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Abstract 

During the acute inflammatory response, polymorphonuclear neutrophils migrate from the blood 

into the inflamed tissue following a multi-step cascade of consecutive adhesion and activation 

events. The efficient recruitment of neutrophils is fundamentally important for an adequate 

immune response against pathogenic microorganisms. Hereby, neutrophil migration within 3D 

environments, i.e. transmigration and interstitial migration, depends on the dynamic deformation 

of the nucleus to pass restrictive sites. The unconventional class I Myosin 1f (Myo1f) protein has 

been previously reported to be involved in neutrophil trafficking by controlling neutrophil 

adhesion under static conditions and accumulation at sites of inflammation1. Nonetheless, the 

functional importance of Myo1f during neutrophil recruitment under physiological shear stress 

conditions as well as the precise function of Myo1f remained largely unresolved so far. Thus, the 

aim of this thesis was to study the role of Myo1f for neutrophil trafficking during the acute 

inflammatory response on the cellular and molecular level in detail.  

Analysis of in vitro flow chamber experiments revealed that neutrophil rolling and adhesion as 

well as spreading, polarization and migration in two-dimensional (2D) environments, i.e. 

mechanotactic crawling, under physiological flow conditions were not affected in the genetic 

absence of Myo1f. This was further confirmed by intravital microscopy of inflamed mouse 

cremaster muscle venules which revealed no differences of neutrophil rolling and adhesion 

between wild-type (Myo1f+/+) and Myo1f knock out (Myo1f-/-) mice. Spinning disk confocal 

microscopy of Myo1f+/+ and Myo1f-/- neutrophils deciphered Myo1f as an indispensable molecular 

key player in the process of nuclear deformation during neutrophil migration in three-dimensional 

(3D) environments. Accordingly, neutrophil extravasation was severely compromised in the 

TNFα-stimulated mouse cremaster muscle model, in the CXCL1 induced peritonitis model and in 

the LPS-triggered acute lung injury model.  

Taken together, these findings provide evidence that Myo1f plays a fundamental role in the acute 

inflammatory response by specifically regulating neutrophil migration in 3D environments but not 

in 2D environments. During neutrophil migration in 3D environments, Myo1f coordinates the 

dynamic deformation of the nucleus during neutrophil migration through physical barriers and is 

therefore indispensable for neutrophil trafficking in innate immunity. 
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Zusammenfassung 

Während der akuten Entzündungsreaktion migrieren polymorphkernige neutrophile 

Granulozyten in einem mehrstufigen Prozess bestehend aus aufeinander folgenden Adhäsions- 

und Aktivierungsereignissen aus dem Blut in das entzündete Gewebe. Im Verlauf dieses Prozesses 

migrieren Neutrophile im dreidimensionalen (3D) Raum durch Engstellen im Gewebe. Hierbei ist  

die dynamische Verformung des Zellkerns von essentieller Bedeutung und stellt somit einen 

wesentlichen Schritt in der gezielten Immunantwort gegen pathogene Mikroorganismen dar. Es 

wurde bereits gezeigt, dass das zur Klasse I der unkonventionellen Myosine gehörende Protein 

Myosin 1f (Myo1f) bedeutsam für die Rekrutierung von Neutrophilen ist, da es die Adhäsion von 

Neutrophilen unter statischen Bedingungen und die Anreicherung von Neutrophilen am 

Entzündungsort kontrolliert1. Hierbei ist die genaue Funktion von Myo1f für die Rekrutierung von 

Neutrophilen unter physiologischen Bedingungen weitgehend ungeklärt. Daher war das Ziel der 

vorliegenden Arbeit, die Bedeutung von Myo1f für die Rekrutierung von Neutrophilen im Rahmen 

der akuten Entzündungsreaktion auf zellulärer und molekularer Ebene im Detail zu untersuchen.  

In vitro Flusskammerexperimente zeigten, dass das Rollen und die Adhäsion von Neutrophilen, 

sowie das Ausbreiten, die Polarisierung und die Migration in der 2D Umgebung, d.h. das 

sogenannte „intraluminal crawling“, bei genetischer Abwesenheit von Myo1f nicht beeinträchtigt 

waren. Dies wurde intravitalmikroskopisch in den entzündeten Venolen des M. cremaster der 

Maus bestätigt. Hier trat keine Veränderung im Rollverhalten, sowie der Adhäsion von 

Neutrophilen zwischen Wildtyp- (Myo1f+/+) und Myo1f Knock-out- (Myo1f-/-) Mäusen auf. Durch 

Spinning-Disk-Konfokalmikroskopie-Analysen an Neutrophilen aus Myo1f+/+- und Myo1f-/--

Mäusen, konnte Myo1f als unverzichtbarer molekularer Faktor während der Deformierung des 

Zellkerns in der 3D-Migration identifiziert werden. Dementsprechend war die 

Neutrophilenextravasation in dem Modell der TNFα-induzierten venulären Entzündung am 

M. cremaster, in der  CXCL1-induzierten Peritonitis und in der LPS-induzierten Lungenentzündung 

stark beeinträchtigt. 

Insgesamt zeigen diese Ergebnisse, dass Myo1f essenziell für die Migration von Neutrophilen in 

dreidimensionalen Gewebestrukturen ist und somit eine bedeutsame Rolle in der akuten 

Entzündungsantwort spielt. Hierbei koordiniert Myo1f während der Migration von Neutrophilen 

die dynamische Deformation des Zellkerns und ist daher unabdingbar für die effiziente 

Rekrutierung von Neutrophilen an den Entzündungsort im Rahmen der angeborenen 

Immunantwort.
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1. INTRODUCTION 

Polymorphonuclear neutrophils are the predominant leukocyte subset in the circulation of most 

mammals2. After their generation and maturation in the bone marrow, neutrophils circulate in the 

blood stream with a half-live of 6 h up to 4.5 day3. During the acute inflammatory response which 

is initiated by physical (e.g. radiation), biological (e.g. bacteria), or chemical (e.g. acid burn) insults 

or ischemia4, neutrophils are the first immune cells arriving at the site of lesion. Generally, 

neutrophils fight pathogens and control local infections via different defense mechanisms, 

including phagocytosis and production of reactive oxygen species (ROS), as well as release of 

antimicrobial peptides and neutrophil extracellular traps (NETs)5-9. The segmented nuclei as well 

as granule and secretory vesicle containing cytoplasm represent typical characteristics of 

neutrophils10. Besides their pro-inflammatory nature, neutrophils exhibit anti-inflammatory 

functions, play a critical role in e.g. wound healing and angiogenesis, and they interact with 

dendritic cells (DCs), B and T cells and therefore are capable to modulate the adaptive immune 

response5,11-13. 

 

 

1.1 The neutrophil recruitment cascade 

During the acute inflammatory response neutrophils are recruited from the blood stream into the 

inflamed tissue following a well-defined multi-step recruitment cascade which is a fundamental 

process in the innate immune response5,14 (Figure 1). The initial steps, including leukocyte 

capturing, rolling, slow rolling, induction of adhesion, adhesion strengthening, as well as 

intraluminal crawling and transendothelial migration (TEM) are regulated by specific interactions 

between adhesion molecules on leukocytes and their ligands on endothelial cells (ECs)15,16. 

Neutrophil capturing and rolling are mediated by engagement of selectins and their receptors17 

followed by neutrophil adhesion, adhesion strengthening, intraluminal crawling, transmigration, 

and abluminal crawling which all depend on β2 integrins18. Extravasated neutrophils enter the 

interstitial space and are guided to the site of inflammation or infection by heparan sulfate 

immobilized chemokine gradients19. At the site of lesion, neutrophils fight invading pathogens and 

microorganisms via different defense mechanisms. During phagocytosis, neutrophils engulf and 

trap antibody- or complement protein fragment C3bi-opsonized bacteria into a phagosome. 

Primary and secondary granules fuse with the phagosome and form the so called phagolysosome. 

The nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase becomes activated and the 
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ingested material is eliminated by e.g. the production of reactive oxygen species (ROS) and 

antimicrobial peptides9,20-22. An additional killing mechanism is the formation of NETs which are 

extracellular fibers consisting of granule and nuclear components that kill bacteria6. 

 

 

 

Figure 1. The neutrophil recruitment cascade.  Schematic representation of the defined steps 
neutrophils undergo during acute inflammation to migrate from the blood stream to the site of 
infection/injury. The individual steps are classified into capturing, rolling, arrest, firm 
adhesion/adhesion strengthening, intraluminal crawling, transmigration, abluminal crawling and 
interstitial migration. At the site of infection, neutrophils eliminate pathogens (e.g. bacteria) by 
various defense mechanisms including phagocytosis of C3bi-opsonized bacteria. Neutrophil slow 
rolling, adhesion, intraluminal crawling, transmigration, and abluminal crawling depend on 
β2 integrins, whereas interstitial migration is mainly β2 integrins independent (modified from 
Schymeinsky et al., 201123). 
 

 

Upon infection, tissue resident macrophages or DCs recognize pathogen-associated molecular 

patterns (PAMPs). Similarly, inflammation by tissue damage is recognized by damage-associated 

molecular patterns (DAMPs)24. The recognition of these factors leads to the secretion of 

pro-inflammatory mediators like tumor necrosis factor (TNF) or interleukin-1β (IL-1β)25. These 

cytokines activate ECs resulting in an upregulation of proinflammatory mediators and adhesion 

molecule expression on the surface of the endothelium initiating the neutrophil recruitment 

cascade26,27. 
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Selectins are a family of Ca2+-dependent transmembrane lectins with three different family 

members: P-selectin (CD62P) expressed on platelets and ECs, E-selectin (CD62E) expressed on ECs, 

and L-selectin (CD62L) expressed on leukocytes28,29. The different adhesion molecules differ in 

their amino acid sequence as well as in their interaction partners. P-selectin is stored in α-granules 

of platelets and in Weibel-Palade bodies of ECs. Upon activation of these cells, P-selectin is 

redistributed onto the plasma membrane where it interacts with P-selectin glycoprotein ligand-1 

(PSGL-1, CD162) on leukocytes30,31. E-selectin is de novo synthesized by inflamed ECs. E-selectin 

on the surface of ECs interacts with ligands expressed on leukocytes including PSGL-1, CD44 and 

E-selectin ligand 1 (ESL-1)32. L-selectin is constitutively expressed on leukocytes and is essential for 

lymphocyte homing33 and further triggers homozygous leukocyte-leukocyte interactions, resulting 

in enhanced leukocyte recruitment to the inflamed endothelium, a process called secondary 

tethering34. The interactions of selectins with their specific ligands initiate capturing and rolling of 

circulating neutrophils. Selectin-selectin ligand interactions are characterized by rapid catch bond 

formation at the front and bond breakage at the trailing edge of the cell. Catch bonds are 

interactions which are strengthened by increasing pulling forces leading to a tighter bond between 

selectins and their ligands35. In addition, the formation of subcellular structures like tethers and 

slings further promotes neutrophil rolling and arrest17,36,37.  

Subsequent slow leukocyte rolling and adhesion are mainly mediated by the adhesion molecules 

of the β2 integrin family. β2 integrins are a family of αβ heterodimers consisting of four members 

with different α-subunits (CD11) and the conserved CD18 β-subunit: the lymphocyte 

function-associated antigen 1 (LFA-1, αLβ2, CD11a/CD18) the macrophage-1 antigen (Mac-1, 

αMβ2, CD11b/CD18), p150,95 (CR4, αxβ2, CD11c/CD18), and αdβ2 (CD11d/CD18)38. Circulating 

neutrophils present these β2 integrins in an inactive, bent E(-)H(-) conformation with a closed 

headpiece. Activation leads to conformational changes of β2 integrins into the extended 

intermediate ligand affinity E(+) H(-) conformation with a closed headpiece and further into the 

extended high ligand affinity E(+) H(+) conformation with an open headpiece39 (Figure 2). Recently, 

a fourth β2 integrin E(-) H(+) conformation has been discovered which interacts with neutrophil 

intercellular adhesion molecule 1 (ICAM-1) in cis resulting in the inhibition of leukocyte adhesion 

and aggregation40. 

Interaction of PSGL-1 on neutrophils with selectins on the inflamed endothelium initiates 

intracellular integrin inside-out signaling events. This activation of LFA-1 and its conformational 

switch into the intermediate E(+) H(-) conformation with a closed headpiece leads to an increased 

binding of LFA-1 to ICAM-1 on the endothelium which mediates slow neutrophil rolling41,42. For 
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the induction of the intermediate E(+) H(-) conformation, binding of the adaptor molecule talin-1 

to the CD18 cytoplasmic tail is essential41,43. Further activation by e.g. exposure to chemokines on 

the endothelium like CXCL8 (IL-8) in humans or CXCL1, CXCL2 and CXCL5 in mice leads to the 

conformational switch of LFA-1 into the high E(+) H(+) conformation with an open headpiece 

resulting in firm adhesion. In addition, binding of kindlin-3 to the CD18 cytoplasmic tail of LFA-1 is 

required to induce full activation of β2 integrins44,45. It has been previously shown that the 

mammalian actin binding protein (mAbp1) as well as the hematopoietic progenitor kinase 1 

(HPK1) are critically involved in the process of firm neutrophil adhesion by regulating the high 

affinity E(+) H(+)conformation of LFA-146,47.  

 

 

 

Figure 2. Four conformational states of the β2 integrins. Left panel: The canonical “switchblade” 
activation pathway leads to the conformational switch from the inactive, bent E(-) H(-) 
conformation with a closed headpiece to the intermediate affinity E(+) H(-) conformation with a 
closed headpiece and to the full activated E(+) H(+) conformation with an open headpiece. Right 
panel: A new proposed E(-) H(+) conformation state of β2 integrin (modified from Fan et al., 
201640). 
 

 

In the high affinity E(+) H(+) conformation, β2 integrins bind their extracellular ligands leading to 

outside-in signaling events and the redistribution and clustering of the integrins resulting in 

adhesion strengthening as well as actin cytoskeleton remodeling which is important for the 

following post-adhesion events like spreading, intraluminal crawling, and TEM18. 

Before neutrophils transmigrate through the wall of postcapillary venules (transmigration) into 

the inflamed tissue towards the site of inflammation (interstitial migration), they crawl inside the 

vessels along the inflamed endothelium (intraluminal crawling) to search for exit sites (Figure 3).  



   1 .  I N T R O D U C T I O N  

 
 

|  5  

 

Figure 3. Migration of neutrophils through venular walls into the inflamed tissue. Adherent 
neutrophils crawl within the circulation on the inflamed endothelium of postcapillary venules to 
search exit sites (Intraluminal crawling). Neutrophil transmigration from the blood into the 
inflamed tissue involves passing the ECs by the paracellular or transcellular pathway and the 
associated BM and the embedded pericytes (Transmigration). Within the inflamed tissue, 
neutrophils migrate towards the site of inflammation/injury (Interstitial migration).  
 

 

The processes of intraluminal crawling and TEM are tightly controlled by the interaction of 

neutrophils and ECs. It has been shown, that intraluminal crawling is mainly dependent on the 

interaction between Mac-1 and ICAM-148,49. Once arrived at potential exit sites, neutrophils have 

to pass three distinct barriers, the endothelial layer, the basement membrane (BM) and the 

pericytes. The perivascular BM is a heterogeneous network of extracellular matrix proteins mainly 

consisting of laminins (isoform 411 and 511), collagen type IV, heparan sulfate proteoglycans and 

nidogens50-55. Embedded pericytes are long vascular mural cells forming a discontinuous layer with 

cellular protrusions around the vessel associated with the endothelium56,57. 

Neutrophils migrate through the endothelial layer via the paracellular (through EC junctions) or to 

a lesser extend via the transcellular route within 2-5 min5,58. The interaction of neutrophil integrins 

and the EC ligands ICAM-1 and vascular cell adhesion molecule 1 (VCAM-1) may activate the Ras 

homology growth-related (RhoG) signaling downstream of ICAM-1 in ECs59. This induces the 

formation of ICAM-1- and VCAM-1-rich membrane structure so called ‘docking structures’60 or 

‘transmigratory cup’61 which surround emigrating leukocytes and may initiate TEM through the 

paracellular or transcellular route.  

After successful penetration of the EC barrier, leukocytes pass the underlying BM and the 

pericytes. This process takes place within 5-15 min. To date, the mechanism how neutrophils 

breach the BM is not fully understood. Degradation of the BM by the serine protease neutrophil 
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elastase (NE) presents one potential mechanism. It has been shown that after TEM, neutrophils 

crawl towards regions in the BM with low expression of laminins and collagen IV so called low-

expression regions (LER)62,63. The LERs are highly associated with gaps between the pericytes and 

are favored by neutrophils as exit spots for penetrating the BM15,62. Neutrophils additionally 

enlarge these LER by transient remodeling the BM possibly facilitated by the binding of the 

neutrophil receptors VLA-3 (α3β1) and VLA-6 (α6β1) to laminins in the BM64,65, or by the surface 

expression of NE62. Neutrophils migrate along pericytes in an ICAM-1- (expressed by pericytes), 

LFA-1- and Mac-1- (expressed by neutrophils) dependent manner66. Once emigrated into the 

tissue, neutrophils crawl within fibrillary networks in the interstitial space towards the site of 

inflammation67. In contrast to intraluminal crawling on ECs and abluminal crawling on pericytes, 

interstitial migration is low-adhesive and largely β2 integrin-independent68,69.  

 

In general, the clinical relevance for efficient neutrophil recruitment during the acute 

inflammatory response, becomes evident in patients with leukocyte adhesion deficiency (LAD) 

which is characterized by defective leukocyte recruitment leading to insufficient immune response 

to injury or infection. To date, there are four types of LAD described (LAD I-IV) characterized by 

recurrent bacterial and fungal infections70-75. LAD type I is caused by mutations in the β subunit 

(CD18) of β2 integrins70,71, whereas LAD type II shows a defect in the function of selectin ligands72,73 

both leading to impaired neutrophil adhesion and recruitment. A mutation within kindlin-3 

prevents the conformational shift of the β2 integrins into their high-affinity E(+) H(+) conformation 

and is the reason for LAD type III syndrome45,74. LAD type IV is caused by a dominant negative 

mutation in the Rac2 gene which is involved in the regulation of the actin cytoskeleton75-78. 

 

 

1.2 The different migration modes of neutrophils and their requirements 

In general, cell migration is fundamental for different cellular functions, including embryogenesis, 

angiogenesis, wound healing, and elimination of invading pathogens79-81. There are two basic 

types of cell migration, the mesenchymal migration mode and the amoeboid migration mode 

occurring in either 2D or 3D environments. Fibroblasts, smooth muscle cells, pericytes and many 

dedifferentiated cancer cells migrate using the mesenchymal migration mode which is 

characterized by a spindle-shaped morphology, low migration speed (0.1-1 µm/min) and 

proteolytic remodeling of the surrounding extracellular matrix82-85. In contrast, leukocyte 

migration occurs in the amoeboid migration mode and is characterized by cell polarization, 10 to 
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40 fold higher migration speed and the lack of proteolytic degradation of the extracellular 

matrix86,87.  

Leukocytes are very flexible in changing their cell morphology and adopt their mode of migration 

rapidly to the environmental requirements. They detect environmental signals, e.g. from cytokines 

or chemokines, and translate them into intracellular signals leading to the establishment of a 

polarized cell shape. Cell polarization into an actin-rich lamellipodium and a contractile uropod 

precedes cell movement. Leukocytes can either perform directed migration towards a gradient of 

an extracellular chemoattractant in a process called chemotaxis or they migrate in a nondirected 

fashion in a homogenous field of soluble chemokines, a process called chemokinesis. Also 

chemoattractans bound to surfaces initiate leukocyte directed (haptotaxis) or random 

(haptokinesis) migration along surfaces69 (Figure 4).  

 

 

 

Figure 4. Leukocyte migration initiated by soluble or surface-bound chemoattractans. 
Homogenous fields of soluble chemokines induce self-polarization and random migration, a 
process called chemokinesis. Leukocytes perform directed migration towards a chemoattractant 
gradient in a process called chemotaxis. Surface-bound chemoattractans induce migration in a 
nondirected manner (haptokinesis) or directed manner (haptotaxis) towards a (modified from 
Lämmermann et al., 201469). 
 

 

Chemoattractans induce cell polarization via binding to the respective G-protein-coupled receptor 

(GPCRs). These receptors are seven-transmembrane domain receptors interacting with 

heterotrimeric G-proteins. Heterotrimeric G-proteins consist of three subunits, the α-subunit, β-

subunit and γ-subunit88,89. Activation of GPCRs leads to the dissociation of the subunits Gα and 

Gβγ regulating activity of different enzymes including ion channels, adenylyl cyclases and 

phosphatidylinositol 3-kinase (PI3K). Direct activation of PI3K by the Gβγ subunit in the front of 
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the cell leads to the accumulation of phosphatidylinositol (3,4,5)-triphosphate (PIP3) and the 

recruitment of the Rho family of small guanosine triphosphatases (GTPases) Rac and Cdc42. Rac 

and Cdc42 are crucial for actin polymerization as well as formation and stabilization of the leading 

edge90,91. The PI3K antagonist (PIP3 5-phosphatase PTEN) is simultaneously recruited to the rear 

of the cell in a RhoA/ROCK-dependent manner resulting in locally restricted production of PIP3 and 

the localization of RhoA to the rear of the cell92. Here, RhoA controls contraction and retraction of 

the uropod by phosphorylating and thereby activating MyosinII (MyoII, Figure 5)93-95.  

 

 

Figure 5. Signaling during neutrophil polarization.   
Signaling molecules such as PI3K and its product 
PIP3 as well as Rac are enriched in the leading edge 
of polarized neutrophils. The production of PIP3 
activates Rac-GEFs which stimulate Rac resulting in 
F-actin polymerization and the formation of a 
lamellipodium. Active RhoA/ROCK signaling and 
inhibited Rac activity at the rear of the polarized cell 
leads to the presence of actomyosin fibers which 
are formed by MyoII light chains (adapted from 
Mocsai et al., 201518). 
 

 

 

Due to this rapid change of cell morphology, leukocyte migration is defined by the following steps 

occurring in a cyclic manner, pseudopod formation by actin polymerization at the cell front, 

contraction of the cell body and detachment of the cell back executed by actomyosin-driven 

forces. These intracellular forces of actin polymerization and actomyosin contraction are 

transduced to the surrounding environment to fulfill efficient cell migration96-98. 

 

 

1.2.1 Resistance to shear stress of neutrophils during migration 

In vivo, neutrophil recruitment from the blood stream into the inflamed tissue occurs under 

vascular flow conditions. Neutrophils have the ability to crawl along the inflamed endothelium 

against and perpendicular to the blood flow in a mechanotactic manner to reach optimal 

junctional extravasation sites48. Specific molecular players have been shown to be involved in 

neutrophil migration under wall shear stress conditions99. The Rho-specific guanine exchange 
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factor (GEF) Vav1 is indispensable during mechanotactic migration100. In the genetic absence of 

Vav1, neutrophils migrate exclusively with the direction of blood flow and fail to crawl against or 

perpendicular to the flow. Under static conditions, the migration behavior of wild-type and 

Vav1-/- neutrophils is similar highlighting the critical role of Vav1 for shear-induced perpendicular 

migration. In line with these findings, Hepper et al. showed that mAbp1 is critically involved in 

post-adhesive events under flow conditions, but was indispensable for migration under static 

conditions101. The same was true for the mAbp1 interacting protein HPK1 indicating that HPK1 was 

additionally required for intraluminal crawling against the direction of blood flow47. The 

RhoA-specific GEF-H1 has been identified as another molecular player in stress-induced neutrophil 

migration102. This molecule regulates the function of RhoA, which is localized at the uropod and 

involved in the establishment of cell polarization as mentioned above91. GEF-H1-/- neutrophils 

displayed impaired spreading and migration behavior exclusively under flow conditions compared 

to control neutrophils102,103. 

 

 

1.2.2 The role of integrins during neutrophil migration 

In 2D environments, effective neutrophil migration, e.g. intraluminal crawling relies on 

β2 integrin-mediated adhesion to the endothelial surface (Figure 6, left panel). Using Mac-1-/- mice, 

it has been shown that Mac-1 is the major adhesion molecule involved in intraluminal crawling, as 

Mac-1-deficient neutrophils failed to crawl towards potential exit sites48. Several studies 

demonstrated that integrin blocking or depletion in diverse cell types, including neutrophils, DCs 

and T cells resulted in abolished migration in 2D environments68,93,104,105. However, migration of 

integrin-deficient (β2
-/- β7

-/- β1
-/- αV

-/-) neutrophils in 3D environments was intact compared to 

control cells68,106,107. This was also true for talin-deficient neutrophils suggesting that the high 

affinity conformation of LFA-1 is dispensable for successful 3D migration of neutrophils68. These 

data indicate that leukocyte migration in the interstitial space occurs in the absence of 

β2 integrin-mediated adhesion showing that traction forces can be transmitted to the 

environment without anchoring the cell to the surface via integrins. Thus, forces necessary for 

interstitial cell movement can be obviously generated by the physical interactions between the 

cell and the extracellular matrix68,108 (Figure 6, right panel).  

 

 



   1 .  I N T R O D U C T I O N  

 
 

|  10  

 

Figure 6. Schematics of β2 integrin involvement during migration in 2D and 3D environment. Left 
panel: Migration in 2D environment requires adhesion to the extracellular matrix (ECM) via β1, β3 
integrins or via binding of the β2 integrin LFA-1 to ICAM-1 presented on the endothelial surface. 
Right panel: In contrast, migration in 3D environment is largely β2 integrin independent (modified 
from Friedl et al., 200897). 
 

 

Within the interstitial space neutrophils rapidly migrate towards the site of injury or infection, 

where they accumulate and form clusters to isolate infected tissue from healthy tissue. This 

migration behavior was recently described as neutrophil swarming106,109,110. Studies in inflamed 

mouse skin using 2-photon microscopy indicated that neutrophil recruitment, accumulation and 

cluster formation was caused by neutrophil-derived leukotriene B4 (LTB4). Accumulated 

neutrophils were found to remodel the collagen fibers resulting in a collagen-free area at the 

wound. Talin- and integrin-deficient neutrophils were not able to migrate into this remodeled 

zone suggesting that high-affinity integrins are essential for neutrophil accumulation at the 

wound106. These data clearly demonstrate that the neutrophil migration mode and the 

involvement of β2 integrins are dependent on the environment. 

Infiltrated neutrophils are removed from sites of injury or inflammation by different mechanisms, 

including NETosis, apoptosis or necrosis followed by phagocytosis of macrophages111-113. Previous 

data have shown that neutrophil clearing from sites of infection can occur by active reverse 

interstitial and transendothelial migration away from sites of inflammation114,115. These processes 

were observed in zebrafish114,116, mice117, and in human neutrophils in vitro118, however the 

underlying migration mode, the involvement of β2 integrins and the (patho-) physiological role of 

this process for the control of the inflammatory response remain elusive so far. 
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1.2.3 Deformation of the nucleus during neutrophil migration 

During migration within 3D environments, i.e. transmigration and interstitial migration, cells have 

to squeeze through restriction sites generated by the surrounding extracellular matrix119. In 

general, there are two mechanisms cells undergo to successfully migrate through these 

constraints namely proteolytic degradation of the surrounding matrix and deformation of the cell 

body120,121. Since the nucleus is the largest cellular organelle, its deformation is indispensable and 

rate-limiting for migration without proteolytic degradation through constriction sites122. Cell 

nuclei consist of the nuclear envelope and the nuclear interior. The nuclear envelope is composed 

of the inner and outer nuclear membrane connected at the nuclear pore complexes and the 

underlying nuclear lamina. The nuclear lamin network of Lamin A/C at the inner nucelar 

membrane is involved in the structural determination of the nuclear shape and stiffness123. Friedl 

et al. described four phases the nucleus undergoes while migrating through narrow pores121. First 

the nuclear envelope pushes against the constraints generating intracellular forces leading to the 

formation of a small nuclear lobe which initiates the deformation of the nucleus. This 

phenomenon was also observed in T cells during TEM124. Subsequently, the nucleus adopts an 

hour-glass shape and squeezes through the confinement. Lastly the rear of the nucleus pushes 

forward resulting in the original ellipsoid shape. In general, the described deformation of the 

nucleus depends on dynamic interaction between the actin cytoskeleton and the nuclear envelope 

enabling transmission of force from the actin cytoskeleton to the nucleus. This interaction relies 

on the mechanical linkage between the actin filaments, microtubules, intermediate filaments and 

the nuclear membrane121,125-127 (Figure 7). Linkers of the nucleocytoskeleton to cytoskeleton 

(LINC) complexes mediate the interaction between the nuclear membrane and the 

cytoskeleton128. Inner membrane proteins like SUN1/2 as well as the outer membrane proteins 

Nesprin-1/2, -3 are important components of the LINC complex interacting with the lamin network 

at the inner nuclear membrane129. Additionally, nuclear envelope transmembrane proteins, 

including the lamin B receptor (LBR) are involved in the anchoring of the nuclear membrane to the 

surrounding cytoskeleton130.  

Importantly, the nuclear shape as well as the nuclear envelope composition of neutrophil nuclei 

are different compared to other cell types, e.g. monocytes and T cells. Due to overexpression of 

LBR during granulopoiesis, neutrophil nuclei exhibit a multi-lobulated shape131,132. Human 

neutrophil nuclei consist of 2-6 nuclear lobes with a diameter of 2 µm which are connected by 

segments with a size of approximately 0.5 µm133,134, whereas nuclei of murine neutrophils possess 

a ring-like shaped nucleus135. 
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Figure 7. Schematics of the proteins 
involved in the connection between 
the cytoskeleton and the nucleus. 
Upper panel: Mesenchymal cell 
migration through a narrow pore 
smaller than the cell diameter within a 
3D tissue (brown) shows an elongated 
nucleus at the rear of the migrating cell. 
In comparison, the nucleus is located in 
the front during amoeboid cell 
migration. The physical interaction of 
the cell with the extracellular matrix 
fibers is shown as orange spots (focal 
contacts). Lower panel: Components of 
the LINC complex namely SUN1/2 
(green) and Nesprins (yellow) link the 
cytoskeleton filaments (intermediate 
filaments in green, microtubules in 
purple and actin filaments in light blue) 
to the nuclear membrane with its 
membrane proteins emerin (brown) and 
LBR (blue). Lamin network (red) at the 
inner nuclear membrane (adapted from 

              Friedl, et al., 2011121). 
 

 

Furthermore, neutrophil nuclei show low expression of LaminA/C and LINC complex proteins in 

the nuclear envelope leading to a high malleable nucleus which deforms and elongates during 

migration within 3D environments132,136-138. These unique characteristics enable neutrophils to 

migrate rapidly through constrictions being the first immune cells arriving at the sites of 

inflammation. 

 

 

1.3 The myosin superfamily 

The myosin (Myo) superfamily is a large and diverse family of F-actin based molecular motor 

proteins. The proteins are involved in a wide number of cellular functions, including cell adhesion 

and migration, membrane trafficking and signal transduction139. They consist of one or two heavy 

chains composed of a head (motor) domain binding actin in an ATP-dependent manner, a neck 

domain with a variable amount of IQ motifs binding light chains, calmodulin or calmodulin-like 

proteins and a tail domain with different binding sites determining the distinct function139,140. Most 

of the myosins are heterodimers and bind light chains via the characteristic consensus sequence 
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IQxxxRGxxxR of IQ motifs resulting in stability of the neck region141. Based on their structural 

similarity of the head (motor) domain, 267 myosins from 67 species are divided into 24 classes142. 

Some myosins are exclusively expressed in plants (e.g. MyoVIII) or in vertebrates (e.g. MyoX), 

however the majority is found in all eukaryotes143. Figure 8 shows the evolutionary tree of the first 

18 myosin classes evolved and their structure of the heavy chains143.  

 

 

 

Figure 8. The evolutionary tree of the myosin superfamily. Schematics of the heavy chain of 
18 myosin classes. Bright colors demonstrate examples from each myosin class. Light colors 
represent putative ancestral myosins not existing to date, however necessary to draw the diagram 
of the evolutionary pathways. Different colors indicate the different structural domains. FERM, 
four-point-one, ezrin, radixin, moesin; PDZ domain, post synaptic density protein, drosophila disc 
large tumor suppressor, zonula occludens-1 protein domain (adapted from Thompson et al., 
2002143). 
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The myosin head (motor) domain is an ATPase which represents a mechanochemical enzyme 

converting energy released by ATP hydrolysis to force for cell movement along the actin 

cytoskeleton144. The tail domain contains different conserved protein domains for protein-protein 

interaction, kinase activity, or lipid binding which dictate the specific function of the myosin. Some 

tails contain heptad repeat sequences allowing the formation of coiled-coil structures leading to 

dimerization of two heavy chains as seen for the most studied conventional MyoII139. The muscle 

MyoII is involved in muscle contraction, whereas the non-muscle MyoII plays an important role in 

cytokinesis and cell migration145,146. Besides MyoII which is characterized by the formation of 

bipolar filaments by homo-oligomerization of the tail domain, all other classes are termed 

unconventional myosins and do not form filaments147. Due to membrane binding domains in the 

tail domain, unconventional myosins (e.g. MyoI and MyoV) are implicated in membrane-related 

processes, like endocytosis and vesicle trafficking148,149. 

 

 

1.3.1 Unconventional class I myosins (MyoI) 

Unconventional class I myosins (MyoI) are highly conserved and widely expressed in almost all 

eukaryotic species. There are eight MyoI heavy-chain genes in mice and humans, six genes encode 

short-tailed forms (Myo1a, b, c, d, g, h) and two encode long-tailed forms (Myo1e, f)150. Myo1e 

and Myo1f are mainly expressed in hematopoietic cells, and Myo1a is found in the intestine. The 

other members of MyoI namely Myo1b, c, d, g, h are found in almost all cell types148. MyoI consist 

of a heavy chain containing the three typical structural domains, the head, neck and tail domain 

(Figure 8) and a basic tail homology 1 (TH1) domain with a pleckstrin homology domain binding 

different anionic phospholipids in various cellular membranes151-154. The long-tailed myosins 

encode an additional proline-rich TH2 domain and a TH3 domain with a SH3 domain mediating 

protein-protein interactions139,155.  

In general, class I myosins are involved in many membrane-associated functions due to their 

potential to link membranes to the actin cytoskeleton, including endocytosis, cell signaling and 

cell motility156-158. Myo1a localizes to the intestinal brush border domain consisting of microvilli in 

the apical surface of the intestine where it connects the microvilli membrane to the cytoskeleton 

and regulates membrane tension159. Furthermore, Myo1a was identified in Golgi-derived vesicles 

suggesting a crucial impact of Myo1a in vesicle trafficking160,161. The tail domain of Myo1b has 47 % 

homology to the Myo1a tail domain and was found to localize to endosomes and lysosomes 

indicating its contribution to the transport of vesicles162,163. Studies using recombinant Myo1c 
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demonstrated that basic tail domains bind specifically to phosphatidylinositol (4,5)-bisphosphate 

instead to the predicted acidic phosphatidylserine153. Myo1c was reported to play an important 

role in glucose transporter 4-containing vesicle movement164 and in the transport of vascular 

endothelial growth factor receptor-2 to the plasma membrane165. Myo1d is mainly expressed in 

the brain and studies using a Myo1d blocking antibody demonstrated an important role of Myo1d 

in the membrane recycling pathway166. Myo1g is expressed in T lymphocytes where it plays an 

important role in T cell migration by generating membrane tension. It has also been shown that 

Myo1g enhances T cell-DC interactions during lymph node surveillance167,168. Furthermore it is 

expressed in B lymphocytes where it is involved in the regulation of actin remodeling169 and in 

FcR-mediated phagocytosis170. Until now there is nothing known in the literature about the 

localization and function of Myo1h151. The two long-tailed members Myo1e and Myo1f are highly 

expressed in immune cells. Natural killer cells, DCs and macrophages express both long-tailed 

isoforms, whereas B cells only express Myo1e and neutrophils only express Myo1f1,171. In contrast 

to Myo1f, Myo1e is more widely expressed, and plays a role in clathrin-mediated endocytosis172 

as well as in Toll-like receptor 4 (TLR4)-mediated macrophage spreading and antigen presentation 

as it regulates major histocompatibility complex (MHC) class II surface expression173. 

 

 

1.3.2 Myosin 1f 

Myo1f is expressed in the spleen, mesenteric lymph nodes, thymus and lung1. The protein consists 

of the motor domain, followed by an IQ motif, a TH1 domain and at its C-terminal end it encodes 

a SH3 domain (Figure 9). 

 

 

 

Figure 9. Schematics of the domain structure of Myo1f. Myo1f consists of the motor domain 
(blue) which is an ATP and actin binding domain, followed by an IQ motif (orange) and a TH1 
domain (green) which is involved in binding of membrane phosphoinositides. At its C-terminal 
end, the protein contains a SH3 domain (red) which is crucial for protein-protein interactions. 
Numbers indicate amino acids where the domains start and end. 
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Studies in the amoeboid organism Dictyostelium discoideum demonstrated that the deletion of 

several forms of MyoI, including MyoA, MyoB and MyoF resulted in impaired cell migration174-176. 

Since neutrophils and Dictyostelium discoideum exhibit similar migration modes it has been 

hypothesized that Myo1f is crucial for neutrophil migration. Indeed, Myo1f-/- mice fail to control 

infection by Listeria monocytogenes due to an impaired neutrophil accumulation at the site of 

inflammation. Furthermore, it has been demonstrated that the genetic absence of Myo1f results 

in an increased neutrophil adhesion to ICAM-1 via β2 integrins under static conditions in vitro. In 

summary, Myo1f seems to be critically involved in neutrophil recruitment and innate host defense 

against infection1.

 

 

2. AIM OF THE THESIS 

Myo1f is the only long-tailed isoform of the Myosin I family expressed in neutrophils reported so 

far. It has been previously shown that Myo1f-/- neutrophils exhibit an abnormally increased 

adhesion to the β2 integrin ligand ICAM-1 as well as decreased 2D migration velocity under static 

conditions in vitro. Furthermore, Myo1f-/- mice show an increased susceptibility to infection with 

Listeria monocytogenes due to impaired neutrophil accumulation at sites of inflammation1. 

However, the role of Myo1f for the different steps of the neutrophil recruitment cascade is still 

elusive. 

Therefore, the first aim of this study was to identify the role of Myo1f for neutrophil rolling and 

adhesion under physiological flow conditions in vitro and in vivo using flow chamber assays and 

intravital microscopy. The second aim of this study was to analyze the impact of Myo1f for 

neutrophil extravasation in different in vivo models, including the TNFα-induced cremaster model, 

the peritonitis model, and the acute lung injury (ALI) model. The third aim of this study was to 

analyze the role of Myo1f for migration of neutrophils in 2D environments. The last aim of this 

study was to uncover the role of Myo1f for migration of neutrophils in 3D environments, i.e. 

transmigration and interstitial migration.  

In summary, this study will not only improve the understanding of the function of Myo1f in 

neutrophil trafficking but may provide new concepts for therapeutic strategies in the treatment 

of neutrophil-driven acute or chronic inflammatory diseases. 
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3. MATERIALS 

3.1 Mouse strains 

Myo1f-/- mice were maintained on a C57BL/6 background. C57BL/6 wild type (Myo1f+/+) mice were 

obtained from Charles River Laboratories. All animal experiments were conducted in accordance 

with the German federal animal protection laws and approved by the Bavarian Government 

(Regierung von Oberbayern, Munich, Germany).  

 

 

3.2 Chemicals 

Name Supplier Name Supplier 

2-mercaptoethanol Sigma Aldrich, Germany May-Grünwald solution AppliChem, Germany 

acetic acid Applichem, Germany 
manganese (II) chloride 

tetrahydrate  
AppliChem, Germany 

agarose Genaxxon, Germany methanol Th. Geyer, Germany 

ampicillin AppliChem, Germany midori Green Nippon, Japan 

bovine serum albumine 

(BSA) 
Sigma Aldrich, Germany 

modified eagle’s minimum 

essential medium 

(Opti-MEM) 

Gibco, Life Technologies, 

Germany 

bromphenole blue AppliChem, Germany mowiol Sigma Aldrich, Germany 

calcium chloride (CaCl2) AppliChem, Germany 
PageRuler™ prestained 

protein ladder  

Thermo Fisher Scientific, 

Germany 

collagen type I, rat tail IBIDI, Germany paraformaldehyde Sigma Aldrich, Germany 

crystal violet Sigma Aldrich, Germany 
paramethoxyamphetamine 

(PMA) 
Merck, Germany 

dimethyl sulfoxide (DMSO) AppliChem, Germany penicillin Biochrom, Germany 

diisopropyl 

phosphofluoridate (DFP) 
Sigma Aldrich, Germany percoll Sigma Aldrich, Germany 

dithiothreitol (DTT) AppliChem, Germany 
phosphate buffered saline 

(PBS) 
Biochrom, Germany 

Dulbecco’s modified eagle 

medium (DMEM) 
Biochrom, Germany phenol red Biochrom, Germany 
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Name Supplier Name Supplier 

ethanol absolute Th. Geyer, Germany poly-L-Lysin Merck, Germany 

ethylenediamine-

tetraacetic acid (EDTA) 
AppliChem, Germany protease inhibitor Mix B  Sigma Aldrich, Germany 

Eukitt quick-hardening 

mounting medium 
Sigma Aldrich, Germany 

Roswell Park Memorial 

Institute 1640 (RPMI) 
Biochrom, Germany 

fetal calf serum (FCS) Biochrom, Germany salmonella eneritidis Sigma Aldrich, Germany 

fluorescence microbeads Polysciences, Germany sodium chloride (NaCl) AppliChem, Germany 

GeneRuler™ 100 bp DNA 

ladder  

Fermentas, USA 

 

sodium hydrogen 

carbonate (Na2HCO3) 
AppliChem, Germany 

GeneRuler™ 100 bp DNA 

ladder 
Nippon, Japan 

sodium dodecyl sulfate 

(SDS) 
AppliChem, Germany 

Giemsa’s azur eosin 

methylene blue 
Sigma Aldrich, Germany sodium fluoride Sigma Aldrich, Germany 

glucose AppliChem, Germany 
sodium dihydrogen 

carbonate (NaH2PO4) 
Sigma Aldrich, Germany 

glutaraldehyde solution Sigma Aldrich, Germany sodium orthovanadate Sigma Aldrich, Germany 

glycine AppliChem, Germany streptomycin Biochrom, Germany 

Hank’s balanced salt 

solution 
Biochrom, Germany TritonX-100 Sigma Aldrich, Germany 

HEPES AppliChem, Germany tris-HCl Applichem, Germany 

hydrochloric acid, 37% (HCl) AppliChem, Germany TRITC-Dextran Sigma Aldrich, Germany 

lipofectamin 2000 
Thermo Fisher Scientific, 

Germany 
Trizma®base (tris) Applichem, Germany 

lipopolysaccharide (LPS) 

from Salmonella eneritidis 
Sigma Aldrich, Germany trypsin/EDTA Biochrom, Germany 

manganese chloride 

(MnCl2) 
AppliChem, Germany Tween 20 Sigma Aldrich, Germany 

magnesium chloride 

(MgCl2) 
AppliChem, Germany xylol AppliChem, Germany 
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3.3 Recombinant proteins 

Name Supplier 

rmCXCL1 R&D Systems, USA 

murine fibrinogen Innovative Research, USA 

rmICAM1 without Fc Stemcell, Germany 

rmICAM-1/Fc R&D Systems, USA 

rmP-selectin with Fc R&D Systems, USA 

rmTNFα R&D Systems, USA 

human fibrinogen R&D Systems, USA 

human fibrinogen Alexa-647 Thermo Fisher Scientific, Germany 

hICAM-1 R&D Systems, USA 

interleukin-8 (IL-8) R&D Systems, USA 

N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) Sigma Aldrich, Germany 

 

 

3.4 Antibodies 

Antigen Dye Reactivity Clone Company 

β actin - mouse anti-human C4 Santa Cruz Biotechnology, USA 

CD11a Alexa Fluor 594 rat anti-mouse 2D7 BioLegend, USA 

CD11a PE rat anti-mouse 2D7 BD Biosciences, USA 

CD11a - rat anti-mouse M17/4 eBioscience, USA 

CD11b PE rat anti-mouse M1/70 eBioscience, USA 

CD11b - rat anti-mouse M1/70 eBioscience, USA 

CD18 PE rat anti-mouse C71/16 BD Biosciences, USA 

GFP - rabbit anti-human FL Santa Cruz Biotechnology, USA 

Hoechst 33342 - - - Thermo Scientific, USA 

IgG1 PE mouse anti-human H2 Southern Biotech, USA 

isotype control  PE rat anti-mouse IgG2a, κ BD Biosciences, USA 

isotype control  PE rat anti-mouse IgG2b, κ eBioscience, USA 

Ly6-G FITC rat anti-mouse 1A8 BioLegend, USA 

Myo1f - mouse anti-human B-5 Santa Cruz Biotechnology, USA 
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Antigen Dye Reactivity Clone Company 

Myo1f - rabbit anti-mouse polyclonal 
custom-made,  

Davids Biotechnology, Germany 

Phalloidin Alexa Fluor 546 - - Thermo Fisher Scientific, Germany 

secondary antibody Alexa Fluor 647 donkey anti-rabbit - Thermo Fisher Scientific, Germany 

secondary infrared 680 RD donkey anti-rabbit - Li-Cor Biotechnology, USA 

secondary infrared 800 CW donkey anti-mouse - Li-Cor Biotechnology, USA 

Sir-Actin - - - Spirochrome, Switzerland 

 

 

3.5 Media 

Name Ingredients Name Ingredients 

DMEM+ 

DMEM GlutaMAX™ 

4.5 g/l glucose 

10% (v/v) fetal calf serum 

100 U/ml penicillin 

100 μg/ml streptomycin 

RPMI 1640 

10% (v/v) fetal calf serum 

100 U/ml penicillin 

100 μg/ml streptomycin 

DMEM 

10% (v/v) fetal calf serum 

100 U/ml penicillin 

100 μg/ml streptomycin 

  

 

 

3.6 Buffers and Solutions 

Name Ingredients Name Ingredients 

1x adhesion medium 

(ADM) 

1.2 mM Ca2+ 

1 mM Mg2+ 

0.25 % BSA 

0.1 % glucose 

20 mM Hepes  

pH 7.4 in Hank’s balanced salt 

solution 

50x TAE buffer 

2 M tris 

1 M sodium acetate 

62.5 mM EDTA 

pH 8.5 
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Name Ingredients Name Ingredients 

10x ADM 

12 mM Ca2+ 

10 mM Mg2+ 

2.5 % BSA 

1 % glucose 

200 mM Hepes  

pH 7.4 in Hank’s balanced salt 

solution 

agarose gel 

solution 

1x TAE buffer 

1-2% (w/v) agarose 

1 μg/ml midori green 

10x DNA sample 

buffer 

0.1% (w/v) bromophenol blue 

50% (v/v) glycerol 

0.1 M EDTA 

pH 8.0 

BD FACS™ lysing  

solution  
Dilution 1:10 in H2O 

10x running buffer 

2 M glycine 

250 mM tris 

1% (w/v) SDS 

cell lysis buffer 

25 mM tris-HCl pH 7.4 

150 mM NaCl 

0.5 mM EDTA 

1 % TritonX-100 

1% (w/v) sodium 

deoxycholate 

1 mM DTT 

1x Protease Inhibitor (Sigma) 

1 mM DFP 

20 mM sodium fluoride 

2 mM sodium orthovanadate 

1x SDS sample buffer 

200 mM tris-HCl 

400 mM DTT 

8% (w/v) SDS 

0.4% (w/v) bromophenol blue 

40% (v/v) glycerol 

10% (v/v) 2-mercaptoethanol 

pH 6.8 

WB blocking 

solution 

1x TBS 

5% (w/v) skim milk powder 

0.02% (v/v) Tween 20 

10x TBS buffer 
250 mM tris-HCl 

1.5 M NaCl 

WB washing buffer  

(TBST) 

1x TBS 

0.02% (v/v) Tween 20  

1x transfer buffer 

25 mM tris 

192 mM glycine 

20% (v/v) methanol 
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3.7 Cell lines 

Name Description Source 

b.End3 immortalized mouse brain endothelial cell line ATCC®CRL-2299™, Manassas, VA 

HL-60 human promyelocytic leukemia cell line ATCC®CRL-240™, Manassas, VA 

WEHI-3B murine myelomonocytic leukemia cell line DSMZ ACC 26, Germany 

 

 

3.8 Software 

Name Company 

Adobe Photoshop and Illustrator Adobe, USA 

Chemotaxis and Migration Tool IBIDI, Germany 

EndNote X7.4 Clarivate Analytics, USA,  

FACS Diva BD Biosciences, USA 

FlowJo 7.6 Treestar, USA 

ImageJ NIH, USA 

Leica Application Suites Leica, Germany 

Prism 6 GraphPad, USA 

Slidebook 6.0.8 3i, USA 

 

 

3.9 Equipment 

Name Company 

AxioCam Hsm camera  Zeiss, Germany 

Axiotech Vario intravital microscope Zeiss, Germany 

Axiovert 200M microscope Zeiss, Germany 

Confocal scanner unit CSU-X1 Yokogawa Electric Corporation, Japan 

Coulter A C T counter Coulter Corporation, USA 
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Name Company 

EM CCD camera Photometrics, USA 

Examiner spinning disk confocal microscope Zeiss, Germany 

FACS BD Canto II cytometer BD Bioscience, USA 

Odyssey® CLx imaging system Li-Cor Biotechnology, USA 

ProCyte Dx hematology analyzer IDEXX Laboratories, Germany 

PowerWave HT microplate reader Biotek, USA 

SP8X WLL microscope Leica Biosystems, Germany 

 

 

3.10 IBIDI chambers 

 µ-Slides Chemotaxis3D chamber 

 μ–Slide membrane ibiPore flow chamber 

 µ-Slide VI 0.1 flow chamber 

 µ-Slide VI 0.4 flow chamber 
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4. METHODS 

4.1 Genotyping 

To identify the genetic background of Myo1f+/+ and Myo1f-/- mice, DNA of tail biopsies was 

extracted and analyzed by Polymerase Chain Reaction (PCR). Total DNA was isolated using the 

PCRBIO Rapid Extract PCR kit (PCRBiosystems, United Kingdom) according to the manufacturer’s 

instructions. PCR was carried out using FastGene® Optima HotStart ReadyMix according to the 

manufacturer’s protocol (Table 1) and specifically designed primers (Table 2) to distinguish 

Myo1f+/+ and Myo1f-/- mice (Figure 10). In homozygous Myo1f-/- mice exon 5 and 6 were eliminated 

on both alleles, therefore the PCR product differed in length between Myo1f+/+ and Myo1f-/- DNA. 

The PCR protocol included a primary denaturation step at 95 °C for 3 min, followed by cycles of 

15 s at 95 °C (denaturation), 15 s at the annealing temperature of the primers (hybridization) and 

60 s at 72 °C (extension) and a final extension step of 7 min 72 °C. In all performed PCR reactions 

an annealing temperature of 52 °C was used. 

 

 

  

Figure 10. Schematic representation of Myo1f+/+ and Myo1f-/- alleles. The red arrows show the 
specific primers (Fw, forward; Rv, reverse) used to distinguish between Myo1f+/+ and Myo1f -/- DNA 
according to specific length of the PCR product.  
 

 

DNA fragments were separated according to their size by agarose gel electrophoresis (2 % agarose 

in 1x TAE buffer), stained by adding 1 µg/mL Midori Green to the fluid gel before the run and 

visualized by UV light (260 nm). As a size standard, 100 bp DNA ladder was run on the same gel. 

The PCR with the specific primer pair resulted in a PCR product size of 2174 bp for the 

Myo1f+/+ allele and product size of 500 bp for the Myo1f-/- allele. 
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Table 1. PCR components 

Components Final concentration 

2x FastGene® Optima 
HotStart ReadyMix with dye 

1x 

Forward primer (10 µM) 0.5 µM 

Reverse primer (10 µm) 0.5 µM 

Template DNA 2 µL of isolated DNA 

H2O x µL 

 

 

Table 2. Primers used for genotyping 

Name Oligonucleotide 5’ – 3’ Tm [°C] Supplier 

Myo1f Fw ATGTCTTCAGGCTTGGCAAC 51.8 Metabion, Germany 

Myo1f Rv TCGCTGACCATCCACTTACA 51.8 Metabion, Germany 

 

 

4.2 HL-60 cells  

4.2.1 Culture and differentiation of HL-60 cells 

The human promyelocytic leukemia cell line HL-60 was cultured in RPMI 1640 growth medium, 

supplemented with 10 % FCS, penicillin (100 U/mL), and streptomycin (100 µg/mL) at 37 °C in 

5 % CO2. To differentiate HL-60 cells towards neutrophil-like cells (dHL-60), 1x106 cells were 

cultured in 10 mL RPMI 1640 (+10 % FCS, penicillin, streptomycin) medium supplemented with 

1.3 % DMSO for 6 days177,178. HL-60 cells stably expressing an EGFP-tagged Myo1f fusion protein 

used in this study were generated by Phillip Löhr using lentiviral transduction127.  

 

 

4.2.2 Cryopreservation and resuscitation of frozen cells 

For long term storage, cells were centrifuged at 300 g for 5 min and suspended in a mix of 

90 % (v/v) FCS, and 10 % (v/v) dimethyl sulfoxide. Subsequently, cryotube aliquots were put in a 

NALGENE™ Cryo 1°C Freezing Container (Thermo Fisher Scientific, Germany) allowing freezing at 

constant rate of approximately -1°C per minute and kept at -80°C overnight before storing them 
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at -196 °C in liquid nitrogen. In order to re-cultivate frozen cell line stocks, cryotubes were quickly 

thawed in a water bath at 37 °C and washed once with 10 ml RPMI 1640 growth medium before 

culture. 

 

 

4.2.3 Western Blot analysis 

After puromycin selection, expression of the 152 kDa EGFP-fusion protein was analyzed by 

immunoblotting technique. Therefore, 10x106 infected HL-60 cells were lysed in 300 µL cytosolic 

cell lysis buffer supplemented with 1 mM DFP, 20 mM sodium fluoride and protease inhibitor 

cocktail at 4 °C for 30 min179. Cellular debris was removed by centrifugation at 1600 g for 5 min 

and supernatants containing soluble total protein were mixed with 2x SDS sample buffer, reduced 

and denatured by boiling at 95 °C for 10 min. Proteins were separated according to their molecular 

weight and charged by SDS-PAGE following the method by Laemmli180. Total protein lysates and 

PageRuler™ Prestained Protein ladder were loaded on polyacrylamide gels of a 10 % separating 

gel and a 4 %stacking gel. Electrophoresis was done in 1x running buffer at 80 - 120 V. For 

immunological identification of separated proteins, electrophoretic transfer of proteins on 

nitrocellulose transfer membrane was carried out by the semi-dry blotting technique. After 

blotting, membranes were incubated for at least 1 h in 10 ml blocking solution at room 

temperature on a rocking platform. Membranes were incubated with anti-human Myo1f antibody, 

anti-human β actin antibody and anti-human GFP antibody at 4 °C overnight. Detection was 

performed using near-infrared labeled secondary protein dyes and the Odyssey®CLx Imaging 

system. 

 

 

4.3 Immunofluorescence and confocal microscopy 

For the identification of the subcellular localization of the EGFP-Myo1f fusion protein as well as 

F-actin, adherent dHL-60 EGFP-Myo1f cells on immobilized fibrinogen (250 µg/µL) and stimulated 

with 100 nM fMLP for 15 min at 37 °C were fixed with 4 % paraformaldehyde (PFA). After 

permeabilization with 0.1 % Triton-X and blocking with 10 % BSA, Myo1f was stained using a 

custom-made anti-mouse Myo1f rabbit polyclonal antibody specifically recognizing the Myo1f 

C-terminal region of amino acids RPRRSAQAPTRAAPGPPRGLNRNGV, and a secondary Alexa 

Fluor 647 donkey anti-rabbit polyclonal antibody. Phalloidin 546 was used to visualize F-actin. 
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Cells were mounted in ProLong Diamond Antifade Mountan and imaged with a Leica SP8X upright 

confocal microscope using a Leica HC PL APO 63x/1.40 oil objective.  

The morphology of the nucleus, the subcellular localization of Myo1f and Actin and the 

colocalization of both proteins in isolated primary human neutrophils were analyzed during 

migration within a 1.5 mg/mL collagen towards an fMLP (100 nM) gradient using spinning disk 

confocal microscopy. After migration within a collagen gel for 10 min primary human neutrophils 

were fixed with 4 % PFA, permeabilized with 0.2 % Triton-X and blocked with 1 % BSA. Myo1f was 

stained using the mentioned custom-made anti-mouse Myo1f rabbit polyclonal antibody labelled 

with Alexa Fluor 488. The nuclear dye Hoechst 33342 was used for nucleus staining (5 µM) and 

Alexa Fluor 546 Phalloidin was used for F-Actin staining. Images were acquired using an upright 

spinning disk confocal microscope and three lasers with an excitation wavelength of 405 nm, 488 

nm and 561 nm. 

 

 

4.4 Neutrophil recruitment in vitro 

4.4.1 Isolation of murine neutrophils and human neutrophils 

Myo1f+/+ and Myo1f-/- bone marrow neutrophils obtained from femurs and tibias were loaded 

onto a discontinuous Percoll gradient (52 %/64 %/72 %)181 and centrifuged for 30 min at 1000 g 

without break. Neutrophils enriched in the Percoll gradient interphase between 72 % and 64 % 

were collected and washed once in PBS. Isolated neutrophils were cultured for 24 h in RPMI 1640 

medium supplemented with 20 % WEHI-3B-conditioned medium. Human blood was collected 

from healthy donors and anticoagulated with sodium citrate (0.3 %). Erythrocyte sedimentation 

was allowed in the presence of 40 % (v/v) autologous plasma. Neutrophils were isolated from the 

leukocyte-rich plasma using a discontinuous Percoll gradient (55 %/74 %) as described182. 

 

 

4.4.2 Cell number quantification 

For cell culture experiments exact cell numbers of isolated murine neutrophils and dHL-60 cells 

were determined by counting viable cells using a Neubauer counting chamber and trypan blue for 

staining of dead cells.  
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4.4.3 Static adhesion assay 

To investigate neutrophil adhesion under static conditions, a static adhesion assay was 

performed183. In detail, 1x105 neutrophils suspended in adhesion medium (ADM) were seeded into 

a 96-well plate and exposed to immobilized rmICAM-1 (12.5 µg/ml) or murine fibrinogen 

(50 µg/mL). Cells were allowed to adhere for 10 min at 37 °C and stimulated with 5 µg/ml 

rmCXCL1, 3 mM Mn2+, 10 µM fMLP, 100 ng/mL TNF-α, or 100 ng/mL PMA at 37 °C for 10 min in 

triplicates. Adherent Myo1f+/+ and Myo1f-/- neutrophils in percent of cells added (100 %) were 

calculated using a standard curve. The standard curve was prepared by adding 100 %, 80 %, 60 %, 

40 %, 20 %, and 10 % of the cell suspension on poly-L-lysine coated wells (100 µg/mL) in triplicates. 

Samples and standard curve were fixed with 1 % glutaraldehyde and cells were stained with 

0.1 % crystal ciolet. Absorbance was measured at a wavelength of 590 nm using a microplate 

reader.  

 

 

4.4.4 Induction of adhesion under flow conditions 

In order to study induction of adhesion under flow conditions, IBIDI µ-Slide VI 0.1 flow chambers 

were used as previously described 47. In detail, flow chambers were coated overnight at 4 °C with 

10 µg/mL rmP-selectin-Fc, 12.5 µg/ml rmICAM-1 and 5 µg/ml rmCXCL1 and blocked with 

10 % casein for 2 h at room temperature. Myo1f+/+ and Myo1f-/-neutrophils (5x105/sample) were 

resuspended in ADM and perfused through the flow chamber with a constant shear stress rate of 

1 dyne/cm2 for 9 min. Time-lapse videos were recorded using an Axiovert 200M microscope 

equipped with a Plan-Apochromat 20×/0.75NA objective, AxioCam HR digital camera, and a 

temperature-controlled environmental chamber. The number of rolling and adherent neutrophils 

was counted offline using ImageJ software. 

 

 

4.4.5 2D migration assays 

Mechanotactic crawling of Myo1f+/+ and Myo1f-/- neutrophils was analyzed using IBIDI 

µ-Slide VI 0.1 flow chambers coated with 10 µg/mL rmP-selectin-Fc, 12.5 µg/ml rmICAM-1 and 

5 µg/ml rmCXCL1 or with murine fibrinogen. To analyze crawling on fibrinogen, neutrophils were 

stimulated with fMLP (10 µM) for 10 min. The cells were perfused through the flow chamber and 
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allowed to adhere for 10 min at 37 °C. Flow was applied (1 dyne/cm2) for 10 min and crawling was 

recorded by time-lapse microscopy with a time interval of 5 s.  

Chemotactic migration was investigated in Zigmond chambers as described previously184. Briefly, 

Myo1f+/+ and Myo1f-/-neutrophils were seeded onto coverslips coated with 50 µg/ml murine 

fibrinogen or with 12.5 µg/ml rmICAM-1. Cell migration towards a gradient of 10 µM fMLP or 

100 ng/ml rmCXCL1 was analyzed for 10 min. Migration velocity, Euclidean distance and 

accumulated distance were analyzed offline using ImageJ software and its implemented manual 

tracking plugin. Single cell migration tracks and Rose Plots were generated using ImageJ’s 

chemotaxis and migration software provided by IBIDI. 

 

 

4.4.6 Live cell imaging of in vitro transmigration under flow conditions 

Transmigration of Myo1f+/+ and Myo1f-/- neutrophils was analyzed in IBIDI μ–Slide membrane 

ibiPore flow chambers. The device is shown in (Figure 11). F-Actin of Myo1f+/+ and Myo1f-/- 

neutrophils was stained overnight at 37 °C in 5 % CO2 using Sir Actin185 (100 nM). Additionally, 

Myo1f+/+ and Myo1f-/- neutrophils were labelled with a non-function blocking Alexa Fluor 

594 conjugated anti-CD11a antibody (clone 2D7) for 15 min at room temperature. Neutrophils 

were perfused through the rmICAM-1 (12.5 µg/mL) and rmP-selectin (10 µg/mL) coated flow 

chamber with 1 dyne/cm2 shear stress for 60 min.  

 

 

  

Figure 11. Schematic representation of the μ–Slide membrane ibiPore flow chamber. The IBIDI 
flow chamber consists of a flow chamber coated with rmICAM-1 (12.5 µg/mL) and rmP-selectin 
(10 µg/mL), a membrane with pores with a pore size of 5 µm and a subjacent collagen gel with 
fMLP (10 µM) as chemoattractant. Arrow indicates the direction of flow (adapted from IBIDI). 
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Time-lapse video microscopy with an average time interval of 30 s was performed using an upright 

spinning disk confocal microscope equipped with a confocal scanner unit CSU-X1, an EM CCD 

camera and a 20x/1.0NA water immersion objective. 3D images out of 70 z-stacks with a step size 

of 0.55 µm were acquired using two lasers with an excitation wavelength of 561 nm and 633 nm. 

To analyze transmigrated Myo1f+/+ and Myo1f-/- neutrophils an orthogonal projection of the 

acquired z-stacks was generated using Slidebook 6.0.8 Software (3i, USA). The number of 

transmigrated cells was counted and shown as percentage of all cells in the field of view (FOV, 100 

%)127. 

 

 

4.4.7 Transmigration under static conditions 

To analyze transendothelial migration of Myo1f+/+ and Myo1f-/- neutrophils in vitro, transwell 

assays were performed using transwell polycarbonate filters with a pore size of 8 µm. 

Brain-derived b.End3 endothelial cells were seeded on transwell filters and cultured for 48 h until 

a monolayer had formed. The lower compartment of the transwell system was either filled with 

ADM alone or complemented with CXCL1 (100 ng/mL). After 30 min of equilibration, 5x105 

neutrophils resuspended in ADM, were added to the upper compartment and allowed to migrate 

for 45 min at 37 °C. As control the transwell filters were left uncoated. Transmigrated neutrophils 

were collected from the lower compartment and counted under the microscope.  

In a second set of experiments, the morphology of the nucleus was analyzed during 

transmigration. Myo1f+/+ and Myo1f-/- neutrophils were labeled with the nuclear dye 

Hoechst 33342 (5 µM) at 37 °C for 5 min. Stained cells were applied to rmICAM-1 (12.5 µg/mL) 

and rmP-selectin (10 µg/mL) coated transwell filters with a pore size of 3 µm in the upper 

compartment. In the lower compartment, ADM supplemented with fMLP (10 µM) as 

chemoattractant was added. Cells were allowed to transmigrate through the filters into the lower 

compartment. Transmigration was stopped after 5, 10 and 15 min by adding 4 %  PFA for 15 min. 

After fixation membranes were cut out and mounted with Mowiol. Confocal microscopy was 

performed using a Leica SP8X WLL microscope, equipped with a 405 nm laser, a WLL2 laser 

(470 - 670 nm) and an acusto-optical beam splitter. Images were acquired using a 63x1.4 

objective. Morphology of the nucleus was analyzed offline by measuring the nucleus area using 

ImageJ software.  
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4.4.8 Chemotaxis in a 3D collagen gel 

3D migration of Myo1f+/+ and Myo1f-/- neutrophils 

Analysis of 3D chemotaxis was performed in IBIDI µ-Slides Chemotaxis3D chambers according to 

the manufacturer's protocol (IBIDI). Myo1f+/+ and Myo1f-/- neutrophils (4x105/sample) were 

seeded into collagen gels with different concentrations of rat tail collagen type I (Table 3). The 

collagen solution was filled into the channel of the IBIDI µ-Slides Chemotaxis3D chambers. After 

gelation for 5 min at 37 °C the reservoirs were filled with ADM alone or ADM supplemented with 

CXCL1 (100 ng/mL). Time-lapse video microscopy was performed every 14 s for 30 min at 37 °C 

using an Axiovert 200M microscope. Analysis of the migration velocity was performed using 

ImageJ software and its implemented manual tracking plugin. Single cell migration tracks and Rose 

Plots were generated using ImageJs chemotaxis and migration software provided by IBIDI. 

 

Table 3. Collagen gel preparation 

Compound Collagen concentration (mg/mL) 

 1.5 3.0 

 Volumes (µL) 

10x ADM 10 10.5 

H2O 40 - 

NaHCO3 2 1.5 

1x ADM 25 19 

Collagen type I, rat tail 5 mg/mL 45 90 

Cell suspension 25 25 

 

 
Morphology of the nucleus during 3D migration of Myo1f+/+ and Myo1f-/- neutrophils 

In a second set of 3D chemotaxis experiments, the morphology of the nucleus during 

3D chemotaxis was analyzed. Myo1f+/+ and Myo1f-/- neutrophils were stained at 37 °C for 5 min 

using the nuclear dye Hoechst 33342 (5 µM) and 3D chemotaxis was performed in a 

1.5 mg/mL collagen gel with a CXCL1 (100 ng/mL) chemoattractant gradient. Analysis of the shape 

of the nucleus during 3D migration was performed using spinning disk confocal microscopy. The 

mean nuclear elongation factor per FOV and time point were determined and subsequently 

normalized to the overall smallest value to calculate the change in elongation within the next 

10 min of observation127. 
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Shape of the nucleus and localization of Myo1f and F-Actin in dHL-60 cells during 3D migration 

In a third set of experiments, dHL-60 cells stably expressing an EGFP-Myo1f fusion protein and an 

upright spinning disk confocal microscope to study the subcellular localization of Myo1f and 

F-Actin during 3D migration were utilized. Therefore the cells were stained for F-Actin (100 nM, 

Sir Actin) overnight at 37 °C in 5 % CO2. In addition, cells were labelled with the nuclear dye 

Hoechst 33342 for 5 min at 37 °C to study the morphology of the nucleus during 3D migration in 

a 1.5 mg/mL collagen gel with fMLP (100 nM) as chemoattractant. Images were acquired using 

Slidebook 6.0.8 Software and by using three lasers with an excitation wavelength of 488 nm, 

561 nm and 633 nm127.  

 

 

4.5 Confocal reflection contrast imaging of 3D collagen gels 

Collagen fibers within hydrated non-fixed and unstained 3D collagen gels were visualized by 

confocal reflection contrast microscopy. The experiments were performed at the bioimaging core 

facility of the Biomedical Center with an inverted Leica SP8X WLL microscope, equipped with a 

405 nm laser, a WLL2 laser (470 – 670 nm) and an acusto-optical beam splitter (AOBS). Briefly, 

collagen fibers were visualized by detecting the reflection of the 546 nm laser light with a 

photomultiplier tube and setting the AOBS to reflection mode. Live cell imaging was performed 

with a Leica HC PL APO 63x/1.40 oil objective for 10 - 20 min127. 

 

 

4.6 Fluorescence activated cell sorting (FACS) experiments 

4.6.1 Analysis of the expression of surface proteins on neutrophils and dHL-60 cells 

For analysis of surface expression of CD11a (LFA-1, αL, clone M17/4), CD11b (Mac-1, αM, clone 

M1/70), and CD18 (β2, clone C71/16) by flow cytometry, Myo1f+/+ and Myo1f-/- neutrophils were 

suspended in ADM (2.5x105/sample) supplemented with 5 µL (1 µg) antibody or isotype control 

and stimulus. The cells were either stimulated with CXCL1 (100 ng/mL) or fMLP (10 µM) for 20 min 

at 37 °C or left untreated as control. Afterwards cells were fixed using FACS lysing solution (dilution 

1:10 in H2O) for 10 min on ice and washed twice in ice-cold PBS (centrifugation 800 g, 10 min, 

4 °C). For flow cytometry analysis, a FACS BD Canto II machine was used. Data was analyzed using 

FlowJo software.  
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Analysis of surface expression of CD11a, CD11b, CD18 and CD162 of undifferentiated and 

differentiated (1.3 % DMSO for 6 days) HL-60 wt and HL-60 EGFP-Myo1f was performed using flow 

cytometry. Cells were stained with PE-conjugated mouse anti-human CD11a (clone G43-25B), 

PE-conjugated mouse anti-human CD11b (clone IRCF44), PE-conjugated mouse anti-human CD18 

(clone 6.7) and APC-conjugated mouse anti-human CD162 (clone FLEG) or PE-conjugated IgG1 or 

APC-conjugated IgG2a isotype control antibodies. Fluorescence intensities were recorded using 

an LSRFortessa flow cytometer (BD Bioscience) and data was analyzed offline using FlowJo 

software. 

 

 

4.6.2 ICAM-1 and fibrinogen binding assays 

LFA-1 specific rmICAM-1/Fc binding assay was performed by flow cytometry as described 

previously41,47. Myo1f+/+ and Myo1f-/- neutrophils (2x105/sample) were incubated with a function 

blocking anti-mouse CD11b antibody (30 µg/mL, clone M1/70). To analyze specific LFA-1 binding 

to soluble ICAM-1, control samples were additionally incubated with a functional blocking anti-

mouse CD11a antibody (30 µg/mL, cloneM17/4). All function blocking antibodies were incubated 

for 15 min at room temperature. Subsequently, cells were stimulated with CXCL1 (100 ng/mL), 

fMLP (10 µM), Mn2+ (3 mM) or left untreated in the presence of rmICAM-1/Fc (20 µg/mL) and PE-

labeled mouse anti-human IgG1 gamma chain specific antibody (10 µg/mL, clone H2) at 37 °C for 

3 min. After 3 min of stimulation, cells were fixed by adding FACS lysing solution (dilution 1:10 in 

H2O) on ice for 10 min. After washing twice with ice-cold PBS, flow cytometry analysis was 

performed using a FACS BD Canto II machine. For analysis of LFA-1 specific rmICAM-1/Fc binding, 

the anti-CD11a antibody-treated control was used defining 95 % of neutrophils as negative for 

LFA-1 binding to rmICAM-1/Fc. This threshold was used for all samples and the percentage of 

neutrophils for positive LFA-1 specific rmICAM-1/Fc binding was calculated accordingly.  

To study Mac-1 binding to fibrinogen, Myo1f+/+ and Myo1f-/- neutrophils (2x105/sample) were 

stimulated with CXCL1 (100 ng/mL), fMLP (10 µM), Mn2+ (3 mM) or left untreated in the presence 

of Alexa Fluor 647-conjugated human fibrinogen (150 µg/mL) at 37 °C for 20 min. As negative 

control, fibrinogen binding to Mac-1 was blocked by adding 2 mM EDTA. The analysis for specific 

Mac-1 binding to fibrinogen was done as described above for LFA-1 specific rmICAM-1/Fc binding. 

Briefly, we defined a threshold of the mean fluorescence intensity in the EDTA control defining 

95 % of cells as negative and calculated the percentage of neutrophils positive for fibrinogen 

binding accordingly.  
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4.7 In vivo assays 

4.7.1 Intravital microscopy of the mouse cremaster muscle  

To investigate neutrophil recruitment in vivo, intravital microscopy of the mouse cremaster 

muscle was performed as described previously186. After cannulation of the carotid artery (carotic 

catheter plastic tube ID: 0.28 mm; OD: 0.61 mm) of anesthetized mice (125 mg/kg ketamine and 

25 mg/kg xylazin 2 %), the cremaster muscle was dissected and moisturized with PBS 

thermo-equilibrated at 37 °C. In postcapillary venules with a diameter of 20-40 mm, mean rolling 

velocities, number of rolling and adherent cells per mm were imaged with an intravital microscope 

and recorded by a digital camera. Leukocytes attached >30 s were defined as adherent, and 

centerline velocity of red blood cells was analyzed using fluorescent microbeads with a diameter 

of 1 mm. Flow was calculated as a mean of the length of at least three microspheres recorded 

with a defined exposure time and calculated offline. Rheological parameters, venular diameter, 

venular vessel segment length, and number of rolling and adherent leukocytes were analyzed 

using ImageJ software. Leukocyte counts were obtained from whole blood samples. 

 

Trauma-induced cremaster model 

In this model, mild inflammation was induced by exteriorization of the mouse cremaster muscle 

of Myo1f+/+ and Myo1f-/- mice187.  

 

TNFα-induced cremaster model 

Briefly, 2 h after intrascrotal (i.s.) injection of rmTNF-α (500 ng/animal), the cremaster muscle was 

dissected, and rolling flux fraction and number of adherent neutrophils were determined by 

intravital microscopy. 

 

CXCL-induced cremaster model 

To analyze CXCL1-induced adhesion, rolling flux fraction (rolling cell/min divided by all neutrophils 

passing the vessel/min) and number of adherent leukocytes were measured 1, 3, 6, and 9 min 

following systemic application of CXCL1 (600 ng) via the carotid artery and were compared with 

control values obtained from the same vessels prior to CXCL1 injection. 
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4.7.2 Histological analysis of TNFα-stimulated mouse cremaster whole mounts 

Cremaster whole mounts were prepared 2.5 h after i.s. injection of rmTNFα (500 ng). The 

cremaster muscle was fixed with 4 % PFA and stained with Giemsa’s azur eosin methylene blue as 

described188. Number of perivascular leukocytes was counted using a microscope with a 100X/1.4 

NA oil immersion objective.  

 

 

4.7.3 Peritonitis model 

Myo1f+/+ and Myo1f-/- mice were injected intraperitoneally (i.p.) with CXCL1 (600 ng/animal). After 

4 h, mice were sacrificed and the peritoneal cavity was flushed with 5 mL ice-cooled PBS. Total 

number of extravasated leukocytes in the peritoneal lavage was analyzed using a Coulter A C T 

counter. The number of extravasated neutrophils were quantified with a PE-labeled rat α-mouse 

Ly6-G antibody (clone 1A8) and subsequent flow cytometry. 

 

 

4.7.4 Lipopolysaccharide (LPS)-induced lung injury model 

The experiment was performed as described previously189,190. Briefly, mice were exposed to 

aerosolized LPS (500 µg/mL) from Salmonella eneritidis (Sigma Aldrich, Germany) dissolved in 

0.9 % NaCl, or to aerosolized NaCl for control for 30 min. Injection of a FITC-labeled rat α-mouse 

Ly6-G antibody (clone 1A8) and 100 µL TRITC-Dextran (30 mg/mL) via the tail vein was performed 

30 min prior euthanasia. Mice were sacrificed 4 h after inhalation and the bronchoalveolar lavage 

(BAL) was obtained by cannulation of the trachea. Lungs were removed, minced and digested to 

obtain a single cell suspension. The number of neutrophils in the BAL and the lung tissue 

(interstitium and pulmonary vasculature) were analyzed by flow cytometry. To assess vascular 

leakage, TRITC-Dextran extravasation was used to measure vascular permeability. The 

fluorescence of 100 µL BAL supernatant (FluorBAL) and of 50 µL serum (Fluorserum) was measured. 

The clearance volume, i.e. the permeability of the alveolar-capillary barrier can be calculated using 

the following equation191: V (µL) = ((FluorBAL/100 µL)*BAL volume (µL))/(Fluorserum/50 µL) 
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4.8 Statistical analysis 

All data were analyzed and plotted using GraphPad Prism 6 software (GraphPad Software Inc.) and 

shown as means ± SEM. Statistical significance for pairwise comparison of experimental groups 

was determined using an unpaired Student’s t test. For multiple comparisons, a 2-way ANOVA 

with Sidak’s multiple comparisons test (comparison of all experimental groups against each other) 

was used. P values < 0.05 were considered as statistically significant127.  
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5. RESULTS 

5.1 Role of Myo1f in neutrophil rolling and adhesion in vitro and in vivo 

5.1.1 Neutrophil rolling and adhesion under static and flow conditions in vitro 

The genetic absence of Myo1f has been shown to cause increased neutrophil adhesion to the 

β2 integrin ligand ICAM-1 under static conditions1. In the present study adhesion was investigated 

using neutrophils isolated from the bone marrow of Myo1f+/+ and Myo1f-/- mice. Upon stimulation 

with the chemokine ligand CXCL1, adhesion of Myo1f+/+ neutrophils on immobilized rmICAM-1 

was increased from 3.1 ± 1 % in the unstimulated control to 50.5 ± 6 % (Figure 12a). Stimulation 

with Mn2+ which stabilizes the high affinity conformation of the β2 integrins39 increased adhesion 

from 3.1 ± 1 % to 24.7 ± 9 %. Similarly, the bacterial peptide fMLP induced adhesion from 3.1 ± 1 % 

to 42.9 ± 8 % and the inflammatory mediator TNFα from 3.1 ± 1 % to 47.8 ± 11 % in 

Myo1f+/+ neutrophils. In comparison to Myo1f+/+ neutrophils, adhesion of Myo1f-/- neutrophils was 

significantly increased by about 20 % upon stimulation with all of the above mentioned stimuli. 

Thus, the present data confirmed the observation by Kim et al1. Similarly, Mac-1-dependent 

adhesion to immobilized fibrinogen was analyzed using Myo1f+/+ and Myo1f-/- neutrophils. 

Adhesion of Myo1f+/+ neutrophils was increased from 0.5 ± 0.2 % in the unstimulated control to 

12.8 ± 2 % upon CXCL1 stimulation, to 8.1 ± 1 % upon Mn2+ stimulation, to 13 ± 2 % upon fMLP 

stimulation and to 8 ± 2 % upon TNFα stimulation (Figure 12b). Adhesion of Myo1f-/- neutrophils 

was significantly increased upon stimulation with Mn2+ compared to Myo1f+/+ neutrophils. The 

same trend was detectable upon stimulation with CXCL1, fMLP and TNFα, although the increase 

of adhesion in Myo1f-/- neutrophils compared to Myo1f+/+ neutrophils was not significant. Next, 

neutrophil rolling and induction of adhesion were analyzed under physiological flow conditions 

using flow chambers and Myo1f+/+ and Myo1f-/- neutrophils. Neutrophils were perfused through 

rmICAM-1, rmP-selectin and CXCL1 coated flow chambers with 1 dyne/cm2 shear stress. Here, 

analysis of the number of rolling and adherent neutrophils revealed no difference in the induction 

of adhesion between Myo1f+/+ and Myo1f-/- neutrophils (Figure 12c, d). 
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Figure 12. Adhesion of Myo1f+/+ and Myo1f-/- neutrophils under static and flow conditions. (a,b) 
Neutrophils adherent to immobilized (a) rmICAM-1 (12.5 µg/mL), or (b) fibrinogen (50 µg/mL) 
upon stimulation with CXCL1 (100 ng/mL), Mn2+ (3 mM), fMLP (10 µM), or TNFα (20 ng/mL) for 
10 min in percent of total neutrophils added (100 %). n = 4. Mean ± SEM. * p<0.05, *** p<0.001, 
n.s. not significant (One-way ANOVA, Sidak’s multiple comparison test). (c,d) Number of (c) rolling 
and (d) adherent Myo1f+/+ and Myo1f-/- neutrophils under flow conditions (1 dyne/cm2) on 
immobilized rmICAM-1 (12.5 µg/mL), rmP-selectin (10 µg/mL) and CXCL1 (5 µg/mL) at indicated 
time points. n = 6. Mean ± SEM (modified from Salvermoser et al., 2018127). 
 

 

5.1.2 Surface expression and affinity regulation of β2 integrins  

To study the question whether increased adhesion of Myo1f-/- neutrophils under static conditions 

was due to differently expressed β2 integrins in Myo1f+/+ and Myo1f-/- neutrophils, the surface 

expression of CD11a (alpha-subunit of LFA-1, αL), CD11b (alpha-subunit of Mac-1, αM) and CD18 

(beta-subunit) was analyzed using flow cytometry. Analysis of mean fluorescence intensities 

revealed similar surface expression levels of CD11a, CD11b and CD18 in unstimulated Myo1f+/+ 

and Myo1f-/- neutrophils (Figure 13a). Additionally, surface expression of CD11a showed no 

differences upon stimulation with CXCL1 and fMLP between Myo1f+/+ and Myo1f-/- neutrophils as 

expected (Figure 13a, left graph). Upregulation of Mac-1 (CD11b/CD18) upon stimulation with 

CXCL1 or fMLP was not affected in the genetic absence of Myo1f indicating that increased 

adhesion under static condition was not due to dysregulated β2 integrin expression (Figure 13a, 

middle and right panel).  
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Next, the impact of Myo1f on LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) affinity regulation 

was analyzed by flow cytometry. Binding of soluble ICAM-1 by Myo1f+/+ and Myo1f-/- neutrophils 

in the presence of a function blocking anti-Mac-1 antibody was used to study LFA-1 affinity 

regulation (Figure 13b). As expected, ICAM-1 binding to Myo1f+/+ neutrophils was increased from 

5.1 ± 2 % in the unstimulated control to 33.0 ± 18 % upon CXCL1 stimulation, to 44.1 ± 17 % upon 

fMLP stimulation and to 27.3 ± 21 % upon Mn2+ stimulation. Similar results were obtained using 

Myo1f-/- neutrophils indicating that the affinity regulation of LFA-1 was intact in the genetic 

absence of Myo1f.  

 

 

  

Figure 13. Surface expression and affinity regulation of β2 integrins in Myo1f+/+ and Myo1f-/- 
neutrophils. (a) Flow cytometric analysis of neutrophil surface expression of CD11a, CD11b, and 
CD18 before (-) and after stimulation with CXCL1 (100 ng/mL) and fMLP (10 µM) for 20 min. n = 4. 
Mean ± SEM. (b) Flow cytometric analysis of LFA-1 specific ICAM-1 binding to unstimulated (-) 
Myo1f+/+ and Myo1f-/- neutrophils, or upon stimulation with CXCL1 (100 ng/mL), fMLP (10 µM), 
and Mn2+ (3 mM) for 3 min. Data show the percentage of cells binding ICAM-1 in a LFA-1-specific 
manner calculated by a threshold defining 95 % of neutrophils treated with an anti-LFA-1 antibody 
as negative. (c) Mac-1 affinity regulation was measured by fibrinogen binding to unstimulated (-) 
Myo1f+/+ and Myo1f-/- neutrophils, or upon stimulation with CXCL1 (100 ng/mL), fMLP (10 µM), or 
Mn2+ (3 mM) for 20 min using flow cytometry analysis. Data show the percentage of cells binding 
soluble fibrinogen calculated by a threshold defining 95 % of EDTA-treated (2 mM) neutrophils as 
negative. n = 6. Mean ± SEM. 
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Binding of soluble fibrinogen by Myo1f+/+ and Myo1f-/- neutrophils indicated Mac-1 affinity 

regulation (Figure 13c).Fibrinogen binding was increased from 4.4 ± 1 % in the unstimulated 

control to 33.4 ± 12 % upon CXCL1 stimulation, to 46.8 ± 18 % upon fMLP stimulation and to 

25.2 ± 24 % upon Mn2+ stimulation in Myo1f+/+ neutrophils. In the genetic absence of Myo1f 

binding of soluble fibrinogen was not different indicating that the affinity regulation of Mac-1 was 

normal in Myo1f-/- neutrophil. Thus, Myo1f was dispensable for surface expression and affinity 

regulation of LFA-1 and Mac-1. 

 

 

5.1.3 Neutrophil rolling and adhesion in vivo 

To study the biological importance of Myo1f for adhesion in the situation in vivo, neutrophil 

trafficking was analyzed by imaging cremaster muscle venules of Myo1f+/+ and Myo1f-/- mice using 

intravital microscopy.  

 

  

Figure 14. Leukocyte rolling and adhesion in the trauma-induced mouse cremaster muscle 
model of acute inflammation. (a-c) Intravital microscopy of postcapillary venules in the mouse 
cremaster model after surgical dissection of the cremaster muscle. (a) Rolling flux fraction, (b) 
rolling velocity, and (c) number of adherent leukocytes were analyzed offline. n = 14 venules from 
4 Myo1f+/+ mice and n = 12 venules from 5 Myo1f-/- mice. Mean ± SEM. (d) Hemodynamic and 
microvascular parameters of cremaster muscle venules in the trauma model. n.s. not significant. 
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In the trauma model, a mild inflammation was induced by surgical preparation and exteriorization 

of the mouse cremaster muscle. In this model, leukocyte rolling is mainly mediated by P-selectin 

mobilized onto the inflamed endothelium187. Leukocyte rolling flux fraction, rolling velocity as well 

as the number of adherent leukocytes revealed no differences in Myo1f+/+ and Myo1f-/- mice 

(Figure 14a-c). Hemodynamic and microvascular parameters were similar in both mouse strains 

(Figure 14d). 

Next, an acute inflammation was induced in the cremaster muscle by i.s. injection of TNFα. Upon 

TNFα application, P- and E-selectin expression is induced on the endothelial surface leading to 

slow leukocyte rolling and leukocyte adhesion192. Within 2.5 h after stimulation, no differences in 

the leukocyte rolling flux fraction and in the rolling velocity as well as in the number of adherent 

leukocytes in Myo1f-/- and Myo1f+/+ mice were observed (Figure 15a-c). Hemodynamic and 

microvascular parameters were not altered in the genetic absence of Myo1f (Figure 15d). 

 

 

  

Figure 15. Leukocyte rolling and adhesion in the TNFα-stimulated mouse cremaster muscle 
model of acute inflammation. (a, b) Intravital microscopy of postcapillary venules in the mouse 
cremaster muscle 2.5 h after i.s. injection of TNFα (500 ng). (a) Rolling flux fraction, (b) rolling 
velocity, and (c) number of adherent leukocytes were analyzed offline. n = 15 venules from 4 
Myo1f+/+ mice and n = 12 venules from 3 Myo1f-/- mice. Mean ± SEM. (d) Hemodynamic and 
microvascular parameters of cremaster muscle venules 2.5 h after i.s. TNFα injection. n.s. not 
significant (modified from Salvermoser et al., 2018127). 
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To study the role of Myo1f for LFA-1-dependent neutrophil trafficking, rolling and adhesion was 

analyzed in the mouse cremaster model upon intravenous (i.v.) administration of CXCL1, which 

activates LFA-1 resulting in firm neutrophil arrest193. Here, the same vessel was recorded before 

and 1, 3, 6 and 9 min after i.v. injection of 600 ng CXCL1. As expected, upon stimulation with CXCL1 

for 1 min, leukocyte rolling flux fraction decreased from 0.26 ± 0.08 to 0.09 ± 0.04, whereas the 

number of adherent leukocytes per mm2 vessel increased from 231.2 ± 35 to 526.3 ± 131 in 

Myo1f+/+ mice (Figure 16a, b). As CXCL1 stimulation leads to transient leukocyte adhesion193, the 

rolling flux fraction gradually increased within the next 3, 6, 9 min of stimulation as expected. 

Accordingly, the number of adherent leukocytes decreased in Myo1f+/+ mice within the 

observation period after 3, 6 and 9 min of stimulation.  

 

 

 

Figure 16. Leukocyte rolling and adhesion in the mouse cremaster muscle model upon systemic 
administration of CXCL1. (a) Leukocyte rolling flux fraction, and (b) number of adherent 
leukocytes in postcapillary cremaster muscle venules were measured at different time points in 
each vessel: before CXCL1 injection and 1, 3, 6, and 9 min after systemic administration of CXCL1 
(600 ng) via the carotic artery. n = 4 venules from 4 Myo1f+/+ mice and n = 5 venules from 4 Myo1f-/- 
mice. Mean ± SEM. (c) Hemodynamic and microvascular parameters of cremaster muscle venules 
before CXCL1 injection. n.s. not significant (modified from Salvermoser et al., 2018127). 
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The same was true for Myo1f-/- mice indicating that Myo1f was not required for leukocyte firm 

adhesion upon CXCL1-triggered β2 integrin activation. Similarly, no differences between the 

hemodynamic and microvascular parameters were observed between both mice strains (Figure 16c). 

 

 

5.2 Neutrophil extravasation during acute inflammation 

5.2.1 Neutrophil extravasation in the TNFα-inflamed mouse cremaster model 

To investigate the role of Myo1f for neutrophil extravasation from the blood vessel into the 

inflamed cremaster tissue, the number of extravasated neutrophils in the TNFα-stimulated mouse 

cremaster muscle model was counted in Myo1f+/+ and Myo1f-/- mice. The exteriorized cremaster 

muscles were fixed with 4 % PFA, stained by Giemsa’s azur eosin methylene blue and analyzed 

using bright-field microscopy. Microscopic inspection of the histological samples demonstrated 

substantial neutrophil extravasation in the TNFα-stimulated cremaster muscle of Myo1f+/+ mice 

(Figure 17a).  

 

 

  

Figure 17. Extravasation of Myo1f+/+ and Myo1f-/- neutrophils into TNFα-inflamed mouse 
cremaster tissue. (a, b) Whole mounts of TNFα-stimulated mouse cremaster muscles fixed with 
4 % PFA and stained with Giemsa’s azur eosin methylene blue. (a) Representative images of 
postcapillary venules of Myo1f+/+ and Myo1f-/- cremaster whole mounts. Scale bar = 20 µm. (b) 
Quantification of perivascular neutrophils and other leukocyte subtypes (others). n = 18 vessels 
from 3 Myo1f+/+ mice and n = 17 vessels from 3 Myo1f-/- mice. Mean ± SEM. * p<0.05, n.s. not 
significant (2-way ANOVA, Sidak’s multiple comparison test, modified from Salvermoser et al., 
2018127). 
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In the genetic absence of Myo1f, neutrophil accumulation in the inflamed cremaster tissue was 

reduced. Quantitative analysis revealed that 353.2 ± 52 neutrophils extravasated into the inflamed 

cremaster tissue in Myo1f+/+ mice (Figure 17b). In comparison to Myo1f+/+ mice, extravasation was 

significantly diminished to 190.6 ± 34 neutrophils in Myo1f-/- mice. The number of other 

extravasated leukocyte subtypes, e.g. monocytes and eosinophils was not altered in the genetic 

absence of Myo1f. These data suggested that Myo1f played an important role in neutrophil 

extravasation into the inflamed cremaster muscle tissue. 

 

 

5.2.2 Neutrophil extravasation into the inflamed peritoneum 

To study the role of Myo1f for neutrophil extravasation in acute peritonitis induced by i.p. injection 

of CXCL1, the number of extravasated neutrophils into the inflamed peritoneum of Myo1f+/+ and 

Myo1f-/- mice was analyzed. In the peritoneal lavage 1.34 ± 0.5*106 neutrophils were counted in 

Myo1f+/+ mice 4 h after CXCL1 injection (Figure 18). The number of extravasated neutrophils was 

significantly reduced to 0.21 ± 1*106 neutrophils in the genetic absence of Myo1f. Thus, the ability 

of Myo1f-/- neutrophils to extravasate into the peritoneal cavity was almost completely abolished 

compared to Myo1f+/+ neutrophils. 

 

 

Figure 18. Extravasation of Myo1f+/+ and Myo1f-/- neutrophils 
into the inflamed peritoneal cavity. Total number of 
neutrophils in the peritoneal lavage 4 h after i.p. injection of 
CXCL1 (600 ng). n = 6. Mean ± SEM. *** p<0.001 (Unpaired 
Student’s t-test, modified from Salvermoser et al., 2018127). 

 

 

 

 

 

5.2.3 Recruitment of neutrophils into the inflamed lung 

Next, the role of Myo1f in the LPS-induced ALI model mimicking a bacterial infection was 

evaluated. In this model, the recruitment of activated neutrophils into the lung is an essential step 

during the inflammatory response190. ALI was induced in Myo1f+/+ and Myo1f-/- mice by exposure 
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to aerosolized LPS or aerosolized 0.9 % NaCl for negative control for 30 min and neutrophil 

transmigration from the lung vasculature into the interstitium and the bronchoalveolar space was 

analyzed. Intravascular, interstitial, and alveolar myeloid cells were quantified 4 h after inhalation. 

Neutrophil extravasation was calculated as ratio between interstitial and intravascular neutrophils 

and was dramatically increased from 0.15 ± 0.04 to 1.86 ± 0.6 in LPS-treated Myo1f+/+ mice 

compared to NaCl-treated Myo1f+/+ mice (Figure 19a, left panel). The same was true for 

neutrophils extravasated from the lung vasculature to the bronchoalveolar space in Myo1f+/+ mice 

upon LPS treatment compared to NaCl treatment where the ratio increased from 0.02 ± 0.01 to 

0.61 ± 0.19 (Figure 19a, right panel). In comparison to Myo1f+/+ mice, ratios of neutrophils 

extravasated into the interstitium or the bronchoalveolar space were significantly decreased to 

approximately 30 % in the genetic absence of Myo1f (Figure 19a). These data indicated that Myo1f 

was critical for neutrophil extravasation into the inflamed lungs. Lung damage during ALI was 

studied by measuring the increase in permeability of the alveolar-capillary barrier194. Here, TRITC-

Dextran permeability measurements revealed a significantly impaired TRITC-Dextran clearance in 

Myo1f-/- mice compared to Myo1f+/+ mice (Figure 19b). Thus, LPS-induced lung injury was 

decreased in the absence of Myo1f127. 

 

 

 

Figure 19. LPS-induced lung injury in Myo1f+/+ and Myo1f-/- mice. (a) Ratios between Myo1f+/+ 
and Myo1f-/- neutrophils extravasated into the interstitium (left panel) or the bronchioalveolar 
space (right panel) and neutrophils remaining in the lung vasculature 4 h after exposure to 
aerosolized 0.9 % NaCl or LPS for 30 min. n = 4. Mean ± SEM. ** p<0.001 (2-way ANOVA, Tukey’s 
multiple comparison test). (b) Lung damage was assessed by quantification of TRITC-Dextran 
clearance. n = 4. Mean ± SEM. ** p<0.001 (Unpaired Student’s t-test, modified from Salvermoser 
et al., 2018127). 
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5.3 The role of Myo1f in neutrophil migration 

5.3.1 Neutrophil migration in 2D environments 

To investigate the cellular defect underlying impaired extravasation in Myo1f-/- mice, neutrophil 

spreading, polarization and migration were analyzed in 2D environments in vitro. Myo1f+/+ and 

Myo1f-/- neutrophils were exposed to immobilized fibrinogen and stimulated with soluble fMLP or 

neutrophils were exposed to immobilized rmICAM-1 and CXCL1.  

 

 

 

Figure 20. Spreading and polarization of Myo1f+/+ and Myo1f-/- neutrophils under flow 
conditions. Spreading and polarization of Myo1f+/+ and Myo1f-/- neutrophils analyzed in flow 
chambers coated with immobilized fibrinogen (50 µg/mL) in the presence of soluble fMLP (10 µM) 
or immobilized rmICAM-1 (12.5 µg/mL) and CXCL1 (5 µg/mL). (a, c) Representative microscopic 
images of adherent Myo1f+/+ and Myo1f-/- neutrophils on (a) fibrinogen stimulated with soluble 
fMLP, or on (c) rmICAM-1 stimulated with immobilized CXCL1 before (0 min) and after application 
of shear stress for 10 min (10 min). (b, d) Spreading and polarization of adherent neutrophils were 
quantified by the measurement of cell area (left panel) and aspect ratio (right panel) at indicated 
time points. n = 3 (fibrinogen+fMLP) and n = 4 (rmICAM-1+CXCL1) independent experiments. 
Mean ± SEM (modified from Salvermoser et al., 2018127). 
 



  5 .  R E S U L T S  

 
 

|  47  

After 10 min at 37 °C, spreading and polarization were studied before and after the application of 

1 dyne/cm2 shear stress for 10 min. Microscopic inspection demonstrated a similar cell shape of 

Myo1f+/+ and Myo1f-/- neutrophils before (0 min) and after 10 min of constant shear flow (10 min, 

Figure 20a, c). Quantitative analysis of cell area and aspect ratio revealed that fMLP-induced 

neutrophil spreading and polarization on immobilized fibrinogen were intact in the genetic 

absence of Myo1f (Figure 20b, d). Similar results were obtained upon exposure to immobilized 

rmICAM-1 and CXCL1. 

 

Next, migration of Myo1f+/+ and Myo1f-/- neutrophils which were exposed to immobilized 

fibrinogen and stimulated with soluble fMLP or to immobilized rmICAM-1 and CXCL was 

investigated under flow conditions. Analysis of single cell migration tracks revealed no differences 

in the migration behavior of Myo1f+/+ and Myo1f-/- neutrophils (Figure 21a). Quantification of the 

Euclidean distance and migration velocity confirmed that migration was intact in the genetic 

absence of Myo1f (Figure 21b). In conclusion, Myo1f was dispensable for neutrophil spreading, 

polarization and migration under physiological flow conditions in 2D environments. 

 

 

 

Figure 21. Migration of Myo1f+/+ and Myo1f-/- neutrophils in 2D environments under flow 
conditions. Mechanotactic migration of Myo1f+/+ and Myo1f-/- neutrophils under flow conditions 
(1 dyne/cm2) using flow chambers coated with immobilized fibrinogen (50 µg/mL) in the presence 
of fMLP (10 µM) or immobilized rmICAM-1 (12.5 µg/mL) and CXCL1 (5 µg/mL). (a) Single cell 
migration tracks after 10 min of flow. Arrows indicate the direction of flow. (b) Quantitative 
analysis of the mean Euclidean distance and the mean migration velocity. n = 4 (fibrinogen+fMLP), 
n = 5 (rmICAM-1+CXCL1). Mean ± SEM (modified from Salvermoser et al., 2018127). 
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To study the role of Myo1f for chemotactic migration in 2D environments, migration on 

immobilized fibrinogen towards an fMLP gradient or immobilized rmICAM-1 towards a CXCL1 

gradient was analyzed using Zigmond chambers. Microscopic inspection demonstrated that the 

capacity of neutrophils to spread and polarize on immobilized fibrinogen or rmICAM-1 in the 

presence of fMLP or CXCL1 was not different in Myo1f+/+ and Myo1f-/- neutrophils (Figure 22a, c). 

Similar to the behavior under flow conditions described above, quantitative analysis of cell area 

and aspect ratio showed intact neutrophil spreading and polarization in the genetic absence of 

Myo1f (Figure 22b, d). 

 

 

 

Figure 22. Neutrophil spreading and polarization during chemotaxis in 2D environments. 
Spreading and polarization of isolated Myo1f+/+ and Myo1f-/- neutrophils during 2D chemotaxis 
were analyzed using Zigmond chambers coated with fibrinogen in the presence of an fMLP 
gradient or coated with rmICAM-1 in the presence of a CXCL1 gradient. (a, c) Representative 
microscopic images of adherent Myo1f+/+ and Myo1f-/- neutrophils in (a) fibrinogen coated 
chambers with an fMLP gradient or in (c) rmICAM-1 coated chambers with a CXCL1 gradient at 
indicated time points. (b, d) Spreading and polarization of adherent neutrophils were quantified 
by measuring cell area (left panel) and aspect ratio (right panel) at indicated time points. n = 3 
(fibrinogen+fMLP), n = 5 (rmICAM-1+CXCL1) independent experiments. Mean ± SEM (modified 
from Salvermoser et al., 2018127). 
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In addition, analysis of single cell migration tracks showed no difference in chemotactic migration 

of Myo1f-/- neutrophils compared to Myo1f+/+ neutrophils (Figure 23a). Quantitative analysis of 

the Euclidean distance and the migration velocity confirmed that migration was intact in the 

genetic absence of Myo1f (Figure 23b). Thus, chemotactic migration in 2D environments was 

unaffected in Myo1f-/- neutrophils.  

 

 

Figure 23. Chemotactic migration of Myo1f+/+ and Myo1f-/- neutrophils in 2D environments. 
Chemotaxis of isolated Myo1f+/+ and Myo1f-/- neutrophils was analyzed using Zigmond chambers 
coated with fibrinogen in the presence of an fMLP gradient or coated with rmICAM-1 in the 
presence of a CXCL1 gradient. (a) Single cell migration tracks of Myo1f+/+ and Myo1f-/- neutrophils. 
(b) Quantitative analysis of the mean Euclidean distance and the migration velocity. n = 3 
(fibrinogen+fMLP), n = 5 (rmICAM-1+CXCL1). Mean ± SEM (modified from Salvermoser et al., 
2018127). 
 

 

5.3.2 Myo1f in neutrophil transmigration  

After successful migration on the inflamed endothelium, neutrophils emigrate through the 

endothelium and the underlying BM to enter the interstitial space. Therefore, the role of Myo1f 

for the process of neutrophil transmigration was analyzed under static and flow conditions. 

Transmigration under physiological flow conditions (1 dyne/cm2) was studied by utilizing an in 

vitro system consisting of μ–Slide membrane ibiPore flow chambers and live cell spinning disk 

confocal microscopy. The flow chamber coated with rmICAM-1 and rmP-selectin was separated 

from a collagen gel containing 10 µM fMLP as chemoattractant by a 300 nm thick membrane with 

5 µm pores. Myo1f+/+ and Myo1f-/- neutrophils were perfused through the rmICAM-1 and 
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rmP-selectin coated flow chamber with 1 dyne/cm2 shear stress and transmigration was 

investigated in real-time (four-dimensional). Cross-sectional images of time-lapse video 

microscopy measurements were generated to count the number of neutrophils located within the 

flow chamber (flow chamber), stuck within the pores (pores), or fully transmigrated into the 

collagen gel (collagen gel) after 60 min of stimulation (Figure 24a). Images demonstrated 

successful transmigration of Myo1f+/+ neutrophils into the lower collagen compartment. In 

comparison to Myo1f+/+ neutrophils, Myo1f-/- neutrophils showed impaired transmigration into 

the lower collagen compartment and the majority of neutrophils were found within the flow 

chamber or stuck within the pores. Quantitative analysis of neutrophils located within the flow 

chamber (flow chamber), stuck within the pores (pores), or fully transmigrated into the collagen 

gel (collagen gel) demonstrated that 60 ± 12 % of Myo1f +/+ neutrophils transmigrated into the 

collagen gel while 11 ± 9 % of cells remained within the flow chamber, and 29 ± 8 % of neutrophils 

were located within the pore after stimulation for 60 min (Figure 24b)127.  

 

 

 

Figure 24. Neutrophil transmigration under flow conditions. Transmigration of Myo1f+/+ and 
Myo1f-/- neutrophils under 1 dyne/cm2 shear stress into an fMLP-containing collagen gel was 
analyzed using rmICAM-1 (12.5 µg/mL) and rmP-selectin (10 µg/mL) coated μ-Slide membrane 
ibiPore flow chambers and spinning disk confocal microscopy. (a) Orthogonal view of 
representative pseudo-colored time-lapse images demonstrating the localization of neutrophils 
during the process of transmigration into an fMLP-containing collagen gel after stimulation for 
60 min. Scale bar = 10 µm. Color scales, heat map. Triangle indicates orientation of fMLP gradient. 
Arrow indicates direction of flow. (b) Quantitative analysis of transmigrating Myo1f+/+ and Myo1f-/- 

neutrophils respective to their position in percent of all neutrophils analyzed (100 %). n = 4 
independent experiments (with a total of 240 Myo1f+/+ neutrophils and 220 Myo1f-/- neutrophils 
analyzed). Mean ± SEM. *** p <0.001, **** p<0.0001 (2-way ANOVA, Sidak’s multiple comparison 
test, modified from Salvermoser et al., 2018127).  
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This was in sharp contrast to Myo1f-/- neutrophils. Here, neutrophil transmigration into the 

collagen gel was significantly diminished to 13 ± 7 % in the genetic absence of Myo1f. Accordingly, 

significantly more Myo1f-/- neutrophils stuck within the pores (63 ± 18 %) or remained in the flow 

chamber (25 ± 15 %) compared to Myo1f+/+ neutrophils127. 

 

The impact of Myo1f for TEM under static conditions was investigated using transwell chambers 

with 8 µm pores coated with a monolayer of endothelial b.End3 cells. CXCL1 was used as 

chemoattractant in the lower compartment. Similar to the findings under physiological flow 

conditions, CXCL1 induced substantial transmigration in Myo1f+/+ neutrophils compared to 

unstimulated Myo1f+/+ neutrophils (Figure 25a). The number of transmigrated Myo1f-/ neutrophils 

upon CXCL1 stimulation was significantly reduced compared to transmigration of Myo1f+/+ 

neutrophils. Accordingly, CXCL1 stimulation induced substantial transmigration of Myo1f+/+ 

neutrophils in uncoated filters, whereas transmigration of Myo1f-/- neutrophils was significantly 

diminished (Figure 25b). In summary, Myo1f was indispensable for neutrophil transmigration 

through narrow pores127. 

 

 

  

Figure 25. TEM of Myo1f+/+ and Myo1f-/- neutrophils. Transmigration of neutrophils studied in 
transwell assays using filters with 8 µm pore sizes. Neutrophils were exposed to CXCL1 
(100 ng/mL) as chemoattractant or left unstimulated. (a) Transwell filters coated with a monolayer 
of brain-derived b.End3 endothelial cells or (b) left uncoated as control. n = 4. Mean ± SEM. 
**** p<0.0001 (2-way ANOVA, Sidak’s multiple comparison test, modified from Salvermoser et 
al., 2018127).  
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5.3.3 Neutrophil migration in 3D collagen networks 

After successful transmigration through the endothelial barrier and the BM, neutrophils migrate 

in the interstitial tissue to sites of inflammation or injury195,196. To investigate the role of Myo1f in 

this context, 3D migration of Myo1f+/+ and Myo1f-/- neutrophils within a collagen gel was studied 

using 3D chemotaxis chambers. Here, analysis of single cell migration tracks of Myo1f+/+ 

neutrophils revealed a reduced migration capacity in a high-density collagen gel (3 mg/mL) 

compared to a low-density (1.5 mg/mL) collagen gel in response to a CXCL1 chemoattractant 

gradient (Figure 26a). Quantitative analysis demonstrated that the migration velocity significantly 

decreased from 8.1 ± 0.5 µm/min in a 1.5 mg/mL collagen gel to 5.1 ± 0.8 µm/min in a 3.0 mg/mL 

collagen gel in Myo1f+/+ neutrophils (Figure 26b).  

 

 

 

Figure 26. The role of Myo1f for neutrophil migration in 3D collagen networks. (a, b) Chemotactic 
migration of Myo1f+/+ and Myo1f-/- neutrophils in 3D collagen gels towards a CXCL1 (100 ng/mL) 
gradient using µ-Slides Chemotaxis3D chambers. (a) Single cell migration tracks in 3D collagen gels 
with different collagen concentrations. Triangles indicate orientation of the gradient. (b) 
Quantitative analysis of mean migration velocity. n = 4. ## p<0.01, ### p<0.001, ** p<0.01, 
*** p<0.001 versus rat-tail collagen concentration 1.5 mg/mL (2-way ANOVA, Sidak’s multiple 
comparison test). (c) Rose diagrams indicating the distribution of migration vectors of tracked 
Myo1f+/+ and Myo1f-/- neutrophils. The radius of each sector represents the cell number. Triangles 
indicate orientation of the gradient (modified from Salvermoser et al., 2018127).  
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These data indicated that the increased density of the collagen meshwork caused a decreased 

migration velocity in Myo1f+/+ neutrophils. In the genetic absence of Myo1f, the migration velocity 

was significantly reduced from 5.2 ± 0.5 µm/min in 1.5 mg/mL collagen gels to 3.1 ± 0.3 µm/mL in 

3.0 mg/mL collagen gels. Moreover, the migration velocities in both densities of the collagen gels 

upon stimulation with CXCL1 were significantly decreased in Myo1f-/- compared to Myo1f+/+ 

neutrophils indicating that migration within 3D collagen gels critically involved Myo1f. Analysis of 

Rose diagrams, showing the frequency of the migration vectors of tracked Myo1f+/+ and Myo1f-/- 

neutrophils in each direction, revealed that the sensing of the chemoattractant was still intact in 

Myo1f-/- neutrophils and similar to Myo1f+/+ neutrophils (Figure 26c). Together, these data 

demonstrated that in contrast to migration in 2D environments which was independent of Myo1f, 

Myo1f was indispensable for migration in 3D environments127. 

 

 

5.4 Dynamic regulation of the nuclear shape during migration in 3D environments 

Migration within a 3D environment requires rapid changes of the cell shape as well as deformation 

of the nucleus67,120. Therefore, the impact of Myo1f for squeezing of the neutrophil nucleus during 

3D migration was analyzed in the last part of the study. 

 

5.4.1 Morphology of the nucleus during transmigration 

To investigate the impact of Myo1f for squeezing neutrophils through restrictive sites during the 

process of transmigration, transwell assays were performed and the morphology of the nucleus 

was analyzed. Microscopic inspection of cytospins of freshly isolated unstimulated Myo1f+/+ and 

Myo1f-/- neutrophils showed a similar morphology of the nuclei in both cell populations (Figure 

27a). The role of Myo1f in nuclear morphometry during transmigration was studied using Myo1f+/+ 

and Myo1f-/- neutrophils stained with the nuclear dye Hoechst 33342. Here, neutrophils were 

seeded on rmICAM-1 and rmP-selectin coated transwell filters with fMLP as chemoattractant in 

the lower compartment. Confocal immunofluorescence images show the morphology of Myo1f+/+ 

and Myo1f-/- nuclei during transmigration (Figure 27b). The area of the nuclei of 

Myo1f-/- neutrophils with 64.3 ± 6 µm2 was significantly larger compared to the area of the nuclei 

of Myo1f+/+ neutrophils with 39.3 ± 3 µm2 upon fMLP stimulation for 5 min (Figure 27c, left panel). 

Similar effects were observed at later time-points127.  
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Figure 27. The morphology of Myo1f+/+ and Myo1f-/- nuclei during transmigration. (a) 
Micrographs of the morphology of Myo1f+/+ and Myo1f-/- nuclei after cytospin and May-Grünwald-
Giemsa staining. Scale bar = 10 µm. (b, c) Morphology of the nucleus was analyzed during 
transmigration using rmICAM -1 (12.5 µg/mL) and rmP-selectin (10 µg/mL) coated transwell 
filters. Myo1f+/+ and Myo1f-/- neutrophils were labeled with the nuclear dye Hoechst 33342 (5 µM), 
fixed and imaged after 5, 10 and 15 min upon fMLP stimulation. (b) Representative microscopic 
images of the morphology of the nuclei at indicated time points. Scale bar = 10 µm. Red circle 
indicates area of the nucleus in Myo1f+/+ and Myo1f-/- neutrophils. (c) Quantification of the total 
(left graph) and relative (right graph) area of the nuclei of Myo1f+/+ and Myo1f-/- neutrophils above 
the pore upon stimulation with fMLP at indicated time points. n = 3 independent experiments with 
a total of 76 Myo1f+/+ and 78 Myo1f-/- neutrophils at each time point. Mean ± SEM. n.s. not 
significant, ** P <.01, *** P <.001, **** P <.0001 (2-way ANOVA, Sidak’s multiple comparison test, 
modified from Salvermoser et al., 2018127). 
 

 

Here, the area of the nucleus of Myo1f+/+ neutrophils was 37.2± 1 µm2 at 10 min and 30.5± 2 µm2 

at 15 min, whereas the area of the nucleus of Myo1f-/- neutrophils was significantly larger with 

62.3± 3 µm2 at 10 min and 55.5± 4 µm2 at 15 min. Accordingly, the nucleus area located above the 
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pores relative to the whole nucleus area (100 %) was significantly larger in Myo1f+/+ neutrophils 

compared to Myo1f-/- neutrophils (Figure 27c, right panel) suggesting that Myo1f was important 

for neutrophil transmigration by squeezing the nucleus through narrow spaces127. 

 

 

5.4.2 Localization of Myo1f during 3D migration in a collagen network 

The restrictive barriers in the collagen meshwork that neutrophils pass while migrating through 

this confined environment were visualized using live cell imaging by reflection and confocal 

fluorescence microscopy. Representative confocal reflection and fluorescence images show a 

primary human neutrophil migrating through a meshwork of collagen fibers (Figure 28).  

 

 

 

Figure 28. Migration of primary human neutrophil within a 3D collagen gel.  Live cell imaging of 
a primary human neutrophil migrating within a 1.5 mg/mL collagen gel towards an fMLP (100 nM) 
gradient using confocal reflection/fluorescence microscopy. Confocal images demonstrate a 
human neutrophil stained with the nuclear dye Hoechst 33342 (5 µM) migrating through the 
meshwork of collagen fibers at indicated time points. The architecture of the collagen meshwork 
and the cell body were visualized by confocal reflection microscopy (fire and red). The shape of 
the nucleus during 3D migration is shown by confocal fluorescence microscopy (green). Merge 
(yellow) indicates the reflection image (red) and the nucleus (green). Schematic outline of the 
morphology of the nucleus (green) and the cell body (red) during migration in a collagen gel. 
Neutrophil localization is normalized to the pore (white dotted line and white arrow). Scale 
bar = 10 µm (modified from Salvermoser et al., 2018127). 
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As expected, the migration through restrictive spaces (white dotted line) was initiated by the 

formation of a small nuclear lobe inserted into the narrow pore preparing the deformation of the 

nucleus to squeeze the whole neutrophil through the pore (280 s)124. This step was followed by 

the elongation of the nucleus (350 s- 420 s). After successful squeezing through the narrow pore, 

the nucleus refolded back into an ellipsoid, multi-lobular shape (490 s)127. 

To delineate the potential interplay between Myo1f, Actin and the nucleus during migration in 

3D collagen gels, their subcellular localization was studied by spinning disk confocal microscopy 

using HL-60 cells stably expressing an EGFP-Myo1f fusion protein. After differentiation of 

HL-60 EGFP-Myo1f cells towards neutrophil-like cells by addition of DMSO for 6 days, cells were 

stained with the nuclear dye Hoechst 33342 and Sir Actin to stain F-actin and exposed to an fMLP 

gradient in a 1.5 mg/mL collagen gel. As expected and similar to human neutrophils, the nucleus 

of dHL-60 EGFP-Myo1f cells formed a nuclear lobe to initiate migration through a permissive site 

(0 s). Subsequently, the nucleus elongated and deformed (30 s – 60 s) to squeeze through the 

narrow pore and refolded into a roundish shape after successful squeezing (Figure 29a). During 

the initiation and deformation phases, Myo1f was mainly accumulated at the front and the rear 

of the polarized cell and redistributed throughout the lamellipodium in the remodeling phase. 

Actin was found to form a ring-like structure around the nucleus while the initiation and 

deformation phase. After passing the narrow space an open actin formation remained at the rear 

of the cell while the remodeling phase. Importantly, during the initiation (0 s) and deformation 

phase (30-60 s) Myo1f and Actin colocalized at the constriction sites as well as at the rear and the 

front of the cell. This observation suggested a role of Myo1f for bringing the nucleus into shape to 

migrate within a defined 3D collagen meshwork127. The deformation of the nucleus as well as the 

localization and the colocalization of Myo1f and Actin during the different phases initiation phase 

(0 s), deformation phase (30 s-60 s) and remodeling phase (90 s) of migration within confined 

3D environments, are shown in the schematic representation of the dHL-60 EGFP-Myo1f cell in 

Figure 29b127.  

The localization of Myo1f and Actin during the different phases cells undergo while migrating 

through a meshwork of collagen fibers was confirmed using isolated primary human neutrophils 

(Figure 29c). 
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Figure 29. Localization of Myo1f and Actin during migration in a 3D collagen meshwork.  
Migration of (a) dHL-60 EGFP-Myo1f cells and (b) isolated primary human neutrophils was 
analyzed in a meshwork of collagen fibers using spinning disk confocal microscopy. (a) Live cell 
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imaging of a migrating dHL-60 EGFP-Myo1f towards an fMLP (100 nM) gradient. Still images 
demonstrate the morphology of the nucleus (grey), the subcellular localization of Myo1f (green) 
and Actin (red), as well as the colocalization of Myo1f and Actin (white arrow heads). 
Representative cell from 3 independent experiments. Color scale, heat map. Triangle indicates the 
orientation of an fMLP (100 nM) gradient. Scale bar = 10 µm. (b) Schematic outline of the 
morphology of the nucleus (black), localization of Actin (red) and Myo1f (green), and colocalization 
of Actin and Myo1f (yellow) of the dHL-60 EGFP-Myo1f cell during migration in a collagen gel at 
indicated time points. The neutrophil shape is indicated in grey. (c) Analysis of 3D migration of 
isolated primary human neutrophils in a collagen gel towards an fMLP (100 nM) gradient using 
spinning-disk confocal microscopy. After migration within the collagen gel for 10 min, neutrophils 
were fixed with 4 % PFA, permeabilized with 0.2 % Triton-X and stained with the nuclear dye 
Hoechst 33342 (5 µM), SiR-actin (100 nM) and for endogenous Myo1f using a polyclonal rabbit 
anti-human Myo1f antibody and a secondary Alexa-Fluor 488 antibody. Pseudo-colored images 
demonstrating the morphology of the nucleus (grey), the subcellular localization of Actin (red) and 
Myo1f (green), as well as the colocalization of Actin and Myo1f (arrow heads) during the different 
migration phases: initiation phase, deformation phase and remodeling phase. Arrows indicate 
constriction site. Representative cell from 3 independent experiments. Scale bar = 10 µm. Color 
scales, heat map (modified from Salvermoser et al., 2018127). 

 

 

Similar to dHL-60 EGFP-Myo1f cells, the formation of a nuclear lobe during the initiation phase, 

the elongation of the nucleus during the deformation phase as well as the refolding of the nucleus 

into a roundish morphology during the remodeling phase were observed. In addition, 

colocalization of Myo1f and Actin at the rear and the front as well as at the constriction sites was 

detected in primary human neutrophils. This was in line with the observed colocalization of Myo1f 

and Actin in dHL-60 EGFP-Myo1f cells127. 

 

 

5.4.3 The role of Myo1f for the deformation of the nucleus during 3D migration 

To study the functional impact of Myo1f during 3D migration in detail, Hoechst 33342 -labeled 

neutrophils were imaged during migration in a collagen gel towards a CXCL1 gradient using 

reflection and confocal fluorescence microscopy (Figure 30). As expected, real-time reflection and 

fluorescence microscopic images revealed that the nucleus of Myo1f+/+ neutrophils deformed 

during migration in a collagen meshwork. Starting from a roundish shaped nucleus, a nuclear lobe 

was formed after 280 s, followed by elongation and deformation of the nucleus at 350 s to 

squeeze through the narrow pore in the meshwork of collagen fibers and refolded into a roundish 

morphology after passing the pore at 420 s. In sharp contrast to Myo1f+/+ neutrophils, 

Myo1f-/- neutrophils failed to deform their nuclei during 3D migration. The nucleus kept a roundish 
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morphology without almost no detectable shape change during the entire recording time 

suggesting that the lack of nucleus deformation was the reason for the defective 3D migration in 

the genetic absence of Myo1f127. 

 

 

 

Figure 30. Migration of Myo1f+/+ and Myo1f-/- neutrophils within a 3D collagen gel.  Live cell 
imaging of Myo1f+/+ and Myo1f-/- neutrophils migrating within a 1.5 mg/mL collagen gel towards 
CXCL1 (100 ng/mL) gradient using confocal reflection/fluorescence microscopy. Confocal images 
demonstrate Myo1f+/+ and Myo1f-/- neutrophils stained with the nuclear dye Hoechst 33342 
(5 µM) migrating through the meshwork of collagen fibers at indicated time points. The 
architecture of the collagen meshwork and the cell body are visualized by confocal reflection 
microscopy (fire and red). The shape of the nucleus during 3D migration is shown by confocal 
fluorescence microscopy (green). Merge (yellow) indicates the reflection image (red) and the 
nucleus (green). Schematic outline of the morphology of the nucleus (green) and the cell body 
(red) during migration in a collagen gel. Neutrophil localization is normalized to the pore (white 
dotted line and white arrow). Scale bar = 10 µm (modified from Salvermoser et al., 2018127). 
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To study the localization of Actin and the morphology of the nucleus during migration in a collagen 

gel, Myo1f+/+ and Myo1f-/- neutrophils were stained with the nuclear dye Hoechst 33342 as well 

as Sir-Actin and 3D migration was analyzed using spinning disk confocal microscopy (Figure 31a). 

Similar to the results observed in dHL-60 EGFP-Myo1f cells, an Actin ring was formed around the 

back of the Myo1f+/+ nucleus during the elongation of the nucleus. In comparison to 

Myo1f+/+ neutrophils this ring-like Actin structure was not observed in Myo1f-/- neutrophils.  

 

 

  

Figure 31. Shape change of Myo1f+/+ and Myo1f-/- nuclei during migration in 3D collagen gels. (a, 
b) Migration of Myo1f+/+ and Myo1f-/- neutrophils in a 1.5 mg/mL collagen gel towards a CXCL1 
(100 ng/mL) gradient was analyzed using µ-Slides Chemotaxis 3D chambers. The neutrophils were 
stained with the nuclear dye Hoechst 33342 (5 µM) and Sir Actin (100 nM) and the shape of the 
nucleus was determined using spinning disk confocal microscopy. (a) Representative fluorescence 
time-lapse microscopy images of Myo1f+/+ and Myo1f-/- neutrophils indicated the morphology of 
the nucleus (white) as well as the localization of actin (red) during 3D migration at indicated time 
points. Scale bar = 10 µm. Triangles indicate orientation of the gradient. (b) Percentage of change 
in nucleus elongation during neutrophil 3D migration at indicated time points. n = 3 independent 
experiments. * p<0.05, *** p<0.001 (2-way ANOVA, Sidak’s multiple comparison test, modified 
from Salvermoser et al., 2018127).  
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For quantitative analysis of change in nucleus elongation, a basic shape change factor defining 

shape elongation was used. Here, a shape change factor of 0 indicated a rounded nucleus and 1 

represented an elongated nucleus. The mean nuclear shape change factor per time point was 

analyzed and normalized to the overall smallest value to calculate the percent change in nuclear 

shape within the following 10 min of observation (Figure 31b)127. However, this change in nucleus 

elongation was almost not existent in Myo1f-/- neutrophils, indicating that the shape change of the 

nucleus for successful migration in a 3D collagen network did not occur in the genetic absence of 

Myo1f. These results demonstrated that Myo1f-/- neutrophils were not able to exhibit efficient 

nucleus deformation resulting in hampered migration through physical barriers in the meshwork 

of collagen fibers127. 
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6. DISCUSSION 

Neutrophils play an essential role in the innate immune response as they are the first leukocytes 

arriving at the site of inflammation. The neutrophil recruitment from the blood stream into the 

inflamed tissue and to the site of injury or infection follows a multi-step cascade of consecutive 

events14. There is evidence that the unconventional Myo1f is involved in neutrophil recruitment 

during the acute inflammatory response by affecting neutrophil adhesion under static conditions 

and neutrophil accumulation at the site of inflammation1. However, the role of Myo1f under 

physiological flow conditions as well as the mechanism of the action of Myo1f remained elusive. 

In the present study, the functional importance of Myo1f for neutrophil trafficking during the 

acute inflammatory response was analyzed in detail.  

 

 

6.1 The role of Myo1f in neutrophil rolling and adhesion 

A previous study by Kim et al. demonstrated that Myo1f-/- neutrophils displayed increased 

adhesion under static conditions in vitro1. In the present study, the genetic absence of Myo1f 

resulted in increased neutrophil adhesion to the β2 integrin ligand ICAM-1 upon stimulation with 

diverse stimuli, including the chemokine CXCL1, Mn2+ which stabilizes the high affinity 

conformation of the β2 integrins39, the chemotactic peptide fMLP as well as the cytokine TNFα. 

These in vitro results under static conditions were in line with the data obtained by Kim and 

co-workers1. In addition, adhesion to the Mac-1 ligand fibrinogen was increased in the genetic 

absence of Myo1f upon stimulation (compare Figure 12). 

To study whether this effect was due to differently expressed β2 integrins, surface expression of 

CD11a, CD11b and CD18 was analyzed in unstimulated neutrophils and after stimulation with 

CXCL1 and fMLP. Surface expression of LFA-1 and Mac-1 was similar between Myo1f+/+ and 

Myo1f-/- neutrophils showing that altered β2 integrin surface expression was not responsible for 

increased adhesion under static conditions in the situation in vitro (compare Figure 13). However, 

neutrophil adhesion was analyzed under static conditions by Kim and co-workers1 and therefore 

it did not reflect the actual physiological situation in vivo. Here, neutrophils need to resist shear 

forces of the blood stream while they adhere to the endothelial surface99. In contrast to the study 

by Kim et al.1, the present study analyzed the physiological function of Myo1f for neutrophil 

trafficking under flow conditions in vitro and in vivo. Neutrophil rolling and adhesion on rmICAM-1, 

rmP-selectin and CXCL1 coated flow chambers was investigated under 1 dyne/cm2 shear stress 
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representing the physiological conditions in postcapillary venules197. However, no difference in 

induction of adhesion between Myo1f-/- and Myo1f+/+ neutrophils was observed. (Figure 12). 

Taken together, these data suggest that Myo1f functions differently under static and flow 

conditions highlighting the importance of the experimental conditions when analyzing neutrophil 

trafficking.  

Moreover, the biological relevance of Myo1f for leukocyte rolling and adhesion was studied in vivo 

using three different inflammatory models in the mouse cremaster muscles of Myo1f+/+ and 

Myo1f-/- mice. In the trauma-induced model of inflammation, rolling flux fraction as well as the 

number of adherent leukocytes of Myo1f+/+ mice were similar to values reported in earlier 

studies193,198,199. Interestingly, leukocyte rolling and adhesion in this model of inflammation was 

not altered in the genetic absence of Myo1f (compare Figure 14). Intrascrotal injection of the 

proinflammatory cytokine TNFα causes the upregulation of E-selectin, P-selectin, ICAM-1 as well 

as CXCL1 expression on the endothelium leading to slow leukocyte rolling and arrest192,199. These 

events are mediated by talin-dependent activation of LFA-1 into an intermediate ligand affinity 

E(+) H(-) conformation41,42,200,201. Accordingly, the rolling flux fraction decreased and the number 

of adherent leukocytes increased 2.5 h after i.s. TNFα application in Myo1f+/+ mice as expected. 

The genetic absence of Myo1f did not affect leukocyte rolling and adhesion in TNFα stimulated 

mouse cremaster postcapillary venules suggesting that Myo1f was dispensable for LFA-1 

activation into the intermediate ligand affinity E(+) H(-) conformation, slow leukocyte rolling and 

arrest in vivo (compare Figure 15). Chemokine signaling through GPCRs leads to the binding of 

both talin and kindlin-3 to the cytoplasmic tail of LFA-1 inducing the LFA-1 high ligand affinity 

E(+) H(+) conformation. Extended, fully activated LFA-1 binds endothelial ICAM-1 and ICAM-2 

which results in firm neutrophil adhesion41,44,198. In the present study, chemokine-induced firm 

leukocyte adhesion was investigated by i.v. injection of CXCL1 into Myo1f+/+ and Myo1f-/- mice. As 

expected, the number of adherent leukocytes was dramatically increased in Myo1f+/+ mice. 

Similarly, leukocyte adhesion in Myo1f-/- mice was increased after CXCL1 application indicating 

that LFA-1 activation and subsequent firm leukocyte adhesion does not require Myo1f 

(compare Figure 16). Affinity regulation of LFA-1 and Mac-1 was evaluated in vitro using isolated 

Myo1f+/+ and Myo1f-/- neutrophils (compare Figure 13). LFA-1 specific ICAM-1 binding which 

reports the high-affinity conformation of LFA-141,44 was not altered in the genetic absence of 

Myo1f supporting the finding that Myo1f is not relevant for the affinity regulation of LFA-1. 

Fibrinogen binding to Myo1f+/+ and Myo1f-/- neutrophils was used to investigate Mac-1 affinity 

regulation. Here, no difference in binding of soluble fibrinogen was detected in Myo1f-/- 
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neutrophils when compared to Myo1f+/+ neutrophils. Similar to Mac-1, the integrin CD11c/CD18 

also binds fibrinogen. However CD11c/CD18 expression is rather low on neutrophils and Mac-1 

represents the main fibrinogen receptor on these cells202. These data demonstrate that Myo1f was 

dispensable for the regulation of the β2 integrins LFA-1 and Mac-1 in murine neutrophils under 

physiological conditions in vitro as well as in the situation in vivo. 

 

 

6.2 Neutrophil extravasation in different in vivo inflammation models 

Although the absence of Myo1f did not affect neutrophil rolling and adhesion under physiological 

flow conditions, Myo1f was found to be fundamentally important for neutrophil extravasation 

into inflamed tissues in three different experimental models. Here, analysis of the TNFα stimulated 

mouse cremaster muscle model, the CXCL1-induced peritonitis model and the LPS-triggered lung 

injury model revealed severely compromised neutrophil extravasation to the site of inflammation 

in Myo1f-/- mice compared to Myo1f+/+ mice (compare Figure 17-19). Importantly, the white blood 

cell counts in the circulation were similar between Myo1f+/+ and Myo1f-/- mice, indicating that 

neutrophil recruitment from the bone marrow into the blood stream was not hampered by the 

genetic absence of Myo1f, whereas the extravasation from the blood stream to sites of 

inflammation was dependent on Myo1f.  

The observed extravasation defect in Myo1f-/- mice was in line with a previous report by Kim et al., 

where Myo1f-/- mice were shown to be more susceptible to infection with Listeria 

monocytogenes1. The authors speculated that the failure to control bacterial infection was 

attributed to increased neutrophil adhesion causing impaired neutrophil accumulation at the site 

of inflammation. As mentioned above, increased adhesion was only observed under static 

conditions whereas adhesion under flow conditions was normal. Thus, one can speculate that 

increased adhesion under static condition occurred coincidentally and did not represent the 

mechanism influencing neutrophil extravasation upon inflammation and therefore did not 

represent the reason for the increased susceptibility to Listeria monocytogenes infection. 

In the present study, TNFα stimulation in the mouse cremaster muscle of Myo1f+/+ mice led to 

leukocyte accumulation in the inflamed tissue as expected65,203. Analysis of whole mount histology 

revealed that neutrophil extravasation but not extravasation of other leukocyte subtypes was 

impaired in the genetic absence of Myo1f suggesting a pivotal impact of Myo1f for neutrophil 

extravasation in response to TNFα. In line with the results obtained in the cremaster model, 

neutrophil extravasation was observed to be significantly compromised in the experimental 
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models of acute peritonitis and acute lung injury, pointing again towards the importance of Myo1f 

for neutrophil extravasation. Neutrophil recruitment into the peritoneal cavity can be induced by 

i.p. injection of pathogens, inflammatory cytokines, thioglycollate or CXCL1204,205. Studies using 

CD18-deficient or CD11a-deficient mice showed that neutrophil recruitment into the inflamed 

peritoneum is β2 integrin dependent206-208. In contrast neutrophil recruitment into the lungs can 

occur in a β2 integrin dependent or independent regulated by the stimulus applied209,210. Since 

Myo1f-/- neutrophils failed to extravasate in all three different experimental models applied, these 

results suggest that Myo1f is not involved in the regulation of β2 integrins but plays an important 

role in neutrophil extravasation independent on β2 integrins.  

By applying the ALI model, the impact of Myo1f for neutrophil recruitment in a clinical relevant 

disease was investigated. ALI and its most severe form, the acute respiratory distress syndrome 

(ARDS), are major problems in intensive care medicine and are associated with a high mortality 

rate211. The disease is characterized by the formation of pulmonary edema and impaired gas 

exchange eventually leading to respiratory failure212. ALI is initiated by injury of the endothelium 

as well as the epithelium of the lungs, leading to increased permeability of the alveolar-capillary 

barrier and infiltration of neutrophils into the bronchoalveolar space213,214. The severity of ALI and 

ARDS correlates with the infiltrated amount of neutrophils in the BAL. Accordingly, it has been 

shown that depletion of neutrophils decreased the severity of ALI suggesting that neutrophils are 

critically involved in the progression of the disease215. Further experiments demonstrated that 

infiltrated neutrophils damage the lung tissue by releasing proteinases, cationic peptides, 

cytokines and ROS216. Although recruitment of neutrophils into the lungs is essential for host 

defense, regulation of neutrophil activation and emigration might represent an option for treating 

ALI. However, it was reported that patients with neutropenia still developed ALI, thus indicating 

an additional neutrophil-independent mechanism of ALI development under specific 

conditions217,218. Nevertheless, various animal models and clinical data point towards a 

fundamental impact of neutrophil activation and recruitment during ALI212. In the present study, 

ALI was initiated by the inhalation of LPS, a component of the outer membrane of gram-negative 

bacteria, leading to neutrophil migration into the bronchoalveolar space219. Importantly, in 

Myo1f-/- mice significantly less neutrophils were recruited into the lungs compared to 

Myo1f+/+ mice. As expected, lung damage assessed by TRITC-Dextran permeability measurements 

was decreased in the absence of Myo1f, suggesting that Myo1f represents an important novel 

player in neutrophil-driven ALI by mediating neutrophil migration.  
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In general, inhibitors of leukocyte trafficking are promising anti-inflammatory drugs for the 

treatment of inflammatory diseases and cancer220,221. In the last decade, several new therapeutics 

altering leukocyte trafficking were developed, whereas many clinical trials failed or are still 

ongoing80,220. For example, until now the treatment of ischemia-reperfusion injury in acute 

myocardial infarction by the blockade of neutrophil infiltration was not successful222. However, 

there are approved drugs like natalizumab, an anti-α4 integrin monoclonal antibody which inhibits 

T cell recruitment into inflamed tissues in multiple sclerosis223 and Crohn’s disease220,224,225. The 

treatment of multiple sclerosis with natalizumab showed severe side effects, e.g. the development 

of progressive multifocal leukoencephalopathy. This example clearly demonstrates that the 

blockade of leukocyte trafficking as an anti-inflammatory therapy is a ‘doubled-edge sword’80. On 

the one hand, inhibition of leukocyte trafficking can be effective in the treatment of various 

diseases, on the other hand blocking of leukocyte trafficking can cause an increased susceptibility 

to infections. Thus, in the future it is necessary to understand leukocyte trafficking in more detail 

to dampen side effects80. 

 

 

6.3 The impact of Myo1f in neutrophil migration 

Controlled trafficking of leukocytes towards the sites of inflammation is fundamentally important 

for efficient innate and adaptive immune responses. To unravel the mechanism for the dramatic 

extravasation defect in the genetic absence of Myo1f, the role of Myo1f for neutrophil migration 

was examined. Since neutrophils migrate on the endothelial surface (2D) as well as in tissue (3D), 

it is of utmost importance to consider that the mode of migration may be different in 2D and 3D 

environments.  

Neutrophil spreading, polarization and migration in 2D environments were found to be unaffected 

in the presence of the β2 integrin ligand ICAM-1 or fibrinogen in Myo1f-/- neutrophils under flow 

conditions in vitro (compare Figure 20-23). This was in contrast to the findings by Kim et al. where 

neutrophil spreading was analyzed under static conditions and shown to be increased in the 

genetic absence of Myo1f1. Furthermore, the study demonstrated decreased neutrophil migration 

on fibronectin and poly-lysine towards an fMLP chemoattractant1. These ligands are not specific 

for β2 integrins, which could be the reason for the different outcome of the migration studies, 

since neutrophil migration in physiological 2D environments is dependent on adhesion via β2 

integrins48,226. These findings clearly demonstrate that experimental conditions are important for 
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the outcome of the experiment and further highlight that neutrophils employ highly specific 

mechanisms for adhesion, spreading and migration to resist shear forces under flow conditions.  

Another study analyzed the impact of Myo1f on TLR4-driven spreading response of macrophages. 

Downregulation of Myo1f in bone marrow-derived macrophages using siRNA severely reduced 

spreading upon LPS stimulation under static conditions173. These results suggest that the biological 

function of Myo1f may have evolved differently in diverse leukocyte subtypes. 

 Next, the impact of Myo1f for neutrophil migration within confined 3D environments was 

studied (compare Figure 24-26). During TEM and interstitial migration, neutrophils need to pass 

narrow pores ranging from 1 to 30 µm in diameter227,228. Accordingly, neutrophil transmigration 

was investigated using transwell chambers with pore sizes of 3 µm, 5 µm and 8 µm reflecting 

constrictions present in the actual in vivo situation227. Analysis of the number of neutrophils 

transmigrated into the lower compartment of a transmigration chamber supplemented with fMLP 

or CXCL1 revealed that Myo1f was critically involved in neutrophil transmigration. To further 

analyze the role of Myo1f for TEM, transwell filters were coated with a monolayer of endothelial 

b.End3 cells or left uncoated for comparison. CXCL1 stimulation induced transmigration of 

Myo1f+/+ neutrophils through the bEnd.3-coated as well as through the non-coated filters as 

expected. In comparison to Myo1f+/+ neutrophils, Myo1f-/- neutrophils failed to transmigrate 

through the endothelial barrier as well as through the uncoated pores. In both cases, this resulted 

in a diminished number of neutrophils detected in the lower compartment of the transwell 

chamber suggesting that neutrophil transmigration through narrow pores was dependent on 

Myo1f.  

Neutrophil interstitial migration was studied in collagen gels which form fibrillary networks and 

therefore allow to study 3D migration. In general, the ECM consists of collagens, elastin, 

proteoglycans and noncollagenous glycoproteins forming a heterogeneous network in a 

tissue-specific manner229. The main component of interstitial tissue is type I collagen assembled 

into mechanically stable fibrils providing physical stability of the connective tissue227. In vivo 

interfibrillar spaces in tissues consisting of non-fiber forming molecules like proteoglycans, 

including the mouse cremaster tissue, have been shown to range from 2 to 30 µm119,227. Studies 

using collagen gels with a collagen concentration of 1.5 mg/mL (low-density) yielding pore cross 

sections of 10-12 µm2 and a collagen concentration of 3.0 mg/mL (high-density) with pore cross 

sections ranging between 2-3 µm2 demonstrated reduced migration speed in high-density 

collagen gels indicating that 3D migration depends on substrate porosity68,119,127. However, the 

exact structure of collagen gels is often not known due to various factors being essential for the 
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collagen architecture like the type of collagen, gelation time, temperature and pH227,230-232. In the 

present study, analysis of 3D migration experiments in collagen gels with different collagen 

concentrations confirmed that neutrophil migration was dependent on the density of the 

meshwork of collagen fibers which was in line with findings by Wolf et al119. Moreover, Myo1f-/- 

neutrophils showed significantly decreased migration velocities in high- and low-density collagen 

gels compared to Myo1f+/+ neutrophils indicating that Myo1f was critically involved in neutrophil 

migration in 3D environments.  

 

 

6.4 Requirement of Myo1f for the deformation of the nucleus 

To identify the underlying mechanism causing defective migration in 3D environments, 

i.e. transmigration and interstitial migration, the impact of Myo1f on squeezing the neutrophil 

through narrow spaces was analyzed. For effective cell migration in 3D environments, rapid 

change of the cell shape as well as deformation of the nucleus are required119. A previous study 

demonstrated that the malleability of the neutrophil nucleus is indispensable during neutrophil 

migration through narrow pores within confined 3D environments137.  

Analysis of the nuclear morphology in transmigration as well as during migration in 3D collagen 

gels revealed that the absence of Myo1f almost completely abrogated the deformation of the 

nucleus suggesting that Myo1f was indispensable for neutrophil migration through narrow pores 

by regulating the deformation of the nucleus (compare Figure 27-31). 

The mechanical linkage between the actin filaments and the nuclear membrane enables the 

dynamic interaction between the actin cytoskeleton and the nucleus and is required for cell 

locomotion and nucleus deformation during migration in 3D environments120,121,125,126,233. To study 

the putative role of Myo1f in the interaction between the actin cytoskeleton and the nucleus, an 

HL-60 cell line stably expressing an EGFP-Myo1f fusion protein was used allowing the identification 

of the interplay between Actin, Myo1f and the nucleus in these cells. HL-60 cells are human 

promyelocytic leukemia cells which proliferate independent of growth-factors and can be 

differentiated towards neutrophil-like cells by applying 1.3 % DMSO for 6 days234-236. DMSO 

differentiation results in the upregulation of various surface markers including different 

chemoattractant receptors for fMLP or LTB4 as well as typical neutrophil surface markers like 

LFA-1, Mac-1 and L-selectin237,238. In addition, previous studies comparing dHL-60 cells with 

primary human neutrophils demonstrated high similarities between those two cell types235,239-241. 
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Therefore, the HL-60 cell line is a suitable model to study neutrophil chemotaxis and motility in 

vitro.  

Using this cell model as well as primary human neutrophils, three phases neutrophils undergo 

during migration through restrictive pores were defined in line with a recent study by Barzilai and 

co-workers124 (Figure 29). The initiation phase was characterized by the formation of a small 

nuclear lobe inserting into the narrow pore to start migration. The deformation phase was defined 

by the elongation of the nucleus to squeeze the whole cell body through the constriction and the 

remodeling phase by refolding the nucleus into a spherical multi-lobular shape.  

During the initiation and elongation phase, accumulated Myo1f was found at the rear and the 

front of the nucleus, suggesting that Myo1f functions in pushing and/or pulling of the nucleus 

through the permissive site. This was in line with previous studies demonstrating Myosin II being 

involved in pushing and pulling of the nucleus to squeeze the cell through constriction 

sites124,242,243. At the same time Actin was found to form a ring-like structure around the deformed 

nucleus during the first two phases of 3D migration. Studies using fibroblasts reported that the 

deformation of the nucleus is regulated by a dome-like actin cap located above and around the 

nucleus which is composed of thick, dynamic actomyosin filaments linked to the nucleus244,245. The 

physical nucleus-cytoskeleton interaction is required for the active deformation of the nucleus 

during migration in 3D environments by transmitting force from the cytoskeleton to the 

nucleus128,245-247. The observed actin ring during initiation and deformation phase suggested an 

existence of an actin filament structure involved in controlling the deformation of the nucleus in 

neutrophil-like HL-60 cells. 

Importantly, the colocalization of Myo1f and Actin were found at the rear and the front of the 

nucleus as well as at the constriction, pointing towards a putative importance of Myo1f in the 

dynamic regulation of the nucleus morphology during migration through narrow pores. These 

findings were further supported by studying the nuclear morphology during migration in 

3D collagen gels in the absence of Myo1f. Analysis of the nuclear shape change revealed that in 

contrast to Myo1f+/+ neutrophils, Myo1f-/- neutrophils almost completely failed to exhibit rapid 

nucleus deformation resulting in compromised 3D migration through physical barriers in the 

meshwork of collagen fibers.  

In addition to the low expression of LaminA/C in the nuclear envelope of neutrophils136, studies 

using dHL-60 cells and primary human neutrophils demonstrated that several LINC complex 

proteins, including SUN1 and Nesprin 1/2 are profoundly downregulated in neutrophil 

nuclei132,137,138. These specific features lead to a flexible nuclear envelope structure resulting in a 
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highly malleable cell. Although neutrophils are easily deformable, the nucleus-cytoskeleton 

connection is essential for 3D migration by transmitting force from the cytoskeleton to the inside 

of the nucleus247. Thus, one can speculate that Myo1f has a similar function as the LINC complexes 

and links the cytoskeleton to the nuclear envelope via its TH1 domain to provide a high malleability 

of the nucleus127. However, further experiments are required to unravel the exact mechanism by 

which Myo1f exerts its function in regard to coupling the cytoskeleton to the nuclear membrane.  

 

 

 

Figure 32. The fundamental role of Myo1f during TEM and interstitial migration. Neutrophils 
undergo three phases while they squeeze their nucleus through restrictive barriers including the 
initiation, the deformation and the remodeling phase during migration within 3D environments 
(transendothelial migration and interstitial migration). Myo1f was found to act at the rear and the 
front of the nucleus as well as at the constriction sites (red arrow heads) bringing the nucleus in 
shape for successful migration within 3D environments. Myo1f was critically involved in regulating 
the dynamic deformation of the nucleus during neutrophil migration through narrow pores. In the 
genetic absence of Myo1f, neutrophils fail to migrate through narrow pores as they are not able 
to deform their nuclei (modified from Salvermoser et al., 2018127).  
 

 

 In summary, the presented experimental data demonstrate that Myo1f plays a 

fundamental role in neutrophil extravasation to sites of inflammation. However, neutrophil 

rolling, induction of adhesion, spreading and polarization as well as migration in 2D environments 

are not altered in the genetic absence of Myo1f. Interestingly, studying neutrophil migration in 

3D environments, i.e. transmigration and migration in 3D collagen networks, which relies on the 
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dynamic deformation of the nucleus to pass restrictive sites, indicates the specific importance of 

Myo1f for 3D migration of neutrophils. Thus, Myo1f is identified as a novel indispensable 

molecular player in the process of nuclear deformation during neutrophil trafficking in innate 

immunity (Figure 32).  
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