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Zusammenfassung

Die Experimente dieser Doktorarbeit befassen sich mit Aspekten der Strahlenlenkung
und der Charakterisierung von Laser-Plasma beschleunigten Elektronen. Ein fokusierter
Hochleistungslaser kann Plasmawellen treiben, die elektrische Felder von ca. 100
GV/m aufweisen. Solche elektrischen Felder sind drei bis vier Gröÿenordnungen
stärker als solche, die von Hochfrequenzresonatoren (�rf-cavities�) wie zum Beispiel
am Large Hadron Collider am CERN eingesetzt werden. Ein Plasmabeschleuniger
kann daher in entsprechend kürzeren Strecken Teilchen zu hohen Energien beschle-
unigen. Üblicherweise werden Plasmazellen mit einer Länge von ∼1 cm verwendet,
mit denen Elektronen mit Energien von mehreren hundert MeV bis einige GeV und
∼10 pC erzeugt werden können. Weitere Vorteile dieser Technologie folgen aus der
kleinen Gröÿe der Plasmawelle: Diese führt zu einer kurzen Pulsdauer (<10 fs) und
zu einer geringen transversalen Emittanz der Elektronen. Das Ziel dieser Arbeit war
die Vermessung der Emittanz von Laser-Plasma beschleunigten Elektronen.
Durch Messungen mit Quadrupollinsen konnte eine normalisierte Emittanz von

0.21+0.01
−0.02 π·mm·mrad für Elektronen mit einer Energie von 245 MeV erechnet wer-

den. Zusätzlich zur bekannten �quadrupole scan�-Methode wurde in dieser Arbeit
eine Variante entwickelt, welche die Berechnung der Emittanz auch für einzelne Elek-
tronenstrahle errechnen lässt. Die Ergebnisse beider Methoden stimmen überein.
Die normalisierte Emittanz bleibt relativ konstant für Energien zwischen 245 und
300 MeV. Dies entspricht der Erwartung von linearen Fokussierfeldern innerhalb
der Plasmawelle, eine vorteilhafte Eigenschaft solcher Beschleuniger. In den Experi-
menten wurde eine au�ällig geringe Divergenz der Elektronenstrahlen von.0.5 mrad
gemessen. Mithilfe eines einfachen Modells des Übergangs zwischen Plasma und
Vakuum können die Divergenz und die Quellgrösse der Elektronen nachgebildet
werden. Im Experiment konnte die Beschleunigungslänge und die Elektronendichte
variiert werden. Somit konnte die Wechselwirkung zwischen Elektronen und dem
Laserpuls innerhalb der Plasmawelle untersucht werden. Die hoch-relativistischen
Elektronen holen den Laserpuls ein, werden gestreut, und zeigen eine messbare Ver-
grösserung der Emittanz auf.
In dieser Arbeit wurden magnetische Quadrupollinsen mit einem Feldgradienten

von ∼500 T/m verwendet um den Elektronenstrahl zu führen. Indem die Elektro-
nenquelle mit den Quadrupollinsen entsprechend in einem Spektrometer abgebildet
wurde, konnte die Au�ösung des Spektrometers signi�kant erhöht werden. Diese
Methode ermöglichte die Messung der Energieverteilung eines Elektronenstrahls von
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1% rms bei 190 MeV. Die Strahlenführung kann durch entsprechende Positionierung
der Quadrupollinsen für verschiedene Energien angepasst werden. Indem die Linsen
den Elektronenstrahl kollimierten, konnte das integrierte Strahlpro�l einen Meter
nach der Quelle um einen Faktor fünf reduziert werden. Durch einen transversalen
Versatz der Quadrupollinsen kann der Elektronenstrahl um einige mrad abgelenkt
werden. Die oben genannten Methoden können ohne wesentliche zeitliche Ver-
längerung, ohne Vergröÿerung der transversalen Emittanz und ohne wesentlichen
Verlust der Ladung des Elektronenstrahls implementiert werden. Diese kompakte
und zuverlässige Methode um plasmabeschleunigte Elektronen zu führen, ist unab-
hangig vom Beschleuniger selbst und erweist sich als nützliches Werkzeug.



Abstract

The experiments conducted for this thesis study aspects of the transport and charac-
terisation of laser-wake�eld-accelerated (LWFA) electrons. By propagating a high-
intensity laser pulse through a plasma, plasma waves with electric �elds of the order
of 100 GV/m are excited. These �elds are three to four orders of magnitude stronger
than those generated by radio-frequency cavities commonly used at conventional
accelerator facilities such as the Large Hadron Collider at CERN. This technology
therefore allows a corresponding miniaturisation of the acceleration length; typical
acceleration lengths are ∼1 cm and the achieved energies are several hundred MeV
to several GeV. Further strengths of this scheme originate from the small acceler-
ating structure, the plasma wake�eld, leading to short bunch durations (<10 fs),
and small beam emittances. It was the main objective this thesis to quantify the
transverse emittance of LWFA electron beams.
Using quadrupole scan measurements on LWFA electrons, a normalised transverse

emittance of 0.21+0.01
−0.02 π·mm·mrad at 245 MeV was measured. A modi�ed version

of the �traditional� multiple-shot quadrupole scan is shown which enables a single-
shot determination of the emittance; the obtained emittance values for both methods
agree well. In the energy range of 245 to 300 MeV the normalised emittance remains
relatively constant con�rming the expectation that plasma wake�elds are emittance
conserving. The low measured divergences of .0.5 mrad are discussed in the context
of a simple model of the beam dynamics in the plasma density downramp at the
accelerator exit; the source size and divergence values inferred from the model match
the experimental measurement. By altering the acceleration length or the plasma
density, the point at which the electron beam interacts with the laser in the plasma
could be inferred. The ultra-relativistic electrons can �catch up� to the driver laser
and are scattered by it, causing an observable increase in the beam emittance.
For the presented experiments the LWFA electron beams were transported using

miniature magnetic quadrupole lenses with �eld gradients of ∼500 T/m. By imaging
the electron beams the spectral resolution of a dipole magnet spectrometers can be
signi�cantly increased, resulting in measured energy spreads down to 1% rms at
190 MeV. The tunability of the lens system is demonstrated by focusing a range of
electron energies. By collimating the beam the integrated beam pro�le was reduced
by a factor of �ve measured at a distance of one meter from the source. Additionally,
by transversely o�setting a quadrupole lens, the electron beam could be steered
in any direction by several mrad. These methods can be implemented while still
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maintaining the ultra-short bunch duration and low emittance of the beam without
any relevant loss of charge. This reliable and compact control of laser-wake�eld
accelerated electron beams is independent of the accelerator itself, making it a useful
tool for transporting LWFA electron beams.
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1. Introduction

The idea to use laser-driven plasma waves to accelerate particles was �rst published
by Tajima and Dawson [1979]. The main advantage of a plasma accelerator is the
large accelerating �eld that is achievable; on the order of ∼100 GV/m. In contrast
to this, the radio frequency cavities currently used at CERN for the Large Hadron
Collider generate accelerating �elds of 5 MV/m. While cavities with stronger �elds
are common, rf-cavities are ultimately limited by electrical breakdown between the
cavity walls.
The experimental breakthrough for laser-plasma acceleration occurred in 2004

with three groups publishing results of ∼ 100 MeV, multi-pC electron bunches,
estimated to have a duration of only a few 10s of fs [Geddes et al. 2004; Faure et al.
2004; Mangles et al. 2004]. Since then, several diagnostic tools have been employed
to characterise the plasma wake�eld as well as the accelerated beams in an e�ort
to improve the understanding and stability of this novel source of ultra-relativistic
electrons. Initial e�orts to stabilise the generated electron beam were made by
adjustment of the laser-pulse and plasma parameters (for example Mangles et al.
[2007]), by using alternate injection schemes (for example Faure et al. [2006]), or by
re�ning the gas target [Osterho� et al. 2008; Schmid et al. 2010]. In addition to the
studies above, laser-plasma accelerated beams have been studied in terms of bunch
length [Lundh et al. 2011; Buck et al. 2011], con�rming a sub-10 fs duration.

Motivation

The motivation driving this thesis was the characterisation of the transverse emit-
tance of laser-wake�eld-accelerated electron beams. The transverse emittance is
related to the volume that the beam occupies in position and momentum phase
space. As the phase-space volume of the beam is conserved in certain situations,
the emittance indicates how well a beam can be transported and focused. It is
therefore a key quantity when designing a beamline and a downstream experiment.

Methodology

Early estimates of the emittance of plasma-accelerated electrons were based on the
observed divergence and the expected source size (a fraction of the extent of the
transverse wake�eld), giving a normalised emittance of ∼1 π·mm·mrad. Indeed,
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such values where approximately con�rmed by the �rst emittance measurements
employing the �pepper-pot� method [Fritzler et al. 2004]. This technique relies on
scattering electrons passing through the pepper-pot mask and therefore becomes
increasingly challenging the higher the beam energy. Despite this limitation, mea-
surements of a 3 GeV beam have been carried out [Thomas et al. 2013]. As illustrated
by Cianchi et al. [2013], the pepper-pot method is not suitable to measure the emit-
tance of beams with a large divergence and initial source size smaller than 10µm
due to poor sampling of the phase space.

An alternative method is to analyse the betatron radiation emitted by the electron
beam while it is in the plasma. The beam size is measured to be .1 µm, which in
combination with a downstream divergence measurement gives an estimated emit-
tance of 0.5 π·mm·mrad [Kneip et al. 2012]. However, inferring the emittance from
the electron beam size in the plasma and its downstream divergence in the vacuum
can be unreliable as this neglects the plasma-to-vacuum density transition at the
accelerator exit; here the decreasing strength of the plasma focusing forces result in
an increase in beam size and decrease in divergence [Sears et al. 2010a; Thaury et al.
2015]. Kneip et al. [2012] argue that the e�ect of the plasma-to-vacuum transition
can be neglected as long as it is short compared to the betatron wavelength of the
beam.

Neither of the above-discussed techniques are spectrally resolved, they therefore
rely on a low energy spread to give a meaningful normalised emittance. For LWFA
beams which �uctuate in energy and energy spread, a simultaneous measurement of
the spectrum is required.

This thesis reports on measurements of the emittance of LWFA electron beams
that are both energy resolved and that include the beam transport of the den-
sity downramp at the accelerator exit. The emittance calculation is based on
analysing the electron beam size around a focus using a quadrupole lens scan
method. Quadrupole lenses are useful tools to control and reliably apply LWFA
electron beams while still preserving their intrinsic advantages of ultra-short pulse
duration and low emittance. They are well-suited for the task of steering beams by
several mrad and in particular, signi�cantly reduce the spatial �uctuations caused
by the inherent pointing instabilities of these accelerators. Like the pepper-pot, the
quadrupole-scan method is limited by the beam energy: the beam must be focusable
by the quadrupole lenses. For a beam with very high charge, space charge during
propagation to focus will lead to an emittance increase. Furthermore, the beam is
focused which may be problematic for simultaneous application of the beam. De-
spite these limitations, the presented technique is applicable to most state-of-the-art
LWFA experiments.

Using magnetic lenses for imaging an electron beam is analogous to that of an
optical beam where the �nal position of a ray at the image plane is independent of



3

its incoming angle. This decoupling is very useful if the incoming beam is �uctuating
in angle due to pointing instabilities as this can be mitigated by the imaging. A
position-jitter at the source plane results in a correspondingly magni�ed jitter at
the image plane. The image plane can be set at a �nite or in�nite distance behind
the lens resulting in the focusing or collimation of the beam.

Applications

Knowledge of the electron beam emittance is important for the further application
of LWFA beams. Two relevant examples are the generation of radiation with a free-
electron laser [Maier et al. 2012] and the staging of successive plasma accelerators to
achieve higher beam energies (see for example Schroeder et al. [2010]). In both cases,
the value of the emittance fundamentally a�ects the design of the experiments.
The potentially detrimental e�ect of energy and energy spread �uctuations of the

LWFA electrons on applications such as the generation of undulator radiation can
be mitigated with PMQ lenses [Fuchs et al. 2009]. The chromaticity of a PMQ
focusing system can be employed as an energy bandpass �lter to select a certain
electron energy to be transported through the system. Photon sources that are
based on ultra-relativistic electrons such as undulator radiation and inverse Compton
scattering have the inherent property of emitting mainly along the electron beam
propagation direction. This places a central role on the electron beam transport
system as it can tailor the subsequently generated photon beam to be focused on
a target without the complication of lossy x-ray optics. Positioning the lenses such
that electrons with energy E0 are focused at the detector will decrease the �ux
intensity emitted by electrons with energies E 6= E0 thereby enabling the tuning of
the wavelength of this type of radiation with PMQ lenses [Fuchs et al. 2009].

Structure of this thesis

This thesis is structured into the following chapters:

Chapter 2: brie�y describes the theoretical models for laser-wake�eld acceleration
such as laser propagation in a plasma, plasma wave-generation, electron-
injection and acceleration. The chapter is concluded by discussing some ex-
pected scalings for the electron beam parameters.

Chapter 3: discusses the transport of the electron beam. From this the calculation
for the electron beam emittance used in the experimental part of this work is
obtained. The conditions for imaging a beam with a quadrupole doublet are
discussed, along with the potential detrimental e�ects to the electron beam
quality. The chapter �nishes by discussing di�erent techniques for measuring
the electron beam emittance.
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Chapter 4: discusses the experimental setup and its limitations. The major compo-
nents of the experiment are discussed: the laser, the gas target, the magnetic
quadrupole lenses, and the electron beam diagnostics. The chapter analyses
the possible errors and their e�ects on the calculated emittance. For the case
of the quadrupole lenses, measured �eld maps of the lenses are used in track-
ing simulations to check the e�ect of aberrations and positioning errors on the
electron beam.

Chapter 5: shows experimental results concerning laser-wake�eld accelerated elec-
trons. Typical electron beams had a peak containing approximately 15 pC of
charge and energies of about 300 MeV. These beams were the basis for the
subsequent work with quadrupole lenses concerning beam transport and the
characterisation of the transverse phase space.

Chapter 6: shows experimental results regarding the transport and characterisation
of laser-wake�eld accelerated electron beams. Section 6.1 shows how the spa-
tial stability of the beam can be improved and the results of a high-resolution
imaging spectrometer using a combination of a lens doublet and a dipole mag-
net. Section 6.2 shows the measurement of the electron beam emittance for
three energies and the e�ect of the accelerator length and the plasma density
on the emittance.

Chapter 7: concludes the thesis by summarising the results and discussing the re-
maining open questions.



2. Laser-wake�eld acceleration of

electrons

This chapter discusses the theory behind laser-wake�eld acceleration of electrons
in plasma. The goal is to give an understanding of the mechanisms involved in the
creation of an accelerating structure (the plasma wake�eld), the injection of electrons
into the structure, the dynamics of the electrons during acceleration, and the exit of
the electrons from the plasma (transition to vacuum). Laser-wake�eld acceleration
is a complex interaction between the driving laser and the plasma. The easiest
way to approach the interaction is to start with a one-dimensional model assuming
a constant laser intensity and plasma density. This simple model is explored for
most of the chapter and already gives valuable insight into the acceleration process.
An extension to two dimensions helps to understand the injection of electrons into
the plasma wake�eld and is discussed in section 2.7. At the end of the chapter, a
short summary of e�ects particularly relevant to the experimental measurements of
this thesis are given. For a thorough review of the theory, the reader is referred to
[Esarey et al. 2009], which is the basis for much of this chapter.

2.1. Fundamentals

Before describing the laser-plasma interaction, some fundamentals about laser �elds,
plasmas, and the motion of a single electron in a laser �eld are discussed.

2.1.1. Description of the laser �eld

Normalised vector potential

Laser ionisation

Light is an electro-magnetic (EM) wave which is characterised by its electric and
magnetic �elds, ~E and ~B. The relationship between these �elds and their variation
in time and space is described by Maxwell's equations:
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∇ · ~E =
ρ

ε0

,

∇ · ~B = 0,

∇× ~B = µ0

(
ε0
∂ ~E

∂t
+~j

)
,

∇× ~E = −∂
~B

∂t
.

The constants µ0, ε0, and c are the permeability, the permittivity, and the speed
of light in vacuum and are related to each other through c = (µ0ε0)−1/2. The charge
density is represented by ρ, and the current density by ~j. In vacuum with no charges
(ρ = 0) nor currents ~j = 0 and after some algebra with Maxwell's equations the
wave equation can be obtained:

1

c2

∂2 ~E

∂t2
−∇2 ~E = 0,

an analogous equation can be obtained for the magnetic �eld. A solution to the
electric wave equation with space vector ~r and time t is:

~E = ~E0(~r, t) sin(ωt− ~k~r + φ). (2.1)

The envelope vector ~E0 determines the magnitude and polarisation of the �eld
oscillation. The remaining parameters ω,~k, φ represent the angular frequency, the
wave vector (~k = 2π/λ), and an arbitrary phase o�set respectively. An EM-wave
can also be described in terms of the vector potential as:

~A = ~A0 cos(ωt− ~k~r + φ)

The magnitudes of the vector �elds are related by | ~E0| = c| ~B0| = ω| ~A0|. A useful
quantity in the context of interactions between high-intensity lasers and matter is
the normalised vector potential:

a0 =
qe| ~A0|
mec

, (2.2)

where qe and me are the electron charge and rest mass respectively. EM-waves
transport energy as they propagate, which is described by the energy-�ux (�Poynt-
ing�) vector:
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~S = ε0c
2( ~E × ~B)

The intensity of the EM-wave is given by averaging over one cycle of the �elds:

I = 〈~S〉 = ε0c| ~E|2 (2.3)

Using equation 2.3 the normalised vector potential can be written in convenient
units:

a0 = 0.854

√
I[1018W/cm2] · λ[µm] (2.4)

Current femtosecond high-power laser systems are often based on Titanium-Sapphire
crystals which have a central wavelength at ∼ 800 nm. A laser intensity of a0 = 1
corresponds to an intensity of 2 × 1018W/cm2 and an electric �eld amplitude of
∼ 2× 1012 V/m. The ATLAS laser facility used for the work in this thesis reaches
intensities in focus of ∼ 1.2× 1019W/cm2, which corresponds to a0 = 2.4.

2.1.2. Plasma

A plasma is an ionised gas consisting of positively charged ions and unbound elec-
trons. The electrons are free in the sense that they are not each bound to a particular
ion as in the gaseous state, and hence more mobile. The plasma generated by an
intense laser pulse in a gas is quasi-neutral as it contains equal amounts of positive
and negative charge. A displacement of some electrons will therefore result in re-
gions of net negative and net positive charge and therefore a resulting electric �eld.
The displaced electrons will be accelerated back towards the positive charge region
and overshoot due to the kinetic energy they have gained. The resulting motion will
be a harmonic oscillation at the plasma frequency:

ωp =

√
nee2

〈γ〉meε0

, (2.5)

where ne represents the electron density, e the charge of an electron, 〈γ〉 the
Lorentz factor averaged locally over many electrons, me the electron mass, and ε0

the electric permittivity of free space. With λp = 2πc/ωp, a plasma wavelength can
be de�ned and written in convenient units:

λp[µm] = 3.3× 1010/
√
ne[cm−3]. (2.6)

A typical electron density as used in the experiments of this thesis of 6 × 1018cm−3

results in a plasma wavelength of ∼13µm.
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In the experiments conducted for this thesis, hydrogen gas was used as a target.
Above a threshold electric �eld strength the atomic potential barrier for the electron
is completely suppressed and the electron is ionised (�barrier suppression ionisation�).
This threshold is reached for a laser intensity of ∼ 1× 1014W/cm2,i which is orders
of magnitude below the intensity reached by the ATLAS laser.

2.1.3. Single-electron motion in laser �eld

Quiver motion

Ponderomotive force

In the previous section it was concluded that a hydrogen gas will be fully ionised in
the focal region of a high-power laser such as the one used in the experimental part
of this thesis. The interaction of the laser �eld is then mainly with the individual
electrons and ions of the plasma which will be discussed here.

Quiver motion

A particle with rest mass m and charge q in a laser electromagnetic �eld ~E/ ~B is
subjected to the Lorentz force:

d~p

dt
=

d

dt
(γm~̇r) = q

[
~E(~r, t) + ~̇r × ~B(~r, t)

]
.

If during the interaction the particle velocity is much smaller than the speed of
light (ṙ << c), and as for an EM-wave | ~B| = | ~E|/c, the q~̇r × ~B term of the Lorentz
force can be neglected. Furthermore, an in�nite plane wave solution to the wave
equation 2.1 of the form ~E(~r, t) = ~Ex sin(ωt − kr) is assumed. As the relativistic
gamma factor of the particle γ ≈ 1, a ��rst-order� equation of motion is obtained:

m~̈rquiv. = q ~E(~rquiv., t).

The in�uence of a radial dependence of the electric �eld will be introduced below.
Inserting the in�nite plane wave ii and integrating over time, the particle �quiver�

iThe required laser intensity for BSI can be estimated by overlaying a constant electric �eld
(assumption: laser �eld not changing on the time scale of the electron dynamics)) on top of the
Coloumb potential of the hydrogen atom (see Osterho� [2008])

iiThe in�nite plane wave has neither radial nor longitudinal dependency. Neglecting the longitu-
dinal dependency is actually a reasonable approximation for realistic laser beams and is often
called the �slowly varying envelope approximation�. In this case it is justi�ed if a laser oscilla-
tion occurs much faster than the time in which the laser amplitude changes. For a Ti:Sa laser
pulse with a wavelength of 800 nm an oscillation occurs in under 3 fs, much shorter than the
typical pulse lengths of ∼20 fs.
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velocity and trajectory in the EM wave at time t is obtained:

~̇rquiv. =
q

m

∫ t

0

dτ
[
~Ex sin(ωτ − kr)

]
=
−q ~Ex
mω

cos(ωt− kr) (2.7)

~rquiv. =
−q ~Ex
mω2

sin(ωt− kr) (2.8)

Rewriting the quiver velocity in terms of the normalised vector potential (equation
2.2) gives for the maximum velocity ṙquiv.,max = (me/m)(q/qe)a0c. For an electron
the factors in brackets are both 1. If the normalised vector potential a0 approaches
1, the quiver velocity approaches c and the electron is accelerated to relativistic
velocities within a single cycle of the laser �eld. The normalised laser vector potential
therefore has a convenient threshold between the non-relativistic (a0 < 1) and the
relativistic (a0 > 1) regimes. In the relativistic case the initial assumption that
ṙ << c is no longer ful�lled and the full Lorentz force including the ~B-�eld must be
used. For a proton, me/m ∼ 1/1800, and therefore its quiver velocity is reduced by
the same fraction and is essentially stationary for the time scales of the laser-plasma
interactions discussed in this thesis.iii

The maximum of the quiver trajectory is rquiv.,max = (me/m)(q/qe)a0c/ω. For a
Ti:Sa laser with a0 = 1 and the assumptions made in this section, the maximum
excursion of an electron is ∼ 130 nm.

Ponderomotive force

In the above reasoning for the quiver motion only the transverse trajectory due to the
electric �eld was considered (�rst-order motion). If the EM-wave has a transverse
intensity dependence (such as a laser beam as opposed to an in�nite plane wave),
the oscillatory quiver motion will no longer be centred around a constant point.
The particle will quiver and �drift� away from regions of high intensity. This can be
intuitively understood by considering a particle oscillating in the electric �eld of a
Gaussian laser beam, starting at the high-intensity centre moving outwards. After
it has completed the �rst half oscillation out to its turning point and is just about to
swing back in the direction it came from, it experiences a weaker electric �eld than it
did on axis where the beam intensity is maximum. The force returning the particle to
the high-intensity centre is therefore also weaker. The resulting net force to describe
the �drift� away from high-intensity regions is called the ponderomotive force and

iiiTo accelerate protons to relativistic speeds within one optical cycle requires laser intensities on
the order of IL = 1024 to 1025 W/cm

2
, or a0 ∼ 1000. This intensity is beyond the reach of

current high-power laser systems.
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a derivation in the non-relativistic case considers the motion of the particle other

than the quiver trajectory ~rquiv., i.e. including changes in the electric �eld with
radial dependence and the ~̇r × ~B term (second-order motion).iv To introduce the
radial dependence the electric �eld is expanded around the quiver trajectory centre
position ~r0:

~E(~r) = ~E(~r0) + (~rquiv. · ~∇) ~E(r0) + ...,

where the general position vector ~r has been separated into ~rquiv. which follows
the particle, and ~r0 which is the centre of the quiver oscillation. Using Faraday's
law (~∇× ~E = −d ~B

dt
), an expression for ~B in terms of ~E can be obtained:

~B(~r0) = − 1

ω
~∇× ~E0(~r0) cos(ωt).

Using these expressions, the second-order motion is given by subtracting the quiver
motion from the full Lorentz force:

d~ppond.
dt

=
d~p

dt
− d~pquiv.

dt
= q

 ~E(~r)− ~E(~r0)︸ ︷︷ ︸
(~rquiv.·~∇) ~E(~r0)

+~̇rquiv. × ~B(~r0)

 .
The electric �eld terms ( ~E(~r)− ~E(~r0)) are replaced by the Taylor expansion term.

Substituting the quiver motion into this expression and averaging over a laser period
gives: 〈

d~ppond.
dt

〉
= − q2

mω2

1

2

[
( ~E(~r0) · ~∇) ~E(~r0) + ~E(~r0)× (~∇× ~E(~r0))

]
.

Applying the vector dot product rule (( ~A · ~∇) ~A + ~A × (~∇ × ~A) = 1/2~∇|A|2),
results in the non-relativistic ponderomotive force:

~Fpond. = −1

4

q2

mω2
~∇| ~E(~r0)|2. (2.9)

The motion of an electron in a laser �eld is thus a combination of the oscillation
with the electric �eld and a drift away from regions of high intensity (due to the
negative sign in front of the gradient operator).

ivHere only the non-relativistic case is considered. This means that ~̇r term is solely determined
by the quiver velocity in the transverse plane. For ṙ → c a signi�cant or even dominant part of
~̇r will point in the direction of propagation due to the magnetic �eld term of the Lorentz force.
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2.2. Laser propagation and evolution in

under-dense plasmas

Dispersion relation

Laser self-focusing

The terms over- and under-dense plasma describe whether an inbound elec-
tromagnetic wave will propagate through the plasma (under-dense) or be attenu-
ated and re�ected at the boundary (over-dense). This depends on the ratio of the
EM-wave frequency and the plasma frequency ωL/ωp. If ωL/ωp < 1, the plasma
electrons are able to follow the oscillations of the EM-wave and shield its �eld in-
side the plasma. A ratio of one is referred to as the critical density and is given
by nc = ω2〈γ〉meε0/e

2. For the non-relativistic case and a 800 nm EM-wave, the
threshold density is at 1.7× 1021cm−3. This density is well above the typical values
of ∼ 1018cm−3 used in the experiments in this work. Therefore an incoming laser
beam will propagate into the plasma instead of being mostly re�ected by it.

The dispersion relation for a plane EM wave in plasma is:

ω2
L = ω2

p + c2k2
L (2.10)

The resulting index of refraction is

η =

√
1−

(ωp
ω

)2

. (2.11)

It is related to the phase velocity vph and the group velocity vg of the EM-wave
as follows:

vph =
ω

k
=
c

η
(2.12)

vg =
dω

dk
= η · c (2.13)

Although the refractive index is generally smaller than one, the group velocity of
a laser pulse is always smaller than the vacuum speed of light. The group velocity
can also be expressed in terms of a Lorentz gamma factor of γg = (1− v2

g/c
2)−1/2 =

ωL/ωp ∝ n−1/2. Therefore as expected the laser pulse is slowed down more by higher
plasma densities. The e�ect of the laser intensity has been ignored here. The non-
linear correction leads to an increase of the group velocity with higher laser intensity
[Schroeder et al. 2011].
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2.2.1. Laser self-focusing

A laser pulse with high enough power propagating through an under-dense plasma
can produce a focusing e�ect that can counteract di�raction and maintain or even
decrease its beam size. The concept behind such �self-focusing� is that the laser-
plasma interaction leads to a refractive index which is high on-axis and drops o�
from the centre, i.e. dη/dr < 0. This leads to slower laser phase fronts on-axis than
o�-axis and hence the beam focuses towards the axis in what can be referred to as
�refractive focusing�.
The refractive index of equation 2.11 can be re-written using the de�nition of the

plasma frequency shown in equation 2.5 as

η ≈ 1− 1

2

(ωp,0
ω

)2 ne
ne,0γ

. (2.14)

Here it was assumed that (ωp,0/ω)2 << 1 (which is correct to within ∼ 10−6

even for the highest plasma densities used in this thesis) and the subscripts with
zero indicate the �unperturbed� plasma without the in�uence of the laser. The free
parameters are the plasma density ne and the local relativistic factor of the plasma
electrons γ (i.e. their relativistic mass). To obtain refractive focusing of the laser
beam requires a transverse plasma density pro�le of dne/dr > 0 (lower density on-
axis) or a larger electron mass on-axis dγ/dr < 0. Both the plasma density and the
relativistic factor of the electrons are in�uenced by the laser-plasma interaction:

Relativistic focusing: The �rst order motion of an electron in a laser �eld is the
quiver motion as discussed in section 2.1.3. For high laser intensities this
motion leads to relativistic electron velocities and a corresponding increase in
mass. For a Gaussian beam pro�le the intensity and hence the quiver velocity
is largest on-axis leading also to the largest electron mass on axis.

Ponderomotive focusing: The ponderomotive force of the laser pushes electrons
away from regions of high intensity. The plasma density is therefore lower
on-axis and hence supports self-focusing.

The threshold power for self-focusing including both relativistic and ponderomo-
tive focusing is (see Sun et al. [1987]) PL ∼ 16.2(ω/ωp)

2[GW]. For a density of
6 × 1018cm−3 and the ATLAS laser this requires a laser power of & 4TW. An AT-
LAS pulse has a power of approximately 70 TW. Hence, self-focusing is expected in
the experiments conducted with the ATLAS laser. From the dependence on 1/ω2

p

it is clear that the necessary laser power to sustain self-focusing increases for lower
densities.
Self-focusing is a self-accelerating process: a progressively smaller beam size leads

to a higher intensity and hence even higher electron mass and lower density on-axis.
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The process depends on modifying the plasma electrons and can continue until all
electrons have been expelled from the laser axis. Sun et al. [1987] show that the
power required to completely expel all electrons (termed �cavitation�) from the laser
axis is P ∼ 1.1PL, only slightly above the threshold for self-focusing to begin.
The condition for successful self-focusing is not purely a question of the laser

power. As can be seen in �gure 2.2, the ponderomotive force of the driver laser
pushes a small �bump� of electrons ahead of it. This slightly higher electron den-
sity approximately compensates the increase of refractive index caused by the local
relativistic mass increase of the electrons (Esarey et al. [2009]; Lu et al. [2007]).
Hence, it is not possible to guide short laser pulses (L = cτ < λp) over long dis-
tances (several Rayleigh lengths). For slightly longer pulses (L ∼ λp), it has been
shown experimentally that guiding can occur so long as the transverse beam size is
larger than the plasma wavelength (w0 > λp, see Thomas et al. [2007]). This ensures
that the expelled electrons from the laser axis do not return to the axis within the
laser pulse. These returning electrons would lead to density variations along the
axis which can lead to a modulation or even a breaking up of the laser pulse into
�laments.

2.3. Plasma wave generation

As was established in section 2.1.3, the ponderomotive force of a laser beam pushes
electrons away from regions of high intensity. As is illustrated by �gure 2.1, a plasma
wake�eld is excited which follows the laser pulse. In this section the generation and
properties of such plasma waves will be discussed both in the linear (a0 << 1) and
the non-linear (a0 & 1) regime.

2.3.1. Linear plasma wake

The linear regime can be examined using the cold �uid equations (Poisson's, the
continuity, and the momentum equations). The plasma wave and the associated
wake �elds that are excited by a laser beam is described by [Esarey et al. 1996]:

(
∂2

∂t2
+ ω2

p

)
δn

n0

= c2∇2a
2
0

2
,

(
∂2

∂t2
+ ω2

p

)
φ = ω2

p

a2
0

2
,

where the laser, represented by a0, drives δn/n0 = (n − n0)/n0 which is the
normalised density perturbation and the associated normalised electrostatic wake
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Figure 2.1. � Simpli�ed picture of plasma wave generation. The pondero-
motive force of a laser pulse propagating through a plasma causes a displacement
of electrons which are pulled back to their original position (electrons depicted as
balls on a pendulum). Two important aspects are apparent from this picture: 1)
the higher density regions (red electrons) follow the laser at the speed of its group
velocity through the plasma. 2) The plasma wavelength determines the distance
between density peaks. No net transfer of electrons occurs as can be seen by the
electron oscillating around the dashed vertical line. Illustration courtesy of M. Fuchs.

φ = eΦ/mc2. Following [Esarey et al. 1996] and introducing a co-moving coordinate
with the laser pulse (ξ = z − ct), the solutions for a Gaussian-like laser pulse a2 =
a2

0 exp(−2r2

r2s
) sin2(πξ

L
) for 0 < ξ < L are:

δn

n0

= −π
8
a2

0

[
1 +

8

k2
pr

2
s

(
1− 2r2

r2
s

)]
exp

(
−2r2

r2
s

)
sin(kpξ), (2.15)

Ez
E0

= −π
8
a2

0 exp

(
−2r2

r2
s

)
cos(kpξ). (2.16)

This solution is for a linearly polarised laser and L = λp. E0 is the non-relativistic
wavebreaking �eld. This maximum �eld for a linear plasma wave can be esti-
mated from Poisson's equation, ∇ · ~E = −ne/ε0, and assuming that all elec-
trons are participating in the oscillation: n = n0 cos(kpz − ωpt). In the 1D case
E = −e/ε0

∫
ndz = −en0/(ε0kp) sin(kpz − ωt). Utilising equation 2.5, the cold
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non-relativistic wave-breaking �eld is given by:

E0 = cmeω/e = 96
√
n0(cm−3) (V/m) (2.17)

The transverse �elds can be obtained from the Panofsky-Wenzel theorem which
relates the transverse and the longitudinal forces for a particle passing through a
region of electromagnetic �elds [Vaganian and Henke 1995]: ∂Fz/∂r = ∂F⊥/∂ξ.v

The transverse focusing force is thus given by:

F⊥ =
4r

kpr2
s

E0e
π

8
a2

0 exp

(
−2r2

r2
s

)
sin(kpξ) (2.18)

From equations 2.16 and 2.18, it can be seen that the accelerating and focusing
�elds are π/2 out of phase. Therefore in half of the accelerating phase electrons can
be both accelerated and contained as a beam in the transverse direction.

2.3.2. Non-linear plasma wake

As discussed in previous sections, laser pulses can propagate through underdense
plasmas. If the pulse has a high intensity, its ponderomotive force can displace
large amounts of electrons and excite large-amplitude plasma waves. A di�erential
equation governing the plasma response in the high-intensity (�non-linear�) regime
can be derived in 1D Sprangle et al. [1990]. The assumptions in this derivation are:

1. Collisions (and plasma recombination) can be neglected.

2. Quasi-static approximation (QSA): the laser envelope does not evolve during
the interaction.

3. Thermal e�ects can be neglected provided the electron quiver velocity (∼ c)
is much greater than the thermal velocity.

The calculations are performed in the co-moving coordinate system ξ (ξ = z−vgt).
This means the plasma is �owing through a nearly stationary laser pulse which itself
is only changing very slowly (QSA). The combination of Poisson's equation for the
electric potential, the electron �uid momentum, and continuity equations leads to
the plasma response to the laser pulse:

∂2φ

∂ξ2
=
k2
p

2

(
1 + a2

0

(1 + φ)2
− 1

)
. (2.19)

vThe forces on the particle come from a single potential, i.e. F⊥ = −∂rψ and Fz = −∂ξψ. It
then follows that ∂rFz = ∂ξF⊥.
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The normalised electric potential periodically varies between the minimum and
maximum values of:

φm =
Ê2

max

2
± βp

√√√√(1 +
Ê2

max

2

)2

− 1, (2.20)

where Êmax = Emax/E0 is the maximum electric �eld and ± is for φmax and φmin.
After solving for φ, the density perturbation can be obtained with:

n

n0

=
(1 + a2

0) + (1 + φ)2

2(1 + φ)2
. (2.21)

The in�uence of the induced plasma wave on the laser pulse is described by the
corresponding wave equation (see Sprangle et al. [1990]) and forms a self-consistent
pair of di�erential equations. For simplicity, only the plasma response is considered
here; the laser does not evolve.
Figure 2.2 shows the induced electron density wave and the associated longitu-

dinal electric �eld driven by a short laser pulse. The density is periodic but is no
longer sinusoidal as in the linear regime. The electric �eld shows the characteris-
tic �sawtooth� shape with an approximately linear dependence with ξ between the
density peaks. A non-linear plasma wave can sustain �elds larger than in the linear
case due to the large-amplitude density peaks. Not only the shape of the plasma
response changes, but also the period of the non-linear plasma increases:

λNp = λp


1 +

3

16

(
Emax

E0

2)
for

Emax

E0

� 1,

2

π

(
Emax

E0

+
E0

Emax

)
for

Emax

E0

� 1.

(2.22)

For a square laser pulse, an analytical solution to equation 2.19 exists. For an
optimum driver-laser length for plasma wave excitation (L ' λNp/2), the axial
electric �eld is given by Esarey et al. [2009]:

Êmax =
Emax

E0

=
a2

0/2√
1 + a2

0/2
. (2.23)

The dependence on a0 has interesting consequences in 3D. For the 1D case the laser
intensity can only vary in the propagation direction and is assumed to be in�nite
transversely. In 3D the radial drop in intensity means that the plasma wavelength
also decreases o�-axis, leading to curved �horse-shoe� like wake�elds (see �gure 6.10
for a 3D computer simulation showing this e�ect).
The validity of these 1D considerations can be checked by comparing the max-
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imum electric �elds to those measured experimentally. By using a variable-length
accelerator and measuring the resulting electron energies, the maximum accelerat-
ing �eld can be obtained by extrapolation. With this method a maximum �eld of
≈ 160GV/m was measured for a density of 6.5 × 1018cm−3 [Popp 2011]. The �elds
from the 1D theory using the same plasma density and laser parameters can be
seen in �gure 2.2 to be approximately 310 GV/m. The cold wave-breaking �eld is
245 GV/m (equation 2.17), and the approximation for a square pulse is 415 GV/m.
Although the theoretical values overestimate the measured accelerating �eld, they
give a usable estimate.
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Figure 2.2. � Non-linear plasma wave generation. A laser pulse with a0 = 2.7
and 20 fs duration drives a non-linear plasma wave. The density perturbation is
obtained by solving equations 2.19 and 2.21. The background plasma density is
6.5 × 1018cm−3. The vertical red lines illustrate two linear plasma wavelengths be-
hind the �rst density spike trailing the laser (calculated using equation 2.5). Com-
pared with the linear regime, the non-linear case exhibits a longer periodicity and
more pronounced density spikes.
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2.4. Self-injection of electrons

Self-injection

Scalings for the electron beam parameters

Beam-loading

A number of methods can be used to �inject� or �trap� electrons in the plasma
wave and allow them to be accelerated by the strong axial electric �eld. The simplest
conceptually and usually also in terms of experimental e�ort is self-injection. Here
the plasma wake�eld is driven by the laser until wavebreaking occurs and electrons
are �spilled� into the wake-cavity. The wavebreaking process itself is highly non-
linear: slight di�erences in laser and plasma parameters lead to signi�cant changes
in the resulting accelerated electron beam [Mangles et al. 2007]. Alternative injection
schemes include:

Ionisation injection: The target gas is composed of two or more species of gas, for
example, hydrogen and nitrogen. The laser intensity is chosen such that the
high-Z gas is only fully ionised by the peak laser intensities. In this way, some
electrons are ionised at a very speci�c position in the wake�eld and therefore
injection can be somewhat controlled.

Colliding-pulse injection: By using a second laser pulse (often propagating per-
pendicularly to the main driver pulse), the superimposed laser intensity of
both pulses can be adjusted to inject electrons at a particular position in the
wake�eld.

Injection at a plasma density transition: The plasma density a�ects both the plasma
wavelength and the speed of the laser (and hence the trailing wake�eld) through
the plasma. Geddes et al. [2008] focused a laser at the downstream edge of
a gas jet with a density reduction of 50% over a length of ≈300µm starting
with a plasma wavelength of 7 µm. Although the laser group velocity increases
due to the decreasing density, the plasma wavelength also increases leading to
slower wake phase front velocity and easier trapping. A modi�ed scheme em-
ploying a razor blade to cause a density shockwave was used to generate a
similar downramp within just 5 µm [Schmid et al. 2010]. In this scheme elec-
trons are �rephased� by the sudden change of plasma wavelength within the
length of just a single plasma wavelength.

The self-injection mechanism will be approached by considering the e�ects that
facilitate injection. The motion of an electron in the potential of a plasma wave can
be analysed with the Hamiltonian in the co-moving frame [Esarey and Pillo� 1995]:

H(pz, ξ) =
√
p2
z + 1 + a2 − βppz − φ(ξ). (2.24)
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Figure 2.3. � E�ect of laser intensity and plasma density on electron
trapping. A higher laser intensity drives a larger density amplitude plasma wave,
allowing electrons with a lower initial momentum to become trapped and accelerated.
A higher background plasma density slows down the laser pulse and hence also the
trailing plasma wave. The lower plasma wave velocity facilitates electron trapping.
The dependence of the plasma wave velocity on the laser intensity dependence is
not considered (see main text and Schroeder et al. [2011]).

An electron will become trapped if it has at least reached the velocity of the plasma
wave (γ ≥ γp) at the density peaks of the plasma wave. From this consideration a
minimum trapping momentum can be derived [Schroeder et al. 2006]:

pt = βpγp(1− γpφmin)− γp
√

(1− γpφmin)2 − 1, (2.25)

The lower the minimum trapping momentum, the easier it is for plasma electrons
to become trapped by the plasma wave. The trapping threshold can be lowered
by decreasing the plasma wave velocity or decreasing the minimum of the electric
potential of the wave. The plasma wave velocity is approximately equal to the
laser group velocity (γp ' γg) which in turn depends on the plasma density (see
equation 2.13). However, the approximation of the plasma wave velocity becomes
incorrect for a0 ≥ 1. For such high laser intensities the group velocity of the laser
pulse increases, whereas the plasma wave velocity decreases Schroeder et al. [2011]
vi. The minimum potential depends on the laser intensity through equations 2.20
and 2.23. These dependencies can be seen in �gure 2.3.

viFor a laser intensity of a0 = 2 and a plasma density 4.4 × 1018cm−3, γp ∼ 0.9 · ωL/ωp and
γg ∼ 1.2 · ωL/ωp. This di�erence becomes more pronounced with distance from the laser pulse
(trailing wake�eld buckets slow down more than leading buckets).
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An electron trapped by the plasma wake will have passed through the laser and
gained energy as it travelled through the plasma wave. When it reaches the rear of
the �rst plasma density peak, it has gained a velocity larger than the plasma wave
and is injected into the wake back towards the laser. Such injection is also termed
�longitudinal self-injection�. Electrons can also be trapped transversely as will be
discussed later in the chapter.

Beam loading

By balancing the energy in the �elds of the plasma wake with N particles that travel
through these �elds, an estimate can be made for the maximum number of electrons
that can be �loaded� into the wake�eld. The loaded electrons cancel the accelerating
electric �eld and injection stops, de�ning the beam loading limit. The number of
electrons at beam loading is given by [Lu et al. 2007]:

N h 2.5× 109λ0[µm]

0.8

√
P [TW]

100
. (2.26)

For the laser used for this thesis, this estimate gives an upper limit of ∼ 2 nC of
charge that the wake �eld can support.

2.5. Electron acceleration

In section 2.3 the accelerating �elds that result from the stimulated plasma wave
was discussed. The topics of this section are the longitudinal acceleration and the
transverse focusing �elds of the plasma wave.
Figure 2.4 shows possible orbits within the potential of a plasma wave behind an

intense laser pulse. A trapped orbit (for example orbit '1' in the plot), generally has
two solutions for a particular energy. The solutions for a normalised momentum of
250 are illustrated by two red dots in the �gure. A given electron energy can be
reached during acceleration (left-hand dot), or, after reaching the peak energy at
the top of the orbit (dephasing point), during deceleration or dephasing (right-hand
dot).

2.5.1. Acceleration limits
Laser di�raction

Laser depletion

Electron dephasing
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Figure 2.4. � Phase space of a laser-driven non-linear plasma wave.
Top panel: A laser pulse (green line) excites a plasma wave with a periodic electric
potential (blue line). The laser and plasma parameters are the same as in �gure 2.2.
Bottom panel: Contour lines of constant total energy show possible electron orbits
within the potential of the plasma wave. The separatrix (black line) separates the
trapped (white) from the untrapped orbits (green). Trapped orbits (1) show an
acceleration (white 'up' arrow) as well as a deceleration after the dephasing length
(white 'down' arrow). The red dots show two points with the same energy but
at di�erent positions within the plasma wave. The untrapped trajectories show an
oscillating electron momentum constituting the plasma wave (2) or very high energy
electrons which overtake the wake (3).

Laser di�raction

The cross-sectional size of a freely propagating Gaussian laser beam will have a
minimum, called the beam waist w0. On either side of the waist, the beam size will
increase due to di�raction according to:

w(z) = w0

√
1 +

(
z

zR

)2

where zR =
πw2

0

λ
. (2.27)
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The parameter zR is called the Rayleigh length and gives the distance after which
the beam cross-sectional area has doubled. Sometimes the confocal parameter
(b = 2zR) is used to describe the distance around a waist (one Rayleigh length
either side of the beam focus) in which the intensity is within 50% of the maxi-
mum value achieved in focus. To achieve the high intensities required to drive a
non-linear plasma wake�eld, a typical laser beam has to be focused down to a tens-
of-micrometers spot size. For the experiments in this thesis, a focal spot size of
∼20µm was chosen, leading to a confocal parameter of about 3 mm. To maintain
a high intensity for a longer interaction distance requires either external guiding in
form of a preformed density channel (for example by igniting a high-voltage discharge
several nanoseconds before laser arrival, see Karsch et al. [2007]) or by ensuring the
laser power is su�cient for self-focusing (see section 2.2.1).

Laser depletion

To drive the charge separation necessary for a plasma wake�eld, the laser loses
energy. The wake�eld amplitude will therefore continuously decrease. Eventually
the laser will have lost a substantial fraction of its energy and will no longer ful�l
the self-focusing condition and also di�ract away, ultimately ending the acceleration
process. An estimate of the length until the laser has lost all of its energy to the
plasma can be made by equating the �eld energy of the plasma wake�eld over the
depletion length with the energy initially in the laser. For a square temporal pulse,
Esarey et al. [2009] obtains the following expression:

Lpd ≈
λ3
p

λ2
×

2/a2
0 for a2

0 � 1

(
√

2/π)a0 for a2
0 � 1.

(2.28)

Energy depletion is less severe for lower densities (longer λp for lower ne).

Electron dephasing

Trapped electrons typically already have relativistic velocities (v → c) when they
�rst become trapped, whereas the laser pulse and its trailing wake�eld propagate at
vg < c (see equation 2.13). The trapped electrons therefore slowly overtake the wake
structure and leave the accelerating part of the wake�eld. The dephasing length
is de�ned as the acceleration length after which electrons reach the zero-crossing of
the longitudinal electric �eld. At this point they have attained their highest kinetic
energy and begin to be decelerated by the wake �eld. An estimate of the dephasing
length gives [Esarey et al. 2009]:
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∆vLd/c = λp/2

⇒Ld ≈
λ3
p

λ2
∝ n−3/2

e , (2.29)

where ∆v = (c− vg) represents the di�erence in velocity of the wake �eld and the
trapped electrons. The above approximation leads to a dephasing length of 3.5 mm
for a plasma density of 6 × 1018cm−3 with a Ti:Sa driver laser.

2.5.2. Laser-heating of the electron beam

As discussed in the previous section, the injected electron bunch travels faster than
the laser beam and the wake�eld. Depending on the laser pulse duration and the
interaction length, the injected bunch will at some stage catch up to the back of the
laser beam. Here the electrons interact with the laser electric �eld directly in the
polarisation direction (�rst-order interaction), or with the gradient of the intensity in
both transverse directions (second-order motion, see ponderomotive force in section
2.1.3). The electrons are de�ected from the axis which causes an increase in beam
emittance [Mangles et al. 2006]. This �beam heating� is expected to be more severe
in the direction of the laser polarisation but should also be evident perpendicular to
it.

2.6. Transition to vacuum

The geometry of the gas cell used in the experiments of this thesis results in a mm-
scale plasma to vacuum transition at the exit. The e�ect this transition has on the
electron beam envelope can be investigated using an analytical model. While the
beam is trapped and accelerated in the plasma wake�eld, the strong linear focusing
forces keep the beam size small and the normalised emittance remains constant.
The evolution of the rms electron beam envelope, x(s), in an ion channel (as in
the plasma blow-out regime) neglecting space charge and acceleration is given by
(Reiser [2008]):

x(s)′′ + k2
βx(s)− ε2/x(s)3 = 0. (2.30)

Here kβ is the betatron wavenumber. In an ion channel kβ = kp/
√

2γ (Esarey
et al. [2002]), where kp is the plasma wavenumber which depends on the density
of the background electrons, ne. The dynamics of the beam envelope are therefore
determined by the plasma density and the beam emittance. When the focusing force
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of the plasma balances the expansion due to the beam emittance, the size of the
beam envelope remains constant with a matched size given by:

xm =
√
ε/kβ. (2.31)

For the parameters in the experiments for this thesis the matched beam size is
xm . 0.2 µm and the betatron wavelength is ∼0.5 mm.

2.7. The bubble regime

The complete lack of electrons behind a driver laser (or electron beam) is referred
to as the blowout, bubble, or cavitation regime. By balancing the ponderomotive
force of the laser and the restoring force of the ion channel, a relation between the
blowout radius, R, and the laser intensity is found:

kpw0 ∼ kpR =
√
a0, (2.32)

where the approximation w0 ∼ R is con�rmed by PIC simulations [Lu et al.
2007]. Given the laser intensity and beam size satisfy equation 2.32, all electrons
will be ejected from the laser axis and leave behind the plasma ions. The trajectory
of plasma electrons in the �elds of the remaining ion channel have been studied
by Kostyukov et al. [2010]. The analytical model of the �elds inside the bubble
assumes a spherical ion cavity. Additional �elds such as the laser �elds (trapping
occurs well behind the laser), the beam-loading �elds of already-trapped electrons,
and the �elds of the electron density spike at the back of the bubble are neglected.
Figure 2.5 shows the numerical solution for the analytical model for three test

electrons. As the bubble is following behind the laser pulse, a stationary plasma
electron passes from right to left in terms of the co-moving coordinate ξ. Trajectories
outside of the bubble are not altered by the local bubble �elds (red trajectory). An
electron which passes through the bubble close to the laser axis (green trajectory)
gains negative momentum pz in the region ξ > 0 and decreases the chances of it being
trapped by the time it reaches the back of the bubble. The chances for injection are
higher if an electron enters the bubble with larger ρ (blue trajectory). In this case,
the electron spends less time in the region where ξ > 0 being accelerated towards
negative ξ.
The model here attempts to describe transverse injection into the bubble. In

section 2.4 longitudinal injection was discussed. Both regimes have been observed
and in general always occur together in self-injection experiments [Corde et al. 2013].
Whereas longitudinal injection occurs early and only for a short time in the laser-
plasma interaction, once the laser undergoes self-focusing transverse injection sets
in for much longer periods and hence many more electrons are injected. For this
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Figure 2.5. � Analytical model for electron injection into a plasma bubble.
The plasma bubble is modelled as a perfect sphere (radius R), completely void of
electrons and co-propagating with the laser pulse. Outside the bubble a neutral
plasma means that electrons are not deviated (red trajectory, r > R). Once an
electron enters the bubble its trajectory is changed and can even become trapped
and accelerated (blue trajectory). This only occurs for electrons with an entry point
ρ ∼ R near the top of the bubble sheath (high density layer of electrons forming the
bubble sphere).

reason, Corde et al. [2013] suspect that for plasma lengths >2 mm transversely
injected electrons dominate over longitudinal ones. Before the laser self-focuses, the
laser spot radius is still relatively large, and a0 is still low. Hence the transverse
ponderomotive force is smaller and electrons are not deviated as much from the
propagation axis. Longitudinally injected electrons are therefore also expected to
have a smaller emittance than those trapped with transverse injection.

2.8. Summary

Here the concepts relevant to the experimental results in chapter 6 are discussed.
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Scaling of the laser beam size in the plasma

Self-focusing of the laser beam relies on its interaction with the local plasma elec-
trons. It follows that once the laser has expelled all electrons as in the bubble regime,
no further self-focusing of the beam can occur. Therefore the condition to reach the
bubble regime, equation 2.32, should also give a lower limit to the laser beam size
after self-focusing. Through PIC simulations, Lu et al. [2007] found the best guiding
of the laser spot with a slight modi�cation to the blowout-condition:

kpw0 = 2
√
a0 (2.33)

Without knowing exactly how the actual beam size will change during propaga-
tion in the plasma vii, above the critical power the laser beam should contract until
condition 2.33 is met. As the beam contracts w0 becomes smaller and a0 corre-
spondingly larger viii. Hence equation 2.33 can be rewritten in terms of an evolving
beam size and intensity with propagation distance z:

w0(z) =
λp
π

√
a0(z)

=
λp
π

√
w0(0)a0(0)

w0(z)

=

(
λp
π

√
w0(0)a0(0)

)2/3

∼ n−1/3
e . (2.34)

This relates the laser beam size at plasma blowout (no further self-focusing pos-
sible) to the plasma density and the initial laser beam size and intensity before
self-focusing. The �nal relation was obtained by using equation 2.6 to rewrite the
plasma wavelength in terms of the plasma density.

Scaling of the electron beam size

A simple scaling for the injected beam size can be found by making two assumptions:

viiEsarey et al. [2009] gives an expression for the beam size as w(z) = w(0)
(
1 + PC

P

)
zR. However,

this relation is valid for a laser strength parameter a0 << 1.
viiiThe normalised laser intensity scales as a0 ∼

√
(I) (see equation 2.4). For a constant beam

energy and pulse length the intensity scales as I ∼ 1/w2
0 giving a0 ∼ 1/w0 and hence a0(z)/a0 =

w0/w0(z).
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1. The blowout radius, rb, scales with the laser spot size w0.

2. The injected beam size, σ, scales with the blowout radius.

The �rst assumption was predicted by Lu et al. [2007] and further supported by
PIC simulations Martins et al. [2010]. The PIC simulations agree well with the
assumption that w0 ∼ rb at injection as well as the entire acceleration length (itself
limited by the dephasing and pump depletion).
The second assumption of a proportional scaling between wake radius and injected

beam size was also observed in simulations by Lu et al. [2007] and furthermore, has
been con�rmed experimentally. By measuring the angularly resolved energy spectra
of the electron beam [Matsuoka et al. 2014] a correspondence between the wake
radius and the radius of the trapped electrons was shown. Further support for the
assumption is given by the analytical model discussed in section 2.7 which shows
that the injected electrons originate from the sheath electrons at the bubble radius.
From the above assumptions it follows that σ ∼ w0(z) and combined with 2.34

it follows that σ ∼ n
−1/3
e . The transverse momentum at injection scales as θ ∼ a0

[Lu et al. 2007; Thomas 2010]. In section 2.2.1 it was shown that a0(z) ∼ 1/w0(z)
which leads to the following scalings for the electron beam source parameters:

σ ∼ w0 ∼ n−1/3
e

θ ∼ a0 ∼ n1/3
e

(2.35a)

(2.35b)

The emittance can be calculated at the waist of the electron beam as ε ∼ σθ. It
follows from the above approximate scalings that the emittance should therefore not
(or only weakly) scale with the plasma density.



3. Electron beam transport and

characterisation

The analysis of how a charged particle beam will move after it has exited the plasma
accelerator is done using the Lorentz force. The analysis presented below is based on
those given in [Wille 2001; Wollnik 1987]. Additionally to these, there are many more
resources covering the derivation of the basic equations of motion in a beamline, in
particular the CERN Accelerator School (CAS) provides much material. Here only
the solutions and the associated assumptions will be presented.

3.1. Charged particle motion in a magnetic �eld

Lorentz force

Multipole expansion

Quadrupole �eld

Equation of motion

A charged particle moving in electric and magnetic �elds experiences the Lorentz
force:

~F = q( ~E + ~v × ~B),

where q is the particle charge, ~E and ~B are the electric and magnetic �elds, and ~v
is the particle velocity. For relativistic particle velocities, the force exerted by both
�eld types are equal if ~E = c ~B. To match the force exerted by a 1 T magnetic
�eld (readily achieved using rare-earth magnets), an electric �eld with ∼ 108 V/m
is required, beyond the �elds achieved in current RF accelerator technology. This
limitation explains why electric �elds are generally only used to guide low energy
particles. The remainder of this chapter will only consider focusing with magnetic
�elds.
The coordinate system that will be used is shown in �gure 3.1, it moves and rotates

along with the design trajectory (often called �orbit�) along the beamline. Assuming
that the orbit trajectory can be realised by employing some arrangement of �elds,
the co-moving system allows the analysis of the transverse deviations of a particle
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Figure 3.1. � The coordinate system is co-moving with the orbit (design trajectory)
with s pointing in the direction of motion.

or beam from the orbit. Depending on each particle's initial conditions, its path will
be slightly di�erent. The main goal of beam optics is to guide particles as closely as
possible along the orbit. The particle velocity is therefore almost exclusively along
s with only small transverse values, ~v ∼ (0, 0, vs). Furthermore it is usually the case
that only transverse magnetic �elds are present (only these can be used to steer the
beam) ~B = (Bx, By, 0). The problem can be simpli�ed by only treating the motion
in x and noting that the results will be identical for y. For a particle moving in a
uniform magnetic �eld along y, the Lorentz force acts as the centripetal force which
makes the particle move on a circle of radius R given by:

Fx = −qvBy = γm0v
2/R

⇒ −q
p
By =

1

R
, (3.1)

where p = γm0v is the relativistic momentum, and γ is the Lorentz factor. Gen-
eralising to a non-uniform magnetic �eld, By = By(x, s) is a function of x and s as
the particle moves in the �eld.i It is helpful to expand the magnetic �eld in a Taylor
series around x = 0 and analyse the e�ect of individual terms (called multi poles).

By = By(0)+
dBy

dx

∣∣∣∣
0

x+
1

2!

d2By

dx2

∣∣∣∣
0

x2+
1

3!

d3By

dx3

∣∣∣∣
0

x3 + . . .

iFor simplicity the notation By contains the functional dependence on x and s implicitly.
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Figure 3.2. � Magnetic quadrupole �eld. Test electrons (blue) travelling into
the page and the forces they experience. The quadrupole �eld is focusing in one
plane and defocusing in the other, leading to a line focus at the focal length after
the lens. The magnitude of the forces is linearly proportional to the particle distance
from the axis (magnitude is indicated by arrow length).

multiplying by −q/p results in:

−q
p
By =

−q
p
By(0)+

−q
p

dBy

dx

∣∣∣∣
0

x+
−q
p

1

2!

d2By

dx2

∣∣∣∣
0

x2+
−q
p

1

3!

d3By

dx3

∣∣∣∣
0

x3 + . . .

=
1

R
+ kx +

1

2!
mx2 +

1

3!
ox3 + . . .

(3.2)

= dipole + quadrupole + sextupole + octupole + . . .

The �rst term gives the curvature (1/R) of the electron in the constant part of
the �eld, the other terms also express a �strength� of the �eld components but with
a higher-order dependence on x. The names of the terms of the Taylor expansion
refer to the number of magnetic poles necessary to generate a magnetic �eld with
the corresponding dependence with x. For example a quadrupole requires four mag-
netic poles to generate a magnetic �eld with linear dependence on x (�g. 3.2). To
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generate orders higher than quadrupole also inevitably requires magnetic �elds that
couple the transverse planes (the �eld component By depends on both the x and y
position). In linear beam optics only drift sections, dipole, and quadrupole magnets
are considered. In this simpli�ed model the transverse planes are uncoupled,
which allows the beam dynamics in the transverse planes to be treated indepen-
dently. The validity of using linear beam optics in a given experiment depends on
the purity of the dipole and quadrupole �elds over the size of the beam within the
beamline elements. Any terms above the quadrupole are lumped together to be
called lens errors or higher-order magnetic �eld components (HOMFCs) in this the-
sisii. The e�ect of HOMFCs on a particle beam is simulated for measured values of
the lens magnetic �elds setup in section 4.3.1. In section 3.3.2 the e�ect of coupling
of the axes on the electron beam quality is discussed. The remainder of this section
deals with linear beam optics.
For an ultra-relativistic electron, q/p ≈ 0.3

E [GeV]
. Hence there are convenient ex-

pressions for the dipole and quadrupole strengths:

1/R ≈ 0.3

E [GeV]
B

k ≈ 0.3

E [GeV]
dB

dx

∣∣∣∣
0

(3.3)

Using the �eld expansion for the magnetic �eld, the equations of motion can be
derived with the Lorentz force. The details can be found, for example in [Wille
2001], the main steps and assumptions are:

� Get an expression for the position vector ~r of a particle in terms of the coor-
dinates of the co-moving and rotating frame that is following the orbit.

� Cast the Lorentz equation into the orbit coordinates.

� Postulate that the magnetic �eld ~B = (0, By, 0) only has a y component.

� The particles are already ultra-relativistic so that their longitudinal accelera-
tion can be neglected, s̈ ≈ 0.

� The energy spread ∆p
p
is small.

� Multipoles higher than quadrupole are neglected.

iiHigher multipoles can be used to make special corrections to the beam. For example, a sextupole
�eld can be used after a quadrupole to compensate chromatic focusing (focal length increases
with electron energy).
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The �nal result is:

x′′(s) +

(
1

R2(s)
− k(s)

)
x(s) =

1

R(s)

∆p

p
, (3.4)

and is sometimes referred to as Hill's equation. Note that this equation is in the
coordinates of the co-moving system of the orbit. The actual trajectory relative to
a stationary system can be very complicated. After the orbit trajectory is de�ned,
equation (3.4) is used to study the transverse dynamics of the beam.

In solving equation (3.4) for drift and quadrupole beamline elements, it is conve-
nient to use matrix equations to relate the initial to the �nal particle parameters.
A particle is transferred through a beamline element (either a drift or a quadrupole
lens) using

~x = M~x0. (3.5)

Here ~x = (x, x′) is a vector containing the particle position x and angle x′ relative
to the s axis after the beamline element, ~x0 contains the corresponding initial values,
andM is the transfer matrix for the beamline element which describes its action
on the particle. For a sequence of beamline elements the transfer matrices are applied
one after the other on the particle as in ~x = Mn ·Mn−1 · . . .M1 · ~x0. The elements
of M for di�erent situations will be determined in the next sections.

3.1.1. Free drift

In a magnet free region equation 3.4 reduces to x′′ = 0. Integrating twice gives

x′ = c1,

x = c1s+ c2.

For s = 0 (no drift), the x coordinates remain unchanged (~x = ~x0). Using these
initial conditions and inserting them into the solution above gives the following
transfer matrix for a drift of length d:

Mdrift =

(
1 d
0 1

)
(3.6)
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Figure 3.3. � Focal length of a quadrupole �eld in the thin lens approximation.

3.1.2. Quadrupole �eld

Thin lens approximation

Previously it was shown that an electron in a uniform magnetic �eld moves on a
circle of radius R. A quadrupole �eld introduces a de�ection proportional to the
o�set from its centre, the basic property of a focusing lens in optics. As a �rst step
the action of a thin lens will be discussed by assuming a thin lens of length w, and a
pure quadrupole �eld. The second condition ensures that the magnetic �eld gradient
is constant with x which means that B(x) = dB/dx · x. The bending radius of a
particle in a pure quadrupole �eld is then dependent on x and is given by:

1

R(x)
= −q

p
B(x) = kx. (3.7)

Using the variables de�ned in �gure 3.3, the focal length is given by

θ ≈ w

R

= kxw. (3.8)

Because w is short, the position of the particle at the end of the lens can be
approximated to be the same as at the beginning. As the particle's transverse
position x is considered to be constant as it passes through the lens, B(x) is also
constant and hence R stays constant. This results in θ ≈ x/f . Combining this with
(3.8) gives
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Figure 3.4. � Hard-edge model. The magnetic �eld of a 15 mm long quadrupole
(blue) extends past its physical length. The measured gradient for this lens can be
approximated by a constant gradient (maximum of the measured �eld gradient) of
length 14.55 mm (green). If the �eld is measured further to either side of the lens,
the length of the hard-edge model lens approaches the physical length of the lens.

f =
1

kw
(3.9)

≈ E [GeV]
0.3 · g · w. (3.10)

E, g, and w represent the electron energy in GeV, the magnetic �eld gradient in
T/m, and w the lens length in m. The second equation is a handy approximation of
the thin lens focal length and is obtained by inserting equation (3.3). As an example
case, a 300 MeV beam passing through a 25 mm, 500 T/m lens results in a focal
length of f = 8 cm. The focal length obtained by solving the equations of motion
for a thick lens is 8.4 cm (equation (3.19)).

Quadrupole transfer matrix

It was previously stated that for a pure quadrupole �eld the transverse planes are
uncoupled, it therefore su�ces to just look at one of the transverse planes. To
calculate a beamline it is convenient to use the hard-edge model where the �elds
are zero in drift regions and have a constant value within the physical extent of the
magnets (as illustrated in �g. 3.4). For a particle with the nominal momentum (i.e.
∆p/p0 = 0) in a pure quadrupole �eld, equation (3.4) simpli�es to

x′′(s)− k(s)x(s) = 0. (3.11)
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The solutions depend on the sign of k. Figure 3.2 shows a quadrupole that is
focusing for electrons along the x-axis. As both q and dBy/dx are negative, k is also
negative and corresponds to the focusing plane. For positively charged particles, q
and therefore also k, change sign and the quadrupole �eld is defocusing. For the
focusing case (k < 0) the solution is

x(s) = A cos(
√
|k|s) +B sin(

√
|k|s),

x′(s) = −
√
|k|A sin(

√
|k|s) +

√
|k|B cos(

√
|k|s).

The constants of integration A and B are determined by the initial conditions,
leading to

x(s) = x0 cos(
√
|k|s) +

x′0√
|k|

sin(
√
|k|s)

x′(s) = −
√
|k|x0 sin(

√
|k|s) + x′0 cos(

√
|k|s), (3.12)

where (x0, x
′
0) are the initial position and angle values of the particle. The solution

relates the initial values of the particle at the entrance of the quadrupole to those
after it has travelled distance s inside the magnet. In transfer matrix notation this
is represented as

MQF =

(
cos(

√
|k|s) 1√

|k|
sin(
√
|k|s)

−
√
|k| sin(

√
|k|s) cos(

√
|k|s)

)
for k < 0 (focusing), (3.13a)

s→0≈
(

1 0
−|k|s 0

)
=

(
1 0
−1/f 1

)
thin lens approximation,

(3.13b)

MQD =

(
cosh(

√
ks) 1√

k
sinh(

√
ks)√

k sinh(
√
ks) cosh(

√
ks)

)
for k > 0 (defocusing), (3.14)

The thin lens transfer matrix (3.13b) has a focal length as was obtained previously
in equation (3.10), if the lens length w is substituted for s. The defocusing case is the
same except for a change of sign (f < 0 for a defocusing lens). These matrices can
be abbreviated by introducing a shorthand notation for the trigonometric functions
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to get

MQF =

(
cx sx
−ksx cx

)
, (3.15a)

MQD =

(
cy sy
ksy cy

)
, (3.15b)

cx = cos(
√
|k|s), sx =

1√
|k|

sin(
√
|k|s),

cy = cosh(
√
ks), sy =

1√
|k|

sinh(
√
ks).

3.1.3. Focal length of a �thick� quadrupole lens

Each element of a transfer matrix has a physical signi�cance as it reveals how a �nal
particle coordinate depends on an incoming particle coordinate. With this in mind
the transfer equation 3.5 can be written as

(
x
x′

)
=

(
(x|x0) (x|x′0)
(x′|x0) (x′|x′0)

)(
x0

x′0

)
. (3.16)

Here the element (x|x0) for example describes how the position x after the transfer
matrix depends on the incoming particle position x0. It also becomes clear that
(x′|x0) should have to do with the refractive power or focal length of a device. This
notation is convenient to obtain the focal length of a thick quadrupole lens.

Figure 3.5 shows a parallel ray passing through a thick lens which is bent and
crosses the axis at a distance d behind the end of the lens. The transfer matrix of
the system starting at the lens entrance and ending where the particle crosses the
axis is
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Figure 3.5. � Determining the focal length of a thick quadrupole. The
focal length, f , is de�ned relative to the principal plane, p, which itself is determined
by the intersection of the incoming and outgoing rays.

M = Mdrift ·MQF

=

(
1 d
0 1

)
·
(

cx sx
−ksx cx

)

=

(
cx − dksx sx + dcx
−ksx cx

)
. (3.17)

If the (x|x0) element of M is set to zero, then the position of the outgoing rays
have no dependence on their incoming position but only on their angle. Incoming
parallel rays are therefore focused to a common point after drift d; this de�nes the
focal plane. From these considerations it follows that cx − dksx = 0, which leads to

d = cx/ksx. (3.18)

For the standard case (300 MeV electrons, 25 mm lens with 500 T/m �eld gradi-
ent), the focal plane lies at d = 7.1 cm after the exit of the lens. The focal length
can be found by transferring an incoming ray parallel to the optical axis ~x0 = (x0, 0)
through the system transfer matrix (3.17) which results in an outgoing vector

~x = ((cx − dksx)x0,−ksxx0) = (0,−ksxx0).
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From �gure 3.5 the focal length is given by

f = − x0

tan(x′)
=

x0

tan(ksxx0)
, (3.19)

and also de�nes the principal plane of the lens (see �g. 3.5). The focal length
using this equation and the standard case gives f = 8.4 cm, which compares quite
well with the thin lens value of 8 cm obtained previously with equation 3.10. The
position of the principal plane from the exit of the lens for a paraxial ray (x0 small,
f → 1/ksx) is

p = d− f =
cx
ksx
− 1

ksx
= k−1

(
cx
sx
− 1

sx

)

= − 1√
k

tan(
√
ks/2). (3.20)

From equation 3.20 it follows that the principal plane lies in the centre of the
lens (p = −s/2) when the argument of the tangent becomes small. For example,
for a 25 mm long lens with a �eld gradient of 500 T/m, p = −12.8 mm, very close
to the physical centre of the lens at -12.5 mm. It is therefore a reasonable �rst
approximation to use thin lens analysis with the principal planes in the centre of
each lens for the devices used in this thesis.

A note on aberrations

In equation 3.19 the focal length depends on the incoming ray position x0, i.e. a
spherical aberration. In the experiments for this thesis the beam size is on the
order of 0.2 mm so that tan(x) → x is a valid approximation and the spherical
aberration is negligible. As with other aberrations mentioned later, the detrimental
e�ect on beam imaging is greater when the beam is large when it passes through the
lens. The focal length also depends on the parameter k = q/p·dB/dx which depends
on the beam energy p, i.e. a chromatic aberration. Higher beam energies have a
longer focal length.

It turns out that both e�ects are negligible for the experimental part of this thesis.
The e�ect of chromatic aberrations is simulated (and concluded to be negligible) in
section 4.3.1. The e�ect of spherical aberrations, although small, is included in the
evaluation of the experimental data by using the transfer matrices for thick lenses.
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3.2. Particle beams

In this section the analysis of single particles is extended to an ensemble, or particle
beam. With this formalism the electron beam can be analysed along the beamline
without knowing the exact coordinates of all the individual particles. The transfer
matrices for beamline elements that were derived in the previous sections can be
applied to quantities that describe the beam as a whole.

3.2.1. Beam emittance and Courant-Snyder parameters

In the description of beam optics used in this work, only the forces of the electric and
magnetic �elds of the beamline elements on the particles are considered; Coulomb
collisions between individual particles in the beam are neglected. As the forces
in the system are therefore conservative, Liouville's theorem is applicable. This
theorem states that the volume occupied by a set of particles in the 6D phase space
(x, px, y, py, s, ps) is constant in time, i.e. the particles in phase space act like an
incompressible �uid. Or stated in another way, particles within an enclosed volume
will always remain inside it. This second formulation helps to describe the large
number of individual particles as a single beam entity by enclosing (some of) the
particles of the beam in a meaningful volume called the phase space ellipsoid.

In the absence of coupling between the x, y and s dimensions, the constant 6D
phase space can be split into three independent 2D phase spaces. By only considering
a mono-energetic beam and neglecting magnetic moments higher than quadrupole
(which lead to coupling between the x and y dimensions), this separation is useful
as the individual phase space emittances are also conserved and are often called
projected emittances.

Instead of using the position and their momentum variables, more commonly the
related set of variables (x, x′, y, y′) are used. The x − x′ plane is often referred to
as trace-space, and hence the corresponding beam area in this plane the trace-
space or geometric emittance, εtr.. The advantage in using the gradients of
the trajectories is that for a beam, this dimension describes the beam divergence,
a physically more intuitive measure than px. The disadvantage is that Liouville's
theorem is strictly speaking only valid for the x− px phase plane. The result is that
the geometric emittance is not constant under acceleration. This can be directly
seen from x′ = px/ps = px/γβmc. To compensate this de�ciency, a normalisation
with energy is introduced by multiplying the x′ plane by γβ giving εn = γβεtr.. Here,
εn, is the normalised emittance and is constant even if the beam is accelerated.
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Connection between emittance and Courant-Snyder parameters

As usual only the x-plane and its momentum is considered, and it is assumed that
the energy spread of the beam is zero (δp = 0). Furthermore, the 1/R2 dipole term
is neglected as it is usually small compared with the quadrupole strength. Then
equation 3.4 becomes:

x′′(s)− k(s)x(s) = 0. (3.21)

A possible solution is x(s) =
√
εβ(s) cos[ψ(s) + φ]. Combining x(s) with its

derivative x′(s) and eliminating the terms which depend on ψ leads to:

γCS(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = εtr.. (3.22)

Here α(s) = −β′(s)/2 and γCS(s) = (1 + α2(s))/β(s). This relation describes the
equation of an ellipse in x− x′-space with an area of πεtr.. As discussed above, the
trace space emittance is a constant of motion as long as the beam is not accelerated.
Equation 3.22 can therefore be used to transfer the beam down a beamline with
drifts and quadrupole lenses (see the next section). The beta function gives the size
of the electron beam via x(s) =

√
εtr.β(s) and the angular divergence is given by

x′(s) =
√
εtr.γ(s). The Courant-Snyder parameter α determines the rotation angle

of the phase space ellipse. In focus, there is no correlation between x and x′, the
beam ellipse is upright (α = 0) and the geometric emittance is the product of the
beam size and its divergence, εtr. = πxx′.

3.2.2. Propagating the Courant-Snyder parameters along a
beamline

In the previous section the emittance was introduced. As the emittance is a constant
of motion for the particle beam, it can be used to calculate the evolution of the beam
through a beamline. Using equation 3.22 together with the transfer-matrix approach
(equation 3.5) gives the following equation for the beam size:

x(s1)2 = M 2
11εβ(s0)− 2M 11M 12εα(s0) +M 2

12εγCS(s0). (3.23)

HereM ij refers to the ij element of the transport matrix which is the product of
the drift and quadrupole matrices between s0 and s1. For completeness, all Courant-
Snyder parameters can be transferred with the following relation:

B(s1) = M ·B(s0) ·MT , (3.24)

where M is the product of the transfer matrices of the beamline (see for example
Wille [2001]). Here B is called the beta- or beam-matrix



3.2 Particle beams 41

B =

(
β −α
−α γCS

)
.

Sometimes instead of the beta-matrix the sigma matrix is used, where σ = εB.

Coupling of phase space planes

A simpler 2D version of Liouville's theorem requires that the phase space area in a
2D subspace remains constant with time. Taking the area enclosed by two vectors
x1 and x2, and transforming it through an arbitrary beamline element M :

Ainitial =
1

2
| ~x1 × ~x2|

Afinal =
1

2
|M ~x1 ×M ~x2| =

1

2
|M | | ~x1 × ~x2|.

For the phase space area to remain constant, it follows that |M | = detM = 1.
It can be shown that this idea also applies to the full 6D phase space and therefore
detM = 1 is indeed a direct consequence of Liouville's theorem. The assertion
of a constant phase area in a 2D subspace like it was made above is only valid if
there is no coupling between the di�erent dimensions. If there is coupling, then a
decrease in the 2D phase area in x, px can still be in perfect accordance with the
Liouville theorem as it can be compensated by an increase in any of the remaining
four dimensions and therefore maintain a constant 6D phase space volume. For
example, in a quadrupole lens the kick in px increases with its position x such that
parallel trajectories converge to a focal point (see section 3.1.2). However, there is
also coupling to the ps dimension as this also a�ects the kick in px (electrons with
di�erent energies are de�ected di�erently). This results in an increase in the 2D
phase space x, px iii. For mono-energetic beams (δps/ps = 0) this problem is not
relevant. These ideas have very important consequences for the experimental work
in this thesis where observations are only made in the x, px plane and conclusions
are drawn about the other transverse plane y, py. Experimentally relevant sources
of coupling for the present work are:

1. The unintentional rotation error of the lenses (such that the line foci of each
lens are not perfectly perpendicular to each other).

2. Aberrations in the lens magnetic �eld components; the sextupole and (to a
lesser extent) the higher order multipole components.

iiiThis increase is compensated by a decrease in the ps distribution which is transferred to the px
distribution.
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Both e�ects do not in principle increase the 6D emittance (in practice it is often
di�cult to reverse an increase in a transverse plane). However, as only the 2D
phase space can be measured in the presented experiment, these sources of coupling
have to be minimised to be able to make claims about the total transverse (4D)
emittance. For a discussion on the reasons for coupling between the transverse
planes, see section 3.3. A quantitative analysis of the experimental consequences of
these e�ects for this thesis is done using simulations in section 4.3.

3.2.3. Imaging with quadrupole doublets

Thin lens approximation

Connection between beam waist, minimum spot size, and the

image plane

The experiments for this thesis used a lens doublet to image an electron beam
source to a plane behind a dipole-magnet spectrometer (see �gure 4.1). Hence this
beamline con�guration will be analysed in further detail in this section.

Thin lens approximation

A typical experimental situation requires an electron beam of a given energy to be
focused within a �xed total beamline length. The parameters that can be varied
are the strength of the focusing lenses (by choosing their length and magnetic �eld
gradient) and their positions in the beamline. In the previous section it was shown
that it is reasonable to approximate the magnet lenses used in this thesis as thin
lenses. This simpli�es the job of �nding the required drifts (distances before, after,
and between the lenses) to achieve the goal of focusing (or collimating) an electron
beam at a desired location behind the accelerator. It turns out that quadrupole
doublets o�er a compact and �exible solution for imaging beams of several hundred
MeV for beamline lengths of ∼ 0.6m→∞ by changing their positions by only a few
centimetres. The thin-lens approximation can also be used to deduce the resulting
magni�cation of the object in the image plane.

Quadrupole lenses are focusing in one plane and defocusing in the perpendicular
plane, hence to create a focusing system for imaging in both planes, at least two
lenses are required (see �g. 3.6). The transfer matrix from the exit of the accelerator
through the doublet and some further (to be determined) drift to a focus is:
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Figure 3.6. � Electron beam focusing with a lens doublet. With two or more
lenses a net focusing e�ect in both planes can be achieved (depending on the lens
positions d1, d2, d3). Here the horizontal and vertical trajectories of two particles with
the same initial o�set position (x = 5µm, y = 5µm) and angles (x′ = ±1 mrad,
y′ = ±1 mrad) are shown. Both planes are imaged about 2 m behind the accelerator.
The initial transverse o�sets lead to a correspondingly magni�ed o�set at the image
plane. The di�erent magni�cations in each plane lead to an elliptical transverse
beam pro�le at the image position.

Mx = Md3 ·MQD ·Md2 ·MQF ·Md1

=

(
1 d3

0 1

)(
1 0

−1/f2 1

)(
1 d2

0 1

)(
1 0

−1/f1 1

)(
1 d1

0 1

)
. (3.25)

The corresponding transport matrix in the y-plane is obtained by making the
substitutions f1, f2 → −f1,−f2 as in this plane the quadrupole lenses simply change
from focusing to defocusing and vice-versa. For the system to image in the x plane,
the (x|x′0) term ofMx should vanish; i.e. the �nal position x should not depend on
the initial angle x′0. If the same condition is imposed on the y-plane, the doublet
creates a stigmatic focus (image plane for x and y overlap after the second lens as
in �g. 3.6). Setting (x|x′0) = (y|y′0) = 0 results in the following functions for the
drifts and focal lengths of the lensesiv:

ivThe other solutions result in negative drifts and are disregarded. The solutions were obtained
using the algebraic solver of the sympy python package.
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d2 =
f1

2d1 +
√
−af1d1

2

d1
2 − f1

2
, (3.26a)

d3 =
f2

√
−af1d1

2

a
, (3.26b)

where

a = f1
2f2 − f1d1

2 − f2d1
2. (3.26c)

With these equations the positions of the lenses (given their focal lengths f1 and
f2) can be determines as a function of d1. This formulation is convenient as d1 is
often constrained by the experimental setup. On the one hand a small d1 and d2 are
important for maintaining a short bunch duration of the electron beam [Weingartner
et al. 2011] (see also section 3.3.1), and also to avoid ablation of the lenses due to
the diverging driver laser which may be clipped at the lens apertures. It is also
desirable to have d1 ≈ d2 � d3 so that the electrons in the defocused plane after
lens 1 do not scatter at the aperture of lens 2. As an added bene�t, the lens system
will be compact and not separated over large parts of the experiment. Furthermore,
a certain minimum distance to the gas cell may be required for other parts of the
experimental setup. An obvious approach to equations (3.26) is to set the focal
lengths of the two lenses to be equal; i.e. f1 = −f2 (net focusing in both planes
requires a positive and a negative lens). It then follows from (3.26b) that d1 = d3

which violates the requirement to have d1 � d3. This leaves the combination of a
weak and a strong lens. To obtain a large value for d3, let a→ 0. If the �rst lens is
stronger (|f1| < |f2|) and positive, then from (3.26c) a(d1 = 0) < 0 (as lens two is
negative) and increases with d1. The parameter a becomes zero when

d1max = f1

√
f2

f1 + f2

, (3.27)

at which point d3 → ∞ and the lens system focuses particles at in�nity, i.e. the
beam is collimated. Therefore by substituting the expression for d1max into equation
(3.26a), the lens drifts for collimating the beam are obtained. In the other direction
d1 is limited by the denominator in (3.26a) resulting in d1min = f1. By inspecting
(3.26a), it becomes apparent that if the �rst lens is weaker than the second lens,
a never reaches zero and therefore it is not possible to �nd an imaging setup with
d3 � d1, d2.
The (x|x0) and (y|y0) elements of Mx and My give the magni�cations at the

image plane:
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Figure 3.7. � Generic solutions for the drifts of a stigmatic focusing
doublet. For a given beamline length dtot (= d1 + d2 + d3), there are two possible
solutions for the set of drifts d1−3 (drifts de�ned in �g. 3.6). To maintain the
ultra-short bunch length of LWFA electron beams and to have a compact beam
imaging setup, it is preferable to have d1 +d2 be as small as possible. The lens focal
lengths used for this plot correspond to those in the experimental work of this thesis
(f1 = 8.4 cm and f2 = −14.7 cm, 300 MeV electron energy), the beamline length
was dtot ∼ 2.2m.

mx,y =


1− d2

f1

+ d3
d2 − f1 − f2

f1f2

x-plane, (3.28a)

1 +
d2

f1

+ d3
d2 + f1 + f2

f1f2

y-plane, (3.28b)

Figure 3.7 shows the lens positions and the resulting magni�cations obtained
from equations (3.26) and (3.28). The magni�cations are not equal in both planes,
this asymmetry is a general property of imaging with doublets. At least a triplet
arrangement is required for the beam focus to be round. The optimal drift lengths
for a �xed beamline length of 2.164 m as in the experiments of this thesis are
d1 = 12.7 cm, d2 = 10.9 cm which is close to the numerical solution obtained
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for real, full-length lenses of d1 = 12.4, d2 = 9.3 cm (see section 4.2 for numerical
results for a range of electron energies). The lowest point of dtot. is approximately
at the mid-point between d1min and d1max where also d2 ≈ d3 holds. From these
considerations an approximate relation for the minimum possible beamline length
can be obtained

dtot. min ≈
1

2
(d1min + d1max) + 2d2 (3.29)

=
f1

(
1 +

√
f2

f1+f2

)
2

+ 2
√
f2(f1 + 4f2), (3.30)

which for the case shown in �gure 3.7 results in dtot. min = 0.65 m. It is clear from
the �gure that the doublet can focus the beam at any position d ≥ dtot. min by a
relatively small change in positions d1 and d2. An approximation of the lens drifts
required to be able to collimate a particular beam energy is to use the values that
d1 and d2 approach as dtot. →∞ (long beam-line approximation):

d1,long = f1

√
f2

f1 + f2

=
E [GeV]

0.3

√
1

g1w1(g1w1 + g2w2)
(3.31)

d2,long ≈
√
f2(f1 + f2) =

E [GeV]
0.3

√
g1w1 + g2w2

g1w1(g2w2)2
. (3.32)

Where the equation for d1 is an upper limit as discussed for equation (3.27), and
the equation for d2 is an approximationv. The drifts for collimation are therefore
linearly dependent on the electron beam energy. The higher the beam energy, the
more of the lens aperture must be illuminated where focusing is stronger. For a
divergent beam this means longer drifts. The magni�cation in the image plane can
be estimated by setting d3 = dtot. − d1,long − d2,long and d2 = d2,long in (3.28). In
the long beamline approximation the third term of equation (3.28a) is the main
contributor to the magni�cation in x (mx is negative). Here it can be seen that a
small f1 (strong lens 1) and a long f2 (weak lens 2, f2 is negative) will lead to a
larger magni�cation. These equations are useful for a quick estimate of possible lens

vBy substituting d1 = fx (doublet-system focal length)+px (principal plane) into equation (3.26a)
which assumes that the e−-beam source is at the object focal plane of the lens doublet. Substi-
tuting equation (3.31) into (3.26a) is also valid, although it gives a more complicated expression
with almost identical results.
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positions, for actual experiments a numerical simulationvi including the thick lens
transfer matrices (3.13a) and (3.14) should be used.

Connection between beam waist, minimum spot size, and the image plane

Using the transfer matrix for the beamline (equation 3.25) and the propagation
of the Courant-Snyder parameters (equation 3.24), the di�erence between a waist,
an image, and the minimum beam size can be explored. The three concepts do
not necessarily occur at the same position as the conditions required for each are
di�erent.

Recalling from equation 3.5 that M relates the position and angle of a particle
before and after a beamline, the condition for imaging is that (x|x′0) = M 12 = 0vii.
This condition means that the initial angle x′0 has no in�uence on the �nal position
x of the particle. The ful�lment of the imaging condition does not simultaneously
guarantee that a beam waist will occur at the image plane.

The distance to a waist in a drift space, L, can be determined from any location
where the beam matrix is known [Brown et al. 1980]: L = α/γCS, where α and γCS
are the Courant-Snyder parameters of the beam. The drift of lens 2 can therefore
be scanned until α = 0 at a target to obtain an upright ellipse (a beam waist).
Although it seems counter-intuitive at �rst, the smallest beam size behind a lens
system at a target location is achieved by having a beam waist before the target
location.

Figure 3.8 shows for which position of lens 2 a beam waist, minimum size, and
image can be obtained at the target (a YAG:Ce crystal in the experiments of chapter
6). The relevant information here is that the lens setup in this example (based on the
real setup as used in the experiment) can be considered to be imaging the accelerator
source when the beam size is minimised at the YAG:Ce crystal. A further criterion
for beam imaging can also be used in the experiment. The shot-to-shot position
�uctuations of the imaged beam at the YAG:Ce crystal should be smallest when
the lens system is imaging. This reduction in �uctuations is a characteristic of an
imaging system because (x|x′0) = 0: the pointing angle of the beam at the accelerator
exit has no e�ect on the position of the beam at the image plane. The remaining
position �uctuations at the image plane are then actually occurring at the source of
the electron beam due to the corresponding �uctuations in the laser beam position
(see section 6.2.6).

viFor example using the beam simulation code COSY INFINITY[Makino and Berz 2006].
viiM12 refers to the matrix element in the �rst row and second column.
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Figure 3.8. � Beam size at YAG:Ce crystal and relevant imaging positions
for lens position scan for conditions as in experiments for this thesis. The
beam has a waist at the YAG:Ce crystal when the drift of lens 2 is about 88 mm.
Note that this does not correspond to the drift d2 needed for a minimum beam size.
To achieve a minimum beam size at a particular location, the beam waist needs to
be upstream (in this case larger d2) of the target. The lens system is almost imaging
when the beam is smallest at the target.

3.3. Detrimental e�ects during beam transport

This section considers detrimental e�ects on the beam parameters associated with
its transportation along a beamline. Whereas bunch elongation and space charge
are present even for perfect transporting optics, rotated lenses and lens aberrations
depend on the quality of the experimental equipment and its alignment.

As was mentioned in the previous section, if the transverse planes are not coupled,
they can be considered independently and their respective projected emittances are
conserved. Coupling occurs when the variables x/x′ have an in�uence on y/y′ and
vice-versa (this happens for multipoles higher than quadrupole). The measurements
made in the later parts of this thesis concern only the horizontal phase space. A
coupling between the planes would therefore decrease the accuracy of the experi-
mental measurements and compromise the validity of drawing conclusions about the
vertical plane.
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3.3.1. Bunch elongation

Bene�ts of short-focal-length devices

Comparison with electromagnet lenses

A useful feature of LWFA electron beams is their ultra-short pulse duration, mea-
sured to be a few femtoseconds [Lundh et al. 2011; Buck et al. 2011]. Experiments
that rely on this short pulse duration and the associated high current of the beam
(such as table-top free-electron lasers [Grüner et al. 2007]), require a beam transport
system which causes minimal bunch elongation. Furthermore, it is desirable that
the experimental setup is compact, which requires short focal length lensesviii. A
short focal length can be realised with a large magnetic �eld gradient, g, or by using
longer lenses (equation (3.10)). Conventional electro-magnet quadrupole (EMQ)
focusing lenses employ current coils to generate �eld gradients of order 10 T/m
whereas gradients of up to 560 T/m have been reported for PMQ lenses [Lim et al.
2005].
To compare these two lens types, simulations were carried out with a particle

tracking code [GPT] of a 1 mrad beam (source size 1 µm) with an energy of 200 MeV.
The requirement was a focus 2 m behind the accelerator. The PMQ lenses have a
gradient of 500 T/m and lengths 17 and 15 mm. The EMQ lenses have a gradient
of 10 T/m and the lengths and positions were determined by optimisation with
the COSY INFINITY code [Makino and Berz 2006]. The lengths used for the
comparison are: lEMQ,1 = 30 cm and lEMQ,2 = 22 cm.ix Figures 3.9(a) and 3.9(b)
show the resulting bunch envelopes and elongation for the two cases. Comparing the
beam envelope sizes with the bunch length shows a clear correlation between beam
divergence and bunch length increase (especially in the drift between the �rst and
second lenses). Although both cases have lenses of similar focal lengths, the EMQ
case shows a greater bunch elongation which comes from the long drift sections with
large divergence. Therefore, to minimise bunch elongation, lenses with short
focal lengths and high magnetic �eld gradients are required. Ideally, the highly
divergent LWFA beam is caught as early as possible after its exit from the plasma
and collimated to minimise the angles and associated path length di�erences between
particles in the beam. The e�ect of the initial divergence is shown in �gure 3.9(c),
the EMQ case always results in a bunch elongation about an order of magnitude
more than the PMQ case.

viiiThis follows from the well-known lens-maker's formula: 1/f = 1/s1 + 1/s2, where the variables
s1,2 denote the object and image plane distances to the lens. A short value for f allows s1,2 to
be small resulting in a compact beam transport system.

ixThe EMQ lengths and positions are a compromise between short EMQ lenses (note that lEMQ �
lPMQ for an equal focal length) and maximising the drift between the last lens and the target
at 2 m to allow for other experimental equipment.
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As an aside, simulations including space charge show no further increase in bunch
length (�g. 3.9(b)). Space charge e�ects in the transverse plane are relevant however
and are discussed in section 3.3.3.
Pulsed electric quadrupole lenses have demonstrated even higher magnetic �eld

gradients than PMQ lenses; values of up to 1400 T/m have been achieved [Winkler
et al. 2003]. However, this scheme is limited to repetition rates of order ∼1 Hz
due to the charging time of the capacitor circuit needed to generate the required
high currents. Another possibility is the use of superconducting quadrupole lenses
but these devices are expensive and di�cult to construct in a compact manner
[Datzmann et al. 1999]. A further design is a hybrid lens using permanent magnet
material and iron pole wedges to increase the magnetic �eld. However, an advantage
of the �simpler� magnet-only devices over such containing iron poles is due to the
linear superposition of the magnetic �eld contributions of each of the segments.
This simpli�es the tuning process to reduce unwanted magnetic �eld moments as
discussed in the following section.

3.3.2. Transverse phase space coupling

Rotated lenses

Origin of lens �eld errors

Lens �eld tuning

A �rotated quadrupole� is a quadrupole �eld that is neither parallel nor perpen-
dicular to the other quadrupole �elds in the beamline. A roll error of a quadrupole
�eld leads to a vertical kick that depends on the horizontal o�set of the particles
passing through it and vice-versa (see �gure 3.10). In the doublet con�guration as
used in the experiments, the beam is focused and defocused in one plane (FODO)
and in the opposite order in the other plane. In the FODO-plane (vertical in �g.
3.10), the size of the electron beam at the second lens has a strong in�uence on the
eventual beam focus. Because of the roll error between the lenses, the beam has a
larger extent and hence also a larger focus. Fortunately for a doublet lens setup,
only a single lens needs to be rotated to minimise this error in an experiment.
The transfer matrix for a rotated quadrupole has to be 4x4 to include the coupling

of the transverse planes. The transfer matrix through a quadrupole rotated by θ is
~x = R−1(θ)M quadR(θ) ~x0 [Conte and MacKay 2008]. Written explicitly:


x
x′

y
y′

 =

(
~I cos θ ~I sin θ

−~I sin θ ~I cos θ

)(
MQF 0

0 MQD

)(
~I cos θ −~I sin θ
~I sin θ ~I cos θ

)
x0

x′0
y0

y′0
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Figure 3.9. � E�ect of beam transport on bunch transport: (a) Electron
beam envelopes in the x- and y-plane for focusing with a PMQ doublet (17 and
15 mm long, 500 T/m) and an EMQ doublet (300 and 220 mm long, 10 T/m).
(b) Evolution of the bunch duration along the beamline. For the PMQ case, a
simulation with space-charge (SC) included is also plotted (the bunch has 15 pC of
charge and a bunch length of σz = 1.6 fs). (c) E�ect of initial divergence on the
bunch duration in the focus, 2 m behind the accelerator.
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source Q1 Q2 focus

Figure 3.10. � E�ect of a rotated lens in a quadrupole imaging doublet.
The beam starts at the source on the left and passes through the quadrupole lenses
Q1 (vertically focusing) and Q2 (horizontally focusing) and then comes to a fo-
cus. The upper beamline shows the beam cross section for a set of perpendicular
quadrupole lenses. In the bottom beamline the �rst lens has a �roll� error (rotation
around the beam propagation axis).

where ~I represents the 2x2 identity matrix, and MQF and MQD are given by
equations 3.13a and 3.14 respectively. For the purposes of this thesis, it is desirable
to align the quadrupole lenses such that θ = 0°. The term �skew� quadrupole is
sometimes used to refer to the special case where the quadrupole has a rotation
of θ = 45°. Quadrupoles with such rotations are for example used to intentionally
couple the transverse axes and �distribute� the emittance such as to create a �sheet
beam� with a large horizontal to vertical emittance ratio.

Lens �eld aberrations

In the previous section a roll error between quadrupole lenses lead to a coupling
of the transverse phase planes. This coupling can be resolved by adjusting the an-
gle between the quadrupole �elds. A further cause of coupling are aberrations in
the quadrupole �eld. Such aberrations cause a distortion of the beam phase space,
which leads to an e�ective increase in beam emittance. A perfect quadrupole lens
contains no multipole moments of higher order, such as sextupole or octupole. The
origin of �eld errors in the lenses used in this experiment are due to statistical
variations in the magnetisation of the magnet wedges, the imperfect positioning of
the wedges themselves, and the �nite number of wedges used to create the magnetic
�eld pattern. The optimisation of the �eld components by carefully shifting individ-
ual magnet wedges is shown in [Becker et al. 2009; Raith 2009]. The determination
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of the �eld components works by measuring the radial component of the magnetic
�eld on a circle inside the lens aperture. By making an assumption about the mag-
netic �eld due to symmetryx, the magnetic �eld is fully characterised inside the
aperture. An iterative process of measurement and shifting magnet wedges reduces
undesirable multipole components. Any multipole component above the quadrupole
introduces non-linear terms in the particle trajectory through the lens and therefore
degrades the imaging quality. These multipole terms will be referred to as higher
order magnetic �eld components or HOMFCs. For the lenses employed in this thesis
the results of the tuning process along with the simulation of the remaining errors
are discussed in the context of particle tracking simulations in section 4.3.1.

3.3.3. Space-charge

Free drift

At a waist

The relevance of space-charge or emittance in beam-envelope dynamics can be
checked by comparing the corresponding terms in the rms beam envelope equation
for an ultrarelativistic beam (γ � 1) in a drift space [Reiser 2008]:

x(s)′′ − I

2IAγ3x(s)
− ε2norm.
γ2x(s)3

= 0. (3.33)

Here I is the peak beam current, IA = ec/re ≈ 17 kA is the Alfven current,
and the beam is assumed to be round in the transverse plane (i.e. x(s) = y(s)).
The ratio of the space charge and emittance terms gives [Anderson and Rosenzweig
2002]:

R0 =
Ix(s)2

2IAγε2
norm.

(3.34)

From equations 3.33 and 3.34 it is clear that for a small enough value of x(s), the
expansion of the beam is emittance dominated. As an example, the ratio of equation
3.34 can be calculated for the electron beam at the exit of the plasma. For the beam
parameters at the exit of the accelerator the values obtained from the experiments
of this thesis can be used: x(0) = 0.9µm, γ = 500, εnorm. = 0.2 π·mm·mrad, and
for the beam current a recently published experimental value I = 5 kA [Lundh
et al. 2011]. Substituting these values into equation 3.34 gives R0 = 6 × 10−3,
so the beam expansion is initially dominated by the emittance (divergence) of the
beam. After the beam passes through the lenses it is focused at a distance 2 m away

xIn the lens centre the longitudinal magnetic �eld is zero. This assumption can be checked by
using a 3D Hall probe.
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and so propagates for this distance with a beam size of ∼30µm in the horizontal
plane. Using x(s) = 30µm gives R0 = 6.6, indicating that space charge dominates
over the emittance in the drift section to the focus. This is plausible as behind
the lens system the beam is almost collimated and hence beam expansion is due
to space charge. There are two e�ects that reduce the severity of this space-charge
dominance: �rstly the space charge term by itself scales inversely with the beam
size so that its absolute e�ect is not so strong for the larger beam, and secondly in
the experiment the beam is dispersed vertically by the dipole magnet spectrometer
which reduces the beam density and therefore also the space charge forces. In the
experimental part of this work, these e�ects are simulated with the help of a particle
simulation code [GPT].
The e�ect of space charge on the longitudinal (temporal) bunch pro�le was touched

on in section 3.3.1 and found not to be relevant in terms of bunch length (it is impor-
tant when considering the energy chirp of the beam however [Grüner et al. 2009]).
Space charge increases the transverse emittance and can become noticeable for a
quadrupole scan. In the work of [Anderson and Rosenzweig 2002] it is shown that
space charge causes an asymmetry around the minimum spot size for a quadrupole
scan with a strong space-charge beam. To see this �gure 3.11 shows a beam en-
velope with and without space charge according to equation 3.33. At the beam
source, the divergence is high and the additional e�ect of the space-charge is negli-
gible (the beam is emittance dominated). In the long drift section the space-charge
beam expands faster due to the coulomb explosion. In the context of the emittance
measurements made for this thesis, the e�ect of space charge on a lens scan (see
section 3.4.1) is shown in �gure 3.12. Two e�ects are apparent from this �gure:

1. The base (the turning point) of the curve of the beam size �shifts� to larger lens
2 drifts. Due to the additional space charge forces the doublet needs to have
stronger focusing (larger drift lens 2) to focus the beam at the same position

2. The curve becomes asymmetrical about the minimum. For points to the left
of the minimum (weaker focusing), the �ank is �atter than for points on the
right side (stronger focusing). For larger drifts the doublet is stronger focus-
ing and hence the beam goes through a waist further upstream (see �gure
3.11). This leads to longer drifts where the divergence of the beam is high
and so the e�ect of space charge is smaller compared to the high (emittance
dominated) divergence of the beam. This means that the �anks of the space-
charge and non-space-charge curves approach each other for large lens 2 drifts.
Similarly the �anks on the left side approach each other as the doublet focus-
ing is eventually so weak that the source beam divergence is hardly altered
and remains large (emittance dominated). As the �anks approach each other
and the turning point of the space-charge beam is shifted, the curve becomes
asymmetric.
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Figure 3.11. � E�ect of space charge force on beam envelope. Solution
to equation 3.33 using thin lenses. The drift between lens 1 and lens 2 is 109 mm
(solid lines, �stronger focusing�) and 105 mm (dashed lines, �weaker focusing�).

3.4. Emittance measurement for LWFA beams

The basis for retrieving the emittance from beam-pro�le measurements with quadrupoles
is equation 3.23, reproduced here again for convenience:

σ(s1)2 = M2
11εβ(s0)− 2M11M12εα(s0) +M2

12εγCS(s0).

By measuring the beam size σ(s1) for various M , the Courant-Snyder parame-
ters and the emittance are found using a least-squares �t algorithm. In a typical
quadrupole scan measurement, M is varied by changing the quadrupole strength
such that the beam passes through a focus at s1 for the best accuracy. For the
experiments of this thesis the quadrupole strength is �xed so the position of a lens
is varied, or σ(s1) is measured for di�erent beam energies.
In terms of accuracy of the retrieved parameters, it is best to measure the beam

size around the image plane. Here the electron beam source size is imaged, and hence
a direct linear dependence between source size and measured beam size occurs. Fur-
thermore, by imaging the electron beam source with an appropriate magni�cation,
it becomes easier to resolve the small source size of approximately 1 µm expected of
LWFA beams.
The limitations of quadrupole scan techniques are:
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Figure 3.12. � E�ect of space charge force on lens 2 position scan. Solution
to equation 3.33 using thin lenses for the beam size at the YAG:Ce crystal. The green
dashed line is an o�set version of the green solid curve to facilitate the comparison to
the non-space-charge case. The space charge beam leads to a �atter curve relative
to the non-space charge case for smaller lens 2 drifts.

1. the maximum measurable energy is limited by what can be focused within the
beamline.

2. The semi-destructive nature of the measurement; the beam is focused which
may or may not be a hindrance for further experiments with the electron beam.

3. The long drift lengths can lead to an overestimate of the emittance for beams
which are a�ected by strong space charge.

4. The quadrupole lenses need to have low �eld aberrations for an accurate emit-
tance estimate.

3.4.1. Quadrupole lens position scan

For this method, the position of lens 2 is altered (this is the variation in M) and
the change in beam size is measured at s1. Figure 3.13 shows the e�ect of the lens-
position variation for di�erent initial electron beam parameters. The height of the
parabola is mainly determined by the electron beam source size, the opening angle is
mainly determined by the source divergence. Here it becomes clear that the source
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Figure 3.13. � E�ect of changing position of lens 2 on electron beam
size at YAG:Ce crystal. The curves of di�erent divergence (0.25, 0.5, 1 mrad)
assume a source size of 1 µm. The source size curves (0.5 µm, 1 µm, 2 µm) assume
a divergence of 0.5 mrad. The electron energy a�ects the �horizontal position� of
the curves.

size is best determined near the minimum beam size at the target positionxi. Outside
of the minimum-beam-size region, the dependence on the source size diminishes in
comparison to the dependence on the beam divergence.

3.4.2. Single-shot �quadrupole scan�

An alternative way to obtain the emittance is to scan the beam energy as opposed
to the position of a lens. In the experiments for this thesis the beam size for a small
range of energies can be evaluated for each shot. Depending on the energy being
measured (which determines the associated dispersion of the spectrometer) and the
�eld of view of the optical imaging equipment, the beam width of electrons within a
bandwidth of about 4 MeV can be measured. The variation of the natural emittance
over this energy window is about ±1%. Therefore the electrons within the 4 MeV
energy window will at least have a small variation due to adiabatic damping during
acceleration. The question is whether the electrons which eventually have this range
of energies are injected into the plasma wake�eld under the same conditions. It has
been shown in experiments that the longitudinal electric �elds in the wake�eld reach

xiWhen the lens position is adjusted to give the minimum beam size at the target, the beam is
e�ectively being imaged from the source to the target (see �gure 3.8).
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values of ∼ 100 GeV/m [Popp 2011]. For such large accelerating �elds and assuming
that electrons are trapped and accelerated to their �nal energy (ignore dephasing),
electrons in a bandwidth of 4 MeV were injected within 4 MeV/100 GeVm−1 =
40 µm. Popp [2011] also contains simulations with parameters like in the experiments
presented here. The laser beam undergoes self-focusing at a rate of about 18µm per
mm of propagation distance until it oscillates around a 10µm beam size. Within
a 40µm injection distance the laser spot size therefore changes by at most 1 µm.
From the discussion in the summary of chapter 2 (section 2.8), the injected beam
size depends on the laser beam size. Although the change of the laser beam during
injection is not completely negligible, it is expected to be small and therefore the
emittance of electrons within the 4 MeV window is considered constant for the
analysis of the experimental data.

3.4.3. Other emittance measurement methods

Multiple pro�le monitors: The beam size is measured at multiple locations along
the beamline separated by drift spaces. For very stable conventional accel-
erators, the pro�le monitors can be individually inserted into the beam and
so the associated scattering is minimised. The measurement is taken at three
or more di�erent locations, ideally around the beam waist. Without any fur-
ther focusing this requirement is ful�lled at the electron beam source. This
method has recently been applied to LWFA beams by Krus et al. [2015], which
measured an emittance of 22 π·mm·mrad for a 750 MeV electron beam. The
reference discusses the need to have the beam pro�le measurement close to
the accelerator exit for an accurate result. For high-power laser beams this is
problematic due to the destruction of the screen by the laser.

Pepper pot: The beam is sent through a mask which contains holes (�pepper pot�)
where the beam can pass undisturbed and the rest is scattered by the mask ma-
terial. The divergence of the individual unscattered beamlets can be obtained
by measuring the spot size after a drift length behind the pepper pot. The
scattered parts of the beam result in background noise for the measurement.
Published results for LWFA beams: Fritzler et al. [2004]; Sears et al. [2010a];
Brunetti et al. [2010]; Manahan et al. [2014]. The technique is traditionally
used for low energy beams where scattering of the beam is still signi�cant
with thin, high-density material masks. Further work has extended the en-
ergy range up to 3 GeV, [Thomas et al. 2013], however the construction of
the pepper pot becomes increasingly challenging the higher the beam energy.
Aside from this challenge, a general problem for this method is the character-
istic phase space of plasma-accelerated electrons with the large aspect ratio
between the electron beam source size and its divergence. The resulting poor
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accuracy is discussed in Cianchi et al. [2013].

Betatron radiation: The electron beam source size is deduced from the betatron
radiation emitted by the electrons during their acceleration in the plasma.
This information can be combined with a simultaneous measurement of the
electron beam spectra and divergence. Published results for LWFA beams:
[Kneip et al. 2012; Plateau et al. 2012; Schnell et al. 2012]. This method
combines the beam size in the plasma with the divergence of the beam after
it has exited the plasma. Hence the deduced emittance does not consider the
e�ect of the plasma density downramp which can alter the divergence and
beam size (see section 2.6).



4. Experimental setup and

measurement limitations

This chapter introduces the experimental setup used to obtain the results of the
subsequent two chapters (�gure 4.1). During the course of this thesis the laser
system was upgraded and various modi�cations were made to the target chamber
and diagnostics. The modi�cations to the setup that are relevant to the experimental
results will be mentioned. The errors and limitations of the setup critically in�uence
the conclusions drawn from the experimental results, hence these are also discussed
in detail here.

4.1. Electron acceleration

4.1.1. Laser system

Part of the results of this thesis were obtained prior to the 2009/2010 laser upgrade
which resulted in a power boost from 20 to 80 TW. For all experiments the laser was
focused with an o�-axis parabola with focal length 1.54 m into the gas target. The
relevant laser parameters are given in table 4.1. The ATLAS laser system consists
of a series of Titanium-doped sapphire crystal ampli�ers employing the chirped-
pulse ampli�cation (CPA) technique. Prior to this technique, pulse intensities were
severely limited by the damage threshold of the amplifying crystals, requiring large
(and expensive) crystals to spread the energy of high intensity beams over a large
area. CPA spreads the pulse energy in time by introducing path length di�erences
between frequency components of the laser using an arrangement of gratings and/or
prisms. The laser can then be compressed after the �nal ampli�cation stage to
obtain a high power for the experiment.
For the ATLAS-80 upgrade, additional power ampli�ers increase the beam energy

but also an additional new component (an acousto-optic modulator, �MAZZLER�)
also decreased the pulse length (for details see [Popp 2011]). To achieve wavebreak-
ing and self-injection, experiments with the ATLAS-20 relied on the self-focusing
and -compression of the laser in the plasma to reach the required intensities [Os-
terho� et al. 2008]. The power boost from the upgrade improved the stability of
the electron acceleration experiment as the higher laser intensity reduced the need
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Figure 4.1. � General experimental setup. The ATLAS laser beam is focused
into a hydrogen-�lled gas cell, ionises the gas and excites a plasma wake�eld. The
plasma wave breaks and electrons are injected and accelerated by the wake�eld. The
electrons pass through a pair of magnetic quadrupole lenses 10 to 20 cm behind
the gas cell which can focus, collimate, and steer the electron beam. Both lenses
have a measured �eld gradient of ∼500 T/m and are between 15 and 25 mm
long. The spatial characteristics of the electron beam are observed on a removable
scintillating screen (S1), and the spectral pro�le behind a dipole magnet with a
second scintillating screen (S2). Alternatively to S2, a YAG:Ce crystal (diameter
10 mm, thickness 0.3 mm) with high spatial resolution can be used to observe a
∼3 MeV part of the spectrum and displaced vertically to observe di�erent parts
of the spectrum. The exact distances, lens lengths, and dipole magnet strength
changed during the course of the thesis and are given at each relevant experimental
section.

to rely on the non-linear processes in the plasma to shape the pulse to a condition
where it could reach wave breaking.

Table 4.1. � Laser parameters E: laser pulse energy, τ : pulse duration, w0:
beam size at focus, I: focused intensity, a0: normalised laser vector potential. The
parameter a0 is calculated using equation 2.4

E (J) τ (fs) w0 (µm) I [Wcm−2] a0

ATLAS-20 0.85 42 19.5 1.7 ×1018 0.9
ATLAS-80 1.7 23 18.7 1.3 ×1019 2.5
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4.1.2. Gas target

Pulsed gas capillary

Variable-length gas cell

The two types of gas targets that were used for the experiments of this thesis
were a 15 mm long capillary and a variable-length (2 to 14 mm) gas cell. In both
cases the target geometry and the gas-�lling conditions were chosen such that a
reproducible, homogeneous gas distribution was achieved in the experiment. The
gas target was �lled with hydrogen gas su�ciently early (> 50 ms) before the arrival
of the laser; this means that gas turbulences are minimised and the valve opening
process (∼2 ms) has no in�uence on the density distribution.
The ionisation of the hydrogen gas to plasma was done by the driver laser itself

without pre-ionisation with an electrical discharge.

Pulsed gas capillary

The capillary gas target consists of two sapphire blocks, each with a half-cylindrical
groove. When pressed together they form a 15 mm long, 250µm diameter channel
(�gure 4.2). These targets are very durable o�ering operation over several thousand
laser shots [Osterho� 2008] and were typically operated at 0.1 Hz synchronised to
the laser pulse. As opposed to experiments with a pre-ionisation electrical discharge,
the exact diameter of the capillary is not important for the electron beam properties
as experiments with di�erent sized capillaries showed [Osterho� et al. 2008].

Variable-length gas cell

The variable length gas cell consists of a cylinder with a movable piston inside
which can be used to set the length of the gas volume that the laser interacts
with. As the diameter of the capillary proved itself to be unimportant for the
acceleration process, the di�erence between this target and the pulsed gas capillary
is the di�erent geometry of the gas entrance and exit holes and the acceleration
length. The gas-inlet holes and the gas valve opening times were again chosen to
produce a homogeneous gas density distribution. The length variability of the gas
cell was used to study the e�ects of a varying interaction length on the energy
gain and charge of the accelerated electron beam and gives information about the
dephasing of the electron beam with the accelerating wake�eld [Popp 2011].
The density pro�le within the gas cell could be investigated using transparent gas

cells. Until then, computational �uid dynamics simulations are necessary to get an
idea of the density pro�le inside and at the entrance and exit of the gas cell.
The OpenFOAM simulation presented here takes advantage of the symmetry of
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Figure 4.2. � Capillary gas target. The velocity distribution inside the capillary
was simulated with the �uid dynamics code FLUENT. After the initial valve opening
the gas settles down to become almost stationary and results in very reproducible
conditions for electron acceleration. Illustration taken from [Osterho� 2008].

the gas cell and only considers an 1/8 wedge of the entire volume and employs
appropriate boundary conditions to model the real gas cell. Even though the area
of the gas inlets going into the gas cell (8 × 1 mm inlets) is four times that of
the outlets (2 × 1 mm inlets), it is clear from �gure 4.3 that the pressure inside
the gas cell does not simply correspond to the pressure in the gas inlets. The
electron densities that are mentioned in the experimental section is calculated from
the backing pressure at the gas cell inlets; the actual electron density in the gas cell
is therefore lower.

4.2. Electron beam focusing devices

Lens geometry and magnetic parameters

Choice of experimental setup

The magnetic lenses used to image the electron beams consisted of 12 wedges of
permanent magnet material, Nd2Fe14B, with a remanent �eld of 1.3 T. Figure 4.4
shows how the magnet wedges are magnetised and arranged to produce a quadrupole
�eld resulting in a surface magnetisation of 1.5 T, and a magnetic �eld gradient of
∼500 T/m [Eichner et al. 2007]. The high �eld gradient is possible due to the small
bore radius of only 3 mm, the outer diameter is 35 mm.
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Figure 4.3. � Variable-length gas cell. a) Photograph of the gas target. b)
Fluid dynamics simulation with OpenFOAM of the density in the gas cell after 5 ms
with 100 mbar inlet pressure. The red dash-dotted line represents a symmetry axis in
the simulation (a 45° wedge is su�cient to model the gas cell), the laser propagation
axis, and also indicates where the lineout is taken for the density pro�le plotted in c).
The low-density (blue) regions on either side of the gas cell are the vacuum outside
of the gas cell. Simulation courtesy of S.W. Chou.
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Figure 4.4. � Magnetic quadrupole lenses. A mounted quadrupole lens and a
schematic diagram showing the 12 NdFeB wedges and their magnetisation.

In section 3.2.3 it was shown that by using a quadrupole doublet for imaging, the
magni�cation is di�erent for the two transverse planes. In general the beam therefore
has an elliptical transverse shape at a set position behind the lenses. From �gure
4.1 it is clear that at the position of the YAG:Ce crystal, only one transverse plane
contains information about the beam size because the other is spectrally dispersed by
the dipole magnet. The decision has to be made in which plane a large magni�cation
and in which plane a small magni�cation most bene�ts the experiment. Figure 4.5
shows the chosen con�guration: the size of the beam was measured in the horizontal
plane (large magni�cation), the vertical plane (small magni�cation) was dispersed
by the dipole magnet. The reasons for this choice were:

1. The larger magni�cation of the beam horizontally reduced the e�ect of reso-
lution smearing from the imaging optics (discussed in detail in section 4.4.4).
The real beam size is added in quadrature (assuming a Gaussian point-spread
function for the optics) with the optics resolution. A large horizontal magni-
�cation is therefore bene�cial.

2. The potential errors caused by �uctuations in electron beam source position
and source pointing should be minimised. The source pointing �uctuations do
not result in any changes at the YAG:Ce crystal (assuming there is perfect
point-to-point imaging of the source). However, the source position �uctua-
tions are magni�ed and lead to �uctuations in the position on the YAG:Ce
crystal (see measurements of this in section 6.2.6). This does not in�uence the
measured width of the focus, only its position. This �uctuation is important
in the vertical direction as a position o�set changes the energy of the electrons
arriving at a �xed vertical position of the YAG:Ce crystal. Due to the lens
chromaticity the electron beam width depends on the energy and therefore the
measured width would �uctuate from shot to shot. It is therefore best to have
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Figure 4.5. � Simulated beam envelope from the accelerator to the
YAG:Ce crystal. The source beam size and divergence is as measured experi-
mentally (0.9 µm and 0.4 mrad respectively), the quadrupole lenses are positioned
at approximately 12 and 24 cm. The lens magnetic �elds are discussed in section
4.3 and shown in �gures 4.6 and 4.7.

a small magni�cation in the vertical plane. A rough estimate of this e�ect
based on experimental data is made in section 6.2.6.

3. The small magni�cation vertically means that there is less overlap of di�erent
electron energies (see the discussion in section 4.3.1).

4.3. Simulations of electron beam transport

The goal of this thesis was to investigate the emittance of electron beams generated
by a laser-wake�eld accelerator. As the chosen measurement was performed approx-
imately 2 meters downstream from the accelerator exit, it is necessary to investigate
how the beam is in�uenced over this distance. By using a particle tracking code
[GPT], the electron beam can be simulated from the accelerator exit through the
magnetic lenses to the YAG:Ce crystal beam-size diagnostic. The relevant parame-
ters which a�ect the electron beam focusing (and potentially the retrieved emittance)
are:

Lens �eld aberrations: A coupling between the transverse phase space planes leads
to an unwanted exchange between them. The goal of the measurement is to
make assertions about the beam emittance as it is when the beam leaves the
plasma; coupling between the transverse planes should therefore be minimised.
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Lens positioning errors: Transverse positioning errors such that the electron beam
no longer passes through the magnetic centre of the lens. This leads to an ad-
ditional dipole moment which de�ects the beam and also means that the beam
passes through the stronger lens aberrations at the outer parts of the aperture.
Rotational errors of the lenses leads to coupling between the transverse planes.

Another important e�ect is space charge: although space charge forces are un-
avoidable and therefore not really �experimental errors�, they do increase the emit-
tance relative to its value at the accelerator exit which is the value to be determined.
This e�ect was discussed in section 3.3.3 and is simulated with a tracking code in
the experimental section 6.2.1.

4.3.1. Lens aberrations
Measured magnetic �elds of lenses

Imaging errors and retrieved emittance

Chromatic e�ects

Chapter 3 discussed the origin of lens aberrations and that higher-order �eld
components (HOMFCs) lead to coupling between the transverse phase spaces. This
section investigates how the situation looks in real life by simulating an electron
beam travelling through the beamline with the lenses positioned as in the experiment
with magnetic �elds taken from actual measurements. The experimentally derived
emittances are increased by lens aberrations and therefore well-tuned quadrupole
lenses improve the accuracy of the results. Only partially covered here is a realistic
simulation of the e�ect of the fringe �elds of the quadrupole lenses. Although the
simulations here include the measured gradient fall-o� as opposed to the simpler
hard-edge model, the measured �eld only includes the transverse magnetic �elds
(radial and azimuthal). For a realistic simulation the longitudinal �elds would need
to be included which are especially relevant in the fringe-�eld region (outside of the
physical extent of the lens).
From �gure 4.5 it is clear that the beam size is largest in the second lens in the

quadrupole doublet due to the defocusing of the beam in the vertical plane in the
�rst lens. Lens aberrations become more important if an electron beam has a large
beam size in the lens due to the dependence of HOMFCs on the radial distance
from the magnetic centre. In the work of Becker et al. [2009] this dependence is
shown experimentally by illuminating larger proportions of the lens aperture with
an electron beam. It is therefore most important that the second lens of the doublet
should have low aberrations. The decomposed magnetic �elds of the lenses used in
the experiment are shown in �gures 4.6 (�rst lens, 25 mm long) and 4.7 (second lens,
15 mm long). This data was obtained as discussed in [Becker et al. 2009; Raith 2009]
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by measuring the radial magnetic �eld on a circular path inside the lens aperture
using a Hall probe. For the 15 mm lens an iterative tuning algorithm was applied
to the lens to reduce the sextupoles (as described in the references above) which
shows a reduction of the sextupole components without increasing the remaining
HOMFCs. This leads to an improved imaging quality of the lens.
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Figure 4.6. � Magnetic multipole components of the 25 mm lens. The
magnetic �eld inside the lens is shown decomposed into its multipole moments. Due
to the small beam size at this lens and the relatively small sextupole moment, the
25 mm lens was not tuned any further for the experiment.

E�ect on retrieved emittance

How do lens aberrations and the tuning e�ort a�ect the retrieved emittances in
the experiment? To answer this a particle tracking code [GPT] was used to track
an electron beam from its source at the accelerator exit through the measured
magnetic �elds of the lenses to the focus at the YAG:Ce crystal. Figure 4.8(a)
shows the resulting beam size for untuned lenses and their �perfect� lens equivalents.
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Figure 4.7. � Magnetic multipole components of the 15 mm lens. The
magnetic �eld inside the lens is shown decomposed into its multipole moments. The
tuning e�ort was focused on minimising the sextupole moment due to its strong
impact on the imaging quality of the beam (see next �gures)

The �perfect� lens equivalents are derived from the measured �elds by removing all
orders above the quadrupole in the simulation. This means that there is no coupling
between the transverse phase spaces of the beam which improves the accuracy of
the retrieval of the emittance in the horizontal plane. The retrieved emittance from
the �untuned� lenses case is 3.1% larger than the �perfect� lenses case. The error
arises almost exclusively from the larger beam focus which corresponds strongly
to the retrieved source beam size. The �anks of the curves are very similar and
hence the retrieved source divergence is not in�uenced as strongly by the HOMFCs.
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Hence, sextupole components lead to an over-estimate of the source beam size and
consequently also of the retrieved emittance. For the case of the tuned lenses the
di�erence to the corresponding �perfect� lenses with no orders above quadrupole is
only 0.7%. The lens aberrations were therefore disregarded in the retrieval of the
emittance.

Chromatic e�ects

As the focusing power of the magnetic lenses depends on the electron energy (see
section 3.1.3), the position of the lens doublet needs to be adjusted for each energy
to image from the electron beam source at the accelerator exit to the YAG:Ce
crystal. Electrons with energies other than the target energy have a di�erent beam
size at the YAG:Ce crystal and would in�uence the emittance measurement if these
electrons cannot be distinguished. To mitigate the in�uence of the large energy
spread of the electron bunches, the emittance-retrieval experiment is conceived to be
spectrally resolved; the beam size is measured behind a dipole magnet spectrometer
and so each energy is dispersed to a di�erent vertical position at the target plane.
Nevertheless, in the experiment an overlap of energies is still expected which depends
on the divergence and size of the electron beam source and the vertical acceptance
used for the emittance analysis of electrons behind the spectrometer. In the data
analysis all particles that are within 50µm of the position for the nominal energy
are included in the emittance calculation. This approximately corresponds to a
vertical height of 20 pixel rows which are summed over in section 6.2 to obtain a
good signal from which the emittance is retrieved. Figure 4.9 shows the energy
distribution within the vertical acceptance around the nominal energy of 300 MeV
for an electron beam with initial parameters of 0.9 µm (source size) and 0.4 mrad
(source divergence). For this simulation the �gure shows that basically all particles
are within ±0.05 MeV of the nominal energy. According to the transfer function for
the beamline, this corresponds to a di�erence in beam size of about 50 nm at the
YAG:Ce crystal, a negligible di�erence compared to the total expected beam size of
about 25µm. For the measurements conducted at electron energies below 300 MeV,
the larger dispersion of the spectrometer reduces the spread of energies within the
vertical acceptance even further. This discussion shows why it is helpful to have a
small vertical magni�cation. However for this experiment even the larger horizontal
magni�cation (Mhorizontal ∼ 30, Mvertical ∼ 6) would still result in a negligible spread
of energies within the vertical acceptance window of 50µm. Therefore this error,
represented by σδE, will be neglected.
The previous paragraph discussed the e�ect of the electron beam divergence on

the measured beam energy and beam width. For a freely drifting beam without
magnetic lenses, the pointing of the electron beam will a�ect the absolute energy
that is measured as the beam enters the dipole magnet with di�erent angles and
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Figure 4.8. � Simulation of the e�ect of lens aberrations. a) Expected
beam size at YAG:Ce crystal after a quadrupole doublet for a position scan of the
second lens. The 'perfect' lenses line shows ideal beam imaging: all orders above
quadrupole are removed from the measured magnetic �eld components of the lenses.
The 'sextupoles' (green) line results when all orders above sextupole are removed,
the blue line when no �eld components are removed (measured untuned lenses). b)
The relative beam size (normalised to the beam size after a perfect lens system) when
individual HOMFCs are added to the 'perfect' lenses. The sextupole component has
the dominant e�ect of the unwanted multipoles; it alone increases the beam focus
size by approximately 3%.
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Figure 4.9. � Distribution of electron energy o�sets around nominal en-
ergy due to divergent electron beam. The distribution results after tracking
a uniform energy distribution through a quadrupole doublet and a dipole magnet
spectrometer and taking the electrons within a 50µm vertical window as used in the
data analysis. The electron beam source has the same parameters as those obtained
from the experimental data in table 6.1 for 300 MeV.

o�sets from shot to shot. For a beam imaging system as used in this thesis, the
beam pointing has virtually no e�ect on the measured energy: �gures 4.10d and
6.2d show that for the imaged beam energy all pointing angles are imaged to the
same point.

4.3.2. Misaligned lenses

Translation errors

Rotation errors

The previous section looked at the in�uence of lens errors on the electron beam
focus at the YAG:Ce crystal. The focusing action of the lenses mainly depends on
their magnetic �elds and their z (longitudinal) position. In the experiment motorised
translation and rotation stages were used to position the quadrupole lenses. Ideally,
the horizontal and vertical focusing planes of the two lenses are perpendicular to
each other and the beam propagation axis passes through the magnetic centres of
the lenses. The possible deviations from a perfect alignment come from errors in the
x, y, z positions and the angles α, θ, φ (also referred to as the pitch, roll, and yaw
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angles, see �g. 4.1). As in the previous section, GPT particle tracking simulations
with measured lens �eld maps will be used to look at how positioning errors a�ect
the electron beam focus and the retrieved emittance.

Transverse o�set

In a perfect quadrupole �eld a transverse o�set results in an additional dipole mo-
ment on top of the quadrupole �eld. A dipole moment �kicks� a beam transversely
without a�ecting its transverse emittance, nor the longitudinal position of a down-
stream focusi. A dipole de�ection happens whenever the beam axis and the lens
axes do not align (see �gure 4.10 b and c.)
In the experiment both transverse planes of the electron beam were imaged at

the YAG:Ce crystal. This means that a transverse o�set of the source (due to laser
pointing �uctuations) or of the doublet system leads to a magni�ed o�set at the
YAG:Ce crystal (see �gure 4.10c).

accelerator

YAG:Ce crystalQuad lenses

electron beam

a)

c)

b)

d)

Figure 4.10. � O�set of beam axis to lenses' axes. The schematic drawings
are valid if the lenses are positioned such that they image the object (electron beam
source) to the YAG:Ce crystal. a) Perfect axes alignment. b) One lens transversely
o�set leads to an o�set of the image. c) An o�set of both lenses also results in an
o�set image. This is equivalent to a transverse shift of the object (electron beam
source). d) If the source beam leaves the accelerator at an angle, the image position
remains unchanged.

iMore precisely, the beam's path length from the lens to its focus is not a�ected by a dipole.
Therefore the longitudinal position is unchanged by the additional dipole provided that the
transverse de�ection is small compared to the distance to the focus.
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Figure 4.11. � E�ect of transverse lens o�set on the imaged beam size.
Due to the lens o�set, the beam passes through outer regions of the magnetic lens
and therefore in general leads to a larger horizontal (blue lines) and vertical (red
lines) beam size at the YAG:Ce crystal. The tuned lens (solid lines) show a larger
plateau in which a transverse lens 2 o�set has no e�ect on the beam size than the
untuned lens (dashed lines).

For a realistic lens with lens aberrations the transverse o�set also plays a role
in the imaging of the beam. The beam envelope now passes through more outer
parts of the lens aperture where the HOMFCs are stronger (compare a) and b) of
�g. 4.10). For the tuned lenses as used in the experiments for this thesis, the focus
size is smeared for o�sets of > ±0.8 mm (see �gure 4.11, the result is similar for
an o�set in y). Such a transverse lens o�set and the corresponding dipole de�ection
would lead to a transverse o�set of the beam of ∼ 5 mm at the phosphor screen
at S1 (see �gure 4.1), and ∼ 10 mm at the YAG:Ce crystal at S2. Such an o�set
is easily detectable even with the shot-to-shot �uctuations of the LWFA electron
source. For 300 MeV electrons, a 10 mm vertical de�ection would lead to an o�set
in the measured energy of 17 MeV. Such an energy o�set would be noticeable in the
experiment due to discrepancy between lens positions required to focus a particular
energy (as a guide to the accuracy with which the electron beam energy is focused,
see �gure 6.2). Therefore by monitoring the energy o�set and the transverse o�set of
the beam image, the transverse lens position can be optimised to eliminate smearing
of the electron beam focus.
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Figure 4.12. � E�ect of lens roll on the horizontal electron beam size
at the focal position. Lens 2 is rotated around the beam propagation axis. The
simulation curve corresponds to a beam with a horizontal source size of 0.62µm and
a vertical divergence of 0.46 mrad. The error bars represent a standard deviation of
the experimental data.

Rotation errors

Figure 4.12 shows experimental data of the horizontal beam size at the target po-
sition when the roll of a quadrupole is scanned. It is the horizontal (x) source size
which mainly determines the parabola �height� (the rms beam size at which the base
of the parabola is), and the vertical (y) divergence which determines the parabola
opening angle. This dependence is in contrast to the method shown in �gure 3.13;
where the parabola shape is determined solely by the horizontal electron beam source
parameters. Figure 3.10 helps to understand why the divergence of the plane that
is defocused by the �rst quadrupole has the dominant role in the parabola �anks in
�gure 4.12. A large source divergence leads to a large extent of the line focus after
the �rst lens. Subsequently, the e�ect of a lens rotation is more severe on the size
of the �nal beam focus. From �gure 4.12 it can be seen that a lens roll angle of just
5 mrad will almost double the measured beam width at the YAG:Ce crystal and
correspondingly increase the retrieved emittance. In the experiments for this thesis
the roll angle was therefore carefully adjusted by scanning and �nding the smallest
horizontal beam size at the YAG:Ce crystal.
Fortunately, the other possible rotation errors, pitch and yaw, have very little

e�ect on the focused beam size; for the present experiment alignment errors of
30 mrad only increase the beam size by 5%. This has also been found in other
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practical applications involving PMQ lenses [Lim et al. 2005; Emma and Nuhn 2000].
As a result of the discussions regarding the transverse o�set above, the experimental
setup was realised such that both lenses could be independently positioned in x, y, z
coordinates by motorised translation stages and one lens to be rotated about the
electron beam axis (roll angle).

4.4. Electron beam diagnostics

4.4.1. Dipole magnet spectrometer

To spectrally resolve the electron beams from the plasma accelerator a dipole magnet
spectrometer is used. Electrons passing through a magnetic �eld will be de�ected
according to equation 3.1. The spectrometer is constructed such that the magnetic
�eld is transverse to the beam axis and hence de�ects the beam vertically. After an
additional drift length behind the dipole magnet, the beam passes through a 2 mm
thick stretch of aluminium to exit the vacuum chamber and through a scintillating
phosphor screen. The emitted light from the scintillating screen is detected by a
CCD camera. In this way the electron beam is separated from the laser beam which
is important for detecting the relatively weak signal from the scintillating screen.
The electron beam will scatter somewhat while passing through the 2 mm aluminium
chamber door. According to equation 4.1, a 200 MeV electron beam has a scatter
angle of 9 mrad after passing through the aluminium, which after 2 mm results
in a spot size of 18µm. Compared with the measured beam sizes on the order of
≈ 1mm and the resolution of the scintillating screen itself (≈200µm), this e�ect can
be neglected.
The magnetic �eld of the dipole magnet (including the fringe �eld) was measured

using a Hall probe. To calibrate the correspondence between electron energy and
de�ection, the measured �eld was included in a particle tracking simulation [GPT].
The results can be seen in �gure 4.13. A weakness of this diagnostic is that the
measured energy depends on the position and angle with which electrons enter the
dipole magnet. For a LWFA electron beam source the large divergences and pointing
angles of the beams will lead to incorrect spectral measurements. The problem can
be addressed by imaging the electron beam from the beam source to the scintillating
screen behind the magnet (see section 6.1.3).

4.4.2. Scintillating phosphor screens

The most convenient method for measuring the electron beam position and size is
by using scintillating phosphor screens. They have a high light yield that is linearly
proportional to the electron beam charge for many orders of magnitude [Buck et al.
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Figure 4.13. � Calibration of the dipole magnet electron spectrometer.
The measured magnetic �eld of the electron spectrometer is fed into a particle track-
ing simulation: black line 300 MeV, yellow line 200 MeV, white line in�nite energy.
The simulated de�ection along with the drift behind the spectrometer calibrates the
spectrometer for the experiment.

2010]. The spatial resolution is relatively poor at σ ∼ 200µm for the screens used
in these experiments (CAWO OG 16 [CAWO, Website accessed: 08.10.2017.]), but
su�cient to make meaningful beam pro�le measurements ∼ 1 m after the accelerator
exit (position S1 in �gure 4.1).

4.4.3. Scintillating YAG:Ce crystal

Basic properties

Limitations to the spatial resolution

YAG:Ce crystals are used for high resolution beam pro�le measurements while still
providing a relatively high light yield per beam charge. If the beam charge is too
low, a phosphor screen (see previous section) with a higher light yield can be used
(although with lower resolution). For high-charge beams, a setup using an optical
transition radiation (OTR) screen provides the highest resolution. OTR screens are
not suitable for beam pro�le measurements if the wavelengths that are detected are
similar to the length of the emitting electron beam bunch itself. In this case the
OTR can become coherent and the signal is no longer linearly but quadratically
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proportional to the beam charge. For the case of LWFA electrons where the time
pro�le of the bunch may have substructures, coherent and incoherent contributions
to the beam pro�le signal may be di�cult to distinguish.ii.

Chemical formula Y3Al5O12

Index of Refraction 1.82
Wavelength of Peak Emission [nm] 525
Density [g/cm3] 4.57
Radiation Length [cm] 3.5
Photon Yield [photons/MeV-deposited-energy] 35× 103

Cerium Concentration (with respect to Y) 0.18%
Decay constant [ns] 70

Table 4.2. � Details of YAG:Ce crystal material [Crytur, Website accessed:
11.07.2011.]

Factors limiting the spatial resolution of YAG:Ce crystals have been dis-
cussed in the literature [Lumpkin et al. 1999; Murokh et al. 2000], the second ref-
erence also contains a basic review of the scintillation process itself. Resolution
limiting factors can be put into two categories: collective beam e�ects and single-
electron e�ects that are independent of the beam charge density.

Collective e�ects:

1. Saturation of the YAG:Ce crystal scintillation sites. If the number of
electron-hole pairs in the crystal generated by the electron beam ap-
proaches or exceeds the number of scintillation sites, the signal will sat-
urate.

2. Secondary particles showers. Ionised electrons from collisions are ac-
celerated by the space charge �eld of the beam and in turn generate
electron-hole pairs or further electrons/x-rays.

Lumpkin et al. [1999] compared the resolution of YAG:Ce crystals and OTR
screens for a range of beam intensities, Σ, at the screen. The screens showed an
equivalent spatial resolution for a focused beam of 40 × 400 µm size with 1.9 nC
charge giving a beam intensity of Σ = 0.2 pC/µm2. Murokh et al. [2000] comes
to a value of Σ ∼ 0.04 pC/µm2 for the onset of resolution degradation due to

iiThis aspect is an interesting method to determine the bunch duration. For LWFA electrons,
bunches with lengths of ∼5 fs and with a beam current of 5 kA have been measured using
coherent transition radiation [Lundh et al. 2011].
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collective e�ects for a YAG:Ce crystal. For the measurements of this thesis, electron
beams were focused transversely to σx ∼ 20 µm, and were energetically dispersed
∼ 1 MeV/mm vertically (from the tracking simulations for the spectrometer). Given
a measured spectral charge density of 0.2 pC/MeV [Popp 2011], results in a beam
intensity of Σ = 1 × 10−5 pC/µm2. As this beam intensity is many orders of
magnitude smaller than for the above cases where collective e�ects become relevant,
collective e�ects will be neglected for these measurements.

Single electron e�ects:

1. Scattering of electrons in the crystal increase the beam size.

2. Secondary x-rays and electrons causing additional scintillation in the crys-
tal.

3. Depth of �eld blurring (discussed in section 4.4.4). The crystal is an ex-
tended radiation source as electrons generate light along its entire length
as they pass through it. This extended source causes blurring at the
detector depending on the details of the imaging optics.

The scattering of charged particles passing through matter (termed multiple
Coulomb scattering (MCS)) was reviewed by Lynch and Dahl [1991]. They
compared often-used approximate equations with Monte Carlo simulations based
on a modi�ed form of Molière scattering by Bethe [Bethe 1953] (which compares
well with experimental data for heavy particles and is often also quoted for electron
beams). They give the following as a good approximation for the rms scattered
angle of a charged particle beam:

θMCS =
13.6

p[MeV/c]β

√
X/X0[1 + 0.088 log10(X/X0)] (4.1)

with p being the beam momentum, β = v/c is the normalised beam velocity, X
and X0 are the material thickness and radiation length respectively. It agrees to
within 11% of the modi�ed Molière theory for 10−3 < X/X0 < 1000. A 300 MeV
beam passing through a 300 µm YAG:Ce crystal results in θMCS = 3.4 mrad. This
leads to an apparent increase of σMCS ≤ 1.0µm for the rms beam size in the crystal,
where the equality is valid for the apparent beam size at the exit of the crystal.
The detected scintillation signal is generated by the electron beam along the entire
crystal length, therefore σMCS = 1.0µm represents an upper limit.
As the electron beam propagates through the crystal, it generates secondary

particles called knock-on electrons and photons, or δ-rays (delta-rays). Secondary
photons are emitted due to Bremsstrahlung of the beam electrons and are emitted
in a cone with angle 1/γ relative to the electron path. For an incoming 300 MeV
beam this corresponds to an angle θBrems. = 1.7 mrad or an apparent increase of the
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rms beam size of σBrems. ≤ 0.5µm. As for the case of MCS above, the equality is
an upper limit as it represents the beam size at the exit of the crystal. Low energy
secondary electrons from Coulomb interactions with the beam can be scattered
at larger angles and subsequently cause scintillation far from the primary electron,
resulting in a transverse smearing out of the signal. The amount of smearing depends
on the distance that a secondary electron can travel away from the primary electron
in the crystal before exciting a scintillation site. The average path length of an
electron in a material until it comes to rest (often called �range�) is a function of its
initial kinetic energy. The range of secondary electrons is shown for the case of fast
electrons in a YAG:Ce crystal in �gure 4.14(a). Figure 4.14(b) shows the spectrum of
secondary electrons generated by an incident ultra-relativistic electron per distance
travelled in a YAG:Ce crystal as calculated with [Nakamura 2010; Grupen 2001]

d2N

dTdx
= 2πr2

emec
2NA

Z

A

1

β2T 2
ρ. (4.2)

Here N is the number of generated secondary electrons, T is the kinetic energy
of the secondary electrons, x is the distance travelled in the scattering material,
re the classical electron radius, mec

2 the electron rest mass energy, NA Avogadro's
number, Z and A are the atomic number and weight, and ρ is the material density.
This equation is derived from the Coulomb scattering of two charged particles and
neglects the binding energy of the secondary electrons to their parent ions. This
assumption is valid as long as the transferred energy is much larger than the so-
called mean excitation energy, I, of the material i.e. T � I which is ful�lled above
1 keV.
By integrating equation 4.2 one arrives at a formula for calculating the number of

secondary electrons generated along the length of the crystal with an energy above
a given energy T1:

P (T > T1) =

∫ l

0

dx

∫ Tmax

T1

d2N

dTdx
dT

≈153
ρ[g/cm3]

β2

Z

A

l[cm]

T1[keV ]
. (4.3)

Here l is the length of the scattering material, and Tmax the maximum possible
transferred energy iii.
To introduce a 3% error in the measurement of a 20 µm electron beam focus,

a resolution error of σδ = 5µm would be required (assuming Gaussian addition of

iiiHalf of the primary electron's kinetic energy due to the indistinguishability of primary and
secondary electron.
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Figure 4.14. � Properties of secondary (�knock-on�) electrons in YAG:Ce
crystal. a) Range of fast electrons in a YAG:Ce crystal. The stopping power (energy
loss per distance travelled in the material) and the resulting range of the electrons
were calculated using [NIS]. b) Spectrum of secondary electrons per unit energy bin
generated by a single incident ultra-relativistic electron travelling a unit length in a
YAG:Ce crystal (inset: main plot with linear scale).

errors). According to �gure 4.14(a), this requires secondary electrons with an energy
of >25 keV. Using equation 4.3, it can be calculated that each electron produces
P (25 keV) = 0.39 secondary electrons with an energy su�cient to travel 5 µm or
more. To judge whether such secondary electrons will smear the main beam pro�le,
the deposited energy of each is considered as this is directly related to the number of
scintillated photons (see table 4.2). The energy of the secondary electrons generated
by each incident beam electron is approximately 0.39× 25keV ∼ 10keV. The energy
deposited by electrons from the main beam can be obtained from the stopping power
using [NIS]: for 300 MeV electrons, a YAG:Ce crystal of length 300µm with a density
of 4.57 g/cm2 the deposited energy is 2.7 MeV per electron. As the deposited energy
from �harmful� secondary electrons is 1/270 for this rough calculation, their e�ect
on the degradation of the spatial resolution of the YAG:Ce crystal can therefore be
neglected.

4.4.4. Optical imaging of the electron beam focus

Di�raction limit

Depth of source and optical aberrations

The light generated by the electron beam passing through the YAG:Ce crystal
needs to be carefully imaged to obtain an accurate measurement for the beam focus
size. The optical imaging setup is shown in �gure 4.15. This section shows the
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Figure 4.15. � Setup for observing electron beam focus. The ∼ 20µm
electron beam focus passes through a YAG:Ce crystal and deposits a small amount
of energy; some of which is emitted as light in all directions with a peak wavelength
of about 530 nm. Part of the emitted light passes through a BK7 glass window out
of the vacuum chamber and is collected by an Edmund optics f/2 50 mm aspheric
achromat and together with a Canon f/2 135 mm camera objective (both working
at an in�nite conjugate ratio), is imaged to a CCD camera.

in�uence of various optical e�ects to justify how the imaging setup was chosen for
the experiments. For an optical imaging system it is convenient to de�ne a point-
spread function (PSF). The PSF is the observed light pattern at the image plane
from a point light source at the object plane. The PSF is a system response of
the imaging system and depends entirely on the imaging system (lens aberrations,
alignment errors etc.) and not on the object being imaged. The convolution of the
real object with the PSF gives the image observed at the image plane. Conversely,
if the PSF of the imaging system is known, the observed image can be deconvoluted
to obtain the original object. In the following sections the PSF of various optical
e�ects are discussed.

Di�raction limit

The resolution of a conventional optics system is ultimately limited by di�raction
which depends on the light wavelength and the acceptance aperture of the imaging
system. For the case of circular lenses, the image of a point source object is given
by the Airy pattern [Hecht 2002], which is plotted in �gure 4.16 together with a
Gaussian curve. The width of the Airy function as well as a Gaussian approximation
to it are given by
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Figure 4.16. � Airy function and Gaussian approximation. This plot shows
the point spread function due to di�raction for the imaging system used in the
experiment (λ = 530 nm, f = 135 mm, D = 25 mm.)

wdi�r., Airy = 1.22λ · f
D
, (4.4)

σdi�r., Gauss = 0.42λ · f
D
, (4.5)

where f and D represent the focal length and the lens aperture respectively. The
width of the Airy function, wdi�r., Airy, is de�ned as the distance from the centre of
the image to the �rst zero of intensity; for the Gauss curve σdi�r., Gauss is the rms
width.
As a rough estimate, both lenses are considered to be perfect, and a plane wave-

front of diameter 25 mm (the size of the �rst lens) falls on the camera objective
with a focal length of 135 mm. Using the Gaussian approximation to the Airy func-
tion (equation 4.5), and the central wavelength emitted by the YAG:Ce crystal of
530 nm, results in σdi�r. = 1.2 µm.

Depth of �eld and optical aberrations

An optical imaging system images from the object to the image plane. If the object
is three dimensional, then parts of it will extend past the object plane where the
resolution is highest. Some blurring will occur for these other parts of the object
and is connected with the depth of �eld of the imaging system; this becomes more
severe for low f-number (large aperture) imaging systems such as the case here. By
shifting the optics setup and determining the resolution as a function of position, an
approximate value for the resolution due to the depth of �eld and optical aberrations
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Figure 4.17. � USAF 1951 spatial resolution test pattern. The pattern
consists of groups with each six elements each in turn consists of three bars. The
line pairs per millimetre value refers to the width of one black and one white bar.

can be speci�ed by taking the average over the length of the object. To measure the
resolution, the measured contrast of the stripes of a USAF pattern (see �g. 4.17)
is compared to a convolution between a series of step functions (which represent
the USAF pattern) with a Gauss function (representing the point spread function
of the optics that is to be determined). The system resolution is found when the
contrast of the measured and the convolution cases match. The results for a lens
that is 75µm o�set from the optimum position are shown in �gures 4.18 and 4.19,
giving a resolution width of 4.2 µm. Figure 4.20 shows the results for a range of
optics positions. Taking the average of the resolution function over the optical
length of the crystal gives σDO = 3.5 µm. This empirical method also includes any
optical aberrations of the lens system. The above setup has also been simulated
with the Zemax [zem] ray tracing software. The depth of �eld e�ect is much smaller
in the simulation at approximately 1 µm. Although the simulation approximates
the camera objective as a perfect lens, the di�erence to the measured value seems
surprisingly large. For the analysis in this thesis the lower resolution of 3.5 µm
obtained from the measurement will be used.
Of the errors discussed in this section, the e�ect of depth of �eld of the imaging

optics is the dominant e�ect. The associated estimated point spread function will
be used to deconvolute the measured beam size at the YAG:Ce crystal. The errors
arising from the imperfect lenses depend on less predictable factors such as the
size of the beam in the lenses. Therefore these errors decrease the accuracy of the
measurement, but will not be included in the deconvolution of the measured data.
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Figure 4.18. � Lineout of USAF resolution pattern. Measured CCD counts
along a column passing through group six of the USAF resolution pattern. The
individual elements of the group are each the two small peaks between the large
peaks. For this lineout the optics were o�set by 75µm from the highest resolution
(this corresponds to one o�set on the horizontal axis of �gure 4.20). The contrast
is measured for element three (second from the top for even groups) using the red
dashed lines giving a value of approximately 0.77 for this case.
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Figure 4.19. � Determining the spatial resolution. The USAF pattern (green,
USAF group six, element three = 80.6 lp/mm) is smeared out by the optics point
spread function (red) via a convolution of the two. The convolution function is
sampled by pixels of �nite size (black crosses connected by blue line). A point
spread function width of 4.2 µm rms gives a contrast matching that in �gure 4.18.
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Figure 4.20. � E�ect of the o�set of the object plane position on the
resolution of the optics system. The USAF pattern served as an object at
di�erent o�set positions. The resolution averaged over the optical length of the
YAG:Ce crystal (the optical length is the physical length divided by the refractive
index, 300 µm/1.82) is 3.5 µm (red line). The resolution deteriorates faster if the
collimating lens is too close to the crystal (negative o�set) than if it is too far away.



5. Experimental results of

laser-wake�eld acceleration

This chapter presents the electron beams obtained from the laser-wake�eld acceler-
ation setup shown in the previous chapter. The results in this chapter have been
discussed previously in the following publications: [Osterho� et al. 2008; Osterho�
2008] (steady-state gas cell) and [Popp 2011] (variable-length gas cell). The initial
experiments for deploying the miniature quadrupole lenses were conducted with the
steady-state gas cell, whereas the emittance measurements were carried out with
the variable length gas-cell. Those experiments are presented in the next chapter.

5.1. Electron beam energy spectrum

Initial experiments at the Max-Planck Institut für Quantenoptik used a capillary
with an electrical discharge as a gas target for LWFA experiments. The electrical
discharge was used to pre-ionise the hydrogen gas which then relaxed to a radial
parabolic density pro�le which guided the laser and the acceleration process over
many Rayleigh lengths. Although high electron energies were achieved [Karsch
et al. 2007], the �uctuations of the electrical discharge also led to unstable electron
beams. The stability was greatly improved by operating the capillary without the
electrical discharge and using a reproducible gas density pro�le [Osterho� et al.
2008]. The electron beams from this con�guration typically had a plateau spectrum
up to ∼ 200 MeV with a peak at this energy (see �gure 5.1). The diameter of the gas-
cell did not play an important role in the generated electron beams as capillaries of
di�erent diameters led to similar experimental results. The stability of the generated
electron beams enabled many experiments. These included investigating the e�ect
of the pulse-front tilt of the laser beam on LWFA [Popp et al. 2010], the generation
of soft X-ray radiation from a magnetic undulator [Fuchs et al. 2009], the imaging of
these beams using magnetic lenses [Weingartner et al. 2011], and the measurement
of the electron beam emittance [Weingartner et al. 2012].
Using an upgrade of the ATLAS laser led to higher-charge beams at higher energy.

Additionally, a variable-length gas-cell was used to explore the dynamics of the
acceleration process. The results and in-depth analysis of this work can be found in
Popp [2011]; relevant aspects for this thesis are described in the following.
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Figure 5.1. � Steady-state gas cell electron beam spectra. 30 consecutive
electron beam spectra obtained with the steady-state gas cell (15 mm long). The
vertical axis shows the beam energy due to the dipole magnet dispersion. The
horizontal axis shows the divergence in the horizontal plane in the experiment. The
colour scale is linearly correlated with charge. Figure taken from [Osterho� 2008].

Figure 5.2 shows electron beam spectra measured for a range of accelerator lengths.
A typical shot had a plateau spectrum with charge 0.2 pC/MeV up to an energy
of 350 MeV. At this energy there was typically a peak on top of the plateau with
0.4 pC/MeV and an rms energy spread of 6% containing an integrated charge of
15 pC. Because of the �uctuations in the peak electron energy, the emittance mea-
surements in the following chapter were conducted slightly below the 350 MeV peak
to ensure that su�cient charge was available for every shot. Evident in the data
is the continuous acceleration (until ∼4 to 5 mm) and the dephasing and breaking
up of the electron beam beyond this. The dephasing length can be obtained by
analysing the high-energy cut-o� energy of the spectra. These highest-energy elec-
trons are expected at the head of the electron bunch in the plasma bubble and have
therefore �sampled� most of the longitudinal electric �eld of the bubble. For exam-
ple, for an electron density of 6.5× 1018cm−3, the cut-o� energy showed a parabolic
dependence with acceleration lengthi and started to decrease from about 4.9 mm
[Popp 2011]. Beyond this length, the laser had lost su�cient energy that it could no
longer drive a strong plasma wave. The electron beam itself had su�cient charge to
drive a plasma wave and slowly lost energy with increasing accelerator length.
A scan of the plasma density revealed that the accelerated charge increases with

density (�gure 5.3). This relationship is as expected from the consideration of the re-
quired longitudinal momentum for an electron to be trapped by the plasma potential
and also the reduced plasma wave velocity discussed in section 2.4. From 1D theory
the resonant laser pulse length for driving the plasma wave is LFWHM ∼ 0.37lp for

iAs expected from a linear electric �eld along the bubble axis as in �gure 2.2.
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a Gaussian-shaped beam in time (Esarey et al. [2009]). The pulse length of the
ATLAS laser of 23 fs will resonate with a plasma density of ∼ 3× 1018cm−3. Above
this density a lower accelerating �eld is expected hence also the lower electron en-
ergies. Previous work has shown a decrease in stability of electron beams above the
resonant driving density [Osterho� 2008] due to �lamentation of the laser. Fila-
mentation cannot be seen in the spectra shown here, however the stability decreases
above a density of ∼ 4× 1018cm−3.
By plotting the high-energy cut-o� of the beams against acceleration length, the

parameters of the accelerating �eld could be determined [Popp 2011]. For a density
of 6.5×1018cm−3 (130 mbar), the calculated accelerating �eld at the point of injection
was ∼ 160 GV/m and decreased linearly with 34 MV/mm2. The dephasing length
was found to be 4.9 mm with a cut-o� energy of 380 MeV. This gives an average
accelerating �eld over one dephasing length of ∼ 79 MV/mm.

5.2. Spatial beam characteristics

Electron beam pointing and divergence

By observing the electron beam before the dipole magnet the divergence and pointing
can be measured. A single shot behind the steady-state capillary target is shown in
�gure 5.4. It has an FWHM divergence of 1.6 mrad. The average over 20 consecutive
shots gives a mean divergence of 2.1 mrad FWHM and pointing �uctuations of 1.8
mrad rms. Interestingly, the later experiments conducted with the variable-length
gas cell show a signi�cantly smaller divergence of . 0.5mrad rms using the same
diagnostics. Using more sophisticated methodsii divergences as small as 0.40 mrad
were observed. This is amongst the smallest electron beam divergences published
to-date for LWFA. The small divergence can be explained by adiabatic damping of
the beam during its transition to vacuum (see discussions in sections 2.6 and 6.2.7).

Electron beam spectral divergence

From the spectra shown in �gures 5.1, 5.2, and 5.3, a spectral divergence in the
horizontal plane can be obtained. The spectral divergence for three example shots
is shown in �gure 5.5. As is stated in the �gure caption, a majority of shots shows a
larger divergence at or beyond the spectral peak which is relevant for the discussion
surrounding �gure 6.6.

iiQuadrupole scan, results discussed in section 6.2.1.
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Figure 5.2. � Accelerator length scan. Consecutive shots for various lengths
of the adjustable gas-cell at a density of 6.5 × 1018cm−3 (130 mbar). Dephas-
ing/depletion of the high-energy peak occurs around 6 to 7mm. The colour scale is
the same for all shots and the same as in �gure 5.3.
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Figure 5.3. � Accelerator plasma density scan. Consecutive shots for a 6 mm
acceleration length
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Figure 5.4. � Electron beam divergence. Transverse pro�le of a single electron
beam observed on a scintillating phosphor screen ∼1 m behind the accelerator. The
beam pro�le is not spectrally resolved and therefore contains all electron energies of
the beam. Illustration taken from [Osterho� 2008].
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Figure 5.5. � Electron beam divergence spectrally resolved. Three indi-
vidual shots are shown (top three images) and their respective divergence behind
the spectrometer (bottom plot). The vertical lines indicate the energy with the
highest charge density (�spectral peak�). These three shots have been chosen to
demonstrate three di�erent categories of shots: 1) no divergence change around the
peak (red peak, ∼40% of shots), 2) local divergence maximum at the spectral peak
(green peak, ∼50 % of shots), or 3) a larger divergence at the cut-o� energy beyond
the spectral peak (blue peak, ∼10% of shots). Note that the energy scale of the
bottom plot is linear, whereas for the top three plots it is not linear.



6. Measurements of the electron

beam emittance

In this chapter the experimental measurement of the electron beam emittance is
discussed. The measurement method was detailed in section 3.4 and relies on elec-
tron beam imaging using magnetic quadrupole lenses. The �rst part of this chapter
therefore explores the imaging process itself and the second part the emittance mea-
surement.

6.1. Beam transport of LWFA electrons

The results presented in this section were published in [Weingartner et al. 2011].

Of practical importance is the ease with which quadrupole lenses can be aligned
in the experiment. First the longitudinal position of the lenses is set according to
simulation results for the target energy. Next the transverse position of the lenses
with respect to the beam propagation direction must be adjusted. The fact that
a transversely-o�set lens introduces a dipole magnetic �eld is used by observing
the beam position before and after a lens has been moved into the beam. If the
beam stays at the same position for each lens independently, it can be assumed that
the beam propagates through the magnetic centre of the lens doublet and is not
de�ected by either lens. The di�culty of this alignment procedure results from the
inherent �uctuations of the pointing of the electron beam from the plasma. This
makes a single shot through a lens inconclusive about the exact transverse position
of the lens due to the fact that both the lens and the beam can have an o�set to the
target propagation axis. This can be resolved by taking statistics over a series of
shots and observing a trend. It is also possible to observe the beam after it has been
dispersed by the dipole spectrometer: if the dispersed beam is consistently tilted in
one direction, a dipole �eld from the quadrupole lenses is de�ecting the beam. As
the magnitude of the de�ection depends on the electron energy, a tilted spectrum is
observed.
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Figure 6.1. � Electron beam spatial stability improvement: False colour
images observed at S1, 1.12 m behind the source (experimental sub-�gures are each
normalised to one). a) Sum of 20 consecutive electron beams and peak positions of
each shot (dots). Shot-to-shot pointing �uctuations as well as the beam divergence
lead to FWHM widths in the summed signal of 5.3× 5.2 mm (x-axis × y-axis). b)
Sum of 47 consecutive electron beams with a magnetic lens doublet set to collimate
220 MeV electrons, the FWHM widths are reduced to 0.9×1.2 mm (x-axis × y-axis).
The inset shows a sum of 30 electron beam spectra taken shortly before. Despite
the chromaticity of the magnetic lenses, the beam collimation is still e�ective even
with an FWHM energy spread of 80 MeV (∼35%). Results from particle tracking are
shown as lineouts (magenta dashed lines) which have already been convoluted with
the instrument function of the detection system of S1 to allow a direct comparison
with the experimental lineouts (white solid lines).

6.1.1. Spatial stability improvement of LWFA electron beams

LWFA electron beams exhibit large pointing �uctuations on the order of&1 mrad rms
(see section 5.2). This results in a di�erent transverse position of the electron beam
on target from shot to shot and will decrease the stability of subsequent experi-
ments. By imaging the beam with quadrupole lenses, both the spot size and the
shot-to-shot position �uctuation on target can be reduced. To quantify the e�ect
of imaging the beam, the size of the summed signal of many shots observed at S1
(1.12 m behind the gas cell) was compared with and without PMQ lenses (�gure
6.1). The summed beam size at S1 arises from the electron beam pointing and di-
vergence and for the case where PMQ lenses are used, also the combination of the
beam energy spread and the lens chromaticity. Figure 6.1(a) shows the sum of 20
consecutive electron beams and their respective peak positions without PMQ lenses.
The summed signal has a FWHM width of ∼ 5.2 mm resulting from pointing insta-
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bilities of 1.8 mrad rms (de�ned from the peak positions) and a mean divergence of
1.7 mrad FWHM. Figure 6.1(b) shows the sum of 47 consecutive shots with a PMQ
doublet positioned to collimate 220 MeV electrons resulting in an FWHM width of
0.94 × 1.20 mm (x-axis × y-axis), approximately a factor of �ve smaller than the
freely drifting beam. This reduction in spatial �uctuations was successful despite
the large range of electron energies (260 to <150 MeV) measured in the experiment
(see �gure 6.1(b) inset). To con�rm these results, simulations were performed for a
freely drifting beam and for a beamline with a quadrupole doublet. The simulation
tracked an electron beam with the measured energy spectrum and a �xed divergence
such that the freely drifting beam matches the experimenti. The tracked electron
beam spot was convoluted with the instrument function of the detector at S1 (as-
sumed to have a Gaussian shape), where the width is determined by the graininess
of the phosphor screen and the resolution of the optical imaging system observing
the screen giving a combined resolution of σ ∼ 160 µm. For a subset of the beam
containing only 220 MeV electrons, and assuming a source beam of size 1µm and di-
vergence 1 mrad, calculations using linear beam optics of the transport system give
a spot size of 0.20×0.44 mm (x-axis × y-axis) and divergences of just a few µrad at
S1. For these electrons the spot size can be maintained over long distances which is
essential for applications involving apertures or which are sensitive to the divergence
such as for undulator experiments [Fuchs et al. 2009]. Furthermore, simulations of
Gaussian, on-axis beams with a divergence of 1.7 mrad FWHM (as measured in the
experiment) show that the imaging system transports all particles with energy in
the range measurable with the spectrometer without clipping at the lens apertures.

6.1.2. Electron beam focusing

Increasing both the distance of the PMQ lenses to the gas cell, as well as the dis-
tance between them by ∼5 mm changes the collimation into a focus at the position
of S2, 1.94 m behind the accelerator. Figure 6.2(a) depicts the summed signal of
20 consecutive shots detected at S2 without magnetic lenses. For these unfocused
beams the average width at 220 MeV of a single shot caused by the divergence is
3.2 mm FWHM. The summed signal of multiple shots is much larger due to pointing
�uctuations occurring from shot to shot. Figures 6.2(b) and (c) show the focusing
e�ect of the PMQ lenses at 230 and 210 MeV respectively for a sum of consecutive
shots. As for the case in �gure 6.1 b), the summed beam size is reduced for a broad
range of electron energies. The lenses were aligned such that the electrons hit the
spectrometer entrance on the laser axis. The fact that the best focusing coincides
with the chosen energy (green vertical lines) proves the excellent accuracy in charac-

iThe divergence of the simulated beam was the Gaussian addition of the pointing �uctuations
and the divergence.
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Figure 6.2. � Electron beam focusing: False colour images of summed electron
beam spectra observed at S2 (experimental sub-�gures are each normalised to one).
a) Sum of 20 consecutive shots without magnetic lenses. b) Sum of 44 shots, focus
at 230 MeV. c) Sum of 30 shots, focus at 210 MeV. Vertical green lines indicate the
target electron energy to be focused at the screen position. d) Tracking simulations
with lenses positioned as in c) for electron beams with energies 150 - 250 MeV with
initial divergence of 1.7 mrad FWHM for three di�erent initial pointing angles (θx,y)
leaving the gas cell: on-axis beam θx,y = 0 (blue), θx = θy = 3.6 mrad (red),
θx = −3.6 mrad θy = 0 (green).

terising, modelling and positioning the lenses to achieve the desired focus. As in the
previous section for the beam collimation case, a particle tracking simulation using
GPT showed that the bunch is transported without any loss of particles within the
measurable energy range of the spectrometer. Individual shots in these con�gura-
tions have widths .500 µm FWHM at the focused energy and are limited by the
resolution of the detection setup. For high-resolution measurements of the beam
focus size see section 6.2. To change the focusing from 210 to 230 MeV required
changing the distance from the lenses to the gas cell by 22 mm, and the distance
between them by 4 mm. The required drift lengths around the lens doublet depend
linearly on the electron energy for a broad range of energies indicating the sim-
plicity and tunability of this method. The chromaticity of the lenses results in the
imaging of only a particular electron energy at S2. For o�-target energies the beam
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Figure 6.3. � Energy resolution improvement: a) A mono-energetic electron
beam entering a dipole magnet spectrometer will have its measured energy spread
arti�cially enlarged by its divergence. The spectral resolution is shown for two cases,
mono-energetic electron beams with an initial FWHM divergence of 3.25 mrad (solid
blue line) and 4.0 mrad (dashed blue line). These errors can be signi�cantly reduced
for any energy that can be focused on the observation plane at S2 by the magnetic
lenses. The green (dash-dotted) and red (dotted) curves show the calculated mea-
surement accuracy for two di�erent lens positions. The green shaded area shows
the e�ect of longitudinally misaligning the second lens by ±5 mm. Black squares
represent measured energy spreads with the lens system focusing 190 MeV (corre-
sponding to the green dash-dotted curve). b) and c) show false colour images of
electron spectra observed at S2 for this lens setting with FWHM energy spreads of
2.8% b), and 2.4% c).

divergence and pointing lead to a larger spot size and transverse o�set, respectively.
For many shots this results in the observed shape of the summed signal which is
con�rmed by simulations assuming ideal quadrupole lenses with �eld gradients and
positions as in the experiment (see �gure 6.2(d)). The measurements suggest the
possibility of using PMQ lenses in a spectral �lter by placing a suitable mask at
the focus position to scatter and therefore substantially increase the emittance of
o�-target (out of focus) energies. After a subsequent lens system to collimate the
desired beam energy, the e�ective on-axis energy spread will be reduced. This idea
was pursued in depth in the work of Lechner [2011].
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6.1.3. High-resolution imaging spectrometer

The beam transport system can also be used to improve the characterisation of the
electron spectrum. In the experiment the energy of an electron beam is measured by
observing its de�ection behind a dipole magnet. An experimental error can result
from the �nite position o�set and angle at the spectrometer entrance due to the
divergence, or for a series of shots, the pointing �uctuations of an electron beam.
The divergence in the dispersion plane of the spectrometer causes an increase in the
measured energy spread due to the larger spot size observed behind the magnet.
The pointing �uctuations cause an error in the measured absolute energy from shot
to shot due to the resulting position o�set behind the magnet. These experimental
errors can be signi�cantly reduced by imaging the electron beam from the accelerator
exit to the observation screen. This has been realised with imaging spectrometers
speci�cally designed for LWFA beams [Nakamura et al. 2008; Sears et al. 2010b]
which have accuracies of 1% rms or better over a range of several hundred MeV.
Alternatively, a non-invasive method is to use an undulator as a diagnostic device
by analysing the emitted radiation [Gallacher et al. 2009]. In the present work
PMQ lenses were used to image the electron beam and, in combination with a
simple dipole magnet, create an imaging spectrometer. To quantify the spectrometer
resolution for the imaging and the free-drift cases, particle tracking simulations of
mono-energetic beams with a source size of 1 µm and FWHM source divergence
of 4 mrad were performed for a range of energies. Using the dispersion function
of the spectrometer, the tracked beam size at S2 was then mapped to an energy
spread (�gure 6.3 (a))ii. The error for the freely drifting beam is shown for two
source divergences deduced from data taken during these experiments, 3.25 mrad
(blue solid line) and 4.0 mrad (blue dashed line) corresponding to the lowest and
median measured electron beam divergences. The measured error becomes more
severe at higher energies due to the lower dispersion of the spectrometer. The
e�ect of imaging with PMQ lenses is shown for two di�erent lens positions (green
dash-dotted and red dotted curves) improving the resolution of the spectrometer
to ∼0.2% FWHM for the focused energy. In practice the resolution is likely to
be limited by the detector observing the beam behind the dipole magnet, for the
experiment in this work this leads to a resolution of ∼0.4% FWHM. Figures 6.3(b)
and (c) show measured spectra at S2, Fig. 6.3(c) depicts a beam with an energy
spread of 2.4% FWHM, or 1.0% rms assuming a Gaussian pro�le, and containing
0.4 pC of charge. Even a large misalignment of the second lens in position by
±5 mm leads to only a minor decrease of spectral resolution (�gure 6.3(a) green
shaded area) indicating that the measured energy spread is intrinsic to the electron

iiThe results presented here are based entirely on simulations to allow the inclusion of quadrupole
lenses in the beamline. For an analytical derivation for a freely drifting beam with a divergence
and a dipole-magnet spectrometer, see the work of Osterho� [2008].
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Figure 6.4. � Electron beam steering: False colour summed images observed
at S1, 1.12 m behind the electron source with symbols marking the peak position
of individual shots. The central spot shows the sum of 18 shots (circle symbols).
The surrounding four spots (triangle symbols of di�ering orientation) were observed
after o�setting the second lens transversely to the beam propagation direction in
four separate positions. This introduces a dipole moment which de�ects the electron
beam. The lens was moved by ±390 µm and ±530 µm in the x and y direction and
caused corresponding angular de�ections of 6.1 and 7.3 mrad in the same direction.

bunch. The positioning error of the �rst lens is even less critical in this context.
The detrimental e�ect of higher order magnetic multipoles [Becker et al. 2009] (and
the resulting increase of both the beam size at S2 and the apparent energy spread)
were included in the simulation by tracking the beam through measured �eld maps
of the lenses used in the experiment. Beams with a similarly low energy spread have
been demonstrated in experiments using a second counter-propagating laser pulse
to control the electron injection precisely [Rechatin et al. 2009]. The generation
and reliable diagnosis of low energy spread LWFA electron beams is a fundamental
requirement for realising a laser-driven laboratory-scale FEL.

6.1.4. Electron beam steering

Besides imaging the electron beam, its propagation direction could be actively
steered. By introducing a transverse o�set d of the second PMQ lens to the beam
propagation axis, the beam experiences a dipole �eld of magnitude ∼gd when it
enters the lens, where g is the lens magnetic �eld gradient. For a transverse o�set
in the focusing (defocusing) plane of the lens, the beam will be de�ected towards
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(away) from the lens centre, and for a thick lens, experience a dipole �eld of de-
creasing (increasing) magnitude as it passes through the lens. Hence, the angular
de�ection is weaker in the focusing than in the defocusing plane for the same lens
o�set. Figure 6.4 shows steering of the electron beam on screen S1, 1.12 m from the
source with four di�erent transverse o�sets of the second lens. The introduced hor-
izontal o�sets of L2 were ±390 µm (defocusing plane), and the vertical o�sets were
±530 µm (focusing plane). This resulted in average angular de�ections of 6.1 mrad
and 7.3 mrad in the same directions which gives a larger de�ection per o�set in the
defocusing plane as expected. The drawback of this method is the possible distor-
tion of the beam shape. Both the introduced dipole strength and the magnitude of
higher order aberrations grow with the o�set d. The perturbing e�ect of the higher
order aberrations increases with the beam size in the lens. The introduced dipole
�eld disperses the beam due to its energy spread and hence also increases the spot
size. Depending on the subsequent requirements on the electron beam, these e�ects
need to be taken into account. Steering the beam using quadrupole lenses is a sim-
ple and compact method to counteract an undesirable angular o�set of the electron
beam that can be caused by a tilted intensity pulse front of the driver laser [Popp
et al. 2010].

6.2. Electron beam emittance

In this section the measurements used to obtain an electron beam emittance will be
shown and discussed. The results of the analysis give the transverse emittance, the
electron energy, the source size, and the source divergence; the latter two refer to the
values of a �virtual� electron beam source at the accelerator exitiii. The divergence
corresponds to the free drift divergence of the beam as it would be measured by a
beam pro�le monitor after a drift behind the capillary. The source size is a helpful
concept to quantify the size of the electron beam at the accelerator exit, but may
not correspond to a real beam waist. The reason for this potential discrepancy is the
lack of empirical data concerning the e�ect of the plasma to vacuum transition (for
more details, see section 6.2.7). The electron energy obtained from the data analysis
can be compared to that from the position of the measurement apparatus and the
spectrometer calibration. The results presented in this section were published in
Weingartner et al. [2012] and are summarised in table 6.1.

iiiIn the text the word �size� is sometimes omitted leaving just 'source' and 'divergence' to refer
to the virtual source parameters.
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Table 6.1. � Results from the lens position (multi-shot) and energy scan (single-
shot, mean over several shots) methods

Energy (MeV) εn(π.µm.rad) σ(µm) θ(mrad)

300
E scan 0.22+0.02

−0.02 0.91 0.40
D2 scan 0.19+0.03

−0.01 0.91 0.35
270
E scan 0.19+0.02

−0.02 0.88 0.40
D2 scan 0.17+0.02

−0.01 0.92 0.34
245
E scan 0.21+0.03

−0.03 0.95 0.44
D2 scan 0.20+0.01

−0.02 0.93 0.44

6.2.1. Energy dependence

Derived source size and divergence

Divergence dependence on electron energy

This section shows experimental results of the lens-scan method which was de-
scribed in section 3.4.1. The method measures the electron beam size at the YAG:Ce
crystal for a range of lens positions. The electron beam parameters can be �tted
to this data which was done for beams with energies of 245, 270, and 300 MeV at
a plasma density of 6 × 1018cm−3. The retrieved source divergence will be com-
pared with the measured free-drift value, and also the e�ect of space-charge on the
measurement will be discussed.
Figure 6.5 shows a scan of the z-position of lens two and the resulting measured

beam size at the YAG:Ce crystal positioned behind the dipole magnet such that
electrons with an energy of 245 MeV are observed. Each data point is the mean
rms beam width of 15 or more shots; the width of each shot is evaluated for a small
integrated energy bandwidth (±0.05 MeV) around the observed energy. The error
bars correspond to a 95% con�dence interval for the mean. The parameter �t gives a
source size of 0.93±0.11 µm and source divergence of 0.44±0.04 mrad, resulting in a
normalised emittance of 0.20+0.01

−0.02 π·mm·mrad. The error limits are 95% con�dence
intervals obtained by bootstrapping procedure using 2000 samples (see Appendix
A). The accuracy of the method is also illustrated by the expected dependence for
a 20% larger emittance by increasing the inferred source size or divergence.
This measurement was repeated for electron energies of 270 and 300 MeV. For
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Figure 6.5. � Lens position scan for 245 MeV electrons. The black squares
show the mean RMS beam sizes for various z-positions of lens two. The error bars
correspond to a 95% con�dence interval for the mean value. The �t curve (blue)
neglects space charge and gives a normalised emittance of 0.20+0.01

−0.02 π·mm·mrad and
inferred RMS source size and divergence of 0.93µm and 0.44 mrad, respectively. The
in�uence of space charge is shown by the yellow line which shows the expected beam
sizes for a high space-charge beam. The discrepancy in shape and position along the
horizontal scale of the yellow and blue lines indicate that space charge is negligible.
The initial source size and divergence in the space-charge simulation were chosen to
be 0.25µm and 0.45 mrad respectively to obtain a similar curve as obtained from
the measurements.

270 MeV electrons the �t routine gives a source size of 0.92+0.07
−0.11µm and source diver-

gence of 0.34+0.08
−0.04 mrad, resulting in a normalised emittance of 0.17+0.02

−0.01 π·mm·mrad.
Similarly for 300 MeV electrons the �tted source size is 0.91±0.07µm and the source
divergence is 0.35+0.09

−0.06 mrad, resulting in a normalised emittance of 0.19+0.03
−0.01 π·mm·mrad.

As above, the error bars represent 95% con�dence intervals. The normalised emit-
tance remains relatively constant which supports the expected linear focusing forces
in the wake�eld during acceleration as discussed in section 2.5, and which has been
previously observed at lower electron energies of <20 MeV [Sears et al. 2010a]. To
make a more conclusive claim about a constant normalised emittance would require
a larger range of energies to be measured. One reason is that the margin of error of
∼ 10% in the calculated emittance is comparable to the energy range that is scanned
here.

The derived divergences are compared with the free-drift divergences measured
behind the spectrometer with a lanex screen in �gure 6.6. Below about 250 MeV the
lanex and the lens-scan divergences agree well. For higher energies the larger diver-



104 6. Measurements of the electron beam emittance

150 200 250 300
Electron energy (MeV)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D
iv

er
ge

nc
e 

(m
ra

d)

Lanex
245MeV
270MeV
300MeV

Figure 6.6. � Comparison of divergence measurements. The plot shows
the measured electron beam divergence using the lens scan method (squares). The
measured divergences are extrapolated for other energies by assuming the source
divergence scales as θ(γ)/γ = θ(γ0)/γ0 as would be expected from an electron
beam source undergoing adiabatic damping during acceleration (solid blue, green,
and red lines). The measured divergence with the lanex screen at S2 are shown in
black (crosses: raw data, pluses: raw data deconvoluted with a σ = 400µm Gaussian
to account for the resolution of the lanex measurement).

gences often seen around the spectral peak of individual shots lead to a �attening of
the average divergence of many shots as observed by the lanex screen (see �gure 5.5).
As the spectral peak is at a di�erent energy from shot to shot, the lanex divergence
�attens out for > 250 MeV. During the lens-scan measurements the spectral peaks
of the electron bunches were well beyond 300 MeV being observed by the YAG:Ce
crystal, and hence the larger divergence did not in�uence the measured divergence.
There is therefore no discrepancy between the lanex divergence and the lens-scan
divergence.
As touched upon in section 3.3.3, the space-charge of the beam a�ects the beam

dynamics during propagation and the position and shape of the lens-scan measure-
ments. As a simple test a beam without space-charge was tracked [GPT] for the
di�erent lens positions as in the experiment. The simulated �lens scan� without
space charge perfectly matches the �best �t� line in �gure 6.5 which is a strong
indication that space charge is not relevant in the data over many shots as in this
scan. To illustrate how a lens scan would look for a high-charge case, a tracking
simulation of 3000 macro-particles including point-to-point space charge for an ini-
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tially mono-energetic 245 MeV, 50 pC beam with duration 4.5 fs was carried out
(see �gure 6.5). The �gure shows a clear deviation from the measurements in terms
of shape and position. To focus a beam including space charge requires a stronger
focusing lens system to compensate the repulsion of the electrons. In the present
work stronger focusing is achieved by increasing the z-position of lens two, resulting
in the shift of the beam size curve to the right as seen in the �gure. Such a shift
could also be caused by the source position being further away from the �rst lens
(source position upstream of the physical exit of the gas cell, inside the gas cell).
A source position inside the gas cell seems unlikely as the depletion length of the
laser and gas cell under similar conditions was measured to be ∼ 7mm in the exper-
iments described in Popp [2011]. Hence the electron beam is still contained within
the wake�eld forces for the entire length of the gas cell which was 5 mm for these
experiments. Furthermore, as is discussed in section 6.2.7, the plasma-to-vacuum
transition rather leads to a shift of the source position closer to the �rst lens (source
position downstream of the physical exit of the gas cell, outside of the gas cell). De-
spite these arguments, as the electron source position is not precisely known, the
position of the measured curve of a lens scan is not conclusive about the strength of
the space charge a�ecting the beam. A stronger indicator seems to be the shape of
the measured curve. Anderson and Rosenzweig [2002] showed that quadrupole scans
of beams with signi�cant space charge display an asymmetry about their minimum,
with the stronger focusing side (larger lens two z-position) showing a steeper �ank.
As the measured data does not show a signi�cant asymmetry (or shift), space charge
e�ects must be much less signi�cant in the experiment than in the simulation in the
�gure. As the charge is reduced in the simulation, the yellow curve moves towards
the measured data, becomes symmetric, and eventually matches the blue �t curve.
The measurement accuracy bene�ts from the spectral splitting of the beam behind
the dipole magnet which reduces the charge density and hence the space charge
repulsion of the beam. The measured data therefore con�rms that space charge is
negligible in the present experiment.

6.2.2. Single-shot emittance measurement

In the previous section a lens was moved and the resulting changes in beam size
were used to �t an emittance. This method requires multiple shots to cover a range
of lens positions for the �t routine. Alternatively to changing a lens position, a
range of electron energies can be observed and an emittance �tted to the resulting
beam sizes as a function of energy (see discussion in section 3.4.2). In this case the
disadvantage of large energy spreads from the LWFA process can be put to good
use as a single shot easily delivers a large enough energy range to �t an emittance.
At 300 MeV, the dispersion of the electron spectrometer is such that the YAG:Ce
crystal with diameter φ = 10 mm can observe a range of electron energies of slightly
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more than 4 MeV. This energy range is large enough to �t an emittance with good
accuracy.
Figures 6.7(a) and 6.7(b) show the �tted curve to the raw data for two shots at

di�erent energies. Due to the larger dispersion of the dipole magnet spectrometer at
245 MeV, the energy range on the YAG:Ce crystal is only 2.5 MeV at this energy. For
the 300 MeV shot the �tted source size and source divergence are 0.628±0.005µm and
0.383±0.013 mrad, resulting in a normalised emittance of 0.143±0.004 π·mm·mrad.
The error bars for all numbers in this paragraph represent a 95% con�dence interval
based on a bootstrap analysis (for a description and comparison to other error bars
see below). This shot has a particularly low emittance which can be seen in the
context of some shots around it. For the 44 shots taken with similar conditions
the average observed emittance value is 0.22±0.02 π·mm·mrad. The 245 MeV shot
is also a low-emittance shot with a derived value of 0.12±0.01 π·mm·mrad, the 48
shots taken around it have an average of 0.21±0.03 π·mm·mrad. The average values
at both energies agree well with the values obtained from the multi-shot methods
described earlier in this section.
As the analysis for the energy-scan method relies on �tting to electron beam sizes

of di�erent energy, it is more robust in the 300 MeV than for the 245 MeV case.
This becomes clear when looking at the hypothetical �t curves for increased electron
beam source parameters. The source size and source divergence which best �t to
the data are increased by 20% and the expected beam size at the YAG:Ce crystal is
calculated. From these curves it becomes clear that the source size mainly in�uences
the �height� of the �t curveiv, and the divergence the �steepness� of the curve �ank
(see �gure 3.13). In �gure 6.7(b) it is clear that the source size is well distinguishable
from the 20% larger source case but the same can not be said for the divergence.
A bootstrap analysis v of the 245 MeV shot shows the 95% con�dence interval for
the divergence is 0.387 ± 0.035mrad, an error of approximately 9% which leads to
a similar accuracy for the emittance. The con�dence interval for the divergence of
the 300 MeV shot is 0.383± 0.011mrad, an error below 3%. For this experiment the
>4 MeV energy window at 300 MeV is therefore a sensible minimum energy range
to obtain an accurate �t for the divergence and therefore the emittance.
Aside from a bootstrap analysis, the error or accuracy of the �t to individual

YAG:Ce crystal shots can be estimated by varying relevant experimental parameters
(within a reasonable error range) and checking if a �t for the data can still be found.
This method is di�cult to quantify as it requires subjective choices for what are
�reasonable� errors for the experimental parameters. However, it is a useful analysis
to get a feeling for which parameters are particularly important to keep small for

ivAs the system is approximately imaging the electron beam source, a 20% increase in source size
results in a ∼20% increase in measured beam size at the YAG:Ce crystal.

v2000 resampled residuals, see appendix A.



6.2 Electron beam emittance 107

300 301 302 303 304

Electron energy (MeV)

16

18

20

22

24

x
b

ea
m

si
ze

(µ
m

)

best fit

source +20%

divergence +20%

(a)

244 245 246

Electron energy (MeV)

18

20

22

24

26

x
b

ea
m

si
ze

(µ
m

)

best fit

source +20%

divergence +20%

(b)

Figure 6.7. � Electron beam size of two shots at the YAG:Ce crystal. The
smaller spectrometer dispersion at higher energies means a larger energy range can
be seen on the YAG:Ce crystal at 300 MeV (a) than around 245 MeV (b).

an accurate measurement. The experimental errors for the derived emittance of the
300 MeV shot shown in �gure 6.7(a), lead to bounds of ±0.03 π·mm·mrad, an order
of magnitude larger than the bootstrap bounds obtained above. The experimental
parameters that were varied to �nd these bounds where the drifts between the gas
cell and lens 1 (d1), the drift between the lenses (d2), and the drift from lens 2 to
the YAG:Ce crystal (d3). The �t parameters were the source size and divergence,
and the electron beam energy. The drift d2 (∼10 cm) is best determined as is it was
measured with calipers. Even with a generous measurement error for d2 of ±3 mm,
the �tted emittance varies by only 1%. For d1 the situation is more complex: on
top of the physical measurement error as for d2, there is the additional uncertainty
of where exactly the source of the electron beam is. As discussed in section 2.6, the
electron beam source may not be at the physical exit of the gas cell due to the gas
density downramp. Such a source position shift has not been measured explicitly
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Figure 6.8. � Accelerator length scan. The plasma density was constant at
5.5× 1018cm−3. Each data point is the mean value of at least 36 shots (except at
5 mm, here the mean of 8 shots). The error bars show the 95% con�dence interval
for the mean. The charge data points are slightly o�set in the horizontal axis to
be distinguishable from the derived source size data. The increase of source size
with acceleration length can be explained by heating of the electron beam due to its
interaction with the tail of the laser during acceleration. The decrease in charge with
acceleration length could be due to the higher charge observed near the high-energy
cuto� (see the main text); for shorter accelerator lengths, the observed electrons
232 MeV are closer to the cut-o� energy.

but simulations indicate shifts of several mm are possible. The upper and lower
bounds of ±0.03 π·mm·mrad for the derived emittance given above are a worst-case
consideration and arise from a combined error for d1 and d3. A shift of the electron
beam source position of ∆d1 = ±10 mm and a measurement error for the drift to
the YAG:Ce crystal ∆d3 = ±50 mm, results in this largest possible error.
The �t parameter values of this section are summarised in table 6.1 on page 102.

6.2.3. Acceleration length dependence

Figure 6.8 shows the e�ect of accelerator length on the derived source size and
the measured charge for 232 MeV electrons generated with a plasma density of
5.5 × 1018cm−3. The measured source size is in general around 0.8 µm, with a de-
creased size for an 5 mm acceleration length. First of all, the variation in source size
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with acceleration length measured here is not contrary to the relatively constant
source size measured for 245, 270, and 300 MeV electrons in section 6.2.1. The ap-
proximate di�erence in acceleration length given the average gradient of 79 MV/mm
(see section 5.1) is ∼ 700µm, a small fraction of the length variation plotted in �g-
ure 6.8. Hence the two results, constant source size for small energy range, various
source size for accelerator length range, are not contradictory. This data cannot
con�rm that the transverse focusing �elds within the plasma are linear (and hence
emittance preserving) for the presented range of accelerator lengths. Although the
data is certainly not conclusive, at least a hypothesis can be made for the increased
source size either side of an accelerator length of 5 mm. After an acceleration length
of only 3 mm, the examined energy of 232 MeV is near the energy peak of the earliest
injected electrons. It is plausible (and also worth further investigating) that the �rst
batch of electrons that is injected into the wake�eld does so with a higher transverse
distribution. For accelerator lengths larger than 5 mm, a possible interaction of
dephased electrons with the laser is further discussed below.
In Popp [2011], a length scan with a similar plasma density as used here revealed

a dephasing length of ∼ 5 mm for the cut-o� energy of 380 MeV (see also sec-
tion 5.1). Furthermore, a �t to the cuto� energy revealed an accelerating gradient
of 34 MV/mm2. From these �t parameters the required acceleration distance to
achieve 232 MeV electrons can be calculated, giving a distance of ∼ 2mm after in-
jection. After an acceleration length of & 7.9mm, 232 MeV electrons could also be
�dephased electrons�; electrons which have previously obtained a higher energy but
have decelerated back down to 232 MeV after passing into the decelerating phase
of the wake wave (see �gure 2.4)vi. Dephased electrons have therefore passed into
the front half of the potential bucket and into a region where the laser intensity can
become signi�cant. In Mangles et al. [2006] it was observed that the interaction
of electrons with the laser pulse leads to an increase in the beam emittance due to
the transverse ponderomotive force. If additionally to this the condition cτ > λp/2
is ful�lled (the laser extends to the middle of the plasma wake�eld), beam heat-
ing and hence a larger electron beam size is expected. For the density of this run
(5.5 × 1018cm−3), and for the 23 fs laser pulse this condition is met. The increase
in measured source size from ∼ 7mm could therefore come from laser-beam heat-
ing. However as the laser is expected to have depleted at around 7 mm acceleration
length, an alternative reason for the increased beam size could be the transition
from a laser-driven to the beam-driven regime.
The charge shows a steady decline with acceleration length. This result agrees

with the spectra shown in �gure 5.2. These spectra show a relatively constant charge

viThe �t parameters were obtained for a density scan at 6.5 × 1018cm−3 as opposed to 5.5 ×
1018cm−3 used in the length scan in this work. As the dephasing length scales inversely with
density (see equation 2.29), the lower density as used here leads to a longer dephasing length
than the 5 mm taken from Popp [2011].
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distribution with energy, along with a high-charge peak at the high-energy end of
the beam spectrum. In Osterho� [2008], this charge distribution was also observed
for a �xed-length 15 mm long gas cell and explained with phase space compression
occurring around the dephasing point: as electrons pass the dephasing point, they
begin to lose energy whereas lower-energy electrons still accelerate. An alternative
explanation can be given based on a variable-length gas cell as mentioned in the
previous paragraph (Popp [2011]). Here a peaked density is observed even for ac-
celerator lengths shorter than the dephasing length. This implies that the injection
process itself is di�erent for the high-energy electrons which are �rst injected than
for those electrons injected later on. A clear di�erence is that the later-injected
electrons are a�ected by the already-trapped electrons (see �beam-loading� in sec-
tion 2.4). The data shown in �gure 6.8 can be interpreted such that beam loading
leads to steadily less injection (and hence less measured charge), and could also be
the cause for the decrease of the measured source size before dephasing. A possible
explanation could be a reduced �acceptance� of o�-axis injection due to the modi-
�ed wake�elds due to beam-loading. In e�ect the already-injected electrons could
lead to preferred injection of on-axis electrons leading to a lower source size. The
experimental data shown here is not extensive enough to validate this hypothesis,
more investigation is necessary at short acceleration lengths.
The measurements shown here were made for 232 MeV electrons. At this energy

the spectral dispersion of the electrons results in a range of only 2 MeV being
observed at the YAG:Ce crystal for a single shot. As discussed in section 6.2.2, for
such a small range of energies the di�erence in beam sizes does not allow to obtain
a reliable measure of the source divergence, hence it is left out in this discussion and
in �gure 6.8. It would be interesting to repeat this measurement at an energy which
permits an accurate measurement of the divergence. As discussed in section 2.6, the
beam envelope equations are only valid for an ion channel (such as behind the laser
pulse in the blow-out regime). As the laser energy is depleted after approximately
7 mm at the electron density used here, the divergence damping during the transition
to vacuum could be considerably reduced for longer accelerator lengths. This would
be observable by an increase of the derived source divergence.

6.2.4. Plasma density dependence

A central parameter for LWFA is the plasma density. In chapter 2 the role the
plasma density plays on the plasma wavelength and theoretical models of the injec-
tion and trapping of electrons were discussed. It is therefore interesting to ask the
question how the plasma density a�ects the electron beam emittance. In �gure 6.9
the measured charge, derived source size, divergence, and emittance are shown for
a range of plasma densities. The data was taken for a constant gas cell length of
5 mm.
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Figure 6.9. � Plasma density scan. The accelerator length was 5 mm, the
measured energy 310 MeV. The data points are the mean values of 10 shots and
the error bars show the 95% con�dence interval for the mean. Above a density of
∼7 × 1018cm−3 the laser and the electron bunch interact leading to an increase in
the electron beam phase space.

In the previous section the accelerator length scan showed signs of electron beam
heating by the laser pulse for lengths >5 mmwith a plasma density of 5.5 × 1018cm−3.
As the density increases, the plasma wavelength decreases and the laser pulse oc-
cupies a larger fraction of the plasma bubble. In Mangles et al. [2006] the onset of
electron beam heating by the laser pulse was extrapolated to be at cτ ∼ λp/2. For
the laser used in this experiment with a FWHM pulse duration of 23 fs, a density of
approximately 7 × 1018cm−3 (with a corresponding non-linear plasma wavelength
of λp ∼ 14µm) ful�ls this condition. The source size as well as the divergence plot-
ted in �gure 6.9 show an increase at or slightly below this density and thus agrees
with Mangles et al. [2006]. The results in Mangles et al. [2006] were obtained for
the entire electron beam spectrum, for a di�erent laser pulse, and di�erent plasma
density. As the experimental setup here provides a method to determine the source
size spectrally resolved, it would be interesting to make a follow-up measurement
of when the source size increases with plasma density while scanning the observed
electron energy. Presumably higher energies would be heated at a lower density as
they are further forward in the wake�eld. Such emittance heating is detrimental for
applications dependent on the small-emittance beams which the LWFA can prin-
cipally provide. Careful thought has to go into choosing the optimal acceleration
length to obtain high enough energies yet avoid heating of the electron beam by the
laser.
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The accelerated charge is shown to generally increase with density as expected
from the decreased trapping threshold due to the slower phase velocity of the plasma
wave (as discussed in section 2.4). For the measured density above 7.5 × 1018cm−3

the charge drops quite signi�cantly. A similar rise and fall of accelerated charge was
observed previously by Osterho� [2008]: the increasing charge �ank is explained by
a �more e�cient wave-breaking with higher density� which leads to an �enhanced
injection probability� (see also the discussion in section 2.4 and �gure 2.3). For
the drop in charge a number of e�ects such as electron dephasing (reducing the
total observed charge due to a lower cut-o� energy), a reduction of the beamloading
threshold for higher density (less charge can be injected before beamloading occurs),
and the growing deviation from the resonant plasma wave driving condition (less
e�cient plasma wave generation) are discussed.

6.2.5. Computer (PIC) simulation of electron injection

The results of the last two sections will be compared with simulations here. Com-
puter simulations based on the PIC (particle-in-cell) method are currently the
standard tool to simulate LWFA experiments. PIC codes track the relativistic mo-
tion of macro-particles and solve Maxwell's equations on a grid at each time step. As
PIC simulations make few physical assumptions, they can be very successful in de-
scribing experimental results in terms of accelerated charge and energy [Tsung et al.
2006]. In contrast, Popp [2011] has seen a large discrepancy between simulation and
experiment in terms of charge and questions the accuracy of the injection process
due to the limited resolution of the simulated grid as compared to the small injected
beam sizesvii. Cowan et al. [2012] also notes that in a standard PIC implementation,
electro-magnetic waves travelling along the axis experience a numerical dispersion
error. Quoting from this reference: �This arti�cial slowdown of the driver and the

bubble leads to incorrect dephasing of accelerated electrons and also permits synchro-

nisation of sheath electrons with the bubble, leading to their unphysical injection�.
The results in this thesis showed that the electron beam source size varied with

both the plasma density and the acceleration length. As the shortest experimen-
tal acceleration length was 3 mm, it is interesting to use computer simulations to
investigate the e�ect of the plasma density on the injection and early stages of
acceleration. Two simulations were performed using the PIC code OSIRIS ([Fon-
seca et al. 2002]), with a plasma density of 100 and 150 mbar (5 × 1018cm−3 and
7.5 × 1018cm−3 respectively) and a laser as in the experiment (see �gure 6.10). It
can be seen that the larger pressure results in an earlier injection point as well as
a larger injection cross-section. The earlier injection can be explained by stronger

viiIn the simulation shown in �gure 6.10 a transverse grid resolution ∼0.2µm was used. The injected
beam size is of the same order as can be seen in �gure 6.10(b)
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self-focusing of the laser beam in a higher plasma density, resulting in the laser in-
tensity to reach the wavebreaking threshold at an earlier point. The larger injected
beam size seems plausible considering the discussion around �gure 2.3; a higher den-
sity lowers the trapping momentum threshold, making trapping of o�-axis electrons
easier and increasing the injected beam size.

The injected beam size is clearly larger in the laser polarisation direction, x3.
A larger beam size in the laser polarisation axis has been observed experimentally
by Mangles et al. [2006], however there it is attributed to heating of the dephased
electron beam by direct interaction with the laser pulse in the bubble. PIC simu-
lations discussed in Cowan et al. [2012] also show an asymmetry in the transverse
bubble shape which would support the observed asymmetry in the injected beam
sizes shown in the simulation here.

An interesting perspective is recent progress in PIC simulations with enhanced
algorithms which could be used to further investigate the results shown here. In par-
ticular, Lehe et al. [2013] has implemented a method to reduce numerical Cherenkov
radiation which has led to a signi�cant reduction in emittance growth during accel-
eration in the plasma. The simulation shown in this thesis displayed a doubling of
the injected beam size in just over 1 mm of acceleration (outside of the data shown
in �gure 6.10), which does not agree with the experimental result found in the previ-
ous section that the source size increases mildly with the acceleration length (�gure
6.8). Cowan et al. [2013] describes a �perfect dispersion� implementation of the PIC
algorithm which avoids the unphysical injection quoted above from Cowan et al.
[2012].

6.2.6. Laser and electron beam pointing correlation

Due to slight pointing �uctuations of the laser beam, the laser focal spot position
at the gas cell also �uctuates. Figure 6.11 shows a schematic of the setup used to
measure the correlation between these �uctuations in the laser focus position and
the electron beam position measured at the YAG:Ce crystal.

For a gas-cell target as used in these experiments, there is no guiding of the laser
beam. Hence the electron beam source position at the exit of the gas cell (x1) and
the other image sizes (x1−4) are given by:
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Figure 6.10. � Computer simulation of LWFA.
Left: a snapshot of the PIC simulation with a plasma density of 5 × 1018cm−3

showing the plasma bubble trailing the laser pulse and injected electrons. Both axes
are spatial scales, the horizontal axis (x1) is along the propagation axis of the laser
pulse, the vertical axis (x2) is transverse to it. The laser pulse was linearly polarised
in the direction of x3.
Right: the electron beam size around the injection point for injected particles for
two di�erent plasma densities. Simulation data courtesy of T. Mehrling.
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x1 = θ · fparab.

x2 = Mquads · x1

x3 = θ · flens

x4 = Mµobj. · x3.

(6.1)

Here f refers to the focal lengths of the optical lenses and M to the magni�cation
of the respective imaging optics. The following parameters apply to the experiment:
Mµobj. = 20, flens = 0.5m,Mquads = 30, fparab. = 1.5m. For this setup the expected
correlation between the measured quantities x2 and x4 turns out to be x2/x4 = 4.5
viii. This correlation �ts well to the measured data shown in 6.12.
For a gas target with an electrical discharge or a capillary waveguide, the laser

beam undergoes guiding during propagation. Therefore the correlation measured
here would not exist as the electron beam axis is usually aligned with the laser axis
in the plasma. Particularly interesting is the possibility to use this method as a
diagnostic for o�sets between the laser axis and the electron beam axis. Such an
o�set is observed when the driving laser beam has an intensity pulse-front tilt [Popp
et al. 2010]. Due to the image magni�cation of the electron beam source with the
quadrupole lenses, the measurement of an o�set angle between the laser and the
electron axis as small as 70µrad is feasibleix. This could be used to �ne-adjust the
compressor grating angles in the laser beamline to optimise the laser-intensity in
focus.
As mentioned in section 4.2, the vertical plane was chosen to have the smaller

image magni�cation. A reason for this choice was to reduce the e�ect of vertical
source position �uctuations on the electron energy that arrives at a �xed position
at the YAG:Ce crystal. From �gure 6.12, it is evident that the laser spot �uctuates
vertically within 50µm. The vertical magni�cation is about 6, leading to vertical

viiiThe laser angle does not directly enter into the correlation. However it was assumed that this
angle is small enough to allow the use of the paraxial approximation for the imaging along the
beamline. By calculating θ using the equations 6.1 and the data in �gure 6.12, θ is typically
under ±10µrad, which is consistent with a previous description of the laser system [Osterho�
2008]. The paraxial approximation is justi�ed in this case.

ixA rough calculation: measurement resolution of an o�set at the YAG:Ce crystal: 10 µm, electron
beam source magni�cation: 30x. This allows the measurement of a 300 nm o�set at the exit
of the gas cell which is 5 mm long for the present experiment. This corresponds to an angle of
70µrad



116 6. Measurements of the electron beam emittance

image o�sets of at most 300µm. The dispersion at the YAG:Ce crystal is about
1.7 MeV/mm when it is positioned to observe 300 MeV electrons, meaning that the
image o�set leads to a energy o�set of 0.5 MeV. From �gure 6.7 it can be seen that
such an energy o�set leads to a negligible increase of the measured beam size around
the focused energy. If the large image magni�cation (factor 30) had been used in the
vertical plane, then the energy o�sets would �uctuate within 2.5 MeV which would
make the vertical source position o�sets a relevant error in the measured beam size.

gas cell
YAG:Ce crystal

quad lenses

electron beam

CCD camera + 
microscope objective

θ

x1 x2

x3x4

focusing parabola

laser

transmitted laser

f = 0.5m lens

Figure 6.11. � Setup for measurement of laser beam and electron beam
pointing correlation (not to scale). Relevant quantities for the correlation
measurement are marked: x1−4: image sizes of the laser/electron-beam along the
beamline, θ: pointing angle o�set of the laser beam relative to the beamline axis.

6.2.7. E�ect of density downramp on electron beam

Divergence damping

Virtual source position shift and e�ect on retrieved emittance

As the presented emittance measurement method measures the beam after it has
exited the plasma, it is not suitable to quantify changes of the beam size while it
is still in the plasma. The expected scaling of the matched beam size with the
plasma density xm ∼ n

−1/4
e can thus not be validatedx. However, the discrepancy

between the inferred source size from the emittance measurements above (∼1 µm)
and the matched beam size in the plasma (∼0.2 µm) can be resolved by considering

xThe matched beam size can be obtained by setting x′ and x′′ = 0 in the beam envelope equation
for an ion channel as given in equation 2.30.
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Figure 6.12. � Correlation between laser beam pointing and electron beam
source position. The expected correlation between x2 and x4 is shown by the blue
line (right-hand plot). As expected, there is no correlation between the vertical laser
position and the horizontal position of the imaged electron beam (left-hand plot).

the density transition from the plasma to the vacuum. If the electron beam passes
through a density downramp comparable to or longer than its betatron wavelength,
the decreasing transverse focusing forces lead to an increase of the matched spot
size and (due to the conserved emittance) to a decrease of the divergence [Sears
et al. 2010a]. This e�ect was investigated by solving equation 2.30 for a density
downramp obtained from computational �uid dynamics (CFD) simulations [open-
FOAM, computational �uid dynamics code.] modelling the experiment (gas cell
with a 1 mm exit hole diameter). The beam divergence obtained from the lens-two
position scan measurement (0.45 mrad) is reproduced if the density from the CFD
simulations is attenuated smoothly to zero from z ∼10 mm (�gure 6.13(a)). The
need to truncate the density downramp to reproduce the experiment suggests that
the model assumption of a pure ion channel is not valid for the entire downramp,
probably due to laser di�raction and depletionxi.
The downramp also causes a shift of the e�ective source position (as evident in

�gure 6.13(a)) which a�ects the retrieved emittance value. For this example the
source position shift is approximately 8 mm and leads to a ∼14% smaller retrieved

xiWithout truncating the density pro�le, the simulated divergence is even smaller than the exper-
imentally measured one.
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emittance (see �gure 6.14 for a range of o�sets). The �tted electron beam energy to
this shifted electron beam source is ∼14 MeV below the expected beam energy from
the measurement, which is beyond the reasonable experimental error for the mea-
sured energy (<10 MeV). Further evidence that the source position shift is probably
small comes from the �tted Courant-Snyder parameters. The �tted parameters at
the �rst lens can be back-propagated towards the gas-cell using equation 3.24. The
back-propagated beam waist coincides with the physical exit of the accelerator to
within 1 mm for the lens-position scans of section 6.2.1. To clarify the e�ect of the
downramp on the divergence and the source position requires further analysis. This
could be approached by taking measurements of the density downramp pro�le (as
shown in Weineisen et al. [2011]) in place of the CFD simulations used here and
conducting quadrupole-scan measurements for di�erent downramp lengths.
The qualitative agreement of the model with the measurements suggests the possi-

bility of a further reduction by using a longer downramp. Figure 6.13(b) shows that
the majority of the divergence decrease occurs within the �rst few millimetres and is
relatively insensitive to longer downramps. In Nakamura et al. [2007] a smaller beam
divergence was observed for larger diameter capillaries (and therefore longer density
downramps at the exit). Aside from the di�erences in the laser propagation and
electron injection in the di�erent sized plasma channels, the longer downramp o�ers
a further possible cause for the observed reduced divergence. The beam divergence
presented here is amongst the smallest published to-date for LWFA beams and can
be explained by the longer density downramp of the employed gas cell as opposed
to commonly used super-sonic gas jets. To reduce the source divergence further,
a separate density peak (in this case ∼ 1015 cm−3) could be incorporated slightly
downstream of the main downramp and be used to focus the beam similarly to work
being done on plasma lenses [Thompson et al. 2010]. Provided the laser pulse still
contains enough energy to create an ion channel, this even promises to focus the
entire bunch as opposed to only the rear part for a purely beam-driven plasma lens.
This has recently been demonstrated experimentally for LWFA electrons [Thaury
et al. 2015]. The bene�t of a smaller source divergence is the reduced bunch elon-
gation for a given beam transport system [Weingartner et al. 2011], more relaxed
requirements on the beam optics, and a reduced chromatic emittance growth in the
drift after the target.

Virtual source position shift

Figure 6.14 shows the e�ect of an o�set of the electron beam source position on
the �tted beam parameters. This means that an emittance is �tted to the same
measured beam sizes at the YAG:Ce crystal but the assumed longitudinal position
of the source of the electron beam is shifted. The result is that an o�set of the
source towards lens 1 (source is after the physical exit of the gas cell) leads to a
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smaller �tted source size, lower �tted energy, and as a result of these two, a smaller
beam emittance. This connection is to be expected from an imaging system and
is readily understood using common geometric optics relations. For an imaging
system, the ratio of the object size/height to its distance to the principal plane of
the lens is equal to the same ratio on the image side, i.e. ho/do = hi/di. A change
in the object position with constant image height and position therefore leads to:
ho = hi/di · do = kdo, a proportional change in the object size. From the thin lens
equation (1/do + 1/di = 1/f), it follows that for a constant di, f must decrease if do
decreases. For the �tted energy of the electron beam a smaller do results in a lower
�tted electron beam energy as this corresponds to a shorter focal length f of the
magnetic lenses.
The remaining question is at which point the Courant-Snyder parameters should

then be calculated if the electron source position is uncertain? The condition is that
it must be before the changing beamline element which is the position of lens 2.
Therefore any well-de�ned position between the electron source at the accelerator
exit and the end of lens 1 is suitable. Due to the uncertainties of the electron source
position, for the results of this thesis the Courant-Snyder parameters were calcu-
lated directly upstream of the �rst lens. The beam parameters can be propagated
back towards the accelerator exit using equation 3.24 to obtain the source size and
divergence at the beam waist.
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Figure 6.13. � Simulations of the electron beam envelope and divergence
in a downramp. a): Evolution of the electron beam envelope (solid blue) in
the plasma to vacuum density transition (solid green, based on CFD simulations)
according to equation 2.30. The �t line (red dashed) describes an e�ective electron
source with the same emittance as the beam envelope but propagating without the
focusing forces of the plasma; the beam waist and divergence are consistent with
the values inferred from the lens position scan measurements of �gure 6.5. The
same e�ective source is obtained with a downramp modelled by an error function of
length 3.3 mm (black dotted). The physical exit of the gas cell is at z=5 mm. b):
The �nal divergence after the accelerator downramp as a function of its length, l
(where ne = n0(0.5 erf(−z/l)+1)), for three di�erent beam energies with normalised
emittances of 0.2 π·mm·mrad. The cross indicates the case in a).
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Figure 6.14. � E�ect of longitudinal source position o�set on �tted beam
parameters. An o�set in the source position (either caused by the density down-
ramp or a measurement error of the drift of lens 1) a�ects the result of the �tted
source size, beam energy and beam emittance. A negative source o�set represents
a shift of the beam source towards the lens, e�ectively decreasing drift 1.



7. Conclusions and outlook

The main objective of this thesis was the measurement of the transverse emittance
of laser-wake�eld accelerated electron beams. The �rst published results regarding
this question used a pepper-pot mask and measured the emittance for a broad range
of energies [Fritzler et al. 2004]. A di�erent approach was to use the characteristics
of the betatron radiation emitted by the beam while still in the plasma [Kneip
et al. 2012]. In this work a modi�ed version of the well-established quadrupole scan
method was used. The advantage of this method is that it includes the e�ects of
the plasma-to-vacuum transition and can be spectrally resolving. It is expected
from a self-injection LWFA experiment that the spread in injection times leads to a
correlation of beam energy and energy spread along the beam (see �gure 7.1). Hence
a spectrally resolved measurement measures the (longitudinal) slice emittance. The
slice emittance is an important parameter to be able to design an FEL experiment
based on LWFA electron beams. Furthermore the measurement is not susceptible
to chromatic emittance growth due to the total energy spread and the divergence of
the LWFA beam.
To prepare the emittance experiment, initial experiments employed high-gradient

quadrupole lenses to transport LWFA beams. The results were published in Wein-
gartner et al. [2011] and the main �ndings of these measurements where:

Bunch-duration-preserving beam transport: As the PMQ lenses used for these
experiments achieve a high magnetic �eld gradient, the electron beam can be
collimated closely behind the plasma accelerator exit where the beam cross-
section is still small. This reduces the bunch elongation caused by the path
di�erence between the low- and high-divergence electrons (see �gure 3.9).

Imaging spectrometer: A common method to determine the spectrum of an electron-
beam involves measuring the de�ection behind a dipole magnet. As this
method makes assumptions concerning the position and angle of the particles
entering the dipole �eld, it delivers inaccurate results for beams with large di-
vergence and pointing �uctuations. By imaging the electron beam, the resolu-
tion of the spectrometer could be reduced down to the resolution of the imaging
phosphor screen used to measure the beam de�ection (∼0.2% FWHM). This
allowed the measurement of beams with integrated energy spreads of just 1%
rms (see �gure 6.3).
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Figure 7.1. � PIC simulation showing the correlated energy of self-injected
LWFA bunch. This �gure shows the same time step as �gure 6.10 (zoomed in to
the bunch), with the beam energy encoded as colour. The injected electron bunch
is leaving the frame on the right-hand side.

Alignment of the lens doublet: This was achieved by �desteering� the lenses. The
lenses were individually placed in the beam path and adjusted until the elec-
tron beam passing through it was not de�ectedi. The e�ect of a deliberate
lens o�set can be seen in �gure 6.4, where the beam is shown to be steered by
several mrad.

Improvement of the spatial stability of the electron beam: Despite a broad range
of electron energies (>100 MeV), the beam can be collimated and stabilised.
In the presented results the summed beam size was reduced by a factor of �ve
(see �gure 6.1).

Particle tracking simulations indicate that no beam charge is lost due to clipping
at the lens apertures for these experimental results.
In a separate experiment to generate undulator radiation from LWFA electron

beams [Fuchs et al. 2009], some further interesting e�ects concerning beam transport
were found. The PMQ focusing system allows to �lter a bandwidth of the undulator
radiation despite the broad band of energies in the electron beam. This comes from
the chromatic focusing of the lenses, only a certain electron energy is collimated.
Electrons with other energies will have larger divergences in the undulator. As
the undulator radiation emitted by each electron is within a narrow cone of its
propagation direction, the undulator radiation beam will have essentially the same
size and divergence as the emitting electron beam. The photon beam can therefore

iThis was done for an average beam position of many shots to compensate for the shot-to-shot
�uctuations of the electron beams
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be spectrally selected by the lens setup, and additionally be focused on a downstream
target. The second aspect is particularly interesting for short-wavelength undulator
radiation which would otherwise require multilayer optics to focus.
The stability of the LWFA electron beam source allowed high-resolution measure-

ments of the emittance; the results were published in Weingartner et al. [2012]. The
main �ndings from the emittance measurements where:

Constant normalised emittance: The transverse focusing �elds in the plasma ac-
celerator are expected to be emittance conserving. This means that the trans-
verse emittance should stay constant if normalised by γ to account for the
longitudinal acceleration (also known as �adiabatic damping� of the transverse
phase space). For the current experiment, the measured emittance was about
0.2 π·mm·mrad for a range of energies between 245 and 300 MeV.

Multi- and single-shot methods possible: The �traditional� method to use quadrupole
lenses for an emittance measurement is to change the focal strength of an elec-
tric quadrupole. The adaptation for a permanent-magnet quadrupole is to
scan the position of a lens. Another method was discovered which utilises a
small range of energies of the beam which allow to characterise the beam emit-
tance. The results of the multi- and single-shot methods agree. A single-shot
method is particularly relevant for LWFA beams which can vary signi�cantly
from shot to shot in comparison to conventionally-accelerated electron beams.

Accuracy of calculated emittance: This was explored by considering the factors
that could a�ect the measured data used to calculate the emittance (e�ect of
space charge, lens-position and -�eld errors) and also the accuracy of the �tting
routine itself (bootstrapping). Space charge is not relevant for the energy slices
of the beam observed in this experiment as this would lead to a deformation
of the measured beam sizes in a scan (asymmetrical �anks) and a shift of
the curve in terms of energy or lens position. The tolerances of the �tted
parameters was explored using the bootstrapping technique and shows that
the �tted parameters are expected to be within ∼ 10% of the calculated values
with a 95% con�dence interval. The lens-position errors have two potential
sources: an incorrect measurement of the lens positions and a shift of the
virtual electron source position due to the plasma-to-vacuum transition. The
measurement error of the drift length is within 2 mm as the drift from the
accelerator to the lens could be directly measured with calipers. The greater
potential error comes from the virtual source-position o�set which requires
empirical analysis for the gas target in question to be determined. The error
in the calculated emittance due to the source-position o�set can be limited to
< 20% as the �tted energy would otherwise not be plausible.
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Laser heating of the electron beam within the plasma: It was observed that the
electron beam size increases if the accelerator is driven to dephasing. By in-
creasing the plasma density, the laser occupies a larger portion of the wake�eld
and heats the electrons transversely (see section 6.2.4). Although the data for
the length scan of the accelerator is not conclusive, the electron beam could
also be heated if the accelerator length is too long (see section 6.2.3). For
emittance-sensitive applications of the electron beam the acceleration length,
plasma density, and laser-pulse length have to be chosen to avoid this issue.

Correlation between laser and electron beam position: Fluctuations in the po-
sition of the driver laser focal spot led to corresponding �uctuations in the
electron beam source position (see section 6.2.6). An o�set between the laser
and the electron beam can for example be caused by a pulse-front tilt (PFT)
of the laser beam. A PFT can therefore be diagnosed very precisely using the
setup described in this work.

Divergence damping at the accelerator exit: The decreasing strength of the trans-
verse focusing �elds in the plasma-to-vacuum transition lead to an adiabatic
damping of the electron beam divergence as the beam size increases (assump-
tion: constant emittance). The increase in beam size is inferred from the
expected smaller beam size in the plasma (from PIC simulations, see �gure
6.10, and the matched beam size (see equation 2.31), both suggest a size of
xm . 0.5 µm) relative to the larger calculated virtual source size of ∼ 0.9 µm.
Furthermore the divergence of the electron beams was the lowest published
at the time. Since then, an experiment with a larger energy of 2 GeV has
shown smaller divergences of ∼ 0.5 mrad FWHM [Wang et al. 2013]. Like in
the work of this thesis, this experiment used self-injection but was otherwise
conducted with a more powerful laser and di�erent plasma densities. From
section 3.2.1, it is clear that the transverse momentum of a particle in a beam
is related to the divergence and energy of the particle as px ∼ γβx′. Consider-
ing the e�ect of adiabatic damping using this relation, the transverse electron
momentum in this work is still lower than in the work of [Wang et al. 2013],
and also lower than for a more comparable case in terms of energy [Osterho�
et al. 2008] (200 MeV electron beams). The explanation presented in chapter
6 of this thesis suggests that the longer plasma-to-vacuum transition in the
present experiment leads to divergence damping. The extension of this idea to
use a separate wake�eld stage as a laser-plasma lens has been demonstrated
experimentally [Thaury et al. 2015].

The following topics could be investigated in further experiments or improve on
the above �ndings:
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� The emittance should be calculated for a larger range of energies to better
check if the normalised emittance is constant. Given that the experimental
parameters would be chosen such that laser heating of the electron bunch
within the plasma were not relevant, a constant source size (initially deter-
mined during injection) and a decreasing divergence with energy due to adia-
batic damping during acceleration would be expected.

� Comparison of the emittance for di�erent injection mechanisms such as lon-
gitudinal and transverse self-injection, ionisation injection, density-downramp
injection, or colliding-pulse injection: With regards to the experiments per-
formed by [Corde et al. 2013], emittance measurements with the cut-o� energy
electrons of very short accelerators (longitudinal injection) should show sig-
ni�cantly smaller emittances than those conducted with longer accelerators
(transverse injection). A challenge for such experiments would be the reduced
charge expected for the longitudinal injection regime of about an order of
magnitude less than for transversely-injected electrons.

� Correlation between emittance and charge: Beam loading in the plasma during
acceleration a�ects the injection of electrons and therefore the emittance. Just
as in the case of laser-beam heating, it would be useful to quantify this e�ect
for emittance-sensitive applications.

� In�uence of the laser polarisation axis: In the presented experiments the po-
larisation axis of the laser was oriented along the dispersion direction of the
dipole magnet and the YAG crystal diagnostics measured in the perpendicular
plane. It has been observed that the electron beam can interact with the laser
while it is still trapped in the wake�eld. This leads to an increase of divergence
in the laser polarisation plane and has for example been directly controlled by
rotating the polarisation axis and observing an identical rotation in the shape
of the resulting electron beam [Mangles et al. 2006]. It has also been shown in
3D PIC simulations that the emittance may become substantially larger due
to this e�ect [Németh et al. 2008]. In the light of the need for low emittance
beams in both transverse planes for table-top FEL experiments and the dis-
cussed e�ects, it would be important to extend the measurements of this thesis
and measure the e�ect of rotating the laser polarisation axis on the measured
emittance.

� Experiments to explore the e�ect of various plasma-to-vacuum transitions or
plasma lensing on the achievable beam divergence and emittance.



A. Derived emittance and

parameter errors

Emittance �t from data

The electron beam size measurements taken at the YAG:Ce crystal require some
analysis to derive the unknown beam parameters such as the emittance. To obtain
the electron beam Courant-Snyder parameters at a point in the beamline before the
YAG:Ce crystal (for example at the exit of the gas cell) the ideas from section 3.2.2
can be used to derive a �t function such as equation 3.23:

x(s1)2 = M2
11εβ(s0)− 2M11M12εα(s0) +M2

12εγ(s0). (A.1)

The �t parameters for this function are the beam Courant-Snyder parameters
(β(s0), α(s0), γ(s0)) at any position s0 and the left hand side is the square of the
beam size at the YAG:Ce crystal. In the experiment multiple measurements are
made where the transfer matrixM is varied and the beam size x(s1) at the YAG:Ce
crystal is measured. The �best-�t� parameters are found by using a Levenberg-
Marquardt algorithm to minimise χ2:

χ2 =
N∑
i

(xi − f(ε,~k,M ))2

σ2
i

, (A.2)

which is the sum over all o�sets of the �t function f from the observed data xi
divided by the expected standard deviation (σi) of the observed data around the �t
function. It is worthwhile to consider the shape of the minimisation function χ2.
The function f is rather complicated due to the transfer matrixM being a product
of all beamline element matrices between the YAG:Ce crystal and the point where
the Courant-Snyder parameters should be determined. Figure A.1(a) shows how the
function looks around the optimal �t parameters for the source size and divergence
for the �t shown in �gure 6.7(a). It is important to note that the function is convex
downward and presumably so also for any relevant �t parameter range. This means
that the function has a unique global minimum and a least squares �t algorithm
will �nd the global minimum for χ2 and not get stuck at some local minimum.
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Fit parameter accuracy

To get an accuracy estimate for the �tted parameters (in the example here the source
size and divergence), the bootstrap technique was chosen [Press et al. 2007]. This
method creates synthetic data sets by resampling the observed data. This Monte-
Carlo method is suitable for cases when the underlying error distribution of the data
is unknown and synthetic data sets cannot be generated by drawing from this known
distribution. The bootstrap method instead creates synthetic data sets by drawing
each data point from the entire observed data set. For example, for observed data
points y1, y2, y3, y4 a synthetic bootstrap sample could be any permutation of these
values, including duplicates of individual points such as y3, y1, y4, y1. For the lens
position scan (see �gure 6.5)∼20 measurements were each taken at∼10 di�erent lens
positions. The bootstrap data for one of the lens positions is generated by drawing
20 times from the observed beam widths at this lens position. This procedure is
repeated for every lens position. The electron beam parameters are then �tted to
the synthetic data set. By repeating this process many times a distribution of �t
parameters is obtained from which a con�dence interval can be determined. For the
energy scan the synthetic data set is generated based on the residuals (= data - �t
curve) of the �t routine (see �gure 6.7(a)). A resampled residual from the �t to the
observed data is added to the �t curve at each energy. A new �t is then found for
this synthetic data and this is again repeated many times to obtain a distribution
of �t parameters and the associated con�dence intervals.
Once the bootstrap samples have been �tted and the resulting parameter distribu-

tions obtained, the method of determining the con�dence interval has to be decided
on. Figures A.1(b) and A.1(c) show the distribution of bootstrap samples for the
example used above for a �t to a single shot (�gure 6.7(a)). The density distribu-
tion shows the bootstrap samples and the observed values for the �tted emittance.
As the median bootstrap sample value agrees very well with the observed value,
the bootstrap samples are centred on the observed values, i.e. there is no bias in
the bootstrap distribution. Figure A.1(c) shows three methods of determining the
con�dence intervals from the distribution of the bootstrap samples. The simplest
method is to set the boundaries for each variable independently such that 95% (for
a 95% con�dence interval) of the bootstrap samples are contained. In this example,
it is more useful to give the joint con�dence interval for both �tted parameters as
they both go into the product for the desired quantity, the �tted beam emittance.
According to Press et al. [2007] the most common choice for the con�dence region
is a contour of the ∆χ2 function used in the �tting routine, in this case the contour
should contain 95% of the bootstrap samples. Another option which will be the
process used for the errors in this thesis is to sort the bootstrap samples according
to their o�set to the median emittance. The shape of the con�dence region is then
determined by including the 95% closest bootstrap samples to the median emittance.



129

0.37 0.38 0.39 0.40
Source divergence (mrad)

0.620

0.625

0.630

0.635

S
ou

rc
e

si
ze

(µ
m

)

1.62.4

2.4

3.2

3.2

4.0

4.0

4.8

2

3

4

5

χ
2 re

d

(a)

0.36 0.37 0.38 0.39 0.40
Source divergence (mrad)

0.620

0.625

0.630

0.635

S
ou

rc
e

si
ze

(µ
m

)

0

3

6

9

12

15

D
en

si
ty

of
sa

m
pl

es

(b)

0.37 0.38 0.39 0.40
Source divergence (mrad)

0.620

0.625

0.630

0.635

S
ou

rc
e

si
ze

(µ
m

) single var. 95% C.I.

∆χ2 95% C.I.

Nearest 95%

Furthest 5%

observed emittance

(c)

Figure A.1. � Fitting beam parameters and the associated errors. a) Re-
duced χ2 for the �t parameters source size and source divergence for the data shown
in �gure 6.7(a). b) Distribution of 2000 bootstrap samples (residual resampling).
c) Three possible ways to give an error estimate of the �tted parameters from the
bootstrap distribution. For each case 95% of all the bootstrap samples are 'enclosed'
within the chosen shape boundary, the shape varies between the methods. 1. Square
shape (blue dashed lines): the 95% C.I. for each parameter is obtained independently
of the other parameter. 2. Constant χ2 boundary (red contour): use a contour of
χ2 which includes 95% of all bootstrap samples. 3. Smallest emittance o�set (black
crosses): the shape is such that it contains the 95% of the bootstrap sample closest
to the median �t emittance (white circle). The red crosses correspond to remaining
5% of samples outside of the con�dence region for this shape.

The con�dence limits for the parameters are then the lowest and highest values from
all of the included samples. The three methods are compared in table A.1. As the
∆χ2 contours do not always line up with the bootstrap sample distribution, the
error from this method will always be larger than the �nearest emittance� method.
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Table A.1. � Bootstraps con�dence intervals. The con�dence intervals as
shown in �gure A.1(c). The units for the source are in µm, those for divergence
in mrad, and those for emittance in π·mm·mrad. The observed values are the �t
values from the real experimental data.

Parameter C.I. method Observed Upper bound Lower bound

Source Single variable 0.629 0.003 −0.003
� ∆χ2 � 0.006 −0.006
� Nearest emittance � 0.005 −0.005
Divg. Single variable 0.383 0.011 −0.011
� ∆χ2 � 0.013 −0.013
� Nearest emittance � 0.013 −0.013
Emittance Nearest emittance 0.143 0.004 −0.004
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