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Summary 

The expansion of the blood vessel network, known as angiogenesis, is a critical process that 

occurs in response to an insufficient tissue supply of oxygen during development, tissue 

growth, and tissue regeneration. Angiogenesis also contributes to the progression of many 

diseases including diabetic retinopathy, tumor growth and metastasis. Moreover, 

neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), are associated with 

vascular dysfunction. The causative contribution of vascular system-associated defects to 

neurodegenerative disorders, however, remains unclear. 

Angiogenesis involves coordinated endothelial cell (EC) specification, adhesion, migration, 

and proliferation, and the regulation of these processes includes physical interactions of ECs 

to the extracellular matrix (ECM) mediated by the integrins. Upon ECM binding, integrins 

recruit adaptor and signalling proteins to their cytoplasmic domains and form the focal 

adhesions (FAs), through which they relay signals into the cells. As such, integrins regulate EC 

specification, vessel elongation, lumen formation, cell-cell junction integrity, and vessel 

stability. The molecular mechanisms and intracellular signalling pathways that contribute to 

these integrin-mediated processes are, however, only partially understood. 

Parvins are actin-binding proteins that localize to FAs and facilitate the interaction of 

integrins with the actin cytoskeleton and the coupling of the integrin signaling to the 

receptor tyrosine kinase (RTK) signaling. The parvin family consists of three members: α-

parvin (α-pv), β-parvin (β-pv), and γ-parvin (γ-pv), and ECs express only α-pv and β-pv. 

Parvins are central regulators of vascular development. Deletion of the α-pv gene in mice 

results in embryonic lethality associated with cardiovascular defects and signs of impaired 

angiogenesis including defective coverage of vessels by vascular smooth muscle cells 

(vSMCs), vascular rupture and abnormal heart development. While it is well established that 

ECs are instrumental in angiogenesis, the relevance for α-pv and β-pv on EC function during 

angiogenesis is, however, unknown and remains to be explored. 
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In this thesis, the role of α-pv and β-pv in ECs and their importance during angiogenesis in 

physiological and pathological conditions have been investigated. To meet these goals, we 

used an interdisciplinary approach, which includes mouse genetic tools including tissue-

specific gene targeting approaches, cell culture models, molecular biology assays and high-

resolution fluorescence microscopy. 

To study the function of α-pv in ECs in vivo, we generated mice with ECs lacking α-pv by 

crossing mice carrying a loxP-flanked α-pv gene (α-pvfl/fl) with mice expressing the Cre 

recombinase under the Tie-2 promoter (Tie2-Cre) (referred to herein as α-pvΔEC). α-pvΔEC 

mice died during embryonic development starting at embryonic day (E) 15.5. The lethality of 

α-pvΔEC embryos was associated with hemorrhages and an altered vascular network. α-pvΔEC 

embryos displayed a tortuous and instable vasculature compared to control embryos. These 

defects were associated with impaired endothelial cell-cell junction integrity. In vitro, α-pv 

depleted ECs displayed defective actin cytoskeleton organization, decreased formation of 

integrin-based cell-ECM adhesion structures, impaired lamellipodia formation and reduced 

Rac1 activity. Consequently, migration, cell-cell junction integrity, and monolayer formation 

were impaired in the absence of α-pv. To investigate the role of endothelial α-pv in 

pathological angiogenesis, we used the mouse glioma neovascularization model. The 

analysis showed that depletion of endothelial α-pv leads to reduced tumor vessel density 

and tumor size. 

Although, mice lacking β-pv (β-pv-/-) are viable, fertile and do not show any obvious 

embryonic phenotype, it could be that β-pv partially compensates endothelial α-pv 

deficiency during early embryonic stages. To test this hypothesis, we generated mice with 

ECs lacking both α-pv and β-pv (referred to herein as α-pvΔEC;β-pv-/- mice) by intercrossing α-

pvfl/+;Tie2-Cre mice with α-pvfl/fl;β-pv-/- mice. We showed that α-pvΔEC;β-pv-/- mice exhibited 

hemorrhages in the head and trunk and died between E11.5 and E12.5. Paralleling sites of 

hemorrhage, α-pvΔEC;β-pv-/- embryos displayed selective central nervous system (CNS)-

specific vascular patterning defects, with markedly decreased angiogenic sprouting into the 

brain and the spinal cord, reduced vascular density, enlargement of vessel diameter, 

glomeruloid vascular malformations, and impaired pericyte (PE) coverage of the vessels. 

Together, these findings indicate for the first time that β-pv partially compensates the loss of 



 

VI 

 

endothelial α-pv and that parvins are critical for the vascularization of the CNS during 

embryonic development. Our data also suggest that parvins might play a central role in 

blood-brain barrier (BBB) formation and maintenance. 

Besides motor neuron degeneration and muscle atrophy, ALS patients show EC damage, PE 

degeneration and disrupted barrier function, leading to the classification of ALS as a 

neurovascular disease. The majority of ALS patients share a common neuropathology 

characterized by cytoplasmic deposition of TDP-43 positive protein inclusions. TDP-43 is a 

DNA/RNA-binding protein that regulates the expression of several genes. Interestingly, 

depletion of TDP-43 in zebrafish leads to shortened motor neurons, muscle degeneration, 

vascular miss-patterning, and death. However, the role of TDP-43 in ECs and whether 

endothelial TDP-43 regulates angiogenesis and is implicated in the vascular defects observed 

in ALS patients, is unknown, and remain to be determined. 

During my thesis and in collaboration with the group of Dr. Bettina Schmid at the German 

Centre for Neurodegenerative Diseases (DZNE) in Munich, we studied the role of TDP-43 in 

ECs in mice. To do this, we used mice with ECs genetically deficient of TDP-43 (herein 

referred as TDP-43iΔEC mice) that were generated by crossing TDP-43fl/fl mice with mice 

expressing Cre recombinase under the control of the tamoxifen-inducible VE-cadherin 

(VEcad) promoter (Cadh5(PAC)-CreERT2), and analyzed postnatal retinal vascularization over 

time. Our results showed for the first time, that endothelial TDP-43 controls sprouting 

angiogenesis by regulating polarity and migration of ECs. 

Using new endothelial-specific gene targeting mouse models we have uncovered novel and 

essential functions of parvins and TDP-43 in the formation of blood vessels, opening new 

experimental opportunities to gain further insights into the molecular control of EC biology, 

in both, health and disease. 
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Zusammenfassung 

Das Wachsen des Blutgefäßsystems, die Angiogenese, ist ein wichtiger Prozess, der bei 

mangelnder Versorgung von Gewebe mit Sauerstoff während der Entwicklung, im Wachstum 

und bei Gewebsheilung stattfindet. Die Angiogenese spielt auch bei der Pathogenese vieler 

Krankheiten eine Rolle, wie etwa bei der Diabetischen Retinopathie, Tumorwachstum und 

der Metastasierung. Des Weiteren sind neurodegenerative Krankheiten, wie etwa die 

Amyotrophe Lateralsklerose (ALS), mit Gefäßfehlbildungen assoziiert. Der Einfluss von 

Gefäß-assoziierten Schäden auf neurodegenerative Funktionsstörungen ist jedoch noch 

unklar. 

Die Angiogenese beinhaltet koordinierte Endothelzell (EZ)- Spezifizierung, Adhäsion, 

Migration und Proliferation, und die Regulation dieser Prozesse schließt die physische 

Interaktion von EZ mit der Extrazellulären Matrix (EZM) durch die Integrine ein. Bei Bindung 

an die EZM rekrutieren Integrine Adaptor- und Signalproteine an ihr cytoplasmatisches Ende 

und bilden somit fokale Adhäsionspunkte (FA), durch welche sie Signale in die Zellen 

übertragen. Auf diesem Weg regulieren Integrine EZ Spezifikation, Gefäßwachstum, 

Lumenformierung, Zellkontake und Gefäßstabilität. Die molekularen Mechanismen und 

intrazellulären Signalkaskaden, die wichtig für diese Integrin-basierenden Prozesse sind, sind 

jedoch nur teilweise bekannt. 

Die Parvine sind Aktin-bindende Proteine, welche an FA lokalisieren und die Interaktionen 

von Integrinen mit dem Zytoskelett und die Verknüpfung der Integrinsignalwege mit den 

Rezeptortyrosinkinase (RTK) Signalwegen regulieren. Die Familie der Parvine besteht aus drei 

Mitgliedern: α-parvin (α-pv), β-parvin (β-pv), und γ-parvin (γ-pv) und EZ exprimieren nur α-

pv und β-pv. Parvine sind wichtige Moleküle bei der Regulation der Gefäßentwicklung. Die 

Deletion des α-pv-Gens in Mäusen führt zum Tod im Embryonalstadium wegen 

kardiovaskulärer Defekte und Anzeichen von fehlerhafter Angiogenese, einschließlich 

gestörter Anlagerung von Glattmuskelzellen an Gefäßwände, Gefäßrisse und abnormaler 

Herzentwicklung. Es ist wohl bekannt, das EZ eine wichtige Rolle in der Angiogenese spielen, 

die Bedeutung von α-pv und β-pv für EZ-Funktionen während der Angiogenese ist jedoch 

nicht bekannt und muss noch untersucht werden. 
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Diese Arbeit hatte zum Ziel, die Funktionen von α-pv und β-pv während physiologischer und 

pathologischer Angiogenese-Prozesse zu untersuchen. Um dies zu erreichen, wurden 

interdisziplinäre Methoden angewandt, unter anderem genetisch veränderte Mauslinien 

und gewebs-spezifische Gendeletationsmethoden, Zellkulturmethoden, molekular-

biologische Untersuchungen und hochauflösende Fluoreszenzmikroskopie. 

Um die Funktion von α-pv in vivo zu untersuchen, wurden Mäuse generiert, deren EZ kein α-

pv exprimieren, indem Mäusen mit dem loxP-flankierten α-pv Gen (α-pvfl/fl) mit Mäusen 

verpaart wurden, die die Cre Rekombinase unter dem Tie2-Promotor exprimieren (von nun 

an α-pvΔEC genannt). Dies führte zum Tod im späten Embryonalstadium beginnend am 

Embryonaltag (E) 15.5 und ging einher mit Blutungen und veränderten Gefäßstrukturen. α-

pvΔEC Embryonen wiesen turbulente und instabile Gefäße im Vergleich zu Kontrollgefäßen 

auf. Diese Defekte gingen einher mit unstabilen Zell-Zell Verbindungen. In vitro zeigten 

Zellen ohne α-pv ein abnormales Zytoskelett, defekte Formung von Integrin-basierenden 

Adhäsionsstrukturen, abnormale Formung von Lamellipodien und verminderte Rac1 

Aktivität auf. Daraus ergaben sich Defekte in Migration, Zell-Zell Kontakten und Formung 

eines Zellrasens in EZ ohne α-pv. Um die Rolle von endothelialem α-pv in der pathologischen 

Angiogenese zu untersuchen, wurde das Glioma Neovaskularisationsmodell verwendet. Die 

Ergebnisse zeigten, dass endotheliales α-pv eine Rolle in Tumor Vaskularisation spielt. Das 

Fehlen von α-pv führte zu vermindeter Tumorgefäßdichte und Tumorgröße. 

Obwohl Mäuse ohne β-pv (β-pv-/-) vital und fruchtbar sind und zudem keinen 

offensichtlichen embryonalen Phänotypen aufweisen, könnte es sein, dass β-pv teilweise in 

der frühen Embryonalentwicklung die endotheliale Deletion von α-pv kompensiert. Um diese 

Hypothese zu testen, wurden Mäuse generiert, deren EZ weder α-pv noch β-pv exprimieren 

(von nun an α-pvΔEC;β-pv-/- genannt). Dies wurde durch die Verpaarung von α-pvfl/+;Tie2-Cre 

Mäusen mit α-pvfl/fl;β-pv-/- Mäusen erreicht. Hier zeigten wir, dass α-pvΔEC;β-pv-/- Embryonen 

zwischen E11.5 und E12.5 starben und Blutungen im Kopf und Körper aufwiesen. Zudem 

hatten α-pvΔEC;β-pv-/- Embryonen eine stark geschädigte Vaskularisation des zentralen 

Nervensystems (ZNS), die sich durch reduziertes Einwachsen von Blutgefäßen in das Gehirn 

und das Rückenmark, reduzierte Gefäßdichte, größere Gefäßdurchmesser, 

Bläschenstrukturen und mangelhafte Anlagerung von Perizyten an Gefäßwände 
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auszeichneten. Diese Ergebnisse deuten erstmals darauf hin, dass β-pv teilweise den 

endothelialen Verlust von α-pv während der Embryogenese kompensiert und dass Parvine 

für die Vaskularisierung des ZNS von großer Bedeutung ist. Unsere Daten zeigten auch, dass 

Parvine möglicherweise eine wichtige Rolle in der Bildung und der Aufrechterhaltung der 

Blut-Hirn-Schranke spielen. 

Neben der Degeneration von Motoneuronen und Muskelschwund, wurde bei ALS-Patienten 

EZ Schaden, Perizyten-Degeneration und eine fehlerhafte Blut-Hirn-Schranke festgestellt, 

was dazu führt ALS als neurovaskuläre Erkrankung einzustufen. Die meisten ALS-Patienten 

haben eine neuropathologische Eigenschaft gemeinsam: die zytoplasmatische Ablagerung 

von TDP-43-positiven Proteineinlagerungen. TDP-43 ist ein DNS/RNS-bindendes Protein, das 

die Expression vieler Gene reguliert. Es ist interessant, dass die Deletion von TDP-43 in 

Zebrafischen zu verkürzten Motoneuronen, Muskelschwund, fehlerhaften Gefäßmustern 

und schließlich zum Tod führt. Die Rolle von TDP-43 in EZ ist jedoch nicht geklärt, und ob 

endotheliales TDP-43 in Angiogeneseprozessen mitwirkt und in die vaskulären Defekte, die 

bei ALS Patienten beobachtet wurden, involviert ist, muss noch untersucht werden. 

Während meiner Arbeit und in Kollaboration mit der Gruppe von Dr. Bettina Schmid am 

Deutschen Zentrum Neurodegenerativer Erkrankungen (DZNE) in München, habe ich die 

Rolle von TDP-43 in EZ in Mäusen untersucht. Dafür wurden Mäuse verwendet, deren EZ 

kein TDP-43 haben (von nun an TDP-43iΔEC genannt), und diese wurden generiert, indem 

TDP-43fl/fl Mäuse mit Mäusen gekreuzt wurden, die die Tamoxifen-induzierbare Cre 

Rekombinase unter dem VE-cadherin (VEcad)-Promotor (Cadh5(PAC)-CreERT2) exprimieren. 

Mithilfe der TDP-43iΔEC Mäuse wurde die postnatale Retinavaskularisation zu verschiedenen 

Zeitpunkten analysiert. Unsere Ergebnisse zeigten erstmals, dass endotheliales TDP-43 die 

Sprossung in der Angiogenese durch Regulation von EZ- Polarisation und Migration 

beeinflusst. 

Mit neuen Mausmodellen zur endothel-spezifischen Gendeletion gelang es uns neue 

Funktionen von Parvinen und TDP-43 in der Gefäßformation aufzuzeigen, und hiermit wurde 

der Weg für neue experimentelle Möglichkeiten geebnet, weiterführende Einblicke in die 

molekulare Regulation der EZ-Biologie in Gesundheit und Krankheit zu erlangen. 
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1 Introduction 

1.1 The development of the vascular system 

The vascular system consists of a hierarchically organized network of blood vessels that can 

be divided into arteries, veins, and capillaries. The blood vessels are formed by an inner layer 

of endothelial cells (ECs) enclosed by vascular mural cells, comprising vascular smooth 

muscle cells (vSMC) and pericytes (PE), which, among other functions, provide stability to 

the vessel. While arteries and veins are surrounded by vSMC and PE, capillaries which link 

arteries and veins, have no smooth muscle but are associated with PE1,2. The main function 

of the vascular system is to assure an adequate distribution of fluids, nutrients, gases, 

circulating cells, hormones, and metabolites to all cells of the body, thereby being essential 

for embryo development, organogenesis, organ function, tissue homeostasis, and immune 

response3. Pathologic changes of the function or structure of the vascular system also 

contribute to the progression of many diseases including cancer, diabetic retinopathy, 

arthritis, psoriasis, and neurodegenerative disorders4,5. During the last years important 

insights into the molecular mechanisms that regulate angiogenesis have been achieved, 

however, therapeutic efforts to control vessel growth still remain (pre)clinical in most cases6-

8. The work of this thesis aims to contribute to a better understanding of the mechanisms 

that control angiogenesis, which could pave the way for future treatment of vascular 

disorders. 
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The vascular system develops by two different morphogenetic processes; by vasculogenesis, 

i.e. the de novo formation of blood vessels by mesoderm-derived endothelial precursor cells 

(angioblasts)2 and by angiogenesis, i.e. the formation of new vessels from preexisting ones. 

Hypoxic tissues can induce angiogenesis by producing proangiogenic factors, such as 

vascular endothelial growth factor-A (VEGF-A) and chemokines that activate the 

endothelium9. Angiogenesis is a complex process that involves EC-matrix adhesion, and EC 

polarization, migration, and proliferation, and requires that activated ECs escape from the 

quiescent vessel. The process how ECs escape the quiescent vessel depends on proteolytic 

degradation of the basal membrane (BM), containing collagen IV (Col-IV), laminin, and 

proteoglycans. This can be facilitated by matrix metalloproteases (MMPs), such as 

membrane type-1-MMP (MT1-MMP). Activated ECs also can form EC-matrix structures, such 

as podosomes, that locally degrade BM components10,11. 

Angiogenesis is initiated by a temporary spatial differentiation of ECs into tip and stalk cells, 

a behavior that is mainly induced by VEGF-A, and regulated by delta-like 4 (Dll4)/Notch 

signaling. Tip and stalk cells can be distinguished by their morphology, their gene expression 

signature, and their position in the developing vessel sprout. Tip cells lead the new sprout, 

are highly migratory, and project long filopodia that search the environment for 

proangiogenic factors12,13. Tip cells express high levels of EC-specific molecule 1 (ESM1), Dll4, 

and platelet-derived growth factor (PDGF)14. The stalk cells follow the tip cells and elongate 

the sprout by proliferation. Stalk cells also secrete the components of the BM, adopt 

apical/basal polarity to form the lumen, and establish tight cell-cell junctions with 

neighboring ECs to stabilize the sprout9 (Figure 1). 

Figure 1. Schematic Steps of vessel formation. (1) Endothelial activation and tip/stalk cell selection. (2) Tip cell 
guidance and stalk cell proliferation. (3) Coordination of branching frequency. (4) Anastomosis and lumen 
formation (5) Perfusion and vessel maturation (modified after

6
). 
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Tip/stalk cell specification is tightly regulated by the relative protein expression of VEGF 

receptor 2 (VEGFR2) and Dll4 between ECs15-18. ECs with higher levels of VEGFR2 and Dll4 

become tip cells. The binding of VEGF-A to VEGFR2 on these cells promotes the expression 

of Dll4 and the activation of Notch signaling in the adjacent ECs, which then become stalk 

cells9,18. The binding of Dll4 to Notch triggers the release of the Notch intracellular domain 

(NICD), which regulates the expression of many genes including the down-regulation of 

VEGFR219,20,21,22. Therefore, the activity and relative protein levels of the VEGFR2 is regulated 

by the Dll4/Notch signaling, thereby creating a positive feedback loop between these two 

signaling pathways23,24. This model of tip/stalk cells selection is highly dynamic and 

stochastic, allowing the rapid switch between tip and stalk specification and vice versa16. The 

importance of these signaling pathways in angiogenesis was shown using genetic studies in 

mice in which deletion of Dll4, Notch, VEGF-A or VEGFR2 leads to embryonic lethality due to 

severe defects in blood vessel formation25-28. 

When two tip cells from different sprouts touch, they establish cell-cell junctions allowing 

the fusion of the sprouts in a process called anastomosis29. Next, mural cells are recruited to 

stabilize the newly formed vessels and facilitate their maturation1,30-32. Finally, vessel 

regression and pruning processes regulated by the blood flow remodel the new vascular 

network to achieve an optimal perfusion of the tissue. As soon as the formation of a mature 

vascular network is completed, the vessels remain in a quiescent state until new stimuli 

activate the endothelium6. 
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1.2 EC-extracellular matrix (ECM) interaction 

1.2.1 The integrins 

The adhesion of ECs to the ECM, mediated by the integrins, is essential for angiogenesis and 

function of the vessels33,34. Integrins are the main cell-ECM receptors. Integrins are 

transmembrane heterodimeric glycoprotein receptors that consist of an α and a β subunit, 

with a large extracellular domain, a single transmembrane domain, and a short intracellular 

domain35,36. In mammals there exist 18 α and 8 β subunits that can form 24 different 

integrins36,37. Integrins can be clustered in four major classes: collagen-binding, laminin-

binding, arginine-glycine-aspartate (RGD)-binding, and leukocyte-specific integrins38-40 

(Figure 2). 

Figure 2. Integrin family in mammals. The integrins can be grouped in four groups: (1) collagen-binding 
(GFOGER), (2) laminin-binding, (3) arginine-glycine-aspartate (RGD)-binding, and (4) leukocyte-specific integrins 
(modified after

39
). 

Integrins can exist in two different conformations; an active and an inactive conformation. 

Integrin activation is triggered by signals from the inside of the cell (inside-out signaling), 
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that induce conformational changes, which increase their affinity to their ligands41. Integrins 

lack enzymatic activity. Therefore, they recruit intracellular signaling and adaptor molecules 

to their cytoplasmic tail to form the focal adhesions (FAs) and transduce the signals from the 

ECM into the cell (outside-in signaling). Integrin-mediated signals control many cellular 

processes including cell polarization, migration, proliferation, and survival35,36. 

1.2.2 Formation of integrin-mediated adhesion structures 

Cell-ECM adhesion is initiated by the formation of the nascent adhesions and the focal 

contacts (FXs) at the periphery of the cell. Then, some of the FXs mature and form the FAs, 

which anchor the stress fibers to the integrins. Some of the FAs further mature into fibrillar 

adhesions (FB), which are mostly found at the center of the cell associated to thin actin 

cables and bind to fibronectin (FN)42 (Figure 3). 

Cell spreading, filopodia and lamellipodia formation, and migration require dynamic 

regulation of the organization of the actin cytoskeleton43,44. Different types of actin 

structures are found in cells; (1) branched network of short and thin fibers at the 

lamellipodia (2) thick unbranched contractile stress fibers and (3) cortical actin rings at the 

cell periphery45,46. An overview of the different types of actin structures is shown in Figure 3. 
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Figure 3. Overview of integrin-mediated cell-ECM adhesion structures and actin cytoskeleton organization in a 
migrating cell. Nascent adhesions and FXs are located at the cell periphery, and FAs and FBs are found at the 
center of the cell. Different types of actin structures occur in the cell: branched actin network at the lamella 
and lamellipodia, and stress fibers at the center of the cell (modified after

47
). 

Integrin-mediated signaling regulates the actin cytoskeleton through the small Rho GTPases, 

which can interact with several effectors and lead to assembly or disassembly of filamentous 

(F)-actin48. Around 20 small Rho proteins have been identified of which Rho-A, Rac1, and 

Cdc42 are the most studied. While Rho-A regulates stress fiber formation, Rac1 controls 

lamellipodia projection, and Cdc42 is involved in filopodia formation48,49. The activity of Rho-

A, Rac1 and Cdc42 is regulated by guanine-nucleotide-exchange factors (GEFs) and GTPase-

activating proteins (GAPs)50 (Figure 4). 
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Figure 4. Regulation of GTPases activity. By hydrolyzing GTP to GDP, the proteins become inactivated. GAPs 
favor the inactive state, while GEFs exchange GDP with GTP resulting in an active state. GAP: GTPase-activating 
protein, GEF: guanine-nucleotide-exchange factor, GDP: Guanosine diphosphate, GTP: Guanosine triphosphate 
(modified after

50
). 

1.2.3 Integrins in angiogenesis 

Integrins control EC adhesion, proliferation, survival, differentiation, and migration, thereby 

being essential for vascular development51-53. ECs express many different integrins, including 

α1β1 and α2β1 (collagen receptors), α3β1, α6β1, and α6β4 (laminin receptors), α4β1 and 

α5β1 (FN receptors), as well as αvβ3 and αvβ5 (receptors for FN and other ligands). Genetic 

studies in mice have shown that integrins are not required for vasculogenesis, but they are 

fundamental for angiogenesis54,55 (reviewed in37). 

Deletion of β1 integrin in mice leads to embryonic lethality at the peri-implantation stage, 

precluding its analysis in angiogenesis35,55,56. Endothelial-specific deletion of β1 integrin 

(β1ΔEC) results in embryonic lethality around embryonic day (E) 10.5 associated with 

defective formation of the EC monolayer in large blood vessels and the heart, and 

disorganized vascular patterning in the yolk sac (YS)57,58. β1 integrin is crucial for ligand-

specific adhesion to laminin, Col-I, Col-IV, and migration, and is therefore important in 

sprout elongation57,59. Postnatally induced deletion of endothelial β1 integrin in the retina 

reveals that β1 integrins also regulate tip/stalk cell selection via Dll4/Notch signaling60. β1 

integrin is also required for apical/basal polarity and cell-cell junction integrity, thereby 

regulating lumen formation and vessel stability61,59. β1 integrin-mediated regulation of cell-

cell junctions occurs via VE-cadherin (VEcad) trafficking and actin cytoskeleton 
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remodeling62,63. Genetic studies of integrin subunits show that there is redundancy between 

the different integrins during angiogenesis in vivo, for instance loss of α5β1 integrin is 

compensated by αvβ3 integrin signaling52,64,65. Altogether these studies show the 

importance of integrin signaling in blood vessel development. 

β3 and β5 integrin are not needed for embryonic vascular development, however, it has 

been shown that the crosstalk between β3 and β5 integrin signaling and VEGF-A/VEGFR 

signaling is required for barrier function and tumor angiogenesis66,67. 

1.2.4 The ILK/PINCH/parvin complex in integrin signaling 

During the last two decades, a complex of proteins consisting of integrin linked kinase (ILK), 

particularly interesting Cys-His-rich protein (PINCH) and parvins, the so called IPP complex, 

has emerged as a main regulator of the integrin signaling (Figure 5). The IPP complex 

controls spreading, migration, proliferation, and survival of the cells, and its biological 

importance has been demonstrated using in vivo genetic studies in different species35. 

Figure 5. Schematic composition of the IPP-complex. The IPP complex is composed of ILK, PINCH, and parvin 
that binds to F-actin. The IPP complex interacts with integrins via ILK and through the actin via parvins 
(modified after

68
). 

1.2.4.1 Assembly of the IPP complex 

The formation of the IPP complex occurs in the cytosol prior to its recruitment to the 
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cytoplasmic tail of integrins69. After its formation, the complex interacts with paxillin (Pax) 

which facilitates its recruitment to the cytoplasmic tail of integrins70-72. Depletion of one 

component of the complex leads to degradation of the other components by a proteasome-

mediated process35,68,69 (Figure 6). 

ILK is the first member of the complex that was identified. ILK consists of three domains. The 

N-terminal domain contains five ankyrin repeats and mediates protein-protein interaction. 

The C-terminal domain shares significant homology in the sequences of serin/threonin 

protein kinases, although its kinase activity is not clear. A pleckstrin homology (PH) domain is 

located between these two domains35. ILK is the central component of the complex. ILK 

interacts with PINCH through the N-terminal domain and with parvins via its C-terminal 

domain73. ILK also directly binds to kindlins, which then link the IPP complex to β1 and β3 

integrins70,74. 

PINCH is a family of adaptor proteins consisting of PINCH-1 and PINCH-275. They are 

composed of five LIM domains and a nuclear localization site (NLS) motif. PINCH-1 and 

PINCH-2 are both ubiquitously expressed and their expression patterns overlap in many 

tissues76-78. The PINCH isoforms bind to the receptor tyrosin kinases (RTK) through the NCK2, 

thereby coupling integrin signaling to growth factor signaling. 

Figure 6. Recruitment of the IPP complex to FAs. Integrins are present on the cell surface in an inactive state (a) 
and upon binding of talin, integrins transform to the prime state (b) and bind ECM ligands in their active state 
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(c). The IPP complex is formed in the cytoplasm and by interaction with Pax, it is recruited to FAs. Vinculin 
(Vinc) and focal adhesion kinase (FAK) are sequentially recruited to nascent FXs. FA maturation involves 
integrin clustering and the formation of an adhesome, which binds to F-actin (modified after

35
). 

The parvins are a family of actin-binding proteins that consists of three members; α-parvin 

(α-pv), β-parvin (β-pv), and γ-parvin (γ-pv), containing 373, 364 and 331 amino acids, 

respectively. The hallmark of the structure of the parvins is the presence of two in tandem 

calponin homology (CH) domains that can bind directly to the F-actin. α-pv and β-pv also 

contain a NLS, however, their localization and function in the nucleus is unknown. While α-

pv and β-pv are ubiquitously expressed, γ-pv expression is restricted to the hematopoietic 

system. ECs express α-pv and β-pv. Furthermore, splicing variations of β-pv termed s-PARVB 

and ss-PARVB have been described35,79 (Figure 7). 

Figure 7. Structural features of (A) α-pv and (B) β-pv and their binding sites. Splicing variations of β-pv are 
termed s-PARVB and ss-PARVB. Numbers indicate amino acid positions. Arrows indicate effects of point 
mutations (modified after

79
). 

Parvins interact with ILK via their CH2 domain at the C-terminus80. α-pv and β-pv have also 

different binding partners. α-pv can bind to HIC5 (isoform of Pax) and testicular protein 

kinase 1 (Tesk-1), whereas β-pv can interact with α-actinin and α-PIX, a GEF that can regulate 

the small Rho GTPases79,80,81. An important interaction partner of α-pv is Pax, a main 

regulator of cell-ECM adhesion structure formation and maturation82,83. α-pv can regulate 
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cell spreading via TESK1, which controls F-actin polymerization through cofilin 

phosphorylation84,85. Finally, parvins can also influence actin cytoskeleton organization by 

modulating the activity of the small Rho GTPases79. α-pv regulates cell spreading and 

contraction via Rac1, and RhoA/Rho-kinase (ROCK)-mediated signaling86,87, whereas β-pv 

effects the actin cytoskeleton via Rac1 and Cdc4288. The functions of parvins can also be 

modulated by their phosphorylation. α-pv can be phosphorylated at its N-terminus, which 

contains phosphorylation consensus for proline-directed serin/threonin kinases, including 

ERK and Cdc289,90. This phosphorylation enhances the interaction of α-pv with ILK and is 

important for cell spreading91. Moreover, it has been reported that the phosphorylation of 

β-pv by ILK also promotes cell spreading71. 

1.2.5 The IPP complex in vivo 

The functions of the IPP complex and its components were studied in several organisms, 

such as C.elegans, D.melanogaster, zebrafish, and mice. The results have revealed that, 

additionally to their role as part of the IPP complex, each component has discrete 

functions35. The depletion of ILK in C.elegans results in embryonic lethality associated with 

muscle attachment defects, its depletion in D.melanogaster is also embryonically lethal and 

leads to actin detachment from the muscle membrane92,93. The same defects can be 

observed in PINCH-1 depletion in these organisms77,94,95. Absence of α-pv in C.elegans also 

causes vascular muscle attachment defects due to impaired assembly of integrin adhesion 

complexes96. These studies point to the essential role of the IPP complex in integrin-

mediated cell-ECM adhesion. Studies in mice show that ILK and PINCH also participate in 

cell-cell junction formation in keratinocytes and endoderm cells78. 

Like loss of expression of β1 integrin in mice, deletion of ILK and PINCH-1 lead to embryonic 

lethality at the peri-implantation stage97,98. Interestingly, loss of PINCH-2 does not show any 

embryonic phenotype, most likely due to compensation by PINCH-199. Studies with embryoid 

bodies (EBs) provide evidence that ILK and PINCH-1 regulate epiblast polarization and cavity 

formation. PINCH-1-/- EBs also show cell-cell junction defects and increased apoptosis in 

endoderm cells78,100. Cell-cell junction defects are associated with loss of E-cadherin staining 

at the adherens junctions (AJs), however, how PINCH-1 molecularly regulates cell-cell 
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junction integrity is not known. Further studies show that PINCH-1 regulates endoderm cell 

survival via modulating JNK signaling95. Depletion of α-pv in mice leads to embryonic 

lethality between E10.5 and E14.5, suggesting a partial compensation via β-pv. However, this 

remains to be proved. Lethality of α-pv-/- embryos is associated with hemorrhages, 

aneurysms, and severe heart defects, which implicate impaired vessel remodeling and vessel 

rupture. Furthermore, depletion of α-pv perturbs the coverage of vessels with vSMCs and 

impairs vessel maturation101. This is caused by the upregulation of RhoA/ROCK signaling 

pathway that leads to an increase of myosin light chain phosphorylation, hypercontraction of 

vSMCs, and migration defects towards PDGF101. Mice depleted of β-pv (β-pv-/-) are viable and 

do not show any obvious embryonic phenotype35. Finally, loss of γ-pv in mice does not show 

any defect in hematopoiesis102. An overview of gene deletion impacts is shown in Figure 8. 

Figure 8. Impact of gene deletions of the integrin signaling cascade on embryonic lethality in mice. Loss of 
endothelial β1 integrin (β1

ΔEC
), endothelial ILK (ILK

ΔEC
), and complete α-pv (α-pv

-/-
), but not complete β-pv (β-pv

-

/-
) result in embryonic lethality. But their time points of death and the embryonic phenotypes show distinct 

differences, which suggests unique underlying mechanisms for each molecule (modified after
54

).  

To overcome embryonic lethality associated to the loss of the IPP complex members, several 

conditional KO mice have been created. Endothelial-specific deletion of ILK (ILKΔEC) in mice 

results in embryonic lethality at around E10.5 associated with impaired vascular 

development103. Cardiovascular defects and vessel patterning have been observed in 

zebrafish lacking ILK103,104. Moreover, deletion of ILK in vSMC shows that ILK is also required 
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for mural cell recruitment to the vessel wall105. Finally, keratinocyte-specific deletion of ILK 

indicates that ILK is also necessary for AJs formation106,107. Similar cell-cell junction defects 

have been reported by the loss of PINCH-1 in keratinocytes78. 

The complex phenotype of α-pv-/- embryos makes it difficult to analyze the role of parvins in 

angiogenesis. Therefore, in order to analyze parvins in angiogenesis, we generated different 

mice with ECs lacking either α-pv or α-pv and β-pv parvins. Postnatal deletion of α-pv in ECs 

showed retinal hypo-vascularization, associated with reduced sprouting and increased vessel 

regression108. 

However, the role of α-pv in the regulation of EC behavior during embryonic development 

and the capacity of β-pv to compensate for the loss of α-pv in ECs is unknown. This was the 

the main aim of my thesis. 
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1.3 Endothelial cell-cell junction integrity 

1.3.1 Cell-cell junctions 

Vessel formation and maintenance not only depend on EC-ECM interactions, but also on the 

cell-cell junctions between neighboring ECs, which are critical for tissue perfusion and 

barrier function. Endothelial cell-cell junctions also have to be dynamically regulated in order 

to facilitate leukocyte extravasation, which is important in certain conditions, e.g. during 

inflammation109. Defects of endothelial cell-cell junctions lead to angiogenic defects, altered 

permeability, and they have been associated to human diseases, such as cerebral cavernous 

malformations (CCMs), and hemorrhagic stroke110-112. 

Endothelial cell-cell junctions can be divided into AJs, tight junctions (TJs), and gap junctions. 

While AJs and TJs play a main role in barrier function, gap junctions mediate cell-to-cell 

communication113. The central component of AJs is the VEcad, which establishes homophilic 

interactions at the plasma membrane with neighboring ECs114,115. The cytoplasmatic domain 

of VEcad interacts with β-catenin (β-cat), p120, and plakoglobin, which can bind to α-actinin, 

Vinc, and eplin, thereby linking the AJs to the actin cytoskeleton109,114,116,117 (Figure 9). The 

connection between the AJs and the actin allows junction maturation and the fast and 

dynamic remodeling of the junctions. Stable AJs are continuous and are aligned to cortical 

actin, whereas dynamic AJs are discontinuous being connected to actin stress fibers. 

Furthermore, ECs can form reticular junctions that assemble overlapping cell areas. AJs 

modulate actin cytoskeleton organization via Rac1 and Cdc42118. AJ remodeling can also be 

regulated by the phosphorylation and internalization of VEcad110,119. Moreover, VEcad 

transmits intracellular signals that regulate contact inhibition of cell growth, protection from 

apoptosis, and vascular permeability. By interacting with VEGFR2, VEcad is regulating its 

downstream signaling. Both, VEcad and β-cat are required to bind VEGFR2, thereby retaining 

VEGFR2 at the plasma membrane, where it is dephosphorylated and its signaling 

regulated120. An overview of the AJ architecture is shown in Figure 9. Claudins are the core of 

TJs, which are transmembrane molecules crucial for junction integrity121,122. TJs control the 

movement of ions and solutes and limit the free passing of lipids and proteins between the 
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apical and basolateral cell surface114. TJs are essential for the barrier function in the vessel of 

the CNS (see 1.4.2). 

Figure 9. Architecture of AJs in ECs. VEcad is a transmembrane protein that binds p120, plakoglobin, and β-cat 
at the cytoplasmic tail and transmits signals for actin rearrangement involving e.g. α-catenin, and Vinc, and 
junction dynamics via Src or FAK (modified after

109
). 

1.3.2 The function of JAIL in cell-cell junction integrity 

EC junctions require dynamic reaction abilities in response to stimulation to mediate 

adaptive functions, e.g. in inflammation, chemokine or growth factor stimulation. These 

responses are supported by increased actin cytoskeleton dynamics, mediated by rapid 

assembly and disassembly of actin filaments, which depend on many actin-binding and actin-

regulating proteins123. 

Recently, the actin-regulating molecule, actin-related protein-2/3 (Arp-2/3) was reported to 

play a central role in junction formation and maintenance and being functionally involved in 

the VEcad complex116. The ARP-2/3 complex, regulated by N-VASP and WAVE, is a central 

regulator of actin polymerization and organization of actin filaments and is crucial for actin 

branching and therefore lamellipodia protrusion124. The complex includes Vinc, which 
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facilitates the anchoring of the actin polymerization machinery to integrin-mediated 

adhesion at the lamellipodium via talin125. Lamellipodia formation is not only important for 

initial junction formation, but plays also a role in cell junction dynamics and barrier 

maintenance126,127. Lamellipodia-like structures particularly appear in subconfluent cell 

cultures conditions, in which interrupted VEcad patterning at cell-cell junctions and 

intercellular gaps can be observed128. Junction-associated intermittent lamellipodia (JAIL) are 

small lamellipodia-like protrusions that occur at EC junctions and overlap VEcad-free spots in 

immature AJs in order to ensure monolayer integrity. It has been shown that Arp-2/3 is 

promoting JAIL formation126. These small lamellipodia-like protrusions are actin-dependent 

structures and drive VEcad dynamics to facilitate the formation of new VEcad adhesion sites 

that are fused into EC junction upon JAIL retraction129 (Figure 10). 

Figure 10. Schematic illustration of JAIL formation at EC junctions under subconfluent conditions. JAIL are actin-
related lamellipodia-like structures that occur at VEcad-free gaps at cell-cell junctions and drive VEcad 
dynamics in order to facilitate monolayer integrity (modified after

129
). 
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1.4 Angiogenesis and disease 

Angiogenesis is a fundamental physiological process in development and homeostasis, but 

also contributes to the progression of many diseases including diabetic retinopathy, 

inflammation, tumor growth and metastasis130. Moreover, neurodegenerative disorders, 

such as amyotrophic lateral sclerosis (ALS), are associated with vascular dysfunction131. The 

causative contribution of vascular system-associated defects related to vessel growth and 

vessel function to neurodegenerative diseases is, however, not clear. 

1.4.1 Tumor angiogenesis 

Tumor growth and tumor metastasis requires blood and lymphatic vessels that invade the 

tumor in order to allow access for nutrients. Tumors are vascularized through angiogenesis 

from existing vessels or by enrollment of circulating bone marrow-derived endothelial 

progenitor cells130,132,133. Tumors induce angiogenesis by the release of many proangiogenic 

factors, such as VEGF134-136 (Figure 11). 

Figure 11. Angiogenesis in tumor growth. Tumors, macrophages, and fibroblast in tumor-microenvironments 
secrete angiogenic factors, such as VEGF. Newly formed blood vessels mediate tumor growth and metastasis 
towards other tissues and lymph nodes. EGF: epidermal growth factor; FGF: fibroblast growth factor; HGF: 
hematopoietic growth factor (modified after

137,138
). 
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Basic and clinical studies showed that suppression of tumor angiogenesis can influence 

tumor growth and metastasis139. Due to the main role of integrins in physiological 

angiogenesis, targeting integrin-mediated signaling in tumor angiogenesis has become 

promising in cancer therapy. Further understanding of the molecular mechanisms involved 

in tumor angiogenesis are needed to bridge basic studies with cancer therapy133,140. 

Gliomas, the most common tumors in the brain, are highly vascularized. Patients diagnosed 

with gliomas die in less than a year after first diagnosis. Until now, there is no available 

successful treatment 141. The highly aggressive and invasive characteristics of most glioma 

cells make complete surgical treatment very complicated. Moreover, radiotherapy is also not 

very successful due to radio resistance of the tumor cells. In order to improve glioma 

treatment, a variety of glioma mouse models have been established142-145. 

1.4.2 ALS and Tar DNA binding protein of 43 kDa (TDP-43, TARDBP) 

The mammalian CNS has high energy demands and requires the continuous supply of 

oxygen. Therefore, its proper function requires full integrity of a complex vascular network. 

Upon increased neuronal activity, the neurovascular coupling leads to an increase in local 

blood flow, matching the increased demand by an adequate amount of oxygen and nutrient 

delivery while also leading to the removal of metabolites. The functional unit regulating the 

hemodynamic response is the neurovascular unit (NVU), which consist of ECs, PE, astrocytes 

and neurons146,147 (Figure 12). Thus, defects in these non-neuronal cells can lead to defective 

neurovascular coupling, impairing neuronal functions and eventually resulting in neuronal 

death. Therefore, defects in the NVU are thought to contribute to neurodegeneration148. 
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Figure 12. Organization of the NVU. (A) Transverse and (B) longitudinal sections of CNS vessels. ECs and PE are 
ensheathed by a common basal lamina that is composed of the endothelial and the parenchymal BM. The 
blood-brain barrier (BBB) is formed by microvascular ECs that are connected via complex TJs, thereby inhibiting 
paracellular diffusion of water soluble molecules (modified after

149
). 

The wall of blood vessels in the brain represents a specialized structure called the blood-

brain-barrier (BBB), which limits the flow of molecules and ions from the blood to the brain, 

thereby being critical for brain homeostasis and protection of the brain from circulating 

toxins and pathogens. The BBB is an integral part of the NVU and its development and 

maintenance are regulated by dynamic interactions between ECs, PE and astrocytes. The 

molecular cross-talk between these cell types is not completely understood, but is among 

others, regulated by integrins and their ligands150-152 (Figure 12). Perturbations in BBB 

integrity and function are found in many neurological disorders, such as ALS, Alzheimer’s 

disease (AD), multiple sclerosis (MS), and Parkinson’s disease153. ALS is one of the most 

common neurodegenerative disorders characterized by the progressive degeneration of 

motor neurons in the brain and spinal cord, leading to muscle atrophy, paralysis, and 

death154. Despite its high prevalence and broad incidence, the molecular mechanisms 

underlying ALS remain unclear. The majority of the ALS patients share a common 

neuropathology characterized by cytoplasmic deposition of TDP-43 positive protein 

inclusions. TDP-43, which is normally observed in the nucleus, is detected in pathological 

inclusions in the cytoplasm and nucleus of both neurons and glial cells of ALS patients (Figure 

13, A). TDP-43 is a highly conserved and ubiquitously expressed DNA/RNA-binding protein 

that contains two RNA recognition motifs (RRM) and a glycine-rich C-terminal region (GRR), 
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characteristic of the heterogeneous nuclear ribonucleoproteins (hnRNP) class of proteins155 

(Figure 13, B). The physiological function of TDP-43 is still unclear, but it has been implicated 

in several steps of gene expression regulation including transcription, RNA splicing, RNA 

transport, and translation, thereby influencing many cellular processes. Signaling pathways 

regulated by TDP-43 include cell-matrix adhesion, cell-cell adhesion, axon guidance and body 

fat metabolism156. Among cell-matrix adhesion proteins, TDP-43 regulates expression of FN, 

laminin, filamin, and β-pv156. TDP-43 interaction with DNA is known to downregulate 

transcription. Furthermore, TDP-43 is able to regulate its own RNA levels in a negative 

feedback loop, which is thought to be important in pathogenesis157,158. 

Figure 13. TDP-43 and ALS. (A) TDP-43 redistributes from the neuronal nucleus to the cytoplasm in ALS patients 
with TDP-43 proteinopathy. Three possible mechanisms that explain TDP-43-mediated neurodegeneration: 
toxic gain of function, gain of cytoplasmic function, and loss of nuclear function. (B) Schematic representations 
of the TDP-43 orthologs in humans (hTDP-43), mouse (mTDP-43) and zebrafish (drTardbp and drTardbpl) are 
shown. TDP-43 proteins share highly conserved RNA-binding domains (RRM1 and RRM2), nuclear localization 
signal (NLS), nuclear export signal (NES), and glycine rich region (GRR). The numbers represent amino acids 
(modified after

154
). 

The identification of pathogenic mutations in the TARDBP encoding gene in ALS patients 

mechanistically link neurodegeneration to the occurrence of TDP-43 inclusions159 (Figure 13, 

B). However, whether neurotoxicity of the TDP-43 inclusions or reduced TDP-43 function 

upon nuclear clearance is responsible for ALS is unknown and remains under debate (Figure 

13, A). To investigate the link between TDP-43 and ALS pathogenesis, several TDP-43 KO 

models have been generated. Deletion of TDP-43 in mice and zebrafish leads to early 

embryonic lethality, which preclude the analysis of ALS. TDP-43 deficient zebrafish embryos 

(herein tardbp-/-;tardbpl-/- zebrafish embryos) display shortened motor neurons and muscle 

degeneration131 (Figure 14). 



Fehler! Verwenden Sie die Registerkarte 'Start', um Überschrift 1;Ü 1 dem Text zuzuweisen, 
der hier angezeigt werden soll. 

21 

Figure 14. TDP-43 KO phenotypes in zebrafish embryos. Double homozygous loss of TDP-43 orthologues 
(tardbp; tardbpl) in zebrafish leads to vascular mispatterning, shorter spinal cord motor neuron axons and 
muscle degeneration (modified after

131
). 

Besides motor neuron degeneration and muscle atrophy, ALS patients show impairment of 

all components of the NVU including EC damage, PE degeneration, astrocyte end-feet 

capillary dissociation and disrupted barrier function, leading to the classification of the ALS 

as a neurovascular disease. Interestingly, lethality of tardbp-/-;tardbpl-/- zebrafish embryos is 

associated with reduced vessel perfusion and vascular miss-patterning, indicating that TDP-

43 is required for proper vessel function131 (Figure 14). Vascular malfunction and disruption 

of the barrier function has also been found in mouse models of ALS prior to motor neuron 

degeneration and neurovascular inflammatory response160. Altogether, these results suggest 

that endothelial damage, impaired barrier function, and chronic vascular insufficiency might 

play a central role in the initiation and progression of ALS, preceding neuronal loss. However, 

whether vascular dysfunction indeed contributes to the human disease remains to be 

proven. The role of TDP-43 in ECs and its relevance in vascular development and BBB 

function are unknown and remain to be studied.  
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1.5 Aim of the thesis 

Hypothesis I 

Integrin-mediated signaling is essential for vessel growth and vessel stability. How integrins 

regulate these processes at the molecular level is, however, not completely understood. 

Parvins are actin-binding proteins that facilitate the interaction of integrins with the actin 

cytoskeleton and are key regulators of integrin function. We hypothesize that endothelial α-

pv and β-pv are critical for EC function and angiogenesis. 

This thesis aims at: 

 Generate mice with ECs lacking α-pv and β-pv (α-pvΔEC;β-pv-/-). 

 Unravel the cellular and molecular mechanisms underlying vascular development in 

mice with ECs lacking α-pv and mice with ECs lacking α-pv and β-pv. 

 Determine the role of endothelial α-pv in tumor angiogenesis and tumor growth. 

 

Hypothesis II 

Loss of TDP-43 in zebrafish leads to vascular miss-patterning, suggesting an important role of 

TDP-43 in EC function. The role of TDP-43 in ECs is, however, not known. We hypothesize 

that TDP-43 controls EC behavior and it is critical for angiogenesis. 

This thesis aims at: 

 Generate mice with tamoxifen-inducible endothelial-specific depletion of TDP-43 

(TDP-43iΔEC). 

 Analyze the vascular phenotype in the retina in TDP-43iΔEC mice. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Antibodies 

BrdU Pure, 347580   Immunofluorescence (IF): 1:50 BD Bioscience 

β-catenin, C2206    IF: 1:200   Sigma-Aldrich 

CD31, 553370     IF: 1:100   BD Pharmingen 

Collagen IV, 2150-1470   IF: 1:50   Bio-Rad 

Endocan/Esm1, AF199   IF: 1:200   R&D Systems 

Endomucin, MAB2624   IF: 1:200   Millipore 

Erg1/2/3, sc-353     IF: 1:100   Santa Cruz 

Fibronectin, F3648    IF:1:100   Sigma-Aldrich 

GAPDH, MAB374   Western Blot (WB): 1:5000  Millipore 

Glut-1, 07-1401    IF: 1:200   Merck 

ICAM-2, 553326    IF: 1:200   BD Pharmingen 

Isolectin B4 488 conjugated, 121411  IF: 1:200   Invitrogen 

Isolectin B4 647 conjugated, I32450  IF: 1:200   Invitrogen 

Laminin α4, 377b serum antibody  IF: 1:10000   kindly provided by 
                                                                 Lydia Sorokin 

NG2, AB5320     IF: 1:100   Chemicon 

α-parvin, 4026    IF: 1:100, WB: 1:1000  Cell signaling 
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phospho- (p)-paxillin, 2541S   IF: 1:50, WB: 1:1000  Cell Signaling 

p-histone 3, 06-570    IF:1:200   Millipore 

Paxillin, 610051    WB: 1:1000   BD Biosciences  

Phalloidin Cy3 conjugated, A22283  IF: 1:200   Invitrogen 

Podocalyxin, AF1556    IF: 1:200   R&D Systems 

Rac1, 1862341    WB: 1:1000   Thermo Scientific 

α-SMA Cy3 conjugated, A2547  IF: 1:100   Sigma-Aldrich 

To-Pro3 Cy5 conjugated, T160.1  IF: 1:1000   Invitrogen 

VE-cadherin human, 14-1449-82  IF: 1:100   eBioscience  

VE-cadherin mouse, 14-1442-82  IF: 1:100   eBioscience 

Vinculin, V9131    IF: 1:200   Sigma-Aldrich 

von-Willebrand-Factor, A008229-2  IF: 1:200   Dako 

2.1.2 Secondary antibodies 

Alexa Flour 488 anti-rat, A21070  IF: 1:200   Invitrogen 

Alexa Flour 488 anti-rabbit, A21206  IF: 1:200   Invitrogen 

Alexa Flour 546 anti-mouse, A10036  IF: 1:200   Invitrogen 

Alexa Flour 546 anti-rabbit A10040  IF: 1:200   Invitrogen 

Alexa Flour 546 anti-rat, A11081  IF: 1:200   Invitrogen 

Alexa Flour 546 anti-goat, A11056  IF: 1:200   Invitrogen 

Alexa Flour 633 anti-rabbit, A21070  IF: 1:200   Invitrogen 

Alexa Flour 633 anti-rat, A21094  IF: 1:200   Invitrogen 

Alexa Flour 633 anti-mouse, A21052  IF: 1:200   Invitrogen 

Peroxidase conj. anti-rabbit, 401393  WB:1:5000   Calbiochem 

Peroxidase conj. anti-mouse, 401253 WB:1:5000   Calbiochem 

Peroxidase conj. anti-mouse, 401515 WB:1:5000   Calbiochem 
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2.1.3 Cell culture reagents 

Collagenase 2, LS004176      Cell Systems 

Collagenase 4, LS004188      Cell Systems 

Desoxyribonuclease, LS002139     Cell Systems 

Dulbecco´s modified eagle´s medium (DMEM), 21969-035  Gibco 

Endothelial Cell growth medium, C22010    Promocell  

Fetal Calf Serum (FCS), S0615     Biochrom 

HUVECs, C-12203       Promocell 

Medium 199, 3110-022      Gibco 

Opti-MEM, 11058-021      Gibco 

PELO, PB-MH-100-2190-6      Biotech 

Penicillin/Streptomycin (P/S), P0781-100ml    Sigma-Aldrich 

Trypsin/EDTA, P10-024100      PAN Biotech 

2.1.4 Chemical inhibitors 

Complete Protease inhibitor, 04693116001    Roche 

Phosphatase inhibitor 100 mM NaF, S6776    Sigma-Aldrich 

Phosphatase inhibitor Na3VO4, S-6508    Sigma-Aldrich 

2.1.5 Chemicals and reagents 

Aqua ad injectabilia, 111208061     Braun 

Acrylamid, A1672       AppliChem 

Agarose, 35-1020       peqlab 

Albumin Fraction V, A1391      AppliChem 

APS, 7727-54-0       Sigma-Aldrich 
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Bromophenol blue, 18040      Fluka 

BrdU, B23151        Invitrogen 

Calcein, C3100MP        Life Technologies 

Dimethylsulfoxid (DMSO), D2650     Sigma-Aldrich 

Direct PCR-tail, 31-101-T      PEQLAB Biotechnology 

Sheep anti-rat Dyna beads, 11035     Life Technologies 

EDTA, 0310        Fluka 

Eosin G 0.5%, X883.2       Carl Roth GmbH & Co KG 

Ethanol (100% (vol/vol)), 9065.4     Carl Roth GmbH & Co KG 

Fluoromount, 0100-01      SouthernBiotech 

Formamide, F9037       Sigma  

Gelatin, 4070        Merck 

GelRed, 41003       Biotium 

GeneRulerTM DNA ladder 1kbp, SM313    Thermo Scientific 

Glutaraldehyde, 16210 Electron Microscopy 
Sciences 

Glycine, A1067       AppliChem 

Glycerol, G6279       Sigma-Aldrich 

Hematoxylin solution acidic, T865.2     Carl Roth GmbH & Co KG 

Hydrochloric acid (HCl 37%(wt/vol)), 141020.1212   AppliChem 

Lipofectamin, 11668-027      Life Technologies 

Loading Dye 10x, 1032517      Qiagen 

Magnesium chloride, 1005482     Qiagen 

β-Mercaptoethanol, A1108      AppliChem 

Methanol, 8388.5       Carl Roth GmbH & Co KG 

Mounting medium, Roti Histokitt T160-1    Carl Roth GmbH & Co KG 

Nonfat-dried milk, A0830      Sigma-Aldrich 
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Phosphate-buffered saline (PBS) provided by the pharmacy 
of “Klinikum Großhadern” 

Peanut oil, P2144-1L       Sigma-Aldrich 

Paraformaldehyde (PFA), A0877     AppliChem 

Poly-L-Lysine, L7240       Biochrom 

Proteinase K, 04-1075      peqlab 

Protein PageRulerTM, 26616       Thermo Scientific 

SDS, A1112        AppliChem 

Sodium chloride (NaCl), 141659.1211    AppliChem 

Sodium desoxycholat, A1531      AppliChem 

Sucrose, S-0389       Sigma-Aldrich 

Tamoxifen, T5648-1G       Sigma-Aldrich 

TEMED, A1148       AppliChem 

Tissue-Tek® O.C.T. ™,4583      Sakura 

Tris, A2264        AppliChem 

Trypsin/EDTA, P10-024100      PAN Biotech 

TritonX 100, A4975       AppliChem 

Xylol, A2476.5000       AppliChem 

2.1.6  Kits 

BCA Protein Assay, Reagent A 23228, Reagent B 1859078  Thermo Scientific 

Chemiluminescence detection Kit, A3417 1200A/A3417 1200B AppliChem 

Rac1 pull-down Kit, 16118      Thermo Scientific 

Taq all inclusive, 01-1001      peqlab 
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2.1.7 Disposables/Consumables 

Angiogenesis System for EC migration, 354144   BD Bioscience 

Cell scraper, 353086       Falcon 

Coverslips, H 875       Carl Roth GmbH & Co KG 

Delimiting Pen, S2002      Dako 

60, 100 mm dishes, 353003, 353004     BD Falcon 

E-plate 16, 2801032       ACEA Bioscience Inc. 

FluoroBlock inserts, 351152      BD Bioscience 

Injection needle 30G x ½’’, 304000     BD Becton Dickinson 

Microcentrifuge tubes, 72.690.001, 0030.120.094   Sarstedt/Eppendorf 

Nitrocellulose membrane, 39-1010     peqlab 

5, 10, 25 ml pipettes, 4497/4488/4489    Corning 

6-well plate, 353224       BD Falcon 

24-well plate, 353226       BD Falcon 

96-well plates, 9017       Costar 

8-well slides ibiTreat, 80826      ibidi 

slides ibiTreat 0.4 Luer, 80176     ibidi 

40 µm cell strainer, 352340      BD Falcon 

SuperFrost® slides, 8073/1       ThermoScientific ISO 

Tissue embedding mold, 18986     polyscience 

15, 50 ml conical tubes, 352096, 352070    BD Falcon 

Whatman Gel Blotting Paper, 10426892    Sigma Aldrich 

2.1.8 Oligonucleotides 

APE2f (forward):     5’-GAAGGAATGAACGCCATCAAC-3’  
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APloxPf (forward):     5’-CTGAGTGACATGGAGTTTGAG-3’ 

APloxPr (reverse):     5’-GGACTTGTGGACTAGTTAGAC-3’ 

CreF (forward):     5’-GCCTGCATTACCGGTCGATGCAACGA-3’ 

CreR (reverse):     5’-GTGGCAGATGGCGCGGCAACACCATT-3’ 

betapvPGKf/wt:     5´-GAT TAG ATA AAT GCC TGC TC-3´ 

betapv 1EmBpi2f/KO:     5´-GTG AAC TTC ACT GGA CTC TT-3´ 

betapv 2BPE3r:     5´-TCC TTG AAC TTG GGG TCT TCT-3´ 

TDP forward:      5´-TGT TGC TTG TTT GCC ATC TT-3´  

TDP reverse:      5´-TCT GTA ACT TCA AGA TCT GAC ACC-3´ 

2.1.9 siRNA (Sigma-Aldrich) 

α-pv SASI_Hs01__00165014    5’-CGACAAUGGUCGAUCCAAA-3’ 

α-pv SASI_Hs01__00165015    5’-GAACAAGCAUCUGAAUAAA-3’ 

Scrambled control: SIC001 

2.1.10  Equipment 

Centrifuge Rotina 35R      Hettich-Lab-Technologies 

Centrifuge Biofuge primoR     Heraeus 

Cryotome       Leica CM350 S 

Coulter Counter      Beckman Coulter, Z2 

Dissection forceps no.5     Fine Science Tools 

Dyna Magnet       Invitrogen 

Electrophorese chamber     biorad 

Elisa Reader Infinite F200     Tecan 

Embedding carousel      Thermo Shandon 
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Embedding machine      Sakura Tissue-Tek TEC 

Flow system       ibidi 

Imaging system PCR      Intas Science Image 

Incubator       Binder 

Microtome     Reichert-Jung 2030 

Microcentrifuge     Eppendorf Centrifuge 5410 

Microwafe     LG 

Rocker-Shaker (mini)     PMR 30; Grant-Bio 

Rotator       Renner Variospeed 

Short-blade scissors     Fine Science Tools 

Spring scissors     Fine Science Tools 

Sonicator UP50H      Hielscher 

Sterile hood       Steril VBH compact 

Thermoblock       Eppendorf Thermomix comfort 

Thermocycler PCR PTC-100® Peltier Thermal Cycler, 
MJ Research 

Ultra-Turrax       Janke and Kunkel KG 

Western blotting system     biorad 

Waterbath       Haake SWB25 

XCelligence system      Roche 

2.1.11  Microscopes 

Confocal microscope      Leica SP5, Leica 

Stereomicroscope       Zeiss Stemi SV11 

Fluorescence microscope      Zeiss Axiophot 

Inverted microscope       Zeiss Axiovert 25 
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2.1.12  Hardware and software 

Excel        Microsoft 

ImageJ        Java 

PCR gel imaging software     Intas 

Photoshop       Microsoft 

Western Blot imaging software Wasabi software 1.4, Hamamatsu 
Photonics  

XCelligence software      Roche 
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2.2 Methods 

2.2.1 Animals 

All mouse lines were bred in the animal facility of the Walter Brendel Center (Munich, 

Germany). Mice were kept under a 12 hours light cycle and provided with standard rodent 

diet and water. Three weeks after birth, litters were separated according to sex and ear clips 

were taken, which served for genotyping. At the age of eight weeks, mice were used for 

breeding. All experiments were performed in accordance with the German Animal 

Protection Law. 

2.2.1.1 Breeding schemes 

2.2.1.1.1 Constitutive KO Cre line 

To constitutively delete α-pv in ECs, Tie2-Cre transgenic mice161 were crossed with mice 

carrying a loxP-flanked α-pv gene (referred to herein as α-pvfl/fl) and with α-pvfl/fl β-pv-/- mice. 

2.2.1.1.2 Inducible KO Cre line 

For endothelial-specific depletion of α-pv, transgenic males expressing the Cdh5(PAC)-

CreERT2162 were mated with α-pvfl/fl females, yielding α-pvfl/fl; Cdh5(PAC)-CreERT2 offsprings 

(referred to herein as α-pviΔEC). Inactivation of endothelial α-pv in adult mice for tumor 

experiments was triggered by intraperitoneal injection of 100 μl tamoxifen solution (20 

mg/ml in peanut oil) once daily at P3, P4, and P5 after tumor cell injection. 

For endothelial-specific TDP-43 deletion, mice carrying a loxP-flanked TDP-43 gene (referred 

to herein as TDP-43fl/fl) were mated with mice expressing the Cdh5(PAC)-CreERT2162, leading 

to TDP-43fl/fl; Cdh5(PAC)-CreERT2 offsprings (referred to herein as TDPiΔEC). The deletion in 

newborn mice was triggered by intraperitoneal injection of 50 μl tamoxifen solution (1 

mg/ml) once daily at P1, P2, and P3 after birth. Retinas, brains, and lungs were collected 

from pups at indicated time points. Tamoxifen stock solution was generated by dilution of 10 
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mg/ml tamoxifen in 1:4 ethanol: peanut oil; injection solution for pups was achieved by 

dilution of stock solution in peanut oil. 

2.2.2 Mouse models to study angiogenesis 

2.2.2.1 The mouse embryo hindbrain 

The vascularization of the embryonic hindbrain is an extensively used model to study 

angiogenesis and permits angiogenic studies in genetically mutated mice that show 

embryonic lethality around midgestation. The vascularization of the hindbrain takes place 

through invasive sprouting from vessels outside the CNS163,164. Mouse brain vascularization is 

initiated around E9.5, when vascular sprouts from the perineural vascular plexus (PNVP) 

invade the ventricular zone of the neuroepithelium. At around E10.5, these radial vessels 

begin to grow and branch in parallel to the neuroepithelial surface to form the 

subventricular vascular plexus (SVP). At E12.5, the SVP has formed an extensive vascular 

network, and sprouting moves to deeper layers165 (Figure 15). The first perfusion can be 

observed around E10.5 but arteriovenous differentiation occurs in later states. However, 

vessel remodeling and further angiogenic sprouting continues even postnatally due to brain 

growth164,165. 

Figure 15. Schematic development of the embryonic mouse hindbrain vascularization. At E9.5 invasive 
sprouting from the PNVP takes place. At E10.5 the SVP is formed by sprouting parallel to the neuroepithelial 
surface. PNVP: perineural vascular plexus, SVP: subventricular vascular plexus (modified after

163
). 

We characterized the hindbrain vasculatures from α-pvΔEC and α-pvΔEC;β-pv-/-embryos and 

the respective control littermates at E11.5. Particularly, we quantified and statistically 

analyzed a range of morphological parameters including vascular branching points, vessel 
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diameter, filopodia count, and PE vessel coverage. In addition, the expression and 

distribution of multiple proteins such as ECM components and membrane transporters were 

analyzed using immunohistochemistry. Similar analysis was performed to characterize the 

vascularization of the spinal cord in α-pvΔEC;β-pv-/- embryos. 

2.2.2.2 The postnatal mouse retina 

The retinal vasculature starts developing from the location of the optical nerve head and 

grows radially towards the periphery. While forming this planar primary plexus in the 

ganglion layer of the retina, the sprouts are guided by a template of FN-expressing 

astrocytes and a VEGF-A gradient which is secreted by astrocytes and neurons163. Already 

during the formation of this plexus, the vessels differentiate into arteries and veins166. 

Around postnatal day (P) 8 the superficial vascular plexus reaches the periphery and starts 

invading into the outer retinal layers at near right angles to form the deep plexus and the 

intermediate layer12,166 (Figure 16). 

Figure 16. Development of the retinal vasculature. (A) Development of the superficial vascular plexus in the 
mouse retinas. Retinal whole mounts from P1 to P8 were stained for Isolectin B4 (IB4, red). N (normoxia). 
During the first week of postnatal development, the superficial plexus extends radially from the optic nerve 
head into the surrounding tissue, reaching the retinal periphery at ∼P8N (B) Tamoxifen induced gene targeting 
at postnatal day (P) 1, P2, and P3 influences sprouting angiogenesis, which can be visualized at P5 to P7 
(modified after

15,167
). 

We used this model to characterize the retinal vasculatures from TDP-43iΔEC mice and the 

respective control littermates at P7 and P8. Particularly, we quantified and statistically 

analyzed a range of morphological parameters including vessel radial expansion, EC area, 

vessel sprouting, filopodia per vessel length, and proliferation. In addition, the expression 
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and distribution of multiple proteins such as tip cell markers, cell-cell adhesion molecules, 

and vessel lumen markers were analyzed using immunohistochemistry. 

2.2.2.3 Tumor angiogenesis in glioblastoma 

The glioblastoma experiment was performed in collaboration with Prof. Dr. Rainer Glaß 

(Neurosurgical Research, LMU Munich) and his team. 8-week old α-pviΔEC mice and C57BL/6J 

as control mice were treated with 1 µl GL261 glioma cell suspension (100.000 cells/µl) by 

intracranial injection145. 

The procedure was done as described previously168. Briefly, mice were anesthetized with 

intraperitoneal injections of approximately 100 mg/kg ketamine 10% and 10 mg/kg xylazine 

2% in 0.9% NaCl. Then, anesthetized mice were immobilized with a stereotactic head holder. 

After the skin of the skull was dissected with a scalpel blade, inoculation of GL261 was done 

1 mm anterior and 1.5 mm right to the bregma (Figure 17), the skull was carefully drilled 

with a 23-gauge needle tip and cell suspension was applied 5 mm below the drill hole in the 

calvarium followed by wound closure by suturing. At P3 to P5 after glioma cell 

administration, mice were treated with 100 µl tamoxifen solution (20 mg/ml). At P17 mice 

were sacrificed, brains were removed and fixed with 4% PFA over night (ON). After 

treatment with 30% sucrose for 3 days, brains were embedded in TissueTek and stored at -

80°C or preceded with cryo sectioning. 

Figure 17. Inoculation site of glioma cells in the mouse brain. Glioma cells were injected 1.5 mm right and 1 mm 
anterior from the bregma in 5 mm depth (modified after

169
). 
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2.2.3 Histological analysis 

2.2.3.1 Preparation of paraffin sections 

Embryos were isolated at different time points and YS were carefully removed using a 

stereomicroscope. Then, embryos were transferred to a 24-well plate and directly fixed with 

fresh 4% PFA in PBS ON at 4°C. Next day, samples were dehydrated in consecutive ethanol 

solutions with increasing concentration (2 x 70%, 2 x 96%, 3 x 100%), each for one hour. 

Then, embryos were transferred to xylol for 180 minutes followed by liquid paraffin for 5 

hours. This was achieved by using an automatic embedding carousel. After embedding the 

embryos in paraffin blocks, they were cut in 10 µm thick sections using a microtome and 

collected on glass slides coated with Poly-L-Lysin. Slices were dried at 37°C ON and stored at 

room temperature (RT) until staining. 

2.2.3.2 Preparation of cryo sections 

The preparation of cryo sections was performed with some changes of the protocol 

described before146. Briefly, brains or isolated embryos were transferred to a 24-well plate 

and directly fixed with fresh 4% PFA in PBS ON at 4°C. The following day, samples were 

transferred to 30% sucrose in PBS in a 15 ml tube and kept at 4°C for 2-3 days until samples 

have sunken to the bottom of the tubes. Then, they were embedded in TissueTek and stored 

at -80°C until cutting. Before proceeding with cutting at a cryotome, samples were 

transferred to -20°C for 2 hours. Then, embryos were cut into 12 µm thick slices and 

collected on coverslips and brains were cut into 40 µm thick slices for free floating sections 

and collected in a 24-well plate with PBS. The coverslips were stored at -20°C and the free 

floating sections were stored at 4°C until staining. 

2.2.3.3 Hematoxylin/Eosin (H&E) staining 

H&E staining is a routinely and widely established method to visualize histological structures. 

Hematoxylin stains basophil structures, as DNA or ribosomes, and is used to visualize the 
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nucleus in blue, whereas eosin stains acidophil structures in red, such as plasma proteins and 

mitochondria. 

To stain paraffin sections for H&E, sections were deparaffinized by xylol treatment for 2 x 10 

minutes, followed by a rehydration row of 100%, 95%, 70% ethanol and PBS each for 10 

minutes. Afterwards, slices were transferred to hematoxylin for 5 minutes followed by a 

wash in running water for 15 minutes. Subsequently, slices were treated with Eosin for 2 

minutes followed by a short wash with water. Then, slices were treated with 100% ethanol 

for 2 minutes and with xylol for 3 minutes. Slices were carefully dried and mounted with 

Roti-Histokitt mounting medium. 

Measurement of tumor size was performed with ImageJ software and calculated with Excel 

software. 

2.2.4 Immunological analysis 

2.2.4.1 Whole embryo and tissue immunohistochemistry 

Embryos, skin fragments, and YS were dissected in a dish with ice cold PBS and fixed in 

Dent´s fixative ON at 4°C. The following day, samples were rehydrated in 0.1% TritonX 100 in 

PBS for 2 hours, incubated in blocking buffer for 2 hours and exposed to indicated primary 

antibodies (diluted in blocking buffer) ON at 4°C. Next day, samples were washed 5-7 hours 

in 0.1% TritonX 100 in PBS and incubated with appropriate secondary antibodies (diluted in 

blocking solution) ON at 4°C protected from light. After three washes the following day (each 

for 1 hour), samples were imaged or mounted on glass slides with Fluoromount before 

imaging. 

Dent´s fixative: 80% methanol, 20% DMSO 

Blocking buffer: 0.1% TritonX 100, 5% BSA in PBS 
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2.2.4.2 Hindbrain immunohistochemistry 

The dissection and immunofluorescent staining of the hindbrains was performed as 

previously described164. Embryos were isolated after sacrificing the mother at indicated time 

points. Embryos were transferred to a dish of ice cold PBS and hindbrain dissection was 

performed under a stereomicroscope. After cutting the head and face with a scalpel, the thin 

roof plate was ruptured with forceps until the hindbrain was visible. After removing the 

tissue from underneath the hindbrain and cutting off midbrain and spinal cord, the unfurled 

hindbrain was fixed with 4% PFA in PBS for 2 hours on ice shaking. Then, hindbrains were 

blocked in blocking buffer for 2 hours at RT and incubated with indicated primary antibodies 

ON at 4°C. Next day, three washes were performed with washing buffer. Afterwards, 

hindbrains were incubated in appropriate secondary antibodies for 2 hours at RT protected 

from light, washed again three times and were flat-mounted on glass slides with 

Fluoromount. Several parameters were calculated in the hindbrains; branching points per 

field, vessel diameter, filopodia count, vessel length, and PE coverage. ImageJ software was 

used for measurements. 

Blocking buffer: 0.1% TritonX 100, 1% BSA in PBS 

Washing buffer: dilution of blocking buffer in PBS 1:1 

2.2.4.3 Whole retina immunohistochemistry 

The dissection and immunofluorescent staining of the retinas was performed as previously 

described170. The pups were sacrificed at indicated time points, the eyes were collected and 

immediately fixed with ice cold 4% PFA in PBS for 2 hours on ice shaking. Then, retinas were 

dissected by removing the cornea, iris, vitreous and hyaloid vessels using a 

stereomicroscope. Retinas were blocked in blocking buffer for 2 hours at RT and incubated 

with indicated primary antibodies ON at 4°C. The following day, after three washes with 

washing buffer, retinas were incubated in secondary antibodies for 2 hours at RT protected 

from light, washed again three times and flat-mounted on glass slides with Fluoromount. 

Several parameters were analyzed in retina whole mounts; radial expansion from the optical 

nerve to the edge of the primary plexus, EC area, sprout number, and filopodia number. For 
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measurements ImageJ software was used. 

Blocking buffer: 0.3% TritonX 100, 1% BSA in PBS 

Washing buffer: dilution of blocking buffer in PBS 1:1 

2.2.4.4 Immunohistochemistry of cryo and paraffin sections 

For visualizing intracellular proteins on paraffin sections, sections were deparaffinized by 

xylol treatment for 2 x 10 minutes followed by a rehydration row of 100%, 95%, 70% ethanol 

and PBS, each for 10 minutes. Then, sections were fixed with 2% PFA in PBS for 10 minutes, 

permeabilized with 0.1% TritonX 100 in PBS for 30 minutes and blocked for 1 hour in 

blocking buffer at RT. After blocking, the sections were incubated with indicated primary 

antibodies (diluted in blocking buffer) for 1 hour at RT and after three washes with PBS they 

were incubated with appropriate secondary antibodies (diluted in blocking buffer) for 1 hour 

at RT in the dark. After another three washes, slices were dried and covered with glass 

coverslips using Fluoromount. All steps were performed in a humidified chamber. For the 

staining procedure a delimiting pen was used. After imaging, vessel diameters were 

measured with ImageJ software.  

Staining of cryo section on glass slides was performed similar to paraffin section staining, 

beginning from the blocking step for 1 hour. Proliferation was analyzed by counting pH3 

positive cells/ EC area and EC area was measured with ImageJ software. 

For staining free floating cryo sections, the sections were post fixed with 4% PFA in PBS for 

10 minutes at RT, sections were immunostained with indicated primary antibodies in 

blocking buffer for 2 days at 4°C shaking, and incubated with appropriate secondary 

antibodies in blocking buffer ON at 4°C protected from light. After three washes with PBS 

(each for 10 minutes), sections were mounted on glass slides with Fluoromount. In tumor 

sections, vessel area per field was measured with ImageJ software. 

Blocking buffer: 0.1% TritonX 100, 1% BSA in PBS 
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2.2.4.5 Immunofluorescent staining of cells 

All immunostainings of adherent cells were performed on glass coverslips or 8-well slides. 

Coverslips and slides were coated with 0.1% gelatin or with coating reagents (a crosslinked 

coating of poly-L-lysin, glutaraldehyde, and gelatin) for 1 hour at 37°C. Cells were seeded in 

different concentrations and cultured in an incubator for indicated time spans (see 2.2.7). 

Then, cells were washed once with PBS, fixed with 4% PFA in PBS for 15 minutes, 

permeabilized with 0.1% TritonX 100 in PBS for 30 minutes and blocked in blocking buffer for 

1 hour. After blocking, cells were incubated with indicated primary antibodies (diluted in 

blocking buffer) ON at 4°C and after three washes with PBS (each for 10 minutes), incubated 

with appropriate secondary antibodies (diluted in blocking buffer) for 2 hours at RT in the 

dark. After another three washes (each for 10 minutes), coverslips were mounted on glass 

slides with Fluoromount. 8-well slides were covered with Fluoromount and a glass coverslip. 

Blocking buffer: 0.1% TritonX 100, 1% BSA in PBS 

2.2.4.6 Proliferation assay 

Proliferating cells in the mouse retina were labeled using Bromodeoxyuridine (BrdU) as 

described previously170. BrdU is a thymidine analog that replaces thymidine during S-phase 

of dividing cells. 3 hours prior to eye collection of the mouse, 300 µg of BrdU was 

administered intraperitoneally to the pups. After dissection and labeling the retina (see 

2.2.4.3) with isolectin-B4 (IB4) to visualize the vasculature and Erg1/2/3 to tag the 

endothelial nuclei, retinas were post-fixed in 4% PFA for 30 minutes, washed three times 

with PBS and incubated for 1 hour in formamide-SSC solution at 65°C to denaturate and 

expose the BrdU-labeled DNA. Further 30 minutes of incubation in a 2N HCl solution at 37°C 

completed the exposure of the halogenated nucleotide antigen, which then could be 

visualized with anti-BrdU antibody after ON incubation at 4°C and appropriate secondary 

antibody incubation for 2 hours the next day. Quantification was done by manually counting 

BrdU-positive, Erg1/2/3-positive ECs and BrdU-negative, Erg1/2/3-positive ECs in high-

resolution confocal images (at least 14 images per group). 

SSC 20x: 4.825 g NaCl, 22.05 g sodium citrate with additional ddH2O, total volume 250 ml 
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(pH 7.0) 

Formamide-SSC solution: 50% formamide, 5% 20x SSC with additional ddH2O 

2.2.5 Biochemical methods 

2.2.5.1 Preparation of protein lysates 

2.2.5.1.1 Protein lysates from mouse lungs and brains 

Lungs and brains were isolated from mice at different time points. Samples were washed in 

ice cold PBS and transferred to an appropriate amount of lysis buffer (amount according to 

sample size) and shredded with an Ultra-Turrax. Afterwards, the samples were sonicated 

(100% amplitude for 5 cycles), centrifuged for 15 minutes at 4°C, and stored at -20°C until 

use. 

Lysis buffer: 50 mM Tris-HCL (pH 8.0), 150 mM NaCl, 0.1% TritonX 100, 0.5% sodium 

deoxycholat, 0.1% SDS, 5 mM EDTA, 40 µl/ml Complete, 5 µl/ml NaF, 5 µl/ml Na3VO4 

2.2.5.1.2 Protein lysates from adherent cells 

Adherent cells were washed once with ice cold PBS, treated with an appropriate amount of 

lysis buffer, and scraped on ice with a cell scraper. The lysates were transferred to 

microcentrifuge tubes, sonicated at 4°C (100% amplitude for 5 cycles), and centrifuged at 

13000 rpm at 4°C. The supernatant was stored at -20°C until use. 

Lysis buffer: 50 mM Tris-HCL (pH 8.0), 150 mM NaCl, 0.1% TritonX 100, 0.5% sodium 

deoxycholat, 0.1% SDS, 5 mM EDTA, 40 µl/ml Complete, 5 µl/ml NaF, 5 µl/ml Na3VO4 

2.2.5.2 Protein quantification assay 

The Bicinchoninic acid assay (BCA) was used to determine protein concentrations in lysates. 

The assay was done according to the manufacturer´s protocol of the BCA Kit. Proteins reduce 
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Cu2+, which is then detected by bicinchoninic acid that is chelated by Cu+ ions forming a 

purple complex. The amount of protein was quantified by measuring the high spectro-

photometric absorbance of the complex at 550 nm with an Elisa reader and calculated with 

Excel software. 

2.2.5.3 SDS-polyacrylamide-gel electrophoresis (SDS-PAGE) 

SDS-PAGE is a widely used method to separate proteins. Proteins become negatively charged 

inside the SDS containing gel and therefore can be separated by their electrical charge 

according to molecular size. Protein lysates were boiled with Laemmli buffer for 5 minutes at 

95°C before loading. Then, they were separated in a gel with two different buffered layers; a 

stacking and a resolving layer. In the stacking layer proteins are concentrated before 

entering the resolving layer. In the resolving layer the proteins get separated according to 

molecular size by application of 90 Volt for at least 60 minutes. The gel is fully surrounded by 

running buffer. 1kDA gene ruler was added as a size marker. 

Laemmli buffer (6 x): 1.2 g SDS, 6 mg bromphenol blue, 4.7 ml glycerol, 1.2 ml Tris (0.5 M, pH 

8.0), 4.1 ml H2O, 5% β-mercaptoethanol 

Stacking gel: 4.1 ml H2O, 3.3 ml Acrylamid, 2.5 ml 0.5 M Tris-HCL (pH 6.8), 0.1 ml 10% SDS, 50 

µl 10% APS, 10 µl TEMED 

Resolving gel: 4.1 ml H2O, 3.3 ml Acrylamid, 2.5 ml 1.5 M Tris-HCL (pH 8.8), 0.1 ml 10% SDS, 

50 µl 10% APS, 5 µl TEMED 

Running buffer: 25 mM Tris-base, 190 mM glycine, 0,1% SDS (pH 8.3) 

2.2.5.4 Western blotting and immunodetection 

After separating the proteins in SDS-PAGE, they were transferred to a nitrocellulose 

membrane via a semi-dry transfer sandwich. The membrane and blotting papers were 

equilibrated in transfer buffer and proteins were transferred at 80 mA for 1 hour at RT. After 

the membrane has been washed shortly in washing buffer and blocked in 5% nonfat milk in 
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washing buffer for 1 hour at RT, it was incubated with primary antibodies (diluted in washing 

buffer with 5% BSA) ON at 4°C. Next day, the membrane was washed 3 x 10 minutes with 

washing buffer and incubated with secondary antibodies (diluted in washing buffer with 5% 

nonfat-dried milk) for 2 hours at RT. After 3 x 10 minute washes, protein bands were 

visualized with a chemiluminescence-based detection kit and Wasabi software 1.4. 

Quantification of western blots was done with ImageJ software. 

Transfer buffer: 5.8 g Tris-base, 2.9 g glycine, 0.37 g SDS, 100 ml methanol in 1 l H2O 

Washing buffer (10 x): 300 g Tris-base, 438.5 g glycine, in 5 l H2O (pH 7.5) 

2.2.5.5 Protein pull-down assay 

For the analysis of active Rac1, a Rac1 pull-down Kit was used. Cells were washed once with 

ice cold PBS, lysed with an appropriate amount of lysis buffer, scraped with cell scraper and 

incubated for 5 minutes on ice shaking. After sonification (100% amplitude for 5 cycles) of 

the lysates, a BCA assay to determine the amount of protein was performed (see 2.2.5.2). 

The experiment was done according to the manufacturer´s protocol. Briefly, cell lysates were 

incubated with GST-human PAC-1 and agarose beads for 1 hour on 4°C shaking. After 

centrifugation and several washing steps of the resin, the bound active Rac1 to the beads 

was lysed with reducing sample buffer and stored at -20°C until proceeding with western 

blot analysis (see 2.2.5.4). 

2.2.6 Molecular biological methods 

2.2.6.1 Extraction of DNA 

For isolating mouse DNA, ear clips were transferred to microcentrifuge tubes, lysed ON at 

55°C with 250µl of DirectTail lysis buffer containing 1% proteinase K. Next day, samples were 

centrifuged at 10000 rpm for 10 minutes and further used for genotyping (see 2.2.6.2). 
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2.2.6.2 Polymerase chain reaction (PCR) 

PCR is a widely used method for amplifying DNA fragments. The PCR reaction consists of a 

DNA template, primers, dNTPs and DNA polymerase. 

2.2.6.2.1 PCR reactions 

The following PCR reactions were performed during this study. Reagents form the Taq Kit 

were used. 

αpv-flox-PCR/βpv-flox-PCR 

Isolated DNA  1 µl 
H2O   15.8 µl 
10x buffer  2 µl 
dNTPs 1mM  0.4 µl 
10 µm Primer1  0.2 µl 
10 µm Primer2  0.2 µl 
10 µm Primer3  0.2 µl 
Taq   0.2 µl 

 

Cre-PCR 

Isolated DNA  1 µl 
H2O   16.8 µl 
10x buffer  2 µl 
dNTPs 1mM  0.6 µl 
10 µm Primer1  0.1 µl 
10 µm Primer2  0.1 µl 
Taq   0.2 µl 

 

TDP-PCR 

Isolated DNA  1 µl 
H2O   4.55 µl 
10x buffer  2.40 µl 
25 mM MgCl2  0.96 µl 
dNTPs 10 mM  0.24 µl 
20 µM Primer 1  0.30 µl 
20 µM Primer 2  0.30 µl 
Taq   0.05 µl 

10x buffer: 1.00 ml Tris-Cl (pH 8.4), 2.50 ml KCl, 0.15 ml MgCl2, 6.35 ml ddH2O 
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2.2.6.2.2 PCR programs  

Programme αpv-flox-PCR  

Lid Temp. 105°C    
Preheating on    

1. 95°C 5min   
2. 95°C 30s   
3. 53°C 30s   
4. 72°C 30s go to step 2 cycle 34 
5. 72°C 5min   
6. 4°C hold   

Product size: wt: 180 bp// fl: 240 bp 

 

Programme βpv-flox-PCR  

Lid Temp. 105°C    
Preheating on    

1. 95°C 5min   
2. 95°C 30s   
3. 53°C 30s   
4. 72°C 30s go to step 2 cycle 34 
5. 72°C 5min   
6. 4°C hold   

Product size: wt: 600bp//ko: 350bp 

 

Programme Cre-PCR 

Lid Temp. 105°C    
Preheating on    

1. 95°C 5min   
2. 95°C 45s   
3. 70°C 45s   
4. 72°C 1min go to step 2 cycle 34 
5. 72°C 5min   
6. 4°C hold 

Product size: 725 bp 
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Programme TDP-PCR  

Step #  Temp °C  Time  

1. 94°C  2 min   
2. 94°C  20sec   
3. 65°C  15sec  -0.5 C per cycle decrease 
4. 68°C  10sec   
5.  repeat steps 2-4 for 10 cycles 
6. 94°C  15sec   
7. 60°C  15sec   
8. 72°C  10sec   
9.  repeat steps 6-8 for 28 cycles 
10. 72°C  2 min   
11. 10°C   hold 

Product size: wt: 230 bp// fl: 376 bp 

2.2.6.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is commonly used for separating DNA fragments. Agarose gels 

were prepared by mixing an appropriate amount of agarose (1-2%) with TAE buffer. Then, 

the mixture was boiled in a microwave, supplemented with an adequate amount of GelRed 

(0,5%), and poured into a casting tray for cooling down. The polymerized gel was transferred 

into an electrophoresis chamber and loaded with the samples (samples were mixed with 10x 

loading dye). 100-150 Volt were applied to the chamber for approximately 30-50 minutes. A 

1kb DNA ladder was used as a size marker. After completing the electrophoresis, the gel was 

imaged at 366nm UV light with Intas GDS machine and software. 

TAE buffer: 242 g Tris, 18.0 g EDTA 2 H2O, 57.1 ml acetic acid, add H2O to 1 l (pH 8.3) 

2.2.6.4 Lipofectamin transfection 

Before the transfection of cells, human umbilical vein endothelial cells (HUVECs) were 

cultured until 70-80% confluency on a 6-well plate. The transfection was done with two 

different siRNAs against α-pv by using SASI_Hs01__00165014 and SASI_Hs01_00165015 (100 

µM) and scrambled control. Lipofectamin 2000 transfection reagent and siRNA were diluted 

1:250 in reduced serum medium (Opti-MEM). Cells were starved with Opti-MEM medium for 
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30 minutes before being treated with the transfection mixture. Cells were incubated for 6 

hours at 37°C, 5% CO2 and 95% humidity. After the incubation time, Opti-MEM medium was 

replaced with culture medium and cells were cultured for 72 hours before further use. 

2.2.7 Cell culture 

Cell culture was performed under a sterile hood using sterile working methods. Cells were 

cultivated in an incubator providing 37°C, 5% CO2 and 95% humidity. Cells were centrifuged 

at 1200 rpm for 5 minutes for pelleting. 

2.2.7.1 Culture of HUVECs 

HUVECs were purchased from Promocell and cultured with culture medium. 

Cells were stored at -80°C for short term (up to 6 months) or in liquid nitrogen (-196°C) for 

longer term storage. For freezing the cells, they were trypsinized for 5 minutes at 37°C, 

trypsin was stopped with culture medium, the suspension was centrifuged and medium was 

completely aspirated before resuspending the cells in ice cold freezing medium. Cells were 

transferred to cryogenic vials on ice and kept at -80°C. 

For taking cells into culture, vials were defrozen at 37°C in a water bath. Then, cells were 

immediately added to 6 ml of culture medium, centrifuged, resuspended in culture medium 

and plated on gelatin coated (0.1%) cell culture plates until confluency if not indicated 

otherwise. Cells were used for experiments in passage three or four. Western blot analysis 

(see 2.2.5.4) or immunofluorescence staining (see 2.2.4.5) for the EC marker VEcad was used 

to characterize ECs. 

Culture medium: ECGM and Medium 199 mixed 1:1, 1% Penicillin/Streptomycin, 10% FCS 

Freezing medium: 90% FCS, 10% DMSO 
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2.2.7.2 Migration assay 

For the migration assay a modified Boyden chamber for EC migration was used which 

consists of FluoroBlock inserts for a 24-well plate. The two chambers are separated by a FN 

coated membrane through which cells can transmigrate using 3 µm pores. When 

transmigrated to the lower side of the membrane, cells were labeled with calcein for 90 

minutes and detected by fluorescence measurement. 

Cultured HUVECs were trypsinized for 5 minutes at 37°C to determine the cell number using 

a Coulter Counter. 200000 cells/ml were plated in the upper chamber with serum free 

Medium 199, while medium with 10% FCS was filled into the lower chamber. After 22 hours 

of incubation, the membrane was incubated with 4 µg/µl calcein for 90 minutes and 

detected with an Elisa Reader at 488 nm and imaged with confocal microscopy. To analyze 

the number of transmigrated HUVECs, cells per image were counted. 8 images were taken 

per group in each experiment. 

2.2.7.3 Transendothelial cell resistance (TEER) 

TEER is a method to monitor monolayer formation using transendothelial impedance 

measurement of the forming monolayer. HUVECs were trypsinized, counted, and plated in E-

plates onto a gold electrode and transendothelial resistance was recorded by electric cell-

substrate impedance sensing during monolayer formation. E-plates were equilibrated with 

100 µl culture medium for 30 minutes at RT before plating 50000 cells/well in additional 

100µl culture medium. Impedance was recorded for 24 hours in an XCelligence system and 

analyzed with XCelligence software. 

Culture medium: ECGM and Medium 199 mixed 1:1, 1% Penicillin/Streptomycin, 10% FCS 

2.2.7.4 Isolation of mouse ECs  

Tissue from mouse embryos, brains or lungs were used for EC isolation. ECs were isolated 

either for cultivation and immunostaining or for western blot analysis. 
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Embryos or tissue from pups were cut into small pieces after PBS washing and were 

transferred to 3 ml/animal digestion solution. Samples were incubated at 37°C for 1 hour on 

a rotator and vortexed every 10 minutes. Next, samples were filtered through a 40 µm cell 

strainer with 5 ml isolation medium. Samples were centrifuged at 1200 rpm for 5 minutes 

and resuspended in 5 ml buffer followed by another centrifugation step. Samples were 

resuspended in 100 µl buffer/animal with additional 100 µl VEcad-coated Dynabeads 

solution and incubated for 30 minutes at RT protected from light. After incubation, VEcad-

positive cells were purified by 5 washes in buffer with Dyna magnets and plated in culture 

medium on 8-well slides or glass coverslips until confluency was reached. Cells were used in 

passage one. 

Digestion solution: collagenase 2 2.5 mg/ml, collagenase 4 2.5 mg/ml, desoxyribonuclease 1 

mg/ml, 10% FCS in PBS 

Isolation medium: DMEM + 10% FCS 

Buffer: PBS + 1% P/S + 1%FCS 

Bead solution: 6 µl/animal sheep anti-rat Dyna beads were washed 5 times in buffer with the 

Dyna magnet, incubated with 6 µl VEcad antibody/animal for 1-2 hours at RT protected from 

light, washed 3 times and resuspended in 100 µl buffer/animal 

Culture medium: ECGM, 1% Penicillin/Streptomycin, 10% FCS 

2.2.8 Statistical analysis 

Statistical analysis was performed using the unpaired Student’s t-Test calculated with Excel 

software after testing for normal distribution. When more than two groups were analyzed, 

the two sided Anova test, followed by a post hoc Dunnet test was calculated with Stata11. 

All data is shown as mean ± SEM (standard error of the mean). At least three independent 

experiments were performed per experimental group. P-values lower than 0.05 (*), 0.01 

(**), 0.001 (***) or 0.0001 (****) were considered significant. 
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3 Results 

3.1 Role of parvins in ECs during angiogenesis 

 

 

The results of the first part are already published. The results of the second part were 

recently submitted: 

Endothelial alpha-parvin controls integrity of developing vasculature and is required for 

maintenance of cell-cell junctions. Fraccaroli A*, Pitter B*, Taha AA, Seebach J, Huveneers S, 

Kirsch J, Casaroli-Marano RP, Zahler S, Pohl U, Gerhardt H, Schnittler HJ, Montanez E. Circ 

Res. 2015 117(1):29-40. (*equal contribution) 

 

Parvins are required for apical-basal polarity of endothelial cells during embryonic blood 

vessel formation. Bettina Pitter, Ann-Cathrin Werner, Eloi Montanez, ATVB 2017; 

manuscript submitted 29th September 2017. 
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3.1.1 Analysis of α-pv functions in ECs 

3.1.1.1 Deletion of α-pv in ECs in mice leads to embryonic lethality associated 

with hemorrhages 

To determine the function of α-pv in ECs, mice carrying a loxP-flanked α-pv gene (α-pvfl/fl) 

were crossed with mice expressing the Cre recombinase under the Tie-2 promoter (Tie2-

Cre)161. Intercrosses between α-pvfl/+;Tie2-Cre males and α-pvfl/+ females failed to yield viable 

newborn α-pvfl/fl;Tie2-Cre (referred to herein as α-pvΔEC) mice, indicating that Tie2-mediated 

deletion of α-pv gene is embryonically lethal (Figure 18). 

Figure 18. Deletion of endothelial α-pv is embryonically lethal. (A) Genotypes of the progeny from α-pv
fl/+

;Tie2-
Cre males and α-pv

fl/+
 females intercrosses. (B) Representative images of P1 α-pv

ΔEC
 and control mice. The 

analysis showed that at P1 all α-pv
ΔEC

 mice were dead (modified after
108

). 

To determine when α-pvΔEC embryos die, we performed time-mating intercrosses between 

α-pvfl/+;Tie2-Cre males and α-pvfl/fl females and found that α-pvΔEC embryos were present at 

expected Mendelian ratio up to E15.5 and that lethality of α-pvΔEC embryos started at E14.5 

(Figure 19, A). By E13.5, α-pvΔEC embryos were slightly smaller and showed subcutaneous 

hemorrhages in the head and trunk areas (Figure 19, B). Western blot analysis of lung and EC 

lysates from E13.5 control and α-pvΔEC embryos showed reduced protein levels of α-pv in α-

pvΔEC embryos compared to control littermates (Figure 19, C). H&E staining of histological 

cross-sections of E15.5 embryos confirmed the presence of hemorrhages in α-pvΔEC embryos 

(Figure 19, D). 
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Figure 19. Loss of endothelial α-pv leads to hemorrhages and late embryonic lethality. (A) Genotypes of the 
embryonic progeny from α-pv

fl/+
;Tie2-Cre males and α-pv

fl/fl
 females intercrosses. (B) Freshly dissected E13.5 

and E15.5 control and α-pv
ΔEC

 embryos. Arrows indicate bleeding areas. (C) Western blot of lung and EC lysates 
from α-pv

ΔEC
 and control embryos showed downregulation of α-pv expression in α-pv

ΔEC
 lysates compared to 

control lysates. VEcad was used as a loading control. (D) H&E staining of paraffin sections of E15.5 α-pv
ΔEC

 and 
control embryos. Asterisk indicates bleeding area (modified after

108
). 

3.1.1.2 Altered vascular morphology in -pvEC mice 

To investigate the vascular abnormalities in α-pvΔEC embryos, we performed whole-mount 

immunostaining for the EC marker CD31, of YS and skin of E15.5 control and α-pvΔEC 

embryos. The analysis showed a disorganized and tortuous vascular network in α-pvΔEC 

embryos compared to the homogenous organization of the vasculature in control embryos 

(Figure 20, A, B). Furthermore, capillaries of the α-pvΔEC embryos displayed reduced diameter 

and appeared unstable compared to the capillaries of control embryos. Occasionally, we 

observed micro-aneurysms in α-pvΔEC embryos (Figure 20, C). 
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Figure 20. Abnormal vessel morphology in α-pv
ΔEC

 tissues. (A) Representative images of whole-mounts of YS 
immunostained for CD31 displayed an irregular and tortuous vascular network and instable vessel morphology 
in α-pv

ΔEC
 compared to controls. A and B show higher magnifications. (B) Embryonic skin whole-mounts of α-

pv
ΔEC 

embryos showed reduced vascular density and a less developed vascular network in α-pv
ΔEC

 tissues 
compared to control tissues. (C) Capillaries of YS in α-pv

ΔEC
 embryos displayed reduced diameters compared to 

control embryos (modified after
108

). 

3.1.1.3 Normal mural cell coverage of vessels in α-pvΔEC embryos  

During angiogenesis, mural cells are recruited to newly formed vessels to add vessel 

stability134. Since α-pv is necessary for recruiting mural cells to the vessel wall in embryos101, 

we analyzed the coverage of vessels by mural cells in control and α-pvΔEC embryos. To do 

this, we performed whole-mount immunostainings of YS and skin from E15.5 α-pvΔEC and 

control embryos with antibodies against α-smooth muscle actin (αSMA) and CD31. The 
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analysis showed comparable mural cell coverage of vessels in α-pvΔEC and control embryos 

(Figure 21), suggesting that Tie2-mediated deletion of α-pv did not alter mural cell 

recruitment to the vessel wall. 

Figure 21. Normal mural cell recruitment to the vessel wall in α-pv
ΔEC

 embryos. Representative whole-mount 
immunostainings for CD31 (green) and α-SMA (red) in YS (A) and skin tissue (B). Mural cell coverage of vessels 
in α-pv

ΔEC 
and control embryos at E15.5 did not reveal any difference (modified after

108
). 

3.1.1.4 Loss of endothelial α-pv impairs cell-cell junction integrity 

Vascular mispatterning, vessel instability, and hemorrhages can directly result from defects 

in cell-cell junctions between ECs114. To investigate whether loss of α-pv affects cell-cell 

junctions, we visualized cell junctions in the YS vasculature from control and α-pvΔEC embryos 

using the junctional markers VEcad and CD31. The analysis showed sharp, linear, and 

continuous VEcad and CD31 stains at cell boundaries in vessels of control embryos (Figure 

22, A, B). In contrast, vessels in α-pvΔEC embryos displayed diffuse, discontinuous, and 

scattered stains (Figure 22, A, B). Additionally, we frequently observed gaps between cells in 

vessels of α-pvΔEC embryos (Figure 22, A). Statistical analysis showed a two-fold increase of 

gaps between ECs (intercellular space index: number of intercellular spaces/cell number) in 

vessels of α-pvΔEC embryos compared to vessels of control embryos (Figure 22, C). Together, 

these data indicate that α-pv is required for endothelial junction integrity in vivo. 
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Figure 22. Impaired junction morphology in α-pv
ΔEC

 YS vasculature. (A) VEcad (green) immunostaining of YS 
vasculature. α-pv

ΔEC 
vessels showed discontinuous junctions and gaps between cells (see arrows). A, B, C show 

higher magnifications. (B) CD31 immunostaining of YS vessels. Junctions of α-pv
ΔEC 

vessels appeared more 
scattered compared to control junctions. (C) Intercellular space index (calculated by number of intercellular 
spaces/cell number) of control vs α-pv

ΔEC 
junctions showed a significant increase of gaps in α-pv

ΔEC 
vessels. 

Values represent mean ± SEM.*P≤0.05, number of embryos (n=3) (modified after
108

). 

3.1.1.5 α-pv localizes to FXs, FAs and JAIL in ECs in vitro 

To elucidate the molecular mechanism by which -pv controls vascular patterning, 

junctional integrity, and EC behavior, we first analyzed the subcellular localization of α-pv in 

ECs in vitro. To do this, we cultured HUVEC on gelatin for 12 hours and performed 

immunostaining with antibodies against α-pv, Pax and VEcad. Labeled-phalloidin was used to 

visualize the F-actin. As expected, under sparse culture conditions, α-pv localized at FAs at 

the tips of stress fibers colocalizing with the F-actin and Pax (Figure 23). A closer analysis 

revealed that α-pv also localized at the FXs, nascent cell-ECM adhesion contacts, close to the 

edge of the lamellipodium (Figure 23, B, C). 
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Figure 23. Subcellular localization of α-pv in HUVECs. (A) HUVECs were immunostained for α-pv (green) and F-
actin (red) in sparce conditions. (B) α-pv was localized at FXs at the edge of lamellipodia (see arrowheads) and 
at FAs connected to stress fibers (see arrows). (C) Immunostaining for α-pv (green) and Pax (red) showed 
colocalization at FXs and FAs (modified after

108
). 

Interestingly, at sites where two adjacent cells adhere and overlap, α-pv also localized in 

small, punctate clusters that resemble FXs along the edge of the overlapping membranes in 

a close proximity to VEcad clusters (Figure 24). Under subconfluent cell culture conditions, α-

pv was also distributed along the edge of JAIL at overlapping plasma membranes (Figure 24, 

B). The analysis also showed the presence of α-pv clusters in a very close proximity to 

discontinuous AJs, where it occasionally and partially colocalized with VEcad (Figure 24,B C). 

Triple-labelling for VEcad, F-actin and α-pv showed α-pv dot-like structures at the cell-cell 

junctions associated with the F-actin and occasionally connected via actin filaments to α-pv 

positive FA-like structures (Figure 24, D). Finally, we did not observe α-pv at stable, linear AJs 

Figure 24, B). 
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Figure 24. Localization of α-pv in subconfluent conditions. (A) Immunostaining of α-pv (green) and VEcad (red) 
showed α-pv localization along overlapping membranes. Arrowheads point to α-pv at the edge of membranes. 
Arrows point to VEcad clusters. (B) α-pv was localized at JAIL close to VEcad clusters (see arrows). (C) Partial 
colocalization of α-pv with VEcad at discontinuous AJs. See empty arrowheads. (D) Triple-immunostaining of α-
pv (green), F-actin (red) and VEcad (blue) revealed α-pv at FAs connected to AJs with F-actin filaments (FAJ). (E) 
Intensity profiles of α-pv, F-actin and VEcad along the line 1 in the image shown in D. Asterisks show stable AJs 
without α-pv. a, b, A, B, 1-4 indicate higher magnifications (modified after

108
). 

3.1.1.6 Depletion of α-pv in HUVECs 

Next, we depleted α-pv in HUVECs by siRNA and analyzed cell morphology. We performed all 

experiments with two different siRNAs against α-pv and as a control we used a scrambled 

(Scr) siRNA. The downregulation of α-pv protein expression was confirmed by western blot 

analysis of cell lysates of cultured cells after 72 hours of siRNA administration (Figure 25). 
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Figure 25. Deletion of α-pv in HUVECs with siRNAs. (A) Western blot analysis of lysates from HUVECs 
transfected with two different siRNAs against α-pv and Scr. GAPDH was used as loading control. (B) Scr siRNA 
treated and α-pv depleted HUVECs were plated on gelatin for 45 min and 120 min, and immunostained for α-
pv (green) and F-actin (red). A, B, indicate higher magnifications (modified after

108
). 

3.1.1.7 α-pv depleted ECs show reduced FX formation and impaired lamellipodia  

Then, we performed immunostainings for α-pv and F-actin in control and α-pv depleted ECs 

plated on gelatin. After 2 hours on gelatin, control HUVECs were able to spread, displayed 

long and thin stress fibers, and showed a single lamellipodia. In contrary, α-pv depleted 

HUVECs showed short and thick stress fibers and multiple lamellipodia-like protrusions. 

Moreover, α-pv depleted cells displayed many finger-like protrusions (Figure 25, B). 

Cell spreading and lamellipodia formation is dependent on proper integrin-mediated cell-

ECM adhesion structure formation171. To analyze integrin-mediated cell-ECM adhesion 

structure formation in the absence of α-pv, we performed immunostaining for Pax and Vinc, 

which are FA markers, and F-actin in control and α-pv depleted HUVECs. The analysis 

showed multiple FXs along the leading edges in the proximity of the FAs in control cells 

(Figure 26, A, B). In contrary, α-pv depleted cells displayed few Pax positive clusters at the 

leading edge, and Pax staining was concentrated at the FAs, which seemed larger than 

control FAs (Figure 26, A, B). At the FXs Pax is phosphorylated on the tyrosine residue (Y) 

118172. Consistent with the reduced levels of FXs in α-pv depleted cells, western blot analysis 

showed a significant reduction of phosphorylation of Pax at Y 118 in in these cells (Figure 26, 

C). Together, these results suggest that α-pv is required for integrin-mediated cell-ECM 

adhesion structure formation. These findings could be verified in postnatal endothelial-
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specific depletion of α-pv in the retinal vasculature and was visualized by immunostaining 

for p-Pax172 (Figure 26, D). 

Figure 26. Pax phosphorylation is reduced in the absence of α-pv. (A) Coimmunostaining of α-pv (green) and 
Pax (red) showed a decreased number of FXs due to α-pv deficiency. Arrowheads point to Pax positive FXs. (B) 
Immunostaining for Vinc (green) and F-actin (red) showed decrease of FXs at lamellipodia in α-pv depleted 
HUVECs compared to controls. (C) Western blot for p-Pax of lysates of control and α-pv depleted HUVECs. 
Quantification revealed a significant decrease of p-Pax due to α-pv deficiency compared to control HUVECs. 

Values represent mean ± SEM.*P≤0.05, (n=3). (D) Immunostaining for IB4 (green) and p-Pax (red) in α-pv
iΔEC 

retinas. Immunostainings revealed decreased fluorescent intensity of p-Pax in α-pv
iΔEC 

retinas compared to 
control retinas (modified after

108
). 
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3.1.1.8 Depletion of α-pv in ECs leads to decreased Rac1 activity and cell 

migration 

Migration and lamellipodia formation are dependent on proper FX formation and activity of 

the small GTPase Rac1173. To analyze whether Rac1 activity is altered in α-pv depleted 

HUVECs, we plated control and α-pv depleted cells on gelatin for 30 minutes, measured Rac1 

activity, and found that Rac1 activity was significantly decreased in α-pv depleted HUVECs 

compared to control HUVECs (Figure 27, A). Next, we performed a chemotactic migration 

assay in modified Boyden-chambers, which revealed decreased migration ability towards 

serum of α-pv depleted HUVECs than control HUVECs (Figure 27, B). Together, these results 

suggest that α-pv regulates EC migration via controlling Rac1 activity. 

Figure 27. Rac1 activity and cell motility is decreased in α-pv deficiency. (A) Western blot analysis of active Rac1 
pull-down in α-pv depleted and control HUVECs compared to total Rac1. α-pv depleted HUVECs showed 
significantly decreased Rac1 activity compared to control HUVECs. (B) Chemotactic migration assay with α-pv 
depleted and control HUVECs: Boyden-chamber assay was performed with 10% serum as an attractant to show 
migration of α-pv depleted and control HUVECs. Analysis revealed a significant decrease of migration ability in 
absence of α-pv compared to control cells. Values represent mean ± SEM.*P≤0.05, **P≤0.01, (n=3) (modified 
after

108
). 

3.1.1.9 Depletion of α-pv in ECs impairs cell-cell junction formation and 

monolayer integrity 

Loss of α-pv in vivo leads to impaired cell-cell junction integrity. To determine how α-pv 

controls cell-cell junctions, we cultured α-pv depleted and control HUVEC on gelatin for 24 
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hours, performed immunostaining for VEcad and β-cat, and analyzed monolayer formation. 

While control HUVECs were able to establish a regular, cobblestone-like monolayer, α-pv 

depleted HUVECs displayed irregular shapes, disrupted monolayer formation, and an 

increased incidence of intercellular gaps (Figure 28, A). Statistical analysis showed a 

significant decrease in stable, continuous AJs in α-pv depleted cells compared to control cells 

(total discontinuous AJs length/total junctional length) (Figure 28, B). Furthermore, the 

percentage of reticular junctions, shown by the reticular junctional index (calculated with 

the formula (total reticular junctional area/total cell area)/cell number), was decreased in α-

pv depleted HUVECs compared to controls (Figure 28, B). Next, we analyzed monolayer 

integrity by performing TEER analysis. To do this, control and α-pv depleted HUVECs were 

seeded on a gold electrode and TEER was recorded by electric cell-substrate impedance 

sensing. TEER was measured continuously for 24 hours. During the first hour cell spreading is 

measured, whereas the following hours reflected monolayer formation and junctional 

integrity174. The analysis showed that α-pv depletion in HUVECs did not alter cell spreading, 

but severely impaired monolayer formation. Importantly, the protein levels of VEcad and β-

cat were not altered in α-pv depleted HUVECs, indicating that junctional defects in α-pv 

depleted HUVECs are not caused by reduction of VEcad and β-cat protein levels (Figure 28, 

C, D).These results indicate that α-pv is required for formation and/or maintence of stable 

AJs in vitro. 

The actin cytoskeleton plays a major role in AJ formation and maintenance175. Therefore, we 

analyzed the actin cytoskeleton in EC monolayers by immunostaining for VEcad and F-actin. 

Cells depleted of α-pv displayed reduced cortical actin associated to the junctions, and 

increased levels of radial actin bundles compared to control ECs (Figure 28, E). To 

corroborate these results, ECs from α-pvΔEC and control embryos were isolated and plated on 

gelatin for 48 hours and immunostaining for VEcad and F-actin. This confirmed the previous 

results (Figure 28, F). 
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Figure 28. α-pv depleted HUVECs show altered junction formation. (A) VEcad and β-cat immunostaining of α-pv 
depleted and control HUVECs plated on gelatin for 24 hours. Yellow arrows show radial VEcad bundles. 
Asterisks highlight intercellular gaps. A, B show higher magnifications. (B) Quantification of percentages of 
continuous and discontinuous AJs (total discontinuous AJs length/total junctional length), and the reticular 
junctional index in control and α-pv depleted HUVECs. Reticular junctional index was calculated using the 

formula (total reticular junctional area/total cell area)/cell number. Values represent mean ± SEM.**P≤0.01, 

***P≤0.001, (n=3). (C) TEER was decreased in α-pv depleted HUVECs compared to controls. Values represent 

mean ± SEM. *P≤0.05, **P≤0.01, ***P≤0.001, (n=3). (D) Western blot analysis of protein levels of VEcad and β-

cat in control and α-pv depleted HUVECs revealed similar protein levels. (E) Control and α-pv
 
depleted HUVECs, 

and (F) isolated ECs from control and α-pv
ΔEC 

embryos were plated on gelatin for 48 hours and immunostained 
for VEcad (green) and F-actin (red). Cells showed perturbed actin network and impaired cell-cell junction 
formation (modified after

108
). 

These results suggest that α-pv regulates cell-cell junction integrity via actin cytoskeleton 

rearrangement. 

3.1.1.10 α-pv localizes at JAIL and is crucial for JAIL formation 

Recently it has been reported that JAIL, actin-mediated lamellipodia structures that occur at 

cell-cell junctions, control the integrity of EC monolayers via regulating VEcad dynamics at 

the junctions126. Since α-pv is localized at the edge of JAIL, we analyzed JAIL formation and 

dynamics in the absence of α-pv (Figure 29). 

To do this, we collaborated with Prof. Hans-Joachim Schnittler (Institute of Anatomy and 

Vascular Biology, Muenster). Together, we depleted α-pv in HUVECs expressing Lifeact-GFP, 

and analyzed JAIL dynamics using spinning disc fluorescent life cell imaging176. Control 

HUVECs frequently formed JAIL in subconfluent conditions that were stable up to five 

minutes until retraction. JAIL displayed round and broad lamella. In contrast, α-pv depleted 

HUVECs displayed unstable and irregular JAIL, and extended filopodia-like structures 

followed by edge withdrawal. The number of intercellular gaps was increased in α-pv 

depleted HUVECs, whereas control HUVECs prevented intercellular gap formation (Figure 29, 

A, B). Quantification of JAIL frequency, that was measured by counting the number of 

leading edges throughout a movie (16 movies per group), showed a significant reduction in 

α-pv deficient HUVECs compared to control HUVECs (Figure 29, C). These data indicate that 

α-pv is important for normal JAIL formation and maintenance. 
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Figure 29. Lifeact-GFP transfected HUVECs are analyzed for JAIL formation. (A, B) Stills from Lifeact-GFP 
transfected control and α-pv deficient HUVECs in spinning disc live-cell imaging. Depleted cells displayed a 
reduced frequency and maintenance of JAIL formation. Arrows point at JAIL. Arrowheads highlight intercellular 
gaps. (C) Quantification of JAIL frequency. Frequency of JAIL in α-pv deficient HUVECs was significantly reduced 

compared to control HUVECs. Values represent mean ± SEM. ***P≤0.001, (n=3), A-B indicate higher 
magnifications (modified after

108
).  
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3.1.2 Analysis of α-pv and β-pv functions in ECs 

3.1.2.1 Mice with ECs lacking α-pv and β-pv are embryonically lethal and display 

abnormal vessel morphology 

The β1ΔEC mice die embryonically at E10.557,58. Moreover, our data showed that α-pvΔEC mice 

die between E15.5 and birth (see 3.1.1)108. Since ECs express α-pv and β-pv, this difference in 

lethality between β1ΔEC and α-pvΔEC mice could be due to a partial compensation of α-pv by 

β-pv. To test this hypothesis, we generated mice lacking α-pv and β-pv in ECs. To do this, we 

took the advantage that β-pv-/- mice are viable, fertile and do not show any embryonic 

phenotype. α-pvfl/fl mice were mated with β-pv-/- mice to generate α-pvfl/fl;β-pv-/- mice. Next, 

we intercrossed α-pvfl/fl;β-pv-/- females with α-pvfl/+;β-pv-/-;Tie2-Cre males to delete α-pv in 

ECs. These intercrosses failed to generate viable α-pvfl/fl;β-pv-/-;Tie2-Cre (referred to herein 

as α-pvΔEC;β-pv-/-) offsprings, indicating embryonic lethality of α-pvΔEC;β-pv-/- mice. Timed 

mating intercrosses revealed that the lethality of α-pvΔEC;β-pv-/- embryos started at E11.5 

and no alive α-pvΔEC;β-pv-/- embryos were found at E13.5 (Figure 30, A). α-pvΔEC;β-pv-/- 

embryos displayed subcutaneous hemorrhages in the head and trunk areas (Figure 30, B). 
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Figure 30. Embryonic lethality and impaired vasculature of α-pv
ΔEC

;β-pv
-/-

 embryos. (A) Genotypes of the 
progeny from α-pv

fl/fl
;β-pv

-/-
 and α-pv

fl/+
;β-pv

-/-
;Tie2-Cre intercrosses. (B) Freshly isolated α-pv

ΔEC
;β-pv

-/-
 and α-

pv
fl/fl

;β-pv
-/-

 embryos. α-pv
ΔEC

;β-pv
-/-

 embryos showed bleedings in the head and trunk areas (arrows point to 
bleedings). (C, D) CD31 whole-mount immunostainings of E11.5 and E12.5 α-pv

ΔEC
;β-pv

-/-
 and α-pv

fl/fl
;β-pv

-/-
 

embryos. α-pv
ΔEC

;β-pv
-/-

 embryos displayed altered vessel formation in the head (A,C) and trunk areas (B,D) 
compared to α-pv

fl/fl
;β-pv

-/-
 embryos. α-pv

ΔEC
;β-pv

-/-
 embryos had blunt vessel ends and aneurisms compared to 

α-pv
fl/fl

;β-pv
-/-

 embryos. Arrows point to aneurisms in the head (see higher magnifications). 
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To visualize the vascular defects of α-pvΔEC;β-pv-/- mice in more detail, we performed whole 

mount immunostaining for CD31 in E11.5 α-pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- embryos. The 

analysis showed enlargement of vessels in the head area and reduced intersomitic vessels in 

α-pvΔEC;β-pv-/- embryos compared to α-pvfl/fl;β-pv-/- embryos (Figure 30, C). Higher 

magnification of the head vasculature of α-pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- embryos at E11.5 

and E12.5 also revealed, that vessel segments in the head of α-pvΔEC;β-pv-/- embryos 

appeared more dilated, had blunt vessel ends, and displayed huge bleb-like structures. 

(Figure 30, D). 

3.1.2.2 α-pv and β-pv are crucial for hindbrain vascularization 

To analyze the vascular defects in more detail, we used the embryonic mouse hindbrain 

model (see 2.2.2.1). Hindbrains of α-pvfl/fl;β-pv+/+ (Control), α-pvfl/fl;β-pv-/- (Control), α-

pvΔEC;β-pv+/+, and α-pvΔEC;β-pv-/- embryos at E11.5 were immunostained for IB4 and the 

ventricular sides, displaying the SVP of the hindbrains, were analyzed. The analysis identified 

a homogenous vessel pattern and formation of the SVP in α-pvfl/fl;β-pv+/+ hindbrains. As 

expected, no vascular defects were observed in α-pvfl/fl;β-pv-/- hindbrains and branching 

points, vessel diameter, and filopodia per vessel length were similar to α-pvfl/fl;β-pv+/+ 

embryos (Figure 31, A, C). Hindbrains from α-pvΔEC;β-pv+/+ embryos showed a reduction in 

number of branching points and normal vessel diameter. Interestingly, hindbrains from α-

pvΔEC;β-pv-/- embryos revealed a reduction in branching points and strong increased vessel 

diameter compared to all other genotypes (Figure 31, A, B). α-pvΔEC;β-pv-/- vessels presented 

an increased formation of filopodia, brush-like tip cells, and tufted sprouts (Figure 31, B, C). 
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Figure 31. The embryonic hindbrain of α-pv
fl/fl

;β-pv
+/+

, α-pv
fl/fl

;β-pv
-/-

, α-pv
ΔEC

;β-pv
+/+

, and α-pv
ΔEC

;β-pv
-/-

. (A) 
Severe malformation of the hindbrain vascularization is seen in α-pv

ΔEC
;β-pv

-/-
 embryos at E11.5 immunostained 

for IB4 compared to hindbrain vascularization of α-pv
fl/fl

;β-pv
+/+

, α-pv
fl/fl

;β-pv
-/-

 and α-pv
ΔEC

;β-pv
+/+

. Asterisk 
mark central area of the hindbrains. (B) Quantification of number of branching points per field, vessel 
diameter, and filopodia per vessel length. Branching points were decreased in α-pv

ΔEC
;β-pv

-/- 
hindbrains 

compared to controls, whereas vessel diameter and filopodia were significantly increased. Values represent 

mean ± SEM.***P≤0.001, number of hindbrains (n=4). (C) Tip cell formation was altered in α-pv
ΔEC

;β-pv
-/-

 

hindbrains and displayed brushed and tufted structures compared to controls. 
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Further analysis showed micro aneurisms of the vasculature in α-pvΔEC;β-pv-/- hindbrains 

(Figure 32, A, B). These data indicate that the vascularization of α-pvΔEC;β-pv-/- hindbrains at 

E11.5 is strongly impaired due to the absence of endothelial α-pv and β-pv. 

Figure 32. Micro aneurisms in α-pv
ΔEC

;β-pv
-/-

 embryos at E11.5. Immunostaining for IB4 showed (A) highly 
impaired vascularization and huge, isolated bleb-like structures in α-pv

ΔEC
;β-pv

-/-
 hindbrains compared to other 

phenotypes. (B) Isolated but lumenized bleb-like structures were present in α-pv
ΔEC

;β-pv
-/-

 hindbrains. 

3.1.2.3 α-pvΔEC;β-pv-/- embryos showed reduced spinal cord vascularization 

Next, we investigated the vascularization of the spinal cord of α-pvΔEC;β-pv-/- and α-pvfl/fl;β-

pv-/- embryos. To do this, we performed immunostaining in paraffin sections of E11.5 

embryos for the endothelial marker Endomucin. We observed a decreased number of 

vessels in the spinal cord in α-pvΔEC;β-pv-/- sections compared to α-pvfl/fl;β-pv-/- sections. The 

vessels of α-pvΔEC;β-pv-/- embryos displayed glumeruloid structures and the invasion depth of 

the sprouts was diminished in α-pvΔEC;β-pv-/- sections, whereas α-pvfl/fl;β-pv-/- sections 

revealed a dense and structured pattern of vessels in the spinal cord (Figure 33, A). The 

quantification of vessel number per field and vessel diameter showed a decrease of vessels 

in α-pvΔEC;β-pv-/- sections and increased diameter compared to α-pvfl/fl;β-pv-/- (Figure 33, A, 
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B). To investigate whether these defects are caused by increased EC proliferation, we 

immunostained for the proliferation marker p-histone 3 (pH3), and found no difference 

between α-pvΔEC;β-pv-/- embryos and α-pvfl/fl;β-pv-/- embryos (Figure 33, C). This vascular 

phenotype is similar to the vascular abnormalities observed in the brain. 
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Figure 33. Reduced spinal cord vascularization in α-pv
ΔEC

;β-pv
-/-

 embryos at E11.5. (A) Immunostaining for 
Endomucin (green) and TO-PRO3 (blue) revealed a decreased number of sprouts and penetration depth in the 
spinal cord of α-pv

ΔEC
;β-pv

-/-
 embryos but not in control embryos. (B) Quantification of vessel number per field 
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and vessel diameter revealed a significant reduction of vessel number in α-pv
ΔEC

;β-pv
-/-

 tissue and increased 
diameter compared to α-pv

fl/fl
;β-pv

-/-
 sections. (C) Immunostaining for Endomucin (green), pH3 (red), and TO-

PRO3 (blue) in α-pv
ΔEC

;β-pv
-/-

 and control sections did not show any proliferation difference in ECs. Values 

represent mean ± SEM.***P≤0.001, number of embryos (n=3). 

3.1.2.4 Impaired vessel maturation in α-pvΔEC;β-pv-/- embryos 

α-pvΔEC;β-pv-/- hindbrains revealed bleeding areas compared to α-pvfl/fl;β-pv-/- hindbrains 

(Figure 34, A). These results suggest that the vessel integrity in α-pvΔEC;β-pv-/- embryos is 

perturbed and vessel morphology is altered due to the lack of endothelial α-pv and β-pv. 

Paraffin sections confirmed the bleedings in the hindbrain and blood cells could be visualized 

by their auto fluorescence (Figure 34, B). 

Figure 34. Bleedings in α-pv
ΔEC 

β-pv
-/-

 embryos. (A) Freshly isolated α-pv
ΔEC 

β-pv
-/-

 hindbrains displayed bleedings 
compared to α-pv

fl/fl
;β-pv

-/-
 hindbrains. (B) Immunostaining for Endomucin (green) and TO-PRO-3 (blue) showed 

blood cells (red) outside the vessels in α-pv
ΔEC

;β-pv
-/-

 sections compared to α-pv
fl/fl

;β-pv
-/-

 sections. 

The barrier function of vessels depends on the interaction of ECs, ECM, and the embedded 

PE151. Immunostaining for the PE marker NG2 and IB4 in α-pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- 

hindbrains showed that PE were spread and completely covered the vessels in α-pvfl/fl;β-pv-/- 
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hindbrains. In contrast, the vessels of α-pvΔEC;β-pv-/- hindbrains displayed PE, which were less 

spread and appeared round (Figure 35, A).The measurement of vessel coverage showed 

significantly reduced PE coverage (Figure 35, B). These data indicate that the loss of 

endothelial α-pv and β-pv results in impaired vessel maturation. 

Figure 35. Altered PE attachment to the vessel walls in α-pv
ΔEC

;β-pv
-/-

  hindbrains. (A) Immunostaining for IB4 
(green) and NG2 (red) revealed altered PE spreading to vessels of α-pv

ΔEC
;β-pv

-/-
 embryos compared to α-

pv
fl/fl

;β-pv
-/-

 vessels. Asterisk mark central area of the hindbrains. Arrows point at PE that failed to spread. (B) 
Quantification of PE vessel coverage. Quantification revealed significant decrease of PE covered vessel area in 

α-pv
ΔEC

;β-pv
-/-

 hindbrains compared to α-pv
fl/fl

;β-pv
-/-

 hindbrains. Values represent mean ± SEM.**P≤0.05, 

number of hindbrains (n=3). 

To investigate, whether loss of endothelial parvins leads to BBB impairment, we stained 

hindbrains from α-pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- embryos for Glut-1, a marker for BBB 

functions in the hindbrain vasculature. The analysis showed that α-pvfl/fl;β-pv-/- vessels 

homogenously expressed Glut-1 at E11.5, whereas α-pvΔEC;β-pv-/- vessels revealed a 

decrease of Glut-1 expression in some vessels and increased presence of Glut-1 outside the 

vessels, suggesting a loss of BBB integrity in α-pvΔEC;β-pv-/- vasculature (Figure 36). 
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Figure 36. Altered Glut-1 expression in the vasculature of α-pv
ΔEC

;β-pv
-/-

 compared to α-pv
fl/fl

;β-pv
-/-

 hindbrains. 
Immunostaining for IB4 (green) and Glut-1 (red) in α-pv

ΔEC
;β-pv

-/-
 showed reduced presence of Glut-1 in the 

vessels and increased presence outside compared to α-pv
fl/fl

;β-pv
-/-

 vessels. 

Since integrin-mediated signaling regulates ECM component deposition, we further analyzed 

whether the depletion of endothelial α-pv and β-pv caused impairment of BM and ECM 

formation. Therefore, we immunostained α-pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- hindbrains for 

Col-lV and FN. The analysis revealed similar expression of Col-IV and FN on the vessels of α-

pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- hindbrains, suggesting no obvious difference in ECM 

formation (Figure 37, A, B). 



Fehler! Verwenden Sie die Registerkarte 'Start', um Überschrift 1;Ü 1 dem Text zuzuweisen, 
der hier angezeigt werden soll. 

75 

Figure 37. Similar BM/ECM components at vessels in α-pv
ΔEC

;β-pv
-/- 

and α-pv
fl/fl

;β-pv
-/-

 hindbrains. (A) 
immunostaining of IB4 (green)/Col-IV (red) and (B) IB4 (green)/FN (red) in hindbrains of α-pv

ΔEC
;β-pv

-/- 
and α-

pv
fl/fl

;β-pv
-/-

 revealed similar coverage with BM/ECM components. 

To investigate whether apical/basal polarity of ECs is defective due to the depletion of α-pv 

and β-pv, we immunostained α-pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- cryo sections for Endomucin 

and the apical/basal polarity marker podocalyxin (PODXL) (Figure 38, A), and Endomucin and 

Col-IV (Figure 38, B). We observed basal Col-IV expression and apical PODXL expression on 

vessels of cryo sections of control embryos. α-pvΔEC;β-pv-/- cryo section, however, showed 

luminal Col-IV expression, Col-IV clustering and abnormally distributed PODXL compared to 

control vessels, suggesting impaired BM integrity and abnormal apical/basal EC polarity 

(Figure 38). 
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Figure 38: Impaired EC polarity and BM integrity in α-pv
ΔEC

;β-pv
-/-

 vessels. (A) Cryo section stained for 
Endomucin (green) and PODXL (red). Arrowhead points at PODXL cluster. Arrows point at abnormally polarized 
PODXL. (B) Cryo sections stained for Endomucin (green) and Col-IV (red). Asterisk marks luminal side. Dotted 
line marks basal side. Arrowheads point at luminal Col-IV. (C) Quantitative analysis of abnormal PODXL and Col-

IV distribution. Values represent mean ± SEM.*P≤0.01, number of embryos (n=3). 

3.1.2.5 Altered cell morphology of ECs in α-pvΔEC;β-pv-/- embryos 

Integrins are involved in modulating EC morphology36. We therefore analyzed EC shape in 

the absence of parvins. To do this, we immunostained paraffin sections of α-pvΔEC;β-pv-/- and 

α-pvfl/fl;β-pv-/- for Endomucin. The results showed rounder and less elongated cell shapes of 

ECs in α-pvΔEC;β-pv-/- sections compared to α-pvfl/fl;β-pv-/- sections. This was quantified by the 

elongation index of ECs (cell length/width) (Figure 39, A, B). To analyze EC morphology also 

in vitro, we isolated ECs from E11.5 α-pvΔEC;β-pv-/- and α-pvfl/fl;β-pv-/- embryos and plated 
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them on triple coating (a crosslinked coating of poly-L-lysin, glutaraldehyde, and gelatin) for 

24 hours and immunostained for CD31. ECs from α-pvfl/fl;β-pv-/- embryos formed gap-free 

tube-like structures with tip cells like formations with filopodia and elongated cell shapes. 

ECs from α-pvΔEC;β-pv-/- embryos instead, were unable to form tube-like structures without 

gaps in culture while showing a rounder cell shapes. This was also quantified by the 

elongation index (cell length/width) (Figure 39, C, D). 
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Figure 39. Cell shapes in paraffin section and isolated ECs from E11.5 embryos. (A) Immunostaining for 
Endomucin and TO-PRO-3 of paraffin sections of α-pv

ΔEC
;β-pv

-/-
 and α-pv

fl/fl
;β-pv

-/-
 embryos. (B) Quantification 

of elongation index of ECs (calculated by length/width) in paraffin sections showed significant difference 
between α-pv

ΔEC
;β-pv

-/-
 and α-pv

fl/fl
;β-pv

-/-
 sections. (C) Immunostaining for CD31 of isolated α-pv

ΔEC
;β-pv

-/-
 and 

α-pv
fl/fl

;β-pv
-/-

 ECs were plated on triple coating (a crosslinked coating of poly-L-lysin, glutaraldehyde, and 
gelatin) for 24 hours. α-pv

ΔEC
;β-pv

-/-
 ECs failed to form gap-free vessel like structures compared to α-pv

fl/fl
;β-pv

-/-
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cells. (D) Quantification of elongation index of ECs (calculated by length/width) showed significant difference of 

ECs from α-pv
ΔEC

;β-pv
-/-

 embryos compared to ECs from α-pv
fl/fl

;β-pv
-/-

 embryos. Values represent mean ± 
SEM.**P≤0.01, ***P≤0.001, number of experiments (n=3). 

3.1.3 Reduced tumor angiogenesis in absence of α-pv 

Integrin signaling is crucial in tumor angiogenesis133. Our studies showed that α-pv is 

important in physiological angiogenesis. To study whether parvins are also important in 

pathological angiogenesis, we performed the tumor neovascularization mouse glioblastoma 

model (see 2.2.2.3). To do this, we collaborated with Prof. Dr. rer. nat. Rainer Glaß 

(Neurosurgical Research, LMU Munich). Adult C57BL/6J (control) mice, and α-pvfl/fl mice 

expressing the inducible endothelial-specific Cadh5(PAC)-CreERT2162 were inoculated 

intracerebrally with 1µl of glioma cells (GL261, 100000 cells/µl) at day 0. Tamoxifen 

administration (100µl, 20µg/µl) at day 3-5 once daily, induced endothelial-specific α-pv 

deletion (herein referred to as α-pviΔEC mice). At day 17, mice were sacrificed and tumors 

were analyzed (Figure 40, A). 

Figure 40. α-pv depletion in ECs reduces tumor growth and vascularization in α-pv
iΔEC

 mice. (A) Schematic 
overview of the glioma experiment. Injection of GL261 cells at day 0; tamoxifen administration at day 3-5; 
tumor analysis at day 17. (B) H&E staining of brain section of α-pv

iΔEC
 mice indicate reduced tumor size. (C) 

Quantification of tumor size showed slight reduction (not significant) in α-pv
iΔEC

 mice compared to control 
mice. (D) Staining of brain sections with vWF. (E) Quantification of vessel area per field showed reduced vessel 
density in α-pv

iΔEC
 compared to control mice. Values represent mean ± SEM. ***P≤0.001, number of controls 

(n=8), number of α-pv
iΔEC

 (n=7). 
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Brain sections of control and α-pviΔEC mice were stained with H&E and the tumor size was 

analyzed. α-pviΔEC mice showed a reduction in tumor size compared to control mice, 

although the reduction was not significant (Figure 40, B, C). Sections of control and α-pviΔEC 

brains were stained with the vessel marker von-Willebrand-Factor (vWF), revealing a 

significant loss of vessel density in α-pviΔEC tumors compared to control tumors (Figure 40, D, 

E). These results indicate that endothelial α-pv is important for tumor angiogenesis. 
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3.2 Role of TDP-43 in ECs during angiogenesis 

The constitutive loss of TDP-43 in zebrafish leads to vascular miss-patterning131. The role of 

endothelial TDP-43 is, however, not known so far. To determine the role of endothelial TDP-

43 during angiogenesis, we used an endothelial-specific inducible mouse model and 

analyzed postnatal retinal vascularization over time. We intercrossed TDP-43fl/fl mice176 with 

mice expressing the Cadh5(PAC)-CreERT2162 and induced deletion of the TDP-43 gene in 

newborns with three consecutive tamoxifen injections starting at P1 and retinas were 

analyzed at P7.5. Western blot analysis from lung lysates of P7.5 TDP-43fl/fl;Cadh5(PAC)-

CreERT2 (referred to herein as TDP-43iΔEC) and TDP-43fl/fl (Control) mice showed reduced 

protein levels in TDP-43iΔEC mice. VEcad and GAPDH served as loading controls (Figure 41, A). 

Whole mount immunostainings of TDP-43iΔEC and control retinas for IB4 showed a significant 

reduction in radial outgrowth of the retinal vasculature in TDP-43iΔEC retinas compared to 

control retinas (Figure 41, B, C). Furthermore, TDP-43iΔEC mice displayed an increase of vessel 

density in the front of the retinal vasculature compared to control retinas. These highly 

dense areas appeared more prominently in the peri-venous vessel plexus (Figure 41, B, C). 

Figure 41. Endothelial-specific deletion of TDP-43 leads to vascular defects in retinal vasculature. (A) Western 
blot analysis of lung lysates from P7.5 control and TDP-43

iΔEC 
mice. VEcad and GAPDH were used as loading 

controls. (B) IB4 immunostaining of P7.5 control and TDP-43
iΔEC

 retinas. Arrows indicate radial outgrowth. (C) 
Quantification of radial length and vessel density. Reduced radial length and increased vessel density was 

observed in absence of endothelial TDP-43. Values represent mean ± SEM. **P≤0.01, ***P≤0.001, number of 

retinas (n=4). 
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Higher magnifications of the retinal front revealed that sprouts of TDP-43iΔEC retinas 

appeared chaotic and some sprouts extended far beyond the angiogenic front without 

connecting to other vessel segments (Figure 42, A). Moreover, TDP-43iΔEC retinas showed a 

significant increase of filopodia number compared to control retinas (Figure 42, A, B). These 

results suggest a role of TDP-43 on tip cell formation. 

Figure 42. Loss of endothelial TDP-43 results in hyper-sprouting and increased number of filopodia. (A) P7.5 
TDP-43

iΔEC 
and control retinas were immunostained for IB4. TDP-43

iΔEC 
retinas showed several vessel layers 

compared to controls. Arrowhead points at long sprout. (B) Quantification of sprout and filopodia numbers. 
TDP-43

iΔEC 
retinas revealed increased sprout and filopodia numbers compared to control retinas. Values 

represent mean ± SEM. **P≤0.01, number of retinas (n=3). 

Therefore, we performed whole mount immunostaining for the tip cell marker Esm1, and 

observed an ectopic expression of Esm1 in TDP-43iΔEC compared to controls (Figure 43). 

Furthermore, immunostaining for VEcad showed altered VEcad distribution in TDP-43iΔEC 

vessels (Figure 43). Control vessels presented a sharp and continuous VEcad stain, whereas 

TDP-43 depleted vessels revealed prominent VEcad aggregates. 
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Figure 43. Ectopic expression of tip cell marker and VEcad in TDP-43
iΔEC

 retinas. P7.5 control and TDP-43
iΔEC

 
retinas labeled for VEcad (green), Esm1 (red), and IB4 (blue). TDP-43

iΔEC 
retinas revealed ectopic tip cell 

expression in perivenous areas and abnormal VEcad staining compared to controls retinas. Dotted square mark 
higher magnifications. 

To analyze whether vessel hyper density is caused by increased EC proliferation in the 

absence of TDP-43, we performed BrdU labeling together with the EC nucleus marker Erg 

1/2/3 to visualize and quantify proliferating ECs (Figure 44). The quantitative analysis 

revealed no significant difference between TDP-43iΔEC and control retinas. 
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Figure 44. TDP-43
iΔEC 

retinas do not show increased EC proliferation. Immunostaining of Erg1/2/3 (green), BrdU 
(red) and IB4 (blue) to visualized proliferating ECs in P7.5 TDP-43

iΔEC 
and control retinas. Quantification did not 

reveal a significant difference. Values represent mean ± SEM, number of retinas (n=3). 

Loss of TDP-43 in zebrafish leads to impaired vessel perfusion131. To analyze this, we 

immunostained TDP-43iΔEC retinas and control retinas for IB4 and ICAM-2, an apical/basal 

vessel marker. This revealed discontinuous and fragmented ICAM-2 stain in many vessel 

segments in TDP-43iΔEC compared to vessels in control retinas, indicating a defect in 

apical/basal EC polarity in the absence of TDP-43 (Figure 45). 

Figure 45. Altered apical/basal orientation in TDP-43
iΔEC 

retinal vasculature. P7.5 control and TDP-43
iΔEC

 retinas 
labeled for IB4 (green) and the vessel lumen marker ICAM-2 (red). Many vessel segments in TDP-43

iΔEC
 retinas 

showed discontinuous or absent ICAM-2 signal (see arrowheads). 
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These results indicate that endothelial TDP-43 controls vessel morphology, proper vessel 

formation and sprouting angiogenesis in mice. Furthermore, the angiogenic phenotype in 

the zebrafish could be confirmed in the EC-specific depletion of TDP-43 in the mouse retina. 
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4 Discussion 

4.1 α-pv regulates vessel integrity and is crucial for cell-cell junction 

integrity 

The depletion of endothelial α-pv in mice leads to reduced vessel stability, impaired cell-cell 

junction morphology in blood vessels, and hemorrhages, resulting in embryonic lethality 

between E15.5 and birth. In vitro, α-pv depletion in ECs leads to impaired monolayer 

formation due to instable cell-cell junctions. Furthermore, ECs lacking α-pv display reduced 

migration associated with perturbed actin cytoskeleton organization, reduced Rac1 activity 

and decreased formation of integrin-based cell-ECM adhesion structures. We conclude that 

α-pv facilitates proper actin cytoskeleton organization that is needed for cell migration and 

cell-cell junction integrity during vessels formation. 

The formation and integrity of blood vessels require integrin-mediated EC-ECM 

interactions37,177. Integrin signaling is needed for cell shape, polarity, cell migration, and 

junction integrity, thereby regulating lumen formation, sprouting, anastomosis, and vessel 

stability39,53. Due to this, the depletion of endothelial β1 integrin in mice causes embryonic 

lethality at E10.557,178. Although integrin signaling is crucial for vascular development, the 

molecular mechanisms of integrin-mediated cellular processes during vascular development 

in vivo are not fully understood. Integrins bind to the actin cytoskeleton through actin 

binding molecules, such as parvins35. ECs express two different parvin isoforms, α-pv and β-

pv. Our results show that lack of endothelial α-pv results in embryonic lethality beginning at 

E15.5 up to birth. Therefore, we conclude that α-pv is essential for integrin signaling during 

embryonic development. 

α-pv and β-pv can form two different IPP complexes in one cell, together with ILK and PINCH, 

which then is crucial in integrin signaling35. Depletion of one component leads to the 
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decomposition of the complex and to degradation of the other components. ILK depletion in 

ECs results in embryonic lethality starting at E10.5, revealing that the IPP complex is 

essential for integrin signaling57,103. This is in agreement with our results that α-pvΔEC mice 

die at E15.5 and α-pvΔEC;β-pv-/- embryos die similar to ILKΔEC embryos. 

The integrity of vessels depends on VEcad-mediated cell-cell junctions109,114. It has been 

shown that β1 integrin regulates cell-cell junction integrity by regulating VEcad 

internalization. This mechanism involves β1 integrin mediated phospho-myosin light chain 

(p-MLC) levels and the Rap1/MRCK and Rho/Rho-kinase pathways59. Furthermore, it has 

been reported that laminin α5 binding to β1 integrin is important for FA formation and 

VEcad dependent cell-cell junction integrity179. Loss of α-pv in ECs leads to impaired VEcad-

mediated cell-cell junctions, discontinuous junctions, and gaps between cells. Interestingly, 

in α-pv depleted ECs we do not observe VEcad internalization defects. These results propose 

that loss of VEcad-based cell-cell junction integrity in α-pv depleted ECs underlies a different 

process than in β1 integrin depleted ECs. 

The structural integrity of cell-cell junctions is regulated by local rearrangement of the actin 

cytoskeleton at cell-cell contacts180,181. Stable AJs are associated with the cortical actin182,183. 

Recently it has been shown that actin driven lamellipodia at the cell-cell junctions regulate 

dynamic rearrangement of VEcad, thereby controlling junction stability126. These structures 

are called JAIL. We show that α-pv localizes at the leading edge of JAIL and is important for 

proper JAIL formation and thereby VEcad dynamics. These results suggest that α-pv 

deficiency affects cell-cell junction integrity and vessel stability via integrin-mediated 

signaling to the actin cytoskeleton. In accordance with this conclusion, the depletion of α-pv 

leads to impaired cortical actin cytoskeleton rearrangement associated with instable AJs in 

vitro. 

The Arp2/3 complex drives lamellipodia protrusion and regulates JAIL formation. Rac1 is 

important for the Arp2/3 complex and therefore monolayer integrity and vessel 

stability124,184. Whether Rac1 is needed for JAIL formation is not known so far. We observe 

that loss of α-pv leads to reduced Rac1 activity, suggesting that α-pv could regulate JAIL 

formation vial Rac1. Moreover, Vinc is an important mediator in integrin-based adhesion, 

and VEcad-mediated cell-cell junctions. Vinc binds to the Arp2/3 complex and thereby 
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couples the actin polymerization machinery to the membrane and enables lamellipodia 

protrusion185,186. The depletion of endothelial α-pv results in loss of Vinc localization to the 

leading edge108, which can lead to a defective recruitment and complex formation of Arp2/3 

and Vinc at the lamellipodia. 

Vessel formation depends on integrin-mediated vessel sprouting and elongation, in which β1 

integrin signaling is crucial59,187. Integrin-mediated FX formation and FA maturation, and 

actin rearrangement are important for cell motility and therefore for normal vessel 

formation and elongation182,188. FX are located at lamellipodia, mediating protrusion of the 

membrane and therefore cell migration. ECs deficient for α-pv display impaired migration 

abilities in endothelial-specific depletion of α-pv in the retina108, and also in vitro due to 

reduced FXs and FA structures. Our results also show heterogeneity in vessel diameters in 

vessels from α-pvΔEC embryos, suggesting that α-pv is involved in collective EC migration, and 

is therefore important for vessel elongation during angiogenesis. We conclude that α-pv 

contributes to vessel elongation and sprouting by modulating the actin cytoskeleton at the 

ECM adhesion and cell-cell junctions. 

PINCH and ILK are also important for the regulation of cell-cell junctions in epithelial 

cells107,189. AJs in epithelial cells are part of a stable barrier and are not as dynamic as AJs in 

ECs122. Since α-pv is important for keeping structural junction integrity in ECs, the members 

of the IPP complex could also have a role in endothelial cell-cell junctions. α-pv may also 

have further functions separately from the IPP complex. This, however, has not been 

investigated. Whether ILK and PINCH are important for junction integrity in ECs is not known 

yet. 

α-pvΔEC and β1ΔEC both result in vascular defects, leading to embryonic lethality. β1ΔEC show 

increased sprouting, proliferation, and vessel hyperdensity result in in embryonic lethality at 

E10.5. α-pvΔEC instead show reduced proliferation, and increased apoptosis, leading to vessel 

hypodensity and embryonic lethality starting at E15.5. Since integrin signaling depends on 

the IPP complex, endothelial depletion of ILK results in complex degeneration and in 

embryonic lethality between E10.5 and E12.5, comparable to β1ΔEC lethality35,103 (Figure 46, 

A). The difference in lethality might be explained by a compensational effect of α-pv by β-pv. 

However, this has not been shown yet. Our results show that the depletion of both, α-pv and 



Fehler! Verwenden Sie die Registerkarte 'Start', um Überschrift 1;Ü 1 dem Text zuzuweisen, 
der hier angezeigt werden soll. 

89 

β-pv in ECs, result in embryonic lethality at E11.5 to E12.5, similar to β1ΔEC (Figure 46, A). 

Therefore, we can conclude that the different lethality of β1ΔEC and ILKΔEC, and α-pvΔEC can be 

explained by the ability of β-pv to compensate for endothelial α-pv during early 

embryogenesis. The ratio between α-pv and β-pv in ECs was not investigated. α-pv and β-pv 

mutually regulate the expression of each other. β-pv is negatively regulated by α-pv101,190. 

Figure 46. Comparison of the different outcomes of parvin depletions. (A) Impact of gene deletions of the 
integrin signaling cascade on embryonic lethality in mice. β1

ΔEC
, ILK

ΔEC
, and α-pv

ΔEC
;β-pv

-/-
, but not α-pv

ΔEC
 

results in embryonic lethality up to E12.5. β-pv can compensate for endothelial α-pv in early embryogenesis. (B) 
Summary of α-pv

ΔEC
;β-pv

+/+
, α-pv

+/+
;β-pv

-/-
, α-pv

ΔEC
;β-pv

-/-
, phenotypes. Different parvin depletions result in 

distinct phenotypes.  
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4.2 Impaired integrin-mediated parvin signaling results in severe 

vascular malformations 

Loss of parvins in ECs leads to severe embryonic vascular malformations in the brain and the 

spinal cord. Vessels display reduced sprouting into the brain and the spinal cord, increased 

filopodia numbers, enlarged vessel diameters, and glomeruloid structures in the CNS 

vasculature. The vessel walls show incomplete PE coverage, and abnormal Glut-1 expression, 

both important for normal BBB formation. ECs lacking α-pv and β-pv appear round and less 

elongated but they reveal no proliferation defects. These results show that the endothelial 

depletion of both parvins cause severe defects in the vascularization of the CNS. 

The phenotypes of α-pvΔEC and α-pvΔEC;β-pv-/- embryos show differences (Figure 46, A, B). 

The depletion of β-pv does not lead to any obvious embryonic phenotype, whereas 

depletion of endothelial α-pv impairs proliferation, regression, cell migration, and sprouting. 

Additional depletion of β-pv in α-pvΔEC embryos does not significantly affect proliferation, 

but PE recruitment, spouting angiogenesis, and filopodia formation (Figure 46, B). This 

suggests that α-pv and β-pv depletion impair integrin signaling more severely than α-pv 

depletion. Therefore, it offers the possibility to study the integrin signaling pathways in more 

detail, because α-pvΔEC does not completely inhibit the integrin signaling pathway as β1ΔEC 

does. The vascular phenotype of α-pvΔEC;β-pv-/- is still less severe than in β1ΔEC, which 

completely lacks CNS vascularization at E11.5. An overview of total or endothelial-specific 

deletions of β1 integrin or other components of the IPP complex, and their effects on 

embryonic lethality is shown in Figure 46. 

Instability and leakiness of vessels can be caused by an impairment of the BBB. This barrier 

function is dependent on ECM and PE attached to the vessel wall151,191,192. The formation and 

integrity of newly formed blood vessels also highly depends on the recruitment and 

coverage of the vessel walls by mural cells109,134,193. Depletion of total α-pv causes impaired 

mural cell recruitment to the vessel wall101. However, vessels from α-pvΔEC embryos do not 

display abnormal mural cell recruitment and coverage of the vessel wall. But we do observe 

hemorrhages and cell-cell junction abnormalities, suggesting vessel rupture in α-pvΔEC 

embryos. In α-pvΔEC;β-pv-/- embryos we see impaired PE spreading and attachment to the 

vessels, which can cause instability and hemorrhages. Abnormal apical/basal polarity of ECs 
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and structural abnormalities of BM components could be causative for defective PE 

spreading and attachment. Glut-1 is a target gene of the hypoxia-inducible factor (HIF), 

which are both expressed reciprocal to angiogenesis and tissue oxygenation194. The 

expression of Glut-1 is also altered in α-pvΔEC;β-pv-/- embryos, which presents defective 

barrier function and abnormal brain development, suggesting a breakdown of the 

NVU149,194,195. This is also in agreement with the abnormal PE attachment that we observe in 

α-pvΔEC;β-pv-/- embryos. The increased number of filopodia in α-pvΔEC;β-pv-/- hindbrains 

points to an insufficient oxygen supply of the brain, which leads to increased HIF expression 

and induces VEGF. This can lead to angiogenic sprouting and abnormal PE attachment196,197. 

VEGF and its receptors, neuropilins (NRPs) and others, are also known to play a major role in 

the regulation of CNS vascularization163. Moreover, the glomeruloid structures observed in 

α-pvΔEC;β-pv-/- embryos could be due to abnormal tip cell formation. Even though we do not 

see any difference in EC proliferation, reduced migration could cause accumulation of ECs 

and result in glomeruloid formations. Thus, we conclude that the depletion of both, 

endothelial α-pv and β-pv, results in defective vasculature and impaired barrier function in 

the CNS. 

The phenotype of the vasculature in α-pvΔEC;β-pv-/- embryos resembles the β-catΔEC 

phenotype in the CNS vasculature. β-catΔEC embryos die at E12.5 and show glomeruloid 

vascular malformations in their CNS vasculature. Furthermore, hemorrhages are observed in 

these embryos associated with an impaired expression of the BBB marker Glut-1198. It has 

been reported that ILK inhibition downregulates β-cat expression in cells199. Therefore, 

Wnt/β-cat signaling is crucial for CNS angiogenesis and barrier formation198,200,201. Moreover, 

is has been reported that the Wnt ligands Wnt7a and Wnt7b are involved in the process of 

invasive sprouting of vessels into the CNS149. Additionally, Wnt signaling from the 

neuroepithelium stabilizes the BBB and regulates the glucose transporter Glut-1 expression 

in ECs via β-cat202,203. However, whether α-pv and β-pv are involved in Wnt/β-cat pathway in 

ECs is not known and needs to be studied. 

Cerebral cavernous malformation (CCM) is a human disease that is caused by mutations in 

the CCM genes and results in dilated capillaries that form caverns connected with thin 

channels allowing only sluggish blood flow204-207. These malformations show multilayers of 

hyperactive ECs and are aligned by a BM without surrounding PE and astrocytes, which 
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causes a leaky BBB and prone these lesions to bleedings208,209. The molecular pathogenesis 

of CCMs is increasingly being investigated in many mouse studies. This phenotype shows 

similarities to the observed malformations of the vasculature in α-pvΔEC;β-pv-/- embryos. So 

far, it is known, that CCM proteins are involved in cell-cell adhesion and cell-ECM adhesion. 

Binding of CCM1 to β-cat regulates AJ stability and barrier formation via actin cytoskeleton 

remodeling112. Moreover, the interaction of CCM1/2 with β1 integrin controls cell adhesion 

and migration204,209-211. It would be very interesting to investigate whether parvins are 

involved in CCM regulation and to test human samples on parvin levels.  

NRP1 and β8 integrin in the neuroepithelium promote TGFβ signaling in ECs and thereby 

control sprouting angiogenesis in the CNS212. Its perturbation leads to similar glumeruloid 

structures in the vasculature of the brain than in α-pvΔEC;β-pv-/- embryos, suggesting an 

involvement of this signaling pathway. But whether these pathways, and to which extent, 

are involved and altered in the absence of endothelial α-pv and β-pv, has to be analyzed in 

further experiments. 

Angiogenesis also contributes to the progression of many diseases, such as tumor growth. 

We therefore investigated the role of α-pv in pathological angiogenesis. Gliomas are highly 

malignant brain tumors that, with regard to their growth, depend on angiogenic sprouting 

for nutrient supply141. Our experiments reveal that the absence of α-pv significantly reduces 

vessels in the tumor and also slightly decreases tumor size. These results show that α-pv is 

also important in pathological angiogenesis. Investigating tumor angiogenesis in α-pvΔEC;β-

pv-/- mice would give more information about the role of parvins in pathological 

angiogenesis. This, however, has to be further investigated. Moreover, the glioma model in 

our mice suits for integrin signaling studies, since integrin signaling is important in tumor 

growth and the depletion of parvins only partially perturbs integrin signaling in angiogenesis.  
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4.3 TDP-43 depletion in ECs causes vascular defects  

Induced depletion of TDP-43 in ECs in mice leads to retinal vasculature mispatterning. The 

vasculature shows reduced radial vascular expansion, increased vessel sprouting and ectopic 

expression of tip cell markers, leading to increased vessel density at the angiogenic front. 

These defects were not caused by increased EC proliferation. Furthermore, loss of 

endothelial TDP-43 resulted in impaired cell-cell junction morphology and defective 

endothelial apical/basal polarity. These results show that endothelial TDP-43 is crucial for 

the formation of a mature vascular network. 

The vascularization of the CNS is crucial for normal neuronal development and function. In 

fact, the neuronal and the vascular system show many similarities in development and 

function, such as anatomic structure and importance for information transfer149. This close 

interaction at different levels is termed the neurovascular link. Defects in the vessel 

structure or abnormal vessel growth in the CNS can cause neurological disorders208. 

Therefore, it seems logic to investigate vascular function in neuronal diseases. Dysfunctions 

of non-neuronal cells, such as members of the NVU, can also contribute to 

neurodegeneration. Whether they are cause or effect is, however, not clear. It has further 

been shown that VEGF has a therapeutic potential in motor neuron degeneration213. ALS 

patients show EC damage and NVU breakdown. Moreover, in these patients TDP-43 

inclusions have been observed. Studies in zebrafish show that the complete depletion of 

TDP-43 results in vascular mispatterning and perfusion defects, additional to neuron 

degeneration. So far, the role of TDP-43 in vascular formation is not known and remains to 

be studied. Until now, there are no studies on the function of TDP-43 in ECs. 

We show that endothelial-specific TDP-43 depletion causes vascular defects, revealing an 

essential and cell autonomous role of endothelial TDP-43 in the angiogenic process. The 

hyperdense retinal front is not due to increased EC proliferation, but may be caused by 

migration defects. Increased and ectopic tip cell expression hints to a defective tip/stalk cell 

specification, which could also be causing the sprouting abnormalities in zebrafish lacking 

TDP-43. The VEcad aggregates, observed in the retinal vasculature of TDP-43iΔEC retinas, 

suggest junctional abnormalities between ECs. This could cause a defect in the integrity of 

the NVU. 
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Vascular defects observed in ALS patients might be directly or indirectly associated with 

impaired endothelial TDP-43. ALS occurs in adult patients, in which no developmental 

angiogenesis takes place, however, animal studies done so far only give conclusions from 

developmental stages. Therefore, the function of endothelial TDP-43 in adult should be 

investigated. The importance of TDP-43 in BBB integrity and whether vascular defects cause 

neurodegeneration has to be shown in further studies. It is also not clear if vascular 

malformations occur prior to or past neurodegeneration. TDP-43 is found in inclusion in ALS 

patients, and it is still under discussion, whether TDP-43 contributes to the disease in a loss-

of-function, or gain-of-function manner. Gene mutation studies in mice could be a tool to 

gain more insight into possible disease mechanisms. 
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YS  yolk sac 



 

117 

8 Publications 

Endothelial alpha-parvin controls integrity of developing vasculature and is required for 

maintenance of cell-cell junctions. Fraccaroli A*, Pitter B*, Taha AA, Seebach J, Huveneers S, 

Kirsch J, Casaroli-Marano RP, Zahler S, Pohl U, Gerhardt H, Schnittler HJ, Montanez E. Circ 

Res. 2015 Jun 19;117(1):29-40. doi: 10.1161/CIRCRESAHA.117.305818. Epub 2015 Apr 29. 

PMID: 25925587, (* equal contribution) 

 

VEGF-A/Notch-Induced Podosomes Proteolyse Basement Membrane Collagen-IV during 

Retinal Sprouting Angiogenesis. Spuul P, Daubon T, Pitter B, Alonso F, Fremaux I, Kramer I, 

Montanez E, Génot E. Cell Rep. 2016 Oct 4;17(2):484-500. doi: 10.1016/j.celrep. 

2016.09.016. PMID: 27705796 

 

F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte 

diapedesis through local RhoA signalling. Heemskerk N, Schimmel L, Oort C, van Rijssel J, Yin 

T, Ma B, van Unen J, Pitter B, Huveneers S, Goedhart J, Wu Y, Montanez E, Woodfin A, van 

Buul JD. Nat Commun. 2016 Jan 27;7:10493. doi: 10.1038/ncomms10493. PMID: 26814335 

 

Prevalence of Lymphatic Filariasis and Treatment Effectiveness of Albendazole/ Ivermectin 

in Individuals with HIV Co-infection in Southwest-Tanzania. Kroidl I, Saathof E, Maganga L, 

Clowes P, Maboko L, Hoerauf A, Makunde WH, Haule A, Mviombo P, Pitter B, Mgeni N, 

Mabuye J, Kowuor D, Mwingira U, Malecela MN, Löscher T, Hoelscher M. PLoS Negl Trop Dis. 

2016 Apr 12;10(4):e0004618. doi: 10.1371/journal.pntd.0004618. eCollection 2016 Apr. 

PMID: 27070786 



 

 

9 Danksagung 

Viele Menschen haben zu dieser Doktorarbeit maßgeblich beigetragen. Allen voran steht 

hier mein Betreuer und direkter Chef Dr. Eloi Montanez, der mich die ganze Zeit über 

hervorragend betreut und gefördert hat, und immer für meine Fragen und für fachliche 

Diskussionen Zeit hatte. Ein herzlicher Dank geht auch an Herrn Prof. Dr. Pohl, meinen 

Doktorvater. Er hat mir eine angenehme Arbeitsumgebung ermöglicht und mir sehr freie 

Hand bei der Arbeit gelassen, und mir dennoch bei Bedarf stets fachliche Ratschläge und 

Unterstützung geboten. 

Des Weiteren möchte ich hier die gute Zusammenarbeit im Labor mit allen Doktoranden, 

PIs, TAs und Tierpflegern erwähnen. Sie alle haben viel zum erfolgreichen Arbeiten 

beigetragen. Weiter bedanke ich mich bei meiner Arbeitsgruppe, die mir stets Zeit und 

Spontanität entgegengebracht hat und somit eine große Unterstützung für mich war. Hier 

möchte ich Ann-Cathrin Werner, Brigitte Bergner, Miriam Singer, Alessia Fraccaroli und 

Matthias Semisch nennen. 

Nicht nur die großartige Mithilfe in der Arbeit, sondern auch Unterstützung, Beistand und 

viel Verständnis habe ich von meinen Freunden, Familie und Eltern erfahren. Vielen Dank 

auch an meinen Mann Peter. 

Ihnen allen ein herzliches Dankeschön. 

 


