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Mündliche Prüfung am 29.10.2018





Danksagung

Bei meinem Doktorvater, Herrn Prof. Dr. Christian Ochsenfeld, möchte ich mich für
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Ohne die Unterstützung meiner Familie, insbesondere meiner Eltern und meiner Ge-
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Summary

This thesis introduces new methods to compute molecular properties at the level of second-

order Møller-Plesset perturbation theory (MP2) and double-hybrid density functional the-

ory, building on a reformulation in atomic orbitals and exploiting the rank deficiency of

the (pseudo-)density matrices, thus reducing the scaling behavior with respect to the size

of the basis set. By furthermore employing the resolution-of-the-identity approximation,

low-scaling and efficient MP2 energy gradients are presented, where significant two-electron

integrals are screened using a distance-including integral estimation technique. With this,

the forces and the hyperfine coupling constants of systems larger than previously com-

putable at the MP2-level are obtained.

In the second part of this thesis, the locality of the spin density in many molecular sys-

tems is exploited in the computation of the hyperfine coupling constants, leading to further

speed-ups and allowing for a thorough investigation of the effect of the protein environment

on the hyperfine coupling within the core region of a pyruvate formate lyase. With this

efficient method, studying the effect of nuclear motion on the accuracy of the computed

hyperfine coupling constants is possible. The study presented in this thesis demonstrates

that both electron correlation and vibrational motion are crucial for an accurate theoretical

description.

When calculating magnetic properties, the dependence on the choice of gauge origins

needs to be considered. This effect is studied systematically, and in detail, in a fourth

project of this thesis for the computation of electronic g-tensors, for which it was previously

assumed that the computation is largely independent of the choice of the gauge-origin. The

study clearly contradicts this assumption and motivates the use of gauge including atomic

orbitals in future work on electronic g-tensors.

In a last part, this work transfers the algorithmic developments on the computation of

analytic gradients to the computation of nuclear magnetic resonance (NMR) shieldings at

the MP2-level. Though a sublinear scaling ansatz to compute the NMR shielding tensor

per nucleus is available, the lack of an efficient implementation and the large dependency

on the size of the basis sets prohibits the accurate computation of the shielding tensor of

medium- to large-sized molecules. Furthermore, while this ansatz in theory scales linearly

when all nuclei in a system are computed, it is inefficient due to the dependence of the

rate-determining steps on the nuclear magnetic moments. This thesis therefore presents a

new all-nuclei ansatz and introduces the methodology for the efficient computation of the

energy gradients developed in this thesis, highlighting significant computational savings.
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1 Introduction

The extensive research on efficient and accurate quantum chemical methods has lead to

their widespread application in aiding the understanding of reaction mechanisms and ki-

netics, as well as in determining molecular structures and their relationship with molecular

properties. Two such examples are nuclear magnetic resonance (NMR) chemical shifts and

hyperfine coupling constants from electron paramagnetic resonance (EPR) spectroscopy.

While the theoretical foundation for an exact description of the electronic structure of

molecular systems is well known, the computational complexity requires an introduction

of different approximations. This necessity is due to their scaling behavior, which describes

the exponent in the increase of required computational resources with respect to the size

of the molecular system.

The basis of ab initio methods is the Hartree-Fock (HF) theory, [1–3] where the electron-

electron interaction is described by a mean field-approach. However, the neglected electron

correlation often proves vital for an accurate description. A variety of post-HF methods

exist, which build either on a perturbation theory, describing electron correlation as a

perturbation of the HF wavefunction, or on an expansion of the wavefunction in multiple

determinants. The latter includes size-consistent coupled cluster (CC) approaches, such

as the “gold standard” of quantum chemistry, [4] the CCSD(T) method, which includes

singles and doubles excitations [5] and a perturbative description of triple excitations [6]. On

the other hand, Møller-Plesset (MP) perturbation theory, [7] a special case of Rayleigh-

Schrödinger perturbation theory, [8] provides a good compromise between accuracy and

computational cost, while still being ab initio and wavefunction-based.

An alternative, popular route is density functional theory (DFT). Contrary to HF the-

ory and post-HF methods, DFT is not an a priori wavefunction-based method. Based on

the Hohenberg-Kohn theorem which states that the total energy is a unique functional of

the electron density, [9] finding this functional is the quest of DFT. A common approach

is the Kohn-Sham (KS) ansatz, [10] which reintroduces orbitals to accurately describe the

kinetic energy. KS-DFT has proven to be reasonably accurate for a wide range of molecular
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systems, [11] leading to its widespread use. [12] By adding exact exchange contributions in

so-called hybrid functionals, this accuracy is typically increased. [13] Furthermore, includ-

ing electron correlation in double-hybrid (DH-) DFT, e.g., by second-order perturbation

theory (PT2) using Kohn-Sham orbitals, can lead to increased accuracy. [14] Recent work

on improving these DH-DFT functionals, e.g., for open-shell systems, highlights their ap-

plicability. [15–17] The PT2 contribution to DH-DFT is from an algorithmic point of view

identical to MP2, making developments for an efficient computation of MP2 energies, en-

ergy gradients, and molecular properties similarly applicable to DH-DFT.

Recent decades have seen significant advancements in the efficient computation of the

MP2 equations. In order to reduce the scaling behavior, exploiting the local nature of the

correlation contribution is crucial. An important approach is the use of localized orbitals

based on the work by Pulay and Saebø [18–20] and for which local MP2 energies [21,22], energy

gradients [23,24], and NMR shieldings [25,26] have been introduced. A second ansatz, which

is especially efficient on parallelized architectures, is partitioning the orbital space [27–32] or

fragmenting the molecule [33–37]. The third idea, which is the focus of this work, is based on

a Laplace transformation [38–40], enabling a fully atomic orbital (AO-)based reformulation

of the respective MP2 energy equation. The local nature of the AOs ultimately leads to

linear scaling behavior. [41,42]

An accurate description of the electronic structure forms the basis of an ab initio com-

putation of molecular properties, such as spectroscopic parameters. This constitutes an

important link between experiment and theory and can help analyse and interpret exper-

imental findings. As the Hellmann-Feynman theorem [43,44] only holds true for complete

basis sets, molecular properties of a specific electronic state require analytic derivatives of

the energy expression [45]. While numerical derivatives are often easy to implement, com-

putational efficiency and accuracy mandate an analytic differentiation. The computation

of these derivatives needs to be efficient with respect to computational resources and to

the scaling behavior, allowing for a thorough analysis of the influence of the environment

and solvation on the molecular property as well as of dynamic effects.

In this work, the computation of different molecular properties is investigated. Besides

the nuclear gradients, which form the basis for geometry optimizations and ab initio Born-

Oppenheimer molecular dynamics, these include different parameters from EPR and NMR

spectroscopy. Both spectroscopic techniques are important analytical tools of chemistry

due to their strong dependence on structural parameters and high sensitivity, allowing the

detection of molecules, and their structure and dynamic effects. Their ab initio computa-
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tion remains challenging and often electron correlation is crucial for accurate results [46,47].

Based on the previous AO-based reformulation of the MP2 energy gradient [48], Paper I

of this work introduces an improved implementation by employing the resolution-of-the-

identity (RI) approximation [49–55] and a Cholesky decomposition of the density matrices

(CDD) [56,57], as was previously done in the realm of the energy computation [58,59]. Ex-

tending the distance-including QQR-type integral estimation by Maurer et al. [42,60] to the

computation of MP2 energy gradients allows the exploitation of the locality of the atomic

orbitals. This builds the foundation for a computation of hyperfine coupling constants

(HFCCs) in the absence of spin-orbit coupling. Paper II improves on the efficient imple-

mentation of HFCCs in Paper I by taking into account the locality of the spin density in

various realistic systems. By computing the HFCCs of selected nuclei, the computational

cost is reduced further. When only the opposite spin contribution in the scaled opposite

spin (SOS) approximation [61] is computed, the wall time required for the computation is

reduced by migrating to graphics processing units (GPUs), as shown in computations on

a realistic biomolecular system.

As outlined in Sec. 2.3.2, the choice of gauge including atomic orbitals (GIAOs) in

the computation of magnetic properties, such as the electronic g-tensor and the NMR

shielding, is vital. While the effect is known in the computation of NMR shieldings [45],

it was assumed to be small or negligible in the case of the electronic g-tensor [62–67]. The

work presented in Paper III contradicts this commonly adopted assumption by analyzing

in detail the effect on larger molecular systems.

Furthermore, vibrational averaging significantly influences the accuracy of the computed

molecular property. While this has been studied for small molecules at the DFT-level,

Manuscript IV presents a thorough analysis at the DH-DFT and MP2-level of the influence

of both molecular dynamics and electron correlation on the computed HFCCs using the

efficient implementations presented in Papers I and II.

To allow for a description of dynamic effects in the computation of NMR shieldings, a low

scaling efficient implementation is required. While Maurer and Ochsenfeld [68] presented a

(sub-)linear scaling reformulation of the MP2 NMR shieldings in atomic orbitals, the pilot

implementation entails a significant prefactor in the overall scaling behavior and a large

dependency of the computational cost on the basis set size for fixed molecular system

sizes. Therefore, extending the RI-CDD approach of the analytic gradients in Paper I to

the computation of NMR shieldings might be beneficial. First results are discussed in Sec.

4.2.3, indicating significant computational savings.
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This thesis will start by briefly reviewing HF and Møller-Plesset perturbation theory and

subsequently summarizing the main ideas to reduce the computational cost: the reformula-

tion in atomic orbitals and the screening of the integral products using distance-dependent

estimates, the Cholesky decomposition, and the RI approximation. After this theoreti-

cal background, a brief summary of the findings in Paper I-III and in Manuscript IV is

presented in Chapters 3 and 4.



2 Theoretical Background

Calculating the energy of molecular systems forms the basis for the computation of molec-

ular properties. This chapter therefore starts by introducing the fundamental HF theory

in Sec. 2.1, followed by an overview of the main equation and the atomic orbital-based

approach to reduce the scaling behavior of Møller-Plesset perturbation theory in Sec. 2.2,

and ending with a brief presentation of the theory to compute molecular properties based

on the energy expression in Sec. 2.3.

2.1 Hartree-Fock theory

In order to obtain static molecular properties, the time-independent Schrödinger equation

needs to be solved. Here, the non-relativistic molecular Hamiltonian Ĥ is composed of the

kinetic energy of the nuclei and of the electrons, and of the potential energy contribution

of the electron-electron, the electron-nuclei, and the nuclei-nuclei interaction. In atomic

units, the Hamiltonian is written as:

Ĥ = −
∑

A

1

2MA

∇2
A −

∑

i

1

2
∇2
i +

∑

j>i

1

rij
−
∑

i

∑

A

ZA
riA

+
∑

B>A

ZAZB
RAB

, (2.1)

where nuclei are represented by capital Latin letters, whereas lowercase Latin letters are

used for electrons. MA is the mass of nucleus A, ZA is its charge, and R and r indicate the

respective distances between the nuclei, the electrons, and the electrons to the nuclei.

The motion of the nuclei is considerably slower than that of the electrons. The common

Born-Oppenheimer approximation thus views the motion of the electrons in a field of static

nuclei. [69] The wavefunction is described as a product of a nuclear χn(R) and an electronic

wavefunction ψn(r; R) of state n:

Ψ(r,R) =
∑

n

ψn(r; R)χn(R). (2.2)

Analogously, the Hamiltonian is separated into the operator of the kinetic energy of the
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nuclei T̂nuc, the nuclear-nuclear repulsion V̂NN, and the remaining electronic Hamiltonian

Ĥel:

Ĥ = T̂nuc + V̂NN + Ĥel. (2.3)

In the Born-Oppenheimer approximation one assumes the change of the electronic wave-

function with respect to the nuclear coordinates to be slow and thus negligible, leading

to:

(
V̂NN(R) + T̂nuc + Eel(R)

)
χn(R) = Eχn(R), (2.4)

where V̂NN(R) is the nuclear-nuclear interaction, and Eel(R) is the eigenvalue of the cor-

responding electronic Schrödinger equation:

Ĥelψn(r; R) = Vn(R)ψn(r; R). (2.5)

In HF theory [1–3], the wavefunction is approximated by a single Slater determinant |Ψ〉
built from an orthonormal set of molecular orbitals (MOs) {|ϕ〉} to incorporate the anti-

symmetry of fermionic wavefunctions. These MOs are products of a spatial single-electron

wavefunction and a spin function. In the closed-shell case, the common restricted HF

ansatz dictates that each spatial orbital is occupied by two electrons of opposite spin. For

open-shell systems, the unrestricted HF (UHF) ansatz [70] is a common choice, which can

straightforwardly be applied in the computation of molecular properties but may intro-

duce spin contamination as the wavefunction is not necessarily an eigenfunction of the Ŝ2

operator. Therefore, the UHF wavefunction may contain non-physical contributions from

higher states.

Based on the Slater determinant, the MOs are optimized by minimizing the expecta-

tion value of the Slater determinant according to the variation principle, resulting in the

canonical HF equations:

F̂ (i)|ϕ〉 = εi|ϕ〉, (2.6)

where εi is the orbital energy and F̂ the Fock operator. This operator can be partitioned

into a one-electron Hamiltonian ĥ, taking into account the kinetic energy of the electrons

and the electron-nuclei interaction, and a two-electron contribution, where both operators

for the classical Coulomb electron-electron interaction Ĵj and the non-classical exchange
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energy K̂j of the other electrons j are considered:

F̂ (i) = ĥ(i) +
∑

j>i

(
Ĵj(i)− K̂j(i)

)
. (2.7)

The two-electron contribution thus behaves like a one-electron operator, where the other

electrons are only considered in a mean field ansatz. This results in the missing so-called

correlation energy, which is defined as the difference between the exact energy and the HF

energy.

At this point it is worth mentioning that the Kohn-Sham (KS) theory, which forms the

basis of modern DFT computations, is analogous to the canonical HF equation in Eq.

2.6, albeit with two exceptions: first, the two-electron contributions are evaluated as a

function of the electron density ρ and, second, the exchange operator is replaced by the

exchange-correlation (XC) potential, whose exact form is unknown but for which a variety

of approximations exist. [12,71]

To solve Eq. 2.6, the molecular orbitals are often described by a linear combination of

atomic orbitals (LCAO) {|χµ〉}:

|ϕi〉 =
∑

µ

cµi|χµ〉, (2.8)

which leads to the Roothaan-Hall equations [72,73]:

∑

ν

FµνCνi =
∑

ν

SµνCνiεi, (2.9)

with the Fock matrix element Fµν = 〈µ|F̂ |ν〉 and the overlap Sµν = 〈µ|ν〉.1 Accordingly,

the HF energy can be given as:

EHF =
∑

µν

[
hµνPµν +

1

2
PµνGµν(P)

]
+ Vnuc-nuc, (2.10)

with the density matrix:

Pµν =
∑

i∈occ
C∗µiCνi. (2.11)

The term Gµν(P) is the matrix representation of the two-electron contribution (or of the

KS potential in KS-DFT), which itself depends on the density matrix. Due to this explicit

dependence of the potential G on the density matrix, the HF energy, as well as the KS-

1In the following, the basis functions {|χµ〉} will be abbreviated by {|µ〉}.
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energy, needs to be obtained iteratively in a self-consistent field (SCF) ansatz.

2.2 Møller-Plesset perturbation theory

One approach to describe the missing electron correlation is perturbation theory. Hereby,

the Hamiltonian Ĥ is partitioned in two parts:

Ĥ = Ĥ0 + λV̂ , (2.12)

where Ĥ0 is a Hamiltonian with known eigenfunctions and eigenvalues, and V̂ is the pertur-

bation operator. [8] The perturbation parameter λ is introduced for the following derivation.

Inserting the partitioned Hamiltonian in the Schrödinger equation results in:

(
Ĥ0 + λV̂

)
|Ψn〉 = En|Ψn〉. (2.13)

Subsequently, the eigenfunctions and eigenvalues can be expanded in a Taylor series:

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · ·

|Ψn〉 = |Ψ0
n〉+ λ|Ψ1

n〉+ λ2|Ψ2
n〉+ · · ·

(2.14)

Inserting Eq. 2.14 in Eq. 2.13, the following expressions for the i-th order energies can be

derived:
E(0)
n = 〈Ψ(0)

n |Ĥ0|Ψ(0)
n 〉

E(1)
n = 〈Ψ(0)

n |V̂ |Ψ(0)
n 〉

E(i)
n = 〈Ψ(0)

n |V̂ |Ψ(i−1)
n 〉.

(2.15)

In the quantum chemical context, this has been put forward by Møller and Plesset [7],

where the perturbation operator V̂ is the difference between the electronic Hamiltonian in

the Born-Oppenheimer approximation (see Sec. 2.1) and the sum of all Fock-operators in

Eq. 2.7. Therefore, the unperturbed energy is the sum of the orbital energies (see Eq. 2.6),

while the sum of the unperturbed energy and first-order perturbation energy is the HF en-

ergy. A first description of correlation effects is obtained with second-order Møller-Plesset

perturbation theory (MP2), which is the most employed order of perturbation and often

viewed as a good compromise between accuracy and computational cost, leading to accu-

rate results, e.g., for hydrogen bonding energies [74,75] and NMR shielding tensors [47,76,77].

Qualitatively, MP2 describes pair-wise electron correlation. It should be noted that the
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MPn-series is not convergent, i.e., taking into account higher orders does not necessarily

improve the accuracy. [78–82]

MPn methods are also used to describe open-shell systems, most straightforwardly when

based on an UHF wavefunction. [83] Due to the spin contamination, UMPn results must

be treated with care. Furthermore, MP2 has been formulated as a post-KS method in

Grimme’s DH-DFT, [14] which, when based on an unrestricted KS determinant, can resolve

some of the spin contamination issues. [84]

2.2.1 Canonical representation

The canonical closed-shell MP2 energy reads as follows:

EMP2 = −
∑

ij

∑

ab

(ia|jb)[2(ia|jb)− (ib|ja)]

εa + εb − εi − εj
, (2.16)

where i, j represent occupied molecular orbitals and a, b virtual orbitals. To obtain the

two-electron integrals in Eq. 2.16, the following transformations are necessary:

(ia|jb) =
∑

µνλσ

cµicνa(µν | λσ)cλjcσb. (2.17)

When this transformation is performed consecutively, its formal scaling behavior is O(N5),

where N is the number of basis functions. This is rate-determining and limits the applica-

bility of canonical MP2 to small- to medium-sized molecules. This issue has been researched

over the past decades, resulting in different ansätze to overcome the large scaling behav-

ior. What they have in common is that they aim to exploit the locality of the correlation

contribution, which is not taken into account in the canonical formulation in Eq. 2.17.

This can be achieved by using local orbitals, as pioneered by Pulay and Saebø [18–20,85]. A

different approach is partitioning the system either directly by fragmenting the molecule

in the fragment molecular orbital (FMO) method [33–37], or by separating the orbital space

in the divide-expand-consolidate (DEC) ansatz [27–32]. This work focuses on a third ansatz,

which builds on a reformulation of the MP2 energy in atomic orbitals {χµ}, thus exploiting

their locality.
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2.2.2 Reformulation in atomic orbitals

For a reformulation of the MP2 energy expression in Eq. 2.16 in atomic orbitals the energy

denominator needs to be avoided. This can be achieved by a Laplace-transformation, as

introduced by Almlöf and Häser [38–40]:

1

x
=

∫ ∞

0

e−xtdt ≈
τ∑

ζ=1

ωζe
−xtζ → 1

εa + εb − εi − εj
≈

τ∑

ζ=1

ωζe
−εatζe−εbtζeεitζeεjtζ ,

(2.18)

with the linear and exponential Laplace expansion coefficients ωζ and tζ . With this Laplace

transformation, the MP2 equation can be rewritten as:

EAO-MP2 = −
τ∑

ζ=1

ωζEζ

= −
τ∑

ζ=1

ωζ
∑

µνλσ

(
µν | λσ

)
[2 (µν | λσ)− (µσ | λν)] ,

(2.19)

where |µ〉 and |ν〉 are transformed with occupied and virtual pseudodensities:

|µ〉 =
∑

µ′

P µ′µ|µ′〉

|ν〉 =
∑

ν′

P ν′ν |ν ′〉.
(2.20)

The pseudodensities arise from the Laplace transformation:

P µ′µ =
∑

i

cµ′ie
εitζcµi

P ν′ν =
∑

a

cν′ie
−εatζcνi.

(2.21)

To fully exploit the locality of the atomic orbitals and to achieve linear-scaling behavior,

an efficient and accurate screening method for the required integral products is necessary.

This will be outlined in the following section.
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2.2.3 Distance-dependent screening of significant two-electron

integrals

Preselecting significant two-electron integrals in the computation of the AO-MP2 contri-

bution is necessary to achieve a reduction in the scaling behavior. A rigorous upper bound

for the value of a specific two-electron integral is the classical Schwarz estimate: [86]

|(µν | λσ)| ≤ |(µν | µν)| 12︸ ︷︷ ︸
Qµν

|(λσ | λσ)| 12︸ ︷︷ ︸
Qλσ

, (2.22)

with the Schwarz-matrices Q. When screening two-electron integrals using these Schwarz

estimates, only a quadratic scaling behavior can be achieved since with the common Gaus-

sian basis functions only a linear number of basis functions {ν} surrounding µ will have

significant overlap. Thus, a linear number of basis function products is significant in both

in the bra and the ket, i.e., a quadratic number. To accurately screen transformed two-

electron integrals as in Eq. 2.19, the Schwarz estimates in Eq. 2.22 need to be transformed

analogously.

To further reduce the scaling behavior, the dependence of the integral value on the

distance between the bra and the ket charge distribution needs to be considered by a

multipole expansion. [87,88] To this end, Maurer et al. [42,60] introduced a new screening ansatz

named QQR, which incorporates the distance-dependence of the two electron integral over

the charge distributions Ωbra and Ωket:

(Ωbra | Ωket) =
∞∑

m=0

∞∑

n=0

m∑

i=−m

n∑

j=−n

qbrami T
′
mi,njq

ket
nj

Rm+n+1
bra-ket

, (2.23)

with the m-th order multipoles qAmi of the charge distribution A and the individual spherical

multipoles i. Rbra-ket indicates the distance between the two charge distributions and T
′

takes into account the relative orientation of the multipole moments.

The monopoles of transformed charge distributions are zero due to the orthogonality of

the occupied and the virtual subspace:

q
µν

00 = Sµν =
∑

µ′ν′

P µµ′Sµ′ν′P ν′ν = 0. (2.24)

Therefore, when both bra and ket are fully transformed, as in Eq. 2.19, all terms with

m < 1 or n < 1 will be zero, resulting in the slowest distance dependency being R3
bra-ket.
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As proposed by Maurer et al. [42], this can be exploited by screening the fully-transformed

two-electron integral as follows:

(
µν | λσ

)
≈

ZµνZλσ(
R− extµν − extλσ

)3 . (2.25)

Hereby, Häser’s pseudo-Schwarz matrices Z are employed. [40] To correctly describe the

distance between the charge distributions, their extents need to be taken into account. A

thorough discussion of the extents can be found in Ref. 42. At this point it has to be noted

that QQR estimates do not represent a rigorous upper bound although they do provide a

fully controllable accuracy. [42] Thompson et al. [89] recently introduced distance-including

rigorous upper bounds, which, at this stage, are not yet applicable to AO-MP2, as they only

incorporate the distance-dependency of the operator. They do not include the additional

distance dependency due to the orthogonality of the occupied and virtual subspace.

2.2.4 Cholesky decomposition

While linear scaling behavior can be achieved with the aforementioned QQR screening

technique, widespread application is hampered by a large computational prefactor and

dependence on the size of the basis set. This can, in part, be explained by the need to

screen integral products, to access and process lists of significant integral products, and to

evaluate the MP2 contribution per Laplace point. However, a further vital aspect needs to

be considered: while for large molecule sizes the sum in Eq. 2.19 involves a linear number

of atomic orbitals, when only the basis set is increased the result is an O(N5) behavior.

The canonical formulation in Eq. 2.16 only involves the summation of N2
occ ·N2

virt orbitals,

resulting in a N · N2
occ · N2

virt scaling behavior in the transformation. For large basis sets,

the number of occupied orbitals will be quasi constant, and the virtual orbital space alone

increases with an enlarged basis set size, resulting in an asymptotically O(N3) scaling

behavior.

Therefore, exploiting the rank deficiency of the density matrices is vital, reconnecting the

summation in Eq. 2.19 to the number of electrons in the system. A plethora of methods

reducing the rank deficiency exist. In the case of the AO-MP2 equation a method that

preserves the locality of the (pseudo-)density matrices is necessary. This can be achieved

by a Cholesky decomposition [56,57], which was previously applied to the computation of

AO-MP2 energies [58,59].
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Hereby, the pseudodensities are decomposed as:

P µ′µ =
∑

i

Lµ′iLµi

P ν′ν =
∑

a

Lν′aLνa,
(2.26)

where the sums run over the ranks of the respective pseudodensity matrices. It has to

be noted that such a Cholesky decomposition is only possible when the matrix is positive

semi-definite. The pseudodensities satisfy this by definition. [59] As shown by Maurer et

al. [59], the numerical rank of the pseudodensity is equal to or smaller than the rank of

the density matrices, i.e., the size of the occupied or the virtual orbital subspace. When

decomposing all pseudodensities in Eq. 2.19, one obtains the following contribution per

Laplace point ζ of the AO-MP2 energy:

Eζ =
occ∑

ij

virt∑

ab

(
ia | jb

) [
2
(
ia | jb

)
−
(
ib | ja

)]
. (2.27)

Therefore, when the basis set size is increased, a formal scaling behavior similar to the

canonical formulation is obtained. Furthermore, the orthogonality of the occupied and

virtual subspace is preserved, allowing for an efficient integral estimation using the QQR-

technique (see Sec. 2.2.3). The preservation of the sparsity of the pseudodensities is shown

in the work by Maurer et al., [59] who introduced the term local pseudo-MOs (LPMOs)

to describe the orbitals i, j and a, b. To clearly differentiate with respect to local MO

methods, later work employed the term local Cholesky orbitals. [90,91]

2.2.5 Resolution-of-the-identity approximation

A further bottleneck of a widespread application of AO-based MP2 formulations is their

large prefactor in the scaling behavior. An important ansatz reducing the computational

prefactor as well as memory requirements is the RI approximation (also known as density

fitting). [49–55] Hereby, the two-electron integral is described by:

(µν | λσ) =
Naux∑

P,Q

(µν | P ) (P | Q)−1 (Q | λσ) , (2.28)
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using the auxiliary basis set {P}. Thus, the two-electron integral can be described as a

contraction of two three-center quantities:

(µν | λσ) =
∑

P

BP
µνB

P
λσ

with: BP
µν =

∑

Q

(µν | Q) (Q | P )−
1
2 .

(2.29)

This is exact for auxiliary basis sets that fully span the space of the integral products.

For finite-sized basis sets, this approximation is typically accurate with respect to relative

energies and molecular properties but, however, not for absolute energies. Therefore, a

recent work by Schurkus et al. [92] reduces the error with respect to absolute energies by

projecting out the unphysical parts of an oversized auxiliary basis set.

When applying the RI-approximation in the AO-based CDD-MP2 computation in Eq.

2.27, the fully transformed two-electron integrals can be computed by:

(
ia | jb

)
=
∑

P

BP
iaB

P
jb
, (2.30)

where the transformed three-center B matrices are obtained by step-wise transformation

with the Cholesky decomposed pseudodensities. The computation of the MP2 energy using

this RI-CDD approach has been proven to be highly efficient, outperforming canonical

implementations with decent basis sets for medium-sized molecules and providing manifold

speed-ups for large molecular systems, such as a DNA strand consisting of up to eight base

pairs. [59]

2.3 Molecular properties

2.3.1 Analytic derivative theory

The computation of molecular properties using quantum chemical methods is an impor-

tant tool linking experiment and theory. As described by Gauss, [45] one can distinguish

between three types of molecular properties: properties, (i) that are related to energy dif-

ferences, such as reaction energies, dissociation energies; (ii) that are specific for a given

electronic state, such as NMR chemical shifts, g-tensors, vibrational frequencies; and (iii)

that are characterized by transitions between electronic states, such as excitation energies,

transition strength, and electron affinities.
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The focus of this work is on the second type of molecular properties, i.e., those that

depend on a specific electronic case. These properties describe the response of the molecular

system to an external perturbation, such as an external magnetic field. Assuming this

perturbation to be weak, a Taylor expansion can be used to describe the energy in the

presence of the perturbation ξ:

E(ξ) = E(ξ = 0) +
dE

dξ

∣∣∣∣
ξ=0

ξ +
1

2

d2E

dξ2

∣∣∣∣
ξ=0

ξ2 + . . . (2.31)

When considering the physical nature of the interaction with the perturbation, the different

orders can be assigned to molecular properties. For example, when the perturbation is

an external electric field, the first-order term is the dipole moment, whereas the second

derivative describes the polarizability and the third the first hyperpolarizability, and so

forth. As a note, the computation of the molecular property as an expectation value within

the Hellmann-Feynman theorem [43,44] is not sufficient as it does not hold for approximate

wave functions. Similarly, numerical differentiation is often insufficient. [45]

2.3.2 Magnetic properties

Both EPR and NMR spectroscopy involve the splitting of energy states in an external field:

in the case of EPR, this involves the splitting of electronic spin states, whereas in NMR

spectroscopy the loss of the degeneracy of nuclear spin states is studied. Therefore, the

description of parameters of both spectroscopies involves an external magnetic field. In

order to describe this perturbation, one has to extend the Hamiltonian. The interaction

of the magnetic field with the magnetic moments, which are a result of the motion of

the electrons, changes the kinetic energy operator. Hence, the momentum operator p̂ is

replaced by the generalized momentum operator π̂ according to the principle of minimal

electromagnetic coupling: [93,94]

π̂ = p̂+ A(r), (2.32)

where the vector potential A is given by:

A(r) =
1

2
B× (r−R0)
︸ ︷︷ ︸

A0

+
∑

j

α2mj × (r−Rj)

|r−Rj|3︸ ︷︷ ︸
Aj

, (2.33)
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taking into account both the external magnetic field B and the nuclear magnetic moments

mj of each nucleus j. α is the fine structure constant. Consequently, the magnetic field is

given by:

B = ∇×A = ∇×A0︸ ︷︷ ︸
B0

+
∑

j

∇×Aj︸ ︷︷ ︸
Bj

(2.34)

with the nuclear magnetic field Bj.

If the interaction between the total electronic spin si and the magnetic field is to be

considered, the Hamiltonian becomes:

Ĥ → Ĥ = Ĥ −
∑

i

Bi · si. (2.35)

The derivative of this additional term with respect to the nuclear magnetic moment mj

results in two terms: the anisotropic spin-dipole interaction and the isotropic Fermi-contact

term. [95] In the absence of spin-orbit coupling, these two terms are the hyperfine coupling.

As such, HFCCs can be obtained as a first-order property.

When treating magnetic properties, one additional issue needs to be addressed: the

magnetic field is not uniquely defined by the vector potential A. The choice of the gauge

origin R0 in Eq. 2.33 does not change the results in a complete basis set. This, however,

is not the case for truncated basis sets. [45,96] Here, the dependence on the choice of gauge-

origin can be strong. Thus, gauge including atomic orbitals (GIAOs) are necessary:

χµ(B) = χµ(0)exp

(
− i

2
B× (Rµ −R0) · r

)
(2.36)

where the field dependency of the basis function is included in the exponential gauge

prefactor. [97–101]



3 First-order properties at the

MP2-level

This chapter introduces the main theoretical developments and equations from the work on

first-order properties shown in Paper I and II and briefly summarizes the results presented

in Manuscript IV.

3.1 Analytical RI-CDD MP2 energy gradients

The computation of first-order properties at the MP2-level is challenging. While the first

fully AO-based formulation of analytic energy gradients was put forward by Schweizer

et al., [48] the lack of an efficient implementation prohibits the testing and application on

realistic systems. In order to achieve high computational efficiency with a reduced scaling

behavior, both the RI-CDD ansatz and an extended QQR-screening is mandatory. This is

shown and analyzed in detail in a first efficient implementation in Paper I included in this

work. This section will briefly introduce analytical AO-MP2 gradients and then summarize

the new RI-CDD ansatz in their computation. The reader is referred to the attached Paper

I for a more detailed and thorough description and discussion.

Starting from Eq. 2.19, the analytic gradient with respect to a perturbation ξ involves

two terms: the perturbation of the pseudodensities and the perturbation of the basis

functions. The terms are separated as follows:

∂EAO-MP2

∂ξ
=

τ∑

ζ=1

ωζ
∂EAO-MP2

∂ξ

=
τ∑

ζ=1

(
2
∑

µ′µ

R
ζ

µ′µ

∂P ζ
µ′µ

∂ξ
+ 2

∑

ν′ν

Rζ
ν′ν
∂P

ζ

ν′ν

∂ξ
+ 2Iξζ

)
,

(3.1)
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where the perturbation of the basis functions is included in Iξζ :

Iξζ =
∑

µνλσ

∂ (µν | λσ)

∂ξ

[
2
(
µν | λσ

)
−
(
µσ | λν

)]
, (3.2)

and where the perturbed pseudodensities are contracted with the triple-transformed R-

matrices:
Rζ
ν′ν =

∑

µλσ

(
µν ′ | λσ

)
[2 (µν | λσ)− (µσ | λν)] ,

R
ζ

µ′µ =
∑

νλσ

(µ′ν | λσ) [2 (µν | λσ)− (µσ | λν)] .
(3.3)

As shown in Ref. 48 in a pilot implementation, the number of significant integrals scales lin-

early. This can, however, only be exploited by an extended QQR-type integral estimation,

which takes into account half-transformed charge distributions as presented in Paper I.

Issues challenging the computation of AO-MP2 energies similarly apply to their analyt-

ical gradients. Therefore, benefits can analogously be expected from the RI-CDD ansatz.

By introducing a Cholesky decomposition of the pseudodensities, the Iξζ term and the

R-matrices read as:

Iξζ =
occ∑

ij

virt∑

ab

(
ia | jb

)(ξ) [
2
(
ia | jb

)
−
(
ib | ja

)]
,

Rζ
ν′ν =

occ∑

ij

virt∑

a

(
iν ′ | jb

) [
2
(
iν | jb

)
−
(
ib | jν

)]
,

R
ζ

µ′µ =
occ∑

i

virt∑

ab

(
µ′a | jb

) [
2
(
µa | jb

)
−
(
µb | ja

)]
,

(3.4)

where the perturbation in parentheses indicates a perturbation only with respect to the

basis functions.

To reduce the computational prefactor, the transformed two-electron integrals are ob-

tained using the RI-approximation. In contrast to the evaluation of the RI-CDD MP2

energy, a B-matrix transformed solely with the virtual Cholesky matrix is required. Fur-

thermore, the perturbation of the two-electron integral itself needs to be accounted for. Its

RI-approximated description reads as:
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∂ (µν | λσ)

∂ξ
=
∑

P

[
∂BP

µν

∂ξ
BP
λσ +BP

µν

∂BP
λσ

∂ξ

]
−
∑

PQ

CP
µν (P | Q)ξ CQ

λσ

with:
∂BP

µν

∂ξ
=
∑

Q

∂ (µν | Q)

∂ξ
(Q | P )−

1
2

and: CP
µν =

∑

Q

(µν | Q) (Q | P )−1 .

(3.5)

This perturbed two-electron integral is fully transformed in the Iξζ term in Eq. 3.4. To

circumvent the expensive transformation per perturbation, all perturbation-independent

contributions are collected in terms Γ:

Iξζ =
∑

µν

∑

P

ΓPµν
∂BP

µν

∂ξ
+
∑

λσ

∑

P

ΓPλσ
∂BP

λσ

∂ξ
− Γξ(ζ). (3.6)

A definition of the perturbation-independent contributions Γ and of Γξ can be found in

Paper I.

By using the extended QQR-type integral estimation, a low-scaling, efficient algorithm

is possible. The computation of the perturbed pseudodensity per perturbation can be

circumvented by the Z-vector technique [102,103] in its AO-formulation [48] using the efficient

density matrix-based Laplace-transform coupled perturbed SCF (DL-CPSCF) [104]. In the

implementation presented in Paper I, the nuclear gradient of linear alkanes larger than

C60H122 is obtained faster than with the canonical implementation. Due to the reduced

scaling behavior, the speed-up increases for larger systems and is confirmed with glycine

chains.

While nuclear gradients are important for, e.g., structure optimizations or accurate

molecular dynamics, other first-order properties can similarly be obtained using the new

RI-CDD ansatz. As outlined in Sec. 2.3.2, the HFCCs can be viewed in the absence

of spin-orbit coupling as a first-order property, where the perturbation is the isotropic

Fermi-Contact interaction and an anisotropic spin-dipole coupling. For this, open-shell

RI-CDD gradients are necessary. A simple ansatz to describe open-shell properties is to

base the computation on an unrestricted Hartree-Fock (UHF) wave function. It has to be

noted that although this is mostly straightforward and can rely in large parts on respec-

tive developments in the closed-shell case, a drawback is the possible spin contamination1.

Nonetheless, many systems exhibit only a small spin contamination. This can be improved

1The unrestricted slater determinant is not a satisfactory eigenfunction of the spin operator Ŝ2.
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upon by double-hybrid density functional theory, which combines DFT and MP2. [14] The

derivations for MP2 are equally transferable to DH-DFT with the same equations be-

ing solved using Kohn-Sham orbitals. With this, spin contamination issues can often be

overcome [84] and reliable HFCCs can be obtained [46].

Based on an UHF-wavefunction, the RI-CDD-UMP2 energy gradient reads as:

∂ERI-CDD-MP2

∂ξ
= −1

2

τ∑

ζ=1

ωζ

α,β∑

η

∂Eη
∂ξ

with:
∂Eη
∂ξ

= 2
∑

µ′µ

R
ζ,η

µ′µ

∂P ζ,η
µ′µ

∂ξ
+ 2

∑

ν′ν

Rζ,η
ν′ν
∂P

ζ,η

ν′ν

∂ξ
+ 2Iξζ,η,

(3.7)

with the unrestricted R-matrices and Iξζ,η term:

Iξζ,η =

α,β∑

η′

occ∑

ij

virt∑

ab

(
ia | jb

)(ξ)
ηη′

[(
ia | jb

)
ηη′
− δηη′

(
ib | ja

)
ηη

]
,

Rζ,η
ν′ν =

α,β∑

η′

occ∑

ij

virt∑

a

(
iν ′ | jb

)
ηη′

[(
iν | jb

)
ηη′
− δηη′

(
ib | jν

)
ηη

]
,

R
ζ,η

µ′µ =

α,β∑

η′

occ∑

i

virt∑

ab

(
µ′a | jb

)
ηη′

[(
µa | jb

)
ηη′
− δηη′

(
µb | ja

)
ηη

]
,

(3.8)

where the subscript η of the two-electron integrals indicates the respective spin of the

bra and the ket. In the case of the HFCCs, the Iξζ,η term equates to zero, as the basis

functions are independent of the perturbation. With an unrestricted variant of the AO-

based Z-vector technique presented in Paper I, this allows for an efficient computation of

HFCCs for larger systems than previously computable. The largest system calculated in

Paper I, C100H201, was computed five times faster than our conservative extrapolation of

the respective canonical computation.

3.2 Selected-nuclei hyperfine coupling constants

HFCCs are directly related to the spin density. In most systems, the spin density is

localized in close proximity to the radical center, which results in a small number of nuclei

exhibiting HFCCs deviating significantly from zero. In Paper II, an approach to study the

HFCCs of selected nuclei is therefore introduced, further exploiting their locality.
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If only a specific HFCC is of interest, directly computing the perturbed pseudodensity is

computationally favorable to the Z-vector technique. This results in the following equation

to obtain the HFCC of nucleus k:

∂ERI-CDD-MP2

∂Mk

= −1

2

τ∑

ζ

ωζ

α,β∑

η

∂Eη(ζ)

∂Mk

with:
∂Eη(ζ)

∂Mk

=

α,β∑

η′

∑

ν

occ∑

ij

virt∑

b

(
iνMk | jb

)
ηη′

[(
iν | jb

)
ηη′
− δηη′

(
ib | jν

)
ηη

]

+

α,β∑

η′

∑

ν

occ∑

i

virt∑

ab

(
µMka | jb

)
ηη′

[(
µa | jb

)
ηη′
− δηη′

(
µa | jb

)
ηη

]
,

(3.9)

where Mk is the nuclear magnetic moment of nucleus k and the two-electron integrals are

transformed directly with the perturbed pseudodensities:

(
µMka | jb

)
ηη′

=
∑

µ′

P η,Mk

µµ′ (ζ)
(
µ′a | jb

)
ηη′
. (3.10)

By including the perturbation in the screening, the scaling behavior of the number of

significant two-electron integrals is sublinear due to the locality of the perturbation. This

is shown in the computation of the HFCC of the terminal carbon atom of linear alkane chain

radicals in Paper II. While alkane chains do not represent realistic molecular systems, they

are the ideal test case to analyze asymptotic scaling behavior. When the RI-approximation

is utilized, this sublinear scaling behavior cannot be fully exploited since the coupling

with perturbation is lost in the ket distribution via the auxiliary basis set. Nonetheless,

a significant speed-up can be achieved, allowing the computation of the HFCC of the

terminal carbon atom in C200H401.

This can be further optimized when only the opposite spin terms, i.e., η′ 6= η in Eq. 3.9,

are computed. The idea of neglecting same spin contributions has been pioneered in the

evaluation of the MP2 energy. In work by Jung et al. [61], the opposite spin terms are scaled

with cos leading to scaled opposite spin (SOS)-MP2 resulting in a reliable approximation

of the full MP2 energy. In a SOS-based MP2 formulation the use of the local attenuated

Coulomb-metric [61,105,106] in the RI expansion couples the locality of the bra with the ket

charge distribution.



24 3. First-order properties at the MP2-level

With the erfc-attenuated Coulomb-metric, the SOS-CDD-MP2 HFCCs read as:

∂EAO-MP2

∂Mk

= −cos
τ∑

ζ

α,β∑

η

(
Z
ω

η (ζ)CωZω
η′(ζ)Cω

+ Zω
η (ζ)CωZω

η′(ζ)Cω
)

(3.11)

with:
(
Cω
)
PQ

=
Naux∑

P ′Q′

(P | P ′)−1ω (P ′ | Q′) (Q′ | Q)
−1
ω , (3.12)

where

(P | Q)ω =

(
P

∣∣∣∣
erfc(ωr12)

r12

∣∣∣∣Q
)
. (3.13)

The Z-matrices are built from sparse three-center B-matrices as:

(
Zω
η (ζ)

)
PP ′

= ��B
P

Mk
(ω)��BP

′
(ω)

(
Z
ω

η (ζ)
)
PP ′

= ��B
P

Mk
(ω)��BP

′
(ω)

(
Zω
η (ζ)

)
PP ′

= ��B
P

(ω)��BP
′
(ω).

(3.14)

A definition of ��B and ��B can be found in Paper II. The attenuation of the Coulomb-metric

is controlled by ω, for which a value of 0.1 in the work by Luenser et al. [107] demonstrated

no loss in accuracy with respect to the full Coulomb-metric while still providing the com-

putational efficiency of the local overlap metric.

A further speed-up can be obtained by migrating to massively-parallelized architectures

such as graphics processing units (GPUs). Analogous to work on the computation of SOS-

MP2 energies using the RI-CDD ansatz on GPUs, [108] the previously established J-engine

can be used to efficiently compute the HFCC on GPUs.

In Paper II the accuracy of the SOS-approach is thoroughly studied and the entailed

speed-ups are shown for linear alkane chains. With the new SOS-MP2 method employing

the attenuated erfc-Coulomb metric, the HFCC of the terminal carbon atom of C200H402

was computed in 33 hours on one GPU node. The broad applicability of this new method

was shown in an exemplary study on the influence of the environment on the HFCC of

a glycyl radical enyzme, namely pyruvate formate lyase (PFL), where, despite the high

globularity of the system, the protein environment could be studied extensively, even with

taking into account over 400 atoms.
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3.3 Influence of correlation and nuclear dynamics

Besides electron correlation, a second important influence on the accuracy of the obtained

molecular property is, especially for structurally sensitive parameters, the contribution of

nuclear dynamics. Most measurements are performed in solution, resulting in vibrational

averaging of the measured results. Recent research has highlighted the importance of taking

this into consideration when computing HFCCs. [109–112] In Manuscript IV, we analyzed in

detail the dynamic and the correlation contribution on the HFCC.

Assuming a perfect harmonic distribution of all vibrational degrees of freedom, as well as

a strictly point-symmetric relationship between the structural parameters and the HFCC,

dynamic effects would be zero. These premises are typically not fulfilled, as can be seen

in Manuscript IV. Various approaches exist to consider dynamic contributions. The most

straightforward one is to perform a simulation of the nuclear motion and subsequently

compute a set of frames from the simulation, averaging the obtained property accordingly.

For this, the computational cost per frame needs to be sufficiently low. Using the new

methods presented in Papers I and II of this work, such an analysis taking into account

both the correlation effects and dynamic contributions is possible.

The results in Manuscript IV show that dynamic contributions are non-negligible and

their neglect can in severe cases lead to erratic results. Furthermore, electron correlation

proves to be equally important and considering both effects leads to accurate and reliable

HFCCs.





4 Second-order properties

This section will deal with two important second-order properties, namely the electronic

g-tensor and the NMR shielding. Both are of great importance in the determination and

evaluation of molecular structures and their dynamical behavior. As the interpretation of

the experimental spectra, especially for large molecular systems, remains challenging, ab

initio calculations are vital to not only aid the interpretation, support the experimental

evidence, but also link experiment to theory. The computation of NMR shieldings is well

established, especially using HF- and DFT-ansätze. [96,113–118] However, when correlation

effects need to be adressed, [45,76] MP2 was shown to be the method of choice [47,119–121].

Similar studies with respect to the electronic g-tensor are still hampered by the lack of

an efficient implementation, although results using coupled cluster approaches indicate the

influence of the correlation contribution [122]. Recent work by Grimme et al. [123] highlights

the necessity to include dynamic effects in the computation of NMR shieldings and to

correctly sample the conformational space, for which highly efficient codes to compute the

molecular properties are required.

Sec. 4.1 summarizes the main findings in our systematic study of the gauge-depen-

dence of the electronic g-tensor especially for large molecular systems, shown in detail in

Paper III. The subsequent section introduces the main theory and working equations of

the previous work on nuclei-selected AO-MP2 NMR shieldings [68] and discusses how the

extension of the RI-CDD ansatz in the computation of analytic gradients in Paper I and

II can be transferred in a new all-nuclei ansatz for NMR shieldings at the MP2-level.

4.1 Gauge-dependence of the electronic g-tensor

As outlined in Sec. 2.3.2, the computation of magnetic properties is challenged by the

dependency of the result on the choice of the gauge origin when using incomplete basis

sets. This is circumvented by the use of GIAOs (see Eq. 2.36). While the use of GIAOs

is widespread in the computation of NMR parameters, [45,96] this is not the case with the
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computation of g-tensors. The g-tensor is given as a mixed derivative of the energy with

respect to the magnetic field and the electronic spin, and contains different contributions:

the relativistic mass correction and diamagnetic and paramagnetic one- and two-electron

terms. The relativistic mass correction is due to the kinetic energy correction to the electron

spin Zeeman effect and is readily computed from kinetic energy integrals and the spin

density. The one-electron contributions stem from the electron-nuclear spin-orbit coupling,

whereas the two-electron terms involve both the electron-electron spin-orbit operator and

the spin-other-orbit operator. [124]

Despite the g-tensor being a magnetic property, most previous studies found this prop-

erty to be relatively insensitive to the choice of gauge origin, [62–67] whereas others point

to a significant contribution [66,125–128]. The effect of an error due to the choice of gauge

origin is expected to be greater for larger molecular systems, whose computation remains

challenging due to the lack of an efficient low-scaling implementation.

We therefore conducted a study systematically analyzing the effect of the choice of

the gauge origin on the accuracy of the computation of the electronic g-tensor, which is

presented in the work in Paper III. Our results highlight that for larger molecular systems

a suitable choice of the gauge origin is inevitable. If a single-choice origin is used, this

must, however, be situated in the center of the spin density. Therefore, the common

electronic charge centroid approach, which places the gauge origin in the center of mass of

the molecular system, fails dramatically in cases where the maximum of the spin density

is situated away from the center of the molecule. Paper III introduces a more physical

and accurate choice of gauge origin, based on the spin density. For a general description

of systems with delocalized spin densities or multiple spin centers, the use of GIAOs is

inevitable, and thus the GIAO ansatz is the method of choice.

Furthermore, the sparsity of the perturbed spin densities in Paper III lays the foundation

for future work on exploiting the locality of the perturbation which forms the basis for a

sublinear computation of electronic g-tensors. This requires sophisticated work, especially

with regards to the sublinear solution of the required CPSCF equations analogous to the

work on the sublinear scaling computation of NMR shieldings at the HF/DFT-level. [129]
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4.2 RI-CDD ansatz for NMR shieldings at the MP2-level

4.2.1 AO-based MP2-NMR shieldings for selected nuclei

The magnetic shieldings tensors σj of nucleus j can be obtained as a second derivative of

the energy expression with respect to the magnetic field B and the nuclear magnetic spin

moment mj:
[130,131]

σj =

(
∂2E

∂mj∂B

)

B,mj=0

. (4.1)

For NMR shieldings at the MP2 level, the respective MP2 energy expression is chosen.

Similar to the computation of g-tensors in Sec. 4.1, gauge dependency is an important

issue. Therefore, gauge-including orbitals are used, [97,113] which cancel any dependencies

on the choice of the gauge origin. [45,96]

Maurer and Ochsenfeld [68] proposed a complete AO-reformulation of the computation

of NMR shieldings at the MP2-level using GIAOs. Their ansatz allows for the sublinear

computation of the shielding tensor of a specific nucleus. The sublinear computation of

NMR shieldings has previously been demonstrated at the HF- and DFT-levels by Beer et

al. [129] The starting point of AO-MP2 NMR shieldings is a formulation of the MP2 energy

gradient with respect to the magnetic field B, following the approach by Schweizer et al. [48]

Subsequently, the second derivative with respect to the nuclear magnetic spin moment mj

is needed, taking into account the independence of the basis functions of the perturbation

of mj.

Overall, the following equation for the computation of the shielding tensor of nucleus j

can be given: [68]
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σAO−MP2
j = −

τ∑

α=1

ωα

{
4IB,mj + 4IB,mj

+ 2 Tr
[(

Y
mj

1 −Y
mj

1 + G[Y
mj

2 + Y
mj

2 ] + R
mj
etαPoccF

+ R
(
etαPoccF

)mj −Rmje−tαPvirtF −R
(
e−tαPvirtF

)mj
)
PB

occ

]

+ 2 Tr
[
PP

Bmj
occ

]

+ 2 Tr
[(

Y
mj

2 + Y
mj

2

)
F(B) +

(
Y2 + Y2

)
F(Bmj)

]

+ 2 Tr
[(
−(Y

mj

1 + Rmje−tαPvirtF + R
(
e−tαPvirtF

)mj
)

S−1SBS−1
] }
.

(4.2)

The definition of the Y-matrices, which depend on R and R can be found in Ref. 48. A

detailed description of the recursive calculation of the derivatives of the Y-matrices with

respect to the nuclear spin moment can be found in the Appendix B of Ref. 68. The

derivatives of the R-matrices (see Eq. 3.3 for details) are defined as: [68]

R
mj

ν′ν =
∑

µλσ

(
µmjν ′ | λσ

)
(µν || λσ) +

∑

µλσ

(
µν ′ | λmjσ

)
(µν || λσ)

+
∑

µλσ

(
µν ′ | λσmj

)
(µν || λσ) ,

(4.3)

and
R

mj

µ′µ =
∑

νλσ

(µ′νmj | λσ) (µν || λσ) +
∑

νλσ

(µ′ν | λmjσ) (µν || λσ)

+
∑

νλσ

(µ′ν | λσmj) (µν || λσ) .
(4.4)

The perturbed two-electron matrices IB,mj and IB,mj
are given by: [68]

IB,mj =
∑

µνλσ

(
µmjν | λσ

)
(µν || λσ)B ,

IB,mj
=
∑

µνλσ

(
µνmj | λσ

)
(µν || λσ)B .

(4.5)
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As the computation of Rmj and R
mj

involves perturbed pseudo-densities, these need to be

calculated by:

P
mj

µ′µ =
(
etαPoccF

)mj
+ etαPoccFPmj

occ

P
mj

ν′ν =
(
e−tαPvirtF

)mj
+ e−tαPvirtFP

mj

virt.
(4.6)

The derivatives of the matrix exponentials can be obtained in recursions and the method

of squaring and scaling [48,132,133] can be employed, avoiding numerical instabilities. The

number of perturbations are three per atom, but involve highly local perturbed pseudo-

densities. [68]

The computation of the nuclear magnetic shielding tensor is a fully AO-based refor-

mulation, thus allowing for a (sub-)linear-scaling computation. To this end, the second

derivative of the density matrix P
Bmj
occ needs to be circumvented. This can be achieved by

the Z-vector method. [48,102,103] In order to obtain the derivative of the density matrix, the

following CPSCF equations need to be solved for any perturbation ξ1:

APξ1 = bξ1 . (4.7)

The second derivative with respect to a perturbation ξ2 leads to:

APξ1ξ2 + Aξ2Pξ1 = bξ1ξ2 . (4.8)

As A is a symmetric, positive-definite Hessian, it can be inverted. Multiplying Eq. 4.8

from the left with both the inverse of A and P leads to:

PPξ1ξ2 = PA−1bξ1ξ2 − PA−1Aξ2Pξ1

= PA−1
(
bξ1ξ2 −Aξ2Pξ1

)
.

(4.9)

Introducing the unperturbed Z-vector ZT = PA−1 enables the critical trace Tr
[
PP

Bmj
occ

]

to be expressed by:

Tr
[
PP

Bmj
occ

]
= Tr

[
ZT
(
bBmj −AmjPB

)]
. (4.10)

To achieve sublinearity, all terms that depend on PB need to be collected and a perturbed

Z-vector needs to be introduced, which is defined by:

OmjPB =
(
ZT
)mj

bB, (4.11)
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with
(
ZT
)mj = OmjA−1 (for details see Ref. 68).

Based on the pilot implementation by Maurer and Ochsenfeld [68], QQR-type integral

estimates were introduced and applied, showcasing the sublinear scaling behavior for small

basis sets [134]. Due to the large basis set dependency and prefactor in the scaling behavior,

this could not be applied using larger and more diffuse basis sets.

4.2.2 AO-based MP2-NMR shieldings for all nuclei

While the computation of NMR shieldings of selected nuclei is often sufficient, a method

to compute the shieldings of all nuclei of the system is also of interest. In principle, the

approach by Maurer and Ochsenfeld allows for a linear-scaling computation of all nuclei, [68]

but this entails a large prefactor. This is due to the fact that all computationally expensive

steps involve matrices depending on the perturbation of the nuclear magnetic spin moment.

When specific nuclei are computed, the dependence on the perturbation of the nuclear

magnetic spin moment is favorable as this exploits the locality of this perturbation. This

is undesirable when the NMR shieldings of all, or a large number of, nuclei are calculated,

as the number of nuclear magnetic spin moment perturbations scales with the number of

nuclei. This work therefore introduces a reversed order of differentiation of the AO-MP2

energy expression in order to obtain a dependence of these matrices on the perturbation

of the magnetic field, which involves three non-local perturbations irrespective of the size

of the molecule.

Based on the analytical AO-MP2 energy gradient by Schweizer et al. [48], the perturbation

of the MP2 energy with respect to the nuclear magnetic spin moment mj of nucleus j is

given by:

E
mj

AO−MP2 = −
τ∑

α=1

ωα

{
2 Tr

[(
Y2 + Y2

)
hmj

]

+ 2 Tr
[(

Y1 −Y1 + G
[
Y2 + Y2

]
+ RetαPoccF −Re−tαPvirtF

)
Pmj

occ

]}

= −
τ∑

α=1

ωα

{
2 Tr [Fhmj ] + 2 Tr [PPmj

occ]
}
.

(4.12)

In contrast to the differentiation with respect to the magnetic field, Imj and Sm
j are zero

due to the independence of the basis functions on the perturbation mj. The chemical
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shielding tensor for a nucleus j can now be obtained by a second differentiation of Eq.

4.12 with respect to the magnetic field B. This leads to the following expression for the

shielding tensor σj:

σAO−MP2
j = −

τ∑

α=1

ωα

{
2 Tr
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Y

B

1 −YB
1 + G[Y

B

2 + YB
2 ] + GB[Y2 + Y2]

+ R
B
etαPoccF + R

(
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)B −RBe−tαPvirtF −R
(
e−tαPvirtF

)B )
Pmj

occ

]

+ 2 Tr
[(

Y
B

2 + YB
2

)
hmj +

(
Y2 + Y2

)
hmjB

]

+ 2 Tr
[
PP

mjB
occ

]}
,

(4.13)

where the perturbed YB-matrices depend on the respective perturbed RB-matrices:

RB
ν′ν =

∑

µλσ

(
µBν ′ | λσ

)
(µν || λσ) +

∑

µλσ

(
µν ′ | λBσ

)
(µν || λσ)

+
∑

µλσ

(
µν ′ | λσB

)
(µν || λσ) +

∑

µλσ

(
µν ′ | λσ

)
(µν || λσ)B ,

(4.14)

and
R

B

µ′µ =
∑

νλσ

(
µ′νB | λσ

)
(µν || λσ) +

∑

νλσ

(
µ′ν | λBσ

)
(µν || λσ)

+
∑

νλσ

(
µ′ν | λσB

)
(µν || λσ) +

∑

νλσ

(µ′ν | λσ) (µν || λσ)B .
(4.15)

The equation for the new computation of the NMR shielding tensor σj in Eq. 4.13 can be

abbreviated by:

σAO−MP2
j = Tr[OBP

mj
occ] + Tr[PP

mjB
occ ] + Tr[X ], (4.16)

where quantities independent of a perturbation of the density matrix are combined in X .

The CPSCF equation for P
mj
occ is given by:

AP
mj
occ = bmj . (4.17)

Multiplying Eq. 4.17 from the left with OB leads to:

OBP
mj
occ = OBA−1bmj . (4.18)
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The perturbed Z-vector can now be defined as:

(ZT )B = OBA−1. (4.19)

Therefore, Tr[OBP
mj
occ] is given by:

Tr[OBP
mj
occ] = Tr

[(
ZT
)B

bmj

]
. (4.20)

Similarly to Eq. 4.10, the trace Tr[PP
mjB
occ ] can be computed as:

Tr
[
PP

mjB
occ

]
= Tr

[
ZT
(
bmjB −ABPmj

)]
, (4.21)

where the Z-vector ZT is defined as PA−1.

This new ansatz leads to a reduced number of perturbations in the Z-vector technique. In

the approach by Maurer and Ochsenfeld, the Z-vector in Eq. 4.11 needs to be solved for each

mj perturbation, which is desired when specific nuclei are calculated, but which will provide

a high prefactor when all nuclei are computed. In the reverse order of differentiation, the Z-

vector in Eq. 4.20 needs to be solved per magnetic field perturbation, which is independent

of the size of the molecule. It has to be noted, though, that the computation of the Z-

vectors is not rate-determining.

All computationally expensive terms have been reformulated to asymptotically allow for

a linear-scaling calculation of the three magnetic field perturbations in contrast to Natoms

sublinear-scaling nuclear magnetic spin moment perturbations.

4.2.3 RI-CDD ansatz in the computation of MP2-NMR shieldings

Similar to the computation of MP2 energies [59] and of analytical MP2 energy gradients (see

Sec. 3.1 and Paper I), using the RI-CDD ansatz is beneficial to reduce the prefactor in the

scaling behavior and the basis set dependency. This work therefore extends the ansatz to

the computation of the perturbed R-matrices in the nuclei-selected approach (see Eqs. 4.3

and 4.4), resulting in:



4.2 RI-CDD ansatz for NMR shieldings at the MP2-level 35
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and
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(4.23)

Furthermore, the IB,mj matrices in Eq. 4.5 can be obtained as:

IB,mj =
∑

µ

∑

j
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a,b
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µmja | jb

) (
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)(B)
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.

(4.24)

If the NMR shieldings of all nuclei following this work’s new ansatz are to be computed,

the RI-CDD approach in the computation of the perturbed R-matrices leads to:
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(4.25)

and
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(4.26)
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The superscripted perturbation in brackets of the two-electron integrals with respect to

the magnetic field indicates a perturbation of the basis functions only. When the RI-

approximation is employed, as outlined in Sec. 2.2.5, the perturbation of the auxiliary

space has to be disregarded to maintain gauge invariance [26,135], resulting in:

(
µa || jb

)(B)
=

Naux∑

P

[
B

(B)
µa,PBjb,P +Bµa,PB

(B)

jb,P

]

with: B
(B)
µa,P =

∑

ν

LaνB
(B)
µν,P ,

and: B
(B)
µν,P =

Naux∑

Q

∂ (µν | Q)

∂B
(Q | P )−

1
2 .

(4.27)

The perturbed pseudodensity matrices are not positive semi-definite per definition. There-

fore, a Cholesky decomposition is not possible. Both R
B

µ′µ and R
mj

µ′µ thus exhibit a less

pronounced reduction of the scaling behavior with respect to the size of the basis set than

in RI-CDD MP2 energies and energy gradients, namely from N5 to N3 · N2
virt. Other de-

composition techniques proved so far to be incapable of retaining the sparsity and locality

of the perturbed pseudodensities.

With the formulation in Eqs. 4.22-4.26, the efficient code to compute R-matrices using

the RI-CDD approach, presented in Paper I, can be employed. If a selected nucleus is

computed, accordingly, ten R-, ten R-type matrices, and the IB,mj matrices need to be

computed. These R-type matrices involve the transformation with the local perturbed

pseudodensities either instead of with the occupied or with the virtual decomposed pseu-

dodensity. In the computation of all nuclei, similarly ten R- and R-type matrices are

required per x-, y-, and z-direction of the magnetic field, though transformed with the less

favorable non-local perturbed pseudodensity. The pseudodensity perturbed with respect

to the external magnetic field is sparse, as can be seen in Fig. 4.1, where PB and P
B

are

shown for for C60H122 using the basis set pcS-1.1 In addition, the perturbed two-electron

integrals need to be evaluated explicitly in Eqs. 4.25 and 4.26.

Fig. 4.2 shows the computational cost of the computation of the rate-determining per-

turbed R-matrices in the new all-nuclei ansatz compared to the computation of its un-

perturbed variant. This clearly shows that while the computational effort is larger for

a second-order molecular property, the favorable characteristics, i.e., the scaling behavior

1pcS-n are basis sets that were shown to provide accurate NMR shieldings. [47,136] pcS-1 corresponds to
a double-ζ basis set in size.



4.2 RI-CDD ansatz for NMR shieldings at the MP2-level 37

(a) PBx (b) PBy (c) PBz

(d) P
Bx

(e) P
By

(f) P
Bz

Figure 4.1: Sparsity patterns for the perturbed occupied and virtual pseudodensities with
respect to the external magnetic field B obtained from DL-CPSCF for C60H122

using the basis set pcS-1. The sparsity patterns are taken from the first Laplace
expansion point and elements smaller than 10−5 are discarded (white).
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Number of carbon atoms

Figure 4.2: CPU time in the computation of the R and the RB matrices of linear alkanes.
The inset is a double-logarithmic plot of the CPU time of the three largest
systems, on which the slope indicated in the legend is based. Basis set: pcS-
1/def2-SVP-RI. Values taken from the first Laplace expansion point.

shown in Paper I, can be exploited in the computation of the NMR shieldings. Nonetheless,

the necessity to store a multitude of transformed B-matrices, including those transformed

with the perturbed pseudodensities, constitutes a memory bottleneck.

The sacrifice of the RI-CDD ansatz is the linear scaling behavior, which is lost due to

the auxiliary space. While SOS-methods, in combination with local metrics such as the

attenuated Coulomb-metric, can asymptotically regain this favorable scaling behavior, as,

e.g., shown in work on MP2 energies [61] and on a linear-scaling AO-based reformulation of

the random phase approximation [107], this is not possible for computations including both

the opposite and the same spin contribution. Although work by Maurer and Ochsenfeld

introduces new scaling parameters to make SOS-MP2 NMR shieldings accurate, [137] ap-

proaches including both contributions can be considered to be more stable and reliable.

The new approaches introduced in this chapter already constitute a significant improve-

ment in the computation of perturbed R-matrices, though memory requirements and the

scaling behavior remain issues for future work.
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In this work, new efficient methods to accurately compute analytic gradients, hyperfine

couplings, and NMR shieldings were introduced. Based on previous studies on linear scal-

ing algorithms to compute these molecular properties at the MP2-level, the methodology

introduced in the realm of MP2 energies to reduce the basis set dependency and the pref-

actor in the scaling behavior was applied and extended. The reduction of the basis set

dependency is achieved by decomposing the pseudodensities, thus exploiting their rank

deficiency. By combining with the RI approximation, the memory requirements and the

prefactor in the scaling behavior is reduced. Furthermore, to efficiently exploit the locality

of the atomic orbitals, or Cholesky orbitals in the case of Cholesky decomposed pseudo-

densities, an extension of the previously introduced distance-including QQR-type integral

estimation is required.

With these new algorithmic developments, the computations presented in Paper I show-

case the reduction of the computational cost in the computation of the analytic gradients

and an early cross-over with respect to the canonical implementation. By extending the

methodology to unrestricted MP2, taking into account both spin cases in the evaluation

of the MP2 contribution, HFCCs can be obtained in the absence of spin-orbit coupling.

The computation of the HFCCs is highly efficient and, similarly to the analytic gradients,

exhibits a cross-over to the canonical implementation for medium-sized molecules. Using

the new ansatz, larger molecular systems become accessible at the MP2-level than before

the present work.

The size of computable systems can be extended further by computing the HFCCs of

selected nuclei. Hereby, the locality of the perturbation is exploited by a perturbation-

including extended QQR-type integral estimation. In the work presented in Paper II,

this leads to a sublinear number of significant integrals. While this significantly reduces

the computational cost, the RI approximation hampers the efficient exploitation of this

reduced scaling behavior. Within the SOS-approximation, this can be circumvented by

the use of an attenuated Coulomb-metric, as shown in Paper II. Furthermore, by adapting
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the previously introduced J-engine-type scheme, the computation can be transferred to

massively parallelized architectures such as GPUs, leading to a further significant speed-

up. Thus, studies on the influence of the environment on the HFCC of the radical center

are possible, as showcased using the pyruvate formate lyase, a glycyl radical enzyme.

This efficient implementation to compute HFCCs lays the foundation for widespread ap-

plications. As shown in previous work, reliable HFCCs can only be obtained when taking

into account vibrational averaging. Since the HFCCs are strongly dependent on the struc-

ture, anharmonicity in the distribution of bond angles, bond lengths, or dihedral angles,

as well as deviations from the point-symmetric relationship between the structure and the

HFCCs, results in considerable dynamic contributions. The study in Manuscript IV clearly

shows that both electron correlation and incorporating dynamic effects can significantly

change the computed HFCCs and must therefore be included in future studies.

When computing magnetic properties, the choice of the gauge origin can significantly

alter the results. While in the computation of NMR shieldings, GIAOs, which overcome the

gauge origin problem, are used, this is not commonly the case in computations of electronic

g-tensors. In the benchmark presented in Paper III, the influence of the choice of gauge

origin on the accuracy of the results is analyzed, highlighting a strong dependence for larger

molecular systems. By introducing GIAOs, this error can be removed completely - though

at a higher computational cost. Paper III therefore additionally presents a new pragmatic

approach to determine a more reliable approximation of the gauge origin based on the spin

density, which largely improves the results for systems with localized spin densities. For

systems with delocalized spin densities or more than one radical center, GIAOs will need

to be employed and constitute the basis set of choice.

This analysis of the necessity to employ GIAOs in the computation of electronic g-tensors

forms the basis for future developments towards their efficient calculation, exploiting the lo-

cality of the (perturbed) spin density. In the case of NMR shieldings, the strong dependence

on the choice of gauge origin is well known. Therefore, all recent developments towards

(sub-)linear scaling AO-based MP2 NMR shieldings resort to GIAOs. Their widespread

application is, however, hampered by the lack of an efficient implementation. Analogous

to AO-MP2 energies and energy gradients, AO-MP2 NMR shieldings suffer from a strong

basis set dependency with respect to the computational cost. In this work, a first attempt

towards a reduced prefactor in the computational scaling behavior as well as a reduced

basis set dependency of the computation of the NMR shieldings of all nuclei is presented

by extending the RI-CDD ansatz. A Cholesky decomposition of the perturbed pseudo-
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densities in order to exploit rank deficiency is not possible as they are skew-symmetric

and indefinite. The results presented in this work show that a significant reduction in

the computational cost for medium-sized molecules can be achieved. While the significant

computational cost and large memory requirements remain and warrant future work on

their reduction, this work already provides fundamental research results forming the basis

for following studies.

The developments presented in this work form the foundation for future large scale

studies of HFCCs taking into account both electron correlation and vibrational averaging.

Combined with a future low scaling implementation to compute the electronic g-tensor,

EPR spectra of challenging molecular systems can be obtained reliably in silico. Further-

more, the work on the analytic gradients can be applied to methods that involve MP2-like

equations. For example, in the case of the random phase approximation, SOS-MP2-type

equations are rate-determining, allowing for the results presented in Paper I and II to be

transferable. Furthermore, since a recent study at the HF/DFT-level shows that a compu-

tationally efficient description of medium-sized systems is sufficient when the environment

is described by molecular mechanics within the QM/MM framework, [138] the new advances

regarding the computation of NMR shielding tensors of this work provide a significant step

towards their reliable computation.
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[39] M. Häser, J. Almlöf, Laplace transform techniques in Møller-Plesset perturbation

theory, J. Chem. Phys. 1992, 96, 489.
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[135] S. Loibl, F. Manby, M. Schütz, Density fitted, local Hartree-Fock treatment of NMR

chemical shifts using London atomic orbitals, Mol. Phys. 2010, 108, 477.

[136] F. Jensen, Basis Set Convergence for Nuclear Magnetic Shielding Constants Calcu-

lated by Density Functional Methods, J. Chem. Theory Comput. 2008, 4, 719.

[137] M. Maurer, C. Ochsenfeld, Spin Component-Scaled second-Order Møller-Plesset Per-

turbation Theory for Calculating NMR Shieldings, J. Chem. Theory Comput. 2015,

11, 37.

[138] D. Flaig, M. Beer, C. Ochsenfeld, Convergence of Electronic Structure with the Size

of the QM region: Example of QM/MM NMR Shieldings, J. Chem. Theory Comput.

2012, 8, 2260.





7 Publications

This chapter contains three paper published in peer-reviewed journals and a manuscript

as part of this thesis. The supporting information to Paper II can be found attached to

Paper II.

7.1 Paper I: Analytical RI-CDD MP2 energy gradients

“Low-scaling first-order properties within second-order Møller-Plesset

perturbation theory using Cholesky decomposed density matrices”,

S. Vogler, M. Ludwig, M. Maurer, C. Ochsenfeld,

J. Chem. Phys, 147, 024101 (2017)

The following article is reproduced in agreement with its publisher (AIP Publishing

LLC) and can be found online at:

http://aip.scitation.org/doi/pdf/10.1063/1.4990413



58 7. Publications



THE JOURNAL OF CHEMICAL PHYSICS 147, 024101 (2017)

Low-scaling first-order properties within second-order Møller-Plesset
perturbation theory using Cholesky decomposed density matrices

Sigurd Vogler, Martin Ludwig, Marina Maurer, and Christian Ochsenfelda)

Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM),
Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany

(Received 2 March 2017; accepted 14 June 2017; published online 10 July 2017)

An efficient implementation of energy gradients and of hyperfine coupling constants in second-order
Møller-Plesset perturbation theory (MP2) is presented based on our fully atomic orbital (AO)-based
approach. For the latter, an unrestricted AO-based MP2 formulation is introduced. A reduction
in the dependency of the computational efficiency on the size of the basis set is achieved by a
Cholesky decomposition and the prefactor is reduced by the resolution-of-the-identity approxima-
tion. Significant integral contributions are selected based on distance-including integral estimates
(denoted as QQR-screening) and its reliability as a fully controlled screening procedure is demon-
strated. The rate-determining steps are shown via model computations to scale cubically in the
computation of energy gradients and quadratically in the case of hyperfine coupling constants. Fur-
thermore, a significant speed-up of the computational time with respect to the canonical formulation
is demonstrated. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990413]

I. INTRODUCTION

Analytic energy gradients, as first introduced in a
quantum-chemical context by Pulay,1 play a crucial role in
theoretical chemistry. Besides providing equilibrium and tran-
sition structures of a molecule, they are necessary to perform
on-the-fly molecular dynamics and form the basis for calculat-
ing molecular properties, such as hyperfine coupling constants
(HFCCs) and nuclear magnetic resonance (NMR) shifts.2 For
accurate gradients, electron correlation needs to be accounted
for. This can be achieved by various means, e.g., by coupled-
cluster (CC)3–6 or second-order Møller-Plesset perturbation
theory (MP2).7,8 Such electron correlation methods entail a
large computational effort and a high-order scaling behavior
of the cost. Even the relatively cheap MP2 method scales in its
canonical formulation with the fifth power of the size of the
molecule. The computation of large molecular systems at low
computational cost therefore needs a reduction of the scaling
behavior. Several approaches exist to exploit the locality of
dynamic correlation. A group of methods is based on the work
by Pulay and Saebø9–12 using localized orbitals. Various local
correlation methods were derived,13,14 including local MP2
energies15,16 and analytical gradients.17,18 Another approach
is to fragment the whole molecule, such as in the fragment
molecular orbital (FMO) method by Kitaura et al.19,20 This
enables large scale energy computations at the MP2-level on
massively parallel-vector computers21 and has been extended
for geometry optimizations.22–24 An alternative approach
is the divide-expand-consolidate (DEC) ansatz in partition-
ing the orbital space,25–27 thus allowing for massive paral-
lelization28 and for the computation of large-scale systems.
Recently, DEC-MP2 gradients were presented, providing a fast

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

computation using large computer clusters.29,30 Besides these
groups of methods, an alternative ansatz exploits the locality of
the electron correlation by a formulation of the MP2 equations
in atomic orbitals (AOs) via a Laplace transformation.31–33 AO
methods do not rely on a spatial restriction of the correlation
space. Instead significant integral contributions are determined
directly.34–36

The present work is based on the Laplace transform. A
linear scaling behavior can hereby be achieved by our effi-
cient QQR-type integral estimates that include the distance
dependency of the charge distributions in the two-electron inte-
grals.35,36 Due to redundancies in the AO basis set, this scaling
behavior cannot be expected when the basis set is enlarged at
a constant size of the molecular system. Using a Cholesky
decomposition,37–39 Maurer et al.40 introduced an approach
to reduce the redundancy of the basis set in the computation of
AO-MP2 energies whilst maintaining its locality. Furthermore,
the prefactor in the scaling behavior can be reduced by the
resolution-of-the-identity (RI) approximation.41–47 Combin-
ing the Cholesky decomposition of the pseudodensity matri-
ces (CDD) with the RI-approximation to form the RI-CDD
ansatz and using the QQR-estimation technique, a low-scaling,
efficient computation of the MP2 energy is achieved.40

We introduced the theory for the computation of MP2
energy gradients48 avoiding any transformations between the
AO and the molecular orbital (MO) basis. While the working
equations and first results of a preliminary implementation
have been presented earlier,48 an efficient implementation has
not yet been put forward. This is achieved with the present
work, where we apply the RI-CDD approach to the compu-
tation of AO-MP2 energy gradients and present an efficient
implementation with extended QQR-type integral estimates.

Furthermore, based on an open-shell formulation of the
RI-CDD MP2 energy gradients, the efficient computation of

0021-9606/2017/147(2)/024101/12/$30.00 147, 024101-1 Published by AIP Publishing.
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HFCCs in the absence of spin-orbit coupling becomes possi-
ble. The equations to compute HFCCs at the MP2-level using
the RI-CDD approach are presented, accounting for both spin
cases by an extended Laplace expansion. We want to point
out at this point two approaches for improving the reliabil-
ity and accuracy of the computed HFCCs. The first one is
to use spin-component scaling, as introduced by Grimme,49

which, in combination with orbital optimization, provides reli-
able HFCCs.50 The second one is the double-hybrid density
functional theory (DH-DFT).51 DH-DFT combines density
functional theory and perturbation theory thus overcoming the
pitfalls and short-comings of the MP2 approach. It was shown
for bond dissociation energies that including MP2 contribu-
tions improves the results while not being as sensitive with
respect to spin contamination as a pure MP2 computation.52

With the use of analytical gradients of the DH-DFT energy,53

reliable HFCCs can be computed.54 Both approaches can also
be used within our RI-CDD ansatz by adapting the respective
MP2 terms.

In this work, we first briefly summarize the main equations
for the calculation of AO-MP2 gradients and present the algo-
rithm to compute unrestricted MP2 energy gradients by the
RI-CDD ansatz. We then introduce the extension of the QQR-
type integral estimates. Subsequently, we derive the equations
to compute closed-shell nuclear gradients and HFCCs based on
the RI-CDD approach. Finally, we analyze both the accuracy
and the efficiency of our approach.

II. THEORY
A. AO-MP2 energy gradients

Following the Laplace-transform approach by Almlöf and
Häser,31–33 we introduce the unrestricted AO-MP2 energy as

EAO-MP2 = −1
2

ταα∑

ζαα

wααζαα

N∑

µνλσ

(
µν

��� λσ)
αα

(µν | | λσ)

− 1
2

τββ∑

ζββ

w
ββ
ζββ

N∑

µνλσ

(
µν

��� λσ)
ββ

(µν | | λσ)

−
ταβ∑

ζαβ

w
αβ
ζαβ

N∑

µνλσ

(
µν

��� λσ)
αβ

(µν | λσ) , (1)

where integration over the spin coordinate is applied. The
two-electron integrals are transformed with the local pseudo-
densities (PDs),

(
µν

��� λσ)
ηη′
=

N∑

µ′ν′λ′σ′
Pηµ′µP

η

ν′νPη
′
λ′λP

η′
σ′σ

(
µ′ν′ | λ′σ′) . (2)

Different Laplace expansions are chosen for the three spin
cases, indicated by the linear Laplace expansion coefficients
wηη

′
, which depend on the Laplace point ζηη′ . The number of

Laplace points is given by τηη′ . The Laplace expansions of the
different spin cases depend on a generalized range, which are
given by

Rηη′ =
(εηmax + εη

′
max) − (εηmin + εη

′
min)

(εηLUMO + εη
′

LUMO) − (εηHOMO + εη
′

HOMO)
. (3)

In the closed shell case, only one range is necessary (η = η ′).
In a similar manner, we propose a simplification for the open-
shell case by taking the maximum range of the three different
spin cases leading to the Laplace points ζ . In the unrestricted
formulation, this leads to the following equation for the AO-
MP2 energy:

EAO-MP2 = −1
2

τ∑

ζ

wζ

N∑

µνλσ

[(
µν

��� λσ)
αα

(µν | | λσ)

+
(
µν

��� λσ)
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(µν | | λσ)

+ 2
(
µν

��� λσ)
αβ

(µν | λσ)
]
, (4)

which can be abbreviated as

EAO-MP2 = −1
2

τ∑

ζ

wζ

α,β∑

η

Eη(ζ), (5)

with

Eη(ζ) =
N∑

µνλσ

(
µν

��� λσ)
ηη

(µν | | λσ)

+
(
µν

��� λσ)
ηη′

(µν | λσ) , (6)

which depends on the Laplace expansion via the PDs and
where η ′ represents the opposite electron spin state of η.
To obtain the energy gradients, this energy expression is
differentiated with respect to the perturbation ξ,

∂EAO-MP2

∂ξ
= −1

2

τ∑

ζ

wζ

α,β∑

η

∂Eη(ζ)
∂ξ

= −1
2
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∂P
η

ν′ν
∂ξ

+ 2Iη,ξ (ζ)
]
. (7)

Hereby, the terms depending on the derivative of the two-
electron integral are sorted in opposite-spin (OS) and same-
spin (SS) Iη,ξ contributions, given by

Iη,ξ (ζ) = Iη,ξ
SS (ζ) + Iη,ξ

OS (ζ)

=

N∑

µνλσ

(
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ηη

∂ (µν | | λσ)
∂ξ

+
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(
µν | λσ

)
ηη′

∂ (µν | λσ)
∂ξ

, (8)

and the terms contracted with the derivative of the PDs are
included in so-called R-matrices,

R
η

µ′µ(ζ) = R
η,SS
µ′µ (ζ) + R

η,OS
µ′µ (ζ)

=

N∑

νλσ

(
µ′ν ��� λσ)

ηη
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(µν | λσ) (9)
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and

Rην′ν(ζ) = Rη,SS
ν′ν (ζ) + Rη,OS

ν′ν (ζ)

=

N∑

µλσ

(
µν′ ��� λσ)

ηη
(µν | | λσ)

+
N∑

µλσ

(
µν′ ��� λσ)

ηη′
(µν | λσ) . (10)

Following the density matrix-based formulation of the
PDs,34,55 Schweizer et al.48 introduced an efficient formula-
tion of their derivative based on an equivalent formulation of
the energy-weighted density matrix,56,57

∂Pη

∂ξ
=
∂etζ Pη

occFη

∂ξ
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occFη ∂Pηocc
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,
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virtF
η
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Pηvirt + e−tζ Pη

virtF
η ∂Pηvirt

∂ξ
.

(11)

The perturbed matrix exponentials can be obtained by expan-
sion in power series58,59 and numerical difficulties can be
avoided by using the method of squaring and scaling.59 As
shown by Schweizer et al.48 the corresponding equation for
the computation of the MP2 gradient using Eq. (11) can be
re-ordered, leading to the following asymptotically linear-
scaling equation for the computation of AO-MP2 energy
gradients:

∂Eη(ζ)
∂ξ

= 2Iη,ξ + 2Tr
[(
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η

2 + Yη
2
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]
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+ R
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etζ Pη
occFη − Rηe−tζ Pη

virtF
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]

+ 2Tr
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−
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]

= 2Iη,ξ + 2Tr
[
FηFη,(ξ)

]
+ 2Tr

[
Pη ∂Pηocc

∂ξ

]

+ 2Tr

[
Sη ∂S

∂ξ
S−1

]
, (12)

where Fη,(ξ) denotes the derivative of the Fock-matrix with
respect to the basis functions only, and where G = J � K
denotes the usual two-electron contributions by the Coulomb
term J and the exchange term K.

The Y-matrices are built in recursions from the corre-
sponding R-matrices; a detailed description can be found
in Ref. 48. The expensive determination of the explicit first
derivative of the density matrix can be avoided using our
AO-based reformulation of the Z-vector method48 that had
been originally formulated by Handy and Schaefer in the
MO-basis.60,61 Hereby, Eq. (12) can be abbreviated as

∂Eη(ζ)
∂ξ

= 2Tr

[
Pη ∂Pηocc

∂ξ

]
+ 2Tr

[
X η,ξ

]
, (13)

where the contributions independent of the perturbed density
matrix are collected inX. Subsequently, the Z-vector technique
can be applied,

Pη ∂Pηocc

∂ξ
= Pη(Aη)−1

︸      ︷︷      ︸
(Zη )T

Bη,ξ (14)

with Bη,ξ as the right hand side of the Coupled-Perturbed
Self-Consistent Field Theory (CPSCF) equations. This leads
to the following reformulation of the trace summation in
Eq. (13):

Tr

[
Pη ∂Pηocc

∂ξ

]
= Tr

[
(Zη)T Bη,ξ

]
. (15)

Using the efficient density matrix-based Laplace-transformed
CPSCF (DL-CPSCF) by Beer and Ochsenfeld,62 one obtains
the following unrestricted Z-vector equation:

Zη−vo =

τ∑

ζ

wζP
η (Pη−vo −Gη−vo [

Zη−vo + Zη−ov ]

− Jη−vo
[
Zη

′−vo + Zη
′−ov

] )
Pη , (16)

where the Coulomb-type two-electron integral Jη−vo depends
on the Z-vector of the opposite spin η ′. It has to be noted that
for real perturbations in the unrestricted open-shell case, the
two Z-vectors need to be determined simultaneously. Here,
the η–vo superscript describes the virtual/occupied-projection
into the η-space.63

B. RI-CDD approach

Based on this linear-scaling AO-MP2 energy gradient the-
ory, an efficient algorithm with a non-redundant local basis set
can be obtained via the RI-CDD ansatz,40 combining the RI
approximation (also known as density fitting)41–47 to reduce
the prefactor in the scaling behavior with a Cholesky decom-
position of the PDs to remove redundancies in the AO basis
set.37–39 The use of density fitting is advisable in the case of
AO-MP2 gradients, as this avoids the tedious and computa-
tional time- and memory-intensive book-keeping necessary
to obtain a linear scaling computation of the transformed
two-electron integrals.

In the RI-CDD approach, the PDs in the AO-formalism
are decomposed using a completely pivoted Cholesky decom-
position64,65 to account for their semi-definiteness,

Pηµ′µ =
rank(Pocc)=occ∑

i

Lη
µ′iL

η
µi,

P
η

ν′ν =

rank(Pvirt)=virt∑

a

L
η

ν′aL
η

νa.

(17)

L and L can be considered as coefficient matrices of localized
occupied and virtual pseudo-MOs (LPMOs).40 The number
of occupied and virtual LPMOs is equal to or smaller than the
rank of the PDs, which is linked to the size of the respective
MO space.

Decomposing the PDs in the computation of the
R-matrices and of Iη,ξ accordingly leads to



024101-4 Vogler et al. J. Chem. Phys. 147, 024101 (2017)

R
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and
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where (ξ) indicates the perturbation with respect to the basis
functions only, and |i〉η =

∑
µ Lη

µi |µ 〉 and |a〉η =
∑
ν L

η

νa |ν 〉.
Following the approach by Maurer et al.,40 we further-

more introduce the RI approximation. The RI-approximated
calculation of the fully transformed two-electron integrals
using the Coulombic metric44 reads as

(
ia ��� jb

)
ηη′
=

Naux∑

PQ

(
ia ��� P

)
η

(P | Q)−1
(
Q ��� jb

)
η′

, (21)

where P and Q denote the auxiliary basis. The inverse Coulomb
metric (P | Q)−1 is separated to describe the RI-approximated
two-electron integral as a contraction of three-center
matrices B,
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,
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2 .

(22)

The necessary transformed matrices Bηiν,P, Bηia,P and Bη
µa,P are

obtained from the untransformed three-center integrals in the
AO-basis as follows:

Bη
µa,P =
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η
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Bηiν,P =
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(23)

The transformation with the coefficient matrix of the occu-
pied LPMOs is an asymptotically quadratic scaling step with
respect to the size of the basis set at constant size of the molecu-
lar system, as is the consecutive transformation with its virtual
variant. The transformation of Bµν,P to obtain Bη

µa,P, however,
scales in a cubical manner.

The description of the perturbed two-electron integral
using the RI-approximation reads as
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(24)

For the computation of RI-CDD MP2 energy gradi-
ents, perturbed two-electron integrals need to be fully trans-
formed with the Cholesky decomposed PDs [see Eq. (20)].
This computationally expensive transformation would thus
need to be performed per perturbation. In order to circum-
vent this, we aim to pre-compute all perturbation-independent
quantities.

First, Ξ-matrices are computed for the SS- and the OS-
case,
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(25)

which form the basis of Γ-matrices. These correspond to the
corrections to the two-particle density matrix in canonical
RI-MP2 analytic gradient theory46,66 and include all
perturbation-independent quantities,
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Furthermore, the perturbation of the auxiliary space needs to
be considered,
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(27)

With these matrices, Iη,ξ (ζ) is computed by
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Iη,ξ (ζ) =
N∑

µν
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Γ
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+
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Γ
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C. QQR-type integral estimation

To exploit the asymptotic scaling behavior, significant
integral contributions to the R-matrices and to the Iη,ξ term
need to be determined. The standard estimates for the two-
electron integrals in quantum chemistry are the classical
Schwarz estimates.41,67 In order to obtain the asymptotic scal-
ing behavior, the distance-dependency of the two-electron
integrals needs to be incorporated in the estimation technique.
This can be achieved by the so-called QQR-estimation.35,36

The decay behavior of the two-electron integral with the
separation of the charge distributions ΩA and ΩB in bra and in
ket can be concluded from a multipole expansion,36

(ΩA | ΩB) =
qA

00qB
00

RAB
+

qA
00

(∑1
j=−1 T ′00,1jq

B
1j

)

R2
AB

+

(∑1
i=−1 qA

1iT
′
1i,00

)
qB

00

R2
AB

+ O(R−3
AB). (29)

Transforming the two-electron integral with PDs as in Eq. (2),
the monopoles q00 are zero due to the orthogonality of the
occupied and the virtual subspace.36 This also applies to the
transformation with the Cholesky decomposed matrices, as
proven in Appendix B of Ref. 40. Therefore, fully transformed
two-electron integrals exhibit a 1/(R′)3 decay behavior, as both
fully transformed monopoles qA

00 and qB
00 are zero and the decay

behavior is controlled by the O(R−3
AB) term in Eq. (29). This

leads to the following QQR-type estimate:

(
ia ��� jb

)
ηη′
≈

ZηiaZη
′

jb

(
R − extηia − extη

′

jb

)3
, (30)

where the Z-matrices are the common pseudo-Schwarz matri-
ces introduced by Häser.31 The following equation gives the
definition of the fully and half-transformed pseudo-Schwarz
matrices, where the transformation is performed with the
Cholesky decomposed PDs:

Xη
iν =

(
iν ��� iν

) 1
2

ηη
,

Yη
µa = (µa | µa)

1
2
ηη ,

Zηia =
(
ia ��� ia

) 1
2

ηη
.

(31)

The multipole expansion used to determine the decay behavior
of the two-electron integrals in Eq. (29) is only valid when
the charge distributions ΩA and ΩB are well separated.36 The
criterion chosen in the present work is given by

RA→B − extA − extB ≥ 1, (32)

where the distance between ΩA and ΩB is corrected by their
extents. The extents of the untransformed integrals are com-
puted as shown in Appendix B of Ref. 35. The extents for

fully transformed bra or ket are also used for RI-CDD-MP2
energies.40 Their formulation, as well as the computation of
the extents of half-transformed charge distributions required
in Eqs. (34) and (35), is shown in the Appendix of our present
work. If the criterion in Eq. (32) is not met, common Schwarz
estimates are used.

With this, the QQR-type estimate for Iη,ξ in Eq. (20) can
be written as

(
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)
ηη′

(
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) (ξ)
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′

jb

)6
. (33)

Hereby, we exploited the fact that the perturbed integral can be
screened using the estimates of the nonperturbed integral.68,69

In the computation of R-matrices in Eqs. (18) and (20),
the QQR-type estimates read as follows:
(
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and
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These triple-transformed integrals have a decay behavior of

1/(R′)2 because only the monopoles of q
jb

00 of the multipole
expansion are zero.

The computational cost of the screening procedure can be
reduced by pre-screenings. In the computation of Iη,ξ using
the RI-CDD approach, significant electron pairs (i, j) are pre-
selected by

(
ia ��� jb

)
ηη′

(
ia ��� jb

) (ξ)

ηη′
/

(
maxa Zηia

)2
(
maxb Zη

′

jb

)2

(
Rηη

′
i,j − extηi − extη

′
j

)6
. (36)

The respective centers and extents can be found in the
Appendix.

In the computation of R using the RI-CDD approach,
significant electron pairs (i, j) are preselected, followed by
a determination of the significant (i, j, b) combinations, while
for R, significant (a, b) pairs are determined first, for which
significant (a, b, j) combinations are selected afterwards.

D. First-order properties: Closed-shell nuclear
gradients and hyperfine coupling constants

With the introduced theory for the computation of energy
gradients at the MP2-level using the RI-CDD approach,
nuclear gradients and first-order properties can be computed.
In this work we present both the computation of closed-shell
nuclear gradients and of HFCCs.
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In the case of a closed-shell system, the above introduced
equations simplify considerably. In the RI-CDD approach, the
closed-shell gradient contribution at Laplace point ζ is given
by

∂Eη(ζ)
∂ξ

= 2Iξ (ζ) + 2
∑

µ′µ
Rµ′µ(ζ)

∂Pηµ′µ
∂ξ

+ 2
∑

ν′ν
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∂P
η

ν′ν
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,

(37)
with the closed-shell Iξ term,
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and the closed-shell R-matrices,
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(39)

The integral estimates introduced in Eqs. (33)–(35) can be
adapted straightforwardly.

HFCCs in the absence of spin-orbit coupling can be
obtained as a first-derivative of the unrestricted MP2 equation
with respect to the nuclear magnetic moment Mk of nucleus k,
given by the isotropic Fermi-contact term and the anisotropic
spin-dipole interaction.2 As the basis functions are indepen-
dent of the nuclear magnetic moment, only the R-matrices
need to be considered in Eq. (7), leading to

∂Eη(ζ)
∂Mk

= 2
∑

µ′µ
R
η

µ′µ(ζ)
∂Pηµ′µ
∂Mk

+ 2
∑

ν′ν
Rην′ν(ζ)

∂P
η

ν′ν
∂Mk

, (40)

where the R-matrices can be computed using the RI-CDD
approach as in Eqs. (18) and (19).

In both the computation of closed-shell nuclear gradients
and of HFCCs, the R-matrices are not directly contracted with
perturbed pseudodensities, but instead the Z-vector technique
outlined in Eq. (14) is used to compute the contribution per
Laplace point as in Eq. (12).

III. COMPUTATIONAL DETAILS

The RI-CDD MP2 energy gradients and the HFCCs were
implemented in the program package FermiONs++.70,71 The
reference RI-MP2 nuclear gradients66 were computed using
the implementation in Q-Chem 4.0.72 The reference HFCCs
at the RI-MP2 level were obtained with the program pack-
age ORCA.73 In the non-canonical computations, the PDs are
scaled with the coefficients of the Laplace expansion. The
selection of linear and exponential Laplace expansion coeffi-
cients is performed according to the minimax-approximation
by Hackbusch and co-workers.74 Closed-shell nuclear gradi-
ents were obtained using five Laplace expansion points, based
on the study by Schweizer et al.48 The extents of the QQR-type
integral estimates are determined with the same thresholds as
in Ref. 36, i.e., the threshold of the untransformed AO extent
is 0.1 and the threshold of the transformed extents is 10�3.
The SCF equations were converged at least to a threshold of

10�8. The DL-CPSCF equations for the determination of the
Z-vector are converged to a threshold of 10�4 for the nuclear
gradients, whereas a tighter threshold of 10�6 is chosen for
the HFCCs. The basis sets def2-SVP75 and cc-pVTZ76,77 are
used. For the auxiliary space in the RI-approximation, opti-
mized basis sets def2-SVP-RI47,78 and cc-pVTZ-RI79,80 are
used.

The sparsity of the L-matrices is exploited by the use of the
efficient block-compressed sparse row (BCSR) matrix multi-
plications63,81 with a sparsity criterion of 10�7. A reordering
of the atoms in the molecule according to the reverse Cuthill-
McKee algorithm82 is performed by reducing the bandwidth
of the connectivity matrix. Subsequently, the structure of the
Cholesky decomposed matrices is reestablished as described
in Ref. 40. The computation of the right hand side of the DL-
CPSCF equation for the nuclear gradients in Eq. (15) involves
a contraction of the term PSξP with the exchange two-electron
integral. Here, the sparsity of PSξP was exploited by the BCSR
scheme.

The scaling behavior is computed based on the number of
basis functions. The scaling behavior at the first Laplace point
is assumed to represent the overall behavior.

The timings were performed on a single core of an Intel
Xeon E5-2620 using up to 128 GB of RAM.

IV. RESULTS

The following analyzes the accuracy and efficiency of
both our closed-shell nuclear gradients and HFCC computa-
tions using the RI-CDD ansatz. We start by investigating the
accuracy with respect to the canonical formulation, followed
by an analysis of the scaling behavior of the rate-determining
steps. Finally, we compare our computational cost to the
canonical variants for molecules of increasing size.

A. Accuracy

We will first start by analyzing the accuracy of the com-
putation of closed-shell nuclear gradients. Therefore, we com-
puted a set of molecules comprising linear alkanes, glycine
chains, and DNA base pairs with our RI-CDD ansatz using
different screening thresholds.

Preliminary studies suggested the use of separate screen-
ing thresholds for the R-matrices and for the Iξ term in
Eqs. (18)–(20). The deviation from the RI-MP2 gradients
is shown in Table I, highlighting a fully controllable accu-
racy. We furthermore compare the accuracy of our RI-CDD
gradients of Gly5 to the canonical MP2 gradient without the RI-
approximation, which confirms the correct QQR-screening. A
screening threshold of 10�6 for the R-matrices and 10�8 for
Iξ is sufficient for sub-mhartree/bohr accuracy.

Following this analysis of the accuracy of closed-shell
nuclear gradients, we investigated the computation of HFCCs.
The accuracy of the computation of HFCCs at the RI-CDD
MP2-level with respect to its canonical variant depends on
different factors: In addition to the QQR-type screening thresh-
old, whose influence was investigated above for the closed-
shell nuclear gradients, the dependency of the accuracy on the
number of Laplace expansion points needs to be taken into
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TABLE I. Root mean square deviation in mhartree/bohr of RI-CDD MP2
energy gradients with respect to conventional RI-MP2 energy gradients for
different QQR-type screening thresholds (for R-matrices/for I ξ ) with the
basis set def2-SVP. Furthermore, the results of Gly5 are compared to the MO-
MP2 result and the DNA1 computation is additionally performed using seven
Laplace expansion points.

Molecule 10�5/10�7 10�6/10�8 10�7/10�9

C5H12 0.50 0.01 0.02
C10H22 0.71 0.03 <0.01
C20H42 1.15 0.08 0.04
Gly5 0.56 0.07 0.10a

Gly5 (MO-MP2) 0.56 0.08 0.10a

DNA1 (5 LP) 3.74 0.48 0.38
DNA1 (7 LP) 3.92 0.41 0.29

aThe remaining small deviation can be attributed to the number of Laplace expansion
points. Using seven Laplace points, an error of 0.04 mhartree/bohr to RI-MP2 and 0.05
mhartree/bohr to MO-MP2 using screening thresholds of 10�7/10�9 is achieved.

account. In contrast to the nuclear gradients, whose depen-
dency of the accuracy on the Laplace expansion has been
studied in previous work,48 a similar investigation is not avail-
able for the computation of HFCCs, as a Laplace-transform
based ansatz for HFCCs has not yet been presented to our
knowledge. Additionally, the use of a Laplace expansion based
on a generalized range may result in the need for more expan-
sion points. Owing to the open-shell nature, the convergence
of the CPSCF equations is also critical.

In order to single out the effect of the different contrib-
utors to the accuracy, we varied only one parameter and set
the others to their tightest value. These were chosen to be ten
Laplace expansion points, a QQR-type screening threshold
of 10�10, and a CPSCF-convergence criterion of 10�8. For
demonstration purposes, we chose a set of radicals: CHO,
NF2, CH3, C5H11, C10H21, and a p-benzosemiquinone rad-
ical coordinated with four water molecules abbreviated by
BQ•−. The HFCCs of BQ•− have previously been studied using
both DFT and MP2-approaches.50,83 We used the reference
structure from Ref. 83 for our benchmark. Furthermore, we
included two small triplet systems in our benchmark, namely,
3O and 3SO. As we compare to the canonical results, the struc-
tures used in this work were not extensively optimized using
advanced optimization techniques. We want to point out that
those radicals and triplets do not represent all the different
challenges to the theoretical computation of HFCCs as at this
stage we want to focus on the feasibility of our approach and
aim to present a proof of principle.

Our comparison of the isotropic HFCCs to their canonical
implementation can be found in Table II. The results indi-
cate that the dependency on the different parameters varies
between the different systems. The small molecular systems
converged faster with a tighter QQR-threshold. QQR-type
integral estimation is only performed when the charge dis-
tributions are sufficiently separated, else a common Schwarz
screening is performed. Thus, the convergence with the
QQR-threshold for the small systems is in fact a convergence

TABLE II. Root mean square deviation in MHz of the computed isotropic RI-CDD MP2 HFCCs with respect to
the canonical RI-MP2 result for radicals, triplets, and anions using the basis set def2-SVP for different number of
Laplace points, QQR-type screening thresholds, and CPSCF convergence criteria.

QQR-thresholda Number of Laplace pointsa CPSCF-thresholda

Molecule Atom 10�6 10�8 10�10 5 7 10 10�3 10�5 10�7

NF2

14N 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0
19F 0.1 0.0 0.0 1.2 0.2 0.0 13.3 0.0 0.0

CH3

13C 0.0 0.0 0.0 0.0 0.0 0.0 6.8 0.0 0.0
1H 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0

CHOb

13C 0.5 0.5 0.5 23.0 5.4 0.5 16.6 0.5 0.5
1H 0.1 0.1 0.1 6.4 1.5 0.1 4.3 0.1 0.1
17O 0.3 0.4 0.4 16.8 3.8 0.4 14.2 0.4 0.4

3O2
17O 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0

3SO
33S 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0
17O 0.0 0.0 0.0 0.3 0.1 0.0 1.2 0.0 0.0

C5H11

13C 0.2 0.0 0.0 0.1 0.0 0.0 2.7 0.0 0.0
1H 0.2 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0

C10H21

13C 2.6 0.0 0.0 0.1 0.0 0.0 1.9 0.0 0.0
1H 2.5 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

BQ•−
13C 9.4 0.0 0.0 0.5 0.1 0.0 0.4 0.0 0.0
17O 1.8 0.3 0.0 1.2 0.6 0.0 0.5 0.0 0.0
1H 2.0 0.3 0.0 0.1 0.1 0.0 0.0 0.0 0.0

aThe other parameters were each set to their maximum value, being ten Laplace points, a QQR-threshold of 10�10, and a CPSCF-
threshold of 10�8.
bThis system requires more than ten Laplace points for a converged description, resulting in the remaining errors, which can be
removed completely with 14 Laplace points.
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with respect to a Schwarz screening. This is not the case for
our larger systems, namely, C5H11, C10H21, and BQ•−. As
expected, a systematic deviation to the canonical result can
be observed when loose QQR-thresholds are chosen, which
is overcome with tighter thresholds. All computations show
a fully controllable accuracy with the QQR-threshold and
their deviation is in the sub-MHz region for a QQR-threshold
of 10�8.

Most of our studied systems are sufficiently described
with at most seven Laplace expansion points, except for CHO.
This electronically challenging system requires a high num-
ber of Laplace points for a sub-MHz description. When 14
Laplace expansion points are chosen, the remaining errors of
0.5 MHz for 13C, of 0.1 MHz for 1H, and of 0.4 MHz for 17O in
Table II are removed completely, confirming the fully control-
lable accuracy. In all our computations a CPSCF-threshold of
10�5 was sufficient to ensure a converged result with sub-MHz
accuracy.

B. Scaling behavior

In order to analyze the performance of our new RI-CDD
MP2 ansatz for first-order properties, we take a closer look
at the rate-determining steps. For large-scale systems, the
scaling behavior of these steps is of great importance. The
scaling behavior can be determined with respect to the num-
ber of significant two-electron integrals and with respect to
the wall time needed. The former allows the asymptotic limit
to be determined, whereas the wall time provides the effec-
tive scaling behavior and indicates computational overheads.
As discussed in Ref. 84, quasi-one-dimensional systems are
ideally suited for a systematic study of the formal asymptotic
scaling behavior and possibly remaining higher-order scaling
steps. Throughout this work, the scaling behavior is computed
based on the number of basis functions.

In the computation of closed-shell nuclear gradients, the
evaluation of both the R-matrices and of Iξ in Eqs. (38) and
(39) has to be taken into account. The number of significant
integrals based on a QQR-type integral estimation is shown in
Table III for linear alkanes with increasing length and show that
linear alkanes larger than C40H82 exhibit a scaling behavior
below N1.3.

This optimal scaling behavior with respect to the num-
ber of integrals is not directly reflected in the scaling of the

TABLE III. Number of selected integral products (109) at the first Laplace
point according to the QQR-type integral estimation in the computation of
I ξ and of the R-matrices in the RI-CDD-MP2 approach using a QQR-type
integral screening threshold of 10�6 for the R matrices and 10�8 for I ξ with the
basis set def2-SVP. The respective scaling exponent is indicated in brackets.

Molecule
(
ia | jb

) (
ia | | jb

)
R R

C5H12 0.003 0.776 3.553
C10H22 0.020 (3.1) 10.192 (3.9) 25.815 (3.0)
C20H42 0.071 (1.9) 37.627 (1.9) 74.596 (1.6)
C40H82 0.174 (1.3) 92.023 (1.3) 172.470 (1.2)
C60H122 0.276 (1.2) 146.886 (1.2) 272.162 (1.1)
C80H162 0.379 (1.1) 202.224 (1.1) 372.143 (1.1)
C100H202 0.481 (1.1) 256.655 (1.1) 468.989 (1.0)

wall times, which is usually shifted to larger system sizes.
In addition, when the Coulomb-metric RI-approximation is
employed, the sum over the auxiliary space increases the
asymptotic scaling behavior of the wall times to quadratic.
This increase in the scaling behavior could be circumvented
by, e.g., the use of local fitting by Werner et al.85 by restrict-
ing the auxiliary space. This has been shown to lead to
fast computations of the local canonical MP2 energy gradi-
ent18 with good agreement to the exact MP2 energy gradi-
ent. Nonetheless, local domains need to be defined which
may introduce additional errors.86 Therefore, we follow the
different pathway by removing zero-elements instead of con-
structing local fitting domains. For RI-CDD MP2 energies, it
was shown that an effective reduction of the computational
cost by local fitting can only be achieved for larger systems
such as C160H322.40 Therefore, local fitting was omitted in this
implementation.

In Table IV, the wall times of the computation of the R-
matrices, of Iξ , and of the transformation of the B-matrices
as in Eq. (23) for nuclear gradients of linear alkanes ranging
from C5H12 to C100H202 are shown. An asymptotic quadratic
scaling behavior for the computation of the R-matrices is con-
firmed. The sub-quadratic scaling for C40H82 and C60H122 is
due to the large contribution of the linear-scaling screening to
the total wall time. The precontraction of the perturbation-
independent quantities in Eq. (25) involves cubic scaling
steps, which results in the overall cubic scaling behavior
of the computation of Iξ . The same scaling behavior is to
be expected and confirmed for the transformation of the B-
matrices, due to the formation of Bµa,P. The apparent fluctu-
ation of the overall scaling behavior of the B-matrices and of
Iξ is caused by contributions of manifold steps of different
scalings.

Turning to the computation of HFCCs, the previous state-
ments relating to the R-matrices are relevant since the Iξ terms
in Eq. (20) are not necessary. The only cubic-scaling step of
interest is the formation of Bµa,P. As can be seen in Table IV,
the transformation is cheaper than the contraction of the R-
matrices for all investigated systems. Therefore, an overall
quadratic scaling is to be expected (see Sec. IV C).

TABLE IV. Wall time in minutes of the transformation of the three-center
B-matrices, of the QQR-estimation and of the computation of R-matrices,
and of the total computational time needed for the calculation of I ξ in the RI-
CDD MP2 energy gradient calculation for increasing linear alkanes using the
basis set def2-SVP. The wall times are taken from the first Laplace point and
the scaling exponent is shown in brackets. The QQR-type integral screening
thresholds were set at 10�6 for the R-matrices and at 10�8 for I ξ .

Transform
R-matrices

I ξ

Molecule B-matrices QQR-est. Total Total

C5H12 0.01 0.60 1.07 0.16
C10H22 0.11 (3.2) 3.85 (2.8) 7.55 (3.0) 1.77 (3.7)
C20H42 1.10 (3.5) 13.42 (1.9) 30.05 (2.1) 13.40 (3.0)
C40H82 9.48 (3.2) 30.95 (1.2) 90.82 (1.6) 95.08 (2.9)
C60H122 30.25 (2.9) 50.95 (1.2) 175.45 (1.6) 391.30 (3.5)
C80H162 67.38 (2.8) 72.22 (1.2) 312.37 (2.0) 993.33 (3.3)
C100H202 123.27 (2.7) 97.82 (1.4) 480.10 (1.9) 2070.00 (3.3)
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C. Computational efficiency

To finally assess the computational efficiency of our
method, the wall times of the gradient computations of linear
alkanes, glycine chains, and DNA double strands are com-
pared to the respective RI-MP2 computations in Tables V
and VI. At the double-ζ level in Table V, a crossover to the
canonical implementation can be seen for systems larger than
C60H122, as visualized in Fig. 1(a). This matches the corre-
sponding crossover of the RI-CDD MP2 energies with respect
to their canonical variant.40 In the case of the glycine chains,
the crossover to the canonical computation lies between a chain
length of 10 and of 20 glycine monomers, as can be seen
in Fig. 1(b). The DNA fragments consisting of one and of
two base pairs were both computed faster using the canoni-
cal approach. Using our present single-core implementation,
neither the RI-CDD nor the canonical computations of a DNA
fragment consisting of four base pairs are possible within a
reasonable time frame. However, based on the scaling behav-
ior, it is to be expected that a fragment consisting of four
base pairs will be computed faster using the new RI-CDD
approach.

By a double-logarithmic plot of the results in Fig. 1, the
asymptotic scaling behavior can be shown. This is done in
Fig. 2 for both the linear alkanes and the glycine chains,
including a linear fit for the three largest systems, highlight-
ing the asymptotic cubic scaling for our RI-CDD method and
the O(N5) scaling for the canonical RI-MP2 approach. Fur-
thermore, the curvature demonstrates that our ansatz leads
to a reduced scaling behavior with the increasing size of
the molecule until the asymptotic cubic scaling behavior is
reached. In the canonical formulation this is not the case,
where the scaling behavior increases, as the dominant low
scaling steps at small molecule sizes are outweighed by the
high scaling contributions for larger systems.

TABLE V. Comparison of the wall time in hours for different molecules for
RI-CDD MP2 and RI-MP2 energy gradient computations using the basis set
def2-SVP and a screening threshold of 10�6 for R-matrices and 10�8 for I ξ .
The scaling exponent with respect to the next smaller molecular system is
indicated in parentheses. Values marked by an asterisk are extrapolated based
on the scaling behavior of the wall time of the next smaller system.

Molecule RI-CDD-MP2 RI-MP2

C5H12 0.11 0.02
C10H22 1.02 (3.4) 0.12 (3.0)
C20H42 5.95 (2.6) 0.78 (2.8)
C40H82 28.24 (2.3) 10.13 (3.8)
C60H122 72.61 (2.3) 62.64 (4.5)
C80H162 151.55 (2.6) 242.42 (4.7*)
C100H202 282.43 (2.7) 715.74 (4.8*)
Gly1 0.04 0.01
Gly3 0.83 (3.4) 0.12 (3.00)
Gly5 2.61 (2.4) 0.43 (2.8)
Gly10 13.32 (2.5) 4.40 (3.5)
Gly20 70.89 (2.5) 90.34 (4.5)
Gly30 204.81 (2.7) 613.47 (4.7*)
DNA1 16.93 3.11
DNA2 295.81 (3.8) 78.69 (4.3)

TABLE VI. Comparison of the wall time in hours for different molecules for
RI-CDD MP2 and RI-MP2 energy gradient computations using the cc-pVTZ
basis and a screening threshold of 10�6 for R-matrices and 10�8 for I ξ . In
addition to the scaling exponent (SE) with respect to the size of the molecular
system, shown in brackets, the SE when increasing the basis set at constant
size of the molecular system is shown. This SE is computed by comparing
the wall time using cc-pVTZ (TZ) with the calculation of the same molecule
using def2-SVP (SVP).

RI-CDD-MP2 RI-MP2

Wall time SE basis set size Wall time SE basis set size
Molecule (SE) (SVP→ TZ) (SE) (SVP→ TZ)

C5H12 2.80 3.6 0.32 3.2
C10H22 20.96 (3.1) 3.4 2.17 (2.9) 3.2
C20H42 111.11 (2.5) 3.3 13.09 (2.7) 3.2

The performance is similar at the triple-ζ level which
can be seen in Table VI. The scaling behavior with respect
to the size of the molecular system is analogous to the respec-
tive molecular system sizes at the double-ζ level. When the
basis set is increased at a constant size of the molecule, a
cubic scaling behavior is confirmed. Furthermore, the compu-
tation of C20H42 with the basis set cc-pVTZ is 8.7 times more
expensive with the new RI-CDD approach than with canonical

FIG. 1. Comparison of the wall times for canonical RI-MP2 and RI-CDD
MP2 energy gradient computations of linear alkanes and glycine chains using
the basis set def2-SVP. Different values have been conservatively extrapolated,
indicated by an asterisk. The wall time behavior of the RI-MP2 gradient com-
putation of C100H202, Gly30, and C80H162 was based on the scaling behavior
of the previous point. (a) Linear alkanes and (b) glycine chains.
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FIG. 2. Double logarithmic comparison of the wall times for canonical RI-
MP2 and RI-CDD MP2 energy gradient computations of linear alkanes and
glycine chains using the basis set def2-SVP to highlight the asymptotic scaling
behavior. The scaling behavior of the respective three largest systems was
obtained by a linear fit. The wall time of the RI-MP2 gradient computation
of C100H202, Gly30, and C80H162 (indicated by an asterisk) was extrapolated
based on the scaling behavior of the previous point. (a) Linear alkanes and (b)
glycine chains.

RI-MP2. This corresponds to the ratio of 7.6 at the double-ζ
level. Accordingly, a crossover in analogy to the double-ζ level
is to be expected at systems larger than C60H122.

The higher computational cost for small system sizes in
comparison to the canonical approach can be attributed to var-
ious factors. The gradient of a MP2 energy expression needs
to be evaluated per Laplace point. The locality of the AOs
will not lead to particularly sparse matrices for small sys-
tems; thus, the effort per Laplace point is not considerably
reduced with respect to the canonical implementation. In addi-
tion, QQR-type and Schwarz screening has to be performed.
Besides the computational cost of the screening itself, this also
results in a more expensive contraction per element, as per
contraction a list of significant elements has to be accessed.
This overhead is largely outweighed by the fact that for
larger systems the number of significant elements is drastically
smaller than the number of all elements, but renders canonical
formulations more suited for gradient computations of small
molecules.

Similar results can be obtained when analyzing the overall
performance of the computation of HFCCs in Table VII. An

TABLE VII. Comparison of the wall time in hours of RI-CDD MP2 and RI-
MP2 HFCC computations of different molecules with the basis set def2-SVP
using seven Laplace points and a screening threshold of 10�8. The scaling
exponent is indicated in parentheses. Values marked by an asterisk are con-
servatively extrapolated based on the scaling behavior of the wall time of the
next smaller system.

Molecule RI-CDD-MP2 RI-MP2

C5H11 0.65 0.03
C10H21 5.90 (3.3) 0.22 (3.0)
C20H41 30.57 (2.4) 1.76 (3.1)
C40H81 104.75 (1.8) 33.59 (4.3)
C60H121 209.28 (1.7) 226.83 (4.7)
C80H161 375.15 (2.0) 880.95 (4.7∗)
C100H201 535.69 (1.8) 2525.31 (4.7∗)

overall asymptotic quadratic scaling behavior is confirmed.
The efficiency crossover for HFCCs occurs below C60H121

with respect to the canonical implementation. In both the
RI-CDD and the canonical approach, the computations are
more expensive than the nuclear gradient computations of
systems of comparable molecular size. In the case of the RI-
CDD approach, this is due to the fact that R-matrices for the
different spin cases need to be screened and contracted sep-
arately for the HFCCs. All computations were performed on
a single core. We have not yet implemented a parallel ver-
sion. The effectiveness of the parallelization of the RI-CDD
MP2 energies40 suggests that with our new RI-CDD ansatz,
energy gradients and HFCCs can now be computed for large
molecular systems in a reasonable time frame. This can fur-
thermore be improved in the future by a migration to graphics
processing units (GPU), which sped up the computation of
RI-CDD MP2 energies.87 This will equally be of importance
when aiming for molecular properties, which we want to focus
on in the future and will make our new approach preferable
to its canonical variant for medium- to large-sized molecular
systems.

V. CONCLUSION AND OUTLOOK

In this work, we presented a new approach to the compu-
tation of MP2 energy gradients, using the RI approximation
and a Cholesky decomposition of the pseudodensity matri-
ces in an AO-based formulation. This approach significantly
reduces the computational effort with respect to its canonical
variant and thus provides an efficient calculation of nuclear
energy gradients and HFCCs at the MP2-level. Low scaling
with respect to the size of the molecular system is achieved by
an extension of the QQR integral estimation method to screen
significant integral contributions in a fully controlled man-
ner. With the use of QQR-type integral estimates, the number
of two-electron integrals necessary in the computation of the
gradients is reduced to linear, whilst the contraction step of
the two-electron integrals is reduced to quadratic. Overall an
asymptotic N3 scaling behavior is expected and shown due to
the formation and transformation of the three-center integrals
as well as the transformation of the perturbed two-electron
integral.
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A crossover to the conventional RI-MP2 energy gradient
computation is shown, which, combined with a future par-
allelization of the existing code and a migration to GPUs,
will render large-scale gradient computations feasible. HFCCs
were computed with a reduced computational effort and scal-
ing behavior in comparison to the canonical approach, making
our RI-CDD ansatz the method of choice for the computa-
tion of HFCCs at the MP2-level for medium- to large-sized
molecular systems. Furthermore, our RI-CDD ansatz for ana-
lytical MP2 gradients forms the basis for efficient second-
order molecular properties such as the calculation of NMR
chemical shieldings, for which we presented an AO-based
formulation.88 As NMR shieldings can be obtained reliably
at the MP2-level89 and can be further improved by the use
of spin-component scaling,90 we plan to extend the RI-CDD
approach to the computation of NMR shieldings in future
work.
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APPENDIX: CENTERS AND EXTENTS

The description of the centers and extents in the com-
putation of RI-CDD-MP2 energy gradients follows the corre-
sponding work for MP2 energies.36,40 To determine the extents
of transformed charge distributions, the relative weights of the
AO contribution need to be computed. For every fully trans-
formed pair, the relative weights of the AO contribution are
given by

cMN
ia,η =

|LηMiSMN L
η

Na |
∑

KL |LηKiSKLL
η

La |
. (A1)

Here, K, L, M, and N denote shells, and the corresponding
matrix elements are defined as the maximum of all atomic
orbitals within the shell,

SMN = max
{µ∈M,ν∈N }

|Sµν |, LηMi = max
{µ∈M }

|Lη
µi |. (A2)

In the computation of the extents, solely AO contributions with
a relative weight exceeding a threshold ϑt are used,

extηia = max
{MN |cMN

ia,η 〉ϑt }

{
rηia,MN + cMN

ia,ηextMN

}
. (A3)

The centers of the LPMO products are defined as

~rηia =

∑
MN |LηMiSMN L

η

Na |~rMN

∑
MN |LηMiSMN L

η

Na |
. (A4)

In contrast to the computation of energies, the QQR-type inte-
gral screening for RI-CDD-MP2 energy gradients requires the
computation of the extents and centers of half-transformed
charge distributions. Therefore, the transformation with the

Cholesky decomposed pseudodensity is replaced by a trans-
formation matrix TµM , connecting the shells to the atomic
orbitals.

For pre-screenings as in Eq. (36), extents assigned to a
single orbital are required. Based on the respective work by
Maurer et al.,40 the following extents are defined:

extηi = max
{M,N ,a |cMN

ia,η〉ϑt }

{
rηi,MN + cMN

ia,ηextMN

}
,

extηa = max
{M,N ,i |cMN

ia,η〉ϑt }

{
rηa,MN + cMN

ia,ηextMN

}
.

(A5)
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68H. Horn, H. Weiß, M. Häser, M. Ehrig, and R. Ahlrichs, J. Comput. Chem.

12, 1058 (1991).
69C. Ochsenfeld, Chem. Phys. Lett. 327, 216 (2000).
70J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 138, 134114 (2013).
71J. Kussmann and C. Ochsenfeld, J. Chem. Theory Comput. 11, 918 (2015).

72Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann,
A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn,
L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Ku, A. Landau, J. Liu,
E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele,
E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev,
B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist,
K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang,
Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A.
DiStasio, Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar,
A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. Hanson-Heine,
P. H. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau,
H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger,
D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent,
K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan,
A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian,
A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana,
R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati,
A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma,
D. W. Small, A. Sodt, T. Stein, D. Stck, Y.-C. Su, A. J. Thom, T. Tsuchi-
mochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel,
A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You,
I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. Chan, D. M. Chipman,
C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt,
H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel,
X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai,
A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung,
J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov,
L. V. Slipchenko, J. E. Subotnik, T. V. Voorhis, J. M. Herbert, A. I. Krylov,
P. M. W. Gill, and M. Head-Gordon, Mol. Phys. 113, 184 (2015).

73F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012).
74A. Takatsuka, S. Ten-no, and W. Hackbusch, J. Chem. Phys. 129, 044112

(2008).
75F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
76T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
77D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993).
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ABSTRACT: We introduce a new ansatz to compute hyperfine coupling constants of selected nuclei at the level of second-order
Møller−Plesset perturbation (MP2) and double-hybrid density functional theory with reduced computational effort, opening the
route to the analyis of hyperfine coupling constants of large molecular structures. Our approach is based on a reformulation of
the canonical MP2 term in atomic orbitals, thus exploiting the locality of electron correlation. We show that a perturbation-
including integral screening reduces the scaling behavior of the number of significant two-electron integrals to sublinear. This
selected-nuclei approach allows for an efficient computation within scaled-opposite spin (SOS) RI-MP2 on massively parallelized
architectures such as graphical processor units (GPUs), thus enabling studies on the influence of the environment on hyperfine
coupling constants.

1. INTRODUCTION

Molecules with nonzero spins, such as organic radicals, can be
studied by electron paramagnetic resonance (EPR) spectros-
copy.1 One important quantity in EPR spectroscopy is the
hyperfine coupling, which can be seen as the analogon to the J-
coupling in nuclear magnetic resonance (NMR) spectrometry
and which is based on the interaction of the electronic spin with
the nuclear magnetic moment. Thus, it is directly related to the
spin density in the vicinity of the nucleus and can therefore be
described in the nonrelativistic limit by the Fermi contact and
an anisotropic magnetic dipole−dipole interaction of the
nuclear-electronic spins.2,3

The theoretical description and computation of hyperfine
coupling constants (HFCCs) is a challenging task, especially in
regards to accuracy and reliability. For accurate results, both
EPR-specific basis sets and electron correlation need to be
taken into account.4−7 Due to the large computational cost and
the scaling behavior of canonical electron correlation methods,
these are still limited to small molecules. This is especially true
for elaborate methods such as coupled-cluster theory,8,9

multireference configuration interaction,10 and multireference
perturbation theory.11 Second-order Møller−Plesset perturba-
tion theory (MP2), as the cheapest wave function-based

correlation method, is often a good compromise between
computational cost and accuracy. On the other hand, density
functional theory (DFT) often already provides reliable
results12,13 that can be improved upon by using the
restricted-unrestricted approach14,15 or by combining with
perturbation theory in double-hybrid DFT (DH-DFT),16 which
was shown to improve the reliability.17 The latter includes a
term analogous to the unrestricted MP2 equations, which is the
focus in our present work. It has to be noted that although an
unrestricted formulation includes spin polarization and
delocalization, the resulting spin contamination introduces an
error that may lead to meaningless results in severe cases. This
is especially true for transition metal compounds.18,19

We recently introduced an efficient method for computing
HFCCs using MP2,20 where we exploit the locality of atomic
orbitals (AOs) and reduce the computational overhead by a
Cholesky decomposition of the required (pseudo)densities
(CDD)21,22 and by the resolution-of-the-identity (RI) approx-
imation.23−28 Significant two-electron integral contributions are
selected based on a QQR-type integral screening.29,30 This
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enables the computation of larger molecular systems than
previously accessible.
In this work, we push the limit of computable molecular

systems further. For this, we exploit the fact that the spin
density of large molecular systems is often highly localized,
especially for systems that are well described by single-reference
methods. Thus, only a small number of nuclei will have a
HFCC deviating considerably from zero. For systems with
localized spin densities, it can be sufficient to compute the
HFCCs of these selected nuclei by exploiting the locality of the
perturbation. In addition, this opens the route to study the
effect of solvation and the environment on the HFCCs, e.g., of
spin labels in the study of distances in large molecular
systems.31−34 Similarly, the effect of long-range spin polar-
ization on the HFCCs of specific nuclei can be computed.
Studies on the influence of the protein environment on
flavoprotein radicals35 and on plastocyanin36 have previously
been conducted using a hybrid quantum mechanical and
molecular mechanical (QM/MM) approach at the DFT-level.
The influence of the solvent on the hyperfine coupling has for
example been studied theoretically on methyl and ClO2
radicals.37

In order to enable such selected-nuclei studies, we need to
explicitly compute the response (pseudo)density matrix with
respect to the perturbation. When the perturbation is local, this
results in a sublinear scaling number of significant two-electron
integrals in an AO-based formulation using a perturbation-
including integral screening. The locality can be further
exploited in the transformation of the three-center quantities
in an RI-based algorithm when only the opposite-spin term in
MP2 is computed and an attenuated Coulomb-metric is
employed.38−40 So-called scaled opposite-spin (SOS) MP2
was introduced by Jung et al. for the computation of correlation
energies41 and was shown to provide accurate results in the
computation of the energy at reduced computational cost. To
our knowledge, SOS-MP2 has not been studied in the context
of HFCCs, whereas the promising results of SOS-MP2 for the
computation of NMR shieldings42 motivate the use of the SOS-
ansatz to compute HFCCs as well. We thus introduce a new
attenuated Coulomb-metric SOS-MP2 ansatz to compute the
HFCCs of selected nuclei and present their computation
employing an extended version of our adapted J-engine-based
ansatz43 on massively parallel architectures such as GPUs.
With our new methodoloy, we furthermore analyze the effect

of the environment on the HFCCs in a typical molecular
system, namely that of a glycyl radical enzyme, by increasing
the size of the protein environment surrounding the catalytic
site.

2. THEORY
At the nonrelativistic level, i.e., in the absence of spin−orbit
coupling, the HFCC can be computed as first derivative of the
energy with respect to the nuclear magnetic moment Mk of
nucleus k.44 This perturbation is separable into the isotropic
Fermi-contact term and the anisotropic spin-dipole interaction.
At the MP2-level, the unrestricted MP2 equation needs to be

perturbed. To achieve low scaling and to exploit the locality of
electron correlation, the use of either local molecular orbitals
(MOs) or AOs is beneficial. The latter requires a Laplace
transformation of the energy denominator, as introduced by
Almlöf and Has̈er.45−47 In a Laplace-transform AO-based
ansatz, computational overhead and the large dependency on
the basis set size can be reduced by the RI approximation23−28

and a Cholesky decomposition,21,22 resulting in an efficient
ansatz to compute the HFCCs of all nuclei.20 The MP2 energy
perturbed with respect to the nuclear magnetic moment Mk of
nucleus k using a generalized Laplace range20 reads as
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where τ is the number of Laplace expansion points ζ with
corresponding linear expansion coefficient wζ and the exponent
tζ. P and P are local pseudodensities (PDs)
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with the molecular orbital coefficients cμi
η and the orbital

energies εi
η. The R-matrices in eq 1 are defined as
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where η′ ≠ η.
Here, the two-electron integrals are transformed with local

Cholesky orbital matrices L and L, obtained by a Cholesky
decomposition of the PD matrices:
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The local Cholesky orbitals inherit the locality of the AOs,
while the number of occupied and virtual local Cholesky
orbitals is equal to or smaller than the size of the canonical MO
space.48 Thus, the dependency on the basis set size is reduced.
For an efficient implementation for all nuclei in the

molecular system, the contraction of the R-matrices with the
perturbed PDs in eq 1 is performed for all perturbations
simultaneously using the Z-vector method49−51 in a density
matrix-based Laplace-transform unrestricted coupled-perturbed
self-consistent field (DL-UCPSCF) algorithm.20,52

Furthermore, the prefactor in the scaling behavior is reduced
by the RI-approximation. The two-electron integral is hereby
described as a contraction of two three-center quantities:
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As shown in our previous work, an effectively quadratic scaling
computation of all nuclei can be achieved using this approach.20

The number of integrals needed for the computation, based on
a QQR-type integral screening,29,30 is linear. Due to the
auxiliary space of the RI approximation, this results in a
quadratic scaling behavior.
For our new ansatz, we aim to compute only the HFCCs of

selected nuclei while exploiting the locality of the perturbation.
Herefore, the contraction of the perturbed PD matrix with the
respective R-matrix is performed directly, resulting in the
following contribution per Laplace point ζ:
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and
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where the two-electron integrals are transformed with the
perturbed PDs as, e.g.

∑μ ζ μ̲ ̅ | ̲ ̅ = ̲ ′ ̅ | ̲ ̅ηη
μ

μμ
η

ηη′
′

′ ′a j b P a j b( ) ( )( )M M,k k

(10)

The perturbed PDs can be obtained as outlined in eqs 15 and
16 in ref 53. Provided that the perturbation is local, i.e., that the
perturbed PDs are local, the number of significant integrals in
both A and A is constant with increasing size of the molecule.
This can be exploited by a QQR-type integral estimation which
includes the perturbation in the screening procedure. Based on
the distance-including QQR-type integral estimates by Maurer
et al.,29,30 the perturbation-including estimate of the Coulomb-
type integral contraction in eq 8 reads as
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Here, Has̈er’s pseudo-Schwarz matrices are employed,47 with
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and the distance between the two charge distributions is
determined taking into consideration their extents (ext). The
centers and extents are computed as described in refs 20, 30,
and 48. The exponent in the denominator is based on a
multipole expansion and on the orthogonality of the virtual and
the occupied subspace of the unperturbed PDs.
In analogy, the Coulomb-type integral contraction in eq 9

leads to
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The additional summation over the auxiliary space in eq 6 will
result in an overall asymptotic linear scaling behavior of the
contraction. The formation and transformation of the three-
center quantities in eq 6 are only linear-scaling when only
integrals significant in the final contraction are computed. This
requires prior screening and bookkeeping of significant two-
electron integrals, which is computationally demanding and
memory intensive.
In the Coulomb-type contraction of the two-electron

integrals, this can be circumvented by the use of an attenuated
Coulomb-metric.38−40,54 The idea of scaling the Coulomb-type
opposite spin contribution and neglecting the same spin
contribution that includes both Coulomb- and exchange-type
contractions was shown to be an economical but still reliable
ansatz in the realm of correlation energies.41 This was similarly
shown to be beneficial in the computation of NMR shieldings42

which motivates the computation of SOS-MP2 HFCCs. Only
the opposite spin-terms are computed in SOS-MP2 approaches
and scaled accordingly with cos. In analogy we propose the
computation of erfc-attenuated Coulomb-metric SOS-MP2
HFCCs by
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Hereby, the attenuation of the Coulomb-metric is controlled by
ω, for which in work by Luenser et al.54 a value of 0.1 was
shown to lead to no loss in accuracy with respect to the full
Coulomb-metric while still providing the computational
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efficiency of the local overlap metric. We confirmed this
behavior for a small selection of test cases.
The Z-matrices in eq 14 are defined as
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where the overline or underline indicate the transformation
with the perturbed PD (virtual or occupied respectively) and
the subscript ω indicates the erfc-metric as in eq 16.
To reduce the computational effort in the formation of the

Z-matrices and to efficiently exploit the sparsity using the
block-compressed sparse row (BCSR) format,55,56 we follow
the ansatz by Maurer et al.43 and formulate the transformed
three-center quantities as
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with

ω μν̷ = |μν ωP( ) ( )P
(19)

We thus omit the Cholesky decomposition of the virtual PD
and exploit the sparsity of significant basis function pairs. The
occupied perturbed PD cannot be Cholesky decomposed as it
is skew-symmetric and not positive semidefinite by definition as
the PD matrices. The drastic locality of the perturbed PDs
renders the transformation of the three-center integral with the
perturbed PDs computationally efficient even without exploit-
ing their rank deficiency. This leads to the following Z-matrices:
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It has to be noted, that this formulation does not rely on a
screening of significant integral products but directly exploits
the sparsity via the BCSR format.55,56 This can also be extended
to the use on GPUs by employing the J-engine as outlined in
ref 43.
Furthermore, the presented MP2 approaches can straight-

forwardly be extended to DH-DFT:16 For this approach the
perturbative contribution according to Møller−Plesset to the
second order is constructed by unrestricted Kohn−Sham
orbitals instead of unrestriced Hartree−Fock orbitals. This
has been shown to be especially advantageous in the
computation of open-shell properties, as it is less susceptible
to spin contamination, as shown in work on bond dissociation
energies.57 Reliable HFCCs can be computed with the use of
analytical gradients of the DH-DFT energy.17,58

3. COMPUTATIONAL DETAILS

The algorithms to compute the HFCCs at the MP2-level using
the RI approximation and CDD are implemented in the
program package FermiONs++.59,60 The Laplace expansion
coefficients are selected based on the minimax-approximation.61

The extents of the QQR-type integral estimates are determined
with the same thresholds as in ref 30, i.e., the threshold of the
untransformed AO extent is 0.1 and the threshold of the
transformed extents is 10−3. The QQR-screening threshold was
set to 10−8, and seven Laplace expansion points were chosen,
based on the study of the accuracy in ref 20. The DL-UCPSCF
was converged to a threshold of 10−4 in the case of the linear
alkane systems and to 10−2 in the case of the PFL systems. A ω-
value of 0.1 was chosen for the attenuated Coulomb-metric
throughout. Deviations of less than 1 MHz can be expected
with these thresholds.20 The basis set def2-SVP and its
respective auxiliary basis set has been used throughout.28,62

The SOS-computations are scaled with cOS = 1.3, as suggested
for SOS-MP2 energy computations,41 except if stated
otherwise. Reference canonical RI-MP2 computations were
performed with the program package ORCA.63 Values that
could not be obtained with the canonical method or the all-
nuclei ansatz were extrapolated conservatively based on the
scaling behavior of the next smaller computable system.

4. RESULTS

4.1. Locality of the Perturbation. The idea of the present
ansatz to compute HFCCs of selected nuclei is based on the
locality of the perturbation, i.e, of the Fermi-Contact term and
of the anisotropic contribution. The locality of the Fermi-
Contact operator for nuclear spin−spin coupling at the DFT-
level has been shown by Luenser et al.64 Two quantities can be
analyzed to support this approach for open-shell systems at the
MP2-level: (i) the sparsity of the perturbed PD matrices and
(ii) the number of significant integrals in the computation of A
and A in eqs 8 and 9.
Figure 1 shows the PDs perturbed with respect to the Fermi-

Contact term and to the anisotropic spin-dipole interaction for
C100H201 obtained by DL-UCPSCF. In our case, C100H201 has
the radical center at the C1 position and the perturbed PD of α
spin with respect to this atom is shown. It clearly highlights the
locality for both the occupied and the virtual perturbed PD.
Figure 2 shows the number of significant integrals for the
computation of the isotropic HFCC at the MP2-level of the C1
atom in linear alkanes based on a perturbation-including QQR-
type integral estimation as in eqs 11 and 13. The (1) scaling
behavior of the integrals with the system size can clearly be
seen.

4.2. Selected-Nuclei HFCCs. To investigate the computa-
tional performance, we calculated the isotropic HFCCs at the
MP2-level of linear alkanes where the radical center was located
at the C1 position. Linear alkanes in general are well-suited to
demonstrate the asymptotic scaling behavior and additionally
show locality of the spin density which makes them an ideal test
case for a selected-nuclei approach.
The isotropic HFCCs of the linear alkane chains were

computed using the all-nuclei approach with the canonical
implementation in ORCA,63 our RI-CDD variant,20 and the
new selected-nuclei ansatz with the Coulomb-metric RI as in eq
7 on one central processing unit (CPU) node using 12 cores. A
perturbation-including QQR-type integral screening as in eqs
11 and 13 was performed in the contraction in eqs 8 and 9. To
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reduce the necessary bookkeeping we omitted the external
QQR-type integral screening to determine significant trans-
formed three-center quantities. Instead, a shell-pair-based
screening is used to compute only significant untransformed
three-center integrals, and then the sparsity and locality of the
PDs in the transformation procedure are exploited.

The wall times are shown in Figure 3 and clearly highlight a
reduction in the computational cost for large systems with

respect to the canonical implementation for both AO-based
approaches. Furthermore, the scaling behavior for the four
largest systems is obtained by a linear fit of the double-
logarithmic plot. It clearly shows a reduced scaling behavior for
the selected-nuclei approach. The overall nonquadratic scaling
behavior can be attributed to expensive I/O operations. Every
selected-nuclei computation was faster than the all-nuclei
ansatz. For C20H41 this amounts to a 10-fold decrease in wall
time. We show the MP2 contribution to the HFCC of C20H41
in Figure 4 for a detailed analysis. The total HFCCs and the
MP2 contribution decay fast with the distance to the C1
position. Only eight nuclei in total have a MP2 contribution
to the HFCC larger than 5 MHz, with the largest contribution
being from the selected C1 nucleus. Thus, if one is, for example,
only interested in HFCCs larger than 5 MHz, the resulting
computational cost using the selected-nuclei approach would
still be smaller than computing the HFCCs of all nuclei. The
speed-up will be even more significant for nuclei with small
MP2 contributions, as the smaller MP2 contributions also lead
to less significant integrals and thus a faster computation than
that of the C1 nucleus.
For an intermediate size of molecules larger than C20H41, the

computation of the selected-nuclei HFCCs is dominated by the
transformation of the three-center B-matrices so that the speed-
up does not increase. As we do not perform an external
screening, the fully transformed matrix Bia,P needs to be
computed irrespective of the perturbation. However, for larger
systems, the computational cost of the transformation in the
case of the all-nuclei approach is dominated by the formation of
the half-transformed Bμa,P, which is not necessary in the case of
the selected-nuclei ansatz. Thus, as can be seen in Figure 3, the
speed-up increases again for very large systems.

4.3. SOS-MP2 HFCCs. 4.3.1. Accuracy. SOS-MP2 is an
economical and often accurate variant to obtain the correlation
contributions and allows for the use of an attenuated Coulomb-
metric in RI-based methods. This can be exploited in the

Figure 1. Sparsity patterns for the perturbed occupied and virtual PDs
of α spin with respect to the Fermi-Contact term in (a) and (b) and to
the anisotropic spin-dipole interaction in (c) and (d) obtained from
DL-UCPSCF for C100H201. The absolute values of the different spatial
contributions to the anisotropic term are summed. The sparsity
patterns are taken from the first Laplace expansion point, and elements
smaller than 10−5 are discarded (white).

Figure 2. Number of significant integrals in the computation of A and
A in eqs 8 and 9 for linear alkanes with increasing chain lengths using a
perturbation-including QQR-type integral threshold of 10−8. Numbers
are shown for the first Laplace point.

Figure 3. Computational wall time for the calculation of isotropic
HFCCs using the all-nuclei RI- and RI-CDD MP2 ansatz and the
selected-nuclei RI-CDD MP2 method on a CPU node using 12 cores.
Values indicated by an asterisk were conservatively extrapolated. The
upper inset shows a double-logarithmic plot for the four largest
systems and a linear fit to obtain the scaling behavior at those system
sizes. The lower inset shows a detailed view of the crossover of the
canonical method to the all-nuclei computation.
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computation of the HFCCs of selected nuclei. Furthermore, a
migration to GPUs using the efficient modified J-engine
algorithm as presented in ref 43 can be achieved. Scaling the
opposite spin contribution with respect to more accurate
methods using extended basis sets, as was previously for
example performed for NMR shieldings,42 can lead to highly
accurate results. In our present work, we do not aim to correct
the error due to an incomplete basis set, nor the method error
by adjusting the scaling parameter with respect to accurate
reference results, as obtained, e.g., by coupled cluster theory.
Instead we aim to highlight that the assumption of neglecting
the same spin contribution and correspondingly weighting the
opposite spin terms is a useful approach in the case of HFCCs.
We computed the isotropic HFCCs for a variety of molecules

with both RI-MP2 and DH-DFT and compared the standard
unscaled RI-MP2/DH-DFT HFCCs to their SOS variant in
Table 1. Most of the correlation can be attributed to the
opposite spin (OS) contribution, thus the average deviation of
the SOS-computation is small. When the OS contribution is
scaled with cOS = 1.3, the value determined for the computation
of SOS-MP2 energies,41 these deviations decrease considerably.
Further, when comparing to spin component scaled (SCS) RI-
MP2/DH-DFT HFCCs, where both the opposite and the same
spin contributions are scaled,65 the values indicate that SOS-
MP2 HFCCs are a good approximate to SCS results, notably
better than unscaled RI-MP2/DH-DFT. The same spin
contributions are especially important when long-range effects
are considered, which is not the case for the local HFCCs.
Despite the fact, that the deviations are small, an element-

specific and basis set-dependent scaling factor might be

beneficial, as, e.g., in the case of NMR shieldings.42 Further
extensive benchmarks with respect to higher-level results and
the according adjustment of the scaling parameter cOS for
different elements might even render the SOS-HFCCs more
reliable than nonscaled results.

4.3.2. Computational Efficiency. We computed the SOS-
MP2-HFCCs of linear alkanes using our new approach with
and without the attenuated Coulomb-metric, indicated by ω,
both on CPUs and on GPUs. The GPU computations were
performed using the modified J-engine,43 whereas the Z-
matrices were obtained using BCSR-algebra in the case of the
CPU computations. For efficiency reasons, BCSR was only
used for ω-SOS-CDD computations and only for systems larger
than C60H121. In the GPU algorithm, only the contraction in eq
20 is performed on GPUs. The timings are shown in Figure 5.

As expected, the GPU computations outperform those on
CPUs for all systems. Only for even more extended systems will
the ω-SOS-CDD MP2 implementation on CPUs be more
efficient than their GPU variant. This is due to the formation
and the contraction of the Z-matrices, which asymptotically
scale sublinearly in the CPU code by the use of BCSR algebra.
In contrast, the highly efficient J-engine used in the GPU

Figure 4. Isotropic HFCCs at the HF- and the RI-MP2-level of the a)
carbon and the b) hydrogen atoms with increasing distance to the
radical center of C20H41.

Table 1. Average Deviation (Δ) of Isotropic SOS-MP2
HFCCs with cOS = 1.0 and cOS = 1.3 to RI-MP2/DH-DFT
HFCCs (PT2) and to SCS-RI-MP2/DH-DFT for NF2, CH3,
CHO, 3O2, and

3SO for Different Basis Setsa

RI-MP2
(def2-SVP)

RI-MP2
(cc-pVTZ)

B2-PLYP
(cc-pVTZ)

Δ(SOScOS = 1.0 − PT2) 23.6 MHz
(70%)

16.4 MHz
(64%)

6.0 MHz (62%)

Δ(SOScOS = 1.3 − PT2) 16.5 MHz
(77%)

11.6 MHz
(72%)

5.0 MHz (66%)

Δ(SCS − PT2) 11.0 MHz 7.7 MHz 3.3 MHz
Δ(SCS − SOScOS = 1.3) 5.5 MHz

(92%)
3.9 MHz
(91%)

1.7 MHz (89%)

aThe percentage of the recovery of the RI-MP2/DH-DFT and the
SCS-RI-MP2/DH-DFT result using the SOS-approximation is shown
in brackets.

Figure 5. Comparison of the computational wall time for the selected-
nuclei calculation of isotropic HFCCs of the C1 atom of linear alkanes
using the RI-CDD MP2 ansatz and the SOS-CDD approaches both on
CPUs and on GPUs with and without the attenuated Coulomb-metric
indicated by an ω. The scaling behavior for the four largest systems is
obtained by a linear fit of the double-logarithmic plot shown in the
inset.
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implementations does not rely on BCSR and scales cubically.
The linear fits of the double-logarithmic plot in Figure 5
confirm the reduced scaling behavior of the ω-CPU variant
with respect to the ω-GPU implementation. The reported
scaling behaviors are not (sub)linear, which is due to
computation of all three-center quantities without memory
intensive prior screening and bookkeeping and due to
expensive I/O-processes.
When comparing to the selected-nuclei RI-CDD ansatz, the

SOS-computations on CPUs perform less efficiently than the
computation of both the opposite and same spin contributions.
While at first this seems contradictory, the reason is that the RI-
CDD ansatz is based on the highly efficient perturbation-
including QQR-type integral screening, whereas our present
SOS-code only resorts to BCSR algebra. The latter is more
efficient for more extended systems, as can be seen for C200H401
in Figure 5.
4.4. Environment Effects on HFCCs. In order to

demonstrate the overall performance and applicability of our
new method, we investigated HFCCs of catalytic residues
found in pyruvate formate lyase (PFL). This glycyl radical
enzyme catalyzes the reversible transformation of pyruvate and
coenzyme-A into formate and acetyl-CoA involving three
residues:66,67 The Cys418 thiyl radical acylates the carbon atom
of the pyruvate carbonyl, the Cys419 thiyl radical administrates
hydrogen-atom transfers, and the Gly734 glycyl radical transfers
the radical to and from Cys418 using Cys419.
We analyze the effect of the protein environment on the

radical center in PFL based on the crystal structure68 (PDB
code 2PFL) by computing HFCCs of the radical centers taking
more and more surrounding residues of the protein into
account.
The crystal structure depicts the structure of the nonradical

form of PFL in its complex with the substrate analog oxamate
and the C418A/C419A double mutant. Gly734 and Cys419
positioned at the tips of opposing hairpin loops meet in the
apolar barrel center, whereas oxamate fits into a compact
pocket where C2 is juxtaposed with Cys418, which in turn is
close to Cys419.68 The model of the active site is suggestive of
a snapshot of the catalytic cycle when the pyruvate-carbonyl
awaits attack by the Cys418 thiyl radical proposed as a
homolytic radical mechanism for PFL that involves Cys418 and
Cys419 both as thiyl radicals with distinct chemical functions.
Starting from the X-ray crystal structure, force field MD

minimizations were performed with the NAMD 2.10 package69

and the AMBER 99SB force field.70 Parameters were taken
from GAFF71 and 99SB70 force fields. MD minimizations
employed the particle mesh Ewald method periodic boundary
conditions.72

Four different molecular clusters with different sizes
resembling increasing molecular environments for involved
catalytic residues were cut out of the minimized crystal
structure, using 2, 3, and 4 Å around catalytic residues. Cut
structures were then modified to resemble specific radical
species on respective catalytic residues by abstracting
corresponding hydrogen atoms and then optimized subse-
quently using the GFN-xTB73 method as doublets using soft
constraints on all hydrogen atoms. We name the systems
according to the residue from which we abstracted the
hydrogen atom, i.e., Cys418•, Cys419•, and Gly734•. The
systems are shown in Figure 6.
In order to confirm the locality of the electronic spin density

we analyze the Fermi contact term of all nuclei of the smallest

systems consisting of the three catalytic residues at the DH-
DFT level in Figure 7. It confirms the high localization at the
sulfur atoms in the case of the radical systems Cys418• and
Cys419•. In the case of Gly734•, a significant distribution
along the neighboring carbon, oxygen, and nitrogen atoms can
be seen.
In the following, we computed the HFCC of the atoms from

which we abstracted the neighboring hydrogen atom of the
three catalyic residues in their protein environment. We first
compare the HFCCs obtained by B3LYP to the HFCCs
obtained using B2-PLYP with both our selected-nuclei RI-CDD
approach on CPUs and the ω-SOS-CDD ansatz on GPUs for
the smallest system and the system with a 2 Å sphere in Table
2. The values highlight that the SOS approximation is valid in
this case, as the SOS results mirror the behavior of the unscaled
results and the deviations are small.
To further demonstrate the applicability of our new methods

for the study of the influence of the protein environment on
HFCCs, we computed the HFCCs of the radical centers with
ω-SOS-CDD taking more and more of the environment into
account. The results are shown in Figure 8 and clearly show a
convergence of the HFCCs with an increase in the size of the
protein environment. The radicals Cys418• and Cys419• only
show a small dependence on the environment of less than 2
MHz. Intriguingly, the small effect of the environment on
Cys419• is of opposite sign when correlation effects are taken
into account by DH-DFT than with B3LYP. Gly734•, however,
is highly dependent on the environment. Including residues
within 2 Å leads to a change in the HFCC of 143 MHz. This
can be explained by the fact that the smallest system consists of
no covalently attached neighboring residues. By including
neighboring residues, the electron spin density is localized more
on the radical center, in contrast to the result obtained for the
smallest system in Figure 7. Nonetheless, when further residues
are taken into account, the HFCC still changes by more than 5
MHz.
Using our ω-SOS-CDD the HFCCs of large systems could

be analyzed with a reduced computational effort. All three

Figure 6. Cys419• in its protein environment. The system in a)
consists of the three catalytic residues Cys418, Cys419, and Gly734
(32 atoms), the system in b) contains surrounding residues within 2 Å
(162 atoms), c) within 3 Å (325 atoms), and d) within 4 Å (411
atoms).
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radicals were computed including residues within 3 Å in less
than 80 h, the system with residues within 4 Å in less than 9
days. It has to be noted, that the systems with 2 Å spheres are

comparable in size with respect to the number of significant
shellpairs with C100H201, whereas the systems with 3 Å spheres
exceed the largest computed linear alkane system (C200H401) by
a factor of 1.6. The systems with 4 Å spheres have more than
twice the amount of significant shellpairs than C200H401.

5. CONCLUSION AND OUTLOOK
Based on our previous method to compute HFCCs at the
MP2-level using the RI-CDD approach,20 we have introduced a

Figure 7. Fermi contact term of the electronic spin density of all nuclei
of the three catalytic residues at the DH-DFT-level using B2-PLYP for
the radicals Cys418•, Cys419•, and Gly734•. The values are displayed
in 10−3 au as the HFCCs rely also on the nuclear magnetic moment
and are thus less appropriate to highlight the locality of the spin
density.

Table 2. Isotropic HFCCs of the Spin Centers of the Catalytic Center of Three Different Radical Systems (Cys418•, Cys419•,
Gly734•) with and without Surrounding Residues within 2 Åa

Cys418 [MHz] Cys419 [MHz] Gly734 [MHz]

1 2 3 1 2 3 1 2 3

catalytic center 35.0 45.1 43.9 37.5 45.6 44.3 81.3 92.8 97.7
2 Å sphere 36.8 45.4 44.2 36.5 45.9 44.4 211.1 234.7 240.7

aThe HFCCs were computed using the functional B3LYP (1), the new selected-nuclei RI-CDD B2-PLYP ansatz (2), and our new ω-SOS-CDD
algorithm on GPUs(3).

Figure 8. Dependence of the ω-SOS-CDD DH-DFT isotropic HFCC
in three radicals (Cys418•, Cys419•, and Gly734•) as a function of
the protein environment. Size convergence was studied by including
residues within a 2 Å (162 atoms), 3 Å (325 atoms), and 4 Å (411
atoms) distance around the catalytic residues. The inlay shows the
computational wall time of the Gly734 computations as a function of
the number of atoms in comparison to the respective timings with the
canonical method. Values indicated by an asterisk are extrapolated.
The SCF of the largest system of the radical Cys418 could not be
converged.
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methodology to compute the HFCCs of selected nuclei with
reduced computational effort for systems with a localized spin
density. For this, a sublinear number of two-electron integrals
are determined to be significant by the use of a perturbation-
including QQR-type integral screening. By only contracting
screened two-electron integrals, an overall low-scaling and low-
prefactor ansatz is obtained, leading to an up to 10-fold
decrease in the computational effort with respect to our
previous all-nuclei method.
Further, we introduce the computation of SOS-MP2 HFCCs

of selected nuclei, where also an asymptotically sublinear
scaling in the contraction can be achieved by BCSR algebra.55,56

The overall efficiency can be improved with an attenuated
Coulomb-metric,38−40,54 as the scaling behavior of the
transformation of the three-center integrals is reduced. The
SOS-MP2 formulation can also be migrated to GPUs, where a
modified J-engine as in ref 43 is employed. This results in a
total CPU time spent for the computation of the isotropic
HFCC of the terminal C atom in C200H401 on a node
containing 12 CPU cores and four Nvidia GeForce GTX Titan
GPUs of only 35 h. Similarly, the HFCC of a radical system in
its protein environment with more than 300 atoms was
computed in less than 80 h.
Our new approaches to efficiently compute the HFCCs of

selected nuclei can be used to compute, e.g., the effect of the
environment on molecular systems with a fully quantum
mechanical description of the environment (at the MP2-level)
as well as the computation of large molecular systems with high
spin localization. Further work could include long-range
solvation effects by, e.g., continuum solvation models. Our
first promising results motivate future studies on an optimal
scaling parameter in the SOS computation, in analogy to similar
studies performed for NMR-shieldings,42 with which even more
reliable results at this simplified level are expected.
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We present a benchmark study on the gauge-origin dependence of the electronic g-tensor using data
from unrestricted density functional theory calculations with the spin-orbit mean field ansatz. Our
data suggest in accordance with previous studies that g-tensor calculations employing a common
gauge-origin are sufficiently accurate for small molecules; however, for extended molecules, the
introduced errors can become relevant and significantly exceed the basis set error. Using calcula-
tions with the spin-orbit mean field ansatz and gauge-including atomic orbitals as a reference, we
furthermore show that the accuracy and reliability of common gauge-origin approaches in larger
molecules depends strongly on the locality of the spin density distribution. We propose a new prag-
matic ansatz for choosing the gauge-origin which takes the spin density distribution into account and
gives reasonably accurate values for molecules with a single localized spin center. For more general
cases like molecules with several spatially distant spin centers, common gauge-origin approaches
are shown to be insufficient for consistently achieving high accuracy. Therefore the computation of
g-tensors using distributed gauge-origin methods like gauge-including atomic orbitals is considered
as the ideal approach and is recommended for larger molecular systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5028454

I. INTRODUCTION

A central issue in the calculation of magnetic molecu-
lar properties is the gauge-origin dependence. Unless gauge-
origin independence is enforced by appropriate methods, com-
puted values can depend on the positioning of the molecule
within the chosen coordinate system.1 This unphysical effect
is only present in calculations with a finite basis set and van-
ishes in the complete basis set limit. Well-established methods
exist that use distributed gauge-origins and assure gauge-
origin independent results. The most commonly used approach
employs gauge-including atomic orbitals (GIAOs, also called
“London atomic orbitals”).2–4 Alternatively, the “individual
gauge for localized orbitals” (IGLO)6,7 or the “localized
orbital/local origin” (LORG)8 approaches have been used in
methods employing localized molecular orbitals.5

Gauge-origin dependence is also a problem in g-tensor
calculations; however, in several studies on the electronic g-
tensor, it was found to be smaller than for other magnetic
properties.9–13 Still, some evidence of a non-negligible influ-
ence of the gauge in g-tensor calculations can be found in
the literature: Lushington et al.13 analyzed the gauge-origin
dependence using Hartree-Fock and reported that for some
of the studied molecules g-shifts changed considerably upon
translation of the molecule by 1.73 bohrs in a Sadlej basis
set14 (30% change for ∆gxx of CO−2 ; 34% change for ∆gxx of
C3H5). Kaupp et al.15 observed a rather small dependence
of the g-shifts on the chosen gauge-origin in calculations
on various phenoxyl radicals, but a pronounced gauge-origin

a)Electronic mail: christian.ochsenfeld@uni-muenchen.de

dependence of the g-tensor orientation. Patchkovskii et al.16

found a pronounced gauge-origin dependence of the (in most
cases relatively small) spin-other-orbit contribution to the g-
tensor. van Lenthe et al.12 studied the gauge-origin dependence
of their relativistic ansatz for g-tensor calculations based on
the zeroth-order regular approximation method and observed
for NO2 with triple-ζ Slater type orbital basis set changes of
around 20% upon translation of the molecule by 10 Å in the x-,
y-, and z-direction. Lushington and Grein17 reported a relative
change of 18% in the g-shifts in multi-reference configuration
interaction calculations for MgF with two choices of the gauge-
origin [on the Mg atom or in the electronic charge centroid
(ECC)18].

Despite these examples which show that the gauge-
origin dependence can have a non-negligible effect on the
g-shifts, many studies on electronic g-tensors employ a com-
mon gauge-origin.10,11,19–35 This can also be explained by the
fact that most previous studies focused on g-tensors of small
molecules.17,28,30,33,34,36,37 By contrast, for g-tensors of large
molecules, the gauge-origin dependence of the obtained values
can be expected to be much more severe. This is because the
errors associated with the gauge-origin dependence increase
with distance from the gauge-origin;1 in extended molecules
always some parts of the molecule are relatively far apart
from the origin — no matter how the molecule is positioned.
As several recent studies presented g-tensor calculations on
larger molecules,38–45 a careful evaluation of the influence of
the gauge-origin dependence in larger systems appears to be
necessary.

To this end we carried out the, to our knowledge,
most extensive study on the gauge-origin dependence of the
electronic g-tensor to date. In particular, we also discuss the

0021-9606/2018/148(21)/214101/11/$30.00 148, 214101-1 Published by AIP Publishing.



214101-2 Glasbrenner, Vogler, and Ochsenfeld J. Chem. Phys. 148, 214101 (2018)

accuracy and reliability of common gauge-origin approaches
for larger molecules and highlight the role played by the
spin density distribution. Our method of choice is unrestricted
density functional theory (DFT) because it provides a reason-
able compromise between accuracy and computational effi-
ciency. We use B3LYP46 as a functional, which has shown
a good agreement with coupled-cluster singles and doubles
(CCSD) calculations on g-tensors in a recent study by Perera
et al.47 Further details on our employed ansatz are provided in
Sec. II.

II. THEORY

The components of the electronic g-tensor can be com-
puted in analytical derivative theory by taking a second deriva-
tive of the energy E with respect to the magnetic field ~B and
the electronic spin~s

gpq =
2
α

∂2E
∂Bp∂sq

����B=0,s=0
, p, q ∈ {x, y, z}, (1)

where α denotes the fine structure constant.48 Throughout
this paper, only the three g-shifts or their isotropic average
are shown; the g-shifts are the deviations of the singular val-
ues of the g-tensor from the g-value of the free electron gel.
The contributions to the g-tensor include the relativistic mass
correction grmc, the diamagnetic one- and two-electron terms
(gdso1 and gdso2), and the paramagnetic one- and two-electron
terms (gpso1 and gpso2)48

gpq = δpqgel + grmc
pq + gdso1

pq + gdso2
pq + gpso1

pq + gpso2
pq . (2)

In the following, we summarize how these contributions are
computed in our implementation. We initially show the equa-
tions for a basis of regular atomic orbitals (AOs) and then
describe the necessary modifications for a basis of GIAOs.

grmc is readily computed from the kinetic energy integrals
Tµν and the spin density Pα−β

µν

grmc
pq = −

α2gel

2S
δpq

∑

µν

Pα−β
µν Tµν . (3)

S is the total spin of the electronic state (e.g., 1
2 for doublet

states and 2
2 for triplet states). The diamagnetic one-electron

contribution is given by the following expression:

gdso1
pq =

α2g′

8S

∑

A

ZA

∑

µν

Pα−β
µν


∫

χµ(~r)
δpq(~r − ~RA) · (~r − ~R0)

|~r − ~RA |3
χν(~r)dr3

−
∫

χµ(~r)
(~r − ~RA)p(~r − ~R0)q

|~r − ~RA |3
χν(~r)dr3

 , (4)

where ZA and ~RA are the charge and position of nucleus A,
respectively, and g′ is the electronic spin-orbit g-factor.49 ~R0

is the chosen gauge-origin. The diamagnetic two-electron con-
tribution is usually rather small; we only indirectly account for
it by replacing the nuclear charges ZA in Eq. (4) by effective

nuclear charges Z̃A as determined by Koseki et al.37 In this
way, we obtain for the diamagnetic contributions

gdso1
pq + gdso2

pq ≈ α2g′

8S

∑

A

Z̃A

∑

µν

Pα−β
µν


∫

χµ(~r)
δpq(~r − ~RA) · (~r − ~R0)

|~r − ~RA |3
χν(~r)dr3

−
∫

χµ(~r)
(~r − ~RA)p(~r − ~R0)q

|~r − ~RA |3
χν(~r)dr3

 . (5)

For the paramagnetic terms, we employ the spin-orbit mean
field (SOMF) operator.50(a),50(b) It treats the two-electron spin-
orbit coupling in a mean field way and has been shown to be a
highly accurate approximation to the exact spin-orbit oper-
ators.50(a) The SOMF operator ẑ has a similar structure to
the Fock operator and contains one-electron, Coulomb, and
exchange contributions

zq
µν = hSOMF

µν,q + JSOMF
µν,q + KSOMF

µν,q , q ∈ {x, y, z}, (6)

hSOMF
µν,q =

α2g′

4

∑

A

ZA

∫
χµ(~r)

[
(~r − ~RA) × p̂

]
q

|~r − ~RA |3
χν(~r)dr3,

(7)

JSOMF
µν,q = −α

2g′

4

∑

λσ

Pλσgsoc, q
µνλσ , (8)

KSOMF
µν,q =

3
8
α2g′

∑

λσ

(
Pλσgsoc, q

µλσν + Pλσgsoc, q
σνµλ

)
, (9)

gsoc, q
µνλσ =

∫
χµ(~r)

[
(~r −~r ′) × p̂

]
q

|~r −~r ′ |3 χν(~r)χλ(~r ′)χσ(~r ′)dr3dr ′3.

(10)

Finally, we further apply the 1X-approximation, which only
introduces minor errors, to the SOMF operator as suggested
by Neese.50(a) The SOMF-1X operator is obtained from the
full SOMF-operator by neglecting all multi-center integrals in
Eq. (9).

With the SOMF operator, the paramagnetic contribution
to the g-tensor can be obtained as follows:

gpso1
pq + gpso2

pq ≈ 1
αS

∑

µν

∂Pα−β
µν

∂Bp

������s=0

zq
µν . (11)

The magnetic field derivative of the spin density is obtained
from the difference of the perturbed α and β densities

∂Pα−β
µν

∂Bp

������s=0

=
∂Pα

µν

∂Bp

�����s=0

− ∂Pβ
µν

∂Bp

������s=0

, (12)

which in turn can be computed by unrestricted coupled-
perturbed self-consistent field (CPSCF) as described, e.g., in
Ref. 51.

In addition to the gauge-origin dependent theory in a regu-
lar AO basis described so far, we also implemented the SOMF
ansatz in combination with GIAOs, which are obtained from a
product of a regular AO basis function χµ(~r) and a magnetic
field dependent phase factor4

φµ(~r) = exp
[
−i
α

2
(~B × (~Rµ − ~R0)) ·~r

]
χµ(~r). (13)
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GIAOs have previously been used in several methods for
g-tensor computations such as the coupled-cluster approach
from Gauss et al.69 and the DFT ansatz from Schreckenbach
and Ziegler.48 If GIAOs are employed the expression for the
diagmagnetic contributions changes as follows:

gdso1
pq + gdso2

pq ≈ α2g′

8S

∑

A

Z̃A

∑

µν

Pα−β
µν


∫

χµ(~r)
δpq(~r − ~RA) · (~r − ~Rν)

|~r − ~RA |3
χν(~r)dr3

−
∫

χµ(~r)
(~r − ~RA)p(~r − ~Rν)q

|~r − ~RA |3
χν(~r)dr3

 .

(14)

In a GIAO basis, the magnetic field derivatives of the inte-
grals contributing to the Fock matrix and of the exchange-
correlation potential need to be included in the CPSCF equa-
tions as described in Ref. 52 for restricted CPSCF. The use of
GIAOs also leads to an additional paramagnetic contribution
from the B-field derivative of the SOMF matrix

gpso1
pq + gpso2

pq ≈ 1
αS

∑

µν


∂Pα−β

µν

∂Bp

������s=0

zq
µν +Pα−β

µν
*,
∂zq

µν

∂Bp

+-
 , (15)

∂zq
µν

∂Bp
= −α

2

(
~Rµ × ~Rν

)
p
zq
µν −

α

2

[(
~Rµ − ~Rν

)
× zq

µν+

]
p
. (16)

Here, ~Rµ and ~Rν are the positions of the atomic centers of χµ
and χν , respectively. The index ν+ indicates the basis func-
tion χν , whose angular momentum has been incremented in
either x-, y-, or z-direction as necessitated by the cross prod-
uct. Note that the basis functions χλ and χσ in Eqs. (8)–(10)
are not substituted by GIAOs because the SOMF operator
enters the Hamiltonian as a one-electron operator. Consider-
able simplification occurs if the 1X-approximation is invoked;
in this case, no exchange terms need to be computed dur-
ing the evaluation of Eq. (16) because both ~Rµ × ~Rν and
~Rµ − ~Rν vanish if all basis functions are centered on the same
atom.

III. COMPUTATIONAL DETAILS

The theory described in Sec. II was implemented both
for a basis of GIAOs and a basis of regular AOs in a devel-
opment version of the FermiONs++ program.53,54 The ref-
erence state is obtained via unrestricted Kohn-Sham DFT
and the SCF energy converged to a threshold of 10−8 a.u.
Direct inversion of the iterative subspace (DIIS)55 is employed
for updating the perturbed density during the CPSCF. The
perturbed densities were converged below 10−7. Shell pairs
with a maximum basis function overlap of less than 10−12

were omitted from the calculation. The molecular integration
grid used for DFT was generated as a product of a spherical
Lebedev/Laikov56 grid with 590 angular points and a Treutler-
Ahlrichs “M4” grid57 with 99 radial points. We employ basis
sets from the def2-series58 (def2-SVP, def2-TZVP, and def2-
QZVPPD59); these basis sets are well-suited for DFT calcula-
tions and have also been used in several recent DFT studies on
g-tensors.38,40–44

The structures of the small molecules used in Secs. IV A
and IV B were taken from two sources: a set of molecules
from Schreckenbach and Ziegler used for benchmarking their
g-tensor ansatz48 and a set of small main group radicals
from Ref. 60 with structures optimized by unrestricted CCSD
with perturbative triples [UCCSD(T)]. The used test set con-
tains 45 molecules, including different spin states (doublets
and triplets) as well as molecular charges (anions, cations,
and neutral species). The geometries of the molecules used
for Secs. IV C and IV D were optimized with the HF-3c
method61 using the ORCA program.62,63 All computed g-
shifts are shown in the supplementary material. The employed
geometries are available for download at http://www.cup.uni-
muenchen.de/pc/ochsenfeld/download/.

IV. RESULTS AND DISCUSSION
A. Significance of the gauge-origin dependence
in g-tensor calculations

In this section, we present calculations on a test set of
45 main group radicals for the purpose of benchmarking the
gauge-origin dependence of the electronic g-tensor at the DFT
level of theory. We quantify the gauge-origin dependence in
our calculations by performing two calculations per molecule
with different positioning of the molecule relative to the gauge-
origin: in one of these calculations the gauge-origin is posi-
tioned in the center of mass of the molecule; in the second
calculation the molecule is translated away from the gauge-
origin by 10.0 Å in the x-, y-, and z-direction. The difference
in the g-shifts in these calculations is in the following denoted
as ∆gauge. In order to assess the relevance of the observed
gauge-origin dependence and its practical implications, we try
to compare the gauge error to the basis set error. Both of these
errors represent different aspects of the basis set incomplete-
ness and vanish for a complete basis set. Our estimate for basis
set error (which we denote as ∆basis) is obtained from the dif-
ference to the g-shifts computed in a def2-QZVPPD basis set,
which we assume to be close to the complete basis set limit
(in both calculations the gauge-origin is at the center of mass).
Based on the comparison between gauge error and basis set
error, we then discuss to what extent the use of distributed
gauge-origin methods like GIAOs can improve the accuracy
of g-tensor calculations in a given basis.

Although our main interest focuses on the gauge errors
that can occur in medium-sized and larger molecules, we
exclusively employ small molecules (less than eight atoms)
in the calculations of this section. We avoid larger molecules
as the calculations with the def2-QZVPPD basis set would be
computationally very demanding. However, as we will show
in Secs. IV C and IV D in calculations on extended molecules,
the contributions to the molecular g-tensor are often local
and originate from small parts of the molecule. We there-
fore think that ∆gauge provides a good estimate of the errors
that can be expected when contributions to the g-tensor from
a group of atoms inside a large molecule are computed—
assuming that this group of atoms does not happen to be
spatially close to the gauge-origin. The employed translation
distance of 17.3 Å (10.0 Å in each spatial direction) is not
unreasonably large for this purpose as the numerous studies
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FIG. 1. Comparison of the influence of the basis set and gauge-origin on g-
shifts in our test set. ∆basis is the absolute deviation of the value computed
with the def2-SVP basis set from the def2-QZVPPD result obtained with the
same nuclear coordinates. ∆gauge is the absolute change in the individual g-
shifts upon a translation of the molecule by 10.0 Å in the x-, y-, and z-direction
(using def2-SVP as a basis set in both calculations).

using EPR spectroscopy on biological macromolecules includ-
ing, e.g., spin-labeled proteins,64,65 lipids,66 or nucleic acid
polymers,67 show. For such molecules, inter-atomic distances
can easily exceed 17.3 Å. Nevertheless, we will also discuss
the implications of our findings for calculations on smaller
molecules.

In Figs. 1–4, we present how large ∆gauge and ∆basis are
in absolute and relative terms for the molecules in our test set;
for this purpose, we sorted the computed deviations into cate-
gories in order to show how these errors vary among the test
set. The calculation with the same basis set and with the gauge-
origin in the center of mass is taken as a reference value for
the relative deviations due to gauge-origin dependence. The
relative deviations due to ∆basis are computed relative to the
def2-QZVPPD values (also with the center of mass as gauge-
origin). Statistical values on the calculations are presented in

FIG. 2. Comparison of the influence of the basis set and gauge-origin on g-
shifts in our test set. ∆basis is the absolute deviation of the value computed
with the def2-TZVP basis set from the def2-QZVPPD result obtained with the
same nuclear coordinates. ∆gauge is the absolute change in the individual g-
shifts upon a translation of the molecule by 10.0 Å in the x-, y-, and z-direction
(using def2-TZVP as a basis set in both calculations).

FIG. 3. Comparison of the influence of the basis set and gauge-origin on
g-shifts in our test set. ∆basis is the unsigned relative deviation of the value
computed with the def2-SVP basis set from the def2-QZVPPD result obtained
with the same nuclear coordinates. ∆gauge is the unsigned relative change in
the individual g-shifts upon a translation of the molecule by 10.0 Å in the x-,
y-, and z-direction (using def2-SVP as a basis set in both calculations).

Table I. As g-shifts can vary over several orders of magni-
tude for different molecules, it is worth mentioning that the
average isotropic g-shift of our test set amounts to 3495 ppm
(def2-QZVPPD basis).

For the def2-SVP basis set and the employed transla-
tion distance of 17.3 Å, the average value of ∆gauge exceeds
the average of ∆basis significantly—both for individual g-
shifts (2318 ppm compared to 693 ppm) and for isotropic
g-shifts (1967 compared to 642 ppm). In general, we observe
that for molecules whose three g-shifts have significantly dif-
ferent magnitudes, the smallest shifts of these g-shifts show
the highest sensitivity to the gauge. This effect explains why
the mean relative deviations in the individual g-shifts due to
∆gauge (346.3% for def2-SVP; 95.9% for def2-TZVP) are
much higher than the mean relative deviations in the isotropic
g-shifts (79.3% for def2-SVP; 25.5% for def2-TZVP). These

FIG. 4. Comparison of the influence of the basis set and gauge-origin on g-
shifts in our test set.∆basis is the unsigned relative deviation of the value com-
puted with the def2-TZVP basis set from the def2-QZVPPD result obtained
with the same nuclear coordinates. ∆gauge is the unsigned relative change in
the individual g-shifts upon a translation of the molecule by 10.0 Å in the x-,
y-, and z-direction (using def2-TZVP as a basis set in both calculations).
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TABLE I. Mean and standard deviations (s.d.) from the calculations on our test set with either def2-SVP or
def2-TZVP basis set. ∆basis is the deviation of the computed value from the def2-QZVPPD result obtained with
the same nuclear coordinates. ∆gauge is the change in the individual g-shifts upon a translation of the molecule
by 10.0 Å in the x-, y-, and z-direction (using the same basis set in both calculations). Shown are either statistics
on the individual g-shifts (“all”), the isotropic g-shifts (“iso”), or the isotropic g-shifts between 500 and 5000 ppm
[“iso (500–5000 ppm)”].

def2-SVP def2-TZVP

Shifts Absolute (ppm) Relative (%) Absolute (ppm) Relative (%)

All ∆gauge (mean) 2318 346.3 1193 95.9
∆basis (mean) 693 15.5 175 7.3
∆gauge (s.d.) 5245 1690.4 3041 463.8
∆basis (s.d.) 1564 23.5 368 15.9

Iso ∆gauge (mean) 1967 79.3 1041 25.5
∆basis (mean) 642 14.1 156 6.3
∆gauge (s.d.) 3580 121.1 2228 36.7
∆basis (s.d.) 990 14.5 253 10.8

Iso (500–5000 ppm) ∆gauge (mean) 1290 102.9 387 21.2
∆basis (mean) 274 13.1 102 4.4
∆gauge (s.d.) 1041 152.1 302 17.1
∆basis (s.d.) 477 17.1 263 7.2

large relative deviations can also be seen from Figs. 3
and 4.
∆basis is reduced by roughly a factor of four upon chang-

ing from a def2-SVP basis to a def2-TZVP basis (693 ppm
compared to 175 ppm); ∆gauge is on average only reduced by
roughly a factor of two (2318 ppm compared to 1193 ppm). If
only isotropic g-shifts between 500 and 5000 ppm are included
in the statistics, ∆gauge is diminished to a somewhat larger
extent upon changing from a def2-SVP to a def2-TZVP basis
set (reduction from 1290 ppm to 387 ppm) than∆basis (reduc-
tion from 274 ppm to 102 ppm). Thus the gauge-error is
of similar magnitude relative to the basis set error both for
the def2-SVP and the def2-TZVP basis sets, even though its
absolute size decreases by about 50% for the larger basis
set.

The shown data imply that the “total basis set incomplete-
ness error” (including the gauge error and the regular basis set
error) in contributions to the g-tensor from a group of atoms
displaced 17.3 Å from the gauge-origin can be reduced con-
siderably if distributed gauge-origin methods are employed as
the gauge error exceeds the standard basis set error signifi-
cantly (for def2-TZVP/individual g-shifts by a factor of 6.8).
Thus, the use of distributed gauge-origin approaches would
be beneficial in situations where the gauge-origin cannot be
positioned closer to sites of the molecule with significant
contributions to the g-tensor — especially considering that
distributed gauge-origin approaches increase the computa-
tional cost to a much smaller extent than an increase of the
basis set.

In general, the components of the g-tensor depend lin-
early on the displacement from the gauge-origin.13 The same
linear dependence also holds for the closely related NMR
shielding tensors.68 This does not imply a strictly linear depen-
dence of the individual g-shifts; only the isotropic g-shift
changes in a linear fashion with increasing distance from the

gauge-origin. Therefore one can extrapolate how large the
gauge-error in the isotropic g-shifts would be on average for
smaller or larger displacements than the employed 17.3 Å.
For def2-SVP, the gauge error in the isotropic g-shift amounts
to 113.7 ppm/Å on average; for def2-TZVP, it amounts to
60.2 ppm/Å. For a distance of 1.0 Å to the gauge-origin,
the gauge-error is clearly below ∆basis suggesting that dis-
tributed gauge-origin methods would not significantly improve
the accuracy in g-tensor calculations on very small molecules.
On average, the gauge error in the isotropic g-shifts exceeds
∆basis for displacements larger than 5.6 Å (def2-SVP) and
2.6 Å (def2-TZVP). If only values between 500 and 5000 ppm
are included, ∆gauge is on average larger than ∆basis for dis-
placements above 3.7 Å (def2-SVP) and 4.6 Å (def2-TZVP).
These results imply that the usage of distributed gauge-origin
methods can improve the accuracy considerably for extended
molecules.

We also found rather large variations of the gauge-origin
dependence among the molecules in our test set. In Table II,
data from several molecules are shown, whose g-shifts dis-
play a quite pronounced dependence on the gauge. For all
these molecules, the gauge error after displacement signifi-
cantly exceeds the changes that are caused by an enlargement
of the basis set. With the def2-SVP basis set, the isotropic
g-shifts of the molecules in Table II deviate on average
934 ppm from the def2-QZVPPD numbers; after displace-
ment this deviation grows to 6374 ppm. For the def2-TZVP
basis, the deviations relative to the def2-QZVPPD values are
increased by more than one order of magnitude by the trans-
lation away from the gauge-origin (from 155 ppm to 2197
ppm). The gauge error in the calculations exceeds ∆basis on
average for more than 2.5 Å (def2-SVP) and 1.2 Å (def2-
TZVP) distance to the gauge-origin. This shows even more
impressively than the statistics on the entire test set how large
influences of the gauge in g-tensor calculations can be. It
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TABLE II. Examples of molecules in our test set with strong gauge-origin
dependence. The column “transl.” indicates whether the molecule was posi-
tioned close to the origin or translated away from it by 10.0 Å in the x-, y- and
z- direction.

Molecule Basis Transl. ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm)

ClO3 def2-SVP No 10 056 10 056 847
def2-SVP Yes 16 099 15 221 �25
def2-TZVP No 7 581 7 581 1058
def2-TZVP Yes 10 185 9 892 766
def2-QZVPPD No 7 316 7 316 1105

GeH3 def2-SVP No 14 613 14 613 �211
def2-SVP Yes 55 387 46 245 �9106
def2-TZVP No 16 196 16 196 �61
def2-TZVP Yes 29 764 27 576 �2217
def2-QZVPPD No 16 762 16 762 �107

MgF def2-SVP No �5 �1 905 �1905
def2-SVP Yes 877 �5 169 �6048
def2-TZVP No �3 �1 705 �1705
def2-TZVP Yes 119 �2 504 �2625
def2-QZVPPD No �3 �1 742 �1742

SO−3 def2-SVP No 4 379 4 379 73
def2-SVP Yes 8 564 7 852 �636
def2-TZVP No 2 761 2 761 366
def2-TZVP Yes 4 709 4 399 57
def2-QZVPPD No 2 534 2 534 169

SiH3 def2-SVP No 2 062 2 062 �89
def2-SVP Yes 7 360 6 205 �1239
def2-TZVP No 2 266 2 266 �78
def2-TZVP Yes 2 619 2 599 �99
def2-QZVPPD No 2 285 2 285 �78

strongly suggests that the gauge-origin dependence cannot be
ignored for larger molecules because the introduced errors
might render the computed values meaningless. Distributed
gauge-origin methods offer one elegant way to completely
remove the gauge error at moderately increased computational
cost and should be employed for larger molecules if possible.
In Secs. IV C and IV D, we will present calculations on larger
molecules and analyze the gauge-origin dependence in these
systems.

B. Influence of GIAOs on the basis set convergence

Most importantly, GIAOs ensure gauge-origin indepen-
dent results in magnetic property calculations. Apart from
that, the use of GIAOs also has the desirable advantage of
an accelerated basis set convergence. In this section, we ana-
lyze to what extent the GIAOs accelerate basis set convergence
in g-tensor computations at the DFT level. We present some
example data from our test set (Table III) and statistical val-
ues (Table IV). For the def2-SVP basis set, the use of GIAOs
reduces the absolute deviation to the def2-QZVPPD result
from 693 ppm to 645 ppm on average while the relative devia-
tion decreases from 15.5% to 14.6%. For the def2-TZVP basis,
mean absolute deviations of 196 ppm and 175 ppm absolute
deviation with and without GIAOs are observed; the mean rela-
tive deviations amount to 6.5% and 7.3%. It shows that GIAOs
accelerate the basis set convergence in g-tensor calculations at

TABLE III. Illustrative examples of the basis set convergence in some of the
molecules in our test set. “+ giao” indicates the use of a GIAO basis; in all
other cases, a regular AO basis set was employed and the gauge-origin was
positioned in the center of mass.

Molecule Basis ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm)

BS def2-SVP �83 �8594 �8594
def2-SVP + giao �83 �8358 �8358
def2-TZVP �84 �9338 �9338
def2-TZVP + giao �84 �9322 �9322
def2-QZVPPD �84 �9099 �9099

CO+ def2-SVP �136 �2336 �2336
def2-SVP + giao �136 �2255 �2255
def2-TZVP �135 �2534 �2534
def2-TZVP + giao �135 �2514 �2514
def2-QZVPPD �134 �2535 �2535

NH+
3 def2-SVP 1449 1449 �162

def2-SVP + giao 1475 1475 �156
def2-TZVP 1595 1595 �158
def2-TZVP + giao 1600 1600 �153
def2-QZVPPD 1657 1657 �156

the DFT level only to a very small extent. This result agrees
with the findings from Gauss et al., who reported only marginal
acceleration of the basis set convergence by GIAOs in their
CCSD approach.69

In Secs. IV C and IV D, we will present calculations with
different choices of a common gauge-origin and compare them
to calculations with GIAOs. Based on the findings of this sec-
tion, this comparison is suitable for estimating the gauge error
in the calculations without GIAOs, as GIAOs ensure gauge-
origin independence but only have a small impact on the basis
set convergence.

C. Gauge-origin dependence in molecules
with a single localized spin center

As the calculations on small molecules shown in Sec. IV A
suggest, errors due to gauge-origin dependence can signifi-
cantly deteriorate the achievable accuracy in g-tensor calcula-
tions on larger molecules. In the current section and Sec. IV D,
we present calculations on medium-sized molecules. In order
to assess the influence of the gauge-origin dependence, we
compare the g-shifts computed with our SOMF-GIAO ansatz
to g-shifts obtained with different choices of a common

TABLE IV. Deviations of the def2-SVP or def2-TZVP data from the def2-
QZVPPD reference values for our test set. Mean absolute deviation (MAD),
absolute standard deviation (ASD), mean relative deviation (MRD), and rela-
tive standard deviation (RSD) are given. The calculations were carried out in
a regular AO basis (“AO”) or in a GIAO basis (“GIAO”).

def2-SVP def2-TZVP

AO GIAO AO GIAO

MAD (ppm) 693 645 175 196
ASD (ppm) 1564 1523 368 437
MRD (%) 15.5 14.6 7.3 6.5
RSD (%) 23.5 17.0 15.9 9.4
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gauge-origin. One of them is the electronic charge centroid
(ECC) which is the most commonly employed gauge-origin
in the literature on g-tensors.10,11,22–35 Other choices for the
gauge-origin that have been employed in the literature are the
charge center of the nuclei20 or the center of mass.21

All of the mentioned choices lead to a gauge-origin that
is quite centrally located within the molecule. However, we
claim that such gauge-origins are in general not optimal as
they do not take into account the local nature of the g-tensor.
As one can see from Eqs. (3)–(16), the g-tensor is determined
by the distribution of the ground state spin density and the first
order response of the spin density to the applied magnetic field
perturbation. In many larger open-shell molecules, the spin
density is highly local. The perturbed spin density [Eq. (12)]
is exactly zero for a closed-shell reference state as all spin-
dependent operators in the Hamiltonian are set to zero for
~s = ~0, and α and β electrons are therefore affected in the same
way by the magnetic field perturbation. In large molecules
with an electronic structure that only locally displays open-
shell character, one can accordingly expect the perturbed spin
density to be a local quantity as well. We also observed this
in our calculations; in Fig. 5, plots of the ground state and
perturbed spin densities in the ·O−−[CH2]18−−CH3 radical are
presented, which show their similar distribution and locality.

Given a spin density and perturbed spin densities that are
all well localized within one small part of the molecule, it is
clear that significant contributions to the g-tensor only arise
from this spatial region. In order to accurately compute these
contributions, a common gauge-origin should be positioned

FIG. 5. Absolute values of the entries in the spin density matrix and the
perturbed spin density matrices for the calculation of the ·O−−[CH2]18−−CH3
molecule (def2-SVP basis set). Only matrix elements above a threshold of
10−5 are shown. The basis functions centered on the oxygen atom are located
in the upper left corner.

within the region with significant spin density and perturbed
spin densities. In analogy to the ECC whose position rECC can
be computed using the following equation:18

rECC,p =
1

nel

∑

µν

Pµν

〈
µ

���r̂p
���ν〉, p ∈ {x, y, z}, (17)

where nel is the number of electrons, we therefore propose the
use of the spin density center (SDC). The equation used for
computing the position of the SDC is given by

rSDC,p =
1

Tr
( |Pα−β |S)

∑

µν

|Pα−β
µν |

〈
µ

���r̂p
���ν〉, p ∈ {x, y, z}.

(18)
The density matrix P in Eq. (17) is substituted by the absolute
values of the spin density matrix Pα−β . The trace of the matrix
product of |Pα−β | with the overlap matrix S ensures the cor-
rect normalization. In the following, we compare the g-shifts
obtained with GIAOs to the g-shifts obtained with both the
ECC and the SDC as common gauge-origins.

In Fig. 6, computed isotropic g-shifts of alkane radicals
with increasing chain length are shown. The radical center is at
the end of the alkane chain. Both the isotropic g-shift obtained
with GIAOs and with the SDC as common gauge-origin
quickly converge with chain length; contrarily, the isotropic
g-shifts computed with the ECC as gauge-origin show a wrong
behavior with a linear increase for alkane radicals with more
than five carbon atoms. This qualitatively different behavior
between the gauge-origins ECC and SDC can be interpreted
as follows: The alkane radicals have a strongly localized spin
density at the radical center (which is at the end of the chain); in
the calculation employing the SDC, the gauge-origin is located
close to the terminal carbon atom at the radical center, and the
region containing the spin density is well described. The rapid
convergence of the isotropic g-shifts with chain length in the
calculations with GIAOs and with the SDC reflects the locality
of the contributions to the g-tensor in the alkane radicals. The
agreement of the isotropic g-shifts computed with GIAOs and
with the SDC as common gauge-origin is quite good in these
calculations; the small remaining deviations can originate from
the accelerated basis convergence in the GIAO calculation or

FIG. 6. Isotropic g-shifts of alkane radicals of increasing chain length with a
terminal CH2 group. The computations were carried out at the UDFT/B3LYP-
level with a def2-TZVP basis. The GIAO ansatz is compared to the common
gauge-origins SDC and ECC.
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from a minor gauge error within the SDC calculation. In con-
trast to the SDC, the ECC is by construction always located
centrally within the molecule (the ECC can even be viewed as
one possible definition of the center of the molecule); for these
calculations, it means that the ECC is for growing chain length
increasingly far apart from the region with significant spin den-
sity. Hence larger and larger gauge errors are introduced in the
calculation leading to a linear increase in the isotropic g-shift.
For the C20H41 radical, the isotropic g-shift obtained with the
ECC deviates 318 ppm (111.6%) from the GIAO value.

In Table V, computed g-shifts for other molecules with
a single localized spin center are presented. The g-shifts
obtained with the SDC as gauge-origin are also for these
molecules significantly closer to the GIAO reference values
than the ECC g-shifts. For the calculations shown in Table V,
the mean absolute deviations in the isotropic g-shifts com-
pared to the GIAO values are 289 ppm for the ECC and
26 ppm for the SDC. The average relative deviations in the
isotropic g-shifts amount to 18.8% for the ECC and 2.9% for
the SDC. The improvement is especially significant for the
smaller g-shifts like in the ·NH−−[CH2−−O]3−−CH3−−OH or
the ·O−−[CH2]18−−CH3 molecule where the smallest g-shifts
obtained with the ECC have opposite sign. For even larger
molecules, one can expect even more pronounced improve-
ments by the SDC compared to the ECC as gauge-origin. Irre-
spective of the good agreement between the g-shifts obtained

with the SDC and the g-shifts in a GIAO basis, the results
show that the influence of the gauge can be substantial in
these calculations on medium-sized molecules and signifi-
cant errors are introduced with a sub-optimal gauge origin
such as the ECC. This can be seen from several examples in
which the ECC leads to rather large errors like for ∆g1 of the
·NH−−[CH2−−O]7−−CH3−−OH molecules with a deviation of
1561 ppm (37.9%).

For the substituted toluene radical in Table V, the devia-
tion of the SDC values from the GIAO values is larger than for
the other systems (14.7% deviation in the isotropic g-shift).
This is expected due to the delocalization of the spin density
over the aromatic ring and the attached CH2 group. Neverthe-
less, the differences of the SDC values to the GIAO results are
still smaller than those of the ECC values with a deviation of
50.2% in the isotropic g-shift.

With LiH+ and NaF+, Table V also includes two molecules
which have a relatively large separation of ECC and SDC
despite their small extent (1.338 Å separation for LiH+;
1.196 Å separation for NaF+). Also for these molecules, the
SDC values are closer to the g-shifts obtained in a basis of
GIAOs than the ECC values. In general, for small molecules,
the differences between SDC and ECC can be expected to
be small as they are often close to each other; for symmet-
ric molecules, they might even coincide (e.g., for the O2

molecule).

TABLE V. g-tensor calculations with different gauge-origins (SDC or ECC) or GIAOs on radicals with a single
spin-center. The employed basis set is def2-TZVP in all cases.

Molecule Gauge ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm) ∆giso (ppm)

MTSL
ECC 7 147 4 295 �44 3 799
SDC 7 139 3 950 �163 3 642
GIAO 7 084 3 805 �226 3 554

·NH−−[CH2−−O]7−−CH2−−OH
ECC 5 680 1 505 207 2 464
SDC 4 137 1 509 �132 1 838
GIAO 4 119 1 540 �151 1 836

·O−−[CH2]18−−CH3

ECC 65 816 7 382 292 24 497
SDC 65 935 6 494 �143 24 095
GIAO 66 021 6 443 �175 24 096

·Cys−−Gly4

ECC 219 431 17 158 83 78 891
SDC 220 569 17 268 15 79 284
GIAO 220 519 17 231 17 79 256

ECC 774 491 274 513
SDC 557 553 �28 361
GIAO 552 549 �81 340

ECC 786 593 45 475

SDC 619 520 �52 362

GIAO 566 504 �122 316

LiH+
ECC �36 �36 �36 �36
SDC �36 �39 �39 �38
GIAO �36 �39 �39 �38

NaF+
ECC 99 018 69 225 �265 55 993
SDC 99 018 68 179 �291 55 635
GIAO 99 018 68 231 �288 55 654
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In summary, we have shown that the choice of gauge has
a large influence on the g-shifts in medium-sized molecules,
and common gauge-origin approaches can lead to significant
errors compared to the gauge-origin independent GIAO values.
A common gauge-origin that is chosen according to the spin
density distribution like our proposed SDC is better able to
account for the local nature of the g-tensor than the ECC. The g-
shifts obtained with the SDC as gauge-origin agree much better
with GIAO values than the g-shifts obtained with the ECC.
Therefore the SDC can be used as a pragmatic common gauge-
origin in larger molecules with a single localized spin center
if no suitable GIAO implementation is available. However,
we want to stress that the SDC does not represent a generally
applicable solution to the gauge-origin problem as shown in
Sec. IV D in calculations on molecules with multiple spin
centers.

One minor advantage of a common gauge-origin approach
involving the SDC is a small speed-up of the calculation. The
gauge-origin independence provided by the GIAO approach
comes at the price of slightly increased computational cost
because it requires the computation of several integral deriva-
tives with respect to the magnetic field; the integrals needed
for the magnetic field derivative of the SOMF matrix [Eq. (16)]
are especially costly. In our preliminary implementation, the
computation of the SOMF matrix requires 35.5% of the total
calculation time (calculation on alkane-20 radical/def2-TZVP
basis); with GIAOs, this amounts to 53.4% (including the
magnetic field derivative of the SOMF matrix). In these calcu-
lations, the use of GIAOs increased the total computation time
by 71.1%. However, this additional effort might be substan-
tially reduced by the resolution-of-the-identity (RI) approxi-
mation50(a),70–72 which we currently do not employ. In a fully
optimized implementation, we expect a significantly smaller
overhead due to GIAOs. Therefore we recommend to use
distributed gauge-origin methods if possible also for larger
molecules with a single spin center as they provide fully
gauge-origin independent results.

D. Gauge-origin dependence in molecules
with multiple spin centers

As shown in Sec. IV C, a suitably chosen common gauge-
origin can allow for reasonably accurate g-tensor computations
also for larger molecules with a single, well localized spin cen-
ter. However, there are also many examples for molecules with
multiple spin centers or significantly delocalized spin density.
Much larger errors due to gauge-origin dependence can be
expected for molecules of this kind as no common gauge-
origin can be positioned close to all sites of the molecule with
significant (perturbed) spin density. This is confirmed by the
illustrative calculations shown on molecules with two or three
spin centers (Fig. 7 and Table VI).

In Fig. 7, isotropic g-shifts of the ·NH−−[CH2]x−−ĊH2

(x varied from 1 to 15) molecules are shown. Both the SDC
and the ECC as gauge-origins lead to significant deviations
from the GIAO values; the agreement with the GIAO g-shifts
deteriorates with increased spacing between the two spin cen-
ters. For x = 15, the deviations in the isotropic g-shift are
392 ppm/34.1% (ECC) and 403 ppm/35.0% (SDC). In these
molecules, the SDC is — similarly as the ECC — located

FIG. 7. Isotropic g-shifts of radicals of the type ·NH−−[CH2]x−−ĊH2 with
triplet spin state, where x is varied from 1 to 15. The computations were carried
out at the UDFT/B3LYP-level and with a def2-TZVP basis. The GIAO ansatz
is compared to the common gauge-origins SDC and ECC.

relatively centrally between the two spin centers. For both
gauge-origins, the increase of the distance between the gauge-
origin and the spin centers with increasing chain length causes
an increase in the gauge error which explains the large devia-
tions from the GIAO numbers. After an irregular behavior for
the smallest chain lengths, the deviations are growing linearly;
one could therefore easily extrapolate the size of the error for
even larger spacing between the spin centers. By contrast, the
isotropic g-shift converges rapidly in a GIAO basis due to the
locality of the contributions from the two spin centers.

In Table VI, results from g-tensor calculations on several
other molecules with two or three spin centers are shown. For
the presented molecules with radical centers on sulfur atoms,
the gauge-origin dependence is mostly negligible. The same
holds for the calculations on the ·Cys−−Gly4 radical shown
in Table V. We suspect that due to the dominance of the
atomic contributions of the sulfur the g-shifts are both signifi-
cantly larger and less sensitive to the gauge than for the other
analyzed systems; in the limiting case of a single atom, the
g-shifts are independent of the gauge as discussed in Ref. 73
for the related theory of NMR shielding tensors. More pro-
nounced differences between the GIAO values and the com-
mon gauge-origin approaches can be seen for the g-shifts of
the other molecules. For the largest g-shift of ·Ala−−Gly−−Lys·
di-radical, the difference to the GIAO g-shifts amounts to 620
ppm/23.6% (ECC) and 517 ppm/19.6% (SDC). The ∆g2 value
of the ·O−−[CH2]18−−NH molecule differs by 721 ppm/19.0%
(ECC) and 718 ppm/18.9% (SDC) from the GIAO result.

Because of the demonstrated low reliability of common-
gauge-origin approaches for molecules with several, spatially
distant spin centers, we recommend to use distributed gauge-
origin methods like GIAOs for molecules of this kind.

We have on purpose not shown calculations on molecules
with extensively delocalized spin density, as in many cases
multi-reference methods might be necessary to properly
describe these systems, and the reliability of the DFT ansatz
is questionable. Still, the findings of this section should be
transferable to this class of molecules because it is not possi-
ble to position the entire region with significant spin density
and perturbed spin densities in close vicinity of a common
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TABLE VI. g-tensor calculations on molecules with two or three spin centers. All calculations were done with
UDFT/B3LYP and the def2-TZVP basis set. Values obtained with the SDC or ECC as gauge-origins are compared
to the GIAO results.

Molecule Gauge ∆g1 (ppm) ∆g2 (ppm) ∆g3 (ppm) ∆giso (ppm)

O==Ċ−−[CH2]17−−C≡≡C·
ECC 1 550 �92 �3268 �603
SDC 1 487 �96 �3248 �619
GIAO 1 353 �118 �3253 �673

·NF−−CH2−−[CH==CH−−CH2]5−−CH2−−CH==ĊH
ECC 4 167 1 788 �35 1 973
SDC 4 197 1 786 �28 1 985
GIAO 3 704 1 518 �155 1 689

·Ala−−Gly2−−Lys·
ECC 3 252 1 031 113 1 465
SDC 3 149 1 032 111 1 431
GIAO 2 632 887 �32 1 162

·NH−−[CH2−−O]7−−CH2−−S·
ECC 108 751 9 710 �100 39 454
SDC 108 742 9 710 �100 39 451
GIAO 108 747 9 710 �100 39 452

·O−−[CH2]18−−ṄH
ECC 35 012 4 516 1108 13 545
SDC 35 002 4 513 1110 13 542
GIAO 34 749 3 795 561 13 035

ECC 138 717 20 958 2980 54 218
SDC 138 718 20 968 2975 54 220
GIAO 138 658 20 575 2805 54 013

gauge-origin. Consequently we also recommend the use of a
distributed gauge-origin ansatz for molecules with delocalized
spin density.

V. CONCLUSIONS

We provided a detailed study of the gauge-origin depen-
dence in g-tensor calculations at the DFT level of theory using
the spin-orbit mean field ansatz. Our findings show that the
influence of the gauge is only negligible for small molecules
and not for larger molecular systems. For our test set of small
molecules, we found a pronounced dependence of the g-shifts
on the gauge; only a few Ångström displacements of the
molecules from the gauge-origin are necessary to introduce
errors that significantly exceed the basis set errors. We also
analyzed to what extent GIAOs accelerate the basis set conver-
gence in g-tensor calculations and found the effect to be neg-
ligible for our test set. It was shown in further calculations on
medium-sized molecules that the influence of the gauge can be
large in these systems and substantial errors can be introduced
by common gauge-origin approaches. This renders distributed
gauge-origin methods like GIAOs the preferred approach for
larger systems. For extended molecules with a single local-
ized spin center, the spin density center (SDC) was proposed
as a common gauge-origin that takes the locality of the g-tensor
into account; in contrast to the commonly employed electronic
charge centroid (ECC) as gauge-origin, the SDC was shown to
give reasonable agreement with the GIAO values for molecules
of this kind. For more general situations such as molecules with
multiple spin centers, neither the ECC nor the SDC as common
gauge-origins lead to reliable and accurate g-shifts; for these
cases, distributed gauge-origin approaches like GIAOs were

shown to be essential. Although this study was based entirely
on DFT calculations, it is highly likely that the presented find-
ings are transferable to other quantum-chemical methods like
wave-function based correlation methods. One can expect that
gauge-origin dependence of very similar magnitude occurs in
these methods as it is caused by basis set incompleteness and
not by method specifics.

SUPPLEMENTARY MATERIAL

See supplementary material for all computed g-shifts.
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69J. Gauss, M. Kállay, and F. Neese, J. Phys. Chem. A 113, 11541 (2009).
70J. L. Whitten, J. Chem. Phys. 58, 4496 (1973).
71B. I. Dunlap, J. Connolly, and J. Sabin, J. Chem. Phys. 71, 3396 (1979).
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1 g-shifts

1.1 Sections ”Significance of the gauge-origin dependence in g-tensor calcu-
lations” and ”Influence of GIAOs on the basis set convergence”

Table 1: g-shifts in ppm for small molecules. Different gauges are employed :
center of mass (“COM”), a gauge origin at (-10.0, -10.0 -10.0) (“m10”) or a
GIAO basis.

molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
BeH def2-qzvppd COM -40 -167 -167
CCH def2-qzvppd COM 277 277 -127
CH2CH3 def2-qzvppd COM 686 536 -90
CH2OH def2-qzvppd COM 2173 948 -144
CH2 def2-qzvppd COM 210 197 -67
CH3 def2-qzvppd COM 578 578 -90
CHCH2 def2-qzvppd COM 604 -98 -683
CHO def2-qzvppd COM 2340 -201 -7373
CH def2-qzvppd COM 1309 -158 -15408
COCH3 def2-qzvppd COM 2267 -254 -6544
NH2 def2-qzvppd COM 5037 1505 -153
NH def2-qzvppd COM 1287 1287 -107
NO def2-qzvppd COM 3302 -381 -110959
OCH3 def2-qzvppd COM 47607 6061 -195
OH def2-qzvppd COM 55799 5574 -217
ONO def2-qzvppd COM 3604 -624 -11072
OOH def2-qzvppd COM 27585 5529 -279
PH2 def2-qzvppd COM 15108 5063 -32
SiH2 def2-qzvppd COM 1230 1034 -498
SiH3 def2-qzvppd COM 2285 2285 -78
AlO def2-qzvppd COM 1076 1076 -125

AsO2−
3 def2-qzvppd COM 9325 9325 2783

BO def2-qzvppd COM -69 -1742 -1742
BS def2-qzvppd COM -84 -9099 -9099
C3H5 def2-qzvppd COM 752 631 -73
CF3Br− def2-qzvppd COM 53176 53176 -465
CF3Cl− def2-qzvppd COM 11696 11696 -497

CH+
4 def2-qzvppd COM 23796 2599 -86

Continued on next page
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Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
ClO2 def2-qzvppd COM 15108 12793 -453
ClO3 def2-qzvppd COM 7316 7316 1105

CO−
2 def2-qzvppd COM 1041 -632 -4678

CO−
3 def2-qzvppd COM 11733 11733 2997

CO+ def2-qzvppd COM -134 -2535 -2535
GeH3 def2-qzvppd COM 16762 16762 -107
H2CO+ def2-qzvppd COM 5677 262 97
KrF def2-qzvppd COM 38364 38364 -307
MgF def2-qzvppd COM -3 -1742 -1742
NF2 def2-qzvppd COM 6586 3949 -644

NF+
3 def2-qzvppd COM 7109 7109 -563

NH+
3 def2-qzvppd COM 1657 1657 -156

NO2 def2-qzvppd COM 3836 -638 -11239
NO3 def2-qzvppd COM 15197 15197 343

O−
3 def2-qzvppd COM 17547 10452 -502

SO−
2 def2-qzvppd COM 6376 5072 -278

SO−
3 def2-qzvppd COM 2534 2534 169

BeH def2-svp GIAO -42 -151 -151
CCH def2-svp GIAO 195 195 -128
CH2CH3 def2-svp GIAO 599 434 -108
CH2OH def2-svp GIAO 2053 846 -168
CH2 def2-svp GIAO 163 137 -73
CH3 def2-svp GIAO 481 481 -92
CHCH2 def2-svp GIAO 457 -117 -630
CHO def2-svp GIAO 2102 -224 -6943
CH def2-svp GIAO 1131 -175 -14448
COCH3 def2-svp GIAO 2075 -275 -6330
NH2 def2-svp GIAO 4651 1260 -153
NH def2-svp GIAO 1109 1109 -110
NO def2-svp GIAO 3117 -385 -124152
OCH3 def2-svp GIAO 48468 5437 -214
OH def2-svp GIAO 60473 4950 -210
ONO def2-svp GIAO 3422 -574 -10675
OOH def2-svp GIAO 26857 5077 -286
PH2 def2-svp GIAO 13370 4506 -23
SiH2 def2-svp GIAO 1099 941 -413
SiH3 def2-svp GIAO 2125 2125 -85
AlO def2-svp GIAO 1230 1230 -125

AsO2−
3 def2-svp GIAO 12798 12798 2361

BO def2-svp GIAO -69 -1574 -1574
BS def2-svp GIAO -83 -8358 -8358
C3H5 def2-svp GIAO 511 510 -111
CF3Br− def2-svp GIAO 50377 50377 -474
CF3Cl− def2-svp GIAO 12016 12016 -488

CH+
4 def2-svp GIAO 27516 2379 -89

ClO2 def2-svp GIAO 17302 14141 -548
ClO3 def2-svp GIAO 9178 9178 630

CO−
2 def2-svp GIAO 1507 -629 -5194

CO−
3 def2-svp GIAO 11584 11584 2988

CO+ def2-svp GIAO -136 -2255 -2255
GeH3 def2-svp GIAO 15005 15005 -211
H2CO+ def2-svp GIAO 5168 164 72
KrF def2-svp GIAO 32609 32609 -301
MgF def2-svp GIAO -5 -1661 -1661
NF2 def2-svp GIAO 6617 3992 -653

NF+
3 def2-svp GIAO 6716 6716 -645

NH+
3 def2-svp GIAO 1475 1475 -156

NO2 def2-svp GIAO 3634 -587 -10828
NO3 def2-svp GIAO 14840 14840 547

O−
3 def2-svp GIAO 17659 10590 -519

SO−
2 def2-svp GIAO 9479 7461 -404

SO−
3 def2-svp GIAO 4036 4036 21

BeH def2-svp COM -42 -150 -150
CCH def2-svp COM 195 195 -128
CH2CH3 def2-svp COM 604 428 -95
CH2OH def2-svp COM 2004 724 -146
CH2 def2-svp COM 152 132 -73
CH3 def2-svp COM 462 462 -98
CHCH2 def2-svp COM 496 -109 -606
CHO def2-svp COM 2056 -197 -6889
CH def2-svp COM 1094 -175 -14448
COCH3 def2-svp COM 2140 -268 -6278
Continued on next page
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Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
NH2 def2-svp COM 4579 1157 -147
NH def2-svp COM 1062 1062 -110
NO def2-svp COM 3205 -357 -124152
OCH3 def2-svp COM 47937 5518 -200
OH def2-svp COM 60473 4805 -186
ONO def2-svp COM 3741 -558 -10660
OOH def2-svp COM 26796 5195 -271
PH2 def2-svp COM 12972 4104 -12
SiH2 def2-svp COM 1033 932 -442
SiH3 def2-svp COM 2062 2062 -89
AlO def2-svp COM 1070 1070 -125

AsO2−
3 def2-svp COM 13367 13367 2489

BO def2-svp COM -69 -1607 -1607
BS def2-svp COM -83 -8594 -8594
C3H5 def2-svp COM 528 508 -74
CF3Br− def2-svp COM 49725 49725 -458
CF3Cl− def2-svp COM 11389 11389 -470

CH+
4 def2-svp COM 27180 2381 -85

ClO2 def2-svp COM 17661 15264 -489
ClO3 def2-svp COM 10056 10056 847

CO−
2 def2-svp COM 1555 -619 -5144

CO−
3 def2-svp COM 11914 11914 3502

CO+ def2-svp COM -136 -2336 -2336
GeH3 def2-svp COM 14613 14613 -211
H2CO+ def2-svp COM 5238 192 95
KrF def2-svp COM 33247 33247 -301
MgF def2-svp COM -5 -1905 -1905
NF2 def2-svp COM 6696 4033 -629

NF+
3 def2-svp COM 6818 6818 -609

NH+
3 def2-svp COM 1449 1449 -162

NO2 def2-svp COM 3966 -570 -10816
NO3 def2-svp COM 15243 15243 1046

O−
3 def2-svp COM 17780 10894 -498

SO−
2 def2-svp COM 9674 8063 -365

SO−
3 def2-svp COM 4379 4379 73

BeH def2-svp m10 -15 -88 -115
CCH def2-svp m10 640 555 -213
CH2CH3 def2-svp m10 885 349 75
CH2OH def2-svp m10 2787 -206 -446
CH2 def2-svp m10 176 -10 -117
CH3 def2-svp m10 462 462 -98
CHCH2 def2-svp m10 921 54 -578
CHO def2-svp m10 3430 -305 -4176
CH def2-svp m10 -97 -405 -14451
COCH3 def2-svp m10 3301 -381 -5488
NH2 def2-svp m10 2969 -142 -2059
NH def2-svp m10 732 -172 -1014
NO def2-svp m10 3679 -636 -124153
OCH3 def2-svp m10 47850 8793 -175
OH def2-svp m10 60557 666 248
ONO def2-svp m10 5578 -429 -8160
OOH def2-svp m10 25038 1984 -241
PH2 def2-svp m10 8545 -175 -524
SiH2 def2-svp m10 4123 2370 -100
SiH3 def2-svp m10 7360 6205 -1239
AlO def2-svp m10 2654 -5758 -8526

AsO2−
3 def2-svp m10 36236 31381 -2285

BO def2-svp m10 -15 -2080 -2134
BS def2-svp m10 176 -10993 -11250
C3H5 def2-svp m10 1297 397 29
CF3Br− def2-svp m10 42320 41525 -1236
CF3Cl− def2-svp m10 18344 17384 -1421

CH+
4 def2-svp m10 26719 2453 -176

ClO2 def2-svp m10 17641 5836 -668
ClO3 def2-svp m10 16099 15221 -25

CO−
2 def2-svp m10 1117 -619 -6003

CO−
3 def2-svp m10 11914 11914 3502

CO+ def2-svp m10 374 -1107 -1617
GeH3 def2-svp m10 55387 46245 -9106
H2CO+ def2-svp m10 7889 363 -39
KrF def2-svp m10 31177 31103 -373
MgF def2-svp m10 877 -5169 -6048
NF2 def2-svp m10 9079 3809 -345
Continued on next page

S3



Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]

NF+
3 def2-svp m10 8367 8252 -723

NH+
3 def2-svp m10 1449 1449 -162

NO2 def2-svp m10 2474 -686 -13728
NO3 def2-svp m10 15243 15243 1046

O−
3 def2-svp m10 15433 10472 -567

SO−
2 def2-svp m10 14809 7343 -468

SO−
3 def2-svp m10 8564 7852 -636

BeH def2-tzvp GIAO -40 -154 -154
CCH def2-tzvp GIAO 167 167 -127
CH2CH3 def2-tzvp GIAO 678 503 -106
CH2OH def2-tzvp GIAO 2175 929 -168
CH2 def2-tzvp GIAO 198 173 -70
CH3 def2-tzvp GIAO 551 551 -89
CHCH2 def2-tzvp GIAO 517 -114 -682
CHO def2-tzvp GIAO 2256 -224 -7245
CH def2-tzvp GIAO 1256 -164 -15142
COCH3 def2-tzvp GIAO 2200 -275 -6536
NH2 def2-tzvp GIAO 4900 1453 -151
NH def2-tzvp GIAO 1240 1240 -107
NO def2-tzvp GIAO 3300 -402 -112426
OCH3 def2-tzvp GIAO 47755 5894 -213
OH def2-tzvp GIAO 56561 5406 -213
ONO def2-tzvp GIAO 3559 -638 -10980
OOH def2-tzvp GIAO 27277 5401 -300
PH2 def2-tzvp GIAO 15250 5044 -18
SiH2 def2-tzvp GIAO 1224 1031 -511
SiH3 def2-tzvp GIAO 2294 2294 -81
AlO def2-tzvp GIAO 1167 1167 -127

AsO2−
3 def2-tzvp GIAO 10627 10627 3371

BO def2-tzvp GIAO -69 -1733 -1733
BS def2-tzvp GIAO -84 -9322 -9322
C3H5 def2-tzvp GIAO 590 559 -103
CF3Br− def2-tzvp GIAO 51125 51125 -479
CF3Cl− def2-tzvp GIAO 12155 12155 -508

CH+
4 def2-tzvp GIAO 24221 2487 -91

ClO2 def2-tzvp GIAO 16238 12888 -548
ClO3 def2-tzvp GIAO 7325 7325 953

CO−
2 def2-tzvp GIAO 1283 -668 -5144

CO−
3 def2-tzvp GIAO 11731 11731 2912

CO+ def2-tzvp GIAO -135 -2514 -2514
GeH3 def2-tzvp GIAO 16501 16501 -116
H2CO+ def2-tzvp GIAO 5517 249 75
KrF def2-tzvp GIAO 36640 36640 -304
MgF def2-tzvp GIAO -3 -1651 -1651
NF2 def2-tzvp GIAO 6548 3960 -679

NF+
3 def2-tzvp GIAO 6975 6975 -602

NH+
3 def2-tzvp GIAO 1600 1600 -153

NO2 def2-tzvp GIAO 3787 -652 -11142
NO3 def2-tzvp GIAO 14978 14978 257

O−
3 def2-tzvp GIAO 17795 10623 -557

SO−
2 def2-tzvp GIAO 8942 5544 -369

SO−
3 def2-tzvp GIAO 2612 2612 227

BeH def2-tzvp COM -40 -151 -151
CCH def2-tzvp COM 155 155 -127
CH2CH3 def2-tzvp COM 676 512 -93
CH2OH def2-tzvp COM 2177 864 -149
CH2 def2-tzvp COM 193 171 -69
CH3 def2-tzvp COM 544 544 -92
CHCH2 def2-tzvp COM 545 -105 -668
CHO def2-tzvp COM 2248 -206 -7213
CH def2-tzvp COM 1237 -165 -15142
COCH3 def2-tzvp COM 2248 -261 -6506
NH2 def2-tzvp COM 4886 1409 -148
NH def2-tzvp COM 1221 1221 -107
NO def2-tzvp COM 3353 -379 -112426
OCH3 def2-tzvp COM 47485 5956 -198
OH def2-tzvp COM 56561 5357 -202
ONO def2-tzvp COM 3661 -614 -10973
OOH def2-tzvp COM 27234 5419 -283
PH2 def2-tzvp COM 15126 4889 -8
SiH2 def2-tzvp COM 1187 1033 -522
SiH3 def2-tzvp COM 2266 2266 -78
Continued on next page
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Table 1 – continued from previous page
molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
AlO def2-tzvp COM 1167 1167 -127

AsO2−
3 def2-tzvp COM 10348 10348 3892

BO def2-tzvp COM -69 -1737 -1737
BS def2-tzvp COM -84 -9338 -9338
C3H5 def2-tzvp COM 556 459 -72
CF3Br− def2-tzvp COM 52769 52769 -477
CF3Cl− def2-tzvp COM 11907 11907 -506

CH+
4 def2-tzvp COM 24111 2508 -86

ClO2 def2-tzvp COM 16585 13118 -481
ClO3 def2-tzvp COM 7581 7581 1058

CO−
2 def2-tzvp COM 1358 -647 -5128

CO−
3 def2-tzvp COM 11881 11881 3186

CO+ def2-tzvp COM -135 -2534 -2534
GeH3 def2-tzvp COM 16196 16196 -61
H2CO+ def2-tzvp COM 5591 269 93
KrF def2-tzvp COM 37733 37733 -304
MgF def2-tzvp COM -3 -1705 -1705
NF2 def2-tzvp COM 6590 3953 -650

NF+
3 def2-tzvp COM 6967 6967 -576

NH+
3 def2-tzvp COM 1595 1595 -158

NO2 def2-tzvp COM 3890 -628 -11135
NO3 def2-tzvp COM 15144 15144 636

O−
3 def2-tzvp COM 17900 10781 -531

SO−
2 def2-tzvp COM 9530 5657 -319

SO−
3 def2-tzvp COM 2761 2761 366

BeH def2-tzvp m10 -38 -171 -173
CCH def2-tzvp m10 374 340 -161
CH2CH3 def2-tzvp m10 737 472 52
CH2OH def2-tzvp m10 2348 -204 -286
CH2 def2-tzvp m10 218 32 -146
CH3 def2-tzvp m10 544 544 -92
CHCH2 def2-tzvp m10 733 -42 -669
CHO def2-tzvp m10 2557 -316 -6106
CH def2-tzvp m10 646 -207 -15144
COCH3 def2-tzvp m10 2694 -298 -6266
NH2 def2-tzvp m10 3204 400 -113
NH def2-tzvp m10 797 545 -359
NO def2-tzvp m10 3252 -523 -112426
OCH3 def2-tzvp m10 47255 7053 -120
OH def2-tzvp m10 56586 2999 61
ONO def2-tzvp m10 4452 -630 -10283
OOH def2-tzvp m10 26154 3917 -309
PH2 def2-tzvp m10 11363 4083 40
SiH2 def2-tzvp m10 1431 1101 -823
SiH3 def2-tzvp m10 2619 2599 -99
AlO def2-tzvp m10 1070 1066 -131

AsO2−
3 def2-tzvp m10 23769 20934 1085

BO def2-tzvp m10 -57 -1946 -1958
BS def2-tzvp m10 -77 -9685 -9691
C3H5 def2-tzvp m10 511 396 24
CF3Br− def2-tzvp m10 66382 65206 -1615
CF3Cl− def2-tzvp m10 13104 13055 -554

CH+
4 def2-tzvp m10 24218 2388 -157

ClO2 def2-tzvp m10 15408 12908 -393
ClO3 def2-tzvp m10 10185 9892 766

CO−
2 def2-tzvp m10 1178 -648 -5408

CO−
3 def2-tzvp m10 11881 11881 3186

CO+ def2-tzvp m10 -84 -2081 -2133
GeH3 def2-tzvp m10 29764 27576 -2217
H2CO+ def2-tzvp m10 6679 279 159
KrF def2-tzvp m10 52699 51013 -1947
MgF def2-tzvp m10 119 -2504 -2625
NF2 def2-tzvp m10 7891 3864 -402

NF+
3 def2-tzvp m10 7287 7281 -582

NH+
3 def2-tzvp m10 1595 1595 -158

NO2 def2-tzvp m10 3157 -657 -11851
NO3 def2-tzvp m10 15144 15144 636

O−
3 def2-tzvp m10 17786 10781 -609

SO−
2 def2-tzvp m10 7702 4725 -554

SO−
3 def2-tzvp m10 4709 4399 57
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1.2 Section ”Gauge-origin dependence in molecules with a single localized
spin center”

Table 2: g-shifts in ppm for section ”Gauge-origin dependence in molecules
with a single localized spin center”. Either a GIAO basis or a common gauge-
origin (SDC or ECC) was used as indicated.

molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]
MTSL def2-tzvp ECC 7147 4295 -44
·NH-[CH2-O]7-CH2-OH def2-tzvp ECC 5680 1505 207
·O-[CH2]18-CH3 def2-tzvp ECC 65816 7382 292
·Cys-Gly4 def2-tzvp ECC 219431 17158 83
·CH3 def2-tzvp ECC 543 543 -92
·CH2-CH3 def2-tzvp ECC 683 514 -95
·CH2-[CH2]-CH3 def2-tzvp ECC 549 492 -106
·CH2-[CH2]2-CH3 def2-tzvp ECC 580 497 -81
·CH2-[CH2]3-CH3 def2-tzvp ECC 598 508 -72
·CH2-[CH2]5-CH3 def2-tzvp ECC 639 536 -44
·CH2-[CH2]8-CH3 def2-tzvp ECC 700 588 -4
·CH2-[CH2]13-CH3 def2-tzvp ECC 802 695 48
·CH2-[CH2]18-CH3 def2-tzvp ECC 905 819 84
LiH+ def2-tzvp ECC -36 -36 -36
NaF+ def2-tzvp ECC 99018 69225 -265
MTSL def2-tzvp SDC 7139 3950 -163
·NH-[CH2-O]7-CH2-OH def2-tzvp SDC 4137 1509 -132
·O-[CH2]18-CH3 def2-tzvp SDC 65935 6494 -143
·Cys-Gly4 def2-tzvp SDC 220569 17268 15
·CH3 def2-tzvp SDC 543 543 -92
·CH2-CH3 def2-tzvp SDC 680 516 -100
·CH2-[CH2]-CH3 def2-tzvp SDC 544 486 -112
·CH2-[CH2]2-CH3 def2-tzvp SDC 558 478 -106
·CH2-[CH2]3-CH3 def2-tzvp SDC 561 475 -110
·CH2-[CH2]5-CH3 def2-tzvp SDC 563 473 -111
·CH2-[CH2]8-CH3 def2-tzvp SDC 566 473 -109
·CH2-[CH2]13-CH3 def2-tzvp SDC 568 474 -108
·CH2-[CH2]18-CH3 def2-tzvp SDC 568 474 -107
LiH+ def2-tzvp SDC -36 -39 -39
NaF+ def2-tzvp SDC 99018 68179 -291
MTSL def2-tzvp GIAO 7084 3805 -226
·NH-[CH2-O]7-CH2-OH def2-tzvp GIAO 4119 1540 -151
·O-[CH2]18-CH3 def2-tzvp GIAO 66021 6443 -175
·Cys-Gly4 def2-tzvp GIAO 220519 17231 17
·CH3 def2-tzvp GIAO 550 550 -89
·CH2-CH3 def2-tzvp GIAO 682 507 -108
·CH2-[CH2]-CH3 def2-tzvp GIAO 526 469 -137
·CH2-[CH2]2-CH3 def2-tzvp GIAO 537 465 -133
·CH2-[CH2]3-CH3 def2-tzvp GIAO 534 460 -138
·CH2-[CH2]5-CH3 def2-tzvp GIAO 533 460 -139
·CH2-[CH2]8-CH3 def2-tzvp GIAO 533 460 -139
·CH2-[CH2]13-CH3 def2-tzvp GIAO 533 460 -139
·CH2-[CH2]18-CH3 def2-tzvp GIAO 534 460 -139
LiH+ def2-tzvp GIAO -36 -39 -39
NaF+ def2-tzvp GIAO 99018 68231 -288

def2-tzvp ECC 786 593 45
def2-tzvp SDC 619 520 -52
def2-tzvp GIAO 566 504 -122

def2-tzvp ECC 774 491 274
def2-tzvp SDC 557 553 -28
def2-tzvp GIAO 552 549 -81
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1.3 Section ”Gauge origin dependence in molecules with multiple spin cen-
ters”

Table 3: g-shifts in ppm for section ”Gauge-origin dependence in molecules
with multiple spin centers”. Either a GIAO basis or a common gauge-origin
(SDC or ECC) was used as indicated.

molecule basis set gauge ∆g1 [ppm] ∆g2 [ppm] ∆g3 [ppm]

O=Ċ-[CH2]17-C≡C· def2-tzvp ECC 1550 -92 -3268

·NF-CH2-[CH=CH-CH2]5-CH2-CH=ĊH def2-tzvp ECC 4167 1788 -35
·Ala-Gly2-Lys· def2-tzvp ECC 3252 1031 113

·NH-ĊH2 def2-tzvp ECC 2296 887 -6

·NH-CH2-ĊH2 def2-tzvp ECC 2763 979 -28

·NH-[CH2]2-ĊH2 def2-tzvp ECC 2647 944 179

·NH-[CH2]3-ĊH2 def2-tzvp ECC 2812 901 67

·NH-[CH2]4-ĊH2 def2-tzvp ECC 2688 913 256

·NH-[CH2]9-ĊH2 def2-tzvp ECC 3155 954 129

·NH-[CH2]14-ĊH2 def2-tzvp ECC 3251 917 457

·O-[CH2]18-ṄH def2-tzvp ECC 35012 4516 1108

O=Ċ-[CH2]17-C≡C· def2-tzvp SDC 1487 -96 -3248

·NF-CH2-[CH=CH-CH2]5-CH2-CH=ĊH def2-tzvp SDC 4197 1786 -28
·Ala-Gly2-Lys· def2-tzvp SDC 3149 1032 111

·NH-ĊH2 def2-tzvp SDC 2288 890 -7

·NH-CH2-ĊH2 def2-tzvp SDC 2764 978 -28

·NH-[CH2]2-ĊH2 def2-tzvp SDC 2646 943 178

·NH-[CH2]3-ĊH2 def2-tzvp SDC 2818 899 67

·NH-[CH2]4-ĊH2 def2-tzvp SDC 2692 915 255

·NH-[CH2]9-ĊH2 def2-tzvp SDC 3178 949 129

·NH-[CH2]14-ĊH2 def2-tzvp SDC 3289 913 456

·O-[CH2]18-ṄH def2-tzvp SDC 35002 4513 1110
·NH-[CH2-O]7-CH2-S· def2-tzvp ECC 108751 9710 -100
·NH-[CH2-O]7-CH2-S· def2-tzvp SDC 108742 9710 -100

O=Ċ-[CH2]17-C≡C· def2-tzvp GIAO 1353 -118 -3253

·NF-CH2-[CH=CH-CH2]5-CH2-CH=ĊH def2-tzvp GIAO 3704 1518 -155
·Ala-Gly2-Lys· def2-tzvp GIAO 2632 887 -32

·NH-ĊH2 def2-tzvp GIAO 2196 901 -39

·NH-CH2-ĊH2 def2-tzvp GIAO 2623 996 -78

·NH-[CH2]2-ĊH2 def2-tzvp GIAO 2468 948 112

·NH-[CH2]3-ĊH2 def2-tzvp GIAO 2564 897 -15

·NH-[CH2]4-ĊH2 def2-tzvp GIAO 2376 931 143

·NH-[CH2]9-ĊH2 def2-tzvp GIAO 2579 927 -57

·NH-[CH2]14-ĊH2 def2-tzvp GIAO 2378 928 143
·NH-[CH2-O]7-CH2-S· def2-tzvp GIAO 108747 9710 -100

·O-[CH2]18-ṄH def2-tzvp GIAO 34749 3795 561
def2-tzvp ECC 138717 20958 2980
def2-tzvp SDC 138718 20968 2975
def2-tzvp GIAO 138658 20575 2805
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in preparation

The following manuscript analyzes the influence of both electron correlation and dynamic

effects on the hyperfine coupling constants of organic radicals. Electron correlation is

incorporated using the methods described in Paper I and II, whereas an ab initio molecular

dynamics simulation is chosen to represent vibrational averaging. Our results indicate that

both effects are important and that results close to experimental results can be obtained.

Especially neglecting dynamic effects can in some cases deteriorate the results.
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Abstract

The calculation of hyperfine coupling constants is a challenging task in balancing ac-

curacy and computational effort. While previous work has shown both the importance

of electron correlation and of molecular dynamic contributions, we present a thorough

study simultaneously analyzing the influence of both on hyperfine coupling constants.

To this end, we systematically study two organic radicals, namely dimethylamine and

ethanal, proving the necessity for a high-level description of dynamic contributions as

well as the large influence of electron correlation. Based on this study, we analyze

the effect of both electron correlation and dynamic simulations on a set of 12 organic

radicals, illustrating that both are vital for an accurate description and influence the

in silico results on the same scale.
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1 Introduction

Electron paramagnetic resonance (EPR) spectroscopy is an important tool for studying rad-

icals. As a non-invasive method to characterize radicals it is indispensable in research tack-

ling many biological systems.1,2 However, the ab initio computation of the EPR parameters,

namely the hyperfine coupling constants (HFCCs) and the g-tensors, remains challenging.

These open-shell properties can be calculated using the unrestricted approach which in-

corporates spin polarization and delocalization, but this can lead to erratic results due to

spin contamination. This can be improved by using a spin restriction within the restricted-

unrestricted ansatz by Rinkevicius et al.,3 where spin contamination is overcome while still

including spin polarization. Nonetheless, the computationally less demanding unrestricted

approach often leads to reliable results, especially for well localized radicals and when using

density functional theory (DFT).4–8

Based on an unrestricted framework, further aspects need to be considered: EPR-specific

basis sets have been demonstrated to be important,9 and while DFT is often highly accurate,

higher-order levels of theory taking electron correlation into account systematically are often

beneficial. This includes methods such as second-order Møller-Plesset perturbation theory

(MP2), double hybrid (DH)-DFT,6,10 or coupled cluster approaches,5,11–14 as well as different

multi-reference ansätze.15–17

Nonetheless, even with elaborate methods, extensive basis sets, and in absence of spin

contamination, the results can deviate from experimental values due to the neglect of dy-

namic contributions, i.e., vibrational averaging. This was shown in recent work by Massolle

et al.18 on verdazyl radicals where computational results at the DFT-level are improved

by averaging over frames from a molecular dynamics simulation based on a quantum me-

chanically derived force field.19 Similarly, studies on nitroxide radicals show that considering

both vibrational averaging and solvent effects leads to more accurate results within the DFT

framework.20,21 The influence of molecular and intermolecular motion of explicitly solvated

benzosemiquinone was studied in detail by Asher and Kaupp.22 Nonetheless, solvent effects
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are often small, and work by Rinkevicius et al.23 shows that a description of the environ-

ment by means of molecular mechanics theory seems sufficient. A thorough investigation of

the effect of the bending angle of the methyl radical, its incorporation within an ab initio

molecular dynamics simulation,24 and its solvation25 also motivates the correct description

of dynamic contributions. Similarly, significant ro-vibrational contributions were shown in

the analysis of out-of-plane bending in H2NO,26 of dimethyl nitroxide,27 and of other organic

radicals.28–30 Here, we also want to mention corresponding recent work in the computation

of nuclear magnetic resonance shielding tensors by Grimme et al.,31 that considers a set of

conformers or rotamers to accurately describe flexible molecules in solution.

While both the effect of electron correlation and of dynamic contributions significantly

improve the in silico results, their combined description is computationally cumbersome.

A straightforward approach is to perform a molecular dynamics simulation and compute

the EPR parameters for a set of frames. This requires the speed for computing the EPR

parameters per frame to be small as to allow a sufficient number of frames to be computed

for accurately incorporating the vibrational and rotational motion. The description of the

correlation contribution by the cheapest wavefunction-based ansatz, MP2, is still expen-

sive due to its conventionally large scaling behavior of O(N5) as well as its large prefactor.

This also applies to double-hybrid DFT that contains a second-order perturbation theory

term analogous to MP2. The prefactor can be reduced by the resolution-of-the-identity (RI)

approximation,32–37 whereas linear scaling behavior can be achieved by a reformulation in

local orbitals, e.g., in atomic orbitals (AO),38 using distance-including integral estimates.39,40

Analytic energy gradients at the MP2-level have been developed in the AO-basis.41 By in-

troducing the RI approximation and a Cholesky decomposition42,43 in the computation of

AO-MP2 energy gradients, we recently presented a low-scaling, low-prefactor implementa-

tion to compute HFCCs.44 By computing only selected nuclei, the computational cost can

be reduced further.45 Using these methods, large-scale computations of HFCCs based on

multiple frames from a molecular dynamics (MD) simulation are possible.

3



This work simultaneously analyzes the effect of both dynamic contributions and electron

correlation on the HFCCs thus providing a computational protocol for calculating accurate

HFCCs for large molecular systems using the efficient quantum chemical methods introduced

above. We highlight the importance of accounting for dynamic contributions by investigat-

ing in depth the dependence of the HFCC on geometric parameters such as bond lengths,

and bond and dihedral angles of two organic radicals, ethanale and dimethylamine. Sub-

sequently, we analyze the contribution of electron correlation and dynamic contributions

on isotropic HFCCs of a set of 12 organic radicals. Dynamic contributions are considered

by computing a set of snapshots from an ab initio molecular dynamics (AIMD) simula-

tion46–48 of the radicals using the fast small basis set Hartree-Fock method (HF3c)49 and the

efficient three-fold corrected Perdew-Burke-Ernzerhoff generalized-gradient-approximation

(PBEH3c),50 thus providing their high-level and accurate description. Finally, we analyze

the effect of electron correlation by comparing the isotropic HFCCs both at the Hartree-Fock

(HF) and DFT-level, as well as using RI-MP2 and DH-DFT.

2 Theory

The isotropic HFCC can be calculated in the absence of spin-orbit coupling by:51

aiso(N) =
µ0

3
gegNβeβN〈Sz〉−1ρ(N), (1)

where µ0 is the permeability of the vacuum, ge and gN are the electronic and nuclear g factor,

βe is the Bohr magneton, βN is the nuclear magneton of the nucleus N , and 〈Sz〉 is the mean

value of Sz in the current electronic state. ρ(N) is the Fermi-contact integral, which is given

by:

ρ(N) =
∑

µν

Pα−β
µν 〈φµ(r)|δ(r − rN)|φν(r)〉, (2)
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where Pα−β
µν is the difference between the α- and β-electron density matrices.

For methods beyond Hartree-Fock or DFT, the respective energy equation needs to be

perturbed with respect to the nuclear magnetic moment Mk of nucleus k.51 For an effi-

cient low-scaling algorithm to obtain the analytic gradient of the MP2 expression, which

analogously arises in DH-DFT, Schweizer et al.41 proposed a reformulation in AOs by the

Laplace-transform ansatz.52,53 Thus, the locality of AOs can be exploited, ultimately lead-

ing to a linear scaling behavior. A further reduction of the computational cost can be

achieved by the RI approximation32–37 and a Cholesky decomposition42,43 following the RI-

CDD ansatz previously established for the computation of MP2 energies.54 In combination

with an extention of the QQR-type integral estimation technique to efficiently select signifi-

cant two-electron contributions,39,40 we recently introduced a low scaling efficient ansatz to

compute first-order properties,44 which can be improved upon by computing selected nuclei

only, exploiting the locality of the perturbation.45

3 Computational Details

The isotropic HFCCs were obtained at the HF-, DFT-, DH-DFT- and MP2-level using the re-

spective implementation in the program package FermiONs++.55,56 The MP2-contributions

are hereby computed using the aforementioned Laplace-transform RI-CDD ansatz44 and a

QQR-based integral screening.39,40 The Laplace expansion coefficients are selected based on

the minimax-approximation.57 The extents of the QQR-type integral estimates are deter-

mined with the same thresholds as in Ref. 40. The QQR-screening threshold was set to

10−8 and seven Laplace expansion points were chosen based on the study of the accuracy in

Ref. 44. The DL-UCPSCF was converged to a threshold of 10−4. Deviations of less than

1 MHz can be expected with these thresholds.44 The auxiliary basis set def2-TZVPP-RI/JK

by Weigend58 was chosen for the computations using the basis set EPR-III,9 which was pre-

viously found suitable.59 Reference coupled cluster computations with singles and doubles
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excitations60 were obtained with the program package Cfour.61

The ab inito molecular dynamics simulations at the PBEH3c-level50 were performed

as canonical (NVT-)ensembles with the Velocity Verlet propagator62,63 at 298.15 K, using

the Bussi-Donadio-Parrinello thermostat.64 Each simulation included a 100 fs equilibration

period and a 10 ps production run with a time step of 0.1 fs. Geometries were saved every 1 fs.

Furthermore, the fully converged extended Lagrangian Born-Oppenheimer MD (XL-BOMD)

method65 was used to speed up SCF convergence. HFCCs were computed for every 100th

geometry, i.e., every 100 fs, of the trajectory. To analyze whether a less computationally

demanding AIMD simulation is sufficient, some simulations were performed analogously at

the HF3c-level.49

4 Results

4.1 In-depth study of the ethanal and the dimethylamine radical

In this section, we analyze in detail the dependence of the HFCCs on bond lengths, bond

angles, and dihedral angles of both ethanal and the dimethylamine radicals, supplementing

previous work on other systems in Refs. 22,24,25,27,66.

We first analyze the distribution of the bond angles, bond lengths, and the dihedral

angle in the ethanal radical as obtained from both a HF3c- and a PBEH3c-based AIMD.

The results are shown in Figure 1. Anharmonicity can clearly be seen, especially in the

distribution of the ∠(C-C=O) bond angle in the case of the PBEH3c-based simulation and

in the C-H bond length in the HF3c simulation.

Anharmonicity is also present in the distribution of the δ(N-C) bond length and the

∠(C-N-C) angle in the dimethylamine radical in Figure 2. The distribution of the ∠(C-N-C)

angle in the PBEH3c-based simulation is significantly broader than in the HF3c-based AIMD,

which is reflected in the standard deviation of 4.3◦ vs. 2.7◦.

When comparing the results obtained from a HF3c-based AIMD to the respective PBEH3c-
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(a) HF3c (b) PBEH3c

(c) HF3c (d) PBEH3c

Figure 1: Anharmonicity in the distribution of bond lengths and bond and dihedral angles
in the ab initio MD simulation of the ethanal radical at room temperature at the HF3c-
and PBEH3c-level. Average bond lengths, angles, and dihedral angles and their standard
deviations are shown in the legend.

based results, differences in the distribution are apparent (see, e.g., the distribution of

∠(C-C=O) in Figure 1). Thus, specific care has to be taken as to what level of theory is

employed to describe the dynamic contributions, i.e., an accurate description of the potential

energy surface of the system is paramount. This is shown in Table 1, where the isotropic

HFCCs of both systems obtained from the HF3c- and PBEH3c-optimized structures as well

as from averaging over the respective AIMD simulations are compared. As can be seen,

considerable deviations larger than 20 MHz occur in the case of the hydrogen atom between

the results obtained with structures obtained at the HF3c-level in comparison to HFCCs of

PBEH3c-optimized structures. The deviation is larger than the influence of the dynamics,
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Figure 2: Anharmonicity in the distribution of the N-C bond length and and the ∠(C-N-C)
bond angle in the ab initio MD simulation of the dimethylamine radical at room temperature
at the HF3c- and PBEH3c-level. The average bond length and bond angle and the standard
deviation is indicated.

as shown in Table 1, where the HFCCs obtained from the respective AIMD simulation is

shown. It has to be noted, though, that (i) the deviation due to using the HF3c instead of

PBEH3c is less severe than the effect of differing methods used for the HFCC computation

shown in Table 2, and that (ii) the description of dynamic contributions between HF3c and

PBEH3c is comparable, as can be seen from the ∆dyn values in Table 1. The latter motivates

the computation of the dynamic contributions based on a HF3c-based AIMD trajectory.

Though dynamic contributions results in changes in the HFCCs, these are on the same

order as the differences between the results obtained from DFT, post-KS, and post-HF

methods in Table 2. While this is not always the case, as shown in Sec. 4.2 where the neglect

of dynamic contributions leads to results strongly deviating from experimental findings for

a variety of radicals, the results in Table 2 motivate a careful choice of the method with

which the isotropic HFCCs are computed. It furthermore has to be noted that the results

obtained from the AIMD simulation are not always closer to the experimental results. A

variety of reasons can be named for this: first and foremost the error of the approximation

to the Schrödinger equation itself and, second, the exact experimental conditions were not

sufficiently replicated, and including solution effects might be crucial.

The reason for the significant dynamic contributions, apart from the anharmonicity in
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Table 1: Isotropic HFCCs in MHz of the dimethylamine and the ethanal radical using the
HF3c-optimized and the PBEH3c-optimized structures at the B3LYP/def2-TZVPP level as
well as based on the respective AIMD-simulations. Dynamic contributions ∆dyn, i.e., the
difference of the HFCCs obtained with the optimized structures to their respective AIMD
simulations, are also shown.

Nucleus
Opt. structure AIMD simulation ∆dyn

HF3c PBEH3c |∆PBE-HF| HF3c PBEH3c |∆PBE-HF| HF3c PBEH3c
Ethanal radical

19O -26.8 -28.6 1.8 -26.5 -28.6 2.1 0.3 0.0
13C’ 40.1 42.8 2.7 40.2 43.0 2.8 0.1 0.2
13C” -85.2 -75.2 10.0 -88.6 -77.3 11.3 3.4 2.1

1H@C’ 338.3 311.0 27.3 352.1 330.5 21.6 13.8 19.5
Dimethylamine radical

14N 30.6 29.6 1.0 31.0 30.6 0.4 0.6 1.0
13C -30.7 -32.8 2.1 -31.5 -33.6 2.1 -0.8 -0.8
1H 67.2 73.2 6.0 69.5 76.4 6.9 2.3 3.2

Table 2: Isotropic HFCCs of the ethanal and the dimethylamine radicals obtained from the
PBEH3c-optimized structure (1) and based on the respective AIMD simulation (2) using
different levels of theory with the basis set EPR-III/def2-TZVPP-RI.

Nucleus
B3LYP [MHz] RI-B2PLYP [MHz] RI-CDD MP2 [MHz]

exptl.
1 2 1 2 1 2

Ethanal radical
19O -43.6 -43.1 -57.2 -60.8 -48.8 -45.5 —
13C’ 42.9 43.2 48.4 47.6 51.3 52.7 —
13C” -73.4 -75.4 -84.6 -84.1 -89.3 -111.1 —

1H@C’ 335.5 356.3 329.3 355.0 301.0 334.2 38166

Dimethylamine radical
14N 34.7 35.3 40.8 41.6 30.8 37.6 41.467

13C -32.0 -32.7 -36.4 -37.3 -35.3 -34.3 —
1H 80.0 82.6 77.8 80.3 63.9 71.8 76.767

the distribution of the structural parameters in the AIMD simulation, is the strong and

non-linear dependency of the HFCCs on the bond lengths, bond angles, and dihedral angles.

In order to investigate this relationship systematically, we start from a PBEH3c-optimized

structure of both the ethanal and the dimethylamine radical. Subsequently, we modify one
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structural parameter, i.e., the bond length, bond angle, or dihedral angle, at a time, and

compute the isotropic HFCCs of all nuclei for each structure using the hybrid functional

B3LYP, the double-hybrid DFT method B2PLYP, HF, RI-MP2, and CCSD with the basis

set def2-TZVPP.

The results for the ethanal radical are shown in Figure 3. Noteworthy is the strong de-

pendence of the isotropic HFCCs on the geometry, especially for the hydrogen nuclei. While

for most nuclei the dependency of the HFCC on the structural parameters is consistent

throughout the different methods studied here, the importance of correlation can be de-

duced from the differing results obtained with HF. This is most apparent in the dependency

of the 13C’-HFCC on the angle ∠(C-C=O) and the angle ∠(H-C=O), as well as on both bond

lengths. In general, the HF results deviate substantially from the results obtained with the

other methods. Thus, irrespective of dynamic contributions, HF computations are incapable

of correctly describing the spin density in ethanal and methods incorporating electron cor-

relation are required. Furthermore, strong non-linear dependencies indicate that dynamic

contributions will change the in silico results considerably.

Similar results are obtained with the dimethylamine radical in Figure 4, except for in the

description of the hydrogen atoms, where HF lies in between the other methods taking elec-

tron correlation into account. Both the carbon and the nitrogen nucleus, however, strongly

depend on the electron correlation.

4.2 Study of a set of organic radicals

In order to determine both the influence of electron correlation and dynamic contributions

on the accuracy of HFCCs, we computed the HFCCs based on AIMD simulations at the

PBEH3c-level of theory for a set of organic radicals shown in Figure 5.

10



Figure 3: Dependency of the isotropic HFCCs of the different nuclei in the ethanal radical on
the bond angles ∠(C−C = O) and ∠(O = C−H), the bond lengths δ(C-C) and δ(C-H) and
the dihedral angle. The PBEH3c-based geometry optimization leads to ∠(C-C=O) = 124.8◦,
∠(O = C−H) = 114.2◦, δ(C−C) = 1.496 Å, δ(C−H) = 1.111 Å and ∠(dihedral) = 180.0◦.
All computations were performed with the def2-TZVPP basis set. HF is represented by blue
diamonds, RI-MP2 by green triangles, CCSD by red circles, B3LYP by grey rectangulars,
and RI-B2PLYP by orange stars.

4.2.1 Convergence with the number of frames

Prior to comparing the results of all radicals, we analyzed in detail the convergence with

respect to the number of MD frames for which the HFCCs were computed. This is shown in

Figure 6 for a selection of three radicals (2, 3, and 11). The change of the average HFCCs

with the number of frames is considerably smaller than the standard deviation. Nonetheless,

converged results require more than 50 frames (5 ps). Noteworthy is radical 3, where a

significant standard deviation is apparent, especially in the HFCCs of the hydrogen atoms.
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Figure 4: Dependency of the isotropic HFCCs of the different nuclei (carbon, nitrogen,
and hydrogen) in dimethylamine on the N-C bond length and the ∠(C-N-C) bond angle.
The PBEH3c-based geometry optimization leads to a N-C bond length of 1.428 Å and a
∠(C-N-C) bond angle of 112.04◦. All computations were performed with the def2-TZVPP
basis set. HF is represented by blue diamonds, RI-MP2 by green triangles, CCSD by red
circles, B3LYP by grey rectangulars, and RI-B2PLYP by orange stars.

Figure 5: Organic radicals investigated in this work.
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This can be explained by a Jahn-Teller distortion of the CH-bonds, which will be discussed

in detail in Sec. 4.2.2.

(a) Radical 2 (b) Radical 3 (c) Radical 11

Figure 6: Convergence of the isotropic HFCCs at the B3LYP/EPR-III level with the number
of frames taken from the PBEH3c-AIMD simulation. The frames are sorted chronologically.

4.2.2 Molecular dynamic and electron correlation contributions

The isotropic HFCCs of all organic radicals shown in Figure 5 were obtained with the

PBEH3c-optimized structure and from the respective AIMD simulation with B3LYP, RI-

B2PLYP, and RI-CDD MP2, and can be found in Table 3. We also state experimental re-

sults where available. While a comparison to the experimental results is instructive, caution

is warranted as the AIMD simulations do not necessarily replicate the experimental condi-

tions. The experimental conditions include a variety of temperatures and solvents/matrices,

whereas all AIMD simulations were performed at room temperature in the gas phase.

Both dynamic contributions and electron correlation constitute a significant contribution

to the overall obtained HFCCs. Taking into account electron correlation is often impor-

tant and significantly changes the computed HFCCs. This is most apparent by comparing

the Hartree-Fock and RI-MP2 results with deviations of 26.9 MHz on average. In most

cases, including electron correlation significantly improves the agreement between the in sil-

ico HFCCs and the experimental results (see 14N-HFCC in radical 1 and 2, 19F-HFCC in
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radical 9, 11B-HFCC in radical 12, and the 1H-HFCCs in radicals 3, 8, and 12). This is

consistent with the results in Sec. 4.1. In this analysis, we disregarded the radicals with

extensive spin contamination leading to erratic results, i.e., radicals 5, 10, and 11. These

systems are better described at the double hybrid DFT-level, where similarly the correla-

tion contributions prove to be considerable, changing the computed HFCCs on average by

9.4 MHz. In most cases taking electron correlation into account via double-hybrid DFT

improves the obtained HFCCs with respect to the experimental results (see 14N-HFCC in

radicals 1, 2, 5, 6, and 11, 19F-HFCC in radical 9, 13C-HFCC in radicals 7, 10, and 11,

and 1H-HFCCs in radicals 7, 8, 10, 11, and 12). The larger magnitude of the correlation

effect on RI-MP2 than on RI-B2PLYP can be explained by the scaling factor of 0.27 present

in the B2PLYP-functional and by the fact that electron correlation is also partially included

in the hybrid-DFT ansatz.

The comparison to the hybrid DFT results obtained with B3LYP are somewhat more

complicated, as B2PLYP and B3LYP vary significantly in their HF-exchange contribution.

While the choice of optimal double hybrid functionals is challenging, recent work showcases

that a correct determination of the optimal HF exchange contribution as well as spin com-

ponent scaling in the second-order correlation contribution can significantly improve the

computational results.68 In this work, we chose the two well-established functionals B3LYP

and B2PLYP. While the comparison can not directly be related to the additional treatment

of electron correlation, B2PLYP significantly improves the in silico results in most cases

with respect to the B3LYP results (see, e.g., for the 14N-HFCC in radicals 1, 2, 5, and 11,

the 19F-HFCC in radical 9, the 13C-HFCCs in radicals 10 and 11, and the 1H-HFCCs in

radicals 1, 2, 3, 4, 7, and 10).

Overall, molecular dynamic contributions change the computed HFCCs by on average

10.7 MHz for B3LYP, 11.3 MHz for B2PLYP, and by 31.9 MHz for RI-MP2. For the latter

method we disregarded the systems with high spin contamination. While the dynamic con-

tributions are on the same order as the correlation contribution, a detailled analysis discloses
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that for a variety of systems the inclusion of dynamical effects is indispensable for the accu-

rate description of the system. The results of these systems are shown in Table 3 and will be

discussed in detail in the following. At this point we want to mention that the signs indicated

in the experimental results are not directly obtained from the experiment but are assigned

afterwards using theoretical results. As the absolute values match in the cases where the sign

obtained with B3LYP, RI-B2PLYP, and RI-MP2 deviates from the corresponding values in

the experimental column and since the three different methods lead to similar results, one

can assume the assignment of the sign to the experimental value to be erroneous.

The hyperfine splitting of alkane radical cations, namely of the ethane radical 3 and

the butane radical 4, represent special cases, where a Jahn-Teller distortion breaks the

symmetry of the six CH-bonds at the terminal methyl groups.69–71 This can be verified

experimentally by looking at the low temperature EPR spectrum of the ethane radical,

which exhibits a triplett splitting due to a localization of the spin density at two equivalent

hydrogen atoms.69,70 Moving to higher temperatures, dynamic contributions lead to a septett

splitting, as on average all six hydrogen atoms have become equivalent.69,70 This is not due

to a disappearance of the Jahn-Teller distortion, but due to this effect becoming dynamic.

Our results confirm this behavior, as two C-H bonds are shorter (1.07 ± 0.03 Å) than the

remaining four (1.13 ± 0.03 Å) in the AIMD simulation. We thus expect a significant change

in the obtained HFCCs when dynamics are considered via an AIMD simulation. We can

confirm this behavior in our computations of radical 3, where we obtain HFCCs close to the

experimental results. When moving towards higher temperatures, our computation confirm

the septett splitting.
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Table 3: Influence of dynamic contributions and electron correlation on the HFCCs in MHz of
radicals 1-12 in Figure 5. HFCCs are obtained (1) with the PBEH3c-optimized structure and
(2) from averaging 100 frames from PBEH3c-AIMD simulations at 298.15 K. Computations
employ the basis set EPR-III. Where available, experimental results are shown arising from
varying experimental conditions. Values in parentheses correspond to the contribution of
the electron correlation as described by second-order perturbation theory. RI-MP2 that are
erratic due to spin contamination are omitted and the respective (average) < Ŝ2 > is shown.

Nucleus
B3LYP RI-B2PLYP RI-CDD MP2

exptl.
1 2 1 2 1 2

Radical 1

14N 34.7 35.3 40.8 (-9.4) 41.6 (-9.6) 30.8 (-41.1) 37.6 (-36.3) 41.467

13C -32.0 -32.7 -36.4 (6.4) -37.3 (6.6) -34.1 (30.8) -34.3 (32.4) —

1H 119.9


 82.6

116.7 (3.7)


80.3 (1.9)

100.8 (-5.1)


71.8 (-3.4)



76.767

1H 0.1 0.0 (-1.8) -8.0 (-13.8)

The non-dynamic computations exhibit four and two equivalent hydrogen atoms, leading to two separate hydrogen HFCCs.

Averaging over these HFCCs results in 80.0 MHz (B3LYP), 77.8 MHz (B2PLYP), and 63.9 MHz (RI-CDD MP2) for the

hydrogen atom.

Radical 2

14N 34.5 34.9 40.8 (-9.1) 41.2 (-9.4) 63.7 (-8.5) 34.3 (-39.0) 40.167

13C’ -26.8 -27.1 -30.0 (7.4) -30.3 (7.8) -16.7 (42.1) -25.8 (35.0) —

13C”
70.0



 41.1

69.9 (1.5)


40.7 (0.3)

91.9 (24.5)


 37.3 (-4.2)

—

14.0 13.9 (-0.6) 50.0 (-9.8) —

1H’ 34.2 46.9 33.1 (0.0) 46.0 (1.2) 0.3 (-33.7) 37.7 (-5.6) 40.167

1H”
22.2



 2.2

21.1 (2.2)


1.8 (0.9)

8.5 (-5.4)


2.2 (3.8)



1.867

-2.8 -3.0 (0.5) -18.3 (-13.1)

In the non-dynamic computations, the C” and H” exhibit separate HFCCs. Averaging over these HFCCs results in 42.0 MHz

(B3LYP), 41.9 MHz (B2PLYP), and 71.0 MHz (RI-CDD MP2) for the carbon atoms, and 2.7 MHz (B3LYP), 2.2 MHz

(B2PLYP), and -9.8 MHz (RI-CDD MP2) for the hydrogen atoms.

Continued on next page
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Table 3 – Continued from previous page

Nucleus
B3LYP RI-B2PLYP RI-CDD MP2

exptl.
1 2 1 2 1 2

Radical 3

13C 20.5 8.6 17.7 (-2.6) 4.7 (-0.2) 6.3 (-14.1) -5.7 (-7.1) —

1H’ 471.0


 149.5

461.6 (4.8)


145.7 (1.0)

445.4 (23.2)


136.8 (12.7)

427.4/

1H’ -19.7 -23.3 (5.0) -26.2 (17.6) 141.069,70

The first experimental value is obtained from a 4K measurement, where a triplett splitting is observed. At higher temperatures,

the dynamics result in a septett splitting, i.e., an averaged HFCC over six equivalent hydrogen atoms, corresponding to the

second experimental value from a 77K measurement.69,70

Radical 4

13C’ -9.9 -10.9 -12.1 (0.5) -13.0 (9.4) -10.2 (8.2) -13.8 (6.7) —

13C” 8.9 13.1 7.3 (2.5) 11.6 (1.5) 6.4 (0.1) 0.0 (-12.3) —

1H’ 9.4 13.6 7.7 (3.1) 11.8 (4.0) 10.3 (20.1) 8.5 (15.6) –

1H” 214.2 154.3 197.5 (14.0) 142.3 (9.5) 179.7 (34.5) 125.9 (19.6) 171.869,70

20.9 39.8 18.6 (1.2) 36.1 (3.0) 14.0 (0.4) 30.5 (6.9) 22.469,70

Similar to radical 10, a Jahn-Teller distortion can be observed at low temperatures. From the PBEH3c-optimized structure,

two distinct hydrogen HFCCs of the methyl groups can be observed.

Radical 5

14N 110.3 110.6 117.2 (-20.6) 116.4 (-20.9)

< Ŝ2 > =
1.1997

< Ŝ2 > =
1.2345

114.972

o-13C 35.1 33.8 38.5 (-11.5) 37.5 (-14.2) —

m-13C -14.0 -11.9 -15.9 (10.2) -14.5 (12.1) —

p-13C -10.5 -12.1 -10.7 (8.3) -12.1 (9.2) —

o-1H 93.9 91.4 89.9 (4.6) 88.0 (3.5) 82.172

m-1H 35.5 31.2 32.2 (9.5) 28.4 (10.9) 31.372

p-1H 22.5 23.7 16.4 (1.8) 16.7 (-2.1) 24.172

Radical 6

14N 143.5 142.5 146.8 (0.5) 146.4 (2.5) 145.9 (-7.7) 134.1 (-15.8) 152.073

17O -58.2 -57.0 -68.1 (-7.0) -66.9 (-7.7) -70.9 (3.5) -69.5 (-3.5) 62.273

Radical 7

13C 79.8 114.6 85.1 (-26.0) 120.0 (-26.3) 59.3 (-101.5) 94.8 (-102.2) 107.474

1H -64.4 -58.4 -70.1 (13.0) -64.0 (12.5) -71.9 (49.8) -65.9 (48.6) 64.674

Continued on next page
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Table 3 – Continued from previous page

Nucleus
B3LYP RI-B2PLYP RI-CDD MP2

exptl.
1 2 1 2 1 2

Radical 8

17O -43.6 -43.1 -57.2 (20.5) -60.8 (16.7) -48.8 (79.4) -45.5 (83.2) —

13C’ 42.9 43.2 48.4 (-1.8) 47.6 (-2.3) 51.3 (-5.5) 52.7 (-4.2) —

13C” -73.4 -75.4 -84.6 (13.3) -84.1 (18.1) -89.3 (41.1) -111.1 (26.9) —

1H’ 335.5 356.3 329.3 (33.4) 355.0 (37.3) 301.0 (51.9) 334.2 (65.7) 38170

1H” -3.0 -0.6 -5.3 (3.4) 0.5 (7.9) -8.9 (-5.7) -23.8 (-9.5) -870

Radical 9

13C 728.0 737.1 745.6 (-22.5) 754.9 (21.8) 750.1 (-67.6) 762.2 (-64.9) —

19F 393.3 390.4 408.7 (-3.4) 406.5 (-4.5) 370.1 (-47.9) 398.0 (-16.9) 405.075

Radical 10

13C’ 314.5 296.5 321.6 (-38.4) 304.1 (-39.8)

< Ŝ2 > =
0.9399

< Ŝ2 > =
0.9459

301.576,77

13C” -11.9 -17.0 -17.3 (16.6) -22.8 (18.0) -24.176,77

1H’ 53.2 44.6 46.0 (12.8) 37.4 (13.5) 38.776,77

1H” 178.7 182.5 177.9 (2.8) 181.9 (2.2) 184.876,77

1H”’ 113.8 120.7 112.7 (-0.4) 119.6 (0.1) 111.076,77

Radical 11

13C -68.0 -70.2 -77.7 (19.3) -80.0 (21.8)

< Ŝ2 > =
0.9356

< Ŝ2 > =
0.9410

81.178

14N 23.1 23.1 27.2 (-9.1) 27.2 (-9.4) 28.678

1H 235.7 240.0 235.4 (8.3) 239.7 (7.3) 244.878

Radical 12

11B 363.7 342.0 366.5 (-14.9) 345.0 (-15.5) 357.7 (-43.1) 336.0 (-45.8) 35879

1H 42.5 35.6 39.5 (5.2) 32.4 (5.8) 26.1 (17.9) 19.4 (19.9) 3879

Averages ∆ (correlation contribution ∆corr., dynamic contribution ∆dyn)

∆corr. — 9.4 26.9 —

∆dyn 10.7 11.3 31.9 —

In the case of the butane radical cation, a triplett splitting is also observed experimentally

at 77 K. We can confirm this splitting in both our PBEH3c-optimized structure and in the

results based on our AIMD simulation, where we see two discrete hydrogen-HFCCs with
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the larger component arising from two hydrogen atoms leading to the observed triplett

splitting. While the inclusion of dynamic contributions leads to a reduction of the HFCCs

in the direction of the experimental values, they overshoot, which is in line with our room

temperature simulation resulting in a larger reduction.

Similarly, the HFCCs obtained from the PBEH3c-optimized structures of radicals 1 and 2

show that the spin density is primarily located at four of the six hydrogen atoms. An analysis

of the CH bond lengths shows in analogy to the ethane radical that two CH-bonds are shorter

than the remaining four (1.089 Å vs. 1.098 Å). When molecular dynamic contributions are

considered, this distortion is averaged resulting in HFCCs that match the experimental

results closely. It has to be noted, though, that similar results can be obtained from averaging

the six hydrogen-HFCCs obtained with the PBEH3c-optimized structure. We therefore

considered dynamic contributions in our overall analysis only by comparing to the averaged

results. The effect is analogous in radical 2.

Another example of extensive dynamic contributions is the methane radical cation 7.

Optimizing the structure leads to a planar configuration. When vibrational averaging is

considered, non-planar configurations also contribute to the overall HFCCs, which leads to

considerable changes of up to 40 % and to a better agreement with the experimental findings.

It is apparent, that the spin density at the carbon atom increases, whereas the spin density at

the hydrogen nuclei decreases considerably and consistently both for B3LYP and B2PLYP.

The results in Table 3 include dynamic contributions using the PBEH3c-AIMD simula-

tions. Especially when moving towards larger molecular systems, the computational cost for

such high-level MD simulations will constitute an impediment. While the results in Table 1

indicate that the computationally cheaper HF3c method leads to deviating results, these

can mostly be contributed to a differing optimized ground state structure (see Figures 1

and 2). The dynamic contributions, however, are approximated decently using the HF3c-

based AIMD simulations. We thus investigated whether adding the ∆dyn contribution at

the HF3c-AIMD level to the HFCCs obtained with a PBEH3c-optimized structure can be
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considered a viable pragmatic approach. This is shown in the following Table 4, where we

compare the results for radicals 1, 8, and 9 using this combined HF3c/PBEH3c-approach

to the respective HFCCs obtained from a HF3c- and a PBEH3c-AIMD simulation.

Table 4: Comparison of the HFCCs in MHz obtained from the PBEH3c-optimized structure
(statPBEH3c) and from HF3c- (dynHF3c) and PBEH3-simulations (dynPBEH3c) to the combined
HF3c/PBEH3c-approach (dyncomb ). The HF3c/PBEH3c approach consists of adding the
dynamical correction as obtained from an HF3c-AIMD simulation to the HFCCs obtained
with the PBEH3c-optimized structure.

B3LYP RI-B2PLYP
Nucleus statPBEH3c dynHF3c dynPBEH3c dyncomb statPBEH3c dynHF3c dynPBEH3c dyncomb

Radical 1
14N 34.7 35.7 35.3 35.0 40.8 41.9 41.6 41.2
13C -32.0 -30.6 -32.7 -32.8 -36.4 -34.8 -37.3 -37.3
1H 80.0 75.1 82.6 82.4 77.8 73.1 80.3 80.2

Radical 8
17O -43.6 -40.1 -43.1 -42.9 -57.2 -56.2 -60.8 -60.2
13C’ 42.9 40.9 43.2 43.1 48.4 45.5 47.6 50.8
13C” -73.4 -86.3 -75.4 -76.6 -84.6 -98.4 -84.1 -83.9
1H’ 335.5 379.9 356.3 350.5 329.3 383.8 355.0 333.4
1H” -3.0 -0.1 -0.6 -2.7 -5.3 -0.3 0.5 -2.2

Radical 9
13C 728.0 535.8 737.1 732.9 745.6 554.3 754.9 751.0
19F 393.3 489.1 390.4 389.6 408.7 503.4 406.5 403.6

The results obtained directly from the HF3c-AIMD simulation deviate significantly from

the respective PBEH3c-based results. This confirms the findings in Table 1. However, by

adding the dynamic correction as obtained from the HF3c-AIMD simulation to the HFCCs of

the PBEH3c-optimized structure, this error can be removed, and results decently incorporat-

ing the dynamical effect are achieved. A drastic example where this combined approach leads

to improved results is is radical 9, where the HF3c geometries exhibit significantly smaller

δ(C-F) and thus leads to strongly deviating results. The dynamic contribution, however, is

correctly incorporated, leading to good results using the combined HF3c/PBEH3c ansatz.

The results of radical 9 reinforce the necessity to perform high-level geometry optimizations

in order to obtain comparable results.
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5 Conclusion

In this work, we studied a variety of organic radicals analyzing both the effect of electron

correlation and dynamics simultaneously on the accuracy of the in silico HFCCs. In our

test set, electron correlation was shown to be a significant contributor, strongly improving

the obtained results. The importance of electron correlation can especially be seen when

comparing the HF results to the respective RI-MP2 HFCCs. Despite the functional B3LYP

leading to results agreeing reasonably well with experimental results, our findings show that

further inclusion of electron correlation as within double-hybrid DFT is beneficial and can

not be neglected.

While electron correlation has to be considered for accurate results, neglecting molecular

dynamic contributions can in some cases lead to incomparable results. In our test set,

this especially applies to alkane radicals where the Jahn-Teller distortion turns dynamic.

Therefore, we conclude that for reliable in silico HFCCs both effects must be considered.

When moving towards larger molecular systems using our established methodology, the cost

to compute the HFCCs taking electron correlation into account can be reduced with our

recently introduced efficient AO-based approach, whereas our results indicate that obtaining

the dynamic correction at a computationally cheaper AIMD-level using our HF3c/PBEH3c

approach can be sufficient in many cases to capture most of the dynamic contribution,

providing a good compromise between accuracy and computational cost.
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