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Zusammenfassung

Der Stoffwechsel aller lebenden Organismen beruht auf der katalytischen Aktivität von be-
stimmten Proteinen – den Enzymen. Enzyme sind sehr spezifisch hinsichtlich der Stoffe, die sie
umsetzen, sowie der biochemischen Reaktion, die sie beschleunigen. Um eine komplexe Um-
wandlungen des Stoffwechsels zu erreichen organisieren sich mehrere Enzyme in Reaktionsse-
quenzen, den so genannten Stoffwechselwegen. In diesen wird jeder Reaktionszwischenschritt
von einem bestimmten Enzym katalysiert. Zusätzlich zu der konzeptionellen Organisation von
enzymatischen Reaktionen in Stoffwechselwege sind kooperierende Enzyme häufig räumlich
in Cluster, Komplexe und Kompartimente organisiert. Es wird angenommen, dass durch die
Bildung dieser makromolekularen Strukturen die Verarbeitungseffizienz von Zwischenproduk-
ten verbessert wird. Dies ist für Zellen vor allem dann essentiell, wenn die Zwischenprodukte
toxisch, flüchtig oder instabil sind. Die Mechanismen, die diese verbesserte Umsetzung von
Zwischenprodukten ermöglichen, sind vielfältig und beinhalten Prozesse wie beispielsweise das
metabolic channeling. Hierbei werden durch strukturelle Eigenschaften, wie intramolekulare
Tunnel, Schwingarme und Ladungsverteilungen, die Zwischenprodukte direkt von einem En-
zym zum nächsten transportiert. In vielen Multienzym-Clustern und -Kompartimenten sind
diese strukturellen Merkmale jedoch nicht vorhanden und der Transport der Zwischenproduk-
te von einem Enzym zum nächsten geschieht lediglich durch Diffusion. In diesen Fällen ist
unklar wie die räumliche Nähe von Enzymen die Effizienz der sequentiellen Reaktionen stei-
gern kann. Insbesondere die Designprinzipien, die hinter solchen Multienzym-Anordnungen
stehen, sind bisher wenig verstanden.
In der vorliegenden Arbeit werden physikalische Prinzipien erforscht, welche der optimalen
räumlichen Organisation von Enzymen zugrunde liegen. Mit Hilfe unterschiedlicher Reaktions-
Diffusions-Modelle werden effiziente Kompartimentierung- und Cluster-Strategien kooperie-
render Enzyme berechnet und analysiert, wie sich diese aus dem Zusammenspiel von enzy-
matischer Reaktion und Diffusion der Metabolite ergeben. Die Entschlüsselung dieser Stra-
tegien und der dabei zugrunde liegenden physikalischen Prinzipien trägt zu einem besseren
Verständnis solcher Multienzym-Strukturen bei. Zugleich wird dadurch ermöglicht die Anord-
nung von Enzymen in synthetischen Bioreaktoren optimal zu koordinieren, um eine effizientere
Synthese von beispielsweise Medikamenten oder Biokraftstoffen zu erzielen.
Häufig sind die Enzyme bestimmter Stoffwechselwege in semipermeablen Membranen oder
Proteinhüllen eingeschlossen. Durch diese Kompartimentierung von Stoffwechselreaktionen
wird das Entweichen von flüchtigen oder instabilen Zwischenprodukten verhindert, was zu
einer Steigerung der Effizienz des Stoffwechselweges führt. Obwohl die Kompartimentierung
von Enzymen ein allgegenwertiges Phänomen in lebenden Organismen ist und große An-
strengungen unternommen wurden, um synthetische Kompartimente herzustellen, sind die
optimalen Designprinzipien bislang kaum erforscht. In Kapitel 3 wird untersucht wie die En-
zymzusammensetzung und Eigenschaften der Kompartimente gewählt werden müssen, um
die synergistische Aktivität der eingeschlossenen Enzyme optimal zu nutzen. Mithilfe eines
quantitativen Modells konnte gezeigt werden, dass die optimale kollektive Produktivität der
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Enzyme nur erreicht werden kann, wenn die Kompartimente eine bestimmte kritische Größe
überschreiten und die Enzymkonzentrationen gemäß eines Potenzgesetzes in der Komparti-
mentgröße gewählt wird.
Zusätzlich zu der Kompartimentierung von Stoffwechselwegen akkumulieren Enzyme häufig
zu großen Clustern, die nicht durch eine Membran oder Proteinhülle begrenzt sind. In den
Kaptieln 4 und 5 wird analysiert, unter welchen Bedingungen die Bildung dieser Multienzym-
Cluster die Produktivität von Stoffwechselwegen verbessern kann und wie die Enzyme ange-
ordnet werden müssen um die Produktivität zu optimieren. Mit Hilfe eines Minimalmodells, in
dem das erste Enzym eines zweistufigen Stoffwechselweges als lokalisierte Quelle von Zwischen-
produkten beschrieben wird, wird gezeigt, dass die Kolokalisierung der zweiten Enzyme mit
dieser Quelle die Umsetzung von Zwischenprodukten erheblich steigern kann. Diese verbes-
serte Umsetzung ist vergelichbar mit der, die durch direkte Channeling-Mechanismen erzielt
wird. Die optimale Verteilung der Enzyme hängt von dem Verhältnis der katalytischen Effi-
zienz des zweiten Enzyms zur Diffusivität der Zwischenprodukte ab. Wenn dieses Verhältnis
klein ist, ist es am effizientesten alle Enzyme zu clustern. Wenn jedoch dieses Verhältnis
einen kritischen Wert überschreitet, wird es vorteilhaft einige Enzyme entfernter vom Cluster
zu positionieren. Dieser Übergang ist ein allgemeines Phänomen, welches bei verschiedenen
Reaktionskinetiken, räumliche Dimensionen und Verlustmechanismen der Zwischenprodukte
auftritt.
In dem untersuchten Modell wurden jedoch einige wichtige Details, wie die explizite ers-
te enzymatische Reaktion sowie die räumliche Ausdehnung der Enzyme, vernachlässigt. Die
Berücksichtigung dieser zusätzlichen Details führt zu zwei fundamentalen Tradeoffs, die die
Strategien optimaler Enzymanordnungen bestimmen. Der erste Tradeoff zeigt sich unabhängig
von der räumlichen Ausdehnung der Enzyme und ergibt sich allein aus der Reaktions-Diffusions-
Dynamik der zweistufigen Reaktion. Innerhalb eines Multienzym-Clusters führt die erhöhte
Konzentration der Enzyme zu einer effektiveren Verarbeitung von Zwischenprodukten. Jedoch
verringert die erste Reaktion die Substratkonzentration innerhalb des Clusters, wodurch die
Umsetzungsrate zum Zwischenprodukt herabgesetzt wird. Der zweite Tradeoff basiert auf
der räumlichen Ausdehnung der Enzyme und den sich dadurch ergebenden sterischen Ef-
fekten, die vor allem in Enzym-Clustern relevant werden. Durch eine enge Anordnungen
von Enzymen werden die Zwischenprodukte eingeschlossen, sodass ihr Entweichen verhindert
wird und sie folglich effizienter umgesetzt werden können. Auf die gleiche Weise werden je-
doch die Substrate daran gehindert die Enzyme zu erreichen, wodurch die Produktivität der
ersten Enzymreaktion herabsetzt wird. Das Zusammenspiel dieser Tradeoffs führt zu bemer-
kenswerten Enzymanordnungen von Modell-Multienzym-Komplexen. Diese weisen auffallende
Änlichkeiten mit den Elektronenanordnungen des berühmten Thomson-Problems der klassi-
schen Elektrostatik auf.
Im letzten Kapitel wird untersucht, wie Zellen durch die Bildung unterschiedlicher Enzym-
Cluster den Stoffwechsel an einem Verzweigungspunkt regulieren können. Die Bildung von
Clustern konsekutiver Enzyme erhöht die Rate, mit der Zwischenprodukte umgesetzt wer-
den. Hierdurch kann das Verzweigungsverhältnis in Richtung der kolokalisierten Enzyme ver-
schoben werden. Im Gegensatz dazu ermöglicht die Sequestrierung eines der Enzyme des
Verzweigungspunktes die Umsetzungsrate herabzusetzen. Dies hat wiederum eine Verschie-
bung des Verzweigungsverhältnisses zur Folge. Die abschließende Analyse ergab, dass beide
Strategien für 75 Prozent der Enzyme des Stoffwechsels relevante Regulierungsmechanismen
darstellen. Die Ergebnisse dieser Arbeit verdeutlichen, dass die räumliche Anordnung von
Enzymen einen wesentlichen Einfluss auf den Stoffwechsel lebender Organismen hat.



Abstract

The metabolism of all living organism relies on the catalytic action of enzymes. To achieve
complex biochemical transformations, sets of enzymes work together in so-called metabolic
pathways, where each reaction step is catalyzed by a specific enzyme. Additionally to this
conceptual organization of enzymatic reactions into pathways, collaborating enzymes are in
many cases spatially organized into clusters, complexes, and compartments. It is believed that
these macromolecular structures promote the processing of pathway intermediates, which is
vital for cells when the intermediates are toxic, volatile, or unstable. The mechanisms that en-
able this enhanced processing of intermediates are diverse involving “metabolic channeling”,
which relies on structural features like intramolecular tunnels, swinging-arms, and charge
distributions that direct the transfer of intermediates between active sites. Yet in many
multi-enzyme clusters and compartments these structural features are not present and the
transport of intermediates is mediated by diffusion. In these cases it is unclear how the spatial
proximity of enzymes can enhance reaction fluxes. In particular, the design principles behind
such multi-enzyme assemblies are poorly understood.
In this work, we seek to elucidate the physical principles that determine the optimal strategies
of spatial enzyme organization. Using various reaction-diffusion models, we identify optimal
compartmentalization and clustering strategies of collaborating enzymes and analyze how
these arise from the coupled dynamics of enzymatic reactions and metabolite diffusion. Un-
raveling these strategies and the underlying physical principles will not only help to better
understand natural multi-enzyme arrangements but will also allow synthetic biologists to
optimally design enzymatic reactors for the efficient production of high-value products, phar-
maceuticals, or biofuels.
A strategy that is frequently used by cells is the compartmentalization of cooperating enzymes
into intracellular bodies delimited by membranes or protein shells. Confining reaction path-
ways within compartments allows cells to efficiently process elusive or unstable intermediate
products. Although metabolic compartmentalization is an ubiquitous phenomenon and much
effort has been spent in synthetically constructing these compartments, there remain many
open questions regarding optimal design principles. In chapter 3 we quantitatively study
how the compartment size and enzyme composition of an enzymatic compartment should be
chosen in order to optimally exploit the synergistic activity of two consecutive enzymes. We
find that to achieve optimal collective productivity of the enzymes, the compartments have to
be larger than a certain critical size and the enzyme densities have to be adjusted according
to a power-law scaling in the compartment size.
In the chapters 4 and 5 we focus on enzyme clustering and optimal enzyme arrangements
in the absence of a delimiting shell or membrane. We show that enzyme coclustering can
significantly improve the processing of intermediate molecules without the need for structural
features that transfer intermediates between enzymes. Using simple reaction-diffusion models
where the upstream enzymes are treated as a localized source of intermediates, we demon-
strate that the optimal arrangement of downstream enzymes exhibits a generic transition
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from a cluster to a more extended distribution as the overall enzymatic activity is increased.
This transition is a general phenomenon, which occurs for different reaction kinetics, spatial
dimensions, and loss mechanisms of intermediate molecules. We next extend this minimal
model to also account for the spatial extension of enzymes and the explicit upstream reaction.
These additional details give rise to two fundamental trade-offs, the first between efficient in-
termediate transfer and depletion of substrate and the second between steric confinement of
intermediates and accessibility of enzymes to substrate. We characterize the optimal design
principles for the arrangement of sequential enzymes that emerge from the interplay of these
trade-offs. Notably, the question of optimal enzyme organization in a multi-enzyme complex
is similar to the famous Thomson problem of electrostatics.
In the last chapter (Chap. 6), we ask how enzyme clustering can regulate the fluxes at a
metabolic branch point. In addition to multi-enzyme coclustering, which favors the pro-
cessing of intermediates towards the product of the clustered enzymes, we propose enzyme
sequestration as a mechanism to downregulate the flux through the sequestered enzymatic
reaction. Our analysis reveals that coclustering and sequestration represent two viable reg-
ulation strategies for more than 75% of metabolic enzymes. Collectively, the results of this
thesis demonstrate that the spatial organization of enzymes can haven a strong impact on
the metabolism of living organisms.
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1 Enzyme kinetics and metabolic modeling

Enzymes are catalysts which accelerate biochemical reactions by reducing the activation en-
ergy. They are mostly proteins and allow reactions in living organisms, which otherwise
would not occur, to proceed on sufficiently short time scales. In general, enzymatic catalysis
is initiated by the binding of the so-called substrate molecule to the enzyme. In the bound
substrate-enzyme-complex, the activation barrier of the reaction is reduced and the substrate
is rapidly processed to the product. After this transformation, the product-enzyme-complex
quickly dissociates and the enzyme is available for the next reaction. Most enzymes are very
specific for the substrate they catalyze. This specificity is due to the shape and charge distri-
bution of the binding pocket of the enzyme, the so-called active site, which is complementary
to the substrate such that it fits only to a specific substrate like a key into a lock. Enzymes
are crucial for cellular metabolism where they catalyze the many biochemical reactions. To
achieve complex biochemical transformations enzymes are organized into pathways where
each step of the pathway is catalyzed by a certain enzyme. The different pathways in cel-
lular metabolism are interconnected forming a complex network of enzymatic reactions. In
this chapter we provide background on single enzyme kinetics and illustrate two well-known
mathematical frameworks for modeling the kinetics of metabolic pathways.

1.1 Introduction to enzyme kinetics

1.1.1 The Michaelis-Menten equation

Enzymatic reactions are initiated by the formation of an enzyme-substrate-complex [1]. As
the substrate is bound to the enzyme it is converted to the product, leading to an enzyme-
product-complex which subsequently dissociates to a free enzyme and a product. Under
the assumption that the dissociation of the enzyme-product-complex is fast and the amount

linear regime

Figure 1.1: Michaelis-Menten kinetics. The reac-
tion velocity v as a function of the substrate con-
centration cs. In the low substrate concentration
regime, most enzymes are not bound to a sub-
strate and, thus, the reaction velocity increases lin-
early with cs. The slope of the curve in the lin-
ear regime, kcat

KM
, measures the catalytic efficiency of

the enzyme. For high substrate concentrations, in
contrast, all enzymes are bound to substrates and
hence the reaction velocity saturates to the maxi-
mal velocity, vmax = kcatce.
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of product at the beginning of the reaction is low, the enzyme-product-complex and the
recombination reaction of product with enzyme can be ignored and the enzymatic reaction
can be described by the simplified reaction scheme,

E + S
κ1


κ−1

ES
kcat−→ E + P. (1.1)

Based on this reaction scheme, Michaelis and Menten derived an equation that connects the
steady-state reaction velocity, v, with the enzyme and substrate concentrations as well as the
rates of the individual reaction steps [2]. This so-called Michaelis-Menten equation captures
the kinetics of many enzyme catalyzed reactions and because of its importance in this thesis,
we will briefly present a derivation. We start by expressing the velocity of the catalytic
reaction as,

v = kcatces, (1.2)

where ces is the concentration of the enzyme substrate complex, and kcat is the turnover
number, which is defined as the number of substrate molecules converted to product per
enzyme molecule and unit time. To derive an expression for the reaction velocity, we need to
express ces in terms of the directly known substrate concentration cs and the total enzyme
concentration ce. In steady state the concentration ces is constant and, thus, the rate of
complex formation equals the rate of dissociation and catalysis,

κ1c
0
ecs = κ−1ces + kcatces. (1.3)

Here c0e is the concentration of free enzymes which is equal to ce − ces. With Eq.1.3, we can
express ces as,

ces =

(
κ1

κ−1 + kcat

)
c0ecs =

(
κ1

κ−1 + kcat

)
(ce − ces) cs (1.4)

By rearranging and defining the Michaelis constant, KM = κ−1+kcat
κ1

, the complex concentra-
tion reads, ces = cecs

KM+cs
. With this expression and Eq.1.2 we obtain the famous Michaelis-

Menten equation,

v =
kcatcecs
KM + cs

, (1.5)

which has a non-linear dependence on the substrate concentration (see Fig. 1.1). The Michaelis
constant KM is an approximate measure of substrate’s affinity for the enzyme. A low KM

value corresponds to a tight substrate-enzyme binding while a large KM corresponds to a
weak binding. At very high substrate concentrations, cs � KM , all enzymes are bound to
a substrate and the velocity saturates to the maximal velocity, vmax = kcatce, whereas at
very low substrate concentrations cs � KM , most of the enzymes are unbound and, thus, the
Michaelis-Menten equation reduces to the linear expression, v = kcat

KM
cecs. The ratio between

turnover number and Michaelis constant kcat
KM

, called catalytic efficiency, corresponds to the
second order rate constant of the reaction between free enzymes and free substrates. This
rate is a measure for the enzyme efficiency and the fastest enzymes like fumarase or carbonic
anhydrase have catalytic efficiency of 108 − 109 M−1 s−1 (see Sec. 1.1.5) [3, 4].

The Michaelis-Menten model provides a good phenomenological understanding of the reac-
tion kinetics of enzymatic reactions. However, there are clearly scenarios where the model
assumptions do not apply. First, in the Michaelis-Menten model the catalytic reaction is
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irreversible, whereas in reality every enzymatic reaction is reversible. The assumption that
the enzymatic reaction is irreversible is reasonable when the product concentration is low,
e.g. at the beginning of the reaction when product molecules have not yet accumulated in
the system. Second, the Michaelis-Menten model does not account for the enzyme-product-
complex and only considers the reversible complex formation of enzyme and substrate. The
binding of product to enzyme can be important and may lead to an inhibition of the enzyme.
Thus, although the Michaelis-Menten equation provides a good phenomenological description
of enzyme kinetics, in certain scenarios one may need to consider other kinetic models which
include more details of the reaction.

1.1.2 The reversible Michaelis-Menten equation

As pointed out in the previous section, in many biochemical scenarios significant amounts of
products exist in the reaction system such that enzymatic reactions can no longer be treated
as irreversible. Analogous to the classical Michaelis-Menten equation, a rate equation can be
derived which accounts for the reversible reaction. The reaction scheme 1.1 with the reverse
reaction reads,

E + S
κ1


κ−1

ES
κ2


κ−2

E + P. (1.6)

Following a similar derivation as for the irreversible Michealis-Menten equation, we obtain for
the reversible Michealis-Menten equation,

v =
κscecs − κpcecp

1 + cs/KMs + cp/KMp
, (1.7)

where we defined the two Michaelis constants, KMs = κ−1κ2
κ1

and KMp = κ−1+κ2
κ−2

. The

parameters κs = κ1κ2
κ−1+κ2

and κp = κ−1κ−2

κ−1κ2
are the catalytic rates for the forward and backward

reaction divided by the corresponding Michaelis constant. The reversible Michaelis-Menten
equation has the advantage that its form does not depend on the specific reaction scheme.
There are more complicated reaction schemes, e.g. including more intermediate complexes,
which all lead to a rate equation equivalent to Eq. 1.7, only the definition of the parameters
above changes according to the reaction scheme. For the reversible reaction in equilibrium, we
can relate the kinetic parameters to the equilibrium constant. When an enzymatic reaction is
at equilibrium, the forward and backward flux must balance and, thus, the rate Eq. 1.7 must
be zero. From this it follows that

κscec
eq
s = κpcec

eq
p , (1.8)

where ceqs and ceqp are the equilibrium concentrations of the substrate and the product, re-
spectively. With this relation, we can now express the equilibrium constant in terms of the
kinetic parameters,

Keq =
ceqp
ceqs

=
κs
κp
, (1.9)

where Keq is the equilibrium constant of the reaction. This is the Haldane relationship which
is true for any reaction scheme that can be described by Eq. 1.7. More complicated reaction
schemes would lead to more complicated Haldane relationships, but there is at least one
relationship between the kinetic parameters and the equilibrium constant [5].
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1.1.3 Enzyme inhibition

The activity of enzymes can be reduced by specific molecules, so-called inhibitors, which bind
to the enzyme. This binding can be either reversible or irreversible and there are different
mechanisms how the inhibitor decreases the enzyme activity. Here, we briefly discuss different
mechanisms of reversible inhibition and illustrate how the Michealis-Menten equation changes
in the presence of an inhibitor:

• competitive inhibition:
In this case the inhibitor binds to the active site of the enzyme and thereby hinders
the substrate from forming the enzyme-substrate complex. This leads to an apparent
increase of KM , since more substrate molecules are required to reach the point of half
vmax. The resulting Michaelis-Menten equation with reversible competitive inhibition
is then given by,

v =
vmaxcs

KM (1 + ci/Ki) + cs
, (1.10)

where ci is the concentration of inhibitor molecules and Ki is the inhibition constant.
From Eq. 1.10 we can see that the Michaelis constant appears to change in the presence
of an inhibitor to the apparent value Kapp

M = KM (1 + ci/Ki), while vmax remains
unchanged.

• uncompetitive inhibition:
In this case, the inhibitor binds only to the enzyme-substrate complex and thereby
alters both the maximal reaction rate and the Michaelis constan to the apparent values,
vappmax = vmax/(1 + ci/Ki) and Kapp

M = KM/(1 + ci/Ki). The ratio of these values,
however, remains unchanged.

• non-competitive inhibition:
Here, the binding of inhibitor to the enzyme only reduces the activity of the enzymes but
leaves the binding affinity of the substrate to the enzyme unchanged. Consequently, the
Michaelis constant is not changed, only the maximal velocity is modified to the apparent
value, vappmax = vmax/(1 + ci/Ki).

In contrast to reversible inhibition, in irreversible inhibition the inhibitor binds covalently to
the enzyme and permanently reduces its activity by specifically modifying the active site of
the enzyme. This should not be confused with irreversible enzyme inactivation where the
protein structure of the enzyme is destroyed by a non-specific agent.

Besides these mechanisms, enzymes can also be inhibited by their product. From the reversible
Michaelis-Menten equation Eq. 1.7 we can see that the reaction rate slows down as product
is accumulated in the system. This reduction of the reaction rate is only significant if the
reaction is considerably reversible. However, product inhibition is also observed in reactions
which are essentially irreversible. In those cases, the product can bind to the enzyme but
is not processed back to the substrate. This means that the enzymes are sequestered as
enzyme-product complexes, which makes them unavailable for the reaction.
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1.1.4 Elasticities

The behavior of enzymatic reaction kinetics is in general described by rate equations like
Eq. 1.7. Such rate equations explain how the rate changes as a function of the concentration
of different substances like reactants or inhibitors. In many modeling approaches one is
interested in the degree to which a small concentration change of a substance changes the
reaction rate. A useful measure for this quantity is the elasticity coefficients, which is defined
as,

εvc =
c

v

∂v

∂c
=
∂ log v

∂ log c
, (1.11)

where c is the concentration of any substance involved in the enzymatic reaction. In general
this can be the substrate, the product, the enzyme itself, or any effector like an inhibitor
or activator. The rescaling of the partial derivative by the factor c

v ensures that the coef-
ficient is independent of the units used to measure reaction rates and concentrations. The
elasticities can be determined from any arbitrary rate equation. For example, from the re-
versible Michaelis-Menten equation Eq. 1.7, we can compute the elasticity with respect to the
substrate concentration,

εvs =
1

1− Γ/Keq
− σ

1 + σ + π
, (1.12)

where Keq is the equilibrium constant, Γ = cp/cs is the mass action ratio, and σ = cs/KMs

and π = cp/KMp are the substrate and product concentrations scaled by their Michaelis
constant. The expression consists of two terms, which can be easily interpreted. The first
term depends only on the degree of disequilibrium, it diverges at equilibrium. The second term
measures the degree of saturation of the enzyme [5]. In general, however, one is interested in
the numerical value of the elasticity rather than its algebraic form: if the elasticity is zero, v
does not change with cs, if it is positive v increases with cs, and if it is negative v decreases
with cs.

The elasticity can be viewed as an extension of the concept of the order of a reaction. The order
of a reaction is defined by constant integer values, while the elasticity can have non-integer
values which change as a function of substrate concentration. For example, the Michaelis-
Menten equation gradually transitions from first order at low substrate concentration to zero
order at saturation. This concept of elasticities is crucial for metabolic control analysis, which
we discuss in Sec. 1.2.1.

1.1.5 Impact of diffusion on enzyme kinetics

The reaction rate of an enzymatic reaction depends, on the one hand, on the rate of diffusive
encounter of substrate with its enzyme and, on the other hand, on the speed of catalytic
turnover once the substrate is bound to the enzyme. Standard enzyme kinetics like the
Michaelis-Menten kinetics do not account for the influence of diffusion on the reaction velocity.
In this section we will derive a simple modification of the Michaelis-Menten equation that
accounts for the diffusion of substrates and enzymes. For that we will follow the derivations
presented in [6, 7, 8], where the theory of Smoluchowsky, Collins and Kimball [9, 10] is applied
on the association-dissociation-process of two molecular species. Using the rate constants of
this process to describe the dynamics of enzyme-substrate-complex formation, we find an
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expression for the Michaelis-Menten equation that includes the diffusive motion of reactants
to the kinetics.

Let us consider substrates diffusing relative to an enzyme molecules. In any coordinate system,
the diffusive motion of substrates is governed by the diffusion equation,

∂ρs(r, t)

∂t
= D∇2ρs(r, t), (1.13)

where the diffusion coefficient is the sum of the diffusion coefficients of the enzyme and
substrate, D = De +Ds, and ρs(r, t) is the concentration profile of substrates in the vicinity
of the enzyme. The substrate can bind to the enzyme when the two molecules are in contact.
This is the case when the distance between the molecules is σ = re + rs, the sum of enzyme
and substrate radius. The net reaction flux, J , of complex formation is the rate of association
reactions minus the rate of dissociation reactions per unit volume. This reaction flux equals
the flux at the surface of an average enzyme molecule,

J = 4πr2Dc0e
∂ρs(r)

∂r

∣∣∣∣
r=σ

= k1ceρs(σ)− k−1ces, (1.14)

where c0e and ces are the average concentrations of free enzymes, and enzyme-substrate-
complexes, respectively. The constants k1 and k−1 are the intrinsic rate constants character-
izing the association-dissociation-reaction upon contact of substrates with enzymes. At large
distances from the enzyme, the substrate concentration relaxes to the average concentration,
cs, leading to the boundary condition, ρs(r →∞) = cs.

By solving this system in steady-state we determine the steady-state reaction flux of complex
formation,

J =
kDk1
k1 + kD︸ ︷︷ ︸

κ1

c0ecs −
kDk−1
k1 + kD︸ ︷︷ ︸

κ−1

ces. (1.15)

From this expression we can read off the effective association and dissociation rates, κ1 and
κ−1, as functions of the corresponding intrinsic rates and the Smoluchowski rate constant of
diffusion limited reaction, kD = 4πσD. The considerations can be extended to also include
interaction potentials between the molecules as first considered by Debye [11]. Using the
expressions for the rates κ1 and κ−1 in the Michaelis-Menten equation (Eq. 1.5) we obtain,

v =
kcatcecs

Kin
M + kcat/kD + cs

, (1.16)

where Kin
M = k−1+kcat

k1
is the intrinsic Michaelis constant. In the low substrate concentration

regime this equation becomes linear and the catalytic efficiency is given by, (kcat/KM )−1 =(
kcat/K

in
M

)−1
+ k−1D . In the regime, where kcat/K

in
M � kD, the reaction is always in binding

equilibrium with the surrounding substrate pool and no substrate concentration gradients
emerge. This regime is referred to as reaction-limited regime and the intrinsic rates equal
the effective rates, k1 = κ1 and k−1 = κ−1. In the opposite, diffusion-limited regime where
kcat/K

in
M � kD, substrate concentration gradients emerge, and the reaction depends crucially

on the diffusive transport of substrates to the enzyme. In the extreme case where every
substrate-enzyme collision results in an immediate turnover of the substrate, kcat/K

in
M →∞,
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the catalytic efficiency becomes equal to kD. Therefore, kD sets an theoretical upper limit for
the catalytic efficiency of enzymatic reactions. We can approximate this limit by assuming
that the diffusion coefficient of a small metabolite is around D = 100 µm2 s−1 and the inter-
action radius is σ = 1 nm. With this we obtain as a theoretical estimate for the upper limit
of the catalytic efficiency, kcat/KM ≈ 1× 109 M−1 s−1. Note, this approximation is in the
range of the fastest measured enzymes (see Sec. 1.1.1). However, the described model omits
several details of enzymatic reactions, which may need to be accounted for in order to cor-
rectly capture the kinetics of the reaction. First, enzymes are reactive only at the active site
rather then over the entire molecular surface as assumed by the model. Second, electrostatic
interactions between the active site and the substrate were not considered. Such interactions
may enhance the encounter and binding probability. Including these details can lead to an
order of magnitude difference in the value of the totally diffusion limited catalytic efficiency
[12, 13, 14].

1.2 Models of multi-enzyme kinetics

So far we have focused on the kinetics of individual enzymes in isolation. However, in every
biological system, enzymes function together in reaction pathways, where the product of one
enzymatic reaction acts as the substrate of the next. These reaction pathways are highly
interconnected, forming large reaction networks, called metabolism. Usually, metabolism
is divided into two classes: First, the catabolism which involves all processes where large
molecules are broken down into smaller ones to generate energy in form of ATP, and second,
anabolism which includes all processes where complex molecules such as proteins or nucleic
acids are build from small precursor molecules. These two classes of metabolism complement
each other in the sense that the energy produced by catabolism is consumed by anabolism.
To understand the kinetic behavior of metabolic networks and to predict individual fluxes,
several modeling approaches have been developed. Two of these approaches, metabolic control
analysis (MCA) and flux balance analysis (FBA), will be discussed in the following.

1.2.1 Metabolic control analysis

The aim of metabolic control analysis is to describe the dynamics of enzymatic pathways in
terms of the kinetic properties of the individual, isolated pathway enzymes. We will briefly
illustrate the main ideas of MCA following the books of Cornish-Bowden and Fell [5, 15]. In
its standard form, MCA deals with the reaction dynamics of enzymatic pathways in steady-
state, with at least one source of metabolites and at least one sink. The following scheme
illustrates an example for such an enzymatic pathway,

S0
E1

 S1

E2

 S2

E3

 S3

E4

 S4

E5

 S5, (1.17)

where the initial substrate S0 is the source and S5 is the sink of the pathway. These concen-
trations are considered to be external and constant, while the other, internal concentrations
are free to vary. Each step of the pathway is catalyzed with a rate vi, which we consider
for simplicity to be just proportional to the concentration of exactly one enzyme. Note, the
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kinetic properties of the enzymes remain unchanged while vi can vary. MCA now provides
a framework to study how the kinetic behavior of a reaction pathway is determined by the
characteristics of the individual enzymes. When the concentration of the metabolite S1 is in
steady-state, this implies that the production rate v1 of the metabolite S1 must be equal to
the rate v2 at which it is consumed. Thus, when the concentrations of all metabolites are in
steady-state, all the reaction rates must be equal to one another. This global reaction rate is
called the flux, J [16]. Note, for branched pathways, there can be several distinct fluxes in the
same pathway and, thus, the relations between fluxes become more complex. The reaction
rate of an enzyme is a local property, since it refers to a single, isolated enzyme, whereas the
steady-state flux and the metabolite concentrations are systemic properties, since they refer
to the pathway. Varying an external parameter of an isolated enzyme Ei leads to a change in
the reaction rate vi. The question now is, what is the corresponding effect on the system flux
J , when Ei is embedded in the system. This effect is characterized by the following relation
called flux control coefficient [17],

CJi =
∂ log J

∂ log vi
. (1.18)

This definition allows us to identify when an enzyme catalyzes the rate-limiting step of a
pathway. Any variation in the activity of the rate-limiting enzyme produces a proportional
variation in the flux through the pathway. Consequently, for a rate-limiting enzyme the flux
control coefficient is CJi = 1. Analogous to the flux control coefficients, the quantity that
measures effects on metabolite concentrations is called concentration control coefficient. The
coefficient that measures how the metabolite concentration sj is affected when the reaction
rate vi is changed is given by,

Csji =
∂ log sj
∂ log vi

. (1.19)

Importantly, the control coefficients fulfill two summation theorems, which originate from the
fact that the flux and the metabolite concentration are systemic properties and hence their
control affects all reactions in the system [16, 17],

n∑
i=1

CJi = 1, (1.20a)
n∑
i=1

Csji = 0. (1.20b)

The latter equation expresses the fact that a simultaneous change in the enzyme activity by
the same factor does not change the metabolite concentration [17]. The first relation, on the
other hand, states that the control of flux through a pathway is shared by all the enzymes
in the system. However, when one enzyme is rate-limiting the kinetic behavior of the whole
system is determined by the step catalyzed by this enzyme. In the following we give a proof
of the summation relation Eq. 1.20a. For that, we consider small changes dei in all enzyme
concentrations and assume that the reaction rates vi are all proportional to the concentrations
of the enzymes that catalyze them. Thus, the simplest way to vary the reaction rates is to
change the enzyme concentrations. The total change of any flux J can then be described in
terms of the individual changes of the enzyme concentrations, which can be expressed by the
total differential,

dJ =

n∑
i=1

∂J

∂ei
dei. (1.21)
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Multiplying Eq. 1.21 with ei
Jei

we obtain,

dJ

J
=

n∑
i=1

∂ log J

∂ log ei

dei
ei
. (1.22)

Since we assumed that the reaction rate is proportional to the enzyme concentration, Eq. 1.18
can also be written as, CJi = ∂ log J

∂ log ei
and we obtain,

dJ

J
=

n∑
i=1

CJi
dei
ei
. (1.23)

The magnitude of the small changes dei are not specified, and without limiting the generality
of this expression, we can assume that dei is proportional to ei, dei = αei. The same
proportionality also holds for the change of the steady-state flux, dJ [5]. Thus, Eq. 1.23
reduces to,

α =

n∑
i=1

CJi α, (1.24)

by dividing with α we obtain the summation relationship Eq. 1.20a. The same logic can be
applied to derive the second summation relation.

For a linear n-step pathway without branch points and where every enzyme catalyzes one
specific step, there is now one summation relation for the flux control coefficients, Eq. 1.20
and n− 1 summation relations for the concentration control coefficients. However, there are
n flux control coefficients and n(n − 1) concentration control coefficients and, thus, in total
n2 control coefficients. In order to determine all control coefficients, a set of further n(n− 1)
equations is required [5]. The required equations are given by the connectivity properties,

n∑
i=1

CJi εvisj = 0, (1.25a)
n∑
i=1

Cski ε
vi
sj = −δkj , (1.25b)

where εvisj = ∂ log vi
∂ log sj

is the elasticity. In general, elasticities describe the change of the reac-

tion rate caused by a variation of an external parameter, which in our case is the substrate
concentration (see Sec. 1.1.4). For the linear n-step pathway, we obtain n − 1 equations
from Eq. 1.25a and (n− 1)2 equations similar to Eq. 1.25b. Together with the n summation
relations these equations provide the missing n(n − 1) equations needed to determine all n2

control coefficients from the elasticities [5].

1.2.2 Flux Balance Analysis

Flux Balance Analysis is a mathematical modeling approach used to determine the steady-
state fluxes in complex metabolic networks. It is widely used to study genome-scale biochem-
ical networks, which contain all known metabolic reactions in an organism. By determining
the fluxes of metabolites through the network, it is possible to predict, for example, the growth
rate of an organism or the production rate of metabolites in biotechnological applications [19].
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System of ODEs

In Matrix Notation

Flux Constraints

v3

v2 v1
Objective

v1

v3

2v3+v1

Optimal
Point

(a) (b)

(c) (d)

S

v

M1M2

M3

v1

v2v3

b1

b2

b3System
Boundary

Figure 1.2: Illustration of Flux Balance Analysis. (a) Model metabolic system consisting of three
metabolites (M1, M2, and M3). The fluxes include the reaction fluxes, vi, and exchange fluxes with the
external environment, bi. (b) Resulting system of ODEs and representation using matrix notation.
In steady-state this leads to S · v = 0. (c) Possible constraints on the fluxes due to physiological
constraints. This leads to the sketched solution space. Identification of the flux distribution which
optimizes the objective function Z. Illustration adapted with permission from [18]

FBA is a constraint-based approach in which the stoichiometry of the metabolic network and
specific bounds on the steady-state fluxes constrain the solution.

In the following, we briefly explain the basic concepts of FBA and illustrate useful applications
of the theory. The dynamics of a metabolic network, which consists of m metabolites and r
reactions, can be described by a set of m ordinary differential equations (ODEs),

∂Mi

∂t
=

r∑
j=1

Sijvj with i = 1, ...,m, (1.26)

where Mi is the concentration of the i-th metabolite, vj is the flux of the j-th reaction, andSij
is the stoichiometric coefficient representing the number of moles of metabolite i produced (or
consumed) in the j-th reaction [20]. By assuming that the metabolite concentrations reached
steady-state and combining the stoichiometric coefficients into the so-called stoichiometric
matrix S, Eq. 1.26 reduces in matrix notation to,

S · v = 0, (1.27)
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where v is the vector of all r fluxes. This equation incorporates the network topology and
the stoichiometry of each reaction into a constraint on the possible steady-state fluxes. Since,
metabolic networks typically contain more reactions than metabolites, this system of equa-
tions contains more variables than equations and consequently there is no unique solution to
the system of equations. Any solution of v that satisfies Eq. 1.27 is said to be in the null
space of S [19]. To obtain a unique solution, one needs to impose additional constraints on the
fluxes. These constraints may be due to reaction thermodynamics, or system characteristics
of the network, e.g. influxes from the environment, or other physiological limitations. By
defining an upper- and lower bound for each flux, we reduce the solution space to all fluxes
within the null space, which fulfill the constraints,

αj ≤ vj ≤ βj . (1.28)

Within this allowed solution space, FBA seeks to identify the point which either maximizes
or minimizes an objective function Z = c>v. For example, the objective can be related
to a specific cellular function which is assumed to have been optimized by evolution [21].
Furthermore, often the solution of interest is a flux distribution, which leads to a maximal
growth rate [19] or maximal ATP production of an organism [22].

Linear programming methods are used to determine the fluxes that optimize the objective
function within the allowed solution space defined by the mass balance equations (Eq. 1.27)
and the bounds on the fluxes (Eq. 1.28). The main advantage of this approach is that no
knowledge about metabolite concentrations or enzyme kinetics and rate laws are required
to obtain the distribution of fluxes in metabolic networks. Additionally the simulations are
computationally inexpensive. For a typical metabolic network it takes about a few seconds
to determine the flux distribution which optimizes biomass production. Yet, FBA has some
limitations: It cannot predict metabolite concentrations because the enzyme kinetics and the
parameters are not included, it is only suitable for studying fluxes at steady state, and ther-
modynamic aspects are not considered. Furthermore, FBA does not account for regulatory
effects such as activation of enzymes by protein kinases or regulation of gene expression [19].

To address some of these limitations, additional physical constraints have be incorporated
into the traditional FBA models. For example, the concept of energy balance has been
added to the standard model to account for thermodynamic constraints of the reactions [23].
Furthermore, the constraint of limited cellular enzyme abundance due to spatial limitation
has been added to FBA, which gave rise to three metabolic phases and hierarchical modes of
substrate utilization in mixed substrate growth medium [24].
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2 Metabolic channeling and spatial enzyme
organization

In the previous chapter, we have seen that enzymes are organized into pathways, where the
product of an enzymatic reaction acts as the substrate of the next reaction. The enzymatic
pathways are interconnected forming a large network of enzymatic reactions, the so-called
metabolic network. Besides this organization of enzymes into pathways and metabolic net-
works, metabolic enzymes also show a high degree of spatial organization inside the cell.
This spatial coordination of metabolism includes the segregation of enzymes into membrane-
bound compartments, the aggregation of enzymes into non-membrane bound clusters and
filaments, and the organization of enzymes into macromolecular multi-enzyme complexes.
Most of these spatial arrangements have been hypothesized to induce metabolic channeling,
a process where an intermediate produced by an upstream enzyme is directly consumed by a
downstream enzyme without first diffusing into the bulk [25, 26]. Metabolic channeling has
first been introduced as a process where intermediates are transferred between consecutive en-
zymes through structural features like tunnels, swing arms, or electrostatic guidance [27, 28].
However, nowadays the terminology ”metabolic channeling” is used for all strategies that en-
able rapid and efficient processing of intermediates and simultaneously prevent intermediates
from diffusing into the surrounding cytoplasm. Such strategies include the compartmental-
ization of pathway reactions into organelles or the colocalization of consecutive enzymes into
clusters, so-called metabolons [29]. In this work, we are mainly interested in how spatial or-
ganization can affect metabolic fluxes and induce metabolic channeling without the need for
specific mechanisms of intermediate transfer. In the following chapter, we first shall discuss
the benefits of metabolic channeling for the cell. We then describe different natural strategies
of spatial enzyme organization and explain how they enable metabolic channeling. Finally,
we illustrate how synthetic biologists exploit these natural strategies to engineer synthetic
enzyme arrangements with the aim to efficiently produce valuable products like biofuels or
pharmaceutical drugs.

2.1 The benefits of metabolic channeling

Before discussing the different natural strategies that enable metabolic channeling and the
closely related spatial organization of enzymes, we first describe the beneficial effects of
metabolic channeling and its importance for the regulation of metabolic fluxes.

• Efficient processing of unstable or volatile intermediates
The direct transfer of intermediates between consecutive enzymes leads to efficient pro-
cessing of intermediates which are either badly retained by the cellular membrane or
intrinsically unstable. Without channeling, such intermediates would likely diffuse out
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of the cell or decay before they encounter a downstream enzyme by diffusion and can
be further processed.

• Reduction of unwanted competing side reactions
Intermediates are often not specific to only one enzyme or reaction but can react in
several different pathways. However, in many cases these competing reactions are un-
wanted and it is desirable to direct the processing of the intermediates towards one spe-
cific pathway. By channeling intermediates between consecutive enzymes, the exposer
of intermediates to competing enzymes is reduced and therefore insulates intermediates
from undesired side reactions.

• Protection from toxic pathway intermediates
In the course of the successive processing of molecules in a metabolic pathway, inter-
mediates can be produced which are toxic to the cell when they are dissolved in the
cytoplasm. To protect the cell from intoxication, toxic intermediates need to be segre-
gated from the cytoplasm. This is achieved by several channeling strategies like direct
transfer of toxic intermediates between consecutive enzymes or the segregation of toxic
intermediates by compartmentalizing entire pathways.

• Avoiding unfavorable kinetics and equilibria in the cytoplasm
In some metabolic pathways, certain reactions would not proceed in the desired direction
by means of classical mass action ratios if they were well mixed in the cytoplasm.
Therefore, to prevent the intermediates from being back converted, they are directly
channeled to the next enzyme, and the reaction pathway can proceed in the desired
direction.

• Flux enhancement
Channeling of intermediates may enhance the flux through metabolic pathways by re-
ducing the time required for an intermediate to reach the active site of the next enzyme.
It was argued that the main advantage comes rather from bypassing metabolite solvation
and desolvation and thus saving the required time for these processes [30]. Importantly,
channeling allows to achieve high fluxes without elevating intermediate concentration
levels in the bulk. While flux enhancement is reasonable for direct channeling mecha-
nisms, it is unclear whether an enhancement can be achieved only by spatial enzyme
organization where diffusion mediates the transfer of intermediates. In particular, it
is controversial whether proximity of sequential enzymes alone suffices to enable an
efficient transfer of intermediates.

• Regulation of metabolic fluxes
Metabolic fluxes at branch point can be controlled by dynamically enabling channel-
ing of intermediates towards a specific enzyme at the branch point. Hence metabolic
channeling presents a means to regulate fluxes without the need of altering enzyme
expression levels or changing enzymatic activities by post-translational modifications.

The mechanisms by which metabolic channeling can be achieved are diverse and for each
of the above listed cellular requirements a certain strategy is most suitable. The different
strategies discussed in the following are summarized in Fig. 2.1.
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(a) (b) Figure 2.1: Schematic illustration of channeling
mechanisms and spatial enzyme organization.
(a) Channeling mechanisms illustrated for a sim-
ple pathway of two consecutive enzymes, which se-
quentially process substrate S to product P via an
intermediate I. (1) Channeling through an inter-
molecular tunnel. (2) Intermediate transfer medi-
ated by a swinging arm. (3) Guidance of a charged
intermediate between active sites along an oppo-
sitely charged molecular surface. (4) Channeling
by proximity between active sites. The intermedi-
ate transfer is mediated by free diffusion. The im-
pact of proximity on the processing of intermedi-
ates is still controversial. (b) Spatial organization
of enzymes. (Top) Colocalization of consecutive
enzymes within membrane-bound compartments.
The membrane prevents the intermediates from
diffusing out of the compartment. (bottom) Spa-
tial organization of enzymes into non-membrane
bound clusters and filaments. Coclustering en-
hances the processing of intermediates due to the
increased local concentration of enzymes, while
filamentation and sequestration present mecha-
nisms to downregulate metabolic fluxes.

2.2 Metabolic channeling mediated by structural features

A direct transfer of intermediates between enzymes can be mediated by several structural fea-
tures of the enzymes or the multi-enzyme complexes. One such feature is an intramolecular
tunnel between consecutive active sites, which guides the intermediate transfer and prevents
intermediates from diffusing into the bulk solution [31]. The prime example of channeling by
an intramolecular tunnel is the tryptophan synthase. This enzyme molecule consists of two
active sites, where at the first active site indole 3-glycerolphosphate is converted to indole and
glyceraldehyde-3-phosphate. The intermediate indole is subsequently transferred through the
intramolecular tunnel to the second active site where it is catalyzed together with serine to
the products tryptophan and water [31]. Crystal structure studies of tryptophan synthase
revealed a 25 Å long tunnel through which a rapid, quasi one-dimensional diffusional trans-
fer is possible [32]. With this channeling strategy the uncharged intermediate indole, which
would easily diffuse through the cellular membrane, is prevented from escaping the reaction.
Other examples where a tunnel is exploited to channel intermediates include aldolasedehy-
drogenase which is involved in the degradation of toxic aromatic compounds in bacteria [33]
and glucosamine-6-phosphate synthase which catalyzes the rate-limiting steps in hexosamine
metabolism [34].
In addition to intramolecular tunnels, channeling can be enabled by swinging arms which
covalently bind and shuttle intermediates between active sites [28]. An astonishing exam-
ple of a swinging arm in a multi-enzyme complex is the pyruvate dehydrogenase complex
(PDC) which converts pyruvate to acetyl-CoA and thus links glycolysis to the citric acid
cycle. The PDC consists of three different types of enzymes, pyruvate dehydrogenase (E1),
dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3), which
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are organized into a highly symmetric complex [35]. The E2 enzymes form a core to which
the E1 and E3 enzymes non-covalently bind. The E1s and E3s are precisely positioned and
oriented to ensure optimal interaction of their active sites with the lipoamide swinging arm
of the E2 core during the sequential reaction [36]. Other 2-oxoacid dehydrogenases, like the
2-oxoglutarate dehydrogenase complex and branched chain 2-oxoacid dehydrogenase complex,
possess similar structural features and employ the same lipoamide swinging arm to enable
channeling [28, 37]. Swing arm mechanisms are also found in fatty acid synthases and polyke-
tide synthases where intermediates are shuttled by so-called acyl carrier proteins [28].
Another channeling mechanism mediated by a structural feature is the electrostatic guidance
of intermediates between active sites [38, 37]. Charged protein residues along bifunctional
enzymes direct the diffusive motion of oppositely charged intermediates across the protein
surface to the next active site. In the citric acid cycle, the enzymes malate dehydrogenase
(MDH) and citric synthase (CS) form a complex. A positively charged region on the enzyme
complex directs the diffusion of the negatively charged intermediate oxaloacetate, thereby
bridging the two active sites. Surface analysis of the structure of the enzyme complex re-
vealed a charged patch connecting the active sites [39] (see Fig. 2.2a). Modeling approaches
verified the presence of channeling by electrostatic guidance in the MDH-CS complex using
measured charge distributions on the enzyme surface [40]. Notably, the equilibrium constant
of the MDH reaction is unfavorable in the forward direction of the citric acid cycle [41], thus
channeling of oxaloacetate is necessary to achieve high fluxes through the MDH-CS pair de-
spite the unfavorable kinetics [37]. Another example of electrostatic channeling is the transfer
of dihydrofolate between the active sites of the bifunctional enzyme dihydrofolate reductase-
thymidylate synthase (DHFR-TS) which catalyzes two steps of the thymidylate cycle [38, 42].
Similar to the MDH-CS complex, a negative charge distribution on the DHFR-TS complex
surface leads to guided diffusion of the positively charged dihydrofolate intermediate between
the active sites [42].

2.3 Enzyme clustering and compartmentalization

The concept of metabolic channeling was traditionally considered as the guided transfer of in-
termediates mediated by structural features. However today strategies like enzyme clustering
and compartmentalization without directed transport of intermediates have similar effects as
standard channeling mechanism and are thus also considered as concepts of metabolic chan-
neling. In this thesis, we mainly focus on these latter strategies and elucidate design principles
for maximal flux yield and unravel the role of clustering in flux regulation. In the following,
we illustrate several examples of spatial enzyme organization and explain the functions and
advantages. We classify the examples into two categories, first enzyme compartments which
are delimited by membranes or shells and second non-membrane bound enzyme clusters and
filaments.

2.3.1 Membrane delimited organelles and microcompartments

Intracellular encapsulation of metabolic processes in membrane-delineated compartments is a
key feature not only of eukaryotic cells but also of prokaryotes. The compartmentalization of
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Figure 2.2: Natural examples of metabolic channeling and spatial enzyme organization. (a) Electro-
static guidance in the MDH-CS complex. (Top) MDH catalyzes the oxidation of malate to oxaloacetate
(OAA). The negatively charged intermediate OAA is guided along the positively charged surface of
the MDH-CS complex to the active site of CS where it is converted to citrate. (Bottom) Illustration
of the surface electrostatic potential of MDH and CS in isolation and in the complex. Positive charges
are shown in blue, negative charges are shown in red, and neutral charges are shown in white. The
orange arrows point to the active sites and the electrostatic channel is highlighted in yellow. Figure
adapted with permission from [39]. (b) Carbon fixation by the carboxysome. (Top) Carbon fixation
pathway in cyanobacteria. (Bottom left) Carboxysomes in Cyanobacteria. The carboxysomes are
fluorescently labeled in green and the bacterial membrane is labeled in red. Scale bar, 2 µm. Figure
adapted with permission from [43]. (Bottom right) Schematic illustration of the carboxysome. The
enzymes RuBisCO and carbonic anhydrase are confined inside a protein shell. Figure adapted with
permission from [44]. (c) De novo purine biosynthesis performed by the purinosome. (Top) De novo
purine biosynthesis pathway in humans. The pathway consists of ten steps catalyzed by six enzymes:
The trifunctional enzyme TGART which consists of GARS, GAR Tfase and AIRS, the bifunctional
enzyme PAIC which consists of CAIRS and SAICARS, and the bifunctional enzyme ATIC which
consists of AICAR transformylase and IMPCH. (Bottom left) Localization of purinosomes (red) and
microtubule filaments (green) in HeLa cells. Figure adapted with permission from [45]. (Bottom right)
Enzyme-enzyme interaction in the purinosome. FGAMS, PPAT, and TGART strongly interact and
form a core complex to which the other enzymes transiently bind. Schematic adapted with permission
from [46].

consecutive enzymes serves as a strategy to overcome several challenges inherent to cellular
metabolism. For example, toxic pathway intermediates stay segregated inside compartments
or reaction fluxes of slow enzymes are boosted by confining and accumulating intermediates
within compartments. Eukaryotic cells are well known for their high degree of spatial orga-
nization of metabolism. Examples of eukaryotic compartmentalization of metabolic reactions
into organelles include peroxisomes, mitochondria, and chloroplasts.
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Peroxisomes encapsulate, i.a., oxidative enzymes involved in the production and consumption
of hydrogen peroxide and other toxic pathway intermediates. The importance of confining
hydrogen peroxide inside peroxisomes becomes evident in methylotrophic yeast. Those yeast
strains are capable of using methanol as its only carbon source, despite the fact that toxic hy-
drogen peroxide and formaldehyde are necessary intermediates for methanol metabolism [47].
When these yeast cells are grown on methanol, peroxisome biogenesis is upregulated leading
to considerably increased peroxisomal structures [48, 49]. This highlights the crucial role of
peroxisomes in segregating unavoidable toxic intermediates. Additionally, the alkaline pH in
the peroxisome enhances the activities of peroxisomal oxidase and catalase which results in
faster processing of metabolites [50]. In mitochondria, large octamers of the enzyme creatine
kinase (MtCK) colocalize with the two transmembrane proteins adenine translocator (ANT)
and voltage-dependent anion channel (VDAC) in the intermembrane space to efficiently cat-
alyze the transphosphorylation of ATP and creatine (Cr) to ADP and PCr. ANT transports
ATP from the mitochondrial matrix and VDAC Cr from the cytosol to the intermembrane
MtCK. The spatial proximity of the transmembrane proteins and MtCK together with the
confinement inside the intermembrane space enables metabolic channeling. After the reac-
tion, ADP is recycled in the mitochondrion and stimulates oxidative phosphorylation, while
PCr leaves the mitochondrion and acts as a primary high energy phosphoryl compound [51].

Besides the ubiquitous spatial organization of metabolism in eukaryotic cells, also prokaryotes,
which long were believed to lack any subcellular structure, possess metabolic compartments,
so-called bacterial microcompartments (BMC) [52, 53, 54, 55, 56]. In contrast to eukaryotic
organelles BMCs encapsulate the metabolic reactions within protein shells, forming polyhedral
compartments. Pores across the protein shell act as channels for metabolite diffusion into
and out of the compartment [57, 58]. Often, specific electrostatic charges around the pores
facilitate the passage of oppositely charged metabolites, thus presenting a mechanism for
selective metabolite transport [54].

The best studied BMC, the carboxysome, is the key element of the carbon concentrating
mechanism (CCM) in cyanobacteria [59, 60, 61, 62]. The CCM is crucial for efficient carbon
fixation in the Calvin cycle, which relies on the inefficient enzyme ribulose-1,5-bisphosphate
carboxylase oxygenase (RuBisCO). Besides having a low turnover rate, RuBisCO also cat-
alyzes the futile fixation of oxygen in addition to the desired fixation of carbon dioxide. To
overcome these challenges, RuBisCO is compartmentalized together with a carbonic anhy-
drase (CA) in a proteinaceous shell, the carboxysome (see Fig. 2.2b). CA converts incoming
bicarbonate HCO−3 to CO2 which is subsequently used by RuBisCO in the carbon fixation
reaction. Positively charged pores promote the diffusion of negatively charged HCO−3 into the
compartment while the escape of uncharged CO2 intermediates is not favored. This leads to an
accumulation of CO2 around RuBisCO, which enhances the carbon fixation and reduces the
futile fixation of oxygen. This mechanism is necessary since the cellular membrane presents
no diffusion barrier for small uncharged molecules like CO2 and, thus, an accumulation in the
cytosol is not possible. Additionally, to further promote carbon fixation in the carboxysome,
the negatively charged ion HCO−3 , which does not diffuse through the cell membrane, is ac-
tively accumulated inside the cytosol by transport mechanisms and active conversion of CO2

to HCO−3 [63, 64, 62]. Quantitative models confirmed the ability of the described mechanism
to concentrate CO2 inside the carboxysome and around RuBisCO [65, 66, 67].

Besides carbon fixation, bacterial microcompartments were also found to play crucial roles in
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the degradation of 1,2-propanediol (Pdu microcompartment) in enteric bacteria and ethanolamine
(Eut microcompartment) in mammalian gut bacteria [68, 69]. The Pdu microcompartment
is essential for the catabolism of 1,2-propanediol, a product from plant sugars like fucose and
rhamnose [52]. 1,2-propanediol diffuses into the microcompartment where it is processed in
a two-step coenzyme-B12-dependent reaction to propionyl-CoA via the intermediate propi-
onaldehyde [53]. The segregation of these reactions protects the cell from toxic propionalde-
hyde and ensures an efficient processing of propionaldehyde which is badly-retained by the
cell membrane [70].

The Eut microcompartment fulfills a similar function in the efficient usage of ethanolamine as
a carbon, nitrogen, and energy source [52]. In a process similar to the 1,2-propanediol degra-
dation, ethanolamine transverses the shell membrane into the microcompartment where it is
converted to ethanol and acetate by a series of reactions [71]. Analogous to the function of
the Pdu microcompartment, the Eut microcompartment segregates the toxic and volatile in-
termediate acetaldehyde, thereby ensuring efficient processing while minimizing acetaldehyde
toxicity [72].

Inspired by these strategies, synthetic biologists have begun to construct synthetic compart-
mentalization that mimics natural systems. Many of these systems have been applied to
sequential reactions and shown to significantly increase the production of industrially and
commercially important chemicals [73]. We will later come back to the discussion of syn-
thetic approaches of enzyme compartmentalization.

In Chap. 3, we quantitatively study optimal compartmentalization strategies for metabolic
microcompartments. In particular, we ask how to optimally distribute a given quantity of
enzymes over several microcompartments of a certain size to generate maximal productivity
of a two-step enzymatic reaction.

2.3.2 Non-membrane bound enzyme clusters and filaments

Many metabolic enzymes have been found to dynamically assemble into non-membrane bound
clusters and filaments under nutrient starvation or other external stimuli [74, 75]. The as-
sembly into these subcellular structures is intimately connected with the regulation of key
metabolic processes. One strategy proposed to upregulate pathway activity without directed
intermediate transfer is the colocalization of sequential enzymes into clusters (see Chap. 4
and 5). Intermediates produced by upstream enzymes in the clusters are rapidly consumed
by downstream enzymes due to the high local enzyme and intermediate concentrations inside
the cluster.

For example, in HeLa cells, the enzymes performing the de novo synthesis of purine were
found to colocalize into clusters, called purinosomes (see Fig. 2.2c). Purinosome formation
was induced in purine depleted medium while replenishing the medium with purine resulted
in a dissolution of purinosomes [76]. Additionally, the presence of purinosomes was found to
be associated with elevated levels of purine metabolites compared to cells lacking purinosomes
[77]. This indicates that purinosome formation is tightly linked to the upregulation of de novo
purine biosynthesis [45, 78, 79]. Biochemical studies suggest that three enzymes involved
in the first half of the ten-step de novo purine biosynthesis form the core structure of the
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purinosome, while the enzymes processing the other half of the pathway are dynamically
associated with the core complex via protein-protein interactions [78, 80, 81]. Notably, the
knockout of any purinosome enzyme led to the disruption of purinosome assembly and resulted
in an accumulation of the substrate of the knocked out enzyme [82]. Also crucial for the
formation of functional purinosomes is the microtubule network which additionally controls
the spatial distribution of purinosomes inside the cell [45].

Interestingly, the sequestration of a single purinosome enzyme was recently proposed as a
downregulation mechanism of de novo purine biosynthesis. It was demonstrated that in the
absence of purinosomes a certain level of metabolic activity is maintained [77, 45]. A strategy
by which this basal activity could be downregulated is the sequestration of one of the core
enzymes into clusters [83]. Collectively, this indicates that two spatial strategies regulate de
novo purine biosynthesis. First, the coclustering of all pathway enzymes which leads to an
upregulation of the pathway activity and second, the sequestration of a single enzyme which
leads to a downregulation of the pathway activity (see Fig. 2.1b bottom). In Chap. 6, we
quantitatively characterize the ability of these two spatial strategies to regulate metabolic
fluxes.

The enzymes involved in de novo pyrimidine biosynthesis also show a certain degree of spatial
organization. Although no evidence has been presented to date for a multi-enzyme cluster
catalyzing all nine steps of de novo pyrimidine biosynthesis, certain enzymes of the path-
way have been found to form aggregates [78, 84]. For example, the multifunctional enzyme
catalyzing the first three steps of pyrimidine biosynthesis, CAD (carbamoyl-phosphate syn-
thetase 2, aspartate transcarbamylase, and dihydroorotase), has been found to form oligomers
within mammalian cells. Phosphorylation of CAD induced by mammalian target of rapamycin
complex 1 (mTORC1) through S6 kinase promoted oligomerization and resulted in an upreg-
ulation of de novo synthesis of pyrimidines [85].

Furthermore, the enzyme cytidine triphosphate synthase (CTPS) which catalyzes the final
and rate-limiting step of pyrimidine de novo biosynthesis [86, 87, 88] has been found to form
filamentous structures in bacteria [89], yeast [90], Drosophila [91], and human cells [92]. The
presence of CTPS filaments across different species suggests that polymerization of CTPS
into subcellular structures has an important biological function [93]. CTPS filaments range
in size from ∼ 0.4 µm in bacteria to ∼ 2 µm-5 µm in drosophila [89, 94]. The assembly process
of these large structures is divided into several phases of fusion and aggregation. In the
first phase several spherical CTPS clusters form simultaneously in the cytoplasm. These
clusters then assemble into small filaments which subsequently fuse to middle-sized filaments
by actively sliding towards each other. This directed movement suggests that cytoskeletal
structures are involved in guiding the assembly process. In the last phase, middle-sized
filaments aggregate to long and thick filamentous structures which sometimes bend to C
or ring-shaped geometries [95, 96]. The assembly of CTPS filaments is induced by CTPS
overexpression while deprivation of the CTPS-levels led to filament disassembly [94, 97, 95,
98]. Besides this, various other stimuli that control filament formation have been reported,
which appear to be highly organism dependent. These stimuli include nutrient depletion,
inhibition of nucleotide or one-carbon metabolic pathways, and the differential regulation of
the transcription factor Myc [84, 99, 97, 100, 101]. In contrast to previously discussed active
enzyme assemblies which promote intermediate channeling and enhanced pathway activity,
polymerization of CTPS was found to inhibit enzymatic activity [102, 103]. Hence, the



2.3 Enzyme clustering and compartmentalization 21

assembly and disassembly of CTPS filaments could function as a strategy to rapidly regulate
CTPS activity. Storing inactive enzymes in the filaments and only releasing required amounts
may present a mechanism to fine-tune metabolic regulation [104]. In addition to this putative
function, filamentation could also serve as a stabilization mechanism for CTPS preventing
it from degradation by proteases [96]. Furthermore, filaments may have a cytoskeleton-like
function in bacteria helping to maintain cell shape [105].

Similar to CTPS the rate-limiting enzyme of de novo guanine biosynthesis, inosine monophos-
phate dehydrogenase (IMPDH), has been found to form filaments when cells were treated
with the inhibitor mycophenolic acid (MPA), MgATP, or ribavirin [106, 107, 92]. Interest-
ingly, CTPS and IMPDH form two independent filaments which sometimes were found to
colocalize [108, 109]. However, the function of this partial colocalization and the coordination
of filament formation is not well understood. Additionally, in contrast to CTPS, the enzyme
activity of IMPDH is upregulated by filament assembly [109]. Collectively, filamentation of
key enzymes in de novo nucleotide biosynthesis may present a sophisticated strategy to fine-
tune the regulation of metabolic processes. Yet there are many open questions concerning
regulation mechanisms and assembly procedures of these subcellular structures [96].

Recently, multi-enzyme clusters were found to also play an important role in the regulation
of glycolysis. Glycolysis is an evolutionarily conserved pathway that generates energy in form
of ATP by degrading glucose into pyruvate. Several glycolytic enzymes were reported to spa-
tially organize into non-membrane bound clusters under hypoxic or high energy demanding
conditions in yeast, C. Elegans neurons, and mammalian red blood cells [110, 111, 112, 113].
In yeast, The presence of these clusters was associated with increased glucose consumption and
reduced levels of glycolytic intermediates. Cells incapable of cluster formation showed defec-
tive cell proliferation under oxygen deprived conditions [110]. This suggests that coclustering
of glycolytic enzymes enables efficient processing of intermediates and thereby upregulates gly-
colysis activity. Furthermore, in C. Elegans neurons under energy stress, glycolytic enzymes
dynamically colocalized near presynaptic sites into multi-enzyme clusters. The formation of
these clusters has been found to be crucial for proper synaptic function and locomotion under
high energy demanding conditions. This suggests that energy demands are locally met by
coclustering glycolytic enzymes [112]. Interestingly, in human cancer cells, enzymes involved
in glycolysis as well as gluconeogenesis, were found to organize spatially. It was proposed that
the dynamic organization of enzymes into clusters is a mechanism to regulate the flux and
allocation of glucose derived pathway intermediates [114]. Despite the ubiquitous presence
of glycolytic enzyme clusters and their putative role in regulating glucose metabolism, the
assembly mechanisms of enzyme clusters remain poorly understood. Recently, it was shown
that glycolytic enzymes follow the gradient of their specific substrate [115]. This phenomenon
was proposed to induce aggregation of pathway enzymes. A cluster of upstream enzymes cre-
ates a locally high concentration of intermediates which directs the motion of downstream
enzymes towards the cluster.
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2.4 Synthetic approaches for engineering spatial enzyme
organization

Inspired by the natural strategies of spatial enzyme organization, synthetic biologist follow
various approaches to spatially arrange enzymes with the aim to enhance pathway activity.
In these approaches, synthetic or natural scaffolds and compartments are used to position
sequential enzymes into proximity in order to enhance the efficiency of intermediate transfer
between the enzymes. Increasing production rates of complicated biochemical pathways are
of high interest for the synthesis of pharmaceutically useful compounds or biofuels. In the
following we discuss some of the endeavors to engineer the spatial organization of enzymatic
pathways.

2.4.1 Scaffold based strategies

A common approach to control the spatial organization of enzymes is to use natural or syn-
thetic scaffolds onto which the enzymes are positioned. The scaffolds can be constructed
from proteins or nucleic acids where certain functionalized domains allow for binding of the
enzymes to the scaffold. The ability to construct large scale structures from nucleic acids
allowed synthetic biologist to arrange consecutive enzymes on DNA or RNA-based scaffolds.
In several studies, the consecutive enzymes glucose oxidase (GOx) and horseradish peroxidase
(HRP) functionalized with DNA oligonucleotides were tethered to DNA-based scaffolds. In
one example, hexagon-like DNA strips were designed where overhanging ‘hinges’ allowed for
binding of the functionalized enzymes to the DNA structure. The relative localization of the
two enzymes was controlled by using either two- or four-hexagon DNA strips leading to 13 nm
or 33 nm inter-enzyme separation. A ∼1.2-fold higher overall activity was measured for the
two-hexagon structure compared to the four-hexagon structure (see Fig. 2.3a). This was ex-
plained by the different distances intermediates have to diffuse to reach the next enzyme [116].
Using the same enzyme pair, a two dimensional DNA origami scaffold was used to probe the
overall pathway activity as a function of the inter-enzyme distance. An almost 20-fold activity
enhancement was observed when the enzymes were positioned at 10 nm separation. At larger
distances, between 20 nm and 65 nm interenzyme separation, the activity dropped to ∼3 fold
enhancement compared to the free enzyme case [117] (see Fig. 2.3b). In another study, the
flat DNA origami sheet equipped with the enzyme pair was rolled into a tube confining the
enzymes. The confinement of intermediates inside the tube led to a further enhancement of
the activity compared to enzymes on flat DNA origami tiles [120, 121]. In a more elaborate
approach, a swinging arm was introduced between two consecutive dehydrogenases colocal-
ized on a DNA nanostructure. The swinging arm mediated efficient hydride transfer between
the enzymes resulting in an almost 100-fold activity enhancement as compared to the as-
sembly lacking the swinging arm. Moreover, adding more upstream enzymes with swinging
arms around the downstream enzyme further increased the activity [122]. Unfortunately,
these approaches are not well suited for in vivo application. The formation of DNA nanos-
tructures and the conjugation of proteins to these structures is still hard to achieve in vivo.
Furthermore, the binding of single-stranded oligonucleotides to enzymes may lead to a loss
of enzymatic activity. To circumvent some of these challenges, specific nucleic acid binding
proteins were used to arrange enzymes on DNA. By fusing the enzymes to zinc finger motifs,
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Figure 2.3: Synthetic approaches for controlling the arrangement of enzymes. (a) Assembly of
GOx and HRP on hexagonal DNA strips. The enzymes can be positioned either 6 nm or 20 nm apart
from each other. The plot shows the change of absorbance over time resulting from the oxidation of
ABTS2− by the GOx–HRP pair for (1) a four hexagon scaffold, (2) a two hexagon scaffold, and in
the absence of any DNA and in the presence of non-functional DNA (Control). Figure adapted with
permission from [116]. (b) Colocalization of GOx/HRP pairs on DNA origami tiles. The interenzyme
distance was changed from 10 nm to 65 nm. The plot shows the activity enhancement of the enzyme
pairs on DNA origami scaffolds compared to free enzymes in solution. The raw activity, not corrected
for the yield of the completely assembled nanostructures, is plotted in gray, and the yield corrected
activity is plotted in orange. Figure adapted with permission from [117]. (c) Synthetic protein
scaffold for spatial enzyme organization. The protein scaffold was constructed using three protein-
protein interaction domains (GBD, SH3, and PDZ) connected by flexible nine-residue glycine serine
linkers. The repeats of each domain are represented by x (no. GBD), y (no SH3), and z(no PDZ).
Different combinations of numbers of repeats exhibited dramatic differences in mevalonate product
titers. The Optimal combination of repeats (x=1, y=2, z=2) resulted in a 77-fold increase of product
titer compared to the non-scaffolded pathway (x=0, y=0, z=0). Figure adapted with permission from
[118]. (d) Encapsulation of an ethanol producing pathway into the PDU microcompartment shell. The
enzymes pyruvate decarboxylase (Pdc) and Alcohol dehydrogenase (Adh), which sequentially convert
pyruvate to ethanol via the intermediate Acetaldehyde are targeted to the microcompartment shell by
fusing the enzymes to targeting peptides of the native system. An increase of ethanol production was
observed for compartmentalized enzymes. Figure adapted with permission from [119].

which recognize and bind to specific 9-18 base pair sequences of double-stranded DNA, se-
quential enzymes were arranged to rationally designed DNA scaffold in Escherichia coli. Cells
with spatially arranged enzymes yielded five fold larger product titers compared to cells with
free enzymes [123]. In another in vivo approach RNA structures with distinct protein-docking
sites were used to organize the sequential enzymes [FeFe]-hydrogenase and ferredoxin which
catalyze the reduction of protons to hydrogen through electron transfer. The enhancement
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of hydrogen production was measured for different scaffold architectures. Enzymes arranged
on two-dimensional structures yielded an order of magnitude higher enhancement compared
to enzymes on one-dimensional structures [124].

A recent study challenges the picture that spatial proximity of sequential enzymes colocalized
on nucleic acid based scaffolds enhances pathway activity by the reduced diffusive distance
between the enzymes [125, 126]. In this study, the activity enhancing effect was ascribed to the
increased enzymatic activity close to the DNA nanostructures induced by the locally reduced
pH around DNA. Hence, it remains to be understood how and when the spatial proximity of
enzymes can enhance pathway activities and when the effects need to be attributed to certain
factors that change intrinsic enzymatic efficiencies.

In addition to nucleic acids, also proteins can be used to construct scaffolds for spatial en-
zyme organization. Instead of rationally designing such protein structures, researchers often
repurpose naturally occurring protein scaffolds of large enzyme complexes. For example, the
scaffold of the cellulosome enzyme complex is utilized for a modular spatial organization
of various enzymatic pathways. Cellulosomes are large enzyme complexes in anaerobic cellu-
lolytic microorganisms responsible for the degradation of insoluble cellulose. These complexes
are localized at the outer surface of the bacteria and the proximity of multiple enzymes in the
complexes increases their synergistic catalytic activity [127, 128]. The scaffold of the cellu-
losome is composed of several cohesin-dockerin pairs, where the cohesins are integrated into
a large glycoprotein. The dockerin domain of the cellulases and xylanases then bind to the
cohesins to form the enzyme complex [129]. Additionally, cellulose-binding modules (CBMs)
attach the cellulosome to cellulose and, thus, localize the multi-enzyme complex in proximity
to its substrate [130]. Hence, the cellulosome serves two functions, it colocalizes cellulases and
other enzymes for an efficient breakdown of cellulose and simultaneously attaches the bac-
terial cell to the plant cell wall giving the cell direct access to degradation products. Using
orthogonal cohesin-dockerin pairs from different species allowed for a rational design of syn-
thetic mini-cellulosomes in different species [131, 132, 133, 134]. In yeast cells heterologously
expressed mini cellulosomes localized to the cell surface and a combined cellulose hydrolysis
and ethanol production pathway yielded almost three fold more ethanol than compared to
free enzymes [133]. The modular nature of the orthogonal cohesin-dockerin pairs also enables
researchers to assemble heterologous enzymatic pathways to the cellulosome scaffold. This
was demonstrated by organizing three dehydrogenases catalyzing the oxidation of methanol
to carbon dioxide. The assembly of all three dehydrogenases to the scaffold resulted in a
5.1-fold increase in methanol consumption compared to unassembled enzymes [135].

In another approach, protein scaffolds were designed using three different protein-protein
interaction domains: The GTPase binding domain (GBD) from the actin polymerization
switch N-WASP, the Src homology three domain (SH3) from the adaptor protein CRK, and
the PSD95/DlgA/Zo-1 (PDZ) domain from the adaptor protein syntrophin. The interaction
domains were combined using flexible nine-residues glycine-serine linkers (see Fig. 2.3c). Using
this scaffold the three enzymes catalyzing the production of mevalonate from acetyl-CoA were
colocalized via small ligands attached to the enzymes that bind to the interaction domains.
Varying the number of repeats of the different interaction domains provided control over the
ratio of the individual enzymes colocalized to the assembly. For the optimal stoichiometry, the
enzyme assembly on the scaffold achieved a 77-fold enhancement of product titer compared to
free enzymes [118]. To demonstrate the modular nature of the scaffold design, the enzymes of
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another pathway were colocalized using the same scaffold. For a synthetic pathway producing
glucaric acid, the spatial organization of enzymes on the scaffold improved product titers by
3-5 fold over the non-scaffolded control [118, 136].

2.4.2 Direct enzyme conjugation

Instead of using scaffolds for enzyme colocalization, metabolic enzymes can also be brought
into proximity by direct conjugation. This can be achieved by forming fusion proteins where
small polypeptide linkers connect the enzymes. In a first attempt to form chimeric proteins
consisting of two consecutive enzymes, the enzymes beta-galactosidase (LacZ) and galactok-
inase (GalK) which sequentially convert lactose to galactose-1-phosphate were genetically
fused together. The resulting fusion protein showed the enzymatic activity of both enzymes
however with considerably reduced individual activities [137]. In a follow up to this study,
LacZ was fused to galactose dehydrogenase (GalDH) for the two-step production of galactono-
lactone from lactose. In this instance, the bifunctional enzyme displayed kinetic advantages
over the identical native system in the conversion of lactose to galactonolactone, especially at
low substrate concentrations. The Michaelis-Menten constant, KM , for lactose was decreased
by two-fold and the transient time was 2-4 fold shorter [138, 139]. In another example, a
fusion protein was expressed in yeast comprising the enzymes farnesyl diphosphate synthase
(FPPS) from yeast and patchoulol synthase (PTS) from patchouli, which sequentially produce
patchoulol. The fusion of these enzymes increased patchoulol production up to 2-fold [140].
Moreover, it was recently reported that the orientation of active sites relative to each other
has a strong impact on the activity improvement of fused enzymes. When the active sites
were directed to each other a four-fold higher efficiency enhancement was observed compared
to the case where the active sites were directed away from each other [141].

However, in recent years, the view has been challenged that the spatial proximity of consecu-
tive active sites in these fusion proteins enables efficient processing of intermediates without
directed transfer [142, 125]. Instead it was suggested that efficient processing of intermedi-
ates could only be achieved if several active sites of the sequential enzymes are colocalized
in clusters or compartments. Thus the major disadvantage of the enzyme fusion approach is
that only a pair of enzymes can be brought into proximity. Furthermore, fusing enzymes to-
gether often leads to a reduction of the intrinsic enzymatic efficiency of the individual enzymes
caused by incorrect folding of the proteins.

In Chap. 5, we will quantify under which conditions the spatial proximity of enzymes in pair
arrangements can enhance pathway fluxes and when other spatial arrangements are desirable.

2.4.3 Compartmentalization

The natural strategy of confining sequential enzymatic reactions inside compartments inspired
synthetic biologists to engineer metabolic compartmentalization to improve pathway activity
and to protect host organisms from potentially toxic intermediates. Compartmentalization is
achieved using a variety of natural and synthetic compartments such as eukaryotic organelles,
bacterial microcompartments, viral capsids, and polymersomes. Several eukaryotic organelles
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were successfully repurposed for the compartmentalization of heterologous enzymes. Ava-
los et al. engineered the mitochondrion to contain all five biosynthetic enzymes catalyzing
isobutanol in Saccharomyces cerevisiae. In wild type cells the first three enzymes of this path-
way are located in the mitochondrion while the two downstream enzymes are only present in
the cytosol. By targeting all pathway enzymes to the mitochondrion a 3.25-fold enhancement
of isobutanol production was achieved compared to wild type cells. It was concluded that
the colocalization of the entire pathway inside the mitochondrion enabled efficient process-
ing of the intermediate, α-ketoisovalerate, which otherwise would need to diffuse out of the
mitochondrion to be available for further processing to isobutanol by the two downstream
enzymes [143].

Furthermore, the peroxisome was used to compartmentalize exogenous pathways. Using an
optimized Peroxisomal Targeting Sequence (PTS1), DeLoache et al. achieved rapid target-
ing of the three consecutive enzymes (VioA, VioB, and VioE), which convert tryptophan to
the green pigment prodeoxyviolacein (PDV), to the peroxisome. The substrate tryptophan,
the first intermediate IPA imine, and the first enzyme VioA easily traverse the peroxisomal
membrane while the second intermediate, IPA imine dimer, and the last two enzymes do not
cross the membrane and stay confined in the peroxisome. By exploiting this confinement,
it was demonstrated that compartmentalizing the last two enzymes within the peroxisome
generated a 35% enhancement of PDV production compared to cells where the enzymes were
in the cytoplasm. This enhancement was generated when the last enzyme was limiting, in-
dicating that compartmentalization enabled efficient processing of IPA imine dimers which
also spontaneously degrades to the dead-end side product chromopyrrolic acid (CPA) [144].
Moreover targeting exogenous enzymes to the peroxisome was shown to increase the produc-
tion of fatty-acid-derived fatty alcohols, alkanes, and olefins in both Saccharomyces cerevisiae
and Yarrowia lipolytica [145, 146, 147]. These endeavors present promising directions for
engineering high yield biofuel producing cells.

In addition to mitochondria and peroxisomes also chloroplasts in plant cells have been em-
ployed to compartmentalize exogenous enzymes. In a recent study, the translation machinery
of chloroplasts was exploited to localize the enzymes of the mevalonate pathway (MEV) to the
chloroplast lumen [148]. The chloroplast genome was transfected with the six genes encoding
for the MEV enzymes and their over-expression was induced. This strategy resulted in a 10-
fold increase in squalene production, which was mainly attributed to the higher concentration
of pathway intermediates inside the chloroplasts [148, 149].

Despite these successful studies of targeting exogenous enzymes to eukaryotic organelles, there
are still many challenges associated with this approach. For example, pathway enzymes may
be inactive in the organelle interior because of unfavorable pH values or redox environments.
Additionally, organelles that do not have a genome and translation machinery cannot be ge-
netically engineered to express the exogenous enzymes inside the lumen. Hence, to target
enzymes to such organelles certain tags are required which direct the incorporation of the
enzymes into the organelle. In many cases incorporation can be slow and additional engineer-
ing of the targeting tags may be necessary. Finally, the substrate of the compartmentalized
pathway should be able to permeate through the organelle membrane while the intermedi-
ates should stay confined. Hence compartmentalization for pathway flux enhancement is not
suited for pathways consisting of metabolites that do not fulfill these requirements.
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Besides targeting heterologous enzymes to eukaryotic organelles, in recent years much effort
was made to reuse BMCs for compartmentalization. BMCs are well suited for bioengineering
since they can be entirely expressed in heterologous systems by incorporating the BMC genes
into the host genome [150, 44]. Nevertheless, to be able to target heterologous cargo to BMCs
a thorough understanding of the natural assembly pathways is necessary. Most BMCs were
predicted to form from the inside out, first a core of enzyme proteins forms around which
the shell assembles [151, 152]. A short N-terminal sequence found at the lumen enzymes,
the encapsulation peptide (EP), facilitates the aggregation of the enzymes into the core and
their subsequent encapsulation by the shell proteins [153, 154, 155, 152]. Attaching EPs to
heterologous proteins indeed led to an encapsulation inside the BMCs, which was verified using
fluorescent proteins as cargo [156, 157, 43]. By exploiting this mechanism, exogenous enzymes
were targeted to the interior of BMCs. For example, the EPs from the native enzymes of
the Pdu microcompartment were used to compartmentalize the exogenous enzymes pyruvate
decarboxylase and alcohol dehydrogenase into the Pdu shell generating an in vivo bioreactor
that converts pyruvate to ethanol in E. coli. The strains containing this engineered BMC
were not only able to produce ethanol from pyruvate but also produced elevated levels of
ethanol compared to the uncompartmentalized control [119] (see Fig. 2.3d). Furthermore, the
encapsulation of enzymes inside BMC shells was demonstrated to insulate enzymes from pH
stress [158] and to protect cells from cytotoxic enzymes [159]. A possibility to further optimize
the activity of synthetic BMCs is to tune shell permeability by modifying the residues that
surround the pores of the shell. Ideally, the shell should allow for a facile permeation of
substrates and final products while impeding the escape of intermediates. In preliminary
studies, it has been shown that a mutation of residues surrounding the pores alters shell
permeability [160, 161].

Protein-based nano-reactors can not only be engineered by repurposing BMCs but also by
using viral capsids as shells for enzyme compartmentalization. It was shown that several
enzymes can be simultaneously targeted to the capsid of the bacteriophage P22. A model
pathway consisting of two or three consecutive enzymes was encapsulated by fusing the en-
zymes together and tagging the multi-enzyme fusion with a scaffold protein domain (SP).
This domain is recognized by the coat proteins derived from the virus, which then leads to
the compartmentalization of the multi-enzyme gene product [162]. However, encapsulation
of the pathway did not display any kinetic advantages [162]. Using the same approach it was
shown that encapsulation of enzymes into viral capsids protects the enzymes from proteases
and stress conditions [163]
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3 Optimal compartmentalization strategies for
metabolic compartments ∗

The compartmentalization of metabolic pathways is a ubiquitous strategy used by cells to
alleviate challenges such as toxic pathway intermediates, competing metabolic reactions, and
slow reaction rates (see Sec. 2.1). Inspired by nature, synthetic biologists seek to engineer
enzyme compartmentalization within vesicles or proteinaceous shells to enhance the yield
of industrially and pharmaceutically valuable products. Although enzymatic compartments
have been extensively studied experimentally, a quantitative understanding of the underlying
design principles is still lacking.

In this chapter, we use a theoretical approach to elucidate optimal design principles for
metabolic microcompartments that apply both to natural and synthetic system. In partic-
ular, we study how the size and enzymatic composition of compartments should be chosen
so as to maximize the productivity of a model metabolic pathway. By analyzing a simple
reaction-diffusion model, we find that maximizing productivity requires compartments larger
than a critical size, where the enzyme density within each compartment should be tuned
according to a power-law scaling in the compartment size. This behavior will be explained
using an analytically solvable, well-mixed approximation. In regimes where this approxima-
tion breaks down, qualitatively similar behaviors are observed. Our results suggest that the
experimentally observed different sizes and enzyme packings of α- and β-carboxysomes each
constitute an optimal compartmentalization strategy given the property of their respective
protein shells.

3.1 Introduction

We have seen in the previous chapter (Chap. 2) that metabolic processes in living organisms
are often coordinated in space. This spatial organization is believed to have evolved as a
strategy to overcome certain challenges inherent to intracellular metabolism. Intermediate
products of a pathway can be toxic for the cell, poorly retained by the cell membrane or
undergo undesired side reactions [70, 47]. Furthermore, enzymes can be inefficient or have a
low specificity for the desired reaction [165] (see Sec. 2.1). These limitations can be alleviated
by spatially orchestrating metabolic reactions. The mechanisms by which this is achieved
are diverse, ranging from direct enzyme conjugation and enzyme localization on scaffolds to
spatial confinement of enzymes within subcellular microcompartments.

∗This chapter is adapted from the publication: Optimal Compartmentalization Strategies for Metabolic
Microcompartments, by F. Hinzpeter, U. Gerland, and F. Tostevin, published in Biophysical Journal in 2017.
See also [164].
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In this chapter the focus is on metabolic reactions taking place within subcellular microcom-
partments. The compartmentalization of metabolic processes into organelles is a hallmark
of eukaryotic cells. Examples include peroxisomes, glycosomes, and mitochondria. The dis-
covery of bacterial microcompartments (BMC) demonstrated that metabolic compartments
also exist in prokaryotes [166, 167]. In contrast to the lipid membranes that typically define
eukaryotic organelles, BMCs have protein shells reminiscent of viral capsids. Small pores in
the shell allow metabolites, but not enzymes, to pass into and out of the compartment [57].

The best-studied BMC, the carboxysome, is a key element of so-called “carbon concentrating
mechanisms” that are crucial for efficient carbon fixation by cyanobacteria [168]. Carbon
fixation in the Calvin cycle relies on the enzyme RuBisCO, which has a low turnover rate
and, in addition to the fixation of carbon dioxide, also catalyzes the unproductive fixation
of oxygen. RuBisCO is encapsulated within a protein shell together with carbonic anhy-
drase (CA). CA converts incoming bicarbonate (HCO−3 ) to CO2 that accumulates within the
compartment, thereby enhancing the carbon fixation reaction of RuBisCO and reducing the
futile reaction with oxygen. Carboxysomes in different organisms are subdivided into α- and
β-carboxysomes on the basis of the type of RuBisCO (IA vs. IB) present in the particular
species [169]. The two classes of carboxysome also differ in their shell proteins, size and
internal organization, and are thought to be the result of convergent evolution [168].

In recent years much effort has been made to engineer carbon concentrating mechanisms
in plants, with the goal of increasing crop yields by enhancing the photosynthetic efficiency
[170, 171, 172]. To this end, the introduction of carboxysomal RuBisCO into tobacco plants
supported autotrophic growth [173]. More broadly, there is increasing interest in using
synthetic enzyme compartments for efficient synthesis of industrial chemicals and biofuels
[174, 73, 143]. However, despite the ubiquity of metabolic compartmentalization and its po-
tential applications in synthetic biology, a quantitative understanding of the design principles
and functional trade-offs of such compartments is still lacking.

Here, we use mathematical modeling to study how the size and enzymatic composition of
compartments affect an encapsulated metabolic pathway. In particular, we ask how com-
partments should be constructed so as to maximize the enzymatic productivity. In the pa-
rameter regime of α-carboxysomes, we find that the optimal compartmentalization strategy
is to form multiple compartments, each with at least a certain critical size, and each with
less than maximal enzyme occupancy. Interestingly, the same productivity can be achieved
for any compartment larger than a critical size, provided the enzyme densities are chosen
appropriately. The enzyme arrangement within the compartment plays little role over the
biologically-relevant range of compartment sizes. We explain this behavior with the aid of
an analytically-solvable model in which metabolites are well mixed within the compartment.
We also characterize the qualitatively different compartmentalization strategies that emerge
outside the well-mixed regime. The results suggest that the different sizes and packing den-
sities of α- and β-carboxysomes each represent an optimal strategy given the structures of
their corresponding shell proteins.
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Available
Enzymes

(a) (b)

Figure 3.1: Illustration of the compartmentalization strategies for a two-step pathway. (a) Model
two-step enzymatic pathway with enzymes contained within a microcompartment. The permeable
compartment shell allows for the exchange of metabolites S and I with the cytoplasm. (b) A fixed
number of enzymes could be distributed according to many different compartmentalization strategies,
each characterized by a particular compartment size, enzyme density and ratio of E1 to E2 enzymes.
Each such strategy would lead to a different pathway flux, and therefore a different productivity.

3.2 Model

Let us consider a subcellular compartment as shown schematically in Fig. 3.1a, consisting
of a selectively permeable shell that encapsulates enzymes of two types, E1 and E2. This
shell may be composed of proteins, like in bacterial microcompartments, or a lipid bilayer,
as is typical of eukaryotic organelles. Our model two-step pathway has the reaction scheme

S E1−→ I E2−→ P. Substrate molecules S enter the compartment from the cytoplasm through
the boundary shell, and are converted by enzyme E1 into intermediate product I, which is
converted into final product P by enzyme E2. However, both S and I can also be lost from
the compartment through the shell before reacting further. In principle, intermediate could
also be unstable or consumed by side reactions within the compartment. The discussion of
this scenario can be found in the SM Sec. A.6.

The total rate at which substrate S is converted into product P will depend on the number
and size of compartments, the densities of the two enzymes, and the spatial arrangement
of enzymes within the compartment. We refer to a particular choice for this collection of
properties as a “compartmentalization strategy” (Fig. 3.1b). Which compartmentalization
strategy is the optimal one? Clearly, the answer to this question must depend on the objective
or “design goal” of the system, as well as potential additional constraints. The biological
imperative to achieve a high production flux while limiting the expenditure of resources in
enzyme production [175] suggests maximal enzymatic productivity as the design goal, where
productivity is defined as the total rate of P production per enzyme. In this theoretical study
we assume that the choice of compartmentalization strategy is otherwise not constrained in
any significant way.
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3.2.1 Productivity

Let us suppose that a cell contains a total of NE = NE1 +NE2 copies of the enzymes E1 and E2,
distributed equally over a number Nc of identical compartments, such that each compartment
contains Ec = NE/Nc enzymes. The total rate of production of P is given by JP = NcJc where
Jc is the rate of production per compartment. Then, the total production can be written as

JP = NE
Jc
Ec
≡ NEP, (3.1)

where we define the productivity P as the flux of P production in one compartment divided
by the total number of enzymes contained within the compartment. In steady-state, the
productivity can also be written as P = Jin ε/Ec where Jin is the total influx of substrate S
across the compartment boundary and the factor ε, which we term the “conversion efficiency”,
is the probability that an S molecule entering the compartment will be converted into product
P, rather than leaving the compartment in the unreacted S or partially-reacted I form.

The productivity allows us to quantify the performance of a given compartmentalization
strategy, taking into account both the rate at which each compartment produces P and the
necessary enzyme investment (how many such compartments can be constructed with the
available enzymes). To isolate the effect of the compartmentalization strategy from processes
happening at the scale of the cell as a whole, we will assume that the compartments do not
affect one another via the cellular pools of metabolites S and I, which we will take to be fixed.
Under this assumption, the strategy that maximizes the productivity of a single compartment
will also maximize the total production of P in the cell for a fixed number of enzymes NE .

3.2.2 Reaction-diffusion model

To determine the productivity, we must specify the dynamics of S and I inside the compart-
ment. Here, the reactions of S with E1 and I with E2 is modeled using Michaelis-Menten

kinetics, with k
(1)
cat and K

(1)
M the catalytic rate and the Michaelis constant of E1, and similarly

for E2. The density of enzymes of type E1 and E2 at position r within the compartment is
denoted by e1(r) and e2(r), respectively. Enzymes are taken to be fixed in position and thus
the density distributions do not vary over time. However, to account for the finite size of
the enzymes, a maximal packing density of enzymes, e1(r) + e2(r) ≤ emax, is imposed as a
constraint. Within the compartment S and I are assumed to move by diffusion, with equal
diffusion constants. The concentrations of S and I, s(r, t) and i(r, t), respectively, therefore
follow the coupled reaction-diffusion equations,

∂s(r, t)

∂t
= D∇2s(r, t)− k

(1)
cate1(r)s(r, t)

K
(1)
M + s(r, t)

(3.2)

∂i(r, t)

∂t
= D∇2i(r, t) +

k
(1)
cate1(r)s(r, t)

K
(1)
M + s(r, t)

− k
(2)
cate2(r)i(r, t)

K
(2)
M + i(r, t)

. (3.3)

The last term in Eq. 3.2 represents the conversion of S into I by E1, which appears as a local
source of I in Eq. 3.3; the final term in Eq. 3.3 describes the conversion of I into P by E2.
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For simplicity, we assume compartments that are spherical with radius R, and concentration
profiles that are spherically symmetric.

Let us assume that through regulation of uptake and export rates, the cell maintains a
homeostatic concentration s0 of substrate in the cytoplasm. Intermediates, in contrast, are
assumed to be poorly retained by the cell membrane or rapidly degraded in the cytosol, such
that their concentration in the cytoplasm is negligible. For carboxysomes in cyanobacteria
this assumption is reasonable, since detailed models of carboxysomes [176, 67] predict that
active conversion of CO2 to HCO−3 in the cytoplasm results in a concentration of CO2 outside
the compartment about 1000-fold lower than inside. The exchange of metabolites across the
compartment shell is described by the boundary conditions,

D
∂s(r, t)

∂r

∣∣∣
r=R

= ps [s0 − s(R, t)] (3.4)

D
∂i(r, t)

∂r

∣∣∣
r=R

= −pii(R, t), (3.5)

where ps and pi are the permeabilities of the shell to S and I. In this model, a compart-
mentalization strategy consists of a particular choice for the radial enzyme concentration
profiles e1(r), e2(r) and the compartment radius R. For each such strategy, the steady-state
productivity will be

P
{
e1(r), e2(r);R

}
=

∫ R
0 4πr2

k
(2)
cate2(r)i(r)

K
(2)
M +i(r)

dr∫ R
0 4πr2 [e1(r) + e2(r)] dr

, (3.6)

where i(r) is the corresponding steady-state solution of Eqs. 3.2-3.5. In Eq. 3.6, the numerator
is the total production flux of P per compartment, Jc, and the denominator is the total
number of enzymes in one compartment, Ec (c.f. Eq. 3.1). In the following, we will seek the
compartmentalization strategy that optimizes P by maximizing Eq. 3.6 with respect to e1(r),
e2(r) and R.

3.3 Results

The aim of this study is to investigate generic features of optimal compartmentalization
strategies that apply to microcompartments under both biological and synthetic conditions.
We first study in detail the behavior of the model for parameters representative of one of
the best-studied biological microcompartments, the α-carboxysome of cyanobacteria. Sub-
sequently, we return to the question of how optimal compartmentalization strategies change
in different parameter regimes. Additionally, the focus is first on the linear regime of the
Michaelis-Menten kinetics. Later, we will see that including the full non-linear kinetics does
not qualitatively alter the results of our analysis. The catalytic efficiencies of the two enzymes

in the linear regime is denoted by, κ1 = k
(1)
cat/K

(1)
M and κ2 = k

(2)
cat/K

(2)
M .

3.3.1 Optimal compartmentalization strategies for α-carboxysome parameters

The catalytic efficiencies of the two carboxysome enzymes, CA and RuBisCO, have been
measured to be κ1 = 5 (µM s)−1 and κ2 = 0.06 (µM s)−1, respectively [177, 178]. Since there
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Figure 3.2: Optimal compartmentalization strategies for α-carboxysome parameters.
(a) Optimal productivity (top), total enzyme density e∗T = e∗1 + e∗2 (middle), and enzyme abundance
ratio φ∗ = e∗1/e

∗
2 (bottom) for four different arrangements of enzymes: uniform distribution at optimal

density (green circles); uniform distribution at maximal density, eT = emax (purple crosses); enzyme
arrangement as observed in carboxysomes, Eq. 3.7 (red diamonds), and optimized intracompartment
enzyme arrangements (blue squares) as plotted in Fig. A.1 in the SM. (b) Examples of the enzyme
arrangements for the carboxysome configuration Eq. 3.7 (with optimized e1 and e2 values) for different
compartment sizes. (c) Examples of the globally-optimized intra-compartment enzyme distribution
for different compartment sizes.

are no direct measurements of permeability for the α-carboxysome shell, we estimated these
parameters from the known structure of the shell proteins [179, 180] (ps = 90 µm s−1 and
pi = 18 µm s−1, see SM Sec. A.1 for details). The assumed metabolite diffusion coefficient
is, D = 1000 µm2 s−1 and the maximal enzyme concentration was approximated to emax =
25 mM. For calculating the productivity a reference substrate concentration of s0 =25 µM
was assumed.

Let us first consider the scenario where both types of enzymes are uniformly distributed
throughout the compartment, e1(r) = e1 and e2(r) = e2. Such a distribution may represent
the case where the enzymes are freely diffusing. Under this assumption, the steady state
of Eqs. 3.2-3.3 can be solved exactly to find an analytical expression for the productivity
P(e1, e2;R) (see SM Sec. A.2). However, it is not possible to extract from this expression a
closed form for the optimal values of e1, e2 and R. Therefore, we used numerical methods
to optimize the productivity. The results are visualized by plotting the optimal productivity,
P∗, the optimal total enzyme concentration, e∗T = e∗1 + e∗2, and the optimal ratio of enzymes,
φ∗ = e∗1/e

∗
2, for different values of R (see Fig. 3.2a).
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Examining first the optimal productivity (Fig. 3.2a top, green circles), we see that P∗(R)
increases with R up to a critical radius Rc. Above Rc we see a broad plateau in the value of
P∗(R), indicating that similar productivity can be achieved over a wide range of compartment
sizes that encompasses the entire biologically-relevant range (from ∼ 10 nm to ∼ 3 µm, compa-
rable to the size of cyanobacterial cells). For extremely large compartments, the productivity
decreases gradually with increasing R.

The plateau in productivity is associated with a qualitative change in the optimal enzyme
concentrations (Fig. 3.2a, middle & bottom). For small compartments, R < Rc, maximizing
productivity requires that compartments are maximally-packed with enzymes, e∗T = e∗1+e∗2 =
emax. In contrast, for R > Rc, productivity is largest when e∗T (R) < emax; the optimal
density shows a power-law dependence e∗T (R) ∼ R−1. This tuning of the total enzyme density
to the compartment size is crucial for generating the plateau in productivity observed in
Fig. 3.2a (top): if instead compartments are always maximally filled with enzymes then
the productivity shows a pronounced peak at R = Rc and rapidly decreases for R > Rc
(Fig. 3.2a, purple crosses). The optimal ratio of abundances of the two types of enzymes,
φ∗(R) = e∗1(R)/e∗2(R), decreases with increasing R for R < Rc before taking a constant value,
φ∗c , for R > Rc.

The optimal compartmentalization strategy for α-carboxysome parameters is therefore to
produce enzymes of type E1 and E2 in the ratio φ∗c , and to assign these to compartments of
size R > Rc such that the total enzyme density is e∗T (R) = emaxRc/R. For a compartment
radius of R = 60 nm, the typical radius of an α-carboxysome [181], our analysis predicts
that the optimal enzyme density is ≈ 30% of the maximal packing density emax, resulting
in a productivity that is approximately 30% higher than similarly-sized compartments that
are maximally packed (Fig. 3.2a, top). Interestingly, α-cyanobacteria indeed contain several
α-carboxysomes [182], each with just a quarter of the compartment volume occupied with
RuBisCO enzymes [181]. Thus, these cyanobacteria may have evolved to form a surplus of α-
carboxysomes that are not fully packed in order to optimally exploit the cooperative activity
of the encapsulated CA and RuBisCO.

So far it was assumed that the enzymes are uniformly distributed throughout the compart-
ment. However, in naturally occurring microcompartments the enzymes are in general not
uniformly distributed. For example, in carboxysomes, CA is located at the inner surface of
the protein shell whereas RuBisCO is distributed throughout the compartment interior [183].
Similarly, the locations of enzymes in synthetic microcompartments are often constrained
by the method of enzyme encapsulation. For example, enzymes may be incorporated into
the microcompartment by tethering them to shell proteins [184]. This naturally raises the
question of how the enzyme arrangement inside the compartment affects the productivity.

Focusing first on the enzyme arrangement observed in carboxysomes, it is examined how the
optimal compartmentalization strategy changes when E1 is restricted to a layer of thickness
δ = 2 nm (roughly the size of a small protein) at the compartment boundary, while E2 is
distributed throughout the remaining volume. For that, we solved the Eqs. 3.2-3.5 with

e1(r) =

{
0 r ≤ R− δ
e1 r > R− δ

, e2(r) =

{
e2 r ≤ R− δ
0 r > R− δ

(3.7)

(see SM Sec. A.3) and again optimized the productivity with respect to e1 and e2, subject to
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the constraint e1, e2 ≤ emax (Fig. 3.2b).

For R > Rc, the optimal productivity and compartment-averaged enzyme densities (e∗T (R) =
V −1

∫
V [e1(r) + e2(r)] d3r, φ∗(R) =

∫
V e1(r) d3r/

∫
V e2(r) d3r) are almost identical to those

found for uniformly distributed enzymes (Fig. 3.2a, red diamonds). Thus, the optimal com-
partmentalization strategy is not changed when the enzyme distribution is of the form in
Eq. 3.7. For R < Rc, e

∗
T (R) and φ∗(R) differ from the optimal uniform enzyme distribution,

and a lower productivity is achieved. However, this deviation arises simply because for fixed
δ it is impossible to maximally pack the compartment while simultaneously maintaining a
specific ratio of E1 to E2 enzymes.

Next we determined numerically the full enzyme distributions e∗1(r) and e∗2(r) that maximize
the productivity, subject only to the constraint e1(r) + e2(r) ≤ emax (see SM Sec. A.4 for
details). The resulting optimal profiles change with the compartment radius R and differ
substantially from a uniform enzyme distribution (see Fig. 3.2c). A discussion of the optimal
concentration profiles can be found in SM Sec. A.5. Notably, though, the corresponding
productivity is barely increased compared to that achieved by uniformly distributed enzymes
(Fig. 3.2a). Furthermore, the average densities of E1 and E2 over the entire compartment are
the same as for uniform enzymes.

Together these results show that, for the chosen parameters, the precise arrangement of
enzymes within the compartment does not significantly affect the productivity. What is most
important is rather to ensure that the average density of enzymes within compartments is
appropriately chosen according to their size.

3.3.2 Well-mixed approximation

The observation that the intra-compartment enzyme arrangement has little impact on the
productivity suggests that the spatial distribution of metabolites within the compartment is
rather uniform. Indeed, we found that for R . 1 µm, where the productivities for differ-
ent enzyme arrangements coincide, the densities s(r) and i(r) vary within the compartment
by at most ∼ 10% and ∼ 1%, respectively. To understand for which parameter regimes
such a uniform distribution of metabolites will apply, it is instructive to consider the various
timescales that characterize the behavior of the system. Diffusive mixing of the metabolites
throughout the compartment occurs on a timescale τD ∼ R2/D. The reactions of metabo-
lites with enzymes occur on the timescales τ1 = 1/(κ1e1) and τ2 = 1/(κ2e2). Finally, we
identify two timescales associated with the exchange of metabolites across the compartment
boundary, τs ∼ R/ps and τi ∼ R/pi. The R-dependence of these latter timescales can be
understood by considering the rate of exchange across the boundary to consist of the intrinsic
(R-independent) crossing rate for a molecule that is located at the boundary, multiplied by
the fraction of the compartment volume that can be considered close to the boundary, which
decreases as R−1.

Metabolites within the compartment can be considered well mixed when the diffusive timescale
is short compared to those of reaction and exchange, τD � τ1,2, τs,i. In this limit, metabolites
effectively sample the entire pool of enzymes before they leak through the boundary or react.
It is then plausible that the pathway flux does not depend on the precise arrangement of
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enzymes within the compartment. From the R-dependence of the different timescales, we
can see that τD will be smaller than the other timescales when R is sufficiently small. For
the parameters and optimal enzyme concentrations of Fig. 3.2, it can be estimated that this
will be the case for R ≤ 1.4 µm, which is much larger than the typical size of BMCs and the
critical radius Rc. Hence, assuming that the contents of BMCs are well mixed appears to be
a good approximation for biologically-relevant compartment sizes.

To gain further insight into the optimal compartmentalization strategy, a simplified version
of the previously discussed model is analyzed, where the reactants S and I are assumed
to be well mixed within the compartment. Supposing that the reactants flowing across the
boundary are rapidly distributed throughout the compartment, the steady-state equations
for s and i become

0 = 4πR2ps(s0 − s)−
4

3
πR3κ1e1s (3.8)

0 = 4πR2pi(−i) +
4

3
πR3 (κ1e1s− κ2e2i) , (3.9)

where the first term in each equation describes the net transport flux across the compartment
boundary, and the second term corresponds to the reaction flux. This simplified model can
now be compared to the results in Fig. 3.2. Solving Eqs. 3.8-3.9 for the productivity as a
function of the total enzyme concentration, eT = e1 + e2, and the ratio of enzyme densities,
φ = e1/e2 we obtain,

P
(
eT , φ,R

)
=

3pss0
eTR

[
φeTR

3ps
κ1

(1 + φ) + φeTR

][
eTR

3pi
κ2

(1 + φ) + eTR

]
︸ ︷︷ ︸

ε(eT ,φ,R)

. (3.10)

The total enzyme density eT and radius R appear in the productivity only as the product
eTR, which immediately implies a scaling e∗T (R) ∼ R−1. From Eqs. 3.8-3.10 we see that
this scaling originates in the need to balance metabolite transport across the compartment
boundary, which depends on the surface area js,i ∝ ps,iA ∼ R2, against the flux of enzymatic
reactions, which occur throughout the compartment volume j1,2 ∝ κ1,2e1,2V ∼ R3. By
choosing e1,2 ∼ A/V ∼ R−1, the ratio of transport to reaction fluxes can be held fixed at the
particular level that achieves maximal productivity. However, since the enzyme density eT
cannot exceed emax, this scaling cannot be satisfied for all R.

Maximizing the productivity with the constraint eT (R) ≤ emax, we obtain

e∗T,wm(R) = emax

{
1 R ≤ Rc,wm

Rc,wm/R R > Rc,wm

, φ∗wm(R) =


[
1+R/λ2
1+R/λ1

]1/2
R ≤ Rc,wm[

λ1
λ2

]1/3
R > Rc,wm

. (3.11)

where the critical radius Rc,wm = λ
2/3
1 λ

1/3
2 + λ

2/3
2 λ

1/3
1 and the length scale parameters λ1 =

3ps/(κ1emax) and λ2 = 3pi/(κ2emax) correspond to the compartment radii at which the max-
imal turnover of substrate/intermediate via enzymatic reaction equals the rate of loss across
the compartment boundary. The optimal productivity is then

P∗wm(R) =


γλ1λ2

R(R+λ1+λ2)2

[{
1 + R(R+λ1+λ2)

λ1λ2

}1/2
− 1

]2
R ≤ Rc,wm

γ[
λ
1/3
1 +λ

1/3
2

]3 R > Rc,wm

, (3.12)
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Figure 3.3: Results of the well-mixed approxima-
tion. (Top) Optimal productivity, (middle) enzyme
density, e∗T , and (bottom) ratio of E1 to E2 enzymes,
φ∗. Data points show numerical optimization of the
analytical expression for the productivity for uni-
form enzymes, as in Fig. 3.2a. Blue and orange
dashed lines are the corresponding optima in the
well-mixed approximation (Eqs. 3.11-3.12). The
dashed green line shows the leading-order correc-
tion to the optimal productivity, Eq. 3.13.
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with γ = 3pss0/emax. Equations 3.11-3.12 are in excellent agreement with the numerical op-
timization of the full reaction-diffusion model (Fig. 3.3), except for large R values. Thus the
well-mixed model correctly describes the optimal compartmentalization strategy for α-car-
boxysome parameters.

We can now also understand the trends in e∗T (R) and φ∗(R) observed in Fig. 3.3 across
the full range of compartment sizes. The densities of substrate and intermediate inside the
compartment are determined by two effects: exchange across the boundary, and production
and consumption in enzymatic reactions. In particular, reactions deplete the available pool of
metabolites, reducing the efficiency with which enzymes can operate. In small compartments,
R < Rc, exchange dominates over the effects of enzymatic reactions. Here, the most produc-
tive strategy is to pack as many enzymes as possible into the compartment; the ratio of E1
to E2 enzymes should be chosen so as to balance the relative depletion of S and I, thereby
maximizing the efficiency with which S is converted into P. As R increases towards Rc the
larger number of enzymes in the compartment increases the impact of enzymatic reactions
on the metabolite concentrations, which in turn leads to diminishing returns in conversion
efficiency (reflected in the saturation of ε at large R). At the same time, the investment of en-
zymes needed to maintain fully packed compartments, represented by the prefactor (eTR)−1

in the productivity, continues to increase with R. The critical radius Rc,wm represents the
compartment size at which the rate of increase of the product flux exactly matches the in-
creasing cost of maintaining fully-packed compartments. For R > Rc,wm, the productivity of
maximally-packed compartments becomes smaller than could be achieved by constructing a
larger number of partially-filled compartments.
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Note that the ∼ R−1 scaling of the optimal enzyme concentrations and the plateau in optimal
productivity rely not only on the fast diffusive mixing but also on the loss of intermediate
exclusively through the compartment boundary. If intermediates were also to decay within
the compartment volume the optimal compartmentalization strategy, including the optimal
enzyme densities, would change. The analysis of this scenario can be found in the SM Sec. A.6.

3.3.3 Breakdown of the well-mixed approximation

For large compartment radii we see that the numerically-optimized productivity deviates from
the prediction of the well-mixed model (Fig. 3.3 top, R & 10 µm). This is to be expected
because the mixing timescale τD ∼ R2 increases more rapidly for large R than the other
timescales in the system, which scale at most linearly with R. The deviation from the fast-
diffusion limited regime can be systematically examined by performing a series expansion of
P∗ in powers of D−1,

P∗(R) = P∗wm

[
1 +

(pi − ps)R
5 (1 + φ∗wm)D

+O(D−2)

]
. (3.13)

(See SM Sec. A.7 for further details and the case pi ≈ ps.) The first-order correction to the
productivity (see Fig. 3.3 top, green dashed line) is due to the appearance of spatial gradients
of S and I. Changes in the optimal enzyme concentrations away from their well-mixed values
enter only in higher-order terms.

From Eq. 3.13 we can identify the compartment size, Rx ∼ 5D(1 + φ∗wm)/|pi − ps| (for the
case ps = pi = p, Rx ∼

√
175/3(D/p), see SM Sec. A.7), at which the optimal productivity

is expected to deviate significantly from the well-mixed result. Interestingly, P∗ can either
increase or decrease relative to its well-mixed value depending on which of ps or pi is larger.
This is because the explicit diffusion of metabolites has opposing effects on the efficiencies of
the two reaction steps. The rate of S-E1 reactions is reduced in the center of the compartment
because fewer of the S molecules that are introduced at the boundary diffuse into the center.
Conversely, those I molecules that are produced away from the compartment boundary have
a significantly increased probability of reacting with E2 rather than escaping compared to the
well-mixed scenario, leading to a higher probability of conversion of I to P. The relative
values of D/ps and D/pi, which represent the length scales over which S and I molecules can
be considered “close” to the boundary, determine which of these effects has a larger impact on
the pathway flux. In most biological contexts one would expect compartments to primarily
confine intermediates, rather than limiting the influx of substrates, suggesting that ps > pi is
the more natural condition. In this case, as in Fig 3.3, the productivity decreases at large R.

If alternative biochemical processes that give rise to concentration gradients, such as the
spontaneous decay of intermediates, were also to take place in the system, this may cause both
greater deviation from the well-mixed approximation and a break down of the approximation
at smaller values of R (see SM Sec. A.6).

3.3.4 Compartmentalization strategies for highly permeable shells

If the shell permeability is sufficiently high, the well-mixed approximation can break down
at compartment sizes comparable to or even smaller than the compartment size at which
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the transition to sub-maximal packing would occur, Rx . Rc,wm. In such cases, we should
not necessarily expect a plateau in productivity as predicted by the well-mixed model. We
therefore investigated how the optimal compartmentalization strategies change when one or
both of the shell permeabilities was set to a value of p = 104 µm s−1, such that Rx lies in the
range of physically-realistic compartment sizes (R = 0.01 µm - 1 µm).
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Figure 3.4: Optimal compartmentalization strategies outside the well-mixed regime.
(a-c) Optimal productivity and corresponding enzyme densities as a function of the compartment
radius for different boundary permeabilities. (a) ps = pi = 104 µm s−1. The limit ps, pi →∞ (see SM
Sec. A.8) is shown as the green dashed line. (b) ps = 104 µm s−1, pi = 10 µm s−1. (c) ps = 10 µm s−1,
pi = 104 µm s−1. Other parameters are fixed at κ1 = κ2 = 0.4 (µM s)−1, emax = 25 mM, s0 =250 µM
and D = 100 µm2 s−1. (d-f) Optimal concentration profiles for the three cases above at a compartment
radius of R = 100 nm.

Let us again first consider the case of uniformly distributed enzymes. For this enzyme ar-
rangement, some common features are shared between the optimal compartmentalization
strategies in the different parameter regimes (Fig. 3.4a-c, green circles). In all cases we can
again identify a critical radius Rc at which a distinct transition in the optimal enzyme density
occurs. For R < Rc the optimal compartment is maximally packed; for R > Rc, the optimal
enzyme density, e∗T < emax, and the productivity again exceeds that of maximally-packed
compartments of similar size (Fig. 3.4, purple crosses). However, the critical radii differ from
those predicted by the well-mixed model (Fig. 3.4a-c, blue lines), Rc,wm.
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Beyond these similarities, qualitative differences can be observed between the optimal com-
partmentalization strategies. When both ps and pi are large (Fig. 3.4a), the productivity
shows a plateau above Rc. In this regime, the optimal enzyme density in compartments
decreases as e∗T ∼ R−2, in contrast to the low-permeability regime where e∗T ∼ R−1. Further-
more, examining the solution for the productivity in the limit ps,i →∞, it turns out that the
quantities eT and R appear only as the product eTR

2 (see SM Sec. A.8). This result allows
us to identify the origin of the different scaling in the different processes governing exchange
of reactants with the environment. In the low-p limit, the overall exchange rate is determined
by the fraction of the compartment volume that is proximal to the boundary, which decreases
as ∼ R−1. On the other hand, in the high-p regime exchange is limited by the time taken
to diffuse to the boundary, which scales as τD ∼ R2. Yet, despite the different underlying
dynamics, the optimal compartmentalization strategy resembles that in the low-permeability
regime, consisting of compartments larger than Rc with the appropriately chosen e∗T (R) and
φ∗.

In contrast, when only one of ps and pi is large the optimal productivity does not exhibit
a plateau for R > Rc. Rather, when ps is small and pi is large (Fig. 3.4c), the optimal
productivity steadily increases with the compartment size. Thus, large sparsely-occupied
compartments are the most productive. Since in this parameter regime productivity is limited
by the rapid escape of I across the boundary, compartments should contain more E2 than E1
(φ∗ < 1). Conversely, when ps is large and pi is small, which is expected to be the more realistic
scenario, the productivity exhibits a pronounced maximum at a certain radius R∗ ≈ Rc
(Fig. 3.4b). The optimal compartmentalization strategy here is to produce compartments of
size R = R∗ that are maximally packed, e∗T (R∗) = emax. More enzymes of type E1 than of
type E2 are required (φ∗ > 1) to exploit the S that diffuses rapidly across the compartment
boundary, whereas the slow leakage of I means this metabolite will accumulate inside the
compartment.

In the well-mixed regime, changing the intra-compartment arrangement of enzymes has little
effect on the productivity (Fig. 3.2a), since metabolites explore the entire compartment before
reacting. However, if the compartment is not well mixed, we expect that the specific choice
of enzyme arrangement will significantly affect the reaction flux. We therefore investigated
numerically the enzyme profiles e1(r) and e2(r) that maximized productivity. Examples of
the resulting optimal enzyme profiles are shown in Fig. 3.4d-f. The corresponding metabolite
density profiles are shown in Fig. A.3 in the SM.

Figure 3.4a-c (blue squares) confirms that by a suitable choice of e1(r) and e2(r) it is possible
to achieve a higher productivity than with uniformly distributed enzymes. The advantage is
more significant when only one of ps and pi is large, rather than when both permeabilities are
high. We can understand how the increased productivity comes about by examining the main
features of the optimal enzyme profiles (the fine-scale details of the enzyme distributions, in
particular at small r values, are susceptible to discretization artifacts and do not significantly
affect the value of P). When ps is large and pi is small (Fig. 3.4e), enzymes of type E1 form a
shell at the outer boundary of the compartment so as to maximize reactions with substrate
S as it enters the compartment. Since the leakage of intermediate is slow, E2 enzymes can
be localized to the interior side of this E1 band without seriously compromising the pathway
flux. This enzyme arrangement requires more enzymes per compartment (larger e∗T [Fig 3.4b,
middle]) than the best uniform-enzyme strategy, meaning that fewer compartments with more
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enzymes yield a larger product formation rate. When ps is small and pi is large, enzymes
of both types are concentrated in the center of the compartment (Fig. 3.4f). Localizing
E1 enzymes in this way ensures that I is produced far from the compartment boundary.
E2 enzymes colocalize with E1 and also form a shell at the outer edge of the E1 domain
so as to maximize the probability of capturing I molecules before they diffuse out of the
compartment. By arranging enzymes in this way, each compartment can achieve a similar
reaction with significantly fewer enzymes per compartment (smaller e∗T [Fig 3.4c, middle]),
such that a larger number of similar compartments can be constructed with the pool of
available enzymes. Thus, the optimal compartmentalization strategies deviate qualitatively
from those in the uniform-enzyme scenario.

3.3.5 Michaelis-Menten kinetics

So far, we have considered only the regime of low metabolite concentrations where the
Michaelis-Menten reaction kinetics become linear in substrate concentration. However, this
may not be the case in general. In this section, we will see how the full, non-linear reaction
kinetics leads to changes in the optimal compartmentalization strategies. Previously, we saw
that the breakdown of the well-mixed approximation is due to the appearance of metabolite
gradients. The inclusion of non-linear reaction kinetics is likely to mitigate this breakdown
through two effects. First, relative to linear kinetics with the same value of κ = kcat/KM,

the effective reaction rate will be reduced by a factor of (1 + s/K
(1)
M )−1 or (1 + i/K

(2)
M )−1.

This suppresses the consumption of metabolites in metabolic reactions, and therefore the
appearance of metabolite concentration gradients. Secondly, even if gradients of metabolites
form, they would only lead to differences in reaction rate at different positions if the absolute
concentration were also to drop below the KM value of the enzyme. For reactions that are in
the zero-order regime, there will be no difference in reaction flux regardless of where in the
compartment the enzymes are placed.

To test this hypothesis, we analytically determined the productivity P(e1, e2, R) in a well-
mixed model taking into account the full Michaelis-Menten kinetics (see SM Sec. A.9), which
we again optimized numerically with respect to eT (R) and φ(R). Additionally, we determined
the optimal eT (R), φ(R), and productivity for the full non-linear reaction-diffusion system
by solving Eqs. 3.2-3.3 with uniform enzymes. Since an analytic solution of the non-linear
boundary-value problem is not possible, the steady-state metabolite concentrations were also
calculated numerically in this case (see SM Sec. A.9). The extent of enzyme saturation was
varied by changing the external substrate concentration s0.

The qualitative characteristics of the optimal compartments are similar to the linear reaction
regime (see Fig. 3.5). In particular, we again observe a plateau in P∗(R) above a critical
radius Rc, accompanied by a decrease in the total enzyme density e∗T (R) ∼ R−1. However,
as the extent of saturation is increased, the maximal productivity increases sub-linearly with
s0 and Rc also increases. Note, in Fig. 3.5 the productivity is plotted relative to the external
substrate concentration s0. As in the case of linear reactions, the transition to sub-maximally
packed compartments occurs when depletion of metabolites by reactions, which increases with
the number of enzymes in a compartment, reaches such an extent that the gain in product
formation from maintaining fully-packed compartments is less than the corresponding cost in
terms of available enzymes. However, when the encapsulated enzymes are saturated, depletion
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Figure 3.5: Optimal compartmentalization
strategies with Michaelis-Menten reaction
kinetics. Optimal productivity (top) and total
enzyme concentration (bottom) for different
external substrate concentrations s0. Data points
show results of numerical optimization for the
reaction-diffusion model (Eqs. 3.2-3.3) with a
uniform distribution of enzymes. Continuous
lines show the corresponding optimization in the
well-mixed approximation. Reaction parameters
were chosen to resemble the activity of an

“average” enzyme, k
(1)
cat = k

(2)
cat = 10 s−1 and

K
(1)
M = K

(2)
M = 100 µM [185]. Other parameters

were D = 100 µm2 s−1, ps = pi = 50 µm s−1.

of metabolites will have a negligible effect on the reaction flux. In order for there to be
a significant impetus to reduce the enzyme density inside the compartment, the number of
enzymes must become so large as to deplete the metabolite pool into the range where enzymes
are no longer saturated. Thus, the transition to sub-maximally packed compartments occurs
at larger compartment sizes as the supply of S is increased.

Under biologically-realistic low-permeability conditions, excellent agreement is found between
the well-mixed approximation and the solution of the full reaction-diffusion model. Hence,
the well-mixed approximation also provides an excellent model for compartmentalization in
the non-linear regime. At large R >1 µm, we observe some deviation in the productivity for
unsaturated conditions, s0 . KM, in the same way as for the linear regime. However for
s0 � KM, the same radius falls in the range R < Rc, and the optimal compartmentalization
strategy still appears to track the well-mixed result. In particular, a difference in the optimal
enzyme densities is only observed for R > Rc, corresponding to the point at which the enzymes
within the compartment first become less than fully saturated.

3.4 Discussion

In this chapter, we investigated the design principles underlying enzyme compartmentalization
for a simple model metabolic pathway. We found that the strategy of packing enzymes into
compartments as densely as possible only provides the highest productivity if compartments
are constrained to be very small. On the other hand, if compartments can exceed a critical size,
the productivity is optimized by constructing large compartments, each of which is less than
maximally packed with enzymes. In the parameter regime of low membrane permeabilities
that includes α-carboxysomes, it is reasonable to assume that metabolites are well-mixed
throughout the compartment. Therefore, the precise arrangement of enzymes within the
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Figure 3.6: Optimal compartmentalization
strategies for α- and β-carboxysomes.
The higher shell permeability of β-carboxysomes
(blue line) (ps=1080 µm s−1, pi=215 µm s−1)
shifts the optimal productivity curve to-
wards larger compartment radii and leads to
a more pronounced productivity maximum
compared to α-carboxysomes (orange dashed
line) (ps=90 µm s−1, pi=18 µm s−1). Typical
size ranges for the two carboxysome types are
denoted by the shaded regions.
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compartments is of little importance in determining the productivity. Furthermore, similar
productivity can be achieved across a wide range of compartment sizes, provided that the
enzyme concentration is appropriately chosen according to the compartment radius. These
results provide a guide for the construction of efficient synthetic bioreactors.

The focus in the first part of this chapter was on parameters that resemble α-carboxysome
microcompartments, one of the best-studied metabolic microcompartments. Interestingly,
β-carboxysome shells were found to have larger pores than α-carboxysome shells [57, 179].
We estimate that the shell permeability of β-carboxysomes is approximately 12-fold higher
than that of α-carboxysomes (see SM Sec. A.1). This leads to a larger critical radius Rc at
which the optimal strategy switches from maximal- to partial-packing of enzymes, but also
means that the well-mixed regime for β-carboxysomes is limited to smaller compartments
(corresponding to a smaller Rx), resulting in a more pronounced maximum in the optimized
productivity (Fig. 3.6). Notably, the typical size of β-carboxysomes, which is larger than that
of α-carboxysomes (150 nm vs. 60 nm [186]), lies close to the radius at which the studied model
predicts maximal productivity. The optimal strategy at this compartment size is maximal
packing of enzymes. In contrast, α-carboxysomes fall in the regime R > Rc for which the
model predicts partial packing as the optimal strategy. Interestingly, the arrangement of
RuBisCO within β-carboxysomes was described as densely-packed or paracrystalline [187],
in contrast to the less organized packing observed within α-carboxysomes [181, 188]. Our
analysis suggests that the observed differences in carboxysome properties may reflect the
different optimal compartmentalization solutions that arise given the specific properties of
each protein shell.

The aim in this chapter has been to explore some of the generic properties of compart-
mentalization strategies. Certainly, the studied reaction-diffusion model omits a number of
biochemical details of metabolic reactions. For example, product inhibition will tend to re-
duce the efficiency of enzymes as the concentration of P becomes larger, thereby providing a
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further incentive to reduce the enzyme concentration within a compartment in order to reduce
the rate of P production and hence also its concentration. This potentially leads to a shift
of the critical radius to smaller radii and a change in the scaling of eT , but the qualitative
transition from maximally packed to sparsely packed compartments will persist. Further-
more, in this study, the discrete nature and spatial structure of enzyme molecules has been
neglected. In Chap. 5, we will study how the obstruction of metabolite diffusion, due to the
spatial extension of enzymes, affects reaction fluxes and gives rise to certain trade-offs. Be-
sides such effects, the discreteness of enzymes means that there will inevitably be fluctuations
in the number of enzymes between compartments. It has previously been shown that such
variability can alter the optimal strategy for partitioning signaling proteins among different
sub-domains [189]. It remains to be seen whether a similar effect occurs in the context of
metabolic reactions.

It is also possible for the reactions within compartments to become coupled through exchange
of intermediate or depletion of substrate in the cytoplasm. It will be interesting to see under
which conditions such inter-compartment interactions, which will be governed by the same
physical processes of diffusion and exchange across compartment and cell boundaries as our
intra-compartment model, alter the optimal compartmentalization strategies for the cell as a
whole.

Although, in this study, we have considered only the steady-state productivity of static com-
partment configurations, metabolism is a highly dynamic and tightly regulated collection of
processes. In scenarios where maximizing productivity is not the principal design goal, our
model nevertheless demonstrates that metabolic fluxes may be controlled by changing the
number and size of organelles in which reactions take place. Multiple examples are known
where such changes in subcellular organelles are induced in response to varying metabolic
demands or environmental cues [190, 191, 192]. That changing compartmentalization can
alter metabolic flux has been demonstrated in the fungus Penicillium chrysogenum. Overpro-
duction of a peroxisomal membrane protein resulted in a significant increase in the number of
peroxisomes [193], which in turn led to a 2.5-fold increase in the level of penicillin in the culture
medium. Interestingly, the amounts of peroxisomal enzymes involved in penicillin biosynthe-
sis were unchanged compared to the control strain; rather, enzymes were distributed over a
larger number of smaller organelles. It would be of interest to observe penicillin production
if the peroxisomes are further divided into even smaller organelles. Our analysis predicts
that at a certain organelle size the production of penicillin would decrease again due to the
increasing loss of intermediates.

In addition to changing compartment size and number, cells are also able to regulate the
morphology of organelles. For example, studies have shown that mitochondria change their
shape according to the energy demands of the cell [194, 195]. This morphological change
was suggested to be an active mechanism to increase bio-energetic efficiency [195]. Proteina-
ceous microcompartments could also potentially be constructed with different morphologies
depending on the abundance of different shell components [196]. Our model predicts that for
rapidly diffusing metabolites, productivity depends crucially on the surface-area-to-volume
ratio of compartments, while the specific geometry will be less important. Thus adapting an
organelle’s surface-to-volume ratio by altering its shape presents an alternative possibility for
tuning metabolic fluxes without altering enzyme expression levels.
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4 Enzyme clustering and optimal enzyme
arrangements ∗

We have seen in Chap. 2 that the spatial coordination of sequential enzymes often plays a
crucial role in metabolic processes. Placing enzymes into complexes or macromolecular as-
semblies enables efficient processing of intermediates and thereby enhances metabolic fluxes.
This enhancement often relies on structural features, like intramolecular tunnels, swing arms,
or charge distributions on the molecular surface, that direct the transfer of intermediate sub-
strates between the active sites of consecutive enzymes (see Sec. 2.2). Similar effects are
achieved by segregating pathway reactions into compartments, where the compartment mem-
brane hinders intermediates from escaping the reaction. However, there are many examples
of multi-enzyme assemblies where such structural features are not present but for which en-
hanced metabolic fluxes have been hypothesized (see Sec. 2.3.2). In such cases, the transfer of
intermediates between consecutive active sites is mediated by free diffusion and intermediates
are not prevented from being lost to the surrounding bulk solution.

To understand how, in such systems, metabolic fluxes are enhanced only by enzyme orga-
nization and in the absence of direct intermediate transfer mechanisms, we use a minimal
reaction-diffusion model that allows us to study the impact of the relative localization of
consecutive enzymes on the efficiency of intermediate processing. We show that the cluster-
ing of sequential enzymes achieves the highest reaction flux when the catalytic efficiency of
the downstream enzyme is low compared to the diffusion of intermediate substrates. How-
ever, when the catalytic efficiency is high, it becomes advantageous to redistribute some of
the downstream enzymes away from the cluster into the bulk. This transition is a general
phenomenon which occurs for different reaction kinetics, spatial dimensions, and loss mecha-
nisms of intermediate substrate molecules. We explain this behavior in terms of the underlying
stochastic nature of the reaction and diffusion process.

4.1 Introduction

In living organisms, the catalytic action of enzymes is essential for all metabolic and signal-
ing processes. Enzymes are often found to be organized into large, non-membrane bound
multi-molecular assemblies (see Sec. 2.3.2). These enzyme assemblies are believed to enhance
metabolic fluxes by locally increasing the concentration of reactants. Examples include the
purinosome [76], the cellulosome [198], and glycolytic enzyme clusters [110, 112]. In some

∗This chapter is in large parts adapted from the publication: Optimization of collective enzyme activity
via spatial localization, by A. Buchner, F. Tostevin, F. Hinzpeter, and U. Gerland, published in the Journal
of Chemical Physics in 2013. See also [197].
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cases, such as the cellulosome, enzyme assembly is directed by an inert scaffold to which the
enzymes bind. In other cases, such as the purinosome, direct enzyme-enzyme interactions
enable enzyme colocalization. Besides the impact on metabolic fluxes, enzyme colocalization
also influences the functioning of signaling cascades. For example, enzymes in a cluster can
generate a higher signal amplification than randomly distributed enzymes [199, 200]. In con-
trast to metabolic systems, where the aim is to enhance reaction fluxes, in signaling systems
the design goal is to discriminate between different inputs.

Despite the ubiquity of multi-enzyme assemblies, a deep understanding of the consequences
of certain enzyme arrangements on the reaction flux of a pathway is still lacking. In contrast
to certain enzyme complexes, where intermediates are “channeled” between active sites via
structural components, for multi-enzyme clusters, where such mechanisms are missing and
intermediates freely diffuse, it is less clear how the spatial coordination of enzymes alone can
improve reaction fluxes.

As reviewed in Sec. 2.4, in the last ten years, there has been growing interest in the experi-
mental study of enzyme colocalization both in vitro and in vivo [201, 124]. The aim of these
studies is to enhance pathway reactions with the goal of unraveling design principles which
allow for an efficient synthesis of valuable products such as pharmaceuticals or biofuels. To
be able to rationally design optimal enzyme arrangements using such approaches, a thorough
understanding of the underlying physical principles will be crucial.

Here, we study the impact of enzyme positioning on the processing of intermediate products
using a modeling approach. In a previous study [202] it has been shown, using a minimal
one-dimensional reaction-diffusion model, that enzyme coclustering is not always the optimal
strategy, rather when enzymatic reactions become fast compared to intermediate diffusion,
it becomes advantageous to redistribute downstream enzymes away from the cluster. In this
chapter, we will generalize the model to higher dimensions, non-linear reaction kinetics, and
different mechanisms of intermediate leakage. We show that these diverse models exhibit
similar behavior. In particular, the optimal enzyme distribution of downstream enzymes
around a localized cluster of upstream enzymes transitions from cocluster to a more extended
profile as a function of the effective reaction rate. While this transition is generic, the precise
shape of the optimal enzyme distributions depends on the particular model. We demonstrate
that the universal transition originates from the stochastic nature of reaction and diffusion,
which we explain using the concept of enzyme exposure first introduced in [202].

4.2 Model

Let us consider a model reaction pathway consisting of two enzymes which sequentially convert
substrate S to product P via an intermediate I. We assume that the upstream enzymes,
E1, are localized at a specific position and examine the impact of the arrangement of the
downstream enzymes E2 relative to the E1 cluster on the efficiency of intermediate processing.
For simplicity, we do not include the first reaction explicitly, but rather model the E1 enzymes
as a source of intermediates, with a total production rate J1. Instead of being converted to
P , intermediates can also be intrinsically unstable or degraded by other reactive molecules.
Under the assumption that these processes are position independent, we model them as
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Figure 4.1: Illustration of the model used to study enzyme coclustering and optimal enzyme
arrangements. A cluster of E1 enzymes at the center acts as a source of intermediates. Intermediates
diffuse and either react to the desired product or be lost due to decay or leakage through the system
boundary. In this illustration, we depicted the enzymes as discrete particles. In our model, however, we
coarse-grain the spatial positions of E2 into the continuous concentration profile e(r). Additionally to
the depicted one-dimensional model, we consider systems in all spatial dimensions as well as different
leakage mechanisms.

a first-order reaction with a constant rate σ. The transfer of intermediates between the
enzymes is mediated by simple diffusion, and the arrangement of E2 enzymes is described by
a mean-field concentration profile. The dynamics of intermediates is then governed by the
reaction-diffusion equation,

∂ρ(r, t)

∂t
= D∇2ρ(r, t)− kcate(r)ρ(r, t)

KM + ρ(r, t)
− σρ(r, t), (4.1)

where D is the diffusion coefficient of the intermediate and e(r) is the concentration profile of
E2 enzymes. For the enzymatic reactions we have assumed standard Michaelis-Menten kinet-
ics with kcat the catalytic efficiency of E2 and KM the Michaelis constant. The production of
intermediates by E1 is implemented by a uniform source at the inner boundary of the system,
−DAinn∇ρ(rin) = J1, where n is the unit vector normal to the boundary and Ain is the area
of the inner boundary. At the outer boundary, we assume either reflective (n∇ρ(rout) = 0)
or absorbing (ρ(rout) = 0) boundary conditions. The latter condition may describe the loss
of intermediates to the extracellular environment. The model is illustrated in Fig. 4.1.

4.2.1 Non-dimensionalization of the system

Since the time scale on which enzyme assemblies form is much longer than the time scale of
intermediate diffusion and processing, we will focus on the steady-state of Eq. 4.1. In steady
state, we can recast the reaction-diffusion equation into the dimensionless form,

0 = ∇2ρ′(r′)− αe′(r′)ρ′(r′)

1 + γρ′(r′)
− βρ′(r′), (4.2)

where r′ denotes the spatial coordinate rescaled by the system size R, and ρ′ indicates that the
intermediate concentration has been rescaled such that the total influx of intermediates is 1.
Furthermore, we define the rescaled E2 concentration e′(r) = e(r)/ē, where ē = V −1

∫
V e(r)dr

is the enzyme concentration averaged over the system volume V . The dimensionless parameter
α = (kcatē/KM )(R2/D) captures the relative timescales of reactions with E2 compared to
the typical time to explore the system by diffusion. Similarly, the parameter β = σ(R2/D)
measures the timescale of decay compared to the time to diffuse a distance R. The last
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parameter γ = J1R/(KMD) represents the rate of influx of intermediate relative to the level
at which E2 enzymes become saturated. In the following, we omit the prime notation and
exclusively consider the dimensionless system.

We can derive a flux-conservation equation by integrating Eq. 4.2 over the entire system and
using the specified conditions at the boundary,

1 =

∫
V

αe(r)ρ(r)

1 + γρ(r)
dr︸ ︷︷ ︸

J2/J1

+

∫
V
βρ(r)dr−

∫
∂V
∇ρ(r) · n(r)dr︸ ︷︷ ︸

Jloss/J1

. (4.3)

The rescaled influx of intermediates on the left-hand side must be balanced by the flux of
reactions by E2, J2/J1, plus the loss of intermediates due to decay or the absorbing boundary,
Jloss/J1. How efficiently the E2 enzymes process intermediates is then given by the ratio J2/J1,
measuring the fraction of intermediates that are converted into the desired product P . In
this chapter, we study how changing e(r) affects the efficiency of intermediate processing.
To only compare enzyme arrangements with the same overall enzyme abundance, we keep
the total amount of E2 enzymes in the system constant, which is assured by the condition
V −1

∫
V e(r)dr = 1.

4.3 Results

In this chapter, we extend the minimal model studied in [202] to higher dimensional systems
with different reaction kinetics and leakage mechanisms. We start by focusing on the low
intermediate concentration limit, where the Michaelis-Menten kinetics becomes linear in ρ(r).
Later, we will see how including the full non-linear reaction kinetics will affect the behavior of
the system. In all scenarios we observe a transition of the optimal profile from a cocluster to
more extended profiles, a behavior which has first been reported in [202] for a minimal one-
dimensional model. This demonstrates that the transition is a general phenomenon, which
arises from the generic physical processes of enzymatic reaction and metabolite diffusion.
Besides these similarities, we also find qualitative differences in the behavior of the different
systems.

4.3.1 Linear reaction kinetics

Enzyme exposure

We start by recapitulating the concept of integrated “enzyme exposure” introduced in [202],
which helps to understand the impact of different enzyme arrangements on the efficiency of
intermediate processing. For systems with linear reaction kinetics, this concept allows us to
decompose the processing efficiency into two factors, one spatial factor that only depends
on the enzyme distribution, e(r), and captures the diffusive motion of intermediates, and
one local factor that is independent of e(r) and describes the reaction dynamics. To explain
this concept, let us consider a single intermediate molecule that is produced at time t = 0.
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Figure 4.2: Schematic illustration of the concept of integrated “enzyme exposure”. The diffusive
motion of a set of intermediate molecules forms an ensemble of stochastic trajectories (top row), which
have different enzyme exposure values in the presence of different enzyme distributions (left column).
For example, the diffusive trajectory in (a) spends a relatively long time close to the source. This
generates a higher enzyme exposure value E =

∫ τesc
0

e(r(t))dt (shaded area) for an enzyme distribution
clustered near the source (e.g., distribution (i) middle row). In contrast, in (b) where the intermediate
rapidly diffuses away from the source and spends most of the time in the bulk, the clustered distribution
generates a smaller enzyme exposure value. For a rather uniform enzyme distribution (distribution
(ii) bottom row) the enzyme exposure value is determined essentially by how long the particle stays
in the system. The ensemble of diffusive trajectories generates a distribution of enzyme exposures,
P (E), which only depends on e(r).

In the absence of the E2 enzymes, the intermediate would follow a diffusive trajectory until
it escapes through the system boundary or decays. We denote the time at which these
processes happen and the trajectory ends as τesc. Because of the stochastic nature of diffusion,
the possible paths intermediates can take form an ensemble of trajectories, r(t), which is
independent of the distribution of E2 enzymes. Now, let us assume that we were to reintroduce
the E2 enzymes according to the distribution e(r). For each of the diffusive trajectories,
the local propensity to react with an E2 enzyme in the linear reaction regime is given by
αe(r(t)). Therefore, for each trajectory, the survival probability S(t) that an intermediate
has not reacted until the time t is governed by the differential equation, Ṡ(t) = −αe(r(t))S(t).
Consequently, the probability that a reaction would have occurred along the trajectory is given
by, 1− exp

[
−α

∫ τesc
0 e(r(t))dt

]
. Thus, the probability of reacting with the E2 enzymes can be

decoupled into the likelihood of diffusing a certain trajectory and the probability of reacting
along this trajectory. We summarize all trajectories which are exposed to the same enzyme
concentration, and thus have the same reaction probability, by introducing the integrated
enzyme exposure,

E =

∫ τesc

0
e(r(t))dt. (4.4)

The ensemble of trajectories then forms a distribution of enzyme exposure values, P (E) (see
Fig. 4.2). Note, this distribution is independent of the reactivity of E2 enzymes and only
depends on the enzyme distribution e(r) through Eq. 4.4. The probability to react depends
on the enzyme exposure and is given by pr(E) = 1 − exp [−αE]. This probability depends
on the reactivity of E2 via the parameter α but is independent of the E2 distribution itself.
Using this decomposition, we can express the reaction efficiency as,

J2
J1

=

∫ ∞
0

P (E)pr(E)dE. (4.5)
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Figure 4.3: Decomposition of the efficiency into
the enzyme exposure distribution and reaction
probability. Enzyme exposure distribution P(E)
(left column) and α-dependent reaction probabil-
ity, pr(E) (top row). The conversion efficiency
is given by the overlap integral of P (E) with
pr(E) (gray shading). Exposure distributions
with large tails are preferable when α is small
(middle column), whereas exposure distributions
concentrated around small E values are favorable
when α is large (right column).
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For a derivation showing the equivalence of Eq. 4.5 with the efficiency defined in Eq. 4.3 see
SM Sec. B.1. Figure 4.3 illustrates the decomposition of the reaction-diffusion dynamics into
one diffusion- and e(r)-dependent component P (E) and one reaction dependent component
pr(E).

Instead of calculating the exposure distribution from individual diffusive trajectories, we can
calculate P (E) for a given profile e(r) using the corresponding solution for the efficiency. For
that, we recast Eq. 4.5 by expressing the efficiency in terms of the loss of intermediates and
using the definition of the reaction probability,

J2
J1

= 1− Jloss
J1

= 1−
∫ ∞
0

P (E) exp [−αE]dE. (4.6)

The last term on the right-hand side is the Laplace transform of P (E) with transform vari-
able α. Thus, the exposure distribution can be computed by performing an inverse Laplace
transform of the loss flux, Jloss/J1.

Unstable intermediate molecules

In the minimal model studied in [202], intermediates were assumed to leak out of the system
via the boundary. Here, we seek to understand how the system behaves when intermediates
are unstable and decay but do not escape through the system boundary. This scenario may
represent the case of a negatively charged intermediate which cannot permeate through the
cell membrane but is either intrinsically unstable or degraded by other reactive species. We
start by studying the one-dimensional system with linear reaction kinetics. The reaction-
diffusion equation Eq. 4.2 then reads,

0 = ∂2xρ(x)− αe(x)ρ(x)− βρ(x), (4.7)

where the spatial coordinate is denoted by x in one dimension. On the left end of the system
intermediates are produced, which is described by the boundary condition ∂xρ(x)|x=0 = −1.
On the right end intermediates are reflected, leading to the condition ∂xρ(x)|x=1 = 0. The
parameters α and β measure the timescale of reaction with E2 and decay compared to the time
to explore the entire system by diffusion. Alternatively, α−1 and β−1 can also be interpreted
as measures for the typical distance from the source at x = 0 in units of the system size an
intermediate molecule diffuses before it reacts with E2 or decays. For β � 1, intermediates
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typically explore the entire system before they react, and hence the spatial arrangement
of enzymes will have little effect on the processing efficiency, since intermediates will be
exposed to each enzyme irrespectively of its position. On the other hand, when β � 1 most
intermediates rapidly decay and do not diffuse far from the source. Here we expect that
positioning enzymes close to the source will have a strong effect on the processing efficiency.

We start by comparing two scenarios: a uniform distribution of E2 enzymes over the domain
x ∈ [0, 1], (eu(x) = 1), and a clustered distribution where the E2 enzymes are colocalized
with the E1s, ec(x) = δ(x). Solving Eq. 4.7 for both enzyme distributions and computing the
integral over the reaction term (Eq. 4.3), we obtain the efficiencies for uniformly distributed
and coclustered enzymes,(

J2
J1

)
u

=
α

α+ β
,

(
J2
J1

)
c

=
α

α+ β1/2 tanhβ1/2
, (4.8)

where the index u denotes the uniform configuration and the index c denotes the clustered
configuration (for the derivation see SM Sec. B.2). The efficiency for a uniform E2 distribution
can be understood as the ratio between the rate of P production divided by the total rate of
intermediate consumption.

Comparing the expressions in Eq. 4.8, we notice that the clustered E2 arrangement always
achieves a higher efficiency than the uniform arrangement, since tanhβ1/2 ≤ β1/2. This is no
longer the case when we additionally assume intermediate loss via the system boundary. This
behavior is due to the spatially independent rate of intermediate decay, measured by β, which
determines how far intermediates diffuse away from the source at x = 0 before they decay.
For uniformly distributed enzymes, the amount of E2 enzymes intermediates are exposed to
is reduced compared to the clustered arrangement. This can be quantified by studying the
enzyme exposure distributions of the two enzyme arrangements, which are given by,

Pu(E) = β exp [−Eβ] , Pc(E) = β1/2 tanhβ1/2 exp
[
−Eβ1/2 tanhβ1/2

]
, (4.9)

(see SM Sec. B.3 for the derivation). For uniformly distributed enzymes, the enzyme exposure
distribution, Pu(E), is more concentrated around E = 0 than Pc(E), meaning that a higher
fraction of trajectories rapidly decays before being exposed to a significant amount of E2

enzymes. These trajectories have a low probability of reacting with E2 and, thus, lead to a
low processing efficiency.

Next, we ask what is the enzyme distribution that globally maximizes the efficiency. Despite
the absence of a transition from a clustered to a uniform enzyme distribution, the optimal
distribution still may exhibit a transition away from the pure cluster. To study this, we
numerically determine the optimal enzyme configuration by discretizing the domain into a
lattice and solving the reaction-diffusion system on the lattice. Each optimization step is
initialized with a trial E2 profile on the lattice. From this, we generate 50 variants by ran-
domly selecting one lattice site and moving a random amount of E2 from this site to another
randomly chosen site. For each of these modified profiles, we solve Eq. 4.7 on a lattice and
compute the efficiency, J2/J1, by numerically integrating the reaction term over the domain.
For the next iteration, we use the mean profile of the ten most efficient configurations found
in the previous round. This procedure turned out to be more robust and to converge faster
than a simple random exploration of the possible configuration space. Figure 4.4a,b shows the
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Figure 4.4: Optimal E2 profiles with unstable intermediates. (a) Optimal profiles for different
values of β at α = 50. (b) Optimal profiles for different values of α at β = 5. All optimal profiles
were computed numerically using a lattice with 100 lattice sites. (c) Fraction of total E2, f , that are
clustered at the source of intermediates. (d) Extension of the profiles, l, for different β values as a
function of α.

optimal profiles for different combinations of the parameters α and β. Notably, we find that
enzyme clustering is not always the optimal strategy, rather in a certain parameter regime,
it is advantageous to redistribute enzymes from the cluster into the bulk. This behavior is
reminiscent of the transition observed in [202] where intermediate leakage is modeled via an
absorbing boundary condition. However, the shape of the optimal profiles is different, and
there is no parameter regime where distributing all enzymes uniformly over the system is
optimal.

We quantify the optimal enzyme profiles using the fraction of E2 enzymes clustered at the
source, denoted by f , and the extension of the tail of the distribution defined as the distance,
l, from the source over which the enzyme concentration is above the threshold 10−3. Focusing
first on the behavior of the optimal profiles for different β (Fig. 4.4a), we find that as β is
increased it becomes favorable to cluster a growing fraction of enzymes at the source. This
tendency is due to the decreased distance intermediate molecules diffuse before they decay.
Examining now the behavior of the optimal profiles as a function of α (see Fig. 4.4b), we
observe a sharp transition from a pure cluster (f = 1 and l = 0) to more extended profiles
(f < 1 and l > 0) as α is increased above a critical value. Interestingly, as α becomes
very large, the enzymes are relocated from the bulk back to the source rather than further
into the bulk. This behavior is shown in Fig. 4.4c, where f passes through a minimum and
starts increasing again. However, the distance, l, over which enzymes are distributed does
not decrease (see Fig. 4.4d), only the amount of enzymes close to the source increases at the
expense of decreasing the amount far away from the source.
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We can understand the behavior of the optimal profiles as follows: when α is small enzyme
clustering achieves the highest efficiency, since this configuration generates the largest num-
ber of high enzyme exposure trajectories. At moderate α above the critical value, it becomes
favorable to move some of the enzymes from the cluster into the bulk. This enhances the
probability of catching intermediates that rapidly diffuse away from the cluster at diminishing
returns of reactions at the cluster. For very large α, the need for distributing enzymes is re-
duced, since intermediates rapidly react and rarely diffuse away from the cluster. Therefore,
by again clustering most of the enzymes at the source the probability of processing interme-
diates that stay a very short time in the system is maximized. This is the main difference to
the behavior observed in [202], where intermediates must diffuse past all E2 enzymes before
they can escape the system via the boundary at x = 1. While in the system studied here,
intermediates can be lost before being exposed to enzymes positioned too far from the source.

Higher-dimensional systems

In the following section, we study the system in two and three dimensions in a spherical
geometry. By positioning the source of intermediates at the system center, the concentration
profiles become spherically symmetric depending only on the radial position, r. We start by
studying the two-and three-dimensional analog of the system studied in [202], where interme-
diates are lost only at the system boundary and do not decay (β = 0). In this scenario, the
steady-state reaction-diffusion equation Eq. 4.2 reads

0 = ∇2ρ(r)− αe(r)ρ(r), (4.10)

with the source boundary condition, [Ain(r)∂rρ(r)]r=0 = −1 (where Ain(r) = 2πr in 2-D
and Ain(r) = 4πr2 in 3-D), accounting for the production of intermediates by E1, and the
absorbing boundary condition ρ(1) = 0 describing the loss of intermediates. We again first
compare the efficiencies generated by a clustered and uniform enzyme distribution. The
clustered distribution is modeled by a shell of E2 enzymes localized close to the source at
r = r0. The corresponding distribution in two and three dimensions are then given by,
ec(r) = δ(r − r0)/(2r0) and ec(r) = δ(r − r0)/(3r20), respectively. The uniform distribution
is in all spatial dimension given by, eu(r) = 1. Note, the distributions are scaled by the
average enzyme density such that V −1

∫
V e(r)dr = 1. Solving Eq. 4.10 and integrating over

the reaction term, we obtain for the efficiencies in two and three dimensions,(
J2
J1

)
c

=
α log r0

α log r0 − 2
,

(
J2
J1

)
u

= 1− I0

(
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)−1
in 2-D, (4.11a)
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)
in 3-D, (4.11b)

where Ik(x) is the modified Bessel function of the first kind (see SM Sec. B.4). As the radius
r0 of the enzyme cluster approaches zero, the local enzyme concentration becomes infinite,
and the efficiency approaches one. This situation is not physically realistic, as enzymes are
molecules of finite size. Thus, there will be an upper bound for the concentration of enzymes
in the cluster. Other effects emerging from the discrete nature of enzymes, like obstruction
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Figure 4.5: Comparison of the efficiency in higher dimensions. (a,b) Comparison of the processing
efficiencies for clustered (blue curve, r0 = 0.05) and uniformly distributed (orange curve) E2 profiles
in (a) two dimensions and (b) three dimensions. A transition is observed at α ≈ 30 in two dimensions
and α ≈ 85 in three dimensions (a,b inset). (c,d) Enzyme exposure distribution for the clustered (blue
curve) and uniform (orange curve) E2 distribution in (a) two dimensions and (b) three dimensions.

of metabolite diffusion, will be neglected here and we will return to this question in Chap. 5.
If r0 is small but finite and for small α values, the clustered configuration is more efficient
in processing intermediates than the uniform distribution. However, above a critical α value,
which depends on r0, the uniform distribution becomes more efficient (see Fig 4.5a,b). This
crossover is similar to the one observed in [202]. However, the critical α is shifted to higher
values from α ≈ 9 in the one-dimensional case to α ≈ 30 and α ≈ 85 in the two- and three-
dimensional case, respectively. Since for such large critical α values almost all intermediates
are processed, the difference between reaction efficiencies is very small (see Fig. 4.5a,b inset).
However, in the low α regime, the advantage of clustering is much more significant than in
the one-dimensional case with the largest enhancement observed in three-dimensions. We will
later come back to the question of how strongly clustering can enhance and regulate fluxes
(see Chap. 6).

To further examine the behavior of the system in higher dimensions, we compute the enzyme
exposure distributions for both enzyme arrangements in two and three dimensions (see SM
Sec. B.5 for details),

Pu(E) = 2
∞∑
n=1

J1(j0,n)−1 exp
[
−j20,nE

]
j0,n , Pc(E) = −

2 exp
[

2E
log r0

]
log r0

in 2-D, (4.12a)



4.3 Results 57

(a) (b)
2-D 3-D

Figure 4.6: Optimal enzyme profiles in higher dimensions. Optimal enzyme profiles in (a) two
dimensions and (b) three dimensions. The critical α value above which the optimal enzyme distribution
contains a fraction of enzymes distributed away from the cluster is αc ≈ 0.5 in two dimensions and
αc ≈ 0.05 in three dimensions.

Pu(E) = 2
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n=1

(−1)n+1(πn)2 exp
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]
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3r0 exp
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1−r0E
]

1− r0
in 3-D, (4.12b)

where Jk(x) is the Bessel function of the first kind and j0,n its nth zero point. In Figure 4.5c,d,
we see that Pu(E) is sharply peaked around small but finite E values, while Pc(E) is expo-
nentially distributed. Thus, Pu(E) is concentrated in the regime where for small α, pr(E) is
small, whereas the exponential tail of Pc(E) results in a larger mean value of E and, hence
has more trajectories in the region where pr(E) is significant. Consequently, in the small α
regime the clustered configuration is more efficient. In contrast, when α becomes large, the
peak of Pu(E) lies in the region where pr(E) ≈ 1, while in the region E � 1, where Pc(E)
is larger, pr(E) is small. These trajectories, which correspond to intermediates that rapidly
diffuse away without returning to the cluster, will escape and, therefore, reduce the efficiency
of the clustered configuration.

Why does clustering in higher dimensions lead to a larger enhancement over the uniform
distribution for small α values? In higher spatial dimensions, diffusive intermediate molecules
have more spatial directs to explore and, thus, the spatial fraction of the system an inter-
mediate molecule covers before it escapes decreases with the spatial dimension. If the same
number of E2 enzymes are equally distributed at a radial position further away from the
center, the effective “reaction cross section” becomes smaller for higher dimensions, because
the fraction of enzymes at this radial position an intermediate will typically explore decreases,
and with it the fraction of enzymes in the system an intermediate will be exposed to. This
is in contrast to the one-dimensional case, where an intermediate is exposed to all enzymes
before it escapes at the boundary. Therefore, to gain a benefit from distributing enzymes
away from the cluster, a larger α value is required in higher dimensions to compensate for
the reduction in E2 enzymes to which intermediate molecules are exposed to.

Now, we turn to the question of what is the enzyme profile that optimizes the processing
efficiency as a function of the control parameter α. As a constraint for the optimal profiles,
we impose a limit on the possible packing concentration by assuming that E2 enzymes cannot
be positioned closer to the source than a minimal distance r0. We adapt the optimization
procedure described above by solving Eq. 4.10 on a radial lattice where the lattice sites are at
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Figure 4.7: Optimal enzyme profiles and fraction of enzymes in the cluster for nonlinear reaction
kinetics. The central panel shows the fraction, f , of E2 enzymes in the cluster as a function of α and
γ. The outer panels show the optimal enzyme profiles in different regimes of α and γ. Optimization
were performed with N = 100 lattice sites, 2 × 105 reaction steps and a solution error-tolerance of
10−7

equidistant radial positions. The minimal radius is then fixed by the total number of lattice
sites, N , through r0 = (2N)−1 as the mid-point of the first site. With the constraint of a
minimal clustering radius, we again find that the optimal profile transitions from a pure cluster
to more extended profiles when α exceeds the critical value. The critical α value depends
strongly on r0; for r0 = 0.05 the transition point occurs at α ≈ 0.5 in two dimensions and
α ≈ 0.05 in three dimensions (α = 1 in one dimensions), showing that the critical α decreases
with dimension. This behavior is in contrast to the finding that distributing enzymes away
from the cluster is less efficient in higher dimensions. The increased penalty of moving enzymes
to larger values of r, due to the reduced reaction cross-section in higher dimensional systems, is
reflected in the shape of the extended enzyme profile. In contrast to the one-dimensional case
where the extended profile is constant, the profiles decrease as e∗(r) ∼ r−2 in two dimensions
and e∗(r) ∼ r−4 in three dimensions. Collectively, the emergence of a robust transition from
clustered to more extended configurations shows that the underlying physics is generic, and
is not dependent on the different statistics of diffusion in higher dimensions.

4.3.2 Non-linear reaction kinetics

In the following section, we will study how enzyme saturation affects the generic results pre-
sented above. As mentioned in Sec. 4.2, we include enzyme saturation by assuming standard
Michaelis-Menten kinetics. We start by considering the one-dimensional case with β = 0 and
intermediate loss occurring only at the system boundary. The corresponding reaction-diffusion
equation then reads,

0 = ∂2xρ(x)− αe(x)ρ(x)

1 + γρ(x)
, (4.13)

with the source-sink boundary conditions ∂xρ(x)|x=0 = −1 and ρ(1) = 0, where γ measures
the effective saturation of the E2 enzymes (see definition in Sec. 4.2.1).
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(a) (b)

Figure 4.8: Full model with decay and enzyme saturation. Optimal enzyme distribution and fraction,
f , for the full model at different β and γ parameters and with α = 56 fixed. (a) Optimal distribution,
(b) Optimal fraction of E2 enzymes in the cluster.

We again determine the optimal enzyme profile as a function of α and γ. Due to the non-
linearity, the discretized equation cannot be transformed into a linear system that can be
solved directly. We therefore solved Eq. 4.13 for a given enzyme profile using a shooting
approach. In this approach, a trial solution at the rightmost lattice site is selected. This
trial solution is then used to successively solve Eq. 4.13 on the remaining lattice sites. The
equation for any lattice site depends on the solution of the adjacent sites right and left of
it. Once a trial solution was found, it is tested against the reaction-diffusion equation at the
first site which includes the source boundary condition. When at all lattice sites Eq. 4.13 is
satisfied to a certain tolerance, then the solution is accepted. The optimization procedure
described above remained unchanged.

The numerical solutions for the optimal profiles are shown in Fig. 4.7 for different parameters
α and γ. In the limit of small γ, we see that the numerical procedure reproduces the optimal
profiles found in [202]. For larger values of γ, we find the same qualitative behavior, namely
a transition from clustered to more extended profiles. The critical α at which the transition
occurs increases with γ, since saturation, measured by γ, reduces the effective reaction rate.
Furthermore, we find that the shape and extension of the optimal profile change with the
degree of saturation. The tail of the profiles is not constant and the extension, l, decreases
with γ. This behavior arises from the position-dependent saturation of E2 enzymes. With
increasing distance from the source, the reaction changes from fully saturated to unsaturated.
Finally, it appears that after the transition to a more extended profile occurred, the clustered
E2 fraction, f , decreases more quickly with α when γ is large. For increasing α, the intermedi-
ate concentration in the system is reduced and, thus, the reactions transition from saturated
to unsaturated. Where this transition occurs is determined by γ. Indeed, for very large α the
reaction kinetics become effectively linear and the optimal profiles become independent of γ.

For nonlinear reaction kinetics the decomposition of the reaction-diffusion dynamics, using
the concept of enzyme exposure, is no longer possible. This is because the reaction probability
of an individual intermediate molecule now depends not only on the enzyme concentration
but also on the concentration of intermediate molecules. One could define an effective enzyme
exposure taking into account the effect of saturation, but this does not lead to a decomposition
of the reaction efficiency into one diffusion and one reaction dependent component.

Finally, we study the full model introduced in Sec. 4.2 including enzyme saturation (γ 6= 0)
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and intermediate decay (β 6= 0) in a radial symmetric three-dimensional system. We numer-
ically optimize the E2 profile for different parameter combinations of β and γ at constant α.
The solutions for the optimal profiles (see Fig. 4.8a) are qualitatively similar to the three-
dimensional system with linear kinetics and without decay (compare to Fig. 4.6b). However,
the fraction of clustered enzymes is always larger than in the case where (β = γ = 0) (see
Fig. 4.8b). This is consistent with the previous results showing that large β or γ increase
the tendency of clustering enzymes at the source. The non-monotonic behavior of f as a
function of α is similar to that observed in the one-dimensional system with decay. Similarly
to Fig. 4.7 when the saturation effect becomes stronger (larger γ), the critical α is shifted
to larger values. Collectively this shows that the individual effects arising from the spatial
dimension, decay, or nonlinear reaction kinetics are also present in the full, three-dimensional
model.

4.4 Discussion

In this chapter, we have shown that the transition from a pure clustered to a more extended
optimal enzyme profile is a generic feature of a class of reaction-diffusion systems, where
intermediates are produced at a localized source. However, the exact shape of the optimal
profiles and the critical α parameter depend on the loss mechanism, spatial dimension, and
reaction kinetics. We saw that the transition arises from the interplay of the stochastic dy-
namics of individual intermediate molecules in terms of enzyme exposure and the probability
to react for a given enzyme exposure value. By decomposing the reaction efficiency using this
concept, we were able to give an intuitive explanation of the observed behavior. Clustering
all enzymes close to the source leads to high enzyme exposure times, since this is the region
where intermediates are most likely to spend a significant amount of time. Therefore, for slow
reactions, clustering is the optimal strategy, since intermediates will spend a comparably long
time in the system. In contrast, when the reactions are fast, most intermediates instantly
react and distributing a fraction of enzymes away from the cluster increases the probability
of catching those intermediates that rapidly escape from the cluster.

Furthermore, for the different systems, we have found some interesting qualitative differences
to the results presented in [202]. For unstable intermediates, it becomes advantageous to
move enzymes back to the cluster when the reaction rate is increased beyond a certain value.
This behavior results from the fact that intermediates can also be lost close to the source
due to decay rather than only at the boundary. We also have seen that increasing the spatial
dimensions increases the enhancement of the efficiency generated by the cluster relative to
the uniform enzyme configuration. The increased space intermediates can explore leads to
a smaller fraction of distributed enzymes to which intermediates are exposed along their
diffusive trajectory. Finally, we have seen that including enzyme saturation further favors
enzyme clustering. This suggests that, depending on the influx rate of intermediates, it
may be desirable to dynamically adjust the localization of enzymes in order to maintain
optimal intermediate processing. An example where a dynamic reorganization of enzymes
has been observed is the reversible localization of the mammalian hexokinase isoform (HKII)
to the outer membrane of mitochondria, which depends on factors like glucose-6-P and GSK3
[203, 204]. This dynamic strategy is believed to regulate the relative flux of glucose through
different metabolic pathways.
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In a subsequent theoretical study by Castellana et al., qualitatively similar effects of enzyme
clustering were found [142]. In this study, the conversion of substrates to intermediates
by the first enzyme was explicitly included and, furthermore, the first enzymes were not
restricted to a specific location but rather allowed to be arbitrarily distributed in the system.
It was found that enzyme clustering can significantly enhance the conversion of substrates to
products catalyzed by two consecutive enzymes. The distribution of enzymes that optimizes
the processing also consisted of a cocluster and a certain fraction of the second enzyme
distributed away from the cluster. This additionally shows that the results presented in this
chapter are very generic and apply to an even broader range of reaction-diffusion systems
than considered here.

Despite the interesting physical principles underlying the transition in optimal enzyme distri-
bution, the difference between the reaction efficiency of a pure cluster and the optimal profile
is small. Therefore, for most biological contexts, the relevant conclusion of this chapter is
that enzyme coclustering can considerably enhance intermediate processing without the need
for direct transfer of intermediates or confinement within a membrane. This major finding
could be tested experimentally using the various techniques available to localize individual
molecules such as “single-molecule cut-and-paste” [205] or scaffolding strategies based on
DNA, RNA, and protein nanostructures [117, 206, 207].

The mesoscopic reaction-diffusion models studied in this chapter neglect some details that can
be important on very small length scales. First and foremost, the spatial extensions of both
enzyme and intermediate molecules have been neglected. In real systems, the size of enzyme
molecules sets an upper limit on the clustering density. Furthermore, the tight packing of
enzymes in a cluster will lead to obstruction of diffusive intermediate trajectories. This may
lead to physical confinement of intermediates inside the cluster. However, the same steric
hindrance will prevent the access of initial substrates to the first enzyme. In Chap. 5 we
will study these effects by explicitly considering the enzyme molecules as discrete particles.
This also allows us to investigate enzyme arrangements on a microscopic scale that consist
of few enzyme molecules such as simple pairs of consecutive enzymes fused together. We
will furthermore investigate in Chap. 6 how enzyme coclustering can regulate the fluxes at
a metabolic branch point and introduce enzyme sequestration as an alternative strategy for
flux regulation.
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5 Enhancing biocatalytic fluxes via spatial
organization ∗

The spatial organization of biochemical reactions is ubiquitous in biological systems across
different length scales, from clusters of enzymes to collaborating species in microbial consortia.
How this organization affects the throughput of metabolic pathways, and the general principles
directing biocatalyst organization, remain poorly understood. In particular, biocatalysts often
form dense clusters, within which crowding leads to complex spatial networks of diffusive
fluxes that exchange metabolites between biocatalysts and with the environment. In this
chapter we extend the models studied in Chap. 4 and analyze how the spatial arrangement
of discrete biocatalysts affects the flux of a model reaction pathway. We study how the
spatial extensions of biocatalysts leads to crowding effects and how these can be exploited or
mitigated to modify the reaction dynamics. Using a reaction-diffusion model with biocatalysts
treated as discrete reaction centers and metabolites described via continuous concentration
profiles, we studied how different localization strategies are affected by the relative rates of
the reactions and metabolite diffusion. In the reaction-limited regime, where the diffusion
is fast compared to reactions, the formation of large clusters is most efficient, whereas for
diffusion-limited biocatalysts it is advantageous to form pairs or small complexes of a few of
each type of biocatalyst. This design principle arises from two fundamental trade-offs in the
reaction-diffusion dynamics of metabolites, the first between efficient inter-biocatalyst transfer
of intermediates and depletion of substrates, and the second between steric confinement of
intermediates versus accessibility of biocatalysts to substrates. We conjecture that the class
of optimal geometrical arrangements of biocatalysts within a complex includes those of the
famous Thomson problem in electrostatics.

5.1 Introduction

In almost all metabolic process the action of biochemical catalysts is crucial for the processing
of reactions that otherwise would not occur on a sufficiently short time scale as to sustain life.
These biocatalysts, which are highly interconnected in complex metabolic networks, exhibit a
striking degree of spatial organization across all the length-scales of living systems [47], from
individual molecules to collections of cells.

At the molecular scale, enzymes that catalyze consecutive reactions in a biochemical pathway
are often organized into multi-enzyme complexes, micro-compartments, or other assemblages

∗This chapter is adapted from the manuscript: Enhancing biocatalytic fluxes via spatial organization:
trade-offs and design principles, by F. Hinzpeter, F. Tostevin, A. Buchner, and U. Gerland, which has been
submitted for publication.
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[208, 209, 78, 52]. Well known examples include cellulosomes [128], the purinosome [76],
and carboxysomes [54]. Such arrangements are thought to enable efficient processing of
metabolic intermediates, a process known as metabolic channeling [37] (see Chap. 2). In
recent years there have been extensive efforts to design efficient spatially-organized multi-
enzyme reactions in vitro using a variety of scaffolding and confinement approaches [210, 211,
212]. Similar ideas of efficiently arranging consecutive catalysts are pursued in the realm
of concurrent tandem catalysis to improve the yield and specificity of sequential chemical
reactions [213, 214, 215]. Understanding the physical principles underlying channeling is
crucial for engineering such efficient multi-catalyst systems. However, it remains controversial
whether proximity of consecutive enzymes alone is sufficient to allow channeling of diffusing
intermediates [216, 116, 117, 125], or whether additional confinement of intermediates or
active mechanisms are required [37].

At a higher level of organization, enzyme compartments and complexes themselves can be
seen as catalytic reaction centers. Notably, these structures also function synergistically and
some have been found to spatially colocalize [217, 218, 219]. For example, purinosomes in
HeLa cells were found to localize to mitochondria [219]. It was concluded that the spatial
proximity ensures that mitochondrial-derived metabolic intermediates are efficiently captured
by purinosomes to enhance nucleotide production [219, 220].

On an even larger scale, whole cells can be considered as catalytic reaction centers. By
taking up, processing, and secreting chemicals, cells effectively work as catalysts that alter the
chemical composition of their environment. Interestingly, even on this length scale, different
cells work together to sequentially process metabolites [221, 222, 223, 224]. For example,
biological nitrification, the conversion of ammonia to nitrate via the intermediate nitrite,
is performed by two specialized microbes [225]. The first step, the oxidation of ammonia
to nitrite, is catalyzed by ammonia-oxidizing bacteria/archaea, while the second step, the
conversion of nitrite to nitrate, is performed by nitrite-oxidizing bacteria. These synergistic
microbes are found to grow together in spatially structured biofilms [226].

Despite the differences in length scale, the behavior of these systems is often governed by com-
mon underlying physical processes. The metabolites of interest are typically small molecules
that move by diffusion, while the biocatalysts are typically much larger and are spatially
localized or move on a much slower timescale. The reaction fluxes are determined by the
kinetic interplay between diffusive transport of metabolites and the reaction kinetics at the
specific locations of the biocatalysts.

In previous studies (see Chap. 4) the reaction-diffusion dynamics of spatially arranged bio-
catalysts have been investigated using continuum models, which do not account for the dis-
crete nature of biocatalysts but describe their arrangement by density profiles on mesoscopic
length scales [202, 197, 142]. This prior work analyzed the impact of the large-scale enzyme
arrangement on the overall reaction efficiency. However, it is currently unclear how the dis-
crete nature of the biocatalysts affects this efficiency. If multiple biocatalysts are placed in
close proximity, as in enzyme clusters or microbial biofilms, the resulting “crowded” geome-
tries lead to a complex spatial network of diffusive fluxes that exchange the participating
metabolites between the biocatalysts and with the environment. Many previous studies have
characterized the effects of “random crowding” on the diffusion and reaction dynamics of
molecules [227, 228, 229, 230, 231]. In contrast, the possibility for “designed crowding”, in
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Figure 5.1: Schematic visualization of the reaction-diffusion model with discrete biocatalysts.
(a) Two-step reaction pathway. Metabolites diffuse and react when they come into contact with the
biocatalysts. (b) The biocatalysts are modeled as spatially extended objects (colored circles), while
the metabolites are represented by their continuous concentration profiles, cS(r) and cI(r) (shading).
(c) Classes of spatial organization considered in this chapter. (1) random, delocalized distribution,
(2) Pairs of one A and B, (3) a cluster of randomly arranged biocatalysts, and (4) complexes with a
defined stoichiometry and geometry.

which arrangements of objects are chosen such as to selectively block or direct the diffusion
of molecules, and simultaneously to catalyze their biochemical conversion, remains largely
unexplored. When and how should the arrangement of individual biocatalysts be tuned such
as to promote reactions along a reaction pathway? Which trade-offs and design principles
emerge from the interplay of the physical processes described above?

In this chapter, we compare different strategies for spatial biocatalyst organization using
a model of discrete biocatalysts together with continuous reaction-diffusion dynamics for
metabolites. We identify localization strategies that are advantageous in different parameter
regimes of biocatalyst reactivity and metabolite diffusion. We find that in the reaction-
limited regime, where the catalytic reaction is slow compared to diffusion, the best strategy is
to colocalize the biocatalysts into large clusters. In contrast, in the diffusion-limited regime it
is beneficial to form pairs or small complexes of biocatalysts. The enhancement of the reaction
flux due to these localization strategies compared to unordered, delocalized arrangements is
highest when the biocatalyst concentrations are low. We find that this change of the optimal
localization strategy arises from two trade-offs. The first trade-off is the compromise between
efficient transfer of intermediates and competition for substrates. The second arises between
steric shielding and confinement of metabolites. The interplay of these effects gives rise to
non-trivial symmetries of the optimal configurations of a model multi-biocatalyst complex.

5.2 Model

We consider a model two-step catalytic reaction performed by two biocatalysts, described

by the scheme, S A−→ I B−→ P (see Fig. 5.1a). The first biocatalyst A converts a substrate
S to an intermediate I, which is subsequently converted to the product P by the second
biocatalyst B.



66 5. Enhancing biocatalytic fluxes via spatial organization

We assume that the metabolites S and I are small molecules that move by diffusion. Their
concentrations, CS(r, t) and CI(r, t), follow the diffusion equation,

∂CS,I(r, t)

∂t
= D∇2CS,I(r, t), (5.1)

where D is the diffusion coefficient, which we assume to be the same for both metabolites. In
contrast to the metabolites, biocatalysts are mostly mesoscopic objects (macromolecules, or-
ganelles, or cells), which, owing to their large size, are modeled as discrete spatially-extended
reaction centers (see Fig 5.1b). We implement the two consecutive reactions through bound-
ary conditions imposed on the metabolite concentrations at the surface, ∂A and ∂B of the
respective biocatalyst,

D∇CS(r, t) · n− kA
AA
CS(r, t) = 0

D∇CI(r, t) · n + kA
AA
CS(r, t) = 0

}
∀r ∈ ∂A, (5.2)

D∇CS(r, t) · n = 0

D∇CI(r, t) · n− kB
AB
CI(r, t) = 0

}
∀r ∈ ∂B, (5.3)

where kA and kB are the intrinsic catalytic activities of A and B, AA and AB are the surface
areas of biocatalyst A and B, respectively, and n is a unit vector normal to the surface.
Equation 5.2 represents the conversion of S to I catalyzed by A. Equation 5.3 describes the
consumption of I by B, as well as a no flux condition for S at the surface of B, since there
is no reactive interaction between S and B. In Eqs. 5.2-5.3 we have neglected saturation
of the biocatalysts, assuming we are in the low metabolite concentration regime. Here the
catalytic activities kl, l ∈ A,B, are effective parameters that represent the rate of reactions
for metabolites at the surface of a biocatalyst, taking into account short diffusive excursions
between unreactive collisions. They differ from the macroscopically observable catalytic ac-
tivities, κl = kcat/KM, which also include the effective timescale of metabolite-biocatalyst
interactions via diffusion. Such macroscopic rates κl are usually modeled as a combination
of the effective intrinsic reaction rate, kl and the rate at which substrate arrives at biocata-
lysts via diffusion, kD, κ−1l = k−1l + k−1D [232, 233] (see Sec. 1.1.5). In particular, while the
macroscopic reaction rate approaches a finite constant value κl → kD in the diffusion-limited
regime, kl can become arbitrarily large.

The reaction cascade is supplied with S from the surrounding environment, which we modeled
as a homeostatic level C0 of S at the system boundary. Intermediates were assumed not to be
present in the environment and, thus, their concentration is negligible at the system boundary,
∂Ω. These conditions can be written as

CS(r, t) = C0

CI(r, t) = 0

}
∀r ∈ ∂Ω. (5.4)

As a measure of the collective performance of the biocatalysts we focused on the steady-state
production rate of P,

JP =
kB
AB

∫
∂B
CI(r)dr, (5.5)
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where the integral is taken over the surface of all B’s. Analogously, we can define the rate of
I production as,

JI =
kA
AA

∫
∂A
CS(r)dr. (5.6)

In this chapter we are primarily interested in how the spatial organization of the synergistic
biocatalysts influences the pathway flux for a given number of biocatalysts A and B (NA
and NB). In addition to all the model parameters, JP will also depend on the shape and
size of the biocatalysts and the system geometry δΩ. For simplicity we assume that A and
B have the same size and a spherical shape, such that AA = AB = Sdr

d−1
c in a model of

dimension d with Sd the surface area of a d-dimensional unit sphere. We also assume a
spherical geometry for the system with a fixed radius 100rc. Note that taking rc = 2 nm on
the typical scale of a single enzyme molecule results in an effective enzyme concentration in
the higher nanomolar range for the small values of NA and NB considered here, which is within
the range expected under intracellular conditions. Rescaling all lengths with the biocatalyst
radius, rc, we can identify from Eqs. 5.2-5.3 two dimensionless reaction-diffusion parameters,
αA = kA/

(
SdDr

d−2
c

)
and αB = kB/

(
SdDr

d−2
c

)
, that together with the dimensionless system

radius determine the metabolite concentration profiles. Finally, since Eqs. 5.1-5.3 are linear
in the metabolite concentrations, these can be normalized by C0: cS,I(r) = CS,I(r)/C0.
Rewriting JI,P in terms of these dimensionless variables and rescaling the time by r2c/D, we
can identify dimensionless reaction fluxes,

jI =
JI
JD

= αA

∫
∂A
cS(r)dr, jP =

JP
JD

= αB

∫
∂B
cI(r)dr, (5.7)

where JD = Drd−2c C0.

The reaction fluxes for different biocatalyst arrangements are calculated by numerically solv-
ing the steady-state nondimensionalized versions of Eq. 5.1-5.4 using COMSOL Multiphysics.
To obtain a comprehensive understanding that applies for different biological scenarios like
biofilms of syntrophic bacteria attached to a surface or clusters of enzymes in the cellular
cytoplasm, we study both the two- and three-dimensional cases.

5.3 Results

5.3.1 Randomly positioned biocatalysts and correlations between arrangements
and reaction fluxes

As a reference against which specific localization strategies can be compared, we begin by
considering an ensemble of random biocatalyst arrangements, with the aim of identifying
characteristics of these arrangements that correlate with changes in the reaction flux. Addi-
tionally, such an ensemble approximates the scenario of freely-diffusing biocatalysts: due to
their different sizes, metabolites will typically diffuse much faster than the biocatalysts, and it
is reasonable to assume that the biocatalysts are fixed in position on a time scale the metabo-
lites need to reach steady state. Therefore, the expected pathway flux in a system of diffusing
biocatalysts is equivalent to an ensemble average over all configurations of biocatalysts.
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Figure 5.2: Reaction flux for delocalized bio-
catalysts in two dimensions. Parameters are
chosen symmetrically with NA = NB = N and
αA = αB = α. (a) The mean flux 〈jP〉 (top) and
coefficient of variation CV (bottom) as α is var-
ied for different values of N , computed from an
ensemble of 3000 randomly generated biocatalyst
arrangements. (b) Histogram of reaction fluxes
for N = 30 at three different values of α.
(c) Coefficient of determination R2 of the linear
regression of jP against dAB = 〈|ri − rj |〉i∈A,j∈B
(crosses) and mAB = 〈minj∈B|ri − rj |〉i∈A (dia-
monds), and regression plots against dAB at low
and high values of α.
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Figure 5.2a (top) shows the mean pathway flux from 3000 randomly-generated biocatalyst
arrangements (see SM Sec. C.1) for different values of the dimensionless reaction-diffusion
parameters and biocatalyst abundances, which for simplicity we chose symmetrically (αA =
αB = α and NA = NB = N). Here we limited ourselves to a two-dimensional geometry, where
the smaller configuration space allows for a more thorough sampling of possible arrangements
than in three dimensions. Nevertheless, we expect similar behavior in three dimensions.

In Fig. 5.2a we see that for α . 1 the mean flux increases as 〈jP〉 ∼ α2, while for α � 10
the mean flux saturates at a constant value. This behavior reflects the transition of the
system from a reaction-limited regime at small α, in which each reaction rate is limited by
the probability p ∼ α � 1 that a metabolite-biocatalyst encounter will result in a reaction
(with the quadratic increase in 〈jP〉 coming from the fact that the pathway consists of the
two reaction that each scale with α), to a diffusion-limited regime at large α in which most
encounters are reactive, p ≈ 1, and the rate of reactions is instead set by the frequency of
such encounters due to diffusion.

To investigate how sensitive the pathway flux is to the arrangement of biocatalysts we exam-
ined the distribution of jP values at different values of α (Fig. 5.2b). Interestingly, we found
that the distribution was significantly narrower around α ≈ 10 than at smaller or larger α
values. The coefficient of variation, CV = 〈(jP − 〈jP〉)2〉1/2/〈jP〉, shows a non-monotonic
dependence on the reaction rate parameter α, with a minimum at the transition between
reaction- to diffusion-limited regimes (see Fig. 5.2a, bottom). At this point, the configuration
of the biocatalysts has the least impact on the reaction flux. On the other hand, at small or
large α the CV is larger, indicating that the reaction flux is more sensitive to the particular
arrangement of biocatalysts.

We next sought properties of the biocatalyst arrangements that correlated with changes in
jP in different α regimes. For small α (the reaction-limited regime), the pathway flux of a
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given configuration was strongly anti-correlated with the mean distance between As and Bs,
dAB = 〈|ri − rj |〉i∈A,j∈B (R2 > 0.95, Fig. 5.2c). For large α (the diffusion-limited regime),
there was a somewhat weaker (R2 ≈ 0.4) but positive correlation between these quantities.
However, in the transition region, the correlation became very small (R2 ≈ 0.01). Similar
trends, albeit with weaker correlations, were also observed for dAA, dBB, and the mean radial
coordinates rA = 〈|ri|〉i∈A and rB = 〈|ri|〉i∈B (see SM Fig. C.1). In contrast, in the transition
region we observed a significant (positive) correlation between the flux and the minimal
distance between As and Bs, mAB = 〈minj∈B|ri − rj |〉i∈A (R2 ≈ 0.27).

Together these data indicate that for small α the highest flux is generated by configurations
in which the biocatalysts are generally placed closer together, and closer to the center of the
system. In contrast, for large α the highest flux comes from configurations where the reaction
centers are further apart, and closer to the periphery of the system. At the point where the
variability in the flux is smallest, both the best- and worst-performing configurations have
similar mean separations. However there remains an advantage to placing biocatalysts such
that each is in close proximity to at least one reaction center of the other type.

5.3.2 Comparison of different localization strategies

Having seen that the reaction flux depends on such quantities as the average and minimal
distance between biocatalysts, we now investigate in more detail two extreme localization
strategies that emphasize these properties (see Fig. 5.1c). These are (i) a single dense but
disordered cluster of biocatalysts; and (ii) pairs of biocatalysts consisting of oneA and one B at
a separation of rc. We again consider mean fluxes averaged over an ensemble of configurations
where the biocatalysts are either paired or clustered (see SM Sec. C.1). Figure 5.3a and b
show the expected reaction flux of the different spatial organizations as a function of α in two
and three dimensions.

Comparing first pair arrangements with delocalized arrangements, in which the two types
of biocatalysts are positioned independently (see Fig. 5.1c), the mean flux of the pair ar-
rangements was always larger. This reflects the fact that placing A and B in close proximity
increases the probability that each I that is produced will encounter a B and react before
diffusing to the boundary of the system. The magnitude of improvement was largest at low
biocatalyst concentrations (small N) and in three dimensions (see Fig. 5.3c and d), reaching
an enhancement of almost 7-fold for N = 20, which for an enzymatic system corresponds
to a biocatalyst concentration of ∼1 µM. For biocatalysts free in solution, a low concentra-
tion corresponds to a large mean separation between consecutive biocatalysts. It is therefore
relatively unlikely that a given I molecule will encounter a B before diffusing out of the sys-
tem. However, at high concentrations the free biocatalysts are on average close together, and
hence the increase in encounter probability due to positioning biocatalysts in close proximity
becomes less significant.

Turning now to the clustering strategy, we found that for small α the clustered configurations
achieve a significantly higher mean flux than either the delocalized and the pair arrangements.
This enhancement was approximately ten-fold in two-dimensions and hundred-fold in three-
dimensions for similar numbers of biocatalysts (see Fig. 5.3a and b). However, as α was
increased, we observe a transition into a regime where the pair arrangements produce a
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Figure 5.3: Comparison of different localization strategies. (a-b) Comparison of the mean reaction
fluxes of clustered arrangements, A-B-pair arrangements, and delocalized arrangements for αA =
αB = α and NA = NB = N . (c-d) Enhancement of the mean flux in pair arrangements relative
to delocalized arrangements as the biocatalyst number is varied. (a) & (c) show results for a two-
dimensional system, (b) & (d) for a three-dimensional system. (e) Phase diagram showing the optimal
spatial arrangement and biocatalyst stoichiometry as αA and αB are varied, while the total number
of biocatalysts NA +NB = 60 remains constant. The solid line separates the regime where clustering
is the optimal strategy from that in which small complexes produce a higher flux; dashed lines denote
changes in the ratio NA:NB. Color shows the enhancement of the mean flux relative to delocalized
arrangements.

higher mean flux than the cluster. Notably, as α is further increased, even the delocalized
arrangements outperformed the cluster.

To generalize these observations we considered scenarios where the α values of the two reaction
steps and the number of biocatalysts of the two types were not equal. Figure 5.3e summarizes
these results in the form of a phase diagram showing the configuration that produced the
highest expected flux for different αA and αB values, subject to the constraint NA+NB = 60.
We see that in the region defined approximately by αAαB ≤ 10, the highest flux was produced
by a single cluster (Fig. 5.3e, solid line). For larger αAαB, on the other hand, small complexes
produced a higher flux. In both regimes, the relative values of αA and αB determined the
optimal biocatalyst stoichiometry, favoring a larger number of B than A in regions with
αA � αB, but more A than B when αA � αB. Interestingly, despite the difference in
boundary conditions that apply for S and I, the phase diagram appears to be approximately
symmetrical about the line αA = αB.

The transition between a clustered arrangement being optimal at small α but a more disperse
arrangement being preferable at large α is reminiscent of the crossover described in Chap. 4
for the optimal enzyme profile around a localized source (see also [202, 197]). However the
model considered in this chapter includes many physical effects that were not considered in
[202, 197]. These include the impact of the biocatalyst arrangement on the first reaction flux,
as well as steric effects due to the discreteness of biocatalysts. What are the contributions of
these different physical effects to the behavior observed in Fig. 5.3?
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Trade-off between substrate depletion and efficient intermediate exchange

We first considered how the pathway flux would vary if we were to eliminate steric effects. In
such a scenario, changing the relative positioning of biocatalyst can still affect the pathway
flux via the combined effects of the localized reaction centers on the metabolite density profiles.

We have seen above that placing one A and one B in close proximity to one another (pair
arrangement) is always beneficial compared to the delocalized arrangement. Placing several
As and Bs into a large cluster is even more favorable for small α. In this regime, an I
molecule is very likely to escape to the absorbing boundary without reacting with B even if
the biocatalysts are arranged in pairs, since the probability of reaction at each I-B encounter
is low. This loss can be attenuated by clustering several copies of A and B. As previously
described by [142], an I molecule produced in such a cluster has a higher probability to be
processed by any of the proximal Bs, even if the probability of reaction with each individual B
is low. As α becomes larger the probability of reaction at each I−B encounter increases, which
reduces the benefit of clustering many B in the vicinity of a single A. At the same time, since
each A consumes more of the S molecules that approach it, steeper concentration gradients
develop around the cluster. This depletion of substrate reduces the rate with which the many
As in the cluster produce I as they are effectively forced to compete for substrate. This
makes it increasingly unfavorable to position the As into close proximity to one another [234,
235, 236]. Therefore a more disperse arrangement in which the distance between biocatalysts
of the same type is large, becomes preferable.

To study quantitatively to what extent these two conflicting effects of substrate depletion and
efficient transfer of intermediate are responsible for the transition observed in Fig. 5.3, we
considered a model wherein metabolites were able to diffuse through the space occupied by
biocatalysts, and reactions occurred throughout their volume rather than on their surfaces (see
SM Sec. C.3). In this way we eliminate any influence from steric exclusion by biocatalysts. In
Fig. 5.4a-b (crosses) we plot the flux of the full model with impermeable biocatalysts divided
by the corresponding flux for permeable biocatalysts. We see that there is little difference in
the fluxes for delocalized configurations (see SM Fig. C.2). For the clustered configurations
the impermeability of reaction centers leads to an increase of 30 − 40% in 〈jP〉 at small
α but a decrease of up to 15 − 25% at large α. While these changes are significant, they
are nonetheless small compared to the order-of-magnitude differences observed between the
different arrangement strategies in Fig. 5.3. Hence the pathway fluxes in this modified model
showed qualitatively similar behavior to that shown in Fig. 5.3a-b, including a crossover from
the cluster to pairs being the preferred biocatalyst arrangement. Therefore, the transition
from a cluster to small complexes being preferable does not result from steric effects, but can
be understood as a trade-off between the efficiency of the two reactions in the pathway, as
described above. However, the position of the transition and the values of the fluxes are not
correctly captured by this reduced model. Thus, steric effects must nevertheless be included
for a full quantitative understanding of the system.

Trade-off between metabolite shielding and confinement

To understand the relevant steric effects in more detail we considered the two reactions indi-
vidually. Additionally to the fluxes defined in Eq. 5.7, we define the efficiency of the second
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Figure 5.4: Illustration of shielding and confinement effects. (a-b) Effect of biocatalyst impermeabil-
ity on 〈jP〉, 〈jI〉, and 〈ε〉, for clustered arrangements. Plotted are the ratios (impermeable:permeable)
of the respective quantities for (a) a two-dimensional system and (b) a three-dimensional system.
Lines are included as a guide to the eye. (c) Shielding of diffusing S from a central A by a surround-
ing ring of 10 Bs. (d) Confinement of I within a ring of Bs. (e) jI , (f) ε, and (g) jP as a function
of the ring radius for a ring consisting of 6 Bs. Fluxes are plotted relative to jI in the absence of a
B ring, denoted by j0. The trade-off between S shielding and I confinement leads to an optimal ring
radius that maximizes the pathway flux jP .

reaction as ε = jP/jI , the fraction of the produced I’s that are converted into P. Fig-
ures 5.4a,b show that for the first reaction in the pathway, when reaction centers obstruct
diffusion in the clustered configuration, 〈jI〉 is reduced across the full range of α, but this
effect is strongest at intermediate α values. In contrast, 〈ε〉 = 〈jP/jI〉 displays the same
qualitative behavior as 〈jP〉 but with larger amplitude. These results arise from two effects,
namely the “shielding” of biocatalysts within the cluster from metabolites, and “confinement”
or diffusive trapping of intermediates within the cluster.

To demonstrate these effects, we considered the special arrangement of several Bs arranged
on a ring of radius r0 around a central A. Such an arrangement could approximate the
environment around a single A in a cluster, and allows us to monitor how the flux of each
reaction varies as a function of the clustering density, measured by r0, and αA, αB.

Focusing initially on the first reaction, we see that jI decreases sharply as r0 is decreased
below a critical radius (Fig. 5.4e). Below this radius, the B ring blocks the diffusion of S
into the vicinity of the A, thereby leading to a sharp reduction in cS (Fig. 5.4c). The ring
of Bs effectively shields the central A from substrate. The magnitude of the reduction in jI ,
and the radius at which jI starts to decrease, both increase with αA. This is because the
flux depends on the product of the probability of an S to diffuse through the ring, which
decreases with decreasing r0, and the probability of an S within the ring to react with the
central A. The latter is an increasing function of αA. For the second reaction, the presence
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of the B ring restricts the diffusion of I out of the ring, increasing the local concentration
of I within the ring (Fig. 5.4d) and therefore the efficiency with which I is converted to P
(Fig. 5.4f). This confinement effect is largest at small αB, when the probability of reaction in
each I −B encounter is lowest. The trade-off between shielding of substrate and confinement
of I leads to the emergence of an optimal ring radius at the point where the decline of jI
due to shielding is exactly balanced by the increased efficiency of I-processing achieved by
the confinement effect (see Fig. 5.4g).

Returning now to the scenario of a dense cluster containing both A and B, we conclude from
Figs. 5.4a-b that shielding tends to reduce 〈jI〉 most significantly at intermediate values of α.
When α is small, reactions are slow and S molecules nevertheless have sufficient time to diffuse
throughout the cluster. At the opposite extreme of large α and fast reactions, A biocatalysts
on the periphery of the cluster are effectively able to consume most of the available S, such
that little substrate reaches the center of the cluster even when diffusion is unimpeded.

For the second reaction, the confinement of I that is produced within the cluster increases the
conversion efficiency ε predominantly at small α. In the large-α regime, however, shielding
also dominates and reduces the efficiency of the second reaction. Here, since I is produced
primarily at the periphery of the cluster, it is effectively shielded from Bs within the cluster,
increasing the chance of it diffusing out of the system rather than reacting.

5.3.3 Optimal complex configurations

Besides the largely disordered aggregation of biocatalysts into large clusters, as we have con-
sidered in our random cluster model, it is known that collections of enzymes in cells organize
into highly specific arrangements, with each type of enzyme located at defined positions [237].
A well known example of such a multi-enzyme complex is the pyruvate dehydrogenase complex
(PDC), which consists of three consecutive enzymes that transform pyruvate to acetyl-CoA.
Depending on the cell type, the PDC comprises different copy numbers of the sequential en-
zymes, yet these are arranged in a highly symmetric fashion [35, 238]. The precise spatial
organization of the enzymes is required for efficient function of such biocatalytic machines
[238].

Inspired by such highly-efficient multi-enzyme complexes we asked how the biocatalysts in a
model multi-biocatalyst complex of a single A surrounded by several Bs should be arranged in
order to globally maximize jP . As we found above for ring arrangements, we expect that the
optimal geometry will arise as a compromise between the advantageous effects of proximity
and confinement and the detrimental effects of shielding and intermediate depletion. Since the
relative magnitudes of these different effects depend on the parameters αA and αB, the optimal
complex geometry will also crucially depend on these parameters. Therefore, we determined
numerically the optimal configurations for different B numbers, NB, and for different αB with
αA fixed (see SM Sec. C.2).

The resulting optimal configurations are shown in Fig. 5.5. Surprisingly, we found that
the symmetries of the optimal configurations change qualitatively with NB and αB. In two-
dimensions and for NB ≤ 6 we found that it is always optimal to arrange the Bs at equidistant
positions on a concentric ring (point symmetry group DNB), whose radius increases with αB
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Figure 5.5: Optimal biocatalyst complex arrangements. Optimal arrangement of biocatalyst com-
plexes with several Bs (orange) surrounding a single A (blue) in two dimensions, as the reaction rate αB
and the complex stoichiometry are varied. Bottom line shows the conjectured optimal arrangements
in three dimensions which, we conjecture, match the solutions of the Thomson problem [239].

as described above. In contrast, for NB > 6 at finite αB the Bs are divided between an inner
ring and an outer population that are arranged at angular positions corresponding to the
gaps in the inner ring. This appears to be a strategy to attenuate the shielding effect while
maintaining efficient processing of I to P. For even NB, these arrangements are concentric
rings that are rotated by 2π/NB with respect to one another (point group DNB/2). For odd
NB, it is not possible to form two full rings and thus the arrangement shows only a single
reflection symmetry axis (point group D1). Interestingly, in the limit of extremely large αB,
the optimal arrangement changes from these star-like arrangements back to a single ring
(point group DNB), provided NB < 12.

We also sought to identify the optimal configurations in three dimensions. However, the
increase in the space of possible configurations made the optimization procedure very slow
and prone to getting stuck in local optima, which makes a global optimization computationally
difficult. Nevertheless, the best-performing configurations that we identified consisted of Bs
arranged on the surface of a sphere concentric with the A, with radius that increases with NB
(see Fig. 5.5). In contrast to the two-dimensional case, in three dimensions we never observed
the division of a second outer B population, although we cannot rule out that this still occurs
at higher NB. Except in special cases (NB = 2, 3, 4, 6, 8, 12) it is not possible to arrange points
on the sphere such that all edges are of equal length; thus the Bs are not all equidistant from
their neighbors. Interestingly, the optimal configurations generated by our numerical approach
are similar to solutions of the well-known Thomson problem from classical electrostatics
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[239], where the objective is to minimize the electrostatic interaction energy of identical point
charges on the surface of a sphere. Here, however, instead of interactions being defined by an
identical local potential around each charge, the biocatalysts in our model effectively interact
via the metabolite concentration fields, which depend on the positions of all biocatalysts.
Interestingly, when we calculated the reaction flux for the exactly known configurations of
the Thomson problem, we found that these always achieved a slightly higher reaction flux than
any configuration found during our numerical optimization. Additionally, when we initialized
the random search optimization procedure with the configuration of the Thomson Problem,
the algorithm was not able to identify any better configuration. We therefore conjecture that
in three dimensions, the Thomson problem configurations also optimize the reaction flux for
the model described here, provided that the radius of the sphere on which the Bs are arranged
is chosen optimally.

5.4 Discussion

We have investigated how the spatial coordination of two model biocatalysts affects their
ability to synergistically convert substrate to product via an intermediate molecule. Our
model predicts that choosing the most favorable localization strategy can provide a several-
fold increase in pathway flux. In the reaction-limited regime of slow reactions or fast diffusion,
it is beneficial to form large clusters of biocatalysts. On the other hand in the diffusion limited
regime, when reactions are fast compared to diffusion, it is preferable to form pairs or small
complexes of a few of each type of biocatalyst in close proximity. Biocatalyst systems on
different scales are likely to span these different regimes. For example, for a small intracellular
substrate with diffusion coefficient D ≈ 100 µm2 s−1, a typical enzyme with catalytic efficiency
kl ≈ kcat/KM ∼ 106 M−1 s−1 and radius rc ≈ 2 nm will lie well within the regime where
clustering is preferred, with α ∼ 10−3. However, a fast, diffusion-limited enzyme, for which
kl � kcat/KM ∼109 M−1 s−1, will be in the regime α � 1 where pairs or small complexes of
enzymes lead to a larger flux. We expect systems of synergistic bacteria to be mostly in the
reaction-limited regime, while for fast metabolite uptake the transition region from reaction
to diffusion limited may be reached. Taking as an example parameters for the uptake of
ammonia by N. maritimus, which functions as an ammonia oxidizer in two-step nitrification
(kcat/KM ' 2.6× 1013 M−1 s−1 [240, 241], rc = 0.4 µm, D = 1000 µm2 s−1), we obtain α ' 10,
which lies within the transition region.

The general phenomenology that we have observed arises from two trade-offs in the reaction-
diffusion dynamics of metabolites. In the first case, placing many biocatalysts of both types
into a large cluster increases the efficiency with which intermediate is converted into product.
However, clustering many biocatalysts of the first type leads to local depletion of substrate,
limiting the rate of the first reaction. In the second trade-off, clustering of biocatalysts leads to
shielding of interior biocatalysts, further limiting their access to substrate. On the other hand,
confinement of intermediates produced within the cluster increases the number of potential
interactions with biocatalysts of the second type. Notably, the second trade-off is the result
of steric effects arising from the discrete nature of biocatalysts. We showed that this trade-off
can have a strong impact, altering reaction fluxes up to 40%. For clusters containing a larger
number of biocatalysts, we expect that this effect becomes even stronger. Indeed to alleviate
this effect it has been found that bacteria in a biofilm collectively form channels into the
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biofilm to supply the bacteria in the interior with nutrients [242].

Inspired by the natural strategies of spatial biocatalyst organization, synthetic biologists are
seeking to engineer precisely controlled arrangements of consecutive enzymes with the aim
to increase pathway fluxes. In several experiments it has been found that tethering pairs of
enzymes to small DNA scaffolds increases the rate of product formation [117, 116, 243, 118].
However, in a recent experiment where the consecutive enzymes were directly fused together,
no enhancement was observed [125]; earlier reports of enhancement were instead attributed to
local changes in pH around the DNA-based scaffolds that increase the enzymatic activities of
the individual enzymes. Importantly, in many experiments the intermediates are not subject
to any loss to the surrounding environment or to competing reactions. In such scenarios any
enhancement effect would be only transient and steady-state fluxes will not be affected by
spatial organization. Consequently, the observed enhancements are most likely due to changes
in the intrinsic activity of the enzymes. In our model, we assumed that intermediates are
lost through the system boundary. With this loss mechanism a considerable enhancement in
metabolic flux arose solely from proximity, without the need for any other physical effects
and assuming that the properties of the enzymes themselves are unchanged. While this
strong loss mechanism may lead to an overestimation of the enhancement generated by the
localization strategies, the qualitative behavior that the enhancement is largest when the
overall concentration of enzymes is low remains unchanged. This finding is in good agreement
with [118], where the highest improvement of product titer was observed at low enzyme
expression levels.

We saw that the interplay of two fundamental trade-offs leads to complicated and varied op-
timal geometries for model multi-biocatalyst complexes with a single biocatalyst of the first
type surrounded by several biocatalysts of the second type. Notably, the resulting optimal
configurations show striking similarities to the well known Thomson problem of classical elec-
trostatics. However, in contrast to the Thomson problem where electrons interact via the
Coulomb potential and the total energy function is determined as a sum of the individual
pair interactions, for our model of multi-biocatalyst complexes the metabolite concentration
fields mediate effective many-body interactions between biocatalysts. Consequently, the total
reaction flux cannot be expressed simply as a superposition of the individual contributions of
the biocatalysts. Therefore, the problem of finding the optimal biocatalyst complex arrange-
ments adds an additional level of complexity to the class of generalized Thomson problems.
Although these problems are very easy to pose they are notoriously difficult to solve rigor-
ously. For the standard Thomson problem the symmetries have only be rigorously identified
for a few electron numbers [244, 245, 246] and solving the general case has been included in
the list by Steven Smale, inspired by the famous Hilbert problems, of eighteen unsolved math-
ematical problems for the 21st century [247]. Besides the interesting mathematical nature of
the stated problem and the symmetries that emerge, the optimal structure of the model com-
plex may also provide valuable insights into the design principles of such complexes. Indeed,
similar optimization problems, yet with very different objectives, have previously been found
to serve as useful minimal models for understanding the structure and geometry of biological
materials ranging from proteins and viral capsids to plant phyllotaxis and honeycombs in
beehives [248, 249, 250, 251, 252, 253, 254].

In this work we have focused on general features that are applicable to reaction-diffusion
systems on different length scales, and therefore we have omitted a number of details that
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may play a role in specific systems. For example, in microbial communities where different
microbes divide the labor of processing certain metabolites, the biocatalysts, in this case
microbes, not only consume and secrete metabolites but also grow, divide, and actively move.
In our model these processes were neglected since their dynamics are expected to be slow
compared to the considered reaction-diffusion dynamics. However, they will certainly affect
the possible arrangements of biocatalysts. Furthermore, in enzymatic systems the biocatalysts
are reactive only at a specific active site rather than over their entire surface. Introducing
such an active site adds another degree of freedom, namely the orientation of the active site,
to the different spatial strategies. While this may slightly alter the reaction flux in some
cases, in initial investigations we found that localization effects were much more significant in
determining differences between configurations. Furthermore, it is unlikely that orientation
can be controlled against thermal fluctuations in natural and synthetic systems unless enzymes
are tightly constrained in macromolecular complexes; in such cases transport mechanisms
other than free diffusion, such as swinging arms or channels [37], may be more realistic.
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6 Flux regulation via enzyme coclustering and
sequestration ∗

The metabolism of living organisms responds dynamically to changing metabolic needs or
environmental conditions. In addition to regulating metabolic fluxes by changing the abun-
dance or activities of metabolic enzymes, cells also use spatial organization strategies such
as enzyme colocalization and sequestration to regulate pathway fluxes. In this chapter we
study two spatial strategies, the sequestration of a single pathway enzyme into clusters and
the coclustering of consecutive enzymes, and characterize their capability of regulating the
flux distribution at a metabolic branch point. By employing a semi well-mixed approximation
we find that the fluxes depend on only two non-dimensional parameters, the ratio of activ-
ities of the downstream enzymes and the ratio of diffusion and reaction timescales within a
cluster. Our analysis reveals that sequestration and coclustering both represent viable reg-
ulation strategies when the catalytic efficiencies of the downstream enzymes are larger than
kcat/KM ∼104 M−1 s−1, a range that includes more than 75% of metabolic enzymes.

6.1 Introduction

Cells are able to quickly and precisely control key metabolic pathways in response to changing
metabolic conditions. Such regulation can be achieved by changing either the enzyme abun-
dance, via the rates of transcription, translation and proteolysis, or enzymatic activities, via
allosteric mechanisms or post-translational modifications [15, 255, 256, 257]. In addition to
these mechanisms, it has been hypothesized that cells can control metabolic fluxes by coordi-
nating the spatial organization of enzymes [96, 258]. Many enzymes have been found exper-
imentally to aggregate into intracellular, non-membrane bound bodies [75, 96, 259], through
diverse mechanisms that include direct interactions between the enzymes or with scaffolds,
adsorption to specific spots on the cellular membrane or the cytoskeleton, or liquid-droplet
phase separation [260, 75, 209, 261, 45, 262, 263]. Importantly, assembly and disassembly
of enzyme clusters is often reversible upon depletion or supply of metabolites or other en-
vironmental stimuli [96, 74, 76]. This suggests that cells may use the spatial coordination
of enzymes as a strategy to regulate metabolism dynamically as metabolic demands on the
cell change, according to whether or not the catalytic activity of the enzymes in question is
needed [75, 78].

Colocalization of enzymes that operate within the same metabolic pathway is generally un-
derstood to promote the processing of intermediate products, and thereby upregulate the

∗This chapter is adapted from the manuscript: Post-translational flux regulation via enzyme coclustering
and sequestration, by F. Hinzpeter, F. Tostevin, and U. Gerland, which is in preparation for publication.
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pathway flux [37]. A well-known example for this strategy is the purinosome, a multi-enzyme
cluster comprising enzymes of the de novo purine biosynthesis pathway [76, 79]. Coclustering
has also been observed for enzymes involved in glucose metabolism and de novo pyrimidine
biosynthesis [114, 110, 84]. In some such assemblies, intermediates are directly “channeled”
or transferred between enzymes [37]. However, theoretical analyses (see Chap. 4 and 5) have
shown that proximity of consecutive enzymes may increase the efficiency of intermediate
turnover even without direct or guided intermediate transfer [202, 197, 142].

Sequestration of a single enzyme into clusters has received less attention as a potential reg-
ulation strategy. However, the reversible sequestration of individual enzymes into filaments
or clusters has been observed in the de novo CTP and purine biosynthesis pathways [96, 78],
and was associated with downregulation of the corresponding pathway [102, 83]. Thus, the
purine biosynthesis pathway appears to have the capacity for two spatial strategies in re-
sponse to changing environmental conditions: the assembly of all pathway enzymes into the
purinosome as a mechanism for pathway upregulation, and the sequestration of a single en-
zyme into a cluster as a mechanism for pathway downregulation [78]. While the origin of this
downregulation remains unclear, the spatial sequestration alone may suffice as a mechanism
of downregulation without the need for reducing the catalytic activities of the enzymes.

Here we propose the sequestration of a single enzyme into non-membrane bound clusters as
a mechanism to regulate metabolic fluxes without changing the inherent catalytic efficiencies
of the enzymes. By considering a metabolic branch point, we quantify the capability of this
sequestration strategy to regulate the flux distribution at the branch point and compare it to
the strategy of multi-enzyme coclustering. We find a crossover between the two strategies from
a regime where enzyme coclustering has the strongest impact on the fluxes to a regime where
enzyme segregation has the largest effect. Employing a semi well-mixed approximation, we
find that the impact of the two strategies on the fluxes depends on only two non-dimensional
parameters, one measuring the ratio of the activities of the downstream enzymes and the
other measuring the ratio of diffusion and reaction timescales within a cluster. With this we
find that a significant flux regulation by sequestration or coclustering is not possible when
the catalytic efficiencies (kcat/KM ) of the two competing downstream enzymes are smaller
than ∼104 M−1 s−1.

6.2 Model

We consider a branch point in a metabolic network, shown schematically in Fig. 6.1a, where
intermediates I, produced by an upstream enzyme EI , are processed by two downstream
enzymes EP and EQ into two distinct products P and Q. To quantitatively describe the
flux-regulation capacity of enzyme coclustering and sequestration, we define the branching
fraction Jp as the fraction of I that is converted into P , and similarly Jq = 1−Jp. We denote
the catalytic efficiency and average concentration of each enzyme as kp,q and ep,q, respectively.
For simplicity we will assume that we are in the regime of low intermediate concentration,
such that the reaction kinetics are linear. If both enzymes are uniformly-distributed, then
the branching fraction depends only on the ratio of the overall activities of the two enzymes,
α = (kpep) / (kqeq), according to

J0
p =

α

1 + α
. (6.1)
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Figure 6.1: Illustration of a metabolic branch
point and clustering strategies for flux reg-
ulation. (a) Reaction scheme of a metabolic
branch point. An upstream enzyme EI pro-
duces intermediates I, which are processed by
two competing downstream enzymes, EP and
EQ, to two distinct products P and Q.
(b) Strategies of spatial enzyme organization
for flux regulation. (left) Sequestration of EQ
into clusters. (right) Coclustering of EP s to-
gether with EIs. (c) Schematic of the piece-
wise well-mixed approximation.

Compared to this basal branch point fraction, the flux can be biased towards P and away
from Q either by the coclustering of EI and EP , or by the sequestration of EQ into single-
enzyme clusters, as shown in Fig. 6.1b. These localization strategies either decrease the
average distance between EI and EP enzymes or increase the average distance between EI
and EQs. We model these arrangements as a spherically symmetric domain containing a single
central cluster, representative of the region around a typical example of one of many such
clusters within a larger cell. To illustrate and compare the branching fraction of the different
spatial strategies, we focus on the effect of changing the mean enzyme concentrations ep,q.
We will assume that the typical cluster radii and clustered enzyme densities (rq and cq for EQ
sequestration clusters, rp and cp for the EP –EI coclusters) are fixed intrinsic properties of the
particular enzymes and their assembly processes. Varying the mean density of the clustered
enzyme alters the typical separation of clusters, which we describe by a ep,q-dependent system

size, R(ep,q) = rp,q(cp,q/ep,q)
1/3, but will not change the properties of clusters themselves.

Assuming that intermediates move by diffusion, the steady-state density of intermediates,
ρ(r), follows

D∇2ρ(r) + F [ρ(r), r] = 0, (6.2)

where D is the diffusion coefficient and F [ρ(r), r] is a reaction term that specifies the spatial
strategy. For sequestration of EQ, the corresponding reaction term is

F seq [ρ(r), r] =

{
ji − kpe′pρ(r) r > rq

−kqcqρ(r) r ≤ rq
, (6.3)

where e′p = ep

[
1− r3q/R(eq)

3
]−1

is the density of EP in the free space between the EQ clusters,

and ji represents the production flux of intermediates by EI . For EP -EI coclusters we have

F cocl [ρ(r), r] =

{
ji − kpcpρ(r) r ≤ rp
−kqe′qρ(r) r > rp

, (6.4)

where e′q = eq

[
1− r3p/R(ep)

3
]−1

is similarly the density of EQ between the clusters. Conserva-

tion of mass requires that ρ(r) is continuous and smooth at the interface r = rp,q. The model
is completed by no-flux boundary conditions, ρ′(0) = ρ′(R) = 0. At the outer boundary,
this represents symmetric exchange of intermediate with similar regions around neighboring
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clusters. These equations can be solved analytically to determine the steady state fluxes of P
and Q for each of the different strategies. In particular, the branching fractions towards the
product P are given by

J seq
p =

∫
V\Vc kpe

′
pρ(r)dr∫

V\Vc jidr
, Jcocl

p =

∫
Vc kpcpρ(r)dr∫
Vc jidr

, (6.5)

with the integrals taken over the region outside the cluster (V \Vc) or over the cluster volume
(Vc) according to where EP and EI are present in each scenario.

6.3 Results

6.3.1 Semi well-mixed approximation for enzyme sequestration and coclustering

Figure 6.2 shows the branching fraction for uniformly distributed enzymes Eq. 6.1, which
only depends on α. The distribution of intermediates between the two branches is symmetric
about α = 1, with J0

p < J0
q when the activity of EQ is greater than that of EP (α < 1) and

J0
p > J0

q for α > 1. However, the symmetry between the two downstream pathways will be
broken when the different spatial arrangements of the enzymes are considered.
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Figure 6.2: Branching fraction of the clustering strategies. (a) Branching fraction Jp in the re-
action diffusion model for the enzyme sequestration strategy (green solid curve), the enzyme co-
clustering strategy (orange solid curve), and for a well-mixed system of uniformly distributed en-
zymes (black curve). Dashed lines are approximations of Eqs. 6.8 and 6.11. Other parameters are
kp = kq =7.5× 104 M−1 s−1, cp = cq = 25 mM, rp = rq = 0.4 µm, and D =100 µm2 s−1. (b) The fitted
exchange lengths δp,q = ∆/rp,q as cluster sizes rp,q are varied. The mean enzyme concentrations are
ep,q = 10 nM. Other parameters are as above. (c) Value of ep/eq at the crossover position J seq

p = Jcocl
p

for different combinations of, rp,q = 0.1, 0.4 µm and cp,q = 10, 25 mM (crosses). Solid line shows
Eq. 6.12.

We found that for realistic biological parameters with cp,q (typically in the millimolar range)
much larger than ep,q (nano- to micromolar), the dependence of Jp on ep,q can be captured
by the ratio of abundances ep/eq ∝ α (see SM Fig. D.1). For both localization strategies, Jp
is larger than that for a well-mixed system across the full range of α, as shown in Fig. 6.2a.
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The magnitude of this increase tends to grow with the number of enzymes in each cluster,
irrespective of whether cp,q or rp,q is increased (see SM Fig. D.2). The two strategies differ
in the shape of Jp: Jcocl

p tends to a (cp, rp-dependent) finite value for α � 1; in contrast
J seq
p → 0 as α→ 0 but the turning point of the sigmoidal J seq

p shifts to smaller α values with
increasing cq or rq. Interestingly, these differences result in a crossover, where for smaller α
a coclustering strategy tends to provide a larger Jp, while the opposite is true for large α.

The expressions for Jp computed from Eq. 6.5 are not instructive for elucidating the origin
and essential physics of the behavior shown in Fig. 6.2a. We therefore considered a simple
approximation of the reaction-diffusion dynamics, summarized in Fig. 6.1c, that allows us
to understand the system in detail. We consider the cluster and the bulk region outside
the cluster as two separate domains. Within each domain the intermediates are taken to be
well-mixed. Transport between the two domains is replaced by exchange with an effective
permeability, D/∆, where the effective exchange length scale ∆ can be taken as a fit pa-
rameter to match the pathway fluxes to Eq. 6.5. For the sequestration scenario the density
of intermediate in the cluster and bulk, ρc and ρb, can be calculated from the conservation
equations

∂ρc
∂t

= Aq
D

∆
(ρb − ρc)− Vqkqcqρc (6.6)

∂ρb
∂t

= Aq
D

∆
(ρc − ρb) + [V (eq)− Vq]

[
ji − kpe′pρb

]
, (6.7)

where V (ep,q) = 4
3πR(ep,q)

3, Vp,q = 4
3πr

3
p,q and Ap,q = 4πr2p,q are the system volume, cluster

volume and cluster surface area, respectively. This leads to a steady-state branching fraction

J seq
p =

α (1 + βqδq)

1 + α (1 + βqδq)
, (6.8)

where βq = kqcqr
2
q/ (3D) and δq = ∆/rq. For coclustering of EI and EP , the corresponding

equations are

∂ρc
∂t

= Ap
D

∆
(ρb − ρc) + Vp [ji − kpcpρc] (6.9)

∂ρb
∂t

= Ap
D

∆
(ρc − ρb)− [V (ep)− Vp] kqe′qρb, (6.10)

with the resulting steady-state branching fraction,

Jcocl
p =

α+ βpδp
1 + α+ βpδp

, (6.11)

where βp = kpcpr
2
p/ (3D) and δp = ∆/rp. Upon fitting δp,q, Eqs. 6.8 and 6.11 are indistin-

guishable from the results of the full reaction-diffusion system, as shown in Fig. 6.2a. Notably,
we find δp,q are slightly larger than 1 and vary little across the range of biologically realis-
tic cluster radii (roughly 10 nm-1 µm, see Fig. 6.2b). In fact, simply setting δp,q = 1 only
marginally reduces the accuracy of the approximation (see SM Fig. D.3).

The dimensionless parameters βp,q are the ratio of timescales for I to diffusive through the
cluster, τd ∼ r2p,q/D, and reactions of I with the enzymes within the cluster, τr ∼ (kp,qcp,q)

−1.
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For both localization strategies the enhancement in branching towards P rather than Q is
greatest when reactions within the cluster are faster than exchange between domains (β � 1),
whereas there is little enhancement in the production of P when exchange is fast compared
with reactions (β � 1). This appears counter intuitive in the case of sequestration of EQs,
where we might expect a greater flux of Q as the efficiency of EQ is increased. However, we
must bear in mind that βq is multiplied by α, which itself decreases with the total EQ activity
in the system.

Comparing Eqs. 6.8 and 6.11, we see that the crossover between regimes where Jcocl
p > J seq

p

for smaller α and Jcocl
p < J seq

p for larger α occurs when αβqδq = βpδp. Assuming δp ≈ δq
(Fig. 6.2b), this condition can be written as

ep
eq
≈ cp
cq

r2p
r2q
. (6.12)

Thus, coclustering will produce a greater Jp when the ratio of abundances of EP to EQ
in the system is less than the ratio of the density of the enzymes in their clustered state,
multiplied roughly by the squared ratio of their radii. This quadratic dependence arises from
a comparison of the diffusive timescales for intermediates within the two types of cluster,
τ cocld /τ seqd . Figure 6.2c confirms that Eq. 6.12 provides an excellent approximation for the
crossover position in the full reaction-diffusion system.

6.3.2 Regulation of the branching fraction by sequestration and coclustering

We quantified the extent of upregulation of a desired product P for each enzyme localization
strategy relative to uniformly-distributed enzymes by the enhancement factor ε = Jp/J

0
p .

Figure 6.3a shows that for both strategies the largest enhancement is achieved when the
average enzymatic activity of EQ is much larger than of EP (small α) and the enzymatic
activity in the cluster is large compared to the rate of diffusive exchange (large βp,q). On
the other hand, when the average enzymatic activity of EP is much larger than that of EQ
(α & 5) the pathway will be strongly biased towards P already with uniformly-distributed
enzymes, and hence any enhancement from enzyme clustering will be negligible.

A large enhancement factor alone does not guarantee that the resulting fraction of I directed
towards P will be significant if the pathway was initially strongly biased towards Q. We there-
fore consider upregulation to be biologically relevant when the resulting branching fraction is
Jp ≥ 0.2 and the enhancement ε ≥ 1.2. These constraints delimit regions in parameter space,
shown by solid lines in Fig. 6.3a (see also SM Fig. D.4 for Jp as a function of α and βp,q).
For the EP -EI coclustering strategy the minimum value of βp is roughly constant, at least for
α . 0.1. This corresponds roughly to requiring that the coclusters are sufficiently large and
dense that the required fraction of I can be converted to P before diffusing out of the cluster.
For EQ sequestration, on the other hand, as the enzymatic activity in the system is biased
more towards EQ (smaller α), the size and/or density of the EQ clusters must be increased
(larger βq) in order to maintain large inter-cluster separations, such that the EP s distributed
between the clusters are able to process a sufficient fraction of Is before they reach the EQ
clusters by diffusion.
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Figure 6.3: Capability of the spatial strategies to regulate the branching fraction. (a) Enhance-
ment towards the P branch by EI–EP coclustering (left) and EQ sequestration (right). Black lines
divide regimes at the enhancement threshold ε = 1.2, while green lines divide regimes based on the
upregulated branching fraction Jcocl

p , J seq
p = 0.2. (b) Downregulation of the Q branch. Black lines

denote σ = 0.8, green lines indicate where the branching fraction in the absence of enzyme localization
is J0

p = 0.2. For the rescaled exchange length we used δp,q = 1

We can similarly consider the downregulation of an unwanted product Q, for which we define
the suppression factor σ = Jq/J

0
q . In Fig. 6.3b we see that while the strongest suppression

(smallest σ) can always be achieved for large βp,q, this requires α ≤ 1 in the coclustering
scenario but α ≥ 1 in the sequestration scenario. However, similarly to the upregulation of
P above, strong downregulation may be of no significance if the basal branching fraction was
already small. We therefore define the regime of biologically relevant downregulation as that
in which the suppression factor σ ≤ 0.8 and the basal branching fraction without enzyme
clustering J0

q ≥ 0.2. While the greatest suppression by EQ sequestration occurs outside
this region in the regime of low basal Q production (large α), sequestration can nevertheless
suppress the production of Q by a large factor in regions where J0

q is significant. Indeed,
similar parameter combinations allow for significant upregulation of P and for downregulation
of Q, on the basis of the same interplay between the locations of I production and the
timescales of reaction with EP versus reaching EQ enzymes by diffusion.

Interestingly, for both localization strategies and for either the upregulation of P or the
downregulation of Q, the constraints combine to produce a lower bound in a similar range
of βp,q & 0.1 − 0.25 for which a significant regulation can be achieved. Assuming a cluster
packing density cp,q ∼25 mM [142], a cluster radius of rp,q ∼0.4 µm comparable to the size
of clusters found in purine metabolism [83], and a diffusion coefficient of a small metabolite
D ∼100 µm2 s−1 [264], this lower bound translates into a catalytic efficiency of the clustered
protein of kp,q &104 M−1 s−1. This range encompasses approximately 90% of enzymes in
carbohydrate metabolism and approximately 75% of other classes of metabolic enzymes [185],
meaning that both forms of enzyme clustering may be viable metabolic regulation strategies
in many systems.

6.4 Discussion

While the upregulation of fluxes and metabolic branching by enzyme colocalization have
been studied extensively (see Chap. 4 and 5, and [202, 197, 142, 37]), the possibility for
pathway downregulation through enzyme sequestration into non-membrane bound clusters
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has received less attention. Using a reaction-diffusion model, we studied in this chapter how
enzyme sequestration and coclustering can regulate the branching fraction at a metabolic
branch point. Employing a piecewise well-mixed approximation allowed us to identify two
non-dimensional parameters which govern the branching fraction in both scenarios. One
parameter captures the ratio of the catalytic capacities of the two competing enzymes and
the other parameter measures the relative timescales of diffusion through and reactions within
a cluster. We found that both strategies can bias the fluxes at a metabolic branch point to a
comparable degree, and that both strategies could achieve significant levels of regulation for
realistic biological parameters and for the majority of metabolic enzymes. Thus our analysis
shows that enzyme sequestration, in the same way as colocalization, represents a potential
regulation strategy in metabolic pathways.

In this study we have neglected some details which may affect the flux distribution at the
branch point. The enzymes in our model were treated as point-like particles rather than
discrete reaction centers. As we have seen in Chap. 5, describing the enzymes as spatially
extended molecules leads to steric blocking of metabolites. In the sequestration scenario,
steric blocking hinders the intermediates from diffusing into the cluster and, therefore, the
collective activity of the sequestered enzymes would be further repressed. In the coclustering
scenario, in contrast, the same effect confines intermediates within the cluster, which leads
to an enhancement of intermediate processing by the coclustered downstream enzyme. Fur-
thermore, in our model we have neglected enzyme saturation. While we do not expect that
including enzyme saturation will alter the qualitative finding that enzyme sequestration and
coclustering can significantly regulate metabolic fluxes, it will be interesting to see how a
non-linear reaction kinetics affects the detailed behavior of the fluxes distribution in the two
scenarios.

Our analysis suggests that enzyme coclustering and sequestration observed in the de novo
purine biosynthesis pathway [76, 78] present two strategies used to up- and downregulate
metabolic fluxes without changing the inherent catalytic activities of the enzymes. The reg-
ulation of fluxes via cluster formation may allow the cells to quickly respond to changing
environmental conditions. Compared to other regulation mechanisms which require control
over enzyme abundances, enzyme aggregation can be achieved comparably quickly. Further-
more, when metabolic needs change, the dynamic clustering of enzymes is a more cost-efficient
alternative for flux regulation than the costly change of enzyme expression levels. In particu-
lar, under conditions where a specific enzymatic activity is not needed, it may be more suitable
for the cell to store the enzyme molecules and simultaneous downregulate their collective ac-
tivity rather than degrading all enzymes. When the demand for the enzymatic activity rises
again, enzymes can be gradually released from the cluster, thereby increasing the activity in
the cytosol.

The theoretical findings presented in this chapter could be tested experimentally using differ-
ent biotechnological techniques for spatial protein organization. For example, enzymes could
be clustered using large nucleic acid or protein scaffolds. Tagging the enzymes with specific
strands that are complementary to functionalized regions on the scaffolds, allows for binding
of the enzymes to the scaffold. Additionally, enzyme clustering could be achieved by using
short protein linkers that interconnect the enzymes or by fusing many copies of the same en-
zyme together. With a suitable technique for enzyme clustering and a metabolic branch point
that allows to simultaneously measure the fluxes of the individual branches, it could be tested
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whether enzyme sequestration and coclustering can bias the flux towards a specific product.
Furthermore, if the experimental setup also allows to control the amount of enzymes in the
cluster as well as the overall abundances of enzymes, it would be possible to experimentally
validate the predicted behavior of the fluxes when these quantities are changed.
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A Optimal compartmentalization strategies
for metabolic compartments

A.1 Carboxysome parameters

To demonstrate the behavior of the system we used parameter values representative of the
α-carboxysome. For the catalytic efficiencies we used the measured values of carbonic an-
hydrase, κ1 ' 5 (µM s)−1 [177], and RuBisCO, κ2 ' 0.06 (µM s)−1 [178]. The diffusion co-
efficients of CO2 and HCO−3 were assumed to be equal and approximated by the diffusion
coefficient of CO2 in water, D ' 103 µm2 s−1 [176].
The upper bound of the total enzyme concentration emax was estimated as the concentra-
tion at which the whole volume is filled with RuBisCO monomers. The RuBisCO octamere
is approximately spherical with a radius ∼ 5 nm [181], thus we obtained for the maximal
concentration emax = 8/(4π(5nm)3/3) ' 25 mM.

The shell permeability has not yet been measured. However we can estimate the permeability
for an uncharged CO2 molecule using the measured crystal structure of the shell. We estimate
the permeabilities of HCO−3 and CO2 for the α-carboxysome and β-carboxysome.
A α-carboxysome has Np ' 800 pores, which are uniformly distributed over the carboxysome
surface, while each pore has a radius of rp ∼ 2 Å [179]. The effective area of a pore that
allows for the penetration of a CO2 molecule is π(rp − rw)2, with rw ' 1.7Å the van der
Waals radius of carbon [265]. Thus, the probability a CO2 molecule penetrates the shell is

∼ Npπ(rp−rw)2
A , while A ' 0.036 µm2 the surface of a icosahedral carboxysome with diameter

∼ 0.123 µm [181]. The permeability is then given by the probability to penetrate the shell
times the speed CO2 diffuses through the shell,

p ' Npπ(rp − rw)2

A

D

δ
= 18 µm s−1, (A.1)

The thickness of the carboxysome shell is δ ' 3.5 nm [180]. However, due to the positive charge
at the pore, the permeability of the negatively charged substrate HCO−3 will be enhanced
[53]. To account for this selective permeability we assumed that the permeability of HCO−3
is 5 times higher than for CO2. Thus, the permeabilities we used in our model are ps =
90 µm s−1 for HCO−3 and pi = 18 µm s−1 for CO2. Using the same derivation we estimate the
permeabilities for the β-carboxysome. The number of pores per shell area is approximately
the same as for the α-carboxysome, however the pores are larger with an average radius of
rp ∼ 2.75 Å [57]. From this we obtain for the shell permeabilities, ps = 1080 µm s−1 and pi =
215 µm s−1 for HCO−3 and CO2, respectively. Hence, due to the larger pore, the permeabilities
of the β-carboxysome shell are 12-fold higher than of the α-carboxysome shell.
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A.2 Derivation of productivity for uniformly distributed enzymes

In the case of uniformly distributed enzymes in spherical compartments, the densities of
substrate and intermediate also exhibit spherical symmetry. The productivity is therefore
given by

P(e1, e2, R) =

∫ R
0 4πr2κ2e2i(r)dr

4πR3(e1 + e2)/3
. (A.2)

The integral in the numerator is the total rate of P-production in the compartment, which
can be computed analytically by solving the coupled reaction-diffusion equations, Eqs. 3.2-3.3.
For ease of notation, we define four length scales as follows:

l1 =
√
D/(κ1e1), ls = D/ps,

l2 =
√
D/(κ2e2), li = D/pi.

(A.3)

Then the steady-state versions of the reaction-diffusion equations become

0 = ∇2s(r)− s(r)/l21, (A.4)

0 = ∇2i(r) + s(r)/l21 − i(r)/l22. (A.5)

The boundary conditions at the permeable compartment boundary become

s′(R) = [s0 − s(R)] /ls, i
′(R) = −i(R)/li (A.6)

where primes indicate differentiation with respect to the radial coordinate r. Furthermore,
due to the spherical symmetry of the compartments we impose no-flux boundary conditions
at the center of the compartments, s′(0) = i′(0) = 0.

Now, we can compute the intermediate concentration i(r) that is needed to evaluate Eq. A.2.
Solving first for s(r) yields

s(r) =
s0R

ls

sinhc(r/l1)

[cosh(R/l1) + (R/ls − 1) sinhc(R/l1)]
, (A.7)

where sinhc(x) = sinh(x)/x. Substituting into Eq. A.5, we solve for the concentration profile
of intermediate,

i(r) =
s(r)

(l1/l2)2 − 1

[
1−

(
cosh(R/l1) + (R/li − 1) sinhc(R/l1)

cosh(R/l2) + (R/li − 1) sinhc(R/l2)

)
sinhc(r/l2)

sinhc(r/l1)

]
. (A.8)

Finally, we obtain the productivity by evaluating the integral in Eq. A.2,

P(e1, e2, R) =

3pss0

R (e1 + e2)
[

cosh(R/l1) + (R/ls − 1) sinhc(R/l1)
][

cosh(R/l2) + (R/li − 1) sinhc(R/l2)
]

×
{[

cosh(R/l1)− sinhc(R/l1)
][

cosh(R/l2)− sinhc(R/l2)
]

+ (R/2li)
[

sinhc (R/l1 +R/l2) + sinhc (R/l1 −R/l2)− 2 sinhc(R/l1) sinhc(R/l2)
]}
. (A.9)
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A.3 Derivation of productivity for enzyme distribution observed in
carboxysomes

We model the enzyme distribution in carboxysomes as a shell of E1 enzymes at the compart-
ment boundary, which we take to have a thickness δ, and a sphere of E2 enzymes confined to
the remaining volume, the region r < R− δ = ρ,

e1(r) =

{
0 r ≤ ρ
e1 r > ρ

, e2(r) =

{
e2 r ≤ ρ
0 r > ρ

(A.10)

For this scenario, the productivity is given by,

P(e1, e2, R) =

∫ ρ
0 4πr2κ2e2i(r)dr

4/3π [ρ3e2 + (R3 − ρ3)e1]
. (A.11)

This expression can be computed analytically by solving the coupled steady state reaction-
diffusion equations for the enzyme distribution in Eq. A.10. For this, we divide the system
into two domains. Domain A (E1 shell) where r > ρ and domain B (E2 sphere) where r < ρ.
The reaction-diffusion system in each domain is then,

0 = D∇2sA(r)− κ1e1sA(r),

0 = D∇2iA(r) + κ1e1sA(r),

}
Domain A (r > ρ) (A.12)

0 = D∇2sB(r),

0 = D∇2iB(r)− κ2e2iB(r).

}
Domain B (r < ρ) (A.13)

At the compartment shell we impose the boundary conditions,

Ds′A(R) = ps [s0 − sA(R)] , Di′A(R) = −piiA(R). (A.14)

Moreover, because of the spherical symmetry of the compartment, we require no-flux bound-
ary conditions at the center of the compartment s′B(0) = i′B(0) = 0. Finally, we impose four
conditions at the interface between the two domains, to ensure that the concentration profiles
are continuously differentiable,

sA(ρ) = sB(ρ), s′A(ρ) = s′B(ρ), iA(ρ) = iB(ρ), i′A(ρ) = i′B(ρ). (A.15)

With these conditions, we obtain for the substrate concentration profile,

sA(r) =
s0 [cosh((r − ρ)/l1)ρ/l1 + sinh((r − ρ)/l1)] l1/ls

[(δ/R+ ρ/ls) cosh(δ/l1) + (l1(1/ls − 1/R) + ρ/l1) sinh(δ/l1)] r/R
, (A.16)

sB(r) =
s0R/ls

(δ/R+ ρ/ls) cosh(δ/l1) + (l1(1/ls − 1/R) + ρ/l1) sinh(δ/l1)
, (A.17)

where we used the length scale notation defined in Eq. A.3. Using this solution, we can
determine the intermediate concentration, which is needed to determine the productivity.
Since the integral in Eq. A.11 runs only over domain b (from 0 to ρ), we only need to
compute the intermediate concentration in domain b, which is given by,

iB(r) = sB(r) sinhc (r/l2)
(δ/R+ ρ/li) cosh(δ/l1) + (l1(1/li − 1/R) + ρ/l1) sinh(δ/l1)−R/li

(δ/li + ρ/R) cosh(ρ/l2) + l2 (1/li − 1/R) sinh(ρ/l2)
.

(A.18)
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Finally, we obtain the productivity by solving the integral in Eq. A.11,

P(e1, e2, R) =
3pss0

R2

l2
(e1 + (e2 − e1)(ρ/R)3)

× −R/li + (δ/R+ ρ/li) cosh(δ/l1) + (l1(1/li − 1/R) + ρ/l1) sinh(δ/l1)

(δ/li + ρ/R) cosh(ρ/l2) + l2(1/li − 1/R) sinh(ρ/l2)
(A.19)

×
ρ
l2

cosh(ρ/l2)− sinh(ρ/l2)

(ρ/ls + δ/R) cosh(δ/l1) + (l1(1/ls − 1/R) + ρ/l1) sinh(δ/l1)

A.4 Optimization of intra-compartment enzyme distribution

The numerical optimization of enzyme profiles was performed using a modified version of the
stochastic optimization algorithm described previously [202].

The compartment was discretized intoN = 200 concentric spherical shells, (n−1)δr ≤ r ≤ nδr
with lattice size δr = R/N and n = 1..N . We used as optimization variables the fractional
occupancy of each site, eT,n/emax, and the fraction of these enzymes that are of type E1,
ϕn = e1,n/eT,n = φn/(1 +φn). The advantage of these variables is that both are restricted to
the interval [0, 1]. In these coordinates, the discrete version of the reaction-diffusion system
(Eqs. 3.2-3.5) becomes

0 =
D

δr2
[−4s1 + 4s2]− κ1eT,1ϕ1s1, (A.20a)

0 =
D

δr2

[(
2n− 2

2n− 1

)2

sn−1 − 4
2n2 − 2n+ 1

(2n− 1)2
sn +

(
2n

2n− 1

)2

sn+1

]
− κ1eT,nϕnsn, 2 ≤ n < N (A.20b)

−ps
δr

(
2N

2N − 1

)2

s0 =
D

δr2

[(
2N − 2

2N − 1

)2

sN−1 −
(

2N − 2

2N − 1

)2

sN

]

− ps
δr

(
2N

2N − 1

)2

sN − κ1eT,NϕNsN , (A.20c)

−κ1eT,1ϕ1s1 =
D

δr2
[−4i1 + 4i2]− κ2eT,1(1− ϕ1)i1, (A.20d)

−κ1eT,nϕnsn =
D

δr2

[(
2n− 2

2n− 1

)2

in−1 − 4
2n2 − 2n+ 1

(2n− 1)2
in +

(
2n

2n− 1

)2

in+1

]
− κ2eT,n(1− ϕn)in, 2 ≤ n < N (A.20e)
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−κ1eT,NϕNsN =
D

δr2

[(
2N − 2

2N − 1

)2

iN−1 −
(

2N − 2

2N − 1

)2

iN

]

− pi
δr

(
2N

2N − 1

)2

iN − κ2eT,N (1− ϕN )iN . (A.20f)

Each optimization run was initialized with a uniform enzyme distribution, eT,n/emax = 10−3

and ϕn = 0.5 for each of the n = 1..N lattice sites. We verified that using random initial
distributions as well as smaller lattice sizes did not alter the resulting optimal profiles. At
each iteration of the optimization process, a set of 50 new test profiles were generated by
selecting one site m at random and multiplying either eT,m/emax or ϕm by a factor ξ drawn
from a log-normal distribution with location parameter µ = 0 and scale parameter σ = 0.01.
Thus changes that increase or decrease the corresponding enzyme variable are equally likely.
For each of these modified enzyme configurations, the steady-state metabolite densities were
calculated by first solving the linear system Eqs. A.20a-c for {sn}, followed by Eqs. A.20d-f
for {in}. The productivity was then evaluated as

P =

∑N
n=1 Vnκ2eT,n(1− ϕn)in∑N

n=1 VneT,n
, (A.21)

where Vn = 4πδr3(1−3n+3n2)/3 is the volume of the n-th spherical shell. The initial enzyme
distribution for the next round of modifications is constructed by taking the mean of the 10
enzyme profiles with the highest P values.

The results presented in Figs. 3.2 and 3.4 and Figs. A.1 and A.2 show the mean of the best
profiles produced by each of 10 independent optimizations runs.

A.5 Optimal enzyme distributions for α-carboxysome parameters

Figure A.1 shows examples of the optimized enzyme profiles corresponding to the blue squares
in Fig. 3.2a. As noted in Sec. 3.3.2, the total amounts of E1 and E2 in the compartment are in
close agreement with the uniform enzyme scenario and the well-mixed model. These amounts
are determined by the same trade-offs as described in the section “Well-mixed approximation”.
Specifically, increasing the number of enzymes will increase the turnover of either substrate
or intermediate, but at the same time will lead to depletion of the corresponding metabolite
and thereby reduce the efficiency with which each enzyme operates. The optimal amounts
represent a compromise between these two effects for both reactions. Since diffusive mixing
of substrate and intermediate in the compartment are fast for the depicted radii, the total
amounts of enzymes play the largest role in determining the productivity, with their precise
arrangement being of lesser importance.

In Fig. A.1, compartment sizes spanning the critical radius Rc are shown. At all radii we
observe that E1 enzymes localize in a boundary layer at the outer edge of the compartment.
The colocalization of E1 at the source of substrate in this way is a strategy to maximize
the conversion of substrate into intermediate by maximizing the probability for a substrate
molecule to encounter an E1 enzyme before diffusing out of the compartment again, consistent
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with prior theoretical results [202]. In the absence of the constraint e1(r) + e2(r) ≤ emax, the
width of this shell becomes vanishingly small. However the maximal density constraint forces
the available E1 enzymes to be arranged instead in a shell of finite width (such finite bands of
enzymes subject to a maximal density constraint have also been observed previously [142]).
This width w is approximately given by emax(4πR2w) ≈ e∗1(R)(4πR3/3), where e∗1(R) is the
average density of e∗1 in the compartment as a whole as predicted by the well-mixed model.
Thus for R > Rc, when e∗1 ∝ e∗T (R) ∼ R−1, the band width is approximately independent of
R.

(a) (b) (c)

Figure A.1: Optimal intra-compartment enzyme distributions. Examples of the globally-optimized
intra-compartment enzyme arrangement for different compartment sizes spanning the critical radius
Rc, corresponding to Fig. 3.2. (a) R = 10 nm, (b) R = 20 nm, and (c) R = 80 nm.

At R > Rc (R =80 nm, Fig. A.1 bottom) we see that the majority of E2 enzymes localize in
a band at the inner edge of the E1 domain . This reflects the same strategy for maximizing
the conversion of I to P as described above for E1. The width of the band of enzymes is
again determined by the maximal density constraint, in the same way. In addition to the
band near the outer shell, the e∗2(r) distribution at large R > Rc has a cluster of enzymes
at the center of the compartment, although this cluster contains only a very small fraction
of the total number of E2 enzymes (since the number of enzymes in a shell of width ∆r
is ≈ e2(r)r

2∆r). The benefit provided by such a cluster is not immediately apparent, and
we again emphasize that the productivity is largely insensitive to such fine details of the
intracompartment enzyme distributions, suggesting that this feature originates in higher-order
effects. (Indeed, this central cluster is absent when the dynamics is dominated by the decay of
intermediates inside the compartment, see Fig. A.2c.) The center of the compartment stands
out as the position where intermediate molecules are furthest from the compartment boundary
and therefore have the highest expected time until they escape from the compartment. We
therefore speculate that the diffusive trajectories for intermediate that spend the longest time
in the compartment will be those that spend a disproportionate amount of time close to the
center of the compartment. The central enzyme cluster may be used to exploit this class of
intermediate molecules that spend a particularly large amount of time near the compartment
center, thereby achieving some additional production of P with a very minor expenditure of
enzymes.

Finally, as R is decreased below Rc (R =10 nm, Fig. A.1 top), the extension of the outer and
inner enzyme bands becomes such that they span the entire compartment, and the optimal
compartmentalization strategy consists of maximally filled compartments.
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A.6 Optimal compartmentalization strategies with intermediate
decay

We focused our analysis on the situation where intermediates are stable within compartments.
In general, however, intermediates can be consumed by undesired side reactions or be intrin-
sically unstable. Both mechanisms lead to a decay of intermediates which has an effect on
the optimal compartmentalization strategies. The addition of decay provides a second loss
mechanism for intermediates, in addition to leakage across the compartment boundary. We
therefore studied how the optimal compartmentalization strategies changed when decay of
intermediate was added via a term −σi(r) in Eq. 3.3.

First, we examined a well-mixed system with decay. Mathematically, the effect of decay is
simply to change the length scale parameter λ2 = 3pi/(κ2emax) → 3pi(1 + R/Rσ)/(κ2emax),
with Rσ = 3pi/σ. We can immediately see that λ2 will be dominated by loss at the membrane
when R� Rσ, and conversely by decay when R� Rσ. The contribution of decay to the total
loss becomes more important as the compartment radius R is increased since the typical time
for diffusion of intermediate to the boundary is longer, thereby increasing the probability
of each intermediate molecule to decay before reaching the boundary. As R approaches
Rσ, the optimal compartmentalization strategy deviates from the no-decay case (Fig. A.2a,
solid lines). Specifically, the productivity Pwm begins to decrease from the plateau value.
Simultaneously, the average enzyme density e∗T deviates from the R−1 power law behavior
and the enzyme ratio φ∗ shifts towards a larger fraction of E2 enzymes. Increasing the number
of available E2 enzymes in this way is an attempt to counteract the reduction in flux due to
the loss of intermediates to decay by boosting the potential for conversion reactions into P.

We next solved the reaction-diffusion system for the case of uniform enzymes, using the same
procedure as above. The resulting productivity is given by

P(e1, e2, R) =

3pss0

R (e1 + e2) (l2/l3)2
[

cosh(R/l1) + (R/ls − 1) sinhc(R/l1)
][

cosh(R/l3) + (R/li − 1) sinhc(R/l3)
]

×
{[

cosh(R/l1)− sinhc(R/l1)
][

cosh(R/l3)− sinhc(R/l3)
]

+ (R/2li)
[

sinhc (R/l1 +R/l3) + sinhc (R/l1 −R/l3)− 2 sinhc(R/l1) sinhc(R/l3)
]}
, (A.22)

where the modified length scale l3 =
√
D/(κ2e2 + σ). We find that the corresponding optimal

compartmentalization strategy again matches the well-mixed approximation provided that R
and σ are not too large (Fig. A.2a).

We nevertheless expect decay to push compartments out of the well-mixed regime by con-
tributing to the establishment of gradients in intermediate concentration on length scales of
λσ ∼ (D/σ)1/2. This effect is not observed in a system with uniform enzymes, however,
because in this scenario the production of I is approximately uniform throughout the com-
partment (since S does not decay, s(r) is approximately constant). While decay restricts the
diffusion of intermediates throughout the compartment, it does so equally at all positions.
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Figure A.2: Optimal compartmentalization strategies for α-carboxysome parameters with added
decay of intermediate. (a) (Top) Optimal productivity, (middle) optimal total enzyme density, e∗T ,
and (bottom) optimal ratio of E1 to E2 enzymes, φ∗. Lines are the solutions of the well-mixed model
with decay. Solid symbols show the reaction diffusion-model with uniform enzymes. Crosses show
results for numerically optimized enzyme distributions. (b) Deviation of the optimal productivity
of the optimized enzyme distributions from the well-mixed productivity collapse when plotted as a
function of R/λσ. (c) A typical example of the optimized enzyme distributions e∗1(r) and e∗2(r) for
R =1 µm and σ =104 s−1.

However, this will not generally be the case if the distribution of E1 enzymes, and therefore
the production of I is non-uniform.

We therefore performed numerical optimization of the enzyme distributions in the full reaction-
diffusion system, as described above but with the addition of a term −σin to Eqs. A.20d-f. We
found that indeed for large R values, the productivity of the optimized enzyme distribution
was greater than that of the well-mixed model (Fig. A.2a, crosses). In particular, for large
values of σ, this deviation occurs at radii for which the σ = 0 system is still in the well-mixed
regime (R .3 µm). Plotting the deviation of the productivity against R/λσ we find that the
data collapse to a single curve (Fig. A.2b), confirming that the deviation is indeed a result of
the decay gradients that come to dominate the intracompartment dynamics.

The corresponding optimal enzyme profiles are strongly clustered at the outer boundary of
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the compartment (see Fig. A.2c for an example). Enzymes of type E1 localize at the outer
boundary so as to maximize the reaction with incoming substrate. Enzymes of the second
type E2 form a shell on the inner side of the E1 region. By colocalizing E2 with E1, the system
is able to increase the local enzyme density compared to a well-mixed or uniform arrangement,
thereby increasing the probability of converting each I to P. Simultaneously, decay means
that intermediates will rarely reach the central region of the compartment at r . (R − λσ).
By emptying this region of enzymes, the system avoids wasting E2 enzymes in regions of the
compartment where there is no I to act on.

While we have seen that decay can lead to breakdown of the well-mixed approximation,
extremely fast decay rates are necessary for such an effect to be significant for biologically
realistic compartment sizes (σ & 105s−1 for our α-carboxysome parameters). Such short life-
times seem unrealistic for small-molecule metabolites. Furthermore, the environment inside
microcompartments is typically highly controlled, making spurious side reactions with com-
peting enzymes unlikely. Therefore, we do not expect such effects to be important in most
biological contexts.

A.7 Corrections to the well-mixed approximation

To study the deviation of the optimal productivity from the well-mixed approximation, we
performed a series expansion of Eq. A.9 in powers of D−1, while substituting for the pa-

rameters describing the enzyme distribution eT (R) = e∗T,wm(R)
[
1 + δe

(1)
T (R)D−1 + ...

]
and

φ(R) = φ∗wm

[
1 + δφ(1)(R)D−1 + ...

]
. In the regime R > Rc, the resulting expression for the

productivity is

P{δe(1)T (R), δφ(1)(R);R} =
κ1κ2pss0[

(κ2ps)
1/3 + (κ1pi)

1/3
]3 +

κ
4/3
1 κ2psp

1/3
i R(pi − ps)s0

5D
[
(κ2ps)

1/3 + (κ1pi)
1/3
]4 +O(D−2)

(A.23)

= P∗wm

[
1 +

(pi − ps)R
5 (1 + φ∗wm)D

+O(D−2)

]
. (A.24)

Note that the term of order D−1 is independent of the corrections to the enzyme distributions,

δe
(1)
T (R) and δφ(1)(R). Thus to first order P{δe(1)T (R), δφ(1)(R);R} = P∗(R).

The first-order correction term vanishes if ps = pi. Therefore, in order to understand how
the optimal productivity behaves in this case, we computed also correction terms of the
order O(D−2) for ps = pi = p, including also for completeness second-order corrections to

the optimal enzyme concentrations, e∗T (R) = e∗T,wm(R)
[
1 + δe

(1)
T (R)D−1 + δe

(2)
T (R)D−2 + ...

]
and φ∗(R) = φ∗wm

[
1 + δφ(1)(R)D−1 + δφ(2)(R)D−2 + ...

]
. We find that the productivity takes

the form

P{δe(1)T (R), δe
(2)
T (R), δφ(1)(R), δφ(2)(R);R} =

P∗wm(R)
[
1 + f

{
δe

(1)
T (R), δφ(1)(R), R

}
D−2 +O(D−3)

]
. (A.25)
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The leading correction term f
{
δe

(1)
T (R), δφ(1)(R), R

}
D−2 only depends on the first-order cor-

rections to e∗T and φ∗, denoted by δe
(1)
T (R) and δφ(1)(R) respectively. Since we are interested

in the optimal productivity, we then maximize f over δe
(1)
T (R) and δφ(1)(R), which gives

δe
(1)∗
T (R) = −pR/5 and δφ(1)∗(R) = 0. The resulting correction to the productivity then

reads

f∗ = f
{
δe

(1)∗
T (R), δφ(1)∗(R), R

}
= −3p2R2

175
. (A.26)

Consequently, in the limit of equal permeabilities, the true optimal productivity P∗(R) is ex-
pected to deviate significantly from the well-mixed approximation P∗wm(R) for a compartment
radius Rx ∼

√
175/3Dp . Akin to the case where ps > pi, P∗(R) initially plateaus for R > Rc

and then decreases again for very large radii.

A.8 High-permeability limit, ps, pi →∞
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Figure A.3: Optimal intra-compartment enzyme distribution for high permeabilities. Optimal
enzyme distributions for R =100 nm, Fig. 3.4(d-f), together with the corresponding metabolite density
profiles. Parameters are as in Fig. 4: (a) ps = pi = 104 µm s−1; (b) ps = 104 µm s−1, pi = 10 µm s−1;
(c) ps = 10 µm s−1, pi = 104 µm s−1. Other parameters are fixed at κ1 = κ2 = 0.4 (µM s)−1, emax =
25 mM and D = 100 µm2 s−1.

In the ps, pi →∞ limit, the Robin boundary conditions Eqs. 4-5 reduce to Dirichlet boundary
conditions,

s(R) = s0, i(R) = 0. (A.27)

Assuming uniformly distributed enzymes, e1(r) = e1 and e2(r) = e2, solving the reaction-
diffusion equations Eqs. A.4-A.5 with these modified boundary conditions leads to the pro-
ductivity

P
(
eT , φ;R

)
=

3s0D

eTR2(κ2 − κ1φ)

{
κ1φ

[
1−

√
eTR2κ2
D(1 + φ)

coth

√
eTR2κ2
D(1 + φ)

]

− κ2
[
1−

√
eTR2κ1φ

D(1 + φ)
coth

√
eTR2κ1φ

D(1 + φ)

]}
. (A.28)

It can be seen that the enzyme density eT and compartment radius R appear only in the
combination eTR

2.
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A.9 Michaelis-Menten kinetics

We determined the optimal compartmentalization strategies with full Michaelis-Menten reac-
tion kinetics for the reaction-diffusion system (Eqs. 3.2-3.5) with uniform enzyme profiles and
for the well-mixed approximation. Because of the non-linear reaction kinetics in Eqs. 3.2-3.3
an analytical solution of the productivity is not possible. Therefore, we used a numerical
method to solve the steady state reaction-diffusion system. This was done using in Matlab
ODE solver for boundary value problems, bvp5c, together with the fmincon function for
constrained optimization.

In the well-mixed approximation, the productivity can be determined analytically. The well-
mixed steady state concentration of S and I with full Michaelis-Menten kinetics can be
determined by solving the following system of equations,

0 =
3ps
R

(s0 − s)−
k
(1)
cate1s

K
(1)
M + s

, (A.29)

0 =
3ps
R

(−i) +
k
(1)
cate1s

K
(1)
M + s

− k
(2)
cate2i

K
(2)
M + i

. (A.30)

The resulting substrate and intermediate concentration are given by,

s =

3ps

k
(1)
cat

(
s0 −K(1)

M

)
− e1R+

[
36

k
(1)
cat

K
(1)
M

p2ss0 +

(
3ps

k
(1)
cat

(
s0 −K(1)

M

)
− e1R

)2
]1/2

6ps/k
(1)
cat

, (A.31)

i =

R
e1k

(1)
cats

s+K
(1)
M

− 3K
(2)
M pi − e2k(2)catR+

[
12RK

(2)
M pi

e1k
(1)
cats

s+K
(1)
M

+

(
3K

(2)
M pi + e2k

(2)
catR−R

e1k
(1)
cats

s+K
(1)
M

)2
]1/2

6pi
(A.32)

Finally, we can compute the productivity, by inserting Eq. A.32 in

P(e1, e2, R) =
ie2k

(2)
cat

(e1 + e2)
(
i+K

(2)
M

) . (A.33)
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B Enzyme clustering and optimal enzyme
arrangements

B.1 Equivalence of the expressions for the reaction efficiency

The reaction efficiency is defined via the reaction-diffusion equation (Eq. 4.2) as,

J2
J1

=

∫
αe(r)

ρ(r)

1 + γρ(r)
dr. (B.1)

Here, we demonstrate that in the regime of linear reaction kinetics (γ = 0), expression Eq. B.1
is equivalent to the definition of the reaction efficiency (Eq. 4.5),

J2
J1

=

∫ ∞
0

P (E)pr(E)dE, (B.2)

which is based on considering individual intermediate trajectories.

We start by defining the steady-state intermediate concentration, ρ(r), in terms of trajectories
of diffusing intermediate molecules. We denote the diffusive trajectory of a single intermediate
molecule, in the absence of any E2 enzymes, as {r(t)}. Every such trajectory has a time τesc
associated with it at which the trajectory ends, either because the intermediate decayed or
escaped through the system boundary. When we now reintroduce the E2 enzymes according
to the distribution e(r), we can define a reaction propensity at each point of the trajec-
tory, αe(r(t)). Thus, the survival probability that an intermediate, following the trajectory
{r(t)}, has not reacted with E2 before the time t follows Ṡ(t|{r(t)}) = −αe(r(t))S(t|{r(t)}).
Integrating this equation leads to the survival probability,

S(t|{r(t)}) = exp

[
−α

∫ t

0
dt′ e(r(t′))

]
, t ≤ τesc. (B.3)

The steady-state intermediate concentration at point r can be interpreted as the sum of
trajectories that spend a certain time at r, weighted by the probability that the intermediate
molecule has not yet reacted prior to each return to r. This weighting factor is simply the
survival probability S(t|{r(t)}). With this, we can write the intermediate concentration profile
as,

ρ(r) =

∫
d{r(t)} p({r(t)})

∫ τesc

0
dt S(t|{r(t)})δ [r− r(t)] , (B.4)

where the inner integral is the weighted time of a single trajectory spent at r, and the outer
integral sums over the contributions of all possible trajectories weighted by the probability
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p({r(t)}) that a specific trajectory {r(t)} occurs. Substituting Eqs. B.4 and B.3 into Eq. B.1
and changing the order of integration, we obtain

J2
J1

=

∫
d{r(t)} p({r(t)})

∫ τesc

0
dt

∫
dr αe(r) exp

[
−α

∫ t

0
dt′ e(r(t′))

]
δ [r− r(t)]

=

∫
d{r(t)} p({r(t)})

∫ τesc

0
dt αe(r(t)) exp

[
−α

∫ t

0
dt′ e(r(t′))

]
=

∫
d{r(t)} p({r(t)})

∫ τesc

0
dt

d

dt

{
− exp

[
−α

∫ t

0
dt′ e(r(t′))

]}
=

∫
d{r(t)} p({r(t)})

{
1− exp

[
−α

∫ τesc

0
dt′ e(r(t′))

]}
. (B.5)

Defining the enzyme exposure as E =
∫ τesc
0 dt e(r(t)), and changing the variable of integration

from {r(t)} to E, we recover

J2
J1

=

∫ ∞
0

P (E)(1− e−αE)dE. (B.6)

B.2 One-dimensional system with unstable intermediates

Here, we analytically solve the reaction-diffusion equation (Eq. 4.7) which is given by,

0 = ∂x2ρ(x)− αe(x)ρ(x)− βρ(x), (B.7)

with the boundary conditions ∂xρ(x)|x=0 = −1 and ∂xρ(x)|x=1 = 0.

B.2.1 Clustered enzyme profile

The clustered enzyme profile is given by ec(x) = δ(x−x0), where x0 denotes the point where
the E2 enzymes are clustered. Note that we take x0 to zero at the end of the calculation
to assure colocalization of E2 with E1 enzymes. We start by dividing the system into two
domains, domain I where x < x0 and domain II where x > x0. In each domain Eq. B.7
reduces to

0 = ∂x2ρ(x)− βρ(x), (B.8)

which has the solution

ρi(x) = Aie
√
βx +Bie

−
√
βx (B.9)

with i = {I, II}. Applying the boundary conditions at x = 0 and x = 1 yields

AI −BI = (
√
β)−1, AIIe

√
β −BIIe−

√
β = 0. (B.10)

To guarantee that the intermediate concentration profile is continuous at x0 we require,
ρI(x0) = ρII(x0) leading to

AIe
√
βx0 +BIe

−
√
βx0 = AIIe

√
βx0 +BIIe

−
√
βx0 . (B.11)
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Furthermore, to assure particle conservation in the system we integrate Eq. B.7 from x0 − ε
to x0 + ε and take the limit of small ε, leading to

lim
ε→0

(
(∂xρII(x))x0+ε − (∂xρI(x))x0−ε − αρ(x0)− β

∫ x0+ε

x0−ε
ρ(x)dx

)
= 0. (B.12)

The last term on the left hand side vanishes in the limit ε→ 0, leading to the condition[
AIIe

√
βx0−BIIe−

√
βx0−

(
AIe

√
βx0 +BIe

−
√
βx0

)]
− α√

β

(
AIe

√
βx0 +BIe

−
√
βx0

)
= 0. (B.13)

To calculate the reaction efficiency, we integrate over the reaction term of Eq. B.7, leading to

J2
J1

= α

∫ 1

0
δ(x− x0)ρ(x)dx = α(AIIe

√
βx0 +BIIe

−
√
βx0) (B.14)

After some straightforward algebra we arrive at expressions for all four constants {AI , AII , BI , BII}.
Substituting the integration variables and taking the limit x0 → 0, we obtain(

J2
J1

)
c

=
α

α+ β
1
2 tanh(β

1
2 )
. (B.15)

B.2.2 Uniform enzyme profile

Eq. B.7 with uniformly distributed enzymes eu(x) = 1 reads

0 = ∂x2ρ(x)− (α+ β)ρ(x). (B.16)

The solution of this equation is given by

ρ(x) = Ae
√
α+βx +Be−

√
α+βx (B.17)

Using the boundary conditions at x = 0 and x = 1 leads to the conditions

A−B = (
√
α+ β)−1, Ae

√
α+β −Be−

√
α+β = 0. (B.18)

Similarly to above, the constants A and B can be obtained straightforwardly, and the reaction
efficiency reads, (

J2
J1

)
u

= α

∫ 1

0
ρ(x)dx =

α

α+ β
(B.19)

B.3 Enzyme exposure probability distribution in one dimension

The reaction efficiency defined in terms of the enzyme exposure probability distribution P (E)
reads,

J2
J1

= 1−
∫ ∞
0

P (E)e−αEdE = 1− Jloss
J1

. (B.20)
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To compute an exact expression of P (E) for a given enzyme configuration, it is convenient to
calculate the inverse Laplace transformation of Jloss/J1 with respect to α.

We previously have seen that the expression for the loss term often takes the form f(β)/(α+
f(β)), where f(x) is any function. For such expressions, the inverse Laplace transformation
can easily be computed and takes the form,

P (E) = f(β)e−f(β)E . (B.21)

For the uniform enzyme profile we have, f(β) = β and thus Pu(E) = βe−Eβ; for the clustered

enzyme profile we have, f(β) = β
1
2 tanhβ

1
2 and thus Pc(E) = β

1
2 tanhβ

1
2 e−Eβ

1
2 tanhβ

1
2 .

B.4 Two- and three-dimensional systems

In two and three dimensions we impose rotational symmetry, and thus the reaction-diffusion
equation depends only on the radial coordinate,

r1−d∂r

(
rd−1∂rρ(r)

)
− αe(r)ρ(r) = 0, (B.22)

where d is the spatial dimension. At the center of the system we localize the source leading
to the boundary condition, (2πr∂rρ(r))|r=0 = −1 in tow dimensions and (4πr2∂rρ(r))|r=0 =
−1 in three dimensions. At the outer boundary we use the absorbing boundary condition,
ρ(1) = 0.

B.4.1 Clustered enzyme profile

We again start by deriving the expression for the efficiency generated by a clustered enzyme
profile. The rescaled clustered configuration is given by ec(r) = δ(r−r0)

2r0
in two dimensions and

ec(r) = δ(r−r0)
3r20

in three dimensions. As in Sec. B.2.1 we divide the system into two domains,

domain I for r < r0 and domain II for r > r0. In each domain no enzymes are present and
thus the solution of Eq. B.22 is

ρi(r) =

{
Ai log r +Bi d = 2
Ai
r +Bi d = 3,

(B.23)

where i = {I, II}. Applying the boundary conditions leads to the following two conditions
in the respective dimension

BII = 0, AI = − 1

2π
for d = 2 (B.24)

AII = −BII , AI =
1

4π
for d = 3. (B.25)

The remaining two conditions come again from matching the concentration at r = r0, ρI(r0) =
ρII(r0), and the discontinuity of the derivative of ρ(r) at r = r0. With these four conditions we
get after some straightforward algebra the expressions for the four constant {AI , AII , BI , BII}.
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Since loss of intermediates occurs only at the outer boundary, we can determine the efficiency
by computing the leakage flux at the outer boundary. This then leads to the expressions of
the reaction efficiency in two and three dimensions.

(
J2
J1

)
=


1− 2πr∂rρ(r)|r=1 = α log r0

α log r0−2 d = 2

1− 4πr2∂rρ(r)
∣∣
r=1

=
α
3
(1−r0)

r0+
α
3
(1−r0) d = 3.

(B.26)

B.4.2 Uniform enzyme profile

In the case of uniformly distributed enzymes (eu(r) = 1), the reaction-diffusion equation
Eq. B.22 reads

r1−d∂r(r
d−1∂rρ(r))− αρ(r) = 0. (B.27)

For d = 2 and d = 3 this is solved by,

ρ(r) =


AI0(αr) +BK0(αr) d = 2

1
r

(
Ae
√
αr +Be−

√
αr
)

d = 3.

(B.28)

Together with the source and absorbing boundary condition this leads to the following con-
ditions,

B = − 1

2π
, AI0(α) +BK0(α) = 0 for d = 2

(B.29)

A+B =
1

4π
, Ae

√
α +Be−

√
α = 0 for d = 3. (B.30)

The reaction efficiency is then given by,
1− 2πr∂rρ(r)|r=1 = 1− I(

√
α)−1 d = 2

1− 4πr2∂rρ(r)
∣∣
r=1

= 1−
√
αcsch(

√
α) d = 3.

(B.31)

B.5 Enzyme exposure probability distribution in 2D and 3D

As described above, the enzyme exposure probability distribution is given as the inverse
Laplace transformation of the loss flux through the boundary. The loss flux for the clustered
configuration is given by,

Jloss
J1

=


2

2−α log r0
d = 2

r0
r0+

α
3
(1−r0) d = 3.

(B.32)
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Both loss fluxes have the general form as discussed in Sec. B.3. Thus, the enzyme exposure
distributions are given by,

Pc(E) =


−2

log r0
e

2E
log r0 d = 2

3r0
1−r0 e

− 3r0
1−r0

E
d = 3.

(B.33)

For uniformly distributed enzymes, we first calculate the singularities of the loss flux, which
are the zero points of, I0(

√
α) in two dimensions and sinh(

√
α) in three dimensions. These

are given in 2D by the nth zero of the Bessel function via j20,n and in 3D by αn = −(nπ)2 with
n ∈ N. This then leads to the following residues

Res

[(
Jloss
J1

)
eαE , αn

]
=


2e
−j20,nEj0,n
J1(j0,n)

d = 2

(−1)n+12(πn)2e−(nπ)
2E d = 3.

(B.34)

With this, the exposure distribution is determined by summing over all residues,

Pu(E) =


2
∑∞

n=1
e
−j20,nEj0,n
J1(j0,n)

d = 2

2
∑∞

n=1(−1)n+1(πn)2e−(nπ)
2E d = 3.

(B.35)



C Enhancing biocatalytic fluxes via spatial
organization

C.1 Ensembles of biocatalyst arrangements

The distributions of pathway fluxes for different model parameters and localization strategies
were determined in each case by sampling an ensemble of 3000 random biocatalyst configu-
rations and computing for each configuration the steady-state flux.

For the delocalized scenario, these configurations were generated by distributing the biocata-
lysts uniformly over the system. For a two dimensional spherical symmetric system a uniform
distribution is achieved by picking for the center of each biocatalyst a radial position r =

√
z,

where z is uniformly distributed over the interval z ∈ [0, (R− rc)2), and an angular position θ
from the interval θ ∈ [0, 2π). Similarly, in three dimensions the radial position is r = z1/3, and
the angular coordinates θ ∈ [0, 2π) and φ = arccos(2v−1) where v ∈ [0, 1]. After distributing
all biocatalysts in this way, we tested whether any two biocatalyst overlapped. If any pair of
biocatalysts had a distance smaller than 2rc between their centers, then we moved this pair
away from each other, along the line connecting the centers, until their separation becomes
larger than 2rc. After all overlapping pairs had relocated, the procedure was repeated to
avoid overlaps created by the repositioning.

For the different studied biocatalyst organizations, we also considered ensembles of configu-
rations generated by a similar procedure. In the case of A-B pairs and the complex config-
urations in Fig. 5.3e, their centers were distributed randomly over the system as described
above. The center-center distance between biocatalysts within a pair or complex was fixed at
rc, while their orientation was chosen randomly. In the case of clustered biocatalysts, a center
position for the cluster within the system was chosen randomly. The biocatalysts were then
randomly positioned within a circular (in 2d) or spherical (in 3d) region so as to achieve a
packing density of 60% in 2d or 50% in 3d. In all cases, cycles of rearrangements were made
in order to avoid biocatalyst overlaps.

C.2 Optimization of the complex arrangement

To determine the optimal B configuration around a single A localized at the system center, we
used a Monte Carlo optimization algorithm to iteratively explore the biocatalyst configuration
space.

The optimization algorithm was initialized with a random configuration of Bs. From this
configuration a new trial configuration was sampled by selecting one B at random and moving
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it a distance l in a random direction to a new position. If this trial configuration led to an
increase in reaction flux jP it was accepted and used as the starting configuration for the
next trial step, otherwise it was rejected and a new trial was generated from the previous best
configuration. This procedure was repeated until a termination criterion of either a defined
total number of iterations (set to 104), or a number of successive non-improving iterations
(300–400), was reached. We made two further modifications to this basic algorithm that were
found to speed up convergence of the optimization. First, after a trial step was accepted the
subsequent trial step was taken in the same direction. Second, the step length was decreased
during the course of the optimization process.

In general, this procedure does not guarantee a convergence to the global optimum. We
therefore performed 30 realizations of the optimization procedure, with different initial con-
figurations, for each set of model parameters. Most realizations resulted in the same final
configuration, which we are confident to be the global optimum.
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Figure C.1: Coefficient of determination. R2 of the linear regression of jP against dAA =
〈|ri − rj |〉i,j∈A, dBB = 〈|ri − rj |〉i,j∈B, rA = 〈|ri|〉i∈A, and rB = 〈|ri|〉i∈B in systems of delocalized
biocatalysts.

C.3 Permeable biocatalysts

To identify the impact of steric effects due to the discreteness of biocatalysts, we considered
how the reaction flux is altered when the biocatalysts are permeable. The behavior of such
a system is defined by reaction-diffusion equations where we distinguish between the spaces
within and outside biocatalysts,

D∇2CS(r)− κACS(r) = 0
D∇2CI(r) + κACS(r) = 0

}
∀r ∈ A, (C.1)

D∇2CS(r) = 0
D∇2CI(r)− κBCI(r) = 0

}
∀r ∈ B, (C.2)

D∇2CS(r) = 0
D∇2CI(r) = 0

}
elsewhere, (C.3)

together with boundary conditions that require CS,I to be continuous and smooth at the
surfaces of all biocatalysts. However, it is not necessarily clear how the catalytic activity on
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Figure C.2: Impermeable vs. permeable for delocalized arrangements. Comparison of 〈JI〉, 〈ε〉,
and 〈JP〉 for impermeable versus permeable biocatalysts for delocalized arrangements in two and three
dimensions.

the surface of biocatalysts, kA,B, should be converted into a catalytic activity throughout the
volume of such permeable biocatalysts, κA,B. We used a mapping based on the equivalence
of reaction fluxes in a simplified system with a single biocatalyst.

To this end we begin by considering a single A biocatalyst positioned at the system center.
To determine its reaction flux, we solve the steady state diffusion equation, D∇2CS(r) = 0,
with the boundary conditions used in the main text,

DC ′S(rc) =
kA
AA

CS(rc), (C.4)

CS(R) = C0, (C.5)

where R = 100rc is the outer boundary of the system. By solving this system, we obtain for
the fluxes in 2 and 3 dimensions,

Jimp =
kAC0

1 + kA
2πD log R

rc

d = 2, (C.6)

Jimp =
kAC0

1 + kA
4πrcD

(
1− rc

R

) d = 3. (C.7)

We next considered the scenario where the single central A biocatalyst is permeable to sub-
strate. For this system, the reaction flux can be computed by dividing the system into two
domains, inside and outside of the biocatalyst, and solving in each domain the corresponding
reaction-diffusion equations,

D∇2CS(r) = 0 if r > rc (C.8)

D∇2CS(r)− κACS(r) = 0 if r < rc (C.9)

By requiring that the substrate concentration profile is continuous and differentiable at r = rc,
together with the boundary conditions CS(R) = C0 and C ′S(0) = 0, we can determine CS(r).
With this we compute the reaction flux by integrating the last term in Eq. C.9 over the
domain of the biocatalyst. This yields the following expressions for the reaction flux in 2 and
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3 dimensions,

Jperm =
2πDC0β I1 (β)

I0 (β) + β I1 (β) log R
rc

d = 2, (C.10)

Jperm =
4πDC0

R
rc

[β coth(β)− 1]

1 + (Rrc − 1)β coth(β)
d = 3, (C.11)

where β = rc
√
κA/D and Iα(x) is the modified Bessel function of the first kind.

To achieve an equivalence between the reaction rates κl and the rates kl of the imperme-
able biocatalysts, we chose κA(kA) such that the fluxes Jperm and Jimp match. Comparing
Eqs. C.6-C.7 with C.10-C.11, we find that the fluxes will be equal when

αA = βI1(β)/I0(β) d = 2, (C.12)

αA = β coth(β)− 1 d = 3, (C.13)

These mappings were then used for the rates κA(αA) and κB(αB) to solve Eqs. C.1-C.3
for general biocatalyst configurations. In systems for which steric effects are expected to be
negligible, for example in the case of delocalized biocatalyst arrangements, using this mapping
for the rates led to reaction fluxes which are approximately the same for impermeable and
permeable biocatalysts (see Fig. C.2).
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D.1 Supplementary figures
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Figure D.1: Branching fraction only depends on the ratio ep/eq. Branching fraction Jp as ep and eq
are varied separately, with the other held fixed. The two curves for each scenario coincide, indicating
that Jp depends only on the ratio ep/eq. Other parameter values are as shown.
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Figure D.2: Branching fraction for different cluster parameters. Branching fraction Jp for differ-
ent values of the clustering parameters rp,q and cp,q. Other parameters were fixed to kp = kq =
106 M−1 s−1, and D = 100 µm2 s−1.
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the main text, with δp,q fit to the full reaction-diffusion model (solid lines), and with δp,q = 1 (dashed
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Figure D.4: Branching fractions. Jp for the (a) coclustering and (b) sequestration scenarios as a
function of α and βp,q.

D.2 Colocalization of consecutive enzymes into pairs

Instead of colocalizing several of the upstream and downstream enzymes into large coclusters,
it has been suggested that flux regulation might also be achieved by colocalizing enzyme
molecules into pairs. In this scenario, EI -EP pairs are well mixed with the competing EQ
enzymes. To study the ability of this strategy to direct the flux towards P , we develop a
model that allows us to analytically determine the flux distribution at the branch point.

Let us imagine the system to be partitioned into identical reaction volumes where each volume
contains only a single enzyme pair. Since we are interested in the branching fraction of
the fluxes rather than absolute fluxes, we again only focus on one representative volume in
isolation. The concentration of enzyme pairs in the system, and thus the concentration of
EP , ep, is given by the radius R of the volume around the pair, ep = (4/3πR3)−1. Inside the
reaction volume, the enzyme pair is positioned such that EP is localized at the center and EI
a distance r0 away from the center. Furthermore, we assume that EP is a spherical reaction
center with radius rE which is reactive at the entire surface. Therefore, the exact orientation
of EI does not matter, and we can assume the production of intermediates to occur uniformly
on a spherical shell of radius r0 around EP . The transport of intermediates is again modeled
by simple diffusion and intermediates also can react with the competing enzyme EQ which is
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Figure D.5: Branching fraction and enhancement for enzyme pairs. (a) The branching fraction
depends only on the ratio

ep
eq

. (b) Enhancement achieved by the pair strategy. The black curve is

the contour line where ε = 1.2. The green lines are the contour lines where Jpairp = 0.2 for different
catalytic efficiencies, kp = kD, kp = kD/10, and kp = kD/100.

assumed to be uniformly distributed throughout the reaction volume with the concentration,
eq. The corresponding reaction-diffusion equation governing the dynamics of intermediates is
given by,

∂ρ(r, t)

∂t
= D∇2ρ(r, t) + jiδ(r − r0)− kqeqρ(r, t) (D.1)

with the boundary conditions,

4πr2ED
∂ρ(r, t)

∂r

∣∣∣∣
r=rE

= kintp ρ(rE , t),
∂ρ(r, t)

∂r

∣∣∣∣
R

= 0. (D.2)

where ρ(r, t) is the density profile of the intermediate I, D is the diffusion coefficient of I, kintp

is the intrinsic reaction rate at the surface of EP . In steady-state we can analytically solve
this reaction-diffusion system and use the solution of the concentration profile to determine
the branching fraction,

Jpairp =
kintp ρ(rE)

4π
∫ R(ep)
0 r2jiδ(r − r0)

. (D.3)

To relate the intrinsic reaction rate, kintp to the catalytic efficiency, kp, of EP we assume the
Smoluchowski-Collins-Kimball relation (see Sec. 1.1.5),

kp =
kintp kD

kintp + kD
, (D.4)

where kD is the diffusion limited rate which for spherical reaction centers of radius rE is
given by, kD = 4πDrE . Using this relation for the intrinsic reaction rate and expressing
the compartment radius in terms of the enzyme concentration ep, we can determine Jp as a
function of the catalytic efficiency of EP , kp, the concentration of EP in pairs, ep, and the
rate of Q production catalyzed by EQ, kqeq.

Unlike the clustering strategies discussed in Chap. 6, it is not possible to approximate the
fluxes or extract from the analytical solutions the parameter combinations that govern the
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behavior of the system. However, we find that the fluxes depend again only on the ratio
between the average enzyme concentrations, ep/eq (see Fig. D.5a) but crucially not on the
ratio of the overall activities. Instead, we identify as the parameter combinations that govern
the fluxes, the ratio between average enzyme concentration compared to the ratio between the
catalytic efficiency of EQ and the diffusivity,

ep
eq

D
kq

, the ratio between the catalytic efficiency of

EP and the diffusivity, kp/D, and the distance between EI and EP in the pair, rd = r0−2rE .
Notably, we find that the enhancement, ε = Jp/J

0
p , is independent of kp/D. This behavior

can be understood by splitting the flux towards P into two contributions: the probability
that an I molecule produced by EI reaches EP by diffusion times the probability that an
I molecule is processed to P given it reached EP . Only the latter probability depends on
the catalytic efficiency of EP and since it does not depend on the spatial arrangement of the
enzymes the enhancement becomes independent of kp.

We find that the condition, ε > 1.2, can only be met if the overall catalytic activity of EQ
(eqkq) is large such that the distance an intermediate diffuses before it reacts with EQ is small
compared to the average distance between EI and EP in the well-mixed scenario (see Fig.
D.5b). When we additionally require that, Jp > 0.2, EP has to be diffusion limited (kp = kD)
and in close proximity to EI , rd < 6 nm. For catalytic efficiencies, kp, that are just an order of
magnitude smaller than the diffusion limit, both requirements cannot be met simultaneously
(see Fig. D.5b).
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loider lösungen. Zeitschrift für physikalische Chemie, 92(1):129–168, 1918.

[10] F. C. Collins and G. E. Kimball. Diffusion-controlled reaction rates. Journal of colloid
science, 4(4):425–437, 1949.

[11] P. Debye. Reaction rates in ionic solutions. Transactions of the Electrochemical Society,
82(1):265–272, 1942.

[12] R. A. Alberty and G. G. Hammes. Application of the theory of diffusion-controlled
reactions to enzyme kinetics. J. Phys. Chem., 62(2):154–159, 1958.

[13] K.C. Chou. The kinetics of the combination reaction between enzyme and substrate.
Scientia Sinica, 19(4):505–528, 1976.

[14] T. T. Li and K. C. Chou. The quantitative relations between diffusion-controlled reac-
tion rate and characteristic parameters in enzyme-substrate reaction systems. i. neutral
substrates. Scientia Sinica, 19(1):117–136, 1976.

[15] David Fell and Athel Cornish-Bowden. Understanding the control of metabolism, vol-
ume 2. Portland press London, 1997.



118 Bibliography

[16] H. Kacser and J. A. Burns. The control of flux. Biochem. Soc. Trans., 23:341366, 1995.

[17] R. Heinrich and T. A. Rapoport. A linear steady state theory of enzymatic chains:
general properties, control and effector strength. Eur. J. Biochem., 42(1):89–95, 1974.

[18] K. J. Kauffman, P. Prakash, and J. S. Edwards. Advances in flux balance analysis.
Curr. Opin. Biotech., 14(5):491–496, 2003.

[19] J. D. Orth, I. Thiele, and B. Ø. Palsson. What is flux balance analysis? Nat. Biotechnol.,
28(3):245–248, 2010.

[20] C. H. Schilling, J. S. Edwards, D. Letscher, B. Ø. Palsson, et al. Combining pathway
analysis with flux balance analysis for the comprehensive study of metabolic systems.
Biotechnol. Bioeng., 71(4):286–306, 2000.

[21] R. Schuetz, N. Zamboni, M. Zampieri, M. Heinemann, and U. Sauer. Multidimensional
optimality of microbial metabolism. Science, 336(6081):601–604, 2012.

[22] R. Ramakrishna, J. S. Edwards, A. McCulloch, and B. O. Palsson. Flux-balance anal-
ysis of mitochondrial energy metabolism: consequences of systemic stoichiometric con-
straints. Am. J. Physiol., 280(3):R695–R704, 2001.

[23] D. A. Beard, S. Liang, and H. Qian. Energy balance for analysis of complex metabolic
networks. Biophys. J., 83(1):79–86, 2002.

[24] Q. K. Beg, A. Vazquez, J. Ernst, M. A. de Menezes, Z. Bar-Joseph, A-L Barabási, and
Z. N. Oltvai. Intracellular crowding defines the mode and sequence of substrate uptake
by escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. U.S.A.,
104(31):12663–12668, 2007.

[25] E. W. Miles, S. Rhee, and D. R. Davies. The molecular basis of substrate channeling.
J. Biol. Chem., 274(18):12193–12196, 1999.
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