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Zusammenfassung

Auch in einer monoklonalen und scheinbar einheitlichen Zellpopulation sind Zellreaktionen im
Allgemeinen heterogen. Daher gehen in Populationsmessungen, in denen das Signal über alle
Zellen gemittelt wird, essentielle Informationen verloren. Aus diesem Grunde sind Zeitraffer-
messungen auf Einzelzell-Ebene nötig, welche durch Einzelzell-Arrays realisiert werden können
und so die Dynamik von Zellprozessen erfassen. Die Analyse auf Einzelzellebene macht deutlich,
dass die beobachtete Heterogenität biologisch relevant ist.

Im ersten Teil dieser Doktorarbeit werden Methoden zur Herstellung von Einzelzell-Arrays
beschrieben. Bei den verwendeten Arrays kann zwischen 2D und 3D Arrays unterschieden wer-
den. Im Grunde sind 2D Strukturen chemisch modifizierte Oberflächen mit einerseits zellfre-
undlichen Flächen, die mit Proteinen beschichtet sind, und andererseits zellabweisenden Flächen
aus Polymeren. Die stereochemischen Eigenschaften von IgM Antikörpern machten die En-
twicklung eines neuen 2D Arrays für nicht-adhärente Zellen möglich. Nicht-adhärente Zellen
können auch mit topographischen 3D Arrays untersucht werden, bei denen die Form eines
biokompatiblem Polymers durch einen mikrostrukturierten Stempel aus weichem Polymerma-
terial vorgegeben wird. In dieser Arbeit wurden hauptsächlich zylindrische und rechteckige For-
men verwendet. Die beschriebenen Einzelzell-Arrays wurden zur Untersuchung von Zellhetero-
genität und dynamischen Zellreaktionen in folgenden Fällen verwendet: (i) Zytokin Sekretion,
(ii), NK Zellzytotoxizität, (iii) Zellzyklusdauer und chemotherapeutisch induzierte Apoptose.

Im zweiten Teil, in dem 3D Arrays verwendet werden, wird die Entwicklung eines Einzelzell-
Sekretions-Assay beschrieben. Die Kommunikation zwischen Immunzellen findet durch die
Sekretion von sogenannten Zytokinen statt. Jedoch ist die Detektion der Zytokinsekretion
einzelner Zellen schwierig, da die Anzahl sekretierter Proteine sehr gering ist. Daher wurden
mit Hilfe enzymgekoppelter Immunadsorptionstests (ELISA) verschiedene Ansätze zur Analyse
von Proteinsekretion einzelner Zellen im Micro-Wells entwickelt. Hierbei wurde festgestellt,
dass der ELISA-on-cell, bei dem die sekretierten Proteine direkt auf der Oberfläche der Zelle
nachgewiesen werden, sensitiver ist als die Detektion des Proteins am Boden des Micro-Wells.
Um die Detektionseffizienz des offenen gegen über dem geschlossenen Micro-Well Ansatzes zu
vergleichen, wurden numerische Simulationen unter Verwendung der Finite-Elemente-Methode
(FEM) durchgeführt.

Im dritten Teil wird die Immunantwort gegen Zielzellen durch sogenannten natürliche Killerzellen
(NK) in Anwesenheit von zell-spezifischen Triplebodies zeitaufgelöst verfolgt. SPM-2 Triplebod-
ies aktivieren NK Zellen durch die Bindungs des Fc-Rezeptors CD16. Mit Hilfe von 2D Ar-
rays, besetzt mit Zielzellen und Zeitraffer-Mikroskopie, konnten die individuellen Lyseereignisse
zeitaufgelöst über einen Zeitraum von 16 Stunden gemessen werden. Der neue zytometrische
chip-basierte Einzelzell-Assay ermöglicht nicht nur die längere Beobachtung, im Vergleich zu
den vier Stunden des Standard Calcein Assays, sondern benötigt auch eine geringere Anzahl an
Primärzellen. Darüber hinaus zeigten die Daten ein dosisabhängiges Maximum der Tötungsrate
innerhalb des Reaktionszeitraumes eine dynamische Größe, die mit konventionellen Methoden
nicht messbar ist.
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Im letzten Kapitel wird die Effizienz von Chemostatika als Funktion des Zellzyklus quan-
tifiziert, ohne molekulare Indikatoren der Zellzyklusphasen zu verwenden. Zu diesem Zweck
wurde die Generationszeit von klonalen Zellfamilien, jede entstanden aus einer einzelnen Zelle, in
länglichen 3D Micro-Well Arrays untersucht. Durch die Kombination dieser Arrays mit Zeitraf-
fermikroskopie und automatisierter Zellerkennung und verfolgung konnten die Zellzykluslängen
der einzelnen Zellen sowie Korrelationen bei Schwesterzellen festgestellt werden. Zudem wurde
der Todeszeitpunkt, nach der Induktion von Apoptose durch die Zugabe von Chemotherapeu-
tika, ermittelt. Die Ergebnisse zeigen, dass bei Vincristin, einem anti-mitotischen Reagenz, der
Todeszeitpunkt davon abhängt wie viel Zeit seit der Zellteilung vergangen ist. Die Verteilung
der Todeszeitpunkte wurde mit einer chemisch synchronisierten Population reproduziert und
mit der nicht-synchronisierten Population verglichen.
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Abstract

Cell responses are commonly heterogeneous over a monoclonal and seemingly uniform popula-
tion, thus bulk measurements that extract average values are missing essential information. For
this reason, single-cell time-lapse studies are required and can be realized with single-cell arrays
that facilitate dynamic readout of cell processes. Analysis at the single-cell level elucidates the
biological significance of the observed heterogeneity.

In the first part of this thesis, fabrication methods for single-cell arrays are developed.
Two types are studied, namely 2D and 3D arrays. 2D arrays are chemically modified surfaces
baring cell-adhesive areas, which are coated with proteins, and cell-repellent areas coated with
polymers. A novel 2D array for non-adherent cells is introduced, that utilizes the favourable
stereochemical properties of IgM antibodies. For non-adherent cells as well, 3D topographical
arrays are made by moulding biocompatible polymers using microstructured masters of soft
polymeric materials. Herein, we mainly used cylindrical and rectangular cavities. The single-
cell arrays described are used to investigate cell heterogeneity and dynamic response in the
following cases: (i) cytokine secretion, (ii) NK cell cytotoxicity, (iii) cell-cycle duration and
chemotherapeutic drug induced apoptosis.

In the second chapter employing 3D arrays, the development of a single-cell secretion assay
is investigated. Immune cell-to-cell communication is mediated via the secretion of proteins
called cytokines. Studying cytokine secretion with single-cell resolution is challenging due to
the small number of secreted cytokines. Herein, we developed various approaches to measure
single-cell secretion events in micro-wells using locally embedded enzyme-linked immunosorbent
assays (ELISA). We found that the ELISA-on-cell, i.e. capturing the secreted protein on the
surface of the secreting cell was more sensitive than capturing it on the bottom of the micro-
well. To compare the capture efficiency in the open versus closed micro-well configuration, we
performed numerical simulations using the Finite Element Method (FEM).

Next, we studied the kinetics of the innate immune response against targeted cells mediated
by natural killer (NK) cells in the presence of cell specific triplebodies. The SPM-2 triplebody
recruits NK cells via a binding site for the Fc-receptor CD16. Employing 2D arrays of target
cells in combination with live cell time-lapse microscopy, we directly measured individual lysis
events in a dynamic fashion over 16 hours. The novel chip-based single-cell cytometric assay
not only provides longer observation times compared to 4 hours of the standard calcein release
assay, but also requires far smaller numbers of primary cells. Moreover, the data exhibited a
dose-dependent maximum of the killing rate during the reaction interval, a dynamic property,
unreachable with conventional methods.

Finally, we study the efficiency of chemotherapeutic drugs as a function of the cell cycle,
without the use of molecular indicators specific to the cell cycle phase. To this end, we moni-
tored the generation of clonal families of cells each derived from a single mother cell, using 3D
elongated micro-trenches arrays. Combining these arrays with live cell time-lapse microscopy
and automated cell tracking, we determined the cell-cycle duration of single-cells, sister cell cor-
relations as well as the time-to-death after inducing apoptosis with chemotherapeutic drugs. We
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found that for vincristine, an anti-mitotic agent, the time-to-death depends on the time passed
after cell division. The time-to-death distribution is reproduced using chemically synchronised
populations and the time-to-death between sister cells is correlated in non-synchronised cells.
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Chapter 1

Introduction

Phenotypic heterogeneity is ubiquitous in every cell population, even in isogenic ones [1]. It has
been a long-standing endeavour to better understand and explain the observed heterogeneity
among cells of the same population. In the last decade, numerous studies have been carried out
in an attempt to distinguish heterogeneity from insignificant noise and to extract biologically
and clinically significant information [2–4]. Single-cell studies essentially contribute towards
this ongoing effort providing data that are unreachable with standard bulk assays. The main
purpose of this thesis was the development of single-cell dynamic assays that can shed light on
the underlying heterogeneity of various fundamental cell processes such as intercellular commu-
nication including cell secretion (chapter 2), cell-mediated cytotoxicity (chapter 3), cell cycle
duration and chemotherapeutic drug induced apoptosis (chapter 4).

Heterogeneity among cells of the same type is prevalent for both gene expression and protein
levels [5–8]. A scheme describing the various levels of heterogeneity was proposed in [2] and
is illustrated in figure 1.1. Even in isogenic cell populations, the stochastic nature of gene
expression [9] and fluctuations in regulatory molecules lead to a significant deviation of single
cells from the population average. Sequencing DNA of single cells revealed important insight
in various cases. For instance, in breast cancer samples distinct cell populations together with
spatial information were identified inside the tumour [10]; in single germ cells recombination sites
were mapped [11]; in neurons the copy number variation was found to be significantly higher
than other cell types [12] and also that chromosome structures vary among single T-helper cells
at large scales [13]. Not only genetic but also phenotypic and developmental states contribute
to the observed cell population heterogeneity. For example, non-genetic heterogeneity plays a
key role in stem cell fate decision [14–17].

Bulk or population-average assays refer to standard techniques used extensively that provide
important insight into cell external and internal signalling pathways, in essence for every cell
process. They can also be multi-plex and/or high-throughput if they produce more than one
signals simultaneously in one sample, such as bead-based assays (Luminex technology for de-
tection of intracellular and secreted proteins) and gene microarrays. Even though they capture
the state of a population under multiple perturbations, they are based on the assumption that
ensemble averages reflect the dominant biological process of the individual cells in the tested
sample. In many cases, this assumption is problematic as useful information is contained in
heterogeneity and thus cannot be uncovered. For instance, subpopulations of clonally derived
hematopoietic progenitor cells were found to have considerable different transcriptional states
and to give rise to different blood cell lineages [15]. Furthermore, the detection of small or
rare, yet highly significant, subpopulations of cells is not possible with bulk assays. Such an
example is a very small number of dormant stem cells within larger hematopoietic stem cell
populations that is crucial for re-establishing homeostasis [18]. An even more profound situation
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Figure 1.1: Schematic representation of the terminologies used for cell heterogeneity as described
in [2].

is when a population consists of several dominant but phenotypically discrete subpopulations
i.e. is described with a bimodal distribution [19,20] and the bulk measurement will result in an
imprecise average of these subpopulations.

To measure genetic heterogeneity and its biological significance, researchers initially used
low-throughput techniques that measure limited parameters in each cell, such as fluorescent
reporters and fluorescence in situ hybridization (FISH). On the contrary, high-throughput ge-
nomic approaches typically measure a pool of a large number of cells and an ensemble average
is derived, which is not ideal as discussed above. Nevertheless, nowadays a genome-wide quan-
titative analysis of single cells is possible. The challenge in single-cell sequencing is whether the
DNA yield will be sufficient, thus amplification methods are crucial [21,22] and must ensure op-
timal genome coverage. For transcriptome analysis, a significant number of single-cell methods
have been developed, such as microarrays, high-throughput real-time PCR and single-cell RNA
sequencing [23–25]. With large-scale real time PCR a substantial number of genes in thousands
of cells can be analysed, however since it is not possible to probe the entire genome all at once,
only pre-selected genes can be analysed. On the other hand, single-cell RNA sequencing can
provide genome-wide information [26,27]. As far as single-cell proteomics is concerned, parallel
detection of large numbers of proteins is possible using antibodies labelled with heavy met-
als [28]. Moreover, multiple protein detection in situ sheds light on protein interaction events
at the single-cell level in heterogenous population, such cells in tissue section [29].

Single-cell assays are a valuable tool to investigate the heterogeneity and the interactions
among immune cells which translates into the general capability of the immune system. An in-
depth understanding of the capabilities of the immune system, not only provides knowledge on
the evolution of diseases such as autoimmune disorders and cancer, but also on the development
of diagnostic and therapeutic strategies. Phenotypic variability among cells even of the same
type is a prevalent phenomenon, for instance for natural killer (NK) cells [30] and for T-cells [31].
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An illustrative analogy of the importance of single-cell analyses and dynamic monitoring for the
immune system is given in [32], where monitoring the immune system is compared with a game of
soccer. The immune response resembles a soccer game, in the sense that it is a complex, dynamic
network that evolves based on the specific responses and interactions between individual cells
(or players). For instance, an average measurement of the position of the ball for example at the
middle of the field cannot reveal the importance of the goals at the edges of the field. Likewise,
a snapshot of the field at the time point of the goal gives little information for the previous
individual events and interactions between the players that led to scoring. The roles of players
and goals describe the interaction between cells of different type and their functional response
respectively.

The most common types of single-cell platforms used for monitoring processes of immune
cells are valved microfluidic systems [33, 34] and micro-well arrays [35, 36]. The advantage of
valved microfluidic systems is the ability to precisely position cells and control their fluidic
environment, nevertheless usually they require a large number of control elements that leads
to a smaller number of cells analysed simultaneously and it is also more difficult to be scaled
up for larger numbers of cells. On the other hand, simple micro-well arrays usually comprise
a dense grid of micro-wells that enables the simultaneous analysis of larger number of cells
(several thousands), at a scale that the identification of rare cells, such as for instance antigen-
presenting T-cells, in a highly heterogeneous population. Nonetheless, usually they do not offer
precise control over the fluidic environment at the single-cell level. Both technologies offer the
capability of analysing very small clinical samples and therefore can be a valuable tool for patient
stratification and personalized medicine. Moreover, they enable spatiotemporal analyses of the
immune cells that is not possible with standard bulk measurements and flow cytometry. As a
result, multiple complex functional and phenotypic processes including protein secretion [37,38],
cytotoxicity [39], differentiation [35] can be analysed with such arrays depending on the question
at hand. In addition, cell-to-cell communication studies with increased precision are enabled
by such single-cell platforms due to the straight forward spatial confinement of different cell
types [40, 41]. The distribution of the cells settled in micro-well arrays follows the Poisson
distribution, which results in quantised arrangements of different types of cells, for instance
different ratios of NK to target cells. This characteristic led to the discovery that NK cells do
not cooperate in a paracrine manner to kill adjacent target cells [39]. In a similar manner, valved
microfluidics were used to study the effect of cell-to-cell distance on intracellular signalling and
secretion of tumour cell lines [42]. However, it should always be kept in mind that the results
of such single-cell approaches may not reflect precisely the in vivo processes but they definitely
give information on the potential range of states that cells may take.

A high degree of heterogeneity is evident among cancer cells as far as their phenotype and
drug resistance is concerned [43–47]. Generally, tumour heterogeneity refers to cellular differ-
ences within a single neoplasm and not to the obvious differences due to organ site, cell origin,
patient age and hormonal status [43]. Sources of cancer heterogeneity are the introduction
of genetic and epigenetic alterations and their evolutionary selection. These alterations are
influenced by the signalling environment, both stromal and immune but also by therapeutic
interventions [48–50]. Tumours are constantly evolving and one tumour can be pictured as a
tree of which the trunks represent earlier mutations (clonal) and the branches later ones (sub-
clonal) [51–53]. In theory, mutations of the branches will only be present only in a subset of
tumour cells while mutations of the trunk will be present in every cell, nevertheless there is
evidence that not every clonal mutation will be present in every cell in a tumour [54]. Even
though heterogeneity is regarded to assist tumours overcome evolutionary pressures, it can also
be exploited for therapeutic interventions. In theory, a targeted therapy will be more potent if
the target is a trunk mutation, i.e. a driver mutation [55].
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Resistance to cancer drugs of usually a small fraction of the tumour population is an exem-
plification of the effect a drug can have on tumour heterogeneity but also on how heterogeneity
within cancer cells impacts the outcome of a therapeutic strategy. In untreated cancer cell
populations, patterns of basal signalling heterogeneity were identified and were shown to define
subpopulations with different drug sensitivities [3]. Insight in tumour heterogeneity will pave
the way for novel therapeutic approaches. For instance, accumulating evidence suggest that
subclones within tumours both compete and synergize for growth [55,56], thus targeting small
populations that support growth of adjacent cell will be beneficial [57]. Moreover, according to
adaptive therapy [58] instead of focusing on eradicating every single cancer cell, which results
in resistant untreatable subclones, it may be better to control tumour growth via focusing on
the selection mechanisms within a tumour. It is still unclear which aspects of tumour hetero-
geneity matter in clinical practice, but it is essential that the current effort will be translated
to diagnostic and treatment strategies.

Since tumour diversity affect clinical outcomes, the establishment of sensitive methods that
quantify tumour heterogeneity and are able to detect and monitor subclones dynamically is
necessary [56,59,60]. Single-cell sequencing can shed light on cell lineages and phylogenies, but
also on the heterogeneity of rare cell populations such as circulating cells [61]. For the latter,
the coupling of single-cell sequencing with micro-fluidic devices is essential [62–65]. For single-
cell RNA sequence protocols, sensitivity for lower expressed genes has to increase as well as
methods to control amplification biases and technical noise. Furthermore, the number of cells
analysed simultaneously is still limited and should be increased to at least tens of thousands of
cells. Measuring protein heterogeneity at the single-cell level falls behind that of nucleic acids.
Measuring the protein content of a single-cell is challenging with mass spectrometry due to
the small sample size. Antibody-based assays are usually the followed way, but throughput is
limited as well as high-quality antibodies. The most common methods so far are fluorescence-
activated cell sorting (FACS) or mass cytometry (CyTOF), which however can detect a limited
number of proteins per sample [66, 67]. Even though protein content is not as dynamic as
the transcriptome, the phosphoproteome, which is essential to investigate cancer signalling, is
even more sensitive and dynamic than the transcriptome. In addition, significant information
about the tumour can be found in cell-free DNA and circulating tumour cells found in the blood.
Nonetheless, such non-invasive sensitive methods to isolate these circulating cells and DNA from
peripheral blood are yet to be developed. Thus, developing methods taking into consideration
all the above challenges is critical to assess, quantify and model tumour heterogeneity.
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Chapter 2

Development of single-cell arrays

2.1 Soft lithography

Soft lithography, a term introduced by George Whitesides [68], is an ensemble of microfabrication
techniques independent from photolithography processes, which require sophisticated facilities
(like clean rooms) and specialized reagents thus resulting in a significantly high fabrication
cost. The mutual characteristic of all soft lithography techniques is the use of an elastomeric,
soft material at any stage of the microfabrication process. The most commonly used elastomer
for these processes is polydimethylsiloxane (PDMS), which is formed using a mould, called
master. The master is usually fabricated by conventional photo- or laser-lithography, where
a silicon substrate is spin coated with a thin layer of a photoresist, which is then illuminated
with UV light through a chrome mask or a patterned transparent polymeric sheet baring the
desirable shapes. Alternatively, a UV laser direct imaging (LDI) device can be used to create
the master. The advantage of the LDI is that no mask is required for the process, however the
exposure takes longer. In the end after developing, the silicon wafer is silanized to facilitate
removal of the moulded PDMS, and it can be routinely used to cast PDMS. Several micro-
patterning techniques, including microcontact printing (µCP), plasma-induced micropatterning
and micromolding in capillaries (MIMIC), have been further developed and applied due to their
practicability and reduced cost [69–74].

2.2 Two dimensional (2D) protein arrays

Micro-patterning techniques that were originally developed for microelectronics, found appli-
cation also in cell biology and biophysics since they bridge the gap between standardised 2D
culture on a petri dish and 3D assays and tissues. With these techniques the surface chemistry
and geometry can be manipulated at the micron or submicron scale resulting in quantitatively
controlling the cell micro-environment in vitro. They constitute a useful tool to analyse the en-
vironmental parameters contributing in cell physiology, which is difficult, if not impossible, to
be done on a petri dish. Such substrates facilitated several studies that proved the importance
of cell shape, cell spreading area, and geometrical parameters of cell adhesion on cell survival,
proliferation, differentiation and polarity [74–76]. Even though initially sophisticated devices
were needed for micro-patterned substrates, lately many simple methods, available to almost
every biology lab, have been developed.

Herein, as 2D (two dimensional) protein array we define a chemically modified surface baring
areas coated with proteins and areas coated with polymers. Protein-coated areas are more cell
friendly, leading to the formation of a cell array. Organising the cells into cell arrays constitutes a
practical strategy for real-time dynamic monitoring of cell processes using light and fluorescence
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microscopy. Without immobilising the cells on exact positions, long duration measurements (for
more than a few hours up to days) are not possible as cells will migrate out of the microscope
field of view. This effect is more prominent with non-adherent cells. Moreover, cell arrays
not only enable long duration measurements but also facilitate a great deal subsequent image
analysis, which can be easily rendered semi-automated or even automated in some cases [77,78]
(see chapters 4 and 5).

Herein, plasma-induced patterning was utilised to develop the 2D protein arrays suitable
for the cell lines used. This method was first introduced by Bryan Langowski in 2005 [79]
and by utilising a PDMS stamp and plasma treatment initially hydrophobic surfaces, such as
polystyrene or PDMS, can be rendered hydrophilic in selected areas, namely those not protected
by the PDMS stamp. Later, the patterned surface can be further functionalized with either
proteins or other macro-molecules that adsorb either on hydrophobic or hydrophilic areas.

2.2.1 Adherent cells

The adherent cells used as a model cell line, were a transfected to express the surface antigen
CD123, human embryonic kidney 293 cell line (HEK 293.123). This is a semi-adherent cell
line, hence to immobilize the cells onto the desired areas, we coated the hydrophobic areas, the
ones protected by the PDMS stamp during the plasma-induced patterning process, with various
extracellular matrix (ECM) proteins. The proteins tested were the following:

• Human fibronectin

• Collagen type VI (purified from human placenta)

• Laminin

• Collagen A (type I, from calfskin)

The optimal cell array was acquired when fibronectin was used at a concentration of 50
µg/mL. Fibronectin is a high-molecular weight (approximately 440 kDa) glycoprotein of the
extracellular matrix that bind to membrane-spanning receptor proteins called integrins.

The hydrophilic areas, resulted from the plasma-induced patterning process, were coated
with poly(L-lysine)-grafted-poly(ethylene glycol) (PLL(20k)-g(3.5)-PEG). A schematic graph
of the patterned surface is shown in figure 2.1. Two lengths of the PEG chain were tested
namely 2 and 5 kDa. The 2 kDa size of the PEG chain was chosen since it resulted in better
filling factor of the cell array (Figure 2.2). Filling factor is the percentage of the square patterns
occupied with a single cell out the total number of squares on the tested surface. As far as the
size of the protein squares is concerned, three different sizes were tested 20, 25 and 30 µm of
side length. The optimal results were obtained with the 30 µm side length. In figure 2.3 a
fibronectin array pattern is presented.

2.2.2 Non-adherent cells

To create a cell array of non-adherent cells we first tested whether the above described approach
would work (2.2.1). As a model cell line for non-adherent cells we used the acute myeloid
leukemia (AML) MOLM-13 cell line [80]. In theory, MOLM-13 cells can bind fibronectin through
the VLA-5 integrin (alpha-5 beta-1) [81] or through VLA-4 [82,83]. Furthermore, most leukemia
cells carrying mixed lineage leukemia (MLL) gene arrangements in both acute lymphoblastic
leukemia (ALL) and AML cases, express the NG2 homologue, a chondroitin sulfate molecule
[84]. NG2 homologue binds to matrix molecules including type VI collagen. Hence, the proteins
tested for the MOLM-13 cell line were the following:
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Figure 2.1: Schematic description of the 2D fibronectin array. The hydrophilic area between
the square patterns is coated with PLL-g-PEG.

Figure 2.2: The filling factor % indicates the percentage of the fibronectin squares occupied by a
single-cell. PLL(20k)-g(3.5)-PEG(5kDa) (PEG(5)) and PLL(20k)-g(3.5)-PEG(2kDa) (PEG(2))
were tested. With PEG(2) a higher filling factor is achieved as cells can migrate more easily on
it. This seeding procedure requires no washing steps.

Figure 2.3: Fibronectin array generated with plasma-induced patterning. Squares with a side
length of 30 µm are coated with fibronectin (here fibronectin is labeled with AlexaFluor488®)
and the backfilling (black) area with PLL-g-PEG(2kDa). (a) Part of an overview scan acquired
with a 4x objective. (b) Fluorescence image acquired with a 10x objective. The scale bar
corresponds to 60 µm.
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• Human fibronectin

• Collagen type VI (purified from human placenta)

• Combination of human fibronectin and collagen type VI

• HUVECS lysate

Unfortunately, non of the above resulted in the formation of a cell array, so the next step
was to coat the hydrophobic square islands with antibodies targeting an antigen on the surface
of the MOLM-13 cells. CD15 and CD13 (see chapter 4) were the best candidates and their
expression levels on the surface of the cells was tested with flow cytometry (FACS). CD15 was
the selected antigen to target, since 99.8% of the cells expressed it on their surface (see figure
2.4).

Figure 2.4: Expression profiles of the CD15 and CD13 antigens on the surface of MOLM-13
cells.

The first approach was to simply adsorb on the square hydrophobic islands a IgG anti-CD15
antibody, following the same plasma-induced patterning process described in 2.2. However, this
approach was not successful, hence the immobilisation strategy described in [85] (see figure 2.5)
was adapted and tested. Briefly, the hydrophobic square islands were coated with biotinylated
bovine serum albumin (BSA), then with NeutrAvidin and lastly with a biotinylated anti-CD15
antibody (bio-affinity immobilisation, see section 3.3.1). Using the biotin-neutrAvidin complex
a uniform orientation of the antibody is expected and hence immobilisation of the cells onto
the coated patches should be possible. Unfortunately, even if the coating of all levels, i.e. BSA,
neutrAvidin and antibody, was successful, formation of a MOLM-13 cell array on this patterned
surface could not be achieved.
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Figure 2.5: Surface patterning utilising the biotin-neutrAvidin complex to orient the antibody
and hence potentially result in immobilisation of the non-adherent cell line MOLM-13.

The next idea was to coat the hydrophobic square patterns with an IgM antibody via
adsorption. The IgM isotype is a pentamer, its structure is shown in figure 2.6. The shape of
an IgM pentamer is symmetric, so one can hypothesise that this isotype does not need to be
oriented as an IgG, due to its favourable stereochemical properties. In the end, IgM coated
surface will present more available binding sites than a surface coated with an IgG (Figure 2.7).
Indeed, the formation of a MOLM-13 cell array on the IgM coated squares was possible. The
optimal side length of the antibody coated squares was 25µm for the MOLM-13 cell line. A
IgM coated array is shown in figure 2.8.

Figure 2.6: Structure of an IgM antibody

2.3 Three dimensional (3D) polymer arrays

Three dimensional (3D) polymer arrays have been a versatile and the most commonly used tool
enabling straight forward single-cell assays [86, 87]. Different materials, manufacturing proce-
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Figure 2.7: An IgG antibody needs to be oriented in order to present binding sites (noted with
green ellipses) that are adequate to immobilize a non-adherent cell on the pattern, while that
is not necessary for an IgM antibody, due to is stereochemical properties.

Figure 2.8: IgM antibody array generated with plasma-induced patterning. Squares with a side
length of 25 µm are coated with an IgM anti-CD15 antibody and the backfilling (black) area
with PLL-g-PEG(2kDa). For visualising the IgM coated squares a goat anti-mouse secondary
antibody conjugated with AlexaFluor488®was used, the surface was blocked with 5% w/v
nonfat dry milk. The image was acquired with a 10x objective, and the scale bar corresponds
to 60 µm.

dures but also shapes have been applied in combination with microfluidic devices, elucidating
numerous cell processes, such as embryonic stem cell differentiation, immune-cell activation,
the role of cell shape on cell function and so on. These high-density arrays of micron-sized
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cavities, most usually called micro-wells, are ideal for capturing and culturing large numbers of
single-cells derived from rare and heterogeneous populations such as stem cells. Moreover, by
engineering their bottom and side surfaces with lipids or ECM proteins, controlled single-cell
micro-environments mimicking key features of the native 3D milieu can be developed. When
only the bottom of the micro-well is modified the cell experiences a 2D environment [88–90],
while when the side walls of the micro-well are modified too, the cell will experience a 3D micro-
enviroment [91–93]. Since micro-well arrays are relatively simple and compatible with existing
laboratory techniques and instrumentation, they are an attractive option when single-cell stud-
ies are needed. In essence, all cell types, both adherent and non-adherent cells, can be cultured
in 3D polymer arrays. Evidently, non-adherent cells are usually easier to culture in such arrays
without the need of additional surface modification steps. On the other hand, adherent cells
tend to adhere and stretch along surfaces, as a result the properties of the material itself and of
its surface can influence the behaviour of the cell in the array. For that reason further surface
modification steps are usually necessary in this case. In the next section, the most commonly
used materials to fabricate micro-wells will be shortly reviewed along with their most significant
characteristics, which are their autofluorescence and their cytotoxicity.

2.3.1 Materials for micro-well arrays

The most commonly used materials for micro-well platforms are the following:

• poly(dimethylsiloxane) (PDMS) [36,90,94,95]

• crosslinked polyurethane (PU) prepolymer (in combination with Matrigel) [96]

• poly(ethylene glycol) (PEG) and PEG-derivatives [70,97–99]

– poly(ethylene glycol)-dimethacrylate (PEG-DMA)

– poly(ethylene glycol)-diacrylate (PEG-DA)

• SU-8 (glycidyl ether of bisphenol A) photoresist [100]

• fiber [101]

• glass [102]

• silicon [103]

The selection of the material is subjective and depends a lot on the type of the application,
whether it is for single cells, small groups of cells, embryonic bodies, in vivo studies etc., but
also on which equipment is accessible to each research group. PDMS, due to each simplicity
is an attractive approach often used directly for cell culture. However, PDMS is hydrophobic
and strongly adsorbs proteins such as growth factors from the cell culture medium, which is
problematic especially for long duration measurements. Surface modification can help in this
respect.

The material used to form micro-well arrays in the course of this work was mainly PEG-DA
(MW 258) (three ethylene glycol repeats) [104] (Figure 2.9), along with PDMS in a much less
extent. The main reason for selecting PEG-DA over PDMS was that the bottom of the PEG-DA
could be either glass or ibidi®polymer coverslips, of which the background autofluorescence
was the lowest possible. As an alternative, SU-8 photoresist was also tested as it would facilitate
scaling up the fabrication process, however because of its high autofluorescence it was rejected.
An alternative material for micro-well arrays can be liquid glass [105], yet a fabrication protocol
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for high quality micro-well arrays is still under development. Below follows a short description
of these materials and a comparison among them relatively to the two most important features
for micro-well arrays, namely autofluorescence and cytotoxicity.

Figure 2.9: Arrays of PEG-DA (MW 258) micro-wells. A: Any different shape and space
arrangement can be prepared. (a) Circular micro-wells of 25 µm diameter (b) quadratic micro-
wells of side 50. The depth of the presented micro-wells is 30 and 38 um respectively. (c),
(d) Scanning electron microscopy pictures of PEG-DA micro-wells (diameter: 35 um, depth: 30
um). (d) Micro-wells (diameter: 35 um, depth: 30 um) loaded with the non-adherent MOLM-13
cell line.

Poly(ethylene glycol) (PEG) derivatives

Poly(ethylene glycol) (PEG) or poly(ethylene oxide) (PEO), despite its structural simplicity
HO − (CH2CH2O)n − CH2CH2OH, is one of the most widely used materials in biomedical
applications. It is a linear or branched, neutral polyether available in a variety of molecular
weights (MW), soluble in water and most organic solvents. When the molecular weight of the
PEG chain is less than 1000 g/mol, the polymer forms a viscous, colorless liquid, while at higher
molecular weights PEG is a waxy, white solid.

Traditionally, PEG has been utilized for a variety of applications such as a precipitating
agent for proteins, other biological macromolecules and viruses [106], and for preparing two-
phase aqueous systems [107]. PEG also facilitates cell fusion, a technique widely used in cell
hybridization technology [108, 109]. Currently, the most popular PEG applications are the
following [110,111]:

• PEG-protein conjugates for pharmaceutical applications

• PEG-enzyme conjugates for industrial processing

• surface modification with PEG to provide protein- and cell-repelling properties

• surface modification with PEG to provide control of electroosmosis

• aqueous two-phase partitioning for protein and cell purification

• PEG hydrogels for cell encapsulation, drug delivery and wound covering

• PEG-modification of small molecule pharmaceuticals

• PEG tethers for synthesis of biomolecules
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• PEG tethering of molecules for biological targeting and signaling

• PEG-liposomes and micelles for drug delivery

PEG can also be used to modify the properties of a surface (see section 2.2). Surfaces
modified by attachment of PEG chains (either covalent or not) are resistant to protein and cell
adsorption i.e. are non-fouling. Attachment of PEG to a surface acts to alter the electrical
nature of a surface exposed to an aqueous environment. The general mechanism behind the
effective repulsion of the macromolecule from the coated surface is that if the macromolecule
comes close to the surface, then the conformational degrees of freedom for the polymer are
drastically reduced, and this causes an entropic repulsion between the surface and the macro-
molecule. The theoretical description of polymer molecules outside a surface has been developed
by Scheeutjens and Fleer (SF) within the Flory - Huggins concept [112, 113]. In the SF model
space is divided into layers parallel and that the Flory - Huggins model is applied to each layer.
The SF model is easily merged with the conformational model [114]. Interesting explanations
are derived from of this type of modeling. Firstly, the most important property of the PEG
chain is that it is flexible and that the entropic repulsion consequently will be large. The PEG
chain have some additional features, which are important for hydrophobic surfaces. The ability
of the chain to change polarity, suggests that close to a hydrophobic surface, the polymer will
have more non polar conformations, and this leads to an increased coverage of the surface, while
far from the surface, in the bulk, the polymer will be more polar. As a result, the PEG chains
penetrate far out into the water resulting in a stronger repulsion of macromolecules. The longer
the PEG chain is the more protein and cell repellent the PEG, this positive effect of surface
non-fouling effects reach a plateau around 5 kDa [115,116].

Moreover, PEG hydrogels can be formed, if the PEG chain is functionalized with a polymer-
izable resin such as acrylate or methacrylate. The polymerization can be initiated thermally by
azobisisobutyronitrile or peroxides or photochemically using photo-initiators such as benzophe-
nones, hydroxipropiophenones or thioxanthones [117]. When a crosslinked network is formed
with diacrylated PEG (PEG-DA), the final polymer backbone will have a mixed hydrophilic-
hydrophobic character, because of the presence of a hydrophobic crosslinking agent. In the
applications presented in this thesis, PEG-DA with average molecular weight 258 g/mol is
used to form the 3D micro-well arrays. To crosslink the PEG-DA molecules the 2-hydroxy-2-
methylpropiophenone photoinitiator is used, which is photocleaved under a specific UV wave-
length resulting in the formation of highly reactive radicals. The polymerization reaction is
initiated by these radicals, which attack the monomer and form new radicals. The polymeriza-
tion of the polymer chain propagates until the monomer is depleted. The process terminates
when radicals combine, either of two growing chains or a polymer chain with an initiator rad-
ical. The most important feature of the resulted PEG-DA solid matrix for the applications in
this thesis, was that the longer the PEG chain was the more protein- and cell-repellent the
resulted micro-wells were, while at the same time the shorter the PEG chain was the better the
adherence of the micro-well array on the substrate. For that, for the current applications the
molecular weight of 258 g/mol was the optimal solution. Furthermore, PEG-DA (258 g/mol)
was resistant to swelling, which is common for longer PEG chains.

Poly(dimethylsiloxane) (PDMS)

Poly(dimethylsiloxane) (PDMS) is a widely used polymer for fabrication and prototyping of
microfluidic devices. It is also used as a food additive and an anti-foaming agent in beverages
or in lubricating oils. It is characterised as a mineral-organic polymer since it contains carbon
and silicon. Its formula is CH3[Si(CH3)2O]nSi(CH3)3, with n being the number of monomer

17



repetitions. If the size of the monomer chain is small (low n) the non-cross-linked PDMS is
almost liquid but for longer monomer chains (high n), PDMS gets semi-solid. The siloxane
bonds result in a flexible polymer chain with a high level of viscoelasticity. For fabricating
microfluidic devices, PDMS in liquid form is mixed with a cross-linking agent and then poured
into a micro-structured mould. Using heat, PDMS is cross-linked and an elastomeric replica
of the mould is obtained. The resulted elastomer is hydrophobic and polar solvents, such as
water, struggle to wet the PDMS which leads to the adsorption of hydrophobic contaminants
from water on PDMS surface. PDMS surface can be rendered hydrophilic for a short time
(about 30 seconds) using oxygen plasma, by creating SiOH groups on its surface. After this
process, PDMS surface becomes resistant to the adsorption of hydrophobic and negatively
charged molecules. Moreover, PDMS can also be covalently bond with oxidised glass when
treated with oxygen plasma via Si-O-Si bonds.

PDMS is by far the most widely used material in microfluidics and single-cell applications
because of its following characteristics:

• It is transparent in the optical range of wavelengths (240 - 1100 nm).

• It has low autofluorescence [118].

• It is generally considered bio-compatible (although with some restrictions [119]).

• During cross-linking, it can be coated with controlled thickness with a spin coating process,
thus multi-layer devices and valves can be created.

• It is deformable, thus allowing integration of microfluidic valves, easy connection of leak-
proof fluidic connections and detection of very low forces (for example from cells).

• It is inexpensive in comparison to other materials such as silicon.

• It is easy to mold, even for very small structures of a few nanometers [120].

• It is gas permeable, thus enabling cell culture.

However, PDMS has certain characteristics that may impede its use especially for long-term
cell culture applications. Firstly, it adsorbs hydrophobic molecules from the cell medium and
also releases certain molecules due to poor cross-linking that can harm cell viability. Moreover,
it is permeable to water vapour and as a result evaporation in a PDMS device is hard to be
controlled.

SU-8 (glycidyl ether of bisphenol A) photoresist

SU-8 is an EPON™based epoxy resin used to fabricate microfluidic devices [121–123], since
it is chemically stable and it is easy to use in lithography processes. Scaling up lithography
protocols for high-throughput production of 3D micro-well arrays appears to be simpler. It
has a very hydrophobic surface, thus surface activation is essential for its use in passive micro-
fluidics [124, 125]. It is questionable whether it is biocompatible [126–128], hence its use in
biomedical applications is still limited.

Liquid glass

PIREX®glass flasks and Petri dishes where the substrates used in the first cell culture appli-
cations at the beginning of the 20th century. Still, many cells especially primary cells, have a
difficulty to attach on glass, thus glass surfaces usually need to be coated with collagen or PLL
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to enhance cell adherence. Moreover, detergents used during cleaning should be meticulously
removed to ensure cell viability. For these reasons, disposable plastic flasks or dishes prevailed
cell culture practices and still remain the standard approach. Nevertheless, due to its optimal
optical properties and both thermal and chemical resistance, glass slides are routinely used for
observing cells under the microscope and when cells need to be fixed, for instance for immunos-
taining. Liquid glass [105] is an photocurable amorphous silica nanocomposite which can be
cured in room temperature using soft lithography processes i.e. a soft mould made of PDMS.
This fairly simplified procedure offers an advantage for microfluidic devices in comparison to
the more complicated approaches used for high quality glasses [129, 130]. When liquid glass is
cured a dense high-quality glass is formed by thermal debinding and sintering. Although, liquid
glass has not been widely tested for cell culture applications and yet size precision for structures
is round a few hundreds of micrometers, its low autofluorescence and low cytotoxicity renders
it a promising candidate for 3D single-cell arrays.

2.3.2 Cytotoxicity

A single-cell platform must be made of a cell friendly material to substitute the well-established
and widely accepted polysterene substrates. Cells constantly receive cues from their environ-
ment and respond to them in order to maintain homeostasis, a narrow variation window for
physiological parameters of the intracellular environment. If they sense for example chemical or
mechanical stress, they will adjust their structure and function to accommodate these changes
in their milieu. Adaptive cellular responses of a cell under stress are the following:

• hypertrophy (increase in size)

• hyperplasia (increase in number)

• atrophy (decrease in size without cell number change)

• metaplasia (transformation from one mature cell type to another)

• neoplasia (genetic abnormalities)

If the adaptive cell capacity is surpassed then cell injury follows, which will lead to cell death.
The goal of any cell culture substrate is to maintain a stressless environment for the cultured
cells, so they will keep their physiological processes. Evaluation of cell growth, morphology and
viability of every cell line used in a micro-well array of any material should be undertaken to
ensure the suitability of the platform.

Although PEG is generally considered a non toxic material, there have been reports of acute,
subchronic and other toxicities when PEG was administered in patients and animal models. It
has been reported that PEGs of molecular weights less than 400 may be oxidised in vivo into
toxic diacid and hydroxy acid metabolites via sequential oxidations by alcohol dehydrogenase
and aldehyde dehydrogenase [131]. The reaction rate of the oxidation decreased significantly
with increasing molecular weight of the PEG. More studies of PEG toxicity on various animal
models and of various PEG sizes can be found in references [132–134]. Nevertheless, for many
years PEG has been used in many pharmaceutical applications, such as an additive for creams,
as solubilising agent and as a component of injectable formulations. As a result, PEG’s toxicity
is considered adequate for many uses on or in the body (Food and Drug Administration office
(FDA) approved for internal consumption [135]).

PDMS is in general regarded non-toxic, inert and biocompatible based on experience of its
use in medical device implants [136,137] and in numerous micro-fluidic devices, however this does
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not guarantee that every cell type will grow as it usually does in the case of polysterene. The
most common PDMS types are RTV-615 from Momentive materials™and Sylgard 184 from Dow-
Corning®. Both types contain small amounts of irritants, ethylbensene (<1 %) and xylene,
but it is unknown whether this affects cells when PDMS is cured [119]. In previous studies the
biocompatibility of PDMS has been tested and surface treatment is usually recommended to
ensure normal cell growth. PDMS can be treated with serum or with a concentrated protein
solution such as fibronectin [138,139]. The amount of curing agent used also has an effect on cell
proliferation [140]. Uncross-linked PDMS oligomers due to incomplete curing can contaminate
the cell medium and may have an effect on cell growth and normal cell function, since they were
detectable in the membranes of mouse fibroblasts after 24 hours [141]. Moreover, small (<500
Da) hydrophobic molecules absorb into PDMS [142], therefore care should be taken during
studies that rely on such molecules such as stem cell differentiation, for instance retinoid acid
(300 Da) is widely used to induce differentiation in many different cell types. All in all, PDMS
can be suitable for many cell lines as long as the formulation and the surface modification is
optimised for each cell line.

As mentioned above the biocompatibility of SU-8 is open to question. As far as the surface
properties are concerned, the surface of SU-8 is very hydrophobic. Using oxygen plasma to hy-
drophilise it had a positive impact on cell proliferation on SU-8 surfaces [128], however whether
the cells were metabolically active or stressed was not tested. The antimony salts present in SU-
8 have been shown not to affect the proliferation of mouse embryonic stem cells [143]. However,
the primary component of SU-8, bisphenol A, is known to be cytotoxic and to induce apopto-
sis [144]. Leachates from SU-8 were cultured with 9L glioma cells and was shown that cell growth
was significantly inhibited for the 10% extract [145]. Furthermore, the in-vivo biocompatibility
of SU-8 has been test in mice, where implantation of SU-8 led to a mild inflammatory reaction
but in general it was concluded that SU-8 is a promising material for a biocompatible matrix
for bio-molecular encapsulation [145]. All in all, SU-8 biocompatibility can be improved with
surface modification steps, such as oxygen plasma [124], chemical treatment [146], or covalently
linking a low molecular weight PEG on its surface at a low concentration [147].

2.3.3 Autofluorescence

Autofluorescence, the natural emission of light, is common in biological structures, due to
molecules such as flavin groups, the reduced form of nicotinamide adenine dinucleotide phos-
phate enzyme (NAD(P)H) and amino acids such as tryptophan, tyrosine and phenylalanine. It
was first reported by Stübel, a physiologist at Jena University, in 1911. In many cases, aut-
ofluorescence of biological structures has been utilised to monitor processes such as bacteria
growth [148].

Nevertheless, autofluorescence occurs in many other materials too, such as artificial polymers
and plastics, especially when excited with UV ( < 400 nm), blue (400 - 500 nm) and green (500
- 550 nm) light [149]. This autofluorescence can be either intrinsic to the bulk polymer or due
to additives, impurities or degradation products [150]. Moreover, it is undesirable in polymer-
based devices made for single-cell assays, since the most common readout in such assays is
fluorescence. A desirable material should have low autofluorescence i.e. low background noise,
as in many micro-well array applications the detection of small fluorescence signals due to
the small volumes and low concentrations of fluorophores, is required. So, in these cases the
background autofluorescence of the material used can be significant compared to the signal
of interest. If not, a simple difference algorithm may be sufficient for background correction
[151]. Other approaches to overcome this issue include the use of confocal optics [152], two-
photon excitation [153], long wavelength fluorophores [154] or simply using high fluorophore
concentration until an acceptable signal-to-noise ratio is achieved. Yet, in some applications
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the above mentioned strategies are not feasible.
A rough quantification of the autofluorescence of PDMS, SU-8, PEG-DA (MW 258) and

liquid glass is shown in figure 2.10. PDMS and liquid glass showed the lower levels of autoflu-
orescence. PDMS is generally regarded to have low autofluorescence, comparable to BoroFloat
glass [118].

Figure 2.10: Autofluorescence of PDMS, PEG-DA (MW 258), SU-8 and liquid glass [105]. The
images analyzed were acquired with an epi-fluorescence microscope and glass was used as a
reference.

In conclusion the main characteristics of the materials presented above are summarised in
table 2.2. These characteristics are based on literature search and experimental tests executed
during the course of this thesis. The wavelengths regions that correspond to the filter names
mentioned in this matrix are give in table 2.1.

Excitation (nm) Bandwidth Emission (nm) Bandwidth

dapi 377 50 447 60

cfp 436 20 460 50

gfp 470 40 525 50

pi 540 25 535 30

cy5 628 40 692 60

Table 2.1: Wavelengths regions that correspond to the filter names mentioned in figure 2.10
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Chapter 3

Development of a single-cell
secretion assay

3.1 Significance of cell-to-cell communication studies

Cells, either from a unicellular or multicellular organism, in order to survive need to sense
their environment and communicate with each other. Using their plasma membrane receptors
they sense external signals, which are then converted to responses within the cell. In practice,
a signalling molecule binds to a receptor protein and causes its change of shape. Cascades
of molecular interactions relay signals from receptors to target molecules in the cell. This
signalling leads to regulation of transcription or other cytoplasmic activities. The process by
which a signal on a cell’s surface is converted to a specific cellular response is a series of steps
called a signal transduction pathway [155].

For multicellular organisms, such as human, cell-to-cell communication is essential. The
trillions of cells must communicate with each other in order to coordinate their activities to
survive and develop. Cells in a multicellular organism not only can communicate with their
adjacent cells but also with others far away from them via chemical messengers. Animal cells
have cell junctions that, where present, directly connect the cytoplasms of adjacent cells. In
this case, signalling substances dissolved in the cytosol can pass freely between adjacent cells.
In addition to, animal cells can communicate via direct contact between membrane-bound
cell-surface molecules, which occurs during a process called cell-cell recognition. This type of
signalling is important in processes like the immune response.

In many other instances, messenger molecules are secreted by the signalling cell. These
molecules may only travel for short distances; such as local regulators that influence cells in
their vicinity. One typical example of such regulators are growth factors, which stimulate cells
to grow and divide. Growth factors, which can also be cytokines, play a crucial role during the
immune response as well, when haematopoietic stem cells need to differentiate into macrophages
for example or other related cell types. Numerous cells can at the same time receive and respond
to the molecules of a growth factor produced by a single cell in their vicinity. This type of local
signalling is called paracrine signaling. Moreover in the nervous system, another more specialised
type of local signalling occurs, which is called synaptic signaling. An electrical signal along a
nerve cell triggers the secretion of a chemical signal carried by neurotransmitter molecules.
These molecules, diffuse across the synapse, the narrow space between the nerve cell and its
target cell. In this way, the neurotransmitter stimulates the nerve cell.

For long-distance signalling, multicellular organisms use chemicals called hormones. In an-
imals, hormonal signalling is also known as endocrine signalling, in this case specialised cells
release hormone molecules, which travel via the circulatory system to target cells in other parts
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of the body. The transmission of a signal through the nervous system can also be considered an
example of long-distance signalling. An electrical signal travels the length of a nerve cell and is
then converted back to a chemical signal when a signalling molecule is released and crosses the
synapse to another nerve cell. Here, it is converted back to an electrical signal. In this way, a
nerve signal can travel along a series of nerve cells. Because some nerve cells are quite long, the
nerve signal can quickly travel great distances, for instance from the brain to a toe.

From the above, it is apparent that signalling, either local or long-distance, is the way cells
communicate with each and regulate their function. Cell populations are heterogeneous both
in constitution and in timing. One of the most, if not the most, heterogeneous population in
our body are the immune cells. The immune system is divided into two components the innate
and the adaptive immune system. Each component is consisted of many other subtypes such
as for example the Natural Killer cells (NK cells), T-cells, neutrophils etc.. Apart from this
apparent diversity of cell types in a population, it is well-known that individual cells, even those
that appear to be identical, differ in numerous characteristics such as the response to a given
stimulus, the variability in the expression of a specific gene etc. [156]. This heterogeneity leads
to a different phenotypic behaviour and as a result each of this subtypes can be divided into
further subgroups [30].

3.2 Detecting proteins secreted from a single-cell

In order to study at the single-cell level the local signalling between cells, the first step is to be
able to detect proteins secreted from a single-cell. These proteins will be the cue for the adjacent
cell, which will react to this cue through the above described mechanism cue-signal-response.
The reaction of the receiver cell can be anything, from committing to apoptosis, differentiate to
another cell type, secrete another protein etc. To this end, the rest of the current chapter will
focus on the development of a single-cell detection of secretion assay, with the long-term goal of
studying local signalling between cells. In addition to cell-to-cell communication, quantification
of secreted proteins can also reveal differences in other cellular processes such as activity against
tumours [157]. To detect the secreted protein the sandwich Enzyme-linked immunosorbent assay
(ELISA) will be used (see figure (3.1)).

ELISA is a biochemical technique used to detect the presence of an antibody or an antigen
in a sample. For years, ELISA has been used as a diagnostic tool in medicine as well as a
quality-control check in various industries. The immunoassay that Engvall and Perlmann first
described has take many different forms. Briefly, in ELISA an unknown amount of antigen
is fixed on a surface and then a specific to this antigen antibody is added and binds to the
antigen. This antibody is linked to an enzyme and at the last step a matching substrate for
this enzyme is added. The enzyme-substrate reaction will give a detectable and quantifiable
signal that is proportional to the amount of the analyte being measured. The sandwich format
of the assay is better choice if the protein to be detected has multiple epitopes. In this case, two
antibodies are required that usually target different epitopes (3.2). For the sandwich ELISA
format, combinations of monoclonal and polyclonal antibodies can be used. The most common
combination is to use the monoclonal antibody as the capture antibody and the polyclonal as
the detection antibody. Sandwich ELISAs usually require more optimisation than traditional
ELISAs but the resulted signal-to-noise (S/N) ratio is usually higher.

To detect proteins secreted from a single-cell has been a longstanding endeavour, especially
for cytokines. Detection of cytokines at the single-cell level will facilitate a deeper understanding
in many inflammatory processes, since it will enable monitoring of immunological responses and
measuring the frequency of cells within a population that produces a specific secreted factor.
While amplification techniques (e.g. PCR) have boosted the development of single-cell genomic

24



Figure 3.1: Detection of secreted proteins from a single-cell using the sandwich ELISA assay.
The long-term goal is to study the local signalling between two single-cells.

Figure 3.2: Sandwich ELISA illustration. Capture antibody is the immobilised antibody on the
substrate, while detection antibody is the antibody baring the enzyme or the fluorescence label,
which are essential for the quantification of the detected analyte.

analysis, detecting proteins secreted from a single-cell appears to be more challenging [158].
Measuring deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) can provide a qualitative
information about gene products (proteins) but cannot elucidate the activity of the protein, its
location or its post translational modifications. In other words, an mRNA may be transcribed,
however we cannot be sure about how much or whether the protein was translated at all. On
the other hand, intracellular cytokine staining (ICS) for analysis with flow cytometry enables

25



the measurement of multiple proteins over a short period of time (4-6 h) [159], however this
type of assay even though it can detect 19 parameters for each single cell, it focuses on either
intracellular proteins or proteins on the cell membrane, without direct insight on whether the
secretion pathway is completed. Another method for applications typically run by flow cytom-
etry, mass cytometry [160], enables a multi-parametric analysis, since more than 30 parameters
can be quantified at the single-cell level. Its detection technology is based on atomic mass
spectroscopy, where stable isotope tags attached to antibodies using metal-chelating labelling
reagents are measured. Another widely used method to study the release of protein (especially
cytokines) from single cells is the enzyme-linked immunospot (ELISpot) [161]. In this assay,
cells are incubated on a PVDF membrane, which is functionalized with specific antibodies for
target analytes. During the incubation time, the proteins secreted from the cells are captured
from the antibodies around the cell. Cells are then removed and the membrane is incubated
with the detection antibodies, the secreted proteins are then visualised as coloured spots. In
the end, qualitative results of the secreted protein and semi-quantitative results regarding the
frequency of the secreting cells is available. However, it takes a considerable amount of time
(from several hours up to days) until proteins are detectable and multiplexing is limited to 1-3
analytes [158,162].

3.2.1 Detecting secreted proteins from single-cells in combination with micro-
well arrays

Another promising strategy to detect proteins secreted by a single-cell is to combine a micro-well
array with the general ELISA scheme. In the literature different approaches have been followed
enabling both end-point (static) [36, 37, 163–167] or dynamic assays [38]. Another distinction
that can be made is on the configuration of the micro-well, on whether it is open or closed, i.e.
open micro-well arrays or closed micro-well arrays. Both configurations have advantages and
disadvantages, which are summarised below:

• Open micro-well arrays offer accessibility to the cells during the measurement, i.e. it is
possible to add any additional factor (e.g. stimulus) during the course of the experiment.

• In open micro-well arrays, larger amount of medium and as a result of nutrients is available,
thus longer duration measurements are possible.

• Open micro-well arrays offer the possibility for dynamic measurements.

• In closed micro-well arrays signal loss is less in comparison to open arrays, where loss of
signal due to persistent diffusion should be carefully manipulated.

• Closed micro-well arrays can introduce perturbations in the biological system as secretion
events from the cells will affect the local concentration of analytes or other soluble factors
that will affect cellular response in an autocrine fashion. Thus, the typical duration of a
measurement in a closed array is 3-4 hours.

• Usually quantification of the closed micro-well arrays is easier with more standard setups
required (like a microarray reader, or an epi-fluorescence microscope). While, dynamic
quantification using total internal reflection fluorescence (TIRF) microscopy is a set-up
not available to every research laboratory.

• The open micro-well configuration due to persistent diffusion of the secreted material out
of the micro-wells, and due to constraints imposed by thermodynamics and mass transport
is less useful for quantitative measures. For that, the open micro-well array configuration
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is better for rapid screening of highly productive cells (antibody secreting cells, manufac-
turing cell lines) since biases toward high secretors and high affinity interactions [168].

3.2.2 Objective

Within the framework of this thesis, we mainly focused on the development of an open micro-well
array since it will also enable the dynamic analysis of cytokine secretion. However, we also kept
in mind that closed arrays appear to be a more established format in the literature, providing
high statistics i.e. a large numbers of single-cells can be interrogated simultaneously, even though
not a direct monitoring of the secretion event. We believe that both formats are complementary
to each other and are both useful for an all-around investigation of a biological phenomenon.
Statistics can be obtained with the closed array format and then a model of a possible secretion
mechanism can be proposed. This proposed model can be directly interrogated with the open
micro-well array format and a total internal reflection fluorescence (TIRF) microscope (see
figure 3.3).

Figure 3.3: Illustration of a dynamic open array. A cell sits on a glass slide coated with capture
antibodies; in the medium detection antibodies are diluted. The cell secretes the cytokine and
ELISA sandwiches are formed. By utilizing a TIRF microscope setup only the bottom of the
micro-well will be illuminated, permitting in this way a direct monitoring of the secretion event.

3.3 Experimental results

3.3.1 Antibody immobilization strategies - Background

Passive adsorption

To coat a surface with a biomolecule different strategies can be followed. The simplest is
passive adsorption, which is the accumulation of particles (adsorbate) on a surface (adsorbent
or substrate). The reverse process is called desorption. There are two main classes of adsorption,
namely physisorption and chemisorption. In physisorption the forces involved are long range
weak intermolecular attraction forces, van der Waals forces, between the adsorbate and the
substrate. On the other hand, in chemisorption a molecule adheres to a surface through the
formation of a chemical bond, which means that in this case we have strong modifications in
the electron density of the adsorbate molecule.
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Passive adsorption is the simplest way of immobilizing an antibody on a surface. It is the
most widely used approach not only in the standard 96-well plate format of the assay, but
also in many microfluidic devices [169]. In a 96-well plate adsorption occurs passively as the
result of hydrophobic interactions between the amino acids side chains on the antibody and the
plastic surface. On these hydrophobic plastic surfaces, the antibodies will have a distribution
of different orientations on the surface namely Fab-up, Fab-down, side-on, flat-on, with Fab
being the variable site of the antibody molecule [170] (figure 3.4). In this case the adsorption is
dependent on time, temperature, and the pH of the coating buffer, as well as the concentration
of the coating antibody. Usually coating of the capture antibody is done in pH 9.6 (most
commonly with a carbonate/bicarbonate buffer) due to the isoelectric point of most antibodies,
around 6 pH in most cases [171]. Moreover, a range of concentrations of coating the capture
antibody is usually tested, since higher concentrations of antibody may actually have a negative
effect on coating leading to over saturation of the wells which can inhibit antibody binding due
to steric hindrance [171]. On the other hand, at low surface coverage antibodies adsorb on
the substrate with a flat on orientation and are unable to capture their antigen [170, 171].
Moreover, even though antibodies adsorb on hydrophilic surfaces, such as borosilicate glass
which is most commonly used for laboratory equipment and microscopy glass slides, with the
flat on orientation predominately, the surface packing density of the antibody is the most
important parameter to determine the available binding sites for the antigens. Additionally, at
a fixed surface excess electrostatic repulsions between the antibodies and the surface, caused by
increasing the pH value, can increase the available binding sites [172].

In many applications, such as microarrays but also cell culture, the substrates are coated
with poly-L-lysine (PLL), a bio-compatible cationic polymer. Under physiological conditions
the amine group and the lysine molecules of PLL are protonated. This cationic nature facilitates
the adhesion of negatively charged biomolecules such as DNA but also of cells, since the cell
surface is known to be negatively charged. PLL coating has also been used to enhance antibody
coating on glass slides [36].

Figure 3.4: (a) Immobilization of an IgG antibody on a surface via passive adsorption. (b)
Different orientations of an antibody on a surface, namely Fab-up, Fab-down, side-on, flat-on.
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Bio-affinity immobilization

As it has been mentioned before (see section 2.2.2), in many applications it is preferential to
orient the coated antibodies. In the case of an ELISA assay, this would in theory lead to a more
sensitive assay [169]. The use of the biotin-avidin interaction to immobilize biomolecules in an
oriented way is commonly known as bioaffinity immobilization [173]. The basic scheme is to
coat the substrate with biotinylated bovine serum albumin (BSA), then with avidin and lastly
use a biotinylated antibody as the capture one. In this case we have a combination of passive
adsorption (BSA on the substrate) with affinity binding (biotin with avidin). The biotin-avidin
interaction has been utilised in numerous applications due to its favourable features [174]

Biotin, or vitamin H, is found in all living cells. The bicyclic ring of the biotin molecule will
bind with avidin, while the carboxyl group on the valeric acid side chain is free to be modified
for the generation of biotinylated reagents that are used for conjugation with proteins. The
most commonly used biotinylation reagent is the NHS ester of the biotin molecule that targets
amine groups [175]. Moreover, antibody biotinylation is a widely-used rapid and specific process
that does not perturbs the antibody’s binding capacity due to biotin’s small size (MW 244.31
g/mol).

Avidin is homotetrameric glycoprotein found in egg white, it is soluble in aqueous solutions
and remains stable over a wide pH and temperature range. Four molecules of biotin can bind
to one avidin. The non covalent interaction between biotin and avidin is very strong with a
disassociation constant (Kd) of approximately 10−15M [176], by far the strongest interaction
reported, about 103 to 106 times stronger than the interaction between an antibody and its
antigen. The bond formation is also very stable, resistant to pH and temperature changes,
organic solvents, and enzymatic proteolysis. Several other homologs of avidin are available for
use, such as streptavidin found in the streptomyces avidinii bacterium and being more resistant
to non-specific substrate binding [177], deglycosylated forms (NeutrAvidin) [178] and forms
of which the binding to biotin is pH-dependent (Nitroavidin) [179]. In figure 3.5 a schematic
representation of the bio-affinity immobilization of an antibody on glass is shown.

Figure 3.5: Bio-affinity immobilization of a biotinylated IgG antibody on glass. The combination
of passive adsorption of BSA with affinity binding of the biotin-streptavidin complex can improve
the orientation of the antibody molecule.
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Covalent binding

In general, due to the need of protein arrays for proteomic and diagnostic tools, many strategies
to covalently bind proteins on biochip substrates have been proposed [180, 181]. The covalent
bonds are most commonly formed between side-chain-exposed functional groups of the protein
molecule with substrates that have been suitably modified, resulting in a irreversible binding and
a high surface coverage. The chemical binding can be random, nonspecific immobilization, when
the residues are present usually on the exterior surface of the protein or can be specific, site-
specific immobilization, which should result in a more controlled orientation of the immobilized
biomolecule. The main strategies proposed for both types of immobilization are:

• nonspecific immobilization

– amine chemistry

– thiol chemistry

– carboxyl chemistry

– epoxy chemistry

– photoactive chemistry

• site-specific immobilization

– diels-alder cycloaddition

– ”click” chemistry

– α-oxo semicarbazone ligation

– peptide ligation

– staudinger ligation

Covalent immobilization has also been used for antibodies, the majority of the applications
has utilised surface silanization [169]. The proposed approaches include TiO2 nanofibers treated
with (3-glycidoxypropyl) methyldiethoxysilane (GPDES) [182], graphene nanosheets treated
with 3-glycidyloxypropyl trimethoxysilane (GOPS) [183], glass slides silanized with epoxysi-
lane [184,185] and functionalization with (3-aminopropyl)-triethoxysilane (APTES) [186]. Yet,
covalently immobilizing the antibody usually involve more complex surface chemistry, resulting
in longer and more complex immobilizing protocols, without the guarantee that the immo-
bilized antibody will be correctly oriented, at least for the nonspecific immobilization strate-
gies [187,188].

3.3.2 Antibody coating of glass slides

In order to develop a single-cell protein secretion assay utilising the ELISA scheme, the first
step is to coat the substrate with the capture antibody. Antibodies can be coated via adsorption
onto many surfaces such as glass, plastic, silicon or PDMS. We chose to use glass due to its
optimal optical properties. In theory, adsorption of biomolecules on glass occurs mainly due to
electrostatic interactions. Since antibodies tend to form multilayers on glass, which results in
polar interactions between the adsorbed molecules, covalent binding of the antibodies onto the
glass substrate is preferred, especially for quantitative immunoassays [169].

Our first approach was to covalently bind the capture antibodies on the glass substrate and
then make the microwells on top. In this way, only the bottom of the micro-wells will be coated
with the antibody. To covalently bind the antibodies on the glass we used VECTABONDTM,
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a silane-based reagent, and Dimethyl pimelimidate (DMP) a membrane-permeable crosslinker,
which contains an amine-reactive imidoester group at each end of a 7-atom spacer arm. Even
though the coating of the glass slides was successful, making the PEG-DA micro-wells on top
was not, since the coated antibody interfered with the adhesion of PEG-DA on the substrate.
Furthermore, when making the PEG-DA micro-wells a PDMS stamp is placed on the substrate
(see protocol in A.1), this PDMS stamp adsorbed almost all the coated antibodies of the glass
(see figure 3.6). As a result, this approach was excluded as an option.

Figure 3.6: Coating the glass slide with VECTABONDTM and then cross-linking the capture
antibodies with DMP was successful, however PEG-DA micro-wells could not be formed on top.
The squares are the imprint of the PDMS stamp during the fabrication of the micro-wells. The
PDMS stamp adsorbed the antibodies coated on the glass substrate, resulting in a bottom that
was not anymore coated with antibodies. The brighter areas are still coated with antibodies, as
seen in the lower-right plot of the fluorescence intensity. The yellow line corresponds at the area
plotted in the intensity plot (lower-right inset). These antibodies interfered with the adhesion
of the PEG-DA micro-wells, which were lifted-off together with the PDMS stamp during the
fabrication process. An anti-CD33 antibody conjugated with Alexa Fluor 488®, was used in
the presented trial.

Apart from the covalent immobilization of the antibody on a glass slide, we further tested
and compared the immobilization of an antibody on a PLL coated substrates (enhanced pas-
sive adsorption with the bioaffinity immobilization scheme. The substrates tested were bare
ibidi®glass slides, glass slides silanized with 3-(Trimethoxysilyl)propyl methacrylate (TM-
SPMA) and ibidi®polymer foils. The results are presented in figure 3.7. The bioaffinity
immobilization appear to be the best solution for all substrates, at least for the amount of
antibody immobilised.

3.3.3 Antibody coating of PEG-DA micro-wells

The second approach that was followed was to first fabricate the micro-wells and the coat
the bottom of them with the capture antibody. As mentioned above the molecular weight of
the PEG chain determines its degree of protein and cell repellence and its attachment on the
substrate. The longer the molecular weight the more protein and cell repellent the PEG is, but
the smaller the molecular weight of PEG is, the better the attachment on the substrate. For the
current approach three different PEG derivatives were tested, PEG-DA (MW 258), PEG-DA
(MW 575) and PEG-DMA (MW 550) on glass silanized with TMSPMA and on ibidi®polymer
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Figure 3.7: Coating various substrates with an antibody via passive adsorption enhanced with
PLL or bioaffinity immobilization. The green bars stand for the background signal, only PBS
was added in these samples. The antibody used in all cases was a biotinylated rabbit antibody
and for detection a secondary anti-rabbit conjugated with AlexaFluor647®antibody was used.
The error bars show the standard deviation of two independent trials. As a positive control for
the PLL coated glasses, PLL conjugated with AlexaFluor 488®was used (data not shown).

foils both uncoated and treated. The best candidate resulted to be PEG-DA (MW 258), mainly
due to the well attachment on all substrates, and its lower protein repellence was regarded as
an acceptable characteristic. Coated with antibody via passive adsorption PEG-DA micro-wells
are shown in figure 3.8.

Figure 3.8: PEG-DA (MW 258) micro-wells coated with an Alexa Fluor 488®conjugated an-
tibody via passive adsorption (see also figures 3.4). The scale bar corresponds to 50µm. The
micro-wells were incubated with the antibody for 1 hour in room temperature at a concentration
of 100µg/mL.
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Since we are also interested in immobilising the antibodies on a substrate via the bio-
affinity immobilisation, we further coated the PEG-DA (MW 258) micro-wells with BSA and
NeutrAvidin and calculated the ratio of the biomolecule adsorbed on the silanized glass bottom
versus the PEG-DA planar surface and walls. For the three biomolecules tested the ratios were
2.0 for the antibody, 1.3 for BSA and 2.0 for NeutrAvidin. The results are shown in figure 3.9,
for BSA four different experimental conditions are averaged since the results were similar, while
for the antibody and the NeutrAvidin the optimal experimental conditions are shown, which
are 100 µg/mL and 20 µg/mL respectively with 1 hour incubation in room temperature for
both. The experimental conditions averaged for BSA are 1 mg/mL and 50 µg/mL both for 10
and 30 minutes.

Figure 3.9: Relative adsorption denotes the quantity of a biomolecule adsorbed on a surface if
we normalise with the control (background autofluorescence signal of the surface). The antibody
used in these trials is an Alexa Fluor 488®conjugated antibody, BSA is conjugated with Alexa
Fluor 488®and NeutrAvidin is conjugated with Oregon Green®. For the antibody and the
NeutrAvidin the optimal conditions are plotted while for BSA four different conditions are
averaged since the results were similar. The error bars for the antibody and NeutrAvidin trials
show the standard deviation of three different samples.

In order to increase the sensitivity of the assay a reasonable approach is to improve the
orientation of the capture antibody. The possibility of using an IgM antibody (as in section
2.2) is not feasible for detection assays mainly due to availability and cost issues. The most
abundant antibody isotype in the market is the IgG, while it is possible that an IgM antibody
against a specific antigen may not be available. Moreover, each ELISA antibody pair needs to
be optimised due to unspecific binding of certain antibodies with other antibodies, or due to
cross-reactivity i.e. when antibodies bind also to antigens other than the one they are specific
to [189,190]. Taking the above into consideration, our third approach was to coat the bottom of
the micro-wells with biotinylated antibodies via the bio-affinity immobilization. Most available
antibody pairs are commercially available in a kit (ELISA kit), where the capture antibody is in
its native form while the detection is biotinylated. The preliminary tests for cross-reactivity are
done the two specific antibodies are guaranteed to function well for the sandwich ELISA format.
In the case of the bio-affinity immobilization we exchange and use the biotinylated antibody
as the capture antibody. Coated with antibody via bio-affinity immobilization PEG-DA micro-
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wells are shown in figure 3.10. The concentration of the coated antibody is 8 µg/mL in all
cases, while two concentrations of the secondary fluorescence antibody used for visualisation
are shown (10 and 1 µg/mL).

Figure 3.10: PEG-DA (MW 258) micro-wells coated with a goat anti-human biotinylated an-
tibody via bio-affinity immobilization. (a) Schematic representation of the bio-affinity coat-
ing (biotinylated BSA on the bottom, streptavidin in the middle and on top the biotinylated
antibody). For visualization a secondary fluorescently labeled antibody is used. Scale bars
corresponds to 75µm in all images, and are equal to the side length of each micro-well. The
biotinylated antibody was incubated for 30 minutes in room temperature in a concentration
of 8µg/mL in all cases. The samples were blocked for 1 hour and the secondary used was an
anti-goat conjugated with Alexa Fluor 647®antibody (10 µg/mL for (b), (c) and 1 µg/mL for
(d)). (b) acquisition with a 40x objective, (c) and (d) with a 10x.

3.3.4 In-micro-well ELISA calibration assay

After coating the capture antibody on the bottom of the micro-wells, the following step is to
build the whole sandwich ELISA complex on top. Since for this type of measurements our
sample is a solution with a known concentration of the protein to be detected, we call this type
of assay standard ELISA assay. In the end, a calibration curve will be produced, which we
can use to translate our signals from cells to concentrations. In these trials two ELISA kits
were utilised (from PeproTech®), one for human interleukin 2 (IL-2) and one for interleukin 1
beta (IL-1β). For each kit a certain range of the interrogated protein can be detected, for the
IL-2 the range is 31 to 8000 pg/mL and for IL-1β is 12 to 1500 pg/mL. This dynamic range
is optimised and validated by the provider as well as the suitability of the two antibodies for
being used as the capture and detection antibody respectively. The micro-wells were made with
PEG-DA (MW 258) on silanized with TMSPMA glass ibidi®slides.

Detection systems

The colorimetric is the most commonly used detection system in ELISA assays of the 96-well
plate format. Colorimetric assays result in a coloured reaction product that absorbs light
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in the visible range. The optical density of the reaction product is typically proportional to
the amount of the protein being measured. The most commonly used enzymes are horseradish
peroxidase (HRP) and alkaline phosphatase. These enzymes are usually conjugated to an avidin
or streptavidin molecule which will bind to the biotinylated detection antibody. HRP is a small
molecule (MW ≈ 44 kDa) and as a result it rarely causes steric hindrance problems with
the antibody/antigen complex bound on the surface. Then, the final stage is the addition of
the enzyme substrate. The most common substrates for HRP that produce soluble reaction
products are dual function substrate tetramethylbenzidine (TMB) and 2,2’-azino-di [3-ethyl-
benzthiazoline] sulfonate (ABTS). TMB is a highly sensitive substrate and due to its rapid
reaction rate, it is ideally suited for a kinetic analysis. It produces a blue colour that can be
measured at a wavelength of 650 nm. TMB can also be used in endpoint assays by stopping the
reaction with 1M phosphoric acid. A yellow reaction product is formed upon acidification that
can be measured at 450 nm. On the other hand, ABTS is considered an all-purpose substrate.
Although it is less sensitive than either TMB, it has the widest working range of any substrate
currently available for peroxidase. The reaction product for ABTS is a blue-green compound
that can be measured between 405 to 410 nm. Its reaction rate is suitable for endpoint assays
and is easily stopped with 1% SDS (sodium dodecyl sulfate), which does not change the colour
or the absorbance of the reaction product.

To detect the captured cytokine on the bottom of the PEG-DA (MW 258) micro-wells,
we used fluorescence-based detection, either with an epi-fluorescence microscope or a TIRF
setup. The sandwich complex was the common one i.e. the capture antibody coated on the
bottom, the protein and the biotinylated detection antibody on top. To visualise the complex
we used NeutrAvidin conjugated with Oregon Green®or streptavidin conjugated with Alexa
Fluor®660.

Total Internal Reflection Fluorescence Microscopy (TIRFM) is used to image fluorescent
molecules on a transparent substrate and single molecule resolution can also be achieved [191,
192]. Instead of direct illumination, during TIRFM the sample is selectively illuminated by
an evanescent field of a totally internal reflected laser beam. Eliminating the background
fluorescence that originates from outside of the focal plane improves considerably the signal-to-
noise ratio. For total reflection and generation of an evanescent field, the incidence angle of the
excitation beam must be greater than the critical angle. The critical angle is determined by
the refraction indices n1 and n2 of the two different media, typically the glass coverslip and the

sample (water), and is given by ac = arcsin
(
n2
n1

)
, where n2 < n1. The evanescent field decreases

exponentially in intensity along the z-axis of penetration:

I(z) = I0e
− z

d (3.1)

where d is the depth of penetration given by:

d =
λt

4π
√
n2

1 sin2 α− n2
2

(3.2)

Typically, the depth of penetration is 100 to 200 nm, thus only fluorophores inside this
volume will be excited, resulting in a much lower background noise, even 2,000-fold lower than
normal epifluorescence microscopy.

Results

To generate a calibration curve inside the PEG-DA (MW 258) micro-wells, our first approach
was to coat the capture antibody from the IL-1β ELISA kit on the bottom of the micro-
wells via passive adsorption. As we know (see figure 3.9) PEG-DA walls are also coated with
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antibodies but with less amount than the glass bottom. Six different trials were executed with
varying experimental conditions, the key points are summarised in table 3.1. In these trials
the concentrations of the capture and detection antibodies was 1 µg/mL, which is proposed by
the kit manufacturer’s protocol. In figure 3.11 representative epifluorescence images of these
trials are shown together with the sandwich ELISA scheme. The images were analysed using
Microwell Analysis (MA), a custom made in-house ImageJ [193] plugin. With the MA plugin,
the user can align a grid of regions of interest (ROIs) on the image of the micro-patterned
surface. In this case, the grid is aligned over the bottom of the micro-wells. Then, the user
can select which micro-wells can be included in the analysis or not. The mean fluorescence
intensity over each ROI is calculated and the results are exported into a text file, which is
further analysed with MATLAB®(Mathworks®, Natick MA, USA).

Trial IL-1β range (pg/mL) Fluorophore (µg/mL) side length (µm) Desiccation

1 (15 - 500)x 1000 NeutrAvidin Oregon Green®(5) 50 -

2 1.5 - 3000 NeutrAvidin Oregon Green®(5) 50 -

3 1.5 - 6000 NeutrAvidin Oregon Green®(5) 50 -

4 1.5 - 6000 Strepatvidin AlexaFluor660®(5) 50 -

5 1.5 - 6000 Strepatvidin AlexaFluor660®(6.6) 50 -

6 1.5 - 6000 Strepatvidin AlexaFluor660®(6.6) 75 30 minutes

Table 3.1: Experimental parameters of the In-micro-well ELISA calibration trials. Desiccation
was performed before every incubation step in order to make sure that the bottom of the micro-
wells is wetted with the corresponding solution of each different ELISA step, as it may be
possible that during the washing steps, air may be trapped inside the micro-wells.

Figure 3.11: PEG-DA (MW 258) micro-wells with silanized glass bottom are challenged with
human IL-1β; Epifluorescence image acquisition. In (a) the concentration of IL-1β is 47 pg/mL,
while in (b) is 6000 pg/mL. In (c), a schematic representation of the ELISA sandwich on the
glass bottom of the micro-well is shown. The capture and detection antibody were from the IL-
1β ELISA kit from PeproTech®as well as the standard IL-1β protein. NeutrAvidin conjugated
with OregonGreen®or streptavidin conjugated with Alexa Fluor®660 (shown here) were used
for visualisation.

In our first trial, the micro-wells were challenged with a maximum IL-1β concentration
of 500 ng/mL, based on [194]. However, the signal did not increase with increasing IL-1β
concentration (figure 3.12). One possible reason is the ELISA kit’s detection range; the kit
used has a detection range of 12-1500 pg/mL. The concentrations tested in this trial where
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far beyond the upper limit of detection which means that either we are at the saturation area
or that the sandwich is not functional anymore, i.e. we have multilayers of proteins and their
quantification is not possible anymore.

Figure 3.12: Calibration curve inside the micro-wells (trial 1). Fluorescence intensity was
quantified over the bottom of the tested micro-wells. The error bars show the standard deviation
of ∼ 1200 micro-wells tested in each condition.

We then continued by challenging the micro-wells with IL-1β in the concentration range of
the ELISA kit. The second trial produced better results, but the signal increase was corre-
sponding to IL-1β concentration increase only for 750 pg/mL and above. In figure 3.13, the
results from trial 2 are plotted and the data are fitted with the Hill equation.

The subsequent trials (see figure 3.14) were part of an effort to improve the results of
the second trial and produce an acceptable calibration curve. However, only the sixth trial
produced equivalent results with the second. Again the lowest IL-1β concentrations could not
be distinguished from the signal generated when no IL-1β was added. The lowest concentration
of trial 6 that could be distinguished was 3000 pg/mL.

Samples from trials 3 to 6 were also tested with a TIRF microscope. For trials 4 to 6 TIRF
setup 1 (Olympus microscope) was used. Setup 1 compromises a red excitation laser (at 662
nm) and an emission filter of 700/50 nm. The sample stage is small and as a result only the
4 central wells of the 8-well slide (from ibidi®), where the micro-wells were made, could be
imaged. For sample 3 a second TIRF setup was used, setup 2 (Nikon Ti Eclipse microscope).
Setup 2 compromised a green laser, the emission filter used was 515/35 nm and the objective
was an oil immersed, 60x with NA 1.49. Since both fluorophores, Oregon Green®and Alexa
Fluor®660, bleached very fast when illuminated, for acquiring the image the focus plane was
set in one position with one random micro-well and then the stage was moved to the adjacent
micro-well, of which immediately an image was acquired. TIRFM images of the setup 1 are
shown in figure 3.15. In figure 3.16 the results from the TIRF acquisition are presented, in
accordance with the epifluorescence images, the average fluorescence intensity on the bottom
of each micro-well was calculated. Again, not a monotonous increase of the signal is observed
with increasing IL-1β concentration, even though TIRF is more sensitive than epifluorescence
microscopy. One possible explanation may be the heterogeneity of the sample, as shown in figure
3.17. Across one sample there are certain areas with compromised signal, possibly during TIRF
acquisition, images from such areas where acquired in some samples. On the contrary, with
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Figure 3.13: Calibration curve inside the micro-wells (trial 2). Fluorescence intensity was
quantified over the bottom of the tested micro-wells. The background fluorescence intensity
(micro-wells filled with PBS only) was subtracted from all data points. Data points are fitted
with the Hill equation.

Figure 3.14: Calibration curves inside the micro-wells (trials 2 to 6); Epifluorescence image
acquisition. Fluorescence intensity was quantified over the bottom of the tested micro-wells.
The background fluorescence intensity (micro-wells filled with PBS only) was subtracted from
all data points.

epifluorescence microscopy the number of micro-wells analysed is big (potentially up to 6,800
micro-wells per condition for this experimental setup) and even if such areas with compromised
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signal are included, this did not affect the final average signal for each sample.

Figure 3.15: PEG-DA (MW 258) micro-wells with silanized glass bottom are challenged with
human IL-1β; TIRF image acquisition. The side length of the micro-well is 75 µm. The
concentration of IL-1β is shown on each image.

Figure 3.16: Calibration curves inside the micro-wells (trials 3 to 6); TIRF image acquisition.
Fluorescence intensity was quantified over the bottom of the tested micro-wells. The background
fluorescence intensity (micro-wells filled with PBS only) was subtracted from all data points.

To better understand the variability of the fluorescence signal on the bottom of the micro-
wells across one given sample and how these signals differ across different samples i.e. different
IL-1β concentration, we plot the histograms of the fluorescence intensity signals for trial 2 (fig-
ure 3.13). For these histograms, ∼ 160 micro-wells per sample are analysed. The histograms
are plotted in figure 3.18 and indeed we see that distinguishing the signals of the lowest con-
centrations is not trivial.

Next, to enhance the sensitivity of the assay we tried immobilising the capture antibody
at the bottom of the micro-wells via bio-affinity immobilisation (see figure 3.10). The results
are shown in figure 3.19. In this trial an antibody ELISA pair for IL-2 detection was used
(BioLegend®). As capture antibody we used the biotinylated antibody, which is normally used
as the detection antibody, at a concentration of 8 µg/mL. As a detection antibody we used the
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Figure 3.17: Diversity of the fluorescence signal along a sample. In a certain sample there are
areas with micro-wells with compromised signal on their bottom.

Figure 3.18: Histograms of the fluorescence intensity over the bottom of the micro-wells (N ≈
160 micro-wells per sample).

antibody normally used as the capture one, in a labeled with FITC (fluorescein isothiocyanate)
form (1 µg/mL). The IL-2 standard protein was from the IL-2 ELISA kit (PeproTech®). In
accordance to figure 3.12 the mean fluorescence intensity on the bottom of the micro-wells
was calculated. The data shown were acquired with a 10x objective, to be in accordance with
the absorbance trials (see figures 3.12 and 3.14). Images were also acquired with the 4x, 40x
and 100x objectives but without any difference in the results. In this case, the bio-affinity
immobilisation scheme did not improve the results.

A potential idea to improve the sensitivity of the calibration assay is to utilise biotinylated
DNA nanoparticles (NPs) conjugated with fluorophores for visualisation of the ELISA sandwich
complexes, instead of using NeutrAvidin OregonGreen®or streptavidin Alexa Fluor®660 as
above. This idea is applicable only when the capture antibody is adsorbed on the bottom (not
for bio-affinity immobilisation). However, one should take into consideration the size of the
DNA NPs, which is 60 × 90nm, with the size of the antibody molecule, ∼ 10 × 2.5 × 15nm.
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Figure 3.19: Calibration curve inside the micro-wells using the bio-affinity mode to immobilise
the capture antibody. Fluorescence intensity was quantified over the bottom of the tested micro-
wells. The error bars show the standard deviation of ∼ 140 micro-wells tested in each condition.

Moreover, such DNA NPs need a buffer with high salt concentration, which should be tested
with the ELISA protocol.

Sensitivity of the epifluorescence microscope

Based on the above results, we observed that we cannot distinguish our signal from the back-
ground noise and that our lower limit of detection (LLoD) was 750 pg/mL in the second trial
of the ELISA calibration assays (see figure 3.13). For that we performed an adsorption test in
order to unravel the sensitivity of our epifluorescence microscope setup. In this test, we used a
secondary antibody conjugated with AlexaFluor®647 and let this antibody adsorb on the bot-
tom of the micro-wells in a wide range of concentrations. The epifluorescence microscope setup
was the same used in the above trials (with a 10x objective). We selected a red fluorophore as
in this region PEG-DA has the lowest autofluorescence (see figure 2.10), which is the best case
scenario in our experimental setup. In figure 3.20, the images show the adsorption of certain
different concentrations of the secondary antibody on the bottom of the micro-wells, while in
figure 3.21, the calculated fluorescence intensity on the bottom of the micro-wells is plotted for
all the different concentrations tested. The image analysis was done the same way as in the
above ELISA calibration trials and on average ∼55 micro-wells were analysed for each different
antibody concentration. Below the 100 ng/mL concentration, the signal is indistinguishable
from the background noise.

Figure 3.20: Different concentrations of a secondary conjugated with AlexaFluor®647 are
adsorbed on the bottom of the micro-wells. The side length of each micro-well is 100 µm.

In the literature [36, 37, 166, 168], usually a laser microarray scanner is used to visualise
ELISA complexes formed on glass slides. In general, most microarray scanners fall into two
main categories. The first one is based on confocal microscope optics with a photomultiplier
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Figure 3.21: Sensitivity of the epifluorescence microscope. Different concentrations of a sec-
ondary conjugated with AlexaFluor®647 are adsorbed on the bottom of the micro-wells and
the fluorescence intensity is then measured.

tube (PMT) and the second is based on standard microscope optics with a charge-coupled
device (CCD) camera as a sensor [195]. Devices of the second category are usually referred to as
microarray readers. Regarding the excitation there are three types of illumination technologies,
the best being the gas laser, the next most common type uses diode or “solid-state” lasers and
very few systems in use are based on controlled halogen bulb light sources. In the publications
mentioned above the first type of microarray scanners is used namely with laser excitation and
PMT, thus herein when referring to microarray scanners we refer to this type. A comparison
of the signal-to-noise ratio between a fluorescence microscope and a laser microarray scanner
can be found in the supplementary material of Zhou et al. 2012 [196]. In the two channels
tested, Cy3 (green channel) and Cy5 (red channel), the laser microarray scanner had a better
signal-to-noise ratio than the fluorescence microscope, 50 and 10 times more in the green and
red channel respectively. Also the detection of nuclear localisation of SMAD1 and SMAD2 in
human mesenchymal cells was tested and the laser microarray scanner was proven to have larger
dynamic range and better detection sensitivity. In practice, microarray readers can typically
detect between one copy in 100,000 and one copy in 500,000 [197,198]. The sensitivity required
for such a low-level fluorescence detection is ∼ 2 to 5 molecules per square micrometer with a
linear dynamic range of five orders of magnitude.

By making a rough estimation based on our experimental results from trial 2 of the calibra-
tion assay, the corresponding numbers of our fluorescence microscope set up are 50 molecules
per square micrometer for a best case scenario or 200 molecules per square micrometer for a
safe scenario. These numbers were calculated as follows, our minimum detected concentration
of IL-1β was 750 pg/mL. The molecular weight of IL-1β is 17.5 kDa or 17,500 g/mol, which
means that the concentration of IL-1β in the volume is 0.04 nM. Our working volume was 200
µL, so by multiplying with the Avogadro’s number, we have ∼ 5×109 molecules in this volume.
The area of our substrate is 1 square centimetre, so if all the molecules are projected on this
surface we get the number 50 molecules per square micrometer. Similarly, if we start with the
3000 pg/mL instead of the 750 pg/mL concentration, we get the number 200 molecules per
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square micrometer.

Importance of signal-to-noise ratio

From the above, we conclude that the concentration range of the calibration ELISA assay is
already near our limit of detection with our fluorescence microscope setup. Furthermore, we
need to keep in mind that our modified surface with the PEG-DA micro-wells has a higher
fluorescence background noise than that of bare glass. The main reason is the autofluorescence
of PEG-DA walls, which results in stray light when the sample is illuminated with the epi-
fluorescence mode. TIRF illumination in theory should have had better results, however that
was not the case due to the rapid bleaching of the fluorophores but also probably due to the
heterogeneity across the sample. Nevertheless, the TIRF illumination approach is not rejected
but further adjustments of the assay is needed to be suitable for detection with the TIRF setup.

Another promising strategy to enhance the very low signal of cytokine secretion from single
cells is to use the single molecule arrays (SiMoAs) [164,199,200]. This assay compromises the use
of sealed micro-wells (with dimensions 4.5 × 3.25 µm) with bead-based ELISA and enzymatic
reporters. Due to the small volume of the micro-wells the fluorophores generated by individual
enzymes are confined, resulting in a very high concentration of the product molecules that
can be detected. Then, by using standard microscope optics, it is even possible to distinguish
micro-wells associated with a single enzyme molecule from those not associated with an enzyme,
i.e. empty micro-wells. This strategy led to an improved sensitivity in comparison to standard
ELISAs as detection could be achieved even in ∼ 10−19 M concentration of the target molecule
and also allowed detection of proteins in serum at ∼ 10−15 M [164]. SiMoA was also combined
with single cells and both high and low protein expression levels of intracellular prostate specific
antigen (PSA) were detected [200].

3.3.5 Cell secretion

The next section focuses on experimental trials done with cells. To develop a single-cell ELISA
secretion assay, we need a model cell line or even primary cells, that secrete a known protein
for testing our assay. The available cell lines in our case were the HuH-7 and the Jurkat cell
lines. The HuH-7 is a well differentiated hepatocyte derived cellular carcinoma cell line that
was originally taken from a liver tumour in a 57-year-old Japanese male in 1982. The line was
established by H. Nakabayshi and J. Sato. Based on previous work [201], we expected that
HuH-7 will secrete IL-1β after stimulation with interleukin 6 (IL-6) and tumour necrosis factor
alpha (TNFa).

The Jurkat cells are immortalised T lymphocytes, established from the peripheral blood of
a 14 year old boy with acute lymphoblastic leukemia (ALL) at first relapse in 1976. Jurkat
cells are able to robustly produce interleukin-2 (IL-2). The Jurkat clone that we used in the
following trials is equivalent to the Jurkat ACC 282 clone from DSMZ (Leibniz-Institut DMSZ-
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH). Under steady-state resting
conditions, IL-2 is mainly produced by CD4+ T-cells in secondary lymph organs. The secreted
IL-2 is then consumed by cells, mostly by regulatory T-cells (Treg), at the site with the CD25
receptor (IL-2Ra). During the immune response activated antigen-specific CD4+ and CD8+ T-
cells produce large amounts of IL-2, which is then consumed by CD25+ effector T-cells and Treg
cells [202]. In general, Jurkat cells have been shown to be a suitable in-vitro model for studying
the expression of the IL-2 receptor but also the secretion of IL-2 [203]. As every T-cell, they
need two synergistic signals for full activation, namely one from a monoclonal antibody against
the CD3 T-cell receptor (TCR) surface proteins or a lectin such as phytohaemaglutinin (PHA)
and one by a phorbol ester, such as phorbol 12-myristate 13-acetate (PMA). PMA activates
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protein kinase C (PKC) and hence NF-κB. PHA is a well-known selective T cell mitogen [204].
PHA binds to sugars on glycosylated surface proteins, including TCR, and thereby cross-linking
them. This triggers calcium-dependent signalling pathways leading to NFAT (nuclear factor of
activated T cells) activation.

Colorimetric bulk sandwich ELISA measurements

To test whether the above mentioned cell lines that were available, indeed secrete the afore-
mentioned cytokines, traditional bulk ELISA measurements in 96-well plates were performed.
HuH-7 were seeded in 96-well plate (5,000 cells per condition) and were stimulated with IL-6
or TNF-a (both 100 ng/mL [201]) for overnight. Supernatants were then collected and were
diluted 1:1 with PBS. For the ELISA, the kit’s manufacturer’s protocol (PeproTech®) was
followed. For detection the enzyme used was the HRP and the substrate was ABTS. Colour
development was monitored using a plate reader at 430 nm with wavelength correction set at
650 nm. Huh-7 secreted IL-1β under stimulation with IL-6 and TNFa but the secretion level
was quite low, ∼ 2 pg/mL in both cases while for the unstimulated condition, referred to as
“medium”, the secretion was ∼ 5 pg/mL (figure 3.22).

Figure 3.22: Huh-7 secrete low levels of IL-1β under stimulation with IL-6 (blue diamond) or
TNFa (red square). In the unstimulated condition (green triangle), the cells secreted even more
IL-1β. The standard curve is depicted with the purple points, for which recombinant IL-1β was
used. For the standard curve each point is the mean value of a triplicate, while for the samples
each point is the mean value of a tetraplicate.

The MOLM-13 cell line was also tested for secretion of IL-1β under stimulation with IL-6
and TNFa, however these cells did not secrete IL-1β at any condition. Since, our longterm goal
is to perform an ELISA in real-time, to study the dynamics of the secretion event, an important
aspect of this experiment is the performance of the ELISA assay under cell culturing conditions
i.e. within the cell culture media. We tested whether substituting the buffer normally used
during ELISA incubation steps, with cell medium would affect the assay performance. For
that, we performed in parallel two standard (using recombinant IL-1β) ELISA colorimetric
assays. The first one was done according to the manufacturer’s protocol while in the second the
incubations of the standard (recombinant IL-1β) and the detection antibody were done in cell
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medium. For detection the enzyme used was the HRP and the substrate was ABTS. Indeed the
assay sensitivity is affected, since the LLoD (lower limit of detection) of the assay done solely
with assay buffer was 11.7 pg/mL (blue diamonds in figure 3.23), while the LLoD of the assay
done with cell medium during two of the incubations was 93.75 pg/mL (red squares in figure
3.23).

Figure 3.23: Cell medium affects the sensitivity of the ELISA colorimetric assay. For both
standard curves recombinant IL-1β was used. The LLoD of the assay done solely with assay
buffer was 11.7 pg/mL (blue diamonds), while the LLoD of the assay done with cell medium
during two of the incubations was 93.75 pg/mL (red squares ). For the standard curve each
point is the mean value of a triplicate.

Next, we tested the secretion of IL-2 from the available Jurkat cells under different activation
conditions. The optimal activation condition was found to be co-stimulation with PMA (100
ng/mL) and PHA (10 µg/mL) (see figure 3.24).

In-micro-well ELISA with cells

With regard to the dynamic secretion assay we would like to develop (figure 3.3), our first
approach for an ELISA secretion assay inside the PEG-DA micro-wells, was to implement an
end point protocol for detection of secretion events. The basic idea is that the micro-wells will
be pre-coated with the capture antibody, then the cells will be seeded in the micro-wells and
will be let to secrete the proteins. After this incubation period the following ELISA steps will
be executed with the cells in the micro-wells [38, 168]. The core steps of the protocol are the
following:

1. Coat micro-wells with capture antibody.

2. Block with BSA.

3. Add cells and stimuli, incubate for 2, 4 or 24 hours (pre-stimulated cells can be also used).

4. Wash x4 (cells stay in the micro-wells).

45



Figure 3.24: IL-2 secretion of Jurkat cells under different concentrations of PMA and PHA.

5. Add detection antibody (biotinylated) and marker for dead cells, incubate for 1 hour.

6. Wash x4.

7. Add labeled NeutrAvidin (or Streptavidin), incubate for 15 minutes.

8. Wash x4.

9. Image under the epifluorescence microscope.

The main challenges of these protocol is firstly to compromise between cell survival and
unspecific binding. On the one hand, the buffer used during the ELISA incubation times must be
substituted with the cell medium, otherwise cells won’t survive for more than approximately half
an hour. In this case, shorter incubation times may help to reduce unspecific binding of the cell
medium components that may interfere with the ELISA antibodies. Secondly, during the washes
in an ELISA assay a “detergent” buffer is typically used. This buffer most often contains Tween-
20, which is a surfactant that decreases the background binding and also enhances reagent
spreading. However, Tween-20 is also used to lyse the cells (at 0.5-5% v/v concentration),
consequently its use with living cells is not ideal. In our case, the wash buffer used in the
previous ELISA experiments contained Tween-20 at 1% v/v concentration. In the current
trials with the cells we substituted the typical wash buffer (containing Tween-20) with PBS
(Phosphate-buffered saline).

The cell lines HuH-7 and MOLM-13 were tested for IL-1β secretion with the above in-micro-
well ELISA protocol. The cells were stimulated with TNF-a and IL-6 (both 100 ng/mL) for 2, 4
or 24 hours. During imaging L-15 medium supplemented with 10% FBS (Fetal Bovine Serum)
and l-glutamine was used. However, no secretion events could be detected in these trials and
the signal from the standard controls, samples that were incubated with IL-1β (1.5 ng/mL),
was very weak.
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ELISA-on-cell

Another very promising approach to detect secretion events at the single-cell level is to measure
the secreted cytokines at the surface of the cell i.e. perform an ELISA-on-cell. In general,
even for population based assays measuring as close as possible to the cells is highly desirable
due to the much higher concentration of the secreted proteins near the cell layer surface. This
concept is usually referred to as Near-cell-ELISA. The Near-cell-ELISA scheme is inspired by
the autocrine and paracrine types of cell communication that have been described above (see
section 3.1). The proteins captured and measured in this case are much higher in numbers, not
only because they can be captured before they will come back to the same cell or bind on a
receptor of an adjacent cell, but also due to measuring closer to the “source”. If we think the
cell as a spherical source due to diffusion, the closer to the cell we can measure the higher the
concentration of the secreted protein will be.

As far as the single-cell scheme ELISA-on-cell, the same higher concentration of the secreted
protein near the cell surface can be exploited in order to detect secretion events of low abundance,
such as the secretion of cytokines. In this case the capture antibody can be immobilised on
the surface of the cell via its constant domain (Fc). A similar approach has been developed
and kits are commercially available from ©Miltenyi Biotec. Even though, the developed kits
so far available are for a limited number of proteins, namely interferon gamma (IFNg) and
interleukins 2, 4, 5, 10 (IL-2, -4, -5, -10), they are practical and reliable. The principle of the
Miltenyi ELISA-on-cell designed for leukocytes is as follows (see figure 3.25); A “catch reagent”,
a double antibody of which the one end binds on a cell surface molecule while the other end
targets the desirable protein to measure, is attached to the cell surface. Next, the cells are
incubated in 37oC for a short period of time to secrete the proteins. The secreted protein will
then bind on the “catch reagent”. After this incubation period, the cells are labeled with a
detection antibody which is conjugated with a fluorophore. At that time the cells are tested
using flow cytometry and the cells bearing an ELISA complex on their surface are detected.
The sensitivity of the assay lies on the fact that since viable cells are analysed, non-specific
background can be minimised by dead cell exclusion.

Figure 3.25: Principle of the ELISA on cell assay (©Miltenyi Biotec). A “catch reagent”,
a double antibody of which the one end binds on a cell surface molecule while the other end
targets the desirable protein to measure, is attached to the cell surface. Then, the cells are
incubated for a short amount of time to secrete the proteins. The secreted protein will bind on
the “catch reagent”. After this incubation period, cells are labeled with a detection antibody
which is conjugated with a fluorophore.

In our case, we followed two approaches of the ELISA on cell assay, one end-point analysis
based on the protocol from ©Miltenyi Biotec and one time-lapse protocol for dynamic analysis
of cytokine secretion [205]. We used an “IL-2 Secretion Assay” (©Miltenyi Biotec) to detect the
secreted IL-2 from the Jurkat cell line but also from primary T-cells. These primary cells were
kindly offered from the K. P. Hopfner lab, and were expanded T-cells from PBMCs (peripheral
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blood mononuclear cells). The expansion procedure lasted 18 days and resulted in a population
of T-cells over 90% of the total number of cells. Moreover, the detection antibody of the kit
was conjugated to APC (allophycocyanin). The main steps of the end-point analysis are the
following:

1. Stimulate cells.

2. Label cells with the IL-2 “catch reagent”.

3. IL-2 secretion period; Seed cells in the micro-wells and incubate cells for 45 minutes.

4. Label cells with the IL-2 detection antibody.

5. Image cells under the microscope.

The main steps of the time-lapse protocol for dynamic analysis of IL-2 secretion are the
following:

1. Stimulate cells (optional).

2. Label cells with the IL-2 “catch reagent”.

3. Seed cells in the micro-wells together with stimuli (activation factors).

4. Add detection antibody.

5. Image cells under the microscope with 20x objective for 4 to 24 hours every 5 minutes.

IL-2 plays a key part to many T-cell processes such as their response to bacterial infection, it
also activates them to proliferate and differentiate and in general it is relevant in all autoimmune
disorders, since it is required in the process of separating self from non-self. To study in
a dynamic fashion the activation of T-cells using PHA, we performed a time-lapse dynamic
monitoring of IL-2 secretion from Jurkat cells, with various PHA concentrations. After labelling
the cells with the “catch reagent”, we seeded them in PEG-DA (MW 258) micro-wells of 35 µm
diameter coated with fibronectin, and then monitored the cells under the microscope using a
20x objective for 24 hours. To detect dead cells, we used the Sytox®Green stain. During the
monitoring the detection antibody labeled with APC was present in the cell medium. When an
IL-2 protein was secreted by the cell and was captured by the “catch reagent”, the detection
antibody bound on the IL-2 protein, thus forming the complete ELISA sandwich complex. Due
to the red fluorescence signal these cells could be detected 3.26.

Images were then analysed using the in-house ImageJ plugin MA (see section 3.3.4) to extract
the fluorescence intensities over the bottom of the micro-wells. Images were background cor-
rected using the “Clustering Based Well Analysis” ImageJ plugin (Laura Lechtenberg’s master
thesis, which is based on a previously published method [206]). Figure 3.27 shows an exemplary
plot of the fluorescence intensity over time. Each curve corresponds to one single cell, in this
case we see that two cells secreted IL-2 (i.e. red fluorescence increased) in one field of view,
indicating the high sensitivity of the assay.

We also performed an identical monitoring procedure with starved cells (using 5% FBS
instead of 10% that it is typically used) to see whether their response would be higher. Starved
cells were more stressed and for that they were monitored for 12 hours. In figure 3.28, the
results of this monitoring for both cell populations, starved and normal, is presented. It is clear
that starved cells are more stressed (light green curve) and that in both cases the IL-2 secreting
cells fraction is below 10%. Error bars were calculated as in section 5.3.2.
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Figure 3.26: A Jurkat cell secreting IL-2. The first raw shows phase contrast images, the
second raw shows images of the red fluorescence channel that correspond to the APC signal
from the detection antibody, while the third raw shows the signal in the green channel for the
Sytox®Green stain for dead cells. This cell was monitored for 12 hour during which it was
activated with PMA (25 ng/mL) and PHA (1000 ng/mL). The diameter of the micro-well is 35
µm. At the second column, we observe that when the IL-2 secretion initiates (2nd raw) the cell
obtains an adherent phenotype (1st raw).

Next in the same manner, we monitored the activation of the Jurkat cell line using a combi-
nation of PHA together with PMA. The concentration of PMA was the same across the different
conditions (25 ng/mL) while PHA concentration varied. In figure 3.29 the results are presented
for both cell populations (starved and in complete medium). In this case, again starved cells
are more stressed (light green curve), however the fraction of IL-2 secreting cells is double than
the population monitored in complete medium. Starved cells were monitored for 6 hours while
the cells in complete medium were monitored for 12 hours.

After monitoring the activation of the Jurkat cell line using either PHA or PHA in combi-
nation with PMA, we observed that IL-2 secretion coincided with cell death at a great extent.
Across all PHA concentrations, the average percentage of IL-2 secreting cells that also under-
went cell death was ∼ 89%, while across all conditions with PHA in combination with PMA
activation the average percentage was ∼ 85%. An exemplary cell that secretes IL-2 and dies is
shown in figure 3.30.

Primary T-cells were also monitored in a similar manner. This sample, as mentioned above,
was derived from PBMCs from a healthy donor. An expansion protocol was followed for 18 days
and T-cells (more than 90%) compromised the final population. Due to their higher vulnerability
these cells were seeded in bigger micro-wells (square-shaped with 50 µm side length). The cell
size distribution was much broader in comparison to the Jurkat cell line indicating the much

49



Figure 3.27: Fluorescence intensity profile over time of IL-2 secretion from Jurkat cells, in PEG-
DA micro-wells of 35 µm diameter. Two of cells are secreting IL-2; each curve corresponds to
one single cell (total number of cells plotted N = 36).

Figure 3.28: Activating Jurcat cells with various PHA concentrations results in low percentages
of IL-2 secreting cells. Starved cells (light-coloured curves were monitored for 12 hours, while
cells in complete medium were monitored for 24 hours.

higher heterogeneity of this sample. Image analysis in this case proved to be more challenging
mainly due to the small cell size of the cells compared to the micro-well and the high background
signal. Because of that, extracting the average fluorescence intensity over the bottom of the
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Figure 3.29: Activating Jurcat cells with PMA (25 ng/mL) and various PHA concentrations
results in low percentages of IL-2 secreting cells. Starved cells (light-colored curves) were mon-
itored for 6 hours, while cells in complete medium were monitored for 12 hours. The fraction
of IL-2 secreting cells is double than the population monitored in complete medium.

micro-wells did not led to the detection of the activated cells (IL-2 secreting cells). In this case,
it is essential to extract the fluorescence intensity over the cell area only, however this implies
the necessity of cell tracking, since most of the cells were highly motile. In our case, we analysed
the data manually however automatising the image analysis will require the implementation of
a cell tracking module if the use of bigger micro-wells is required. The cells were pre-stimulated
with a cytokine cocktail of TNFa (10 µg/mL) and IL-6 (10 µg/mL) or activated with PMA
(5 ng/mL) and PHA (1 µg/mL) for an overnight. The following day the stimulated cells were
divided into two samples. The cells were seeded in the micro-wells and IL-2 secretion was either
monitored for 4 hours or quantified using the end-point analysis procedure. The cells that were
monitored for 4 hours were subdivided into four different subgroups depending on whether they
secreted IL-2 and whether they underwent apoptosis or not. The results are presented in figure
3.31. During the measurement the apoptosis marker Cell Event™Caspase 3/7 was included for
the detection of apoptotic cells.

The second half of the sample was analysed using the end-point protocol, immediately after
the overnight incubation. The results are shown in figure 3.32. A very small fraction of the
cells secreted IL-2 (yellow component) below 1% in all three conditions. The majority of the
cells remained inactive (light purple) and a high percentage of cells (46%) underwent apoptosis
when cells were activated with PMA and PHA (light orange).

An advantage of the time-lapse over the end-point analysis is its higher sensitivity due to the
longer observation period. Even though the total number of cells analysed with the end-point
protocol is higher (see table 3.2) the percentage of the detected IL-2 secreting cells was lower
(see figures 3.31, 3.32). The most probable reason may be the short time window during which
the secretion event can be detected on the surface of the cell, which is 45 minutes for the end-
point protocol (step 3). On the other hand, if a time-lapse observation is possible, it is desirable
as the observation window can be as long as 24 hours. In our case, the 4-hour time-lapse was
enough to detect the small fraction of the IL-2 secreting cells out of the pre-stimulated primary
T-cells.
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Figure 3.30: A Jurkat cell secretes IL-2 and then undergoes cell death. The first raw shows phase
contrast images, the second raw shows images of the red fluorescence channel that correspond
to the APC signal from the detection antibody, while the third raw shows the signal in the green
channel for the Sytox®Green stain for dead cells. This cell was monitored for 12 hour during
which it was activated with PMA (25 ng/mL) and PHA (8000 ng/mL). The diameter of the
micro-well is 35 µm. At the second column, we observe that IL-2 secretion initiates (2nd raw)
during the first stages of cell death, when the cell has started blebbing (1st raw) but before the
signal from the nucleus stain is detectable (3rd raw).

Condition End-point analysis Time-lapse analysis

PMA/PHA 514 376

TNFa / IL-6 1051 288

no stimulation 706 406

Table 3.2: Total number of primary T-cells analysed in each different condition in the two
different versions of the ELISA-on-cell assay, end-point and time-lapse analysis.

Conclusion

From the above experimental trials it is concluded that the most promising approach is the
detection on the cell surface, ELISA-on-cell, over detecting the secreted protein on the bottom
of the micro-well. This was determined by the specific parameters of the micro-well platform
used, namely the relatively high background signal due to PEG-DA autofluorescence, in combi-
nation with the very low signal generated from the concentration range of the standard assays
(ELISA calibration assays, section 3.3.4) but also from the small number of molecules secreted
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Figure 3.31: Pre-stimulated T-cells were monitored for IL-2 secretion. Cells were pre-stimulated
for an overnight with either a cytokine cocktail (TNFa and IL-6 each at 10 µg/mL) or with
PMA (5 ng/mL) and PHA (1 µg/mL). During the 4 hour monitoring few cells secreted IL-2
(yellow and dark orange components), while the majority of the cells either remained inactive
(light purple) or underwent apoptosis without IL-2 secretion (light orange).

Figure 3.32: Pre-stimulated T-cells were tested for IL-2 secretion using the end-point analysis
protocol. Cells were pre-stimulated for an overnight with either a cytokine cocktail (TNFa and
IL-6 each at 10 µg/mL) or with PMA (5 ng/mL) and PHA (1 µg/mL). Very few cells secreted
IL-2 (yellow and dark orange components), while the majority of the cells either remained
inactive (light purple) or underwent apoptosis without IL-2 secretion (light orange).

by cytokine-secreting cells ( [168] and In-micro-well ELISA trials, section 3.3.5).
Other promising approaches reported in the literature are, as mentioned above, the SiMoAs

technology [200], a method combining PDMS micro-wells and bead-based ELISA [207] and
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finally the well-established microengraving method [36,37,39]. Each one of them has its advan-
tages and disadvantages but they manage to detect low secretion levels such as the secretion of
cytokines from single-cells. The SiMoAs based method [200] so far has been shown to quantify
only intracellular proteins however without any amplification steps. Both the SiMoAs based
method and microengraving offer an end-point analysis while the bead-based ELISA in PDMS
micro-wells offers real-time measurements of secretion events. In the bead-based ELISA in
PDMS micro-wells the lowest concentration that could be detected on the bead baring the cap-
ture antibodies was 2.5 ng/mL of IFNg, when the coated beads were challenged with different
IFNg concentrations (calibration curve). In our in-micro-well ELISA calibration assays, our
detection limit on the bottom of the PEG-DA micro-well was 750 pg/mL to 3000 pg/mL (see
section 3.3.4) which is equivalent. However, even though using beads permitted the detection
of cytokine secreting cells, in our case it was not possible (see section 3.3.5). One reason may
be that in our cell population the frequency of secreting cells is very low. Another reason may
be the fact that the surface area of the bead coated with antibodies is smaller compared to the
bottom of a micro-well (it can be smaller up to 30 times depending on the size of the bead),
hence the surface concentration of the captured protein is higher for a given number of secreted
molecules resulting in a detectable signal for lower numbers of molecules. Moreover, by passi-
vating PDMS with PEG passive adsorption of the secreted protein on the PDMS surface was
minimised. And finally because PDMS is less autofluorescent than PEG-DA (see figure 2.10),
the background noise was lower in this case.

3.4 Theoretical description of transfer phenomena and binding
kinetics

In this section, numerical simulations using the COMSOL Multiphysics®software were carried
out to better understand the distribution of the secreted molecules inside the micro-wells. We
tested and compared two general approaches that have emerged, namely open micro-well and
closed micro-well arrays (see section 3.2.1). For our experimental setup, important points to
evaluate are the quantity of the secreted protein that escapes the micro-well due to the persistent
diffusion in an open array, whether cross-contamination exists between adjacent micro-wells and
finally how much time we need to incubate our cells in order to obtain a detectable signal. Three
different geometries were applied to elucidate these points, the first is an axisymmetric model
of a cylindrical micro-well and the rest are 3D geometries of cubic micro-wells.

3.4.1 Mathematical model and boundary conditions

The mathematical description of our experimental setup is the same for all different geometries.
In all cases a cell is placed on the bottom of a micro-well and secretes a protein with a constant
rate. In both the 2D and 3D geometries our models include the mass transport of the secreted
proteins via diffusion, since there is no fluid flow inside our micro-well platform, and the binding
reaction between the secreted protein and the capture antibody. The secreting cell is modelled
as a sphere with a diameter of 15 µm, placed at the centre of the bottom of the micro-well.
The micro-well and the surrounding volume is filled with water, which is a good approximation
for cell medium. The cell is assumed to secrete proteins at a constant rate radially into the
medium:

Ntotal = κt (3.3)

where Ntotal is the total number of secreted molecules, κ is a constant describing the rate
of secretion, and t is the time. Even though in reality the secretion rate is not constant and
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depends on various parameters such as the cell cycle phase, the secretory capacity of the cell
but also on environmental cues [208,209], assuming a constant rate simplifies the problem and
gives us a better idea on the relationship between the quantities of the secreted proteins and
those that are captured. The secretion rate for cytokines is 5-50 molecules/s, while for antibody
producing cell lines the secreting rate of a cell can be up to 2000 molecules/s [36,209].

The transport of the secreted protein in the liquid phase is described using the diffusion
equation:

∂C

∂t
= D∇2C (3.4)

where C is the protein concentration and D is the diffusion coefficient.

We assumed that the capture antibody is uniformly coated on the bottom of the micro-well.
Based on our experimental results (see figure 3.9), we also assumed that antibodies adsorb
also on the PEG-DA walls, but on the walls the available binding sites are half the available
binding sites on the glass bottom. The binding reaction on the coated surfaces is described by
a reversible equilibrium process:

C + B
kon−−⇀↽−−
koff

Cs (3.5)

where B are the free binding sites on the coated surface and Cs is the concentration of the
antibody-protein complex on the surface, kon and koff are the association and disassociation
constants respectively.

For the bottom and PEG-DA surfaces, the reaction and diffusion at the surface is described
by a first order Langmuir adsorption model, where the diffusive flux is balanced against the
reaction rate:

~n · (−D∇C) = Ds∇2Cs + konC(B0 − Cs)− koffCs (3.6)

where B0 is the initial concentration of the capture antibody i.e. binding sites and (B0−Cs) is
the concentration of the available binding sites. We assume that the antibodies do not diffuse
on the surface, hence the diffusion term (Ds) is equal to 0. As a result the equation describing
the boundary conditions on the coated surfaces becomes:

~n · (−D∇C) = konC(B0 − Cs)− koffCs (3.7)

We also assumed that the binding of the antibody with the secreted protein occurs at 1:1
stoichiometry. The initial concentration (or Cauchy boundary condition) at t = 0 of free and
bound protein is negligible (C = 0, Cs = 0). For the boundary condition at the edges of the
medium above the micro-well, both a negligible concentration (C=0, Dirichlet boundary condi-
tions), or the gradient of the concentration (Neumann boundary conditions) or a combination
of the two at different surfaces (surface above and at the side) was tested. The parameters with
a constant value across all model geometries are summarised in table 3.3.

Since this problem cannot be solved analytically, we will solve it numerically using the Finite
Element Method (FEM), a short description of which is presented below.

3.4.2 Finite Element Method (FEM) basic concepts

A plethora of boundary value problems cannot be solved analytically. In such cases, approxi-
mate solutions can be obtained with various discretisation methods. One type of discretisation
is directly applicable to the differential equations governing the problem. This approach includes
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Parameter Value

Density of total binding sites, B0 10−9 mol/m2

Density of total binding sites on PEG-DA walls, B0w 5× 10−10 mol/m2

Initial concentration of free protein, C0 0 pmol/m3

Initial concentration of bound protein, Cs0 0 pmol/m2

Cell diameter 15 µm

Diffusion coefficient, D 3× 10−11 m2/s

Temperature 310.15 K

Table 3.3: Constant parameter values across all models

methods such as the finite differences approximations [210,211], various weighted residual pro-
cedures [212], or collocation methods [213, 214]. Another widely used approach is the Finite
Element Method (FEM) where a weak form of the governing equations is interrogated.

The core idea of FEM analysis is to replace a continuous geometry with a set of objects with
a finite number of degrees of freedom (DOF). These objects are called elements and they are
connected with each other at the nodes. Typically, FEM analysis is divided into the following
steps:

• Mesh generation which involves discretising the geometry of the PDE domain.

• Element definition; typically 3, 4, 8, or 9 node elements are used.

• Solving the system of equations with unknown variables the values of the desired field
variable at the nodes of the elements.

• Interpolation of the desired field variable in the whole domain using the interpolation
functions of the elements according to: u =

∑
Niui

where u is the approximated field variable at any point in the integrated domain, ui denotes
the value of u at the nodes i, and Ni are the basis (or shape) functions.

In our case the function to be solved is the diffusion equation (see equation 3.4) which is of
the general form:

Lu(x) = f(x) (3.8)

Where L is the elliptic partial differential operator such as the Laplacian:

L =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.9)

The unknown variable u is discretised as: u =
∑n

j=1 cjuj , where u(j) are the values at the
nodes.

Then according to Galerkin - Ritz, we obtain the weak form of this equation by choosing a
weight function v, multiply both sides of 3.8 with v and integrate across the domain:

〈∇2u, v〉 = 〈f, v〉 (3.10)

which becomes:

〈u, v〉 =

∫∫
Ω
u(x, y)v(x, y)dxdy (3.11)
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where the domain Ω ∈ R2

3.10 is the weak form of 3.8. Even though a solution to the weak form may not be identical
to the strong form 3.8, it has several advantages, including a lower order (1st order instead of
2nd order which was the original strong form). The lower order relaxes the requirement for
continuity of the basis functions Ni, to C1 (1st derivative to be continuous) instead of C2, thus
allowing us to use 1st order polynomials.

3.4.3 Results

Below the results from the different models will be presented. All models are based on the
above equations and the specific parameters are given in each case.

Axisymmetric geometry

The first geometry tested is a simple axisymmetric model of a cylindrical micro-well of 35 µm
diameter with a cell lying on the centre of the bottom of the micro-well (see figure 3.33). The
affinity of the capture antibody was set to nanomolar range (Kd = 10nM). The secretion of
the cell was set in the range of cytokine secretion, either low or high (9 or 50 molecules/s
respectively). The PEG-DA walls were set to be either completely impermeable or baring half
of the binding sites in comparison to the bottom, as it was concluded experimentally (see figure
3.9). The upper boundary of the micro-well was either set with a negligible concentration
(C=0) or with negligible gradient of the concentration (∇C = 0). Since we are interested in the
dynamic state of the system, a time-dependent study was executed for 4 or 24 hours, which is
what is experimentally feasible. Apart from the experimentally available height of the micro-
well, which is 30 µm, we also tested a height of 60 µm to explore whether it is a preferable
solution. The range of the above parameters tested are summarised in tables 3.4, 3.5, 3.6, 3.7,
and 3.8.

Figure 3.33: Geometry of the axisymmetric model. The height of the micro-well shown here is
30 µm and its diameter is 35 µm, which are the dimensions of our experimental setup.

Indicative results from these simulations are shown in figure 3.34. We also calculated at
each time point the integrated concentration at the bottom of the micro-well, which is what
we can measure experimentally. The most important parameter is the cell secretion rate (see
figure 3.35), since only when the rate is increased in simulations 4 and 5 the protein captured
on the bottom of the micro-well is also increased. At the first time points, the calculated
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Parameter S1

Cytokine secretion (molecules/s) 9

Upper boundary condition C = 0

Micro-well wall boundary condition impermeable

Micro-well height (µm) 30

Time (h) 4 or 24

Table 3.4: Parameter values for the axisymmetric geometry in simulation 1

Parameter S2

Cytokine secretion (molecules/s) 9

Upper boundary condition C = 0

Micro-well wall boundary condition half binding sites

Micro-well height (µm) 30

Time (h) 4 or 24

Table 3.5: Parameter values for the axisymmetric geometry in simulation 2

Parameter S3

Cytokine secretion (molecules/s) 9

Upper boundary condition ∇C = 0

Micro-well wall boundary condition half binding sites

Micro-well height (µm) 30

Time (h) 4 or 24

Table 3.6: Parameter values for the axisymmetric geometry in simulation 3

Parameter S4

Cytokine secretion (molecules/s) 50

Upper boundary condition ∇C = 0

Micro-well wall boundary condition half binding sites

Micro-well height (µm) 30

Time (h) 4 or 24

Table 3.7: Parameter values for the axisymmetric geometry in simulation 4

concentrations are negative, which is most probably due to numerical instabilities caused by the
geometry (sphere on surface) or by high concentration gradients at the initial time points. Even
though the axisymmetric geometry offers quick solutions, since the cell has a size comparable
with the micro-well, the axisymmetric models are not very precise for quantitative calculations.
Moreover, cross contamination to adjacent micro-wells cannot be tested. Hence, we continued
our calculations using more suitable 3D geometries.
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Parameter Simulation 5

Cytokine secretion (molecules/s) 50

Upper boundary condition ∇C = 0

Micro-well wall boundary condition half binding sites

Micro-well height (µm) 60

Time (h) 4 or 24

Table 3.8: Parameter values for the axisymmetric geometry in simulation 5

Open well model

To address the points mentioned above, namely more precise quantitative calculations and
testing the potential cross contamination to adjacent micro-wells, we also used a 3D geometry
for our computational analysis. In this case, as available in our experimental set up, the micro-
wells had a cubic shape with 50×50×50 µm dimensions. Two micro-wells were included in the
model to test the potential cross-contamination. The volume above the micro-wells is 350 µm,
so the total height of the medium volume from the bottom of the micro-well is 400 µm, which
the experimental height of the medium if the micro-wells are made in a 6-channel ibidi®slide
(see figure 3.36). The equations of the model remain the same as in the axisymmetric model
(see section 3.4.1).

However, the boundary conditions used at the edges of the medium volume are not straight-
forward to set. In one study, the Dirichlet boundary condition was used (C = 0) [168], assuming
that the concentration far from a secreting cell is negligible. The Neumann boundary condition
(∇C = 0) can also be used [215]. We believe that the Neumann boundary condition should be
more suitable in our situation, but at this point we test both Neumann and Dirichlet boundary
conditions as the latter might also be a good approximation. The parameters used in our first
simulation are shown in table 3.9.

Parameter Simulation 1

Cytokine secretion (molecules/s) 50

Upper boundary condition of medium C = 0

Side boundary conditions of medium C = 0

Micro-well wall boundary condition half binding sites

Medium volume height (µm) 400

Kd (nM) 10

Time (h) 4

Table 3.9: Parameter values for the 3D geometry in simulation with Dirichlet boundary condi-
tions.

By averaging the captured protein on the different surfaces we see that cross-contamination,
i.e. captured protein on the adjacent micro-well, is negligible (see figure 3.37). Next, we compare
the amount of protein captured on the bottom of the micro-well with the amount that diffused
away. To approximate the amount of protein that diffused away, we integrate the amount of
protein in the medium. In figure 3.38, we see that most of the protein is captured on the bottom.

Next we test the exactly same model using Neumann boundary conditions for the edges
of the volume of the medium. The parameter values for this second simulation are shown in
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Figure 3.34: Spatial distribution of the secreted protein concentration after 4 hours of secretion,
in the micro-well volume (left image), at the bottom of the micro-well (middle image) and at
the micro-well wall (right image), (a) for simulation 1, (b) for simulation 2, (c) for simulation
3, (d) for simulation 4, and (e) for simulation 5.

table 3.10. The amount of captured protein on each different surface of the model (see figure
3.39) does not reach a plateau in this case, while the amount captured on the bottom of the
micro-well is much less than the amount that diffused away (figure 3.40). From the above, we
observe that the results are quite sensitive on the boundary condition used and thus selecting
the most proper one is not trivial.

From the above results, the sensitivity of the results on the boundary condition used at the
edges of the medium is obvious. The amount of secreted protein captured on the bottom is af-
fected by the boundary condition chosen. For instance, when the Dirichlet boundary condition
is used, it appears that more protein is captured on the bottom and less escapes in the bulk (see
figure 3.38), while when the Neumann boundary conditions are used more protein escapes and
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Figure 3.35: Secreted protein captured on the bottom of the micro-well as calculated in 5
different simulations. The most important parameter is the secretion rate of the cell.

Figure 3.36: Geometry of the 3D open micro-well model.

less is captured on the bottom of the micro-well (see figure 3.40). Moreover, when the Dirichlet
boundary conditions are used, we have an artefact, the concentration of the captured protein
on any surface reaches a plateau after 4 hours, without saturating the available binding sites on
the surfaces (see figure 3.37). Also, we observe that the absolute number of the concentration
captured on the bottom of the micro-well is lower than when using Neumann boundary condi-
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Figure 3.37: Average surface concentration over time on the different surfaces of the model
with parameters presented in table 3.9. Most of the captured protein is on the bottom of the
micro-well with the cell (blue curve) and a significant amount is also captured on the walls of
the same micro-well. The amount of protein captured on the planar surface and in the adjacent
micro-well is negligible. On the bottom of the micro-well with the cell, 0.5% of the total binding
sites are occupied. 50 molecules/s that we test here is the theoretical maximum secretion rate
of a cell that secretes cytokines.

Parameter Simulation 1

Cytokine secretion (molecules/s) 50

Upper boundary condition of medium ∇C = 0

Side boundary conditions of medium ∇C = 0

Micro-well wall boundary condition half binding sites

Medium volume height (µm) 400

Kd (nM) 10

Time (h) 4

Table 3.10: Parameter values for the 3D geometry in simulation with Neumann boundary
conditions.

tions (see figures 3.38, 3.40). This means that the Dirichlet boundary condition acts like a sink
which adsorbs the proteins strongly, or at least at a comparable level with the antibodies on
the surface. This is not true and as a result using Dirichlet boundary conditions does not lead
to a model that captures sufficiently the phenomenon.

Next, we test a combination of the Neumann and Dirichlet boundary conditions, i.e. at
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Figure 3.38: The captured protein on the bottom of the micro-well over time is plotted (blue
curve) together with the unbound free protein in the volume (orange curve). The amount of
protein captured on the bottom is 2.2 times higher than the free unbound protein.

the side edges of the medium we used Neumann boundary conditions while at the upper edge
we used the Dirichlet boundary conditions with the assumption that the concentration of the
protein far from the cell is negligible. The parameter values for this third simulation are shown
in table 3.11. The amount of captured protein on each different surface of the model (see figure
3.41), now reaches a plateau the same as when only Dirichlet boundary conditions are used
(see figure 3.37). However, in this case the amount captured on the bottom of the micro-well
is much less than the amount that diffuses away, (figure 3.42), same as when only Neumann
boundary conditions are used (figure 3.40). From the above, we observe again that the results
are quite sensitive on the boundary condition used and thus selecting the most proper one is
not trivial.

Using this model, which combines Neumann and Dirichlet boundary conditions, we test the
next two very important parameters i.e. the affinity of the capture antibody to the secreted
protein and the cell secretion rate. Here we test an antibody with higher affinity for the secreted
protein, i.e. with lower Kd value. Also we use lower secretion rate, 5 molecules/s, which the
lowest theoretical rate for cytokine secretion. The parameter values for this simulation are
shown in table 3.12. In this case, although some numerical instabilities at the first time points,
the amount of protein captured on the bottom is more than the one escaped in the bulk (see
figure 3.43), indicating the importance of the affinity of the antibody and the cell secretion rate.

Next, using the higher affinity antibody we test the higher secretion rate i.e. 50 molecules/s.
However, the results are not reliable due to very high numerical instabilities which led to negative
concentrations on the bottom of the micro-well. These numerical instabilities are most probably
due to the fact that our sink is very close to our source, i.e. the cell that secretes the proteins
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Figure 3.39: Average surface concentration captured over time on the different surfaces of the
model (Neumann boundary conditions, see parameter values in table 3.10). Here the differences
are not that pronounced as in the previous model (Dirichlet boundary conditions, see parameter
values in table 3.9).

Parameter Simulation 1

Cytokine secretion (molecules/s) 50

Upper boundary condition of medium C = 0

Side boundary conditions of medium ∇C = 0

Micro-well wall boundary condition half binding sites

Medium volume height (µm) 400

Kd (nM) 10

Time (h) 4

Table 3.11: Parameter values for the 3D geometry in simulation with both Neumann and
Dirichlet boundary conditions.

sits on the bottom of the micro-well, on which proteins bind on the antibodies, resulting in
very high gradients. Also, the geometry cannot be differentiated, since we have a sphere on a
surface. These arithmetic instabilities, caused by the above reasons, are prominent when we
reduce the Kd of the antibody i.e. when our sink gets stronger.

For the above reasons we conclude that more accurate calculations are needed and that
the assumption of negligible protein concentration far from the cell (i.e. Dirichlet boundary
conditions at the upper edge of the medium) is not enough for reliable and quantitative results.
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Figure 3.40: The captured protein on the bottom of the micro-well over time is plotted (orange
curve) together with the unbound free protein in the volume (blue curve), for the model with
Neumann boundary conditions, see parameter values in table 3.10. At the last time point the
amount of protein bound on the surface is 5.1% the amount of the free unbound protein.

Parameter Simulation 1

Cytokine secretion (molecules/s) 5

Upper boundary condition of medium C = 0

Side boundary conditions of medium ∇C = 0

Micro-well wall boundary condition half binding sites

Medium volume height (µm) 400

Kd (nM) 0.1

Time (h) 6

Table 3.12: Parameter values for the 3D geometry in simulation with both Neumann and
Dirichlet boundary conditions.

For that we use a much smaller time step and the finest possible mesh in order to avoid arithmetic
instabilities. Since these calculations are demanding we use a fairly small geometry (see figure
3.44) and we calculate for 60 min. The parameter values used in these simulations are presented
in table 3.13.

Indeed, the above strategy leads to meaningful results, which are summarised below. The
Kd value of the antibody determines how much of the secreted protein will be lost by diffusion.
If the antibody has a Kd value of 10 nM (affinity at nanomolar range) the quantity of the lost
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Figure 3.41: Average surface concentration captured over time on the different surfaces of
the model with Neumann boundary conditions at the side edges of the medium and Dirichlet
boundary conditions at the upper edge of the medium (see parameter values in table 3.11).
Here a plateau is reached but slower than in the first model (Dirichlet boundary conditions, see
parameter values in table 3.9).

Parameter Simulation 1

Cytokine secretion (molecules/s) 5 or 50

Upper boundary condition of medium ∇C = 0

Side boundary conditions of medium ∇C = 0

Micro-well wall boundary condition half binding sites

Medium volume height (µm) 150

Kd (nM) 0.1 or 10

Time (h) 1

Table 3.13: Parameter values for the smaller 3D geometry in simulations with Neumann bound-
ary conditions.

protein is 6 times more than the captured one (see figure 3.45). On the other hand, if the
antibody has a Kd value of 0.1 nM (affinity at picomolar range) the amount of protein captured
on the bottom is 15 times more than the amount lost by diffusion (see figure 3.46). In the
case of antibody with Kd value of 0.1 nM and cell secretion rate of 50 molecules/s, the surface
distributions of the captured protein are shown in figure 3.47.
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Figure 3.42: The captured protein on the bottom of the micro-well over time is plotted (orange
curve) together with the unbound free protein in the volume (blue curve), for the model with
Neumann boundary conditions at the side edges of the medium and Dirichlet boundary condi-
tions at the upper edge, see parameter values in table 3.11. At the last time point the amount
of protein bound on the surface is ∼ 14% the amount of the free unbound protein. Here we
observe saturation also in the volume.

Closed well model

Herein, we compare the results of an open array, presented above, with the closed arrays for
detection of single-cell secretion events (such as the microengraving method [36]). In this case,
our model compromises a cubic micro-well, as tested above for the open array model, with
dimensions 50×50×50 µm (see figure 3.48). The micro-well is closed with a glass slide coated
with capture antibodies. In the case of the closed array, PDMS is used to make the micro-wells,
which is then coated with BSA to both prevent passive adsorption of the capture antibodies on
it and to prevent cells from sticking on it. For this reason, the micro-well walls are modelled
without any antibodies coated on them. The equations of the model remain the same as in the
previous models (see section 3.4.1). Similarly, we assume that the initial concentration (at t =
0) of free (C) or bound protein (Cs) are negligible (C = 0, Cs = 0). The tested Kd values are
again 0.1 and 10 nM and various secretion rates close to the range of cytokine secretion (5 to
50 molecules/s) are tested.

An exemplary distribution of the concentration of the captured protein on the glass slide
on top of the micro-well is shown in figure 3.49. The average concentration of captured protein
on the glass surface on top of the micro-well after 4 hour of constant secretion is presented
in figures 3.50 and 3.51 for Kd values 0.1 and 10 nM respectively. Obviously, higher captured
concentrations are observed in the case of the antibody with higher affinity (Kd= 0.1 nM).
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Figure 3.43: The captured protein on the bottom of the micro-well over time is plotted (orange
curve) together with the unbound free protein in the volume (blue curve), for the model with
Neumann boundary conditions at the side edges of the medium and Dirichlet boundary condi-
tions at the upper edge, see parameter values in table 3.12. At the last time point the amount
of protein bound on the surface is larger than the amount of the free unbound protein.

In the same way as in the open array configuration, we compare the amount of protein
captured on the glass with the secreted unbound protein still in the medium inside the micro-
well volume. For the closed array the amount captured on the glass slide is always higher than
the free unbound protein (see figure 3.52 for Kd value of 0.1 nM and 3.53 for 10 nM).

In table 3.14, the ratio of the captured concentration on the bottom vs the concentration
of the unbound protein in the volume are summarised for both the open and the closed array.
It is now evident that the most important parameter for the open array is the affinity of the
capture antibody (Kd value) but for the closed array the most important parameter is the cell
secretion rate.

3.4.4 Comparison with the experimental results

With the above simulation results at hand the question that arises is whether it is possible to
detect cytokines secreted by a single cell in an open well format (or open array format). Let’s
test our worst case scenario, we have a cell that secretes at a very low rate (5 molecules/s)
but we have a capture antibody with a Kd value of 0.1 nM. In one hour, based on the above
simulations (parameters in table 3.13), the captured concentration at the bottom of the micro-
well will be 1.5235 × 10−10 mol/m2 or 92 molecules/µm2, which is below our detection limit
in a safe scenario (200 molecules/µm2, see section 3.3.4). If the Kd of the capture antibody is
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Figure 3.44: Smaller 3D geometry.

[captured]
[unbound] Open array Closed array

Kd = 10 nM, 5 molecules/s 0.16 87

Kd = 10 nM, 50 molecules/s 0.16 55

Kd = 0.1 nM, 5 molecules/s 15 87

Kd = 0.1 nM, 50 molecules/s 15 55

Table 3.14: Ratio of the captured protein concentration on the glass surface vs the free unbound
protein in the medium volume for open and closed arrays. The ratios were calculated based on
the simulation results.

10 nM then in one hour, we will have 1.0867× 10−12 mol/m2 captured protein on the bottom,
which is 0.65 molecules/µm2, and thus we need to wait at least 77 to 308 hours for a detectable
signal (depending on how we set our sensitivity limit, best case scenario or safe, see section
3.3.4).

Now, for the Jurkat cells we had at hand, if we assume uniform secretion among the popu-
lation, every cell secretes 15,000 molecules per hour (calculated from the experiments in 3.3.5).
If a Jurkat cell is in a cubic (50×50×50 µm) micro-well, we will have 6 molecules/µm2 captured
proteins in one hour, which means that with a capture antibody with a Kd value of 0.1 nM we
need 9 hours (or 36 hours for the safe scenario) for a detectable signal, while for a Kd of 10 nM
we need 50 hours (or 200 hours for the safe scenario).

3.4.5 Conclusion and Outlook

In this chapter a single-cell secretion assay based on micro-well arrays in combination with
ELISA was developed. Two main formats were studied, an open micro-well and a closed micro-

69



Figure 3.45: For a capture antibody at the nanomolar range (Kd = 10 nM), the secreted protein
captured on the bottom of the micro-well (blue curves) is 6 times less than the amount of protein
lost by diffusion (red curves). Solid lines correspond to a cell secretion rate of 50 molecules/s,
while dashed lines correspond to 5 molecules/s.

well format. Herein, we focused on the open micro-well format as it has certain key advantages,
such as the potential for (i) a dynamic readout of secretion events, (ii) longer observation times
and also (iii) adding any additional factor during the course of the readout.

Our first approach was to capture the secreted protein at the bottom of the micro-well.
However, it was challenging to detect the small amounts of proteins that are within the range of
the used sandwich ELISA format (see section 3.3.4). Due to the autofluorescence of the micro-
well material (PEG-DA), during epi-fluorescence illumination stray light creates an enhanced
background noise that interferes with the signal. Detection with TIRF illumination was also
challenging mainly due to the fast bleaching of the fluorophores (see section 3.3.4). Capturing
the secreted protein at the surface of the secreting cell, proved to be a more sensitive approach
leading to detectable signals (see section 3.3.5), thus we were able to detect in a dynamic fashion
the secretion of IL-2 from Jurkat cells. Our current experimental setup offers the potential to
monitor up to 12,000 single-cells in parallel in one single measurement that can comprise up to
8 different conditions.

We then performed numerical simulations using FEM to better understand the diffusive
transfer properties inside our open micro-well setup and to compare the amount of captured
protein with the closed micro-well format. We realized that the boundary conditions in our
model strongly affect the results, and we concluded that the Neumann boundary conditions
(∇C = 0) better describe our problem of how the secreted protein distributes. Based on
this model, we found that in the open-well format the affinity of the capture antibody greatly
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Figure 3.46: For a capture antibody at the picomolar range (Kd = 0.1 nM), the secreted protein
captured on the bottom of the micro-well (blue curves) is 15 times more than the amount of
protein lost by diffusion (red curves). Solid lines correspond to a cell secretion rate of 50
molecules/s, while dashed lines correspond to 5 molecules/s.

determines the concentration of the captured protein and hence the amount of the protein that
escaped the micro-well due to diffusion. When antibodies in the nanomolar range are used the
amount of protein lost is 6 times greater than the one captured, while for antibodies in the
picomolar range the amount of protein captured on the bottom is 15 times greater than the
amount lost by diffusion. On the other hand, for the closed micro-well format, in which the
secreted proteins are captured on the top surface of the micro-well, for a capture antibody in
the nanomolar range, the amount of protein captured is 55 times greater than the amount of
the unbound protein. Nevertheless, the most important parameter for the amount of protein
captured in the closed micro-well format is the cell secretion rate.

Detecting secreted proteins at the single-cell level is of great importance for a variety of
different applications, but especially for highly heterogenous response such as in the case of
immune cells. For instance, a single-cell secretion assay can provide useful data to investigate
the mechanism of IL-1β secretion from monocytes, which is still an open question [216–218]
besides its central role during inflammation [219]. NK cells, another class of immune cells,
interrogate target cells and either lyse them or secrete inflammatory cytokines. A single-cell
secretion assay can shed light on the functional responses of NK cells [39, 40] i.e. whether an
NK cell can both lyse a target and secrete a cytokine or whether it biases towards one function
only.
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Figure 3.47: Surface distributions of the captured protein for a capture antibody with Kd value
of 0.1 nM and cell secretion rate of 50 molecules/s. (a) Top view of the model: captured protein
distribution at the bottom of the micro-wells. No cross-contamination to the adjacent micro-
well is observed (b) Captured protein distribution at the walls of the micro-wells and the planar
surface.
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Figure 3.48: Geometry of the closed array model.

Figure 3.49: Distribution of the captured protein on the glass surface on top of the micro-well,
for secretion rate 50 molecules/s and Kd value of the capture antibody equal to 10 nM.
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Figure 3.50: Captured protein on the glass surface on top of the micro-well. The glass surface
is coated with antibodies with Kd = 0.1 nM, different secretion rates at the range of cytokine
secretion are plotted.
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Figure 3.51: Captured protein on the glass surface on top of the micro-well. The glass surface
is coated with antibodies with Kd = 10 nM, different secretion rates at the range of cytokine
secretion are plotted.
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Figure 3.52: In a closed array, for a capture antibody at the picomolar range (Kd = 0.1 nM), the
secreted protein captured on the glass on top of of the micro-well (blue curves) is higher than the
amount of free unbound protein in the micro-well volume (red curves). Solid lines correspond
to a cell secretion rate of 50 molecules/s, while dashed lines correspond to 5 molecules/s.
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Figure 3.53: In a closed array, for a capture antibody at the nanomolar range (Kd = 10 nM), the
secreted protein captured on the glass on top of the micro-well (blue curves) is higher than the
amount of free unbound protein in the micro-well volume (red curves). Solid lines correspond
to a cell secretion rate of 50 molecules/s, while dashed lines correspond to 5 molecules/s.
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Chapter 4

Application in Cancer
Immunotherapy

4.1 Cancer immunotherapy basic concepts

Mutations in the genome can result in the transformation of a normal cell to a tumour cell.
Our bodies possess both internal- and external-checking systems to monitor what happens in
our cells [220]. The internal-checking system comprises mostly of tumour suppressor genes,
that suppress tumour cells in a process called programmed cell death or apoptosis. In essence,
cells are programmed to die if any mutations are detected in their genes. If the tumour cells
escape the internal check they will face the external-checking system mediated by the immune
system. Cancer immunotherapy refers to any type of therapy that uses substances to stimulate
the immune system to help the body fight cancer. Types of immunotherapy include cytokines,
vaccines, and monoclonal antibodies or antibody derivatives.

Our immune system is able to detect even tiny changes in cells, by using receptors on
their surface that specifically bind to certain molecules. Usually these molecules are proteins
expressed by tumour cells. Tumour cells bear a lot of abnormal proteins due to errors in the
genome, or due to uncontrolled production of certain proteins that should have stopped being
expressed at earlier stages of cell maturation. Immune cells patrol our body and when they
detect cells with such transformed proteins, they are activated and eventually lyse the tumour
cell. Provided that our immune cells can recognise tumour cells, tumour cells cannot accumulate
and develop into a disease. Indeed, cancer can be described as a disease caused by unlimited
growth of tumour cells that escaped the immune system.

The idea of immunotherapy was first introduced in the 19th century when William Coley,
today acknowledged as the “Father of Immunotherapy”, attempted to utilise the immune system
for treating cancer [221]. He injected mixtures of live and inactivated Streptococcus pyogenes
and Serratia marcescens into patients and achieved even complete remission in several types
of malignancies, including sarcoma, lymphoma, and testicular carcinoma. However, the lack
of a known mechanism of action for “Coley’s toxins” and the risks of infecting cancer patients
with pathogenic bacteria caused oncologists to adopt surgery and radiotherapy as standard
treatments early in the 20th century [222]. The idea of immunotherapy in cancer drew atten-
tion again when Thomas and Burnet first proposed the theory of cancer immunosurveillance
in 1957 [223]. In the 1970s, Milstein and Koehler were the first to produce monoclonal anti-
bodies in the laboratory. They used hybridomas, antibody-secreting cell lines formed by the
fusion of lymphocytes with myeloma cell lines, which facilitated the use of antibodies in cancer
immunotherapy [224]. Rituximab was the first monoclonal antibody approved by the FDA for
the treatment of a cancer, non-Hodgkin’s lymphoma, and was introduced in 1997. Rituximab
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binds to CD20 on the surface of immature B cells and targets them for elimination by natural
killer cells (NK cells) [225]. In conclusion, immunotherapy regimens do not directly kill cancer
cells but enhances the immune system to recognise and eliminate them.

4.2 Cytotoxic immune cells

The main types of cytotoxic cells in our organism are the cytotoxic T-lymphocytes (CTL),
the natural killer (NK) cells and macrophages [226]. All of these cells can lyse malignant
host and foreign cells but they vary regarding their origin, phenotype, morphology and target
cell specificity. CTL cells play a critical role during the adaptive immune response. Adaptive
immune cells in general have a very limited specificity in recognising their targets and usually
have a delayed response since they need time to proliferate and produce the essential molecules
to attack their targets. CTLs recognise specific antigens presented together with molecules of
class I major histocompatibility complex (MHC). They contain typical lysosomal granules and
express a characteristic pattern of surface molecules. On the other hand, macrophages and NK
cells are a part of the innate immune response. Innate immune cells lack precise specificity
in recognising their targets but they respond fast against them. They recognise target cells
based on the general patterns of molecules expressed by target cells or pathogens. In the study
described in this chapter, NK cells were used as effector cells and they will be described in more
detail in the following section.

Natural Killer cells

NK cells recognise and eliminate infected and cancerous cells. All the cells in our body, ex-
cept from red blood cells, bare on their surface certain molecules called MHC-I. Infected and
cancerous cells usually stop expressing this molecular complex. NK cells recognise these cells,
form a specific one-to-one immune synapse with them, and ultimately eliminate them mainly
through the perforin/granzyme pathway [227, 228]. Perforin is a membrane-disrupting protein
that creates pores on the plasma membrane of the target cell [229,230]. Granzymes are a family
of structurally related serine proteases with various substrate specificities. They are released by
cytoplasmic granules and induce the apoptosis of the target cell either through the activation
of caspases (apoptotic cysteine proteases), or in the absence of activated caspases [230,231].

4.3 NK-cell cytolytic activity is enhanced by antibody-derived
proteins

Therapeutic antibodies are an established component of current clinical protocols for the treat-
ment of cancer, inflammatory and autoimmune disorders. Used in cancer therapy, they operate
essentially through one of the following mechanisms (or combinations of these): perturbation of
signaling for proliferation and survival of cancer cells; activation of complement dependent cyto-
toxicity (CDC); induction of antibody dependent cellular cytotoxicity (ADCC); and induction
of an adaptive systemic immune response (“tumor vaccination effect”) [232]. So far mono-
clonal antibodies, antibody-drug conjugates (ADCs), and radio-immunoconjugates (RICs) are
the most widely used formats, quite few of which have received approval for clinical use in on-
cology [233,234]. These agents can mediate a preferential elimination of tumour cells and at the
same time maintain an acceptable toxicity profile by targeting tumours through tumour-specific
or tumour-associated antigens. Although unmodified antibodies in the classic immunoglobu-
lin (IgG) format have been successful for selected types of cancer, including certain types of
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leukemias, lymphomas and breast cancer, their broader use for solid tumours is limited. En-
gineering of antibodies has led to the development of more broadly applicable derivatives such
as Fc-engineered and glyco-engineered antibodies, ADCs, RCs, bispecific antibodies, tandem
diabodies, single-chain triplebodies and a variety of bi- and multi-specific agents [235–238].
Such modified antibody-derived proteins frequently offer advantageous properties and function
with increased efficacy and selectivity. Some of these new molecular formats no longer carry
the full antigen-binding-domains of classic IgGs (Fv-domains), but employ engineered antibody
fragments, termed “single-chain Fragment variables” (scFvs), as recognition domains.

A first member of a class of such agents termed “bispecific tandem diabodies”, Blinatu-
momab, has received drug approval in 2014 [239–242]. These agents carry one scFv domain
specific for a target antigen on a tumour cell connected to a second scFv domain specific for
a trigger molecule on an effector cell, such as a cytolytic T-lymphocyte or an NK cell. These
agents bind in multiple copies to the cancer cell and connect it with an effector cell by forma-
tion of a synapse. This leads to an activation of the effector cell and lysis of the target cell.
Bispecific tandem diabodies are monospecific for the cancer cell (“mono-targeting”) and for the
effector cell. An extension of this molecular format are the “single-chain tandem triplebodies”
(in short triplebodies), which carry two scFv recognition modules for target antigens on the
cancer cell plus one scFv module specific for a trigger molecule on an effector cell. They can
be designed to bind either two copies of the same target antigen or one copy of each of two
different target antigens on the same cancer cell [243, 244]. The latter “dual-targeting” mode
of binding leads to an increased selectivity of lysis of cancer cells bearing both antigens in high
combined cell surface density in the presence of other cells carrying the same target antigens,
either alone or in combination, but in lower surface density [245]. This enhanced selectivity of
lysis is a unique and useful property of dual-targeting triplebodies, not shared with most other
cancer therapeutics. Another useful property of this molecular format is the option to design
triplebodies for the recruitment of a chosen type of effector cells, such as NK-cells, T-cells or
others [246,247].

Triplebody SPM-2 (33-16-123) was designed for the elimination of acute myeloid leukemia
(AML) cells. It carries one binding site for CD16 and two binding sites for the tumor-antigens
CD123 and CD33, present on AML cells [244–246] (see figure 4.1). Triplebodies can bind their
target cells either mono-valently with only one of the two target binding modules, leaving the
other non-engaged, or bi-valently, employing both target binding modules simultaneously. In the
latter case, an avidity-like, synergistic effect occurs and the overall affinity for bivalent binding
is greater than the combined monovalent affinities of the two component target-specific scFvs.
The equilibrium binding constant (Kd) drops by more than 2-fold, indicating co-operativity
of binding [243]. For a prototype triplebody the Kd value was about 3-fold lower for the
bivalent than for the monovalent binding mode. Surprisingly however, in this case the cytolytic
activity was improved by far more than 3-fold. Half-maximum lytic activity was reached for
the triplebody at approximately 25-fold lower concentrations than for the corresponding tandem
diabodies [243]. The half maximal effective concentrations (EC50) were 4 pM for this triplebody
and 110 pM for the corresponding tandem diabody in a redirected lysis (RDL) experiment [243].
It is not clear, how a 3-fold increase in the overall binding affinity (avidity) of a triplebody to
the tumour cell, relative to the corresponding tandem diabody, produces a 25-fold reduction
in the EC50 concentrations. Possibly the stronger binding leads to the generation of a more
intimate, “tighter”, less leaky synapse with a more efficient delivery of granzymes and perforins
from the effector into the target cell. The efficiency of lysis conceivably could be influenced more
by the tightness of the synapse than by the affinity/avidity of binding. Alternatively, dynamic
properties of the lytic process may be affected more than proportionally by the increased binding
avidity between effector and target cell mediated by the triplebody compared to the tandem
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diabody. A parallel between this situation and the case of the Fc-engineered antibodies may
be seen, where the increased cytolytic activity of the modified antibodies was explained by a
dynamic effect, the “kinetic boosting” of NK cells, a reduction of the average length of time
between two consecutive lytic events by the same killer cell [248].

Figure 4.1: SPM-2 triplebody mode of action; SPM-2 carries one binding site for CD16 and two
binding sites for the tumour-antigens CD123 and CD33, present on AML cells (“dual-targeting”
concept).

4.4 Utilisation of the 2D array to study Natural Killer cell me-
diated lysis

4.4.1 Conventional assays for measurements of NK-cell activity

Conventional cytolysis assays can be used for this purpose, but they require significant numbers
of the effector cells and are limited in the type of information they deliver. Standard bulk assays,
such as chromium 51- or calcein-release assays [245, 249, 250], produce statistically valid data,
because the results are averaged over approximately 5 x 104 target cells in one reaction plus a
corresponding number of effector cells, typically used in a 2- to 10-fold numerical excess. For
one measurement point, 105 − 106 effector cells are needed, and about 107 cells for a complete
experiment. Normal NK cell counts are 2.5 x 108/L in peripheral blood (PB). To obtain 107

NK cells from a healthy donor, 50 mL of PB are typically drawn for one complete cytotoxicity
experiment. At diagnosis, the counts of normal leukocytes in the bone marrow (BM) and PB of
an AML patient are often reduced by 10- to 20-fold. Consequently, monitoring the functional
activity of the remaining normal NK cells of an AML patient in the early stages of treatment

82



with standard bulk assays would require either far more than 50 mL of PB for each assay, or
the use of BM samples, which are difficult to procure. Therefore, new assays are needed, which
produce the equivalent information with far smaller numbers of effector cells.

Apart from these logistic limitations, release assays are difficult to use for reaction periods
longer than 4 hours, because spontaneous release of the label from target cells increases with
length of the assay and creates an unacceptably large background [245, 249, 250]. In addition,
these bulk assays lack detailed information about the interaction dynamics between individ-
ual target and effector cells as well as the role of antibody-derived agents in this process. A
direct visualisation of specific synapses between individual cytotoxic cells and their targets, fol-
lowed by cellular lysis, was first achieved through the combined use of fluorescent antibodies
specific for cell surface marker proteins and confocal microscopy [251, 252]. Sequential lysis of
successive targets by single effector cells was observed [253–255], but direct observation and
quantitative analysis of serial lysis remained difficult [256, 257] . Initially, cytotoxicity tests
were mainly performed with bulk assays such as 51Cr release, or with endpoint methods such
as flow cytometry [258, 259], which do not permit a dynamic analysis at the single-cell level.
Data acquisition with single-cell imaging techniques was slow, and these techniques were used
in a low-throughput mode [251,252]. High-resolution microscopy methods added later, permit-
ted more detailed studies of immunological synapses, but these methods produced only static
images of individual events and were not suited for high throughput analysis and studies of
dynamic processes [260–262].

4.4.2 Imaging approaches to visualise natural killing mode and ADCC

To overcome these limitations and to visualise cytolytic processes with small numbers of cells
and in great detail, time-lapse microscopy methods were implemented [248, 263–265]. These
methods permit investigators to follow lysis of individual target cells by individual effectors
at high throughput and for observation periods of 15 hours and beyond. A key improvement
enabling this progress was the design of structured micro-arrays of biocompatible polymers such
as PDMS on a microscope carrier surface [248,264,265]. Target cells were made to adhere to such
arrays and effector cells were allowed to move across the targets in the fluid phase. Effector- and
target-cells were confined to very small reaction volumes, and in combination with automated
time-lapse fluorescence microscopy, thousands of effector-target cell interactions were monitored
by imaging individual wells of the arrays. Such single-cell cytometry (SSC) methods have been
used to study both T-CTL and NK-cells [248, 264–266] and have produced important new
insights. For example, it was discovered that the release of interferon γ by T-CTL in contact
with virus-infected target cells, which is consistently detected as a correlate of T-cell activation
in conventional bulk assays, was not a tight correlate of T-cell activation when studied at the
single cell level [264]. Similarly, Fc-engineered antibodies were found in this way to have gained
their enhanced cytolytic potential by “kinetic boosting” of NK-cells, i.e. by shortening of the
time between serial lytic events [248].

The lysis of cancer cells by NK cells in their natural killing mode (in the absence of added
mediator proteins such as antibodies) was analysed in detail with SSC methods [266]. Low
magnification imaging was used to continuously track large numbers of individual NK cells and
to reveal statistics of lysis. In addition, low effector-to-target cell (E:T) ratios in the range
from 1:10 - 1:100 were used to follow serial lysis by individual NK cells. New parameters
characterising the lytic process emerged, including the “time to first kill” (the time needed
for an NK cell between first contact with a target cell and the onset of lysis); the “time to
subsequent lysis” in a sequence of serial lytic events; and the average and maximum numbers
of serial lytic events achieved by a single NK cell. NK cells, which had completed a first lytic
event on a confluent layer of targets, required a shorter length of time to the next event when
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they were still in contact with the previous victim than when this contact was lost. Therefore,
a “memory for prior lytic acts” appeared to exist in NK-cells, which were simultaneously in
contact with the previous and the next target cells, and this effect disappeared when contact
with the previous target was lost. This memory effect may reflect a state of preparedness of
an NK cell for lysis, augmented by continued contact with the previous target, an important
biological insight gained exclusively through the use of this new method. SSC techniques were
further used to classify NK cell subsets based on their migration behaviour and details of their
cytolytic activity [40,267]. Differences in the cytolytic potential of NK cells, in their migration
behaviour, and in their contact dynamics between IL-2-stimulated and non-stimulated cells
have been uncovered with SSC methods [40]. Different NK cell subsets and NK cell lines were
analysed in this manner, as well as IL-2-activated and unstimulated NK cells isolated from
healthy donors [41].

4.4.3 Time-resolved fluorescence microscopy for live cell monitoring

To explain the surprisingly strong increase in the cytolytic potential mediated by triplebod-
ies relative to the corresponding tandem diabodies, the use of SCC methods is expected to
contribute significantly. For this reason, here we have asked, whether SCC methods can be
employed to study of the mode of cytolytic action of NK cells mediated by triplebody SPM-2.
In the first stage of adapting the method to this problem and to simplify the experimental setup,
only the CD123-specific binding site of this agent was employed.

We used SCC to assess the efficacy of SPM-2-mediated killing of adherent human target cells
by primary human NK cells in a time-lapse mode (see figure 4.2). The main objective was to
establish an assay using arrayed target cells and to validate it by comparing results with results
obtained from standard calcein release assays. Comparable dose-response functions were indeed
obtained. Importantly, the SCC assay allowed for measurement of killing rates, which vary with
time and could not be measured so far by bulk release assays. Our results open the possibility
for future use of the assay to study not only the quality of primary effector cells from human
donors, but also to study mechanistic details of the mode of action of the therapeutic agent
on different subsets of target cells, including both bulk leukemia cells and minimum residual
disease (MRD) cells, considered to be closely related to the relapse-initiating leukemia stem
cells (LSCs).

4.5 Dynamic analysis of Natural Killer cell activation and killing

4.5.1 Experimental design

To quantify redirected lysis (RDL) of adherent target cells by NK cells mediated by triplebody
SPM-2, we developed a single-cell assay based on fluorescence microscopy and structured mi-
croarrays. We produced arrays of adhesion sites spaced by 60 µm and deposited on carrier
surfaces suited for microscopic observation. Adherent epithelial cells, the established human
cell line HEK293.123, were seeded on the micro-structured surfaces (figure 4.3a,b) and attached
in the desired pattern (figure 4.3c). A standardised batch of effector cells from a healthy human
donor was used. These were peripheral blood mononuclear cells (PBMCs) expanded in culture
for 20 days in the presence of IL-2, so-called LAK cells (Lymphokine Activated Killer cells), a
mixture of T-, NKT- and NK-cells containing 25% of activated NK cells [245, 246, 268]. Image
acquisition started immediately after addition of the NK cells plus the therapeutic agent or
controls. Images were acquired in 12 min intervals over a time course of 16 hours. The time-
lapse sequences were analysed by using custom-made image-analysis software integrating the
fluorescence intensities from each individual cell adhesion site at each time-point. The onset of
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Figure 4.2: Principle of the proposed SCC assay: target cells are arranged in arrays by micro-
structured adhesion sites, hence allowing for a facilitated assessment of the fraction of cells
specifically lysed by NK cells, which are added to the assay. We take time-lapse movies over a
period of 16 hours and follow the action of SPM-2 by detecting the fluorescence signal of the
cell death marker propidium iodide (PI).

cell death (apoptosis) was detected when a rapid increase in fluorescence intensity of the red
marker dye propidium iodide (PI) was recorded after it entered dying cells (figure 4.3e).

4.5.2 Comparison with the data from the bulk release assay validates the
SSC assay

To validate data acquired with the new assay, results produced with this assay and with the
standard calcein release assay were compared in benchmark experiments. When the same
reagents (batches of target cells, NK cells, mediator protein, buffers, cell culture media) and
and other conditions (same operators, same laboratory) were used in comparative experiments,
comparable data were obtained with both assays. To allow for better comparability, the NK-
cells used in both assays were preparatively enriched from IL-2-stimulated LAK-cells with the
help of immunomagnetic (MACS) beads. The enriched population contained (83.3 ± 4.6)% of
CD56 brightCD16 bright NK cells, which were used in a 2:1 effector-to-target cell (E:T) ratio.
Over a 16 hour measurement period, a maximum of about 35% of the cells analysed were
lysed in the SSC assay in the presence of triplebody SPM-2 (figure 4.4a, red open bars). This
number represents the “overall lysis” achieved by NK cells, i.e. the sum of their lytic activity
obtained in the “natural killer” mode (in the absence of added mediator proteins), plus the
incremental lysis achieved by addition of the mediator protein. The differential owed to the
mediator protein is referred to as the “specific lysis”. The fraction of specifically lysed cells (%
specific lysis) steadily increased with triplebody concentration and reached a plateau at about
25% for concentrations from 1 nM upwards (figure 4.4a, red closed bars). As a negative control
the triplebody SPM-1 (19-16-19; [243]) was used, a protein in the same molecular format as
SPM-2 and carrying the same scFv binding site for CD16, but with specificity for the target
antigen CD19, which is absent from the surface of HEK293.123 cells. In separate experiments
with CD19-positive target cells this control triplebody mediated cytolysis by NK cells [243],
(but it did not produce specific lysis of HEK293.123 targets in the SSC assay (figure 4.4a, black
open bars).

The fraction of specific lysis induced by SPM-2 showed a comparable dose dependence in
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Figure 4.3: Experimental set-up of the single-cell cytometry (SCC) assay. Chemically modified
patterned surfaces (arrays) were prepared on 6-channel microscope slides (A). Protein-coated
arrays were generated by plasma-induced patterning. B: Squares with a side-length of 30 µm
were coated with fibronectin (here fibronectin labeled with Alexa Fluor 488) and the backfilling
(black) area with PLL(20k)-g(3.5)-PEG(2k) (PEG(2)). Each channel on the carrier surface,
shown in (A), contained 4400 adhesive squares for cell attachment. In (B) a part of an overview
microscopic scan of one coated channel of the slide is shown. C: Arrays of adherent HEK293.123
target cells were prepared on the chemically modified surfaces (surfaces seeded with cells have
adhesive squares with unlabelled fibronectin). NK cells were added and squares occupied by
single target cells (framed in blue) were selected and tracked in a time-lapse mode. NK cells
were identified cinematographically by their size and motility. The distance between the squares
was 60 µm in our experiments, but arrays with different spacing can be produced. D: The
cell-impermeable red fluorescent marker PI (propidium iodide) was used to identify dead cells.
Overlay of brightfield and PI emission is presented for the first and last frame of a measurement.
E: The mean fluorescence intensity of 40 cells over time is plotted (in the presence of 10 nM
SPM-2 triplebody). Each track (“fate plot”) represents the fluorescence intensity of one cell in
the PI channel. Tracks exceeding an intensity threshold represent lysed cells. Two exemplary
time-courses of two target cells that were lysed are highlighted in red. Reprinted with permission
from [269].

the SSC- and the calcein-release assays (figure 4.4b). In both cases specific lysis reached plateau
values for concentrations from 1 nM upwards, and the shape of the curves was similar. The
EC50 values derived from both curves were (10.2 ± 8.0) and (12.2 ± 0.12) pM for the calcein-
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and the SCC assays, respectively. The errors represent the standard deviation computed by
statistical modelling of the two assays (see in [269]). While the EC50 values derived from
both data sets were very similar, the maximum fractions of specifically lysed cells were (48.1 ±
2.3)% for the calcein assay and (24.5 ± 1.4)% for the SCC assay. This difference most likely
is explained by the fact that in the calcein assay both effector and target cells were present in
the fluid phase, whereas in the SSC assay the targets were anchored to the substrate and were
for this reason less accessible to the effector cells. In addition, in the SCC assay the density of
cells per unit volume was less than half of the density reached in the calcein assay. However,
this quantitative difference in the maximum levels of specific lysis recorded with both assays
does not affect the key conclusion that the SSC assay is validated by this comparison, because
it captured the dose dependence of the triplebody’s killing potential in the same qualitative
manner as the calcein assay.

The dependence of specific lysis on the E:T ratio was measured with both assays, to further
characterise the quality of cytolysis assays (figure 4.5). For this experiment the triplebody was
used in a constant saturating concentration of 1 nM, while the E:T ratios were varied. Effector
cells were MACS enriched LAK cells with a (90.2 ± 3.0)% content of CD56 brightCD16 bright

NK cells. The fraction of specifically lysed cells increased with the E:T ratio up to the largest
ratio measured (5:1) in a steady manner, similar dependence was observed in other cytolysis
assays (figure 4.5). A further increase for even greater E:T ratios may still be observed. The
extent of specific lysis for E:T values <1 was lower than expected based on the landmark study
of NK cells in their natural killer mode [266], where serial lysis was readily observed for E:T
values as low as 1:10 and 1:20. The difference is probably due to the far lower density of target
cells in our SSC assays than in the landmark study, where confluent monolayers of target cells
were used. In the published study the “memory for prior lytic events” [266] was significant,
whereas under our SSC conditions it was probably less important due to the greater spacing of
the target cells. The dependency of the calcein assay on the E:T ratio was not measured here
again, because the results were known and were qualitatively similar to those shown for the
SSC assay (figure 4.5, [244]). From this similarity we conclude, that the typical dependency of
specific lysis on the E:T ratio is another experimental result validating the SSC assay.

4.5.3 Changes in the rate of lysis occur over the duration of a 16 hour reac-
tion

The SCC assay allows us to monitor target cell lysis over long periods of time. Taking advantage
of this new capability, we measured not only the cumulative number of lysed cells integrated
over the entire measurement interval, but also killing rates, i.e. the number of lytic events per
unit of time, for example lytic events per hour (figure 4.6). The assay allowed us to follow
the kinetics of induction of death of individual target cells (“fate plots”) by measuring the
fluorescence intensity emitted by the red marker PI as a function of time (figure 4.6a,b). The
discrete measurement values recorded at times t1, t2, t3, t4, t5, t6 etc. were fitted by a curve,
and for different individual cells these “fate plots” had different shapes. The transition to
cell death was accompanied by a stepwise increase in PI fluorescence intensity shown for 3
randomly selected individual cells (figure 4.6b). For one of these cells (red curve in figure 4.6b)
the corresponding time-lapse frames at selected time points are shown in figure 4.6a. From such
data, the cumulative fraction (percentage) of lysed cells was computed and plotted for 3 different
concentrations of SPM-2: 0, 1 and 100 nM (figure 4.6c). The percentage of lysed cells is the
number of cells lysed relative to the total number of target cells analysed for this experimental
condition. The level of lysis seen for 0 nM of the agent represents natural killing by the NK
cells present in the reaction, and the cumulative percentage of these natural killing events also
increased with time (figure 4.6c, yellow plot). By subtracting this value from the “overall lysis”
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values, the cumulative percentage of “specifically lysed cells” is computed. The curves shown
in figure 4.6c represent the cumulative fraction of overall lysed cells before subtraction of this
contribution. For the purpose of computing rates of lysis, it is sufficient to work with the “overall
lysis” values, because the amount of natural killing by the NK cells is a constant background,
which does not influence the rate of specific lysis. Rates of specific lysis were computed from
the cumulative curves such as those shown in figure 4.6c by computing the first derivative with
respect to time. Rates of specific lysis determined in this manner are plotted in figure 4.6d
over the course of 16 hours for various SPM-2 concentrations and for constant numbers of NK
cells. In the absence of NK cells (left panel in figure 4.6d labeled “medium”) the rate of lysis by
NK-cells was obviously zero. In the absence of SPM-2 and for low concentrations of the agent
(0.01-0.1 nM) the killing rate of the NK cells was almost constant, with about 40-50 cells killed
per hour (figure 4.6d, 2nd, 3rd and 4th panels from the left). At higher concentrations, from
1-100 nM, the triplebody clearly affected the activation of the effector cells and the killing rate.
The killing rates increased until a maximum was reached after several hours and then gradually
decreased. This maximum rate was greater for higher concentrations of SPM-2 (50 and 100 nm,
last 2 panels to the right in figure 4.6d) than for intermediate concentrations (0.1 to 10 nM;
central panels in figure 4.6d), and therefore, the agent clearly influenced the maximum killing
rate of the NK cells. The maximum rate also occurred earlier at high concentrations of the
agent than at lower concentrations (figure 4.6d).

Importantly, the rates of lysis measured for the 1st hour of the reaction were elevated (high-
lighted in yellow in figure 4.6d) and dropped strongly in the 2nd hour for all tested concentrations
of the mediator protein, even without added mediator protein (figure 4.6d, 2nd panel from the
left). Thereafter the rates slowly increased until maximum rates were reached between 5 to10
hours into the reaction, and subsequently the rates were reduced again.

Interpretation of the observed changes in cytolytic reaction rates

The high reaction rates observed in the 1st hour must be due to an activity of the NK cells in
their natural killer mode, because they were observed even in the absence of added triplebody
(figure 4.6d, 2nd panel from the left). The likely explanation is, that the NK-cells used in these
experiments were pre-activated LAK cells, stimulated by 20 days of culture in the continued
presence of IL-2. They were “ready to kill” and loaded with granules filled with perforins
and granzymes [230]. We observed that the NK cells settled down during the first hour of the
reaction and after 1 hour almost all were deposited on the carrier surface. We propose that upon
first contact with the target cells, the NK cells degranulated in a first burst in their “natural
killing” mode, without any influence of added mediator protein. Thereafter the NK cells were
likely exhausted and must have replenished their storage granules. The triplebody must have
played a role either in the replenishment process or the subsequent lytic events or both, because
the maximum rates of lysis were clearly augmented by the triplebody in a dose-dependent
manner (figure 4.6d). The observed increase in lytic rates with time suggests an influence of the
triplebody on the speed of replenishment of the lytic granules, or on other metabolic processes
preparing the NK cell for the next degranulation event and on an acceleration of the cadence
of lytic bursts. If we were to determine the mean interval between first and subsequent killing
events for individual NK cells used in E:T ratios much less than 1, then we would expect to find
a shortening of these intervals in function of the dose of added triplebody, a “kinetic boosting”
of NK cytolysis as previously reported [248, 266]. The decline of reaction rates observed after
the maximum values were reached a few hours into the reaction is more difficult to explain. A
possible influence may come from the internalisation of CD123 from the surface of the target
cells mediated by the triplebody [270]. At the 1 nM concentration of triplebody used in these
experiments, 600 million molecules of triplebody are present per microliter of reaction fluid.
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If a few hundrets of target cells are covered by 1 microliter of fluid, each carrying 360,000
copies of CD123 on its surface, then this would amount to a few million molecules of CD123
initially exposed on the surface of this pool of targets facing 600 million molecules of triplebody.
Consequently, under these saturating concentrations, an approximately 100-fold (or greater)
numerical excess of triplebody in the fluid phase is present over the number of target antigens
on the target cell surface. Under these circumstances, most CD123 molecules on the surface
will be occupied by a triplebody molecule and will be internalized within approximately 30 to
60 minutes, a process called “down-modulation of the target antigen”. Some of the internalised
CD123 molecules will be recycled to the surface, and new synthesis of CD123 will also occur,
but these resurfacing molecules will again be rapidly re-internalised, because the 100-fold excess
of triplebody in the fluid phase will not be exhausted. This recycling and re-internalisation will
occur continuously over the 16 hour measurement period, and it is therefore not obvious, how
this process could contribute to the observed reduction of reaction rates after the maximum
has been reached. As only less than half of the target cells are killed over the entire reaction
period, it is difficult to conceive that the number of available target cells, which was reduced by
less than 2-fold over this time, would explain the observed 2-fold drop in the rate of lysis. More
likely, in addition to the contribution by the loss of target cell numbers, the targets must also be
in a state of “preparedness” for lysis, and this preparedness may decrease with time in a manner
influenced by the concentration of the triplebody. A mechanistic explanation for the decrease
in reaction rates after reaching the observed maximum a few hours into the reaction interval is
presently not obvious. If the explanation offered above for the increase in rates during the first
few hours of the observation interval (on the way to the maximum) is correct, namely that a
“kinetic boosting” occurs with a concurrent shortening of the time interval between successive
lytic events of a single NK cell, than the observed slowing down of the reaction rates after
reaching the maximum may be accompanied by a corresponding “kinetic dampening” of the
NK cells, i.e. an increase in the median length of time between two consecutive lytic events of a
single NK cell. The time-resolved SSC method presented here is sufficiently powerful to permit
a direct experimental test of the validity of this hypothesis.

Another advantage made possible by the use of these time-resolved SSC methods is, that
we now have learned that the initial burst in lysis during the first hour is due to a natural
killing process, and not to a specific effect of the added mediator protein. Therefore, we can
now subtract this contribution and study the specific effect of the mediator protein with greater
precision. The use of a standard release assay would not have permitted us to make this
observation and to correct the data for this effect. The uncorrected data would have been
skewed and would have informed us with lesser precision about the effects of the triplebody
than the corrected data obtained with the new method.

The first hypothesis proposed above was, that the enhanced cytolytic activity of dual-
targeting triplebodies over the corresponding mono-targeting bispecific diabodies was due to
“kinetic boosting”, for example by a shortening of the median length of time between two suc-
cessive lytic events of a single NK cell. A second hypothesis to explain this enhanced activity
is also based on a dynamic argument. It proposes that the dual-targeting agents enhance the
probability for a “productive encounter” between an NK cell and a target cell and similar to
the first hypothesis, it can only be tested by experiments employing time-resolved methods. We
define as “productive encounter” a long-lasting association between an NK and a target cell,
while a non-productive encounter, describes that an NK cell made brief contact with a target
cell, then detached, and cell death did not follow. In our microscopic time-lapse studies of single
NK cells only about 1/3 of all documented encounters were productive. The second hypothesis
posits, that the percentage of productive encounters increases with increasing concentrations
of the triplebody and is greater for the triplebody than for the corresponding mono-targeting
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bispecific diabodies. We have not yet measured this dependence directly, but these measure-
ments are now possible with the available method. Binding of the two cells can be described
by an “on-rate” and an “off-rate”, and it appears to be intuitively plausible that these rates
should be influenced by the triplebody, because it acts like a glue and should reduce the off-
rate. As the triplebody has a higher avidity for the target cell than the corresponding bispecific
diabodies carrying only one binding site for the target cell, it appears further likely that the
off-rate should be lower for the triplebody than for the mono-targeting corresponding tandem
diabodies, because the affinity expressed through the equilibrium rate constant of binding is the
ratio between off-rate and on-rate of binding. As the on-rate almost always remains constant,
the key variable affecting Kd and affinity is the off-rate, and therefore, for the triplebody with
the greater avidity of binding to the target cell, we would anticipate to see a slower off-rate of
the NK cell from the target, and thus a higher percentage of productive encounters.

However, this argument, although it is intuitively appealing, is not correct, because the
known affinities and avidities of the triplebody describe only its binding to the target cell, but
not the binding of an NK-cell to a target cell decorated with the triplebody. Other parameters
than the mere affinity of the triplebody for the target cell will likely affect the efficacy of binding
of an NK cell to the decorated target cell, such as the affinity of the CD16-binding module of the
triplebody for the NK cell and others. It is quite conceivable that the triplebody once bound
to the target cell induces secondary changes in the surface density of receptors and ligands
on the target cell, which then indirectly influence the establishment of a productive encounter
with the NK cell. Consequently, in order to test the validity of this second hypothesis, it
remains necessary to perform direct measurements of the success rate of the encounters and of
the influence of a triplebody on this rate as opposed to the corresponding tandem diabodies
and other control proteins. The new assay therefore offers the opportunity to make the direct
experimental observations needed for a critical test of this second hypothesis.

4.5.4 Natural killing dynamic analysis against non-adherent AML target
cells

Samples of primary cancer cells derived from hematologic malignancies consist of non-adherent
cells. To render the proposed assay suitable for non-adherent cells we used a second version of
the chip, in which instead of fibronectin square patterns we have patterns coated with antibodies
of the IgM isotype (see section 2.2.2). To test this second version we measured the natural killing
potency of primary NK cells from another healthy donor on the human AML-derived target
cell line MOLM-13.

A suitable antibody candidate for capturing the MOLM-13 cells on the micro-patterns,
without interfering with the NK cells, is an anti-CD15 antibody. The CD15 myeloid marker is
present on the surface of the MOLM-13 cells [80] but not on the primary NK cells (see section
2.2.2). Square patterns of 25 µm were used for the MOLM-13 cell line, as its size is smaller
and smaller square patterns lead to a higher percentage of single-cell occupied patterns. Even
though in the case of non-adherent cells smaller distances among the square patterns would be
possible to be used, we chose the 60 µm distance to be consistent with the measurements of
the adherent target cells. In figure 4.7a an array of MOLM-13 cells is presented with NK cells
added. Since, the size and the morphology of the MOLM-13 cells is very similar to the one of
the NK cells, their staining is essential to successfully distinguish them.

We measured the natural killing of NK cells alone without addition of a mediating protein
to test the proof of principle of the above-described version of the assay for non-adherent cells.
For these measurements, NK cells were derived from a second healthy donor and activated
as previously described [245, 268]. Preparation of the samples, image acquisition and analysis
were performed as for the measurements with the adherent HEK293.123 cell line. The E:T
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ratio was 2:1 and after a 16-hour measurements period 2.6% of the cells analysed were lysed
(figure 4.7c). This percentage was lower than the average natural killing of the first donor at
the same E:T ratio (8.4%, figure 4.4a) which probably reflects donor-to-donor variability issues
and the different type target cells used. Time-lapse frames of an NK cell killing a MOLM-13
are presented in figure 4.7b. The variation of the killing rate over the course of 16 hours for
the natural killing of the NK cells measured is presented in figure 4.7d. A slightly higher killing
rate during the 1st hour is also observed in this case and reflects the preceding stimulation of
the NK cells with IL-2 as was extensively discussed above.

4.5.5 Conclusions and Outlook

Herein, single cell arrays combined with time-resolved fluorescence microscopy methods were
used to study the interaction of primary human NK cells with human target cells mediated by
triplebody SPM-2, an antibody-derived protein, which recruits NK cells for target cell lysis.
The arrayed pattern of target cells allowed for automated counting of lytic events. Lysis de-
pended on the dose of the agent and the E:T ratio in a manner typical for standard cytolysis
assays, and consequently this new assay was validated relative to existing standard procedures
(calcein release assay) by direct comparative analysis. Use of the new SCC assay revealed so
far unreported changes in the killing rate over long-term reaction periods (16 hours). These
changes may be explained by changes in the median length of time between two successive
lytic events of a single NK cell, achieved through the action of the triplebody, similar to the
“kinetic boosting” of NK cells proposed previously to explain the enhanced cytolytic potential
of Fc-engineered therapeutic IgG antibodies [248].

The dependence of target cell lysis on the dose of a therapeutic agent and on the E:T ratio
are important characteristics of standard cytotoxicity assays and both properties are routinely
monitored in academic research and commercial drug development. However, the standard
assays are so-called “bulk assays”, as they produce data averaged over a population as well
as a time period. In contrast, the SSC assay produces data with spatial as well as temporal
single cell resolution. The former provides detailed information on the interaction between a
target and an effector, while the latter unveils the dynamics of this interaction. To better
understand the mode of action of novel therapeutics based on the recruitment of effector cells
and the functional properties of the effector cells involved, it is essential to have the ability to
study also the dynamics of these processes. An important example illustrating this need is the
“kinetic boost” of the NK cell function, a shorter time interval between sequential lysis events,
induced by Fc-engineered antibodies [248]. This dynamic phenomenon could only be discovered
by using time-resolved methods, but not with the standard static cytotoxicity assays or affinity
measurements of optimised antibodies. An additional advantage of single cell assays is that
they generate statistically significant data with substantially smaller numbers of effector cells.
For an SCC assay typically only 2 x 104 of NK cells are needed per measurement point, 5-times
fewer than the >105 cells needed for each measurement point in a calcein release assay. Patient-
derived NK cells are a scarce resource, in particular to monitor disease status and therapy
outcome for AML patients, as outlined in the introduction. Further miniaturisation of the new
method is possible, so that reliable measurements may become possible with as few as 5,000 -
10,000 NK cells. Hence chip-based single cell assays are valuable for clinical monitoring of the
patients NK response and for the choice of personalised treatment for individual AML patients.
They can also be applied to T-CTL as effector cells and triplebodies and other antibody-derived
proteins recruiting T-cells as cytolytic effectors [240,271,271].

Assays employing spatially arrayed target cells can also be useful to scrutinise questions
regarding the timing in cell-cell recognition and immune response, such as the “memory” effect
described for NK cells [248]. Also, in the experiments presented here the full potential of the
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dual-targeting triplebody SPM-2 has not yet been analysed. Here we have so far only used
the CD123-binding site of this agent. The effect of simultaneous engagement of both binding
sites by one copy each of CD33 and CD123 on the lytic activity of NK cells can be studied.
Dual-targeting renders SPM-2 agent particularly promising for the therapy of AML because
virtually all patients expressed either one or the other of the two antigens [272]. Indeed, in cell
culture cytolysis assays with primary cells from a broad range of AML patients with different
subtypes of AML and with a standard batch of NK cells from an unrelated healthy donor,
all samples showed very effective lysis. This is an unusually high degree of responsiveness,
considering that the response rate to one of the best antibody-derived agent available so far for
the treatment of AML (Mylotarg™, [273]) was in the range of 40% for blasts from patients with
different subtypes of AML [274]. Even blasts from patients with AML subtypes that typically
show a poor response to conventional chemotherapy were lysed efficiently by SPM-2 plus NK
cells (T. Braciak, unpublished data). Moreover, the pair of (CD33 plus CD123) is highly
expressed on AML leukemia stem cells (AML-LSCs) but far less on normal haematopoietic
stem cells (HSCs [275–277]). Consequently, a therapeutic window appears to exist, which
may permit a preferential elimination of the AML-LSCs over the normal HSCs of the patient
and a reconstitution of the patient’s haematopoietic system after the end of therapy from the
patient’s own HSCs, without the need for an allogeneic or autologous stem cell transplantation.
If this could be achieved, then this result would constitute major progress in the therapy of
AML. For this reason, in the future it is important to study in detail not only how a patient’s
autologous NK cells in conjunction with this agent lyse the patient’s bulk AML blasts, but
also whether and how they lyse subsets of blasts progressively closer and closer to the leukemia
initiating cells (LICs) and relapse initiating MRD cells, which are likely to be encompassed in
the CD34+CD34-CD123high compartment of BM and PB cells, which comprises between 0.01
and 67% of all malignant cells for different AML patients [278]. To this end, cytolysis assays with
rare subsets of patient-derived AML cells and NK- or T cells are required, which will be available
in small numbers only. Finally, agents targeting the same pair of antigens, but recruiting T-
cells as cytolytic effectors are also under development [279], and similar experiments as those
outlined above will also need to be performed with the corresponding T-cell-recruiting agents in
order to find the best suited agent for individual patients in the sense of a personalised medicine.
Developments are well under way that personalised medicine will clearly become more prevalent
in the future. Time-resolved SSC assays and their further refinements are likely to unravel the
capabilities of Fc engineered antibodies and other bi- and tri-specific antibody-derived agents
such as the triplebodies described here for enhanced target cell lysis. For all these reasons, they
offer the potential to assist treatment decisions and monitoring of treatment success in cancer
therapy.
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Figure 4.4: Validation of the SCC assay by direct comparison with the bulk assay. (A) Data
obtained with the SCC assay. Red open bars: percentage of dead target cells relative to the total
number of target cells analysed (“overall lysis”). Red filled bars: percentage of specific lysis
induced by SPM-2 after subtraction of natural killing by NK cells alone (the numbers shown for
0 nM concentration). Black open bars: overall lysis produced by addition of control triplebody
SPM-1 (19-16-19), a triplebody in the same molecular format as SPM-2, but recognising the
target antigen CD19, which is absent from HEK293.123 cells. This control was not performed
for 50 and 100 nM concentrations of the control protein. Medium control: without added NK
cells and triplebodies; this control measures the extent of spontaneous death of target cells over
the measurement interval. The averaged value of all the dose-dependent measurements is shown.
(B) Comparison of data obtained with the SCC assay (red circles) over a 16 hour measurement
and the bulk assay (calcein release assay; blue circles) over a 4 hour period. Data points of the
calcein assay represent the mean value of the percentage of specific lysis averaged over triplicate
reaction wells on the same microtiter plate, and error bars represent the SEM (standard error
of the mean). Effector cells were MACS-purified NK cells from a healthy donor, pre-stimulated
with IL-2 (LAK cells), and seeded at an E:T ratio of 2:1. Reprinted with permission from [269].
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Figure 4.5: Dependence of specific lysis measured with the SCC assay on the E:T ratio. Lysis
induced over a range of different Effector to Target (E:T) cell ratios by SPM-2 at a 1 nM
saturating concentration. Data points are fitted to an exponential curve. Effector cells were
MACS-purified NK cells from a healthy donor, pre-stimulated with IL-2 (LAK cells). Reprinted
with permission from [269].
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Figure 4.6: Dynamic analysis of lytic events with the SCC assay. (A) Time-lapse images of
an exemplary target cell being killed by an NK cell (arrow). The progressively increased PI
fluorescence intensity reflects progressive nuclear membrane disintegration (irreversible apop-
tosis). (B) PI fluorescence intensity of 3 exemplary target cells over the course of 16 hours,
including the cell shown in (A) (red curve). Raw intensities were fitted with the Hill Equation.
(C) Cumulative percentage of lysed target cells for 3 different concentrations of SPM-2: 0, 1
and 100 nM. Data points were fitted with the sigmoid function. (D) Killing rate as a function
of time for increasing concentrations of SPM-2 by a constant number of NK cells. The left
panel (“medium”) shows the dynamic of spontaneous cell death events, in the absence of NK
cells. Data points were fitted with a log normal distribution curve. Data points for the first
hour of the reaction (highlighted in yellow) represent natural killing by the NK cells but not
specific lysis mediated by the triplebody. These events also occurred in the absence of added
triplebody (2nd panel from the left), and were therefore excluded from the fitting. Reprinted
with permission from [269].
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Figure 4.7: Variant of the SCC assay adapted to non-adherent target cells. Arrays of antibody-
coated square patterns were generated with the same procedure as the fibronectin arrays, by
substituting fibronectin with an anti-human CD15 antibody. Arrays of stained MOLM-13 cells
(CellTracker™Green CMFDA) were prepared on the chemically modified surfaces and then NK
cells (unstained) were added (A). (B) Time-lapse images of an exemplary MOLM-13 target
cell (green) being killed by an NK cell (unstained). The progressively increased PI fluorescence
intensity reflects progressive nuclear membrane disintegration (irreversible apoptosis). (C) Data
obtained with the SCC assay showing the natural killing potency of NK cells against MOLM-13
cells. The bars represent the percentage of dead target cells relative to the total number of
target cells analysed. (D) Dynamic analysis of the natural killing mode of NK cells against the
MOLM-13 target cells. The right panel (“medium”) shows the dynamic of spontaneous cell
death events, in the absence of NK cells. Reprinted with permission from [269].
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Chapter 5

Application in Cell Cycle and
Chemotherapy

5.1 Cell Cycle

Cell division enables the generation of a whole organism from just a single cell, and it is a
fundamental part of the cell cycle. As simply stated by Paul Nurse (Nobel Prize in 2001 shared
with Leland Hartwell and Timothy Hunt for groundbreaking discoveries on the eukaryotic cell
control on its reproduction), the cell cycle is a series of events from the “birth” of a cell to its
later division into two cells. In every cycle the cell has to precisely replicate all of its genes
and then separate them precisely into two progeny cells. If these two steps are not executed
accurately, the outcome is the generation of genetic unstable cells, i.e. cells with wrong number
of chromosomes, or with chromosomes with altered or rearranged parts, which can lead to
cancer.

5.1.1 Normal cell cycle

In somatic cells the cell cycle is divided into four main periods, the G1 phase (G comes from
gap), the S phase (S comes from synthesis), the G2 and the mitotic (M) phase (see figure 5.1).
The G1, S and G2 phases consist the interphase, which accounts for about 90% of the cycle.
During the interphase the cell grows by producing proteins and organelles and accumulates the
nutrients needed for mitosis. Especially, during the S phase, the DNA synthesis phase, the
cell duplicates its chromosomes. Thus, a cell grows (G1), continues to grow as it copies its
chromosomes (S), grows more as it completes preparations for cell division (G2) and divides
(M). The daughter cells may repeat the process. A human cell might divide every 24 hours.
For that cell cycle duration the M phase will last only for 1 hour, while the S phase might take
about 10 to 12 hours or about half the cycle. The rest of the time will be for the gap phases
both G1 and G2. The G2 phase usually takes 4 to 6 hours, while the G1 phase is the most
variable in length in different types of cells.

Even though a lot of molecular changes occur during the interphase the morphology of the
cell remains the same during this period. On the other hand during mitosis the morphology of
the dividing cell start to change. Mitosis refers to the division of the nucleus and it is followed
by cytokinesis, which is the division of the cytoplasm. It is conventionally separated into five
stages, namely prophase, prometaphase, metaphase, anaphase and telophase. Overlapping with
the latter stages of mitosis, cytokinesis completes the mitotic phase. During prophase, the
replicated chromosomes, which consist of two closely associated sister chromatids, condense.
Outside the nucleus, the mitotic spindle assembles between the two centrosomes that have begun
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Figure 5.1: Schematic representation of the cell cycle. The cell cycle starts with the G1 phase
and then the S, G2 and M phases follow.

to move apart. Then prometaphase starts abruptly with the breakdown of the nuclear envelope.
Chromosomes can now attach to spindle microtubules via their kinetochores (specialised proteins
located at the centromere) and undergo active movement. Next, during the longest stage of
mitosis, i.e. the metaphase, the chromosomes are aligned at the equator of the spindle, midway
between the spindle poles. The paired kinetochore microtubules on each chromosome attach to
opposite poles of the spindle. Then follows the anaphase, during which the sister chromatids
synchronously separate, and each is pulled slowly toward the spindle pole it is attached to. The
kinetochore microtubules get shorter, and the spindle poles also move apart, both contributing
to chromosome segregation. Anaphase is the shortest stage of mitosis, often lasting only a few
minutes. During telophase, the two sets of chromosomes arrive at the poles of the spindle. A
new nuclear envelope reassembles around each set, completing the formation of two nuclei and
marking the end of mitosis. The division of the cytoplasm begins with the assembly of the
contractile ring. In the end, at cytokinesis, the cytoplasm is divided in two by the contractile
ring made of actin and myosin filaments, which pinches in the cell to create two daughters, each
with one nucleus.

Molecular control system of the cell cycle

But how is the cell cycle regulated in each individual cell? We know for a fact that the frequency
of cell division varies with the type of cell. For example, human skin cells divide frequently while
on the other hand some of the most specialised cells, such as muscle and nerve cells, do not
divide at all in a mature human. The timing and rate of cell division of each different cell type
is crucial to normal growth, development and maintenance. These cell cycle differences among
different cell types in one organism are regulated at the molecular level. Indeed, the cell cycle is
driven by specific signalling molecules present in the cytoplasm. This cyclically operating set of
molecules triggers and coordinates key events in the cell cycle. The cell cycle control system is
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subject to both internal control and external adjustment, being regulated at certain checkpoints
by both internal and external signals.

A checkpoint in the cell cycle is a control point where stop and go-ahead signals can regulate
the cycle. Many signals registered at checkpoints come from cellular surveillance mechanisms
inside the cell; the signals report whether crucial cellular processes that should have occurred by
that point have in fact been completed correctly and thus whether or not the cell cycle should
proceed. Checkpoints also register signals from outside the cell. In mammalian cells the most
important checkpoint is the G1 one (also called restriction point). If a cell receives a go-ahead
signal at the G1 checkpoint, it will usually complete G1, S, G2 and M phases and divide. If
it does not receive a go-ahead signal at that point, it will exit the cycle, switching into a non
dividing state called the G0 phase. Most cells in the human body are in the G0 phase.

The cell cycle is actually coordinated by rhythmic fluctuations of the abundance and activity
of the cell cycle control molecules present in the cytoplasm. These regulatory molecules are
mainly two types of proteins, namely protein kinases and cyclins. Protein kinases are enzymes
that activate and inactivate other proteins by phosphorylating them. Specific protein kinases
give the go-ahead signals at the G1 and G2 checkpoints. Many of these kinases are present
at a constant concentration in the growing cell, but much of the time they are in an inactive
form. To be active such a kinase must be attached to a cyclin, a protein that its concentration
cyclically fluctuates in the cell. Because of this requirement, these kinases are called cyclin-
dependent kinases (cdks). The activity of a cdk rises and falls with changes in the concentration
of its cyclin partner. For the G1 checkpoint, animal cells have at least three cdk proteins and
several different cyclins that operate at this checkpoint. The fluctuating activities of different
cyclin-Cdk complexes are crucial to control all the stages of the cell cycle.

5.1.2 Disruptions of the cell cycle during cancer

The normal cell cycle described above is disrupted during cancer, as cancer cells grow and
divide out of control. Cancer cells exhibit neither density-dependent inhibition nor anchorage
dependence. Density-dependent inhibition is when crowded cells stop dividing while anchorage
dependence refers to the fact that normal cells in order to divide must be attached on a substrate.
Moreover, cancer cells do not stop dividing when growth factors are depleted, indicating that
they may produce growth factors themselves or that they may have an abnormality in the
signalling pathway that conveys the growth factor’s signal to the cell cycle control system even
in the absence of this growth factor. Another possibility is that the cell possesses an abnormal
cell cycle control system. Important differences between normal cells and cancer cells indicate
derangements of the cell cycle. If and when they stop dividing, cancer cells do so at random
points in the cycle, rather than at the normal checkpoints. Furthermore, cancer cells can go
on diving indefinitely in culture if they are given a continuous supply of nutrients. Conversely,
nearly all normal mammalian cells growing in culture divide only about 20 to 50 times before
they stop dividing, age and die.

The abnormalities and variations in cell cycle kinetics result in various clinical responses.
For that reason, cell cycle specific chemotherapy is a promising approach for improved clinical
outcomes by focusing on the continuously changing vulnerability of cancer cells. Typically can-
cer cells over express cyclins and loose the expression of cdks [280]. Because of the importance
of cdks in the regulation of growth, many therapeutic strategies involve the development of
specific kinase inhibitors that would block cell cycle progression and induce growth arrest. In
addition, cancer cells acquire an incompetent checkpoint control system, resulting in aberrant
responses to cell damage. For example, despite cellular damage a cancer cell will pass to the
S or M phase producing in that way a malignant daughter cell. However, cells with compro-
mised checkpoint control usually are more sensitive to further DNA or microtubule damage.
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Uncontrolled cell cycle progression in the presence of such a damage is usually fatal, possibly
being the reason of the increased sensitivity of some cancer cells to DNA-damaging treatments.
Thus, targeting intact cell cycle components can be a promising therapeutic strategy next to
conventional chemotherapy and radiation. Typical strategies include the following [280]:

• Inhibition of cdk activity during G1 phase [281,282]

– Ectopic cdk inhibitor replacement and growth arrest [283,284]

– Cdk inhibitor replacement and cytotoxicity [285,286]

– Pharmacologic cdk inhibitors [287]

– Second generation cdk inhibitors [288,289]

• Targeting S phase events

– S phase progression [290]

• Abrogation of the G2 checkpoint

– G2/M transition [291,292]

– G2 checkpoint inhibitors [293,294]

The potential of cell cycle phase specific drugs has also led to the development of various
mathematical models to improve the design of scheduling of such drugs [295].

5.2 Chemotherapy basic concepts

Modern conventional chemotherapy began in the 1940s with the advent of molecular medicine
in the latter half of the twentieth century. Before that, therapeutic strategies mainly included
surgical interventions [296]. One of the first families of drugs used to fight malignancies consti-
tutes molecules with a structure related to mustard gas, which was used as a weapon in World
War I. Single drug treatments were widely practiced until the 1960s when the term combination
chemotherapy was first introduced by DeVita and coworkers [297] who extended to lymphomas
the actual first clinically curative combination chemotherapy for childhood ALL by Holland, Frei
and Freireich. The main idea of combination chemotherapy is to combine drugs with different
modes of actions to increase the likelihood of synergistic anticancer effects.

Two main classes of antineoplastic drugs can be distinguished, conventional molecules and
target specific molecules [298]. Targeted therapies were first introduced in the 1990s, after
various molecular and genetic approaches led to the discovery of new signalling networks that
regulate cellular processes altered in cancer such as proliferation and survival. Possible targets
include various growth factors, signalling molecules, cell cycle proteins, apoptosis modulators
and molecules promoting angiogenesis [299]. Despite the fact that are considered more promising
due to their increased precision and reduced side effects, conventional antineoplastic drugs are
still widely used. Conventional antineoplastic drugs are highly chemically active, which results
in their anticancer activity but also constitutes their main drawback, which is excessive toxicity.
Based on their action on the DNA molecule, conventional antineoplastic drugs can be categorised
in three main different subgroups:

• Molecules acting on DNA synthesis (antimetabolites)

• Molecules directly affecting DNA (alkylating agents, intercalating agents and topoiso-
merase inhibitors)
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• Molecules affecting mitosis (antitubulin agents)

Below the classes of conventional chemotherapy drugs used in the present chapter, namely
topoisomerase inhibitors and vinca alkaloids will be briefly presented.

5.2.1 Topoisomerase inhibitors

Topoisomerases enzymes are mainly responsible for the cleavage and annealing of the DNA
molecule during replication and transcription. Two types of topoisomerases exist, namely type
I and II. Type I acts on one strand of the DNA molecule, while type II acts on both strands
of the DNA. Inhibitors of these enzymes are widely used as anticancer agents. Two types of
topoisomerase II inhibitors are the podophyllotoxins and the most widely used anthracyclines.
The anthracycline antibiotics are produced by the fungus Streptomyces percetus var caesius.
They share a common chemical structure, with a basic anthracycline structure containing a
glycoside bound to an amino sugar, daunosamine. Anthracyclines have several modes of actions.
They are potent inducers of double strand breaks in DNA, and can cause cell cycle arrest at
the G2 phase, the latter occurring by disrupting the interaction between topoisomerase II and
cdks. Topoisomerase II inhibitors can cause a wide range of chromosomal aberrations, and can
act by either stabilising topoisomerase II - DNA complexes, or by interfering with the catalytic
activity of the enzyme, both resulting in double-strand breaks in the DNA.

In the present study we used Daunorubicin (DNR), an anthracycline antibiotic, which sta-
bilises the topoisomerase II complex after it has broken the DNA chain for replication, prevent-
ing the DNA double helix from being released and thereby stopping the process of replication.
DNR is thus expected to act throughout the whole cell cycle and especially strongly during DNA
replication in S-phase. Among various neoplasms, DNR is most commonly used to treat Acute
Myeloid Leukemia (AML), Acute Lymphoblastic Leukemia (ALL) and Acute Promyelocytic
Leukemia (APL) [300,301].

5.2.2 Vinca alkaloids

Vinca alkaloids are derived from the Vinca rosea plant and they target tubulin, which poly-
merise into microtubules, a major component of the eukaryotic cytoskeleton. Upon entering
the cell, vinca alkaloids bind rapidly to tubulin. Blocking microtubule polymerisation results
in a impaired mitotic spindle formation during the M phase [302, 303]. The mitotic spindle is
the macromolecular machine that segregates chromosomes to two daughter cells during mitosis.
The major structural elements of the spindle are microtubules, whose intrinsic polarity and dy-
namic properties are critical for bipolar spindle organisation and function. Vinca alkaloids are
also thought to increase apoptosis by increasing concentrations of p53 (cellular tumour antigen
p53) and p21 (cyclin-dependent kinase inhibitor 1) and by inhibiting Bcl-2 activity [304–308].
Increasing concentrations of p53 and p21 lead to changes in protein kinase activity, phosphoryla-
tion of Bcl-2 subsequently inhibits the formation Bcl-2-BAX heterodimers, resulting in decreased
anti-apoptotic activity. Nevertheless, cells have developed resistance against the vinca alkaloids
by utilising drug efflux.

Herein, we used Vincristine (VCR) as an M-phase dependent drug. VCR was isolated in
1961 [309] and it is used to treat many types of cancer, including ALL, AML, Hodgkin’s disease,
neuroblastoma, and small cell lung cancer among others. VCR works partly by binding to the
tubulin protein, thus stopping the cell from separating its chromosomes during the metaphase;
the cell then undergoes apoptosis. Since VCR’s mechanism of action targets all rapidly dividing
cell types, it not only inhibits cancerous cells but can also affect the intestinal epithelium and
bone marrow. At high concentrations, it stimulates microtubule depolymerisation and mitotic

101



spindle destruction. At lower clinically relevant concentrations, VCR blocks mitotic progression.
Upon VCR addition, progression from metaphase to anaphase is blocked and cells enter a state
of mitotic arrest. The cells may then undergo one of several fates [46]. Tetraploid cells may
undergo unequal cell division producing aneuploid daughter cells. Alternatively, they may exit
the cell cycle without undergoing cell division, a process termed mitotic slippage or adaptation.
These cells may continue progressing through the cell cycle as tetraploid cells (Adaptation I),
may exit G1 phase and undergo apoptosis or senescence (Adaption II), or may escape to G1 and
undergo apoptosis during interphase (Adaptation III). Another possibility is cell death during
mitotic arrest. Alternatively, mitotic catastrophe may occur and cause cell death.

5.2.3 Heterogeneity of cancer cell populations and in drug response

Cell-to-cell response variability is prominent during numerous cell processes, even in clonal cell
populations [4]. The potential sources of this heterogeneity in responses are not well defined.
They can be genetic or epigenetic differences, differences in the cell cycle phase, or stochastic
fluctuations in biochemical reactions. Cell heterogeneity is also prominent in cancer. Cancer is
an intrinsically highly diverse disease; tumours of any different histological type not only exhibit
genetic diversity but also display their variation when exposed to all forms of chemotherapy
[43, 44, 310–312]. Even within the same tumour, different cell subpopulations are found. How
these different subpopulations contribute to the disease progression but also how differently they
respond to any given therapeutic intervention is still not clear. Nonetheless, drug resistance is
often attributed to this intra-tumour heterogeneity [313]. This heterogeneity is also evident in
the molecular make up of the each tumour cell, since a tumour cell might be aneuploid, i.e.
having abnormal number of chromosomes, it may have gene deletions or amplifications and it
generally might be characterised by extensive genetic instability [314]. Variations in cell cycle
kinetics are dynamic in time and include different cell cycle durations, different proliferation
and apoptosis rates but also differences of the S-phase and quiescent cell fraction.

Intra-tumour heterogeneity is often modelled using evolutionary principles [49,315,316]. In
this type of models, the tumour is regarded to have derived from a single cell that acquired
a mutation in a critical gene and that this mutation passed on the offsprings that continue
to acquire more genetic or epigenetic mutations that ultimately result in a fully transformed
malignancy compromising numerous clonal variants. Two are the main tumour evolution models
that have been proposed, namely the cancer stem cell model and the clonal evolution model [316,
317]. According to the cancer stem cell model differentiated cancer cells are progeny of cancer
stem cells and they are not able to undergo self-renewing cell division. Consequently, only cancer
stem cells can accumulate additional genetic changes that can drive tumour progression and drug
resistance. Data from patients with AML strongly support this model [318,319]. On the other
hand, based on the clonal evolution model tumour cell phenotypes are determined based on the
combination of cell type of origin of the tumour-initiating cell, acquired genetic and epigenetic
alterations, and paracrine signals from surrounding cells. Cellular phenotypes are unstable,
thus can change as the tumour evolves. In this case, all tumour cells can undergo self-renewing
division. As a result, any tumour cell has the potential to contribute to tumour progression
and drug resistance. These two models are not mutually exclusive and their combination is also
possible.

Furthermore, mathematical models have been developed to describe the intrinsic hetero-
geneity and growth of cancer cells [320,321]. The intrinsic heterogeneity is the other side of the
coin, of which heterogenous responses even in clonal populations are not cancer related, but
arise from stochastic biological processes, which are nevertheless tightly regulated in nature.
Because of these intrinsic mechanisms the system, the cell uses to integrate information and
respond, becomes even more complex. One such example is the cell cycle, which is regulated
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by many different components (as mentioned above in section 5.1.1). However, these compo-
nents operate under different conditions and external cues that continuously change. In order
to maintain an ordered cell cycle mechanism variations in gene expression [322], cell cycle du-
ration [323], cell size [324] and time to death [325,326] must exist. In the two models reported
in Greene et al. [320], the growth of cancer cells is described as a dynamic transition between
proliferative and quiescent states. These models predict variations in growth as a function of
the intrinsic heterogeneity i.e. heterogeneity originating from the durations of the cell cycle and
apoptosis, cellular densities dependencies are also included. Based on these models, it is shown
that the duration of the cell cycle has a noticeable impact on the growth dynamics. However,
experimental data to investigate this dependency are still needed.

In conclusion, intra-tumour heterogeneity relates to the variation in genome, epigenome, pro-
teome and cell and tissue behaviour found in an individual tumour and its stromal constituents
i.e. its micro-enviroment. In addition, identical clones inside a tumour are also heterogenous
due to stochastic variations [313]. Analysing sister cells in parallel is a useful strategy to study
the sources of heterogeneity, whether or to what extent it originates from proteome and stochas-
tic variations or genetic differences (see next section 5.2.4). It is essential to understand the
sources of this heterogeneous response of the cancer cell population, in order to design (but also
combine) novel and potent agents that target with high specificity the malignant cells and at the
same time they do not cause adverse toxicities. Apart from targeted therapeutics, chemother-
apy drugs are still widely used and resistance to chemotherapy is a key factor of whether a
treatment will be successful or not, thus single-cell platforms able to track how heterogeneity
affects and is affected by a given treatment are needed.

5.2.4 Sister cell heterogeneity

Sister cells response variability is a hot topic lately since it can shed light on whether different
phenotypes stem from genetic or epigenetic differences or from differences in the protein state
of the cells. There have been contradictory results depending on the cell process that was
interrogated. For instance, it has been previously reported that sister cells undergo apoptosis
synchronously [327, 328]. However, in response to anti-mitotic drugs the fate of one sister is
independent of the fate of the other [46]. In another study, sister cell fate in response to TRAIL-
induced apoptosis correlated, as did also the time-to-death between HeLa sister cells but this
correlation decayed as a function of time since division, the time period tested was 8 hours.
Based on this observation, the transient heritability in fate model was proposed, which states
that protein synthesis promotes cell divergence so that sister cells soon become no more similar
to each other than random paired cells [326].

5.3 Micro-trenches array

As explained above, cell population heterogeneity is not only prominent in cancer and in the
response to a given drug but also in almost every cell process. Yet it is not clear whether this
observed heterogeneity contains any relevant information. For example, one might hypothesise
that ensemble averages might reflect the dominant biological mechanism operating within each
single cell of a population. However, it is known that population distributions can obscure rare
or small subpopulations of cells [15, 18].

In addition, variability in the onset of apoptosis among cells even in clonal populations
has been reported before [325–330]. As mentioned above, the apoptotic activity is tightly
synchronized among related cells, since nearby cells underwent apoptosis at similar times [327]
and that heterogeneity in response to TRAIL-induced apoptosis between sister cells has been
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also observed [326]. In this case, it was suggested that cell-to-cell difference in the timing and
probability of death is transiently heritable and subsequent heterogeneous responses emerge
from cell-to-cell differences in protein levels that exist before drug exposure. Sister cells have
identical genetic material; thus, studying the responses between sister cells can straightforwardly
indicate whether the response variability stems from genetic/epigenetic differences or not.

Nevertheless, tracking of single cells in time-lapse microscopy movies is still a challenging
problem, especially for non-adherent cells, since they loosely attach on the surface, and disappear
from the field-of view very fast, within a few hours. Different automatic methods have been
proposed and compared [331], but due to quick cell movement, high cell densities, and difficult
cell identification e.g. due to shape, time intensive manual tracking becomes necessary to achieve
accurate tracks [332]. Moreover, manual tracking remains the only reliable way to distinguish
sister cells among a cell population. The confinement of single cells into well-defined spatial
structures can remedy the situation and allow for the application of automatic tracking with
high accuracy. Consequently, platforms that confine a family of cells derived from one single
cell are a useful tool to enable the automatisation of the image analysis and to yield in a faster
and effortless way data that can address these questions regarding the sources of cell-to-cell
response variability.

Here we introduce a platform that enables the continuous observation of families of cells
derived from individual cells. The platform employs arrays of micro-trenches optimised to
observe cells for two consecutive generations. Micro-trenches have a size of 30x120 µm and
are made of PEG-DA (MW 258). Thus, they accommodate four to six cells. By seeding a low
concentration of cells we could have trenches occupied with only one single cell that divided over
time, as a result we efficiently compartmentalised the cell population into genetically identical
cell families. Moreover, compartmentalisation of the cell population not only reduces the error
of mixing the identities of adjacent cells but also the time and computational power needed for
tracking.We demonstrate that automated image analysis is feasible and enables determination
of cell cycle duration distribution functions and sister cell correlations. A key feature of the
platform is the direct and parallel observation of many cells with individual cell cycles in parallel
(see figure 5.2).

A phase contrast image of the micro-trenches array occupied with cell families is shown in
figure 5.2a and an illustration of the micro-trenches with cells inside in figure 5.2b. A single-
cell divides twice and forms of a genetically identical cell family (see figure 5.2c). The ratio
of the width of a micro-trench to the diameter of a cell, which is around 1.5-2, prevents any
confinement stress on it. The division time point is indicated with t0 and the second one with
t1. In figure 5.2d, the representative time-lapse frames illustrate the tracking procedure over
the time of two divisions, from one mother to four granddaughters. The tracking algorithm
can successfully discriminate the different daughter cells, provided that cells keep their initial
alignment, which is indeed kept to a great extent due to the small width of the micro-trench.
Applying automated tracking in the phase contrast images, we successfully tracked 50% of the
total cell population tested.

5.3.1 Monitoring cell clones for consecutive generations

Theoretical models of cell division

In bacteria it was hypothesised that cell growth and division are coupled through a cell size
threshold, however recent experimental observations suggest that cells attempt to add a constant
volume from the time of initiation of DNA replication to the next initiation event [333] or that
cells divide after growing on average a certain amount, irrespective of the length at birth [334].
On the contrary, in somatic cells such a regulation may not exist at all, since their size regulation
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Figure 5.2: The micro-trenche array enables long-term observation of cell lineages derived from
a single cell. (a) Phase contrast image of micro-trenches loaded with cells. (b) Schematic 3D
representation of the 20 µm deep trenches. (c) Schematic diagram of cell division events at
times t0 and t1 within a single micro-trench. (d) Time-lapse phase contrast images and cell
time traces showing that the identity of single cells within the family tree can be followed over
time.

might be a result of external growth or mitogenic signals from their microenvironment. However,
after observing cells for 50 hours, it has been shown that the volume added across the cell cycle
is independent of cell birth size and it is proposed that this type of size regulation can arise from
various types of coupling between cell size, cell growth and cell cycle progression [335]. It has also
been proposed, based on a coupled mathematical model of mammalian cell cycle and circadian
clock, that the circadian clock triggers critical size control in the mammalian cell cycle and that
it is more readily observed in cell lines that contain circadian rhythms [336]. Microfluidic devices
have facilitated single-cell studies and boosted the collection of quantitative experimental data,
such as the measurement of single-cell mass with high accuracy [337]. Measuring the cell size or
the volume added to the cell after its mother division are crucial quantitative data to elucidate
the underlying mechanisms that drive cell division. The micro-trenches array coupled with
time-lapse microscopy and automated image analysis is a step toward this direction.

Pearson’s correlation coefficient

In statistics, correlation coefficients are used to measure how strong a relationship between two
variables may be. In linear regression the most commonly used correlation coefficient is the
Pearson’s correlation coefficient or (Pearson Product Moment Correlation (PPMC)). The greek
letter ρ is used to represent the Pearson correlation coefficient of a population and the letter r is
used for a sample. The most common formulas to calculate the Pearson’s correlation coefficient
are:

r =
N
∑
xiyi − (

∑
xi
∑
yi)√
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x2
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∑
xi)2][N

∑
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i − (

∑
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(5.1)

where,

• N is the sample size

• xi, yi are the single samples indexed with i

or
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r =
sxy
sxsy

(5.2)

where,

• sx, sy is the sample standard deviations

• sxy is the sample covariance

For the population correlation coefficient we have:

ρ =
σxy
σxσy

(5.3)

The population correlation coefficient has the σx and σy as the population standard devia-
tions and σxy as the population covariance.

The formulas return a value between -1 and 1, where 1 indicates a strong positive relation-
ship, -1 indicates a strong negative relationship and 0 indicates no correlation at all.

Lognormal distribution

A lognormal distribution, also known as log-normal or Galton distribution, is a continuous
probability distribution of a random variable whose logarithm is normally distributed. Skewed
distributions with low mean values, large variance, and with all values positive often fit the
lognormal distribution. The probability density function of this distribution is:
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where σ is the width parameter, p a shape parameter, µ is the location parameter. cLN is chosen
so that

∫∞
0 LogNorm(x, µ, σ, p) dR = N . The mode of the distribution is defined as

xmode = µe−pσ
2

(5.5)

and the nth moment 〈Xn〉 of the LogNorm distribution as

〈Xn〉 =

∫
Xn LogNorm(X) dX∫

LogNorm(X) dX
= µn e

1
2
σ2n(2−2p+n) (5.6)

Gamma distribution

A gamma distribution is a general type of statistical distribution that arises naturally in pro-
cesses for which the waiting time between Poisson distributed events are relevant. Gamma
distributions have two free parameters, namely α and θ. The general formula for the probabil-
ity density function of the gamma distribution is:

f(x) =
(x−µβ )γ−1 exp

(
−x−µ

β

)
βΓ(γ)

, x ≥ µ, γ, β > 0 (5.7)

where γ is the shape parameter, µ is the location parameter, β is the scale parameter and Γ is
the gamma function:
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Γ (a) =

∞∫
0

sa−1e−sds (5.8)

When µ=0 and β=1, we have the standard gamma distribution, which is:

f(x) =
xγ−1 exp{x}

Γ(γ)
, x ≥ 0, γ > 0 (5.9)

Cell cycle duration determination

The cell cycle duration has the most significant effect on the growth dynamics of the tumour
[320]. Using the micro-trenches array, we detected cell division time points of two consecutive
cell divisions and studied the distribution of the cell cycle duration. In this array, sister cells are
compartmentalised and can be easily distinguished, permitting the straightforward correlation
of the cell cycle duration between sister cells. After the first division of a single starting cell,
a micro-trench contains two daughter cells that can be separately tracked (see figure 5.3). For
each cell, we determine the first division time point t0, the division of the first daughter cell at
time t1, and the division of the second daughter cell at t2 (Figure 5.3a). In our experiments
320 MOLM-13 starting cells were observed for 40 hours and at least two divisions. The cell
cycle duration distribution with a mean of 19.7 ± 2.6 (mean ± std, n=320 cells) hours is well
described by both a log-normal distribution and a gamma distribution (Figure 5.3b). For clones
where both t1 and t2 were observed (n=320), we analysed the difference between the cell cycle
durations for sister cells. The distribution of sister cell differences has a mean of 2.3 ± 2.7
hours (mean ± std, n=85 pairs of sister cells) and is well fitted with an exponential distribution
(Figure 5.3c). Compared to randomly paired cells, the cell cycle duration of sister cells is highly
correlated, with a Pearson correlation coefficient of r=0.85 ± 0.04 as compared to r=0.25 ±
0.09 for randomly paired cells (Figure 5.3d), in agreement with a previous study [338].

Herein, we observed that the cell cycle duration distribution falls into a lognormal distribu-
tion and it has also been reported that the size of mammalian cells also falls into a lognormal
distribution [339,340]. Cell size distributions should be determined by the growth and division
processes [341] and the kinetics of division fragmentation processes are known to yield lognormal
distributions under certain conditions [342].

5.3.2 Monitoring cell response to chemotherapeutic drugs

Cell cycle components are altered in cancer and depending on the phase of the cell cycle when a
drug is administered, it can be either cytostatic or cytotoxic [280]. For that, we further utilised
the micro-trench array as a clocking device to assess the phase of the cell cycle without the use of
a molecular indicator. The main principle is that if we monitor one single cell until it divides, we
then can roughly assess the cell cycle phases of the two daughter cells. In this way, we can test
whether the activity of standard chemotherapeutic drugs is affected by the phase of the cell cycle
in a quantitative manner. To test this hypothesis we chose two widely used chemotherapeutic
drugs; VCR and DNR. Vincristine (see details in 5.2.2), an antitumor vinca alkaloid, binds to the
tubulin protein and thus stops the cell from separating its chromosomes during metaphase, due
to this mitotic arrest cell death follows. For that reason it is considered an M-phase dependent
drug. On the other hand, daunorubicin (see details in 5.2.1), an anthracycline aminoglycoside
antineoplastic, intercalates on DNA and inhibits the function of the enzyme topoisomerase II
during transcription and replication, so it is expected to act throughout the whole cell cycle.
Both drugs, among other neoplasms, are used to tackle many types of leukaemia such as Acute
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Figure 5.3: Cell cycle duration distribution. (a) Schematic representation of the individual
time spans from one cell division event to the next. The axis at the bottom indicates the
time in hours and shows the corresponding phase contrast images at selected time-points. (b)
Measured distribution of the cell cycle duration from an ensemble of 320 cells (MOLM-13)
showing mean cell cycle duration of 19.7 hours and standard deviation 2.6 hours. The dotted
red line corresponds to a log-normal fit and the dashed blue line to a gamma distribution fit.
(c) Distribution of the difference between the cell cycle duration of sister cells. The difference
in the cell cycle duration time is fitted with an exponential curve (red line). (d) Correlation of
the cell cycle duration for sister cells (black dots) is higher (Pearson correlation coefficient r =
0.85 ± 0.04) than randomly paired cells (grey triangles, r = 0.25 ± 0.09).

Myeloid Leukeamia (AML) [343, 344]. In figure 5.4 a schematic of the cell cycle and where
exactly VCR and DNR are expected to act is presented.

Unsynchronised cell population

We utilised the micro-trench array to observe and study the dependence of VCR/DNR induced
apoptosis on the cell cycle phase of a heterogeneous, in terms of synchronisation, MOLM-13
cell population directly from the cell culture flask. Mother cell mitosis, i.e. the division time
(t0), is used as a reference point of the cell-phase indication. In order to obtain the background
of each individual cell, we let the cells to divide at least once and added at the 20th hour of the
measurement, based on the division time distribution (Figure 5.3b), the drugs (VCR or DNR).
In this way, we analysed the fate of the daughter cells, for which we knew their mother’s division
time point. To track the cells we used out of focus (-20 µm) phase contrast images before adding
the drug. For detecting the death times we used fluorescence images of the propidium iodide (PI)
marker for the VCR data and of the Cell Event™Caspase 3/7 marker for the DNR data, since
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Figure 5.4: Depiction of VCR and DNR effects on the cell cycle.

DNR is auto-fluorescent in the red region. A timeline of the experimental procedure is shown
in figure 5.5a. Plots in figure 5.5b show for each different drug concentration the distribution of
the time-to-death of the single cells tracked i.e. the time passed after adding the drug until the
cell died. The black curves represent the Kernel density estimation of the probability density
function of each histogram. As expected only a few cells are dead in the control, when no drug
is added, while the percentage of dead cells rises with increasing vincristine concentration. For
10 and 100 nM vincristine concentrations, the number of dead cells increases after 12 hours,
indicating that cells can be resistant for the first hours after drug exposure. In figure 5.5c, for
each different drug concentration, a scatter plot of the time passed in the cell cycle, i.e. the time
passed from the division until the drug was added, with the time-to-death. The blue lines are
best linear fits and show the dependence of the time-to-death on the time spent in the cell cycle.
While in the control the correlation is slightly positive, with increasing vincristine concentration
the correlation gets increasingly negative. At the highest concentration, 1000 nM, no correlation
is observed. Phase independent apoptosis induced by microtubule targeting agents have been
reported in previous studies utilising cell lines and relatively high drug concentrations [345–347],
alternatively the reason for no correlation in the 1000 nM vincristine might be that side effect
toxicities are prominent. The coloured areas indicate the cell cycle phase based on the division
distribution in figure 5.3b, the duration for each phase is calculated based on the phase durations
proposed in T. S. Weber et al. 2014 [348]. Green denotes the G1 phase, pink the S phase and
blue the G2/M phases. The negative correlation between the time spent in the cell-cycle and the
time-to-death in the case of vincristine is expected, since it is known that at high concentration
vincristine stimulates microtubule depolymerisation and mitotic spindle destruction, while at
lower clinically relevant concentrations, it blocks mitotic progression. Hence, a cell that spent a
large amount of time in the cell-cycle should be closer to the M-phase so it should have a shorter
time-to-death. On the other hand, in the daunorubicin induced cell death the no correlation
is observed between the time the cell passed in the cell cycle and the time-to-death (see figure
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5.6).

Figure 5.5: Unsynchronised cell population: distributions of the time-to-death induced by Vin-
cristine. (a) Schematic description of the experimental procedure. Image acquisition starts at
time 0 h and after a set time (20 hours), vincristine is added. Tracking of the individual cells
gives the division time of each mother cell, which is different in each micro-trench, and the
time-to-death of the two daughter cells. Images show an exemplary cell dividing before drug
addition; both of its daughter cells die (overlay of the in-focus phase contrast and PI fluorescence
images). (b) Distribution of the time-to-death for all tracked cells. The black lines represent
the Kernel density estimation of the probability density function in each drug treatment. The
overall percentage of dead cells is given at upper left corner of each plot. (c) Correlation plots
between the time passed in the cell cycle and the time-to-death. The blue line is a linear fit
to the scatter plot in each drug treatment. The Pearson correlation coefficient (r) is shown for
each drug concentration on top of each graph. The coloured areas denote the different cell cycle
phases based on the average division time presented in figure 5.3b. Green stands for the G1,
pink for the S and blue for the G2/M phase.

Synchronised cell population and comparison

Next, we compare our results of the unsynchronised MOLM-13 cells with a cell population
synchronised using a standard protocol. We employed the “double thymidine block” synchro-
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Figure 5.6: Unsynchronised cell population: concentration dependent effects on the time-to-
death induced by daunorubicin. (a) Distribution of the time-to-death for all tracked cells. The
black lines represent the Kernel density estimation of the probability density function in each
drug treatment. (b) No correlation is observed between the time passed in the cell cycle and
the time-to-death. The blue line is a linear fit to the scatter plot in each drug treatment. The
Pearson correlation coefficient (r) is shown for each drug concentration on top of each graph
together with the p-value of the correlation test (in parenthesis). The coloured areas denote the
different cell cycle phases based on the average division time presented in figure 5.3b.

nisation procedure [349] on our model cell system, MOLM-13, and performed a cytotoxic test
on the micro-trench array. Thymidine is a pyrimidine deoxynucleoside. Deoxythymidine is the
DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. High con-
centration of thymidine interrupts the deoxynucleotide metabolism pathway, by halting DNA
replication. As treatment with thymidine arrests cells throughout the S phase, a double thymi-
dine block procedure, which involves releasing cells from a first thymidine block before trapping
them with a second thymidine block, is generally used to induce a more synchronised early S
phase blockade. Thus thymidine arrests cells at the G1/S border, which is after the division
time point t0 within the length of G1 phase. In our setup, cells were released 3 hours before
the start of imaging. We seeded the cells in micro-trenches and we added the drug just before
the beginning of imaging. In figure 5.7a, we show a timeline of the experimental procedure.
In figure 5.7b, we plot the distributions of the time-to-death for each drug concentration. The
black curves represent the Kernel density estimation of the probability density function of each
histogram. For all vincristine concentrations the maximum of these distributions is near the
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15th hour after starting imaging, indicating that synchronised cells are resistant to vincristine
treatments and indeed more than the unsynchronised population (see figure 5.5b), while for the
daunorubicin only in the higher 100 nM concentration we observe a maximum round the 12th
hour (see figure 5.8a).

Figure 5.7: Synchronised cell population: distributions of the time-to-death induced by vin-
cristine. (a) Timeline of the experimental procedure. (b) For each drug concentration, the plots
show the time-to-death distribution of synchronised cells. The black lines represent the Kernel
density estimation of the probability density function in each case.

In figure 5.9 we compare our results of the unsynchronised cell population (see figure 5.5)
with a cell population synchronised with thymidine block (see figure 5.7) for the population
treated with VCR. For both the unsynchronised and the synchronised population, the total
number of dead cells increases with increasing drug concentration (figure 5.9a). For the error
bars: we hypothesised that the data follow the binomial distribution; for a confidence level of
95% the error is [350]: √

1.96
p

(1− p)Nt
(5.10)

where,

• p is the proportion of dead cells,

• Nt is the total number of cells.

The time-to-death distributions of the unsynchronised (red) and synchronised (blue) pop-
ulation are similar (figure 5.9b). The distributions plotted are the normalised number of cells
in all drug treatments, for all cells tracked. Apart from a peak at the beginning of the mea-
surement in the synchronised population, the shape of the two distributions is equivalent. The
synchronisation protocol did not affect the shape of the time-to-death distribution also for the
cells treated with DNR (see figure 5.8b). In all drug treatments, in the unsynchronised popu-
lation sister cells are correlated in the time-to-death (Pearson correlation coefficient r = 0.54,
p-value: 1.15×10−7), while in the synchronised population, where the cells occupying the same
trench are not related, no correlation is observed (r = 0.05, p-value: 0.05). The ellipses indicate
the directionality of the correlation (see figure 5.9c).
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Figure 5.8: Synchronised cell population: distributions of the time-to-death induced by daunoru-
bicin. (a) The time-to-death of all cells is analysed, whether they divided after drug addition or
not. For each drug concentration, the plots show the time-to-death distribution of synchronised
cells. The black lines represent the Kernel density estimation of the probability density function
in each case. (b) The synchronisation protocol does not affect the time-to-death; the shape of
both distributions is equivalent.

Herein, we observed similar response between sister cells in the unsynchronised experiment
as far as the death time is concerned during an observation period of 24 hours after the addition
of the drugs. At the same time the distributions of the death time (average of all different drug
concentrations) of the unsynchronised and the synchronised populations are similar, which
suggests that synchronising the cells with the double thymidine block does not affect their
response to both tested drugs.
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Figure 5.9: The time-to-death between sister cells is correlated in the unsynchronised popu-
lation. (a) Dose response curve, i.e. percentage of dead cells versus drug concentration for
unsynchronised and unsynchronised cells. (b) Distributions of time-to-death of the normalised
number of cells across all drug concentrations for both the unsynchronised and the synchronised
population. The synchronisation did not affect the death time distribution. (c) Sister cells of
the unsynchronised population (n=93 pairs of sister cells) are correlated in the time-to-death
(r = 0.54, p-value: 1.15 x 10−7 ), while for the unrelated cells in the synchronised population
(n=129 pairs) no correlation is observed (r = 0.05, p-value: 0.05). The ellipses indicate the
directionality of the correlation.

5.3.3 Conclusions and Outlook

Micro-trenches enable a label-free method for tracking cells and for estimating the cell cycle
phase without the use of molecular indicators. To our experience, such a label-free approach
overcomes the main drawbacks we encountered when tested other popular indicators such as the
FUCCI marker [351]. Namely, the low transfection efficiency of 20-40%, generally short duration
of the staining (about 15 hours), which was not sufficient for our long-time measurements,
and finally insufficient reliability since only around 5% of the cells tested, demonstrated the
expected change of colours that correspond to the change of the cell cycle phase. In parallel,
by compartmentalising the cell population in small groups, we could boost the image-based
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cell tracking. Without the use of such an array, time-lapse observation of cell population for
many hours, even beyond 48 hours, is impossible for both adherent and non-adherent cells since
they escape from the field of view very fast, within a few hours. Moreover, confining the cells
remedies the high error rate of distinguishing two different cells that are moving toward the
same direction. By using a phase contrast objective and out of focus acquisition, we could
successfully automatically track half of the total cell population and robustly determine the
division time points. We further utilised the micro-trenches array to determine the death times
of cells after inducing cell death with VCR and DNR, and showed that in the unsynchronised
population the death time of sister cells is correlated. In the future, the micro-trenches array
can be used with more than one drug, namely for combination therapy, to determine the optimal
administration timing of each drug.
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Appendix A

Important protocols

A.1 Micromolding in capillaries (MIMIC)

The MIMIC protocol was first introduced in the group of George Whitesides in 1995 [352].
Materials

• Poly(ethylene glycol)-diacrylate (PEG-DA MW 258 g/mol or 575 g/mol), poly(ethylene
glycol)-dimethacrylate (PEG-DMA MW 550 g/mol)

• 2-hydroxy-2-methylpropiophenone (photoinitiator)

• PDMS monomer

• Silicon elastomer curing agent (crosslinker)

• 8-well- or 6-channel slide (ibidi®)

• ibidi®coverslips (uncoated) or ibidi®glass slides (# 1.5 H (170 ± 5 µm D 263 Scott
glass))

Equipment

• Si wafer with desired structures

Procedure

• Work under the hood (membrane lab) as much as possible, it gives you cleaner final
structures.

• Cleaning and wetting steps are critical to have healthy cells in the end.

1. Prepare PDMS stamp by mixing PDMS with the crosslinker (10:1 ratio) and then curing
it in 50 °C for 4 hours or overnight. To get rid of bubbles in the PDMS/crosslinker
mixture use the desiccator before baking it. A thin (approximately 5mm), flexible PDMS
is preferable since it will adhere to the surface better and detach easier.

2. Prepare ibidi®coverslips/glasses: Sonicate to clean 10 mins with 70% ethanol, 10 min
with distilled water, blow dry with pressurized air gun (at Zeiss microscope).

3. Plasma treatment: Follow plasma cleaner steps, put PDMS upside down (structures ex-
posed) + ibidi®foil. Use argon, 20% power (set the nob at 1.00) for 18 seconds (0.3
minutes).
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4. PEG-DA preparation: Mix 98 µL of monomer with 2 µL the of photo activation agent
(2%). Monomer is in the fridge (PEG-DA) and photo initiator is in toxic-chemical cabinet
(2-Hydroxy-2-methylpropiophenone). Vortex for 15 seconds.

5. Cut the PDMS stamp into the appropriate size and shape based on the type of the
ibidi®slide used. The optimal is to have two structured areas per PDMS stamp. Clean
the blade with a tissue and isopropanol after every cut. Using a scotch tape clean the
PDMS stamps to remove any small particles on the surface. Place the PDMS stamps at
the appropriate positions, put a drop of PEG-DA at the side of each stamp (in front of the
structured area) and wait until it flows inside. Make sure there is minimum excess as a
wall will be formed at the side, which will prevent proper attachment of the ibidi®sticky
slides.

6. Cure PEG-DA under UV light for 15 minutes (UV cleaner).

7. Remove PDMS and cure PEG-DA further in the oven (50 °C) for at least 5 hours (or
overnight).

8. Clean the structures with sonication as step 2.

9. Attach the ibidi®sticky slide to the foil, incubate in the oven overnight (this is recom-
mended by ibidi®).

10. Wet the structures at least 2 hours before use. If you are using it right-away use the same
medium for incubation. Otherwise PBS is better, exchange it with the medium around
30 min before seeding the cells.

11. Alternatively put the medium in the channels, sonicate it for 3 minutes (this will get rid
of bubbles) and exchange with fresh medium.

• PEG-DA or PEG-DMA do not adhere on bare glass, but do so on silanized glass. Use
TMSPMA (3-(Trimethoxysilyl)propyl methacrylate) to silanize the glass surface: put a
drop of TMSPMA on a tissue in a petri-dish together with the glass and let in a desiccator
overnight.

• DO NOT DO the plasma step for silanized glass, it destroys the coating.

• You CAN do an Ar-plasma after the structures are cured: instead of step 8.

• Some cell lines prefer the PEG-DA structures coated with fibronectin (e.g. MOLM-13).
Coating with fibronectin: After step 9, incubate with 70% ethanol in the desiccator for 2
hours, wash with PBS. Then incubate the structures with a 35 µg/mL fibronectin solution
(in PBS) for 45 minutes in the desiccator. Wash the structures with PBS taking care that
they are always covered with liquid. Desiccate again for 10 minutes.

A.2 Plasma-induced protein patterning

Materials

• PLL-PEG (2) (2mg/mL) in 150 mM NACL and 10 mM Hepes (ccpro), pH = 7,4 (PLL
(20)-g (3.5)- PEG (2), abbreviated PLL-PEG(2), SuSoS)

• FN (1 mg/mL) in PBS (Yoproteins) or anti-human CD15 IgM isotype (BioLegend®)
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• PDMS monomer

• Silicon elastomer curing agent (crosslinker)

• Phosphate Buffered Saline (PBS)

• 8-well- or 6-channel slide (ibidi®)

• ibidi®coverslips (uncoated)

Equipment

• Si wafer with desired structures

Procedure

• Prepare PDMS stamp by mixing PDMS with the crosslinker (11:1 ratio), and then curing
it in 50 °C for 4 hours or overnight. To get rid of bubbles in the PDMS/crosslinker solution
use the desiccator before baking it. A thin (approximately 3-5 mm), flexible PDMS is
preferable since it will adhere to the surface better and detach easier.

• Cut with a scalpel the PDMS out of the Si wafer and then using a blade cut it further to
the appropriate shape and size depending on the ibidi®slide used. Clean the blade with
a tissue and isopropanol after every cut. Using a scotch tape clean the PDMS stamps to
remove any small particles on the surface. Place the PDMS stamps at the appropriate
positions on the ibidi®coverslips.

• Plasma treatment: Follow plasma cleaner steps, place the iibidi®coverslips together with
the PDMS stamps in the chamber. Use oxygen, 70% power (set the nob at 4.50) for 3
minutes.

• After the plasma treatment is over, place the stamps under the hood and add a drop
PLL-PEG(2) close to each stamp (4 µL per stamp); The liquid will flow under the stamp
due to capillary action. Do not touch the stamp with the tip of your pipette. Incubate
for 30 min.

• Prepare protein solution:

– Target concentration for fibronectin: 35-50 µg/mL, incubation: 45-60 minutes in
room temperature

– Target concentration for IgM antibody: 15 µg/mL, incubation: 60 minutes in room
temperature

• Rinse the substrate with PBS and remove the PDMS stamps. Wash additionally two
times with PBS. Add the protein solution and incubate for the appropriate time.

• Rinse the substrate several times without letting the surface to dry. After the last washing
step, let PBS remain in the dish for at least 5 minutes, then you can exchange with medium
and seed your cells.
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berola, Stefan Zahler, and Joachim Oskar Rädler. Versatile method to generate multiple
types of micropatterns. Biointerphases, 11(1):011005, 2016.

[70] Anna-Kristina Marel, Susanne Rappl, Alicia Piera Alberola, and Joachim Oskar Rädler.
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Christian Plank, and Joachim O Rädler. Stability analysis of chemically modified mrna
using micropattern-based single-cell arrays. Lab on a Chip, 15(17):3561–3571, 2015.

126
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[84] O Hrušák and A Porwit-MacDonald. Antigen expression patterns reflecting genotype of
acute leukemias. Leukemia, 16(7):1233, 2002.

[85] Nan Li and Chih-Ming Ho. Photolithographic patterning of organosilane monolayer for
generating large area two-dimensional b lymphocyte arrays. Lab on a Chip, 8(12):2105–
2112, 2008.

[86] Mirren Charnley, Marcus Textor, Ali Khademhosseini, and Matthias P Lutolf. Integration
column: microwell arrays for mammalian cell culture. Integrative biology, 1(11-12):625–
634, 2009.

[87] Sara Lindström and Helene Andersson-Svahn. Miniaturization of biological as-
says?overview on microwell devices for single-cell analyses. Biochimica et Biophysica Acta
(BBA)-General Subjects, 1810(3):308–316, 2011.

[88] Emanuele Ostuni, Christopher S Chen, Donald E Ingber, and George M Whitesides.
Selective deposition of proteins and cells in arrays of microwells. Langmuir, 17(9):2828–
2834, 2001.

[89] Kirsty Leong, Anna K Boardman, Hong Ma, and Alex K-Y Jen. Single-cell patterning and
adhesion on chemically engineered poly (dimethylsiloxane) surface. Langmuir, 25(8):4615–
4620, 2009.

[90] Jacqueline R Rettig and Albert Folch. Large-scale single-cell trapping and imaging using
microwell arrays. Analytical chemistry, 77(17):5628–5634, 2005.

[91] Marc R Dusseiller, Michael L Smith, Viola Vogel, and Marcus Textor. Microfabricated
three-dimensional environments for single cell studies. Biointerphases, 1(1):P1–P4, 2006.

127



[92] Mirjam Ochsner, Marc R Dusseiller, H Michelle Grandin, Sheila Luna-Morris, Marcus
Textor, Viola Vogel, and Michael L Smith. Micro-well arrays for 3d shape control and
high resolution analysis of single cells. Lab on a Chip, 7(8):1074–1077, 2007.

[93] Marc R Dusseiller, Dominik Schlaepfer, Mirabai Koch, Ruth Kroschewski, and Mar-
cus Textor. An inverted microcontact printing method on topographically struc-
tured polystyrene chips for arrayed micro-3-d culturing of single cells. Biomaterials,
26(29):5917–5925, 2005.

[94] Ali Khademhosseini, Lino Ferreira, James Blumling III, Judy Yeh, Jeffrey M Karp, Junji
Fukuda, and Robert Langer. Co-culture of human embryonic stem cells with murine
embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 27(36):5968–5977,
2006.

[95] Daniel Day, Kim Pham, Mandy J Ludford-Menting, Jane Oliaro, David Izon, Sarah M
Russell, and Min Gu. A method for prolonged imaging of motile lymphocytes. Immunology
and cell biology, 87(2):154, 2009.

[96] Jeffrey C Mohr, Juan J de Pablo, and Sean P Palecek. 3-d microwell culture of human
embryonic stem cells. Biomaterials, 27(36):6032–6042, 2006.

[97] Hannes-Christian Moeller, Matthew K Mian, Shamit Shrivastava, Bong Geun Chung,
and Ali Khademhosseini. A microwell array system for stem cell culture. Biomaterials,
29(6):752–763, 2008.

[98] Myriam Cordey, Monika Limacher, Stefan Kobel, Verdon Taylor, and Matthias P Lutolf.
Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell
arrays. Stem Cells, 26(10):2586–2594, 2008.

[99] Alexander Revzin, Kazuhiko Sekine, Aaron Sin, Ronald G Tompkins, and Mehmet Toner.
Development of a microfabricated cytometry platform for characterization and sorting of
individual leukocytes. Lab on a Chip, 5(1):30–37, 2005.

[100] Vicki I Chin, Philippe Taupin, Sandeep Sanga, John Scheel, Fred H Gage, and Sangeeta N
Bhatia. Microfabricated platform for studying stem cell fates. Biotechnology and bioengi-
neering, 88(3):399–415, 2004.

[101] Laura C Taylor and David R Walt. Application of high-density optical microwell arrays
in a live-cell biosensing system. Analytical biochemistry, 278(2):132–142, 2000.

[102] Mordechai Deutsch, Assaf Deutsch, Orian Shirihai, Ihar Hurevich, Elena Afrimzon, Yana
Shafran, and Naomi Zurgil. A novel miniature cell retainer for correlative high-content
analysis of individual untethered non-adherent cells. Lab on a Chip, 6(8):995–1000, 2006.

[103] Yoshiharu Tokimitsu, Hiroyuki Kishi, Sachiko Kondo, Ritsu Honda, Kazuto Tajiri,
Kazumi Motoki, Tatsuhiko Ozawa, Shinichi Kadowaki, Tsutomu Obata, Satoshi Fu-
jiki, et al. Single lymphocyte analysis with a microwell array chip. Cytometry Part
A, 71(12):1003–1010, 2007.

[104] Chad I Rogers, Jayson V Pagaduan, Gregory P Nordin, and Adam T Woolley. Single-
monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive
material for microfluidics. Analytical chemistry, 83(16):6418–6425, 2011.

128



[105] Frederik Kotz, Klaus Plewa, Werner Bauer, Norbert Schneider, Nico Keller, Tobias Nar-
gang, Dorothea Helmer, Kai Sachsenheimer, Michael Schäfer, Matthias Worgull, et al.
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[116] C-G Gölander, James N Herron, Kap Lim, P Claesson, P Stenius, and JD Andrade.
Properties of immobilized peg films and the interaction with proteins. In Poly (ethylene
glycol) Chemistry, pages 221–245. Springer, 1992.
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Ralf C Bargou, Hervé Dombret, Adele K Fielding, Leonard Heffner, Richard A Larson,
et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory
b-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. The
Lancet Oncology, 16(1):57–66, 2015.

[243] Christian Kellner, Joerg Bruenke, Julia Stieglmaier, Michael Schwemmlein, Michael
Schwenkert, Heiko Singer, Kristin Mentz, Matthias Peipp, Peter Lang, Fuat Oduncu, et al.
A novel cd19-directed recombinant bispecific antibody derivative with enhanced immune
effector functions for human leukemic cells. Journal of immunotherapy, 31(9):871–884,
2008.
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A Feldmann, M Bachmann, G Ehninger, et al. Distribution and levels of cell surface
expression of cd33 and cd123 in acute myeloid leukemia. Blood cancer journal, 4(6):e218,
2014.
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[274] Alan Burnett, Meir Wetzler, and Bob Löwenberg. Therapeutic advances in acute myeloid
leukemia. Journal of Clinical Oncology, 29(5):487–494, 2011.

[275] CT Jordan, D Upchurch, SJ Szilvassy, ML Guzman, DS Howard, AL Pettigrew, T Mey-
errose, R Rossi, B Grimes, DA Rizzieri, et al. The interleukin-3 receptor alpha chain is a
unique marker for human acute myelogenous leukemia stem cells. Leukemia, 14(10):1777,
2000.

[276] AW Hauswirth, S Florian, D Printz, K Sotlar, M-T Krauth, G Fritsch, G-H Schern-
thaner, V Wacheck, E Selzer, WR Sperr, et al. Expression of the target receptor cd33 in
cd34+/cd38-/cd123+ aml stem cells. European journal of clinical investigation, 37(1):73–
82, 2007.

[277] Roland B Walter, Frederick R Appelbaum, Elihu H Estey, and Irwin D Bernstein. Acute
myeloid leukemia stem cells and cd33-targeted immunotherapy. Blood, 119(26):6198–6208,
2012.

[278] François Vergez, Alexa S Green, Jerome Tamburini, Jean-Emmanuel Sarry, Baptiste Gail-
lard, Pascale Cornillet-Lefebvre, Melanie Pannetier, Aymeric Neyret, Nicolas Chapuis,
Norbert Ifrah, et al. High levels of cd34+ cd38low/- cd123+ blasts are predictive of an
adverse outcome in acute myeloid leukemia: a groupe ouest-est des leucémies aiguës et
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