Theoretical Runtime Bounds for
Information Spreading and a New
Vehicle Routing Algorithm

Rami Daknama

Dissertation
an der Fakultat fiir Mathematik, Informatik und Statistik
der Ludwig-Maximilians—Universitat Miinchen

vorgelegt von
Rami Daknama
aus Starnberg

Miinchen, den 2. Mai 2018

Erstgutachter: Prof. Dr. Martin Schottenloher
Zweitgutachter: Prof. Dr. Holger Hoos
Tag der miindlichen Priifung: 11. Oktober 2018

Contents

Abstract

Zusammenfassung

Acknowledgement

1

2

Introduction

Runtime and Robustness of Information Spreading Algorithms

2.1 Introduction
2.2 Background and Related Literature
2.3 The Distribution of the Runtime of Push on the Complete Graph
2.4 Resilience Results for Pusho
2.5 Information Spreading on Random Evolving Graphs
2.6 Outlook

On a Graph Theoretical Model for Opinion Spreading
3.1 Introduction

3.2 The Model and Related Results
3.3 Local Resilience

3.4 Results
3.5 Proofs . . .o
3.6 Outlook

Vehicle Routing with Drones

4.1 Introduction
4.2 Related Literature
4.3 Informal Description of the Model
4.4 Formal Definition of the Model
4.5 Local Search Algorithms
4.6 A Local Search Algorithm for Vehicle Routing with Drones
4.7 Outlook

Conclusion and Outlook

ix

xi

xiii

103
115

117

List of Figures

4.1
4.2
4.3
4.4
4.5

Solutions that violate the consistency constraint 92
Necessity to allow flip-cycles 0oL 95
Solutions with the same completion time 99
Solution and reversed solution, same completion time 99
Operations Land 2 104

List of Tables

4.1
4.2
4.3
4.4
4.5

Summary of several fundamental local search algorithms 101
Test settings for VRD-LOC oo 108
Results with different numbers of packages 110
Results with different numbers of vehicles. 111

Relative improvements with different numbers of packages 113

Abstract

In this thesis we investigate theoretical bounds on the runtimes of information spreading
algorithms, study theoretical conditions for networks (i.e. graphs) that assure that informa-
tion spreading cannot be corrupted and, as a third subject, formally define a vehicle routing
problem and provide a local search algorithm to solve it.

The first part of this thesis explores the runtime of information spreading algorithms; in
particular, we consider the three well-known algorithms Push, Pull and Pushé Pull: Consider
a graph GG. Assume that in the beginning one node of G has a piece of information. In the Push
setting, every round every informed node chooses a neighbour independently and uniformly
at random, and, if the neighbour is uninformed, informs it. Similarly, in the Pull setting,
every round every uninformed node chooses a neighbour independently and uniformly at
random and, if the neighbour is informed, becomes informed itself. PushéPull combines
Push and Pull; each round each node chooses a neighbour independently and uniformly at
random and if at least one of both nodes is informed, now both are informed.

A crucial task is to understand the random variables that count how many rounds are
needed by these algorithms to inform all nodes; these random variables are called runtimes of
the respective algorithms. Clearly they depend on the underlying graph. Interestingly, though
the algorithms themselves can be formulated very easily, understanding their runtimes, even
for simple graph classes (e.g. complete graphs), turns out to be a more complicated task.
The first part of this thesis addresses questions concerning these runtimes. In particular, the
following three aspects are considered.

First, we investigate the probability distribution of the runtime X,, of Push on the com-
plete graph with n nodes. More specifically, we prove the following: Let z(n) := logy(n) —
|log,(n)] and let v denote the Euler-Mascheroni constant. Furthermore, ¢ : R — R denotes
a function that is defined as a certain limit expression. Let d(n) := In(n) + v + ¢(x(n))
and let G ~ Gumbel,, ie. for all z € R it is P[G < z] = ") Then there is a
function m : N — R* with m(n) = o(1) (for n — o0) such that for all £,n € N it holds
|P[Xy > k] — P[logy(n)] + [G + d(n)] > k]|< m(n).

Second, on graphs with good expansion properties, we explore how robust the runtime
of Push is. In particular, we investigate up to which fraction of edges can be deleted at each
node without possibly slowing down Push by (In(n)) rounds. It turns out that Push is not
robust at all in this sense, but if we instead only require that almost all nodes have to be
informed, Push turns out to be very robust. We also prove respective results in the presence
of independent message transmission failures.

Third, we determine the expected runtimes of Pull and PushéPull if the underlying
graph is changing over time (for Push a respective result already exists). Let a € RT and

X Abstract

set p := a/n. Each round we consider a newly (and independently of the previous graphs)
sampled Erdés-Rényi random graph G(n,p) as the underlying graph. We show that the
expected runtime for Pull is log, .- (n)+1In(n)/a+O(1). Let k :=2(1—e™*) — (1—e7%)?/a.
For Push&Pull we prove that the expected runtime is log, . (n) +In(n)/a + O(1). We also
obtain large deviation bounds.

In the second part of this thesis, we consider a model introduced by Alon et al. to
investigate the question “How robust is the wisdom of the crowds?”. In this model not only one
piece of information but two competing pieces of information (one true, one false) spread in a
graph. There are two kinds of adversaries (weak and strong) who are equipped with certain
powers that they can use to support the falseshood. We prove various robustness results,
where, loosely speaking, robustness means that the true piece of information prevails in
spite of the adversary’s efforts. In particular, we prove that if the minimum degree is suitably
bounded from below, this guarantees robustness against the weak adversary. Moreover, for
Erdés-Rényi random graphs, which are known to be robust against the strong adversary,
we investigate up to which fraction of the edges can be adversarially deleted at each node
without being able to destroy the robustness. We also prove a respective result if edges
may not only be deleted but can be inserted as well. Finally we prove that from the strong
adversary’s perspective, the problem is NP-hard.

In the third part of this thesis, we consider a vehicle routing problem with two types of
vehicles. In particular, trucks and drones are available to deliver packages as fast as possible
to certain positions. All vehicles start at the depot and, at the end of their tours, they have
to return there. Trucks can carry an arbitrary number of drones and packages. Drones can
travel on a truck but they can also fly on their own. However, while flying, a drone can carry
at most one package at a time and after having delivered that package it has to fly to a truck
to recharge or it must return to the depot and stay there. Hence sometimes a truck has to
wait for a drone or vice versa. This adds an interesting scheduling aspect to the problem.
We provide a formal definition of the problem and prove an equivalent characterisation of
the feasibility of a solution. Then we introduce a local search algorithm and evaluate it
empirically.

Zusammenfassung

In dieser Arbeit beschéftigen wir uns mit theoretischen Schranken fiir die Laufzeiten von
Informationsverbreitungsalgorithmen, untersuchen theoretische Bedingungen fiir Netzwerke
(Graphen), die gewéhrleisten, dass die Informationsverbreitung nicht korrumpiert werden
kann und definieren formal ein Vehicle-Routing-Problem fiir das wir einen Lokale-Suche-
Algorithmus vorschlagen.

Der erste Teil dieser Arbeit, der die Laufzeit von Informationsverbreitungsalgorithmen
untersucht, beschéftigt sich mit den drei bekannten Algorithmen Push, Pull und Pushé Pull:
Betrachten wir einen Graphen G. Nehmen wir an, dass ein Knoten von GG zu Beginn eine
Information besitzt. Push ist dadurch definiert, dass jede Runde jeder informierte Knoten
unabhéngig und gleichverteilt zuféllig einen Nachbarn wéhlt und diesem die Information
mitteilt, falls dieser uninformiert ist. Pull ist d&hnlich definiert; jede Runde wéahlt jeder un-
informierte Knoten unabhéngig und gleichverteilt zuféllig einen Nachbarn und erféhrt von
diesem die Information, falls der gewdhlte Nachbar informiert ist. Pushé/Pull kombiniert die
Mechanismen von Push und Pull; jede Runde wahlt jeder Knoten einen Nachbarn unab-
hangig und gleichverteilt zufillig. Wenn mindestens einer der beiden Knoten informiert ist,
sind es danach beide.

Ein zentrales Problem ist es, die Zufallsvariablen, die die Anzahl benétigter Runden
bis alle Knoten informiert sind angeben, fiir die beschriebenen Algorithmen zu analysieren.
Diese Zufallsvariablen werden auch als die Laufzeiten der jeweiligen Algorithmen bezeichnet.
Sie variieren offenbar stark fiir verschiedene zugrunde liegende Graphen. Obwohl die Algo-
rithmen selbst so leicht zu formulieren sind, stellt es sich selbst fiir einfache Graphklassen
(beispielsweise vollstdndige Graphen) als ungleich komplizierter heraus, die entsprechenden
Laufzeiten zu bestimmen. Der erste Teil dieser Arbeit beschéftigt sich mit Problemen, die
diese Laufzeiten betreffen. Konkret werden wir die folgenden drei Aspekte untersuchen.

Erstens untersuchen wir die Wahrscheinlichkeitsverteilung der Laufzeit X,, von Push
auf dem vollstédndigen Graphen mit n Knoten. Dabei beweisen wir Folgendes: Sei z(n) :=
log,(n) — |logy(n)| und bezeichne v die Euler-Mascheroni-Konstante. Ferner ist ¢ : R — R
eine Funktion, die wir als einen bestimmten Grenzwert definieren werden. Sei d(n) := In(n)+
v+ c(x(n)) und sei G ~ Gumbel,, d. h. fiir alle z € R ist P[G < z] = e~ Dann gibt
es eine Funktion m : N — R wobei m(n) = o(1) (fiir n — 00), so dass fiir alle k,n € N gilt
|P[X,, > k] — P[|logy(n)| + [G +d(n)] > k]|< m(n).

Zweitens beschiftigen wir uns auf Graphen mit guten Expansionseigenschaften mit der
Robustheit der Laufzeit von Push. Genauer gesagt untersuchen wir, welcher Anteil an Kan-
ten maximal pro Knoten geloscht werden darf, ohne dass es dadurch moglich ist, Push um
Q(In(n)) Runden zu verlangsamen. Es stellt sich heraus, dass Push in diesem Sinne nicht ro-

xii Zusammenfassung

bust ist; wenn wir jedoch nur verlangen, dass fast alle Knoten informiert werden, erweist sich
Push als duflerst robust. Wir beweisen entsprechende Resultate auch fiir den Fall, dass un-
abhéngig voneinander jede Nachrichteniibermittlung zwischen zwei Knoten mit bestimmter
Wahrscheinlichkeit fehlschlagt.

Drittens bestimmen wir die erwartete Laufzeit von Pull und PushéPull wenn sich der
zugrunde liegende Graph veréndert (fiir Push existiert ein entsprechendes Resultat bereits).
Sei a € Rt und sei p := a/n. Jede Runde betrachten wir eine neue (und unabhéngige)
Realisierung eines Erdgs-Rényi-Zufallsgraphen G(n, p) als zugrunde liegenden Graphen. Wir
zeigen, dass die erwartete Laufzeit fiir Pull log,_ .-«(n) + In(n)/a + O(1) ist. Sei ferner
k= 2(1—e) — (1 —e*)?/a. Fiir Push&Pull beweisen wir, dass die erwartete Laufzeit
log,,.(n)+1In(n)/a+O(1) ist. Wir zeigen aufierdem Konzentration um den Erwartungswert.

Im zweiten Teil dieser Arbeit beschéftigen wir uns mit einem von Alon et al. eingefiihrten
Modell, das die Problematik, wie robust die ,Weisheit der Vielen* ist, behandelt. In diesem
Modell gibt es nicht nur eine Information, die sich verbreitet, sondern zwei konkurrierende
Informationen (eine wahre und eine falsche), die sich in einem Graphen verbreiten. Es gibt
zwel Arten (schwach und stark) von Widersachern (kurz: WS), die bestimmte Moglichkeiten
haben, die Verbreitung der falschen Information zu unterstiitzen. Wir beweisen verschiedene
Robustheitsresultate, wobei, grob gesagt, Robustheit bedeutet, dass sich die wahre Informa-
tion trotz der Einflussnahme des WS durchsetzt. Insbesondere zeigen wir, dass ein geeignet
von unten beschrénkter Minimalgrad Robustheit gegen den schwachen WS garantiert. Aufer-
dem untersuchen wir fiir Erdés-Rényi-Zufallsgraphen, fiir die bereits bekannt ist, dass sie ro-
bust gegen den starken WS sind, wie viele Kanten an jedem Knoten geloscht werden diirfen,
ohne dass die Robustheit zerstort werden kann. Ein entsprechendes Resultat beweisen wir
auch fiir den Fall, dass Kanten nicht nur geloscht, sondern auch hinzugefiigt werden diirfen.
Schlieflich zeigen wir, dass das Problem aus Sicht des starken WS NP-schwer ist.

Im dritten Teil dieser Arbeit betrachten wir ein Vehicle-Routing-Problem mit zwei Arten
von Fahrzeugen. Es stehen Lieferwagen und Drohnen zur Verfiigung, um Pakete so schnell
wie moglich zu bestimmten Positionen zu liefern. Alle Fahrzeuge starten an einem Depot und
miissen am Ende ihrer Touren wieder dort ankommen. Lieferwagen konnen eine beliebige An-
zahl an Drohnen und Paketen transportieren. Drohnen kénnen auf Lieferwagen mitfahren,
aber auch selbststindig fliegen. Wahrend eine Drohne fliegt, kann sie héchstens ein Paket
tragen und, nachdem sie das Paket abgeliefert hat, muss sie zu einem Lieferwagen zuriick-
fliegen um dort zu laden oder direkt zum Depot zuriickkehren und dort bleiben. Deswegen
kommt es vor, dass ein Lieferwagen auf eine Drohne warten muss oder umgekehrt. Dadurch
erhélt dieses Vehicle-Routing-Problem einen interessanten Ablaufplanungsaspekt. Wir geben
eine formale Definition des Problems an und beweisen eine dquivalente Charakterisierung der
Zuléssigkeit von Losungen. Anschliefsend schlagen wir einen Lokale-Suche-Algorithmus vor
und werten ihn empirisch aus.

Acknowledgement

I was supported by many people during my doctoral studies. I am truly grateful to them! I
want to express my sincere gratitude to my supervisor Professor Martin Schottenloher, who
always had an open door for me, for his steady support, his very valuable suggestions and
countless interesting discussions. I am also indebted to Professor Konstantinos Panagiotou;
he introduced me to various beautiful topics, first and foremost to the analysis of informa-
tion spreading algorithms. While working together he shared his outstanding expertise and
intuition with me and always provided me with sound advice. Furthermore I want to thank
my friends and colleagues Lisa Kraus, Simon Reisser and Leon Ramzews for countless hours
of mathematical and non-mathematical discussions and fruitful joint projects. I am grateful
to my other friends and colleagues for their support, too; we shared a coffee machine, had
innumerable chats and conversations on various topics and motivated each other. I also want
to thank Professor Holger Hoos for agreeing to co-examine my doctoral thesis.

Finally, I want to express my deep gratitude towards my parents for their unconditional
support throughout my life.

Chapter 1

Introduction

In this thesis we investigate how a piece of information spreads in graphs and prove theoretical
bounds for the (random) time until all nodes are informed. Moreover, we consider a setting
where not one but two competing pieces of information (one true and one false) spread in
graphs. We prove robustness results that guarantee that in graphs with certain properties the
true piece of information prevails despite adversarial mechanisms that support the falsehood.
As our third subject, we formally define a vehicle routing problem and provide a local search
algorithm to solve it. Now, before we give an outline of the theoretical results that we obtain,
we take a brief look at relevant practical problems that motivate many of the questions
covered in this thesis.

As our first subject, we investigate how fast a piece of information spreads in networks
(i.e. graphs). This is crucial for, e.g., maintaining large distributed database systems. When
at one part of the system new information is inserted, then the other parts of the dis-
tributed system should also obtain the information. However, if every part always forwards
any new information to every other part then there will be a huge amount of data traffic.
Hence efficient and robust information spreading algorithms are desirable. One possibility
is to use simple randomised algorithms. While such algorithms can reduce the data traffic
tremendously, there are no deterministic bounds on the time until each part of the system
has received the piece of information. However, often it suffices if after a short runtime the
probability that every part has obtained the piece of information is sufficiently large.

We consider the three well-known randomised round based information spreading algo-
rithms Push, Pull and Push&Pull. They can be formulated very easily (we will provide
definitions later). Nevertheless, even for simple networks, analysing the random variable
that counts how many rounds the respective algorithm needs until it has informed every
part turns out to be surprisingly challenging; we will call this random variable the runtime
of the algorithm; it depends on the underlying graph. To a large extent, the difficulties in
the analysis of the algorithms arise due to their round based character where the outcome
of one round affects the next rounds significantly. We will study the runtime of information
spreading algorithms on different graph classes. Moreover, we will explore how the runtime
behaves in the presence of adversarial edge deletions (e.g. deletions of connections between
databases).

The motivation for our second subject is based on the fact that nowadays, due to the
internet, information and opinions often spread very fast. For example rating based systems

2 1. Introduction

and social networks are omnipresent. In many cases someone tries to manipulate such ratings,
for example to cover the low quality of a product; this could be realised by paying people
to write positive reviews. Also in social networks, often a piece of information spreads even
though it might be incorrect. It is crucial to find out under which conditions the majority
of people will believe the truth. Therefore, as our second subject, we explore the behaviour
of competing pieces of information; in particular, we assume that there is a true and a
false version that both spread within a network. We investigate in which networks the truth
prevails in spite of an adversary’s efforts who is equipped with certain powers. We also switch
perspectives and show that it is NP-hard for the adversary to act optimally.

As our third subject, we investigate a vehicle routing problem where trucks as well as
drones can be used to deliver packages to certain positions. The practical motivation is
apparent: Logistics companies aim to deliver goods to customers as fast as possible, but
within cities there often is a lot of congestion slowing down trucks; also drones that deliver
goods are no longer science fiction but technically possible, even though their flight range is
still rather restricted. Therefore it seems promising to combine drones and trucks where the
drones are used for the so called “last mile delivery”. This means the drones are carried by
trucks and if a drone is close enough to a customer then it can take a package and deliver
it autonomously. This could increase the speed of package delivery. Besides the technical
obstacles that have to be overcome (e.g. safety aspects and flight range restrictions) also a
mathematical problem arises: As a drone has to return to a truck after having delivered a
package, sometimes a truck has to wait for a drone or vice versa. Hence the question of how
to deliver packages as fast as possible combines typical vehicle routing components with an
interesting scheduling aspect. First we will provide a formalisation of the model and prove
an equivalent characterisation of the feasibility of a solution. Then we will introduce a local
search algorithm to solve the vehicle routing problem and evaluate it empirically.

After having provided some motivation, now we present theoretical outlines of the three
main topics of this thesis corresponding to Chapters 2, 3 and 4 and summarise the results
that we obtain. Chapter 2 is devoted to the analysis of the runtime of information spreading
algorithms (also called rumour spreading algorithms or gossip algorithms). I worked on
this subject together with Simon Reisser. He will publish different but thematically related
results in his doctoral thesis which were also obtained during this joint work. Consider a
graph G with n nodes and assume that in the beginning one node of GG has a piece of
information. Now consider the following three randomised algorithms according to which
the information spreads. All three algorithms proceed in rounds. In Push, in each round
each informed node chooses a neighbour independently and uniformly at random (iuar) and,
if the chosen neighbour is not informed already, informs it. Similarly, in Pull, each round
each uninformed node picks a neighbour iuar and if the neighbour is informed, the pulling
node is also informed now. Pushé/Pull is a combination of Push and Pull: Each round
each node chooses a neighbour iuar. If at least one of both nodes is informed, afterwards
both nodes are informed. For various settings we will investigate the number of rounds that
these information spreading algorithms need to inform all nodes, i.e. their runtimes. If the
remaining information is clear from the context, then we will refer to the runtime by X,,.

In Section 2.3, we investigate Push on the complete graph with n nodes; this setting
was subject of various articles since the 1980th (cf. the literature discussion in Section 2.2).

Recently, for the expected runtime, Doerr and Kiinnemann (|35]) have shown that
|logy(n)] + In(n) — 1.116 < E[X,] < [logy(n)] + In(n) 4+ 2.765 + o(1).

They describe the random variable X, itself fairly precisely, too. To state the respective result
we need some notation. In the Coupon Collector’s Problem (CCP), there are n different types
of coupons. Coupons are drawn sequentially and at each draw each type of coupon appears
with the same probability. Let C)(m) denote the (random) number of draws needed to
collect the last m coupons and set C,, = Cp,(n). We write Z ~ Geom(p) if for all k € N =
{1,2,...} it is P[Z = k] = (1 — p)*!p. For two real valued random variables X and Y
the expression Y < X means that X stochastically dominates Y, i.e. for all x € R it holds
P[X > z] > P[Y > z]. Let ¢ > 0 denote an arbitrarily small positive constant and let
Z ~ Geom(1 + O(n=1%)). In [35] it is shown that

llog,(n)] — 1+ {M—‘ < X, < [logy(n)] + 1.562 + @Cn + Z + o(1).

n

(1.0.1)
Note that in the literature there are two non-equivalent definitions of geometrically dis-
tributed random variables: Either the number of trials until the first success is counted (in
this case the random variable takes values in {1,2,...}) or the number of failed trials is
counted (in this case the random variable takes values in {0, 1,2,...}). In this thesis we use
the former variant; in [35] the latter variant is used. Hence, in [35], the constant 1.562 in
(1.0.1) is replaced by 2.562. In this work we determine the probability distribution much
more accurately, in particular, we prove the following. Let x(n) := log,(n) — [logy(n)] and
let v = 0.57... denote the Euler-Mascheroni constant. The function c¢ is defined as a certain
limit expression (see Notation 2.3.1). Let d(n) := In(n) + v+ ¢(z(n)) and let G ~ Gumbel,,
ie forall z € Ritis P[G < 2] = e¢"""). Then there is a function m : N — Rt with
m(n) = o(1) (for n — oo) such that for all k,n € N

|P [Xy 2 k] = P[[logy(n)] + [G + d(n)] = k] |< m(n).

In Section 2.4, we explore the robustness of Push. Push is often referred to as a very
robust algorithm which usually is meant in the sense that Push still informs all nodes fast in
spite of independent message transmission failures or node failures (cf. the article by Feige
et al. ([43])). We will investigate the robustness of Push in a different sense. In particular, we
will consider Push on graphs with good expansion properties. Panagiotou et al. (|83|) have
shown that on such graphs Push is as fast as on the complete graph: With high probability
(i.e. with probability 14 o(1) for n — 00) it takes logy(n) + In(n) + o(In(n)) rounds until all
nodes are informed. We investigate how this runtime changes in the presence of adversarial
edge deletions, i.e. before the process starts, an adversary deletes edges of the graph (and
may thereby destroy the good expansion properties). Let £ > 0. On the positive side we show
that the time that Push needs to inform all but n/In(n) nodes can be increased by at most
o(In(n)) rounds, even if the adversary may delete up to a (1/2 —) fraction of the edges at
each node. On the negative side we show that even if the adversary is only allowed to delete
up to an ¢ fraction of the edges at each node, the time until all nodes are informed may

4 1. Introduction

increase by Q(In(n)) rounds. Let ¢ € (0, 1]. We provide respective results in the presence of
message transmission failures that occur independently with probability 1 — ¢ as well.

In Section 2.5, we consider a variant of information spreading where the edges of the
underlying graph change over time; these “random evolving graph” settings were introduced
by Clementi et al. (|21]). They intend to capture properties of dynamic real-world networks,
like e.g. mobile networks, which also change over time. One such setting that is investigated
in [21]| assumes that the underlying graph is an independently sampled Erdés-Rényi random
graph G(n,p) each round. Let a € R*. In [34], Doerr and Kostrygin introduced a general
framework to analyse information spreading algorithms; using this framework, for p := a/n,
they determined the expected runtime of Push in the described setting up to O(1) terms
and also obtained large deviation bounds. We use this framework to provide respective
results for Pull and PushéPull. In particular, we show that the expected runtime for Pull is
logy_—a(n) +In(n)/a + O(1). Let £ :=2(1 — e~ %) — (1 — e~ *)?/a. For Push&Pull we prove
that the expected runtime is log, , .(n) +1In(n)/a+O(1). As a byproduct, we also obtain large
deviation bounds. Particularly the result for Pushé Pull is interesting, as two unusual things
happen: The first is that in the beginning pushes and pulls do get in each other’s way, i.e. a
significant number of nodes is informed by a push as well as by a pull which makes one of the
two operations useless. The second is that individually, Push and Pull both need logarithmic
time to inform the last nodes. Hence one might expect that both will contribute substantially
to the last phase of the information spreading process; however, it turns out that to inform
the last nodes, Push is useless. We provide an explanation for these observations in Remark
2.5.15. Note that we have made the contributions of Section 2.5 also available in [23].

While in Chapter 2 we consider the dissemination of one piece of information, in Chapter
3 we investigate how two competing opinions spread. I worked on this subject together with
Simon Reisser, too. He will publish different but thematically related results in his doctoral
thesis which were also obtained during this joint work. We work in a framework introduced
by Alon et al. in [5]: Consider a graph with n nodes. In the beginning, for 0 < p < 1/2, there
are un “‘expert nodes” that already have an opinion, namely either red or blue. Each non-
expert node takes the opinion that the majority of its expert neighbours has, ties (including
zero-zero ties) are broken independently and uniformly at random. In [5], the weak and the
strong adversary were introduced; they can affect how the experts are set and thereby they
try to promote the blue opinion. The weak adversary is allowed to choose the un expert
nodes; however, while he may choose the nodes, for fixed 0 < § < 1/2, each of the nodes
becomes red with probability 1/2 + ¢ independently of all other nodes and blue otherwise.
Like the weak adversary, the strong adversary is allowed to decide which pn nodes have
an opinion in the beginning; additionally he is allowed to assign the opinions (red or blue)
to the individual nodes as long as he respects the ratio red/blue = (1/2+9)/(1/2 —0). A
sequence of graphs G = (G,),eny Where G, has n nodes is called robust against a certain kind
of adversary if with high probability the majority of the nodes of G,, become red. In [5], it is
shown that a suitably upper bounded maximum degree implies robustness against the weak
adversary. Let f : N — R with f = w(n™%°). Complementary to the result from [5], we
prove that if the minimum degree is bounded from below by n(1 4+ p — 25u + f(n))/2, this
assures robustness against the weak adversary. Afterwards we consider Erdés-Rényi random
graphs. Let p = w(In(n)/n). From Theorem 4 in [5] it is known that, with high probability, a
sequence of Erdgs-Rényi random graphs, G = (G,)neny = (G(n,p(n)))nen, is robust against

the strong adversary. We investigate the local resilience (cf. the article by Sudakov and Vu
([99])) of G with respect to robustness against the strong adversary; loosely speaking, this
means that we investigate up to which fraction of the edges an adversary has to be allowed
to delete at each node of the graphs of the sequence G to destroy the robustness of G against
the strong adversary. The critical fraction turns out to be 2(1— p+25u)d/(1426). Moreover,
we prove a respective result for the case when the adversary is additionally allowed to insert
edges (and an insertion counts as much as a deletion, for details see Section 3.3). Finally,
we change the perspective and prove that for the strong adversary it is NP-hard to find an
optimal strategy.

In Chapter 4, we study a vehicle routing problem that involves drones. I worked on this
subject together with Elisabeth Kraus. She will publish different but thematically related
results in her doctoral thesis which were also obtained during this joint work; portions of
Chapter 4 are part of our article ([24]). The basic model that we consider was (up to rather
small differences) introduced by Wang et al. in [107]|. Consider two kinds of vehicles, namely
trucks and drones, which have to deliver packages to certain destinations. All vehicles start
at the depot and at the end of their tours they have to return there. Trucks have an unlimited
driving range and can carry an arbitrary number of packages and drones. In contrast, drones
can only carry one package at a time and after having delivered the package, they have to
recharge on one of the trucks while travelling on it before they can deliver the next package.
Now we want to use the trucks and drones to deliver the packages such that the average time
a customer has to wait for his delivery is minimised. An interesting aspect of this model is
that besides the typical challenges of vehicle routing problems, here also scheduling aspects
are critical; in particular, sometimes a truck has to wait for a drone or vice versa. We provide
a formal definition of the model (in [107] an intuitive description was given) and prove an
equivalent characterisation of the feasibility of a solution. We then develop a local search
algorithm and evaluate it empirically.

Chapter 2

Runtime and Robustness of Information
Spreading Algorithms

2.1 Introduction

In large networks and distributed databases it is of great importance to spread information
efficiently and robustly. We consider the well-known information spreading algorithms (also
called rumour spreading algorithms) Push, Pull and PushéPull. All three algorithms work
on graphs and proceed in rounds. In the beginning, one node has a piece of information.! In
the Push algorithm, each round each informed node chooses a neighbour independently and
uniformly at random (iuar) and, if it is uninformed, informs it. In the Pull algorithm, each
round each uninformed node chooses a neighbour iuar. If the neighbour is informed, then
the pulling node becomes informed, too. PushéPull combines Push and Pull; in each round
each node chooses a neighbour iuar and if at least one of the two nodes is informed, after
this round both are informed. In this chapter, we will prove various results concerning the
runtime (i.e. the number of rounds needed to inform all nodes) and the robustness of the
described information spreading algorithms. Before we continue, we introduce some notation.

Notation 2.1.1. For a graph G = (V, E) with |V|=n, a node v € V and p € {Push, Pull,
Push&Pull} let X(G,v,p) denote the (random) number of rounds needed by the information
spreading protocol p to inform all n nodes where at the beginning of the first round only v
has the piece of information; the random variable X (G,v,p) is also called the runtime of p
(on G with start node v). If the choice of v does not matter (this will be always the case
in this thesis), we will omit it in the notation; if G or p are clear from the context, we will
omit them, too. In these cases, we simply write X (G,p), X,(p), X(G) or X, respectively
instead of X(G,v,p). In some cases we additionally consider the setting that each message
transmission fails independently with probability 1 — q € [0,1); if q is not clear from the
context we will write X,(zq) instead of X,, etc.; we call q the success probability of a message
transmission. For t € N we define I; = It(q)(G,U,p) C V as the set of informed nodes at
the beginning of round t of the respective information spreading protocol where Iy = {v}.

'For general graphs it can make a significant difference which node is informed in the beginning. However,
this is not the case for the graph classes that we consider in this thesis, our results hold independently of
the choice of the first informed node.

8 2. Runtime and Robustness of Information Spreading Algorithms

Analogously we set Uy = Ut(q)(G,v,p) = V\It(q)(G,v,p) as the set of uninformed nodes at
the beginning of round t. For an event A, we sometimes write Py|...] instead of P[...| A
to denote the conditional probability and we write E4[...] instead of E[... | A] for the
conditional expectation; if we condition on Iy, then we index with t, i.e. instead of P[... | I}]
we write By[.. .| and instead of E[. .. | I;] we write E[...]. Mostly we will consider sequences
of graphs G = (Gp,)nen where Gy, has n nodes. This induces a (random) sequence of runtimes
(Xn)nen; we will study the asymptotic behaviour for n — oo. Thus, if not stated differently,
asymptotic notation is with respect to n — oo; in particular, “whp” (which is short for
“with high probability”) means with probability 1 + o(1) for n — oco. We denote the natural
logarithm by In. For a random variable X that takes values in N = {1,2,...}, we say that
X follows a geometric distribution with parameter p € (0,1) and write X ~ Geom(p) if for
any k € N it is P[X = k] = (1 — p)*~'p. We denote the complete graph on n nodes by K,,.
Again consider a graph G = (V, E); for a node v € V we write N(v) or Ng(v) to denote its
neighbourhood and d(v) = dg(v) := |Ng(v)| to denote its degree. For subsets U,W C 'V with
UNW =0 we write E(UW) = Eqg(U,W) C E to denote the set of edges that have one
endpoint in U and one endpoint in W ; we set e(U, W) = eq(U, W) := |Eq(U, W)|. Moreover,
we write N(U) = Ng(U) := U,y Na(u). Notation specific to the individual subsections will
be introduced there. For simplicity of exposition we will ignore rounding issues that do not
affect the results.

In Section 2.2, we provide a literature overview of work related to various aspects of in-
formation spreading. In Section 2.3, we determine the probability distribution of the runtime
of Push on the complete graph with n nodes very accurately. Afterwards, in Section 2.4, we
investigate the robustness of the runtime of Push against adversarial edge deletions. Then,
in Section 2.5, we consider Pull and Push&Pull in a setting where the underlying graph
changes each round; for Push respective results already exist, cf. the paragraph “Evolving
Graphs” in Subsection 2.2.2.

2.2 Background and Related Literature

In this section, we summarise several important lines of research in the field of information
spreading.

2.2.1 Fundamental Articles Establishing the Field of Information
Spreading

In [48|, Frieze and Grimmett investigate Push on the complete graph with n nodes; they
show that, whp,

X (K, Push) =logy(n) + In(n) + o(In(n)).

Moreover, it is shown that for any v, > 0

P[X (K, Push) > (1 +&)(1 + (1 +) In(2)) logy(n)] = o(n™).

2.2 Background and Related Literature 9

In [87], Pittel has improved the results from [48|, in particular, he has shown that for any
f:N—= R with f =w(1), whp,

| X (K, Push) —logy(n) — In(n)|< f(n).

Demers et al. (|30]) have considered information spreading in the context of replicating
databases. Push, Pull and Pushé&Pull approaches were defined and investigated. They ob-
served that it “is possible to replace complex deterministic algorithms for replicated database
consistency with simple randomised algorithms that require few guarantees from the under-
lying communication system”. They provide empirical simulation results.

In [43|, Feige et al. have investigated Push. For a connected graph G with n nodes, sim-
ilarly to the (random) runtime X (G, v, Push), they consider the (deterministic) guaranteed
runtime 7'(G, v, Push) which is defined as the minimum number of rounds after which all
nodes are informed with probability at least 1 — 1/n. As for the runtime, also for the guar-
anteed runtime we suppress the node that is informed in the beginning in the notation if its
choice does not affect the result. Let GG,, be a connected graph with n nodes. They show

log,(n) < T(G,,, Push) < 12nlogy(n).

The lower bound is trivial because using Push, the number of informed nodes can at most
double each round. Furthermore, they prove that these bounds are tight up to constant
factors. They also provide bounds for the guaranteed runtime in terms of the maximum
degree and the diameter. In particular, let G = (G),)nen be a sequence of graphs where G,
has n nodes, maximum degree A,, and diameter diam,,, then

T(G,, Push) = O(A,(diam,, + In(n))).

Furthermore, the following resilience result is shown. Let ¢ < 1/3 and let (G,)nen denote
a sequence of graphs where GG, has n nodes and such that in G,, less than |cn| edges are
missing (compared to the complete graph). Then

T(Gy, Push) = O(In(n)).

Moreover, they also consider Push on hypercubes and on random graphs; for details see [43].
In 68|, Karp et al. consider the so called random phone call model; PushéPull can be
regarded as a special case of the random phone call model. They show that, whp,

X (K, Push&Pull) = logs(n) + O(In(In(n))).

Besides the runtime, they also consider the number of message transmissions that are needed.
Therefore, they investigate certain stopping criteria because they do not assume that the
protocol stops automatically if every node has received the information and hence such
stopping criteria are necessary to avoid unnecessary message transmissions; this reflects the
idea, that nodes have only local information. In order to avoid such dispensable message
transmissions, they introduce robust termination schemes; for details see [68].

10 2. Runtime and Robustness of Information Spreading Algorithms

2.2.2 Information Spreading on Certain Graph Classes

The Complete Graph Information spreading on the complete graph is the most basic
case. Nevertheless, its analysis contains several difficulties. We summarise the currently best
known bounds for the runtimes of Push, Pull and Push&Pull. We start with Push. Doerr
and Kiinnemann ([35]) have shown that

|logy(n)] + In(n) — 1.116 < E[X,,(Push)] < [logy(n)] + In(n) + 2.765 + o(1). (2.2.1)

Also large deviation bounds were obtained. Besides this precise result, an interesting proof
idea was developed in [35]: Assume that n; € N nodes are informed. A target number ny € N
with ny > n; is fixed such that with probability 1—g* close to 1 at least n, nodes are informed
after the next round; if this fails, simply retry. Hence the number of rounds needed until at
least ny nodes are informed (starting with n; informed nodes) can be bounded from above
by a geometrically distributed random variable with parameter 1 — ¢*. Thereby it is avoided
to consider the distribution of the number of informed nodes at certain times; instead one
essentially has to deal with sums of geometrically distributed random variables with high
success probabilities. This idea and its applicability is substantially generalised by Doerr and
Kostrygin (|34, 70]). They introduce a general framework to analyse information spreading
algorithms. We will apply their framework in this thesis in Section 2.5. In a large class of
situations, it allows to obtain bounds for the runtime of information spreading algorithms
up to constant additive terms. In particular, this is the case for Pull and PushéPull (and
Push, but there also the bound (2.2.1) from [35] is known) on the complete graph; it yields
(see [34])

E1X,,(Pull)] =logy(n) + log,(In(n)) + O(1),
E[X,(Push&Pull)] = logs(n) 4 log,(In(n)) + O(1).

Now additionally consider the situation that each message transmission fails independently
with probability 1 — ¢ € (0,1). Then (see [34])

BX(P (Push)] =10g1,(n) + - In(r) + O(1),
_ b
In(1 - q)
E[X'9(Push&Pull)] = logy 9,(n) +

E[X9(Pull)] = log; ,(n) — In(n) + O(1) and

—q By In(n) + O(1).

It is noteworthy that besides the expected values, the framework from [34] also yields large
deviation bounds of the form

Pl X, — E[X,]|> r] < Aexp(—ar) (2.2.2)

where A, o > 0 are suitable constants.

2.2 Background and Related Literature 11

Graphs with Evenly Distributed Edges There are several results that, loosely speak-
ing, state the following. If the edges of a graph are distributed rather uniformly, then infor-
mation spreading is as fast as on the complete graph, i.e. density is not a crucial factor. We
will present some of these results.

In [45], Fountoulakis et al. investigate the runtime of Push on Erdgs-Rényi random
graphs: Let ¢ € (0,1], let p = p(n) = w(ln(n)/n) and let € > 0. Let G = (G,,)nen be a
sequence of Erdés-Rényi random graphs, G,, = G(n,p). Then, whp,

(q)(Gn, Push) = (1 £ ¢) (loqu(n) + éln(n)))

In fact, a stronger result is shown, for details see [45].

In [46], Fountoulakis and Panagiotou study information spreading on random regular
graphs and on expander graphs. A random d-regular graph G(n,d) with n nodes is obtained
by sampling uniformly at random from the set of all d-regular graphs with n nodes; for d > 3,
whp, (for those n for which a d-regular graph with n nodes exists) this yields a connected
graph (see [12]). Let d > 3, recall that a d-regular graph on n € N nodes exists if and only if
n > d+1 and dn is even. Therefore define M = M(d) = {n € N | n > d+1Adn is even}. Let
us write M = {my, my, ...} such that for ¢, j € N with i < j it is m; < m;. Let G = (G},)nen
be a sequence of d-regular graphs where G,, has m,, nodes. Let

1 1

Ca= n(2(1 —1/d)) dn(1—1/d)’

Then, whp,
| X (G, Push) — Cyq - In(m,)|= (9((In(In(m,,))))
(

It is easy to see that for d — oo we have Cy — 1/In(2) + 1; recall that the runtime of Push
on the complete graph on n nodes, whp, is (1/In(2) + 1) In(n) + O(1). This confirms the
insensitivity of Push with respect to density.

In [83], Panagiotou et al. prove results concerning Push on graphs with good expansion
properties. Intuitively, such graphs are characterised by the fact that their edges are dis-
tributed rather uniformly. Loosely speaking, it is shown that on graphs with good expansion
properties Push is as fast as on the complete graph. More specifically, let G = (G,)nen de-
note a sequence of graphs that have good expansion properties where G,, has n nodes (for a
formal statement see [83, Theorem 1.1| or Theorem 2.4.6). Then, whp,

| X (G, Push) — (logy(n) + In(n))|= o(In(n)).

This underlines that density is not a crucial factor.

Power Law Graphs Real world communication networks and social networks often es-
sentially follow a power-law distribution (cf., e.g., the article by Adamic et al. ([3])).

In [47], Fountoulakis et al. investigate PushéPull on random graphs with a power law
degree distribution with exponent § > 2; besides the usual round-based variant of PushéPull
also an asynchronous variant is studied; for a description of this asynchronous variant see
the paragraph “Asynchronous Pushé/Pull” in Subsection 2.2.4. In [47], the Chung-Lu model

12 2. Runtime and Robustness of Information Spreading Algorithms

(|20]) is used to construct power law graphs. Roughly speaking, it is shown that if 2 < 8 < 3,
then PushéPull informs almost all nodes in ©(In(In(n))) rounds whp, whereas for g > 3 it
takes Q(In(n)) rounds; the asynchronous version of PushéPull (where § € (2,3)) informs
almost all nodes in constant time. This is particularly remarkable since, whp, the distance
of two nodes selected uniformly at random is at least 2In(In(n))/|In(8 — 2)| (see the article
by Dereich et al. (|31])).

In [33], Doerr et al. consider PushéPull and a modified version of PushéPull on pref-
erential attachment graphs (which are power law graphs, cf. the article of Barabési and
Albert ([7])). In the modified version of PushédPull they assume that nodes do not choose
the same communication partner in two consecutive rounds. They show that then the run-
time is sublogarithmic, in particular they show that, whp, the runtime is O(In(n)/In(In(n))).
They also prove that the usual Pushé Pull protocol, whp, needs ©(In(n)) rounds to inform
all nodes in a preferential attachment graph, thereby improving the previously best known
bound of O(In*(n)) rounds by Chierichetti et al. ([19]); in [19], also Push and Pull were
investigated on preferential attachment graphs. It is shown that, independently of the start
node, with constant positive probability Push needs a polynomial number of rounds and
there are start nodes such that with constant positive probability Pull needs a polynomial
number of rounds. This shows that the combination of Push and Pull in Pushé Pull is crucial
for the fast runtime.

Evolving Graphs Clementi et al. (|21]) have considered information spreading algorithms
where the underlying graph changes over time. They investigate two models. In the first
model, in each round, the underlying graph is a newly (and independently of all previous
events) sampled Erdés-Rényi random graph G(n,p). In the second model, they start with
an initial graph G; and then, for all ¢ € N with ¢t > 2 the (random) graph G,y for round
t + 1 is obtained from G, as follows: For p, g € (0,1), each edge that is present in G; is not
present in Gy, with probability ¢; similarly, each edge that is not present in G; is present
in G4y1 with probability p. The latter setting is called the edge-Markovian setting. In the
former setting, they show that for every p the runtime of Push is, whp, O(In(n)/(pn)) where
p = min{p, 1/n}. This has been improved in [34] for p = a/n where a > 0 is a constant; in
particular, using the framework that they introduced, they show that the expected runtime
is logy_.—a(n) +In(n)/(1 — e *) + O(1) and a large deviation bound in the form of (2.2.2)
is obtained as well. In Section 2.5, we will prove respective results for Pull and PushéPull.
In the edge-Markovian setting, in [21], they prove that for 1/n < p < 1 and § = Q(1) Push,
whp, needs O(In(n)) rounds.

2.2.3 Results Depending on Graph Parameters

In Subsection 2.2.2 we have seen that one important line of research aims to obtain precise
runtime bounds for specific graph classes. In this subsection, we consider a different line of
research: We consider results that quantify the runtime of information spreading algorithms
in terms of graph parameters of the underlying graph. Before we state some respective results,
we need two definitions of such graph parameters, namely the conductance and the vertex
expansion.

2.2 Background and Related Literature 13

Definition 2.2.1 (Conductance, cf., e.g., [50]). Let G = (V, E) be a connected graph. For
S CV setwvol(S) :=), cqd(v). The conductance ¢ of G is defined as

e(S, S°)

min)
SCVwol(S)<|E| — vol(S)

Definition 2.2.2 (Vertex expansion, cf., e.g., [51]). Let G = (V| E) be a connected graph and
set n:=|V|. For S CV let 0S := N(S)\S denote the boundary of S. The vertex expansion
of S is defined as «(S) := |0S|/|S| and the vertex expansion of the graph G is defined as
a(G) ;== min{a(S) | S CV,0 < |S|< n/2}.

The relation between the speed of information spreading and graph conductance was
studied by Mosk-Aoyama and Shah ([81]) and by Chierichetti et al. ([17, 18|). The results
from those articles have been improved by Giakkoupis (|50]). There the following bound in
terms of the conductance ¢ is proven. For any connected graph with n nodes and for any
start node, whp, PushéPull needs O(¢~"In(n)) rounds to inform all nodes which is tight
for ¢ = Q(1/n) (for e > 0 and ¢ > 1/n'~¢, a matching lower bound was already derived in
17]).

The relation between information spreading and vertex expansion has been recognised
as an interesting problem by Chierichetti et al. ([18]). It has been studied by Sauerwald
and Stauffer (|95]) and Giakkoupis and Sauerwald ([53]). In [51], Giakkoupis has improved
the results; in particular, he has shown that for a graph G = (V, E) with |V |= n, maximum
degree at most A and vertex expansion at least «, for any constant § > 0, with probability 1+
O(n=?), PushéPull informs all nodes within O(In(n)In(A)/a) rounds. This result matches
a lower bound from [53].

These results about the conductance and the vertex expansion underline that good ex-
pansion properties constitute a crucial factor for the speed of information spreading whereas
density is not important.

2.2.4 Further Variants of Information Spreading

Besides the classical Push, Pull and Pushé Pull protocols, also several modified versions have
been studied.

Only One Call Can Be Answered In [25], Daum et al. consider the following two re-
stricted variants of Pull. In both, each node can only answer at most one pull request per
round. In random RPULL in each round for each node that obtained more than one pull
request, the answered pull request is chosen independently and uniformly at random. In
adversarial RPULL an adaptive adversary chooses the pull request that is answered. On the
one hand, it is proven that on trees both variants perform essentially equally fast. On the
other hand, it is shown that there are graphs where the random version only needs a polylog-
arithmic number of rounds while the adversarial version needs Q(y/n) rounds. Moreover, a
relation between Pull and random RPULL is derived: Let A and ¢ denote the maximum and
the minimum degree of the underlying graph respectively; it is shown that if Pull can inform
all nodes within 7" rounds with probability p, then, with probability (1 + o(1))p, random
RPULL informs all nodes in O(T'A/é1In(n)) rounds. Furthermore, an analogously restricted

14 2. Runtime and Robustness of Information Spreading Algorithms

variant of PushéPull (i.e. Push canonically combined with random RPULL) is introduced
and it is noted that O(A/d1n(n)) rounds in the restricted setting stochastically dominate a
single round of the classical PushéPull algorithm; for details see [25].

Multiple Calls per Round In [84], Panagiotou et al. investigate a variant of information
spreading where nodes can make multiple calls (call refers to both, push and pull attempts).
The number of calls that a node makes per round is determined in the beginning of the
information spreading process for each node independently as a sample of a random variable
R. Besides other results, roughly speaking, the following is shown for PushéPull: If R follows
a power law distribution with exponent 2 < 8 < 3 then, whp, the runtime of Push&Pull is
O(Inln(n)); if § = 3, then, whp, it is ©(In(n)/In(In(n))). Furthermore, the respective variant
of Push with multiple calls is considered: It is shown that if E[R] = O(1) and Var[R] = O(1),
then, whp, the runtime is log; | g(p () +1n(n)/E[R] + o(In(n)). Also a lower bound is shown;
in particular, assume that F[R| = O(1), then, whp, the runtime of Push is Q(In(n)).

In [34], Doerr and Kostrygin investigate a different variant with multiple calls. Consider
a random variable R on Ny. In each round each node has a sample (which is independent of
the other samples) of R assigned that specifies how many different neighbours the node calls
in this round. So the main difference is that here the number of calls a node can make is
newly sampled in each round. They prove that if E[R] = ©(1) and Var[R] = O(1), then the
expected runtime of Push is log; | pip(n) +1n(n)/E[R]+O(1). Now let [be the smallest value
that R takes with constant positive probability. They prove that if [= 0 then the expected
runtime of PushéPull is logy op (g (n) + In(n)/(E[R] — In(P[R = 0])) + O(1). If [> 1, then
the expected runtime of Pushé&Pull is logy ,op g (n) + log,(In(n)) + O(1).

Asynchronous PushéPull Besides the classical round based variants of information
spreading protocols, also asynchronous variants are of interest. Such asynchronicity was first
considered by Boyd et al. in [14] (in the slightly different context of the so called averaging
problem, for details see [14]). The asynchronous variant of PushéPull is defined as follows.
Each node has a rate 1 Poisson clock associated, all clocks work independently of each other.
Whenever the clock of a node rings, then it chooses a neighbour independently and uniformly
at random and if at least one of the two nodes is informed, afterwards both are informed. To
denote the runtime in the asynchronous setting (i.e. the time until the asynchronous variant
of Pushé9Pull has informed all nodes), we write X (G,v,p).

In [85], Panagiotou and Speidel study asynchronous information spreading on Erd&s-
Rényi random graphs. We summarise some of the results that are obtained for the expected
runtime; respective bounds that hold whp are also proven, for details see [85]. Let G =
(Gp)nen denote a sequence of graphs where G,, is an Erdgs-Rényi random graph, G, =
G(n,p). Let a(n) = w(l). They show that for p = p(n) = «a(n)In(n)/n whp (where the
remaining randomness stems from the sampling of the random graph)

E[X(Gy, Pushé$Puld)] = (1% /34/a(n)) Hy 1 + O (hlfln))

where H,, is the n-th harmonic number, i.e. H, := >, ., j~'. Note that H, = In(n) +~ +
O(1/n) where v = 0.57... denotes the Euler-Mascheroni constant. Also the case where p is

2.3 The Distribution of the Runtime of Push on the Complete Graph 15

closer to the connectivity threshold In(n)/n is considered; it is shown that for any constant
¢ > 1 for p =cln(n)/n whp (as above, the remaining randomness stems from the sampling
of the random graph)

E[X(G,, Push&Pull)] < 1.5H,_; + O(In**(n)).

This is particularly remarkable as for this range of p the runtime of the synchronous variant
of PushéPull cannot be bounded by C'In(n) for a constant C' that is independent of p (see
[83]). Additionally, several robustness results are proven.

In [2|, Acan et al. compare the asynchronous variant and the synchronous variant of
PushéPull. Recall that the guaranteed runtime of an information spreading algorithm on a
graph with n nodes is defined as the minimum number 7" € N such that with probability
at least 1 — 1/n after T rounds all nodes are informed. In [2], the following is shown. For
all connected graphs with n nodes, the guaranteed runtime in the asynchronous version
is at most by a factor of O(In(n)) larger than in the synchronous variant. However, the
asynchronous variant may be much faster than the synchronous variant: There are graphs
where the asynchronous variant has logarithmic guaranteed runtime while the guaranteed
runtime of the synchronous version is polynomial. On the positive side they show that the
ratio of the guaranteed runtime in the synchronous setting to the guaranteed runtime in
the asynchronous setting is always O(n?3). In [52], Giakkoupis et al. have improved this to
O(n'/?) and Angel et al. ([6]) have further improved this to O(n'/?) (O in contrast to O
ignores logarithmic factors). According to an example provided in [2], this is tight.

2.3 The Distribution of the Runtime of Push on the
Complete Graph

In Section 2.2, we have seen that since the 1980th there have been various articles investi-
gating the runtime of Push on the complete graph with n nodes. In spite of these efforts, it
was still not understood very precisely. This section is devoted to determine this runtime,
i.e. to analyse the probability distribution of the random variable that counts how many
rounds Push needs to inform all nodes on the complete graph with n nodes. While Push can
be formulated so easily, its analysis includes several difficulties. These obstacles mainly arise
by the division into separated rounds where the previous rounds have an essential impact on
the next rounds. We will overcome these obstacles by a careful analysis in three phases.

Notation 2.3.1. Define

f:10,1] — [0, 1] and g:10,1] — [0, 1].
r—1—e*(1—1x) x s et

Note that for x € [0,1] it holds f(x) =1 — g(1 —) and hence also g(x) =1 — f(1 — x).
Set fi := f and for any © € N recursively define f;,1 := f o f; and analogously set g, := g
and giv1 := g o g;. A simple inductive arqgument yields that for x € [0,1] and i € N it holds
filr) =1 —gi(1 — z) as well as gi(x) = 1 — fi(1 —x). We consider Push on the complete
graph with n nodes. We are interested in large values of n, thus recall that, unless otherwise

16 2. Runtime and Robustness of Information Spreading Algorithms

specified, asymptotic notation is with respect to n — oo and that in particular “whp” (which
is short for “with high probability”) means with probability 14 o(1) for n — oco. As before, let
X, :==min{t — 1 |t € N, |I;|=n} denote the random variable that counts how many rounds
Push needs to inform all nodes of the complete graph with n nodes, i.e. the runtime of Push
on the complete graph. Define

r:N—=10,1)
n — logy(n) — [logy(n) |

and define ¢ : R — R by

)=l a2,
Lemma 2.3.18 assures that ¢ is well-defined. Let v = 0.57... denote the Fuler-Mascheroni
constant and define

d:N—=R
n = In(n) + v+ c(z(n)).

We say a real valued random variable G follows a Gumbel, distribution, G ~ Gumbel,, if
forallx e R

P[G < $] — e(—e*(erv)).

For alln € N, let Y,, and Z, denote real valued random variables; we write

)
Y, 2 Zy Yo>Z, or Y,<Z,

respectively if there is a function h : N — Rt with h = o(1) such that for all n € N and all
reR
|P[Y, 2 @] = P[Z, = z]|< h(n)

N PY, > x| — P|Z, > x| > —h(n) or PlY, > x| —P[Z, > z] < h(n)

respectively.

The quantity f(z)n is approximately (for large values of n) the number of informed nodes
after a round of Push that started with zn informed nodes. We will see why this is the case
in the proofs of Lemmas 2.3.15 and 2.3.27. Similarly, g(z)n is approximately the number of
uninformed nodes after a round of Push that started with xn uninformed nodes. Assume
that after round ¢, zn nodes are uninformed; the fact that the number of uninformed nodes
after round t+1 is concentrated around g(z)n has already been observed in the early stage of
research on information spreading, cf. [87, Lemma 2|. As a tool to prove our main result, we
will prove Lemma 2.3.15 which assures that during the entire information spreading process
with very high probability the numbers of informed and uninformed nodes follow very closely
deterministic recursions as described above.

2.3 The Distribution of the Runtime of Push on the Complete Graph 17

2.3.1 Main Result

Our main result is to determine the probability distribution of X,, very precisely.

Theorem 2.3.2. Let G ~ Gumbel,. There is a function m : N — RT with m = o(1), such
that for all k,n € N

|P[X = k] = P[[logy(n) | + [G +d(n)] = K]|< m(n).

2.3.2 Preliminaries

In this subsection we collect some preliminaries that we will use on our way to prove Theorem
2.3.2. Fact 2.3.3 describes the asymptotic behaviour of a certain expression and provides a
(non-asymptotic) bound for it.

Fact 2.3.3. Let (an)nen be a real-valued sequence with a, = O(1). Then
(14 an/n)" = e™ + O(a2 /n).

Moreover, for any n € N and any a € R with |a|<n

<1+2> <e”.
n

We will use the Chernoff bounds to bound |I;,1| given |[;]. In order to see that they are
applicable, we consider self-bounding functions (see Definition 2.3.4 and Lemmas 2.3.5 and
2.3.6); this approach to bound |I;,,| was already used in [93]. Note that Definition 2.3.4 and
Lemma 2.3.5 can be stated for much more general settings; however, the provided versions
suffice for our purposes.

Definition 2.3.4 (Self-bounding function, [13, 76]). A non-negative function h : N — R is
self-bounding if there exist functions h; : N*~1 — R such that for all x1,...,x, € N and all
1=1,..,n,

0 < h(xy, ., @) — hi(X1, ooy T, Tig1y oy Tp) < 1

and also
n

Z h(CL’l, 7l'n) - hi(l’l, cery Li—15 Lit1, 75En) S h(![‘l, ceey l’n)

=1

Lemma 2.3.5 (Exponential inequalities for self-bounding functions, [13]). Let n € N and
h:N* — R be a self-bounding function. Let Y1, ...,Y, denote independent random variables
that take values in N. Let Y = h(Y1,...,Y,). Then for s >0 and 0 <t < E[Y]

P[Y > E[Y] + 5] < exp (—ﬁ) and

PIY < E[Y] —] < exp (-%) .

18 2. Runtime and Robustness of Information Spreading Algorithms

Lemma 2.3.6 ([93]). There is an m € N such that, conditioned on I, there are independent
random variables Y1, ..., Y,, that take values in N and a self-bounding function h : N — R
such that

|Ii1|= h(Y1, ..., Vo).

In particular, Lemma 2.3.5 is applicable.

Lemma 2.3.8 will be helpful to assure that the number of informed nodes essentially
doubles each round in the beginning of the information spreading process. To formulate it,
we need Definition 2.3.7. Note that in [35], in contrast to the notation we use, geometrically
distributed random variables take values in Ny and count the number of failures until the
first success; also there they start with I as the set of informed nodes in the beginning of
the process, where |[y|= 1. If we state results of [35], then we adapt them to our notation.

Definition 2.3.7 (Stochastic dominance). Let X and Y be real valued random variables.
We say X stochastically dominates Y and write Y < X if for any x € R it holds P[X >
x] > PlY > zl.

Lemma 2.3.8 ([35, Lemma 3.1]). Let ny < y/n be a power of two, t; := min{t | t € N, |I,|>
ni} and X ~ Geom(1 —n?/n). Then t, is stochastically dominated by logy(ny) + X.

Theorem 2.3.9 provides a sufficient condition for uniform convergence of a sequence of
functions.

Theorem 2.3.9 (|90, Nr. 127 on p. 81, proof on p. 270]). Let a,b € R with a < b and let
(hn)nen denote a sequence of functions h, : [a,b] — R with the following properties. For all
n € N, the function h, is monotonously increasing and the sequence converges pointwise to
a continuous function h : [a,b] — R. Then the convergence is uniform, i.e.

lim sup |h,(z) — h(z)|= 0.

=0 rcla,b]

We will need the following well-known notions of convergence for sequences of random
variables given in Definitions 2.3.10 and 2.3.12.

Definition 2.3.10 (Convergence in distribution). For eachn € N let X,, denote a real-valued
random variable with distribution function F,, and let X be a real-valued random variable with

distribution function F. We say X,, converges in distribution to X and write X, 4 X if for
every x € R where F' is continuous it holds lim,,_, F,,(z) = F(x).

Theorem 2.3.11 assures that if X, % X and the limit distribution F is continuous
everywhere, then the convergence of F,(x) to F'(x) is uniform in x.

Theorem 2.3.11 (Polya’s Theorem, [89, Theorem 1]). For eachn € N let X,, be a real-valued
random variable with distribution function F,, and assume that X, converges in distribution
to the random variable X ; let F' denote the distribution function of X and assume that F' is
continuous on R. Then

lim sup|F,(z) — F(z)|= 0.

n—oo z€R

2.3 The Distribution of the Runtime of Push on the Complete Graph 19

Definition 2.3.12 (Convergence in probability). For each n € N let X,, be a real valued
random variable and suppose that there is a real valued random variable X such that for all
e>0

lim P[|X,, — X|>¢]=0.

n—o0
Then we say that X,, converges in probability to X and write X,, — X.

Later, in Lemma 2.3.22, we will state a certain convergence result. In order to prove it,
we will use Theorems 2.3.13 and 2.3.14.

Theorem 2.3.13 (Slutsky’s Theorem, see, e.g., [97, p. 19]). Let (X,)nen, (Yn)nen and
(Zn)nen be sequences of real-valued random variables. Suppose that X, converges in dis-
tribution to a real valued random variable X and that there are constants a,b € R such that

Y, B aand Z, B b. Then Y, X, + Z, % aX + .

Theorem 2.3.14 ([42]). Forn € N, let Xo, X1, ..., X,_1 be independent random variables
where, fori € {0,1,...,n— 1}, it is X; = Xi(n) ~ Geom((n —1i)/n). Set D; = f)l(n) =X, —
E[Xi] =X, —n/(n—1) and let G ~ Gumbel,. Then

n—1

Z%&G.

1=0

2.3.3 Preparation Results

In this subsection, we state several results that we will use in the proof of the main result;
we prove these results in Subsection 2.3.4. We start with Lemma 2.3.15 that states that the
(random) sequence (|[;|)ien can be described very precisely by a deterministic recursion.

Lemma 2.3.15. Let § € (0,1/2) and to = to(d,n) = (1/2 — §)|logy(n)|. Fort € Ny set

2t/n if t <t
flew) ift>ty

Let V2 < D < /2.5, lete >0 and let t; € N witht, > ty. For allt € N define A, = Ai(ty) =
Ay(ty,to) as the event that

Oyl = Oét+1(t07n) = {

0 if t <t
|| Ie|—ayn|< 4§ (ayn)t/2teDi~to ifto <t <t .
(oun)/?e max {1, Di—to—2t=t)1 gf) <t

Then there is a constant K* € N such that for t; := |logy(n)] + K*

() Aut)

teN

P =1+0(n™).

Moreover, there are ng €N, £,6 > 0 (e.g. ¢ = 6 = 0.01) and v/2 < D < /2.5 such that for
allm > ng and t € N, A, implies ||I;|—a;n|< n®8.

20 2. Runtime and Robustness of Information Spreading Algorithms

While Lemma 2.3.15 assures that the number of informed nodes follows closely a deter-
ministic recursion, Lemma 2.3.16 provides a bound for the number of informed nodes if we
go backwards along that recursion.

Lemma 2.3.16. Consider the (random) sequence of informed nodes (I;)ien given by the
Push process on the complete graph. Let c=1—1/e. Fort € N let By denote the event that
|I,_1|> e(|It]—cn) — 9n®®. Then

P =1+ O(n %),

N

teN

Lemma 2.3.17 assures that in the beginning of the information spreading process the
number of informed nodes almost doubles each round.

Lemma 2.3.17. Let 0 < € < 0.1 with logy(e) € Z. Let t* = |logy(n)| + logy(e). Then there
is an € > 0 such that with probability 1 + O(n™*)
<2

|2t*_1 - |]t* — Qt*_l — |It*

Moreover, let n € N and § € (0,1/2) and let ty = to(d,n) and (cu)ten = (u(to,n))ien be
defined as in Lemma 2.3.15. Then

=21 —qpn < 272

287 —apn

Lemma 2.3.18 verifies that the function ¢ defined in Notation 2.3.1 and used in Theorem
2.3.2 indeed is well-defined; Lemma 2.3.19 states that ¢ is continuous on the interval [0, 1]
and Corollary 2.3.21 assures that, again on the interval [0, 1], the convergence in Lemma
2.3.18 b) is uniform with respect to x.

Lemma 2.3.18. a) For any a € N and any x € R with x > —a, the limit

n(a,z):= lim b+ In(g(1—279"7))

b—00,beN

exists. For x € [0,1] the convergence is uniform with respect to x, i.e. for any a € N

lim sup |n(a,z) — (b+In(gy(1 —27°7%)))| = 0.

b‘)OO,bEN xe[oﬂ}
b) For any x € R the limit

lim —a+n(a,x) (2.3.1)

a—00,aeN

exists. In particular, the function ¢ : R — R given by

C(l‘) = lim im —a+0b+ ln(gb(l _ 2,a,x)>

a—00,a€N b—00,bEN

1s well-defined.

2.3 The Distribution of the Runtime of Push on the Complete Graph 21

Lemma 2.3.19. The function ¢ from Lemma 2.3.18 b) is continuous on the interval [0, 1].

Remark 2.3.20. Since every continuous function on a compact interval s uniformly con-
tinuous, we also could infer uniform continuity in Lemma 2.5.19; in fact, in our proof of
Lemma 2.3.19 we show uniform continuity directly, as it does not complicate the proof.

Corollary 2.3.21. For x € [0, 1] the convergence in (2.5.1) is uniform with respect to x, i.e.

lim sup |e¢(x) — (—a+n(a,x))| =0.

a—00,aEN z€[0,1]

Lemma 2.3.22 provides a convergence result for a sequence of random variables. It is not
stated in the most general form that is possible but rather formulated to fit our purposes.

Lemma 2.3.22. Let ¢ : N — (0,1/3) with ¢ = w(1/n) and such that for all n € N it is
e(n)n € N. For alln € N, let s, : N — Rt denote a monotonously increasing function
that for all m € N fulfils s,(m) < m and that also has the following property. For any
function § : N — (0,1/3) such that for alln € N it is §(n)n € N and 6(n) < £(n), it holds
s,((1 =38(n))n) > (1 —ed(n) + O(n%2?))n. Forn € N, let X1, Xs...,X,_1 be independent
random variables where, fori € {1,2,...,n— 1}, X; = Xi(n) ~ Geom((n —1i)/(n —1)). Set
D, = D§”) =X, —n/(n—1) and let G ~ Gumbel,. Then

n—1

]
s
1=

Q

i=(1—e(n))n
Corollary 2.3.23 is a consequence of Lemma 2.3.22 and Theorem 2.3.11.

Corollary 2.3.23. Under the assumptions of Lemma 2.3.22 the following holds. There is a
function m : N — R with m = o(1) such that for alll : N — R and k : N — N, for all
neN

Pllim+ Y SD(;) > k(n)| = P[[i(n) + G > k(n)]| < m(n).
i=(1—e(n))n "

We use Lemma 2.3.24 to obtain Corollary 2.3.25 which will allow us to deduce an upper
bound from a lower bound for the runtime of Push.

Lemma 2.3.24. There is an ag € RY such that for all a € RT with a > ag there is a
b* = b*(a) € N such that for all b € N with b > b*, for all n € [0,1] the following holds. Let
L = (1 = 27927977 qnd U™ := 2797 Then,

1— f(L7)
1— f,(UM)

Corollary 2.3.25. There is an ag € Rt such that for all a € RY with a > aq the following
holds. Let LV = L{" (), U™ = U™ (a) and b* = b*(a) be defined as in Lemma 2.3.24. Then
for all b € N with b > b*, for all n € [0,1]

In <%—1)—1n< 1() _1> Sg—a/2+5“__>>000'
fo(L7") fo(Uy")

BOM) = AL <278 and 1= fLP) <27 and <1yoen

22 2. Runtime and Robustness of Information Spreading Algorithms

2.3.4 Proofs of the Preparation Results

To prove the preparation results we will make use of Lemmas 2.3.26, 2.3.27 and 2.3.28.
Lemma 2.3.26 is a concentration result for the number of informed nodes.

Lemma 2.3.26. Let 0 < ¢ < 1, let ty € N and assume that |I,|= Q(n°). Fort € N and
e >0 let Cy = Ci(e) denote the event that

[Heral =Bl)| (Bl L[4
Then there is a § = 6(e,c) > 0 such that for any t > t,
P,[Cy] = 1+ O(exp(—n?)).
Moreover, also the following stronger result holds: There is a 6= 5(5, ¢) > 0 such that

e

t>tg

P, =1+ O(exp(—n?)). (2.3.2)

Proof. To keep the notation short we write d := F;[|I;41]]*/?*°. We use Lemma 2.3.5 which
is applicable according to Lemma 2.3.6 and obtain

d d”
P[~Cy) = Pl |- E|1, dj <2 - - B
Aien e[L1 | = Ee[[L[] > d] < exp(2B ([T |] + %d) exp(@(|It|))

— exp(—O(|L[%)) = exp(—Qn?)) = Ofexp(—n*?)).

Hence for § := 2ce the first claim follows. From [35, Corollary 3.2 it is known that for any
r>0

P[X, > [logy(n)] +In(n) +2.188 + r] < 2e7".
Thus it suffices to consider

Pry

U -

to<t<n

and therefore the second claim follows by the union bound. O]

Lemma 2.3.27 provides an asymptotic expression for the expected number of informed
nodes after one additional round.

Lemma 2.3.27. It is
Eil[Ieqa|] = L+ (n—| L)) (1—e V™) +0(1) = n—(n—|L|)e /" +O(1) = f(|L|/n)n+O(1).

Proof. It is straightforward to see that for |I;|]= O(1) the claim is true. Hence we assume
|I;]= w(1). At the beginning of round ¢, there are n— |I;| uninformed nodes. Each uninformed
node u remains uninformed in round ¢ if all |I;| informed nodes do not push to u. Thus, by

2.3 The Distribution of the Runtime of Push on the Complete Graph 23

considering the complementary event, we obtain that the probability that u gets informed
in round ¢ is 1 — (1 — 1/(n — 1))/%!. Hence, by linearity of expectation, we have

1 1] 1| ¢ |
Ellleal) = 1+n — 1) <1 S(-5)) et 1o (1) W)

and therefore, using Fact 2.3.3,
B[] = [I+(n=| L) (1= M) +0(1) = n—(n—|L])e " +O(1) = f(|L|/n)n+O(1).
]

Lemma 2.3.28 is an auxiliary result that we use in the proofs of Lemmas 2.3.15 and
2.3.16.

Lemma 2.3.28. Let 0 < x1 <2y < 1. Then |f(z1) — f(x2)|< (2 — x1)e ™ (20 —).

Proof. It is f'(x) = (2 — x)e*; in particular, f’ is monotonically decreasing and takes only
positive values on [z1, z5]. It is

max f'(z) = (2—x1)e”™
z€[z1,72]

and therefore, as a direct consequence of the mean value theorem, we have

|f(x1) = f22)|< (w2 — 1) max f(x) = (2 —x1)e” " (22 — 21).

x€[z1,22]

]

Proof of Lemma 2.3.15. We start with the case that ¢ < t,. We prove that with proba-
bility at least 1 —n=29 it is |I;,)|= 2!%)~1. As the number of informed nodes at most doubles
per round, this implies that, with probability at least 1 —n=29, A, holds for all ¢ < ty. From
Lemma 2.3.8, we obtain

2 _
P“]Lto”< QLtOJfl] <1- (1 _ (2LtoJ)) _ 22lto] < nl—26 _

n n n

We continue with the case that ¢ > ty. According to Lemma 2.3.26 there is a 5 such that
with probability 1+ O(exp(—n?)) for all t > t,

[ers|=Eill Lea[]| < (Bl [T [[)17242, (2.3.3)

As O(n2) + O(exp(—n?)) = O(n~2) from now on we can assume that (2.3.3) holds. We
write

d = (Eif| L)) /2402,

Let ty <t < t;. We prove the claim by induction with respect to t. Our induction hypothesis
1s

|| —cun|< (aun)'/* D' = dy (2.3.4)

24 2. Runtime and Robustness of Information Spreading Algorithms

or equivalently o
11| /n — ay|< O‘t/ +e pt—to,,—1/2+¢

Note that d = o(d;). The base case is clear. Hence, assuming (2.3.4) and (2.3.3), we have to

show

[L1 | —0pg1n|< (at+1n)1/2+aDt+1—t0.

Using (2.3.3) and Lemma 2.3.27 we obtain
Lis1|= f([L]/n)n + O(d).
Using (2.3.4) and Lemma 2.3.28 we can approximate f(|/;|/n) by f(ay) thereby obtaining

[Tesa| = [Tl /n)n + O(d) = flagn £ di(2 = (ar — di/n))e” /" 4+ O(d)
=antdi(2—ay)e ™ +O(di/n) + O(d) = apn £ di (2 — ay)e™ ™ + o(dy).

Thus
i1 |—aeiin|< di(2 — ap)e™ + o(dy). (2.3.5)

We verify that
a2/2+€(2 —ap)e” ™ < \/504;{21%.

This is equivalent to prove

(at+1)1/2+5 S (2 _ Oét)e_at
(e - \/§ '

As ayi1/ay > 1 it suffices to show the stronger claim

<Oét+1)1/2 - (2 . Oét)eiat
Ot - \/§ ’

We have

1/2 . —ay . —ay 2
(at+1> > (2 —ay)e Q1 ((2 a)e) s 2041 > (2 — ap)Pe 2

O \/5 ap \/5
= 2(1—e (1 —ay)) > (2 — ay)?e ™
= —oe (o —2)* = 2(1 —oy)e™™ +2 > 0.

Using that for all z € R it holds e* > x 4+ 1 we continue with

—age ™ (ay —2)* = 2(1 —ay)e ™™ +2 > —ape*(ay — 2)* — 2(1 — o)e™ ™ + 2

=e " (—oy(ar — 2)* = 2(1 —) + 2e™)

> e (—ay(oy — 2)° = 2(1 —) + 2(cw + 1))
(4 —y)a? >0

and thus indeed
a2 — ap)em < \/504;{21%.

2.3 The Distribution of the Runtime of Push on the Complete Graph 25

Hence we obtain
di(2 — o)™ < DUOV2(n) 2

Therefore, as D > /2, recalling (2.3.5), for n sufficiently large we arrive at

[41| —ein|< (at_’_ln)l/z‘f‘&Dt-&-l—tO.

Now we continue with the case that t > ¢;. Again we use induction with respect to t. This
time our induction hypothesis is

| L] —aun|< (apn)Y/?+e max{1, D —to=20-1)) —. g, (2.3.6)

Note that, as max{1, D1 ~%=2(=t)1 > 1 it holds d = o(dy). The base case is clear. Recall
that we can assume that (2.3.3) holds. Assuming (2.3.6), we have to show

1| =i an| < (@ppan)? T max{1, D o207t
Analogously to the calculation that yielded (2.3.5), here we arrive at
[ri1] = f(| L] /n)n 4+ O(d) = appin £ da(2 — ap)e™ " + o(dy) (2.3.7)
and thus
i1 |—ariin|< da(2 — ap)e™ + o(dy). (2.3.8)

In order to complete the proof we need to bound ds(2 — ay)e™; to do this, we will verify
that there is a K* € N such that for all ¢t € N with ¢ > ¢; = |logy(n)| + K*

(2 —ap)e ™ <04. (2.3.9)

Note that for any constant € (0,1) it holds f;(z) ‘=5 1; thus, as (2 — 1)e™! = 1/e < 0.4,
to prove the existence of such a K™, it suffices to prove that a|iog,(n)| can be bounded from
below by a positive constant. In order to do this, by considering the series representation of

the exponential function, we obtain that for x € [0, 1]

f(x)=1—e—$(1—x)z1—(1—x+%2) (l—x):x(2—;x+%$2)

>z (2 — ;:) > 21 — 22?2 =: f(z). (2.3.10)

Set fl = f and for i € N set fi+1 = f o ﬁ We will derive an explicit form for fl To do this,
consider the following recursively defined sequence (7;);en. Let 21 € (0,1) and, for i € N, set
xiv1 = f(x;). We claim that

1 -
vi= (1 — (122, >) .

Let us verify this claim: For ¢ € N we have z;,, = 2x; — 2:6? which is equivalent to

1— 21 =1 — 4wy + 427 = (1 — 23,)2

26 2. Runtime and Robustness of Information Spreading Algorithms

For i € N set y; := 1 — 2x;. We can reformulate the recurrence relation in terms of y; and

obtain y;,1 = y?. Hence y; = y£2i_1) and thus

1 1 i—1 1 i1
xi:—(l—yi):—<1—y§2)) =§<1—(1—2I1)(2)>.

2 2
Therefore, for i € N and x € (0,1), we have
. 1 .
filw) = 51— (1~ 2x)2)) (2.3.11)
and hence
; 1 2\
@; 2 fir(1/n) 2 fia(1/n) = 5 | 1 - (1 — ﬁ) . (2.3.12)

In particular, for i = [log,(n)],

~ 1 9 (2llog2(n)] -1y
QUllogy(n)] = fllogy(m))—1(1/1) = 3 (1 — (1 — _))

n
1 2 (2log2 (n)72)
2 n

and thus, using Fact 2.3.3, we get

N | —
7N
—_
|
VR
—_
|
SENN
~~

3
Ny
N~

—_

—1/2
Ullogy(m)] = (1 —e7/?).

(\]

Therefore we can infer that there is a K* € N such that (2.3.9) holds for all ¢ € N with
t >t = |logy(n)] + K*. Thus

dy(2 — ay)e ™ < (ayn)Y/? max{1, D~ —2=00)} .0 4,
Hence, as D?- 0.4 < 2.5-0.4 = 1, considering (2.3.8), for n sufficiently large we can infer
L1 —auan|< (apyan) /e max{1, Dt 20+ =0y,

To prove the second claim, we have to show that there are €, > 0 and v2 < D < /2.5
such that for all t € N, A, implies ||I,|—a;n|< n®®. Let 6 = ¢ = 0.01 and let D = 2'/2%¢ and
let K* € N such that for all ¢ € N with ¢ > t; = |logy(n)] + K* inequality (2.3.9) holds.
Note that

Dii—to < (2(1/2+6) logg(n)—l—K*)l/Q-I—e _ (n1/2+52K*>1/2+6 _ n1/4+1/2(8+5)+652K*(1/2+€)‘

Hence, for sufficiently large n, we have

Dh—to < pl/A+1/2e+0)+e0g K" (1/24e) - 0-27

and thus, assuming that A; holds,

||It|—oztn|§ (atn)l/Q—i-aDtl—to S (atn)1/2+5n0‘27 S nO.S.

2.3 The Distribution of the Runtime of Push on the Complete Graph 27

Proof of Lemma 2.3.16. We use the notation introduced in Lemma 2.3.15. Let § = 0.01.
From Lemma 2.3.15, we obtain that with probability 1+ O(n=%) for all t € N

|L|< an +n®® = flaz_1)n +n°®.
Thus, using Lemma 2.3.28, we continue with
15| < flag1)n +n"® < (F(|Li-1]/n) + 207 "0+ n"® = f(|I,—1]/n)n + 3n°®
=n—e =" (n — |I,_y|) + 3n°% <n — é(n — L)) + 3n%% = en 4 |I,_1| /e + 3n"%.
Hence we arrive at |I;|< cn + |[;_1|/e + 3n%®. Solving this for |I;_;| yields
|1, _1]|> e(|I;]—cn — 3n"®) > e(|[;|—cn) — 9n"%.
[

Proof of Lemma 2.3.17. We start with the proof of the second claim. From (2.3.12) we
know that

1 AN A ot 1\ 2D
O{t* Z - 1 - 1 —_ — = =]. -]. - ¢
2 n 2 2t -1
Thus, using Fact 2.3.3, we obtain
1 t*
Quypx > 5(1—672 /n)

Hence, considering the series representation of the exponential function, we can infer

1 2t* 2t* 2 2t*—1 2t*—1 2
s L1 (2 Yy 2
2 n 2 n n

t*—1

and therefore

2t qpn < Ul < gt 2,

n

We continue with the proof of the first claim. In order to do this we use Lemma 2.3.15 which
gives that with probability 1 + O(n~%%2) it holds ||I;+|—aun|< n®® and therefore

2t*—1 o [t* S 2t*—1 — apn =+ n0.8 S 5215*—2 + nO.S — (5 + O(n—O.Q))2t*—2‘
]

In Definition 2.3.29, we quantify “exponentially fast convergence” and in Lemma 2.3.30
we state related properties.

Definition 2.3.29 (Exponentially fast convergence). Let (a,)nen be a real-valued sequence
and let ¢ € (0,1). If there is an ng € N such that for all n > ny we have |a,41|< cla,| then
we say that a, converges exponentially fast to zero at rate ¢ with start number ng.

28 2. Runtime and Robustness of Information Spreading Algorithms

Lemma 2.3.30. a) Let ¢ € (0,1) and let (ap)nen be a real-valued sequence that converges
exponentially fast to zero at rate c. Then), ., a, converges absolutely.

b) Let c € (0,1), ng € N and let (hy)nen denote a sequence of functions with h, : [0,1] — R
such that for any x € [0, 1] the sequence (h,(x))nen converges exponentially fast to zero at rate
c with start number at most ngy (note that ¢ and ny do not depend on x). Define h : [0,1] — R
by h(z) == 3, -1 ha(x) (according to a) this is well-defined). Then the sequence of functions
(hp)nen converges uniformly to h, i.e.

lim sup |h,(z) — h(z)|=0.

=00 2¢0,1]
Proof. We start with a). Let ng € N be such that for all n > ng it is |a,41|< c|a,|. Then
Z|an|_ Z|an’+ Z |an|< Z’anl'f_z "lan,|= Z|an|+|ano|
n=ng+1

Now we prove b). Let ¢ > 0. We show that there is an n; € N such that for all n > ny and
for all z € [0, 1] it holds |h,(x) — h(x)|< €. For n > ng it is

> n+1
(@) = h(@)|= | D hala Z [()| < [ty | Z ¢ = lan| 7=
j=n+1 j=n+1 j=n+1
which implies that an ny as required exists. O

Lemma 2.3.31 is a slight generalisation of the monotone convergence theorem; we use it
in the proof of Lemma 2.3.18.

Lemma 2.3.31. Let (a,)nen be a bounded real-valued sequence. Assume that there is a real-
valued sequence (by,)nen that converges exponentially fast to zero in the sense of Definition
2.8.29 such that for all n € N it holds a,11 — an > byy1. Then (an)nen converges.

Proof. Let ¢ > 0. We show that there is an ng € N such that for all n € N with n > nyg
we have |a, — an,|< € which implies that (a,),en is a Cauchy sequence in R and hence
convergent. According to Lemma 2.3.30 a) there is an n; € N such that »_ - [b.]< /4.
Define the auxiliary sequence (ay,)nen as follows. For n < ny set a, := a, and for n > n; set
an = An + Y, <p<nlbr]- Note that sup,cyla, — a,|< £/4. The sequence (G,)nen is bounded

and, for n > ny, monotonically increasing and therefore convergent. Set a := lim,,_. G,
and let ny € N be such that for all n > ny we have |a — a,|< €/4. In particular, for all
n > ng := max{ny,na} we have |a, — an,|< |Gy, — any|+e/2 <e/24¢/2 =¢. O

Proof of Lemma 2.3.18. First we prove claim a). Let a be fixed. We show that for any
x € R with x > —a the limit

lim b+ 1In(gy(1 —2777))

b—00,beN

2.3 The Distribution of the Runtime of Push on the Complete Graph 29

exists. Inductively we get

b+In(gy(1—2797") =b+1In(gy_1(1 —2797)) + gp_1(1 —2797%) — 1

b—1
=b+1In(g(1—27"")) + <Z gi(1 — 2_“_“’;)) —b+1

b—1
=14+(1-277") 27"+ gi(1—-277) (2.3.13)
j=1

which, according to Lemma 2.3.30 a), converges for b — oo because g;(1 —27%"%) converges
exponentially fast to zero at rate at most e(27""Y < 1 and start number 1 for] — o0 in
the sense of Definition 2.3.29. For = € [0, 1], according to Lemma 2.3.30 b), the convergence
is uniform with respect to x.
Next we show claim b), i.e. we show that for any x € R

lim lim —a+b+1In(gy(1 —2777))

a—00,a€N b—00,beN

converges. According to the previous calculations this is equivalent to prove that the sequence

J=1

(’Ya)aeN = (_a + Zgj(l - 2—@—90)) (2'3'14)
aeN

converges.? In order to show this, we first prove that (7,)een is a bounded sequence. For
a € N we have

Ya = (gi(1=27"")=1)+ > g(1-277).
j=1 j=a+1

Set

ha = hal@)i= 3 051 =27 and hai= @)= Y (0,127 1)

j=a+1

We prove that (7,)een is bounded by showing that the sequences (h,)qen and (ﬁa)aeN both
are bounded. We start with h,. Recall (2.3.10) and (2.3.11), we get

f g-a-oy > 1 [(1 L\ Lo ey roe
fa-l—L:vJ()—5 - ~ gata—1 _§< —e) +0(27).

In particular, as (1 —e™")/2 > 0.3, there is an ag = ag(z) € N such that for all a € N with
a > ag it holds foy|2)(27%7%) > 0.3 and therefore

fa(27%7%) > min{0.3- 2717 0.3} =: ¢, € (0,0.3].

2As we have defined g;j only on the domain [0, 1], strictly speaking g;(1 —27%"%) is only well-defined for
a > —x; but since we investigate the asymptotic behaviour for a — oo, for simplicity of exposition we can
ignore this detail without affecting the result.

30 2. Runtime and Robustness of Information Spreading Algorithms

Thus we can infer
Gl = 27%) =1 = [<1 [") <1y,

Note that for y € [0,1] and i € N we have g;(y) < y(e?~!)". Set ¢y 1= el=)~1 = e~ Tt is
c2 < 1. For j € N we obtain g,4;(1 —27%7%) < (1 — ¢;). Hence

3 e N —a—= — 5 (1 =c)e
ha= > gi(1-277) =3 gir.(1-2)5(1_01)2%:1_—62
j=a+1 j=1 P

which shows that (hg).en is a bounded sequence. Next we show that (ﬁa)aeN is a bounded
sequence. It is

hal= > —f;277%)

_ Z fj(Q—a—x) < Z gi—a—z _ 9l—z _ g—a—z+l < gl—w
j=1 j=1

which shows that (EQ)GGN is a bounded sequence. We claim that v,,1 — 7, > —f(2797%71);
note that f(27¢*~1) converges exponentially fast to zero for a — oo in the sense of Definition
2.3.29; hence, if we prove the claim, Lemma 2.3.31 yields the convergence of the bounded
sequence (7Y,)aen. In order to prove the claim we continue with

0o 00 0o -
Y ogi(l =27 Zl — f;(270) < Z — fra@ey =Y g -2,
j=1 i =

Hence we can infer

gl =2 =Y g1 -2) =g (-2) gi(l—27) =) g1 -2
j=1 j=1 =

Jj=2

> g(1 o 27(179:71) —1- f(Qfafz—l)
which implies Yq41 — 7, > —f(2797%71). -

Proof of Lemma 2.3.19. In order to prove the continuity of ¢ on [0,1], as it does not
complicate the proof, we show uniform continuity, i.e. we show that for any € > 0 there is a
d > 0 such that for all z,y € [0, 1] with |z — y|< § it holds |c(y) — ¢(z)|< &. However, note
that continuity would directly imply uniform continuity anyway as the considered domain is
a compact interval. Let £ > 0 be given and consider an arbitrary pair z,y € [0, 1]. W.lLo.g.
y > x and we write y = x + ¢ for € := y — x > 0. Considering (2.3.13) we obtain

|e(y) = e(@)] = ez + &) — c(2)

_ : _ . _ —a—T—¢€ _ : _ . _ —a—x
S CETED SRR) B TSR ERED SR)

Jj=1 Jj=1

= lim) gi(1-27"F) —g(1-277).

a—00,aEN <
=

31

2.3 The Distribution of the Runtime of Push on the Complete Graph

Using that for j € Nand ¢ € [0,1] it is g;(1 —¢) = 1 — f;(¢) we can infer
le(y) — e(x)|]= lim Zf] (2797%) = f(277F e,

a—00,aEN
In particular, it suffices to show that there is a § = 6(£) (where ¢ does only depend on & and
is independent of a) and an ay € N (where qg is independent of all other parameters) such

that for all 0 < e < d and all « € N with a > ag
(2.3.15)

DL~ fi2E) < e
j=1
In order to prove (2.3.15) we introduce some notation. Let fy denote the identity function

(9Q—a—w (9—a—z—¢
cj = Lil __) and ¢ = Ll ___>E.
fj—l(2 a J:) fj—1<2 a—x)
As the function x — f(x)/x is monotonically decreasing for x € (0, 1], for all j € N we have
¢; < &;. We define 7, € N as the minimum natural number that satisfies f,, (277%7¢) > £/10

on [0, 1]; for j € N we define

Note that (as for all ¢ € [0,1] it is f(q) < 2q) this implies
(2.3.16)

€ €
. < - 27(175()75 < _
AR
Furthermore, we define
ci=cp, - :ch and ¢:=¢p, - = Cj-
j=1 j=1
It is ¢ < ¢. We have
27 = £ (2797%) and @274 = f (2797F7F).
Thus, together with (2.3.16), we obtain
€ €
— <@t < - 2.3.17
0= ° =5 (2:3.17)
Let k = k(€) denote the minimum natural number such that
€ €
ol =)>1-—=. 2.3.18
e (10) 10 (2.3.18)

Note that x only depends on €. Now, after having introduced some notation, we will bound
(27977) — f;(27%7"¢). We have

the series from (2.3.15); let us abbreviate v(j,a, x) := f;(27%77)
Ta—1 Ta+k(€) 0
=Y v(a)+ Y vGaz)+ Y. v(ja).
J=Ta J=Ta+K(€)+1
(2.3.19)

> fETT) = 2
j=1 j=1

32 2. Runtime and Robustness of Information Spreading Algorithms

We bound the three summands individually. In order to bound the first sum, similarly to
(2.3.13), inductively we obtain

In (1 - f“(za“)> = In(gr, (1= 27°79)) = In(gr, (1 = 27°7))

1- fTa (Q_a_x>
=In(gr, 1 (1 =27"""°)) + gr, 1 (1 = 27"7"7°) = In(gr, 1 (1 =27"77)) = gr, .1 (1 = 2777)
Ta—1
=In(g(1=27")) =In(g(1 —27*") + Y g;(1=27"") —g;(1—-2777)
j=1
Ta—1
_ 111(1 _ 27a7x75) _ 9—a—z—e _ 111(1 _ 27(172:) 4o 4 Z fj(27af:p> _ fj (2,a,$,€).
j=1

There is a constant agp € N (independent of all other parameters) such that for all « € N
with a > ag

£

In(1 —27%7"7%) =277 —In(1 — 27°7*) + 27°7*| < L

Therefore, for a > ag,

Ta—1

, 5 1—f, 275\ & 1 — gga—a—s
<< a — m(=
2 i) < 35+ (= [@)) 0" (=)
(e
=10 "\ 1-aer)
Thus, using (2.3.17), we can infer

Ta—1 ~ ~ ~ ~ ~
e 9 £ g 15
a1) < —+ln(1-—)-m{1-S22) <= 11— S27).
Z”<J’OL’$)—10+“< 10) n(5 >—10 n(5)

J=1

Hence, as for any ¢ > —1 it is ¢/(1 + ¢) < In(1 + ¢) and because for any 0 < ¢ < 1/2 it is
G/(1 —q) < 24, for sufficiently small ¢ we obtain

= 5 25 /5 E & 3
' L L LB s P 2.3.20
jzl”(j’“’x)—1o+1—255/5—10+5 =5° (2:3.20)

To bound the second sum in (2.3.19) we observe that

1Zf7a(2) 202 :278
fro(27077) 2o ¢

I o

>27°.

This implies that there is a function e : Rt — R with e(e) =0 (for concreteness, set
e(e) =1 —27°) such that

fTa (2—11—:1:) > fTa (2_(1_1:_5) > (1 - 6(8))f7'a (2_a_$) > fTa (2—(1—9[:) - 6(5)'

2.3 The Distribution of the Runtime of Push on the Complete Graph 33

In particular

| fra(27977) = £ (27777)] < ele).

Thus, as = > <,z [j(2) is a continuous function, if € is sufficiently small (only depend-
ing on £), then

Ta+k(€) k(&) K(€)

Z v(j,a,) Zf] fr.(2777)) ij fr(279777F)) <

J=Ta

(2.3.21)

%Imz

Next we bound the third summand in (2.3.19). From (2.3.16) and (2.3.18) we obtain

€
~ (& 276L7(£*E > 1 -
Jrat (e)() 10

Therefore, as for ¢ € [0,0.3] it is g(q) < q/2,

o0

Z v(j,a,x) =

J=Ta+K(E)+1

Mg

f’(fﬂ'a-&-fi(é)@_a_x)) - fj(f‘ra-&-fi(é)(Q_a_x_a))

1

<.
Il

WE

9i(1 = frawn@(27777)) = 95(1 = fraan(e(27977))

ax& C 3]é é
(fTaJrn(s 2 SZ (10) SZ() —0_1—0

7=1
(2.3.22)

1

Mw

<.
Il

In summary, combining the individual bounds (2.3.20), (2.3.21) and (2.3.22) for the three
summands of (2.3.19), we obtain that there is a 6 > 0 (only depending on €) and an ay € N
(independent of all other parameters) such that for all 0 < & < 6 and all a € N with a > aqg

C 3. & ¢
E :) 2—a—x g-a—r—e) < = e < ~
— f](f]() — 5 + 4 + 10 <€
which shows (2.3.15) and hence completes the proof. O

Proof of Corollary 2.3.21. As, according to Lemma 2.3.19, the function ¢ is continuous
on the interval [0, 1], the claim follows from Theorem 2.3.9 since for any a € N the function
x +— —a+n(a,z) (where n is defined as in Lemma 2.3.18 b)) is monotonically increasing on
the interval [0, 1]. O

Proof of Lemma 2.3.22. Define h : N — R* by h(n) := min{[n*'], e(n)n — 1} = w(1)
and let X; and D; be defined as in Theorem 2.3.14. To lighten the notation we write ¢ instead
of e(n) and s instead of s,. In order to prove the claim, we first bound several variances and

2. Runtime and Robustness of Information Spreading Algorithms

34
expectations. Note that for all i € {(1 —e)n,...,n — 1} it is s(i) = O(n). We have
n—h(n)— n—h(n)— n—h(n)— n—h(n)—
Var | Z lsl();) - Z 1Va'r [l(jl)] = Z ls(li)Qchr[Di] = Z 1(9(102Var [Xi—nil.]
i=(1-e)n =(1—e)n i=(1-e)n i=(1-e)n
n—h(n)—1 n—h(n)—1 - B
_ i_(lz_:@n 8<12,)2Var[Xi] _ i_(%n 3(1)2 (i (n1)_(ni)2)

—

n—h(n)—1 1 en 1
=o| > v =0 > 5 | = o).
i=h(n)+1

i=(1—e)n

Analogously we obtain

n—h(n)—1 [) n—h(n)— 1 R n—h(n)—1 . n—h(n)—1 1
Var Z —| = Z —VarX =) — < ‘ 0L =o(1).
i=0 =0 =0 =0
(2.3.23)
Hence for the standard deviations we have
n—h(n)—1 n—h(n)—1 =~
D; D;
| > w5l o) and o] 3t =o(l). (2.3.24)
i=(1—¢e)n =0
We continue with
n—h(n)—1 n—h(n)—1 n—h(n)—1 n—h(n)—1
D; E[D;] —1 1 1
E _— e = _— = O —
i=(1l—¢)n i=(1—¢)n i=(1—¢)n i=(l—¢)n
1 = 1 In(n)
=0\ - - | = i 3.
- > s]=0 (.) (2.3.25)
i=h(n)+1

Asforalli € {0,1,...,n — h(n) — 1} it is E[D;] = 0, by linearity of expectation we have

n—h(n)—1 D
E|l) —| =0 (2.3.26)
=0

From (2.3.24) and (2.3.25) we obtain that there are fi, fo : N — Rt with fi, fo = o(1) such

that
n—h(n)—1 n—h(n)—1
D; D
~| < d |FE | < :
T S| She e B 2L g | = A
i=(1—¢e)n i=(1—e)n
Set k := fo ++/fi = o(1). Using the Chebyshev inequality we obtain
n—h(n)—1 D. n—h(n)—1 D n—h(n)—1
P | >k(n)| <P — _FE | > k(n) -
PN e | P ohl P PN | R

< D% 4y = o).

2.3 The Distribution of the Runtime of Push on the Complete Graph 35

This implies

n—h(n)—1
D;
Y =50 (2.3.27)

i=(1—e)n

Analogously, using (2.3.24), (2.3.26) and the Chebyshev inequality, we get

n—h(n)—1 ~
D;
i Py (2.3.28)
n
1=0
Next we show
n—1 n—1
D; i
= =120 (2.3.29)
s(i) n
i=n—h(n) i=n—h(n)
We have
n—1 n—1 n—1 n—1
D, D; 1 1 1 1
- —| < Dz ———] < - Dz
500 s X min) S <s<n () n) 2, 1P
i=n—h(n) i=n—h(n) i=n—h(n) i=n—h(n)
1 1 n—1 n—1
— _ Dz — O —1.2 D — —1 2
(o —2) X IDI=06) Y Ipi-
i=n—h(n) i=n—h(n) i=n—h(n)
(2.3.30)
It is
n—1 n—1 n—1 n—1 n—1 1 h(n) 1
E g fr < fr —_ =
Z X; Z E[X] Z — <n —=n) O(In(n)n)
i=n—h(n) i=n—h(n) i=n—h(n) i=n—h(n) i=1
and
n—1 n h(n) 1
Z p— :nzz = O(In(n)n)
i=n—h(n) i=1
Hence, using Markov’s inequality, we obtain
n—1
el b Zh()Xi = O(In(n)n)
1.1 i=n—h(n .

36 2. Runtime and Robustness of Information Spreading Algorithms

which implies (2.3.29). As our next step, we prove

D;
Di a ~ (2.3.31)
n
i=n—h(n)
We have
— D = X & <X n—l) 1 & (n—l n)
n o n n ‘ —1 n n—i n-—1i
i=n—h(n) i=n—h(n i=n—h(n) i=n—h(n)
n—2 n—1
1 n—1 1 -1
= — Xy — -
n (=1 - z) n Z n—i
i=n—h(n)—1 i=n—h(n)

B n—2 X — _n=1
_n 1 Z S e Vit +0 (M) . (2.3.32)
; -1

The random variables X;,; = X 1(1)1 and Xi(n*l) both have the same distribution, in particular
n (n— - 1 —1
X™ X" Geom (M) . (2.3.33)
n—1
Hence, as
~] n—1
(n—1) =17
by applying Theorem 2.3.14 we can infer

n—2 n—1

R e o D
3 (=)=t 4
n—1

1=0

Therefore, using (2.3.28), (2.3.33) and Theorem 2.3.13 we obtain

n— n—1
22 i =R
, n—1 ’
i=n—h(n)—1

n— o0

Thus, as (n — 1)/n — 1 and O(In(n)/n) = o(1), together with (2.3.32), we arrive at
(2.3.31). We continue with

n— D, n—%—l D. n—1 D.
== =+ -
i=(1—¢)n S(Z) i=(1—¢)n S(Z> i=n—h(n) S(Z)

2.3 The Distribution of the Runtime of Push on the Complete Graph 37

From (2.3.27), (2.3.31) and (2.3.29) we know that

n—h(n)—1 n—1 n—1 n—1

E 50 and Z 4G and E ~ — iy A 0)
. 5(4) . n ‘ s(1) n
i=(1—¢)n i=n—nh(n) i=n—nh(n) i=n—h(n)

]

Proof of Corollary 2.3.23. As in the proof of Lemma 2.3.22, to lighten the notation we
write € instead of €(n) and s instead of s,. Note that according to Theorem 2.3.11 and
Lemma 2.3.22

sup|P ”2_: D: > x| — P[G > z]| = o(1). (2.3.34)

z€R i=(1-e)n S(Z)

Note that the o(1) terms in the remainder of the proof are independent of [and k and, as
usual, are with respect to n — oo. We have

P |l(n)+ i S?;) > k(n)| =P i S%') > k(n) —1—1(n)
i=(1—e)n :i:(lfs)n :
=P Y D: > k(n) —1—1(n)| +o(1)
=170 *0) _
Thus, using (2.3.34), we can infer
P |l(n)+ "z: D,i > k(n)| = P[G>k(n)—1—1(n)]+o(1)

Pll(n) +G > k(n) — 1] + o(1)
= P[[l(n) + G| > k(n)] + o(1).

]

Proof of Lemma 2.3.24. For sufficiently large a, for all 5 € [0,1] it holds f(L{") > U
and therefore, for all k € N,

FU) < frn (L) < fra (U, (2.3.35)

Recall that for any = € (0, 1)

fil) 12301 (2.3.36)

38 2. Runtime and Robustness of Information Spreading Algorithms

and let £* € N denote the minimum natural number such that fk*,g(Lgo)) > 0.85; in par-
ticular, £* is independent of 7. Note that f4(0.85) < 0.998 and that for all € [0, 1], for all
j € Nit holds f;(U\) < f;(U\") and f;4o(L™) > f;(L”). This, together with (2.3.35),
yields, for sufficiently large a, for all n € [0, 1]

0.85 < freo(L\") < fre (L) < foo (U) < fio(U) < fro i (L) = fa(fir s (L))
< £4(0.85) < 0.998.

In particular
0.85 < fir (L") < £ (UMY < 0.998. (2.3.37)
We show
Fie (U) = fro (L{7) < 27072, (2.3.38)

To do this, for i € {1,2,...,k*} and where fy denotes the identity function on [0, 1], essen-
tially like in the proof of Lemma 2.3.19, we define

fi(U{") g
i=a() ="l and G =) =
a=aln = oy A a=a=om ey

The function x — f(z)/x is monotonically decreasing for x € (0, 1]. Hence, since for all
i €N, foralln e 0,1] it is fi,l(Ul(")) > fi,l(Lgn)), it holds ¢; < ¢. Set c =¢(n) :=cpr-...- 1
and ¢ = ¢(n) := ¢ - ... - ¢1. We have

F(L)

feU) =c U and fi- (L") =& L.
Note that ¢ < & < 2°+2 as otherwise we had fy- (L") > 1 which is a contradiction. Thus

Fer (UMY = fre (L) = 27071 — 627071 4 ¢ 272070 < @270 _ G2 4 ¢ Q720
=c- 2—2a—77 S 2—a+2’

hence we arrive at (2.3.38). Note that for 0 < x < 0.15 and ¢ > 0 such that z +¢ < 0.15, as
a direct consequence of the mean value theorem, we have

glx+e)—g(r) <e max ¢(y) <e max (1+y)e! * <eg/2.
yE[z,x+e] y€1[0,0.15]

Consequently, as for z € [0,1] it holds f(x) =1 —g(1 —x), for 0.85 < 2’ < 1 and £ > 0 such
that 2’ — & > 0.85 we have

f@) = f@' —e) <e/2. (2.3.39)

Recall from (2.3.37) that 0.85 < fis (L) < f (UM™). Thus, from (2.3.38) and (2.3.39), we
can infer that for all 7 € Ny

fk*+j(U1(n)) - fk:*-i—j(Lgn)) < 27et297,

2.3 The Distribution of the Runtime of Push on the Complete Graph 39

In particular, for b := k* 4+ |a/2] 4+ 3 and for all j € Ny we have
f5+j(U1(n)) - fB+j(L§n)) <2
Next we show that there is a b* € N with b* > b such that for all 7 €Ny
1— fus (L) <27 and 11— fi(UM) > 27¢/¢2 (2.3.40)
Note that for all x € (0,1)
g(x) > x/e (2.3.41)

and recall from (2.3.37) that fi-(U”) < 0.998 and hence 1 — f.-(U™) > 0.002. Therefore,

for sufficiently large a, we can infer
1— f;(UM™) >0.002- e3> 270,

Hence the existence of a b* € N that satisfies (2.3.40) follows from (2.3.35), (2.3.36) and
(2.3.41). Thus, in summary, until now we have shown that there is a b* such that for suffi-
ciently large a for all j € Ny

Fori(UY = frop (K'Y <2729 and 1 — fiey (L) < 27% and 1 — £, (U™) > 279/€2,
(2.3.42)

Therefore, to complete the proof, we are left to show that, for sufficiently large a, for all
J € No

()
1 — fyeii(L37) < 14279/ (2.3.43)
()

Set Lé") = fo(L4 (m)) and U2 = fp () For j € N (and where gy denotes the identity
function on [0, 1]) we define

g(1-U") 11— f(U") and d;(y) = g(1-LY) 1[I
= () = = :
g1 (L= 05") 1= f;(U5") g (1= L8") 1= fa (L)
To lighten the notation we write d; instead of d;(17) and d; instead of d,(n). For j € N, the

function x — g¢;(z)/z is monotonically increasing and it is g;_1(1 — Ly > gj—1(1 — U").
Thus, together with (2.3.35) and (2.3.41), we obtain that for all j € N

di(n) ==

o |
2

QL

A
S

S

Thus, for all j € N, we can infer

ramH@@>:%u—L?>:&»~~@G—L9><%0—L9>
L= (U) g(1=U") dye - di (1= US") T~ dy(1 = U3")

40 2. Runtime and Robustness of Information Spreading Algorithms

Hence, using that d; = e~ and (2.3.42), we obtain

_r,m _3g4
L= fyrey (L) < ek (1 - 1{") < e(z—a)l —U" 4273
L 1 (20 I B v 1- 03"
~34
< 6() (1 + 2a/) < 6(27”)(1 + 2—a/2+3)‘

Hence, as for x € [0, 1] it holds e* < 1 + 2z, for sufficiently large a, for all j € Ny we have

1 — feiy (L")
1— fpeas (UM

which shows (2.3.43) and thus completes the proof. O

S (1 + 2—a+1)(1 + 2—a/2+3) S 1 + 2—&/2+4

Proof of Corollary 2.3.25. Let b € N with b > b*. We have

n #—1 —In L —1|=In l_fb(Lgn)). fb(Ul(n))
fo(L{) f(UM) B 1 KO))

Using Lemma 2.3.24, for sufficiently large a, we get

L= ALY AT 1= R B e fo) 27
W) 1= RO 1= RO B S(L3”)

3
:(1+2W%4)<1+ 2) < (14272 (14 2720

S 14+ 2—&/24—5.

a

F(L)

Therefore, as for all > —1 it holds In(1 + z) < x, we obtain

1 1 o
In ﬁ —1]—-In) —1 < hl(l + Q*a/2+5> < 27a/2+5 __>> 0.
WL A

2.3.5 Proof of the Main Result

After the preparatory work, we now are able to prove the main result of Section 2.3, i.e.
Theorem 2.3.2.

Proof of Theorem 2.3.2. To prove the claim we will split the information spreading pro-
cess into three phases. In the first phase, the number of informed nodes almost doubles in
each round. The second phase consists of constantly many steps (in the end we will con-
sider the limit when this number grows) in which we follow the deterministic sequence from
Lemma 2.3.15. In the third phase, in each step we investigate how many pushes are needed to

2.3 The Distribution of the Runtime of Push on the Complete Graph 41

inform the next node; this, essentially, is one step of the Coupon Collector’s Problem (CCP);
a relation between Push and the CCP was also recognised in [35]. Afterwards we will care-
fully convert this number of individual pushes into a (possibly fractional) number of rounds
needed to inform the next node; this converting is critical, in particular, an approximate con-
verting by dividing by n would not be accurate enough. Let a € N denote a (large) natural
number. Let § = 0.01, set tg = to(0,n) = (1/2 — J)|logy(n)] and let (an)ien = (au(to,n))ten
be defined as in Lemma 2.3.15.

Phase 1. Phase 1 consists of the first [logy(n)] — a rounds. According to Lemma 2.3.17

Iy = 2772l0s (1 — 979) < e) —apan < 2702H0820) =gy (2.3.44)

At this point, using Lemma 2.3.17, we could also bound |/|iog,(n)|—a+1| respectively; however
this is not yet necessary, we will bound the number of informed nodes at the end of Phase 2.

Phase 2. Let b* = b*(a) € N be defined as in Lemma 2.3.24 and let b = b(a) € N with
b > b* (we will specify the choice of b later). Phase 2 consists of the next b rounds. Recall
the function = : N — [0,1) defined by x(n) = logy(n) — |log,(n)]. Set

Iy := fully/n)n = fio(1 —27927"n and uy == fo(uy/n)n = f,(27*)n.
Lemma 2.3.24 yields
Uy — Iy < 2739 and n— lo <27, (2.3.45)
As f is monotonically increasing, from (2.3.44) we obtain

ly < Qlog, (n)|—at146M < Us.

Thus, using Lemma 2.3.15 and that, according to (2.3.45), us > lo > n—2"%n > n/2 we get
that with probability 1 + O(n=%)

(1= 207"y < |Ljlogy(n)—at146| < (1 + 2070w (2.3.46)

For simplicity of exposition we drop the (1 + 2n7%2) factors; considering the subsequent
calculations, it is easy to verify that this does not affect the result. We call the event that
(2.3.46) holds L; and from now on we condition on L;. Note that conditioned on L, according
to the definition of us, a linear fraction (depending on a and b) of the nodes is uninformed
after Phase 2.

Phase 3. We number all nodes from 1 to n and assume that the pushes within a round
are performed sequentially according to that numbering. This does not change the protocol.
We assume that node 1 is the node that is already informed in the beginning of the process.
For j € N define the random variable P; that takes values in {1,2,...,n} as follows. The jth
push operation that is performed during the information spreading process pushes the piece
of information to node P;. Note that the entire process is captured by the random sequence

(Pj)jen. For i € {2,...,n} let
:}

{ulJir

J=1

N; ::min{t|t€N,

42 2. Runtime and Robustness of Information Spreading Algorithms

i.e. after the N;th push, for the first time ¢ nodes are informed. Furthermore, for i €
{2,...,n—1} let

Yii=Niy1 — N
denote the number of pushes needed to inform the (i + 1)st node if one starts with ¢ informed
nodes. Hence Y5, Y3, ..., Y, 1 are independent random variables and for i € {2,3,...,n—1}
n—1
Y,~G . 2.3.47
eom (n — 1) ()

Forie{2,3,...,n—1}and j € {1,..., Y} letr;; € {1,2,..., X,,} denote the round in which
the jth push after the ith node has been informed is made. For r € R(i) := {ri1,..., 7y, }
let Y;, denote the number of pushes that Y; represents which take place in round r. Hence

Yi=) Y.
reR(i)
Now, for any ¢ € {2,...,n — 1}, we define the random variable Z; by

Yig
s

Yi _
Z; =
reR(i)

If a round starts with j informed nodes, then there are j pushes in that round; thus, intu-
itively, the term Y;/Z; represents the fractional number of rounds that is needed to inform
the (i + 1)st node after the ith node has been informed. We have

1, |< Z; <
Hence according to Lemma 2.3.16 for ¢ = 1—1/e, as i < |I,, , 41|, with probability 14+O(n=%)
(14+0mn"))e(i —cn) < |1I,,,| forallie {|[l],...,n—1}. (2.3.48)

We call the event that (2.3.48) holds Ly and from now on we condition on Ls, in particular
(14+0(n"?))e(i —cn) < Z; <. (2.3.49)

We write X®) = X7(L3) for the number of rounds needed after Phase 2 to finish the information
spreading process, i.e.

xX0® — x0B) — X, — |logy(n)] +a—b. (2.3.50)

Using (2.3.49) we obtain

n—1 n—1

n—1 n—1
Y; Y; Y, Y;
< 2 < Xx0 < < :
Z il = Z Zi| = = | = Z (14 O(n=92))e(i — cn)

i=|us] i=|us] i=[l3]

(2.3.51)

2.3 The Distribution of the Runtime of Push on the Complete Graph 43

Now we continue to derive upper and lower bounds for X). We start with the lower bound.

Recall (2.3.47), let
n

n—1

and set k; = n/ly and k, = n/us. By applying Corollary 2.3.23, for G ~ Gumbel., we obtain

n—1 ' n—1 n_ n—1 n—1 1
XG> = ' 2 - 1al.
= Z 5 Z i 5 Z i)
i=|n/ky] i=|n/ky| i=[n/kuy] i=|n/ky]
Next we use
1 1 1
J— + —

i(l—i/n) n—i i
This yields

n—1 n—1 n—|n/ky) n—1

s 1 1 1 1
> Z n_i+’z G Z Tt G
i=|n/ku) i=[n/ku) i=1 i=|n/ku)
Using
Zl/k; In(n) 4+ v + O(1/n) (2.3.53)
we get

X® g [n(n—n/k‘ Y+ +1In(n)+v—In(n/k,) — v+ G+ O(1/n)]
[(1/k)) +1n(n)+7+G—l—(9(1/n)—‘
= [In(k, —1)+1n(J+v+G+01/n)]. (2.3.54)

We continue with the upper bound. Recall (2.3.52); starting from (2.3.51), by applying
Corollary 2.3.23, for G ~ Gumbel., we obtain

[n—1 n n—1
XO <y y d
= 1+ 00 02))e(z—cn) + 1+ 0n 92))e(i —en)
i=[n/kp] i=[n/ki
211+ 0m?) n{: L +G
B ,[/k]e(i—cn)(l—i/n) '
1=|n/k;

Hence, using
1 1 1

e(i —cn)(1—1i/n) = i i—a

we can infer

WS laromoy | ¥ v 3

44 2. Runtime and Robustness of Information Spreading Algorithms

Using index shifts and (2.3.53) yields

5 n—[n/k;] 1 n—1—|cn| 1
X® < |(1+0(n "2 ~+ ~ | +G+o01
] D3R T St Bt

1—c¢

< [In(n) +1In(k; — 1) — In(k;) + v + In (1/1€ _C> +G+O(1)]

From (2.3.45) we get k; “=5° 1 (uniformly with respect to n) and therefore

a—00 1-— a—00
In(k) “=°0 and In (¢) =20.
Hence there is a function & : N — R* that is independent of n with h(a) “=5° 0 such that

X® < In(n) + In(k, — 1) + v+ G + h(a) + o(1)]. (2.3.55)

In order to refine the lower and upper bounds (2.3.54) and (2.3.55), we consider the terms
In(k, — 1) and In(k; — 1) respectively. It is

In(k, — 1) = In (%—1) —In (Wq) :1n<1—fb (%)) —ln<fb (%))

According to (2.3.45) we have In(f,(uy/n)) “=° 0 (uniformly with respect to n). For the
other summand we have

(1= (2)) =t (o (1= 2)) =1 (a0 (1- 2225)) < g 20,

This, together with (2.3.54), yields a lower bound for X®); as according to Corollary 2.3.25
we have (again uniformly with respect to n)

In(k — 1) — In(k, — 1) = In (zﬁ - 1) —In (ﬁ - 1) "2),

2 Uz

with (2.3.55) we also obtain an upper bound; to be specific, there is a function h; : N — R*
that is independent of n with hy(a) “=5° 0 such that

X® § [In(n) + In(gy(1 — 27°7"™)) + 4+ G — hi(a) + o(1)] and
X® % [In(n) + In(gy(1 — 27°7*M)) + 5+ G + hi(a) + o(1)].

Hence, combining the three phases according to (2.3.50) and using that a,b € N yields,
still conditioned on L := L U Lo,

X § llogy(n)| + [(n) —a+b+In(gy(1 —27*"™)) + 4+ G — hy(a) +o(1)] (2.3.56)

2.3 The Distribution of the Runtime of Push on the Complete Graph 45

and
X, < logy(n)] + [In(n) — a+ b+ In(gy(1 —27°7"™)) + 4+ G + hy(a) + o(1)]. (2.3.57)

Lemma 2.3.18 @) yields that there is a function hy = ﬁéa) : N — R* that is independent of
n with hy(b) "2£° 0 such that for all n € N

b+ In(gy(1—27°0))) = lim @+m@u—rkmmﬂsﬁm»
b—00,bEN

Recall that b = b(a) is bounded from below by b*(a) (where b*(a) is defined as in Lemma

2.3.24) and note that b*(a) "= co. As long as we respect this lower bound, we can choose

b = b(a) to meet our requirements. While hy may depend on a, for any fixed a € N, we

have ﬁga)(b) "2$° 0. Therefore, as we can choose b = b(a) sufficiently large (depending on a),
we can infer that for a suitable choice of b = b(a) there is a function hy : N — R* that is
independent of n with hy(a) “=° 0 such that for all n € N

b+ In(gy(1 — 2707)) — lim (5 +In(g;(1 — 2—a—w<n>)))‘ < ha(a). (2.3.58)

b—00,beN

The function ¢ : R — R is given by
c¢(x) = lim lim —a+b+In(g(l—2777))

a—00,a€N b—00,bEN
and, according to Lemma 2.3.18 b), it is well-defined, i.e. the limit expression converges.
Lemma 2.3.18 b), together with Corollary 2.3.21, yields that there is a function hy : N — Rt
that is independent of n (Corollary 2.3.21 guarantees this independence) with hs “Z%° 0 such
that for all n € N

'—a+< lim (5+1n(gg<1—2—a—x<">)))> — c(a(n))

l~7—>oo,l;EN

< ha(a). (2.3.59)

From (2.3.58) and (2.3.59) we can infer that there is a function hy : N — R* that is
independent of n with hy(a) “=5° 0 (for concreteness, hy := hy + hy) such that for all n € N

[—a b+ In(gy(1 = 27°0) — e(a(n))] < ha(a).

Therefore, using (2.3.56) and (2.3.57), we obtain that there is a function sy : N — R™ that
is independent of n with hg(a) =0 (for concreteness, hy := hy + hg) such that

X, > [logy(n)] + Mn(n) + c(x(n) +7 + G — ha(a) + 0(1)] and
X,, < [logy(n)] + [In(n) + c(2(n)) + 7+ G + ha(a) + o(1)].

Thus we can infer that there are functions ¢i,¢q : N — R with ¢1,¢2 = o(1) (where, for
i € {1,2}, ¢; might also depend on a, but for fixed a € N it holds ¢;(n) = ¢;(n,a) "= 0)
such that for all n,k,a € N

Py[X, > K= P [[1ogy(n)] + [In(n) + c(2(n) +7+ G~ ha(a) —gx(n) | > k] > —s(n) (2:3.60)

46 2. Runtime and Robustness of Information Spreading Algorithms

and
Pu[X, > k] —P[Uog2(n) |+ {1n(n>+c(x<n))+7+G+h2(a>+qg(n>] > k] < qu(n). (2.3.61)

We claim that this implies that for any € > 0 there is an ng € N such that for all n € N with
n > ng, for all k € N

‘PL[Xn >k — P[LlogQ(n) |+ [m(n) +e(z(n)) + v+ G] > k} ‘ <e. (2.3.62)
To verify this claim, let € > 0. Let € > 0 be such that
sup Z P[GE [:c—irj—é,:c—i—j—l—é]] <e/2.
It is straightforward to verify that such an € exists. Let ay € N be such that hs(ag) < £/2.
Let ng € N be such that for all n € N with n > ng
@(n) =q(n,ag) <e/2 (2.3.63)

and ¢a(n) = qa(n,ag) < /2. Hence, for n > ng, it is q2(n) + ha(ag) < &. Therefore, for
n > No,

P [[ln(n) +c(xz(n)) +v7+G+xqn) + hQ(CLO)—‘ # Pn(”) +e(a(n) +9+ GH

< sup f: P[Ge[vaj—é,x—l—j—l—é]] < e/2.

Thus, using (2.3.60), (2.3.61) and (2.3.63), we obtain that for all n € N with n > ny, for all
k € N it holds (2.3.62). Hence (recall that d : N — R is defined by d(n) = In(n)+~v+c(z(n)))
there is an m = o(1) such that for all k,n € N

|PL[Xn > k] = Plllogy(n)] + [G +d(n)] > K]|< m(n)
and thus, as P[L] =1+ o(1), there is an m = o(1) such that for all k,n € N

|P[X = k] = P[[logy(n) | + [G +d(n)] = K]|< m(n).

2.4 Resilience Results for Push

Besides its simplicity and scalability, one other important reason for the popularity of Push
is that it is often presumed to be a very robust algorithm. In this section we quantify
the robustness of Push against adversarial edge deletions on graphs with good expansion
properties. In particular, we consider the following notion of local resilience: Consider an
adversary that wants to increase the expected runtime by Q(In(n)) rounds; up to which

2.4 Resilience Results for Push 47

fraction of the edges can the adversary be allowed to delete at each node without being able
to do this? Our results show that while Push is robust against adversarial edge deletions in
the sense that it still informs almost all nodes as fast as without edge deletions, the number
of rounds needed to inform all nodes can be increased significantly. We also prove respective
results in the presence of independent message transmission failures. To handle the problems
of this section accurately we need the following definitions that are also used in [83].

Definition 2.4.1 ((n,d, A, \)-graph). Let G be a connected graph with n nodes that has
minimum degree 0 and mazximum degree . Let Ay > Xy > -+ >)\, be the eigenvalues of
the adjacency matriz of G and set A = maxao<;<,|\i|= max{| s, |\n|}. We will call G an

(n, 0, A, X)-graph.
Recall Notation 2.1.1; for better readability we repeat some parts of it here.

Notation 2.4.2. As usual, we are interested in the case where the size n of G gets large, that
is, when n — oco. Hence, unless otherwise specified, all asymptotic notation is with respect
to n — 0o; in particular, recall that “whp” (which is short for “with high probability”) means
with probability 1 4+ o(1) when n — oco. As in this section we consider Push, for a graph
G the runtime X(G) refers to X(G, Push). If we additionally assume that each message
transmission fails independently with probability 1 — q € [0,1), we write X 9(G) instead of
X(Q); if we write X(G) this refers to the case ¢ = 1. We call q the success probability of a
message transmission. To lighten the notation we will write I, instead of It(Q)(G, Push). In
these cases q will be clear from the context, in particular, I; does not necessarily refer to the
case ¢ = 1.

Definition 2.4.3 (Expander Sequence). Let G = (G,)nen be a sequence of graphs where for
each n € N, the graph G,, is a (n,d,, Ap, \y)-graph. We say that G is an expander sequence
if An/6n =1+ 0(1) and A\, = o(4,,).

If we consider an expander sequence G = (G,)nen, this always implicitly defines 0, A,
and A, as in Definition 2.4.3. If G is an expander sequence, then intuitively this means that
for n large enough, the edges of GG,, are rather uniformly distributed; more formally this is
stated in the following variant of the Expander Mixing Lemma.

Lemma 2.4.4 (|83, Corollary 2.4|). Let G = (Gp)nen = ((Va, En))nen be an expander se-
quence. Then for S, CV,, such that 1 <|S,|<n/2

An|Sn|(n_ ’Sn|>

n

e(Sn, Va\Sn) — = o(A,)|Snl-

Lemma 2.4.5 is a consequence of Lemma 2.4.4; it assures, for graphs with good expansion
properties, that, for 0 < ¢ < 1/2, even if up to a (1/2 — ¢) fraction of the edges at each node
is deleted, the graph is still relatively well-connected; in particular, for each set of nodes, a
linear fraction of the original number of edges between the set and its complement remains
present in the modified graph. We prove Lemma 2.4.5 in Subsection 2.4.2.

Lemma 2.4.5. Let G = (Gp)nen = ((Va, En))nen be an expander sequence. Let 0 < e < 1/2.
Let G = (Gn)nen = ((Vi, En))nen be such that each G, is obtained from G,, by deleting edges

48 2. Runtime and Robustness of Information Spreading Algorithms

such that each node keeps at least a (1/2 + ¢) fraction of its edges. Then there is an o > 0
such that the following holds. For eachn € N let S,, C V,,, then there is an ng € N such that
for all n > ng

ea, (Sny Va\Sn) > aeq, (Sn, Va\Sh).

Theorem 2.4.6 provides the runtime of Push on graphs with good expansion properties;
it turns out to be same as on the complete graph.

Theorem 2.4.6 (|83, Theorem 1.1|). Let G = (G,)nen be an ezpander sequence. Then whp
X(G,) = logy(n) + In(n) + o(In(n)).

Completely analogously to the proof of Theorem 2.4.6 given in [83] one obtains the follow-
ing corresponding result for the setting where each message transmission fails independently
with probability 1 — ¢ € [0, 1).

Theorem 2.4.7. Let G = (G)nen be an expander sequence. Let q € (0,1] be the success
probability of a message transmission. Then whp

X9(G,) = log; ,(n) + éln(n) + o(In(n)).

In the remainder of this section we investigate up to how many edges an adversary can
be allowed to delete at each node without being able to slow down the information spreading
process.

2.4.1 Results

Theorem 2.4.8 states that even if an adversary may delete up to almost half of the edges at
each node, whp almost all nodes become informed as fast as without the deletions. However,
for 0 < ¢ < 1/2, Theorem 2.4.9 states that the adversary can increase the time until all
nodes are informed significantly by deleting edges, even if he is only allowed to delete up to
an ¢ fraction of the edges at each node.

Theorem 2.4.8. Let 0 < ¢ < 1/2, let ¢ € (0,1] be the success probability of a message
transmission and let G = (Gy)nen be an expander sequence. Let G = (én)neN be such that
each G, is obtained from G, by deleting edges such that each node keeps at least a (1/24¢)
fraction of its edges. Then, whp, Push informs all but n/In(n) nodes of G, within

logy 4 ,(n) + o(In(n))
rounds.

Theorem 2.4.9. Let 0 < e < 1/2 and let g € (0,1] be the success probability of a message
transmission. There is an expander sequence G = (Gy)nen and a sequence of graphs G =
(én)neN such that each én is obtained by deleting edges of G, such that each node keeps at
least a (1 — €) fraction of its edges such that whp

X@(G,) > log, ., (n) + (1 + g) éln(n) + o(In(n)).

2.4 Resilience Results for Push 49

2.4.2 Proofs

Proof of Lemma 2.4.5. Without loss of generality we assume that |S,|< n/2, otherwise
we exchange the roles of S,, and its complement. We note that at most A, (1/2—¢)|S,,| edges
between S, and its complement can be deleted. Hence we obtain

€@, (Sns Va\Sn) > ea(Sn, Va\Sn) — An (1/2 — €) |Sy].

Using Lemma 2.4.4 we continue with

e%@mwwm—&(é—ﬁwmzA””?‘””+dAM&PA(§—QKM
B AL |Sn|(n—|Sy|) - n(1/2 —e¢) N o(Ay) n
o n n — Syl A, n—|S, '

As n—|S,|> n/2 we have (o(A,)/A,)(n/(n—|S,])) = o(1) and we also obtain that there is
a constant & < 1 such that (n(1/2 —¢))/(n — |S,|) < @. Hence, for any 0 < o < 1 — & and
n sufficiently large

AL|Sh|(n —[S,]) - n(l/2—¢) o(A,) n
n n—|Sy| A, n—|Sy|

) > aeg, (Sn, Vi \Sh)-

]

For a shorter notation let us call the setting with deleted edges “new model” and the
setting without such edge deletions “old model”. We prove Lemma 2.4.10 which directly
implies Theorem 2.4.8. To do this we will use Lemmas 2.4.11 and 2.4.12.

Lemma 2.4.10. Under the assumptions of Theorem 2.4.8 the following holds for the new
model.

a) There are 7,7 = logy,,(n) + o(In(n)) such that whp |Iz|< n/In(n) < |I|.

b) Assume that |I;|> n/ln(n). Then there is a T = o(In(n)) such that whp |I;1.|> n —

n/ln(n).

Note that a) and b) from Lemma 2.4.10 together directly imply Theorem 2.4.8. Lemma
2.4.11 assures that in the old model and without transmission failures, in the beginning of
the information spreading process whp the number of informed nodes essentially doubles.

Lemma 2.4.11 (See the proof of Lemma 2.5 in [83]). Consider the old model. Assume that
|It|< n/In(n) and ¢ = 1. Then

BilLs|= | Ll+(1 + o(1)|L]] = 1+ o(1). (24.1)

Lemma 2.4.12 assures that if we already know that the number of informed nodes whp
essentially doubles in a round in the setting without transmission failures, then in the set-
ting with transmission failures the number of informed nodes whp increases by a factor of
essentially (1 + ¢q).

50 2. Runtime and Robustness of Information Spreading Algorithms

Lemma 2.4.12. Consider Push on a sequence of graphs (Gp)nen = ((Vn, En))nen with
|Vi|=n such that (2.4.1) holds for ¢ = 1. Assume that |I;|]= w(1). Then for q € (0, 1]

Py|Lis1|= [L]+ (1 4 o(1))g|L:]] = 1 + o(1). (2.4.2)

Moreover, if there is a t* = o(In(n)) such that whp |I;+|= w(1l), then there are 7,7 =
logy,,(n) 4 o(In(n)) such that whp

|I:|< n/ln(n) < |I]. (2.4.3)

Proof. For a graph G and for v € I; let x,(G) denote the node to which v attempts to push
in round ¢ (the push attempt fails with probability 1 — ¢). Let

Nt+1 = {Xv(Gn> | v E It} N Ut.

Note that whp |Np1| = (14 0(1))|Z| from (2.4.1). Each node in N;;; has a probability of at
least ¢ to get informed and all these events are independent; thus the first statement follows
directly by applying the Chernoff bound. Now we prove the second statement. We call a
round ¢ that does not satisfy (2.4.2) a failed round. Due to the first statement by applying
the Chernoff bound we obtain the existence of a h = o(In(n)) such that whp less than h(n)
of the first log,,,(n) + h(n) rounds fail; this implies the second statement. O

Proof of Lemma 2.4.10. We first show claim a). We start with verifying by contradiction
that in the old model for |I;|< n/4 we have

P, [\It+1]> (1 + Q) ym} >4 (2.4.4)
4 4
Assume that this is not the case, i.e. assume that P[| ;1\ I;|> q|1;]|/4] < ¢/4. Since |41\ L] <

|1;], we get
q q q q.,, 4q
Edlleni\Il) < P [[T\EI > FEI) 5]+ T8 < 210+ F10)= 1), (2:4.5)

Let x, and Nyyq be defined as in the proof of Lemma 2.4.12. From (2.4.1) we know that
whp |Ni1]= (14 o(1))|1¢|, hence for g € (0,1] we have Ey[|I;+1\I]] > (1 + o(1))q|I¢| which
contradicts (2.4.5) and therefore (2.4.4) holds. Let us call a round ¢ with |41 |> (1+q/4)|L]
a successful round. If we make R € N rounds, then, according to (2.4.4), the number of
successful rounds can be bounded from below by a binomial random variable Bin(R, q/4).
In particular, applying the Chernoff bound yields that, whp, if we make R = In(ln(n))
rounds, (1 + o(1))Rq/4 of these rounds are successful. Thus, whp, after In(In(n)) rounds,
w(1) nodes are informed. Hence from now on we assume that |[;]= w(1). We assume ¢ = 1
and prove that (2.4.1) also holds in the new model; then, according to Lemma 2.4.12, claim
a) follows.

Let G = (V, E) be a graph; for v € V let ¢,(G) := [{v € I | xo(G) = u}| denote the

number of times u is pushed in round t. Let

V(G ={vel|c,(G)=1} and H(G):={vel]|c(G)>1}

2.4 Resilience Results for Push 51

denote the set of informed nodes that are pushed exactly once in round ¢ and the set of
informed nodes that are pushed at least once in round ¢ respectively. Let

Z(G) ={veV]c(G) >2}

denote the set of nodes that are pushed more than once in round t. Set Y;(G) = |Vi(G)|
and H;(G) := |H(G)| and, in slight abuse of notation, let Z;(G) :=>",.,(k—1)-[{v e V|
¢,(G) = k}| denote the number of nodes that are pushed multiple times in round ¢ counted
with multiplicity. We want to show that (2.4.1) does hold in the new model; for contradiction
we assume that this is not the case. Hence we can infer that there is a constant ¢ > 0 such
that

limsup P,[Y:(Gr) > ¢c|L}]] >0 or limsup B[Z;(Gy) > c|l;]] > 0.

n—oo n—oo

Thus, w.l.o.g., we can assume that there is f* > 0 and ng € N such that

PYi(G,) > c|Li|]] > frforalln >ng or PB[Z(G,) > c|l|] > f* for all n > ny,

if this is not the case we can restrict ourselves to a suitable subsequence of (n),cy on which it
is true. We couple the new and the old model: For any node v consider x,(Gy). If x,(G,) €
Ne (v), set Xo(Gr) = Xu(G) otherwise choose X, (G,,) uniformly at random from Ng (v).
The marginal distributions are correct by construction.

We start with the case that P,[Y;(G,) > ¢|L|] > f*. We consider w € Vi(G,,). This means

that there is a unique node v € Ng (w) N I, with x,(Gr) = w. We obtain

) | Xo(Gr) = w]
) > 1/2.

Piw € Hy(G) | xo(Gr) = w] = Py[xuo(Gn) = X
- Pt[X’U(Gn) XU(

As this holds independently for all w € yt(én) we can infer that P,[H,(G,,) > ¢/2|L|] > f*/2
which contradicts Lemma 2.4.11.

We continue with the case that P,[Z,(G,) > ¢|I,|] > f*. Consider w € Z,(G,), i.e. k =
cw(Gy) > 2. In particular, there are nodes vy, . . ., v, with x,,(G,) = w fori € {1,...,k}. Like
in the previous case for each v; independently Pi[xu, (Grn) = Xu,(Gn) | Xo,(Gr) = w] > 1/2.
Intuitively this means that for each push to w in round ¢ in the new model, with probability
at least 1/2 the same push was also made in the old model; in particular, for k& = 2 with
probability 1/4 both pushes have also been made in the old model and for £ > 3 with
probability at least 1/2 at least [k/2] pushes were the same in the old model. As this holds
independently for all w € Zt(én) we obtain P[Z,(G,) > ¢/3|I;|] > f*/4 which contradicts
Lemma 2.4.11.

Next we prove claim b). This works analogously to Phase (II) in the proof of Lemma 2.5 in
[83]. Yet, for completeness, we include the details. We assume that |I;|€ [n/In(n), n—n/In(n)].
We further divide this phase into two cases, namely |I;|€ [n/In(n),n/2] and |I,|€ [n/2,n —
n/In(n)]. We start with the first case, i.e. |I;|€ [n/In(n),n/2]. Using Lemmas 2.4.4 and 2.4.5
and the assumption that A, /0, = 1 + o(1) we obtain that there is an o > 0 such that, for

n sufficiently large,

G
G

52 2. Runtime and Robustness of Information Spreading Algorithms

Now, using Fact 2.3.3, we bound the expected number of nodes that become informed in
round t from below.

q - u t n
AR D DR F T 5| <1_A_n> S S BN

uEN(It)\It UEN(u)mIt uEN(It)\[t

Using the fact that for any = € (0,1) it holds e™* < 1 — z/2 and (2.4.6) we continue with

q|N(u) N1 qge(ly, V\I, aqoy,
Mee >y, AU AU oy

weN (It)\I¢

Since |[;41]|< 2|I;|, we obtain as long as |I;|< n/2 that there are constants 3,y > 0 so that

BllLnl> (1 +)IL] = 8 (2.4.7)

Similarly to before, now we call a round ¢ successful if |I;11|> (1 + 7v)|[;| and analogously
to before, if we make R € N rounds, then according to (2.4.7) the number of successful
rounds can be bounded from below by a binomial random variable Bin(R, 3). Therefore,
by applying the Chernoff bound, we can infer that if we make R = In(n)/In(In(n)) rounds,
whp at least (1 + o(1))8R of these rounds are successful. Thus, if at least n/In(n) nodes are
informed and we make In(n)/In(In(n)) additional rounds, then afterwards whp at least n/2
nodes are informed.

Now we consider the case |I;|€ [n/2,n —n/In(n)]. In this case, we consider the shrinking
of U;. Again, as |U;|< n/2, using Lemmas 2.4.4 and 2.4.5 we obtain that there is an o > 0
such that, for n sufficiently large, e(1;, Uy) > ad,|U;|. Hence, again using Fact 2.3.3 and that
for any = € (0,1) it holds e=* < 1 — z/2, we obtain

Bl =Y 1 (1) = S e

u€Ut veN (u)NI; u€eUy
q\N ﬂ [t] aq5 _agoy
<Y - < v~ 52 juig= (1- 552) ol

ueUy

A simple inductive argument gives

aqd, \"
Bl < (1-552) 10l ren

Thus, for 7 := —21In(In(n))/In(1 — agd,/(24,)) = o(In(n)) we have Ey[|U;i.|] = o(n/In(n)).
Hence, by Markov’s inequality, P;[|Usy-|> n/In(n)] = o(1). O

Proof of Theorem 2.4.9. We will construct an explicit example of a graph that has the
desired property. In particular, for any 0 < ¢ < 1/2, each ¢ € (0,1] and n € N we will
define a graph G = G,, that is obtained by deleting edges from the complete graph on n
nodes such that each node keeps at least a (1 — ¢) fraction of its edges and such that Push
slows down by terms of logarithmic order. We define a graph G = (V; U V5, E) with node

2.4 Resilience Results for Push 53

set V.=V UVy, where V] := {1,...,|n/2]} and V5 := {|n/2] + 1,...,n}, as follows. We
include in E all pairs of nodes that intersect V; and moreover, we add edges (that now
have endpoints only in V5) such that all nodes in V; have degree [(1 —e)n| + 1+ 1. Let
U := U, N Va. According to Lemma 2.4.10 a) there is a t = log, ,(n) + o(log n) such that
whp |I;|< n/In(n). Hence we can assume that |[;|< n/In(n) and it suffices to show that it
takes whp at least (1 4 ¢/2)¢ ' In(n) + o(In(n)) rounds to inform all remaining nodes. As
|I:|< n/In(n) we have |Ut(2)|2 n/4. To show that Push has indeed slowed down, we use an
argument that is similar to the one used in the proof of the lower bound for Theorem 1.1 in
[83]. In the remainder of this proof we will consider a modified process in which nodes have
a higher chance of getting informed; in particular, we assume that in each round, every node
chooses a neighbour independently and uniformly at random and after this round the chosen
nodes are informed. The runtime in this modified model constitutes a lower bound for the
runtime of Push. Let E, denote the event that u € U; does not get informed within the next
7 := (14 ¢/2)¢ ' In(n) rounds in the modified model and let E, denote the complementary
event. It suffices to show that

Each node u € U has |17/2] neighbours that have degree n — 1, at most (1 —&)n + 3
neighbours that have at least degree (1 — €)n and no further neighbours. Therefore, using

Fact 2.3.3, we obtain for each u € Ut@)

4—4c—32 1

= (1+o(1))e 2= ™M = (p~h).

We observe

> BIE) > n/dw(n™') = w(1).

uEUt(Q)

As we assume that uninformed nodes can obtain the piece of information not only from
informed neighbours but from all their neighbours, the events {E, | u € Ut(z)} are negatively
correlated in the sense that for all v, uy, ..., uy € Ut(Q) it holds P[E,] > P[E, | By, A...ANEy]
([93]). Thus, using that for all x € R it holds 1 — x < e™*, we arrive at

Al B <[] REI=] 0-RIE) <exn [~ 3 RIB]| = o).

ue? uet? ue? ue?

54 2. Runtime and Robustness of Information Spreading Algorithms

2.5 Information Spreading on Random Evolving Graphs

2.5.1 Introduction

Recently Clementi et al. have investigated Push on random evolving graphs (|21]), i.e. in a
setting where the underlying graph is not fixed but changes over time; this is motivated by
the fact that often real-world networks are not static; compare also the paragraph “Evolving
Graphs” in Subsection 2.2.2. One setting they treated is the following: Fach round the
underlying graph is a newly (and independently of the previous graphs) sampled Erdds-
Rényi random graph G(n, p). We are interested in large graphs, thus, as usual, all asymptotic
notation is with respect to n — oo if not explicitly stated differently; in particular, recall
that “whp” (which is short for “with high probability”) means with probability 1+ o(1) when
n — oo. Among other results, in [21] it is shown that if p > 1/n then whp the runtime of
Push is O(In(n)).

For a > 0 and p = a/n, Doerr and Kostrygin have improved this bound (|34, 70]).
According to [70], p = a/n is the most interesting regime because a respective random graph
whp is not connected but has nodes with degrees varying between 0 and ©(In(n)/In(In(n)))
and, for ¢ > 0 if p > (1 + ¢)/n, whp a giant component containing a linear fraction of the
nodes exists. They have shown that the expected runtime of Push is E[X,] = log, .-.(n) +
1/(1 — e *)In(n) + O(1); moreover, it is shown that constants a, A > 0 exist such that
for all r,n € N for the runtime X,, it holds P[|X, — E[X,]||> r] < Aexp(—ar). This was
shown by applying a general framework developed in [34]. This framework exploits that
many information spreading algorithms are sufficiently characterised by the probability p
of a node to become informed in a round that starts with k£ informed nodes and a bound
on the covariances between the indicator variables each indicating whether an uninformed
node becomes informed in that round. By bounding p, and these covariances, the framework
allows to obtain the expected runtime up to constant additive terms as well as large deviation
bounds.

We use this framework to investigate Pull and PushéPull on random evolving graphs.
We show that the expected runtime of Pull in the setting described above (i.e. each round
a new Erdgs-Rényi random graph G(n,a/n) is sampled independently of what happened
before) is logy_,—a(n) + 1/aln(n) + O(1). Let k = 2(1 — ™) — (1 — e7%)?/a; we prove that
the expected runtime of Pushé&Pull is log,.(n) +1/aln(n) + O(1). As a byproduct, we also
obtain large deviation bounds.

For PushéPull we will observe that while both, Push and Pull, need logarithmic time
for the last phase of the information spreading process, when combining them in PushéPull,
Push becomes useless in the last phase which might be unexpected. Another interesting
aspect is that in the first phase, when almost no nodes are informed, Push and Pull get in
each other’s way in the sense that many nodes obtain the piece of information by a push as
well as by a pull operation which makes one of both operations useless. In Remark 2.5.15 we
provide an explanation for these observations.

Note that we have made the contributions of this section also available in [23].

Notation 2.5.1. Recall that X,, denotes the runtime of an information spreading algorithm
on a graph with n nodes if the remaining information (i.e. the underlying graph etc.) is
clear from the context. In this section we will use a slightly more general notation: Let

2.5 Information Spreading on Random Evolving Graphs 55

c,d € {1,2,...,n} with ¢ < d. Then X,(c,d) denotes the number of rounds that are needed
if one starts with ¢ informed nodes until at least d nodes are informed. When we consider
a sequence of random graphs, then we implicitly mean that the graphs of the sequence are
sampled independently of each other.

2.5.2 Preliminaries

We start with stating the framework from [34]. We consider homogeneous information spread-
ing processes characterised as follows: We consider graphs with n nodes, in the beginning
one node is informed, the other nodes are uninformed. Once a node is informed, it remains
informed. The process is partitioned into rounds, in each round each uninformed node can
become informed. Whenever a round starts with k& informed nodes, we assume that there
is a pp € (0,1) (only depending on k) such that each uninformed node becomes informed
in that round with probability pg; thus p; is called the success probability. An information
spreading process as described is called homogeneous (|34]). By suitably bounding the suc-
cess probabilities and the covariance numbers defined as follows, bounds on the runtime can
be obtained. Whenever we write k, this refers to the number of informed nodes the current
round of the information spreading process starts with; we set u :=n — k.

Definition 2.5.2 (Covariance numbers, [34]). For a given homogeneous information spread-
ing process and k € {1,...,n— 1} let ¢ be the smallest number such that, whenever a round
starts with k informed nodes, for any two uninformed nodes x,y, the indicator random vari-
ables X,Y for the events that x or y respectively becomes informed in this round satisfy
Cov[X,Y] < ¢.

If the exponential growth conditions given by Definition 2.5.3 are fulfilled, then Theorem
2.5.4 states that there is an exponential growth phase, i.e. if sufficiently few nodes are in-
formed, then the number of informed nodes essentially increases by a constant factor each
round and the runtime can be bounded respectively.

Definition 2.5.3 (Exponential growth conditions, [34]). Let k, be bounded between two
positive constants. Let a,b,c > 0 and 0 < f < 1. We say that a homogeneous information
spreading process satisfies the upper (respectively lower) exponential growth conditions in
[1, fn] if there is an ng € N such that for all n € N with n > ng the following properties are
satisfied for any k < fn:

k

k
> ppe (1= a™ —
.pk_ﬁn(“n In(n)

. k k b
(respectively pr < kp— | 1 +a— +).
n n In(n)

oc. < c—.
n

In the case of the upper exponential growth condition, we also require af < 1.

Theorem 2.5.4 ([34]). If a homogeneous information spreading process satisfies the upper
(lower) exponential growth conditions in [1, fn[, then there are constants A, > 0 such that

E[X,(1, fn)] (S) log,,,. (n)+0O(1) and

P[X,(1, fn) > log,,,. (n) + 1] < Aexp(—ar) for all r,n € N.
(<) (=)

56 2. Runtime and Robustness of Information Spreading Algorithms

When the lower exponential growth conditions are satisfied, then also there is an f < f' <1
such that with probability 1 + O(1/n) at most f'n nodes are informed at the end of round

Xn(1, fn).

If the exponential shrinking conditions given by Definition 2.5.5 are fulfilled, then Theo-
rem 2.5.6 states that there is an exponential shrinking phase, i.e. if sufficiently many nodes
are informed, then the number of uninformed nodes essentially decreases by a constant factor
each round and the runtime can be bounded respectively.

Definition 2.5.5 (Exponential shrinking conditions, [34]). Let p,, be bounded between two
positive constants. Let 0 < g < 1, and a,c € R}. We say that a homogeneous information
spreading process satisfies the upper (respectively lower) exponential shrinking conditions if
there is an ng € N such that for all n € N with n > ng the following properties are satisfied
forallu=n—k < gn:

u U
ol —pr=1—p,w<e " +a— (respectivelyl —p, =1—p,_, > e —a—).
n n
c
OCr =Cpy > —.
u

For the upper exponential shrinking conditions, we also assume that e " +ag < 1.
Theorem 2.5.6 ([34]). If a homogeneous information spreading process satisfies the upper

(lower) exponential shrinking conditions, then there are A, a > 0 such that

EX,(n = Lon).m)] < pin ln(n)+O(1) and

1
P X,(n—|gn|,n) > —In(n) + r| < Aexp(—ar) for all r,n € N.
(2) Pn =)

Remark 2.5.7. It suffices to compute k,, and p,, from Theorems 2.5.4 and 2.5.6 respectively
up to additive O(1/In(n)) terms; then the conclusions of Theorems 2.5.4 and 2.5.6 remain
the same.

We will use the following well-known fact in our proofs; it is a direct consequence of Fact
2.3.3.

Fact 2.5.8. Let a > 0. Consider an Erdds-Rényi random graph G = G(n,a/n). The proba-
bility that a specific node is isolated is e~ + O(1/n).

Theorem 2.5.9 considers the number of rounds Push needs in the described setting. While
we do not need it for the proofs of our results, we state it for completeness.

Theorem 2.5.9 ([34]). Let a > 0 and assume that each round a newly sampled Erdds-Rényi
random graph G(n,a/n) is the underlying graph. Then for the runtime of Push, X,,, we have

E[X,] =logy_,-a(n) +

= In(n) + O(1)

and there are constants A, > 0 such that for all r,n € N

P[|X, — E[X,]|> r] < Aexp(—ar).

2.5 Information Spreading on Random Evolving Graphs 57

In [34] it is observed that the obtained runtime is the same as if the underlying graph is
a complete graph but message transmissions fail independently with probability e® which,
up to additive O(1/n) terms, is the probability that a node is isolated. We will see that this
also holds for Pull. Interestingly it does not hold for PushéPull; we provide an explanation
in Remark 2.5.15.

2.5.3 Pull on Random Evolving Graphs

We prove the following theorem that provides the expected runtime of Pull up to a constant
number of rounds as well as large deviation bounds where in each round the underlying
graph is a newly sampled Erdés-Rényi random graph.

Theorem 2.5.10. Let a > 0 and assume that each round a newly sampled Erdds-Rényi
random graph G(n,a/n) is the underlying graph. Then for the runtime of Pull, X,, we have

1
BIX,] = logy_-+(n) + ~ In(n) + O(1)
and there are constants A, > 0 such that for all r,n € N
PlIX, — E[X,]|> 7] < Aexp(—ar).

Proof. We want to apply the framework from [34]. In order to do this, we consider a round
of the information spreading process that starts with k& informed and u = n — k uninformed
nodes; we will refer to this round as the current round. We can assume that at the start of each
round, the edges of the Erdgs-Rényi random graph G(n,a/n) are not yet sampled. Before
the random graph is sampled, each uninformed node has the same probability of getting
informed, hence the information spreading process is homogeneous. First we consider the
covariance numbers. To do this, consider two uninformed nodes x and y and let X and Y
denote the indicator random variables indicating whether x or y respectively gets informed
in this round. Note that, as the edges are not yet sampled, there is some positive correlation
between X and Y': If we condition on the event that the uninformed node x becomes informed,
then it is slightly less likely that = and the uninformed node y are neighbours; this increases
the probability that y has a higher fraction of informed neighbours and therefore y pulls
the information more likely. However, the framework from [34] allows for some positive
correlation. We will bound the covariance accordingly. Let X := “X =17 and Y := “Y =17
denote the events that x or y respectively becomes informed in the current round. Let E(G)
denote the edge set of the random graph for the current round; let E := “{z,y} € E(G)”
denote the event that and y become neighbours in the current round. It is

Cov(X,Y) = P[XNY] — PX|P[Y] = PIX|P[Y | X] — P[X|P[Y] = P[X|(P[Y | X] — P[Y]).

We have

P[Y N —E] < PlY] P[Y]
P[-E] ~ P[-E] 1—a/n

PIY | X] < P[Y | =E] = P[Y]+O(1/n)

58 2. Runtime and Robustness of Information Spreading Algorithms

and hence
Con(X,Y) < PX|O(1/n) < %O(l/n).

Therefore the covariance conditions are fulfilled for the exponential growth and shrinking
conditions.

Next we estimate the probability py for an uninformed node to become informed in a
round starting with k& informed nodes. If an uninformed node has a neighbour, i.e. if it is
not isolated, then with probability k/(n — 1) it becomes informed. However, if it is isolated,
which according to Fact 2.5.8 is the case with probability e=® + O(1/n), the node does not
become informed in this round deterministically. Thus p, = (1 —e™® 4+ O(1/n))k/n. Hence
both, upper and lower, exponential growth conditions are fulfilled for an arbitrary 0 < f < 1
with k, = 1 — e * 4+ O(1/n). Recall that according to Remark 2.5.7, the O(1/n) term is
negligible. Theorem 2.5.4 therefore yields

E[Xn(17 fn)] = 1Og2—e—“(n) + O(l)
and that there are A;,a; > 0 such that for all r,n € N
PlIXn(1, fn) —logy_c-a(n)[= 7] < Ay exp(—anr).

Moreover, it yields that there is an f < f’ < 1 such that with probability 1 + O(1/n) at
most f'n nodes are informed at the end of round X, (1, fn).
Now, for the exponential shrinking conditions, we consider 1 — p, =1 — p,,_,. We have

n—u

(1= e+ O(1/n) = e+ (1 - e‘“)% +O(1/n).

1_pn—u:1_
n_

Hence the upper and lower exponential shrinking conditions are fulfilled with p,, = a+O(1/n)
(because e~@ + O(1/n) = e~ 2+O(/7)) for an arbitrary 0 < g < 1. Note that according to
Remark 2.5.7, the term O(1/n) is negligible. Theorem 2.5.6 therefore yields

1
ElXa(n — Lgn),m)] = * In(n) + O(1)
and that there are Ay, as > 0 such that for all r,n € N

P HXn(n — lgn],n) — éln(n) > r} < Ay exp(—anr).

Thus, considering the exponential growth phase and the exponential shrinking phase to-
gether, we obtain the claim. O

If the underlying graph is the complete graph on n nodes and each message transmis-
sion fails independently with probability e=® (which, up to an additive O(1/n) term, is the
probability that a specific node is isolated in an Erdgs-Rényi random graph G(n,a/n)), then
the expected runtime of Pull is log,_,—(n) + 1/aln(n) + O(1) (|34]). As we have seen, this
is the same as in the random evolving graph setting that we investigated. An analogous
observation was made for Push in [34].

2.5 Information Spreading on Random Evolving Graphs 59

2.5.4 PushéPull on Random Evolving Graphs

We prove the following theorem that provides the expected runtime of Pushé/Pull up to
a constant number of rounds as well as large deviation bounds where in each round the
underlying graph is a newly sampled Erdgs-Rényi random graph.

Theorem 2.5.11. Let a > 0 and assume that each round a newly sampled Erdds-Rényi
random graph G(n,a/n) is the underlying graph. Let = 2(1 —e™®) — (1 — e~ %)?/a. Then
for the runtime of Push&éPull, X,,, we have

1
E[X,] =log,,.(n) + . In(n) + O(1)
and there are constants A, > 0 such that for all r,n € N
P(X, — B[X,]|> r] < Aexp(—ar).

Before we prove Theorem 2.5.11, we introduce some notation.

Notation 2.5.12. Consider an uninformed node y at the beginning of a round that starts
with k = pn informed nodes; we will refer to this round as the current round. Let PH, denote
the event that y is pushed by an informed node in the current round. Analogously let PL,
denote the event that y pulls the piece of information in the current round from an informed
node. Further set PP, = PH, UPL,, i.e. PP, denotes the event that y is pushed or pulls the
piece of information in the current round. For j € {0,1,2,...,k} let INF,(j) denote the event
that y has exactly j informed neighbours x4, ...,x;. When we write INF,(j) this implicitly
defines x1,...,x;. Let x be an informed node; let PH,(x) denote the event that y is pushed
by x in the current round. Similarly, let PL,(x) denote the event that y pulls the information
from x in the current round. When an indezx is clear from the context, it may be omitted.

We will use Lemma 2.5.13 to prove Theorem 2.5.11; it quantifies the probability that an
uninformed node pulls the information in the current round conditioned on the event that
it gets also pushed by an informed node.

Lemma 2.5.13. Let a > 0 and assume that each round a newly sampled Erdds-Rényi random
graph G(n,a/n) is the underlying graph. Consider a round that starts with k informed nodes
and set j1:= k/n. Assume that the edges are not yet sampled. Let y be an uninformed node.
Then

1_ —a
P[PL, | PH,] = —

+ O(u) for p— 0.

In order to prove Lemma 2.5.13 we will use Lemma 2.5.14 that provides a closed form
for a certain sum.

Lemma 2.5.14. Letn € N, p € (0,1) with un € N and let a € RY. Then

() ey ey L e
i n n i+1 a(l — p) '

=0

60 2. Runtime and Robustness of Information Spreading Algorithms

Proof. It is
(1—§—1 (1—p)n—1 (a)i (1 g>(1—u)n—l—i 1
— i n n 1+ 1
(1-pn=1 (1= p)n —1)! a\ ay (1—p)n—1—i
-3) (1=3)

—~ (+ DI ((I—pn—-1-0) \n n

(I—p)n
=)

il

(1—p)n (1—p)n —n ani aN (1—p)n—i
1= ;P[XZZ]_ ; Z!(Eil_ﬁgzlilz)l(ﬁ> < _ﬁ>(|

Hence we arrive at

(1=p)n—1 — D — o a (I—pn—1—i n (1— %)(l—y)n
Z ((1 Mz) 1)(5) (1_E>(| z’i125<_ (1—p)n +(1—1;z)n>

=0
1—(1—2)0-mn
o al-p)

]

Proof of Lemma 2.5.13. We will omit y as an index in this proof, i.e. we will write PH
instead of PH,, etc. First we verify that for all j € {0,1,..., un}

P[PH | INF(5)] < jP[PH | INF(1)]. (2.5.1)
It is
P[PH | INF(j)] = P[PH(z1) U...UPH(z;) | INF(j)].
Hence, by applying the union bound,
PIPH [INF(5)] < jP[PH(z1) | INF(j)] = jP[PH(z1) [INF(1)] = jP[PH [INF(1)],
thus (2.5.1) holds. Next we prove that for all j € {1,2,...,un}

P[INF(j) | PH] _ .P[INF(5)]
PINF(L) [PH] = PIINF(1)] (2:5.2)

2.5 Information Spreading on Random Evolving Graphs 61

Using Bayes’ Theorem and (2.5.1) we obtain

PH | INF(j)] P[INF(5)] _ jP[PH | INF(1)] P[INF(5)]
P[PH] = P[PH] '

PI[INF(j) | PH] = Pl

Hence, by again applying Bayes’ Theorem, we obtain

PI[INF(1) | PH]P[INF(5)]
PI[INF(1)]

P[INF(7) | PH] < j
which implies (2.5.2). We have

P[INF(j)] (“]n)(%)](l - %)‘mij . (,un)! (E)jl (1 a>j+1

PINF(D)] () 2(1— 2t G —)l m \n n
. i—1 . i—1 .
T el () I o RS I
n n n 4! n 4! n

Hence, using (2.5.2), we can infer that for all j € {1,2,... un}

PI[INF(5) | PH] o al! ANAR 1
<pWr—(1-= = 77 fi 2.5.
P[INF(1) [PH] =¥ (j—l)!(n) Olu"") for p =0 (253)
In the following, O(u) refers to pu — 0. We prove
P[INF(1) | PH] =1+ O(p). (2.5.4)

Using (2.5.3) we get

P[INF(2) | PH] + P[INF(3) | PH] + - - - + P[INF(uun) | PH]

P[INF(1) | PH] = OWw).

Therefore
P[INF(2) | PH] + P[INF(3) | PH] + --- + P[INF(un) | PH] = P[INF(1) | PH] - O(p)
and thus
1 = P[INF(1) | PH] 4+ P[INF(2) | PH] + - - - 4+ P[INF(un) | PH] = P[INF(1) | PH] - (1 + O(n))
which implies (2.5.4). Using (2.5.4) and that P[PL | PHNINF(1)] = P[PL | INF(1)] we obtain
P[PL | PH] = P[PL | INF(1)] + O(u). (2.5.5)
Thus, to finish the proof, it suffices to show

1—e@

P[PL | INF(1)] = +O(p). (2.5.6)

For each j € {0,1,...,(1 — u)n — 1} let UNF(j) denote the event that y has exactly j unin-
formed neighbours in the current round. Note that at the beginning of the round there is a

62 2. Runtime and Robustness of Information Spreading Algorithms

fixed number of informed nodes, namely pn, and a fixed number of uninformed nodes, namely
(1 — p)n. In particular, as all edges are sampled independently, for any j € {0,1,...,(1 —
p)n—1}, UNF(j) and INF(1) are independent. Hence, as P[PL | INF(1)NUNF(5)] = 1/(j +1),

(1—p)n—1
PL | INF(1 P[UNF(y
PPLINFD) = 3 PN
_ i ((1 — p)n — 1) <a>j <1 a>(1ﬂ)n1j 1
N prt J n n j+1

Thus, using Lemma 2.5.14, we can infer

1—(1— 2)(1—u)n

P[PL | INF(1)] = o1 _”M)
Using Fact 2.3.3, this gives
PRLINF] = 2= 4 o),
(1= pa

Thus, using the series representation of the exponential function, we obtain

1—e@

P[PL | INF(1)] = +O(p)

which shows (2.5.6) and hence completes the proof. O

Proof of Theorem 2.5.11. We want to use the framework from [34]. In order to do this,
we consider a round of the information spreading process that starts with k& informed and
u = n — k uninformed nodes; we will refer to this round as the current round. Let p := k/n.
We can assume that at the start of the round, the edges of the Erdgs-Rényi random graph
G(n,a/n) are not yet sampled. Before the random graph is sampled, each uninformed node
has the same probability of getting informed, hence the information spreading process is
homogeneous. We start with showing that the covariance conditions are fulfilled. To do this,
consider two uninformed nodes x and y. As before, E denotes the event that x and y become
neighbours in the current round. We have

Cov(lpp,, 1pp,) = P[PP, NPP,] — P[PP,|P[PP,| = P[PP,](P[PP, | PP,] — P[PP,]).
It is

PIPP,N~E| _ P[PP,] _ P[P
P[-E] ~ P[-E] 1-a/n

P[PP, | PP,] < P[PP, | —E] = = P[PP,] + O(1/n).

Hence

COU(ﬂppz, ﬂppy) = P[sz] . O(l/n) (257)

2.5 Information Spreading on Random Evolving Graphs 63

From [34] it is known that

PPH,] < —=(1—e*+0O(1/n))

S|

and therefore

P[PP,] < PIPH,] + PIPL,] < (1— e+ O(1/n))~

n

k k
+(1+ O(l/n))ﬁ =2—-e"+ O(l/n))ﬁ
This, together with (2.5.7), yields

k
CO’U(]lppz, ﬂppy) = EO(l/n)

Hence the covariance conditions are fulfilled for the exponential growth and shrinking con-
ditions.

For the exponential growth phase, we have to estimate the success probability p, =
P[PP,] that an uninformed node y becomes informed in the current round that starts with
k informed nodes. In the following, we write PP,PH and PL instead of PP,, PH, and PL,
respectively. Note that PH and PL are not independent (as the edges are not yet sampled at
the beginning of the round). It is

P[PP] = P[PHUPL] = P[PH] + P[PL] — P[PH N PL]. (2.5.8)

To compute P[PP] we consider the three summands of (2.5.8) individually:
Term 1 P[PH]: From [34] it is known that

u(1— e (1 _]”2—(2(1)(1 _ e_“)) < P[PH] < u(1 — e~ + O(1/n)). (2.5.9)

Term 2 P[PL]: According to Fact 2.5.8, y is isolated with probability e~*+ O(1/n). Thus
PPPLl=(1—-¢e*+0(1/n))p. (2.5.10)
Term 3 P[PL N PH]: We have
PIPLNPH] = P[PL | PH]P[PH]. (2.5.11)
Thus, using Lemma 2.5.13 and (2.5.9) we obtain

(1 —e9)?

PIPLAPH] = u
a

+ O(u?) for p — 0.

Combining the three terms in (2.5.8), where asymptotic notation is with respect to u — 0,
we obtain

(1 —e)2

(1—e)2

PP = (2017 - + 00) = (20 -) 1+ 06

64 2. Runtime and Robustness of Information Spreading Algorithms

In particular, there is an a* > 0 such that

pr = P[PP] > (2(1 — e - M) k (1 - a*5> .

< a n + n

Hence there is a constant f > 0 such that the exponential growth conditions are fulfilled for
k=2(1-e"* —(1—e"")?/a. Thus Theorem 2.5.4 yields

E[X,(1, fn)] = log,.(n) + O(1)
and that there are constants A;, a; > 0 such that for all ,n € N
Pl Xn(1, fn) —log, ()= 7] < Arexp(—air).

Moreover, it yields that there is an f < f’ < 1 such that with probability 1 + O(1/n) at
most f'n nodes are informed at the end of round X, (1, fn).

Let g € (0,1) be an arbitrary constant. To complete the proof we show that 1/aln(n) +
O(1) is a lower bound for the number of rounds needed to inform all remaining nodes,
starting with n — |gn| informed nodes; then the claim follows as Pull provides a matching
upper bound for the exponential shrinking phase. Consider an uninformed node y. According
to Fact 2.5.8, y is isolated in the current round with probability e~ + O(1/n) = e~¢FO0/m),
If y is isolated, then it cannot be informed in the current round. Therefore

1—P[PP] > e+ 0O(1/n).

Thus the lower exponential shrinking conditions are fulfilled for p, = a + O(1/n) and arbi-
trary g € (0,1). Therefore Theorem 2.5.6 yields

1
E[X,(n—|gn|,n)] > Eln(n) +O(1)
and that there are Ay, an > 0 such that for all r,n € N

1
P|X,(n—|gn],n) < —In(n) —r| < Asexp(—azr).
a
Together with the upper bounds that we obtain by considering the exponential shrinking
phase of Pull, this completes the proof. n

Remark 2.5.15. [t is interesting that PushéPull does (unlike Push and Pull) behave dif-
ferently on random evolving graphs than on the complete graph with message transmission
success probability 1 — e~ (which is, up to an additive O(1/n) term, the probability that a
node is not isolated): The expected runtime in the letter case is only logs o.—a(n) + 1/(1 —
e +a)ln(n) + O) (/34]).

One reason for this differing behaviour is that, when using Push€& Pull where the under-
lying graph is in each round a newly sampled Erdds-Rényi random graph G(n,a/n), push
and pull operations get in each other’s way, i.e. it has a substantial impact that some nodes
get informed in the same round by a push as well as by a pull operation which makes one
of those operations useless. This is in contrast to the situation on the complete graph with

2.6 Outlook 65

message transmission success probability 1 —e~*: There, in the beginning of the information
spreading process, Push and Pull essentially do not get in each other’s way, i.e. only very few
nodes get informed by a push as well as by a pull operation. This is because in the complete
graph, each node has n — 1 neighbours while in the random evolving setting considered here,
the expected number of neighbours of a node is in each round a + O(1/n) and therefore here
it s much more likely that a relevant fraction of the edges is used by Push as well as by Pull.

The other reason is the behaviour of PushéPull in the last phase of the process: As
in the investigated setting both, Push and Pull, need logarithmic time for the exponential
shrinking phase, one might conjecture that in the Push&éPull setting Push as well as Pull
contribute substantially to the last phase. The reason why this is not the case, i.e. why only
Pull contributes substantially to the last phase, is the following: Consider an uninformed
node x in the last phase, i.e. if most nodes are informed already. In each round we can
first sample whether x is isolated which is the case with probability e~ + O(1/n). If = is
1solated, it cannot be informed in that round, neither by a push nor by a pull operation.
However, if x is not isolated it is very probable that it becomes informed by a pull attempt. In
particular, the case that it does become informed by a push operation but not simultaneously
also by a pull operation s very unlikely. So the problem essentially is that both, pull and
push attempts, have to clear the same hurdle, i.e. wait for a round where x is not isolated.
But after taking this hurdle, it is extremely unlikely that a pull operation does not succeed
while a push operation does succeed. In contrast to this, on the complete graph with message
transmaission success probability 1 — e~®, both, Push and Pull, contribute essentially to the
last phase; this is due to the fact that the message transmissions fail independently of each
other.

2.6 Outlook

Many subjects that are related to the problems that we investigated in this chapter constitute
interesting topics for future research. For example, it is desirable to obtain resilience results
for more graph classes than the investigated expander graphs. Also in the setting with random
evolving graphs there are various directions for future research: First, one could extend the
results to a broader range of p (though, e.g. according to [34], p = a/n is the most interesting
regime). Second, it is an interesting task to obtain results for the runtimes of Push, Pull
and PushéPull also for the edge-Markovian setting introduced in [21] (cf. the paragraph
“Evolving Graphs” in Subsection 2.2.2): For Push, in [21], rather loose bounds are shown
which should be sharpened and for Pull and Pushé Pull to our best knowledge no results at
all are yet proven in the edge-Markovian setting.

Chapter 3

On a Graph Theoretical Model for
Opinion Spreading

3.1 Introduction

How opinions are formed is of great interest. It affects which products are popular, how
elections turn out and countless more aspects of our lives. The internet can be considered
as a catalyst for the spreading of opinions. One step towards understanding how opinions
spread within social groups was made by Rogers [94]: According to him, new ideas spread
starting from so-called early adopters which have huge influence on others. Motivated by
this assumption, in [5], Alon et al. introduced a model that describes how opinions spread
in a social network (which is modelled by a graph). For different kinds of adversaries that
try to convince the majority of a falsehood (blue), they investigate under which conditions
the truth (red) wins despite the adversary’s efforts. Let G = (G,,)neny = (Vi En))nen denote
a sequence of graphs with |V,,|= n. G is called robust against a certain adversary if with
probability 14 o(1) (as n — 00) at the end of the dissemination process the majority of the
nodes in V,, will believe the truth (i.e. will become red) despite the adversary’s efforts.

If a graph or a sequence of graphs possesses a property, a natural question is: “How
strongly does it posses the property?” This question is formalised by the concept of local
resilience, compare for example the article by Sudakov and Vu (|99]). Local resilience of a
graph with respect to a certain property measures, up to how many edges one has to be
allowed to delete at each node to be able to destroy the property. If it is a non-monotonous
property, also adding edges can be taken under consideration. The concept of local resilience
easily generalises to sequences of graphs. Thus, if a graph is robust against a certain kind
of adversary, this motivates to ask how strongly is it robust against that adversary or, more
specifically, what is the local resilience of the graph with respect to being robust against that
adversary? This can be of practical relevance, too. For example, an adversary may be able
to change a graph to some extent by deleting edges, e.g. by filtering information someone
obtains.

Another interesting question comes up if we consider the problem from the adversary’s
perspective. Is it NP-hard to determine an optimal solution? We answer this affirmatively
even for a seemingly simpler special case.

68 3. On a Graph Theoretical Model for Opinion Spreading

3.2 The Model and Related Results

In the following, we describe the model that we will use. It was introduced in [5]. For a graph
G = (V, E), at the beginning of the dissemination process, each node v € V' can either have
an opinion or have no opinion; at the end, every node has an opinion. There are two opinions,
namely red (which is considered to be true) and blue (which is considered to be false). A
node that has an opinion keeps this opinion forever. Let 0 < g < 1/2. In the beginning
only u|V| so called experts & C V have an opinion. Now the opinions are disseminated as
follows: Every non-expert takes the opinion that the majority of its expert neighbours has,
ties are broken independently and uniformly at random, including the case when a node has
no expert neighbours. In particular, after one round, every node has an opinion.

We will investigate the following two kinds of adversaries introduced in [5] which have
influence on the expert set £. Let 0 < § < 1/2. The weak adversary is allowed to choose €.
Then every node from & turns red with probability 1/2 + ¢ and blue otherwise. The strong
adversary can choose £ as well. However, additionally he may assign the colours to the
experts in £ as long as he respects the ratio of red to blue experts to be (1/2+9)/(1/2 —9).
A sequence of graphs G = (G,,)nen (Where G, has n nodes) is called robust against a certain
kind of adversary if, with probability 1+ o(1) (as n — o0), the majority of the nodes of G,
(i.e. more than n/2 nodes) are red at the end of the spreading process despite the adversary’s
efforts.

In [5], several results for this model are proven. For the precise statements we refer to
their article, here we just summarise which kinds of results they provide:

e [f the maximum degree of a sufficiently large graph is suitably bounded from above,
then the probability that the weak adversary wins is upper bounded close to zero.

e In graphs with good expansion properties, the strong adversary loses.

e If G is a sequence of Erdds-Rényi random graphs, i.e. G,, = G(n,p(n)), and if the ex-
pected degree is suitably lower bounded, then G is robust against the strong adversary.

e An alternative, iterative dissemination process is introduced and briefly investigated.

Notation 3.2.1. Consider a sequence of graphs G = (Gp)nen = ((Va, En))nen where |V,|=
n. As in Chapter 2, we are interested in large values of n, hence, as before, if not stated
differently, asymptotic notation is with respect to n — oo and in particular, “whp” (which
is short for “with high probability”) means with probability 1+ o(1) (as n — oc). When we
consider a probability p(n) that depends on n, we sometimes write p instead of p(n) if n
is clear from the context. We consider opinion spreading according to the described model:
We will write £ = ™ C V,, for the set of experts and N' = N™ = V,\EM for the set
of non-experts; we use R = R™ C V, to denote the (random) set of nodes that are red
when the dissemination process has finished and we use B = B™ = V,\R™ to denote the
(random) set of nodes that are blue at the end of the process. For v € V, let R(v) and
B(v) denote the events that v € R and v € B respectively. For simplicity of exposition
we ignore rounding issues if they do not affect the result. For a subset A C R that has no
upper bound we set sup A = +o00. With u and 6 we always refer to quantities p,0 € (0,1/2)
as in the model definition. As in Chapter 2, we use the following notation for the basic

3.3 Local Resilience 69

graph theoretical terms. For a graph G = (V,E) and v € V let N(v) = Ng(v) denote the
neighbourhood of v; let d(v) = dg(v) = |Ng(v)| denote the degree of v. For U W C V
with UNW = 0 let E(UW) = Eqg(U,W) C E denote the set of edges with one node in
U and one node in W and set e(UW) = eq(U,W) = |Eq(U,W)|. Consider two graphs
H = (V,E) and H = (V,E) defined on the same node set V and a node v € V; define
dy 1 (0) = [Nu(0) ANg (0)[= |(Nu(0)\Ng (0)) U (Ng (0)\Ng (v))].

3.3 Local Resilience

In [99], Sudakov and Vu initiated a systematic study of graph resilience. Since then, the
concept received a lot of attention. Loosely speaking, the local resilience of a graph with
respect to a property of graphs is the number (or fraction) of edges that an adversary can be
allowed to delete at each node without being able to destroy the property. In the following,
we provide the definition of local resilience that we will use; note that it slightly differs from
the definition provided in [99] where at each node the absolute number of edges that may
be deleted is considered. In contrast, we, like e.g. also Dellamonica et al. ([29]), consider the
fraction of edges that can be deleted. However, as we consider Erdés-Rényi random graphs,
due to the Chernoff bounds, for the considered range of p, the maximum degree is close
to the minimum degree. Hence in the present setting, it does not make a crucial difference
which of both definitions is used.

Definition 3.3.1 (Local resilience of a graph). Let G = (V, E) be a graph without isolated
nodes and P a property of graphs. Then the local resilience r = rp(G) of G with respect to
P is defined as

r = sup {q | 3G = (V,E),ECE :YoeV:1- d6) ¢ and P(G) does not hold} :

q€0,1] delv)

Definition 3.3.2 generalises the concept of local resilience to sequences of Erdés-Rényi
random graphs; cf. [99].

Definition 3.3.2 (Local resilience of Erdés-Rényi random graphs). Let p : N — (0, 1] with
p=w(ln(n)/n), let G = (G,)nen be a sequence of graphs where, for n € N, G, = G(n,p(n))
1s an FErdds-Rényi random graph and let P be a property of graphs. The local resilience
r* =1r5(G) of G with respect to P is defined as

r* = sup {q | whp rp(Gn) > q}.
q€(0,1]

In [99] it is noted that for non-monotonous properties also edge insertions should be
considered, cf. Definitions 1.3 and 2.1 in [99]. A notion of local resilience with deletions
and insertions is given in Definition 3.3.3; Definition 3.3.4 generalises the concept of local
resilience with deletions and insertions to sequences of Erdds-Rényi random graphs. Defi-
nitions 3.3.3 and 3.3.4 are very similar to Definitions 1.3 and 2.1 in [99] respectively, with
the slight difference that here we consider relative fractions of the edges instead of absolute
numbers. However, as mentioned above, in the settings that we will consider, the maximum
and the minimum degree are close together, hence it does not make a crucial difference.

70 3. On a Graph Theoretical Model for Opinion Spreading

Definition 3.3.3 (Local resilience with deletions and insertions). Consider a graph G =
(V, E) without isolated nodes and let P be a property of graphs. Then the local resilience
7 = 7p(G) with deletions and insertions of G with respect to P is defined as

S 5 N] dG,é(U) ~
Fi=supiq |G =(V,E):YveV: < q and P(G) does not hold ¢ .
4>0 dg(v)

Definition 3.3.4 (Local resilience with deletions and insertions of Erdgs-Rényi random
graphs). Let p : N — (0,1] with p = w(In(n)/n), let G = (Gp)nen be a sequence of graphs
where, forn € N, G, = G(n,p(n)) is an Erdds-Rényi random graph and let P be a property
of graphs. The local resilience with deletions and insertions 7 = 75(G) of G with respect to

P is defined as
7 = sup{q | whp 7p(Gn) = ¢}
q=>0
Remark 3.3.5. Note that, although there we did not explicitly use the notion of local re-

silience, also Theorems 2.4.8 and 2.4.9 are results regarding robustness in the sense of local
resilience.

3.4 Results

Theorem 3.4.1 states that a sufficiently large minimum degree guarantees robustness against
the weak adversary. Theorem 3.4.2 assures that Theorem 3.4.1 is tight for p < 1/(3 — 29).
Note that this covers the relevant range of p1 as up to more than one third of the nodes can
be experts which constitutes a very large fraction.

Theorem 3.4.1. Let f : N — RJ with f = w(y/n) and let G = (Gp)nen = (Vi, En))nen
be a sequence of graphs with |V,|= n. For each n € N let m = m(n) denote the minimum
degree of G,, and assume that m(n) > n(1+p—20p)/2+ f(n). Then G is robust against the
weak adversary.

Theorem 3.4.2. Let 0 < p < 1/(3 — 260). There is a constant p* > 0 such that for any
n € N a graph G with n nodes and minimum degree m > n(1 + p — 25u)/2 + O(1) exists
such that there is a strategy for the weak adversary such that with probability at least p* more
than n/2 nodes are blue at the end of the spreading process.

Theorem 3.4.3 provides a lower bound for the local resilience of Erd&s-Rényi random
graphs with respect to robustness against the strong adversary. Theorem 3.4.4 shows that
this bound is tight.

Theorem 3.4.3. Let p: N — (0,1] with p = w(In(n)/n). Let G = (Gp)nen be a sequence of
graphs where G,, is an Erdds-Rényi random graph, G, = G(n,p(n)). The local resilience of
G with respect to robustness against the strong adversary is at least 2(1 — p+25p)d /(14 26).

Note that it always holds 2(1 — pu + 20p)0/(1 + 20) > 2ud.

3.5 Proofs 71

Theorem 3.4.4. Let p: N — (0, 1] with p = w(ln(n)/n). Let G = (Gp)nen be a sequence of
graphs where G, is an Erdds-Rényi random graph, G, = G(n,p(n)). Suppose that for each
n € N the strong adversary is allowed to delete up to a (14 o(1))2(1 — p + 20u)0/(1 + 29)
fraction of the edges at each node of G,. Then there is a strategy for the strong adversary
such that he wins whp. If G, is the complete graph on n nodes, then there is a strategy such
that he wins deterministically.

Theorem 3.4.5 considers the setting where also edge insertions are allowed.

Theorem 3.4.5. Let p: N — (0,1] with p = w(In(n)/n). Let G = (Gp)nen be a sequence of
graphs where G,, is an Erddés-Rényi random graph, G,, = G(n,p(n)). Then the local resilience
with deletions and insertions of G with respect to robustness against the strong adversary is

1-25 . . L= p(n)
(1= p+ 20m) (6+ o4 it (maX{O,Q(S_W})>'

Theorem 3.4.6 considers the problem from the adversary’s perspective. Even if we only

consider graphs that are unions of disjoint cliques, the problem to find an optimal solution
is NP-hard.

Theorem 3.4.6. Let G = (V, E) be a graph. Let us denote the problem to choose the red
and blue experts ENR,ENB CV such that the expected number of red nodes at the end of
the spreading process, E[|R|], is minimised as the “strong adversary problem” (SAP). Then
SAP is NP-hard even if we only consider graphs that are unions of disjoint cliques.

3.5 Proofs

We will need the following Chernoff bounds which follow immediately from, e.g., [67, Thm.
2.1].

Theorem 3.5.1 (Chernoff Bounds). Let X, ..., X, be independent random variables. For
i € {l,...,n} assume that 0 < X; < 1. Let X = > .., Xi and let p = E[X] =
Zlgign E[X;]. Then, for any e >0,

2

PIX > (1+¢e)u] <exp <—216u) and

PIX < (1—) < exp (—§u) |

We will also use Theorem 3.5.2 that, under a mild assumption, states that the probability
that a binomial random variable is larger than its expectation is larger than 1/4.

Theorem 3.5.2 ([61]). Letn € N and let p € (0,1) with p > 1/n. Let X ~ Bin(n,p). Then
P[X > np|] > 1/4.

72 3. On a Graph Theoretical Model for Opinion Spreading

Proof of Theorem 3.4.1. Let € > 0 and define

_26)2
c:=(1/2— 5)% and a=a(n,ce) = 1ln(nHE) _1te In(n).

1-26

Set

Nigw =N = fv e N | INw)NE|<a} and Nugn = N2 = NN

igh *

and let n; := [Nw| and ny, := [Npign|. We will prove the claim by showing the following two
sub-claims.

(I) Whp all nodes from Ny, become red.

(IT) If all nodes from Ny, become red, then, even if all nodes from N, become blue, still
whp! the majority of all nodes turns red.

We start with (I). We have

P| () R()|=1-P[3v € Ny : B()].

’UENhigh

Write Npigh = {x1, %2, ..., &y, }. Let i € {1,2,...,n,} and set a; := |N(z;) NE], in particular
we have a; > a. Let X; := |[N(z;) NENB|. It is X; ~ Bin(a;,1/2 —) and hence E[X;] =
(1/2 — §)a;. Using the union bound we obtain

Pl N R >1—ZPX >az/2—1—§:P{ (13525)(1/2—5)4.

UENhigh
Hence Theorem 3.5.1 yields
26)2

1725

P ﬂ R(v) >1—Zexp<

WGth’gh

—55—(1/2—0)a)21—nexp(—ca):1—n_5n:>>oo L.

We continue with (II), i.e. we show that it suffices if all nodes from Ny, turn red. In
order to do this we will show that

1—p+26
ny < #n — f(n) + O(V/n). (3.5.1)
From Theorem 3.5.1, we get that for any fo : N — R" with fo = w(y/n) whp

IENB|< (1/2 — 8 + fo(n). (3.5.2)

!The remaining randomness is due to the fact that the experts take their opinions randomly.

3.5 Proofs 73

Therefore, if we prove (3.5.1), the claim follows by adding the upper bounds for n; and |ENB|
from (3.5.1) and (3.5.2) respectively. To prove (3.5.1) let

ko=|{(u,v) € E XN |v¢ N(u}

denote the number of edges that are missing between £ and N. By definition, for every node
v € Njoy there are at least un — a nodes w € £ such that w ¢ N(v). Thus we can infer

k
un —a’

n(un —a) <k or equivalently n; <

Hence, to prove (3.5.1), it suffices to show

k 1—p+20p
< n
un —a 2

— f(n) + O(/n). (3.5.3)

In order to do this we first bound k. It is
k= pn(l—pn—el&E,N). (3.5.4)

We have
e(E,N) > (m — un)un.

This, together with (3.5.4), yields
E<pn(l—p)n—(m—pun)un = un(n —m).
Using this, we can show (3.5.3); we have

k <,tm(n—m)_ n—m
pn—a ~ un—a 1—a/(un)

=n—m+ O(In(n)).

Thus, as m > n(1 4+ p — 20u)/2 + f(n), we arrive at

k <n_1+,u—2(5,un
un —a — 2

1—p+20p
—2 n

~ [(n) + O(in(n)) = ~ f(n) + O(in(n))

which shows (3.5.3) and thus the claim. O

Proof of Theorem 3.4.2. Fix n € N. We define a graph G = (V, E) with |V|= n as
follows. Let V' be partitioned into two disjoint subsets of sizes un and (1 — p)n respectively.
In slight abuse of notation we denote these subsets by £ and N; ie. V = £ UN with
I€|= pn, |IN|= (1 — p)n. Both, £ and N, form cliques. Fix v* € &, set £ := E\{v*}. Let
c:=1/2—0p/(1 —). Fix a subset N1 C N with |[NV;|= ¢(n — pn) and denote Ny = N\N;.
For all u € £, v € N and w € Ny we set

u € N(v), v* € N(v), u¢ N(w) and v* € N(w).

We claim that the minimum degree of G is n(1 + pu — 26u)/2 — 1; we also claim that the
probability that the weak adversary wins if he chooses £ to be the experts can be bounded

74 3. On a Graph Theoretical Model for Opinion Spreading

from below by a positive constant. In order to verify these claims, we first compute the
degrees; let u, v, w be as above. We obtain

dv*)=n-—1, d(u) =pun — 14 c¢(1 — p)n, dv)=n—-1 and d(w)=(1-p)n.
It is

diu) =pn—1+c(1—p)n

1—p 1— 1 1
< - — - ft —_ —_ — .
,un+n(5 (5u> —n<u~|— > 5u> n<2+2,u 5#)

Thus, as © < 1/(3 — 26), a direct calculation yields

d(u) < (1 —p)n.
Therefore the minimum degree m of G is

1+u—26un

— 1.
2

m=pun+c(l—pun—-1=

Hence we are left to show that with positive n-independent probability more than n /2 nodes
are blue at the end of the dissemination process. Let C' denote the event that |[ENB|> (1/2—
d)(un — 1). Using Theorem 3.5.2, as |E N B|~ Bin(un — 1,1/2 — §), we obtain

P[B(v*) N C] = P[B(v")]P[C] > (1/2 — §)/4.

Thus it suffices to show that conditioned on B(v*) N C' more than n/2 nodes are blue at the
end of the dissemination process. Note that B(v*) implies that for all w € N5 we have B(w).
Therefore, conditioned on B(v*) N C, we have

|B|> |Nao]4+1 4+ (1/2=0)(un — 1) > (1 —¢)(n — pun) + (1/2 — §)un = n/2.

Proof of Theorem 3.4.3. We write G,, = (V},, E,,). By assumption, we know that p =
w(In(n)/n). Thus, using Theorem 3.5.1 and the union bound, as for all v € V}, it is d(v) ~
Bin(n — 1, p), we obtain that whp for all v € V,

d(v) = (14 o(1))np. (3.5.5)
Next we show that whp for all but o(n) nodes v € N’ = N'™
IN(w)NENB|=(1+0(1))(1/2 — 6)unp. (3.5.6)

First consider the case that the blue experts B = B™ and the red experts R = R™ are
chosen uniformly at random; we will relate this to the adversarial case later. As we assume
B and R to be chosen uniformly at random, we can assume that B and R are chosen before
the edges are sampled; hence, for v € N, it is |[N(v) N E N B|~ Bin((1/2 — §)un,p). As
p = w(ln(n)/n), Theorem 3.5.1 yields that there is a function g : N — RT with g = w(1)

3.5 Proofs 75

such that for any v € N with probability at least 1 — e~9(™ Equation (3.5.6) holds.? Let
Y denote the number of nodes v € N for which (3.5.6) does not hold. Note that ¥ can be
bounded from above by a binomial random variable Bin((1 — u)n, e 9). Set

Recall that for k,l € N,k <

Therefore

n

P[Y > h(n)n| < (h(n)n> exp (— g(n)h(n)n) < (h(en)>h(”)” exp (- g(n)n)
— exp <(h(n) ~In(h(n))h(n) — g<n)) n> .

As In(h(n))h(n) = o(1) we can infer

P[Y > h(n)n] = e *™,

Thus we have shown that if B and R are chosen uniformly at random, then with probability
1 — e=®™ for all but h(n)n = o(n) nodes v € N Equation (3.5.6) holds. As every node is
either a blue expert, a red expert or no expert, there are at most 3" possibilities how R
and B can be set. Therefore we obtain that even if R and B are chosen adversarially, with
probability 1 — 37e™“(= 1 4 o(1) for all but o(n) nodes v € A Equation (3.5.6) holds.
A similar approach is applied in [5] to prove that G = G(n,p) is robust against the strong
adversary for a suitable range of p. Analogously we can infer that whp for all but o(n) nodes

veN
IN(v)NENR|=(1+0(1))(1/2 4 6)unp. (3.5.7)

Note that the strong adversary loses, i.e. the majority of all nodes turns red, if less than
n(1— p+20u)/2 non-experts become blue. Equations (3.5.6) and (3.5.7) imply that whp for
all but o(n) nodes v € N the following holds: A necessary condition for v becoming blue is
that the adversary deletes (1 + o(1))20unp edges between v and the red experts. Therefore,
in total, whp, the adversary must delete

1 —p+20p

1+ o(1)—

n-26pnp = (1 +o(1))(1 — pu+ 26u)dun’p (3.5.8)
edges between the red experts and the non-experts. In particular, if that many edges are
deleted, as there are (1/2 + §)un red experts, there is a red expert v* that loses at least

(1 — p+20p)6punp

(1 o) s o = (1+o(D)

(1 — p+26p)énp
/2496

2This is equivalent to the existence of a function h : N — R* with & = o(1) such that with probability
1 — h(n) Equation (3.5.6) holds; however, the used form will slightly simplify the calculation.

76 3. On a Graph Theoretical Model for Opinion Spreading

of its edges. This, together with (3.5.5), implies that then v* whp loses a

(1 —p+26p)onp

2(1 — p+20p)6
/2t omp Lt

(1+e(D) 1+20

fraction of its edges which shows the claim. O

The following proof could also have been merged with the proof of Theorem 3.4.3 without
too many alterations, thereby saving some calculations; however, in order to obtain a clearer
structure, we present it independently.

Proof of Theorem 3.4.4. We show that if the adversary uses the following randomised
strategy, then he does not delete too many edges and, whp, wins.

1. Choose three disjoint sets of sizes

1—p+20p
——n

(1/2 4+ 6)un, (1/2—=¢6)un and 5

+1

uniformly at random, in slight abuse of notation we call these sets R NE, BN E and
N5 respectively. RN E are the red experts, BN E are the blue experts and Nz are the
non-experts that the adversary wants to become blue. Note that if all nodes from Np
turn blue, then the adversary wins.

2. For a suitable h = o(1) delete each edge e between N and R N € independently with
probability (14 h(n))46/(1 + 2J) unless e cannot be deleted because at the respective
nodes already too many edges have been deleted; let us refer to the latter case as a
failed deletion; we will show that whp there are no failed deletions. We will specify h
in the remainder of the proof.

To prove that this strategy fulfils the requirements, we show that whp all nodes from Np
become blue. We write G, = (V,,, E,,). It is p = w(In(n)/n), hence by Theorem 3.5.1 and by
applying the union bound we obtain that whp for all v € V,

d(v) = (14 o(1))np (3.5.9)
and that, before the edges are deleted,
INW)NRNE|—|N(w)NBNE|= (14 0(1))25unp (3.5.10)

and that whp for all v € Np

(1+o(1)(1+ h(n)) (1/2+6)unp = (1 4+ 0(1))(1 + h(n))25unp (3.5.11)

1+26
edges between v and R N & are deleted. Thus from (3.5.10) and (3.5.11) we can infer that
h = o(1) can be chosen such that after the deletions whp all nodes in Az have more blue
than red expert neighbours and therefore become blue themselves. Hence we are left to show
that whp the adversary did not try to delete too many edges, i.e. that whp there are no

3.5 Proofs 77

failed edge deletions. Using Theorem 3.5.1 and the union bound we obtain that whp each
red expert has lost

46 1—p+26p
1420 2
edges. Therefore, using (3.5.9), whp each red expert has lost a
26(1 — p+26p)

1+26

fraction of its edges. Because of (3.5.9) and (3.5.11) whp each node from ANy has lost a
(14 0(1))26u fraction of its edges. As

20(1 — p+25p)
1425

(14 0(1)) np = (1+o(1))

(140(1))

20(1 — pu+25p)
1426 ’

this shows that whp there have been no failed edge deletions.

For the complete graph on n nodes the strategy from above can be slightly modified such
that the adversary wins deterministically: Instead of deleting edges randomly, from each
node in Np he deletes 20un + 1 edges to nodes in R N & such that each node in R N € loses
the same number of edges (up to a difference of at most one edge). Then each node from
N3p becomes blue deterministically and the adversary has not deleted too many edges. The
same approach can be used to obtain a deterministic strategy for the adversary in the setting
with Erdds-Rényi random graphs; however, there, the adversary still wins only whp and not
deterministically due to the randomness inherent to the graph sampling. O]

200 <

Proof of Theorem 3.4.5. For better readability, in this proof we will write “almost all”
instead of “all but o(n)”. We start with the lower bound for the local resilience with deletions
and insertions. From (3.5.6) and (3.5.7) we know that whp almost all non-experts v € N =
N® have (1 + o(1))26upn more red than blue expert neighbours. We say that an edge
is changed at a node v if it is either deleted or inserted at v. Thus, whp, for almost all
non-experts v € N a necessary condition for v to become blue is that (1 + o(1))2d0upn
edges are changed at v. According to (3.5.5), whp, every node has degree (1 + o(1))np.
Hence, in the best case (from the adversary’s perspective) the changes are distributed on
the experts as uniformly as possible; i.e. ideally at each expert the same number of changes
is made. However, this may not be possible: While the respective deletions can always be
made, it might be the case that the adversary cannot insert so many edges as already too
many edges are present; as according to (3.5.6) whp almost all non-experts v € N have
(14 o(1))(1/2 — d)upn blue expert neighbours and because there are (1/2 — d)un blue
experts in total, at most (1/2 —d)u(1 — p+ o(p))n edges can be inserted between v and the
blue experts. It is optimal for the adversary to distribute the changes among all experts as
uniformly as possible; in particular, whp, for almost all non-experts v € N that are supposed
to become blue, the adversary inserts

min {(1 +0(1)) G _ 5) 25ppn., (% - 5) il —p+ o(p))n}

= (14 0(1)) (% — 5> pnmin{20p,1 —p+ o(p)}

78 3. On a Graph Theoretical Model for Opinion Spreading

edges between v and the blue experts and consequently deletes
1
(14 0(1))26pupn — (1 + o(1)) (5 - (5) pnmin{20p,1 —p+o(p)}

= (1 +o(1)) <2(5upn - (% - 5) pnmin{26p, 1 — p})

edges between v and the red experts. Note that the adversary loses if less than n(1—pu+2du)/2
non-experts become blue. Thus, whp, a necessary condition for the adversary to win is that
there is a red expert v* € £ N'R that loses at least

1—p+ 2(5un25ppn — (1/2 = §)punmin{26p, 1 — p}

(1+0(1)) 2 (1/240)un

(14 o(1)) 1—p+ 25un(1/2 +6)20upn + (1/2 — 0)25upn — (1/2 — §)pn min{2dp, 1 — p}
B 2 (1/2+6)un

0+ dmwn (25]9 + ;—3‘;(2@ ~ min{26p, 1 — p}))

=(1+ 0(1))@71 (25}9 + :—;g max{0,2p — (1 — p)})

edges. Therefore, as whp every node has degree (1 4 o(1))np, whp v* loses at least a

(1+ 0(1))M (25 + 1-2 max {()’ 25 — ﬂ})

2 1420 P
(1 —p+26u)(1 —20) 1—p
= (1 1 1— 201)0 0,20 — ——
(o)) (1= 25+ =22 s fo, 05— 1
fraction of its edges. Thus the local resilience with deletions and insertions is at least
1—-20.. . 1 —p(n)
(1—p+26p) <5+ WY hrrggolf (maX{O,Q(S—W (3.5.12)

as claimed. By adapting the adversary’s strategies from the proof of Theorem 3.4.4 canon-
ically, i.e. by distributing the changes as uniformly as possible to all experts, it is straight-
forward that (3.5.12) is also an upper bound for the local resilience with deletions and
insertions. Note that unlike in the setting of Theorem 3.4.4, in the present setting, with the
adapted strategies, we cannot infer that whp more than n/2 nodes of G,, turn blue, but we
can infer that this holds for a suitable subsequence of G. O

Proof of Theorem 3.4.6. Consider the subset sum problem (SUBS) that is NP-hard; it is
defined as follows.
Input: A finite set A = {my,my...,m,} C N and a natural number K € N with K <

Zlgign my.
Output: A subset B C A such that

m:glcig{Znﬂ ZmZK},

meB meC meC

3.6 Outlook 79

i.e. a subset of A that sums up to at least K but such that the sum is as close to K as
possible. We will reduce (SUBS) to (SAP). To do this, let {my,ma,...,m,} CN, K € N be
an instance of (SUBS). We construct a (SAP) instance as follows: We define the respective
graph as the union of disjoint cliques; in particular, there are K/2 cliques of size 2(m; +
ma+---+m,) and n cliques Hy, ..., H, of sizes my, ..., m, respectively. Further we specify
that the strong adversary has to choose K nodes as red experts and K/2 nodes as blue
experts. By construction, each optimal solution for this instance of (SAP) has the following
two properties.

e In each of the K /2 large cliques there is exactly one blue and no red expert. In partic-
ular, all red experts are in the smaller cliques.

e The red experts are distributed on the n smaller cliques such that the sum of the sizes
of those smaller cliques which contain at least one red node is minimal.

Thus, if we assume that we have such an optimal solution for the constructed instance of
(SAP), then the following solution for the original (SUBS) instance is optimal: Choose B C A
such that for i € {1,...,n} we have m; € B if and only if H; contains at least one red expert
in the optimal (SAP) solution. O

3.6 Outlook

One direction for future research is to prove local resilience results also for further graph
classes like, e.g., graphs with sufficiently good expansion properties. Another possible direc-
tion is to investigate models where the dissemination has not finished after one round but
proceeds iteratively over several rounds. Such an iterative model is already briefly considered
in [5]. Also many other generalisations are conceivable. For example, it would be interesting
to consider a setting where some experts are more influential than others; this could be re-
alised by assigning weights to the experts (e.g. according to some probability distribution)
and then, when counting the expert neighbours, each expert contributes proportional to its
weight. Moreover, the concept of “robustness against a certain adversary” could be gener-
alised to “a-robustness against a certain adversary”’, where a-robustness means that, whp,
an « fraction of all nodes will be red at the end of the dissemination process.

Chapter 4

Vehicle Routing with Drones

4.1 Introduction

Drones for deliveries in the logistics sector — what seemed like science fiction ten years ago
now starts to become reality. Deutsche Post’s Paketkopter!, Amazon’s project PrimeAir?
and Mercedes’ Vision Van? are only few examples of global companies doing research on how
to use drones for package delivery. For example, Mercedes’ Vision Van combines the use of
a truck with the use of drones where the drones are supposed to be utilised for the so-called
last mile delivery. This seems promising as the last mile often is the bottleneck that avoids
faster delivery when using a truck only.

This motivates the following optimisation problem: Suppose that you have a fleet consist-
ing of two types of vehicles, namely trucks and drones, to deliver packages to given destina-
tions. Drones and trucks may operate according to different metrics. Drones can deliver one
package at a time and afterwards have to return to a truck and charge before they can deliver
another package. Now the task is to assign a tour to each truck and drone through suitable
package destinations such that the packages are delivered as fast as possible. There are sev-
eral possibilities to make “as fast as possible” precise. For example, one possible objective is
to minimise the completion time; another objective is to minimise the average delivery time,
i.e. the average time a customer has to wait for his delivery. An interesting aspect of this
problem is that it combines different core problems of combinatorial optimisation. On the
one hand, there are tours that tendentiously should be short which relates to the Travelling
Salesman Problem (TSP); indeed, for the special case with one truck and without drones, it
is the TSP. On the other hand, scheduling aspects are relevant since often a vehicle has to
wait for another vehicle if they are supposed to travel together.

The remainder of this chapter is organised as follows. We provide a summary of the
existing literature in Section 4.2. Afterwards, in Section 4.3, we first contour the vehicle
routing with drones (VRD) model less formally to illustrate the core ideas. Then, in Sec-
tion 4.4, we provide a precise and formal definition of the model; due to the synchronicity
constraints inherent to the problem, this contains some subtleties; moreover, we prove an

LCf. dpdhl.com/de/presse/specials/paketkopter (Retrieval date: 12th April 2018).
2Cf. amazon.com/Amazon-Prime-Air/b?node=8037720011 (Retrieval date: 12th April 2018).
3Cf. daimler.com/innovation/specials/vision-van/ (Retrieval date: 12th April 2018).

dpdhl.com/de/presse/specials/paketkopter
amazon.com/Amazon-Prime-Air/b?node=8037720011
daimler.com/innovation/specials/vision-van/

82 4. Vehicle Routing with Drones

equivalent characterisation of the feasibility of a solution. In Section 4.5, we provide a short
introduction to local search algorithms in general. Afterwards, in Subsection 4.6.1, we intro-
duce a local search algorithm to solve the VRD problem and, in Subsection 4.6.2, we look
at computational results.

I worked on this subject together with Elisabeth Kraus. She will publish different but
thematically related results in her doctoral thesis which were also obtained during this joint
work; portions of this chapter are part of our article ([24]).

Contribution The VRD problem (up to some rather small differences) was already in-
troduced in [107]. While the description in [107] is relatively clear and intuitive, it is not
very formal. We close this gap and provide a precise and formal definition. Due to the syn-
chronicity constraints inherent to the problem this contains some subtleties and is slightly
laborious. This is all the more the case as in contrast to the setting in [107], we allow drones
to travel on different trucks during their tours which complicates a formal definition of the
synchronicity constraints. Afterwards we prove an alternative characterisation of the feasi-
bility of a solution that relates the feasibility to the absence of cycles in a suitably defined
multidigraph that fulfil a certain property. We also provide a simple local search algorithm
to solve the VRD problem; empirical results show that it runs very fast and outperforms a
canonical Greedy algorithm. Its capabilities and limitations are discussed in the paragraph

“Discussion of VRD-LOC” in Subsection 4.6.1.

4.2 Related Literature

The problem we are dealing with is located in the field of vehicle routing problems. The
common idea of vehicle routing problems is that there is a fleet of vehicles that has to deliver
a set of packages to certain positions as fast as possible. Usually there are also some kind
of constraints for the vehicles, e.g. each vehicle cannot deliver more than a fixed number of
packages; also innumerable other variants of vehicle routing problems are considered in the
literature. For literature in the context of vehicle routing problems see, e.g., [102, 72, 73,
101, 92, 59].

While the consideration of the symbiosis of trucks and drones has started only very re-
cently, some related models have already been investigated earlier. The key innovation of the
new models with trucks and drones is that they have strong synchronicity requirements: Not
only tours have to be assigned but these tours do interact and hence have to be synchronised.
Now we will present some work that shares some characteristics with models with trucks and
drones. Besides the summary that we provide here, we also recommend the literature reviews
in the article by Murray and Chu ([82]) and the article by Agatz et al. ([4]). Many of the
sources discussed here are treated there as well.

One model to mention is the Covering Salesman Problem which was introduced by Cur-
rent and Schilling in [22] and which has been generalised by Golden et al. in [60]. In the
Covering Salesman Problem a weighted graph is given and each node in the graph has as-
signed a (possibly empty) subset of the other nodes that it “covers”. The objective is to find
a tour of minimum weight through a subset of the nodes of the graph such that every node
is either part of the tour or covered by a node that is part of the tour. This problem, in

4.2 Related Literature 83

some aspects, resembles the scenario where a drone supports a truck: The truck does not
need to visit all nodes, it suffices if it visits a subset of the nodes from where the drone
can do the remaining work. However, variants considering the use of a drone to support the
truck involve some subtle points which make them substantially more complicated: In the
Covering Salesman Problem, there are no synchronicity constraints since there is only one
vehicle. Even if the Covering Salesman Problem was canonically generalised to a version with
several trucks, then these trucks still would not interact and hence there still would not be
any synchronicity constraints. In contrast, when a drone and a truck interact, sometimes one
vehicle has to wait for another vehicle. As a consequence, the objective value (several choices
are possible, e.g. the completion time) of a solution cannot be computed by looking at all
tours isolated. Hence the Covering Salesman Problem has some similarity with the version
with trucks and drones, but the latter seems more subtle.

Another model that is closely related to the Covering Salesman Problem is the Close
Enough Travelling Salesman Problem (CETSP), see e.g. [98, 36, 62, 9, 109]. In the CETSP,
points in the Euclidean plane which have to be visited by a truck (target points) and one
starting point (i.e. the depot) where the truck tour starts and ends are given. Each target
point has assigned a connected compact subset of the Euclidean plane containing the target
point. Now one has to find a tour in the Euclidean plane such that the tour has at least one
common point with each of the compact subsets assigned to the target points; i.e. visiting
the compact subset of a target point is “close enough” to consider the point as visited. Like
the Covering Salesman Problem, the CETSP resembles the variant with truck and drone
as in both problems the truck does not need to visit all nodes. However, like the Covering
Salesman Problem, also the CETSP lacks the presence of synchronicity constraints.

While the models we considered so far did not incorporate aspects of synchronicity, vehicle
routing problems that deal with synchronicity have been investigated. A summary of such
variants of vehicle routing problems that require synchronisation is provided in the survey
article by Drexl ([39]).

One of the most extensively investigated vehicle routing problems with synchronicity
constraints is the Truck and Trailer Routing Problem (TTRP) introduced by Chao in [15];
for further work on the TTRP see also e.g. [75, 96, 38, 86, 32, 104, 105] and for a closely
related problem see [40]. In the TTRP there are trucks and trailers that have to serve
customers. A truck can move by itself and pull a trailer, in contrast, a trailer can only be
pulled by a truck but not move by itself. There are two kinds of customers: Customers of
the first kind can be served by a truck alone or by a truck pulling a trailer. Customers of
the second kind can only be served by trucks without trailer (e.g. because the streets are
too small for trucks pulling trailers). Also each customer has a certain demand of the good
which is delivered (we do not distinguish between different goods) and each truck and each
trailer has a certain capacity. Note that if the trucks had an unlimited capacity, then the
trailers would be useless. Trailers can be parked at those customers that can be served by
trucks pulling trailers. One can also allow that trailers are shared by different trucks, i.e. one
truck parks a trailer at some customer where it is picked up by another truck. Now one has
to find tours such that each customer obtains his demand of the good and the mentioned
constraints are satisfied. The objective value of a solution can be defined in various ways, e.g.
as the total distance or as the completion time or as some more complicated expression. In
the TTRP, synchronisation is necessary; but there are also some differences compared to the

84 4. Vehicle Routing with Drones

setting with trucks and drones: The trailers, which have similarities with the drones, cannot
move on their own; hence, as already mentioned earlier, they are only useful when there
are capacity constraints for the trucks; in contrast, drones affect the solution also without
any capacity constraints of the trucks. Indeed, in this work, we will not consider capacity
constraints for the trucks. So, while the TTRP shares the characteristic of synchronicity
constraints, it differs in other important aspects from the variant with trucks and drones.

Another model with synchronicity constraints is investigated by Lin (|74]). In that model
there are heavy and light vehicles. The heavy vehicles can carry light vehicles. Also both types
of vehicles can move on their own and both types of vehicles can pick up (or deliver) packages
at the customers. Differences compared to the model with drones are that a light vehicle may
depart from a heavy vehicle only one time; in contrast, a drone may depart arbitrarily often
from a truck. Furthermore, unlike the light vehicles considered in [74], drones can only carry
one package at a time which makes it even more important that they are allowed to depart
from a truck more than one time.

Also the vehicle routing problem with time windows and multiple service workers (cf. the
articles of de Grancy and Reimann (|27, 28|)) shares some characteristics with the setting
with trucks and drones. There the truck drives to a position and from that position the
service workers in that truck depart, deliver packages and return to the truck. Then the
truck drives to another position, the service workers depart and so on. The service workers
in this model share some characteristics with the drones; however a major difference is that
the truck cannot move while the service workers are delivering packages. Hence, the aspect
of synchronicity is not strongly present. Moreover, there the truck cannot deliver packages
by itself.

The consideration of the collaboration of drones and trucks for parcel delivery has started
only very recently. Murray and Chu introduced a respective variant of the TSP with drone
in [82]. They call the problem the Flying Sidekick Travelling Salesman Problem (FSTSP).
Other work related to the topic is [4, 107, 88, 63, 91, 44, 16, 37, 78, 77, 11]. In the following
subsections, we briefly summarise four of these articles (namely [82, 4, 107, 88]), afterwards
we shortly highlight which topics some of the other work deals with.

4.2.1 “The Flying Sidekick Travelling Salesman Problem: Optimiza-
tion of Drone-assisted Parcel Delivery” by Murray and Chu

(182)

Murray and Chu investigated the synergy of drones and one truck ([82]). Two different models
are introduced; for both models, heuristics and mixed integer linear programs are provided.
The Flying Sidekick Travelling Salesman Problem (FSTSP) is one of these two models; in
the FSTSP, one truck and one drone (that has a restricted flight endurance) are supposed
to deliver packages. Some packages cannot be carried by a drone (e.g. because they are too
heavy). The objective is to minimise the time until the latest return of the truck or drone
after the delivery of all packages, i.e. the completion time. They provide an integer linear
programming formulation which they try to solve for modest-sized instances (10 packages)
with the solver Gurobi. However, even for these comparatively small instances, Gurobi did
not find provably optimal solutions within 30 minutes. This motivates the use of heuristics.

4.2 Related Literature 85

They provide a heuristic that starts with a solution where the truck delivers all packages on
its own. Then in each iteration several changes (using also the drones) are investigated and
the change with the highest saving is applied. Computational results for this local search
heuristic are provided. The second model they propose contains several drones (and still one
truck). However, the drones do not interact with the truck any more, but can only start
from the depot, deliver a package within their reach and then return to the depot. Here,
unlike in the FSTSP, drones may leave the depot several times. One has to find a truck tour
that covers at least the packages which cannot be served by the drones (e.g. because of their
weight or because they are too far away from the depot). The packages that are not delivered
by the truck have to be served by the drones from the depot directly. In order to do this, a
schedule for the drones has to be found. The objective is the same as for the FSTSP. For this
model a heuristic is proposed as well. It starts with a solution in which all packages that can
be delivered by drones in fact are delivered by drones; the remaining packages are delivered
by the truck. Then a local search approach is applied to improve this solution. Considering
multiple trucks and drones is suggested as a topic for future research (which is what we do
in this thesis).

4.2.2 “Optimization Approaches for the Travelling Salesman Prob-
lem with Drone” by Agatz, Bouman and Schmidt ([4])

In [4], Agatz et al. investigate the Travelling Salesman Problem with Drone (T'SP-D) which
is very similar to the FSTSP from [82]. One difference is that in [4] the truck and the drone
follow the same metric (up to a constant multiplicative factor); in contrast, in [82] they can
travel according to different metrics, e.g. the drone flies according to the Euclidean metric
while the truck moves according to the Manhattan metric. After introducing the problem,
some theoretical aspects are considered, e.g. it is shown that if the truck has speed 1 and the
drone has speed «, then the objective value of an optimal solution for the truck only version
(i.e. the T'SP) is at most 1 + « times the optimal objective value for the TSP-D; an example
where this approximation factor occurs is provided which shows that the factor of 1 + «
is tight. They note that a consequence of their bound is that the TSP-D is constant-factor
approximable in polynomial time: By using the Christofides algorithm an approximation
factor of 1.5+ 1.5« is obtained; they further improved this factor. Afterwards a mixed integer
programming formulation is provided. Then heuristic approaches are developed, based on
so called route first cluster second procedures (cf. Beasley’s article ([8])). Furthermore, a
computational study is performed. Moreover, it is suggested to investigate the setting with
multiple trucks and drones.

4.2.3 Vehilce Routing with Drones — Work by Wang, Poikonen
and Golden ([107, 88])

In [107] the Vehicle Routing Problem with Drones (VRPD) is introduced and several worst-
case bounds are obtained. A fleet of trucks is considered where each truck is able to carry
several drones. In contrast to the model that we consider in this thesis, in their model a
drone never changes the truck during its tour; a respective generalisation is suggested in

86 4. Vehicle Routing with Drones

the outlook of [88]. Among other insights, the bounds obtained in [107] provide information
about the maximum gain from using drones additionally to trucks compared to truck only
variants. The model introduced in [107] is very similar to the model that we will consider; for
a summary of the new contributions in this thesis (also compared to the model formulation
in [107]) see the paragraph “Contribution” in Section 4.1.

In their follow-up article [88] the results from [107] are generalised; for example, limited
battery life of the drones is taken into consideration, settings when trucks and drones follow
different metrics are covered and a more general approach to define the objective function is
introduced. Also relations to other problems are investigated.

4.2.4 Further Related Work

In the past few years the collaboration of trucks and drones for parcel delivery has been
actively investigated. Hence a lot of further work on related topics exists. For several of
these contributions we provide a very brief summary of aspects that were covered.

In [11], bin Othman et al. introduce a model where a truck and a drone deliver packages
to customers. There are certain rendezvous points where the drone and the truck can meet
and there are customer positions at which parcels have to be delivered. They introduce NP-
hard problems in this setting and provide polynomial time approximation algorithms for
these problems.

In [78|, Mathew et al. consider a model where a truck collaborates with a drone to deliver
packages. As in [11], the nodes where the truck and the drone can interact are different from
the positions at which packages have to be delivered. However, here the truck itself does
not deliver packages at all but the drone delivers all packages. The problem is shown to be
NP-hard and several solution approaches are suggested; one such solution approach reduces
the problem to a generalised TSP for which advanced solving procedures exist.

In |63], Ha et al. investigate a model similar to the model proposed in [82] but different
objectives are taken into consideration. Two approaches to solve the problem are developed
and tested computationally. The approaches start with a TSP tour and convert it into a
solution for the respective problem with drone.

In [91], Ponza investigates a model similar to the model from [82] and proposes a simulated
annealing approach to solve it.

In [44], Ferrandez et al. study the cooperation of drones with a truck for parcel delivery.
The drones have to return to the truck after each delivery. A solution approach is proposed
which is based on k-means clustering; when the truck stops, drones deliver packages to nearby
positions that were assigned to this stop using k-means clustering. Computational results
are provided.

4.3 Informal Description of the Model

Before we introduce the Vehicle Routing with Drones (VRD) model formally we informally
sketch the main characteristics of the model. Note that a very similar model has already
been introduced in [107]; for a summary of the new contribution in this thesis, see the
paragraph “Contribution” in Section 4.1 and for a brief summary of [107] see Subsection

4.3 Informal Description of the Model 87

4.2.3. An instance of the VRD problem consists of the number of trucks, the number of
drones and, for each two packages P;, P» (or a package and the depot), the travel time from
the destination of P; to the destination of P, for both, trucks and drones.

Given an instance, we want to construct a feasible solution. A (not necessarily feasible)
solution is given by assigning each vehicle (vehicle refers to truck or drone) a tour that starts
at the depot, visits some package destinations and returns to the depot; additionally, when
a drone travels between two positions (we call this an edge), we have to define whether it
travels on a truck or whether it flies on its own. Not every solution is feasible, for feasibility
the following constraints have to be satisfied.

e Fach package has to be delivered.

e A drone can carry at most one package; a truck can carry an arbitrary number of
packages and drones. Hence the delivery time of a package is the arrival time at the
respective destination of the first vehicle that is not a drone that has already delivered
a package on its current flight.

e [f a drone is assumed to travel an edge on a truck then there must be a truck tour that
contains the edge between the two respective package destinations as well.

e Drones can only fly along two consecutive edges without recharging. They can recharge
by travelling one edge on a truck.

e As drones may travel on trucks, sometimes a vehicle has to wait for another vehicle.
There must not be situations where none of the vehicles that have not already returned
to the depot can continue because each of these vehicles is waiting for another vehicle
(cf. Figure 4.1 for two examples).

e Each node is only visited by vehicles that either deliver a package at that node or
interact with a vehicle that delivers a package at that node (e.g. a drone lands on a
truck or a truck picks up a drone).

e No vehicle may visit a package destination more than once. All vehicles start and end
their tours at the depot; if a vehicle arrives at the depot, then it cannot leave again.

Two aspects in which our model differs from the model in [107] are that in our model, drones
are allowed to travel on different trucks during their tours and that they have to travel an
edge on a truck to recharge. The former aspect makes it more complicated to define the
feasibility of a solution, as situations may occur where a vehicle has to wait for another
vehicle forever, because this vehicle for its part has to wait for another vehicle and so on.

There are several possibilities for an objective function. One is the completion time, i.e.
the time it takes until all vehicles have returned to the depot. Another choice is the average
time until a package has been delivered. In either case it is crucial to also consider the waiting
times of the vehicles instead of simply adding up the pure travel times.

88 4. Vehicle Routing with Drones

4.4 Formal Definition of the Model

Now we introduce the VRD model formally. In order to do this, we need the following graph
theoretic definitions.

Definition 4.4.1 (Multidigraph). A multidigraph G is a triple (V, E,¢) where V and E are
finite sets and i is a function ¢ : E — V x V. The sets V and E are called node set of G
and edge set of G respectively. If 1 is injective, then G is a digraph. We call |V| the size of
G. For an edge e € E with ¥(e) = (v1,v2) € V x V.. We refer to the first or second entry of

the tuple 1 (e) by (¢¥(e))[1] or (v(e))[2] respectively, i.e. (Y(e))[1] = vy and (Y (e))[2] = va.

Definition 4.4.2 (Subgraph of a multidigraph). Let G; = (V4, Eq,¢1) and Gy = (Va, Es, 1)
be multidigraphs. We say that Gy is a subgraph of Gy and write Gy C Gy if Vi C Vy, By C Ey
and for all e € Ey it holds 1s(e) = 1y (e).

Definition 4.4.3 (Cycle / circuit in a multidigraph). Let G = (V, E,¢) be a multidigraph.
Let ey, e5 € E. Set (v,w) :=1(e1) and (z,y) := Y(e2). If w = x, then we say es follows e;.
Let k € N. A subgraph C C G, C = (Vg, Ec,v¢), is called a circuit of size k in G if the
edges in Ec can be indexed as Ec = {eq,...,ex} such that for 1 < i < k —1 the edge e;+1
follows the edge e; and also ey follows ey.. If additionally for each z € Vi there is exactly one
edge e € Ec with (Ye(e))[1] = z, then C is a cycle of size k in G.

Remark 4.4.4. Note that Definition 4.4.3 in particular defines cycles and circuits in di-
graphs. In this case, circuits (and in particular cycles) can be represented particularly easily:
Let G = (V,E,v) be a digraph, in particular v is injective. Let C = (Vo, Ec,v¢) be a
circuit of size k in G. Then we can write C' as a vector with entries uy,...,ur € Vo, i.e.
C = (uy,...,ux). While the choice of the respective vector is not unique, the converse is
true: Given such a vector, the respective circuit is uniquely determined. Hence, to consider a
circuit in a digraph, sometimes we will use this vector representation. Note that we did not
require that the nodes uq, . .., u; are pairwise disjoint. Analogously, we can describe a circuit
as a vector with the respective edges as entries.

Definition 4.4.5 (Complete digraph). Letn € N and let V = {vy,vq,...,0,}. Let E =V XV
and let ¢ : E — V x V be the identity function. Then K, = (V,E,1) is called the complete
digraph on n nodes. We write Ek, for its edge set.

Next we formally define what an instance of the VRD model is (Definition 4.4.6), what a
solution is (Definition 4.4.7) and the feasibility of a solution (Definitions 4.4.9, 4.4.10, 4.4.13,
4.4.14, 4.4.15).

Definition 4.4.6 (Instance). Let n € N. An instance of size n of the VRD problem is a
quadruple (ng,ng, Dy, Dg) € N x N x (Rr;al % Rggl);

Intuitively, n; and ng denote the numbers of trucks and drones respectively, the entry in
the ith row and jth column of Dy, i.e. Dy[i, j], denotes the time a truck needs to drive from
the ith to the jth destination; the (n + 1)st row and column correspond to the depot. Dy
analogously describes the flying times of a drone.

4.4 Formal Definition of the Model 89

Definition 4.4.7 (Solution). Let n € N and let (ni,ng, Dy, Dq) be an instance of size n.
A solution for this instance is an (n; + 2ng)-tuple (Tl(t)7 e ,T}j), Tl(d), o ,Téi), bi,..., by,)
where, for 1 < 7 <n; and 1 < k < ng, Tj(t) = (Vj(t),Ej(.t)) and T,gd) = (Vk(d),E,gd)) are cycles
in the complete digraph with node set {vi,...,v,11}, such that v,yq is contained in each

cycle; by is a binary function by, : E,Ed) — {0, 1}.

Notation 4.4.8. If we consider an instance I of size n, then this implicitly defines ng, ng, Dy,
Dy and similarly, if we consider a solution S for an instance I, then this implicitly defines
Tl(t), e ,Té?,Tl(d), e ,Téf?,bl,...,bnd and also implicitly defines, for 1 < 7 < n; and 1 <
k < ng, the node and the edge sets Vj(t), E](-t) and Vk(d), Elid) such that Tj(t) = (Vj(t), E](.t)) and
T,gd) = (Vk(d),E,(gd)). Moreover, we write T® = {Tl(t), . ,TT(L?}, T = {Tl(d), . ,TT(LZ)} and
T =TOUTD. When we consider an instance of size n, then we always denote the nodes
of a complete digraph of size n+ 1 with {vy,...,vp41}. Vice versa, if we denote a node with
v; then we imply that we are considering a node of the complete digraph of size n + 1 where
n denotes the size of the instance that we are considering. Intuitively, vy, ..., v, correspond
to the package destinations and v,,1 corresponds to the depot. To refer to the driving time
from a node x to a node y, in slight abuse of notation, we sometimes write Dy[x,y] (and
analogously for Dy).

The cycles in T® represent the truck tours, the cycles in 7@ represent the drone tours
and the binary functions indicate whether the respective drone is carried by a truck on the
respective edge. Therefore sometimes we will refer to the cycles as truck (drone) cycles or
truck (drone) tours.

One necessary condition for the feasibility of a solution is that it satisfies the visiting
constraint specified in Definition 4.4.9.

Definition 4.4.9 (Visiting constraint). Let n € N, let I be an instance of size n and let S
be a solution for I. S satisfies the visiting constraint, if all following conditions are fulfilled.

] nt nqg
o Jtis Uvj(t)u ka(d) ={v1,..., Uns1}
j=1 k=1

e Assume that there are 1 < i < n and 1 < k < ng such that there are u,w €
{v1, ..., U0, Upy1} such that (u,v;), (v;,w) € E,id). Further assume that by(u,v;) =
b(v;,w) = 0. Then

v; ¢ EJ V;»(t) U Ej Vl(d)'
j=1

1=1,14k

o Assume that there are 1 < i <n and 1 < j < n; such that v; € V}(t). Then

vi ¢ [] v

I=1,1#j

o Let kIl € {1,...,nq}. Consider Tkgd) = (wy,...,ws) and Tl(d) = (z1,...,2;) where
Wy = T1 = Upy1. Assume that there are 2 < i1 < s—1 and 2 < j <t — 2 such that
w; = x; and w1 = Tj4q1; further assume that by(w;, wiy1) = bi(z;,x;41) = 1. Then
{jro, ..,z N{wy, .., wis = 0.

90 4. Vehicle Routing with Drones

The first point of the visiting constraint assures that every package is delivered. The
second point assures that if a drone flies to a package destination and also flies away from
there, then no other vehicle visits this destination. The third point assures that each package
destination is visited by at most one truck. The second and the third point together assure
that each node is only visited by vehicles that either deliver a package at that node or
interact with a vehicle that delivers a package at that node. This is motivated by the fact
that residents probably do not want to have vehicles waiting in front of their homes and
thus occupying parking space if these vehicles do not even deliver a package to them. The
fourth condition excludes some pathological solutions; in particular, it rules out solutions of
the following kind: Truck 1 arrives at node v carrying drone 1. Then drone 1 flies away while
truck 1 keeps waiting at v. Note that drone 1 can never return to node v. Then, later during
its tour, drone 1 travels an edge on truck 2 together with drone 2. Afterwards, drone 2 flies
to node v and continues its tour carried by truck 1. Since drones 1 and 2 have travelled an
edge on truck 2 together, after this edge, they are interchangeable. Hence, as drone 1 is not
allowed to return to node v, the same should hold for drone 2; the fourth condition assures
this.

The following constraint assures that drones can fly at most along two consecutive edges
before they have to recharge.

Definition 4.4.10 (Charging constraint). Let n € N and let I be an instance of size n.
Let S be a solution for I. S satisfies the charging constraint if the following holds. For any
1 < k < ng consider T,gd) = (Vk(d), E,gd)). Let u,v,w,x € Vk(d) and v, w # vV,y1; assume that
(u,v), (v,w), (w,z) € E,(Cd). Then by(u,v) + b (v, w) + bi(w,z) > 0.

In Definition 4.4.11, we define functions C; and Cy that have the following intuitive
meaning. For a given solution, for an edge e of the complete digraph of size n + 1 (when we
consider an instance of size n), Ci(e) states which (if any) truck drives along this edge and
Cq(e) gives the drones that are carried by a truck on edge e (if any).

Definition 4.4.11 (Edge functions). Let n € N and let I be an instance of size n. Let S be a
solution for I that satisfies the visiting constraint. Define Cy : Ex,,, — {0,{1},{2}, ..., {n:}}
and Cyq : Ex, ., = P{1,2,...,n4}) as follows.

e For an edge e € Ek, ., if there is an 1 < j < n; such that e € Ej(-t), set Cy(e) =
{j}, otherwise set Cy(e) = (). Note that if such a j exists, it is unique as the visiting

constraint is satisfied.

e For an edge e € Ey,,,, for L < k < ng, it is k € Cy(e) if and only if e € E\” and
bk(€> =1.

We call Cy and Cy the edge functions for the solution S.
Given a solution for an instance, we consider an edge e. If there are drones that travel

on a truck along this edge, then we say that the respective vehicle tours are interconnected
on e; Definition 4.4.12 formalises this.

4.4 Formal Definition of the Model 91

Definition 4.4.12 (Interconnected cycles). Let n € N and let I be an instance of size n.
Let S be a solution for I. Let e € Ey, ., and let Cy and Cy denote the edge functions for the
solution S. We define the set

IC(e,S) = | J {1 u | {13

keCy(e) j€Ci(e)

and call it the set of the interconnected cycles of the edge e; note that 1C(e, S) can be the
empty set.

Definition 4.4.13 assures that if a drone is carried by a truck along an edge according to
its binary function, then there is indeed a truck that drives along this edge.

Definition 4.4.13 (Drone carrying constraint). Let n € N and let I be an instance of size
n. Let S be a solution for I. Let Cy and Cy be the edge functions of S. We say that S satisfies
the drone carrying constraint if for any e € Ek, ., the following holds. If Cy(e) # 0 then
Ci(e) # 0.

The following constraint assures that no situations occur where one vehicle has to wait
forever for another vehicle as this vehicle also cannot continue, as it also waits for another
vehicle. This definition still contains an iterative process; hence it is desirable to also provide
a non-iterative characterisation of consistency. This is done in Theorem 4.4.24.

Definition 4.4.14 (Consistency constraint). Let n € N and let I be an instance of size n.
Let S be a solution for I. Consider the following round based process. In the first round in

each of the cycles in T we mark the edge leaving v, 1. Consider an edge e € Ulgjgnt E](-t) U

U1gkgnd E,gd). Let T € T and assume that e is an edge of T'. We say that e is ready within T
if it follows an edge in T that is already marked. If IC(e,S) # (0, then we say that e is ready
within IC (e, S) if e is ready within every cycle in IC(e,S). In each round for all T € T,
T = (V,E), and all e € E we do the following: If T ¢ 1C(e, S) and e is ready within T, then
we mark e in T; if T € IC(e,S) and e is ready within 1C(e,S) then we mark e within T
Markings of this round are only applied at the end of the round, i.e. new markings of this
round only have an effect for subsequent rounds. S satisfies the consistency constraint if each
edge of each cycle T € T becomes marked by this process.

Definition 4.4.15 specifies under which conditions a solution is feasible or almost feasible.

Definition 4.4.15 ((Almost) feasible solution). Let n € N and let I be an instance of size n.
A solution for the instance I is called almost feasible if it satisfies the visiting, the charging
and the drone carrying constraints. If it additionally satisfies the consistency constraint, then
it is called feasible. Note that every feasible solution is also almost feasible.

Figure 4.1 shows the relevant parts of two solutions that are almost feasible but do not
satisfy the consistency constraint. The second example provided in Figure 4.1 cannot be
repaired as easily as the first.

Next we define an equivalence relation on the almost feasible solutions of an instance;
intuitively, this is done because if two drones travelled together on a truck for an edge, then
the remainders of their tours are interchangeable; also the order of the truck and drone tours
in the solution is not important. Hence it suffices to consider the equivalence classes that we
introduce in Definition 4.4.16.

92 4. Vehicle Routing with Drones

Figure 4.1: Parts of solutions that violate the consistency constraint; trucks 1 and 2 are
indicated in black and green respectively, drones 1 and 2 are indicated in cyan and pink
respectively, the depot is indicated in orange.

Definition 4.4.16 (Equivalent solutions). Let n € N and let I be an instance of sizen. Let S
be a solution for I that is almost feasible. Let k1 € {1,... ,nq}. Consider T,gd) = (wy,...,ws)

and Tl(d) = (z1,...,7) where wy = x1 = Vyy1. Assume that there are 1 <i<s—1and 1<
Jj <t—1 such that w; = x; and w41 = x;41 and assume that by(w;, wit1) = by(z;, xj41) = 1.
Define the two cycles T,Ed) = (wy,...,w;, Tjt1,...,7¢) and Tl(d) = (T1,..., %5, Wit1 ..., W;).

Also define by, by

Ek(wr, Wyy1) = bg(wy, wpyq) forre{1,...;i—1},
Bk(wi,xjH) =1 and

be(Tr, Try1) = bi(xp, xpyy) forre{j+1,...,t —1}.
Similarly define by by

ZN)l(asr,:er) = b(xr,Tpy1) forre{l,...,5 — 1},
bz, wip1) =1 and

by(wy, wri1) = bp(wy, weyq) forre{i+1,...,s—1}.

Define the solution S for I by replacing T) with Tk , T) with T(d . b with by and by with
bi; since S is almost feasible (m partzcular also the fourth condmon of the visiting constraint
is fulfilled), we obtain that S is almost feasible, too; moreover S is feasible if and only if S
is feasible. We say S and S are equivalent solutions. Additionally we consider solutions as
equivalent that just differ in the order of the tours, i.e. S is equivalent to S where S =

(Ta(?l), o ,Ta(t(zu), T(((i))7 . ,ngbd), (1) - - - > Dp(ny)) where o is a permutation on {1,2,...,n:}
and ¢ is a permutation on {1,2,... ,ng}. This canonically induces an equivalence relation

on the almost feasible solutions for a given instance I such that an almost feasible solution
is feasible if and only if all its equivalent solutions are feasible, too.

In Definition 4.4.19, we will define the multidigraph of a solution; in order to do this we
need Definitions 4.4.17 and 4.4.18.

4.4 Formal Definition of the Model 93

Definition 4.4.17 (Disjoint union of sets). Let I be any index set. For each i € I, let A; be
a set. Then the disjoint union of the A; over I is defined as

| |Ai = J{(zi) | v € A}

i€l i€l
For the disjoint union of two sets A and B we simply write AU B.

Definition 4.4.18 (Union of multidigraphs). Let G = (Vi, Ey, 1) and Gy = (Va, Ey, 1) be
two multidigraphs. We define their union G1U Gy to be the triple (Vi U Va, By U Ea, 1)) where

VY E U Ey, — (VLU V)2
(e,1) — j(e).

To emphasise that the disjoint union of the edges is considered, we often write G{UG5 instead
Of G1 U GQ.

Note that in Definition 4.4.19, the expressions “corresponds to a flying drone” etc. could
easily be formalised, i.e. there are no hidden subtleties; however, for better readability at
this point we use the informal terms.

Definition 4.4.19 (Multidigraph of a solution). Let n € N and let I be an instance of size
n. Let S be a solution for I. Let M = (V, E 1) denote the multidigraph that is deﬁned as
the union of the individual tours of S, i.e. M = Tl(t) U...u quf) L Tl(d) .U Tnd . Define
c:E—{0,1,2} by

0 if e corresponds to a flying drone
cle) =<1 ife corresponds to a drone carried by a truck.

2 if e corresponds to a truck

In slight abuse of notation (as only M is a multidigraph), we call the tuple (M, c) the multi-
digraph of S.

Lemma 4.4.20 states that the multidigraph of an almost feasible solution captures all
important information of that solution.

Lemma 4.4.20. Let n € N and let I be an instance of size n. Let S be a solution for I that
is almost feasible. Given the multidigraph (M, c) of S, one can reconstruct a solution S for
I which is equivalent to S.

(]
be reconstructed (up to a permutation of these cycles, but this suffices to reconstruct the

solution up to equivalence). Now we provide an algorithm that reconstructs cycles T} [) .

Téi) and respective binary functions by, . .. bnd such that S = (T} () . Tyg),T(), e Té‘j),
bi,.... by ,) is a solution that is equivalent to S. In the beginning, we call all edges of M that
are not contained in any of the cycles in 7® available. While the algorithm proceeds, edges
will become unavailable and the algorithm terminates when all edges are unavailable. It is
clear that in the beginning n, available edges leave node v,; in the multidigraph. Let us
denote these edges by €7, ..., €, . For each 1 < i < ng, do the following:

Proof. Let 1 < i < j < n,. It is V' n Vj(t) = {vp41}. Hence Tl(t),...,T,(Lf) clearly can

94 4. Vehicle Routing with Drones

1. Set e = ef. Initialise TNZ-(d) as j}(d) = (e) and set bi(e) = c(e).* Mark e as unavailable.

Set s = c(e) and set x = (¢(e))[2].

2. As we assume that S is almost feasible, there is an [€ {1,...,ny4} such that there are
[available edges ey, ..., e, such that for each 1 <4 <[it holds (¢(e;))[1] = x. Set

Ey={e; |1 <i<landc(e;) =0}

and
Ey={e; |1 <i<landc(e) = 1}.

If s=0:1If By # (), choose e € E; and set Bi(e) = 1, else choose e € Fy and set

If s=1:1f By # (), choose e € Ey and set l;i(e) = 0, else choose ¢ € F; and set

Add e to Ti(d) (in the canonical way, e.g. if before we had (ey, es, e3) then now we have
(e1,e9,e3,€)). Set x = (1(e))[2] and set s = ¢(e).

If # v,41 then go to 2. Else Ti(d) is complete: If ¢ < ng, increase ¢ by 1 and go to 1;
if 1 = ng we are already finished.

As S is almost feasible, this procedure yields a solution S that is equivalent to S. O

Remark 4.4.21. The intuition behind the algorithm given in the proof of Lemma 4.4.20 is
the following. If a drone arrived flying at a node then it is either the only vehicle visiting that
node and hence also flies away, or if it is not the only vehicle visiting that node, then it must
leave carried by a truck. Similarly, if a node is visited by more than one vehicle and there are
edges corresponding to flying drones leaving that node, then all drones corresponding to these
edges must have arrived carried by a truck. Hence, if whenever possible we let drones that
arrived flying leave carried by a truck and whenever possible we let drones that were carried
to that node fly away, then we reconstruct the solution up to equivalence.

Remark 4.4.22. Let n € N and let I be an instance of size n. Let S and Sy be almost
feasible solutions for 1. If Sy and Sy are equivalent, then they have the same multidigraph.

Theorem 4.4.24 provides an alternative characterisation of the consistency (and thus
of the feasibility) of a solution. It relates the consistency to the absence of cycles in the
multidigraph of the solution that have a certain property. In particular, it enables us to

characterise consistency without using an iterative, round-based process. In order to state
Theorem 4.4.24, we need Definition 4.4.23.

4This is a slight abuse of notation: To be precise, we should say that if e is an edge in the multidigraph
from node u to node w with u, w € {vy,...,vp41}, L.e. (u, w) = ¥ (e), then we initialise T,L-(d) as T,L-(d) = ((u,w))
and set b;((u,w)) = ¢(e). However, to lighten the notation, in the following we ignore this subtlety, as the
precise meaning is clear from the context.

4.4 Formal Definition of the Model 95

Figure 4.2: Necessity to allow flip-cycles. Trucks 1 and 2 are indicated in black and green
respectively, drones 1 and 2 are indicated in cyan and pink respectively, the depot is indicated
in orange. The flip cycle is indicated in light red.

Definition 4.4.23 (Flip circuit, flip cycle). Let (M,c), M = (E,V,4), be a multidigraph
of an almost feasible solution S for an instance I. Let S = (Tl(t), o ,Té?,Tl(d), e ,Tr(LZ),
bi,...,byn,) be a solution that is equivalent to S. For 1 < k < ng, we write T,Ed) = (Vk(d), E,gd)).
Let C C M be a cycle. We say that C = (Vo, Ec,¢) is a flip cycle w.r.t. S, if there are
edges e1,es € Ec such that ey follows e; and such that there are i,j € {1,...,ng} withi # j

such that e; € Efd) and ey € E;d). If C is only a circuit instead of a cycle, then under the

described conditions it is called a flip circuit w.r.t. S.

Theorem 4.4.24 (Alternative characterisation of consistency). Let I be an instance and S
be a solution for I that is almost feasible. Let (M, c) be the multidigraph for S and let S be
a solution that is reconstructed from (M, c) according to Lemma 4.4.20. Then S satisfies the
consistency constraint and thus is feasible if and only if each cycle C' C M contains vy, or
is a flip cycle w.r.t. S. Note that S is feasible if and only if S is feasible.

Figure 4.2 illustrates the necessity to allow flip cycles in Theorem 4.4.24.

Proof of Theorem 4.4.24. For the one direction we will assume that S = (Tl(t), e ,T,g),
Tl(d) RN ,(LZ), bi,...,by,) is not consistent and prove that there is a cycle C' in the multidi-
graph (M, ¢) of S, M = (V, E, 1), that is neither a flip cycle w.r.t. S nor contains the depot.
Let T = {Tl(t), - ,Tﬂ), Tl(d), e ,Tég)}. By assumption, we know that the round based pro-
cess defined in Definition 4.4.14 will not mark every edge of every cycle T' € T in particular,
when the marking process has stopped, there is a cycle T} € 7', T, = (W1, E1), such that Ty
has the form T} = (v,41,..., w1, uy,...) and exactly the edges on the path from v, 1 to wy
are marked. This implies that there is another tour 75 € 7‘, Ty = (Va, Es), Ty # Ti, such
that there is wy € V5 such that Ty = (vuyq,...,Ws, ..., w1, u,...) and exactly the edges

96 4. Vehicle Routing with Drones

on the path from v,;; to wy are marked. By iterating we can infer that there are tours
T;,Ti41,...,T; € T such that

T; = (Un+1,...7wi,ui,...)7
n+1 = (’Un+1,. ey Wi, Uity - - -5 Wiy Uy - ..),
—_——
Sj_it1
Tiy2 = (Un+17 vy Wit 2, Ui 2y« ooy Wi, Uit 1 - -~);
TV
Tj:(UHH,...,wj,uj,...,wj,l,uj,l,...) and
N -~ o
So
n = (Unﬂ,...,wi,ui,...,wj,uj,...)
N -~ >
S1

where for ¢ < k < 7 in T} exactly the edges on the path from v, 1 to wy are marked. Now
we construct a circuit ¢y C M; to do this we concatenate S, Ss,...,Sj_i41 in this order
such that each edge corresponds to the cycle from which the corresponding S; was taken
from, except for the overlapping edges: The overlapping edges are included only once and in
these cases the respective edges are chosen such that they correspond to truck cycles. This
is always possible (even if, e.g., all cycles T;,...,T; are drone cycles) because whenever a
vehicle waits for another vehicle, it travels the next edge on a truck or is a truck itself. By
construction, C; neither contains the depot nor is a flip circuit w.r.t. S. Next we modify
Cy = (Vi, Ey,1y) as follows, thereby obtaining Cy = (Va, Ea,). For all e € Ej, do the
following. If there is a ¢ € {1,...,n;} such that for T\ = (V" E{") there is an & € E{”
with ¥ (€) = 1 (e), then replace e by é. This yields Cy; clearly Cy neither contains the depot
nor is a flip circuit w.r.t. S.

Next we modify the circuit C'5 to obtain a cycle C' that has the desired properties. Assume
that there is anode y € V5 that occurs k > 2 times, i.e. Co = (..., 21,Y, 21, .- ., T2, Y, 22, - - - , T,
Y, 2k, - - -).> First, note that for 1 <1 < kit holds c¢(z;, y)+c(y, 21) > 1, because otherwise (i.e.
if c(x;,y)+c(y, z1) = 0), since Cy is no flip circuit w.r.t. S, (z;,y) and (y, z) would correspond
to the same flying drone and then y would be part of exactly one cycle from {Tl(d), e Téj)}.
Hence it suffices to consider the following two cases. The first case is that ¢(z1,y) = 2. In
this case replace (...x1,y,21,... %2, Y, 29, -, Tky Yy 2k, -) DY (.. 21,9, 2k, ...). The second
case is that c(y,z1) = 2; in this case, replace (...x1,y,21,...22,Y,22, .., Tk, Y, 2k, .- .) DY
(y,21,...xa). Note that cases 1 and 2 already cover all cases as, by replacing C; with Cy,
we have replaced all edges on which ¢ takes the value 1 by edges on which ¢ takes the value
2. The changes in both cases clearly preserve the properties that the circuit is neither a
flip circuit w.r.t. S nor contains the depot. Iterating this yields a cycle with the desired
properties.

5This is a slight abuse of notation, as C5 is a cycle in a multidigraph and not just in a digraph. Hence
not all information is captured by a sequence of nodes because between two nodes can be several edges. To
lighten the notation, we nevertheless describe the cycle as a sequence of nodes since from the context it is
clear which edges are meant. Expressions like, e.g., ¢(x1,y) are interpreted in the same sense.

4.4 Formal Definition of the Model 97

We continue with the other direction, i.e. we assume that S is almost feasible and further
assume that in the multidigraph of S there is a cycle C' that is neither a flip cycle w.r.t. S
nor contains the depot. We have to show that S is not consistent. Let & € N be the size of C.
Let us write C' = (wy, ..., wy). To prove the inconsistency of S we show that in the marking
process defined in Definition 4.4.14, each edge in C' cannot be marked before its predecessor
edge in C' is marked. As in the beginning no edges are marked, this implies that never all
edges of C' will be marked; indeed it implies that never any edge of C' will be marked. Note
that after the first round of the marking process no edges of C' are marked (as C' does not
contain the depot v,1). Consider two consecutive edges e; = (x,y) and ey = (y, z) of C. Let
11,15 € {T]_(t), e ,Téi), Tl(d), ce ,Tn(zl)} be the cycles corresponding to e; and e;. Then, since
C' is not a flip cycle, we are in at least one of the following three cases.

o [tis T =T1Ts.
e The cycles T and T5 are interconnected on e; (according to Definition 4.4.12).
e The cycles T7 and T, are interconnected on es.
In either case, e; cannot be marked before e; is marked. O

To define an objective function, Definitions 4.4.25 and 4.4.26 will be useful. Definition
4.4.25 formalises the arriving, the waiting and the departure times. Intuitively, as the name
suggests, the arriving time of a vehicle at a package destination is the time needed until that
vehicle arrives at the respective package destination; analogously, the respective departure
time is the time until the vehicle leaves that package destination; the respective waiting time
is defined as the difference of the departure and the arriving time.

Definition 4.4.25 (Arriving / waiting / departure time). Let n € N and let I be an instance
of sizen. Let S be a solution for I. For eachT € T, T = (V, E), for eachv € V', we define the
arrival time ar(v, T) € RS, the departure time dp(v, T) € RS and the waiting time w(v, T) :=
dp(v,T) — ar(v,T) € Ry. Write T = (vpy1,U1,- -, up_1,us). We set dp(vn1,T) = 0. If
T €T orif there is a 1 < k < ng such that T = T,sd) and such that by(v,41,u1) = 1, then
set ar(uy, T) = Di[vpy1,u1]. Else set ar(uy, T) = Dglvpi1,u1]. We do this for all T. Now we
inductively define the remaining arrival and departure times simultaneously for all T € T .
To do this, recall the round based process from Definition 4.4.14. Consider the marking after
round r > 1. We assume that for any T € T, T = (V, E), for any v € V with u # v,41 and
such that u is adjacent to a marked edge e € E, we already know ar(u,T). Let e = (z,y)
be an edge of a cycle T € T such that e will become marked in round r + 1. By induction
we already know ar(z,T). We define dp(xz,T) and ar(y,T) as follows. Recall the definition
of interconnected cycles from 4.4.12. Like in Definition 4.4.14 we distinguish between the
following two cases.

e Case 1, T ¢ IC(e,S): Set dp(x,T) = ar(z,T) and set ar(y,T) = dp(z,T) + Dylz, y].

o Case 2, T € IC(e,S): Set dp(x,T) = max{ar(z,T) | T € IC(e,S)} and ar(y,T) =

98 4. Vehicle Routing with Drones

Afterwards we perform the next round of the marking step; thereby, inductively, we obtain
all arrwal, departure and waiting times.

Intuitively, case 1 in Definition 4.4.25 refers to the case that a drone flies along the
respective edge. In contrast, in case 2, a truck, possibly carrying several drones, drives along
the respective edge; it can only start when the last vehicle involved has arrived.

Definition 4.4.26 specifies the (average) delivery time; intuitively, as the name suggests,
the delivery time of a package is the time until that package is delivered; note that this is
not necessarily the time until the first vehicle arrives at the respective destination, as drones
can carry at most one package at once. The average delivery time is defined as the average
of the delivery times of all packages.

Definition 4.4.26 ((Average) delivery time). Let n € N and let I be an instance of size n.
Let S be a feasible solution for I. For any 1 < i < n we will define the delivery time of v;.
In order to do this, we consider a certain subset T (i) C T: A cycleT € T, T = (V,E), is
contained in T (i) if and only if v; € V and additionally at least one of the following three
conditions is fulfilled.

(1) There is 1 < j < ny such that T = Tj(t).
(2) v; follows vyyq in T,

(8) There is 1 < k < ng such that T = T,gd). Let y be the first and x be the second
predecessor node of v; in T, i.e. T = (..., x,y,v;,...). Then bp(z,y) + bp(y,v;) > 1.

As S is feasible, T (i) is non-empty. The delivery time of v; is defined as del(v;) =
min{ar(v;,T) | T € T(i)}. The average delivery time of S is defined as

av(S) = % Z del(v;).

Intuitively, conditions 1, 2 and 3 cover all cases except for the case that the cycle T
corresponds to a drone that already has delivered a package on its flight and hence, when
arriving at v;, cannot deliver the package at v;; this reflects that drones can carry at most
one package at once.

Different choices for an objective function than the average delivery time are possible. A
canonical choice is the completion time, i.e. the time until all packages are delivered and all
vehicles have returned to the depot. However, choosing the average delivery time, which is
the average time that a customer has to wait for a delivery, as the objective function has some
advantages: The most important advantage is that it also mirrors improvements that have no
influence on the completion time because the arrival time of the last vehicle is not affected;
compare Figure 4.3. There an example with two trucks and without drones is provided; both
solutions have the same completion time (we assume Euclidean distances in this example)
but solution (a) is clearly preferable. Another advantage is that the average delivery time
is sensitive to whether many or few customers get delivered late; i.e. while the completion
time may be the same, solutions where most customers are served soon have a better average
delivery time, cf. Figure 4.4 where an example with one truck and without drones is provided.

4.5 Local Search Algorithms 99

A
Y
()

(a) Good solution

(b) Poor solution

Figure 4.3: Solutions with the same completion time, one truck in green, one truck in black,
depot in orange.

Again both solutions have the same completion time (assuming symmetric distances), but
solution (a) is preferable. This motivates to use the average delivery time. Thus, from now
on, with “objective function” we refer to the average delivery time.

4.5 Local Search Algorithms

Local search algorithms are powerful approaches to deal with optimisation problems. In this
section, we will provide a brief general introduction to local search algorithms and sketch
some important examples. A core idea of local search algorithms is the following. For the

@ >0 B O=O= OO (o Od—.‘-.-.—ﬂ

O Q= x © >Q =0

(a) Good solution (b) Poor solution

Figure 4.4: Solution and reversed solution, same completion time, depot in orange.

100 4. Vehicle Routing with Drones

solutions in the search space, define a suitable neighbourhood, i.e. for a given solution we
want to be able to create a list of its neighbour solutions. Defining well-suited neighbour-
hoods is crucial when defining a local search algorithm. Next, for a suitable neighbourhood
definition, we start at some point in the search space, i.e. at an initial solution, and look at
its neighboured solutions. Then, we continue with one of its neighbours. This neighbour is
chosen in a way that tends to improve the objective function, i.e. it is more likely to go to
a good neighbour than to go to a bad neighbour. However, this does not mean that always
the best neighbour is chosen; on the contrary, it is important to also allow a worsening of
the objective function as otherwise one gets trapped in local optima. To illustrate the idea,
suppose that we want to maximise a two-dimensional, real-valued function. The graph of
the function can be imagined as a mountain region with several peaks but many of these
peaks are only local maxima. Now a local search algorithm can be thought of as a strategy
for a hiker that starts somewhere in this mountain region and wants to climb on the highest
peak. However, it is foggy, hence the hiker can only see up to ten meters around him. Now he
tends to go in a direction where the path goes upwards, however, if he has reached a peak,
i.e. there is no more path upwards, he might go several hundred meters downwards and then
try a different direction. This visualises that while tending to go upwards is often useful, it
is also necessary to accept worse solutions in the short term in exchange for the possibility
to escape local optima that are not globally optimal. For a precise treatment of the field of
stochastic local search, we refer to the book by Hoos and Stiitzle (|65]). Looking at the basic
idea of local search algorithms, it is apparent that a crucial part of defining a local search
algorithm is to define the neighbourhoods for the solutions in the search space. In Section
4.6, we will define such neighbourhoods in the context of the VRD model, but first we will
present some fundamental local search algorithms to illustrate the core idea described above
and to demonstrate the diversity in the field of local searches. A summary of the following
subsections can be found in Table 4.1.

4.5.1 Steepest Descent — Random Descent

Steepest descent is a very basic local search algorithm. From a current solution, the algorithm
investigates the complete neighbourhood and moves on to the best neighboured solution if it
is better than the current solution. If no neighboured solution is better than the current solu-
tion, then it terminates. Steepest descent has the major drawback that it has no mechanism
to avoid getting stuck in local optima. This can be mitigated by rerunning the algorithm
with different initial solutions; however, this often will not suffice, especially when there are
many local optima.

Random descent is very similar, but instead of searching for the best solution in the
whole neighbourhood, in each step a random neighbour is chosen and, if it is better, it
replaces the current solution, otherwise a new random neighbour is considered. One has to
define a suitable stopping criterion, e.g. that there are no improvements for a certain number
of steps. Just as steepest descent, random descent might get stuck in local optima. There
is a canonical combination of random descent and steepest descent: Consider k£ random
neighbours and take the best if it is better than the current solution; iterate this.

4.5 Local Search Algorithms 101

Local Search

Key Idea

Steepest Descent

For any solution, define its neighbourhood. Take an initial
solution. Look at its entire neighbourhood. If a solution in
this neighbourhood is better, replace the current solution with
the best solution of the neighbourhood, otherwise terminate.
Iterate this.

Random Descent

Basically like steepest descent, but instead of looking at all
neighbours, only look at one randomly sampled neighbour and
accept it if it is better. This process is iterated. Random de-
scent and steepest descent can be combined canonically.

Tabu Search

Tabu search can be considered as a generalisation of steepest
descent. However, it has a mechanism that makes it possible
to escape from local optima, i.e. a tabu list of, e.g., solutions
or moves depending on recently visited solutions or recently
applied moves (short-term memory). Solutions (or moves) on
this list are tabu, i.e. they may currently not be visited (or
applied). It also has mechanisms for diversification and inten-
sification.

Metropolis Search and
Simulated Annealing

For Metropolis search fix a temperature. Choose a solution.
Look at a neighbour. Accept it if it is better. Accept it also
with a certain probability if it is worse, depending on how
much worse it is and depending on the temperature (the
higher the more probable is acceptance). For simulated an-
nealing do the same but decrease the temperature over time.

Parallel Tempering

Look at several copies of a system where each system has a
different temperature and each system has assigned an initial
solution. Perform Metropolis search on each copy. After some
time, two neighboured systems (with respect to their temper-
atures) switch their solutions such that already good solutions
can move to replicas with low temperatures where they can
converge and poor solutions can move to replicas with higher
temperatures where they can be substantially changed (and
thereby ideally improved) before they can cool down again.

Table 4.1: Summary of several fundamental local search algorithms

102 4. Vehicle Routing with Drones

4.5.2 Tabu Search

Tabu search can be thought of as an attempt of taking the positive aspects of steepest descent
while avoiding its main disadvantage, i.e. the disability to escape from local optima. Tabu
search was introduced by Glover ([54, 55, 56]). Compare also, e.g., [58, 57, 71]. Here we will
only provide a rough sketch of tabu search, omitting many details and variants.

Short-Term Memory for Escaping Local Extrema Here the current solution is not
necessarily the best solution. In the end, the best solution found so far is returned. The basic
principle of the simplest variant of tabu search is the same as for steepest descent except for
one important difference: In order to be able to escape from local optima, one keeps track of
a number (can be always the same fixed number, but can also vary over time) of solutions
that one has visited last. It is forbidden (tabu) to go there, even if it is the best solution
in the neighbourhood of the current solution. Now, in each step, one replaces the current
solution by the best solution within its neighbourhood that is not tabu. This enables the
search to escape from local optima. Note that tabu search in its general form is not restricted
to forbidding certain solutions. More general, moves can be forbidden, which for example for
the TSP problem could be to forbid swapping cities 2 and j. In these cases so called aspiration
criteria can improve the results. If such an aspiration criterion is fulfilled (e.g. the respective
move yields a solution that is better than the best solution found so far) it is accepted as the
new current solution even if it is tabu. The tabu list in which the algorithm keeps track of
the forbidden solutions or moves respectively is often referred to as the short-term memory.

Intermediate-Term Memory for Intensification The intermediate-term memory tries
to push the current solution into good regions. Therefore, loosely speaking, it looks at good
solutions that are collected so far and extracts some features of them. E.g. in good TSP
solutions, only a small subset of the edges of the graph might be used. Thus, solutions using
these edges might be rewarded and hence may even be preferred over solutions that have
a better objective value. Therefore this procedure causes an intensification of the search.
Compare again [55].

Long-Term Memory for Diversification The long-term memory has a complementary
function compared to the intermediate-term memory. Its purpose is to diversify the solution
by penalising features that occurred often. For example for edges that occurred in many
TSP solutions found so far (not only in the good ones like above) there may be a penalty
for solutions containing them. This diversifies the search, as new parts of the search space
are visited.

4.5.3 The Metropolis Algorithm — Simulated Annealing

Metropolis search is based on the more general works by Metropolis et al. (|80, 79]). We have
a fixed temperature and a solution. Then we look at a random neighbour of the solution and
accept it if it is better or accept it with a certain probability if it is worse. This probability
depends on how much worse it is (much worse solutions are unlikely to be accepted) and
on how high the temperature is (higher temperatures correspond to higher probabilities).

4.6 A Local Search Algorithm for Vehicle Routing with Drones 103

Metropolis search can be considered as a simplification of simulated annealing, but there
the temperature is decreasing over time; compare [69, 1, 103|. Or, as Ingo Wegener states
in [108], the Metropolis algorithm is equivalent to simulated annealing without temperature
changes.

4.5.4 Parallel Tempering for Combinatorial Optimisation

This method was introduced by Swendsen and Wang [100] and is based on Metropolis search.
See also [49, 66, 41]. However, the previous mentioned literature does cover parallel temper-
ing with no special focus on combinatorial optimisation. For its application to combinatorial
optimisation we refer to, e.g., [106] where the application of parallel tempering to the TSP
is illustrated. We roughly summarise the principle of parallel tempering for combinatorial
optimisation staying close to [106]: The core idea is to look at several copies of a system,
where each sytem has assigned a temperature and an initial solution. In each system, the cor-
responding solution is modified according to the Metropolis search described in Subsection
4.5.3. After some iterations, two solutions of neighboured systems (with respect to their tem-
peratures) are swapped; for details, we again refer to [106]. Thereby poor solutions can rise
in temperature and hence be substantially changed (and ideally improved), thus overcoming
local optima. In contrast, high-quality solutions can move to colder replicas to converge to
good local (and ideally even global) optima.

4.6 A Local Search Algorithm for Vehicle Routing with
Drones

4.6.1 Definition of VRD-LOC

In this section we introduce the local search algorithm VRD-LOC (short for VRD Local
Search) to solve the VRD problem; we will provide computational results in Subsection
4.6.2. VRD-LOC is fast, simple and can be used as a starting point to create more elaborate
local search algorithms. In fact, in our article (|24]) we introduced an extended version of
VRD-LOC which has seven additional operations to create a neighbour; these additional
operations are not part of this thesis but will be part of Elisabeth Kraus’ doctoral thesis;
as we will see in Subsection 4.6.2, by such additional operations the solution quality can be
improved significantly. We will discuss the scope and limitations of VRD-LOC in the para-
graph “Discussion of VRD-LOC” below. Now we introduce VRD-LOC. For a given instance
we start with an initial solution that ignores the drones and uses only the trucks, i.e. we
start with a solution for the travelling salesmen problem with multiple salesmen (mTSP).
This is a well-studied problem (cf. for example [10]) that is NP-hard. We treat the respective
part of the algorithm as a blackbox that solves the mTSP, i.e. developing an algorithm for
the well-studied mTSP is not part of this work. Next we want to put the drones into use.
In order to do this, we first define two operations that take a feasible solution and modify
it to obtain another (possibly not feasible) solution; we will use these operations in the al-
gorithm formulation. Operation 2 is essentially the inverse of Operation 1. Both operations
are illustrated in Figure 4.5.

104 4. Vehicle Routing with Drones

us us

Operation 1

Ul us U,l%))7 Uus

U2 Uy U9 Uy

(a) Operation 1

Operation 2

Uy * us Uy us

(b) Operation 2

Figure 4.5: Operations 1 and 2, the truck is indicated in black and the drone in cyan.

Operation 1 Let n € N and let I be an instance of size n. Let S be a feasible so-
lution for I. Let Ty € T® and Ty € T@ and let by denote the respective binary func-
tion. Assume that there are nodes uq,us,us, us, us such that both, Ty and Ty, have the
form (vnqq ... u1,ug, us, g, us ...) and such that bay(ui,uz) = bay(uz, uz) = bay(us, us) =
b(l)(u4, us) = 1. We allow uy = v,41, i.e. in this case the part “v,yq ... uy” simply stands for
“Uny1 77 analogously we allow us = vyq1. Delete ug in Ty and set by (uz, us) = by (us, ug) = 0.
For each T € TD with respective binary function b, T # Ty, that has the form T =
(Unt1y .-, Ug, Us, U, - ..) delete ug from T and set b(ug, uy) = 1.

Operation 1 can also be applied (canonically modified) if Ty and 77 have the form
(Ung1, us, Uy, Us, ...) OF (Upy1, ..., UL, U, ug); the intuitive reason for this is that when start-
ing from the depot, all drones are charged and when a drone returns to the depot it is not
allowed to leave again anyway. Note that the constructed solution is not necessarily feasible,
as it might be necessary that T contains us because, for example, the respective truck might
have to collect another drone there.

Operation 2 Let n € N and let I be an instance of size n. Let S be a feasible solution
for I. Let Ty € T® and let Ty € TYD with respective binary function bay. Assume that there
are nodes uy, ug, uz such that Ty = (vpy1, ..., U, us, ...), Th = (Vna1, ..., UL, U, Uz, ...) and
such that bay(uy,uz) = bay(uz, us) = 0; analogously to Operation 1 we allow uy = vpy1 or
uz = Upy1. In Tp, insert uy between uy and ug. Set bay(ur,uz) = bay(uz,uz) = 1. For all
T € TW with respective binary function b, T # T\, such that T = (Uny1, ..., U1, us, ...) with
b(uy,uz) = 1 insert us between uy and uz and set b(uy, ug) = b(ug, us) = 1.

Note that a solution that is obtained by applying Operation 2 is always feasible. Now we
define VRD-LOC.

VRD-LOC Let n € N and let I be an instance of size n. We obtain an initial solution

4.6 A Local Search Algorithm for Vehicle Routing with Drones 105

Sini = (Tl(t), o ,T,(Lf), Tl(d), o ,T,Sfj), bi,...,by,) as follows: The cycles Tl(t), e ,Tfl? are given
by an mTSP solution (we consider an mTSP solver as a blackbox, i.e. providing a new
algorithm to solve the mTSP is not part of VRD-LOC). The drone cycles are obtained

as follows. For 1 < k < ny set Tk(d) = T((I?_l mod n¢)+1°

constant functions with value 1. Now for 1 < k£ < ng we modify T,gd

The functions b; are all set to be

) one after the other.

So let k be fixed. We start with the cycle T, ,Ed) from 5;,; and modify it by applying parallel
tempering (cf. Subsection 4.5.4). In order to do this, we have to define how a neighboured
solution for the current solution is obtained: Let T, ,sd) = (uy,...,u,) where u; = v,41 and
set uy11 = v,11. Consider T((,Zl mod n)+1
Choose @' € {1,...,7'} uniformly at random. If i' = 1, let i* = 1. Else set

_ / / ! . i _
= (ul,...,u.,) where u} = vnq1; set), = Vpqy.

A={j[1<j<rAdf (@ <5 < ANuj=uy Ab(uj_1,u) = 1)}

If A =0, then retry and sample 7' again, else set i* := min A. Set u = u;». Remark 4.6.1
provides an intuitive explanation for the choice of A and w.

Check whether Operation 1 is applicable where u has the role of us in the definition
of Operation 1. If this is the case, then check whether the resulting neighboured solution
is feasible. Also check whether Operation 2 is applicable where u has the role of u; in the
definition of Operation 2. Recall that if Operation 2 is applicable, the resulting neighboured
solution is always feasible. If neither Operation 1 nor Operation 2 is applicable such that a
feasible solution is obtained, then we restart by sampling i’ again. Otherwise exactly one of
the Operations 1 and 2 is applicable. Applying this operation then yields a feasible solution,
i.e. we obtain a neighboured solution.

Now, as we have defined how to obtain an initial solution and how to construct a neigh-
bour for a given solution, we can apply parallel tempering (recall that the objective function
is the average delivery time). After some time (i.e. when a stopping criterion, e.g. a runtime
bound, is fulfilled, cf. Subsection 4.6.2) we terminate parallel tempering for T,gd) and con-

tinue with modifying T,gi)l and so on. After having modified all drone cycles using parallel

tempering with the neighbour generation as described, we have obtained our final solution.

Remark 4.6.1. While the definition of the auxiliary set A is somewhat technical, the re-
spective part of VRD-LOC has a simple intuition. We consider the drone tour T,gd) of drone
k and the corresponding truck tour T((,?_l mod n0)41° We choose a node i' of the truck tour
uniformly at random and, starting from this node, we continue along the truck tour until we
arrive for the first time at a node u where drone k is charged. If there is no such node, we

sample i' again and restart.

Discussion of VRD-LOC Before we provide some empirical results, we want to discuss
what VRD-LOC should accomplish and what its restrictions are. Its main purpose is to
function as a proof of concept that parallel tempering with neighbourhood definitions like
the one provided using Operations 1 and 2 is a suitable approach to solve the VRD problem.
The two provided operations to create new neighbours only serve as a starter kit and have to
be extended by additional operations in order to further improve the solution quality; in fact,
in our article (|24]) we have considered seven additional operations and thereby obtained

106 4. Vehicle Routing with Drones

significantly improved results (we will quantify this below when discussing the empirical
results); the additional seven operations used in [24| are not part of this thesis but will be
part of Elisabeth Kraus” doctoral thesis. Moreover, VRD-LOC might be further improved by
adding operations that allow a drone to change trucks during its tour and operations that
allow to switch packages between trucks during the local search; also compare the paragraph
“Summary and Suggestions for Improvements” in Subsection 4.6.2.

A restriction of the provided algorithm is that it will not perform well on instances with
more drones than trucks. This can be seen as follows: Loosely speaking, Operation 1 lets
the truck skip one node in its tour which then is served by the drone under consideration
and the drone meets again with the truck at the next node in the truck tour. Thus, after
the first drone tour has been modified, at the majority of nodes that are still visited by the
corresponding truck, the truck either collects or sends away the drone; also recall that each
drone has to charge on one edge between two flights. Therefore, the truck cannot simply
skip nodes on its tour which makes it difficult to appropriately put a second drone that is
assigned to this truck into use.

To overcome this restriction, some possibilities are conceivable: By using additional op-
erations like e.g. letting the truck skip one node in its tour (like in Operation 1) but meeting
with the drone after the truck has delivered more than one package (cf. Operation 9 in [24]),
the problem can be mitigated; the reason for this is that after a drone has been put into use,
the truck tour will still contain nodes that can be simply skipped by the truck in order to put
the next drone into use; this is done in our article ([24]) and there it is shown empirically that
using the additional operations, also instances with more drones than trucks can be handled
appropriately. While the added operations improved the solution quality significantly, for
further improvements of the algorithm on instances with more drones than trucks it might
be necessary to put the drones into use simultaneously instead of sequentially. Because of
the discussed reasons, in this work we will focus on instances with at most one drone per
truck.

Another important aspect besides the solution quality is the runtime; in the paragraph
“Runtime” in Subsection 4.6.2 we will see empirically that VRD-LOC performs well in this
respect.

A Greedy Algorithm In the following, we introduce a Greedy algorithm to which we
will compare VRD-LOC. Intuitively, it works as follows. Each truck has assigned the same
number of drones (up to at most one drone difference). We start with the same initial solution
as for VRD-LOC. For each truck tour, starting from the depot, all [drones assigned to that
truck are sent away to deliver the next [packages of the initial truck tour and then the truck
collects all [drones at the destination of package [+ 1, travels one edge to the destination of
package [+ 2 such that the drones are recharged and then, again, all [drones are sent away to
deliver the next [packages and so on. If in the last step only < [packages are left to deliver,
then the remaining packages are delivered by r drones which afterwards fly to the depot and
the remaining [— r drones travel to the depot directly, carried by the truck. Now we define
the Greedy algorithm formally. Let n € N and let I be an instance of size n. Let S;,; be the
same initial solution as used by VRD-LOC. Next we modify the initial solution: For each
T € T we do the following. Write T = (vp41,u1, ..., u;). Let Th,..., T} € T@ be those

4.6 A Local Search Algorithm for Vehicle Routing with Drones 107

drone cycles that, for 1 < <[, satisfy T; = T'. Let bn),...,by) € {b1,...,bn,} denote the
respective binary functions. To obtain the Greedy solution S¢, we do the following. Replace
T by

(Unt1, U@I+2)—1, Ui42, U2(142) -1, U2(1+2), U3(1+2)—15 - - - uLz%J (1+2)—1° uLz%J (z+2))
and for 1 < j < replace T} by
(Un+1, Uj, U(142)—15 Ul+25 Wi42+45, U2(1+2)—15 U2(14+2), U2(14+2)+j5 - - - » uh%J (1+2) uh%J (l+2)+]~)

where the last node, w|x/(42)|(1+2)+j, is only present if [k/(l + 2)|(I +2) + j < k; for all
I <m < [K/(1+2)], we set by)(Um@+2)—1, Uma42)) = 1 and on all other edges e we set
by(e) = 0. By applying the described procedure for each T € T®, we obtain our final
solution Sg of the Greedy algorithm. Clearly the runtime of Greedy is negligible.

4.6.2 Computational Results

We empirically evaluate VRD-LOC and compare the results to the results obtained by the
introduced Greedy algorithm and to the mTSP results; as an outlook we also compare it to
the results from our article (|24]) where an extended version of VRD-LOC with seven addi-
tional operations for the neighbour generation is introduced; these additional operations are
not part of this thesis but will be part of Elisabeth Kraus’ doctoral thesis. Before presenting
the results, we again want to emphasise that VRD-LOC mainly serves as a proof of concept
and starter kit that can be extended to more elaborate local search algorithms (for a detailed
discussion about its capabilities and limitations see the paragraph “Discussion of VRD-LOC”
in Subsection 4.6.1). In the following we will see that, while VRD-LOC already outperforms
Greedy, by using the generalised version with seven additional moves, the algorithm can be
further improved considerably. This underlines that VRD-LOC is a suitable starting point
but should be extended by additional operations to further improve the solution quality.
The VRD problem formalised in this thesis was implemented in Java by Elisabeth Kraus;
in particular, her implementation provides solution and instance classes and functions that
check whether a given solution is feasible and that compute the average delivery time of a
given solution. The implementation by Elisabeth Kraus is based on the Java metaheuristic
search framework James (|26]) developed by De Beukelaer which allows to implement local
search algorithms by specifying how to create an initial solution, by providing the objective
function and by defining how a neighboured solution for a given solution can be constructed.
Her implementation also provides an mT'SP solver that is an adapted version of a local search
algorithm to solve the TSP which is provided as one of the examples of James (|26]). The
implementation of VRD-LOC is based on the model implementation by Elisabeth Kraus.b

6The Java implementation of both, VRD-LOC and the model (i.e. solution and instance classes etc.,
cf. above), can be accessed under the link https://github.com/RabbitCodes/VRDLight. There, also an
implementation of a generalised version of VRD-LOC with seven additional operations for the neighbour
generation is available; the implementation of these additional moves is made by Elisabeth Kraus and the
generalised algorithm with these additional moves will be part of her doctoral thesis (cf. also the paragraph
“Discussion of VRD-LOC” in Subsection 4.6.1). The model implementation was also made by Elisabeth
Kraus; in particular, due to its modular structure, in order to implement VRD-LOC in Java, I only needed
to implement Operations 1 and 2.

https://github.com/RabbitCodes/VRDLight

108 4. Vehicle Routing with Drones

varying fixed
7 packages (25 / 50 / 75 / 100 / 125 / 150 / 200 / 250 / 300) 2 trucks, 2 drones
trucks = # drones (1 /2 /3 /4 /5) 200 packages

Table 4.2: Test settings for VRD-LOC

In the following, we will present computational results to evaluate VRD-LOC empirically.
To obtain test instances we sampled the package destinations uniformly at random on a
401 x 401 integer grid (x and y coordinates range from —200 to 200) excluding (0, 0) which
is the depot. The distances for the trucks are according to the Manhattan metric while
the distances for the drones are according to the Euclidean metric. This is motivated by
the observation that while trucks are restricted to the street network, drones may not be
affected by such restrictions. In order to solve the mTSP to obtain the initial solution, we
used the mTSP solver provided by Elisabeth Kraus’ implementation. We ran computations’
according to the settings described in Table 4.2.

Besides investigating the solution quality after a fixed period of time, we also consider
how fast the algorithm converges, i.e. we consider the objective value after different periods
of time. In the following, if not explicitly stated differently, with the objective value of VRD-
LOC we refer to the objective value after one minute per drone tour (this does not include
the time needed to solve the mTSP which is ten minutes per instance); we will not further
consider the time needed to solve the mTSP to obtain an initial solution, as the mTSP is a
well-studied problem (cf. for example the survey article by Bektas [10]) and we want to focus
on the other aspects of VRD-LOC. Therefore we consider the mTSP solver as a blackbox
that provides us with an mTSP solution. Note that also the Greedy algorithm is based on
that mTSP solution. We will see that even within much shorter runtimes than one minute
per drone tour, solutions of almost the same quality are obtained.

Before we consider the solution quality and the runtime in detail, we provide the internal
parameters that we used for the local searches; as described above, the implementation of
VRD-LOC is based on the Java implementation by Elisabeth Kraus which itself is based
on the Java metaheuristic search framework James (|26]). Using these implementations, we
applied parallel tempering as part of VRD-LOC (cf. Subsection 4.6.1). In order to obtain
initial solutions, we used the mT'SP solver from Elisabeth Kraus’ Java implementation that
is based on a TSP solver provided as an example in James using parallel tempering. We used
a runtime of ten minutes for the mTSP solution for each instance that we considered; for
the reasons mentioned above, in all further runtime considerations we will not include these
ten minutes in the runtime.

We set the internal James settings to apply parallel tempering as part of the mTSP solver
mentioned above as follows: We used three replicas, the temperature of the coldest replica
is tmin = 0.0001, the temperature of the warmest replica is ¢, = 1.4 and the temperature
of the third replica is ({min + tmax)/2. This specifies the settings to obtain the initial mTSP
solution.

“We ran the computations on a Microsoft Windows 10 Home machine with an Intel Core i7-7700 CPU
(3.6 GHz, 4 cores, 8 threads), 16 GB RAM and an AMD Radeon R7 450 graphic card; the Java version we
used is Java 8 Update 151 (Oracle); we used Eclipse (Oxygen, Release 4.7.1a) as our IDE.

4.6 A Local Search Algorithm for Vehicle Routing with Drones 109

Next we specify the parameters used in the local searches in the main part of VRD-
LOC. Per each drone tour a local search (namely parallel tempering) was performed. In the
following, we provide the internal James parameters that we used for these local searches.
The runtime for each of these local searches was set to one minute (i.e. one minute per drone
tour); however, we considered intermediate results at several time steps and it turns out that
drastically shortened runtimes suffice to obtain solutions of almost the same quality, see the
paragraph “Runtime” below for details. Again we used three replicas, this time with minimum
temperature tmin = 0.001, maximum temperature tmax = 1.0 and where the temperature of
the third replica is (fmin + tmax)/2-

We always used 30 instances per setting that are sampled independently as described
above. In all settings, for VRD-LOC the same mTSP solution was used as for Greedy, i.e.
both algorithms started with the same initial solution.

Solution Quality We start with discussing the setting described in the first row of Table
4.2; i.e. we consider instances with two drones, two trucks and a varying number of packages.
Per number of packages, we consider 30 instances and take the average of the objective values.
The results can be found in Table 4.3. Now we summarise the main characteristics of the
results. In the following, with “objective value” we refer to the average objective value over
the respective 30 instances. For all numbers of packages the objective value of the mTSP
solution without drones was between 10.0% and 11.0% bigger than the objective value of the
VRD-LOC solution and the objective value of the Greedy solution was between 3.4% and
4.4 % bigger than the objective value of the VRD-LOC solution.

While the solution quality of VRD-LOC is not eminently better than the solution quality
of Greedy, it is still noteworthy that despite the very simple and straight-forward neighbour
generation, VRD-LOC outperforms Greedy. It also motivates to further extend the neighbour
generation by additional operations which is done in [24] (the additional seven operations
will be part of Elisabeth Kraus’ doctoral thesis); the results in [24] show that considering the
generalised version with the additional operations yields considerably better results: In the
setting of the first row of Table 4.2, the objective values of the mTSP solutions were between
13.6% and 16.2% bigger than the objective values of the generalised version of VRD-LOC and
the Greedy algorithm’s objective values were between 7.2% and 9% bigger than the objective
values of the generalised version of VRD-LOC. Note that there are some differences between
the setting from [24] and the present setting (e.g. the mTSP was solved slightly differently
and the runtime differed; also while the instances were sampled in the same way, in [24]
different samples were used and the average was taken over 10 instances); nevertheless this
illustrates that VRD-LOC is a suitable starter kit that can serve as a basis for improved
algorithms that are obtained by adding further operations for the neighbour generation. It is
noteworthy that the relative improvement of VRD-LOC compared to Greedy and compared
to the mTSP solution is largely unaffected by the number of packages.

If we only use Operation 1 instead of both operations, we obtain results that have roughly
the same (most of the times slightly better, rarely slightly worse) quality than Greedy. This is
not surprising as almost always when Operation 1 is applicable, it will improve the previous
solution; however, even if it improves the previous solution, as it cannot be “undone” as the
inverse operation (Operation 2) is not available, it may prevent from finding even better

110 4. Vehicle Routing with Drones

pckg. ops. mTSP Grd. 50 250 1000 2000 3000 4000 5000 7500 10000 30000 60000 only 1

drone
25 1 494.1 460.8 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 474.0
1&2 446.9 445.6 4454 4454 4454 4454 4454 445.0 445.0 445.0 445.0 469.0
50 1 676.9 6324 631.0 630.8 630.8 630.8 630.8 630.8 630.8 630.8 630.8 630.8 630.8 654.0
1&2 614.5 612.6 612.0 611.9 611.7 611.7 611.7 611.7 611.6 611.6 611.6 643.9
75 1 803.5 758.0 753.8 753.8 753.8 753.8 753.8 753.8 753.8 753.8 753.8 753.8 753.8 7784
1&2 7327 729.8 7283 728.0 7279 7279 727.8 727.7 727.7 727.7 727.6 763.8
100 1 904.4 851.8 849.8 849.8 849.8 849.8 849.8 849.8 849.8 849.8 849.8 849.8 849.8 8774
1&2 826.5 8229 820.5 819.5 819.3 8189 818.8 818.8 818.8 818.6 818.1 &860.6
125 1 10154 956.1 955.5 955.3 955.3 955.3 955.3 955.3 955.3 955.3 955.3 955.3 955.3 986.3
1&2 933.2 927.8 924.3 9224 922.1 921.7 921.5 921.2 920.8 920.2 920.1 968.8
150 1 1115.8 1057.4 1054.7 1054.6 1054.6 1054.6 1054.6 1054.6 1054.6 1054.6 1054.6 1054.6 1054.6 1084.3
1&2 1028.9 1022.0 1018.3 1017.2 1016.6 1016.2 1016.1 1015.8 1015.5 1014.9 1014.4 1063.1
200 1 1288.2 1216.1 1217.3 1213.3 1213.3 1213.3 1213.3 1213.3 1213.3 1213.3 1213.3 1213.3 1213.3 1250.7
1&2 1192.9 1181.5 1173.4 1171.0 1170.5 1169.8 1169.6 1168.1 1167.2 1165.9 1165.0 1226.2
250 1 1433.5 1352.0 1362.7 1354.1 1354.1 1354.1 1354.1 1354.1 1354.1 1354.1 1354.1 1354.1 1354.1 1394.6
1&2 1335.1 1320.1 1311.3 1306.8 1305.4 1304.7 1304.2 1303.5 1302.5 1300.6 1299.7 1365.5
300 1 1572.1 1483.4 1502.5 1487.9 1487.6 1487.6 1487.6 1487.6 1487.6 1487.6 1487.6 1487.6 1487.6 1529.7
1&2 1471.2 1452.6 1443.1 1439.3 1437.0 1435.9 1435.2 1433.4 1432.0 1429.0 1427.4 1498.9

Table 4.3: Two trucks, two drones and a varying number of packages (pckg.) are considered. Objec-
tive values for the setting without drones (mTSP), for Greedy (Grd.), for Operation 1 alone and for
VRD-LOC (i.e. Operations (ops.) 1 and 2 together) are provided. The column “only 1 drone” refers
to the solution with two trucks and one drone after one minute runtime to optimise that drone tour,
starting with the mTSP solution. For Operation 1 alone and VRD-LOC the results are provided
after various periods of time. In particular, the columns “507, “250” etc. refer to the runtime (in ms)
that is used to put the second drone into use, starting with the “only 1 drone” solution; e.g. for
200 packages, considering the results for VRD-LOC, the objective value has improved from 1226.2
to 1192.9 within the first 50 ms during which the second drone has been put into use. This form
of presentation is used because the drone tours are optimised one after the other. All results are
rounded to one decimal. For each number of packages the average over 30 instances is taken.

solutions. In particular, most operations will be applied greedily and, as this cannot be
undone, after a short period of time almost no operations can be applied any more and hence
the solution quality does not improve any more. Hence it is not surprising that the solution
quality is comparable to the solution quality of Greedy. Note that using only Operation 2
would have no effect as it could never be applied; in particular, the initial mTSP solution
would never be modified.

We continue with discussing the setting described in the second row of Table 4.2; i.e. we
investigate the impact of simultaneously increasing the number of trucks and drones used.
For the second row of Table 4.2 we consider 30 instances in total and as before we consider
the average of the objective values. The results can be found in Table 4.4.

We will observe that the objective value using two trucks and drones is less than half
of the objective value using only one truck and drone; if our objective function was the
completion time, this would be disconcerting: For simplicity consider the setting with two
trucks and without drones; given a solution for this setting, by concatenating both tours
(and shortening it canonically such that the truck is at the depot only at the beginning and
at the end of its tour) one obtains a solution which has at most twice the completion time
as the solution for two trucks. However, it is easy to come up with instances for which the
optimal average delivery time with one truck is more than twice the optimal average delivery
time with two trucks. Hence it is not disconcerting that the respective factor is bigger than

4.6 A Local Search Algorithm for Vehicle Routing with Drones 111

trucks = ops. mTSP Grd. 60000

drones

1 1 2655.4 2513.0 2521.6
1&2 2435.7

2 1 1271.3 1202.0 1199.6
1&2 1151.8

3 1 840.2 7924 7924
1&2 761.6

4 1 648.5 613.1 610.8
1&2 586.7

5 1 528.2 498.9 495.6
1&2 479.1

Table 4.4: 200 packages and a varying number of trucks and drones are considered. Objective values
for the setting without drones (mTSP), for Greedy (Grd.), for Operation 1 alone and for VRD-LOC
(i.e. Operations (ops.) 1 and 2 together) are provided. The column “60000” refers to VRD-LOC and
to the variant using only Operation 1; per drone tour one minute runtime is used, starting with the
mTSP solution.® The results are rounded to one decimal, the average over 30 instances is taken.

two. To be specific, with only one truck the mTSP objective value is 2.09 times as large as
with two trucks, with two trucks it is 1.51 times as large as with three trucks, with three
trucks it is 1.30 times as large as with four trucks and with four trucks it is 1.23 times as
large as with five trucks. For Greedy and VRD-LOC (always with the same number of drones
as trucks) these factors are the same (up to £0.02).

If there is one truck and one drone we have the following results: The objective value of
the mTSP solution without drones was 9.0% bigger than the objective value of the VRD-LOC
solution and the Greedy solution was 3.2% bigger than the objective value of the VRD-LOC
solution. For comparison (recall that the settings slightly differ, cf. above), we again consider
the generalised version of VRD-LOC from [24] that uses seven additional operations for the
neighbour generation (which will be part of Elisabeth Kraus’ doctoral thesis). The objective
value of the mTSP solution was 12.9% bigger than for the generalised version of VRD-
LOC and the objective value of Greedy was 6.7% bigger than for the generalised version of
VRD-LOC.

For the settings with two to five trucks and drones, the objective value of the mTSP
solution without drones was between 10.2% and 10.5% bigger than the objective value of the
VRD-LOC solution and the objective value of the Greedy solution was between 4.0% and
4.5% bigger than the objective value of the VRD-LOC solution. As above, for comparison we
consider the generalised version of VRD-LOC from [24] that uses seven additional operations.
The objective value of the mTSP solution was between 14.1% and 14.8% bigger than for the
generalised version of VRD-LOC and the objective value of Greedy was between 7.1% and
7.7% bigger than for the generalised version of VRD-LOC. This underlines that VRD-LOC

8In particular, the total runtime for the respective entries in the rows further down is larger than the
runtime for the respective entries at the top; however, as we have seen in Table 4.3 (and will see in more
detail in Table 4.5 and in the paragraph “Runtime” in Subsection 4.6.2) VRD-LOC converges very fast, hence
this has only marginal impact on the comparability of the different rows.

112 4. Vehicle Routing with Drones

is a suitable starting point but additional operations for the neighbour generation should be
added in order to improve the solution quality. Also note that in all settings of the second
row of Table 4.2 the solution quality using Operation 1 only has been largely the same as the
solution quality of Greedy, which according to the explanation given above is as expected.

Runtime Finally, we consider how fast VRD-LOC converges. Note that in general, e.g. in
order to deduce suitable stopping times for a local search algorithm, it often does not suffice
to only consider the average over several runs of the algorithm; in particular, even if we
rerun a randomised algorithm on the same instance, runtime and objective value may differ.
However, in the present setting the results for the individual instances (recall that for each
setting we averaged over 30 instances) mostly yielded results rather close to the respective
average results in Table 4.5 which contains the relative improvements after different time
steps and is described in detail below; thus, here for approximative runtime considerations we
use the average values. The issue that in many settings considering only the average runtime
may not be sufficient was addressed in [64]; however, note that the setting discussed there in
some aspects differs from the present setting; in particular, there Las Vegas algorithms were
considered which are characterised by the property that whenever they return a solution, it
is correct and their runtime is nondeterministic. In contrast, we can extract the currently
best solution at any time step, i.e. VRD-LOC is a so-called anytime algorithm; also for many
instances VRD-LOC may be unable (even theoretically) to find an optimal solution, because
of its restricted neighbourhood generation. Nevertheless, the reasoning from [64] to some
extent also applies here and if VRD-LOC should be applied in situations where runtime is
highly critical, the behaviour of the respective random variables should be investigated in
greater detail; then also different stopping criteria might be better suited, e.g. to stop if there
is no significant improvement over a certain number of steps.

Now we start considering the runtime; in order to do this, recall that the algorithm puts
the drones into use sequentially, i.e. parallel tempering is applied for each drone tour one after
the other. Therefore we investigate the speed of convergence of VRD-LOC by considering
the speed of convergence while parallel tempering is applied to one individual drone tour.
Note that as we consider only settings with at most one drone per truck the optimisation
of the first drone tour is largely independent of the optimisation of the second drone tour,
hence it does not make a substantial difference whether we consider the improvement during
the optimisation of the first or of the second drone tour. Thus, in order to investigate the
speed of convergence, we consider the results in Table 4.5 which measure the progress of the
local search while the second drone is put into use; the data can be derived from the absolute
results from Table 4.3: We start with the solution where the first drone is already put into
use; e.g. for 200 packages, considering VRD-LOC, this corresponds to the value “1226.2” from
Table 4.3. Then we consider the objective value after the second drone has been put into use,
i.e. after one additional minute runtime, in the example with 200 packages this corresponds
to the value “1165.0”. So in total there is an improvement of 1226.2 — 1165.0 = 61.2 which
corresponds to 100%. Now we investigate, after different time steps, which proportion of the
improvement is still lacking; in the example with 200 packages, after 50 ms there is 45.6%
lacking or in other words already 54.4% of the improvement has been achieved within the
first 50 ms; note that the quantity 45.6% is obtained from the absolute values in Table 4.3

4.6 A Local Search Algorithm for Vehicle Routing with Drones 113

by the calculation (1192.9 — 1165.0)/61.2 ~ 0.4559.

pckg. ops. 50 250 1000 2000 3000 4000 5000 7500 10000 30000

25 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 7.9 2.5 1.7 1.7 1.7 1.7 1.7 0.0 0.0 0.0
50 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 9.0 3.1 1.2 0.9 0.3 0.3 0.3 0.3 0.0 0.0
75 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 141 6.1 1.9 1.1 0.8 0.8 0.6 0.3 0.3 0.3
100 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 198 113 5.6 3.3 2.8 1.9 1.6 1.6 1.6 1.2
125 1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 269 158 8.6 4.7 4.1 3.3 2.9 2.3 1.4 0.2
150 1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 298 156 8.0 5.7 4.5 3.7 3.5 2.9 2.3 1.0
200 1 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 456 270 137 9.8 9.0 7.8 7.5 5.1 3.6 1.5
250 1 21.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1&2 538 31.0 176 108 8.7 7.6 6.8 5.8 4.3 1.4
300 1 354 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1&2 613 352 220 16.6 134 119 109 84 6.4 2.2

Table 4.5: Two trucks, two drones and a varying number of packages (pckg.) are considered. The
relative progress in percent after various periods of time (in ms) for VRD-LOC (i.e. Operations
(ops.) 1 and 2) and for the variant with Operation 1 alone is provided (cf. the description below).
The results are rounded to one decimal. As described in the paragraph “Runtime” in Subsection
4.6.2, this table can be deduced from Table 4.3 which contains the respective absolute results. For
better readability, here we repeat the explanation of how this table can be deduced from Table
4.3: We start with the solution where the first drone is already put into use; e.g. for 200 packages,
considering VRD-LOC, this corresponds to the value “1226.2” from Table 4.3. Then we consider
the objective value after the second drone has been put into use, i.e. after one additional minute
runtime, in the example with 200 packages this corresponds to the value “1165.0”. So in total there
is an improvement of 1226.2 — 1165.0 = 61.2 which corresponds to 100%. Now we investigate, after
different time steps, which proportion of the improvement is still lacking; in the example with 200
packages, after 50 ms there is 45.6% lacking or in other words already 54.4% of the improvement
has been achieved within the first 50 ms; the quantity 45.6% is obtained from the absolute values
in Table 4.3 by the calculation (1192.9 — 1165.0)/61.2 ~ 0.4559.

Now let us analyse the results from Table 4.5. First we observe that the restricted version
using only Operation 1 is extremely fast, i.e. in all settings but the setting with 300 packages,
after 250 ms the entire improvement was achieved already and in the setting with 300
packages one second sufficed. This is not surprising, because as there is no “inverse” operation
for Operation 1, the algorithm behaves rather greedily as we already observed above; hence
after a short period of time there is no additional improvement. Now let us consider VRD-
LOC, i.e. both operations are used. First we notice that the needed runtime increases with
the number of packages; this is as expected as this causes longer tours and hence, loosely
speaking, there are more parts of the tour where the operations can be applied and hence

114 4. Vehicle Routing with Drones

there are more possible solutions that are tried by VRD-LOC. For all runtime considerations
keep in mind that the number of packages is split on the different vehicles, e.g. for instances
with 200 packages on average each of both pairs of one drone and one truck respectively
has to deliver 100 packages. We observe that even for large numbers of packages the major
share of the total improvement is achieved after short runtimes; for example for 250 packages
within the first three seconds more than 91.3% of the improvement that is made within one
minute is achieved and after ten seconds it is already 95.7%. This shows that VRD-LOC
can handle large instances within short runtimes. Small instances even have a considerably
smaller runtime: For up to 150 packages, within the first second already more than 90% of
the total improvement that is made within one minute is achieved and after three seconds
more than 95% of the total improvement that is made within one minute is achieved. For
the detailed results see Table 4.5.

Summarising, we have observed that VRD-LOC is very fast on small instances and still
fast on large instances. As expected, the needed runtime increases with the number of pack-
ages. Possible reasons for the fast speed of convergence are the following. First, VRD-LOC
possesses some “greedy” characteristics: Operation 1 almost always yields an improved so-
lution, so applying Operation 1 can be considered as greedy behaviour; clearly VRD-LOC
does not behave entirely greedily as applying Operation 2 almost always worsens the current
solution; however, as it only inverts the impact of an operation of type 1, overall VRD-LOC
still maintains some greedy characteristics which can sustain a good runtime performance.
An overlapping aspect, considered from a different perspective, is that VRD-LOC does not
search within the entire search space, i.e. for many instances it may be impossible to obtain
an optimal solution by only applying Operations 1 and 2; thus VRD-LOC does only search
in a restricted search space which can contribute to the fast runtime; of course this comes
at the price that potentially better solutions may not be contained in this restricted search
space. As discussed earlier, by adding additional operations for the neighbour generation, a
higher solution quality can be achieved; this can be interpreted as enlarging the restricted
search space.

Summary and Suggestions for Improvements In summary, we have seen that VRD-
LOC outperforms Greedy and that substantial savings compared to the solutions without
drones are achieved (the latter point of course is not surprising). As discussed in the para-
graph “Discussion of VRD-LOC” in Subsection 4.6.1, the main purpose of VRD-LOC is to
provide an initial structure that can be extended by adding further neighbour generating op-
erations to obtain a more elaborate local search algorithm in order to improve the solution
quality. In fact, in our article (|24]) we have used seven additional operations to generate
neighbours thereby improving the solution quality considerably; this shows that VRD-LOC
can be used as a suitable starting point; the seven additional moves are not part of this thesis
but will be part of Elisabeth Kraus’ doctoral thesis. We also have seen that VRD-LOC runs
very fast on small instances and runs still fast on large instances. As an outlook, we want
to provide several possibilities to generalise and improve VRD-LOC; some of these ideas are
already mentioned in the paragraph “Discussion of VRD-LOC” in Subsection 4.6.1.

One direction that we already mentioned is to create additional operations for neighbour
generation (cf. [24]). Another direction is to modify the approach such that the drones are

4.7 Outlook 115

put into use simultaneously and not sequentially. Both previous suggestions can sustain
the algorithm to also deal appropriately with instances where more drones than trucks are
available. A third approach can be to extent VRD-LOC by adding “rather global” operations,
i.e. by adding operations that affect more than just one truck tour and the drones that
interact with that truck; for example operations that let a drone change the truck on which
it travels during its tour and operations that enable to switch packages that are assigned to
one truck from this truck to another truck could be considered. Note that in [24] we started
to consider such rather global operations, but the approach used there needs to be refined.
As a fourth approach, it might be beneficial to use more elaborate probability distributions.
Until now the random decisions that are made in VRD-LOC are made in a rather naive way;
choosing more sophisticated probability distributions might improve the algorithm.

4.7 Outlook

Here we suggest some generalisations of the VRD model which constitute interesting topics
for future research; for improvement suggestions for VRD-LOC we refer to the paragraph
“Discussion of VRD-LOC” in Subsection 4.6.1 and to the paragraph “Summary and Sugges-
tions for Improvements” in Subsection 4.6.2.

One interesting extension of the VRD model would be to consider settings where in-
teraction (arrival, departure) between drones and trucks is not only possible at package
destinations but also at different positions. This could be realised in different ways. One
possibility is to add a finite number of additional positions at which no package has to be de-
livered but interactions between trucks and drones are allowed; note that in related settings
such “rendezvous points” where drones and trucks can interact were already taken under
consideration, cf. for example [11]. Another, though less realistic, possibility is to allow such
interactions everywhere (e.g. in the Euclidean plane).

Furthermore, we assumed that a drone is uncharged after two flying edges and then
needs one edge on a truck to be fully charged again; considering a more realistic charging
process would be interesting. For example, the battery could last for a certain distance and be
charged continuously while the drone is carried by a truck. Then, e.g., a drone could depart
partially charged if it has enough energy to arrive at the next truck. Note that a restricted
battery life is also investigated in [88]. There it is also suggested that packages could have
assigned weights and drones cannot carry packages that are too heavy, i.e. some packages
must be delivered by trucks. Numerous further extensions are possible; for example, also in
a setting where the packages have assigned weights, the maximum flight distance of a drone
could be considered as a function of the weight that is carried by the respective drone.

More generally, basically all variants and restrictions of various vehicle routing problems
could be investigated in the context of drones supporting the trucks.

Chapter 5

Conclusion and Outlook

In Chapter 2, we have analysed the runtime and robustness of randomised algorithms for
information spreading. For Push on the complete graph, we have determined the probability
distribution of the runtime considerably more accurately than all previous work. Afterwards
we have considered the robustness of Push against adversarial edge deletions. Push is often
referred to as a very robust algorithm. Thus perhaps somewhat surprisingly, we have proven
that on expander graphs, Push is not robust against adversarial edge deletions; however,
on the positive side we have shown that adversarial edge deletions cannot prevent Push
from informing almost all nodes as fast as without the deletions. We also have investigated
information spreading on random evolving graphs. In particular, for Pull and PushéPull
(for Push this was already done in [34]) we have determined their expected runtimes up
to constant additive terms and obtained large deviation bounds where in each round the
underlying graph is a newly sampled Erdds-Rényi random graph G(n,a/n) where a > 0
is a constant. Future research should also determine the respective runtimes in the edge-
Markovian model (cf. the paragraph “Evolving Graphs” in Subsection 2.2.2).

While in Chapter 2 we investigated how one piece of information spreads, Chapter 3
addresses the question of how contradictory opinions spread. In particular, we have investi-
gated a model introduced by Alon et al. where two competing opinions spread in a graph.
One opinion is considered to be true (red) and the other to be false (blue). The opinion
spreading is affected by an adversary (either the weak or the strong adversary) with certain
powers that wants to promote the falsehood (see Section 3.2 for an accurate definition of
the model and of the different types of adversaries). One central question is, which prop-
erties of the underlying graph assure that the majority of the nodes become red. We have
shown that a lower bound on the minimum degree assures that the truth prevails in spite
of the weak adversary’s efforts. We also have shown that Erd&s-Rényi random graphs are
very robust against the strong adversary in the sense that even if we allow a large number of
adversarial edge deletions in an Erdds-Rényi random graph, the majority of nodes will still
become red. Furthermore, we have obtained a respective result where not only edge deletions
but also edge insertions are considered. We also have changed perspectives and have proven
that finding an optimal strategy from the strong adversary’s perspective is NP-hard. Many
possibilities for future research in this direction exist, for a respective discussion we refer to
Section 3.6.

In Chapter 4, we have considered a vehicle routing problem that models the collaboration

118 5. Conclusion and Outlook

of trucks and drones for parcel delivery. An intriguing facet of this vehicle routing variant
are its inherent scheduling aspects, as often trucks have to wait for drones to carry them
or vice versa. We have provided an accurate and formal definition of the problem and we
have proven an equivalent characterisation of the feasibility of a solution. Moreover, we have
introduced a simple local search algorithm and evaluated it empirically. The algorithm runs
very fast and outperforms a canonical Greedy algorithm. For a discussion of limitations and
improvement suggestions for the algorithm we refer to the paragraphs “Discussion of VRD-
LOC” in Subsection 4.6.1 and “Summary and Suggestions for Improvements” in Subsection
4.6.2; for a discussion of directions for future research in the context of the collaboration of
trucks and drones for parcel delivery we refer to Section 4.7.

In summary, we think that the topics covered in this thesis lie in exciting and active fields
of research where still many intriguing questions can be investigated.

Bibliography

1]

2|

13l

4]

[5]

6]

17l

8]

19]

[10]

[11]

E. H. L. Aarts and J. H. M. Korst. Simulated annealing and Boltzmann machines
- a stochastic approach to combinatorial optimization and neural computing. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 1990.

H. Acan, A. Collevecchio, A. Mehrabian, and N. Wormald. On the push&pull protocol
for rumour spreading. ArXiw e-prints: 1411.0948v2, 2015.

L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search in power-law
networks. Physical review F, 64(4):046135, 2001.

N. Agatz, P. Bouman, and M. Schmidt. Optimization approaches for the traveling
salesman problem with drone. FRIM Report Series Reference No. ERS-2015-011-LIS,
2015.

N. Alon, M. Feldman, O. Lev, and M. Tennenholtz. How Robust Is the Wisdom of
the Crowds? In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
2055-2061, 2015.

O. Angel, A. Mehrabian, and Y. Peres. The string of diamonds is tight for rumor
spreading. ArXiv e-prints: 1704.00874v2, 2017.

A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. science,
286(5439):509-512, 1999.

J. E. Beasley. Route first cluster second methods for vehicle routing. Omega, 11(4):403—
408, 1983.

B. Behdani and J. C. Smith. An Integer-Programming-Based Approach to the Close-
Enough Traveling Salesman Problem. INFORMS Journal on Computing, 26(3):415—
432, 2014.

T. Bektas. The multiple traveling salesman problem: an overview of formulations and
solution procedures. Omega, 34(3):209 — 219, 2006.

M. S. bin Othman, A. Shurbevski, Y. Karuno, and H. Nagamochi. Routing of carrier-
vehicle systems with dedicated last-stretch delivery vehicle and fixed carrier route.
Journal of Information Processing, 25:655-666, 2017.

120 BIBLIOGRAPHY

[12] B. Bollobéas. Random Graphs. Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, 2001.

[13] S. Boucheron, G. Lugosi, and P. Massart. A sharp concentration inequality with
applications. Random Struct. Algorithms, 16(3):277-292, 2000.

[14] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE
Transactions on Information Theory, 52(6):2508-2530, 2006.

[15] I.-M. Chao. A tabu search method for the truck and trailer routing problem. Computers
¢ OR, 29(1):33-51, 2002.

[16] M. Chen and J. Macdonald. Optimal routing algorithm in swarm robotic systems.
Available at: Department of Computer Sciences, California Institute of Technology,
2014.

[17] F. Chierichetti, S. Lattanzi, and A. Panconesi. Almost tight bounds for rumour spread-
ing with conductance. In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 399-408. ACM, 2010.

[18] F. Chierichetti, S. Lattanzi, and A. Panconesi. Rumour spreading and graph conduc-
tance. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 1657-1663. STAM, 2010.

[19] F. Chierichetti, S. Lattanzi, and A. Panconesi. Rumor spreading in social networks.
Theoretical Computer Science, 412(24):2602-2610, 2011.

[20] F. Chung and L. Lu. Connected components in random graphs with given expected
degree sequences. Annals of combinatorics, 6(2):125-145, 2002.

[21] A. Clementi, P. Crescenzi, C. Doerr, P. Fraigniaud, F. Pasquale, and R. Silvestri.
Rumor spreading in random evolving graphs. Random Structures € Algorithms,
48(2):290-312, 2016.

[22] J. R. Current and D. A. Schilling. The Covering Salesman Problem. Transportation
Science, 23(3):208-213, 1989.

[23] R. Daknama. Pull and Push&Pull in Random Evolving Graphs. ArXiv e-prints:
1801.00316v2, 2018.

[24] R. Daknama and E. Kraus. Vehicle Routing with Drones. ArXiv e-prints: 1705.06431,
2017.

[25] S. Daum, F. Kuhn, and Y. Maus. Rumor Spreading with Bounded In-Degree. In
Structural Information and Communication Complexity - 23rd International Collo-
quium, SIROCCO 2016, Helsinki, Finland, July 19-21, 2016, Revised Selected Papers,
pages 323-339, 2016.

BIBLIOGRAPHY 121

[26]

27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

H. De Beukelaer, G. F. Davenport, G. De Meyer, and V. Fack. JAMES: A modern
object-oriented Java framework for discrete optimization using local search metaheuris-
tics. In 4th International symposium and 26th National conference on Operational
Research, pages 134-138. Hellenic Operational Research Society, 2015.

G. S. de Grancy and M. Reimann. Evaluating two new heuristics for constructing
customer clusters in a VRPTW with multiple service workers. CEJOR, 23(2):479-500,
2015.

G. S. de Grancy and M. Reimann. Vehicle routing problems with time windows and
multiple service workers: a systematic comparison between ACO and GRASP. Central
European Journal of Operations Research, 24(1):29-48, 2016.

D. Dellamonica, Y. Kohayakawa, M. Marciniszyn, and A. Steger. On the Resilience of
Long Cycles in Random Graphs. FElectr. J. Comb., 15(1), 2008.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-
hart, and D. Terry. Epidemic algorithms for replicated database maintenance. In Pro-
ceedings of the sizth annual ACM Symposium on Principles of distributed computing,
pages 1-12. ACM, 1987.

S. Dereich, C. Monch, and P. Morters. Typical distances in ultrasmall random net-
works. Advances in Applied Probability, 44(2):583-601, 2012.

U. Derigs, M. Pullmann, and U. Vogel. Truck and trailer routing - Problems, heuristics
and computational experience. Computers & OR, 40(2):536-546, 2013.

B. Doerr, M. Fouz, and T. Friedrich. Social networks spread rumors in sublogarithmic
time. In Proceedings of the forty-third annual ACM symposium on Theory of computing,
pages 21-30. ACM, 2011.

B. Doerr and A. Kostrygin. Randomized Rumor Spreading Revisited. In LIPlcs-
Leibniz International Proceedings in Informatics, volume 80. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

B. Doerr and M. Kiinnemann. Tight analysis of randomized rumor spreading in com-
plete graphs. In 2014 Proceedings of the Eleventh Workshop on Analytic Algorithmics
and Combinatorics (ANALCO), pages 82-91. STAM, 2014.

J. Dong, N. Yang, and M. Chen. Heuristic approaches for a tsp variant: The automatic
meter reading shortest tour problem. Eztending the Horizons: Advances in Computing,
Optimization, and Decision Technologies, 37:145-163, 2007.

K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski. Vehicle Routing Problems
for Drone Delivery. IEEE Trans. Systems, Man, and Cybernetics: Systems, 47(1):70—
85, 2017.

122 BIBLIOGRAPHY

[38] M. Drexl. Branch-and-price and heuristic column generation for the generalized truck-
and-trailer routing problem. Revista de Métodos Cuantitativos para la Economia y la
Empresa, 12, 2011.

[39] M. Drexl. Synchronization in Vehicle Routing - A Survey of VRPs with Multiple
Synchronization Constraints. Transportation Science, 46(3):297-316, 2012.

[40] M. Drexl. Branch-and-cut algorithms for the vehicle routing problem with trailers and
transshipments. Networks, 63(1):119-133, 2014.

[41] D. J. Earl and M. W. Deem. Parallel tempering: Theory, applications, and new per-
spectives. Physical Chemistry Chemical Physics, 7(23):3910-3916, 2005.

[42] P. Erdgs and A. Rényi. On a classical problem of probability theory. Magyar Tud.
Akad. Mat. Kutato Int. Kézl. 6, pages 215-220, 1961.

[43] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Randomized broadcast in networks.
Random Structures € Algorithms, 1(4):447-460, 1990.

[44] S. M. Ferrandez, T. Harbison, T. Weber, R. Sturges, and R. Rich. Optimization of a
truck-drone in tandem delivery network using k-means and genetic algorithm. Journal
of Industrial Engineering and Management, 9(2):374-388, 2016.

[45] N. Fountoulakis, A. Huber, and K. Panagiotou. Reliable Broadcasting in Random
Networks and the Effect of Density. In INFOCOM 2010. 29th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer
and Communications Societies, 15-19 March 2010, San Diego, CA, USA, pages 2552—
2560, 2010.

[46] N. Fountoulakis and K. Panagiotou. Rumor spreading on random regular graphs and
expanders. Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, pages 560-573, 2010.

[47] N. Fountoulakis, K. Panagiotou, and T. Sauerwald. Ultra-fast rumor spreading in
social networks. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 1642—-1660. Society for Industrial and Applied Mathematics,
2012.

[48] A. M. Frieze and G. R. Grimmett. The shortest-path problem for graphs with random
arc-lengths. Discrete Applied Mathematics, 10(1):57-77, 1985.

[49] C. J. Geyer. Markov chain monte carlo maximum likelihood. In Computing Science
and Statistics: Proc. of the 23rd Symposium on the Interface, 1991.

[50] G. Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance.
In 28th International Symposium on Theoretical Aspects of Computer Science, STACS
2011, March 10-12, 2011, Dortmund, Germany, pages 57—68, 2011.

BIBLIOGRAPHY 123

[51]

[52]

[53]

[54]

[55]
[56]
[57]
[58]
[59]
[60]

|61]

[62]

[63]

|64]

|65]

[66]

G. Giakkoupis. Tight Bounds for Rumor Spreading with Vertex Expansion. In Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 801-815, 2014.

G. Giakkoupis, Y. Nazari, and P. Woelfel. How Asynchrony Affects Rumor Spread-
ing Time. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC ’16, pages 185-194, New York, NY, USA, 2016.

G. Giakkoupis and T. Sauerwald. Rumor spreading and vertex expansion. In Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1623-1641, 2012.

F. Glover. Future paths for integer programming and links to artificial intelligence.
Computers & OR, 13(5):533-549, 1986.

F. Glover. Tabu search — part I. ORSA Journal on computing, 1(3):190-206, 1989.
F. Glover. Tabu search — part II. ORSA Journal on computing, 2(1):4-32, 1990.
F. Glover. Tabu search: A tutorial. Interfaces, 20(4):74-94, 1990.

F. Glover and M. Laguna. Tabu Search. Springer, 2013.

B. Golden, S. Raghavan, and E. Wasil. The Vehicle Routing Problem: Latest Ad-
vances and New Challenges. Operations Research/Computer Science Interfaces Series.
Springer US, 2008.

B. L. Golden, Z. N. Azimi, S. Raghavan, M. Salari, and P. Toth. The Generalized
Covering Salesman Problem. INFORMS Journal on Computing, 24(4):534-553, 2012.

S. Greenberg and M. Mohri. Tight lower bound on the probability of a binomial
exceeding its expectation. ArXiv e-prints: 1306.1433v3, 2013.

D. J. Gulezynski, J. W. Heath, and C. C. Price. The close enough traveling salesman
problem: A discussion of several heuristics. Perspectives in Operations Research, pages
271-283, 2006.

Q. M. Ha, Y. Deville, Q. Pham, and M. H. Ha. Heuristic methods for the Traveling
Salesman Problem with Drone. ArXiv e-prints: 1509.08764v3, 2017.

H. H. Hoos and T. Stiitzle. Evaluating Las Vegas Algorithms: Pitfalls and Remedies.
In UAI ’98: Proceedings of the Fourteenth Conference on Uncertainty in Artificial

Intelligence, University of Wisconsin Business School, Madison, Wisconsin, USA, July
24-26, 1998, pages 238-245, 1998.

H. H. Hoos and T. Stiitzle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004.

K. Hukushima and K. Nemoto. Exchange Monte Carlo method and application to spin
glass simulations. Journal of the Physical Society of Japan, 65(6):1604-1608, 1996.

124 BIBLIOGRAPHY

[67] S. Janson, T. Luczak, and A. Rucinski. Random graphs. Wiley-Interscience series in
discrete mathematics and optimization. John Wiley, 2000.

[68] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized Rumor
Spreading. In 41st Annual Symposium on Foundations of Computer Science, FOCS
2000, 12-14 November 2000, Redondo Beach, California, USA, pages 565574, 2000.

[69] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of
statistical physics, 34(5-6):975-986, 1984.

[70] A. Kostrygin. Precise Analysis of Epidemic Algorithms. PhD thesis, Université Paris-
Saclay, 2017.

[71] M. Laguna. A guide to implementing tabu search. Investigacidn Operativa, 4(1):5-25,
1994.

[72] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. Furopean Journal of Operational Research, 59(3):345-358, 1992.

[73] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet. Classical and modern heuristics
for the vehicle routing problem. International transactions in operational research, 7(4-
5):285-300, 2000.

[74] C. K. Y. Lin. A vehicle routing problem with pickup and delivery time windows, and
coordination of transportable resources. Computers € OR, 38(11):1596-1609, 2011.

[75] S. Lin, V. F. Yu, and S. Chou. Solving the truck and trailer routing problem based on
a simulated annealing heuristic. Computers & OR, 36(5):1683-1692, 2009.

[76] G. Lugosi. Concentration-of-measure inequalities. Lecture notes. 2004.

[77] Z. Luo, Z. Liu, and J. Shi. A Two-Echelon Cooperated Routing Problem for a Ground
Vehicle and Its Carried Unmanned Aerial Vehicle. Sensors, 17(5):1144, 2017.

[78] N. Mathew, S. L. Smith, and S. L. Waslander. Planning Paths for Package Delivery in
Heterogeneous Multirobot Teams. IEEE Trans. Automation Science and Engineering,
12(4):1298-1308, 2015.

[79] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6):1087-1092, 1953.

[80] N. Metropolis and S. Ulam. The monte carlo method. Journal of the American
statistical association, 44(247):335-341, 1949.

[81] D. Mosk-Aoyama and D. Shah. Fast Distributed Algorithms for Computing Separable
Functions. IEEE Trans. Information Theory, 54(7):2997-3007, 2008.

BIBLIOGRAPHY 125

[82]

[83]

[34]

[85]

[36]

[87]

33

[89]

[90]

[91]

192]

193]

[94]
195]

196]

[97]

C. C. Murray and A. G. Chu. The flying sidekick traveling salesman problem: Opti-
mization of drone-assisted parcel delivery. Transportation Research Part C: Emerging
Technologies, 54:86-109, 2015.

K. Panagiotou, X. Pérez-Giménez, T. Sauerwald, and H. Sun. Randomized Rumour
Spreading: The Effect of the Network Topology. Combinatorics, Probability & Com-
puting, 24(2):457-479, 2015.

K. Panagiotou, A. Pourmiri, and T. Sauerwald. Faster Rumor Spreading With Multiple
Calls. Electr. J. Comb., 22(1):P1.23, 2015.

K. Panagiotou and L. Speidel. Asynchronous Rumor Spreading on Random Graphs.
Algorithmica, 78(3):968-989, 2017.

[. T. Pérez, C. C. Corona, and J. L. Verdegay. Solving the Truck and Trailer Routing
Problem with Fuzzy Constraints. Int. J. Computational Intelligence Systems, 8(4):713—
724, 2015.

B. Pittel. On Spreading a Rumor. SIAM J. Appl. Math., 47(1):213-223, 1987.

S. Poikonen, X. Wang, and B. L. Golden. The vehicle routing problem with drones:
Extended models and connections. Networks, 70(1):34-43, 2017.

G. Polya. Uber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das
Momentenproblem. Mathematische Zeitschrift, 8(3):171-181, 1920.

G. Polya and G. Szego. Problems and Theorems in Analysis I: Series. Integral Calculus.
Theory of Functions. Classics in Mathematics. Springer Berlin Heidelberg, 1997.

A. Ponza. Optimization of drone-assisted parcel delivery. Master’s thesis, University
of Padova, 2016.

T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter. On the capacitated
vehicle routing problem. Mathematical programming, 94(2-3):343-359, 2003.

S. Reisser. Rumor spreading algorithms on expander graphs. Master’s thesis, Ludwig-
Maximilians-Universitat Miinchen, 2016.

E. M. Rogers. Diffusion of innovations (5. ed.). Free Press, 2003.

T. Sauerwald and A. Stauffer. Rumor spreading and vertex expansion on regular
graphs. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 462-475, 2011.

S. Scheuerer. A tabu search heuristic for the truck and trailer routing problem. Com-
puters € OR, 33:894-909, 2006.

R. Serfling. Approximation Theorems of Mathematical Statistics. Wiley Series in
Probability and Statistics. Wiley, 2009.

126

BIBLIOGRAPHY

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

[109]

R. Shuttleworth, B. L. Golden, S. Smith, and E. Wasil. Advances in meter reading:
Heuristic solution of the close enough traveling salesman problem over a street network.
In The Vehicle Routing Problem: Latest Advances and New Challenges, pages 487-501.
Springer, 2008.

B. Sudakov and V. H. Vu. Local resilience of graphs. Random Struct. Algorithms,
33(4):409-433, 2008.

R. H. Swendsen and J.-S. Wang. Replica Monte Carlo simulation of spin-glasses.
Physical Review Letters, 57(21):2607, 1986.

P. Toth and D. Vigo. Models, relaxations and exact approaches for the capacitated
vehicle routing problem. Discrete Applied Mathematics, 123(1):487-512, 2002.

P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applications, Sec-
ond Edition. MOS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics, 2014.

V. éerny. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of optimization theory and applications, 45(1):41-51,
1985.

J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia, and N. Velasco. Heuristic column
generation for the truck and trailer routing problem. International Conference on
Industrial Engineering and Systems Management [ESM, pages 25-27, 2011.

J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia, and N. Velasco. A matheuristic
for the truck and trailer routing problem. Furopean Journal of Operational Research,
230(2):231-244, 2013.

C. Wang, J. D. Hyman, A. Percus, and R. Caflisch. Parallel tempering for the traveling
salesman problem. International Journal of Modern Physics C, 20(04):539-556, 2009.

X. Wang, S. Poikonen, and B. Golden. The vehicle routing problem with drones:
Several worst-case results. Optimization Letters, 11(4):679-697, 2017.

[. Wegener. Simulated annealing beats metropolis in combinatorial optimization. FElec-
tronic Colloquium on Computational Complexity (ECCC), (89), 2004.

B. Yuan, M. Orlowska, and S. Sadiq. On the optimal robot routing problem in wireless
sensor networks. IEEE Transactions on Knowledge and Data Engineering, 19(9):1252—
1261, 2007.

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.2011, §8, Abs. 2 Pkt. 5.)

Hiermit erkldre ich an Eidesstatt, dass die Dissertation von mir selbststédndig, ohne uner-
laubte Beihilfe angefertigt ist.

Daknama, Rami

Miinchen, den 15. Oktober 2018

	Abstract
	Zusammenfassung
	Acknowledgement
	Introduction
	Runtime and Robustness of Information Spreading Algorithms
	Introduction
	Background and Related Literature
	The Distribution of the Runtime of Push on the Complete Graph
	Resilience Results for Push
	Information Spreading on Random Evolving Graphs
	Outlook

	On a Graph Theoretical Model for Opinion Spreading
	Introduction
	The Model and Related Results
	Local Resilience
	Results
	Proofs
	Outlook

	Vehicle Routing with Drones
	Introduction
	Related Literature
	Informal Description of the Model
	Formal Definition of the Model
	Local Search Algorithms
	A Local Search Algorithm for Vehicle Routing with Drones
	Outlook

	Conclusion and Outlook

