
  

 
 
 
 
 
 

Dissertation zur Erlangung des Doktorgrades 
der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 
 
 
 
 
 
 
 

Transactivation of the EGFR Signal in Human Cancer Cells 
 
 
 
 

Beatrix Schäfer 
 

aus 
 

Wissen 
 
 
 
 
 
 
 
 
 
 

2004 
 
 
 
 
 
 
 
 



  

Erklärung 

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw 4 der 

Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Horst Domdey 

betreut 

 

Ehrenwörtliche Versicherung 

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. 

München, den 09.03.2004 

 

 

 

        Beatrix Schäfer 

 

 

 

 

Dissertation eingereicht am 09.03.2004 

1. Gutachter      Prof. Dr. Axel Ullrich 

2. Gutachter      Prof. Dr. Horst Domdey 

Mündliche Prüfung am    15.06.2004 



  

 

Contents 
 

 

Contents ......................................................................................................................................3 

1 Introduction ........................................................................................................................7 

1.1 Protein tyrosine kinases ............................................................................................7 
1.1.1 Receptor tyrosine kinases (RTK) ........................................................................8 
1.1.2 EGF-like ligands..................................................................................................9 
1.1.3 Ligand-induced activation of receptor tyrosine kinases ......................................9 
1.1.4 Cytoplasmic tyrosine kinases ............................................................................10 
1.1.5 Recruitment of downstream signalling molecules ............................................11 

1.2 Mitogen-activated-protein-kinase (MAPK) pathways .........................................13 

1.3 Protein kinase B/Akt ...............................................................................................14 

1.4 G protein-coupled receptors ...................................................................................14 

1.5 EGFR signal transactivation ..................................................................................16 

1.6 Metalloproteases ......................................................................................................21 
1.6.1 ADAMs .............................................................................................................22 
1.6.2 The Matrix Metalloproteinases (MMPs) ...........................................................23 

1.7 Molecular oncology and aberrant signalling in cancer........................................24 

1.8 Cancer cell characteristics ......................................................................................25 

1.9 Aim of the study.......................................................................................................26 

2 Materials and Methods.....................................................................................................28 

2.1 Materials...................................................................................................................28 
2.1.1 Laboratory chemicals and biochemicals............................................................28 
2.1.2 Enzymes ............................................................................................................29 
2.1.3 Radiochemicals..................................................................................................29 
2.1.4 "Kits" and other materials..................................................................................29 
2.1.5 Growth factors and ligands................................................................................30 
2.1.6 Media and buffers..............................................................................................30 

2.1.6.1 Media for E. coli bacteria ..............................................................................30 
2.1.6.2 Cell culture media..........................................................................................30 

2.1.7 Stock solutions and buffers ...............................................................................30 
2.1.8 Bacteria strains (E. coli) ....................................................................................32 
2.1.9 Cell lines ............................................................................................................32 
2.1.10 Antibodies..........................................................................................................32 
2.1.11 Plasmids and oligonucleotides ..........................................................................33 

2.1.11.1 Primary vectors..........................................................................................33 
2.1.11.2 Constructs ..................................................................................................34 



  

2.2 Methods in molecular biology ................................................................................35 
2.2.1 Plasmid preparation for analytical purpose .......................................................35 
2.2.2 Plasmid preparation in preparative scale ...........................................................35 
2.2.3 Enzymatic manipulation of DNA......................................................................35 

2.2.3.1 Digestion of DNA samples with restriction endonucleases ..........................35 
2.2.3.2 Dephosphorylation of 5’-termini with calf intestine alkaline phosphatase 
(CIAP) 35 
2.2.3.3 DNA insert ligation into vector DNA ...........................................................35 

2.2.4 Agarose gel electrophoresis...............................................................................36 
2.2.5 Isolation of DNA fragments using low melting temperature agarose gels........36 
2.2.6 Introduction of plasmid DNA into E.coli cells..................................................36 

2.2.6.1 Preparation of competent E. coli bacteria......................................................36 
2.2.6.2 Transformation of competent E. coli bacteria ...............................................36 

2.2.7 Enzymatic amplification of DNA by polymerase chain reaction (PCR)...........36 
2.2.8 DNA sequencing ...............................................................................................37 

2.3 Methods in mammalian cell culture ......................................................................37 
2.3.1 General cell culture techniques..........................................................................37 
2.3.2 Transfection of cultured cell lines .....................................................................37 

2.3.2.1 Transfection of cells with calcium phosphate ...............................................37 
2.3.2.2 RNA interference...........................................................................................38 

2.3.3 Retroviral gene transfer in cell lines..................................................................38 

2.4 Protein analytical methods .....................................................................................38 
2.4.1 Lysis of eucaryotic cells with Triton X100 .......................................................38 
2.4.2 Determination of protein concentration in cell lysates......................................38 
2.4.3 Immunprecipitation and in vitro association with fusion proteins ....................39 
2.4.4 SDS-polyacrylamide-gelelectrophoresis ...........................................................39 
2.4.5 Transfer of proteins on nitrocellulose membranes ............................................39 
2.4.6 Immunoblot detection........................................................................................39 

2.5 Biochemical and cell biological assays...................................................................39 
2.5.1 Stimulation of cells............................................................................................39 
2.5.2 ERK1/2 and AKT/PKB phosphorylation ..........................................................40 
2.5.3 ERK/MAPK activity .........................................................................................40 
2.5.4 Flow cytometric analysis of cell surface proteins .............................................40 
2.5.5 Incorporation of 3H-thymidine into DNA .........................................................40 
2.5.6 Distribution of cell cycle phases........................................................................40 
2.5.7 In vitro wound closure.......................................................................................40 
2.5.8 Migration and invasion......................................................................................41 

2.6 Statistical analysis....................................................................................................41 

3 Results ...............................................................................................................................42 

3.1 A variety of GPCR agonists stimulate EGFR tyrosine phosphorylation in 
kidney and bladder carcinoma cell lines ...........................................................................42 

3.2 EGFR transactivation by the GPCR agonists LPA and angiotensin II involves 
EGF-like ligands HB-EGF  and ADAM metalloproteinases in kidney and bladder 
carcinoma cell lines..............................................................................................................44 



  

3.3 Transactivation of Her2 is dependent on a metalloproteinase function and 
EGFR tyrosine kinase activity............................................................................................51 

3.4 EGFR association and tyrosine phosphorylation of Shc and Gab1 upon 
treatment with GPCR ligands is metalloproteinase dependent ......................................52 

3.5 GPCR-mediated activation of MAPK, Akt/PKB and cyclin D1 expression are 
batimastat and AG1478- sensitive......................................................................................54 

3.6 MAPK activation by LPA is dependent on src-kinase whereas Akt/PKB 
activation by LPA is dependent on src-kinase as well as PI3-kinase..............................58 

3.7 GPCR ligands induce mitogenic signalling and cell cycle progression in Rat 1 
fibroblasts via metalloproteinase-dependent EGFR transactivation .............................60 

3.8 Angiotensin II induced EGFR transactivation and DNA synthesis in ACHN 
kidney cancer cells is dependent on the EGFR and ADAM 17.......................................62 

3.9 LPA prevents apoptosis induced by serum-starvation or doxorubicin treatment 
in a BB94 and AG1478 -sensitive manner in Rat-1 fibroblasts.......................................63 

3.10 LPA prevents apoptosis induced by anti-CD95/FasL in a BB94 and AG1478- 
sensitive manner in TccSup bladder carcinoma cells ......................................................64 

3.11 LPA promotes wound closure which is dependent on the EGFR and a 
metalloproteinase.................................................................................................................66 

3.12 LPA promotes cell migration which is inhibited by BB94, AG1478 and a 
dominant negative mutant of ADAM 17 ...........................................................................67 

3.13 LPA promotes cell invasion dependent on the EGFR and a metalloproteinase68 

4 Discussion .........................................................................................................................72 

4.1 Treatment of Rat-1 fibroblasts and kidney and bladder carcinoma cells with 
GPCR agonists requires a metalloproteinase activity and the extracellular ligand-
binding domain of the EGFR .............................................................................................73 

4.2 EGFR transactivation involves the EGF-like ligands amphiregulin, HB-EGF 
and TGFα and the metalloproteinases ADAM 10, 15 and 17 in kidney and bladder 
cancer cells ...........................................................................................................................75 

4.3 Transactivation of the EGFR involves HER2, SHC, Gab1, Akt, MAPK, Src, 
PI3-K and cyclin D1 ............................................................................................................76 

4.4 Regulation of proliferation and survival of kidney and bladder cancer cells 
requires EGFR function and a metalloproteinase activity ..............................................78 

4.5 Motility of kidney and bladder cancer cells is regulated by the EGFR and a 
metalloproteinase.................................................................................................................80 

4.6 Perspectives ..............................................................................................................81 

5 Summary ...........................................................................................................................84 

6 References.........................................................................................................................85 

7 Abbrevations .....................................................................................................................98 

Acknowledgements/ Danksagung ......................................... Fehler! Textmarke nicht definiert. 



  

Curriculum Vitae....................................................................................................................101 

 



1 Introduction 7

 

1 Introduction 

 
One characteristic commonality to all organisms is the dynamic ability to coordinate complex 

physiological processes with environmental changes. The capability of cells to communicate 

with  their environment is achieved through a number of pathways that receive and process 

signals. Signals can originate from the external environment ranging from soluble endocrine 

and paracrine factors to signalling molecules located on neighbouring cells, but also from 

different intracellular regions. Integration of external stimuli with internal signal transduction 

pathways is essential for the ability of cells to respond correctly to the environment in order to 

achieve an appropriate biological response. This type of information transfer is an important 

part of the cellular repertoire of regulatory mechanisms. During normal embryonic 

development and in adult life, signalling needs to be precisely coordinated and integrated at all 

times. Deregulated signal transmission is now recognized as a cause of many human diseases 

such as cancer and diabetes (Hanahan and Weinberg 2000; Shawver et al. 2002). 

Receptors of the tyrosine kinase family play pivotal roles in the regulation of biological 

processes during development and in adulthood of multicellular organisms. Cellular signalling 

of these receptors is counterbalanced by protein tyrosine phosphates (PTPs) which therefore 

act as key regulatory components in directing and modulating signal transduction pathways. 

Defects in this highly complex regulatory system result in pathological disorders such as 

cancer. 

G-protein coupled receptors (GPCRs) are integral membrane proteins that, in response to 

activation by extracellular stimuli, regulate intracellular second messenger levels via their 

coupling to heterotrimeric G-proteins (guanin-nucleotide binding protein). They are 

dynamically regulated via phosphorylation by G-protein coupled receptor kinases (GPKs) 

which desensitize the receptor after prolonged or repeated exposure to agonists. GPCRs 

represent the largest family of signal transduction molecules known and their dysfunction is 

responsible for numerous diseases.  

1.1 Protein tyrosine kinases 

Protein tyrosine kinases are important regulators of intracellular signal transduction pathways 

mediating aspects of multicellular communication and development in metazoans (Cohen 
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2002). These enzymes catalyze the transfer of the γ-phosphate of ATP to hydroxyl groups of 

tyrosines on target proteins. Tyrosine kinases play an important role in the control of most 

fundamental cellular processes including the cell cycle, migration, metabolism and survival, as 

well as proliferation and differentiation. There are currently more than 90 known tyrosine 

kinase genes in the human genome; 58 encode transmembrane receptor tyrosine kinases 

(RTKs) distributed into 20 subfamilies based on their structural characteristics (Fig. 1), and 32 

encode cytoplasmic non-receptor tyrosine kinases (NRTKs) distributed into 10 subfamilies. 

1.1.1 Receptor tyrosine kinases (RTK) 

RTKs are type I transmembrane proteins and contain an extracellular ligand-binding domain 

that is usually glycosylated (Hubbard and Till 2000). The structural diversity of RTK 

ectodomains is due to the presence of one or several copies of immunoglobulin-like domains, 

fibronectin type III-like domains, EGF-like domains, cysteine-rich domains or other domains 

(Fig. 1). 

 

Figure 1. Subfamilies of receptor tyrosine kinases (Blume-Jensen and Hunter, 2001). 

 
The ligand binding domain is connected to the cytoplasmic domain by a single transmembrane 

helix. The cytoplasmic domain contains a highly conserved protein tyrosine kinase core and 

additional regulatory sequences that are subjected to autophosphorylation and phosphorylation 

by heterologous protein kinases. 
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The EGFR family consists of four RTKs: EGFR, HER2/neu for which no ligand has been 

described so far, HER3 which is kinase-inactive and HER4 (Ullrich and Schlessinger 1990). 

The EGFR was the first cell surface signalling protein and protooncogene product to be 

characterized by molecular genetic methods and exemplifies prototypical features of RTKs. 

The EGFR signalling module has been highly conserved throughout the course of evolution. 

The primordial signalling unit found in the nematode Caenorhabditis elegans consists of one 

receptor protein called LET-23 and a single EGF-like ligand known as LIN-3 (Yarden and 

Sliwkowski 2001). In this organism, the EGFR network plays a central developmental role. A 

single receptor and four ligands are present in insects such as Drosophila melanogaster and - 

moving further up the evolutionary ladder - four receptors and so far ten ligands have been 

identified in mammals. 

1.1.2 EGF-like ligands 

Several growth factors have been shown to directly activate the EGFR: EGF, transforming 

growth factor alpha (TGFα), heparin-binding EGF-like growth factor (HB-EGF), 

amphiregulin (AR), betacellulin (BC), epiregulin (Epi) (Riese and Stern 1998), cripto 

(Salomon, Bianco et al. 1999) and epigen (Strachan, Murison et al. 2001). The various 

neuregulin (NRG) isoforms are ligands for HER3 and HER4. 

All these molecules share a common motif of 30-50 amino acids in the active peptide, called 

the EGF structural unit which contains six conserved cysteine residues. These cysteins form 

three intramolecular disulfide bonds, thereby restraining the peptide in a tertiary structure 

containing three disulfide bonded loops. 

EGF-like ligands are synthesized as transmembrane precursors which are subject to 

proteolytic cleavage at the cell surface to produce the soluble and diffusible growth factors 

(Massague and Pandiella 1993). Subsequently, the mature ligands activate RTKs of the EGFR 

family by autocrine or paracrine stimulation. In addition, several studies indicate that the 

membrane-anchored precursors may be biologically active via juxtracrine stimulation 

(Brachmann, Lindquist et al. 1989; Wong, Winchell et al. 1989). 

 

1.1.3  Ligand-induced activation of receptor tyrosine kinases 

Ligand-induced activation of receptor tyrosine kinases is mediated by intermolecular 

autophosphorylation of cytoplasmatic key tyrosine residues in the activation loop of the 
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catalytic tyrosine kinase domain (Schlessinger 2002). In the inactive state, the activation loop 

adopts a configuration preventing access to ATP and substrate. Upon tyrosine 

phosphorylation, the activation loop adopts an ''open configuration'' enabling access to ATP 

and substrate, thus resulting in enhanced tyrosine kinase activity. 

Recent structural studies have revealed that receptor dimerization is mediated by receptor 

interactions in which a loop protruding from neighbouring receptors mediates receptor 

dimerization and activation (Garrett, McKern et al. 2002; Ogiso, Ishitani et al. 2002). 

Dimerization of EGFR requires the binding of two molecules of monomeric EGF to two 

EGFR molecules in a 2:2 EGF:EGFR complex formed from stable intermediates of 1:1 

EGF:EGFR complexes. Each EGF molecule is bound exclusively to a single EGFR molecule, 

and dimerization is mediated entirely by receptor-receptor interactions. The crystal structures 

are consistent with the ''receptor-mediated'' mechanism for dimerization (Lemmon, Bu et al. 

1997), in which the binding of EGF to EGFR induces a conformational change that exposes a 

receptor-receptor interaction site in the extracellular domain, resulting in dimerization of two 

EGFR monomers only when EGF is bound. The dimerization loop-mediated mechanism of 

receptor dimerization may function as a key regulatory step to control the tyrosine kinase 

activity of the EGFR and other members of the family. 

The presence of multiple ligands and receptors imparts the EGFR signalling network with an 

expanded repertoire of cellular responses, as the four receptors can potentially form ten 

distinct homo- and heterodimers that in turn are activated by different ligands (Olayioye, Neve 

et al. 2000). Because of the absence of a specific ligand for HER2, this RTK functions as the 

preferred heterodimeric partner of the other members of the EGFR family (Alroy and Yarden 

1997), and provides an additional platform for recruitment of intracellular signalling 

pathways. 

1.1.4  Cytoplasmic tyrosine kinases 

There are ten known subfamilies of cytoplasmic, non-receptor tyrosine kinases (NRTKs): Src, 

Abl, Jak, Ack, Csk, Fak, Fes, Frk, Tec and Syk (Blume-Jensen and Hunter 2001). NRTKs lack 

receptor-like features such as an extracellular ligand-binding domain and a transmembrane-

spanning region. Most NRTKs are localized in the cytoplasm, whereas some are anchored to 

the cell membrane through amino-terminal modifications, such as myristoylation or 

palmitoylation. In addition to a tyrosine kinase domain, NRTKs possess domains that mediate 

protein-protein, protein-lipid, and protein-DNA interactions. The most common theme in 
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NRTK regulation, as in RTK function, is tyrosine phosphorylation. In particular, 

phosphorylation of tyrosines in the activation loop of NRTKs leads to an increase in 

enzymatic activity. Activation loop phosphorylation occurs via trans-autophosphorylation or 

phosphorylation by a different number of other NRTKs (Hubbard and Till 2000). 

Phosphorylation of tyrosines outside of the activation loop can negatively regulate kinase 

activity. 

The largest subfamily of NRTKs, with nine members, constitutes the Src family (Blume-

Jensen and Hunter 2001). Src family members participate in a variety of signalling processes, 

including mitogenesis, T- and B-cell activation, and cytoskeleton remodelling. Multiple in 

vivo substrates have been described for Src and include the PDGFR and EGFR, the NRTK 

focal adhesion kinase Fak, the adapter protein p130Cas which is involved in integrin- and 

growth factor-mediated signalling and cortactin, an actin-binding protein important for the 

proper formation of cell matrix contact sites. Regulation of Src catalytic activity has been 

studied extensively. Src and its family members contain a myristoylated amino terminus, a 

stretch of positively-charged residues that interact with phospholipid head groups, a short 

region with low sequence homology, a SH3 domain, a SH2 domain, a tyrosine kinase domain, 

and a short carboxy-terminal tail. Src possesses two important regulatory tyrosine 

phosphorylation sites. Phosphorylation of Tyr-527 in the carboxy-terminal tail of Src by the 

NRTK Csk represses kinase activity. The importance of this phosphorylation site is clarified in 

v-Src, an oncogenic variant of Src that is a product of the Rous sarcoma virus. Owing to a 

carboxyterminal truncation, v-Src lacks the negative regulatory site Tyr-527 and is 

constitutively active, leading to uncontrolled growth of infected cells. A second regulatory 

phosphorylation site in Src is Tyr-416, an autophosphorylation site in the activation loop. 

Maximal stimulation of kinase activity occurs when Tyr-416 is phosphorylated. Src has also 

been implicated in several human carcinomas, including breast, lung and colon cancer.  

 

1.1.5  Recruitment of downstream signalling molecules 

Ligand-induced receptor dimerization and autophosphorylation of RTKs, as well as activation 

of NRTKs, generates phosphorylated tyrosine residues on target proteins that mediate the 

recruitment and activation of a variety of cytoplasmic signalling proteins (Hunter 2000). These 

signalling proteins are modular in nature and bring about interactions with other proteins, with 

phospholipids or with nucleic acids. Protein modules involved in cellular signalling processes 
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downstream of RTKs and other cell surface receptors range in size from 50 to 120 amino acids 

(Schlessinger 2000). SH2 domains bind specifically to distinct amino acid sequences defined 

by 1 to 6 residues C-terminal to the phosphotyrosine moiety, while PTB domains bind to 

phosphotyrosine residues within context of specific sequences 3 to 5 residues to its N-

terminus. Certain PTB domains bind to nonphosphorylated peptide sequences, while others 

recognize both phosphotyrosine-containing and nonphosphorylated sequences equally well. 

SH3 domains bind specifically to the proline-rich sequence motif PXXP, while WW domains 

bind preferentially to another proline-rich motif PXPX. Pleckstrin homology (PH) domains 

comprise a large family of more than one hundred domains. While certain PH domains bind 

specifically to PtdIns(4,5)P2, another subset of PH domains binds preferentially to the products 

of agonist-induced phosphoinositide-3-kinases (PI3-Ks). Finally, FYVE domains comprise 

another family of small protein modules that specifically recognize PtdIns-3-P. PDZ domains 

belong to another large family of independent protein modules that bind specifically to 

hydrophobic residues at the C termini of their target proteins. A large family of SH2 domain-

containing proteins possess intrinsic enzymatic activities such as protein tyrosine kinase 

activity (Src-kinases), protein tyrosine phosphatase activity (SHP2), phospholipase C activity 

(PLCγ), or Ras-GAP activity. Another family of proteins exclusively contains SH2 or SH3 

domains. These adaptor proteins (e.g. Grb2, Nck, Crk, Shc) utilize their SH2 and SH3 

domains to mediate interactions that link different proteins involved in signal transduction. For 

example, the adaptor protein Grb2 links a variety of surface receptors to the Ras/mitogen-

activated protein (MAP) kinase signalling cascade. 

Agonist-induced membrane recruitment of signalling proteins stimulated by tyrosine 

phosphorylation is also mediated by a family of docking proteins which all contain in their N-

termini a membrane targeting signal and in their C-termini a large region that contains 

multiple binding sites for the SH2 domains of signalling proteins. Docking proteins such as 

Gab1 become associated with the cell membrane by binding of its PH domain to 

PtdIns(3,4,5)P3 in response to agonist-induced stimulation of PI3-K. In addition to the 

membrane targeting signal, most docking proteins contain specific domains such as PTB 

domains that are responsible for complex formation with a particular set of cell surface 

receptors. Because activated receptor tyrosine kinases selectively assemble and recruit 

signalling complexes every RTK is not only considered as a receptor with tyrosine kinase 

activity but also as a platform for the recognition and recruitment of a specific set of signalling 

proteins. 



1 Introduction 13

1.2 Mitogen-activated-protein-kinase (MAPK) pathways 

The main signalling pathways linking activation of many cell surface receptors such as RTKs 

as well as GPCRs to the nucleus is via Ras (Schlessinger 2000), a small membrane-bound 

monomeric GTP-binding protein. Both biochemical and genetic studies have demonstrated 

that Ras is activated by the guanine nucleotide exchange factor Sos. The adaptor protein Grb2 

plays an important role in this process by forming a complex with Sos via its SH3 domains. 

The Grb2/Sos complex is recruited to an activated RTK through binding of the Grb2 SH2 

domain to specific phosphotyrosine sites of the receptor, thus translocating Sos to the plasma 

membrane where it is close to Ras and can stimulate exchange of GTP for GDP. Membrane 

recruitment of Sos can be also accomplished by binding of the Grb2/Sos complex to SHC, 

another adaptor protein that forms a complex with many receptors through its PTB domain. 

Alternatively, Grb2/Sos complexes can be recruited to the cell membrane by binding to 

membrane-linked docking proteins such as IRS1 or FRS2 which become tyrosine 

phosphorylated in response to activation of certain RTKs. Once in the active GTP-bound state, 

Ras interacts with several effector proteins such as Raf and PI3-K to stimulate numerous 

intracellular processes. Activated Raf stimulates MAPK kinase (MAPKK, MEK) by 

phosphorylating a key Ser residue in the activation loop. MAPKK then phosphorylates MAPK 

on Thr and Tyr residues in the activation-loop leading to its activation. Activated MAPK 

phosphorylates a variety of cytoplasmic and membrane linked substrates. In addition, MAPK 

is rapidly translocated into the nucleus where it phosphorylates and activates transcription 

factors. The signalling cassette composed of MAPKKK, MAPKK, and MAPK is highly 

conserved in evolution and plays an important role in the control of metabolic processes, cell 

cycle, cell migration and cell shape as well as in cell proliferation and differentiation (Hunter 

2000). 

The specificity of MAPK interactions and the effector molecules stimulated depends largely 

on the MAPK subtypes involved. In particular, extracellular signal-regulated kinases 

(ERK1/2)/MAPKs are primarily stimulated by growth factors and modulate cell growth and 

differentiation, whereas c-Jun N-terminal kinases (JNKs) and p38 MAPKs are most 

commonly activated by stress stimuli and are involved in cell growth, diffentiation, survival, 

apoptosis, and cytokine production (Marinissen and Gutkind 2001). 
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1.3 Protein kinase B/Akt 

PKB/Akt is a serine/threonine kinase that exists in three isoforms in mammals (Akt 1, 2 and 3) 

which are structurally tightly related. They are composed of three functionally distinct regions: 

an N-terminal pleckstrin homology (PH) domain, a central catalytic domain and a C-terminal 

hydrophobic motif (HM). 

Protein kinase B is activated by the phosphoinositide 3-kinase (PI3-K) pathway. Generation of 

PIP3 and PI(3, 4)P2 is necessary for the localization of PKB to the membrane surface. The 

activation takes place by multisite phosphorylation but the main site of phosphorylation is at 

Thr 308. The fully active multiphosphorylated Akt then dissociates from the plasma 

membrane and targets substrates located in the cytoplasm and nucleus. It causes the activation 

of genes involved in diverse cellular processes. Furthermore, Akt activation contributes to 

tumourigenesis and tumour metastasis as well as chemotherapeutic resistance. 

1.4 G-protein-coupled receptors 

G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors involved 

in the regulation of numerous physiological functions such as neurotransmission, 

photoreception, chemoreception, metabolism, growth and differentiation (Fukuhara, Chikumi 

et al. 2001). For signal transmission, GPCRs interact with heterotrimeric G proteins which are 

composed of an α-, β- and γ-subunit. GPCRs are also frequently referred to as heptahelical or 

serpentine receptors, because they contain a conserved structural motif consisting of seven α- 

helical membrane-spanning regions. Based on certain key sequences, GPCRs can be divided 

into three major subfamilies, receptors related to rhodopsin (type A), receptors related to the 

calcitonin receptor (type B), and receptors related to the metabotropic receptors (type C) 

(Gether and Kobilka 1998). All GPCRs have an extracellular N-terminal segment, seven 

transmembrane helices, which form the transmembrane core, three exoloops, three cytoloops, 

and a C-terminal segment. Each of the seven transmembrane helices is generally composed of 

20-27 amino acids. On the other hand, N-terminal segments, loops, and C-terminal segments 

vary in size, an indication of their diverse structures and functions. Interestingly, there is a 

weak correlation between the N-terminal segment's length and ligand size, suggesting a role in 

ligand binding, in particular for large polypeptides and glycoprotein hormones. Domains 

which are critical for interaction with the G proteins have been localized to the second and 

third cytoplasmic loops and the C terminus (Ji, Grossmann et al. 1998). 
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The observation that muscarinic acetylcholine M1, M3 and M5 receptors transform murine 

fibroblasts provides evidence that wild-type GPCRs can be tumourigenic when exposed to an 

excess of agonists (Marinissen and Gutkind 2001). Moreover, if mutated, GPCRs might be 

rendered transforming even in an agonist-independent fashion as shown, for example, for α1B-

adrenoceptors, thyroid-stimulating hormone receptors and leuteinizing hormone receptors. 

Although activating mutations are infrequent in GPCRs, these receptors often contribute to 

neoplasia when persistently stimulated by agonists released from tumours in an autocrine or 

paracrine fashion. The block of GPCR signalling effectively prevents tumour growth in animal 

models, which raises the possibility of developing novel agents that act on GPCRs for 

therapeutic intervention in cancer. 

Sixteen distinct mammalian G-protein α−subunits have been cloned and are divided into four 

families based upon sequence similarity: αs, which activates adenylyl cyclase, αi, which 

inhibits adenylyl cyclase, αq, which activates phospholipase C and α12 of unknown function. 

Similarly, eleven G-protein γ subunits and five G-protein β subunits have been identified 

(Gutkind 2000). Therefore, GPCRs are likely to represent the most diverse signal transduction 

systems in eukaryotic cells. 

GTPase-deficient mutants of αi, αq, α12, and α13 were found to display oncogenic properties 

when expressed in several cellular systems; and naturally occurring activated mutants of 

certain G-proteins were also identified in various disease states, including cancer. 

GPCR activation causes a profound change in the transmembrane helices, which affects the 

conformation of intracellular loops and uncovers previously masked G-protein binding sites 

(Gutkind 2000). The GPCR-G protein interaction in turn promotes the release of guanosine 

diphosphate (GDP) bound to the G protein α subunit and its exchange for guanosine 

triphosphate (GTP) and causes a conformational change in three flexible "switch regions" of 

the Gα subunit, thus activating Gα and causing the dissociation and exposure of effector 

interaction sites in the βγ heterodimers. 

Activated G-protein subunits then initiate intracellular signalling responses by acting on a 

variety of effector molecules (Gutkind 2000). These include adenylyl and guanylyl cyclases, 

phosphodiesterases, phospholipase A2 (PLA2), phospholipase C (PLC) and PI3-Ks, thereby 

activating or inhibiting the production of a variety of second messengers such as cAMP, 

cGMP, diacylglycerol, inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3], phosphatidyl inositol 

(3,4,5)-trisphosphate [PtdIns(3,4,5)P3], arachidonic acid and phosphatidic acid, in addition to 
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promoting increases in the intracellular concentration of Ca2+
 and the opening or closing of a 

variety of ion channels. 

A myriad of extracellular agonists have been demonstrated to act through GPCRs including 

biogenic amines, peptide and glycoprotein hormones, neuropeptides, serine proteases, 

neurotransmitters, eicosanoids and phospholipids such as sphingosine-1-phosphate and 

lysophosphatidic acid (LPA) (Ji, Grossmann et al. 1998). 

LPA is an extracellular lipid mediator that has been implicated in the regulation of both, 

physiological and pathophysiological processes (Moolenaar, Kranenburg et al. 1997; Fang, Yu 

et al. 2000). LPA represents the major mitogenic activity in serum and numerous cellular 

responses to LPA have been documented including rapid cytoskeletal rearrangements (Gohla, 

Harhammer et al. 1998), stimulation of cell proliferation (van Corven, Groenink et al. 1989), 

suppression of apoptosis (Fang, Yu et al. 2000) and induction of tumour cell migration and 

invasion (Imamura, Horai et al. 1993; Fishman, Liu et al. 2001). LPA levels are elevated in 

plasma and ascites of ovarian cancer patients (Imamura, Horai et al. 1993; Xu, Gaudette et al. 

1995; Xu, Shen et al. 1998; Fishman, Liu et al. 2001) and LPA is likely to play a prominent 

role in the pathology of other types of human cancer. 

The cell-surface receptors for LPA and for the structurally related phospholipid sphingosine- 

1-phosphate (S1P) belong to the EDG (endothelial cell differentiation gene) subfamily of 

GPCRs (Pyne and Pyne 2000; Kranenburg and Moolenaar 2001). To date, four functional 

LPA receptors have been described (EDG2, EDG4 and EDG7) which couple to Gi, Gq and G12 

subtypes of G proteins and show distinct properties in ligand specificity and activation of 

intracellular signalling pathways. According to the cellular context, LPA was shown to be 

involved in the modulation of adenylate cyclase, stimulation of phospholipase C (PLC) and 

subsequent Ca2+
 mobilization, activation of the Ras/MAPK pathway, phosphorylation of the 

survival mediator Akt/protein kinase B (PKB) by PI3-K and transcriptional regulation of 

immediate-early genes (Moolenaar, Kranenburg et al. 1997; Moolenaar 1999; Pyne and Pyne 

2000; Kranenburg and Moolenaar 2001). 

 

 

1.5 EGFR signal transactivation 

Various studies have revealed that cellular responses to GPCR agonists depend on the function 

of the EGFR in several cell systems, a phenomenon that was termed interreceptor cross-talk or 
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EGFR signal transactivation (Daub, Weiss et al. 1996; Luttrell, Ferguson et al. 1999; Zwick, 

Hackel et al. 1999; Marinissen and Gutkind 2001). The pioneer studies of H. Daub and 

colleagues have described a critical role of the EGFR in GPCR-induced mitogenesis of rat 

fibroblasts (Daub, Weiss et al. 1996). They have demonstrated that the EGFR and HER2/neu 

are rapidly tyrosine phosphorylated after stimulation of Rat-1 cells with the GPCR agonists 

endothelin-1 (ET-1), LPA or thrombin (Figure 2a). This transactivation of a receptor tyrosine 

kinase couples GPCR-ligand engagement to ERK activation, induction of fos gene expression 

and DNA synthesis, which are abrogated either by the selective EGFR inhibitor tyrphostin 

AG1478 or by expression of a dominant-negative EGFR mutant. 

 
Figure 2. GPCR and RTK signaling systems. A) Individual pathways transmit signals along linear tracts 
resulting in regulation of discrete cell functions. B) RTK signal transactivation leads to RTK-characteristic 
cellular responses upon GPCR stimulation. 
 
 

Further investigations have revealed that the GPCR-EGFR cross-talk mechanism is installed 

in a variety of other cell types such as human keratinocytes, primary mouse astrocytes, PC-12 
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cells and vascular smooth muscle cells (Daub, Wallasch et al. 1997; Zwick, Daub et al. 1997; 

Eguchi, Numaguchi et al. 1998) and established it as a widely relevant pathway towards the 

activation of the MAP kinase signal. 

A number of reports have demonstrated that various extracellular stimuli, unrelated to EGF-

like ligands and GPCR agonists can also activate the EGF receptor (Zwick, Hackel et al. 

1999). These diverse stimuli include agonists for cytokine receptors (prolactin, growth 

hormone), adhesion receptors (integrins), membrane-depolarizing agents (KCl) and 

environmental stress factors (ultraviolet and gamma irradiation, oxidants, heat shock, 

hyperosmotic shock). In addition to the EGFR, other RTKs have been shown to be activated 

by GPCR ligands (Fig. 2B). For example, in primary rat smooth muscle cells the insulin-like 

growth factor receptor (IGF-1R) phosphorylation is induced by thrombin (Weiss, Daub et al. 

1997) while the VEGFR-2 is transactivated by S1P in human umbilical vein endothelial cells 

(HUVECs) (Endo, Nagashima et al. 2002). Moreover, it was reported that LPA induces 

PDGFR tyrosine phosphorylation in L cells (Herrlich, Daub et al. 1998) and that opioid 

receptor agonists transactivate the fibroblast growth factor receptor (FGFR)-1 in rat C6 glioma 

cells that lack the EGFR (Belcheva, Haas et al. 2002) suggesting that transactivation of 

distinct RTKs can contribute to GPCR signalling in a cell-type-specific manner. 

Subsequent work provided evidence for widespread use of EGFR signal transactivation by 

diverse GPCRs and the capacity of different G-proteins to generate the necessary connections 

(Table 1). Interestingly, LPA-induced transactivation of the EGFR in COS-7 cells was 

attenuated by pertussis toxin (PTX) which inactivates Gα subunits of the Gi/o family of G 

proteins. In contrast, thrombin stimulated EGFR tyrosine phosphorylation and downstream 

signalling was not affected (Daub, Wallasch et al. 1997). Furthermore, agonist stimulation of 

ectopically expressed Gq-coupled bombesin (BombR) or Gi-coupled M2 muscarinic 

acetylcholine receptor (M2R) triggered EGFR transactivation followed by tyrosine 

phosphorylation of SHC and formation of SHC-Grb2 complexes. These results demonstrated 

that EGFR transactivation occurs via both PTX-insensitive and -sensitive pathways and that 

the EGFR mediates MAP kinase activation by Gq- and Gi-coupled receptors in COS-7 cells. 

More recent studies showed that Gα13 subunits mediate LPA-induced actin polymerization and 

actin stress fiber formation in Swiss 3T3 cells and mouse fibroblasts via EGFR transactivation 

(Gohla, Harhammer et al. 1998; Gohla, Offermanns et al. 1999). 
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Table 1: Cross-talk between GPCRs and the EGFR (Gschwind et al., 2001) 

In summary, Gi-, Gq- as well as G13-coupled receptors have been reported to transactivate the 

EGFR after agonist stimulation in diverse cell systems, whereas up to now there is no data 

available concerning an analogous function of Gs-coupled receptors. 

Several studies indicate that the EGFR transactivation mechanism is subject to different cell 

type-characteristic regulatory influences. In PC-12, vascular smooth muscle cells and 

intestinal epithelial cells intracellular Ca2+
 concentration has been demonstrated to be a critical 

parameter in Gq-coupled receptor-mediated EGFR transactivation (Zwick, Daub et al. 1997; 

Eguchi, Numaguchi et al. 1998; Murasawa, Mori et al. 1998; Soltoff 1998; Iwasaki, Eguchi et 

al. 1999). Activation of the Ser/Thr protein kinase C (PKC) was shown to be required for Gq-

coupled receptors to induce EGFR transactivation in cell lines such as HEK-293 and PC-12 

cells (Tsai, Morielli et al. 1997; Soltoff 1998; Grosse, Roelle et al. 2000). 

Besides the function of PKC in GPCR-mediated EGFR transactivation, Matsubara and co-

workers reported Ca2+/calmodulin-dependent receptor activation in Ang II-stimulated cardiac 

fibroblasts (Murasawa, Mori et al. 1998). Similarly in PC-12 cells, Zwick and colleagues 

(Zwick, Wallasch et al. 1999) demonstrated the involvement of a Ca2+-calmodulin-dependent 

kinase II (CaMK II) activity in K+- but not bradykinin-induced EGFR signal transactivation. 

The role of another Ca2+-dependent kinase, PYK2, in the transmission of mitogenic signals is 

controversial. While several reports suggested a role of this tyrosine kinase in Gq-mediated 

EGFR tyrosine phosphorylation in PC-12 (Soltoff, 1998) and intestinal epithelial cells, 
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respectively (Keely, Calandrella et al. 2000), Zwick et al. reported Ca2+-dependent, but PYK2-

independent EGFR transactivation in response to bradykinin in PC-12 cells (Zwick, Wallasch 

et al. 1999). 

Furthermore, tyrosine phosphorylated Src is often found in association with the EGFR 

(Luttrell, Ferguson et al. 1999) or with PYK2 (Soltoff 1998; Keely, Calandrella et al. 2000) 

upon stimulation of Gq-coupled receptors and has therefore been proposed to function as a 

mediator of EGFR transactivation. Since other reports have demonstrated Src-independent 

EGFR transactivation, but Src-dependent SHC tyrosine phosphorylation and ERK activation 

(Daub, Wallasch et al. 1997; Adomeit, Graness et al. 1999; Slack 2000) it seems likely that 

Src is recruited by the transactivated EGFR and thereby contributes to activation of the Ras 

signalling pathway. 

Due to the rapid kinetics of EGFR signal transactivation and the fact that release of EGFR 

ligands was not detectable after GPCR stimulation, the mechanism of EGFR transactivation 

was proposed not to involve the interaction of the EGFR with a ligand. Hence, EGFR 

activation by GPCR agonists was assumed to exclusively rely on intracellular elements such 

as Ca2+, PKC and Src (Carpenter 1999). 

Very recently, a new mechanistic concept of strictly ligand-dependent EGFR transactivation 

by GPCRs has been presented and summarizes experimental data obtained from Rat-1, COS-7 

and HEK-293 cells (Prenzel, Zwick et al. 1999). The GPCR ligands LPA, carbachol and 

bombesin were shown to induce the proteolytic processing of the transmembrane proHB-EGF 

precursor to yield the mature ligand. Blocking of this process either with the metalloprotease 

inhibitor batimastat or the HB-EGF antagonistic diphtheria toxin mutant CRM197 completely 

abrogated GPCR-induced EGFR transactivation and SHC tyrosine phosphorylation. The so 

called triple-membrane-passing signal (TMPS) model includes the G protein-mediated 

activation of a metalloprotease via an unknown mechanism (Gschwind, Zwick et al. 2001). 

The TMPS mechanism also allows the transactivation of EGFRs on neighbouring cells but 

only over short distances and under participation of the heparan sulfate proteoglycan matrix 

which in retrospect explains the failure of Daub and colleagues (Daub, Weiss et al. 1996) to 

detect EGF like activity in conditioned medium of GPCR-ligand-stimulated Rat1 cell cultures. 

In this context, growing evidence points to transmembrane metalloproteases as the key 

enzymes of growth factor precursor shedding. 
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1.6  Metalloproteases 

Metalloproteases are important in many aspects of biology, ranging from cell proliferation, 

differentiation and remodelling of the extracellular matrix (ECM) to vascularization and cell 

migration. These events occur several times during organogenesis in both normal development 

and during tumour progression. Mechanisms of metalloprotease action underlying these events 

include the proteolytic cleavage of growth factors so that they can become available to cells 

not in direct physical contact, degradation of the ECM so that founder cells can move across 

tissues into nearby stroma and regulated receptor cleavage to terminate migratory signalling. 

Most of these processes require a delicate balance between the functions of matrix 

metalloproteases (MMPs) or metalloprotease-disintegrins (ADAMs) and natural tissue 

inhibitors of metalloproteases (TIMPs). 

Metalloproteases are generally characterized by a catalytically indispensable zinc ion in their 

active site. Many of these enzymes contain a conserved HEXXH (X is any amino acid residue) 

consensus sequence (Hooper 1994). Due to the presence of an extended zinc-binding motif, 

HEXXHXXGXXH and a methionine-containing turn of similar conformation close to the 

active site, the astacins, the serralysins, the MMPs and the adamalysins (ADAMs) are grouped 

into the metzincin superfamily of metalloproteases (Bode, Gomis-Ruth et al. 1993). The three 

histidines of the extended HEXXH sequence serve as ligands to the zinc, whereas the glutamic 

acid is believed to transfer hydrogen atoms and to polarize a zinc-bound water molecule for 

nucleophilic attack on the scissile peptide bond of bound substrate (Stocker and Bode 1995). 

Many metalloproteases are synthesized as inactive precursors in which the prodomain is 

responsible for maintaining latency of the protease via a cysteine switch mechanism: In 

particular, the free sulfhydryl group a cysteine residue in the prodomain provides a forth 

coordination site keeping the protease inactive until the prodomain is removed (Bode, Gomis-

Ruth et al. 1993). Besides its role as an inhibitor of the protease domain, the prodomain 

appears to be important for the proper maturation and intracellular transport of 

metalloproteases. Although prodomain removal is probably a prerequisite for protease activity, 

this processing appears to be mediated constitutively by a furin-type proprotein convertase in 

the trans-Golgi network. 
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1.6.1  ADAMs 

Metalloprotease-disintegrins are transmembrane glycoproteins that play roles in cell-cell 

interaction and in the processing of the ectodomains of proteins (Wolfsberg, Primakoff et al. 

1995). They combine features of both cell surface adhesion molecules and proteinases and are 

characterized by a conserved domain structure consisting of N-terminal signal sequence 

followed by a prodomain, metalloprotease and disintegrin domains, a cysteine-rich region and 

finally a transmembrane domain and cytoplasmic tail (Fig. 3). Thus family members are 

referred to as ADAM (a disintegrin and metalloprotease domain) or as MDCs 

(metalloprotease, disintegrin, cysteine-rich proteins). 

 

 

Figure 3. Structure of ADAM family metalloproteases and their involvement in cell surface ectodomain 

shedding of multiple substrates (PTK, protein tyrosine kinase; PKC, protein kinase C) (Werb and Yan, 

1998). 

More than 30 ADAM cDNA sequences have been identified to date in organisms ranging 

from S. pombe to humans (Primakoff and Myles 2000). Interestingly, although all ADAMs 

have a relatively well-conserved metalloprotease domain, only 15 of those identified contain 

the zinc-binding catalytic-site consensus sequence (HEXXH). Thus, only half of the known 

ADAMs is predicted to be catalytically active, whereas the others most likely lack 

metalloprotease activity. ADAMs have been implicated in diverse processes, including sperm-

egg binding and fusion, myoblast fusion, protein-ectodomain processing or shedding of 

cytokines, cytokine receptors, adhesion proteins and other extracellular protein domains 

(Schlondorff and Blobel 1999). The regulation of ADAM metalloprotease activity after 

prodomain removal is only poorly understood. Processing of membrane proteins by ADAMs 

requires both the membrane-anchored enzyme and its substrate to be present in cis on the 
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same cell, probably anchored in distinct domains of the plasma membrane through 

cytoskeletal interactions (Fig. 3). 

Upon cell activation, for example by PKC agonists, increases in cytoplasmic Ca2+
 levels or 

tyrosine kinase stimulation, the attachments change and the proteinases and substrates become 

co-clustered and can interact. Alternatively, the signalling cascade could modify the 

cytoplasmic domains of the proteinases or substrate, producing a conformational change that 

either activates the enzyme or makes the cleavage site available (Schlondorff and Blobel 

1999). 

For most processing reactions there appears to be a constitutive level of ectodomain shedding. 

Processing is necessary to make paracrine growth and survival factors available including 

EGF-like ligands allowing for the consistent supply of EGFR agonists. The first and best-

characterised “sheddase” is TACE (tumour necrosis factor alpha converting enzyme, 

ADAM17) (Black, Rauch et al. 1997; Moss, Jin et al. 1997). Besides TNFα, TACE mediates 

cleavage of several other unrelated membrane proteins, such as TGFα, L-selectin, p75 TNFR 

and HER4 (Black 2002). Surprisingly, mice lacking functional TACE display multiple defects 

in epithelial cell maturation and organization in multiple organs such as the eye, hair and skin. 

This phenotype is similar in animals engineered to lack the EGFR (Peschon, Slack et al. 

1998). In addition, targeted disruption of the TACE genes causes a much more severe 

phenotype than knock-out of TGFα alone, suggesting the involvement of TACE not only in 

proTGFα shedding, but also in the membrane cleavage of other EGF-like ligand precursors. 

1.6.2  The Matrix Metalloproteinases (MMPs) 

MMPs, which are closely related to the ADAM family of metalloproteases, play a central role 

in the timely breakdown of virtually any component of the extracellular matrix (ECM) 

(Shapiro 1998). Matrix remodelling is essential for embryonic development, morphogenesis, 

reproduction, and tissue resorption. 

MMPs were historically divided into collagenases, gelatinases, stromelysins and matrilysins 

on the basis of their specificity for ECM components. However, a sequential numbering 

system for the more than 20 known human MMPs has been adapted, and the MMPs are now 

grouped according to their structure (Nagase and Woessner 1999). There are eight distinct 

classes of MMPs: five are secreted and three are membrane-type MMPs (MT-MMPs). All 

MMPs are synthesized as prepro-enzymes and secreted as inactive pro-MMPs in most cases. 
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The prodomain has a conserved unique PRCG (V/N)PD sequence. The cysteine within this 

sequence coordinates the catalytic zinc to maintain the latency of pro-MMPs. The catalytic 

domains of MMPs have an additional structural zinc ion and 2-3 calcium ions, which are 

required for the stability and the expression of enzymatic activity. The gelatinases MMP-2 and 

MMP-9 have three repeats of fibronectin-type II domain inserted in the catalytic domain. 

These repeats interact with collagens and gelatins. Most of the MMPs are activated outside the 

cell by other activated MMPs or furin-like serine proteases. Endogenous inhibitors such as α-

macroglobulins, and TIMPs tightly control the proteolytic activities of MMPs. The expression 

of many MMPs is transcriptionally regulated by growth factors, hormones, cytokines and 

cellular transformation (Brinckerhoff and Matrisian 2002). 

1.7  Molecular oncology and aberrant signalling in cancer 

In non-transformed cells cell division, survival and death are in balance promoting 

homeostasis. The products of oncogenes and tumour suppressor genes however interact in 

overlapping pathways and dysfunction leads to cancer. Tumourigenesis is a multistep process 

involving genetic alterations that drive the progressive transformation of normal human cells 

into highly malignant derivatives (Hanahan and Weinberg 2000). The genomes of tumour 

cells are altered at multiple sites, having suffered disruption through lesions as subtle as point 

mutations and as obvious as changes in chromosome complement (Blume-Jensen and Hunter 

2001). Furthermore, cancer is the most common genetic disease: one in three people in the 

western world develop cancer, and one in five die from it. Therefore, it is an important task to 

elucidate the mechanisms behind transformation of normal cells to cancer cells and conversion 

of normal tissue into malignant tumours. It is a general phenomenon both in normal and 

transformed cells that signalling pathways are not freestanding entities but parts of larger 

signalling networks. 

Bladder and kidney cancer belong to the most frequent tumour types of the urogenital tract. 

The risk to fall ill with any of these kinds of cancer is two to three-fold higher in men than in 

women and increases with age. A strong link exists between lifestyle and the probability to 

acquire cancer. An important risk factor is cigarette smoke, but genetic disposition is of equal 

relevance. Although early diagnosis positively affects disease outcome the probability of 

relapse is high especially for bladder cancer. Moreover, each year the incidence of bladder 

cancer as well as the death rate caused by this form of cancer is rising. Furthermore, after 

progression to a later tumour stage metastases are detected in 30-50% of the patients. Surgical 
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removal of bladder, prostate and seminal vesicles is required if bladder tumours have invaded 

muscular layers. The main therapy for kidney cancer is the complete resection of the kidney 

including the adrenal gland and ureter (Vogelzang and Stadler 1998). This means that the 

common treatment of bladder and kidney cancer results in complete loss of function of the 

affected organ and thus a severely impaired quality of life for the patient. 

Hence, there is a strong need to identify novel intervention targets and to design patient-

tailored therapies for prevention and treatment of these tumours. In order to reverse or at least 

contain tumour spreading it is important to understand the molecular mechanisms underlying 

cancer development and progression.  

1.8 Cancer cell characteristics 

Observations of human cancers and animal models argue that tumour development proceeds 

via a process formally analogous to Darwinian evolution, in which a succession of genetic 

changes, each conferring one or another type of growth advantage, leads to the progressive 

conversion of normal human cells into cancer cells. 

The vast catalog of cancer cell genotypes is a manifestation of six essential alterations in cell 

physiology that collectively dictate malignant growth and which are now recognized as the six 

hallmarks of cancer: self-sufficiency in growth signals, insensitivity to growth-inhibitory (anti-

growth) signals, evasion of programmed cell death (apoptosis), limitless replicative potential, 

sustained angiogenesis, and tissue invasion and metastasis. It is assumed that these six 

capabilities are shared in common by most and perhaps all types of human tumours (Hanahan 

and Weinberg 2000). 

Cell growth is controlled by proto-oncogenes and tumour-suppressor genes such as growth 

factors and growth factor receptors, intracellular signal transduction proteins, transcription 

factors, cell-cycle control proteins and DNA-repair proteins. The cell cycle is regulated by 

cyclic variations in the concentration of cyclins, which control checkpoints. G1/S transition of 

the cell cycle is controlled by the G1 checkpoint. The transcription factor E2F is necessary to 

transcribe proteins essential for the S-phase, normally it is inhibited by Rb. Growth factors 

cause an increased cyclin D1 expression, which forms a complex with cdk2/4 and 

phosphorylates Rb and therefore releases E2F. In cancer, virus-encoded activators of growth 

factor receptors act as oncoproteins and activating mutations or overexpression of growth 

factor receptors transform cells by constant dimerization of RTKs and constitutive activation 
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of signal transduction pathways. This leads to a disruption of the cell cycle and escape from 

growth constraints. 

During development and differentiation newly forming tissues are sculped by a proper 

regulation of cell proliferation and programmed cell death. A balance between both is further 

important in the maintenance of cell and tissue homeostasis. For tumour progression, cancer 

cells need to evade apoptosis. One of the most important genes in this process is Bcl-2 which 

is regulated by growth factors and signal transduction pathways. Moreover, in 1997 a novel 

anti-apoptosis gene called Survivin was detected which is prominently expressed in 

transformed cells and in most common human cancers (Ambrosini, Adida et al. 1997). 

Benign tumours grow locally restricted, but the normal organization of the affected tissue 

gradually becomes disrupted by the increasing number of dividing cells. As the dividing 

cancer cells extend through the basement membrane into the surrounding stroma, malignancy 

begins. Invasion stimulatory pathways depend on the activation of trimeric G-proteins, PI3-K 

and the Rac and Rho family of small GTPases. Proteolysis plays a role for the breakdown of 

extracellular matrix as well as cleavage of pro-invasive fragments from cell surface 

glycoproteins.  

As the dividing cancer cells extend into blood vessels tumours undergo metastasis by 

spreading from the primary site to more distant sites in the body making cancer much more 

difficult to cure. 

 

1.9 Aim of the study 

The EGFR is part of signalling networks that are activated by heterologous stimuli. Most 

importantly, agonists for GPCRs, which comprise the largest family of cell-surface receptors, 

have been recognized as potent inducers of EGFR signalling activity. 

Previous studies established the EGFR as an essential element in GPCR mitogenic signalling 

in a variety of cell systems including COS-7, HaCaT, PC-12 and HEK-293 cells (Carpenter 

1999; Zwick, Hackel et al. 1999; Gschwind, Zwick et al. 2001). 

Recent experimental data supports the view of a strictly ligand-dependent mechanism of 

EGFR signal transactivation involving proteolytic processing of transmembrane EGFR-ligand 

precursors to yield the mature ligand (Prenzel, Zwick et al. 1999). Inhibition of this process 

with the metalloprotease inhibitor batimastat completely abrogated GPCR-induced EGFR 
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transactivation. These experimental findings led to the establishment of the Triple-Membrane-

Passing-Signalling (TMPS) pathway model of EGFR signal transactivation. 

On the basis of these findings and the fact that deregulation of both GPCR and EGFR 

signalling systems has been recognized as a major cause of hyperproliferative diseases, the 

aim of this study was to investigate the molecular mechanisms and the pathophysiological 

significance of EGFR signal transactivation in kidney and bladder cancer. Overexpression of 

the EGFR, HER2/neu and EGF-like ligands has been shown to promote tumour growth in 

bladder and kidney cancer cells and in addition has been correlated with metastatic behaviour 

(Dempsey, Meise et al. 1997). Moreover, the EGFR serves as a prognostic marker in these 

types of cancer. Given the prominent role of the EGFR in the development and progression of 

kidney and bladder tumours we have chosen cells derived from these types of cancer as 

experimental model systems to investigate the significance of GPCR ligands in cancer 

progression. 
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2 Materials and Methods 

2.1 Materials 

 

2.1.1 Laboratory chemicals and biochemicals 

Acrylamide       Serva, Heidelberg 
Agar        Difco, Detroit, USA 
Agarose       BRL, Eggenstein 
Ampicillin      Roche, Mannheim 
Aprotinin      Sigma, Taufkirchen 
APS (Ammonium peroxodisulfate)    Bio-Rad, München 
ATP (Adenosine 3´-triphosphate)    Pharmacia, Freiburg 
Batimastat       British Biotech, Oxford, UK 
Bisacrylamide      Roth, Karlsruhe 
Bromphenol blue      Sigma, Taufkirchen 
BSA (Bovine serum albumin)    Sigma, Taufkirchen 
Coomassie G250      Serva, Heidelberg 
Deoxynucleotides (dG/A/T/CTP)    Roche, Mannheim 
Dideoxynucleotides (ddG/A/T/CTP)   Pharmacia, Freiburg 
DTT (Dithiothreitol)      Sigma, Taufkirchen 
Ethidium bromide      Sigma, Taufkirchen 
Fibronectin       Calbiochem, Bad Soden 
GF-109203X      LC Laboratories, Grünberg 
Heparin       Sigma, Taufkirchen 
HEPES (N-(2-Hydroxyethyl)piperazine-N`-  Serva, Heidelberg 
(2-ethanesulfonic acid)) 
IPTG (Isopropyl β-D-1-thiogalactopyranoside)  Biomol, Hamburg 
L-Glutamine       Gibco, Eggenstein 
Lipofectamine®      Gibco, Eggenstein 
MBP        (Myelin basic protein) Sigma, Taufkirchen 
Mineral oil       Sigma, Taufkirchen 
MOPS (3-Morpholinopropanesulfonic acid)  Biomol, Haub 
PMSF (Phenylmethanesulfonyl fluoride)   Sigma, Taufkirchen 
Polybrene (Hexadimethrine bromide)   Sigma, Taufkirchen 
Ponceau S       Sigma, Taufkirchen 
PP1        Calbiochem, Bad Soden 
SDS (Sodium dodecyl sulfate)    Roth, Karlsruhe 
Sodium azide       Serva, Heidelberg 
Sodium fluoride      Sigma, Taufkirchen 
Sodium orthovanadate     Aldrich, Steinheim 
Scintillation cocktail (Rotiszint®ecoplus)   Roth, Karlsruhe 
TEMED (N,N,N',N'-Tetramethylethylenediamine)  Serva, Heidelberg 
TPA (Tetradecanoyl-phorbol-13-acetate)   Sigma, Taufkirchen 
Triton X-100       Serva, Heidelberg 
Tween 20, 40       Sigma, Taufkirchen 
Tyrphostin AG1478      Alexis, Grünberg 
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Wortmannin      Sigma, Taufkirchen 
All other chemicals were purchased from Merck (Darmstadt). 
 
 

2.1.2 Enzymes 
Alkaline Phosphatase     Roche, Mannheim 
Restriction Endonucleases     Pharmacia, Freiburg 

Roche, Mannheim 
NEB, Frankfurt/ Main 
MBI Fermentas, St. Leon-Rot 

T4-DNA Ligase      Roche, Mannheim 
T7-DNA Polymerase      Pharmacia, Freiburg 
Taq-DNA Polymerase     Roche, Mannheim 

Takara, Japan 
Trypsin       Gibco, Eggenstein 
 
 

2.1.3 Radiochemicals 
[γ-32P] ATP   >5000 Ci/mmol 
[a-33P] dATP   2500 Ci/mmol 
All radiochemicals were obtained from PerkinElmer Life Sciences, Köln. 
 
 

2.1.4 "Kits" and other materials 
Cell culture materials     Greiner, Solingen 

Nunclon, Dänemark 
Falcon, U.K. 

Cellulose nitrate 0.45 µm     Schleicher & Schüll, Dassel 
ECL Kit       PerkinElmer, Köln 
Glutathione-Sepharose     Pharmacia, Freiburg 
Hyperfilm MP      Amersham, USA 
Micro BCA Protein Assay Kit    Pierce, Sankt Augustin 
Parafilm       Dynatech, Denkendorf 
Protein A-Sepharose      Pharmacia, Freiburg 
Protein G-Sepharose      Pharmacia, Freiburg 
QIAquick Gel Extraction Kit (50)    Qiagen, Hilden 
QIAquick PCR Purification Kit    Qiagen, Hilden 
QIAGEN Plasmid Maxi Kit     Qiagen, Hilden 
Random-Primed DNA Labeling Kit    Pharmacia, Freiburg 
Sephadex G-50 (DNA Quality)    Pharmacia, Freiburg 
Sterile filter 0.22 µm, cellulose acetate   Nalge Company, USA 
Sterile filter 0.45 µm, cellulose acetate   Nalge Company, USA 
Transwells       Corning, New York, USA 
Whatman 3MM      Whatman, USA 
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2.1.5 Growth factors and ligands 
 
Anisomycin       Calbiochem 
Amphiregulin       R&D Systems 
Bradykinin       Calbiochem 
EGF (murine)       Toyoba, Japan 
All other growth factors and ligands were purchased from Sigma. 
 

2.1.6 Media and buffers 
 

2.1.6.1 Media for E. coli bacteria 
LB-Medium   1.0 % Tryptone 

0.5 % Yeast Extract 
1.0 % NaCl 
pH 7.2 

2xYT-Medium  1.6 % Tryptone 
1.0 % Yeast Extract 
1.0 % NaCl 
pH 7.2 

When necessary the following antibiotics were added to the media after autoclavation: 
Ampicillin   100 µg/mL 
Kanamycin   100 µg/mL 
Chloramphenicol  30 µg/mL 
LB-plates additionally contained 1.5% Agar. 
 

2.1.6.2 Cell culture media 
All cell culture media and additives were from Gibco (Eggenstein), fetal calf serum (FCS) 
was purchased from Sigma. 
Dulbecco’s modified eagle medium (DMEM) with 4.5 mg/mL glucose, 2 mM L-glutamine, 1 
mM sodium pyruvate. 
Eagle´s minimum essential medium (EMEM) supplemented with 2 mM L-glutamine, 0.1 mM 
non-essential amino acids and 1 mM sodium pyruvate. 
Nutrient mixture F12 (HAM) with L-glutamine. 
MEM alpha medium 
Freeze medium: 90% heat-inactivated FCS, 10% DMSO. 
 
 

2.1.7 Stock solutions and buffers 
BBS (2x)      50 mM BES 

280 mM NaCl 
1.5 mM Na2HPO4 

pH 6.96 (NaOH) 
 

HBS (2x)      46 mM HEPES pH 7.5 
274 mM NaCl 
1.5 mM Na2HPO4 
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pH 7.0 
 

DNA loading buffer (6x)    0.25 % Bromphenol blue 
0.25 % Xylencyanol 
30.0 % Glycerol 
100.0 mM EDTA pH 8.0 
 

Laemmli buffer (2x)     187.5 mM Tris/HCl pH 6.8 
6.0 % SDS 
30.0 % Glycerol 
0.01 % Bromphenol blue 
5.0 % ß-Mercaptoethanol 
 

NET (1x)      150.0 mM NaCl 
5 mM EDTA 
50 mM Tris 
0.05 % Triton X-100 
pH 7.4 (HCl) 
 

PBS       13.7 mM NaCl 
2.7 mM KCl 
80.9 mM Na2HPO4 

1.5 mM KH2PO4, pH 7.4 (HCl) 
 

SD-Transblot      50.0 mM Tris/HCl pH 7.5 
40.0 mM Glycine 
20.0 % Methanol 
0.004 % SDS 
 

“Strip” buffer      62.5 mM Tris/HCl pH 6.8 
2.0 % SDS 
100 mM ß-Mercaptoethanol 
 

SSC (20x)      3.0 M NaCl 
0.3 M Sodium citrate 
 

TAE (10x)      400 mM Tris/Acetate 
10 mM EDTA 
pH 8.0 (Acetic acid) 
 

TE10/0.1      10.0 mM Tris/HCl pH 8.0 
0.1 mM EDTA pH 8.0 
0.2  

Tris-Glycine-SDS (10x)    248.0 mM Tris/HCl pH 7.5 
1918.0 mM Glycine 
1.0 % SDS 
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2.1.8 Bacteria strains (E. coli) 
E. coli   Description       Origin/ Reference 
 
DH5aF’  F’/endA1 hsd17 (rk-mk-),supE44,recA1,   Genentech, 

gyrA (Nal), thi-1, (lacZYA-argF)    San Francisco, USA 
 

2.1.9  Cell lines 
Cell Line  Description        Origin/ Reference 
 
CaKi2  Human kidney carcinoma cell line    ATCC 
ACHN  Human kidney carcinoma cell line    ATCC CRL-1611 
HK2  Human kidney carcinoma cell line    ATCC 
A498  Human kidney carcinoma cell line    SUGEN 
A704  Human kidney carcinoma cell line    ATCC CRL-7911 
SCABER Human bladder carcinoma cell line    ATCC HTB-3 
HT1376 Human bladder carcinoma cell line    DSMZ 
TccSup Human bladder carcinoma cell line    ATCC HTB-5 
5637  Human bladder carcinoma cell line    ATCC HTB-9 
HEK-293 T  Human embryonic kidney fibroblasts, transformed   ATCC CRL-1573 

with adenovirus Typ V DNA 
Phoenix E, A  Retrovirus producer cell lines for the generation of   Nolan, Stanford 

helper free ecotropic and amphotropic retroviruses 
based on HEK-293 

 
All other cell lines were obtained from the American Type Culture Collection (ATCC, 
Manassas, USA) and grown as recommended by the supplier. 
 

2.1.10 Antibodies 
 
The following antibodies were used in immunoprecipitation experiments, as primary 
antibodies in immunoblot analysis or for staining of cell surface proteins in FACS analysis. 
 
Antibody   Description/ Immunogen     Origin/ Reference 
 
P-Tyr (4G10)   Mouse, monoclonal; recognizes phospho-   UBI, Lake Placid 

(3)-tyrosine residues 
EGFR    Sheep, polyclonal/ part of cytoplasmic domain  UBI 

of the human EGFR 
EGFR (108.1)  Mouse, monoclonal/ ectodomain of the human  (Daub et al., 1997) 

EGFR 
HER2/neu   Rabbit, polyclonal/ C-terminal peptide of human  (Daub et al., 1996) 

HER2/neu 
Akt1/2   Rabbit, polyclonal/ AA 345-480 of human Akt1  Santa Cruz, USA 
SHC    Mouse, monoclonal      Santa Cruz 
SHC    Rabbit, polyclonal/ 220 AA at C-terminus of  (Daub et al., 1997) 

human SHC 
Gab1    Rabbit, polyclonal/ AA 23-189 of human Gab1  (Daub et al., 1997) 
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P-ERK   Rabbit, polyclonal; recognizes phospho-p44/p42  NEB, Frankurt/M. 
(Thr-202/ Tyr-204) MAPK 

P-p38    Rabbit, polyclonal; recognizes phospho-p38  NEB 
(Thr-180/Tyr-182) MAPK 

P-Akt/PKB   Rabbit, polyclonal; recognizes phospho-Akt  NEB 
(Ser-473) 

HB-EGF   Goat, polyclonal/ recombinant, human HB-EGF  R&D Systems, 
Wiesbaden 

AR    Goat, polyclonal/ recombinant, human AR   R&D Systems 
TGFα    Mouse, monoclonal/ recombinant, human TGFα  Oncogene, 

Bad Soden 
ERK2 (C-14)  Rabbit, polyclonal/ peptide at C-terminus of rat  Santa Cruz 

ERK2 
ERK2 (K-23)   Rabbit, polyclonal/ peptide from sub-domain XI  Santa Cruz 

of rat ERK2 
Pan-ERK   Mouse monoclonal/ AA 219-358 of human   Transduction Lab. 

ERK2 
HA    Mouse, monoclonal; recognizes the influenza  Babco, California, 

hemagglutinin epitope USA 
VSV (P5D4)   Mouse, monoclonal; recognizes an epitope of  Roche, Mannheim 

eleven AA derived from the vesicular stomatits 
virus glycoprotein VSV-G 

Cyclin D1  Mouse, IgM, monoclonal, corresponding to   Transduction Lab 
amino acids 1-200 
 

p38 (C-20)   Rabbit, polyclonal/ peptide at C-terminus of  Santa Cruz 
murine p38 
 

 
For western blot secondary antibodies conjugated with horseradish peroxidase (HRP) were 
utilized. 
Antibody     Dilution     Origin 
 
Goat anti-mouse    1 : 10,000     Sigma 
Goat anti-sheep    1 : 25,000     Dianova, Hamburg 
Goat anti-rabbit    1 : 25,000     BioRad, München 
 
The FITC-conjugated rabbit anti-goat secondary antibody for flow cytometry was obtained 
from Sigma. 
 

2.1.11 Plasmids and oligonucleotides 
 

2.1.11.1 Primary vectors 
 
Vector   Description      Origin/ Reference 
 
pcDNA3  Mammalian expression vector, Ampr,  Invitrogen, 

CMV promotor, BGH poly A,   USA 
high copy number plasmid 
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pLXSN   Expression vector for retroviral gene  Clontech, Palo Alto, USA 
transfer, Ampr, Neor, ori from pBR322, 
5’-LTR and 3’-LTR from MoMuLV, 
SV40 promotor 

pLXSN-ESK   Modified pLXSN vector with multipe  J. Ruhe 
cloning site from pBluescript 

pRK5    Expression vector, Ampr, CMV   Genentech 
Promoter, SV 40 poly A, high 
copy number plasmid 

 

2.1.11.2 Constructs 
 
Vector    Description      Reference 
 
pcDNA3-hADAM10-HA  cDNA of human ADAM10    A. Gschwind 

in pcDNA3; C-terminal HA-tag 
 

pLXSN-ESK-∆(Pro-MP)-  cDNA of ADAM10 lacking the   A. Gschwind 
-hADAM10-HA   prodomain and metalloprotease  

domain ∆(AA19-455); 
pLXSN-ESK; HA-tag 
 

pcDNA3-∆(Pro-MP)-  cDNA of ADAM12 lacking the   S. Hart 
-hADAM12-HA   prodomain and metalloprotease 

domain ∆(AA29-416); 
in pcDNA3; C-terminal HA-tag 
 

pLXSN-ESK-∆(Pro-MP)-  cDNA of ADAM12 lacking the   S. Hart 
-hADAM12-HA  prodomain and metalloprotease 

domain in pLXSN-ESK; HA-tag 
 

pLXSN-ESK-∆(Pro-MP)-  cDNA of ADAM15 lacking the   S. Hart 
-hADAM15-HA   prodomain and metalloprotease 

domain ∆(AA29-419) 
in pLXSN-ESK; 
C-terminal HA-tag 
 

pcDNA3-   cDNA of murine TACE in pcDNA3  (Black et al., 1997) 
mADAM17/TACE  
 
pLXSN-ESK-   cDNA of murine TACE in   A. Gschwind 
mADAM17/TACE   pLXSN-ESK 
 
pcDNA3-hADAM17/TACE-HA cDNA of human TACE    A. Gschwind 

pcDNA3; C-terminal HA-tag 
 

pLXSN-ESK-hADAM17/  cDNA of human TACE    A. Gschwind 
TACE-HA    pLXSN-ESK; C-terminal HA-tag 
 
pcDNA3-∆(Pro-MP)-  cDNA of TACE lacking the    A. Gschwind 



2 Materials and Methods 35

-hADAM17/TACE-HA  -hADAM17/TACE-HA prodomain  
and metalloprotease domain  
∆(AA18-473) in pcDNA3; 
C-terminal HA-tag 
 

pLXSN-ESK-∆(Pro-MP)-  cDNA of TACE lacking the    A. Gschwind 
-hADAM17/TACE-HA  prodomain and metalloprotease 

domain in pLXSN-ESK; 
C-terminal HA-tag 

 

2.2 Methods in molecular biology 

2.2.1  Plasmid preparation for analytical purpose 
Small amounts of plasmid DNA were prepared as described previously (Lee and Rasheed 
1990). 

2.2.2 Plasmid preparation in preparative scale 
For transfection experiments of mammalian cells DNA of high quality was prepared using 
Qiagen Maxi-Kits (Qiagen, Hilden) according to the manufacturer’s recommendations. 

2.2.3 Enzymatic manipulation of DNA 

2.2.3.1 Digestion of DNA samples with restriction endonucleases 
Restriction endonuclease cleavage was accomplished by incubating the enzyme(s) with the 
DNA in appropriate reaction conditions. The amounts of enzyme and DNA, the buffer and 
ionic concentrations, and the temperature and duration of the reaction were adjusted to the 
specific application according to the manufacturer´s recommendations. 

2.2.3.2 Dephosphorylation of 5’-termini with calf intestine alkaline phosphatase (CIAP) 
Dephosphorylation of 5´-termini of vector DNA in order to prevent self-ligation of vector 
termini. CIP catalyzes the hydrolysis of 5´-phosphate residues from DNA, RNA, and ribo- 
and deoxyribonucleoside triphosphates. The dephosphorylated products possess 5´-hydroxyl 
termini. 
For dephosphorylation 1-20 picomoles of DNA termini were dissolved in 44 µL deionized 
water, 5 µL 10x reaction buffer (500 mM Tris/HCl pH 8.0, 1 mM EDTA pH 8.5) and 1 µL 
CIP (1 U/µL). The reaction was incubated 30 min at 37°C and stopped by heating at 85°C for 
15 minutes. 

2.2.3.3 DNA insert ligation into vector DNA 
T4 DNA Ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5'- 
phosphate and 3'-hydroxyl termini in duplex DNA. T4 DNA Ligase thereby joins 
doublestranded DNA with cohesive or blunt termini. 
In a total volume of 10 µL the digested, dephosphorylated and purified vector DNA (200 ng), 
the foreign DNA to be inserted, 1 µL 10x T4 DNA Ligase buffer (0.66 M Tris/HCl pH 7,5, 50 
mM MgCl2, 50 mM DTT, 10 mM ATP) and 1 µL T4 DNA Ligase (2 U for sticky ends and 4 
U for blunt ends) were mixed. The reaction was incubated at 15°C overnight. T4 DNA Ligase 
was inactivated by heating the reaction mixture at 65°C for 10 minutes. The resulting ligation 
reaction mixture was directly used for bacterial transformation. 
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2.2.4 Agarose gel electrophoresis 
Agarose gel electrophoresis is a simple and highly effective method for separating, 
identifying, and purifying 0.5- to 25 kb DNA fragments. 0.6-2%, horizontal agarose gels with 
1x TAE electrophoresis buffer were used for separation. The voltage was set typically to 1-10 
V/cm of gel. Gels were stained by covering the gel in a dilute solution of ethidium bromide 
(0.5 µg/mL in water) and gently agitating for 30 min and destained by shaking in water for an 
additional 30 min. 

2.2.5 Isolation of DNA fragments using low melting temperature agarose gels 
Following preparative gel electrophoresis using low melting temperature agarose, the gel slice 
containing the band of interest was removed from the gel. This agarose slice was then melted 
and subjected to isolation using the QIAquick Gel Extraction Kit (Qiagen). 

2.2.6 Introduction of plasmid DNA into E.coli cells 

2.2.6.1 Preparation of competent E. coli bacteria 
Competent cells were made according to the procedure described before (Chung and Miller 
1988). For long-term storage competent cells were directly frozen at –70°C. Transformation 
frequency ranged between 106

 and 107
 colonies/µg DNA. 

2.2.6.2 Transformation of competent E. coli bacteria 
100 µL competent cells were added to 10 µL ligation mix and 20 µL 5x KCM (500 mM KCl, 
150 mM CaCl2, 250 mM MgCl2) in 70 µL H2O and incubated on ice for 20 min. Upon 
incubation at room temperature for 10 min 1 mL LB medium was added and incubated 45 
min at 37°C with mild shaking to allow expression of the antibiotic resistance gene. 
Transformants were selected on appropriate plates. 

2.2.7 Enzymatic amplification of DNA by polymerase chain reaction (PCR) 
The polymerase chain reaction (PCR) is a rapid procedure for in vitro enzymatic amplification 
of a specific segment of DNA (Mullis and Faloona 1987). A multitude of applications have 
been developed including direct cloning from cDNA, in vitro mutagenesis and engineering of 
DNA, genetic fingerprinting of forensic samples, assays for the presence of infectious agents 
and analysis of allelic sequence variations. For long and accurate cDNA amplification LATaq 
™ polymerase (TaKaRa) was used: 

0.5 µL template cDNA 
2 µL "sense" oligonucleotide, 10 pmol/µL 
2 µL "antisense" oligonucleotide, 10 pmol/µL 
5 µL 10x LA PCR buffer II (w/o MgCl2) 
5 µL MgCl2, 25 mM 
8 µL dNTP-Mix, 2.5 mM each 
0.5 µL LA-Taq™ (5 U/µL) 
ad 50 µL H2O 

PCR reactions were performed in a automated thermal cycler („Progene“, Techne). The 
following standard protocol was adjusted to the specific application: 
 
first denaturation:    3 min    94°C 
amplification 25-30 cycles:   1 min     94°C (denaturation) 

1 min     58°C (hybridization) 
1 min/ kb product   72°C (extension) 

last extension:    7 min     72°C 
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10 µL from each reaction were electrophoresed on an agarose gel appropriate for the PCR 
product size expected. PCR products were subjected to isolation using the PCR purification 
kit (Qiagen). 
 

2.2.8 DNA sequencing 
DNA sequencing was performed according to the “Big Dye Terminator Cycle Sequencing 
Protocol” (ABI). The following mix was subjected to a sequencing-PCR run: 
 

0.5 µg    DNA of interest 
10 pmol   oligonucleotide 
4 µL    Terminator Ready Reaction Mix 
ad 20 µL   H2O 

25 cycles:    30 sec    94°C 
15 sec    45-60°C 
4 min    60°C 
 

The sequencing products were purified by sodium acetate/ EtOH precipitation, dissolved in 20 
µL template suppression reagent, denatured for 2 min at 90°C and analyzed on a 310-Genetic 
Analyzer (ABI Prism). 

2.3 Methods in mammalian cell culture 

2.3.1 General cell culture techniques 
Kidney and bladder cancer cell lines were grown in a humidified 93% air, 7% CO2 incubator 
(Heraeus, B5060 Ek/CO2) at 37°C and routinely assayed for mykoplasma contamination 
using a bisbenzimide staining kit (Sigma). Before seeding cells were counted with a Coulter 
Counter (Coulter Electronics). Cells were cultured in the medium recommended by the 
manufacturer. 

2.3.2 Transfection of cultured cell lines 

2.3.2.1 Transfection of cells with calcium phosphate 
HEK-293 cells in six-well dishes were transfected transiently at about 70% confluency with a 
total of 2 µg DNA by using a modified calcium phosphate precipitation method as described 
previously (Chen and Okayama 1987). In this protocol, a calcium phosphate-DNA complex is 
formed gradually in the medium during incubation with cells. 
The transfection mix of DNA and CaCl2 in water was prepared as follows: 
 
Dish    6-well    6 cm    10 cm 
 

Area    10 cm2
   21 cm2

   57 cm2
 

Volume of medium  1 mL    2 mL    4 mL 

DNA in H2Obidest  2 µg in 90 µL   5 µg in 180 µL  10 µg in 360 µL 

2.5 M CaCl2   10 µL    20 µL    40 µL 

2 x BBS (pH 6.96)  100 µL   200 µL   400 µL 

Total volume   200 µL   400 µL   800 µL 
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To initiate the precipitation reaction the adequate volume of 2x BBS was added and mixed by 
vortexing. The reaction was incubated for 10 min at room temperature before being added to 
each well. Plates were placed in a humidified container at 3% CO2 overnight. One day 
following transfection, cells were serum-starved for 24 hours in standard cell culture medium 
without FCS. Transfection efficiency was determined by LacZ staining after transfection of a 
LacZ-containing expression plasmid. For transfection of Phoenix cells HBS was used instead 
of BBS. 

2.3.2.2 RNA interference 

Transfection of 21 nucleotide siRNA duplexes (Dharmacon Research, Lafayette, CO) for 
targeting endogenous genes was carried out using Lipofectamine (Invitrogen) and 4,2 µg of 
siRNA duplex per 6-well plate as previously described (Elbashir, Harborth et al. 2001). 
Transfected A498 cells were serum starved and assayed 4 days after transfection. Sequences 
of siRNAs used have been described before (Gschwind, Hart et al. 2003). Specific silencing 
of targeted genes was confirmed by western blot (TACE) and RT-PCR analysis (data not 
shown). 
 

2.3.3 Retroviral gene transfer in cell lines 
The pLXSN (Clontech, Palo Alto, CA) constructs encoding wildtype and dominant negative 
ADAMs lacking the pro- and metalloproteinase domain) have been described before 
(Gschwind, Hart et al. 2003). All protease constructs included a C-terminal HA tag, detectable 
with an anti-HA monoclonal antibody (Babco, Richmond, CA). The amphotropic packaging 
cell line Phoenix was transfected with pLXSN retroviral expression plasmids by the calcium 
phosphate/ chloroquine method as described previously (Kinsella and Nolan 1996). 24 h after 
transfection the viral supernatant was collected and used to infect subconfluent kidney and 
bladder cancer cells (5x 104 cells/6-well plate).  
Retroviral supernatant was then replaced with fresh medium. 2d following infection, target 
protein expression was monitored by western blot. Polyclonal ACHN kidney cancer and 
TccSup bladder cancer cell lines stably expressing dominant-negative ADAMs were 
generated by growing retrovirally infected cells in medium containing G418 (1g/ml) for 2 
weeks. 
 

2.4 Protein analytical methods 

2.4.1 Lysis of eucaryotic cells with Triton X100  
Prior to lysis, cells grown to 80% confluence were treated with inhibitors and agonists as 
indicated in the figure legends. Cells were washed with cold PBS and then lysed for 10 min 
on ice in buffer containing 50 mM HEPES, pH 7.5, 150 mM NaCl, 1% Triton X-100, 1 mM 
EDTA, 10% glycerol, 10 mM sodium pyrophosphate, 2 mM sodium orthovanadate, 10 mM 
sodium fluoride, 1 mM phenylmethylsulfonyl fluoride, and 10 µg/mL aprotinin. Lysates were 
precleared by centrifugation at 13000 rpm for 10 min at 4°C. 

2.4.2 Determination of protein concentration in cell lysates 
The „Micro BCA Protein Assay Kit” (Pierce, Sankt Augustin) was used according to the 
manufacturer´s recommendations. 
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2.4.3 Immunprecipitation and in vitro association with fusion proteins 
An equal volume of HNTG buffer was added to the precleared cell lysates that had been 
adjusted for equal protein concentration. Proteins of interest were immunoprecipitated using 
the respective antibodies and 20 µL of protein A-Sepharose for 4 h at 4°C. Alternatively, 
lysates were subjected to in vitro associations with either 3 µg of GST-Grb2 (Daub, Wallasch 
et al. 1997) or 2 µg of GST as control pre-bound to 30 µL of gluthathione-agarose beads. 
Precipitates were washed three times with 0.5 mL of HNTG buffer, suspended in 2× SDS 
sample buffer, boiled for 3 min, and subjected to SDS-PAGE. 

2.4.4 SDS-polyacrylamide-gelelectrophoresis 
SDS-PAGE was conducted as described previously (Sambrook 1990). The following proteins 
were used as molecular weight standards: 
 
Protein   MW (kD)    Protein   MW (kD) 
 
Myosin   205.0     Ovalbumin   42.7 
ß-Galaktosidase  116.25    Carboanhydrase  29.0 
Phosphorylase b  97.4     Trypsin-Inhibitor  21.5 
BSA    66.2     Lysozym   14.4 
 

2.4.5 Transfer of proteins on nitrocellulose membranes 
For immunoblot analysis proteins were transferred to nitrocellulose membranes (Gershoni and 
Palade 1982) for 2 h at 0.8 mA/cm2

 using a "Semidry”-Blot device in the presence of 
Transblot-SD buffer. Following transfer proteins were stained with Ponceau S (2 g/l in 2% 
TCA) in order to visualize and mark standard protein bands. The membrane was destained in 
water. 

2.4.6 Immunoblot detection 
After electroblotting the transferred proteins are bound to the surface of the nitrocellulose 
membrane, providing access for reaction with immunodetection reagents. Remaining binding 
sites were blocked by immersing the membrane in 1x NET, 0.25% gelatin for at least 4 h. The 
membrane was then probed with primary antibody (typically overnight at 4°C). Antibodies 
were diluted 1:500 to 1:2000 in NET, 0.25% gelatin. The membrane was washed 3x 20 min in 
1x NET, 0.25% gelatin, incubated for 1 h with secondary antibody and washed again as 
before. Antibody-antigen complexes were identified using horseradish peroxidase coupled to 
the secondary anti-IgG antibody. Luminescent substrates were used to visualize peroxidase 
activity. Signals were detected with X-ray films or a digital camera unit. Membranes were 
stripped of bound antibody by shaking in strip-buffer for 1 h at 50°C. Stripped membranes 
were blocked and reprobed with different primary antibody to confirm equal protein loading. 

2.5 Biochemical and cell biological assays 

2.5.1 Stimulation of cells 
Cells were seeded in cell culture dishes of appropriate size and grown overnight to about 80% 
confluence. After serum-starvation for 48 h bladder and kidney cancer cells were treated with 
inhibitors and agonists as indicated in the figure legends, washed with cold PBS and then 
lysed for 10 min on ice 
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2.5.2 ERK1/2 and AKT/PKB phosphorylation 
For determination of ERK1/2 and Akt phosphorylation, approximately 20 µg of whole cell 
lysate protein/lane was resolved by SDS-PAGE and immunoblotted using rabbit polyclonal 
phospho-specific ERK/MAPK antibody. Akt phosphorylation was detected by protein 
immunoblotting using rabbit polyclonal anti-phospho-Akt antibody. Quantitation of ERK1/2 
was performed using the Luminescent Image Analyis System (Fuji). After quantitation of 
ERK1/2 phosphorylation, membranes were stripped of immunoglobulin and reprobed using 
rabbit polyclonal anti-ERK1/2 or rabbit polyclonal anti-Akt antibody to confirm equal protein 
loading. 

2.5.3 ERK/MAPK activity 
Endogenous ERK2 was immunoprecipitated from lysates obtained from six-well dishes using 
0.4 µg of anti-ERK2 antibody. Precipitates were washed three times with HNTG buffer, and 
washed once with kinase buffer (20 mM HEPES, pH 7.5, 10 mM MgCl2, 1 mM dithiothreitol, 
200 µM sodium orthovanadate). Kinase reactions were performed in 30 µL of kinase buffer 
supplemented with 0.5 mg/mL myelin basic protein, 50 µM ATP and 1 µCi of [γ-32P]ATP for 
10 min at room temperature. Reactions were stopped by addition of 30 µL of Laemmli buffer 
and subjected to gel electrophoresis on 15% gels. Labeled MBP was quantitated using a 
Phosphoimager (Fuji). 

2.5.4 Flow cytometric analysis of cell surface proteins 
Was performed as described before (Prenzel, Zwick et al. 1999). In brief, cells were seeded, 
grown for 20 h and in some cases retrovirally infected as indicated. Upon serum-starvation for 
24 h cells were treated with inhibitors and growth factors as indicated. After collection, cells 
were stained with ectodomain-specific antibodies against HB-EGF, TGFα or AR for 45 min. 
After washing with PBS, cells were incubated with FITC-conjugated secondary antibodies for 
15 min and washed again with PBS. Cells were analysed on a Becton Dickinson FACScalibur 
flow cytometer. 

2.5.5 Incorporation of 3H-thymidine into DNA 
Kidney or bladder cancer cells were seeded into 12-well plates (60000 cells per well). Upon 
serum deprivation for 48 h, cells were subjected to preincubation with inhibitors before ligand 
treatment. After 18 h incubation, cells were pulse-labelled with 3H thymidine (1 µCi/mL) for 
4 h, and thymidine incorporation was measured by trichloroacetic acid precipitation and 
subsequent liquid-scintillation counting. 

2.5.6 Distribution of cell cycle phases 
Rat-1 fibroblasts and TccSup bladder cancer cells were seeded into 6-Well plates (1x105  cells 
per well). Upon serum deprivation for 18 h or 24 h cells were subjected to 20 min 
preincubation with DMSO, BB94 or AG1478 and treated with LPA, endothelin I, thrombin 
and EGF. Apoptosis was induced by adding doxorubicin (1 µg/mL) or anti-CD95/FasL (50 
µg/mL). After the indicated time periods cells were collected and incubated in hypotonic 
buffer containing 0,1 % sodium acetate, 0,1 % Triton X-100 and 20 µg/mL propidiumiodide 
for 2 h at 4°C. Samples were analysed with a Becton Dickinson FACScalibur flow cytometer. 
 

2.5.7 In vitro wound closure 
The assay was performed as previously described (Fishman, Liu et al. 2001) with some 
modifications. Confluent monolayers of kidney and bladder cancer cells were wounded with a 
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uniform scratch, the medium was removed and cells were washed twice with PBS. Medium 
without FCS was added and cells were subjected to 20 min preincubation with either DMSO 
(control), 250 nM AG1478 or 10 µM batimastat before ligand treatment. Cells were permitted 
to migrate into the area of clearing for 24 h. Wound closure was monitored by visual 
examination using a Zeiss microscope. 

2.5.8 Migration and invasion 
Cell migration assays were performed using a modified Boyden chamber (Sieuwerts, Klijn et 
al. 1997). Serum free medium containing LPA as a chemoattractant was added to the lower 
well of a Boyden chamber. A polycarbonate filter (6.5 mm in diameter, 8 µm pore size) was 
placed over the lower well of the Boyden chamber and was secured with a gasket. 1x105 cells 
in exponential growth were harvested and then preincubated with the inhibitor for 20 min and 
added to the upper well of the chamber in serum free medium. The chambers were incubated 
for 6 h in a humified 7% CO2, 37°C incubator. Finally, the cells that had migrated to the 
lower surface of the membrane were stained with crystal violet and counted under the 
microscope. 
Analysis of cell motility of clonal A498 kidney cancer cell lines stably expressing dominant-
negative ADAM 17 or wildtype ADAM 17 was performed in 24-transwell dishes. Cells were 
permitted to migrate for 24h. Cells that had migrated to the lower surface were fixed with 
methanol and stained with crystal violet. The stained cells were solubilized in 10 % acetic 
acid, and the absorbance at 570 nm was measured in a micro-plate reader. Experiments done 
with several, individual clones showed similar results.  
Cell invasion assays were also performed in modified Boyden chambers containing a 
polycarbonate filter coated with Matrigel on the upper surface (Sieuwerts, Klijn et al. 1997). 
As described above the chemoattractant was added to the lower well and 1x106 cells were 
preincubated with the inhibitor and then added to the upper well. The chambers were 
incubated overnight. Finally cells were wiped from the upper surface with a cotton tip swab 
and the cells on the other side were stained and counted under the microscope. 
 
 

2.6 Statistical analysis 
 
Student’s t-test was used to compare data between two groups. Values are expressed as mean 
± standard deviation (s. d.) of at least triplicate samples. P < 0.05 was considered statistically 
significant. 
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3 Results 

3.1 A variety of GPCR agonists stimulate EGFR tyrosine phosphorylation 

in kidney and bladder carcinoma cell lines 

Signalling through G-protein coupled receptors (GPCRs) and receptor tyrosine kinases 

(RTKs) is involved in the regulation of essential cellular processes and its deregulation is 

associated with tumourigenesis in vitro and in vivo. Previously, it was demonstrated that the 

EGFR functions as an integral element of mitogenic GPCR signals in non-transformed cell 

lines such as Rat-1 fibroblasts (Daub, Weiss et al. 1996; Wetzker and Bohmer 2003). The 

GPCR-EGFR crosstalk was demonstrated to involve a triple membrane passing signalling 

(TMPS) mechanism in COS7, Rat-1 and PC3 cells (Prenzel, Zwick et al. 1999). 

So far little is known about the function of EGFR transactivation in pathophysiological 

processes such as cancer. Therefore, the responsiveness of the EGFR to prominent GPCR 

agonists was evaluated in a variety of kidney and bladder carcinoma cell lines.  

 

 
 

As shown in Figure 4, angiotensin II (AngII), bombesin (Bomb), bradykinin (Bk), LPA, 

endothelin-1 (ET-1), carbachol (Carb) and thrombin (Thr) rapidly induced EGFR activation in 
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ACHN kidney cancer cells. In addition, it was found that in TccSup bladder cancer cells LPA, 

bradykinin and ET-1 potently stimulated tyrosine phosphorylation of the EGFR. 

Table 2 gives an overview of GPCR-EGFR cross talk pathways in a variety of other kidney 

and bladder cancer cell lines. The results indicated that stimulation with the GPCR agonists 

angiotensin II (1 µM), bombesin (200 nM), bradykinin (5 µM), carbachol (1 mM), 

endothelin-1 (100 nM), LPA (10 µM) and thrombin (1 U/mL) at physiological concentrations 

leads to rapid tyrosine phosphorylation of endogenous EGFR in the kidney cancer cell lines 

Caki2, ACHN, HK2, A498 and A704 as well as in the bladder cancer cell lines SCABER, 

HT1376, TccSup and 5637. Most importantly, all cell lines were responsive to at least three 

different GPCR ligands. 

 

 

 
Furthermore, all cell lines tested showed EGFR transactivation by LPA and in all except one 

cell line (CaKi2) the EGFR was activated upon stimulation with bradykinin suggesting that 

LPA and bradykinin are potent and prominent EGFR activators in cell lines derived from 

urogenital cancers. Furthermore, carbachol and ET-1 stimulated EGFR tyrosine 

phosphorylation in all kidney cancer and bladder cancer cell lines, respectively. Together, 

these data demonstrate that a variety of GPCR ligands activate the EGFR in human urogenital 

tumour cell lines suggesting that the EGFR functions as a point of convergence for multiple, 

physiological relevant GPCR stimuli. The GPCR agonists bombesin, carbachol, thrombin, 

and LPA appear to be especially potent activators of the EGFR transactivation signal in 
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human kidney cancer cells, whereas bradykinin, ET-1, and LPA are the preferred GPCR 

stimuli leading to EGFR activation in bladder carcinoma cells. 

3.2 EGFR transactivation by the GPCR agonists LPA and angiotensin II 

involves distinct EGF-like ligands   and ADAM metalloproteinases in 

kidney and bladder carcinoma cell lines 

 
Given that mitogenic EGFR transactivation pathways are broadly established in a variety of 

transformed (see 3.1.1) and non-transformed cell systems (Gschwind, Zwick et al. 2001) it 

was hypothesized that the cross-talk between GPCRs and the EGFR involves a 

metalloproteinase and EGF-like growth factor dependent mechanism in kidney and bladder 

cancer cells.  

 
 

 
 
To test this hypothesis, the effect of the broad spectrum metalloproteinase inhibitor batimastat 

(BB94) on the EGFR transactivation signal was investigated. As shown in Figure 5, pre-

incubation of cells with BB94 abrogated the EGFR transactivation signal in TccSup cancer 

cells whereas EGFR stimulation with the tyrosine phosphatase inhibitor pervanadate or with 

EGF was not affected. Moreover, pre-treatment of TccSup cancer cells with the monoclonal 

anti-EGFR antibody ICR-3R, which blocks binding of EGF-like ligands to the EGFR ecto-

domain (Mateo, Moreno et al. 1997), specifically abolished GPCR- and EGF-induced tyrosine 



3 Results 45

phosphorylation of the EGFR (Figure 5). Together, these results indicated that both, a 

metalloproteinase activity and the extracellular ligand-binding domain of the EGFR are 

involved in EGFR activation by GPCR stimuli and suggested the GPCR-EGFR signal 

transmission to occur through an EGF-like ligand-dependent mechanism in TccSup bladder 

carcinoma cells. 

Previous studies have demonstrated that autocrine growth factor stimulation is a common 

mechanism of RTK deregulation in human cancer cells (Zwick, Bange et al. 2002) often 

mediated through the ERK/MAPK pathway (Uchiyama-Tanaka, Matsubara et al. 2001). In 

consequence, autocrine EGFR has been demonstrated to contribute to sustained mitogenic 

activity of cancer cells (Murphy, Cluck et al. 2001). 

To assess the potential involvement of autocrine processing of EGF-like ligands in basal 

EGFR activity in kidney and bladder cancer cells the effect of metalloprotease inhibition on 

basal EGFR tyrosine phosphorylation levels in HT1376 cells was investigated. In time course 

experiments it was found that BB94 treatment of cells that were grown in full medium 

containing 10% FCS resulted in a steady decrease of the EGFR tyrosine phosphorylation 

content reaching almost complete inhibition after 120 min (Figure 6). 

 

 
 
 
This could be a hint for autocrine activation of the EGFR by shedding of precursors of EGF-

like ligands via the TMPS pathway. The results of this experiment demonstrated that a 

metalloprotease activity mediates the high basal EGFR tyrosine phosphorylation levels in 

HT1376 cells presumably through cleavage of EGF-like growth factor precursors. 

As demonstrated before (Fig. 5), GPCR-EGFR signal transmission occurs to require a 

metalloprotease activity in kidney and bladder carcinoma cells. 
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To identify the EGF-like growth factors which are involved in the EGFR signal 

transactivation pathway different kidney and bladder carcinoma cells were pre-incubated with 

blocking antibodies against amphiregulin (20 µg/mL), HB-EGF (20 µg/mL) or 

TGFα (1µg/mL). Pre-incubation of 5637 cells with the amphiregulin (AR) neutralizing 

antibody markedly and specifically inhibited the LPA and bradykinin-induced transactivation 

signal whereas blocking of TGFα did not inhibit EGFR transactivation. To further 

substantiate these data the expression and cell surface localization of proAR in 5637 cells was 

determined by flow cytometry using ectodomain-specific antibodies. It was found that 

treatment of the cells with LPA and bradykinin resulted in rapid reduction in the cell surface 

content of endogenous proAR (Figure 7). 
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In summary, these findings demonstrate that EGFR activation in response to GPCR agonists 

involves amphiregulin in 5637 bladder cancer cells. 

To identify EGF-like growth factors that are involved in the EGFR transactivation pathway in 

TccSup and ACHN cell lines cells were pre-incubated with blocking antibodies against 

amphiregulin (20 µg/mL), TGFα (1 µg/mL) or HB-EGF (20 µg/mL). Pre-incubation with 

amphiregulin or TGFα neutralizing antibodies attenuated the LPA-induced transactivation 

signal in TccSup cells whereas direct stimulation of the EGFR by EGF was not affected 

(Figure 8). In ACHN cells EGFR stimulation by angiotensin II was completely inhibited by 

the HB-EGF neutralizing antibody, pre-treatment with amphiregulin or TGFα blocking 

antibodies however showed no effect. These findings demonstrated that EGFR activation in 

response to GPCR agonists involves both TGFα and amphiregulin in TccSup bladder cancer 

and HB-EGF in ACHN kidney cancer cells. 

 

 
 

 

To identify the metalloproteinases which are involved in angiotensin II as well as LPA-

induced cleavage of EGF-like ligand precursors in the kidney cancer cell line ACHN and 

bladder cancer cell line TccSup the effect of dominant-negative mutants of ADAM 10, 12, 15 

and 17 (∆MP10, 12, 15, 17), which lack the pro- and metalloproteinase domain (Gschwind, 

Hart et al. 2003) on EGFR transactivation was investigated. As shown in Figure 9, the 

transactivation signal was blocked by ∆MP17 in ACHN cells upon stimulation with Ang II, 

and by ∆MP15 in TccSup cells upon stimulation with LPA.  
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To further substantiate the requirement for ADAM 17 in GPCR-induced ectodomain cleavage 

of proHB-EGF, the effect of angiotensin II on the cell surface content of endogenous proHB-

EGF was investigated by flow cytometry (Figure 10).  

Ectodomain shedding of proHB-EGF in cells infected with pLXSN was compared to those 

stably expressing the dominant negative mutant of ADAM 15 and ADAM 17. Treatment of 

the cells with angiotensin II resulted in rapid reduction of the cell surface content of 

endogenous proHB-EGF. In contrast, angiotensin II-induced proHB-EGF shedding was 

markly inhibited in ACHN cells stably expressing dominant negative ADAM 17 (∆MP17). 

∆MP15 however showed no effect. 

Together, these findings demonstrate a role of ADAM 17 in angiotensin II-triggered cleavage 

of proHB-EGF and EGFR transactivation as well as identify ADAM 15 as a critical sheddase 

in LPA-induced EGFR activation in TccSup bladder carcinoma cells. 
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As shown above (Figure 9, 10), the specific requirement of metalloproteinases for EGFR 

transactivation was demonstrated by generating cell lines expressing dominant negative 

mutants of ADAMs in bladder and kidney cancer lines. 

To verify the data a small interfering RNA (siRNA) was utilized to inhibit endogenous gene 

expression of individual ADAMs. The specific requirement of ADAM17/TACE for the 

EGFR transactivation pathway in A498 kidney cancer cells was investigated by blocking the 

endogenous expression of TACE and ADAM10 by RNA interference. 
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In fact, gene silencing of TACE by siRNA specifically attenuated the LPA-induced 

transactivation signal in A498 cancer cells, whereas inhibition of ADAM 10 expression by 

siRNA showed no effect (Figure 11). These results confirmed the specific requirement of 

TACE for LPA-triggered EGFR transactivation in A498 kidney cancer cells. 

 
Table 3 gives a systematic overview of the signalling components involved in the LPA-

triggered TMPS pathways in kidney and bladder cancer cells. In particular, HB-EGF is 

specifically involved in transactivation of the EGFR in the kidney carcinoma cell lines Caki2, 

ACHN and A498 while TGFα and amphiregulin are required for the transactivation signal by 

LPA in TccSup and 5637 bladder carcinoma cells, respectively. These findings demonstrate 

that EGFR activation in response to the GPCR agonist LPA involves different EGFR ligands 

in 5637, ACHN, Caki2, A498 and TccSup cancer cells. 



3 Results 51

 
Furthermore, the transactivation signal was blocked by ∆MP17 in Caki2 and A498 kidney 

cancer cells, by ∆MP10 in ACHN kidney cancer cells and by ∆MP15 in TccSup and 5637 

bladder cancer cells. 

In summary, the results demonstrate that in these cancer indications the metalloproteinases 

ADAM 10, 15 and 17 are required for cleavage and release of the transmembrane EGF-like 

ligand precursors pro-amphiregulin, proHB-EGF and proTGFα depending on the cellular 

system. All kidney cancer cell lines have proHB-EGF as the EGF-like ligand in common 

which is processed by ADAM 17 in Caki2 and A498 cells and by ADAM 10 in ACHN cells. 

In bladder cancer cells ADAM 15 is involved which cleaves proTGFα  in TccSup and pro-

amphiregulin in 5637 cells. 

 

 

3.3 Transactivation of Her2 is dependent on a metalloproteinase function 

and EGFR tyrosine kinase activity 

The EGFR and the oncoprotein HER2/neu regulate cell proliferation and in addition the 

responsiveness of a variety of cell types to pro-apoptotic stimuli such as serum-deprivation, 

death receptor activation and cytotoxic drugs. Previously, HER2/neu has been reported to be 

transactivated by GPCRs in Rat-1 fibroblasts (Daub, Weiss et al. 1996) and to be expressed at 

high levels in aggressive bladder tumours (Miyamoto, Kubota et al. 2000). Therefore, the 

question was raised if besides the EGFR, HER2/neu can be activated in response to LPA in 

TccSup bladder cancer cells. 
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Figure 12 demonstrates that LPA stimulation resulted in tyrosine phosphorylation of 

HER2/neu in TccSup bladder carcinoma cells and that HER2/neu transactivation was 

sensitive to batimastat. In addition, tyrosine phosphorylation of HER2/neu following LPA or 

EGF treatment was abolished by the EGFR inhibitor AG1478 suggesting that HER2/neu is 

trans-phosphorylated by the EGFR. 

Together, a metalloproteinase as well as the EGFR activity are critical for LPA-induced 

HER2/neu signal transactivation in TccSup bladder cancer cells. 

 
 

3.4 EGFR association and tyrosine phosphorylation of Shc and Gab1 upon 

treatment with GPCR ligands are metalloproteinase dependent 

A critical step in the transduction of the mitogenic signal from GPCRs to the EGFR and 

finally to the Ras/MAPK pathway is the association and tyrosine phosphorylation of adapter 

proteins such as Shc and Gab1 (Daub, Wallasch et al. 1997). 

As shown in Figure 13, stimulation of bladder carcinoma cells with LPA, Bradykinin and 

EGF resulted in tyrosine phosphorylation of Shc. Furthermore, in co-immunoprecipitation 

experiments a tyrosine phosphorylated band of 170kDa was identified as the EGFR. Pre-

treatment of the cells with batimastat (10 µM) or AG1478 (25 nM) inhibited the LPA-

triggered tyrosine phosphorylation of Shc (Figure 13 a). In the bladder carcinoma cell line 

TccSup LPA as well as endothelin-1 activated the adaptor protein Gab1. Gab1 

phosphorylation was diminished by addition of BB94 or AG1478 (Figure13 b). 
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These data suggested that stimulation of TccSup and 5637 bladder cancer cells with GPCR 

agonists leads to membrane recruitment and activation of adapter proteins such as Shc and 

Gab1 by the EGFR, signalling events that require metalloproteinase activity. 
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3.5 GPCR-mediated activation of MAPK, Akt/PKB and cyclin D1 

expression are batimastat and AG1478- sensitive 

Since recruitment of adapter proteins such as Shc and Gab1 is an essential step linking cell 

surface receptor stimulation to activation of the Ras/MAPK pathway, the effects of GPCR 

agonists on activation of the MAPKs ERK1/2, JNK and p38 was investigated.  
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MAPK activation was monitored by immunoblotting cell lysates with activation state-specific 

antibodies. It was found that ERK1/2 were activated upon stimulation with the GPCR ligands 

LPA and ET-1 in TccSup cells and that pre-incubation with the metalloproteinase inhibitor 

batimastat or AG1478 specifically diminished GPCR-induced MAPK activation (Figure 14 

a). 

To further quantify GPCR-triggered ERK stimulation endogenous ERK2 activity was 

measured in an in vitro kinase assay using myelin basic protein (MBP) as a substrate. 

Treatment of HT1376 cells with LPA lead to a six-fold, with ET-1 to a two-fold and with 

carbachol to a four-fold increase in ERK2 activity (Figure 14 b). 

Moreover, the results demonstrated that both, BB94 and AG1478 almost completely blocked 

ERK activation by GPCR stimuli. 

 

Next, the effect of GPCR ligands on activation of the stress-responsive MAPKs JNK and p38 

was assessed in TccSup cells. To evaluate the kinetics of stress kinase activation time-course 

experiments were performed (Figure 15). JNK and p38 activation was detectable 5 min after 

addition of LPA and reached its maximum after 10-15 min. 

 

 
 

To determine if a metalloproteinase as well as the EGFR are involved in activation of the 

stress kinases TccSup bladder cancer cells were treated with BB94 and AG1478 (Figure 16). 

Immunoblotting of cell lysates with phospho-specific JNK and p38 antibodies revealed that 

phosphorylation of these MAPKs by LPA was also batimastat- and AG1478-sensitive 
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whereas the effects evoked by EGF were metalloproteinase-independent as expected. 

Additionally, signals were quantified using a Fuji LAS 1000 CCD camera and the “Image 

Gauge” program. 

 

 
Together, the data showed that metalloproteinases and the EGFR are critically involved in the 

regulation of the MAPK signal by GPCR ligands in kidney and bladder tumour cells. 

 

It is well established that the EGFR and its agonists play a critical role in initiating signalling 

events that control cell cycle progression, and mitogenesis (Lui and Grandis 2002). 



3 Results 57

Recently, EGFR activity was shown to be required for GPCR-induced cell cycle progression 

by promoting accumulation of cyclin D1 in mid-late G1 phase in non-transformed cells 

(Santiskulvong, Sinnett-Smith et al. 2001). Therefore, it was interesting to investigate whether 

EGFR transactivation is involved in GPCR-induced cyclin D1 expression. Furthermore, the 

potential role of metalloproteinases was evaluated by treatment with batimastat (Figure 16). 

 

 
The results demonstrated that stimulation with angiotensin II and LPA leads to accumulation 

of cyclin D1 in ACHN kidney cancer cells which is sensitive to BB94 and AG1478. 

 

Downstream of the EGFR and HER2/neu, PI3-K and Akt/PKB are critical elements of 

survival pathways activated by growth factors, cytokines and integrins (Madrid, Wang et al. 

2000). In analogy to MAPK signalling the PI3-K/Akt pathway regulates fundamental cellular 

responses such as proliferation, apoptosis, cell motility and adhesion. Furthermore, in T cells 

it was shown that PI3-K also links GPCR stimulation to Akt activation (Sasaki, Irie-Sasaki et 

al. 2000). Therefore, the possible involvement of EGFR transactivation pathways in GPCR-

induced activation of the cell survival regulator Akt was investigated. 
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Akt/PKB activity was determined by immunoblotting TccSup cell lysates with phospho-

specific antibodies (Figure 18). Indeed, Akt/PKB was strongly activated upon stimulation 

with the GPCR ligand LPA in an EGFR- and metalloproteinase-dependent manner in TccSup 

bladder cancer cells whereas stimulation with endothelin-1 showed no effect on Akt 

phosphorylation. 

 
 

3.6 MAPK activation by LPA is dependent on src-kinase whereas 

Akt/PKB activation by LPA is dependent on src-kinase as well as PI3-

kinase 

 

In non-transformed cells it was reported previously that inhibition of phosphoinositide 3-

kinase and src-kinase affects LPA-induced signalling downstream of the EGFR (Daub, 

Wallasch et al. 1997). Furthermore, in rat adrenal pheochromocytome PC12 cells it was 

demonstrated that ERK phosphorylation induced by LPA is mediated by an EGFR and PKC- 

dependent mechanism (Kim, Park et al. 2000). Moreover, src-kinase was shown to be 

responsible for metastatic spread of bladder carcinoma cells (Boyer, Bourgeois et al. 2002) 

and inhibition of PKC was shown to block invasion in bladder cancer cell lines (Schwartz, 

Redwood et al. 1990).  

It was therefore conceivable, that the three kinases src, PKC and PI3-K play a role in LPA-

induced EGFR transactivation in human bladder carcinoma cells. In the cell line TccSup it 

was shown that inhibition of PKC with GF-109203X does not affect EGFR tyrosine 
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phosphorylation or activation of downstream signalling proteins induced by stimulation with 

LPA or EGF. Akt activation by treatment with LPA and EGF was blocked by pre-incubation 

with the PI3-K inhibitor Wortmannin as well as the src-kinase inhibitor PP1. Activation of the 

MAPK ERK1/2 in response to LPA and EGF was only diminished after treatment with PP1, 

treatment with Wortmannin however showed no effect. In addition, EGFR tyrosine-

phosphorylation triggered by LPA was partly inhibited by Wortmannin and PP1. EGFR 

activation after direct stimulation with EGF was not influenced, as expected (Figure 19). 

 
 

 
In summary, ERK/MAPK stimulation by LPA involves src-kinase signalling whereas Akt 

activation is dependent on both, src as well as PI3-K in the bladder cancer cell line TccSup. 

Furthermore, PKC seems to play no role in EGFR transactivation in this cell line. 
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3.7 GPCR ligands induce mitogenic signalling and cell cycle progression in 

Rat-1 fibroblasts via metalloproteinase-dependent EGFR 

transactivation 

Expertise about molecular mechanisms of cellular signalling is essential for the understanding 

of biological and pathogenic processes in organisms. Signal transduction cascades involving 

the EGFR have a important function in the regulation of cellular proliferation, differentiation, 

motility and survival as well as development. Beyond the EGFR is expressed in a number of 

tumours and its expression correlates with tumour progression, resistance to chemotherapy 

and a poor prognosis (Yano, Kondo et al. 2003). In analogy GPCRs initiate the transmission 

of multiple cellular signals leading to a wide variety of physiological and pathophysiological 

effects. 

Knowledge of the role of EGFR and GPCRs in normal tissues will promote the understanding 

of their task in pathogenesis.  

It has previously been demonstrated in Rat-1 fibroblasts that GPCR signals lead to activation 

of the ERK/MAPK cascade and cellular proliferation through EGFR signal transactivation 

(Daub, Weiss et al. 1996; Santiskulvong, Sinnett-Smith et al. 2001). To assess if a 

metalloproteinase activity is involved Rat-1 fibroblasts were treated with the 

metalloproteinase inhibitor batimastat (BB94) prior to stimulation with GPCR ligands. The 

results showed that tyrosine phosphorylation of the EGFR, the downstream adapter protein 

SHC and the MAPK ERK1/2 in response to LPA, thrombin, bradykinin and ET-1 was 

abolished by BB94 as well as the specific EGFR inhibitor AG1478 (Figure 20a). 

Next, the effect of these inhibitors on GPCR-induced cell cycle progression was investigated 

by flow cytometric analysis. In quiescent Rat-1 cells BB94 and AG1478 completely abolished 

S-phase progression in response to LPA, ET-1 or thrombin. S-phase entry by direct EGF 

stimulation, however, remained unaffected by BB94 treatment. For further quantification of 

mitogenic signalling in response to GPCR ligands, the rate of DNA synthesis was measured 

by an 3H-thymidine incorporation assay. Both, BB94 and AG1478 completely inhibited DNA 

synthesis induced by various GPCR agonists (Figure 20b). 
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Together, these data indicated the critical involvement of a metalloproteinase activity in 

transactivation of the EGFR, downstream SHC adapter protein recruitment, activation of the 
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ERK/MAPK pathway as well as cell proliferation induced by the GPCR agonists LPA, 

thrombin, bradykinin and ET-1 in Rat-1 fibroblasts.  

 
 

3.8 Angiotensin II induced EGFR transactivation and DNA synthesis in 

ACHN kidney cancer cells is dependent on the EGFR and ADAM 17 

Cross communication of GPCR and EGFR has been implicated in the regulation of cell 

proliferation in non-transformed cells and abnormal cellular growth is an important hallmark 

of cancer. Both receptor types are crucial regulators of cell proliferation in normal as well as 

in cancer cells. A recent report by Schuttert et al. demonstrated that the GPCR ligand 

angiotensin II increases cell proliferation in human renal fibroblasts (Schuttert, Liu et al. 

2003).  

 

 
Moreover, in the kidney cancer cell line ACHN it was shown that stimulation with 

angiotensin II leads to activation of the EGFR and the mitogenic Ras/MAPK pathway and 

further to accumulation of the cell cycle regulator cyclin D1 (Figure 17). Here, the effect of 

angiotensin II on proliferation of ACHN cells was investigated. 
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Cell cycle progression in response to the GPCR ligand angiotensin II was measured by a 3 H –

thymidine incorporation assay. The results showed enhanced DNA synthesis in response to 

angiotensin II that was specifically blocked by the metalloproteinase inhibitor BB94 and 

AG1478 (Figure 21a). 

To identify the metalloproteinases which are involved in angiotensin II-induced cell 

proliferation of ACHN kidney cancer cells, the effect of dominant negative mutants of 

ADAM 10, 12, 15 and 17 (∆MP 10, 12, 15, 17) which lack the pro- and metalloproteinase 

domain on the incorporation of 3H-thymidine was investigated. The results showed that 

dnTACE specifically inhibited angiotensin II induced cell cycle progression in ACHN kidney 

carcinoma cells (Figure 21b). 

Together, these data demonstrated that stimulation with angiotensin II leads to a about four-

fold increasing in thymidine incorporation which is diminished by blocking ADAM 17 or the 

EGFR. 

 
 

3.9 LPA prevents apoptosis induced by serum-starvation or doxorubicin 

treatment in a BB94 and AG1478 -sensitive manner in Rat-1 

fibroblasts 

Besides deregulated cell proliferation, suppression of apoptosis is another critical 

characteristic of cancer cells (Evan and Vousden 2001). The EGFR and the oncoprotein 

HER2/neu have been demonstrated to regulate the responsiveness of a variety of cell types to 

pro-apoptotic stimuli such as serum-deprivation, death receptor activation and cytotoxic 

drugs. In Rat 1 fibroblasts EGFR transactivation by various GPCR ligands resulted in 

activation of the survival promoting proteins Akt and ERK1/2. Therefore, it was interesting to 

elucidate if EGFR transactivation has an anti-apoptotic effect in fibroblasts. 

As shown in Figure 22a , apoptosis of Rat-1 cells induced by starvation was blocked in the 

presence of LPA or EGF. The anti-apoptotic effect of LPA was reversed by AG1478 or 

BB94, suggesting the critical involvement of metalloproteinases and the EGFR. 

It was previously shown that activation of growth factor pathways enhance mechanisms of 

drug resistance in chemotherapy (Dickstein, Valverius et al. 1993). Therefore, the 

involvement of EGFR transactivation in survival of Rat-1 fibroblasts treated with 

doxorubicin, a prominent drug used in chemotherapy, was investigated. It was found that LPA 

prevented doxorubicin-induced apoptosis of Rat-1 fibroblasts in a batimastat and AG1478-

sensitive fashion (Figure 22b). 
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In conclusion, the GPCR agonist LPA prevents apoptosis induced by serum starvation and the 

chemotherapeutic drug doxorubicin in Rat-1 fibroblasts through the EGFR and 

metalloproteinases . 

3.10 LPA prevents apoptosis induced by anti-CD95/FasL in a BB94 and 

AG1478- sensitive manner in TccSup bladder carcinoma cells 

Interestingly, a recent report provided evidence that EGF stimulation protects breast adeno-

carcinoma cells from Fas-induced apoptosis by an Akt/PKB-mediated pathway (Gibson, Tu et 

al. 1999).  
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In the bladder cancer cell line TccSup it was demonstrated above (Figure 18) that direct 

stimulation with EGF as well as EGFR transactivation by LPA leads to Akt activation. Hence, 

the involvement of EGFR signal transactivation in the regulation of survival of TccSup cells 

was investigated. To induce apoptosis in serum-starved TccSup bladder cancer cells a 

monoclonal anti-Fas CD95 antibody was used. The results of the experiment shown in Figure 

23 revealed that LPA effectively prevented CD-95-induced apoptosis of TccSup cells in a 

BB94- and AG1478-sensitive manner. 

In summary, these data showed that in addition to apoptosis induced by serum starvation and 

chemotherapeutic agents, also apoptosis triggered by anti-CD95/FasL can be reversed by 

incubation with LPA in an EGFR and metalloproteinase- dependent manner. 
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3.11 LPA promotes EGFR- and Metalloprotease-dependent cell motility 

One of the hallmark characteristics of cancer cells is enhanced motility. An in vitro cell 

monolayer wound closure assay can serve as a model for cell migration. For EGF and EGF-

like ligands a wound closure promoting function due to enhanced ERK/MAPK activation has 

been described previously (Draper, Komurasaki et al. 2003).  

 

 
 
 
For all tested kidney and bladder carcinoma cell lines (see table 4/Figure 14) it was 

demonstrated that stimulation with the GPCR agonist LPA or EGF leads to EGFR and ERK 

activation. Therefore, the effect of the GPCR ligand LPA on tumour migration in the presence 

or absence of specific EGFR inhibitors was investigated in an in vitro wounding assay. In 

A498 kidney cancer cells the results showed that LPA enhanced the rate of wound closure and 

incubation with the inhibitors BB94 and AG1478 abolished the effect. 

In conclusion, these data demonstrated that LPA-induced wound closure of A498 cell 

monolayers involes both, EGFR function and metalloprotease activity.  
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3.12 LPA promotes cell migration which is inhibited by BB94, AG1478 and 

a dominant negative mutant of ADAM 17 

To further verify these data, the effect of LPA on cell motility of urogenital cancer cell lines 

was evaluated in a quantitative Boyden Chamber assay that is generally accepted as a method 

for assessing in vitro tumour cell migration. It was found that LPA stimulated the rate of 

A498 cell migration more than five-fold. The effect was specifically blocked by pre-treatment 

of cells with BB94 or AG1478. These findings were further substantiated by analogous results 

obtained in Caki2, ACHN, TccSup cells. 

 

 
As shown above (Fig 11), EGFR transactivation by LPA is blocked by a dominant negative 

mutant of ADAM17/TACE as well as TACE siRNA in A498 kidney carcinoma cells. To 
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evaluate whether ADAM 17 is involved in the regulation of LPA-promoted cell motility of 

kidney cancer cells the chemotactic migration of A498 cells which stably express either 

wildtype ADAM 17 or a dominant-negative ADAM 17 mutant was analysed. It was found 

that expression of dominant-negative ADAM 17 completely prevented migration of A498 

cells in response to LPA whereas expression of the wildtype ADAM 17 minimally enhanced 

the migration rate of LPA stimulated A498 cancer cells (Figure 25).  

Together, these data demonstrated that highly abundant GPCR ligands such as LPA promote 

motility of kidney and bladder cancer cells by an EGFR and metalloproteinase-dependent 

mechanism. Moreover, a critical role for TACE in the regulation of cell motility of A498 

kidney cancer cells in response to LPA was established. 

 

 

3.13 LPA promotes cell invasion dependent on the EGFR and a 

metalloproteinase 

Penetration of the extracellular matrix and the basement membrane by cancer cells is a key 

step of tumour dissemination and invasion. For bladder cancer cell lines it was demonstrated 

previously that stimulation with EGF results in increased matrigel invasion (Kanno, 

Nonomura et al. 1998) whereas in ovarian cancer cells LPA was found to be a potent inducer 

of invasion (Fishman, Liu et al. 2001). 

Therefore, the invasive capacity of cancer cells relating to EGFR transactivation was 

evaluated by an in vitro invasion assay. Kidney and bladder carcinoma cell lines which show 

migration in response to GPCR/EGFR cross talk were chosen as a model system. The number 

of cells which penetrated Matrigel as an artificial basement membrane was determined. 

Stimulation of Caki2 kidney cancer cells with LPA was found to result in a seven-fold 

increase in the invasion rate and this effect was abolished by treatment with batimastat and 

AG1478. Similar results were obtained in ACHN and A498 kidney cancer cells and in 

TccSup bladder cancer cells. 
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Taken together these findings demonstrated that LPA promotes migration and invasion in a 

variety of kidney and bladder carcinoma cell lines via the EGFR and highlights the 

importance of metalloproteinases in the regulation of cancer cell invasion by GPCR signals. 

In addition, TMPS pathways appear to be of broad mechanistic significance for promoting 

invasiveness of tumours of the kidney and bladder. 

 

Table 4 gives an overview over cell migration and invasion of the tested kidney and bladder 

carcinoma cells in dependence on EGFR transactivation by LPA. 
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For the kidney cancer cell lines CaKi2, ACHN and A498 and the bladder cancer cell line 

TccSup cell migration as well as -invasion in response to LPA treatment was observed. 

Stimulation of 5637 bladder cancer cells with this GPCR agonist resulted only in cell 

migration, invasion through the matrigel matrix could not be detected. 

 

 
 

In all tested kidney cancer cell lines LPA treatment promotes migration as well as invasion, 

whereas 50 % of the cell lines derived from bladder tumours showed migration and 25 % 

show invasion in response to LPA stimulation. In addition to migration and invasion, 

treatment with LPA leads to anti-apoptosis in the bladder cancer cell line TccSup. The kidney 

cancer cell line ACHN shows proliferation upon stimulation with angiotensin II. 

Sensitivity of the signalling to the metalloproteinase inhibitor BB94 and the EGFR inhibitor 

G1478 indicates the involvement of the TMPS-pathway. 
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In summary, the data highlight the importance of cross communication between GPCRs and 

the EGFR for the invasivity of bladder and kidney cancer. Moreover they show a function of 

EGFR transactivation in the regulation of proliferation and survival of kidney and bladder 

cancer cells. 
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4 Discussion 

 
Cross talk between different members of receptor families has become a well-established 

concept in signal transduction. Signalling networks are elementary in the control of a high 

diversity of physiological processes. G-protein coupled receptors as well as receptor tyrosine 

kinases constitute prominent families of cell-surface proteins regulating the responsiveness of 

cells to environmental signals. The EGFR and its relatives mediate the biological signal of 

EGF as well as other related peptide growth factors and therefore comprise one of the 

biologically most pluripotent systems of autocrine/paracrine signalling. Deregulation of both 

GPCR and EGFR signalling systems has been linked to the etiology of hyperproliferative 

diseases. Therefore, it was hypothesized that GPCR-mediated EGFR activation might 

promote critical cancer cell characteristics such as tumour cell proliferation, anti-apoptosis 

and cell motility. A special interest existed in EGFR signalling in urological malignancies 

because EGFR activity which is indicative for the malignant potential of many solid cancers 

is also elevated in this tumour type in comparison to normal tissue (Ghanem, Van Der Kwast 

et al. 2001). High-grade, invasive bladder tumours often show genetic aberrations including 

overexpression of HER2/neu and EGFR associated with an increased frequency of 

progression to an advanced tumour stage and poor survival. Low-grade bladder tumours are 

non-invasive, but more than 70% of patients will have at least one recurrence after initial 

treatment (Van Brussel and Mickisch 1999). Overexpression of EGFR is correlated with a 

higher recurrence rate and higher tumour progression. Furthermore, in bladder cancer as well 

as in kidney cancer EGFR expression serves as a prognostic marker for clinical outcome and 

has been correlated with metastasis (Bue, Wester et al. 1998). Overexpression of EGF, 

TGFα,  amphiregulin, and HB-EGF promotes transformation and proliferation by autocrine 

mechanisms (Ruck, Jakobson et al. 1994; Ruck and Paulie 1997). Furthermore, in bladder 

tumours EGF stimulation leads to enhanced cell motility which provides progression from 

superficial to invasive forms of the disease (Gildea, Harding et al. 2002). In several 

carcinomas including renal carcinomas overexpression of TGFα and/or amphiregulin has 

been observed and a direct function for EGF-like molecules in development and progression 

in transitional cell carcinomas has been described. For example, it was shown that 

amphiregulin triggers proliferation and TGFα induces invasion in cell lines derived from 

invasive transitional cancer tissue (De Boer, Houtsmuller et al. 1997). Little is known, 

however, about the function of GPCRs relating to bladder and kidney cancer with modest 
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EGFR levels although human transitional carcinoma cells express various GPCRs and display 

an enhanced migration rate in response to LPA and thrombin (Lummen, Virchow et al. 1997). 

 

4.1 Treatment of Rat-1 fibroblasts and kidney and bladder carcinoma 

cells with GPCR agonists requires a metalloproteinase activity and the 

extracellular ligand-binding domain of the EGFR 

 
The data presented here provide evidence that a variety of potent mitogenic GPCR agonists 

such as angiotensin II, bombesin, bradykinin, carbachol, endothelin-1, LPA, and thrombin 

induce EGFR transactivation in kidney and bladder cancer (Figure 4, Table 2).  

The kidney peptide hormone Angiotensin II is important for the regulation of vasoconstriction 

and glomerular hemodynamics (Arima 2003). In vascular smooth muscle cells angiotensin II 

was shown to induce tyrosine phosphorylation of the EGFR via calcium (Eguchi, Numaguchi 

et al. 1998) In addition, the results of this study demonstrated that the kidney cancer cell lines 

ACHN and A498 show EGFR activation upon stimulation with Ang II. 

The GPCR agonist bombesin has been shown to be highly expressed and secreted by 

neuroendocrine cells in prostate cancer. Moreover, EGFR transactivation upon bombesin 

treatment was described in this system (Xiao, Qu et al. 2003). RT-PCR experiments revealed 

the expression of bombesin receptors in other systems such as human renal cell carcinoma but 

not in surrounding normal kidney tissue. Furthermore, expression of the neuropeptide receptor 

was verified in the kidney cancer cell lines A498, Caki1, Caki2 and ACHN (Pansky, De 

Weerth et al. 2000). Expression in the bladder could only be detected during embryonal 

development and disappeared at birth (Battey, Wada et al. 1994). The data presented in this 

study here show EGFR transactivation by bombesin in the kidney cancer cell lines Caki2, 

ACHN, HK2 and A498 whereas none of the tested bladder cancer cell lines showed any effect 

upon bombesin treatment (Table 2). 

Metalloproteinase-dependent EGFR transactivation pathways were also described for other 

ligands including LPA, endothelin-1, thrombin, and carbachol in COS-7, PC-3 and Rat-1 cells 

(Prenzel, Zwick et al. 1999). A majority of the investigated kidney and bladder cancer cell 

lines show cross talk between receptors of these GPCR ligands and the EGFR. Additionally, 

the peptide hormone bradykinin which normally participates in inflammatory and vascular 

regulation (Prado, Taylor et al. 2002) also leads to EGFR transactivation in nearly all tested 
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cell lines. An important result of this study is that crosstalk between mitogenic LPA receptors 

and the EGFR was detected in all cell lines tested.  

Together, these experimental findings suggest that each tumour cell line can be stimulated by 

a wide variety of physiologically important GPCR ligands depending on the repertoire of 

signalling molecules. Moreover, the EGFR acts as a point of convergence for multiple GPCR 

signals in kidney and bladder carcinoma cells. 

Previously it was demonstrated that the EGFR functions as an integral element of mitogenic 

GPCR signals involving an intracellular mechanism (Daub, Weiss et al. 1996). Later Prenzel 

and colleagues demonstrated that EGFR transactivation in COS-7, HEK-293, and Rat-1 cells 

is dependent on a metalloproteinase which is sensitive to the broad spectrum inhibitor 

batimastat (BB94) (Prenzel, Zwick et al. 1999). To examine if a metalloproteinase activity is 

involved in GPCR-EGFR signal transmission in kidney and bladder carcinoma cells the effect 

of BB94 on tyrosine phosphorylation of the EGFR was analysed. It could be shown that pre-

treatment of tumour cells with BB94 or the EGFR-specific tyrphostin AG1478 completely 

abolished the transactivation signal (Figure 5). The experimental observation that the antibody 

ICR-3R prevents GPCR-induced EGFR tyrosine phosphorylation (Figure 5) demonstrates that 

the extracellular portion of the EGFR is required for transactivation by GPCR ligands and 

these data are further consistent with the TMPS concept of EGFR signal transactivation. 

The phenomenon of autocrine processing of EGFR ligands which can be blocked by 

metalloproteinase inhibitors has been previously described in HNSCC cells (P, Rhys-Evans et 

al. 2002). Furthermore, in human neuroendocrine tumours autocrine phosphorylation of the 

somatostatin receptor, a member of the GPCR family, has been recorded (Liu, Reubi et al. 

2003). In kidney and bladder cancer cells basal tyrosine phosphorylation of the EGFR was 

diminished by incubation with batimastat. These results suggest that autocrine activation of 

the EGFR involves a metalloproteinase (Figure 6). 

The precise signalling mechanisms governing autocrine growth factor stimulation however 

remain to be elucidated further. It is currently also only poorly understood if autocrine GPCR 

stimulation leads to activation of the EGFR in vivo. 
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4.2 EGFR transactivation involves the EGF-like ligands amphiregulin, 

HB-EGF and TGFα and the metalloproteinases ADAM 10, 15 and 17 

in kidney and bladder cancer cells 

The results shown in Figures 5 and 13 demonstrated that EGFR transactivation upon 

stimulation with GPCR ligand can be inhibited by small chemical compounds such as BB94 

and AG1478 and additionally by a monoclonal antibody which blocks ligand binding to the 

ecto-domain of the EGFR. To identify the shedding activity induced upon GPCR ligand 

treatment which results in release of EGF-like ligands, cells were infected with dominant-

negative mutants of ADAM 10, 12, 15 and 17 (Figure 9). The results showed that EGFR 

transactivation by LPA involves ADAM 17 in Caki2 and A498 kidney cancer cells, ADAM 

10 in the kidney cancer cell line ACHN and ADAM 15 in the bladder cancer cell lines 

TccSup and 5637. Furthermore, stimulation with angiotensin II leads to ADAM 17 -

dependent EGFR activation in ACHN kidney cancer cells. To verify the data obtained from 

studies employing dn ADAM mutants (Figure 9), the endogenous expression of prominent 

ADAM proteases was abolished by small interfering RNA (siRNA). Remarkably, the ADAM 

17-dependent EGFR activation upon LPA stimulation could be confirmed in A498 cells by 

using ADAM17 siRNAs (Figure 11). 

These data are consistent with previous studies demonstrating that EGFR transactivation by 

bombesin involves ADAM 10 activation in COS-7 and PC-3 cells (Yan, Shirakabe et al. 

2002), while ADAM 17 has been implicated in proteolytic cleavage of several EGF family 

members in murine fibroblasts (Sunnarborg, Hinkle et al. 2002). In vivo studies showed that 

TACE is required for shedding of proTGFα, activation of the EGFR and tumour development 

in nude mice (Borrell-Pages, Rojo et al. 2003). A possible function of ADAM 15 in EGFR 

signalling was unknown so far. 

In order to identify EGF-like ligands that are involved in the EGFR signal transactivation 

pathway blocking antibodies were applied (Figure 8). The three tested kidney cancer cells 

lines Caki2, ACHN and A498 showed processing of HB-EGF precursors upon LPA or 

angiotensin II treatment, whereas the bladder cancer cell line TccSup showed release of 

TGFα and 5637 showed release of amphiregulin (Table 3). To substantiate these findings 

further ectodomain cleavage of pro-amphiregulin upon LPA stimulation in 5637 cells and of 

HB-EGF upon angiotensin II stimulation in ACHN cells was demonstrated (Figure 7, Figure 

10). Furthermore, the requirement of ADAM 17 for angiotensin II-triggered cleavage of 

proHB-EGF was shown in ACHN cells (Figure 10). 



4 Discussion 76

Together, this study provides experimental evidence for HB-EGF cleavage by the 

metalloproteinases ADAM 10 and 17. As a further variation of the TMPS mechanism, 

ADAM 15 was found to induce shedding of two different EGF-like ligands in different cancer 

cell lines: amphiregulin in 5637 and TGFα in TccSup cells (Figure 7/Table 3). 

In analogy to these findings, mechanisms have been reported in which HB-EGF-dependent 

transactivation of the EGFR is mediated by ADAM 10 in lung epithelial cells (Lemjabbar and 

Basbaum 2002) and COS-7 cells (Yan, Shirakabe et al. 2002) or by ADAM 12 in 

cardiomyocytes (Asakura, Kitakaze et al. 2002). HB-EGF processing by TACE was described 

to be required for EGFR activation in mice (Jackson, Qiu et al. 2003). Processing of pro-

amphiregulin as well as proTGFα was reported by ADAM 17 (Borrell-Pages, Rojo et al. 

2003; Gschwind, Hart et al. 2003). The data presented here establish a novel role of the 

metalloproteinase disintegrin ADAM 15 in growth factor precursor cleavage, since this 

protease is required for LPA-induced EGFR transactivation in the bladder cancer cell lines 

5637 and TccSup. 

 

 

4.3 Transactivation of the EGFR involves HER2, SHC, Gab1, Akt, 

MAPK, Src, PI3-K and cyclin D1 

An important result of this study is that LPA treatment of TccSup bladder cancer cells leads to 

tyrosine phosphorylation of the EGFR and additionally to transactivation of the oncoprotein 

HER2 (Figure 12). These findings confirm the previous observations in Rat-1 fibroblasts 

(Daub, Weiss et al. 1996) and further expand the significance of the TMPS pathway. A 

critical role of HER2/EGFR heterodimers in the etiology of bladder cancer has been 

suggested by the finding that HER2 is expressed at high levels in neoplastic epithelium of 

tumours when compared with normal tissue (Kruger, Weitsch et al. 2002). The findings that 

EGFR as well as HER2 activation upon LPA stimulation can completely be abolished by 

batimastat and AG1478 treatment provides evidence that GPCRs act as upstream regulators of 

the EGFR and HER2 signal. It remains to be investigated however if other receptors of the 

ERB-family like HER3 and HER4 also feature cross talk with GPCRs. 

Another important result of this study is that cross communication between mitogenic GPCRs 

and the EGFR leads to recruitment of the adapter proteins Shc and Gab1                        

and that inhibition of the EGFR or metalloproteinases by small chemical compounds such as 
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BB94 and AG1478 block GPCR-triggered EGFR tyrosine phosporylation and downstream 

signalling events (Figure 13). 

Investigation of the role of EGFR transactivation in GPCR-induced mitogenic signalling 

showed that inhibition of EGFR or metalloproteinase function also blocked the activation of 

Akt and the MAPKs ERK1/2, JNK and p38 (Figure 14, Figure 15, Figure 16, Figure 18). 

These findings are in accordance with recent observations by Daub and colleagues that GPCR 

mitogenic signals involve EGFR signal transactivation and the adapter proteins SHC and 

Grb2 via the Ras/MAP kinase pathway (Daub, Weiss et al. 1996). A previous study by Dent 

et al. has shown that cellular stress signals activate the MAPKs p38 and JNK through the 

EGFR (Dent, Yacoub et al. 2003). Morever, this study further demonstrated that also GPCR 

agonists lead to activation of these stress kinases. Consistent with the data presented here the 

PI3-K/PDK1/Akt signalling pathway has been decribed to act in a parallel fashion to the 

Ras/MAPK pathway downstream of the EGFR and is associated with development of breast 

cancer as well as its resistance to treatment with cytotoxic drugs (Navolanic, Steelman et al. 

2003). 

Further downstream in the mitogenic signalling pathway stimulation with LPA and 

angiotensin II results in accumulation of the cell cycle regulator cyclin D1 in the kidney 

cancer cell line ACHN which is dependent on the EGFR and a metalloproteinase (Figure 17). 

Analogous to these results it has been published that LPA increases the level of cyclin D1 in 

ovarian cancer cells (Hu, Albanese et al. 2003), whereas in CHO cells it was demonstrated 

that angiotensin II induces cyclin D1 upregulation though PI3-K and the Ras/MAPK pathway 

(Guillemot, Levy et al. 2001). In vascular smooth muscle cells it was described recently that 

amphiregulin-induced EGFR phosphorylation leads to upregulation of cyclin D1 (Shin, Lee et 

al. 2003). In analogy to the data presented here, it was reported that the potent mitogen HB-

EGF increases Ras/MAPK activity followed by cyclin D1 expression (Moriuchi, Hirono et al. 

2001). A novel aspect in the regulation of cyclin D1 levels is provided by this current study 

demonstrating the requirement of a metalloproteinase activity. Furthermore, it was previously 

shown that amplification of the cyclin D1 gene occurs frequently in conjunction with 

amplification of the EGFR gene in non-small-cell lung cancer (Reissmann, Koga et al. 1999) 

and that cyclin D1 overexpression in human pancreatic tumour cells is dependent on the 

mitogenic effect of EGFR signalling (Poch, Gansauge et al. 2001). 

Further investigations utilizing pharmacological inhibitors of PI3-K and src-kinase activity 

suggested that these kinases act both up- as well as downstream of the EGFR to regulate 

EGFR tyrosine phosphorylation as well as downstream signalling. Moreover, it was 
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demonstrated here that ERK1/2 phosphorylation upon LPA treatment is only dependent on src 

whereas src as well as PI3-K are involved in Akt activation (Figure 19). The connection of 

EGFR signalling to the PI3-K/Akt pathway is well characterized (Wang, Quan et al. 2003), In 

addition, in endothelial cells it was shown that this survival pathway can also be activated by 

autocrine secretion of TGFα (Vinals and Pouyssegur 2001). Furthermore, consistent with the 

data presented here it was reported recently that LPA induces EGFR transactivation via PI3-K 

(Casas-Gonzalez, Ruiz-Martinez et al. 2003). The conjunction to the responsible 

metalloproteinase remains to be investigated. 

Similar to the findings of this experimental studies, src-kinase was described to mediate 

GPCR/EGFR cross communication (Guerrero, Santibanez et al. 2004) and to regulate 

downstream signalling via ERK1/2 and PI3-K/Akt (Das, Mahabeleshwar et al. 2004). 

Furthermore, it could be demonstrated that transactivation of the EGFR by carbachol is 

mediated by metalloproteinase-dependent release of TGFα and src activation (McCole, Keely 

et al. 2002). Recently, another publication demonstrated that the cytoplasmic domain of 

ADAM 15 contains proline-rich sequences that mediate interactions with src-like kinases in 

hematopoietic cells (Poghosyan, Robbins et al. 2002). Whether src-ADAM 15 interactions 

and src-dependent tyrosine phosphorylation of ADAM 15 is critical for mediating the 

transactivation signal in TccSup cells remains to be elucidated. 

 

4.4 Regulation of proliferation and survival of kidney and bladder cancer 

cells requires EGFR function and a metalloproteinase activity 

While investigating mitogenic signalling by EGFR transactivation it was shown that the 

GPCR agonists LPA, thrombin, bradykinin and ET-1 induce DNA synthesis and S-phase cell 

cycle progression in Rat-1 fibroblasts (Figure 20), whereas stimulation of ACHN kidney 

cancer cells with angiotensin II causes cell proliferation, involving the metalloproteinase 

ADAM 17 (Figure 21).  

In agreement with the findings here, it was previously shown that the EGFR is required for 

bombesin and bradykinin induced cell cycle progression in Rat-1 and Swiss 3T3 cells 

(Santiskulvong, Sinnett-Smith et al. 2001). The results shown here thereby further expand the 

data published by demonstrating EGFR transactivation and cell proliferation upon stimulation 

with further GPCR agonists such as LPA, thrombin and ET-1 (Daub, Weiss et al. 1996) and 

indicate the involvement of a metalloproteinase in Rat-1 fibroblasts. Prenzel et al. could 

demonstrate that EGFR transactivation in Rat-1 cells is mediated by HB-EGF (Prenzel, Zwick 
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et al. 1999). It remains to identify the metalloproteinase and other signalling molecules 

involved in the regulation of this biological process. 

The kidney carcinoma cell line ACHN features mitogenic signalling via the EGFR, the 

Ras/MAPK pathway and the cell cycle regulator cyclin D1 upon angiotensin II treatment. 

These findings are consistent with results which show that proliferation of ACHN cells is 

dependent on the EGFR (Ciardiello, Caputo et al. 1998). The renin-angiotensin-aldosterone 

system plays an integral role maintaining vascular tone and optimal salt and water 

homeostasis in the healthy kidney, but overactivity can result in pathologically consequences 

(Brewster, Setaro et al. 2003). In normal kidney cells it was shown that Ang II does not only 

act as a vasoactive peptide but also regulates the synthesis of cytokines and chemokines 

which play a role in cell growth, inflammation and fibrosis (Ruiz-Ortega, Ruperez et al. 

2002). In breast cancer cells it was demonstrated that Ang II induces cell proliferation via 

ERK1/2, PKC and the EGFR (Greco, Muscella et al. 2003) and in vascular smooth muscle 

cells it was suggested that angiotensin II triggers cell proliferation mediated by src-kinase and 

the Shc/Grb2/ERK signalling pathway (Sayeski and Ali 2003). In vivo studies showed that 

angiotensin II stimulation induces DNA synthesis in blood vessels by activation of cyclin D1 

and cdk4 (Diep, El Mabrouk et al. 2001). In analogy to the current results, HB-EGF was 

implicated as a mediator of angiotensin II-induced growth promotion in human prostate 

stromal cells (Lin and Freeman 2003). In contrast to the observation presented here, ADAM 

12 instead of ADAM 17 has been determined as a regulator of HB-EGF shedding upon AngII 

stimulation (Mori, Tanaka et al. 2003). 

To upgrade these data it would be interesting to identify further signalling molecules which 

are important in this pathway leading to cell proliferation. 

A further important aspect of the current findings is that, in addition to the proliferative 

responses, EGFR signal transactivation plays a direct role in the regulation of cell survival. 

The growth promoting signalling events in Rat-1 fibroblasts and TccSup bladder cancer cells 

are accompanied by phosphorylation of the survival mediator Akt/PKB downstream of the 

EGFR. Activation of Akt has recently been shown to suppress apoptosis of Rat-1 fibroblasts 

that had been detached from the extracellular matrix and to promote progression of quiescent 

cells into the S phase of the cell cycle (Mirza, Kohn et al. 2000). Furthermore, it was found 

that LPA treatment drastically increased survival of fibroblasts after serum deprivation or 

doxorubicin treatment in an EGFR- and ADAM-dependent manner (Figure 22). In analogy to 

the observations here, LPA was shown to cause resistance of cancer cells to chemotherapy in 

a recent study (Tanyi, Morris et al. 2003). 
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Another report demonstrated that GPCR ligands protect human lymphoblastoma cells from 

apoptosis triggered by CD95 antibodies via unknown mechanisms (Goetzl, Kong et al. 1999). 

In this study it was observed that death receptor-mediated apoptosis in TccSup bladder 

carcinoma cells was effectively prevented by LPA co-stimulation (Figure 23). Death receptor 

pathways are of pathophysiological significance since 75 % of transitional cell carcinoma 

(TCC) cells display apoptosis upon activation of the Fas/Fas-ligand pathway (Yu, Hsieh et al. 

2003). Again, the anti-apoptotic effect of LPA on TccSup cells was dependent on the EGFR 

and metalloproteinase activity substantiating the importance of TMPS pathways in the 

regulation of cell death-versus-survival decisions. 

These findings highlight the importance of EGFR signal transactivation in cancer cell 

proliferation and survival and strongly support a role of ADAM metalloproteinases as 

determinants of cancer progression. 

 

 

4.5 Motility of kidney and bladder cancer cells is regulated by the EGFR 

and a metalloproteinase 

Increased tumour cell motility is an essential feature of the malignant potential of tumours. 

Previous reports have shown that LPA enhances in vitro wound closure and invasion in 

ovarian cancer cells (Xu, Gaudette et al. 1995). On the other hand, Ishikawa and colleagues 

demonstrated that EGF induces anchorage-independent growth and invasion of bladder cancer 

cells (Ishikawa, Maeda et al. 1989). The current data provide evidence that both, LPA and 

EGF promote in vitro wound closure, cell migration and invasion in kidney and bladder 

carcinoma cells via the EGFR and that the LPA-induced cellular responses require a 

metalloproteinase activity (Figure 24, Figure 25, Figure 26). 

Wound healing is a complex process featuring cell growth and motility. Previously was 

observed that LPA stimulates closure of wounded monolayers of human endothelial cells 

(Lee, Goetzl et al. 2000). In vivo data of bladder wound healing have shown to be mediated 

by the EGFR and HER2 via processing of EGF, TGFα or amphiregulin (Bindels, van der 

Kwast et al. 2002). In analogy to the current data, it was shown that LPA promotes wound 

closure of kidney and bladder cancer cells involving the EGFR, and a metalloproteinase 

shedding EGF-like ligands. Since heregulin-alpha has been demonstrated to play a role in 

keratinocyte wound healing (Schelfhout, Coene et al. 2002) it is of high relevance to further 

investigate the function of HER2, HER3 and HER4 in wound closure of kidney and bladder 
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cancer cells. In addition, metalloproteinase-dependent EGF-like ligand shedding has been 

reported to mediate EGFR transactivation and migration of vascular smooth muscle cells 

(Eguchi, Frank et al. 2003) whereas in colon cancer EGFR transactivation by Prostaglandin 

E2 regulates cell migration and invasion (Buchanan, Wang et al. 2003). Furthermore, it was 

suggested that LPA is a critical factor regulating motility of pancreatic cancer cells (Yamada, 

Sato et al. 2003) and the invasion of ovarian cancer cells (Fishman, Liu et al. 2001). Other 

studies indicated the involvement of HB-EGF contributing to migration of prostate cancer 

cells (Madarame, Higashiyama et al. 2003) and the modulation of invasion of metastatic 

breast cancer cells by amphiregulin (Kondapaka, Fridman et al. 1997). In analogy to the 

results presented here the metalloproteinase ADAM 17/TACE was identified as a key element 

of GPCR/EGFR cross talk pathways promoting cancer cell motility (Gschwind, Hart et al. 

2003). The involvement of ADAM 15 in the migration of mesangial cells was demonstrated 

recently (Martin, Eynstone et al. 2002). 

Collectively, these data suggest an important function of EGFR transactivation by TMPS 

pathways concerning cell motility in urogenital cancer. Elements of TMPS pathways 

therefore represent potential intervention targets for the treatment of kidney and bladder 

tumours. 

 

 

4.6 Perspectives 

The current data disclose the high complexity of cross talk mechanisms linking GPCR 

stimulation with activation of the EGFR. Signalling from LPA receptors to the EGFR requires 

processing of proHB-EGF by ADAM 17 in CaKi2 and A498 kidney cancer cells and ADAM 

10 in ACHN cells while treatment with the GPCR ligand angiotensin II involves ADAM 17 

mediated processing of HB-EGF in ACHN cells. In contrast, in bladder cancer cells 

stimulation with LPA leads to ADAM 15 activation which controls proTGFα shedding in 

TccSup cells and pro-amphiregulin shedding in 5637 cells.  

In HNSCC cells LPA treatment leads to TACE dependent cleavage of pro-amphiregulin 

(Gschwind, Hart et al. 2003) whereas in the cardiovascular system stimulation with the GPCR 

ligand angiotensin II results in HB-EGF shedding by MMP-7 (Hao, Du et al. 2004). In nude 

mice TACE is required for processing of TGFα and subsequent EGFR activation (Borrell-

Pages, Rojo et al. 2003). Yan et al. have discovered that ADAM 10 promotes HB-EGF release 

in COS 7 and PC-3 cells (Yan, Shirakabe et al. 2002). 
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It remains to investigate the regulation of the signalling mechanism and elucidate the factors 

leading to the choice of a distinct metalloproteinase processing a distinct EGF-like ligand 

upon treatment with a particular GPCR agonist.  

Furthermore, EGFR transactivation pathways are the key to the regulation of diverse 

biological processes. Most of the tested kidney and bladder cancer cells showed cellular 

migration and invasion as a response to GPCR/EGFR cross communication and only a few 

showed cell proliferation and anti-apoptosis as a biological outcome of EGFR transactivation. 

Recent publications reported on diverse biological functions of EGFR transactivation 

pathways depending on the cellular system, the stimulus and the repertoire of signalling 

molecules. In HNSCC cells for example, LPA receptor-EGFR cross talk results in migration 

and proliferation (Gschwind, Hart et al. 2003), whereas in endothelial cells EGFR-mediated 

migration is triggered by IL-8 (Schraufstatter, Trieu et al. 2003) and in prostate cancer cells 

stimulation with bombesin leads to migration involving the EGFR (Madarame, Higashiyama 

et al. 2003). In the cardiovasculary system adrenoceptor or Ang II receptor activation 

promotes vasoconstriction (Hao, Du et al. 2004) and further the EGFR plays a critical role in 

vascular remodelling triggered by Ang II (Eguchi, Frank et al. 2003). Collectively, these data 

show that EGFR signal transactivation pathways regulate major characteristics of neoplasia 

and cardiovascular diseases. 

Concerning EGFR transactivation hardly any in vivo data have been published so far. 

Interestingly the phenotype of EGFR knockout mice exhibits a disorganized hair follicle 

phenotype and systemic disease resulting in death before three weeks and is similar to the 

phenotype of TACE knockout mice (Hansen, Alexander et al. 1997). Furthermore, it was 

demonstrated that TACE regulates TGFalpha ligand availability in vivo (Peschon, Slack et al. 

1998). Further studies suggested an even broader role of this metalloprotease in cell surface 

ectodomain cleavage of other EGF-like precursors in cultured murine fibroblasts (Sunnarborg, 

Hinkle et al. 2002). 

HB-EGF knockout mice which mostly died early had enlarged, dysfunctional hearts and 

poorly differentiated lungs (Jackson, Qiu et al. 2003). The ADAM 10-deficient mouse dies 

within 9.5 days of embryogenesis displaying multiple defects of the central nervous system, 

the somites and the cardiovascular system (Hartmann, de Strooper et al. 2002). Triple null 

mice lacking EGF, amphiregulin, and TGFα were growth retarded and showed intestinal 

defects (Troyer, Luetteke et al. 2001). Mice deficient for three LPA receptors show 

dysmorphism of the head, semilethality due to defective suckling behaviour and generation of 
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a small fraction of pups with frontal haematoma (Contos, Ishii et al. 2002) whereas AT-1 

knockout mice revealed a severe heart failure (Harada, Sugaya et al. 1999). 

These results suggest a role of EGFR, LPA, angiotensinII, HB-EGF, amphiregulin, 

TGFα, ΑDΑΜ 10  and TACE for the embryonic development of organs in mice. An 

important issue of further studies will be the determination of the relevance of the TMPS-

pathway for normal development and pathophysiology thereby paving the way for the 

validation of novel targets for the pharmaceutical intervention in anti-tumour therapy. 
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5 Summary 

 

Taken together the main findings of this study are: 

1. Stimulation of kidney and bladder carcinoma cells with the GPCR ligands angiotensin 

II, bombesin, bradykinin, carbachol, endothelin-1, LPA and thrombin results in rapid 

tyrosine phosphorylation of the EGFR and the oncoprotein HER2/neu as well as 

induces critical RTK downstream signalling events such as recruitment of the adapter 

proteins Shc and Gab1 and activation of the mitogen-activated protein kinases 

(MAPK) ERK1/2, JNK and p38. 

2. The EGFR transactivation signal is blocked by pre-incubation of cells with the 

metalloprotease inhibitor batimastat and the EGFR blocking antibody ICR-3R 

suggesting that the GPCR-EGFR signal transmission involves an EGF-like ligand-

dependent mechanism in fibroblasts, kidney- and bladder carcinoma cells. 

3. By utilizing specific neutralizing antibodies against individual growth factors and by 

employing dominant negative ADAM mutants as well as siRNA technology the 

EGFR ligands amphiregulin, HB-EGF, and TGFα as well as the metalloproteinases 

ADAM 10, 15 and 17 were identified as mediators of TMPS pathways.  

4. GPCR-induced activation of ADAMs results in discrete cellular responses modulating 

the migratory and invasive behaviour of kidney and bladder cancer cells. 

5. GPCR agonists promote activation of the Ras/MAPK pathway, DNA synthesis and 

cell cycle progression via the EGFR in fibroblasts and ACHN kidney cancer cells. 

6. EGFR transactivation pathways regulate activation of the survival mediator Akt/PKB 

and the susceptibility of fibroblasts and TccSup bladder carcinoma cells to pro-

apoptotic signals such as serum-deprivation, death receptor stimulation and the 

chemotherapeutic drug doxorubicin. 

Together, these results demonstrate that distinct combinations of growth factor precursors and 

ADAMs regulate GPCR-EGFR cross talk pathways in different urogenital cancer cell lines 

promoting cell migration, invasion, proliferation and anti-apoptosis. Therefore, elements of 

the TMPS pathway represent novel, promising targets for cancer intervention strategies. 
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7 Abbrevations 

Ab        Antibody 
ADAM       A disintegrin and metalloprotease domain 
Ampr        Ampicilline resistence 
APS        Ammoniumpersulfate 
AR        Amphiregulin 
ATP        Adenosintriphosphate 
bp        Base pairs 
BSA        Bovine serum albumin 
°C        Degree celsius 
cAMP        Cyclic adenosinmonophosphate 
Ca2+        Calcium Ions 
CaM Kinase       Ca2+-calmodulin-dependent kinase 
c-fos        Cellular homologue to v-fos (FBJ murine 

osteosarcoma viral oncogene) 
c-jun   Cellular homologue to v-jun (avian sar-

coma virus 17 oncogene) 
DAG        Diacylglycerol 
DMEM       Dulbecco's modified eagle medium 
DN        Dominant negative 
DMSO       Dimethylsulfoxide 
DNA        Desoxyribonukleic acid 
dsDNA       Dooble-stranded DNA 
DTT        Dithiothreitol 
ECL        Enhanced chemiluminescence 
EDTA        Ethlendiamintetraacetate 
EGF        Epidermal growth factor 
EGFR        Epidermal growth factor receptor 
EGTA        Ethylene glycol-bis(2-aminoethyl)- 

N,N,N',N'-tetraacetic acid 
ERK        Extracellular signal-regulated kinase 
FAK        Focal adhesion kinase 
FCS        Fetal calf serum 
FGF        Fibroblast growth factor 
FGFR        Fibroblast growth factor receptor 
Fig        Figure 
g        Gramm 
Gab1        Grb2-associated binder-1 
Gab2        Grb2-associated binder-2 
GDP        Guanosindiphosphate 
GPCR        G protein-coupled receptor 
Grb2        Growth factor receptor binding protein 2 
GST        Glutathion-S-transferase 
GTP        Guanosintriphosphate 
h        Hour 
HA        Hemagglutinin 
HB-EGF       Heparin-binding EGF-like growth factor 
H2Obidest       Twice-destilled, deionised Water 
HEPES       N-(2-Hydroxyethyl)-piperazin-N‘-2- 
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Ethansulfonic acid 
HER        Human EGFR-related 
HNSCC       Head and neck squamous cell carcinoma 
Ig        Immunglobulin 
IP        Immunoprecipitation 
IP3        Inositol-1,4,5-trisphosphate 
IPTG        Isopropyl-ß-thiogalactopyranoside 
JNK        c-Jun N-terminal kinase 
kb        Kilobase 
kDa        Kilodalton 
l        Liter 
LPA        Lysophosphatydic acid 
µ        Micro 
m        Milli 
M        Molar 
MAP        Mitogen-activated protein 
MAPK       MAP kinase 
MBP        Myelin basic protein 
MEK       MAPK/ERK Kinase 
min        Minute 
MMP        Matrix metalloprotease 
n        Nano 
OD        Optical density 
p.a.       Per analysis 
PBS        Phosphate-buffered saline 
PCR        Polymerase chain reaction 
PDGF        Platelet-derived growth factor 
PEG        Polyethylenglycole 
PI 3-Kinase       Phosphatidylinositol 3-kinase 
PIP2        Phosphatidylinositol-4,5-diphosphate 
PKC        Protein kinase C 
PLC        Phospholipase C 
PMSF        Phenylmethylsulfonyl-fluoride 
PNPP        p-Nitrophenyl-phosphate 
PTX        Pertussis toxin 
PY        Phospho-tyrosine 
Raf        Homologue to v-raf (murine sarcoma viral 

oncogene) 
Ras   Homologue to v-ras (rat sarcoma viral 

oncogene) 
RNA        Ribonucleic acid 
rpm        Rotations per minute 
RT        Room temperature 
RTK        Receptor tyrosine kinase 
SAPK        Stress-activated protein kinase 
S. D.        Standard deviation 
SDS        Natriumdodecylsulfate 
SDS-PAGE       SDS polyacrylamide gel electrophoresis 
Sek.        Second 
SH2, 3       domain Src homology 2, 3 domain 
SHP-2        SH2-containing PTP-2 
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Sos        Son of sevenless 
Src   Homologue to v-src (sarcoma viral onco-

gene) 
TACE        TNFα-converting enzyme 
TCA        Trichloroacetic acid 
TGFα        Transforming growth factor alpha 
TEMED       N, N, N‘, N‘-Tetramethyletylendiamine 
TNFα                  Τumor necrosis factor alpha 
TPA        12-O-Tetradecanoyl-phorbol-13-acetate 
Tris        Tris(hydroxymethyl)aminomethan 
Tween 20       Polyoxyethylensorbitanmonolaureate 
U        Enzymatic activity unit 
O/N        Overnight 
UV        Ultraviolett 
V        Volt 
Vol        Volume 
Wt        Wild type 
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