean effective radius
of the selected void sample. The three panels correspond to the dif-
ferent stellar-mass cuts applied to the galaxy catalogue. We observe
a clear trend of bslope decreasing with void size, a similar behaviour
of what has been presented in Pollina et al. [165], albeit the different
setup. In that study bslope converges to a constant value for voids
larger than a critical size, and this value is shown to coincide with
the linear bias of the tracer with respect to the matter distribution.

In this Chapter, however, we are comparing the density profiles
of two different tracers against each other, consequently we expect
bslope to converge towards the ratio of the linear bias parameters of
both tracers, the linear relative bias brel. We can estimate brel via
Equation 5.3.6 in two ways, both of which are plotted in Figure 5.3
as solid and dashed black lines with shaded error bars, respectively.
On large scales both estimators agree with each other, and yield the
linear relative bias between the two tracers. We compare this value
with the best fit for bslope obtained from the largest effective radius
bin of our void sample (red solid line with shaded error bar), which
is the most likely one to have converged towards brel. In the different
panels of Figure 5.3 only the stellar-mass cut for the galaxy sample is
varied, with the same values as used in Figure 5.2.
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Figure 5.2: Best-fit values for bslope as a function of effective void radius in the magneticum simulation. The
stellar-mass cut for the galaxy sample is varied from left to right, as indicated in each panel.
The cluster sample has a fixed mass cut of M500c > 1014h�1M�, it is also used for the void
identification.

As evident from Figure 5.3, the convergence of bslope towards brel
is not complete in all cases. Only for the highest stellar-mass cut of
M⇤ > 1012h�1M� in the galaxy sample are the two values consistent
with each other within the errors. At the same time, the relative bias
attains the lowest value in this case, owing to the higher bias of the
galaxy sample. The lower the stellar-mass cut for the galaxies, the
lower becomes their bias. Therefore the relative bias between clusters
and galaxies increases, which also increases the discrepancy between
bslope and brel. Hence, the higher the relative bias between two tracers,
the larger becomes the critical void radius r+v at which bslope and brel
converge. When voids are defined in sparse tracer distributions, such
as the galaxy clusters considered here, the size of r+v may fall well
beyond the range of effective void radii that can be found in the entire
void sample. A similar conclusion has already been drawn in Pollina
et al. [165], where the value of r+v was investigated for voids identified
in denser tracer samples.

Nevertheless, this first test shows that the findings of Pollina et
al. [165], summarised in Chapter ??, can be indeed reproduced by
measuring the relative bias with the analysis proposed in this section,
which can be fully implemented with observational data.

5.4.2 DES Mocks

Having confirmed a linear relationship between the densities of lumi-
nous tracers in void environments using the magneticum simulation,
we now want to move to more realistic data. The next step is to test
our pipeline on DES mocks (mice 2, see Section 5.2.3, to evaluate the
impact of the light cone and photometric redshift uncertainty. The lat-Step II: validation

with mocks – how to
handle light-cone
and photometric

uncertainty

ter has so far been considered as an insurmountable obstacle for the
identification of three-dimensional voids, as the typical photo-z scat-
ter of a single galaxy corresponds to line-of-sight distance errors that
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Figure 5.3: Comparison of the best-fit bslope obtained from our largest void sample (solid red line) to the
relative bias brel between clusters and galaxies in the magneticum simulation, calculated using
the estimators as indicated (black dashed and dotted lines). The stellar-mass cut for the galaxy
sample is varied from left to right, with the same values as in Figure 5.2.

are comparable to the extent of most voids. This limitation lead to
other innovative ideas on how to investigate the potential of voids for
cosmology, which explored under-dense regions of large-scale struc-
ture in two-dimensional projections on the sky [89, 185]. It has been
demonstrated how this approach opens up complementary ways to
constrain cosmology [21, 44, 81, 90]. Nevertheless, as the properties
of three-dimensional voids have already been extensively studied in
simulations and spectroscopic surveys (see references in the introduc-
tion), it is worth testing a similar method with photometric data.

5.4.2.1 Redshift uncertainty and void finding

To evaluate the impact of photometric redshift uncertainty on void
finding we run vide on the redMaGiC and redMaPPer samples of
the mice 2 mocks twice: once using the spectroscopic redshift (spec-
z), and once the photometric (photo-z) redshift estimate of each object.
The photo-z scatter inherent in the latter effects the distance estima-
tion and causes the distribution of objects to be smeared out along
the line of sight.

In Figure 5.4 we present the void size function (i.e., the spatial
number density of voids as a function of their effective radius) in
the mice 2 mocks, extracted using vide on both spectroscopic and
photometric samples of galaxies and clusters. While the abundance
of galaxy-voids (solid and dashed red) is heavily skewed by photo-z
scatter, cluster-voids (dotted and dash-dotted blue) remain surpris-
ingly unaffected by the choice of redshift estimate. In particular, the
number of galaxy-voids with r̄v < 35h�1 Mpc is clearly overestimated
when using photo-z, while the opposite is the case for larger galaxy-
voids. This finding is different to what has previously been seen in
Sánchez et al. [185], where the largest galaxy-voids in the redMaGiC
sample were least affected by photo-z uncertainty. The disagreement
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Figure 5.4: The abundance of voids identified in the galaxy and cluster sam-
ples of the mice 2 mocks, as a function of their effective radius.
Both photometric and spectroscopic redshifts have been used in
each case, as indicated in the figure legend. The cluster-void
size function is not significantly affected by photo-z uncertainty.
In fact, clusters provide the most accurate photometric redshift
measurements and cluster-voids are the largest voids, further re-
ducing the relative impact of photo-z scatter on void finding.

is most likely a consequence of the different void finding techniques.
The fact that [185] utilized a two-dimensional void finder on projected
slices, with a line-of-sight width above the typical photo-z scatter,
largely mitigates the effects of the latter. In contrast, vide directly
operates on three-dimensional particle distributions, and the photo-z
scatter results in an unphysical line-of-sight smearing of structures
that can be detected as spurious watershed ridges in the algorithm.
The result is that larger voids are more likely to be segmented into
multiple smaller voids.

However, this effect on void abundance is hardly detected in the
cluster-void sample, thanks to the relatively accurate photometric red-
shift estimates in redMaPPer clusters. The higher accuracy can beClusters are the best

tracer of
under-densities in

photometric data

attributed to the fact that multiple member galaxies can contribute to
a single cluster redshift estimate. Moreover, the sparser and more bi-
ased distribution of clusters results in larger voids overall [207], so the
extent of the photo-z scatter in redshift space matters less in compar-
ison to the void size. In order to quantify the impact of photometric
redshifts on void identification in more detail, a comparison on indi-
vidual voids would be needed. However, this goes beyond the scope
of this analysis, as we are only concerned about summary statistics
here.

The robustness of the void size function from cluster-voids in the
presence of photo-z scatter has promising consequences for void sci-
ence with photometric surveys. For example, void number counts can
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Figure 5.5: Tracer-density profiles (solid black for redMaPPer clusters, dashed red for redMaGiC galaxies)
around cluster-defined voids of size 50h�1Mpc < rv < 60h�1Mpc in the mice 2 mocks. The
luminosity cut for the galaxy sample is varied from left to right, as indicated in each panel.

be used to constrain cosmology [157], even when identified in various
tracer distributions. In particular, Ronconi and Marulli [178] suggest
a simple way to extend the prediction of void abundances to poten-
tially observable voids: making use of Equation 5.1.1 they claim to be
able to accurately forecast the void size function obtained from haloes
based on results from the excursion-set theory for dark matter voids.
According to Figure 5.4, this method may straight-forwardly be ex-
tended to cluster-voids extracted from photometric samples, opening
up to the possible exploitation of the void size function as a cosmo-
logical probe in a large variety of forthcoming surveys [e.g., LSST,
EUCLID, DESI, see 59, 103, 116]

5.4.2.2 Density profiles and tracer bias

We now repeat the analysis of Section 5.4.1 with the mice 2 mocks, us-
ing photometric redshifts for both redMaGiC and redMaPPer sam-
ples. The density profiles are estimated with the help of random
catalogues, to account for the mask and light-cone effects. To this
end, we approximate the Landy-Szalay estimator of Equation 5.3.3 as

xvt(r) ' hDvDti � hDvRti , (5.4.2)

which was shown to yield accurate results on void scales [97]. We
have also compared our measurements with the more common Davis-
Peebles estimator [60], which features a ratio instead of a subtraction
in Equation 5.4.2, and found consistent results.

Figure 5.5 presents the corresponding tracer-density profiles for
redMaPPer-defined voids of size 50h�1Mpc < rv < 60h�1Mpc. Over-
all we obtain smaller void sizes from this sample, as the number
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Figure 5.6: Cluster- and galaxy-density profiles from Figure 5.5 plotted against each other. The dotted black
line shows the best fit obtained with Equation 5.4.1.

density of clusters here exceeds the one analysed in magneticum.
However, as mice 2 resolves galaxies of lower mass, this results in a
similar relative bias between the tracers considered. As tracers, we
utilize redMaPPer clusters of richness l > 5, and three redMaGiC
samples with varying luminosity cuts. The correspondence with our
earlier simulation results in the left panel of Figure 5.1 is striking: we
observe a more pronounced cluster-density profile with a deeper core
and a higher ridge (dashed black line) than each of the galaxy-density
profiles (dotted red line). Yet, the shapes of all these profiles seem to
match quite nicely, which means that galaxies trace voids just as the
clusters do, albeit with a lower clustering amplitude. This is further
confirmed by the successful interpolation of all profiles by means of
the fitting function presented in Equation 5.3.4 (solid black and long-
dashed red lines). Note that in some cases the normalization of the
profiles at large distances r can be slightly offset from zero. This can
have various reasons, which may be related to imperfect corrections
for the survey geometry, or the spread in void sizes in a given bin
of rv. However, we have checked that the magnitude of this effect
is small enough not to impact our conclusions (i.e., coffset is always
consistent with zero).

The correspondence between the different tracers can be seen more
clearly in Figure 5.6, where their void-centric density profiles are plot-
ted against each other. A linear trend in the data is apparent, so we
fit Equation 5.4.1 and constrain its slope and offset again. We further
repeat this for voids of all available sizes from our catalogue and sum-
marize the results in Table 5.3. The best-fit value for bslope decreases
when galaxies with higher luminosity cut are used. This is consistent
with expectation, as they acquire a higher clustering bias, making the
relative bias between clusters and galaxies decrease. In contrast, the
parameter coffset remains consistent with zero in all cases.

The dependence of bslope on void effective radius is visualized in
Figure 5.7. We observe a decreasing trend again, as before in the
magneticum simulation. Towards the largest voids, bslope converges
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Figure 5.7: Best-fit values for bslope (solid red) as a function of effective void radius in the mice 2 mocks.
The luminosity cut for the galaxy sample is varied from left to right, as indicated in each panel.
Dashed black lines show the linear relative bias between clusters and galaxies, estimated via their
angular power spectra on large scales.

Table 5.3: Best-fit values and 1s uncertainties on the parameters of Equation 5.4.1 for cluster-defined
voids of various size and for different luminosity cuts in the galaxy sample from the mice 2
mocks.

Voids redMaGiC (L > 0.5L⇤) redMaGiC (L > 1.0L⇤) redMaGiC (L > 1.5L⇤)

Bins in rv [h�1Mpc] bslope coffset bslope coffset bslope coffset

20 < rv < 40 3.21 ± 0.57 �0.071 ± 0.130 2.80 ± 0.64 �0.119 ± 0.173 1.96 ± 0.53 �0.084 ± 0.158

40 < rv < 50 3.13 ± 0.42 �0.006 ± 0.084 2.56 ± 0.39 �0.066 ± 0.089 2.02 ± 0.39 �0.090 ± 0.10

50 < rv < 60 2.63 ± 0.27 0.023 ± 0.063 2.02 ± 0.23 �0.041 ± 0.063 1.62 ± 0.22 �0.082 ± 0.091

60 < rv < 70 2.50 ± 0.33 0.070 ± 0.105 1.88 ± 0.24 �0.043 ± 0.077 1.54 ± 0.26 �0.111 ± 0.183

70 < rv < 80 2.28 ± 0.35 0.101 ± 0.126 1.56 ± 0.25 �0.067 ± 0.084 1.25 ± 0.24 �0.174 ± 0.190

80 < rv < 90 2.10 ± 0.39 0.162 ± 0.161 1.41 ± 0.32 �0.127 ± 0.128 1.01 ± 0.31 �0.262 ± 0.354

to the linear relative bias between the cluster and the galaxy samples
(dashed black line), which is estimated via the method described in
Section 5.3.3. However, the critical void radius r+v , where the two rela-
tive bias measurements agree, cannot be determined from the galaxy
sample with the lowest luminosity cut. This confirms our earlier con-
clusion that the convergence of bslope to brel happens at larger void
radii when brel is higher. However, we have a clear indication that
it is possible to measure the relative linear bias of tracers with this
method when applied to the final DES dataset after 5 years of obser-
vations. We further conclude that the uncertainty inherent in photo-
metric redshift estimates is not affecting our results from before: the
linear relation of Equation 5.1.1 is still satisfied to the same degree of
accuracy as in simulations, with similar constraints on its parameters.
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Figure 5.8: Abundance of voids as a function of their effective radius, iden-
tified in the distribution of redMaPPer clusters from DES data
(Y1A1). The average cluster-density profile of all voids is shown
as inset.

5.4.3 Data

The finale: is
linearity in the sky? Having assessed the feasibility of our analysis using mocks, we are

finally ready to test it on DES Y1 data and to determine whether the
linear relation given by Equation 5.1.1 (applied to visible tracers) is in
the sky. In this section we describe the void catalogue obtained from
the data and present all related results.

5.4.3.1 DES void catalogue

This section presents the first catalogue of three-dimensional water-
shed voids built with DES data. We follow our previous approach,
using redMaPPer clusters with l > 5 for void identification with
vide. Since the area observed during the first year of DES (Y1A1)
operations is significantly smaller (1321deg2) than the full octant of
the mice 2 mocks, the number statistics of the data are expected to be
lower. In total we find 475 voids in the redshift range 0.2 < z < 0.65
(which is the range where all redMaGiC samples are fairly volume
limited), with effective radii between 15h�1Mpc and 80h�1Mpc. Voids
intersecting with the survey mask have been pruned from the final
sample. The void size function is shown in Figure 5.8, with an insetThree-dimensional

DES voids displaying the average cluster-density profile of all voids in the sam-
ple. It is remarkably similar to that of cluster-voids in mocks shown in
Figure 5.4. The small difference can be caused by the assumed mass-
richness relation in the cluster mocks, which may not reproduce the
real data exactly. The footprint of our void catalogue on the sky can
be perceived in Figure 5.9, which was made using the public code
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Figure 5.9: Density plot of redMaPPer clusters and their associated void
centres (cyan circles) in a redshift slice of 0.2 < z < 0.45. The
blue line displays the 5-year-DES footprint, voids intersecting
with the survey mask are discarded.

skymapper6. We show the positions of void centres (cyan circles) on
the density plot of clusters for a redshift slice of 0.2 < z < 0.45. This
range was chosen to allow direct comparison with Figure 1 of Gruen
et al. [90], where a similar map for the location of line-of-sight under-
densities in the galaxy spatial distribution was presented. The blue
line displays the full DES footprint at the end of its operations. Fig-
ure 5.10 is a three-dimensional plot of the DES light cone, where 5%
of all redMaPPer clusters are shown in magenta, 5% of those clus-
ters located inside voids are highlighted in green, and black spheres
of radius rv indicate the locations of void centres with a size that re-
flects the spherical equivalent of the watershed volume. The number
of clusters was diluted for visualization purposes.

5.4.3.2 Density profiles and tracer bias

With the observational void catalogue at hand, we are now in the po-
sition to apply our earlier analysis to real data. Figure 5.11 features
the average tracer density profiles for cluster-voids of size 40h�1Mpc
< rv < 80h�1Mpc. As tracers, we use redMaPPer clusters (dashed
black lines) and redMaGiC galaxies of high density, high luminos-
ity, and higher luminosity samples (dashed red lines, from left to
right). As apparent from each panel, the densities of different tracers
are highly correlated in these void environments, all featuring a clear
depression around the void centre, and a compensating ridge at the
void edge. In particular, the similarity with the mocks in Figure 5.5
is striking, as is the ability of Equation 5.3.4 to accurately fit the data
(solid black and long-dashed red lines). However, due to the smaller
area it can be noted that the uncertainties in the real data are higher,
especially close to the void centres, where the statistics are most af-
fected by the sparsity of tracers.

This can also be observed in Figure 5.12, where we focus on the
relation between cluster- and galaxy-density profiles plotted against
each other. The linear trend in the data is apparent, although some of

6 https://github.com/pmelchior/skymapper

https://github.com/pmelchior/skymapper
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Figure 5.10: Three-dimensional map of the DES light cone; magenta dots show 5% of all redMaPPer
clusters, green dots display 5% of redMaPPer clusters inside watershed voids and black
spheres of radius rv represent the spherical volume of each void.
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Figure 5.11: Tracer-density profiles (solid black for redMaPPer clusters, dashed red for redMaGiC galax-
ies) around cluster-defined voids of size 40h�1Mpc < rv < 80h�1Mpc in the DES data. The
luminosity cut for the galaxy sample is varied from left to right, as indicated in each panel.

Figure 5.12: Cluster- and galaxy-density profiles from Figure 5.11 plotted against each other. The dotted
black line shows the best fit obtained with Equation 5.4.1.

the data points exhibit large scatter. In all cases we find Equation 5.4.1
to provide a satisfactory fit to the data. We find no evidence for
any deviation from linearity other than due to statistical noise, which
argues Equation 5.4.1 to indeed be the simplest and most conservative
model that is consistent with the data. Our earlier results based on
simulations and mocks with much better statistics corroborate this
result. We further confirm a decrease in the best-fit value of the slope
bslope, caused by an increase in the bias of the galaxy samples with
increasing luminosity cuts. At the same time, the offsets coffset remain
consistent with zero. The detailed parameter constraints are reported
in Table 5.4.

Finally, we test the convergence of bslope to the linear relative bias
brel of the employed tracers. Due to the relatively low number of
voids in our sample, we can only afford to have two independent
bins in effective radius. We choose to split the sample such that both
bins roughly contain the same number of voids, with rv < 40h�1Mpc
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Figure 5.13: Best-fit values for bslope (solid red) as a function of void radius in DES data. The luminos-
ity cut for the galaxy sample varies from left to right, as indicated in each panel. Dashed
black lines show the linear relative bias between clusters and galaxies, estimated via their
angular power spectra on large scales.

and rv > 40h�1Mpc. The corresponding best-fit values of bslope are
shown as the red dots, connected by a solid line in Figure 5.13 (which
is analogous to Figure 5.7 albeit with DES data). In comparison, the
linear relative bias estimated via the large-scale clustering statistics
of the tracers, as described in Section 5.3.3, is shown in dashed black.
Evidently, the poor statistics in the measurement do not allow any de-
tailed conclusions about the convergence properties of bslope towards
brel. However, at least for the galaxy samples of high and higher lu-
minosity, an indication for a decrease in bslope at larger rv is apparent.
A more detailed investigation of this will be possible with future DES
tracer catalogues of larger size. The final DES Y5 tracer catalogues
will provide similar statistics as the mice 2 mocks employed above.

5.5 conclusions

The aim of this Chapter’s analysis was to probe the nature of tracer
bias in void environments, a regime of large-scale structure that so
far has little been investigated specifically for this purpose [however,
see 142, 150, 222]. In contrast, the overall tracer bias, which is typi-
cally weighted towards the most overdense structures in the Universe,
has remained an active topic of research for a long time, due to its
complex non-linear behaviour on intermediate and small scales [e.g.,
35, 68, 193, 194, 200, and references therein]. Moreover, recent evi-
dence for additional stochasticity beyond the Poisson expectation in
the clustering properties of galaxies and clusters further complicates
the common treatment of bias [e.g. 11, 81, 90, 93, 148]. A consistent
and reliable framework for the modelling of tracer bias is indispens-
able for the cosmological analysis of modern data sets of large-scale
structure, because it establishes a connection between its observable
luminous constituents and the invisible dark matter. As the latter is
expected to be responsible for more than 80% of the mass content in
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Table 5.4: Best-fit values and 1s uncertainties on the parameters of Equation 5.4.1 for cluster-defined
voids of various size and for different luminosity cuts in the galaxy sample from the DES
data.

Voids redMaGiC (L > 0.5L⇤) redMaGiC (L > 1.0L⇤) redMaGiC (L > 1.5L⇤)

Bins in rv [h�1Mpc] bslope coffset bslope coffset bslope coffset

15 < rv < 40 2.92 ± 0.53 �0.055 ± 0.122 2.62 ± 0.62 �0.038 ± 0.145 2.45 ± 0.59 �0.027 ± 0.138

40 < rv < 86 2.91 ± 0.40 �0.065 ± 0.083 2.21 ± 0.37 �0.056 ± 0.084 1.68 ± 0.37 �0.043 ± 0.095

the Universe, the accuracy of cosmological constraints is often limited
by the degree to which tracer bias is understood. Summary of the

conclusionsIn this work we have investigated tracer bias in void environments
of the distribution of galaxy clusters, based on a complete pipeline of
hydrodynamical simulations, mocks, and data from the first year of
DES observations. We find a remarkably linear relationship between
the void-centric density fluctuations of clusters and galaxy samples of
various magnitude limits across all distance scales, suggesting tracer
bias to remain linear in the two-point statistics of void environments.
This confirms the simulation results by Pollina et al. [165] presented
in Chapter 4, but for the first time with observational data. We show
that the relative clustering amplitude between any two tracers can be
expressed by a single multiplicative constant bslope, relating their void-
tracer cross-correlation functions according to Equation 5.4.1 with an
offset consistent with zero (coffset = 0). However, the constant bslope
coincides with the linear relative bias brel between those tracers only
when voids above a certain critical effective radius r+v are used in this
measurement. In case of very sparse void tracers, such as the galaxy
clusters used here, the value of r+v may exceed the available range of
void sizes in a given area on the sky. For smaller voids, bslope increases
towards lower rv.

A detailed model for this behaviour can be important in cases
where the absolute value of tracer bias is needed to obtain param-
eter constraints, which goes beyond the scope of this analysis. It
has been pointed out that tracer environment can be more relevant
than host-halo mass to determine the bias of tracers [1, 168, 192], and
we expect the environmental constraint from voids to be important in
this respect. When tracers are selected above some mass or luminosity
threshold, as done here, they are typically more biased in void envi-
ronments than elsewhere in the cosmic web [150, 222]. Conversely, se-
lecting the most extreme environments as tracers of the density field,
such as the centres of voids, can lead to a vanishing, or even negative
clustering bias [51, 94]. Nevertheless, the fact that tracer bias can be Discussion
treated linearly with a single free parameter significantly simplifies
most common two-point clustering analyses of large-scale structure.
For example, it implies that different tracer-density profiles around
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voids can be described with the same universal functional form [as
provided by Equation 5.3.4, 92, 207]. The analysis we presented is
arguably the best approach to test such a function, as with observa-
tional data we do not have access to the entire three-dimensional dis-
tribution of luminous and dark matter. Furthermore, the presented
method can be augmented with measurements of tangential shear
around voids, which provides the projected surface-mass density ex-
cess between weakly lensed source galaxies and the observer. Shape
catalogues of the galaxies in DES are available, a study of the absolute
tracer bias with respect to the underlying dark matter distribution in
void environments is underway (Fang et al., in prep.). Our conclu-
sions are further in excellent agreement with recent analyses of weak
lensing by troughs in the projected galaxy distribution [89, 90], which
can be accurately modelled using linear bias [81]. While those results
argue for a non-vanishing stochasticity parameter to be important for
the counts-in-cells statistic, this does not apply to cross-correlation
functions (as employed in this Chapter’s analysis), where stochastic-
ity does not enter at non-zero separation.

As a side product, we have constructed the first catalogue of 3D-
watershed voids that are solely based on photometric redshift mea-
surements with a controlled photo-z uncertainty.7 Another element
of novelty in our approach is that we employ galaxy clusters, rather
than single galaxies, as tracers for void finding. In fact, our tests
with mocks indicate that while the accuracy of redMaGiC redshift
estimates for single galaxies is not sufficient to match void number
counts from a spectroscopic survey, redMaPPer clusters produce re-
markably similar void abundances among spec-z and photo-z cata-
logues. The flip side of using clusters rather than galaxies as void
tracers is that they can only access fewer and larger voids, due to
their sparsity. Nevertheless, for our purposes this constitutes also
an advantage, as the relative impact of photo-z scatter becomes even
smaller for large voids. Furthermore, the high number of clusters ac-
cessible in photometric surveys opens up a promising perspective for
void science in the future. In fact forthcoming surveys, such as LSST
[103] and EUCLID [116], will partially rely on photometric redshift
estimates. The effort to fully exploit these kind of data in the context
of void studies will thereby benefit from our analysis.

7 [87] have already extracted a 3D void catalogue from SDSS photometry, but analysed
it in projection to study ISW imprints.
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In this Chapter we revise all conclusions and give a brief outlook on
possible future developments of our work.

We are living a very exciting and - at the same time - very puzzling
epoch for Cosmology. On one hand, the success of the current con-
cordance model is astonishing, as, with only six parameter, we are
able to describe nothing less than the whole Universe, at nearly all
scales and times, implying that the physics knowledge that we cur-
rently have is sufficient to phenomenologically describe ⇡ 14 Gyr of
Universe evolution. On the other hand, considering all the evidence
we have gathered until now, it seems indisputable that only ⇡ 5% of
what constitutes the Universe is made of matter known from a funda-
mental point of view. Roughly 25% of our Cosmos is made of dark
matter, which is constituted of particles that do not belong to the cur-
rent Standard Model of particle physics. The remaining ⇡ 70% is a
real conundrum: it behaves like a uniformly distributed fluid of un-
known nature with an unusual Equation of State (w = �1), and it is
responsible for the late time accelerated expansion, from which the
name "Dark Energy" . Thus, while we live in the "Precision Cosmol-
ogy" epoch of LCDM (that is, we can measure with great precision
the six parameters that it relies on), the quest to understand the na-
ture of the effectiveness of this model is still wide open.

One of the possible ways to investigate the essence of dark energy
and dark matter is provided by the study of the large scale structure
of the Universe. In fact, because the field equation of General Rela-
tivity relates the matter and energy content of the Universe with the
geometry of the space-time, observations of the expansion history of
the Cosmos allow us to infer the content of its components (see Chap-
ter 1).

Typically, the expansion of the Universe can be studied employing
standard candles or standard rulers. For example, by using SNIa as
standard candles, the accelerated expansion of the Universe was dis-
covered in the first place, calling for the introduction of a Dark Energy.
Because this accelerated expansion acts as a sort of anti-gravity, such
discovery might tell us something about our understanding of gravi-
tation, which is assumed to follow GR all-over the Universe, although
Einstein’s Theory of Gravity has not been tested on very large scales.

The nature of Dark Energy (or of possible modification of the GR)
has been studied for decades via its impact on the statistics of the
large scale structure of the Universe (Chapter 2). This has been mostly
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done relying on the statistics of the most massive components of the
LSS - galaxy clusters. In recent years, though, a significant fraction
of the sky has been mapped, allowing to access the less visible and
largest constituent of the LSS - cosmic voids.

Utilizing a rather theoretical approach, voids have been extensively
studied as under-densities of the dark matter: many theoretical works
agree that void statistics are sensitive to different kind of competing
dark energy models (or to modification of gravity) only if voids can
be directly traced and studied in the spatial distribution of the CDM.
This can be done with the help of synthetic Universes, created using
large numerical simulations, where it is possible to access the location
of a each single CDM particle. Unfortunately, in practice, this is not
possible. In fact, although we can measure the effect of the dark mat-
ter mass on its surroundings, a dark matter particle cannot be directly
observed by definition. For observational studies we have to rely on
the tiny fraction of baryons in the Cosmos, which is visible to our
telescopes. Regular matter is hosted in galaxies and clusters of galax-
ies, that are observable tracers of the dark matter. These tracers are
not fully representative of the dark matter mass: as they arise from
the highest peaks of the matter density field they do not smoothly
map its distribution. Visible structures are thereby biased tracers of
the matter.

This dissertation aims at investigating how the properties of voids
traced within the density field of luminous galaxies might be altered,
and how this might impact their potential to constrain cosmology.

In Chapter 3 we demonstrate, by means of a set of simulations of
competing cosmological models, that halo bias has the power to wash
out possible deviation from LCDM in void statistics. To disentangle
the impact of sample-sparsity from that of halo-bias, we repeat our
analysis twice: employing as void-tracers firstly only haloes and sec-
ondly only CDM-particles (diluted to the same density as haloes).
The deviations of competing models from LCDM, striking when
CDM particles are used as void-tracers, vanish if voids are traced in
the collapsed halo sample. This result challenges the claimed poten-
tial of voids to improve our knowledge on the nature of dark energy,
if bias is not properly modelled.

In Chapter 4 we make a first attempt at understanding which re-
lation occurs between matter over-densities and tracer over-density
within voids. With the help of hydro-dynamical simulations we con-
clude that, within void environment, this relation is always linear: we
can in fact link the tracer density to the underlying matter density via
a single multiplicative constant. Such multiplicative constant has the
same value as the linear bias for the largest voids in the sample, while
for smaller voids has a higher value.
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This result validates the assumption of utilizing the linear bias to
study the redshift space distortion around voids, and corroborates the
creation of solid framework to use voids for cosmological purposes.
Furthermore, simply relying on the linear bias value to re-scale the
density of the under-dense fluctuations, Ronconi and Marulli [178]
were able to extend a theoretical model to forecast void abundances
in the mass to void traced in the halo sample extracted from N-body
simulations. This was so far one of the nicest gains we had from the
simple result presented in Chapter 4.

Another possible test of this results is provided by void-lensing.
The first steps in this direction have already been taken within the
DES collaboration. Fang et al. (in prep.) is investigating the lensing
profile around DES voids, to establish whether this is linearly related
to the density profiles of tracer-voids projected along the line of sight.
This test might further validate Equation 4.4.1.

Once a clear method to study Equation 4.4.1 with data is estab-
lished, we could use it to test gravity and the impact of massive
neutrinos in our universe. In fact, both these models present a scale-
dependence of linear bias, which should break the linear relation and
give us evidence of the impact of neutrinos or possible modification
of gravity on Cosmology.

A first attempt to test Equation 4.4.1 in observation was presented
in Chapter 5. We analyse data by the Dark Energy Survey, currently
the largest LSS survey available. The three-dimensional distribution
of matter in the Universe is not directly observable, therefore, for this
first observational test, we rely on the relative properties of voids
traced with highly biased clusters of galaxies and that of the galaxy-
sample. We show that the linearity in this case also holds. Further-
more, we are able to assess that tracing voids using clusters of galax-
ies rather then single galaxies mitigates photometric uncertainty. This
is a remarkably useful result. Combining it with that of Ronconi and
Marulli [178], one should be able in principle to infer the abundances
of voids in present and future surveys that will rely on photometry,
enhancing their constraining power on cosmology [157].

In the near and far future a wide variety of new observations will
be available. DES has entered its 5th and last year of observations,
at the end of which it will have scanned roughly 5000 square degree
of the southern sky. In the next decade the Large Synoptic Survey
Telescope Ivezic et al. [LSST 103] and the Euclid mission [116] will
bring a tremendous amount of new information, screening an area
three times larger than the DES survey. Both these experiments will
at least partially rely on a photometric estimate of galaxy redshifts.
Therefore, these collaborations might benefit from engaging a similar
approach to that presented in Chapter 5 for voids studies.

Finally, it can be argued whether focussing on void-centric statistics
might lead to other general improvements when analysing data from
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photometric surveys. In this context one might study e. g. a void-
centric cluster-cluster correlation function (rather than a full sample
cluster-cluster correlation function), as this might alleviate for the
impact of photometric uncertainty without relying on tomographic
shells.

All of these possible intriguing outcomes shall be further investi-
gated in the months and years to come.
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No man is an Iland, intire of itselfe; every man
is a peece of the Continent, a part of the maine;

if a Clod bee washed away by the Sea, Europe
is the lesse, as well as if a Promontorie were, as

well as if a Manor of thy friends or of thine
owne were; any mans death diminishes me,

because I am involved in Mankinde;
And therefore never send to know for whom

the bell tolls; It tolls for thee.
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