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SUMMARY  
 

The survival of B-cells is regulated by the two cytokines B-cell activating factor 

(BAFF) and a proliferation-inducing ligand (APRIL), which bind to the receptors 

transmembrane activator and CAML interactor (TACI), B-cell activating factor receptor 

(BAFF-R), and B-cell maturation antigen (BCMA). Due to the importance of B-cell 

regulation for immunopathological diseases, the BAFF/APRIL system is a potent 

therapeutic target. While an antibody to BAFF is approved in systemic lupus 

erythematodes, the soluble receptor TACI-Fc (atacicept) unexpectedly worsened multiple 

sclerosis. Our lab has recently found that the receptor TACI is shed from activated B-cells 

by the protease ADAM10 releasing endogenous soluble TACI (sTACI) that shares 

essential features with the pharmacological atacicept. TACI exists in two isoforms differing 

in the length of their extracellular domain by covering one or two cysteine rich domains 

(CRDs) (TACI-short (CRD2) and TACI-long (CRD1+CRD2)). The aim of this project is to 

elucidate properties of the two TACI isoforms in their soluble and membrane-bound form. 

First, both soluble isoforms of TACI were recombinantly expressed in serum-free 

cultured HEK.EBNA cells as secreted proteins. The purified isoforms were analyzed by 

Coomassie stained SDS-PAGE, Western blot, N-terminal sequencing, and mass-

spectrometry. This showed that sTACI-long and sTACI-short appeared in different N-

terminal variants, largely due to Furin-cleavage. sTACI-short existed additionally in a C-

terminal truncated version (sTACI-short (16-20-W-68-135)). Analysis and separation by 

size exclusion chromatography (SEC) revealed that the two major sTACI-short forms (1-

20-W-68-154 and 16-20-W-68-135) appeared as monomers and to a small extent as 

higher oligomers. Static light scatter coupled to SEC showed that the majority of sTACI-

long formed homodimers and only a minority appeared in the monomeric state. Both 

recombinant isoforms had no N-linked glycosylation, although they contain one predicted 

N-glycosylation site. 

Next, the ability of the sTACI variants to bind to BAFF and APRIL was analyzed in 

a binding ELISA and their decoy function in a NFκB reporter assay. Both isoforms of 

sTACI showed similar affinities for BAFF, while sTACI-long showed a significantly higher 

affinity to APRIL than sTACI-short. Similar results were obtained by the NFκB reporter 

assay. The comparison of three N-terminal variants of sTACI-short, namely sTACI-short 
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(1-20-W-68-154), sTACI-short (16-20-W-68-135), and the recombinantly expressed 

sTACI-short (W-68-154) showed no difference in BAFF binding. In contrast, sTACI-short 

(1-20-W-68-154) bound to APRIL with significantly higher affinity when compared with 

sTACI-short (16-20-W-68-135) and sTACI-short (W-68-154). Thus, the N-terminal part 

outside of the CRD2 seems to contribute to APRIL binding. The dimer of sTACI-long 

bound to BAFF and APRIL significantly better than its monomer as seen by both binding 

ELISA and NFκB reporter assay. Finally, CRD1-Fc, CRD2-Fc, CRD1+CRD2-Fc, and the 

related CRD1+CRD2-Fc-a obtained from Pascal Schneider (University of Lausanne, 

Switzerland) as Fc-fused homodimers were analyzed in comparison. CRD1-Fc showed 

only weak ligand interaction, whereas CRD1+CRD2-Fc, CRD1+CRD2-Fc-a, and CRD2-

Fc bound to BAFF and APRIL in a similar manner. This result confirmed a previous 

publication. 

Beside the soluble sTACI variants, the features of the two membrane-bound TACI 

isoforms (TACI-long and TACI-short) were analyzed. TACI-short was expressed and 

constitutively shed in significantly higher amount from transiently transfected HEK293T 

cells than TACI-long. Both membrane-bound isoforms bound to BAFF and APRIL. TACI-

long and TACI-short interacted homotypically and heterotypically with each other in both 

the soluble and membrane-bound form as shown by Co-Immunoprecipitation. Neither of 

the TACI isoforms interacted in any way with BCMA. 

In conclusion, the observed differences in the binding affinity, decoy function and 

oligomerization between both sTACI isoforms provide deeper insight into the interactions 

of TACI with its ligands BAFF and APRIL. These findings could be relevant for the 

understanding of B-cell biology and for future drugs targeting the BAFF/APRIL system.  
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ZUSAMMENFASSUNG 
 

Die zwei Zytokine BAFF (B-cell activating factor) und APRIL (A proliferation-

inducing ligand) regulieren das Überleben der B-Zellen durch die Bindung an die drei 

Rezeptoren TACI (transmembrane activator and CAML interactor), BAFF-R (B-cell 

activating factor receptor) und BCMA (B-cell maturation antigen). Dieses sogenannte 

BAFF/APRIL-System ist aufgrund seiner großen Bedeutung im Rahmen autoimmuner 

Erkrankungen ein wichtiger Angriffspunkt für Therapien. Im Gegensatz zu einem in 

systemischen Lupus erythematodes zugelassenen Antikörper gegen BAFF, führte der 

lösliche Rezeptor TACI-Fc (Atacicept) unerwartet zu einer Verschlechterung im 

Krankheitsverlauf von Patienten mit Multipler Sklerose. Unser Labor hat vor kurzem 

entdeckt, dass der Rezeptor TACI auf aktivierten B-Zellen von der Protease ADAM10 

geschnitten wird und so auch als endogener löslicher Rezeptor vorkommt. Dieser lösliche 

Rezeptor weist erhebliche Ähnlichkeiten zum pharmazeutisch hergestellten Atacicept auf. 

TACI existiert in zwei verschieden Isoformen, welche sich in der Länge ihrer 

extrazellulären Domäne vor allem durch die Anzahl Cystein-reicher Domänen (CRD) 

unterscheiden (TACI-long (CRD1+CRD2) und TACI-short (CRD2)). Die Zielsetzung 

dieser Arbeit war es, die Eigenschaften beider TACI Isoformen in löslicher und membran-

gebundener Form zu untersuchen und zu vergleichen. 

Zunächst wurden beide löslichen Isoformen rekombinant in HEK.EBNA Zellen 

hergestellt, wobei diese in serum-freies Medium sezerniert wurden. Anschließend wurden 

beide TACI Isoformen durch SDS-PAGE in Verbindung mit Coomassie Färbung, Western 

Blot, N-terminales Sequenzieren sowie Massenspektrometrie analysiert und 

charakterisiert. Hierbei zeigte sich, dass sowohl sTACI-long als auch sTACI-short in 

verschiedenen N-terminalen Varianten vorkamen, die hauptsächlich durch Furin Spaltung 

erklärt werden konnten. In den sTACI-short Präparationen kam zusätzlich eine C-terminal 

verkürzte Variante (sTACI-short (16-20-W-68-135)) vor. Gelfiltration zeigte, dass die 

beiden Hauptvarianten von sTACI-short (1-20-W-68-154 und 16-20-W-68-135) 

überwiegend Monomere darstellten, wobei kleine Mengen höherer Oligomere 

nachgewiesen werden konnten. Die Charakterisierung von sTACI-long über Gelfiltration 

gekoppelt an statische Lichtstreuungsanalyse offenbarte, dass sTACI-long hauptsächlich 
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als Dimer und nur geringfügig als Monomer vorlag. Die unterschiedlichen Fraktionen von 

sTACI-long (Dimer und Monomer) und sTACI-short (1-20-W-68-154 und 16-20-W-68-

135) konnten mittels Gelfiltration voneinander getrennt werden. Beide rekombinant 

hergestellten Isoformen wiesen keine N-verknüpften Glykosylierungen auf, obwohl beide 

eine vorhergesagte Glykosylierungsstelle besitzen. 

In der Folge wurde das BAFF- und APRIL-Bindevermögen der sTACI Varianten 

mit einem Binde-ELISA (enzyme linked immunosorbant assay) und einem NFκB (nuclear 

factor kappa-light-chain-enhancer of activated B-cells) Reporter System untersucht: Im 

Binde-ELISA zeigten beide Isoformen eine ähnliche Affinität für BAFF, wobei sTACI-long 

APRIL signifikant besser band. Diese Ergebnisse wurden mit dem NFκB Reporter System 

bestätigt. Der Vergleich der drei N-terminalen Varianten von sTACI-short (sTACI-short (1-

20-W-68-154), sTACI-short (16-20-W-68-135)) und das rekombinant exprimierte sTACI-

short (W-68-154)) ergab, dass alle drei Varianten keinen Unterschied bezüglich ihrer 

Bindeeigenschaft zu BAFF aufwiesen. sTACI-short (1-20-W-68-154) band jedoch 

signifikant besser an APRIL als die anderen beiden Varianten. Der N-terminale Teil, 

welcher außerhalb der CRD2 gelegen ist, scheint somit Einfluss auf die Bindefähigkeit zu 

APRIL zu haben. Das Dimer von sTACI-long, welches durch Gelfiltration vom Monomer 

getrennt werden konnte, band BAFF und APRIL signifikant besser als das Monomer im 

Binde-ELISA und NFκB Reporter System. Die von Pascal Schneider (Universität von 

Lausanne, Schweiz) zur Verfügung gestellten TACI-Fc-fusions Homodimere CRD1-Fc, 

CRD2-Fc, CRD1+CRD2-Fc und CRD1+CRD2-Fc-a wurden vergleichend untersucht. 

Dabei zeigte CRD1-Fc kaum Interaktionen mit BAFF und APRIL. CRD1+CRD2-Fc, 

CRD2-Fc und CRD1+CRD2-Fc-a wiesen hingegen ähnliche Affinitäten für BAFF und 

APRIL auf. Diese Ergebnisse bestätigten eine frühere Veröffentlichung. 

Abschließend, untersuchten wir beide Isoformen in ihrer Membran-gebundenen 

Form. TACI-short wurde signifikant mehr auf transient transfizierten Hek293T Zellen 

exprimiert und von der Zellmembran geschnitten als TACI-long. Sowohl TACI-long als 

auch TACI-short waren in der Lage BAFF und APRIL zu binden. Beide Isoformen 

interagierten in Membran-gebundener und löslicher Form miteinander auf homo- und 

heterotypische Art, was wir mit unserer Co-Immunopräzipitation Bestimmung nachweisen 

konnten. Keine der beiden Isoformen zeigte eine Interaktion mit BCMA. 
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Zusammenfassend konnten in dieser Arbeit Unterschiede in der Affinität, Decoy-

Rezeptor Funktionalität und Oligomerisierung zwischen den beiden sTACI Isoformen 

aufgezeigt werden, wodurch das Verständnis für die Regulation des BAFF/APRIL-

Systems erweitert wurde. Dies könnte relevant für die Interpretation verschiedener 

Vorgänge in der B-Zell Biologie sein. Des Weiteren könnten die Erkenntnisse dieser 

Studie von Bedeutung für die Entwicklung neuer direkt das BAFF/APRIL-System 

beeinflussender Medikamente sein.  
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1. INTRODUCTION 
1.1. EPIDEMIOLOGY OF MULTIPLE SCLEROSIS 
 

Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central 

nervous system (CNS). There are estimated to be approximately 2.5 million cases of MS 

worldwide (1). The male:female ratio is approximately 1:2-3 (2). This ratio seems to 

increase over time. In 1955, the ratio was around 1:1.5 and increased to 1:2.3 by 2000 

(3). The general prevalence of MS in Europe is estimated to be 83 cases per 100.000 

persons with an incidence of 4.3 cases per 100.000 persons (4). The disease onset is 

primarily around the ages of 20-40 (2, 5). A Danish study found that MS decreases life 

expectancy approximately 10 years and increases the risk of death roughly threefold in 

comparison to an age-matched control group from the general population (6). 

The diagnosis of MS is based on the McDonald diagnostic criteria (7, 8). The basis 

for this criteria builds the dissemination of lesions in the CNS in time and place (7). Before 

2010 MS could only be diagnosed when manifestations of two clinical symptoms were at 

least 30 days apart and affecting different sites of the CNS. Since 2010 one episode 

together with the proof of earlier events that are in concordance with the dissemination in 

time and place validated through magnetic resonance imaging (MRI) is enough. This is 

an improvement for patients who can now get the therapy they need at an earlier stage of 

disease (8). MS is clinically characterized by four different courses. Primary-progressive 

(PP), relapsing-remitting (RR), secondary-progressive (SP) and progressive-relapsing 

(PR) (9). In 2013 the progressive-relapsing course of disease was revised and it has since 

been considered as a primary-progressive course of disease which is either active or not 

active (10). 85% of patients start with RRMS and develop PPMS within 10 years of 

disease onset. 15% of patients have PPMS from the start (9, 11, 12). 
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1.2. PATHOGENESIS AND IMMUNOPATHOGENESIS OF 
MULTIPLE SCLEROSIS 

 

A combination of genetic susceptibility together with environmental factors that 

promote disease onset seems like the most probable explanation for disease outbreak 

(13-15). Several studies found elevated prevalence of certain MHC (HLA) antigens in MS 

patients (16-18). In addition to these MHC connected variations, several non-MHC risk 

genes have been identified (19). The geographical distribution exhibits clusters of disease 

incidence with higher prevalence in the northern hemisphere and with increasing distance 

to the equator (20). Thus, migration studies give interesting insights. On the one side, 

immigrants who come to their new residency before reaching adulthood exhibit a risk of 

MS onset equivalent to the population of their new location (21). On the other side, 

immigrants older than 15 years maintain the same MS risk of their original area of 

upbringing. Whether this distribution in MS risk is attributed to exposition to infections, 

living conditions, diet or environmental influences remains unknown (22, 23). Additionally, 

Vitamin D exposition is discussed to contribute to the pathogenesis of MS which could 

explain to some extent the findings observed by the geographical distribution (24, 25). 

(26) 

MS is a chronic CNS disease with detectable lesions that show demyelination, 

inflammation, axonal loss and reactive gliosis (27-32). Only a few other diseases like 

neuromyelitis optica (NMO), central pontine myelinolysis (CPM), acute disseminated 

encephalomyelitis (ADEM) or progressive multifocal leukoencephalopathy (PML) show 

demyelination in the CNS. (26) 

The primary causes of this heterogeneity in MS is not known and believed to be 

quite diverse. An immunologic cause of the disease is suspected (33). Nevertheless, other 

theories suggest, that in some (33), or maybe in all cases (34), the disease onset could 

be attributed to a primary degenerative process. Additionally, viral or bacterial infections 

are proposed to be involved in the primary pathogenesis. Until now no case could be 

attributed to a primary infectious cause (35). Intrathecal IgG synthesis against pathogens 

like chlamydia, HHV 6 and EBV are part of the typical polyspecific reaction of the immune 
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system inside the MS CNS (36-39). Also, an implication of EBV has been hypothesized 

(40), however this remains controversial (41-43). (26) 

Nevertheless, the immunological contribution during early and later phases of 

disease is indisputable. Immunologically, MS was previously believed to be a mainly T-

cell driven disease. Autoreactive T-cells get activated in the periphery, for example as a 

consequence of viral infections. These T-cells manage to cross the blood brain barrier into 

the CNS, where they clonally expand. The invasion into the CNS by immunologic cells 

can be visualized and is characterized by vasogenic edemas (44). Local microglia and 

astrocytes present autoantigens to T-cells. T-cells misjudge these autoantigens (45-49), 

like myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), myelin-

associated glycoprotein (MAG) and myelin proteolipid protein (PLP), and become 

stimulated. T-cells then produce pro- inflammatory cytokines like TNF and Interferon 

gamma. This leads to the recruitment of other cellular parts of the immune system like 

macrophages and B-cells. The destruction of the myelin is then caused by a cooperation 

between T- and B-cells through the production of cytokines, inflammatory mediators, 

cytotoxic cells and autoantibodies. This leads to demyelination and axonal loss that can 

be detected by MRI (50). (29) 

 

1.3. B-CELLS IN MULTIPLE SCLEROSIS 
 

The role of B-cells in MS is still not fully understood, however, lately a prominent 

role is suspected. B-cells exert on the one hand pro-inflammatory and on the other hand 

anti-inflammatory effects (Figure 1). On the anti-inflammatory side, B-cells produce anti-

inflammatory cytokines, stimulate the expansion of Treg cells, reduce the differentiation 

of Th1 and Th17 cells, hinder the activity of macrophages and dendritic cells and produce 

regulatory antibodies as well as neurotrophic factors. On the Pro-inflammatory side, B-

cells lead to the generation of pro-inflammatory cytokines, complement activation, 

autoantibody production and antibody dependent cellular cytotoxicity (ADCC). 

Additionally, B-cells take part in antigen-transport and in antigen-presentation. Thus, B-

cells seem to possess regulatory functions within the immune system (11).  
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Figure 1: Regulatory and inflammatory roles of B-cells 
B-cells are regulators of the immune system. On the one hand, B-cells have anti-inflammatory 
effects as indicated in green as well as pro-inflammatory effects as indicated in red. B-cells 
produce anti-inflammatory cytokines such as IL-10, IL-35 or TGF-ß. These cytokines lead to the 
expansion of Treg cells. The differentiation of Th1 and Th17 cells is reduced and the activity of 
macrophages and dendritic cells is hindered. Additionally, B-cells produce regulatory antibodies 
as well as neurotrophic factors. Pro-inflammatory effects include the production of autoantibodies. 
These autoreactive antibodies can lead to complement activation and antibody dependent cellular 
cytotoxicity (ADCC). B-cells are responsible for producing the pro-inflammatory cytokines TNF, 
IL-6 and LT, and take part in antigen-transport and in antigen-presentation. (11) Figure taken from 
(11). 

 

The prominent role of B-cells in MS can be concluded due to several findings (11, 51, 52): 

B-cells are found in lesions, the leptomeningeal space of MS patients, where the 

form follicle-like aggregates (53), and in early MS lesions as part of the inflammatory 

environment (54). These findings have been linked to SPMS (53) and have also been 

shown at early stages of RRMS (55). 
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Oligoclonal bands (OCBs) are part of the diagnostic criteria of MS (8). OCBs are 

immunoglobulins -mostly IgG- that are intrathecally produced and that can be detected in 

the cerebrospinal fluid (CSF) of MS patients (56). The typical pattern of bands is not yet 

attributable to specific autoantigens. Proteomics revealed that OCBs originate from local 

B-cells in the CFS and brain tissue (57). Ubiquitous self-proteins (58) or myelin obtained 

lipid complexes and lipids (58) were suggested as possible autoantigens (59). Although 

the production of autoantibodies in MS has been well delineated at a descriptive level, the 

mechanism underlying the production of MS autoantibodies and the target antigens 

remain widely unknown. More specific than the OCBs for MS is the ‘MRZ reaction’ inside 

the CNS. It is an immune reaction targeted against viral antigens such as measles, rubella 

and varicella zoster virus (MRZ) which can be detected in 80-100% of MS patients (60, 

61).  

The persistence and stability of the OCBs over an extended time in the CNS of MS 

patients (62) despite immunosuppressive therapies (52) suggests B-cell nurturing 

conditions in MS brains. Astrocytes express a B-cell survival factor (BAFF) and thus could 

play a part in the long-term survival and clonally expansion of B-cells in the CNS (63). 

BAFF expression on astrocytes is upregulated during inflammation (63). Additional 

mediators of B-cell survival like CXCL12 and CXCL13 are found on astrocytes and blood 

vessels (CXCL12) or perivascular in CNS parenchyma (CXCL13) (64). B-cells of the CNS 

are not sequestered in the CNS. B-cells are connected to the periphery through cervical 

draining lymph nodes (65). Moreover, B-cells seem to mature in the draining cervical 

lymph nodes before invading the CNS tissue (66). 

Different transgenic mouse models were used to investigate the function of B-cells 

in autoimmune encephalitis (67-69). These animal models facilitate the analysis of the 

contribution of B-cells to autoimmune diseases. These studies found that B-cells 

contribute to pathogenesis by producing autoantibodies (69) and by presenting antigens 

to T-cells (67). 

Different cell surface markers can be detected during B-cell maturation (Figure 2). 

These cell surface markers (Figure 2) are the target of several B-cell directed therapies 

(52).  
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Figure 2: Cell surface marker expression during B-cell development 
The blue lines indicate cell surface marker expression during different developmental states of B-
cells. These markers can be the target of mAb therapies (written in black letters above blue lines). 
(52) General expression opinion is not uniform as indicated with the fading blue lines. Figure taken 
from (52). 

 

B-cell depleting drugs like rituximab (anti-CD20 mAb), are highly effective in MS 

patients. CD20 is expressed on B-cells at almost every step of B-cell differentiation. Only, 

Pro-B-cells, Pre-B-I and plasma cells do not express CD20 (Figure 2) (52). After one 

application rituximab reduced clinical relapses and MS brain lesions for 48 weeks (70). 

Rituximab is not approved for MS. However, another anti-CD20 mAb (Ocrelizumab) 

showed similar results and is promising for the treatment of MS (71) and is already 

approved for the treatment of MS (72, 73). 
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1.4. THE BAFF/APRIL-SYSTEM 
 

 The survival of B-cells is regulated by the BAFF/APRIL system. The BAFF/APPRIL 

system consists of the two ligands B-cell activating factor (BAFF/BLyS/TALL-1) and a 

proliferation-inducing ligand (APRIL) and the three receptors B-cell activating factor 

receptor (BAFF-R), B-cell maturation Ag (BCMA) and transmembrane activator and 

CAML interactor (TACI) (Figure 3) (74). The ligands and receptors of the BAFF/APRIL 

belong to the tumor necrosis factor (TNF) superfamily system. (75) 

 

Figure 3: The BAFF/APRIL-System 
The BAFF/APRIL-system consists of the two ligands BAFF and APRIL and the receptors BAFF-
R, BCMA and TACI. BAFF can bind to all three receptors, while APRIL can only bind to BCMA 
and TACI. BAFF exists as a soluble form that can build trimers and oligomers. APRIL is processed 
intracellularly and forms trimers that bind to proteoglycans (HSPGs). HSPGs are presumed to 
increase the biological activity of APRIL. In addition, to these homotypic formations both BAFF 
and APRIL form heterotrimers that show similar features. BAFF2APRIL1 is comparable to BAFF, 
while BAFF1APRIL2 is comparable to APRIL. Two of the receptors, namely BCMA and TACI, get 
shed from the cell surface and act as decoy receptors. (74) Figure taken from (74). 
 

BAFF and APRIL assemble as homotrimers (76-78), just like TNF and other TNF 

ligand superfamily members (79). BAFF exists in membrane-bound and soluble form (80, 
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81), while APRIL is cut intracellularly in the Golgi apparatus without any as yet observed 

cell surface expression (82). Both ligands exist in diverse variants. BAFF can form a 

homotrimer and a virus-cluster-like 60mer (83). The function and existence of the 60mer 

is controversial and has not yet been endogenously confirmed in humans. The 60mer 

expression could be a consequence of experimental set ups (pH dependency of the 

construct, recombinant protein production) (84, 85). APRIL exists as a homotrimer that 

can be concentrated through its interactions with proteoglycans on the cell surface of B-

cells (86, 87). Additionally, newly found heterotrimeric hybrid versions of BAFF and APRIL 

have been described that share similar features with BAFF- and APRIL homotrimers. 

BAFF2APRIL1 is comparable to BAFF, while BAFF1APRIL2 is comparable to APRIL (88, 

89). The existence of active soluble heterotrimers has already been proven in patients 

with rheumatoid conditions (90). The complexity within the ligands indicates distinct roles 

and functions of these diverse ligand variations in B-cell biology. The existence and 

functions of all constructs in vivo, however, must be shown and further characterized to 

further understand this system. (75) BAFF and APRIL are different in their functional and 

binding qualities:  

BAFF can bind to all three receptors BAFF-R, TACI and BCMA. All variations of 

BAFF can interact and induce downstream pathways after binding to BAFF-R, while only 

oligomeric forms of BAFF (BAFF-60mer) can induce intracellular pathways in TACI (91, 

92) (Figure 4). APRIL can bind to TACI and BCMA, not to BAFF-R. Several findings 

suggest that APRIL needs to be bound to proteoglycans to exert its biological functions. 

Soluble APRIL alone was shown to interact only weekly with BCMA (91). Similar 

observations had been made for TACI (86, 91). APRIL that was crosslinked by 

proteoglycans, however, was able to activate TACI dependent intracellular pathways in 

contrast to the soluble variant (86, 91) (Figure 4). (75) 
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Figure 4: TACI can only be activated by oligomeric forms of BAFF and APRIL 
Trimers of BAFF and APRIL can bind to TACI assembled as a trimer on the cell surface. For 
intracellular NFκB activation six TACI receptors need to be connected to recruit TRAF2 or TRAF6 
trimers. Only BAFF60mer and HSPG-bound trimers are able to connect TACI receptors and 
activate the classical NFκB pathway through the TRAF trimers. (92) Figure taken from (92). 

 

BCMA and TACI exist as soluble receptors in vivo (91, 93, 94). The protease 

gamma-secretase is responsible for BCMA cleavage (94) and the metalloproteinase 

ADAM10 causes extracellular shedding of TACI followed by intracellular processing of the 

resulting stump by gamma-secretase (93). Soluble BCMA (sBCMA) is able to act as a 

decoy receptor for APRIL (94), while soluble TACI (sTACI) can act as a decoy receptor 

for BAFF and APRIL (93). sBCMA and sTACI could be used as possible biomarkers to 

improve patient care, since both soluble receptors are elevated in B-cell driven 

pathologies (95, 96). 

High levels of BAFF are linked to autoimmunity (97). In concordance with this, a 

BAFF variant that led to BAFF overexpression in a population of Sardinians was 

connected to MS and systemic lupus erythymatodes (SLE) (98). SLE is a generalized 
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autoimmune disease associated with high levels of BAFF (99). An Anti-BAFF mAb 

(belimumab) is beneficial and already approved for the treatment of SLE (100-103).  

Another attempt to target the BAFF/APRIL system was the mAb atacicept (TACI-

Ig). In principle, atacicept was developed as soluble TACI fused to the Fc domain of 

human IgG1 (104, 105) to capture BAFF and APRIL (104). The Fc part of atacicept 

exhibited mutations to inhibit FcyR interaction and complement binding (106-108). 

Atacicept showed positive effects in rheumatoid arthritis (RA) and, in high doses, in SLE 

(109-113). Unfortunately, atacicept worsened MS. The atacicept in multiple sclerosis 

(ATAMS) trial was terminated due to elevated disease activity in treated patients. The 

group treated with atacicept showed an increase in annual relapse rate in comparison to 

a placebo controlled group (significant results for the application of 25 and 150 mg of 

atacicept) (114-116).  

Several reasons could be responsible for the unexpected effect of atacicept on MS, 

while Rituximab was beneficial (11): 

1. Rituximab and atacicept target different subpools of B-cells with atacicept 

affecting Breg cells (regulatory B-cells). 

2. Atacicept treatment leads to an increase of memory B-cells that could enhance 

inflammatory processes.  

3. In EAE atacicept increased the proinflammatory cytokine IL15 that could 

attribute to the inflammatory process during atacicept treatment. 

4. Atacicept leads to a decrease of Fc-receptor blockage due to decreased levels 

of serum Igs. Fc-receptor blockage is beneficial and obligatory for the effect of 

IVIG treatment in MS patients. 

5. Receptors of the BAFF/APRIL system are expressed on neurons and could 

affect neuronal modulation after inflammation like axonal growth. Atacicept 

inhibits this beneficial process by blocking BAFF and APRIL. 
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1.5. THE AMBIVALENT ROLE OF THE RECEPTOR TACI IN 
IMMUNITY 

 

The ambivalent role of the receptor TACI within the immune system could be a 

possible cause for the unexpected failure of atacicept (TACI-Fc/TACI-Ig) in MS (116). 

Earlier studies in TACI (-/-) deficient mice revealed an interesting role of TACI as on the 

one hand a positive and on the other hand a negative regulator of immunity (117-119). 

One study described that mice with TACI deficient B-cells developed splenomegaly, B-

cell aggregates due to increased levels of B-cells and elevated antibody levels (118). 

Another study found that TACI deficient mice had increased levels of autoantibodies, 

developed autoimmune glomerulonephritis and that in vitro inhibition of TACI on B-cells 

decreased B-cell proliferation and a recombinant receptor containing the internal 

sequencing signal of TACI lead to apoptosis of B-cells (117). Another group investigated 

the immune response of TACI deficient mice and showed that these mice were not 

capable to generate a response to specific antigens (T-independent type II antigens) 

(119). In addition, the diseases common variable immunodeficiency (CVID) and IgA 

deficiency are both associated with mutations of TACI (120-123). Some of these patients 

showed signs of lymphoproliferation and autoimmunity together with immunodeficiency 

(122). These findings justify a closer look at the receptor TACI. 

TACI is expressed on memory B-cells, plasmablasts, plasma cells and a 

subpopulation of activated (CD 27-) B-cells (Figure 2) (52, 124). TACI was firstly 

described as interactor with the protein calcium-modulator and cyclophilin ligand (CAML), 

which leads to induction of NF-AT, AP-1 and the classical NFκB pathway (125). TACI was 

found to be important for Ig class switch (126, 127). MyD88 binding to TACI initiates the 

class-switch recombination (92, 128). Additional functions and intracellular pathways have 

been described for TACI (92) (Figure 5). TACI induces plasma cell differentiation and 

decreases B-cell proliferation through mediation of Blimp-1 expression (129). Inhibition of 

the ICOSL receptor through TACI blocks germinal center reactions and B-cell proliferation 

(130). It was found that TACI stops the noncanonical NFκB pathway (NFκB 2) by 

mediating the degradation of NIK through cIAP-1 (131, 132). Moreover, TACI promotes 

together with TLR4 apoptosis in marginal zone B-cells through induction of FasL and Fas 
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(133). In contrast to TACI’s effect on marginal zone B-cells, TACI decreases apoptosis of 

plasma cells by suppression of Bim (130). Concerning the BAFF/APRIL system, TACI 

decreases BAFF concentration and is a direct competitor with BAFF-R for BAFF (91, 92, 

134, 135).  

 

 

Figure 5: Different effects of TACI 
1. TACI mediated Blimp-1 expression leads to plasma cell differentiation and decreased B-cell 
proliferation. 2. TACI hinders germinal center reactions and B-cell proliferation through ICOSL 
receptor inhibition. 3. TACI leads to degradation of NIK through cIAP-1 and thus stops the 
noncanonical NFκB pathway (NFκB 2). 4. Together with TLR4 TACI promotes apoptosis through 
induction of FasL and Fas in marginal zone B-cells. 5. TACI decreases BAFF concentration and 
is a direct competitor with BAFF-R for BAFF (and BCMA for APRIL (not shown)). 6. Plasma cell 
apoptosis is decreased by suppression of Bim. 7. MyD88 binding to TACI initiates the class-switch 
recombination. (92) Figure taken from (92). 
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TACI interacts with high affinity with the ligands BAFF and APRIL (136-139). TACI 

expresses two CRDs - CRD1 and CRD2. The CRD2 of TACI is responsible for high affinity 

binding (140). The CRDs of TACI share 50% of their sequence and both exhibit the DXL 

motif ((Phe/Tyr/Trp)-Asp-Xaa-Leu-(Val/Thr)-(Arg/Gly)) (140). The DXL motif is part of the 

binding module of TACI (140). The DXL motif binds directly to BAFF and APRIL (140-

144). The role of the CRD1 is not known yet. It is proposed to be responsible for 

dimerization (145) or to be an evolutionary leftover without any function (140). 

In humans, TACI appears in two isoforms with the shorter isoform being the product 

of alternative splicing (140). The splicing variant results from the loss of exon 2 which 

codes the CRD1 of TACI and its replacement with a tryptophan (W) residue (140, 146). 

This leads to changes on the extracellular domain. TACI-long expresses both CRDs, while 

TACI-short only CRD2 (Figure 6). A study examined both isoforms of TACI as full length 

receptors expressed on the cell surface (146). That study discovered that human B-cells 

express both isoforms with the shorter isoform predominating in CD27+ B-cells, splenic 

marginal zone B-cells and TLR9-activated peripheral B-cells and that the shorter isoform 

seems to be more potent in inducing plasma cell differentiation. (146) Both isoforms of 

TACI were able to bind to BAFF and APRIL in transduced murine B-cells (146). 

 

 

Figure 6: Structure of sTACI isoforms 
Human sTACI long and short differ in the length of their extracellular domain. sTACI long 
expresses both CRD1 and CRD2. Alternative splicing in human TACI results in a short form only 
consisting of the CRD2. Illustration of the structure of both proteins was adapted from (146) 
supplementary material and the reported protein sequence for sTACI (93) and the TACI isoforms 
(140). 
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2. OBJECTIVE AND STRATEGY 
 

The aim of this thesis was to get a deeper insight into details of the BAFF-APRIL 

system that regulates B-cell survival. Specifically, features of both isoforms of human 

soluble TACI were analyzed. 

To this end, we produced the two soluble TACI isoforms recombinantly in HEK.EBNA 

cells. These proteins were analyzed by mass spectrometry and N-terminal sequencing 

and characterized for posttranslational modifications (N-linked glycosylation) with 

PNGase F assay. We determined then the MW with size exclusion chromatography (SEC) 

and static light scatter (SLS) coupled to SEC. We assessed the oligomerization by SEC, 

SLS, Western blot and Coomassie stained SDS-PAGE. Next, we investigated both 

soluble isoforms for their functionality within the BAFF/APRIL system. We tested them for 

their binding affinity for BAFF and APRIL by binding ELISA and their decoy function by 

NFκB assay. CRD1+CRD2-Fc, CRD1-Fc, CRD2-Fc, CRD1+CRD2-Fc-a, sTACI-short 

variants with differences in amino acid sequence N-terminal outside of CRD2, and SEC 

separated sTACI-long dimer and monomer were compared for binding affinity. Finally, we 

expressed both isoforms in their full-length form transiently in HEK293T cells and 

analyzed release of soluble receptors, ligand binding and homo- or heterotypic 

interactions. 
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3. MATERIAL AND METHODS 
3.1. MATERIAL  
3.1.1. GENERAL MATERIAL AND MACHINES 
 

The following Kits were used for cloning, measurement of the concentration of 

proteins and determination of MW: 

Table 1: Kits 

Kit Company 

Human TACI/TNFRSF13B DuoSet ELISA R&D Systems 

PierceTM BCA Protein Assay Kit Thermo scientific 

QIAquickTMGel Extraction Kit Qiagen GmbH 

Hispeed® Plasmid Maxi Kit Qiagen GmbH 

Hispeed® Plasmid Midi Kit Qiagen GmbH 

QIAprep® Spin Miniprep Kit Qiagen GmbH 

MinElute® PCR Purification Kit Qiagen GmbH 

Human BCMA/TNFRSF17 DuoSet ELISA R&D Systems 

Gel Filtration LMW Calibration Kit GE Healthcare Life Sciences 
 

Different cell lines that were used: 

Table 2: Cell lines 

Cell line Medium 

HEK293T DMEM-medium 

HEK293.EBNA FreestyleTM293 + Glutamin medium 
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 Different pipettes (Table 3) and consumables (Table 4) and general machines 

(Table 5) used in this thesis: 

Table 3: Pipettes 

Device Company 

Accu-jet® pro Brand® GmbH & Co. KG 

Eppendorf®Reference 2 Eppendorf AG 
 

Table 4: List of consumables 

Product Company 

pipet tips with/without filter  Kisker Biotech GmbH & Co. KG  

Eppendorf tubes Eppendorf AG 

Serological pipets Corning-Costar Corporation 

Cryotubes Kisker Biotech GmbH & Co. KG  

Cell culture plates Nunc® 

Nunc® 96-Well Polystyrene Conical 
Bottom MicroWellTMPlates 

Thermo scientific 

Costar® Assay plate Corning-Costar Corporation 

Corning® 96 well plates Corning-Costar Corporation 

Gloves B. Braun AG 

Steritop filter Merck Millipore  
 

Table 5: General Machines 

Machine Model Company 

Incubator Galaxy 170 S Eppendorf AG 

Hood B-(MxPro)^2-160 BERNER 
INTERNATIONAL GMBH 

Gel-electrophoreses XCell SureLock 
Mini-Cell 

Thermo scientific 

Centrifuge for small volumes Cetrifuge 5417R Eppendorf AG 

Centrifuge for big volumes and 
flow cytometry 

MULTIFUGE X3R 
centrifuge 

Thermo scientific 

Vortex Vortex-Genie 2 Scientific Industries 
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The ingredients of the Gel Filtration LMW Calibration Kit (Table 1): 

Table 6: Content of Gel Filtration LMW (low molecular weight) Calibration Kit  

Protein  Molecular weight 
(Mr) 

Stoke`s Radius1 
(Å) 

Source 

Aprotinin 6500 NA Bovine lung 

Ribonuclease A 13700 16.4 Bovine pancreas 

Carbonic Anhydrase 29000 NA Bovine 
erythrocytes 

Ovalbumin 44000 30.5 Hen egg 

Conalbumin 75000 NA Chicken egg white 

Blue Dextran 2000 Void volume 
 

Columns that were used for size exclusion chromatography (SEC) and static light 

scatter analysis (SLS): 

Table 7: Columns for size exclusion chromatography  

Column Geometric 
column 
volume 
(VC (ml)) 

Recommended 
sample volume 
(μl) during 
calibration 

Application Company 

HiLoad 16/60 
Superdex 75 pg 

120 500 SEC GE Healthcare 
Life Sciences 

Superdex 200 
Increase 10/300 GL 

24 25–500 SLS GE Healthcare 
Life Sciences 

 

 

3.1.2. CELLCULTURE MEDIA, BUFFER AND SOLUTIONS 
 

All buffers were filtered with 0.22 µm MILLIPORE Stericup® Vacuum filters (Merck 

Millipore) before usage. The buffers for protein production were additionally degassed. 

The pH was adjusted to 7.4 with NaOH and HCl if not stated otherwise. Double deionized 

water (dH2O) was generated with a Milli-Q System (Merck Millipore) and used for all 

buffers.  

 



  

18 
 

The following buffers and media were used for cell and bacteria culture: 

Table 8: Buffers for cell and bacteria culture 

Reagent Amount/concentration Company 

DMEM-medium   

DMEM 500 ml SIGMA-Aldrich® Co.LLC.  

FCS 10%  

P/S 1% GIBCO®  

RPMI-medium   

RPMI (1640) 500 ml SIGMA-Aldrich® Co.LLC  

FCS 10%  

P/S 1% GIBCO®  

Sodium pyruvate 1% GIBCO®  

L-Glutamine 1% GIBCO®  

Nonessential Amino acids 1% GIBCO®  

FreestyleTM293 + Glutamin medium   

FreestyleTM293+Glutamin 1 l GIBCO®  

G418/Geneticin 500 µl GIBCO®  

10%Pluronic® F-68 1% GIBCO®  

Kryo-medium   

FBS Superior 90% Merck Millipore 

DMSO 10% New England BioLabs, 
Inc. 

LB-Medium (1L) pH 7.5 => autoclaved  

Bacto-tryptone 10 g BD Biosciences 

Yeast extract 5 g BD Biosciences 

NaCl 10 g Merck Millipore  

LB-agar (dissolved in 1L LB-
medium) 

Dried => autoclaved  

Agar 15 g Thermo Scientific 

Ampicillin 100 µg/ml SIGMA-Aldrich® Co.LLC. 
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The following buffers were used for protein expression: 

Table 9: Buffers for protein production 

Reagent Amount/concentration Company 

Elution Buffer 1M 
Imidazol 

  

Imidazol 1 M Merck Millipore  

Nacl 0.5 M SIGMA-Aldrich® Co.LLC. 

Na2HPO4 20 mM Merck Millipore  

Elution Buffer without 
Imidazol 

  

Nacl 0.5 M SIGMA-Aldrich® Co.LLC. 

Na2HPO4 20 mM Merck Millipore  

5x Dialysis Buffer   

Na2HPO4 0.1 M Merck Millipore  

Nacl 2.5 M SIGMA-Aldrich® Co.LLC. 

Imidazol 50 mM Merck Millipore  

Cleaning Buffer   

NaOH 1 or 0.5 M SIGMA-Aldrich® Co.LLC. 

System Storage Buffer 1   

Ethanol 20% SIGMA-Aldrich®Co.LLC.  

System Storage Buffer 2   

 NaN3 0.01%  SIGMA-Aldrich® Co.LLC. 

Storage Buffer   

Na2HPO4 20 mM Merck Millipore  

Nacl 0.3 M SIGMA-Aldrich® Co.LLC.  
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The following buffers were used for Enzyme Linked Immunosorbent Assay 

(ELISA), flow cytometry, and Co-Immunoprecipitation (Co-IP): 

 

Table 10: Buffers for ELISA, flow cytometry and Co-IP 

Reagent Amount/concentration Company 

 ELISA  

Reagent Diluent   

PBS 500 ml GIBCO®  

BSA 1% SIGMA-Aldrich® Co.LLC.  

Stop Solution   

H2SO4 1 M Carl Roth®GMBH + 
CO.KG 

 FLOW CYTOMETRY  

Wash Buffer   

PBS 500 ml GIBCO®  

BSA 1% SIGMA-Aldrich® Co.LLC. 

 CO-IP  

Lysis Buffer   

NP-40 0.5% SIGMA-Aldrich® Co.LLC. 

HEPES Buffer (1M) 50 mM SIGMA-Aldrich® Co.LLC. 

Nacl 250 mM SIGMA-Aldrich® Co.LLC. 

EDTA 5 mM SIGMA-Aldrich® Co.LLC. 

Complete protease 
inhibitor mixture 

1 Tablet for 50 ml SIGMA-Aldrich® Co.LLC. 

TBS Buffer   

Tris Hcl (Trizma) 50 mM SIGMA-Aldrich® Co.LLC. 

Nacl 150 mM SIGMA-Aldrich® Co.LLC. 

Elution Buffer   

Glycine 1 M (pH = 3) SIGMA-Aldrich® Co.LLC. 

Neutralization Buffer   

Trizma base/Hcl 1 M (pH= 9) SIGMA-Aldrich® Co.LLC. 
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3.1.3. PRIMERS, VECTORS AND INSERTS USED FOR CLONING  
 

The following oligonucleotides were synthesized by Metabion (Table 11). The 

vectors used for cloning are shown in Table 12.  

 Table 11: Primers for cloning 

Primer Sequence 5`→3` Application 

TACI Nhe 1 
secretion-tag 
forward 

ATTAGCTAGCATGGAGACCGACACCCTGCT
GCTGTGGGTGCTGCTGCTGTGGGTGCCCG
GCAGCACCGGCGACGCCGCCATGAGTGG
CCTGGGCCGG 

soluble TACI 
isoforms 

TACI Xba 1 
secretion-tag 
forward I 

ATTATCTAGAATGGAGACCGACACCCTGCT
GCTGTGGGTGCTGCTGCTGTGGGTGCCCG
GCAGCACCGGCGACGCCGCCATGAGTGG
CCTGGGCCGG 

soluble TACI 
isoforms 

TACI Not 1 His6-
tag reverse  

ATTAGCGGCCGCTCAGTGGTGGTGGTGGT
GGTGCCCCCCCTTCAGCCCCGGGAGAG 

soluble TACI 
isoforms 

TACI Xba 1 
secretion-tag 
forward II 

ATTATCTAGAATGGAGACCGACACCCTGCT
GCTGTGGGTGCTGCTGCTGTGGGTGCCCG
GCAGCACCGGCGACGCCGCCTCACTCAGC
TGCCGCAAG 

soluble TACI 
isoforms 

TACI Nhe 1 HA- 
tag forward  

ATTAGCTAGCAATGTACCCATACGATGTTC
CAGATTACGCTAGTGGCCTGGGCCGG 

CO-IP 

TACI Nhe 1 
FLAG®- tag 
forward  

ATTAGCTAGCAATGGATTACAAGGATGACG
ATGACAAGAGTGGCCTGGGCCGG 

CO-IP 

TACI Not 1 
reverse  

ATTAGCGGCCGCTTATGCACCTGGGCCCC
C 

CO-IP 

PTT5 forward 
 

GGGGTGAGTACTCCCTCTCAAAAGC Sequencing 

PTT5 reverse 
 

GGGGCAGAGATGTCGTAGTCAGG Sequencing 

CMV forward 
 

CGCAAATGGGCGGTAGGCGTG Sequencing 

TACI forward CAGACAACTCGGGAAGG  Sequencing 

TACI reverse TGGCAGGAGCAGGGATC  Sequencing 
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Table 12: Vectors for cloning 

Vector Resistance Origin 

PTT5 Ampicillin Judy King Man Ng 

pcDNA3.1(+) Ampicillin, Puromycin AG Lichtenthaler 
 

Several tags were added to the constructs during cloning: 

Table 13: tag 

Tag DNA sequence 

His6-tag GGGGGGCACCACCACCACCACCACTGA 

HA-tag TACCCATACGATGTTCCAGATTACGCT 

FLAG®-tag GATTACAAGGATGACGATGACAAG 

secretion-tag ATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTGCTGT
GGGTGCCCGGCAGCACCGGCGACGCCGCC 

 

These restriction enzymes were used for all cloning processes: 

Table 14: Restriction enzymes 

Name of restriction 
enzyme 

Target sequence 
5` → 3` 

Temperature and 
buffer 

Company 

Nhe 1 HF GCTAGC NE CUT SMART 
BUFFER 37 °C 

New England 
BioLabs, Inc. 

Not 1 HF GCGGCCGC NE CUT SMART 
BUFFER 37 °C 

New England 
BioLabs, Inc. 

Xba 1 TCTAGA NE CUT SMART 
BUFFER 37 °C 

New England 
BioLabs, Inc. 

 

All plasmids that were used for the experiments are summarized in Table 15 for 

TACI plasmids and Table 16 for non-TACI plasmids. 

Table 15: TACI plasmids  

Plasmid Resistance Origin 

TACI-long in pcDNA3.1(+) Ampicillin, Puromycin Franziska S. Thaler 

TACI-short in pcDNA3.1(+) Ampicillin, Puromycin Franziska S. Thaler 

sTACI-long in PTT5 Ampicillin Miriam Fichtner 
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sTACI-short in PTT5 Ampicillin Miriam Fichtner 

sTACI-short (W-68-154) in 
PTT5 

Ampicillin Miriam Fichtner 

TACI-long HA-tag in 
pcDNA3.1(+) 

Ampicillin, Puromycin Franziska S. Thaler 

TACI-long FLAG-tag in 
pcDNA3.1(+) 

Ampicillin, Puromycin Franziska S. Thaler 

TACI-short HA-tag in 
pcDNA3.1(+) 

Ampicillin, Puromycin Miriam Fichtner 

TACI-short FLAG-tag in 
pcDNA3.1(+) 

Ampicillin, Puromycin Miriam Fichtner 

 

Table 16: Non-TACI plasmids  

Plasmid Resistance Origin 

Renilla-Luciferase Ampicillin AG Rothenfusser 

Firefly-Luciferase Ampicillin AG Rothenfusser 

BCMA full length Ampicillin OriGene Technologies, Inc. 

BCMA FLAG®-tag in pCMV Ampicillin Sarah Laurent 

 

3.1.4. GELS, DYES AND BUFFERS FOR SDS-PAGE AND COOMASSIE 
STAINING 

 

The following materials were used for SDS-PAGE applications: 

Table 17: Material for SDS-PAGE 

Gels Company 

Novex® Bis-Tris 6-12 % InvitrogenTM 

Novex® Tricine 10-20 % InvitrogenTM 

LOADING DYES  

NuPAGE® LDS Sample Buffer (4X) InvitrogenTM 

Novex® Tricine SDS Sample Buffer (2X) InvitrogenTM 

RUNNING BUFFERS  

Novex® Tricine SDS Running Buffer (10X) InvitrogenTM 
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Novex® Tricine SDS Running Buffer (10X) InvitrogenTM 

MOPS SDS Running Buffer (20X) InvitrogenTM 

SAMPLE REDUCING AGENT  

NuPAGE® Sample Reducing Agent (10X) InvitrogenTM 
 

The following buffers were used for Coomassie staining: 

Table 18: Buffers for Coomassie staining 

Reagent Concentration Company 

Coomassie blue solution   

(w/v) Coomassie brilliant-
blue R-250  

0.1% SERVA Electrophoresis 
GmbH 

Methanol 40% SIGMA-Aldrich® Co.LLC. 

Acetic acid 10% SIGMA-Aldrich® Co.LLC. 

Destain solution   

Methanol 50% SIGMA-Aldrich® Co.LLC. 

Acetic acid 7% SIGMA-Aldrich® Co.LLC. 

Storage solution   

Acetic acid 10% SIGMA-Aldrich® Co.LLC. 
 

3.1.5. ANTIBODIES AND FLUOROCHROMES  
 

The following antibodies were used for Western blot (Table 19), Co-IP/Binding 

ELISA (Table 20) and flow cytometry (Table 21): 

Table 19: Antibodies for Western Blot 

Antibody Company Application Clone 

Monoclonal 
TACI/TNFRSF13B Anti-
human produced in 
mouse (IgG1)  

R&D Systems primary antibody 165609 

Anti-mouse IgG (H+L) 
HRP conjugated 
produced in goat 

Promega GmbH Western blot, 
secondary antibody 

polyclonal 
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Table 20: Antibodies for Co-IP and Binding ELISA 

Antibody Company Application Clone 

Monoclonal Anti-FLAG® 
M2 – Antibody produced 
in mouse (IgG1) 

SIGMA-Aldrich® 

Co.LLC. 
Co-IP (capture Ab), 
Binding ELISA 
(capture Ab) 

M2, 
monoclonal 

Monoclonal Anti-HA.11 
Epitope Tag produced in 
mouse (IgG1) 

BioLegend Co-IP (capture Ab) HA-7, 
monoclonal 

 

Table 21: Antibodies for flow cytometry 

Antibody Company Application Clone 

Monoclonal Anti-FLAG® 
M2 – Antibody produced 
in mouse (IgG1) 

SIGMA-
Aldrich® 

Co.LLC. 

primary antibody 
for binding studies 

M2, monoclonal 

Monoclonal 
TACI/TNFRSF13B Anti-
human produced in 
mouse (IgG1)  

R&D Systems primary antibody 
for expression 

165609, 
monoclonal 

Polyclonal Anti-mouse 
Immunoglobulins/RPE 
produced in goat 

Dako secondary 
antibody 

polyclonal 

 

The fluorochromes that were used for flow cytometry had the following excitation 
and emission values: 

Table 22: Fluorochromes for flow cytometry 

Fluorochrome Excitation Emission 

Phycoerithrin (PE) 565 nm 575 nm 

TO-PRO®-3 Iodide 
(InvitrogenTM) 

642 nm 661 nm 
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3.2. METHODS 
3.2.1. GENERAL METHODS 
3.2.1.1. AGAROSE GEL ELECTROPHORESIS 
 

Agarose gel electrophoresis was used to determine the size, yield and purity of 

PCR products and to scan for positive clones. DNA has a negative net charge and thus 

can be run in an electrical field. Agarose is used as matrix. 

1% Agarose gels in TAE buffer were cast into a self-assembled mold with a comb 

suitable for the ongoing application. Peqgreen DNA/RNA Dye (PEQLAB Biotechnologie 

GmbH) was added in a ratio of 4-6 µl per 100 ml Agarose to the solved gel at 55 °C before 

decanting it to the mold to make DNA bands visible. 2-Log DNA Ladder (New England 

BioLabs, Inc.) was used as a size standard that spans a range from 0.1-10.0 kb. The 

bands consisting of the expected DNA fragments were cut after electrophoresis during 

UV light exposure (λ = 254-366 nm) in a UV light box and stored at -20 °C or purified 

immediately. 

 

3.2.1.2. SPECTROPHOTOMETER 
 

DNA and protein concentrations were measured with a UV-based spectroscopy 

named Nanodrop (Nanodrop 2000, Thermo scientific). Small volumes of sample (1-2 µl) 

were tested by spectrophotometry. The system measures the absorbance (Equation 1) 

of the sample with the blanking value as basis and uses the Beer-Lambert equation 

(Equation 2) to correlate the absorbance to the concentration: 

 

���������	 =  −
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� 

Equation 1: Absorbance 
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Equation 2: Beer-Lambert 

 

(A = absorbance (A=absorbance units), Ɛ = extinction coefficient, b = path length (cm), c = concentration 
(M))  

 

The absorbance (optical density (OD)) was measured at 260 nm for DNA 

molecules and 280 nm for proteins.  

 

3.2.1.3. SDS-PAGE AND COOMASSIE BRILLIANT BLUE STAINING 
 

Sodium dodecyl sulfate (SDS)-PAGE gels were used to analyze proteins for their 

size, oligomerization, and purity. SDS, the matrix of the gel, lead in combination with 

sample reducing agent (50 mM DTT) and heat denaturation (95 °C for 5 min) to 

denaturation of proteins. Electrophoresis was performed at 70-100 V. Novex® sharp 

prestained Protein Standard (Thermo scientific) that spans a range of 3.5-260 kDa was 

used as size standard. Bis-Tris gels (6-12%) were used to check for protein fractions after 

affinity purification (Table 17). Tricine gels were used for analytical purposes such as 

Western blot (Table 17). After gel-electrophoresis the gel was incubated for 20-30 min in 

Coomassie blue solution (Table 18). Next, destain solution (Table 18) was applied and 

exchanged several times for at least 1 h. To decrease the amount of background staining 

the gel was then incubated in storage solution Table 18 overnight. Analysis was done by 

Odyssey Fc (LI-COR Biosciences) with 700 nm. All steps were carried out at room 

temperature. 

 

3.2.1.4. WESTERN BLOT 
 

Western blot was used to identify proteins after SDS-PAGE. 300-750 ng of Protein 

were loaded on a Tricine gel and run at 70-100 V. The gel was blotted semi dry 

(Amersham pharmacia biotech EPS 3501 XL; GE Healthcare Life Sciences) on a 
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polyvinylidene difluoride (PVDF) membrane (GE Healthcare Life Sciences) for 1.5 h at 60 

mA to transfer the proteins. PBST (0.05% Tween® 20 (Bio-Rad Laboratories GmbH) in 

PBS, pH 7.2-7.4) with 5% milk powder (blocking solution) was used to block the 

membrane for 1 h at room temperature to prevent unspecific binding of the detection 

antibodies to areas where no proteins were transferred. The primary antibody (Table 19), 

diluted in PBST with 5% BSA Fraction V (SERVA Electrophoresis GmbH) to a 

concentration of 1 µg/ml) was added and the membrane was incubated over night at 4 °C. 

All incubation and washing steps were carried out on a shaker. 12-18 h later the primary 

antibody that was not specifically bound to the proteins on the membrane was removed 

by washing the membrane three times with PBST for 10 min at room temperature. Then, 

the membrane was incubated with the secondary antibody that was conjugated with 

horseradish peroxidase (HRP) (Table 19), diluted in PBST with 5% milk powder to a 

concentration of 0.4 µg/ml for 2 h. After incubation the unspecific bound secondary 

antibody was removed with the same washing steps that were used to remove the primary 

antibody. ECL Western Blotting Substrate (Merck Millipore or Pierce™) was applied and 

the membrane was analyzed by Odyssey Fc (LI-COR Biosciences) with 700 nm for the 

marker and the chemiluminescence channel for the light reaction (400-700 nm).  

 

3.2.1.5. ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)  
 

Enzyme-linked immunosorbent assay (ELISA) is a quantitative immunoassay. The 

antigen concentration correlates to the substrate turnover caused by an enzyme (for 

example HRP). A dilution series with known concentrations of the measured antigen is 

used to generate a standard curve. The standard curve can be used to calculate 

concentrations of the applied sample.  

An ELISA starts with coating a plate with a capture antibody (Table 20). After 

blocking the plate the antigen is incubated. A detection antibody is added. Either the 

enzyme for the later color reaction is directly bound to the detection antibody or added in 

an additional step (Figure 7).  
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Figure 7: Principle of ELISA 
After coating a plate with a capture antibody, an antigen is added. The antigen gets detected by a 
detection antibody. A color reaction is used to measure the reaction. Adapted from (93) 

 

sTACI and sBCMA ELISA Kits from Table 1 were used to determine the 

concentration of samples prior to consecutive experiments. In both ELISAs the secondary 

antibody was coupled with biotin. Horseradish peroxidase (HRP) conjugated to 

streptavidin was added in a next incubation step. Streptavidin and biotin are able to form 

a strong bond (147). Substrate solution (Mix A (H2O2) and Mix B (Tetramethylbenzidine) 

in a ratio of 1:1) was added and after 20 min incubation the reaction was stopped by the 

addition of stop solution (1 M H2SO4). The peroxidase reaction with tetramethylbenzidine 

and HRP was detected by photometry. Both ELISAs were read out with Victor2 1420 

Multilabel Counter (Perkin Elmer) with 450 nm for the absorbance and 540 nm for the 

background from the plate.  
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3.2.1.6. BICINCHONINIC ACID (BCA) ASSAY 
 

Bicinchoninic acid assay (BCA) was used to determine protein concentration after 

protein expression. Two chemical reactions comprise the basis for this method. First, the 

peptides of the protein lead to the reduction of Cu2+ to Cu+ ion of the substrate Copper(II) 

sulfate pentahydrate. This reaction correlates to the amount of protein that is measured. 

A second reaction detects the Cu+ ions. Bicinchoninic acid is added which is able to form 

a chelate with Cu+ ion which can be detected by a purple color reaction. The BCA assay 

was read out at 540 nm with Victor2 1420 Multilabel Counter (Perkin Elmer). 

 

3.2.1.7. TRANSFECTION  
 

Transfection of cells was performed using lipofection, which is a chemical 

transfection method. Lipofectamine 2000 (Thermo scientific) was used as transfection 

reagent. During the transfection process, first the DNA is enveloped in a lipid shell. This 

lipid shell interacts with the cell membrane which leads to an integration of the DNA into 

the cell. 

For flow cytometry, HEK293T cells were plated at a concentration of 200.000 cells 

per ml in a 96 well Costar plate. The cells were transfected at a confluency of 70% with 5, 

10, 25, 50 or 100 ng of TACI-short or TACI-long plasmid. For the NFκB assay, HEK293T 

cells were plated at a concentration of 200.000 cells per ml in a 96 Costar plate and 

transfected at a confluency of 70% with Firefly-Luciferase (40 ng per well), Renilla-

Luciferase (40 ng per well) and BCMA (2.5 ng per well). For Co-Immunoprecipitation (Co-

IP) HEK293T cells were plated at a concentration of 300.000 cells per ml in a 10 cm dish. 

At a confluency of approximately 70% the cells were transfected with 10 µg of TACI-long, 

TACI-short and BCMA plasmids containing an N-terminal FLAG- and/or HA-tag. 48-72 h 

after transfection supernatants were harvested and cell lysates were obtained.  
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3.2.1.8. HARVEST OF SUPERNATANTS  
 

Different methods were applied to purify and separate proteins of interest from cell 

culture media. These methods were based on separation through centrifugation. For small 

volumes of up to 2 ml and supernatants from assays with HEK293T cells the proteins 

were harvested and centrifuged two times at 400 g at 4 °C for 7 min and one time for 

20.000 g at 4 °C for 30 min. The supernatants were stored at -20 °C. For bigger volumes 

like for example during the Co-IP assay the last step of centrifugation was carried out at 

4122 g for 30 min. During production of proteins with HEK293.EBNA cells the 

supernatants were harvested 72 h after transfection. The cell/supernatant mix was 

centrifuged once at 1200 rpm for 5 min at 4 °C. The supernatant was centrifuged a final 

time for 2500 rpm for 20 min at 4 °C followed by filtration with 0.22 µm MILLIPORE 

Stericup® Vacuum filter system (Merck Millipore). The supernatant was stored at 4 °C 

before application of the next steps. 

 

3.2.1.9. CELL LYSIS 
 

For NFκB assay the cells needed to be lysed to measure luciferase reaction. The 

cells were lysed with passive lysis buffer from Promega. The lysis buffer was diluted with 

distilled H2O in a ratio of 1:5. The cell culture media was removed and 50 µl of the lysis 

buffer was added. Everything was incubated for 10 min on a shaker at room temperature. 

For Co-IP the cells were washed with PBS and centrifuged once for 7 min at 400 g to 

eliminate cell culture medium residues. The cells were then lysed in 1.8 ml lysis buffer 

(Table 10) and stored for 30 min on ice. After cell lysis the lysates were centrifuged one 

time for 10 min at 14.000 rpm. The lysate aliquots were stored at -80 °C.  
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3.2.2. MOLECULAR CLONING 
3.2.2.1. AMPLIFICATION AND PURIFICATION OF THE INSERT 
 

In general, plasmids, genomic DNA or cDNA can be used as templates for 

polymerase chain reaction (PCR) during cloning. For this thesis, the plasmids TACI-short 

and TACI-long in PCDNA3.1 vector were used as template and these DNA sequences 

were amplified by PCR. The different steps of the PCR protocol used for all experiments 

are described in Table 24 and the different reagents of the PCR mixture in Table 23.  

The following general PCR mixture (Table 23) and standard protocol (Table 24) 

was used for all constructs: 

Table 23: PCR mixture 

Amount in µl Reagents Company 

31 H20 InvitrogenTM 

10 5x GC Puffer New England BioLabs, Inc. 

1 dNTPs (10 mM) Fermentas 

2.5 Reverse primer (10 µM) Metabion 

2.5 Forward primer (10 µM) Metabion 

1 Template (10 ng) - 

1.5 DMSO 100 % New England BioLabs, Inc. 

0.5 Phusion HF DNA Polymerase New England BioLabs, Inc. 
 

Table 24: Polymerase chain reaction protocol 

PCR step Temperature Time 

Denaturation 95 °C 30 s 

Primer Annealing 95 °C 15 s 

Elongation 72 °C 2 min 

 The first three steps were 
repeated 38 times 

 

Final Elongation 72 °C 7 min 

Final hold 4 °C Infinitely 
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Several tags and restriction sites were added to the DNA sequences during cloning 

(Table 13). For the creation of the sTACI-long and sTACI-short the signal peptide of the 

Ig kappa chain was added at the N-terminus of the proteins to ensure the secretion of the 

proteins. Moreover, a His6-tag consisting of the sequence for six consecutive histidines 

was added at the C-terminus for affinity purification with Nickel columns. The resulting 

DNA was inserted into vectors suitable for the destined application (Table 12). The 

plasmids for Co-IP were cloned with either a HA- or FLAG®-tag on the N-terminal side. 

The restriction enzymes (Table 14) and corresponding sites were chosen with the help of 

NEBcutter V2.0 and the sequences were added during PCR. After PCR the products were 

analyzed by agarose gel electrophoresis. After electrophoresis, the desired bands were 

cut. The DNA was purified with the QIAquickTMGel Extraction Kit (Qiagen GmbH) and 

stored at -20 °C. The concentration was measured with Nanodrop (Thermo scientific). 

 

3.2.2.2. DIGESTION OF INSERT AND VECTOR WITH RESTRICTION ENZYMES 
 

To generate sticky ends both the vector and insert DNA were incubated for 1-3 h 

with restriction enzymes at 37 °C (Table 14). In the last hour of digestion, the vector was 

dephosphorylated by adding calf intestine alkaline phosphatase (CIAP). The vector was 

loaded on a DNA gel and consecutively cut and purified using the QIAquickTMGel. 

MinElute columns (Qiagen GmbH) were used instead of the columns of the QIAquick Kit 

(Qiagen GmbH) to concentrate the sample to a smaller volume. The insert was purified 

using the MinElute® PCR Purification Kit (Qiagen GmbH). Both products were stored at 

– 20 °C before ligation. 

 

3.2.2.3. LIGATION 
 

Ligation was executed for 1 h at room temperature or overnight at 16 °C using the 

T4 DNA Ligase and the T4 DNA Ligase buffer containing ATP (New England BioLabs, 

Inc.). As a control one condition was comprised of only digested vector to test for self-

ligation.  
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3.2.2.4. TRANSFORMATION OF E. COLI, BACTERIAL CULTURE AND PLASMID 
DNA PURIFICATION 

 

After ligation the samples were transformed into E. coli (NEB® 5-alpha Competent 

E. coli) using heat shock transformation. The tube containing the frozen E. coli was thawed 

on ice for 10 min. Afterwards, around 100 ng of plasmid was added and mixed with the E. 

coli carefully. The E. coli and plasmid were then incubated for 30 min on ice, before heat 

shock was performed at 42 °C for 90 s. After Heat shock treatment the E. coli had a last 

cooling step on ice for 5 min. SOC medium was added to cooled down E. coli and the 

mixture was incubated for 1 h at 37 °C in a bacteria shaker at 250 rpm. Finally, the 

transformed bacteria were centrifuged at 4000 rpm for 5 min and dissolved in 100 µl 

Medium and then applied to preheated selection plates containing ampicillin. All vectors 

used contained ampicillin resistance. The plates were incubated overnight in a 37 °C 

bacteria incubator. The next day clones were picked and incubated for one day in 2 ml LB 

medium with addition of ampicillin in a ratio of 1:1000 to prevent unspecific growth of other 

bacteria. The following day DNA was purified using the QIAprep® Spin Miniprep Kit 

(Qiagen GmbH). 1 µg of DNA was digested with the identical restriction enzymes that 

were used to clone the construct for 1 h at 37 °C and then loaded on a DNA gel to check 

for positive clones. 

 

3.2.2.5. SEQUENCING 
 

After cloning the clones that were screened as positive, were analyzed and verified 

with Sanger sequencing by the LMU Sequencing Service. The method Big Dye v.3.1. 

cycle, clean and run was selected for the control of the sequence of the insert. 
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3.2.3. EXPRESSION OF PROTEINS AND CONSECUTIVE AFFINITY 
PURIFICATION  

3.2.3.1. PROTOCOL FOR TRANSFECTION  
 

HEK293.EBNA cells were transfected with Polyethyleneimine reagent (PEI, 

SIGMA-Aldrich® Co.LLC.) at a concentration of 1x106 cells/ml. First, the plasmid DNA-lipid 

complexes were prepared in Optipro Medium (GIBCO®). 1 µg of Plasmid was used per 

106 cells. PEI was applied at a concentration of 2 µg per 106 cells. After an incubation 

period of 20-30 min at room temperature the plasmid DNA-lipid complexes were added to 

the cells and then everything was placed into the Pro incubation shaker (Multitron) at 5% 

CO2 and 37 °C. 12-24 h later 5% Lactalbumin (SIGMA-Aldrich® Co.LLC.) was added to 

feed the cells.  

 

3.2.3.2. DIALYSIS AND FILTRATION OF SUPERNATANTS 
 

The supernatants were dialyzed with 8 kDa Spectra/Por®6 Dialysis Membrane 

(sTACI-long) or 3.5 kDa Spectra/Por®7 Dialysis Membrane (sTACI-short, sTACI-short (W-

68-154)). The supernatants were dialyzed at 4 °C for 24 h in 1x dialysis buffer (Table 9) 

while rotating on a magnetic stirrer. The buffer was exchanged every 8 h and in total three 

times. Finally, the supernatant was filtered with 0.45 µm MILLIPORE Stericup® Vacuum 

filter system (Merck Millipore) and stored at 4 °C before application to the column. 

 

3.2.3.3. AFFINITY PURIFICATION WITH HISTRAP COLUMNS  
 

Affinity purification or affinity chromatography was used to extract the recombinant 

proteins from the supernatant. The His6-tag that was added C-terminally to the soluble 

TACI isoforms during cloning was used for purification with HisTrap nickel columns 

(HisTrap HP (1 ml), GE Healthcare) on the ÄKTATM START (GE Healthcare). The His6-

tag was added as it can form a chelate with the nickel ions of the used columns. Later 

Imidazole was used to elute the specifically bound proteins. Imidazole competes with 
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His6-tags for the binding to Nickel. Increasing amounts of Imidazole can remove the 

proteins and clean the column. 

Firstly, the HisTrap column was washed with Millipore H2O to remove the storage 

buffer from the column (20% ethanol). Then 1x dialysis buffer (Table 9) was added to 

equilibrate the column to the sample milieu. Depending on the volume of the supernatant, 

the column was either directly loaded with the ÄKTA STARTTM for small volumes or 

overnight with the LKB Pump P-1 Peristaltic Pump (Pharmacia) in the cold room at 4 °C 

for high volumes. After sample application one last washing step was carried out with 1x 

dialysis buffer to get rid of unspecifically bound proteins. The elution step was performed 

with an Imidazole gradient ranging from 0.01–1 M. Eluted proteins were dialyzed against 

the storage buffer (Table 9) with 3,500 MWCO Slide-A-Lyzer Dialysis cassettes (Thermo 

scientific) to avoid protein aggregation upon freezing. 

 

3.2.4. CHARACTERIZATION OF THE PROTEINS 
3.2.4.1. PNGASE F DIGESTION AND TEST FOR DIVALENT ION-HIS6-TAG 

INTERACTION  
 

Glycosylation of the proteins was tested with the enzyme PNGase F (New England 

BioLabs, Inc.). PNGase F is an amidase able to cleave N-linked sugars from glycoproteins 

and glycopeptides when Asn-oligosaccharides are present (148). The sTACI isoforms 

were incubated with glycoprotein denaturation buffer and then denatured for 10 min at 

100 °C. The mixture was chilled on ice and then centrifuged for 10 s. Next, Glycobuffer, 

10% NP-40 and distilled water were added. In the final step PNGase F was added and 

incubated for 1 h at 37 °C. Controls consisted of several conditions with and without 

PNGase F and non-treated protein that only followed the temperature regime. hMOG 

which is known to be N-linked glycosylated was used as a positive control. Western blot 

was used to analyze the results.  

His6-tagged proteins are susceptible to aggregation caused by divalent metals 

such as nickel and cobalt. During purification this mechanism is used to purify the 

recombinant proteins from other proteins that are co-produced during protein synthesis. 

Divalent Nickel ions sometimes can be washed of the purification column and lead to 

protein aggregation through building chelates with His6-tag purified proteins. To exclude 
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an artificial interaction of the His6-tags of the recombinant proteins` with eluted nickel ions 

100 mM EDTA with a pH of 7.5 was added to the proteins and incubated for 1-2 h at room 

temperature in order to sequester possible nickel ions. Several conditions with or without 

DTT and with or without EDTA were tested. 

 

3.2.4.2. MASS SPECTROMETRY AND N-TERMINAL SEQUENCING 
 

Mass spectrometry can be used to identify and to provide sequence information of 

different protein bands after gel-electrophoresis. Therefore, the bands of interest were 

accurately cut from the gel, stored in distilled water and then processed by Reinhard 

Mentele (Institute of Clinical Neuroimmunology, LMU) at the MPI and the Biomedical 

Center (BMC) of the LMU. Trypsin digestion was used for all affinity purified proteins. The 

N-terminal part of the proteins can be analyzed by N-terminal sequencing. After running 

the proteins through gel electrophoresis to separate the different fractions by size the 

proteins were transferred semidry to a polyvinylidene difluoride (PVDF) membrane. The 

membrane was consecutively stained for 3-4 min with Coomassie brilliant blue, destained 

for 10 min with destain buffer and washed 10 min with distilled water. After cutting the 

bands of interest, the bands were air dried. The analysis was carried out by Reinhard 

Mentele at the MPI and the BMC of the LMU. 

  



  

38 
 

3.2.4.3. SIZE EXCLUSION CHROMATOGRAPHY  
 

Size Exclusion Chromatography (SEC/Gel-filtration) was used to determine the 

molecular weight of both sTACI isoforms and to figure out whether the proteins form 

oligomers. Additionally, it was used to obtain the different fractions of the sTACI isoforms 

by size exclusion. SEC was carried out in collaboration with Prof. Michaela Smolle 

(Department of Physiological Chemistry, LMU). The columns for gel-filtration are filled with 

gel beads that are characterized by holes and an internal gel matrix. Big proteins cannot 

enter the beads and thus run through the column with high velocity. This fraction 

represents the void volume. Consequently, proteins can be separated by size as small 

proteins need longer to run through the column than bigger proteins (Figure 8).  

 

 

Figure 8: Principle of size exclusion chromatography 
Proteins run through a column filled with Gel beads (a-d). Holes and an internal Gel matrix 
characterize these Gel beads. While running through the column bigger proteins (blue) which 
cannot enter the Gel matrix run through the column without delay and are eluted earlier than 
smaller proteins (red) who have to go through the holes of the Gel beads and Gel matrix. (b-e) 
Proteins can be divided by size and separated in different fractions through SEC as indicated in 
the tubes below. (b-e) A chromatogram shows the different fractions. (e) Picture taken from (149) 
page 139. 
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First, the proteins were concentrated to approximately 3-10 mg/ml with Amicon® 

Ultra centrifugal filters (Ultracel® - 3K). Before application to the column the concentrated 

proteins were centrifuged at 14 000 rpm for 5 min at 4 °C to decrease the amount of 

aggregated protein. The column (Table 7) was equilibrated with exchange buffer over 

night with the ÄKTATM PURE (GE Healthcare) at 4 °C before loading approximately 500 

µl of concentrated protein. During the run, the equilibrated machine measured the volume 

of buffer that went through its system together with data concerning the UV-absorbance 

of the fluid. The volume was important for later calculations of the MW. For this calculation 

the elution volume of each fraction was needed. Finally, the separated fractions were 

collected and then further analyzed by SDS-PAGE. After the run the column was cleaned 

wit 0.5 M NaOH and the ÄKTATM PURE system and columns were stored in H2O with 

0.01% sodium azide. 

Additionally, a series of standard proteins was run under the identical conditions. 

The elution volume of each protein was used to calculate the partition coefficient (Kav) 

with the following equation (Equation 3). 

 
 

��� =   	 −  �
 � −  �      

Equation 3 : Partition coefficient 
 

(Vo = column void volume, Ve = elution volume, Vc = geometric column volume, Kav = partition coefficient)  

The calibration curve was then determined by the Kav of the standard proteins on 

the x-axis and the given logarithm of MW of the standard proteins on the y-axis. Size 

standard and Void volume were compiled using the Low Molecular Weight (LMW) Gel-

filtration Calibration Kit (Table 6). Blue Dextran was used to determine the void volume. 
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3.2.4.4. STATIC LIGHT SCATTER COUPLED TO SIZE EXCLUSION 
CHROMATOGRAPHY  

 

Another method to determine the molecular weight of proteins is static light scatter 

(SLS) coupled to SEC. Molecules and Particles can be characterized by the properties 

they show when they are hit with light. Molecules absorb the energy from the light and 

then reemit the energy in all directions (Figure 9). All SEC and SLS/SEC experiments 

were carried out in collaboration with Prof. Michaela Smolle (Department of Physiological 

Chemistry, Ludwig-Maximilian University) at the LMU BioPhysics Core Facility. 

 

 

 

Figure 9: Principle of static light scatter detection 
Directly after gel-filtration proteins run through the flow cell. Light from the laser enters the cell and 
is detected at 90° (RALS = Right-angle light scattering) and at a low angle for example 7° (LALS 
= low-angle light scattering). Figure adapted from (150). 

 

The Rayleigh equation combines the size, MW and intensity of the scattered light 

and is the foundation of static light scatter analysis (Equation 4). The refractive index 

detector (RI) measures the concentration of proteins.  
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The Rayleigh equation is defined as: 

!"
#$

= % &
' + )*)"+ &

,$   
 

Equation 4: Equation of Rayleigh 
 
(K = Optical constant, C = Concentration, M = Molecular weight, Rθ = Rayleigh ratio, A2 = 2nd Virial 
coefficient, P(θ) = Shape (or form) factor) 
 

 With Optical constant K defined as: 
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Equation 5: Optical constant K 

(λo= laser wavelength, NA= Avogadro’s number, no =Solvent RI, dn/dc = differential RI increment)  
 

With Rayleigh ratio Rθ defined as: 
 

67 = 84�1/

89�9/ 69  
 

Equation 6: Rayleigh ratio Rθ 
 
(IA = intensity of analyte (sample I – solvent I), no = solvent RI,IT = intensity of standard (toluene),nT = 
standard (toluene) RI,RT = Rayleigh ratio of standard (toluene)) 
 
 
 

With Shape factor Pθ defined as:  
 

1
;7 = 1 + 16./�1/6=/
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Equation 7: Shape factor Pθ 

 
(n0 = refractive index of the solvent, λ0 = laser wavelength in a vacuum, Rg = Radius of gyration, θ = 
Measurement angle) 
 
 

After acquiring all data - including the intensity of the scattered light- the MW of the 

sample can be calculated. The sTACI-long and sTACI-short proteins were applied to a 

Superdex 200 Increase 10/300 GL column and run through the ÄKTA PURE® to separate 

the different fractions by SEC. The same concentration that had been used previously for 
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SEC was added to the column, after determining and verifying the optimal amount for SLS 

analysis with a dilution series of bovine serum albumin fraction V (SIGMA-Aldrich® 

Co.LLC.). The range was about 1-3 mg/ml. The separated fractions were directly run 

through the OMNISEC REVEAL (Malvern) instead of being eluted in contrast to SEC. The 

whole OMNISEC REVEAL system was equilibrated prior with 1x storage buffer to the 

sample milieu. BSA was used to equilibrate the static light scatter system as standard 

protein for the later MW calculations. Some of the proteins from the Low Molecular Weight 

(LMW) Gel-filtration Calibration Kit were used as a positive control (Table 6).  

 

3.2.4.5. CO-IMMUNOPRECIPITATION 
 

Immunoprecipitation (IP) is used to concentrate and isolate antigens from a 

solution with the help of antibodies. Co-Immunoprecipitation (Co-IP) is an advancement 

of this method. Co-IP is used to analyze protein-protein interactions with the use of a 

target protein. The target protein is isolated and concentrated through IP. Proteins that 

interact with the target protein and form complexes can be detected after IP.  

FLAG®-tagged beads (ANTI-FLAG® M2 Magnetic Beads, Sigma Aldrich) were 

resuspended and separated into 1.5 ml tubes. To remove the storage buffer the beads 

were washed five times with TBS Buffer using a magnetic separator (Table 10). The cell-

lysates and supernatants were added sequentially in 1 ml steps and each time incubated 

for 1.5 h or overnight at 4 °C while rotating and shaking. Different amounts of protein were 

loaded between the supernatant and cell-lysates. Within the group of supernatants and 

the group of cell-lysates every condition had the same amount of protein applied. The 

supernatants were separated from the beads with a magnetic separator at the end of 

every incubation period and discarded. After application of the sample, the beads were 

washed five times with TBS Buffer to eliminate proteins that where not directly bound to 

the beads. The elution was done under acidic conditions by incubation with glycine (1 M 

pH 3) for 20 min at 56 °C. To preserve activity of the proteins the eluates were neutralized 

with Tris Buffer (1 M Ph 9) (Table 10). (Figure 10) 
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Figure 10: Principle of Co-Immunoprecipitation 

FLAG®-coated beads are used to capture FLAG®-tagged target proteins. The TACI isoforms either have a 
FLAG®-(green dot) or HA-tag (blue square) added to the N-terminal side. The Anti-HA ELISA after 
immunoprecipitation shows if proteins interact and if the HA-tagged proteins were immunoprecipitated. 
Figure adapted from (93). 

 

The IP and pre IP samples were tested with TACI, BCMA and anti-FLAG® ELISA 

as a control for the transfection and success of IP. The Anti-FLAG® ELISA was used to 

test the IP. The plate was coated with Anti-FLAG® M2 Antibody (dissolved in PBS at a 

concentration of 5 µg/ml) overnight at 4 °C (Table 20). The interaction was tested with 

anti-HA ELISA. The plates got coated with a HA antibody as capture antibody (5 µg/ml) 

and incubated over night at 4 °C (Table 20). Then the TACI DUO set or BCMA ELISA 

protocol was followed starting with the detection antibody step.  
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3.2.5. FUNCTIONAL TESTS 
3.2.5.1. BINDING ELISA 
  

A sandwich ELISA called binding ELISA was used to determine the affinity of the 

sTACI proteins to the Ligands BAFF and APRIL (Figure 11). The affinity of the proteins 

for BAFF and APRIL was compared by calculating the equilibrium dissociation constant 

(KD) value. Generally, a small KD indicates a high affinity of a protein to its ligand.  

 

Figure 11: Principle of binding ELISA 
The binding ELISA is a sandwich ELISA. The plate was coated with anti-FLAG antibody over night 
at 4 °C. The first incubation step is with a FLAG-tagged Ligand. The next step consists of 
application of sTACI-long, sTACI-short or TACI-Fc. To assess whether sTACI was able to bind to 
the FLAG-tagged Ligand the detection antibody of the TACI Duo set ELISA was used. The rest of 
the assay followed the normal TACI Duo set ELISA protocol. Figure was taken from (93).  

 

For the Binding ELISA the plate was coated with Anti-FLAG® M2 Antibody 

(dissolved in PBS at a concentration of 5 µg/ml) overnight at 4 °C. After three washing 

steps the plate was blocked with Reagent Diluent (Table 10) for at least 1 h at room 

temperature. Then, BAFF-FLAG® (R&D Systems) or APRIL-FLAG® (mouse: AdipoGen or 

human: SIGMA-Aldrich® Co.LLC) were added in a concentration of 100 ng/ml and 

incubated for 2 h at room temperature. A dilution series of both sTACI isoforms was 

prepared, added to the plate and then incubated for 2 h at room temperature. After 

application of the dilution series, the TACI Duoset ELISA protocol was followed.  
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3.2.5.2. TEST OF DECOY FUNCTION WITH NFκB ASSAY 
 

Ligand-receptor interactions can be assessed with reporter cell assays, like the 

NFκB assay. In NFκB assay activation of a receptor leads to intracellular NFκB pathway 

induction which can be detected, in this case with luciferase (151) (Figure 12). 

The ability of a soluble receptor to decrease luciferase activiation by disabling the 

ligand from binding to the cell can be measured in the form of an inhibition assay. The half 

maximal inhibitory concentration (IC50), a value indicating the potency of a decoy receptor, 

was determined. Small IC50 values indicate good inhibition function of the substrate. The 

IC50 gives the concentration of a substrate that leads to a 50% decrease of the normal 

activation signal.  

 

Figure 12: Principle of NFκB assay 
After extracellular stimulation an intracellular cascade leads to synthesis of a TRE promoter 
dependent reporter protein. The reporter protein can be visualized by adding for example Luciferin 
and ATP if the reporter protein is luciferase. Adapted from (152). 
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In this assay NFκB activation was detected with the Firefly-Luciferase which is 

under control of NFκB transcriptional response element (TRE). In order to control for 

varying cell numbers, active Renilla-Luciferase was co-transfected constitutively, which is 

under control of the CMV promoter. To detect the reporter proteins a substrate mix of 

Luciferin and ATP (Biozym Scientific GmbH) was used for Firefly-Luciferase and 

coelenterazine (Promega) for Renilla-Luciferase. Full-length BCMA was used as a 

receptor for the ligands. 

A dilutions series of sTACI was prepared 8 h after transfection of HEK293T cells 

with BCMA, Renilla-luciferase and Firefly-luciferase. APRIL (AdipoGen) or BAFF (R&D 

Systems) were added to the dilution series in a concentration of 100 ng/ml. The 

sTACI/ligand mixture was incubated in a heat shaker at 37 °C at 300 rpm for 15-30 min 

and then added to the transfected cells while discarding the old medium. Finally, 17 h later 

the NFκB activation was measured after lysing the cells. The lysed cells were pipetted into 

Corning™ 96-Well Solid White Polystyrene Microplates and the substrate mix for either 

Firefly-Luciferase or Renilla-Luciferase was added. Afterwards, luminescence was 

detected and read out with Perkin Elmer Victor2 1420 Multilabel Counter. 

 

3.2.5.3. FLOW CYTOMETRY ASSAYS 
 

Flow cytometry can be used to quantify and characterize the phenotype of cells. 

Cells are run cell by cell in a liquid medium by a laser to generate information about the 

size and complexity of the cells by assessing the scattering of light around them. The 

forward scatter generates information about the size and volume of the cell. The sideward 

scatter generates information about the granularity. Furthermore, the cells were 

characterized with fluorescence labeled antibodies. These antibodies recognize either a 

specific surface structure (direct detection) or an already bound antibody (indirect 

detection). The surface structures in this thesis were indirectly labeled with Anti-TACI or 

Anti-FLAG® antibodies, before detection with a PE labeled antibody (Table 21). When hit 

with a laser, a fluorescence signal is emitted after excitation of the fluorochrome of the 

antibody and can be detected by the flow cytometer. Several fluorochromes can be 

chosen for one measurement if the wavelength spectra of the emission differ. For this 
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thesis, only one fluorochrome was used for the characterization of all cells (PE) together 

with an indicator (TO-PRO®-3 Iodide (Invitrogen)) of dead cells (Table 22). The BD 

FACSVerseTM flow cytometer (BD Biosciences) was used to generate the data in 

combination with the FlowJo software (BD Biosciences) which was used to analyze all 

data. Flow cytometry was used to assess the expression of membrane-bound TACI 

proteins after transfection of HEK293T cells and to test the membrane-bound binding 

properties of TACI isoforms to BAFF and APRIL (Figure 13). 

 

 

Figure 13: Principle of Binding flow cytometry 

 

24 h after transfection with TACI-long or TACI-short the cells were either directly 

tested for surface expression or incubated for 3 h with BAFF- or APRIL-FLAG® to analyze 

the binding of the surface TACI isoforms to BAFF and APRIL. BAFF- or APRIL-FLAG® 

was added at a concentration of 100 ng/ml. The cells were transferred onto flow cytometry 

plates. All centrifugation steps were executed at 400 g for 5 min at 4 °C. The cells were 

centrifuged and the supernatants discarded. To remove the medium, two further washing 

steps with PBS containing 1% BSA were applied. The primary antibody was added and 



  

48 
 

incubated for 30 min on ice protected from light at a concentration of 1 µg/ml (for both 

primary antibodies) (Table 21). Three further washing steps were executed to wash the 

primary antibody off and the secondary antibody (Table 21) was added and incubated for 

30 min at 4 °C at a concentration of 5 µg/ml while protected from light. The secondary Ab 

was then removed with three washing steps. TO-PRO®-3 Iodide (Invitrogen) (diluted 

1/4000 in PBS) was used to assess the amount of dead cells.  

 

3.2.6. STATISTICAL ANALYSIS 
 

Prism Software (GraphPad) was used for all statistical and analytical analysis in 

this thesis with the only exception of the determination of MW by SEC. There, Excel was 

used to determine the calibration graph and MW values resulting from the Kav of the 

eluted proteins. Statistical significance for the expression assay, binding ELISA, and NFκB 

reporter assay was assessed using unpaired two-tailed t-test with or without Welch’s 

correction or normal one way ANOVA. The KD and IC50 were calculated using specific 

programs that are already designed for these applications as part of the Prism Software. 

For multiple results as part of an experiment the arithmetic mean was calculated and is 

shown in the graphs as the main value. To show the varying distribution of values around 

the arithmetic mean in the graphs, the standard error of the mean (SEM) was determined.  
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4. RESULTS 

4.1. CHARACTERIZATION OF SOLUBLE TACI ISOFORMS 

4.1.1. CLONING AND RECOMBINANT PRODUCTION OF sTACI-LONG, 
sTACI-SHORT AND sTACI-SHORT (W-68-154) 

 

First, the plasmids for sTACI-long and sTACI-short were cloned (Figure 15). The 

sequence was chosen according to two different studies (93, 146). sTACI-long has two 

cysteine rich domains (CRDs) (CRD1+CRD2), while sTACI-short has only one (CRD2) 

(Figure 14). 

 

Figure 14: Illustration of different TACI constructs 
sTACI-long, sTACI-short and sTACI-short (W-68-154) were produced recombinantly. The Fc 
constructs were provided by Pascal Schneider (University of Lausanne, Switzerland). The 
numbers below the name of the construct indicate the amino acid sequence of each construct. 
The illustration next to it shows the CRDs of each construct, the amino acid sequence and the 
addition of Fc if present. CRD1+CRD2-Fc-a, which is an atacicept analog, was designed to have 
mutations in its Fc part so that FcyR binding and complement activation is prevented. The 
difference is illustrated by a light blue layered Fc for CRD1+CRD2-Fc-a in comparison to the brown 
layered Fc of the other TACI-Fc. The illustrations are adapted from (122, 146). 
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Previous constructs of TACI from other groups were missing the first 20 to 30 amino 

acids of the sequence on the N-terminal side and started directly at the CRDs (140). An 

atacicept analog variant (CRD1+CRD2-Fc-a) and other TACI-Fc constructs were provided 

by Pascal Schneider for this thesis (University of Lausanne, Switzerland). sTACI-short 

(W-68-154) which was designed to miss the first 20 amino acids on the N-terminal was 

developed to test if these 20 amino acids influence the binding affinity. The resulting 

protein sequences of sTACI-long, sTACI-short, and sTACI-short (W-68-154) are 

illustrated in Figure 14. The sequences of the TACI-Fc constructs are shown in 

comparison. 

During the cloning process a His6-tag was added C-terminal for later affinity 

purification. The constructs contained the signal peptide of Ig-kappa N-terminal to ensure 

protein secretion. The resulting plasmids for sTACI-long and sTACI-short are depicted in 

Figure 15.  

 

 

Figure 15: Plasmids of sTACI-long (A) and sTACI-short (B) 

 

All three sTACI constructs were expressed in eukaryotic HEK293.EBNA cells and 

then affinity purified with HisTrap columns and a gradient using Imidazole essentially as 

published (153). The signal peptide of Ig kappa chain was cleaved intracellularly before 

secretion. The different steps of protein purification are indicated in small letters above 

the UV chromatogram in Figure 16 A. After purification, the eluted protein fractions were 

analyzed by Coomassie stained SDS-PAGE. Examples of after purification screenings of 

sTACI-long, sTACI-short, and sTACI-short (W-68-154) are shown in Figure 16 B, C, and 
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D. Fractions from fourteen purifications were pooled together for sTACI-long, fractions 

from five purifications for sTACI-short and fractions from three purifications for sTACI-

short (W-68-154). The results from functional tests are not dependent on a single 

purification. The pooled samples were dialyzed against storage buffer and stored at -80 

°C.  

 

  

Figure 16: Affinity purification of sTACI variants 
(A) UV chromatogram of a purification of sTACI-short (W-68-154). The different steps of affinity 
purification consist of the washing and equilibration of the column (a), the loading of the protein 
(b), an additional washing step to remove unspecifically bound proteins (c) and a final elution of 
the protein from the column (d). (B-D) Coomassie staining of SDS-PAGE of eluted fractions from 
affinity purification from 1L Hek293.EBNA cells (B) for sTACI-long, (C) sTACI-short and (D) sTACI-
short (W-68-154). The numbers 1-6 indicate different fractions of the eluted proteins. 
 

  



  

52 
 

4.1.2. OLIGOMERIZATION OF sTACI  
 

sTACI-long (Figure 16 B) and sTACI-short (W-68-154) (Figure 16 D) appeared at 

molecular weights suggesting that the preparations contain in addition to the monomeric 

form also oligomers. sTACI-short (Figure 16 C) showed these signs of oligomerization 

only in high amount of purified protein. For sTACI-long, the reducing agent DTT, but not 

heat denaturation for 5 min at 95 °C, was able to break the bond or denature the protein 

so that it appeared in its monomeric state (Figure 17 A). Furthermore, DTT was added to 

sTACI-short to study whether the amount of sTACI-short would increase as possible 

higher molecular oligomers would break. sTACI-long was used as positive control for DTT 

treatment and as a test if reduced and non-reduced sTACI-long could be detected by the 

same antibody in Western blot (Figure 17 B). DTT treatment had no effect on sTACI-short 

(Figure 17 B), while the dimers of sTACI-long turned onto monomers. Both sTACI-long 

monomers and dimers could be detected by our Western blot detection antibody. sTACI-

long and sTACI-short detection decreased after DTT treatment (Figure 17 B).  

 

 

Figure 17: Analysis of stability of oligomerization of sTACI-long and sTACI-short 
(A) sTACI-long was treated with heat-denaturation at 95 °C for 5 min, DTT or both, and compared 
to non-treated sTACI-long. Coomassie stained SDS-PAGE was used for analysis. (B) sTACI-long 
and sTACI-short were either analyzed without any treatment or with heat denaturation and DTT 
by Western blot using the mAb anti-TACI TACI/TNFRSF13B (Clone 165609).  

It was previously proposed that divalent-ion/His6-tag interactions may cause 

oligomerization in recombinant purified proteins (84). Nickel ions that dissolved from the 
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purification column and passed to the eluted fragment, could cause artificial aggregates. 

EDTA is highly potent at forming chelates with divalent ions. To further investigate these 

findings, an interaction between the His6-tag of the purified sTACI-short (W-68-154) and 

possible eluted Nickel ions from the purification column was tested by EDTA assay. This 

assay was performed with sTACI-short (W-68-154) because we observed several higher 

oligomers for sTACI-short (W-68-154) (Figure 16 C) in Coomassie stained SDS-PAGE. 

sTACI-short (W-68-154) did not form new aggregates after higher molecular weight bonds 

were broken by DTT (Figure 18). There was no effect of EDTA on oligomerization in non-

reducing conditions. After reduction with DTT the protein stayed in its monomeric state. 

Heat denaturation alone had no impact on oligomerization similar to sTACI-long.  

 

 

Figure 18: Analysis for possible artificial oligomerization of sTACI-short (W-68-154) 
Coomassie stained SDS-PAGE of sTACI-short (W-68-154). DTT was added to put sTACI-short 
(W-68-154) into its monomeric state. EDTA was then applied to sequester possible Nickel ions 
that were eluted from the HisTrap column. sTACI was incubated with DTT and/or EDTA for 1-2 h 
at room temperature to give Nickel ions the time to rebuild high molecular aggregates with the 
His6-tags of sTACI-short (W-68-154).  
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4.1.3. N-LINKED GLYCOSYLATION OF sTACI-LONG AND sTACI-SHORT 
 

N-linked glycosylation was predicted for both sTACI isoforms at amino acid 128 (N) 

by Uniprot (28). The sequence pattern N-X-T/S indicates N-linked glycosylation sites 

which are glycosylated with a probability around 50% (154-157). This sequence is one 

time present within the sTACI sequence for both isoforms as illustrated in (Figure 20). 

Posttranslational modifications such as sugars can disturb later evaluation of the proteins 

by mass spectrometry. Therefore and additionally to test the nature of the secreted 

proteins, a PNGase F assay was performed. PNGase F is an amidase that can cleave N-

linked oligosaccharides from proteins (148). As a positive control, hMOG, which is known 

to be N-linked glycosylated, was used (158). PNGase F reduced the MW of hMOG, but 

not of TACI-long or TACI-short (Figure 19). Thus, our sTACI-long and sTACI-short were 

not N-linked glycosylated.  

 

 

Figure 19: Analysis of glycosylation of sTACI-long, sTACI-short and hMOG 
sTACI-long and sTACI-short (A) and as a control hMOG (B) were treated with the enzyme PNGase 
F as indicated. Subsequently, the proteins were separated by SDS-PAGE and detected by 
Western blot using the mAb anti-TACI TACI/TNFRSF13B (Clone 165609) for TACI (A) and murine 
anti-MOG antibody 8.18.c5 (B).  
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4.1.4. MASS SPECTROMETRY AND N-TERMINAL SEQUENCING OF 
sTACI-LONG AND sTACI-SHORT 

 

Analysis of the recombinant proteins sTACI-long and sTACI-short by gel 

electrophoresis showed that both recombinant proteins appeared at the expected 

molecular weight (Figure 20 A). We noted that they did not appear as a single band, but 

rather as a double band. Additionally a smaller band appeared in sTACI-short 

preparations that could only be detected in Coomassie staining (Figure 20 A, right part). 

To clarify the identity of the different bands in our sTACI preparations mass-spectrometry 

and N-terminal sequencing were applied (Figure 20 B-D). This showed that all closely 

related bands were TACI.  

The upper bands of both isoforms (sTACI-long (a) and sTACI-short (c)) largely 

consisted of the whole protein (Figure 20 B-C). The lower bands missed the first 15 amino 

acids of the sequence on the N-terminal side. The 7 kDa form of sTACI-short was missing 

the first 15 amino acids of the sequence on the N-terminal side and additionally 19 amino 

acids on the C-terminal side (Figure 20 D). This suggests that the 7 kDa form might 

represent a degradation-product. Full length sTACI-short is later on referred to as sTACI-

short (1-20-W-68-154) and the 7 kDa variant as sTACI-short (16-20-W-68-135). The 

changes of sequence in sTACI-short (16-20-W-68-135) did not affect the CRD2 which is 

responsible for high affinity binding to the ligands BAFF and APRIL. Thus, these changes 

were not predicted to have an effect on the functionality of the protein within the 

BAFF/APRIL system.  

Several additional sequences were found while analyzing the N-terminal side of 

sTACI-long and sTACI-short (Figure 20 B-D). These variants of the N-terminus could 

largely be attributed to Furin cleavage. Furin is a major protease of the secretory pathway 

primarily located at the Golgi apparatus. Furin cleaves proteins after basic residues in 

motifs such as Arg-X-X-Arg, Arg-X-Lys/Arg-Arg or Lys/Arg-X-X-X-Lys/Arg-Arg (159). Such 

motifs are also present two times within the first 20 amino acids of the sequence of TACI 

on the N-terminal side (Figure 20). The additional N-terminal sequence variant of sTACI-

short could not be attributed to a specific protease yet.  
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Figure 20: Analysis of recombinant sTACI-long and sTACI-short by Western blot, 
Coomassie staining, N-terminal sequencing and mass spectrometry 
(A) sTACI-long (lane 1 and 3) and sTACI-short (lanes 2 and 4) were separated by SDS-PAGE 
and visualized by Western blot (left) or Coomassie staining (right). Band e could not be detected 
by Western blot (A). The bands indicated with a-e were cut and as displayed in (B-D), analyzed 
by N-terminal sequencing and after digestion with trypsin by mass-spectrometry (Reinhard 
Mentele). The amino acid sequence obtained by mass-spectrometry is given in black letters. The 
parts of TACI-long (A) and TACI-short (C, D) that were not detected by mass-spectrometry are 
given as red letters. The sequences most frequently obtained by N-terminal sequencing of the 
bands a-e are indicated with a green line. Cleavage points that can be attributed to Furin are 
indicated by an orange line and the number next to it shows the canonical sequence which is the 
basis for that particular cleavage. An additional N-terminus of a variant included in sTACI-short is 
indicated by a blue line. The light blue line indicates a predicted site for N-linked glycosylation.  
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4.1.5. SIZE EXCLUSION CHROMATOGRAPHY OF sTACI-LONG AND 
sTACI-SHORT 

 

Size exclusion chromatography (SEC/gel-filtration) was performed to further 

assess the oligomerization of sTACI-long and sTACI-short. The proteins were run through 

a column that contained a specific matrix which led to separation of each fraction 

according to size. Directly after the column the different fractions were detected by a UV 

spectrometer (Figure 21 A+B) and analyzed for separation by Coomassie stained SDS-

PAGE (Figure 21 C+D).  

 

 
Figure 21: Analysis of Oligomerization of sTACI-long and sTACI-short by SEC 
(A and B) sTACI-long (A) and sTACI-short (B) were analyzed by SEC and the resulting UV-
chromatograms are shown. The sTACI-long monomer is indicated by the inscription 1x and a 
purple layer and the sTACI-long dimer by 2x and a green layer (A). The void volume is represented 
by the first peak in both UV-chromatograms (A and B). sTACI-short (1-20-W-68-154) is indicated 
by the inscription (1-20-W-68-154) and a red layer and sTACI-short (16-20-W-68-135) by (16-20-
W-68-135) and an orange layer. The higher grade oligomers of sTACI-short are represented by 
S1-S4. (C and D) Coomassie stained SDS-PAGE of separated fractions after SEC of sTACI-long 
(C) and sTACI-short (D). The numbers below the x-axis in A and B indicate the fractions that were 
used for Coomassie staining in C and D. 
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sTACI-long appeared as a dimer and monomer in SEC (Figure 21 A). sTACI-short 

showed in addition to the monomeric sTACI-short (1-20-W-68-154) and sTACI-short (16-

20-W-68-135) small amounts of higher oligomers (Figure 21 B). Furthermore, the dimer 

and the monomer of sTACI-long and sTACI-short (1-20-W-68-154), sTACI-short (16-20-

W-68-135), and sTACI-short higher oligomers were separated of by SEC (Figure 21 

C+D). Most fractions could be separated accurately except for the sTACI-long dimer. 

Pooled fractions of the sTACI-long dimer were a mixture of dimer and monomer with an 

enrichment of the dimer fraction. These fractions were pooled and stored at -80 °C for 

later used for functional evaluation. 

Determination of the MW of the fractions S1-S4 of sTACI-short with SEC standard 

curve (data not shown) showed that these fractions most likely represent higher oligomers 

of sTACI-short (S4 = 3x sTACI-short, S3 = 6x sTACI-short, S2 = 9x, sTACI-short, S1 = 

12x sTACI-short). This view is also supported by ELISA and Coomassie stained SDS-

PAGE. The fractions were concentrated and shown to be TACI by hTACI ELISA (Figure 

22 A). Additionally, the concentrated fraction of S3 could be detected at the expected MW 

weight of 6x sTACI-short (around 70 kDa) in Coomassie stained SDS-PAGE (Figure 22 

B). These findings suggest that sTACI-short oligomerizes in small amounts. This is in 

concordance with our sTACI-short variant sTACI-short (W-68-154) that showed signs of 

higher molecular weight oligomers in Coomassie stained SDS-PAGE directly after affinity 

purification (Figure 18).  

 

Figure 22: Analysis of small SEC peaks (S1-S4) of sTACI-short 
(A) The fractions S1-S4 (see Figure 21 (B)) were concentrated and then measured by hTACI 
ELISA. (B) The concentrated samples were applied to Coomassie stained SDS-PAGE.  
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4.1.6. DETERMINATION OF MOLECULAR WEIGHT OF sTACI-LONG 
AND sTACI-SHORT 

 

The MW of the monomer of sTACI-long was calculated at 17.4 kDa and sTACI-

short (1-20-W-68-154) at 12.2 kDa by an online tool (Expasy). The dimer of sTACI-long 

was approximated through Coomassie stained SDS-PAGE around 34 kDa and sTACI-

short (16-20-W-68-135) at 7 kDa.  

At first, we determined the MW of both sTACI isoforms by generating a SEC 

standard curve (Figure 23). With this method the sTACI-long monomer was calculated at 

29.9 kDa and the sTACI-long dimer at 58.3 kDa. sTACI-short (1-20-W-68-154) was 

determined at 19.9 kDa and sTACI-short (16-20-W-68-135) at 9.2 kDa.  

 

 

Figure 23: Molecular weight determination using SEC standard curve 
Proteins of known molecular weights were used to generate a standard curve for the HiLoad 16/60 
Superdex 75 pg column. The standard curve was generated by plotting the MW in logarithmic 
scale on the y-axis against the KaV on the x-axis. The KaV of the different sTACI fractions are 
indicated by dots on the x-axis. 
 

The substantial differences between the results from MW determined by SEC 

(Figure 23) and the predicted and observed MW by Coomassie stained SDS-PAGE, led 

to the decision to analyze the proteins further with a SLS/SEC system (Figure 24). With 
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our SLS/SEC system we were able to analyze our proteins with size exclusion 

chromatography (SEC) coupled to static light scatter (SLS). Before application of our own 

samples the system had to be optimized and a dilution series with human albumin fraction 

V was applied to find out the proper amount of protein that needs to be used. We found 

out that 1-3 mg/ml of sample led to optimal results (data not shown). Some proteins from 

the standard curve were used as positive control. As an example Conalbumin with a given 

MW of 75 kDa and Ribonuclease A with a given MW of 13.7 kDa were chosen. SLS 

calculated Conalbumin at 76.3 kDa and Ribonuclease A at 14.3 kDa (Figure 24). 

 

 
Figure 24: Molecular weight determination using SLS/SEC 
After SEC the separated fractions were directly analyzed with SLS. (A-C) sTACI-long (A), sTACI-
short (B) and Conalbumin together with Ribonuclease A (C) were run through the SLS/SEC 
system. The refractive index (concentration) is put on the y1-axis, the MW on the y2-axis and the 
retention volume on the x-axis. 

 

The calculated MW values for sTACI-long and sTACI-short that were derived by 

SLS/SEC analysis were close to the predicted and observed MW values. The MW of the 
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sTACI-long dimer was calculated at 30.2 kDa and of the sTACI-long monomer at 18.3 

kDa. For sTACI-short (1-20-W-68-154) the MW was determined at 12.5 kDa and for 

sTACI-short (16-20-W-68-135) at 8.1 kDa. Unexpectedly, sTACI-long dimer showed the 

highest peak/concentration in refractive index in SLS/SEC analysis indicating that sTACI-

long appeared mainly as a dimer (Figure 24 B). sTACI-short in comparison presented 

itself as a mixture of sTACI-short (1-20-W-68-154) and sTACI-short (16-20-W-68-135) 

(Figure 24 C). Both sTACI-short variants that were separated by SEC needed to be 

pooled to have enough protein for analysis. Thus, the higher oligomers that were seen in 

SEC analysis could not be detected and analyzed with SLS/SEC. We focused on the two 

main variants of sTACI-short (sTACI-short (1-20-W-68-154) and sTACI-short (16-20-W-

68-135)) as the amount of higher oligomers in sTACI-short observed by SEC made the 

detection of these oligomers with SLS/SEC rather unlikely. In summary, SLS/SEC led to 

more accurate estimations of the MW of the sTACI isoforms than SEC alone (Table 25). 

 

Table 25: Comparison of MW determination of sTACI isoforms with SLS/SEC system and 
SEC standard curve  
 

 

  

Construct Expected MW 
(kDa) 

SLS/SEC MW 
(kDa) 

SEC MW 
(kDa) 

sTACI-long dimer 34 30.2 58.3 

sTACI-long monomer 17.4 18.3 29.9 

sTACI-short 

(1-20-W-68-154)  

12.2 12.5 19.9 

sTACI-short  

(16-20-W-68-135) 

7 8.1 9.2 
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4.1.7. STABILITY OF sTACI-LONG DIMER AND MONOMER 
 

In an equilibrium, constructs are in a stable system. That means that the proportion 

of one element to the other element in the system is constant. If you remove one part of 

the system the equlibrium reinstates after some time. We tested if the dimer and monomer 

of sTACI-long form such a constant equilibrium by a provocation assay (Figure 25). 

During the incubation period, a development of an equilibrium state was not observed. 

The dimer (Figure 25 A) and monomer (Figure 25 B) of sTACI-long were stable. After 72 

h a small degradation-like band was observed in the sTACI-long monomer (Figure 25 B). 

 

 

Figure 25: Stability test of sTACI-long dimer and monomer 
The dimer and monomer of sTACI-long that were separated by SEC were tested in a provocation 
assay and analyzed by Coomassie staining. Above each band stands the timepoint at which the 
protein was taken during the experiment. sTACI-long dimer/monomer mix (A) and monomer (B) 
were incubated at 37 °C for 72 h.  
 

 

4.1.8. SUMMARY OF PROTEIN CHARACTERIZATION 
 

This part of the thesis showed that sTACI-long and sTACI-short were both 

produced recombinantly in HEK293.EBNA cells. First, we investigated both sTACI 

isoforms for N-linked glycosylation before mass spectrometry analysis. Neither of our 

sTACI proteins were N-linked glycosylated. Next, the identity of the recombinant TACI 

isoforms was confirmed by mass spectrometry and N-terminal sequencing. We observed 

closely located double bands for sTACI-long and sTACI-short in Western blot and 

Coomassie stained SDS-PAGE and a 5 kDa smaller band for sTACI-short. We were able 



  

63 
 

to characterize all bands by mass spectrometry and N-terminal sequencing. sTACI-short 

was revealed to be a mixture of sTACI-short (1-20-W-68-154) and sTACI-short (16-20-W-

68-135). We were able to determine changes within the N-terminal sequence for the 

observed closely located double bands of both sTACI-short and sTACI-long. Two out of 

three sequences of the N-terminal variations are predicted to be the result of intracellular 

Furin cleavage. The additional sequence of sTACI-short could not be attributed to a 

protease yet. Next, we analyzed both isoforms for oligomerization. We found that sTACI-

long presented itself mainly as a dimer as shown by Coomassie stained SDS-PAGE, 

Western blot, SEC and SLS/SEC. We also tested if the dimer and monomer of sTACI-

long were in a constant equilibrium. We found that both the dimer and the monomer were 

in a stable state without any equilibrium. The dimer was not influenced by heat-

denaturation or SDS-PAGE, whereas DTT could break its higher molecular bonds. sTACI-

short exhibited small amounts of oligomers in SEC. The existence of these oligomers 

could be verified by the analysis of their MW by SEC standard curve, hTACI ELISA, and 

with Coomassie stained SDS-PAGE of the concentrated oligomers. 

 

4.2. FUNCTIONAL ANALYSIS  
4.2.1. EVALUATION OF THE AFFINITY BY BINDING ELISA 

 

We used an ELISA based method to assess the binding affinity of sTACI-long and 

sTACI-short to their ligands BAFF and APRIL, similar to several previously described 

assays for affinity determination (136, 160-162). To compare the affinity of our different 

TACI variants we calculated a dissociation constant (Kd). The Kd represents the value of 

concentration at which the (binding-)reaction is in an equilibrium, that means half of the 

proteins are bound and the other half is free. Generally, a small Kd indicates a high affinity 

of a protein to its ligand. Figure 14 shows an illustration of the different constructs that 

were evaluated by this method. sTACI-long and sTACI-short appeared in different variants 

based on N-terminal truncation, presumably mediated by Furin-convertase (Figure 20). 

These truncations are N-terminal of the CRD2 and are not predicted to have a major 

impact on decoy function and ligand binding. The resulting difference in size between 



  

64 
 

these different variants is too small to separate them by SEC and analyze them 

separately. Thus, sTACI-long and sTACI-short were tested including these variants.  

First, we compared sTACI-long and sTACI-short with each other and tested 

different ligands (Figure 26 A+B). We found that sTACI-long and sTACI-short bound to 

BAFF with similar affinity (Figure 26 C). The affinity of both isoforms to APRIL was tested 

with mega- (mouse) (Figure 26 B) and human-APRIL (data not shown).  

We found that sTACI-short and sTACI-long exhibited high affinities for APRIL, although 

sTACI-long displayed a significantly higher affinity for mega-APRIL in comparison to 

sTACI-short (Figure 26 D). Human-APRIL led to similar results (data not shown) 

concerning affinity differences between sTACI-long and sTACI-short, but showed less 

overall affinity to both TACI isoforms. Human-APRIL showed additionally high background 

binding in HEK293T cells without transfected TACI in flow cytometry (data not shown). 

Thus, we chose mega-APRIL for our binding studies.  

We compared further CRD1-Fc, CRD2-Fc, CRD1+CRD2-Fc and CRD1+CRD2-Fc-

a (Figure 26 A+B). The exact sequences of all compared constructs are depicted in 

Figure 14. sTACI-short (W-68-154), was additionally created to analyze whether the first 

20 amino acids of the sequence affect binding to BAFF and mega-APRIL. All constructs 

including sTACI-short bound to BAFF significantly better than CRD1-Fc (Figure 26 C). 

When we looked at mega-APRIL affinity we found that sTACI-short, sTACI-short (W-68-

154) and CRD1-Fc bound significantly worse to mega-APRIL when compared to the other 

constructs (Figure 26 D). The difference between sTACI-short and CRD1-Fc in APRIL 

affinity was not significant. Thus, CRD1-Fc bound both BAFF and APRIL only weakly. 

sTACI-short (W-68-154) bound too weekly to mega-APRIL to calculate any Kd.  
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Figure 26 : Binding of various TACI constructs to BAFF and APRIL measured by ELISA 
(A+B) V-bottom plates were coated with anti-FLAG antibodies (5 µg/ml). FLAG-tagged BAFF- or 
mega-APRIL were added (100 ng/ml) and a dilution series of the different constructs were applied. 
On the x-axis stands the concentration of the used dilution series and on the y-axis the OD450 
normalized against the background binding of the used ligand (normalized against BAFF (A) or 
mega-APRIL (B)). (C+D) Scatter blot of normal one way ANOVA (*P<0.05, **P<0.005, 
***P<0.0005, ****P<0.00005); Combined data of three (sTACI-short (W-68-154), CRD1+CRD2-Fc 
and CRD1-Fc), five (sTACI-long and sTACI-short) or six (atacicept and CRD2-Fc) independent 
experiments (mean +/- SEM).  
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Next, we analyzed the different fractions of sTACI-long and sTACI-short that were 

separated by SEC (Figure 27). We did this comparison mainly because of the two 

following reasons. First, we wanted to see if dimerization led to an increased affinity in our 

proteins. Second, we wanted to rule out that sTACI-short (16-20-W-68-154) lost its 

functionality within the BAFF/APRIL system. Both effects could contribute and partly 

explain the decreased affinity of sTACI-short to mega-APRIL.  

Coomassie stained SDS-PAGE was performed immediately prior to application of 

the proteins to the plates. We wanted verify that the different pooled fractions remained in 

the same state they were originally separated and stored at. It was found that the 

separated fractions remained in the same state that they were frozen in (Figure 27 A). 

The dimer fraction was comprised of a mixture of monomer and dimer. The amount of 

dimer was enriched in that fraction. All other fractions were separated completely.  

The comparison of the dimer and monomer of sTACI-long revealed significant 

differences in their affinities for BAFF and mega-APRIL (Figure 27 B+C). The dimer of 

sTACI-long bound to BAFF and mega-APRIL significantly better than the monomer 

(Figure 27 F+G). When we compared sTACI-short (1-20-W-68-154) and sTACI-short (16-

10-W-68-135) (Figure 27 D+E), we detected no difference in their binding properties for 

BAFF (Figure 27 H). When we analyzed the affinity for mega-APRIL, we found that the 

full-length sTACI-short (1-20-W-68-154) was able to bind to mega-APRIL significantly 

better than sTACI-short (16-20-W-68-135) (Figure 27 I).  

  



  

67 
 

 

Figure 27: Binding of SEC-separated fractions of sTACI-long and sTACI-short to BAFF 
and APRIL measured by ELISA 
(A) Coomassie stained SDS-PAGE of different sTACI fractions. (B-E) V-bottom plates were coated 
with anti-FLAG antibodies (5 µg/ml). FLAG-tagged BAFF- or mega-APRIL were added (100 ng/ml) 
and a dilution series of the different fractions was applied. On the x-axis stands the concentration 
of the dilution series and on the y-axis the OD450 normalized against the background binding of 
the used ligand (normalized against BAFF (B, D) or mega-APRIL (C, E)). (F-I) Scatter plot of 
unpaired two-tailed t-test with Welch’s correction for B-D (ns: not significant; *P<0.05, **P<0.005, 
***P<0.0005) Combined data of three independent experiments (mean +/- SEM).  
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Table 26 shows the summary of mean Kd values from each construct for BAFF 
and mega-APRIL.  

 

Table 26: Binding affinity of BAFF and APRIL to TACI-constructs.* 

TACI construct BAFF  
Kd (pM) 

mega-APRIL  
Kd (pM) 

sTACI-long 100 292 
sTACI-long dimer 72 127 
sTACI-long monomer 106 447 
sTACI-short 270 5960 
sTACI-short  
(1-20-W-68-154) 

187 4434 

sTACI-short 
(16-20-W-68-135) 

301 7741 

sTACI-short 
(W-68-154) 

1065 n.a. 

CRD1+CRD2-Fc-a 54 93 
CRD1+CRD2-Fc 139 346 
CRD2-Fc 30 77 
CRD1-Fc 54160 14470 

*N.a. means that the interaction that was measured was too low to calculate the Kd. Means were 
calculated from 3-6 experiments. Both isoforms of sTACI were analyzed as mixtures. sTACI-long 
preparations contained a dimeric and a monomeric form, while sTACI-short was a mixture of the 
monomeric sTACI-short (1-20-W-68-154) and sTACI-short (16-20-W-68-135) and to a small 
extent higher oligomers of sTACI-short. The different fractions of the sTACI-long and sTACI-short 
preparations were separated by SEC (Figure 21 + Figure 27) and analyzed independently.  
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4.2.2. EVALUATION OF DECOY FUNCTION BY LUCIFERASE ASSAY 
(NFκB ASSAY) 

 

A luciferase based assay (NFκB assay) was used as a second read out system, 

complementary to the Binding ELISA. The NFκB assay is a reporter cell assay that can 

be used to test the decoy function of soluble receptors. The IC50 was calculated to 

indicate the potency of soluble receptors in inhibiting NFκB activation. The IC50 means 

the concentration of a soluble receptor that is needed for the NFκB activation to be 

decreased for 50%.  

First, we compared sTACI-long to sTACI-short for their decoy function (Figure 28). 

sTACI-long and sTACI-short displayed a similar decoy function for BAFF (Figure 28 A+F). 

Both receptors were able to act as decoy receptor for BAFF at high concentrations. In 

contrast, only sTACI-long was able to capture mega-APRIL (Figure 28 B+E) and human-

APRIL (Figure 28 C) at high concentrations and thus prevent NFκB activation (Figure 28 

B+C). sTACI-short was not able to act as decoy receptor for mega- or human-APRIL and 

thus showed no influence on NFκB activation. The monomer and dimer of sTACI-long 

were tested for their decoy function after a significant difference was detected in their 

ability to bind mega-APRIL by binding ELISA (Figure 28 D,E,G,H). In concordance with 

the findings of our binding ELISA, we were able to detect significant differences for the 

decoy function between the dimer and monomer of sTACI-long for BAFF and APRIL 

(Figure 28 G+H). Table 27 shows the summary of mean IC50 values from each measured 

construct for BAFF and mega-APRIL.  

 

Table 27: Decoy activity of sTACI-long, sTACI-long dimer, sTACI-long monomer and 
sTACI-short for BAFF and APRIL*  

TACI BAFF 
IC50 (nM) 

mega-APRIL 
IC50 (nM) 

Human-APRIL 
IC50 (nM) 

sTACI-long 1.791 1.982 4.443 
sTACI-long dimer 0.438 1.762 - 
sTACI-long 
monomer 

1.176 6.807 - 

sTACI-short 1.679 n.a. n.a. 
*N.a. means that the interaction that was measured was too low to calculate the IC50 and the 
straight line (-) means that the receptors were not tested with that ligand. Means were calculated 
from 3-6 experiments. 
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Figure 28: Decoy activity of TACI constructs for BAFF and APRIL measured by NFκB 
assay NFκB assay 
(A-E) HEK293T cells were transfected with BCMA (2.5 ng), Renilla (40 ng) and Firefly (40 ng). 
FLAG-tagged BAFF, mega- or human-APRIL (100 ng/ml) were added together with a dilutions 
series of sTACI-long or sTACI-short. The concentration of the sTACI-isoforms is represented on 
the x-axis, the NFκB fold induction on the y axis (F-H) Scatter blot of unpaired two-tailed t-test with 
Welch’s correction for A, D, and E (ns: not significant; *P<0.05). Combined data of six (A and B) 
or three (C,D,E) independent experiments (mean +/- SEM).  
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4.2.3. SUMMARY OF FUNCTIONAL TESTS 
 

In the second part of this thesis, we analyzed sTACI-long and sTACI-short for their 

ligand-binding and functionality with two different read-out systems, binding ELISA and 

NFκB reporter assay. We found that both isoforms of TACI showed a similar affinity for 

BAFF, while sTACI-long bound to APRIL with significantly higher affinity than sTACI-short. 

In a second read-out system, an NFκB reporter assay, similar results were obtained. Using 

SEC separated fractions, we found that the dimer of sTACI-long showed significantly 

higher affinity to BAFF and APRIL than the monomer. Three constructs of sTACI-short 

that differed in the sequence in the N-terminal side outside of CRD2 were available and 

tested for ligand binding. sTACI-short (1-20-W-68-154), sTACI-short (16-20-W-68-135), 

and sTACI-short (W-68-154) displayed similar binding affinities for BAFF, while sTACI-

short (1-20-W-68-154) bound significantly better to APRIL than sTACI-short (16-20-W-68-

135) and sTACI-short (W-68-154). sTACI-short (16-20-W-68-135) lacks 19 amino acids 

at the C-terminus outside of the CRD2 which are present in the other two versions of 

sTACI-short. This could contribute to the reduced binding affinity to APRIL. The abolished 

APRIL binding of sTACI-short (W-68-154) indicates, however, that the N-terminal part is 

crucial for binding to APRIL. Thus, these amino acids N-terminal outside of CRD2 have 

little effect on BAFF-binding, but seem to contribute to the (weak) APRIL binding of sTACI-

short. The two isoforms of sTACI were compared to TACI-Fc constructs, comprising 

CRD1 and CRD2 individually or together and to an atacicept analog (CRD1+CRD2-Fc-a). 

We found that CRD1+CRD2-Fc, CRD2-Fc and CRD1+CRD2-Fc-a exhibited similar high 

affinities for BAFF and APRIL, while CRD1-Fc showed little ligand binding. Surprisingly, 

CDR2-Fc appeared different from sTACI-short with respect to APRIL binding.  
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4.3. MEMBRANE-BOUND TACI ISOFORMS 

4.3.1. ASSESSMENT OF THE EXPRESSION, SHEDDING AND LIGAND 
INTERACTION OF TACI-LONG AND TACI-SHORT FROM HEK293T 
CELLS 

 

We tested transfected HEK293T cells for their expression, ligand binding and 

shedding of TACI-long and TACI-short. HEK293T cells were chosen because they do not 

express TACI endogenously. Flow cytometry was used to assess surface expression 

(membrane-bound TACI) and binding of ligands. ELISA was applied to test for shedding 

(sTACI).  

Both TACI-long and TACI-short were expressed and constitutively shed from 

transfected HEK293T cells. TACI-short was shed in significantly higher amount from the 

cell surface than TACI-long (Figure 29 A). In concordance, TACI-short expression was 

higher on HEK293T cells than TACI-long expression (Figure 29 B), when equal amount 

of plasmids were used for transfection. At the highest amount of transfected plasmid (100 

ng) TACI-short was expressed significantly higher than TACI-long.  

 

 

 

Figure 29: Expression and shedding of TACI-long and TACI-short by transfected 
HEK293T cells 
(A-D) HEK293T cells were transfected with increasing amounts of TACI-long or TACI-short. (A) 
The amount of shed TACI was determined by ELISA. (B) Surface expression was analyzed by 
flow-cytometry. The MFI was calculated by subtracting the signal from non-transfected cells from 
the signal of transfected cells. (Combined data of five independent experiments (mean +/- SEM), 
unpaired two-tailed t-test (*P<0.05). 
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The binding capacity of the membrane-bound TACI isoforms for BAFF and mega-

APRIL was analyzed with our cell based assay as well. HEK293T cells were transfected 

with different amount of TACI-long or TACI-short similar to the expression assay. In an 

additional step, FLAG®-tagged BAFF or mega-APRIL was added in a constant 

concentration and ligand binding was assessed by flow cytometry. We could replicate in 

concordance with our previous findings, that TACI-short is expressed significantly more 

on transfected HEK293T cells than TACI-long. We found that both membrane-bound 

isoforms can bind to BAFF and mega-APRIL. Both TACI isoforms bound to BAFF and 

APRIL similarly (Figure 30 A+B). In a different assay setup we tried constant amounts of 

transfected plasmid and varied the concentration of BAFF and mega-APRIL. Unspecific 

binding of mega-APRIL, when higher amount than 100 ng/ml were added, limited this 

approach. Human-APRIL could not be used at all for this assay as it displayed already in 

small amounts unspecific binding (data not shown).  

  

Figure 30: Analysis of membrane-bound TACI-long and TACI-short BAFF and APRIL 
interaction 
(A and B) HEK293T cells were transfected with increasing amounts of TACI-long or TACI-short. 
BAFF- (A) or mega-APRIL-FLAG (B) (100 ng/ml) were added. The binding of BAFF and mega-
APRIL was analyzed by flow-cytometry. The MFI was calculated by subtracting the isotype signal 
of non-transfected cells with BAFF or APRIL-FLAG from the signal of transfected cells. Combined 
data of three independent experiments (mean +/- SEM). 
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4.3.2. CO-IMMUNOPRECIPITATION OF TACI-LONG AND TACI-SHORT 
IN SOLUBLE AND MEMBRANE-BOUND FORM 

 

Co-IP was used to analyze for homo- or heterotypic interaction of both TACI 

isoforms in soluble and membrane-bound form in one single assay. Therefore, TACI-short 

was cloned with a N-terminal FLAG®-tag or HA-tag. No interaction between BCMA and 

TACI has been reported so far. BCMA with a FLAG®-tag was used for comparison.  

The efficiency of the IP was tested by anti-FLAG® ELISA (Figure 31). The FLAG®-

tag was used to immunoprecipitate proteins with anti-FLAG®-tagged beads. Each 

condition was tested for TACI and BCMA occurrence with pre and post IP samples by 

ELISA. Conditions with FLAG®-tagged proteins could be detected pre IP and post IP for 

both soluble (Figure 31 A) and membrane-bound proteins (Figure 31 B). Exclusively HA-

tagged conditions could not be detected after IP. The existence of TACI in solely HA-

tagged conditions pre IP was verified by hTACI ELISA (Figure 31 C+D). Therefore, the 

IP was able to specifically extract FLAG®-tagged proteins from our samples. 
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Figure 31: Test of efficiency of IP 
(A -D) HEK293T cells were transfected with the indicated plasmids. The supernatants (A,C) and 
cell-lysates (B,D) were harvested 48-72h after transfection. Small fractions of each condition were 
saved before FLAG®-IP. The pre- and post IP samples were then measured by anti-FLAG® ELISA 
(A and B) or hTACI ELISA (C and D) on ELISA plates. The proteins were either detected by an 
anti-TACI detection antibody or anti-BCMA detection antibody (for BCMA-FLAG in anti-FLAG® 
ELISA). The green arrow indicates pre IP and HA-tag only conditions in hTACI ELISA. Combined 
data of three independent experiments (mean +/- SEM).  
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In principle, HA-tagged proteins could only be detected post IP if these proteins 

formed an interaction with FLAG®-tagged proteins. Thus, the HA-tagged proteins were 

not lost during IP. The anti-HA ELISA was used to distinguish if our proteins formed such 

an interaction with each other in a homotypic or heterotypic way. We tested this for both 

soluble (supernatant) (Figure 32 A) and membrane-bound (cell-lysate) proteins (Figure 

32 B). No difference could be detected between soluble and membrane-bound conditions. 

We found that TACI-long interacted homotypically with itself, as previously described (93). 

Similarly, TACI-short showed the same homotypic interaction and both TACI-short and 

TACI-long interacted heterotypically with each other. No interaction of BCMA with either 

of the TACI isoforms could be detected. 

 

 
 

Figure 32: Analysis of homo- and heterotypic interaction of TACI isoforms in soluble and 
membrane-bound form 
(A and B) HEK293T cells were co-transfected with plasmids that contained either a HA- or FLAG®-
tag. The different conditions are indicated in the legend below the graph. The supernatants and 
cell-lysates were harvested 48-72 h after transfection. Small fractions of each condition were 
saved before FLAG®-IP. The pre- and post IP samples were then measured by anti-HA ELISA. 
The proteins were detected by an anti-TACI detection antibody. Combined data of three 
independent experiments (mean +/- SEM).  
 

  



  

77 
 

4.3.3. SUMMARY OF THE ANALYSIS OF MEMBRANE-BOUND 
ISOFORMS OF TACI  

 

In this last part of this thesis we found that both TACI-long and TACI-short were 

expressed on and spontaneously shed into the cell culture medium from the membrane 

of transiently transfected HEK293T cells. TACI-short levels were significantly higher on 

the cell membrane and in the cell culture medium. Both membrane-bound isoforms of 

TACI bound to BAFF and mega-APRIL similarly. The homotypic interaction of the soluble 

and membrane-bound TACI isoforms was further evaluated by Co-IP. We have shown 

that both TACI-long and TACI-short form homotypic interactions and that TACI-short and 

TACI-long exhibited a heterotypic interaction with each other in soluble and membrane-

bound form. No interaction of TACI isoforms and BCMA was detected. 
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5. DISCUSSION 
5.1.  BASIC CHARACTERIZATION OF sTACI-LONG AND 

sTACI-SHORT  
 

In this project, we aimed to investigate the molecular characteristics and functions 

of two different TACI isoforms (sTACI-long and sTACI-short) by generating proteins that 

have the identical sequence with the endogenously shed TACI that our lab had recently 

identified (93). Our previous studies found so far that (i) TACI gets shed by the protease 

ADAM10 from activated B-cells, (ii) TACI interacts homotypic in soluble and membrane-

bound form and (iii) sTACI exits in vivo in B-cell pathologies (93, 163). sTACI-long and 

sTACI-short differ from each other on the extracellular domain. sTACI-long expresses 

both CRDs (CRD1 and CRD2), while TACI-short only the CRD2 as a consequence of 

alternative splicing (Figure 6) (140). Both isoforms of TACI were analyzed in membrane-

bound form by a previous study that reported that TACI-short is more potent inducing 

plasma cell differentiation (146).  

 

5.1.1. PURITY  
 

We produced the two isoforms of sTACI recombinantly, secreted from 

HEK293.EBNA cells (153). Combined analysis of Coomassie stained SDS-PAGE, 

Western blot, mass-spectrometry and N-terminal sequencing yielded only TACI indicating 

the purity of the recombinantly produced proteins. The purity of our proteins was the result 

of on the one hand usage of serum-free medium during expression and on the other hand 

purifying them with an affinity based method.  
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5.1.2. DIFFERENT VARIANTS OF sTACI-LONG AND sTACI-SHORT 
OUTSIDE OF THE CYSTEINE RICH DOMAINS 

 

We noticed that both of our TACI isoforms did not appear as a single band in 

Coomassie stained SDS-PAGE and Western blot. Both isoforms were rather comprised 

of double bands, while sTACI-short showed an additional 5 kDa smaller variant. We 

analyzed all variants by mass spectrometry and N-terminal sequencing. The 5 kDa smaller 

variant of sTACI-short was revealed to be missing parts on both the C- and N-terminal 

side. Thus, our sTACI-short preparations were a mixture of full-length sTACI-short (1-20-

W-68-154) and sTACI-short (16-20-W-68-135). N-terminal sequencing revealed further 

heterogeneity within the sequence of sTACI-long and sTACI-short on the N-terminal side, 

which we could largely attribute to Furin cleavage. Furin is a protease primarily located at 

the Golgi apparatus (159). The cleavage points that we observed for our sTACI-long and 

sTACI-short are depicted in Figure 20 together with the canonical sequences of the Furin 

protease. Cleavage by Furin often leads to activation of proteins like for example observed 

for shiga toxin, Influenza virus hemagglutinin, and the hepcidin regulator hemojuvelin 

(159, 164-166). We found an additional variant of the N-terminus for sTACI-short that we 

could not attribute to a protease yet.  

 

5.1.3. OLIGOMERIZATION OF sTACI ISOFORMS 
 

Coomassie stained SDS-PAGE and Western blot revealed possible oligomers of 

our sTACI isoforms. We found that our recombinantly produced sTACI-long built mainly 

dimers and to a smaller extent monomers, whereas sTACI-short appeared mainly as 

monomer and in small amounts as higher oligomers. SEC and SLS/SEC analysis 

confirmed our previous observations that sTACI-short appeared mainly as a mixture of 

the monomers sTACI-short (1-20-W-68-154) and sTACI-short (16-20-W-68-135).  

Thus, both isoforms of sTACI are able to form oligomers. It was previously 

described that the CRD1 is needed for oligomerization of surface TACI (145). 

Nevertheless, our sTACI-short which lacks the CRD1 built oligomers indicating that 
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oligomerization seems to not solely depend on the CRD1. The differing ways of 

oligomerization of both sTACI isoforms could, however, be the result of different 

interactions. Earlier studies support the role of the CRD1 in dimerization of TACI-long 

(145). In general, additional CRDs are reported to bring extra abilities to other TNF 

receptors. The additional CRDs stabilized the receptors and increased the affinity and 

specificity of the receptors to their ligands (140, 167-170). Moreover, another study 

proposed that the CRD1 of TACI was an evolutionary relict by reporting that it cannot 

contribute to ligand/receptor interactions with BAFF and APRIL (140). Taken together, the 

main role and function for the CRD1 could be the dimerization and stabilization of TACI-

long, while the cause of oligomerization in sTACI-short remains unknown. 

Concerning the observed dimerization of sTACI-long, we assessed its stability with 

several different conditions. We found that heat denaturation did not disrupt the dimers 

and that there was no state of equilibrium between the dimer and monomer, at 

physiological conditions. This observation suggested that the dimer was formed by a 

highly stable bond. Only DTT, which is a reducing agent, was able to break the bond, 

further supporting our hypothesis.  

This highly stable covalent interaction could be caused by disulfide bonds (171). 

Disulfide bonds are important posttranslational modifications that contribute to proper 

folding, stabilization and functionality of proteins (172). The redox reaction that generates 

these bonds takes part in the ER (173). Cleavage of disulfide bonds can exert regulatory 

effects (172). This effect was shown for several receptors like the scavenger receptor 

class B, type 1 (SR-B1), vasopressin V2 receptor (V2-R), and Thyrotropin-releasing 

Hormone Receptor (TRH-R) (174-177) . Several disulfide bonds are predicted for the 

CRDs of TACI on the extracellular domain (Figure 33) (140).  
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Figure 33: Sequence alignment of the CRD1 (TACI_d1), CRD2 (TACI_d2), BAFF-R (BR3) 
and BCMA 
CRD1, CRD2 and BCMA share the identical arrangement of their cysteine residues. The proposed 
interaction between these residues is indicated by the connecting brackets above the sequence. 
The residues are all connected in inner-molecular disulfide bonds. Figure taken from (140). 
 
 

Disulfide bonds could either directly be involved in generating a disulfide-linked 

dimer, or as intramolecular bonds that induce proper formation and folding for protein 

interaction. Interestingly, the mutation C104R within the extracellular domain of TACI - a 

mutation associated with the diseases common variable immune deficiency (CVID) and 

IgA deficiency (IgAD) (120-122, 127, 145, 178, 179) - is located at the cysteine at position 

104 which is predicted to form an intramolecular disulfide bond with the cysteine at 

position 93 (140). A mutation at that position abolishes the proposed disulfide bond which 

could explain the changed properties of C104R mutated TACI, although no effect could 

be observed at receptor preassociation (145). The mutation was shown to annihilate 

ligand binding and intracellular signaling (120, 121, 178) and is discussed to increase 

susceptibility to disease outbreak (127).  

Whether disulfide bonds are the cause of oligomerizations of TACI could not be 

shown yet. Previous studies detected oligomerization of soluble TACI-long by Co-IP (93) 

and of membrane-bound TACI by crosslinked cell surface molecules in murine B-cells 

(145), Förster resonance energy transfer (FRET) analysis independent of a ligand (145) 

and Co-IP (93, 145). Sequential nondenaturing IP revealed that TACI assembled at least 

as trimer in the ER (145). In that study DTT was able to break higher oligomers of cross-

linked TACI in cell lysates, but without any explanation. In other TNF receptors 

extracellular disulfide bonds were shown to attribute to native dimerization such as for the 

death receptor 5 (180) and CD40 (181-183). Both receptors exhibited extracellular 

disulfide-linked dimers. The addition of a reducing agent broke both dimers (180, 181). 
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The dimerization of CD40 is controversially discussed, since another study attributes 

dimerization to the CRD1 of CD40 (184). 

Another N-terminal variant of sTACI-short that was cloned, namely sTACI-short-

(W-68-154) showed the tendency to build several high grade oligomers already quite 

prominent in Coomassie stained SDS-PAGE. In contrast to our recombinantly produced 

sTACI-short, we did not find an additional degraded sTACI (16-20-W-68-135)-like variant 

in our sTACI-short (W-68-154) preparation. Therefore, the terminal stalk right before the 

transmembrane region (amino acids 135-154) of sTACI-short could contribute to the low 

level of oligomers formed by sTACI-short. An additional assay was performed with sTACI-

short (W-68-154) to further assess its oligomerization. It was tested, whether the simple 

addition of EDTA, which is potent at forming chelates with divalent ions, abrogates 

oligomerization by capturing Nickel ions. Therefore, the formation of a chelate between 

eluted Nickel ions from HisTrap columns and the His6-tag of sTACI-short (W-68-154) 

would be prevented. This phenomenon was suggested previously to explain the formation 

of the BAFF60mer, although it was found that the BAFF60mer was not the consequence 

of such an interaction (84, 85). Accordingly to the BAFF60mer, addition of EDTA had no 

effect on oligomerization of sTACI-short (W-68-154). Following studies could further 

evaluate the disulfide bonds of TACI. An urea gel could be run to determine whether our 

oligomers are linked by intermolecular disulfide bonds. In principle, urea denaturizes 

proteins by destruction of their tertiary structure (177, 185-187).  
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5.1.4. GLYCOLSYLATION OF TACI ISOFORMS 
 

Last, we investigated the glycosylation of our proteins. Glycosylation was shown to 

have effects on ligand/receptor interactions and membrane assembly of receptors in 

previous studies (188, 189). N-linked glycosylation was predicted at amino acid 128 (N) 

for TACI by Uniprot. We found that both of our recombinantly produced isoforms were 

missing the predicted N-linked glycosylation as proven by PNGase F (Figure 20).  

N-linked glycosylation was shown to have an important regulatory effect on BCMA 

(190). BCMA expresses a single N-linked glycosylation site on the extracellular domain at 

asparagine 42. In BCMA small changes and different parts of the glycosylation pattern 

affected the function by improving ligand binding and causing either cell surface retention 

or removal of BCMA (190).  

It remains to be clarified whether the sTACI shed from B-cells also lacks N-linked 

glycosylation, since glycosylation could be different in HEK293T- and B-cells. Future 

studies should investigate the glycosylation of B-cell derived TACI and sTACI. Therefore, 

supernatants of the Raji cell line (191-193) – a lymphoblast cell line that expresses TACI- 

could be concentrated, followed by separation of sTACI-long and sTACI-short by SEC 

and analysis for glycosylation by PNGase F. 
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5.2.  LIGAND BINDING AND DECOY FUNCTION OF sTACI-
LONG AND sTACI-SHORT    

 

To analyze interactions of TACI-variants and their ligands, we used two different 

read out systems, namely ELISA and NFκB assay. In general, ELISA or surface plasmon 

resonance (SPR) based methods can be used to determine affinity and calculate Kd 

values (136, 160, 161, 194, 195). Both methods detect different reactions and 

consequently differ in exact values, but the general conclusions are mostly uniform and 

equivalent between both methods (196). In our binding ELISA we immobilized FLAG®-

tagged BAFF and APRIL to pre-coated anti-FLAG® antibodies on the plate and added a 

dilutions series of sTACI in molar concentration which we then detected by colorimetry. 

Another previously described ELISA based method which was used to evaluate the 

binding affinity of BCMA-Fc and TACI-Fc (basically TACI-long) to BAFF and APRIL 

showed that BCMA-Fc and TACI-Fc exhibit similar affinities to BAFF and APRIL (136). In 

that study BCMA and TACI were used as Fc fused homodimers. BCMA-Fc and TACI-Fc 

were immobilized to plates and BAFF or APRIL were added in a dilution series (136). For 

our second read out system - the NFκB assay- we used an inhibition based method and 

determined the IC50 essentially as published (93). We transfected HEK293T cells with 

BCMA and added a mixture of BAFF or APRIL with a dilution series of TACI and checked 

for NFκB activation.  

We found that sTACI-long and sTACI-short exhibited similar affinity and decoy 

function for BAFF. In contrast, sTACI-long bound with significantly higher affinity to APRIL 

than sTACI-short. In harmony with this observation, only sTACI-long was able to act as a 

decoy receptor for APRIL. A previous study from our lab showed that sTACI can bind to 

BAFF and APRIL and that it acts as a decoy receptor for both ligands (93), which is 

confirmed in this study. That study did not compare the different isoforms of TACI, it only 

analyzed the full-length isoform which represents sTACI-long.  

Another study analyzing the contributions of CRD1 and CRD2 of TACI to binding 

of BAFF and APRIL concluded that only CRD2 is needed for high affinity-binding to both 

ligands (140). CRD1 alone bound only weakly; when CRD1+CRD2 (basically sTACI-long) 

was compared to CRD2 only (basically sTACI-short), the CRD1 did not contribute 
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substantially to ligand binding (140). While many of these results are similar to the ones 

obtained here with the sTACI variants, one difference appeared. In that study (140), CRD2 

showed a strong APRIL binding, while in our study sTACI-short showed only a weak 

APRIL binding.  

Possible reasons for the different results could be (a) different methods to 

determine the affinity, (b) sequence differences beyond the CRDs, (c) differences in the 

used protein expression systems, (d) differences in state of oligomerization, (e) and 

differences in the applied variant of APRIL. 

(a) That study used different methods to determine the affinity (140). First, an 

inhibition assay was used which measured binding kinetics by SPR (194, 195). In that 

assay BCMA-Fc was coupled to a chip and different amounts of TACI were added 

together with constant amounts of BAFF and APRIL (140). The aim of that assay was to 

calculate the ability of TACI to inhibit the binding of BAFF and APRIL to BCMA-Fc (IC50). 

Second, a competitive ELISA assay was used as an additional read out system. The 

competitive ELISA assay was designed as an inhibition assay as well (IC50). BAFF and 

APRIL were coupled to plates and a mixture of each TACI construct with a dilution series 

of soluble BAFF and APRIL was added. The concentration of the receptors was not used 

in molarity in contrast to our study if the indicated protocol was followed (140, 141). As 

previously described, all methods for the determination of affinity mostly lead to the same 

conclusions (196). Therefore, other effects are most likely to cause the differences we 

observed between our sTACI isoforms and that study.  

(b) The constructs of that study were designed to start directly at the CRDs of TACI 

and not as full-length proteins like ours (Figure 34). Indeed, we observed that the N-

terminal part of sTACI-short outside of the CRD2 have an effect on APRIL binding as 

described below. Our observation that sTACI-short (W-68-154) showed almost no APRIL 

interaction shows that the N-terminus outside of CRD2 is not the reason for the discrepant 

results. Nevertheless, our sTACI-short extended to amino acid 154 or 135, while the 

CRD2 used in that study stops at amino acid 109. The C-terminal part outside of CRD2 

would not be expected to contribute to APRIL binding, although this has not been analyzed 

specifically.  
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Figure 34: Sequence of the TACI constructs from Hymowitz et al (Figure taken from (140)) 

 

 (c) The proteins of that study (140) were produced in E. coli and insect cells, while 

we produced in eukaryotic HEK.EBNA cells. In detail, the CRD2-version was produced in 

E. coli. In general, recombinant protein production in E. coli gives high yields of protein 

and is fast, but it can lead to misfolded, aggregated, and degraded proteins that lack the 

posttranslational modifications of native human proteins (197, 198). Regardless, the 

CRD2 construct of that study (140) was shown to be fully functional concerning BAFF and 

APRIL binding. The constructs that were comprised of the CRD1 and CRD1+CRD2 were 

produced differently by using baculovirus expression system with Hi5 cells. This method 

enables the generation of active proteins that highly depend on posttranslational 

modifications, proper folding and disulfide bonds (199). Expression in insect cells was 

reported to yield functional CRD1 and CRD1+CRD2 constructs likewise to the E. coli 

expressed variant of CRD2 (140). Our eukaryotic expressed isoforms of sTACI were fully 

functional within the BAFF/APRIL system. Therefore, the choice of different expression 

systems is most likely not the reason for the different results. 

(d) We noted a difference in oligomerization between the sTACI isoforms in our 

preparations. sTACI-long was mainly formed as a dimer, whereas sTACI-short was 

primarily in monomeric form. In that study (140), it was not reported whether the applied 

CRD domains were monomeric or oligomeric. To further assess the effect of 

oligomerization and to address the seemingly discrepant results, we analyzed TACI-Fc 

constructs, which are dimers due to the Fc-tag. Using these constructs, we basically 

obtained similar results as in that study (140). Specifically, we found that CRD1+CRD2-

Fc, CRD2-Fc and an atacicept analog (CRD1+CRD2-Fc-a) showed no difference in their 

capability to bind to BAFF and APRIL, whereas CRD1-Fc exhibited little BAFF and APRIL 
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interaction. Thus, a different state of oligomerization of sTACI-short versus CRD2-Fc 

could be an explanation for the different observations in this study and in (140).  

(e) This and the previous study (140) observed consistently that murine APRIL 

bound human TACI better than human APRIL. In that study trimeric murine APRIL (76) 

was used, while we used APRIL as an ARCP fused hexamer. It is unclear whether this 

contributes to the different results.  

Hence, the most plausible explanation for our observed differences of affinity is the 

state of oligomerization of sTACI-short versus CRD2-Fc. The importance of dimerization 

for ligand binding has been observed in several previous studies (94, 200-203). For 

example, it was shown that different binding properties exist between sBCMA and BCMA-

Fc (94). sBCMA is like sTACI shed from the cell surface and exists as a soluble receptor 

(94). sBCMA was produced with the same expression assay as our sTACI isoforms (94, 

153). It was demonstrated that sBCMA was able to bind APRIL, while BCMA-Fc was able 

to bind BAFF and APRIL (94). This finding is in concordance with another study which 

observed similar findings when they compared BCMA-Fc which is a homodimer with a 

monomeric version of BCMA (203). The dimerization increased the binding affinity of 

BCMA (203).  

To further validate our theory, we compared the dimer to the monomer of sTACI-

long. We were able to separate the dimer from the monomer by SEC. We could detect a 

significant improvement of binding to BAFF and APRIL for the dimer, which we could also 

replicate by NFκB assay. We could confirm that oligomerization improves ligand/receptor 

interaction. 

We noted that our sTACI-preparations contained variants that differ in the length of 

the stretches outside of the CRDs. This allowed us to analyze the contributions of these 

stretches to ligand binding. Specifically, our sTACI-short preparation contained the full-

length sTACI-short (1-20-W-68-154) and sTACI-short (16-20-W-68-135) which we 

separated by SEC. Additionally, we cloned sTACI-short (W-68-154) as another N-terminal 

variant. We compared the three N-terminal variants for their binding properties to analyze 

a possible contribution of the N-terminal amino acids to ligand binding. We found that all 

N-terminal variants showed no difference in binding to BAFF. In contrast, sTACI-short (1-

20-W-68-154) bound with significantly higher affinity to APRIL than sTACI-short (16-20-

W-68-135) and sTACI-short (W-58-154). sTACI-short (16-20-W-68-135) lacks 19 amino 
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acids at the C-terminus outside of the CRD2 which are present in the other two versions 

of sTACI-short. This could contribute to the reduced binding affinity to APRIL. The 

abolished APRIL binding of sTACI-short (W-68-154) indicates, however, that the N-

terminal part is crucial for binding to APRIL. Hence, these amino acids N-terminal outside 

of CRD2 have little effect on BAFF-binding, but seem to contribute to the (weak) APRIL 

binding of sTACI-short.  

The BAFF/APRIL system is very diverse. Further analysis of our proteins with all 

different variations of ligands like the BAFF60mer (83) or the heterotrimers of BAFF and 

APRIL (74, 88, 89) could improve the understanding of this complex system.  
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5.3. EXPRESSION, SHEDDING, LIGAND BINDING AND 
OLIGOMERIZATION OF MEMBRANE-BOUND TACI-LONG 
AND TACI-SHORT 

5.3.1. EXPRESSION, SHEDDING AND LIGAND BINDING 

We found that TACI-short was expressed and also constitutively shed in higher 

amount from transiently transfected HEK293T cells than TACI-long. Both TACI-long and 

TACI-short could bind to BAFF and APRIL.  

TACI had already been tested by cell based assay for its binding ability to BAFF 

and APRIL after identifying TACI as a possible receptor for BAFF (137, 146, 204). It was 

shown that TACI could bind to BAFF and APRIL in a similar assay set up as ours and that 

binding of the ligands lead to NFκB activation (137). Another study compared membrane-

bound TACI-long and TACI-short (146). That study found that (i) both isoforms are equally 

expressed when transfected on a murine B-cell line, (ii) both isoforms can bind to BAFF 

and APRIL and (iii) the shorter isoform seems to be more potent at inducing plasma cell 

differentiation independent of a ligand (146). 

Concerning membrane-bound studies, several different possibilities should be 

taken under consideration for future studies. Higher expression of TACI-short in 

comparison to TACI-long could lead to higher amount of BAFF and APRIL bound to TACI-

short transfected cells. In general, cell surface oligomerization is known to be important 

for interaction of ligands with transmembrane receptors (205, 206), which most likely 

correlates to membrane-expression. First, the difference of expression of our isoforms 

could be compensated by co-transfecting the constructs with an EGFP tracer for 

expression (151, 207). The EGFP tracer would be used to indicate the general transfection 

and expression efficiency. Second, in another set of experiments we could see that 

different proteases seem to cause the shedding of TACI from HEK293T in comparison to 

B-cells (data not shown). Although HEK293T cells do not endogenously express TACI 

(208), the usage of human B-cells subtypes that do not express TACI should be discussed 

as a more physiological solution. Therefore, EBV immortalized B-cells from TACI deficient 

CVID patients could be used and checked for different expression and binding abilities for 

BAFF and APRIL after being transduced with either TACI-long or TACI-short. Finally, the 
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ability of our sTACI isoforms to bind to membrane-bound BAFF should be analyzed. 

APRIL cannot be assessed as it is not expressed on the cell surface. The U373 MG cell 

line which is known to express BAFF (and APRIL) could be used and tested for binding of 

both sTACI isoforms (209, 210). It could be evaluated if shedding of BAFF is inhibited by 

sTACI binding which would indicate another negative effect of TACI on immunity. Several 

previous studies examined the possibility of reverse signaling through soluble versions of 

TACI, although no general consensus has been found (59, 211-217). 

 

5.3.2. HOMOTYPIC AND HETEROTYPIC INTERACTION  

 

After assessing oligomerization of our soluble recombinant proteins extensively, 

we wanted to see whether we could extend our findings to membrane-bound TACI. Both 

TACI-long and TACI-short interacted homotypically and heterotypically with each other in 

soluble and membrane-bound form as seen by Co-IP from cells simultaneously 

transfected with TACI-long and TACI-short. This is the first time that a homotypic 

interaction has been described for TACI-short and a heterotypic interaction between both 

receptors. Neither of the TACI isoforms interacted in any way with BCMA.  

Co-Immunoprecipitation is a commonly employed method to analyze protein-

protein interactions (218, 219). This method had already been used before to analyze 

TACI-ligand (136-138, 145) and TACI-TACI interactions (93). One limitation of this 

approach is that we do not know and cannot say whether the proteins form dimers or 

higher oligomers. We can only proof the existence of an interaction. Therefore, FRET 

analysis (220, 221) and Fluorescence Correlation Spectroscopy (FCS) (222-224) could 

be used to give more insight into oligomerization. FRET analysis is based on donor 

acceptor energy transfer (220) and FCS on changes in fluorescence intensity (225). Last, 

the TACI-long/TACI-short heteromers could be analyzed for their functionality within the 

BAFF/APRIL system and existence in vivo, similar to the BAFF and APRIL heteromers 

(88-90).  
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6. CONCLUSION AND OUTLOOK 
 

We observed differences in the binding affinity, decoy function and oligomerization 

between sTACI-long and sTACI-short. This increases our knowledge about the complexity 

of the BAFF/APRIL system. Next, antibodies should be developed that distinguish both 

isoforms and to quantify the relative abundance of both isoforms in human body fluids. In 

previous studies from our lab sTACI was found to be a potentially useful biomarker in MS 

and SLE (93) and also in primary CNS lymphoma (96). The development of ELISAs 

distinguishing the two isoforms of TACI might improve its use as a biomarker.  

Concerning membrane-bound TACI isoforms, further studies with the isoform 

specific antibodies could determine the distribution of both isoforms on different B-cell 

subsets and show which isoform is predominating at which step of B-cell differentiation. 

Next, an association of B-cell pathologies to isoform specific B-cell subsets could be 

analyzed. If an association is found, the isoform specific antibodies could be used 

therapeutically to target directly identified subsets. Moreover, a general effect of B-cell 

depletion therapy such as rituximab on the B-cell repertoire, especially TACI expression, 

could be analyzed to assess whether B-cell depletion changes the population.  
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