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Summary

Following recent climate projections, the Mediterranean region is likely to experience a
severe reduction in precipitation and increased temperatures and is thus likely to be ex-
posed to increased drought risk under future climate. This will increase the pressure on
water resources in regions that are already suffering from water scarcity under today’s cli-
mate. To assess the impact of climate change on aquatic ecosystems and potentially derive
adaptation strategies, hydrological models form a great tool. These models are driven by
climate scenarios provided through General Circulation or Global Climate Model (GCMs),
which are then dynamically downscaled by Regional Climate Models (RCMs), under differ-
ent Representative Concentration Pathways (RCPs) and form the so-called hydro-climatic
or hydroclimatological modeling chain. Despite all improvements and increased process
understanding and their implementation in climate models, the hydro-climatic modeling
chain is still prone to numerous sources of uncertainty. The detection, evaluation, quantifi-
cation and potentially also reduction of the related uncertainties is of great importance to
allow for robust estimates of climate change impacts and derive potential adaptation mea-
sures. This thesis assesses the contribution of each of the uncertainty sources in selected,
data scarce river basins in the Mediterranean region and over complex terrain. The main
research statements and findings are briefly summarized in the following.

Observational uncertainty depicts a considerable source of uncertainty in the hydro-
climatic modeling chain and shall thus not be neglected. Gridded data sets are applied in
various ways in the hydro-climatic modeling chain. They serve as a reference to evaluate, se-
lect and bias correct RCMs and are applied for the calibration and validation of hydrological
models. Available reference data sets show large differences, especially for precipitation and
over complex terrain. As precipitation plays a key role in the water balance it is considered
the most important variable in the hydro-climatic modeling chain. Therefore, available data
sets for precipitation were analyzed over a mountainous catchment. This study revealed
large differences in the representation of the general climatology, while the deviations are
even more pronounced for indicators such as consecutive dry and wet days and heavy or
extreme precipitation. Bias correction of RCMs with an ensemble of reference data sets
revealed large differences in the historical and future representation of precipitation while
having only a minor impact on RCM selection and climate change signals.

The involved uncertainty sources in climate projections should be assessed on the catch-
ment scale. Uncertainties in climate projections arise from the GCMs, RCMs and the RCPs.
Knowledge on the relative contribution of each source of uncertainty is crucial for model
selection and potential model improvement. As in previous studies a variance decomposi-
tion approach was applied to retrieve the relative contribution of each uncertainty source
to the overall uncertainty. In contrary to previous studies the assessment is performed on
the catchment scale, where the climate data is usually applied in climate change impact
assessment studies, rather than on the continental scale and is based on the most recent
climate projections. The results confirm previous findings with the GCMs dominating the
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uncertainty for precipitation and temperature. However, scenario uncertainty originating
from the RCP is higher than in previous studies for both, temperature and precipitation. As
expected, the choice of the RCM is most relevant for surface runoff and evapotranspiration
as these variables are highly dependent on the surface and land use scheme implemented
in the corresponding RCM.

The direct usage of RCM projections allows for an estimation of future water scarcity
in data scarce areas. Apart from data scarcity, the setup, calibration and validation of
hydrological models is usually a time consuming task. Today’s RCMs provide simulations
of the variables of the water balance at a 0.11◦ (~ 12 km) grid, allowing for a first-guess
estimation of future changes on precipitation, evapotranspiration and surface runoff. The
RCM ensemble applied shows a strong decrease in precipitation and surface runoff over
the selected river basins around the Mediterranean. As these basins are already exposed
to water scarcity under today’s climate, this indicates increased pressure on the water
resources under future conditions. A high agreement among the RCMs in the direction and
magnitude of change indicates robustness in the climate projections.

Remote sensing allows to increase the robustness of a hydrological model in a data scarce
area. The distributed and physically based hydrological Water Flow and Balance Simulation
Model (WaSiM) was applied in the Gaza Strip, Palestine, to derive the impacts of climate
change on the water balance. This area is, as many Mediterranean catchments, character-
ized by data scarcity which hampers the setup and validation of hydrological models. A
simple remote sensing approach that links surface brightness temperature and vegetation
coverage to derive evapotranspiration patterns was applied to improve the parameterization
of the hydrological model and to better represent irrigated areas. The approach showed
great potential to increase model robustness especially under data scarcity. An R-package
was compiled in the course of this thesis to allow for an efficient processing of a series of re-
mote sensing images. The model results reveal increased drought risk under future climate
and highlight the need to define adaptation strategies to avoid a further over-exploitation
of the ground water aquifer that serves as the main freshwater source in the area.

The results of this thesis are presented in four peer-reviewed scientific publications and
address different uncertainty sources in the hydro-climatic modeling chain. The thesis
highlights the potential of remote sensing to increase the robustness of hydrological models
in data scarce areas. An assessment of the dominant uncertainty sources confirms the
importance of GCMs for model selection if only a subset of models is included in hydrological
studies. The importance of observational uncertainty of precipitation is of special focus in
this thesis and shall not be neglected in future studies. Rather, an ensemble approach
similar to climate models should be considered.
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Zusammenfassung

Aktuellen Klimaprojektionen zufolge wird der Mittelmeerraum im Zuge des Klimawandels
sehr wahrscheinlich verringerten Niederschlägen, stark erhöhten Temperaturen und einem
daraus resultierenden erhöhten Dürrerisiko ausgesetzt sein. All dies wird den Druck auf
die Wasserressourcen gerade in solchen Gebieten erhöhen, welche bereits unter den heu-
tigen klimatischen Bedingungen unter Wasserknappheit leiden. Bei der Abschätzung und
Quantifizierung der Auswirkungen des Klimawandels auf aquatische Ökosysteme und der
Erstellung entsprechender Anpassungsstrategien, spielen hydrologische Modelle eine zen-
trale Rolle. Diese Modelle werden mit Klimaprojektionen aus Globalen Klimamodellen
(GCMs), welche mit Hilfe Regionaler Klimamodelle (RCMs) dynamisch auf eine höhere
Auflösung skaliert werden, für verschiedene Strahlungsantriebe (RCPs) im Rahmen der
hydro-klimatischen Modellkette angetrieben. Trotz intensiver Verbesserung der Klimamo-
delle und erhöhten Prozessverständnisses ist die hydro-klimatische Modellkette nach wie
vor mit sehr vielen Unsicherheiten behaftet. Um robuste Modellergebnisse zu ermöglichen,
ist eine genaue Abschätzung, Evaluierung und Quantifizierung der Unsicherheiten inner-
halb der Modellkette unabdingbar und daher von hoher Relevanz. Die vorliegende Dok-
torarbeit zielt darauf ab, den Beitrag der Unsicherheiten jeder einzelnen Komponente der
hydro-klimatischen Modellkette zur Gesamtunsicherheit abzuschätzen und zu quantifizie-
ren. Hierbei sind der oftmals datenarme Mittelmeer- und der Alpenraum von speziellem
Interesse und werden anhand ausgewählter Untersuchungsgebiete analysiert. Im Folgen-
den werden die wesentlichen Hypothesen und die zugehörigen Resultate dieser Arbeit kurz
vorgestellt.

Die Unsicherheiten der Referenzdatensätzen leisten einen nicht unerheblichen Beitrag
zur Gesamtunsicherheit und sollten daher im Zuge der hydro-klimatischen Modellkette nicht
vernachlässigt bzw. ignoriert werden. Flächenverteilte Referenzdatensätze sind im Rahmen
der hydro-klimatischen Modellkette an mehreren Stellen von großer Bedeutung; Zum einen
werden sie für die Evaluierung und Korrektur der RCMs benötigt, zum anderen sind sie bei
der Kalibierung und Validierung hydrologischer Modelle bedeutend. Die verfügbaren Refe-
renzdatensätze, vor allem für Niederschlag, weisen jedoch große Unterschiede auf, welche
über Regionen mit komplexer Topographie noch verstärkt werden. Da Niederschlag eine
tragende Rolle in der Wasserhaushaltsgleichung einnimmt, stellt er die wichtigste Größe
der hydro-klimatischen Modellkette dar. Aus diesen Gründen wurden im Rahmen dieser
Arbeit verschiedene Niederschlagsreferenzdatensätze für ein alpines Einzugsgebiet unter-
sucht. Die verwendeten Datensätze wiesen große Unterschiede hinsichtlich der Wiedergabe
des Jahresganges auf, welche für Indikatoren wie die Anzahl der aufeinanderfolgenden Nie-
derschlagstage sowie extreme Niederschlagsereignisse noch verstärkt wurden. Die Korrektur
der RCMs mit einem Ensemble aus Referenzdatensätzen zeigte große Unterschiede in den
absoluten Werten des Niederschlags auf, hatte jedoch nur geringen Einfluss auf die Auswahl
geeigneter RCMs und die resultierenden Klimaänderungssignale.

Die Unsicherheiten in den Klimaprojektionen müssen auf der Einzugsgebietsebene be-

VII



trachtet und analysiert werden. Unsicherheiten in den Klimaprojektionen können auf die
drei wesentlichen Komponenten GCM, RCM und RCP zurückgeführt werden. Wie bereits
in vorherigen Veröffentlichungen, wurde der Ansatz der Varianzzerlegung angewandt, um
den relativen Beitrag jeder der genannten Komponenten zur Gesamtvarianz zu ermitteln.
Im Gegensatz zu den vorherigen Studien, wurde dieser Ansatz jedoch auf der Einzugsge-
bietsebene angewandt, da dies gewöhnlich auch die typische räumliche Skala ist, auf welcher
die Daten verwendet werden. Die Ergebnisse unterstützen vorherige Studien darin, dass die
Unsicherheit durch die GCMs die anderen Komponenten überlagert. Allerdings ist der Bei-
trag der RCMs und der RCPs deutlich höher als in vorherigen Untersuchungen. Dies trifft
sowohl auf Temperatur, als auch auf Niederschlag zu. Für die Variablen Evapotranspiration
und Oberflächenabfluss ist der Beitrag der RCMs dominant, was auf die unterschiedlichen
Parametrisierungen von Landnutzung und -oberfläche in den RCMs zurückzuführen ist.

Die direkte Verwendung von RCM Projektionen ermöglicht es, Abschätzungen über ei-
ne künftige Entwicklung der Wasserknappheit selbst in datenarmen Gebieten zu treffen.
Unabhängig von der Datenverfügbarkeit ist das Aufsetzen, Kalibrieren und Validieren ei-
nes hydrologischen Modelles in der Regel sehr zeit- und arbeitsintensiv. Heutige RCMs
ermöglichen es jedoch, eine erste Abschätzung der Wasserbilanz unter zukünftigem Klima
abzuleiten, da diese alle Komponenten der Wasserhaushaltsgleichung, sprich Niederschlag,
Evapotranspiration und Oberflächenabfluss, auf einem 0.11◦ (~ 12 km) Raster bereitstellen.
Das hier angewendete RCM-Ensemble zeigt für den Großteil der betrachteten Flusseinzugs-
gebiete eine starke Abnahme in Niederschlag, Evapotranspiration und Oberflächenabfluss
auf. Da die betroffenen Einzugsgebiete bereits unter heutigen klimatischen Bedingungen
von Wasserknappheit betroffen sind, wird dies sehr wahrscheinlich den Druck auf die ver-
fügbaren Wasserressourcen erhöhen und eine fortschreitende Übernutzung selbiger zur Folge
haben. Eine hohe Übereinstimmung sowohl in der projizierten Richtung der Veränderung,
als auch der absoluten Werte, weist auf eine relativ hohe Robustheit der Projektionen da-
hingehend hin.

Mithilfe der Fernerkundung kann die Robustheit hydrologischer Modelle speziell in daten-
armen Regionen erhöht werden. Das flächenverteilte Wasserhaushalts-Simulations-Modell
(WaSiM) wurde im Gazastreifen, Palästina, angewendet um die Auswirkungen des Klima-
wandels auf die Wasserressourcen ableiten zu können. Wie viele andere Gebiete im Mit-
telmeerraum ist auch der Gazastreifen durch eine schlechte Datenverfügbarkeit gekenn-
zeichnet, welche die Anwendung und Validierung hydrologischer Modelle erschwert und
einschränkt. Ein relativ einfacher Fernerkundungsansatz wurde angewendet um Verdun-
stungsmuster abzuschätzen, welche eingesetzt wurden um bewässerte landwirtschaftliche
Flächen im Einzugsgebiet zu ermitteln und im Modell zu parametrisieren. Um eine Viel-
zahl von Satellitenbildern effizient prozessieren zu können, wurde hierfür im Rahmen dieser
Doktorarbeit ein R-Paket kompiliert. Aufgrund der Übertragbarkeit und der einfachen Pro-
zessierung, stellt dieser Ansatz eine vielversprechende Alternative dar um die Robustheit
hydrologischer Modelle, speziell in datenarmen Regionen, zu erhöhen. Die Modellergeb-
nisse zeigen ein erhöhtes Dürrerisiko unter künftigen Klimabedingungen auf. Dieses wird
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den Druck auf die Wasserressourcen des Grundwasseraquifers sehr wahrscheinlich erhöhen,
wodurch die Erstellung und die Umsetzung sinnvoller Anpassungsstrategien unumgänglich
wird, um die landwirtschaftliche Produktivität auch unter künftigen Bedingungen aufrecht
erhalten zu können.

Die Ergebnisse dieser Doktorarbeit sind in vier wissenschaftlichen Veröffentlichungen zu-
sammengefasst, wobei jede dieser Veröffentlichungen eine andere Unsicherheitskomponente
der hydro-klimatischen Modellkette beleuchtet. Diese Doktorarbeit unterstreicht das Poten-
tial der Fernerkundung um die Robustheit hydrologischer Modelle unter Datenknappheit
zu erhöhen. Da GCMs den stärksten Einfluss auf die Gesamtunsicherheiten haben, sollte
ihnen bei der Wahl der Klimaprojektionen besondere Aufmerksamkeit geschenkt werden.
Des Weiteren wurde die Bedeutung der Referenzunsicherheiten hervorgehoben, welche auf
in zukünftigen Studien verstärkt berücksichtigt werden muss. Es wird daher die generelle
Empfehlung ausgesprochen, auch für die Referenzdatensätze, analog zur Verwendung von
Klimaprojektionen, ein Ensemble aus mehreren Datensätzen zu verwenden.
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1 Introduction

1.1 Projected climate change impacts on the Mediterranean re-
gion

Climate change depicts one of the greatest challenges for humanity in the 21st century
(Karl and Trenberth, 2003) and will likely have severe impacts on the natural and human
systems. Among others, climate change is driving biodiversity loss (Rockström et al., 2009),
challenges food security (Schmidhuber and Tubiello, 2007), will likely increase flood risk
and flood probability (Arnell and Gosling, 2016) on the global scale and affects the tourism
sector (Scott et al., 2012). Due to the longevity of atmospheric CO2 climate change will
lead to irreversible increased global temperatures and changes in precipitation (Solomon
et al., 2009).

Information about possible future climate changes under global warming is becoming
more and more an integral part of developing suitable adaptation strategies at global, na-
tional, regional and local levels. Such information is based on long-term climate simulations
generated by climate models under a number of future emission scenarios. These climate
projections provide a range of possible developments of future climate and resulting changes
in variables such as precipitation and surface air temperature and provide the basis for hy-
drological modeling with focus on climate change impacts. In addition to the different
realizations created by the scenarios, climate model simulations are characterized by dif-
ferences in their model structure and parameterization schemes, e.g. of cloud microphysics
in convective clouds (Gettelman and Morrison, 2015). Different models thus generate dif-
ferent realizations of climate variables causing uncertainties in the projections. Following
previous studies in the context of climate science (Déqué et al., 2007; Di Luca et al., 2012;
García-Díez et al., 2015; Prein and Gobiet, 2017), uncertainty is defined as spread of climate
or hydrological models, as well as reference data sets in this thesis. The two terms spread
and uncertainty are used interchangeably. Robustness in contrary is given in case of a high
model or data set agreement, i.e. small spread, and can be interpreted as low uncertainty.
In addition to a small spread, the agreement in the direction of change for multiple climate
models of a given variable is considered as robustness in the climate change signal.

Projections of future climate show a high robustness for mean air temperature as the
models generally agree in a positive change and show significant increases for most areas
around the globe also for different climate model generations (Knutti et al., 2013). In
contrary to air temperature projections for precipitation are more complex as they are highly
dependent on other variables, linked to topography and potentially strongly influenced by
land use (changes) on the regional scale (Barkhordarian et al., 2013). The uncertainty in
precipitation projections therefore is generally larger than for air temperature (Beniston
et al., 2007; Knutti and Sedláček, 2013). However, climate projections are characterized by
strong regional differences such as the arctic amplification (Screen and Simmonds, 2010)
and therefore need to be assessed on a regional scale.
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The Mediterranean region can be considered as one of the hot-spots of climate change,
characterized by a strong increase in air temperature and severe decrease in precipitation of
up to 50% and a resulting rise in drought frequency of up to 40% (Christensen et al., 2007).
Projections for consecutive dry days and a decrease of total precipitation are consistent
throughout most models and depict increased water stress under future climate (Sillmann
et al., 2013b). The frequency, intensity and duration of heat waves are projected to increase
and the drought period in the Mediterranean is projected to expand temporally with earlier
onsets and later end dates (Beniston et al., 2007). There is a general tendency towards
increased and intensified extremes under future climate with change rates exceeding the
general long-term climate change signal (Fischer et al., 2013).

The assessment of the impacts of climate change on aquatic ecosystems and water
resources is of great importance and hydrological models are an essential tool for water
management in this context (Devia et al., 2015). Hydrological models provide a simplified
representation of the complex real world system and can be categorized by e.g. their
type, complexity, dynamic and spatial scale (Moradkhani and Sorooshian, 2009). As the
Mediterranean region is already prone to seasonal water scarcity and projections indicate
an intensification of these phenomena it is of high importance to assess future impacts on
water resources especially in this region.

In the course of the project CLIMB (‘Climate Induced Changes on the Hydrology of
Mediterranean Basins’), funded under the European Union’s Seventh Programme, seven
hydrological basins in the Mediterranean were examined. Hydrological modeling served as
the primary tool to estimate the impacts of climate change on the water resources in these
study areas. In this project, novel geophysical field monitoring techniques, remote sens-
ing tools and hydrological models were applied to increase the process understanding and
provide the basis for water management (Ludwig et al., 2010). Hydrological modeling us-
ing the physically based Water Flow and Balance Simulation Model (WaSiM) (Schulla and
Jasper, 2007) revealed increased pressure on the water resources in spring in a catchment in
Sardinia, Italy under changing climate (Meyer et al., 2016) that translates to reduced agri-
cultural productivity for the future period (Bird et al., 2016). The application of WaSiM in
another region revealed an increased drought risk due to climate change and demonstrated
the need for adapted irrigation practices in the Gaza Strip in Palestine (Gampe et al.,
2016a).

As aquatic ecosystems are highly complex an integrative assessment is of extreme im-
portance. The project GLOBAQUA (Managing the effects of multiple stressors on aquatic
ecosystems with water scarcity) examines river basins in the Mediterranean under multiple
pressures (Navarro-Ortega et al., 2015). In this context climate change has proven to be one
of the potential stressors on the water balance with decreased precipitation and negative
changes in surface runoff for four river basins of the Ebro (Spain), Adige (Italy), Evrotas
(Greece) and the Sava (Eastern Europe) (Gampe et al., 2016b). These projected reductions
in runoff lead, together with socio-economic changes, to a decrease in water quality e.g. for
the Ebro River (Herrero et al., 2018).
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As climate change impact assessment studies are prone to uncertainties, challenges re-
main to communicate the results to decision makers and eventually implement necessary
adaptation strategies (Maslin and Austin, 2012). It is therefore of high importance to
identify and quantify these sources of uncertainty to continuously improve the understand-
ing and the representation of processes, such as the parameterization of convection, and
ultimately improve climate projections.

This cumulative thesis has been carried out within the two mentioned projects, CLIMB
& GLOBAQUA, to determine and quantify the contribution of related uncertainty sources
included in most of the climate change impact studies. In the following the typical hydro-
climatic modeling chain is introduced in section 1.2. An overview on which sources of
uncertainty can be identified and how these are currently addressed and included in the
literature is provided in section 1.3 followed by the formulation of the aims and goals of
this thesis and how the presented publications add to the discussion in section 1.4. Four
publications emerged in the course of this thesis and are presented in section 2. A conclusion
of the main findings and an outlook on potential future work in this research domain is
presented in section 3.

1.2 The typical hydro-climatic modeling chain

The typical hydro-climatic modeling chain is shown in Figure 1 (Muerth et al., 2013;
Teutschbein and Seibert, 2010; Xu et al., 2005). Climate forcing is typically provided
through climate models, either directly from General Circulation or Global Climate Models
(GCMs) or dynamically downscaled through Regional Climate Models (RCMs). As due to
computational constraints it is usually not feasible to simulate the entire ensemble of avail-
able climate scenarios, a sub-selection of RCMs is chosen (Wilcke and Bärring, 2016) and
then often post-processed through e.g. bias correction (BC) or a further interpolation to a
finer grid (Velázquez et al., 2013). The so-derived climate model ensemble then provides
the required spatio-temporal resolution to drive the selected hydrological model(s).

GCM RCM Hydrological 
Model

Climate 
Model 

Selection

Post-
Processing

Reference Data 
(e.g. Observations)

Figure 1: Typical hydro-climatic modeling chain as usually applied in climate change impact studies
(Muerth et al., 2013; Teutschbein and Seibert, 2010; Xu et al., 2005). As reference data sets play a
crucial role in most steps of these chain they are included as well.

(GCMs) can be considered the primary and irreplaceable tool for the generation of future
climate (Giorgi and Gutowski, 2016; Knutti et al., 2013); These are made available through
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e.g. the Coupled Model Intercomparison Project (CMIP) coordinated by the World Climate
Research Programme (WCRP), where they have been systematically defined and harmo-
nized regarding their simulation horizon, simulated scenarios, experiments included and are
centrally stored and provided to the scientific community (Meehl et al., 2007).From the pre-
vious to the most recent fifth phase of the intercomparison projects (CMIP5) the number of
models stored, their spatial resolution and their complexity increased. Already in the pre-
vious phase (CMIP3) integrated Atmosphere-Ocean Global Climate Models (AOGCMs),
which include interactions between atmosphere, ocean, land and sea ice, became the stan-
dard. In CMIP5 some models are now coupled to biogeochemical compartments allowing
for a detailed representation of carbon fluxes and thus the carbon cycle and are catego-
rized as Earth System Models (ESMs) allowing for an interactive computation of emission
concentrations however are even more computational demanding (Taylor et al., 2012). As
for this thesis does not focus on carbon fluxes or atmosphere-land-ocean interactions, the
term GCM will be used for all climate models simulating the global climate in the following
without differentiating AOGCMs and ESMs. Today, GCMs simulate the globes climate at
a spatial grid of 1.25 - 2.5◦ with differences in their number of vertical layers and process
parameterization (Collins et al., 2011b; Sillmann et al., 2013b; Voldoire et al., 2013).

Projection of future climate in CMIP5 simulations are performed after model year 2005
and forced with the Representative Concentration Pathways (RCP) presented by Van Vu-
uren et al. (2011). These RCPs replace the emissions scenarios of previous climate model
generations, as presented in the Special Report on Emissions Scenarios (SRES) for the
4th Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC)
(Nakicenovic et al., 2000) used in CMIP3. For the SRES scenarios the climate models
responded to the increased CO2 individually while in case of the RCPs they are driven
by a forced response (Taylor et al., 2012). The highest forcing is constructed in RCP8.5,
resulting in an increased radiative forcing throughout the 21st century and finally reaching
8.5 Wm-2 by the end of the century, while the RCP4.5 can be considered an intermediate
scenario with an increased radiative forcing of 4.5 Wm-2 by the end of the 21st century
(Taylor et al., 2012). While two additional RCPs (2.6 & 6.0) are constructed, most sim-
ulations are available with the previous two radiative forcings. Simulations with available
CMIP5 models results in a global temperature change of around 2◦C for RCP4.5 and more
than 4◦C under RCP8.5 (Knutti and Sedláček, 2013) as presented in Figure 2.

The spatial representation of current GCMs is too coarse to capture local forcings and
thus not capable of providing an accurate representation of local climate, especially for ex-
tremes. These effects get elevated over complex terrains and for areas that are dominated by
small scale weather patterns (Giorgi et al., 2001). However, small scale climate change sig-
nals and projections are essential for users and decision makers to estimate climate change
impacts and for the development of feasible adaptation strategies. Therefore, regionaliza-
tion or downscaling techniques have been developed and established over the past decades
(Giorgi et al., 2009). These techniques can be grouped in statistical or dynamical downscal-
ing. In case of statistical downscaling, the large scale climatic state is derived from GCMs
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Figure 2: Projected global air temperature change relative to the period 1986 - 2005 for the SRES and
RCP scenarios based on CMIP3 and CMIP5 simulations (adapted from Knutti and Sedláček, 2013). The
number in brackets refers to the number of models available.

and applied to a statistical model. This establishes a statistical relationship between the
large scale GCM fields (predictors) and local variables (predictands) usually observations
from station data (Themeßl et al., 2011). Statistical downscaling is often combined with
error removal or bias correction (BC) of climate model data to derive reliable high resolu-
tion input data for impact models (Wood et al., 2004). While statistical downscaling is a
computational efficient alternative usually based on accepted statistical methods it is not
based on physically consistent processes and requires very long and reliable observational
data series with a high network density to allow for robust performance.

These constraints can be overcome through dynamical downscaling techniques, which
however are computational demanding and thus generally limited in the number of avail-
able scenarios (Fowler et al., 2007). The usual procedure in dynamical downscaling is the
one-way nesting approach where the large scale forcing provided by either a GCM or re-
analysis data serves as boundary conditions for the RCM run on a smaller domain with
higher spatial resolution (Giorgi and Gutowski, 2015). This process is usually only per-
formed one-way, meaning there is generally no feedback from the RCM to the boundary
conditions provided e.g. through GCMs. As such two-way nesting is even more computa-
tional demanding, studies are so far mostly carried out on even smaller domain sizes (e.g.
Bowden et al., 2012) however, great efforts are currently undertaken to provide large sets
of fully coupled RCMs for e.g. the Mediterranean region (Ruti et al., 2016). To allow
for model comparison, provide a benchmark for evaluation and resulting model improve-
ment and for a largest possible uncertainty assessment (Giorgi et al., 2009), an overarching
framework was created for dynamical downscaling through the Coordinated Downscaling
Experiment that provides systematic downscaling for various domains, e.g. over Europe
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(EURO-CORDEX). For EURO-CORDEX several modeling groups from various institutes
contributed to provide a large range of RCM simulations at 0.44◦ and 0.11◦ resolution (Jacob
et al., 2014). These downscaled climate scenarios consequently have a better representation
of local features, such as topography, due to their higher resolution (Castro et al., 2005).
Several studies showed the added value of RCM simulations over GCM results in various
areas and for a multitude of variables especially over complex terrain (Di Luca et al., 2012;
Feser et al., 2011; Rummukainen, 2016). A direct comparison between the two downscaling
techniques however is challenging (Casanueva et al., 2016) and the performance of both
approaches is highly dependent on season, variable, location and the metrics applied for
evaluation (Yoon et al., 2012). However, statistical downscaling requires a time series that
captures the full range of possible events, as the representation of extremes is potentially
underrepresented in the observations, resulting in artifacts and inconsistencies when future
extremes are of interest (Vrac et al., 2012). Despite the inconsistencies in temporal vari-
ability, dynamical downscaling also allows for better representation of spatial variability
and potential changes therein (Flaounas et al., 2013). For these reasons and for compa-
rability of different river basin studies as well as the availability of many RCM scenarios
through the EURO-CORDEX initiative, dynamical downscaling is preferred over statistical
downscaling in this thesis. Nevertheless, in case a high resolution and long time series of
observations is available, a combination of both approaches, i.e. statistical downscaling of
RCM simulations, shows great potential (e.g. Chen et al., 2012).

In most climate change impact assessment studies it is usually not feasible to consider a
large number of climate projections for computational reasons and related challenges to cope
with large data sets (Mendlik and Gobiet, 2016). Therefore, the available RCM ensemble
is usually reduced and only a few simulations are considered. However, the selection of the
‘right’ simulations to include is usually not a trivial choice. Model selection is often based on
the availability of models (e.g. Hagemann et al., 2013) or based on internal agreement upon
the partners involved within the corresponding project (e.g. Muerth et al., 2013). More
advanced alternatives are based on sensitivity to climate forcing (Flint and Flint, 2012) or
the concept of Representative Climate Futures (RCF) as proposed by Whetton et al. (2012)
and similarly by e.g. Kienzle et al. (2012). Here the climate change signals of available
climate projections are included to derive scenarios based on temperature and precipitation
changes such as the RCF warm & dry. These rather simple clustering approaches can also
be extended to include multiple additional variables, such as shortwave downward radiation,
relative humidity etc., to derive a subset of climate models to cover the entire spread of the
available ensemble by means of clustering the climate change signals and a scoring approach
(Wilcke and Bärring, 2016). Following the approach presented by Masson and Knutti
(2011), the selection can also be based on model independence to maximize diversity and
minimize model dependency as further elaborated by Mendlik and Gobiet (2016). Despite
these approaches, a performance based model selection is still widely applied (Biemans et al.,
2013; Deidda et al., 2013; Kotlarski et al., 2017; Pierce et al., 2009). Here, the climate models
are selected based on validity, i.e. their ability to reproduce the historical climatology as
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provided through reference data sets. This approach is based on the assumption that
models that are capable of reproducing the historical climate are more credible and their
validity will remain also for the future horizon which can be considered a prerequisite for
the models’ ability to project future climate (Kotlarski et al., 2014).

Despite the increased resolution and the added value of RCMs over the coarser GCM
simulations (Di Luca et al., 2012; Feser et al., 2011; Rummukainen, 2016) and their general
capability of reproducing the most important regional climatic features and a mostly good
representation of regional climate (Maraun and Widmann, 2015), RCMs are still prone to
important biases (Kotlarski et al., 2014). If general circulation patterns for example are
slightly misplaced in the GCM the nested RCM is neither expected nor able to correct
these features and resulting climatology on the regional scale can be largely biased (Giorgi
and Gutowski, 2015). To assess model biases or model errors, RCM or GCM simulations
are generally compared to regional reference data sets. Recent studies assessed biases in
the climatology of current RCMs (e.g. García-Díez et al., 2015; Kotlarski et al., 2014),
as well as for extremes (e.g. Nikulin et al., 2011). For climate change impact assessment
studies a good representation of the climatology but also of daily variations and extremes
are of high importance, however, RCMs are usually not capable of reproducing these on
the regional scale. Bias correction (BC) or bias adjustment is, despite being controversially
discussed (Ehret et al., 2012), thus often a necessary step (Dosio, 2016; Muerth et al.,
2013; Piani et al., 2010; Teutschbein and Seibert, 2013). Various techniques to adjust
model biases have emerged over the past years. Among these distribution based scaling
approaches showed great potential for BC of precipitation (Chen et al., 2013; Themeßl et al.,
2011) and temperature (Räisänen and Räty, 2013). Among these, Quantile Mapping (QM)
approaches are widely used to adjust model biases (Addor et al., 2016; Pierce et al., 2015)
based on the distributions of historical data. This correction approach fits the distribution of
precipitation in the RCMs to the distribution (quantiles) of the reference data set. However,
BC approaches usually assume stationarity, i.e. the observed bias will remain constant in
future projections, which might lead to over- or underestimated changes in precipitation
and temperature (Bellprat et al., 2013; Christensen et al., 2008). Additionally, the issue
of inter-variable dependencies remains (Wilcke et al., 2013) as typically each variable (e.g.
precipitation) is treated separately. Statistical bias correction methods, such as QM, are
also only effective if the systematic bias is not due to a misrepresentation of the general
climatology in RCMs introduced e.g. through location errors (Maraun and Widmann,
2015).

As presented in Figure 1, reference data sets play a key role in the hydro-climatic model-
ing chain as they are involved in almost all components, either for the evaluation of climate
models, for their selection, for the application of a successful BC and lastly for the cali-
bration and simulation of the reference period with hydrological models. Although several
meteorological variables, e.g. air temperature, relative humidity, wind speed and incoming
shortwave downward radiation, are important and required for hydrological applications,
this thesis will focus mostly on precipitation as it is key variable in the hydrological cy-
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cle and one of the most widely used climate variables in other studies (Schneider et al.,
2016; Daly et al., 2017). The data sets introduced in the following are therefore mentioned
with a focus on precipitation, although many of these also contain multiple other vari-
ables. Despite local observations from station data there is a growing number of gridded
data sets available. These data sets differ in their domain size, spatial and temporal res-
olution, and originate from different sources and methods and usually a trade-off between
spatial resolution and domain size must be made. Gridded data sets are either reanalysis
products, derived through remote sensing or constructed through interpolation of station
observations. Reanalysis data sets are constructed similar to forecasts produced by nu-
merical weather prediction (NWP). In contrary to NWP the observations are reanalyzed
and the model is evaluated against observations at every time step and adjusted if needed.
Through this procedure a three-dimensional state of the atmosphere is constructed and
provides various variables in a continuous way (Bengtsson et al., 2004). These data sets are
usually global products and provide information on various variables over a large domain
and cover a large time period however, they usually lack the high spatial resolution required
for regional or catchment scale studies. Widely used reanalysis data sets are the Twentieth
Century Reanalysis data set provided through the National Oceanic and Atmospheric Ad-
ministration (NOAA) (Compo et al., 2011) and the ERA-Interim data set constructed at
the European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011).
Remotely sensed data sets for precipitation are commonly derived from passive micro-
wave information (Joseph et al., 2009) or combined with information from infrared sensors
(Ashouri et al., 2015). High-resolution data sets based on station observations are usually
only available on country level (e.g. over Spain by Herrera et al., 2012) or cover a specific
geographical region e.g. the Alps (Isotta et al., 2014). However, coarser data sets based on
station data are available at the continental scale, e.g. over Europe, such as the well-known
E-OBS data set (Haylock et al., 2008).

The final component of the hydro-climatic modeling chain is the hydrological model
itself. Available models differ in their complexity, dynamic and spatial scale (Moradkhani
and Sorooshian, 2009) and can be lumped, conceptual or physically based and fully dis-
tributed. The choice of the model is dependent on the desired application but also driven by
the availability of data. Simple models usually only require a few parameters and include
e.g. relatively simple evapotranspiration schemes physically based models require more
input parameters and apply a more complex evapotranspiration scheme (Velázquez et al.,
2013). The hydrological model applied in this study, WaSiM, allows for a flexible spatial
resolution and variable setup regarding the complexity of the model. In the study carried
out within this thesis, WaSiM (Schulla and Jasper, 2007) was run at a 100 m grid with the
Penman-Monteith equation to calculate potential evapotranspiration (Gampe et al., 2016a).
Depending on the study area, the modular structure allows to include or exclude modules
such as snow and irrigation which would require additional input data and parameters.
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1.3 State-of-the-art: uncertainty sources and assessment in hy-
drological climate change impact studies

As presented in Figure 1, various components are involved in the hydro-climatic modeling
chain each introducing additional uncertainty to the resulting climate change impacts. Un-
certainties in the climate scenarios can attributed to three main sources: scenario, global
and regional model uncertainty (Déqué et al., 2007, 2012). Scenario uncertainty originates
from the emission scenario and the climate models’ response to these for the SRES sce-
narios or the radiative forcing directly introduced through the more recent RCPs. Global
model uncertainty originates from the various GCMs providing different boundary condi-
tions for RCMs. The latter are responsible for regional model uncertainty as they resolve
the regional climatology based on the provided boundary conditions. Furthermore, internal
variability in the climate system represented in the GCMs and RCMs and contributes to
the overall uncertainty as well as the region of interest (Giorgi et al., 2009). In addition
to the uncertainties in the climate scenarios, observational uncertainty introduced by the
reference data sets included in the study, adds another layer of uncertainty to the modeling
chain. Finally, the choice of the hydrological model and the parameterization of the model
add additional uncertainty. Precise knowledge of uncertainties in climate projections and
their quantification is essential to increase the credibility of the projections and increase the
confidence in the data sets to derive robust adaption strategies (Foley, 2010). Additionally,
precise information on the major uncertainty sources is crucial to improve climate projec-
tions and their usage in impact studies and provides valuable information for e.g. model
selection if only a subset of available climate models is considered.

A common way to quantify the contribution of various uncertainty sources included in
climate projections is an assessment of the explained variance by means of an analysis of
variance (ANOVA) as presented by von Storch and Zwiers (1999). The approach is based
on a decomposition of the overall variance of the ensemble for a given variable, typically the
climate change signal, which can be assumed as a sum of the individual variances arising
from the different sources of uncertainty. Following the ANOVA approach, the variance of
an ensemble of climate models V can be written as sum of the variance originating from
the GCMs G, the RCMs R and the RCP S and their respective interaction terms as:

V = G + R + S + GR + GS + RS + GRS

A decomposition of the variance then allows to estimate the contribution of each uncer-
tainty source to the overall variance of the ensemble. This approach does thus not allow
for an absolute assessment of uncertainties but rather estimates the relative contribution.
The ANOVA approach was applied in various studies to quantify the uncertainty in climate
projections (Déqué et al., 2007, 2012; Ferro, 2004; Prein et al., 2011). A detailed description
of the method and how it was implemented in this thesis can be found in Gampe et al.
(2016b) and Gampe et al. (2018).
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1.3.1 Observational uncertainty

As described in section 1.2 available reference data sets originate from various sources such
as reanalysis, station observations or remote sensing. Although all data sets consider and
assimilate observations at some point, they cannot be characterized as observations hence
the term ‘observational uncertainty’ is somewhat misleading. Within this thesis ‘observa-
tional uncertainty’ generally refers to the uncertainty originating from the reference data
sets, regardless of being observational or just observationally constrained similar to Sillmann
et al. (2013a). Previous studies revealed a large spread in available reference data sets that
can be of similar magnitude as the CMIP5 spread depending on the applied indices, vari-
able and region (Palazzi et al., 2013). Similar to climate models, there is generally a higher
agreement between available reference data sets on temperature than on precipitation. This
is due to the higher spatial variability of precipitation e.g. through orographic effects or
convective events, but also originates from measurement errors especially through wind ef-
fects maximized for solid precipitation (Rasmussen et al., 2012). As gridded observational
data sets are constructed by interpolation of station data, the choice of the interpolation
method can have additional impact on the resulting precipitation in a particular grid cell
(Chen et al., 2017). These differences increase with lower station density, which is both
typical and especially relevant for higher elevations (Prein and Gobiet, 2017).

Sillmann et al. (2013a) highlighted considerable differences in reanalysis data sets also
when compared to gridded observations especially when extreme indices are evaluated.
As presented by Henn et al. (2018), the uncertainties in gridded precipitation data sets
significantly increase over complex topography with differences in annual precipitation sums
of 200mm for the Western United States. However, the related biases and uncertainties
might be even larger as indicated by a relatively simple comparison of precipitation and
streamflow. A considerable contribution to this topic was the study carried out by Prein and
Gobiet (2017) that included several observational data sets and demonstrated the added
values of high resolution data sets. Their results highlight the need to consider multiple
data sets, possibly from different sources, for a robust evaluation of climate models and
a correction of model biases. To this point climate model evaluation is usually based on
a singular reference data set (e.g. Deidda et al., 2013; Frei et al., 2006; Kotlarski et al.,
2014) which itself might include a considerable bias as demonstrated by Prein and Gobiet
(2017). While other methods for model selection have been developed, the credibility
of climate models can only be assessed by comparing to climate observations and thus
is of high importance (Giorgi et al., 2009). Alexander and Arblaster (2017) evaluated
recent CMIP5 simulations over Australia comparing one high and one coarse resolution
data set as reference. They revealed differences in bias detection especially for extreme
indices. A great contribution to the field was made by Kotlarski et al. (2017) who evaluated
observational uncertainty on the pan-European scale focusing on various regions typically
used to analyze and evaluate climate models. They revealed considerable biases of up to 2◦

C for temperature and differences of 70 mm for precipitation over Europe. Major difference
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can be found for wet day frequency and extreme precipitation. Depending on the region
this also has considerable influence on model selection, especially where high resolution
data sets are available. Gómez-Navarro et al. (2012) found large differences for model
scoring and ranking over Spain using three reference data sets for minimum and maximum
temperature as well as precipitation. Sunyer et al. (2013) showed that the differences
in observational data sets are mainly not due to differences in their spatial resolution.
They revealed large differences for bias detection over Denmark especially for extreme
precipitation where the data sets did not even agree in the sign of the bias. Herger et al.
(2018) introduced observational uncertainty in the model selection process. These studies
highlight the need to consider multiple reference data sets not only for model evaluation
and selection, but also for BC. Up to now many studies were published focusing on BC
inter comparison based on various methods to adjust model bias (e.g. Chen et al., 2013;
Teutschbein and Seibert, 2012). However, most BC studies only consider a single data
set (e.g. Addor et al., 2016; Jeon et al., 2016) rather than multiple data sets and thus
neglect observational uncertainty. Despite all these differences, observational uncertainty
was generally lower than model uncertainty from climate models (Kotlarski et al., 2017)
and the magnitude of GCM bias exceeded the observational uncertainty (Alexander and
Arblaster, 2017). Nevertheless it is well known at this point that observational uncertainty
contributes considerably to the overall uncertainty and thus shall not be neglected (Bellprat
et al., 2012; Kotlarski et al., 2017; Prein and Gobiet, 2017).

1.3.2 Uncertainties of climate projections

Despite the structural harmonization in the CMIPs, the individual GCMs differ consider-
ably in their representation of processes, model structure and have different physical param-
eterization (Kay et al., 2015). Recent CMIP5 models for example have similar and uniform
anthropocentric emissions, while natural emissions, e.g. originating from soil nitrogen or
climate-sensitive lightning, differ considerably (Lamarque et al., 2013). This results in large
differences regarding their representation of various processes and causes, among other rea-
sons, different projections for future climate. In addition, the CMIP model ensemble is a so
called ensemble-of-opportunity as the contribution of a modeling group to such a project is
largely dependent on non-scientific reasons, such as the availability of a climate model or
the required financial and computational resources to fulfill the simulations, resulting in a
model sampling that is neither random nor systematic (Tebaldi and Knutti, 2007) and thus
challenging the interpretation of such model ensembles (Kay et al., 2015). It is nevertheless
important to consider more than one of these simulations. The preferable use of such multi
model ensembles (MMEs) over a single model realization approach to assess climate change
impacts is well established (Masson and Knutti, 2011; Mendlik and Gobiet, 2016). These
MMEs largely capture model uncertainty from the RCMs, global model uncertainty from
the GCMs as well as the underlying physical uncertainties and sample internal variability
(Collins et al., 2011a), i.e. the natural variability of the climate system in the absence of
external forcing due to the chaotic nature of the system (Deser et al., 2012). While MMEs
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are considered to capture most of the uncertainty involved and their application became a
standard procedure, the quantification of the uncertainty sources or their relative impact
are usually not explicitly addressed. The magnitude of the relative contribution of each
source of uncertainty to the overall uncertainty however is dependent on the assessed vari-
able, such as precipitation or air temperature (Déqué et al., 2007; Gampe et al., 2016b)
and the considered time horizon.

Scenario uncertainty depicts a major source of uncertainty that introduces further un-
certainty not fully represented by the model spread due to the unpredictability of human
activity and resulting future emissions that influence the climate system (Foley, 2010). This
is especially challenging as uncertainty originating from other sources generally arise from
model imperfections or different parameterization schemes and can potentially be reduced
(Giorgi et al., 2009), however, due to the complexity of the climate system parameterizing
and neglecting some processes will always be unavoidable. As the scenarios, both SRES
and RCP, follow a certain path until the year 2100, the contribution of scenario uncer-
tainty is highly dependent on the considered projection horizon as only little uncertainty
is introduced for the near future. Prein et al. (2011) showed that the relative contribu-
tion of scenario uncertainty is negligible for the near future up to 2050 while it contributes
with up to 35% to the overall uncertainty by the end of the 21st century for the variables
air temperature, geopotential height and specific humidity. Déqué et al. (2007) showed a
significant contribution of scenario uncertainty to the overall uncertainty only for summer
air temperature. The results of Hawkins and Sutton (2009) reveal the large regional and
temporal differences of various uncertainty sources. Their findings confirm that scenario
uncertainty is negligible in the near future while being the major source of uncertainty by
the end of the 21st century for global mean air temperature, as presented in Figure 3. For
precipitation in contrary, the contribution is negligible for most areas of the world also in
the distant future (Hawkins and Sutton, 2010). The higher relative contribution of scenario
uncertainty to temperature projections compared to other climate variables is generally well
established (Déqué et al., 2007; Fowler et al., 2007). Two potential strategies for climate
change impact assessment studies emerge from the unpredictable nature of scenarios based
on human activity. A common approach follows the MME strategy and considers multiple
available scenarios in the respective impact study to consider a large range of potential
scenarios (e.g. Prudhomme et al., 2014; Schewe et al., 2014). Alternatively, the selection of
scenarios can be based on feasibility thus exclude apparently unrealistic emission scenarios
such as the low emission scenario RCP 2.6 from the ensemble (Mora et al., 2013; Sanford
et al., 2014). Following this approach recent studies focus on RCP8.5 as it can be consid-
ered a business-as-usual scenario based on recent emissions (Gerstengarbe et al., 2015; Kay
et al., 2015; Maure et al., 2018). With focus on decision makers and resulting adaptation
strategies, a selection of optimistic and pessimistic scenarios, thus potentially consider the
attitude and impact of the decision maker, can also be valuable (Giuliani and Castelletti,
2016).

Hawkins and Sutton (2009) showed that model uncertainty in temperature projections
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Figure 3: The fraction of total variance in global, decadal mean air temperature projections explained
depending on lead time (adapted from Hawkins and Sutton, 2009).

from GCMs is dominant for mid-century, i.e. the 2040 horizon, while it is significantly
reduced by the end of the century as scenario uncertainty becomes more important. These
results were confirmed in the follow-up study (Hawkins and Sutton, 2010) where model
uncertainty from the GCMs dominates clearly until mid-century for air temperature. For
precipitation, model uncertainty is the dominant source throughout the entire 21st cen-
tury (Hawkins and Sutton, 2010). The findings presented by Prein et al. (2011) confirm
previous studies with model uncertainty being the dominant source of uncertainty for pre-
cipitation and temperature for both, mid-century and end-of-the-century projections. For
air temperature, model uncertainty contributes with 70-85% to the overall uncertainty for
mid-century projections and, with the slight exception of the winter season, with over 50%
for the end of the century. For precipitation, 70-90% of the uncertainty are introduced
through model uncertainty with no significant difference in the projection horizon. The
results by Hawkins and Sutton (2009, 2010) and Prein et al. (2011) are however based on
the CMIP3 GCM ensemble and do not account for uncertainty introduced through dynam-
ical downscaling. Déqué et al. (2007) concluded that uncertainty originating from GCMs
generally contributes most to the overall ensemble spread over Europe at the end of the
21st century for precipitation and air temperature. With the exception of summer precipi-
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tation, a similar analysis with a different ensemble of available RCMs resulted in a similar
contribution of GCM and RCM to the overall uncertainty (Déqué et al., 2012). Fowler
et al. (2007) conclude that the contribution of RCMs is higher for precipitation than for
temperature, however the main source of uncertainty is due to the structure and different
physical parameterization schemes of the driving GCMs. Similar results were presented by
Giorgi and Gutowski (2016) over Europe with the GCM dominating the uncertainty for
both, air temperature and precipitation. Only summer precipitation, which is likely due to
convective events and the corresponding parameterization schemes in the RCMs, makes an
exception here. As shown by Graham et al. (2007), this translates directly to hydrological
quantities where the GCMs depict the largest source of uncertainty for future runoff pro-
jections followed by RCM and scenario. These results indicate the importance of GCMs
for ensembles of climate models and model selection. Déqué et al. (2007) conclude that the
number of GCMs should at least match the number of RCMs for an efficient analysis of
uncertainty quantification.

In near future projections the internal variability of the climate system plays an impor-
tant role for both, precipitation and temperature (Hawkins and Sutton, 2010). For global
air temperature projections, internal variability explains up to 40% of the total uncertainty
in the near future while being negligible for the end of the century as presented by Hawkins
and Sutton (2009) and shown in Figure 3. Following Prein et al. (2011) internal variability
accounts for around 10% for air temperature and slightly more for precipitation projec-
tions even at the end of the century. Stronger than for the other uncertainty components,
there is a high seasonal variability in the contribution of internal variability especially for
precipitation. However, the assessment of internal variability in the mentioned studies is
based on ensembles-of-opportunity and thus derived from statistical measures as presented
by Hawkins and Sutton (2010). Reliable assessment of internal variability of the climate
became a widely researched issue over the past years. A perturbed physics ensemble, e.g.
the same model with small perturbation in the initial conditions and chaotic evolution
of climate, is needed to fully quantify the role of natural variability (Deser et al., 2012;
Gutowski Jr et al., 2016), although bootstrapping shows promising results to derive a ro-
bust estimation (Addor and Fischer, 2015). Internal variability, often considered as ‘noise’
in climate models (Deser et al., 2012), plays a crucial role in the time of emergence of the
climate change signal, i.e. when the signal can be clearly separated from the noise (Hawkins
and Sutton, 2012). As presented by Kay et al. (2015) a large ensemble produces a spread
similar to CMIP5 simulations purely based on internal variability. The contribution of in-
ternal variability to the overall uncertainty is furthermore characterized by strong regional
differences as shown by Hawkins and Sutton (2009).

1.3.3 Uncertainties of hydrological models

Despite the uncertainties in the related meteorological forcing discussed in the previous sec-
tions, uncertainty in hydrological models arises mainly from parameter uncertainty and due
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to model structure (Liu and Gupta, 2007). The latter can be addressed by applying several
hydrological models of different complexity levels with the same forcing. Velázquez et al.
(2013) applied an ensemble of four hydrological models of different complexity over Québec
and Bavaria. They concluded a rather low level of model uncertainty for high flows however
with high regional differences, higher uncertainty for mean flows and even more pronounced
impact on low flows. Schewe et al. (2014) analyzed water scarcity under future climate and
revealed, despite large regional differences, that the spread of an ensemble of five global
hydrological models is of similar or even greater magnitude than the spread introduced
through GCMs. Similar results were obtained by Wada et al. (2013) who concluded that
the choice of the global hydrological model outweighs the uncertainty introduced through
GCM. Hattermann et al. (2018) showed that the contribution of the hydrological models
to the overall uncertainty is highly dependent on the hydrological regime of the river and
varies seasonal, however, the uncertainty introduced by the GCM usually obscures the other
uncertainty sources.

Parameter uncertainty is often altered by the calibration procedure. The impact of the
selection of the period used for calibration was analyzed in the study presented by Seiller
et al. (2012) where an ensemble of lumped models was calibrated and evaluated under
periods with different climate conditions. The authors found strong differences and large
uncertainties if only one model is selected, however a robust result for a larger number of
models as model sensitivity balances the different responses. Similar results were obtained
by Brigode et al. (2013) for 89 catchments in France, who attributed the lack of robust-
ness, i.e. the dependence of the model parameters on the calibration period, as the major
source of uncertainty. In the study presented by Harder and Pomeroy (2014) the parameter
uncertainty of different empirical schemes to separate solid and liquid precipitation was an-
alyzed, revealing substantial uncertainties arising from non-physical parameters of 160mm
difference in snow water equivalent resulting in changing snow cover duration of up to 26
days and thus also on discharge from snow melt. A similar study over Québec revealed
large uncertainties due to different snow modules and evapotranspiration schemes of dif-
ferent models (Seiller and Anctil, 2014). Muerth et al. (2013) showed that, e.g. for high
flows, model uncertainty dominates over uncertainty arising from BC as the corresponding
processes are more dependent on model structure than input data. Uncertainty introduced
by natural variability generally dominated uncertainty in the study presented by Seiller and
Anctil (2014).

The issue of parameter uncertainty increases if the study area lacks the required data
for model parameterization. The issue of data scarcity challenges hydrological modeling in
many catchments in the Mediterranean (Cudennec et al., 2007; Gunkel et al., 2015). As
elaborated in various studies, remote sensing data can be included in the calibration or
parameterization process to reduce uncertainties in hydrological model results (Karimi and
Bastiaanssen, 2015).Silvestro et al. (2015) used land surface temperature and soil moisture
information based on satellite imagery to calibrate a hydrological model for two Italian
catchments to increase model robustness. Brown and Pervez (2014) used satellite images
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to derive the Normalized Difference Vegetation Index (NDVI) to assess and parameterize
irrigated areas over the United States. Remote sensing data is also applied to calibrate
and validate snow cover (e.g. Shrestha et al., 2014) as well as soil moisture and evapotran-
spiration for improved model calibration (Kunnath-Poovakka et al., 2016) and validation
(Meyer et al., 2016).

1.4 Aims and goals of this thesis

According to recent climate projections the Mediterranean region is likely to experience
severe impacts on water resources. It is of high importance to provide robust estimates of
future climate change impacts especially in areas suffering from water scarcity already under
the current climate. This can be obtained through hydrological modeling, which is however
often hampered by data scarcity especially in the Mediterranean. The thesis provides robust
estimates on water resources in the Mediterranean as well as the quantification of the related
uncertainties in selected river basins and was carried out within the projects CLIMB and
GLOBAQUA, both funded under the European Union’s Seventh Programme. The different
steps in the uncertainty cascade involved in hydrological climate change impact studies as
presented in Figure 4 are addressed. The cumulative thesis is compiled of four scientific
publications and the relevant research questions address three main research areas and will
be presented in the following.

1.4.1 The role of observational uncertainty in the hydro-climatic modeling
chain

Although observational uncertainty is more and more included in climate change and impact
studies and some studies highlighted the importance of observational uncertainty, it is
still underrepresented and widely neglected. Precipitation is considered to be the most
important variable for hydrological climate change impact assessment studies (Giorgi and
Gutowski, 2015). As observational uncertainty is considerably larger for precipitation than
for temperature, there is an emphasis on the assessment of precipitation data sets. Similar
to the uncertainty assessment of climate projections, studies of an extensive assessment of
observational uncertainty focused on larger domains rather than hydrological catchments. It
is thus one of the key questions how available precipitation data sets differ on the catchment
scale, especially when compared to interpolated station data. One goal of this thesis is to
provide insights in the performance of available reference grids with respect to climatology
and hydrologically relevant indicators such as consecutive dry and wet days. As available
gridded products differ considerably in their spatial resolution it is important to assess
and evaluate if coarse data sets perform worse and thus can or should be discarded from
the analysis. It is expected that observational uncertainty contributes considerably to the
overall uncertainty, especially over complex terrain and that the selection of a reference data
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set should be carried out thoroughly and not be an arbitrary choice as in most hydrological
modeling studies. Based on this, two research question emerge and can be formulated as:

Q1: How well do gridded precipitation products perform on the catchment scale especially
over complex topography?

Q2: What is the relative contribution of observational uncertainty to the overall uncer-
tainty in the hydro-climatic modeling chain?

It is expected that observational uncertainty has a significant impact on climate model
evaluation, bias correction and model selection. However, the issue of observational uncer-
tainty is so far neglected in the literature and studies mostly focus on a comparison of bias
correction methods. One of the key questions to answer is hence to evaluate the impact
of observational uncertainty on bias correction and projected future precipitation. Addi-
tionally, as model selection is still widely based on validity, it is important to determine
how the choice of the reference grid influences the evaluation and selection of RCMs and
thus changes the future projection envelope. This consequently leads to the third research
question that covers observational uncertainty:

Q3: What is the influence of observational uncertainty on post-processing, i.e. bias
correction, climate model evaluation, model selection and the resulting future projections?

1.4.2 Assessment of uncertainties in the recent EURO-CORDEX climate pro-
jections

Climate projections include a range of uncertainty originating from different sources. Pre-
vious studies assessed the relative contribution of GCM, RCM and scenario uncertainty
usually for precipitation and temperature. As the potential of direct usage of RCM data
to assess future water scarcity is explored, it is also important to assess the contribution
of uncertainty sources for all variables of the water balance. In addition, previous studies
assessed the relative contribution to the overall variance on the regional scale, while the ap-
plication is usually carried out on a finer scale, e.g. hydrological catchments. It is therefore
important to quantify the related uncertainties also on the catchment scale as the role of
the RCMs might be underestimated in previous studies due to a smoothing of errors over a
larger area. Additionally, all studies mentioned in the previous sections have been carried
out using the CMIP3 projections that are based on the SRES emission scenarios. As the
most recent CMIP5 projections are based on the RCPs they introduce radiative forcing
externally instead of model-dependent calculation based on the provided emissions. Thus
the relative contribution of the RCPs but also GCMs and RCMs to the overall uncertainty
has to be evaluated again to allow for model generation comparison and support model
selection. Following this, the fourth research question of this thesis emerges:

Q4: What is the relative contribution of each of the uncertainty sources involved in
recent regional climate projections on the catchment scale and for all the variables of the
water balance in the downscaled CMIP5 climate projections?
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1.4.3 Climate change impact assessment under data scarcity

Hydrological modeling, especially in the Mediterranean region, is often hampered by the
lack of available data for parameterization, calibration and validation. It is however of high
relevance to assess water resources under future climate especially in areas already suffering
from water scarcity. However, issues remain in how hydrological models can provide robust
results in these areas. The great potential of remote sensing information for hydrological
modeling has been illustrated in the previous section, however, the processing of several
remote sensing images can be time consuming and inefficient. It is therefore crucial to
provide a computational efficient, affordable method to include remote sensing information
in the hydrological modeling chain that allows to increase the robustness of the model results
without requiring additional input data. Based on this the following research question can
be formulated as:

Q5: How can remote sensing data be applied to improve the robustness of a hydrological
model while being computational efficient?

As the setup, calibration and validation of hydrological models is a rather complex task,
there is also a need explore alternative ways to estimate future changes on the hydrological
quantities. Recent RCMs include various schemes of the land surface and land use (Kotlarski
et al., 2014) thus also provide information on evapotranspiration and surface runoff. This
allows to assess changes in the water balance and provide estimates on future water scarcity
in selected Mediterranean river basins. This leads to the following research question:

Q6: Is the Mediterranean region likely to experience increased pressure on the water
balance and thus likely to be exposed to increased water scarcity under future climate?

18



2 Scientific Publications

This cumulative thesis is comprised of four peer-reviewed scientific publications. Three of
these have been published in peer-reviewed international journals an additional paper has
been submitted to a peer-reviewed journal and is currently under review. In the follow-
ing the publications are listed with the publishing journal and the journals impact factor
according to the 2016 Thomson Reuters Journal Citation Report. The papers are not pre-
sented in chronological order, but rather follow the order of the research questions presented
in the previous section and the hydro-climatic uncertainty cascade as shown in Figure 4.
Additionally, the contribution of each author to the corresponding publication is provided.
Paper I evaluates observational uncertainty in an Alpine catchment by comparing an ensem-
ble of available gridded precipitation data sets based on hydrological relevant indicators.
Paper II applies the selected reference data sets to bias correct the RCM ensemble and
evaluates the impact of observational uncertainty for post-processing, i.e. bias correction,
and model selection. Paper III addresses and quantifies the uncertainties in recent climate
projections provided through the EURO-CORDEX initiative. In addition, future water
scarcity in selected Mediterranean river basins are estimated. Paper IV depicts an example
for the typical hydro-climatic-modeling chain, as a subset of available RCMs is selected,
bias corrected and then used to drive a physically based hydrological model. This study
covers uncertainty originating from the hydrological model and highlights the benefit of
remote sensing to derive robust model results.

Observational 
Uncertainty

Scenario 
Uncertainty 
(RCP)

Boundary 
Uncertainty 
(GCM)

Model 
Uncertainty 
(RCM)

Post-
Processing

Hydrological 
Model

Paper I    (Q1)
Paper II   (Q2 &3)
Paper III  (Q4 &5)
Paper IV  (Q4&6)

Figure 4: Uncertainty sources included in the climate forcing of hydrological models in the typical hydro-
climatic-modeling chain. Width of the arrow symbolizes the accumulated uncertainty, colored circles in-
dicate the corresponding papers which address the contribution of these sources. The addressed research
questions are given in brackets.
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2.1 Paper I: Evaluation of Gridded Precipitation Data Products
for Hydrological Applications in Complex Topography. Hy-
drology

Gampe, D.,& Ludwig, R. (2017). Evaluation of Gridded Precipitation Data Products for
Hydrological Applications in Complex Topography. Hydrology, 4(4), 53.

Paper I focuses on observational uncertainty in available gridded precipitation data sets
that could be applied to drive a hydrological model over complex terrain. The catchment
assessed is the Adige river basin located in Northern Italy that was also addressed in Paper II
& III. This catchment was selected as it is offers a relatively dense network of precipitation
gauges and a robust assessment of future water quantities is of high importance due to
intensively irrigated agriculture and hydro power generation in the catchment. A high
resolution gridded precipitation data set was constructed from station measurements using
the interpolation tool provided within the hydrological model WaSiM, as this is typically
how the meteorological forcing for a hydrological model is constructed if station data are
selected. This grid serves as a reference grid to evaluate an ensemble of available reanalysis
and observational as well as one remote sensing data set using several indicators of high
relevance for hydrological modeling such as consecutive dry and wet days. The coefficient of
variation is then applied to evaluate contribution of spatial resolution to the overall spread
of the ensemble. This paper adds to the discussion on observational uncertainty on the
catchment scale with the inclusion of multi-source data sets and serves as an example for
a tailored analysis for hydrological climate change impact assessment studies. This paper
addresses the following research question:

Q1: How well do gridded precipitation products perform on the catchment scale espe-
cially over complex topography?

Author’s contributions: The study was carried out by D. Gampe, supervised by R.
Ludwig. Both authors contributed to the concept of this paper, while the first author im-
plemented the calculations and analyses and prepared the first version of the manuscript.
Status: published
Journal: Hydrology (MDPI)
Impact factor: NA (Journal indexed in GeoRef and Scopus [from Vol. 5; 2018])
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Abstract: Accurate spatial and temporal representation of precipitation is of utmost importance
for hydrological applications. Uncertainties in available data sets increase with spatial resolution
due to small-scale processes over complex terrain. As previous studies revealed high regional
differences in the performance of gridded precipitation data sets, it is important to assess the related
uncertainties at the catchment scale, where these data sets are typically applied, e.g., for hydrological
modeling. In this study, the uncertainty of eight gridded precipitation data sets from various sources
is investigated over an alpine catchment. A high resolution reference data set is constructed from
station data and applied to quantify the contribution of spatial resolution to the overall uncertainty.
While the results demonstrate that the data sets reasonably capture inter-annual variability, they
show large seasonal differences. These increase for daily indicators assessing dry and wet spells as
well as heavy precipitation. Although the higher resolution data sets, independent of their source,
show a better agreement, the coarser data sets showed great potential especially in the representation
of the overall climatology. To bridge the gaps in data scarce areas and to overcome the issues with
observational data sets (e.g., undercatch and station density) it is important to include a variety of
data sets and select an ensemble for a robust representation of catchment precipitation. However, the
study highlights the importance of a thorough assessment and a careful selection of the data sets,
which should be tailored to the desired application.

Keywords: reference precipitation; precipitation comparison; gridded data sets; hydrological impact;
reanalysis data sets; remote sensing data sets; observations; meteorology; uncertainty

1. Introduction

Precipitation plays an important role in the hydrological cycle and is one of the most widely used
climate variables [1,2]. While there is a clear link between the amount, intensity, and distribution of
precipitation to various processes in the ecosystem [3], this relation is nonlinear, and heavy precipitation
does not necessarily result in high river discharge [4,5]. Additionally, the link of heavy precipitation
and flood occurrence is challenging to assess and quantify [6]. Nevertheless, accurate assessment of
precipitation is of utmost importance as it provides the meteorological input for hydrological and other
impact models and studies. As precipitation varies greatly in space and time [7,8], gridded precipitation
information in high temporal and spatial resolution is required. The need for such high-resolution
data sets is crucial and not only limited to hydrological applications, but many other fields, such as
evaluation of the performance of climate simulations and possible detection and adjustment of model
biases. The need for high resolution is increased over areas with complex topography with high spatial
variability [9].

Available gridded precipitation datasets differ in their domain size, spatial and temporal
resolution, and originate from different sources and methods. Usually, a trade-off between spatial
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resolution and domain size must be made. While global and continental data sets, provided e.g.,
through the National Oceanic & Atmospheric Administration (NOAA) [10], the European Centre
for Medium-Range Weather Forecasts (ECMWF) [11] and the German Weather Service (DWD) [12],
provide information on precipitation over a large domain and cover a large time period, they lack
the high spatial resolution required for regional or catchment scale studies. High-resolution data
sets are usually only available on a country level [13] or cover a specific geographical region [14].
These data sets are either reanalysis products [10,11,15–17], derived through remote sensing [18,19]
or interpolated station observations [12,14,20]. Most of these data sets use station data either directly,
or assimilate observed precipitation at some stage. The density of the included stations differs greatly
between, but also within the data sets, restricting the effective resolution and spatial consistency [21].
Recent efforts were made to merge different data sets to achieve a better representation and combining
the advantages of each data set [22], as well as collecting sub-daily station observations [23] to increase
the temporal resolutions. However, observations are prone to severe undercatch of precipitation, which
is amplified in case of solid precipitation and over mountainous areas [21,24,25]. Therefore, there is
merit in including data sets from a variety of sources for a robust estimation of reference precipitation.

Various studies to assess the performance of these data sets were carried out in recent years,
revealing considerable differences between the products. Most of these studies focus either on
global, continental, or regional performance assessment often aiming in the evaluation of Regional
Climate Model (RCM) performance [2,26]. Regional studies assess the benefit of higher resolution and
consequently a better topographic representation, the issues of station density and the representation
of regional weather phenomena [21]. Detailed source specific assessment showed limitations in the
representation of several weather patterns for reanalysis data sets [27] and the restriction of satellite
information under specific cloud cover conditions [15,28]. Gridded precipitation data products are
very often applied as meteorological input for hydrological modeling exercises in data scarce areas
to bridge the data gap at the catchment or smaller regional scale [29,30]. It is therefore important to
also assess the performance of the data set at smaller scales over hydrological basins. Some studies
detect the deviations on the catchment scale; however they focus on reanalysis [27] or selected
regional data sets [31]. Additional efforts were carried out in the past focusing on 3-hourly and
daily error analysis for satellite precipitation products over alpine catchments. They revealed large
errors especially in the summer months and showed the difficulties to adequately address errors
in satellite products with respect to the station density of in situ measurements [32]. Other studies
identified the impact of different satellite precipitation products on the reproduction of flood events in
Northern Italy. These studies showed both the potential and advantages of these data products, but
also their limitations [33,34].

However, there is still a need to evaluate long-term uncertainties and differences in existing
precipitation products on the catchment scale, and exploiting as many of the available products as
possible from different sources. It is important to assess not only the climatology, but also the daily
extremes. This study contributes to recent findings by including an ensemble of eight available gridded
precipitation data sets derived from observations and through reanalysis or remote sensing. These are
evaluated against a high-resolution reference grid derived from local observations over a river basin
for the period 1989–2008, with a focus on hydrological implications. Therefore, the comprehensive
assessment does not only focus on the general climatology, but also on dry and wet spells, as well as
extreme precipitation on the catchment scale. The study area is the catchment of the Adige in located
in the southern part of the Alps in Northern Italy, covering an area of 12,100 km2. This catchment
is selected due to a relatively high network of observation stations, and the challenging orography
for the comparison with the ensemble of precipitation data sets. Due to the complex topography,
the uncertainty introduced by the spatial resolution of the data sets was of special interest in this
study. The overall purpose of this study was motivated from the application point of view, rather
than atmospheric assessment of regional patterns. It is clear, that the outcomes of this study are highly
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regionally dependent and cannot be transferred to other catchments, but will give insights in local
performance and uncertainties of precipitation data sets, especially over an alpine catchment.

2. Study Area

The focus of this study was the catchment of the Adige located in Northern Italy. The catchment,
shown in Figure 1, covers an area of 12,100 km2. The Adige River stretches over a length of 409 km
from the Southern Alps to the Adriatic Sea, passing three Italian provinces.
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Figure 1. Location of the Adige catchment and corresponding elevation.

The area is characterized by a humid climate with annual mean precipitation ranging from 500 mm
in the inner-Alpine dry areas, such as the Venosta valley [14,35], to 1600 mm. Precipitation distribution
shows a pronounced summer peak and relatively dry winters [36]. An overview of the observed mean
annual precipitation at the available stations is presented in Figure 2. The area is characterized by
strong elevation differences ranging from sea level to 3865 m, as presented in Figure 1. The hydrology
is characterized by snow and glacier melting in the spring months, and intense precipitation events in
summer [36]. Discharge is used for irrigation of intensive agriculture - mainly fruit trees - and through
various touristic activities. Additionally, 30 major reservoirs used for power generation are operated in
the area, increasing pressure on ecosystems due to altered hydrology [37].
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3. Data Sets and Methods

3.1. Construction of the High-Resolution Reference Data Set

Daily precipitation data for the period 1989–2008 derived from gauge measurements was available
over the catchment. The station network for the study area covers a total of 153 stations as presented
in Figure 2; however the temporal and orographic coverage varies considerably. Apart from the
temporal coverage, the spatial distribution also varies strongly throughout the area, as shown
in Figure 2. Most stations are located in the central to southern part of the catchment while especially
the north-western part is sparsely covered. The southernmost part of the catchment is only covered by
far away stations, as local stations were not available.

As the study aims in evaluating gridded precipitation products, the meteorological interpolation
module of the hydrological model Water Flow and Balance Simulation Model (WaSiM, [38]) was chosen
for the construction of the precipitation grid with a spatial resolution of 1 km and daily time step.
This procedure was selected as it is computationally efficient, and furthermore, the resulting data set
will serve as meteorological forcing of this hydrological model in consecutive studies. Additionally, the
module ‘regional superposition’ allows for overlaying and combining multiple interpolation methods
over various areas to consider topographic effects and specifications of the catchment. In the following
the selected method is briefly described, whereas for a detailed insight, it is referred to in the technical
report [38].

The precipitation at each grid cell was calculated based on the four nearest stations in respective
quadrants, ideally on a regular grid. If no station was available in the respective quadrant, the scheme
automatically switched to Inverse Distance Weighing (IDW), which is also widely used for interpolation
of meteorological variables [39–41], and can be helpful in areas with low station density [42].
For mountainous areas, elevation dependent regression was applied to account for topographic effects.
Here, the inversion levels were calibrated to better represent the characteristics of the catchment. In this
study, in a first step, bilinear interpolation and elevation dependent regression were applied separately
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over the entire catchment. In a second step, the regional superposition module was applied to combine
both approaches. In this way topographic effects could be captured, but were not overestimated, and
the inner-Alpine dry areas were better captured compared to exclusive elevation-dependent regression.
Additionally, the residuals for the regression were calculated for various sub regions to achieve better
performance, and a better representation of the observed fields. The final grid was constructed for the
period 1989–2008, which represents the maximum temporal coverage of the analyzed gridded data
products presented in Section 3.3. All analyses presented in this study refer to this time frame only.
The grid will be referred to as ADG-1KGPR, representing the gridded precipitation over the Adige
domain with a 1 km grid size.

3.2. Performance Validation of the Constructed Reference Grid

To assess the performance of the grid, a leave-one-out-cross-validation (LOOCV) approach was
applied to allow for best-possible representation of the observed precipitation. Three main indicators
were calculated to assess the performance of the interpolation method; The Percent Bias (PBIAS)
assesses the tendency of the modeled data to exceed or underestimate the observed data in percent,
hence the optimal value is zero. The Root Mean Square Error (RMSE) and the Mean Absolute Error
(MAE) are two widely used indicators when it comes to model performance assessment in meteorology
and other fields [43,44]. Figure 3 shows the presented evaluation criteria at the precipitation gauges and
their corresponding grid cells in the interpolated 1 km gridded result. Stations outside the catchment
are left out of the analysis to avoid confusing results and just presented as empty circles in the
figure. Figure 3a represents the MAE*, which is the MAE based on all dates for the period 1989–2008,
whereas Figure 3b shows the MAE, which is based only on days with precipitation occurrence.
Therefore MAE showed higher values as MAE*, as the absolute error at days with no or only low
precipitation was relatively small. Figure 3c shows the RMSE, and in Figure 3d, the corresponding
PBIAS is shown. Both mean RMSE and MAE show similar or better results as comparable studies over
various study areas [40,42,44–46].

Figure 4 shows the monthly distribution of the four presented criteria. As expected, the course of
the RMSE (Figure 4a), MAE* (Figure 4c), and MAE (Figure 4d) followed the distribution of monthly
precipitation, with the maximum occurring in the summer and fall months resulting from convective
and strong precipitation events. However, the highest spread and overestimation of PBIAS (Figure 4b)
was visible for the winter months, which are likely also the months with the highest uncertainty in the
observations, due to higher undercatch of snow compared to liquid precipitation [24,25].
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3.3. Available Precipitation Data Sets

In the following section, the available precipitation data sets included in this study are briefly
introduced. Table 1 gives a short overview over the data sets and their horizontal resolution, as well
as the covered time period. The main criteria for the selection of data sets were daily resolution and
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a temporal coverage, at least for the 20-year period (1989–2008). For this reason, any monthly data
sets or daily data sets with a shorter temporal coverage, or a starting date late than 1989, were not
included here. The starting and end date were determined to find the maximum overlap for the
selected data sets. The horizontal resolution of the included gridded products varied from a 5 km grid
to 1◦ × 1◦ (~125 km) spacing. Coarser grids, such as the global 20th Century Reanalysis [10] and the
NCEP/NCAR Reanalysis [16] data set, were not included due to the relatively small catchment area
and the respective coverage of these global data sets. Data sets with a shorter time period available
due to a later starting date, such as the Tropical Rainfall Measuring Mission (TRMM) Multisatellite
Precipitation Analysis [47], the Climate Prediction Center (CPC) Morphing Technique (CMORPH) [48]
and the Global Precipitation Measurement Mission (GPM) [49], were also not included in this study.
This led to a selection of eight data sets, as presented in Table 1, which are either interpolated products
from station observations, derived from satellite or reanalysis data sets. The data products are shortly
introduced in the following, while for detailed information it is referred to the respective publications.

Three observational data sets are included in this study: the Alpine Gridded Data Set
(EURO4m-APGD), derived through the EURO4m project [14], the E-OBS data set in version 11
provided through the European Climate Assessment and Dataset (ECA&D), and derived within
the ENSEMBLES project [20], as well as the Full Data Daily Product from the Global Precipitation
Climatology Centre (GPCC-FDD) provided through the DWD [12]. The EURO4m-APGD was derived
from numerous observation stations from various national observatories, and covers the greater
Alpine area for the time period 1971–2008. With a 5 km grid size, this data set represents the highest
resolution observational data product available for this area so far. The E-OBS data set is widely used
in various studies and based on selected observation stations that provide a long data record and
ensured quality control. Therefore, less stations are included compared to the EURO4m-APGD [50];
however, the E-OBS data set covers the time period 1951–2015 (and updates are ongoing), with
a daily resolution on a 25 km grid over Europe [20]. GPCC-FDD provides precipitation information
from station data on a 1.0◦ grid for the time period 1988–2013. While GPCC offers a multitude of
precipitation data sets, the FDD is recommended for daily analysis with focus on extremes and was
therefore selected for this study. The GPCC-FDD includes similar stations compared to E-OBS for the
interpolation, as indicated by the corresponding variable in the data set.

Four reanalysis products are included in this study, which are available at various resolutions.
While most reanalysis data sets assimilate precipitation in some way, are not affected by system
changes, temporal and spatial coverage of the observations and undercatch are problematic [51].
The reanalysis data set with the highest horizontal resolution is the MESAN downscaling product on
a ~5 km grid. MESAN is derived through the downscaling of HIRLAM 0.2◦ forecasts, and assimilates
observed precipitation from rain gauge data [15]. Additionally, the Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), provided through the National Aeronautics
and Space Administration (NASA) which shows considerable improvements over Version 1 [52] with
an improved assimilation scheme, was included. In MERRA-2, observed precipitation was used as
forcing for the parameterization of the land surface. The data set offers global coverage and starts in
1980, while updates are still ongoing [53], with a horizontal resolution of ~50 km. The two coarsest
reanalysis data sets in this study are provided through the European Centre for Medium-Range Weather
Forecasts (ECMWF). First, the ERA-Interim global reanalysis at a resolution of approximately 80 km
(0.75◦) and second, the Reanalysis for the 20th Century (ERA-20C) [54], were chosen. ERA-Interim
assimilates various observations from multiple sources in a 12 hr cycle [11], while ERA-20C only
assimilates surface and mean sea level pressures and marine winds [55]. Similar to [21] the coarse
data sets are not expected to perfectly reproduce the daily precipitation over a complex medium sized
catchment. However ERA-Interim is widely used as meteorological forcing for hydrological models
in data scarce regions, making this an important data set to include. Especially for the long time
period covered, it is also worth including the ERA-20C, since this data set would allow simulations
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starting in 1900. Additionally, it is interesting to see how this data set, which does not assimilate many
observations, performs on the catchment scale.

Table 1. Overview of data sets included in this study with corresponding spatial resolution, temporal
coverage, data set type or source respectively, and reference publication.

Data Set Resolution Temporal
Coverage Type/Source Reference

MESAN 5 km 1989–2010 Downscaling/Reanalysis [15]

EURO4m-APGD 5 km 1971–2008 Observations [14]

E-OBS v. 11 25 km 1950–2015 Observations [20]

PERSIANN-CDR 0.25◦ (~30 km) 1983–present Multisatellite (infrared),
corrected [19]

MERRA-2 0.5◦ latitude × 0.625◦

longitude (~50 km) 1980–present Reanalysis [53]

ERA-Interim 0.75◦ (~80 km) 1979–present Reanalysis [11]

GPCC–FDD v1.0 1.0◦ (~100 km) 1988–2013 Observations [12]

ERA-20C 125 km 1900–2010 Reanalysis [54]

The only remotely sensed data product included was the bias-corrected version of the
multi-satellite Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN) specified as PERSIANN-CDR (Climate Data Record). PERSIANN uses infrared
brightness temperature derived from geostationary satellite information to estimate the rainfall rate [19].
To reduce the biases in the so-derived precipitation but keep the spatial and temporal patterns at 0.25◦

resolution, the 2.5◦ monthly data set by the Global Precipitation Climatology Project (GPCP) [56] is
applied for correction.

It is important to note that most data sets are not independent from each other, as most of them
include the same station observations directly, or assimilate them in some way. This is however,
a common problem in comparison studies, and cannot be avoided.

3.4. Remapping of the Reference Grid

When comparing spatial data sets, a common grid has to be defined to perform the analysis.
The highest spatial resolution possible for a comparison is defined by the selected reference grid,
and was thus 1 km in this study. This approach however favors higher resolution data sets, as the
coarser grids are not able to resolve the fine-scale processes [3]. A second possibility is to perform the
comparison at multiple defined resolutions that correspond to meaningful data sets, e.g., the highest
resolution and a medium range resolution, as done in some studies [21,50]. Lastly, the comparison can
be conducted on the coarser grid, which provides a fair comparison for the coarser grids; however
small scale information are lost, which might not be desirable [3].

In this study, a combination of the first and the latter approaches was chosen. A conservative
remapping of the reference grid to the resolution of each of the gridded data sets was conducted.
The direct evaluation of each data set hence was carried out on the corresponding, coarser grid
of each data set. All data sets were then disaggregated to the highest resolution of 1 km to
account for the catchment delineations, the number of grid cells, and the correct areal weights for
coarser grid cells, where only a small percentage of the grid cell might be within the catchment.
Obviously, the coarser data sets had a lower effective resolution, and could not represent the
topography at the detailed 1 km resolution. However, there was no additional source of uncertainty
introduced through this disaggregation, but rather already captured within the uncertainties of the
data sets. Nevertheless, the inter-comparison of the data sets was at a higher resolution and penalized
the coarser data sets. This approach was chosen, as the performance should be evaluated on catchment
scale with respect to hydrological modeling, which will likely be carried out at even higher resolution.
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4. Results

In the following, the results of the comparison are presented, starting with a generic section
on the climatological performance of mean precipitation at various time scales. The following
subsection then introduces some indicators for a more detailed comparison based on daily precipitation.
The uncertainty introduced by elevation only is evaluated in the last section.

4.1. Mean Precipitation

The mean annual precipitation over the Adige catchment for all data sets included in
this study is presented in Figure 5, as well as the ensemble mean, derived from all data sets.
There was a considerable spread in the catchment mean of 350 mm·y−1 identifiable in the ensemble,
corresponding to 35% of the ensemble mean annual precipitation. The highest mean annual
precipitation was found in ERA-Interim (1196 mm) and PERSIANN-CDR (1140 mm), while E-OBS
(847 mm) and MESAN (868 mm) showed the lowest annual mean precipitation sums. The general
inner-alpine dry valleys were present in the high resolution data sets EURO4m-APGD and MESAN,
although the extent and the magnitude are overestimated in the latter. These dryer areas were also
reproduced by the E-OBS data set; however, there was a strong North-South gradient with lower
precipitation in the South. The coarser data sets were not able to reproduce these small scale dry areas,
which was not surprising.
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Figure 5. Mean annual precipitation over the catchment for the applied data sets including the ensemble
mean; numbers in the panels correspond to the mean catchment precipitation.

To evaluate the temporal representation and variability of the mean catchment precipitation,
Figure 6 shows Taylor diagrams [57] based on daily (a), monthly (b), and annual (c) catchment
precipitation of the gridded data sets (circles) and the corresponding aggregated reference grid
(triangles) with respect to the reference grid (grey triangle). Dashed lines display the correlation
of the evaluated data sets compared to their corresponding reference grid, green arcs the RMSE,
and blue, dashed arcs display the standard deviation of each grid. Best agreement, measured by
correlation, for both, aggregated reference grids and the evaluated data sets, is given for monthly



Hydrology 2017, 4, 53 10 of 21

data. All data sets captured the monthly precipitation reasonably well, with correlation coefficients
between 0.8 and 0.95. As expected, daily correlations were considerably lower, with no data set
showing correlation greater than 0.8, and overall lower correlations for annual precipitation (with
the exception of EURO4m-APGD and MERRA-2). Inter-annual variability, here, simply the standard
deviation of the annual precipitation, was represented very well in E-OBS, MESAN, ERA-20C and
EURO4m-APGD, while the other data sets underestimated the variability considerably. The ranking
for RMSE varied depending on the time scale; however, EURO4m-APGD, MERRA-2 and ERA-20C
showed comparatively low errors for all three time scales, while MESAN showed higher errors for
annual precipitation. The triangles in the Taylor Diagrams show the effect introduced purely by the
spatial resolution and the different grids of the included data sets. They were all derived through
aggregation of the ADG-1KGPR to the corresponding coarser grid. As expected, they all showed very
high correlations (>0.95) and low RMSE compared to the reference grid at 1 km resolution.
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Figure 6. Taylor Diagram based on daily (a); monthly (b) and annual (c) catchment mean precipitation
for the Adige catchment. Circles correspond to the gridded precipitation data sets, while triangles refer
to aggregated reference grid.

Boxplots for mean monthly precipitation over the catchment are presented in Figure 7. In contrary
to Figure 6, the spread within each data set comes from the spatial variability within the long-term
monthly mean precipitation over the catchment, derived from grids similar to the annual precipitation
sums presented in Figure 5. Darker grey boxplot (first in each month) correspond to the reference
grid, colored boxplot to the evaluated data sets and the shaded grey boxplots to each corresponding
aggregated reference grid. The latter represent the uncertainty that purely comes from the spatial
resolution, as they are conservatively remapped as described in Section 3. Throughout all months,
this results in less variability, hence shorter boxplots, with a tendency towards decreasing median
precipitation for all months with increasing spatial resolution.

In general, the annual precipitation cycle was captured by all data sets; however, there were
distinct differences for the individual data sets and months. The annual cycle was more pronounced in
the EMCWF reanalysis products ERA-Interim (dark blue) and ERA-20C (green), and considerably less
pronounced in PERSIANN-CDR (yellow). The latter showed an overestimation in winter precipitation
of up to 100%. This was caused by the overestimation of precipitation due to cold clouds, where the
algorithm for PERSIANN was less accurate [19,28] and was less pronounced in summer. ERA-20C
and especially ERA-Interim considerably overestimated summer precipitation, also compared to
other reanalysis data sets included in the study. This was important to point out, as precipitation
undercatch and the underrepresentation of high-elevation gauges potentially led to an underestimation
of precipitation in the observational data sets. Similar to the results presented in Figure 5, E-OBS
(dark red) produced a larger spread for monthly precipitation throughout the year, resulting from
very high precipitation in the northern, alpine part of the catchment, and very low precipitation in the
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central and southern parts. This also led to an underestimation of summer precipitation in this data set.
All data sets derived from observations agreed for most months, and represent similar magnitudes,
which was not too surprising, as they were not independent from each other, and several stations were
included in all these data sets. Additionally, the high-resolution data sets better represented the annual
cycle and the precipitation magnitudes compared to the other data sets.

The presented differences in monthly precipitation would likely have strong implications for
hydrological impact modeling. The presented overestimation in winter for PERSIANN-CDR would
likely lead to greater snow pack accumulation, resulting in higher discharge from snow melt in
spring. The overestimation in summer in the ERA-Interim and ERA-20C data sets might lead to
higher soil moisture in summer, and consequently increased discharge and higher sensitivity to strong
precipitation events with respect to flood events.
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Figure 7. Monthly Precipitation Sums for the applied data sets. The grey boxplots correspond to the
high resolution Water Flow and Balance Simulation Model (WaSiM) aggregation, while shaded boxes
show the boxplots for the respective grids.

4.2. Comparison of Hydrologically Important Indicators

To further assess the differences in the data sets, three additional indicators addressing extreme
precipitation were derived to estimate the implications for hydrology. These indicators were
the maximum number of consecutive days with precipitation <1 mm (CDD, numbers of days),
the maximum number of consecutive days with precipitation >1 mm (CWD, numbers of days) [58],
and the contribution of heavy precipitation (>95th percentile) to the annual precipitation (R95pTOT,
in %) [59]. These were selected, as they provided insights in the performance of the data sets for heavy
precipitation, as well as the timing and distribution of precipitation and wet/dry days. All of these
indicators are based on daily precipitation.

Figure 8 shows the deviations in CDD for the period 1989–2008 for all selected data sets compared
to the corresponding remapped reference grid. The upper panel shows the absolute amount for the
reference grid, as well as the ensemble mean. To indicate the spread and the uncertainty within
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the ensemble, the standard deviation is presented in the top right. This reveals a larger spread,
i.e., higher uncertainties, in the central part of the catchment, which is generally characterized by
a higher number of consecutive dry days compared to the alpine northern area. The high resolution
data sets tend to better represent CDD, whereas the coarser data sets considerably underestimate
these. This can be at least partly attributed to the horizontal resolution and smoothed orography,
as the aggregated reference grids are based on a 1 km grid and are not interpolated to the respective
resolution. The highest underestimation can be found in PERSIANN-CDR (−65 days for the catchment
mean), which can be attributed to the less accurate algorithm for cold clouds already mentioned, that
overestimates precipitation on cloud covered days especially in winter. The strong underestimation in
the ERA-Interim (−32 days) data can not only be attributed to horizontal resolution, as the coarser
ERA-20C and GPCC-FDD show a better representation of CDD, but is rather caused by the general
overestimation in the frequency of low precipitation days.
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This was confirmed through the maximum number of consecutive wet days (CWD), i.e., days
with precipitation >1 mm, presented in Figure 9 in the same way as described for CDD. In general,
there is higher agreement throughout the different data sets with the reference grid. The model spread,
shown as standard deviation in the top right, was more homogenous than for CDD. Additionally,
the data sets agree more, resulting in a smaller spread, i.e., standard deviation of seven compared
to 23 days (for CDD). In contrary to CDD, there was no evidence that high resolution data sets
perform better, as the coarsest grids, ERA-20C and GPCC-FDD both showed very low deviations
from the corresponding reference grid. The highest deviations were found in the MERRA-2 and
ERA-Interim reanalysis for the northern part of the catchment through orographic precipitation.
These data sets overestimated the mean CWD by 11 days (MERRA-2) and by nine days (ERA-Interim).
PERSIANN-CDR also showed a slight overestimation, mostly for the central area of the catchment.
However, as for CDD, the data sets derived from observations showed less deviations to the reference
data set compared to the reanalysis products, with the exception of the coarse ERA-20C.
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To assess the representation of heavy precipitation events in the data sets, the percent contribution
of precipitation from heavy precipitation days, i.e., greater than the 95th percentile, to the total annual
precipitation (R95pTOT) is presented in Figure 10. As expected, the coarser data sets tended to
reproduce lower values, meaning a lower contribution of heavy precipitation days to the annual
precipitation. The high resolution data sets again agreed best with the reference grid, although
MESAN showed more homogenous patterns as the EURO4m-APGD and the reference grid, originating
from the downscaling of the HIRLAM results. A strong underestimation was present for E-OBS,
PERSIANN-CDR, ERA-Interim and ERA-20C. For ERA-Interim there was a known error reported
by the ECMWF with the representation of convective events. The convective available potential
energy (CAPE) was zero in the data set for the afternoon time steps where most convective events
occur. Despite the coarse resolution, MERRA-2 represented the contribution of heavy precipitation
well, though it missed out the north-eastern part of the area with a considerably lower share due to
the horizontal resolution. In the GPCC data set R95pTOT, the northern part was better reproduced
compared to the coarse EMCWF grids; however, the southern part showed lower R95pTOT. This
originated from the very low station density in the GPCC-FDD data set in the southern part, with only
one station per grid cell, according to the respective variable in the data set.
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4.3. Uncertainties and Recommendation

To estimate the relative contribution of spatial resolution compared to the uncertainty introduced
by the data sets themselves, the coefficient of variation (CV) is presented. CV is defined as the
standard deviation normalized by the mean and given in percent. The data sets were remapped to the
corresponding grids of all data sets included and the climatological monthly catchment precipitation
was presented at each resolution. These were then compared to the CV derived from the data sets
at their native resolution, which were grouped in observational (blue) and reanalysis (red) data sets.
PERSIANN-CDR was excluded from this analysis, as it was the only remote sensing data set in the
study. Figure 11 shows boxplots for the CV introduced through spatial resolution only, while the red
and blue squares correspond to the mean CV in the reanalysis and observation data sets. The CV
introduced through elevation only, was derived by remapping each data set to the grids of the other
data sets, and calculating CV separately per data set. The variation shown as boxplots hence stems
only from the effect of different resolutions and does not include uncertainty through the data sets
themselves. The CV shown in red and blue in contrary are based on the variation derived from the data
sets at their individual grids, which also includes uncertainty originating from the different resolutions.
With the exception of January and March, the uncertainty introduced by the source of the data sets
exceeded the contribution of the grid resolution. The relative variability from spatial resolution was
higher for the winter months, where the observational data sets also showed greater variability as the
reanalysis data sets.
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As presented, there was a considerable spread within the available precipitation data sets. To cover
most of the uncertainty and benefit from the strength of each selected data set, similar to climate
change impact assessment studies, an ensemble approach is recommended to serve as a reference [50].
However, based on the presented indicators, three of the presented data sets were not able to represent
the precipitation conditions in the catchment. This conclusion can be drawn based on the comparison
to the reference grid, as well as with respect to the other data sets. As also suggested in previous
studies [51] the corresponding data set were excluded from the ensemble in this study. This was
not done to reduce the overall spread, but rather based on a thorough selection process, as the
resulting differences in the data sets were not introduced to different methods or sources of the data
sets, but rather bad performance and limited applicability of these data sets over the study area.
Therefore, PERSIANN-CDR was excluded, due to the systematic overestimation of precipitation in the
winter months, and the considerably underestimation of CDD. Similarly, ERA-Interim and ERA-20C
were excluded, as they overestimated summer precipitation and produced too few consecutive
dry days and were additionally, due to their coarse resolution, not able to perform well for heavy
precipitation (R95pTOT). As the remaining data sets did not show considerable deviations from
both the reference and the ensemble mean, they were included to derive the ensemble reference
grid presented in Figure 12 for the presented indicators. The mean annual precipitation (Figure 12a)
represented small-scale features such as the dry Venosta valley in the north-western part of the
catchment, as well as the higher precipitation over the alpine north-eastern part. This was not as
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pronounced in the reference data set, possibly through low station density, but identifiable in most other
gridded data sets. R95pTOT, presented in Figure 12b, follows the patterns of the high resolution data
sets, however, with less artifacts introduced through interpolation as for the reference grid, the stations
were highly visible in the corresponding R95pTOT. However, the absolute range of R95pTOT was
only about two-thirds compared to the reference grid. The maximum number of consecutive dry
days (Figure 12c) followed the reference grid; the grid structure of the E-OBS grid was clearly visible,
resulting in very sharp and unrealistic boundaries. These were less pronounced for consecutive wet
days (Figure 12d) where the higher number of CWD in the north east was dominated by the reanalysis
data sets, which showed a higher number of consecutive wet days in this area.
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5. Discussion

The presented differences in available precipitation data products highlight the need to take into
account the uncertainties related to finding the real reference precipitation. This becomes crucial when
data sets are applied to calibrate and validate hydrological models, or are chosen to select a subset
or bias correct climate models. Therefore, the uncertainties and differences within the ensemble of
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available daily, gridded precipitation data products have to be evaluated on the catchment scale.
In this study, the uncertainty of gridded precipitation data sets, from various sources and derived
through different methods, was investigated over an alpine catchment. It has to be pointed out
that findings over this area do not allow for a performance assessment of the presented data sets in
general. Whereas the data sets show similar annual precipitation sums and a good representation of
the inter-annual variability, i.e., standard deviation, they show clear differences on daily time scale.
Although all data sets capture the annual cycle of precipitation, they show large differences in the
magnitudes, up to 100% in some months for mean catchment precipitation. This confirms the results
presented by previous studies over Europe [50] and the alpine region [21] also on a catchment scale.
This study confirms the limitations of the satellite precipitation product PERSIANN-CDR, which
led to a systematic overestimation of precipitation, especially in winter, likely due to non-raining
clouds where the algorithm performs worse than for e.g., warm tropical convective systems [19].
This overestimation, especially in winter was, also identified over most of Europe in general [50].
Increased precipitation in winter will likely result in a larger snow pack that will influence the
peaks in discharge for the spring months, due to snow melt. The slight overestimation of summer
precipitation by PERSIANN-CDR confirms recent findings for the PERSIANN data product with
respect to convective events and better agreement in fall, where precipitation is dominated by stratiform
systems [32]. However, the bias-corrected CDR applied in this study improved the PERSIANN data
set considerably, as the overestimation was not as pronounced in this study over the same region.
Clear outliers in the summer months were the two reanalysis data sets from EMCWF, especially
ERA-Interim, which confirms the findings in the studies mentioned. Similar to the results presented
for the comparison with station data [60], there is a higher agreement between reanalysis data sets and
observational data sets in winter. This can be confirmed also by the lower coefficients of variation in
the winter months for both groups of data sets. Differences in the performance of the observational
data sets is strongly linked to station density [2], which is extremely low in the E-OBS data set [21] and,
especially for the southern part of the catchment, also for GPCC-FDD. This leads to underestimated
precipitation for E-OBS in annual, as well as seasonal (summer), precipitation and an increased number
of consecutive dry days for the southern parts.

One source of uncertainty in the different data sets is the spatial resolution. As expected, the high
resolution data sets generally better represent the regional or local patterns for both mean precipitation,
as well as for several indicators such as consecutive dry and wet days, and the contribution of
heavy precipitation to the annual precipitation. Nevertheless, this is not dependent on the source
of the data set, as higher resolution reanalysis show similar patterns to the reference grid, such
as dry areas and areas where heavy precipitation has a higher share in the annual precipitation.
However, the reanalysis data sets included in this study show less consecutive dry days and more
consecutive wet days compared to the observational data sets. To evaluate the effect of different
resolutions on the model spread, the coefficient of variation was selected to estimate the relative
contribution of the spatial resolution. The spread originating from spatial resolution is considerably
lower, and generally dominated by the model spread. This is crucial, as it highlights the applicability
also of coarser data sets on the catchment scale, assuming that the data set is able to represent the
general precipitation features of the area.

As this study focusses on the applicability of gridded precipitation products as meteorological
input for hydrological models, it is important to assess not only their climatology, but also evaluate
their performance on daily time steps. Therefore, three indicators were presented, focusing on potential
impacts on low and high flows, as well as the occurrence of high precipitation events. The results
presented in this study indicated strong differences in the number of consecutive dry (CDD) and
wet days (CWD), and the contribution of heavy precipitation to the annual precipitation (R95pTOT).
For the reanalysis data sets, the results highlight a higher contribution of low but steady precipitation
events resulting in a lower R95pTOT, more CWD, and less CDD. These precipitation characteristics
highly impact potential hydrological modeling, as steady moderate rainfall events infiltrates in the soil
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and will be available for plants, whereas higher intensity events of the same total amount might lead
to flooding, and to eventually lower soil moistures [61]. Additionally, there is a higher sensitivity of
flood response to temporal than spatial variability [8]. The sensitivity for discharge response to the
spatial resolution of the rainfall event over smaller catchments is low, and the impact only moderate
over large catchments [62]. The differences in the length of the dry spells is particularly important for
low flows [63] which are of interest, especially for the southern part of the Adige catchment, and the
agricultural areas that are characterized by irrigation, and affected by seasonal water scarcity [37].

As observational data sets are prone to undercatch and measurement errors, which are amplified
in winter [24,25], and the location and density of precipitation stations [21] it is obvious that these data
sets have large uncertainties, especially in the higher elevations where station density is low, or no
stations are present at all. To bridge this gap, (regional) reanalysis data sets show great potential [50],
and should therefore be included in the analysis to find the best possible reference precipitation.
Although the remote sensing data set did not perform acceptably over this catchment, it is still
important not to neglect these data sets and include them in the selection process. Similar to climate
impact assessment studies and confirming recent findings [50], an ensemble approach is presented
and recommended in this study to derive a more robust precipitation data set. This will help to
overcome the issues with observations, especially over complex topography, and to quantify and
reduce the related uncertainties. Nevertheless, the recent study highlights the importance of detecting
data sets that show high deviations on the catchment scale, and exclude them from the ensemble.
This is not proposed to reduce the ensemble spread, but rather is based on a careful selection process.
As presented, a variety of indicators should be evaluated, and selected specifically for the desired
application, to identify data sets that are not capable of reproducing the given conditions in a specific
area or catchment. The data sets excluded from the ensemble all showed clear mismatches with
not only the reference grid, but also the rest of the ensemble, and could therefore be excluded from
the ensemble. Additionally, a more dense station network is required, also in the higher elevations,
to reduce the uncertainties in the observational data sets. This is especially crucial for the alpine
areas in the northern parts of the catchment that are characterized by complex topography. It must be
highlighted, that the selection of data sets is highly dependent on the region and hardly transferable
to other regions and climate zones. The final ensemble mean now provides a robust basis for further
activities such as hydrological modeling, climate model selection, and potentially for bias correction of
climate model data.
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2.2 Paper II: Impact of reference data sets on climate model
selection, bias correction and resulting climate change signals
for precipitation. Journal of Hydrometeorology

Gampe, D. & Schmid, J. (2018). Impact of precipitation reference data sets on climate
model selection and resulting climate change signals.

Paper II builds upon the analyses carried out in Paper I and assesses the uncertainty of
model selection and bias correction of RCMs with a focus on observational uncertainty. The
RCM ensemble presented in Paper III is extended as more simulations were available at
this point. A simple evaluation scheme is constructed to evaluate the RCMs based on the
capability to simulate the period 1989-2008. The entire RCM ensemble is then bias corrected
using a well-established QM technique based on the observational data sets presented in
Paper I. An uncertainty assessment is then carried out based on the variance decomposition
method introduced in Paper III based on the four uncertainty sources included: GCM,
RCM, RCP and observational uncertainty introduced by the bias correction. The study
reveals large uncertainties introduced for absolute changes, especially for the projection of
extremes where the uncertainties exceed the climate change signal. The paper adds to the
field by bias correcting a RCM ensemble with an extensive set of reference data sets on
the catchment scale that has not been carried out at this extent. It highlights the need to
account for observational uncertainty in hydrological impact studies that is so far mostly
neglected. This publication addresses the following research questions:

Q2: What is the relative contribution of observational uncertainty to the overall uncer-
tainty in the hydro-climatic modeling chain?

Q3: What is the influence of observational uncertainty on post-processing, i.e. bias
correction, climate model evaluation, model selection and the resulting future projections?

Author’s contributions: The study was carried out by the D. Gampe who also prepared
the first version of the manuscript. J. Schmid provided the MATLAB code for the bias
correction, while all calculations were carried out by D. Gampe.
Status: submitted
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Abstract: Gridded data sets for precipitation are of great importance to evaluate recent climate 
models and are frequently applied to select a subset of available models. As climate models are still 
prone to biases on the regional scale, gridded data sets are also essential to correct or adjust these 
biases. Various studies revealed considerable differences, i.e. observational uncertainty, in the available 
gridded data sets for precipitation, especially over complex terrain. This study focusses on the impacts of 
observational uncertainty on the evaluation, selection and bias correction of 15 Regional Climate Model 
(RCM) simulations provided through the EURO-CORDEX initiative over the alpine Adige catchment 
located in Northern Italy. Nine reference data sets originating from observations, reanalysis and remote 
sensing are applied to evaluate the performance of RCMs and select a subset based on validity. These 
reference data sets are then applied to bias correct the RCM ensemble using a standard quantile 
mapping method and the resulting changes in the projections are assessed. Results reveal only a minor 
impact on RCM selection, indicating that observational uncertainty is lower than model uncertainty. The 
influence of the choice of the reference grid on bias correction is negligible for the climate change 
signals, however model selection clearly influencing the projected change signals. As expected, the 
choice of the reference grid strongly influences future projections of precipitation even more 
pronounced for the extremes. The findings of this study highlight the need to account for observational 
uncertainty for bias correction of RCM simulations for impact modeling studies. 

 

  



1. Introduction 

Climate models serve as a primary tool to project future climate and are thus frequently used in impact 
models to assess future changes on the environment. Regional climate models (RCMs) that dynamically downscale 
global climate models (GCMs) provide high-resolution projections and are therefore of particular interest over 
complex terrain (Torma et al. 2015). An ensemble of RCMs is provided through the Coordinated Regional 
Downscaling Experiment (CORDEX) at a common grid with a horizontal resolution of 0.11° (~12 km, corresponding 
to the EUR-11 grid) over Europe (Jacob et al. 2014). Future scenarios are derived through Representative 
Concentration Pathways (RCPs) that result in a range of the increased radiative forcing of 2.6 to 8.5 Wm-² for the 
year 2100 (Van Vuuren et al. 2011).  

Despite the increased resolution, RCM simulations are still prone to systematic errors, i.e. model biases, 
when compared to regional observations (Christensen et al. 2008; Dosio, 2016; Rajczak et al. 2016; Smiatek et al. 
2016). A correction of these biases is usually inevitable and applied when climate models are used for climate 
change impact assessment studies (Piani et al. 2009; Ehret et al. 2012; Muerth et al. 2013). To cope with this issue, 
several adjustment or correction techniques have been established. Out of these, distribution based approaches 
usually lead to more robust results (Chen et al. 2013a). Quantile mapping (QM) is a widely used technique to adjust 
climate model biases (Pierce et al. 2015; Addor et al. 2016) for precipitation, based on the distributions of historical 
data sets. After bias correction with QM the distribution of precipitation in the RCMs follows the distribution of the 
reference data set applied for bias correction. 

In addition, it is often not feasible to consider the entire ensemble of available climate models in climate 
change impact assessment studies, mostly for computational reasons and the related difficulties to handle large 
data sets (Mendlik & Gobiet 2016). It is therefore necessary to define a subset of RCMs in a meaningful manner. 
Recent studies proposed a selection based on model independence (Mendlik & Gobiet 2016) or on a clustering 
approach based on climate change signals of various variables (Wilcke & Bärring 2016). Despite these statistical 
methods, model selection based on validity, i.e. the capability of the climate models to reproduce historical 
precipitation or temperature is still frequently applied (Pierce et al. 2009; Biemans et al. 2013; Kottlarski et al. 
2017) possibly combined with analysis on model independence (Evans et al. 2013) or on climate change signals 
(Lutz et al. 2016).  

Both, bias correction and model selection represent typical steps in climate change impact assessment 
studies. However, at least if a selection based on validity is performed, both require the use of reference data for 
the desired variable to be corrected or applied for selection. For precipitation a great variety of data sets is 
available. These can either be station data or gridded products derived from observations (Haylock et al. 2008; 
Isotta et al. 2014; Schamm et al. 2016), constructed through reanalysis (Compo et a. 2011; Dee et al. 2012; 
Bosilovich et al. 2015; Landelius et al. 2016; Poli et al. 2016), or originate from remote sensing (Kummerow et al. 
1998; Ashouri et al. 2015). Available gridded products for precipitation differ not only on their source, but also in 
spatial and temporal resolution and domain size. It is widely known that these precipitation data sets are prone to 
errors, resulting from interpolation procedures or precipitation undercatch. Considerable differences exist for the 
general climatology (Palazzi et al. 2013; Isotta et al. 2015; Gampe & Ludwig 2017; Henn et al. 2018) and the 
representation of extremes (Herold et al. 2017).  

Although the uncertainty related to gridded precipitation products is well known and widely 
acknowledged, the selection of the reference data set is often an arbitrary choice and the role of observational 
uncertainty often excluded from the analysis. For bias correction several studies were conducted to evaluate 
existing methods (Chen et al. 2013a; Lafon et al. 2013; Ruiz-Ramos et al. 2016) however rarely include the issue of 
reference grid uncertainty (Iizumi et al. 2017) and mostly focus on a single reference data set. For climate model 



selection and evaluation great effort was conducted in comparing different methods over the past years (e.g. 
Schaller et al. 2011; Zubler et al. 2016) but only recently Kottlarski et al. (2017) added to the debate in the 
application of various reference grids for RCM selection based on a simple ranking scheme. The importance to 
consider observational uncertainty in precipitation for RCM evaluation over various areas over Europe was 
highlighted by Prein et al. 2017.  

The presented study adds to the debate and complements previous research by assessing the role of 
observational uncertainty in the typical procedure of RCM selection and bias correction performed in many impact 
assessment studies. An alpine catchment serves as study site and a total of nine gridded precipitation products 
from various sources are included in the analysis. The three main research questions addressed can be defined as 
follows:  

• What is the impact of the choice of the reference data set on bias detection and model selection? 
• What is the impact of reference data set selection on bias correction and resulting future projections for 

precipitation? 
• How large is the contribution of reference grid selection to the overall uncertainty? 

A simple ranking scheme based on validity is introduced, where the performance of each RCM as 
evaluated by each of the included reference grids is assessed. The RCM ensemble is then bias corrected using each 
of the reference data sets and the resulting climate change signals for the selected models are presented. To 
quantify the uncertainty introduced by the selection of the reference grid, the relative contribution to the overall 
uncertainty is assessed by a variance decomposition approach.  

 

2. Study Area & Data Sets  
2.1. Study Area 

This study is carried out over the catchment of the Adige River located in Northern Italy. The catchment, 
presented in Figure 1, covers an area of 12,100 km² ranging from the Southern Alps to the Adriatic Sea over a 
length of 409 km while passing three Italian provinces. About two thirds of the catchment is located over complex 
terrain in the Alps, with elevations up to 3800 m.a.s.l. The area is generally dominated by a humid climate with 
annual mean precipitation ranging from 500 mm over the inner-Alpine dry valleys, as the Venosta valley (Frei & 
Schär, 1998; Isotta et al. 2014), to 1600 mm with a strong peak  in the summer months and comparatively dry 
winters (Chiogna et al. 2016). The hydrology of the Adige River is dominated by snow and glacier melting in the 
spring months and intense precipitation events in summer (Chiogna et al., 2016). The stream discharge serves for 
irrigation of intensive agriculture in summer and various touristic activities, especially in winter. Additionally, 
several reservoirs for power generation are located in the northern part of the catchment (Navarro-Ortega et al., 
2015).  



 

Figure 1: The Adige catchment located in Northern Italy. Circles show the precipitation gauges and their corresponding mean 
annual precipitation for the period 1989-2008. 

2.2. Gridded Precipitation Data Sets  

At this point, a multitude of gridded data sets for precipitation are available around the globe. The 
selection is usually determined by the requirements regarding spatial and temporal resolution as well as the 
location of the study area. In this study, extremely coarse data sets (>2.0° grid size) were not included due to the 
comparatively small size of the catchment. Additionally, as the data sets serve for bias correction of RCMs, the 
minimum temporal resolution was daily time steps. Monthly or seasonal data sets were hence also excluded 
from the analysis. Furthermore, to achieve a temporal coverage of at least 20 years, the period 1989-2008 was 
selected, corresponding to the maximum overlap of the high resolution data sets. Therefore, data sets with a 
later starting data than Jan. 1st 1989 or ending dates prior to Dec. 31st 2008 were rejected. This led to a selection 
of the nine data sets summarized in Table 1. These are briefly introduced in the following, while for detailed 
information the reader is referred to the corresponding references. An extensive comparison of these data sets 
was carried out over the study area in a previous study (Gampe & Ludwig, 2017). 



Table 1: Gridded precipitation data sets included in this study with their corresponding resolution, temporal coverage, source and the 
reference publication. All data sets are available at daily time scale; the IDs correspond to the numbering in Figure 3 & Figure 4. 
ID Data set Resolution Temporal coverage Type / Source Reference 

1 ADG-1KGPR 1 km 1989-2008 Observations Gampe & Ludwig 

2017 

2 EURO4m-APGD 5 km 1971 - 2008 Observations Isotta et al. 2014 

3 MESAN 5 km 1989 - 2010 Downscaling / 

Reanalysis 

Landelius et al. 

2016 

4 E-OBS v. 11 25 km 1950 - 2015 Observations Haylock et al. 

2008 

5 PERSIANN-CDR 0.25° (~30 km)  1983 - present Multisatellite 

(infrared), corrected 

Ashouri et al. 

2015 

6 MERRA-2 0.5° latitude x 

0.625° longitude 

(~50 km) 

1980 - present Reanalysis Bosilovich et al. 

2015 

7 ERA-Interim 0.75° (~80 km) 1979 - present Reanalysis Dee et al. 2011 

8 ERA-20C 125 km 1900-2010 Reanalysis Poli et al. 2016 

9 GPCC –FDD v1.0 1.0°  (~100 km) 1988-2013 Observations Schamm et al. 

2016 

Four observational data sets derived from interpolation of precipitation gauge measurements are included 
in this study at spatial resolutions ranging from 1 km to ~100 km. The highest resolution data set included is the 
local gridded precipitation data set over the Adige at 1 km grid size (ADG-1KGPR). This was derived from a relatively 
dense station network of over 150 stations in the catchment area, as presented in Figure 1. A combination of 
bilinear interpolation with elevation dependent regression was applied to construct a 1 km high resolution grid. 
Although the effective resolution is lower for some parts of the catchment, the data set showed robust results over 
the covered period 1989 – 2008 (Gampe & Ludwig, 2017). The second observational data set included is the Alpine 
Gridded Data Set constructed within the EURO4m project (EURO4m-APGD). It was derived from numerous stations 
over the Alpine area and provides daily precipitation for the period 1971-2008 at a 5 km grid (Isotta et al. 2014). 
Additionally, the widely used E-OBS data set (Haylock et al. 2008) available through the European Climate 
Assessment and Dataset (ECA&D) was included in version 11.0. E-OBS provides daily precipitation information for 
the European domain at a 25km grid, starting in the year 1951 and is updated frequently. Quality controlled 
stations with long data records are included in this data set, resulting in a considerably lower station density, 
compared to the high resolution grids mentioned, with approximately two stations per grid cell over the Alpine 
region (Isotta et al. 2015; Prein & Gobiet, 2017). The coarsest observational data set included is the Full Data Daily 
Product from the Global Precipitation Climatology Center (GPCC-FDD, Schamm et al. 2016) of the German Weather 
Service (DWD). This data set covers the period 1988-2013 and provides daily precipitation information on a 1° grid 
with a station density similar to E-OBS.   

In addition to the observational data sets, three reanalysis products and one downscaling of a reanalysis 
data set are included ranging from a 5 to 125 km grid size. The first is the Modern Era Retrospective-analysis for 
Research and Applications in the second realization (MERRA-2) available through the National Aeronautics and 



Space Administration (NASA). The data set provides precipitation information since 1980 at a ~50 km grid with 
ongoing updates and uses observed precipitation for the parameterization of the land surface scheme (Bosilovich 
et al. 2015). The two coarsest reanalysis products are available through the European Centre for Medium-Range 
Weather Forecasts (ECMWF). The ERA-Interim provides global precipitation information at ~80 km and assimilates 
various observational data sets in a 12hr cycle (Dee et al. 2011). The second ECMWF product is the Reanalysis for 
the 20th Century (ERA-20C) which only assimilates surface pressure and marine wind observations (Hersbach et al. 
2015; Poli et al. 2016). ERA-20C is available at a ~125 km grid and offers precipitation information since 1900. The 
highest resolution product in this family is the Mesoscale Analysis (MESAN) that downscales the High Resolution 
Limited-Area Model (HIRLAM) to a 5 km grid (Landelius et al. 2016). The HIRLAM reanalysis uses ERA-Interim as 
boundary conditions and assimilates observational data on a 22 km grid (Dahlgren et al. 2016). MESAN provides 
precipitation information for the period 1989-2010.  

The last data set included is the satellite-based Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks (PERSIANN, Hsu et al. 1997) in the bias-corrected version PERSIANN-
CDR. Geostationary satellite information of infrared brightness temperature is used in PERSIANN to derive 
precipitation patterns at ~30 km spatial resolution. PERSIANN-CDR corrects the precipitation amounts using 
monthly precipitation data from the Global Precipitation Climatology Project (GPCP) at 2.5° while keeping the high 
resolution and the spatial patterns of the original PERSIANN and with data record since 1983 (Ashouri et al. 2015). 

 

2.3. Climate Model Data 

The climate models included in this study comprise 15 simulations provided through the Coordinated 
Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX; Jacob et al., 2013). Table 2 
gives an overview on the included GCM-RCM combinations with the responsible institute. As the higher resolution 
realizations of those RCMs at 0.11° (12.5 km) show improvements over the 0.44° simulations (Prein et al. 2015) 
only the high resolution simulations were applied. With the exception of the variance decomposition presented in 
section 3.3 and Figure 9, only the simulations under RCP 8.5 are considered as the ambiguous climate change 
signals over the Adige catchment under RCP 4.5 (Gampe et al. 2016) would complicate the interpretation of the 
results in this study. Therefore, with the mentioned exceptions, all results presented and conclusions drawn refer 
to RCP 8.5 only.  

All analyses and calculations presented in this study were carried out on a common grid. The EURO-
CORDEX grid was selected as target grid. Following previous studies, e.g. Volosciuk et al. 2017, the bias correction 
was applied on the RCM grid. As it is desirable to keep the benefits of the higher resolution RCMs, a conservative 
remapping was performed on the reference data sets, which clearly penalizes the coarser grids. Nevertheless, this 
study is not meant as an evaluation of the precipitation reference data sets, but rather focusing on the 
consequences for bias correction and model selection.   

 

 

 

 



Table 2: RCM ensemble of EURO-CORDEX simulations at 12 km resolution applied in this study under rcp 4.5 and 8.5. 

Regional Climate Model (RCM) General Circulation Model (GCM) 

SMHI-RCA4 

CNRM-CM5 

HadGEM2-ES 

EC-EARTH-r12 

MPI-ESM-LR 

IPSL-CM5A-MR 

DMI-HIRHAM5 EC-EARTH-r3 

KNMI-RACMO22E 
EC-EARTH-r12 

HadGEM2-ES 

CLMcom-CCLM4-8-17 

CNRM-CM5 

HadGEM2-ES 

EC-EARTH-r12 

MPI-ESM-LR 

IPSL-INERIS-WRF331F IPSL-CM5A-MR 

MPI-CSC-REMO2009 (2 members) MPI-ESM-LR 

 

3. Methods 
3.1. Model selection 

Similar to previous studies (Pierce et al. 2009; Biemans et al. 2013; Kottlarski et al. 2017), model selection 
here is performed based on validity, i.e. the capability of the RCMs to reproduce the historical period. A relatively 
simple scheme is presented to derive the performance of each RCM and a ranking is performed. Although more 
sophisticated and complex approaches exist, the here presented method is sufficient for the purpose of this study 
as the focus is not to elaborate a sophisticated ranking scheme and the presented metrics and ranking led to 
satisfactory results. In addition it is crucial to mention, that the ranking is dependent on the selected error 
measures and the overall focus of the study and hence somewhat subjective (Kottlarski et al. 2017). The model 
selection is based on uncorrected RCM data under RCP 8.5 as derived from the ensemble of RCMs presented. The 
following selection procedure is calculated for each of the nine reference grids. 

To assess the performance of the RCMs and to derive the ranking based on their capability of reproducing 
historical climate, several metrics were calculated. To compare data sets of the same length, the period 1989 – 
2008 was chosen for the model selection. Model performance was evaluated on based on daily catchment 
precipitation derived from the common 0.11° grid. Each of the metrics was calculated for each reference grid r, 
each climate model c and each month m.  



To assess the capability of the RCMs to reproduce the general climatology, the percent bias (PBIAS) was 
calculated defined as follows, where RCM refers to the evaluated RCM and Ref corresponds to the reference grid 
used for the evaluation:  

PBias =  
1
m �

 ( RCM������c,m −  Refr,m�������� )
Refr,m��������

12

m=1

 (1) 

The overall bias based on annual precipitation instead of monthly time steps was calculated in a similar 
way. To further assess the performance, the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) 
were computed based on the entire, ranked time series. In addition, to assess the performance of the upper end of 
the distribution, both metrics were computed for the 90th percentile as follows, 95th, 99th and 99.9th percentiles 
were calculated the same way. 

MAE =  
1
m � |P90(RCMc,m )− P90(Refr,m )|

12

m=1

 (2) 

 
 

RMSE = �
1
m � |P90(RCMc,m )− P90(Refr,m )|

12

m=1

 
(3) 

In addition, to assess the variability in the reference and RCM data sets, the inter-annual variability of 
both, annual and monthly precipitation sums were calculated based on the standard deviations over the 20-year 
period.  

For each of the metrics, and each of their variations (temporal or percentile based), a simple score system 
was applied to rank the models. In a first step, the resulting metrics were normalized individually so that the best 
performing model was awarded 100 % and the other models decrease accordingly. In a second step, the average 
score in percent was calculated as the simple mean over the calculated metrics. A score of 100% does hence not 
mean the model performs perfectly, but is rather the best-performing model relative to the rest of the ensemble. 
To reduce the ensemble to a feasible number of simulations, the best three and the best seven ranking RCMs based 
on each of the reference data sets were selected for the analyses.  

3.2. Bias Correction Method 

As RCMs are usually prone to biases on the regional or local scale, bias correction is, although controversy 
discussed, a necessary step (Muerth et al. 2013). Here a two-step correction was applied. First, to avoid artefacts in 
the RCM distributions a simple threshold was introduced to correct the drizzle effect, which produces too many 
days with very low precipitation (Teutschbein et al. 2013). In a second step a distribution based correction method 
based on the Daily Translation (DT) method (Mpelasoka & Chiew, 2009; Chen et al. 2013b) was applied to correct 
RCM precipitation. DT is similar to other QM bias correction methods and showed great for effective correction 
(Chen et al. 2013b). In contrary to Mpelasoka & Chiew (2009), the bias correction does not include an additional 
downscaling in this study, as all data sets were remapped to the RCM grid previously. In DT a relation between the 
distribution of precipitation in the reference grid and the historical RCM data set is established. The resulting 
correction factors for each percentile are then applied to correct the historical and future simulations of RCM 
precipitation. In this study the multiplicative correction factors are derived on a monthly basis and for integer 
percentiles. The period 1989 – 2008 served as calibration to derive the monthly correction factors which were then 



applied to correct the RCM ensemble introduced for the historical period (1981 – 2010) and future period (2036 -
2065). The bias correction procedure was applied to the entire RCM ensemble under RCP 8.5 for each of the nine 
reference data sets.  

3.3. Variance Decomposition 

Four main sources of uncertainty can be identified in the design of the study: model uncertainty 
originating from GCMs and correspondingly uncertainty introduced through RCMs; scenario or radiative 
uncertainty, introduced through different radiative forcings, RCP 4.5 and RCP 8.5; and finally uncertainty 
introduced through post-processing. The latter here is the key interest and defined as the uncertainty introduced 
through the bias correction with different reference data sets. To quantity the relative contribution of each of the 
four sources to the overall uncertainty, the widely used approach of variance decomposition (Ferro 2004; Déqué et 
al. 2007; Déqué et al. 2012) is applied. The method will be briefly introduced here, while for a detailed presentation 
of the concept it is referred to Déqué et al. 2007.  

Within this the variance in the climate response, i.e. the climate change signal defined as the difference in 
precipitation for the future period (2036 – 2065) and the reference period (1981 – 2010), is analyzed. The total 
variance of the ensemble is given by the sum of each of the four sources of uncertainty, where G is defined as the 
contribution from the GCMs, R the variance within the RCMs, S the scenario uncertainty and B the uncertainty 
attributed to bias correction:  

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐺𝐺 + 𝑅𝑅 + 𝑆𝑆 + 𝐵𝐵 (4) 

As neither of the sources of uncertainty appears solely the interaction terms of the four sources have to be 
considered making equation 4 more complex and more difficult to interpret:  

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐺𝐺 + 𝑅𝑅 + 𝑆𝑆 + 𝐵𝐵 +  𝐺𝐺𝑅𝑅 + 𝐺𝐺𝑆𝑆 + 𝐺𝐺𝐵𝐵 + 𝑅𝑅𝑆𝑆 + 𝑅𝑅𝐵𝐵 +  𝑆𝑆𝐵𝐵 + 𝐺𝐺𝑅𝑅𝑆𝑆 + 𝐺𝐺𝑅𝑅𝐵𝐵 + 𝐺𝐺𝑆𝑆𝐵𝐵 +
𝑅𝑅𝑆𝑆𝐵𝐵 + 𝐺𝐺𝑅𝑅𝑆𝑆𝐵𝐵  

(5) 

The variance due to each source of uncertainty can hence be interpreted as the sum of all interaction 
terms with the corresponding variable. The uncertainty due to bias correction can thus be as: 

𝑉𝑉𝐵𝐵 = 𝐵𝐵 +  𝐺𝐺𝐵𝐵 + 𝑅𝑅𝐵𝐵 +  𝑆𝑆𝐵𝐵 + 𝐺𝐺𝑅𝑅𝐵𝐵 + 𝐺𝐺𝑆𝑆𝐵𝐵 + 𝑅𝑅𝑆𝑆𝐵𝐵 + 𝐺𝐺𝑅𝑅𝑆𝑆𝐵𝐵  (5) 

Uncertainties due to GCM (G), RCM (R) and RCP or scenario (S) can be written accordingly.  

The assumption of the total variance being the sum of each uncertainty component as in equations 4 & 5 
is only valid for a complete matrix. The matrix is complete for scenarios, as all simulations are available under RCP 
4.5 and 8.5 and for bias correction, as the entire ensemble was bias corrected with each reference data set. 
However, as presented in Table 2 not all GCM-RCM combinations are available and the matrix has to be artificially 
filled. We follow the simple, yet robust approach presented by Déqué et al. 2007 to solve this problem, where the 
calculation the climate responses was computed that the interaction term GRSB equals zero. Thus, the interaction 
terms are not correct by definition, however the goal of this study is to estimate the contribution of each source to 
the overall variance and not represent the interaction between them. The final variance hence represents the 
fraction of uncertainty of each source rather than the total variance. The interaction terms are therefore included 
in the final variance presented here and not explicitly mentioned. The sum of the overall variance exceeds 100% 
due to the interaction terms; therefore the final variance is normalized to 1 or 100% respectively to represent the 
fraction but allow for easier and more accessible comparison of the results. The variance decomposition was 
carried out based on monthly climate change signals in this study.  

 



 

4. Results 

Figure 2 shows the mean monthly precipitation sums over the Adige catchment for the EURO-CORDEX 
ensemble (grey bars, single models shown as black squares) and the nine selected reference grids (colored squares) 
for the period 1989-2008. In general, the RCMs show a wet bias for most months and the spread of the climate 
model ensemble exceeds the spread of the reference grids. Additionally, the spread of both, RCMs and reference 
grids, is larger during the summer period (JJA) compared to the winter months (DJF) due to convective and heavy 
precipitation events in JJA. The detection of a potential model bias is easier to interpret in DJF, where each member 
of the RCM ensemble shows higher precipitation compared to each reference grid, with the exception of E-OBS in 
December. In JJA the situation is different and the detection of model bias is more complex. Compared to ERA-
Interim (blue square), most of the RCMs show a dry bias, while compared to the high resolution ADG-1KGPR (grey 
square), GPCC-FDD (green) and MERRA2 (dark brown) the majority of the included RCMs show a wet bias.   

 

Figure 2: Uncorrected climatological monthly precipitation from EURO-CORDEX RCMs (black squares), the corresponding spread 
(dark gray bars) and the selected reference grids (colored squares) for the period 1989-2010. 

To assess the RCM bias, Figure 3 shows the percent model bias based on mean annual precipitation for the 
years 1989-2008 for the RCM ensemble and the nine reference grids, numbering refers to Table 1. A positive bias, 
shown in red coloring, indicates an overestimation while a negative bias (blue coloring) refers to precipitation 
underestimation. Circles in the panels indicate a bias lower than the observational uncertainty. The latter was 
derived from the coefficient of variation (CV) which is calculated as the standard deviation normalized by the 
overall mean of the reference grids and given in percent. In this case the CV of the reference grids based on annual 
precipitation is around 10%. The average bias shown refers to the mean bias of each RCM over the reference data 
sets. Depending on the reference grid up to five RCMs (for PERSIANN-CDR, column 5) show biases within this range 
and can therefore not be considered as biased. As already indicated for monthly precipitation in Figure 2, most 
RCMs show a positive bias also for annual precipitation compared to the majority of reference grids. However, 
PERSIANN-CDR (5) and ERA-Interim (7) indicate underestimations of up to 20% for the RACMO22E simulations, 
while other reference data sets indicate a small positive bias for this RCM. Consequently, the average bias is close 
to zero as the positive biases are balanced with the negative biases. In contrary, other RCMs, such as CCLM4-8-17 
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and RCA4 show positive biases throughout the reference grids, independent from the driving GCM and show high 
average biases of up to 77%.  

This is also reflected in the average score for model selection as presented in Figure 4 as RCMs with high 
annual bias show considerable lower scores. However, models with lower annual bias, e.g. KNMI-RACMO22E driven 
by the HadGEM2-ES, do not necessarily score better than other models. The results additionally are more 
homogenous than the annual bias presented in Figure 3. The least scoring RCMs show low performance throughout 
the reference data sets, while the best scoring RCMs are also similar for all reference data sets. As a consequence, 
for many reference data sets the same models are amongst the selected three or seven respectively. The only 
reference data set with considerable different scoring patterns is ERA-Interim, however the tendencies are similar. 
For each reference grid, the best three and seven RCMs are selected for the subsequent analyses of future changes. 

 

Figure 3: Model bias for each RCM with respect to each reference grid. Circles denote that the bias falls within the range of the 
observational uncertainty, which here is defined as the coefficient of variation of the climatological annual precipitation in the reference 
grids (+/- 10%).  



 

Figure 4: Average score (%) for each RCM and reference grid. The average score is based on several metrics and normalized from 
0% (worst RCM) to 100% (best RCM). 

Figure 5 shows the percentiles of daily precipitation for the original (grey) and bias corrected (red) RCM 
simulations with the corresponding reference products (panels a – i) used for bias correction. The positive bias 
detected in the climatological annual precipitation of the uncorrected RCMs (grey) can be clearly identified 
throughout the entire distribution for almost all reference products compared to the corresponding reference grid 
(black line). The corrected RCMs (red lines) agree better with each of the corresponding reference grids. The 
correction of the drizzle effect led to a better representation of the lower end of the distribution, hence very little 
or no precipitation. As expected, bias correcting the RCM ensemble to observed percentiles results in a 
considerable reduction of the RCM spread over the historical period. The highest differences between the bias-
corrected RCM ensembles can be identified for low precipitation and the threshold of no-precipitation days, as well 
as the tail of the distribution characterizing extreme precipitation. 



 

Figure 5: Percentiles of daily catchment precipitation for the selected reference grids (a-i), the original EURO-
CORDEX RCMs (grey lines) and the bias corrected RCMs (red). 

The best three and seven models evaluated against each of the reference grids identified through the 
model selection process were selected from the corresponding bias-corrected RCM ensemble. Figure 6 shows the 
resulting monthly climate change signals for the selected three (seven) models as black spread and squares 
(colored bars), sorted by the reference grid used for model selection and bias correction. The climate change signal 
here is defined as the percent change between the future period (2036-2065) compared to the historical period 
(1981-2010). As similar models were selected for each of the reference grids, the spread of the projected change in 
precipitation is also alike, especially if seven models are selected. For the winter months, the selection of three 
models captures the spread of seven models while for the summer months the results are ambiguous. Due to the 
smaller number of selected models, the spread is smaller for only three selected models. Additionally, depending 
on the reference grid a selection of only three models leads to different signs in projected changes of precipitation. 
This results in positive changes for some reference data sets (e.g. in August) while other data sets select a climate 
model that projects a decrease, such as for PERSIANN-CDR, MERRA2 and GPCC-FDD.  Nevertheless, these 
differences are due to the model selection and not to bias correction, as the climate change signals are conserved 
throughout. 
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Figure 6: Monthly projected spread of climate change signals for the selected best-fit seven (colored bars) or three (black lines and 
squares) bias corrected RCMs. Coloring according to the corresponding reference grid applied for bias correction. 

However, bias correction clearly changes the absolute values of projected precipitation. Figure 7 shows 
projected monthly precipitation for the future period (2036-2065) for the selected three (seven) models as black 
spread and squares (colored bars), sorted by the reference grid used for model selection and bias correction. 
Similar to Figure 6 the model spread in the summer months is higher than for the winter period. As the reference 
grids agree also more during the winter months (Figure 2), projected changes in this period are more robust with 
respect to the reference data set applied for bias correction. In summer in contrary, the impact of the reference 
data set is stronger. The maximum precipitation projected for August thus varies between 120mm (E-OBS) and 
190mm (ERA-Interim). As the spread is similar for all reference grids, a higher maximum projection consequently 
means also higher projections for the minimum monthly precipitation. Bias correcting the percentiles leads to 
projections following the course of the reference data sets in the historical period: bias correction with products 
that show higher precipitation in the reference period (ERA-Interim, PERSIANN-CDR) results in higher projections. 
Both, the sequence of the data sets and similar differences to the historical period are reproduced in the bias 
corrected projections. The difference in August between E-OBS and ERA-Interim in projected precipitation is thus 
similar to the reference data sets. As expected, the selection of only three models results in considerable 
differences in the projections. On the one hand this might lead to an extremely small spread (e.g. ERA-20C in 
February) or on the other hand to even more amplified differences in the projected monthly temperatures (e.g. 
ERA-Interim and E-OBS in summer). As the model selection however is based on validity only, there is no systematic 
behavior and connection between model spread, absolute projected changes and the reference product. 

To assess the impact of bias correction with various reference data sets on projected heavy (extreme) 
precipitation, Figure 8 shows the .95 (.99) quantile  of daily catchment precipitation. As for the previous figures, the 
selected three (seven) models are shown as black spread (colored bars), sorted by the reference grid used for 
model selection and bias correction.  For each reference data set the left bar corresponds to the reference period 
and the right bar shows projected changes for the future horizon. Independent from the data set used for bias 
correction, the RCMs agree in increased heavy and extreme precipitation. While the differences are not very 
distinct for the 95th percentile, the impact of the reference data set is higher for extreme precipitation. As 
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expected, bias correction with the high resolution observational data sets (ADG-1KGPR and EURO4m-APGD) results 
in higher extreme precipitation. However, the impact of spatial resolution is smoothened as the assessment is 
based on catchment mean rather than grid cell based and all data sets were remapped in the pre-processing. The 
differences originating from the reference data sets are as high as 30% and exceed the projected changes indicating 
that observational uncertainty exceeds the climate change signal in case of extreme precipitation.     

 

Figure 7: Monthly projected spread of monthly precipitation for the selected best-fit seven (colored bars) or three (black lines 
and squares) bias corrected RCMs for the period 2036 - 2065. Coloring according to the corresponding reference grid applied for the bias 
correction. 
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Figure 8: Catchment daily heavy (95th quantile, left) and extreme precipitation (99th quantile, right) for the seven (colored bars) 
and three (black bars) selected RCMs for the reference period (left bar) and future projections (right bar). Coloring refers to the 
corresponding reference grid. 

To assess the overall uncertainty of reference data set selection on the climate change signal compared to 
model and scenario uncertainty, Figure 9 shows the percentage of the total variance attributed to each source of 
uncertainty as result of the variance decomposition per month. As mentioned, these results reveal only the relative 
contribution to the total variance. The relative contribution of the RCM is show in red, GCM in beige, RCP in light 
blue and bias correction, here originating from different reference data sets only, in dark blue. About 60% of the 
variance can be attributed to combined model uncertainty from RCM and GCM. The uncertainty introduced by the 
GCMs is usually larger than the contribution of the RCMs for all months. Scenario uncertainty introduced through 
the RCPs contributes comparably with GCM uncertainty in the range of 30%. Model uncertainty introduced by the 
RCMs is around or below 20% for most months with the exception of the winter months. The variance that can be 
attributed to reference data set selection for bias correction contributes only around 15% to the overall variance 
and thus less than the other three uncertainty sources assessed. The share is larger for the summer months, where 
the reference data sets show the most distinct differences.  

 

5. Discussion 

In this study the impacts of reference grid selection on climate model evaluation, model selection, bias 
correction and resulting climate change signals were presented for an alpine catchment. A selection of nine 
reference products from different sources were applied for this task on an ensemble of 15 RCMs provided through 
the EURO-CORDEX initiative. The results presented highlight the importance of uncertainty related to reference 
grid. Observational uncertainty overall is smaller than RCM related uncertainty, however it can be of similar 
magnitude, especially when the precipitation systems get more complex, e.g. through convective systems in 
summer. The findings demonstrate the importance of reference grid selection for climate model evaluation as the 
direction of bias (over- or underestimation of precipitation) is largely dependent on the reference data set used for 
evaluation. Strongest differences are identified for ERA-Interim and PERSIANN-CDR which already show strong 



differences to the rest of the ensemble in a previous study (Gampe & Ludwig, 2017).  This confirms the conclusions 
drawn in previous studies (Prein et al. 2017; Kottlarski et al. 2017) also on the catchment scale. However it is 
important to consider existing limitations in observational data sets such as undercatch (Rasmussen et al. 2012), 
interpolation errors (Addor & Fischer, 2015) and station density (Isotta et al. 2015). There is still a need for robust 
high-resolution data sets over larger domains for a better evaluation. 

 

Figure 9: Monthly cumulative relative contribution of RCM (red), GCM (beige), RCP (light blue) and Bias Correction (BC). 

It is important to highlight here, that both the RCMs as also the reference grids represent ensembles of 
opportunity and most of the data sets used in this study are not fully independent from each other. In case of the 
reference data sets they either partly use the same precipitation gauges for interpolation (all observational 
products + PERSIANN-CDR), or assimilate these information in some (reanalysis products) or serve as boundary 
conditions for a higher resolution data product (ERA-Interim and MESAN). However, this is a common problem 
when comparing different gridded precipitation products which cannot be avoided, but is nevertheless important 
to highlight. For the climate models the RCMs are often forced by the same GCM, however, the matrix is 
incomplete and similar schemes are implemented throughout the models. Additionally, the 20-year time period for 
this analysis is relatively short and additional uncertainty due to natural variability are not included in this study. 
Nevertheless, the general findings of this study will likely remain and the restricting lengths in available data set are 
a common problem. However, a bootstrapping method could be applied to simulate and account for natural 
variability in future studies similar to Addor & Fischer, 2015.  

Despite the differences in the reference products, the RCMs score similarly for all reference grids, again 
with the exception of ERA-Interim. However, this is not negligible as depending on the number of models selected 
this will result in a different ensemble of RCMs chosen. The findings confirm the results presented by Kottlarski et 



al. 2017 who also applied a fairly simple yet different scoring system. The similar scoring behavior of individual 
RCMs indicates again that model uncertainty exceeds observational uncertainty. Nevertheless, this also confirms 
the limitations of RCMs on the regional scale where fundamental difference arise and the climatology and 
variability is not correctly reflected over a given area for a given model. This emphasizes the need to account for 
plausible RCM inputs for bias correction as proposed by Maraun (2016). Different validity based selection can lead 
to partly severe changes in projections, especially if only a small subset of RCMs is selected as presented in Figure 
6. The impact of model selection although strongly dependent on the number of models selected is thus 
considerable. Although QM also has an impact on the climate change signal (Maraun 2016), the differences in the 
presented signals largely originate from the selection process. This confirms the findings of Dosio et al. 2012 that 
the influence of bias correction is only small on projected change signals for mean precipitation and also expected 
as the same correction factors are applied for both periods.  

However, bias correction with different reference products has severe impacts on absolute projected 
precipitation. The bias corrected RCM ensemble represents the features found for the reference grid, as wetter 
reference grids produce wetter projections. This highlights the importance of the reference grid on the quality of 
the bias correction procedure and the need for accurate observations and reference grids for plausible corrections. 
This effect becomes even more severe for extreme precipitation. The findings in this study as in Iizumi et al. 2017, 
the uncertainty originating from the reference data set exceeds the uncertainty from the climate model projections 
for bias corrected extremes. This is highly relevant for future studies focusing on extreme events and projections of 
changes in these.  

The contribution of reference grid uncertainty in the presented framework to the overall uncertainty of 
the climate change signal is assessed by a variance decomposition approach. Four main sources of uncertainty were 
included in the analysis: model uncertainty originating from GCM and RCM, scenario uncertainty from the RCP and 
bias correction uncertainty through different reference data sets. As in previous studies (Déqué et al. 2007; Gampe 
et al. 2016) the contribution of the GCM dominates the uncertainty, followed by RCP and RCM. Bias correction 
uncertainty only contributes around 10 -15% to the overall variance with larger shares in summer. However, this is 
slightly misleading as this is only based on the climate change signals and observational uncertainty for absolute 
projection, especially for extremes is considerably larger.  

This study confirms the outlooks by Prein et al. (2017) and Kottlarski et al. (2017) and highlights the need 
to account for observational uncertainty when bias correction is applied to climate model data. This is of special 
interest for studies focusing on projections of future extreme. As both, model selection and bias correction, are 
strongly dependent on the selected reference grid, the selection of these should be of special interest. These 
results indicate the necessity for a more thorough investigation of available data sets instead of arbitrary selection.  
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2.3 Paper III: Using an ensemble of regional climate models to
assess climate change impacts on water scarcity in European
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Gampe, D., Nikulin, G., & Ludwig, R. (2016). Using an ensemble of regional climate mod-
els to assess climate change impacts on water scarcity in European river basins. Science of
the Total Environment, 573, 1503-1518.

Paper III was elaborated within the project GLOBAQUA and funded under the European
Union’s Seventh Programme. This publication identifies the role of climate change as a
potential pressure on aquatic ecosystems, i.e. four river basins in the Mediterranean. The
paper focuses on the uncertainty related to climate projections and examines the relative
contribution of model uncertainty from GCM and RCM as well as scenario uncertainty in-
troduce by the two radiative forcing scenarios (RCP 4.5 & 8.5). It builds up on the previous
study by including the entire high-resolution RCM ensemble available through the EURO-
CORDEX initiative at this time. The uncertainty assessment is based on the contribution
of each uncertainty source to the overall variance by means of a variance decomposition
(Déqué et al., 2007, 2012). The hydrological consequences of the climate projections are de-
rived from the RCM variables precipitation, evapotranspiration and surface runoff directly.
This allows for a first step estimation of changes on the water balance even in data scarce
areas. To further address the role of climate change as a potential stressor on the aquatic
ecosystems, the Falkenmark indicator (Falkenmark, 1989; Jaeger et al., 2013; Schyns et al.,
2015), defined as available water per capita, is presented and reveals increased water scarcity
in most areas of the river basins. The following research questions are addressed in this
paper:

Q4: What is the relative contribution of each of the uncertainty sources involved in
recent regional climate projections on the catchment scale and for all the variables of the
water balance in the downscaled CMIP5 climate projections?

Q6: Is the Mediterranean region likely to experience increased pressure on the water
balance and thus likely to be exposed to increased water scarcity under future climate?
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• Ensemble of Regional Climate Models
applied to assess changes in hydrologi-
cal relevant variables to overcome data
scarcity.

• Importance of high resolution climate
model information to assess regional
changes within the catchments and ac-
count for local topography evident.

• Strong decline in precipitation, evapo-
ration and runoff increase water scarci-
ty in the Ebro and Evrotas basin as well
as parts of the Adige and Sava.

• Falkenmark indicator calculated using
global data sets revealed moderate in-
crease of water scarcity for the Ebro
and parts of the Sava.
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Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precip-
itation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff,
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1. Introduction

TheMediterranean region has been identified as one of the hot spots
for climate changewith a decline of precipitation up to over 50% in sum-
mer, severe increase in temperature, and an increased drought risk
(Giorgi, 2006; Christensen et al., 2007; Field et al., 2012; Kjellström et
al., 2013). Gosling and Arnell (2016) showed the importance of climate
change and population increase on water scarcity on the global scale
and concluded a larger fraction of the world is likely exposed to in-
creased water scarcity. Hanasaki et al. (2012) pointed out the impor-
tance of population growth, economic development and climate
change on global water scarcity. Additionally, global modeling revealed
a strong decrease in runoff for many basins in the Mediterranean that
will increase the pressure on already water scarce river basins
(Haddeland et al., 2014). On a regional scale using the recent CMIP5
simulations, a similar reduction of freshwater was found recently by
Koutroulis et al. (2016) for the easternMediterranean. However, assess-
ment of water scarcity in Mediterranean basins, e.g. through hydrolog-
ical modeling, is often hampered by available data. To overcome this
problem, extensive field campaigns need to be conducted or remote
sensing techniques are required to bridge data gaps (Serra et al., 2016,
Meyer et al., 2016; Gampe et al., 2016). Most of these approaches are
costly in terms of labor, computational demand and often still require
additional data and expertise.

The EU-project ‘GLOBAQUA -Managing the effects of multiple stressors
on aquatic ecosystems under water scarcity’ started in February 2014 and
aims to study the effects of water scarcity to foster the understanding of
current management practices and identifying possible improvements
in the management strategies. Therefore six river basins which are af-
fected by water scarcity either due to climatological pressures or to
high variability in rainfall or multiple conflicting water uses, were se-
lected. Four of those six river basins have been chosen for extensive
field work and will be subject for various impact modeling activities
(Navarro-Ortega et al., 2015). These focus on the ecological status of
the river ecosystems, to assess the role of emerging pollutants, other
chemicals and geomorphological changes act as stressors for the aquatic
ecosystems. In this study the role of climate change as a possible stressor
will be examined. Therefore, these river basins, i.e. Adige (northern Italy),
Ebro (Spain), Sava (Slovenia, Croatia, Serbia and Bosnia and Herzegovina)
and Evrotas (Greece) are also chosen as case study areas also in this study.

Complex topography and/or small size of the basins demand for cli-
mate change information at regional to local scale, at high spatial reso-
lution. The primary tools for providing future climate projections are
coupled General Circulation Models (GCMs), which simulate climate
changes under a range of possible future scenarios of greenhouse gas
emissions. These stem from the scenarios provided through various
Representative Concentration Pathways (RCPs) that span a range of
the radiative forcing of 2.6 to 8.5 W/m2 for the year 2100 (Van Vuuren
et al., 2011). Over the last few years, about 20 modeling groups using
N50 models have participated in the Coupled Model Intercomparison
Project Phase 5 (CMIP5), thus generating a large multi-model ensemble
of climate change simulations (Taylor et al., 2012). Present-day GCMs
have spatial resolution of 100–250 km. Due to the additional constraint
of providing an ensemble of projections over long time periods, GCMs
cannot fulfil the requirements of high spatial detail required and are,
therefore, generally supplemented with statistical or dynamical down-
scaling to produce future climate projections at regional scales. To
meet the need for detailed climate change information, the World Cli-
mate Research Programme (WCRP) sponsors the Coordinated Regional
Downscaling Experiment (CORDEX), which aims at developing high-
quality, regionally specific, climate change projections for most land re-
gions of the world (Giorgi et al., 2009; Jones et al., 2011). In this context
simulations performed by numerous Regional Climate Models (RCMs)
are provided at a common grid with a horizontal resolution of 0.11°
(~12 km, corresponding to the EUR-11 grid) over Europe through the
EURO-CORDEX initiative.

One of themain challenges when dealing with climate projections is
the quantification of uncertainties, which can have different origins,
such as emission scenario, model formulation and natural variability.
Several different emission scenarios and climate models should be
used to assess the uncertainties related to external forcing sampling a
range of future possible climate outcomes (Jones and Nikulin, 2009).

This study, based on the Euro-CORDEX results, aims at providing an
assessment of possible future climate change impacts on water scarcity
in the four river basins mentioned, which are introduced in Section 2.1.
A large RCM ensemble available under two RCPs is applied to determine
the role of climate change as a possible stressor on the aquatic ecosys-
tems mentioned. In contrary to most of the studies mentioned, water
scarcity will be assessed at regional scale, using the Euro-CORDEX sim-
ulations at a horizontal resolution of 0.11°.

In a first step, the question whether there is a clear climate change
signal detectable over four catchments in the Mediterranean for tem-
perature and precipitationwill be addressed in Section 3.1 and secondly
how this translates into hydrological important variables as total runoff
and evaporation in Section 3.2. These four variables are analyzed by
using direct RCMoutput allowing for cost-effective, spatially distributed
projections for future changes in water scarcity in these areas. Runoff
and evaporation are crucial variables in the water balance and of up-
most importance for water availability. Negative changes in runoff and
actual evaporation can thus be interpreted as indications of increased
water scarcity, as the limiting factor for evaporation in the Mediterra-
nean is water availability. To further address water scarcity, the widely
used Falkenmark indicator (Falkenmark, 1989) is calculated in Section
3.3; to solely address the impact of climate change, population changes
are neglected in the scenario period. A discussion and the resulting con-
sequences onwater scarcity is included in Section 4 togetherwith a var-
iance decomposition to assess the share of GCM, RCM and radiative
forcing on the explained variance of each variable and determine the re-
lated uncertainty.

2. Data sets & methods

2.1. Selected river basins

Fig. 1 shows the four river basins in the Mediterranean over which
this studywas carried out, which are also part of the GLOBAQUAproject
(Navarro-Ortega et al., 2015). The Adige River (1) in northern Italy, with
a drainage basin of 12,100 km2 and a length of 409 km rises in the
Southern Alps and ends in the Adriatic Sea, passing three Italian prov-
inces. The areas climate is characterized by dry winters and precipita-
tion maximum in summer and fall, with a total annual precipitation
ranging from 500 to 1600 mm yr−1. The hydrology is dominated by
snow and glacier melt in spring and the strong precipitation events in
summer (Chiogna et al., 2016). Although the climate is rather humid
throughout the catchment, periodical water scarcity in this basin is
resulting from altered hydrology due to the operation of 30major reser-
voirs used for power generation (Navarro-Ortega et al., 2015).

The second catchment is the Ebro River basin (2) located in Spain,
ranging from the Pyrenees in the north to the Iberian mountains and
theMediterranean Sea with a total drainage area of 83,000 km2. Precip-
itation ranges from Mediterranean conditions with 300 mm year−1 to
mountainous, humid conditions with annual rainfall up to
2500 mm year−1 (Telesca et al., 2012). The Ebro is the largest Spanish
river draining in the Mediterranean Sea. It is impacted by distinct sea-
sonal hydrological characteristicswith long low flowperiods in summer
causing severe water scarcity. The area is highly managed with many
dams and channels used mainly for irrigation of the agricultural areas
in the basin (Navarro-Ortega et al., 2015).

The Evrotas River in Greece (3) is the smallest basin within this
study with an area of 2418 km2 and a length of 90 km bordering the
ranges of Taygetos and Parnon. Climate in the area is characterized by
mild and humid winters and dry and hot summers and mean annual
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precipitation of 803 mm year−1 originating mostly from rainfall events
from October to March. The hydrology of the basin is dominated by in-
tense precipitation, but also snow melt in spring and numerous karstic
springs. Water scarcity in the river basin originates from dry periods
in summer with occurring flow intermittency as well as ground water
overexploitation to meet the agricultural irrigation needs (Skoulikidis
et al., 2011, Navarro-Ortega et al., 2015).

The fourth catchment is the Sava River basin, representing the larg-
est tributary to the Danube with a drainage area of 95,551 km2. Before
reaching the Danube, the Sava crosses the countries of Slovenia, Croatia,
Bosnia and Herzegovina and Serbia over a length of 945 km (Milačič et
al., 2010). The hydrology of the Sava is less variable compared to e.g. the
Ebro, however similar pressures on the aquatic ecosystem are present
(Navarro-Ortega et al., 2015). Hydrological behavior is dominated by
snowmelt in the northern part of the catchment. The annual mean pre-
cipitation is 1108mmyear−1, yet with considerable spatial and season-
al variations (Levi et al., 2015).

2.2. RCM ensemble

An ensemble of high-resolution regional climate simulations, gener-
ated within the Euro-CORDEX activities, has been applied. The ensem-
ble consists of eleven recent RCM simulations as shown in Table 1 as
available by December 2015; abbreviations show here will be used in
following figures. Four CMIP5 GCMs have been downscaled over Eu-
rope, in different combinations, by four RCMs at approx. 12 km resolu-
tion and under two RCPs – 4.5 and 8.5 (Table 1 and Jacob et al., 2013).
The main focus here is on assessing future climate changes for the
2050 horizon (2035–2065), using 1981–2010 as the reference period
for the variables summarized in Table 2.

In a first step, the two most common variables - 2 m temperature
(tas) and precipitation (pr) are being analyzed. To estimate the hydro-
logical consequences resulting from these climate changes in the case
study areas, total runoff (mrro) and actual evaporation (evspsbl) were

furthermore taken directly from the RCM output. This allows for a con-
sistent analysis of future changes in a spatially explicit manner for all
case study basins at the spatial resolution of the RCMs simulations
(12 km). Therefore runoff in this study is based on the generated total
runoff (mrro) by RCMswhich is the excess of water per grid pointwith-
out routing channels or translation to river discharge. In the following
the terms runoff and the CMIP5 acronym mrro refer to these outputs
whereas evaporation or evspsbl will refer to actual evaporation from
RCMs and not potential evaporation.

Changes in precipitation are easy in their interpretation, as de-
creased precipitation likely increases water scarcity. Changes in runoff
are in this study interpreted similar, without consideration of ground
water storage and reservoirs. For evaporation this is more complex
and dependent on the region and corresponding factors that limit evap-
oration. As in Mediterranean climate, hence for the Evrotas andmost of
the Ebro and Sava basin, as well as the southern part of the Adige, evap-
oration is usually limited by water availability; a decrease in this vari-
able can be interpreted as increased water stress and indicate

Fig. 1. Location of the selected four river basins: Adige (1), Ebro (2), Evrotas (3) and Sava (4).

Table 1
The ensemble of Euro-CORDEX simulations at 12 km resolution applied in this study. All
simulations are available for rcp 4.5 and 8.5.

Regional Climate Model (RCM) General Circulation Model (GCM)

SMHI-RCA4

CNRM-CM5
HadGEM2-ES
EC-EARTH-r12
MPI-ESM-LR

DMI-HIRHAM5 EC-EARTH-r3

KNMI-RACMO22E
EC-EARTH-r12
HadGEM2-ES

CLMcom-CCLM4-8-17

CNRM-CM5
HadGEM2-ES
EC-EARTH-r12
MPI-ESM-LR
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increased water scarcity. In case of the mountainous areas of the Adige,
Ebro and Sava, evaporation is not necessary limited by water availabili-
ty, but rather other meteorological conditions such as air temperature
and solar radiation. In these areas, increased evaporation can be
interpreted as water loss to the atmosphere, hence increased water
scarcity. The RCMs applied differ in their included land use, land-sur-
face-,convection-, radiation- and planetary boundary layer scheme, as
well as different soil initialization and spin-up (Kotlarski et al., 2014),
causing different model results and climate sensitivities and different
translations to evaporation and runoff.

3. Results

In this section the projected changes on the variables precipitation,
2 m air temperature, total runoff and evaporation are analyzed. Results
are based on the climate change signals for the period 2036–2065 as
compared to the reference period 1981–2010 are presented for the
RCM ensemble shown in Table 1. Resulting changes in water scarcity

are addressed by changes in runoff and evaporation and the Falkenmark
indicator (Falkenmark, 1989) a widely used water scarcity indicator.

3.1. Changes in precipitation and air temperature

Fig. 2 shows the annual mean projected changes in precipitation [%]
and 2 m air temperature for the four selected river basins, where num-
bers correspond to the different simulations, black coloring to rcp 4.5
and red coloring to rcp 8.5. As expected, a clear signal in temperature
can be identified for all four basins ranging from 1 to 3 °C depending
on simulation and catchment. The higher radiative forcing in rcp 8.5 re-
sults in generally higher temperature increase for all basins. As present-
ed in Fig. 3, this applies to all catchments also on amonthly basis with a
slight tendency to increased changes in summer and fall. The ensemble
mean projects a mean monthly temperature increase between 1.4 and
2.7 °C depending on month of the year and catchment.

For precipitation, the signals are not so clear for the Adige (Fig. 2a),
where in rcp 4.5 no clear direction of change can be identified, as four
simulations project a decrease in precipitation, four show no change,
whereas three simulations project an increase. For rcp 8.5 however,
with the exception of the HadGEM2 driven CCLM run, all simulations
project a slight increase in precipitation up to 10%. Similar results can
be found for the Sava (Fig. 2d), however here the projections for rcp
8.5 are also somewhat ambiguous andmost of themodels are projecting
no significant change in any direction.

Precipitation projections for the Evrotas (Fig. 2c) and Ebro (Fig. 2d)
show a moderate to strong decrease up to 20% for most of the

Table 2
Variables used in this study with their corresponding CMIP5 acronyms.

Variable CMIP5 acronym Unit original Unit converted

2-meter air temperature tas K °C
Total precipitation pr kg m−2 s−1 mm
Total surface evaporation evspsbl kg m−2 s−1 mm
Total runoff mrro kg m−2 s−1 mm

Fig. 2. Changes in annual mean precipitation [%] and air temperature [°C] over a) Adige, b) Ebro, c) Evrotas and d) Sava as projected by the EURO-CORDEX ensemble applied for the period
2035–2065 as compared to 1981–2010. Numbers represent various GCM-RCM combinations; red color refers to rcp 4.5, black to rcp 8.5.
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simulations, only one resp. two projections reveal a slight increase in rcp
4.5 for the Evrotas resp. Ebro.

A general increase in precipitation over the Alps and a general de-
crease for the Mediterranean is well known and also found in other re-
cent studies (Collins et al., 2013; Torma et al., 2015). The Sava
catchment is located in the transition zone with increased precipitation
in the northern, alpine part of the catchment and a decrease for the
Southern Mediterranean.

Furthermore, the dependence of the driving GCM can be identified
in the temperature changes, as the EC-EARTH driven simulations show
the most moderate increase, whereas the HadGEM2 driven RCMs pro-
ject the highest increase in response to a high sensitivity to radiative
forcing. Fig. 4 shows monthly changes in precipitation for the four
river basins and allows for amore detailed view on precipitation chang-
es, grouped by RCM to address the impact of the regional model. Red
colors represent decreased precipitation, while blue colors show in-
crease. Themean changes for the ensemble are included below each fig-
ure for each month, with the corresponding absolute value for the
reference period. There is a decrease in precipitation visible in summer
and fall for all four catchments, howevermore pronounced for Ebro and
Evrotas, which is partly due to low precipitation in the reference period.

A general increase in winter precipitation can be identified for the
Adige, Sava and with exceptions also for the Ebro. Only a few simula-
tions show increased winter precipitation over the Evrotas. Changes in
monthly precipitation over the Adige (Fig. 4a) range from a slight de-
crease in August and September (around 5%) to an increase in precipita-
tion in winter and spring (up to 13%). For the Ebro (Fig. 4b), the
ensemble mean only shows an increase in February and November
(up to 5%) and strong decrease in summer (−16%).

Even more pronounced are the negative changes over the Evrotas,
where the ensemble mean projects a decrease throughout the year,
ranging from −3.7% (January) to −28.6% (August). With exception of
the summer period (−1.7 to −12.7%) slight to moderate increase in
precipitation is projected by the ensemble mean for the Sava (Fig. 4d)
with a maximum in the winter months (13.6% in January).

The simulations downscaledwith CCLM tend to show less sensitivity
and more moderate changes – be it positive or negative - as compared
to RCA4 and especially RACMO22E. Opposed changes for some months
show the strong impact of the RCM on precipitation, which is especially
visible in the winter months for the MPI-ESM-LR and HadGEM2 driven
simulations downscaled with RCA4 and CCLM, respectively. These
GCMs show high climate sensitivity (Andrews et al., 2012; Vial et al.,
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Fig. 3. Changes in mean 2 m air temperature (in °C) over a) Adige, b) Ebro, c) Evrotas and d) Ebro as projected by the EURO-CORDEX ensemble (RCP8.5) applied for each month in the
period 2035–2065 as compared to 1981–2010.
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2013) which explains the stronger response of the simulations using
those as boundary conditions.

3.2. Changes in evaporation and total runoff

Fig. 5 shows the change in evaporation the same way as already de-
scribed for precipitation and temperature for the applied RCM ensem-
ble. Most RCMs show increased evaporation over the Adige (a) and
with exceptions in summer also for the Sava (d). Evaporation in these
rather humid catchments is not limited bywater availability, particular-
ly in their northern parts. The ensemble mean projects up to 15% in-
crease in evaporation throughout the year for the Adige and also for
the Sava (with the exception of August). Strongest increase is projected
for the winter months in both catchments, which follows the projec-
tions of precipitation (see Fig. 4) and stems from higher snow and gla-
cier melting due to increased temperatures. In contrary to the Adige
and most parts of the Sava, evaporation in the Ebro (b) and the Evrotas
(c) is limited by water availability, hence indicating situations of water
stress. Evaporation follows the changes in precipitation, which is likely
to decrease (see Fig. 4) in the two catchments in spring, summer and
fall. Temperature and slight precipitation increase cause evaporation

to increase slightly in thewintermonths formost of the RCMs in the en-
semble. The ensemble mean shows moderate decrease over the Ebro
with maximum changes in August with a decrease of 8.1%. Changes
over the Evrotas are more pronounced with a decrease of almost 15%
in the summer months.

Simulations with the RCA4 tend to project increased evaporation in
all catchments, with the exception of the summer months, whereas
CCLM driven simulations rather project a moderate to strong decrease.
This is likely linked to a general overestimation in cloud cover in the
CCLM simulations (Jaeger et al., 2013; Pfeifroth et al., 2012) and a gen-
eral positive cloud feedback for future climate conditions (Soden and
Held, 2006). A strong cold bias of the RCA4 simulations over the Alps es-
pecially in the winter months likely leads to an underestimation of
evaporation in the reference period resulting in a stronger positive
change under future temperatures. Over three of the four catchments
(Fig. 5a, c, d) and partially also over the Ebro (Fig. 5b) HIRHAM5
shows high sensitivity in evaporation changes with the strongest
changes in spring over the Adige and the Sava and the strongest de-
crease in fall over these catchments. Additionally it is the only simula-
tion showing increased evaporation over the Evrotas (Fig. 5c). A
higher sensitivity of HIRHAM simulations due to overestimation of
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Fig. 4. Percentage changes in monthly mean precipitation over a) Adige, b) Ebro, c) Evrotas and d) Ebro as projected by the EURO-CORDEX ensemble (RCP8.5) applied for each month in
the period 2035–2065 as compared to 1981–2010.
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solar radiation resulting in less cloud cover was already observed by
Hagemann et al. (2002) for version 4. Furthermore, soil moisture is
not considered asmultiple layers as in other RCMs, but rather as a buck-
et which strongly influences evaporation (Hagemann et al., 2002).

The RCM ensemble projects a mean increase in evaporation over the
mountainous parts of the Adige (Fig. 6 a, e) and the Ebro (Fig. 6 c, g)
catchment for both, rcp 4.5 and rcp 8.5, however more pronounced in
the latter. Strongest decrease is projected for the southern part of the
Ebro with up to 20%whereas for the Sava the mean decrease is homog-
enous throughout the catchment with slightly lower intensity of 10%.
For the Evrotas, rcp 4.5 results in ambiguous results with slight changes
in both directions (Fig. 6), however rcp 8.5 results in decrease through-
out the basin (p).

Additionally, model agreement is presented to assess uncertainty in
the projections. For the Adige, both under rcp 4.5 and 8.5 (b & f) high
model agreement with nine or more models projecting increased evap-
oration can be identified. The same applies for themountainous areas of
the Ebro, whereas most parts of the basin are characterized by high
model agreement in decrease, as zero or only a few models project an
increase. Similar results can be found for the Evrotas, however only for
rcp 8.5 (q); under rcp 4.5 (m) the models show ambiguous results.

Model agreement over the Sava is less heterogeneous, as for rcp 4.5
some models also show decreased evaporation in parts of Bosnia
and Herzegovina. Although the majority of simulations agree in in-
creased evaporation, the ensemble mean indicates a slight decline.
This can be attributed to the variations within the ensemble, as
some RCMs project a strong decrease, causing misleading informa-
tion in the ensemble mean. Stronger model agreement applies for
the northern part of the basin where 8 or models project an increase
in rcp 8.5, whereas rcp 4.5 shows, again, ambiguity in the model
results.

Fig. 7 shows the monthly changes in total runoff for rcp 8.5 for the
future period and all catchments. Increased runoff in thewinter months
can be identified over the Adige (a) and the Sava (d) which can be at-
tributed to snow and glaciermelt due to increased temperatures. Strong
decrease in runoff is projected for the summermonths over the Ebro (b)
and the Evrotas (c) of around 30% from May to September. Lower de-
crease with 5–15% is projected for the summer months also in the
Adige catchment. Over the Sava (d) the RCA4 simulations show the
most distinct results in fall and the strongest decrease in summer,
which is caused by slightly more moderate changes in evaporation
(see Fig. 5d).
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The mean ensemble changes in runoff are shown in Fig. 8 together
with the model agreement maps for all four catchments and both, rcp
4.5 and 8.5. For the Adige the projections show ambiguous results, as
rcp 4.5 indicates a moderate increase of up to 10% (Fig. 8 a) with a
high model agreement in decrease (b) of at least 8 models. Under rcp
8.5 (e) some areas in the catchment, especially the mountainous north
show an increase in total runoff, however model agreement (f) shows
heterogeneous and undetermined patterns as in some areas the model
agreement in increase is high, others show a strong decrease, however
in most of the catchment the overall agreement is low. In case of the
Ebro, projected changes in runoff reveal a high heterogeneity in the
change signal: in general a moderate to strong decline of up to 30% in
the southern part of the basin is projected for both rcps (c & g). Howev-
er, runoff projections show an increase in the central low lands in both
rcps, more pronounced in rcp 8.5 (g). This area however shows, with
some exceptions, the lowest model agreement, as four to six RCMs pro-
ject an increase. Strong agreement in projected runoff decrease is visible
for themountainous north as well as the western and southern parts of
the catchment.

Projections for the Sava indicate a strong decline throughout the
catchment of 30% for both rcps (i & n). These changes seemmore severe
compared to the results presented in Fig. 7d, which is due to someRCMs
projecting strong positive changes in some months, e.g. CNRM-CM5
driving RCA4 in summer. Model agreement for these changes is higher
in rcp 4.5 (k) then in rcp 8.5 (o). Especially for the northern part of
the basin, in the Slovenian Alps, the RCM ensemble shows ambiguous
projections with five model projecting an increase in rcp 8.5 (o). For
the Evrotas however a strong agreement on decreased runoff is given
for both rcps (m& q) as none or atmost three RCMs project an increase.
Mean changes show a decline of 15–20% throughout the catchment,
more pronounced under rcp 8.5 (p).

3.3. Falkenmark indicator

The Falkenmark indicator is widely used as a simple index to assess
water scarcity on a larger scale (Brown andMatlock, 2011; Jaeger et al.,

2013; Schyns et al., 2015). The indicator is defined as total annual runoff
fraction available per capita. The classification of available water per
capita to assess water scarcity as proposed by Falkenmark (1989), pre-
sented in Table 3, and was also applied here.

Although the indicator is widely used, obvious caveats arise from
this measure, as the index does not take into account water reuse, tech-
nological improvement and, as only the annual runoff is applied, neither
accounts for additional water from e.g. groundwater aquifers. Addition-
ally, important temporal variability and variation in water scarcity and
system interactions are not represented by this indicator (Jaeger et al.,
2013). Still, the index can be applied as a first step assessment of
water scarcity and serve as a benchmark and serves still as indicator
for decision making (Brown and Matlock, 2011) and assessment due
to easy computation and availability of data (Jaeger et al., 2013). In
the scope of this study, it is meant to serve as a spatial indicator for
the need of adaptive water resources management in response to po-
tential water scarcity due to climate change. Global population density
information made available through the United Nations Environment
ProgrammeDEWA/GRID-Genevawas applied to calculate the total pop-
ulation within each catchment on the EUR-11 grid. Although grids are
also available for 2005, the chosen density grid is based on population
data for the year 1995 to represent the chosen reference period. As elab-
orated by Brown and Matlock, 2011, population change dominates
changes in climate and other potential stressors when it comes to the
assessment of available water per capita. The intention of applying the
same population grid for future and reference period was to solely ad-
dress the role of climate change as a possible stressor for aquatic ecosys-
tems. Observed changes from the two population grids range from −2
to 10% already between the years 1995 and 2005. Additionally, the en-
semble mean over all RCMs for total runoff (see Fig. 7) was used to cal-
culate the indicator.

Fig. 9 shows the results for the indicator for each catchment and the
reference period (a, e, i), rcp 4.5 (b, g, l) and rcp 8.5 (c, h,m) additionally,
the corresponding population grid is shown in d, f and k. The Evrotas is
excluded here, as the indicator highly follows the underlying population
information and due to extremely low population (density), no water
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scarcity could be identified according to the classification in Table 3. Col-
oring in Fig. 9 follows the colors presented in Table 3. Grey areas for ex-
ample represent grid cells with N1700 m3 year−1 water being available
per person, hence corresponds to the class “no stress”. Circles represent
grid cells where the ensemble mean projects a decrease of N10% in rcp
4.5 or 8.5, respectively, as compared to the reference period. Grid cells
marked with ‘+’ represent model agreement in the ensemble, in that
at least six out of the eleven RCM projections agree in thewater scarcity
category. This is only applied if stress is detected, hence if the available
water per capita is b1700 m3 year−1.

The top row in Fig. 9 shows the results for the Adige for the reference
period (a), rcp 4.5 (b), rcp 8.5 (c) and for comparison reasons the pop-
ulationmap is included in d. Only a few grid cells show scarcity and fol-
low the main cities in the area: Trento and Verona. Future projections
show only one grid cell in rcp 4.5 and none for rcp 8.5, which follows
the precipitation projections. However, the ensemble mean shows in-
creasedwater scarcitywith decreases in availablewater of N10% (circles
in Fig. 9b & c). As already presented for precipitation, there is no signif-
icant agreement in the models on the water scarcity class.

In contrary, there is a stronger agreement on the categories for the
Ebro (Fig. 9e–h). Several areas fall within the category ‘absolute

scarcity’, mainly around the city of Zaragoza and in the east of the catch-
ment. Projections show even stronger model agreement and high de-
crease for most of the areas already classified as ‘stress’ or less. As for
the Adige, rcp 4.5 results in slightly higher water scarcity.

As shown in Fig. 9k, no spatially distributed population density is in-
cluded in the data set for the countries of Bosnia and Herzegovina and
Serbia, resulting in a homogenous distribution of population over
large parts of the Sava catchment. This results for the reference period
(i) in large areas of scarcity in Serbia, however, also some areas of Slove-
nia are classified as any of the three scarcity classes, as e.g. for the city of
Ljubljana. Projections show a strong decrease in available water for
most of the classified grid cells with higher agreement for rcp 4.5 (l)
compared to rcp 8.5 (m) with more grid cells being classified as ‘abso-
lute water scarcity’.

4. Discussion and resulting water scarcity

Based on the results presented in this study, a clear climate change
signal can be identified for all presented variables and both representa-
tive concentration pathways over the basins with the exception of pre-
cipitation over the Adige and the Sava in rcp 4.5. The general changes in
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Fig. 7. Percentage changes inmonthly total runoff over a) Adige, b) Ebro, c) Evrotas and d) Ebro as projected by the EURO-CORDEX ensemble (RCP8.5) applied for eachmonth in the period
2035–2065 as compared to 1981–2010.
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precipitation with an increase over the Alps and a strong decline over
the Mediterranean agree with results found in global or pan-European
studies (Polade et al., 2014). However, local increase of precipitation
over the mountainous regions of the Adige, Ebro and Sava confirm the
importance of high resolution climate simulations that are capable of
representing local topography (Gao et al., 2006). Changes in evapora-
tion and total runoff revealed strong differenceswithin the RCMensem-
ble that can be attributed to the individual RCM schemes for land
surface and runoff generation. The differences are more structural for
evaporation (Fig. 5) and more scattered for total runoff (Fig. 7). A de-
crease in runoff can be identified over three of the four basins with up
to 30% which agrees with the results presented by Haddeland et al.,
2014 for 2 °C warming level in the Mediterranean. The most important
findings in each of the case studies are summarized in the following.

4.1. Findings in each of the catchments

4.1.1. Adige
Increased temperature and precipitation result in increased evapo-

ration over the Adige, whereas no clear signal could be identified for an-
nual mean runoff. However, monthly changes reveal a decrease in
runoff for the summer months and an increase in winter. The latter
can be explained by snow and glacier melt due to increased tempera-
tures. These changes indicate a tendency toward increased water

scarcity for the summer months especially for the southern part of the
catchment. Although the Falkenmark indicator did not reveal water
scarcity for most parts of the catchment, however, a decrease in water
availability could be identified for the south. In this area a strong
model agreement is present for both, runoff and evaporation, indicating
an increased likelihood of water scarcity.

4.1.2. Ebro
There is a clear signal for precipitation decrease over the Ebro in

spring, summer and fall, resulting in lower evaporation and runoff de-
crease in these periods. Both changes indicate a strong increase in
water scarcity over the basin. The strong signal in runoff for this period
with up to 30% confirms this tendency. However, the increase in evapo-
ration in the mountainous area in the north, resulting from increased
precipitation and snow melt due to increased temperatures, causes in-
creased runoff for the central low lands, which confirms the require-
ment and benefits of high resolution climate modeling. The
Falkenmark indicator displays water scarcity for parts of the Ebro
basin already for the reference period with a projected tendency to fur-
ther increase in the future.

4.1.3. Evrotas
Strongest negative changes in precipitation are projected over the

Evrotas basin with up to 30% in the summer months while some simu-
lations show even more pronounced changes. This translates to strong
changes in runoff throughout the year and decreased evaporation at
least in spring, summer and fall. Differences in the RCMs are again
most visible for this variable, as the CCLM simulations clearly show dif-
ferent projections for the winter months as compared to the rest of the
ensemble. The ensemble mean shows a decrease in annual runoff of
around 20%. These changes indicate increased water scarcity over the
entire basin, especially in spring, summer and fall. High model agree-
ment confirms this tendency, even though due to the small size of the
basin only a few grid points are included in the analysis. The Falkenmark
indicator did not deliver robust results, as it is dominated by the low
population density in the catchment.
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Table 3
Categories of water scarcity as defined by Falkenmark (1989). Coloring refers to color
scheme applied in Fig. 9.

Available water per capita (m3 yr–1) Scarcity category

>1,700 No stress

1,000–1,700 Stress

500–1,000 Scarcity

<500 Absolute scarcity
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Fig. 9. Falkenmark indicator to assess water scarcity of the test sites for the reference period (a, e, i), rcp 4.5 (b, g, l) and rcp 8.5 (c, h, m). As the indicator is dependent on population,
population maps are included (d, f, k). Evrotas is not shown here.
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4.1.4. Sava
Results for the Sava are most ambiguous and difficult to interpret.

Precipitation projections point toward slight increases on average for
the entire catchment, resulting from increases over the alpine part in
Slovenia and decreases over the Mediterranean south. As for the
Adige, increased precipitation and temperature in winter translates to
increased runoff and evaporation in thesemonths. A decrease in precip-
itation causes decreased runoff in summer, whereas evaporation pro-
jections show indistinct results. Annual ensemble means however
indicate a strong decrease of up to 30%, which is due to some RCMs
projecting strong changes. Highmodel agreement can only be identified
over the southern part, indicating a tendency toward increased water
scarcity over this area.

4.2. Variance decomposition

It is generally known and acknowledged that climate projections
and resulting impact modeling activities are affected by many sources
of uncertainty (Holzkaemper et al., 2015). One of the challenges in the

interpretation of these information is the quantification of these uncer-
tainties. In this study the uncertainties related to the climate change sig-
nal over each basin, defined here as the spread of the ensemble is
quantified by applying a simple variance decomposition. This approach
is widely used to assess the fraction of RCM, GCM and RCP to the total
variance within an ensemble of climate models over a given area
(Ferro, 2004; Déqué et al., 2007; Déqué et al., 2012). Following Déqué
et al. (2007) and Déqué et al., (2012), three main sources of uncertainty
can be identified in the ensemble applied in this study. Model uncer-
tainty, as four different RCMswhere applied here, boundary uncertainty
due to different driving GCMs and scenario, or radiative uncertainty, as
two different RCPswere applied. Here, the uncertainty in the climate re-
sponse, defined as presented in the last section, averaged for all grid
points over each river basin was assessed. The approach is described
briefly in the following, for details on the calculation procedure it is re-
ferred to the studies mentioned.

The total variance can be written as the sum of the contributions of
each contribution term as presented in Eq. (1). Here R is the part of
the variance of the RCM, G the contribution of the GCM and S the
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variance due to the scenario or RCP, respectively. Other terms are de-
fined as interaction terms between the main contributions, where e.g.
RG represents the interaction between RCM and GCM, others are de-
fined similarly.

V ¼ Rþ Gþ Sþ RGþ RSþ GSþ RSG ð1Þ

The contribution of the RCM to the total variance can hence be writ-
ten as sum of the main contribution of the RCMs and all corresponding
interaction terms, G and R can be written in a similar form:

V Rð Þ ¼ Rþ RGþ RSþ RSG ð2Þ

Assuming the total variance as a simple sum as in Eq. (1) requires a
complete matrix, meaning all simulation being available for all possible
GCM-RCM combinations. As presented in Table 1 this is not the case in
the present study hence thematrix needs to befilled. The simple, yet ro-
bust approach presented by Déqué et al. (2007) was applied to over-
come this issue. The calculation of these artificial climate responses
was performed in a way that the interaction term RSG equals zero.

Therefore, the interaction terms are not represented correctly by defini-
tion, however the focus here is to get an estimate of the contribution to
the variance of each source rather than the interaction between them.
Additional, the final variance presented here is the fraction of each
source of uncertainty rather than the total variance. Therefore in the fol-
lowing only the threemain sources are presented calculated as present-
ed in Eq. (2) and including all interaction terms. As the sum of thesewill
exceed 100% due to the contribution of the interaction terms, the results
are normalized to 1, or 100%, respectively to preserve the fraction but be
easier comparable and accessible. Fig. 10 shows the contribution of RCM
(black), GCM (grey) and RCP (light grey) to the annual variance as bar
plots in percent for air temperature (a), precipitation (b), total runoff
(c) and evaporation (d) over the four river basins. For temperature
and precipitation the uncertainty introduced by the GCM and the RCP
are larger than for the RCM. As expected from Fig. 2 and in agreement
with previous studies (e.g. Hawkins and Sutton, 2009), the uncertainty
introduced by the RCP contributes most to the total variance over the
four river basins for temperature for this time period. In case of the
Adige, scenario uncertainty represents the largest source of uncertainty
in all variables except evaporation. The contribution of uncertainty

Fig. 11. Seasonal explainedvariance fraction for precipitation (solid) and air temperature (dashed) over the a) Adige, b) Ebro, c) Evrotas and d) Sava. Contribution of RCM is shown inblack,
GCM in red and the scenario (RCP) in green.
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related to GCM dominates for precipitation. Uncertainty introduced by
the RCM generally represents the largest fraction for evaporation and
runoff which is due to the different structural differences of the RCMs
for calculation of these processes.

The importance of not only regional but also seasonal assessment of
the climate change signal was presented in previous sections. Therefore,
variancedecompositionwas also carried out on seasonal climate change
signals. Fig. 11 shows the seasonal uncertainty assessment for precipita-
tion (solid line) and temperature (dashed), while evaporation (solid)
and runoff (dashed) are presented in Fig. 12. As shown in Fig. 11, the
contribution of the RCM is largest for summer precipitation in all four
river basins, which is due to the higher resolution resulting in better
representation of orography and convective events in RCMs compared
to GCMs. However, in most cases, the absolute contribution to the vari-
ance is lower compared to GCM and RCP. Choice of GCM dominates the
uncertainty in precipitation and temperature over the Adige in winter
and summer, over the Sava with the exception of fall and over the
Ebro in all seasons. The uncertainty introduced by the radiative forcing
are dominate for temperature in fall and contribute largely to spring
precipitation over the Adige and Evrotas.

As presented in Fig. 12 the fraction for RCM is usually the largest for
evaporation (black, solid line) throughout the year in most of the river
basins. The choice of RCP is more important for runoff than evaporation,
where contribution to the variance is usually around 0.1 or lower. Fol-
lowing precipitation and temperature, the uncertainty related to the
GCM mostly represent the largest fraction in the larger river basins
Ebro and Sava also for evaporation and runoff, while the fraction of un-
certainty of the RCM is more pronounced over the Adige and the
Evrotas, hence the smaller basins.

5. Summary and conclusion

An ensemble of eleven simulations of four Regional Climate Models
(RCMs) downscaling various General Circulation Models (GCMs) avail-
able for two Representative Concentration Pathways (RCPs) each, was
applied over four river basins ranging from2500 to 95,000 km2 to assess
climate change signals of four variables and resulting consequences for
water scarcity. These variables, consisting of precipitation (pr), 2 m
mean air temperature (tas), evaporation (evspsbl) and total runoff
(mrro) were used from the RCM simulations in the original grid at

Fig. 12. Seasonal explained variance fraction for evaporation (solid) and runoff (dashed) over the a) Adige, b) Ebro, c) Evrotas and d) Sava. Contribution of RCM is shown in black, GCM in
red and the scenario (RCP) in green.
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0.11° (~12 km). The Falkenmark indicator was applied to determine fu-
ture changes on water availability and to assess the impact of climate
change on water scarcity dynamics. For this purpose the available
water per capitawas assessed based on the samepopulation grid for ref-
erence and future calculations. The main findings of this study can be
concluded as follows:

1) A clear climate change signal could be identified for all variables over
the four basins,with the exception of northern parts of the Adige and
the Sava. A consistentwarming signal inmean air temperature is ev-
ident across all four case study basins. The ensemble shows an in-
crease of 1.5 to 3° with all simulations agreeing in increase for all
basins. Precipitation changes show decrease over the Ebro and
Evrotas, slight increase over the Adige and ambiguous results over
the Sava. Seasonal changes in evaporation and runoff were detected,
showing the importance of a monthly assessment. Decreasing evap-
oration and runoff over all four basins was the main finding.

2) Small scale changes in parts of the basins, e.g. mountainous areas,
confirm the importance of high resolution RCM projections that
are capable of resolving relevant topographic features, to assess fu-
ture changes and possible climate change impacts in mountainous
areas: Precipitation increase and a resulting increase in evaporation
are identifiable in the Adige, Ebro and Sava despite possible contrary
projections for the basin mean.

3) Increased water scarcity can be concluded from the presented
changes over the Ebro and the Evrotas, as well as the southern
parts of the Adige and the Sava. For these areas, high model agree-
ment indicates a higher probability for water scarcity. Decreased
runoff and evaporation especially in summer indicate further pres-
sure on the river basins that are already partly characterized by
flow intermittency.

4) The Falkenmark indicator confirmed the importance of climate
change as a stressor for the Ebro and the Sava and, to some extent,
also for the Adige. The indicator was not presented for the Evrotas
due to low population in the catchment.

5) Variance decomposition showed higher uncertainties in the GCMs
and RCPs for temperature and precipitation compared to the RCM
contribution. Convective events in summer however result in higher
fraction of variance from RCMs in the summer months over the four
basins. Different calculation schemes for evaporation and runoff as
well as different land-surface- and radiation schemes in the RCMs
result in larger fractions of variance for RCMs for these two variables.

The high horizontal resolution of the current generation of RCMs is
capable of better representing topography acceptably and allows also
for analyses on sub-catchment level. The use of a large ensemble of
RCM projections is inevitable to detect climate change signals and sep-
arate them from natural variability. The study represents a computa-
tional effective method to assess future water scarcity over various
river basins that can – in contrary to simulations with regional hydro-
logical models – also be applied in data scarce basins. The abundance
of RCM simulations available throughout the globe and the use of global
data sets for population distribution permits water scarcity assessment
in data scarce areas, not only limited to the Mediterranean.
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1. Introduction

According to current climate projections, the Mediterranean region
will be affected by severe changes, both an increase in temperature as
well as a decline in precipitation. The projections of climate models
show a decline up to over 50% in the summermonths, resulting in a rising
frequency of drought events up to over 40% (Christensen et al., 2007).

Hydrological modeling can be applied to quantify these effects, pro-
vide decision support and develop effective water management strate-
gies for the future. Usual procedures in hydrological model calibration
range from the classical trial and error approach to sophisticated
automized learning algorithms to fit a modeled output variable, typical-
ly discharge, to observations (Gupta et al., 1998). Statistical criteria, like
the Root Mean Square Error or the Nash–Sutcliffe criterion (NSE) (Nash
and Sutcliffe, 1970) are applied to validate the goodness of the model
results. However, such approaches can be somewhat difficult for
complex models or in heterogeneous catchments (Immerzeel and
Droogers, 2008). Furthermore, if data for calibration and validation are
scarce, this approach will add hardly quantifiable uncertainty to the re-
sults (Winsemius et al., 2009). The Predictions in Ungauged Basins
(PUB) initiative (Sivapalan et al., 2003) increased the discussion on
the work in ungauged basins (Winsemius et al., 2009). Possible solu-
tions to calibrate a hydrological model in a data scarce area might be
to apply the information of neighboring catchments as presented by
Blöschl (2005), or to perform regional calibration by calibrating several
catchments simultaneously (Parajka et al., 2007). However, both
approaches imply knowledge of surrounding catchments, hence might
not be applicable in many ungauged, data scarce areas.

Remotely sensed data can help find a solution to this problem as
those data sets provide spatial information in an acceptable temporal
resolution, which can be translated to hydrological variables. Schmugge
et al. (2002) show general application of remote sensing to extract infor-
mation on snow distribution, soil moisture and also water quality, Kite
and Pietroniro (1996) provide an overview on this topic, Schultz
(1993) usedmultispectral Landsat data to assimilate information for dis-
tributed hydrological modeling already two decades ago. Data assimila-
tion for the parameterization and calibration of hydrological models is
a more recent research field (Immerzeel and Droogers, 2008). Various
studies assimilate remotely sensed soil moisture information in several
hydrological applications (Boegh et al., 2004; Al-Shrafany et al., 2014).

Studies by Chen et al. (2005) and Immerzeel and Droogers (2008)
focus on evapotranspiration, which tackles the traditional calculation
of actual or real evapotranspiration (ETR) as an estimated fraction of
potential evapotranspiration (ETpot) (Kite and Droogers, 2000). The
latter compare evapotranspiration estimated from satellite information,
hydrological models and field methods. Their results confirm the use of
a remote sensing solution to estimate evapotranspiration, as the tradi-
tional field methods, FAO-27 and FAO-56 (Allen et al., 1998) showed
ambiguous results. The two most widely used approaches to derive
ETR from remote sensing are the Surface Energy Balance Algorithm for
Land (SEBAL) and the Triangle Method.

SEBAL converts visible, near-infrared and thermal information to an
estimate of evapotranspiration Bastiaansen et al. (1998a,b). The algo-
rithm was applied for Landsat TM images by Kite and Droogers
(2000), while Immerzeel and Droogers (2008) usedMODIS information
to derive evapotranspiration for the calibration of the Soil and Water
Assessment Tool (SWAT) (Arnold et al., 1998).

In this study, another method to estimate evapotranspiration by
remote sensing data is applied to parameterize the irrigation module
hydrological model WaSiM (Schulla and Jasper, 2007) and to evaluate
model performance. The Triangle Method, as presented by Price
(1990), then established by Carlson et al. (1995) and Jiang and Islam
(1999), was carried out for Landsat TM scenes to estimate the ETR for
the Gaza strip. This method was chosen over SEBAL for reasons of re-
quired input data and will be briefly elaborated in Section 3. As water
availability is the limiting factor for ETR, areas with high ETR during

the dry summer months therefore have to be irrigated. Several of these
Landsat TM scenes were then used to identify the irrigation areas and pa-
rameterize themodel to distribute the amount of irrigatedwater over the
catchment.

The objectives of this study are threefold: a) the Triangle Method
was used to provide estimates of ETR to parameterize the irrigation
module ofWaSiM, as only irrigated areas show high evapotranspiration
during the summer months. The procedure is presented in Section 3.3
and evaluated in Section 4.1; b) for lack of discharge data the perfor-
mance ofWaSiMwill be assessed on thewithheld scenes of the satellite
derived evapotranspiration in Section 4.2; c) theWaSiMmodel setup is
then driven with a small ensemble of regional climate model (RCM)
simulations to assess future drought risk in the area as presented in
Section 4.3. For a detailed analysis on the RCM-ensemble selection it is
hereby referred to Deidda et al. (2013).

2. Study area

TheGaza Strip is located in the EasternMediterranean and forms, to-
getherwith theWest Bank, the PalestinianAutonomous Area, according
to the Oslo agreement of 1993. The area covers 365 km2with a length of
35 km and width of 6 to 12 km (Baalousha, 2006). Sufficient supply of
freshwater is a major concern for the rapidly growing population,
which stands at approximately 1.5 million inhabitants and grew by
4.5% per year in the period 1997–2007. One third of the Gaza Strip is
covered by urban or built up area, the largest city in the area being
Gaza City with about 0.5 million inhabitants (Ajluni, 2010). Due to
population growth, the total water demand in the Gaza Strip is strongly
increasing. The current available resources do not satisfy the need of
water, causing a huge deficit between water demand and supply
(Qahman and Larabi, 2006).

Agriculture is themost important sector in terms of land cover, land
use and water consumption in the Gaza Strip (Rusteberg et al., 2010).
The main crops grown on the irrigated fields include tomatoes, pota-
toes, cucumbers, strawberries and melons. Furthermore, citrus planta-
tions and olive orchards are widespread in the area. The climate
conditions allow for more than one crop cultivation cycle per year.

The mean annual temperature for Gaza City is 20.1 °C and the mean
annual precipitation 353 mm, resulting from events in the winter
months, during the wet period October to April. The months May to
September form the dry period, practically without any precipitation.
A remarkable north-south gradient in precipitation is evident with
435 mm in the North, and 235 mm in the South as shown in Fig. 1.
Differences in elevation are almost negligible as they range from sea
level to 104 m. In the Gaza Strip no permanent surface water exists in
form of streams and natural lakes. Only the Wadi Gaza could provide
surface water during the winter months. The bed of the Wadi is
characterized by a 1–2 m layer of unsorted Pleistocene gravel, originat-
ing from the mountainous areas in the Northern Negev and Hebron
(MedWetCoast Project, 2001).

Themajor source of freshwater in the area is the coastal aquifer. This
aquifer, hereafter referred as Gaza Aquifer, covers a large area of about
2000 km2, from the Carmel Mountains in the North to the Sinai Desert
in the South with a width of 15–30 km (Baalousha, 2008). The aquifer
provides freshwater for the entire Gaza Strip, and parts of Israel, includ-
ing the metropolis of Tel Aviv–Jaffa in the north. The depth of the aqui-
fer varies from 170 m at the Mediterranean coastline to just a few
meters in the eastern parts. Main components of the aquifer are alluvial
sandstone, with local limestone and chalk areas, underlain by amassive,
impermeable clay layer, the Saqiya formation, developed in the Pliocene
era, with depths of 400 to 1000 m (Baalousha, 2006). Older groups, like
the Judea, Kurnub and Arad Group contain dolomite and sandstone and
developed between the Jurassic and Cretaceous era (Assaf et al., 1998).

As mentioned before, data scarcity is hampering the calibration and
validation of the hydrological model. Fig. 1 shows the location of the
twelve precipitation gauges available within the Gaza Strip. However,
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four of those, marked as dark gray circles in themap, provide only a few
years of observations. For the eight stationsmarked as triangles in Fig. 1
observations are available at daily scale for the period 1979 to 2003; the
station in Gaza City provides data for the period 1973 to 2006. This is
also the only station with temperature observations available (mini-
mum and maximum at daily scale) for the period 1973 to 2006. As no
permanent streamflow exists, no discharge gauge is existent, neither
are observations for other meteorological variables. WaSiM – if run
with Penman–Monteith evapotranspiration scheme – requires further
variables as meteorological input such as shortwave downward
radiation, relative humidity and mean wind speed. Therefore, a RCM
run was chosen for the modeling procedure. The model was run with
the bias-corrected and downscaled version of the RCA3 driven by
ECHAM5 while the precipitation and temperature observations served
as plausibility check for the reference period. The Thiessen Polygons
are presented in Fig.1 as they are implemented in WaSiM as
subcatchments to compare the RCM outputs with the observed
precipitation.

A landuse/land covermapwasderived fromclassifiedmulti-temporal
SPOT-5 images, while a detailed soil map, stemming from intensive
field campaigns, was provided by the Islamic University of Gaza. An
overview of the Landsat TM scenes assessed for this study can be
found in Table 1.

3. Method and hydrological model

3.1. The Triangle Method

The Triangle Method, originally published by Price (1990) then
elaborated by Carlson et al. (1995) and Jiang and Islam (1999), is a

widespread approach to estimate the latent heat flux λE or ETR (Batra
et al., 2006; Stisen et al., 2008; Tang et al., 2010; Wang et al., 2006;
Yiang and Wang, 2011). Various studies showed acceptable deviations
from point-measurements of evaporation rates of +/−10–30%
(Kalma et al., 2008).

This approach was chosen over the already mentioned SEBAL ap-
proach for reasons of data availability. SEBAL requires additional mete-
orological variables, such as relative humidity and wind speed, which
were not available for this study site. Additionally, other surface param-
eters such as the Leaf Area Index (LAI) and albedo, are needed. These are
assessed from remote sensing data for the SEBAL approach; however
they add another source of uncertainty.

The aim of the Triangle Method is to estimate the evaporative
fraction (EF) and λE of the energy balance. The basic idea is that high
EF results in a pronounced cooling of the area and sunlit vegetation
will therefore be cooler than bare soil under equal conditions (Carlson,
2007). ETR thenwas derived from remotely sensed thermal information

Fig. 1. Location of the Gaza Strip and the mean annual precipitation derived from inverse distance interpolation from given precipitation gauges. The Thiessen Polygons shown represent
the subcatchments as implemented in the hydrological model. Projection: WGS-84, UTM zone 36 N.

Table 1
Applied Landsat TM scenes (175/38 path/row) for parameteriza-
tion and validation in this study.

Parameterization Validation

1984/05/24 1998/06/16
1992/08/10 1998/07/02
1999/08/22 2000/06/05
2000/05/04 2002/06/11
2000/09/09
2002/05/26
2003/08/01
2003/09/02
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and the Normalized Difference Vegetation Index (NDVI). As all compo-
nents of the energy balance are dependent on the land surface temper-
ature (LST) (Kalma et al., 2008), it is obvious to estimate LST from
remote sensing data. Landsat TM data was used, as proposed by
Roerink et al. (2000), due to relatively high spatial resolution and data
availability. Other authors use NOAA AVHRR data (Jiang and Islam,
1999), MODIS data (Tang et al., 2010) or MSG-SEVIRI images (Stisen
et al., 2008) for their studies.

In a first step, the radiances of the Landsat TM thermal band are con-
verted to LST, so that each pixel has an assigned temperature in °C or K.
This data was used to construct the LST–NDVI space, shown in Fig. 2,
plotting LST, derived from the remote sensing images, versus the NDVI.

Priestley and Taylor (1972) proposed to substitute the resistance
terms of the Penman equation by an empirical coefficient Φ, often also
cited as α (Batra et al., 2006; Stisen et al., 2008):

λE ¼ Φ Rn−Gð Þ Δ
Δþ γ

� �
ð1Þ

where λE is the evapotranspiration (W m−2), Φ the dimensionless
Priestley–Taylor coefficient, Rn the net radiation (W m−2), G the soil
heat flux (W m−2), Δ the slope of the saturated water vapor
(kPa K−1) and γ the psychrometric constant (kPa K−1). According to
Davies (1967), on the global scale, net radiation is about 55% of the glob-
al solar radiation. The soil heat flux Gwas estimated to be approximate-
ly seven per cent of the net radiation, following Crago and Brutsaert
(1996). Fig. 2 shows the NDVI–LST plot for the image of May 4th
2000, where the blue line, the wet edge, represents ETpot, where ϕmax

is equal to ϕ. The maximum rate of ETR therefore can be found near
ϕmax, and the lowest evapotranspiration near ϕmin. The gray line, the
true dry edge, represents zero ET, while the red line, observed dry

edge, represents limited evapotranspiration, hence ϕmin (Stisen et al.,
2008).

For detailed information on the concept and construction of the pa-
rameter ϕ, it is hereby referred to Priestley and Taylor (Priestley and
Taylor, 1972). In the next step, the NDVI was used to calculate and
scale ϕ between ϕ

min and Φmax; while Batra et al. (2006) propose a lin-
ear interpolation between NDVImin and NDVImax, Stisen et al. (2008)
and Tang et al. (2010) propose a non-linear scaling, to increase ETR
over higher vegetated areas compared to less vegetation-covered areas:

Φ i; minð Þ ¼ Φmax
NDVIi−NDVImin

NDVImax−NDVImin

� �2
ð2Þ

whereΦ(i, min) is theminimumΦ for the grid point I,Φmax is 1.26, NDVIi
the NDVI for the vegetation class (NDVI value) i, NDVImin and NDVImax

represent the minimum and maximum NDVI for the current scene.
The so scaled Φ(i,min) was then used for calibration of the actual

Priestley–Taylor coefficient for each pixel with the LST following the
approach of Stisen et al. (2008) and Tang et al. (2010) to spread the
NDVI–LST space according to the minimum (at LST(i,max) and Φ(i,min))
maximum evaporative cooling (at LST(i,min) and Φ(i,max)):

Φi ¼
LST i; maxð Þ−Ti

LST i; maxð Þ−LST i;minð Þ
Φmax−Φ i; minð Þð Þ þ Φ i; minð Þ ð3Þ

Here Φi represents the Priestley–Taylor coefficient for the NDVI
value i, LST(i, max) and LST(i,min) the corresponding minimum and maxi-
mum LST and Ti the observed air temperature at I for the overpassing
time. Batra et al. (2006) and Wang et al. (2006) propose only the use
of ϕ

max instead of the term (ϕmax − Φ(i,min)) + Φ(i,min). However, a
sensitivity analysis (not presented here), of the various approaches

Fig. 2. Concept of the TriangleMethod and the obtainment of theNDVI–LST plot as applied to the Landsat TM image of 2000/05/04 (for the Gaza Strip). Green line represents NDIVi for the
vegetation class i = 0, the red line the observed dry edge, standing for limited ETR, the blue line the observed wet edge, representing potential evapotranspiration. Conception of the plot
according to Batra et al. (2006); Stisen et al. (2008).
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presented by different authors revealed only slight differences in
resulting ETR.

In a final step, EF can be determined using the psychrometric
constant and the atmospheric pressure:

EF ¼ Φ
Δ

Δþ γ
ð4Þ

λE can now be calculated in Wm−2. To make the resulting ETR compa-
rable to model outputs, a conversion to mm d−1 has to be applied as
presented by Allen et al. (1998), where 1 W m−2 represents
0.0864 MJ m−3 d−1 which equals 0.408 mm d−1.

3.2. The hydrological model WaSiM

The runoff and WAter balance SImulation Model (WaSiM), was de-
veloped by Schulla in 1997 and is continually updated. At the moment,
two versions of the model exist: the early one using the TOPMODEL-
approach for calculation of soil water flow, while the second and here
applied version uses the Richards equation.WaSiM is distributed, deter-
ministic and physically based (Schulla, 2012) and can be run in any spa-
tial and temporal resolution, limited only by the input grids. In this
application, the temporal resolution was set to one day, according to
the temporal resolution of the meteorological forcing. Due to the small
size of the Gaza Strip a 100mspatial resolutionwas chosen, as it roughly
matches the resolution of the used SRTMDEM(90m). Simulationswere
carried out for two periods: a reference period from 1971 to 2000 and a
future period 2041–2070 to assess future changes in the water balance
and drought risk.

In WaSiM various schemes for the calculation of ETpot are imple-
mented, such as Hamon, Haude and Wendling, however, Schulla
(2012) recommends to apply the Penman–Monteith approach. To com-
ply with this recommendation, the simulation was driven by the bias-
corrected and downscaled version of the RCA3 forced by ECHAM5 as
stated in Section 2. The ensemble for the forcing to assess future changes
consists of ECHAM5/MPI OM forcingREMO (ECH-REM), RACMO2 (ECH-
RMO) and RCA3 (ECH-RCA) additionally, alsoHadCM3 forcing the RCA3
(HCH-RCA). For details on the selection and bias-correction of these
simulations it is referred to Deidda et al. (2013).

The structure of WaSiM allows the user to switch on or off several
modules, according to the modeling needs in the specific case. The pro-
vided irrigation module is of utmost importance in this study and will
therefore be described briefly.

Two different irrigation types can be implemented inWaSiM: either
a daily quota for each pixel taken by groundwater or surface water
based on an irrigation table, or irrigation in dependence on the actual
soil water content of the given time step corresponding to a user de-
fined threshold. The daily quota approach was chosen in this study
and the parameterization of the irrigation table is defined in the next
section. The resulting amount of irrigated water then is simply added
to the precipitation for each day within the model. Additionally, soil
and land use tables are required, containing the respective parameters.
Based on these tables and parameters, ETR is calculated in dependence
of the provided ETpot. In the following, the parameterization of the
mainmodules is presented briefly, while for detailed model description
it is hereby referred to Schulla (2012).

3.3. The parameterization strategy

Soil parameters were parameterized according to literature and
assigned to the soil texture classes of a detailed digital soil map. Rele-
vant vegetation parameters as the leaf area index (LAI), root depth or
stomatal resistance were also derived from literature (Delalieux et al.,
2008; Gómez-del-Campo, 2007; Raveh et al., 2003; Reichenstein et al.,
2003; Saei et al., 2006; Sakcali and Ozturk, 2004; Villalobos et al.,

2006) and assigned to the corresponding classes in the land use map
(most importantly horticulture, olives, citrus and mixed agriculture).

Irrigation is a key factor for freshwater consumption in a highly agri-
culturally used semi-arid region such as the Gaza Strip. The annual irri-
gation quota for the year 2006 of 85.5 Mm3, as reported by the
Palestinian Ministry of Agriculture and the PalestinianWater Authority
(PWA) PalestinianWater Authority (PWA) (2007), was implemented. It
must be considered, however, that the real irrigation might exceed this
number due to illegal wells and unregistered exceedance of the allowed
quota. Therefore, the daily irrigation method (see Section 3.2) seemed
more feasible than irrigation on demand, as the quota is usually applied
in any case.

Two sets of irrigation scenarios were constructed: a) the ‘classical’
approach using the land use/land cover map to determine irrigated ag-
riculture and b) using satellite imagery to derive evapotranspiration
patterns and reconstruct the irrigated areas.

For a), scenarios were constructed to meet the land cover informa-
tion derived from SPOT images and the different growing seasons as
multiple crops can be grown at one field in the same year, and these cy-
cles might well change over the years. A possible irrigation scenario
contains e.g. 30% melon, 50% vegetables and 20% strawberries and
other fruits. Comparison of ETR patterns – theoretically, each pixel of
the classes ‘horticulture’, ‘mixed agriculture’, ‘citrus’, ‘greenhouses’ and
‘olives’ can be assumed as irrigated areas, however ETR shows different
patterns – then leads to the parameterization of b).

The irrigation input for b) is based on the evapotranspiration pat-
terns derived from the Triangle Method to distribute the irrigated
water over the catchment. To determine the irrigated fields, satellite
scenes were selected fromMay to September, when rain fed agriculture
has come to a close as these months characterize the dry period. One
third of the imagery, the months June and July, were used for validation
purpose. These validation months were chosen to permit a validation
period centered in dry months used for the parameterization before
and after the validation period. A total of twelve cloud-free Landsat
TM scenes (175/38 path/row, Table 1) met the criteria in and around
the reference period 1971–2000.

The mean evapotranspiration in mm derived from these scenes was
normalized for the parameterization procedure. The resulting irrigation
input map, shown in Fig. 3, will be further analyzed in Section 4.2 and
the remaining validation scenes compared to WaSiM results in
Section 4.3.

4. Results

4.1. Parameterization of the irrigation input

The derived mean evapotranspiration grids for parameterization
(see Table 1)were then comparedwith theWaSiM results for the corre-
spondingmonths. Fig. 4 presents the absolute differences for theparam-
eterizationmonths (May, August and September) expressed as absolute
difference [mm] for Triangle derived ETR – WaSiM-ETR. In this figure,
the Triangle Method derived ETR represents the mean ETR derived by
all Landsat TM scenes for parameterization while the WaSiM modeled
ETR is calculated as long term daily mean evapotranspiration for the pa-
rameterization months. White areas in the plot represent urban areas,
which were masked out, as they were also excluded in the parameteri-
zation file for irrigation. The deviations for the central part of the catch-
ment are within an acceptable range of 1–2 mm and correspond to the
patterns of the satellite derived image, which was the basic aim of this
approach. This range is not constant over the entire catchment, causing
high deviation in the southeast leading to an acceptable overall correla-
tion (r = 0.53).

The bias ofWaSiMmodeled and satellite derived ETR stems from the
fact that the satellite imagery used for this application represents clear-
sky conditions and high radiation days only, due to the optical sensor.
The resulting ETR of WaSiM is thus preferable lower than the Triangle
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Method derived. In this context, a strong statistical assessment of the
absolute ETR in mm is not meaningful.

When compared to the study of Immerzeel andDroogers (2008), the
correlation here is slightly lower. The reasons for this are twofold: a) in
contrary to their study, WaSiMwas not calibrated with the evapotrans-
piration patterns, but they were only used for parameterization. The
reason for this is the lack of data to perform a standard calibration on
a physically based model as WaSiM in the case of the Gaza Strip. And
b) in the study presented here, several Landsat TM scenes were
acquired to serve as a mean reference to be comparable with a long-
term mean of climate model driven results. Considering this, the corre-
lation (r = 0.53) deemed to be acceptable and the parameterization of
WaSiM constitutes a satisfying setup. Significance of the correlation
was tested successfully for the 95% confidence interval using Pearson,
Spearman's rank and Kendall's rank.

4.2. Evaluation of model performance using ETR patterns

The months June and July were left out for validation purposes to
compareWaSiMmodeled ETRwith thepatterns derived from the Trian-
gle Method. For these validation months, the deviations between
WaSiM and Triangle derived ETR increased slightly throughout the
catchment. The patterns of the WaSiM and triangle modeled ETR
agree in the same way as for the calibration period for the validation
months (Fig. 6 left). When aggregated to subcatchment scale, as
presented in Fig. 5, the correlation increases (r = 0.85) and, although
absolute values differ considerably, the patterns match satisfactorily.

This correlation agrees with the results presented by Immerzeel and
Droogers (2008). The bias in the absolute ETR in mm is explained in
the previous section.

For a general validation of the approach, WaSiM was set up with
three different irrigation schemes: a) the here presented approach
using the TriangleMethod as parameterization of the irrigationmodule,
b) the classical approach of distributing the total amount of irrigated
water over the (potentially) irrigated land use classes according to a
land use classification and c) by applying no irrigation at all. The results
are presented in Fig. 6 for the validation months June and July as long-
term daily difference in [mm] from the triangle derived ETR patterns
for thesemonths. To better assess the patterns here and for visualization
reasons, each pixel is based on a 5 × 5 pixel mean. Not surprisingly, the
deviations for the non-irrigation setup are extremely high (Fig. 6, right),
with a mean deviation of 3.24 mm compared to the triangle results. No
specific patterns are identifiable for this setup and ETR is spread evenly
over the entire catchment.

This applies partly also for the classical parameterization (center plot
in Figs. 6 and 7), although themean difference compared to the triangle
validation ETR is considerably lower in this case as presented in Fig. 7.
The triangle approach decreases the mean deviation further, to
1.95 mm (left plot in Figs. 6 and 7). This is not surprising, as the same
method was used for the parameterization in this particular setup.
Maximum differences occur at the boundaries of the catchment in the
northwest, which are classified as “sand” inWaSiM, leading to extremely
low ETR as the land use table was maintained for either irrigation setup.
The overallmean for ETR is comparable for the classical parameterization

Fig. 3. Resulting irrigation parameterization input file according to the Triangle Method parameterization. White areas represent urban areas, which were masked out, as they do not
represent irrigated areas.
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and the triangle approachwith around 1.41mmper day for themonths
of June and July. However, the patterns for ETR follow the irrigation
input of the Triangle Method, leading to low differences and high
ETR in the central part of the Gaza Strip and in general a better

representation, which is furthermore reflected by a lower standard
deviation in Fig. 6. Reasons for this shift of 1.5–2 mm (Fig. 6) stem
from the method itself, as an optical sensor was used to estimate ETR.
The resulting evapotranspiration patterns are clearly biased, as only

Fig. 4. Deviation for the calibration scenes for Triangle derived ETR – WaSiMmodeled ETR.

Fig. 5. ETR results per subcatchment for the calibration months for the Triangle Method (left) and WaSiM (right).
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cloud-free high radiation days can be taken into account. A total match
of ETR values can thus not be expected and would not even be desired.
The correlation for the TriangleMethod validation ETR is assessed in the
Taylor diagram (Taylor, 2001) in Fig. 8.

The green circles represent the RMSE as compared to the validation
ETR (dark green square), blue circles indicate the standard deviation for
each grid, and the black lines correspond to the correlation with the val-
idation ETR. At around 1mm, RMSE is equally high for the classical irriga-
tion (green dot) and the triangle derived (red dot), while slightly lower
for the non-irrigated WaSiM simulation (blue dot). However, over- and
underestimations throughout the catchment are balancing the RMSE.
The correlation for the triangle irrigation is within an acceptable overall
range (r = 0.53). Slightly negative correlations show the mismatch of
the other two irrigation schemes, as already shown in Figs. 6 and 7.

4.3. Future drought risk Gaza — WaSiM results

As the correlation and deviation for both calibration and validation
months showed acceptable results, the triangle derived irrigation
scheme was chosen as input to assess future changes in the Gaza
Strip. For this purpose, four different RCM–GCM combinations were
chosen to provide climate scenarios. A detailed analysis of the perfor-
mance of each RCM is given in Deidda et al. (2013).

Table 2 gives an overview on the changes projected by WaSiM for
the small ensemble of four RCM combinations applied. The ECHAM5
driven RCMs agree in a decline of precipitation of 9–17%, resulting in a
slight decrease of ETR of 1–3%. ETpot is likely to increase, as all four
simulations agree in an increase of 5–10%. Runoff (Q) is projected to
decrease by 8–26% depending on the simulation.

Fig. 6.Differences in ETR to triangle validation according to threeWaSiMsetups: The onewith the irrigation input scaled according to the TriangleMethod,with the irrigation patterns as in
Fig. 3 (left), with regular irrigation, or the classical approach,meaning distributing the total irrigatedwater over all (potentially) irrigated land use classes (center) and finally the base line
run without irrigation at all (right). Here, the long-term daily mean deviations for the validation months are shown as difference of triangle ETR –WaSiM ETR. Numbers represent mean
difference from the triangle ETR and corresponding standard deviations. White areas represent urban areas, which were masked out here.

Fig. 7.Absolute ETR according to threeWaSiM setups: The onewith the irrigation input scaled according to the TriangleMethod,with the irrigation patterns as in Fig. 3 (left), with regular
irrigation, or the classical approach, meaning distributing the total irrigatedwater over all (potentially) irrigated land use classes (center) and finally the base line runwithout irrigation at
all (right). Numbers represent long-term daily mean ETR for the validation months and corresponding standard deviations. White areas represent urban areas.
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To address meteorological drought risks, Fig. 9 shows the long-term
mean daily precipitation per month, which served as input for the
hydrological model, as provided by the four RCM scenarios for both
the reference (green band) and future (purple band) period. The
model ensemble reveals that precipitation is likely to increase in fall,
with a slight surplus in September and October, while throughout the
rest of the year, a decrease is indicated. All in all, the projected decline
of precipitation reported by Christensen et al. (2007) can also be
found here. One of four RCMs, RCA3 forced by the HadCM3 GCM
shows a slight increase in annual precipitation (Table 2), mainly
resulting from an increase in January. However, the three RCMs driven
by ECHAM5 agree in a decline in annual precipitation with a pro-
nounced decrease in January. Themean derived from the four scenarios,
shown as solid (dotted) black line for reference (future) period, results
in a decline of 10–20% as also summarized in Table 2.

As a consequence, ETR, shown in Fig. 10, is likely to decrease in
winter months. However, the HadCM3 scenario driven run indicates

an increase in ETR in February, originating from precipitation increase
in January. The general distribution, however, is preserved also for the
future simulations, with maximum evapotranspiration in February
andMarch, due towater availability, increased temperatures and higher
radiation as compared to December and January. To estimate the impact
on drought risk, an evapotranspiration index (ETI) using ETR and ETpot
is calculated from the ratio of actual to potential evapotranspiration (see
Eq. (5)).

ETI ¼ ETR
ETpot

ð5Þ

As the main limitation for ETR is water availability a decreased ETI
indicates increased water stress. Fig. 11 presents the change in ETI
from future to reference in percent. Therefore, values N100% represent
an increased share of ETR for the future period. The ETI is likely to de-
crease throughout the year, with the exception of November, for most
parts of the Gaza Strip. Only for the southeast an increase in ETI is
projected, stemming froma slight increase in ETR in the respective sum-
mermonths. As presented in Fig. 10, the ETR in this areawas already rel-
atively low; therefore small absolute changes can result in extreme
relative changes. However, ETI for the central part of the Gaza Strip,
which is themain area for irrigated agriculture, is projected to decrease
throughout the year. In the summer months, July to September, these
effects are not too pronounced, as irrigation management remains
unchanged in the model setup for both periods. The months with only
limited irrigation or without irrigation such as February and March,
show considerably lower ETI for the future period due to the precipita-
tion projections. The southern part of the Gaza Strip benefits from the

Fig. 8. Taylor diagram for the three different irrigation schemes, compared to the Triangle Method validation.

Table 2
Overview over long-term annual results for WaSiM model results for the four applied
RCMs. The results are presented as difference for the future period 2041–2070 compared
to the reference period 1971–2000 in percent. Presented are changes in precipitation (P),
actual evapotranspiration (ETR), potential evapotranspiration (ETpot) and runoff (Q). The
same irrigation input was chosen for reference and future periods.

RCM P [%] ETR [%] ETpot [%] Q [%]

ECH–REM −12.4 −3.1 +5.8 −22.9
ECH–RMO −16.9 −5.1 +5.5 −26.1
ECH–RCA −9.1 −1.3 +6.9 −22.8
HCH–RCA +5.6 +4.4 +10.5 −8.6

885D. Gampe et al. / Science of the Total Environment 543 (2016) 877–888



slight increase in precipitation during the fall months and evapotranspi-
ration is consequently projected to increase here as well.

The presented results for ETI predict an increased drought risk for
the Gaza Strip in the future period, as the share of actual to potential
evapotranspiration is likely to decline. This increase will be most severe
in the transition months February and March. To compensate this
general decline and to balance the water need to maintain agricultural
productivity, the demand for future irrigation is increasing.

5. Discussion and conclusion

Irrigation demand and supply is a highly relevant component for the
management of increasingly scarce freshwater resources in the Gaza
Strip. Acquiring a better understanding of the potential impacts of
climate change on water availability and drought risk is essential for
the adaptation ofwater resourcesmanagement in the region. This, how-
ever, requires the application of a meteo-hydrological modeling chain,

which remains a challenge under the given conditions of substantial
data scarcity.

To overcome the problem of data scarcity and to set up a hydrolog-
ical model in an ungauged basin, a remote sensing approach is intro-
duced and applied to support the parameterization process. The
Triangle Method by Price (1990), refined and elaborated by Carlson
et al. (1995) and Jiang and Islam (1999), was adapted for an application
in the Gaza Strip to parameterize the irrigation input of the hydrological
model WaSiM. This approach was chosen over comparable methods,
such as the mentioned SEBAL, for reasons of data availability, as SEBAL
requires information on additional meteorological parameters, e.g.
wind speed and relative humidity. As shown in this study, the parame-
terization using the irrigation patterns derived from remotely sensed
ETR is possible and improves the model performance compared to a
classical parameterization approach. However, data availability is still
a limiting factor. It is not clear how many Landsat TM – or comparable
– scenes are necessary to derive robust results. Furthermore, the

Fig. 9. Long-termdailymean precipitation results for the future (2041–2070) and reference (1971–2000) periods according to the chosen 4-RCM-ensemble andWaSiM simulations. Solid
line represents the mean of the reference simulations, dashed line the future period.

Fig. 10. Long-term daily mean ETR results for the future (2041–2070) and reference (1971–2000) periods according to the chosen 4-RCM-ensemble and WaSiM simulations. Solid line
represents the mean of the reference simulations, dashed line the future period.
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performance of the Triangle Method is limited to several applications
(Batra et al., 2006; Stisen et al., 2008; Tang et al., 2010; Wang et al.,
2006; Yiang and Wang, 2011), however, their studies showed accept-
able results and the method seems robust. Nevertheless, ground truth
information of ETR would be necessary in each specific case to evaluate
the performance.

In the context of this study, the R-package ‘TriangleMethod’ was
written, containing all necessary calculation steps to efficiently perform
the calculations for Landsat TM and ETM+which allow easy processing
of a large data base of remote sensing images. In future research, this
could allow for a detailed analysis to answer the question on how
many scenes are actually required to provide a robust prediction.

An optical sensor was used for the estimation of ETR; thus, only high
radiation, cloud free days are analyzed to estimate ETRwhich leads to a
general overestimation of ETR. Thismain limitation of themethod is un-
avoidable but nevertheless important when comparing the Triangle
Method ETRwithmodel data. Amatch ofWaSiM-modeled and Triangle
Method ETR would thus not be desirable. Comparison with theWaSiM-
modeled ETR showed acceptable results for most parts of the catch-
ment. Compared to the classical approach, assigning the irrigated
water according to the land use classes, could not reproduce the
patterns in the validation process, as shown in the Taylor diagram in
Fig. 8 as well as in Figs. 6 & 7. On a subcatchment level, the results of
the Triangle derived parameterization revealed satisfactory results.

Finally, the setup of the hydrologicalmodelwas used to assess future
changes in evapotranspiration and to assess future drought risk.
Projected decreases in precipitation cause a general decline of actual/

real evapotranspiration, as water is the only limiting factor in this
area. Contrary to the ECHAM5 driven RCMs, the HadCM3 GCM driven
RCA 3model projects slight increases in precipitation and evapotranspi-
ration in consequence.

Furthermore, the calculated ETI, the ratio of actual to potential
evapotranspiration, was presented as a possible and robust indicator
to assess drought risk. The results presented for the ECHAM5 driven
RCA3 model run show a decline in ETI, consequently indicating an in-
creased drought risk in the area. The other RCMs applied agree in this
decline as the results, presented in Table 2, indicate. Current irrigation
inputs compensate this effect to a certain degree in the summermonths,
however not to the full extent.

To maintain current agricultural productivity, irrigation demand is
likely to increase in the future also for the already highly irrigated
months in the dry season. Furthermore, the projected decline in precip-
itation also during thewet season inwinter and an increase in ETpot are
likely to raise the demand for irrigation also for these months. Current
irrigation management is already unsustainably, using vast amounts of
non-renewable ground water from the Gaza Aquifer. It is very likely
that continued population growth and climate change will contribute
conjointly to an ever increased exploitation of the remaining ground
water resources. An increased demand for irrigation in the future will
also increase the pressure on the ground water aquifer in this area. To
avoid a further exploitation of the resources while preserving or even
enhancing current agricultural productivity, irrigation quotas must
either be reduced, more efficient irrigation techniques must be
employed or alternative water resources must be made available.

Fig. 11.Change in the evapotranspiration index (ETI), defined as in Eq. (5) for thedifference of future (2041–2070) and reference (1971–2000) period in percent. ChangesN100 represents
a higher ETI for the future period, thus a larger share of ETR on ETP. Simulations shown here are for the ECHAM5 driven RCA3 simulation.
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3 Conclusion & Outlook

This thesis focused on the assessment of uncertainties in the hydro-climatic modeling chain
and a robust assessment of future changes on the hydrology of selected river basins over
heterogeneous landscapes in the Mediterranean and the Alpine region. The presented
results confirm the findings of previous studies (e.g Christensen et al., 2007) and highlight
that the Mediterranean region is likely to experience severe changes in the water balance
under climate change. The presented publications however also highlight the various sources
of uncertainty included in climate projections and along the hydro-climatic uncertainty
cascade. The main findings of this thesis are presented in the following conclusion together
with the research questions presented in section 1.4.

Q1: How well do gridded precipitation products perform on the catchment scale especially
over complex topography?

The results presented in this thesis confirm the results presented by Prein and Gobiet
(2017) also on the catchment scale and indicate a considerable uncertainty introduced by
the selection of the reference grid. The results presented by Gampe and Ludwig (2017)
highlight the need to account for observational uncertainty and the importance for a thor-
ough evaluation and selection of the reference grid instead of an arbitrary selection as in
most impact assessment studies. The analyzed data sets reveal a large spread for annual
precipitation with deviations of up to 30% and show even more pronounced differences
for monthly precipitation. The uncertainty exceeds the spread introduced purely through
different spatial resolutions throughout the year. Uncertainties increase for heavy precip-
itation and consecutive dry and wet days, where also the impact of spatial resolution is
more important. As presented in Gampe and Ludwig (2017), the spread of the climate
projections generally exceeds observational uncertainty, with the exception of the summer
months, where both are of similar magnitude. This indicates the importance to account for
observational uncertainty. Based on the presented results, it is recommended to consider
multiple data sets originating from multiple sources, to account for source specific weak-
nesses as undercatch, and construct an ensemble similar to climate projections also for the
reference data sets. It is highly relevant to evaluate the data sets first to exclude unrealistic
data sets.

Q2: What is the relative contribution of observational uncertainty to the overall uncer-
tainty in the hydro-climatic modeling chain?

Variance decomposition revealed only a minor contribution of bias correction on the
overall variance of 10-15%. However, this is only based on climate change signals and
therefore somewhat misleading as it likely underestimates the role of observational uncer-
tainty. The contribution of the GCMs to the overall uncertainty dominates with 30-40%,
followed by the RCP with 20-30%. Similar to the uncertainty introduced by the RCMs,
observational uncertainty is larger for the summer months, where also the applied reference
data sets showed the highest spread.
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Q3: What is the influence of observational uncertainty on post-processing, i.e. bias
correction, and climate model evaluation and model selection?

Despite large differences in the reference grids, the influence of observational uncertainty
on RCM evaluation is less pronounced than previously expected. This confirms the higher
uncertainty arising from climate projections compared to observational uncertainty and
indicates that RCM bias exceeds observational uncertainty. Nevertheless, the choice of
the reference does influence model selection based on validity and may cause different
climate change signals and also the direction of change due the difference in selected models.
Bias correction with different reference data sets did not have a significant impact on the
climate change signals but severely influences the magnitude of future precipitation. This
becomes even more pronounced for heavy precipitation and highlights the need to consider
observational uncertainty in future studies, especially if an assessment of future extremes
is of key interest.

Q4: What is the relative contribution of each of the uncertainty sources involved in
recent regional climate projections on the catchment scale and for all the variables of the
water balance in the downscaled CMIP5 climate projections?

The results presented in Gampe et al. (2016b) confirm the results of previous studies that
uncertainties introduced by the GCM also dominate at the catchment scale for the most
recent climate projections and the increased uncertainty share of the RCM for precipitation
compared to temperature. However, scenario uncertainty is of similar magnitude as model
uncertainty from the GCMs for both, precipitation and temperature. This indicates that
scenario uncertainty might have been underestimated in previous studies that are based
on the SRES emissions. These findings have strong implications for model selection as the
choice of GCM and RCP are crucial to capture the uncertainties of the EURO-CORDEX
ensemble. For the variables surface runoff and evaporation RCM uncertainty dominates in
most cases, which was expected as these variables are driven by the different parameteri-
zations of the RCMs and thus not directly impacted by the GCM. However, the findings
indicate a considerably lower spread introduced by the RCMs over the mountainous basins
(Adige and Sava).

Q5: How can remote sensing data be applied to improve the robustness of a hydrological
model while being computational efficient?

Hydrological modeling using high-resolution climate projections can be a valuable tool
to assess the impacts of future climate on the hydrology of given areas. However, data
scarcity hampers the robustness of hydrological models and can be considered an om-
nipresent problem in many Mediterranean catchments. To overcome this issue, the thesis
explored two potential strategies: increase the robustness of hydrological models using re-
mote sensing and the direct application of RCM outputs to estimate changes on the water
balance without the need of additional data. A relatively simple approach to estimate ac-
tual evapotranspiration from remote sensing imagery, originally elaborated by Jiang and
Islam (1999), was applied to parameterize irrigated areas in the Gaza Strip. Results reveal
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a more realistic representation and increased robustness in the model setup. In the course of
this study an R-package was compiled to allow for an efficient processing of remote sensing
images to derive evapotranspiration also over other regions and river basins.

Q6: Is the Mediterranean region likely to experience increased pressure on the water
balance and thus likely to be exposed to increased water scarcity under future climate?

The direct use of RCM outputs for evaporation and surface runoff provides promising
estimates of future changes on the water balance and can thus be applied as a first assess-
ment of future water scarcity. While this does not represent the correct magnitudes - due
to model biases in the RCMs - the model ensemble shows high agreement over most of
the areas which indicates robustness in the projected changes. The approach is therefore
recommended as a first estimation of future changes on the water balance but does not al-
low for detailed recommendations. The results presented by Gampe et al. (2016a) indicate
increased pressure on the water resources to maintain the current agricultural productivity
in the Gaza Strip also under future climate. As presented in Gampe et al. (2016b) the
climate projections indicate that areas already affected by water scarcity, such as the Ebro
river in Spain and the Evrotas in Greece, are likely to experience increased scarcity in the
future.
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Figure 5: Updated structure for future activities to assess the hydrological consequences of each source
of uncertainty. Additionally, the application of a hydrological model will allow for a comparison with the
changes projected by the RCMs as presented in Paper III.

Based on the results presented, several research questions for future studies emerge. As
presented in Figure 5, a detailed assessment of the hydrological consequences is necessary
to fully answer the role of several uncertainty sources for the hydro-climatic modeling
chain. As bias correction with multiple reference data sets revealed large differences for
future extreme precipitation it is essential to know how this translates to peak flows and
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future runoff projections. Additionally, different bias correction methods shall be applied
to evaluate the role of the reference grid against the uncertainties arising from the bias
correction method. Although there is a large variety of reference data sets available there
is still a strong need for a high resolution data set on the continental or even global scale
for a more detailed evaluation of climate simulations.

Additionally, detailed hydrological models are required to evaluate the estimates of
surface runoff and evapotranspiration provided by current RCMs. This is essential in order
to further evaluate to what degree RCM outputs can be used directly and how the results can
be interpreted. As precipitation outputs of RCMs are likely biased, this would also allow to
estimate model biases for surface runoff and evapotranspiration and help to improve RCMs
and increase their credibility.
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