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1. Einführung 

1.1 Überblick über Gliome 

Gliome stellen primäre Hirntumoren mit Ursprung aus hirneigenen Gliazellen dar und 

zeigen eine Inzidenz von 4-5/100 000 Einwohner/Jahr (1). Sie gelten mit knapp 30% 

aller primären Hirntumoren als die zweithäufigste Neoplasie des Hirns nach 

sekundären Hirntumoren (i.e. Hirnmetastasen) (2). 

 

Eingeteilt werden Gliome seit 1979 durch die World Health Organization (WHO) 

anhand morphologischer und immunhistochemischer Tumormerkmale in 4 Grade. 

Unterschieden werden WHO Grad I, II, III und IV. Ein WHO Grad I Tumor entspricht 

tendenziell einer langsam wachsenden, benignen Neoplasie, wohingegen  

WHO Grad IV Tumore durch schnelle Progredienz und Malignität gekennzeichnet 

sind. Zusammengefasst werden WHO Grad I und WHO Grad II Tumore als  

low-grade Gliome (LGG), WHO Grad III und WHO Grad IV Tumore als high-grade 

Gliome (HGG) (3, 4).  

 

Die WHO Klassifikation für Gliome wurde stets aktualisiert und überarbeitet, wobei 

weiterhin die Morphologie des Tumors im Zentrum stand (5, 6).  

Seit 2016 werden Gliome insbesondere anhand molekulargenetischer 

Tumormerkmale eingeteilt (7). Grundlegend für die Einteilung ist hierbei die 

molekularpathologische Untersuchung des Mutationsstatus der 

Isocitratdehydrogenase (IDH) und bei positivem Nachweis die Untersuchung auf eine 

Kodeletion des kurzen Arms von Chromosom 1 und des langen Arms von 

Chromosom 19.  

Eingeteilt werden die Gliome nun in folgende molekulargenetische Untergruppen:  

i) IDH-Wildtyp, ii) IDH-mutiert ohne 1p/19q-Kodeletion, iii) IDH-mutiert mit  

1p/19q-Kodeletion (8). Dabei gelten Hirntumore ohne IDH-Mutation, sogenannte  

IDH-Wildtyp Gliome, als höchst aggressive Hirntumoren. IDH-mutierte Gliome 

hingegen sind meist LGG oder sekundäre HGG (9, 10) und gehen mit einer 

günstigeren Prognose einher (11, 12).  

Der molekulargenetische Marker 1p/19q-Kodeletion ist Folge einer Translokation und 

ist mit einer erhöhten Sensitivität für Radiotherapie und Chemotherapie (Procarbazin, 

Lomustin, Vincristin und Temozolomid) sowie einem verlängerten Gesamtüberleben 

assoziiert (13).  
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Ein weiterer molekulargenetischer Marker, der Methylierungsstatus der 

Promotorregion des O6-Methylguanin-DNA-Methyltransferase Gens (MGMT), gibt 

Hinweise auf die DNA-Reparaturfähigkeit des Tumors nach Chemotherapie. Eine 

MGMT-Methylierung deutet auf eine Teilunfähigkeit zur DNA-Reparatur (14) und ein 

besseres Ansprechen auf Chemotherapie mit Temodal hin (15, 16). Allgemein ist bei 

LGG eine bessere Prognose bei MGMT-methylierten Gliomen unabhängig von der 

Therapie beschrieben (17). 

Histopathologisch zählt zu den WHO Grad I Tumoren exemplarisch das pilozytische 

Astrozytom, innerhalb der WHO Grad II Tumore sind das diffuse Astrozytom  

(IDH-mutiert) und das Oligodendrogliom (IDH-mutiert, mit 1p/19q-Kodeletion) gelistet. 

Zu den WHO Grad III Tumoren zählen u.a. das anaplastische Astrozytom  

(IDH-mutiert) und das anaplastische Oligodendrogliom (IDH-mutiert,  

mit 1p/19q-Kodeletion). Die Gruppe der WHO Grad IV Tumore ist hauptsächlich 

repräsentiert durch das Glioblastoma multiforme (unabhängig vom  

IDH-Mutationsstatus) (7). 

Während für die Gruppe der Patienten mit Gliomen WHO Grad II ein  

5-Jahres-Überleben von 58% bis 72% berichtet wird (18), ist die Prognose für das 

Glioblastoma multiforme, dem höchst aggressiven WHO Grad IV Tumor, mit einem 

5-Jahres-Überleben von 4,7% deutlich schlechter (19). 

 

Klinisch auffällig werden Gliome am häufigsten durch epileptische Anfälle (20). Das 

Ausmaß der Symptomatik ist bestimmt durch die Lokalisation des Tumors mit 

Verdrängung oder Infiltration von funktionalem Hirngewebe (21); so wiesen 78% der 

Patienten mit LGG epileptische Anfälle auf, circa ein Drittel zeigte  

fokal-neurologische Ausfälle und 29% der LGG-Patienten berichteten über 

Kopfschmerzen. Wesensveränderungen wurden in 11% der LGG beschrieben (22). 

Generell sind langsam wachsende LGG mit einer Prävalenz von ca. 75% deutlich 

häufiger bei Erstdiagnose mit Epilepsie assoziiert (23-25), wohingegen beim 

Glioblastoma multiforme mit einer Prävalenz von ca. 30% epileptische Anfälle 

weniger häufig auftreten (24, 26-28). 

 

Therapiert werden Gliome je nach Entität und unter Berücksichtigung der Lage und 

Ausdehnung des Tumors, aber auch unter Einbeziehen des Allgemeinzustandes des 

Patienten (29). Generell sollte ein interdisziplinäres Team einen individuellen 
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Therapieplan erarbeiten. Bei initialem Hirnödem kann die Gabe von Kortikosteroiden 

eine schnelle Reduktion dessen bewirken. Bei epileptischen Anfällen ist die Gabe 

von Antikonvulsiva indiziert, eine prophylaktische Gabe ist nicht  

erforderlich (29). 

Für die Therapie des Glioblastoma multiforme besteht ein etabliertes Schema. Primär 

wird eine radikale operative Resektion angestrebt, wenn kein postoperatives 

neurologisches Defizit zu erwarten ist (30). Ansonsten sollte eine Probebiopsie 

ausreichend für die anschließende histopathologische und molekulargenetische 

Aufarbeitung entnommen werden. Adjuvant wird eine fraktionierte Strahlentherapie  

(60 Gy, 30-33 x 1.8-2.0 Gy) in Kombination mit Temozolomid-Chemotherapie in  

6 Zyklen à 5 Tagen mit einem Abstand von 4 Wochen durchgeführt. Im Anschluss 

soll mit einer weiteren adjuvanten Temozolomid-Chemotherapie behandelt werden 

(29, 31, 32).  

Therapie der ersten Wahl bei LGG ist ebenfalls zunächst die operative Resektion, da 

hierdurch eine Risikoreduktion der sekundären Entartung erwartet wird (29). In 

Studien wurde der Nutzen einer adjuvanten Radiotherapie evaluiert und darauf 

basierend Risikofaktoren zur Indikationsstellung einer adjuvanten Radiatio bestimmt 

(33, 34). Abhängig von Tumorgröße (>5-6cm), Ausdehnung (Mittellinienbeteiligung), 

Klinik (präoperativ neurologisches Defizit) und Histologie (keine oligodendrogliale 

Komponente) wird bei mindestens 3 Risikofaktoren eine adjuvante Radiatio (50.4 Gy, 

28 x 1.8 Gy)  empfohlen (29). 

Trotz stetig verbesserter Leitlinientherapieschemata sind Rezidive bei Gliomen 

häufig. Da bisher keine Standard-Protokolle für die Rezidivtherapie etabliert sind, 

sollte in diesen Fällen die weitere individuelle Therapie zum Beispiel eine  

Re-Resektion, Re-Radiotherapie oder Re-Chemotherapie evaluiert werden (31). 

Weitere Therapieansätze wie die Verwendung des monoklonalen Antikörpers 

Bevacizumab, das Zytostatikum Lomustin oder sogenannte Tumor Treating Fields, 

eine anti-mitotische Stimulation des Tumors über äußere Elektroden, sollten 

individuell und nach klinischem Protokoll in Erwägung gezogen werden (35-37). 
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1.2 Diagnostik von Gliomen und die Rolle der Positronen-Emissions-

Tomographie 

Radiologischer Goldstandard zur Primärdiagnostik von Raumforderungen im Gehirn 

stellt die Magnetresonanztomographie (MRT) dar. Dank der hohen Auflösung können 

u.a. Aussagen über Lage, Beschaffenheit und Vaskularisation des Tumors getroffen 

werden. Trotzdem hat die MRT nur eingeschränkte Aussagekraft bezüglich  

Tumor-Grading, Delineation des Tumorvolumens sowie für Detektion von 

metabolisch hochaktiven Tumorarealen (1, 38, 39).  

 

Seit einigen Jahren hat daher die Positronen-Emissions-Tomographie (PET) einen 

wachsenden Stellenwert in der Gliomdiagnostik. Die PET wurde 1970 erstmals 

angewandt und ist ein Bildgebungsverfahren, welches mittels Radionukliden 

bestimmter Isotope biologisch aktives Gewebe darstellt. Hier hat sich die 

Aminosäure-PET in der Gliomdiagnostik etabliert. Sie ist von Nutzen bei der 

Unterscheidung der neoplastischen von nicht-neoplastischen Läsionen (40), der 

Delineation von Tumorgewebe (41-43) und auch bei der Unterscheidung zwischen 

Radionekrose und Gliom-Rezidiv (44).  

 

Die vorliegende Dissertation fokussiert auf den vor allem in Europa angewandten 

Aminosäuretracer O-(2-[18F]-fluoroethyl)-L-tyrosin ([18F]-FET).  

[18F]-FET besitzt eine Halbwertszeit von 110 Minuten (min), wodurch eine gewisse 

Transportfähigkeit und der Einsatz in größeren Untersuchungszeitfenstern 

gewährleistet ist. Eine weitere Besonderheit von [18F]-FET liegt in dynamischer 

Datenakquise mit charakteristischen Zeit-Aktivitätskurven des Tracers für LGG und 

HGG. Die eingeschränkte Aussagekraft hinsichtlich Tumor-Grading für die 

Erstdiagnose und Rezidiverkennung eines Glioms bei Verwendung der 

konventionellen, statischen Aufnahmetechnik wird entscheidend verbessert durch die 

dynamische [18F]-FET PET (45-47).  

Es konnte gezeigt werden, dass niedrigmaligne Gliome mit einer stetig ansteigenden 

Kinetik, hochmaligne Gliome mit einem frühen Peak mit anschließend abfallender 

Kinetik vergesellschaftet sind (45). Die nicht-invasive Differenzierung zwischen  

LGG und HGG gelingt damit wesentlich genauer.  
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Auch prognostische Aussagen können durch die dynamische [18F]-FET PET 

getroffen werden: sie liefert z.B. Informationen über das Outcome von astrozytären 

HGG und LGG (48, 49). Allerdings ist für die dynamische Akquisition bzw. die 

spätere Auswertung ein hoher Zeitaufwand erforderlich, so dass die dynamische 

[18F]-FET PET nur in wenigen Zentren weltweit durchgeführt wird.  
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1.3 Standard-Ablauf und Datenanalyse der [18F]-FET PET 

Für die Durchführung einer [18F]-FET PET Untersuchung ist eine Nahrungskarenz 

der Patienten von mindestens sechs Stunden erforderlich, sodass eine kompetitive 

Hemmung der Tracer-Aufnahme verhindert wird und eine optimale Ausgangsituation 

für eine gesicherte Bildqualität vorhanden ist (50, 51).  

Zunächst wird das Radionuklid [18F]-FET mit einer Dosis zwischen  

200-250 Megabecquerel intravenös appliziert (52). Nach Injektion erfolgt über eine 

Dauer von 40 min die dynamische Datenakquise, welche in 16 Zeitintervalle 

(sogenannte Frames) unterteilt wird: 

 

Frame 1-7:   7 x 10 sec  
Frame 8-10:   3 x 30 sec      
Frame 11:   1 x 2 min 
Frame 12-14:  3 x 5 min 
Frame 15-16:  2 x 10 min 
 

Der primäre Fokus der [18F]-FET PET Analyse liegt in der Evaluation der maximalen 

Tracer-Anreicherung. Es wird die jeweilige Höhe der [18F]-FET-Aufnahme des 

Tumors in jeder einzelnen Schicht analysiert. Der maximale Wert der  

[18F]-FET-Aufnahme des Tumors wird anschließend in Relation zum gesunden 

Hirngewebe (Background) gesetzt und somit die maximale  

“tumor-to-background ratio“ (TBRmax) ermittelt. Zur Bestimmung des Backgrounds 

wird ein Mittelwert an [18F]-FET-Aufnahme in mehreren Schichten im kontralateralen 

gesunden Hirngewebe ermittelt. Zusätzlich werden auch Parameter wie die Kinetik 

sowie das Biologische Tumorvolumen (BTV) untersucht.  

 

Zur Bestimmung des BTV wird in jeder Schicht des Tumors eine sogenannte  

“region of interest“ (ROI) gezeichnet, deren Speicherverhalten über einen Threshold 

von 1,6 x BG hinausgeht. Eine Summation aller ROIs eines Tumors ergibt das 

“volume of interest“ (VOI), wodurch sich das mediane BTV ergibt.  

 

Eine kinetische Analyse erfolgt durch Auswertung der dynamischen [18F]-FET PET. 

Es wird eine ROI mit 90%-Isokontur im Frame 13-15 (10-30 min post injectionem 

(p.i.)) in jeder einzelnen Schicht des Tumors analysiert (48). Innerhalb dieser ROI 
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wird eine Zeit-Aktivitätskurve (“Time Activity Curve“ (TAC)) ermittelt, welche die 

zerfallskorrigierte Tracer-Aufnahme darstellt. Bei dieser werden zwei 

charakteristische Verläufe unterschieden: konstant ansteigend bzw. mit Erreichen 

eines Plateaus, sowie abfallende Kurven nach frühem Peak. Die TAC wird für jede 

einzelne Schicht im Tumor erstellt, damit Gewebeveränderungen mit hohem 

Malignitätsrisiko, sogenannte Hotspots, selbst in einer singulären Schicht detektiert 

werden können (47). 
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1.4 Fragestellung der Promotionsarbeit 

Für den klinischen Alltag empfehlen aktuelle Leitlinien eine statische Auswertung der 

Summationsbilder 20-40 min p.i. (50). Im Zeitintervall von 20-40 min p.i. zeigen die 

TBRmax von LGG und HGG eine hohe Überlappung, welches den limitierenden Faktor 

für die Genauigkeit des non-invasiven Tumor-Gradings darstellt (46). Bei Betrachtung 

der TAC mit charakteristisch frühem Peak und anschließend steil abfallender Kinetik 

der HGG sowie konstant ansteigender Kurve der LGG wird die hohe Überschneidung 

deutlich (siehe Abbildung 1).     

                      
Abbildung 1 Charakteristisch ansteigende TAC eines LGG (gepunktete Linie) und charakteristisch 

abfallende TAC eines HGG (durchgezogene Linie) mit großer Überschneidung im konventionellen  

20-40 min p.i. Zeitrahmen (rot) und größere Differenz in einem früheren Zeitrahmen, exemplarisch  

5-15 min p.i. (grün) (53) 
 

Da eine dynamische Aufnahme zeit- und personalintensiv ist, wird versucht, das 

Tumor-Grading mittels statischer Aufnahmen zu verbessern. Es wurde bereits in 

einem ersten Studiensetting untersucht, ob eine duale Messung die TBRmax in 

konventionellen 20-40 min p.i. Summationsbildern und späten 70-90 min p.i. 

Summationsbildern signifikant verändert (54). Dabei konnte die Accuracy von 75% in 

konventionellen Summationsbildern auf 81% in frühen Summationsbildern erhöht 

werden. Insbesondere die LGG mit konstant ansteigender Kinetik werden für dieses 

Ergebnis verantwortlich gemacht. 
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Wir stellten daher die Hypothese auf, dass aufgrund der charakteristischen Kinetik 

der HGG mit ihrem zeitlich frühen Speichermaximum das Tumor-Grading in 

statischen Aufnahmen durch Evaluation früherer Zeitfenster und dadurch größerer 

Divergenz zwischen den TBRmax von LGG und HGG verbessert werden könnte.  

In der ersten Publikation ("Early static 18F-FET-PET scans have a higher accuracy for 

glioma grading than the standard 20–40 min scans“) untersuchten wir, ob frühe 

Summationsbilder im Zeitintervall 0-10 min, 5-15 min, 5-20 min, 10-30 min p.i. in 

statischer Auswertung den konventionellen Summationsbildern überlegen sind. 

Meine Ko-Autorenschaft ist gekennzeichnet von einem Arbeitsanteil über 

Studienkonzeption, Datenakquise, statistischer Datenauswertung mit Interpretation 

der Werte und Revision des Manuskripts. 

 

Das in der [18F]-FET PET ermittelte BTV spielt im klinischen Alltag insbesondere 

hinsichtlich operativer Resektionsplanung, Radiotherapieplanung und als 

Verlaufsparameter der systemischen Therapie eine große Rolle (1). Wie auch für die 

Evaluation des TBRmax, wird die Auswertung des 20-40 min p.i. Summationsbildes für 

die Analyse des BTV empfohlen (50). Analog zur Überlegung der ersten Publikation 

stellten wir die Hypothese auf, dass unterschiedliche Summationsbilder zu 

unterschiedlichen Zeitpunkten einen Einfluss auf das [18F]-FET PET basierte BTV 

haben könnten. 

Im Rahmen einer geteilten Erstautorenschaft "Biological tumour volumes of gliomas 

in early and standard 20-40 minutes 18F-FET PET images differ according to  

IDH-mutation status” untersuchten wir, ob das BTV in frühen Summationsbildern  

(5-15 min p.i.) im Vergleich zu konventionellen Summationsbildern (20-40 min p.i.) 

variiert. Des Weiteren korrelierten wir die BTV in frühen Summationsbildern (BTV in 

early summation images, eBTV) und die BTV in konventionellen Summationsbildern 

(BTV in standard summation images, sBTV) mit dem WHO Grad, dem  

IDH-Mutationsstatus und der Präsenz einer 1p/19q-Kodeletion. Da in früheren 

Studien eine Volumendifferenz von 10% bis 20% als Richtwert für 

Therapieansprechen gewertet wurde (55, 56) wurden Volumenunterschiede von 20% 

als signifikant gewertet.  

Hintergrund der geteilten Erstautorenschaft war das gemeinschaftliche Erarbeiten 

des Studiendesigns, die Interpretation und Diskussion der statistischen Auswertung 

und die gemeinsame Verfassung des Manuskripts.  
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2. Zusammenfassung 

Unsere erste Studie fokussierte auf die Aussagekraft der  

[18F]-FET-Speichermaxima in konventionellen 20-40 min p.i. und frühen 

Summationsbildern zu unterschiedlichen Zeitpunkten (0-10 min, 5-15 min, 5-20 min, 

10-30 min p.i.). Es wurden retrospektiv 314 Patienten mit der Erstdiagnose eines 

Glioms im Zeitraum zwischen 2005 und 2014 in die Studie inkludiert, welche im 

Rahmen der klinischen Routine primär eine [18F]-FET PET an der Ludwig-

Maximilians-Universität in München erhalten haben. Eine [18F]-FET-Anreicherung 

wurde in 89/131 LGG (67,9%) und 176/183 HGG (96,1%) gefunden. Circa ein Drittel 

der LGG (42/131, 32,1%) und 7/183 HGG (3,9%) zeigten keine [18F]-FET-Aufnahme 

und wurden als [18F]-FET negativ gewertet.  

 

Wir beobachteten in 20-40 min p.i. Summationsbildern im Mittel eine TBRmax von 2,1 

bei LGG und eine TBRmax von 3,1 bei HGG (p<0.001). Frühe Zeitfenster zeigten bei 

LGG vergleichbare mediane TBRmax. In der Gruppe der HGG jedoch wurden 

durchweg signifikante Unterschiede der medianen TBRmax in allen frühen 

Zeitfenstern im Vergleich zum konventionellen Zeitfenster detektiert. Die höchsten 

medianen TBRmax zeigten hierbei die Summationsbilder 0-10 min p.i. und  

5-15 min p.i. (TBRmax 3,9, p<0,001).  

Für die Differenzierung von LGG und HGG führten wir ROC Analysen durch. Dabei 

zeigte sich eine höhere Accuracy zur Diskrimination von LGG und HGG in frühen  

5-15 min p.i. Summationsbildern im Vergleich zu konventionellen Summationsbildern 

(früh vs. konventionell: Sensitivität 87,1% vs. 66,7%, Spezifität 76,3% vs. 77,9%, 

Accuracy 77,4% vs. 70,4%). Die durchgeführte kinetische Analyse für die 

Unterscheidung zwischen LGG und HGG zeigte in der Gesamtgruppe eine Accuracy 

von 79,7% (Sensitivität 89,6%, Spezifität 66,4%) und ist somit der rein statischen 

Analyse weiterhin überlegen.  

 

In Zusammenschau der Ergebnisse kann die höhere Accuracy in frühen 

Summationsbildern im Vergleich zu konventionellen Summationsbildern 

insbesondere durch den charakteristischen kinetischen Verlauf von HGG und dem 

signifikant höheren TBRmax erklärt werden. Die Evaluation früher Summationsbilder 

im Zeitfenster 5-15 min p.i. erreichte eine fast vergleichbare Accuracy wie in 
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dynamischen Analysen (77,4% vs. 79,7%). Für den klinischen Alltag, falls 

dynamische Aufnahmen nicht zur Verfügung stehen, könnten daher die frühen  

5-15 min p.i. Summationsbilder gegenüber konventionellen 20-40 min p.i. 

Summationsbildern überlegen sein. In weiteren Studien sollte evaluiert werden, ob 

ein dualer Scan in frühen und späten Summationsbildern der [18F]-FET PET (zum 

Beispiel 5-15 min p.i. und 60-80 min p.i.) eine Differenzierung zwischen LGG und 

HGG ermöglichen und dadurch das non-invasive Tumor-Grading signifikant 

verbessern könnte. 

 

 

 

 

In unserer zweiten Studie untersuchten wir den Einfluss früher Summationsbilder auf 

das [18F]-FET PET basierte BTV. Wir untersuchten retrospektiv 397 Patienten mit 

histologisch gesicherter Erstdiagnose eines Glioms im Zeitraum zwischen 2005 und 

2016. In die Studie inkludiert wurden 245 Patienten, welche sowohl  

[18F]-FET-Anreicherung zeigten als auch eine komplette molekulargenetische 

Analyse (IDH-Mutationsstatus, 1p/19q-Kodeletion) aufwiesen.  

Eine Reevaluation anhand der neuen WHO Klassifikation von 2016 mit 

molekulargenetischen Subtypen zeigte 151/245 IDH-Wildtyp Gliome,  

41/245 IDH-mutierte Gliome ohne 1p/19q-Kodeletion und 53/245 IDH-mutierte 

Gliome mit 1p/19q-Kodeletion.  

 

Insgesamt zeigten mehr als die Hälfte aller Gliome (128/245, 52,2%) signifikante BTV 

Unterschiede zwischen frühen und späten Summationsbildern. 

Fast ein Drittel aller Gliome (72/245, 29,4%) hatte ein signifikant größeres eBTV, ein 

Fünftel der Gliome (56/245, 22,9%) zeigte ein signifikant kleineres eBTV und knapp 

die Hälfte (117/245, 47,8%) wurde als gleichwertig im Volumen eingestuft.  

Unterteilt in die WHO Grade zeigten fast die Hälfte der WHO Grad II Tumore ein 

signifikant kleineres eBTV (31/70, 44,3%). Nur 11,4% der WHO Grad II Tumore 

(8/70) zeigten ein signifikant größeres eBTV. 

Bei Betrachtung von WHO Grad III und WHO Grad IV Tumoren war überwiegend ein 

signifikant größeres BTV in frühen Summationsbildern auffällig (WHO Grad III: 28/80, 

35,0%; WHO Grad IV: 36/95, 37,9%). 
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Des Weiteren korrelierten wir BTV Unterschiede mit den molekulargenetischen 

Markern IDH-Mutationsstatus und 1p/19q-Kodeletion.  

Insgesamt konnte unter den IDH-mutierten Gliomen in 44,7% (42/94) der Fälle ein 

signifikant kleineres Volumen in frühen Summationsbildern gefunden werden, 

wohingegen nur 5,3% (5/94) der IDH-mutierten Gliome ein signifikant größeres eBTV 

zeigten. IDH-mutierte Gliome ohne 1p/19q-Kodeletion wiesen größtenteils ein 

signifikant kleineres eBTV auf (21/41, 51,2%). Die restlichen IDH-mutierten Gliome 

ohne 1p/19q-Kodeletion wurden großteils (17/41, 41,5%) als gleichwertig im Volumen 

eingestuft. Für die Gruppe der IDH-mutierten Gliome mit 1p/19q-Kodeletion konnte in 

21/53 Fällen (39,6%) ein signifikant kleineres eBTV detektiert werden. Über die 

Hälfte dieser Gliome (30/53, 56,6%) wurde als vergleichbar im Volumen gezählt. Nur 

ein geringer Anteil (2/52, 3,8%) zeigte ein signifikant größeres eBTV. 

Innerhalb der IDH-Wildtyp Gliome zeigte fast die Hälfte der Fälle (67/151, 44,4%) ein 

signifikant größeres BTV in frühen Summationsbildern, nur ein kleiner Teil  

(14/151, 9,3%) zeigte ein signifikant kleineres eBTV im Vergleich zu sBTV.  

 

Bei retrospektiver Korrelation der Ergebnisse von Molekulargenetik mit dem WHO 

Grad wurden signifikant größere eBTV mit einem IDH-Wildtyp assoziiert. Innerhalb 

der wenigen WHO Grad II Tumore mit signifikant größerem eBTV entsprach der 

Großteil (6/8, 75,0%) Gliomen vom IDH-Wildtyp. Analog konnten wir auch in fast 

allen WHO Grad III Tumoren mit signifikant größerem eBTV eine Assoziation mit 

IDH-Wildtyp Gliomen finden (27/28, 96,4%). Des Weiteren konnten wir eine 

Assoziation von IDH-Wildtyp Gliomen mit größeren eBTV im Vergleich zu sBTV, 

unabhängig vom WHO Grad, nachweisen. Umgekehrt entsprach der Großteil der 

WHO Grad II Gliome mit größerem sBTV (29/31, 93,6%) Gliomen vom IDH-mutierten 

Typ. Ebenfalls konnten wir zeigen, dass IDH-mutierte Gliome entweder ein signifikant 

größeres sBTV oder gleichwertiges Volumen hatten, unabhängig von einer  

1p/19q-Kodeletion. 

 

Zusätzlich konnten ROC Analysen zeigen, dass mit einer Accuracy von 77,7% der 

prozentuale Unterschied zwischen eBTV und sBTV zwischen IDH-mutierten und 

IDH-Wildtyp Gliomen unterscheiden kann. Mit einer Sensitivität von knapp 80% 

konnte bei signifikant kleinerem sBTV im Vergleich zu eBTV ein IDH-Wildtyp Gliom 

detektiert werden. Dies bedeutet, dass der prozentuale Unterschied zwischen eBTV 
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und sBTV ein potentieller Indikator für die non-invasive molekulargenetische Analyse 

bei Erstdiagnose eines Glioms sein könnte. 

 

Im Überblick dieser Resultate scheinen konventionelle Summationsbilder für die 

Abgrenzung von LGG und IDH-mutierten Gliomen adäquat. Bei HGG und 

insbesondere den IDH-Wildtyp Gliomen hingegen zeigte eine bemerkenswert hohe 

Fallzahl ein signifikant größeres BTV in frühen 5-15 min p.i. Summationsbildern im 

Vergleich zu den konventionellen 20-40 min p.i Summationsbildern. Diese 

Ergebnisse sind insbesondere für den klinischen Alltag interessant. Das durch  

[18F]-FET PET erhobene BTV ist sowohl für die Planung von Radiochemotherapie 

(57, 58) als auch als Verlaufsparameter für Therapieansprechen im Rahmen einer 

Chemotherapie von Nutzen (59, 60), weshalb der IDH-Mutationsstatus zukünftig bei 

der Auswertung des BTV berücksichtigt werden sollte. Noch gibt es keine absolute 

Methode zur Evaluation des wahren Tumorausmaßes, bestmögliche Ergebnisse 

wurden bisher in einer Kombination aus MRT und [18F]-FET PET gefunden (61, 62). 

In zukünftigen Studien sollte daher der Fokus auf der Analyse von wahrer 

Tumorausdehnung mittels BTV Evaluation in frühen, konventionellen und späten 

Summationsbildern sowie in MRT und schrittweiser Biopsie liegen. 
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3. Summary 

Our first study focussed on the significance of maximum [18F]-FET uptake in 

conventional 20-40 min p.i. summation images and early summation images at 

different points of time (0-10 min, 5-15 min, 5-20 min, 10-30 min p.i.). Retrospectively 

we included 314 patients with a validated diagnosis of a glioma prior to therapy 

between the years 2005 and 2014 who had undergone a [18F]-FET PET scan at  

the Ludwig-Maximilians-University in Munich within clinical routine.   

 

[18F]-FET uptake was found in 89/131 LGG (67.9%) and 176/183 HGG (96.1%). 

About one third of the LGG (42/131, 32.1%) and 7/183 HGG (3.9%) showed no  

[18F]-FET uptake and were rated as [18F]-FET negative. Within the 20-40 min p.i. 

summation images, we observed on average a TBRmax of 2.1 in LGG and a TBRmax 

of 3.1 in HGG (p<0.001). Amongst all early time frames the average TBRmax of LGG 

were comparable in value. However, in the group of HGG in early time frames, 

significant differences in TBRmax values could be detected compared to conventional 

time frames. The highest median TBRmax  could be found in 0-10 min p.i. and  

5-15 min p.i. summation images (TBRmax 3.9, p<0.001).  

For differentiation of LGG and HGG we performed ROC analyses. This revealed a 

higher accuracy for discrimination of LGG and HGG in early 5-15 min p.i. summation 

images compared to conventional summation images (early vs. conventional: 

sensitivity 87.1% vs. 66.7%, specificity 76.3% vs. 77.9%, accuracy 77.4% vs. 70.4%). 

We then performed a kinetic analysis for differentiation of LGG and HGG in the 

overall group which showed an accuracy of 79.7% (sensitivity 89.6%, specificity 

66.4%) and is therefore still superior to static analysis only.   

 

Based on these results a higher accuracy in early summation images compared to 

conventional summation images can be explained particularly by the characteristic 

kinetics of HGG and significantly higher TBRmax. Evaluation of early summation 

images in the time frame 5-15 min p.i. reached an almost comparable accuracy as 

dynamic analysis (77.4% vs. 79.7%). For clinical routine, if dynamic [18F]-FET PET 

cannot be performed, analysis of early 5-15 min p.i. summation images could be 

superior to conventional 20-40 min p.i. summation images. Further studies should 

evaluate whether a dual scan in early and late summation images of a [18F]-FET PET 
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scan (for example 5-15 min p.i. and 60-80 min p.i.) can allow the differentiation 

between LGG and HGG and hence significantly improve non-invasive tumor grading. 

 

 

 

 

 

For the purpose of our second study we investigated the influence of early and 

conventional summation images on [18F]-FET PET based BTV. We retrospectively 

analysed 397 patients with a histologically proven diagnosis of a glioma prior to 

treatment between the years 2005 and 2016. 245 patients with a [18F]-FET positive 

glioma and complete molecular genetic analysis (IDH-mutation status,  

1p/19q codeletion) were included into this study. Reevaluation based on the new 

WHO classification of 2016 with molecular genetic subtypes revealed 151/245  

IDH-wildtype glioma, 41/245 IDH-mutated glioma without 1p/19q codeletion and 

53/245 IDH-mutated glioma with 1p/19q codeletion. 

 

Overall more than half of the glioma (128/245, 52.2%) revealed significant BTV 

differences between early and late summation images; almost one third of all glioma 

(72/245, 29.4%) were significantly larger in eBTV, one fifth of the included glioma 

(56/245, 22.9%) were significantly smaller in eBTV and about one half of the 

analysed glioma (117/245, 47.8%) were rated as equal in volume. Subdivided by 

WHO grade almost half of the WHO grade II gliomas showed a significantly smaller 

eBTV compared to sBTV (31/70, 44.3%). Only 11.4% of WHO grade II tumors (8/70) 

revealed a significantly larger eBTV.  

Regarding WHO grade III and WHO grade IV tumors there were significantly larger 

eBTV in many cases noticeable (WHO grade III: 28/80, 35.0%; WHO grade IV: 

36/95, 37.9%). 

 

Furthermore, we correlated BTV differences with the molecular genetic markers  

IDH-mutation status and chromosome arm 1p/19q codeletion.  

Overall 44.7% (42/94) of all IDH-mutated glioma were detected with a significantly 

smaller median BTV in early summation images, whereas only 5.3% (5/94) of  

IDH-mutated glioma were detected with a significantly larger BTV. 
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For the greater part IDH-mutated glioma without 1p/19q codeletion were rated as 

significantly smaller in volume in early summation images (21/41, 51.2%). The 

remaining IDH-mutated glioma without 1p/19q codeletion were mostly classified as 

equal in volume (17/41, 41.5%). The group of IDH-mutated glioma with  

1p/19q codeletion showed in 21/53 cases (39.6%) a significantly smaller eBTV. Most 

cases of IDH-mutated glioma with 1p/19q codeletion were rated as equal in volume 

(30/53, 56.6%). Only 3.8% of IDH-mutated glioma with 1p/19q codeletion (2/52) had 

shown a significantly larger eBTV. 

Within IDH-wildtype glioma almost half of the cases (67/151, 44.4%) were 

significantly larger in volume in early summation images, only a small part (14/151, 

9.3%) was significantly smaller in eBTV compared to sBTV. 

 

Retrospective correlation of the molecular genetic based results with WHO grade 

revealed an association of significantly larger eBTV with an IDH-wildtype. Within the 

few WHO grade II glioma with significantly larger eBTV (6/8, 75.0%) the greater part 

was identified as IDH-wildtype glioma. Analogue, we have also found an association 

in 96.4% (27/28) of WHO grade III tumors with significantly larger eBTV with an  

IDH-wildtype. Moreover, we have detected an association of IDH-wildtype glioma 

with larger eBTV compared to sBTV, independent of the WHO grade. Vice versa 

most WHO grade II glioma with significantly larger sBTV (29/31, 93.6%) were 

identified as IDH-mutated glioma. Additionally, we could demonstrate that  

IDH-mutated glioma has either a significantly larger sBTV or is equal in volume 

compared to eBTV, independent of 1p/19q codeletion. 

 

Furthermore, ROC analyses revealed that the percentage difference between eBTV 

and sBTV can differ between IDH-mutated and IDH-wildtype glioma with an accuracy 

of 77.7%. With a sensitivity of around 80% a significantly smaller sBTV compared to 

eBTV could detect an IDH-wildtype glioma. That implies that the percentage 

difference between eBTV and sBTV could be a potential indicator for non-invasive 

molecular genetic analysis of a newly diagnosed glioma. 

 

Based on these results conventional summation images seem to be adequate for 

differentiation of LGG and IDH-mutated glioma, whereas a remarkably high number 

of cases of HGG and especially of IDH-wildtype glioma has shown a significantly 
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larger BTV in early 5-15 min p.i. summation images compared to conventional  

20-40 min p.i. summation images. These results are particularly interesting for clinical 

routine. [18F]-FET PET based BTV is useful both for planning combined 

radiochemotherapy (57, 58) and as a progress parameter for therapy response in the 

purpose of chemotherapy (59, 60). Therefore, IDH-mutation status should be 

considered in evaluation of BTV. Yet, there is no absolute method for evaluation of 

the real tumor extent. To date, best possible results could be found in a combination 

of MRT and [18F]-FET PET (61, 62). Future studies should hence focus on the 

analysis of real tumor delineation through BTV evaluation in early, conventional and 

late summation images in [18F]-FET PET as well as MRT and a stepwise biopsy. 
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7. Abkürzungsverzeichnis 

BTV   Biologisches Tumorvolumen 

eBTV BTV in early summation images,  

BTV in frühen Summationsbildern 

sBTV   BTV in standard summation images, 

   BTV in konventionellen Summationsbildern 

[18F]-FET  O-(2-[18F]-fluoroethyl)-L-tyrosin 

HGG   high-grade Gliom 

IDH   Isocitratdehydrogenase 

LGG   low-grade Gliom  

MGMT  O6-Methylguanin-DNA-Methyltransferase 
MRT   Magnetresonanztomographie 

PET   Positronen-Emissions-Tomographie 

ROI   region of interest 

TAC   Time Activity Curve 

TBRmax  maximale tumor-to-background ratio 

VOI   volume of interest 

WHO   World Health Organization
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