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Summary

Explaining biological systems via mathematical models is the goal of most biological high-
throughput experiments and the subsequent bioinformatic analyses. The information
needed to parameterize a predictive model of a biological system is only rarely available.
Instead, different kinds of high-throughput data can be integrated with appropriate bioin-
formatic methods to construct semi-quantitative or qualitative models, which can explain
the data or some aspect of it. Visualization and an interactive analysis of the results nec-
essarily are integral parts of these methods, as they greatly enhance the ability of humans
to understand complex relationships.

This thesis describes two different aspects of such bioinformatic methods: the system-
atic model evaluation together with an interactive visualization of the performance results,
and model construction by integrating different kinds of high-throughput data to provide
a comprehensive explanation of the system.

For model evaluation, we propose the i-score as an independent criterion for evaluation
of activity states of transcription factors. It corresponds to the number of target genes
whose changes cannot be consistent with the active transcription factors. We found that
for most experiments the number of unexplained target genes was huge even if optimized
directly, which indicates that the available networks are incomplete and/or contain false
edges. An interactive website allows to analyze the changes in the i-score if the set of
active transcription factors is modified.

Additionally, we provide an interactive visualization of the evaluation of breast cancer
subtype classifiers on an independent cohort. Here, it is also possible to analyze subsets
of patients or even individual patients which might help to understand the underlying
mechanistics of the disease.

RelExplain is a method to construct models by integrating expression data, biological
networks and process information to provide a small, understandable subnetwork that best
explains a given biological process. In contrast to other significant area search methods
the process information is directly taken into account while calculating the subnetwork.
This allows to analyze hypotheses about involved processes (e.g. proposed from enrichment
methods) in more detail by showing the relationships of genes within the process.

As an example of an integrated analysis of measurements from different experimen-
tal techniques we analyzed the transcriptional and translational changes upon yeast heat
shock. We modeled the protein abundances given the translational changes to understand
the inconsistency between translational and proteomics data.



xvi Summary

To facilitate such integrative studies in general, we compiled a database containing
experimental data for many different kinds of stress in yeast, that can easily be analyzed
using Petri-net based workflows.



Zusammenfassung

Biologische Systeme durch mathematische Modelle zu erklären ist das Ziel der meisten
biologischen Hochdurchsatzexperimente und der darauf folgenden bioinformatischen Ana-
lyse. Die Informationen, die nötig sind, um ein prädiktives Modell zu parametrisieren, sind
allerdings nur selten verfügbar. Stattdessen können verschiedene Arten von Hochdurch-
satzdaten mit den entsprechenden bioinformatischen Methoden integriert werden, um ein
semi-quantitatives oder qualitatives Modell zu erstellen, das die Daten, oder zumindest
einen Aspekt der Daten, erklären kann. Visualisierung und eine interaktive Analyse der
Ergebnisse sind notwendigerweise ein integraler Teil dieser Methoden, da sie die Fähigkeit
von Menschen, komplexe Zusammenhänge zu verstehen, stark erhöhen.

Diese Arbeit beschreibt zwei verschiedene Aspekte von solchen bioinformatischen Me-
thoden: die systematische Evaluation von Modellen sowie die interaktive Visualisierung
der entsprechenden Ergebnisse, und das Erstellen von Modellen durch die Integration von
verschiedenen Arten von Hochdurchsatzdaten, um eine umfassende Erklärung des Systems
zu liefern.

Zur Modell-Evaluation stellen wir den i-score als unabhängiges Evaluationskriterium
der Aktivitätszustände von Transkriptionsfaktoren vor. Er entspricht der Anzahl der regu-
lierten Gene, deren Änderung nicht konsistent zu den aktiven Transkriptionsfaktoren sein
kann. Wir konnten zeigen, dass diese Anzahl der unerklärten Gene für die meisten Expe-
rimente sogar dann hoch war, wenn der i-score direkt optimiert wurde. Das weist darauf
hin, dass die verfügbaren Netzwerke unvollständig sind und/oder falsche Kanten enthalten.
Eine interaktive Website ermöglicht es, die Änderungen des i-scores zu analysieren, wenn
die Menge der aktiven Transkriptionsfaktoren verändert wird.

Zusätzlich stellen wir eine interaktive Visualisierung der Evaluationsergebnisse von
Brustkrebsuntertyp-Klassifikatoren zur Verfügung. Damit ist es möglich, Submengen von
Patienten oder sogar einzelne Patienten zu analysieren, was zum Verständnis der zugrunde
liegenden Mechanismen der Krankheit beitragen kann.

RelExplain ist eine Methode, um Modelle durch das Integrieren von Expressionsdaten,
biologischen Netzwerken und Prozessinformationen zu erstellen. Im Gegensatz zu an-
deren significant area search Methoden werden die Prozessinformationen direkt mit ein-
bezogen, während das Subnetzwerk berechnet wird. Das erlaubt es, Hypothesen über
beteiligte Prozesse (die z.B. von Enrichment-Methoden vorhergesagt wurden) im Detail zu
analysieren, indem die Beziehungen zwischen den Genen im Prozess dargestellt werden.

Als ein Beispiel für die integrative Analyse von Messungen mit unterschiedlichen expe-
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rimentellen Techniken, haben wir die transkriptionellen und translationellen Änderungen
in Hefe während Hitzeschock analysiert. Um die Inkonsistenz zwischen translationellen
und Proteome Daten zu verstehen, haben wir die Proteinmengen abhängig von den trans-
lationellen Änderungen modelliert.

Um so eine integrative Analyse generell zu vereinfachen, haben wir eine Datenbank
erstellt, die experimentelle Daten für verschiedene Arten von Stress in Hefe enthält. Diese
Daten können mit einem Petrinetz-basierten Workflowsystem einfach analysiert werden.



Chapter 1

Introduction

“Data isn’t information, any more than fifty tons of cement is a skyscraper.”[91]
Clifford Stoll

American astronomer and author

In information science data, information, knowledge and wisdom are different, but related
concepts that cover different ranges in the ”continuum of understanding”[56]. One of the
most common definitions of these concepts is by Ackoff [1]: He defines data as symbols that
represent properties of entities. Data can be gathered and stored (e.g. in databases) but
it does not provide meaning in itself without further context [86]. The difference between
data and information is nicely captured in the quote above: data is the raw material that
has to be processed to be turned into something more useful. The processing of data can
lead to information, that can provide answers to questions of ’who’, ’what’, ’where’, ’when’
and ’how many’. Information still represents the properties of entities, but as it contains
context it becomes more useful. Knowledge provides answers to ’how’ questions which
can be given in instructions. It can depend on the experiences of a person and, thus, be
personal. In contrast to most other sources [82, 20, 57], Ackoff also defines understanding
as answers to ’why’ questions that lie between knowledge and wisdom. Lastly, wisdom is
the most personal and vague concept. It cannot be shared like the other concepts, deals
with values and while the other concepts are used to understand the present and past,
wisdom can be used to design the future.

The hierarchical nature of these related concepts is often visualized as a pyramid, called
the Data-Information-Knowledge-Wisdom (DIKW) pyramid (see Figure 1.1). The different
concepts depend on each other (information depends on data) and can be transformed into
each other (you can acquire knowledge through information), but the higher these concepts
are in the pyramid the more personal they get and can no longer be handled by algorithms.

Most bioinformatic methods provide some kind of model to add semantics to the mea-
sured data and derived information. The most general definition of a model says it is a
description of a system, where a system is a set of interrelated objects [45]. A model thus
corresponds to information or knowledge about the system. Similar to the hierarchical
structure of the DIKW pyramid, a model can have different levels of detail, i.e. differ-
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Figure 1.1: Data-Information-Knowledge-Wisdom pyramid. These concepts are hierarchical, as
they depend on one another. Algorithms only deal with the first two levels of the pyramid: data
and information. Taken from Awad and Ghaziri [3].

ent context-levels. Figure 1.2 shows how the DIKW pyramid and the context-level model
hierarchy relate to each other. The simplest kind of model describes defined objects. Pre-
processing methods for raw data typically generate this kind of model as they calculate
values/features for each measured gene/protein. Models on the next context-level do not
only describe objects, but also the relations between them. Depending on the kind of re-
lations, this can already answer ’how’ question and is classified as knowledge according to
Ackoff. The highest level models contain functional relations describing how the relations
influence the objects qualitatively or quantitatively. Wisdom as defined by Ackoff is a too
personal concept to be relevant for the (technical) models discussed in this thesis.

Bioinformatic methods deal with raw data and information on different context-levels
and aim at transforming data or models into models on a higher context-level. Their
use increases both the context of the information and enable the understanding of the
underlying system. The arrows on the right side of Figure 1.2 next to the bioinformatics
methods discussed in this thesis indicate their respective context-levels.

Overall, there are four different types of models [45]:

• conceptual or verbal: a description in natural language describing the system that
should be modeled, e.g. the description of the system in a scientific paper

• diagrammatic: a graphical representation describing the system by showing the
involved entities and their relations, e.g. a Petri net representation of a biological
pathway as in KEGG

• physical: a real world, physical object often having a different size compared to the
original object, e.g. a small scale model of the solar system or a model plane for
testing in a wind tunnel

• formal: a mathematical model that typically uses equations to describe the behavior
of the system, e.g. differential equations describing the changes of metabolites in a
pathway
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Figure 1.2: Relationship between the Data-Information-Knowledge-Wisdom pyramid and the
context-level hierarchy of models. The arrows on the right side show how the methods described
in this thesis transform models into models with a higher context-level. The chapter in which
these methods are described are given in parentheses.

Many bioinformatic methods correspond to conceptual, diagrammatic or formal models,
but we do not build physical models. Not all types of models can have all context-levels.
E.g. it does not make sense to have a diagrammatic model describing objects without
relations. But e.g. models with quantitative functional relations can have all types, except
physical: it can be a verbal/conceptual description, a diagrammatic model with annotated
effects on the edges or a formal model.

There are basically three functions of models: (i) to understand the system as e.g. a
researcher can gain knowledge about the system when studying a diagrammatic schema of
the involved processes, (ii) to predict properties of the system e.g. mathematical models
can be used to predict the abundances of the involved entities that result from a given
initial setting and (iii) to control the modeled system, i.e. to find the parametrization that
results in a given output.

Of course, the level of detail of the understanding/prediction/control that can be gained
from the model depends on the type and context-level of the model. E.g. a conceptual
model that describes relations of objects will not be able to make quantitative predictions
in contrast to a formal mathematical model (i.e. a system of differential equations) that
describes functional relations quantitatively.

Consider a gene expression measurement. It generates large amounts of data: for each
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gene at least one numeric value, with replicates and multiple conditions even several values
per gene. These values describe how much mRNA of the gene is available in the cell, but
without further context they are not very useful - they correspond to (raw) data, not a
model or information. Bioinformatic methods to determine differential expression of genes
can convert this data to a model describing objects by determining ’how many’ and ’which’
genes are changing between conditions. This information is still only a crude description
of the properties of the system.

To understand ’how’ the biological system behaves, models with a higher context-level
are required. Bioinformatic methods such as the prediction of active transcription factors
can be used to come up with a hypothesis of which transcription factors influence the
changing genes. This is a model describing the relations of objects which makes testable
predictions. To validate or falsify this hypothesis further experiments are needed.

Systems biology aims at formal models describing the quantitative functional relations
of overall complete systems. However, the information needed to construct such a systems
biology model is often not available for the biological system of interest. E.g. if one is
interested in the transcriptional regulation of a system, one needs not only to find the
involved transcription factors, but also how they interact and which combinations of active
transcription factors regulate which genes. To acquire this information it is not sufficient
to identify the involved transcription factors by ChIP-seq or a related technique and to
analyze the knock-out mutant of each of the involved transcription factors (which already
requires a large number of experiments), but in order to understand the combinatorics
of the transcription factors multi knock-out mutants have to be measured. Such specific
experiments usually cannot be taken from available large scale studies but need to be done
individually for each biological system.

Even though these specific experiments are often not available, for many model or-
ganisms quite a lot of information on transcriptional regulation is available. Large scale
transcription factor binding and knock-out studies can be used to generate binary regula-
tory networks, in which each edge corresponds to an activating or inhibiting regulation of
a transcription factor and a target gene. This information is not sufficient to construct a
model that can predict the gene expression changes (e.g. a Petri net with elaborate firing
rules), but such a binary network can be used for many bioinformatic methods such as pre-
dicting which transcription factors are active. The information gained from these methods
can then be used to understand the regulation of the system to some extent. Similarly, for
many different aspects of a system large scale systematic data is available that can help to
understand at least parts of the system.

A good model integrates as much available information as possible. This allows a
holistic understanding of the system and prevents that already available data contradicts
the model. There are different types of integrative models: A model can integrate different
types of data/information, e.g. data from different experimental techniques and additional
information from different sources. Another type of integration is to integrate data of the
same type that was measured multiple times, e.g. in different individuals or by different
platforms or labs. Both types of integration can make the model more robust to noise as
the conclusions typically depend on several measurements.
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Another aspect that is vital to understand complex biological mechanisms are good
visualizations. A diagrammatic model is much easier to understand for the human mind
than a corresponding conceptual model in natural language. While integration of mul-
tiple data sources typically increases the model quality, it makes the visualization more
complex, as e.g. multiple measurements of the same entity have to be summarized. As a
consequence, information that can be crucial to evaluate a model is not available in the vi-
sualization. Take for example a regulatory network showing transcription factors and their
corresponding target genes for some biological system, in which the changes of both tran-
scription factors and target genes are color-coded. When measurements for the changes of
multiple individuals are available and the average change is shown in the visualization, the
information about how consistent the measurements are between the different individuals
and how consistent the depicted regulations are in the individual measurements is lost.
One solution is to provide an interactive visualization that can show the corresponding
individual measurements. Such interactive visualizations allows e.g. to zoom in to a part
of a model and show this section in more detail. Similarly, external resources can be linked
to provide more information about an entity or the source of the depicted information.

Once a model has been created, it is important to evaluate its performance to make
sure it is consistent with the data. However, in many cases the truth is unknown so that
it is impossible to create a gold standard against which the output can be compared. In
these cases the best option is to analyze whether the predicted solution shows the same
properties that the ’true’ solution is expected to exhibit. In any case it is important to use
independent test sets to prevent overfitting of the model.

This thesis deals with different methods to make use of the available high-throughput
data to better understand and, thus, explain biological systems. Two different aspects are
covered: The first two chapters evaluate the performance of different published methods
and the next three chapters present methods to create different types of models facilitating
the step from information to knowledge or information with higher-level context (see Figure
1.2 for an overview).

In case of the prediction of active transcription factors there is no ’gold standard’
solution against which a given prediction can be compared. To nevertheless compare the
performance of various published methods to predict the active transcription factors we
propose the inconsistency score (i-score) in Chapter 2. The true set of active transcription
factors should explain all the observed changes. The i-score basically calculates how many
target genes are strictly inconsistent with the predicted active transcription factors, so that
no (reasonable) combinatorics of the transcription factors can yield the observed changes.
It uses an approach that is completely different from the methods that are evaluated and
thereby provides an independent comparison of the methods. It also does not require the
quite unrealistic assumption that the effects of the different transcription factors sum up to
the expression changes of the target genes, while still holistically integrating the predicted
activities of all transcription factors at once. Even though it generally underestimates the
number of inconsistent target genes, we found that most datasets yield many inconsistent
target genes even when the i-score was optimized directly. This indicates that the gene
regulatory networks that are used as input are still incomplete.
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Chapter 3 compares different classifiers that predict the risk of recurrence for individ-
ual breast cancer patients using gene expression measurements of several genes. For this
kind of methods there are standard evaluation methods such as Kaplan-Meier plots and
log-rank p-values used in survival analysis. We showed that it is possible to measure the
gene expression using a mid-throughput qPCR platform, which enables the qPCR mea-
surements of many genes for many patients in a standardized way without much effort.
Most of the evaluated classifiers performed well in this evaluation setup that did not only
use an independent cohort but also a different experimental platform. This experimental
technique makes such meta-studies on completely independent new cohorts more feasible
and can thus contribute to more comparability between the classifiers

The next three chapters describe methods that create models that integrate different
kinds of multi-omics data to explain and, thus, understand some biological system. The
resulting models contain different levels of detail and deal with different aspects of the
system.

In Chapter 4 transcriptomics data is integrated with network data and process infor-
mation to construct diagrammatic models. Biological networks contain information about
the relations between genes or proteins, such as regulation or interaction. The amount of
information contained in networks is huge, with hundreds of thousands of edges in some
networks. Thus, to not return incomprehensible hairball networks it is important to focus
on the most important (i.e. most deregulated) subnetworks. To understand such small
subnetworks an enrichment analysis of the contained genes is often done to determine in
which process this subnetwork is involved in. RelExplain works the other way round and
returns the optimal subnetwork for a given biological process of interest, so that this in-
formation can be exploited already during the optimization. As the resulting subnetworks
take this additional context into account they can be understood more easily.

Chapter 5 analyses the post-transcriptional regulation of a biological system - the yeast
heat shock response. Specifically, it is analyzed how the changes that are observed on the
expression level are passed on to the protein levels. This is analyzed using both qualitative
and quantitative models that predict the expected protein abundance given the changes in
translation.

More generally, Chapter 6 describes the YESdb a database of all available high-through-
put experiments of stress response in yeast. The datasets in this database are annotated
with the type, duration and strength of the applied stress, the experimental platform that
was used and when the corresponding paper was published. Using these datasets Petri net
like workflows can be created that define and characterize sets of genes that are interesting
in multiple datasets. The results of these workflows can be visualized in interactive reports
that can also be shared.

In conclusion, the methods presented in this thesis highlight how the integration of
data can improve the understanding of biological systems, especially when combined with
interactive visualization.



Chapter 2

Evaluating Transcription Factor
Activity Changes

Motivation

The evaluation of the performance of a method is crucial to show the validity of the
approach and to compare it to different approaches. Independent test sets and/or inde-
pendent evaluation measures are used to ensure that the performance is not overestimated.
In the next two chapters we describe two evaluation approaches, one using an independent
test set and one using additionally an independent evaluation measure.

Currently, there is no experimental method to measure the activity states of all tran-
scription factors (TFs). There are several methods to predict from a regulatory network
and expression data which TFs are active, but there is no evaluation measure. Here, we
present such an evaluation strategy that indicates for how many target genes the observed
expression changes can be explained by a given set of active TFs. As none of the tested
methods optimize this measure directly it can be used as independent measure to evaluate
these methods. To overcome the problem that the exact combination of active TFs needed
to activate a gene is typically not known, we assume a gene to be explained if there exists
any combination for which the predicted active TFs can possibly explain the observed
change of the gene. We introduce the i-score, which quantifies how many genes could not
be explained by the set of active TFs.

We observe that, even for these minimal requirements, published methods yield many
unexplained target genes, i.e. large i-scores. This holds for all methods and all expression
datasets we evaluated. We provide new optimization methods to calculate the best possible
(minimal) i-score given the network and measured expression data. The evaluation of this
optimized i-score on a large data compendium yields many unexplained target genes for
almost every case. This indicates that currently available regulatory networks are still far
from being complete. Both the presented Act-SAT and Act-A* methods produce optimal
sets of TF activity changes, which can be used to investigate the difficult interplay of
expression and network data.
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Publication

The content of this chapter was published in PLOS ONE ([8]). Here, the manuscript is
reformatted and parts of the Supplement are integrated.

Author Contributions

Evi Berchtold analyzed the data, implemented and evaluated the method and wrote the
paper. Evi Berchtold and Gergely Csaba designed the method. Gergely Csaba imple-
mented a prototype of the A* approach. Ralf Zimmer supervised the project and edited
the paper.

Availability

A web server and a command line tool to calculate our i-score and to find the active TFs
associated with the minimal i-score is available from

https://services.bio.ifi.lmu.de/i-score

2.1 Introduction

The goal of many high-throughput experiments is to derive models of regulatory mech-
anisms that explain the observed changes. For gene expression measurements, such as
microarray and RNAseq measurements, the differential activation of transcription factors
(TFs) can be considered a major cause for the observed differential expression of the mea-
sured genes.

While there are established methods to measure the mRNA level there is no exper-
imental high-throughput method that can determine which TFs are active, i.e. actually
regulate their target genes in the current context. Two experimental approaches are used to
infer such activities: ChIP and perturbation (knock-out/-down) experiments. ChIP exper-
iments can, for one TF at a time, determine the binding sites of a TF, whereas knock-out
experiments measure affected genes following an elimination, deactivation, or perturbation
of one or several TFs. For the purpose of deriving TF activity changes these experimental
methods have a number of disadvantages: (i) Binding of a TF to the promoter of a gene
alone is not always enough to regulate the gene, as post-translational modifications may
be needed to activate the bound TF. (ii) Even if the binding of the TF has an effect on
the target gene, it is not clear whether the expression will be up- or downregulated by the
bound TF. (iii) Multiple TFs can regulate a gene and it is often unknown whether and how
they have to interact to affect gene expression. It is also unclear what the overall effect is
if some TFs are activating and others inhibiting. (iv) ChIP experiments are usually not
available for all TFs for the experimental conditions analyzed. (v) They are rarely done
differentially between two conditions to compare whether the binding of a TF changes. (vi)
It is unclear whether the observed changes are a direct consequence of the knocked-out TF

https://services.bio.ifi.lmu.de/i-score
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or of some downstream regulatory cascade or due to of a side effect of the perturbation
itself.

Both types of experiments are context-specific, both with respect to the specific bind-
ings and in particular to the effects on possible target genes. Instead of doing differential
experiments to uncover which TFs bind in the specific setting, experiments in many condi-
tions can be used to compile gene regulatory networks that indicate which targets may be
regulated by which TF in at least one condition. If both knock-out and ChIP experiments
are available it is additionally possible to assign a sign to the regulation, that is whether
the target gene is up- or downregulated by the TF. Again, the regulation and its sign are
likely context-specific.

A goal of many experiments is to uncover regulatory mechanisms that explain the ob-
served differences between the analyzed conditions. Active TFs are the first regulative layer
of gene expression and, as the results of the differential activation (i.e. the transcriptional
gene expression) are measured directly, can be analyzed more easily than other regulatory
mechanisms.

To analyze which TFs are differentially active, computational methods are needed that
predict from gene regulatory networks and (a set of) transcriptional measurements the
actual activity changes of relevant TFs. This task is challenging as the networks are not
complete and, on the other hand, contain many condition-dependent regulations. Further-
more, if a TF is differentially active it does not necessarily regulate all its annotated target
genes. Some genes only change their expression if several TFs are active and interact. The
precise combination of TFs that have to be active to change the target gene’s expression
is rarely known.

Nevertheless, there are several methods which predict the activity changes of TFs or
activities from which the changes can easily be calculated.

Bussemaker [16] introduced a method that models gene expression as an additive combi-
nation of TF activities. A matrix A that contains the gene expression of several conditions
and a matrix F that gives the effect strength for each TF-target combination are employed.
Multivariate linear regression is used to infer the activities of the TFs T via the equation
A = C + FT , where C is a constant matrix. There are several variants of this approach
that differ in the way the TF activities are derived and whether motif occurrence and/or
ChIP data is used for the effect strengths of the TFs in F . We focus here on ISMARA [5]
and plsgenomics [14] as they are available for assessment as a webserver or as R-package,
respectively. The R-package plsgenomics takes ChIP data or binary network information
for F and uses partial least square regression to infer the TF activities. ISMARA takes mo-
tif occurrences for F and is available as a webserver. In addition to solving the undisturbed
model, it also solves an in-silico knock-out model for each TF by removing all regulations
of the TF from F . The difference between the normal and the knock-out model is used to
calculate a z-score that indicates how important the respective TF is for the experiments.

T-profiler [13] performs a t-test between the fold changes of the genes that are targets of
a TF and all other genes. To account for overlaps in the target sets of the TFs, the method
iteratively selects the TF with the best p-value and then subtracts the mean expression of
the genes in the target set from all genes in this target set. An advantage of T-profiler is
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that it only needs a gene regulatory network and one dataset of fold changes as compared
to the many conditions needed for other methods.

DREM [28] uses time series expression data and ChIP data to cluster genes to bifur-
cating paths of expression changes over time. A bifurcating path indicates that the genes
had similar expression values up to this point but diverge systematically afterwards. These
bifurcations are then explained by active TFs.

The assessment of the performance of these methods is generally very difficult as no
gold standard for neither networks nor data nor true activities for TFs are available. To
nevertheless systematically evaluate such methods we propose an evaluation score, called
the inconsistency score (i-score), which indicates, for a given regulatory network, how
well the observed changes of the target genes can be explained by a given prediction
of differentially active TFs. More specifically it measures the weighted number of gene
expression changes, which can not be explained by the set of activity changes of TFs in
question. This i-score is easy to interpret and as it is not optimized directly by any of the
methods the i-score is well suited to compare and assess their predictions. To compute the
i-score only a list of TF activity changes, fold changes and the gene regulatory network
are needed as input. Thus, results of all mentioned methods can easily be evaluated.

In addition, we provide two methods to obtain the set of differentially active TFs that
achieves the best i-score. The first method Act-SAT is based on a max-SAT solver and
computes the globally best set of activity changes. The second method Act-A* is based on
the A* algorithm [50] and computes all optimal solutions which involve only a predefined
small number of differentially active TFs. In any case, these optimized i-scores constitute
the respective theoretical minima given the network and data. These minima can be
compared to the i-scores of the predictions of various methods to assess how far they are
from the optimum. Surprisingly, even if the i-score is optimized directly, it is not possible
to explain all observed changes. Due to errors in the network or noise in the data many
target genes remain unexplained even for the optimal set of activity changes. On the other
hand, our Act-SAT and Act-A* methods yield optimal sets of activity changes of TFs
explaining most of the observed expression changes. A* delivers such sets with only few
differentially active TFs, which are easy to interpret and to use in subsequent analyses and
validations. Moreover, the set of unexplained target genes and inconsistent edges might
constructively hint to interesting hypotheses implied by the actual data (based on the given
regulatory network).

2.2 Material and Methods

2.2.1 Data and networks

For our evaluation we applied the different methods to three datasets and two networks.
Our method can be applied to any organism. In this paper, we focus on yeast as with
YEASTRACT [93] a large regulatory network of good quality is available which can serve
as a kind of common gold standard for all the methods. The YEASTRACT network
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Figure 2.1: Regulatory effects for all combinations of edge signs (columns) and TF activity
changes (rows). E.g. an activating edge (first column) has an activating regulatory effect (+) on
the target gene if the associated TF is more active (A+). If the sign of the edge is not known
(last column) the regulatory effect can be assumed to be activating or inhibiting depending on
which is needed to explain the target gene.

comes close to such a standard for yeast, while in most other organisms the situation can
be expected to be much worse, i.e. more error-prone, more context-dependent and much
more incomplete. In addition to YEASTRACT that contains only experimentally validated
regulations, we also include the more putative and much larger motif-derived network used
by ISMARA. In this network an edge indicates that the binding motif of a TF matches the
promoter of the target. Again, for yeast such a network is more reliable as in other species
due to the available data and the assumed complexity of the regulatory mechanisms.

Furthermore, as baseline for comparison, we constructed our own motif-based network
using the TF binding motifs provided by Jaspar [83]. We created two different networks
by using the MEME suite [4] to search for binding motifs in the region 250 bp and 1000
bp upstream of the TSS for all yeast genes. The network constructed from the 250 bp
upstream of the TSS (called Jaspar 250) contains 40.441 edges and is comparable in size to
YEASTRACT (41.498 edges) and the other network (called Jaspar 1000) contains 146.431
edges and its size is comparable to ISMARA (155.404 edges).

As experimental data we used a time series that analyzed the transition of respira-
tory and respirofermentative cultures to fully fermentative metabolism by monitoring the
changes of yeast cultures grown initially with 1% and 20.9% oxygen, respectively, after
transition to 0% oxygen [81]. We also used other datasets, not discussed in this paper, and
the results are very similar (see Supplement).

Furthermore, to assess the influence of the network systematically we compared the
performance for real and randomized data in a large compendium containing many exper-
iments. For this we employed the compendium by Gasch [37] with differential data for 173
experiments measuring the reaction of yeast to several environmental stresses.

2.2.2 Unexplained target genes

In order to predict the TF activities, the available methods have to make strong assump-
tions. The regression model used by ISMARA and plsgenomics assumes that the measured
expression levels/fold changes are linear combinations of the TF activities. However, it is
known that the effects of TFs do not have to be additive and it is possible that a TF can
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regulate its target gene only if another TF is also active. Thus, if only one of the two
TFs is active the expression of the target gene might not change at all. In this case the
expression predicted by the regression model will be far from the observed expression as
the model is not suitable for this kind of TF-TF interaction, i.e. this particular activation
function. For regression models a natural measure to assess the prediction are residuals
(the fitting errors per gene). But because of these too restraining assumptions of the model
it is not very meaningful to use the residual of the regression fit as a measure of how good
the predicted TF activities explain the observed effects. A high residual could either be
due to such non-additive effects or due to falsely predicted TF activities.

Here, we propose a more realistic model [64], which needs to be much more general.
It is based on Petri nets to model several regulators which could cooperate according to
a general activation function to regulate the target gene. This function can depend on
binding strength, activity changes, protein concentrations, etc. but is abstracted here as
a (maybe complicated) function of the activity changes of the regulating TFs. Such a
model may be realistic but, of course, it is not available and cannot directly be used to
assess the performance of other (simpler or even more complicated) models. Therefore,
rather than formulating a specific model, we introduce the notion of unexplainability in
order to measure whether activity changes (predictions) cannot explain the data for any
reasonable activation function. For an explained gene the actual activation function could
still be such that the predicted activity changes do not explain the observed effect. Thus,
the unexplainability of activity changes of TFs given a regulatory network and data yields
a lower bound of the defects (data not explained) of TF activity change predictions. The
unexplained activity changes are either wrong, or more and other regulators are required.

As we want to analyze differential experiments, we define three activation changes for
the TFs. If a TF is similarly active in both conditions we define it to have unchanged
activity (A0). If it is differentially active, it can either be more active (A+) or less active
(A−). In the following, an active TF always means a differentially active TF.

The regulatory effect is the direction of the expected change of the target gene given
the annotated sign of the edge (+/-) and the activity change of the TF. A TF can have
an activating (+), inhibiting (-) or no (0) regulatory effect on the target gene. Figure 2.1
shows for all combinations of edge signs and TF activity changes the resulting regulatory
effect. If no sign is annotated to the edge, the effect can be either activating or inhibiting,
depending on the actual sign of the edge. But as this sign is unknown, we can optimistically
assume that the sign is such that the regulatory effect explains the target gene if possible.

A target gene is unexplained if for none of its associated TFs the regulatory effect
and the target gene’s change are in the same direction.

1. If the target gene is differential (changed) it is sufficient that at least one of its TFs
is predicted to have the corresponding regulatory effect: as the activation function
is unknown, the changing TFs could cause the change of the target (e.g. for an
activation function that combines the regulatory effects in an OR-like way).

2. An unchanged target gene is explained if there is at least one TF with no regulatory
effect (i.e. one unchanged TF (A0)). The unchanged TF could be the reason that the
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target gene is not changed, as the TF is essential for a change (e.g. for an AND-like
activation).

Theoretically, it is possible that there are complementary TF activity configurations (i.e.
all TFs change their activity) with the same overall effect on the target gene. E.g. if
there are two TFs A and B and the target gene is expressed at the same level if either
one is active and the other inactive, the target gene can also be unchanged between two
conditions if A and B both change but have opposite regulatory effects on the target gene
so that they cancel each other out. Strictly, an unchanged target gene could thus only be
unexplained if all its TF show the same regulatory effect.

However, we assume that this is rarely the case, as the activity change of both TFs
would have to result in the exact same expression change on the target gene so that no
expression difference between the two analyzed conditions is observed. Thus, we want to
minimize these cases and count the target gene as unexplained if none of its associated TFs
are predicted to have unchanged activity (A0) disregarding complementary TF activity
configurations. In addition, we analyzed the effect of these complementary TF activity
configurations and found that many unexplained target genes remain unexplained even
with this alternative definition.

2.2.3 Inconsistency score

If a given prediction of activity changes of TFs is correct one would expect no or only very
few unexplained target genes (UTG). The number of unexplained target genes (#UTG) is
thus a suitable measure to assess predictions of active TFs. As fold changes of unexplained
genes may differ a lot, a weighted inconsistency score might be an even more appropriate
measure for the quality of the activity change predictions.

For target genes with a fold change close to the differential cutoff c one is less certain
whether it is really differential or not, while genes with fold changes far from the cutoff are
more certain. This can be taken into account by using a score that incorporates the log
fold change of the UTG. The inconsistency score (i-score) of a given set of active TFs is
calculated as the differences of the log fold change fct of the target gene t to the cutoff c,
summed for all UTGs. As differential target genes can have a much larger difference to the
cutoff than unchanged genes, the fold changes are trimmed to a maximal log fold change
mfc.

i-score =
∑
t∈UTG

|min(fct,mfc)− c| (2.1)

This is of course only one possible way to score the UTGs. One could as well weight
differential target genes differently or score only a subset of all genes. The latter may
be useful if the user is interested in certain sets of signature genes, pathways and/or GO
categories. For our evaluation in the following we use the i-score (2.1) as it constitutes
a good balance of the overall inconsistency of all network regulations and the individual
differential and unchanged target genes.
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2.2.4 Optimizing the inconsistency score

We applied the i-score to the predictions of different methods for several datasets in order to
compare their performance. Surprisingly, all methods yield a rather large number of UTGs
for most conditions and, thus, a high i-score. In order to assess whether the unexplainability
is due to the incompleteness and context-specificity of the network or due to noise in the
data and not just poor predictions, we calculate the set of active TFs that yields the
minimal i-score. This minimal i-score is the theoretical optimum of the unexplainability
given the network and the data.

In the following two optimizations are introduced: one that optimizes the unexplain-
ability without any further restrictions (Activity SAT or Act-SAT) and one that limits
the number of active TFs (Act-A*). The second variant is probably more realistic, as one
is typically interested in the most important TFs, and a solution in which a large frac-
tion or all TFs are predicted to be active is often meaningless and useless for follow-up
experiments. As we employ the optimal i-score for assessment and as a comparison of
the i-score of the actual prediction, even suboptimal scores are useful as lower bounds.
Note that even though we optimize the i-score, we also report the corresponding #UTG.
Both scores together provide a better interpretation as one can assess how many genes are
unexplained and how far they are from the fold change cutoff on average.

Act-SAT

The optimization of the i-score can be modeled as a weighted max-SAT problem [58] and
then solved by a weighted max-SAT solver, e.g. akmaxsat [63] or an incomplete weighted
max-SAT solver e.g. Dist [17]. While a complete SAT solver guarantees to find the optimal
solution, but might take very long, an incomplete SAT solver aborts the optimization after
a given time and returns the best solution found so far. Given a SAT formula with weights
for each clause, these solvers find the solution with minimal weight for the unfulfilled
clauses and, thus, the minimal i-score. For our optimization the weighted SAT is given in
conjunctive normal form (CNF) as follows. There are three variables for each TFi: one that
indicates that the TF is more active (A+

i ), one for less active (A−i ) and one for a neutral
TF (A0

i ). For each target gene g one clause is added to the formula:

unchanged target:
∨
i∈TF A

0
i

upregulated target:
∨
i∈actA

+
i ∨

∨
i∈inhibA

−
i

downregulated target:
∨
i∈actA

−
i ∨

∨
i∈inhibA

+
i

For unchanged target genes the unchanged activity variable of all its associated TFs
are combined by OR. For up-/downregulated genes it depends on the sign of the edge
which variable is used. For upregulated genes at least one of all TFs with an activating
edge to the gene (act) has to be more active (A+) or at least one TF with an inhibiting
edge (inhib) has to be less active (A−). Edges for which it is not known whether they are
activating or inhibiting are treated as both, so that these TFs are contained in act and
inhib. Note that additional edges (missing in the current network) can only decrease the
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i-score as they imply additional literals in clauses which could satisfy them and thereby
reduce the number of unfulfilled clauses.

The weight of each clause is the score that this gene would yield if it is unexplained.
The max-SAT solver then finds a solution such that the sum of the weights of the unfulfilled
clauses is minimized.

Furthermore, in a valid prediction only one of the three state variables of a TF has to
be set to true. Therefore, for each TF the following four clauses are added as hard clauses
to the SAT formula i.e. they are given a weight that is higher than the sum of all the
(soft) target gene clauses. Thus, a solution for which for all TFs exactly one of the state
variables is true, always scores better than a solution where not exactly one of the three
state variables is true. The first of these clauses guarantees that at least one of the three
states is true, and the other clauses guarantee that it is not possible that two states are
true at the same time.

(A+ ∨ A− ∨ A0) ∧ (¬A+ ∨ ¬A−) ∧ (¬A+ ∨ ¬A0) ∧ (¬A− ∨ ¬A0)

Act-A*

Even though SAT solvers are fast for most problem instances it is possible that it takes
impractically long to obtain the optimum (the problem is NP hard!). Moreover, if further
constraints should be used in the optimization it is usually not straightforward to encode
them in the SAT formula. E.g. as it is unlikely that very many TFs are changing their
activity it is reasonable to limit the maximal number of (differentially) active TFs, but it
is not straightforward to modify the SAT formula to incorporate this constraint.

Therefore, we use a more flexible optimization method based on the A* informed search
algorithm [50]. Act-A* iteratively extends partial solutions until all relevant complete
solutions are created. It can be used to find the best solution with at most N active TFs.
A partial solution contains less then N active TFs. The search starts with the partial
solution with no active TFs, and in each extension step one of the not yet active TFs is
set to the more active (A+) or less active state (A−).

To enable an informed search by Act-A* we have to estimate partial solutions by an
admissible, i.e. optimistic heuristic. In each expansion step the i-score of the partial
solution is estimated by the admissible heuristic, and if it is worse than the best score of a
complete solution already obtained, the partial solution is no longer extended. As the real
score of this partial solution is always worse than the heuristic score, optimal solutions are
never discarded, but many suboptimal solutions will be skipped.

To calculate the optimistic heuristic score for such a partial solution containing x active
TFs, we first calculate the (normal) i-score of this solution. For each of the not yet set
TFs the improvement of this score is calculated, for the two cases where the TF is set to
the more (A+) or less (A−) active state. These score improvements are sorted and the first
N − x of them are subtracted from the original score. This is an optimistic estimate as
the score improvements will decrease with each TF that is set, as target genes are already
explained by the set TF and can no longer be explained by other TFs.
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Figure 2.2: Discrepancy between state-of-the-art methods. For each condition in the selected
datasets the number of TFs that were in the top 10 TFs (left) and all predicted TFs (right) for
four different methods (ISMARA, plsgenomics, DREM, T-profiler) are plotted. Most TFs are
only predicted by one of the methods. There is no TF that was predicted to be active by all
methods if only the top 10 TFs were used and only very few if all predicted TFs are considered.

2.3 Results

2.3.1 Active TF predictions are very different across methods

To assess how divergent the predictions of the different methods are, we analyzed how
many TFs are predicted by various methods. For each condition of the selected datasets
the differential activity of TFs are predicted by all methods and for each TF it is assessed
by how many methods it is predicted. This can also be restricted to the most important
TFs by restricting the prediction to the top (most changing) 10 TFs. The left part of
Figure 2.2 shows how many TFs are predicted to be in the top 10 TFs by 1, 2, 3 or 4
methods. Surprisingly, there was no TF commonly predicted by all 4 methods, only few
that are predicted by 3 methods (red triangles) and most TFs are predicted by only one
method (black circles). If the unrestricted prediction is assessed (right part of Figure 2.2)
the results are similar and only very few TFs are predicted by all 4 methods.

Thus, the resulting activity changes strongly depend on the used method. Different
methods are not even consistent with respect to the most changing TFs. As a consequence,
it is especially important to be able to assess which method performs well for a given
combination of data and network.



2.3 Results 17

#
u
n
e
x
p
la

in
e
d
 t
a
rg

e
t 
g
e
n
e
s

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

ISMARA

DREM

T−profiler

plsgenomics

theo. min (SAT)

#
u
n
e
x
p
la

in
e
d
 t
a
rg

e
t 
g
e
n
e
s

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

ISMARA

DREM

T−profiler

plsgenomics

theo. min (A*)

#
u
n
e
x
p
la

in
e
d
 t
a
rg

e
t 
g
e
n
e
s

1
5

1
0

5
0

1
0
0

5
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

1
5

1
0

5
0

1
0
0

5
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

ISMARA

DREM

T−profiler

plsgenomics

theo. min (SAT)

#
u
n
e
x
p
la

in
e
d
 t
a
rg

e
t 
g
e
n
e
s

0
5
0

1
0
0

1
5
0

2
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

0
5
0

1
0
0

1
5
0

2
0
0

0
.2

h
 (

3
0
0
)

1
h
 (

7
2
2
)

3
h
 (

4
4
4
)

8
h
 (

3
2
9
)

2
4
h
 (

4
6
2
)

7
9
h
 (

5
9
4
)

ISMARA

DREM

T−profiler

plsgenomics

theo. min (A*)

Figure 2.3: The number of unexplained target genes (#UTG) for the respiratory shift from
20.9%-oxygen time series and the YEASTRACT (top) and ISMARA (bottom) network. On the
left all predicted TFs are used and on the right the 10 most important TFs only. The brighter
part of the bars indicates how many of the UTGs have changed significantly in the data. The
darker part of the bars correspond to the UTGs which are unchanged. For each condition the
number of differential genes is given in parentheses.

2.3.2 Performance of methods depends on the particular exper-
iment

To assess the different predictions, we calculated the i-score and #UTG for the predictions
of all methods for the different datasets for both the YEASTRACT and the ISMARA
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networks. For details on how we derived activity changes from the predictions see the
Supplement. The #UTG for the respiratory shift data and the YEASTRACT network are
shown in the upper part of Figure 2.3. For each condition in the dataset the #UTG is
given for the different methods. On the left this is shown for the complete prediction while
the right plot shows the prediction restricted to the top 10 changing TFs. We also provide
the #UTG if the i-score is optimized directly, for the unrestricted case on the left by the
Act-SAT optimization and on the right by the Act-A* method. The brighter part of the
bars indicates how many of the UTGs were differentially expressed.

All methods yielded many UTGs for which the observed effect could not be explained.
According to the #UTG, there is no clear best performing method, as these numbers vary
considerably across conditions. For the first three timepoints DREM and ISMARA appear
to predict too many active TFs with many targets, as most of the unexplained genes were
not significant and there are fewer unexplained significant genes compared to the other
methods. This also explains why the scores improve if only the 10 most changing TFs are
considered. Only for plsgenomics there are considerably more UTGs if only the 10 most
changing TFs are considered. This indicates that plsgenomics predicts many TFs each of
which explains only a small portion of the observed effects. The optimal solutions with
respect to the i-score for an unlimited number of active TFs (calculated by Act-SAT) and
for the 10 most changing TFs (Act-A*) are also comparable so that it appears that 10
active TFs are sufficient to explain the majority of the observed effects for this dataset.

Surprisingly, for the respiratory shift data and the YEASTRACT network there are
about 100 target genes that are unexplained even if the i-score is optimized. As we make
only minimal assumptions and, thus, underestimate the #UTG this is a surprisingly large
number. The optimization inherently assumes that the network is true and complete, but
current gene regulatory networks contain condition specific edges and are incomplete. If a
network contains many incorrect edges solutions yield a good score because these wrong
edges are used to explain the effects. As additional edges can only improve the score,
UTGs have to be caused by noise in the data or missing edges in the network.

Using the more dense ISMARA network for the prediction and calculation of the i-score,
the results for the different methods show a larger variation (see bottom row in Figure 2.3).
Especially DREM does not seem to be well adapted for such a dense network and predicts
too many active TFs. Thus, a huge number of unchanged genes are unexplained as all their
associated TFs are predicted to be active and all changing genes are explained. Again, if
only the top 10 changing TFs are considered DREM performs comparable to the other
methods. T-profiler also yields many UTGs, but in contrast to DREM there are even
more UTGs if only the top 10 changing TFs are considered. Almost all UTGs of T-profiler
were significantly changed in the expression data. Possibly, in the dense ISMARA network
the TFs that really regulate these genes are also associated with many unchanged genes
so that the t-test is insignificant and the TFs are not predicted to be active. In general,
the two regression-based methods ISMARA and plsgenomics clearly perform better than
DREM and T-profiler if the dense ISMARA network is used.

Moreover, we analyzed the number of unexplained target genes using the alternative
definition of unexplained target genes that takes complementary TF configurations into
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Figure 2.4: Comparison of the number of unexplained target genes (#UTG) with the normal
definition of unexplained genes as used in the paper (left) and the alternative definition that also
allows unchanged target genes to be explained if all its TFs are changing (right).

account. According to this definition an unchanged target gene can only be unexplained if
all its TFs have the same regulatory effect. Figure 2.4 shows the #UTG for both definitions
of unexplained target genes. For plsgenomics we optimize the activity threshold above
which a TF is active, so that the set of active TFs is different for the two UTG definitions.
The number of unchanged unexplained target genes decreases especially for ISMARA and
DREM, but there are still many unexplained target genes for all methods.

Overall, when the ISMARA network is used fewer unexplained target genes are ob-
served. However, this does not necessarily mean that the predictions are closer to the
truth. The ISMARA network (155.404 edges) is much denser than the YEASTRACT net-
work (41.498 edges). So, the genes are associated with more TFs and it is more likely that
at least one activity change is predicted which yields a consistent edge.

2.3.3 Assessment of networks

To compare the different networks with respect to the i-score, we compared the optimal
score determined by Act-A* for real and randomized data. For this we shuffled the genes
of the Gasch compendium [37] 100 times and for each such random dataset calculated
the optimal Act-A* solution for all 173 conditions. For each of the conditions z-scores
comparing the i-score of the real data compared to the 100 randomized runs are calculated
for all networks. Furthermore, we calculated z-scores in the same way for random networks
with the same number of edges. To generate the random networks, we kept the TFs and
target genes from the original network and added as many random edges as were in the
original.

Figure 2.5 shows the z-score distributions for the YEASTRACT, ISMARA, Jaspar and
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Figure 2.5: Z-score distributions of the comparison of the i-scores of the Act-A* solution for the
real and randomized Gasch data. A negative z-score indicates that the i-score was smaller/better
for the real data than for the randomized data. These z-scores were calculated for the YEAS-
TRACT, ISMARA and Jaspar network and a random network with the same number of edges for
each of these networks. When the YEASTRACT network is used the i-score is much better for
the real than for the random data, whereas the scores are about the same for the Jaspar network.

the corresponding random networks. A negative z-score indicates that the i-score of the
real data was smaller than for the randomized data. For the ISMARA and YEASTRACT
networks the z-scores for most conditions are negative, while for the Jaspar network and
the randomized networks the distribution of the z-scores is centered at 0. For randomized
networks there are about equally many unexplained target genes for both the real and ran-
domized data. For both YEASTRACT and ISMARA there is a clear distinction between
the z-score distribution for the real and the random network. The network constructed by
the Jaspar binding site motifs performs not better than the corresponding random network.
The i-scores that are calculated using the YEASTRACT network can discriminate better
between real and random data as compared to the ISMARA network.

2.3.4 Variability of solutions

To investigate how much solutions with a good i-score differ from each other, we ana-
lyzed the best 10% of all solutions scored during the Act-A* optimization. Figure 2.6
shows boxplots (top) of the obtained i-scores improvements and the corresponding solu-
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Figure 2.6: Variability of the 10% best Act-A* solutions. The graph (bottom) shows the active
TFs in these solutions. Each path in the graph corresponds to one solution. The position indicates
the A* step in which the respective TF is added to the solution. TFs that were added in another
solution at an earlier position are collapsed into meta nodes. The boxplot above shows the relative
score improvements of the TFs at the given position. Only the 14 shown TFs are used in the
first five positions to explain the majority of the effects.

tions (bottom). Every solution corresponds to a path in the graph. The position of the
active TFs in the path indicates at which step of A* it was added to the solution. If a
TF is included in different solutions at different positions only the first is shown and for
the other solutions a meta node is introduced at the corresponding position. These meta
nodes contain all TFs that were present at an earlier position during the optimization in
other solutions. This way, each TF is only present once in the graph at its first position.
The boxplot above the graph shows the relative improvement of the i-score caused by the
addition of the TFs at this position.

The first 5 TFs in any solution explain most of the effects, while the other TFs only
explain small fractions of the unexplained target genes (each about 2.5% of the i-score).
Moreover, there are relatively few alternative TFs used at the first positions, all solutions
used some combination of 14 different TFs for the first 5 positions. For the larger posi-
tions there are more alternatives that all yield approximately the same (very small) score
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contribution. So, while the most important TFs are relatively robust across well scoring
solutions, the less important TFs are more variable.

2.3.5 Application to human data

The human gene regulatory network is much larger and more complex than the yeast
regulatory network. [44] To demonstrate and evaluate our approach on human data, we
constructed a context-specific network from DNase I hypersensitivity and ChIPseq data for
two ENCODE cell lines [26] and experimentally validated miRNA-target regulations [52].
The resulting network was used to find the active TFs which yield the minimal i-score for
the RNAseq data of the corresponding cell lines. Even though the gene regulation is more
complex in human and the network might be of a poorer quality, only 261 target genes were
inconsistent for 20 active TFs, and many of the active TFs were biologically meaningful
(see Supplement for more information).

2.4 Discussion

The prediction of differentially active TFs is an important task for which several tools are
available whose performance could so far not be compared systematically. We have shown
that the predictions of different methods differ greatly, so that it strongly depends on the
used method which TFs are predicted to be differentially active, especially if only the most
important TFs are analyzed.

We propose an evaluation strategy to assess how many of the measurements are un-
explained for a given set of differentially active TFs. We make minimal assumptions so
that we only define a gene to be unexplained if there cannot be a reasonable activation
function for the associated TFs such that their activities fit to the measurement. The real
activation function, however, is unknown so that it is possible that genes that we assume
to be explained are actually unexplained, as the true activation function applied to the
predicted active TFs does not result in the observed effect. Thus, the real unexplainability
is (grossly) underestimated.

The i-score is easy to use and interpret. The number of unexplained target genes
(#UTG) is straightforward and gives, especially together with the theoretical minimum
calculated by the Act-SAT or Act-A* method, an intuitive measure of how well the pre-
diction fits to the data. To use the i-score only a list of TF activity changes is needed as
input (in addition to the data and network that were used for the prediction).

The comparison of the different methods showed that the results strongly depend on the
condition as well as the used network so that we could not identify a clear best method. Our
analysis did show that not all methods are equally suited for all networks, as some methods
are designed to use high quality experimentally derived networks and other methods for
more dense (often only inferred) networks. The i-score can help to decide which method
is best suited for the given network.
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Surprisingly, in the evaluation using the YEASTRACT network (which is the current
gold standard of yeast gene regulatory networks) many genes were unexplained even for the
directly optimized theoretical minimum calculated by Act-SAT or Act-A*. This means that
for many genes it is not possible to explain the observed effects with the current networks
likely because of missing edges in the network. As we make only minimal assumptions
and, thus, underestimate the i-score, the actual number of unexplained cases will be even
higher.

The Act-A* optimization provides the possibility to include prior knowledge. If some
TFs are known to be active in the analyzed condition, the Act-A* optimization can be
started from the partial solution in which these TFs are set active and then find other
active TFs that fit best to the not yet explained effects.

Furthermore, the i-score can also be used to explore the effect of individual TFs in
a given prediction, by comparing the scores of the solutions where this TF is set to the
more (A+)/less (A−) active state and inactive (A0) state, respectively. This way it can
be determined whether there is an alternative solution with similar score which does not
use the TF in question. Moreover, it allows to add new edges (potential new regulations)
or to remove edges and to compute the difference in the i-score. Thus, new regulatory
hypotheses can be assessed in the context of the current regulatory network and for the
observed data at hand.

2.5 Conclusion

The results of the prediction of differentially active TFs differ greatly between methods
and so far there are no systematic approaches and associated evaluation criteria that can
be used to assess the performance of different methods. In this study we propose the
inconsistency score that evaluates whether given activity changes can explain the measured
expression changes. Furthermore, we propose two optimization approaches to determine
the theoretical minimum of this score given the data and network. Together, the theoretical
optimum and the score for a given prediction are good measures to assess the reliability of
the activity changes of TFs and the theoretical optimum can be used to evaluate different
networks and to evaluate regulatory hypotheses. Thus, the i-score is a useful tool for the
analysis of any large-scale dataset.
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Chapter 3

Comparison of Six Breast Cancer
Classifiers using qPCR

Motivation

Not for all applications a completely independent evaluation measure such as the i-score is
possible. In many applications there is one ’gold standard’ evaluation measure that is
used to evaluate all methods. To nevertheless ensure that the methods do not overfit,
independent test sets are used.

One such application is the evaluation of breast cancer subtype classifiers. Studies
usually use an independent cohort with survival data for evaluation, but they typically do
not compare themselves against other classifiers. As the different classifier do not use the
same independent cohort for validation it is hard to evaluate their performance. There are
some meta-studies available that compare several classifiers on the same cohort, but they
mostly use microarray studies, even though many available classifiers are based on qPCR
measurements.

We used a prospective study of 726 early patients from five certified German breast
centers that were treated according to national guidelines and for which the gene expression
of 94 genes have been measured by the mid-throughput qPCR platform Fluidigm. Clinical
and pathological data as well as information on outcome over five years is available. Using
this data, we compared the performance of six classifiers: scmgene and research versions
of PAM50, ROR-S, recurrence score, EndoPredict and GGI.

Overall, we found a high concordance between most of the classifiers and also a high
prognostic performance. The classifiers that were originally developed for microarray data
still performed well using the Fluidigm data. Therefore, Fluidigm can be used to mea-
sure genes of several classifiers. Moreover, their results can be compared for an improved
prognosis.

In addition, we provide an interactive report of the results, which allows analysis of
differences between the classifiers down to the individual patients and their characteristics.
This not only makes our results more transparent, but also allows an in-depth analysis and
comparison of the classifiers.
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Publication

The content of this chapter was submitted to Bioinformatics ([11]). Here, the introduction
was rewritten to given a more general background of breast cancer and subtype classifica-
tion.
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3.1 Introduction

3.1.1 Cancer

Cancer is a disease where cells divide uncontrolled and spread to the surrounding tissues
and form metastases. It can occur in nearly any tissue and even within a tissue the disease
is diverse with several subtypes. In 2000 Hanahan and Weinberg [48] defined six hallmarks
of cancer, that is abilities that each cancer needs to develop to transform into malignant
cells.

Normal cells only proliferate when mitogenic growth signals are detected by their trans-
membrane receptors. Cancer cells limit their dependence from these external signals by
producing their own growth signals, increasing the growth signal receptors such that a lower
concentration of growth signals suffices to trigger proliferation or alter the downstream sig-
nal cascade. Similarly, cancer cells need to be insensitive to antigrowth signals that block
proliferation and programmed cell death (apoptosis). Again, this can be achieved by down-
regulating or disrupting the receptor, or by altering the downstream signal cascade.

Normal cells can only replicate a limited number of times as the telomeres at the end of
the chromosomes are shortened by each replication. When the telomeres get too short, the
ends of the chromosomes are no longer protected which leads to end-to-end chromosomal
fusions, which results in cell death. The enzyme telomerase is able to add additional
hexanucleotide repeats to the telomeres. Almost all cancer cells upregulate the expression
of telomerase to keep their telomeres long enough.

https://services.bio.ifi.lmu.de/pia/
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As the tumor grows, new blood vessels that supply nutrients and oxygen are needed.
Only when the tumor cells gain the ability to encourage blood vessel growth, the tumor
can keep on growing. Angiogenesis is activated by changing the balance of angiogenesis
inducers and inhibitors, either on the gene expression level or directly on the protein level.

When space and nutrients become scarce tumor cells move to adjacent tissues and
form metastases. For this, cell-to-cell interaction mechanisms are altered and extracellular
proteases are upregulated.

In 2011 Hanahan and Weinberg [49] updated their list of hallmark abilities, by two
emerging hallmarks and two enabling characteristics. Cancer cells seem to change their
energy metabolism. If oxygen is available normal cells process glucose first via glycolysis
to pyruvate and subsequently to carbon dioxide in the mitochondria. Under anaerobic
conditions only little pyruvate is processed in the mitochondria. Cancer cells, however shift
their energy metabolism to a state called aerobic glycolysis, where only little pyruvate is
processed by the mitochondria even though oxygen is available. One possible explanation
of this phenomenon is that glycolysis provides many intermediates that can be used to
build e.g. amino acids and nucleotides which are needed in the proliferating state of cancer
cells.

The other emerging hallmark is that cancer cells have to evade destruction by the
immune system. The two enabling characteristics are tumor-promoting inflammation and
genome instability. Both these characteristics help the tumor cells to acquire the hallmark
abilities. Inflammation can supply bioactive molecules to the tumor including growth
factors or survival factors. Genome instability can change the epigenome as well as increase
the mutation rate, both of which facilitate the acquisition of hallmark abilities.

All these hallmark abilities can be acquired by different mechanisms and in different
order. Some mutations can even result in multiple hallmark abilities.

3.1.2 Breast cancer subtypes

Breast cancer is the most prevalent cancer. Like most cancers, it is not a homogeneous
disease, but consists of multiple subtypes. Hierarchical clustering of breast cancer gene ex-
pression measurements yields five intrinsic subtypes: Luminal A/B, HER2 overexpression,
basal and normal-like[23]. Table 3.1 shows an overview of these subtypes. Interestingly,
the subtypes defined by gene expression correspond to subtypes defined by a few immuno-
histocheminal (IHC) markers, only the Luminal A and normal-like subtypes have the same
IHC marker status.

The different subtypes differ in their prognosis as well as in their treatment choices.
Luminal tumors express the hormone receptors ER and PgR that transfer proliferation
when bound by the corresponding hormone. Among these luminal tumors there are at
least two subtypes (Luminal A and B) that approximately differ in their HER2 status.
Luminal A tumors are HER2 negative and have good prognosis. This subtype is typically
treated with hormone therapy and responds poorly to chemotherapy. Luminal B tumors
overexpress the HER2 growth factor receptor, have a worse prognosis compared to Luminal
A tumors and are treated by a combination of hormone treatment and chemotherapy.
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Intrinsic subtype IHC status Grade Outcome Prevalence

Luminal A [ER+|PgR+]HER2-KI67- 1|2 Good 23.7%
Luminal B [ER+|PgR+]HER2-KI67+ 2|3 Intermediate 38.8%

[ER+|PgR+]HER2+KI67+ Poor 14%
HER2+ [ER-PgR-]HER2+ 2|3 Poor 38.8%
Basal [ER-PgR-]HER2-,basal marker+ 3 Poor 12.3%
Normal-like [ER+|PgR+]HER2-KI67- 1|2|3 Intermediate 7.8%

Table 3.1: Intrinsic breast cancer subtypes, with IHC marker status, grade, outcome and preva-
lence. All subtypes differ in their IHC status, except Luminal A and Normal-like. Data taken
from Dai et al.[23]

HER2 overexpressing tumors are negative for the ER and PgR and overexpress the
HER2 growth factor receptor. The prognosis for this subtype is poor and it is typically
treated by a HER2 antibody (trastuzumab) and chemotherapy. Basal tumors are triple
negative (ER-,PgR-,HER2-) and their expression profile is similar to basal epithelial cells.
The prognosis is poor and there is no target therapy for basal tumors so that chemotherapy
is the only option.

3.1.3 Subtype classifiers and risk scores

As the correct classification of the tumor subtype is important for the choice of treatment,
many different methods were developed to predict the subtype. In principle, there are two
different approaches: classifiers that predict the subtype for a given tumor, and risk scores
that predict the risk of recurrence (often for a given IHC subtype).

PAM50 [77] is a subtype classifier that uses the expression of 50 genes to predict the
intrinsic subtype of a tumor. To derive this classifier they used a list of 1906 intrinsic
genes to cluster 189 breast cancers. This clustering yielded 5 clusters that corresponded
to the intrinsic subtypes and overall covered 122 of the 189 breast cancer samples. The
list of intrinsic genes was filtered for qRT-PCR quality and sorted by their t-test statistic
between the clusters. The top 50 genes were selected for the classifier. To predict the
subtype of a new sample, the Prediction Analysis of Microarray (PAM) method [94] was
used. Furthermore, two risk scores that use the subtypes were derived using a multivariable
Cox regression considering only the correlation to the subtypes (ROR-S) or also including
the tumor size (ROR-C).

The scmgene [46] subtype classifier is not derived from hierarchical clustering, but
uses a combination of three Gaussian distributions. The three Gaussian distributions
correspond to an ER, an HER2 and a proliferation module. The modules can consist of
several genes that are related to the process, but in case of scmgene they consist of single
genes: ER, HER2 and AURKA for the proliferation module. Three clusters along the
ER and HER2 modules are identified and represented by a Gaussian distribution. A new
patient is assigned to the subtype of the Gaussian with the highest posterior probability.
If the patient is assigned to the ER+/HER2- subtype, the proliferation module is used to
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risk score #genes #patients train #patients test subtype

GGI 8 77 139; 270 ER+
EndoPredict 11 964 378; 1324 ER+,HER2-
recurrence score 21 447 668 ER+
ROR-S 50 189 761 -

Table 3.2: Overview of risk scores. For each risk score the number of genes used to calculate the
risk score, the number of patients in the trainings and test sets, and the IHC subtype for which
it is used is given.

decide whether the patient is ER+/HER2- High Prolif. or ER+/HER2- Low Prolif. They
compared the performance of scmgene to other classifiers and risk scores and found that
it was more robust across different patient cohorts.

Table 3.1 gives an overview over some risk scores. Risk scores are typically trained for
a given IHC subtype, e.g. ER positive patients. They use comparatively few genes that
can easily be measured by qPCR. To calculate the risk score, in most cases a weighted
sum of the expression values is calculated and a predefined threshold indicates whether the
patient is at high or low risk of recurrence.

Several of these signatures have been developed to commercial assays and are now
also used in clinical practice. In the last years, there were two large prospective random-
ized trials that analysed the survival of patients who received treatment according to the
classification of Mammaprint (70 genes, [19]) and the recurrence score (21 genes, [89]).

In 2011, Venet et al. [96] reported that gene sets that are completely unrelated to breast
cancer or even random gene sets can yield significant p-values for the prediction of risk of
recurrence for breast cancer patients. Given this observation it seems hazardous to simply
report a significant p-value on some cohort when presenting a new classifier, as is routinely
done. Instead, the new classifier should be compared to existing classifiers to show that it
has some advantage, e.g. improved performance, robustness or applicability. Furthermore,
the already published classifiers need to be evaluated systematically on independent test
sets that were not used in the development of any classifiers. In the last years, a few
such studies have been published [30, 47, 78, 71], but as a comparison of several classifiers
requires a large number of measured genes, all these studies used microarray measurements,
even though many of the available classifiers have been developed for qPCR measurements
of the gene expression.

3.1.4 Fluidigm Dynamic Array IFC

The Fluidigm Dynamic Array IFC qPCR platform [90] can help to decrease the cost of mea-
suring the gene expression of many genes, as needed for breast cancer classifiers. For most
classifiers the gene expression of several genes is measured by qPCR. Traditional qPCR
platforms require that each combination of patient sample and primers of the genes are
pipetted together individually to be measured. This results in patients*genes*2 pipetting
steps. The Fluidigm IFC platform has a system of fluid lines and valves that automati-



30 3. Comparison of Six Breast Cancer Classifiers using qPCR

cally distribute the RNA samples and primers to the individual reaction chambers without
mixing them. So only patients+genes pipetting steps are needed to measure hundreds of
genes for hundreds of patients.

3.1.5 Prognosis in everyday routine (PiA) study

We have used the Fluidigm IFC platform to measure the expression of 94 genes for a large
cohort of 726 patients. We selected the 94 genes such that they cover six different breast
cancer signatures: PAM50 and the corresponding risk score ROR-S [77], scmgene [46],
EndoPredict [34], Genomic Grade Index (GGI) [33] and the recurrence score [76]. For all
classifiers the research versions were used. Thus, we can compare the prognostic power
of these signatures on an independent routine cohort on which none of the signatures was
trained and provide a first study that compares the performance of breast cancer signatures
on qPCR data obtained in a standardized manner.

3.2 Methods

3.2.1 PiA cohort

Within the multicenter prospective PiA trial (NCT 01592825) tumor tissue samples of
consecutively diagnosed breast cancer patients from five German certified breast centers
were collected at Martin-Luther University, Halle-Wittenberg between 2009 and 2011. Fe-
male patients with operable, non-metastasized breast cancer independent of lymph node
status were included. The study was approved by the ethics committee of the Martin-
Luther University Halle-Wittenberg and each patient gave informed consent. A total of
726 fresh frozen samples of primary tumor tissue were investigated using Fluidigm IFC
platform [90]. Tumor specimens were fresh frozen after surgery and stored at -80 ◦C until
further use. Tumor content was verified histologically. Clinical and pathological parame-
ters were obtained for each patient and documented using SPSS 24 (SPSS Inc., Chicago,
Illinois, USA). TNM staging system was used [87]. Information on therapy applied was not
available. Patient information was anonymized prior to analysis. Receptor defined breast
cancer subtypes were determined according to the St. Gallen classification [43]. Due to
missing Ki-67 values, we used histopathological grading to assess cell proliferation [99].
The following system was applied to define histopathological subtypes:

• Luminal A-like: Estrogen receptor (ER) positive, Progesterone receptor (PgR) posi-
tive, HER2 negative, grade 1 or 2.

• Luminal B-like (HER2 negative): ER positive, PgR negative, HER2 negative or grade
3.

• Luminal B-like (HER2 positive): ER positive, HER2 positive, any grades.
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• HER2 positive (non-luminal-like): ER negative, PgR negative, HER2 positive, any
grade.

• Triple negative breast cancer (TNBC, Basal-like): ER negative, PgR negative, HER2
negative, any grade.

Expression of 94 genes was measured using the Fluidigm qPCR platform. This amounts
to 726 x 94 = 68.244 qPCR reactions. To ensure that the measurements of the Fluidigm
platform are of good quality and comparable across chips, for all samples five genes were
also measured on the CFX384 qPCR platform, so that the results could be compared. This
platform uses 384 well plates, so that qPCR measurements for one gene can be done in
parallel for 384 samples.

An overview of the clinical characteristics of the patients and tumors are shown in
Table 3.3. Most of the patients (610 of 726) are ER positive and only a small subset (104)
is HER2 positive. The majority of the tumors had histological grade 2 and lymph nodes
were not affected.

The standardized definitions for efficacy end points (STEEP) criteria were used as
endpoint definitions [54]. The primary endpoint of this study was overall survival (OS).
Person time equaled the time from the date of diagnosis to the date of event or to the date
of last contact. Women without event were right-censored at the last visit to the clinic.

3.2.2 Normalisation

On one Fluidigm IFC chip 96 genes can be measured by qPCR for 96 samples. Thus, the
726 patients have been measured on several chips that need to be normalized to make them
comparable. There are three sources of bias when several Fluidigm chips are measured:
the amount of cDNA can differ between samples (within a chip and between chips), there
can be variation between the chips, e.g. due to different efficiency of the PCR reactions
and there can be differences in the pre-amplification of the cDNA that is necessary for the
Fluidigm platform. To correct for variation between chips, so called inter plate calibrator
(IPC) samples, are measured on each chip. The difference between cDNA amounts of
individual samples can be diminished, by using the expression of genes that are expected
to be constant between samples, e.g. housekeeping genes. Most classifiers already include
housekeeping genes for normalization purposes so that no additional genes have to be
measured. The cDNA has to be pre-amplified before it is loaded on the Fluidigm IFC chip.
Amplification for all 96 primers at once can generate problems, so that we splitted the set
of primers in two subsets that are amplified individually. For this we tried several different
batches and used the division that yielded most successful amplifications. However, there
can be differences between the efficiencies of the pre-amplification reactions. This can be
corrected as one can assume that the median of all measurements of each chip and pre-
amplification mix is the same. For more information on the individual normalization steps
see the Supplement.
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all Luminal

A-like

Luminal

B-like

(HER2

negative)

Luminal

B-like

(HER2

positive)

HER2

positive

(non-

luminal-like)

Triple negative

breast cancer

(TNBC,

Basal-like)

not
classified

#patients 726 378 163 69 34 74 8
grade
1 76 67 4 3 0 0 2
2 447 311 59 40 12 22 3
3 203 0 100 26 22 52 3
size
<1 42 22 9 2 4 5 0
1-2 302 176 69 24 13 16 4
2-5 341 161 77 37 16 46 4
>5 41 19 8 6 1 7 0
nodal status
0 450 239 102 41 21 42 5
1 201 108 48 16 8 20 1
2 47 22 5 7 4 7 2
3 28 9 8 5 1 5 0
age
avrg 62.62 62.46 64.89 59.19 61.32 63.11 54.25
min 22 22 29 28 31 25 30
max 90 89 90 86 81 88 75
survival
alive 630 348 136 58 28 53 7
deceased 96 30 27 11 6 21 1

Table 3.3: Clinical characteristics of the PiA cohort, grouped by histopathological subtype. Pa-
tients that do not fall in any category described in 3.2.1 are shown in the last column.

3.2.3 Classification

The genefu R package [40, 80] was used to calculate the PAM50, scmgene, ROR-S and
recurrence score. The PAM50 classifier can be applied in two ways: the published centroids
can be used directly for the prediction, or the centroids are first trained on the given
dataset and then used to predict the subtypes. As a high C(t) value indicates low gene
expression whereas a high microarray intensity indicates high gene expression, the C(t)
values were not used directly for these microarray based methods, instead the difference
to the maximal PCR cycle C(t)max was used. For GGI and EndoPredict the formulas
from the corresponding papers were re-implemented and the published cutoffs were used
for EndoPredict. For GGI no published cutoff is available, so that we used the median to
divide the cohort in two equally sized groups. All classifiers are applied to the complete
cohort.
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3.2.4 Performance and Concordance of Predictions

To assess the performance of the predictions, we generated Kaplan-Meier plots and calcu-
lated the concordance index (c-index) for each classifier. The c-index corresponds to the
probability that for a pair of randomly chosen samples, the sample with the higher risk
score experiences an event before the other sample.

As we are able to calculate several classifiers for the same cohort, we compared their
predictions by calculating Cramer’s V. This statistical measure quantifies the correlation
between two predictions. It ranges between 0 and 1, with values above 0.5 indicating a
strong association. We compared subtype classifiers (PAM50 and scmgene) and risk scores
separately, to account for the different number of predicted groups.

Moreover, we used multivariate Cox regression to create a combined predictor that uses
the risk scores of the different classifiers as input. For this, only risk scores that return a
numeric risk score were used (excluding PAM50 and scmgene) and their scores were scaled,
so that scores yielding a low risk prediction (i.e. having a score below the corresponding
cutoff) are mapped to 0-0.5 and high risk scores to 0.5-1. Most risk scores are not able
to return a score if one of the measurements is missing due to technical errors during the
measurement. In this case, the combined risk score is also not able to return a score. As
this is more probable when more genes are used, the combined risk score cannot return
a score for many patients. To nevertheless return a score for these patients, we trained
multiple models, excluding each risk score in turn. For the final prediction we used the
model that uses all risk scores, and only used one of the restricted models if the complete
model does not return a risk score. To evaluate the performance of this combined risk
score, a five-fold cross validation was used to prevent overfitting.

3.2.5 Robustness of Classifications

Like all measurements, also gene expression measurements are subject to noise. As most
subtype classifiers use a combination of many genes, the impact of noisy measurements
is reduced, as no single gene influences the prediction too strongly. To assess the impact
of noise on the prediction, we simulated noisy measurements and checked how often the
prediction changed due to small changes in the gene expression data. For this we repeatedly
sampled for each measurement a noise term from a normal distribution centered around
zero and added it to the measurement. Then we checked for each classifier, whether
the same subtype or risk group (high or low) was predicted for the real and modified
measurement. Robust classifiers should be able to make the same prediction for the real
and modified measurements with simulated noise in most cases.

A similar approach allows us to estimate the probability that a single noisy measurement
results in a false prediction for a given patient. For this we calculate for each gene contained
in the classifier the minimal difference of the gene expression value that would result in
a different prediction. For classifiers with simple formulas this can be calculated directly,
while it can be sampled by calculating the score with a growing noise term for more
complex classifiers. Given a background noise distribution (e.g. a normal distribution
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with mean zero) the probability of observing at least as much noise can be calculated.
These probability values can help to identify gene expression measurements for which
already small (i.e. highly probable) deviations have an effect on the prediction. For these
measurements replicate measurements can then be considered to reduce the impact of
random noise and improve the quality of the prediction.

3.2.6 Interactive Report

In addition to the results presented in this paper, we provide a website that contains an
interactive report of the results (https://services.bio.ifi.lmu.de/pia). The overview page
contains all the main results: the clinical and pathological characteristics table, perfor-
mance table, coherence plot and Cramer’s V table and additionally an overview of all fea-
tures for all patients. In the clinical characteristics table for large enough patient groups
with similar characteristics the performance results for this subcohort can be analyzed.
Moreover, for each entry in the performance table the corresponding Kaplan-Meier plot
can be shown in a popup window, to evaluate the performance in more detail. The survival
endpoint used in the Kaplan-Meier plot can be selected to directly compare the influence
of the different survival endpoints. Furthermore, a page comparing two classifiers is linked
to the corresponding entry of the Cramer’s V table. This comparison page shows both
Kaplan-Meier plots side by side, so that they can be compared directly. Furthermore,
a contingency table shows how many patients are classified with a given combination of
classifications of the two selected classifiers. This table is again linked to a list of the
corresponding patients, with all available clinical features, classifications and survival in-
formation. This way, one can analyze the patients that were classified discordantly in full
detail. The patient overview table is linked to a details view for each individual patient.
This view not only shows the available features of this patient, but also for each classifier
an overview of the corresponding gene expression measurements and how they relate to
the distribution of the gene expression measurements of the whole cohort, or the subsets
that experienced an event or not. Furthermore, the minimal difference in gene expression
to change the prediction and the corresponding probability to experience this difference
due to random noise is shown for each gene contained in the classifier. Such a detailed
view on individual patients can greatly help to understand individual predictions and the
influence of the contained genes.

3.3 Results

3.3.1 Comparability of Fluidigm Chips

With appropriate normalization the different Fluidigm chips should be comparable. To test
this, the CFX and Fluidigm measurements were compared for the five genes that were also
measured on the CFX platform. Figure 3.1 shows the comparison of the C(t) values of the
two platforms for the reference gene RPLP0. The different Fluidigm chips are highlighted

https://services.bio.ifi.lmu.de/pia/
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Figure 3.1: Comparison of C(t) values for the RPLP0 gene for 726 samples measured on 10
Fluidigm chips and the CFX platform. On the left the C(t) values are scattered against each
other. The overall correlation as well as the correlations for each Fluidigm chip are given in
the title and legend of the plot. There is a shift in the absolute C(t) values due to different
cDNA concentrations and the pre-amplification, but there is a clear correlation between the two
measurements and no apparent bias between the Fluidigm chips. The plot on the right shows
the deviations between the Fluidigm and CFX measurements for each Fluidigm chip separately.

by different colors and there is only some bias for chips 1 and 2. For the first three chips the
sample amounts differed slightly as they were not done in one batch with the other chips.
This variation is normally corrected for by the housekeeping normalization that was not
applied for this comparison due to the small number of genes on the CFX platform. The
concordance between the two measurements is quite good with only few outliers. The C(t)
values are shifted between the two qPCR platforms as they are using different amounts of
cDNA and the cDNA is pre-amplified for the Fluidigm platform. But in general, the two
platforms agree very well, so that the Fluidigm platform seems to be suitable for its use in
gene expression profiling also of large cohorts using multiple chips.

3.3.2 Survival Analysis

For the PiA study five year survival data is available for which we analysed the overall
survival (OS), invasive disease-free survival (IDFS), distant disease-free survival (DDFS)
and recurrence-free intervall (RFI), all defined according to STEEP criteria [54]. In this
paper we focus on overall survival, the results for the other endpoints can be found in
the interactive report. The survival data was used to calculate different measures for the
performance of the risk scores: hazard ratios, logrank p-values and the concordance index
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OS
risk score logrank p HR c-index # event # no event

recurrence score 8.29e-5 4.49 0.70 (0.49-0.85) 19/8 74/151
EndoPredict 4.089e-6 3.77 0.69 (0.57-0.78) 79/12 365/230

EPclin 1.12e-6 3.42 0.72 (0.61-0.81) 74/17 320/275
GGI 9.19e-6 2.61 0.64 (0.52-0.73) 68/28 295/335

ROR-S 3.03e-6 3.43 0.68 (0.57-0.77) 88/8 430/200
combination 1.09e-7 4.07 0.72 (0.61-0.81) 82/9 367/230

PAM50 1.678e-5 3.82 - 72/24 331/299
scmgene 0.001 1.48 - 53/12 313/183

RFI
risk score logrank p HR c-index # event # no event

recurrence score 6.512e-3 4.36 0.70 (0.42-0.89) 10/4 83/155
EndoPredict 3.229e-7 11.06 0.78 (0.64-0.87) 58/3 386/239

EPclin 7.159e-8 7.23 0.80 (0.67-0.89) 55/6 339/286
GGI 2.871e-7 4.29 0.70 (0.57-0.81) 53/13 310/350

ROR-S 8.360e-6 7.15 0.75 (0.62-0.85) 62/4 456/204
combination 5.602e-8 5.67 0.79 (0.66-0.88) 57/4 392/235

PAM50 3.054e-12 11.25 - 59/7 344/316
scmgene 1.086e-2 1.80 - 31/7 335/188

Table 3.4: Logrank p-values, hazard ratios (HR) and concordance index (c-index) for the different
risk scores. Additionally, the number of patients with high/low risk score with and without an
event is given. On the top the results for the overall survival (OS) endpoint and on the bottom
for the recurrence free interval (RFI) are shown. For the concordance index, the lower and upper
bound of the 95%-confidence interval is given in brackets. For all risk scores the low and high
risk patients differ significantly in their survival, but overall, EPclin performed best.

(c-index).

Table 3.4 shows these measures for all risk scores. The corresponding Kaplan-Meier
plots are available in the Supplement and the interactive report. All risk scores yield
significant p-values, hazard ratios well above 1 and a c-index above 0.5. Values above 0.7
are often considered to indicate good prognostic ability for the c-index. For the endpoint
overall survival (OS), only EPclin yields a c-index above 0.7 whereas the recurrence score,
EndoPredict and ROR-S have scores slightly below 0.7. For the recurrence-free interval
(RFI) however, all risk scores yield c-index scores above 0.7. Interestingly, PAM50 yields a
very high hazard ratio and low p-value for the RFI end point. For most endpoints, EPclin
performs best: it yields both the lowest p-value and the highest c-index. For the overall
survival endpoint, of the 292 patients in the low risk group of EPclin, only 17 had an event,
while 74 of the 394 patients from the high risk group had an event after five years. For GGI
on the other hand, 28 of 363 low risk patients and 68 of 363 high risk patients experienced
an event. The combined risk score, derived from the multivariate Cox regression performs
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even slightly better than EPclin, with a lower p-value, higher hazard ratio and comparable
c-index. However, the effect is moderate, given the increased number of measurements
needed.

When only the 370 patients with intermediate risk according to histopathological fea-
tures (ER+/HER2- patients with grade 2) are considered, ROR-S and GGI perform slightly
better than the other risk scores (see Supplement). In this sub-cohort the p-values are gen-
erally higher for all risk scores as these patients cannot be classified into low and high risk
as easily as the other patients.

For the two subtype classifiers PAM50 and scmgene, the values for the luminal A (low-
risk) subtypes are shown. While for PAM50 the luminal A patients have significantly
better prognosis, for scmgene the logrank p-value is only 0.001 and also its hazard ratio of
1.48 is by far the lowest of all classifiers.

3.3.3 Concordance of Classifications

Figure 3.2: Overview of classification results and clinical variables for all patients. The first four
rows correspond to subtype classifications, the next 7 rows are clinical characteristics, and the
remaining rows are risk scores. A continuous scale between green and purple is used for numeric
values such as the risk scores or age and grading and different colors for the categorical attributes.
The different subtype classifications are mapped to each other by using prior knowledge (e.g.
slightly different names for the luminal A subtype by PAM50, scmgene or the histopathological
classification) or by maximizing the overlap to the histopathological classification (for the newly
trained PAM50).

Figure 3.2 shows the predictions of all classifiers, as well as some clinical characteristics
for all patients. Each row corresponds to one classifier/characteristic and each column
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corresponds to one patient. The patients are ordered in the same way in all rows (according
to PAM50), so that the predictions/characteristics can be compared for each patient. Both
variants of PAM50 (using the published model (PAM50) or training a new model (PAM50
new)) yielded similar results. The main difference is that the newly trained model only
returns 4 subtypes, so that the normal-like subtype is missing. The predicted subtypes are
in many cases the same as the histopathological subtype, only for HER2 overexpressing
and luminal B patients, the two classifications differ. The predictions of scmgene that only
uses three genes to predict the subtype differ in many cases from the prediction of PAM50.
Especially the normal-like patients are predicted to be basal according to scmgene, while
the newly trained PAM50 classifies them as luminal A. These patients are assigned a low
risk score by all other methods and they are ER positive and HER2 negative according to
the immunohistological measurements. Also, only 2 of the 19 patients had an event within
five years, so these are likely false predictions of scmgene.

All the risk scores predict predominantly low risk scores for the patients that had
luminal A or normal-like subtypes, and high risk scores for the basal and HER2 subtypes
according to PAM50. Their predictions differ most for the luminal B patients. Here, GGI
and EPclin predict high scores for most patients, while EndoPredict and the recurrence
score yield mostly low scores. The recurrence score did not return a risk score for many
patients, as it uses 21 genes, and cannot return a result if a measurement for any of these
genes is missing.

recurr. score EP EPclin GGI ROR-S
recurr. score 0.991 0.602 0.563 0.718 0.577
EP 0.997 0.626 0.536 0.506
EPclin 0.997 0.524 0.473
GGI 0.997 0.614
ROR-S 0.997

PAM50 PAM50 new scmgene histopath.
PAM50 1.000 0.837 0.484 0.478
PAM50 new 1.000 0.486 0.578
scmgene 1.000 0.419
histopath. 1.000

Table 3.5: Cramer’s V for risk scores (top) and classifiers (bottom). Most risk scores and classifiers
correspond well to each other. The highlighted values are discussed in the text.

Table 3.5 shows the Cramer’s V statistic for the risk scores and subtype classifiers.
All risk scores correspond quite well to each other, with Cramer’s V values above 0.5,
which indicates strong association. Only the comparison of ROR-S and EPclin yielded a
Cramer’s V slightly below 0.5. The recurrence score and GGI are most similar according
to the Cramer’s V statistic, yielding a value of 0.718. The concordance of the subtype
classifiers was inferior to the risk scores. Only the published and newly trained PAM50
classifiers corresponded well to each other, while scmgene only yielded Cramer’s V statistics
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of 0.484 and 0.486. We also compared the subtype classifier’s predictions to the clinical
histopathological subtypes. The newly trained PAM50 had the highest correspondence
with these clinical subtypes, yielding a Cramer’s V value of 0.58, while scmgene again
yielded the least correspondence with a Cramer’s V of 0.419.

3.3.4 Robustness to Noise

Figure 3.3: Number of patients with a given number of misclassifications for each classifier when
noise sampled from N (0, 0.7) (left) and N (0, 0.3) (right) is added to the measurements.

To analyze the robustness of the classifiers to experimental noise, we simulated 100
datasets where we added a small noise term to each measurement, and compared the
resulting prediction to the predictions without noise. The left plot in Figure 3.3 shows
for each classifier how many patients were misclassified how often in the 100 runs, using a
normal distribution with mean 0 and sd 0.7 (N (0, 0.7)) as noise distribution. The ROR-
S score performed best, with 506 patients without any misclassification. Interestingly,
PAM50 with a newly trained model seems to overfit and yields for many patients different
predictions when noise is added. Only 219 patients were never or only once misclassified.
Similarly, scmgene is very sensitive to noise and yields different predictions for nearly all
patients: only 44 patients were never or only once misclassified. The robustness to noise
does not seem to depend on the number of genes used by the classifier, as e.g. the recurrence
score that uses 21 genes, performs worse than EndoPredict that uses only 7 genes. It might
rather depend on the way the gene expression measurements are used or which genes are
selected by the classifier.

We repeated this simulation using a smaller noise term sampled from a N (0, 0.3). The
newly trained PAM50 and scmgene still yielded many misclassifications for most patients.
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Figure 3.4: Screenshots of the iReport. On the left the concordance plot sorted by grade and
GGI (top two rows) is shown. The sorting can be modified interactively so that the plot can be
used to compare different features. On the right the comparison of EPclin and PAM50 with both
Kaplan-Meier plots and the contingency table is shown. The cutoff used to separate high and
low risk patients of EPclin can be adapted and the contingency table is linked to a table showing
all available features for the patients in a specific cell.

The other risk scores, however, became comparable to ROR-S, except that they still yielded
more patients that were misclassified in more than half of the noisy datasets.

Moreover, we calculated for each patient and classifier, how much each individual gene
would have to differ to change the prediction. The probability of observing noise at least
that high can be calculated if a given noise distribution (e.g. N (0, 0.7)) is assumed. These
probabilities range from 0 (for measurements that would have to be changed a lot to alter
the prediction) to ∼0.6 for our cohort and are available in the interactive report. This way,
measurements that are very susceptible to noise can be identified and if possible replicate
measurements can reduce the impact of noise for these measurements.

3.3.5 Interactive Report

Figure 3.4 shows two screenshots of the iReport. The screenshot on the left is part of the
overall view that shows a summary of the main results discussed in the paper. It shows
an interactive version of the concordance plot of Figure 3.2. The user can select which
features are included in the plot and by which classifiers the patients should be ordered.
This allows to compare several features at once. In Figure 3.4 the patients are ordered first
by the tumor grade and then after the GGI risk score that was developed to determine
the grade by gene expression. The corresponding two rows are shown at the top of the
plot. As can be seen there is some concordance between the two features, with patients
with low grade (purple block on the left in grade row) have predominantly low GGI scores,
and patients with high grade (green block on the left) have higher GGI scores. However,
the majority of patients have intermediate grade and these patients show a distribution of
both, high and low, GGI scores.
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The screenshot on the right of Figure 3.4 shows the comparison view for PAM50 and
EPclin. It contains the two Kaplan-Meier plots side by side and a contingency table
below. The cutoff of EPclin that is used to divide the patients into low and high risk can
be modified and the corresponding Kaplan-Meier plot will be updated accordingly. The
contingency table shows how many patients are classified by the different combinations of
subgroups of the two classifiers. The numbers in this table are linked to the corresponding
list of patients, so that by clicking on them a table containing all available features of the
patients is shown. This way subsets of patients can be analyzed in more detail. E.g. by
clicking on the corresponding entry in the contingency table, all information for the 82
patients that were classified as luminal A by PAM50 and high risk by EPclin is shown.
This allows the user to look at the survival status of these patients and see that only 11
of these 82 patients are still alive after five years which justifies the high risk prediction of
EPclin.

3.4 Discussion

The Fluidigm IFC platform allows to measure the expression of many genes for many
patients at rather low cost and with little effort. In this paper we showed that it can
be used to measure the gene expression of the genes required for several breast cancer
signatures in a large cohort, which enabled us to systematically compare and evaluate
these classifiers. For a smaller set of five genes we measured the expression also on a
different qPCR platform and the results showed a good agreement between the different
platforms after normalization.

The comparison of the classifiers showed that they all performed well on our indepen-
dent cohort. This shows that the classifiers do not overfit for the cohort on which they were
trained but that they are applicable also using a different methodology (Fluidigm) and this
new cohort. They provide good estimates of the risk of recurrence of the individual pa-
tients. Also their predictions were highly concordant, which also explains why a combined
risk score that integrates several classifiers yielded only a slightly better performance.

Moreover, we analyzed the robustness of these classifiers with respect to noise by sim-
ulating noise measurements by adding a random noise term. The results showed that
especially the classifiers that are newly trained on each cohort, like scmgene or a newly
trained model using the PAM50 algorithm, are very sensitive to noise. This also indicates
that the cohort that is used to train a new classifier must be of very good quality as noisy
measurements can greatly impair the quality of the classifier. Furthermore, also between
the classifiers with a fixed model there were large differences in their robustness to noise, as
e.g. GGI yielded the same prediction for all 100 noisy measurements only in half as many
patients as ROR-S. Furthermore, this kind of noise analysis can also be used to attribute
each measurement with a probability that noise changes the prediction for a given patient.
This can be used to identify measurements for additional replicates to reduce the impact
of noise.

It has to be noted that our unselected cohort was comprised of patients with relative
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good clinical prognostic factors. Those HER2 positive or receptor negative cases which
received neoadjuvant chemotherapy were not included since fresh frozen material has not
been available. The classifiers perform differently on cohorts with higher proportions of
these patients. In this work we demonstrated feasibility to analyze a large number of
genes by PCR and use the publicly available research versions of the classifiers on that
same cohort. Second, because we used the research versions of the classifiers and not
the commercial versions the results may differ slightly. Third, we were unable to include
information on therapy which undoubtedly had an effect on outcome.

All the results of this paper are also available as interactive report (iReport) on the
accompanying website in order to make all results reproducible and transparent. This
website allows to analyze the results and especially the differences between the classifiers
in much more detail as is possible in a paper. The online tool allows selection of cases,
strata, classifiers, endpoints and visualization of results. Cross-sectional comparison of
clinical and histopathological data and classifiers assigned to each patient can be seen.
Longitudinal data is shown as Kaplan-Meier curves as by defined groups. Thus on the
one hand, the iReport provides an easy to use interface to results that cannot be shown
in a paper due to page limitations, as e.g. the Kaplan-Meier plots for all classifiers for all
survival endpoints. On the other hand, it also includes much more detail for individual
results by linking the raw data to the summarized result, as is e.g. done by showing
the patient lists with all available data for the contingency table of the classifications of
two classifiers. This is also important for individualized medicine, where a comprehensive
visualization of the individual measurements that are considered for the therapy decision is
crucial. We believe that this detailed data can help to generate new hypotheses, e.g. about
the patients that are discordantly classified and can thus help the further development of
new classifiers.



Chapter 4

RelExplain - Integrating Data and
Networks to Explain Biological
Processes

Motivation

The following three chapters describe methods to create models that help to understand
biological systems. These models can have various forms and explain the biological system
on different context-levels. In this chapter we focus on subnetworks that show the relations
between genes that are changed in the measurement. This is a model that is very easy to
understand when the subnetwork is not too large.

A typical analysis workflow of high-throughput experiments is to determine the differ-
ential genes/proteins and to characterize them by doing an enrichment analysis. These
methods use functional annotation to determine which processes contain more changing
genes than expected by chance. However, they do not provide information about how the
genes within the biological process interact and whether additional genes may be involved.
This is the result of significant area search methods, but as they do not incorporate func-
tional annotation the subnetworks that they return are unspecific and do not necessarily
correspond to a biological process of interest.

RelExplain bridges the gap between these two approaches. It combines experimental
data, networks and process information to return an explanation: the optimal subnetwork
that connects the differential genes in a given biological process. To calculate this explana-
tion it takes the consistency between the type of the edge and the changes of its adjacent
nodes as well as the functional annotation of the nodes into account. The resulting expla-
nations are compact networks of the relevant part of the process and additional nodes that
might be important for the process and can easily be interpreted.

Our evaluation showed that RelExplain is better suited to retrieve manually curated
subnetworks from unspecific networks than other algorithms. The interactive RelExplain
tool allows to compute and inspect sub-optimal and alternative optimal explanations.
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Publication

The content of this chapter is published in Bioinformatics [9]. Here, it is reformatted and
parts of the supplement are integrated.

Author Contributions

Evi Berchtold analyzed the data, implemented and evaluated the method and wrote the
manuscript. Gergely Csaba and Evi Berchtold designed the method. Ralf Zimmer super-
vised the project and edited the manuscript.

Availability:

A webserver to calculate the RelExplain explanations is available at

https://services.bio.ifi.lmu.de/relexplain

4.1 Introduction

High-throughput experiments such as microarrays or RNAseq are usually done differen-
tially to compare the gene expression between two or more experimental conditions, and one
is interested in the differences between these conditions. Standard statistical preprocessing
and analysis determines a set of differentially expressed genes DG. To better understand
the differences, affected biological processes are identified using the DG. The ultimate goal
is to understand how these involved processes determine the different phenotypes and the
measured (differential) data. However, genome-wide high-throughput experiments often
yield long lists of differential genes. The in detail analysis of many differential genes is
time-consuming at best and the overall interpretation of DG is difficult.

Therefore, gene set enrichment methods are used to determine which processes are
associated with a predefined set of so called terminal nodes, typically the differential genes,
more often than expected by chance. There are various methods available for this task
(reviewed in [60, 61]). Overrepresentation analysis (ORA) approaches test whether the
genes of DG are associated with a biological process more often than expected as quantified
via a hypergeometric test. The disadvantage of these types of methods is that genes have
to be classified beforehand as differential or not differential and that the cutoff used is
somewhat artificial but can have a large impact on the results. This problem is addressed
in approaches such as Gene Set Enrichment Analysis (GSEA) [92], which ranks the genes
by their fold change or p-value and uses a Kolmogorov-Smirnov statistic to assess the
significance of the gene set.

Enrichment methods yield ranked lists of pathways or processes that are overrepresented
for the given experimental data. While this can yield interesting and unexpected insights
which processes are involved in the changes between the experimental conditions, it usually
is only the first step of the analysis. Often, one is interested in a certain aspect of the

https://services.bio.ifi.lmu.de/relexplain


4.1 Introduction 45

experiment or it is known beforehand from the design of the experiment, from previous
experiments, or from previous prior knowledge, which processes are important, but one is
more interested in the mechanistic details how the genes interact within the process and
how consistent the interactions are with the measured data and evidence.

If one is interested in the details of how the genes interact, an underlying network and
network search methods can be used (reviewed in [72]). These methods find subnetworks
that contain many differential genes. The subnetworks are often subsequently tested for
enriched processes so that it is possible to find subnetworks enriched for a process or a
combination of processes which can give insights in how these processes are connected.
However, there is no method that takes prior knowledge of an involved process explicitly
into account. So, no focused analysis of a specific process is possible if one is interested in
a certain aspect of the experiment, but one has to hope that a subnetwork enriched for the
process of interest is among the returned top scored subnetworks. Moreover, the resulting
subnetworks are often quite large and difficult to interpret.

SteinerNet [53] finds the optimal prize-collecting Steiner tree, that is it determines the
tree with minimal edge distance that connects most terminal nodes. For SteinerNet, edge
distances are derived from the reliability of the edges. In the prize-collecting variant of the
Steiner tree problem not all terminal genes have to be included, but the prize of adding an
edge is balanced against the cost of omitting a terminal gene.

Another much-used network search method is jActiveModules [55]. In this method,
subnetworks are scored by an aggregated z-score that indicates how much the genes in the
subnetwork deviate from the overall distribution of expression scores in the experiment. A
simulated annealing approach is then used to find high-scoring subnetworks.

HotNet2 [68] is a recent method that is based on network propagation. The experimen-
tal measurements are used as heat scores that are than propagated along the edges to the
neighboring nodes. ”Hot” subnetworks are then returned as the interesting subnetworks.

More and more gene set enrichment methods that take network information into account
to score and rank the BP s (reviewed in [73]) have been proposed. GGEA [39] is one of
these methods that is based on a notion of consistency in the network, which quantifies
the compatibility of the measured data with the edge types. But also GGEA first of all
delivers a network score, which is used to rank the processes in question.

Here, we propose RelExplain, a method that is designed to analyze a particular bio-
logical process bp in the context of a given network to unravel the relevant relationships
of the involved genes in the process. A typical workflow would be to identify interesting
processes by enrichment methods and then analyze them in more detail with RelExplain.
RelExplain returns a connected subnetwork that contains most differential genes within
the process and, if necessary, further genes to connect them. To select these genes various
aspects such as the corresponding experimental data and their annotated processes are
taken into account. The interactions in the subnetworks can be used as a starting point
for new hypotheses that may be validated in further targeted experiments.

For a semantically meaningful and, thus, interpretable explanation it is crucial to pro-
vide a mapping between the kind of measured data and the type of interactions and re-
lations in the network. This mapping will then enable to define reasonable measures of
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plausibility, consistency, and interestingness for edges, genes, and whole subnetworks, e.g.
RelExplain solutions and/or biological processes. Altogether these measures should not
only allow for a better quantification whether certain biological processes are affected ac-
cording to the measured data, but also to provide detailed insights into which edges and
regulations of target genes are compatible with a pathway hypothesis or at least which
edges are interesting in one way or the other (consistent or inconsistent) with a network
hypothesis given the actual measured data.

Furthermore, as there are often multiple similarly optimal or suboptimal subnetworks,
we provide an interactive tool to inspect alternative paths in the subnetwork. While
minimal solutions provide compact representations of how the genes interact, a biological
pathway needs not to be minimal, but will contain redundant paths. Using the interactive
RelExplain tool one can find high-scoring alternative paths and decide whether they should
be included in the subnetwork or not.

4.2 Methods

4.2.1 Network

RelExplain allows to use (directed and undirected) networks compiled from various sources,
such as textmining edges, protein-protein interactions (PPI), gene regulation networks
or post-translational modifications. Each edge between two nodes can consist of several
edge instances, if it is derived from several sources. An edge can, e.g. be a PPI and
a phosphorylation and would be represented by two edge instances, one from the PPI
database and one from the post-translational modification source. Each edge instance
is annotated with its type (e.g. gene regulation), its reliability (e.g. manually curated
database) and its source (e.g. YEASTRACT).

Whereas RelExplain is designed to use heterogeneoues data and network types, here
we use only regulatory transcription factor : target gene (TF:TG) networks from YEAS-
TRACT [93] and RELEX [35] textmining edges.

As standard of truth networks we employ hand-curated networks for the diauxic shift
in yeast as assembled from Geistlinger et al [38].

RelExplain uses the networks to compute scores for a biological process bp based on the
nodes in the bp and the edges between them in order to produce a compact interpretable
representation of them via visualized networks. Internally, RelExplain keeps track of types
and any additional annotations to edges and nodes. These additional information can be
queried and visualized via the interactive RelExplain tool.

4.2.2 Assigning distances to edges

Most network-based methods use not only the edges, but also data associated to them
such as the length of an edge (distance) and/or its reliability (p-values or other measures
of statistical significance). E.g. finding the best Steiner tree asks for computing a tree
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with the shortest length/distance connecting a set of predefined set of (terminal) nodes.
Given an edge from any input network with a specific type, the associated distance should
reflect how good the edge semantically fits the measured data in the experiment. Moreover,
edges can be inside the bp (both its nodes are in the analyzed bp), connecting the bp to the
outside (one node in bp, the other not), or outside (both nodes are not contained in the
bp). RelExplain tries to connect the terminal nodes from the bp (e.g. the differential genes
contained in bp) via edges within the bp with an as small as possible overall distance. If
necessary, outside nodes are also used and even outside edges, both incurring a respective
penalty.

Scoring of nodes

We first score the nodes in the given input network such that genes that should be included
in the RelExplain solution, because they are differential in the data or belong to the
analyzed biological process bp (or a similar one), receive a high score. For expression data
as used here, the absolute fold change (fc) is used as node score. Alternatively, if p-values
for the differential expression of the genes are available they can be used instead of absolute
fold changes to score the nodes and edges. In contrast to absolute fold changes, a low p-
value (and not a high absolute fold change) indicates a differential gene. To calculate the
edge score, the two p-values are combined by Fisher’s method. The combined node score
for an edge is calculated subtracting the process penalties of both nodes from − log10 of
the combined p-value. To favor genes that belong to bp or a closely related process, we
subtract a process penalty from the score of the gene node. The process penalty for a
process P is defined via the Jaccard distance d(P, bp) of P with bp. For any gene node
G annotated to some processes Pi, we subtract the minimum distance of any Pi to the
biological process bp in question (penalty(G) = mini d(Pi, bp)). If subtracting the penalty
would produce a negative score, a score of 0 is assigned to the node.

Gene nodes that belong to bp receive a process penalty of 0, while genes that are
annotated to processes that share no genes with the analyzed process receive the maximal
penalty of 1.

Scoring of edges

Next, we assign a score to each edge in the network. For edges that consist of multiple
edge instances (that is they are derived from multiple sources), each edge instance is scored
separately and the best, i.e. highest, score is used for the edge. First, the combined node
score n is defined as the mean score of the two adjacent nodes.

For expression data and gene regulatory edges with annotated sign (the edge is acti-
vating or inhibiting) a consistency score c similar to GGEA is used. An activating edge is
consistent if the source and target are changing in the same direction, whereas an inhibit-
ing edge is consistent if they are changing in opposite directions. The impact of this score
should depend on how much the target gene of the regulation is changing (quantified by
the fold change) as this indicates the impact of the regulation. Therefore, we define the
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Figure 4.1: Schematic visualization of the RelExplain algorithm. The terminal nodes (differential genes
contained in the analyzed biological process) are shown in green (nodes A-F), the current Steiner tree is
highlighted in red. The network is first restricted to the d-hull (here d=1, see subfigure (i)). The Steiner
tree is initialized with the shortest path between two terminal nodes (here path between B and D, see
subfigure (ii)). Iteratively, the remaining terminal nodes are connected to the Steiner tree by their shortest
path to any node in the current Steiner tree (subfigure (iii)). For each non-terminal node, it is checked
whether it is necessary to connect the terminal nodes in the graph induced by the Steiner tree. Thereby,
the node between B and D could be removed from the Steiner tree.

consistency score to be the node score of the target if the edge is consistent and -1 times
the node score if the edge is inconsistent.

As the network used by RelExplain consists of edges from various sources, the reliability
of the edges varies. Edges that are derived from textmining or from high-throughput
experiments are more error-prone than edges from manually curated databases or low-
throughput experiments. Depending on the evidence for the edge, a reliability score r can
be assigned according to Table 1 in the Supplement.

The final score of the edge sedge is a weighted combination of the node score n, the
consistency score c and the reliability score r:

sedge = (max(0, wn ∗ n+ wc ∗ c)) ∗ (1 + wr ∗ r) (4.1)

The weights of the subscores (wn, wc and wr) can be adjusted by the user to reflect the
relative importance of these factors, as default wn = wc = 0.45 and wr = 0.1 are used.

To calculate distances (edge lengths) from these scores, the maximal score of all edges
is determined and the difference of the edge score to this maximal score is used as distance.

4.2.3 RelExplain Steiner tree approximation

The goal of RelExplain is to explain the interactions for the measured data within a given
biological process bp. A set of nodes in bp is designated as terminal nodes. In this paper we
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define the terminal nodes as the differential genes in the analyzed process bp. A RelExplain
explanation is a Steiner tree that connects all terminal nodes (if possible within bp). A
Steiner tree is a tree with minimal edge distance that connects all terminal nodes, but can
also contain non-terminal nodes.

As the Steiner tree problem is NP-complete [58] we use an approximation to find the
Steiner tree. The complexity of this approximation scales with the size of the network.
As we do not want to include long paths containing many insignificant nodes, in a pre-
processing step we restrict the network to the d-hull around the terminal nodes. The
parameter d indicates how many non-terminal nodes are allowed on a path between two
terminal nodes.

The approximation starts with the shortest path between two terminal nodes, which
can be computed using the Dijkstra algorithm (Fig. 4.1 (i)). In each subsequent step, the
shortest path connecting a not yet connected terminal node to any node in the growing
Steiner tree is added (Fig. 4.1 (ii)). When all terminal nodes are added to the Steiner tree
(Fig. 4.1 (iii)), we check for each non-terminal node whether there is an alternative path
in the tree such that the induced graph is still connected without this node (Fig. 4.1 (iv)).
Note that this simple heuristic procedure always constructs a tree as cycles cannot occur.
The final improvement step prunes superfluous nodes if a connected tree can be produced
with fewer non-terminal nodes.

On the other hand, alternative paths of similar length can, as an option, also be included
into the final RelExplain solution. The iterative addition of shortest paths to connect
terminal nodes is geared at paths inside bp but, depending on the edge length, can also
include nodes and edges outside the bp.

RelExplain is a heuristic and very fast: RelExplain adds the terminals one at a time
via a fast procedure, a Dijkstra search starting from one terminal node to another node
already in the Steiner tree. Thus, the overall worst case complexity of RelExplain is
O(|TN | ∗ (|E| + |V |log|V |)), where TN are the terminal nodes, and V and E are the
nodes and edges of the used network. In practice, due to the locality and possible ”small
world”-features of the network, RelExplain is much faster.

4.2.4 Finding alternative paths

Often small variations of a subnetwork yield almost optimal scores, but most methods only
report the best-scoring subnetwork. Similarly, RelExplain heuristically aims at comput-
ing the Steiner tree with the smallest distance. But as mentioned above, the tree can be
extended by alternative paths of the same (or similar) distance. Of course, these paths
only increase the overall length of the solution, but may add relevant explanations within
the biological process bp closely connected to the rest of the solution. Moreover, as the
used scores, networks, and experimental data are not perfect, suboptimal paths may also
be important for the biological interpretation of the solution network. Therefore, RelEx-
plain allows to add these slightly suboptimal variations to the solution in order to include
redundant regulations into the solution network that are missing in the optimal Steiner
tree.
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However, if all alternative variations are included in the subnetwork, it can become
rather large and, thus, hinder its interpretation. Typically, RelExplain allows only for
alternative paths which score very close to the optimal one (paths having a distance at most
ε times longer than the optimal distance). RelExplain ε, however, shows that RelExplain is
quite robust with respect to alternative and ε optimal paths, which implies that redundant
regulations typically remain quite compact (instead of yielding very large solutions covering
larger parts of the whole network).

In the interactive mode of RelExplain, the user can select any two terminal nodes and
find all suboptimal paths between those nodes with any user-defined deviation from the
optimum. These redundant suboptimal paths are found by a breadth-first search keeping
track of all paths from the start node until the error threshold or the end node is reached.
Again, this procedure is very fast. It is also fast to add all ε-suboptimal paths instead of
only the optimal path during the approximation of the Steiner tree.

4.2.5 Evaluation using manually curated subnetworks

The evaluation of network-based methods is challenging as there are no comprehensive
gold standard networks or methods to simulate data realistically. The best way is to use
curated networks for well-studied processes even though they do not necessarily have to
be complete.

Geistlinger et al. [38] manually curated context-dependent subnetworks for the diauxic
shift in yeast. Overall, the diauxic shift network is partitioned into eight subnetworks,
such as gluconeogenesis, glyoxylate cycle or TCA cycle. These subnetworks are supposed
to contain all edges that are relevant for the different subprocesses during the diauxic shift
and, thus, can be used as a gold standard for RelExplain. The typical input for network
methods, however, are biological networks that contain interactions/regulations for several
conditions. Thus, these generic networks also contain nodes and edges that need not be
active in the analyzed condition. Network methods should be able to extract relevant
subnetworks for the specific context (such as the diauxic shift subnetworks) from larger
networks with many more irrelevant edges.

In our evaluation, we use the manually curated diauxic shift gluconeogenesis subnetwork
as gold standard to investigate whether RelExplain and other methods can reproduce these
networks given experimental diauxic shift data [24] and a network that contains the edges
from the gold standard network and additional unspecific decoy edges. As terminal nodes
we choose the set of differential genes, i.e. genes with an absolute log2 fold change larger
than 1.

To use a realistic setup for the decoy edges, we choose two real networks, the textmining
network RELEX (9.129 additional edges between 2.849 nodes) and the gene regulatory net-
work YEASTRACT (35.393 additional edges, 6.191 nodes), and randomized their edges.
As especially gene regulatory networks such as YEASTRACT have a special degree dis-
tribution with few transcription factor nodes (hubs) with many outgoing edges and many
target genes with few incoming edges, we used a rewiring procedure, which keeps both the
hubs and the degrees of the nodes invariant.
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Even for the diauxic shift network and diauxic shift data only a small fraction of the
nodes in the subnetworks are actually differential in the experimental data. As network
methods aim at identifying subnetworks with many differential nodes they are unable to
identify the complete gold standard gluconeogenesis network, which contains many un-
changed nodes. Thus, to make their task easier, we define the gold standard as follows:
We start with the terminal nodes (|fc| > 1) that are contained in the Geistlinger gluconeo-
genesis subnetwork. The edges of the gold standard are all edges of the Geistlinger network
connecting these nodes. This network is then extended by additional nodes and edges in
order to minimally connect the individual components of the gold standard network. If
there are multiple alternative non-terminal nodes that could be used to connect terminal
genes all alternative gold standards are considered.

We applied RelExplain, SteinerNet, jActiveModules and HotNet2 using standard pa-
rameters and, furthermore, a variant of RelExplain that includes all alternative and sub-
optimal paths while building the Steiner tree with error margin ε = 1%. jActiveModules
needs p-values, but as no replicates are available for the DeRisi data, we calculated p-values
from the z-scores. HotNet2 returned many very small subnetworks. Thus, for the evalua-
tion we also considered the combination (union) of all subnetworks that contained at least
one terminal node, even though these combined solutions are not necessarily connected.

SteinerNet, jActiveModules and HotNet2 have no information concerning the process
that should be analyzed and use the whole network and associated experimental data as
input. Therefore, we also applied adapted (+)-versions SteinerNet+/jActiveModules+/
HotNet2+ that use only the genes within the analyzed process as input. SteinerNet uses
as input a network and a set of terminal nodes. For SteinerNet(+) the terminal nodes are
restricted to the differential nodes in bp. jActiveModules and HotNet2 use experimental
data and a network as input. For their respective (+)-variants we restrict the experimental
data to bp, so that only genes in bp are provided with a fold change/p-value and all genes
that are not contained in bp are considered as unmeasured.

All applied methods return a solution network consisting of a subset of the nodes of
the input network and all edges between these nodes. The performance of the respective
methods is assessed based on the included nodes. For each resulting solution network the
f-measure with respect to the gold standard is calculated and if multiple networks are
computed, the solution with the highest f-measure is used.

4.2.6 Application to TCGA data

To demonstrate the versatility of RelExplain, we also applied it to a set of 106 breast
cancer patient data from TCGA [18] for which both tumor and normal tissue samples
were measured via RNAseq. For each patient data local fold changes [27] between tumor
and normal samples were calculated and enriched GO categories were identified using
hypergeometric and Kolmogorov-Smirnov tests. The GO category ”ERK1 and ERK2
cascade” was enriched for 90% of all patients. Therefore, we selected this category as an
example biological process bp to be analyzed in more detail by RelExplain.

In this example, we use the median of the fold changes over all patients for the node
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method network f-measure |overlap gold| |solution| |nodes in process|
RelExplain Diauxic 1.000 19 19 19
RelExplain ε Diauxic 1.000 19 19 19
SteinerNet Diauxic 1.000 19 19 19
SteinerNet+ Diauxic 1.000 19 19 19
jActiveModules Diauxic 0.364 12 47 17
jActiveModules+ Diauxic 0.400 5 6 6
HotNet2 Diauxic 0.438 7 13 9
HotNet2+ Diauxic 0.789 15 28 28
RelExplain Diauxic,RELEX 1.000 19 19 19
RelExplain ε Diauxic,RELEX 0.974 19 20 20
SteinerNet Diauxic,RELEX 0.056 16 553 21
SteinerNet+ Diauxic,RELEX 1.000 19 19 19
jActiveModules Diauxic,RELEX 0.161 14 155 20
jActiveModules+ Diauxic,RELEX 0.320 4 6 4
HotNet2 Diauxic,RELEX 0.357 5 9 5
HotNet2+ Diauxic,RELEX 0.655 19 39 39
RelExplain Diauxic,RELEX,YEASTRACT 0.865 16 18 17
RelExplain ε Diauxic,RELEX,YEASTRACT 0.865 16 18 17
SteinerNet Diauxic,RELEX,YEASTRACT 0.048 17 683 21
SteinerNet+ Diauxic,RELEX,YEASTRACT 0.889 16 17 16
jActiveModules Diauxic,RELEX,YEASTRACT 0.028 17 1197 32
jActiveModules+ Diauxic,RELEX,YEASTRACT 0.182 2 3 3
HotNet2 Diauxic,RELEX,YEASTRACT 0.286 5 16 5
HotNet2+ Diauxic,RELEX,YEASTRACT 0.600 12 21 21

Table 4.1: Results of the diauxic shift evaluation for the gluconeogenesis subnetwork. For each
combination of method and network the f-measure and the number of nodes that are shared with
the gold standard are shown. Furthermore, the size of the solution and how many nodes are
annotated to the analyzed process is given.

score. Genes for which the complete confidence interval of the local fold change lies above
0.2 or below -0.2 in at least 70% of all patients were defined as terminal nodes. As network
we used RELEX [35] text mining edges from PUBMED abstracts that contain the term
”breast cancer”.

We also applied SteinerNet to this data and network. As probability for the edges we
used 1− p where p is the p-value of the hypergeometric test of the node co-occurrences in
the breast cancer context compared to the background. From the resulting subnetwork,
the nodes associated with the ”ERK1 and ERK2 cascade” were identified, highlighted and
compared to the solution identified by RelExplain.

4.3 Results

4.3.1 Diauxic shift data

The network we use is the hand-curated comprehensive diauxic shift network by Geistlinger
et al [38]. The unique feature of this network is that it focused on a specific biological
process (the diauxic shift in yeast) and, thus, as one of very available few examples, can
serve our evaluation purposes here. Moreover, standard and well-studied experimental data
[24] is available as well as high-quality representations of biological processes in question
(here gluconeogenesis as curated by Geistlinger et al.). This subnetwork of the diauxic
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shift network is then restricted to the smallest subnetwork that contains all differential
genes to provide an interpretable concise gold standard.

This setup is then employed to assess whether different methods including RelExplain
can provide reasonable explanations of the experimental evidence in the investigated con-
text given networks with a mixture of unspecific decoy and the curated diauxic shift edges.
Overall, we evaluated 8 different methods on 3 different background networks, altogether
24 approaches. The results are summarized in Table 4.1. As comparison we used three
standard network analysis tools: jActiveModules [55], HotNet2 [68] and SteinerNet [53].
They cover quite heterogeneous approaches to the problem. Note that none of these meth-
ods is directly able to solve our problem. Therefore, we used the (+)-versions of these
tools to improve their results towards reproducing the intended gold standard. In addi-
tion, we also list the performance of the ε variant of RelExplain adding the ε suboptimal
and alternative paths to the minimal RelExplain solution.

Table 4.1 lists for each method and network the f-measure, the overlap with the gold
standard, the size of the solution, and the number of the nodes in the solution contained
in the gluconeogenesis subnetwork.

The first block shows the results of the 8 methods applied to the edges within the diauxic
shift network only. RelExplain and SteinerNet perfectly reproduce the gold standard for
this artificial setup. Surprisingly, jActiveModules includes several nodes outside the gold
standard into the solutions and excludes others. Using the (+)-version of jActiveModules
a quite small subnetwork with only 6 nodes is returned. HotNet2 also yields an incomplete
subnetwork that misses several important factors of the process. The solution of HotNet2+
is larger, but still not all nodes in the gold standard are covered (15 out of 19). Overall,
the overlap with the gold standard as quantified by the f-measure drops from 1.0 to about
0.4.

In the second block, the methods are given the edges of the gluconeogenesis subnetwork
and, in addition, the randomized edges of the RELEX text mining network (more than
9.000 edges). RelExplain and SteinerNet+ are again able to reconstruct the gold standard
in this case. The HotNet2+ solution contains the gold standard but adds another 20 nodes
outside the process to its solution (f-measure = 0.65). Both jActiveModules and SteinerNet
return huge networks with 155 and 553 nodes, respectively. Of course, these networks (f-
measure of 0.161 and 0.056) would be hard to interpret even though they contain most (but
not all!) of the gold standard nodes (14 and 16 out of 19). These methods are not designed
to identify the subnetwork that best explains a given process and do not employ process
annotations. Thus, they return subnetworks that contain many differential genes that
are not contained in the gluconeogenesis process. Again, jActiveModules+ and HotNet2
return only few nodes and, thus, only a very small part of the gold standard solution. The
f-measure drops to about 0.06.

If also the randomized edges of YEASTRACT (>35.000 edges) are added, the results
are qualitatively similar. Again, SteinerNet+ and RelExplain perform best, but are no
longer able to perfectly reconstruct the gold standard (3 nodes are missing). HotNet2 is
the only method for which the (+)-variant yields larger solutions than the normal variant.
Apparently, HotNet2+ ignores all nodes without measurement, so that the solutions are
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restricted to bp. Given the complete data, HotNet2 returns many very small subnetworks,
that remain unconnected if merged. jActiveModules+ yields a very small solution of little
use. The original unrestricted versions SteinerNet and jActiveModules result in very large
solutions with 683 and 1.197 nodes with tiny f-measures, respectively.

As an illustration of the results, Fig. 4.2 shows the obtained networks for all methods.
The networks are shown in similar layout and the terminal nodes are colored bright red
and green depending on their fold change. Yellow nodes do not change significantly. Nodes
outside the process or with only moderate fold changes are colored similarly but with trans-
parent colors. Also edges are colored: green edges are consistent (edge type corresponds
to observed experimental data), red edges are inconsistent, whereas orange edges indicate
cases which cannot be evaluated either due to the type of the edge or the available data.
As the used networks only contain gene regulatory edges, an edge is consistent if its sign
fits to the changes of the adjacent nodes (as defined for the consistency score) or if the sign
of the edge is unknown and both adjacent genes are changing (in any direction). Edges
with unchanged genes (yellow) cannot be evaluated and are thus colored orange.

Fig. 4.2 (a) shows the overall gluconeogenesis process as taken from Geistlinger et
al (2013). Fig. 4.2 (b) contains the gold standard network extracted from (a) and the
experimental data via the definition above (see Methods). Fig. 4.2 (c+d) display the
RelExplain and RelExplain ε solutions as computed for the most realistic setup with the
45.000 randomized edges (RELEX and YEASTRACT). As can be seen, both solutions
exhibit most of the gold standard and its most important factors and regulations. The
remaining networks in Fig. 4.2 (e-j) contain the SteinerNet, jActiveModules and HotNet
as well as their adapted (+)-version solutions. As can be seen, SteinerNet+ (f) computes a
reasonable solution with good overlap with the gold standard, but other solutions are highly
unfocused (e+g), small (h), or fragmented (i), which would prohibit a useful explanation
of the experimental evidence in the context of the gluconeogenesis.

Both SteinerNet+ and RelExplain include transcription factors that are not contained
in the gold standard. As SteinerNet+ gets only the experimental data of the genes within
the gluconeogenesis subnetwork as input, it can select these genes only because of their
connectivity in the network while RelExplain also takes their process annotation and ex-
perimental data into account. As a result, RelExplain selected two TFs with an absolute
fold change above 0.5 while SteinerNet+ selects an unchanged TF. RelExplain favors TFs
with consistent regulations, which are likely biologically meaningful. Thus, all edges in
the RelExplain solution are consistent with the measured data (colored green) whereas
SteinerNet+ also contains edges with unknown status (orange edges, Fig. 4.2 (e+f)).

Optimal subnetworks are often not realistic as they are minimal while biological net-
works exploit redundant paths. To take this into account, RelExplain offers the possibility
to search for alternative paths with similar score. This mode yields larger (i.e. more sen-
sitive) solutions that may have a larger overlap with the (by construction minimal) gold
standard, but due to the added genes the f-measure is smaller compared to the normal
RelExplain run. In any case, the ε variants are quite robust as they increase the solu-
tions only moderately. RelExplain solutions are, thus, useful starting points for interactive
exploration of explanations including alternative, redundant paths.
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(a) whole process (b) gold standard

(c) RelExplain (d) RelExplain ε

(e) SteinerNet (f) SteinerNet+ (g) jActiveModules (h) jActive-
Modules+

(i) HotNet2 (j) HotNet2+

Figure 4.2: Results of the different methods for the Diauxic,RELEX,YEASTRACT network.
Genes that are not contained in the gluconeogenesis subnetwork are dashed, differential genes
within the gluconeogenesis subnetwork are colored bright green/red depending on whether they
are up/downregulated. Arrows with a green/red tip are known to be activating/inhibiting.

4.3.2 Breast cancer data

RelExplain is a fast and pragmatic method for network analysis and network search towards
constructing interpretable explanations. As assessed on standard microarray expression
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(a) RelExplain (b) SteinerNet

Figure 4.3: Results for the breast cancer data and the ERK1 and ERK2 cascade for Rel-
Explain (a) and SteinerNet (b). For SteinerNet the genes that are contained in GOERK

are highlighted in red. Genes are colored red/green/yellow depending on whether they were
up/downregulated/unchanged. Brightly colored nodes are contained in the ERK1 and ERK2
cascade. Arrows with a green/red rip are known to be activating/inhibiting and the color indi-
cates whether they are consistent (green), inconsistent (red) or cannot be evaluated (orange).

measurements and a quite simple complete regulatory system in yeast with a fairly complete
and accurate context-dependent network (the ”diauxic-shift network” of Geistlinger et al).
RelExplain exhibits clear deficiencies of other methods and appears to provide plausible
network models as explanations of measured experimental data sets. Here, we report on
the application of RelExplain to a larger set of human sequencing data sets from TCGA
and investigate its explanatory power on the well-studied ERK signaling pathway.

We analyze NGS data sets from the TCGA compendium [18] for which cancer and
normal conditions have been measured for 106 breast cancer patients. As gold standard
networks and biological processes are not available we use GO categories instead and
compute explanations in the GO class ”ERK1 and ERK2 cascade” (GOERK) as this GO
category was enriched in nearly all patients. We applied both RelExplain and SteinerNet,
which performed reasonably for the diauxic shift data in yeast. The resulting subnetworks
are shown in Fig. 4.3. The solution of RelExplain consists almost exclusively of terminal
nodes that are part of the selected category GOERK (bright green nodes). The genes that
were unchanged or not part of the ERK cascade process are known breast cancer relevant
genes such as BRCA1, ERBB2, or ESR1. Among the upregulated genes are many growth
factors such as EGF, FGF2, IGF1 and FDF10, which are also all associated with the ERK
cascade. Most of them are connected to the growth factor receptor EGFR, which can
activate the ERK phosphorylation cascade, ultimately leading to proliferation. EGF is
known to be released from the plasma membrane after GPER1 activation by estrogen and



4.4 Discussion 57

can then itself activate EGFR [32]. As the regulations downstream of EGFR along the
ERK signaling cascade are on the phosphorylation level the corresponding genes need not
change in the expression data. The expression data does not yield useful information on
these regulations and, thus, they are not included in the RelExplain subnetwork explaining
the RNAseq data.

SteinerNet has been applied to compute the Steiner tree for all terminal nodes and
all nodes that are associated with the category GOERK are highlighted (red boxes). The
resulting tree is quite large and cannot be easily interpreted. Some of these highlighted
genes are only connected to the other genes via long paths (e.g. KRAS is connected by a
path of length 5 to EGFR). Altogether, the SteinerNet solution contains only 6 terminal
nodes (blue nodes) that are highlighted in Fig. 4.3. The known regulation of EGFR by
EGF and GPER1 is missing as well as most upregulated growth factors. As compared
with the RelExplain solution SteinerNet both (i) includes more nodes into its solution and
(ii) misses many factors and regulations important for the biological process in question.
Obviously, based on the SteinerNet solution an in-detail interpretation of the breast cancer
data in the context of the ERK signaling process is hampered. Although many downstream
phosphorylation events cannot (in principle) be observed in the data and are, thus, missing
in the solution, the RelExplain network yields a much simpler explanation of the data
at hand and yields a compact representation of the experimental evidence for the ERK
signaling process. An overview of the results is given in Supp. Table 1.

4.4 Discussion

Set enrichment methods identify the relevant sets of genes from a collection of candidate
sets via appropriate statistical tests. If this collection is derived from a set of pathways or
processes they can also identify those pathways which appear to be deregulated in a given
experiment based on a statistically significant number of differential genes. Typically, these
methods do not evaluate or explain how exactly the involved genes interact and regulate
each other.

On the other hand, pure network approaches ignore the functional annotations, so that
the resulting subnetworks are not limited to a particular biological process. This leads
to large and unfocused solutions which severely impair the interpretation and usefulness
of the results. Obvious workarounds would be, in a postprocessing step, to restrict the
solution to the nodes (and thus edges) that are annotated to the process. The restricted
solutions can, however, be suboptimal as the process information was not used during the
construction of the solution such that important factors for a meaningful explanation of
the process can be missing. E.g., two terminal nodes in the process could be connected by
a node that does not belong to the process even though there exists another node in the
process that also connects those nodes and would make more sense within the used process
context.

We propose RelExplain, a method that takes both, the network and the functional
annotations (processes) explicitly into account to explain a given experiment in a process
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context. RelExplain identifies subnetworks that are specific for a given process so that
a more focused interpretation is possible. The functional annotation is utilized in the
scoring of the edges so that nodes within the process context or within similar processes
are included preferentially.

RelExplain solutions strive to produce minimal Steiner trees connecting the terminal
nodes to enable a focused interpretation. However, these solutions biologically need not
be minimal, but often several alternative and/or redundant paths exist and can also be
simultaneously active in biological processes. Depending on the context and the data,
these alternative paths can score as good or only slightly worse than the optimal paths
and, therefore, they are presumably also of interest for a biological interpretation. Most
network based analysis methods aim at producing optimal, i.e. minimal solutions, so
that these alternatives necessarily have to be omitted (e.g. in optimal Steiner trees). To
enable both a focused and a more holistic interpretation RelExplain can compute minimal
solutions, as well as extended solutions containing alternative paths and suboptimal paths
(which are only suboptimal by a small margin ε).

Moreover, RelExplain provides an interactive mode in which all alternative and sub-
optimal paths as well as neighborhoods of the solution can be explored together with the
experimental evidence as given by the respective experimental data. We expect that us-
ing this mode one can explore the solution space and get a more comprehensive view of
the genes involved and their exact role in the process as indicated or supported by the
experimental data.

The approach and implementation of RelExplain allows to easily incorporate alternative
scoring schemes. Thus, it can not only be used for expression data as shown in this paper,
but also for other types of genome-wide data e.g. ChIP, DNase footprinting, time series
data, proteomics, ...) and even several heterogeneous datasets at the same time. An
example application to genome-wide data observed for a cohort of individual breast cancer
patients is briefly described above. RelExplain only requires that a score can be calculated
from the data that measures whether a given edge of a certain type is interesting (supported
by the data in the experimental context) and, thus, should be included in the resulting
subnetwork.

When several measured data sets and several edge types are available, a match between
data set and edge type is required in order to define meaningful scores for the implication
of the respective edge on the actual data. As examples, DNA-array or RNA-seq expression
data can be used to define implications of an active transcription factor on its target genes
(but tells nothing about phosphorylation edges), or, PPI or textmining co-occurrence edges
can be used to score co-expression of the connected nodes.

4.5 Conclusion

It is a major goal to model biological processes and mechanisms on a level that allows the
accurate simulation of the process and to make predictions on its perturbation. A less far-
fetching goal is to interpret sets of large-scale measurements in the context of such biological
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processes in order to assess whether the data sheds light on its workings. According to
our experiments the current gene set enrichment methods and the network based analysis
methods are not sufficient for any of these goals. Even if set enrichment methods would
be perfect in identifying the relevant sets of genes, their further use for the analysis of
data and/or biological processes is very limited and the user is left alone with these tasks.
Literally hundreds of publications stop at this point of printing long lists of ”statistically
significant” GO categories. Network based enrichment methods use more prior knowledge
to improve the ranking of the relevant categories while network search methods use a given
network to provide more insights into the internal structure of the data but without using
the functional annotation. But there is no way to combine already obtained enrichment
results into the network analysis, as the network search methods only use the experimental
data and networks as inputs. Our experiments show that current network search methods
have severe limitations to really mechanistically interpret the data and a biological process
as they lack detail or focus, or both at the same time.

RelExplain is a simple significant area search method, which allows to compactly assem-
ble and represent the evidence of the measured data for the prior knowledge available on
a given biological process bp in question. RelExplain can work with different kinds of net-
works and several sets of heterogeneous measurements and integrates them into a concise
network model for bp. This model via the RelExplain score and via visual inspection allows
to directly assess the available evidence in the context of the available prior knowledge.
RelExplain is algorithmically simple, very fast and can work with very large networks. It
is robust in the sense that the resulting models are compact and focused to the process
in question, but at the same time not excluding possible alternative or redundant paths.
Moreover, the RelExplain models serve as entry points for interactive in depth analysis
of both the underlying networks and the analyzed measured data. This is facilitated via
extending the network by alternative and suboptimal paths as well as exploring network
neighborhoods all, of course, in the context of the available experimental data.
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Chapter 5

Modeling of the Changes during
Yeast Heat Shock Response

Motivation

The following chapter describes an integrative approach that, in contrast to RelExplain,
also provides quantitative predictions. It is used to model the protein abundance changes
over time in response to a mild and severe heat shock in yeast.

The central dogma of biology states that the DNA is transcribed into mRNA, that
is in turn translated to build proteins which fulfill some function in the cell. In many
cases, however, it is not that simple and further mechanisms impact one or more steps in
the dogma. New high-throughput methods such as ribosome profiling allow to measure
the outcome of the individual steps. Integrating these new techniques with other high-
throughput datasets can be used to model the changes in a system to identify additional
regulatory mechanisms that might deviate from the central dogma or influence the efficiency
of the individual steps.

Here, we analyze data on three different stages of the central dogma: gene expression,
translation by ribosome profiling and protein levels. The gene expression and translation
of many genes is changed for both the mild and severe heat shock, but the corresponding
protein levels remain similar to the unstressed cell.

To analyze whether this is nevertheless consistent with the central dogma or if some
additional regulatory mechanism is needed to explain this inconsistency, we modeled the
changes downstream of the gene expression both qualitatively and quantitatively. The most
parsimonious fit was achieved when an increased degradation for translationally upregu-
lated and decreased degradation for translationally downregulated proteins was assumed.
This would indicate that the altered protein stabilities are compensated for by the changed
gene expression and subsequent translation to achieve protein homeostasis.
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Publication

The contents of this chapter have not been published yet. A manuscript focusing on the
biological implications of the described data and results is in preparation.
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for the unfractionated proteomic measurements. Moritz Mühlhofer prepared the samples
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formed the ribosome profiling measurements. Nina Bach performed the proteomics mea-
surements. Stephan Sieber supervised the proteomics measurements. Martin Haslbeck and
Johannes Buchner supervised all other measurements.
Gergely Csaba preprocessed the ribosome profiling and proteomics data. Evi Berchtold
analyzed all data and performed the integrated analysis and modeling. Ralf Zimmer su-
pervised the data analysis and modeling.

5.1 Introduction

Adapting to a suddenly changed environment or stress is a crucial ability of all organisms.
Metabolic processes need to be adapted to the new conditions to function optimally and
detrimental effects have to be mitigated. Unicellular organisms need an especially fast
stress response as they are in direct contact with the changing environment instead of
being contained in the relatively stable environment of a tissue or organ. The response to
heat of Saccharomyces cerevisiae is one of the best studied stress response systems.

A number of physiological changes of the yeast cells occur when the temperature is
increased above the optimal growth temperature of 25-30◦C: The cell cycle of yeast cells
is arrested in the G1 phase, the cell wall and membrane dynamics change and proteins
aggregate as they are misfolded [97].

Already in 1998 and 2000, the first high-throughput microarray measurements were
done by Eisen et al. [25] and Gasch et al. [36] to analyze the expression changes upon vari-
ous types of stress. Most of the analyzed types of stress showed massive changes in the gene
expression affecting hundreds of genes. Using a hierarchical clustering, they could show
that a large set of genes show a similar pattern of activation in different types of stress.
These genes can be divided into 300 stress-activated and 600 stress-repressed genes and are
together called the environmental stress response (ESR). The repressed genes are involved
in various growth related processes, like RNA metabolism and nucleotide biosynthesis,
and ribosome protein genes. In contrast, the activated genes were often uncharacterized
or involved in carbon metabolism, detoxification of reactive oxygen species, cellular redox
reactions, cell wall modification, protein folding and degradation, DNA damage repair,
fatty acid metabolism, metabolite transport, vacuolar and mitochondrial functions, au-
tophagy, and intracellular signaling. For heat shock specifically, they observed that many
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chaperones and genes involved in respiration and alternative carbon source utilization were
changed.

In 2011, Lee et al. [66] analyzed the protein changes of yeast upon osmotic stress
and found that there is a poor correlation between downregulated proteins and their gene
expression level. This could be due to longlived proteins, as the old protein persist even
though fewer new proteins are produced. But the effect is also observed for proteins with
short half-lives. They used a modeling approach to simulate protein levels using expression
levels, absolute protein quantifications and protein half-lives. Using this simulation they
could determine that including the observed growth arrest in the model resulted also in
nearly constant protein levels for downregulated transcipts. A similar study was done for
oxidative and heat stress in fission yeast by Lackner et al. [65].

In 2013, Shalgi et al. [85] found a different level of regulation. They analysed ribosome
profiling data of heat shock in mouse and found a global pause in translation elongation.
More specifically the ribosomes are stalled after translating ∼65 amino acids which cor-
responds roughly to the length of the ribosome tunnel. They showed that the chaperone
Hsp70 that normally associates with ribosomes and folds newly synthesised proteins, does
not associate with the ribosome upon heat which could result in a stalling of the translating
ribosome. Similarly, Lui et al. [69] showed a Hsp70 dependent stalling of ribosomes at the
same position upon proteotoxic stress in yeast.

Here, we want to model the effects downstream of the transcriptional changes. We
analyze gene expression, ribosome profiling and proteomics data together to unravel the
downstream effects of the changes in gene expression. For this we model the system, first
qualitatively by comparing up- and downregulated genes in the different datasets, and then
more detailed also quantitatively by integrating data measuring protein half-lives, absolute
protein amounts and growth and fitting a model similar to Lee et al.

5.2 Data

To analyze the changes upon heat shock we measured the system on different levels: gene
expression measurements capture the changes in transcription, ribosome profiling measures
the changes in ribosome-bound mRNA that is likely to be actively translated, and proteome
measurements estimate the amount of proteins, not only in total but for one time point
also separately for the soluble and insoluble fraction.

To capture the dynamics of the response for all measurements time series were done.
Furthermore, two different strengths of the stress were applied: a mild heat shock at 37◦C,
and a more severe heat shock at 42◦C. For the gene expression measurements the most
comprehensive set of measurements, containing several very early time points as well as
later time points (1, 3, 5, 7, 10, 15, 40, 80 and 160 min), is available. This showed that
the peak of the gene expression changes is between 10 and 15 min, and for a mild heat
shock at 37◦C the mRNA levels return back to normal thereafter. In contrast, at 42◦C, the
changes in mRNA levels persist. For the other types of measurements, we focused on two
time points: at the peak of the expression changes after 10 min, and when the expression
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Figure 5.1: Overview of the results for the different datasets. For each dataset the changes over
time are depicted schematically. The width of the line indicates how many genes/proteins are
changing and the dashed vertical lines indicate the measured time points. Furthermore, enriched
processes at different time points are shown by the symbols.

changes already decrease for the mild heat shock after 30 min.
Figure 5.1 shows a schematic overview of the measurements and the progression of

the changes over time as well as enriched processes for the individual measurements. The
changes in the levels of ribosome-bound mRNA measured by ribosome profiling are very
similar to the changes observed in the gene expression measurements. This indicates that
the up- and downregulated genes are also translated differentially, so that a change in
the protein levels would also be expected. However, there are far fewer changes on the
protein levels. At 37◦C there are some upregulated proteins, involved in response to heat
and protein catabolism, but there are far fewer proteins upregulated at 42◦C, even though
the changes are more pronounced in the ribosome profiling data. Also there are some
downregulated proteins after 10 min, that return back to normal after 30 min, even though
the corresponding genes show decreased translation in the ribosome profiling data and stay
downregulated after 30 min.

The less pronounced changes on the protein level could be due to the higher absolute
protein abundances compared to mRNA abundances and/or long protein half-lives and
thus low protein turn-over, which both result in less pronounced protein fold changes. Our
quantitative modeling approach takes both mRNA/protein abundances and protein half-
lives into account. We used protein half-lives measured by Belle et al.[7], absolute initial
protein levels from Ghaemmaghami et al.[42], initial mRNA levels from Miura et al.[74].
Figure 5.2 gives a short overview of this data.

The absolute mRNA abundances were measured using a competitive PCR between
genomic DNA and cDNA. It provides estimates of the absolute mRNA levels of 4,416
transcripts which range from 0.0175 to 376,4875 copies per cell.

The absolute protein abundances were measured using quantitative western blots of a
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(a) (b)

Figure 5.2: Additional data used in the quantitative modeling with the genes that are up- and
downregulating in the ribosome profiling (RP) data highlighted. (a) Protein and mRNA abun-
dances in copies per cell. While a cell contains 1-10 copies of most transcripts, the corresponding
proteins occur in much higher concentrations of 1000-10,000 proteins per cell. Nevertheless there
is a moderate positive correlation. (b) Protein half-life and abundance. There is no strong
correlation between protein half-life and protein abundance.

epitope-tagged fusion library and it covers 5,709 proteins. Here the copies per cell range
from 41-1,590,000 proteins. Figure 5.2 (a) shows the comparison of the absolute abundances
for the 4,287 genes/proteins for which both kinds of data is available. Even though the
protein abundance is, in general, orders of magnitude higher there is a positive correlation.
The genes that are upregulated in the ribosome profiling data are in general a little less
abundant in both the mRNA and protein level than the genes that are downregulated.

Belle et al. measured protein half-lives by measuring the protein abundance over time
upon inhibition of protein synthesis by cycloheximide. The protein abundances are mea-
sured using quantitative western blots of an epitome-tagged fusion library. This resulted in
half-life estimates for 3,176 proteins, which were approximately log-normal with a median
half-life of 43 min. Figure 5.2 (b) show the comparison to the absolute protein abundances.
There is no clear correlation: there are also highly abundant proteins with rather short half-
lives and lowly abundant proteins with very long half-lives. There is also no clear difference
between the protein half lives of proteins with up- and downregulated translation.
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5.3 Methods

5.3.1 Quantitative Modeling

Lee et al. [66] proposed a model to predict the protein change P (ρ, t)′ of protein ρ over
time from the mRNA concentration m(ρ, t), protein degradation rate kd(ρ) estimated from
the protein half-lives and dilution due to growth µ. For each protein the translation rate
ks(ρ) is estimated. The change in the protein concentration in their model is calculated by
the following equation:

P ′(ρ, t) = ks(ρ)m(ρ, t)− (kd(ρ) + µ(t))P (ρ, t) (5.1)

Similar to Lee et al. we used published datasets of protein half-lives [7], absolute
initial protein levels [42], initial mRNA levels [74] and our own measurements of ribosome
profiling, protein fold changes and growth rates. Given these measurements, Lee et al.
could estimate the protein synthesis parameter ks(ρ) for each protein to fit optimally to all
time points for which protein levels were measured. During osmotic shock there is growth
arrest for about the first 45 min of the stress, so that they found that it was best to fit for
each protein two ks(ρ) parameters, one for the measurements during the growth arrest (30
min) and one for the measurements afterwards (60, 90, 120 and 240 min). In contrast, we
only measured protein abundances up to 30 min after the heat was applied and did not
see a marked difference in the growth rate during this time. Moreover, as we use ribosome
profiling instead of expression data, ks(ρ) corresponds to the protein production rate from
ribosome bound mRNA instead of the translation rate given the mRNA abundance. The
rate limiting step of translation is initiation [84] so that we conclude that ks(ρ) is constant
over time and should not change upon heat shock. The unstressed cells should be in a
steady state with equal protein synthesis and degradation. This allows us to calculate the
synthesis rate ks(ρ) directly from the equilibrium measurements without the need to fit
thousands of parameters which could lead to overfitting:

P ′ρ(t0) = 0

ks(ρ)m(ρ, t0)− (kd(ρ) + µ(t0))P(ρ, t0) = 0

ks(ρ) = ((kd(ρ) + µ(t0))P (ρ, t0))/m(ρ, t0)

However, this model does not take into account that many ribosomes could be stalled
similarly as in mouse and do not produce protein with the same efficiency as in unstressed
conditions. To predict whether the translation of a transcript is stalled we applied the
approach described by Shalgi et al [85]. In short we determine the position with the
maximal difference between the sum of all reads up to this position normalized by the total
number of reads in the two samples. The significance of this position is then estimated
using the Kolmogorov-Smirnov statistic. Only ribosomes downstream of this stalling point
will contribute to protein production, so we adapted the ribosome profiling fold changes
by ignoring all reads mapped to positions upstream of the predicted stalling position of
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the transcript. Using these modified ribosome profiling fold changes takes the effects of
ribosome stalling into account.

To integrate the increased aggregation of protein upon heat shock, the fractionated
proteome measurements can be used. This measurement was only done for 30 min, so in
order to model the changes after 10 min, a linear inference is used to infer the proteome
measurements for this time point. For the fractionated proteome measurements the soluble
(supernatant) and insoluble (pellet) fraction as well as both fractions together (total) were
measured. This allows us to analyze the effect of aggregating proteins, that are only
present in the total and pellet fractions but not the soluble fraction. Thus, we compare
the simulation results using the soluble fraction to the simulation using the total fraction
to assess the impact of aggregating proteins.

Additionally to modifying the input data to incorporate ribosome stalling or protein
aggregation, we can also fit the protein synthesis parameter ks or a factor for the measured
protein half-lives. The rational behind this is that even though we can estimate the protein
synthesis and decay (according to half-life) in equilibrium conditions, the biological system
is not in equilibrium upon heat shock and both the synthesis and decay rate could change.
Especially a change in the decay rate of proteins makes sense, as the increased tempera-
ture leads to increased aggregation and degradation so that the half-lives measured under
equilibrium conditions do not apply. We can fit these parameters in different ways: we
can fit both the synthesis parameter ks and the degradation parameter kd for each protein
separately which corresponds to each protein responding differently to the heat shock, or
we can identify different groups of proteins that are all modeled using the same parameters.

To fit an individual synthesis rate ks(ρ) for each protein, we use the least-square error
estimate of ks described by Lee et al. For fitting an individual decay rate kd(ρ) for each
protein, we assume that the measured protein half lives still provide valuable information
and thus fitted a multiplicative factor for the measured half life. These two fits require
the same number of parameters as there are proteins which makes the method vulnerable
for overfitting. A more parsimonious assumption would be that there are groups of pro-
teins that are affected similarly by the changing environment. A natural grouping of the
proteins would be according to their changes in the ribosome profiling data: proteins with
upregulated translation (fc> 1 in at least one time point), proteins with downregulated
translation (fc< −1 in at least one time point) and proteins with unchanged translation
(−1 <fc< 1 in all time points). In case of proteins that are both up- and downregulated
they are assigned to the group in which direction it showed the higher fold change. For
each of these groups we fitted a multiplicative factor for the measured half lives yielding
the minimal deviation if the simulated and measured fold changes.

In total we test four different variants: (a) no fit, calculate synthesis and decay rate
from the unstressed (equilibrium) measurements, (b) grouping of the proteins and fitting
of one degradation factor for each group, (c) fitting of an individual half-life factor for each
protein and (d) fitting of the protein synthesis parameter ks similarly to Lee et al.

The supernatant measurement from the fractionated proteome measurement as well
as another independent proteome measurement can be used as independent test sets to
evaluate the validity of the individual fits. For this we fit the parameters of the fit using
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the proteome time series and compare the simulated protein fold changes using these
parameters with the changes from the independent measurements.

All measurements used in the simulations are associated with biological and technical
noise. To estimate the effects of the noise and whether observed discrepancies between sim-
ulated and measured protein levels are due to noise, we developed the following simplistic
approach to incorporate noise. For both the proteome measurements and the ribosome
profiling data replicates are available. We repeat the simulations using all replicate com-
binations and determine the interval that is covered by the resulting simulated protein
abundances. If some parameters are fitted we estimate them using the averaged measure-
ments, so that an unstable fit does not result in huge predicted intervals. To evaluate the
simulation, it is checked whether this interval overlaps with the interval of replicate pro-
teome measurements. Note that we cannot estimate the noise of the proteome abundance
and half-live measurements as no replicates are available, so that we in general underesti-
mate the overall noise. For proteins/genes with missing values in some of the replicates we
use a simple value imputation strategy to obtain comparable intervals. We determine the
median standard deviation (sdmed) of the replicates over all genes/proteins of the measure-
ment and approximate the missing replicate(s) by the mean of the remaining replicates
plus a N (0, sdmed) error term.

5.4 Results

5.4.1 Qualitative Modeling

The most simple model of the effects downstream of transcription is the central dogma of
biology. It says that the DNA is transcribed into mRNA, which is in turn translated into
proteins. In order for gene expression changes to have an effect on the cell, they need to
be transformed into protein changes, as proteins are the functional entities in a cell. We
can thus compare the measurements corresponding to different steps in the central dogma
to each other qualitatively, i.e. whether the genes/proteins change in the same direction.

Figure 5.3 shows such a comparison. It shows both the scatterplot between the fold
changes of the two measurements as well as how many genes are contained in specific
regions of the plot. The fold changes of each measurements are divided into four different
categories: upregulated (fc>1), unchanged trending up (0<fc<1), unchanged trending
down (-1<fc<0) and downregulated (fc<-1). The comparisons are shown both after 10
min and 30 min.

In the comparison between RNAseq and ribosome profiling data, most genes are up/down-
regulated in both datasets, or up-/downregulated in one and unchanged but trending in
the same direction in the other dataset. After 30 min there are genes upregulated in the
ribosome profiling data that are not upregulated in the RNAseq data, which indicates
that their translation rate (i.e. translation per mRNA molecule) increases during the heat
shock. Similarly, there are genes with (slightly) downregulated expression that are even
more downregulated in the ribosome profiling data. Both these observations suggest that
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Figure 5.3: Comparison of the changes in the different measurements together with the underlying
model. The scatterplots contain in red the number of genes/proteins contained in the correspond-
ing area. While most changes are consistent between mRNA and ribosome-bound mRNA, the
protein levels do not fit.

the translation amplifies the regulation of gene expression after 30 min at 37◦C. At 42◦C,
these effects are however not observed, but both ribosome profiling and expression change
similarly. Overall, for all analyzed conditions there is a positive correlation between the
changes and ribosome profiling, and thus ribosome binding, is consistent with the changes
in gene expression.

In contrast, the changes in the proteome measurement fits much worse to the ribosome
profiling data. There are nearly no genes/proteins that are up- or downregulated in both
datasets. In general the changes in the protein levels are much less pronounced than on the
ribosome-bound mRNA. Most of the proteins that are changed in the ribosome profiling
data, but unchanged in the SILAC data are trending in the right direction, but there
are also much more proteins that are trending in the wrong direction, compared to the
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(a) stalled vs normal (b) simulation stalled data (c) simulation normal data

Figure 5.4: Influence of ribosome stalling on the simulation using equilibrium protein synthesis.
(a) Comparison of fold changes that take stalling into account to normal fold changes. Many
proteins show slightly lower fold changes when stalling is considered. Results of the simulation if
stalling is considered (b) or not (c). There are nearly no changes in how well the measured fold
changes can be simulated.

comparison of microarray and ribosome profiling data. Due to the different abundances
of proteins and mRNAs in the cell, protein changes are expected to be more subtle. Also,
as the synthesis of proteins takes time the changes observed in gene expression manifest
only later on. Here, however there are still fewer changed proteins after 30 min. It is also
possible that the discrepancy between protein levels and gene expression is due to heat
shock specific effects, such as increased protein aggregation or stalling of the ribosomes
that are bound to the mRNA. The Petri net below the scatterplots in Figure 5.3 shows
these different explanations in the dashed boxes. To analyze which effect explains the data
best, a more detailed quantitative modeling including all these effects has to be done.

5.4.2 Quantitative Modeling

Influence of Stalling and Aggregation

First, we want to assess how much the model is improved by including the modified data
incorporating ribosome stalling and protein aggregation. For this we modeled the protein
levels using the protein synthesis rate calculated from equilibrium measurements and the
measured half-lives so that no parameters need to be fitted that could mask the differences
between the different input datasets.

Figure 5.4 (a) shows how taking into account ribosome stalling changes the resulting
fold changes. For many genes the fold changes are slightly shifted down, i.e. there are
fewer bound ribosomes in the stressed sample. However, the effect is only modest and as
Figure 5.4 (b) and (c) show does not change the results of the simulation much.

The effects of protein aggregation are more pronounced. Figure 5.5 (a) shows the
comparison of the fold changes in the soluble fraction (supernatant) and in total. The
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(a) supernatant vs total (b) simulation total (c) simulation supernatant

Figure 5.5: Influence of protein aggregation on the simulation using equilibrium protein synthesis.
(a) Comparison of fold changes in the soluble fraction (supernatant) and of all proteins (soluble
and insoluble = total). Results of the simulation for total protein (b) and soluble protein (c).
The results for the total protein are slightly better.

majority of the proteins that deviate between the two measurements show increased fold
changes in the total fraction, consistent with increased aggregation upon heat shock. The
results of the simulation are also slightly better for the total protein measurement, but the
difference between the two simulation results is only modest. Note that the fractionated
proteome measurements for the total fraction are only available for 30 min so that the
measurements after 10 min had to be inferred. Also the number of identified proteins was
lower compared to the corresponding normal proteome measurements (1,635 identified by
the fractionated measurement compared to 2,382 identified by the standard measurement).
This impedes the simulation using the fractionated data and makes the simulations using
the different kinds of proteome data incomparable. We will thus focus on the standard
data even though we miss the effect of aggregating proteins.

Comparison of Fitting Methods

As comparison, we first want to demonstrate the difference of fitting methods using the
data of Lee et al. They analyzed yeast salt stress for which no ribosome profiling but
only gene expression data was available. Thus, they reasoned that it is necessary to fit
the protein synthesis parameter ks for each protein separately, to model differences in the
translation efficiency. Furthermore, because cell-division is arrested for up to 45 min after
the stress is applied, they assumed that protein synthesis varies before and after the arrest
and thus fitted two separate synthesis parameters ks for the one time point before 45 (30
min) and the remaining time points.

Figure 5.6 shows how the simulation results change when the synthesis parameter ks
is fitted in different ways. Given that the ribosome profiling data correlates well to the
expression data in heat shock, one could assume that the same is true in salt stress. Then,
the ks parameter could be calculated from the equilibrium/unstressed state and remain
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Figure 5.6: Comparison of simulated and measured protein fold changes for the Lee et al. data.
Of the 5 available time points only the first (30 min, first row of plots) and the last (240 min,
second row of plots) time points are shown. In the first column the protein synthesis is calculated
from the equilibrium measurements (no stress), in the second column one parameter is fitted for
each protein and applied to all time points and in the last column two parameters are fitted for
each protein, one for the first time point and one for the remaining time points.

unchanged over time. The left column of Figure 5.6 shows how this assumptions affects
the simulation. Most upregulated proteins are expected to show higher fold changes than
those measured over the complete course of the experiment. Also, there are some proteins
that are expected not to change at all, but are regulated in the real measurements. The
second column shows the effect of fitting one ks parameter per protein for the complete
time series. Here, the latter time points are predicted well, but the first time point exhibits
some outliers. The last column shows the results for the model as published, with two fitted
parameters per protein. The latter time points are very similar to the fit using only one ks
parameter per protein. For the first time point, there is now one parameter fitted to one
measurement, so the fit is perfect and completely uninformative. As there was only one
measurement before the cell-division arrest it remains unclear whether the fitted synthesis
rate during the arrest would be able to predict additional protein measurements during
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this period. Without ribosome profiling data and additional time points during the arrest
phase, one cannot decide which mechanisms cause the differences.

In comparison to the data used by Lee et al. our heat shock data contains (only) two
early time points and ribosome profiling data. Using this data we test four different fitting
methods to predict the protein changes:

(a) equilibrium: no fitting, the protein degradation is taken from the measured protein
half-lives and the synthesis rate is calculated from the measurements at equilib-
rium/no stress,

(b) degradation group: the proteins are grouped by their changes in the ribosome
profiling data (up, down and unchanged) and for both the up- and downregulated
groups one factor for the measured protein half-lives is fitted and applied to all pro-
teins in this group, while the unchanged proteins are simulated as in the equilibrium
fit

(c) degradation fit: for each protein a factor is fitted for the measured protein half-lives
and applied to all time points and

(d) synthesis fit: the protein synthesis rate is fitted for each protein separately.

Figure 5.7 shows the results of these methods. In the first column the protein synthesis
rate is calculated from the equilibrium measurements and the measured protein half-
lives were used. Here for the 10 min measurement, most unchanged proteins and also some
upregulated proteins are predicted correctly, but there are many outliers that show less
pronounced fold changes than expected. This trend becomes even more obvious in the
30 min measurements, where also many unchanged proteins are expected to show more
extreme changes.

In the second column the proteins are grouped by their translation changes (RP up, RP
down and RP unchanged) and for each of these groups different degradation factors are
assumed (degradation groups). The underlying rational is that some proteins become
less stable, some are not affected and some are becoming more stable, e.g. because they are
protected by chaperones. The changes in the translation correspond to the cell’s reaction
to these modified protein stabilities in order to maintain homeostasis. Thus we can use
the changes in the translation to define the groups of proteins whose stability is affected
similarly by heat. The measured protein half-lives are then modified by a factor that was
fitted for the corresponding group to take the altered stability into account. We fit one
factor each for the proteins with up- and downregulated translation and use the measured
half lives for the unchanged proteins. For the RP up proteins modifying the half lives by a
factor of 0.57 yielded the minimal fold change deviations, while for the RP down a factor of
1.69 was optimal. This corresponds to increased degradation for the upregulated proteins
and decreased degradation for the downregulated proteins. This fit yielded fewer outliers
in the comparison of the measured and simulated fold changes and especially after 30 min
the performance of the fit improved.
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Figure 5.7: Comparison of the simulated and measured protein fold changes at 37◦C using different
fitting methods. Below each plot the percentage of noise-consistent proteins (see Table 5.1) is
given. The degradation and synthesis fits nearly perfectly reproduce the measured fold changes,
possibly due to overfitting. The proteins that are up- and downregulated in the ribosome profiling
(RP) data are highlighted, as well as the heat shock protein (HSPs). All HSPs that could be
simulated are near the diagonal for all fits.

For the two fits shown in the last two columns, it is assumed that heat can have different
effects on individual proteins. Some proteins are unstable, aggregate and subsequently
degrade much quicker than under equilibrium conditions, or their protein synthesis is
affected by ribosome stalling or similar mechanisms. The third column shows the results
for the degradation fit when the protein decay rate is fitted, while in the fourth columns
the protein synthesis rate is optimized by the synthesis fit. As protein decay follows an
exponential function while protein synthesis grows linearly the two fits are not equivalent.
For both fits the changes after 30 min could be simulated correctly for most proteins, while
at 10 min there are more outliers. Overall, both fits are quite similar so that one cannot
decide whether an alteration of protein synthesis or decay is the main factor that leads to
the differences between the simulated and measured changes under equilibrium conditions.

Figure 5.8 shows the comparison of simulated and measured protein fold changes at
42◦C. Overall, for all fitting variants the measured fold changes cannot be reproduced as
good as for 37◦C. The most striking outliers are a group of proteins that are strongly
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Figure 5.8: Comparison of the simulated and measured protein fold changes at 42◦C using different
fitting methods. Below each plot the percentage of noise-consistent proteins (see Table 5.1) is
given. For all fitting variants the fold changes could be reproduced inferior to 37◦C. For a group
of proteins the downregulation is more pronounced after 10 min compared to 30 min, while their
translation does not show a similar pattern. This indicates a time-dependent mechanisms that
cannot be modeled with the limited number of measured time points available here.

downregulated after 10 min but whose protein abundance does not decrease further after
30 min, but instead stays the same or even increases. For most of these proteins the
translation is not increased between 10 and 30 min, but stays at the same level or even
decreases. Thus, as the direction of the changes on translation and protein level contradict
each other, these protein changes cannot be explained by synthesis and decay rates that are
constant over time. To model such a time-dependent mechanisms additional measurements
at additional time points are necessary.

For the changes after 30 min of heat shock two independent proteome measurements
are available that can be used to evaluate the fitted parameters. Figure 5.9 shows the
comparison of simulated and measured changes when the parameters that were fitted for
the proteome time series are applied to two independent proteome measurements after
30 min. The comparison of the different types of fits show that the degradation fit
and synthesis fit that both use individual parameters for each protein yield many more
outliers in the independent test sets, indicating overfitting.
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Figure 5.9: Comparison of the simulated and measured protein fold changes when the fitted
parameters are applied to independent proteome datasets. Below each plot the percentage of
noise-consistent proteins (see Table 5.1) is given. Here we additionally highlight the proteins
that were consistently measured (i.e. fold change difference below 0.5) between the two test set
measurements. Most proteins that deviate from the diagonal are not measured consistently and
might be errorneous measurements.

Moreover, we analyzed systematically for each dataset and fitting method how many
proteins could be simulated within their error margin. For this we determined for each pro-
tein the interval of simulation results when different replicates of the input data were used.
If this range of simulated protein abundances overlaps with the interval of the replicates of
the proteome measurement, the protein is correctly predicted given the measurement noise.
Table 5.1 shows the fraction of correctly predicted proteins for each combination of fitting
method and input datasets for both 37◦C and 42◦C. In general, the results of most fitting
methods perform better on the 37◦C data. In the fractionated proteome data, the total
fraction does not perform better than the soluble fraction, as would be expected if unmea-
sured aggregated proteins contribute to the inconsistency between ribosome profiling and
proteome measurements. The degradation groups fit showed a clear improvement over
using the equilibrium simulation. For the normal setup 76% of all proteins are simulated
within their error margin at 37◦C. For the synthesis fit and the degradation fit this
number increase only moderately to 84% and 81% respectively, even though many more
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parameters are used. Given these results together with the results of the independent mea-
surements, the degradation groups fit is the most parsimonious fit that yields sufficiently
good results.

5.5 Discussion

The expression of hundreds of genes are up- or downregulated in the heat shock response
in yeast. On the protein level, however, there are far fewer and less pronounced changes.
This inconsistency could be explained by a change in translation, but ribosome profiling
experiments showed that the ribosome-bound mRNAs exhibit similar changes as the total
mRNA. However, the ribosomes are not distributed uniformly over the transcript, but are
enriched in the beginning of the transcript upon stress, so that the ribosomes might be
stalled and less protein is produced.

An alternative explanation for the discrepancies between protein and mRNA levels are
the different abundances and half-lives of proteins and mRNAs. To take these factors into
account a quantitative modeling using equilibrium synthesis and decay rates was done. This
showed that especially for many of the changing genes the simulated protein abundances
are inconsistent with the measured abundances. Even when noise of the measurements is
taken into account only 67% of the proteins could be simulated correctly at 37◦C and at
42◦C this fraction is even lower at 34%.

Moreover, we used various fitting variants to analyze different hypotheses for the cause
of the deviations. Overall we tested four different hypotheses: (a) there is no change com-
pared to equilibrium conditions, (b) the proteins with up- and downregulated translation
are affected differently by the heat: the degradation of the upregulated proteins is increased
while it is decreased for the downregulated proteins, (c) the degradation changes for each
protein individually and (d) the synthesis rate changes for each protein individually.

Using these variants the changes in protein abundances can be simulated and com-
pared to the changes observed in the time series measurement as well as to independent
measurements after 30 min. This showed that the fits assuming an independent parame-
ter per protein (either for synthesis or decay) are prone to overfitting. Including different
degradation rates for the proteins that are up- and downregulated in the ribosome profiling
data notably improved the results compared to the simulation using equilibrium param-
eters. It is thus the most parsimonious fit as it involves only 2 parameters and provides
robust good results. The rationale behind this fit is that some proteins are degraded faster
when the temperature is increased, and in order to maintain homeostasis the translation
of these proteins is increased to compensate for the increased degradation. Another group
of proteins become more stable upon heat, so that the cell can decrease their translation
to maintain homeostasis and more ribosomes are available for the increased translation of
the proteins with increased degradation.

Unfortunately, our measurements only cover two time points with increased temper-
atures (10 and 30 min), which limits the usefulness of the simulation. Additional mea-
surements at further time points would increase the confidence in the conclusions taken
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from the simulation and it could be possible to also model a time-dependent mechanism
to explain the effects observed at 42◦C.
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applied to trainings set test set
37◦C 42◦C 37◦C 42◦C

fit data t10 t30 all t10 t30 all t30 t30 t30 t30

e
q
u
il

ib
ri

u
m normal 0.82 0.80 0.67 0.58 0.49 0.34 NA NA NA NA

stalled 0.83 0.83 0.69 0.60 0.53 0.36 NA NA NA NA
fract. soluble 0.78 0.85 0.77 0.75 0.76 0.69 NA NA NA NA
fract. total 0.78 0.83 0.73 0.64 0.71 0.59 NA NA NA NA
fract. total+stalled 0.79 0.84 0.75 0.66 0.65 0.55 NA NA NA NA

d
e
g
r.

g
ro

u
p

s normal 0.88 0.86 0.76 0.69 0.69 0.54 0.79 0.82 0.73 0.63
stalled 0.88 0.89 0.79 0.68 0.70 0.53 0.80 0.82 0.71 0.64
fract. soluble 0.85 0.85 0.80 0.76 0.78 0.72 NA 0.83 NA 0.64
fract. total 0.83 0.87 0.79 0.67 0.73 0.61 NA 0.81 NA 0.63
fract. total+stalled 0.84 0.86 0.78 0.66 0.72 0.60 NA 0.81 NA 0.64

d
e
g
ra

d
.

fi
t normal 0.83 0.99 0.81 0.74 0.98 0.67 0.77 0.82 0.72 0.65

stalled 0.82 0.99 0.80 0.73 0.98 0.67 0.77 0.81 0.73 0.66
fract. soluble 0.89 0.98 0.89 0.89 0.97 0.86 NA 0.73 NA 0.53
fract. total 0.88 0.99 0.87 0.82 0.97 0.78 NA 0.71 NA 0.50
fract. total+stalled 0.89 0.99 0.88 0.83 0.97 0.79 NA 0.71 NA 0.51

sy
n
th

e
si

s
fi

t normal 0.85 1.00 0.84 0.72 0.91 0.70 0.79 0.81 0.72 0.62
stalled 0.84 1.00 0.84 0.70 0.91 0.68 0.78 0.81 0.71 0.62
fract. soluble 0.94 0.99 0.94 0.94 0.99 0.94 NA 0.62 NA 0.47
fract. total 0.91 1.00 0.91 0.86 1.00 0.86 NA 0.68 NA 0.45
fract. total+stalled 0.91 0.99 0.91 0.85 1.00 0.85 NA 0.67 NA 0.47

Table 5.1: Overview of simulation results for both 37◦C and 42◦C. Each cell gives the fraction of
proteins whose predicted interval given noise overlaps with the observed interval of the replicates
for the two time points and those proteins with overlapping intervals for both time points. The last
four columns show the results when the parameters that were fitted for the corresponding dataset
are applied to the two independent test sets. As the fractionated measurements are one of the
two test sets these results are omitted. Note that different subsets of proteins are available for the
different proteome datasets (normal/stalled and fractionated) which makes them incomparable
and that the fractionated measurements are only available for 30 min and had to be infered for
10 min.
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Chapter 6

YESdb: Interactive Integrated
Analysis of Stress Datasets

Motivation

In the last chapter we described a very specific approach for the integrated analysis, that
is used to model in detail a specific part of the central dogma of biology using a specific
set of measurements. Here, a much more general approach is used to integrate multiple
datasets that can be used to analyze various research questions using different kinds of
measurements.

Here, we describe a Petri-net based workflow system that uses fundamental operations
to define, combine and characterize sets of interesting genes from multiple datasets. This
allows to tackle various research questions, such as the differences between different stimuli
or which technical biases exist on different experimental platforms.

While several databases such as GEO, SRA or PRIDE exist that contain large col-
lections of publicly available high-throughput datasets, the direct use of such integrative
approaches in these large-scale databases is hindered by the need to find and preprocess the
available datasets for the given research question. These huge repositories often provide
both raw and processed data, but not the differential data that is most suitable for an
integrative analysis.

YESdb is a database that contains preprocessed differential datasets of the yeast stress
response. The datasets are annotated with the kind and strength of the applied stress, the
strain and experimental technique that were used and the time at which the measurement
was taken as well as the publication date. A web interface allows to quickly find relevant
datasets that match a given combination of these annotations and analyze them using the
workflow system.

The results of each step in such a workflow can be visualized in an interactive report
that can also contain workflow independent visualization that e.g. characterize the selected
datasets. This way, comprehensive reports can be created that can also be saved and
shared.
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Availability

YESdb is available at

https://services.bio.ifi.lmu.de/YESdb

6.1 Introduction

More and more high-throughput data is made publicly available in databases like GEO
[6], SRA [62] or PRIDE [98]. Published data can be used to complement newly measured
data in various ways. Meta-analyses integrate diverse datasets from different studies,
tissues or species to draw unbiased conclusions. While meta-analyses usually focus on
data from the same or similar platforms, another way to benefit from published data is to
integrate datasets from the same or a similar condition measured on different platforms (e.g.
RNAseq and microarray data). Systematic biases of one platform can thus be identified
and corrected for. Similarly, datasets that measure different levels (e.g. expression and
protein levels) of the same condition can be combined to obtain a more complete picture
of the changes in the cell.

Even though the integration of multiple datasets can improve the analysis many stud-
ies ignore published data that could be integrated in their analysis. The first hurdle for
integrative analyses is of course to find data that fits, which often involves reading detailed
experimental descriptions to uncover how similar the conditions are. Furthermore, inte-
grative analyses are often hindered by the need to preprocess the raw data that is stored
in the public databases. Especially when the published data is measured on a different
platform, a different preprocessing workflow has to be used.

To facilitate the use of published data some databases offer analysis possibilities directly.
GEO introduced the GEO2R tool which allows to use GEO datasets directly in R analyses.
This is a very powerful tool but limited to users that are familiar with the R programming
language. Other databases such as MEM [2] and SPELL [51] also allow the user to do
some analyses directly on their website, but they focus mainly on co-expression studies.

https://services.bio.ifi.lmu.de/YESdb
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Workflow managers (see [67] for a recent review) enable the user to conduct complicated
pipelines to process the data. This allows the user to easily test the influence of parameter
settings, or the choice of specific methods. A major limitation for using a workflow manager
for an integrative analysis is the search for and import of the already published data.
Furthermore, pipelines are typically used for a standard analysis of the data (e.g. to
derive the differentially expressed genes in an experiment), as the more specific downstream
analyses cannot normally be re-used for another experiment, and the next step can often
not be defined in advance, as it depends on the results of the previous step.

The stress response in Saccharomyces cerevisiae is an especially well studied system
for which many different datasets are available. However, there are still many unsolved
questions of how the system is regulated for the different kinds of stress. To study the
conserved and divergent parts of the system an integrative analysis is needed.

yStreX [100] collected, classified and preprocessed several datasets measuring different
stress conditions in yeast. It allows to identify differentially expressed genes, to find con-
ditions in which a gene is differentially expressed and enrichment analyses for single and
multiple conditions. However, it has also several limitations: the collected datasets are
required to have more than two replicates, so that many time series analyzing different
kinds of stress with one replicate per time point are missing. Furthermore, it contains only
gene expression data measured by microarrays, so that proteomics or sequencing datasets
are not contained. This results in a total of 121 conditions, which is only a small subset of
the available data.

Here, we describe YESdb a database that contains preprocessed differential expression
data for various types of stress in the model organism Saccharomyces cerevisiae. To make
best use of the data, the database contains a Petri net-based workflow system, that allows
the user to integrate multiple datasets. The results of the workflow are visualized in
interactive reports, that contain a visual summary of each step in the workflow. Several
runs of a workflow with different parameters can be directly compared in these reports.
This way, the impacts of individual parameters in a complex analysis can easily be analyzed.

6.2 Data

6.2.1 Data search strategy

To find the relevant datasets, the meta-data from GEO was filtered for datasets measuring
RNA in Saccharomyces cerevisiae, and the resulting datasets were searched for ’treat-
ment’/’treated’, ’adaptation’/’adapted’, ’exposure’/’exposed’, ’response’ and ’stress’. This
yielded 386 GEO Series of which most were microarray datasets contained in GEO and
only 35 corresponded to high-throughput sequencing datasets contained in SRA. For pro-
teomics data, there are far fewer datasets available in PRIDE, which are unfortunately
less standardized and less comprehensively annotated. Therefore, we manually selected
the relevant datasets for which MaxQuant [22] output was available and for which the
individual conditions could be identified in the output.
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Figure 6.1: Overview of the data sources and web interface features of YESdb. All stress response
datasets from GEO, SRA and PRIDE are selected, processed to differential conditions (DC ) and
annotated. The web interface features an intuitive data selection interface, workflows that allow
to execute complex analyses and interactive reports to summarize and visualize the results.

6.2.2 Data processing

YESdb contains already differential conditions (DC ), so that the user does not have to
identify replicates and the conditions that should be compared. To construct this config-
uration we used a semi-automatic framework that first automatically identifies replicates
and control/unstressed conditions which are then manually corrected and completed. Ad-
ditionally, time or concentration courses are saved as series, i.e. lists of DCs together with
the corresponding time or concentration.

For GEO the datasets are already processed in most cases. A simple median normal-
ization is used to make the individual samples comparable while not distorting the already
processed (and typically normalized) values too much. The configurations are then used to
calculate log2 fold changes and t-test p-values where applicable (i.e. raw measurements and
replicates are available). The SRA datasets are mapped by ContextMap [12] and differen-
tial expression was analyzed by DESeq [70]. For PRIDE SILAC fold changes of replicates
are combined by taking the mean and log2 fold changes and t-test p-values are calculated
for LFQ data. In all cases, replicates and raw measurements are saved if available so that
they can be used for visualization and filtering.
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annotation DC series children
platform 2933 392 166

microarray 2701 356 153
sequencing 186 29 8
mass spectrometry 46 7 2

publication year 2701 298 19
strain 2866 380 322

wild type 2377 308 117
knock-out 820 113 203

stress 2755 378 84
other 860 102 14
nutrient adaptation 636 90 5
oxidative stress 460 58 20
osmotic stress 361 56 19
temperature 278 47 14
DNA instability 132 25 2
fermentation 105 20 -
mating response 36 6 -

time 2072 - 124
30 min 283 - -
60 min 109 - -
2 h 141 - -
20 min 92 - -
15 min 72 - -
10 min 65 - -
5 min 57 - -
...

Table 6.1: Overview of the annotations of the datasets contained in YESdb. Only the first level
of annotation is shown, most annotations contain additional levels such as the specific platform or
strain used or the strength of the applied stress. For the time annotation only the most frequent
entries are shown. The number of all (also indirect) child annotation terms are given in the last
column. The data is processed to differential conditions (DC ) and (time or concentration) series.

6.2.3 Data annotation

We created an ontology of annotations to make it easy to find the relevant datasets for a
specific analysis. This ontology contains the experimental platform, the publication date,
the yeast strain that was used (including which genes were knocked-out), and the kind
of stress that was applied. Each GEO/SRA/PRIDE dataset was manually mapped to all
relevant terms in this ontology. To select the relevant datasets, we provide an easy to use
interface where the ontology can be browsed and the DCs or series annotated to a selected
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term are shown. These entries can then be selected or excluded individually or all at once,
and the entries selected so far can be restricted to those annotated in the currently selected
ontology term. This allows the user e.g. to select all series annotated to heat shock at
37◦C and 39◦C, and restrict this selection to those series that were measured by microarray
and exclude all series that used knock-out strains.

Table 6.1 shows the first levels of this annotation hierarchy. The database contains
2933 DCs and 392 series. Of these 820 DCs measure 203 different knock-out strains and
2.377 DCs measure 117 different wild type strains. Oxidative stress, osmotic stress, carbon
source adaptation and temperature adaptation are the best studied kinds of stress in our
database, containing between 278 and 460 DCs.

6.3 Workflows

We implemented a Petri net-based workflow system to allow the user to easily perform in-
tegrative analyses of the datasets in the database. This system facilitates the identification
of interesting genes from several datasets and to combine them in a flexible way to analyze
different hypotheses. Table 6.2 shows an overview of the available transitions. There are
transitions to define and combine sets of entities, for downstream analyses such as en-
richment or simple network analysis and helper transitions to e.g. modify the differential
conditions.

These transitions can be connected to elaborated workflows. Figure 6.2 shows an ex-
ample workflow. It consists of multiple transitions that can also depend on each other, i.e.
the output of one transition is used as input for another transition. These workflows can
be executed automatically, or single transitions are selected for execution. Executing single
transitions allows to interactively evaluate the results of the transition and modifying the
inputs if necessary, before executing the subsequent steps from the workflow.

The tokens in the workflow system can have several types: DC, series, set, DAG and
network as well as the simple types string, boolean and number. To allow for transitions
that have a variable number of inputs or outputs of the same type (e.g. to calculate the
intersection of the differential genes from several DCs), we introduce the notion of token
lists, which are simply lists of tokens of the same type. There are helper transitions to
combine several tokens to a list token or to isolate the individual tokens from a list token.

The initial tokens can be extracted from the DC and (time/concentration) series con-
tained in the database. Additionally, the DAGs and the corresponding sets of the gene on-
tology [41] and different kinds of networks for yeast, such as YEASTRACT [93], BioGRID
[21], post-translational modification networks [79, 31, 29] and manually curated stress net-
works [59] are available.
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Name Description
Set from DAG loads a list of sets from a DAG, e.g. GO
Set from DiffCond defines a set from a DC by filtering the measurements

(fold change, raw or p-value)
Binary Set Combination combines two sets by set operations (intersect, difference

and union)
Multi Set Combination combines multiple sets by set operations
Count Filter defines a set of the genes that are contained at

least/most a given number of times in a list of sets
Enrichment calculates enrichment of a set in a list of sets
Subnetwork extracts the subnetwork of a set from a network
Reverse fold change swaps case and control conditions of a DC
Dataset fold change generates a new DC that is the fold change between

two DCs (e.g. DC1=stress1 vs control, DC2=stress2 vs
control → DC1 vs DC2=stress1 vs stress2)

Series2DiffCond extracts all DCs from a series
Collector combines several tokens of the same type to a list
Distributor extract the individual tokens from a list

Table 6.2: Overview of workflow transitions. The first block of transitions defines sets of in-
teresting genes, the second block characterizes sets of genes and the last block contains helper
transitions.

6.4 Interactive report

The result of a workflow is not only the final output, but intermediate results can be just
as interesting. To provide a convenient way to get an overview of all the results, the user
can add to each transition one or more visualizers. When the workflow is executed, the
visualizers generate plots, tables or network views, that are all added to one report (see
Figure 6.3). For most transitions there are standard visualizers, but additionally, the user
can also define custom visualizations to be included in the report, by defining the plot type
and inputs. Most visualizations are interactive, so that the associated data of points in a
plot or rows in a table can be retrieved. In the example in Figure 6.3 the genes selected in
the left scatterplot comparing oxidative stress and heat shock are not only listed below the
plot but also highlighted in the right scatterplot comparing oxidative and osmotic stress.

The resulting report can be edited, by adding and removing sections, visualizations, and
descriptive text or changing the order of the elements. This way a report that summarizes
the results of the workflow is created. It can then be saved as an xml file, which can
be uploaded to our website to show the report. This allows to share the results with
collaborators or to save intermediate results for later refinement.

If the workflow is executed again with different inputs, another report with the same
visualizations using the new data is created. If the two runs of the workflow should be
compared, a joined report that contains the results for both runs next to each other is
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Figure 6.2: Example workflow. On the left the Petri net workflow comparing the consistent genes
between heat and salt stress is shown. On the right an overview of all tokens used in the workflow
is shown. The color of the inputs (ellipses) indicate whether it contains a token (green) and the
color of the transitions (boxes) show whether it has been fired (green), can be fired (yellow) or
cannot be fired because input tokens are missing (red).

produced. This allows the user to easily compare different parametrizations of the same
workflow, e.g. to compare the effects of different cutoffs for the definition of differential
genes or analyzing another type of stress.

6.5 Example analysis

Here we present an example analysis that compares the genes involved in two types of
stress: heat shock and osmotic stress. Already in 2000, Gasch et al. [37] showed that
yeast responds similarly to a wide range of different types of stress including heat shock
and osmotic stress. They observed up- and downregulation of two clusters of genes which
they termed ’environmental stress response’. Moreover, the survival of one type of stress
can ’cross-protect’ yeast cells from a different type of stress, as e.g. heat shock increases
tolerance for osmotic stress [75]. To analyze which genes are unique to the two types of
stress and which are shared, we first identify the genes that are consistently changed for
each type of stress, and then these two sets are compared to each other.
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Figure 6.3: An example report. A report consists of sections, with text and interactive visualiza-
tions. An editor allows to modify/add/delete the individual elements and to change their order.
Many of the available visualizations are also interactive. E.g. in the scatterplot shown here, sets
of genes can be selected to highlight them (also in other subplots of the visualization) and to
display the labels of the selected points in a list below the plot.

YESdb already contains a predefined workflow to define the consistently changed genes
from a list of datasets which can be added to an analysis. This predefined workflow
selects for each of the datasets the changed genes and uses the ’CountFilter’ transition to
identify the genes that are changed in a given fraction (e.g. 70%) of all datasets. We call
the resulting set consistently changed genesto capture the ’core’ stress response and not
technical noise or bias. In the predefined workflows contained in YESdb most inputs are
set to appropriate default values, and only the datasets that should be analyzed have to
be selected.

Using our interface, we can select all heat shock datasets measured at 37◦C, exclude all
datasets using knock-out strains and restrict the selection to those datasets measured after
15 min, resulting in 19 datasets. Similarly we can select those 10 osmotic stress datasets
measured 30 min after 0.4M NaCl was added, that did not use knock-out strains. Overall,
5627 and 3488 genes are changing (|fold change| >1) in at least one of the selected heat
shock and osmotic stress datasets, respectively, of which 796 and 1770 are consistently
changed in at least half of the selected datasets.

To compare the sets of consistently changed genes that are the result of the two copies
of the predefined workflow, we add a ’binary set combination’ transition. This transition
applies a set operation (intersect, difference or union) to two given sets. Using this transi-
tion we can define the set of genes that is unique for heat shock or osmotic stress, or the
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Figure 6.4: Example report comparing two runs of the example analysis. On the left genes that
that are changed in at least 50% of all datasets are considered consistently changed, while on the
right a more strict cutoff of 70% is applied. The resulting Venn diagrams are shown side by side
so that the user can easily assess the different results of the analysis.

set of genes that are shared between the two types of stress. There are 725 shared genes
and 71 and 1045 genes unique to heat shock and osmotic stress, respectively. The resulting
workflow is shown in Figure 6.2.

The inputs of this workflow can be varied to analyze the robustness of the results.
We could e.g. change the fraction of datasets for consistently changed genes from 50%
to 70%. This changes the number of consistently changed genes to 59 and 1324 in heat
shock and osmotic stress, respectively. This shows that the selected heat shock datasets
are less consistent than the osmotic stress datasets, maybe because the heat shock at 37◦C
is a very mild stress to which the different wild type strains that were analyzed in the
datasets do not react similarly. To visualize the results of such an comparative analysis,
a report comparing multiple runs of the same workflow can be created. Figure 6.4 shows
such a report. Similarly to the normal report it contains headers and descriptive text
and visualizations. Visualizations that are automatically created from visualizers added
to transitions are shown for all selected runs of the workflow, side by side. This way the
different results can easily be analyzed.

The example presented here is only one of many possible analyses. It can easily be
extended to e.g. characterize the resulting gene set further by gene set enrichment. Similar
analyses can be used to tackle different questions like how different strains react to stress,
how stress strength influences stress response or whether there is a platform bias.
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6.6 Discussion

Public databases like GEO or SRA contain thousands of datasets that often measure similar
experimental conditions. Combining these datasets can yield more robust results and more
insight because technical biases and noise can be removed. If different biological entities like
proteins and gene expression are measured, the integration could provide a more complete
picture of the changes in the cell. Moreover, different experimental conditions can be
compared to identify shared mechanisms.

The stress response system in the model organism Saccharomyces cerevisiae is a well
studied system that is nevertheless not completely understood. There are measurements
for different kinds of stress, different strengths, different time frames and on different
experimental platforms. The integration of these datasets can help to understand the
exact changes in response to a single stress and shared and divergent mechanisms between
different kinds of stress.

The YESdb contains nearly 3000 differential conditions of yeast stress measurements
using microarray, next-generation sequencing and proteomics platforms. It combines the
yeast stress-related datasets of GEO, SRA and PRIDE and provides access to already
preprocessed data on the level of differential conditions. The datasets are annotated to
different kinds of stress, publication years, platforms and strains. An easy to use interface
is used to select the relevant datasets for further analysis.

A Petri net-based workflow system allows to combine a given set of transitions to elab-
orated analyses that identify and combine interesting sets of genes and characterize them.
Even though these transitions correspond to quite simple operations, the possibility to com-
bine them in any way allows not only to perform standard analyses, but also customized
analyses for specialized research questions.

The results of such analyses can be visualized in an interactive report. For most transi-
tions visualizers can be added to the workflow that will automatically add a visualization of
the result of the transition to the report. This can be especially useful to compare different
runs of the same workflow that differ in some parameter. The resulting report contains
the visualizations side by side so that the effect of the changed parameter on the results
of the various steps in the workflow can easily be analyzed. Additionally, the user can
create own visualizations by selecting plot type and inputs from all available inputs and
(intermediate) results. Many of the visualizations are interactive, e.g. tables are sortable
or information about individual points in a plot can be shown. To explain the results and
structure the report, text and subsections can be added to the report, so that a human-
readable report of the analysis can be created. The report can be saved as xml-file and
uploaded to our website to show the report, so that reports can be shared e.g. between
collaboration partners.

The annotation contained in YESdb provides a valuable resource for systematic analy-
ses. It can be used to systematically analyze differences between platforms, strains, types
of stress or the strengths of the applied stress. Furthermore, it contains datasets for 203
knock-out strains, that can be used to compare the effects of the knock-out in different
types of stress or to understand the regulatory mechanisms in general.
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While the system has been demonstrated for stress response in yeast, we think that
also other research questions can benefit from our system. To use the interactive workflows
and reports for another biological system, the corresponding datasets have to be identi-
fied, processed and annotated to create the underlying database. Additionally, the set of
available transitions can be extended to include more complex operations.



Chapter 7

Discussion

The goal of most bioinformatic methods is to build models that help to understand a given
biological system. The resulting models can have different types (e.g. diagrammatic or
formal) and different context-levels. In this thesis two aspects of this tasks are analyzed:
model evaluation and improved model building by integrating different data sources.

The i-score presented in Chapter 2 provides an easy to understand evaluation measure
of bioinformatic methods to predict active TFs. It assesses the target genes whose changes
are strictly inconsistent with the predicted activity states of their corresponding TFs.
Moreover, when optimized directly it provides a lower bound of the number of target
genes that simply cannot be explained given the available expression data and regulatory
network. This lower bound is surprisingly high for most experiments and shows that the
available networks are not yet complete even in well studied model organisms such as yeast.

In recent years new high-throughput sequencing techniques were developed that allow
to identify the regions of the genome where the chromatin is accessible. Both DNase-seq
and ATAC-seq [15, 88, 95] identify regions where the DNA is not tightly packed around
nucleosomes and, thus, can be bound by additional regulatory factors such as TFs. While
these experimental techniques still do not provide a gold standard of which TFs are active
in a given biological condition, differential ATAC-seq or DNase-seq data can yield predicted
TF binding sites whose accessibility is changing, most likely because the corresponding TF
is binding differentially. In contrast to ChIP-seq, ATAC-seq and DNase-seq can be used to
predict the binding of all TFs, only limited by the knowledge of their binding motif and
the quality of the motif matches. When both differential gene expression and differential
chromatin accessibility measurements are available this information can be used similarly
to the i-score to evaluate active TF prediction tools. As a future application of the i-score,
such chromatin accessibility data could be integrated in an evaluation procedure. One
possibility for this would be to filter those edges from the network whose binding sites are
inaccessible and to include edges for binding sites with accessibility changes. Moreover,
the i-score could even be used to look for missing regulations in the gene regulatory net-
work, when the differentially accessible chromatin regions of unexplained target genes are
examined further to find additional motif hits or even overrepresented new motifs.

A different evaluation setup was presented in Chapter 3 where the performance of six
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breast cancer subtype classifiers was evaluated. For this not only an independent cohort
was used, but with Fluidigm also a different experimental platform for gene expression
measurement. Most classifiers performed well in this setup, showing that they are very
robust and that qPCR measurements of Fluidigm can be used as input for these classifiers.
The results of our analysis are compiled in an interactive iReport that allows to analyze
the underlying data down to the individual patient.

It would be interesting in the future to extend this interactive analysis of different
subtype classifiers to other cohorts. There are several large cohorts available for which
the expression was measured using microarrays, so that measurements for all genes needed
by the subtype classifiers should be available. This way the performance for different
cohorts could be compared directly to each other and also additional available data could
be integrated. The Cancer Genome Atlas (TCGA) [18] provides not only gene expression
data for over 1000 breast cancer tumors, but also information about SNPs, methylation
and copy number variations. Integrating all this information in an interactive iReport
could help to formulate new hypotheses about the subtypes of breast cancer or improve
the existing classifiers.

The second objective of this thesis is to present methods that generate bioinformatic
models that help to explain biological systems. RelExplain (Chapter 4) generates diagram-
matic models of biological processes by identifying the subnetwork that best explains the
given data for a specific biological process. In contrast to other significant area search
methods it takes the functional annotation into account and, thus, yields subnetworks that
are specific for the given process. This allows to analyze processes in more detail that are
hypothesized to be interesting (e.g. because they were identified to be enriched for chang-
ing genes). RelExplain also incorporates consistency of regulatory edges in its edge scoring
and is superior in extracting manually curated subnetworks from a context independent
large scale network.

The edge scoring used by RelExplain could easily be extended to integrate additional
types of measurements in the future. Different types of measurements are meaningful for
different types of edges depending of the biological entities (genes, proteins, TFs, etc.)
that are involved in the relation described by this kind of edge. This can be integrated
into the scoring similarly to the consistency scoring for regulatory edges. Another future
direction for RelExplain would be to score the resulting explanations for all processes and
use this information to improve the ranking of processes given by enrichment methods. The
rational behind this approach is that processes that are false positives in the enrichment
method probably will yield worse explanations in RelExplain as the contained changing
genes are not directly related.

In Chapter 5 we analyzed the use of formal models using mathematical equations to
predict the expected changes in protein abundance given the observed changes in transla-
tion during the yeast response to heat shock. First, we analyzed the qualitative changes
and found that most genes that are changed consistently in the gene expression and ribo-
some profiling data remain unchanged in the proteome data. To analyze this inconsistency
we applied mathematical modeling to also incorporate the effects of protein half lives and
absolute abundances. We tested different hypotheses of how the synthesis and/or degra-
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dation rates had to change to explain the inconsistencies between proteome and ribosome
profiling data. The most parsimonious fit that yielded good, robust results assumes that
there are groups of proteins for which the degradation rate is affected similarly. When
the temperature rises, some proteins become more unstable and to compensate for their
increased degradation, the translation of these proteins is increased. Another group of
proteins become more stable (e.g. because they are stabilized by chaperones) and their
translation is decreased. These observed huge changes in gene expression and subsequently
translation rate mainly ensure protein homeostasis in the changed environment.

A more general approach to integrate different datasets is described in Chapter 6. Here
we present a Petri net like workflow system that can be used to define and characterize gene
sets across multiple yeast stress response datasets. The corresponding database YESdb
contains all yeast stress response datasets from GEO, SRA and PRIDE. These datasets
are annotated with the kind, strength and duration of the stress as well as the experimental
platform, publication date and the used strain. These annotations can easily be combined
to find and select all relevant datasets to be analyzed in the workflow system. The available
transitions are basic operations to define and characterize gene sets that can be combined
to elaborated workflows. The results of such an analysis can be summarized in a report
with interactive plots and tables to share the results.

A future application using the YESdb data would be a comprehensive comparison of the
different types of stress or different strengths of the same stress. As the data is extensively
annotated the available datasets for such an comparison can easily be selected. Also the
influence of different confounding factors such as the experimental technique or the used
strain can be systematically analyzed.

While the chapters in this thesis cover methods to understand quite diverse biological
systems with different levels of detail, there are some common themes that proved to be
important for many different methods.

When complex biological systems are analyzed the models are often complex themselves
and challenging to visualize. Either the level of detail that is shown in the visualization
is reduced to only show the overall picture, or only some aspect or part of the system
is visualized in detail. An interactive visualization can provide both by linking parts
of the overall picture with the detailed visualization. This allows to browse the overall
results down to the raw data that was used to generate them and, thus, provides a more
comprehensive understanding. The iReport that is available for the evaluation results of
the breast cancer subtype classifiers is an example of such an interactive visualization. The
user can e.g. select subsets of patients from a result table and analyze them in more detail.

Another application of interactive visualization is to explore alternative solutions. Many
methods use some optimization to provide the best solution. They do however only seldom
report suboptimal solutions even though they are often only slightly worse than the opti-
mum. When the goal is to understand the model itself it is important to understand which
parts of the model are essential for its quality and which can be altered without much
loss of quality. For both the i-score and RelExplain such an interactive exploration of the
solution space is available. For the i-score the user can interactively add and remove active
TFs to the solution and analyze the effect on the i-score. RelExplain allows to analyze
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alternative paths between genes contained in the optimal solution that are only worse by
the predefined margin. This way also the importance of genes that are not differential or
not contained in the analyzed process can be assessed.

The other overall principle is that the integration of all available data is needed for a
good model. To provide a comprehensive, robust explanation of the system different types
of data, measuring different aspects of the system should be integrated. The methods
presented in this thesis integrate different types of data: the i-score and RelExplain inte-
grate expression data with regulatory networks, as well as functional annotation in case
of RelExplain. For the evaluation of the breast cancer subtype classifiers over 700 gene
expression measurements and the corresponding clinical data are integrated, and in YESdb
nearly 3000 differential conditions measuring some kind of stress response in yeast are in-
tegrated. The analysis of the heat shock response used three different types of data: gene
expression, ribosome profiling and proteome. For the quantitative modeling additionally
protein half lives and total abundances were integrated. The necessity of so many different
types of measurements hinders of course the applicability to different systems. But when
this data is available it provides a very detailed view on the changes in the system.

In conclusion, depending on the biological problem and the available data at hand
different levels of detail can be incorporated in the specific bioinformatic model. Models
integrating many different datasets can provide a deeper understanding of the biological
system as they e.g. provide quantitative predictions, but the needed input data limits their
application to other biological systems. On the other hand, models that can be applied
more widely often provide limited details. Thus, for each biological problem the model has
to be tailored to include all available relevant data but not require additional data.
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