
   

 I 

DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES 
 

DER FAKULTÄT FÜR BIOLOGIE 
 

DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN 

 
 

 

Functional analysis of Tyrosine-1 of mammalian 
RNA polymerase II CTD 

 
 
 
 
 
 
 
 
 

 

 
NILAY SHAH 

April 2017 
 

 
Completed at the Helmholtz Center Munich 

German Research Center for Environment and Health (GmbH) 

Institute of Functional Epigenetics 

Department of Molecular Epigenetics 

 

  



 

  II 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Date of submission:    26th of April 2017 
 
 
First Examiner:     Prof. Dr. Dirk Eick 
 

Second Examiner:    Prof. Dr. Angelika Böttger 
 
 
Date of the oral examination:   23rd of October 2017 

 

 

 



 

  III 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my parents 

  



 

  IV 

 
 
Eidesstattliche Erklärung  
 
Ich versichere hiermit an Eides statt, dass die vorliegende Dissertation von 

mir selbstständig und ohne unerlaubte Hilfe angefertigt ist.  

 

 

Erklärung 
 
Hiermit erkläre ich, dass die Dissertation nicht ganz oder in wesentlichen 

Teilen einer anderen Prüfungskommission vorgelegt worden ist. 

 

Ich erkläre weiter, dass ich mich anderweitig einer Doktorprüfung ohne Erfolg 

nicht unterzogen habe.  

 

 

 
 

 

 
München, im April 2017 

 

 

Nilay Shah 



   

 V 

Summary 

The largest subunit of RNA polymerase II (Pol II), Rpb1, contains an unusual 

carboxy-terminal domain (CTD), composed of tandem repeats with the 

consensus sequence of YSPTSPS. The CTD is evolutionary conserved from 

yeast to humans and is considered as a master regulator of eukaryotic 

transcription. The CTD undergoes dynamic post-translational modifications 

and serves as a binding platform for the recruitment of proteins that are 

involved in various stages of transcription. 

Previous work from our laboratory using a Rpb1 knockout-knockin system 

demonstrated that in mammalian cells the substitution of Tyr1 by 

phenylalanine (Y1F) in repeats 4-51 of the CTD prevents the formation of the 

actively transcribing Pol IIO form and leads to the degradation of the CTD 

(Descostes et al., 2014). In this work, I tried to elucidate the role of Tyr1 of 

mammalian CTD in the process of transcription, by designing and analyzing 

mutants, in which Tyr1 was exchanged by phenylalanine only in the defined 

sections of the CTD.  

All tyrosine mutants in this work stably expressed the actively transcribing 

form of Pol II. The mutant YFFF, in which the last 3/4th of the CTD heptads 

had Y1F mutations, demonstrated several interesting transcription 

phenotypes.  First, the mutant showed pervasive read-through (RT) 

transcription that extends up to several hundred kbs downstream of 3’ end 

sites at a genome-wide scale. Second, the 3’-end processing and 

polyadenylation of mRNA in the mutant YFFF was not unaffected, suggesting 

global termination defects in the mutant. Third, the mutant YFFF 

demonstrated reduced promoter-proximal pausing and a delayed pausing at 

3’ end of genes in ChIP-seq analysis. Finally, mass spectrometry (MS) 

analysis revealed the loss of interaction of two large complexes, Mediator and 

Integrator, with Pol II in the mutant YFFF, providing a hint for the role of these 

complexes in the regulation of transcription termination and promoter-proximal 

pause/release. In conclusion, this work unravels the role of Tyr1 of the CTD in 

the regulation of transcription-coupled processes and paves the way for 

understanding of the highly complex and poorly understood mechanism of 

transcription termination. 
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1. Introduction 

Gene expression is a fundamental and highly complex process that is tightly 

regulated in every living organism. First, the genetic information stored in the 

deoxyribonucleic acid (DNA) is transcribed into ribonucleic acid (RNA); which 

is then translated into proteins. DNA-dependent RNA Polymerases (RNAPs) 

are the enzymes that transcribe DNA into RNA, by a process known as 

transcription.  

1.1. RNA Polymerases – discovery and functions 

RNAP was first discovered independently by Jerard Hurwitz and Samuel 

Weiss, in the year 1961 (Hurwitz, 2005). Bacteria and archaea contain a 

single RNAP (Kusser et al., 2008), while in eukaryotes, three specialized 

forms of RNA Polymerases - Pol I, Pol II and Pol III transcribe distinct classes 

of genes (Werner et al., 2011).  

In the year 1969, Robert Roeder and William Rutter reported the discovery of 

three chromatographically separable forms of eukaryotic RNA Polymerase 

(Roeder et al., 1969). The classification was based on the differential 

response of these enzymes to inhibition by α-amanitin, a toxic bicyclic 

octapeptide from the Amanita phalloides mushroom. Simultaneously, in the 

year 1970, it was found that α-amanitin was highly specific inhibitor of one of 

the two RNA Polymerase activities present in calf thymus (Kedinger et al., 

1970). Pol I is completely resistant to α-amanitin, while Pol III shows 50% 

inhibition at the concentration of 20 µg/ml. Pol II is the most sensitive to α-

amanitin and can be completely inhibited at the concentration of 0.5 µg/ml 

(Schwartz et al., 1974).  

Pol I transcribes most of the ribosomal RNA (rRNA) and contributes to more 

than 50% of total transcripts in the cell (Russell et al., 2005), while Pol III 

transcribes transfer RNA (tRNA) and several non-coding RNAs (ncRNAs) 

(Dieci et al., 2007). Pol II, the most widely studied polymerase transcribes 

messenger RNA (mRNA) and several small nuclear RNA (Nikolov et al., 

1997). RNA Pol I, II and III contain 14, 12 and 17 subunits, respectively 

(Vannini et al., 2012), of which, five subunits – Rpb5, Rpb6, Rpb8, Rpb10 and 
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Rpb12 are common in all three polymerases (Hahn, 2004; Kimura et al., 

2001). 

1.2. RNA Polymerase II carboxy-terminal domain (CTD) 

The largest subunit of RNA Polymerase II (Pol II), Rpb1, carries a unique and 

flexible structure at its carboxy-terminal domain that is termed as CTD. The 

CTD is composed of multiple tandem heptad repeats with the consensus 

sequence, tyrosine - serine - proline - threonine - serine - proline - serine 

(Y1S2P3T4S5P6S7) (Heidemann et al., 2013). This highly repetitive domain, 

which is the focus of my PhD thesis, was first described independently by 

Jeffrey Corden (Corden et al., 1985) and L.A. Allison (Allison et al., 1985) in 

the year 1985. 

The sequence YSPTSPS of the CTD is highly conserved across various 

taxa’s of organism, but the number of repeats varies remarkably. There are 26 

repeats in S. cerevisiae (Allison et al., 1988), 29 repeats in S. pombe (Schwer 

et al., 2011) and 52 repeats in mammalian CTD (Corden et al., 1985) (Figure 
1). The CTD undergoes various post-translational modifications and serves as 

a docking platform to recruit cellular factors at appropriate stages of the 

transcription cycle. In next chapters, I will describe in detail, the genetic 

analysis of the CTD in yeast and mammals, its post-translational modifications 

and its role in the regulation of transcription processes.  

1.3. Genetic analysis of the CTD in yeast and mammals 

Since the discovery of the CTD, various laboratories have performed 

extensive genetic studies on the CTD in yeast and mammals. In doing so, 

different aspects of the CTD like, the structure and composition of the CTD, 

minimal length requirements of the CTD, phenotypes linked with mutation of 

individual amino acids in heptad repeats and functional units of the CTD have 

been studied. 
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1.3.1. Structure and composition of the CTD in yeast and 
mammals 

The structure of the CTD displays several intriguing features. Although the 

length of the CTD varies remarkably in yeast and mammals, most of the 

heptads in yeast and mammals follow the consensus sequence, YSPTSPS, 

order (Figure 1). 

	  
Figure 1: Composition of CTD sequences in S.cerevisae (left), S.pombe 
(middle) and mammals (right). Consensus sequences (YSPTSPS) are 
shown in black. Divergences from the consensus heptads are marked in red. 
The number on the left represents the repeat number of heptad. Modified from 
(Eick et al., 2013). 

In mammals, there are 21 consensus heptads, most of which are present in 

the proximal half of the CTD, whereas most of the less conserved, divergent 

heptads are present in the distal half of the CTD. An evolutionary tree based 

on the Rpb1 domain derived by Stiller and Hall revealed that the CTDs of 

many organisms, mostly multicellular forms, deviate from the canonical 

structure. Thus, it appears that the evolution of higher eukaryotic taxa is 

associated with specific alterations of the CTD resulting in deviations from the 
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consensus repeat structure (Yang et al., 2014). Whether yeast and 

mammalian cells require all the heptads of CTD for viability, and what is the 

minimal length requirement of CTD in yeast and mammalian cells will be 

discussed in the following chapter. 

1.3.2. Minimal length requirement of the CTD in yeast and 
mammals 

Deletion of the entire CTD is lethal in yeast and mammalian cells, indicating 

that CTD is essential for cell growth and functions (Allison et al., 1988; 

Chapman et al., 2005; Meininghaus et al., 2000). However, deletion of a 

significant number of CTD repeats is well tolerated. The CTD of S.cerevisiae 

contains 26 repeats, but only eight consensus heptad-repeats are required for 

cell viability (West et al., 1995). In S.pombe (29 repeats), the CTD with 10-13 

repeats resulted in slow growth and cold-sensitive phenotypes, while the CTD 

with 16 or more repeats was sufficient for wild-type like growth (Schneider et 

al., 2010). The minimum number of CTD repeats needed for growth in 

mammalian cells is not exactly determined, but the CTD with only 31 repeats 

shows intermediate phenotype with reduced cell proliferation and viability 

(Meininghaus et al., 2000). Furthermore, the mice homozygous containing 39 

repeats are smaller than the wild-type littermates and have a high degree of 

neonatal lethality (Litingtung et al., 1999).  

Interestingly, in mammalian cells, a CTD-less Polymerase (termed as Δ5 

mutant) is transcriptionally inactive on chromatin templates. Pol II Δ5 mutant 

can bind to the c-myc promoter with same efficiency as the wild type Pol II 

CTD, but does not form a stable initiation complex and does not transcribe 

promoter proximal sequences (Lux et al., 2005). This suggests that the CTD 

is required for the transition from transcription initiation to promoter-proximal 

pausing. In mammalian cells, repeats 1-3 and repeat 52 are important for the 

stability of CTD. Deletion of repeats 1-3 or 52; or replacement of repeats 1-3 

with consensus heptad-repeats, lead to cleavage and degradation of the CTD 

(Chapman et al., 2005). Intriguingly, the CTD mutant that had repeats 4-51 

replaced with consensus repeats shows wild type like growth and can fulfill all 

essential functions for proliferation. This implies that the non-consensus 

repeats are dispensable and not essential for cell proliferation. However, the 
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arginine residue in repeat 31 of the CTD has been described in the regulation 

of the snRNA and snoRNA gene expression (Sims et al., 2011), suggesting 

that non-consensus repeats may have gene specific functions. Thus, the 

deletion studies of the CTD in yeast and mammalian cells show that not all 

heptads of the CTD are essential and cells are able to grow with less than the 

natural number of heptad repeats. The substitution of which amino acids 

within the heptad-repeat of the CTD are tolerated in yeast and mammalian 

cells is described next.  

1.3.3. Phenotype linked to the mutation of individual amino acid 
within the heptad-repeat 

The role of amino acids within the heptad-repeats for cell growth and viability 

can be studied by mutation of the respective amino acids in all repeats. In 

S.cerevisiae, the work by West et al., showed that the substitution of Tyr1 to 

phenylalaine (Y1F) leads to a lethal phenotype (West et al., 1995). Further, 

the substitution of Ser2 or Ser5 with alanine (S2A or S5A) or glutamate (S2E 

or S5E) did not support cell viability (West et al., 1995). This shows that the 

phosphorylation of both residues is essential for CTD function. The lethal 

phenotype arising upon the substitution of Ser2 and Ser5 by glutamate is an 

indication that glutamate cannot substitute for the phosphate group and/or 

that both, phosphorylation and dephosphorylation of Ser2 and Ser5 of the 

CTD are critical. The replacement of Thr4 to alanine (T4A) and Ser7 to 

alanine (S7A) is tolerated in S.cerevisiae (Stiller et al., 2000), indicating that 

modifications of these residues are not essential for cell viability.  

More recently, similar study has been performed for S.pombe CTD by the 

laboratory of Schwer and Shuman. Surprisingly, the substitution of Tyr1 to 

phenylalanine (Y1F) is not lethal, indicating that tyrosine phosphorylation is 

not essential for the growth of fission yeast. However, the phenyl ring of Tyr1 

is essential, as the replacement of tyrosine with partial isosteric leucine (Y1L 

mutant) is detrimental to S.pombe (Schwer et al., 2011). Similar to the 

phenotype in S.cerevisiae, the substitution of Ser5 to alanine (S5A) was lethal 

in S.pombe; whereas, Ser2 to alanine (S2A) mutants grew well at 30°C. This 

signifies that in S.pombe, not, Ser2-P, but Ser5-P is essential. Mutations of 
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Thr4 to alanine  (T4A) and Ser7 to alanine (S7A) is tolerated in S.pombe 

(Schwer et al., 2011).  

In mammalian cells, the repeats 1-3 and repeat 52 are essential for the CTD 

stability (Chapman et al., 2005; Chapman et al., 2004) therefore; amino acid 

substitutions were performed in repeats 4-51. CTD mutants comprising 

replacements of Ser2, Thr4 and Ser5, with alanine in repeats 4 to 51 showed 

a severe growth defect with a strongly reduced cell count after 4 days. 

Furthermore, Thr4 to serine and Ser7 to alanine mutants revealed an 

attenuated phenotype, but were also not viable (Hintermair et al., 2012). The 

replacement of Tyr1 by phenylalanine (Y1F) is lethal in mammalian cells. 

Furthermore, Y1F mutation prevents the formation of the hyper-

phosphorylated Pol IIO form and induces the degradation of Pol II to the 

truncated Pol IIB form (Descostes et al., 2014). This indicates that in 

mammalian cells, phosphorylation of Tyr, Ser2, Thr4, Ser5 and probably also 

Ser7 is essential for CTD functions. Further manipulation of the CTD 

developed the concept of the functional unit of the CTD. An overview of the 

different mutants in yeast and mammalian cells is shown in the Table 1.  

1.3.4. Functional unit of the CTD 

The strong periodicity of the heptad repeats structure is one of the eye-

catching features of the CTD. The laboratory of Stiller and Cook disrupted the 

strong periodicity of the CTD by introducing a single alanine residue between 

every single heptad (Stiller et al., 2004). This mutation was lethal in yeast 

cells. However, the introduction of an alanine residue between di-heptads had 

little effect on yeast viability, suggesting that the strong periodicity of the CTD 

can be disrupted and is not essential for cell growth. It also indicates that all 

essential CTD functions in yeast are accomplished through interaction of 

protein factors with a motif/s that lie within di-heptads (Stiller et al., 2004). 

These experiments introduced the concept of functional unit of the CTD in 

yeast, which lies within paired-heptads. Further substitution and insertion 

mutants within or between di-heptads, narrowed down the functional unit. 

Specifically, the three SP motifs, S2P-S5P-S7P must be present and the two-

tyrosine residues must be spaced seven amino acids apart in either Y1-Y8 

(YSPTSPSYSP) or Y8-Y15 (SPTSPSYSPTSPSY) orientation (Liu et al., 2008). 
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The distance between the functional units of the CTD is also very critical. 

Placing two alanine residues between functional units was not lethal, but 

resulted in a slow growth rate at high and low temperatures (Stiller et al., 

2004). Introducing further alanine residues between functional units resulted 

in a progressive decline in the cell viability (Liu et al., 2010).  

Similar experiments in S.pombe revealed that the functional unit also lies 

within a di-heptad and is composed of a decapeptide unit (YSPTSPSYSP) 

(Schwer et al., 2012).  

In mammals, unpublished work from our laboratory demonstrates that the 

minimal functional unit of the mammalian CTD lies within a penta-heptad 

repeat (Shah et al., unpublished), suggesting that the minimal functional unit 

in mammals is larger than in the yeast. An overview of the chapter 1.3, 

comparing the genetic analysis of the CTD in yeast and mammals is shown in 

the Table 1. 

Table 1: An overview of genetic manipulations in yeast and mammals. 
The total length of CTD, minimum number of CTD repeats required for 
viability, phenotypes of CTD substitution mutants and minimal functional unit 
in yeast and mammals are compared. 

 Mammals S.cerevisiae S.pombe 

Total no. of CTD repeats 52 26 29 

Minimum no. of CTD repeats 
required for viability 

- 8 10-13 

Y1F Lethal Lethal Viable 

S2A Lethal Lethal Viable 

S2E - Lethal Lethal 

T4A Lethal Viable Viable 

S5A Lethal Lethal Lethal 

S5E - Lethal Lethal 

S7A Lethal Viable Viable 

Functional Unit (YSPTSPS)5 (YSPTSPS)2 (YSPTSPS)2 
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1.4. Post-translational modifications of the CTD 

CTD undergoes dynamic post-translational modifications during the process 

of transcription. A number of enzymes are known to modify the CTD during 

the transcription cycle. An overview of these enzymes is presented in the 

Table 2. The role of the enzymes in the process of transcription will be 

discussed in the chapter 1.5. 

Table 2: An overview of known CTD-modifying enzymes in mammals 
and yeast (Adapted from (Zaborowska et al., 2016).  

  Organisms  
Modification Enzymes Mammals S.cerevisiae S.pombe References 

Tyr1-P Kinases cAbl   (Baskaran et al., 
1993) 

Ser2-P 

Kinases 

Cdk9, 
Cdk12, 
Cdk13, 
Brd4 

Bur1, Ctk1 
Cdk9, 
Lsk1 

(Bartkowiak et al., 
2010; Blazek et al., 
2011; Bres et al., 
2008; Cho et al., 
2001; Devaiah et al., 
2012; Greifenberg et 
al., 2016; Viladevall 
et al., 2009; Wood et 
al., 2006) 

Phosphatases Fcp1 Fcp1 Fcp1 

(Cho et al., 2001; 
Hausmann et al., 
2002; Lin et al., 
2002) 

Thr4-P Kinases Plk3   (Hintermair et al., 
2012) 

Ser5-P 

Kinases 
Cdk7, 
Cdk8, 
Cdk13 

Kin28 Mcs6 

(Akhtar et al., 2009; 
Glover-Cutter et al., 
2009; Greifenberg et 
al., 2016; 
Komarnitsky et al., 
2000; Rodriguez et 
al., 2000) 

Phosphatases 
Ssu72, 
Scp1, 
RPAP2 

Rtr1, Ssu72  

(Egloff et al., 2012; 
Hausmann et al., 
2005; Krishnamurthy 
et al., 2004; Mosley 
et al., 2009; Zhang 
et al., 2012) 

Ser7-P 
Kinases Cdk7 Kin28  

(Akhtar et al., 2009; 
Glover-Cutter et al., 
2009) 

Phosphatases Ssu72 Ssu72  (Zhang et al., 2012) 
Arginine 

Methylation 
 PRMT5, 

CARM1 
  

(Sims et al., 2011; 
Zhao et al., 2016) 

Lys7-
acetylation 

 p300   (Schroder et al., 
2013) 
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Tyrosine, threonine and the three serine of a heptad can be phosphorylated, 

while prolines can undergo isomerization between the -cis and -trans 

configuration. The dynamic interplay of CTD-modifying enzymes generates a 

characteristic pattern of CTD modifications throughout the transcription cycle 

of protein-coding genes in both, S.cerevisiae and mammals. This dynamic 

phosphorylation pattern of the CTD is described next.  

1.4.1. Dynamic phosphorylation patterns of the CTD 

Several labs have used the monoclonal antibodies and analyzed the CTD 

modification pattern at genome-wide scale in yeast (Bataille et al., 2012; Kim 

et al., 2010; Mayer et al., 2012; Mayer et al., 2010) and mammalian 

cells (Descostes et al., 2014; Hintermair et al., 2012; Koch et al., 

2011) (Figure 2). 

 
Figure 2: Dynamic phosphorylation pattern of the CTD along the 
transcription cycle in yeast and mammals. Schematic representation of 
ChIP enrichment for Ser2-P (red), Ser5-P (green), Ser7-P (blue), Tyr1-
P (purple) and Thr4-P (yellow) is shown for yeast and mammals. 
TSS (transcription start site), poly(A) site and TTS (Transcription termination 
site) are shown. Modified from (Eick et al., 2013). 

ChIP analysis indicated that the levels of Ser5-P are highest near the 

transcription start sites (TSS) and reduced towards the 3’ end, whereas the 

Ser2-P levels are higher towards the 3’ end of genes. Signals for Ser7-P are 

high near the TSS and continue to remain high towards the 3’ end of genes. 

In general, the patterns of Ser2-P, Ser5-P and Ser7-P are similar in yeast and 
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mammals, while Tyr1-P and Thr4-P shows notable differences. In mammals, 

Tyr1-P is enriched near the TSS and is associated with antisense promoter 

transcription and active enhancers (Descostes et al., 2014), while in yeast, 

Tyr1-P is enriched over the gene bodies and is lower at the 5’ and 3’ ends of 

genes (Mayer et al., 2012). In mammals, Thr4-P is enriched in 3’ end region 

of the gene (Hintermair et al., 2012), while in yeast; Thr4-P is associated with 

transcribed region of gene (Mayer et al., 2012). Recent study from 

Churchman lab, indicates that in yeast, Thr4-P mark also peaks after poly(A) 

sites (Harlen et al., 2016). For the non-consensus residues, genome-wide 

analysis revealed that the high levels of acetylated Lys7 and mono- or 

dimethylated Lys7 are found near the TSS of genes (Dias et al., 2015; Voss et 

al., 2015).  

Monoclonal antibodies are reliable tools for the measurement of changes in 

the CTD modification and allow understanding of the functional role of Pol II 

CTD in gene expression. Nevertheless, monoclonal antibodies fail to provide 

information about the spatial patterns and signatures of CTD modifications. 

Recently published studies used genetic manipulation of the CTD combined 

with mass spectrometry analysis to provide several important information 

about the relative levels and spatial patterns of the CTD phosphorylation in 

yeast and mammals (Schuller et al., 2016b; Suh et al., 2016). First, both the 

studies show that the CTD can be uniformly phosphorylated across all 

repeats. This is irrespective of whether the repeats are similar to the one in 

the wild-type CTD or mutated to facilitate proteomic analysis. Second, mono-

phosphorylated peptides were much more abundant than double- or triple-

phosphorylated peptides. Third, both the studies reveal that Ser5-P and Ser2-

P are much more abundant modifications than Tyr1-P, Thr4-P or Ser7-P 

mark. In human cells, Ser5-P and Ser2-P are found in similar quantities on 

mono-phosphorylated peptides and contributes for nearly 75% of the total 

phospho-counts (Schuller et al., 2016b). In yeast, Ser5-P is about four times 

more abundant than Ser2-P (Suh et al., 2016). The higher Ser5-P/Ser2-P 

ratio for the yeast CTD may result from dramatically different gene lengths in 

yeast and human (Schuller et al., 2016b). Thus, this approach provides an 

insight into the abundance and spatial patterns of CTD phosphorylation in vivo 

and can serve as a tool to study the CTD heptad-specific phosphorylation 
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patterns after knock out of specific CTD kinases or phosphatases. 

Additionally, such an approach can also be applied as a general method to 

study the modification of other proteins with low-complexity (LC) domains, 

such as members of the FET-protein family (Schuller et al., 2016a). 

1.5. RNA Pol II CTD and regulation of transcription processes 

The eukaryotic Pol II transcription cycle is a highly coordinated process that 

exhibits regulation at multiple steps and can be divided into three distinct 

stages – initiation, elongation and termination (Figure 3). Briefly, the 

transcription cycle begins with the hypo-phosphorylated Pol II gaining access 

to the core promoter and the formation of a functional pre-initiation 

complex (PIC) (Step 1). The CTD is phosphorylated, DNA is unwound and Pol 

II escapes/clears the core promoter and initiates the process of 

transcription (Step 2). Early elongating Pol II pauses at the promoter-proximal 

pause site (Step 3). The paused Pol II is then hyper-phosphorylated, escapes 

the promoter-proximal pausing and enters the process of productive 

elongation (Step 4). Elongating Pol II traverses through the entire gene 

body and pauses near the termination site for the 3’ end processing of 

RNA (Step 5). Following the 3’ end processing of the RNA, Pol II dissociates 

off the template DNA and the free Pol II can reinitiate the new cycle of 

transcription (Step 6). The next chapters will describe the current 

understanding about the distinct stages of the transcription cycle, factors and 

mechanisms controlling these processes and the role of the CTD in the 

process of transcription. 

1.5.1. Transcription initiation 

The process of transcription initiation begins with the formation of the pre-

initiation complex (PIC). In eukaryotes, six general transcription 

factors (GTFs), TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, along with the 

transcription co-activator, Mediator complex, are recruited to the core 

promoter and together with Pol II forms the PIC (Buratowski, 2009; Hahn, 

2004; Nechaev et al., 2011).  
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Figure 3: RNA Polymerase II transcription cycle. 1) General transcription 
factors (GTFs), Mediator complex and Pol II are recruited at the core promoter 
for the assembly of PIC. 2) Ser5-P and Ser7-P of the CTD leads to 
destabilization of the PIC. Mediator-Pol II connections are disrupted and Pol II 
escapes the promoter. 3) Recruitment of the capping enzyme and the 
elongating Pol II pauses near promoter-proximal sites. 4) Recruitment of P-
TEFb facilitates the Ser2-P of the CTD and triggers the transition of Pol II from 
early elongation to productive elongation. Dynamic phosphorylation and 
dephosphorylation of the CTD during elongation phase. 5) Recruitment of 
elongation factors, 3’ end processing and the termination factors. 6) Pre-
mRNA is cleaved and Pol II dissociate off the template DNA. Hypo-
phosphorylated Pol II can initiate a new round of transcription cycle.  

The mediator was first isolated as a complex of 20 subunit proteins in 

yeast (Kim et al., 1994) and later the mammalian counterparts of the mediator 
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complex were identified (Jiang et al., 1998). The mediator complex, which 

consists of four modules (head, middle, tail and CKM) is recruited by activator 

proteins and has a key role in mediating the recruitment of Pol II and other 

PIC factors to the promoter to stimulate transcription initiation (Fan et al., 

2006; Kornberg, 2005; Malik et al., 2005). Mediator complex enables the Pol II 

recruitment via interactions with the unphosphorylated CTD (Kim et al., 1994; 

Myers et al., 1998; Naar et al., 2002). Precisely, the Pol II CTD interacts 

strongly with the Mediator middle module and weakly to the head 

module (Robinson et al., 2012; Tsai et al., 2013). In addition, Mediator 

complex can interact with the TFIIH component of the GTF, most likely via an 

interaction with MED11 subunit of the Mediator (Esnault et al., 2008).  

After the formation of a PIC at the gene promoter, several important steps are 

critical for the Pol II enzyme to escape the promoter. The two-helicase 

subunits of TFIIH, XPB and XPD, are required for melting of the DNA and to 

make the template accessible for the transcription (Tirode et al., 1999). Pol II 

must break the contact with Mediator and the PIC to escape the promoter and 

transit to the early elongation. Here, the phosphorylation of Pol II CTD plays a 

key role in disrupting the Mediator-Pol II interaction and thereby facilitating the 

promote escape (Sogaard et al., 2007). Cdk7, the kinase subunit of the basal 

transcription factor TFIIH (Kin 28 in yeast), phosphorylates the CTD at serine-

5 and serine-7 positions (Akhtar et al., 2009; Glover-Cutter et al., 2009; Kim et 

al., 2009a). The ability of TFIIH to phosphorylate the Pol II CTD is enhanced 

by the Mediator complex (Boeing et al., 2010; Nair et al., 2005). Once the 

Pol II escapes the promoter, it initiates the process of transcription and enters 

the early elongation phase. 

1.5.2. Transcription elongation 

During early elongation, Ser5-P of the CTD serves as a signal for the 

recruitment of various mRNA processing and histone modifying factors. When 

~25 nucleotides of nascent RNA are synthesized, the cap structure is 

attached to its 5’ end. The capping enzyme specifically recognizes the Ser5-P 

CTD repeats and catalyzes the addition of a methylguanosine cap to the 5’ 

end of the nascent mRNA (Fabrega et al., 2003; Komarnitsky et al., 2000). In 

yeast, the Ser5-P binds and recruits the H3K4 methyltransferase, Set1, to the 
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CTD (Ng et al., 2003). Set1 establishes two distinct chromatin zones on the 

genes, with trimethylated H3K4 near the promoter regions and dimethylated 

H3K4 downstream of promoters. H3K4me2 recruits Set3 complex, a histone 

deacetylase that suppress nucleosome acetylation and remodeling (Kim et al., 

2009b). 

In many metazoan genes, the early elongating Pol II pauses around 20-60 

nucleotides (nt) downstream of the transcription start site (TSS) and is defined 

as promoter-proximal pausing. The paused Pol II remains stably associated 

with the nascent RNA and is fully capable of resuming elongation, however 

further signals are needed for the pause release and transition of Pol II to a 

productive elongation (Adelman et al., 2012; Zhou et al., 2012). Two key 

regulators of promoter-proximal pausing are the DRB sensitivity factor (DSIF) 

and the Negative elongation factor (NELF) complexes. Both these factors 

associate with the early elongating Pol II and transiently halt the 

elongation (Gaertner et al., 2014; Wu et al., 2003; Yamaguchi et al., 1999). 

Pausing is overcome through P-TEFb (positive transcription factor b), 

which comprises of the cyclin-dependent kinase Cdk9 and Cyclin T 

subunits (Marshall et al., 1995; Wada et al., 1998). P-TEFb phosphorylates 

the repressive DSIF/NELF complex, causing the NELF to dissociate and 

promoting Pol II into transcription elongation (Fujinaga et al., 2004; Kim et al., 

2001; Yamada et al., 2006). P-TEFb also phosphorylates the serine-2 

residues of the CTD, creating a platform for the binding of RNA processing 

and chromatin modifying factors (Adelman et al., 2012; Peterlin et al., 2006).  

As the Pol II elongates the transcript, the activity of the phosphatase Ssu72 is 

stimulated, which gradually dephosphorylates the Ser5-P residues of the CTD 

(Reyes-Reyes et al., 2007). The double phosphorylation marks of Ser2-P and 

Ser5-P helps in the recruitment of the Set2 methyltransferase, which 

trimethylates H3K36 (Kizer et al., 2005). Set2 mediated H3K36 methylation 

recruits histone deacetylases, Rpd3, which deacetylates the histones within 

the transcribed regions, thereby preventing cryptic transcription initiation 

within the intragenic sites (Carrozza et al., 2005). Recently, it was shown that 

in yeast, Set2-mediated H3K36 methylation regulates the selective 

suppression of antisense transcription (Venkatesh et al., 2016). In mammalian 

cells, the elongation factor Spt6 interacts with Ser2-P through its tandem SH2 
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domain and facilitates the recruitment of RNA export factor REF1/Aly (Yoh et 

al., 2007). The double phosphorylation marks of Ser2-P and Ser5-P aids in 

the recruitment of the splicing factor U2AF65, which recruits the Prp19 

complex to the nascent RNA and enhances splicing in a CTD-dependent 

manner (David et al., 2011). In addition, the transcription termination factors, 

Pcf11 and Rtt103, preferentially bind to the Ser2-P CTD (Lunde et al., 2010; 

Meinhart et al., 2004). This is consistent with the increased levels of Ser2-P 

towards the 3’ end of the transcription unit. Recently, it was shown that the 

Thr4-P of the CTD peaks after the poly(A) site and also aids in the recruitment 

of  Rtt103 (Harlen et al., 2016). 

Pol II productively traverses across the gene body and pause near 3’ end of 

the gene before the process of transcription termination. Pol II termination is a 

very complex process and tightly coupled to the 3’ end processing of the 

nascent RNA. Generally, 3’ end processing of the RNA precedes the 

termination process and CTD plays an important role in both the processes. 

The mechanisms describing the 3’ end processing of RNA will be discussed 

next, followed by the process of transcription termination. 

1.5.3. 3’ end processing of RNA 

There are three well-described mechanisms for 3’ end processing of Pol II 

transcripts (Eick et al., 2013). First is the poly(A)-dependent pathway, which is 

specific for most of the protein coding genes. Second, the Sen1 dependent 

pathway is used for many small noncoding RNAs like, snoRNAs or 

CUTs (cryptic unstable transcripts). And third is the Integrator-dependent 

pathway, and is used for the processing of the most of snRNA genes.  

1.5.3.1. Poly(A)-dependent pathway 
In eukaryotes, most of the protein coding mRNA precursors have a highly 

conserved poly(A) signal, AAUAAA, positioned 10-30 nucleotides upstream of 

the cleavage site, and a G/U-rich sequence around 10-30 nucleotides 

downstream of the cleavage site. 3’ end processing of RNA is a two step 

reaction in which, first, transcription of a poly(A) site is followed by pausing of 

the Pol II and cleavage of the nascent transcript; and second, the 

polyadenylation of the upstream cleaved transcript (Kuehner et al., 2011; 

Proudfoot, 2016; Rosonina et al., 2006) (Figure 4).  
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Figure 4: Model for 3’end processing of protein-coding RNAs. Cleavage 
and polyadenylation specificity factors (CPSF), Cleavage stimulation 
factor (CstF) and poly(A) polymerase (PAP) trigger endonucleolytic cleavage 
and polyadenylation of the mRNA. Modified from (Porrua et al., 2015) 

Multisubunit factors such as, Cleavage stimulation factor (CstF), Cleavage 

and Polyadenylation Specificity Factor (CPSF) and poly(A) polymerase (PAP), 

catalyze the reactions. CstF consists of three main subunits, CstF50, CstF64 

and CstF77, whereas, CPSF contains five main subunits, CPSF30, CPSF73, 

CPSF100, CPSF160 and Fip-1 (Richard et al., 2009). CstF50 binds to the 

Pol II CTD (Fong et al., 2001) and CstF64 binds to the downstream G/U-rich 

processing signal (MacDonald et al., 1994). CstF77 bridges the CstF64 and 

CstF50 subunits (Takagaki et al., 1994) and also makes direct contact with 

the CPSF160, contributing to the stabilization of CPSF-CstF complex (Murthy 

et al., 1995). CPSF30 subunit of the CPSF complex binds to the body of the 

polymerase and travels with the Pol II (Nag et al., 2007). As the Pol II 

traverses across the poly(A) signal, CPSF160 specifically recognizes and 

binds to the AAUAAA sequence (Keller et al., 1991; Murthy et al., 1995). It 

has been proposed that CPSF binding to the poly(A) signal induced Pol II 
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pausing. When CstF binds to the downstream G/U-rich signals, CPSF binds 

to CstF, releases its hold on the Pol II body and leads to the CPSF-mediated 

endonucleolytic cleavage of the nascent transcript (Kuehner et al., 2011). 

CPSF73 is responsible for the endonucleolytic cleavage of the nascent 

transcript (Mandel et al., 2006; Ryan et al., 2004). Following the cleavage, the 

poly(A) polymerase subsequently polyadenylates the 3’ end of the mRNA.  

1.5.3.2. Sen1-dependent pathway 
In yeast, the 3’ end processing and transcription termination of many 

noncoding RNAs, including small nuclear RNAs, small nucleolar RNAs and 

cryptic unstable transcripts relies on a mechanism that requires the activity of 

the NNS complex (Arigo et al., 2006; Steinmetz et al., 2001). The essential 

NNS complex contains two RNA-binding proteins, Nrd1 and Nab3, and the 

DNA helicase Sen1. The presence of short sequence motifs on the nascent 

RNA is recognized by Nrd1 and Nab3, and is crucial to engage the NNS 

complex onto the nascent RNAs (Carroll et al., 2007). The NNS complex 

interacts with Ser5-P CTD of Pol II through the CID of Nrd1 (Kubicek et al., 

2012). Interestingly, transcription termination by the NNS complex does not 

appear to be associated with endonucleolytic cleavage of the nascent RNA 

but rather functions by a mechanism, in which the DNA helicase activity of 

Sen1 dislodges Pol II from the template DNA (Porrua et al., 2013). No clear 

homologues of Nrd1 and Nab3 have been described so far in metazoan. 

Senataxin (SETX), the putative homolog of Sen1, which possesses a 

conserved helicase domain (Moreira et al., 2004), has been described to 

promote efficient transcription termination by resolving RNA/DNA hybrid 

structures (Skourti-Stathaki et al., 2011).  

1.5.3.3. Integrator-dependent pathway 
A third, integrator dependent processing-termination pathway has been 

described for snRNA genes. Genes encoding snRNAs contain a conserved 

13 - 16 nucleotide sequence element (termed the 3’ box) that is required both 

for 3’ end processing and for transcription termination. The 3’ box, is 

recognized by the Integrator (INT) complex, and cleaved by its catalytic 

subunits INT9 and INT11, which are respectively, homologues of the CPSF73 

and CPSF100 subunits of the CPSF complex (Baillat et al., 2005). Here, 

Ser7-P of the CTD plays an important role and facilitates the recruitment of 
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RPAP2, a putative Ser5 phosphatase, which in turn dephosphorylates Ser5 of 

the CTD and also recruits the Integrator complex (Egloff et al., 2012). This is 

consistent with the requirement of Ser7-P for the snRNA gene 

expression (Egloff et al., 2007).  

1.5.4. Transcription termination 

Following 3’ end processing of RNA, Pol II must be released from the DNA 

template for the efficient transcription termination. Although, the molecular 

mechanisms that lead to the timely dissociation of the Pol II remains poorly 

understood, two models have emerged to explain the mechanistic basis of 

transcription termination: the allosteric and the torpedo models (Figure 5). 

 
Figure 5: Transcription termination models. Following 3’ end processing of 
mRNA, Pol II becomes termination prone. Allosteric model proposes the 
dissociation of elongation factors, destabilization of the complex and gradual 
release of Pol II from DNA template. Torpedo model proposes downstream 
degradation of cleaved product by exonuclease, Xrn2, and eventual release of 
Pol II from DNA template. Modified from (Porrua et al., 2015). 
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1.5.4.1. The Allosteric Model 
The allosteric model or the anti-terminator model proposes that transcription 

through the poly(A) site leads to conformational changes of the elongation 

complex (EC), by dissociation of elongation factors and/or association of 

termination factors. Such changes could destabilize the complex and have 

marked pausing effects on transcription, resulting in the gradual release of the 

Pol II from the DNA template (Logan et al., 1987; Rosonina et al., 2006; 

Zhang et al., 2015). Several 3’ end processing and termination factors, 

including Pcf11, become associated with Pol II elongation complex at the 3’ 

end of the gene in a Ser2-P CTD-dependent manner (Ahn et al., 2004; 

Licatalosi et al., 2002). The CID of Pcf11 bridges the CTD to mRNA, and can 

dismantle the EC in vitro (Zhang et al., 2005). In drosophila, depletion of 

Pcf11 causes transcriptional read-through, and drosophila Pcf11 can also 

dismantle the EC in vitro (Zhang et al., 2006). In support of the allosteric 

model, several proteins have been described that has no direct role in 

cleavage/polyadenylation and yet, influences the process of termination. As 

an example, the transcriptional coactivator PC4 (human homolog of Sub1), 

interacts with CstF64 and inhibits premature termination and the dissociation 

of PC4 at the poly(A) site renders Pol II competent for termination (Calvo et 

al., 2001). Recent in vitro study shows that transcription termination of protein-

coding genes requires the poly(A) signal but not the poly(A) site cleavage and 

that the conformational changes of the elongation complex triggers 

transcription termination (Zhang et al., 2015). 

1.5.4.2. Torpedo model 
The second model, the torpedo model, proposes that the endonucleolytic 

cleavage of the nascent pre-mRNA at the poly(A) site creates an entry site for 

a 5’ -> 3’ exonuclease, which degrades the downstream-cleaved product. The 

exonuclease continues degrading the transcript, until it catches up with the 

Pol II and acts as a molecular trigger to release Pol II from the DNA 

template (Connelly et al., 1988; Proudfoot, 2016). Direct evidence of the 

torpedo model came from the studies that demonstrated a role of the yeast 

5’ -> 3’ exonuclease Rat1 and its human homologue, Xrn2, in Pol II 

termination. Depletion of Rat1 in S.cerevisiae or Xrn2 in mammalian cells led 

to a substantial loss in termination (Kim et al., 2004b; West et al., 2004). 
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However, exactly how Rat1 and Xrn2 displace the Pol II from the DNA 

template remains unknown. Interestingly, the depletion of Xrn2 by RNAi often 

causes a marginal termination defects, however, combining RNAi treatment 

with the expression of dominant negative Xrn2 (active-site mutant) causes the 

general inhibition of Pol II termination and shifts the termination zone further 

downstream of genes (Fong et al., 2015). In yeast, 3’ end processing factors 

are required for the normal Rat1 recruitment. Rat1 in complex with its 

activating protein Rai1 copurifies with the third member of the complex 

Rtt103, which is a Ser2-P CTD binding protein and possibly accounts for the 

Rat1 recruitment to Pol II (Kim et al., 2004a). In yeast, Pcf11 is required for 

the Rat1 association with active genes (Luo et al., 2006).  

However, so far the exact mechanism by which the poly(A) site dependent Pol 

II termination is regulated in vivo is not clear. The laboratory of David Bentley 

proposed a hybrid model of transcription termination (Luo et al., 2006). 

Accordingly, the complex that carries out poly(A) site cleavage comprises Pol 

II, 5’ à 3’ exonuclease and termination factors bound to the phosphorylated 

CTD. This complex catalyzes the cleavage at the poly(A) site, degrades the 

nascent RNA and then the allosteric changes are transmitted to the Pol II 

catalytic site, causing the Pol II to release from the template DNA.  

1.6. Aim and scope of present work 

The carboxy-terminal domain (CTD) of RNA Polymerase II (Pol II) consists of 

a unique and flexible structure that is highly conserved through evolution, 

apparently increasing in length and diversifying in structure with the 

complexity of the organism (Stiller et al., 2002).  Of the 52 repeats in 

mammalian CTD, 21 repeats follow the evolutionary conserved, consensus 

heptapeptide Y1-S2-P3-T4-S5-P6-S7 structure.  The CTD undergoes various 

post-translational modifications to coordinate transcription-coupled processes 

such as transcription initiation, elongation, 3’ processing as well as 

transcription termination. Tyrosine-1 phosphorylation (Y1P) of the CTD has 

diverse functions in yeast and mammals. In yeast, Y1P is enriched over the 

gene body and impairs the recruitment of transcription termination factors to 

Pol II (Mayer et al., 2012). A study from our laboratory showed that Y1P is 

associated with promoters and active enhancers in mammalian 
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cells (Descostes et al., 2014). Furthermore, in order to investigate the 

functional significance of Tyr1, a CTD mutant was generated that had tyrosine 

replaced by phenylalanine in repeats 4-51. However, the mutant inhibited the 

formation of the actively transcribing Pol IIO form and lead to the degradation 

of the CTD. Therefore, the functional analysis of such a mutant was 

challenging and the understanding about the role of Tyr1 in the regulation of 

transcription processes remained elusive. 

The main aim of this project was to overcome this challenge and address the 

following questions, 1) Do the CTD need Tyr1 in all 52 repeats to stably 

express the actively transcribing form of Pol II? 2) What is the role of Tyr1 of 

CTD in the regulation of transcription-coupled processes? And 3) Are there 

any position specific functions of the heptad-repeats of CTD? In other words, 

what are the functional significance of Tyr1 in the proximal, the middle and/or 

the distal heptads of the CTD? 
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2. Results 

2.1. RNA Pol II CTD tyrosine mutants 

Tyrosine1 in mammalian CTD is a highly conserved residue, which is present 

in all 52 repeats.  The significance of Tyr1 residues in the process of 

transcription can be studied by characterizing the mutant that lacks Tyr1. The 

replacement of Tyr1 by phenylalanine (Y1F) in repeats 4-51 prevented the 

formation of the actively transcribing Pol IIO form and leads to the degradation 

of the CTD in mammalian cells (Descostes et al., 2014). Consequently, the 

functional analysis of this mutant remained elusive. Here, we developed an 

alternative strategy and introduced Y1F mutations in only parts of the CTD.  

 
Figure 6: Schematic representation of wild type CTD and seven tyrosine 
mutants. Each box represents a single heptad repeat of the CTD. Green box 
represents the wild-type sequence; while blue box represents heptads in 
which tyrosine-1 is replaced by phenylalanine. Heptads 1, 14, 27, 40 and 52 
of the wild type CTD are marked. The four clusters of the wild type CTD are 
numbered from 1-4. 

A set of seven mutants was designed by dividing 52 heptads of the wild 

type (WT-CTD) into four clusters of 13 heptads each (Figure 6). Cluster 1 

consists of heptads 1-13; cluster 2 - heptads 14-26; cluster 3 - heptads 27-39 
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and cluster 4 - heptads 40-52. Y1F mutations were introduced in one or more 

of these clusters and mutants were generated that had Y1F mutations in the 

proximal, the middle and/or the distal heptads of the CTD.  The rationale was 

to generate a set of mutants, whose analysis could help us unravel the 

functional significance of Tyr1 residues in different heptads of the CTD. 

Mutants, FYYF, YFFY, YYFF, FFYY and YF26 have in total 26 heptads with 

Y1F mutations, whereas mutants YFFF and FFFY carries 39 mutated heptads 

each. GeneArt in Regensburg synthesized DNA fragments of CTD mutants. 

2.1.1. Establishing cell lines expressing tyrosine mutants 

All seven CTD constructs were cloned into the episomal expression vector 

pRX4-267 (Meininghaus et al., 2000) using a two-step cloning strategy 

(Materials and Methods 4.2.1.1).  

 
Figure 7: Scheme of end vector pRX4-267. The expression vector pRX4-
267 encodes the entire mouse Rpb1 gene comprising 28 exons. The 
sequence encoding CTD can be easily replaced by the given artificial CTD 
sequences using restriction enzymes, AgeI and NotI. 

Rpb1-expression     
vector

(pRX4-267/25837bp)

Rpb1-expression     
vector

(pRX4-267/25837bp)
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The vector pRX4-267 contains important features for stable transfection and 

conditional expression of the mutants. The vector contains full length, 

haemagglutinin-(HA) tagged mouse Rpb1 gene comprising 28 exons (Figure 
7). CTD is encoded by the exon 28 and can be replaced by any artificial CTD 

sequence using restriction sites. The Rpb1 gene has a point mutation 

(N793D) that confers resistance towards α-amanitin (Bartolomei et al., 1987). 

In the presence of α-amanitin, endogenous Pol II is inhibited, thereby allowing 

the possibility to study the properties of the mutant Pol II in vivo. The vector 

uses replication origin of the Epstein-barr virus (EBV) and can be episomally 

maintained in human cells expressing EBV-nuclear antigen 1 (EBNA1). An 

expression vector with WT-CTD sequence was and used as a positive control. 

It will be referred to as ‘rWT’ (recombinant wild-type) in the thesis. 

2.1.2. Conditional expression of recombinant polymerases 

The expression vector containing the mutant CTD sequence was transfected 

into Raji cells via electroporation. Cells were cultured for 2-3 weeks in RPMI 

growth media supplemented with 1mg/ml of G418 and 1 µg/ml tetracycline, 

for the selection of positively transfected cells. At a cell viability of 90-95%, 

expression of the recombinant Pol II was induced in the mutants by removal 

of tetracycline from the medium. Cells were cultured in the presence of 2µg/ml 

of α-amanitin, 24 hours after the induction. Whole cell lysates were prepared 

for western blot analysis, 48 hours after the addition of α-amanitin. All the 

seven-tyrosine mutants expressed the hypo-phosphorylated (IIA) and the 

hyper-phosphorylated (IIO) forms of Pol II using α-HA antibody for detection 

(3F10) (Figure 8).  

Expression of the Pol IIO form indicates that the mutants are transcriptionally 

active. Interestingly, the Pol IIA band migrated faster in all mutants. This could 

be due to the increased loading of SDS of mutant Rpb1 protein. The mutant 

FFFY showed reduced expression of the Pol IIA and Pol IIO form. This may 

reflect weak induction or suggests that this mutant could not support its own 

expression. rWT cells were used as a positive control and expressed both 

forms of Pol II, while no signal was detected in the untransfected Raji cells, 

which served as a negative control.  
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Figure 8: Expression of CTD tyrosine mutants. Cells were lysed 72 hours 
after induction and 48 hours after the addition of α-amanitin. Expression of the 
recombinant Pol II was analyzed using α-HA antibody (3F10). α-Rpb1 
antibody (Pol 3.3) detects the expression level of the endogenous and the 
recombinant Pol II. rWT was used as a positive control and untransfected Raji 
cells as a negative control. The serine-2 phosphorylation level in the mutants 
was analyzed using the α-S2P antibody (3E10). α-GAPDH serves as a 
loading control. 

Expression of the endogenous and recombinant Pol II can be detected by α-

Rpb1 antibody (Pol 3.3). In mutants, FFYY and YFFF, two bands of the 

Pol IIA form were detected. The upper band represents the endogenous 

Pol IIA, while the lower band, the Pol IIA form of the recombinant polymerase. 

Serine-2 phosphorylation of the CTD is associated with transcription 

elongation (Ahn et al., 2004). All tyrosine mutants were phosphorylated at 

serine-2 residues when probed with a α-S2P antibody (3E10), suggesting that 

mutants are elongation-competent. Thus, we successfully established a set of 

tyrosine mutant cell lines that are transcriptionally competent. 

2.1.3. Growth kinetics and phenotypic analysis 

The growth behavior of the tyrosine mutants was monitored by measuring the 

percentage of cell viability and cell proliferation for a period of two weeks 

(Figure 9). For each mutant, 2x107 cells were induced and the number of 
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living cells (NL) and dead cells (ND) were calculated at intervals of 2 to 3 days 

intervals using trypan-blue staining. α-amanitin was added 24 hours after the 

induction. For cell proliferation, cumulative living cell number was calculated 

by multiplying the total number of living cells (NL) with the factor by which the 

culture was split over the course of the experiment.  

(A) 

 
(B) 

 
Figure 9: Growth kinetics of tyrosine mutants. Graphs representing (A) 
percentage of cell viability and (B) cell proliferation of mutants over a period of 
two weeks. Number of living cells (NL) and of dead cells (ND) was calculated 
at indicated days using trypan blue staining. 

All the mutants initially displayed a small decline in cell growth and viability 

after induction and addition of α-amanitin. This is probably the negative effect 

of the switch between the endogenous and the recombinant Pol II, as cells 
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expressing the recombinant Pol II need an adaptation phase for growth. 

Percentage of living cells (Figure 9A) and cumulative living cell number 

(Figure 9B) of the mutants, rWT, FYYF and YYFF, gradually increased eight 

days post induction. Simultaneously percentage of living cell and cumulative 

living cell number of the remaining five mutants and the untransfected Raji, 

cells continued to decline. After two weeks, rWT and the two mutants, FYYF 

and YYFF, were viable and demonstrated an increase in cell number. 

However, the cell proliferation rate of both mutants was less than rWT. The 

remaining five mutants and Raji cells displayed a lethal phenotype with less 

than 10% of living cells after two weeks (Figure 9A). Interestingly, the two 

viable mutants, FYYF and YYFF, have tyrosine conserved in cluster 2 

(heptads 14-26) of CTD, while all the lethal mutants carry Y1F mutations in 

cluster 2 (Figure 6).  

Following the successful characterizing of the tyrosine mutants for the 

expression and growth phenotype, the transcriptomes of the mutants were 

analyzed in order to gain a deeper insight into their functional significance. 

2.2. Total RNA-seq analysis 

RNA-seq analysis of total RNA was performed for four of the seven mutants. 

Two of these mutants, FYYF and YYFF, were viable and two mutants, YFFY 

and YFFF, displayed a lethal phenotype (Figure 9). Cells were lysed in trizol 

reagent 72 hours after induction and 48 hours after the addition of α-amanitin. 

Total RNA was extracted according to the manufacturer’s protocol (Trizol 

RNA isolation, ThermoFisher Scientific, USA). Ribosomal RNA was removed 

from total RNA using Ribo-Zero rRNA removal Kit (EpiCenter, USA) and the 

libraries were prepared using ScriptSeq total RNA Library Prep Kit (EpiCenter, 

USA) (Materials and methods 4.2.5.1). The libraries were sequenced on the 

Illumina HiSeq2000 platform and the data was processed for the analysis 

(Materials and methods 4.2.6.2). Samples were prepared using two biological 

replicates of each rWT and the four selected mutants (total 10 samples). 



Results 

  28 

2.2.1. Quality control of RNA-seq libraries and differential gene 
expression (DGE) analysis 

A first useful step in RNA-seq analysis is to assess the similarities and 

variations between the samples using the Principal Component Analysis 

(PCA). It is a statistical procedure that uses large sets of data (here, 

differential gene expression values) to define new sets of variables (Principal 

components) between the samples and the replicates (Figure 10A). 

 (A) 

 
(B) 

 
Figure 10: Principal component analysis and differential gene 
expression analysis (A) Principal component analysis (PCA) of rWT and 
tyrosine mutants representing variation and similarities between the samples 
and the replicates. Each point represents one sample. (B) Number of 
differentially expressed genes in rWT and mutants.  Number of genes 
upregulated in B in comparison to A are shown in green boxes while the 
number of genes downregulated in A relative to B are shown in red boxes. 
Differential gene expression threshold > 3-fold change 



Results 

  29 

The biological replicates of mutants, FYYF, YYFF and YFFY clustered in 

close proximity, suggesting a high reproducibility between the replicates and 

less variations in the transcriptome. Unexpectedly, one replicate of rWT was 

separated from the second replicate on the PC1 scale. The two biological 

replicates of the mutant YFFF clustered close to each other, but separated 

from the cluster of three other mutants and the rWT sample. This suggests 

that both replicates of the mutant YFFF are similar, but differ from rWT and 

other mutants.  

Next the differential gene expression (DGE) analysis that was performed to 

identify the number of genes that was at least three-fold differentially 

expressed in rWT and mutants (Figure 10B). A total of 858 genes were 

differentially expressed in the mutant YFFF as compared to rWT (810 

upregulated, 48 downregulated).  In contrast, the number of differentially 

expressed genes in other mutants was significantly lower: 43 genes in the 

mutant YYFF (41 upregulated, 2 downregulated), 28 genes in the mutant 

YFFY (26 upregulated, 2 downregulated) and 35 genes in the mutant FYYF 

(33 upregulated, 2 downregulated).  

Overall the data suggest that Y1F mutations in the CTD lead to the differential 

expression of genes, with most of them being upregulated. Furthermore, the 

mutant YFFF has the highest number of differentially expressed genes and its 

transcriptome seems to have the highest variations in comparison to rWT and 

the other tyrosine mutants. 

2.2.2. Tyrosine mutants exhibit a read-through (RT) transcription 
phenotype at 5’ and 3’ end of genes 

Next, the total RNA-seq signals at individual genes in rWT and mutants were 

compared. A very interesting transcription phenotype was observed in 

mutants as exemplified at the gene locus LY96 (Figure 11).  

Strong RNA-seq signals were detected over the annotated transcription unit of 

the gene, LY96, in rWT and tyrosine mutants. In rWT, there were almost no 

RNA-seq signals in the region downstream of the annotated 3’ end site 

(red line). In contrast, in tyrosine mutants, RNA-seq signals were detected 

beyond the annotated 3’ gene boundary. These signals correspond to a 3’ 

end read-through (RT) transcription phenotype. Intriguingly, a very strong 3’ 
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end RT transcription phenotype was observed in the mutant YFFF compared 

to other mutants. RT transcription in mutant YFFF extended more than 100 kb 

downstream of the annotated 3’ end site and was observed not only at a 

single gene locus, but for a large number of genes as confirmed by the 

metagene analysis (Figure 12).  

 
Figure 11: Signals of total RNA-seq at the Ly96 gene locus in rWT and 
mutants. A screenshot from the IGB genome browser, comparing RNA-seq 
signals at the gene LY96 between rWT and tyrosine mutants. The annotated 
transcription unit of the gene is marked between the green and the red lines.  

Metagene profiles of rWT and mutants YYFF, FYYF, and YFFY showed 

comparable RNA-seq signals near the TSS, 3’ end and in 20 kb regions 

around the annotated gene boundaries. In contrast, the mutant YFFF 

displayed a massive accumulation of RNA-seq signals in regions 20 kb 

upstream and downstream of the gene body. Accumulation of RNA-seq 

signals downstream of the annotated 3’ end region confirmed the 3’ end RT 

transcription phenotype and could be the consequence of either a defect in 

the 3’ end processing of RNAs and/or the failure of Pol II to terminate 

transcription in mutant YFFF. Accumulation of RNA-seq signals upstream of 

the TSS in the mutant YFFF represents an increase in upstream antisense 

transcription and/or 3’ end RT transcription of the gene located upstream of 

the corresponding gene. 

 

 

400

0

0

0

0

0

100kb

400

0

400

0

400

0

400

0

LY96

rWT

YFFF

YYFF

FYYF

YFFY

Total RNA

400

400

400

400



Results 

  31 

 
Figure 12: Metagene profiles of total RNA-seq in rWT and tyrosine 
mutants. Metagene profiles representing the average distribution of the read 
counts from total RNA-seq in rWT (dotted blue), and mutants YYFF 
(magenta), FYYF (purple), YFFY (green) and YFFF (blue). Profiles are 
distributed over the gene bodies between the transcription start site (TSS) and 
3’ end site and 20 kb around the annotated gene boundaries. A total of 827 
genes from the hg 19 (human genome 19) that had no other annotation in 
regions 20 kb around the gene boundaries were selected for the analysis. 
Signals are normalized to the gene body. 

Thus, the first round of RNA-seq analysis allowed us to isolate the mutant 

YFFF, in which a large number of genes are differentially expressed and a 

stringent RT transcription phenotype at 5’ and 3’ ends of genes occur. This 

observation was very exciting and prompted us to characterize mutant YFFF 

in more detail. 

2.2.3. Library Preparation Kit: ScriptMiner vs Illumina 

The data obtained from the libraries using the ScriptSeq total RNA library 

preparation kit showed high background noise in the intergenic regions. 

Therefore, it was important to first improve the quality of the libraries. Hence, 

the RNA-seq of total RNA in the wild-type Raji cells was compared using two 

different library preparation kits – Scriptseq and Illumina. The data produced 

using the Illumina RNA library preparation Kit lead to the reduction of noise in 

the intergenic regions (Figure 13).  
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Figure 13: Total RNA-seq library preparation kit: ScriptMiner vs Illumina. 
Comparison of total RNA-seq in wild-type Raji cells using two different library 
preparation kits: ScriptMiner and Illumina. The libraries prepared using the 
Illumina library preparation kit lead to the reduction of artifacts caused by high 
background noise in the intergenic regions. 

2.3. The mutant YFFF exhibits an increase in antisense and 3’ end 
read-through transcription 

After improving the quality of the libraries, RNA-seq of total RNA in rWT and 

the mutant YFFF was repeated. Now, strand-specific RNA-seq libraries were 

prepared using the library preparation kit from Illumina (Materials and 

methods 4.2.5.2). Principal component analysis revealed that biological 

replicates clustered together, indicating a high reproducibility (Figure 14A). 

Replicates of the mutant YFFF were clustered far away from replicates of rWT 

confirming a high difference in their transcriptomes. 

Next, RNA-seq signals at several individual genes in rWT and the mutant 

YFFF were compared. A representative gene, PDCD6IP, is shown in the 

Figure 14B. The gene is transcribed on the plus strand (blue signals) and its 

annotated transcription unit is marked between the green and the red line. 

Both, rWT and the mutant YFFF showed high RNA-seq signals over the 

transcription unit of the gene. In addition, the mutant YFFF displayed 

significant 3’ end RT transcription that extended more than 100 kb 

downstream of the annotated 3’ end site (orange arrow). 
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(A) 

 
(B) 

 
Figure 14: Total RNA-seq in rWT and the mutant YFFF. (A) Principal 
component analysis (PCA) of rWT and the mutant YFFF representing 
variation and similarities between the samples and the biological replicates. 
Each point represents one sample. (B) A screenshot from the Integrated 
Genome Browser (IGB) showing RNA-seq signals over two genes, CLASP2 
and PDCD6IP, in rWT and the mutant YFFF. CLASP2 gene is transcribed on 
the minus strand (red signals) and the PDCD6IP on the plus strand (blue 
signals) of the genome. Downstream 3’ end read-through transcription and an 
increased antisense transcription in the mutant YFFF are marked by orange 
arrows.  

The promoter of the PDCD6IP gene gives rise to bidirectional transcription in 

rWT. In addition to the transcription in the sense direction (blue signals), RNA-

seq signals were detected upstream of the PDCD6IP gene in antisense 

direction (red signals). This antisense transcription is a common phenomenon 

in mammalian cells (Lehner et al., 2002). In the mutant YFFF, antisense 

transcription signals upstream of the PDCD6IP gene were more pronounced 

than in rWT. Thus, the PDCD6IP gene in the mutant YFFF displayed RT 

transcription upstream of 5’ end in antisense direction and downstream of 3’ 

end in sense direction. A large number of genes in the mutant YFFF displayed 

such transcriptional phenotype (Figure 15).  
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(A)      (B)  

 
Figure 15: Total RNA-seq in rWT and the mutant YFFF. (A) Average 
metagene profiles of total RNA-seq representing sense (blue) and antisense 
(red) transcription in rWT and the mutant YFFF (n=538). Signals in the 
profiles are distributed over the gene bodies and in regions 20 kb around the 
annotated gene boundary. Signals are normalized to the gene body (B) Box 
plot quantification of upstream antisense transcription index (red) and 
downstream read-through transcription index (blue) in rWT and the mutant 
YFFF. 

Thus repeating RNA-seq analysis of total RNA improved the quality of the 

samples and strengthened the initial observation of a massive 3’ end RT 

transcription phenotype. It further detected RT transcription upstream of 5’ 

end of genes in antisense direction in the mutant YFFF. It is important to note 

that not all the genes in the mutant YFFF had the described transcription 

phenotype. Several genes were normally transcribed and did not display any 

transcription defects.  

2.4. Transcription phenotypes at 5’ and 3’ end of genes in the mutant 
YFFF are coupled 

Next, we asked if the 3’ end RT transcription phenotype in the mutant YFFF 

was linked to increased upstream antisense transcription. To address this 

question, the ratio of increased RNA-seq signals downstream of 3’ end of 

genes in the mutant YFFF over rWT was determined. A heatmap was 

generated in which the genes were ranked in the order of decreasing 3’ end 

RT ratio. For the corresponding genes, the ratio of 5’ end upstream antisense 
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transcription in the mutant YFFF over rWT was plotted in the heatmap. 

Furthermore, genes in the heatmap were divided into four groups (A-D), from 

high to low 3’ end RT index (Figure 16).  

 
Figure 16: Comparison of upstream antisense and downstream 3’ end 
read-through transcription phenotype in the mutant YFFF. Genes were 
ranked in the order of decreasing 3’ end RT ratio in the mutant over rWT 
within 5 kb of the annotated 3’ ends. Upstream antisense transcription ratio for 
the corresponding genes is plotted on the left side of the heatmap. Genes in 
the heatmap were divided into 4 equal sized groups (A-D) (colored profiles on 
the right). The profiles at the top represent global average profiles, whereas 4 
profiles below, corresponds to genes in groups A-D. Scale and the color key 
depicting the log2 fold change ratio are shown at the bottom.  

The analysis revealed that a high 3’ end RT transcription ratio for genes in the 

group A and B correlated with a high upstream RT transcription ratio at 5’ 

ends. Whereas a lower 3’ end RT ratio for genes in the group C and D was 

accompanied by a lower 5’ end upstream antisense transcription ratio. 

Interestingly, several genes in the group D showed lower 3’ end RT ratio. In 

the metagene profile on the right of group D, the RNA-seq signal in the mutant 
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YFFF dropped immediately downstream of the annotated 3’ end site and 

continued to remain low. While in rWT, the signal intensity dropped gradually 

in the window of 5 kb. Thus this lower 3’ end RT ratio may represent weak 

expression of several genes in the group D. Overall, the comparative analysis 

suggested that the RT phenotype at 5’ and 3’ end of genes in the mutant 

YFFF is probably coupled.  

2.5. Read-through transcription in the mutant YFFF results in 
transcriptional interference with neighboring genes 

One functional consequence of the RT transcription could be the 

transcriptional interference with neighboring genes. Several examples for 

genes were observed in the mutant YFFF, in which RT transcription resulted 

in transcriptional interference with the neighboring gene. An example is shown 

in the Figure 17. 

 
Figure 17: Transcriptional interference in the mutant YFFF. A screenshot 
from the Integrated Genome Browser (IGB) comparing RNA-seq signals and 
epigenetic marks, H3K4me3 and H3K27ac, over the genes APLP2, ST14, 
and ZBTB44 in rWT and the mutant YFFF. Genes APLP2 and ST14 are 
transcribed on the plus strand (blue signals), while ZBTB44 is transcribed on 
the minus strand (red signals) of the genome. The red arrow indicates 
ZBTB44 3’ end RT transcription and suppression of ST14 gene transcription. 
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Two genes, ST14 and ZBTB44, are oriented head to head in the genome. 

ZBTB44 is transcribed on the minus strand of the genome (red signals) and 

displayed 3’ end RT transcription in the mutant YFFF. Epigenetic 

modifications H3K4me3 and H3K27ac, which mark active promoters and 

enhancers, were mapped (Materials and methods 4.2.4). The information 

about the quantity of the antibodies and the number of cells used for ChIP is 

in the Supplementary table 6. The absence of these marks in the region 

downstream of the ZBTB44 gene confirmed 3’ end RT transcription in the 

mutant YFFF, rather than a new-initiation event. RT transcription downstream 

of the ZBTB44 gene interferes with the transcription of the ST14 gene. The 

presence of H3K4me3 marks at the ST14 gene promoter suggested that the 

gene is transcribed in the mutant YFFF, but transcription over the gene body 

is largely repressed, indicating transcriptional interference.  

2.6. Read-through transcription phenotype is linked to tyrosine 
mutations in CTD 

We next asked, if the observed RT transcription phenotype in the mutant 

YFFF is specifically associated with tyrosine mutations or due to the general 

structural alteration of the last 39 heptads of the CTD. To address this 

question, three additional mutants were designed, in which the last 39 

heptads of the CTD have replaced either serine-2, threonine-4 or serine-5 by 

alanine. The mutants were termed S2AAA, TAAA, and S5AAA, respectively 

and served as controls for the mutant YFFF (Figure 18A).  

The three new mutants were cloned into the expression vector pRX4-267, 

transfected in Raji cells via electroporation and selected for a period of 2-3 

weeks in RPMI growth media. Whole cell extracts were prepared 72 hours 

after the induction and 48 hours after addition of α-amanitin and proteins were 

analyzed by western blot analysis (Figure 18B). All new mutants expressed 

the hypophosphorylated (IIA) and the hyperphosphorylated (IIO) forms of 

Pol II when probed with the α-HA antibody (3F10), suggesting that the 

mutants are transcriptionally active. Weak expression of the Pol IIO forms in 

the mutant YFFF probably reflects weak induction of the recombinant Pol II. 

Mutants S2AAA and S5AAA showed a continuous decline in the cumulative 

living cell number over the period of two weeks after induction in the presence 
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of α-amanitin (Figure 18C). In contrast, the mutant TAAA displayed 

attenuated growth phenotype.  

 

(A) 

 
(B)      (C)  

 
Figure 18: Control mutants for the mutant YFFF (A) A schematic 
representation of CTD mutants. Each box represents a single heptad of the 
CTD. Color code of heptad repeats are as follows: green - wild type; blue - 
tyrosine-1 replaced by phenylalanine; yellow - serine 2 replaced by alanine; 
orange - threonine 4 replaced by alanine; purple - serine 5 replaced by 
alanine. (B) Western blot analysis showing the expression of the recombinant 
Pol II with α-HA antibody and the endogenous plus total Pol II with the α-Rpb1 
antibody (Pol 3.3). α-tubulin is used as a loading control. (C) Graph 
representing cell proliferation of mutants over a period of two weeks.  

Next, in the RNA-seq analysis, the mutant S2AAA did not display any 

apparent RT transcription at 5’ or 3’ end of genes, as exemplified at the 

PDCD6IP gene locus (Figure 19). The comparison of mutants YFFF and 

S2AAA suggests that the RT transcription phenotype observed in the mutant 

YFFF is specifically associated with mutations of tyrosine residues and not 

due to general mutations in the last 39 heptads of the CTD. 
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Figure 19: Comparison of RNA-seq signals at the PDCD6IP gene locus in 
rWT and mutants YFFF and S2AAA. A screenshot from the Integrated 
Genome Browser (IGB), comparing RNA-seq signals over genes CLASP2 
and PDCD6IP in rWT and mutants YFFF and S2AAA. The CLASP2 gene is 
transcribed on the minus strand (red signals) and the PDCD6IP on the plus 
strand (blue signals). The annotated transcription unit of the PDCD6IP gene is 
marked between green and red lines. Downstream 3’ end read-through 
transcription and an increase in antisense transcription in the mutant YFFF 
are marked by orange arrows. 

We next asked if the 3’ end RT phenotype in the mutant YFFF is associated 

with defects in the 3’ end processing of RNAs. 

2.7. PolyA+-RNA-seq analysis 

3’ end processing of RNA is an important step in the transcription cycle. 

Cleavage and polyadenylation specificity factors (CPSF) recognize the 

AAUAAA sequence of RNA and together with the cleavage stimulation factor 

(CstF) act to promote RNA cleavage. Furthermore, poly(A) polymerase is 

recruited and facilitates polyadenylation of the 3’ end of RNA (Proudfoot, 

2011). To address if the 3’ end RT phenotype in the mutant YFFF is due to 

defects in 3’ end processing of RNAs, polyA+-RNA-seq was performed 

(Materials and Methods 4.2.5.2).  
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Figure 20: Comparison of polyA+-RNA-seq signals for the CCR7 gene in 
rWT and the mutant YFFF. A screenshot from the IGB browser comparing 
RNA-seq signals over the gene locus CCR7 in rWT and the mutant YFFF. 
The gene is transcribed on the minus strand (red signals) and its annotated 
transcription unit is marked between green and red lines.  

A representative gene, CCR7, is shown in the Figure 20. RNA-seq signals of 

polyA+-RNAs were detected over the annotated transcription unit of the gene 

CCR7. Although there was a difference in the signal intensity at the 3’ end of 

the gene, the enrichment of signals indicated that probably the processing 

and polyadenylation of the CCR7 mRNA occurred efficiently in the mutant 

YFFF. The mutant YFFF in addition, displayed a massive 3’ end RT 

transcription phenotype. 

In metagene analysis, signals of polyA+-RNAs were comparable over the 

annotated transcription unit in rWT and the mutant YFFF. This suggests that 

the processing and polyadenylation of a large number of mRNAs in the 

mutant YFFF is efficient (Figure 21A). However, high RNA-seq signals were 

detected in the regions 20 kb upstream and downstream of the annotated 

gene boundaries in the mutant YFFF, a phenotype similar to the one 

observed in the analysis of total RNA. 
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(A)      (B) 

 
Figure 21: PolyA-RNA-seq analysis in rWT and the mutant YFFF. (A) 
Average profiles of read-counts of polyA+-RNA-seq representing transcription 
in sense (blue) and antisense (red) direction of the gene body in rWT and the 
mutant YFFF. Signals in the profiles are distributed over gene bodies and in 
regions 20 kb around annotated gene boundaries. Signals are normalized to 
the gene body. (B) Box plot quantification of upstream antisense transcription 
index (red) and downstream read-through transcription index (blue) in rWT 
and the mutant. 

Thus, the polyA+-RNA-seq experiment suggested that 3’ ends of RNAs in the 

mutant YFFF are properly processed and polyadenylated. The 3’ end RT 

transcription phenotype in the mutant  YFFF is probably then not due to 

defects in the 3’ end processing of RNAs, but due to the failure of Pol II to 

terminate transcription. Whether the long RT transcripts in the mutant YFFF 

can be properly processed and if Pol II can terminate at all remains unclear. 

2.8. ChIP-seq analysis 

Next, ChIP-seq (chromatin immunoprecipitation) experiments were performed 

to map the occupancy of Pol II in rWT and the mutant YFFF (Materials and 

methods 4.2.4).  
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2.8.1. The mutant YFFF displays increased Pol II occupancy 
downstream of 3’ ends of genes 

Pol II occupancy in rWT and the mutant YFFF was compared at individual 

genes using the IGB genome browser. A representative gene, UMPS, is 

shown in the Figure 22.  

 
Figure 22: Pol II occupancy at the UMPS gene locus in rWT and the 
mutant YFFF. A screenshot from the Integrated Genome Browser (IGB) 
comparing the occupancy of Pol II over the gene locus UMPS. Green and red 
lines mark the annotated transcription unit of the gene. Orange arrow 
indicates Pol II occupancy downstream of the 3’ end site in the mutant YFFF. 

In rWT, the Pol II occupancy signals were detected over the transcription unit 

of the gene UMPS, but not in the region downstream of the annotated 3’ end 

site. In contrast, in the mutant, in addition to the gene body, substantial Pol II 

density was detected in regions downstream of the annotated 3’ end site. 

High Pol II density downstream of the annotated 3’ end site in the mutant 

YFFF was observed at a genome-wide scale as revealed in the metagene 

analysis (Figure 23A) and confirmed by boxplot quantifications (Figure 23B). 

In addition, a peak near the 3’ end of genes was visible in rWT, corresponding 

to the paused Pol II; a prerequisite for transcription termination. This peak was 

strongly increased and shifted by around 2.6 kb downstream of the annotated 

3’ end site in the mutant YFFF, indicative of a delay in Pol II pausing (Figure 
23C). 
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(A)       (B) 

   (C) 

 
Figure 23: ChIP-seq analysis in rWT and the mutant YFFF. (A) Average 
metagene profiles of Pol II density in rWT (blue) and the mutant (red). A total 
of 772 genes from the hg19 were selected for analysis. Signals in the profiles 
are distributed over the gene bodies and in regions 20 kb around the 
annotated gene boundaries. Signals are normalized to the gene body. (B) Box 
plot quantification of downstream Pol II read-through transcription index in the 
rWT and the mutant YFFF. (C) Average Pol II density profiles of rWT and the 
mutant YFFF near the 3’ end site.  

Thus, ChIP-seq analysis demonstrated that the mutant Pol II fails to 

dissociate off the template DNA and traverses up to several hundred kbs 

beyond of the annotated 3’ end site corroborating the observation of global 

termination defects. 

2.8.2. The mutant YFFF shows reduced Pol II occupancy near TSS 

Additionally, ChIP-seq analysis displayed a substantial loss in the Pol II 

density near TSS in the mutant YFFF, as exemplified in the Figure 24A.  
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(A)       (B) 

 
Figure 24: Pol II occupancy near TSS in rWT and the mutant YFFF (A) A 
screenshot from the Integrated Genome Browser (IGB) comparing the Pol II 
density over genes. Reduced Pol II occupancy near the TSS of genes in the 
mutant YFFF is marked by an orange arrow. (B) Metagene profiles of average 
Pol II density in rWT (blue) and the mutant YFFF (red) at TSS and in the 
regions 1 kb around the TSS. 

Pol II density was detected over the annotated transcription unit of the genes, 

RRAGC, MYCBP, AKIRIN1 and NDUFSS in both the cell lines. The mutant 

YFFF displayed reduced Pol II occupancy near the TSS of genes MYCBP, 

AKIRIN1 and NDUFSS (orange arrows) compared to rWT. After normalizing 

Pol II density to the gene bodies, the mutant YFFF showed a massive 

reduction in the Pol II density near the TSS at a genome-wide scale (Figure 
24B).  This reduced Pol II occupancy at the TSS in the mutant prompted us to 

investigate promoter-proximal pausing in the mutant YFFF. 

2.9. Promoter-proximal pausing 

In many metazoan genes, Pol II pauses around 20-60 nucleotides 

downstream of the TSS before transiting into productive elongation.  This is 

an important regulatory step in the transcription cycle and described as 

promoter-proximal pausing (Adelman et al., 2012). The Pol II pausing scores 

in rWT and the mutant YFFF were calculated by dividing Pol II occupancy 

signals at the promoters (-300 bp to +100 bp) by the signals in the gene body. 

The heatmap of Pol II density was generated by the order of increasing 

pausing scores in rWT (Figure 25A). A similar heatmap representing the 

pausing score of corresponding genes in the mutant YFFF was generated 
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(Figure 25A). Genes were classified into three groups, 1) low paused genes, 

2) moderately paused genes and 3) highly paused genes.  

(A)      (B) 

 
Figure 25: Promoter-proximal pausing in rWT and the mutant YFFF (A) 
Heatmaps representing Pol II pausing score in rWT and the mutant. Genes 
are ranked in the order of increasing pausing score in rWT and classified into 
three groups. (B) Quantification of Pol II pausing score for corresponding 
groups of genes in rWT (gray) and the mutant (black).  

Comparison of Pol II pausing score between rWT and the mutant showed that 

genes that are moderately and highly paused in rWT, displayed significantly 

low pausing score in the mutant YFFF (Figure 25B). This indicates an early 

release of promoter-proximal paused Pol II in the mutant YFFF. Genes that 

have low pausing in rWT did not display any significant change.  

Taken together, the mutant YFFF revealed a global defect in transcription 

termination at 5’ and 3’ ends of genes and an early release of promoter-

proximal paused Pol II. However, the reason for these aberrant transcription 

phenotypes was not known. To address this, pursued with a Mass 

Spectrometry (MS) approach. The rationale was to see if the mutant Pol II 

reveals gain and/or loss of binding to certain transcription factor/s, potentially 

explaining the cause of pervasive transcription and reduced pausing. 
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2.10. Mass spectrometric analysis 

Pol II from rWT and the mutant YFFF was immunoprecipitated using α-HA 

antibody (12CA5), 72 hours after the induction (Materials and methods 

4.2.3.2). The immunoprecipitated samples were subjected to either in-gel 

trypsin digest or on-beads trypsin digest (Materials and methods 4.2.3.4 and 

4.2.3.5) before processing them for the LC-MS/MS analysis (Materials and 

Methods 4.2.3.6).  

 
Figure 26: Volcano plot comparing Pol II interactome in rWT and the 
mutant YFFF. The table on the right lists selected proteins and complexes 
that interact with the Pol II of both, rWT and the mutant. Represented on the 
left are the proteins that do not interact with the mutant Pol II. Highlighted are 
25 subunits of Mediator complex (green); 11 subunits of Integrator complex 
(red); CTD phosphatase (Magenta); E3-ubiquitin ligase, components of SOSS 
complex and others (blue). Threshold: Log2 fold change ≥ 5; p-value < 0.05. 
Data is based on five independent biological replicates. 

A volcano plot was generated that provided information about the common 

interactors in rWT and the mutant YFFF. In addition, the information about 

proteins, which showed loss of interaction with the Pol II in mutant YFFF, was 

also revealed (Figure 26). Peptides of all 12 subunits of the Pol II (Rpb1-12) 
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and several splicing factors were detected as common interactors. In addition, 

the peptides corresponding to the 3’ end processing factors, such as the 

cleavage and polyadenylation specificity factor (CPSF) and a 5’->3’ 

exonuclease, Xrn2, were also present in comparable amounts in both 

samples. In total six subunits of the CPSF were detected. A table showing the 

peptide counts of the selected common interactors for each biological 

replicate is in the Supplementary table 1. The ratio of the log2 fold change 

(mutant YFFF/rWT) for these proteins is in the Supplementary table 2. 
Next, a total of 69 proteins were found that showed loss of interaction with the 

Pol II in mutant YFFF. These proteins are shown on the left side of the 

volcano plot. A table showing the peptide counts of the 69 proteins and its 

log2fold change ratio is shown in the Supplementary table 3 and 4, 

respectively. 

Of the 69 proteins more than 50% belonged to two large cellular complexes, 

the Mediator (green) and the Integrator (red). Both, complexes are known to 

interact with Pol II CTD (Baillat et al., 2005). The Mediator is a protein 

complex that is composed of four core structural modules, the Head, the 

Middle, the Tail and a dissociable CKM (Allen et al., 2015). In the MS 

analysis, 25/30 subunits of the mediator complex were detected in rWT, but 

not in the mutant YFFF (Supplementary table 3). Interestingly, in rWT, the 

peptides for the entire CKM module were lacking. Integrator is a metazoan-

specific, 14 subunits protein complex that interacts with CTD in a Ser2-P and 

Ser7-P dependent manner (Egloff et al., 2010). In our experiments, 11 

subunits of the Integrator complex were enriched in rWT but not in the mutant 

YFFF. 

Pol II in the mutant YFFF also showed the loss of interaction with RPRD1A 

and RPRD2. These proteins serve as scaffolds that recruit serine-5 

phosphatase, RPAP2 (Ni et al., 2014). In addition, E3 ubiquitin ligases like - 

ITCH, WWP1 and WWP2 as well as components of the SOSS complex, INIP 

and NABP2, showed impaired interaction with the Pol II in mutant YFFF.  

Next the Pol II interactome in the mutant S2AAA was studied (Figure 27) to 

investigate, if the loss of interaction of the Mediator and Integrator with Pol II 

in the mutant YFFF is specific for tyrosine mutations, or can be observed also 

for the mutant S2AAA. 
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Figure 27: Volcano plot comparing the Pol II interactome in rWT and 
mutant S2AAA. A table on the left lists selected proteins and complexes that 
interact with Pol II in rWT and mutant S2AAA cells. Highlighed are subunits of 
Pol II (magenta), Mediator (green) and Integrator (red). Threshold: 
Log2 fold change ≥ 5; p-value < 0.05. 

MS data revealed that the peptides corresponding to all 12 subunits of Pol II 

(magenta), 21 subunits of the Mediator (green) and 11 subunits of Integrator 

(11 subunits) were detected in the Pol II interactome of rWT and mutant 

S2AAA. A table showing the ratio of log2 folds change of these proteins is 

shown in the Supplementary table 5. MS data suggested that the Mediator 

and Integrator can interact with Pol II in the mutant S2AAA and that the loss of 

binding to Pol II in the mutant YFFF is specific for the tyrosine mutations.  

Finally, we asked if the failure to detect peptides of Mediator and Integrator 

subunits in the mutant YFFF was due to the loss of the expression of both 

complexes. To address this, western blot analysis was performed to detect 

the expression of the Mediator subunit 15 (MED15) and the Integrator 

subunit 11 (INTS11) (Figure 28). 
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(A) 

 
(B) 

 
Figure 28: Expression of the Mediator subunit 15 (MED15) and the 
Integrator subunit 11 (INTS11) in rWT and the mutant YFFF. Cells were 
lysed 48 and 72 hours after the induction and the expression of the 
recombinant Pol II was analyzed using α-HA antibody (3F10). Expression of 
the recombinant and the endogenous Pol II was detected with α-Rpb1 (Pol 
3.3) antibody. α-MED15 antibody and α-INTS11 antibody were used to detect 
the expression of the Mediator subunit 15 and Integrator subunit 11, 
respectively. α-tubulin was used as a loading control. 

Both proteins, MED15 (Figure 28A) and INTS11 (Figure 28B), were 

expressed in rWT and mutant YFFF cells, 48 and 72 hours after induction. 

Interestingly, the expression level of the MED15 subunit was stronger in the 

mutant. This could be due to the stabilization of the MED15 subunit. Together, 
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western blot and the MS analysis demonstrated that the Mediator and the 

Integrator are expressed, but did not interact with Pol II in the mutant YFFF. 

Thus, the MS analysis revealed that the Mediator and the Integrator interact 

with the CTD in a tyrosine-dependent manner. Tyrosine residues in the first 

13 heptads of the CTD are not sufficient for the recruitment of these 

complexes.  
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3. Discussion 

This thesis unravels the functional significance of Tyr1 of mammalian RNA 

polymerase II CTD in the regulation of global termination of gene 

transcription. We show that Tyr1 strongly limits the extent of pervasive 

transcription at 5’ and 3’ end of genes and also contributes to the regulation of 

promoter-proximal pause/release. The study further provides the clue for the 

involvement of the Mediator and/or the Integrator complexes in the regulation 

of transcription termination and/or Pol II pausing in a tyrosine-dependent 

manner.  

3.1. Generation and characterization of tyrosine mutants 

The functional role of Tyr1 residues of CTD can be studied by characterizing 

transcriptional active Pol II mutants that lack Tyr1. The replacement of Tyr1 by 

phenylalanine (Y1F) in all 26 heptads leads to the degradation of CTD in 

chicken DT40 cells. Strikingly, the mutant in which only a single phenylalanine 

was reverted back to tyrosine in the last repeat, prevented the degradation of 

CTD in chicken cells (Hsin et al., 2014). A previous study from our laboratory 

reported that Y1F replacements in heptads 4-51 lead to the degradation of 

CTD in mammalian cells, making it difficult to characterize the function of Tyr1 

in this mutant (Descostes et al., 2014).  

In my thesis, I developed a strategy to overcome this challenge. My first 

objective was to generate a set of Y1F mutants that are transcriptionally 

active. I also wanted to unravel the functional significance of Tyr1 residues in 

different parts of CTD. Considering these, I designed seven CTD constructs, 

in which Y1F mutations were introduced in either 26 or 39 heptads of CTD 

(Figure 6). Tyrosine was replaced by phenylalanine as both amino acids have 

an aromatic core structure. However, tyrosine has an -OH group and can be 

phosphorylated. I cloned these constructs into the episomal expression vector 

pRX4-267, transfected them into Raji cells and made use of the tetracycline 

inducible, Rpb1 knockout-knockin system to study the properties of the 

recombinant Pol II.  
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Following induction of the recombinant Pol II and shutdown of the 

endogenous Pol II by α-amanitin, all mutants stably expressed two forms of 

Pol II (Figure 8), which differ in the apparent molecular weight and in their 

phosphorylation state (Dahmus, 1981). Work by Dahmus and colleagues 

showed that the lower band, Pol IIA, is hypo-phosphorylated, whereas, the 

upper band, Pol IIO arises from the hyper-phosphorylation of CTD (Cadena et 

al., 1987). Pol IIA associates with the preinitiation complex at promoters. The 

transition from initiation to elongation is accompanied by the hyper-

phosphorylation of Pol IIA and conversion to the transcriptionally active, 

Pol IIO form (Kang et al., 1993). The formation of the Pol IIO form by the 

tyrosine mutants suggested that all seven mutants were transcriptionally 

active. Pol II in all seven mutants is phosphorylated at Ser2 of CTD, 

suggesting that all polymerases were elongation-competent (Ahn et al., 2004). 

This was a very important result as it provided me with a set of Y1F mutants 

that could be characterized further.  

Next, I tested the cell lines expressing Pol II CTD tyrosine mutants for their 

ability to proliferate in the presence of α-amanitin (Figure 9). The mutants, 

FYYF and YYFF carry 26 heptads with Y1F mutations and were viable after 

two weeks of α-amanitin selection. This suggests that Y1F mutations in the 

first and the last 13 heptads or the last 26 heptads of CTD are tolerated in 

mammalian cells. In contrast, the remaining five mutants displayed a lethal 

phenotype. The lethal mutants as well as the untransfected Raji cells 

displayed a cell viability of around 90% after one day of α-amanitin selection. 

Their cell viability declined to less than 50% after four days of selection. The 

mutants FFYY and YFFY also carry 26 heptads with Y1F mutations, but 

displayed a lethal phenotype. This suggests that not the number, rather the 

position of Y1F mutations affect cell viability. Intriguingly the viable mutants 

had conserved Tyr1 in heptads 14-26, whereas the mutants with a lethal 

phenotype had mutation in these heptads. This observation suggests that 

Tyr1 in heptads 14-26 might be particularly critical for cell growth, and 

perhaps recruit essential transcription factor/s for proper gene expression. 

However, this assumption needs further investigations. The mutant YF26 had 

Y1F substitutions in every alternate repeat and displayed a lethal phenotype. 

This is consistent with the functional unit studies of CTD in yeast. John Stiller 
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and colleagues showed that a single functional unit in yeast CTD is 

embedded within paired-heptads (Stiller et al., 2004). Essentially, the yeast 

CTD functional unit requires paired tyrosines spaced 7 amino acids apart (Y1-

Y8) and the three SP motifs in a 2-5-9 direction (Y1S2P3T4S5P6S7Y8S9P10). 

Disruption of this motif is lethal in yeast. The lethality of the mutant YF26 in 

mammalian cells indicates that similar to yeast, the mammalian CTD probably 

needs tyrosine residues spaced seven amino acids apart. Finally, the mutants 

with 39 mutated heptads in either the proximal (FFFY) or the distal part 

(YFFF) displayed a lethal phenotype. This suggests that mammalian cells 

may require more than 13 Tyr1 residues to support cell growth. 

3.2. Transcriptome analysis of tyrosine mutants 

Next, I wanted to investigate the transcriptome of tyrosine mutants. For this, I 

collaborated with the laboratory of Jean-Christophe Andrau in Montpellier. We 

first performed the RNA-seq analysis of total RNA for four of the seven 

mutants, FYYF, YYFF, YFFY and YFFF. Two mutants displayed a viable 

phenotype and two other a lethal phenotype. In Principal Component 

Analysis (PCA), the biological replicates of the mutant YFFF clustered far 

away from the replicates of rWT and other tyrosine mutants (Figure 10A). 

Surprisingly, one replicate of rWT was separated from the second replicate on 

a PC1 scale. This could probably be due to the differences in the expression 

value of few genes between two replicates. In differential gene expression 

analysis a number of genes in tyrosine mutants were differentially expressed, 

with most of them being upregulated (Figure 10B). Interestingly, the mutant 

YFFF displayed the highest number of differentially expressed genes. The 

mutant YFFF also displayed a strong transcription read-through (RT) 

phenotype at 5’ and 3’ end of genes in our RNA-seq analysis. Such a 

phenotype was seen, but to a lesser extent, in other tyrosine mutants (Figure 
12). Here, we performed the non-strand specific RNA-seq analysis and hence 

could not discriminate between sense and antisense transcription. As the 

mutant YFFF displayed the highest number of differentially expressed genes 

and has the strongest RT phenotype, we pursued to characterize this mutant 

in detail.   
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3.3. The mutant YFFF displays an increase in antisense and 3’ end RT 
transcription phenotype 

We next performed the strand-specific RNA-seq analysis of total RNA in rWT 

and the mutant YFFF. Here, the mutant YFFF not only confirmed the 3’ end 

RT phenotype, but also displayed an increase in antisense transcription 

upstream of 5’ ends of genes (Figure 15). Such a phenotype was not 

observed in the mutant S2AAA, suggesting that the RT phenotype is 

specifically associated with the loss of tyrosine residues and do not arise due 

to the structural alterations in the last 39 heptads of the CTD. We further 

compared the RT transcription at 5’ and 3’ end of genes in the mutant YFFF 

(Figure 16). Genes with higher 3’ end RT transcription displayed higher 

upstream RT transcription at 5’ end of genes, while genes with lower 3’ end 

RT transcription displayed lower upstream RT transcription at 5’ end of genes 

in the mutant YFFF. This suggests that the RT transcription at 5’ and 3’ ends 

of genes in the mutant YFFF is probably associated with each other. It is 

important to note that not all genes in the mutant YFFF displayed aberrant RT 

transcription phenotype. Several genes were normally transcribed and did not 

display any transcription defects. One such representative gene is shown in 

the Supplementary Figure 1. Thus, our RNA-seq data suggests that the RT 

phenotype in the mutant YFFF was a global, but not a general phenotype.  

High levels of Pol II downstream of the annotated 3’ end site were detected in 

the mutant YFFF in our ChIP-seq analysis (Figure 23) further supporting the 

observation of RT transcription phenotype.  

Antisense transcription is defined as the transcription from the strand opposite 

to the protein coding or sense strand. In mammalian cells, many polymerases 

bound to promoters are associated with upstream antisense transcription. The 

divergent initiation of transcription by Pol II at TSS is a general phenomenon 

for mammalian promoters (Core et al., 2008; Seila et al., 2008). Divergent 

transcription generates upstream antisense RNAs that are typically short and 

relatively unstable (Wu et al., 2013). Recent studies show that upstream 

antisense RNAs are cleaved and polyadenylated shortly after 

initiation (Almada et al., 2013). Longer non-coding antisense transcripts can 

be detected upstream of genes in conditions of inhibition of the RNA 
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degradation machinery (Lepoivre et al., 2013). In the mutant YFFF, upstream 

antisense transcripts seem to be polyadenylated (Figure 21) and extend 

beyond the natural antisense transcription.  

RT transcription downstream of annotated 3’ end of genes has been reported 

in various situations of cellular stress or inactivation of certain transcription 

factors. In clear cell renal cell carcinoma (ccRCC) high levels of RT 

transcription is prevalent (Grosso et al., 2015). The authors identified Setd2 

inactivation as a major driving force of impaired transcription termination and 

high levels of RT transcription. In a different study, the induction of osmotic 

stress in cultured cells resulted in a large number of genes failing to terminate 

at the 3’ end of genes (Vilborg et al., 2015). The RT transcripts derived from 

protein-coding genes were called downstream of genes (DoGs) transcript and 

often transcribed over long non-coding regions. Infection by viruses may be 

considered as an extreme form of cellular stress. Herpes simplex virus 

infection causes a massive disruption of host gene transcription 

termination (Rutkowski et al., 2015). Although, the prevalence of RT 

transcription described in these studies is not as massive as observed in the 

mutant YFFF, it would be interesting to see if and how tyrosine 

phosphorylation of CTD is affected in infected cells. 

RT transcription downstream of the annotated 3’ end gene boundaries often 

interferes with the transcription of the downstream genes. In our RNA-seq 

analysis, high RNA-seq signals downstream of the ZBTB44 gene seem to 

interfere with the transcription of the ST14 gene in the mutant YFFF (Figure 
17). To investigate whether the high RNA-seq signals downstream of the 

ZBTB44 gene are due to new-initiation, we mapped the epigenetic 

modification marks H3K4me3 and H3K27ac. The H3K4me3 maps active 

promoters and H3K27ac enhancers. Both marks were absent in the region 

downstream of the ZBTB44 gene, suggesting that the high RNA-seq signals 

do not correspond to new initiation, but are caused by the 3’ end RT 

transcription. Interestingly, the H3K4me3 mark was present at the ST14 gene 

promoter, suggesting that the gene is transcribed in the mutant YFFF. 

However, weak RNA-seq signals over the gene body suggested repressed 

transcription. How the expression of the ST14 gene in the mutant YFFF is 

affected remains unanswered.  
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3.4.  3’ end processing of mRNAs is not affected in the mutant YFFF 

One important question was whether the RT phenotype in the mutant YFFF is 

due to an improper 3’ end processing of RNAs. There are 3 well-described 

mechanisms for the 3’ end processing of Pol II transcripts (Introduction 1.5.3). 

Here, we focused our analysis on the 3’ end processing of protein-coding 

genes, during which cleavage of the nascent transcript by CPSF73 is followed 

by 3’ polyadenylation of the cleaved transcript. According to the torpedo 

model of termination, cleavage of the nascent transcript creates an entry site 

for a 5’->3’ exonuclease, Xrn2, which degrades the downstream-cleaved 

product and releases Pol II from the template DNA. The laboratory of Nicholas 

Proudfoot analyzed the knockdown of Cleavage and Polyadenylation factors 

(CPA) as well as Xrn2 in the process of termination (Nojima et al., 2015). The 

knockdown of CPSF73 lead to termination defects, but the knockdown of 

CstF64 or Xrn2 did not show any significant termination defects at a genome-

wide scale. In contrast, a study from the laboratory of David Bentley showed 

that the inactivation of Xrn2 leads to substantial defects in transcription 

termination for most protein-coding genes (Fong et al., 2015). They reported 

that the expression of an inducible dominant-negative Xrn2 mutant (D235A), 

in combination with shRNA-mediated knockdown of the endogenous Xrn2, 

caused a general inhibition of Pol II termination and shifted the termination 

zone further downstream of genes.  

We observe that the Pol II in mutant YFFF can efficiently recruit Xrn2 as well 

as the CPSF complex, including the CPSF73 in our MS data. However, the 

massive RT transcription phenotype in the mutant YFFF suggests that these 

proteins probably contribute to the regulation of termination, but do not 

contribute to the removal of Pol II from the DNA template. Further, polyA+-

RNAs were efficiently enriched in the mutant YFFF as in rWT cells (Figure 
21), indicating that the 3’ end processing of RNAs is not affected. Together, 

our data demonstrated that the mutant YFFF has defects in transcription 

termination and displayed RT transcription downstream of the functional 3’ 

end site. Whether the long RT transcripts in the mutant YFFF can efficiently 

terminate remains elusive, but appears very unlikely.  
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3.5. Impaired recruitment of the Mediator and the Integrator to Pol II in 
the mutant YFFF 

Although we could not elucidate the exact underlying mechanism of the global 

termination defect in the mutant YFFF, our MS data provided a possible 

explanation to it. Pol II in the mutant YFFF revealed a strong impairment in 

the recruitment of Mediator (MED) and Integrator (INT) complexes (Figure 
26). Peptides corresponding to 25 subunits of the Mediator and 11 subunits of 

the Integrator were detected in the Pol II interactome of rWT, but not of 

mutant YFFF. The recruitment of Mediator and Integrator to Pol II in the 

mutant S2AAA suggested that the loss of interaction of these complexes is 

specific for tyrosine mutations. Here, I will describe how the Mediator and the 

Integrator interact with the Pol II CTD. The roles of these complexes in 

transcription termination will be discussed in the chapter 3.6. 

The Mediator was first isolated as a complex of 20 proteins in yeast (Kim et 

al., 1994) and its mammalian counterpart was identified later (Jiang et al., 

1998). The Mediator is composed of four distinct modules termed as the 

Head, Middle, Tail and a dissociable CKM kinase module. Mediator complex 

interacts with the unphosphorylated Pol II CTD (Kim et al., 1994; Myers et al., 

1998; Naar et al., 2002; Tsai et al., 2013) and can also interact with the 

general transcription factor, TFIIH (Esnault et al., 2008). CTD contacts the 

Head as well as the Middle module of the Mediator (Robinson et al., 2012; 

Tsai et al., 2013). The Kornberg lab published the X-ray crystal structure of 

the Head module of the Mediator bound to a four-heptad long CTD peptide 

(Robinson et al., 2012). In the structure the CTD adopted an extended 

conformation and interacted with the MED6, MED8 and MED17 subunits of 

the Head module. MED8 and MED17 were positioned close to each other and 

created a binding pocket, which was rich in hydrophobic residues. Tyr8 of the 

used CTD peptide was buried within this binding pocket. Furthermore, Tyr15 

of the CTD peptide formed the hydrogen bond with the Arg173 residue of the 

MED6. In a different study, Francisco Asturias and colleagues examined the 

Mediator-CTD interaction using Electron Microscopy. They used GST-tagged 

unphosphorylated full-length CTD and observed that the CTD in addition to 

the Head module also makes contacts with the Middle module of the Mediator 



Discussion 

  58 

(Tsai et al., 2013). As the X-ray structure revealed that the Tyr1 is directly 

involved in the Mediator-CTD interaction, the lack of Tyr1 residues in the 

mutant YFFF could explain the impaired recruitment of the Mediator to Pol II 

in our MS data. This further suggests that the Mediator does not bind to the 

first 13 heptads of the CTD and provides a hint for the heptad specific 

functions of the CTD, wherein specific heptads recruit specific transcription 

factors. However, the heptad-specific binding of Mediator requires further 

analysis. 

The Integrator is a metazoan specific multisubunit complex. The initial 

purification identified 12 subunits of the Integrator complex (INTS1 to 

INTS12) (Baillat et al., 2005) and the subsequent proteomic analysis further 

identified two additional subunits, INTS13 and INTS14 (Baillat et al., 2015). 

Although the co-crystal structure of the Integrator bound to a CTD peptide is 

not available, Shona Murphy and colleagues showed that serine-7 

phosphorylation of the CTD is crucial for the recruitment of the Integrator 

complex (Egloff et al., 2012). Ser7-P of the CTD recruits Ser5-P phosphatase 

RPAP2, which dephosphorylates Ser5-P and aids in the recruitment of 

Integrator. Tyr1 residues may not directly recruit the Integrator, but might 

provide the structural conformation to the CTD for the Integrator recruitment. 

The replacement of Tyr1 by phenylalanine in the CTD increases the 

hydrophobicity and this might alter the CTD conformation important for the 

recruitment of the Integrator. 

3.6. Roles of the Mediator and the Integrator in transcription 
termination 

The Mediator complex has been described to regulate transcription initiation 

as well as promoter-proximal pause/release, but little is known about its role in 

the process of termination. However, the MED18 subunit of the complex has 

been shown to regulate transcription termination in yeast (Mukundan et al., 

2011). This study reported that the MED18 was highly enriched at the 3’ end 

of genes.  In the absence of MED18 the recruitment of termination factors was 

compromised leading to a read-through transcription phenotype. In our 

proteomic studies, MED18 is one of the most strongly affected subunits that 

lost binding to Pol II in the mutant YFFF. However, whether the termination 
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defects in the mutant YFFF is a consequence of impaired recruitment of the 

MED18 remains elusive. 

In contrast to the Mediator, the Integrator has been well characterized in the 

control of transcription termination of diverse classes of genes (Skaar et al., 

2015). The laboratory of Ramin Shiekhattar showed that the Integrator is 

recruited to snRNA genes and mediates the snRNA 3’ end processing (Baillat 

et al., 2005). 3’ end processing of snRNA is mainly catalyzed by the subunits 

INTS9 and INTS11, which share sequence homology with CPSF73 and 

CPSF100 subunits of the CPSF complex, respectively. In addition, the 

Integrator regulates the transcription termination of histone genes (Skaar et 

al., 2015). Integrator bind to the 3’ end of histone genes and the depletion of 

Integrator subunits by siRNA-mediated knockdowns resulted in defects in 

histone mRNA processing and termination failure.  

Thus we speculate that the impaired recruitment of Mediator and/or Integrator 

complexes to Pol II in the mutant YFFF leads to a phenotype of global 

termination defects. Whether one or both of these complexes contribute to the 

termination defects in the mutant YFFF is not yet clear and needs further 

experimental evidences.  

3.7.  An early release of promoter-proximal paused Pol II in the 
mutant YFFF 

Pol II in the mutant YFFF displayed reduced occupancy near the TSS in our 

ChIP-seq analysis (Figure 24), indicative of either reduced Pol II initiation 

and/or early release of promoter-proximal paused Pol II. To investigate this, 

we analyzed promoter-proximal pausing in the mutant YFFF. Genes that were 

highly paused in rWT displayed significantly lower Pol II pausing score in the 

mutant YFFF, suggesting an early release of promoter-proximal paused Pol II 

(Figure 25). 

Pol II pauses around 20-60 nucleotides downstream of the transcription start 

site before transiting into productive elongation. This rate-limiting step of 

transcription is described as promoter-proximal pausing and is controlled by 

multiple transcription factors. The DRB-sensitivity factor (DSIF) and negative 

elongation factor (NELF) functions together to induce Pol II pausing, while the 

cyclin-dependent kinase P-TEFb plays an important role in the release of the 
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paused Pol II (Adelman et al., 2012). Mediator has been reported to regulate 

Pol II pause/release. Although the exact the molecular mechanism remains 

unclear, one proposed mechanism is that the Mediator recruits Super 

Elongation Complexes (SECs) containing P-TEFb and contributes to the 

release of paused Pol II. The Conaway lab showed that the N-terminal 

domain (NTM) of MED26 subunit of the Mediator complex served as a 

docking site for the recruitment of ELL and P-TEFb containing 

SEC (Takahashi et al., 2011). They reported that the MED26 knockdown 

interfered with the recruitment of SEC to the c-MYC and HSP70 genes and in 

concomitant reduced transcription. This suggests that the MED26 might 

contribute to the transition of promoter-proximal paused Pol II into productive 

elongation.  

Two independent studies have implicated the role of Integrator in the 

regulation of promoter-proximal pause/release (Gardini et al., 2014; 

Stadelmayer et al., 2014). However, both studies described opposite roles. 

The laboratory of Ramin Shiekhattar described the role of Integrator in pause 

release at immediate early genes (IEGs) (Gardini et al., 2014). In this study, 

ChIP-seq analysis revealed high levels of Integrator at the transcription start 

site and within the gene body of IEGs upon epidermal growth factor 

stimulation. The knockdown of Integrator subunits (INTS1 and INTS11) led to 

a reduction in Pol II levels over the gene body, while Pol II levels at the 5’ end 

were increased. This suggested that Pol II failed to escape pausing and 

transit to productive elongation. Mechanistically, the authors showed that 

Integrator is required for the recruitment of SEC-containig P-TEFb. The 

knockdown of Integrator abolished the recruitment of SEC, thereby preventing 

Pol II from entering into productive elongation. The work from Monsef 

Benkirane described the opposite phenotype of Integrator knockdown 

(Stadelmayer et al., 2014). In this study, the Integrator was shown to interact 

with NELF in mass spectrometry analysis. Upon the knockdown of INTS11 

there was an increase in Pol II levels over the gene body indicative of faster 

release of paused Pol II. Thus this study implicates the role of Integrator in 

inducing Pol II pausing. 

The studies described here analyzed promoter-proximal pause/release after 

the knockdown of individual subunits of Mediator and Integrator. In contrast, 
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we observe a complete loss of both these complexes in our MS data. We 

assume that the loss of binding of either Mediator or Integrator or both to 

Pol II may cause such pause defects in the mutant YFFF. However, this 

assumption needs further experimental evidences.  

3.8. Conclusions 

Transcription termination occurs when the transcribing Pol II is released from 

the template DNA. Until today, the mechanism that leads to the timely and 

efficient termination of transcription remains poorly understood and new 

concepts are emerging to explain this process. 

 
Figure 29: Proposed roles of Tyr1 in the regulation of transcription-
coupled processes. A model recapitulating the transcriptional phenotypes in 
rWT (left) and the mutant YFFF (right). Mass spectrometry data is 
represented at the top. Pol II density profiles are highlighted in purple and 
mRNA transcripts are shown in green.  

Our work provides a novel insight in the process of transcription termination 

and proposes the involvement of Tyr1 of Pol II CTD in this process. The work 

further implicates Tyr1 in the regulation of promoter-proximal pause/release. 

In rWT, Pol II recruits Mediator, Integrator, 3’ end processing and splicing 

factors for the regulation of transcription-coupled processes (Figure 29). The 
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binding of 3’ end processing and splicing factors to Pol II in the mutant YFFF 

was not impaired and the 3’ end processing of RNAs was also not affected. 

However, the mutant YFFF showed impaired recruitment of Mediator and 

Integrator complexes. The lack of recruitment of these two large complexes 

could explain the phenotypes of an early release of the paused Pol II and a 

global termination defect. Our experiments also provided clues for the heptad-

specific functions of the CTD. First, the strong termination defect was 

observed only in the mutant YFFF and not other mutants. Not all genes in the 

mutant YFFF displayed a termination defect, suggesting that different genes 

might require different heptads of the CTD to regulate various transcription 

events. Our MS data indicated that the Mediator and the Integrator might not 

interact with the first 13 heptads of the CTD. 

3.9. Outlook 

This thesis established Tyr1 of Pol II CTD as a key player in the regulation of 

transcription termination and Pol II pausing and also provided a clue for the 

involvement of the Mediator and the Integrator in these processes. However, 

the study raised few important questions that are yet to be answered. 1) What 

is the mechanism by which the Mediator and/or the Integrator regulate 

transcription termination and Pol II pause/release? 2) Does the Mediator and 

the Integrator, both, contribute to these processes? 3) Does the Mediator and 

the Integrator bind the same or different heptads in the CTD? 

A strategy to answer these questions would be to generate sophisticated CTD 

mutants that might show loss of interaction with either the Mediator or the 

Integrator complex. The functional study of such mutants would help us 

unravel the transcriptional phenotypes associated with the loss of one of the 

two complexes. If we could not get our hands on such CTD mutants, then we 

might assume that both these complexes interact with same heptads in the 

CTD. The question to pursue then would be to ask if Mediator and Integrator 

do bind to the same heptads in a mutually exclusive manner?  

The strategy in this thesis of combining genetics with next generation 

sequencing can serve as a general experimental workflow to investigate the 

heptad specific functions of CTD in the future. Such an analysis has been 

challenging so far due to the highly repetitive structure of the CTD. Our work 
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provides hints that Tyr1 residues in the distal heptads of CTD play a crucial 

role in limiting global pervasive transcription. In this context, it will be 

interesting to analyze the tyrosine mutants, especially the mutant FFFY, to 

ask if Tyr1 residues in the proximal and distal parts of the CTD regulate 

specific transcription-coupled processes. The growth phenotype of CTD 

mutants suggested that Tyr1 residues in heptads 14-26 might be critical for 

cell growth. The study of additional CTD mutants that can help us understand 

the functional significance of Tyr1 in these heptads will further contribute to 

our understanding of heptad specific functions of CTD.  
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4. Materials and Methods 

4.1. Materials 

4.1.1. List of Chemicals 

1 kb DNA ladder   - Invitrogen, Karlsruhe 

1,4-Dithiothreitol (DTT)  - Carl Roth GmbH & Co.KG, Karlsruhe 

6X DNA loading dye  - Thermo Fisher Scientific, Karlsruhe 

Acetone    - Merck KGaA, Darmstadt 

Acetonitrile    - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Agarose    - Lonza Cologne GmbH 

Albumin Fraction V (BSA)  - Carl Roth GmbH & Co.KG, Karlsruhe 

Ammonium Bicarbonate  - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Ammonium peroxydisulphate - Carl Roth GmbH & Co.KG, Karlsruhe 

Bromophenol Blue (BPB)  - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Dimethyl pimelimidate  - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Dimethyl Sulfoxide (DMSO) - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Dulbeco’s PBS (DPBS)  - Gibco Life Technologies,   

      Eggenstein   

Ethanol, absolute (EtOH)  - Merck KGaA, Darmstadt 

Ethanolamine   - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Ethidium Bromide (EtBr)  - Applichem, Darmstadt  

Ethylendiaminetetraacetic Acid  

(EDTA)    - Carl Roth GmbH & Co.KG,  

      Karlsruhe 

Fetal Bovine Serum (FBS)  - PAA Laboratories, Pasching, Austria 



Materials and Methods 

  65 

Formaldehyde (37 %)  - Carl Roth GmbH & Co.KG, Karlsruhe 

Glycerol 86%    - Carl Roth GmbH & Co.KG, Karlsruhe 

HEPES    - Carl Roth GmbH & Co.KG, Karlsruhe 

Hydrogen Chloride (HCl)  - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Isopropanol, absolute  - Carl Roth, Karlsruhe 

L-Glutamine 200mM (100x) - Gibco Life Technologies,   

      Eggenstein 

Methanol (MeOH), absolute - Merck KGaA, Darmstadt 

Milk powder, blotting grade  - Carl Roth GmbH & Co.KG, Karlsruhe 

Neomycin (G148)   - Promega Corp., Wisconsin, USA 

Nonidet P-40 (NP40)  - Carl Roth GmbH & Co.KG, Karlsruhe 

Penicillin/Streptomycin   - Gibco Life Technologies,  Eggenstein 

Polyacrylamide 30% (PAA) - Carl Roth GmbH & Co.KG, Karlsruhe 

Prestained protein ladder plus - Fermentas, St. Leon-Rot 

RPMI Medium 1640   - Gibco Life Technologies,   

      Eggenstein 

Sodium Azide (NaN3)  - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Sodium Borate   - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Sodium chloride (NaCl)  - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Sodium Dodecyl Sulfate (SDS) - Carl Roth, Karlsruhe 

Tetracycline    - Promega Corp., Wisconsin, USA 

Tetramethylethylenediamine  

(TEMED)    - Carl Roth GmbH & Co.KG, Karlsruhe 

Trifluoroacetic acid   - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Tris     - Carl Roth GmbH & Co.KG, Karlsruhe 

Triton X-100    - Sigma-Aldrich Chemie GmbH,  

      Steinheim 

Trizol     - Ambion, Life technologies,  

      Eggenstein 
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Tryphan Blue    - Invitrogen, Karlsruhe 

Trypsin    - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

Tween-20    - Sigma-Aldrich Chemie GmbH,  

      Deisenhofen 

α - amanitin    - Roche Molecular Biochemicals,  

      Mannheim 

4.1.2. Lab consumables 

0.2 ml PCR tubes   - Thermo Fisher Scientific, Karlsruhe 

0.4 cm Electroporation cuvettes - Bio-rad laboratories GmbH, Munich 

Agar plates    - Greiner GmbH, Frickenhausen  

Amersham Hyperfilm ECL  - GE Healthcare, Munich 

Amershan Protran premium  

0.45 µM nitrocellulose 

Membrane    - GE Healthcare, Munich 

Cell culture flasks   - Greiner Bio-One,Frickenhausen 

Cyrovials 1.5 ml   - Nunc GmbH, Wiesbaden 

Falcon Tubes 15 ml, 50 ml  - Corning GmbH, Kaiserslautern 

Filter papers    - Machery-nagel GmbH & Co.K.G,  

      Düren 

Laboratory Glassware  - Duran Productions GmbH & Co. KG, 

      Mainz 

Microcentrifuge tubes 1.5 ml, 2 ml-  Eppendorf, Hamburg 

Nitrile Gloves    - Shield scientific, Netherlands 

Parafilm    - Carl Roth GmbH&CoKG, Karlsruhe 

Pasteur Pipettes   - Hirschmann Laborgeräte, Eberstadt 

Phosphatase inhibitor cocktail - Roche Diagnostics, Penzberg 

Pipette Tips 10, 20, 200, 1000 µl - Molecular Bio-Products, San Diego 

Plastic Pipettes   -  Greiner Bio-one GmbH,   

      Frickenhausen 

Protease inhibitor cocktail  - Roche Diagnostics, Penzberg 

Protein A-Sepharose beads - GE Healthcare, Munich 

Protein G-Sepharose beads - GE Healthcare, Munich 
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Scalpel    - Braun, Tuttlingen 

Sterile flip filters   - Milipore GmbH, Eschborn 

Whatmann gel blotting paper  

GB003    - Schleicher & Schuell, Germany 

4.1.3. Consumable Kits 

Agilent RNA 6000 pico kit  - Agilent Technologies, USA 

DNA Mini/Maxi kits   - Qiagen GmbH, Hilden 

TrueSeq ChIP Library 

Preparation Kit   - Illumina, USA 

QIAquick Gel extraction  - Qiagen GmbH, Hilden 

QIAEX II Gel extraction  - Qiagen GmbH, Hilden 

Ribo-Zero-rRNA removal kit - Epicenter, USA 

ScriptSeq RNA library  

Preparation kit   - Epicenter, USA 

TrueSeq Small RNA library 

Preparation kit   - Illumina, USA 

4.1.4.  Instruments 

-20°C freezer    - Siemens, Munich 

-80°C freezer    - Colora Messtechnik GmbH, Lorch 

Agilent 2100 Bioanalyzer  - Agilent Technologies, USA 

Bacteria incubator   - Heraeus Sepatech GmbH, Osterode 

Bacteria shaker (Series 25) - New Brunswick ScientificCo., NJ, 

      USA 

Bio-Rad PowerPac 300  - Bio-Rad Laboratories GmbH,  

      Munich 

Bio-Rad PowerPac basic  - Bio-Rad Laboratories GmbH,  

      Munich 

Bioruptor Pico sonicator  - Diagenode Inc., USA 

Blotting chamber   - Bio-Rad Laboratories GmbH,  

      Munich 
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Branson Sonifier 250  - Heinemann Ultraschall- und  

      Labortechnik 

DNA gel analyser   -  Peqlab biotechnologies GmbH,  

      Erlangen 

Electroporator (eukaryotic cells) - Bio-Rad Laboratories GmbH,  

      Munich 

Eppendorf Centrifuge 5417R - Eppendor-Netheler-Hinz GmbH,  

      Hamburg 

Eppendorf centrifuge 5424  - Eppendor-Netheler-Hinz GmbH,  

      Hamburg 

Eppendorf Thermomixer 5436 - Eppendorf-Netheler-Hinz GmbH,  

      Hamburg 

Fridge KU 171   - Liebherr, Biberach 

Fuchs-Rosenthal chamber  - GLW Gesellschaft für Laborbedarf 

      GmbH 

Hyper-cassette   - GE healthcare, Munich 

Illumina HiSeq 2000 support - Illumina, USA 

Laminar Flow Hood   - BDK Luft-und Reinraumtechnik  

      GmbH 

Magnet stirrer M23   - GLW, Würzburg 

Microwave    - Panasonic, Hamburg 

Multi-calimatic pH-meter  - Knick GmbH & Co. KG, Berlin 

Nanodrop 1000   - Thermo Scientific, Braunschweig 

Odyssey Infrared  

Imaging System   - Odyssey LI-COR 

Roller mixer SRT 2   - Dunn GmbH, Augsburg 

Rotina 380 centrifuge  - Andreas Hettich GmbH & Co.KG, 

      Tuttlingen 

SDS-PAGE gel tank   - Amersham Pharmacia Biotech,  

      Freiburg 

Ultimate 3000 RSLCnano  

System    - Thermo Fisher Scientific, Karlsruhe 

Water bath    - Thermo Fisher Scientific, Karlsruhe 
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Zeiss primovert microscope - Carl Zeiss microscopy GmbH,  

      Munich 

4.1.5.  Buffer and Solutions 

0.7% Agarose solution  - 2.1 gms of agarose powder in 300 ml 

      of 1X TAE buffer. Boil in a microwave 

      and cool to room temperature. Add 

      3 µl/100 ml of EtBr.    

2X Laemmlie buffer   - 2% SDS 

      100 mM DTT 

      10 mM EDTA 

      20% Glycerol 

      60 mM Tris/HCl; pH 6.8 

      0.01% Bromophenolbue   

6X Laemmlie buffer   - 9% SDS 

      375 mM Tris/HCl; pH 6.8 

      9% β-mercaptoethanol 

      50% Glycerol 

      0.06% Bromophenolblue  

Blocking buffer   - 5 gms of milk in 100 ml of 1X TBS-T  

IP Lysis buffer   - 50 mM Tris/HCl, pH 8.0 

      1% NP40 

      150 mM NaCl  

IP Wash buffer   - 50 mM Tris/HCl, pH 8.0 

      150 mM NaCl  

2xTris/SDS pH 8.8   - 90.72 gms Tris base 

      10 ml of 20% SDS 

      Adjust volume to 1000 ml with H2O 

      Adjust pH to 8.8 

2xTris/SDS pH 6.8   - 30.24 gms Tris base 

      10 ml of 20% SDS 

      Adjust volume to 1000 ml with H2O 

      Adjust pH to 6.8 

Separating gel (6.5%)  - 4.3 ml 30% PAA 
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      10 ml 2xTris/SDS pH 8.8 

      5.5 ml H2O 

      167 µl APS 

      17 µl TEMED 

Stacking gel (4%)   - 1.5 ml 30% PAA 

      7.5 ml 2xTris/SDS pH 6.8 

      5.9 ml H2O 

      90 µl APS 

      20 µl TEMED 

Western running buffer (10x) - 30.2 g Tris/Base 

      144 g Glycin 

      5 ml 20% SDS 

      Make volume to 1 l with H2O 

Western transfer buffer (10x) - 30.2 g Tris/Base 

      144 g Glycine 

      200 ml Methanol 

      Make volume to 1 l with H2O 

Cross-linking solution  - 11% formaldehyde 

      100 mM NaCl 

      1 mM EDTA 

      0.5 mM EGTA 

      50 mM Hepes, pH 7.8 

Protein stripping buffer  - 7 µl/ml β-mercaptoethanol 

      2% SDS  

4.1.6. Antibodies 

4.1.7. Primary antibodies 

3F10 
A rat monoclonal antibody raised against an epitope contained in the 
haemagglutinin Polypeptide of the human influenza virus (Roche Diagnostics, 
GmbH, Mannheim. Received as a supernatant solution from E. Kremmer, 
Helmholtz Zentrum, Munich) 
 
 



Materials and Methods 

  71 

12CA5 
A rat monoclonal antibody raised against an epitope contained in the 
haemagglutinin Polypeptide of the human influenza virus. Received as a 
supernatant solution from E. Kremmer, Helmholtz Zentrum, Munich) 
 
ab9110 
A rabbit Polyclonal antibody raised against an epitope contained in 
haemagglutinin Polypeptide of the human influenza virus. (Abcam, 
Cambridge, United Kingdom) 
 
Pol 3.3 
A mouse monoclonal antibody that recognizes a conserved epitope of the 
largest subunit of Pol II (Rpb1) outside of the CTD (originally produced from 
E.K. Bautz, Universität Heidelberg. Received as a supernatant solution from 
E. Kremmer, Helmholtz Zentrum, Munich) 
 
3E8 
A rat monoclonal antibody that recognizes the Ser2P within the CTD of the 
large subunit (Rpb1) of RNAPII (Received as a supernatant solution from E. 
Kremmer, Helmholtz Zentrum, Munich) 
 
MED15 
A rabbit Polyclonal antibody that recognizes MED15 subunit of Mediator 
complex (Proteintech, United Kingdom) 
 
INTS11 
A rabbit Polyclonal antibody that recognizes Integrator subunit 11 of human 
Integrator complex (Bethyl laboratories, Biomol, Hamburg) 
 
ab8580 
A rabbit polyclonal antibody that recognizes histone H3 trimethyl K4. Abcam, 
Cambridge, United Kingdom) 
 
ab4729 
A rabbit polyclonal antibody that recognizes histone H3 acetyl K27. Abcam, 
Cambridge, United Kingdom) 
 
5C4 
A mouse monoclonal antibody that recognizes an epitope in GAPDH protein 
(Received from E. Kremmer, Helmholtz Zentrum, Munich) 
 
DM1A 
A mouse monoclonal antibody that recognizes an epitope located in C-
terminal end of the α-tubulin isoform (Sigma-Aldrich GmbH, Deisenhofen). 
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4.1.8. Secondary antibodies 

Alexa Fluor 680 Goat anti-Rat IgG (H+L)  - Invitrogen 

IR Dye 800 CW anti-Mouse IgG (H+L)  -  Rockland Inc, Rockland 

Anti-mouse IgG HRP conjugate    - Promega 

Anti-rabbit IgG HRP conjugate    - Promega 

Goat IgG Anti-rat (H+L)-HRPO   - Dianova 

4.1.9. Materials for cloning 

Restriction enzymes 
AvrII, NotI and BspE1  - New England Biolabds GmbH,  

      Frankfurt am Main 
Age1 and Not1   - Thermo Fisher Scientific GmbH,  

      Munich 

Synthesis of CTD sequences 
GeneArt, Regensburg, sequenced all CTD sequences used for cloning.  

 

Plasmids used during cloning 
RX2-287 (subcloning vector): 

Vector containing last exon (CTD) of the α-amanitin resistant Pol II Rpb1 gene 

RX4-267 (LS*Mock - expression vector): 

A tetracycline-regulated expression vector containing the α-amanitin resistant 

and HA-tagged mouse Rpb1 gene 

 

Primers for sequencing CTD in the final expression vector LS*mock 
WT fwd - 5’CTCCTGCTGACGCACCTGTTCT3’ 

CTD fwd - 5’CCTTTGTCTTTTCCTATAGGTGGTGC3’ 

CTD rev - 5’GTCAGACAACCTCGGTGGCCTGTGTG3’ 

 

Bacteria 
DH10B: E.coli strain purchased from Invitrogen GmbH, Karlsruhe was used 

for the cloning of all plasmid DNA. 
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4.1.10. Human cell lines 

Basic cell line: Raji 

Cell type: human Burkitt lymphoma  

DSMZ no.: ACC 319  

Origin: established in 1963 from a 11 year old African boy with Burkitt 

lymphoma. Cell line carries latent Epstein-Barr virus (EBV) genome and is 

positive for EBNA. Cells are cultured as suspension cells. Classified as risk 

category 1 according to the German Central Commission for Biological Safety 

(ZKBS). A list of stably transfected cell lines generated for the project is listed 

in Table 3. 

Table 3: List of stably transfected cell lines 

Name Plasmid Cell line Resistance 

rWT RX4-267 Raji G418 

YYFF - - - 

FFYY - - - 

YFFY - - - 

FYYF - - - 

YFFF - - - 

FFFY - - - 

YF26 - - - 

S2AAA - - - 

TAAA - - - 

S5AAA - - - 

 

4.2. Methods 

4.2.1. Molecular techniques for cloning 

4.2.1.1. Cloning strategy 
All CTD sequences were synthesized by GeneArt and flanked by an AvrII and 

NotI restriction sites upstream and downstream of the sequences. 

Synthesized CTD does not contain AvrII, NotI, AgeI, BspEI, NgoMIV, NheI, 
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SpeI and ClaI restriction sites within the sequence. CTD sequences were 

cloned into final expression vector, RX4-267, by two-step cloning strategy.  

 
Figure 30: A schematic representation of two-step cloning procedure. 
CTD sequence (blue) synthesized by GeneArt is flanked by AvrII and NotI 
restriction sites. The flanked sequence is ligated into sub-cloning vector RX2-
287. CTD sequence from RX2-287 is flanked by BspEI and NotI restriction 
sites and eventually ligated to AgeI/NotI sites of the final expression vector 
RX4-267. 

First the newly synthesized CTD sequence was excised from the start vector 

using the restriction sites AvrII and NotI and eventually cloned into the sub-

cloning vector RX2-287. The CTD sequence from the RX2-287 vector was 

excised using BspEI and NotI restriction sites and finally cloned into the 

AgeI/NotI site of the end vector RX4-267. 

4.2.1.2. Transformation of Bacteria 
For the transformation, recombinant-deficient Escherichia Coli strain DH10B, 

was used. 0.5 µg of plasmid DNA or 20 µl of ligation mixture was added to 

100 µl of competent bacteria and incubated on ice for 20 minutes. Cells were 

then heat shocked at 42°C for 30 sec and kept on ice for 2 minutes. 400 µl (4 

volumes) of LB medium was then added to the cells and incubated at 37°C for 

90 minutes. Finally, 50 - 400 µl of suspension was plated on the agar plates 

containing ampicillin, kanamycin or spectinomycin resistance and the 

incubated at 37°C for 16-18h.  

4.2.1.3. Miniprep of plasmid DNA 
Plasmid DNA was isolated from bacterial culture using Qiagen miniprep kit. 

Single colony obtained following transformation of bacteria was inoculated in 
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2 ml of LB media containing appropriate antibiotics in a 14 ml loose-capped 

tube. The culture was incubated for 16-18h at 37°C with vigorous shaking in 

an orbital shaker. Later, 1.5 ml of the culture was transferred into 1.5 ml 

eppendorf tube and centrifuged at 10,000g for 1 min. The supernatant was 

discarded and pellet was re-suspended in 150 µl of buffer P1 (resuspension 

buffer).  Next, 150 µl of buffer P2 (lysis buffer) was added and mixed gently 

before incubating for 5 min at RT. Later, 150 µl of pre-chilled buffer P3 

(neutralization buffer) was added, mixed by inverting, and incubated on ice for 

20 min. The mixture was then centrifuged at 10,000g for 5 min and the 

resulting supernatant was transferred into a fresh corresponding 1.5 ml 

eppendorf. To precipitate the plasmid DNA, 450 µl of isopropanol (1:1) was 

added to the supernatant and centrifuged at 10,000g for 5 min. Supernatant 

was discarded and the pellet was washed with 1 ml of 70% ethanol and 

centrifuged at 10,000g for 5 min. Supernatant was removed and the pellet 

was re-suspended in 200 µl of ddH20.  

4.2.1.4. Maxiprep of plasmid DNA 
Large quantities of plasmid DNA were purified using Qiagen plasmid 

purification Maxiprep protocol. A single colony was picked from the selection 

plate and incubated in 400ml of LB media containing appropriate antibiotics at 

37°C for 16-18h in an orbital shaker. Cells were harvested by centrifugation at 

4000g for 15 min at 4°C. Supernatant was discarded and the pellet was re-

suspended in 10 ml of chilled buffer P1 (resuspension buffer) containing 

100 µg/ml of RNAse A. 10 ml of buffer P2 (lysis buffer) was added and cells 

were lysed by incubating for 5 min at room temperature. 10 ml of pre-chilled 

buffer P3 (neutralization buffer) was added to the mixture and incubated on 

ice for 20 min to enhance the precipitation of genomic DNA, protein and cell 

debris. The mixture was centrifuged at 4000g for 30 min at 4°C and the 

supernatant containing the plasmid DNA was passed through Qiagen column 

that was pre-equilibrated using 10 ml of equilibration buffer QBT. After 

washing twice with 30 ml of wash buffer, the plasmid DNA was eluted with 

15 ml of elution buffer QF. DNA was precipitated by adding 10.5 ml of 

isopropanol to the eluted DNA, followed by centrifugation at 4000g for 30 min 

at 4°C. Supernatant was discarded and DNA pellet was washed with 5 ml of 

70% ethanol, followed by centrifugation at 4000g for 10 min at 4°C. 
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Supernatant was discarded and the DNA was dissolved in 300 µl of TE buffer 

and transferred to a microcentrifuge tube. DNA concentration was measured 

using nanodrop.  

4.2.1.5. DNA digestion using restriction endonucleases 
Several clones of Plasmid ‘miniprep’ DNA were digested with appropriate 

restriction enzymes, as test digest at various stages of cloning. Restriction 

enzymes from the New England biolabs (NEB) and Thermo Fisher Scientifics 

were used and the digest was performed in compatible buffers as described 

by the manufacturers. For the gel extraction, 5 µg of DNA was used.  

4.2.1.6. Ligation of DNA fragments 
200 ng of extracted insert was mixed with 200 ng of the vector and heated at 

50°C for 5 min. The mixture was then incubated on ice and T4 DNA ligase 

and ligase buffers were added as recommended by the manufacturers. The 

ligation mix was incubated overnight at 16°C before using it for 

transformation.  

4.2.1.7. DNA agarose gel electrophoresis 
0.7% DNA agarose gel was prepared by boiling 2.1 g of agarose in 300 ml of 

1X TAE buffer. The solution was allowed to cool before adding 3 µl/100 ml of 

ethidium bromide (EtBr) to it and casting it in Biorad chamber. DNA was 

mixed with 6X DNA loading dye before loading on the gel. The gel was run for 

2 hours at 80V constant voltage. A gel photo was taken under the UV light 

using DNA gel analyzer.  

4.2.1.8. DNA gel extraction 
After DNA agarose gel electrophoreses, the band of interest was excised from 

the gel using a scalpel.  From there, QIAquick gel extraction kit from qiagen 

was used to purify the DNA ranging from 70 bp to 10 kb. To purify the DNA, 

bigger than 10 kb, QIAEX II kit was used. The purified DNA was eluted in Tris 

buffer and its concentration was measured using nanodrop system.  

4.2.2. Cell culture 

4.2.2.1. Cell thawing 
Cell stock aliquots frozen in cryotubes at -80°C were thawed at 

room temperature for 2-3 min, re-suspended in 10 ml pre-warmed RPMI 1640 

complete media and centrifuged at 1200 rpm for 4 min. The cell pellet was 
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washed once with 1X PBS and re-suspended in 10 ml appropriate culture 

media. The cells were cultured at 37°C, 5% CO2 incubator. A running culture 

was split 1:3 and fresh culture medium was added every two-three days.  

Complete media: 10% FBS, 2 mM L-glutamine, 100 U Penicillin and  

   100 µg/ml Streptomycin 

4.2.2.2. Cell freezing 
Cells were split 1:1 with fresh culture medium, one day before freezing them. 

Cells were centrifuged at 1200 rpm for 4 min and the supernatant was 

discarded. Pellet was re-suspended in 1 ml of freezing medium and 

transferred to 1.5 ml of cryotubes. The cryotubes were first wrapped with 

paper to avoid shock freezing and stored overnight at -80°C, before 

transferring them to storage facilities in liquid nitrogen.  

Freezing medium: 80% FBS, 10% DMSO and 10% RPMI 1640 

4.2.2.3. Cell Counting 
Cells were counted using a Fuchs-rosenthal counting chamber. 40 µl of cell 

suspension was mixed in a ratio of 1:1 with 0.04% trypan blue solution. Dead 

cells absorb the stain over their membranes and can be distinguished from 

the colorless living cells. Number of living cells in three big squares was 

calculated and the total number of living cells in 1 ml medium was calculated 

by multiplying the average number of cells per big square with 104. 

4.2.2.4. Cell Transfection 
RX4-267 expression vector carrying the mutant CTD is transfected into Raji 

cells via electroporation. Raji is an Epstein-Barr virus-positive Burkitt’s 

lymphoma cell line. Cells were split 1:1 one day prior to transfection. 20*106 

cells were used for each transfection. Cells were washed twice with 1X PBS 

and resuspended in 500 µl of PBS. Cells were transferred in 4 mm of 

electroporation cuvette, and 10 µg of plasmid DNA was gently mixed with the 

cells before incubating the mixture for 20 min at room temperature. Next, 

electroporation was performed at voltage of 250 V and charge capacitance of 

950 µF. Time was set to constant and both the pulse buttons were pushed till 

the noise signal appears. Immediately after that, 500 µl of FBS was added to 

the cuvette and mixed by gently pipetting the transfected cells up and down. 

Transfected cells were incubated for 5 min at room temperature and then 

transferred to a cell culture flask containing 5 ml of complete media 
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supplemented with 1 µg/ml of tetracycline. Two days after electroporation, 

1 mg/ml of G418 was added to select for the positively transfected cells. 

Selection was carried out for 2-4 weeks until cell reaches 95% cell viability.  

4.2.3. Protein analysis 

4.2.3.1. Cell lysis 
For western analysis, raji cells were first counted using trypan blue and 

transferred to 15 ml of falcons. The cells were centrifuged at 1200rpm for 

4 min and washed once with 1X PBS. After washing, supernatant was 

removed and cells were lysed in appropriate volume of 2X Laemmli buffer 

(100 µl of 2X Laemmlie per 1*106 cells). The viscous lysate was repeatedly 

drawn through a narrow pipette tip and transferred into microcentrifuge tube, 

before boiling samples at 95°C for 5 minutes. Cells were sonicated five times 

(10 pulses; duty cycle 50%; output 5) and then boiled again at 95°C for 

5 minutes. Samples were then centrifuged at 10,000g for 4 minutes to clear 

the insoluble contaminants. The lysates were then either loaded directly on 

the gel or stored at -20°C. 

For immunoprecipitation experiments, Raji cells were counted, harvested by 

centrifugation (1200 rpm, 4 minutes), washed twice with ice cold PBS and re-

suspended in appropriate volume of NP-40 lysis buffer (100 µl lysis buffer per 

1*106 cells). Cells were incubated on rotary shaker for 30 minutes at 4°C. 

Later, the cells were sonicated for 3 times (duty cycle 50%; output 5) and 

incubated on rotary shaker for 30 minutes at 4°C. Cells were centrifuged at 

10,000g for 15 minutes at 4°C. After centrifugation, supernatant was 

transferred to fresh microcentrifuge tube for subsequent immunoprecipitation 

or stored at -20°C. 

2X Laemmli buffer: 60mM Tris/HCl pH 6.8, 2% SDS, 100mM DTT, 10mM  

   EDTA, 10% glycerol and 0.01% bromophenol blue 

NP40 lysis buffer: 50mM Tris/HCl pH 8.0, 150mM NaCl and 1% NP40. 

 

4.2.3.2. Immunoprecipitation 
For immunoprecipitation, appropriate concentration of antibody was mixed 

with 30 µl of Protein A sepharose beads and/or 30 µl of Protein G sepharose 

beads and incubated for 3-4 hours on rotary shaker at 4°C. Later, after 
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washing twice with ice-cold PBS, appropriate volume of cell lysate was added 

to the antibody-beads reaction mixture and incubated overnight at 4°C on 

rotary shaker. Next day, the samples were centrifuged at 1200 rpm for 

1 minutes and the supernatant was collected. The samples were washed four 

times with wash buffer and finally re-suspended in 50 µl of 2X Laemmli buffer. 

The Laemmli lysate was boiled at 95°C for 7 minutes and the samples were 

centrifuged at 10,000 g for 4 minutes before loading on the gel.  

Wash buffer:  50mM Tris/HCl pH 8.0, 150mM NaCl 

4.2.3.3. IP for mass-spectrometric analysis 
75-80*106 cells were used for the IP reaction and subsequent mass 

spectrometric (MS) analysis. Immunoprecipitation was performed as 

described in 4.2.3.2. After the IP reaction, the samples were loaded on to the 

SDS PAGE. Once the samples enter the separating gel, they were allowed to 

run for a short time of around 10 minutes. The gel pieces containing the IP 

samples were then cut into 2 equal halves from each lane and transferred into 

a clean PCR tubes. Gel pieces were hydrated in 100 µl of ddH2O and 

processed for either in-gel trypsin digest or on-beads digest.  

4.2.3.4. In-gel trypsin digest 
The excised gel pieces were first rinsed twice with 100 µl of H2O and then 

twice with 50 mM NH4HCO3 (ammonium bicarbonate) to remove un-

polymerized acrylamide from the gel pieces. The excised gel pieces were 

then incubated with 50 mM NH4HCO3 and ACN (acetonitrile) in a ratio of 1:1 

for 60 minutes at 37°C. The gel pieces were subsequently washed thrice with 

50 mM NH4HCO3 and dehydrated by incubating with ultrapure ACN (three 

times, 10 minutes each). Dehydration of the gel pieces by ACN and 

subsequent swelling facilitate the permeabilization of the enzymes to the gel 

for the digestion of the proteins. After dehydration, gel pieces were incubated 

with 10mM DTT for 1 hour at room temperature. Reduction reaction was 

stopped by removal of DTT and then the gel pices were incubated with 55 mM 

of IAA (Iodoacetamiede) for 30 minutes at room temperature in darkness. IAA 

is an alkylating agent that led to the irreversible alkylation of the -SH groups 

and the cysteines were transformed to the stable S-

carboxyamidomethylcysteine. The gel pieces were washed once with 

NH4HCO3, before dehydrating them by repeated treatment with ultrapure 
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ACN. All the supernatant from the probes were removed and the probes were 

dried applying vacuum for 5 minutes. In the meanwhile, trypsin stock solution 

was prepared at 25 ng/µl in 50 mM NH4HCO3. For the digestion of the 

proteins, 10-15 µl of trypsin was added to the gel pieces and incubated at 4°C 

for 45 minutes to allow the gel pieces to absorb trypsin. After 45 minutes, the 

unabsorbed trypsin was removed and the gel pieces were hydrated by adding 

100 µl of NH4HCO3 and incubated for overnight at 37°C on a shaker. 

Next day, supernatant was transferred to the cool corresponding 1.5 ml 

microcentrifuge tube. Peptides were extracted by incubating the gel pieces 

with 50% ACN and 0.25% TFA (trifluoroacetic acid) solution twice for 

10 minutes each. The supernatant containing extracted peptides was 

transferred to cool corresponding 1.5 ml microcentrifuge tube.  Later, the gel 

pieces were incubated with ultra pure ACN for three times, 10 minutes each 

and the supernatant was transferred to cool corresponding 1.5 ml 

microcentrifuge tube. Samples containing extracted peptides was evaporated 

to dryness in a speecvac and re-suspended in 30 µl of 0.1% TFA for 

subsequent C18 stage tips treatment for desalting and step elution of peptide 

mixtures. First, C18 stage tip columns were prepared by injecting C18 

chromatography paper in 200 µl of pipette tip. C18 stagetip columns were 

activated by pre-treatment with 100% acetonitrile followed by 0.1% TFA. First, 

20 µl of 100% ACN was allowed to pass through the column thrice. Next, 

20 µl of 0.1% TFA was allowed to pass through the column thrice, before 

allowing the samples to pass through C18 stagetip columns. The columns 

were then washed with 0.1% TFA (3 times, 20 µl each). After washing, the 

peptides were eluted into fresh 1.5 ml eppendorf tube using 20 µl of 80% ACN 

and 0.25% TFA solution. Elution step was repeated two more times and the 

eluted peptides were again evaporated to dryness using speedvac. 

4.2.3.5. On-beads digest 
Following the standard immunoprecipitation procedure, beads were first 

washed with lysis buffer (three times) and then with 50mM NH4HCO3 

(ammonium bicarbonate). For trypsin digest, beads were incubated with 

100 µl of 10 ng/µl of trypsin solution in 1M Urea and 50mM NH4HCO3 for 30 

minutes at 25°C. The supernatant was collected, beads washed twice with 

50mM NH4HCO3 and all three supernatants collected together and incubated 
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overnight at 25°C after addition of 1mM DTT. 27mM of iodoacetamide (IAA) 

was then added to the samples and incubated at 25°C for 30 minutes in dark. 

Next, 1 µl of 1M DTT was added to the samples and incubated for 10 minutes 

to quench the IAA. Finally, 2.5 µl of trifluoroacetic acid (TFA) was added to 

the samples and desalted using C18 stage tips (Ishihama et al., 2006). 

Samples were evaporated to dryness, re-suspended in 30 µl of 0.1% formic 

acid solution and stored at -20°C until LC-MS analysis.  

4.2.3.6. Processing of samples 
For LC-MS/MS purposes, samples were desalted using C18 Stagetip and 

injected in an Ultimate 3000 RSLCnano system (Thermo), separated in a 15-

cm analytical column (75µm ID with ReproSil-Pur C18-AQ 2.4 µm from Dr. 

Maisch) with a 50 min gradient from 5 to 60% acetonitrile in 0.1% formic acid. 

The effluent from the HPLC was directly electrosprayed into a QexactiveHF 

(Thermo) operated in data dependent mode to automatically switch between 

full scan MS and MS/MS acquisition. Survey full scan MS spectra (from m/z 

375–1600) were acquired with resolution R=60,000 at m/z 400 (AGC target of 

3x106). The 10 most intense peptide ions with charge states between 2 and 5 

were sequentially isolated to a target value of 1x105, and fragmented at 27% 

normalized collision energy. Typical mass spectrometric conditions were: 

spray voltage, 1.5 kV; no sheath and auxiliary gas flow; heated capillary 

temperature, 250ºC; ion selection threshold, 33.000 counts. MaxQuant 1.5.2.8 

was used to identify proteins and quantify by iBAQ with the following 

parameters: Database, Uniprot_Hsapiens_3AUP000005640_151111; MS tol, 

10ppm; MS/MS tol, 0.5 Da; Peptide FDR, 0.1; Protein FDR, 0.01 Min. peptide 

Length, 5; Variable modifications, Oxidation (M); Fixed modifications, 

Carbamidomethyl (C); Peptides for protein quantitation, razor and unique; 

Min. peptides, 1; Min. ratio count, 2. Identified proteins were considered as 

interaction partners if their MaxQuant iBAQ values displayed a greater than 

log2 5-fold enrichment and p-value 0.05 (ANOVA) when compared to the rWT 

control. 
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4.2.4. ChIP-Seq 

4.2.4.1. Cross-linking of cells  
To cross-link the cells for ChIP, 1/10th volume of 10X crosslinking solution was 

added to the raji cells in culture medium. After 10 minutes of incubation at 

room temperature, glycine was added to a final concentration of 250mM to 

quench the remaining formaldehyde and stop the cross-linking. After five 

minutes of quenching, cells were washed twice with cold PBS. Cells were 

then sonicated as described in next paragraph or snap frozen in liquid 

nitrogen and stored at -80°C for sonication at a later stage.  

Crosslinking solution: 100mM NaCl 1mM EDTA pH 8, 0.5mM EGTA pH 

    8, 50mM HEPES pH 7.8 and 11% formaldehyde 

4.2.4.2. Chromatin-Immunoprecipitation 
50 million cross-linked cells were resuspended in cold 2.5mL buffer LB1 at 

4°C for 20 minutes on a rotating wheel. Nuclei were pelleted down by 

spinning at 1350 X g in a refrigerated centrifuge and washed in 2.5mL 

buffer LB2 for 10 minutes at 4°C on a rotating wheel followed by 

centrifugation to collect nuclei. Nuclei were then resuspended in 1mL of buffer 

LB3 and sonicated using Bioruptor Pico in 15mL tubes for 25 cycles of 30 sec 

ON and 30 sec OFF pulses in 4°C water bath. All buffers (LB1, LB2 and LB3) 

were complemented with EDTA free Protease inhibitor cocktail, 0.2mM PMSF 

and 1µg/mL Pepstatin just before use. After sonication, Triton X-100 was 

added to a final concentration of 1% followed by centrifugation at 20000 g and 

4°C for 10 minutes to remove particulate matter. After taking a 50µl aliquot to 

serve as input, chromatin was aliquoted and snap-frozen in liquid nitrogen and 

stored at -80°C until use in ChIP assays. Input aliquots were mixed with equal 

volume of 2X elution buffer and incubated at 65°C for 12 hours. An equal 

volume of TE buffer, pH 8.0 was added, followed by treatment with RNase A 

(0.2µg/mL) at 37°C for one hour and Proteinase K (0.2µg/mL) for two hours at 

55°C. DNA was isolated by phenol:chloroform:isoamylalcohol (25:24:1 pH 8) 

extraction, followed by Qiaquick PCR Purification kit. Purified DNA was then 

analyzed on a 2% agarose gel or on Bioanalyzer (Agilent, USA) using a High 

Sensitivity DNA Assay. 
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For Chromatin-Immunoprecipitation, Protein-G coated Dynabeads were 

incubated at 4°C in blocking solution (0.5% BSA in PBS) carrying specific 

antibodies. Sonicated chromatin was added to pre-coated beads and the 

mixture was incubated overnight at 4°C on a rotating wheel. Information about 

specific antibodies and the quantity of chromatin used for each ChIP is 

described in the Supplementary table 6. After incubation with chromatin, 

beads were washed 7 times with Wash buffer (50mM Hepes pH 7.6, 500mM 

LiCl, 1mM EDTA pH 8, 1% NP-40, 0.7% Na-Deoxycholate, 1X protease 

inhibitor cocktail) followed by one wash with TE-NaCl buffer and a final wash 

with TE buffer, pH 8.0. Immunoprecipitated chromatin was eluted by two 

sequential incubations with 50µl Elution buffer (50mM Tris pH 8, 10mM EDTA 

pH 8, 1% SDS) at 65°C for 15 minutes. The two eluates were pooled and 

incubated at 65°C for 12 hours to reverse-crosslink the chromatin followed by 

treatment with RNase A and Proteinase K. DNA was purified as described 

above for Input samples. Purified DNA was quantified with Qubit DS DNA HS 

Assay.  

LB1:   50mM Hepes pH 7.5, 140mM NaCl, 1mM EDTA pH 8, 

   10% glycerol, 0.75% NP-40, 0.25% Triton X-100 

LB2:   200mM NaCl, 1mM EDTA pH 8, 0.5mM EGTA pH 8,  

   10mM Tris pH 8 

LB3:   1mM EDTA pH 8, 0.5mM EGTA pH 8, 10mM Tris pH 8, 

   100mM NaCl, 0.1% Na-Deoxycholate, 0.5% N-  

   lauroylsarcosine 

Elution buffer: 100mM Tris pH 8.0, 20mM EDTA, 2%SDS 

 

4.2.4.3. Libraries for sequencing 
Atleast 1ng of ChIP DNA was used to prepare sequencing library with Illumina 

ChIP Sample Library Prep Kit (Illumina, USA). After end-repair and adapter 

ligation, library fragments were size-selected using E-Gel SizeSelect 2% 

Agarose Gel, followed by 12 cycles of PCR amplification. Barcoded libraries 

from different samples were pooled together and sequenced on Illumina 

HiSeq2000 platform in paired-end sequencing runs. 
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4.2.5. RNA-seq: 

4.2.5.1. Total RNA-seq 
72 hours after induction, cells were lysed in trizol reagent and RNA was 

extracted from cells according to manufacturer’s instructions. Any DNA 

contaminant was digested with rigorous Turbo DNase (ThermoFisher 

Scientific, USA) treatment according to manufacturers protocol. Purified RNA 

was quantified with Nanodrop 1000 and quality of RNA was assessed using 

RNA Nano or Pico Assay kit with Bioanalyzer (Agilent Technologies, USA). 

Only the RNA samples with RIN value above 8 were used for sequencing. 

For strand-specific sequencing, ribosomal RNA was removed from total RNA 

with Ribo-Zero rRNA Removal Kit (EpiCenter, USA) according to 

manufacturer’s instructions. Depletion of rRNA was confirmed by analyzing 

the samples with RNA Pico Assay on Bioanalyzer. Libraries were prepared 

either with ScriptSeq Total RNA Library prep kit (EpiCenter, USA) according 

to manufacturer’s instructions or with Small RNA Library Prep Kit (Illumina, 

USA) using a modified protocol as follows: 50ng rRNA depleted total RNA 

was fragmented to ~150bp by digesting with 1U of RNaseIII (ThermoFisher 

Scientific, USA) for 10 minutes at 37°C in a 10µl reaction. Fragmentation 

reaction was stopped, by adding 90µl nuclease-free water and quickly adding 

350µl RLT buffer from RNeasy Mini Kit (Qiagen, Germany). Fragmented RNA 

was purified using RNA Cleanup protocol according to manufacturer’s 

instructions. 20ng of fragmented RNA was used as input for ligation of 3’ and 

5’ adapters according to Small RNA Library Prep Protocol. cDNA was 

synthezed from adapter ligated RNA with 10 cycles of PCR amplification. 

However instead of performing a size-selection of agarose gel (as 

recommended by manufacturer) we used 1 volume of Ampure XP Beads 

(Beckman Coulter, USA) to clean up the amplified library and remove adapter 

dimers according to manufacturer’s instructions. Purified libraries were then 

analyzed with HS DNA Asaay Kit on Bioanalyzer (Agilent Technologoes, 

USA) and sequenced on Illumina HiSeq2000 platform. 
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4.2.5.2. PolyA RNA-seq 
Polyadenylated RNA was isolated from 5µg total RNA sample by two 

sequential purifications using Dynabeads mRNA Purification Kit 

(ThermoFisher Scientific, USA) according to manufacturer’s instruction. 

Purified poly(A) RNA was analyzed on RNA Pico Assay on Bioanalyzer. 

Sequencing libraries were then prepared using Small RNA Library Prep Kit 

(Illumina, USA) using the modified protocol as described above for total RNA-

seq. 

4.2.6. Bioinformatics Analysis of Sequencing data 

4.2.6.1. ChIP-Seq data processing 
Raw sequencing reads were aligned to human genome (hg19) using Bowtie2. 

Sequence reads that aligned multiple times in genome with equal alignment 

score were discarded as well as the duplicate reads with identical coordinates 

(sequencing depth taken into account) were discarded to remove potential 

sequencing and alignment artifacts. Aligned reads were elongated in silico 

using the DNA fragment size inferred from paired-reads or an estimated 

optimal fragment size for orphan reads using an in-house developed R 

pipeline named PASHA (Fenouil et al., 2016). These elongated reads were 

then used to calculate the number of fragments that overlapped at a given 

nucleotide thus representing an enrichment score for each nucleotide in the 

genome. Wiggle files representing average enrichment score of every 50bp 

were generated. Sequencing data from Input samples were treated in the 

same way to generate Input wiggle files. All wiggle files were then rescaled to 

normalize the enrichment scores to reads per million. Enrichment scores from 

Input sample wiggle files were then subtracted from ChIP sample wiggle files. 

This allowed us to remove/reduce the over-representation of certain genomic 

regions due to biased sonication and DNA sequencing. Besides this, input 

subtraction also improves the signal/noise ratio especially for ChIPs with low 

enrichment. Rescaled and Input subtracted wiggle files from biological 

replicate experiments were then used to generate a wiggle file that represents 

the average signal from biological replicates. 
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4.2.6.2. RNA-seq data processing 
Raw sequencing reads were aligned to human genome (hg19) using 

TopHat2. Sequence reads that aligned multiple times in genome with equal 

alignment score were discarded. Reads that align to Watson or Crick strands 

were seperated and processed them separately using PASHA (Fenouil et al., 

2016) pipeline to generate strand-specific wiggle files. All wiggle files were 

then rescaled to normalize the enrichment scores to reads per million. 

Rescaled wiggle files from biological replicate experiments were then used to 

generate a wiggle file that represents the average strand-specific RNA signal 

from several biological replicates. 

4.2.6.3. Gene Expression Analysis 
Differential Gene Expression (DGE) analysis was performed using the DESeq 

package from Bioconductor. First, HTseq-count program from the HTSeq 

framework was used to count the sequence reads mapped to gene 

annotations. These counts were processed using the DESeq package to 

identify genes that are at least 3 fold differentially expressed relative to the 

reference sample. 

4.2.6.4. Average Metagene Profiles 
To generate average signal profiles, we selected the hg19 genes that do not 

have any other annotation within 20Kb around boundaries. Removal of the 

annotations too close to each other is necessary to avoid mixing signals from 

close-by annotations, which can cause misinterpretation of the results. ChIP-

seq and strand-specific RNA-seq values from wiggle files were retrieved with 

in-house R and Perl scripts for selected genes and enhancer regions. An 

algorithm described previously (KOCH ET AL 2011) was used to rescale the 

genes to same length by interpolating the values on 1000 points and build a 

matrix on which each column is averaged and resulting values are used to 

plot average metagene profiles.  
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6. Supplementary 

A. Figure: 

 

Supplementary Figure 1: Comparison of total RNA-seq signals for the 
HERC2 gene in rWT and the mutant YFFF. The gene is transcribed on the 
minus strand of the genome (red signals). 

B. Tables: 
Supplementary table 1: Peptide counts of proteins interacting with Pol II of 
both, the rWT and the mutant YFFF for all 5 biological replicates. Samples in 
the experiment number 1 and 2 were subjected to on-beads trypsin digest, 
while 3,4 and 5 were subjected to in-gel trypsin digest. (*) represents the 
sample that had less peptide.  

Peptide counts of selected proteins interacting with Pol II of both, the rWT and the 
mutant YFFF 

   rWT  YFFF 

 Experiment number 1 2 3 4 5  1 2 3 4 5* 

              

 Uniprot ID Gene Name Peptide counts  Peptide counts 

 Polymerase Subunits 

1 P24928 RPB1 119 132 156 153 153  98 126 139 102 11 

2 P30876 RPB2 33 53 73 68 70  26 49 61 35 1 

3 P19387 RPB3 7 15 17 19 16  5 14 13 9 0 

4 O15514 RPB4 0 1 3 4 11  0 0 1 2 0 

5 P19388 RPB5 4 11 14 11 10  6 11 9 5 0 

rWT (+) strand

YFFF (+) strand

rWT (-) strand

YFFF (-) strand
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6 U3KPY1 RPB6 0 0 1 1 2  0 0 1 0 0 

7 P62487 RPB7 1 0 3 4 4  0 1 1 0 0 

8 P52434 RPB8 8 12 12 11 12  7 11 11 9 2 

9 P36954 RPB9 2 5 7 9 8  2 5 5 3 0 

10 P62875 RPB10 3 3 1 1 2  3 3 1 1 0 

11 P52435 RPB11 5 7 6 4 9  5 6 6 4 0 

12 P53803 RPB12 2 1 2 1 3  0 2 2 1 0 

 Splicing factors 

13 Q07955 SRSF1 5 14 20 11 15  5 16 20 13 2 

14 J3KP15 SRSF2 0 0 7 0 2  0 2 6 1 0 

15 P84103 SRSF3 4 11 10 7 6  3 11 10 10 1 

16 Q08170 SRSF4 3 8 7 5 4  2 8 8 4 1 

17 Q13243 SRSF5 0 4 5 4 3  1 5 7 3 1 

18 Q13247 SRSF6 3 9 9 8 8  3 8 9 9 1 

19 Q16629 SRSF7 3 10 11 8 11  7 11 10 10 2 

20 Q13242 SRSF9 1 9 16 11 12  4 11 20 17 2 

21 O75494 SRSF10 1 9 11 8 10  1 9 12 9 0 

22 Q5T760 SRSF11 0 1 2 0 0  0 2 4 0 0 

23 Q01081 U2AF1 1 7 7 4 5  1 6 7 3 1 

24 P26368 U2AF2 2 2 14 2 4  0 4 8 0 0 

 3' end processing and termination factors 

25 Q10570 CPSF1 0 3 13 4 3  0 2 8 1 0 

26 Q9P2I0 CPSF2 0 1 2 1 1  0 1 3 0 0 

27 G5E9W3 CPSF3 0 0 2 1 2  0 0 1 0 0 

28 B7Z7B0 CPSF4 0 1 0 0 1  0 0 1 1 0 

29 O43809 CPSF5 0 3 3 0 0  0 3 5 0 0 

30 F8WJN3 CPSF6 0 1 2 0 1  0 2 1 0 0 

31 Q9H0D6 XRN2 0 8 23 12 14  1 8 17 2 0 
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Supplementary table 2: Log2Fold change (YFFF/rWT) of proteins interacting 
with Pol II of both, the rWT and the mutant YFFF.  

 Log2Fold change (YFFF/rWT) of proteins interacting with Pol II of rWT and the mutant YFFF 

 Uniprot 
ID 

Gene 
Name 

Description 
Log2Fold Change 

(YFFF/rWT) 
p-value 

 Polymerase Subunits 

1 P24928 RPB1 RNA Polymerase II subunit A -2.985 1.14E-01 

2 P30876 RPB2 RNA Polymerase II subunit B -3.399 1.40E-01 

3 P19387 RPB3 RNA Polymerase II subunit C -4.302 1.74E-01 

4 O15514 RPB4 RNA Polymerase II subunit D -5.753 1.27E-01 

5 P19388 RPB5 RNA Polymerase II subunit E -3.989 2.23E-01 

6 U3KPY1 RPB6 RNA Polymerase II subunit F -4.930 2.12E-01 

7 P62487 RPB7 RNA Polymerase II subunit G -5.289 1.45E-01 

8 P52434 RPB8 RNA Polymerase II subunit H -2.692 1.14E-01 

9 P36954 RPB9 RNA Polymerase II subunit I -4.499 1.33E-01 

10 P62875 RPB10 RNA Polymerase II subunit L -3.389 3.17E-01 

11 P52435 RPB11 RNA Polymerase II subunit J -3.829 2.43E-01 

12 P53803 RPB12 RNA Polymerase II subunit K -6.601 9.63E-02 

 Splicing Factors 

13 Q07955 SRSF1 
Serine/Arginine-Rich Splicing 

Factor 1 
-0.720 6.94E-01 

14 J3KP15 SRSF2 
Serine/Arginine-Rich Splicing 

Factor 2 
2.484 6.05E-01 

15 P84103 SRSF3 
Serine/Arginine-Rich Splicing 

Factor 3 
-1.116 6.05E-01 

16 Q08170 SRSF4 
Serine/Arginine-Rich Splicing 

Factor 4 
-3.133 2.99E-01 

17 Q13243 SRSF5 
Serine/Arginine-Rich Splicing 

Factor 5 
-2.073 6.31E-01 

18 Q13247 SRSF6 
Serine/Arginine-Rich Splicing 

Factor 6 
-0.275 8.76E-01 

19 Q16629 SRSF7 
Serine/Arginine-Rich Splicing 

Factor 7 
-0.720 6.11E-01 

20 Q13242 SRSF9 Serine/Arginine-Rich Splicing 0.558 8.08E-01 
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Factor 9 

21 O75494 SRSF10 
Serine/Arginine-Rich Splicing 

Factor 10 
-2.286 5.02E-01 

22 Q5T760 SRSF11 
Serine/Arginine-Rich Splicing 

Factor 11 
0.217 9.57E-01 

23 Q01081 U2AF1 
Splicing Factor U2AF 35kDa 

Subunit 
-1.231 5.62E-01 

24 P26368 U2AF2 
Splicing Factor U2AF 65 KD 

Subunit 
-5.505 1.48E-01 

 3’ end processing and termination factors 

25 Q10570 CPSF1 
Cleavage And Polyadenylation 

Specific Factor 1 
-2.019 4.76E-01 

26 Q9P2I0 CPSF2 
Cleavage And Polyadenylation 

Specific Factor 2 
-0.535 8.55E-01 

27 G5E9W3 CPSF3 
Cleavage And Polyadenylation 

Specific Factor 3 
-2.999 2.14E-01 

28 B7Z7B0 CPSF4 
Cleavage And Polyadenylation 

Specific Factor 4 
-0.116 9.69E-01 

29 O43809 CPSF5 
Cleavage And Polyadenylation 

Specific Factor 5 
0.222 9.59E-01 

30 F8WJN3 CPSF6 
Cleavage And Polyadenylation 

Specific Factor 6 
-1.317 6.89E-01 

31 Q9H0D6 XRN2 5'-3' Exoribonuclease 2 -2.128 5.38E-01 

 

Supplementary table 3: Peptide counts of proteins not interacting with the 
mutant YFFF in all 5 biological replicates 

Peptide counts of proteins not interacting with the mutant YFFF 

   rWT  YFFF 

 Experiment number 1 2 3 4 5  1 2 3 4 5* 

              

 Uniprot ID Gene Name Peptide counts  Peptide counts 

1 Q9NRY2 INIP 2 5 3 5 8  0 0 0 0 0 

2 Q9NPJ6 MED4 6 10 13 13 13  0 0 0 0 0 

3 Q9UL03 INTS6 10 27 32 41 45  0 0 0 0 0 

4 Q6P2C8 MED27 3 9 11 12 10  0 0 0 0 0 
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5 Q9BUE0 MED18 3 4 3 3 6  0 0 0 0 0 

6 O95402 MED26 5 14 14 18 11  0 0 0 0 0 

7 Q9BTT4 MED10 1 5 6 6 7  0 0 0 0 0 

8 Q5T8T7 MED22 1 2 6 7 6  0 0 0 0 0 

9 Q6P9B9 INTS5 3 15 13 17 26  0 0 0 0 0 

10 Q68E01 INTS3 12 31 35 34 50  0 1 1 0 0 

11 Q9NWA0 MED9 1 1 6 3 6  0 0 0 0 0 

12 A0JLT2 MED19 1 3 3 3 5  0 0 0 0 0 

13 Q96CB8 INTS12 1 6 9 15 13  0 0 0 0 0 

14 Q9H0H0 INTS2 4 11 17 18 30  0 0 0 0 0 

15 Q96G25 MED8 4 8 8 9 11  0 0 1 0 0 

16 Q8N201 INTS1 16 43 48 60 74  0 0 1 0 0 

17 Q9H944 MED20 1 2 4 7 6  0 0 1 0 0 

18 Q96HW7 INTS4 2 12 15 31 41  0 0 0 0 0 

19 Q9Y3C7 MED31 2 4 5 5 5  0 1 0 0 0 

20 Q9H0M0 WWP1 3 12 18 20 27  0 0 0 0 0 

21 Q9NVC6 MED17 3 6 19 17 21  0 0 1 0 0 

22 Q9NV88 INTS9 2 5 7 13 21  0 0 0 0 0 

23 Q96HR3 MED30 1 4 6 6 5  0 0 1 0 0 

24 O60244 MED14 6 29 33 30 34  0 0 2 0 0 

25 O00308 WWP2 5 12 13 27 24  0 0 0 0 0 

26 Q15648 MED1 6 10 28 31 31  0 0 1 0 0 

27 O75586 MED6 1 8 9 6 6  0 0 1 0 0 

28 Q9BQ15 NABP2 0 5 1 4 7  0 0 0 0 0 

29 Q9H204 MED28 0 1 3 3 4  0 0 0 0 0 

30 O43513 MED7 0 1 3 7 8  0 0 0 0 0 

31 Q9Y2Z0 SUGT1 1 1 2 3 4  1 0 0 0 0 

32 Q96J02 ITCH 13 25 26 29 34  0 2 4 1 0 

33 Q13503 MED21 1 2 1 4 3  0 0 1 0 0 

34 Q75QN2 INTS8 0 6 6 18 23  0 0 0 0 0 

35 Q9P086 MED11 0 1 2 4 3  0 0 0 0 0 
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36 Q96P16 RPRD1A 1 15 23 12 15  0 8 8 0 0 

37 Q96RN5 MED15 0 1 5 6 7  0 0 0 0 0 

38 Q5TA45 CPSF3L 0 2 8 8 13  0 0 0 0 0 

39 Q15369 TCEB1 1 1 2 5 3  0 0 0 3 0 

40 O95104 SCAF4 0 2 11 7 5  0 0 0 0 0 

41 Q9NX70 MED29 0 3 2 3 3  0 0 0 0 0 

42 O75448 MED24 0 4 6 17 20  0 0 0 0 0 

43 Q5VT52 RPRD2 0 8 18 15 7  0 0 0 0 0 

44 Q6DN90 IQSEC1 0 6 12 6 11  0 0 0 0 0 

45 Q9Y2X0 MED16 0 3 2 8 12  0 0 0 0 0 

46 Q9NVH2 INTS7 0 6 6 23 30  0 0 0 1 0 

47 A8MU58 AIMP2 0 1 2 2 2  0 0 0 0 0 

48 Q5JSJ4 INTS6L 2 8 8 10 8  0 0 0 0 0 

49 Q5TEJ8 THEMIS2 0 1 3 3 6  0 0 0 0 0 

50 P30153 PPP2R1A 0 2 1 4 6  0 0 1 0 0 

51 Q99590 SCAF11 0 3 5 3 3  0 0 0 0 0 

52 Q13418 ILK 0 3 5 3 3  0 0 2 0 0 

53 Q53G59 KLHL12 0 1 2 1 1  0 0 0 0 0 

54 O00329 PIK3CD 0 2 3 4 2  0 0 0 0 0 

55 Q13049 TRIM32 0 1 1 2 3  0 0 0 0 0 

56 Q14145 KEAP1 0 2 8 2 3  0 0 0 0 0 

57 Q13501 SQSTM1 0 1 3 0 3  0 0 0 1 0 

58 Q14344 GNA13 0 1 2 1 1  0 0 0 0 0 

59 H3BQA8 WDR61 1 1 0 1 1  0 0 0 0 0 

60 O00505 KPNA3 1 3 4 4 4  0 1 1 0 0 

61 Q14157 UBAP2L 0 2 2 1 1  0 0 0 0 0 

62 Q15418 RPS6KA1 2 6 6 5 7  0 2 2 0 0 

63 Q8ND56 LSM14A 0 2 4 0 1  0 0 0 0 0 

64 Q9ULK4 MED23 0 1 1 9 12  0 0 0 0 0 

65 Q13451 FKBP5 2 3 2 4 8  1 1 2 0 0 

66 P04637 TP53 0 2 1 0 1  0 0 1 0 0 
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67 Q71RC2 LARP4 0 0 2 3 3  0 0 0 0 0 

68 Q16576 RBBP7 0 3 4 4 2  0 1 3 2 0 

69 P13807 GYS1 0 3 2 0 1  0 0 0 0 0 

 

Supplementary table 4: Log2Fold change (YFFF/rWT) of proteins not 
interacting with Pol II of both, the rWT and the mutant YFFF. 

 Log2Fold change (YFFF/rWT) of proteins not interacting with Pol II of 
both, the rWT and the mutant YFFF 

 
Uniprot 

ID 

Gene 

Name 
Description 

Log2Fold 
Change 

(YFFF/rWT) 

p-value 

1 Q9NRY2 INIP INTS3 and NABP interacting protein -14.548 5.588E-08 

2 Q9NPJ6 MED4 Mediator Complex Subunit 4 -13.671 1.447E-09 

3 Q9UL03 INTS6 Integrator Complex Subunit 6 -13.490 3.673E-09 

4 Q6P2C8 MED27 Mediator Complex Subunit 27 -13.159 2.356E-09 

5 Q9BUE0 MED18 Mediator Complex Subunit 18 -12.981 1.433E-12 

6 O95402 MED26 Mediator Complex Subunit 26 -12.838 1.41E-11 

7 Q9BTT4 MED10 Mediator Complex Subunit 10 -12.827 2.053E-08 

8 Q5T8T7 MED22 Mediator Complex Subunit 22 -12.637 3.805E-08 

9 Q6P9B9 INTS5 Integrator Complex Subunit 5 -12.259 7.930E-08 

10 Q68E01 INTS3 Integrator Complex Subunit 3 -12.146 2.420E-05 

11 Q9NWA0 MED9 Mediator Complex Subunit 9 -11.932 1.696E-06 

12 A0JLT2 MED19 Mediator Complex Subunit 19 -11.858 4.219E-08 

13 Q96CB8 INTS12 Integrator Complex Subunit 12 -11.533 2.203E-05 

14 Q9H0H0 INTS2 Integrator Complex Subunit 2 -11.520 2.799E-08 

15 Q96G25 MED8 Mediator Complex Subunit 8 -11.496 2.292E-04 

16 Q8N201 INTS1 Integrator Complex Subunit 1 -11.496 2.449E-06 

17 Q9H944 MED20 Mediator Complex Subunit 20 -11.388 2.521E-04 

18 Q96HW7 INTS4 Integrator Complex Subunit 4 -11.258 5.507E-06 

19 Q9Y3C7 MED31 Mediator Complex Subunit 31 -11.180 5.368E-04 

20 Q9H0M0 WWP1 
WW Domain containing E3 Ubiquitin 

Protein Ligase 1 
-11.161 3.837E-07 

21 Q9NVC6 MED17 Mediator Complex Subunit 17 -11.092 1.153E-04 
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22 Q9NV88 INTS9 Integrator Complex Subunit 9 -11.079 9.394E-07 

23 Q96HR3 MED30 Mediator Complex Subunit 30 -11.069 2.195E-04 

24 O60244 MED14 Mediator Complex Subunit 14 -10.979 1.094E-04 

25 O00308 WWP2 
WW Domain containing E3 Ubiquitin 

Protein Ligase 2 
-10.976 5.113E-07 

26 Q15648 MED1 Mediator Complex Subunit 1 -10.736 9.263E-06 

27 O75586 MED6 Mediator Complex Subunit 6 -10.708 6.511E-04 

28 Q9BQ15 NABP2 Nucleic acid binding protein 2 -10.628 4.230E-03 

29 Q9H204 MED28 Mediator Complex Subunit 28 -9.820 4.124E-03 

30 O43513 MED7 Mediator Complex Subunit 7 -9.771 3.981E-03 

31 Q9Y2Z0 SUGT1 
SGT1 Homolog, MIS12 Kinetochore 

Complex Assembly Cochaperone 
-9.705 3.864E-11 

32 Q96J02 ITCH Itchy E3 Ubiquitin Protein Ligase -9.434 2.206E-03 

33 Q13503 MED21 Mediator Complex Subunit 21 -9.335 2.326E-03 

34 Q75QN2 INTS8 Integrator Complex Subunit 8 -9.223 4.178E-03 

35 Q9P086 MED11 Mediator Complex Subunit 11 -8.966 4.348E-03 

36 Q96P16 RPRD1A 

Regulation of nuclear pre-mRNA 

domain containing 1A (CTD 

phosphatase) 

-8.924 1.335E-02 

37 Q96RN5 MED15 Mediator Complex Subunit 15 -8.887 4.168E-03 

38 Q5TA45 CPSF3L 

Cleavage and Polyadenylation 

specificity factor 3-like (Integrator 

Complex Subunit 11) 

-8.729 4.677E-03 

39 Q15369 TCEB1 
Transcription elongation factor B 

subunit 1 
-8.481 5.145E-03 

40 O95104 SCAF4 SR-related CTD associated factor 4 -8.349 4.985E-03 

41 Q9NX70 MED29 Mediator Complex Subunit 29 -8.304 4.207E-03 

42 O75448 MED24 Mediator Complex Subunit 24 -7.916 4.396E-03 

43 Q5VT52 RPRD2 

Regulation of nuclear pre-mRNA 

domain containing 2 (CTD 

phosphatase) 

-7.903 4.556E-03 

44 Q6DN90 IQSEC1 IQ motif and Sec7 Domain 1 -7.801 4.395E-03 

45 Q9Y2X0 MED16 Mediator Complex Subunit 16 -7.639 4.243E-03 

46 Q9NVH2 INTS7 Integrator Complex Subunit 7 -7.255 3.588E-02 
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47 A8MU58 AIMP2 

Aminoacyl tRNA Synthetase 

Complex-interacting Multifuntional 

protein 2 

-7.053 4.231E-03 

48 Q5JSJ4 INTS6L Integrator Complex Subunit 6 Like -6.739 4.555E-03 

49 Q5TEJ8 THEMIS2 
Thymocyte selection associated 

family member 2 
-6.695 4.375E-03 

50 P30153 PPP2R1A 
Protein phosphatase 2 regulatory 

subunit A, alpha 
-6.577 7.267E-03 

51 Q99590 SCAF11 SR-related CTD associated factor 11 -6.371 4.849E-03 

52 Q13418 ILK Integrin linked kinase -6.116 4.462E-02 

53 Q53G59 KLHL12 Kelch like family member 12 -6.051 4.223E-03 

54 O00329 PIK3CD 

Phosphatidylinositol-4,5-

Bisphosphate 3-Kinase Catalytic 

Subunit Delta 

-5.961 4.118E-03 

55 Q13049 TRIM32 Tripartite Motif Containing 32 -5.938 7.280E-03 

56 Q14145 KEAP1 
Kelch Like ECH Associated Protein 

1 
-5.919 2.511E-02 

57 Q13501 SQSTM1 Sequestosome 1 -5.918 4.041E-02 

58 Q14344 GNA13 G Protein Subunit Alpha 13 -5.908 6.915E-03 

59 H3BQA8 WDR61 WD Repeat Domain 61 -5.784 5.656E-03 

60 O00505 KPNA3 Karyopherin Subunit Alpha 3 -5.738 3.355E-02 

61 Q14157 UBAP2L Ubiquitin associated protein 2 like -5.721 6.337E-03 

62 Q15418 RPS6KA1 Ribosomal Protein S6 kinase A1 -5.715 3.025E-02 

63 Q8ND56 LSM14A 
LSM14A mRNA processing body 

assembly factor 
-5.583 4.459E-02 

64 Q9ULK4 MED23 Mediator Complex Subunit 23 -5.570 8.126E-03 

65 Q13451 FKBP5 FK506 Binding protein 5 -5.353 1.853E-02 

66 P04637 TP53 Tumor protein p53 -5.263 4.374E-02 

67 Q71RC2 LARP4 
La Ribonucleoprotein Domain Family 

Member 4 
-5.112 4.040E-02 

68 Q16576 RBBP7 Retinoblastoma Binding Protein 7 -5.100 4.517E-02 

69 P13807 GYS1 Glycogen Synthase 1 -5.082 4.381E-02 
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Supplementary table 5: Log2Fold change (S2AAA/rWT) of proteins 
interacting with Pol II of both, rWT and the S2AAA mutant. 

 Log2Fold change (S2AAA/rWT) of proteins interacting with Pol II of rWT and the S2AAA 
mutant 

 
Uniprot ID Gene Name Description 

Log2Fold Change 

(S2AAA/rWT) 
p-value 

 Polymerase Subunits 

1 P24928 RPB1 RNA Polymerase II subunit A 1.429 0.415 

2 P30876 RPB2 RNA Polymerase II subunit B 1.380 0.584 

3 P19387 RPB3 RNA Polymerase II subunit C 2.232 0.479 

4 O15514 RPB4 RNA Polymerase II subunit D 1.009 0.859 

5 P19388 RPB5 RNA Polymerase II subunit E 2.257 0.418 

6 U3KPY1 RPB6 RNA Polymerase II subunit F -4.169 0.374 

7 P62487 RPB7 RNA Polymerase II subunit G 3.394 0.427 

8 P52434 RPB8 RNA Polymerase II subunit H 2.407 0.220 

9 P36954 RPB9 RNA Polymerase II subunit I 4.350 0.340 

10 P62875 RPB10 RNA Polymerase II subunit L 7.651 0.111 

11 P52435 RPB11 RNA Polymerase II subunit J 5.215 0.217 

12 P53803 RPB12 RNA Polymerase II subunit K 5.023 0.267 

 Integrator Complex 

13 Q8N201 INTS1 Integrator Complex Subunit 1 -1.025 0.662 

14 Q9H0H0 INTS2 Integrator Complex Subunit 2 -1.192 0.690 

15 Q68E01 INTS3 Integrator Complex Subunit 3 -1.337 0.566 

16 Q96HW7 INTS4 Integrator Complex Subunit 4 -1.453 0.650 

17 Q6P9B9 INTS5 Integrator Complex Subunit 5 -2.179 0.562 

18 Q9UL03 INTS6 Integrator Complex Subunit 6 -1.605 0.554 

19 Q9NVH2 INTS7 Integrator Complex Subunit 7 -2.794 0.443 

20 Q75QN2 INTS8 Integrator Complex Subunit 8 -5.354 0.126 

21 Q9NV88 INTS9 Integrator Complex Subunit 9 -3.784 0.251 

22 Q5TA45 CPSF3L Integrator Complex Subunit 11 -1.492 0.626 

23 Q96CB8 INTS12 Integrator Complex Subunit 12 -0.082 0.985 

 Mediator complex 



Supplementary 

  113 

24 Q15648 MED1 Mediator Complex Subunit 1 -1.562 0.662 

25 Q9NPJ6 MED4 Mediator Complex Subunit 4 -6.496 0.115 

26 O75586 MED6 Mediator Complex Subunit 6 -2.498 0.514 

27 O43513 MED7 Mediator Complex Subunit 7 -3.205 0.374 

28 Q96G25 MED8 Mediator Complex Subunit 8 -4.227 0.387 

29 Q9BTT4 MED10 Mediator Complex Subunit 10 -3.271 0.431 

30 Q9P086 MED11 Mediator Complex Subunit 11 -5.924 0.138 

31 O60244 MED14 Mediator Complex Subunit 14 -3.984 0.342 

32 Q96RN5 MED15 Mediator Complex Subunit 15 -5.369 0.117 

33 Q9Y2X0 MED16 Mediator Complex Subunit 16 -4.729 0.117 

34 Q9NVC6 MED17 Mediator Complex Subunit 17 -5.181 0.137 

35 Q9BUE0 MED18 Mediator Complex Subunit 18 -3.517 0.374 

36 A0JLT2 MED19 Mediator Complex Subunit 19 -2.609 0.374 

37 Q9H944 MED20 Mediator Complex Subunit 20 -1.875 0.689 

38 Q9ULK4 MED23 Mediator Complex Subunit 23 -3.432 0.187 

39 O75448 MED24 Mediator Complex Subunit 24 -3.665 0.299 

40 O95402 MED26 Mediator Complex Subunit 26 -7.038 0.062 

41 Q9H204 MED28 Mediator Complex Subunit 28 -6.301 0.139 

42 Q9NX70 MED29 Mediator Complex Subunit 29 -3.028 0.374 

43 Q96HR3 MED30 Mediator Complex Subunit 30 -0.086 0.986 

44 Q9Y3C7 MED31 Mediator Complex Subunit 31 -3.914 0.374 

 

Supplementary table 6: Conditions for chromatin immunoprecipitation 
experiments. 

Protein Antibody Antibody 
quantity 

Number of 
cells/ChIP 

Protein G 
beads/ChIP 

Pol II ab9110 10 µg 25 x 106 100 µl 

H3K4me3 ab8580 2 µg 5 x 106 20 µl 

H3K27ac ab4729 2 µg 5 x 106 20 µl 
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7. List of Abbreviations 

A/Ala alanine 

CAN Acetonitrile 

AS Antisense 

Bp basepair 

ChIP-seq Chromatin immunoprecipitation sequencing 

CID CTD-interacting domain 

CTD carboxy-terminal domain 

CUT Cryptic unstable transcript 

DGE Differential Gene Expression 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTT Dithiothreitol 

E/Glu Glutamate 

EBNA Epstein-Barr virus nuclear antigen 

EBV Epstein Barr Virus 

EC Elongation complex 

F/Phe phenylalanine 

FBS Fetal bovine serum 

GTF General transcription factor 

HA haemagglutinin 

Hg Human genome 

IAA Indole-3-acetic acid 

IGB Integrated Genome Browser 

IP Immunoprecipitation 

kDa kilodalton 

LC-MS Liquid chromatography-mass spectrometry 

mRNA messenger RNA 

MS mass spectrometry 

ncRNA non-coding RNA 

ND Number of dead cells 

NL Number of living cells 

Nt nucleotide 

NV Percentage of viable cells 

PBS phosphate buffer saline 

PC/PCA Principal Component/Analysis 



List of Abbreviations 

  115 

PIC pre-initiation complex 

Pol I/II/III DNA dependent RNA-Polymerase I/II/III 

RNA Ribonucleic acid 

RNA-seq RNA sequencing 

RNAP RNA Polymerase 

rRNA ribosomal RNA 

RT read-through 

rWT recombinant wild type 

S sense 

S. cerevisiae Saccharomyces cerevisiae 

S. pombe Saccharomyces pombe 

S/Ser serine 

SDS sodium dodecylsulphate 

snoRNA small nucleolar RNA 

snRNA small nuclear RNA 

T/Thr threonine 

TFA Trifluoroacetic acid 

tRNA Transfer RNA 

TSS transcription start site 

Y/Tyr tyrosine 
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