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Einflhrung

1. Einflihrung
1.1 Uberblick iiber Gliome

Gliome stellen primare Hirntumoren mit Ursprung aus hirneigenen Gliazellen dar und
zeigen eine Inzidenz von 4-5/100 000 Einwohner/Jahr (1). Sie gelten mit knapp 30%
aller primaren Hirntumoren als die zweithaufigste Neoplasie des Hirns nach

sekundaren Hirntumoren (i.e. Hirnmetastasen) (2).

Eingeteilt werden Gliome seit 1979 durch die World Health Organization (WHO)
anhand morphologischer und immunhistochemischer Tumormerkmale in 4 Grade.
Unterschieden werden WHO Grad |, I, lll und IV. Ein WHO Grad | Tumor entspricht
tendenziell einer langsam wachsenden, benignen Neoplasie, wohingegen
WHO Grad IV Tumore durch schnelle Progredienz und Malignitat gekennzeichnet
sind. Zusammengefasst werden WHO Grad | und WHO Grad II Tumore als
low-grade Gliome (LGG), WHO Grad Il und WHO Grad IV Tumore als high-grade
Gliome (HGG) (3, 4).

Die WHO Kilassifikation fir Gliome wurde stets aktualisiert und Uberarbeitet, wobei
weiterhin  die  Morphologie des Tumors im Zentrum stand (5, 6).
Seit 2016 werden Gliome insbesondere anhand molekulargenetischer
Tumormerkmale eingeteilt (7). Grundlegend fur die Einteilung ist hierbei die
molekularpathologische Untersuchung des Mutationsstatus der
Isocitratdehydrogenase (/IDH) und bei positivem Nachweis die Untersuchung auf eine
Kodeletion des kurzen Arms von Chromosom 1 und des langen Arms von
Chromosom 19.

Eingeteilt werden die Gliome nun in folgende molekulargenetische Untergruppen:
i) IDH-Wildtyp, ii) IDH-mutiert ohne 1p/19g-Kodeletion, iii) [IDH-mutiert mit
1p/19g-Kodeletion (8). Dabei gelten Hirntumore ohne IDH-Mutation, sogenannte
IDH-Wildtyp Gliome, als hdchst aggressive Hirntumoren. IDH-mutierte Gliome
hingegen sind meist LGG oder sekundare HGG (9, 10) und gehen mit einer
glnstigeren Prognose einher (11, 12).

Der molekulargenetische Marker 1p/19qg-Kodeletion ist Folge einer Translokation und
ist mit einer erhdhten Sensitivitat fir Radiotherapie und Chemotherapie (Procarbazin,
Lomustin, Vincristin und Temozolomid) sowie einem verlangerten Gesamtuberleben

assoziiert (13).
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Ein weiterer molekulargenetischer Marker, der Methylierungsstatus der
Promotorregion des 0O6-Methylguanin-DNA-Methyltransferase Gens (MGMT), gibt
Hinweise auf die DNA-Reparaturfahigkeit des Tumors nach Chemotherapie. Eine
MGMT-Methylierung deutet auf eine Teilunfahigkeit zur DNA-Reparatur (14) und ein
besseres Ansprechen auf Chemotherapie mit Temodal hin (15, 16). Allgemein ist bei
LGG eine bessere Prognose bei MGMT-methylierten Gliomen unabhangig von der
Therapie beschrieben (17).

Histopathologisch zahlt zu den WHO Grad | Tumoren exemplarisch das pilozytische
Astrozytom, innerhalb der WHO Grad Il Tumore sind das diffuse Astrozytom
(IDH-mutiert) und das Oligodendrogliom (IDH-mutiert, mit 1p/19qg-Kodeletion) gelistet.
Zu den WHO Grad Il Tumoren zahlen u.a. das anaplastische Astrozytom
(IDH-mutiert) und das anaplastische  Oligodendrogliom (IDH-mutiert,
mit 1p/19g-Kodeletion). Die Gruppe der WHO Grad IV Tumore ist hauptsachlich
reprasentiert durch das  Glioblastoma  multiforme  (unabhangig  vom
IDH-Mutationsstatus) (7).

Wahrend fur die Gruppe der Patienten mit Gliomen WHO Grad Il ein
5-Jahres-Uberleben von 58% bis 72% berichtet wird (18), ist die Prognose firr das
Glioblastoma multiforme, dem hochst aggressiven WHO Grad IV Tumor, mit einem
5-Jahres-Uberleben von 4,7% deutlich schlechter (19).

Klinisch auffallig werden Gliome am haufigsten durch epileptische Anfalle (20). Das
Ausmald der Symptomatik ist bestimmt durch die Lokalisation des Tumors mit
Verdrangung oder Infiltration von funktionalem Hirngewebe (21); so wiesen 78% der
Patienten mit LGG epileptische Anfalle auf, circa ein Drittel zeigte
fokal-neurologische Ausfalle und 29% der LGG-Patienten berichteten Uber
Kopfschmerzen. Wesensveranderungen wurden in 11% der LGG beschrieben (22).
Generell sind langsam wachsende LGG mit einer Pravalenz von ca. 75% deutlich
haufiger bei Erstdiagnose mit Epilepsie assoziiert (23-25), wohingegen beim
Glioblastoma multiforme mit einer Pravalenz von ca. 30% epileptische Anfélle

weniger haufig auftreten (24, 26-28).

Therapiert werden Gliome je nach Entitat und unter Berucksichtigung der Lage und
Ausdehnung des Tumors, aber auch unter Einbeziehen des Allgemeinzustandes des

Patienten (29). Generell sollte ein interdisziplinares Team einen individuellen
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Therapieplan erarbeiten. Bei initialem Hirnddem kann die Gabe von Kortikosteroiden
eine schnelle Reduktion dessen bewirken. Bei epileptischen Anféllen ist die Gabe
von  Antikonvulsiva  indiziert, eine  prophylaktische @ Gabe ist nicht
erforderlich (29).

Fir die Therapie des Glioblastoma multiforme besteht ein etabliertes Schema. Primar
wird eine radikale operative Resektion angestrebt, wenn kein postoperatives
neurologisches Defizit zu erwarten ist (30). Ansonsten sollte eine Probebiopsie
ausreichend fur die anschliefende histopathologische und molekulargenetische
Aufarbeitung entnommen werden. Adjuvant wird eine fraktionierte Strahlentherapie
(60 Gy, 30-33 x 1.8-2.0 Gy) in Kombination mit Temozolomid-Chemotherapie in
6 Zyklen a 5 Tagen mit einem Abstand von 4 Wochen durchgefuhrt. Im Anschluss
soll mit einer weiteren adjuvanten Temozolomid-Chemotherapie behandelt werden
(29, 31, 32).

Therapie der ersten Wahl bei LGG ist ebenfalls zunachst die operative Resektion, da
hierdurch eine Risikoreduktion der sekundaren Entartung erwartet wird (29). In
Studien wurde der Nutzen einer adjuvanten Radiotherapie evaluiert und darauf
basierend Risikofaktoren zur Indikationsstellung einer adjuvanten Radiatio bestimmt
(33, 34). Abhangig von TumorgrofRe (>5-6cm), Ausdehnung (Mittellinienbeteiligung),
Klinik (praoperativ neurologisches Defizit) und Histologie (keine oligodendrogliale
Komponente) wird bei mindestens 3 Risikofaktoren eine adjuvante Radiatio (50.4 Gy,
28 x 1.8 Gy) empfohlen (29).

Trotz stetig verbesserter Leitlinientherapieschemata sind Rezidive bei Gliomen
haufig. Da bisher keine Standard-Protokolle flr die Rezidivtherapie etabliert sind,
sollte in diesen Fallen die weitere individuelle Therapie zum Beispiel eine
Re-Resektion, Re-Radiotherapie oder Re-Chemotherapie evaluiert werden (31).
Weitere Therapieansatze wie die Verwendung des monoklonalen Antikdrpers
Bevacizumab, das Zytostatikum Lomustin oder sogenannte Tumor Treating Fields,
eine anti-mitotische Stimulation des Tumors uUber &uRere Elektroden, sollten

individuell und nach klinischem Protokoll in Erwagung gezogen werden (35-37).
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1.2 Diagnostik von Gliomen und die Rolle der Positronen-Emissions-

Tomographie

Radiologischer Goldstandard zur Primardiagnostik von Raumforderungen im Gehirn
stellt die Magnetresonanztomographie (MRT) dar. Dank der hohen Auflésung kdnnen
u.a. Aussagen Uber Lage, Beschaffenheit und Vaskularisation des Tumors getroffen
werden. Trotzdem hat die MRT nur eingeschrankte Aussagekraft bezuglich
Tumor-Grading, Delineation des Tumorvolumens sowie flr Detektion von

metabolisch hochaktiven Tumorarealen (1, 38, 39).

Seit einigen Jahren hat daher die Positronen-Emissions-Tomographie (PET) einen
wachsenden Stellenwert in der Gliomdiagnostik. Die PET wurde 1970 erstmals
angewandt und ist ein Bildgebungsverfahren, welches mittels Radionukliden
bestimmter Isotope biologisch aktives Gewebe darstellt. Hier hat sich die
Aminosaure-PET in der Gliomdiagnostik etabliert. Sie ist von Nutzen bei der
Unterscheidung der neoplastischen von nicht-neoplastischen Lasionen (40), der
Delineation von Tumorgewebe (41-43) und auch bei der Unterscheidung zwischen

Radionekrose und Gliom-Rezidiv (44).

Die vorliegende Dissertation fokussiert auf den vor allem in Europa angewandten
Aminosauretracer O-(2-['®F]-fluoroethyl)-L-tyrosin (['®F]-FET).

['®F]-FET besitzt eine Halbwertszeit von 110 Minuten (min), wodurch eine gewisse
Transportfahigkeit und der Einsatz in groBeren Untersuchungszeitfenstern
gewahrleistet ist. Eine weitere Besonderheit von ['®F]-FET liegt in dynamischer
Datenakquise mit charakteristischen Zeit-Aktivitatskurven des Tracers fur LGG und
HGG. Die eingeschrankte Aussagekraft hinsichtlich Tumor-Grading fur die
Erstdiagnose und Rezidiverkennung eines Glioms bei Verwendung der
konventionellen, statischen Aufnahmetechnik wird entscheidend verbessert durch die
dynamische ['®F]-FET PET (45-47).

Es konnte gezeigt werden, dass niedrigmaligne Gliome mit einer stetig ansteigenden
Kinetik, hochmaligne Gliome mit einem frGhen Peak mit anschlie’end abfallender
Kinetik vergesellschaftet sind (45). Die nicht-invasive Differenzierung zwischen

LGG und HGG gelingt damit wesentlich genauer.
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Auch prognostische Aussagen kénnen durch die dynamische ['®F]-FET PET
getroffen werden: sie liefert z.B. Informationen Uber das Outcome von astrozytaren
HGG und LGG (48, 49). Allerdings ist fur die dynamische Akquisition bzw. die
spatere Auswertung ein hoher Zeitaufwand erforderlich, so dass die dynamische

['8F]-FET PET nur in wenigen Zentren weltweit durchgefiihrt wird.
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1.3 Standard-Ablauf und Datenanalyse der ['®F]-FET PET

Fir die Durchfiihrung einer ['®F]-FET PET Untersuchung ist eine Nahrungskarenz
der Patienten von mindestens sechs Stunden erforderlich, sodass eine kompetitive
Hemmung der Tracer-Aufnahme verhindert wird und eine optimale Ausgangsituation
flr eine gesicherte Bildqualitat vorhanden ist (50, 51).

Zunachst wird das Radionuklid [®F]-FFET mit einer Dosis zwischen
200-250 Megabecquerel intravends appliziert (52). Nach Injektion erfolgt Uber eine
Dauer von 40 min die dynamische Datenakquise, welche in 16 Zeitintervalle

(sogenannte Frames) unterteilt wird:

Frame 1-7: 7x10 sec
Frame 8-10: 3 x 30 sec
Frame 11: 1 x2 min
Frame 12-14: 3 x 5 min
Frame 15-16: 2 x 10 min

Der primare Fokus der ['®F]-FET PET Analyse liegt in der Evaluation der maximalen
Tracer-Anreicherung. Es wird die jeweilige Hohe der ['®F]-FET-Aufnahme des
Tumors in jeder einzelnen Schicht analysiert. Der maximale Wert der
['®F]-FET-Aufnahme des Tumors wird anschlieRend in Relation zum gesunden
Hirngewebe (Background) gesetzt und somit die maximale
“tumor-to-background ratio® (TBRmax) ermittelt. Zur Bestimmung des Backgrounds
wird ein Mittelwert an ['®F]-FET-Aufnahme in mehreren Schichten im kontralateralen
gesunden Hirngewebe ermittelt. Zusatzlich werden auch Parameter wie die Kinetik

sowie das Biologische Tumorvolumen (BTV) untersucht.

Zur Bestimmung des BTV wird in jeder Schicht des Tumors eine sogenannte
‘region of interest” (ROI) gezeichnet, deren Speicherverhalten Uber einen Threshold
von 1,6 x BG hinausgeht. Eine Summation aller ROIs eines Tumors ergibt das

“volume of interest” (VOI), wodurch sich das mediane BTV ergibt.

Eine kinetische Analyse erfolgt durch Auswertung der dynamischen ['®F]-FET PET.
Es wird eine ROI mit 90%-Isokontur im Frame 13-15 (10-30 min post injectionem

(p-i.)) in jeder einzelnen Schicht des Tumors analysiert (48). Innerhalb dieser ROI

6
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wird eine Zeit-Aktivitatskurve (“Time Activity Curve® (TAC)) ermittelt, welche die
zerfallskorrigierte  Tracer-Aufnahme  darstellt. Bei dieser werden zwei
charakteristische Verlaufe unterschieden: konstant ansteigend bzw. mit Erreichen
eines Plateaus, sowie abfallende Kurven nach frihem Peak. Die TAC wird fur jede
einzelne Schicht im Tumor erstellt, damit Gewebeveranderungen mit hohem
Malignitatsrisiko, sogenannte Hotspots, selbst in einer singularen Schicht detektiert

werden konnen (47).
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1.4 Fragestellung der Promotionsarbeit

Fir den klinischen Alltag empfehlen aktuelle Leitlinien eine statische Auswertung der
Summationsbilder 20-40 min p.i. (50). Im Zeitintervall von 20-40 min p.i. zeigen die
TBRmax von LGG und HGG eine hohe Uberlappung, welches den limitierenden Faktor
fur die Genauigkeit des non-invasiven Tumor-Gradings darstellt (46). Bei Betrachtung
der TAC mit charakteristisch frihem Peak und anschlie3end steil abfallender Kinetik
der HGG sowie konstant ansteigender Kurve der LGG wird die hohe Uberschneidung
deutlich (siehe Abbildung 1).

Standard Uptake Value
N
\

0 10 20 30 40

Zeit postinjectionem (in Minuten)

Abbildung 1 Charakteristisch ansteigende TAC eines LGG (gepunktete Linie) und charakteristisch
abfallende TAC eines HGG (durchgezogene Linie) mit groRer Uberschneidung im konventionellen
20-40 min p.i. Zeitrahmen (rot) und groRere Differenz in einem friheren Zeitrahmen, exemplarisch
5-15 min p.i. (grin) (53)

Da eine dynamische Aufnahme zeit- und personalintensiv ist, wird versucht, das
Tumor-Grading mittels statischer Aufnahmen zu verbessern. Es wurde bereits in
einem ersten Studiensetting untersucht, ob eine duale Messung die TBRmax in
konventionellen 20-40 min p.i. Summationsbildern und spaten 70-90 min p.i.
Summationsbildern signifikant verandert (54). Dabei konnte die Accuracy von 75% in
konventionellen Summationsbildern auf 81% in frihen Summationsbildern erhdht
werden. Insbesondere die LGG mit konstant ansteigender Kinetik werden flir dieses

Ergebnis verantwortlich gemacht.
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Wir stellten daher die Hypothese auf, dass aufgrund der charakteristischen Kinetik
der HGG mit ihrem zeitlich frihen Speichermaximum das Tumor-Grading in
statischen Aufnahmen durch Evaluation friherer Zeitfenster und dadurch gréflerer
Divergenz zwischen den TBRyax von LGG und HGG verbessert werden kdnnte.

In der ersten Publikation ("Early static "®F-FET-PET scans have a higher accuracy for
glioma grading than the standard 20-40 min scans®) untersuchten wir, ob frihe
Summationsbilder im Zeitintervall 0-10 min, 5-15 min, 5-20 min, 10-30 min p.i. in
statischer Auswertung den konventionellen Summationsbildern Uberlegen sind.
Meine Ko-Autorenschaft ist gekennzeichnet von einem Arbeitsanteil Uber
Studienkonzeption, Datenakquise, statistischer Datenauswertung mit Interpretation

der Werte und Revision des Manuskripts.

Das in der ["®F]-FET PET ermittelte BTV spielt im klinischen Alltag insbesondere
hinsichtlich  operativer Resektionsplanung, Radiotherapieplanung und als
Verlaufsparameter der systemischen Therapie eine gro3e Rolle (1). Wie auch fur die
Evaluation des TBRmax, wird die Auswertung des 20-40 min p.i. Summationsbildes flr
die Analyse des BTV empfohlen (50). Analog zur Uberlegung der ersten Publikation
stellten wir die Hypothese auf, dass unterschiedliche Summationsbilder zu
unterschiedlichen Zeitpunkten einen Einfluss auf das ['®F]-FET PET basierte BTV
haben konnten.

Im Rahmen einer geteilten Erstautorenschaft "Biological tumour volumes of gliomas
in early and standard 20-40 minutes '®F-FET PET images differ according to
IDH-mutation status” untersuchten wir, ob das BTV in frihen Summationsbildern
(5-15 min p.i.) im Vergleich zu konventionellen Summationsbildern (20-40 min p.i.)
variiert. Des Weiteren korrelierten wir die BTV in fruihen Summationsbildern (BTV in
early summation images, eBTV) und die BTV in konventionellen Summationsbildern
(BTV in standard summation images, sBTV) mit dem WHO Grad, dem
IDH-Mutationsstatus und der Prasenz einer 1p/19g-Kodeletion. Da in friheren
Studien eine Volumendifferenz von 10% bis 20% als Richtwert fur
Therapieansprechen gewertet wurde (55, 56) wurden Volumenunterschiede von 20%
als signifikant gewertet.

Hintergrund der geteilten Erstautorenschaft war das gemeinschaftliche Erarbeiten
des Studiendesigns, die Interpretation und Diskussion der statistischen Auswertung

und die gemeinsame Verfassung des Manuskripts.
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2. Zusammenfassung

Unsere erste Studie fokussierte auf die Aussagekraft der
['®F]-FET-Speichermaxima in konventionellen 20-40 min p.. und friihen
Summationsbildern zu unterschiedlichen Zeitpunkten (0-10 min, 5-15 min, 5-20 min,
10-30 min p.i.). Es wurden retrospektiv 314 Patienten mit der Erstdiagnose eines
Glioms im Zeitraum zwischen 2005 und 2014 in die Studie inkludiert, welche im
Rahmen der klinischen Routine primar eine ['®F]-FET PET an der Ludwig-
Maximilians-Universitat in Munchen erhalten haben. Eine [18F]-FET-Anreicherung
wurde in 89/131 LGG (67,9%) und 176/183 HGG (96,1%) gefunden. Circa ein Drittel
der LGG (42/131, 32,1%) und 7/183 HGG (3,9%) zeigten keine ['®F]-FET-Aufnahme

und wurden als ['®F]-FET negativ gewertet.

Wir beobachteten in 20-40 min p.i. Summationsbildern im Mittel eine TBRmax von 2,1
bei LGG und eine TBRnax von 3,1 bei HGG (p<0.001). Frihe Zeitfenster zeigten bei
LGG vergleichbare mediane TBRmax. In der Gruppe der HGG jedoch wurden
durchweg signifikante Unterschiede der medianen TBRmax in allen frihen
Zeitfenstern im Vergleich zum konventionellen Zeitfenster detektiert. Die hochsten
medianen TBRnyax zeigten hierbei die Summationsbilder 0-10 min p.i. und
5-15 min p.i. (TBRmax 3,9, p<0,001).

Far die Differenzierung von LGG und HGG fuhrten wir ROC Analysen durch. Dabei
zeigte sich eine hdhere Accuracy zur Diskrimination von LGG und HGG in frihen
5-15 min p.i. Summationsbildern im Vergleich zu konventionellen Summationsbildern
(frdh vs. konventionell: Sensitivitat 87,1% vs. 66,7%, Spezifitat 76,3% vs. 77,9%,
Accuracy 77,4% vs. 70,4%). Die durchgefuhrte kinetische Analyse fir die
Unterscheidung zwischen LGG und HGG zeigte in der Gesamtgruppe eine Accuracy
von 79,7% (Sensitivitat 89,6%, Spezifitdt 66,4%) und ist somit der rein statischen
Analyse weiterhin Uberlegen.

In Zusammenschau der Ergebnisse kann die hohere Accuracy in frihen
Summationsbildern im  Vergleich zu konventionellen  Summationsbildern
insbesondere durch den charakteristischen kinetischen Verlauf von HGG und dem
signifikant hoheren TBRmax erklart werden. Die Evaluation frGher Summationsbilder

im Zeitfenster 5-15 min p.i. erreichte eine fast vergleichbare Accuracy wie in

10
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dynamischen Analysen (77,4% vs. 79,7%). Fir den klinischen Alltag, falls
dynamische Aufnahmen nicht zur Verfligung stehen, kénnten daher die friihen
5-15 min p.i. Summationsbilder gegenuber konventionellen 20-40 min p.i.
Summationsbildern Uberlegen sein. In weiteren Studien sollte evaluiert werden, ob
ein dualer Scan in frilhen und spaten Summationsbildern der ["®F]-FET PET (zum
Beispiel 5-15 min p.i. und 60-80 min p.i.) eine Differenzierung zwischen LGG und
HGG ermoglichen und dadurch das non-invasive Tumor-Grading signifikant

verbessern konnte.

In unserer zweiten Studie untersuchten wir den Einfluss friher Summationsbilder auf
das ['®F]-FET PET basierte BTV. Wir untersuchten retrospektiv 397 Patienten mit
histologisch gesicherter Erstdiagnose eines Glioms im Zeitraum zwischen 2005 und
2016. In die Studie inkludiert wurden 245 Patienten, welche sowohl
['®F]-FET-Anreicherung zeigten als auch eine komplette molekulargenetische
Analyse (IDH-Mutationsstatus, 1p/19qg-Kodeletion) aufwiesen.

Eine Reevaluation anhand der neuen WHO Kilassifikation von 2016 mit
molekulargenetischen  Subtypen  zeigte  151/245  IDH-Wildtyp  Gliome,
41/245 IDH-mutierte Gliome ohne 1p/19g-Kodeletion und 53/245 IDH-mutierte
Gliome mit 1p/19g-Kodeletion.

Insgesamt zeigten mehr als die Halfte aller Gliome (128/245, 52,2%) signifikante BTV
Unterschiede zwischen friihen und spaten Summationsbildern.

Fast ein Drittel aller Gliome (72/245, 29,4%) hatte ein signifikant grof3eres eBTV, ein
Flnftel der Gliome (56/245, 22,9%) zeigte ein signifikant kleineres eBTV und knapp
die Halfte (117/245, 47,8%) wurde als gleichwertig im Volumen eingestuft.

Unterteilt in die WHO Grade zeigten fast die Halfte der WHO Grad |l Tumore ein
signifikant kleineres eBTV (31/70, 44,3%). Nur 11,4% der WHO Grad Il Tumore
(8/70) zeigten ein signifikant groReres eBTV.

Bei Betrachtung von WHO Grad Ill und WHO Grad IV Tumoren war uberwiegend ein
signifikant gréReres BTV in frihen Summationsbildern auffallig (WHO Grad Ill: 28/80,
35,0%; WHO Grad IV: 36/95, 37,9%).

11
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Des Weiteren korrelierten wir BTV Unterschiede mit den molekulargenetischen
Markern IDH-Mutationsstatus und 1p/19g-Kodeletion.

Insgesamt konnte unter den IDH-mutierten Gliomen in 44,7% (42/94) der Falle ein
signifikant kleineres Volumen in frlihen Summationsbildern gefunden werden,
wohingegen nur 5,3% (5/94) der IDH-mutierten Gliome ein signifikant gréReres eBTV
zeigten. IDH-mutierte Gliome ohne 1p/19g-Kodeletion wiesen grofdtenteils ein
signifikant kleineres eBTV auf (21/41, 51,2%). Die restlichen IDH-mutierten Gliome
ohne 1p/19g-Kodeletion wurden grofteils (17/41, 41,5%) als gleichwertig im Volumen
eingestuft. Fur die Gruppe der IDH-mutierten Gliome mit 1p/19qg-Kodeletion konnte in
21/53 Fallen (39,6%) ein signifikant kleineres eBTV detektiert werden. Uber die
Halfte dieser Gliome (30/53, 56,6%) wurde als vergleichbar im Volumen gezahlt. Nur
ein geringer Anteil (2/52, 3,8%) zeigte ein signifikant gréeres eBTV.

Innerhalb der IDH-Wildtyp Gliome zeigte fast die Halfte der Falle (67/151, 44,4%) ein
signifikant groReres BTV in frihen Summationsbildern, nur ein kleiner Teil
(14/151, 9,3%) zeigte ein signifikant kleineres eBTV im Vergleich zu sBTV.

Bei retrospektiver Korrelation der Ergebnisse von Molekulargenetik mit dem WHO
Grad wurden signifikant gro3ere eBTV mit einem IDH-Wildtyp assoziiert. Innerhalb
der wenigen WHO Grad Il Tumore mit signifikant groRerem eBTV entsprach der
Grolteil (6/8, 75,0%) Gliomen vom [IDH-Wildtyp. Analog konnten wir auch in fast
allen WHO Grad Il Tumoren mit signifikant grollerem eBTV eine Assoziation mit
IDH-Wildtyp Gliomen finden (27/28, 96,4%). Des Weiteren konnten wir eine
Assoziation von IDH-Wildtyp Gliomen mit groReren eBTV im Vergleich zu sBTV,
unabhangig vom WHO Grad, nachweisen. Umgekehrt entsprach der Grofteil der
WHO Grad Il Gliome mit gréRerem sBTV (29/31, 93,6%) Gliomen vom IDH-mutierten
Typ. Ebenfalls konnten wir zeigen, dass IDH-mutierte Gliome entweder ein signifikant
groReres sBTV oder gleichwertiges Volumen hatten, unabhangig von einer

1p/19g-Kodeletion.

Zusatzlich konnten ROC Analysen zeigen, dass mit einer Accuracy von 77,7% der
prozentuale Unterschied zwischen eBTV und sBTV zwischen IDH-mutierten und
IDH-Wildtyp Gliomen unterscheiden kann. Mit einer Sensitivitat von knapp 80%
konnte bei signifikant kleinerem sBTV im Vergleich zu eBTV ein IDH-Wildtyp Gliom

detektiert werden. Dies bedeutet, dass der prozentuale Unterschied zwischen eBTV
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und sBTV ein potentieller Indikator fur die non-invasive molekulargenetische Analyse

bei Erstdiagnose eines Glioms sein kénnte.

Im Uberblick dieser Resultate scheinen konventionelle Summationsbilder fiir die
Abgrenzung von LGG und [DH-mutierten Gliomen adaquat. Bei HGG und
insbesondere den IDH-Wildtyp Gliomen hingegen zeigte eine bemerkenswert hohe
Fallzahl ein signifikant groReres BTV in frihen 5-15 min p.i. Summationsbildern im
Vergleich zu den konventionellen 20-40 min p.i Summationsbildern. Diese
Ergebnisse sind insbesondere fir den klinischen Alltag interessant. Das durch
['®F]-FET PET erhobene BTV ist sowohl fiir die Planung von Radiochemotherapie
(57, 58) als auch als Verlaufsparameter flr Therapieansprechen im Rahmen einer
Chemotherapie von Nutzen (59, 60), weshalb der IDH-Mutationsstatus zukinftig bei
der Auswertung des BTV berucksichtigt werden sollte. Noch gibt es keine absolute
Methode zur Evaluation des wahren Tumorausmales, bestmogliche Ergebnisse
wurden bisher in einer Kombination aus MRT und ['®F]-FET PET gefunden (61, 62).
In zukuUnftigen Studien sollte daher der Fokus auf der Analyse von wahrer
Tumorausdehnung mittels BTV Evaluation in frihen, konventionellen und spaten

Summationsbildern sowie in MRT und schrittweiser Biopsie liegen.
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3. Summary

Our first study focussed on the significance of maximum ['®F]-FET uptake in
conventional 20-40 min p.i. summation images and early summation images at
different points of time (0-10 min, 5-15 min, 5-20 min, 10-30 min p.i.). Retrospectively
we included 314 patients with a validated diagnosis of a glioma prior to therapy
between the years 2005 and 2014 who had undergone a ["®F]-FET PET scan at

the Ludwig-Maximilians-University in Munich within clinical routine.

['8F]-FET uptake was found in 89/131 LGG (67.9%) and 176/183 HGG (96.1%).
About one third of the LGG (42/131, 32.1%) and 7/183 HGG (3.9%) showed no
['®F]-FET uptake and were rated as ['®F]-FET negative. Within the 20-40 min p.i.
summation images, we observed on average a TBRmax of 2.1 in LGG and a TBRnax
of 3.1 in HGG (p<0.001). Amongst all early time frames the average TBRmax of LGG
were comparable in value. However, in the group of HGG in early time frames,
significant differences in TBRmax values could be detected compared to conventional
time frames. The highest median TBRmax could be found in 0-10 min p.i. and
5-15 min p.i. summation images (TBRmax 3.9, p<0.001).

For differentiation of LGG and HGG we performed ROC analyses. This revealed a
higher accuracy for discrimination of LGG and HGG in early 5-15 min p.i. summation
images compared to conventional summation images (early vs. conventional:
sensitivity 87.1% vs. 66.7%, specificity 76.3% vs. 77.9%, accuracy 77.4% vs. 70.4%).
We then performed a kinetic analysis for differentiation of LGG and HGG in the
overall group which showed an accuracy of 79.7% (sensitivity 89.6%, specificity

66.4%) and is therefore still superior to static analysis only.

Based on these results a higher accuracy in early summation images compared to
conventional summation images can be explained particularly by the characteristic
kinetics of HGG and significantly higher TBRmax. Evaluation of early summation
images in the time frame 5-15 min p.i. reached an almost comparable accuracy as
dynamic analysis (77.4% vs. 79.7%). For clinical routine, if dynamic ['®F]-FET PET
cannot be performed, analysis of early 5-15 min p.i. summation images could be
superior to conventional 20-40 min p.i. summation images. Further studies should

evaluate whether a dual scan in early and late summation images of a ['°F]-FET PET
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scan (for example 5-15 min p.i. and 60-80 min p.i.) can allow the differentiation

between LGG and HGG and hence significantly improve non-invasive tumor grading.

For the purpose of our second study we investigated the influence of early and
conventional summation images on ['|F]-FET PET based BTV. We retrospectively
analysed 397 patients with a histologically proven diagnosis of a glioma prior to
treatment between the years 2005 and 2016. 245 patients with a ['®F]-FET positive
glioma and complete molecular genetic analysis (/IDH-mutation status,
1p/19q codeletion) were included into this study. Reevaluation based on the new
WHO classification of 2016 with molecular genetic subtypes revealed 151/245
IDH-wildtype glioma, 41/245 IDH-mutated glioma without 1p/19g codeletion and
53/245 IDH-mutated glioma with 1p/19q codeletion.

Overall more than half of the glioma (128/245, 52.2%) revealed significant BTV
differences between early and late summation images; almost one third of all glioma
(72/245, 29.4%) were significantly larger in eBTV, one fifth of the included glioma
(56/245, 22.9%) were significantly smaller in eBTV and about one half of the
analysed glioma (117/245, 47.8%) were rated as equal in volume. Subdivided by
WHO grade almost half of the WHO grade Il gliomas showed a significantly smaller
eBTV compared to sBTV (31/70, 44.3%). Only 11.4% of WHO grade Il tumors (8/70)
revealed a significantly larger eBTV.

Regarding WHO grade Il and WHO grade IV tumors there were significantly larger
eBTV in many cases noticeable (WHO grade Ill: 28/80, 35.0%; WHO grade IV:
36/95, 37.9%).

Furthermore, we correlated BTV differences with the molecular genetic markers
IDH-mutation status and chromosome arm 1p/19q codeletion.

Overall 44.7% (42/94) of all IDH-mutated glioma were detected with a significantly
smaller median BTV in early summation images, whereas only 5.3% (5/94) of

IDH-mutated glioma were detected with a significantly larger BTV.
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For the greater part IDH-mutated glioma without 1p/19q codeletion were rated as
significantly smaller in volume in early summation images (21/41, 51.2%). The
remaining /IDH-mutated glioma without 1p/19g codeletion were mostly classified as
equal in volume (17/41, 41.5%). The group of IDH-mutated glioma with
1p/19q codeletion showed in 21/53 cases (39.6%) a significantly smaller eBTV. Most
cases of IDH-mutated glioma with 1p/19q codeletion were rated as equal in volume
(30/53, 56.6%). Only 3.8% of IDH-mutated glioma with 1p/19q codeletion (2/52) had
shown a significantly larger eBTV.

Within IDH-wildtype glioma almost half of the cases (67/151, 44.4%) were
significantly larger in volume in early summation images, only a small part (14/151,

9.3%) was significantly smaller in eBTV compared to sBTV.

Retrospective correlation of the molecular genetic based results with WHO grade
revealed an association of significantly larger eBTV with an IDH-wildtype. Within the
few WHO grade Il glioma with significantly larger eBTV (6/8, 75.0%) the greater part
was identified as /IDH-wildtype glioma. Analogue, we have also found an association
in 96.4% (27/28) of WHO grade Ill tumors with significantly larger eBTV with an
IDH-wildtype. Moreover, we have detected an association of /IDH-wildtype glioma
with larger eBTV compared to sBTV, independent of the WHO grade. Vice versa
most WHO grade |l glioma with significantly larger sBTV (29/31, 93.6%) were
identified as [DH-mutated glioma. Additionally, we could demonstrate that
IDH-mutated glioma has either a significantly larger sBTV or is equal in volume

compared to eBTV, independent of 1p/19q codeletion.

Furthermore, ROC analyses revealed that the percentage difference between eBTV
and sBTV can differ between IDH-mutated and /IDH-wildtype glioma with an accuracy
of 77.7%. With a sensitivity of around 80% a significantly smaller sBTV compared to
eBTV could detect an IDH-wildtype glioma. That implies that the percentage
difference between eBTV and sBTV could be a potential indicator for non-invasive

molecular genetic analysis of a newly diagnosed glioma.

Based on these results conventional summation images seem to be adequate for
differentiation of LGG and /IDH-mutated glioma, whereas a remarkably high number

of cases of HGG and especially of IDH-wildtype glioma has shown a significantly
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larger BTV in early 5-15 min p.i. summation images compared to conventional
20-40 min p.i. summation images. These results are particularly interesting for clinical
routine. ["®F]-FET PET based BTV is useful both for planning combined
radiochemotherapy (57, 58) and as a progress parameter for therapy response in the
purpose of chemotherapy (59, 60). Therefore, IDH-mutation status should be
considered in evaluation of BTV. Yet, there is no absolute method for evaluation of
the real tumor extent. To date, best possible results could be found in a combination
of MRT and ['®F]-FET PET (61, 62). Future studies should hence focus on the
analysis of real tumor delineation through BTV evaluation in early, conventional and

late summation images in ['8F]-FET PET as well as MRT and a stepwise biopsy.
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7. Abkirzungsverzeichnis

BTV
eBTV

sBTV

['*F]-FET
HGG
IDH
LGG
MGMT
MRT
PET
ROI
TAC
TBRmax
Vol
WHO

Biologisches Tumorvolumen

BTV in early summation images,

BTV in frthen Summationsbildern

BTV in standard summation images,

BTV in konventionellen Summationsbildern
O-(2-["®F]-fluoroethyl)-L-tyrosin
high-grade Gliom

Isocitratdehydrogenase

low-grade Gliom
06-Methylguanin-DNA-Methyltransferase
Magnetresonanztomographie
Positronen-Emissions-Tomographie
region of interest

Time Activity Curve

maximale tumor-to-background ratio
volume of interest

World Health Organization
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