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Abbreviations 

% percent 

3’UTR 3 Prime Untranslated Region 

AVP arginine vasopressin gene 

BDNF Brain-Derived Neurotrophic Factor 

CpG cytosine-guanine dinucleotide 

CRH Corticotrophin Releasing Hormone 

CTQ Childhood Trauma Questionnaire 

Delta-Age Epigenetic age acceleration, the difference between 

DNA methylation-predicted and chronological age 

DEX Dexamethasone 

DNA Deoxyribonucleic acid 

DNMT DNA methyltransferase 

FKBP5 FK506 binding protein 5 (gene and protein name) 

FKBP51 FK506 binding protein 51 kDa (protein name) 

GR Glucocorticoid Receptor (protein name) 

GRE Glucocorticoid Response Element 

HDAC Histone deacetylase 

HPA-axis Hypothalamus-Pituitary-Adrenal axis 

Hsp90 Heat shock protein 90 

IKK-α Nuclear factor Kappa-B Kinase subunit alpha 
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kb kilobase 

MDD Major Depressive Disorder or Major Depression 

MeCP2 MEthyl CpG binding Protein 2 

miRNA micro RNA 

mRNA messenger RNA 

n Number 

NF-κB nuclear factor kappa-light-chain-enhancer of 

activated B cells 

NFAT Nuclear Factor of Activated T-cells 

NIK NF-κB-Inducing Kinase 

p p-value 

PBMC Peripheral Blood MonoCytes 

PTSD Post-Traumatic Stress Disorder 

RNA Ribonucleic acid 

SNP Single Nucleotide Polymorphism 

TET Ten-Eleven Translocation enzymes 

TSS Transcription start site 
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Summary 

Psychological stress has been associated with accelerated cellular aging and increased disease 

risk, but the underlying molecular mechanisms remain elusive. The overarching goal of this 

thesis is to examine epigenetic regulation as a novel mechanism linking stress-related phenotypes 

with aging-related diseases. To achieve this goal, the thesis examines large human cohorts, 

where genome-wide DNA methylation and gene expression have been measured in peripheral 

blood, and which have detailed information on stress-related phenotypes, including childhood 

and lifetime stress, major depression, and posttraumatic stress disorder. The epigenetic effects of 

stress-related phenotypes are examined both 1) at the systems level, using a genome-wide 

measure of epigenetic aging, and 2) selectively at the stress-responsive FKBP5 gene. The results 

presented here show that stress-related phenotypes accelerate both epigenetic aging and aging-

related demethylation of the FKBP5 gene. By examining subjects exposed to glucocorticoid 

agonists, this work further illustrates that age-related DNA methylation sites may be susceptible 

to stress-induced dysregulation of glucocorticoid signaling. Furthermore, mechanistic dissection 

of these effects shows that the age- and stress-related epigenetic upregulation of FKBP5 may be 

associated with functional effects on gene expression, alterations in biological pathways critical 

for immune function and epigenetic regulation, and heightened risk for aging-related disease. 

Overall, these findings provide molecular insights into the mechanisms through which stress-

related phenotypes may contribute to disease risk. 
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Aims of the thesis 

The first aim of this thesis is to investigate whether stress-related phenotypes accelerate 

epigenetic changes as life progresses both at the genome-wide level and at stress-responsive 

genetic loci in peripheral blood. As a genome-wide marker of epigenetic aging, this work 

examines the DNA methylation-based age predictor, “epigenetic clock.” As a stress-responsive 

locus, it examines the gene encoding FK506 binding protein 51 (FKBP5), a co-chaperone and 

modulator of the glucocorticoid receptor complex.  

The second aim of the thesis is to mechanistically dissect the functional consequences of age- 

and stress-related epigenetic changes, by examining how these changes influence genome-wide 

and FKBP5 expression levels, and how changes in FKBP5 expression impacts downstream 

biological pathways. This aim is achieved by combining genome-wide gene expression data 

from humans with experiments in relevant cellular models.  

The third aim is to examine the relevance of these genomic effects on disease risk. This is 

achieved by examining how epigenetic and gene expression changes are associated with 

peripheral inflammation and cardiovascular disease phenotypes.  
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Overarching introduction 

Psychological stress and aging-related disease 

The increase in life expectancy over the last decades constitutes a major accomplishment of 

modern medicine, but it also results in an exponential rise in the number of older adults ―which 

is predicted to more than double over the next two decades (Prevention, 2013; Statistics, 2012)― 

and a concomitant explosion in the prevalence of aging-related diseases, including 

cardiovascular disease, cancer, and dementia. Because these conditions are worldwide the 

leading causes of morbidity and mortality (Niccoli and Partridge, 2012), it is important to gain 

understanding into how modifiable factors may impact healthy aging and shape risk for aging-

related diseases.  

A well-documented risk factor for aging-related disease is psychological stress. Increased 

risk for aging-related diseases has been observed in individuals exposed to excessive and chronic 

stress (Chandola et al, 2006; Peavy et al, 2009; Powell et al, 2011; Powell et al, 2013; Rozanski 

et al, 1999; Zannas et al, 2012), in individuals experiencing traumatic events during sensitive 

developmental periods, such as during childhood (Danese and McEwen, 2012; Danese et al, 

2008; Felitti et al, 1998), and in patients with stress-related psychiatric disorders, including 

major depression and posttraumatic stress disorder (Danese et al, 2008; Vaccarino et al, 2013). 

At the molecular level, studies show that stress can induce cellular aging as measured with 

telomere length. In particular, telomere shortening has been observed with a wide-range of 

stressors, including chronic caregiver stress (Epel et al, 2004; Litzelman et al, 2014), stress in 

utero and early life (Entringer et al, 2011; Entringer et al, 2013; Kananen et al, 2010; Savolainen 

et al, 2014), work stress (Ahola et al, 2012), and perceived stress (Parks et al, 2009; Puterman et 

al, 2010).  
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How could stress-related phenotypes increase risk for aging-related disease? A plausible 

mediator of this relationship could be the impact of stress on immune function and peripheral 

inflammation. This hypothesis is supported by studies showing heightened peripheral 

inflammation in association with childhood trauma (Danese et al, 2008; Danese et al, 2007), 

acculturative stress (Fang et al, 2014), and depressive syndromes (Danese et al, 2009; Danese et 

al, 2008). Because inflammation is a key process implicated in the pathogenesis of several aging-

related diseases (Franceschi and Campisi, 2014; Howcroft et al, 2013) and immune functions are 

influenced by stress responses (Danese et al, 2012), these studies overall suggest that 

psychological stressors of certain type, timing, and duration could contribute to accelerated aging 

and aging-related disease phenotypes, potentially through their effects on immune function and 

peripheral inflammation. However, the underlying mechanisms and the cascade of molecular 

events linking stress and aging are poorly understood. 

 

Epigenetic regulation through DNA methylation: a plausible mechanism linking stress and aging 

Among plausible molecular processes that could mediate the impact of stress on complex 

phenotypes, it is relevant to consider epigenetic regulation. Epigenetics is a composite term 

derived from the Greek prefix “epi-,” which means “over”, and “genetics.” In its modern use, 

epigenetics denotes the set of biological processes that regulate gene expression without 

influencing the underlying nucleotide sequence. The constantly growing repertoire of epigenetic 

processes includes various types of DNA methylation, posttranslational histone modifications, 

noncoding RNAs, and higher-order changes in chromatin conformation (Telese et al, 2013). 

Beyond their central role in mammalian development and cell differentiation, these processes 

collectively constitute a molecular interface, which can be shaped by environmental factors 
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(Telese et al, 2013), including stress exposure (Zannas and West, 2014), and can in turn 

contribute to regulation of genomic function and the expression of complex phenotypes, 

including diseases of the aging (Brunet and Berger, 2014). Consequently, epigenetic regulation 

represents a plausible mechanism to consider when examining the impact of stress exposure on 

aging-related disease phenotypes. 

Despite the epigenome’s ability to respond dynamically to environmental changes, a 

body of evidence in both humans and rodents shows that stress exposure across different life 

stages can result in lasting epigenetic modifications. More specifically, exposure to stress as 

early as in utero can induce profound changes in DNA methylation (Boersma et al, 2014; Cao-

Lei et al, 2014; Dong et al, 2015; Mychasiuk et al, 2011; Palacios-Garcia et al, 2015; Palma-

Gudiel et al, 2015; Schraut et al, 2014; Xu et al, 2014), histone modifications (Benoit et al, 

2015; Winston et al, 2014), and changes in the expression of miRNAs (Monteleone et al, 2014; 

Zucchi et al, 2013). Likewise, stressors occurring during childhood and adolescence can induce 

lasting changes in DNA methylation (Anier et al, 2014; Doherty et al, 2016; Houtepen et al, 

2016; Klengel et al, 2013; McGowan et al, 2009; Murgatroyd et al, 2009; Niwa et al, 2013; 

Ouellet-Morin et al, 2013; Perroud et al, 2011; Roth et al, 2009; Tyrka et al, 2012; Tyrka et al, 

2015; Unternaehrer et al, 2012; van der Knaap et al, 2014, 2015; Weaver et al, 2004; Weaver et 

al, 2006), histone modifications (Kao et al, 2012), miRNA changes (Zhang et al, 2015), and 

alterations in DNA-binding of the methyl CpG binding protein 2 (MeCP2) (Murgatroyd et al, 

2009). Lasting epigenetic changes have also been observed following stress exposure during 

adulthood, including DNA methylation changes (Alasaari et al, 2012; Elliott et al, 2010; Lam et 

al, 2012; Le Francois et al, 2015; Roth et al, 2011; Tran et al, 2013; Uchida et al, 2011; Ursini et 

al, 2011; Witzmann et al, 2012), histone modifications (Erburu et al, 2015; Nasca et al, 2015; 
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Renthal et al, 2007; Uchida et al, 2011), miRNA changes (Volk et al, 2016; Volk et al, 2014; 

Zhang et al, 2015), higher-order changes in chromatin conformation (Sun et al, 2015), and 

alterations in MeCP2 binding to DNA (Uchida et al, 2011). Notably, the epigenetic 

modifications associated with stress can, in many cases, last long after stressor exposure, 

potentially persisting throughout life and even across generations. This has been observed for 

several epigenetic modifications, including changes in DNA methylation, histone modifications, 

and miRNA changes (Dias and Ressler, 2014; Montagud-Romero et al, 2016; Rodgers et al, 

2013; Rodgers et al, 2015; Yehuda et al, 2015). 

Among epigenetic modifications associated with stress exposure, this thesis focuses on 

the role of DNA methylation that occurs at the 5’ cytosine of cytosine-guanine dinucleotides 

(CpG), for simplicity denoted hereafter as DNA methylation. Following the advent of genome-

wide methylation arrays, DNA methylation has become the most widely studied epigenetic 

modification in human cohorts. DNA methylation was initially considered a stable epigenetic 

change, but was subsequently shown to be a reversible process that responds dynamically to 

environmental factors. Increases in DNA methylation are mediated by DNA methyltransferases 

(DNMTs), whereas DNA methylation decreases are effected by enzymes involved in active 

demethylation, such as the TET family of 5-methylcytosine dioxygenases (Telese et al, 2013). 

Despite the dynamic nature of DNA methylation signatures, certain methylation markers can be 

stabilized during life and even across generations (Dias et al, 2014; Gassen et al, 2016; Yehuda 

et al, 2015), thereby exerting long-term influence on genomic function and potentially 

contributing to the development of complex phenotypes.  

While these observations suggest that DNA methylation holds promise as biomarker of 

stress-related disease, an inherent limitation is that, like all epigenetic processes, DNA 
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methylation shows considerable cell and tissue specificity. Therefore, although some epigenetic 

signatures may show similar patterns across multiple tissues (Capra, 2015; Hannon et al, 2015; 

Horvath, 2013), changes in DNA methylation modifications should be examined, when feasible, 

in the tissue implicated in the disease phenotype under study. In the present thesis, this limitation 

is partly overcome by assessing DNA methylation changes in peripheral blood monocytes 

(PBMC), a tissue that plays central role in orchestrating immune responses and is highly relevant 

for examining the impact of stress on peripheral inflammation and aging-related disease 

phenotypes.  

 

DNA methylation as biomarker of aging-related disease phenotypes 

Aging is associated with widespread changes in DNA methylation (Bjornsson et al, 2008; 

Christensen et al, 2009; Hernandez et al, 2011; Heyn et al, 2012; Horvath, 2013; Horvath et al, 

2012; Rakyan et al, 2010). The pattern of these changes shows substantial variability along the 

human lifespan. Advancing age is generally associated with increasing inter-individual 

variability in DNA methylation levels, and there is an overall increase in DNA methylation 

levels in early life with subsequent decline later in life (Hannum et al, 2013; Herbstman et al, 

2013; Heyn et al, 2012; Li et al, 2010; Talens et al, 2012; Weidner et al, 2014). Despite these 

age-related changes in global methylation, the pattern of DNA methylation changes also varies 

across distinct sites. For example, methylation sites that are not located in CpG islands and those 

with high methylation levels tend to decrease with increasing age (Christensen et al, 2009; Heyn 

et al, 2012; Weidner et al, 2014), whereas methylation sites located in CpG islands and with low 

methylation levels tend to increase with advancing age (Heyn et al, 2012; Rakyan et al, 2010; 

Weidner et al, 2014). Age-related changes in DNA methylation have in most cases been 



Epigenetics of stress and aging   14 

 

examined in peripheral blood (Bjornsson et al, 2008; Christensen et al, 2009; Florath et al, 2014; 

Heyn et al, 2012; Horvath, 2013; Horvath et al, 2012; Rakyan et al, 2010; Talens et al, 2012; 

Weidner et al, 2014), and studies suggest that they hold promise as biomarkers for aging 

research (Bell et al, 2012; Issa, 2014; Langevin et al, 2014; Poulsen et al, 2007). Furthermore, 

the role of DNA methylation as biomarker has been supported by studies showing that the DNA 

methylation changes observed in tissues implicated in aging-related diseases, such as cancer 

tissues and atherosclerotic arteries, show striking similarities with age-related methylation 

changes, including global decreases in methylation and CpG-island hypermethylation (Castillo-

Diaz et al, 2010; Jones and Baylin, 2007). Beyond their potential role as biomarkers, age-related 

epigenetic changes have been further proposed to represent a hallmark of the aging process 

(Benayoun et al, 2015; Lopez-Otin et al, 2013). 

Among potential DNA methylation-based biomarkers of aging, promise has been shown 

for the composite predictors of chronological age, which are calculated by integrating the 

methylation status of multiple CpGs across the genome that strongly correlate with age 

(Bocklandt et al, 2011; Florath et al, 2014; Hannum et al, 2013; Horvath, 2013; Koch and 

Wagner, 2011; Weidner et al, 2014). Among these DNA methylation-based age predictors, 

particular promise has been shown for the so-called “epigenetic clock,” a predictor comprised of 

353 CpGs (Horvath, 2013), which robustly correlates with chronological age across multiple 

human tissues. Despite the strong correlations between the DNA methylation (epigenetic clock)-

predicted age and chronological age, some individuals show substantial differences between the 

two, and this difference (Delta-Age) has been proposed as a measure of accelerated epigenetic or 

biological aging (Horvath, 2013). Notably, since the introduction of this measure in aging 

research, accumulating evidence shows that accelerated epigenetic aging is associated with a 
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host of aging-related phenotypes, including physical and cognitive decline (Levine et al, 2015b; 

Marioni et al, 2015b; Wolf et al, 2015), cancer incidence and outcomes (Levine et al, 2015a; 

Perna et al, 2016; Zheng et al, 2016), frailty in the elderly (Breitling et al, 2016), osteoarthritis 

(Vidal-Bralo et al, 2016), Parkinson’s disease (Horvath and Ritz, 2015), menopause (Levine et 

al, 2016), obesity (Horvath et al, 2014), cardiovascular disease (Perna et al, 2016), and all-cause 

mortality (Chen et al, 2016; Marioni et al, 2016; Marioni et al, 2015a; Perna et al, 2016). 

Although these observations show that age-related DNA methylation changes are 

associated with disease phenotypes, the exact cascade of molecular events that drives these 

changes is elusive. Because age-related DNA methylation changes may result from a complex 

interplay among genetic and environmental factors (Fraga et al, 2005; Gronniger et al, 2010; 

Hannum et al, 2013; Horvath, 2013; Lu et al, 2016), stress exposure and stress-related 

phenotypes could contribute to these changes, accounting to an extent for the inter-individual 

variability in disease risk. The molecular mechanisms driving these changes may be distinct 

across different methylation sites; for example, senescence-associated transcription factors may 

be involved in sites where methylation rises (Hanzelmann et al, 2015), whereas downregulation 

of DNMT1 appears to play central role in sites where methylation declines with advancing age 

(Li et al, 2010). The following section discusses potential mechanisms through which 

psychological stress may drive epigenetic changes and, in particular, lasting changes in DNA 

methylation. 

 

HPA axis and glucocorticoid signaling as molecular effectors of stress 

Psychological stress triggers a set of behavioral, hormonal, neural, and molecular responses that 

can have profound effects on body tissues. A primary effector of the stress response, and the 
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focus of this thesis is the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis is set into 

motion by the hypothalamus, a brain region that secretes corticotropin-releasing hormone and 

arginine vasopressin, thereby signaling the anterior pituitary to secrete adrenocorticotropic 

hormone (ACTH) (Chrousos and Gold, 1992). ACTH in turn triggers adrenal release of 

glucocorticoids, cortisol in humans, in the periphery. Homeostatic regulation of the HPA axis is 

essential, and HPA dysregulation has been linked with increased risk for behavioral and somatic 

disease phenotypes in both humans and rodents (Barha et al, 2011; Bourke and Neigh, 2011; de 

Kloet et al, 2006; Heim et al, 2008; Jankord et al, 2011). Such dysregulation can occur upon 

exposure to stressors of certain duration, intensity, type, and timing (Tsigos and Chrousos, 

2002); for example, chronic stress deregulates the circadian and ultradian rhythmicity of 

glucocorticoid secretion (Lightman, 2008). Consequently, dysregulated HPA axis and 

glucocorticoid secretion represent a prime mechanism for examining the molecular effects of 

stress on body tissues. 

While glucocorticoids can have both genomic and nongenomic effects on target tissues 

(Uchoa et al, 2014), their genomic effects are to a large extent mediated by the glucocorticoid 

receptor (GR). The GR primarily functions as a ligand-dependent transcription factor that 

regulates gene transcription either through direct binding to conserved DNA sequences called 

glucocorticoid response elements (GRE) or through interactions with other transcription factors 

that can be GRE-dependent or -independent (Vockley et al, 2016). Beyond the rapid regulation 

of gene transcription, however, the genomic actions of glucocorticoids can also result in lasting 

epigenetic modifications. The most widely described epigenetic effect of glucocorticoids is the 

rapid demethylation, which can result in global methylation decreases (Bose et al, 2010; Bose et 

al, 2015), but most strikingly occurs within or near GREs (Klengel et al, 2013; Thomassin et al, 
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2001; Wiench et al, 2011a; Wiench et al, 2011b). Glucocorticoid-induced hypermethylation has 

also been observed, most notably in promoter CpGs (Niwa et al, 2013). The mechanisms 

underlying these effects are largely unknown; however, glucocorticoids have been shown to 

upregulate the Tet family of 5-methylcytosine dioxygenases (TET) (Bose et al, 2015; Sawamura 

et al, 2015), which actively demethylate DNA, and to downregulate the maintenance 

methyltransferase DNMT1 (Yang et al, 2012) and the methyltransferase DNMT3a (Bose et al, 

2015). Besides changes in DNA methylation, glucocorticoids can also induce changes in histone 

methylation and acetylation, which can occur at sites of direct GR binding (Vockley et al, 2016), 

or through the interactions of the GR with other transcription factors and the consequent 

recruitment of histone modifiers to target genomic sites (Di Stefano et al, 2015; Zannas and 

Chrousos, 2015b). Glucocorticoids can also regulate several miRNAs (Dwivedi et al, 2015; Ko 

et al, 2015), and can induce chromatin remodeling, thereby changing accessibility of GR-binding 

sites to transcription factors (Vockley et al, 2016). Despite these observations, the mechanisms 

through which glucocorticoids modulate the epigenetic machinery are poorly understood. 

An important conclusion drawn from studies to date is the potential of time-limited 

glucocorticoid exposure to exert long-lasting effects on the epigenome. This is supported by 

work in both cell lines and rodents showing that changes in DNA methylation can last long after 

cessation of glucocorticoid exposure (Bose et al, 2010; Bose et al, 2015; Lee et al, 2010; Niwa et 

al, 2013). These lasting effects are thought to represent a “molecular memory” that can influence 

subsequent responses to glucocorticoids, ultimately shaping genomic function and phenotypic 

expression (Klengel et al, 2013; Thomassin et al, 2001; Wiench et al, 2011a; Wiench et al, 

2011b; Zannas et al, 2014). As discussed above, these principles parallel the observation that 

psychological stress, which dysregulates glucocorticoid secretion, can induce long-lasting 
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epigenetic modifications that can persist throughout life and even across generations (Dias et al, 

2014; Gassen et al, 2016; Yehuda et al, 2015). Because epigenetic changes can influence 

genomic function and phenotypic expression, this work highlights that DNA methylation is an 

important mechanism that may underlie the pathogenesis of stress-related disease phenotypes.  

 

FKBP5: a stress- and glucocorticoid-responsive immunophilin  

As highlighted above, the lasting effects of stress on the epigenome are likely to occur at 

genomic sites that are targeted by the GR. Therefore, beyond examining the association of stress-

related disease phenotypes with epigenetic markers derived from genome-wide approaches, such 

as the epigenetic clock, it is also relevant to determine how stress throughout life epigenetically 

regulates selective glucocorticoid-responsive loci. One such locus is the gene encoding FK506 

binding protein 51 (FKBP5/FKBP51), which is the most robustly induced gene upon 

glucocorticoid exposure in peripheral blood (Menke et al, 2012). As suggested by its 

responsivity to glucocorticoids, upregulation of FKBP5 can result from stress-induced DNA 

demethylation that occurs at CpGs within or near FKBP5 GREs (Klengel et al, 2013; Lee et al, 

2010; Lee et al, 2011). Consequently, a plausible hypothesis is that persistent stress or multiple 

stressors accumulating throughout life could lead to sustained epigenetic upregulation of FKBP5. 

Furthermore, it is plausible that FKBP5 could itself influence downstream components of the 

epigenetic machinery, mediating some of the effects of stress on the epigenome. 

FKBP5 is a 51-kDa immunophilin that was originally named after its ability to bind the 

immunosuppressant drug FK506 (Wiederrecht et al, 1992), but it is best known for its ability to 

function as a co-chaperone and modulator of the glucocorticoid receptor complex (Zannas et al, 

2016).  More specifically, FKBP5 has been shown to exert intracellular negative feedback on GR 
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function, by delaying nuclear translocation and decreasing transcriptional activity of the GR 

(Wochnik et al, 2005). The ability of FKBP5 to modulate the GR complex stems from its 

function as a co-chaperone that interacts with and influences the folding of other members of the 

steroid receptor complex, most notably the heat shock protein 90 (Hsp90) and the P23 protein 

(Schiene-Fischer and Yu, 2001). The result of these molecular effects is that changes in FKBP5 

levels can lead to altered GR sensitivity, an effect that in turn could have important implications 

for stress-related disease phenotypes. 

 In particular, a body of evidence shows that FKBP5 upregulation may be associated with 

a number of aberrant phenotypes, including aging-related disease phenotypes (Binder et al, 2008; 

Blair et al, 2013; Kim et al, 2012; Klengel et al, 2013; Pereira et al, 2014; Romano et al, 2004; 

Romano et al, 2010; Sinclair et al, 2013). The potential of FKBP5 upregulation to contribute to 

aberrant phenotypes could result from its downstream effects on diverse biological pathways 

(Zannas et al, 2016). Among processes influenced by FKBP5, studies in cells and mice have 

shown that it can influence immune pathways, including the NF-κB  (nuclear factor kappa-light-

chain-enhancer of activated B cells) and the calcineurin/NFAT (nuclear factor of activated T-

cells) signaling pathways (Avellino et al, 2005; Baughman et al, 1995; Bouwmeester et al, 2004; 

Daudt and Yorio, 2011; Erlejman et al, 2014; Giordano et al, 2006; Kim et al, 2012; Li et al, 

2002; Maiaru et al, 2016; Park et al, 2007; Romano et al, 2004; Romano et al, 2010; Romano et 

al, 2015; Srivastava et al, 2015; Weiwad et al, 2006).  Because immune dysregulation is a 

potential process linking stress and disease risk, together these studies suggest that the impact of 

FKBP5 on immune pathways could be one molecular mechanism through which stress 

contributes to somatic phenotypes along the lifespan. However, this hypothesis has not been 

examined in living humans. 
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Lifetime stress accelerates epigenetic aging
in an urban, African American cohort:
relevance of glucocorticoid signaling
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Abstract

Background: Chronic psychological stress is associated with accelerated aging and increased risk for aging-related

diseases, but the underlying molecular mechanisms are unclear.

Results: We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock.

After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not

childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African

American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with

advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these

epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of

epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the

functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA

methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor

agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these

CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment

analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including

coronary artery disease, arteriosclerosis, and leukemias.

Conclusions: Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by

glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking

chronic stress with accelerated aging and heightened disease risk.

Keywords: Aging, Aging-related disease, DNA methylation, Epigenetics, Gene expression, Glucocorticoids,

Psychological stress

Background

The last decades have witnessed a dramatic increase in

life expectancy. As a result, the number of older adults

is predicted to more than double over the next two

decades [1, 2]. While this increase in life expectancy

is undoubtedly one of the biggest achievements of

modern medicine, population aging also brings forth

an unprecedented increase in aging-related diseases,

including cardiovascular disease, cancer, and dementia

[3]. Given that these conditions are currently the

leading causes of morbidity and mortality, it is im-

perative to gain insights into factors that impact healthy

aging and contribute to aging-related diseases.

An important risk factor for accelerated aging and

aging-related diseases is psychological stress. Although

stressors are ubiquitous in nature and necessary for

survival [4], excessive and chronic stress has been associ-

ated with accelerated cellular aging [5, 6] and increased
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risk for aging-related disease phenotypes, including car-

diovascular disease, immune dysregulation, and late-life

neuropsychiatric disorders [7–12]. Furthermore, stressors

occurring during sensitive developmental periods, such as

childhood maltreatment, have been linked with later

development of aging-related diseases [13–15]. Lastly,

stress-related psychiatric disorders, including major de-

pression and post-traumatic stress disorder (PTSD), are

themselves risk factors for such diseases [15, 16]. Despite

these observations, the molecular mechanisms linking

psychological stress with accelerated aging and aging-

related diseases remain largely unknown.

One plausible mechanism that may mediate the ad-

verse effects of stress on the aging process is epigenetic

regulation. Long-term epigenetic changes can be in-

duced by environmental stimuli, including psychological

stressors, and can shape complex phenotypes [17]. The

most studied epigenetic modification in this context is

DNA methylation. Stressors can induce lasting changes

in DNA methylation [18, 19], an effect that is in part

mediated by the genomic effects of glucocorticoids, a

primary molecular effector of the stress response [20].

Glucocorticoids exert actions in essentially every body

organ via activation of the glucocorticoid receptor (GR),

a transcription factor that regulates gene expression by

the binding of its homodimer to glucocorticoid response

elements (GREs) in regulatory regions of target genes

[21]. Beyond regulating gene transcription, GRE binding

can locally induce lasting changes in DNA methylation,

a form of molecular memory that shapes subsequent re-

sponses to glucocorticoids and stressors [17, 18, 22–24].

Therefore, it is plausible that stress and glucocorticoid

exposure throughout the lifetime could impact cellular

aging via cumulative effects on aging-related DNA

methylation sites.

Aging and aging-related diseases are associated with

profound changes in DNA methylation [25–31]. Rec-

ognizing the importance of DNA methylation in the

aging process has led to recent development of several

DNA methylation-based predictors of aging [27, 32–34].

Among these, a composite predictor comprised of 353

Cytosine-phosphate-Guanosine sites (CpGs) across the

genome (‘epigenetic clock’) was shown to strongly correl-

ate with chronological age across multiple tissues in

humans [27], suggesting its usefulness as a biomarker in

aging-related research. Using this predictor, accelerated

epigenetic aging (Δ-age), defined as the difference be-

tween DNA methylation-predicted age (DNAM-age)

and chronological age, has been associated with

aging-related and other phenotypes, including cancer,

obesity, cytomegalovirus infection, Down’s syndrome,

PTSD, physical and cognitive decline, all-cause mortality,

and the presence of higher self-control and lower socio-

economic status [27, 35–41]. However, no studies have

examined the relationship between this predictor and cu-

mulative lifetime stress nor the potential molecular mech-

anisms underlying this relationship.

In the present study, we first show that cumulative

lifetime stress, but not childhood or current stress alone,

is associated with accelerated epigenetic aging in a

cohort of highly traumatized African American individ-

uals. Examining GR signaling as a potential mechanism

underlying this effect, we identify that a high number of

epigenetic clock CpGs are located within functional

GREs and show dynamic methylation changes following

GR activation by exposure to the GR agonist dexametha-

sone (DEX). Lastly, we show that genes neighboring

these CpGs are dynamically regulated by DEX and that

these DEX-regulated genes show enriched association

for aging-related diseases. Taken together, our findings

support a model of stress-induced acceleration of epi-

genetic aging, overall contributing to our understanding

of mechanisms linking chronic stress with accelerated

aging and heightened disease risk.

Results
Prediction of chronological age using the epigenetic clock

DNAM-age was calculated from peripheral blood from

two independent samples, derived from the Grady

Trauma Project (GTP) and the Max Planck Institute of

Psychiatry (MPIP) cohorts using genome-wide Illumina

HumanMethylation450 BeadChips (450 K), as previously

described [27]. Given that the GTP primarily comprises

(>90 %) African American participants, we excluded

other ethnicities to minimize confounders. This resulted

in a total of 393 participants with DNAM-age data. In

contrast, the MPIP cohort consists only of Caucasian

participants with a total of 124 participants with base-

line DNAM-age data. The mean (SD, range) age was

41.33 years (12.85, range 18 to 77 years) for the GTP

and 39.5 years (14.14, range 21 to 71 years) for the

MPIP. The n (%) of female participants was 278

(70.7 %) for the GTP and 44 (35.5 %) for the MPIP.

To validate the epigenetic clock predictor in our co-

horts, we correlated DNAM-age with chronological

age as previously described [27]. This correlation was

strong for both the GTP (r = 0.90, P <2.2 × 10−16)

(Fig. 1a) and MPIP (r = 0.94, P <2.2 × 10−16) cohorts

(Fig. 1b) and proved robust and similar for both gen-

ders (r = 0.89 for male vs. r = 0.90 for female in the

GTP; r = 0.95 for male vs. r = 0.94 for female in the

MPIP).

Epigenetic age acceleration is associated with cumulative

lifetime stress, but not childhood or current stress alone,

in an urban, African American cohort

We then hypothesized that epigenetic age acceleration

(Δ-age), calculated by subtracting the actual chronological
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age from DNAM-age [27], would be positively associated

with exposure to life stress. This hypothesis was tested in

the highly traumatized GTP cohort. The mean (SD, range)

Δ-age in the GTP was –0.13 years (5.69, range –17.31 to

43.98 years). A total of 304 GTP participants had data

on lifetime stressors assessed by the Stressful Events

Questionnaire (SEQ) and 386 participants had data

on childhood maltreatment assessed by the Childhood

Trauma Questionnaire (CTQ). The individual items

from the SEQ were summed to yield a total score of

lifetime stress exposure (Life Stress), and a similar

total score was generated for the CTQ (Child Stress).

The SEQ additionally assesses stressor exposure over

the last year, and these items were summed to yield a

score of more recent stress exposure (Current Stress).

Linear regression models controlling for sex and age

showed that Life Stress was positively associated with

Δ-age (β = 0.24, SE = 0.08, P = 2.8 × 10−3), and this ef-

fect remained significant after further controlling for

Houseman blood cell counts and technical batch ef-

fects (β = 0.18, SE = 0.08, P = 1.8 × 10−2) (Fig. 2a), life-

style parameters, including body mass index, smoking,

alcohol, cocaine, marijuana, and heroin use (β = 0.31,

SE = 0.11, P = 7.4 × 10−3), as well depressive symptom-

atology, psychiatric treatments, and genome-wide

SNP-based principal components (β = 0.28, SE = 0.13,

P = 2.7 × 10−2).

In secondary analyses, we examined whether the effect

of lifetime stress on age acceleration depends on the

type of stressor and other moderating variables. Based

on previous work distinguishing between life events that

affect the individual directly vs. life events that affect

one’s social network [42], we separately summed SEQ

items assessing personal life events (Personal Life

Stress) and items assessing network events (Network

Life Stress). Δ-age showed a positive and significant

association with Personal Life Stress (β = 0.26, SE = 0.10,

P = 8.7 × 10−3) (Fig. 2b) and a positive but not significant

association with Network Life Stress (P = 1.1 × 10−1)

(Fig. 2c). No significant interactions were noted between

Life Stress or Personal Life Stress and either sex or age.

However, stratification of the GTP by a median split of

age showed that the effect of Personal Life Stress on Δ-age

was marginally stronger in older (β = 0.33, SE = 0.17,

P = 5.3 × 10−2) (Fig. 2d) as compared to younger par-

ticipants (β = 0.15, SE = 0.14, P = 2.8 × 10−1) (Fig. 2e).

On the other hand, Δ-age was not associated with ei-

ther CTQ score (P = 4 × 10−1) or Current Stress alone

(P = 1.3 × 10−1). However, when participants were

stratified based on the severity of childhood maltreat-

ment, only individuals exposed to lower levels (none

or mild) of sexual and physical childhood abuse

(based on respective CTQ subscale scores) showed

significant effects of Life Stress on Δ-age (Fig. 2f ).

This was not a consequence of differential stress

exposure burden between the two groups, since, as

expected, individuals exposed to higher levels of

childhood abuse also had higher levels of Life Stress

with a mean (SD) Life Stress of 12.32 (3.64) as com-

pared to 10.01 (3.76) in individuals with lower levels

of childhood abuse (t299 = 5.38, P = 1.5 × 10−7). Fur-

thermore, the two strata showed similar correlations

between DNAM-age and chronological age (r = 0.91

for higher vs. 0.92 for lower abuse, Fisher z score = 0.6, P =

5.5 × 10−1). Lastly, we found no association between Δ-age

and current stress-related psychiatric phenotypes, including

depressive (P = 3.4 × 10−1) and PTSD symptomatology (P =

7.9 × 10−1) in the GTP. In line with this finding, depression

diagnosis was not associated with Δ-age in the MPIP co-

hort (P = 2.3 × 10−1, n = 72 controls vs. 52 depressed).

Taken together, these findings show that cumulative life-

time stress, but not childhood trauma or current stress

alone, is associated with accelerated epigenetic aging, an

effect that is primarily driven by personal life events, may

be more evident in advancing ages, and is blunted in par-

ticipants exposed to high levels of childhood abuse.

Fig. 1 Correlation between chronological age and age predicted by

DNA methylation-based predicted age in two independent cohorts.

a GTP cohort (n = 393). b MPIP cohort (n = 124)
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Epigenetic clock CpGs and neighboring genes are

regulated by GR activation and show enriched association

with aging-related diseases

The effect of lifetime stress on epigenetic aging prompted

us to examine susceptibility of individual epigenetic clock

CpGs to glucocorticoids, a primary molecular effector of

stress responses, as a potential mechanism underlying this

association. To address this hypothesis, we first examined

whether epigenetic clock CpGs show DNA methylation

changes 3 h after oral exposure to a GR agonist (1.5 mg of

DEX) in the independent MPIP cohort (n = 124). After

correcting for multiple testing, 110 of the 353 CpGs

showed statistically significant methylation changes (false

discovery rate (FDR)-adjusted P <5 × 10−2). Among the

DEX-regulated CpGs, 98 (89 %) showed decrease in

methylation, whereas 12 (11 %) showed increase in

methylation (Additional file 1: Table S1). We next ex-

amined the effect of acute DEX exposure on the epi-

genetic clock by comparing DNAM-age at baseline vs.

3 h after DEX exposure (n = 124). There was no effect

of DEX on DNA methylation-predicted age (baseline

mean DNAM-age = 45.24 vs. post-DEX mean DNAM-

age = 45.15, paired t123 = 0.31, P = 7.6 × 10−1).

Given that GR binding to GREs can exert changes in

DNA methylation, we then examined whether epigenetic

clock CpGs co-localize with GREs. Among the 353 epi-

genetic clock CpGs, 85 CpGs were located within GREs

as defined by CHIP-Seq peaks in a lymphoblastoid cell

line (LCL) (Additional file 1: Table S1). This CpG-GRE

co-localization significantly differed from the one ex-

pected by chance as determined by randomly drawing

1,000 sets (n = 353 CpGs) of CpG sites from all CpGs

present on the 450 K array (expected mean 48.8, SD 6.1,

range 31 to 68, pperm <1 × 10−3) (Fig. 3a). Proximity to

GREs was particularly observed for DEX-regulated CpGs

(Fig. 3b), with 17 of these sites located right within GREs

and 35 within 1 kb distance from GREs. Because the 353

CpGs were originally derived from the 21,369 (21 K)

CpGs that overlap the 27 K and 450 K Illumina arrays

[27], we next examined whether the epigenetic clock

Fig. 2 Cumulative lifetime stress is associated with epigenetic age acceleration in a highly traumatized human cohort derived from the Grady

Trauma Project. Epigenetic age acceleration (Δ-age) was calculated by subtracting chronological age from DNA methylation predicted age. Δ-age

was regressed on cumulative lifetime stress (Life Stress) after adjusting for covariates (fitted stress measures are shown). a Life Stress was positively

associated with epigenetic age acceleration (β = 0.18, SE = 0.08, P = 1.8 × 10−2), and this association remained significant after further controlling for

lifestyle parameters, including body mass index, smoking, alcohol, cocaine, marijuana, and heroin use (β = 0.31, SE = 0.11, P = 7.4 × 10-3), as well

depressive symptomatology, psychiatric treatments, and genome-wide SNP-based principal components (β = 0.28, SE = 0.13, P = 2.7 × 10−2).

Statistically significant association was found for Personal Life Stress (β = 0. 26, SE = 0.10, P = 8.7 × 10−3) (b), whereas the effect of Network

Life Stress was not significant (P= 1.1 × 10−1) (c). Age stratification by a median split showed that the effect of Personal Life Stress on Δ-age was stronger in

older (β = 0.33, SE = 0.17, P = 5.3 × 10−2) (d), as compared to younger participants (β = 0.15, SE = 0.14, P = 2.8 × 10−1) (e). Stratification of the

effect of cumulative life stress on epigenetic age acceleration based on the presence or not of moderate to severe physical or sexual

child abuse showed that Life Stress was positively associated with Δ-age in participants with no or mild physical and sexual child abuse

(β = 0.34, SE = 0.11, P = 2.5 × 10−3, n = 212) but not in those with moderate to extreme child abuse (P = 3.9 × 10−1, n = 174) (f)
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CpG-GRE co-localization differs from the one present in

the 21 K background. Epigenetic clock CpG-GRE co-

localization did not differ from the one expected by

chance when randomly drawing 1,000 CpG sets (n = 353

CpGs) from the 21 K CpG sites (expected mean 3,094,

SD 50.7, range 2,927–3,270, pperm = 9.7 × 10−1). Given

that this lack of enrichment could be the result of high

CpG-GRE co-localization already present in the 21 K, as

a last step we compared the co-localization present in

the 21 K with the 450 K background and we noted sig-

nificantly higher CpG-GRE co-localization in the 21 K

as compared to the 450 K background (pperm <1 × 10−3).

These findings suggest that the increased epigenetic

clock CpG-GRE co-localization is a more general

property of the 21 K CpGs used to develop the epigen-

etic clock. Yet the presence of a high number of epigen-

etic clock CpGs within functional GREs is in line with

our hypothesis that these sites may be highly susceptible

to GR activation.

We then assessed whether genes that have transcrip-

tion start sites (TSS) in the proximity of epigenetic clock

CpGs are also dynamically regulated by GR activation.

For this purpose, we used peripheral blood genome-wide

gene expression array data in the MPIP cohort to exam-

ine the DEX-induced changes in the expression of genes

with transcription start sites (TSS) close to epigenetic

clock CpGs based on the 450 K annotation from [43].

Using these criteria, we annotated 344 unique genes. Of

these, 333 genes were present on the gene expression

microarray and a total of 170 genes, corresponding to

220 epigenetic clock CpGs, were expressed above back-

ground in the MPIP cohort (Additional file 2: Table S2).

Transcription of these genes was detected by 216 unique

gene expression array probes. After FDR-based correc-

tion for multiple testing, 167 out of the 216 detected

probes, corresponding to 139 unique genes (81.7 %),

showed significant changes in gene expression following

DEX exposure (FDR-adjusted P values <0.05) (Fig. 4).
Fig. 3 Epigenetic clock CpGs co-localize with functional glucocorticoid

response elements (GREs) and show methylation changes following

GR activation. a Epigenetic clock CpGs co-localize with functional GREs.

GRE peaks were derived from ENCODE NR3C1 ChIP-seq data

from lymphoblastoid cell lines. Among the 353 epigenetic clock

CpGs, 85 CpG sites were noted to be located within GR ChIP-Seq peaks

in a lymphoblastoid cell line (shown with the red dotted line)

(Additional file 1: Table S1). This number significantly differed

(pperm <0.001) from the CpG-GRE overlap predicted by 1,000 randomly

selected sets of CpGs covered by the 450 K array (mean 48.8, SD 6.14,

range 31 to 68). b Epigenetic clock CpGs that are significantly

regulated by DEX exposure are in proximity to GREs. GRE peaks

were derived from ENCODE NR3C1 ChIP-seq data from lymphoblastoid

cell lines. Volcano plot was zoomed for +/− 10 kb distance around the

GRE peaks. The dotted red line in the volcano plot represents the level

of statistical significance (P = 5 × 10−2) after FDR correction for multiple

comparisons. Further details on DEX-regulated CpGs are given in

Additional file 1: Table S1

Fig. 4 Glucocorticoid receptor activation regulates the expression of

genes with transcription start sites (TSS) near epigenetic clock CpGs.

Gene TSS near epigenetic clock CpGs were identified based on the

annotation from [43]. The volcano plot shows DEX-induced fold change

in gene expression plotted against their corrected P values (q values).

The dotted red line represents the corrected level of statistical

significance (q = 5 × 10−2) after FDR correction for multiple comparisons.

Among the 216 unique array probes, 167 probes, corresponding to 139

unique genes, showed significant changes in gene expression following

DEX. Fifty-eight per cent of these probes (n = 97) showed upregulation

and 42 % (n = 70) showed downregulation. The mean (SD, range)

distance of each regulated gene TSS to the corresponding epigenetic

clock CpGs was ±419.3 bp (336.65 bp, range 1 to 1,423 bp). Marked in

red are the probes showing fold changes in gene expression >1.1.

Further details are provided in Additional file 2: Table S2

Zannas et al. Genome Biology  (2015) 16:266 Page 5 of 12



Fifty-eight per cent of these probes (n = 97) showed up-

regulation and 42 % (n = 70) showed downregulation.

The mean (SD, range) distance of each regulated gene

TSS to the corresponding epigenetic clock CpGs was

±419.3 bp (336.65 bp, range 1 to 1,423 bp). To rule out

potential bias derived from the 21 K background, we

then asked whether genes neighboring epigenetic clock

CpGs are more responsive to GR activation compared to

genes neighboring the 21 K CpGs. A total of 5,443

unique genes, corresponding to 21,015 21 K CpGs,

showed significant DEX-induced mRNA expression

changes (FDR-adjusted P values <5 × 10−2). The number

of DEX-regulated genes was significantly higher for the

genes with TSS close to epigenetic clock CpGs as com-

pared to 21 K CpGs (Fisher’s exact test P = 6.3 × 10−5).

Taken together, these data demonstrate enhanced

responsivity of genes neighboring epigenetic clock CpGs

to GR activation.

Lastly, we performed disease enrichment analysis in

WebGestalt using the set of unique DEX-regulated genes

(n = 139) as the input for the analysis and the genes

expressed above background in our peripheral blood

gene expression arrays as the reference set of genes.

After FDR correction for multiple testing, this resulted

in enriched association for aging-related diseases, includ-

ing coronary artery disease, arteriosclerosis, and leuke-

mias (FDR-adjusted P <5 × 10−2 each) (Additional file 3:

Table S3).

Discussion

The present study sought to determine the effect of life

stressors on epigenetic aging, as measured with the epi-

genetic clock [27] in peripheral blood samples. While

previous studies found associations of the epigenetic

clock with several phenotypes [27, 35–41], this is the

first study to use this predictor in a highly traumatized

cohort. As hypothesized, accelerated epigenetic aging

was associated with cumulative lifetime stress burden.

Given that epigenetic effects of the stress response can

be mediated by GR signaling, we further examined the

molecular basis of this association by annotating epigen-

etic clock CpG sites in relation to GREs and examining

the impact of GR activation on these sites. We found

that GREs co-localize with epigenetic clock CpGs and

that glucocorticoid activation can induce dynamic

methylation changes of these sites as well as changes in

the expression of genes neighboring epigenetic clock

CpGs. Taken together, these converging findings support

a model of stress-induced accelerated epigenetic aging,

plausibly mediated by the lasting effects of cumulative

stressor exposure and aberrant glucocorticoid signaling

on the epigenome.

Further examination of the relationship between life

stress and epigenetic aging led us to several interesting

observations. First, this relationship was apparent for

cumulative stress exposure throughout the lifetime,

whereas no significant association was found with child-

hood maltreatment or current stress alone. This finding

is in accordance with a recent study observing no effect

of childhood trauma on epigenetic aging in combat vet-

erans [35] and suggests that cumulative stressors over

the lifetime, rather than time-limited stressors either

during childhood or adulthood, have a stronger or more

lasting effect on epigenetic aging. Nonetheless, it is also

possible that these null findings may be due to lack of

power, the timing of DNA methylation assessments, or

reversibility of epigenetic aging, possibilities that could

be addressed by future longitudinal studies. Second, the

effect of lifetime stress was driven by personal stressors

– affecting the participant directly – rather than network

stressors that occur to someone within the participant’s

network. This is congruent with previous studies show-

ing that personal life events are more strongly correlated

with genetic factors as compared to network events [44].

In line with the effects of lifetime vs. current stress,

these effects were more pronounced in older individuals,

suggesting cumulative epigenetic vulnerability in older

individuals. Lastly, the epigenetic effects of lifetime stress

were blunted in individuals with higher levels of child-

hood abuse. This finding could not be attributed to dif-

ferences in the levels of lifetime stress, since individuals

exposed to higher levels of childhood abuse also had

higher levels of cumulative lifetime stress burden. Thus,

it is possible that early trauma exposure triggers add-

itional mechanisms of risk and resilience that may inter-

fere with subsequent effects of stressors on epigenetic

aging, a hypothesis that remains to be tested by future

studies.

The effects of lifetime stress on epigenetic aging in

peripheral blood are likely mediated by persistent

neuroendocrine alterations induced by cumulative stress

exposure. Stressors and glucocorticoids can drive persist-

ent changes in the expression of glucocorticoid-responsive

genes and concomitant changes in DNA methylation at

CpGs located at or near GREs [17, 18, 22, 45]. Supporting

this hypothesis, we noted that a high number of epigenetic

clock CpG sites are located within functional GREs and

show dynamic methylation changes following DEX ex-

posure. Notably, most of these CpGs show DEX-

induced decrease in methylation, whereas far fewer

sites show increased methylation (98 vs. 12). This is in

accordance with previous studies showing that activa-

tion of the GR results in local demethylation of CpGs

in the proximity of a GRE [18, 22, 23] and that site-

specific decreases in methylation have been implicated

in aging-related phenotypes [46]. CpG demethylation

has been proposed to be potentially mediated by at

least two enzymatic processes, base excision repair and
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oxidation [47, 48]. Examining the role of these pro-

cesses may provide further insights into mechanisms of

stress-induced epigenetic aging. Furthermore, an open

question concerns the sequence of molecular events

that determine whether some stress-induced DNA

methylation changes become embedded and longlast-

ing, while other changes are dynamic and reversible.

Given the low dose and acute exposure to glucocorticoids

in our study, additional experiments with different doses

and more chronic in vitro or in vivo GR activation will be

necessary to better elucidate this mechanism.

An important implication of our findings is the poten-

tial role of stress-induced epigenetic aging in health and

disease. Increasing age and aging-related diseases have

been associated with global and site-specific changes in

DNA methylation [25–30, 39]. The age-related epigenetic

clock CpGs co-localize with genes that show enrichment

for cell growth and survival, organismal development, and

cancer [27]. Furthermore, we show that DEX-regulated

genes neighboring epigenetic clock CpGs show enriched

association for aging-related diseases, including coronary

artery disease, arteriosclerosis, and leukemias. These find-

ings raise the possibility that lifetime stress may contribute

to these diseases via its cumulative impact on epigenetic

regulation of genes implicated in aging-related diseases.

The findings of the present study should be viewed in

the context of its limitations. Although we observe an

association between epigenetic age acceleration and

lifetime stressors in the GTP cohort, the cross-sectional

design of the study limits conclusions regarding the dir-

ection of causality. As discussed above, it is plausible

that epigenetic aging of peripheral blood cells results

from persistent alterations of the neuroendocrine but

also immune milieu induced by repetitive stressor expos-

ure. However, accelerated epigenetic aging might alterna-

tively represent a vulnerability marker that predisposes

individuals to expose themselves to stressful environ-

ments. It is also important to acknowledge that, while

the high levels of traumatic events in the GTP make

this cohort highly suitable for examining the effects

of lifetime stress on the epigenome, they may also

limit generalizability of these findings to other less

traumatized cohorts. Moreover, the present study ex-

amined epigenetic aging in peripheral blood only.

While this tissue is easily accessible and relevant for

biomarker research, other tissues may be more sus-

ceptible to psychological stress and should be exam-

ined in the context of specific diseases. For example,

disease-specific effects on the epigenetic clock have

been demonstrated for liver tissue in the context of

obesity [39]. Another limitation is the use of Chip-Seq

data from lymphoblastoid cell lines to examine epigenetic

clock CpG-GRE co-localization. This cell line represents

the best available proxy for peripheral blood, the source

tissue for our methylation data, but this approach may

also be limited by the tissue specificity of functional GREs

and the altered epigenetic landscapes of immortalized cell

lines. Lastly, although we corrected for several con-

founders that might influence DNA methylation, such as

sex, age, smoking, body mass index, substance abuse,

current psychiatric symptoms and treatments, other fac-

tors not captured by our methods may have confounded

the observed relationships. These limitations may be over-

come in future studies by employing detailed prospective

measurements of lifestyle factors, stressor exposure, DNA

methylation, and incidence of stress-related phenotypes at

different time points throughout the lifetime.

Conclusions

The present study provides evidence that cumulative life

stress exposure is associated with accelerated epigenetic

aging and that these effects may be mediated by gluco-

corticoid signaling. Our findings further suggest that DNA

methylation-based age prediction in peripheral blood may

be a useful molecular marker to incorporate in future stud-

ies examining the effects of life stress exposure. These find-

ings offer novel insights into the molecular mechanisms

linking psychological stress with diseases of the aging.

Methods

Clinical samples

The effect of lifetime stress on epigenetic aging was ex-

amined in the Grady Trauma Project (GTP), a large

study conducted in Atlanta, Georgia, that investigates

the role of genetic and environmental factors in shaping

responses to stressful life events. The GTP includes

more than 7,000 participants from a predominantly

African American, urban population of low socioeco-

nomic status [49, 50]. This population is characterized

by high prevalence and severity of trauma over the life-

time and is thus particularly relevant for examining the

effects of stressors on epigenetic markers. For this pur-

pose, we used a subsample of GTP participants with

genome-wide DNA methylation data. All participants

provided written informed consent and all procedures

were approved by the Institutional Review Boards of

the Emory University School of Medicine and Grady

Memorial Hospital (IRB00002114).

We examined glucocorticoid-induced methylation

changes of epigenetic clock CpGs and responsivity of

genes closest to these CpGs in 297 Caucasian participants

recruited at the Max Planck Institute of Psychiatry

(MPIP). Recruitment strategies and characterization of

participants have been previously described [51, 52].

These consisted of 200 male (83 healthy probands and

117 inpatients with depressive disorders) and 97 female

(48 healthy probands and 49 depressed) individuals. Base-

line whole blood samples were obtained at 18:00 after 2 h
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of fasting and abstention from coffee and physical activity

(baseline). Participants then received 1.5 mg oral dexa-

methasone (DEX) and a second blood draw was

performed at 21:00, 3 h after DEX ingestion (post-DEX).

The study was approved by the local ethics committee

(approval number: 318/00) and all individuals gave written

informed consent. All experimental methods comply with

the Helsinki Declaration.

Psychometric instruments

Childhood trauma was measured in the GTP with the

Childhood Trauma Questionnaire (CTQ), a validated

self-report questionnaire that assesses five types of mal-

treatment during childhood: sexual, physical, and emo-

tional abuse, as well as emotional and physical neglect

[53]. Scores for each type of maltreatment were derived

from participant responses to questionnaire items and

scores from all types were summed to yield a total CTQ

score reflecting overall burden of childhood maltreat-

ment. Moderate to extreme sexual abuse was defined by

a cutoff score of 8 or above in the CTQ sexual abuse

subscale, and moderate to extreme physical abuse was

defined by a cutoff score of 10 or above in the physical

abuse subscale as previously described [54].

Stressful lifetime events in the GTP were assessed with

the Stressful Events Questionnaire (SEQ), a 39-item self-

report instrument that has been described in detail [55].

The SEQ covers a wide range of stressor exposure, ranging

from personal life events, such as divorce, unemployment,

crime, and financial stressors, to network life events,

such as knowing someone who was murdered. Partici-

pants report whether they have experienced these

events either in the past year or at any time in their

life. Although the SEQ assesses life event exposure

throughout the lifetime, it does not include questions

specific for childhood maltreatment. Life events are

summed to yield a total score that reflects the number of

stressors experienced over the last year (Current Stress) or

cumulative number of stressors experienced throughout

one’s lifetime (Life Stress).

Participants underwent the Structured Clinical Inter-

views for DSM-IV defined psychiatric diagnoses. Given

the observed relation between stress-related psychiatric

disorders and accelerated cellular aging, we also exam-

ined major depression and PTSD as variables of interest.

In the GTP, current depressive symptomatology was

assessed with the 21-item validated Beck Depression In-

ventory (BDI) [56, 57] and current PTSD symptomatol-

ogy was assessed with the validated 17-item PTSD

Symptom Scale (PSS) [49, 58].

DNA methylation

Genomic DNA from the GTP cohort (n = 393) and the

MPIP (n = 124) was extracted from whole blood using

the Gentra Puregene Blood Kit (QIAGEN). DNA quality

and quantity was assessed by NanoDrop 2000 Spectro-

photometer (Thermo Scientific) and Quant-iT Picogreen

(Invitrogen). Genomic DNA was bisulfite converted

using the Zymo EZ-96 DNA Methylation Kit (Zymo

Research) and DNA methylation levels were assessed

for >480,000 CpG sites using the Illumina Human-

Methylation450 BeadChip array. Hybridization and

processing was performed according to manufacturer’s

instructions as previously described [59]. Quality

control of methylation data, including intensity read

outs, filtering (detection P value >0.01 in at least

75 % of the samples), cellular composition estima-

tion, as well as beta and M-value calculation was

done using the minfi Bioconductor R package version

1.10.2 [60].

For the GTP cohort, X chromosome, Y chromosome,

and non-specific binding probes were removed [61]. We

also excluded probes if single nucleotide polymorphisms

(SNPs) were documented in the interval for which the

Illumina probe is designed to hybridize. Given that the

GTP cohort includes individuals from different ethnici-

ties, we also removed probes if they were located close

(10 bp from query site) to a SNP which had Minor Allele

Frequency of ≥0.05, as reported in the 1,000 Genomes

Project, for any of the populations represented in the

samples. Technical batch effects were identified by

inspecting the association of the first principal compo-

nents of the methylation levels with plate, sentrix array,

and position (row) and by further visual inspection of

principal component plots using the shinyMethyl

Bioconductor R package version 0.99.3 [62]. This

procedure identified row and slide as technical

batches. The raw methylation data and all related

phenotypes for the GTP cohort have been deposited

into NCBI GEO (GSE72680).

For the MPIP cohort, filtered beta values were reduced

by eliminating any CpG sites/probes on sex chromo-

somes, as well as probes found to have SNPs at the CpG

site itself or in the single-base extension site with a MAF

≥1 % in the 1,000 Genomes Project European population

and/or non-specific binding probes according to [61].

Additionally, we performed a re-alignment of the array

probe sequences using Bismark (doi: 10.1093/bioinfor-

matics/btr167). This yielded a total of 425,883 CpG sites

for further analysis. Using the same procedure for batch

identification as above, we identified processing (experi-

ment) date as technical batch in the MPIP. The data

were then normalized with functional normalization

[63], an extension of quantile normalization included in

the minfi R package and batch-corrected using ComBat.

The raw methylation data and all related phenotypes for

the MPIP cohort have been deposited into NCBI GEO

(GSE74414).
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Gene expression

In the DEX-treated (MPIP) cohort (n = 297, including

the 124 individuals used for the MPIP methylation

analysis), both baseline and post-DEX whole blood

RNA was collected using PAXgene Blood RNA Tubes

(PreAnalytiX), processed as described previously [51, 52].

Samples had a mean RNA integrity number (RIN) of

8 ± 0.51 SD. Blood RNA was hybridized to Illumina

HumanHT-12 v3 and v4 Expression BeadChips (Illumina,

San Diego, CA, USA). Raw probe intensities were

exported using Illumina’s GenomeStudio and further stat-

istical processing was carried out using R. All 29,075

probes present on both microarrays, excluding X and Y

chromosomes as well as cross-hybridizing probes identi-

fied by using the Re-Annotator pipeline (http://dx.doi.org/

10.1101/019596) were first filtered with an Illumina detec-

tion P value of 0.05 in at least 50 % of the samples, leaving

11,994 expressed probes for further analysis. Subse-

quently, each transcript was transformed and normalized

through variance stabilization and normalization (VSN)

[64]. Using the same procedure for batch identification as

for the methylation data, we identified slide, amplification

round, array version, and amplification plate column as

technical batches. The data were then adjusted using

ComBat [65] and have been deposited into NCBI GEO

(GSE64930).

Statistical analyses

All statistical analyses were conducted in R version 3.1.0

(http://www.r-project.org/) [66]. Unless indicated other-

wise, P values are nominal and two-tailed. All correc-

tions for multiple testing were performed using the FDR

method of Benjamini and Hochberg. The level of statis-

tical significance was set a priori at 0.05 (5 × 10−2).

DNA methylation-based age prediction was performed

using the R code and statistical pipeline developed by

Horvath [27]. This predictor was developed using 82

Illumina DNA methylation array datasets (n = 7,844)

involving 51 healthy tissues and cell types [27]. The

raw data were normalized using BMIQ normalization

method [67] implemented in the Horvath DNA

methylation-based age predictor R script [27]. Robust-

ness and reproducibility of the epigenetic age pre-

dictor was tested using 40× technical replicates of an

individual control sample, randomized across microarray

chips and batches used to measure DNA methylation in

the GTP cohort. The average epigenetic age (DNAM-age)

of the control sample (true age = 32 years) was 32.64 (SD:

0.23) years with an average correlation r = 0.97 (0.001).

Age acceleration (Δ-age) was defined (as previously)

as the average difference between DNAM-age and

chronological age. One GTP participant had extreme

Δ-age (43.98 years), and using the Grubbs’ test (http://

graphpad.com/quickcalcs/grubbs2/) was noted to be the

only outlier (Z = 3.80, P <5 × 10−2). Although primary ana-

lyses were conducted without this outlier, inclusion of this

individual did not substantially alter the reported results.

Generalized linear regression models tested the relation-

ship of Δ-age with stressors and stress-related phenotypes

(GTP cohort). Because DNAM-age is calculated from raw

beta values (before Combat correction for batches), tech-

nical batches identified for the GTP (row and slide) and

the MPIP cohort (processing date) were tested as potential

confounders in the respective regression models. In the

GTP, models were further adjusted for age, sex, House-

man cell counts, body mass index, smoking, alcohol,

current substance abuse, and the principal components

from population stratification checks. In the MPIP, models

were adjusted for gender, age, body mass index, and

Houseman cell counts.

To determine if methylation signals or gene expression

levels are significantly different before and after DEX

stimulation in the MPIP cohort, likelihood ratio tests

accounting for gender, age, body mass index, disease

status, and estimated cell-type counts were applied to

each CpG site (n = 353) and expression array probe

(n = 11,994), respectively. DNA methylation and gene

expression changes were corrected for multiple com-

parisons using FDR. The 353 epigenetic clock CpGs

were annotated to a total of 344 genes. Among these,

170 genes were detected in peripheral blood by 216

gene expression array probes (163 genes were expressed

below background and 11 genes were not covered by the

gene expression arrays).

To account for population stratification due to dis-

crepancies between self-reported and actual race in the

GTP, we used genome-wide SNP data that were available

for 382 participants. Of the 700 k SNPs present on the

Omni Quad and Omni express arrays, 645,8315 auto-

somal SNPs were left after filtering with the following

criteria: minor allele frequency of >1 %; Hardy-Weinberg

equilibrium of 0.000001; and genotyping rate of >98 %.

The samples were clustered to calculate rates of identity

by descent (IBD). We then ran multidimensional scaling

analysis on the IBD matrix using PLINK2 (https://

www.cog-genomics.org/plink2) and plotted the first ten

axes of variation against each other. No outliers were de-

tected. The first two principal components were used as

covariates in regression models to adjust for population

stratification.

To identify whether epigenetic clock CpG sites are

co-localized with GREs, we used ENCODE NR3C1

ChIP-Seq data from lymphoblastoid cell lines (acces-

sion: ENCSR904YPP) for which no aligned tracks are

currently available. Initial filtering was performed using

FASTX Toolkit (v. 0.0.14, http://hannonlab.cshl.edu/

fastx_toolkit/index.html) and Prinseq (v. 0.20.3) [68] to

eliminate artefacts and low quality reads. Alignment on
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hg19 was performed using BWA (v. 0.7.10) [69] allowing

only uniquely mappable alignments with an alignment

quality of above 20. Reads from both ChIP-Seq and both

control libraries were pooled leading to 46,453,650 and

68,227,580 used reads, respectively. Peak-calling was car-

ried out by MACS14 (v. 1.4.2) [70] using default settings,

resulting in approximately 23,000 annotated signals. The

average length of ChIP-Seq signal as defined by the peak

calling was 746.3 bps (SD: 370.6). We generated 1,000 sets

(n = 353 CpGs) of randomly drawn CpG sites (without re-

placement) from the set of all CpGs present on the 450 K

BeadChip array (excluding X and Y chromosomes). For

every set we counted the percentage of CpG sites within a

GRE ChIP-Seq signal (+/− 0 bp). On this basis we

constructed the null distribution and compared it to the

observed percentage of clock CpG sites within a GRE

ChIP-Seq signal to measure the enrichment statistics.

Disease enrichment analysis was performed using the

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt;

http://bioinfo.vanderbilt.edu/webgestalt/) [71, 72]. This

was performed by using as input the set of unique DEX-

regulated genes neighboring epigenetic clock CpGs

(n = 139) and as reference the set of genes expressed

above background in our peripheral blood gene ex-

pression arrays. The minimum number of genes for

the enrichment analysis was set at 5, the statistic

performed was hypergeometric test, and results were

corrected for multiple testing using FDR.

Additional files

Additional file 1: Table S1. Location of epigenetic clock CpGs in

relation to the nearest glucocorticoid response element (as shown by

within GR ChIP-Seq peaks in a lymphoblastoid cell line) and their

methylation changes in response to the glucocorticoid receptor

agonist dexamethasone. (DEX). (XLSX 68 kb)

Additional file 2: Table S2. Annotation of genes with transcription

start sites (TSS) near epigenetic clock CpGs and their expression changes

in response to DEX. Gene annotation was based on [43]. (XLSX 26 kb)

Additional file 3: Table S3. WebGestalt Disease enrichment analysis of

the set of unique DEX-regulated genes (n = 139) with TSS near epigenetic

clock CpGs. For the primary analysis, we used as reference the set of

genes expressed above background in our peripheral blood gene

expression arrays. This analysis was repeated using a more condensed

background comprised only of the genes neighboring 21 K CpGs that

showed DEX-induced mRNA expression changes (n = 5,443). While this

post-hoc analysis yielded no statistically significant results after correction

for multiple testing (P values presented in the last column), the top 10

diseases were very similar (with higher but nominally significant P values

for the top three hits) with the analysis using the broader reference set

of genes. (XLSX 10 kb)
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Chaperoning epigenetics: FKBP51 decreases the
activity of DNMT1 and mediates epigenetic effects
of the antidepressant paroxetine

Nils C. Gassen,1*† Gabriel R. Fries,1,2† Anthony S. Zannas,1,3 Jakob Hartmann,4

Jürgen Zschocke,1 Kathrin Hafner,1 Tania Carrillo-Roa,1 Jessica Steinbacher,5

S. Nicole Preißinger,1 Lianne Hoeijmakers,4 Matthias Knop,6 Frank Weber,6 Stefan Kloiber,6

Susanne Lucae,6 George P. Chrousos,7 Thomas Carell,5 Marcus Ising,6

Elisabeth B. Binder,1,8 Mathias V. Schmidt,4 Joëlle Rüegg,9 Theo Rein1*

Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding
protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant
drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases
that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link
between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from
depressed patients, and found that FKBP51 competedwith its close homolog FKBP52 for associationwith
CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5,
decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of
DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse as-
trocytes, FKBP51mediatedseveral effectsof paroxetine, namely, decreased theprotein-protein interactions
of DNMT1with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased themethylation and
increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf ). In human periph-
eral blood cells, FKBP5 expression inversely correlated with both global andBDNFmethylation. Peripheral
blood cells isolated fromdepressed patients that were then treated ex vivowith paroxetine revealed that the
abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of
FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-
directed pathway that prevents epigenetic suppression of gene expression.

INTRODUCTION

Environmental factors and their influence on gene expression are recog-

nized as key players in several psychiatric diseases, including major de-

pressive disorder (MDD) (1–3). Although yet unclear, it is proposed that

these environmental effects are mediated by epigenetic changes, such as

methylation and demethylation of DNA and posttranslational modifica-

tions of histones. Such epigenetic marks control the accessibility of tran-

scriptional machinery to the DNA and are responsive to both environmental

stressors and togenetic variations.Whereas histonemodifications occur at

various sites and involve the action of various enzymes, DNAmethylation

is largely confined to CpG dinucleotides in the mammalian genome and is

executed byDNAmethyltransferases (DNMTs) (4), which comprise a family

of proteins with three subtypes that exhibit different specificities and func-

tions: DNMT1, DNMT3a, and DNMT3b (5).

Epigenetic mechanisms are considered not only crucial in shaping the

phenotype of complex psychiatric disorders but also important for the re-

sponse to certain medications (6–9). For instance, some antidepressants

can reduce DNMT1 activity (10), the major DNMTensuring the mainte-

nance DNA methylation during S phase that has also been implicated in

de novo methylation (11, 12); this effect of antidepressants appears to be

partly due to the reduction of the amounts of the histone methyltransferase

G9a (13). Furthermore, DNMT inhibitors applied either systemically or

locally in the hippocampus induce antidepressant-like effects inmice,which

are accompanied by increased expression of the gene encoding brain-

derived neurotrophic factor (BDNF) (14). Epigenetic regulation of BDNF

is implicated in the development and treatment of psychiatric diseases in

several studies (9, 15–17).

The activity of DNMT1 is modulated by several interacting proteins

and by posttranslational modifications (18, 19), including phosphorylation

(20–22). Among the phosphorylated sites of DNMT1 is Ser154, which is

targeted by cyclin-dependent kinases (CDKs), such as CDK5, and increases

DNMT1 activity (23). Thus, several mechanisms might be considered for

the antidepressant-induced effects on DNMT1.

Psychological stress and trauma are consistently associated with MDD

(1). The glucocorticoid receptor (GR) is integral to the stress response and

is controlled by a complex of chaperones and cochaperones (24). The
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ioral Sciences, University of Texas Health Science Center, Houston, TX 77054,
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cochaperones FK506-binding protein 51

(FKBP51) and FKBP52 are major determi-

nants ofGRactivity by competingwith each

other for access to the GR-chaperone hetero-

complex and by exerting opposing effects

on GR function with FKBP52-promoting

and FKBP51-inhibiting GR activity (25–27).

Conversely, FKBP51 abundance increases

afterGRactivation (28–30).Notably, FKBP51

has been linked genetically to the response

to antidepressants, and enhanced abundance

ofFKBP51 is associatedwith improved treat-

ment response (31–36). In addition, FKBP51

andFKBP52 interactwith several proteins in-

cluding CDK5 (36, 37). Therefore, we aimed

to explore potential mechanisms by which

the stress-related cochaperones FKBP51 and

FKBP52 modulate DNMT1 phosphorylation

and activity and whether this might contrib-

ute to the clinical response to antidepressant

treatment in patients with MDD.

RESULTS

FKBP51 and FKBP52 were
differentially associated with
DNMT1 and modulate its
phosphorylation and activity
Previously, we found that CDK5 formed a

protein complex with FKBP51 or FKBP52

(36). Because CDK5 has been reported to

regulate DNMT1 by phosphorylation at

Ser154 (23), we investigated whether FKBP51

and FKBP52 modulate CDK5’s action on

DNMT1.We initially tested for associations

between CDK5 and DNMT1 with ectopic

FLAG-taggedFKBP51orFKBP52 in human

embryonic kidney (HEK) 293 cells by co-

immunoprecipitation. Both FKBP51 and

FKBP52 were associated with CDK5 (Fig.

1A), consistent with our previous results

(36); however, only FKBP52was associated

with DNMT1 (Fig. 1B). Coexpressing both

FKBPs revealed that they compete with

each other for binding to CDK5 (Fig. 1C).

Notably, coexpression of FKBP51 also re-

duced the interaction between FKBP52

and DNMT1 (Fig. 1C).

Because FKBP51 and FKBP52 are co-

chaperones of heat shock protein 90 (Hsp90)

(25) and Hsp90 interacts with both CDK5

and DNMT1 (38, 39), we explored the pos-

sibility that Hsp90 function might be im-

portant for complex assembly. We exposed

HEK293 cells to increasing concentrations

of 17-AAG, an Hsp90 inhibitor and geldana-

mycin derivative, immunoprecipitatedCDK5,

and probed for the interaction with Hsp90

andDNMT1. Therewas no significant effect
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Fig. 1. FKBP51 and FKBP52 differentially affect CDK5-dependent phosphorylation and activity of DNMT1. (A)

Immunoprecipitation (IP) for CDK5 followed by Western blotting in lysates from HEK293 cells transfected with

FKBP51 or FKBP52. Control: without primary antibody [immunoglobulin G (IgG) control in fig. S1A]. (B and C)

Immunoprecipitation for the FLAG tag (B) or FKBP51 or FKBP52 (C) followedbyWestern blotting in lysates from

HEK293 cells transfected with FLAG-tagged FKBP51, FKBP52, or both, as indicated. C, control [vector-

transfectedcells (B) orwithout primary antibody (C) (IgGcontrol in fig. S1A)]. Blots are representative of three

independent experiments. Ect., ectopic expression. Graph (C) displays the association of FKBP51 (51-IP) or

FKBP52 (52-IP) to CDK5 or DNMT1 in the dual transfected samples relative to the singly transfected samples.

Dataaremeans+SEMof three independentexperiments. (D)Westernblotting forDNMT1andphosphorylated

(p)DNMT1 (at Ser154) in primary rat astrocytes transfectedwith FKBP51or FKBP52.Amount of phosphorylated

DNMT1 was calculated relative to that of total DNMT1; this was then calculated relative to that in the control

vector sample (−), arbitrarily set to 1. Data aremean+SEMof three to six independent experiments. (E) Quan-

tification ofWestern blotting analysis of the phosphorylation of DNMT1 (corrected for total DNMT1) in wild-type

(WT), Fkbp51 knockout (51KO), or Fkbp52 knockout (52KO) MEFs transfected with CDK5 relative to vector-

transfectedcells.Dataaremeans+SEMof three independent experiments.Representativeblot is shown in fig.

S2B; full blots for (D) and (E) are shown in data file S1. (F and G) DNMT1 enzymatic activity in total nuclear

lysates from primary astrocytes (F) and cytosine methylation (percent of total cytosine) assessed by mass

spectrometry in isolated total DNA fromprimary rat astrocytes transfectedwith FKBP51 or FKBP52 or a control

vector. 5mC, 5-methylcytosine.Data aremeans+SEMof three independent experiments eachperformedwith

two (F) or three (G) technical replicates. *P < 0.05, **P < 0.01. Statistical details in tables S2 and S3.
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of Hsp90 inhibition on complex assembly of CDK5 andDNMT1 (fig. S1, A

to D, and data file S1).

In addition to DNMT1, which typically maintains DNAmethylation,

DNMT3a and DNMT3b also shape the methylome as de novo methyl-

transferases (5). Coimmunoprecipitation revealed an association between

FKBP52 and DNMT3a but not DNMT3b, whereas FKBP51 associated

with none (fig. S1, E and F).

Considering the reported effects of CDK5 on DNMT1, we analyzed

the phosphorylation of DNMT1 at Ser154 upon overexpression of FKBP51

or FKBP52 in HEK293 cells or primary rat astrocytes. Overexpressing

FKBP51 significantly lowered the phosphorylation of DNMT1, whereas

overexpressing FKBP52 increased it (Fig. 1D, data file S1, and fig. S2A).

Because phosphorylation of Ser154 is important for DNMT1 activity (23),

this suggests that FKBP52 promotes whereas FKBP51 inhibits DNMT1

activity. To check for the relevance of the FKBPs onCDK5-inducedDNMT1

Ser154 phosphorylation, we overexpressed CDK5 in wild-type, 51KO, and

52KOmouse embryonic fibroblasts (MEFs) and monitored DNMT1 phos-

phorylation. CDK5 overexpression did not change the phosphorylation of

DNMT1 in 52KOMEFs (as opposed towild-type cells), whereas a marked

increase in phosphorylation of DNMT1was evident inwild-type and 51KO

MEFs (Fig. 1E, data file S1, and fig. S2B).

To determine whether the FKBP51/52-dependent changes in phospho-

rylation of DNMT1 go along with changes in DNMT1 activity, we trans-

fected primary rat astrocyteswith plasmids expressing FKBP51 or FKBP52

and determined the enzymaticDNAmethylation activity in total cell lysates.

There was a trend toward lower methylase activity in FKBP51-transfected

cells than in FKBP52-transfected cells (Fig. 1F). Analysis of the content of

total methylated cytosines in genomic DNA revealed significantly lower

DNAmethylation in FKBP51-transfected than in FKBP52-transfected cells

(Fig. 1G). There was no difference in hydroxymethylation (fig. S2C).

To further shed light on the possible mechanism involved in the FKBP-

directed regulation of DNMT1 activity by CDK5, we analyzed the associa-

tion of the CDK5 regulatory proteins p25, p35, and p39 (40) in the human

neuroblastoma cell line SKNMC. Although all three proteins were detected

in protein lysates, only the CDK5 activator p35 associated with DNMT1

(Fig. 2A), indicating that active CDK5 is recruited toDNMT1. Ectopic expres-

sion of FKBP52 enhanced the association of p35 with DNMT1, whereas ec-

topic expression of FKBP51 did not (Fig. 2, A and B, and data file S2). There

was no significant change in the association of DNMT1with CDK5 (Fig. 2C).

FKBP51 has been suggested to facilitate the dephosphorylation of

tau, depending on its peptidylprolylisomerase (PPIase) activity (41). To test

the relevance of PPIase activity in the regulation of DNMT1 phosphoryl-

ation, we expressed increasing amounts of a PPIase-deficient mutant of

FKBP51 (25, 42) in HEK293 cells. PPIase-deficient FKBP51 exerted sim-

ilar effects on phosphorylation ofDNMT1as the nonmutated FKBP51 (Fig.

2D and data file S2).

Modulation of DNMT1 phosphorylation and activity by
paroxetine depend on FKBP51
On the basis of previous evidence of an inhibitory effect of paroxetine on

DNMT1 (13), we sought to assess whether the antidepressant action on

DNMT1 involves DNMT1 phosphorylation or its association with CDK5,

FKBP51, and FKBP52. First, we tested whether paroxetine affects the

association between the FKBPs and CDK5 in HEK293 cells. We found

that treatment with paroxetine increased the association between FKBP51

and CDK5 and reduced the interaction between FKBP52 and CDK5

(Fig. 3A, fig. S3, and data file S1). There was no significant effect on the

interaction between FKBP52 and DNMT1.

We next checked for the effects of paroxetine on phosphorylation of

DNMT1 in primary astrocytes and found that it decreased phosphoryl-

ation of DNMT1 in a dose-dependent manner (Fig. 3B). Furthermore, we

found evidence that the antidepressant-induced reduction in phospho-

rylation of DNMT1 requires the presence of FKBP51 because paroxetine

decreased phosphorylation of DNMT1 in primary astrocytes from wild-

typemice but not in primary astrocytes from 51KOmice (Fig. 3C and data

file S3). Similar results were obtained in wild-type and 51KOMEFs (Fig.

3D, fig. S4A, and data file S3). Likewise, paroxetine reduced DNMT1

enzymatic activity in wild-type but not in 51KOMEFs (Fig. 3E and data

file S3). To test whether these results can be translated to the action of

paroxetine in an established animal model, we determined phosphoryl-

ation of DNMT1 in mice that were acutely or chronically treated with
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Fig. 2. FKBP51 does not change the interaction of DNMT1 with the CDK5

activator proteinp35andacts independently of itsPPIaseactivity on thephos-

phorylation of DNMT1. (A to C) Immunoprecipitation for DNMT1 followed by

Western blotting as indicated (A) and quantification of DNMT1-p35 (B) and

DNMT1-CDK5 (C) interaction in SKNMCcells transfectedwith FLAG-tagged

FKBP51or FKBP52or vector control (indicatedby “-” in both lanes). IgGcon-

trol in fig. S1A. (D) Western blotting as indicated in HEK293 cells transfected

with PPIase-deficient mutant FKBP51 (F67D/D68V: 51 PPImut). Phosphoryl-

ated DNMT1 was calculated against total DNMT1, relative to that in the con-

trol vector sample (−), arbitrarily set to 1. Data are means ± SEM from three

independent experiments.*P < 0.05. Statistical details in table S2. Full blots

for (B) and (D) are shown in data file S2.
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paroxetine (45-min or 21-days treatment duration, respectively). Tissue

was available from previous experiments that documented that the be-

havioral effect of paroxetine was absent in mice lacking FKBP51 (33).

Acute and chronic treatment with paroxetine led to reduced phosphoryl-

ation of DNMT1, both in the hippocampus and in the prefrontal cortex,

only in the presence of FKBP51 (Fig. 3, F to H; fig. S4, B to D; and data

file S3).

We also investigated the effects of the tricyclic antidepressant ami-

triptyline on phosphorylation of DNMT1. InMEFs, therewas no signifi-

cant effect of amitriptyline (fig. S5A). In wild-type mice previously treated

with amitriptyline (33), a reduction in phosphorylation of DNMT1 was ob-

served in the prefrontal cortex but not in the hippocampus (fig. S5,B andC).

This effect of amitriptyline was abolished in 51KOmice (fig. S5C). To also

test another neuropharmacologically active substance, we analyzed protein

extracts from mice that had been treated with the neuroleptic haloperidol

(33). Haloperidol displayed no significant effect on phosphorylation of

DNMT1 in the hippocampus and slightly enhanced phosphorylation of

DNMT1 in the prefrontal cortex (fig. S5, D to G), contrasting the effects

of the antidepressants paroxetine and amitriptyline.

FKBP51- and paroxetine-modulated DNMT1 activity
correlates with Bdnf promoter methylation and
expression in mice
In addition to the effects of FKBP51 and paroxetine on global DNA

methylation through their action on DNMT1, we analyzed possible local

consequences at Bdnf, the gene encoding BDNF, as a locus relevant to

neuropsychiatry. Bdnf features different epigenetically controlled pro-

moters that give rise to multiple isoforms at the mRNA level with differ-

ent untranslated exons at the 5′ end spliced to a common protein-coding

exon at the 3′ end (43, 44). To date, the Bdnf promoter of exon IV (called

promoter IV) is one of the best characterized (9, 45, 46). The expression

of promoter IV is representative of Bdnf expression in the brain and also

reflects the changes induced by neuronal activity and antidepressants

(16, 17, 47, 48). Therefore, we analyzed the methylation of promoter

IV in the brain of wild-type and 51KO mice that had been treated with

paroxetine for 45 min (33). In these animals, paroxetine induced the de-

methylation of Bdnf at promoter IV in the prefrontal cortex of wild-type

but not 51KO mice (Fig. 4A and table S1). The extent of demethylation

varied between 10 and 40 percentage points, depending on the CpG site.
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Fig. 3. The effect of paroxetine on DNMT1 is linked to FKBP51. (A) Im-

munoprecipitation for the FLAG tag followed by Western blotting for

CDK5 in HEK cells transfected with FLAG-tagged FKBP51 or FKBP52

and treatedwithparoxetine (PAR, 10mM)or vehicle for 72hours.Data fromparoxetine-treated

samples are presented relative to that in vehicle-treated samples, set to 1. IgG control in fig.

S1A. (B) Western blotting for phosphorylated DNMT1 relative to total DNMT1 in primary cor-

tical rat astrocytes treated with increasing concentrations of paroxetine or vehicle (−). Data

aremeans±SEM from three experiments. (C)Western blotting in lysates fromWT (gray bars)

or 51KO (white bars) primary murine astrocytes treated with paroxetine or vehicle (−). Data

aremeans±SEMof threeexperiments, eachperformed induplicate. (DandE)Quantification

of the abundance of phosphorylated DNMT1 relative to total DNMT determined by Western

blotting (D) and enzymatic DNMT1 activity (E) in WT (gray bars) or 51KO (white bars) MEFs treated with paroxetine or vehicle (−). Data are means + SEM of

three (D) or four (E) independent experiments performed in technical duplicates. (F to H) Abundance of phosphorylated relative to total DNMT1 in the pre-

frontal cortex (PFC) and hippocampus (HIP) of 51KOmice (white bars) andWTmice (gray bars) treatedwith paroxetine or vehicle in an acute (45min) (F and

G)or chronic (21days) (H) regimen (33). Data aremeans+SEMof 8 to 10animals. *P<0.05, **P<0.01. Statistical details are in tablesS2andS3. Full blots for

(C) and (F) to (H) are shown in data file S3.
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In 51KO mice, there was some increase in DNA methylation upon par-

oxetine treatment, but this change was not statistically significant (Fig. 4A

and table S1). There was no significant genotype effect in the absence of

paroxetine (table S1). Less pro-

nounced effects were observed

in the hippocampus, but there

was still a significant genotype

effect (Fig. 4B and table S1). In

addition, we analyzed the pro-

moter of exon I, but no significant

changes inDNAmethylationwere

observed (table S1).We also ana-

lyzed the effect of amitriptyline

on the methylation of Bdnf at

the exon IV promoter in the hip-

pocampus and in the prefrontal

cortex of wild-type and 51KO

mice, but therewas no significant

change in methylation (fig. S6).

To assess changes in the tran-

scription of Bdnf, we performed

in situ hybridization in brain

slices from wild-type and 51KO

mice that had previously been

treated with paroxetine or ve-

hicle for 21 days (33). In all sub-

regions of the hippocampal

formation, we observed a similar

pattern: the amount of Bdnf

mRNAwas significantly higher

in wild-type mice treated with

paroxetine than it was in 51KO

mice treated with paroxetine

(Fig. 4, C and D).

These data are in line with

the hypothesis that FKBP51-

dependent reduction of DNMT1

activity by paroxetine, also indi-

cated by the decrease of phos-

phorylation of DNMT1 (Fig. 3,

F toH, and fig. S4, B toD), leads

to demethylation and activation

of the Bdnf gene. To evaluate

whether FKBP51 mediates the

effects of paroxetine on CDK5

and FKBP52 complexes inmice,

weperformedCDK5andFKBP52

immunoprecipitation in brain ex-

tracts from wild-type and 51KO

mice that had been treated with

paroxetine for 45 min (33). Par-

oxetine changed the association

of CDK5with FKBP52 andwith

DNMT1 in wild-type but not

51KOmice (Fig. 4, E to G). This

is consistent with the inhibitory

effect of paroxetine on FKBP52-

CDK5 association we observed

in cells (Fig. 3A). When we pre-

cipitated FKBP52, the associa-

tion with CDK5 or DNMT1 in the presence of paroxetine was greater in

51KO than in wild-type mice (Fig. 4, G to I). Thus, FKBP51 mediates

the impact of paroxetine on protein associations.
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Fig. 4. FKBP51-dependent effects of

paroxetine on Bdnf promoter methyla-

tion and expression and on CDK5 pro-

tein associations. (A andB) Change in

thepercentageofCpGs inpromoter IV

of Bdnf that were methylated in DNA from the prefrontal

cortex and hippocampus from WT mice (gray bars) and

Fkbp51−/− mice (51KO, white bars) previously treated with

paroxetine relative to those treated with vehicle for 45 min

(33). Data are means + SEM from × mice each. Table S1

contains complete methylation information. *** indicate sig-

nificant overall genotype effects. (C and D) Bdnf expression assessed by in situ hybridization shown in the dorsal hip-

pocampus (C) and quantified in hippocampal sections from WT and 51KO mice treated with paroxetine for 21 days

(chronic) or vehicle (−) (33). Scale bar, 500 mm. a.u., arbitrary units;DG, dentate gyrus. (E to I) Protein binding toCDK5

(E and F) or FKBP52 (H and I) in brain extracts fromWTand 51KOmice that had been treatedwith paroxetine for 45min

(33).Western blot representing three animals for eachcondition and treatment shown in (G). IgGcontrol in fig. S1A.Data

are means + SEM from 9 to 10 animals for each condition or treatment. Data fromWTmice treated with vehicle were set

to 1. *P < 0.05, **P < 0.01, ***P < 0.001. Statistical details in tables S2 and S3.
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Cellular and clinical treatment responses support the
physiological relevance of FKBP51-dependent effects of
paroxetine on DNMT1 and BDNF
To translate the findings obtained from cellular and animal studies to

humans, we made use of the whole-blood DNA methylation and RNA

data available from the Grady Trauma Project, an ongoing study examining

the role of genetic and environmental factors that predict stress responses

(49, 50). The expression of FKBP5 (the gene encoding FKBP51) was neg-

atively correlatedwith the average globalDNAmethylation, asmeasured by

450K arrays (r = −0.127, P = 0.015, n = 365), and with the average amount

ofBDNFmethylation found over the entireBDNF locus (total of 79 CpGs),

as well as with the average methylation of CpGs located near the transcrip-

tion start sites of exon I (33 CpGs) and exon IV (31 CpGs) of the gene

(Fig. 5, A and B, and fig. S7).

To test protein correlations, we first analyzed the phosphorylation of

DNMT1 and FKBP51 in peripheral blood mononuclear cells (PBMCs)

from healthy individuals. We observed that the amounts of FKBP51 and

phosphorylated DNMT1 were inversely correlated, in line with a negative

effect of FKBP51 on the phosphorylation of DNMT1 (Fig. 5C). We also

checked for the effects of paroxetine on the same cells by treating PBMCs

ex vivo with paroxetine or vehicle for 48 hours. In PBMCs, the concen-

tration used for paroxetinewas chosen tomatch therapeutic concentrations

in the serum according to the consensus guidelines for therapeutic drug

monitoring in psychiatry (51). We found that higher amounts of FKBP51

were significantly associated with smaller paroxetine-induced changes in

phosphorylation of DNMT1 (Fig. 5D), further corroborating the notion that

FKBP51 modulates the effects of paroxetine on DNMT1 phosphorylation.

Because FKBP51 abundance is increased upon stress (28–30), we ex-

plored the possibility that stress-induced glucocorticoids change pDNMT

through increasing the amount of FKBP51. PBMCs were isolated from

21 healthy individuals before and after oral intake of dexamethasone, a syn-

thetic corticosteroid that selectively activates GR. In response to dexa-

methasone, we observed a negative correlation between the change in

the phosphorylation of DNMT1 and the change in FKBP51 abundance: af-

ter dexamethasone treatment, increased abundance of FKBP51 was cor-

related with decreased phosphorylation of DNMT1 (Fig. 5E), consistent

with the role of FKBP51 as mediator of stress-induced dephosphorylation

of DNMT1.

Because higher protein amounts of FKBP51 in PBMCswere associated

with better clinical treatment outcome in depressed patients (33), we hy-

pothesized that phosphorylation of DNMT1might also be linked to treat-

ment response. Therefore, we determined the level of phosphorylation of

DNMT1 in PBMCs from 40 patients of the Munich Antidepressant Re-

sponse Signature (MARS) (52) project before and after 6 weeks of psy-

chopharmacological treatment (with various antidepressants by doctor’s

choice). The change of phosphorylation of DNMT1 showed a negative

correlationwith the clinical treatment response [presented as the reduction

in theHamiltonDepressionRating Scale (HDRS) from beginning of treat-

ment to 6 weeks later] (Fig. 6A). Similarly, when we collected PBMCs

from the patients at the time of admission to the clinic and treated the cells

with paroxetine ex vivo, the cellular response (a decrease) in the phospho-

rylation of DNMT1 also negatively correlated with patients’ (increased)

reduction in HDRS (Fig. 6B). The change in the phosphorylation of

DNMT1 observed in PBMCs in response to paroxetine ex vivo and the

change in the phosphorylation of DNMT1 observed in patients after clin-

ical treatment were well correlated (Fig. 6C). Overall, nonresponders

tended to exhibit an increase in the phosphorylation of DNMT1 after 6 weeks

of clinical treatment or after paroxetine treatment of their PBMCs ex vivo

(fig. S8, A and B). When determining BDNF abundance, we found that

the increase in BDNF secreted from PBMCs cultured and treated with

paroxetine ex vivo significantly correlated with the abundance of FKBP51

(Fig. 6D). Likewise, the change in BDNF concentration in the serum of pa-

tients 6weeks after clinical treat-

ment also positively correlated

with the abundance of FKBP51

in their blood cells collected at

the beginning of treatment (Fig.

6E). Furthermore, the BDNF re-

sponse in PBMCs cultured with

paroxetine ex vivo positively cor-

relatedwith the clinical treatment

outcome observed in patients

(Fig. 6F).A trend towardpositive

correlationwas also observed for

the change ofBDNF in the serum

and the clinical treatment out-

come after 6 weeks (Fig. 6G).

Together, these results support

the physiological and clinical rel-

evance of FKBP51 in inhibiting

DNMT1 activation and promot-

ingBDNFexpression inmodulat-

ing the action of antidepressants.

DISCUSSION

Adaptation to stressful life events

is a fundamental physiological

process that involves severalmech-

anisms, including epigenetic pro-

gramming (24, 53, 54). Gene
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Fig. 5. Correlation of BDNF meth-

ylation, DNMT1 phosphorylation,

and pharmacological effects with

FKBP51 in humans. (AandB) Cor-

relation between BDNF methyla-

tion at promoter I (A) or IV (B) and

FKBP5 expression in PBMCs from

365subjects fromtheGradyTrauma

Project. (C) Correlation of the abun-

dance of FKBP51 with that of phos-

phorylated DNMT1 (corrected by

total DNMT1) in PBMCs from

healthy individuals (n= 21). (D) Correlation of FKBP51 abundance with the change in pDNMT1 abundance after ex vivo

paroxetine exposure (48 hours, relative to vehicle) in PBMCs from healthy individuals (n = 20). (E) Correlation of the

change in the phosphorylation of DNMT1 with that of FKBP51 in PBMCS isolated from healthy individuals that received

dexamethasone (DEX, 1.5 mg, 6 hours; n = 21). Data were analyzed by Pearson correlation (A and B) or partial corre-

lation corrected for age and gender (C to E).
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programming through the GR is evident from several reports (55). The

established paradigm is that GR binds to chromatin targets and interacts with

the epigenetic machinery at these sites, thereby changing local epigenetic

marks.Our study adds another twist toGR-mediated epigenet-

ic programming by delineating a new route: we found that the

GR-enhanced cochaperoneFKBP51 suppresses the activity of

the epigenetic enzyme DNMT1 by impairing its formation of

a heterocomplex with CDK5. Our data suggest that FKBP51

displaces FKBP52 from CDK5, thereby preventing the sub-

sequent interaction with and phosphorylation of DNMT1 at

Ser154, causing reduced activity of DNMT1 and decreased

DNA methylation in the genome, including at the Bdnf gene.

This displacement favoring FKBP51 chaperoning is promoted

by paroxetine and possibly other antidepressants (Fig. 7).

Part of the translational aspect of this study uses PBMCs

cultivated and treated ex vivo. Although signal transduction

in peripheral cells ex vivo may not reliably replicate molec-

ular activity in brain cells, the proteins involved in this study

are present in multiple cell types and appear to have similar

functional interactions in human PBMCs as they did in

mouse brain tissue and astrocytes. Furthermore, our correla-

tion analyses indicated that examining the effects on the ac-

tivation of DNMT1 in patient PBMCs ex vivomay serve as a

biomarker to predict the clinical response to antidepressants.

The data reported here support the notion that the role

of chaperones in the management of stress reactivity extends

beyond protein homeostasis to the genome and epigenome.

For example, several landmark studies from the Lindquist

laboratory document the role of Hsp90 in the evolution of

heritable new traits in several organisms (56–60). The new

traits shaped not only the phenotype but also the responsive-

ness to diverse drugs.

Our finding of the association of the chaperone FKBP51

withCDK5 in the regulation ofDNMT1 adds insight into the

molecular and physiological functions of FKBP51, which

appears to be a versatile protein. In addition to its role as a

potent inhibitor of GR (25–27), FKBP51 regulates other

steroid receptors and associates with and regulates the kinase

AKT through the recruitment of PH domain and leucine-rich

repeat protein phosphatases (PHLPPs), with implications for

cancer treatment (61). FKBP51 also forms protein complexes

with Beclin1, AKT, and PHLPPs in the regulation of auto-

phagy and affects tau stability, microtubule polymerization,

neurite outgrowth, glycogen synthase kinase 3b (GSK3b) sig-

naling, aging, and nuclear factor kB (NFkB) signaling in im-

mune processes (26,33,36,41,62–64). Similar to the divergent

effects of FKBP51 and FKBP52 on CDK5, the two highly

homologous FKBPs are reported to exert opposite effects on

several other cellular processes (64). Even though both FKBPs

feature a well-described enzymatic activity [peptidylprolyl

isomerization (65)], it appears that they rather function as

protein scaffolds to promote various and at least partially dif-

fering protein complexes, such as what we observed regard-

ing their interaction with CDK5.

Several functions of FKBP51 appear to contribute to its

role in the cellular and organismal response to antidepressants

(31–35). Originally, because of its effect onGR signaling (25),

FKBP51 was included as candidate in the first gene associa-

tion study in depression (31). Since then, cellular, animal, and

clinical data suggest that the role of FKBP51 in regulating

GSK3b, AKT, and autophagy signaling mediate antidepressant effects

(33, 36). GSK3b and AKT decrease or increase, respectively, DNMT1 pro-

tein abundance (66). In our data set, we found no evidence that the presence
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Fig. 6. Changes in BDNF and phosphoryl-

ated DNMT1 in response to ex vivo paroxe-

tine or clinical treatment: Correlations with

FKBP51 and clinical treatment response.

(A) Correlation in the clinical success of anti-

depressants (reducedHDRS)with thechange

in abundance of phosphorylated DNMT1 in

PBMCscollected fromMARSprojectpatients

after 6 weeks’ antidepressant therapy. (B)

Correlation of clinical therapy success with

the change in the phosphorylation of DNMT1

in respective patients’ PBMCs isolated before therapy and treated ex vivo with paroxetine.

(C) Correlation of the change in the phosphorylation of DNMT1 in PBMCs isolated from pa-

tients after clinical therapy [as described in (A)] with that in respective patients’ PBMCs

isolatedbefore therapy and treated ex vivowith paroxetine. (D andE) Correlation of the abun-

dance of FKBP51 with that of BDNF in PBMCs either (D) isolated before therapy and treated

ex vivo with paroxetine or (E) isolated after clinical therapy [as described in (A)]. (F and G)

Correlation of the clinical success of antidepressants (reduced HDRS) with that of BDNF in

PBMCs either (F) isolated before therapy and treated ex vivo with paroxetine or (G) isolated

after clinical therapy [as described in (A)]. Protein abundance was assessed in cell extracts

by Western blotting. The abundance of phosphorylated DNMT1 was normalized to total

DNMT1.DatawereanalyzedbyPearsoncorrelationcoefficient corrected for ageandgender.
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of FKBP51 alters the overall abundance of DNMT1, possibly because

FKBP51 inhibits both AKTand GSK3b (33, 36, 61). Although we suggest

that the specific suppression of DNMT1 phosphorylation is mediated

through the interaction of FKBP51 with CDK5, given the potential for

multiple kinases being affected by FKBP51 (37), we cannot yet exclude

the possibility that kinases other than CDK5 contribute to this mechanism.

The present and several additional studies portray FKBP51 as “reactivity

protein” in the sense that it shapes the responsiveness to stress and drug

treatment (33, 36, 61, 67, 68). Part of this conclusion extends from ex-

periments with 51KO mice. Deletion of genes often goes along with com-

pensatory mechanisms that are evoked by the organism throughout

development. The effect of FKBP5 deletion is not always detectable in

the absence of a stimulus (33, 36, 67, 68); in our study, a difference in phos-

phorylation of DNMT1 between brains from wild-type and those from

51KO animals was only evident after treatment with paroxetine. Thus, it

appears that possible compensatory changes in response to gene deletion

do not compromise the effects evoked by challenges later in life.

It is tempting to speculate about the possibility to target (enhance)

FKBP51 or downstream processes for the treatment of depression or other

stress-related diseases. However, we would like to point out that due to the

multifactorial actions of FKBP51, more studies are necessary to dissect

which functions of FKBP51 are important and how it might be possible

to specifically affect a subset of these functions when targeting FKBP51

directly rather than by targeting downstream processes. A promising

FKBP51-targeting compound has been presented recently (69). This com-

pound is designed as inhibitor of the peptidylprolyl isomerase activity but

because this activity appears dispensable for many functions of FKBP51,

it is not clear yet which of themolecular actions of FKBP51 are influenced

in which direction. Because the gene encoding FKBP51 has also been

suggested as a risk factor for psychiatric disorders (31, 49, 70), timing

of pharmacological FKBP51 targeting will likely be important. Moreover,

if one limits the ability of FKBP51 to reduce GR function, more FKBP51

might be produced because of an ultrashort feedback loop (28, 30, 71).

Alternatively, our study also supports the consideration of DNMT1 inhi-

bitors for drug development in depression (14, 48).

MATERIALS AND METHODS

Cells
HEK293 cells [American Type Culture Collection (ATCC), CRL-1573],

SKNMCcells (gift fromC.Behl, University ofMainz, Germany), andMEFs

(gift from M. Cox, University of Texas at El Paso) were maintained in

Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented

with 10% fetal calf serum (FCS) and 100 U/ml penicillin and streptomycin,

respectively. Enriched astroglial cultures were prepared from postnatal

day–1 Sprague-Dawley rat pups (Charles River) or wild-type and 51KO

mice and were handled as described previously (72).

Transfection of astrocytes and MEF cells
DetachedMEFs or cortical astrocytes (2 × 106) were resuspended in 100 ml

of transfection buffer [50 mM Hepes (pH 7.3), 90 mM NaCl, 5 mM KCl,

and 0.15 mM CaCl2] (73). Up to 5 mg of plasmid DNA expressing the

respective construct was added to the cell suspension, and electroporation

was carried out using the AmaxaNucleofactor system (Lonza). Cells were

replated at a density of 105 × cm−2 and further processed for Western blot

analysis or assessment of DNMT1 activity.

Plasmids
The constructs expressing FLAG-tagged FKBP51, PPIase-deficient

FKBP51 (F67D/D68V) or FKBP52, and hemagglutinin-tagged CDK5 have

been described previously (25, 74). The plasmids pcDNA3/Myc-DNMT3A

and pcDNA3/Myc-DNMT3B1 were from Addgene (#35521 and #35522).

Coimmunoprecipitation
Coimmunoprecipitations (CoIPs) of FLAG-tagged FKBP51/52 or en-

dogenous CDK5, FKBP51, and FKBP52 were performed in HEK293 cells

essentially as described previously (26). Briefly, 5 × 106 cells were electro-

porated with 5 mg of the respective expression plasmids using a GenePulser

(Bio-Rad) at 350 V/700 mF in 400 ml of electroporation buffer [50 mM

K2HPO4/KH2PO4, 20 mM KAc (pH 7.35), and 25 mM MgSO4]. After

3 days of cultivation in DMEM/10% FCS, cells were lysed in CoIP buffer

[20 mM tris-HCl (pH 8.0), 100 mMNaCl, 1 mMEDTA, and 0.5% Igepal

complemented with protease inhibitor cocktail (Sigma)] for 20min at 4°C

with constant mixing. In the case of precipitating endogenous proteins

from brain lysates, the tissue was homogenized and lysed in the same

buffer. The lysates were cleared by centrifugation, and the protein concen-

tration was determined and adjusted (brain lysates, 1 mg × ml−1; cell lysates,

1.2 mg × ml−1); 1ml of lysatewas incubatedwith 2.5 mg of FLAG, FKBP51,

FKBP52, or CDK5 antibody overnight at 4°C with constant mixing. Sub-

sequently, 20 ml of bovine serum albumin–blocked protein G Dynabeads

(Invitrogen, 100-03D) were added to the lysate-antibody mix followed by

BDNFBDNF

Global

effects

Local

effects

CDK5

FKBP52
FKBP51 CDK5

FKBP51

DNMT1

DNMT1FKBP52

FKBP52 CDK5
p35

CDK5
p35

PDNMT1

StressAntidepressants

competitively 
FKBP52/FKBP51 

associate CDK5 

 sdnib 1TMND
FKBP52-CDK5 
complexes, gets 
phosphorylated 

p35

p35

Fig. 7. Model of antidepressant effects on global and local epigeneticmarks

mediated throughFKBP51-regulated suppression of DNMT1activity.Sche-

matic summarizing of our findings. FKBP51 competes with FKBP52 for bind-

ing toCDK5 and its activator p35. BecauseDNMT1preferentially associates

with FKBP52-CDK5-p35 complexes, DNMT1 displays higher phosphoryl-

ation and activity in the presence of high FKBP52 abundance but not when

FKBP51 dominates the CDK5-p35 complexes. This causes differences in

global DNA methylation and BDNF promoter methylation and expression.

The stress-enhanced protein FKBP51may thusmediate the impact of stress

on epigenetic programming. Furthermore, this pathway is targeted by par-

oxetine and possibly other antidepressants to swap chaperone binding to

CDK5, whichmaymediate the clinical response in patients with depression.
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a 3-hour incubation at 4°C. Beads were washed three times with PBS, and

bound proteins were eluted with 100 ml of 1 × FLAG peptide solution (100

to 200 mg × ml−1, Sigma F3290) in PBS for 30 min at 4°C. In case of

precipitation of endogenous proteins, elution was performed by adding

60 ml of Laemmli sample buffer and by incubation at 95 °C for 5 min. Five

to fifteen micrograms of the input lysates or 2.5 to 5 ml of the immunopre-

cipitates were separated by SDS–polyacrylamide gel electrophoresis

(PAGE) and analyzed byWestern blotting. When quantifying coimmuno-

precipitated proteins, their signals were normalized to input protein and to

precipitated interactor protein.

Western blot analysis
Western blot analysis was conducted as previously described (13). Briefly,

protein extracts were obtained by lysing cells in 62.5 mM tris, 2% SDS, and

10% sucrose, supplemented with protease (Sigma, P2714) and phospha-

tase (Roche, 04906837001) inhibitor cocktail, followed by sonication of

samples and heating at 95°C for 5 min. Proteins were separated by SDS-

PAGE and electrotransferred onto nitrocellulose membranes. Blots were

placed in tris-buffered saline (TBS) supplemented with 0.05% Tween

(Sigma, P2287) and 5% nonfat milk for 1 hour at room temperature, fol-

lowed by an incubation with the primary antibody (diluted in TBS/0.05%

Tween) overnight at 4°C. Primary antibodies recognizing the following

epitopes or proteins were used: FLAG (1:7000; Rockland, 600-401-383),

FKBP51 (1:1000; Bethyl, A301-430A), FKBP52 (1:2000; Bethyl, A301-

427A), actin (1:5000; Santa Cruz Biotechnology, sc-1616), DNMT1

(1:1000; Imgenex, IMG-261A), CDK5 (1:1000; Cell Signaling Technol-

ogy, #2506), p25 and p35 (1:1000; Cell Signaling Technology, #2680),

p39 (1:1000; Cell Signaling Technology, #3275), myc (1:1000; Sigma-

Aldrich, C3956), and Hsc70 (heat-shock cognate 70; 1:2000; Santa Cruz

Biotechnology, sc-7298). Subsequently, blots were washed and probed

with the respective horseradish peroxidase–conjugated secondary anti-

body for 1 hour at room temperature. Enhanced chemiluminesence detec-

tion reagent (Millipore) was applied to visualize the immunoreactive

bands at ChemiDoc MP (Millipore). In the figures, bands corresponding

to the respective proteins are displayed. Full lane blots corresponding to

Figs. 1 to 3 and figs. S1 and S3 are shown in data files S1 to S3.

In situ hybridization
Mouse tissue was available from experiments described previously (33).

Frozen brains were coronally sectioned in a cryostat microtome at 18 mm

and kept at −80°C. In situ hybridization using a 35S uridine triphosphate–

labeled ribonucleotide probe for BDNF (forward primer: 5′-GCGGCAGA-

TAAAAAGACTGC and reverse primer: 5′-AAGTTGTGCGCAAATG-

ACTG; size, 495 bp) was performed as described previously (75). The

slides were exposed to Kodak BioMax magnetic resonance films (Eastman

Kodak Co.) and developed. Autoradiographs were digitized, and expression

was determined by optical densitometry using the freely available National

Institutes of Health (NIH) ImageJ software. The mean of two unilateral mea-

surements (dorsal hippocampal subregions: CA1, CA2, CA3, and dentate

gyrus) was calculated for each animal, subtracting the background signal of

a nearby structure not expressing the gene of interest from the measurements.

Determination of BDNF
BDNF was quantified in the serum using the commercially available

enzyme-linked immunosorbent assay (ELISA) kit human BDNF DuoSet,

(R&D Systems, #DY248).

Subjects and preparation of human PBMCs
Human PBMCs were collected from 21 healthy male volunteers (average

age was 25.8 ± 2.7 years) for analysis of protein-protein correlations

(Fig. 5C). The same volunteers received 1.5 mg of dexamethasone (orally),

and protein expression changes in PBMCs were determined 6 hours later

(Fig. 5E). PBMCs fromanother group of volunteers (20men, average age of

34.8 ± 6.9 years) were collected for ex vivo cultivation and determination of

paroxetine effects (Fig. 5D). In addition, PBMCs were collected before and

after antidepressant treatment from 40 patients participating in the MARS

study (52) and diagnosed with depression according to the diagnostic crite-

ria of Diagnostic and Statistical Manual of Mental Disorders, 4th Edition

(DSM-IV; 23 women and 17 men, average age of 48.85 ± 14.7 years).

MARS is an open-label trial investigating outcome predictors for

antidepressant treatment. The type of treatment was chosen according

to the attending doctor’s choice and in agreement with the patients. Dos-

age was adjusted and monitored according to plasma medication con-

centrations. Treatment outcome was weekly evaluated with the 21 items

version of the HDRS. Fasting venous blood sampleswere collected through

venipuncture on admission and after 6 weeks of antidepressant treat-

ment. Samples were diluted with PBS, carefully loaded on Biocoll solu-

tion (BioChrom AG, L6113) and centrifuged at 800g for 20 min. PBMCs

were enriched by selecting the interphase of the Biocoll gradient, followed

by washing two times with ice-cold PBS. Cells were then resuspended in

RPMI and plated at 4 × 105/cm2. After recovery for 6 hours, cells were

treated with either 365 nM paroxetine or vehicle. This concentration has

been chosen to match therapeutic concentrations in the serum according

to the consensus guidelines for therapeutic drug monitoring in psychiatry

(51). Patients and healthy subjects gave informed written consent, and the

study was approved by the ethics committee of the Ludwig Maximilians

University in Munich, Germany.

Global methylation analysis
Total cytosine methylation and hydroxymethylation in genomic DNA from

rat astrocytes was determined by quantitative LC/UV-ESI-MS/MS analysis

of digested DNA samples as described previously (76).

Gene expression and DNA methylation profiling in
subjects from the Grady Trauma Project
Whole-blood samples were obtained from 365 subjects from the Grady

Trauma Project. The Grady Trauma Project is an ongoing study that in-

cludesmore than 6000 subjects from a highly traumatized, urban population

of low socioeconomic status and examines the role of genetic and

environmental factors on stress responses (49, 50). All subjects provided

written informed consent, and all procedures were approved by the Insti-

tutional Review Boards of the Emory University School of Medicine and

Grady Memorial Hospital.

To assess DNA methylation, whole-blood genomic DNA was

extracted using the Gentra Puregene Blood Kit (Qiagen). DNA quantity

and quality were assessed by Quant-iT PicoGreen (Invitrogen) and Nano-

Drop 2000 Spectrophotometer (Thermo Scientific). Subsequently, DNA

was bisulfite-convertedwith the ZymoEZ-96DNAMethylationKit (Zymo

Research), and DNA methylation was assessed with Illumina Human-

Methylation450 BeadChip (450K) arrays. Hybridization and processing

was performed as previously described (77). Quality control of methylation

data, including intensity readouts, normalization, and cellular composition

estimation, was carried out using the minfi Bioconductor R package ver-

sion 1.10.2 (78). Failed probeswere excluded on the basis of a detection of

P value greater than 0.01 in at least 75%of the samples (n=233 probes).We

also removed probes inXorYchromosome andnonspecific binding probes

(79) if single nucleotide polymorphisms (SNPs) were documented in the

interval for which the Illumina probe is designed to hybridize or if theywere

located close (10 bp fromquery site) to SNPs reported in the 1000Genomes

Project to have minor allele frequency ≥ 0.05 (80). Data were normalized
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with functional normalization included in the minfi R package (81). Batch

effects were identified after inspection of principal component analysis

using the shinyMethyl Bioconductor R package version 0.99.39 and re-

moved using COMBAT (82). As previously recommended (83), we used

M values to perform the statistical analyses involving DNA methylation

and bmethylationvalues tovisualize the relationshipswith gene expression.

To assess gene expression, whole-blood RNAwas collected with PAX-

geneBloodRNATubes (PreAnalytiX) and processed as previously described

(84). Blood RNAwas then hybridized to Illumina HumanHT-12 version

3 and version 4 Expression BeadChips (Illumina). Gene expression was

measured using the Illumina HumanHT-12 version 3 Expression BeadChip

Kit (Illumina). Raw microarray scan files were exported with the Illumina

BeadStudio program 13 and were analyzed with R (www.R-project.org).

Using Illumina internal controls, microarray data were transformed and

normalized through variance stabilizing normalization (85). Potential con-

founding as a result of batch effects was corrected using an empirical Bayes

method (82). Data reproducibility was confirmedwith six pairs of technical

replicates (average Pearson correlation = 0.996). The raw array data for the

Grady study have been deposited toGene ExpressionOmnibus (GEO) both

for gene expression (GSE58137) and DNA methylation (GSE72680).

DNMT1 activity assay
DNMT1 activity was measured as previously described (13), with the mod-

ification that astrocytes were also transfected with FKBP51, FKBP52, or

vector plasmids 3 days before cell harvesting.

Bdnf promoter methylation analysis
The methylation status of Bdnf promoters I and IV in mouse brain was

analyzed by bisulfite pyrosequencing. Briefly, total DNA was isolated

from specific brain regions using NucleoSpin Tissue (Macherey-Nagel),

according to the manufacturer’s instructions. After quantification, about

300 ng ofDNAwere bisulfite-converted using theEZDNAMethylationKit

(Zymo Research), and bisulfite-converted DNA samples were used as tem-

plates for polymerase chain reactions (PCRs) amplifying promoters I and

IVof theBdnf gene. Primers used for the bisulfite PCR and pyrosequencing

are provided in table S4. Pyrosequencing primers were designed with the

MethMarker software and carried out on a PSQ96 (Pyrosequencing) using

PyroMark Gold Q96 reagents (Qiagen) according to the manufacturer’s

recommendations.

Statistical analysis
Statistical analyses were performed with SigmaPlot 13.0 and SPSS 18.

Student’s t tests or Mann-Whitney tests were applied to compare two

groups, whereas one- or two-way analysis of variance (ANOVA)were per-

formed for comparisons between three or more groups, followed by

Bonferroni, Tukey’s, or Duncan’s post hoc test, as appropriate. Correla-

tions between variables were analyzed using the Pearson correlation co-

efficient. Treatment outcome in the patient sample was determined as

percent reduction of the HDRS rating scores between admission and after

6 weeks of antidepressant treatment. In case of an early discharge from the

hospital (after at least 2 weeks of antidepressant treatment), missing HDRS

scores were estimated using nonlinear regression with sex, age, and previ-

ous HDRS scores as predictor variables. P values lower than 0.05 were

considered statistically significant.

Ethics statement
All experiments were carried out in the animal facilities of the Max Planck

Institute of Psychiatry in Munich, Germany. The experiments were carried

out in accordance with the European Communities’ Council Directive

86/609/EEC. All efforts were made to minimize animal suffering during

the experiments. The protocols were approved by the committee for the

Care and Use of Laboratory Animals of the Government of Upper Bavaria,

Germany. Approval for theMARS project was received by the ethics com-

mittee in charge (submission no. 318/00, ethics committee of the Medical

Faculty at the Ludwig Maximilians University, Munich, Germany), and

participants gave oral and written consent before study inclusion.
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Fig. S1. DNMT protein interaction analysis.

Fig. S2. FKBP51 and FKBP52 differentially affect the phosphorylation and activity of

DNMT1.

Fig. S3. Paroxetine promotes FKBP51 binding to CDK5.

Fig. S4. FKBP51 shapes the effect of paroxetine on DNMT1.

Fig. S5. The effect of amitriptyline and haloperidol on the phosphorylation of DNMT1.

Fig. S6. The effect of amitriptyline on Bdnf promoter IV methylation.

Fig. S7. DNA methylation of Bdnf inversely correlates with the abundance of FKBP5 mRNA.

Fig. S8. Cellular and clinical change in the abundance of phosphorylated DNMT1 in

PBMCs in response to antidepressants.

Table S1. Pyrosequencing results of Bdnf promoter methylation analyses in wild-type and

51KO mice.

Table S2. Statistical details of ANOVA analysis by figure panel.

Table S3. Statistical details of Student’s t test or Mann-Whitney analysis by figure panel.

Table S4. Primers for bisulfite PCR and pyrosequencing.
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Data file S2. Blot collections for Fig. 2.
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ABSTRACT 

Aging and stress-related phenotypes are associated with heightened inflammation and disease 

risk, but the underlying molecular mechanisms are unknown. We examined the role in these 

relations of the stress-responsive immunophilin FKBP5. In four independent human cohorts 

(total n=2,818), increasing age consistently decreased FKBP5 methylation at select CpGs, and 

this age-related demethylation was accelerated by depressive symptoms and childhood trauma 

and was associated with FKBP5 upregulation in human peripheral blood. FKBP5 

upregulation was associated with proinflammatory cellular and gene expression profiles and 

with extensive changes in NF-κB-related genes. In accordance, FKBP5 overexpression in 

immune cells promoted chemokine secretion, and it strengthened the interactions of 

regulatory kinases of NF-κB, but not in the presence of FKBP5 antagonists. Notably, the 

same age-and stress-related CpGs associated with FKBP5 upregulation were also 

demethylated in subjects with myocardial infarction. These findings identify FKBP5 as 

mediator of stress-driven peripheral inflammation and potential contributor to stress-related 

cardiovascular risk. 
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INTRODUCTION 

Aging is characterized by a progressive decline in functioning and a gradual increase in 

disease risk
1
, yet individuals of the same age exhibit substantial variability in their risk for 

developing age-related diseases. Among prevalent risk factors for disease risk, studies support 

the role of psychosocial stress and stress-related phenotypes, most notably chronic stress and 

childhood trauma
2-7

, as well as major depressive disorder (MDD) and posttraumatic stress 

disorder (PTSD)
8-10

. Studies further suggest that aging and stress-related phenotypes may 

synergistically influence disease risk by contributing to peripheral inflammation
8,11-15

, but the 

underlying molecular mechanisms are not well understood. 

The effects of stress on inflammation and disease risk could be mediated by stress-

responsive molecules able to modulate immune function. A relevant molecule to examine in 

this context is the immunophilin FK506-binding protein 51 (FKBP51/FKBP5), a co-

chaperone that is acutely induced by stress and glucocorticoid exposure and influences several 

biological pathways, including immune pathways in both cells and mice
16-31

. Interestingly, 

FKBP5 is not only upregulated by stress, but also in the aging brain
32,33

 and in a number of 

age-related disease phenotypes
24,26,27,32,34

. However, whether age also regulates FKBP5 in 

peripheral blood remains unknown. Moreover, given that FKBP5 can be regulated by stress-

induced epigenetic effects
35-38

, a plausible hypothesis is that stressors accumulating along the 

lifespan could lead to a lasting epigenetic upregulation of FKBP5 that may contribute to 

peripheral inflammation and disease risk.  

Here we address these questions using both human cohorts and cellular models. In 

living humans, increasing age and stress-related phenotypes interact to epigenetically 

upregulate FKBP5 in peripheral blood, an effect that contributes to a proinflammatory blood 

cell composition and gene expression profile and altered NF-κB (nuclear factor kappa-light-

chain-enhancer of activated B cells) expression network. In immune cells, FKBP5 

overexpression promotes chemokine secretion through physical interactions with key 
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regulators of the NF- κB pathway, whereas these effects can be prevented by concomitant 

treatment with FKBP5 antagonists. Notably, the same age-and stress-related epigenetic 

signatures associated with FKBP5 upregulation are also observed in subjects with history of 

myocardial infarction, a condition associated with inflammatory states. These findings 

provide molecular insights into the mechanisms through which stress-related phenotypes 

contribute to peripheral inflammation and cardiovascular risk. 

 

RESULTS 

FKBP5 methylation decreases along the lifespan at select CpGs 

Epigenetic changes occur at susceptible genomic sites throughout life largely as a result of 

environmental factors
39

. This so-called “epigenetic drift” may account for interindividual 

variability in genomic function and disease risk
40

. To identify FKBP5 sites that may be 

particularly susceptible to environmental factors, including stress exposure along the lifespan, 

we first examined how FKBP5 methylation changes with increasing age using Illumina 

HumanMethylation450 BeadChip array (450K) data from the Grady Trauma Project (GTP; 

n=393), the Cooperative Health Research in the Region of Augsburg (KORA; n=1,727), and 

the Max Planck Institute of Psychiatry cohort (MPIP; n=538) (for demographics see 

Supplementary Table 1). These analyses included all available cytosine-guanine 

dinucleotides (CpGs) covered by the 450K that are located within or in close proximity (10kb 

upstream or downstream) to the FKBP5 locus. After controlling for confounders (see 

Methods) and FDR correction for multiple comparisons, two CpGs (cg20813374 and 

cg00130530) were consistently and robustly demethylated with age across all cohorts (FDR 

q<0.05; Supplementary Table 2). Based on previous annotation of the 450K array
41

, the two 

age-regulated sites are located in close proximity to each other within non-island genomic 

regions close to the FKBP5 transcription start site (TSS) (-461bp for cg20813374 and -483bp 



Epigenetics of stress and aging   51 

  

 

for cg00130530; Supplementary Table 2). The two CpGs showed significant pairwise 

correlations across cohorts (GTP: r = 0.83, p<2.2 x 10
-16

; KORA: r = 0.61, p<2.2 x 10
-16

; 

MPIP r = 0.37, p<2.2 x 10
-16

). The adjusted effect of age on average methylation of the two 

age-regulated CpGs for all cohorts is depicted on Fig. 1a.  

 

Childhood trauma and depressive phenotypes accelerate demethylation of the age-

regulated FKBP5 CpGs 

Given that stress exposure can induce demethylation of FKBP5
30,35

, it is plausible that higher 

burden of stress or psychopathology across the lifespan could accelerate demethylation of the 

age-regulated FKBP5 CpGs. To address this hypothesis, we examined the interactive effects 

between age and stress-related phenotypes on the age-regulated CpGs. After adjusting for all 

covariates (see Methods), depressive symptoms significantly accelerated age-related 

demethylation of FKBP5 in the GTP, KORA, and MPIP (total n=2,250, meta-analysis 

interaction p=3 x 10
-2

; Fig. 1b) In contrast, we observed no significant acceleration by 

childhood maltreatment, lifetime stress, or PTSD in the GTP, where these phenotypes were 

available. Because MDD has been shown to influence disease profiles by interacting with 

childhood trauma
8
, we further examined whether the effect of depression on age-related 

FKBP5 demethylation is moderated by childhood trauma severity as measured with the 

childhood trauma questionnaire (CTQ) in the GTP. This stratified analysis yielded a 

significant age-depression interaction in the higher-CTQ (interaction p=4.6 x 10
-2

) but not the 

lower-CTQ group (interaction p=3.3 x 10
-1

). Lastly, to examine whether exposure to a severe 

and prolonged childhood stressor is sufficient to induce lasting demethylation of the age-

regulated CpGs, we compared subjects that underwent prolonged early childhood separation 

from their parents with sex- and age-matched nonseparated controls in the Helsinki Birth 

Cohort Study (HBCS; n=160, for demographics see Supplementary Table 1). Separation 

was associated with demethylation of the age-regulated CpGs (p=7.4 x 10
-3

; Fig. 1c). 
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Together, these findings suggest that childhood trauma and depressive phenotypes synergize 

to accelerate age-related demethylation of FKBP5.  

 

Aging and stress-related phenotypes epigenetically upregulate FKBP5 in peripheral 

blood 

Changes in DNA methylation can shape gene expression, eventually contributing to cellular 

function and phenotypic expression
42-44

. To examine whether age-related changes in FKBP5 

methylation influence FKBP5 expression levels, we used FKBP5 mRNA data measured in the 

GTP cohort with Illumina HumanHT-12 v3 and v4 Expression BeadChip arrays (n=355). 

After controlling for confounders (see Methods), FKBP5 expression negatively correlated 

with methylation of the age-regulated sites (p=1.6 x 10
-2

; Fig. 2a). Given that FKBP5 mRNA 

is robustly induced by glucocorticoids
30,45

, we next examined whether age-related FKBP5 

demethylation moderates the effect of cortisol on FKBP5 expression. After confirming a 

strong positive association between cortisol and FKBP5 levels (p=2.3 x 10
-9

), we found that 

the cortisol-FKBP5 relationship was stronger at lower as compared to higher methylation 

levels (interaction p=1.4 x 10
-3

), as well as in older as compared to younger subjects 

(interaction p=2.4 x 10
-5

) (Fig. 2b). Furthermore, depressive symptoms strengthened the 

cortisol-FKBP5 relationship but only in the high-CTQ group (interaction p = 7.3 x 10
-5

) 

(Figure 2c). Overall, these findings indicate that increasing age interacts with stress-related 

phenotypes to epigenetically upregulate FKBP5. 

 

FKBP5 upregulation promotes NF-κB-driven peripheral inflammation and chemotaxis 

FKBP5 upregulation has been previously linked with the development of aberrant 

phenotypes, an effect that may be driven by alterations in distinct biological pathways
24-

27,32,34,46,47
. To examine the genome-wide functional implications of FKBP5 in peripheral 
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blood, we correlated the FKBP5 expression levels with all genes in the GTP (n=355). After 

FDR correction for multiple comparisons, FKBP5 showed significant correlation (FDR-

adjusted p<0.05) with a total of 3,275 genes (Supplementary Table 3). Using these genes as 

input and the unique array genes expressed above background (except FKBP5) as the 

reference set of genes (9,538 genes), we then performed disease association analysis in 

WebGestalt. By far the strongest enrichment was observed for inflammation and was 

conferred by a total of 123 inflammation-related genes (FDR-adjusted p=9.2 x 10
-6

; Fig. 3a; 

Supplementary Table 3). Notably, FKBP5 showed strong positive associations with a host 

of proinflammatory genes, such as interleukin and toll-like receptors. To examine whether 

this proinflammatory profile may be explained by changes in peripheral blood composition, 

we correlated FKBP5 expression levels with blood cell proportions. Higher FKBP5 levels 

correlated with increased granulocyte to lymphocyte (G/L) ratio (p=8.3 x 10
-9

; 

(Supplementary Fig. 1), suggesting that FKBP5 upregulation is associated with enhanced 

chemotaxis of proinflammatory cells. To test this hypothesis, we overexpressed FKBP5 in 

Jurkat T cells (≈3.2-fold induction; Fig. 3b) and tested their potential to secrete interleukin-8 

(IL-8), a major chemokine that promotes granulocyte chemotaxis and peripheral 

inflammation. FKBP5 overexpression nearly doubled secretion of IL-8 upon immune 

stimulation (p=4.4 x 10
-7

; Fig. 3c). 

To examine whether the proinflammatory effect of FKBP5 may be driven by distinct 

transcription factors, we then performed transcription factor target analysis in the GTP using 

the same input and reference gene sets (3,275/9,538). The strongest enrichment was observed 

for NF-κB (FDR-adjusted adjusted p=4.8 x 10
-3

; Figure 3a; Supplementary Table 3), a 

master immune regulator that can be influenced by FKBP5
20,26

. To experimentally confirm 

that FKBP5 upregulation promotes NF-κB signaling in immune cells, we performed dual-

luciferase reporter assays comparing NF-κB activity between Jurkat cells overexpressing 

FKBP5 and cells expressing control vector. FKBP5 overexpression resulted in increased NF-
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κB activity following immune stimulation (Fig. 3d). Taken together, these findings indicate 

that FKBP5 upregulation in peripheral blood promotes peripheral inflammation through 

effects on NF-κB signaling. Therefore, our further analyses sought to better characterize the 

mechanisms via which FKBP5 impacts the NF-κB pathway. 

 

FKBP5 expression changes are associated with extensive alterations in the NF-κB co-

expression network 

To determine the effect of FKBP5 on NF-κB signaling, we used gene expression data in the 

GTP (n=355) to calculate the pairwise correlations between genes encoding molecules that 

directly interact along the NF-κB pathway, and we adjusted each pairwise correlation for the 

expression levels of all other partners in the pathway. These partial pairwise correlations were 

then compared between subjects with higher and those with lower FKBP5 expression levels 

(see Methods). As shown arithmetically in Supplementary Table 4 and schematically in Fig. 

3e, several partial pairwise correlations significantly differed between the two groups. The 

strongest effect was noted for the MAP3K14-CHUK pair (rlow FKBP5 = 0.13 vs. rhigh FKBP5 = -

0.28, p = 1.9 x 10
-3

), and this effect remained robust after controlling for sex, age, cortisol, 

and blood cell proportions (p=7.1 x 10
-3

), indicating that the effects of FKBP5 on NF-κB 

signaling are independent of changes in cortisol levels or blood cell composition. 

 

FKBP5 upregulation promotes NF-κB signaling by strengthening the interaction of key 

regulatory kinases, whereas these effects are prevented by FKBP5 antagonists 

Because FKBP5 acts as a molecular co-chaperone, its effects on NF-κB signaling could result 

from physical interactions of this co-chaperone with regulators of the NF-κB pathway. 

Intriguingly, MAP3K14 and CHUK, the gene pair most profoundly influenced by changes in 

FKBP5 levels (Fig. 3e), encode respectively the NF-kappa-B-inducing kinase (NIK) and the 
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antagonist of nuclear factor kappa-B kinase subunit alpha (IKK-α), two key regulatory 

kinases of the non-canonical NF-κB pathway. Specifically, NIK interacts with and 

phosphorylates IKKα at serine 176 (pIKKα
S176

), and this phosphorylation event activates 

IKKα and facilitates NF-κB signaling
48,49

.  

 To examine whether FKBP5 modulates the NIK-IKKα interaction complex, we 

performed a series of co-immunoprecipitation experiments in human Jurkat cell lines and 

peripheral blood monocytes (PBMC). These experiments showed an interaction of FKBP5 

with both NIK and IKKα and an interaction between NIK and IKKα (Fig. 4a). We then 

examined whether FKBP5 upregulation can strengthen the FKBP5-NIK-IKKα interaction, by 

stimulating both cell types with the glucocorticoid receptor agonist (DEX), which robustly 

induces FKBP5 expression
45,47,50

. After confirming the induction (≈2.2-fold) of FKBP5 by 

DEX (Fig. 4a), we found that DEX treatment significantly increased the physical interaction 

among FKBP5, NIK, and IKKα in both Jurkat cells and PBMC, whereas this enhancement 

was abolished by concomitant treatment with the recently developed, selective FKBP5 

antagonist SAFit1
51

 in both cell types (Fig. 4a,b). These effects were accompanied by an 

increase in the functional phosphorylation of IKKα at serine 176 (pIKKα
S176

), whereas 

pIKKα
S176 

induction was abolished by treatment with SAFit1 (Fig. 4c). The effect on 

pIKKα
S176 

was recapitulated by FKBP5 overexpression in Jurkat cells (Fig. 4d). Furthermore, 

FKBP5 overexpression nearly doubled NF-κB activity in Jurkat cells, whereas this effect was 

again prevented by concomitant treatment with SAFit1 (Fig. 4e). These findings support a 

model whereby FKBP5 upregulation promotes NIK-IKKα interaction, pIKKα
S176

, and NF-κB 

signaling, whereas these effects are prevented by concomitant treatment with selective 

FKBP5 antagonists (Fig. 4f). 

 

Age-related FKBP5 demethylation is associated with history of myocardial infarction 
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Besides the potential role of DNA methylation in the causality of disease states, recent studies 

suggest that methylation signatures, including those at stress-responsive loci, may hold 

promise as biomarkers for disease phenotypes
40,52,53

. Specifically, the converging findings 

presented above ―indicating that demethylation of the age-regulated CpGs upregulates 

FKBP5, which in turn promotes peripheral inflammation― prompted us to ask whether 

demethylation of the same CpGs is also associated with inflammation-related disease. 

Inflammatory markers in peripheral blood, and in particular, IL-8 secretion and the G/L ratio 

shown here to increase with FKBP5 upregulation, have been linked with increased risk for 

cardiovascular disease, most notably acute coronary syndromes
54-57

. To examine whether 

lower methylation of the age-regulated FKBP5 CpGs is associated with acute cardiovascular 

risk, we used data on self-reported history of myocardial infarction (MI) that were available in 

the KORA and the MPIP. After controlling for potential confounders (see Methods), 

methylation of the age-regulated sites was significantly lower in individuals with positive 

history for MI in both cohorts (KORA: p = 4.4 x 10
-2

; MPIP: p = 3.1 x 10
-2

; Fig. 5).  

 

DISCUSSION 

Psychosocial stress and related phenotypes are prevalent throughout life and may confer risk 

for several disease phenotypes, including cardiovascular disease. While the underlying 

molecular mechanisms are not well understood, stress-related phenotypes have been 

associated with peripheral inflammation
8,11-13,15

, a process that contributes to vascular 

pathology and disease risk
54-57

. Among potential mediators of stress-driven inflammation, the 

present study examined the role of the stress-responsive immunophilin FKBP5. Our findings 

support a model whereby aging and stress-related phenotypes interact to epigenetically 

upregulate FKBP5, an effect that promotes NF-κB-driven peripheral inflammation (Fig. 6). 

Mechanistically, the effects of FKBP5 upregulation on immune function may be in part 



Epigenetics of stress and aging   57 

  

 

mediated by its physical interactions with key regulatory kinases of the NF-κB pathway that 

are amenable to treatment with FKBP5 antagonists. Importantly, the same age-and stress-

related epigenetic signatures associated with FKBP5 upregulation are also observed in 

subjects with history of myocardial infarction, suggesting their relevance for heightened 

cardiovascular risk.  

The present study shows that FKBP5 methylation is influenced by a complex interplay 

among increasing age, childhood trauma, and depressive symptoms (Fig. 1). Focusing on age-

regulated FKBP5 CpGs as potential sites of stress-induced epigenetic drift, we found that 

depressive symptoms accelerate demethylation of the age-regulated sites. By contrast, 

childhood trauma exerted both direct effects, as observed in subjects with prolonged early life 

separation, and indirect effects, as seen by its ability to moderate the effect of depression on 

age-regulated CpGs. While the cross-sectional nature of these analyses does not allow safe 

causal inferences, our findings extend previous studies supporting the cumulative impact of 

lifetime stress on the methylome and the potential of childhood trauma to moderate the 

epigenetic effects of subsequent adult stressors
52,58

. Notably, both childhood trauma and 

depressive symptoms led to decreases in FKBP5 methylation; this is consistent with studies 

showing that FKBP5 and other stress-responsive sites undergo demethylation upon stress and 

glucocorticoid exposure
35,38,52,59

. Together these findings provide novel insights, but also raise 

intriguing questions, into the mechanisms through which stressful experiences of different 

types, timing, and duration may interact to induce and stabilize changes in methylation of 

stress-responsive CpGs along the lifespan. 

The effect of aging and stress-related phenotypes on FKBP5 methylation is in turn 

associated with a modest increase in FKBP5 expression and robust strengthening of the 

cortisol-FKBP5 relationship in peripheral blood (Fig. 2). These findings suggest that older 

individuals with higher stress burden are likely to show exaggerated FKBP5 levels in 

peripheral blood both at baseline and, most notably, upon stress exposure, when blood cortisol 
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rises. While in many cases dynamic FKBP5 responses favor adaptations to organismal and 

cellular stress
60-63

, FKBP5 upregulation has also been linked with the development of aberrant 

phenotypes
24-27,32,34,46,47

. The phenotypic outcome may depend on the context of stress 

exposure and the pleiotropic effects of FKBP5 on downstream biological pathways
30,62,64,65

.  

In the present study, converging evidence in both living humans and immune cells 

shows that FKBP5 upregulation contributes to peripheral inflammation by promoting NF-κB 

signaling and secretion of the NF-κB target IL-8
66

 (Fig. 3). The FKBP5-driven secretion of 

IL-8 in Jurkat T cells extends a previous study showing that FKBP5 downregulation 

suppresses NF-κB-mediated production of IL-8 in melanoma cells
29

. In turn, the 

proinflammatory effect of FKBP5 we observe in peripheral blood may in part be explained by 

the IL-8-mediated recruitment of granulocytes in peripheral blood
67

, a possibility supported 

by the positive association we observe between FKBP5 levels and the G/L ratio 

(Supplementary Fig. 3). Higher G/L ratio and IL-8 levels are associated with heightened 

cardiovascular risk and mortality
54-56

, and because FKBP5 is the most robustly induced gene 

by glucocorticoids in human blood
45

, older inidividuals with higher levels of stress exposure 

―who have epigenetic upregulation of FKBP5― may be more prone to stress-induced 

peripheral inflammation and vascular pathology. This pathogenic cascade could explain the 

association we observe between FKBP5 demethylation and history of MI (Fig. 5) and 

provides molecular insights into previous associations of stress-related phenotypes with 

heightened inflammation and cardiovascular risk
2,3,6,7,9,10

. 

Although FKBP5 has been previously shown to influence various players of the NF-

κB pathway, to our knowledge this is the first study to uncover the interaction of FKBP5 with 

NIK and the functional modulation of the NIK-IKKα interaction upon FKBP5 upregulation 

and glucocorticoid exposure (Fig. 4). The FKBP5-mediated induction of NF-κB activity, 

which we observe here, is in accordance with the majority of previous studies showing that 

downregulation of FKBP5 inhibits NF-κB signaling
19-21,23,24,26-29,31

, though opposite effects 
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have been reported in select cell lines
22

. We also show for the first time the effect of FKBP5 

on NF-κB signaling in Jurkat T cells and PBMC, both relevant cellular models of peripheral 

inflammation. Strikingly, the FKBP5-driven induction of NF-κB can be prevented with 

concomitant use of FKBP5 antagonists (SAFit1). By contrast, as shown both here and in a 

previous study
51

, SAFit1 has no effects on immune function under baseline FKBP5 levels, 

suggesting that FKBP5 antagonists could prevent the undesirable effects of stress only if 

targeted at immune systems with upregulated FKBP5.  

In conclusion, the present study shows that the immunophilin FKBP5 mediates stress-

driven peripheral inflammation, potentially contributing to stress-related cardiovascular risk. 

While the impact of stress on disease risk is undoubtedly mediated by multiple molecules 

―each having pleitropic effects on downstream pathways― the present study exemplifies 

how examining relevant molecules, by using converging evidence from both human cohorts 

and cellular models, can provide insights into how stress-related phenotypes could shape 

disease risk at the molecular level. 
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Figure 1. Childhood trauma and depressive phenotypes accelerate age-related demethylation 

of FKBP5. (a) Methylation decreases at age-regulated FKBP5 CpGs along the lifespan (GTP: 

βage = -0.0045, p = 8 x 10
-8

; KORA: βage = - 0.0055, p < 2 x 10
-16

; MPIP: βage = -0.0066, p = 

2.1 x 10
-8

; total n = 2,818). (b) Depressive phenotypes accelerate age-related FKBP5 

demethylation (GTP: βage for moderate/severe depression = -0.0075 vs. βage for no/mild 

depression = -0.0032; KORA: βage for moderate/severe depression = -0.0063 vs. βage for 

no/mild depression = -0.0047; MPIP: βage for depressed = -0.0078 vs. βage for non-depressed = 

-0.0047; total n = 2,250, meta-analysis interaction p = 3 x 10
-2

, heterogeneity p = 2.8 x 10-1). 

(c) Early life separation is associated with demethylation of the age-regulated FKBP5 CpGs in 

the HBCS (βseparation = -0.0932, mean DNA methylation difference = 1.4%, p=7.4 x 10
-3

). In 

all panels, the average methylation of the two age-regulated CpGs (cg20813374 and 

cg00130530) is depicted. The age-regulated CpGs were determined after examining all 450K-

covered CpGs within or in close proximity (10kb upstream or downstream) to the FKBP5 

locus (Supplementary Table 2). All coefficients and p values are derived from models using 

M-values for DNA methylation and after correcting for covariates (see Methods). ** p < 10
-2

. 

GTP, Grady Trauma Project; HBCS, Helsinki Birth Cohort Study; KORA, Cooperative 

Health Research in the Region of Augsburg F4 community study; MPIP, Max Planck Institute 

of Psychiatry case/control study. 
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Figure 2. Aging and stress-related phenotypes epigenetically upregulate FKBP5 in peripheral 

blood in the Grady Trauma Project (n = 355). (a) FKBP5 expression levels are negatively 

associated with average methylation of the age-regulated sites (β = -0.3835, p=1.6 x 10
-2

). (b) 

The cortisol-FKBP5 relationship is stronger at lower methylation levels of the age-regulated 

CpGs (interaction p=1.4 x 10
-3

, βcortisol for lower methylation = 0.0299 vs. βcortisol for higher 

methylation = 0.0069) and in older ages (interaction p=2.4 x 10
-5

, βcortisol for older subjects = 

0.0376 vs. βcortisol for younger subjects = 0.0075). (c) Depressive symptoms strengthen the 

cortisol-DFKBP5 relationship only in subjects with higher levels of childhood trauma (higher-

CTQ group: interaction p=7.3 x 10
-5

; lower-CTQ group: interaction p=1.4 x 10
-1

). For all 

stratified analyses, we performed median splits of the respective continuous variables. All 

coefficients and p values are derived from models using M-values for DNA methylation and 

after correcting for covariates (see Methods). CTQ, Childhood Trauma Questionnaire. 
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Figure 3. FKBP5 upregulation promotes NF-κB-driven peripheral inflammation. (a) FKBP5-

related genes in peripheral blood show enrichment for inflammation-related genes and NF-κB 

gene targets. Disease association and transcription factor target analyses were performed 

using genome-wide gene expression data in the Grady Trauma Project (GTP; n = 355). The 

number of genes for each analysis is shown in parentheses. Statistical details are provided in 

Supplementary Table 3. (b) Control experiment confirming FKBP5 overexpression in Jurkat 

T cells transfected with FKBP51-FLAG vs. cells transfected with the control vector. (c) 

FKBP5 overexpression nearly doubles IL-8 secretion by stimulated Jurkat T cells. The bar 

graph depicts IL-8 secretion in stimulated cell supernatants measured with ELISA from two 

independent experiments (n = 8 per condition). For each experiment, fold ratios of IL-8 

secretion were calculated relative to stimulated cells expressing the control vector. IL-8 was 

undetectable in non-stimulated cells (not shown). (d) FKBP5 overexpression increases NF-κB 

activity in stimulated Jurkat T cells. The bar graph depicts NF-κB reporter activity in 

stimulated cells measured with dual-luciferase reporter assays from three independent 

experiments (n = 9 per condition). For each experiment, fold ratios of NF-κB activity were 

calculated relative to non-stimulated cells expressing the control vector. (e) FKBP5 

expression changes are associated with extensive alterations in the NF-κB co-expression 

network in the GTP (n = 355). Stratification in higher- and lower-FKBP5 expression groups 

was performed by a median split of FKBP5 expression levels. The circles depict all genes 

encoding molecular partners of the NF-κB pathway. Pairwise correlations (blue lines) have 

been corrected for expression levels of all other genes in the pathway. Continuous lines show 

positive and dotted lines negative correlations. The thickness of each line corresponds to 

correlation strength for each pair. The gene pair with the most robust difference in correlation 

between the two groups (CHUK-MAP3K14) is highlighted in orange. Statistical details are 

provided in Supplementary Table 4. ** p < 10
-2

; *** p < 10
-3

. 
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Figure 4. FKBP5 upregulation promotes NF-κB signaling by strengthening the interaction of 

key regulatory kinases, whereas these effects are prevented by FKBP5 antagonists. (a) 

Immunoprecipitation (IP) for either FKBP5 or NIK followed by Western blotting in lysates 

from Jurkat T cells or peripheral blood monocytes (PBMC) treated with dexamethasone 

(DEX) and/or selective FKBP5 antagonists (SAFit1). Control: without primary antibody 

(IgG). (b) Quantifications of respective IPs, overall showing DEX-induced increase in 

FKBP5-NIK-IKKα interactions, which is prevented by concomitant treatment with SAFit1 (n 

= 3 biological replicates per condition). (c and d) Western blotting in Jurkat and PBMC 

lysates, overall showing increase in the functional phosphorylation of IKKα at serine 176 

(pIKKα) by DEX treatment (c) and FKBP5 overexpression (d), both of which are prevented 

by SAFit1 treatment (n = 3-4 per condition). (e) FKBP5 overexpression increases NF-κB 

activity in stimulated Jurkat T cells, whereas this increase is prevented by concomitant 

treatment with SAFit1. The bar graph depicts NF-κB reporter activity measured with dual-

luciferase reporter assays from three independent experiments (n = 9 per condition). For each 

experiment, fold ratios of NF-κB activity were calculated by comparison to cells expressing 

the control vector. (e) Scheme summarizing the model supported by the IP and Western data. 

FKBP5 upregulation, which can be induced by DEX, strengthens the NIK-IKKα interaction, 

thereby inducing pIKKα and NF-κB signaling. These effects on NF-κB signaling are 

prevented by concomitant treatment with SAFit. All statistical comparisons were performed 

with two-way ANOVAs, and significant two-way interactions were followed by Bonferroni-

corrected pairwise comparisons. * p < 5 x 10
-2

; ** p < 10
-2

; *** p < 10
-3

, significant pairwise 

comparisons. 
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Figure 5. Age-related FKBP5 demethylation is associated with history of myocardial 

infarction. KORA: N = 1,648 subjects without vs. 62 with history of MI, p = 4.4 x 10
-2

, mean 

DNA methylation difference = 1.8%; MPIP: N = 310 subjects without vs. 8 with history of 

MI, p = 3.1 x 10
-2

, mean DNA methylation difference = 4.8%. All p values are derived from 

models using M-values for DNA methylation and after correcting for covariates (see 

Methods). 
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Figure 6. Conceptual scheme summarizing the model supported by the study’s findings. 

Aging, childhood trauma, and depressive symptoms interact to demethylate FKBP5 at select 

CpGs located 483 bp (cg00130530) and 461bp (cg20813374) upstream from the transcription 

start site (TSS). These effects derepress FKBP5 responses in peripheral blood upon stress 

and/or cortisol exposure. FKBP5 upregulation promotes NF-κB signaling, whereas this effect 

is prevented by concomitant treatment with FKBP5 antagonists. Disinhibited FKBP5 

responses may lead to enhanced chemotaxis of proinflammatory cells and peripheral 

inflammation, potentially contributing to stress-related cardiovascular risk. 
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Supplementary Figure 1. Correlation between FKBP5 expression levels and the granulocyte 

to lymphocyte ratio, a marker of proinflammation that predicts heightened cardiovascular 

risk
54

. The reported p value is after controlling for covariates (see Methods). 
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Supplementary Table 1. Demographics and characteristics of study cohorts 

 Grady 

(n=411) 

KORA 

(n=1,727) 

MPIP 

(n=538) 

HBCS 

(n=160) 

Age, mean, range (SD) 41.4, 18-77 

(13) 

61, 32-81 

(8.9) 

47.7, 18-87 

(13.4) 

63.5, 58-69 

(2.8) 

Sex, n (%) 

        Male 

        Female 

 

119 (29) 

292 (71) 

 

845 (48.9) 

882 (51.1) 

 

229 (42.6) 

309 (57.4) 

 

160 (100) 

NA 

Race, n (%) 

        AA 

        Caucasian 

        Other 

 

411 (100) 

NA 

NA 

 

NA 

1,727 (100) 

NA 

 

NA 

538 (100) 

NA 

 

NA 

160 (100) 

NA 

CTQ, mean (SD) 42.6 (18.3) NA NA NA 

Severity of depressive 

symptoms (BDI), n (%) 

          Low 

          High 

 

 

250 (64.6) 

137 (35.4) 

 

 

NA 

NA 

 

 

NA 

NA 

 

 

NA 

NA 

Depressed mood/exhaustion 

(DEEX), n (%) 

          Low 

          High 

 

 

NA 

NA 

 

 

957 (65.2) 

510 (34.8) 

 

 

NA 

NA 

 

 

NA 

NA 



Depressed cases/controls, n 

(%) 

          Nondepressed 

          Depressed 

 

 

NA 

NA 

 

 

NA 

NA 

 

 

209 (39.1) 

325 (60.9) 

 

 

NA 

NA 

Early separation, n (%) 

Separated 

Nonseparated 

 

NA 

NA 

 

NA 

NA 

 

NA 

NA 

 

80 (50) 

80 (50) 

Available 450K data, n 393 1,727 538 160 

Available gene expression 

data, n 

355 NA NA NA 

 



Supplementary Table 2

name #bin chrom chromStart chromEnd score strand thickStart

cg20813374 857 chr6 35657180 35657181 120 - 35657180

cg00130530 857 chr6 35657202 35657203 114 - 35657202

cg18357736 857 chr6 35705548 35705549 134 + 35705548

cg23873288 857 chr6 35705850 35705851 477 + 35705850

cg25114611 857 chr6 35696870 35696871 521 - 35696870

cg13719443 857 chr6 35700381 35700382 142 + 35700381

cg19014730 856 chr6 35635984 35635985 648 + 35635984

cg25994725 857 chr6 35703435 35703436 572 - 35703435

cg14642437 857 chr6 35652521 35652522 920 - 35652521

cg03591753 857 chr6 35659140 35659141 736 + 35659140

cg07944278 857 chr6 35699424 35699425 51 + 35699424

cg14284211 856 chr6 35570223 35570224 332 + 35570223

cg17085721 856 chr6 35645341 35645342 910 - 35645341

cg05741161 857 chr6 35699498 35699499 71 + 35699498

cg07061368 856 chr6 35631735 35631736 847 + 35631735

cg21626086 857 chr6 35704928 35704929 764 - 35704928

cg00610228 857 chr6 35695933 35695934 79 + 35695933

cg07485685 857 chr6 35696060 35696061 32 + 35696060

cg00862770 857 chr6 35655763 35655764 41 + 35655763

cg06937024 857 chr6 35695489 35695490 33 - 35695489

cg08915438 857 chr6 35697759 35697760 741 - 35697759

cg10913456 857 chr6 35656589 35656590 15 + 35656589

cg22211300 857 chr6 35704822 35704823 795 - 35704822

cg26868354 857 chr6 35699951 35699952 52 + 35699951

cg01294490 857 chr6 35656905 35656906 93 + 35656905

cg01321308 857 chr6 35704223 35704224 64 + 35704223

cg02665568 856 chr6 35544467 35544468 846 + 35544467

cg10780318 857 chr6 35704148 35704149 77 + 35704148

cg16052510 856 chr6 35603143 35603144 812 - 35603143

cg19226017 857 chr6 35697184 35697185 839 + 35697184

cg07633853 856 chr6 35569471 35569472 433 - 35569471

cg18726036 856 chr6 35543610 35543611 937 - 35543610

cg03546163 857 chr6 35654363 35654364 724 - 35654363

cg23416081 857 chr6 35693572 35693573 621 + 35693572

cg08586216 856 chr6 35612351 35612352 908 - 35612351

cg08636224 857 chr6 35657921 35657922 881 - 35657921

cg00140191 857 chr6 35656242 35656243 37 - 35656242

cg11845071 857 chr6 35695859 35695860 17 - 35695859

cg06087101 856 chr6 35551932 35551933 85 - 35551932

cg07843056 857 chr6 35656847 35656848 11 + 35656847

cg10300814 856 chr6 35565116 35565117 897 - 35565116

cg15929276 857 chr6 35687456 35687457 112 + 35687456

cg16012111 857 chr6 35656757 35656758 63 + 35656757

cg17030679 857 chr6 35696299 35696300 92 + 35696299

cg00052684 857 chr6 35694245 35694246 665 - 35694245



Effects of age in the Grady Effects of age in the KORA

thickEnd itemRgb Coefficient t value p value q value Coefficient t value p value

35657181 0,0,205 -0.0054607 -6.11751 3.22E-09 1.42E-07 -0.00736 -12.6943 2.37E-35

35657203 0,0,205 -0.0038199 -4.08717 5.72E-05 1.26E-03 -0.00407 -6.64303 4.12E-11

35705549 0,0,205 -0.0029015 -3.60401 0.000371 0.005444 -0.00492 -5.6474 1.9E-08

35705851 128,0,128 -0.0029819 -3.05615 0.00246 0.02706 -0.00054 -0.74372 0.457148

35696871 128,0,128 -0.0021073 -2.77685 0.005862 0.051584 -0.00298 -5.43903 6.13E-08

35700382 0,0,205 -0.0024314 -2.63532 0.008878 0.065103 -0.00147 -2.56969 0.010263

35635985 255,127,0 -0.0033178 -2.5419 0.011568 0.072716 -0.00197 -1.50514 0.132473

35703436 128,0,128 -0.0021795 -2.46129 0.014451 0.079483 -0.00319 -3.01026 0.002648

35652522 255,127,0 -0.002673 -2.13716 0.033458 0.163571 -0.00154 -1.25236 0.210612

35659141 255,127,0 0.00117248 1.859871 0.06396 0.23452 0.000417 1.258235 0.208479

35699425 0,0,205 0.00307827 1.934743 0.054036 0.23452 0.006041 1.203135 0.22909

35570224 128,0,128 -0.0018162 -1.89744 0.058805 0.23452 -0.00168 -1.54423 0.122719

35645342 255,127,0 -0.001863 -1.79788 0.07328 0.248025 -0.00141 -1.00029 0.317315

35699499 0,0,205 -0.001172 -1.59164 0.112603 0.309658 -0.00017 -0.23048 0.81775

35631736 255,127,0 -0.0020621 -1.6114 0.108227 0.309658 -0.00435 -2.79372 0.005269

35704929 255,127,0 0.00129673 1.59924 0.110903 0.309658 -0.00033 -0.50164 0.615984

35695934 0,0,205 -0.0016398 -1.48257 0.139322 0.360597 0.001211 1.207049 0.22758

35696061 0,0,205 -0.0023459 -1.39365 0.164537 0.402202 -0.00331 -0.36892 0.712232

35655764 0,0,205 0.00121426 1.243536 0.214718 0.43187 0.00051 0.249271 0.803181

35695490 0,0,205 0.00320536 1.240233 0.215935 0.43187 -0.01218 -1.38721 0.165559

35697760 255,127,0 0.00186397 1.304645 0.193093 0.43187 -0.00102 -1.14243 0.253436

35656590 0,0,205 0.00271904 1.251844 0.211679 0.43187 0.004101 0.499023 0.617828

35704823 255,127,0 -0.0008445 -1.18181 0.238291 0.442686 -0.00101 -1.85953 0.063123

35699952 0,0,205 0.00084856 1.173837 0.241465 0.442686 0.0001 0.118814 0.905437

35656906 0,0,205 0.0010166 0.88074 0.37922 0.564982 0.000324 0.260912 0.794192

35704224 0,0,205 0.00061148 0.873269 0.38327 0.564982 -0.0005 -0.6469 0.51778

35544468 255,127,0 0.00110126 0.898657 0.369613 0.564982 -0.00089 -0.62598 0.531411

35704149 0,0,205 0.00077473 0.869699 0.385215 0.564982 0.000589 0.614234 0.539143

35603144 255,127,0 0.0015079 0.949422 0.343231 0.564982 -5.4E-05 -0.02958 0.976409

35697185 255,127,0 -0.0009848 -0.96894 0.333416 0.564982 0.00047 0.498083 0.61849

35569472 128,0,128 -0.0015421 -0.84451 0.399109 0.566477 0.010183 0.986322 0.324385

35543611 255,127,0 0.00100256 0.704214 0.481889 0.662597 -0.00219 -1.92149 0.054836

35654364 255,127,0 0.00124224 0.655363 0.512776 0.682124 -0.00398 -2.33511 0.019671

35693573 255,127,0 -0.0006283 -0.63324 0.527095 0.682124 -0.00169 -3.05802 0.002263

35612352 255,127,0 -0.0005937 -0.52724 0.59845 0.752337 0.00194 1.424833 0.154388

35657922 255,127,0 -0.0004224 -0.45937 0.64633 0.789958 0.0007 0.637144 0.524116

35656243 0,0,205 -0.0005857 -0.28974 0.772231 0.918329 -9.6E-05 -0.01242 0.990089

35695860 0,0,205 -0.0005065 -0.24204 0.808931 0.936657 -0.00549 -0.64994 0.515816

35551933 0,0,205 -1.65E-04 -0.07142 0.943114 0.969369 -0.00341 -2.72711 0.006454

35656848 0,0,205 -0.0001648 -0.03843 0.969369 0.969369 0.003979 0.435325 0.663383

35565117 255,127,0 -4.929E-05 -0.04863 0.961246 0.969369 -0.00152 -1.22509 0.220712

35687457 0,0,205 7.1538E-05 0.046326 0.963083 0.969369 -0.01368 -2.68774 0.007267

35656758 0,0,205 9.83E-05 0.095616 0.923894 0.969369 0.001839 1.452296 0.146603

35696300 0,0,205 1.41E-04 0.125257 0.900411 0.969369 -0.00128 -1.18822 0.234911

35694246 255,127,0 NA NA NA NA -0.00219 -1.88701 0.059334



Effects of age in the MPIP

q value Coefficient t value p value q value

1.06E-33 -0.008486326 -5.53062 5.11E-08 2.25E-06

9.28E-10 -0.005942286 -3.72754 0.000215 0.004731

2.85E-07 -0.0051099 -2.84359 0.00464 0.06435

0.709367 -0.000407146 -0.37192 0.710106 0.867907

6.9E-07 -0.003383814 -2.6931 0.007312 0.06435

0.046182 -0.003167353 -1.84487 0.065637 0.320892

0.37258 -0.001988293 -2.03017 0.042859 0.253446

0.019863 -0.001638524 -1.48727 0.137562 0.413116

0.422841 0.000207793 0.140263 0.888508 0.961746

0.422841 -0.001077513 -1.46904 0.142441 0.413116

0.422841 -7.77383E-05 -0.09972 0.920609 0.961746

0.368158 -0.003335117 -1.73301 0.0837 0.368282

0.521333 -5.4397E-05 -0.04799 0.961746 0.961746

0.87616 -0.000906078 -1.05628 0.291343 0.522004

0.033872 -0.000396566 -0.33158 0.74034 0.874458

0.752218 0.000434503 0.444536 0.656844 0.835057

0.422841 0.001132291 0.938634 0.348364 0.567704

0.821806 -0.001161764 -1.52611 0.127603 0.413116

0.87616 -0.000921469 -0.9548 0.340133 0.567704

0.392114 -0.00029627 -0.48165 0.630263 0.835057

0.438639 -0.00419694 -2.75134 0.006147 0.06435

0.752218 -0.001854449 -2.21668 0.027086 0.198633

0.202896 1.54E-04 0.178993 0.858015 0.961746

0.94755 -0.001766213 -1.99954 0.046081 0.253446

0.87616 -0.001616459 -1.37737 0.169002 0.413116

0.713572 -0.001390459 -1.31479 0.189174 0.438087

0.713572 0.001236426 1.055134 0.291865 0.522004

0.713572 -0.0018522 -1.51217 0.131112 0.413116

0.990089 0.001901819 1.044839 0.296593 0.522004

0.752218 0.001205412 0.897713 0.369763 0.57174

0.521333 0.000623096 0.437394 0.662011 0.835057

0.202896 0.001431617 1.08716 0.277481 0.522004

0.080473 7.88E-05 0.103827 0.917347 0.961746

0.019863 -0.001448144 -0.82473 0.409911 0.601203

0.38597 0.001096196 1.420029 0.156211 0.413116

0.713572 0.000743784 0.884529 0.376828 0.57174

0.990089 -5.69E-05 -0.07066 0.943699 0.961746

0.713572 0.000208683 0.311941 0.755213 0.874458

0.036306 -0.001256067 -0.79467 0.427178 0.606317

0.785585 -0.001377381 -1.42132 0.155835 0.413116

0.422841 0.001143342 1.164145 0.244911 0.515902

0.036337 -0.001611337 -1.40639 0.160219 0.413116

0.38597 0.000516412 0.434306 0.66425 0.835057

0.422841 -0.00139674 -1.1609 0.246226 0.515902

0.202896 NA NA NA NA



Disease Number of Genes

Inflammation 123

Bacterial Infections 56

Necrosis 106

Hydrops Fetalis 21

Hyperpigmentation 18

Gram-Negative Bacterial Infections 39

Common Cold 63

Respiratory Tract Infections 64

Melanosis 15

Bronchial Diseases 57



Supplementary Table 3

Statistics for significant diseases

C=235;O=123;E=80.73;R=1.52;rawP=7.57e-09;adjP=9.21e-06

C=97;O=56;E=33.32;R=1.68;rawP=1.87e-06;adjP=0.0011

C=216;O=106;E=74.20;R=1.43;rawP=4.61e-06;adjP=0.0015

C=27;O=21;E=9.28;R=2.26;rawP=4.80e-06;adjP=0.0015

C=22;O=18;E=7.56;R=2.38;rawP=6.59e-06;adjP=0.0016

C=64;O=39;E=21.99;R=1.77;rawP=1.18e-05;adjP=0.0024

C=120;O=63;E=41.22;R=1.53;rawP=3.02e-05;adjP=0.0053

C=123;O=64;E=42.26;R=1.51;rawP=3.77e-05;adjP=0.0057

C=20;O=15;E=6.87;R=2.18;rawP=0.0002;adjP=0.0221

C=112;O=57;E=38.48;R=1.48;rawP=0.0002;adjP=0.0221



Inflammation-related genes

Gene Symbol beta coefficient nominal p value fdr-adjust p value

MMP9 0.684081518 3.09E-10 2.53E-09

IL1R2 0.566654243 3.13E-27 1.28E-25

CEBPD 0.480668435 1.45E-22 3.76E-21

IL18R1 0.464453217 3.61E-28 2.22E-26

DUSP1 0.449429137 1.61E-18 2.48E-17

ORM1 0.445917893 1.73E-07 6.67E-07

NAMPT 0.435025537 1.08E-08 5.77E-08

IL13RA1 0.41581729 7.87E-18 9.68E-17

IRAK3 0.407098117 1.53E-22 3.76E-21

TLR8 0.388715476 2.17E-16 2.43E-15

TLR2 0.387400934 2.90E-29 3.56E-27

TLR4 0.384626067 4.95E-20 1.02E-18

FPR2 0.377356641 2.21E-08 1.09E-07

TLR5 0.367479198 1.16E-09 8.37E-09

CD163 0.335881522 5.67E-19 9.96E-18

FPR1 0.314000143 1.86E-08 9.51E-08

ITGAM 0.312357016 1.08E-14 1.02E-13

CXCR1 0.310259131 1.37E-07 5.43E-07

ALOX5 0.307999903 4.41E-10 3.39E-09

ALOX5AP 0.297385187 8.46E-09 4.96E-08

S100A12 0.278909351 0.001670509 0.002389217

ADM 0.260029478 0.000641148 0.001065693

TREM1 0.248663489 2.55E-06 7.83E-06

TNFAIP6 0.248610967 0.00257583 0.003481616

ENTPD1 0.245420827 1.42E-15 1.45E-14

LY96 0.239005748 1.90E-05 3.95E-05

CXCL16 0.237317236 8.65E-07 2.95E-06

CEBPB 0.230763623 3.00E-08 1.42E-07

NFKBIA 0.228992201 3.23E-09 1.98E-08

FCGR2A 0.215407732 7.19E-06 1.85E-05

CXCR2 0.211012085 0.001068554 0.001602832

RETN 0.21058321 0.01586697 0.016400314

MYD88 0.208259258 6.46E-08 2.74E-07

NLRP12 0.205071809 1.08E-08 5.77E-08

IL4R 0.20291588 8.88E-05 0.000170727

TNFRSF1A 0.202417641 4.37E-06 1.19E-05

IL1RN 0.198768135 0.00040592 0.000713259

IL6ST 0.198412828 1.40E-06 4.41E-06

IL17RA 0.197957216 3.17E-06 9.28E-06

IL10RB 0.196049234 1.44E-10 1.26E-09

SELL 0.195994519 9.25E-05 0.000175105

C5AR1 0.195238456 0.000205723 0.000377671

CASP1 0.188119209 1.14E-07 4.68E-07

ZFP36 0.183934196 2.93E-06 8.80E-06

SERPINA1 0.179503315 7.22E-06 1.85E-05

TNFSF13B 0.177445234 0.000825575 0.001288621

HSPA1B 0.176420869 5.39E-06 1.44E-05

TIMP1 0.172673927 0.000822678 0.001288621



TLR6 0.168820362 1.01E-06 3.26E-06

PLAUR 0.166612685 1.65E-05 3.55E-05

CD14 0.16611474 0.000276697 0.000493243

CHUK 0.165667344 7.70E-18 9.68E-17

MAPK14 0.164727678 2.18E-09 1.49E-08

OSM 0.164574234 1.23E-05 2.81E-05

NOD2 0.161685042 0.003678409 0.004435729

LTB4R 0.159007204 5.90E-07 2.13E-06

STAT3 0.155460508 4.60E-07 1.72E-06

SELPLG 0.149165939 0.000445034 0.000770974

BCL10 0.148776514 5.46E-08 2.40E-07

CARD8 0.144871565 1.60E-05 3.52E-05

IL6R 0.14012784 0.002147151 0.00293444

PTAFR 0.136092322 0.001921332 0.002716366

IRAK4 0.134877814 2.98E-09 1.93E-08

NFKB1 0.134014828 3.29E-06 9.43E-06

IKBKG 0.130383236 2.85E-05 5.76E-05

ANXA1 0.130203007 0.000827651 0.001288621

PECAM1 0.129501877 0.000892952 0.001372914

F2RL1 0.123314772 0.007587343 0.008407596

NFKBIZ 0.120023326 0.00470153 0.005507506

IRF1 0.11964364 0.012863897 0.013640167

CCR2 0.116629854 9.69E-06 2.29E-05

RCAN1 0.112483772 8.89E-07 2.96E-06

HPSE 0.111383491 0.000244685 0.000442593

SOCS3 0.109583073 0.004550887 0.005382299

ADIPOR2 0.109271796 8.70E-06 2.14E-05

NLRP3 0.104785425 0.000609514 0.001041253

CARD16 0.10350658 1.83E-05 3.88E-05

PIK3CD 0.090833315 0.007494019 0.008379675

PTPN2 0.088722727 0.000702432 0.001151988

TRAF3IP2 0.086542869 0.002961432 0.003695784

TNFAIP3 0.080100771 0.003144102 0.003828956

IL1RAP 0.07949029 0.002828537 0.003626765

HIF1A 0.072219718 0.005202065 0.005979944

TNFAIP8L2 0.061064562 0.002745426 0.003592419

ADORA2B 0.059095047 0.005495082 0.006258287

ADAM17 0.052399583 0.010995964 0.011969059

MAP3K7 0.044048652 0.017079787 0.017079787

TRAF6 0.032325573 0.004846396 0.005623648

MAP3K14 -0.05296715 0.00137599 0.002009456

IL23A -0.059042421 0.014300211 0.014906152

CCL3 -0.064408626 0.002912586 0.00369328

TNF -0.064552552 0.011243983 0.012131666

ALOX15 -0.067813122 0.013582075 0.014278592

MAZ -0.069654198 0.002974655 0.003695784

SFTPD -0.071748494 0.003825975 0.004568883

IL12RB1 -0.072193083 0.002006878 0.002805068

KLF2 -0.075626476 0.010628397 0.011672258

P2RX7 -0.077772639 0.002830646 0.003626765



PPARD -0.081043617 1.94E-05 3.97E-05

SIGIRR -0.082236908 0.002705693 0.003578497

ADORA2A -0.082809198 0.003124957 0.003828956

IFNG -0.084841981 0.016847177 0.016985269

BPIFA1 -0.087435574 0.001181906 0.001751499

CD40 -0.089015821 0.000813221 0.001288621

F2R -0.10420127 4.40E-05 8.58E-05

PLA2G2D -0.107836381 0.012033862 0.012871

NOD1 -0.108542087 8.53E-06 2.14E-05

TRPA1 -0.124820033 1.45E-05 3.23E-05

CCR6 -0.128247976 3.54E-08 1.61E-07

LTB -0.137537799 0.000981616 0.001490603

CCL5 -0.138819059 0.016415155 0.01668648

IL18 -0.146424229 0.001388648 0.002009456

IL10 -0.146441153 0.005654359 0.006380607

ACP5 -0.153268287 0.002616126 0.003497646

IL10RA -0.153655151 1.18E-05 2.74E-05

ICAM2 -0.16220602 7.34E-07 2.58E-06

IL2RB -0.164932166 0.002072265 0.002863917

CX3CR1 -0.175684408 0.000102118 0.00019031

PPBP -0.182534847 0.016142107 0.01654566

BDKRB1 -0.198525938 3.04E-05 6.04E-05

IL32 -0.200554941 9.41E-06 2.27E-05

TMSB4X -0.215714048 3.61E-06 1.01E-05

CLC -0.326173416 0.00062178 0.001047657



Transcription Factor Target Number of Genes

hsa_V$NFKB_C 75

hsa_GGGTGGRR_V$PAX4_03 271

hsa_V$PAX4_03 63

hsa_TGACAGNY_V$MEIS1_01 180

hsa_V$ARNT_02 80

hsa_TGANTCA_V$AP1_C 225

hsa_V$AP1FJ_Q2 65

hsa_TTGTTT_V$FOXO4_01 388

hsa_V$MEIS1_01 57

hsa_TAAYNRNNTCC_UNKNOWN 39



Statistics for significant diseases 

C=144;O=75;E=49.47;R=1.52;rawP=8.01e-06;adjP=0.0048

C=663;O=271;E=227.77;R=1.19;rawP=0.0002;adjP=0.0242

C=126;O=63;E=43.29;R=1.46;rawP=0.0002;adjP=0.0242

C=421;O=180;E=144.63;R=1.24;rawP=0.0002;adjP=0.0242

C=168;O=80;E=57.71;R=1.39;rawP=0.0002;adjP=0.0242

C=548;O=225;E=188.26;R=1.20;rawP=0.0004;adjP=0.0330

C=135;O=65;E=46.38;R=1.40;rawP=0.0006;adjP=0.0330

C=994;O=388;E=341.48;R=1.14;rawP=0.0006;adjP=0.0330

C=115;O=57;E=39.51;R=1.44;rawP=0.0005;adjP=0.0330

C=72;O=39;E=24.73;R=1.58;rawP=0.0004;adjP=0.0330



NFKB-related genes

Gene Symbol beta coefficient nominal p value fdr-adjust p value

IL18R1 0.464453217 3.61E-28 2.71E-26

XPO6 0.31937061 5.27E-12 1.97E-10

FOS 0.309348885 6.87E-10 1.29E-08

NFKBIA 0.228992201 3.23E-09 4.84E-08

IL1RN 0.198768135 0.00040592 0.000951375

RHOG 0.174148362 2.05E-05 0.000102744

BCKDK 0.164503562 2.27E-08 2.84E-07

RGL1 0.15799469 8.34E-07 7.05E-06

BCL3 0.157650167 0.000420445 0.000955556

MAP3K8 0.143443863 9.92E-06 6.20E-05

RIN2 0.140793936 1.22E-05 6.55E-05

RAB10 0.140437973 5.44E-07 5.83E-06

LIX1L 0.137800467 2.95E-11 7.37E-10

PRKCD 0.132297165 0.000213285 0.000620286

NUP153 0.122550194 3.73E-06 2.73E-05

IRF1 0.11964364 0.012863897 0.014399885

GNA13 0.116993805 0.000176122 0.00055038

ZNF217 0.114337331 0.001154151 0.00227793

FUT7 0.107951233 0.000227155 0.000630985

LASP1 0.107016238 0.000215032 0.000620286

DNAJA1 0.1011257 0.000329587 0.000852381

RHOA 0.100231568 0.001987826 0.00355243

ARPC5 0.098642419 0.016273109 0.016636982

ANKHD1 0.0966872 1.12E-05 6.49E-05

GADD45B 0.094541587 0.002246107 0.003917629

TMEM88 0.084289459 0.005124534 0.007686802

MOB3C 0.084221031 0.006517674 0.009170021

STX4 0.082604922 0.000402966 0.000951375

GPBP1 0.07356536 0.001583382 0.00296884

ALG6 0.07299218 0.003255373 0.005425621

RAP2C 0.069993847 0.012310945 0.014204937

SIN3A 0.069732275 0.006840859 0.009170021

ZNF800 0.069441522 0.008683582 0.011038451

PPP2R5E 0.069021879 0.009020497 0.011275622

C4orf32 0.065644833 0.012670533 0.014398333

PPP3CA 0.065085653 0.000616222 0.001359313

LRRFIP2 0.06373689 0.001038262 0.002104586

ANKHD1-EIF4EBP3 0.063436005 0.00338456 0.005518304

PTPRJ 0.062773732 0.016974057 0.016974057

INO80D 0.051455996 0.015256939 0.015892645

CHD4 -0.053163141 0.010308622 0.012272169

CD70 -0.055732558 0.005684573 0.008359667

SLC6A12 -0.056007442 0.008258504 0.0106791

IL23A -0.059042421 0.014300211 0.015321655

CDC37 -0.067234867 0.009917246 0.012193335

SOCS2 -0.068121343 0.006846949 0.009170021

SCAF4 -0.069577897 0.007237649 0.009523222

HOXB6 -0.071973212 0.00026763 0.000716866



PCBP4 -0.076440886 0.000350769 0.000876923

IER5 -0.076592766 0.003978347 0.006348427

PFN1 -0.077142455 0.00471044 0.007360063

HCFC1 -0.084139618 0.006316696 0.00911062

CD40 -0.089015821 0.000813221 0.001742616

TRIB2 -0.091235744 0.010177571 0.012272169

TCTA -0.096277567 4.61E-05 0.000181955

ENO3 -0.099501559 0.001989361 0.00355243

BCL11A -0.10263154 5.91E-05 0.000221766

MLLT6 -0.102666422 0.004889854 0.00748447

EIF5A -0.106031141 0.013549929 0.014728183

CD74 -0.109894237 0.013447025 0.014728183

DDR1 -0.11265689 0.006743331 0.009170021

PURG -0.113044219 6.60E-05 0.000225083

CD247 -0.117294609 0.014686657 0.015514074

SYMPK -0.121091293 4.01E-06 2.73E-05

SPTB -0.12718435 0.010716518 0.01255842

RALGDS -0.130466343 0.001254976 0.002413415

LTB -0.137537799 0.000981616 0.002045034

CCL5 -0.138819059 0.016415155 0.016636982

CXCR5 -0.140963751 3.05E-05 0.000127286

BDNF -0.167787053 0.000121264 0.000395428

GDPD5 -0.177416693 8.46E-07 7.05E-06

PTMS -0.182125073 6.35E-05 0.000225083

FAM117A -0.21360573 2.88E-05 0.000127205

RANBP10 -0.25049502 2.43E-05 0.000113672

BCL2L1 -0.272543632 0.002935254 0.005003273



Supplementary Table 4

gene1 gene2 Partial correlation in lower FKBP5 group

MAP3K14 CHUK 0.132436629

TRAF5 TAB3 -0.110467438

TNFSF14 LTBR 0.071238297

RELA PTGS2 0.179752297

TLR4 TICAM1 -0.092933208

MYD88 TAB1 -0.146650236

PRKCB CARD11 0.04715756

TRAF6 TAB1 0.177279293

IRAK4 TAB3 -0.12829314

BTK CHUK 0.137688847

MAP3K14 TAB2 -0.060587472

RIPK1 MAP3K7 0.11824212

ZAP70 LAT -0.079190985

NFKB1 BCL2 0.11910841

RELA BIRC3 -0.242890674

PRKCQ CARD11 0.044708189

CD40 TRAF6 0.174198063

RELA IL1B 0.161272883

BTK IKBKB 0.108360452

TNFRSF1A TRADD 0.070085264

TRADD TAB2 0.019197261

TRAF5 MAP3K14 0.043723895

BIRC3 RIPK1 -0.016049575

LTBR TRAF5 -0.012855229

BIRC2 RIPK1 0.022034958

LAT PLCG1 0.255379888

IRAK1 TAB1 0.070563226

IRAK1 TAB2 -0.145736375

CSNK2B NFKBIA 0.133486117

RIPK1 TAB2 0.017519098

RIPK1 TAB3 0.025294604

TRAF5 TAB1 -0.180974135

DDX58 TRAF6 0.056179678

TRADD TAB3 0.025808766

RELA BCL2 0.235036324

NFKB1 NFKBIA 0.235863281

NFKBIA NFKB1 0.235863281

NFKB1 IL1B 0.231656702

RELB TNFSF13B 0.119999885

MAP3K7 IKBKB 0.170053728

NFKB1 TRAF1 -0.062980105

CSNK2A1 NFKBIA -0.063627755



RIPK1 TAB1 0.184068978

NFKB1 GADD45B -0.129871096

NFKB1 CFLAR 0.133751003

TRIM25 DDX58 0.172814544

CHUK NFKB2 0.13045199

NFKB2 TNFSF13B 0.066157861

RELA BIRC2 -0.091272133

NFKB1 BCL2L1 0.238463855

CD14 TLR4 0.169720956

IRAK4 TAB2 -0.073391111

MYD88 TAB2 0.018096715

TRAF6 TAB3 0.065013758

NFKB1 TNFAIP3 -0.10940864

RELA TRAF1 -0.008309294

IRAK4 MAP3K7 0.160351607

NFKB1 BIRC2 0.004745478

TNFRSF1A TRAF5 0.015645208

MYD88 IRAK4 0.102080512

TNFRSF1A RIPK1 0.153632996

TRAF6 TAB2 0.009191737

LTB LTBR -0.139841382

SYK BTK 0.170704222

TNF TNFRSF1A -0.114509548

TRAF5 TAB2 0.197906574

CD40LG CD40 -0.140908404

MAP3K14 TAB1 -0.025226161

RELA NFKB2 0.09715396

TRAF5 MAP3K7 0.120597931

BTK IKBKG 0.036876583

RELA TNF -0.096476824

TRAF6 MAP3K14 0.012714424

NFKB1 BCL2A1 0.077533938

MYD88 TRAF6 0.076802967

BTK PLCG2 -0.005180287

NFKBIA RELA 0.084011194

RELA NFKBIA 0.084011194

TRAF6 MAP3K7 0.027560944

NFKB1 NFKB2 0.051904974

IRAK1 MAP3K7 0.106635656

IRAK1 TAB3 0.00525706

RELA BCL2A1 -0.009474199

NFKB1 TNF -0.106668698

RELA GADD45B 0.032493649

RELA BCL2L1 -0.067685043



RELA CXCL8 0.042867685

TRADD TAB1 0.003033641

TNFSF13B TNFRSF13C -0.105947084

RELA TNFAIP3 0.004822892

TICAM1 RIPK1 -0.078743797

CSNK2A3 NFKBIA -0.182557122

MAP3K14 MAP3K7 -0.135832519

TLR4 MYD88 0.089085064

MYD88 TAB3 -0.075184545

IKBKB NFKBIA 0.096968983

CSNK2A2 NFKBIA -0.085464184

NFKB1 CXCL8 -0.064135883

TRADD MAP3K7 -0.019213748

NFKB1 BIRC3 -0.045010747

TICAM1 TRAF6 -0.073616907

IRAK4 TAB1 -0.044424501

MYD88 IRAK1 0.029573907

LTA LTBR -0.040120183

NFKB1 PTGS2 -0.041918814

MYD88 MAP3K7 0.098745902

MAP3K14 TAB3 0.05488285



Partial correlation in higher FKBP5 group Difference in partial correlations p value

-0.275039094 0.407475723 0.0019

0.215465481 0.325932919 0.0052

-0.263448577 0.334686873 0.0087

-0.138725032 0.318477329 0.013

0.219816225 0.312749433 0.0174

0.150640471 0.297290708 0.018

-0.227360317 0.274517877 0.0288

-0.090086652 0.267365945 0.0413

0.159453376 0.287746516 0.0445

-0.179678413 0.317367259 0.0448

0.206314426 0.266901898 0.0494

-0.174900151 0.29314227 0.0742

0.150136714 0.229327699 0.0763

-0.11194658 0.231054989 0.0906

-0.030933939 0.211956735 0.101

0.257787533 0.213079344 0.112

-0.038803568 0.213001631 0.1161

-0.035543278 0.196816161 0.1162

-0.07361192 0.181972372 0.123

-0.134659342 0.204744607 0.1348

-0.176427818 0.195625079 0.1436

-0.133503135 0.177227029 0.1495

0.155588014 0.171637589 0.1689

0.148269488 0.161124717 0.1704

-0.154848979 0.176883937 0.1751

0.079319001 0.176060887 0.1752

0.249470693 0.178907466 0.1765

0.020342585 0.16607896 0.1887

-0.036126981 0.169613098 0.1991

-0.146279139 0.163798237 0.2323

0.181969645 0.156675041 0.2328

-0.039008143 0.141965992 0.2491

-0.09437496 0.150554639 0.2609

-0.128932058 0.154740823 0.2872

0.10017325 0.134863074 0.2896

0.08532022 0.150543061 0.3003

0.08532022 0.150543061 0.3003

0.102885706 0.128770996 0.3025

-0.024058581 0.144058466 0.3074

0.031594807 0.138458921 0.3264

0.067811925 0.130792031 0.327

-0.191080621 0.127452866 0.3435



0.067329816 0.116739162 0.3438

-0.006591367 0.123279729 0.3499

0.022250933 0.11150007 0.3905

0.290044984 0.117230439 0.3954

0.015204604 0.115247386 0.4148

0.181851065 0.115693204 0.4278

0.020460433 0.111732566 0.448

0.137483437 0.100980418 0.4597

0.077197478 0.092523478 0.4648

0.023978195 0.097369306 0.4696

0.107905721 0.089809006 0.4708

-0.026282954 0.091296711 0.4834

-0.196088904 0.086680264 0.4919

-0.107052161 0.098742867 0.497

0.247797795 0.087446188 0.5034

-0.088008843 0.092754321 0.5065

-0.069916498 0.085561705 0.5199

0.009217704 0.092862807 0.5204

0.232811824 0.079178828 0.5249

0.100608514 0.091416777 0.5277

-0.216819943 0.076978561 0.5507

0.253581313 0.08287709 0.5542

-0.034546864 0.079962684 0.5551

0.12036681 0.077539763 0.5553

-0.067513557 0.073394847 0.5584

0.05326085 0.07848701 0.5633

0.020799048 0.076354911 0.5695

0.049468462 0.071129469 0.5862

-0.031544552 0.068421134 0.5918

-0.036959744 0.05951708 0.6144

0.081924394 0.069209969 0.6159

0.013676504 0.063857434 0.6185

0.012109466 0.064693501 0.619

0.062166899 0.067347186 0.6226

0.012426088 0.071585106 0.6243

0.012426088 0.071585106 0.6243

0.093991947 0.066431003 0.6323

-0.007986131 0.059891104 0.6568

0.163953875 0.057318219 0.6569

-0.049217185 0.054474246 0.6731

0.038777601 0.0482518 0.703

-0.055543558 0.05112514 0.713

-0.00930505 0.041798699 0.7252

-0.112784033 0.04509899 0.7312



3.95E-05 0.042828161 0.7543

0.039041318 0.036007677 0.7701

-0.073167739 0.032779345 0.7976

0.036951641 0.032128749 0.7986

-0.044849528 0.033894269 0.8152

-0.159187905 0.023369217 0.861

-0.159003692 0.023171173 0.8635

0.109486869 0.020401804 0.8643

-0.051061591 0.024122954 0.8715

0.075885199 0.021083784 0.8788

-0.065618486 0.019845698 0.8906

-0.046133461 0.018002422 0.8907

-0.004067677 0.01514607 0.9015

-0.054324929 0.009314182 0.9505

-0.08159261 0.007975702 0.9522

-0.05021406 0.005789559 0.9632

0.023987969 0.005585939 0.9653

-0.034888229 0.005231954 0.9688

-0.046329746 0.004410933 0.9717

0.101716168 0.002970266 0.9815

0.057744665 0.002861815 0.9841



FKBP5 mRNA levels (residuals)
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Supplementary Figure 1

p = 8.3 x 10-9
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METHODS 

Human cohorts and measures 

The demographics for all participating cohorts and relevant variables are provided in 

Supplementary Table 1. 

The first cohort, which served as discovery cohort for most of our analyses, was derived 

from the Grady Trauma Project (GTP), a large study conducted in Atlanta, Georgia that 

investigates the role of genetic and environmental factors in shaping stress responses. 

Participants predominantly come from an African American, urban population of low 

socioeconomic status(Binder et al, 2008; Gillespie et al, 2009). This population is characterized 

by high prevalence and severity of psychosocial stress exposure and is thereby particularly 

relevant for examining the impact of stress-related phenotypes on genomic regulation. All 

African American subjects with available FKBP5 DNA methylation and/or genome-wide gene 

expression data were included in the analyses. Stress-related phenotypes of interest included 

depressive symptoms measured by the Beck Depression Inventory (BDI)(Beck et al, 1988; Beck 

et al, 1961), post-traumatic stress disorder symptomatology assessed with the validated 17-item 

PTSD Symptom Scale(Binder et al, 2008; Coffey et al, 1998), lifetime stressful events 

determined with the Stressful Events Questionnaire(Smith et al, 2011), and childhood trauma 

measured with the Childhood Trauma Questionnaire (CTQ)(Bernstein et al, 2003). Based on a 

standard BDI cutoff score(Beck et al, 1988), subjects were categorized as having high (total BDI 

score ≥ 19) or low levels (total BDI score < 19) of depressive symptoms. Lifetime abuse of 

substances, including tobacco, alcohol, cannabis, and heroin was assessed with the Kreek-

McHugh-Schluger-Kellogg scale(Kellogg et al, 2003). Morning serum cortisol was measured as 

described previously with a commercial radioimmunoassay kit (Diagnostic Systems 
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Laboratories, Webster, TX, USA)(Kaminsky et al, 2015). All participants provided written 

informed consent and all procedures were approved by the Institutional Review Boards of the 

Emory University School of Medicine and Grady Memorial Hospital (IRB00002114). 

The second cohort was derived from the KORA (Cooperative Health Research in the 

Region of Augsburg) F4 study, a follow-up study of the fourth KORA survey (S4) conducted in 

1999—2001. Subjects were recruited from the city of Augsburg and two adjacent counties in the 

south of Germany(Holle et al, 2005), and DNA methylation was measured in a study subset. 

Depressive symptoms were assessed with the DEpression and EXhaustion subscale (DEEX 

scale) of the von Zerrssen symptom checklist(Ladwig et al, 2004). Based on a previously defined 

DEEX cutoff(Hafner et al, 2011), subjects were categorized as having high (total BDI score ≥ 

11) or low levels (total DEEX score < 11) of depressive symptoms. Smoking was defined as 

current smoker, occasional smoker, former smoker, or never smoker. History of diagnosed 

myocardial infarction (MI) was determined using a self-reported questionnaire. The study has 

been conducted according to the principles expressed in the Declaration of Helsinki. Written 

informed consent has been given by each participant. All study protocols were reviewed and 

approved by the local ethical committee (Bayerische Landesärztekammer). 

The third cohort comprised of Caucasian depressed and control subjects that were 

recruited at the Max Planck Institute of Psychiatry (MPIP). Recruitment strategies and 

characterization of case/control subjects have been previously described(Heck et al, 2009; Kohli 

et al, 2011; Lucae et al, 2006). Briefly, subjects were screened either with the Schedule for 

Clinical Assessment in Neuropsychiatry or the Composite International Diagnostic Screener, and 

diagnosis of major depression was ascertained according to the Diagnostic and Statistical Manual 

of Mental Disorders (DSM) IV criteria. Self-reported history of physician-diagnosed myocardial 
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infarction was documented upon enrollment in the study. Written informed consent was obtained 

from all subjects, and the study was approved by the ethics committee of the Ludwig-

Maximilians-University in Munich. 

The impact of severe early life stress on FKBP5 methylation was examined in a subset of 

the Helsinki Birth Cohort Study (HBCS)(Barker et al, 2005). The HBCS has detailed 

information on the separation of Finnish children from their parents, which occurred during 

World War II and was documented by the Finnish National Archives registry between 1939 and 

1946. The subset with available DNA methylation data includes separated and non-separated 

(control) males. In the separated subjects group, the mean age at separation was 4.7 years (SD, 

2.4 years) and the mean length of separation 1.7 years (SD, 1 year). Based on self-report, 

subjects were categorized as never smokers, former smokers, occasional smokers, and active 

smokers.  The HBCS was carried out in accordance with the Declaration of Helsinki, and the 

study protocol was approved by the Institutional Review Board of the National Public Health 

Institute. Written informed consent was obtained from all participants. 

 

DNA methylation arrays 

Genomic DNA from the GTP cohort, the MPIP, and the HBCS was extracted from whole blood 

using the Gentra Puregene Blood Kit (QIAGEN). DNA quality and quantity was assessed by 

NanoDrop 2000 Spectrophotometer (Thermo Scientific) and Quant-iT Picogreen (Invitrogen). 

Genomic DNA was bisulfite converted using the Zymo EZ-96 DNA Methylation Kit (Zymo 

Research) and DNA methylation levels were assessed for >480,000 CpG sites using the Illumina 

HumanMethylation450 BeadChip array. Hybridization and processing was performed according 
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to manufacturer’s instructions as previously described(Mehta et al, 2013). Quality control of 

methylation data, including intensity read outs, filtering (detection P value >0.01 in  >50% of the 

samples), cellular composition estimation, as well as beta and M-value calculation was done 

using the minfi Bioconductor R package version 1.10.2(Aryee et al, 2014). We excluded X 

chromosome, Y chromosome, and non-specific binding probes(Chen et al, 2013), as well as 

probes if single nucleotide polymorphisms (SNPs) were documented in the interval for which the 

Illumina probe is designed to hybridize. Given that the GTP cohort includes individuals from 

different ethnicities, we also removed probes if they were located close (10 bp from query site) 

to a SNP which had Minor Allele Frequency of ≥0.05, as reported in the 1,000 Genomes Project, 

for any of the populations represented in the samples. MPIP and HBCS data were normalized 

with functional normalization (FunNorm)(Fortin et al, 2014b), an extension of quantile 

normalization included in the R package minfi. Technical batch effects were identified by 

inspecting the association of the first principal components of the methylation levels with  

possible technical batches and by further visual inspection of principal component plots using the 

shinyMethyl Bioconductor R package version 0.99.3(Fortin et al, 2014a). This procedure 

identified array column in HBCS, 96-well plate and 96-well plate position in the MPIP as 

technical batches. The raw methylation data for the GTP cohort have been deposited into NCBI 

GEO (GSE72680). 

For the KORA study, genomic DNA (1 µg) from 1814 samples was bisulfite converted 

using the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA, USA) according to the 

manufacturer’s protocol, with the incubation conditions recommended for the Illumina Infinium 

Methylation Assay. Raw methylation data were generated by BeadArray Reader and extracted 

by GenomeStudio (version 2011.1) with methylation module (version 1.9.0). Data were 
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preprocessed using R version 3.0.1 (http://www.r-project.org/)(Team, 2014). Probes with signals 

from less than three functional beads and probes with a detection p-value > 0.01 were defined as 

low-confidence probes. As probe binding might be affected by single nucleotide polymorphisms 

(SNPs) in the binding area, CpG sites (CpGs) in close proximity (50bp) to SNPs with a minor 

allele frequency of at least 5% were excluded from the dataset. Color bias adjustment using 

smooth quantile normalization method as well as background level correction based on negative-

control probes present on the Infinium HumanMethylation BeadChip was performed for each 

chip using the R package lumi (version 2.12.0)(Du et al, 2008). Beta values corresponding to 

low-confidence probes were then set to missing, and samples as well as CpGs were subjected to 

a 95% detection rate threshold, where samples and CpGs with more than 5% low-confidence 

probes were removed from the analysis. Finally, beta-mixture quantile normalization (BMIQ) 

was applied to correct the shift in the distribution of the beta values of the InfI and InfII 

probes(Teschendorff et al, 2013). BMIQ was done using the R package wateRmelon (version 

1.0.3)(Pidsley et al, 2013). 

DNA methylation analyses included 45 cytosine-guanine dinucleotides (CpGs) covered 

by the 450K that are located within or in close proximity (10kb upstream or downstream) to the 

FKBP5 locus. All 45 CpGs were measured in the KORA, whereas one CpG (cg00052684) did 

not pass quality control in the other cohorts. All statistics involving DNA methylation are 

conducted and reported using M values, whereas Beta-values are used for figures and DNA 

methylation differences as a more intuitive measure of effect size. In all cohorts, DNA 

methylation data were used to calculate blood cell proportions as previously 

described(Houseman et al, 2012). 
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Gene expression arrays 

Genome-wide gene expression data were measured in 355 African American subjects from the 

GTP. Whole blood RNA was collected, processed, and hybridized to Illumina HumanHT-12 v3 

and v4 Expression BeadChips (Illumina, San Diego, CA, USA) as previously described(Mehta et 

al, 2013; Menke et al, 2012). The raw microarray scan files were exported using the Illumina 

Beadstudio program 13 and further analyzed in R (www.R-project.org). Microarray data were 

transformed and normalized via the variance stabilizing normalization with the use of Illumina 

internal controls(Huber et al, 2002). Empirical Bayes method was used to control for potential 

confounding as a result of batch effects(Johnson et al, 2007). Six pairs of technical replicates 

were used to confirm data reproducibility (average Pearson correlation 0.996). The raw gene 

expression array data for the GTP study have been deposited to GEO (GSE58137). 

 

Population stratification 

To control for potential confounding by population stratification, we used genome-wide SNP 

data. In the GTP, of the 700 k SNPs present on the Omni Quad and Omni express arrays, 

645,8315 autosomal SNPs were left after filtering with the following criteria: minor allele 

frequency of >1 %; Hardy-Weinberg equilibrium of 0.000001; and genotyping rate of >98 %. 

The MPIP cohort was genotyped using the Illumina 300k, 610k and Omni express arrays. For 

each chip array, quality control was performed separately following the same quality control 

protocol like in GTP.  After QC, we used the overlap of 168,138 SNPs across all chip types. The 

samples were clustered to calculate rates of identity by descent (IBD). We then ran 

multidimensional scaling analysis on the IBD matrix using PLINK2 (https://www.cog-
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genomics.org/plink2) and plotted the first ten axes of variation against each other. No outliers 

were detected. The first two principal components were used as covariates in regression models 

to adjust for population stratification. 

 

Pathway analyses 

FKBP5 mRNA levels were correlated with the expression of all genes detected above 

background in peripheral blood in the GTP. Using the set of FDR-corrected genes correlating 

with FKBP5 (n = 3,275) as input and the set of genes expressed above background (n = 9,538) as 

reference, we then performed disease association and transcription factor target analysis using 

the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt; 

http://bioinfo.vanderbilt.edu/webgestalt/)(Wang et al, 2013; Zhang et al, 2005). This was 

performed with a hypergeometric test, whereby the minimum number of genes for the 

enrichment analysis was set at 5. Both analyses were FDR-corrected for multiple testing. 

 For the NF-κB co-expression network analyses, the list of NF-κB-related genes was 

acquired from the KEGG Pathway Database (http://www.genome.jp/dbget-

bin/www_bget?pathway:hsa04064). Using the gene expression array data in the GTP, the 

pairwise correlation coefficients between gene pairs encoding molecules that directly interact 

along the NF-κB pathway were calculated and adjusted for the expression levels of all other 

pathway partners using the R package GeneNet(Schafer and Strimmer, 2005). These partial 

pairwise correlations were then compared between subjects with higher and those with lower 

FKBP5 expression as defined by a median split of FKBP5 mRNA levels. To test whether there is 
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a significant change of each gene pair between the two groups, the FKBP5 high/low group 

assignments for each pair were permuted 10,000 times across samples.  

 

Cell culture 

Cell culture experiments were conducted in peripheral blood monocytes (PBMC) or Jurkat cell 

lines (ATCC, TIB-152), a frequently used human T-cell leukemia cell line that allows efficient 

and reproducible transfection with expression vectors. For PBMC isolation, the whole blood of 

healthy volunteers was collected via venipuncture, diluted with PBS, carefully loaded on Biocoll 

solution (BioChrom, L6113), and centrifuged at 800 g for 20 min without brake. PBMC were 

enriched by selecting the interphase of the Biocoll gradient and were then washed two times with 

ice-cold PBS and resuspended in medium. Both cell types were maintained in RPMI (Gibco) 

supplemented with 10% FCS and 100 units/ml penicillin and streptomycin. For all treatments, 

cells were left after seeding to rest overnight and the next day were incubated overnight with 

vehicle (0.05% DMSO), 100 nM DEX (Sigma, D4902), and/or 100 nM SAFit1. FKBP5 

overexpression in Jurkat cells was performed using a previously described FKBP51-

FLAG(Wochnik et al, 2005). 

 

Western Blot Analysis 

Protein extracts were obtained by lysing cells in 62.5 mM Tris, 2% SDS, and 10% sucrose, 

supplemented with protease (Sigma, P2714) and phosphatase (Roche, 04906837001) inhibitors. 

Samples were sonicated and heated at 95°C for 5 min. Proteins were separated by SDS-PAGE 
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and electro-transferred onto nitrocellulose membranes. Blots were placed in Tris-buffered saline, 

supplemented with 0.05% Tween (Sigma, P2287) and 5% non-fat milk for 1 h at room 

temperature and then incubated with primary antibody (diluted in TBS/0.05% Tween) overnight 

at 4°C. The following primary antibodies were used: FLAG (1:7,000, Rockland, 600-401-383), 

FKBP5 (1:1,000, Bethyl, A301-430A; 1:1000, Cell Signaling, #8245), IKKα (1:1000, Cell 

Signaling, # 2682), pIKKα
S176

 (1:1000, Cell Signaling, #2078), NIK (1:1000, Cell Signaling, 

#4994), and Actin (1:5,000, Santa Cruz, sc-1616). Subsequently, the blots were washed and 

probed with the respective horseradish-peroxidase or fluorophore-conjugated secondary antibody 

for 2 h at room temperature. The immuno-reactive bands were visualized either by using ECL 

detection reagent (Millipore, WBKL0500) or directly by excitation of the respective fluorophore. 

Recording of the band intensities was performed with the ChemiDoc MP system from Bio-Rad. 

 

Co-immunoprecipitation experiments (CoIPs) 

CoIPs of endogenous or FLAG-tagged FKBP5 with endogenous IKKα and NIK were performed 

in Jurkat cells and PBMC using previously described methods(Gassen et al, 2014). 5 x 10
6
 cells 

were electroporated with 2 µg of the respective expression plasmids using the Amaxa 

Nucleofector Device and the Cell Line Nucleofector Kit V (Lonza, Basel, Switzerland). After 3 

days of cultivation in medium, cells were lysed in CoIP buffer containing 20 mM Tris-HCl (pH 

8.0), 100 mM NaCl, 1 mM EDTA, and 0.5% Igepal, complemented with protease inhibitor 

cocktail. This was followed by incubation on an overhead shaker for 20 min at 4°C. The lysate 

was cleared by centrifugation, the protein concentration was determined, and 1.2 mg of lysate 

was incubated with 2.5 µg of FLAG antibody overnight at 4°C. 20 µl of BSA-blocked Protein G 



Epigenetics of stress and aging   108 

 

Dynabeads (Invitrogen, 100-03D) were added to the lysate-antibody mix, followed by 3 h of 

incubation at 4°C. The beads were washed three times with  PBS,  and  protein-antibody 

complexes were eluted with 100 µl of 1 x FLAG-peptide solution (Sigma, 100–200 µg/ml, 

F3290) in CoIP buffer for 30 min at 4°C. 5–15 µg of the cell lysates or 2.5 µl of the 

immunoprecipitates was separated by SDS-PAGE.  

 

Quantification of Protein Data 

All protein data were normalized to Actin, which was detected on the same blot in the same lane 

(multiplexing). In the case of IKKα phosphorylation and to rule out confounding by changes in 

total IKKα levels, we normalized pIKKα by calculating its ratio to total IKKα. We obtained 

indistinguishable results when normalizing pIKKα to Actin.  

 

Dual-luciferase reporter gene assays 

1 x 10
6
 Jurkat cells were transfected with NF- κB luciferase reporter (1µg, Promega, E8491) and 

Renilla control plasmids (300ng, Promega, E6921), as well as with either FKBP5-FLAG (1µg) 

or control vector (pRK5; 1µg), using the Amaxa Nucleofector Device. Immediately after 

transfection, cells were seeded on 96-well plates at a density of 20,000 cells/well and were left to 

rest overnight.  On the next day, cells were incubated for 2 hours with SAFit1 or vehicle and 

were then stimulated overnight with Phorbol-12-myristate-13-acetate (PMA; 25ng/ml, Sigma, 

P1585) and ionomycin (375ng/ml, Sigma, I0634). Cells were then lysed in lysis buffer 

(Promega, E1941) and stored in -80°C until the plate was read with the TriStar² S LB 942 
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microplate reader (Berthold, Bad Wildbad, Germany) following a previously described 

protocol(Hampf and Gossen, 2006). To control for differences in transfection efficiency, the NF- 

κB-driven reporter gene activity was calculated as the ratio of Photinus to Renilla luciferase 

signals. 

 

Enzyme-linked immunosorbent assay (ELISA) for human interleukin-8 (IL-8) 

1 x 10
6
 Jurkat cells were transfected with either FKBP5-FLAG (1µg) or control vector (1µg), 

were seeded in 24-well plates at a density of 500,000 cells/well and, after overnight rest, were 

stimulated with PMA (25ng/ml) and ionomycin (375ng/ml). Supernatants were collected the next 

day, cleared by centrifugation at 125g, and stored at -80°C until IL-8 measurement with ELISA, 

which was performed with a commercially available kit (Merck Millipore, EZHIL8). 

 

Statistical analysis 

All statistical analyses involving DNA methylation used M-values, which have shown superior 

statistical performance as compared to Beta-values(Du et al, 2010). To average the methylation 

levels of the two age-regulated FKBP5 CpGs, we calculated the mean of the respective Beta-

values and then transformed each mean to the corresponding M-values as previously 

described(Du et al, 2010). All p values reporting the statistical significance of DNA methylation 

analyses originate from tests using M values; however, to more intuitively depict methylation 

results, all figures show Beta-values for DNA methylation. 
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Linear regression models examined the effect of age and stress-related phenotypes on DNA 

methylation, while including as covariates all the potential confounders that were available in the 

respective cohorts. Covariates used in each cohort were as follows: age, sex, blood cell 

proportions, the first two genome-wide SNP-based principal components, smoking status, and 

substance use in the GTP; age, sex, blood cell proportions, smoking status, and the first two 

genome-wide SNP-based principal components in the KORA; age, sex, case/control status, blood 

cell proportions, and the first two genome-wide SNP-based principal components in the MPIP; 

and age, smoking status, and blood cell proportions in the HBCS. Linear regression models 

examining FKBP5 expression as the dependent variable of interest in the GTP included as 

covariates age, sex, the first two SNP-based principal components, and blood cell proportions. 

These models tested methylation of the age-regulated FKBP5 CpGs (M-values), age, stress-

related phenotypes, and cortisol as the independent variables of interest. Lastly, linear regression 

models examined the association of history for MI with lower methylation of the age-regulated 

CpGs, while controlling for age, sex, and smoking status in the KORA, and while controlling for 

age and sex in the MPIP. For stratified analyses in the GTP, we performed median splits of the 

respective continuous variables. This was performed for methylation levels of the age-regulated 

FKBP5 CpGs to distinguish subjects with higher vs. lower methylation, for CTQ scores to 

stratify individuals in high- vs. low-trauma groups, for chronological age to stratify younger vs. 

older individuals, and for FKBP5 mRNA levels to distinguish subjects with higher vs. lower 

FKBP5 expression. All p values reporting the statistical significance of regression models are 

after correction for relevant covariates as described above. 

Experimental data were tested using student’s t-test when comparing two groups and with 

two-way analysis of variance (ANOVA) when examining two factors of interest. Significant 
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interactions between factors in the two-way ANOVA were followed with Bonferroni-corrected 

pairwise comparisons. 

Experimental data were analyzed in Sigma Plot version 13.0. All other statistical tests 

were performed in R version 3.1.0 (http://www.r-project.org/)(Team, 2014). The level of 

statistical significance was set a priori at 0.05 (5 × 10
−2

). All reported p values are two-tailed and 

nominal, unless corrected for multiple testing as indicated and reported in the manuscript.  
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Overarching discussion 

Psychological stress is associated with accelerated cellular aging and increased risk for diseases 

of the aging, but the underlying molecular mechanisms are poorly understood. The present work 

examined large human cohorts with genome-wide DNA methylation and gene expression data 

from peripheral blood, as well as with detailed information on stress-related phenotypes, 

including childhood and lifetime stress, major depression, and posttraumatic stress disorder. The 

converging findings presented here show that higher stress burden throughout life accelerates the 

epigenetic impact of advancing age both at the systems level and at selective, stress-responsive 

sites, as exemplified by the FKBP5 gene. Furthermore, by examining subjects exposed to 

glucocorticoid agonists, this work shows that age-related DNA methylation sites are susceptible 

to alterations in glucocorticoid signaling, which are frequently observed in stress-related 

phenotypes. By mechanistically dissecting the potential downstream effects of stress-induced 

epigenetic changes, the thesis illustrates that the age- and stress-related epigenetic upregulation 

of FKBP5 may be associated with functional effects on gene expression, alterations in biological 

pathways critical for immune function and epigenetic regulation, and heightened risk for aging-

related disease. These findings and their implications are discussed in more detail in the 

following sections. 

 

Higher stress burden accelerates the epigenetic effects of advancing age 

The work presented in this thesis shows that stress-related phenotypes accelerate the epigenetic 

changes that occur with advancing age. This was shown for the impact of cumulative lifetime 

stressors on epigenetic aging and for the effects of severe childhood trauma and depressive 
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phenotypes on the stress-responsive FKBP5 locus (Zannas et al, 2015a). Interestingly, lifetime 

stressful experiences had no effect on FKBP5 methylation and depressive symptoms did not 

influence epigenetic aging, overall suggesting that different stress-related phenotypes may 

influence different susceptibility sites across the epigenome. In both cases, childhood trauma 

moderated the subsequent impact of stress-related phenotypes. This moderation resulted in 

blunting of the epigenetic age acceleration associated with cumulative stress, but accentuation of 

the FKBP5 demethylation associated with childhood trauma and depression. Together these 

findings indicate that repetitive stressors may interact in complex ways, which either enhance or 

attenuate sensitivity of the epigenome depending on the context and type of subsequent stress 

exposure. Such development-specific effects are concordant with previous observations that 

childhood trauma specifically influences glucocorticoid-sensitive CpGs of the FKBP5 locus 

(Klengel et al, 2013). Moreover, the impact of lifetime stress on epigenetic aging became more 

apparent in older ages, suggesting that the epigenome becomes more sensitive to the “wear and 

tear” effects of stress as age advances. An intriguing possibility explaining this finding is that 

stressors synergize with other environmental factors and with the aging process itself to impact 

the aging epigenome (Gassen et al, 2016), possibly through converging effects at distinct 

components of the epigenetic machinery. 

 

Glucocorticoid signaling as mediator of stress-induced effects on the aging epigenome 

As discussed above, glucocorticoids could mediate the lasting effects of stress on the epigenome. 

In particular, stress-induced changes in DNA methylation are more likely to occur at susceptible 

CpGs, such as the ones located at or near GREs (Bose et al, 2010; Bose et al, 2015; Klengel et 

al, 2013; Thomassin et al, 2001; Wiench et al, 2011a; Wiench et al, 2011b; Yang et al, 2012). 
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Supporting the relevance of glucocorticoid signaling for the effects of stress on epigenetic aging, 

a large number of epigenetic clock CpGs (85 out of 353) were found to be located within 

functional GREs (Zannas et al, 2015a). Furthermore, in individuals exposed to the glucocorticoid 

receptor agonist dexamethasone (DEX), about one third of epigenetic clock CpGs (110 out of 

353) showed dynamic methylation changes, and more than 80% of the genes neighboring these 

CpGs underwent rapid changes in their expression levels. These findings show that the age-

regulated methylation sites that comprise the epigenetic clock are susceptible to glucocorticoids, 

thereby indicating that the effects of stress on epigenetic aging could be mediated by stress-

induced alterations in HPA axis regulation and glucocorticoid signaling, which may have lasting 

consequences on the methylation status of susceptible CpGs. 

 

Demethylation is more likely than hypermethylation at age- and stress-regulated CpGs 

A striking observation concerning both the CpGs that comprise the epigenetic clock and the age-

regulated sites of the FKBP5 locus is that the majority of these sites undergo demethylation in 

response to stress-related phenotypes and glucocorticoid exposure (Zannas et al, 2015a). This is 

in line with previous studies showing that stress-responsive sites, especially ones located at or 

near GREs, are likely to undergo demethylation upon glucocorticoid exposure (Bose et al, 2010; 

Bose et al, 2015; Klengel et al, 2013; Thomassin et al, 2001; Wiench et al, 2011a; Wiench et al, 

2011b; Yang et al, 2012). By contrast, no FKBP5 CpGs and a minority of epigenetic clock CpGs 

(12 out of 110) underwent hypermethylation upon glucocorticoid exposure (Zannas et al, 2015a), 

suggesting that differential mechanisms may underlie the effects of stress on these sites. The 

hyper- or hypo-methylating effects of stress could also depend on the specific developmental and 

genomic context. For instance, in utero stress exposure has been shown to induce both DNMT1 
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and TET1 in specific tissues (Benoit et al, 2015; Dong et al, 2015), indicating that certain 

stressful environments could simultaneously promote methylation and demethylation processes, 

thereby promoting a milieu of dynamic methylation changes that are in turn stabilized at select 

genomic regions through yet unknown mechanisms. 

 

FKBP5 as modulator of downstream epigenetic mechanisms 

Previous studies show that FKBP5 is a versatile protein that can influence diverse biological 

pathways (Avellino et al, 2005; Baughman et al, 1995; Bouwmeester et al, 2004; Daudt et al, 

2011; Erlejman et al, 2014; Gassen et al, 2014; Gassen, 2015; Giordano et al, 2006; Kim et al, 

2012; Li et al, 2002; Maiaru et al, 2016; Park et al, 2007; Romano et al, 2004; Romano et al, 

2010; Romano et al, 2015; Srivastava et al, 2015; Weiwad et al, 2006; Zannas et al, 2016). The 

work presented here expands the landscape of FKBP5-interacting pathways, by identifying the 

functional impact of FKBP5 on DNMT1, the methyltransferase that plays key roles in 

maintaining DNA methylation (Telese et al, 2013). More specifically, FKBP5 was shown to 

inhibit the activity of DNMT1 (Gassen et al, 2015), thereby decreasing methylation levels of the 

promoter of the gene that encodes the brain-derived neurotrophic factor (BDNF). Because 

FKBP5 is robustly induced by stress and mediates the effects of stress and glucocorticoids on 

downstream pathways, these findings suggest that FKBP5-mediated inhibition of DNMT1 could 

underlie the previously observed stress- and glucocorticoid-induced loss of DNA methylation 

(Bose et al, 2010; Bose et al, 2015; Klengel et al, 2013; Thomassin et al, 2001; Wiench et al, 

2011a; Wiench et al, 2011b; Yang et al, 2012; Zannas et al, 2015a). Interestingly, DNMT1 is 

downregulated with aging and upon glucocorticoid exposure (Li et al, 2010; Yang et al, 2012), 

whereas FKBP5 is epigenetically upregulated by aging and stress-related phenotypes.  Taken 
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together, these findings suggest that FKBP5 and DNMT1 form a feed-forward mechanism that 

could initiate and propagate the effects of stress on the aging epigenome.  

 

FKBP5 contributes to NF-κB-driven peripheral inflammation 

Unpublished work presented here (Zannas et al, unpublished) also shows that, in both humans 

and cells, FKBP5 promotes peripheral inflammation and secretion of the proinflammatory 

chemokine IL-8 (Roebuck, 1999). This is the first work to examine how upregulation of FKBP5 

influences IL-8 secretion by immune cells, and it builds on a previous study showing that 

downregulation of FKBP5 suppresses IL-8 production in other cell types (Srivastava et al, 2015). 

The FKBP5-mediated increase in IL-8 suggests that the proinflammatory effect of FKBP5 could 

in part be explained by the IL-8-driven recruitment of granulocytes in peripheral blood 

(Kobayashi, 2008). Supporting this possibility, FKBP5 mRNA positively correlated with the 

granulocyte to lymphocyte (G/L) ratio, suggesting that FKBP5 upregulation in peripheral blood 

is overall associated with a shift towards a proinflammatory blood cell composition. Because 

FKBP5 is the gene that is most robustly induced by glucocorticoids in human blood (Menke et 

al, 2012), individuals with epigenetic upregulation of FKBP5, such as older adults with higher 

levels of depressive symptoms and trauma exposure, could be more vulnerable to developing 

stress-induced inflammation.  

Several lines of evidence further suggested that the effects of FKBP5 on peripheral 

inflammation are driven by the NF-κB signaling pathway. Following an unbiased approach that 

used genome-wide gene expression data in human peripheral blood, the work presented here 

identified strong enrichment for NF-κB-related genes and profound changes in the NF-κB-

coexpression network (Zannas et al, unpublished). Furthermore, mechanistic dissection of the 



Epigenetics of stress and aging   119 

 

NF-κB pathway in both peripheral blood monocytes (PBMC) and Jurkat T cells identified a 

novel interaction between FKBP5 and the NF-κB-inducing kinase (NIK). This effect 

strengthened the interaction between NIK and the NF-κB kinase subunit alpha (IKKα), 

promoting functional phosphorylation of IKKα at serine 176 and facilitating NF-κB activity. 

These findings extend previous studies showing that downregulation of FKBP5 inhibits NF-κB 

activity (Avellino et al, 2005; Bouwmeester et al, 2004; Daudt et al, 2011; Giordano et al, 2006; 

Kim et al, 2012; Park et al, 2007; Romano et al, 2004; Romano et al, 2010; Romano et al, 2015; 

Srivastava et al, 2015). Intriguingly, the induction of NF-κB conferred by FKBP5 upregulation 

was abolished when cells were concomitantly treated with FKBP5 antagonists (SAFit1). By 

contrast, as shown both here and in a previous study (Gaali et al, 2015), SAFit1 does not 

influence immune function under baseline FKBP5 levels. Therefore, it is likely that FKBP5 

antagonists could prevent some undesirable effects of stress on immune regulation, especially 

when targeted at individuals with upregulated FKBP5.  

 

Implications for aging-related disease phenotypes 

The findings presented in this thesis could have important implications for the pathogenesis of 

aging-related diseases, most notably cardiovascular disease. First, the DEX-regulated genes with 

TSS near epigenetic clock CpGs showed enriched association for aging-related disease 

phenotypes, coronary artery disease, arteriosclerosis, and leukemias (Zannas et al, 2015a). 

Second, demethylation of the age regulated FKBP5 CpGs, a signature of stress-related 

phenotypes, was associated with previous history of myocardial infarction in two independent 

cohorts (Zannas et al, unpublished). Third, higher G/L ratio and IL-8 levels, both of which were 

associated with FKBP5 upregulation (Zannas et al, unpublished), have been shown to predict 



Epigenetics of stress and aging   120 

 

heightened cardiovascular risk and mortality (Bhat et al, 2013; Boekholdt et al, 2004; Cavusoglu 

et al, 2015). Taken together, these findings provide molecular insights into previous associations 

of stress-related phenotypes with heightened inflammation and cardiovascular risk (Chandola et 

al, 2006; Danese et al, 2012; Danese et al, 2009; Danese et al, 2008; Danese et al, 2007; Felitti 

et al, 1998; Rozanski et al, 1999; Ruo et al, 2003; Vaccarino et al, 2013). 

 

Concluding remark 

In conclusion, the findings of this cumulative thesis support a model whereby exposure to stress 

and stress-related phenotypes may have lasting effects on the aging epigenome. These effects can 

in turn dysregulate molecular effectors of stress and downstream biological pathways, potentially 

contributing to risk for the development of aging-related disease. These findings are 

schematically summarized below in Scheme. 

Beyond providing molecular insights into the mechanisms through which psychological 

stress contributes to disease risk, these findings could also have future implications for the 

prevention and treatment of stress-related diseases. In particular, although stress-induced 

epigenetic changes can be long-lasting and persistent, they may also be reversible. Such 

reversibility has been supported, for example, by studies in rodents showing that methyl-donor 

supplementation can reverse the DNA methylation changes and negative behavioral outcomes 

conferred by early life stress (Roth et al, 2009; Weaver et al, 2005). Potential reversibility has 

been also demonstrated for stress-related epigenetic aging (Brody et al, 2016a; Brody et al, 

2016b; Zannas, 2016). Nevertheless, stress-induced epigenetic signatures occur in a tissue-

specific manner and are in many cases essential for successful adaptation to stressful 

environments (Russo et al, 2012; Zannas et al, 2014). Therefore, an important task for future 
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research will be to determine which stress-related epigenetic signatures may serve as disease 

biomarkers and the circumstances and tissues in which the modulation of these signatures may 

be indicated and feasible. 
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Scheme. Simplified scheme summarizing the molecular (DNA methylation) interplay between 

psychological stress and aging. Stress triggers adrenal release of cortisol, which enters the cells 

and activates the ligand-dependent transcription factor, glucocorticoid receptor (GR). The 

activated GR then shuttles into the nucleus and can induce DNA methylation changes either by 

direct binding to glucocorticoid response elements (GRE) or, presumably, by tethering via other 

transcription factors (TF), which can bind to their respective response elements (RE). GR-

induced demethylation upregulates, among other gene targets, the stress-responsive FKBP5 

gene. FKBP5 is a versatile co-chaperone protein that influences multiple biological pathways. As 

shown in the present thesis, FKBP5 inhibits the activity of the maintenance DNA 

methyltransferase DNMT1, thereby forming a feed-forward mechanism that can propagate 

stress-induced demethylation. This is further accentuated with advancing age, which 

downregulates DNMT1 and upregulates FKBP5. Importantly, upregulated FKBP5 also 

facilitates NF-κB signaling, an effect that in cells is prevented by treatment with FKBP5 

antagonists (SAFit1). Overall, these effects lead to widespread DNA methylation changes, 

accelerated epigenetic aging, and heightened peripheral inflammation, potentially contributing to 

increased risk for aging-related diseases. 
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