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Zusammenfassung

Diese Dissertation untersucht den Einfluss stochastischer Effekte auf die komplexe In-
teraktionsdynamik in bakteriellen Gemeinschaften und nutzt dafür neu entwickelte ex-
perimentelle Methoden und theoretische Modellierung.
In Mischung interagieren Populationen verschiedener Bakterienstämme sowohl koop-
erativ als auch kompetitiv. Im Rahmen dieser Arbeit wurde die räumliche Interak-
tionsdynamik des Colicin E2 Modellsystems untersucht, das aus toxinproduzierenden,
-sensitiven und -resistenten Bakterien besteht. Hierbei findet die Toxinproduktion
innerhalb der produzierenden Population jedoch nicht in jedem Individuum sondern
nur durch zufällige Phänotypwechsel von Nichtproduzent zu Produzent statt. Die re-
sultierende phänotypischen Heterogenität ist evolutionär notwendig, da produzierende
Zellen bei der Toxinfreisetzung sterben.
Im Rahmen dieser Arbeit wird das Colicin E2-System zunächst ausführlich als konkretes
Beispiel komplexer mikrobieller Systeme diskutiert, wobei besonders physikalische Mod-
ellierungsansätze herausgearbeitet werden (Kapitel 2).
Anschließend wird die Entwicklung des experimentellen Ansatzes dargestellt, der au-
tomatisierte Zoom-Fluoreszenz-Mikroskopie mit nanolitergenauer Probenvorbereitung
kombiniert (Kapitel 3). Unterstützt von mathematischer und computergestützter Mod-
ellierung (Kapitel 4 und 5) wird dieser experimentelle Ansatz auf das Colicin E2 System
angewandt.
Zunächst wird damit die Interaktion von toxinproduzierenden und -sensitiven Stämmen
untersucht (Kapitel 6), wobei der experimentelle Ansatz es ermöglichte, die Interak-
tion von der Fast-Einzelzellebene bis hin zu makroskopischen Kolonien zu untersuchen.
Dadurch konnte die Interaktionsdynamik in eine frühe stochastische und späte deter-
ministische Phase unterteilt werden, wobei zum ersten mal gezeigt werden konnte, wie
die stochastische Toxinproduktion Bistabilität im - typischerweise einzigartigen - Wet-
tbewerbsausgang induziert. Bei hohen Zellzahlen wurde eine durchschnittliche phänoty-
pische Heterogenität beobachtet, die die deterministische Makro-Dynamik bestimmte.
Durch die Erweiterung des Interaktionssystems um einen weiteren, resistenten Stamm
(Kapitel 7) wurde das ”Trittbrettfahren” als weitere Interaktionsform eingeführt, da
der neue Stamm die Toxinwirkung ausnutzt ohne selbst zur Produktion beizutragen.
Es konnte gezeigt werden, dass die anfängliche relative Positionierung der Zellen nicht
nur Auswirkung auf die frühe stochastische Phase hat, sondern wegen einer Distanzab-
hängigkeit des ”Trittbrettfahrens” langanhaltend ist.
Abschließend wird die Arbeit im breiteren Zusammenhang diskutiert und mögliche
zukünftige Forschungsansätze aufgezeigt (Kapitel 8).
Die Haupterrungenschaft dieser Arbeit ist der erste experimentelle Nachweis, dass die
Interaktionsdynamik im Colicin E2 System von Stochastizität in der Toxinproduktion
beeinflusst wird - ermöglicht durch die neu entwickelte experimentelle Methode.
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Abstract

This dissertation investigates the influence of stochastic processes on the complex in-
teraction dynamics in bacterial communities using newly developed experimental and
theoretical methods.
In mixed bacterial communities, populations of different bacterial strains interact with
each other using competitive and cooperative traits. In this thesis, the spatially extended
interaction dynamics in the Colicin E2 model system are investigated. This model sys-
tem comprises toxin producer, sensitive, and/or resistant strains. Importantly, toxin
production is subject to stochastic phenotype switches from non-producer to producer
phenotype. The resulting phenotypic heterogeneity is crucial because toxin producing
cells die in releasing the toxin.
In this thesis, the colicin E2 system is reviewed in more detail as a concrete example
of complex microbial systems, which are discussed over various physical scales with a
particular focus on modeling approaches (chapter 2).
Then, the development of a new multi-scale experimental approach is presented (chapter
3). This approach combined automated fluorescence time-lapse microscopy with zoom-
ing functionality and nano-liter precision sample preparation. In combination with
mathematical and computational modelling of the bacterial interaction system (chap-
ters 4 and 5), this approach was applied to the colicin E2 system.
First, focusing on the two-strain interaction between toxin producer and sensitive strain
(chapter 6), the experimental approach facilitated tracking of the interaction dynamics
over various scales from initial near single-cell level to later macroscopic colonies. This
enabled to disentangle the initial stochastic from the later deterministic dynamics. In
doing so, it was shown for the first time, how stochasticity in toxin production can
induce competition outcome bistability. Furthermore, at large cell numbers, the degree
of phenotypic heterogeneity was found to determine the macroscopic dynamics.
Then, the interaction system was extended with a third, resistant strain and investi-
gated using the same methods (chapter 7). The third strain introduced cheating as
a new interaction mechanisms as it exploited the toxin action without contributing to
the production. Subsequently, it was shown that the relative positioning does not only
play a role in the initial stochastic phase but plays an important role during the later
deterministic phase due to distance dependent cheating.
Finally, the thesis concludes with discussing the presented work in a broader context
and giving possible further research directions (chapter 8).
In conclusion, the thesis presents the first experimental proof of the relevance of stochas-
tic toxin production for bacterial colicin E2 competition dynamics by using a new ex-
perimental approach for the multi-scale investigation of bacterial systems.
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1. Introduction

Background: The mixed bacterial communities studied in this thesis are complex

biological systems. As such, they contain a hierarchy of various physical scales and

description levels in which collective phenomena emerge that impede näıve extrapola-

tion between scales [1]. Similar emergent phenomena are known in physics [2–4] that

traditionally tries to explain phenomena by their fundamental constituents and their

interactions [5]. Consequently, in biophysics, one tries to understand the fundamental

processes governing the biological phenomena in terms of a few simple principles using

the tools from physics in manageable model systems [6–8].

Mixed bacterial communities studied here are comprised of single bacterial cells. Each

of these cells is out of equilibrium because it takes up energy from its surrounding;

stochasticity arises through noise in complex biochemical reaction networks (including

gene regulatory networks); and cells interact either indirectly, e.g. via their influence

on the environment, or directly, e.g. via secretion and sensing of molecules. Therefore,

in the terms of physics, these systems could be described as stochastic non-equilibrium

interacting many-particle systems [9–11].

In biology, one of the greatest challenges is to predict the emerging population dynamics

that govern how the composition of a community evolves over time [12]. Understand-

ing the underlying interaction mechanisms is thought to enable precise manipulation

of host-associated microbiota for medical purposes in the future. Extensive research,

both experimentally and theoretically, has shown how models for such interactions can

be formulated from experimental data [13] and how interactions between microbes and

with the environment influence the population dynamics [12].

The Colicin E2 model system: Colicin model systems have long been used to study

the fundamental properties of microbial ecological competition [14] and typically consist

of a toxin producing Escherichia coli (E. coli) strain that is mixed with toxin-sensitive

and/or toxin-resistant E. coli strains.

In the simplest case, many individuals of the interacting species occupy the same habitat

and spatial degrees of freedom can be neglected - conditions called well-mixed. Then,

the population dynamics can be formulated in terms of ordinary differential equations

and the long term state is determined by the fixed points of the system. Using the colicin

system as a bacterial ’Rock-Paper-Scissor’-model in vitro [15] it was shown that under

well-mixed conditions only a single strain could survive while the spatially extended

1



1. Introduction

competition allowed coexistence. Consequently, well-mixed models of the population

dynamics were replaced by spatially extended models. Using these models to investigate

the interaction dynamics and its properties, such as coexistence or stability, revealed

that the interactions allowed interesting spatio-temporal patterns to form [15,16].

In addition to its role as a model system for microbial ecology, ColicinE2 expression is

subject to phenotypic heterogeneity [17]. This phenotypic heterogeneity describes the

presence of multiple phenotypes in isogenic populations [18] and arises through noisy

gene expression in complex, often non-linear genetic circuits which creates multiple sta-

ble points in the high-dimensional phenotype space [19]. In ColicinE2 expression, only

a subpopulation produces the toxin [17,20,21] and single cell fluorescence microsopy re-

vealed that individual cells switch into the toxin producing state stochastically [20,21].

Heterogeneity is crucial because toxin expression is accompanied by cell death of pro-

ducing cells [22].

Phenotypic heterogeneity has gained increased attention in the last two decades due

to the advancement of experimental techniques such as single-cell fluorescence mi-

croscopy [23, 24]. Furthermore, phenotypic heterogeneity is increasingly considered in

computational models of the ecological competition [21, 25, 26]. However, most exper-

imental studies on bacterial competition focused on macroscopic colony expansions,

e.g. [15,25], and therefore did not investigate the relevance of a phenotypic substructure

for competition. While the macroscopic limit and the concomitant mean-field approach

is often a justified description level, it is well known that even for large cell numbers

small fluctuations can lead to surprising phenomena such as population collapse [27].

Central questions of this thesis: Taken together, the influence of the phenotypic

heterogeneity and the stochastic phenotype switching dynamics on the Colicin compe-

tition dynamics were largely unexplored prior to this thesis. In particular, the following

questions were unanswered: Do stochastic effects in toxin production influence the com-

petition dynamics and the competition outcome? Can one disentangle stochastic and

deterministic effects of competition? Can one observe a transition from the random

micro- to the deterministic macro-regime with increasing cell numbers? How does phe-

notypic structure of the C strain population influence the competition outcome? How

is the competition altered if the third, resistant strain is added? How does the initial

positioning influence the ensuing competition dynamics?

Having answers to these questions is important as it tests if the often proposed crucial

stochasticity and heterogeneity is actually relevant in the context of bacterial compe-

tition [18]. Furthermore, it might help to choose appropriate description levels for the

system of interest. Describing a system on the level of individuals, although it obeys

average population behavior would be a waste of resources. On the other hand, a priori

assuming average population behavior although fluctuations have a huge influence, can

2



be dramatic. For example, persister cells form a phenotypic subpopulation by stochastic

phenotype switching and can lead to a relapse after antibiotic treatment [28].

Therefore, the main goal of this thesis was, first, to develop an experimental protocol

that allows to study the interaction of mixed bacterial communities on multiple scales;

starting from well-defined initial conditions near the single cell level to macroscopic bac-

terial colonies. Second, this protocol should then be applied to the ColicinE2 system to

answer the questions above.

Outline of the thesis: In chapter 2, I complement the introductory background in-

formation given in this first chapter and revise core concepts needed to understand the

work presented in this thesis. In particular, I discuss how a hierarchy of description

levels arises naturally in mixed bacterial ecosystems. In chapter 3, I present the multi-

scale experimental protocol that combines high precision nanoliter sample preparation

and automated fluorescence time-lapse microscopy for the anaylsis of bacterial inter-

actions. Then, I will derive the stochastic two-phenotype population dynamics within

the pure colicin producer populations, show how stochasticity leads to large deviations

from deterministic dynamics due to extinction, and derive a formula for the population

survival probability (chapter 4). Afterwards, in chapter 5, I develop a theoretical model

of the mixed-community competition dynamics, formulate the model in term of master

equations, and describe how the system was solved numerically. Chapter 6 focuses on

the two-strain competition of a toxin-producer and a toxin-sensitive strain. There, I will

show how the combined effect of early stochastic toxin production dynamics and macro-

scopic division of labor gives rise to multi-stable competition outcomes. After that, in

chapter 7, I present the study of an extended interaction system of three species (toxin-

producer, toxin-sensitive and toxin-resistant). This investigation showed, how locally,

the competition dynamics can differ significantly compared to the average global dy-

namics and how cheating as a higher-order interaction comes into play. Finally, chapter

8 concludes with discussing the results in a broader context and gives an outlook for

further research directions.

Achievements: In conclusion, the main achievements of this thesis are two-fold. First,

I developed a multi-scale experimental setup to investigate bacterial competition from

the near single cell to the macroscopic level. Second, using this setup to investigate

the Colicin E2 competition system, I could disentangle the stochastic and deterministic

processes governing the competition dynamics and show for the first time experimentally

that stochastic toxin production can induce competition outcome bistability. Prior to

these efforts, the experimental verification of the importance of stochasticity in the

context of bacterial competition was lacking.
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2. Concepts - From molecules to ecology1

”All things are made of atoms, and [...] everything that living things do

can be understood in terms of the jigglings and wigglings of atoms.” [30]

Richard P. Feynman

The above citation reflects the reductionist view that, ultimately, every natural phe-

nomenon can be explained by or reduced to its constituent parts; a view that wide

spread in physics [5]. In turn, this view motivates an ”upward causation” [31] in which

macroscopic phenomena can be extrapolated from its microscopic constituents. Seem-

ingly contradictory to that view, it is increasingly acknowledged that emergent system

properties that cannot be näıvely extrapolated from its individual constituent parts [32]

play an important role in both physical and biological phenomena [1–4, 31]. Examples

of reducible and emergent phenomena from both physics and biology are illustrated in

figure 2.1.

Although direct reduction to the microscopic components is not possible for emergent

phenomena, the relevant information is nevertheless contained in the microscopic units

and their interactions. Therefore, it is crucial to study complex systems, such as the

bacterial competition systems investigated in this thesis, on various scales. Only investi-

gating isolated microscopic units does not allow to observe the rich emerging properties

while at the same time, only focusing on macroscopic observables prevents mechanistic

insights.

In revising the most important concepts on which this thesis is based, I will show, how

a hierarchy of description levels naturally arises for bacterial systems. This hierarchy

includes gene regulatory networks, single cells, genetically identical populations, and

emergent multi-cellular properties. After discussing this hierarchy for microbial sys-

tems in general, I focus on the colicin E2 system under investigation. In doing so, I will

particularly focus on interactions between microbial (sub-) populations. Additionally,

I will highlight studies to which I contributed but that were not the main focus of this

thesis.

In addition to the colicin E2 system, I will present biofilm formation as an example for

emergent properties in microbial systems.

1This chapter is largely based on publication [B2]. Images are partly reused and modified under
Creative Commons License (CC BY 3.0). For more information see [29].
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Figure 2.1.: Examples of reducible and emergent phenomena from physics and biology

a Physics: The macroscopic pressure of a gas can be reduced to collisions of individual micro-

scopic particles with the container boundary. b Biology: Macroscopic cell culture growth can

often be reduced to microscopic reactions of single cells, e.g. cell reproduction and cell death.

These following examples illustrate emergent phenomena that cannot be predicted from the

individual constituents. c Physics: If the temperature drops below a critical value, ferro-

magnetism emerges in a collective interaction of individually independent spins that usually

should be able to freely rotate. d Biology: Individually non-migrating cell types can interact

to collectively migrate [33,34].
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2.1. A hierarchy of description levels for bacterial systems

2.1. A hierarchy of description levels for bacterial

systems

Complex bacterial systems can be understood using a hierarchy of physical description

levels that includes (1) genetic networks, (2) single cells, (3) populations, and (4) emer-

gent multi-cellular properties (Fig. 2.2).

In going from smaller to larger scales, many details can often be neglected, e.g. molecular

details of the gene network can be averaged to an effective single cell response (reduc-

tionist view). However, in other cases, interactions of single cells on the population

level give rise to qualitatively new emergent properties, such as biofilm formation [35]

or collective motion [34] in multi-cellular communities.

A B

C

D

Genetic networks Emergent multi-cellular
propertiesSingle cells Uniclonal populations

- Ecology
- Biofilm properties
- Collective motion
- ...

Level of description

Molecules
Bacterial

communities

Figure 2.2.: A hierarchy of description levels in complex bacterial systems

Bacterial systems can be described using different levels of abstraction. Gene regulatory

networks are the fundamental control of single cells, that aggregate to genetically identical

populations. Individual cells of the same or of other (sub-)populations can interact giving rise

to novel, emergent phenomena, such as biofilm formation [35] or collective motion [34].

2.1.1. Gene regulatory networks

Fundamentally, living organisms are controlled by the genetic program encoded on the

DNA. According to the famous central dogma [36] the information of the DNA is con-

verted into biochemically active proteins that constitute the cellular machinery. The

classic model of transcriptional regulation considers operons consisting of regulatory re-

gions and structural genes (see Fig. 2.3 a). A regulatory region comprises two kinds of

domains, the promoter and the operator. The promoter is the binding sequence for the

RNA polymerase that synthesizes the messenger RNA of the structural genes which will

7
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a

structural genes

operon

gene A gene Cgene Boperatorpromoter

activator repressor

regulators

regulatory region

RNA-
polymerase

reporter gene

operon

gfp geneoperatorpromoter

activator repressor

regulators

regulatory region

RNA-
polymerase

b

Figure 2.3.: Transcriptional regulation and reporter genes

a Operons are DNA sequences that consist of structural genes and the regulatory region to

which regulatory proteins bind. These proteins regulate transcription of the structural genes

into mRNA by the RNApolymerase. b Replacing the structural genes with a gene encoding a

fluorescent protein allows to monitor its expression dynamics. Due to the same regulation, the

dynamics of the reporter gene are expected to mirror the dynamics of the original structural

genes.

then be translated into proteins [37]. Operators are binding sites for activating or re-

pressing regulator proteins that can enhance or decrease the efficiency of the polymerase

strongly. Cooperativity in regulator binding can thereby introduce complex nonlinear

effects [38]. Regulator proteins themselves are regulated in a similar fashion giving rise

to intricate interconnections. However, gene expression is regulated not only transcrip-

tionally [37], but all along the protein synthesis pathway [39] which further increases

the complexity.

Mathematical modelling

Collectively, the interconnected genes and regulatory proteins build large networks that

can be modeled mathematically by differential equations [40]. In general, a vector of

chemical species abundances x is modelled in terms of its biochemical reactions that

can be described by non-linear functions F(x, t) of the chemical species.

d

dt
x = F(x, t) (2.1)

The complexity of these highly interconnected signaling pathways can give rise to emer-

gent dynamical properties [41]. Despite this complexity, the relevant information is

often only contained in sub-networks which justifies a modular analysis [42]. So-called

network motifs, recurring interaction circuits from which the networks are built, are

an useful concept that simplifies theoretical analysis and enables computational ap-

proaches [42–45]. Interestingly, even such small genetic circuits can contain rich dy-

namic behavior such as oscillations [46], multi-stability [47,48], and excitability [49] and
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can be mathematically analyzed using methods from nonlinear dynamics.

In addition to nonlinearities of biochemical reactions and the inherent complexity of net-

works, noise in gene expression due to fluctuations in molecules numbers and stochastic-

ity of biochemical reactions [50, 51] can lead to qualitatively different behavior in iden-

tical gene networks [48]. Consequently, in modeling the gene regulatory networks, this

stochasticity has to be considered [7]. The temporal evolution of random state probabil-

ity distributions can be described analytically using chemical master equations [52,53].

Master equations are a versatile approach in the description of stochastic processes and

can be applied to various levels of complexity (see equation 2.4). In this thesis, chemical

master equations will be used to derive the stochastic population dynamics of colicin

E2 producers (section 4). Often master equations can only be solved numerically using

a stochastic simulation algorithm (SSA) such as the Gillespie algorithm [54].

In addition, gene regulatory networks can be extended using additional information,

such as data on metabolic pathways [55], for example.

Experimental techniques

A large number of experimental techniques enables the modification of genetic se-

quences [56,57]. These techniques include but are not restricted to gene deletion (knock

outs), gene insertion, and modification of individual bases and can be used to study the

gene networks in vitro and in vivo [56]. A gene knockout denotes the deletion or other-

wise inactivation of a certain gene and is used to study gene function [56]. Insertion of

new genes is necessary to achieve new functionalities, such as antibiotic resistance for

experimental selection or making an organism experimentally accessible. In particular,

using the green fluorescent protein (GFP) and its derivatives [58,59] as reporter proteins

enables to monitor protein expression dynamics in living cells. The idea is to insert the

gene encoding a fluorescent protein into a genetic sequence that is subject to the same

regulation as the functional protein that is to be monitored [60] (see Fig. 2.3 b). Con-

sequently, expression of the reporter gene should reflect the expression of the monitored

protein and can be measured using fluorescence microscopy [61]. Furthermore, sequence

changes can alter the sequence-specific binding of DNA-binding molecules and thereby

changes biochemical reaction rates [62].

These experimental investigation tools combined with theoretical modeling enabled the

creation of synthetic regulatory motifs. The repressilator [46] and the genetic toggle

switch [47] are beautiful examples for these efforts.
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2.1.2. Single cells and phenotypic heterogeneity

At a the next level of abstraction, single cells and its machinery constitute the funda-

mental self-replicating units of living matter [56,63] that can be viewed as the hardware

on which the DNA encoded instructions run. While this computerized view brings to

mind deterministic input-output dependencies, phenotypes (cell states) can vary signif-

icantly between genetically identical cells [64] because of multi-stability in gene regula-

tion, stochasticity in biochemical reactions, and other factors [26]. As a consequence,

one can observe phenotypic heterogeneity, the presence of multiple phenotypes in pop-

ulations of genetically identical cells under the same environmental conditions [18].

Phenotypic heterogeneity necessitates single cell experimental methods. In contrast

to bulk methods, single cell methods unravel cell state distributions either in form of

cross-sectional data or longitudinal data. Cross-sectional data, or cell state distribution

snapshots, are commonly obtained by single cell ’omics’ [65] or flow cytometry [66].

While these high-throughput methods generate huge sample sizes, their mechanistic in-

sight is limited due to missing dynamical information of individual cells. Time-lapse

methods, on the other hand, monitor individual cells to generate time traces (longitu-

dinal data), mainly by single cell fluorescence microscopy [23,24,67].

It is suitable to think of a cell state as a point in a high dimensional space whose di-

mensions represent the concentrations of all outputs of the underlying gene regulatory

network [19]. In the famous ’epigenetic landscape’ abstraction, a potential landscape

is assigned to these cell states with minima of the potential representing distinct cell

fates [68]. Originally developed for differentiation in eukaryotes, generalizing this ab-

straction to various biological scales and incorporating stochasticity [69] it can be used

to understand the discreteness of bacterial phenotypes as minima in the potential land-

scape. Additionally, it underlines emergent qualitative differences between phenotypes

that cannot be linearly extrapolated from continuous cell state measures.

Illustrative example: the genetic toggle switch

Since phenotypic heterogeneity is an important concept in this study, its molecular

origins are illustrated here with the genetic toggle switch. The genetic toggle switch [47]

is a hallmark study in the understanding of genetic circuits and genetic bistability. Given

two mutually repressing regulatory proteins i and j, of which one additionally controls

a reporter gene, the dynamics were formulated for both i and j assuming cooperative

repression and degradation of repressor molecules:

∂txi =
αi

1 + xβij
− xi (2.2)
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Phenotypic heterogeneity
#

Expression

xB

x A

A B R

stable
unstable

stable
Bistable gene networka b

Figure 2.4.: Bistability in gene regulation leads to phenotypic heterogeneity

a Nullclines of genetic toggle switch dynamics (eq. 2.2) show two stable and one unstable

fixpoint. Insert shows the mutually repressing scheme between repressors A and B and the

reporter R. Figure reproduced from reference [47] with αA = αB = 5 and βA = 1.5 and

βB = 3. b Phenotypic heterogeneity arises through simultaneous occupation of high and low

expression states.

It is revealing to analyze the dynamics in terms of its fix-points that can be found by

plotting the nullclines (∂txi = 0, ∂txj = 0). Under the right choice of parameters αi and

βi, the system exhibits bistability, i.e. two stable fix-points (high and low expression)

that are separated by an unstable fix-point in between (see Fig. 2.4 a). Depending

on the reaction parameters αi and βi stable and unstable fixpoint can be so close that

fluctuations in gene expression can lead to the population of both states simultaneously,

i.e. phenotypic heterogeneity (see Fig. 2.4 b).

While the genetic toggle switch is only one particular realization of bistable genetic

networks, it nicely illustrates how non-linear coupled genes and gene expression noise

lead to phenotypic heterogeneity. Section 2.2 discusses the phenotypically heterogeneous

colicin E2 system which is controlled by the bistable SOS response system which carries

a motif similar to the genetic toggle switch.

2.1.3. Emergent collective properties

In accumulations of cells, qualitatively new collective phenomena can emerge from the

interactions of cells that can not be näıvely extrapolated from the individual behavior.

This is true for populations of identical cells and even more so for (phenotypically) het-

erogeneous populations.

In homogeneous populations one way to organize collective behavior is via communi-

cation (see Fig. 2.5 a). This direct form of interaction is often realized by quorum

sensing in which bacteria collectively monitor their environment to coordinate their

behavior [70]. In general, communication via protein secretion and sensing enables ver-

satile social behaviors [71].
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+
Individual
behavior

Collective
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Phenotypic
heterogeneity

Quorum
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a b c

Figure 2.5.: Various forms of collective action in microbial systems

a Communication by quorum sensing allows coordination in homogeneous populations. b

Mixing of genotypes can induce collective behavior. c In uniclonal populations similar behavior

can be achieved by phenotyic heterogeneity.

In heterogeneous populations, either through mixing of different genotypes or by phe-

notypic heterogeneity (see Fig. 2.5 b & c), the cell collective can profit from the diverse

functionalities that neither of the individual genotypes or phenotypes could achieve

alone. In fact, in genetically identical populations phenotypic heterogeneity is the only

way to achieve complex behavior such as division of labor or bet hedging [18, 72]. One

of the most complex examples of collective microbial phenomena is biofilm formation

in which motile, competent, sporulating, and biofilm matrix-producing phenotypes act

collectively to achieve a primitive form of multi-cellularity [35, 73–76]. Section 2.4 dis-

cusses a recent study in which a phenomenological model is used to disentangle the

influence of various biofilm building blocks.

Interestingly, while the stochastic decision for a phenotype is a single cell event and

generally independent of all other cells [26], only on the population level bacteria can

utilize the versatile behavior. The impact of most collective behaviors become only evi-

dent in competition with other populations within mixed communities or under certain

environmental conditions. Thereby, the complex interactions between individual bacte-

ria create effective fitness differences on the population level from which the community

composition emerges [77, 78]. A general discussion of ecological interactions can be

found in section 2.3. One particular form of direct ecological interactions, competition

by bacterial toxin production, will be discussed in more detail in section 2.2.

Taken together, many microbial populations feature emergent collective behaviors that

cannot be extrapolated from individually independent cells, but fundamentally origi-

nate from the underlying gene regulatory networks. As such, in investigating complex

microbial systems, the relevant scales range from molecules to ecological interactions.

12



2.2. The colicin E2 system

2.2. The colicin E2 system

Figure 2.6.: A hierarchy of description levels in the colicin E2 system

The expression of colicin E2 is controlled by the stochastic, bistable SOS response system.

This leads to phenotypic heterogeneity of reproducing and toxin producing cells whose toxin

production can be visualized using fluorescence protein expression (green). On the population

level, a balanced division of labor enables toxin production and secretion while being able to

reproduce at the same time. Ecologically, this enables the colicin population to succeed in

competition.

The bacteriocin colicin E2 is a bacterial toxin produced by some Escherichia coli strains

to kill other bacteria in order to gain an ecological advantage in competition for resources

[22]. In the spirit of the previous section, the colicin E2 system investigated in this

thesis can be illustrated best using a hierarchy of description levels (see Fig. 2.6). The

noisy and bistable SOS response system of E.coli controls the expression of colicin E2

transcriptionally [79, 80]. This bistability leads to phenotypic heterogeneity between

single cells [81,82]. Depending on the external stressor that can tune the SOS response,

the collective population response of to toxin production varies [83]. This population

response then determines the ecological interaction with other population in mixed

communities [84].

In the following, these aspects will be discussed in more detail.

2.2.1. Gene regulation of the colicin E2 operon

The colicin E2 system comprises three genes, cea, cei and cel that encode toxin, immu-

nity and lysis proteins, respectively (see Fig. 2.7 a) [22] . Coexpression of cea and cei

is imperative to ensure toxin-immunity protein complex formation that prevents Cea’s

DNA degrading activity [22,86] All three genes are encoded on plasmids, circular extra-

chromosomal DNA, and transcription is controlled via the SOS response system [22].

The SOS stress response system features two mutually inhibiting proteins LexA and
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Figure 2.7.: Gene regulation of colicin E2 and reporter plasmid

a The colicin E2 system comprises three genes, cea, cei and cel that encode toxin, immu-

nity and lysis proteins, repectively. Transcriptionally, these genes are controlled by the SOS

response system, and translation of mRNA is post-transcriptionally regulated by the global

regulator CsrA. b Genetic engineering yielded a reporter plasmid pMO3 in which cea and cel

genes are replaced by genes encoding for yellow and cyan fluorescent proteins, respectively. c

The original strain BZB1011 carries only the pColicin E2-P9 plasmid and the CpMO3 strain

additionally carries the pMO3 plasmid. (Images are modified and reused from [20] under

Creative Commons License (CC BY 4.0). For more information see [85].)

RecA, reminiscent of the genetic toggle switch. Ideally, in absence of stress, binding of

the repressor LexA to the promotor sites represses transcription of genes under its con-

trol [81]. In case of DNA damage, RecA proteins are activated by single-stranded DNA

and can cleave the LexA proteins bound to DNA [87] thereby initiating transcription.

However, the SOS system is subject to gene expression noise which results in hetero-

geneous expression [81, 82]. Here, the heterogeneous expression serves an important

biological function because cel gene expression leads to release of the Cea-Cei complex

into the environment via cell lysis [88] and lysis causes the death of highly expressing

cells [89]. Consequently, a population, in which all cells deterministically produce the

toxin and lyse in doing so, dies out. While in absence of external stress, small frac-

tions of the population produce the toxin due to noisy repression, the expression can

be triggered by induction of DNA damage via antibiotic agents such as Mitomycin C

(MitC) [83] or UV radiation [17].

In addition, the colicin E2 system features two more regulatory subtleties. First, due

to two transcriptional terminators T1 and T2 (see Fig. 2.7 a), mRNAs of two differ-

ent lengths are transcribed, a long mRNA containing all three genes and a short one

lacking the lysis gene [79,90]. However, this will be neglected for the remainder of this

thesis. Second, translation of the cel gene transcript is repressed by binding of the

global carbon storage regulator protein CsrA to the Shine-Dalgarno (SD) sequence [90].

After simulations predicted the ability of this post-transcriptional regulation to delay

the time-point of cel [91], a combined experimental and theoretical study confirmed this

prediction [92]2. In particular, the study demonstrated how the timing of ColicinE2 re-

2The author contributed to this work listed in the publication list as [G1]
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lease is controlled by CsrA sequestering nucleic acids, such as the CsrA binding sRNAs

CsrB and CsrC [93] and single stranded DNA (ssDNA). Thereby, the study introduced

ssDNA as a gene regulatory element [92].

2.2.2. Phenotypic heterogeneity in colicin production

Abstracting from the gene regulatory details, recent single cell studies analyzed the col-

icin expression dynamics via fluorescence time-lapse measurements using fluorescence

reporter genes [20,21,81,92].

In order to study the expression of cea and cel separately in individual cells, a reporter

plasmid was genetically engineered in which both genes were replaced by genes encoding

for yellow and cyan fluorescent proteins, respectively [20]3 (see Fig. 2.7 b). Transforma-

tion of the resulting reporter plasmid into the original colicin strain BZB1011 E2C [15]

yielded the strain CpMO3 (see Fig. 2.7 c and section 3.2.1).

Single-cell time-lapse fluorescence microscopy of this strain revealed the dynamics of pro-

duction and release [20]. In these phenotypically heterogeneous populations, individual

cells exhibit generic fluorescence time-traces. Figure 2.8 a illustrates how a cell starts at

a basal fluorescence level, then starts to produce the fluorescence protein, i.e. the toxin,

until it reaches a maximum and drops abruptly due to cell lysis. In comparing many

individual cell traces (Fig. 2.8 b), one sees that toxin production happens after a lag

time over a broad time window. The lag time is due to a time delay between addition of

the agent and actual induction of toxin production by external stress with MitomycinC.

From the individual curves, one could obtain the distribution of switching time-points

to the toxin producing state. Comparing the average and width of these switching

time distributions revealed stress-dependent tunable response dynamics, ranging from

basal expression to synchronized responses [20] (see Fig. 2.8 c). With synchronizing

population behavior, the average fluorescence intensity shows increasingly peak-shaped

behavior. In section 4.1.1, data from this study is reevaluated in order to formulate a

stochastic model of the switching dynamics.

Furthermore, the genetically engineered pMO3 plasmid and modifications thereof were

used to determine the gene expression noise in the colicin operon [94]4.

Studies of other groups relied on similar approaches and, among other things, explicitly

quantified the role of autoinduction on the phenotypic heterogeneity [95] and stochastic

state-switching between toxin production and reproduction [21].

A common feature of these studies on the phenotypic heterogeneity in the colicin E2

system is the binary classification of cells into producing and non-producing phenotypes

3The author contributed to this work listed in the publication list as [M1]
4The author contributed to this work listed in the publication list as [G2]
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Figure 2.8.: ColicinE2 expression dynamics

a YFP fluorescence expression as a proxy for toxin expression increases over time, until it

reaches a maximum and drops sharply due to cell lysis in the CpMO3 strain. b Multiple cell

traces (blue lines, N = 100) reveal a broad temporal distribution of expression within the

population at low external stress levels (0.05 µg/ml MitC). Individual cell traces (blue and

two highlighted in black) are clearly different from the average population behavior (red). c

With increasing inducer concentration, the distribution width (grey dots and fit) and average

(black dots and fit) of switching time-points to the toxin producing state synchronize.

instead of continuous fluorescence intensity measures. This shifts the view away from

the individual cell level to the population level.

2.2.3. Population level and emergent ecological properties

While originating from the structure of the gene regulatory network, only on the popu-

lation level, the colicin population can profit from the phenotypic heterogeneity. Popu-

lations of neither pure toxin non-producers nor toxin producers could profit from both

phenotypes. In addition, the strategy to produce toxin makes only sense in ecological

competition with other populations.

Colicin model systems have long been used to study the fundamental properties of mi-

crobial ecological competition both experimentally and theoretically [14]. In particular,

investigating two-strain interactions of toxin producer and toxin sensitive strains re-

vealed frequency-dependent bistability of competition outcome in liquid habitats [96]

and the role of habitat structure on coexistence of two strains [97]. The three-strain

interactions of toxin producing, toxin sensitive, and toxin resistant strains have been

used as a bacterial ’Rock-Paper-Scissor’-model in vitro [15], in vivo [98], and in sil-

ico [15,16,99] to probe the interaction dynamics and its properties, such as coexistence

or stability. Furthermore, combined experimental and theoretical studies identified co-

existence conditions that do not rely on cyclic dominance as in the classic Rock-Paper-

Scissor game [25] and explicitly quantified the cheating effect of R on C [100].

While theoretical and computational studies often model the interaction at the micro-

scopic scale, the role of phenotypic heterogeneity was only rarely taken into account.
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2.2. The colicin E2 system

Instead, the microscopic processes of toxin production, lysis, and toxin action on the

recipient were only considered as effective macroscopic interaction parameters [99, 101]

such as fitness costs, i.e growth rate reductions, and toxin effectivity parameters. Even

when the phenotypic heterogeneity was explicitly considered [25], the influene of the

degree of division of labor, i.e. the toxin producer fraction, on the competition was not

assessed.

Open questions

Prior to this thesis, experimental studies mainly focussed on the macroscopic interac-

tions and consequently neglected the influence of the microscopic population structure

on the macroscopic competition dynamics. This motivated the development of an ex-

perimental approach to bridge the gap between micro an macro-scale. In this thesis,

it was explicitly investigated how phenotypic diversity and stochasticity in phenotype

switching influence the competition dynamics.
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2.3. Bacterial interactions
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Figure 2.9.: Overview of microbial interaction mechanisms

a Interactions can occur between microbes from the same or from different species. b Inter-

actions are strongly influenced by the settings in which the interactions occur. Interactions

can be cooperative (c) or competitive (d) and are classified according to the effect on the

interaction partner. Examples for both types are discussed in more detail in the main text.

As outlined above, many multi-cellular properties are only effective when interacting

with other populations. In particular, toxin production as a strategy to kill competitors

directly aims at influencing other bacteria. Therefore, this section reviews the basics of

bacterial interactions and presents modelling approaches.

Individual bacteria interact either directly, e.g. via secretion and absorption of molecules,

or indirectly by inducing a change that also influences the other bacteria, e.g. by con-

suming nutrients that are subsequently not available to the others [77]. Consequently,

the composition of a microbial community arises through the interactions between the

individuals and their environment [78]. Depending on the recipient of the interaction,

interactions are denoted as inter- or intra-species interactions [77] (Fig. 2.9 a). Note

that here, the term species does not necessarily signify a taxonomic type but depends

on the description level, e.g. interactions between taxonomic sub-species.

In terms of evolutionary biology, the composition of competing traits is said to originate

from fitness differences [102]. Consequently, ecological interactions can be characterized

according to their effect on the fitness of the recipient [13, 77, 103–106]. Interactions

that increase or decrease the recipients fitness are called cooperative (Fig. 2.9 b) or

competitive (Fig. 2.9 d), respectively [12,77,107] and can be further classified [13,108].

Competition and not cooperation has been proposed to dominate the interactions be-

tween microbial species [109] partially due to a negative effect of resource utilization on

the interactions partner even in the absence of direct competition mechanisms.

The interactions are often mediated microscopically by secreted molecules, such as di-
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gestive enzymes or toxins [14,110,111]. Irrespective of the impact on the recipient, the

production and secretion of molecules itself is often accomplished cooperatively, e.g. by

division of labor [112] or quorum sensing [113]. As such, the production and secretion of

a molecules can carry characteristics of both intra-species cooperation and inter-species

competition if the produced molecule benefits the producing population harming others.

In order to model these interacting communities appropriately, it is important to take

into account the interaction settings (see Fig. 2.9 b) and in particular the spatial

structure of the environment. Depending on the scope and information available, the

mathematical models used to describe the systems vary greatly. Unspecific generalized

models [13, 114] can be used to make sense of large interaction system, such as the

human microbiome, that feature a high number of interacting taxa. Here, experimental

sequencing techniques offer a wealth of data, but the information on the specific inter-

action mechanisms and settings are sparse.

In contrast, in order to master the complexity, interacting bacterial systems are often

studied in reduced well-defined experimental model systems [15, 25, 103, 115] or with

the help of theoretical and computational modeling [12, 116]. In this thesis, a similar

approach is taken by using a well-defined model system in which the most important

dynamical parameters can be controlled.

In the following sections, the most common modelling approaches are discussed.

2.3.1. Well-mixed (non-spatial) systems

In well-mixed systems, the environment in which the interaction takes place is assumed

to be homogeneous, such that the positions of individual bacteria do not matter and

interactions occur between all individuals equally [117].

The Lotka Volterra equations - deterministic dynamics

In the limit of large bacteria numbers, stochastic fluctuations are negligible and one can

formulate the population dynamics in terms of deterministic rate equations. A useful

model to understand the dynamics of N interacting populations are the Lotka-Volterra

equations (eq. 2.3) that model the abundance x of a (sub-) species i using ordinary

differential equations (ODEs) involving growth processes with rate µi and interactions

between (sub-) species i and j with an interaction parameter αij [118].

∂txi(t) = µi xi(t) +
N∑
j=1

αij xi(t)xj(t) (2.3)
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The interaction parameter αij then classifies the interactions into cooperative (αij > 0)

or competitive (αij < 0) neglecting microscopic details [114]. Later in this thesis (see

chapter 4), an extended model is considered that additionally carries a conversion term

from (sub-) species i to j with rate σij such that
∑N

j=1 (σji xj(t)− σij xi(t)) is added to

equation 2.3.

The benefit of the Lotka-Volterra model is its simplicity that abstracts details of billions

of microscopic processes into a growth and an interaction parameter set. At the same

time many important details are potentially omitted. While (sub-) species conversions,

higher order interactions, and nonlinearities of the interaction terms could be added

easily to obtain more generalized models [114, 119, 120], other properties of the system

to be modeled are fundamentally incompatible, such as spatial degrees of freedom or

stochasticity.

The master equation - Stochastic dynamics

In addition to the increased consideration of gene expression noise and the resulting

phenotypic heterogeneity (see sections 2.1.1 & 2.1.2), the importance of stochastic ef-

fects in population dynamics have been reported mainly theoretically [26,116,117,121].

Concrete experimental validation is sparse and mainly macroscopically motivated [115].

Systems in which stochastic fluctuations cannot be neglected are not appropriately

described by the deterministic Lotka-Volterra dynamics. For example in cyclic rock-

paper-scissor interactions, a finite numbers of agents renders the deterministically stable

dynamics unstable leading to extinction of two out of three populations [121].

Originally developed for the description of chemical reactions, a versatile approach to

describe stochastic processes is using the (chemical) master equation. The master equa-

tion describes the temporal evolution of state probability distributions. When using

discrete states, the probability P (n, t|n0, t0) to be in state n at time t conditioned on

having been in state n0 at t0 evolves according to the processes leading into state n and

out of it. The master equation is then composed of gain terms that lead from a state

m into state n and loss terms that lead out of the state n to a state m [122]:

∂tP (n, t|n0, t0) =
∑
m

[wnm(t)P (m, t|n0, t0)− wmn(t)P (n, t|n0, t0)] (2.4)

Here, wnm(t) = wm→n(t) = lim
δt→0

1
δt
P (n, t + δt|m, t) denotes the rate for the transition

from state m to state n [122] and captures the dynamic properties of the underlying

microscopic process. In many cases, master equations can only be solved numerically

by using a stochastic simulation algorithm (SSA) such as the Gillespie algorithm [54].

In the context of bacterial interactions, the abstract state n could represent the com-
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2.3. Bacterial interactions

position vector x that contains the number of individuals of a given (sub-)species xi as

components and the transitions between neighboring states are due to the microscopic

ecological processes such as growth, death, conversion, etc. In contrast to the macro-

scopic Lotka-Volterra equations, the individual interactions are not abstracted to an

effective interaction parameter αij but instead are considered in terms of their impact

on the state vector x via the transition rates wnm(t). In chapter 4, a stochastic popu-

lation dynamics model is formulated in terms of its master equation and compared to

the associated deterministic dynamics.

2.3.2. Spatially extended systems

Both modelling approaches presented so far (equations 2.3 & 2.4) lack any spatial de-

grees of freedom. This is problematic if one takes into account that spatially extended

communities constitute the dominant lifestyle of bacteria [123]. And indeed, exper-

imental studies showed that competition performed in liquid (well-mixed) conditions

and spatially extended competition varied greatly [15, 124]. Consequently, various ap-

proaches have been developed to incorporate the spatial information.

Continuous space - Reaction-diffusion equations

Reaction-diffusion equations model the abundance fields Xi(x) of a species i in terms of a

interaction function fi that depends on all abundances fields, signified by X. Note, that

the species i do not only represent species of bacteria but also of external concentration

fields, e.g. nutrients or interaction mediating molecules, such as toxins [97]. Then, in

general the equation reads:

∂tXi = fi(X) +Di∆Xi (2.5)

Furthermore, such reaction-diffusion equation can be extended with noise terms ξi to

incorporate stochasticity. Reaction-diffusion system have long been known to exhibit

fascinating pattern forming properties [125–128]. A theoretical study showed the emer-

gence of dynamic patterns in rock-paper-scissor systems motivated by bacterial sys-

tems [15,16].

Discreteness of space and bacteria - individual-based models

Although stochasticity can be incorporated into the reaction diffusion by using noise

terms, the individuality of bacteria cannot be modeled. To resolve this problem, individual-

21



2. Concepts - From molecules to ecology

based models are used [116]. In individual-based models the units considered are indi-

vidual cells or coarse-grained cell clusters that interact with the other clusters and the

environment according to the underlying biological processes. Individual-based models

range from simplistic cellular automata on a lattice with deterministic update rules [118]

to complex models that model individual cells in 3D space taking into account cell mor-

phology [129], the intra-cellular metabolism and molecule secretion [130], and others

details [116]. Nonetheless, even simple lattice models can be used to model biologically

important processes such as spiral wave formation in amobae by use of a continuum

signal molecule field [131]. Due to the broad range of model types, the nomenclature is

ambiguous. Here, we use the term individual-based and agent-based model interchange-

ably.

Most individual based models can be mathematically described by a master equation in

which the probability of an individual i to be in state n can be formulated analogously

to equation 2.4. Omitting the conditionals for the sake of clarity one finds:

∂tPi(n, t) =
∑
m

[wnm Pi(m, t)− wmn Pi(n, t)] (2.6)

In general, the expressions for the transition rates will be more complex containing ad-

ditional factors that influence the underlying biological processes. Then the transition

rates wmn = wmn(xi, s, c, t) can depend on the position xi, the states of all other indi-

viduals sj and all resources fields ck of relevant resources rk. Often, the individual-based

models are set up on lattices. Then, the position x is not needed because a lattice site

itself represents an individual. Furthermore, in many cases, the interactions between in-

dividuals are distance dependent such that only nearest neighbors are considered which

reduces the number other individuals sj to include.

In chapter 5, a stochastic lattice agent-based model is presented that uses a continuous

toxin concentration field.
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2.4. Biofilm formation in Bacillus subtilis

2.4. Biofilm formation in Bacillus subtilis5

Emergent propertiesBiofilm formationBiofilm matrix genes EPS secretion

EPS production active

bslA

epsA-O

tasA

Phenomenological models

β = f(x1, x2, x3)

Figure 2.10.: A hierarchy of description levels for biofilm formation

Biofilm building bacteria produce and secrete exopolymeric substances (EPS) in which they

embed themselves. The biofilm matrix typically induces a wrinkled colony morphology and

gives rise to emergent properties, such as increased resistance against mechanical stress or

chemical agents.

Bacterial biofilm formation is of great interest because it constitutes the dominant

lifestyle of bacteria [123]. In biofilms, bacteria embed themselves in an extra-cellular

matrix of exopolymeric substances such as proteins, polysaccharides, DNA, or lipids

[35, 132, 133] to increase the communities’ resistance to antibiotics and other chemi-

cals [134–136], to protect themselves from high shear forces or other mechanical stresses

[137, 138] and to resist invasion [139]. In addition to the production of these matrix

building blocks and the embedding, a division of labor between various phenotypes in-

cluding motile, competent, sporulating, and biofilm matrix producing ones has been

shown to occur inside the biofilm [73,74,76].

One model system to study these biofilms is the Bacillus subtilis NCIB 3610 strain that

produces three matrix building blocks; a surface layer protein BslA, a fiber protein TasA,

and the exopolysaccharides EpsA [73,76]. While the key biofilm matrix building blocks

are known, an comprehensive understanding of how the macroscopic biofilm proper-

ties emerge from the specific molecules is still missing. Therefore, a phenomenological

model was developed that used time-lapse data of the macroscopic biofilm properties

area, height, and surface roughness of the wild-type strain and three knock-out mutant

strains to quantify the effect of each biofilm building block on the respective macroscopic

property.

5This section is largely based on the author’s contribution to publication [K1].
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Figure 2.11.: Matrix building blocks influence biofilm properties

Biofilm area (a) and height (b) curves for different mutants and the wild type strain show

changed growth characteristics for the various building blocks. c The individual building blocks

can influence the biofilm properties positively (β > 1) or negatively (β < 1). d Comprehensive

model illustrates function and contributions to height and area. Arrow lengths and directions

indicate direction and strength of contributions βi. (Images are partly reused and modified

from [140] - published by The Royal Society of Chemistry under Creative Commons License

3.0 [29].)

The experimental data of all three properties exhibited sigmoidal behavior (data for

colony area and height are shown in Fig. 2.11 a and b). Therefore, the data of each

property P of strain i ∈ {∆bslA,∆epsA-O,∆tasA} was fitted by the following sigmoidal

logistic function:

Pi(t) =
kP,i P0,i e

rP,i t

kP,i + P0,i (erP,i t − 1)
+ P0 (2.7)

Here, P0 is the average initial value for property P , kP,i the carrying capacity and rP,i
the growth rate, and P0,i the value at t = 0. In order to assess the final macroscopic
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2.4. Biofilm formation in Bacillus subtilis

quantity, the carrying capacity kP,i of the sigmoidal functions was further analysed. For

the sake of simplicity, the index P is dropped in the following. Taking a multiplicative

ansatz for the carrying capacity for each mutant, we generally find, using β0 as the basal

property value:

kmutant = β0 ·
∏
i

β
δmutant, i

i (2.8)

Multiplication by the contribution factors βi for each of the building blocks i present

in the considered mutant then allows to describe the carrying capacity. Note that a

composition indicator δmutant, i was used:

δmutant, i =

1, if building block i is present in the mutant

0, otherwise
(2.9)

Inserting the building block contributions to the different mutants, one can explicitly

write down a system of equations according to equation 2.8. Note, that expression

of surface layer protein BslA depends on the expression of the epsA-O operon and

therefore, the composition indicator δ∆epsA, i was set to zero for both building blocks

i ∈ {EpsA, BslA} in the epsA knock out mutant.

kWT = β0 · βBslA · βEpsA-O · βTasA

k∆tasA = β0 · βBslA · βEpsA-O · 1
k∆bslA = β0 · 1 · βEpsA-O · βTasA

k∆epsA-O = β0 · 1 · 1 · βTasA

(2.10)

Extracting the values kmutant from fitting equation 2.7 to the experimental data this

system of equations can be used to determine the individual contributions βi (see Fig.

2.11 c). One finds that the presence of specific building blocks can lead to an increase

or decrease in the biofilm properties. The insert table in figure 2.11 c quantifies these

contributions.

Disentangling the specific building block factors leads to a comprehensive model illus-

tration (see Fig. 2.11 d). The illustration shows the composition of the biofilm and

represents the contributions of the individual buiding blocks to the area (lateral expan-

sion) and height (horizontal expansion) as arrows that show the direction (increase or

decrease) and size of the effects. Furthermore, the quantified effects were used to predict

the the carrying capacities for a double knock out mutant that missed both, bslA and

tasA genes:

k∆bslA,∆tasA = β0 · 1 · βEpsA-O · 1 (2.11)
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2. Concepts - From molecules to ecology

Here a good agreement of the predicted and experimentally determined colony height

(prediction: 134.60 µm, experiment: 131.88 µm) was found whereas the predicted colony

area did not agree with experimental data (prediction: 17.72 mm2, experiment: 13.85

mm2). This might indicate non-linear cooperative effects that are not considered in the

phenomenological model (equations 2.7 & 2.8).

Taken together, the phenomenological model allowed us to bridge the scale between

micro- and macro level and to quantify the collective effect of the specific building

block types. Using the obtained values to predict the properties of a double mutants

was partly successful and indicates effects not considered here. However, the approach

might be applicable to other bacterial systems.
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3. Development of multi-scale fluorescence

microscopy setup for automated long-term

observation of bacterial interactions1

3.1. Motivation and problem definition

Interactions within macroscopic bacterial communities, ultimately originate from pro-

cesses on the single cell level. Therefore, a comprehensive understanding of the pro-

cesses on various scales is crucial. Previously, experimental approaches to study these

interactions focussed on the microscopic or macroscopic level independently and often

involved computational modelling to combine insights from both realms. Furthermore,

community snapshot data obtained from microbiome studies, relates the microscopic

composition revealed by sequencing to macroscopic desease phenotypes. However, it is

hard to extract mechanistic insights therefrom.

Consequently, a novel experimental approach was needed that bridges the gap between

microscopic and macroscopic scales and generates time-lapse data to gain causal in-

sights. Since the smallest units of interest were single cells that are accessible with

optical methods, a microscopy approach was favored. In particular, the following list of

requirements was developed for this multi-scale setup.

1. Multi-scale funtionality The major requirement was to be able to following interact-

ing communities from the well-defined microscopic single-cell level to macroscopic

colonies.

2. Fluorescence In order to be able to analyze mixed communities composed of differ-

ent bacteria, fluorescence labelling was a promising method to classify cells.

3. Parallelization In order to achieve statistical significance, the experiments should

yield high replicate numbers.

4. Long-term experiments In order to follow the communities from single cell to

macroscopic levels, experiments should at least be observable for 48 hours.

5. Automation Long-term experiments necessitate a high degree of automation to min-

imize experimenter interaction.

1Images are partly reused and modified from [141] published under creative commons license 4.0. [85]
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3. Multi-scale fluorescence microscopy setup

6. Constant conditions Long-term experiments necessitate constant cultivating con-

ditions for the sample.

7. Sample preparation The multi-scale nature of experiments prevents the exploita-

tion of biological self organization for sample preparation. Therefore, novel ap-

proaches must be developed.

8. Automated data analysis Following data acquisition, the data must be analyzed

for which a data analysis pipeline must be developed.

In the next section, I will discuss how the experimental approach developed for this

thesis fullfils these requirements.

3.2. Experimental approach

Fig. 3.1 presents the general workflow of the experimental approach. First, liquid

bacterial cultures are mixed at the desired strain ratios and densities. Using Acoustic

Droplet Ejection (ADE) [142], small volumes of this mixed bacterial cultures can be

transfered reliably to a solid agar growth medium in large one-well plates (Fig. 3.1 a).

Then, the bacterial communities are imaged using a customized fluorescence microscope

with zooming functionality. Constant cultivating conditions are ensured by a heating

and humidifying box and a computer-controlled microscope stage enables observation

of up to 80 communities in parallel (Fig. 3.1 b). Automated setup control and image

acquisition includes zooming steps to accommodate for colony growth (Fig. 3.1 c).

After acquisition, image processing includes segmentation and pixel classification based

on fluorescence signals (Fig. 3.1 d). From these images, quantities such as relative and

absolute population area are calculated and were subject to further data analysis.

In the following, I will discuss the components in more detail and how they fulfill the

above mentioned requirements.

3.2.1. Bacterial culture

The culturing conditions and media are specific to the bacteria used. The following

discussion is restricted to the colicin E2 system that was investigated during this thesis

but can be generalized to other strains of bacteria.

The three colicin E2 strains C (BZB1011 E2C), R (BZB1011 E2R), and S (BZB1011)

[15], have been supplied with fluorescence reporter plasmids that additionally carry an

ampicillin resistance to allow differentiation and antibiotic selection. Table 3.1 contains

an overview of the strains used.
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3.2. Experimental approach

Figure 3.1.: Experimental approach overview

a Sample preparation uses transfer of nano liter volumes to an one-well plate (85.5 mm x

128 mm) via Acoustic Droplet Ejection (ADE). b This one-well plate is placed inside a heat-

ing and humidifying chamber to ensure constant cultivating conditions and is imaged using

a fluorescence zooming microscope. c Computer controlled automated image acquisition in-

cludes zooming and enables long-term experiments. d Image processing performs fluorescence

signal based pixel classification. e Example observation shows two competing populations

(green and magenta) as an overlay of bright-field image and classification for four different

time-points. Note, the zooming in-between images indicated by changes in scale bar length

(400µm). Bottom row plots show absolute (left) and relative (right) area occupied by the

respective populations derived from the pixel classification.
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3. Multi-scale fluorescence microscopy setup

Strain Description Information Reference

CpMO3 C + pMO3 Colicin producing strain, carrying pColE2-P9

and the fluorescence reporter plasmid pMO3

[20]

SRFP S + pBAD24-

mCherry

Colicin sensitive strain with arabinose inducible

mCherry-fluorescence reporter plasmid

[25,143]

RNFP R + pBAD24-

nfp

Colicin resistant strain with ampicillin resis-

tance plasmid

[25,143]

SNFP S + pBAD24-

nfp

Colicin sensitive strain with ampicillin resis-

tance plasmid

[25,143]

RRFP R + pBAD24-

mCherry

Colicin resistant strain with arabinose inducible

mCherry-fluorescence reporter plasmid

[25,143]

SY FP S + pMO2 Colicin sensitive strain with pMO2 reporter

plasmid

[20,141]

Table 3.1.: Bacterial strains

Overview of bacterial strains used in this thesis with original reference.

Bacteria are stored in LB medium with 15% glycerol at -80◦C. Cultivating plates con-

taining LB with 1.5% agar are supplemented with 100µg/ml ampicillin and 0.2% ara-

binose.

Prior to competition experiments, cultures are separately grown in M63 minimal medium

[144] with 0.5% glycerol, 100µg/ml ampicillin and 0.2% arabinose. Colonies for over

night cultures are picked from cultivating plates and grown at 37◦C and shaken at 300

rpm. In the morning, over night cultures are diluted to 0.1 OD600 and grown again to

0.2 OD600. The C culture is then filtered by centrifugation with a 100-kDa filter in or-

der to remove colicin molecules (62 kDa) and diluted to the desired density ρ (typically

ρ = 0.1 OD600). Without centrifugation, the other cultures are diluted to a density ρ as

well. Subsequently, the diluted cultures are mixed at the desired ratio IC : IR : IS (in

case of three strains) and 40µl of this mixture are then transfered to the a source well

on a 384-well poly-propylene plate used for sample preparation.

Experimental one-well plates for competition experiments contain the M63 minimal

medium with 0.5% glycerol, 100µg/ml ampicillin and 0.2% arabinose and are sup-

plemented with 1.5% agar. Additionally, the plates are supplemented with the SOS

response inducing agent MitomycinC (MitC) at different concentrations [MitC] (typi-

cally [MitC] = 0.0, 0.005, 0.01, 0.1 µg/ml). Prior to transfer, experimental plates are

warmed at 37◦C to reduce transfer stress on the bacteria.
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3.2. Experimental approach

Figure 3.2.: Sample preparation

a Nano liter volumes are transferred to experimental agar plates by acoustic droplet ejection.

b Transfer yields sparsely distributed initial communities that mature during competition. c

Image shows an example experimental plate after competition. d Example initial community

imaged in SMZ setup reveals near single cell resolution in comparison to high resolution

microscopy (right image).

3.2.2. Sample preparation

After culture preparation, Acoustic Droplet Ejection (ADE) is used to transfer volumes

V (typically V = 2.5nl) from the source well to the experimental plate. This ensures

well-defined initial communities in an otherwise empty surrounding. Furthermore, the

accuracy of the technique enables reproducible positioning of the initial communities

which minimizes the time between transfer and experiment start. Figure 3.2 illustrates

ADE technique and shows examples of an experimental plate after competition (Fig.

3.2 c) and of initial communities (Fig. 3.2 d).

In ADE droplets are formed by focusing acoustic energy into a well containing a liq-

uid and it is commonly used in life science applications to transfer samples between

multi-well plates [142]. In the experiments presented here, a Labcyte Echo 550 Liquid

Handler was used.

The importance of the sample preparation technique cannot be overstated for these

experiments. The multi-scale nature of experiments necessitates initial conditions at

the single cell level. However, at the same time, the inoculum site of a community must

be far away from the neighboring sites in order to allow expansion over the time-course

of the experiment without influencing neighboring colonies. Consequently, the desired

pattern features highly localized, fairly dense initial community sites in an otherwise
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empty environment.

Micro-patterning techniques have been proven useful in creating micro-structured envi-

ronments [145], in which eukaryotic cells self-organize to adhesion sites [146] and can be

investigated using microscopy techniques. However, such approaches are not suitable

for our purposes because the use of adhesion sites would confine the expansion or would

not ensure empty surroundings. Similarly, for prokaryotic systems, fixation techniques

include attachment of cells to coated microfluidic channels [147] or agarose pads [24].

However, these techniques are not suitable because such methods yield fairly homoge-

neous occupation.

3.2.3. Experimental setup

After sample preparation, the experimental plate is placed inside the experimenal setup

(see Fig. 3.3 a). The main component, the Nikon SMZ 25 stereoscopic fluorescence

microscope, was assembled on a Newport Isostation table with a custom-built mount.

Images were acquired by a Nikon Qi1 CCD camera with a Nikon DS-U3 camera con-

troller.

The first crucial feature of this microscope is its zooming functionality. This is achieved

by placing a zoom unit between the objective and the beam splitter / filter block [148].

In general, a zoom unit consists of fixed and movable optical elements that change the

size of a surpassing beam and thereby the magnification while not focussing the light.

For illustration, a simple system of two converging lenses L1 and L3 with a diverging

lens L2 in between is discussed in the following. While L3 facing the objective stays

fixed, the other two lenses can be moved along the optical axis. By changing the posi-

tion relative to each other and to L3, the magnification is changed. Figure 3.3 b shows a

scheme of such a zoom system for two different magnification values. A 25-fold change

in magnification (0.63x - 15.75x) enables the automated multi-scale analysis from near

single-cell to macroscopic levels without changing the objective. Figure 3.2 d compares

images of single cells obtained with maximum magnification using a 0.5x objective in

comparison to an conventional upright microscope with fixed magnification.

In order to differentiate different strains of bacteria, the setup is equipped with the suit-

able excitation and emission filter components. In particular, Nikon P2-EFL GFP-B

and P2-EFL RFP-L filter blocks are employed for fluorescence excitation and emis-

sion filtering, and a customized OG-570 long pass filter is used to reduce phototoxicity

from bright-field illumination. A Lumencor Sola SE II LED lamp provides the light for

bright-field illumination and fluorescence excitation.

A Märzhäuser SCAN 130 x 85 scanning stage controlled via a Märzhäuser TANGO 2

controller facilitated the parallel observation of multiple communities on one-well agar
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Figure 3.3.: Experimental setup and zoom ray optics

a A schematic illustration of the experimental setup depicts important parts of the microscope

during fluorescence measurements. In the filter block, excitation light is filtered for the right

wavelengths, guided through the zoom body and objective to the sample within the sample

chamber (blue). Emitted fluorescence light is then guided through the objective, the zoom

body and the emission filters to the CCD camera (green). b An example afocal zoom system is

depicted for two magnification values. Depending on the positions of L1 and L2 the magnifica-

tion is changed, while L3 is fixed. The illustration is based on ray optics simulations [149] with

the following values (arb. units), f1 = f ′1 = f3 = f ′3 = 200, f2 = f ′2 = −70, f4 = f ′4 = 100,

L1L2 = 10, L2L3 = 90, L′1L
′
2 = 80, L′2L3 = 32.

plates.

Microscope, camera, scanning stage, and LED lamp are controlled by a computer run-

ning the Nikon NIS-Elements AR 4.30.01 64-bit software with the required plug-ins.

This computerized control enables fully automated image acquisition.

Finally, a gas incubation and heating system for multi-well plates (Ibidi) ensured con-

stant environmental conditions (37◦C and 80% humidity) to enable long-term observa-

tions and was customized to incorporate one-well plates.

Taken together, the individual components of the setup fulfill the requirements formu-

lated above and constitute a multi-scale investigation approach for bacterial interaction

systems.

3.2.4. Automated image acquisition

Throughout the time-course of the experiment, images are taken with a time resolution

∆t in the bright-field, RFP and GFP channels at every saved position. Finding and

saving the positions can be tedious and is a critical step in the experiment. To mini-

mize search time, the accurate positioning of initial communities by the ADE protocol
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3. Multi-scale fluorescence microscopy setup

is essential. However, even with this accurate droplet application, precise positioning

of the sample plate into the setup is crucial in order to bring the positions close to the

pre-saved positions of earlier experiments.

During the experiment, the computer-controlled zoom accounts for the colony expan-

sion. The use of multiple zoom levels, creates the need to convert pixel sizes into metric

spatial measure. Sampling different magnification-pixelsize value pairs using the built-in

conversion tool, an explicit conversion formula was derived by fitting (see Fig. 3.4 a):

lµm =
6.45

Zoom ·Objective
lpixel (3.1)

Knowing the dimension of the field of view for every magnification allows to customize

the imaging to account for the specific growth rates. Figure 3.4 b illustrates the division

of an experimental time-course in four distinct zoom regimes with changed magnifica-

tion that accounts for the colony growth.
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Figure 3.4.: Zoom levels

a Using the 0.5x objective, various magnification-pixelsize value pairs (red crosses) were sam-

pled and fitted using the formula f(x) = 12.9/x (black line) that agrees perfectly with the

data (goodness of fit R2 = 1). b In order to follow the colony expansion, zooming occurs

during the time-course of the experiment. Here, a 48 hour measurement is divided into four

distinct zoom regimes (maginfication = 15.75x, 10x, 5x, and 2.2x). The black line indicates

the vertical size of the field of view within a zoom regime, and the three lines represent average

radii r of growing colonies (calculated by r =
√
A/π). While two curves (magenta and green)

are well captured by the zooming, the grey curve flattens when nearing a zoom level change,

indicating growth out of the field of view.

In addition to the change in magnification, the processes within the observed commu-

nity might induces changes over the time-course of the experiment that require altered

image acquisition settings, such as illumination intensity or exposure time. Particularly
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3.3. Data analysis

Zoom Level
Experimental Parameter 1 2 3 4
Magnification 15.75 10 5 2.2
TStart[h : min] 00:00 12:15 18:30 33:30
∆t[min] 15 15 60 60
Pixel size [µm] 0.819 1.29 2.58 5.86
Bright field intensity [%] 9 5 5 5
Bright field signal gain 1 1 1 1
Bright field exposure time [ms] 7.3 5 2.1 1.9
RFP excitation intensity [%] 100 100 100 100
RFP signal gain 46 9.6 1 1
RFP exposure time [ms] 2000 2000 2000 1000
GFP excitation intensity [%] 100 100 100 100
GFP signal gain 46 9.6 1 1
GFP exposure time [ms] 2000 2000 2000 1000

Table 3.2.: Microscope configuration settings

Overview of microscope configuration and image acquisition settings for two-strain interaction

(chapter 6).

demanding is the tuning of fluorescence excitation and exposure time. For example,

in transitioning from single cells to macroscopic colonies, the absorption of excitation

light is strongly increased and the resulting emitted fluorescence light can easily lead

to over-saturation. Consequently, not only the magnification but the whole microscope

configuration is changed multiple times during image acquisition which makes later

analysis even more complex.

Typically, experiments for this thesis were divided into four distinct zoom regimes. The

set of microscope configurations was kept constant for the different experiments. The

individual settings for each zoom level were determined iteratively in test experiments.

Table 3.2 contains the microscope configurations used in the two-strain competitions

presented in chapter 6.

3.3. Data analysis

In order to gain insights from the acquired data, the raw data must be processed and

key measures quantified, i.e. images have to be turned into numbers. Furthermore,

these numbers have to be related to each other statistically.

This general procedure applies for a variety of systems but must be adjusted to the

individual system under investigation and the questions asked. In the following, I discuss

the analysis pipeline for the competition experiments presented in this thesis (chapters

6 & 7).
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3. Multi-scale fluorescence microscopy setup

3.3.1. Image analysis

The outputs of long-term competition experiments are large image stacks, in which

1024x1280 pixels 12-bit images for every channel (bright field, RFP, and GFP), for ev-

ery time-point, and for every position are saved. A typical experiment with 77 positions

imaged over 108 time-points measures over 62 giga byte in file size. The raw output

files of the image acquisition are single Nikon specific *.nd2-files containing all the data.

While the accumulation of data in single files is simple, the large file size prevents load-

ing of these files for data processing. Therefore, the large files are split into handleable

stacks that contain only information for one specific position and were compressed to

8-bit.

As outlined above (see section 3.2.4), varying image acquisition settings and changes

in colony structure and composition during the experiment alter the signal structure.

Consequently, the image processing has to be customized for the various zoom levels

and the different competition outcomes to account for the signal characteristics.

A consequence of this adjustment is that in the following the image processing will be

discussed in general and the actual operation parameters are given later for every con-

dition.

Pre-processing

Experiments were manually screened in order to identify erroneous spots which were

excluded from further processing. One reason for exclusion were sample preparation

errors (spotting errors) in which the droplet volume applied to the sample was too high

or droplets dispersed during ejection and created misshaped initial communities. A

second reason for exclusion was the missing of an interacting strain since, at low volumes

and small strain ratios, initial communities could be missing a strain completely just by

chance.

However collecting information on the competition outcome was a seond reason for

screening the experiments. Due to the change of signal characteristics with colony

composition, the two-strain competition experiments presented later (chapter 6) were

pre-screened in order to get a rough estimate of the final colony composition. This

was necessary because the green fluorescence signal was favored compared to the red

signal and favoring the green signal without having any green cells present lead to wrong

classifications.

Favoring the green signal was unavoidable because the fluorescence intensity between

the two strains varied strongly due to different expression characteristics. While the

S strain produced the red fluorescing protein continuously, the C strain produced the

yellow fluorescing protein only when toxin production in a given cell was activated
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3.3. Data analysis

resulting in much lower average fluorescence values. In plain words: If there is no green

fluorescing strain present, the algorithm does not have to look for it.

Since the three-strain experiments featured red, green, and no fluorescing strains, the

artificial signal boosting of the green signal was omitted and the screened outcome

information was not needed.

Image processing

Typically, the image processing involves two main steps, image segmentation and pixel

classification. By segmenting the image, the algorithm decides which pixel belongs to

the bacterial colony and which pixel is a background pixel. In classification, the algo-

rithm uses the fluorescence signal to classify the pixels into different bacterial types, e.g.

C and S strain.

Segmentation Mathematically speaking, grey scale images can be presented as ma-

trices G ∈ Sm×n where m and n are the number of rows and columns in the image

and S is the set of intensities available at a given bit depth. For 8-bit images one finds

S = {0, ..., 28 − 1} = {0, ..., 255}. Segmentation now aims to binarize the image into a

matrix B ∈ {0, 1}m×n where the pixel equaling 1 represent pixels of the bacterial colony

and zero pixels represent the background.

The segmentation process typically involves complex manipulation of the matrix G.

Since the mathematically explicit formulation is not instructive, I discuss the opera-

tions only schematically (see Fig. 3.5). First, the image is inverted and background

corrected by subtracting the image from a smoothed background image of the specific

position acquired at the same magnification prior to the actual experiment. Second,

the resulting image is gamma and noise corrected using different filters. After noise

reduction, the image is segmented into background and bacteria pixels using intensity

based thresholding according to the Otsu [150] or Kittler-Illingworth [151] methods.

Intensity based thresholding binarizes the processed grey scale images G′ according to

an intensity threshold τ :

Bij =

1, if G′ij ≥ τ

0, otherwise
(3.2)

At high magnification, when colonies feature inhomogeneous shapes, these intensity

based methods are supplemented with edge detection (Canny algorithm [152]). These

segmented images are subject to morphological operations such as hole filling to yield

the final segmentation BBF .
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3. Multi-scale fluorescence microscopy setup

Figure 3.5.: Bright field segmentation scheme

The original 8-bit image is background corrected and inverted using a smoothed background

image of the position acquired prior to experiment. The resulting image is filtered for noise

reduction and gamma corrected before segmentation using intensity based thresholding.

Classification Similar to the bright field segmentation, the pixel classification proce-

dure includes background correction and segmentation steps (see Fig. 3.6) but is less

general compared to the bright field segmentation procedure presented above due to dif-

ferent fluorescence properties of the strains investigated. In the following, I will outline

the classification procedure used for the two strain interactions (chapter 6) and point

out at when it differed from the procedure used for the three strain interaction (chapter

7).

In accordance to the bright field segmentation, images are background corrected using

smoothed background images. Only for the two-strain experiments, noise reduction and

autofluorescence corrections by subtraction of the median fluorescence value followed.

Again similar for both datasets, fluorescence images were restricted to the segmented

bright field area and pixels were segmented into fluorescent or non-fluorescent pixels

yielding the binarized images BRFP and BGFP . In case a pixel was positively seg-

mented in both fluorescence channels, a decision rule was implemented to uniquely

classify a given pixel into RFP or GFP, in the two-strain experiments, such that

BRFP, ij +BGFP, ij ≤ 1, ∀(i, j).
For the three strain experiments, pixels of the colony could also be of type non-

fluorescent. This complicated the classification. In particular, no decision rule was

implemented and pixels could be of type, RFP, GFP, non-fluorescent and RFP&GFP.

Area calculation After image segmentation and pixel classification, the total areas

and the areas of the individual fluorescence channels were calculated by summing up

all pixels of the respective binary images. Here, AT denotes the area of type T ∈
{BF, RFP, GFP}

AT =

m,n∑
i,j

BT, ij (3.3)
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3.3. Data analysis

Figure 3.6.: Fluorescence classification scheme

Pixel classification example from two-strain competition. The raw 8-bit images are background

corrected like the bright field background correction (see Fig. 3.5). It is evident, that the

signal-to-noise ratio of the GFP channel is markedly weaker that for the RFP channel (left

images). Therefore, information on the bright-field segmentation is used to aid in the binary

segmentation of the fluorescence signals (pixel classification). Overlay shows bright-field image

and fluorescence classification.

With the square of the pixel area conversion factor (eq. 3.1), the areas could be converted

into metric values. Note, in case of RFP-GFP double classification in the three-strain

experiments, these pixel were counted only half to each of the areas to conserve the

total area.

Post processing

Despite the intricate adjustment of image processing parameters, mis-segmentations

and mis-classifications occurred. In order to remove singular erroneous data points, the

resulting area and relative area data curves were screened. Data points were removed

if they qualitatively changed the outcome. An example is given in Figure 3.7.

3.3.2. Detail analysis

In addition to the automated image analysis discussed above, the initial phase of experi-

ments was more thoroughly investigated by computer-aided manual inspection. Manual

inspection was necessary because missing or only very weak single-cell fluorescence of C

cells at early time-points of the experiments prevented automatic detection. This was
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3. Multi-scale fluorescence microscopy setup
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Figure 3.7.: Post-processing example

Exemplary time-traces of S (magenta) and C (green) area show that the mis-processing of

an individual frame of the colony time-lapse (b) completely changed the qualitative behavior

of the relative area AC
AC+AS

(a). Therefore, the individual data points were removed. The

resulting post-processed traces for relative (b) and total area (d) are shown on the right.

especially problematic in using C and non-fluorescing R cells together as they could not

be clearly distinguished in the beginning. Typically, the detail analysis includes locating

C cells or clusters, indicating their fate (reproduction or early lysis), and whether they

evolved into a large C cluster that has access to the colony edge at later time-points.

In case of three strain experiments, a similar characterization was performed for the R

cells. Additionally, a localized analysis after 48 hours was performed based on the early

phase positions determined in the detail analysis.

The specifics of the details analysis will be discussed in the respective results chapters

(see sections 6.4.1 and 7.4.1).

3.3.3. Data processing

Image analysis yielded time series data of absoluteAT (t) and relative areaAT (t)/
∑

iAi(t)

for a considered type T , at the different positions, under various experimental condi-

tions. In addition, the data is supplemented with detailed information on the community

composition at early time points.

Taken together, these data that can be aggregated into a high dimensional data set

that is subject to further statistical analysis which will be specifically discussed in the

respective results chapters.
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3.4. Additional applications

3.4. Additional applications

In addition to the colicin E2 competition presented in this thesis, the setup has been used

for various applications with other gram negative bacteria (Pseudomonas aeruginosa)

and gram postive bacteria (Bacillus subtilis).

Of these other applications, I will only briefly discuss two as a proof of concept, biofilm

cooperation in Bacillus subtilis and antibiotic resistance screening.

3.4.1. Biofilm cooperation

Biofilm formation relies on the cooperative production and secretion of extracellular

matrix components [35]. A long-standing question in the field of biofilm formation was

whether knock-out mutants that each miss a certain gene for the expression of a matrix

component could cooperate to reconstitute wild-type behaviour in mixed communities.

In order to investigate the potential cooperation, mixtures of fluorescently labeled knock-

out mutants that each miss one matrix building block gene were investigated using the

presented setup. Analysis of communities after 24 hours revealed an fitness increase

measured in total colony area of mixed communities compared to the pure (unmixed)

knock-out mutant colonies.

Despite the promising preliminary results, the project was discontinued as soon as we

gained knowledge that a similar study was about to be published investigating the same

question, featuring similar knock-out mutants [153]. Still, the preliminary results un-

derlined the versatility of the method.

3.4.2. Antibiotic screening

The reliable sample preparation, high degree of automation, and the relatively high

degree of parallelization was a motivation to explores the capabilities of the setup to

act as antibiotic resistance screening device for medical/industrial applications.

The idea was to compartmentalize the experimental plate (see section 3.2.1) by using

a punching die (Fig. 3.8 a), and to apply different antibiotic agents to the individual

compartments by either manual pipetting or acoustic droplet ejection. Bacterial sam-

ples were then transferred to the compartmentalized plate as usual (Fig. 3.8 b) and

microscpic growth was monitored using the setup (Fig. 3.8 d). Depending on the resis-

tance to a certain agent, growth could be detected or not in a real-time analysis program

(Fig. 3.8 e). The advantage of the setup would have been to easily screen multiple con-

ditions in parallel (Fig. 3.8 c). However, compartmentalization using a punching die

did not prevent diffusion of antibiotic agents to neighboring compartments. Alternative
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3. Multi-scale fluorescence microscopy setup

Figure 3.8.: Antibiotic screening assay

a A punching die was used to compartmentalize the experimental plate into separate sections.

b Each of the compartments were individually treated with antibiotic agents for transfer of

bacterial cultures. c This allowed a highly parallel investigation of multiple conditions. d

Bacterial growth was monitored using the experimental setup in combination with image pro-

cessing. Growing (red) and non-growing (blue) bacteria could be differentiated already within

the first 2 hours. e A real-time analysis program should return the monitored information in

table form (top left) or as binary growth/non-growth scheme (bottom left) derived from the

individual time traces (top right) based on the image processing (bottom right).

strategies to create separated compartments, such as agar filled multi-well plates did

not prove successful and the project was discontinued.

Although the approach was not developed to perfection, the exploration showed that the

setup monitored microscopic growth reliably enough to let an image analysis algorithm

decide if a strain is resistant or not. In addition, it again underlined the versatility of

the setup.

3.5. Auxiliary high-resolution setup

To complement the multi-scale experiments and to extract single cell parameters, a

Nikon 90i high-resolution upright microscope was used.

The workflow of overnight cultures, day cultures, and transfer to an experimental plate

was similar to the multi-scale experiments 3.2.1. However, diluted day cultures were
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pipetted manually onto solid M63 growth in standard round petri dishes. After transfer

to the experimental plate, the plate was either incubated at 37◦C within the setup for

continuous imaging or it was incubated within an external incubator and placed into

the setup only for imaging. The actual workflows are discussed in the respective results

sections.

Imaging in the bright-field-, YFP-, and CFP channels was performed using a Nikon

Eclipse 90i upright microscope with 50x magnification. The samples were illuminated

by a Nikon Intensilight C-HGFIE lamp. Illumination light was filtered with a 570nm

long pass filter (bright field), a 535 nm filter (YFP), and a 485 nm filter (CFP). Emit-

ted light was filtered with the corresponding filters and recorded by a Nikon DS Qi1Mc

camera. The objective and a Prior OptiScan II stage carrying the sample were enclosed

in a custom-built heat box keeping the system at 37◦C during the experiment. An ad-

ditional encasing (Pecon GmbH, Erbach, Germany) prevented drying of the agar plate

for continuous imaging. The imaging was operated with Nikon NIS-Elements software

(Version 3.2).

3.6. Discussion

This chapter presented a novel experimental approach that fulfills previously defined

requirements for the multi-scale investigation of bacterial colonies. In doing so, the

approach combines high throughput sample preparation with automated fluorescence

zoom microscopy and image analysis. As first applications the investigation of cooper-

ation in biofilm formation and antibiotic screening assays were mentioned in addition

to the colicinogenic interaction that the rest of the thesis focuses on.

The approach is most useful in systems that feature combined effects on the micro-

and the macro-scale; for example the colicin system in which the stochastic single cell

events might become important in the macroscopic competition. Furthermore, the

setup is helpful when macro-scale comparisons with relatively high replicate numbers

are needed; for example, when screening the colony morphology of biofilm formers, or-

dinary round petri dishes can contain roughly 18 colonies in reasonable distance, while

the larger one-well plates allow investigates of 77 colonies in parallel.

However, the versatility of the methods comes with some draw-backs. First of all, the

resolution is not comparable to inverse microscopy used in single-cell studies with 100-

fold magnification. However, as was shown above, the ”near” single cell resolution is

good enough to identify single cell clusters and a good compromise between maximal

magnification and magnification range. The microscope could be equipped with a 2-

fold magnification objective (opposed to the currently used 0.5x objective), which was

omitted to avoid too large restriction in observable spatial scales.
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3. Multi-scale fluorescence microscopy setup

Second, the zoom functionality necessitates high excitation powers and long exposure

times for fluorescence. The total image acquisition time for all spots and fluorescence

channels is the main limitation for increasing the temporal resolution. Anyway, most

observable processes happen on time scales larger than the resolution.

Third, the increase of sample sizes is limited by the space available on the one-well ex-

perimental plate. Increasing the community density could lead to undesired interactions

between individual colonies and would additionally decrease the temporal resolution of

image acquisition. Bypassing the interactions by using larger sample plates is not pos-

sible due to standardization of the droplet ejection robot. One could think of using

multiple plates in parallel to increase sample size. This would however necessitate the

additional incorporation of a high precision sample changer and a completely new con-

trol unit for cultivating conditions.

In addition, the strict limitations listed above, future work could in principle improve

the approach further. A feedback from the system state during acquisition by real-time

analysis could improve the dynamic microscope configuration. Furthermore, image anal-

ysis still is a hard endeavor and advanced image processing techniques, such as using

convolutional neural nets for example [154], could be helpful.

Despite the aforementioned limitations, the setup, once called the ”bacterial boxing

ring”, fulfills the complex requirements for the autometed multi-scale observation of

bacterial interactions and is a highly valued addition to existing experimental ap-

proaches [155].
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4. Population dynamics of colicin E2 producers

In this chapter, I derive a phenomenological model for the population dynamics of

the phenotypically heterogeneous toxin producer population based on experimental ob-

servations. Furthermore, I discuss under which conditions an average deterministic

description breaks down.

4.1. Phenotypic heterogeneity in colicin E2 production
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Figure 4.1.: Phenotypic heterogeneity in colicin E2 production

(a) A population snapshot illustrates the simultaneous presence of highly fluorescent and non-

fluorescent phenotypes which translates into bimodal fluorescence level distribution (insert).

Here, fluorescence is coupled to toxin production (see sections 2.2 & 4.1). (b) Time-lapse data

of single-cells reveals the toxin expression dynamics. Formerly non-expressing cells switch to

a highly expressing state and thereby overcome a classification threshold after a waiting time

twait. After a time ton in the toxin producing state, cells lyse, relase the toxin and fluorescence

molecules which leads to a sharp decrease in fluoerescence intensity. (c) Experimental obser-

vations motivated the following model of the population dynamics. Replicating COFF cells

reproduce with a rate r but can also switch to the toxin producing state CON with a rate s.

Once a cell switched on, the cell lyses with a rate d and dies. (Images are partly reused and

modified from [1] - published under creative commons license 3.0 [29].)

As outlined in chapter 2.2, colicin E2 production is subject to phenotypic heterogeneity

with the presence of toxin producers and non-producing replicator phenotypes. In a
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4. Population dynamics of colicin E2 producers

population snapshot, one detects both phenotypes simultaneously (Fig 4.1 a). Follow-

ing the toxin expression dynamics with help of fluorescence reporter genes, as performed

by Mader et al. [20]1, one sees how individual cells start expression randomly, followed

by a steady increase up to a sharp decline in fluorescence intensity - the lysis time-point

(Fig 4.1 b). By using a fluorescence threshold, cells are classified into either producer or

non-producer phenotypes and toxin production can be described in terms of a stochas-

tic switch into the producing state and out of the producing state by stochastic lysis.

Additionally taking into account non-producer replication, a phenomenological model

of the population dynamics can be described as in Fig. 4.1 c.

4.1.1. Experimental parameter determination

The three parameters describing the C population dynamics can be determined experi-

mentally: the waiting time twait to switch into the toxin producing CON state, the time

between switching on and lysis ton, and the rate of C replication.
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Figure 4.2.: Experimentally determined parameters of toxin dynamics

(a) Distribution of waiting times twait until a single cell switches to the on state. (b) Dis-

tribution of times ton between switch to the on state and subsequent lysis of single cells. (c)

Exponential area growth of mirco-colonies.

To this end, the individual fluorescence intensity time-traces (cf. Fig. 4.2 b) obtained

by Mader et al. [20] were manually analysed to determine the time-point twait at which

the trace starts to rise. The time in the on state ton was then defined as the difference

between maximum fluorescence intensity value and twait. Distributions of both values

are shown in Fig. 4.2 a and b, respectively. The average value of both variable was then

1The author contributed to this work listed in the publication list as [M1]
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used to determine the switching rate

s =
1

twait
(4.1)

and lysis rate

d =
1

ton
. (4.2)

Unfortunately, the single-cell time-lapse data did not allow investigation of the repli-

cation rate. In order to determine it experimentally, microcolonies originating from

single cells were incubated within an experimental setup and imaged every 30 min-

utes for 6-8 hours. For experimental details see section 3.5 (pipetted day culture: 4µl

diluted to OD600 = 0.0075). Colony area A(t) was determined using image analysis.

Averaged growth data is depicted in Fig. 4.2 c with an exponential fit according to

A(t) = A(t0) exp(g · t). Using the area growth rate g, the replication rate reads:

r =
g

ln(2)
(4.3)

A summary of the parameter values can be found in Table 4.1.

Symbol Explanation Value Experiment

s switching rate 0.0124± 0.008 min−1 Single-cell time-lapse data from [20]

d lysis rate 0.0155± 0.0007 min−1 Single-cell time-lapse data from [20]

r C growth rate 0.019± 0.001 min−1 Micro-colony data (see sec. 3.5)

Table 4.1.: C population dynamics parameters

Overview of C population dynamics parameters (average ± SEM) and corresponding experi-

ments.

4.2. Mathematical model of toxin producer fraction

4.2.1. Master equations and deterministic rate equations for

population dynamics

From the phenomenological model presented in Fig. 4.1 c, one can easily find the pos-

sible transitions from and into the considered state x = (COFF , CON) that describes

the abundance of COFF replicators and CON producers in the population. Figure 4.3

explicitly displays all possible reactions.
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Figure 4.3.: State transitions

Focussing on the state vector x = (COFF , CON ), reactions that lead into the state (gain pro-

cesses) and that originate from the state (loss processes) are due two three types of reactions:

Replication of COFF cells (black), switch from COFF to CON (green) and lysis of CON cells.

Based on model presented in Fig 4.3, one can derive the stochastic population dynamics

in terms of the master equations for the state vector x = (COFF , CON) analogously to

equation 2.4. Considering replication of the COFF population, switches from COFF to

CON and lysis of the CON phenotype with rates r, s, and d, respectively, the master

equation reads [52] (dropping the conditionals for the sake of readability):

∂tP (x, t) =∂tP (x, t|x0, t0) = ∂tP ((COFF , CON), t) =

+ r (COFF − 1) P ((COFF − 1, CON), t)− r COFF P ((COFF , CON), t)︸ ︷︷ ︸
growth

+ s (COFF + 1) P ((COFF + 1, CON − 1), t)− sCOFF P ((COFF , CON), t)︸ ︷︷ ︸
phenotype switching

+ d (CON + 1) P ((COFF , CON + 1), t)− dCON P ((COFF , CON), t)︸ ︷︷ ︸
CON lysis

(4.4)

Before solving the stochastic dynamics numerically (see section 4.2.2), we focus on the

deterministic dynamics. For large cell numbers, fluctuations are negligible and the

master equation 4.4 can be recast into deterministic rate equations [52]:

∂tCOFF =r COFF − sCOFF
∂tCON =sCOFF − dCON

(4.5)
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Equation 4.5 is a system of coupled linear ordinary differential equations (ODE) that

is solved analytically in the next section. Its solution allows to determine the average

long-term behavior of the population dynamics. However, as we will see later (section

4.3), neglecting fluctuations can lead to strong deviations from the fully stochastic

description.

4.2.2. Analytic solution of the population dynamics

In order to solve equation 4.5 analytically, a general solution scheme will be employed.

For the sake of completeness, it is presented in the following

General solution of coupled linear ordinary differential equations

A system of coupled linear ordinary differential equations (ODE) can be generally solved

analytically using the following eigendecomposition scheme (adapted from [156]):

1. Reformulate the ODE system in the form: ∂tx = A · x

2. Calculate the eigenvalues λi and the eigenvectors vi of A.

3. Calculate the matrix P =


...

...
...

v1 v2 . . .
...

...
...

 and its inverse P−1. Here the columns

of P are given by the eigenvectors vi of A.

4. Use P−1 to calculate y = P−1 x with ∂ty = diag(λ1, λ2, ...)y in which diag(λ1, λ2, ...)

denotes the diagonal matrix with the eigenvalues λi occupying the diagonal matrix

elements.

5. The solution of ∂ty is then given by y(t) = diag(eλ1 t, eλ2 t, ...)︸ ︷︷ ︸
E(t)

y(t = 0)

6. Finally, backtransformation yields the solution for the original ODE system ∂tx(t)

x(t) = PE(t)P−1 x(0) (4.6)

.

Application of solution scheme to population dynamics

Using x = (COFF , CON)T one can rewrite the system of equations 4.5 to

∂t x =

(
r − s 0

s −d

)
· x = A · x (4.7)
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The eigenvalues λi of A are defined by det(A − λ 1) = 0 and after some algebra one

arrives at:

λ1 =r − s
λ2 =− d

(4.8)

Using the eigenvalues of A (eq. 4.8), the resulting eigenvectors are:

v1 =

(
(d+ (r − s))/s

1

)
, v2 =

(
0

1

)
(4.9)

Substituting a = (d+ (r − s))/s, one obtains:

P =

(
a 0

1 1

)
, P−1 =

(
1/a 0

−1/a 1

)
, E(t) =

(
e(r−s) t 0

0 e−d t

)
(4.10)

Combining the matrices from eq. 4.10 with the initial conditions x1(0) = COFF (0) =

C0
OFF and x2(0) = CON(0) = C0

ON and using eq. 4.6, the solution for the population

dynamics read:

COFF (t) =C0
OFF e

(r−s) t

CON(t) =

[
C0
ON − C0

OFF

s

r + d− s

]
e−d t + C0

OFF

s

r + d− s
e(r−s) t (4.11)

In order to obtain the fraction of toxin producers within the total population, both

variables (eq. 4.11) are combined to obtain:

Frac(t) =
CON(t)

CON(t) + COFF (t)
=

C0
ON e

−d t + C0
OFF

s
r+d−s (e(r−s) t − e−d t)

C0
ON e

−d t + C0
OFF

(
s

r+d−s(e
(r−s) t − e−d t) + e(r−s) t

)
(4.12)

Equation 4.12 is the analytic solution of the population dynamics in dependence on the

reaction parameter r, s, and d and the initital conditions C0
ON and C0

OFF .

In order to capture the long term behavior of the system, lets consider the case of t→∞
with active lysis (d > 0) and a priori non decaying populations (r > s). This yields the

steady state toxin producer fraction:

Frac(t)SS =

[
CON(t)

CON(t) + COFF (t)

]
t→∞

=
s

r + d
(4.13)
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Figure 4.4.: Simulated C population dynamics

The temporal evolution (left) of the toxin producer fraction within a simulated C population

shows, how the average of stochastic simulations (blue) and deterministic (black) solutions dif-

fer. The final state distribution at t = 500min of 1000 stochastic realizations (right) illustrates

the difference. Due to fluctuations, populations in the stochastic simulation can go extinct

which is represented by the peak at CON (t) = COFF (t) = 0, labelled ”Absorbing extinction

boundary”. Non-extinct populations approach the deterministic steady state value. Aver-

aging only non-extinct realizations (red curve) creates trajectories close to the deterministic

solution. (Simulation conditions: s = 0.0124 min−1, d = 0.0155 min−1, r = 0.025 min−1,

CON (0) = 0, and COFF (0) = 1, Ntotal = 1000, Nextinct = 510)

The functional relationship of steady state and reaction rates is intuitively right. An

increasing switching rate s increases the abundance of toxin producers, while an increas-

ing lysis rate d decreases it. Larger growth rates r lead to more non-producers which

decreases the relative producer abundance.

4.3. Numerical solution of the stochastic population

dynamics

In order to investigate how well the population dynamics are approximated by the de-

terministic (eq. 4.11) and steady state solutions (eq. 4.13), the stochastic dynamics

(eq. 4.4) were simulated using the Gillespie stochastic simulation algorithm [52,54].

Figure 4.4 display a comparison of stochastic simulations, steady state and deterministic

solutions of the population dynamics. In particular, the figure shows the temporal evo-

lution of the toxin producer fraction of the C population Frac(t) = CON (t)
CON (t)+COFF (t)

(left

plot) and the final distribution of 1000 realizations of the stochastic simulation (right

plot). When comparing the complete average of the stochastic simulations (blue curve)

to the deterministic (solid black curve) and the steady state solution (broken black
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4. Population dynamics of colicin E2 producers

line), one observes a clear difference. This difference is due to the absorbing boundary

at CON(t) = COFF (t) = 0 where the community is extinct with no surviving cells. Note

that these cases would return Frac(t) = 0/0 in the simulation and were therefore set to

0.

The stochastic dynamics result in a bimodal final state distribution that includes a large

peak at the absorbing boundary Frac(t) = 0 and a smoothly distributed accumulation

around the steady state value (Fig. 4.4 right). So, the stochastic realizations create two

states; one state that represents the dynamics of continuously evolving populations with

large cell numbers that approach the steady state producer fraction, and an extinction

state in which populations are non-viable. Therefore, when neglecting the extinction

cases in averaging over the realizations, the stochastic curve approaches the determinis-

tic solution (red curve in Fig. 4.4). In the deterministic dynamics this extinction state

is never reached, once the system starts at values COFF (t) > 0 and the rates satisfy

d, r, s > 0 and r > s. Therefore, the deterministic dynamics fails to predict the popula-

tion dynamics under the conditions used above because fluctuations enable extinction.

In the next section, the extinction and survival condition are discussed in more detail.

4.3.1. Population survival conditions

The above considerations raised the question under which conditions do the communities

survive? In order to answer this, the stochastic simulations were repeated for a range of

s, r, and d values with 1000 realizations each and the survival probability was calculated.

Here, the survival probability for N realizations of the population dynamics under the

same conditions was defined as:

S(t) = 1− 1

N

N∑
i=1

δ0,(COFF (t)+CON (t)) (4.14)

Here the Kronecker Delta was used that returns a contribution to the sum if the colony

is extinct, i.e. COFF (t) = CON(t) = 0. In the following the discussion focuses on the

survival probability after 500 minutes of simulations time S = S(t = 500min).

The lysis rate is expected to only weakly influence the survival probability because

the ON state is only a delay between the replicating state and cell death. In order to

investigate the influence of d on the survivial probability, both variables were plotted for

the various s and r values (see Fig. 4.5). For most r-s combinations, S does not vary

consistently with d. Fluctuations arise from the stochasticity of the processes and a

small negative effect of d on S for small s, and r values is due to the delaying effect of d.

That is, for finite simulation times, populations are not yet extinct but are expected to

do so soon. Consequently, the correlation between S and d is negligible and insignificant
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4.3. Numerical solution of the stochastic population dynamics

(r = −0.03, df = 998, p = 0.34).
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Figure 4.5.: Survival probability is independent of lysis rate

Survival probability (y-axis) in dependence on lysis rate d (x-axis) is shown for various repli-

cation rates r (panels) and switching rates s (color code).

It is evident that in the regime s > r no survival is possible. There, switching is more

likely than reproduction and the population goes extinct. In the ecologically reasonable

regime s < r, S increases with r and decreases with s. Plotting the relations to S

for each condition separately (see Fig. 4.6 a & b) allows to experimentally determine

functional relationships for the dependencies. From the plots one finds S ∝ 1− 1/r and

S ∝ −s.
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Figure 4.6.: Survival probability and reaction rates

a Under ecologically reasonable conditions (r > s), survival probability S increases with r and

can be approximated by a fit proportional to S ∝ 1 − 1/r (lines), different s conditions are

given by color code. b Similarly, dependence of S on switching rate s was investigated for a

range of r values (color code). Here, a negative trend S ∝ −s (lines) could be identified.
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Figure 4.7.: General survival rule and prediction error

a The survival probability S depends linearly on s/r (Eq. 4.15) and various d collapse onto a

common line. b The prediction error increases with decreasing survival probability and lysis

rate d.

Combining the two proportionalities into a combined survival rule yields S ∝ −s/r.
Plotting S versus s/r validates the above considerations (see Fig. 4.7 a) and the survival

rule can be identified as:

S = 1− s/r (4.15)

In order to asses the deviation of deterministic prediction and the average of stochastic

simulation, the difference between both variables was calculated and plotted for the

various survival probabilities (see Fig. 4.7 b). With increasing survival probability, the

extinction probability is decreased and consequently the deviation from the deterministic

prediction reduced.

Interestingly, the deviation is changing with respect to the lysis rate d (color code in

Fig. 4.7 b). Especially for low survival probabilities, smaller d values increase the error.

4.3.2. Survivial probability and initial population size

In the above discussion was restricted to initial populations of x0 = (1, 0). For the sake

of generality, the range of x0 = (C0, 0) initial populations was simulated for a range of

r and s values with a fixed d = 0.05.

Plotting the survival probability S versus the s/r ratio for the various C0 cases (Fig.

4.8 a), it is evident that the shape of the relation changes from a straight line to concave

dependence.
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Figure 4.8.: Survival probability and population size

a The S-s/r diagram shows a clear dependence on C0 (color code). The results of stochastic

simulations (dots) agree very well with the derived general survival rule (lines according to

eq. 4.16) b Plotting S versus the survival rule, shows a collapse of various C0 conditions on a

common line.

In order to understand this change, we calculate the survival probability function. In

equation 4.15, one can identify s/r as the extinction probability for the C0 = 1 case.

In case of two initial COFF cells, the extinction probability for the first cell is s/r, and

for the second cell it is also s/r. In the general case of C0 initial cells, the extinction

probability is
∏C0

j=1 s/r = (s/r)C0 and the survival probability reads:

S = 1− (s/r)C0 (4.16)

Plotting this functional relationship into the S-s/r diagram for various C0 values (Fig.

4.8 a) shows a perfect agreement and validates the above considerations. Additionally,

S was plotted against 1 − (s/r)C0 and here one sees, how well the different C0 condi-

tions collapse onto a common line (Fig. 4.8 b). Quantifying the agreement using linear

regression, one finds very high values for both the significance (p < 2.2 · 10−16) and the

goodness of fit (R2 = 0.9965).
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4. Population dynamics of colicin E2 producers

4.4. Conclusion

In this chapter, a phenomenological population dynamics model was developed for the

phenotypic heterogeneity in colicin E2 production. Corresponding reaction rates were

derived from experimental data. From this model, the stochastic population dynam-

ics were formulated in terms of master equations and a deterministic approximation

resulted in a system of ODE that was solved analytically. Comparing results of the de-

terministic and the stochastic population dynamics revealed a clear difference between

both approaches. This break-down of the deterministic approximation was found to be

due to population extinction enabled by fluctuations.

Consequently, the following investigation focused on the conditions of survival and ex-

tinction. Computational and theoretical arguments resulted in a survival rule that

depends on reaction rates and the initial population size. Later, in chapter 6, a similar

empirical survival rule is found to be proportional to the number of viable C clusters.

Furthermore, the results showed that the lysis rate d did not influence the survival prob-

ability. However, small d were found to increase the prediction error, or stated positively,

the variability of community composition. This increase in variability is likely a second

evolutionary purpose of enlarged delay times, i.e. small lysis rates, that were recently

found in wild type strains [92], in addition to increased amounts of toxin produced.
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5. Population dynamics of mixed colicin E2

communities

In this chapter, I will formulate a mathematical model to describe the interaction of

the colicin producing population with a population of sensitive bacteria. First, I will

present a phenomenological model of the interaction to motivate the reactions consid-

ered. Second, I will derive a stochastic, lattice based 2-D model of the interaction in

terms of a master equation and extend the model to include a third bacterial population.

Subsequently, I will outline, how the underlying biological processes are simulated com-

putationally and finally, I will discuss the advantages and disadvantages of the model

and compare it to previous studies.

5.1. Phenomenological model

Starting from the two-phenotype model of the colicin producer population (see section

4.1), it is not hard to arrive at the a model for the two-strain competition of the colicin

producer (C) with sensitive bacteria (S strain) (see Fig. 5.1). In contrast to earlier

studies that reduce the toxin production to effective growth rate costs for the C and

the toxin action to an effective growth rate reduction of the S strain, this model starts

from the individual cell level. The importance of cell individuality and stochasticity has

been highlighted and discussed in the previous chapter.

In addition to the reactions considered in the colicin producer population model, one

now includes the release of colicin into the environment upon cell lysis.

Like the C cells, S cells can proliferate with a rate rS and switch into a growth arrested

state SStop upon encountering the toxin. The rate of this switch reaction is given by the

toxin sensitivity times the colicin concentration at the position of the S cell sS ·[Colicin].

In general, SStop cells can die with a rate dSStop .

57



5. Population dynamics of mixed colicin E2 communities

COFF

switching on
rC

sC

S SStop

inhibition by
colicinrS

sS dSstop

+

dCon
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CON

S death

colicin

Figure 5.1.: Phenomenological model of two-strain colicinogenic interaction

Two competing bacterial populations of heterogeneously toxin producing (S, green) and toxin

sensitive (C, magenta) bacteria can react in the following way. C and S cells can proliferate

with rate rC and rS , respectively. C cells can switch into the toxin producing state CON with

rate sC and subsequently lyse with a rate dCON and release the toxin. Upon encountering

toxin molecules, S cells can switch into a growth inhibited state SStop with rate sS · [Colicin]

before they die with rate dSStop .

5.2. Mathematical model

From the phenomenological model presented above, one can formulate master equations

in analogy what was done in chapter 4. However, here, the goal is to develop a spatially

explicit model that captures the features of the range expansion experiments (chapter

6 and 7). Therefore, a spatially discretized version of the master equation on a lattice

was used.

Here, the variable P (T ;x, y, t) describes the probability to find a lattice site of type T

at position (x, y) at time t. In general, the set of possible lattice types and transitions

between them depend on the system under consideration. In the two-strain interaction

of S and C, the five possible lattice types are proliferating C cells, toxin producing CON
cells, proliferating S cells, growth inhibited SStop cells, and free lattice sites which are

denoted with the symbol F (see Fig. 5.2 c).

Transitions between cells states happen according to the six processes discussed above:

growth with rate rT , switch to the toxin producing state or the growth inhibited state,

respectively, with rate sT , or liberation of occupied sites by cell lysis or death with rate

dT (see Fig. 5.2 c). Growth of cells during one reaction step can only happen to near-

est neighbor sites defined by a set of positions N (x, y) called neighborhood of a given

position (x, y). Here, a Moore neighborhood of 8 nearest neighbors is used [157].

In addition to the bacterial cells occupying the lattice sites, a discretized colicin con-
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centration field c(x, y, t) = [Colicin] is present at every position.

Lattice
spacing

Lattice site under consideration

Neighboring lattice sites
(Moore Neighborhood)

a c Present state:
CON lattice site

dC_ON*Δt 1-dC_ON*Δt

Future states with probabilities

Present state:
Free lattice site

1-(NS*rS +NC*rC )*Δt

NS*rS*Δt  NC*rC*Δt

Future states with probabilities

Present state:
S lattice site

Future states with probabilities

[Colicin]*sS*Δt

1-[Colicin]*sS*Δt

Present state:
C lattice site

sC*Δt 1-sC*Δt

Future states with probabilities

Present state:
  SStop lattice site

dS_stop*Δt

1-dS_stop*Δt

Future states with probabilities

Lattice site types:

Empty lattice site

C lattice site

CON lattice site

S lattice site

SStop lattice site

b
Summation example

(x-1, y-1) (x-1, y) (x-1, y+1)

(x, y-1) (x, y) (x, y+1)

(x+1, y-1) (x+1, y) (x+1, y+1)

NC= δ(x+1, y) + 1/√2 (δ(x+1, y-1) + δ(x+1, y+1) )
= 1 + 2 √2  

NS= δ(x, y-1) + 1/√2 δ(x-1, y-1)
= 1 + √2  

Figure 5.2.: Lattice model of the two-strain colicinogenic interaction

(a) For every non-boundary cells, a neighborhood N (x, y) contains the 8 nearest neighbors.

(b) The summation with diagonal scaling according to equation 5.2 is illustrated. Note that

δ-functions that return 0 are omitted for readability. (c) For every possible lattice type, the

possible future states and corresponding reaction probabilities are shown.

While the state switch and death reactions happen locally, growth reactions can occur

from neighboring sites. Therefore the number of S or C cells in the neighborhood

determines the probability of growth into the focal free spot in during the present time-

step. Using

δT,C(x∗, y∗) =

1, if T (x∗, y∗) = C

0, if T (x∗, y∗) 6= C
(5.1)

as the type indicator δ-function and f ∈ {1, 1√
2
} as a prefactor, we find for the number

of neighboring C cells:
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NC(x, y) =
∑

(x∗,y∗)
∈N (x,y)

f · δT,C(x∗, y∗)

=δT,C(x− 1, y) + δT,C(x+ 1, y) + δT,C(x, y − 1) + δT,C(x, y + 1)

+
1√
2

[
δT,C(x− 1, y − 1) + δT,C(x+ 1, y − 1) + δT,C(x− 1, y + 1) + δT,C(x+ 1, y + 1)

]
(5.2)

Note that the influence of diagonal neighbors is scaled by a pre-factor 1√
2

as performed

in earlier studies [25]. Analogously one defines NS(x, y) =
∑

(x∗,y∗)
∈N (x,y)

f · δT,S(x∗, y∗). Fig-

ure 5.2 b illustrates this summation with an example.

The S state-switching occurs upon encountering of colicin molecules. Therefore the

switch reaction is proportional to the colicin concentration c(x, y, t). See section 5.3.3

for a detailed discussion on how the colicin field is modelled.

5.2.1. Master equations

In general the master equation for the systems reads analogously to equation 2.6:

∂tP (T ;x, y, t) =
∑
U

[wTU P (U ;x, y, t)− wUT P (T ;x, y, t)] (5.3)

Here, the state T of a given lattice site (x, y) at time t is given by gain and loss reactions

from and to state U . Taking into account the above considerations, one can write down

the master equations for the five different states.

The reproducing lattice states C and S grow from free lattice sites F and can switch to

the non-reproducing states CON and SStop, respectively. Consequently, one finds:

∂tP (C;x, y, t) = rC NC P (F ;x, y, t)− sCP (C;x, y, t) (5.4)

and

∂tP (S;x, y, t) = rS NS P (F ;x, y, t)− sS c(x, y, t)P (S;x, y, t) (5.5)

The toxin-producing state CON and the inhibited state SStop gain from switching and

lose due to cell death. Accordingly, one writes down:

∂tP (CON ;x, y, t) = sC P (C;x, y, t)− dCON P (CON ;x, y, t) (5.6)
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and

∂tP (SStop;x, y, t) = sS c(x, y, t)P (S;x, y, t)− dSStop P (SStop;x, y, t) (5.7)

Finally, the free lattice sites F gain from cell death and lose due to growth from neigh-

boring sites. The master equation for this state reads:

∂tP (F ;x, y, t) =dCON P (CON ;x, y, t) + dSStop P (SStop;x, y, t)

− rC NC P (F ;x, y, t)− rS NS P (F ;x, y, t)
(5.8)

One can easily see that the equations fulfill conservation of probability because of∑
T ∂tP (T ;x, y, t) = 0.

5.2.2. Extension to three strain interaction

While the above derivation was motivated by the two-strain interaction of colicin pro-

ducing and sensitive populations, it is not hard to extend the model to include a third,

resistant strain R. An additional equation for the R strain must be introduced but since

resistance prevents colicin induced state switching it just contains a growth term with

growth rate rR:

∂tP (R;x, y, t) = rRNR P (F ;x, y, t)︸ ︷︷ ︸
R growth

(5.9)

Furthermore, the free lattice state is affected by growth and because of missing R cell

death, only a growth loss term is added:

∂tP (F ;x, y, t) =dCON P (CON ;x, y, t) + dSStop P (SStop;x, y, t)

− rC NC P (F ;x, y, t)− rS NS P (F ;x, y, t)− rRNR P (F ;x, y, t)︸ ︷︷ ︸
R growth

(5.10)

Simulations of three strain interactions will be presented and discussed in chapter 7.

For the remainder of this chapter, however, we focus on the two-strain interaction.
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5. Population dynamics of mixed colicin E2 communities

5.3. Numerical solution

Due to the categorical nature of the state variable T and the limited number of interact-

ing agents, the spatially explicit consideration will always be subject to non-negligible

fluctuations. Therefore, the model was solved numerically using a stochastic simulation

algorithm on a N ×N -lattice. An overview of the simulation algorithm is given in Fig.

5.3.

In short, the algorithm includes three nested loops. The first loop iterates over the

individual experimental conditions and replicates. In general, for each condition and

replicate the lattice to be simulated is newly initialized, except for cases in which com-

parison of exactly the same initial conditions were desired. After initialization, the

algorithm iterates over the second temporal loop with fixed time-step until the simula-

tion time is reached. Within the temporal loop, iteration over the individual lattice sites

occurs (loop three) and for each lattice site stochastic updates happen. Notably, the

simulation algorithm includes coarse-graining steps if the simulated community touches

the lattice boundary and the lattice is rescaled. The individual aspects mentioned here

in short are discussed in detail in the following sections.

II. Temporal iteration with fixed time-step ∆t
1. Iteration over lattice sites

-> stochastic lattice update

2. Colicin field update (if necessary)
3. Coarse graining step (if necessary)

I. Stochastic lattice initialization
Iteration over replicates and conditions

Figure 5.3.: Simulation algorithm

The simulation algorithm contains three nested loops that iterate over the replicates and

simulation conditions, the time-steps, and the lattice sites.

5.3.1. Stochastic lattice intitialization

The initial conditions were chosen in accordance to the experimental setting. The

circular shape of initial experimental communities was approximated by a sixteen-sided

polygon with a diameter Dpolygon. The initial community composition was generated

stochastically according to the initial experimental ratio IC : IS.

In particular, a random N×N matrixR with values ranging from 0 to 1 was elementwise

multiplied with a matrix P containing the sixteen-sided polygon as ones and otherwise

zeros resulting is a matrix G. Then, using the initial density of cells ρ the random

numbers were used to classify pixel into one of the three state variables F,C, S according
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to:

T (x, y, t = 0) =


S, G(x, y) < IS

IC+IS
· ρ

C, G(x, y) > 1− IC
IC+IS

· ρ
F, otherwise

(5.11)

The classification scheme (eq. 5.11) can be easily generalized to include more lattice

species. The process is illustrated in Fig. 5.4.

a b c d

Figure 5.4.: Example initialization

Initiation example depicted for ρ = 0.01, IC = 2, IS = 100, and N = 100. (a) Shape matrix P
is elementwise multiplied with random matrix R (b) resulting in matrix G (c) which is used

for classification. (d) After classification according to eq. 5.11 the initial lattice T (x, y, t = 0)

is constructed. Here, S lattice sites are colored magenta, C lattice sites green and free lattice

sites F are white.

5.3.2. Stochastic lattice update

At the core of the simulation algorithm is the iterative stochastic lattice update (Fig.

5.5). Here, a fixed time step ∆t is used in a näıve stochastic simulations algorithm

(SSA) [158].

At every time-point, the algorithm iterates over all non-empty (T 6= F ) and adjacent

lattice sites. At every lattice site, the reaction probabilities are calculated according to

the lattice site type, reaction rates, time-step size ∆t, and Neighborhood composition

(in case of T = F ). See Fig. 5.2 c for an overview of lattice sites and corresponding

reaction probabilities. Then, a random number is drawn that determines the reaction

to happen, and the lattice site is updated. See Fig. 5.5 for an illustrating example of

a lattice update. After the algorithm updated all relevant lattice sites, the simulation

time ti = ti−1 + ∆t is updated. The iteration is repeated until the final simulation time

t = T is reached.

From the explicit calculation of reaction probabilities one sees a difficulty of a fixed-time

step algorithm. Care must be taken in choosing ∆t in order to prevent partial reaction
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Reaction example
1. Iteration over lattice sites

a. Determine lattice site type
    (Example: free lattice site)
b. Calculate reaction probabilities
    depending on lattice site type
    (Example: three probabilities)
c. Draw random number and determine
    reaction
    (Example: random number = 0.25
     -> S growth reaction)
d. Update lattice site according to reaction
e. Go to next lattice site

a b

1-(NS*rS +NC*rC )*Δt 
= 66.86%

NS*rS*Δt =(1+1/√2)*0.0765*1 
= 13.06% 

NC*rC*Δt =(1+2*1/√2)*0.0833*1 
= 20.11%

0 10.2011 0.3317↑
0.25

S growth

C growth

no change
(stay free)

Total reaction probability

focal lattice site free
Reaction probabilityReaction

Figure 5.5.: Lattice update iteration with example

(a) Lattice update algorithm is illustrated in detail for the lattice update at a given lattice

site in general and refers to example on the right. (b) Example of lattice update for a free

lattice site. For the three possible reactions C growth, S growth, and no lattice site change,

the reaction probabilities are calculated. Then, a random number is drawn (e.g. 0.25) and

compared to the cumulative total reaction probability (bottom line). As the random number

0.25 falls into the red interval representing S growth reactions, the lattice site is updated to

be a S site in the following.

probabilities > 1.

5.3.3. Colicin field modelling

During a lysis reaction of a CON cell, colicin is released into the environment. In the

model, the toxin distribution is realized via an global colicin field c(x, y, t) which is

described as the superposition concentration profiles that originate from lysed CON
cells. The colicin profiles are assumed to decay exponentially in space with rate λ and

stay constant in time [25, 159, 160]. Mathematically, the colicin profile is then defined

as

c(x, y, t) =
∑

(xj ,yj)

e−
1
λ

√
(xj−x)2+(yj−y)2 ·

t∑
τ=0

Π(xj, yj, τ ;CON → F ) (5.12)

Here, the lysis events at a given position and time (x, y, t) are denoted with

Π(x, y, t;CON → F ) =

1, if lysis event occured at (x, y, t)

0, otherwise
(5.13)

Figure 5.6 illustrates the numerical construction of a colicin profile that originates from

a newly lysed CON cell.
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Figure 5.6.: Construction of colicin profile

(a) The position of a recently lysed CON cell is depicted with a sharp peak. (b) In order to

construct the colicin profile from this, an exponentially decaying profile is assumed to originate

from this position.

The static construction of colicin profiles presented here is computationally much simpler

compared to the explicit consideration of colicin diffusion. It is justified because colicin

diffusion happens on much faster time scales compared to the other reactions considered

[25,161].

5.3.4. Coarse graining

Figure 5.7.: Coarse-graining illustration

As soon as the expanding colony reaches the lattice edge, the simulated community is rescaled

by a constant factor z and the resulting N/z × N/z lattice is placed at the center of a new

N ×N lattice. (here: N = 250, z = 5)

The detailed spatial resolution and the fixed time-step are computationally expen-

sive and necessitate the use of small lattices to make the simulation computationally

tractable. At the same time, the simulated community is expanding occupying ever
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5. Population dynamics of mixed colicin E2 communities

increasing lattice space, which calls for large lattice sizes. In order to resolve this con-

flict, coarse-graining was used motivated by the experimental zooming functionality (see

section 3.2.3).

As illustrated in Fig. 5.7, the simulated lattice is rescaled by a factor z as soon as the

expanding colony reaches the lattice edge. The resulting N/z×N/z lattice is placed at

the center of a new N ×N lattice. Rescaling is performed by inheriting only every z-th

element and discarding the rest. After the rescaling step, the simulation is continued

with rescaled reaction rates r′ = r/z.

5.3.5. Growth rate determination

The strain growth rates were determined by fitting of the simulations of pure commu-

nities (IC = 0 or IS = 0) to average experimental growth data obtained in control

experiments using MATLAB’s built-in function fminsearch. Because fitting was com-

putationally costly, the explicit fitting was only performed for the the S strain. Growth

rates for the other strains were then obtained by comparison of linear area growth rates

after 20 hours assuming a simple linear relationship between area growth and micro-

scopic growth rates [162].

Figure 5.8 compares an experimental observation and a stohastic realization of opti-

mized simulated growth. Additionally, linear area growth is shown by fitting a line to

the experimental data.
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Figure 5.8.: Growth rate determination

Colony area time-lapse data is shown for experimental (black), simulated (blue), and linear

regime fit (red). (Image is reused from [141] published under creative commons license 4.0.)
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5.3. Numerical solution

5.3.6. Parameter overview

During the general discussion of the various simulation aspects, several relevant simula-

tion parameters were mentioned. For the sake of clarity, table 5.1 presents an overview

of simulation parameters, their scaling behavior under coarse-graining operation, typical

values, and references for typical values.

Unless otherwise stated, simulations referenced in the remainder of this thesis used the

parameters from the list.

Symbol Explanation Scaling Typical

value

Reference

N Lattice size N ′ = N 250 -

∆x Lattice spacing ∆x′ = ∆x · z 2µm -

z Rescaling factor - 5 -

∆t Time-step size - 1.5 min -

T Total simulation

time

- 2910 min Similar to experiments

Dpolygon Initial colony di-

ameter

- 225 pixel Similar to experiments

IC : IS Initial C:S-ratio - 2:100 Similar to experiments

ρ Initial density - 0.002 Similar to experiments

λ Colicin profile

decay rate

λ′ = λ/z 125µm−1 taken from [25]

rC C growth rate r′C = rC/z 0.0729 fit to exp. data from [141]

rS S growth rate r′S = rS/z 0.0607 fit to exp. data from [141]

rR R growth rate r′R = rR/z 0.0876 fit to exp. data from [141]

sC C switching rate s′C = sC/z e.g. 0.02 Externally tuned according

to eq. 4.13

sS S switching rate s′S = sS/z 1500 see chapter 6

dCON CON death rate d′CON = dCON/z 0.02 From single cell studies (see

sec. 4.1.1)

dSStop SStop death rate d′SStop = dSStop/z 0.001 negligibly small in [141] and

set to zero in [163]

Table 5.1.: Simulation parameters

Overview of simulation parameters, scaling behavior under coarse-graining operation, typical

values, and references for typical values.
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5. Population dynamics of mixed colicin E2 communities

5.4. Simulation

After all the technical details of the computational model, we will now shortly discuss

general properties of the model before it is applied to specific problems and discussed

in the biological context in chapters 6 and 7.

5.4.1. Competition dynamics
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Figure 5.9.: Exemplary simulation

a Exemplary simulation featuring two coarse graining steps. After initialization (t0 with

magnified insert), cells expand and induce a coarse-graining step at t1. In the second regime

the C strain takes over until another coarse-graining step becomes necessary (t2). From there

on the colony just expands until tEnd. Note how the scale bar (400 µm) changes with every

zoom step. Color code: C green, CON white, S bright magenta, SStop dark magenta, F

black. b & c Absolute simulated area (b) and relative fraction (c) show C take-over during

competition. Color code: C green, S magenta.

68



5.5. Discussion

A typical simulation time-course is displayed in figure 5.9. Panel a illustrates how the

lattice sites evolves over time. From the sparsely populated initial lattice (t0), the

individual cells build clusters (t1) and once the lattice border is touched, the coarse-

graining step is performed (t1 bottom). Then, the competition continues and here C

takes over the population. At t2 another coarse-graining step is performed before the

simulation ends after a fixed time tEnd. Panels b and c display the absolute and relative

area of both strains respectively. Again, the take-over of C is evident.

The model was calibrated using experimental data and used to predict competition

outcome distributions. Overall, the computational and experimental results have been

found to agree well and will be discussed in detail in chapters 6 and 7.

5.5. Discussion

This chapter presented a spatially explicit computational model of the population dy-

namics in the colicin E2 system. As we will see later, the model delivers competition

outcomes in good agreement to experiments and the dynamics are at least qualitatively

similar to the experimentally determined ones. While the biological relevance will be

discussed in the following chapters, here, I focus on discussing the technical aspects and

validity of the assumption made in formulating the model.

In addition to well-mixed models, spatially explicit models have long been used to study

ecological model systems [117,118]. They comprise lattice based models [16], as well as

individual based models [116] to investigate ecological interactions and pattern forma-

tion. Traditionally, models of the colicinogenic interaction [97, 99, 101] do not consider

the phenotypic structure of the colicin producer population. Only recently, models do

not only explicitly model both phenotypes [25] but also vary the phenotypic structure

to probe the ecological system response [21]. Similarly in the model presented here, the

phenotypes are explicitly considered and starting from initially small population sizes

really allows the system to approach the absorbing extinction boundary.

Interestingly, the model and experimental results of publication [B1] have been discussed

from the perspective of percolation theory and using a simplified spatial model of the

pure C population dynamics confirm a phase transition from perstistence to extinction

phase [155].

A novel aspect of the simulation algorithm used is a coarse-graining step that occurs

once the growing population touches the lattice boundary. The advantage of the coarse-

graining step is the reduction of computational time while maintaining the microscopic

structure of initial community composition. While the transfer of only every z-th lattice

site (typically z = 5) potentially introduces critical errors due to irregular removal of

rare lattice site types, the coarse-graining happens after the initial demixing [164] and

therefore errors are estimated to be small.
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5. Population dynamics of mixed colicin E2 communities

Another distinctive feature of the algorithm is the fixed time step of a naive stochastic

simulations algorithm (SSA) [158]. While the fixed time steps allows control over the

computational time elapsed, it is computationally expensive because in many iterations

the lattice site does not change. Gillespie’s SSA [52, 54] has the advantage that only

updates in which the state variable changes are considered and, thus, is faster.

In addition to the algorithmic details, some of the underlying assumption have to be

critically discussed. First of all, the model simulates a three dimensional colony as a

2D projection. This introduces differences between single cell doubling rate and area

growth rate. Therefore, the computational growth rate is overestimated initially. Fur-

thermore, after application of the cells to the agar surface they are subject to a growth

lag such that they start replication only after a lag time [25]. This was not considered

here and could be introduced to improve the description of microscopic growth.

Another inaccuracy of the model is the neglect of mechanical forces which have been

recently found to play a crucial role in range expansion sector formation [165]. Such

mechanical forces can prevent the trapping of replicating cells behind small numbers of

non-replicators, i.e. C cells could push away inhibited SStop cells and break through to

continue growth.

Recent results questioned the view that once a C cell switched to toxin production it

certainly lyses and cannot switch back [21]. However for the model presented here, these

temporary switching events are unimportant and do not influence the dynamics per se.

Taken together, the computational model presented here, is a suitable toy model to sim-

ulate the interaction dynamics and as every model it has its imperfections. Nonetheless,

it has been assessed to ”exhibit[...] behavior which is remarkably similar to [...] empirical

observations” [155].
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6. Investigation of bacterial interactions:

Competition by toxin production1

The simple interaction system of a colicin producing and sensitive bacteria constitutes

a manageable model system to study general properties of ecological interactions. Pre-

vious studies investigating colicinogenic and susceptible strains of bacteria used this

system as a model system for allelopathy [96,97,99,101] and highlighted the importance

of interaction parameters such as colicin production cost, toxin effectiveness, and initial

strain ratios for the competition outcome. Focusing on the effective interaction param-

eters, these studies mainly neglected microscopic details of the interaction mechanisms.

While some theoretical studies included the phenotypic variation in modeling the inter-

action [25], the explicit consideration of how heterogeneity and stochasticity in colicin

production affect competition outcome and C strain success was largely unexplored.

In order to fill this gap in knowledge, the two-strain interaction between C and S was

investigated using the multi-scale fluorescence setup (see chapter 3) in combination with

the stochastic lattice-based population dynamics model (see chapter 5). The results of

this investigation are presented in this chapter.

Taken together, the results revealed that the competition dynamics featured two qual-

itatively different competition phases. First, stochastic effects in toxin production dy-

namics and random initial positioning influenced the number of viable C clusters at the

colony border. Then, the competition dynamics progressed deterministically according

to the degree of division of labor, i.e. the fraction of toxin producer within the C strain,

and the number of viable C clusters at the colony edge that resulted from the stochastic

initial dynamics.

6.1. Interaction scheme

The interaction between the C and S strain features a complex interaction scheme

(Fig. 6.1). The competitive interactions are given by the toxin action of the colicin

molecules that kill sensitive cells and the limited access to nutrients that S imposes on

C by spatial exclusion. As discussed earlier, toxin production in the C strain is subject

1This chapter is largely based on publication [B1]. (Images are partly reused and modified from [141]
published under Creative Commons License 4.0 [85])
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6. Investigation of bacterial interactions: Competition by toxin production

Colicin (C)
strain Sensitive (S) 

strainCooperation

Competition

Competition

Spatial
exclusion

Toxin action

Division of labour
+

Figure 6.1.: Interactions between the colicion producing and sensitive strain

Interactions between the colicin producing (C) and the sensitive (S) strain are characterized by

self-sacrificing toxin production in the C strain which constitutes a intra-species cooperation

by division of labor. At the same time, the toxin impact on the S strain is an inter-species

competitive action. The S strain exhibits a competitive action on the C strain by excluding

it from access to resources.

to phenotypic heterogeneity (see section 2.2) and the simultaneous presence of both

phenotypes (toxin-producing and reproducing) represents a division of labor. Taken

together, the interaction system is characterized by intra-species cooperation in the C

strain and inter-species competition between S and C.

Abstracting from the details of the interactions, the competition outcome depends on

effective interaction parameters. While the impact of spatial exclusion depends on the

growth rates and initial strain ratios, the toxin action depends on the toxin sensitivity

of the S strain and the fraction of toxin producers that can be tuned using an external

inducing agent MitomycinC (MitC) [20,83].

In previous studies similar model systems were investigated in terms of the effective

interactions between the competitors. These theoretical studies predicted that given a

set of parameters, the outcome of competition was unambiguous and fully determined

by initial conditions [97].

6.2. Competition Experiments

In order to study the competition experimentally, mixed bacterial communities of the

fluorescently labelled CpMO3 and Srfp strains (see section 3.2.1) were prepared on solid

M63 growth medium with an initial C:S ratio of 1:100 by acoustic droplet ejection (see

section 3.2.2). This ratio facilitated spatial exclusion and boosted the competitiveness

of the S strain. Droplets with inoculum culture measured 2.5 nl in volume and created

initial colonies of 450 µm in diameter on the agar surface. The colonies were imaged

72



6.2. Competition Experiments

using a stereoscopic microscope with a zoom function (see section 3.2.3), which enabled

acquisition of time-lapse recordings of the complete competition from the near single-cell

level up to mature, macroscopic colonies. The resulting time-lapse recordings were an-

alyzed using customized image and data analysis software (see section 3.3) and yielded

traces of the competition dynamics (see Fig. 6.2).
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Figure 6.2.: Competition dynamics

a The individual total area curves are obtained in competition experiments and color coded

according to the competition outcome (C wins: green, S wins: magenta). b Relative strain

abundance of two-strain competition is color coded according to the strains (C: green, S:

magenta). The curves show the tendency of the C strain (green) to take over the population

after prolonged competition. Example traces from competition with 0.005 µg/ml MitC.

6.2.1. Competition outcome

To assess the effect of increasing toxin producer fractions within the C strain on com-

petition outcome and C strain success, range expansion experiments were performed

at four different inducer concentrations (0.0, 0.005, 0.01, 0.1 µg/ml MitomycinC). The

DNA damaging agent Mitomycin C (MitC) is known to induce the SOS response regu-

lating toxin production and can be used to tune the fraction of toxin producers [20,83].

Competition outcomes were classified according to the relative area occupied by the

strains after 48 hours of competition with A48h
X being the area of strain X after 48

hours. A strain was said to dominate if it occupied over 90% of the colony area; strains

were coexisting if both occupied between 10% and 90% of the area; and communities

were said to be extinct if the total area amounted to less than 106µm2. After 48 h

of competition, all four distinct outcomes were observed (Fig. 6.3 a). However, the

outcome distribution varied strongly with inducer concentration (Fig. 6.3 b) in terms

of the final C strain fraction FC = A48h
C /(A48h

C + A48h
S ).
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6. Investigation of bacterial interactions: Competition by toxin production

Figure 6.3.: Competition outcome

a After 48 hours of competition, four distinct outcomes were observed. S wins, C wins, coex-

istence, and extinction. The scale bar represents 1 mm. b The final C strain fraction varied

with inducer concentration. Individual competition experiments at four inducer concentra-

tions are displayed as dots (lateral spread for better visibility). Depending on the relative

strain abundance, the competition outcomes were classified into one of the four classes (see

main text for details) and colored here accordingly. The pie charts on top represent the dis-

tribution of distinct competition outcomes for each condition. Without external inducer (0.0

µg/ml), the competition mainly resulted in S success or coexistence. At intermediate inducer

concentrations (0.005 & 0.01 µg/ml), the outcome distribution became bimodal occupying S

success as well as C success regions. For high induction (0.1 µg/ml), C success declined and

colonies were dominated by S or went completely extinct.

Surprisingly, for each competition condition there was no single unique outcome and

only main outcomes could be described. Without external inducer, either S dominated,

or the two strains coexisted. At low inducer concentrations (0.005 & 0.01 µg/ml MitC),

C mostly dominated, while at high inducer concentrations (0.1 µg/ml MitC) C perished,

and one observed either S domination or extinction of both strains.

These results have two main implications. First, the C strain was most successful at in-

termediate inducer concentrations which indicates an optimum toxin producer fraction

at which the trade-off between toxin benefit and production cost is balanced. Second, de-

spite the clear differences in outcome distributions between conditions, an unexpectedly

large variation within the distributions was observed. Under similar initial conditions

(the same inducer concentration) multiple outcomes were observed, which will be re-

ferred to as multi-stability.

In order to gain a better understanding of these two effects, the competition dynamics

were analyzed in more detail. First focusing on the deterministic dynamics and then on

stochastic effects.
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6.3. Deterministic competition

6.3. Deterministic competition

Experimental time-lapse data as well as computational modeling was used to investigate

competition parameters that govern the deterministic dynamics: growth rate, toxin

producer fraction within the C strain, and toxin sensitivity [97].

6.3.1. Experimental competition parameters: Growth rate and

toxin producer fraction
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Figure 6.4.: Competition parameters

a The strain specific growth rate in terms of area expansion rate for C (green) and S strain

(magenta) did not vary much between inducer concentrations except for high induction which

considerably reduces C growth (*** denotes significance with p < 0.001). b The fraction

of toxin producers within the C strain was determined analyzing the fluorescence of toxin

expressing cells using a high resolution microscopy setup (see section 3.5). For different inducer

concentrations, the population response clearly differed. The color code indicates the inducer

concentration.

In a first step, the growth rates (area expansion rates) were analyzed using linear regres-

sion in the linear growth regime (see section 5.3.5). Comparing the growth rates for the

two strains without and at low induction revealed growth rates that were in accordance

to previous studies [25], and a S:C growth rate ratio of 78.6 ± 6.6% that was constant

within the error range for inducer concentrations 0.0-0.01 µg/ml MitC (see Fig. 6.4 a).

At high induction, however, C’s growth rate was significantly lower compared to the

other conditions due to increased cell lysis accompanying toxin production, while the S

strain was not significantly slower compared to the uninduced case.

The stable growth rate ratio excluded pure growth rate effects from being responsible

for the observed success of the C strain at intermediate inducer concentrations. Conse-

quently, the dependence of the second parameter, producer fraction within the C strain
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Figure 6.5.: Alternative competition scenario without toxin release

a The plasmid pMO2 carries the colicin operion in which the cea gene is replaced by a yfp

gene. The transformation of pMO2 into the S wild type strain yields the SYFP strain that

lyses in response to SOS activation but is unable to release any toxin. b Competition outcome

comparison shows that SYFP (right) performs worse compared to CpMO3 (left) in competition

with the SRFP strain due to missing toxin action.

population, on MitC concentration was investigated.

As discussed earlier, the response dynamics of single cells to SOS stress (by MitC) have

been investigated previously in liquid conditions using time-lapse microscopy [20]. The

individual single cell dynamics led to a collective response that was strongest 75 min

after induction and was found to increase with the external stress level (see section 2.2).

In order to verify that these results were also valid under the experimental conditions

of the competition experiments on solid growth media, the degree of phenotypic het-

erogeneity was assessed using high-resolution microscopy (see 3.5). The results on solid

growth medium were qualitatively similar, although lower inducer concentrations yielded

similar results compared to liquid conditions (Fig. 6.4 b). Without external inducer a

low but steady producer fraction (7.0 ± 1.5%) was detected. At low inducer concentra-

tions, the mean producer fraction increased to 14.5 ± 1.9% (average of 0.005 and 0.01

µg/ml MitC conditions) over the time-course of the experiment and stayed relatively

constant. At high induction (0.1 µg/ml MitC), however, a synchronized response peak-

ing at 57.8 ± 3.2% toxin producers was observed, followed by a collective decrease due

to cell lysis.

Applying the phenomenological model from chapter 4, this behavior can be interpreted

as the inducer setting the switching rate s and thereby altering the steady state of toxin

producers s
r+d

. Without external inducer, the producer fraction stays constant. At

low induction, the population can settle to the new steady state. At high induction,

however, the switching rate is so large that the switching process eventually drives the

system to the absorbing boundary COFF = CON = 0.

To further support the hypothesis that indeed toxin production was responsible for

the success of the C strain at intermediate producer fraction, competition experiments

were performed in which the C strain was replaced by the SYFP strain unable to produce
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6.3. Deterministic competition

the toxin. This SYFP strain contained the colicin E2 operon in which the cea gene was

replaced by a yfp gene on the pMO2 plasmid (see Fig. 6.5 a). Consequently, it was

able to produce the Cei and Cel proteins upon SOS response but without any toxin

released upon lysis. The qualitative competition results (Fig. 6.5 b) clearly showed

that in contrast to the C strain, the non-toxic mutant was unable to dominate over

the SRFP strain, although it was even faster in growth (see table A.2 in the appendix).

This further supported the hypothesis that the observed shift in competition outcome

distribution with varying inducer concentration was due to the change in toxin-producer

fraction.

Taken together, at intermediate inducer concentration, there was no significant decrease

in growth rate compared to the uninduced case, i.e. the cost of toxin production for the

C is sufficiently low. Nonetheless, the increase in toxin producer fraction already cre-

ated a sufficiently large toxin action on the S strain such that C could succeed. At high

induction however, the production cost was too high and a prolonged toxin benefit could

not be established. Therefore, it was hypothesized that only varying the toxin producer

fraction should be sufficient to alter the overall competition outcome. In order to inves-

tigate the sole influence of a variation of toxin producer fraction without any distorting

effects, the computational model (chapter 5) was applied to the C-S interaction.

6.3.2. Simulation parameters: Switching rate, toxin

sensitivity/effectivity, and growth rate

In addition to the experiments, the computational model presented in chapter 5 was

used to simulate to competition dynamics. For each condition a set of replicate simu-

lations was performed. One result of the experimental analysis was that the fraction of

toxin producers was mainly responsible for the observed shift in competition outcome

with varied inducer concentration. In order to corroborate these findings, the simula-

tions were performed for a range of switching rates sC that determined the fraction of

toxin producers2. Due to the close relation between sC and the fraction of toxin pro-

ducers, both terms are used interchangeably.

However, while the growth rates rC and rS for both strains and the lysis rate dCON
of the CON state were known, one remaining free parameter was the toxin sensitivity

sS which was hard to determine experimentally. The parameter sS combines the toxin

effectivity and toxin sensitivity of the susceptible strain S and is therefore interchange-

ably called toxin effectivity depending on the focus. In order to take into account its

effect, sS was varied in addition to sC simultaneously. As a first result, it is worth not-

2 Please note that in the simulations for this chapter, a different functional relationship between
toxin producer fraction and sC was used compared to the definition from chapter 4. FracSS =

CON

CON+COFF
= s/d

1+s/d However, this did not change the simulation results qualitatively.
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Figure 6.6.: Computational model

a The computational model featured reproduction and state switch reactions of both C (green)

and S (magenta) strain as well as lysis of the CON strain. See chapter 5 for details3. b The

model could reproduce the four distinct competition outcomes taking into account S (bright

magenta), Sstop (dark magenta), C (green), and CON (white) cells. The scale bar corresponds

to 1 mm on the computational grid.

ing that the computational model was able to reproduce the four different experimental

competition outcomes (Fig. 6.6 b).

The system was simulated for a range of sC and sS values, generating phase diagrams

for each of the four competition outcomes (see Fig. 6.7). Dominance of the C strain

was maintained for a broad range of toxin effectivities sS for intermediate inducer con-

centrations. Accordingly, S dominance was most prominent under conditions in which

C failed. Similarly, coexistence was mostly found in regions, in which C could not

dominate: at low toxin producer fractions or low toxin effectivity. Extinction events

occurred under conditions in which toxin is effective and prolonged toxin production is

ensured. Despite the capability of the model to generate extinction outcomes, it could

not reproduce the high incidence of extinction events seen in experiments at high in-

ducer levels. A more detailed model taking into account synchronous toxin responses

was able to generate high extinction probabilities. However this will not be discussed

in this thesis and the interested reader is referred to the original publication [141].

By comparing the competition outcome of experiments (see Fig. 6.3) and simula-

tions (see Fig. 6.8 a), the free toxin effectivity parameter of the simulation was fixed

to sS = 1500. Then focusing on the exclusive variation of the switching rate sC , the

simulations underlined that only varying the switching rate was sufficient to explain the

observed changes in outcome distribution. This will be discussed in more detail in the

following.

3 The death reaction of growth inhibited SStop cells was considered in the simulation but with a
negligible rate and therefore not shown in the scheme.
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Figure 6.7.: Toxin effectivity sS and switching rate sC parameter variation

The phase diagram for the simultaneous sC and sS parameter variation shows the outcome

probability for the four outcomes S and C domination, coexistence, and extinction.
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Figure 6.8.: Outcomes of switching rate variation for constant sS = 1500

a The final C strain abundance changes with increasing producer fraction, determined by the

switching rate, similar to experiments. b Translating the C strain abundance into distinct

outcomes, the change in outcome distribution is even more evident. Color code as in Fig. 6.3

b.

By increasing sC and keeping sS constant (1500), which is the computational equivalent

of increasing the inducer concentration, qualitative changes similar to the experimen-

tally obtained ones could be observed (Fig. 6.8 a). At low and very high sC values,

domination of the C strain could not be observed, while C was successful for interme-

diate sC values. In particular, at approximately half of the C population producing the

toxin, mostly C dominance was found (see Fig. 6.8 a, middle boxed outcome distribu-

tion). However, similar to the experiments the presence of the three other competition

outcomes was conserved. The classification into distinct outcomes (see Fig. 6.8 b) made
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6. Investigation of bacterial interactions: Competition by toxin production

it even more evident: C domination was only found at intermediate inducer concentra-

tions, i.e. balanced division of labor.

Finally, the computational model was used to assess the influence of a change in relative

growth rate of the strains. To this end, the growth rate of the competitor (S) strain

was systematically varied and expressed in terms of the growth rate rC of the C strain.

By simultaneously varying the toxin sensitivity sS of the competitor, two dimensional

outcome phase diagrams could be obtained (Fig. 6.9). The phase diagrams showed a

diagonal area of coexistence that divided the regions in which mainly C or S dominate.

This diagonal represented a trade-off between growth rate and sensitivity. Below the

separating region, strains were sensitive and slow, and consequently succumbed to the

toxin producer (see highlighted square SRFP ). However, being equally sensitive but

faster in growth enabled it to cross the diagonal thereby overcoming the toxin action

and to thrive in competition (see highlighted square SNFP ).
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Figure 6.9.: Toxin sensitivity sS and competitor (S) growth rate rS parameter variation

The growth rate of the competitor (S) strain was varied and is expressed in terms of the C

growth rate rC .

Conclusion

Taken together, the theoretical model allowed to investigate various competition pa-

rameters: switching rate sC , toxin effectivity / sensitivity sS, and growth rate rS. The

most important result was that only varying the switching rate and thereby the toxin

producer fraction within the C strain population was enough to reproduce the exper-

imentally observed shift in outcome distribution. The explanation for this effect is a

balanced division of labor between toxin production and reproduction which is only

successful at intermediate levels.

Furthermore, the computational model allowed exploration of experimentally inacces-

sible parameter combinations that yielded outcome phase diagrams. In particular the

simulations allowed to draw conclusions on how the system changes if only one of the

parameters was changed while the others are kept constant (see Fig. 6.10). Focusing on
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Figure 6.10.: The effect of simulation parameter variation on competition outcome

The effect of the variation of the toxin producer fraction via switching rate (a), the competitor

growth rate rS (b), and toxin effectivity/ sensitivity sS (c) on the competition outcome of sim-

ulations is displayed for the four different outcomes: C success (green), S success (magenta),

coexistence (blue), and extinction (black). Points denote average values of competition out-

come for 48 simulation replicates, error bars denote standard error the mean, and the lines are

polynomial splines as guide for the eye. Simulation conditions: a: rC = 0.0729, rS = 0.0607,

sS = 1500, sC varied. b: rC = 0.0729, rS varied, sS = 1500, sC = 0.015. c: rC = 0.0729,

rS = 0.8 rC , sS varied, sC = 0.015.

the C strain, the optimum behavior of the producer fraction manifested in an inverted

u-shaped relation (Fig. 6.10 a). With increasing competitor growth rate, C’s success

declined (Fig. 6.10 b), while C became more successful with higher toxin effectivity/

sensitivity (Fig. 6.10 c). The behavior of the S strain followed the opposite trend and

coexistence was found in regions in which neither S nor C were completely advanta-

geous.

After exploring the parameter space of the model, the question arose how well the pre-

dicted competition outcomes reflect the actual dynamics. These will be answered in the

next section.
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6. Investigation of bacterial interactions: Competition by toxin production

6.3.3. Testing predictions: Alternative competition scenarios

In order to test the computational predictions, competition experiments were performed

using alternative competition scenarios. The parameters could only in part be extracted

directly from experiments; the two strain growth rates rC and rS from competition

control experiments and the lysis rate dCON from single cell studies. However, other

parameters, such as toxin sensitivity and switching rate, were calibrated by comparing

experimental and simulation results.

Once the system was calibrated such that sS = 1500 and sC = 0.015 delivered results

similar to the experiments with 0.005µg/ml MitC4, the combined rS and sS parameter

variation could be used as an experimentally testable prediction.

By performing the competition experiments with three alternative competitor strains

that varied in both toxin sensitivity and growth rate from the original competitor strain

SRFP , the generality of the model could be assessed. To this end, competition of the

C and the alternative competitor strain X, X ∈ {SNFP , RNFP , RRFP}, was performed

at 0.005µg/ml MitC as outlined before. The growth rates of the strains were deter-

mined by linear fitting in the linear area growth regime and assuming linear relations

between area growth and simulations growth rate (see section 5.3.5 and table A.2)

and are depicted in Fig. 6.11 a. Growth rate differences arose through the costly ex-

pression of red fluorescent protein (RFP) compared to no fluorescing protein (NFP).

Resistance was generated by selection of sensitive strains in presence of Colicin [166]

and involves a reproduction cost as well. Knowing the growth rates and the toxin sen-

sitivities (sSRFP = sSNFP = 1500 and sRRFP = sRNFP = 0), the simulated competition

outcomes could be extracted from the phase diagrams (Fig. 6.9; highlighted rectangles

correspond to the competitor strains).

The predicted competition outcomes could then be compared to the experimentally

observed ones. Figure 6.11 b summarizes the competitor properties and compares sim-

ulated and experimental competition outcomes.

Overall, these data show that the model predictions were in good agreement with the

experimental results. Depending on the properties of the competitor X, the competi-

tion of C and X differed from the original competition of C and SRFP . As predicted

by the simulations, a boost in competitor growth rate considerably improved SNFP ’s

competition strategy of spatial exclusion and led to much higher S dominance and a

large decrease in C dominance. Turning off the toxin action (resistant strains RRFP and

RNFP ) prevented large scale dominance of the C strain. Depending on the growth rate,

the competitor could dominate completely (RNFP ) or the outcome distribution featured

a mix of competitor domination and coexistence (RRFP ).

4 Using the explicit formula for toxin producer fraction and the rates sC = 0.015, rC = 0.0729, and
dCON

= 0.02 the simulated toxin producer fraction f = sC
rC+dCON

= 16.1% is remarkably similar to

the measured fraction fexp = 14.9± 1.9%.
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Figure 6.11.: Alternative interaction scenarios in experiment and simulation

a Area expansion rates for the various strains involved in interactions measured at 0.005µg/ml

MitC. b Top row summarizes interaction scenarios and competitor properties. Outcome distri-

butions for experiments (left) and simulations (right) are depicted as stacked bar plots in which

the color indicates the respective outcome (see legend below). Significant differences for a cer-

tain outcome type are indicated by asterisks (significance level ***:p<0.001, *:p<0.05). Exper-

iments were performed at 0.005µg/ml MitC. Simulation parameters: rC = 0.0729, sC = 0.015;

rX , sX chosen in accordance to experimental rates (see also Fig. 6.9). Sample sizes for exper-

iments are 87, 108, 108, 128 (from left to right) for experiments and 48 each for simulations.

In particular two of the three alternative scenarios showed very good agreement of

prediction and experiments (insignificant differences). And even in the case in which

significant differences were observed (SNFP ), the general trend of a majority of S dom-

inance cases was reproduced 5. This might be due to the intricate interplay between

growth and toxin processes which could have been harder to predict than pure growth

processes found in the scenarios with the resistant R strains. Furthermore, the SNFP
growth rate featured the largest experimental variance. An overestimated SNFP growth

rate could explain the observed deviation.

Taken together, the alternative competition scenarios demonstrated that changes in in-

teraction parameters really alter the outcome of competitions and enabled testing of the

simulated predictions. Overall, simulations and experiments agree well and underline

the generality of the proposed model.

5 The difference between experimental and simulated outcome proportion was tested for significance
using t-tests. To this end, random samples were generated with corresponding mean, variance and
sample size. The variance for the sample proportion was calculated according to [167] p 102.

83



6. Investigation of bacterial interactions: Competition by toxin production

6.3.4. Conclusion of deterministic competition

By accessing the competition parameters experimentally and simulating the competi-

tion, the deterministic factors influencing the competition were analyzed. In partic-

ular, the results revealed that the C strain is only dominant at balanced division of

labor (intermediate toxin producer fractions) and that its success probability increased

with increasing relative growth rate and toxin effectivity / sensitivity. Furthermore,

the model was tested with alternative competition scenarios and proved to be in good

agreement to experiments. However, up to now, the results did not explain the ob-

served multi-stability of competition outcomes, i.e. why did one observe the presence of

S dominance cases at intermediate inducer concentration, at which the C strain should

have dominated. This question will be addressed in the next section.
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6.4. Stochasticity in positioning and toxin dynamics

6.4. Stochasticity in positioning and toxin dynamics

Up to now, the detailed analysis of the competition parameters gave no insight into the

origin of multistability in this system. However, one knows that toxin dynamics itself

are stochastic (see chapter 4) and there certainly is a large proportion of stochasticity

involved in the initial positioning of cells by the droplet deposition. Consequently, the

competition experiments were analyzed in more detail.

Figure 6.12 compares two competition experiments under similar conditions, i.e. both

experiments were performed with 0.005 µg/ml MitC and initially featured three C cells

(highlighted in green). In case a, all three cells switched to the toxin producing state

early and lysed subsequently, giving way for S domination. However, in case b, only

the two lower cells produced the toxin and lysed early, thereby killing many S cells in

their vicinity, while the upper cell reproduced to form a viable C cluster which took over

during the course of the experiment. Taken together, while both experiments started

under very similar conditions, stochasticity in toxin dynamics led to two completely

different outcomes.

Figure 6.12.: Comparison of two competition experiments under similar conditions

The following two scenarios feature competitions under similar conditions. Both experiments

were performed under 0.005µg/ml MitC, and both contained three initial C cells (highlighted

with green circles in left image). However, while in case a, all three cells lysed giving the way

for S domination, in case b, one cell formed a viable C cluster which took over the population

during the course of the competition. Please note the variable scale bar indicating the zoom.

This motivated the following hypothesis of two phases of interaction (see Fig. 6.13).

First, in phase 1, stochastic effects in positioning and toxin dynamics shape early com-
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munity composition. Then, in phase 2, at sufficiently high cell numbers, the dynamics

are mainly driven by the deterministic competition parameters. In this section, the

stochastic effects in competition will be investigated in more detail thereby disentan-

gling deterministic and stochastic effects.

stochastic
positioning

stochastic
toxin dynamics

deterministic
dynamics

t = 0 t = 12h t = 48h

Phase 1 Phase 2

Figure 6.13.: Two phases of interaction

Experimental findings motivated a two-phase competition model. In an early phase, stochastic

effects in positioning and toxin dynamics are hypothesized to shape the community at low

cell numbers. Later, at high cell numbers, the dynamics are driven by the deterministic

interaction parameters. Schematic example shows a surviving C cluster colony that competes

under favorable conditions and takes over the colony.

6.4.1. Stochasticity in positioning and phase 1 dynamics

Initial positioning fails to explain competition outcome variability

As a first step, the initial distribution of C cells was determined in an semi-automatic

fashion. Since C cells do not emit a fluorescence signal in the OFF state, they are hard

to detect automatically. Therefore, exploiting the time-lapse information, initial C cells

were identified based on missing RFP signal, visible toxin action, and later growth. In

this assessment method, there certainly is a high degree of survival bias involved be-

cause cells that had a larger impact were more likely to be detected. However, for the

remainder of the discussion this problem will be neglected.

Knowing the positions of the initial C cells i with respect to the colony center xC,0, i
allowed the calculation of three variables describing the initial positioning. First, the

numbers of C cells NC,0 was simply the summation of individual cells in a given ex-

periment (spot). Second, the average distance from the colony center was calculated

using:

RC,0 = |xC,0| = |
1

NC,0

NC,0∑
i=1

xC,0, i| (6.1)
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Third, to account for the dispersal over the initial colony, the spread of the C cells was

determined by:

DC,0 =
1

NC,0

NC,0∑
i=1

(xC,0, i − xC,0) (6.2)

In order to quantify the influence of these positioning variables on the competition

outcome, the competition outcome was parametrized by the final C strain abundance

FC .
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Figure 6.14.: Positioning parameters do not influence FC

The center of mass distance from the colony center RC,0 (a), the spread DC,0 (b), and the

number of initial C cells NC,0 (c), as well as individual cells’ radial positions |xC,0, i| (d) do

not strongly affect final C strain fraction. The color code represents inducer concentration

and is given in d.

While the influence of the inducer concentration on the final C strain fraction was evi-

dent for all variables, the spatial parameters itself only very weakly influence the final

outcome (see Fig. 6.14). The average distance from the colony center RC,0 did not in-

fluence the final C strain fraction (Fig. 6.14 a), which might be explained by cancelling

effects of oppositely placed initial C cells. This cancelling effect was prevented by the
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spread variable DC,0 representing the distribution over the initial colony which itself did

not influence the competition strongly (Fig. 6.14 b). The same was true for the number

of initial C cells NC,0 which drove the final C strain fraction only weakly (Fig. 6.14 c).

Also on the level of individual cells, the individual distance from the colony center did

not influences the competition outcome.

In order to quantify these effects, the correlation between FC and the positioning vari-

ables was calculated. In accordance to Fig. 6.14, all of the the spatial variables NC,0,

RC,0, and DC,0 and individual cells’ radial positions |xC,0, i| are not correlated to the

competition outcome (Pearson’s r <0.2). Taken together, the randomness in initial po-

sitioning did not explain the observed variability in competition outcome.

Initial positioning and stochastic toxin dynamics determine the number of C

edge clusters

The failure of the spatial variables to explain the variability in competition outcome

motivated the search fo another variable that includes the stochasticity in toxin dynam-

ics in early competition. Consequently, the initial C cells were further characterized

regarding their time-point of switching into the toxin producing state tSwitch
6 and their

position at the end of phase 1 (12 hours)7. The position at the end of phase 1 could

take one of two values depending whether it was at the edge of a colony or not.

The resulting variable NC,Edge, the number of viable C clusters at the colony edge af-

ter 12 hours for a given competition spot, was found to be the most important factor

in determining the competition outcome in addition to the deterministic parameter of

toxin producer fraction. In section 6.4.2, it will be discussed how these two variables

determine competition phase 2. Before that, the influence of the various positioning

parameters, such as NC,0, RC,0, DC,0, and the inducer concentration on the formation

of edge clusters will be investigated.

The influence of the inducer concentration on the edge cluster formation was not as

pronounced compared to its effect on the final C strain fraction (Fig. 6.14). While un-

der highly induced conditions, the positioning variables still did not influence NC,Edge,

the other three inducer concentrations showed relatively similar behavior (Fig. 6.15).

Similar to its effect on FC , the average distance RC,0 did not strongly drive the number

of viable C edge clusters (Fig. 6.15 a). Instead, the dispersal of C cells over the intial

colony DC,0 led to an increase in NC,Edge (Fig. 6.15 b). Furthermore, with increasing

initial C cells NC,0, the number of viable C edge clusters rose as well (Fig. 6.15 c).

Finally, even the radial distance of individual cells |xC,0, i| was positively correlated with

6 Cells that reproduced and formed viable clusters were assigned the value 48 hours.
7 The duration of 12 hours for the initial phase was arbitrarily chosen. This time-point simply

coincided with a change in zoom level and was therefore the last time-point at highest magnification.
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Figure 6.15.: Positioning parameters influence NC,Edge

The center of mass distance from the colony center RC,0 (a), the spread DC,0 (b), and the

number of initial C cells NC,0 (c), as well as individual cells’ radial positions |xC,0, i| (d)

influenced the number of C edge clusters after 12 hours NC,Edge. The color code represents

inducer concentration and is given in d.

NC,Edge (Fig. 6.15 d).

To formally analyse the influence of the various positioning parameters, such as NC,0,

RC,0, DC,0, and the inducer concentration, a linear statistical model was used.

NC,Edge = β1NC,0 + β2RC,0 + β3DC,0 + β4[MitC] (6.3)

The model returned highly significant contributions from all four variables with positive

slopes for NC,0, RC,0, and DC,0 and a negative slope for [MitC] (see table A.3 for details).

Such statistical models give valuable insights into the general trends, however, they

neglect any underlying physical relations.

In order to investigate the effect of stochasticity in toxin dynamics on the formation of

viable C edge clusters NC,Edge, the population dynamics model for the toxin producer

population discussed in chapter 4 was used. There, it was shown how stochasticity in

toxin production leads to the extinction of small populations. The survival probability
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of a given community with NC,0 initial C cells was determined to equal

S = 1− ENC,0 (6.4)

where the single cell death probability was given by E = sC
rC

.

This single cell death probability could be also determined empirically from the com-

petition data as the ratio of cells that produced the toxin and died in the first 12

hours T =
∑

Spots j

∑
Cells i θ(12h − tSwitch, (j,i))

8 and the total number of initial C cells

N =
∑

Spots j NC,0, j.

E =
T

N
(6.5)

The number of C edge clusters should be proportional to the survival probability

NC,Edge ∝ S. And indeed, by relating the number of edge clusters NC,Edge to the

initial C cell number NC,0, one could find a relationship that resembled the theoretically

derived relation for the survival probability (data for intermediate inducer concentration

shown in Fig. 6.16 b). Here, the blue straight line is a fit to the data with functional

relation NC,Edge = α · (1− ENC,0) in which E = 34.6%9 that was determined according

to eq. 6.5, and α was a free proportionality factor.
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Figure 6.16.: Extinction probability and NC,Edge

a At low and intermediate toxin producer fractions, the average number of C edge cluster

did not vary much. At high induction however, the extinction probability was high and no

viable C clusters could form. b The number of viable C edge clusters NC,Edge increased with

increasing initial C cell number NC,0 for intermediate inducer concentrations (data averaged

for 0.005 and 0.01 µg/ml MitC). Furthermore, it was proportional to the survival probability

1− ENC,0 (blue line).

8 Here, the Heaviside function θ was used that returns 1 if tSwitch < 12h and zero otherwise.
9 Previously, the toxin producer fraction, at intermediate induction was identified with an theoretical

switching rate value sC = 0.015 (see footnote 4). By using rC = 0.0729 and the experimentally
determined switching rate, one would obtain Eprediction = 0.015

0.0729 = 20.6%. This difference might
support the underestimation of initial C numbers discussed at the beginning of this section.
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6.4. Stochasticity in positioning and toxin dynamics

Conclusion

Taken together, a combination of spatial positioning and stochasticity in toxin produc-

tion at low cell numbers determined the number of viable C edge clusters NC,Edge. A

broad dispersal and higher distance of individual cells from the colony center promoted

NC,Edge. Furthermore, the relationship between the number of initial C cells NC,0 and

NC,Edge was proportional to the survival probability as determined in chapter 4.

6.4.2. NC,Edge and deterministic competition parameters drive the

population dynamics

Expressing the competition outcome in terms of final C strain fraction FC , the nonlinear

relation between MitC and competition outcome was confirmed (see Fig. 6.17 a). In

section 6.3, it was discussed in detail, how the deterministic competition parameters

(growth rate, toxin producer fraction, and sensitivity) influence this average outcome.

Now, having analyzed the number of viable C edge clusters after 12 hours NC,Edge, this

experimental observable could be used as a proxy for the stochastic effects in positioning

and toxin dynamics of competition phase 1.

In order to understand how the state of the community after the initial competition

phase, represented by NC,Edge, influenced the outcome of competition, the final C strain

fraction FC was plotted against NC,Edge for each inducer concentration separately (see

Fig. 6.17 b). The data clearly showed that NC,Edge in combination with the inducer

concentration MitC was sufficient to explain the observed competition outcomes. De-

pending on the dynamics in phase 1, various numbers of viable C edge clusters could

form. Then, depending on the deterministic competition regime (inducer concentra-

tion), NC,Edge determined the competition outcome.

Once the competition was in a deterministically favorable regime (intermediate inducer

concentrations), the presence of at least one cluster (NC,Edge > 0) already led to C dom-

ination with 97.6% occupation on average, while without such clusters (NC,Edge = 0) C

was only able to occupy 39.9% on average. These latter cases (NC,Edge = 0) included

both competitions in which there were no C strain left at all and S dominated or cases

in which C was present but had no access to the edge after 12 hours of competition. In

these cases C was delayed in area growth but could occupy areas to be classified as co-

existence later. Note that these cases of coexistence in the regime that deterministically

favors the C strain (intermediate inducer concentrations) should be only transiently

coexistent from a theoretical point of view [101]. However, over the time-course of our

experiment (and after prolonged competition of 72h), the coexistence was stable. Fur-

thermore, in very few cases, even with NC,Edge > 0, coexistence cases were observed

that might be explained by a remaining variability in the competition parameters.
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Figure 6.17.: Most important factors determining the final C fraction

a The final C strain fraction depends nonlinearly on the inducer concentration MitC. Note

the nonlinear x-axis. b The final C strain fraction strongly depends on the number of C edge

clusters NC,Edge. Color code represents inducer concentration.

Without external inducer, the final outcome depended linearly on NC,Edge. This indi-

cated that a missing global toxin action reduced the toxin activity to an effective growth

inhibition of S, and the interaction was mainly driven by the growth rate differences.

Such interactions are known to exhibit frequency depended selection in which the initial

ratio of both strains determines competition outcome [96, 97]. The linear dependence

observed here might be a manifestation of that. Furthermore, this implies that even

higher ratios of C:S lead to C domination without high levels of toxin production.

Finally, competition at high induction drove the small C populations extinct and no

viable C edge clusters could form in the observed competition (NC,Edge). Consequently,

C could not dominate.

6.4.3. Statistical analysis of influencing factors

In order to quantify the influence of the individual contributions MitC, NC,Edge, NC,0,

DC,0, and RC,0 on FC and to verify the statements above, a statistical regression model

was used that included interactions between the variables (see table A.4 for details). For

the statistical analysis, MitC was treated as a categorical variable to incorporate the

qualitative differences in competition regimes. The complete model had the following

form:

FC = β0+MitC(β1 + β6NC,Edge + β7NC,0 + β8DC,0 + β9RC,0)

+NC,Edge(β2 + β10NC,0 + β11DC,0 + β12RC,0)

+NC,0(β3 + β13DC,0 + β14RC,0) +DC,0(β4 + β15RC,0) + β5RC,0

(6.6)

92



6.4. Stochasticity in positioning and toxin dynamics

By analysis of variance (ANOVA), the effects of the individual independent variables

on the outcome variable FC could be estimated using the η2 statistic [168] (see table

A.5 for details). The largest contribution stemmed from the variable MitC representing

the deterministic competition parameters. It had a very large effect on FC (η2 = 0.55,

p < 2.2 · 10−16). In addition, the NC,Edge variable that was introduced to capture

the stochastic toxin dynamics had a large effect as well (η2 = 0.15, p < 2.2 · 10−16).

The other variables did not have at least medium effects on FC in terms of the η2

statistic. This confirmed the above results that the positioning variables only influenced

the competition outcome via the formation of C edge clusters.

Finally, in order exclude the last doubts, the competition was simulated for 17 different

switching rates sC , for 16 different initial conditions IC that were each repeated 30

times. Again, the number of C edge clusters N
(comp)
C,Edge was determined for these simulated

competitions and a statistical model formulated (see table A.6 for details):

F
(comp)
C = β0 + sC(β1 + β4N

(comp)
C,Edge + β5IC) +N

(comp)
C,Edge(β2 + β6IC) + β3IC (6.7)

The high number of replicates enabled to test the influence of the various factors with

high significance (all terms p < 2.2 · 10−16). In accordance to the experimental results

very large effects stemmed from both the switching rate sC (η2 = 0.44) and N
(comp)
C,Edge

(η2 = 0.45) while the initial conditions IC had no effect (η2 = 0.00).

Taken together, the statistical analysis confirmed the previous results that both the

deterministic parameters MitC and sC and the proxy for the stochastic initial phase

NC,Edge determine competition outcome.
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6.5. Conclusion
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Figure 6.18.: Two phase interaction model

The experimental findings confirmed the hypothesized two-phasic interaction. First, random

initial positioning and stochasticity in toxin production, shape early communities and C edge

cluster formation. Second, the resulting variable NC,Edge together with the deterministic com-

petition parameters (mostly the toxin producer fraction) determine the competition dynamics

and consequently, the final C strain fraction FC . References to the figures that show the in-

dicated relations are added to the connecting arrows. Note that the arrow connecting spatial

positioning and outcome is dashed because no considerable influence was observed.

This chapter showed how the interaction dynamics of a heterogeneously Colicin E2 pro-

ducing strain of bacteria (C) with a sensitive strain (S) could be disentangled into two

distinct interaction phases; a fluctuation dominated and a mainly deterministic phase

(see Fig. 6.18).

First, stochastic processes in initial positioning and toxin dynamics shape early micro-

community development which was quantified by NC,Edge, the number of viable C clus-

ters that formed at the colony edge after 12 hours. Taking a closer look at initial

micro-colony formation, it was observed that NC,Edge was proportional to the survival

probability of initial C cells. The survival probability S = 1 − (sC/rC)NC,0 (chapter 4)

is determined by the random initial C cell number NC,0 and the microscopic reaction

rates of phenotype switching sC and growth rC .

Second, at higher cell numbers the stochastic toxin dynamics lead to an average division
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Figure 6.19.: Competition outcome explained

Condensing the insights of this chapter in one figure, one learned how determinisitic and

stochastic effects determined competition outcome. While the deterministic competition pa-

rameters, and in particular the degree of division of labor in toxin production, shaped the

general competition outcome, stochasticity in initial conditions and early toxin production

was responsible for outcome variability (multi-stability).

of labor within the heterogeneously toxin producing population with an average toxin

producer fraction of f = CON
CON+COFF

= sC
rC+dCON

(chapter 4). Externally, the switching

rate sC and, consequently f , is varied by the addition of an antibiotic (or by parameter

variation in simulations). From the experimental data one could see that varying f

created qualitatively distinct competition regimes with characteristic outcomes.

However, in contrast to deterministic assumptions [97,101], the outcomes are not unique

under similar conditions but feature multi-stability. The most prominent case is the si-

multaneous occurrence of C and S domination under weakly induced conditions that de-

terministically favor the C strain. It could be shown that this multi-stability arose from

the stochasticity of the initial phase. C edge clusters could either establish (NC,Edge ≥ 1)

or go extinct due to fluctuations (NC,Edge = 0). In the former case, the ratio f dictates

the effective interaction between C and S that governs the deterministic interaction dy-

namics, and in the latter case, S either survives and dominates or dies due to massive

early toxin action (rare).

Taken together, the results of competitions are a combined effect of initial stochastic

effects followed by deterministic dynamics set by division of labor (see Fig. 6.19). As

such, the interaction system experiences a transition from a fluctuation dominated phase

into a phase in which the growing number of cells results in average behavior.
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By taking advantage of the experimental multi-scale method (chapter 3), the stochastic

micro-dynamics as well as the deterministic competition dynamics at the macro-scale

could both be investigated evenhandedly. This would not have been possible in exper-

imental approaches focusing on one scale only. Furthermore, the obtained time-lapse

trajectories were used as test data for the development of advanced statistical methods

for functional response models [169]10.

The computational model used here (chapter 5) successfully complemented the experi-

ments by exploration of experimentally inaccessible parameters such as toxin effectivity

and relative competitor growth rates. Furthermore, it was able to predict competi-

tion outcome distributions in good accordance with the experimental observations and

confirmed that the conclusions about stochasticity as the origin of multistability were

robust with respect to a wide range of different parameters.

Just recently, instead of considering only an average toxin production cost [96], the

ecological implications of the division of labor between toxin producers and surviving

reproducers have been explicitly investigated [21]. In accordance to the results presented

here, a strongly nonlinear inverse u-shaped producer fraction and final C strain fraction

relation was found.

Previously, it was shown that initial coarsening phases are followed by later stable sector

expansion for pure growth processes [115]. However, the observed variations here are

even more drastic due to complete loss of one of the strains.

The independent switching of individual cells creates a survival risk for the population

at low cell numbers. However, just recently, large scale ecological suicide was reported

in soil bacteria and the authors stated potential beneficial effects for the individual bac-

terium [170]. While similar beneficial effects might play a role here, the colicin system

can be seen as an example for what happens if population coordination fails. Mitigation

strategies for the bacteria include communication by quorum sensing in order to avoid

switches from the viable state to an inhibited state under conditions in which survival

is unlikely [70]. In fact, colicin molecules have been shown to mildly auto-induce colicin

production within the producer population, which can be interpreted as a first step

towards the population level coordination of colicin production [95].

While only very few studies investigated the implications at large cell numbers explicitly

in experiments, the importance of stochasticity in biological processes has been known

for years. In this work, it was shown how stochastic events at the single-cell level can

propagate through large-scale systems determining their long-term behavior. There-

fore, the study does not only have implications for the colicin E2 interaction system,

but probably for a variety of microbial systems in which stochastic phenotype switches

play a role.

10 This work is listed in the publication list as [S1].
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7. Investigation of bacterial interactions:

Three-strain interaction1

After investigating the role of stochasticity and division of labor on the two-strain in-

teraction, the question arose, how robust these findings are in more complex interaction

systems. The three-strain interactions system additionally featuring a resistant strain

has long been used as a model system for transient interaction networks (Rock-Paper-

Scissor) [14,15,98] or as a model for bacterial competition in general [25].

Only recently, the role of higher order interactions, i.e. interactions between two strains

on a third one or the modulation of a pairwise interaction by a third strain [120], have

been studied in detail. In particular, the role of cheating, exploitation of the toxin

action by the R strain that does not bear the cost of toxin production, has been stud-

ied [100]. Furthermore, in conceptually similar Producer-Sensitive-Resistant system of

mixed yeast and E.coli strains, the active shielding by toxin degradation was found to

exhibit rich dynamic behavior [171].

However, these recent studies mainly focused on the macroscopic interaction dynamics

and a microscopic investigation of such higher order interactions remains lacking. In

particular, the following aspects are of interest. First, do stochastic processes play an

equally important role for the competition outcome as one observed in the two-strain

interaction? Second, do the competition dynamics display similar two-phasic behavior

as seen for the two-strain competition? Third, toxin action is distance dependent. Does

one observe shielding of the S strain by R from the toxin? Fourth, cheating as a higher

order interaction is consequently also distance dependent. What consequences does this

have for the population dynamics?

In order to address these questions, the extended interaction system was investigated

using the multi-scale experimental setup presented earlier (chapter 3) and simulated

using the computational model. In analyzing the data, a new local analysis framework

was developed that connected the micro to the macro scale. Taken together, the data

revealed that in addition to global effects of cheating there was a significant local vari-

ation in competition outcome due to stochastic effects in early community patterning.

The parameters describing the early community formation predicted the competitions

outcomes reasonably well, which resembled the two-phasic dynamics of the CS compe-

tition. However, the second phase showed prolonged neighbor-feedback due to cheating

1This chapter is largely based on publication [B3]
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and was therefore still influenced by the random initial positioning. Furthermore, the

data did not support the hypothesized shielding mechanism.

In conclusion, the work presented in this chapter underlines the importance of local and

stochastic effects for deciding community fate in spatially extended competition.

7.1. Interaction scenario

Colicin (C)
strain

Division of labour:
Replicators and toxin producers

a

Sensitive (S) 
strain

killed by toxin

Resistant (R) 
strain

resistant to toxin

Spatial
exclusion

Spatial
exclusion

Spatial
exclusion

Toxin
action

shielding?

b

clearing
the way?

C

RS

Figure 7.1.: Interactions in three strain competition

a In addition to the heterogeneously toxin producing colicin (C) strain and the sensitive (S)

strain already presented in chapter 6, a resistant (R) strain was added to the competition.

b The main interaction mechanisms were toxin action and spatial exclusion facilitated by

higher initial abundance and growth rate differences. Potential higher order interactions in

this system included shielding and toxin exploitation of the R strain.

In this chapter, the interaction system comprised three different bacterial strains, SRFP ,

CpMO3, and RNFP (see Fig. 7.1 a). In contrast to the interactions investigated in the

previous chapter, here, all three strains competed at the same time. Formerly, in the CS

interaction, the main competitive interactions were the toxin action of C on S and the

spatial exclusion of the C strain by S. By extending the competition system with the

third toxin resistant (R) strain the number of possible interactions increased to 6 direct

interactions and 3 higher order interactions that arose through the combined action of

two strains on a third strain.

However, of these 9 possible interactions only the six most promising candidates are

depicted in Fig. 7.1 b. First, the direct pairwise interactions, toxin action of C on

S and various spatial exclusion interactions that arise through initial ratio imbalance

and growth rate differences, are believed to be similar to what was observed in the two

strain interaction. Second, higher order interactions such as cheating or shielding are
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hypothesized to play an important role in the competition. In particular, cheating, i.e.

exploitation of C’s toxin action by the R strain, is expected to reduce S’s adverse effects

on R, and shielding of S from C’s toxin by R might also be important.

This chapter now aims to unravel the individual interactions mechanisms and, in par-

ticular, to assess the importance of locality. To this end, competition experiments were

performed similar to the two strain interaction. First, the final competition outcomes

were analyzed with respect to the deterministic parameter toxin producer fraction aided

by computational simulations. Then, motivated by earlier findings (chapter 6), the early

phase of competition was analyzed in more detail and revealed the influence of stochas-

tic effects on early community patterning which predicted the final outcome reasonably

well. Third, to explain remaining variability in competition outcome, a comprehen-

sive local analysis was performed that reveals the importance of local variation arising

through stochastic positioning. Finally, the data obtained from the local analysis un-

derlined the importance of distance dependent interactions of neighboring clusters for

competition outcome.

7.2. Competition experiments

The experiments presented in this chapter were performed using the multi-scale fluo-

rescence setup (presented in chapter 3). Again, initial communities were prepared on

solid M63 agar plates supplemented with arabinose (0.2%), ampicillin (100 µg/ml), and

different inducer concentrations. Then, the plates were kept at 37◦C and observed for

48 hours. Due to the observed similarity in competition outcome for both intermediate

inducer concentrations (see chapter 6), the experiments were performed for only three

concentrations (0.0, 0.01, 0.1 µg/ml MitC).

However, compared to the interaction of the toxin producers and the sensitive strain,

the experiments were changed in some regards. Most importantly, the R strain was

added to initial cultures. In order to reduce the C extinction probability and increase

the likelihood to find initial C and R cells in proximity, the C ratio was increased such

that the initial culture had a ratio of 2:10:10 (C:R:S). Furthermore, to increase the

number of observable higher order interaction sites, the spotting volume for sample

preparation was increased to 15nl (formerly 2.5nl). Consequently, experimental settings

were changed to accommodate larger initial communities (see table B.1).

7.2.1. Global competition outcome

When investigating the interaction network between the three strains, the prominent

role of toxin action was evident. It mediates the interaction between C and S strain
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directly and was consequently also involved in the potential higher order interactions

cheating and shielding. Therefore, in a first step, the experiments were performed for

three different inducer concentrations and the outcome was determined in terms of the

relative strain abundances after 48 hours (see section 3.3.1 for details). For convenience

the relative abundances X ∈ {C,R, S} are denoted with their symbol X = AX∑
i∈{S,R,C} Ai

,

Ai being the occupied area of a strain i.
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Figure 7.2.: Global competition outcome

The outcome after 48 hours of competition was determined in terms of the relative strain

abundances and is depicted as dots for every replicate. Boxplots summarize the distributions

of competition outcomes for the three different indcuer concentrations and display the median

as inner line and the 25% (75%) percentiles as lower (upper) box edges. Color code is indicated

in inset. The top row bar plots depict relative final abundances for individual competitions.

Number of replicates for each inducer concentrations : N0.0 = 97, N0.01 = 74, N0.1 = 95.

Varying the toxin producer fraction by using different inducer concentrations revealed

a strong dependence of competition outcome on toxin producer fraction (see Fig. 7.2).

In the absence of external inducer, the S strain is most prominent (average ± standard

deviation: S = 89.5± 11.1%) and its spatial exclusion strategy did not allow C and R

to occupy large areas (C = 5.8 ± 6.6% and R = 4.6 ± 6.2%). At intermediate toxin

producer levels (0.01 µg/ml MitC), S’s dominance was clearly broken and one observed

a strong and significant2 decrease in relative abundance (S = 6.2 ± 5.8%, W = 7178,

2 Significance tests were performed using the Mann-Whitney-Wilcoxon test due to non-normality of
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p < 0.001). In part, this shift in outcome stemmed from a significant increase in C

strain occupation (C = 23.0 ± 15.8%, W = 6321, p < 0.001). However, the R strain

profited from the increased toxin the most and is subject to a highly significant 15-fold

increase in average occupation (R = 70.9 ± 15.5%, W = 7178, p < 0.001). Increasing

the toxin producer fraction even further (0.1 µg/ml MitC) led to a large and signifi-

cant decrease in final C strain fraction (C = 0.8 ± 2.4%, W = 77, p < 0.001). This

relative area liberation due to C suicide led to a significant increase for the R strain

(R = 89.3 ± 17.6%, W = 5931, p < 0.001) while the S strain was not able to occupy

significantly larger areas compared to the intermediate toxin producer fractions.

In the highly induced case (0.1 µg/ml MitC), one could observe a bimodality in the

outcome distributions of R and S strain. This bimodality between high and low S abun-

dance values is believed to be similar to the multistability of extinction and S survival

in the CS-competition for high induction (chapter 6).
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Figure 7.3.: Competition outcome in three-species simplex illustration

a The simplex hyperplane is defined by the relation S + C + R = 1, in which the variables

S,R,C ∈ [0, 1] denote the relative strain abundances. This illustration allows the convenient

2D illustration of the three dimensional composition vector because any possible combination is

a point on this surface. b Illustrating the competition outcomes in such a three-species simplex

plot, one sees differently occupied regions with varying inducer concentration (see shaded

regions marked with I, II, and III and legend insert). The small insert simplex illustrates how

to read the plots. For example, the lower left corner correspond to pure S communities.

These observations were consistent with the interaction model presented above (Fig.

7.1 b). Plotting the outcome data on a three-species simplex, the 2-dimensional projec-

the data. Consequently, the W -statistic is reported.
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tion of the relative abundance hyperplane (C +R+ S = 1) further illustrated the shift

in competition outcome and the distinction between the competition regimes (see Fig.

7.3). Without external inducer, the fraction of toxin producers within the C population

was low and toxin action did no play a large role. Consequently, the interactions mainly

relied on spatial exclusion in which the S strain having a larger initial ratio was most

successful and excluded R and C from space and resources (Fig. 7.3 b, area I). Increas-

ing the toxin producer fraction to intermediate levels maximized the toxin action to the

disadvantage of the S strain. While C itself profited from this, the true beneficiary of

the increased toxin production was the R strain. Without the cost of producing the

toxin and, still being freed of the suppressive S strain, R was able to thrive and occupy

large area fractions. This exploitation of toxin action by the resistant strain is referred

to as cheating. Consequently, the final competition outcome settled on the R-C coex-

istence line (Fig. 7.3 b, area II). Finally, increasing the toxin producer fraction further

was to the disadvantage of the C strain. C itself was largely unable to further compete

with R (and S) and its relative abundance dropped drastically. Consequently, the final

outcomes settled near the R-S coexistence axis (Fig. 7.3 b, area III). In some cases, S

was able to occupy relatively large area fractions, probably due to stochastic effects in

initial positioning preventing it from completely succumbing to C’s toxin action. Inter-

estingly, compared to the two-strain interaction, in which high toxin producer levels led

to either extinction of colonies or the recovery and later domination of S, S could not

fully recover from the early toxin damage and R was able to dominate. This indicated

an especially important effect of toxin action timing and resembled the two-phasic in-

teraction observed earlier. This idea will be discussed in detail in section 7.3.

Taken together, the results suggested that both, the phenotypic balance of toxin pro-

duction and the cheating action of the R strain globally influenced the outcome of

competition.

7.2.2. Computational outcome

In order to generalize the experimental findings, the stochastic lattice-based computa-

tional model was extended to incorporate the resistant strain (see section 5.2.2). The

growth rates were newly determined from control data with 15nl initial volume and

were in accordance to data obtained in two-strain experiments (deviation ≈ ±10%) for

S and C. R, however, grew considerably slower. Therefore, the newly obtained rate was

used (see ?? for experimental and model growth rates).

Again varying the toxin production rate sC enabled the comparison of experimental

and computational results and revealed that the qualitative shift in competition out-

come was reproducible by just varying the single sC parameter (see Fig. 7.4). The

simulated trajectories led to final states that accumulate near the experimental ones.
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Hence, the dynamics were attracted to final states that are determined by the toxin

producer fraction.
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Figure 7.4.: Competition outcome in experiment and simulation

Average experimental (a) and simulated (b) competition outcomes depended on toxin pro-

ducer fraction. While R (black) and S (magenta) showed increasing/decreasing behavior, C

(green) showed peaking.

The experimental final competition outcomes (points) and simulated competitions (curves)

were in agreement for the three interaction regimes: low producer fraction (sC = 0.0026,

[MitC] = 0.0µg/ml, c), intermediate producer fraction (sC = 0.02, [MitC] = 0.01µg/ml,

d), and high producer fraction (sC = 0.0920, [MitC] = 0.1µg/ml, e). The initial conditions

(C-R-S ratio 2:10:100) are highlighted.

7.2.3. Alternative competition scenarios

In order to verify that indeed the toxin action was the driver behind the observed

competition outcome, pure R-S competitions were simulated. Starting from the same

initial ratio (10:100), the simulation showed clear dominance of the S strain (S = 98.2±
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Figure 7.5.: Variation in initial condition shifts outcome distributions

a,b Experiments with initial 2:10:100 ratio (the original experiments, see Fig. 7.2) with no

and low induction. c Experiment with higher initial C ratio without induction (10:10:100)

shows clearly increased final C fraction but lower R and less suppressed S compared to (a). d

Simulations of 10:10:100 initial ratios deliver qualitatively similar results as experiments.

3.1%) which was similar to the outcome of competition experiments without external

inducer. To verify this prediction, experiments without the C strain were performed

and yielded remarkably similar results compared to the simulation with an even higher

average final S abundance of S = 99.8± 0.8%.

Hence, it was concluded that without the toxin action of C, the R strain is unlikely to

successfully compete with S and the global success of R must therefore be attributed to

C’s toxin action and R’s cheating.

Furthermore, a variation of strain ratios was investigated (Fig. 7.5). Experiments were

performed at initial C:R:S ratio of 10:10:100 in the absence of external inducer (Fig. 7.5

c). Interestingly, the increase from no to low induction corresponds to an approximately

5-fold increase toxin producer fraction. Therefore, the new experiments can be discussed

in comparison to the original (2:10:100), uninduced and lowly induced cases (Fig. 7.5

a and b). The increase in ratio (Fig. 7.5 c) boosted the C strain such that it occupied

ratios higher than with low ratio and low induction (Fig. 7.5 b) but led to R fractions

lower than in the induced case (Fig. 7.5 a) and less suppressed S as well.

This indicated that the change in competition dynamics due to the increase in ratio

is qualitatively different than changing the toxin producer fraction. More C cells lead

to more offspring sites from which C can replicate but at the same time less toxin is

produced, S is less suppressed and R is consequently weaker.

Simulating the changed initial ratio delivered qualitatively similar results (Fig. 7.5 d)

in comparison to the original ratios (Fig. 7.5 a,b).
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7.3. Early phase of interaction

7.3. Early phase of interaction

Figure 7.6.: Early toxin action determines the ensuing dynamics

a Early community development is determined by (1) the probability of toxin production,

(2) the stochastic positioning of cells, and (3) the stochastic toxin production dynamics. b

For the different inducer concentration, typical community appearance after 12 hours was

already different (left). In hindsight, the final colony composition and structure (right) could

be extrapolated from the 12-hour snapshot (left). Scale bar for 1 mm changes due to different

zoom for 12h and 48h. White arrows in top row indicate non-S clusters.

Although the variation in competition outcome was not as pronounced as in CS interac-

tion, the competition outcome was not unambiguous. From the two-strain interactions

one knew that the competition had a stochastic early phase and a later deterministic

phase. This motivated the detailed analysis of the early competition phase (t < 12h) in

order to identify random effects in this initial phase that influence the final competition

outcome.

Screening the competition experiments led to the hypothesis that originating from an

initial colony of relatively uniformly distributed single cells, toxin action locally clears

the space from S cells giving way to growth of C and R cells. Without toxin action, C

and R cells are unlikely to have gained or gain access to the external space and thrive.

So, depending on (1) the probability of toxin production, i.e. inducer concentration in

experiments or sC in simulations, (2) the stochastic positioning of cells, and (3) the

stochastic toxin production dynamics, early communities form (see Fig. 7.6 a). In ad-

dition to this positioning and toxin related randomness, random growth processes - or
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Figure 7.7.: Early community patterning is characterized by early phase variables numbers
of R & C edge clusters and S area at 12 hours

Early community patterning is characterized by the number of R and C clusters at the colony

edge and the S area after 12 hours of competition and shows characteristic variation with

changing inducer concentration. a With increasing inducer concentration, the number of R

edge cluster NR,Edge increases. b C edge clusters NC,Edge increase for intermediate inducer

concentration but decline at high induction due to high lysis. c The area of the S strain

decreased significantly with increasing inducer concentration.

genetic drift - are known to lead to an initial stochastic coarsening dynamics before

stable sectors form [115]. Then, depending on who survived this initial scramble, the

deterministic interactions in the second phase then mainly determine the competition

outcome. For example, the colony appearance after 48 hours could already be guessed

from the appearance after 12 hours (see Fig. 7.6 b).

In order to verify these suggested relations, the early community patterning was quan-

tified by three variables characterizing the colony at 12 hours. These early variables

included the number of C and R clusters with access to the colony edge NC,Edge and

NR,Edge and the area of the S strain after 12 hours A12h
S . As a first results, one observed

that the early variables significantly varied with increasing inducer concentration (0.01

or 0.1 µg/ml MitC) compared to the uninduced case, probably due to increased toxin

action (Fig. 7.7). In particular, NR,Edge increased significantly under induced conditions

(Fig. 7.7 a). NC,Edge was subject to an increase as well, although it declined again under

highly induced conditions due to cell lysis (Fig. 7.7 b). Finally, A12h
S showed an ongoing

decrease with increased toxin inducer concentration (Fig. 7.7 c), again showing how

early toxin action affects the S strain’s presence and early colony formation.

Characterizing the community at the 12 hours time-point enabled to correlate the

early variables to the final competition outcome (Fig. 7.8 and table B.3). Interestingly,

NR,Edge and the final R abundance only correlated weakly (r = 0.37, p < 0.01) for the

intermediate inducer concentration (Fig. 7.8 a), while for the other two concentrations

no significant correlation was found. Similarly, NC,Edge correlated with the final C abun-
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Figure 7.8.: Relation of early phase variables and competition outcome

a,b Relation between R (C) outcome (48 hours) and R (C) clusters at 12 hours. c Relation

between S outcome (48 hours) and S area at 12 hours. Shaded regions around regression lines

represent 95% confidence intervals.

dance strongest for intermediate induction (r = 0.64, p < 0.001) while the other two

concentrations showed no large variation (Fig. 7.8 b). The fact that the correlations

were largest at intermediate induction for the two strains underlines the R-C abundance

driven competition in this regime.

Finally, for the final S abundance one could indeed find highly significant positive corre-

lations with A12h
S and the final S strain fraction (Fig. 7.8 c and table B.3). The strength

of correlation in terms of the correlation coefficient r varied from medium to large ef-

fect sizes [168] and increased with inducer concentration. This dependence on inducer

concentration suggested that with increasing toxin producer fraction, the competition

dynamics got more predictable and deterministic for the S strain. In turn this indicated

that without external inducer at low toxin producer fractions, effects not related to

toxin action were more important and created large variability.

In order to condense the knowledge on the three early variables, the competition out-

come was modeled using the following model for the final fraction Fi of strain i ∈ C,R, S:

Fi = β1[MitC] + β2NR,Edge + β3NC,Edge + β4A
12h
S (7.1)

In case of R and S strains, early community pattern variables NR,Edge, NC,Edge, and

A12h
S together with the inducer concentrations, predicted the final abundance very well

(R2 = 0.89, table B.5, and R2 = 0.92, table B.4, p < 0.001 in both cases). However,

in case of the C strain, the final fraction was not as predictable (R2 = 0.59, table B.6,

p < 0.001). This might be due to the stochastic toxin production that makes C less

predictable and risks its survival.

Taken together, the results verify the hypothesized two-phasic interaction: After ran-

dom initial patterning, largely deterministic competition dynamics follow. In the initial
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stochastic phase, the community can be characterized by three variables which, in case

of S and R, predict the final outcome very well.

However, the second competition phase is still subject to random processes. This is

especially evident, when considering figure 7.6 b top row. There one sees how the lower

one of initially three non-S clusters vanishes during competition and is overrun by S

while the upper two ones build a large combined cluster. This is a manifestation of

randomness in growth processes that can either stem from genetic drift [115] or might

be due to local interactions with neighboring clusters. In the following these local in-

teractions are discussed.
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7.4. The importance of position

After analyzing the early competition phase and its influence on competition dynamics,

it became clear, that there was still a large variability involved in the competition out-

come. Two sources of stochasticity were known in this system in addition to random

growth: the noisy toxin dynamics and stochastic initial positioning. The extinction

probability was found to decay exponentially with initial C cell number (see equation

6.4). Therefore, the 6-fold increase in initial volume reduced the effect of toxin produc-

tion stochasticity compared to the CS-competition (chapter 6).

Nonetheless, the positioning variability remained high and together an upper limit for

the toxin range, locality was assumed to play a larger role compared to the two-strain

competition. In order to assess this important factor, the colony images were analyzed

in detail using a local analysis method that focused on regions of interest that originated

from R and C clusters determined at 12 hours. Furthermore, the interactions between

such clusters were assessed as a proxy for higher order neighbor interactions.

7.4.1. Local analysis methods

Figure 7.9.: Local analysis method

Step 1: Center positions (full white circle) and cluster position of a non-S cluster of interest

(here example highlighted with hollow white circle) were detected after 12 hours of competi-

tion. Step 2: Coordinates of 12 hour positions were transformed into coordinates in the 48

hour image reference to account for zooming. Image shows overlay of final colony and initially

determined positions. Step 3: For a given focal cluster, a region of interest (ROI) was con-

structed as a triangle (see main text for details). Step 4: This ROI was used to locally analyze

the competition outcome.

The local analysis methods involved multiple steps (see Fig. 7.9). First (Step 1),

positions of C and R clusters at 12 hours and the center position of the community

were determined semi-automatically by screening the competition time-lapse data and
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taking into account the fluorescence signals.

Then (Step 2), by using the magnification differences between the zoom levels, the 12

hours coordinates x12 were converted into the 48 hour coordinates x48 of the registered

clusters. To this end, the coordinate x48 was determined by adding the connection

vector from the image center z = (513, 641) to the 12 hours coordinate rescaled by a

magnification factor f = F12h/F48h = 2.2/10:

x48 = z + f · (x48 − z) (7.2)

Similarly, the colony center coordinate c48 was transformed:

c48 = z + f · (c48 − z) (7.3)

The third step was to determine the regions of interest belonging to a certain focal

cluster. By assuming radial growth, the connection vector r between colony center and

cluster coordinate reads:

r = x48 − c48 = |r48|

(
cos(β)

sin(β)

)
(7.4)

The region of interest was defined as a triangle originating from a point a0 slightly

shifted by a distance |r0| from the cluster coordinate in the direction of the colony

center:

a0 = x48 − |r0|/|r48| · r48 (7.5)

Then, the two equal length vectors of the isosceles triangle were defined by

a1,2 = a0 + |a| ·

(
cos(β ± α)

sin(β ± α)

)
(7.6)

in which α was half of the opening angle and |a| the height of the triangle (see Fig. 7.9

Step 3 for details). Here, |r0| = 50 pixel, α = 20◦, and |a| = 400 pixel was used.

Finally (Step 4), using the geometric construction outlined above the region of interest

(ROI) was used to locally analyze the competition outcome for each registered focal C

and R cluster.
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7.4.2. Local competition outcome
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Figure 7.10.: Local competition outcome

a Final R strain fraction in ROIs originating from R edge clusters (black) show significantly

higher average abundance values (red dots) and larger outcome variability except for the highly

induced case compared to the complete communities (blue). b The same observations were

made for the C strain (green). However, at high induction, both categories showed no sufficient

abundances due to increased lysis. Significance is indicated with asterisks (*: p < 0.05, ***:

p < 0.001).

In order to assess the effect of local variability on the competition outcome, the method

outlined above was applied to the three-strain competition experiments. Comparing

the relative strain abundances within the locally analyzed edge clusters to the global

competition outcomes under the same conditions, one observed significant differences

between local and global competition (see Fig. 7.10). For both, R and C strain, the

average final abundance of the respective strains and the outcome variability in these

ROIs were greatly enriched compared to the global competition outcome. Despite the

significance, the size of the average differences decreased with increasing inducer con-

centrations for both strains and the effects were largest without external inducer.

How much variability really arose locally became evident, when the competition out-

come was plotted in the three-species simplex diagram (see Fig. 7.11). Here, one clearly

saw a much higher variability in competition outcome. In the uninduced case, the local

outcome space was nearly evenly populated which was in stark contrast to the global

competition outcome. For higher induction, the variability decreased analogously to the

average difference between global and local outcome, but still, locally outcomes were

realized that did not happen globally.

Taken together, the analysis showed that local and global competition outcomes could
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Figure 7.11.: Local competition outcome as three-species-simplex

Global (blue) and local competition outcome are plotted for the R-ROIs (a-c, black) and

C-ROIs (d-f, green) for the three different inducer concentrations (a,d, 0.0; b,e, 0.01; c,f, 0.1

µg/ml MitC).

differ as a result of locally changed interaction dynamics. Furthermore, the observed

high outcome variability underlines the importance of stochasticity on the microscopic

scale. Even after the initial phase’s random early colony patterning, there are still effects

that lead to a high variability in the second phase which is assumed to originate from

two sources. First, random genetic drift creates random growth paths [115, 172, 173]

and, second, the random initial distribution of neighboring clusters continuously feeds

back to the following growth due to mutual influence of these clusters. In the next

section, these neighbor interactions will be investigated in more detail.
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7.4.3. Higher order interactions

The dependence of R success on C presence has been shown above. Furthermore, it was

hypothesized that in the later largely deterministic phase, the competition dynamics

are influenced by the relative positioning of neighboring clusters. These higher order

interactions of neighboring clusters will be investigated in this section. The term higher

order interaction stems from the fact that the local R-S competition can be indirectly

influenced by neighboring C clusters via toxin action.

In order to get an estimate of the relevant scales in the C-R interaction, the C fraction

within R-ROIs was plotted against the distance to the nearest C cluster for weakly

induced case in which toxin action and growth competition play a role (see Fig. 7.12).

One observes a clear accumulation of high-valued C-fractions at distances under 250

µm. In order to get a better estimate of this cut-off distance, the data was fitted with

a sigmoidal function as a smooth version of a step function:

f(x) = a

(
1− 1

1 + exp(−b(x− c))

)
(7.7)

in which a, b, and c were fitting parameters and x the distance. The values obtained

by non-linear least square regression are given in figure 7.12 and most importantly, the

distance at which the sigmoidal plot decayed to half it original value was in accordance

to the assessment by eye (b = 252.6µm).

Figure 7.12.: Distance dependent interaction

C strain abundance within R-ROIs is plotted against distance to the nearest C cluster and

fitted with sigmoidal function. Functional form and parameter estimates are given as insert.

Data is taken from weakly induced case (0.01 µg/ml MitC). Color coding of dots according to

classification of k-means clustering that separates data into near and distant clusters.
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In addition, the data was analyzed using k-means clustering [174] with 2 clusters which

found a division line between the near and far away subpopulation (color coding in Fig.

7.12) of the data at 240 µm in accordance to the sigmoidal fit. Having an estimate

for the maximal interaction distance between C and R clusters, enabled comparison of

R-ROIs whose distance to the nearest C-cluster was larger or smaller than a cut-off

distance d0. A value of d0 = 200 pixel = 258 µm was chosen for this purpose.

First focusing on the local neighborhood of R-ROIs, one finds that the local composition

is indeed significantly different in cases in which a C cluster was nearby (distance < d0)

compared to cases in which the nearest C cluster was distant (distance > d0). Analyzing

the final S fraction in R-ROIs, one found significantly lower values in R-ROIs that were

closer than the cut-off distance compared to ROIs more distant to the nearest C cluster

(see Fig. 7.13 a). This effect was most prominent for the uninduced case (0.0 µg/ml

MitC) but qualitatively similar for the other cases. The negative distance dependent ef-

fect of C on the S abundance could be interpreted as local toxin action. Only if R-ROIs

originate from clusters that are near enough to the neighboring C clusters, the toxin

can act, kill the S strain, and lead to a decrease in relative S abundance. Especially in

the uninduced case, it was evident that without nearby C clusters, S largely dominated

in R-ROIs.

Figure 7.13.: Local cheating

Final relative S (a) and R (b) abundance in R-ROIs are depicted for various inducer concen-

trations for the cases that the R-ROIs originate from R clusters that were closer (magenta) or

more distant (blue) than the cut-off distance d0 from the nearest C cluster at 12 hours.

To explicitly investigate the locality of cheating, the above investigation was repeated for

the fraction of R in R-ROIs (see Fig. 7.13 b). As expected, one found a significant local

increase in R fraction in the uninduced case. This illustrated the distance dependence

of cheating which is assumed to originate from a limited toxin range. Interestingly,
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Figure 7.14.: Shielding interaction not verified

Final relative S abundance in C-ROIs is depicted for various inducer concentrations for the

cases that the C-ROIs originate from C clusters that were closer (magenta) or more distant

(blue) than the cut-off distance d0 from the nearest R cluster at 12 hours.

for the weakly induced case, in which C was most successful, proximity of C clusters

had a significant negative effect of local R abundance. This is attributed to the global

killing of S cells by C’s toxin action and subsequent direct competition between R and

C. At high induction, C’s early toxin action was so strong that the distance dependence

between C and R was insignificant

Taken together, the toxin action of C on S was distance dependent which translated

into a distance dependence in the higher order cheating interaction under conditions, in

which suppression of S was necessary (no and high induction).

Finally, the data should reveal if proximity of an R strain was sufficient to rescue the S

strain from dieing through the toxin, i.e. if R could shield S from C. However, by using

a similar approach as before, no shielding effects could be observed (see Fig. 7.14). On

the contrary, the final S abundance in C-ROIs was significantly lower if C-ROIs were

originally near an R cluster compared to those that were more distant than the cut-off

distance d0 (no induction). This is assumed to stem from an increased competition

by the R strain in the vicinity which further suppressed the S strain. In the cases

of low and high induction, no large S abundances and therefore no differences could

be observed. This approach certainly has its weaknesses, as it did not consider the

relative positioning of cells. Nonetheless, no other indication of shielding was found in

the experimental data.

Taken together, this investigation showed that the neighborhood has significant influence

on the long-term development within the considered clusters. The relative positioning

of clusters itself originates from the random initial patterning. Consequently, also in

the second competition phase, the initial randomness influences competition.
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7.5. Conclusion

Figure 7.15.: Three-strain interaction model

a The extended three-strain interaction model is similar to what was found for the two strain

interaction (Fig. 6.18): after an initial stochastic phase, largely deterministic dynamics de-

termine colony growth and competition outcome. However, the distance dependent neighbor

interaction between R (black) and C (green) creates a prolonged feedback of early patterning

to the following dynamics: R clusters nearer than cut-off distance d0 can profit from the toxin

of C, while R cluster farer away than d0 do not. b Example (0.0 µg/ml MitC) that illustrates

the schematic model shows successful establishment of a mixed C-R cluster in the upper part,

while the lower R colony was distant from C, could not profit from the toxin and subsequently

was enclosed by S (magenta).

In this chapter, the extended competition dynamics featuring a third resistant strain

were investigated. The most obvious effect arising from the third resistant strain is that

even under conditions in which R is slower than both S and C, R can dominate large

fractions after 48 hours of competition due to cheating.

It was shown that the outcome multi-stability observed in the two-strain interaction was

replaced by a local variability that led to locally significantly different outcomes com-

pared to the global competition outcome. The reduced global variability in competition

outcome compared to the S-C competition can be attributed to the change in experi-

mental conditions (6-fold higher initial volume). Arguably, two factors are responsible;

first, increased spatial dimensions prevented individual toxin release events to influence
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the community globally, and second, increased cell numbers reduce influence of single

cell events.

Again, the interaction dynamics could be divided into a first, stochastic phase of initial

colony patterning and a second largely deterministic phase (see Fig. 7.15). Similar

compared to the two-strain interaction, the variables describing the colony at 12 hours

in combination with the external stress parameters predicted the competition outcome

well.

However, due to the distance dependent cheating interaction, the local competition is

strongly influenced by the neighborhood. As a consequence, the random initial pattern-

ing has an ongoing influence of the competition dynamics which is new compared to the

two-strain interaction (see Fig. 7.15).

Just recently, the importance of fluctuations in initial positioning was shown in an-

other bacterial system. Under typically non-survivable conditions (insufficient average

density), random density fluctuations created local accumulations that transcended the

critical density [175].

An earlier study investigating the CRS systems [100] already revealed complex depen-

dencies of the competition outcome on various parameters such as initial ratios, toxin

production level and C-R distance. A distance dependence of similar qualitative form

was found but with a clearly higher cut-off distance which might be explained by dif-

ferences in the experimental methods - here, having microscopic initial conditions and

subsequently smaller cell numbers delivered shorter distances.

However, overall, the results confirmed these earlier findings, and in addition, the multi-

scale approach employed here allowed to analyze the interaction in more detail. First,

the bacterial community after initial patterning could be resolved and the ensuing dy-

namics predicted with the microscopic variables. Second, information on the local clus-

ter formation could only be obtained by recording the interaction dynamics over mul-

tiple scales. Macroscopic end-point measurements would have ignored the existence of

non-surviving clusters completely and hindered the correct conditioning on neighboring

clusters.

While the cheating interaction could be investigated in detail, the proposed microscopic

shielding mechanism could not be observed. Although potential shielding mechanisms

are expected to emerge at least under conditions when the separation between C and S

by R is larger than the toxin range, an earlier study could find effective shielding only

for actively toxin degrading R strains [171]. Systematic variation of relative positioning

is possible on an intermediate scale (initial colony diameter ≈ 450µm, minimal distance

≈ 50µm) by using the presented sample preparation technique and could help testing

conditions for shielding.

In conclusion, the extended system introduces cheating as a new interaction mechanism

compared to the system investigated in chapter 6. While this new interaction influences

the competition outcome globally, the most important effects are local. In contrast to
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the CS interaction, the spatial dimensions are larger and cheating creates a local cou-

pling between neighboring clusters. Consequently, the competition outcome does not

only vary locally but depends on the neighborhood which originates from the initial

random positioning.
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8. Conclusion and outlook

In this thesis, a novel approach for the investigation of mixed bacterial communities has

been introduced that enables the analysis of bacterial interactions on various spatial

scales. This approach relies on the combination of nanoliter-precision arrangement of

initial communities on agar medium and zooming fluorescence microscopy. By bridging

the scales between micro and macro, it is especially suited to investigate the effects of

stochastic single-cell events on the macro-dynamics of bacterial interactions.

Consequently, this approach was applied to the bacterial Colicin E2 interaction system.

First, the two-strain interaction of the toxin producer and the sensitive strain was in-

vestigated before the system was extended with the third resistant strain for a second

study. Taken together, both investigated systems, the two- and the three-strain inter-

action, highlight the close connection between early stochastic and later deterministic

phases in bacterial competition. In doing so, the thesis explicitly confirmed how stochas-

tic events at the single-cell level can propagate through large-scale systems determining

their long-term behavior. As such, the work is not only relevant for the Colicin system

investigated here but has consequences for many systems in which the individual con-

stituents are subject to stochastic state switches.

In a broader context, this thesis contributes to a quantitative approach to the under-

standing of biological systems that tries to use simple model systems and manageable

physical models [8] to explain the seemingly irreducible complexity of life’s phenomena.

These investigated phenomena include but are not restricted to fundamental dynamical

properties of cellular processes [8], active matter properties of cell collectives [176,177],

spatio-temporal pattern formation [128,178,179], or the quest in understanding the evo-

lutionary principles and the origin of life itself [63].

Since the early years of biophysics, microbial model systems served as toy models for

understanding more general principles; one of the most prominent examples being the

Luria-Delbrueck study [180] that proofed the spontaneity of mutations by thoroughly

analyzing distributions of bacterial mutants. Likewise only in the last four years, the

time-frame of this thesis, a large number of studies contributed to the our understanding

of microbial systems by combining experimental insights with physical modeling.

The composition of microbial assemblies is increasingly seen as the result of com-

plex, interacting dynamical systems [12] which are preferably reduced to simple sys-

tems [107, 114], or even created de novo by artificially coupling isolated cells [181].

More and more studies highlight the importance of considering the whole range of com-
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8. Conclusion and outlook

plexity ”From Genes to Ecosystems” [26] in order to understand these interactions. And

- like in this thesis - it is increasingly acknowledged that population behavior and the

associated interactions can emerge from single-cell heterogeneity [72]. The individuality

of cells has interesting effects in particular under non-linear growth conditions [175],

when phenotypic heterogeneity plays a role [21], or under combined random and me-

chanically driven growth [179].

This appreciation of single-cell heterogeneity has been driven by advancements in ex-

perimental techniques since the last 20 years. A steady improvement in experimental

and data analysis techniques now increasingly allows to relate single-cell behavior to

large scale community behavior [182].

The approach presented in this thesis contributes to a similar effort by bridging the

gap between single-cell and macroscopic colony studies. In general, the systems to be

investigated using the multi-scale approach profit the most if they combine effects on

different length scales. The following examples are currently studied or would be worth-

while future endeavors.

A series of recent studies revealed the elaborate machinery of colicin E2 producing bac-

teria to coordinate the time points of toxin production and a delayed release [20,91,92].

Knowledge on the multi-scale competition dynamics could elucidate the evolutionary

purpose of this delay.

Biofilm forming bacteria represent another type of microbial systems that features in-

teresting relations between micro-scale composition and macro-scale behavior. Among

others, one particularly suitable example is cooperativity in biofilm formation. Recently,

cooperative biofilm formation has been found to function optimally at a fixed ratio of

two labor dividing subpopulations [153]. The approach presented here could aid in re-

solving how the ratio influences the cooperation by tracking the dynamics during the

different phases of biofilm formation.

Overall, the main achievements of this thesis are two-fold; first, developing the multi-

scale experimental approach and, second, the explicit confirmation of how stochastic

events at the single-cell level can propagate through large-scale systems determining

their long-term behavior. Although the role of noise and stochasticity is stressed in most

modern textbook on biological physics [6, 8, 183, 184], the consequences of population

level stochasticity for bacterial competition have been largely unexplored, experimen-

tally. This thesis closes this gap and shows, how stochastic effects can have dramatic

effects during competition.
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A. Appendix for chapter 6

A.1. Experimental settings

Zoom Level

Experimental Parameter 1 2 3 4

Magnification 15.75 10 5 2.2

TStart[h : min] 00:00 12:15 18:30 33:30

∆t[min] 15 15 60 60

Pixel size [µm] 0.819 1.29 2.58 5.86

Bright field intensity [%] 9 5 5 5

Bright field signal gain 1 1 1 1

Bright field exposure time [ms] 7.3 5 2.1 1.9

RFP excitation intensity [%] 100 100 100 100

RFP signal gain 46 9.6 1 1

RFP exposure time [ms] 2000 2000 2000 1000

GFP excitation intensity [%] 100 100 100 100

GFP signal gain 46 9.6 1 1

GFP exposure time [ms] 2000 2000 2000 1000

Table A.1.: Microscope configuration settings for CS interaction experiments

Overview of microscope configuration and image acquisition settings for two-strain interaction

(chapter 6).
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A.2. Strain growth rates

Linear Area Growth Rate from Control Experiments

[µm2/h (relative standard deviation)]

MitC concentration [µg/ml] CpMO3 Srfp Snfp Rrfp Rnfp Syfp

0 395660

(9.1%)

329590

(20.1%)

- - - -

0.005 393060

(3.4%)

303940

(10.3%)

597810

(19.1%)

202980

(3.0%)

475810

(15.8%)

400368.6

(5.6%)

0.01 326490

(16.1%)

254980

(10.4%)

- - - -

0.1 86041

(30.8%)

334940

(22.6%)

- - - -

Simulation growth rate rX 0.0729 0.0607 0.1101 0.0374 0.0876 0.0742

Table A.2.: Linear area expansion rates

Experimentally determined linear area growth rates and corresponding model growth rates.

A.3. Statistics for linear modeling of competition data

Standardized

Coefficient

Standard

Error of

Coefficient

t Value p Value

(Intercept) 3.22E-16 0.04238745 7.60E-15 1.00E+00

NC,0 2.14E-01 0.07033569 3.05E+00 2.50E-03

RC,0 2.60E-01 0.05267524 4.94E+00 1.23E-06

DC,0 3.22E-01 0.07469537 4.31E+00 2.20E-05

MitC [µg/ml] -4.66E-01 0.04250229 -1.10E+01 4.58E-24

Linear regression result

R2 = 0.4071 R2
adjusted = 0.3999

F (4, 329) = 56.48 Mean-square error= 0.600 p < 2.2 · 10−16

Table A.3.: Regression results of linear model for NC,Edge

Regression results for linear models used in chapter 6. Influence of various spatial parameters

was modeled according to equation 6.3.
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A.3. Statistics for linear modeling of competition data

Model Multiple

R2

Adjusted

R2
adjusted

F value Mean-

square

error

p value

Experimental

data

0.7452 0.723 F (24, 275) = 33.51 0.05785 <2.2e-16

Simulation

data

0.9314 0.9283 F (340, 7580) = 302.6 0.0149 <2.2e-16

Table A.4.: Regression results of linear model for FC

Regression results for linear models used in chapter 6. Experimental data was modeled ac-

cording to equation 6.6 and simulation data according to equation 6.7.

ANOVA

Table

Factor Degrees

of

Freedom

Sum of

Squares

Type I

Mean

Square

F Value p Value η2

MitC 3 34.262199 11.420733 197.40889 < 2.2e-16 0.5487

NC,Edge 1 9.3107 9.3107 160.93613 < 2.2e-16 0.1491

NC,0 1 0.0790778 0.0790778 1.366869 2.43E-01 0.0013

DC,0 1 0.0142288 0.0142288 0.245947 6.20E-01 0.0002

RC,0 1 0.0201465 0.0201465 0.348236 5.56E-01 0.0003

MitC:NC,Edge 2 0.5892032 0.2946016 5.092228 6.74E-03 0.0094

MitC:NC,0 3 0.1722393 0.0574131 0.992393 3.97E-01 0.0028

MitC:DC,0 3 0.0397318 0.0132439 0.228923 8.76E-01 0.0006

MitC:RC,0 3 0.1678944 0.0559648 0.967359 4.09E-01 0.0027

NC,Edge:NC,0 1 1.7496308 1.7496308 30.242600 8.71E-08 0.0280

NC,Edge:DC,0 1 0.0013687 0.0013682 0.023659 8.78E-01 0.00002

NC,Edge:RC,0 1 0.0012870 0.0012870 0.022246 8.82E-01 0.00002

NC,0:DC,0 1 0.1060044 0.1060044 1.832300 1.77E-01 0.0017

NC,0:RC,0 1 0.0187043 0.0187043 0.323306 5.70E-01 0.0003

DC,0:RC,0 1 0.0006923 0.0006923 0.011967 9.13E-01 0.00001

Residuals 275 15.909626 0.0578532

Table A.5.: ANOVA Table Experiment

ANOVA table of linear regression model used in chapter 6 for experimental data.
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ANOVA

Table

Factor Degrees

of

Freedom

Sum of

Squares

Type I

Mean

Square

F Value p Value η2

sC 16 725.993674 45.374605 3045.12377 < 2.2e-16 0.441036329

NC,Edge 4 733.303964 183.325991 12303.14485< 2.2e-16 0.445477282

IC 15 5.573827 0.37158843 24.937579 < 2.2e-16 0.003386063

sC :NC,Edge 46 52.042897 1.13136732 75.92691 < 2.2e-16 0.031615714

NC,Edge:IC 19 4.13388 0.21757261 14.601461 < 2.2e-16 0.002511304

sC :IC 240 12.112686 0.05046953 3.387048 < 2.2e-16 0.007358376

Residuals 7580 112.947627 0.01490074

Table A.6.: ANOVA Table Simulation

ANOVA table of linear regression model used in chapter 6 for simulated data.
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B. Appendix for chapter 7

B.1. Experimental settings

Zoom Level

Experimental Parameter 1 2 3 4

Magnification 15.75 10 5 2.2

TStart[h : min] 00:00 09:15 13:30 26:30

∆t[min] 15 15 60 60

Pixel size [µm] 0.819 1.29 2.58 5.86

Bright field intensity [%] 9 5 5 5

Bright field signal gain 1 1 1 1

Bright field exposure time [ms] 7.3 5 2.1 1.9

RFP excitation intensity [%] 100 100 100 100

RFP signal gain 46 9.6 1 1

RFP exposure time [ms] 2000 2000 2000 1000

GFP excitation intensity [%] 100 100 100 100

GFP signal gain 46 9.6 1 1

GFP exposure time [ms] 2000 2000 2000 1000

Table B.1.: Microscope configuration settings for RCS interaction experiments

Overview of microscope configuration and image acquisition settings for two-strain interaction

(chapter 7).
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B.2. Strain growth rates

Linear Area Growth Rate from Control Experiments

[mm2/h (relative standard deviation)]

MitC concentration [µg/ml] CpMO3 Srfp Rnfp

0 0.385 (11.6%) 0.358 (13.7%) 0.329 (9.5%)

0.01 0.305 (12.0%) 0.464 (9.1%) 0.291 (13.2%)

0.1 - 0.604 (13.7%) 0.281 (10.3%)

Simulation growth rate rX 0.0709 0.066 0.0606

Table B.2.: Linear area expansion rates

Experimentally determined linear area growth rates and corresponding model growth rates

for CRS competition.

B.3. Statistics for competition data

Correlation between 12h variables and Fi
in terms of Pearson’s r and (p value)

MitC concentration [µg/ml] NR,Edge NC,Edge A12h
S

0 0.18 (0.12) 0.13 (0.26) 0.56 (<0.001)

0.01 0.37 (0.002) 0.64 (<0.001) 0.63 (<0.001)

0.1 0.08 (0.48) 0.35 (<0.001) 0.78 (<0.001)

Table B.3.: Correlation of early phase variables and

Correlation data for figure 7.8.

Estimated

Coefficient

Standard

Error of

Coefficient

t Value p Value

(Intercept) 0.3129 0.0863 3.6264 0.0004

mitC 0.01 -0.4041 0.0549 -7.3545 0.0000

mitC 0.1 -0.2066 0.0784 -2.6346 0.0090

NC,Edge -0.0093 0.0047 -2.0070 0.0460

A12h
S 3.56565E-07 4.65742E-08 7.65585223 5.69236E-13

NR,Edge -0.001 0.003 -0.496 0.620

Linear regression result

R2 = 0.926

F (5, 225) = 560.3 p < 2.2 · 10−16

Table B.4.: Regression results of linear model for FS
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B.3. Statistics for competition data

Estimated

Coefficient

Standard

Error of

Coefficient

t Value p Value

(Intercept) 0.513 0.102 5.028 0.000

mitC 0.01 0.341 0.065 5.241 0.000

mitC 0.1 0.346 0.093 3.727 0.000

NC,Edge -0.010 0.006 -1.734 0.084

A12h
S -2.74E-07 5.51E-08 -4.965120378 1.36E-06

NR,Edge 0.006 0.003 1.904 0.058

Linear regression result

R2 = 0.891

F (5, 225) = 366.2 p < 2.2 · 10−16

Table B.5.: Regression results of linear model for FR

Estimated

Coefficient

Standard

Error of

Coefficient

t Value p Value

(Intercept) 0.174 0.062 2.813 0.005

mitC 0.01 0.063 0.039 1.612 0.108

mitC 0.1 -0.139 0.056 -2.478 0.014

NC,Edge 0.019 0.003 5.664 0.000

A12h
S -8.30095E-08 3.33625E-08 -2.488104289 0.013571254

NR,Edge -0.005 0.002 -2.451 0.015

Linear regression result

R2 = 0.5952

F (5, 225) = 65.87 p < 2.2 · 10−16

Table B.6.: Regression results of linear model for FC
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