
 

 

 

 

Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

Photoswitchable Molecules for the Optical Control 

of GPCRs and Ion Channels 

 

 

 

 

 

 

 

 

 

Arunas Jonas Damijonaitis 

aus Giessen, Deutschland 

 

 

 

2015 

 

 



Erklärung 

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 

2011 von Herrn Prof. Dirk Trauner betreut.  

Eidesstattliche Versicherung 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet 

München, den ________________ 

Arunas Damijonaitis 

Dissertation eingereicht am:  __________________ 

1. Gutachter: Prof. Dr. D. Trauner 

2. Gutachter: Prof. Dr. T. Gudermann 

Mündliche Prüfung am: __________________ 

29.10.2015

11.8.2015

13.10.2015



Meiner Familie 

Silvija, Romana, Vingaudas, Darius, Theo, Julija, Artūras, Adomas, Anelė, Juozas, Tomas 

… und meinem Kind!



“Happiness in science is what you should strive for. 

And that comes from doing beautiful experiments with interesting colleagues.” 

Erik Kandel, 03 - 30 - 2015 Boston, MA 



Parts of this dissertation have been published or are considered for publication in peer 

reviewed journals:  

Schoenberger, M., Damijonaitis, A., Zhang, Z., Nagel, D., & Trauner, D., Development of 

a New Photochromic Ion Channel Blocker via Azologization of Fomocaine. ACS Chem. 

Neurosci. 5 (7), 514-518 (2014) 

Damijonaitis, A. et al., AzoCholine Enables Optical Control of Alpha 7 Nicotinic 

Acetylcholine Receptors in Neural Networks. ACS Chem. Neurosci. 6 (5), 701-707 (2015). 

Damijonaitis, A., Barber, D., Trauner, D., Photopharmacology of nicotinic acetylcholine 

receptors. Current Signal Transduction Therapy. (2015) accepted 

Broichhagen, J.*, Damijonaitis, A.*, Levitz, J.*, Sokol K.R., Leippe, P., Konrad, D., 

Isacoff, E.Z., & Trauner, D., Orthogonal optical control of a G protein-coupled receptor 

with a SNAP-tethered photochromic ligand. ACS Central Science (2015)  

DOI: 10.1021/acscentsci.5b00260 

* = equal contribution, alphabetical order

Note: The formatting of figures, tables, schemes and citations of the manuscripts have 

been adjusted to fit the format of this thesis. 



Photoswitchable Molecules for the Optical Control of GPCRs and 

Ion Channels 

Content 

Forschungszusammenfassung .............................................................................. 7 

I: Photopharmacology of Nicotinic Acetylcholine Receptors...................................... 15 

II: AzoCholine – a PCL for alpha 7 nAChRs ............................................................ 33 

III: Azologization of Fomocaine to Fotocaine ......................................................... 55 

IV: Ethylene bridged azobenzene QAQ ................................................................. 63 

V: AzoAPG – a PCL for the Glutamate-Gated Chloride Channel ................................ 69 

VI: Photoswitchable Orthogonal Remotely Tethered Ligand ..................................... 77 

VII: Chemistry and Biology of Loline Alkaloids ....................................................... 95 

Acknowledgements .......................................................................................... 111 



 

 

Forschungszusammenfassung 

Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München; von Arunas Damijonaitis aus Giessen 

 

Photoschaltbare Moleküle für die optische Kontrolle von GPCRs und Ionenkanälen 

(Photoswitchable Molecules for the Optical Control of GPCRs and Ion Channels) 

 

Photopharmakologie 

Photopharmakologie beschreibt die raumzeitliche Kontrolle biologischer Prozesse mit 

Licht. Ähnlich den sogenannten „Prodrugs“, welche durch Verstoffwechselung bestimmter 

„Schutzgruppen“ erst im Zielgewebe ihre Wirkung entfalten, läßt sich bei der 

Photopharmakologie der Wirkstoff lokal und zeitlich kontrolliert durch Licht einer 

bestimmten Lichtfarbe (Wellenlänge) aktivieren. Ein weiterer Vorteil dieser Anwendung 

gegenüber den „Photodrugs“ ist die Reversibilität, d.h. der Wirkstoff kann durch Licht 

einer zweiten Wellenlänge wieder ausgeschaltet werden. Hierfür werden in bestehende 

oder neu entwickelte Wirkstoffe chemische Gruppen eingebaut (z.B. ein Azobenzol), 

welche bei Bestrahlung mit bestimmten Wellenlängen ihre dreidimensionale Struktur 

aufgrund von Photoisomerisierung (Abbildung 1) ändern. Diese Isomerisierung führt zur 

Veränderung der pharmakologischen Eigenschaften des Moleküls, d.h. die aktive Forms 

des Wirkstoffs wird je nach Wellenlänge angereichert oder verringert. 

 

 

Abbildung 1. Das Prinzip der Photopharmakologie. a) Ein Rezeptor (grau) bindet den PCL, bestehend aus dem 

Liganden (orange), dem Linker (schwarz) und dem Azobenzol (rot), nur in einer Konformation. b) Die cis- und 

trans- Konformationen des Azobenzols lassen sich durch Bestrahlung mit bestimmten Wellenlängen (λ1 oder λ2) 

reversibel ineinander umwandeln.   

 

In dieser Arbeit wird die Entwicklung von mehreren frei diffundierenden photoschaltbaren 

Liganden (photochromic ligands, PCLs) und einem gebundenen photoschaltbaren 

Liganden (Photoswitchable Orthogonal Remotely Tethered Ligand, PORTL) beschrieben. 

Dabei werden neuartige Konzepte zur Photokontrolle von biologischen Prozessen 

untersucht und vorgestellt.  
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1) Photoschaltbare Agonisten für nikotinische Acetylcholinrezeptoren  

Nikotinische Acetylcholinrezeptoren (nAChR) sind in der Tierwelt weit verbreitet. Sowohl 

in kleinen Würmern, als auch in großen Säugetieren erfüllen sie viele unterschiedliche 

Funktionen. Im Menschen gibt es 17 Gene, die für unterschiedliche 

Rezeptoruntereinheiten kodieren. Fehlfunktionen von homopentameren 7 nAChR 

werden mit diversen Krankheiten, wie Alzheimer oder Parkinson, in Verbindung gebracht. 

Um die Aktivität dieser Rezeptoren präzise steuern zu können, wurde eine 

photoschaltbare Variante des Agonisten Acetylcholin entwickelt – AzoCholin 

(Abbildung 2a). Dieses Molekül ist in der Lage, den 7 nAChR reversibel mit Hilfe von 

Licht zu steuern. Es wurde gezeigt, dass AzoCholin an den in HEK293T Zellen heterolog 

exprimierten 7/GlyR nAChR lichtabhängig binden und effizient aktivieren kann. Des 

Weiteren wurde die Funktionalität von AzoCholin in Gewebeproben von 

Spinalganglionneuronen und im Hippocampus gezeigt. Zusätzlich konnte durch in vivo  

versuche bestätigt werden, dass über intrinsische nAChR und AzoCholin das 

Schwimmverhalten des Nematoden Caenorhabditis elegans (C. elegans) mit  Licht 

gesteuert werden kann.  

 

 

Abbildung 2. Photokontrolle von neuronalen Netzwerken mit AzoCholin. a) Chemische Struktur und 

Photoisomerisierung von AzoCholin. b) AzoCholin aktiviert den 7/GlyR nAChR reversibel und lichtabhängig. 

Elektrophysiologische Ableitung von HEK293T Zellen die den 7/GlyR exprimieren. c) Multielektrodenaufnahme 

der Aktivierung cholinerger Neurone im Hippocampus der Maus. Der Raster Plot zeigt die Aktivität der einzelnen 

Zellen. Das Histogramm darunter zeigt die lichabhängige Aktivität als Summe aller Zellen. d) Quantifizierung 

der Schwimmschläge von Nematoden (C. elegans Stamm Lite1). Schwimmen die Tiere im physiologischen 

Puffer M9 (grau), hat Lichtmodulation keinen Effekt auf das Schwimmverhalten. Im Puffer mit 1 mM AzoCholin 

(schwarz) wird das schwimmen bei Beleuchtung mit 350 nm Licht abrupt unterbrochen.  
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2) Ein photoschaltbarer Blocker für spannungsabhängige Ionenkanäle 

Wie alle Wahrnehmungsarten wird die Information über einen empfundenen Schmerz von 

Neuronen in das Gehirn weitergeleitet und dort weiter verarbeitet. Aktionspotentiale 

(APs), d.h. schnelle elektrische Signale in den Neuronen, welche durch das konzertierte 

Öffnen und Schließen von spannungsgesteuerten Ionenkanälen geformt werden, dienen 

hierbei den Neuronen als primärer Informationsträger. Werden diese Informationswege 

blockiert, so wird ebenfalls die Schmerzinformation gehemmt. Lokalanästhetika wie 

Fomocain, welche als Kanalblocker fungieren, können diese Reizweiterleitung stoppen.  

Durch die „Azologisierung“ von Fomocain zu Fotocain, d.h. die Einbettung eines 

Azobenzols in die chemische Struktur wurde das Lokalanästhetikum mit einer weiteren 

Eigenschaft ausgestattet – Lichtsensibilität (Abbildung 3). Somit lässt sich die Aktivität 

des Wirkstoffs präzise steuern. Dies wurde an dissoziierten Neuronen, sowie akuten 

Hirnschnitten von Mäusen demonstriert. Mittels Elektrophysiologie ließ sich verfolgen, wie 

neuronale Aktivität durch das Zusammenspiel von Fotocain und Licht kontrolliert werden 

konnte. Wie Fomocain, wirkte Fotocain im Dunkeln, da es vorwiegend in der 

blockierenden trans-Form vorlag. Durch Bestrahlung mit Licht der Wellenlänge 350 nm 

(violett) wurde das cis-isomer angereichert und die Blockade gelöst. Bei Bestrahlung mit 

450 nm Licht (hell blau) wurde das Molekül wieder zur trans-Form photoisomerisiert.  

 

 

Abbildung 3. Photokontrolle spannungsabhängiger Ionenkanäle mit Fotocain. a) Azologisierung von Fomocain 

zu Fotocain und dessen Photoisomerisierung. b) Graphische Darstellung der vermuteten Funktionsweise von 

Fotocain. c) Elektrophysiologische Ableitung von neuronaler Aktivität. Durch Fotocain ist das Feuern von 

Aktionspotentialen nur bei Beleuchtung mit 350 nm (violett) möglich.  
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3) Ethylen-überbrückte Azobenzole sind in der cis-Konfiguration thermisch 

stabil.  

Photochrome Liganden (PCLs), die herkömmliche Azobenzole enthalten, sind 

typischerweise in ihrer trans-Konfiguration thermisch stabil. Dies kann zu Komplikationen 

führen, wenn die Aktivität des Moleküls ebenfalls aus der trans-Konfiguration rührt, d.h. 

die PCLs sind auch im Dunkeln aktiv. In diesem Fall muss im Experiment über längere 

Zeit mit der inaktivierenden Wellenlänge (oft UV-Licht) beleuchtet werden, um das 

Zielprotein nicht durchgehend zu aktivieren. Dies ist aufgrund phototoxischer Effekte 

nicht wünschenswert. Hier wird die Verwendung von Ethylen überbrückten Azobenzolen 

beschrieben, die in ihrer cis-Konfiguration thermisch stabil sind. Dieses Konzept wurde 

auf den PCL QAQ angewendet, um das überbrückte Azobenzol BAQ (bridged azobenzene 

QAQ) zu erhalten (Abbildung 4). 

 

 

 

Abbildung 4. Photokontrolle spannungsabhängiger Ionenkanäle mit BAQ. a) Chemische Struktur und 

Photoisomerisierung von BAQ. b) Spektroskopische Analyse von BAQ in DMSO. Beste Wellenlängen zur 

Isomerisierung sind 400 nm und 480 nm. c) Elektrophysiologische Ableitung hippocampaler Neuronen der 

Maus. Ein depolarisierender Puls von −60 mV auf +50 mV erzeugt einen Kaliumstrom der lichtabhängig von 

BAQ blockiert wird. 
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4) Die Entwicklung eines photoschaltbaren Antagonists für den glutamat-

gesteuerten Chloridkanal 

Es gibt mehrere Möglichkeiten, einen PCL zu entwerfen. Der Ansatz der „Azologisierung“ 

beinhaltet den Einbau eines Azobenzols in die Struktur eines bekannten Liganden (siehe 

Fotocain). Bei Beleuchtung mit unterschiedlichen Wellenlängen kann der PCL dann 

reversibel zwischen seiner aktiven und inaktiven Form geschaltet werden. Wenn jedoch 

keine „azologisierbaren“ Liganden bekannt sind, müssen alternative Wege gesucht 

werden. Hier stellen wir das rationale Design eines photoschaltbaren Antagonisten für 

den glutamatgesteuerten Chloridkanal (GluCL), vor – AzoAPG (Abbildung 5). Ausgehend 

von Glutamat wurden unterschiedliche Substitutionsmotive mit variierender Länge am 

-Kohlenstoff generiert. Zuletzt wurde durch die Addition eines Azobenzols der 

Photoschalter AzoAPG hergestellt. Dieser wirkt jedoch nicht als Agonist, sondern als 

partieller Antagonist.  

 

Abbildung 5. Entwicklung von AzoAPG. a) Alterniernde Synthese- und Evaluierungsschritte führen von Glutamat 

über -methyl- und -allyl- zu -propargyl-Glutamat. b) Chemische Struktur und Photoisomerisierung von 

AzoAPG. b) Spektroskopische Analyse von AzoAPG in physiologischem Puffer. c) Analyse des Schaltverhaltens 

über die Zeit im UV-Vis.  
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5) Der photoschaltbare und orthogonale entfernt gebundene Ligand – PORTL 

Die kovalente Bindung von synthetischen Photoschaltern ist ein allgemeiner Ansatz 

Rezeptoren mit Lichtempfindlichkeit auszustatten. Bei dem photoschaltbaren und 

orthogonalen entfernt gebundenen Liganden (Photoswitchable Orthogonal Remotely 

Tethered Ligand, PORTL) handelt es sich um einen lichtschaltbaren Wirkstoff an einer 

langen Leine (Abbildung 6). Die Bindung erfolgt spezifisch über den genetisch kodierten 

SNAP-Tag, welcher extrazellulär an den Zielrezeptor kloniert wurde. Dieser reagiert mit 

dem Benzylguanin, welches über einen langen flexiblen Linker mit dem photochromen 

Liganden verbunden ist. PORTL ist in physiologischer Lösung stabil und Biokonjugation 

tritt bei sehr geringen Konzentrationen mit hoher Selektivität und extrem schneller 

Kinetik ein. 

Wir entwickeln diese neuartige Methode, um den G-Protein-gekoppelten Rezeptor 

mGluR2, einen metabotropen Glutamatrezeptor, in einen Photorezeptor (SNAG-mGluR2) 

zu verwandeln. Das ermöglicht uns die schnelle und reversible optische Kontrolle über 

zwei der wichtigsten Signalwege, die von mGluR2 vermittelt werden: (1) Hemmung der 

Transmitterfreisetzung über das präsynaptische Nervenende und (2) Kontrolle der 

Erregbarkeit von Neuronen über die Aktivierung von Kaliumkanälen im somato-

dendritischen Raum. 

 

 

Abbildung 6. Der photoschaltbare und orthogonale entfernt gebundene Ligand (Photoswitchable Orthogonal 

Remotely Tethered Ligand, PORTL). a) Am metabotropen Glutamatrezeptor (mGluR2, grau) befindet sich der 

SNAP-Tag (grün). Dieser kann durch Biokonjugation eine kovalente Bindung mit dem Benzylguanin (grüner 

Stern) eingehen (SNAG-mGluR2). Am Ende des langen Linkers befindet sich der gebundene PCL. b) Bei 

Beleuchtung mit einer bestimmten Wellenlänge ( = 380 nm, violett und  = 500 nm, grün), wird die 

Konfiguration des PCLs geändert und der SNAG-mGluR2 (exprimiert in HEK293T Zellen) kann aktiviert werden. 

c) Neuronale Aktivität wird duch SNAG-mGluR2 lichtabhängig moduliert.  
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6) Pharmakologische Studie an Lolinalkaloiden  

Lolinalkaloide, oder auch kurz Loline genannt, sind bioaktive Naturstoffe und gehören zu 

den Alkaloiden. Sie werden von endophytischen Pilzen (Clavicipitaceae) gebildet, welche 

vor allem auf Süßgräsern (Poaceae) wachsen. Die produzierten Alkaloide dienen den 

Wirtspflanzen und den Pilzen als Fraßschutz vor Insekten. In dieser Arbeit werden die 

Optimierung der Gewinnung von Lolinalkaloiden und Schritte zu Entschlüsselung deren 

biologischer Aktivität beschrieben (Abbildung 7). Hierzu wurden Chloroform-Extraktionen 

von Samen des Wiesenschweidels (Festulolium loliaceum) vorgenommen, die zuvor mit 

dem endophytischen Pilz Neotyphodium uncinatum infiziert wurden. Neben dem 

Hauptprodukt Lolin wurden auch weitere Alkaloide wie N-acetyl Lolin oder N-formyl Lolin 

isoliert. Temulin, N-acetyl Temulin, N-formyl Temulin wurden synthetisch hergestellt. Zur 

Untersuchung der biologischen Aktivität der Alkaloide wurden unter anderem Versuche 

an dem Nematoden C. elegans durchgeführt. N-acetyl Temulin und Lolin verursachten im 

Schwimmversuch eine gesteigerte Schwimmschlagfrequenz.  

 

 

Abbildung 7. Lolinalkaloide ändern das Schwimmverhalten von Nematoden. a) Die Alkaloide Lolin, N-acetyl 

Lolin, N-formyl Lolin können aus Pflanzensamen extrahiert werden. Temulin, N-acetyl Temulin, N-formyl 

Temulin werden synthetisch hergestellt. b) Im Schwimmversuch reagieren Nematoden (C. elegans) mit höherer 

Schwimmfrequenz auf N-acetyl Temulin und Lolin.  
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Abstract  

Nicotinic acetylcholine receptors (nAChRs) are one of the most abundant classes of 

receptors present in the mammalian nervous system and play a significant role in 

synaptic transmission. The development of new tools that can precisely control the 

function of nAChRs is important for the study of their complex biological processes. It 

could also lead to new therapeutic treatments for neurological diseases associated with 

nAChRs. Herein, we present a review of the photopharmacology of nAChRs, where small 

photochromic ligands are used to control function using the high spatial and temporal 

precision of light. A survey of the literature shows that, although several diffusible 

photochromic ligands and photochromic tethered ligands exist, further development of 

new molecules is required to allow in-depth studies into the role of different nAChR 

subtypes. 

 

Graphical abstract.  

Keywords: nicotinic acetylcholine receptor, photopharmacology, azobenzene, 

photoswitch, BisQ, optochemical genetics, photochromic tethered ligand 

 

Abbreviations: nAChR, nicotinic acetylcholine receptor; mAChR, muscarinic 

acetylcholine receptor; AChE, acetylcholinesterase; RT, room temperature; PCL, 

photochromic ligand; DRG, dorsal root ganglion; UV, ultra violet; MEA, multielectrode 

array; HEK293T cells, Human Embryonic Kidney cells type 293T   
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Nicotinic Acetylcholine Receptors in the Neural System 

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are highly 

abundant in the mammalian nervous system, playing a major role in synaptic 

transmission between neurons and at the neuromuscular junction. These receptors are 

highly important for movement and cognitive functions, such as memory and reward 

mechanisms. Beside the crucial involvement in nicotine addiction, malfunctions in 

cholinergic communication often lead to severe diseases like epilepsy, Parkinson’s or 

Alzheimer’s disease [1,2]. In general, neuronal nAChRs consist of five subunits, which 

can be either heteropentamers (combinations of 2 - 10 and β2 - β4) or 

homopentamers (7 - 9). Because of the complexity and diversity of cholinergic 

function, a variety of these nAChR subtype compositions can be found in the brain. These 

subtypes not only differ in their affinities towards their endogenous ligand acetylcholine 

(ACh), but also in their kinetic profiles of channel activation and deactivation [3]. For 

example, homopentameric 7 nAChRs show lower affinity and faster desensitization 

compared to heteropentameric 4β2 nAChRs, resulting in a different cellular response to 

the same stimulus. This response is shaped by the different kinetics and ion permeability 

of individual receptors.  

 

Fig. (1). Structure of the muscle-type nAChR with a selection of agonists and competitive antagonists. a) 

Structural model derived from cryo-electron microscopy data of Torpedo nAChRs as viewed from the side and 

the top (pdb:2bg9) [5]. b) Selection of agonists for nAChRs, including the endogenous ligand acetylcholine and 

the natural product nicotine. c) Selection of synthetic and natural antagonists for nAChRs. 

In order to study cholinergic systems, a broad pharmacological toolset has been 

developed over recent decades [4]. It is now possible to target many receptor subtypes 

with highly specific agonists and antagonists (Fig. 1). However, nAChRs are usually 

investigated with electrophysiology experiments that use bath application of an agonist 

or antagonist. These conditions are slow, imprecise and often do not correspond to 

physiological conditions, since the compound is used at high concentrations and cannot 

be quickly cleared. These properties stand in contrast to the fast dynamic characteristics 

of activation of cholinergic signals. Lately several methods have been introduced to 

overcome these limitations, unfortunately bringing other disadvantages with them. For 

instance, local pressure pulse application of cholinergic ligands is spatially precise and 

quick, but nevertheless is only applicable for single cell investigations. When 

investigating neural circuits, this method meets its limitations. Thus, there is a need for a 

pharmacological solution that can overcome these restrictions. This is where 

photopharmacology comes into its own.  
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Photopharmacology and Azobenzene Photoswitches 

Due to the numerous subtypes and the complex pharmacology of nAChRs, there is a 

great need for new methods that can reversibly control their function [6]. To achieve the 

desired dynamic control, an external stimulus is required that can be accurately 

controlled with high spatial and temporal precision, as well as exhibiting low or negligible 

toxicity in biological systems. The use of light as the external stimulus fulfills all of these 

requirements, for it can be efficiently manipulated by adjusting its wavelength and 

intensity, whilst not interfering with other biological processes [7-9].  

To enable the optical control of a protein, the structure of an organic molecule that 

interacts with the desired target has to be modified to incorporate a functionality that 

undergoes a transformation when exposed to light. In its most simple incarnation, a 

photolabile component is introduced resulting in an inactive caged molecule [10]. Upon 

exposure to light, the cage is removed and the active molecule is released enabling it to 

affect its biological target. Several caged molecules that target nAChRs, have been 

reported over recent years (Fig. 2) [11-13]. NPE-Carbachol and CNB-carbachol have the 

cage covalently attached to the carbachol, while RuBi-nicotine is a metal complex with a 

non-covalently attached caging moiety. Although they have proved useful for the study 

of nAChRs, they do suffer from several drawbacks. For example, the light induced 

removal of the cage can only occur once, therefore reversible control of the desired 

target cannot be easily achieved. Additionally, the remainder of the cage needs to be 

compatible with the biological system under investigation [14]. It should be noted that 

several caged derivatives of choline, the biosynthetic precursor and cleavage product of 

ACh, have also been reported. However, they were used as tools to investigate the action 

of acetylcholinesterase (AChE) and not the function of nAChRs [15]. 

 

Fig. (2). Examples of caged agonists for nAChRs. a) NPE-carbachol [11]. b) CNB-carbachol [12]. c) RuBi-

nicotine [13]. NPE = 1-(2-nitrophenyl)ethyl. CNB = -carboxy-2-nitrobenzyl. RuBi = 

tris(bipyridine)ruthenium(II). 

Another method that exploits the high spatial and temporal precision of light is provided 

by optogenetics [16]. Rather than using a synthetic organic compound, optogenetics 

achieves dynamic control of biological functions via photoresponsive proteins, such as 

rhodopsins [17], phototropins [18] and phytochromes [19]. These gain their 

photosensitivity through incorporation of abundant natural chromophores (retinal, flavine 

mononucleotide, biliverdin). Optogenetics has proven extremely useful for the study of 

biological processes, especially in neuroscience [20]. Cholinergic systems have been 

extensively studied using this method [21]. However, the nAChRs themselves have not 

been rendered photosensitive with mere genetic manipulation and the reliance on natural 

chromophores alone, which limits insights into the role of individual subtypes [22].  

The photopharmacology approach involves the incorporation of synthetic photoswitchable 

ligands into proteins [23, 24]. Upon exposure to a certain wavelength of light, the ligand 

undergoes a conformational change, which can be reversed using light of another 
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wavelength or by thermal relaxation. If the pharmacological efficacy of the ligand 

changes upon switching, the target protein is essentially converted into a photoreceptor. 

Photopharmacology works particularly well in nonlinear systems, such as nervous 

systems and can enable ultra-fast and highly accurate control of biological functions.  

There are several classes of molecular photoswitches reported in the literature, each with 

their own unique properties and characteristics [25]. Amongst these, the azobenzenes 

have arguably attracted the most attention from the scientific community, at least as far 

as biological applications are concerned (Fig. 3) [26, 27]. This could be due to the fact 

that they can be synthesized with relative ease but also results from their advantageous 

geometrical and photophysical properties. 

 

Fig. (3). Photoswitching characteristics of azobenzenes. a) UV-Vis spectrum of BisQ [31]. The difference in the 

UV-Vis absorption spectra of the trans and cis isomers is clearly visible. Figure modified from reference [28]. b) 

The structure of trans and cis azobenzene showing the putative change in geometry that occurs during the 

isomerization process. BisQ = [(E)-diazene-1,2-diyldibenzene-3,1-diyl]bis(N,N,N-trimethylmethanaminium). 

Azobenzenes, which belong to the smallest photoswitches, can exist as trans and cis 

isomers, where the trans isomer is the thermodynamically more stable [28]. When 

irradiated with light (typically 360-480 nm), the trans isomer undergoes photochemically 

induced isomerization to form the cis isomer. The cis isomer can be converted back to its 

trans isomer using a longer wavelength or via thermal relaxation. Both light induced 

isomerizations generally occur in the range of picoseconds, whereas the thermal 

relaxation takes place anywhere in the range of milliseconds to days depending on the 

substitution pattern of the azobenzene [29, 30]. The fastness of photoswitching prevents 

intersystem crossing to triplet states, which could result in formation of singlet oxygen 

under biological conditions. The trans to cis isomerization of the azobenzene comes along 

with a considerable change in its geometry. A trans azobenzene is almost planar and has 

little or no dipole moment. In contrast, a cis azobenzene exhibits an angular geometry 

and has a considerable dipole moment [30].  

Analysis of the UV-Vis absorption spectrum of the azobenzene BisQ [31], photochromic 

agonist for neuromuscular nAChRs (see below), reveals two distinct absorption bands 

(Fig. 3a). The very intense band (280-340 nm) is indicative of the  → * transition 

whereas the weaker band (380-480 nm) is characteristic of the n → * transition. The 

variation of substituents on the azobenzene core can change the spectral sensitivity and 

kinetics of the photochemical and thermal isomerization (Fig. 4) [32-35]. For example, 

the addition of an electron-donating group in the para position on one aromatic ring 

creates a class of azobenzenes referred to as ‘aminoazobenzenes’ (Fig. 4b). The 

absorption maxima in these compounds is red-shifted towards the visible region of the 

spectrum and the thermal relaxation of the cis isomer is faster. Also, the  → * and n → 

* bands lie closer together. Azobenzenes that contain both a para electron-donating 

group and a para electron-withdrawing group are called ‘pseudo-stilbenes’ (Fig. 4c). 
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Their absorption maxima are further red-shifted with thermal relaxation occurring very 

fast. In this regard, the addition of substituents to azobenzene photoswitches enables 

them to effectively be tuned to give the desired properties for a certain purpose [36]. 

Very recently, there has been a surge in new azobenzene motifs that offer interesting 

and remarkable photoswitching properties, such as bistability (i.e. the molecule stays in 

its excited conformational state without further illumination) and very red-shifted 

photoswitching wavelengths (Fig. 4d-g) [37-40]. Of particular interest to 

photopharmacology are the red-shifted azobenzenes as they can take advantage of the 

increased tissue penetration of red light [41].  

 

 

Fig. (4). Examples of azobenzenes that exhibit different photoswitching properties. a) Fotocaine is an 

‘azobenzene class’ photoswitch [33]. b) Azo-propofol is an ‘aminoazobenzene class’ photoswitch [34]. c) JB253 

is a ‘pseudo-stilbene class’ photoswitch [35]. d) A tetra-ortho substituted azobenzene that is photoswitched 

with red and blue light [37]. e) A photoswitch that is isomerized with near-infrared light [38]. f) A bistable 

arylazopyrazole photoswitch [39]. g) A bistable cyclic azobenzene derivative that is thermodynamically more 

stable in its cis form [40]. Fotocaine = 4-(3-{4-[(E)-phenyldiazenyl]phenyl}propyl)morpholine. Azo-propofol = 

4-[(E)-(4-aminophenyl) diazenyl]-2,6-di(propan-2-yl)phenol. JB253 = N-(cyclohexylcarbamoyl)-4-{(E)-[4-

(diethylamino)phenyl]diazenyl} benzenesulfonamide. 

 

Although azobenzene photoswitches have dominated photopharmacology thus far, many 

other photoswitches have been used in biological systems with great success. Some of 

the photoswitches also exhibit interesting photoswitching properties that could be 

advantageous for photopharmacology. Among these photoswitches, stilbenes, 

dithienylethenes (DTEs), spiropyrans and hemithioindigos (HTIs) have received a large 

amount of attention from the community (Fig. 5).  
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Fig. (5). Molecular structures and isomers of various photoswitches. a) The cis and trans isomers of a stilbene 

photoswitch. b) The open and closed forms of a DTE photoswitch. c) The isomeric forms of a spiropyran 

photoswitch. d) The cis and trans isomers of a HTI photoswitch.  

Stilbenes are isoelectronic to azobenzenes and undergo photoisomerization to switch 

between their cis and trans isomers. The main difference between stilbenes and 

azobenzenes is that the cis isomer of stilbene is metastable, meaning that it does not 

thermally convert back to its trans isomer [42]. Although they are similar to 

azobenzenes, stilbene photoswitches exhibit two major disadvantages for applications in 

biological systems. Firstly, strong UV irradiation is required for the trans to cis 

isomerization and secondly, stilbenes suffer from a tendency to irreversibly cyclize and 

oxidize while in their cis forms preventing reversion back to their trans isomer [43]. DTE 

photoswitches are related to stilbenes by the fact that they are effectively cis-stilbenes 

that are fixed in the cis conformation by a bridging cyclohexene ring. The photochromism 

of diarylethenes arises from their ability to reversibly undergo photochemically induced 

cyclisation from its open form to its closed form [44]. Typically the open form is 

converted to the closed form by irradiating with UV light, with the reverse isomerization 

to the open form occurring with visible light illumination. Both the open and closed forms 

of the DTE photoswitches are thermally stable [44], this gives them unique opportunities 

for photopharmacology. Spiropyrans are a class of photoswitches that exhibit 

photochromism via reversible C-O bond cleavage that is induced by UV light. The 

cleavage of the C-O bond results in a zwitterionic conjugated system that is referred to 

as the merocyanine form. The reverse reaction back to the spiropyran can occur either 

thermally or by illumination with visible light [45]. The addition of substituents to the 

spiropyran motif can result in different equilibria between the spiropyran and 

merocyanine states, with some substituents resulting in complete reversal of the 

photochromism usually observed for spiropyran photoswitches [46]. HTIs are another 

class of photoswitch that exhibit cis to trans isomerization upon irradiation with distinct 

wavelengths of light. Illuminating with 400 nm light drives the cis to trans isomerization, 

with 480 nm light facilitating the reverse isomerization [47]. The photoswitching of 

hemithioindigos is very fast, occurring on the picosecond time scale and the thermal 

relaxation of the trans isomer back to the more stable cis isomer is very slow [48]. 
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Optical control of nicotinic acetylcholine receptors. 

Within the field of photopharmacology, two main strategies for ligand function and design 

are usually implemented. The first strategy is referred to as the photochromic ligand 

(PCL) approach, whereas the second strategy is called the photochromic tethered ligand 

(PTL) approach (Fig. 6) [23]. The PCL approach consists of a soluble ligand that is 

endowed with a photoswitchable moiety, such as an azobenzene. Ideally, the PCL 

activates the target receptor as one isomer, but not as the other isomer. In the example 

shown in Fig. 6a, the trans isomer of the PCL is able to bind to the ligand binding domain 

of the receptor and opens the channel, whereas the cis isomer of the PCL cannot bind to 

the receptor, resulting in closure of the channel. In contrast, the PTL approach involves 

molecules that incorporate a ligand, an azobenzene tether, and a bio-conjugation motive, 

allowing the entire construct to be conjugated to a genetically modified protein. In the 

example shown in Fig. 6c, the trans photoswitch does not reach the binding pocket. 

When the ligand is photo isomerized, the cis conformation of the ligand reaches the 

binding pocket and activates the receptor. If the ligand is an antagonist (Fig. 6b, d), the 

PCL or PTL can compete with the endogenous ligand for the binding pocket, which allows 

for another type of photocontrol. Ideally, this photoinhibition or activation occurs only in 

one configuration, enabling normal receptor function in the other configuration.  

 

 

Fig. (6). Concept of the PCL and PTL approaches at pentameric ligand-gated ion channels. a) Agonistic PCL 

that is inactive as its cis isomer whilst the trans isomer is ‘active’. b) Antagonistic PCL that displaces the 

endogenous ligand as its trans isomer and does not occupy the binding pocket as its cis isomer. c) Agonistic 

PTL that is active as its cis isomer and inactive as its trans isomer. d) Antagonistic PTL that displaces the 

endogenous ligand as its cis isomer and does not occupy the binding pocket as its trans isomer.  

Both, the PCL and the PTL strategies, have their respective advantages and 

disadvantages. For example, one benefit of a PCL approach is that it does not require any 

genetic manipulation of the target cell or organism, making it applicable to endogenous 

receptors. The specific interaction of the PCL with the target receptor dictates if the 

activation occurs through the binding of the cis isomer or trans isomer. Because of the 

complexity of this binding it is difficult to predict the active form. When using the PTL 

approach, the attachment site of the photoswitch can be chosen based on the intended 

binding mode. Based on a three dimensional structural model of the target protein it is 
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possible to computationally model the binding of the ligand to the protein and then 

screen for suitable attachment sites.  

In addition, the genetic modification required for PTLs allows the users to specifically 

target the exact receptor type and subtype that they wish to study. Over recent years, 

many PTLs have been developed that feature a maleimide as the electrophile for bio-

conjugation to genetically engineered cysteines [49]. Maleimide chemistry in vivo bears 

many problems when the electrophile unspecifically reacts with freely accessible 

cysteines in the extracellular space or cytoplasm. Therefore alternative bio-conjugation 

motives like electrophiles that react specifically with certain genetically encoded protein 

domains such as SNAP or CLIP Tags might be more applicable in the future [50]. 

Nevertheless, both PCL and PTL strategies have been used to great effect with respect to 

nAChRs. 

 

Turning nAChRs into Photoreceptors. 

In the late 1960s, Erlanger and co-workers recognized that incorporating azobenzene 

photoswitches into known pharmacophores could enable the precise control of biological 

function using light. They envisaged that the cis or trans isomers of the azobenzene 

photodrug could have different bioactivities for the biological target, effectively resulting 

in the function of the target being turned ‘on’ or ‘off’ with different wavelengths of light. 

In essence, the relative concentration of the ‘active’ and ‘inactive’ compounds could be 

fine-tuned by the applying distinct wavelengths of light. This hypothesis was first 

successfully applied in 1968, when a PCL was used to optically control the inhibition of 

the digestive enzyme chymotrypsin [51]. In this study, the authors found that the cis 

isomer of their PCL was five times more efficient at inhibiting the effect of chymotrypsin 

than the trans isomer was. Shortly after this report, Erlanger and Nachmansohn 

demonstrated that the PCLs p-phenylazophenyltrimethylammonium (azo-PTA) and N-p-

phenylazophenyl-N-phenylcarbamylcholine (azo-Ph-carbachol) were photoswitchable 

inhibitors of acetylcholine receptors (AChRs) (Fig. 7) [52]. When tested on the excitable 

membrane obtained from the Electrophorus electricus electroplax of, both azo-PTA and 

azo-Ph-carbachol were found to function as antagonists in their trans forms. Exposure to 

320 nm UV light with the accompanied trans to cis isomerization, resulted in a large 

depolarization of the electroplax membrane in the presence of the agonist carbachol. At 

this time it was not possible to distinguish whether this observation was due to nAChRs 

or muscarinic acetylcholine receptors (mAChRs).  

An interesting feature of this study was that azo-PTA and azo-Ph-carbachol were derived 

from known agonists of nAChRs, such as phenyltrimethylammonium (PTA) (Fig. 7) and 

carbachol (Fig. 1). However, the presence of the azobenzene functionality in each of 

these compounds converts them from agonists to antagonists. This is an example of how 

the introduction of a photoswitch can have a profound effect on the pharmacology of a 

compound. 
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Fig. (7). nAChR agonists, PCLs and the first PTL for nAChRs. a) Agonists of nAChRs. b) Azo-PTA and azo-Ph-

carbachol PCL antagonists of nAChRs. c) The nAChR antagonist tubocurarine. d) PCLs BisQ and 2BQ with the 

PTL QBr. Azo-PTA = N,N,N-trimethyl-4-[(E)-phenyldiazenyl]anilinium. Azo-Ph-carbachol = N,N,N-trimethyl-2-

[(phenyl{4-[(E)-phenyldiazenyl]phenyl}carbamoyl)oxy]ethanaminium. 2BQ = [(E)-diazene-1,2-diyldibenzene-

2,1-diyl]bis(N,N,N-trimethylmethanaminium). QBr = (3-{(E)-[3-(bromomethyl)phenyl] diazenyl}phenyl)-

N,N,N-trimethylmethanaminium. 

Shortly after the discovery of azo-PTA and azo-Ph-carbachol, Erlanger and Wassermann 

disclosed the photochromic nAChR agonist BisQ (Fig. 7d) [53]. BisQ is a PCL that can be 

considered as the azologue [33] of the known nAChR partial agonist decamethonium, 

where the 10 membered carbon chain is replaced by an azobenzene moiety. BisQ was 

evaluated in the electroplax membrane in a similar fashion to their previous studies (Fig. 

8). The trans isomer of BisQ was found to be a very potent nAChR agonist, inducing 

depolarization of the electroplax membrane. Rapid repolarization of the membrane then 

occurred when irradiating with 360 nm light.  
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Fig. (8). Photoregulation of the nAChR function by BisQ using electroplax membranes. BisQ was washed in its 

cis form. Irradiation with an intense light source (Flood Light) isomerized BisQ to its trans form activating the 

receptor. N.R. is normal Ringer's solution. Figure modified from reference [53]. 

Concentration-response studies revealed that trans-BisQ (EC50 = 60-80 nM) is 500 times 

more potent than the AChR agonist carbachol. However, the maximal response to trans-

BisQ is lower (i.e., partial agonist) than that of carbachol at high concentrations. In 

contrast to trans-BisQ, cis-BisQ showed very low activity, with the authors postulating 

that a pure sample of cis-BisQ may not exhibit any activity towards nAChRs at all. 

Studies on the activity of trans-BisQ in the presence of the nAChR antagonist 

tubocurarine showed that at low concentrations of trans-BisQ, the depolarization was 

blocked. When the concentration of trans-BisQ was increased, repolarization of the 

membrane ensued. This occurred both in the presence and in the absence of d-

tubocurarine, therefore the authors speculated, that there are two binding sites for trans-

BisQ with only one competing with tubocurarine. 

Later, the successful photochromic agonist BisQ was turned into an antagonist by 

changing the positions of the quarternized amines from the 3,3' to the 2,2' positions 

[54]. This resulted in the PCL 2BQ (Fig. 7d), which enabled investigations to further 

understand antagonist-receptor binding. Studies in Electrophorus electroplaques revealed 

that the receptor activation by carbachol could be allowed by the cis to trans 

isomerization of 2BQ, while flash-induced trans to cis concentration jumps decreased 

agonist induced currents within milliseconds [55]. 

In 1969, Siliman and Karlin introduced the idea of covalently attaching an agonist to a 

nAChR [56]. For this, a disulfide bond near the active site of the receptor was reduced 

with dithiothreitol and the agonist was tethered to the protein. With Erlanger’s knowledge 

of photocromic agonists, this technique was combined with BisQ yielding QBr (Fig. 7). 

QBr has a very similar structure to BisQ except that a bromine atom replaces one of the 

trimethylammonium groups. This converts the PCL into a PTL as the reduced disulfides 

can now react with the benzylic bromide, tethering it to the receptor. The attached 

agonist could now be presented to the active site and removed from it by changing the 

illumination wavelength. This overcame the major drawback of Karlin’s approach, namely 

desensitization of the receptor [56]. Interestingly, both the freely diffusible BisQ and the 

tethered QBr activate the receptor in their trans configurations and not in their cis 
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configurations [57]. When attached to the receptor, QBr induced currents were not 

blocked by the competitive antagonist d-tubocurarine. Nevertheless, the receptor 

remained sensitive to open-channel blockers. When compared with each other, BisQ and 

QBr induce similar kinetics for channel opening and closing. Thus, the authors speculated 

that the rate-limiting step was not the diffusion of the molecules, but rather the 

conformational change of the agonist-receptor-channel complex [57].  

Since the introduction of QBr, molecular cloning, heterologous expression, X-ray crystal 

structures and molecular modeling have revolutionized our ability to understand and 

control biological systems. Nowadays, with knowledge of the genetic code and the 

availability of three dimensional receptor structures, it is possible to change the DNA via 

site directed mutagenesis to exchange a single amino acid in the protein at a desired 

position. Furthermore, when investigating neural circuits, cell and receptor subtype 

specificity can be achieved within a tissue by using specific promoters or a Cre-Lox 

expression system. Additional spatiotemporal control can be provided by attaching a 

photoswitch to the engineered protein that ultimately can be controlled with light. In 

2012, Trauner and Kramer introduced the genetically engineered light-controlled nAChR 

(LinAChR) [58]. Through structure-based design, an azobenzene photoswitch and a 

maleimide functionality were added to the nAChR photoaffinity label AC-5, affording the 

photoswitchable nAChR agonist MAACh (Fig. 9). The known nAChR agonist homocholine 

phenyl ether (HoChPE) was converted to the photoswitchable nAChR antagonist MAHoCh.  

 

Fig. (9). The nAChR PTLs MAACh and MAHoCh along with their parent ligands AC-5 and HoChPE. AC-5 = 2-{4-

[(E)-(4-diazoniophenyl)diazenyl]phenyl}-14,14-dimethyl-3,10-dioxo-11-oxa-2,4-diaza-14-azoniapentadecane. 

MAACh = 2-({6-[({4-[(E)-(4-{[(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetyl]amino}phenyl)diazenyl]phenyl} 

carbamoyl)amino]hexanoyl}oxy)-N,N,N-trimethylethanaminium. MAHoCh = 3-{4-[(E)-(4-{[(2,5-dioxo-2,5-

dihydro -1H-pyrrol-1-yl)acetyl]amino}phenyl)diazenyl]phenoxy}-N,N,N-trimethylpropan-1-aminium. HoChPE = 

N,N,N-trimethyl-3-phenoxypropan-1-aminium. 

By modeling the molecules into the binding domain of the X-ray crystal structure of the 

acetylcholine binding protein (AChBP) and the Torpedo nAChR, several candidate amino 

acid positions were identified to carry the cysteine mutation for bio-conjugation with the 

maleimide. Ideally the photoswitch does not interfere with the receptors natural function 

when attached to the protein. Only when light is applied the molecule should evoke an 

effect. Therefore the conjugation site was chosen at a position where the cis, but not the 

trans isomer of the photoswitch reaches the binding pocket. The engineered 34 and 

the 42 nAChRs, expressed in Xenopus oocytes, were both turned into photoreceptors 

when the agonist MAACh was used (Fig. 10a). By shining 380 nm light onto the oocyte, 

LinAChR was activated evoking an inward current, which was recorded via two electrode 

voltage clamp (TEVC). Changing the wavelength to 500 nm allowed closing of the 
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receptor. Furthermore, light induced inhibition of nAChR current was achieved by 

attaching the antagonistic photoswitch MAHoCh to the same cysteine residue in 34 and 

42 nAChRs (Fig. 10b). The effect of ACh (300 µM) application could be blocked to a 

certain degree by irradiation of 380 nm light, while the same stimulus resulted in a 

strong inward current when illuminated with 500 nm light. Notably, both variants 

behaved like normal nAChRs in the dark. The authors speculated that inhibition of the 

receptor might be also achieved by attaching the agonistic molecule to another position, 

where it occupies the binding pocket, but does not induce a current [59]. 

 

Fig. (10). Photocontrol of 4β2 LinAChRs in Xenopus oocytes. a) Photoactivation of the 4β2E61C mutant 

receptor by MAACh followed by activation with ACh. b) Photodependent antagonism of the 4β2E61C mutant 

receptor by MAHoCh under 500 nm light (green lines) and 380 nm light (violet lines). Figure modified from 

reference [58].  

The latest addition to the cholinergic photopharmacology toolbox is the PCL AzoCholine 

(Fig. 11), which consists of a choline moiety that is attached to an azobenzene [60]. 

Structurally it closely resembles the 7 nAChR antagonist MG624 (Fig. 1) with one crucial 

difference. The quaternary amine of AzoCholine bears three methyl groups instead of 

three ethyl groups. UV/Vis studies revealed that the cis isomer can be enriched by 

illuminating the sample with 360 nm light. To convert the molecule to its trans isomer 

460 nm was the most efficient wavelength. Experiments in Human Embryonic Kidney 

(HEK) cells heterologously expressing either the neuronal 7 nAChR or the 

neuromuscular nAChR, showed that photoactivation of AzoCholine could induce a rapid 

and strong inward current at the neuronal nAChR, while having no photoswitchable effect 

at the neuromuscular nAChR. In dissociated rat dorsal root ganglion (DRG) cells 

activation could be triggered by photoactivation of AzoCholine, which could be recorded 

via calcium imaging. Here, the specificity of AzoCholine for the endogenous 7 nAChRs 

was demonstrated by blocking the effect with the 7 specific antagonist MG624. 

Furthermore, network activity could be modulated as demonstrated by multielectrode 

array (MEA) recordings from acute mouse hippocampal brain slices. When illuminating 

the preparation containing AzoCholine with 460 nm light, bursting activity in the 

hippocampal region increased, while 360 nm light decreased neural activity.  Finally, the 

in vivo applicability of AzoCholine was demonstrated when swimming behavior of 

C. elegans could be controlled with AzoCholine and light irradiation.  
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Fig. (11). Photocontrol of neural networks with AzoCholine. a) Molecular structure of AzoCholine. b) Bursting 

activity in mouse hippocampal brain slices. Summary of 6 MEA experiments showing the photo-modulative 

effect of AzoCholine and the effect of MG624. c) Raster plot of single cell spiking activity in the presence of 

AzoCholine (50 µM) with the correlating histograms over all cells. Switching light from 360 nm (gray bar) to 

460 nm light (blue bar) leads to an increase in bursting activity and vice versa. d) Quantification of C. elegans 

swimming cycles showing photo-dependent perturbation when 470 nm light is applied. Figure modified from 

reference [60].  

AzoCholine effectively turns endogenous 7 nAChRs into photoreceptors. By varying the 

irradiation wavelengths, the concentration of the active form of AzoCholine can be 

adjusted in a graded fashion, an effect which is termed photodosing. Thus, it is now 

feasible to control endogenous nAChRs with high spatiotemporal precision. This will be 

instrumental for elucidating their roles in the nervous system and may prove to be 

therapeutically useful as well. 

 

Other Cholinergic Targets for Photopharmacology 

Apart from nAChRs, the mAChRs [61] are also attractive targets for photopharmacology. 

In 1982, Lester and co-workers reported several photoswitchable ligands that behaved as 

antagonists of mAChRs in frog myocardium [62]. These compounds included known PCLs 

for nAChRs, such as BisQ, 2BQ and azo-Ph-carbachol (Fig. 7), as well as the new PCLs 

4BQ, azo-carbachol and azo-Me-carbachol (Fig. 12a). They were all found to block the 

outward currents that were produced by mAChR agonists in frog atrial trabeculae. It was 

demonstrated that the compounds were more potent antagonists as their trans isomers. 

The cis isomers still exhibiting blocking activity, albeit in a much weaker fashion than 

their trans isomers. The action of BisQ on mAChRs was studied in further detail due to its 

greater availability. Despite this promising first report, further research into PCLs for 

mAChRs has not yet been disclosed. Recent work has focused on the development of 

photoaffinity labels [63] that can either activate or inhibit the function of mAChRs [64-

66].  

Another related target for photopharmacology is that of the enzyme AChE [67]. Although 

this is not a receptor, AChE plays a crucial role in the cholinergic nervous system by 

removing ACh from the synaptic cleft. Long-term inhibition of AChE can have 

catastrophic effects on organisms, as demonstrated by nerve gas agents such as sarin. 

However, short-term inhibiting the AChE can instead have beneficial effects, for instance 

in decreasing the symptoms of Alzheimer’s disease. Therefore, photoswitches that can 

control the function of AChE would be important biological tools. The first report on the 

optical control of AChE function was disclosed in 1969 using azo-PTA (Fig. 7b) [68]. This 
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compound was found to be most active as its trans isomer, whilst exposure to UV light 

reduced the amount of inhibition observed as conversion to the cis isomer occurred. Azo-

PTA could also be used to reversibly control AChE activity, with the compound being 

shown to exhibit no significant loss of activity over several switching cycles. However, the 

overall change in AChE inhibition upon isomerization between the trans and cis isomers 

of azo-PTA was only modest. Shortly after this initial report, Erlanger and co-workers 

demonstrated that they were able to control the inhibition of AChE using the PCL azo-

carbachol [69]. Azo-carbachol was able to induce moderate changes in AChE activity 

when using filtered UV light (366 nm) and darkness for the isomerization of the 

azobenzene photoswitch. Relaxation of the cis isomer back to the more 

thermodynamically stable trans isomer occurred within 600 seconds in the dark, with a 

half-life of around 120 seconds. The trans isomer of azo-carbachol was found to be the 

most active, resulting in the largest amount of AChE inhibition. Interestingly, in this 

publication the authors demonstrated that sunlight could also be used for the trans to cis 

isomerization of azo-carbachol. This process was show to be reversible over many 

switching cycles without substantial loss of activity for either the trans or cis isomers.  

 

Fig. (12). Examples of PCLs for the control of mAChRs and AChE. a) The PCLs 4BQ, azo-carbachol  and azo-

Me-carbachol. b) Structure of tacrine, an AChE inhibitor used in the treatment of Alzheimer’s disease and azo-

THA. c) Molecular structure of DTE-THA. 4BQ = ([(E)-diazene-1,2-diyldibenzene-4,1-diyl]bis(N,N,N-trimethyl 

methanaminium). Azo-carbachol = (N,N,N-trimethyl-2-[({4-[(E)-phenyldiazenyl]phenyl}carbamoyl)oxy] 

ethanaminium. Azo-Me-carbachol = (N,N,N-trimethyl-2-[(methyl{4-[(E)-

phenyldiazenyl]phenyl}carbamoyl)oxy] ethanaminium. Azo-THA = (N-(2-{4-[(E)-phenyldiazenyl]phenyl}ethyl)-

1,2,3,4-tetrahydroacridin-9-amine). DTE-THA = 5-methyl-4-[2-(2-methyl-5-{[7-(1,2,3,4-tetrahydroacridin-9-

ylamino)heptyl]carbamoyl}thiophen-3-yl)cyclo pent-1-en-1-yl]-N-[8-(1,2,3,4-tetrahydroacridin-9-

ylamino)octyl]thiophene-2-carboxamide. 

The seminal work of Erlanger and co-workers was not further expanded until very 

recently, when Trauner [70] and Decker [71] reported photoswitchable inhibitors for the 

optical control of AChE function. Although the reports were published independently, both 

groups used the AChE inhibitor tacrine as the pharmacophore. The difference between 

the two approaches came in the form of the photoswitch used. Trauner and co-workers 

prepared a photoswitchable tacrine derivative (azo-THA) that was linked to an 

azobenzene photoswitch via the tacrine amine functionality (Fig. 12b). Azo-THA was 

evaluated for its AChE inhibition activity using a colorimetric assay in conjunction with 

acetylthiocholine (ATCh) and Ellman’s reagent. Under illumination with 440 nm light, 

trans azo-THA enabled the ATCh is to hydrolyzed, indicating that trans azo-THA does not 

act as an AChE inihibitor. Changing the illumination to UV light at 350 nm completely 
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stopped the hydrolysis of ATCh, showing that the AChE was inhibited. The photoswitching 

process could be dynamically controlled over many switching cycles. The effect that azo-

THA had on mouse trachea preparations was also studied. The smooth muscle of the 

trachea constricts in response to ACh, this can be recorded by tracheal tensometry. It 

was observed that different relaxation kinetics were observed in the trachea preparations 

depending on the light illumination. In the presence of cis azo-THA (UV light), AChE is 

inhibited to a greater extent resulting in slower relaxation kinetics (15.25 seconds). In 

contrast, with trans azo-THA there is less inhibition and therefore the relaxation of the 

trachea occurs at a faster rate (11.29 seconds). 

Decker and co-workers designed their photoswitchable AChE inhibitor with two molecules 

of tacrine that were linked by a DTE photoswitch (Fig. 12c). The photochromic molecule 

DTE-THA was converted to its closed form within 30 seconds when irradiated with UV 

light (312 nm). The reverse isomerization to the open form occurred when illuminating 

the photoswitch with >420 nm light. However, this isomerization was considerably slower 

with illumination times of 5 minutes being required. It is worth noting that some fatigue 

of the photoswitch ensued after 8 switching cycles. This could be a major drawback for 

prolonged use of DTE-THA as a reversible AChE inhibitor. The IC50 values of the open and 

closed forms of DTE-THA were determined using a human AChE (hAChE) assay. The 

closed form was found to be the most potent inhibitor of hAChE (IC50 closed = 19.1 nM). 

However, the open form also exhibited inhibitory activity within the nanomolar range 

(IC50 open = 49.6 nM). Although the open and closed forms of DTE-THA varied in their 

amounts of hAChE inhibition, dynamic control of hAChE inhibition was not demonstrated 

in this report. 

 

Summary  

Over the last five decades, an impressive toolset for the optical control of nAChRs has 

been developed. This includes compounds that function as soluble and tethered agonists 

and competitive antagonists. Some of these compounds have also been applied to 

mAChRs and AChEs. However, because of the diversity of nAChRs there is still a need for 

the development of selective PCLs that can optically control nAChR function. In addition, 

the potential of PTLs with regard to controlling specific receptor subtypes has yet to be 

fully realized. This will make it possible to investigate the differences between individual 

receptor subtypes in the same cell, also differentiating between different binding sites. 

We envisage that major advances in the field will be made shortly, allowing scientists to 

further their understanding of nAChRs and the many roles they play in the nervous 

system. We also postulate that new light controlled drugs (photopharmaceuticals) will 

emerge from this photopharmacological toolset, opening new therapeutic avenues for the 

treatment of debilitating cholinergic diseases.  
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Abstract: Nicotinic acetylcholine receptors (nAChRs) are essential for cellular 

communication in higher organisms. Even though a vast pharmacological toolset to study 

cholinergic systems has been developed, control of endogenous neuronal nAChRs with 

high spatiotemporal precision has been lacking. To address this issue, we have generated 

photoswitchable nAChR agonists and re-evaluated the known photochromic ligand BisQ. 

Using electrophysiology, we found that one of our new compounds, AzoCholine, is an 

excellent photoswitchable agonist for neuronal 7 nAChRs, while BisQ was confirmed as 

an agonist for the muscle type nAChR. AzoCholine could be used to modulate cholinergic 

activity in a brain slice and in dorsal root ganglion neurons. In addition, we demonstrate 

light-dependent perturbation of behavior in the nematode Caenorhabditis elegans. 
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KEYWORDS. Photopharmacology, photochromic ligand, AzoCholine, BisQ, nicotinic 
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Introduction 

Acetylcholine (ACh) is a classic neurotransmitter that is critically involved in a variety of 

neural functions, such as movement, cognition and memory1, 2. After presynaptic release, 

it acts on muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs 

respectively). nAChRs are found at the neuromuscular endplate in the periphery and on a 

variety of cholinergic synapses in the central and the peripheral nervous system. To date, 

twelve neural and five neuromuscular nAChR subunits have been described in mammals, 

which assemble as homo- or heteropentamers. While the fetal neuromuscular nAChRs 

consist of 1-, β1-, δ- and γ-subunits, the γ-subunit is exchanged for the ε-subunit in 

adults (Fig. 1a). Neural nAChRs can consist of , β – combinations (made up from 2-

10 and β2-β4) or as 7-9 homopentamers1, 2. 

The combinatorial diversity and wide spread occurrence of nAChRs requires highly 

selective and precise tools for investigating cholinergic signaling. Sensitizing these 

receptors towards light could therefore be advantageous (Fig. 1c). In pioneering studies 

of Erlanger’s group in the late 1960’s, a photosensitive azobenzene derived nAChR 

agonist, called BisQ (Fig. 1d), was used to modulate the membrane potential of the 

electroplax organ of Electrophorus electricus in a light-dependent manner3-5. Following up 

on this, Lester characterized BisQ and other photochromic compounds as 

photoisomerizable nicotinic agonists and muscarinic antagonists6-8. With the advent of 

modern photopharmacology9, 10, which relies on molecular cloning and heterologous 

expression of transmembrane receptors as well as modern light delivery techniques (e.g. 

LEDs), it is possible to investigate individual receptors in more detail. This has been 

done, for instance, using the photoswitchable tethered ligand approach, which yielded 

the light-controlled nAChR (LinAChR). LinAChR consists of a nAChR agonist, an 

azobenzene photoswitch and a maleimide that is covalently attached to engineered 

cysteines of 3β4 or 4β2 nAChR11. 

Freely diffusible photochromic ligands (PCLs) combine the advantages of conventional 

pharmacology with the spatiotemporal precision of light. They have been used to 

optically control ion channels12-17, metabotropic receptors18, 19 and enzymes20. Here, we 

revisit the classic PCL BisQ and describe the development of PCLs for neuronal nAChRs. 

One of these compounds, AzoCholine, could be used to control the activity of dorsal root 

ganglion (DRG) and hippocampal neurons, as well as the behavior of the nematode C. 

elegans, with light. 
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Fig. 1. Structural model of a nAChR, chemical structures of nAChR ligands and schematic function of PCLs. (a) 

Structural model derived from cryo-electron microscopy data of a neuromuscular nAChR as a top-view (pdb: 

2bg9)21. (b) Chemical structures of AChR ligands. (c) Schematic representation of the light-dependent 

activation of a nAChR with a PCL. (d) Chemical structures of azobenzene-containing PCLs designed to act on 

nAChRs.  

Results and Discussion 

Design and synthesis of PCLs. To develop a photoswitchable version of ACh that acts 

on neuronal nAChRs, we prepared a series of photoswitchable derivatives of the known 

agonist phenylcholine ether (Fig. 1b). These compounds, AzoCholine and its congeners 

AzoCholine 2-7 (Fig. 1d), also bear resemblance to the 7 nAChR antagonist MG624 (Fig. 

1b).  The synthesis of AzoCholine is shown in Fig. 2. Exposure of 4-hydroxy azobenzene 

(1) to 2-chloro-N,N-dimethylethylamine hydrochloride gave tertiary amine 2. 

Quarternarization of the amine with methyl iodide then yielded AzoCholine (Fig. 2a). Its 

structure in the solid state is shown in the Supporting Information (Fig. S1a). AzoCholine 

could be switched between its cis- and trans-state by irradiation with 360 nm and 440 

nm light, respectively (Fig. 2b). The VU/Vis spectra of AzoCholine irradiated with these 

wavelengths are shown in Fig. 2c. The synthesis of AzoCholines 2-7 is discussed in the 

Supporting Information (pages 6-15). While some of these compounds showed red-

shifted absorption spectra and reversible switching (Fig. S2), the simplest member of the 

series, AzoCholine, emerged as the most effective PCL. Therefore our physiological 

studies focused on this compound and BisQ. 

BisQ, is derived from decamethonium (Fig. 1b) as described by Erlanger3-5. We improved 

on the original synthesis and devised a four-step procedure, which relied on a Mills 

reaction to create the azobenzene moiety (see Supporting Information, pages 3-5). 
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Fig. 2. Synthesis and switching of AzoCholine. (a) Two-step synthesis. (b) cis-/trans Isomerization. (c) UV/Vis 

spectra of AzoCholine (50 µM in DMSO at room temperature) irradiated with 360 nm (gray line) and 440 nm 

(blue line) light. The insert shows a magnification of the n-*-band. 

 

AzoCholine is a photoswitchable agonist for the 7 nAChR. To characterize the 

action of our PCLs on a neuronal receptor, we heterologously expressed an 7 

nAChR/glycine receptor chimera in HEK293T cells22. This chimeric channel is a 

pharmacological model for the neuronal 7 nAChR23 with the advantage of high 

expression levels in HEK293T cells. Action spectra were recorded using patch-clamp 

electrophysiology to determine the optimal wavelengths for activation and inactivation of 

the receptors (Fig. S3).  

Interestingly, BisQ showed no notable activation of the chimeric 7 nAChR at 50 µM 

concentration (induced current: 5.93 ± 2.81 pA, i.e. 1.15 ± 0.64 % normalized to ACh) 

(Fig. 3a, Fig. S4). By contrast, AzoCholine (50 µM) proved to be a potent agonist in its 

trans-state, inducing a current of 691.81 ± 278.65 pA (Fig. 3b). Normalized with respect 

to the natural ligand ACh (50 µM) (Fig. 3c), illumination of AzoCholine with blue light 

evoked currents almost twice as large (223.66 ± 30.06 %) (Fig. 3d). This process was 

reversible by alternating the switching wavelengths (360 and 440 nm) over many cycles 

(Fig. 3e). In addition, the on and off kinetics of receptor activation and inactivation with 

AzoCholine were faster compared to ACh (τon AzoCholine, = 3.207 ± 0.421 s and τoff AzoCholine 

= 1.352 ± 0.202 s; τon ACh = 4.179 ± 0.990 s and τoff ACh = 2.089 ± 0.509 s; n = 4). Using 

current-clamp measurements, we observed a quick and pronounced change of the 

membrane potential when alternating the illumination between 360 and 440 nm (Fig. 

S5a). As with all PCLs, the effective agonist concentration can be adjusted using different 

wavelengths of light, allowing for discrete levels of activation of the receptor (Fig. S5b, 

c). 
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Fig. 3. Light-dependent effect of BisQ or AzoCholine on 7/GlyR chimera expressed in HEK293T cells. Light was 

switched between 360 nm and 440 nm. (a) BisQ (50 µM) did not induce a photocurrent, whereas (b) 

AzoCholine (50 µM) triggered large light-dependent inward currents. (c) Puff application of ACh (50 µM) evoked 

an inward current. (d) Photocurrents normalized to ACh puff application, represented as relative currents (n = 

5). (e) Reversibility of AzoCholine switching on 7/GlyR chimera. Traces a-c were recorded from the same cell; 

bars represent mean; error bars represent SEM.  

 

BisQ, but not AzoCholine, is a photoswitchable agonist for the muscle nAChR. To 

investigate muscle-type receptors, the human 1, β1, δ, ε nAChR subunits were 

expressed in HEK293T cells. In accordance with Erlanger’s results, BisQ proved to be a 

photoswitchable agonist at the muscle receptor (Fig. 4a, e). Action spectra were recorded 

to determine the best switching wavelengths (Fig. S6). While the absorption in the 

UV/Vis measurements would suggest best trans to cis conversion at 340 nm, due to the 

optics of the microscope, with reduced transmissibility in the UV-range (<350 nm), best 

switching was achieved with 360 nm and 440 nm light.  Washing in a solution of BisQ (50 

µM) irradiated with 360 nm activated the receptor with a transient peak current, which 

desensitized to a plateau-current (Fig. S7). This might be due to residual trans-BisQ in 

the solution. When switched to trans with 440 nm, BisQ triggered light-dependent 

currents (156.38 ± 49.13 pA). Reversibility of currents was achieved over multiple cycles 

(Fig. 4e). When compared to puff-applied ACh at equal concentration, BisQ showed 21.47 

± 7.97 % activation (Fig. 4c,d). However, the kinetics of switching proved to be 2-3 

times slower than those observed after ACh puff-application (τon ACh = 0.106 ± 0.059 s 

and τoff ACh = 1.515 ± 0.648 s; τon BisQ = 0.201 ± 0.025 s and τoff BisQ = 4.364 ± 0.369 s, n 

= 5). 

Washing in a solution of AzoCholine (50 µM) irradiated with 360 nm activated the 

receptor with a transient peak current, followed by deactivation. Subsequent irradiation 

with 440 nm, however, did not change the current amplitude (3.64 ± 13.16 pA, 0.77 ± 

1.82 % normalized to ACh; Fig. 4b,d). Therefore, AzoCholine does not function as a 

photoswitchable agonist for neuromuscular nAChRs. 
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Fig. 4. Light-dependent effect of BisQ or AzoCholine on neuromuscular nAChR expressed in HEK293T cells. (a) 

BisQ (50 µM) evoked light-dependent currents when light was switched between 360 nm and 440 nm. (b) 

AzoCholine (50 µM) did not trigger light-dependent currents. (c) Puff application of ACh (50 µM) evoked an 

inward current. (d) Photocurrents normalized to ACh puff application, represented as relative currents (n = 5). 

(e) Reversibility of BisQ switching on neuromuscular nAChR. Traces a-c were recorded from the same cell; bars 

represent mean; error bars represent SEM.  

 

AzoCholine activates 7 nAChRs in rat primary afferent DRG neurons. Cell bodies 

of primary afferent neurons conveying sensory information from the periphery towards 

the spinal cord reside in distinct aggregations termed DRG. With respect to their 

responsiveness to mechanical and chemical stimuli, including cholinergic agonists, they 

represent a heterogeneous population. In rat DRG, the proportion of 7 nAChR 

expressing neurons is higher than in mice, and the vast majority of them have nociceptor 

properties in that it responds to potential noxious stimuli24-26. Activation of 7 nAChR 

results in an increase of intracellular calcium concentration ([Ca2+]i) in these neurons24, 25, 

27. Illumination of isolated and cultured DRG neurons bathed in 250 µM AzoCholine with 

460 nm light for 10 s caused a repeatable [Ca2+]i increase in 77 out of 180 cases, which 

was higher than that evoked by depolarizing the cells with 30 mM KCl (Fig. 5) and absent 

in AzoCholine-free media (n = 27 cells, pooled from 4 experiments; Fig. S8a). 

Measurement of [Ca2+]i with the calcium-sensitive dye Fura-2 is based upon recording of 

fluorescence intensity at wavelengths longer than 440 nm. Hence, photoactivation of 

AzoCholine with 460 nm light interfered with [Ca2+]i recording for the period of 

stimulation so that immediate post-stimulation values but not peak height of [Ca2+]i 

increase could be determined. This PCL-induced increase in [Ca2+]i was indeed due to 

nAChR activation since it was not observed in the presence of the 7 nAChR antagonist 

MG624 (50 µM; n = 21 cells, pooled from 4 experiments; Fig. S8b). In mammals, MG624 

also exhibits antagonistic properties to other nAChR subunits than 728, and such nAChRs 

are also expressed in rat DRG neurons24, 25. Thus, this pharmacological profile alone does 

not allow us to qualify the response as 7 nAChR specific. However, the relative number 



II: AzoCholine – a PCL for alpha 7 nAChRs  

 

39 

of responsive neurons provides additional supportive evidence for selective stimulation of 

7 nAChRs by photoactivated AzoCholine. We observed [Ca2+]i rises in 43 % (77/180) of 

neurons investigated, which nicely falls into the range of 35-47 %  (depending on 

postnatal age) of rat DRG neurons expressing 7 nAChRs either alone or in combination 

with other nAChR, whereas the total fraction of nAChRs carrying neurons amounts to 69-

78 %25. It should be noted, that MG624 (Fig. 1b) closely resembles AzoCholine, but 

bares a trimethyl ammonium head group instead of a triethyl ammonium moiety.  

 

 

Fig. 5. Light-dependent effect of AzoCholine on rat sensory neurons isolated from dorsal root ganglia. 

Illumination with 460 nm light in the presence of AzoCholine (250 µM) leads to an increase in [Ca2+]i. 

Depolarization by application of 30 mM KCl with subsequent increase in [Ca2+]i served as control for viability of 

sensory neurons. The graph depicts mean and standard deviation of data recorded from 77 responsive cells; 

additional 103 cells included in the experiment were unresponsive to AzoCholine. 

 

AzoCholine activates 7 nAChRs in mouse hippocampus. To investigate the effect 

of AzoCholine on intact neural networks, we performed extracellular electrophysiological 

recordings in mouse hippocampal brain slices on a multielectrode-array (MEA) (Fig. S9a). 

As expected, illumination of the brain slice did not alter bursting activity (Fig. S9b). The 

same is true when washing in AzoCholine (50 µM) in the dark (Fig. S9c). However, in the 

presence of AzoCholine the neuronal activity could be modulated by toggling between 

360 nm and 460 nm (Fig. 6a). In accordance with the HEK cell data, blue light increased 

and violet light decreased bursting activity. Quantified over all experiments, the switching 

effect is shown in a correlation plot (Fig. 6c, e; 6 experiments, n = 173 cells, p<0.001). 

To confirm that the 7 nAChR is the target receptor of AzoCholine in hippocampal cells, 

we co-applied the 7 nAChR specific antagonist MG624 (5 µM). Matching the previous 

results from rat DRG neurons, changes could not be evoked in the presence of the 

antagonist (Fig. 6b), however, basal bursting activity could still be detected (Fig. 6d, e; 6 

experiments, n = 121 cells, p>0.05).  
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Fig. 6. Bursting activity in mouse hippocampal brain slices. (a) Raster plot of single cell spiking activity in the 

presence of AzoCholine (50 µM) with the correlating histograms over all cells. Switching light from 360 nm 

(gray bar) to 460 nm light (blue bar) leads to an increase in bursting activity and vice versa. (b) Raster plot in 

the presence of AzoCholine (50 µM) and MG624 (5 µM) with the correlating histogram. Switching of light has no 

apparent effect on the spiking activity. (c) Quantification of bursting activity of all experiments with AzoCholine 

(n = 6 experiments with 173 bursting cells) with the dot size related to the number of cells responding. (d) 

Quantification of bursting activity of all experiments with AzoCholine and MG624 (n = 6 experiments with 121 

bursting cells). (e) Summary of all experiments (n = 6, bars represent mean, error bars represent SEM. t-test: 

***p<0.001 for AzoCholine only and p>0.05 with MG624).  

 

AzoCholine evokes light-dependent behavior in Caenorhabditis elegans. In liquid 

medium, the nematode C. elegans exhibits a dorso-ventrally alternating c-shaped body 

posture to achieve swimming locomotion. These thrashing movements can be used to 

quantify locomotion behavior and motility related phenotypes. Locomotion in the 

nematode involves neuromuscular as well as neuron-neuron cholinergic synaptic 

transmission29. Furthermore, due to the transparency of the animal, light-based methods 

like calcium imaging and optogenetics are often used to study neural circuits30. As C. 

elegans shows photophobic responses to UV/blue light, mediated by a photosensor, 

LITE-131, mutants lacking this receptor are often used in optogenetic analyses of 

behavior32. Swimming behavior of lite-1 animals in physiological buffer (M9) was not 

affected when switching from UV (350 nm) to blue (470 nm) light illumination (Video S1, 

Fig. 7). Notably, when the buffer was supplemented with 1 mM AzoCholine, the 

nematodes showed a sharp decline in thrashing frequency upon switching from UV to 

blue light (Video S2). The thrashing frequency recovered during the second half of the 
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light pulse and was fully restored after switching to UV-light. This indicates that 

AzoCholine may have activated nAChRs in the motor nervous system, possibly evoking 

inhibition, e.g. through GABAergic motoneurons. Interestingly, when tested on wild type 

nematodes (strain N2, with normal LITE-1 function) the light-effect of AzoCholine 

photoswitching did not appear (Video S3, Fig. S10). This unexpected result is intriguing 

and difficult to rationalize given the complexity of the system. However, we hypothesize 

that the UV pre-exposure leads to a LITE-1 dependent signal that could put wildtype 

animals into a state where AzoCholine cannot exert full effects, e.g. because general 

excitability of the motor system is reduced, or AChRs are modified such that they 

desensitize more readily upon AzoCholine binding. Given the demonstrated specificity of 

AzoCholine for 7 nAChRs in mammalian cells, the observed effects in C. elegans are 

likely affected via nAChRs.  However, the putative target receptor triggered by 

AzoCholine in C. elegans remains to be validated.  

 

 

Fig. 7. Quantification of C. elegans swimming cycles. Nematodes swimming in M9 buffer (gray boxes) and in M9 

with AzoCholine (1 mM, black circles) (n = 6). When switching from UV (350 nm) to blue (470 nm) light (bar), 

trans-AzoCholine induces stopping/freezing behavior in swimming C. elegans nematodes.  

 

Conclusion 

In summary, we have re-evaluated the first photochromic ligand for ion channels, BisQ, 

using the methods of modern channel physiology. As expected, BisQ acts on the 

neuromuscular nAChR but it does not affect neuronal 7 type nAChRs, at least not in a 

light dependent fashion.  

Furthermore, we have developed AzoCholine, a PCL that targets 7 nAChRs, which 

enables us to control cholinergic systems in various organisms with light. In addition to 

its photoswitchability, AzoCholine shows faster activation and higher potency than the 

native ligand ACh. It can be applied in neuronal tissues and works in living animals, as it 

is able to perturb swimming behavior of C. elegans (lite-1) in a light-dependent manner.  
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The main advantage of PCLs when compared to other available tools for light-dependent 

control of cellular processes is their ease of use. Since no genetic manipulation is 

required, the compounds can simply be applied like drugs, endowing endogenous 

receptors with light sensitivity.  As such, AzoCholine turns 7 nAChRs into 

photoreceptors. By varying the wavelengths, the concentration of the active form of 

AzoCholine can adjusted in a graded fashion (“photodosing”). Thus, it is now feasible to 

control endogenous nAChRs with high spatiotemporal precision. This will be instrumental 

for elucidating their roles in the nervous system and may prove to be therapeutically 

useful.  

 

Methods 

Cell culture. HEK293T cells were maintained in Dulbecco’s modified Eagle’s medium 

(Biochrom, Merk Millipore, Germany) supplemented with 10 % fetal calf serum 

(Biochrom, Merk Millipore, Germany) at 37 °C in a 10 % CO2 atmosphere. Transfections 

were performed with JetPrime (Polyplus-transfections, France) according to 

manufacturer's instructions 24 h before measurements. For muscle nAChR expression, 

cells were transfected with human 1-GFP, β1, δ and ε nAChR subunit in pCDNA3.1 

plasmid DNA (each 125 ng DNA per coverslip, provided by A. Mourot, Paris). For 7/GlyR 

expression cells were transfected with 7/GlyR DNA in pMT3 (500 ng per coverslip, 

provided by T. Grutter, Strasbourg) together with 50 ng per coverslip of yellow 

fluorescent protein (YFP) plasmid DNA. As controls, not transfected HEK-cells with PCL 

present and with light switching were used. No photocurrent was detected. Also 

transfected HEK-cells without the PCL and with light switching gave no photocurrent. 

Tissue preparation. Horizontal brain slices preparations from C57Bl6JRj mice (wild 

type) were prepared as reported elsewhere29. Briefly, mice were decapitated, the brain 

was removed, and 250 µm horizontal slices were prepared using a vibrating microtome 

(7000smz-2, Campden Instruments, England). Slices were incubated in carbogenated 

(5 % CO2, 95 % O2) sucrose medium (mM: 87 NaCl, 2.5 KCl, 7 MgCl2, 0.5 CaCl2, 25 

Gluc, 1.25 NaH2PO4, 25 NaHCO3, 75 sucrose) for 30 min at 34°C.   

Dorsal root ganglion (DRG) neurons were isolated from male and female Wistar rats 

(250-300 g body weight) and cultured as described previously33. Briefly, DRGs dissected 

from rat were incubated in an enzyme mixture containing 2 mg/ml collagenase type 1 

and 2 mg/ml dispase II (Sigma-Aldrich, Germany) in calcium and magnesium-free Hanks’ 

balanced salt solution (Life Technologies, Germany) for 15 min at 37 °C water bath. 

Thereafter, DRGs were mechanically dissociated with a glass Pasteur pipette. The process 

of incubation and mechanical dissociation was repeated 2 times until the DRGs were 

completely dissociated. Then the cells were suspended in L-15 medium (Life 

Technologies, Germany) containing 10 % fetal bovine serum (FBS) and 1 % penicillin 

and streptomycin, and centrifuged at 800x g for 4 min. This wash and centrifugation was 

repeated 2 times. The cell pellet was then resuspended in the same medium and a small 

portion (10 µl) of the cell suspension was transferred on poly-D-lysine/laminin (Sigma-

Aldrich, Germany) coated glass cover-slips and incubated at 37 °C for 2 hours for the 

attachment of the neurons to the glass surface. Additional growth medium was added to 

the wells containing cover slips, and cells were allowed to stabilize for further 2 hours 

before calcium measurements were performed. 
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Electrophysiology. Whole cell patch clamp recordings were performed with an EPC10 

USB Patch Clamp amplifier and PatchMaster software (HEKA Elektronik, Germany). Cells 

were maintained at room temperature and held at -60 mV during the experiments. 

Micropipettes were generated from GB200-F-8P capillaries (Science Products, Germany) 

using a vertical puller (PC-10, Narishige, Japan). Pipette resistance varied between 5-

8 MΩ. Bath solution contained (in mM): 140 NaCl, 2 Cl, 2 CaCl2, 2 MgCl2, 10 d-Glucose, 

10 HEPES (NaOH to pH 7.4). Pipette solution for muscle nAChR contained (in mM): 

140 K-gluconate, 4 NaCl, 12 KCl, 10 HEPES, 4 MgATP, 0.4 Na2-ATP (KOH to pH 7.3). 

Pipette solution for 7/GlyR contained (in mM): 140 CsCl2, 10 HEPES 2 Na2-ATP, 10 EGTA 

(KOH to pH 7.3). 

Multi Electrode Array. Multi Electrode Array (MEA) of mouse horizontal brain slices 

were recorded with a Multichannel Systems MEA setup (C57Bl6JRj mice aged p7 to p13). 

Slices were placed and oriented with the hippocampus onto the electrodes (Fig. S9). To 

increase basal spiking rate we increased extracellular potassium to 7.5 mM. Neural 

bursting activity is defined as more than two recorded action potentials in two 

milliseconds. 

Calcium measurements. The intracellular calcium concentration measurements were 

performed on freshly isolated and DRG neurons (wildtype rats weight 250-300 g, this 

corresponds to 9-10 weeks old animals). All the measurements were performed in 

oxygenated Locke’s buffer (pH 7.4) containing (in mM): 14.3 NaHCO3, 1.2 NaH2PO4, 5.6 

KCl, 136 NaCl, 1.2 MgCl2, 2.2 CaCl2, 10 D-glucose at constant temperature 34 °C. The 

cells were loaded with the calcium sensitive dye Fura-2 (1 µM; Life Technologies, 

Germany) for 30 min at 37 °C in Locke’s buffer and were washed for 10 min in dye-free 

Locke’s buffer solution. Fura-2 is a ratiometric calcium sensitive dye. It was excited at 

340 and 380 nm wavelengths, and its emission peaks at 510 nm. Recordings were done 

using a fluorescence microscope (Olympus, Hamburg, Germany) connected to a scan 

CCD camera with fast monochromator (TiLL Photonics, Gräfelfing, Germany). The barrier 

filter set allows transmission of wavelengths longer than than 440 nm. Hence, 

photoactivation of AzoCholine with 460 nm light interfered with recordings for the period 

of stimulation so that immediate post-stimulation values but not peak height of signal 

increase could be determined. Each cell was observed separately and fluorescence 

intensity at the beginning of the experiment ratio was set to 100 %. Light stimulus to 

activate the photoswitch was applied by a blue light LED.  

Swimming assay with Caenorhabditis elegans (C. elegans). Caenorhabditis elegans 

lite-1 (ce314) strain and wildtype (N2) were reared using standard methods on 

nematode growth medium (NGM) and fed E. coli strain OP50-134. For the analysis of the 

behavior of C. elegans in liquid, thrashing (swimming) assays of young adult 

hermaphrodites were carried out in 96-well microtiter plates, containing 100 µL of NGM 

and 100 µL of M9 saline solution with or without AzoCholine (1 mM) per well. For the 

control condition (without AzoCholine), M9 was supplemented with 1 % DMSO (carrier 

solvent for AzoCholine). The animals were incubated in the buffer solution for 15 mins 

under low intensity UV light. Subsequent UV and blue light illumination of the worms was 

provided through a 4x magnification objective. Assays were recorded with a Powershot 

G9 camera (Canon, Krefeld, Germany) and swimming cycles (the worm’s body bends 

forth and back per each cycle) were counted for defined time intervals during the UV and 

blue light illumination. M9-buffer contained (in mM) 20 KH2PO4, 40 Na2HPO4, 85 NaCl, 1 

MgSO4. Nematode Growth Medium (NGM) contained 1.7 % (w/v) Agar-Agar, 0.25 % 

(w/v) Trypton/Pepton, 0.3 % (w/v) NaCl, 0.0005 % (w/v) cholesterol (in EtOH), 0.001 % 

(w/v) nystatin and (in mM) 1 CaCl2, 1 MgSO4, 25 K3PO4. 
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Illumination. For illumination during electrophysiology and UV/Vis experiments a TILL 

Photonics Polychrome 5000 monochromator was operated with the HEKA patchmaster 

software via the patch clamp amplifier or the PolyCon software, respectively. For MEA 

and DRG experiments high power LEDs (460 nm with 9 mW/cm2 and 365 nm, 

1.5 mW/cm2) were operated with the HEKA patchmaster software via the patch clamp 

amplifier. For the Nematode swimming assay a low intensity UV lamp (366 nm, 

16 µW/mm2, Benda, Wiesloch, Germany) was used for pre-illumination during incubation. 

During the assay a HBO lamp was used with UV- and blue light filters (Zeiss; 325-

375 nm, 0.26 mW/mm2; 450–490 nm, 0.6 mW/mm2).  
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of charge via the Internet at http://pubs.acs.org/. 
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Supporting Information (AzoCholine) 

Supplementary video material 

VideoS1 – C.elegans (lite1) nematodes in M9 buffer (speed = 8x). light switching as 

indicated.  

VideoS2 – C.elegans (lite1) nematodes in M9 buffer with 1 mM Azocholine (speed = 8x). 

light switching as indicated.  

VideoS3 – C.elegans (N2) nematodes in M9 buffer with 1 mM Azocholine (speed = 8x). 

light switching as indicated. 

 

Supplementary figures 

 

 

Fig. S1. Crystal structures of (a) AzoCholine (CCDC 1035194), (b) Azocholine-3 (CCDC 1035196) , and (c) 

BisQ (CCDC 1035195)   
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Fig. S2. UV/Vis spectra of PCLs (50 µM in DMSO at 25°C). (a) Absorption spectra of AzoCholine in dark, 

illuminated with 360 nm and with 440 nm (λmax (trans,  → *) = 345 nm; λmax(cis, n →  *) = 440 nm). (b) 

Absorption of AzoCholine at 350 nm when illuminated with indicated wavelength. (c) Action spectrum of 

AzoCholine. Distinct photostationary states are reached by witching to cetrain wavelength. When adapted to 

violet light AzoCholine stays in cis configuration for more than 40 min. AzoCholine has an extinction 

coefficient (at 350 nm) of 45789.11 M-1 cm-1 in PBS and 48925.17 M-1 cm-1 in DMSO. (d) Absorption spectra of 

BisQ in dark, illuminated with 350 nm and with 400 nm (λmax (trans,  → *) = 324 nm; λmax (cis, n → *) = 

440 nm). (e) Absorption of BisQ at 340 nm when illuminated with indicated wavelength.(f) Absorption spectra 

of AzoCholine-2 in dark, illuminated with 360 nm and with 420 nm (λmax (trans,  → *) = 320 nm; λmax (cis, n 

→ *) = 425 nm). (g) Absorption at 340 nm when illuminated with indicated wavelength. (h) Absorption 

spectra of AzoCholine-3 in dark, illuminated with 360 nm and with 440 nm (λmax ( trans,  → *) = 340 nm; 

λmax ( cis, n → *) = 435 nm). (i) Absorption of AzoCholine-3 at 350 nm when illuminated with indicated 

wavelength. (j) Absorption spectra of AzoCholine-4 in dark and illuminated with 400 nm (λmax ( → *) = 403 

nm). (k) Absorption of AzoCholine-4 at 400 nm when illuminated with indicated wavelength. (l) Absorption 

spectra of AzoCholine-5 in dark and illuminated with 460 nm (λmax ( → *) = 420 nm). (m) Absorption of 

AzoCholine-5  at 420 nm when illuminated with indicated wavelength. (n) Absorption AzoCholine-6 spectra 

in dark, illuminated with 400 nm and with 550 nm (λmax ( → *) = 408 nm). (o) Absorption AzoCholine-6 at 

405 nm when illuminated with indicated wavelength. (p) Absorption of AzoCholine-7 spectra in dark, 

illuminated with 420 nm and with 600 nm (λmax ( → *) = 422 nm). (q) Absorption of AzoCholine-7 at 425 

nm when illuminated with indicated wavelength.  
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Fig. S3: Action spectrum of AzoCholine (50 µM) on 7/GlyR. To determine the optimal wavelengths for 

activation and deactivation, light was switched between different wavelengths. The optimal wavelengths were 

determined in (a) cis = 340 - 360 nm and in (b) λtrans = 420 - 460 nm. Due to long activation time during the 

cis wavelength screen, the receptor desesitises slowly and a baselinedift accures. 

Fig. 

S4: Typical protocol for electrophysiological characterization of BisQ and AzoCholine on 7/GlyR. First, BisQ 

is washed in under UV-light irradiation ( = 360 nm), which shows no effect. After a 25 s wash step with bath 

solution AzoCholine is washed into the application chamber under UV-light irradiation ( = 360 nm) resulting 

in a slight increase of baseline current. Changing the light to ( = 440 nm) results in a strong current, which 

can be reversed with UV light ( = 360 nm). Puff application of ACh (50 µM; 10 s) is used to normalize 

photocurrents (marked *). Finally, for full receptor activation 3 mM ACh is washed in. Due to buffer composition 

chloride outward currents are recorded. 
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Fig. 

S5: Reversible switching of AzoCholine at 7/GlyR in voltage and current clamp mode and changes in receptor 

activity by changing agonist concentrations. (a) Holding potential was -60 mV. The wavelengths were 

off = 360 nm and λon = 440 nm. (b) Two concentrations of acetylcholine (20 µM and 100 µM) were washed in 

consecutively resulting in a slow stepwise increase of current. (c) Activation of AzoCholine (50 µM) with two 

wavelengths (λtrans = 390 nm and 440 nm) results in a stepwise activation of the receptor by a rapid increase of 

agonist concentration.  
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Fig. S6: Action spectrum of BisQ (50 µM) on muscle nAChR. To determine the optimal wavelengths for 

activation and deactivation of the receptor, light was switched between different wavelengths. The optimal 

wavelengths (a) cis  = 360 nm and (b) λtrans = 440 nm where found. Even though BisQ has a maximal 

absorbance more in the blue (λmax = 322 nm) in Ringer solution, due to the transmission of the fiber optics in 

our patch-clamp setup, switching with λ = 360 nm was more effective. 

 

 

Fig. S7: Typical protocol for electrophysiological characterization of BisQ and AzoCholine on muscular nAChR. 

First, 50 µM AzoCholine is washed in under 360 nm light. AzoCholine evokes a brief peak current followed by 

rapid desensitization of the receptor. Changing the wavelength to 440 nm has no considerable effect. After a 

25 s wash step with bath solution, BisQ is washed into the application chamber under UV-light irradiation ( = 

360 nm) resulting in a strong peak current followed by a stationary state current, which can be tuned by 

changing the wavelength to  = 440 nm. Puff application of ACh (50 µM; 10 s) is used to normalize 

photocurrents (marked *). Finally, for full receptor activation 3 mM ACh is washed in. 
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Fig. S8: Calcium imaging with Fura-2 on dorsal root ganglion (DRG) neurons. (a) In the absence of 

AzoCholine, illumination with 460 nm or 360 nm light has no impact upon intracellular [Ca2+] levels in neurons 

(n = 27 cells, pooled from 4 experiments). (b) Illumination with 460 nm wavelength in the presence of 

AzoCholine (250 µM) and the 7 nAChR antagonist (MG624, 50 µM) does not result in significant increase in 

intracellular [Ca2+] (n = 21 cells, pooled from 4 experiments). Error bars represent standard deviation. 

Fluorescence intensity was compared before illumination and at the first time point after illumination and non-

parametric Mann–Whitney U-test was used. A significance level of p ≤ 0.05 was reached in neither of these 

control experiments (n.s. = non, significant).  

 

 

Fig. S9: Murine brain slice on multi-electrode array (MEA) and control experiments. (a) Horizontal murine brain 

slice positioned with the hippocampus onto the 60 electrodes (black dots) of the MEA (Scale bar represents 200 

µm). (b) Quantification of bursting activity of all experiments without AzoCholine (dot size related to the 

number of cells responding). Light switching in absence of AzoCholine does not change bursting pattern (n = 

103 cells, pooled from 6 experiments, p>0.05). (c) Quantification of bursting activity of all experiments without 

light (dot size related to the number of cells responding). Presence of AzoCholine without switching of light does 

not change bursting pattern. Bursting was recorded and compared at two time points (t1 and t2) for 15 s (n = 

98 cells, pooled from 4 experiments, p>0.05). 
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Fig. S10: Quantification of C. elegans N2 swimming cycles. Nematodes were swimming in M9 buffer with 

AzoCholine (1 mM; n = 6). When switching from UV (350 nm) to blue (470 nm) light (bar), stopping/freezing 

behavior was not induced. 

 

 

Additional Information (AzoCholine, not included in publication) 

 

 

Fig. X1. Effect of AzoCholines 2 - 7 (50 µM) on 7/GlyR chimera expressed in HEK293T cells. Light was 

switched as indicated (between 360 nm and 440 nm or between 420 nm and 540 nm, respectively). Puff 

application of ACh (50 µM) evoked an inward current and was used for normalization. AzoCholine 2 and 3 did 

exhibit poor receptor activation. AzoCholine 4, 5, and 7 triggered large light-independent inward currents, 

which exceeded the light triggered currents. Only AzoCholine 6 showed a small wash in current and prominent 

photocurrent.  Bars represent mean; error bars represent SEM.  
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Fig. X2. 1H NMR of AzoCholine (5 mM in DMSO). a) A series of 1H NMR measurements of AzoCholine 

recorded within 12 h during illumination with 360 nm light show the transition of the cis/trans- ratio over time. 

b) Before illumination AzoCholine is mostly present in the trans configuration (96 ± 4 %). At the End of the 

experiment AzoCholine preferably occupies the cis-configuration (85 ± 4 %). 
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ABSTRACT: 

Photochromic blockers of voltage-gated ion channels are powerful tools for the control of 

neuronal systems with high spatial and temporal precision. We now introduce fotocaine, 

a new type of photochromic channel blocker based on the long-lasting anesthetic 

fomocaine. Fotocaine is readily taken up by neurons in brain slices and enables the 

optical control of action potential firing by switching between 350 and 450 nm light. It 

also provides an instructive example for “azologization”, that is, the systematic 

conversion of an established drug into a photoswitchable one. 

 

KEYWORDS: Photopharmacology, local anesthetics, fomocaine, action potential firing 

control, azologization, azobenzene photoswitch 

 

Optical methods for controlling neuronal function have revolutionized neuroscience in 

recent years.1-3 For instance, photoswitchable versions of local anesthetics have proven 

to be powerful tools for addressing native voltage gated ion channels4,5 and have been 

used in pain research and vision restoration.6-8 Two of these compounds, viz. the bis-

quaternary ammonium ion QAQ6 and the quaternary ammonium ion DENAQ8 are in 

essence photoswitchable azobenzene derivatives of QX-314, which is a permanently 

charged version of lidocaine (Figure 1).9 As is the case for QX-314, their permanent 

charge may limit their ability to cross biological barriers, such as membranes. In our 

fomocaine 

“azologization” 

fotocaine 
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ongoing efforts to develop new and improved photoswitchable ion channel blockers, we 

therefore decided to investigate alternative pharmacophores.  

Local anesthetics have a long medical history and are mechanistically reasonably well 

understood.10-13 They usually function as use-dependent open channel blockers, in 

particular of voltage gated-sodium channels (NaV), but can also have effects on other 

molecular targets. The alkaloid cocaine, for instance, has been used as a topical 

anesthetic in ophthalmology since the turn of the last century, despite its well known 

effects on the central nervous system.14 Novocaine is a representative of the so-called 

ester local anesthetics and was initially developed as a simplified analog of cocaine. In 

the late 1960s, the morpholine fomocaine was introduced, which bears little structural 

resemblance to cocaine with the exception of a tertiary amine functionality.14,15 It has 

been used for decades as a long-lasting topical anesthetic and shows reduced systemic 

toxicity due to its propensity to bind to plasma proteins.14 We now describe a 

photoswitchable version of fomocaine, termed fotocaine, which functions as a 

photochromic ion channel blocker and can be used to control neuronal activity with light. 

 

 

Figure 1. a) Photoswitchable azobenzene derivatives QAQ and DENAQ used as photoswitchable blockers of 

voltage gated ion channels. b) Structures of local anesthetics. QX-314 is a permanently charged derivative of 

the local anesthetic lidocaine. Cocaine is a tropane alkaloid, novocaine is an ester local anesthetic. All of these 

compounds feature a tertiary amine pharmacophore. Fomocaine is an ether local anesthetic with a morpholino 

group. 

Results and Discussion 

In addition to its interesting pharmacological properties, fomocaine evoked our interest 

due to its molecular structure. It features a benzyl-phenyl ether moiety and thus abides 

to our philosophy of “azologization”, i.e. the rational introduction of azobenzenes into 

drugs (Figure 2). Obvious targets for azologization are compounds that incorporate 

stilbenes, 1,2-diphenyl ethanes, 1,2-diphenyl hydrazines, N-benzyl anilines, benzyl-

phenyl ethers, benzyl-phenyl thioethers, diaryl esters, diaryl amides and heterocyclic 

derivatives thereof (Figure 2a). A survey of databases shows that many established 

drugs feature these moieties. Replacing them with azobenzenes yields photoswitchable 

analogs that resemble their parent compounds in size and shape (“azosters”), but ideally 

change their efficacy upon irradiation. Application of this logic to fomocaine yields 

fotocaine, wherein a CH2-O moiety has been replaced by a diazene unit (N=N) (Figure 

2b). We hypothesized that this substitution would provide a photoswitchable ion channel 

blocker with similar pharmacodynamics and pharmacokinetics. The three-step synthesis 

of fotocaine from commercially available starting materials is described in the Supporting 

Information. 
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Figure 2. The logic of azologization. a) Prime isosters of azobenzenes, i.e. azosters, are stilbenes, 1,2-diphenyl 

ethers, 1,2.diphenyl hydrazines, N-benzyl anilines, benzyl-phenyl ethers, benzyl-phenyl thioethers, diaryl esters 

and diaryl amides. b) Application of the concept of azologization to fomocaine. Replacement of the benzyl-

phenyl ether bridge by a diazene yields the azobenzene derivative fotocaine. The X-ray structure of fotocaine is 

deposited at the Cambridge crystallographic data center, ID: 991565. 

 

To test fotocaine’s photoswitching properties, we first utilized UV/Vis spectroscopy 

(Figure 3). A 50 µM solution of fotocaine in DMSO was placed in a quartz cuvette with 

1 cm diameter and illuminated from above using a monochromator. The lightinduced 

isomerization of fotocaine and the corresponding absorption spectra of cis- and trans-

isomers are depicted in Figure 3a. As a classical azobenzene, isomerization could be 

followed by monitoring the  to * transition at 330 nm over time. Toggling between 350 

and 450 nm light switched the molecule into its cis- and trans-state, respectively (Figure 

3c, i). As it is known for regular azobenzenes, photostationary cis/trans ratios of up to 

90:10 can be achieved by irradiation with ultraviolet light.3 Wavelengths between 400 

and 350 nm could be used to install mixtures with different cis/trans ratios (Figure 3c, ii). 

As expected from a “classical” azobenzene, the thermodynamically less stable cis-state 

remained stable in the dark (Figure 3c, iii).16,17
 Thus, fotocaine provides the desired 

reversible light-mediated cis/trans-isomerization. As an added advantage, it shows 

bistability and stays in its cis-state for severalminutes even without continuous UV-

illumination. 

fomocaine

stilbenes 1,2-diphenyl ethanes 1,2-diphenyl hydrazines N-benzyl anilines

benzyl-phenyl ethers benzyl-phenyl thioethers diaryl esters diaryl amides

azobenzenes
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a

b
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 Figure 3. Photoswitching of fotocaine followed by UV/Vis spectroscopy. a) UV-light (e.g. 350 nm) isomerizes 

the azobenzene functional group in fotocaine to its cis-isomer, which is the thermodynamically less stable state. 

Blue light (e.g. 450 nm) triggers isomerization to trans. b) Absorption spectra of trans-fotocaine (blue line) and 

cis-fotocaine (purple line) are distinct. The  to * band decreases starkly upon isomerization to cis, while the n 

to * band slightly increases. c) In-time photoswitching by following the fotocaine absorption at 330 nm. 

Fotocaine can be reversibly isomerized by switching between, e.g., 450 and 350 nm (i). Wavelengths between 

400 and 350 nm lead to graded effects (ii). Once switched to cis, fotocaine stays in its excited state without 

further illumination (iii). No decay was detected for the investigated time of 10 min. (n = 3, error bar indicates 

standard deviation). 

 Next, we investigated the ability of fotocaine to optically control neuronal function. To 

this end, we resorted to patch clamp electrophysiology using dissociated mouse 

hippocampal neurons (Figure 4). Fotocaine was applied at 50 µM concentration in the 

external bath solution. At a starting potential of -80 mV, action potential (AP) firing of 

neurons was induced by injecting a 50 pA current. When the illumination wavelength was 

set to 450 nm, AP firing was inhibited. However, when switching to 350 nm, AP firing 

triggered by the same current took place reliably. This process could be repeated with a 

variety of different illumination protocols (Figure S1). The same effects were observed at 

higher concentration (100 µM fotocaine, Figure S1b). The single action potential at the 

beginning of each current injection under 450 nm indicates that trans-fotocaine acts as 

an open channel blocker as is the case for its permanently charged relatives.9,18 
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Figure 4. Photocontrol of action potential (AP) firing mediated by fotocaine investigated in whole cell patch 

clamp experiments (representative traces). a) Dissociated mouse hippocampal neurons, current clamp mode, 

50 µM fotocaine. AP-firing was triggered by injecting 50 pA for 300 ms (cells were held at -80 mV). Under 450 

nm (trans-fotocaine), AP-firing was suppressed, while and 350 nm illumination (cis-fotocaine), allowed AP-

firing. The initial AP under 450 nm is indicative of the action of an open channel blocker. b & c) Acute mouse 

brain slice, hippocampal CA1 neurons, current clamp mode, after 10 min wash-out of fotocaine. 40 pA currents 

were injected and illumination wavelengths were changed simultaneously. Effects of cis- and trans-fotocaine 

were identical to a). In addition, when 350 nm or 450 nm were turned off after short application, the thereby 

installed effect maintained. 

  

To test the action of fotocaine in a functional neuronal circuit and assess its distribution 

in tissues, we performed further patch clamp experiments using acute hippocampal 

mouse brain slices. First, the tissue preparation was treated with 100 µM fotocaine for 5 

minutes to allow the cells to take up the photochromic drug. Then, buffered ringer 

solution was perfused for 10 min to remove the photoswitchable blocker from the 

extracellular solution. As expected for a long-lasting open channel blocker, photocontrol 

of AP firing was possible without continuous supply of extracellular fotocaine (Figure 4b). 

AP firing was triggered by injecting a 40 pA current for several seconds and illumination 

wavelengths where switched during this activation period. In line with our observations 

using dissociated neurons, AP firing was inhibited by 450 nm illumination and enabled by 

350 nm. Furthermore, the bistability of fotocaine, which was established with UV/Vis-

spectroscopy (Figure 3c), also applied to this physiological experiment. Neuronal 

silencing triggered by 450 nm light was sustained in the dark but could be lifted with 350 
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nm light (Figure 4b). Conversely, AP-firing activated with 350 nm light continued after 

the light was tuned off but could be abrogated by switching to 450 nm (Figure 4c).  

 

In summary, we have applied the logic of azologization to the local anesthetic fomocaine 

thus establishing a novel photochromic ion channel blocker, fotocaine. We demonstrated 

that fotocaine gets readily taken up by neurons in brain slices, can be used to control 

their action potential firing with light, and has long-lasting effects. Its relatively simple 

structure could facilitate the design and synthesis of improved versions with desirable 

properties, such as red-shifted action spectra. These investigations and the application of 

fotocaine in neurophysiology, in particular as an analgesic for the photopharmacological 

control of pain, will be reported in due course.  

 

METHODS 

UV/Vis Spectroscopy was performed using a VARIAN Cary 50 Scan UV/Vis spectrometer. 

PCL solution was placed in a standard quartz cuvette (d = 1 cm) illuminated by a light 

fibre cable from above. 

Cell and Tissue Preparation. Dissociated mouse hippocampal neurons were prepared and 

cultured using an astrocyte feeder layer as reported elsewhere.19 For acute mouse 

hippocampal brain slices, BL6 wild type mice (postnatal days 9 to 13) of either sex, were 

quickly decapitated, the brain was removed, and 250 μm horizontal slices were prepared 

using a vibrating microtome (7000smz-2, Campden Instruments). Slices were incubated 

for 30 min at 34°C in carbogenated (5 % CO2, 95 % O2) sucrose medium (mM: 87 NaCl, 

2.5 KCl, 7 MgCl2, 0.5 CaCl2, 25 Gluc, 1.25 NaH2PO4, 25 NaHCO3, 75 sucrose, (319 

mOsm)). Slices were perfused with 100 µM Fotocaine in bath solution for 5 min, followed 

by 10 min perfusion with bath solution. Whole cell patch clamp recordings where 

performed on CA1 hippocampal neurons. 

Electrophysiology. Whole cell patch clamp recordings where performed using a standard 

electrophysiology setup equipped with a HEKA Patch Clamp EPC10 USB amplifier and 

patch master software. Micropipettes were generated from “Science Products GB200-F-

8P with filament” pipettes using a vertical puller (PC-10, Narishige). Resistance varied 

between 5-7 MΩ. Bath solution for dissociated hippocampal neurons contained in mM: 

140 NaCl, 3 KCl, 2 CaCl2, 1 MgCl2, D-Gluc 10, 20 HEPES (NaOH to pH 7.4). Pipette 

solution for dissociated hippocampal neurons contained in mM: 107 KCl, 1.2 MgCl2, 1 

CaCl2, 10 EGTA, 5 HEPES, 2 MgATP, 0.3 Na2GTP (KOH to pH 7.2). Bath solution for acute 

brain slice contained in mM:  125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 10 Glucose, 1.25 

NaH2PO4, 26 NaHCO3, (290 - 295 mOsm). Pipette solution for acute brain slice contained 

in mM: 140 K-gluconate, 4 NaCl, 12 KCl, 10 HEPES, 4 MgATP, 0.4 Na2ATP (KOH to pH 

7.3). Action Potentials (APs) were induced with 50 pA current injection. Fotocaine was 

dissolved in bath solution from a 1000 x DMSO stock for either tissue preparation. 

Illumination. Irradiation during electrophysiology and UV/Vis experiments was performed 

using a TILL Photonics Polychrome 5000 monochromator operated by the PolyCon 

software or by the patch clamp amplifier, respectively.  

 

ASSOCIATED CONTENT 
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Representative traces of AP-firing using different concentrations of fotocaine and 

illumination timing (Figure S1). Synthesis and characterization of organic compounds. 

This material is available free of charge via the Internet at http://pubs.acs.org. 

 

Author Contributions 

D.T. supervised the study. M.S. conceived of the study, planed the chemical synthesis, 

performed the electrophysiology on dissociated neurons and wrote the manuscript 

together with D.T. and A.D. A.D. performed the electrophysiology on acute mouse brain 

slice. Z.Z. performed the chemical synthesis, D.N. prepared the dissociated mouse 

hippocampal neurons.  

Acknowledgements 

The authors thank Dr. Peter Mayer (LMU Munich) for X-ray structure elucidation and Dr. 

David Barber for helpful discussions. M.S. is grateful for financial support from the 

German National Study Foundation. A.D. and M.S. thank the International Max Planck 

Research School for Life Sciences (IMPRS-LS).  

 

References 

1. Deisseroth, K. (2011) Optogenetics. Nat. Methods 8, 26-29. 

2. Zemelman, B. V., Lee, G. A., Ng, M., and Miesenbock, G. (2002) Selective 

photostimulation of genetically chARGed neurons. Neuron 33, 15-22. 

3. Fehrentz, T., Schonberger, M., and Trauner, D. (2011) Optochemical genetics. 

Angew. Chem., Int. Ed. Engl. 50, 12156-12182. 

4. Banghart, M. R., Mourot, A., Fortin, D. L., Yao, J. Z., Kramer, R. H., and Trauner, 

D. (2009) Photochromic blockers of voltage-gated potassium channels. Angew. Chem., 

Int. Ed. Engl. 48, 9097-10001. 

5. Banghart, M., Borges, K., Isacoff, E., Trauner, D., and Kramer, R. H. (2004) Light-

activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381-1386. 

6. Mourot, A., Fehrentz, T., Le Feuvre, Y., Smith, C. M., Herold, C., Dalkara, D., 

Nagy, F., Trauner, D., and Kramer, R. H. (2012) Rapid optical control of nociception with 

an ion-channel photoswitch. Nat. Methods 9, 396-402. 

7. Polosukhina, A., Litt, J., Tochitsky, I., Nemargut, J., Sychev, Y., De Kouchkovsky, 

I., Huang, T., Borges, K., Trauner, D., Van Gelder, R. N., and Kramer, R. H. (2012) 

Photochemical restoration of visual responses in blind mice. Neuron 75, 271-282. 

8. Tochitsky, I., Polosukhina, A., Degtyar, V. E., Gallerani, N., Smith, C. M., 

Friedman, A., Van Gelder, R. N., Trauner, D., Kaufer, D., and Kramer, R. H. (2014) 

Restoring Visual Function to Blind Mice with a Photoswitch that Exploits 

Electrophysiological Remodeling of Retinal Ganglion Cells. Neuron 81, 800-813. 



III: Azologization of Fomocaine to Fotocaine  

 

62 

9. Mourot, A., Kienzler, M. A., Banghart, M. R., Fehrentz, T., Huber, F. M., Stein, M., 

Kramer, R. H., and Trauner, D. (2011) Tuning photochromic ion channel blockers. ACS 

Chem. Neurosci. 2, 536-543. 

10. Moldovan, M., Alvarez, S., Romer Rosberg, M., and Krarup, C. (2013) Axonal 

voltage-gated ion channels as pharmacological targets for pain. Eur. J. Pharmacol. 708, 

105-112. 

11. Wulff, H., Castle, N. A., and Pardo, L. A. (2009) Voltage-gated potassium channels 

as therapeutic targets. Nat. Rev. Drug Discovery 8, 982-1001. 

12. Wang, Y., Park, K. D., SalomeÌ, C., Wilson, S. M., Stables, J. P., Liu, R., Khanna, 

R., and Kohn, H. (2011) Development and Characterization of Novel Derivatives of the 

Antiepileptic Drug Lacosamide That Exhibit Far Greater Enhancement in Slow Inactivation 

of Voltage-Gated Sodium Channels. ACS Chem. Neurosci. 2, 90-106. 

13. Wang, Y., Wilson, S. M., Brittain, J. M., Ripsch, M. S., SalomeÌ•, C., Park, K. D., 

White, F. A., Khanna, R., and Kohn, H. (2011) Merging Structural Motifs of Functionalized 

Amino Acids and -Aminoamides Results in Novel Anticonvulsant Compounds with 

Significant Effects on Slow and Fast Inactivation of Voltage-Gated Sodium Channels and 

in the Treatment of Neuropathic Pain. ACS Chem. Neurosci. 2, 317-332. 

14. Oelschlager, H. (2000) Fomocaine from the chemical, pharmacokinetic and 

pharmacologic viewpoint: current status and overview. Pharm. Unserer Zeit 29, 358-364. 

15. Oelschlager, H., Iglesias-Meier, J., Gotze, G., and Schatton, W. (1977) On a novel 

Fomocaine synthesis/10th communication: on syntheses of new compounds with local 

anaesthetic activity. Arzneimittelforschung 27, 1625-8.  

16. Sadovski, O., Beharry, A. A., Zhang, F., and Woolley, G. A. (2009) Spectral tuning 

of azobenzene photoswitches for biological applications. Angew. Chem., Int. Ed. Engl. 48, 

1484-6. 

17. Schonberger, M., and Trauner, D. (2014) A Photochromic Agonist for mu-Opioid 

Receptors. Angew. Chem., Int. Ed. Engl. 

18. Nau, C., and Wang, G. K. (2004) Interactions of local anesthetics with voltage-

gated Na+ channels. J. Membr. Biol. 201, 1-8. 

19. Kaech, S., and Banker, G. (2006) Culturing hippocampal neurons. Nat. Protoc. 1, 

2406-2415. 

 



 

 

IV: Ethylene bridged azobenzene QAQ 

 

Ethylene bridged azobenzene equips trans-active photochromic ligands with a dark-

adapted cis-configuration 

 

Arunas Damijonaitis, David H. Woodmansee, Dirk Trauner 

 

Department of Chemistry, Ludwig-Maximilians-University Munich and Center of 

Integrated Protein Science Munich; Butenandtstr. 13, 81377 Munich, Germany 

 

Photochromic ligands (PCLs) that contain conventional azobenzenes are typically 

thermally stable in their trans-configuration. This can result in complications when the 

activity of the molecule also originates from the trans-configuration, i.e. the PCL acts on 

its target protein in the dark. In this case continuous illumination, to keep the PCL in its 

inactive cis configuration has to be applied, which because of phototoxic effects is not 

desirable. Here, we describe the application of ethylene bridged azobenzenes that are 

thermally stable in their cis-configuration and therefore preferentially occupy this 

configuration in the dark. This concept was applied to the PCL QAQ to yield the Bridged 

Azobenzene QAQ (BAQ). 

 

  



IV: Ethylene bridged azobenzene QAQ  

 

64 

Introduction 

Potassium channels, and more specifically, voltage-gated potassium channels (KV) are 

essential for the repetitive firing of action potentials and are primary carriers in neural 

signaling. For instance, many local anesthetics block these channels to reduce 

nociception and thus suppress pain sensation. Within the last decade, photochromic 

ligands (PCLs) have emerged as tools to enable the exploration of neuronal systems with 

the spatiotemporal precision of light (Figure 1).1 These PCLs are based on known ion 

channel blockers like lidocaine and fomocaine.2, 3 The recent development of 

photochromic ion channels blockers has focused on altering the pharmacological and 

spectral properties of the azobenzene-containing molecules. In particular, the electronic 

environment of the azobenzene was modified by the addition of different electron-

donating or withdrawing groups to shift the absorption spectrum towards the visible 

range.4  

In practice, it is desirable to introduce the PCL to the system in a non-active 

configuration. This allows the operator to selectively activate the function of the molecule 

at a chosen time. One way to achieve this is to illuminate the molecule with light of the 

wavelength that puts it into the inactive state, or to design the molecule in such a way 

that it is inactive in the dark-adapted state. This would mean the molecule should ideally 

be active in its cis-configuration (cis-active). It is difficult to predict if the molecule will be 

active in its trans- or cis-configuration, because the binding mode of the PCL is 

determined by the binding pocket. Many existing PCLs, for instance the ion channel 

blocker QAQ (Figure 1b), are trans-active, which greatly limits their usefulness as a 

research tool because they remain active in their dark-adapted state. 

One possible solution to this problem is rather simple. The molecule can be modified in 

such a way, that its thermodynamically more stable state is the cis-configuration. 

Azobenzene-containing molecules where the two aryl groups of the azobenzene are 

bridged by an ethylene unit are a class of compounds that exhibit this property.5, 6 

Herein, we demonstrate that we can change the dark-adapted state of the PCL from the 

trans- to the cis-configuration. This concept can be applied to many trans-active PCLs, 

allowing them to be inactive in the dark, and only activated upon photostimulation. The 

PCL QAQ was therefore endowed with a cis-stable photoswitch to yield a Bridged 

Azobenzene QAQ (BAQ, Figure 1c). 
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Figure 1. Photochromic potassium channel blockers. a) Putative mechanism of the light-dependent open-

channel-block of KV-channels by photochromic ligands. b) Chemical structure of quaternary ammonium-

azobenzene-quaternary ammonium (QAQ) in its thermally stable trans and the light induced cis configuration. 

c-d) Chemical structure of (c) meta-bridged QAQ (mBAQ) and (d) para-bridged QAQ (pBAQ) in their thermally 

stable cis- and the light induced trans-configurations. 

 

Results and discussion 

The PCLs mBAQ and pBAQ are switchable with λ(trans) = 400 nm and λ(cis) = 480 nm light.  

For the photochromic characterization absorption spectra of the PCLs (50 µM in DMSO) 

were recorded at ambient temperature (Figure 2). Both, meta- and para-BAQ exhibited 

the characteristic n-* band at 408 nm (cis-isomer).5, 6 Illumination with light at 400 nm 

promoted the isomerization of the molecules from the cis- to the trans-configuration. 

When switched to trans, the n–* transition of both molecules shifted to approximately 

500 nm. Therefore, illumination with 460–600 nm light converted the trans-isomer back 

to the thermally stable cis-form (Figure 2). Notably, meta- and para-BAQ experienced a 

faster trans to cis isomerization (ԏ = 60 s and ԏ = 35 s, respectively) than cis to trans 

isomerization (ԏ = 115 s and ԏ = 100 s, respectively) (Figure 2c). 
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Figure 2. Spectroscopic characterization of mBAQ and pBAQ. UV-Vis spectrum of mBAQ (a) and pBAQ (b) (50 

µM in DMSO, RT) in dark and illuminated with different wavelengths. Inlet shows absorption at 550 nm when 

illuminated with indicated wavelength. c) Kinetic measurement of photoswitching (absorption at 500 nm over 

time) of mBAQ and pBAQ. Cis to trans switching was achieved by changing illumination from 480 nm to 400 nm 

light. Trans to cis switching was achieved by changing illumination from 400 nm to 480 nm light  

 

The PCL mBAQ blocks K+ currents in a light-dependent manner. 

Using whole-cell patch-clamp electrophysiology mBAQ was tested for its capability to 

block ion channels. Thus, the voltage-gated potassium channel Shaker-IR was expressed 

in HEK293T cells. As a doubly charged PCL, mBAQ is not membrane permeable and 

therefore was applied intracellularly through the patch pipette. Indeed, mBAQ (200 μM) 

showed a light-dependent block of depolarization-induced K-currents (Figure 3a) in its 

trans-state (38 ± 4 %, n = 3, Figure 3b) and a release of the block in the dark-adapted 

cis-state. This process was repeatable for many cycles (Figure 3c).  

 

Figure 3. Light controlled Shaker K+ channel current using intracellular mBAQ (200 μM). a) Depolarization (from 

-60 to +50 mV) induced K-currents, while illuminated with either 480 nm or 400 nm light. b) Light-dependent 

block (38 ± 4 %, n = 3 cells). c) Current–voltage relationship of depolarization induced currents with reversible 

light-dependent reduction of currents. Inlet shows K+ current at +50 mV over two photoswitching cycles. 

 

Photoswitching of mBAQ enables control of membrane potential in naive neural tissue. 

Finally, the activity of mBAQ was tested in acute mouse brain slices (Figure 4). 

Electrophysiological recordings in layer 2/3 cortical neurons were performed with 

intracellular mBAQ (200 µM). To activate the voltage gated receptors, the membrane 

potential was changed from -60 mV to +50 mV. During the voltage pulse the wavelength 

was changed (Figure 4a). When screening for the best cis to trans isomerization 

wavelength, the light was switched from 480 nm to a wavelength between 370 and 440 

nm (Figure 4b). For the trans to cis transition, the light was kept at 370 nm and switched 

to a wavelength between 470 and 560 nm (Figure 4c). In accordance with the data 
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obtained from UV-Vis and HEK cell experiments, the greatest difference in response was 

observed when switching between 480 and 400 nm light (Figure 4d). mBAQ exhibits fast 

switching kinetics for the blocking (ԏblock =  27.47 ± 0.05 ms) and unblocking (ԏunblock = 

38.20 ± 1.53 ms) of the channel (Figure 4e).  

 

Figure 4. Intracellular mQBAQ (200 μM) quickly modulates membrane potentials in mouse brain slice. a) 

Voltage step and illumination protocol. b) Wavelength screen displayed as relative photo-block at indicated 

wavelength normalized to maximal current when holing wavelength is 480 nm. c) Same as (b) for unblock with 

370 nm as holing wavelength. d) Depolarizing pulse from −60 mV to +50 mV with light switch between 480 nm 

and 400 nm. Inlet shows switching with exponential fit (red line) to obtain the kinetics. e) Measurement of 

photoswitching kinetics (n = 2). Cis to trans switching (block) was achieved by changing illumination from 480 

nm to 400 nm light (ԏblock =  27.47 ± 0.05 ms). Trans to cis switching (unblock) was achieved by switching 

from 400 nm to 480 nm light (ԏunblock = 38.20 ± 1.53 ms).  

 

Outlook  

In summary, we developed an efficient photoswitchable ion channel blocker that is 

inactive in the dark and can be activated by light. The fast switching kinetics and strong 

blocking effect make mBAQ a promising candidate for the optical control of neural 

activity. Electrophysiological evaluation of pBAQ will show if the positioning of the 

quaternary ammonium group has an effect on the efficiency of the light-dependent block.  

 

Methods: 

Cell culture and tissue preparation. HEK-293T cells were maintained at 37°C in a 10 % CO2 

atmosphere in Dulbecco’s modified Eagle medium (DMEM, Biochrom, Merk Millipore, 

Germany) containing 10 % FBS (Biochrom, Merk Millipore, Germany). For electrophysiological 

measurements cells were plated on coverslips treated with 0.1 mg/ml poly-L-lysine (Sigma-

Aldrich, Germany) in a density of 40,000 cells per coverslip. HEK-293T cells were transfected 

using JetPrime (Polyplus-transfections, France) according to manufacturer’s instructions 24 h 

before measurements. Acute mouse coronal brain slices were obtained from BL6 wild type 

mice (postnatal days 9 to 13) of either sex. Mice were decapitated, the brain was isolated, 

and 250 μm coronal slices were prepared using a microtome (7000smz-2, Campden 
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Instruments). Slices were incubated for 30 minutes at 34°C in carbogenated (5 % CO2, 95 % 

O2) sucrose medium (mM: 87 NaCl, 2.5 KCl, 7 MgCl2, 0.5 CaCl2, 25 glucose, 1.25 NaH2PO4, 25 

NaHCO3, 75 sucrose, (319 mOsm)).  

Electrophysiology. Patch clamp measurements were performed in whole-cell modus at 

ambient temperature and recorded using the EPC10 USB patch Clamp amplifier and 

PatchMaster software (HEKA Elektronik, Germany). Bath solution for HEK-293T cells contained 

in mM: 138 NaCl, 1.5 KCl, 1.2 MgCl2, 2.5 CaCl2, 5 HEPES, 10 glucose. Bath solution for brain 

slices contained in mM: 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 2 CaCl2, 1 MgCl2, 25 

glucose, and 0.5 ascorbic acid saturated with 95 % O2 / 5 % CO2. PCLs were added to the 

pipette solution for HEK-293T cells (in mM: 135 K+ gluconate, 10 NaCl, 10 HEPES, 2 MgCl2, 2 

MgATP, 1 EGTA) or brain slice (in mM: 140 K+ gluconate, 4 NaCl, 12 KCl, 10 HEPES, 4 MgCl2, 

0.4 MgATP), respectively.  

Illumination. Illumination during electrophysiology and UV/Vis experiments was achieved 

using a monochromator (TILL Photonics, Polychrome 5000) operated with the patch clamp 

amplifier or the PolyCon software, respectively. 

Chemical synthesis. The chemical synthesis and compound characterization was conducted by 

D. H. Woodmansee and is reported in the postdoc report (Trauner group 2013).  

 

Author Contributions 

D.T. and A.D designed the study. D.H.W. performed chemical synthesis. A.D. performed 

UV-Vis and patch−clamp experiments.  

 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge M. Sumser for helpful discussions and L. de la Osa de 

la Rosa for excellent technical assistance. 

 

References:  

1. Fehrentz, T., Schonberger, M., and Trauner, D. (2011) Optochemical genetics. Angew. 

Chem. Int. Ed. Engl. 50, 12156-82. 

2. Mourot, A., Fehrentz, T., Le Feuvre, Y., Smith, C. M., Herold, C., Dalkara, D., Nagy, F., 

Trauner, D., and Kramer, R. H. (2012) Rapid optical control of nociception with an ion-

channel photoswitch. Nat. Methods 9, 396-402. 

3. Schoenberger, M., Damijonaitis, A., Zhang, Z., Nagel, D., and Trauner, D. (2014) 

Development of a New Photochromic Ion Channel Blocker via Azologization of Fomocaine. 

ACS Chem. Neurosci. 5, 514-518. 

4. Fehrentz, T., Kuttruff, C. A., Huber, F. M., Kienzler, M. A., Mayer, P., and Trauner, D. 

(2012) Exploring the pharmacology and action spectra of photochromic open-channel 

blockers. Chembiochem 13, 1746-9. 

5. Samanta, S., Qin, C., Lough, A. J., and Woolley, G. A. (2012) Bidirectional 

photocontrol of peptide conformation with a bridged azobenzene derivative. Angew. 

Chem. Int. Ed. Engl. 51, 6452-5. 

6. Sell, H., Nather, C., and Herges, R. (2013) Amino-substituted diazocines as pincer-

type photochromic switches. Beilstein J Org Chem 9, 1-7. 



 

 

V: AzoAPG – a PCL for the Glutamate-Gated Chloride Channel 

Rational design of photoswitchable antagonists for the glutamate-gated chloride channel 

 

Arunas Damijonaitis1, David Konrad1, Jatin Nagpal2, Simon Veth1, Alexander Gottschalk2 

and Dirk Trauner1 

 

1 Department of Chemistry, Ludwig-Maximilians-University Munich and Center of 

Integrated Protein Science Munich, Butenandtstr. 13; 81377 Munich, Germany; 

2 Institute of Biochemistry and Buchmann Institute for Molecular Life Sciences, Johann 

Wolfgang Goethe-University, Max-von-Laue-Straße 15; 60438 Frankfurt, Germany;  

 

 

Abstract 

Controlling biological function with the spatiotemporal precision of light has become a 

standard technique in many neuroscience laboratories. These optogenetic tools are based 

on light sensitive proteins, e.g. Channelrhodopsin 2, which can be genetically targeted to 

a specific population of cells enabling the light-dependent control of cellular function. This 

approach for instance is the method of choice, if neural connections are the object of 

interest. However, the effect of intrinsic receptors cannot be addressed with this method. 

Photopharmacology, on the other hand, utilizes small molecules, i.e. photochromic 

ligands (PCL) to endow native target proteins with sensitivity towards light. There are 

several ways to design a PCL. One approach, azologization, is the incorporation of a light 

switchable domain, usually an azobenzene into the structure of a known ligand. Upon 

illumination with different wavelengths the PCL then can be reversibly switched between 

its active and inactive form. Here, we introduce the rational design of a photoswitchable 

antagonist for the glutamate-gated chloride channel. 
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Introduction 

The glutamate-gated chloride channel (GluCl) is an anion-selective pentameric ligand-

gated ion channel (pLGIC) and a member of the ‘Cys-loop’ receptor superfamily. GluCls 

are found in the neurons and muscles of nematodes and other invertebrates where they 

mediate sensory inputs to control behavior.1 In neurons, chloride influx leads to the 

hyperpolarization of the membrane thereby generating an inhibitory postsynaptic 

potential (IPSP). In the nematode Caenorhabditis elegans, for instance, six genes 

encoding GluCls have been identified. Molecular cloning and in vitro expression have 

shown that the majority of these channels form homopentamers. In 2011 Hibbs and 

Gouaux solved the three-dimensional structure of monomeric GLC-1 (GluCl), which was 

the first crystal structure of a eukaryotic ligand-gated ion channel (Figure 1a).2 The 

obtained structural model revealed the architecture of the ligand binding site, which is 

located between the extracellular domains of two subunits. It is formed by loops of one 

subunit and β strands of the adjacent subunit.  

Because of the vital function of these receptors, GluCl agonists, potentiators or blockers 

can interrupt or modify signal transduction in these animals. Since some invertebrate 

species can be pathogenic to mammals, e.g. parasitic helminthes, identification and 

development of GluCl ligands are of great interest. Therefore they are enormously 

relevant for human- and animal-health. The most widely used GluCl potentiator is the 

macrocyclic lactone Ivermectine (IVM) which, beside its tremendous success in curing 

river blindness in humans, is of great value in treating nematode infested livestock.3 Until 

recently, serious consideration had not been given to protecting efficacy of these 

compounds by implementing control programs that use these medicines in a more 

targeted manner.4 IVM resistance is now a serious problem for parasite control in 

livestock and there is a concern about resistance development and spread in nematode 

parasites of humans.5, 6 

Therefore, the development of competitive GluCl (ant)agonists would not only provide 

new potential drugs, but also offer an alternative mode of (de)activation compared to the 

existing channel blockers and allosteric modulators. In addition, changing the 

function/efficacy of the molecule reversibly with the spatiotemporal precision of light 

would enable accurate control over the receptor, ultimately contributing to the 

understanding of GluCl function and inhibitory neural signaling. 

The lack of ‘azologable’ targets7 and the complexity of the photochromic ligand (PCL) 

design require a structure-function based PCL synthesis strategy in which the target 

molecule would be modified and tested for biological functionality after each structural 

change with regard to the lead compound. 
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Figure 1. Structure of the GluCl with a selection of ligands. a) Structural model derived from X-ray 

crystallography (pdb:4TNW). b) GluCl ligands. Putative mechanism of photoswitchable agonists (c) and 

antagonists (d). e) The PCL AzoAPG depicted in its cis and trans configurations.  
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Results and Discussion 

Starting with the endogenous GluCl agonist glutamate (1) we evaluated different 

substitution patterns. As - and -carbon substituted glutamate PCLs did not show 

(agonistic) function, we turned our attention to the -carbon position. We envisaged to 

gradually elongate the -substituent to find a suitable linker length and form to attach an 

azobenzene moiety. Due to the fact that both, D-glutamate and L-glutamate, are agonists 

for the GluCl we tested a racemic mixture of the derivative with the smallest possible 

substitution, namely -methyl-glutamate (AMG, 2) (Figure 1b). We evaluated biological 

functionality of the molecules using electrophysiology. For this, the homopentameric 

-glutamate-gated chloride channel (GLC-1) was expressed in HEK293T cells. GLC-1 was 

modified to contain a point mutation (T309P) allowing for glutamate activation in the 

absence of ivermectine.8 In the initial electrophysiological evaluation AMG (2) proved to 

be an agonist of GLC-1 (-229 ± 74 pA; Figure 2). Inspired by these results, we prepared 

AAG (3) via a Petasis-Mannich reaction from -ketoglutarate (6) and allylboronic acid 

pinacol ester (7) (Figure 2b).9 Applying AAG (3) resulted in poor channel activation 

(-27 ± 1 pA; Figure 2a). 

 

Figure 2. Electrophysiological evaluation of glutamate, AMG, and AAG and synthesis of AAG. a) Representative 

patch-clamp recording of local application of AAG (6 mM) to GLC-1 expressed in HEK293T cells. b) Petasis-

Mannich reaction of -ketoglutarate (6) and allylboronic acid pinacol ester (7) yielding AAG (3).  

To increase the ligand binding interaction we aimed to introduce a linker bearing a 

different functional group, which logically led us to design APG (4). For its synthesis, 

nitroester 10 was prepared via a Michael reaction of nitroacetate 8 with ethyl acrylate 

(9).10 Thereafter, 10 was reacted with TMS-propargyl bromide (11) under phase-transfer 

conditions11 to give 12. Nitro propargyl 12 was then converted to -propargyl 

pyroglutamate 14 via a two-step reduction sequence12. Zinc reduction to hydroxylamine 

13 followed by SmI2 mediated cleavage of the N-O bond as well as cyclization obtained 

14. The TMS group was removed using TBAF. Boc-protection of the Lactam 15 enabled 

LiOH mediated ring opening to yield 17. -propargyl-glutamate 4 was then finalized via a 

Boc-deprotection using HCl in EtOAc. 
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Figure 3. Synthesis and electrophysiological evaluation of -propargyl-glutamate (APG). a) Synthesis of APG 

(4).  b) Representative patch-clamp recording of GLC-1 activation by APG (6 mM) application. 

 

Electrophysiological evaluation revealed that APG (4) is a potent GLC-1 agonist (-406 ± 

61 pA; Figure 4). Therefore, we decided to attach an azobenzene group to obtain a 

potential photoswitchable agonist version for the GLC-1, namely AzoAPG (5).  

 

 

-substituted glutamate 

derivatives (6 mM) activating GLC-1. Application of glutamate for 5 seconds resulted in -423 ± 31 pA current. 

Application of AMG resulted in -229 ± 74 pA current. Application of AAG resulted in -27 ± 1 pA current. 

Application of APG resulted in -406 ± 61 pA current. Error bars represent SEM; numbers of cells tested are in 

parentheses. 

 

The azobenzene was attached to the Boc-pyroglutamate building block 16 via a 

Sonogashira coupling with iodoazobenzene (18, Figure 5a). A subsequent two-step 

deprotection sequence consisting of a basic hydrolysis of the Lactam 19 and HCl-

mediated cleavage of the Boc group afforded the desired photoswitch AzoAPG (5). 
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Figure 5. Synthesis and photoswitching of AzoAPG. a) Synthesis of AzoAPG and azobenzene isomerization. b) 

UV-Vis spectra of AzoAPG in dark, illuminated with 440 nm or 360 nm light, respectively. c) Absorbance at 

350 nm when illuminated with the indicated wavelength. d) Kinetic measurement of photoswitching in buffered 

solution at room temperature (absorbance at 350 nm over time). Trans to cis switching was achieved by 

changing illumination from 440 nm to 360 nm light. Cis to trans switching was achieved by changing 

illumination from 360 nm to 440 nm light. 

 

The photoswitching ability was tested via UV-Vis spectroscopy by recording the 

absorption spectra when illuminating the sample with different wavelengths (Figure 5b). 

The optimum photoswitching was achieved with 440 nm (trans-AzoAPG) and 360 nm 

(cis-AzoAPG) light (Figure 5b). In buffer AzoAPG (100 µM) showed double exponential 

photoswitching kinetics (Figure 5d). The cis to trans photoswitching was faster (ԏ(cis to 

trans)1 = 0.157 ± 0.0003 s and ԏ(cis to trans)2 =1.22 ± 0.0013 s) than the switching from 

trans to cis (ԏ(trans to cis)1 = 0.182 ± 0.001 and ԏ(trans to cis)2 = 2.234 ± 0.004 s).  

 

Figure 6. Electrophysiological evaluation of AzoAPG photoswitching at GLC-1. a) Photodependent antagonism of 

AzoAPG (100 µM) when competing with glutamate (400 µM). b) Statistical analysis of the photo-antagonism 

relative to overall activation (24.24 ± 3.17 %, n=3). c) Kinetics of photoswitching ԏtrans to cis = 1.19 ± 0.12 s 

(n=6); ԏcis to trans = 0.31 ± 0.04 s (n=6). d) Wavelength screen displayed as relative photoswitching at indicated 

wavelengths normalized to maximal switching when holding wavelength is 440 nm. e) As in (d) with 360 nm as 

holding wavelength. Error bars represent SEM; numbers of cells tested are in parentheses. 

When tested for biological functionality, AzoAPG (5) did not show agonistic effects but 

surprisingly acted as an antagonist when competing with glutamate (Figure 6). The 
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electrophysiological data suggests, that AzoAPG is a competitive antagonist in its trans 

configuration. The PCL effectively blocks up to 25 % (24.24 ± 3.17 %, n=3) of the 

glutamate-induced current in a reversible manner (Figure 6a,b). In accordance with the 

UV-Vis spectroscopy data, illumination with 440 nm and 360 nm light resulted in optimal 

switching of the receptor (Figure 6d,e). The cis to trans photoswitching kinetics (ԏcis to trans 

= 0.31 ± 0.04 s) were faster than the trans to cis isomerization (ԏtrans to cis = 1.19 ± 0.12 

s, n=6) (Figure 6c) confirming the results obtained by UV-Vis.  

Outlook  

In conclusion, we have developed a photochromic antagonist for the glutamate-gated 

chloride channel, namely AzoAPG. This molecule has proven to effectively block up to 

25 % of a glutamate-induced current at the GLC-1. Evaluation of AzoAPG in C. elegans 

will reveal, if 25 % block is enough to modulate for example feeding behavior or 

movement of the nematode. Finally, starting from the developed building blocks, further 

synthetic effort will yield new molecules with an extended linker domain between the 

glutamate and the azobenzene, to allow for more flexibility and presumably better ligand 

binding. Also, attempts to red-shift the absorption spectrum of the PCL by attaching 

electron donating groups will be undertaken. The addition of these groups, might 

contribute to the photoswitching effect because of the steric effect of bulky groups.  

Methods: 

Cell culture. HEK293T cells were maintained at 37°C in a 10 % CO2 atmosphere in 

Dulbecco’s modified Eagle medium (DMEM, Merk Millipore, Germany) containing 10 % 

FBS (Merk Millipore, Germany). For electrophysiological measurements cells were plated 

on coverslips treated with 0.1 mg/ml poly-L-lysine (Sigma-Aldrich, Germany) in a density 

of 40,000 cells per coverslip. HEK293T cells were transfected using JetPrime (Polyplus-

transfections, France) according to manufacturer’s instructions 24 h before 

measurements.  

Electrophysiology. Patch clamp measurements were performed in whole-cell modus at 

room temperature and recorded using the EPC10 USB patch clamp amplifier and 

PatchMaster software (HEKA Elektronik, Germany). Bath solution for HEK-293T cells 

contained in mM: 140 NaCl, 2 KCl, 2 MgCl2, 2 CaCl2, 10 HEPES, 10 glucose (NaOH to pH 

7.3). Pipette solution contained in mM: 140 CsCl2, 10 HEPES, 2 Na2ATP, 10 EGTA (CsOH 

to pH 7.3).  

Illumination. Illumination during UV-Vis and electrophysiology experiments was 

performed using a TILL Photonics monochromator (Polychrome 5000) operated with the 

patch clamp amplifier or the PolyCon software (HEKA Elektronik, Germany), respectively. 

Chemical synthesis. The chemical synthesis and compound characterization was 

conducted by David Konrad.  
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Abstract 

The covalent attachment of synthetic photoswitches is a general approach to impart 

light-sensitivity onto native receptors. It mimics the logic of natural photoreceptors and 

significantly expands the reach of optogenetics. Here we describe a novel photoswitch 

design – the Photoswitchable Orthogonal Remotely Tethered Ligand (PORTL) – that 

combines the genetically encoded SNAP-tag with photochromic ligands connected to a 

benzylguanine via a long flexible linker. We use the method to convert the G protein-

coupled receptor mGluR2, a metabotropic glutamate receptor, into a photoreceptor 

(SNAG-mGluR2) that provides efficient optical control over the neuronal functions of 

mGluR2: presynaptic inhibition and control of excitability. The PORTL approach enables 

multiplexed optical control of different native receptors using distinct bioconjugation 

methods. It should be broadly applicable since SNAP-tags have proven to be reliable, 

many SNAP-tagged receptors are already available, and photochromic ligands on a long 

leash are readily designed and synthesized.  
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Introduction 

The ability to covalently link synthetic molecules with proteins has significantly increased 

the power of molecular biology and has provided new therapeutic approaches via 

antibody drug conjugates. In recent years, chemical biologists have developed methods 

that can be used not only in vitro and in cell cultures, but can be also applied in vivo, 

even in large animals and, potentially, in humans.1  

Important issues in bioconjugation are the speed, selectivity and orthogonality of the 

reaction and the extent to which the target protein needs to be modified to enable 

covalent attachment. Engineered cysteines have proved popular since they represent a 

minimal change in the protein structure and reliably react with certain electrophiles, such 

as maleimides.1 More selective methods depend on the expansion of the genetic code2,3 

and otherwise inert molecules that specifically react with protein motifs4. These include 

self-labeling “tags”, such as the SNAP-tag5,6, the CLIP-tag7 or the Halo-tag8, and amino 

acid sequences that can be modified using external enzymes9,10. 

Bioconjugation has also played an important role in photopharmacology, which is an 

effort to control biological activity with synthetic photoswitches11,12. While soluble 

photochromic ligands (PCLs) are diffusion limited, photoswitchable tethered ligands 

(PTLs) covalently attach to an engineered site in the target protein.  This places the 

ligand in the vicinity of its binding pocket, so that light maneuvers it in and out of a 

position where it can bind13. The PTL approach allows for precise targeting since the 

bioconjugation motif, which is usually an engineered cysteine for maleimide conjugation, 

can be genetically encoded and selectively expressed in cells of interest. By contrast, 

PCLs act on native receptors, making for easier use, especially in therapeutic settings, 

albeit with less precision. 

Although PTLs have proven to be powerful for controlling neural signaling and animal 

behavior14-21, they have faced the disadvantages of cysteine/maleimide chemistry. 

Maleimides hydrolyze under physiological conditions and conjugate to glutathione, 

making them incompatible with the intracellular environment. Moreover, both in the cell 

and on the cell surface, they are likely to react with accessible native cysteines that are 

not at the designed PTL anchoring site. Although attachment to the introduced cysteine 

can be enhanced by affinity labeling due to increased times of proximity when the ligand 

binds in the binding pocket22,  the susceptibility of maleimides to unwanted nucleophiles, 

including water, makes them less than ideal for applications in photopharmacology. 

A solution to these challenges could be the introduction of electrophiles that react with 

very high selectivity and yet are stable toward water. Under normal circumstances, this 

requires a larger protein tag, moving the site of attachment far away from the ligand-

binding site, typically in the range of several nanometers. Although tethers with 

photoswitches placed in series could be designed, multiple isomerization states of the 

tether and the spread of conformations of the long entropic spring23 could complicate 

control and prevent clean changes in biological activity upon irradiation. 

Here we introduce a new concept, termed PORTL (Photoswitchable Orthogonal Remotely 

Tethered Ligand), that overcomes the limitations of maleimide chemistry and lays to rest 

concerns about off-target attachment (Fig. 1). Like a PTL, a PORTL consists of a 

bioconjugation handle, a photoswitchable group, and a ligand. In this case, however, the 

switch does not primarily impact the overall length, pointing angle and flexibility of the 

tether, but rather the pharmacology of the tethered ligand. As such, the switch becomes 
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an integral part of the pharmacophore and the change in biological activity is designed to 

result not from a change in the relative position of the ligand with respect to its binding 

site, but rather from a change in the efficacy of the ligand, as it does in a PCL. Therefore, 

the tether can be long and flexible, allowing for the use of larger bioconjugation motifs, 

such as a SNAP-tag, which provide an anchoring site at a more remote location with 

respect to the ligand-binding site. The SNAP-tag is a modified DNA repair enzyme that 

functions as a self-labeling domain by selectively and quickly reacting with benzylguanine 

(BG) electrophiles5,6. It enables specific and efficient labeling with BG fluorophores in 

cultured cells and in brain slice24,25. Importantly, unlike maleimides, BGs are essentially 

inert toward water, regular cysteines and glutathione making them ideal for labeling in 

physiological systems that include extracellular and intracellular targets6,26,27. 

 

Figure 1: The PORTL concept. A photochromic ligand (PCL) is freely diffusible and the switch is part of the 

pharmacophore (top). This is not necessarily the case in a photoswitchable tethered ligand (PTL) (middle). The 

photoswitchable orthogonal remotely tethered ligand approach (PORTL, bottom) combines the switch as part of 

the pharmacophore with a long, flexible tether that allows for anchoring on a remote site. 

We demonstrate the validity of the PORTL concept by fusing the class C G protein-

coupled receptor (GPCR), mGluR2, with a SNAP-tag and endowing it with a synthetic 

azobenzene photoswitch through benzylguanine chemistry. The resulting photoreceptor, 

termed SNAG-mGluR2 (SNAP-tagged-Azobenzene-Glutamate receptor), permits rapid, 

repeatable, high-efficacy photoagonism of mGluR2 with thermally bistable and fast 

relaxing photoswitches. SNAG-mGluR2 allows for optical manipulation of neuronal 

excitability and synaptic transmission in hippocampal neurons. We also show that the 

SNAG approach may be combined with the cysteine attachment of a conventional PTL to 

allow for orthogonal optical control of two glutamate receptors within the same cell, 

paving the way for other multiplexing strategies.  
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Results 

Design of PORTL photoswitches for metabotropic glutamate receptors 

mGluRs are class C GPCRs that mediate many aspects of glutamatergic signaling in the 

brain and serve as drug targets for a number of neurological disorders28,29. The defining 

structural feature of class C GPCRs is a large, bi-lobed extracellular ligand-binding 

domain (LBD) that assembles as a dimer and mediates receptor activation. We previously 

developed photoswitchable versions of mGluR2, 3, and 6, termed “LimGluRs”, via 

cysteine-conjugation of D-Maleimide-Azobenzene Glutamate (“D-MAG”) molecules to the 

LBD near the glutamate binding site20,30. This work indicated that mGluRs are amenable 

to agonism by azobenzene-conjugated glutamate compounds. In addition, previous work 

has shown that N-terminal SNAP-tagged mGluRs retain normal function and may be 

efficiently labeled in living cells31. In order to take advantage of the many attractive 

properties of the SNAP-tag linkage relative to that of cysteine-maleimide, we sought to 

optically control the LBD of mGluR2 via PORTL conjugation to a genetically-encoded 

SNAP-tag fused to the LBD. 

To design a new family of photoswitches we first analyzed SNAP and mGluR crystal 

structures to determine the dimensions required to permit a compound conjugated to an 

N-terminal SNAP-tag via a BG group at one end to reach the orthosteric binding site 

within the mGluR LBD via a glutamate at the other end (Fig. 2a). We decided to place 

the central photoswitchable azobenzene unit close to the glutamate ligand based on the 

logic that the ability of the glutamate moiety to dock in the binding pocket and activate 

mGluR2 would be altered by photo-isomerization of the azobenzene, as achieved earlier 

for soluble photochromic ligands32-40 rather than a length-dependent change in the ability 

to reach the binding site. Furthermore, we hypothesized that a long, flexible polyethylene 

glycol linker between the BG and azobenzene units would span the necessary distance 

between the SNAP domain and the mGluR2 LBD and permit the glutamate moiety to 

reach the binding site (Fig. 2b). 

Based on our previous work, which indicated that agonism of mGluR2 via glutamate-

azobenzene molecules requires 4’ D stereochemistry, which we refer to as “D-MAG”20, we 

decided to maintain this feature in our new SNAP-tag photoswitches. We opted to 

construct the linker between BG and azobenzene out of monodisperse PEG-polymers of 

different sizes. PEG polymers do not strongly adhere to protein surfaces and are known 

to be conformationally very flexible1. To allow this system to be adopted for other 

pharmacophores in the future, we designed the synthetic chemistry to be flexible as well, 

using amide bond formation and click chemistry for rapid assembly. Alkyne-azide click 

chemistry has been extensively used for bioorthogonal reactions and can be employed in 

presence of benzylguanines41-43. Both the Cu(I)-catalyzed click chemistry or the 

cyclooctyne strain promoted version, which can be used in vivo,  are available.   

Together, these considerations led to the design of two families of benzylguanine-

azoglutamates with either a diacyl azidianiline switch (BGAGn), as used in the original set 

of D-MAGs for a 2-wavelength on/off bistable optical control of mGluRs20, or a red-shifted 

azobenzene switch (BGAGn(460)), as used more recently for single wavelength single or 

two-photon control of an mGluR30,44 (Fig. 2c). In these molecules, the first index denotes 

the number of ethylene glycol repeat units and the tether length, whereas the number in 

brackets indicated the wavelength that results in maximum cis-azobenzene content upon 

irradiation.  
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Figure 2: Concept and Design of PORTL compounds for SNAP-tag conjugation. a) Model of a SNAP-mGluR 

subunit showing the relative dimensions of the domains (SNAP pdb: 3kzy, mGluR3-LBD pdb: 2e4u, mGluR5-

7TM pdb: 4oo9). The mGluR extracellular domains are shown in gray and the transmembrane domains are 

shown in black while the SNAP tag is shown in green. b) Schematic design of a photoswitchable orthogonal 

remotely tethered ligand (PORTL) using amide coupling and click chemistry to ensure synthetic modularity. c) 

PORTL consisting of a ligand connected to an azobenzene a flexible linker (PEG-chain) of various length and a 

benzylguanine (BG). Only one regioisomer is shown in BGAG12(460). Depending on the substitution pattern on 

the azobenzene the switching wavelength can be tuned. d) Schematic showing the logic of PORTL-mediated 

reversible activation and deactivation of a target receptor with two orthogonal wavelengths of light. 
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Synthesis of Benzylguanines-Azobenzenes-Glutamates (BGAGs) 

Our synthesis of BGAGs started with guanine derivative 1, which was converted into the 

known benzylguanine (BG) in 5 steps5 (Fig. 3a). Coupling with pent-3-yenoic acid (2) 

then yielded BG-alkyne 4. Alternatively, cyclooctyne 4 was linked to BG by amidation to 

obtain BG-DBCO, 5.  On the ligand side, we utilized several steps from the reported 

synthesis of D-MAGs starting from L-glutamate20 to synthesize glutamate azobenzene 6. 

Acylation with glycine derivative 7, followed by deprotection, gave primary amine 8, 

whereas reductive amination with aldehyde 945 and deprotection yielded diamine 10.  

(Fig. 3b). Coupling of both 8 and 10 with bifunctional PEG-O-Su esters of varying length 

yielded azides 15-18 (whereas 14 was obtained by HBTU-mediated coupling) that were 

ready for click chemistry (Fig. 3c).  

BGAGs with a “regular” azobenzene switch were synthesized by Cu(I) catalyzed azide 

alkyne click chemistry, followed by deprotection, which yielded BGAG0, 4, 8 and 12 (Fig. 

3d). It should be noted, that high temperatures and high catalyst loadings were needed 

to drive the click-reaction to completion and that red-shifted version could not be 

obtained from 18 and 3 under these conditions. Therefore, strain promoted reaction of 

18 with 5, followed by deprotection of the amino acid moiety, was used instead, which 

gave the red-shifted photoswitch BGAG12(460). 

 

 

 

 



VI: Photoswitchable Orthogonal Remotely Tethered Ligand  

 

83 

 

Figure 3: Synthesis of BGAGs. a) Synthesis of BG-alkynes 3 and 5 for click chemistry. b) Diversification of 

previously described 6 to give blue azobenzene glutamate 8 and red-shifted azobenzene glutamate 10. c) PEG-

chain installation. d) Cu(I)-catalyzed alkyne azide click to obtain BGAGs. e) PEG-Linker implementation. e) 

Strain promoted alkyne azide click to obtain BGAG12(460).  

Optical control of SNAG-mGluR2 in HEK293T cells 

After synthesizing the set of BGAG molecules, we next sought to test whether they could 

be efficiently conjugated to SNAP-mGluR2 and used to optically manipulate mGluR2 

function (Fig. 2d). We first expressed a GFP-fusion construct (SNAP-mGluR2-GFP) in 

HEK293T cells and saw efficient labeling with a BG-conjugated Alexa dye that was limited 

to the cell surface (Fig. S1), as previously reported31,46. This indicated that BG-

conjugated compounds are unlikely to cross the membrane and will, thus, primarily 

target receptors on the cell surface.  

We next tested the ability of BGAGs to photoactivate SNAP-mGluR2 using whole cell 

patch-clamp in HEK293T cells co-transfected with the G protein-activated inward rectifier 

potassium (GIRK) channel. Cells expressing SNAP-mGluR2 were initially incubated with 

10 µM BGAG12 for 45 minutes at 37 °C. Following extensive washing to remove excess, 

non-attached photoswitches, photoisomerization to the cis configuration with a brief (<1 

s) bout of illumination at 380 nm produced robust photoactivation that persisted in the 

dark and was reversed by a brief (~1 s) bout of illumination at 500 nm to isomerize the 

azobenzene back to the trans state (Fig. 4a, S2a). mGluR2 photoactivation via BGAG12 

was highly reproducible. In the photoswitch “off” state (i.e. in the dark or following 

illumination at 500 nm), responses to the native neurotransmitter ligand glutamate was 

intact. Photocurrents were abolished at high glutamate concentrations, suggesting that 

BGAG12 does not function as a partial agonist (Fig. 4a). Light responses were ~60 % of 

the responses to saturating glutamate (59.3 ± 2.8 %, n=10 cells), consistent with both 

efficient conjugation and receptor activation. Importantly, cells expressing wild type 

mGluR2 (i.e. with no SNAP tag) and incubated with BGAG12 showed no light responses 

(Fig. S2b). Given the successful optical control of mGluR2, we termed the tool that 
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combines SNAP-mGluR2 and BGAG “SNAG-mGluR2”. SNAG-mGluR2 showed similar 

photocurrent efficacy and kinetics to the previously reported LimGluR220. SNAG-mGluR2 

photoactivation was fully blocked by the competitive mGluR2 antagonist LY341495, 

without altering the baseline current, supporting the interpretation that BGAG12 activates 

mGluR2 via its native, orthosteric binding site and does not significantly activate in the 

trans configuration of the azobenzene (Fig. S2c). The apparent affinity for glutamate of 

SNAG-mGluR2 was comparable to that of both SNAP-mGluR2 not labeled by BGAG12 and, 

indeed, of wild type mGluR2 (Fig. S2d), indicating that normal mGluR2 function is 

maintained.  

We next tested different labeling conditions of BGAG12 and found that 45 minute 

incubation with > 1 µM BGAG12 showed optimal labeling (Fig. S3a, b). However, 

photocurrents were still observed with 100 nM labeling for 45 minutes (Fig. S3c) and 

these were increased with overnight labeling at 100 nM and could even be observed with 

concentrations as low as 10 nm with overnight labeling (Fig. S3d-f). Remarkably, the 

labeling solution could be reused for multiple experiments for one week following dilution 

in aqueous buffer at room temperature, without a decline in efficacy of optical activation 

(Fig. 4b, c). This result is in stark contrast to maleimide-based MAG photoswitches, 

which typically need to be applied at concentrations up to 100-200 µM20,22 and are 

hydrolyzed in water with a half-life in the range of minutes to hours1.  

To further explore the mechanism of photoswitching in SNAG-mGluR2, we synthesized a 

PCL version of BGAG12 where the BG group was omitted (“AG12”; Fig. S4a). AG12 

photoagonized SNAP-mGluR2 with the same directionality as BGAG12 (Fig. S4b), 

supporting the hypothesis that photoswitching is based on the relative efficacy of the 

azobenzene-glutamate moiety in cis versus trans, rather than a length or geometry-

dependent change in the ability to reach the binding site. We also tested BGAG variants 

ranging in length from 0 to 8 PEG repeats and found comparable photoactivation of 

SNAG-mGluR2 to BGAG12 for all versions (Fig. S5), suggesting similar effective 

concentrations of the ligand near the binding pocket. 

We next tested the red-shifted version of BGAG12, BGAG12(460), to see if we could 

develop a SNAG-mGluR2 variant that is controlled with a single wavelength of visible 

light. Following labeling with 10 µM BGAG12(460) photoactivation of SNAP-mGluR2 was 

achieved reproducibly in response to illumination with blue light (420-470 nm bandpass) 

(Fig. 4d). Relaxation occurred rapidly in the dark following illumination, as expected, and 

the photoactivation was ~35 % relative to saturating glutamate (34.9 ± 4.2 %, n=18 

cells). We termed the combination of SNAP-mGluR2 and BGAG12(460) “SNAG460-mGluR2”. 

Having developed multiple versions of SNAG-mGluR2 that were able to efficiently photo-

activate mGluR2, we next wondered if this toolset could be used to optically manipulate 

mGluR2 in its native neuronal setting. 
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Figure 4: Optical control of SNAG-mGluR2 in HEK 293T cells co-expressing SNAP-mGluR2 and GIRK. a) 

Representative patch-clamp trace demonstrating the reversible optical control of SNAG-mGluR2 (SNAP-mGluR2 

+ BGAG12(460)). Photoactivation is achieved with a brief pulse of UV light ( = 380 nm, purple) and reversed by 

a brief pulse of green light ( = 500 nm, green). Application of saturating 1 mM glutamate gives full activation 

and prevents further photoswitching. b) Representative trace showing photoactivation of SNAG-mGluR2 using 1 

μM BGAG12 after it was incubated for 1 week in aqueous buffer. c) Summary of the efficiency of 

photoactivation of SNAG-mGluR2 (compared to 1 mM glutamate) following different BGAG12 labeling 

conditions. Error bars represent SEM. d) Representative trace showing photoactivation of SNAG460-mGluR2 

(SNAP-mGluR2 + BGAG12(460)) with blue light ( = 445 nm). Relaxation occurs spontaneously in the dark.  

 

Optical manipulation of excitability and synaptic transmission via SNAG-mGluR2 in 

hippocampal neurons 

 mGluR2, like other neuronal Gi/o-coupled GPCRs, primarily signals either 

somatodendritically, to hyperpolarize membranes through the activation of GIRK 

channels, or presynaptically, to inhibit neurotransmitter release by a number of 

mechanisms, including inhibition of voltage-gated calcium channels28. We hypothesized 

that SNAG-mGluR2 would efficiently gate both of those canonical functions in neurons.  

We first expressed SNAP-mGluR2-GFP in dissociated hippocampal neurons and labeled 

with BG-Alexa-647 to determine if SNAP-BG conjugation could occur efficiently in 

neuronal cultures, which are considerably denser than HEK 293T cell cultures.  We 

observed strong SNAP-mGluR2-GFP expression and surface labeling with Alexa-647 (Fig. 

5a), indicating that the SNAP tethering approach is suitable to neurons. Importantly, 

untransfected cells did not show BG-Alexa-647 fluorescence (Fig. S6), confirming the 

specificity of the labeling chemistry. Next, instead of labeling with BG-Alexa-647, we 

labeled with BGAG12 and observed rapid membrane hyperpolarization (~2-8 mV) in 

response to illumination at 380 nm, which was reversed by illumination at 500 nm (Fig. 

5b). When the neurons were at depolarized potentials that induced firing, the light-

induced hyperpolarization was sufficient to inhibit the action potentials (Fig. 5c).  

To test for presynaptic inhibition, we cultured hippocampal neurons at low density to 

promote the formation of autapses, i.e. synapses between the axon and dendrites of the 
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same neuron. In autaptic neurons, photoactivation of SNAG-mGluR2 reversibly decreased 

excitatory post synaptic current (EPSC) amplitude by up to 70 % (average = 48.3 ± 

7.3 %, n=5 cells) (Fig. 5d, e). Optical inhibition of EPSC amplitude was accompanied by 

an increase in paired pulse ratio (Fig. 5f, g) and a decrease in synaptic depression 

during high frequency trains (Fig. S7), consistent with a presynaptic reduction in the 

probability of transmitter release. Together, these observations demonstrate that the 

SNAG system is well suited for neuronal cells and that SNAG-mGluR2 itself is a powerful 

tool for optical manipulation of neuronal inhibition via native mGluR2-mediated 

mechanisms that control neural firing and transmitter release.  

 

Figure 5: Optical control of SNAG-mGluR2 in hippocampal neurons. a) Representative 

confocal images showing the expression of SNAP-mGluR2-GFP (left) and its labeling with 

BG-Alexa-647 (middle) in hippocampal neurons. In the merge (right) of the two images it 

is clear that dye labeling occurs on the surface of the neuron only. b-c) Representative 

recording showing SNAG-mGluR2 mediated hyperpolarization (b) and silencing (c) of 

hippocampal neurons in whole cell patch-clamp recordings. Violet bars indicate 380 nm 

illumination and green bars indicate 500 nm illumination. d) Time course of autaptic 

EPSC amplitude for a representative neuron showing rapid, reversible inhibition of 

synaptic transmission by SNAG-mGluR2. (i), (ii), and (iii) show individual traces 

associated with data points.  e) Summary of SNAG-mGluR2 mediated optical synaptic 

inhibition by 380 nm light in all cells tested. f) Representative recording showing an 

increase in paired pulse ratio in response to SNAG-mGluR2 activation using an 
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interstimulus interval of 50 ms. g) Summary of paired pulse ratio in 500 nm (green) or 

380 nm (violet) for the same cell as in f).  

 

Dual optical control of SNAG-mGluR2 and LiGluR via orthogonal photoswitch labeling  

A major goal in physiology is to be able to manipulate independently different receptors 

within the same preparation using different wavelengths of light. This type of experiment 

could be extremely powerful for deciphering the different roles, and potential cross-talk, 

of different signaling pathways within a cell or neural circuit. With this goal in mind, we 

wondered if SNAG-mGluR2 could be used in conjunction with a previous generation 

photoswitchable receptor to provide individual optical control of two receptors within the 

same cell. We turned to LiGluR, a GluK2 ionotropic glutamate receptor that is 

photoactivated by molecules of the maleimide-azobenzene-glutamate (MAG) family 

through cysteine-maleimide linkage32,47. To test this, we co-expressed SNAP-mGluR2 

along with its GIRK channel effector and LiGluR (GluK2-L439C) in HEK293T cells. We 

labeled the cells with BGAG12 for 30 minutes, and then with L-MAG0460, a blue light-

activated, spontaneously relaxing version of MAG with similar spectral properties to 

BGAG12(460)
44. Due to the spectral and light sensitivity differences between the two 

photoswitches, we were able to independently and sequentially activate SNAG-mGluR2 

and LiGluR (Fig. 6a). Photoactivation of SNAG-mGluR2 with dim illumination at 380 nm 

induced slow inward photocurrents, which were deactivated by illumination at 590 nm, as 

shown above. 590 nm yellow light was used to ensure orthogonality to L-MAG0460. In 

contrast, photoactivation of LiGluR-L-MAG0460 by illumination at 500 nm induced rapid, 

spontaneously-relaxing photocurrents, as shown earlier44. When only one of the 

receptors was expressed, only its characteristic photo-response was seen. In the case of 

SNAG-mGluR2 this was a slow ON, slow OFF photocurrent induced by illumination at 380 

nm and 500 nm, respectively, whereas in the case of LiGluR-L-MAG0460 this was a rapid, 

spontaneously-relaxing photocurrent, which was triggered by illumination at 500 nm, 

which turned off spontaneously in the dark (Fig. 6b, c). Together these experiments 

show that the PORTL approach based on conjugation of BGAGs to SNAP-tagged receptors 

allows for independent, dual optical control within the same preparation, a major step 

forward for chemical optogenetics. 
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Figure 6: Dual optical control of SNAG-mGluR2 and LiGluR in HEK 293T cells via orthogonal labeling of BGAG12 

and MAG460. a-c) Representative traces showing the responses to dim 380 nm light (<.01 mW/mm2; purple 

bars), 590 nm light (~1 mW/mm2; yellow bars), and 500 nm light (~1 mW/mm2; green bars) in cells treated 

with BGAG12 and L-MAG0460. Cells expressing both SNAP-mGluR2 and LiGluR show a slow SNAG-mGluR2-

mediated response to 380 nm light that is reversed by 590 nm light and a fast LiGluR-mediated response to 

500 nm light (a). In the absence of SNAP-mGluR2, the slow response to 380 nm is not seen (b) and in the 

absence of LiGluR, the fast response to 500 nm is not seen (c), confirming the origins of each current.  
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Discussion 

 Photoswitchable tethered ligands (PTLs) provide a powerful component of the 

optogenetic arsenal for biophysical, synaptic, neural circuit, behavioral and disease 

treatment applications11,12,47. Unlike opsin-based approaches, which rely on the 

exogenous expression of non-native light-gated membrane proteins, PTLs offer target-

specific control of native signaling proteins through the bioconjugation of synthetic light-

controlled compounds. They allow one to study the physiological roles of individual 

proteins with a high subtype specificity and spatiotemporal and genetic precision 

compared to classical pharmacological or genetic techniques. Until the present, PTL 

anchoring to the signaling protein of interest has been almost exclusively based on the 

covalent attachment of a maleimide group on the PTL to an engineered cysteine 

positioned near the pore or ligand binding pocket of the protein48. Even on extracellular 

parts of proteins, where most native cysteines are disulfide bonded and not subject to 

attack by a maleimide, there are many free cysteines where PTLs will attach. As a result, 

the specificity of action of cysteine-reactive PTLs relies not on unique targeting, but on 

the insensitivity of other proteins to the minor repositioning of tethered ligands14,32,49. 

Still, there would be a major advantage if protein attachment could be bio-orthogonal 

and so highly specific. Maleimide-cysteine attachment has proven viable in small animals, 

such as zebrafish and easily accessible tissues, such as the outer retina of mouse. 

However, it may be inefficient in larger systems due to slow diffusion and competition 

with hydrolysis, and is restricted to the extracellular environment, since inside the cell 

competition for the target cysteine by glutathione at millimolar concentrations would be 

forbidding. In addition, attachment to a native accessible cysteine, such as in enzyme 

active site, could be deadly. Our goal was to create a new orthogonal and efficient 

strategy for specific PTL attachment that is easy to generalize. We present a solution to 

these challenges in the form of a second generation PTL, termed PORTL, an approach 

built around the conjugation of BG-labeled photoswitches to genetically encoded SNAP 

tags.  

The PORTL approach takes advantage of the fact that the SNAP-tag reacts with BGs in a 

very efficient and selective way that is fully orthogonal to native chemical reactions5,6. 

Unlike first-generation PTLs, which need to be tethered near the site of ligand 

binding14,20,32,49-51, PORTL tethers the photoswitch farther away, on a separate domain, 

providing a useful separation between the attachment point and functional head group of 

the compound by a long linker. In principle, the photoswitch could also be attached to a 

separate transmembrane protein, an antibody or a membrane anchor. This physical 

separation is expected to place the ligand head group of a PORTL at a relatively lower 

local concentration than a conventional PTL. The head group would then be 

photoswitched between active and active states like a photochromic ligand, and should 

be ideally inactive in the dark. Aspects of this logic were previously applied to a 

photoswitchable ligand attached via a long flexible tether to a GABAA receptor, although 

in that case the ligand was a potentiator, not an agonist, the ligand was active in the 

dark, and the attachment was to an introduced cysteine52. A further feature to our design 

is that the predicted relatively low local concentration of PORTL head groups may help 

ensure the lack of basal modulation of receptor activity by the relaxed state of the 

photoswitch.  

 With these considerations in mind, we designed and synthesized benzylguanine-

azoglutamate (BGAG) PORTL compounds that may be attached to a SNAP-tagged version 

of the class C GPCR mGluR2 to produce the chemical optogenetic tool termed “SNAG-

mGluR2”. SNAG-mGluR2 permits the high-efficacy, rapid, repeatable photoactivation of 
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mGluR2 with a 2-color, bistable BGAG (SNAG-mGluR2) or a 1-color, spontaneously 

relaxing BGAG12(460) (SNAG460-mGluR2). In both cases, SNAG-mGluR2 remains inactive 

in the dark and is activated in the high-energy state in response to either near UV (~380 

nm, BGAGn) or visible light (~460 nm, BGAG12(460)). Consistent with our predictions 

about the mechanism of PORTL photoactivation, untethered photoswitches that mimic 

the azobenzene-glutamate part of BGAG showed the same directionality of 

photoswitching on mGluR2, suggesting that the efficacy of the photoswitchable ligand is 

higher in cis than trans and independent of the tether. Importantly, since it maintains the 

entire full-length sequence of mGluR2, SNAG-mGluR2 should also retain all native 

signaling properties ranging from ligand binding to G protein coupling to downstream 

regulation. Consistent with this, SNAG-mGluR2 permitted efficient optical manipulation of 

two distinct native downstream targets of mGluR2 in neurons: a somato-dendritic control 

of excitability and a presynaptic control of synaptic transmission.    

In line with the attractive properties of SNAP-tag conjugation, BGAG photosensitizes 

SNAP-mGluR2 at concentrations 100-1000x lower than typically used for maleimide-

based PTLs, minimizing potential activation of glutamate receptors during photoswitch 

incubation. Furthermore, owing to its insensitivity to hydrolysis by water, BGAG remains 

reactive over not minutes but days, and stocks diluted in aqueous buffer may be re-used 

without a loss of labeling efficiency. Taken together, these properties should make the 

PORTL approach ideally suited for labeling in intact tissue or in vivo, as was recently 

shown for fluorophore conjugation to a SNAP-tag in the nervous system of mouse25.  

 Another major advantage of the PORTL approach is its modularity, which will allow 

it to be widely applicable to many protein targets with a variety of photoswitches. The 

SNAP-tag is well characterized and has been used extensively to label fusion proteins 

with fluorophores or to create semisynthetic probes for the sensing of small molecules24. 

Like GFP, the SNAP tag can be fused to proteins of interest without significantly altering 

their activity. Indeed, several SNAP-tagged transmembrane class A and class C GPCRs, 

including all of the mGluRs53,54, have been described and many of these are commercially 

available. 

To facilitate the application of this approach to a wide range of target proteins, we 

designed our synthetic strategy to be as modular and efficient as possible, taking 

advantage of the power of click chemistry. Building on existing pharmacology and the 

growing repertoire of PCLs, PORTL compounds may be synthesized with different head 

groups for many other target proteins of interest. These compounds may include 

photoswitchable agonists, antagonists, or allosteric modulators. The ability to change 

linker lengths may aid in the engineering of other photoswitchable proteins. Relative to 

the challenge of finding optimal cysteine residues for maleimide-based photoswitch 

conjugation with first-generation PTLs, the PORTL system will greatly facilitate the design 

and implementation of new photoswitchable proteins. In addition, the PORTL system with 

the SNAP tag will enable the optical control of intracellular proteins because, unlike 

maleimide, the benzylguanine-labeling motif is unaffected by the reducing environment 

of the cell.  

 Finally, a major breakthrough in this study that is made possible by the PORTL 

system is the demonstration of the ability to orthogonally optically manipulate SNAG-

mGluR2 and the maleimide-based LiGluR in the same cell. The ability to separately label 

and manipulate multiple receptor populations may be especially useful for probing 

crosstalk between proteins at the molecular, cellular, or circuit level. In the future, 

combination of SNAP-tethered photoswitches with PORTL compounds targeting the 
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orthogonal SNAP-variant CLIP7 or the unrelated Halo tag8 may greatly expand the ability 

to optically control multiple receptor populations independently in the same preparation. 

Tuning of the spectral properties of the azobenzene photoswitch will further facilitate the 

ability to complex multiple tools within the same preparation. Overall, the PORTL 

approach brings us closer toward the overarching goal of obtaining the ability to 

individually and precisely photo-activate or inhibit the fundamental signaling molecules of 

the brain in concert in behaving animals. 

 

Methods 

Chemical Synthesis of Photoswitches 

 Details on the chemical synthesis of BGAGs and their precursors and 

characterization data can be found in the Supporting Information. 

HEK293T and Hippocampal Neuron Electrophysiology 

HEK 293T cell recordings were performed as described previously20. Cells were seeded on 

18 mm glass coverslips and transfected with 0.7 μg/well SNAP-mGluR2 (and/or LiGluR: 

GluK2-L439C) and GIRK1-F137S DNA, along with 0.1 μg/well tdTomato as a transfection 

marker, using Lipofectamine 2000 (Invitrogen). Whole-cell HEK cell recordings were 

performed 24-48 hrs later at room temperature (22–24 °C) using an Axopatch 200B 

headstage/amplifier (Molecular Devices) on an inverted microscope (Olympus IX series) 

or a EPC10 USB patch clamp amplifier (HEKA) and PatchMaster software (HEKA) on a 

Leica DM IL LED. Recordings were performed in high potassium (HK) extracellular 

solution containing (in mM): 120 KCl, 29 NaCl, 1 MgCl2, 2 CaCl2, 10 Hepes, pH 7.4. Glass 

pipettes of resistance between 4 and 8 Ω M were filled with intracellular solution 

containing (in mM): 140 KCl, 10 Hepes, 3 Na2ATP, 0.2 Na2GTP, 5 EGTA, 3 MgCl2, pH 7.4. 

Voltage-clamp recordings were typically performed at -60 mV. Drugs were purchased 

from Tocris, diluted in HK solution and applied using a gravity-driven perfusion system. 

Data were analyzed with Clampfit (Molecular Devices) or IgorPro (v6.22, wavemetrics).  

Prior to recording, cells were washed with extracellular labeling solution and labeled with 

BGAG variants at the reported concentrations for 45-50 minutes in an incubator at 37 °C. 

The extracellular labeling solution contained (in mM): 138 NaCl, 1.5 KCl, 1 MgCl2, 2 

CaCl2, 10 HEPES, pH 7.4. For overnight labeling experiments, BGAG was diluted in HEK 

cell culture media (DMEM + 5 % FBS). For experiments involving LiGluR, following BGAG 

incubation cells were incubated for 5 minutes at room temperature with 0.3 mg/mL 

concavalin A to prevent receptor desensitization followed by 50 μM L-MAG0460 for 30 

minutes at room temperature. Illumination was mediated by Xe-lamp (DG4, Sutter) in 

combination with excitation filters. Neutral density filters (Omegafilters) were used to 

vary the light intensity. 

Dissociated hippocampal neuron cultures were prepared from postnatal P0 or P1 mice on 

12 mm glass coverslips as previously described20. Neurons were transfected with SNAP-

mGluR2 (1.5 µg/well) and tdTomato (0.25 µg/well as a transfection marker) using the 

calcium phosphate method at DIV9. Whole cell patch clamp experiments were performed 

3-6 days after transfection (DIV 12-15). Labeling was performed using the same protocol 

as HEK cells except BGAG was diluted in extracellular recording solution containing (in 

mM): 138 NaCl, 1.5 KCl, 1.2 MgCl2, 2.5 CaCl2, 10 glucose, 5 HEPES, pH 7.4. Glass 

pipettes of resistance 4-8 MΩ were filled with an intracellular solution containing (in mM): 
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140 K-gluconate, 10 NaCl, 5 EGTA, 2 MgCl2, 1 CaCl2, 10 HEPES, 2 MgATP and 0.3 

Na2GTP, pH 7.2. Autaptic neurons were voltage clamped at -60 mV and a 2-3 ms voltage 

step to +20 mV was used to evoke a spike followed (~3-5 ms later) by an EPSC. 

Stimulation was performed once every 12 s to prevent rundown. 

Confocal imaging of SNAP-mGluR2-GFP and Alexa dye-labeled constructs was performed 

on a Zeiss LSM780 AxioExaminer. Dye labeling was performed in appropriate 

extracellular solutions for 45 minutes at 1 μM in an incubator at 37 °C and extensively 

washed before imaging. 
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Introduction: 

The alkaloid temuline (1) was described as one of the bioactive constituents of Lolium 

temulentum by Franz Hofmeister in his publication “the active constituents of the 

Taumellolch” (transl. from German -„Die Wirksamen Bestandtheile des Taumellolchs“) in 

1892.1  At the time, livestock poisoning was suspected to be caused by food 

contaminated with Lolium seeds. Several researchers reported to experience confusion, 

headaches, changes to vision, nausea and other impairments after consuming 

contaminated bread.1 Further investigations showed that ergot alkaloids, which are also 

products of tall fescue, accounted for these observations.2, 3 The contribution of loline 

alkaloids (Figure 1) such as loline (2), N-formyl loline (3), N-acetyl loline (4), temuline 

(1), N-formyl temuline (5), and N-acetyl temuline(6)4 to this effect, however, could 

neither be confirmed nor ruled out. Furthermore, in the late 1980s, the occurrence of 

loline alkaloids in pasture and wild grasses could be linked to the infection with symbiotic 

endophytes (Neotyphodium species).5, 6 This symbiosis endowed the plants with 

tolerance to pathogens like insects and nematodes.7 Christopher L. Schard and 

colleagues showed that the concentration of loline alkaloids in plants correlated with 

levels of anti-aphid activity.8 Recently, it was reported that N-formyl loline attracted 

nematodes (Pratylenchus Scribneri) at low concentrations, while at higher concentrations 

it acted as a repellent.9 

The molecular biological targets of loline and its derivatives are still unknown. Extensive 

pharmacological studies were never carried out due to poor availability of these 

substances. So far, the extraction of loline from natural sources resulted in low quantities 

of only a small number of loline derivatives. Until recently, the chemical synthesis of 

these alkaloids involved a costly 20-step synthesis. Consequently, Dirk Trauner and 

Mesut Cakmak developed an efficient, high-yielding ten-step synthesis providing pure 

loline and its derivatives.10 
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Figure 1. Extraction and synthesis of loline alkaloids. Chloroform extraction from plant seeds yields loline (2), 

N-formyl loline (3), and N-acetyl loline (4). Temuline (1) and its derivatives can be achieved by chemical 

synthesis. Crystal structure of loline (2) is taken from reference 10. 

The growing resistance of pests to available crop protection substances is becoming a 

significant problem in modern agriculture. Plant protecting products should be specific to 

pathogens alone and have no effect on other plants and animals, especially vertebrates. 

This makes the natural pesticide loline an interesting candidate for the development of an 

environmentally friendly pesticide. Here, optimization of loline extractions from plant 

seeds (Festulolium loliaceum, infected with Neotyphodium uncinatum) and the chemical 

derivatization of loline to temuline and its derivatives are described (Figure 1). The effect 

of loline on the nematode Caenorhabditis elegans (C. elegans) and human serotonin 

transporter (hSERT) are further investigated.  

 

Results and Discussion: 

Extraction. To extract loline alkaloids, ground Lolium seeds (Festulolium loliaceum, 

infected with Neotyphodium uncinatum) were extracted with chloroform using a Soxhlet 

extractor. Loline (2), N-formyl loline (3), and N-acetyl loline (4) could be seperated via 

column chromatography. 

Synthesis. Loline alkaloids share a common heterocyclic core and are saturated 

1-aminopyrrolizidines bearing an oxygen bridge. Through chemical synthesis (Figure 1) 

temuline can be accessed either through demethylation of loline (2) or hydrogenation of 

the azide 7. Treatment of the azide 7 with Ac2O gave N-acteyl temuline (6) in excellent 

yield. Alternatively, reduction of 7 in the presence of di-tert-butyldicarbonate gives N-Boc 

protected temuline 8, which can be further transformed into 2 using lithium aluminum 

hydride. Formylation of temuline (1) with a mixture of Ac2O and formic acide gave 

N-formyl temuline (5) in good yields.  

Loline promotes swimming behavior in C. elegans. First, we investigated the effect 

of loline alkaloids on the swimming behavior of the nematode C. elegans. In solution, the 

nematode is able to swim by performing dorso-ventrally alternating c-shaped body 

postures (Figure 2a). These so called “thrashing movements” are often used to quantify 

locomotion behavior and motility. To test the influence of several loline alkaloids on the 

swimming behavior of nematodes, thrashing assays were performed. Up to 10 animals 

were placed into a 96 well plate with a physiological buffer solution (M9). During the time 
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course of one minute the thrashes were counted (Figure 2b). The animals in M9 thrashed 

107 ± 1.9 (n = 30) times per minute. In M9 supplemented with N-acetyl temuline (6; 

100 mM) or of loline (2; 100 mM) the thrashes increased significantly to 113 ± 1.8 

(n = 18) and 128 ± 2.2 (n = 14) thrashes per minute, respectively. These results 

suggest that N-acetyl temuline (6) and loline (2) evoke a flight-like-behavior in C. 

elegans. The nematode tries to escape the repelling compound by increasing the number 

of thrashes per minute.  

 

 

Figure 2. Thrashing assay of C. elegans strain N2 (wild type). a) Illustration of a 96 well plate with 9 nematodes 

swimming in buffer (M9) with 100 mM of the indicated molecule. The thrashing movement is depicted over 

time. b) Quantitative analysis of thrashes in: M9 (112.9 ± 1.2; n = 30), N-acetyl temuline (6, 117.0 ± 1.5; 

n = 18), N-acetyl loline (4, 111.6 ± 2.0; n = 17), N-formyl loline (3, 112.6 ± 3.3; n = 15), and loline (2, 

128.1 ± 2.2; n = 14). Bars represent mean; error bars represent SEM; numbers of cells tested are in 

parentheses above bars. Significance was calculated via student t-test with *** for p<0.001, ** p = 0.01 to 

0.001, and * for p = 0.05 to 0.01.  

 

Drug screening indicates putative targets of loline alkaloids. To test, whether the 

loline alkaloids have an effect on human receptors, we turned to a drug screening assay. 

In collaboration with Brian Roth (University of North Carolina) a Psychoactive Drug 

Screening Program (PDSP) on the synthesized loline derivatives was carried out (Table 

1). First results have shown that some derivatives bind to nicotinic acetylcholine 

receptors (nAChR). For instance, N-formyl loline (3) binds to the 4/β4 nAChR with 

nanomolar affinity. The molecules N-acetyl chloropyrrolizidine (9), N-formyl temuline (5), 

and N-acetyl temuline (6) show binding to the dopamine receptor 5 (D5). Furthermore, 

temuline (1) and N-acetyl loline (4), show binding to the the serotonin transporter 

(SERT). Nevertheless, radio ligand binding assays sometimes produce false positive 

results. Therefore, one should not over-interpret the findings. 
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Table 1. Targets of loline and derivatives identified by the PDSP radio ligand binding assays. Values represent 

inhibition (Ki in nM). 

 nicotinic acetylcholine receptor dopamine 

receptor 

serotonin 

transporter 

 2/β2  2/β4  3/β4  4/β2  4/β4  D5 SERT 

Temuline (1)* - - - -  - 310.0 

Loline (2)* - - - - - - >10,000 

N-formyl loline (3)* 3,230.0 2,560.0 6,840.0 3,630.0 938.0 - - 

N-acetyl loline (4)* - - - >10,000 - - 32.0 

N-formyl temuline (5)* - - - >10,000 - 2,063.0 >10,000 

N-acetyl temuline (6)* - - - 4,065.0 - 1,171.0 >10,000 

N-acetyl chloropyrrolizidine (9)* - - - - - 1,781.0 469.0 

*Note: molecule provided by Mesut Cakmak.  

 

Bioactivity of lolines on nicotinic acetylcholine receptors. Following the targets 

identified in the drug screening, we first aimed to investigate mode of binding of loline 

alkaloids to nicotinic acetylcholine receptors (nAChRs). Transient expression of nAChRs in 

HEK293T cells was not successful. Also the attempt to acquire a stable cell line12 from 

Prof. Kellar (Georgetown University, Washington) was fruitless. Finally, the project was 

reoriented towards the expression of the 4β4 receptor in Xenopus laevis oocytes. For 

electrophysiological recordings from oocytes two electrode voltage clamp (TEVC) was 

established.  

 

Figure 3. Activation of 4β4 nAChR expressed in Xenopus laevis oocytes. ACh (100 µM) was shortly applied to 

the oocyte. 

RNA synthesis was performed using mMESSAGE mMACHINE® SP6 Transcription Kit (life 

technologies) according to manufacturer’s instructions. Due to varying quality of 

delivered oocytes and unreliable expression of the receptors, lolines could not be tested 

yet. Nevertheless, the successful expression of the receptor could be shown by activation 

of the 4β4 nAChR with 100 µM acetylcholine (ACh)(Figure 3). Further experiments using 

the 4β4 nAChR expressed in Xenopus oocytes will show if the loline alkaloids can 

activate the receptor directly, or if they could inhibit ACh induced currents.  

 

Bioactivity of lolines on the human serotonin transporter. The strongest binding 

affinity in the PDSP was observed for the interaction of N-acetyl loline (4) with the 

human serotonin transporter (hSERT). The SERT regulates the monoamine-mediated 

neural signaling. It terminates the synaptic transmission of serotonin by removing the 
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neurotransmitter from the synaptic cleft. It is the target of many psychoactive molecules, 

such as cocaine or MDMA (Ecstasy). In treatment of depression selective serotonin re-

uptake inhibitors are often used, which act on the SERT. The molecule monensin (Mon) is 

used in assays to enhance the releasing capability of SERT substrates. 

The SERT efflux and inhibition assays were performed in collaboration with Marion Holy 

(Medizinische Universität Wien, Prof. Harald Sitte) as previously described.11 

 

 

Figure 4. The SERT efflux experiment. Before the experiment, 0.3 mM of the radiolabeled substrate [3H]MPP+ 

was added to the HEK293 cells expressing hSERT and incubated for 20 min. The coverslips were transferred to 

small chambers (volume 0.2 ml) and superfused with Ringer buffer at to establish basal efflux. After basal 

efflux had stabilized, the experiment was initiated, with the collection of fractions every 2 min. After 6 min, the 

Na+/H+ ionophore monensin (25 mM) or control buffer was added to the cells. After 14 min, the ligand of 

interest was added. Finally, the remaining radioactivity was recovered by superfusing the cells for 6 min with 

1 % SDS. a) loline (2) induced or b) N-acetyl loline (4) induced release of radioactivity at any time point was 

compared with the amount released in the absence of drugs and is expressed as percentage released.  

Figure 3 demonstrates that loline (2) as well as N-acetyl loline (4) produce no change in 

efflux of [3H]5HT in presence of Mon in HEK cells expressing SERT. In contrast, Mon 

enhances the efflux produced by the SERT substrates p-chloroamphetamine (PCA) 

(Figure 4a) or 5HT (Figure 4b).  

The assay for inhibition of serotonin uptake by the SERT shows that loline (2) and its 

derivatives (Figure 5a-e) do not inhibit the uptake at any concentration. In contrast, 

cocaine inhibits the SERT effectively (Figure 5f). Taken together, these findings suggest 

that loline (2) and its derivatives have no effect on SERT uptake or release.  
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Figure 5. Effects of loline alkaloids and comparison test drug (cocaine) on inhibition of uptake at SERT in rat 

brain synaptosomes. Synaptosomes were incubated with different concentrations of loline alkaloids or cocaine, 

in the presence of 400 nM [3H]serotonin. Data are percentage of [3H]transmitter uptake expressed as 

mean ± s.e.m. for n = 2–3 experiments.  

 

 

Summary 

In summary, loline (2), N-formyl loline (3), and N-acetyl loline (4) can reproducibly be 

extracted from fescue seeds and easily derivatized to temuline (1), N-formyl temuline 

(5), and N-acetyl temuline (6). In swimming nematodes loline (2) and N-acetyl temuline 

(4) increase the number of thrashes per minute.  Experiments on the hSERT showed no 

activity of lolines on the transporter. Functional expression of the 4β4 nAChR could be 

achieved in Xenopus oocytes.  
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Experimental section  

 

Chemical procedures: 

Flash column chromatography was carried out on silica gel 60 (0.040–0.063 mm, Merck). 

Reactions and chromatography fractions were monitored by thin layer chromatography 

(TLC) on (Merck) silica gel 60 F254 glass plates (Merck). The spots were visualized either 

under UV light at 254 nm or with appropriate staining method (KMnO4, Ninhydrin) 

followed by heating. 

NMR spectra were recorded in deuterated solvents on VARIAN Mercury 200, BRUKER AXR 

300, VARIAN VXR 400 S, BRUKER AMX 600 and BRUKER Avance III HD 400 (equipped 

with a CryoProbe™) instruments and calibrated to residual solvent peaks (1H/13C in 

ppm): CDCl3 (7.26/77.16), DMSO-d6 (2.50/39.52), MeCN-d3 (1.94/1.32), acetone-d6 

(2.05/29.84), CD3OD (3.31/49.00). Multiplicities are abbreviated as follows: s = singlet, 

d = doublet, t = triplet, q = quartet, br = broad, m = multiplet. Spectra are reported 

based on appearance, not on theoretical multiplicities derived from structural 

information. 

Mass spectra were measured by the analytic section of the Department of Chemistry, 

Ludwig-Maximilians-Universität München. Mass spectra were recorded on the following 

spectrometers (ionisation mode in brackets): MAT 95 (EI) and MAT 90 (ESI) from 

Thermo Finnigan GmbH. Mass spectra were recorded in high-resolution. The method 

used is reported at the relevant section of the experimental section.  

 

Solvents for column chromatography and reactions were purchased in HPLC grade or 

distilled over an appropriate drying reagent prior to use. If necessary, solvents were 

degassed either by freeze-pump-thaw or by bubbling N2 through the vigorously stirred 

solution for several minutes. Unless otherwise stated, all other reagents were used 

without further purification from commercial sources. 

 

Optimized extraction procedure. Ground Lolium seeds (Festulolium loliaceum, 

infected with Neotyphodium uncinatum, 30 g) were suspended in chloroform (300 mL) 

and stirred at reflux with a Soxhlet extractor for 11 h. After cooling to rt, aqueous sodium 

hydroxide solution (2 mL, 1M) was added and the suspension was filtered. The combined 

green colored organic phases were concentrated in vacuo to one third of the original 

volume. The organic phase was extracted with hydrochloric acid (5 x 50 mL, 2M), 

resulting in a rose-colored aqueous suspension, which was subsequently stirred at 80 °C 

for 3 h. The solution was cooled to rt and solid sodium hydroxide (10.8 g) was added 

until basic (pH = 13), whereupon the solution changed color from pink to yellow. The 

aqueous phase was extracted with chloroform (5 x 50 mL). The combined organic phases 

were concentrated in vacuo, giving a crude extract, a yellow oil (98 mg). The crude 

product was purified via column chromatography on silica gel (30 g) using 

chloroform/MeOH/Ammonia (9:1:0.1) as eluent, to afford N-acetyl loline (4 mg) and 

loline (19 mg). 
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Loline (2):  

TLC (10 % MeOH in CHCl3): Rf = 0.48 (Ninhydrine)* 

GC-MS tR = 6.560 min, m/z 154 (EI (CI)) 
1H NMR (400 MHz, CDCl3) δ = 4.33 (dd, J=4.5, 1.9, 1H), 3.95 (s, 1H), 3.34 (d, J=11.6, 

1H), 3.26 (s, 1H), 3.10 (s, 1H), 3.00 (ddd, J=12.3, 8.4, 3.5, 1H), 2.86 (ddd, J=12.8, 

9.3, 7.3, 1H), 2.40 (s, 2H), 2.34 (d, J=11.6, 1H), 2.00 – 1.85 (m, 3H). 
13C-NMR (101 MHz, CDCl3): δ = 81.6, 74.0, 69.6, 68.2, 61.1, 54.5, 35.2, 33.9. 

*Note: TLC plate was saturated with NH3 vapor before running in the solvent mixture.  

 

N-formyl loline (3): 

TLC (10 % MeOH in CHCl3): Rf = 0.80 (Ninhydrine)* 

GC-MS tR = 8.025 min, m/z 182 (EI (CI)) 
1H NMR** (400 MHz, CDCl3) δ = 8.43 (s, 1H), 8.07 (d, J=1.0, 1H), 4.75 (d, J=2.5, 1H), 

4.54 (dd, J=4.4, 1.8, 1H), 4.45 (dd, J=4.5, 1.9, 1H), 4.22 (d, J=2.3, 1H), 4.07 – 3.99 

(m, 1H), 3.88 – 3.80 (m, 1H), 3.44 (t, J=1.4, 2H), 3.32 – 3.22 (m, 2H), 3.13 (s, 2H), 

3.12 – 2.97 (m, 1H), 2.95 (s, 3H), 2.49 (dd, J=15.9, 11.9, 2H), 2.09 (dt, J=8.7, 6.6, 

2H), 2.03 – 1.96 (m, 2H). 
13C NMR** (101 MHz, CDCl3) δ = 164.3, 163.0, 82.7, 80.9, 74.7, 73.8, 68.7, 68.2, 66.1, 

63.1, 61.7, 61.2, 55.4, 55.3, 34.2, 33.7, 33.4, 30.7. 

*Note: TLC plate was saturated with NH3 vapor before running in the solvent mixture.  

 **Note: Compound exists as a mixture of rotamers in solution.  

N-acetyl loline (4): 

TLC (10 % MeOH in CHCl3): Rf = 0.80 (Ninhydrine)* 

GC-MS tR = 8.125 min, m/z 196 (EI (CI)) 
1H-NMR (400 MHz, MeOD) δ = 5.02 (d, J=1.6, 1H), 4.91 (s, 1H), 4.66 (dd, J=4.6, 2.2, 

1H), 4.14 (s, 1H), 3.88 (d, J=12.5, 1H), 3.73 (t, J=7.8, 2H), 3.39 (d, J=12.5, 1H), 3.09 

(s, 3H), 2.44 (dtd, J=14.8, 7.4, 4.9, 1H), 2.39 – 2.27 (m, 1H), 2.15 (s, 3H), . 

13C NMR (101 MHz, MeOD) δ = 175.8, 80.2, 74.9, 73.0, 66.5, 63.3, 54.8, 37.0, 30.9, 

23.1. 

*Note: TLC plate was saturated with NH3 vapor before running in the solvent mixture.  

 

 

Reactions: 

 

Temuline (1): 

Loline (2, 15 mg, 0.097 mmol, 1.0 eq.) was dissolved in H2SO4 (20 %, 1 mL). KMnO4 

(6.3 mg, 0.040 mmol, 0.40 eq.) dissolved in H2O (1 mL) was slowly added to the 

reaction mixture at 0 °C within 15 min. The mixture was stirred for 4 h at 0 °C and 18 h 

at ambient temperature. The reaction was cooled to 0 °C before another portion of 

KMnO4 (6.3 mg, 0.040 mmol, 0.4 eq.) in H2O (1 mL) was added to the reaction mixture 

within 15 min. The mixture was stirred for 2 h at ambient temperature. The reaction 

mixture was filtered through a pad of Celite and the filtrate was basified with NaOH (2 

mL, 2 M). The aqueous phase was extracted with CHCl3 (6 x 10 mL). The combined 

organic phases were concentrated in vacuo and purified by column chromatography on 

silica gel using chloroform/MeOH/Ammonia (9:1:0.1) as eluent to yield temuline (1, 3.8 

mg, 0.027 mmol, 28 %) as a yellow oil. 

 

TLC (10 % MeOH in CHCl3): Rf = 0.31 (Ninhydrine)* 

GC-MS tR = 6.6130 min, m/z 140 (EI (CI)) 
1H NMR (400 MHz, CHCl3z) δ = 4.40 (dd, J=4.4, 1.8, 1H), 3.87 – 3.82 (m, 1H), 3.63 – 

3.58 (m, 1H), 3.53 (dd, J=11.8, 1.1, 1H), 3.16 – 3.05 (m, 2H), 2.96 (ddd, J=12.9, 9.4, 

7.3, 1H), 2.44 (d, J=11.8, 1H), 2.09 – 1.96 (m, 2H), 1.92 (s, 2H). 
13C NMR (101 MHz, CDCl3): δ = 81.7, 76.3, 72.1, 61.0, 60.5, 54.6, 34.1. 

*Note: TLC plate was saturated with NH3 vapor before running in the solvent mixture.  
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N-formyl temuline (5): 

A mixture of formic acid (1.0 mL, 27 mmol, 124 eq.) and acetic anhydride (2.0 mL, 21 

mmol, 99 eq.) was stirred for 2 h at 55 °C and then added to temuline (1, 30 mg, 0.214 

mmol, 1 eq.). The reaction mixture was stirred at ambient temperature for 16 h and then 

treated with MeOH (5 mL) at 0 °C and stirred for 5 min. The reaction mixture was 

concentrated in vacuo. The crude product was purified by column chromatography on 

silica gel using chloroform/MeOH/Ammonia (9:1:0.1) as eluent to yield N-formyl temuline 

(5, 21 mg, 0.13 mmol, 58 %) as a yellow oil. 

 

TLC (10 % MeOH in CHCl3): Rf = 0.62 (Ninhydrine)* 

GC-MS tR = 7.670 min, m/z 168 (EI (CI)) 

HRMS: (ESI) calcd for C8H12N2O2 [M+H]+: 169,0977; found: 169.09717. 
1H NMR (400 MHz, CDCl3): δ = 8.19 (s, 1H), 6.98 (br, 1H), 4.56 – 4.42 (m, 2H), 4.26 

(d, J=1.9, 1H), 3.36 (d, J=11.8, 1H), 3.15 (ddt, J=12.3, 8.4, 4.3, 2H), 2.99 (ddd, 

J=12.9, 9.4, 7.4, 1H), 2.50 (d, J=10.0, 1H), 2.17 – 2.00 (m, 2H). 
13C NMR (101 MHz, CDCl3) δ = 161.4, 81.0, 73.9, 69.9, 61.0, 56.4, 54.7, 33.7. 

*Note: TLC plate was saturated with NH3 vapor before running in the solvent mixture.  

 

N-acetyl temuline acetic acid salt (6):  

A solution of azide (8, 21 mg 0.13 mmol, 1.0 eq.) and 10 % Pd/C (7.0 mg, 0.065 mmol, 

0.50 eq.) in THF (9 mL) was degassed with N2 in a sonicator for 5 minutes, then flushed 

with H2 and stirred for 3 h at rt under H2 atmosphere (balloon). The atmosphere was 

exchanged for N2 and Ac2O (22 mg, 0.22 mmol, 1.2 eq.) was added. The reaction 

mixture was stirred for 16 h at ambient temperature, filtered through a pad of Celite and 

the filtrate was concentrated in vacuo to afford N-Acetyl temuline acetate (6, 30 mg, 

0.18 mmol, 98 %) as a yellow oil.  

 

TLC (10 % MeOH in CHCl3): Rf = 0.62 (Ninhydrine)* 

GC-MS tR = 7.681 min, m/z 182 (EI (CI)) 
1H NMR (400 MHz, CHCl3) δ = 12.97 (s, 1H), 8.85 (d, J=6.2, 1H), 4.58 – 4.52 (m, 2H), 

4.41 (d, J=2.6, 1H), 3.70 (dd, J=11.9, 1.1, 1H), 3.65 – 3.58 (m, 1H), 3.25 (ddd, J=8.8, 

6.4, 2.9, 2H), 2.68 (d, J=11.9, 1H), 2.31 – 2.10 (m, 2H), 2.02 (s, 3H), 1.99 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ = 178.0, 171.7, 80.2, 74.0, 69.6, 61.0, 57.2, 53.7, 31.7, 

22.8, 22.6. 

*Note: TLC plate was saturated with NH3 vapor before running in the solvent mixture.  
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