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Abstract 

Keywords: In vivo / in vitro, calcium imaging, in vivo 2-photon imaging, patch-clamp, genetically encoded 

calcium indicator, sensory cortex, visual cortex, laser-scanning photostimulation, synaptic connectivity, 

dLGN, dual optogenetic circuit mapping, retinogeniculate synapse 

 

Neocortical pyramidal cells (PCs) display functional specializations defined by their connectivity 

as well as their molecular, anatomical and electrophysiological properties. For layer 2/3 (L2/3) PCs little is 

known about the detailed relationship between their neuronal response properties and their underlying 

cellular properties as well as their circuit connectivity. 

  The first part of this thesis characterizes the morphological and electrophysiological 

properties of L2/3 PCs in the binocular zone of mouse primary visual cortex (V1) to reveal potential L2/3 

PC subtypes. Analysis based on electrophysiology and morphology argues against morpho-

electrophysiological L2/3 PC subtypes in mouse V1.  

The second part of this thesis investigates whether L2/3 PCs differ in their connectivity patterns 

and whether this is related to differences in their stimulus preferences. Laser scanning photostimulation 

(LSPS) by UV glutamate uncaging in brain slices reveals that L2/3 PCs receive to varying degrees excitatory 

input from L2/3 and L5 in addition to the canonical L4 input and that the sources of excitatory and 

inhibitory input are not balanced in all cells.  

In order to probe the functional implications of the different input patterns this study presents an 

in vivo / in vitro approach: First, the visual response properties (orientation/direction selectivity, 

temporal/spatial preferences, ocular dominance and spontaneous activity) of individual L2/3 PCs 

expressing a genetically encoded calcium indicator (GECI) are characterized with in vivo 2-photon calcium 

imaging. Subsequently, the very same neurons are re-identified in brain slices for circuit analysis with 

LSPS. Therefore, this study is able to directly relate the functional response properties of neurons to the 

underlying laminar excitatory and inhibitory inputs for the first time.  

Analyses of the relation between functional response properties measured in vivo and the laminar 

connectivity assessed in vitro do not reveal distinct subtypes of L2/3 PCs embedded in functional 

microcircuits in accordance with the morphological and electrophysiological observations. Therefore, the 

diversity of visual response properties of neighbouring L2/3 PCs in mouse visual cortex is not directly 

related to their laminar connectivity.  
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The last part of this thesis challenges the classical view of strict eye-specific information 

segregation within the adult dorsolateral geniculate nucleus (dLGN). Thalamic cells (TCs) have been 

demonstrated to display binocular responses at the level of the dLGN in the adult animal, but the 

underlying circuit has not been investigated. This thesis develops a dual-color optogenetic approach 

enabling eye-specific retinal input mapping onto single TCs. The application of this dual-color 

photostimulation approach provides the first evidence of binocularity at the level of the retinogeniculate 

synapse. 
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1 Introduction  

A central goal of neuroscience research is to understand the molecular and physiological 

mechanisms underlying learning, memory, behavior and cognition. The function of neuronal circuits is 

determined mostly by the specific connectivity between their individual cells. Likewise, the response and 

tuning properties of individual neurons arise generally from the information carried by their synaptic 

inputs. However, little is known about the detailed relationship between the organization of synaptic 

connections and neuronal response properties at the level of single cells. In order to understand the input-

output transformation of a single neuron within its physiological context, it is therefore necessary to 

characterize its stimulus response properties together with its underlying connectivity as well as cellular 

and synaptic properties. This approach will ultimately lead to the understanding of neuronal circuits and 

its implication in learning, memory, behavior and cognition.  

The neocortex processes incoming signals in local microcircuits and computes information from 

different brain areas within its six layered structure composed of neurons. Since the neocortical cellular 

organization is highly similar across different brain areas and even animal species, this common structural 

organization has led to the idea that microcircuits in each brain area perform the same principal 

computational processing irrespective of their particular incoming information. Following this idea of 

stereotyped cortical processing, V1 has been employed as an easily accessible model system, where the 

stimulus parameter space is well defined, in order to measure response properties of individual cells in 

the context of their underlying microcircuit.   

Excitatory principal cells of layer 2/3 (L2/3 PCs) are a key element in information integration, since 

they receive signals from intra- as well as translaminar neocortical regions, while at the same time 

transferring information across cortical layers and areas. In order to understand the specific role of L2/3 

PCs in information processing, it is an absolute necessity to assess whether there are different types of 

L2/3 PCs based on their functional role as well as the underlying connectivity within the circuit.  Therefore, 

this study attempts to first characterize L2/3 PCs on the anatomical and electrophysiological level in the 

binocular zone of mouse V1. Secondly, this study characterizes the excitatory and inhibitory laminar 

connections of L2/3 PCs in V1. Finally, function and connectivity are directly related by both characterizing 

the visual response properties as well as the underlying excitatory and inhibitory laminar connections of 

the same L2/3 PCs in V1.  
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The prime location of sensory information integration and its computation are thought to be 

within the neocortex. Subcortical structures such as the thalamus have been only considered as relay 

stations that simply transfer sensory information from sensory organs to the neocortex. Following this 

classical view, the primary thalamus of the visual system, the dLGN, is believed to convey the information 

from the two retinas separately to V1. Hence, the combination of sensory information of both eyes occurs 

earliest in the binocular zone of V1. However, recent evidence suggest that sensory information coming 

from both eyes is already partially combined at the level of the dLGN. Therefore, the last part of this study 

aims at developing an approach for studying binocular integration in the dLGN with a focus on the 

retinogeniculate synapse.   

 

1.1 The visual system 

1.1.1 The mouse visual system    

The mouse has become the most heavily used model for studying the function of the visual system 

and its underlying circuits over the last decade. Three main factors have led to this popularity: 1) The 

genetic tools in the mouse allow studying defined neuronal circuits. 2) Optogenetics allow controlling 

individual cell types within neuronal circuits with high temporal precision to stepwise understand the 

contribution of individual cell types to the whole circuit. 3) The monitoring and manipulation of large 

ensembles of cells allows studying specific aspects of sensory information processing in the behaving 

animal.  

When studying visual processing in mice, one should keep in mind that the mouse as a nocturnal 

animal relies more on its tactile as well as olfactory system and uses its visual system rather as an event 

detector. Therefore, the mouse has rather low visual acuity (0.5 to 0.6 cycles/degree, (Gianfranceschi et 

al. 1999) compared to humans (60 cycles/degree, (Campbell et al. 1965)), larger receptive fields (RFs, 

average 14°, (Métin et al. 1988)) compared to cats (1°, (Wilson et al. 1976)) and a reduced binocular field 

(30-40°, (Drager 1978)). Nevertheless, the principal stages of visual processing are very similar to the ones 

studied in higher mammals rendering the mouse as a tractable model organism to study vision.   

In the following sections a brief overview of the individual stages of visual processing from the 

retina to V1 is provided. The main focus is hereby on the mouse visual system.  
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1.1.2 The retina as first visual processing unit 

The complex visual environment and all its diverse features are first detected as ray of lights 

stimulating rod- and cone photoreceptors located in the retina of the eye. Rods are hereby responsible 

for vision at low light levels whereas cones are activated at higher light levels and mediate color vision. 

The number as well as the location of rods and cones in the retina varies significantly across animal species 

as reviewed in Wernet et al. (2014). In humans and primates the central region of the retina, the fovea, 

has a higher density of cone photoreceptors compared to the retinal periphery. In the mouse however, 

there is no fovea. Due to being a nocturnal species, the ratio of rods to cones is 98:2 in the mouse (Jeon 

et al. 1998). There are three cone types in mice with different spectral sensitivities based on their 

photopigment expression: green, blue and mixed green/blue. Their distribution throughout the mouse 

retina varies indicating that there is selective processing of specific color and contrast features across the 

visual field (Szél et al. 1992). 

The next processing step after photoreceptors convert the light information into electrical signals, 

is shaped by three retinal interneurons: horizontal, bipolar and amacrine cells. Each of these three main 

interneuron types come in considerable diversity and functions and receive either directly or indirectly 

excitatory or inhibitory signals from the photoreceptors. Finally, the output neurons of the eye are the 

retinal ganglion cells (RGCs). RGCs convert the information they receive to spike trains and project 

information to different brain regions.  RGCs can have quite diverse RF sizes in which the firing of cells can 

be altered. A study suggests that there are at least 33 different RGC types in the mouse retina (Baden et 

al. 2016). Each of these 33 RGCs types encode distinct features of the visual environment. The most 

classical examples would be RGCs that preferentially respond to either an increase or decrease in stimulus 

luminescence in a small localized part of the visual space whereas the surrounding visual space responds 

oppositely to the increase or decrease in stimulus luminescence (the classical ON-center and OFF- center 

RGCs, (Kuffler 1953, Hartline 1969). Furthermore, there are RGCs responding to more defined RFs such as 

edges or direction of movement.  

 

1.1.3 Subcortical visual circuits 

RGC axons are bundled in the optical nerve and about 95 % of axons cross over to the contralateral 

hemisphere at the optic chiasm. The remaining 5 % of axons project ipsilaterally (see Figure 1.1 lower 

panel; Williams et al. (2003)). RGCs project to over 40 subcortical regions (P. et al. 2014) which can either 
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be part of image-forming pathways (e.g. shape perception) or non-image forming circuits (e.g., circadian 

clock). The most prominent and heavily studied image-forming projection targets are the dLGN and the 

midbrain superior colliculus (SC). The dLGN directly projects to cortical areas whereas the SC is connected 

to the cortex via the lateral posterior nucleus (LP) or the dLGN.  

Image-forming projection targets contain a complete topographic representation of the retinal 

surface (so called retinotopic maps), given by the spatial arrangement of RGC axonal projections within 

each retinorecipient area.  

Interestingly, about 90% of all RGCs project to the SC in the mouse visual system whereas only 

about 10% of RGCs project to the SC in primates (Perry et al. 1984). In general, the SC directs head and 

eye movements to specific location in visual space (Douglas et al. 2005), but is also an area where 

information from different modalities is integrated (Drager et al. 1975, Ghose et al. 2014).   

 

1.1.4 dLGN visual circuits 

The dLGN is the most posterior-lateral nucleus of the thalamus and directly carries information 

from the retina to the visual cortex (Figure 1.1, lower panel). The mouse dLGN displays a relatively 

complete retinotopic map of the visual environment.  

There are two main categories of neurons in the dLGN. Most cells are excitatory thalamic (relay) 

cells (T(R)Cs, ~85% of the neuronal population) and the rest are inhibitory neurons (~15% of the neuronal 

population, Arcelli et al. (1997)). TCs in monkeys and cats can be further subdivided based on their 

electrophysiological, morphological and functional properties into M, P and K TCs in monkeys and the 

comparable TC types Y, X and W in cats (Friedlander et al. 1981). RFs of X cells show hereby smaller RFs 

and smaller dendritic trees than Y cells. These clear segregations are not as strong in the mouse. Most 

mouse TCs functionally resemble X cells in cats (Grubb et al. 2003). However, a study suggests a separation 

into X, Y and W cells based on morphological parameters in the mouse dLGN as well (Krahe et al. 2011). 

Functionally, half of the TCs display classical centre surround properties whereas the remaining 

cells show more selective coding properties such as direction or orientation selectivity (Piscopo et al. 

2013). Furthermore, afferent thalamic inputs projecting to all visual cortical layers have been 

demonstrated to already carry orientation tuned information (Sun et al. 2016).  These findings indicate 

that functional response properties of dLGN cells are more sophisticated than previously thought and the 
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traditional understanding of the dLGN as a pure relay station between the retina and the cortex has to be 

rethought.  

The mouse dLGN does not show discrete cellular layers as compared to the six-layered structure 

in the monkey. However, it can be divided into different subregions: A core region and a dorsolaterally 

located shell region can be visualized using biochemically markers (Grubb et al. 2003). Interestingly, 

different RGC types seem to project to the shell or core region (Huberman et al. 2009, Kim et al. 2010). 

Moreover, the mouse dLGN can be divided into eye-specific zones. Axonal RGC projections from the 

ipsilateral eye terminate in a specific zone in the dorsomedial part of the dLGN (Figure 1.1, lower panel). 

The dorsomedial tip receives input from the binocular visual field and projects then to the binocular visual 

cortex. The eye specific-segregation is mediated by molecular and activity dependent guidance cues 

(Huberman et al. 2005, Pfeiffenberger et al. 2005, Huberman et al. 2008, Dhande et al. 2011). 

In a classical view the dLGN simply forwards the activity of different RGC types to V1 and the 

information of each eye is completely kept separate within the dLGN. Binocular cells can earliest be found  

in the visual cortex in adult animals. However, studies in adult rodents and marmosets could show that 

there are cells in the dLGN that anatomically receive input from both eyes (Rompani et al. 2017) and 

respond to visual stimulation of both eyes (Grieve 2005, Howarth et al. 2014, Zeater et al. 2015). One 

study even claims that there are no purely monocular ipsilateral but only binocular driven cells in the 

dorsomedial tip of the adult mouse dLGN using extracellular recordings and full-field flash stimulation 

(Howarth et al. 2014). However, this observation has been contrasted by a recent study reporting 

binocular responses as well as either purely ipsilateral or contralateral responses of single dLGN axonal 

boutons measured using 2-photon calcium imaging and drifting gratings (Jaepel et al. 2017).  The 

convergence of RGC axons onto a single TC must be separately viewed on a structural and functional level. 

Anatomically, up to 91 RGCs have been observed to converge onto a single TRC in the dLGN using 

monosynaptic retrograde rabies tracing (Rompani et al. 2017). Furthermore, a large fraction of these 

inputs originated from both retinae arguing for a retinogeniculate origin of binocular cells. On a functional 

level, only about 1-3 RGCs provide very strong synaptic input whereas the remaining inputs form weak 

synapses (Litvina et al. 2017). 

In conclusion, there are indications both on the anatomical as well as functional level for 

binocularity within the mouse dLGN. However, the exact location within the dLGN as well as an estimate 

on their numbers and the exact ipsilateral/contralateral RGC input ratio on a single TC still needs to be 

assessed.  



   
 
Introduction   6 

 
 

 

Figure 1.1 Schematic overview of the mouse visual system and the major excitatory cell types with 
their connections in V1 

The contralateral and ipsilateral eye and their projections are colored in green and red, respectively. The axonal 

fibers from RGCs project to eye specific zones within the dLGN. The majority of RGCs (more than 90%) cross 

over to the other hemisphere at the optic chiasm. RGCs axonal terminals target thalamic cells in the dLGN. 

Thalamic cells project then to V1 (lower panels). Sensory information enters V1 at all cortical layers with the 

strongest input to L4. Information travels from L4 to L2/3, from there to L5 and to other long-range targets 

outside of V1. L5 projects to subcortical structures as well as L6 and other neocortical structures while L6 

projects to dLGN and other cortical areas (upper panel, PC subtypes are labelled with different colors). 

Interneurons (grey) spanning the entire cortical layers provide local inhibition. CC: Cortico-cortical; CT: Cortico-

thalamic; CS: Cortico-subcortical; CC-NS: Cortico-cortical non-striatal. 
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1.1.5 Primary visual cortex 

Comparable to subcortical visual areas, projections to V1 are retinotopically organized in such a 

way that neighbouring cells in V1 respond to visual stimulation in adjacent parts of the visual field. 

Consequently, stimuli in the lower visual field are represented rostral whereas stimuli in the upper visual 

field are represented more caudal within the visual cortex (Schuett et al. 2002). Furthermore, stimuli in 

the nasal visual field are represented lateral while the medial part of V1 responds to the temporal visual 

field (Schuett et al. 2002). Importantly, retinal distances are not mapped 1:1 on the cortical surface. There 

is an overrepresentation of the frontal visual field relative to the lateral visual field in the mouse V1 

(Bleckert et al. 2014, Garrett et al. 2014). Furthermore, V1 can be separated into two parts based on the 

eye-specific inputs from the retina: A large monocular region where only information from the 

contralateral eye is processed and a smaller binocular part where information of both eyes is processed 

(Figure 1.1, lower panel, Williams et al. (2003), Gordon et al. (1996))      

In V1 RFs of cells are more elongated compared to the more circular RFs of dLGN and retina. Also, 

cells are sharply tuned to features such as orientation, direction as well as spatial and temporal frequency 

(Niell et al. 2008, Smith et al. 2010, Andermann et al. 2011). Within the binocular part of V1, cells can also 

be further classified based on the input strength coming from the ipsilateral and/or the contralateral eye 

(the so called ocular dominance of a cell, Gordon et al. (1996)). 

Furthermore, Hubel and Wiesel classified cells of the visual cortex into simple and complex cells 

based on their responses to a moving bar within their RF: Simple cells display separate excitatory and 

inhibitory regions within their RFs and their responses to moving bars can be predicted by the spatial 

arrangement of these subfields. Complex cells respond to moving bars without being modulated by the 

exact location of the edges of the bars in their RFs (Hubel et al. 1962).  

In contrast to the functional columnar organization of the visual cortex in cats and primates (H. et 

al. 1974), where movement direction, ocular dominance and spatial frequency of neighbouring cells 

within a column tend to be similar (Simon et al. 1975, Payne et al. 1981, Bonhoeffer et al. 1991) the rodent 

visual system lacks such a clear defined spatial arrangement of iso-tuned patches across its cortical 

surface. However, there is still a debate whether there are ocular dominance patches in rat V1 (Laing et 

al. 2015). In the rodent visual system there is a so-called salt and pepper organization: Neighbouring 

sharply tuned cells are not spatially arranged but rather spatially intermixed (Ohki et al. 2005). 
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1.1.6 Higher visual areas 

V1 of mice projects to as many as 15 higher-order cortical areas. Nine of these 15 higher areas 

display a retinotopic organization: LM, LI, AL, RL, A, P, POR, AM and PM (reviewed in (Glickfeld et al. 2017)). 

The borders between V1 and these higher visual areas have been demonstrated, on both an anatomical 

as well as functional level, using different approaches such as anterograde or three-color tracing (Olavarria 

et al. 1989, Wang et al. 2007), intrinsic imaging (Garrett et al. 2014) and 2-photon calcium imaging 

(Marshel et al. 2011). Further subdivision of these higher areas, their connection between each other and 

the identification of additional higher-order areas is an active field of research. The visual cortical areas 

are hierarchically organized based on their degree of feedforward and feedback projections. V1 is hereby 

at the bottom of the hierarchy providing strong feedforward input to L2/3, L4 and L5 of higher visual areas 

and in return receiving the strongest feedback projections from higher visual areas LM and PM in layer 1 

(Wang et al. 2007, D'Souza et al. 2016). Furthermore, each of the higher visual areas in mice display larger 

receptive fields compared to V1 similar to the primate system (Wang et al. 2007, Gert et al. 2010).  

The different higher visual areas belong to different parallel processing streams comparable to 

the dorsal and ventral stream found in higher mammals. LM, LI, P and POR are strongly interconnected 

with each other and send strong efferent connections to ventral regions of the cortex, such as the 

entorhinal cortex and temporal association areas. This strongly suggest that these areas and their outputs 

are particularly involved in object identification and memory function. AL, RL, PM, AM and A are thought 

to be part of the dorsal stream with spatial navigation and movement functions providing output 

connections to the retrosplenial cortex, cingulate as well as secondary motor areas.  

Higher visual areas show also a varying degree of functional specialization in the mouse. One of 

the most prominent findings, using different approaches (2-photon calcium imaging and silicon probes), 

is that area LM prefers high spatial frequency but low temporal frequencies whereas area AL prefers low 

spatial frequency but high temporal frequencies (Andermann et al. 2011, Marshel et al. 2011). 

Interestingly, it seems that neurons in V1 make specific functional projections to these areas. Therefore, 

a neuron that prefers high temporal frequencies but low spatial frequencies projects more likely to area 

AL than LM and vice versa (Glickfeld et al. 2013). Taken together, functional specializations within the 

higher visual areas of the mouse clearly indicate that overall principles and areas are comparable to the 

primate system. However, further studies need to evaluate the degree of functional specialization and its 

connections in the mouse.   
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1.2 Neocortical cell types and their principal wiring 

The principal cellular organization of the neocortex is highly preserved between both different 

cortical areas and between species. Neocortical circuits contain different cell types with diverse functional 

roles that can be preferentially connected with each other. The classification of individual cell types within 

a given microcircuit is essential for understanding how the brain functions and is an active field of 

research. Generally, neurons can be classified based on the following criteria: their morphology, local or 

long-range input and output connectivity, intrinsic properties, developmental history, genetic profile and 

their functional response properties. The highly debated question here is how many of these classification 

parameters need to be different between two cells to assign them to individual cell classes (Fishell et al. 

2013). 

In most regions of the neocortex a six-layered circuit is the fundamental basis for information 

processing (see Figure 1.1, upper panel). The principal information flow through the six-layered circuit is 

the following: Information enters the neocortex from primary thalamus (dLGN in V1) targeting all six layers 

but most strongly L4. L4 projects to all layers but most strongly to L2/3. From L2/3 information is send to 

L5 but also to other cortical areas as well as the contralateral hemisphere. Within L5 information is 

forwarded to regions within the cortex (e.g. L6 and the contralateral hemisphere) or to subcerebral 

targets. L6 receives information from L5 as well as higher order brain areas and provides cortical feedback 

to the thalamus (Figure 1.1, upper panel).   

Neurons within a neocortical region and across layers can be divided into two major classes. 

Glutamatergic excitatory cells (also referred to as principal cells, PCs) and GABAergic inhibitory 

interneurons. Excitatory cells comprise about 80 % of cortical neurons and interneurons the remaining 

20% in the rodent brain. 

 

1.2.1 Main inhibitory interneuron types 

Interneurons can be subdivided into three major non-overlapping classes based on their genetic 

profiles (Rudy et al. 2011, DeFelipe et al. 2013): Parvalbumin (PV)-expressing interneurons, Somatostatin 

(SOM)-expressing interneurons and 5HT3A-receptor expressing interneurons (Figure 1.2A, reviewed in 

Tremblay et al. (2016)). PV cells are generally fast spiking cells that play a key role in balancing the 

excitatory activity within a cortical network. They receive strong excitatory inputs from thalamus and 
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cortex (Cruikshank et al. 2007) as well as inhibition from other PV as well as SOM interneurons (Pfeffer et 

al. 2013). They occur across all layers except for layer 1. PV cells can be further morphologically subdivided 

into basket cells (BCs) and chandelier cells (ChCs). BCs target the soma whereas ChCs target the axon initial 

segment of PCs (Figure 1.2A).  

SOM cells reside in all cortical layers and morphologically mostly resemble Martinotti cells (Wang 

et al. 2004). Martinotti cells contact apical tuft dendrites of PCs and are important in the control of 

dendritic sensorimotor integration (Gentet et al. 2012) as well as lateral inhibition (e.g. surround 

suppression in the visual cortex, Adesnik et al. (2012)). Furthermore, SOM cells inhibit PV cells and 

therefore indirectly modulate the degree of PV inhibition onto other cells (Figure 1.2A). The input to SOM 

 

Figure 1.2 Microcircuits within L2/3 

A Schematic representation of the synaptic targets of the interneuron subtypes in L2/3. PV BCs target the soma 

while PV ChCs target the axon initial segment of L2/3 PCs. SOM cells target the apical tuft dendrites of L2/3 PCs 

and inhibit PV cells. VIP cells preferentially contact SOM cells. NGs located in layer I effect nearby cells by volume 

transmission of GABA. B Schematic illustration of functional subcircuits within L2/3 (see text for details). L2/3 

cortical circuits contain multiple subnetworks (two examples shown in red and blue). Each of the subnetworks 

consist of highly interconnected L2/3 PCs, processing similar visual features. Individual cells can belong to 

multiple subnetworks. Interneurons can be part of functional recurrent subnetworks and/or connect 

nonspecifically to nearby L2/3 PCs. Functional subnetworks receive common input from L4 PCs. L5 cells link cells 

across different functional subnetworks. dLGN axons target connected pairs of L2/3 and L4.   
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cells comes from local PCs and interneurons with very little connection between two SOM cells (Pfeffer 

et al. 2013). 

5HT3A-receptor expressing interneurons contain two major subgroups: Vasoactive intestinal 

peptide (VIP) expressing interneurons and neurogliaform (NGs) cells. These cells are most abundant in the 

superficial layers. These interneurons receive long-range corticocortical input as well as local input from 

PCs. Furthermore, they are modulated by acetylcholine and serotonin. VIP cells preferentially inhibit SOM 

cells (see Figure 1.2A) and to some degree PV-expressing BCs. VIP cells have been shown to indirectly 

influence sensory processing (Lee et al. 2013) and learning (Letzkus et al. 2011) by disinhibition of 

excitatory PCs. NGs are a special type of interneurons since they do not require synapses to exert an 

inhibitory effect on their target cells but rather release a substantial amount of GABA sufficient to inhibit 

nearby cells by volume transmission (Oláh et al. 2009). 

 

1.2.2 Main excitatory neuron types 

In the first instance, excitatory PCs can be subdivided into three main classes of cells, based on 

their axonal projection patterns across cortical regions: Intratelencephalic (IT) neurons projecting only 

within the telencephalon, pyramidal tract (PT) neurons projecting to subcerebral locations (e.g. 

brainstem, striatum and spinal cord) and corticothalamic (CT) neurons (reviewed in Harris et al. (2015)). 

Whereas IT neurons are found throughout L2-6 of the neocortex and project to the ipsilateral as well as 

contralateral hemisphere PT neurons only project within the ipsilateral hemisphere and reside only in L5B 

(the lower part of L5). CT neurons are mostly located in L6 as well as L5 and only project to the ipsilateral 

thalamus.  

For further PC classification, the visual cortex of the mouse is mostly considered as an exemplary 

cortical region in the following sections (Figure 1.1, upper panel). 

IT, PT and CT neurons can be further subdivided within each of the neocortical layers of mouse V1. PCs in 

L5 and L6 have been classified into different subtypes based on their in vivo functional response properties 

and corresponding connectivity patterns as well as genetic and electrophysiological characteristics (Vélez-

Fort et al. 2014, Kim et al. 2015). In L6, there are two types of PCs: Cortico-cortical (CC) and cortico-

thalamic (CT) projecting cell types (Figure 1.1, upper panel). Whereas CC-projecting cells receive inputs 

within V1 and display weak tuning to drifting gratings, CT-projecting cells receive long-range input and 

display strong tuning to drifting gratings (Vélez-Fort et al. 2014). 
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In layer 5 there are three types of PCs: CC-projecting cells, Cortico-subcortical (CS)-projecting cells 

and a CC-projecting type that does not project to the striatum (Cortico-cortical non-striatal, CC-NS). CS-

projecting cells target the superior colliculus, thalamus, brainstem and the striatum and receive a 

significant fraction of their input from the retrosplenial cortex, the basal forebrain and the dLGN. CC- and 

CC-NS cells receive input from higher visual areas and much less input from long-range sources such as 

the basal forebrain compared to CS cells. CC-NS neurons prefer higher spatial frequencies than other cell 

types whereas CS neurons prefer higher temporal frequencies. Taken together, each of the cell types 

within L5 and L6 seems to be embedded in a different microcircuit participating in specialized visual 

information streams. 

L4 principal cells have not yet been further subdivided in the mouse visual cortex. Out of the three 

morphological types of L4 PCs found in the barrel cortex (pyramidal, star pyramidal and spiny stellate 

cells), only L4 pyramidal cells are found in the mouse visual cortex. Like other sensory brain areas, L4 PCs 

receive the strongest input from the thalamus (dLGN in V1) compared to all other layers and neighboring 

PCs are highly interconnected with each other (Morgenstern et al. 2016). In general, L4 PCs receive very 

little interlaminar input (Lefort et al. 2009, Morgenstern et al. 2016). The main output target is L2/3, but 

there are also projections to other layers. However, there are only few long-range projection targets 

(Minamisawa et al. 2018).   

 

1.3 L2/3 principal cell classification in the mouse neocortex 

In the following sections, the current status of the L2/3 PC classification using different 

parameters (morphology, electrophysiology, molecular biology and functional properties) is reviewed. 

The main focus is hereby on mouse V1.   

 

1.3.1 L2 and L3 in the mouse neocortex 

Whereas in humans and monkeys L2 and L3 can clearly be distinguished by cytoarchitectonic 

stains, this is not possible in rodents and therefore L2 and L3 are usually considered together as L2/3.  

In general, L2/3 is as a key element in integration and processing of information in the brain since it 

receives inputs from as well as sends outputs to many other cortical areas. L2/3 PCs are considered to be 

a homogenous group of cells that are pooled into one layer in most studies. However, the classification of 

L2/3 PCs into subtypes using different approaches has recently become an area of research.  
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At first sight, most L2/3 neurons consist of densely packed excitatory pyramidal cells with 

vertically aligned apical dendrites branching in layer 1. The predominant group of interneurons within 

layer 2/3 are 5HT3A interneurons (~60 %). The remaining fraction of interneurons are 30 % PV and 10% 

SOM cells (Rudy et al. 2011).  

Although L2 and L3 cannot be distinguished in the rodent neocortex at first sight, there are 

indications that L2/3 PCs close to L1 differ from L2/3 PCs close to L4 based on their morphological, 

electrophysiological, molecular and functional profiles.  

 

1.3.2 Morphology and electrophysiology of L2/3 principal cells 

PCs in the upper part of L2/3 show relatively short apical dendrites and large tufts with highly 

branched terminal arbors in layer 1 whereas lower L2/3 PCs have longer apical dendrites with more 

slender tufts (Lübke et al. 2003, Shepherd et al. 2005). Throughout L2/3, there are PCs with straight apical 

dendrites. However, a subset of L2/3 PCs located at the immediate border to L1 can also display oblique 

apical dendrites (Staiger et al. 2015, Luo et al. 2017) or do not possess a clear distinguishable apical 

dendrite but rather two or more ascending dendrites emerging from the upper part of the soma (Larkman 

et al. 1990, Luo et al. 2017). This group of PCs is also termed atypical pyramidal cells. The difference in 

morphology between atypical cells and typical L2/3 PCs has been shown to be accompanied by differences 

in their intrinsic properties such as input resistance and maximal firing rate in the mouse temporal cortex 

(Luo et al. 2017). 

Regarding electrophysiology, L2/3 PCs are regular spiking neurons that have been further 

subdivided into slowly adapting and fast adapting cells in the barrel cortex. Whereas slowly adapting cells 

occur throughout the depth of L2/3, fast adapting cells are absent in upper L2/3 (Staiger et al. 2015). This 

has not yet been demonstrated in V1.   

 

1.3.3 L2/3 coding principle 

Generally, L2/3 PCs have significant lower firing rates on average than excitatory cells in L4 and 

L5 measured under both in vivo conditions (Brecht et al. 2003) and in brain slices in different sensory brain 

areas. The difference in firing rate can be several folds less in layer 2/3 compared to deeper layers and 

holds true for both spontaneous and evoked activity (de Kock et al. 2007, Niell et al. 2008, Sakata et al. 

2009, Lütcke et al. 2010). One simple explanation for this layer dependent difference in firing rate could 
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be dissimilar intrinsic properties of L2/3 PCs versus L5 PCs. Indeed, L5 PCs at rest are more depolarized 

compared to L2/3 PCs (Lefort et al. 2009). L2/3 PCs may therefore need more excitatory input to reach AP 

threshold than L5 PCs. Importantly, it seems that there is a sparse population of L2/3 PCs firing many APs 

and the remaining cells firing very few APs (Hromádka et al. 2008). These observations indicate that the 

representation of sensory stimuli within L2/3 is completed by robust firing of a small subset of L2/3 PCs. 

Interestingly, this sparse coding strategy is not static and can be altered by experience (Gdalyahu et al. 

2012), brain state (e.g. awake or under anesthesia, Haider et al. (2013)) and development (Rochefort et 

al. 2009). Within L2/3, upper L2/3 PCs tend to have longer latency sensory evoked responses with longer 

lasting depolarizations of smaller amplitude compared to deeper L2/3 PCs in the barrel cortex (Crochet et 

al. 2011). 

The sparse AP firing in excitatory L2/3 neurons has been shown to be related to the strong local 

inhibition mediated mainly by GABAergic releasing PV interneurons rather than the lack of excitatory 

synaptic drive (Petersen et al. 2003, Crochet et al. 2006). PV as well as 5HT3A interneurons show an 

increase in firing rates upon sensory stimulation and therefore might play a key role in driving sparse 

coding in L2/3 PCs, while displaying a dense coding strategy themselves.  

 

1.3.4 Visual tuning of L2/3 principal cells in V1 

Individual L2/3 PCs in V1 are selectively tuned to distinct features in visual scenes such as 

orientation, direction and spatial as well as temporal frequencies (Niell et al. 2008, Andermann et al. 2011, 

Marshel et al. 2011). L2/3 PCs are sensitive to a broad range of spatial frequencies (measured in cycle per 

degree) and temporal frequencies (measured in Hz) as well as speeds (measured as degree per seconds). 

Similarly, the sharpness of orientation and direction tuning varies over a broad range throughout V1 

(Andermann et al. 2011, Marshel et al. 2011). Unlike L2/3 PCs in the primate and carnivore visual cortex, 

L2/3 PCs with different visual tuning are spatially intermixed and do not display an obvious functional 

columnar architecture for visual features at first sight. However, it seems that mouse V1 is not strictly a 

salt-and-pepper map but displays tuning similarity on a local scale (~50 µm, Ringach et al. (2016)). 

Furthermore, there are indications that superficial regions of L2/3 display a non-uniform repeating pattern 

of zones that express the M2-acetylcholine receptors (so called M2-patches, Ji et al. (2015)). Interestingly, 

L2/3 PCs that are located in between these M2-patches seem to be less orientation selective and also 

differ in their spatiotemporal preferences compared to L2/3 PCs within the M2-patches.  
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Within V1, a fraction of L2/3 PCs seems to be unresponsive to visual stimuli (gratings as well as 

natural movies) which depends strongly on the cortical depth. The percentage of responding neurons is 

approximately 50 % in superficial L2/3 PCs compared to lower L2/3 and L4 where almost all neurons 

display selective responses to visual stimuli (O'Herron et al. 2018). 

L2/3 interneurons, unlike L2/3 PCs, are broadly tuned to visual features (Liu et al. 2009, Kerlin et al. 2010) 

and are thought to pool the response of neighboring  L2/3 PCs (Runyan et al. 2013, Scholl et al. 2015). 

Taken together, L2/3 PCs are a functional diverse group of cells that responds to different features 

of the visual scenes and are at least partially arranged into functional spatial modules.    

 

1.3.5 Functional subcircuits within L2/3 

L2/3 PCs receive strong input from neighbouring excitatory as well as inhibitory cells. The 

connection probability between two L2/3 PCs within a 100 µm radius has been reported to be in the range 

of 5-20% with an average uEPSP amplitude of 0.4-0.7 mV (Holmgren et al. 2003, Hofer et al. 2011, Ko et 

al. 2011, Morgenstern et al. 2016). L2/3 PCs innervate nearby PV neurons with 58-88 % probability and 

an average uEPSP amplitude of 0.8-3.5 mV (Hofer et al. 2011) and 5HT3A interneurons with a probability 

of 24 % and an average uEPSP amplitude of 0.4 mV (Mateo et al. 2011). L2/3 PCs innervate nearby SOM 

interneurons with approximately 30 % (Kapfer et al. 2007), whereas SOM interneurons connect with 

around 70 % to L2/3 PCs (Fino et al. 2013). PV interneurons innervate nearby L2/3 PCs with a probability 

of 60-75 % (Avermann et al. 2012, Znamenskiy et al. 2018). Furthermore, PV cells connect preferentially 

to L2/3 PCs that provide them with strong excitatory input (Yoshimura et al. 2005, Znamenskiy et al. 2018). 

This high degree of reciprocal connection specificity is not observed for other interneuron types 

(Yoshimura et al. 2005).  

L2/3 PCs with similar orientation preference are more likely to connect with each other on 

average (Ko et al. 2011). Furthermore, L2/3 PCs that display the strongest synaptic connections between 

each other have the most correlated visual responses, while weak synaptic connections link neurons with 

less correlated visual responses (Cosell et al., 2015).  Strong reciprocal connections between L2/3 PCs also 

link cells with similar receptive field structure (Cossell et al. 2015).  Taken together, the functional 

specificity of local synaptic connections between L2/3 PCs reveals the existence of fine-scale functional 

recurrent subnetworks within L2/3 (Figure 1.2B). Furthermore, these strongly interconnected functional 

subnetworks of PCs within L2/3 also receive common excitatory input from L4 (Yoshimura et al. 2005). In 

contrast, all L2/3 PCs get input from L5 PCs as well as from the majority interneurons from L2/3, L4 and 
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L5 irrespective of whether they connect strongly to each other or not.  This suggests that L5 PCs and 

different interneurons within the neocortical layers link L2/3 PCs across these functional subnetworks 

(Figure 1.2B). Interestingly, it seems that there are also functional specific connections between individual 

PV interneurons and L2/3 PCs that rely on the synaptic strength of reciprocally connected pairs.  

Therefore, individual PV cells that have strong inhibitory connections to PCs also receive reciprocally 

strong excitation from individual L2/3 PCs. In these cases, reciprocally connected PV cells and L2/3 PCs 

also share similar visual selectivity and receive common excitatory input from L4 (Yoshimura et al. 2005) 

suggesting that specific interneurons are also part of fine-scale subnetworks responsible for processing 

related sensory information (Figure 1.2B). 

There are multiple benefits of this type of arrangement of recurrent functional subnetwork with 

regard to information processing: 1) Amplification of cortical responses. The spiking probability is 

increased and hence the signal-to-noise ratio is higher. 2) Sensory responses are prolonged within 

recurrent networks leading to higher chance of interactions occurring with other signals in the brain. 3) 

The interactions of individual subnetworks (Figure 1.2B) with each other allow more complex feature 

integration during ongoing sensory stimuli.   

 

1.3.6 Laminar and long-range input sources to L2/3 principal cells 

In addition to intralaminar input from neighboring cells, L2/3 PCs receive translaminar excitatory 

as well as inhibitory synaptic input. The strongest translaminar excitatory feedforward input is coming 

from L4 PCs (Kuhlman et al. 2013, Xu et al. 2016). The connection probability between L4 PCs and L2/3 

PCs is quite high with ~15% considering the distances between the cells (Morgenstern et al. 2016). L2/3 

PCs also receive synaptic input from L5 PCs (Xu et al. 2009, Kuhlman et al. 2013, Xu et al. 2016). An 

unresolved question is whether input from L5 PCs to L2/3 PCs consists of purely feedforward or a mixture 

of feedforward and feedback projections. PCs in the lower part of L2/3 also receive direct input from dLGN 

axons (Morgenstern et al. 2016). Interestingly, dLGN axons preferentially target connected pairs of L2/3 

and L4 PCs arguing for the existence of vertically aligned multilaminar networks (Figure 1.2B; Morgenstern 

et al. (2016)). Connections from L6 PCs to L2/3 PCs have not been observed in mouse V1.    

It seems that there are at least to some extent translaminar functional subcircuits within V1. A 

fraction of direction selective presynaptic L4 as well as L5 PCs connect preferentially to L2/3 with similar 

direction preference (Wertz et al. 2015).  
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Although the majority of L2/3 PCs receive most of its inhibition through local interneurons, about 

30% of L2/3 PCs also receive prominent translaminar inhibitory connections originating from L4 and L5B 

in mouse V1 (Kätzel et al. 2010). The interneuron cell types responsible for this translaminar inhibition are 

not known yet.  Furthermore, the precise spatial arrangement of translaminar excitatory and inhibitory 

input sources within the same L2/3 PCs has not yet been studied.   

Since L2/3 is in a key position to integrate information from across cortical areas, the presynaptic 

origins of long-range inputs to L2/3 PCs are quite diverse. Prominent long-range inputs are coming from 

higher visual areas such as LM, PM or AL (Wang et al. 2007, D'Souza et al. 2016, Marques et al. 2018) but 

also from other sensory cortical areas such as auditory cortex (Iurilli et al. 2012, Morrill et al. 2018). 

Furthermore, L2/3 PCs receive long-range input from structures such as entorhinal cortex as well as 

retrosplenial cortex (Leinweber et al. 2017). Excitatory long-range inputs can directly target L2/3 PCs but 

often top-down modulation of L2/3 PCs is mediated via local interneurons (Zhang et al. 2014).      

 

1.3.7 L2/3 principal cell projection targets 

The main translaminar output of L2/3 PCs within V1 targets L5 PCs. Unlike in the motor cortex 

where different types of L5 PCs receive differential input from upper and lower part of L2/3 (Yu et al. 

2008), the three different types of L5 PCs in V1 seem to receive prominent input from Layer 2/3 PC 

irrespective of their location within L2/3 (Kim et al. 2015).  

Most L2/3 PCs in mouse V1 have been shown not to just project locally within their primary 

cortical area but also outside of it (Figure 1.1, upper panel, Figure 1.2B). The long-range postsynaptic 

targets of individual L2/3 PCs are quite diverse as well as divergent (up to seven different postsynaptic 

target areas per cell). Layer 2/3 PCs typically innervate nearby higher visual areas but also target areas 

such as the anterior cingulate cortex, striatum or amygdala (Han et al. 2018). Recent work suggests that 

individual L2/3 PCs follow a certain projection logic of information transfer. Only few cells are dedicated 

projection neurons that follow a ‘one cell one target area’ logic whereas the majority of L2/3 PCs seem to 

project to multiple targets in a non-random combination. Interestingly, individual L2/3 PCs send 

information to combinations of target areas that share visual response properties. This suggests that there 

are information streams of visual processing in the rodent visual system comparable to the dorsal and 

ventral processing streams in primates (Glickfeld et al. 2013, Han et al. 2018). 
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1.4 Methodological considerations 

1.4.1 2-photon calcium imaging 

The development of 2-photon imaging and its application to the living brain opened the possibility 

to simultaneously study the activity of many identified cells with sub second temporal precision in a 

relatively non-invasive manner. Calcium changes within a neuron are a suitable approximation for the 

underlying activity pattern of the cell since each action potential (AP) is associated with a somatic calcium 

influx. However, one should keep in mind that monitoring calcium fluctuations within a neuron is only an 

indirect readout of its spiking activity (Lütcke et al. 2013).  

To perform in vivo 2-photon calcium imaging in the brain, specific principles and steps have to be 

considered. 1) The cells of interest need to be labelled using the principle of fluorescence. For the labelling 

of cells with calcium reporter molecules two prominent approaches have been established: Extracellular 

application of a synthetic calcium indicator on the brain area of interest (e.g. OGB-1) or the expression of 

GECIs in specific cells of interest (e.g. GCaMP). The fluorescence intensity change of GECIs is nearly 

proportional to the cellular calcium concentration (Rose et al., 2014) rendering them a reliable tool to 

image neuronal calcium dynamics. The great advantage of GECIs over synthetic calcium indicators is the 

possibility to repeatedly perform calcium imaging of the same neurons over months. 2) In single photon 

fluorescence, a fluorophore absorbs a single photon of appropriate energy and enters an excited state. 

When the fluorescent molecule transits back to the ground state, it emits photons of lower energy and 

therefore has a longer red-shifted wavelength compared to the wavelength used for excitation. However, 

the excitation of a fluorophore is also possible with two photons (or more), if their combined energy 

provides the adequate energy for excitation. 2-photon microscopy makes use of this process: Two low-

energy photons (in the red region of the spectrum, ~700 nm) together cause a higher-energy transition 

from a ground state to an excited state in a fluorescent molecule (Denk et al. 1990, Svoboda et al. 2006). 

The excitation source for 2-photon microscopy is a focused near infrared laser beam that illuminates a 

small volume in the brain area of interest at a time. The chance that two photons simultaneously strike 

and then excite a fluorophore is highest in the focal volume of the laser beam and drops exponentially 

with decreasing intensity outside the focal volume. Therefore, all emitted photons originate from the focal 

volume of the infrared laser beam (principle of optical sectioning). The out of focus excitation of 

fluorophores is drastically reduced leading to much better spatial resolution compared to single photon 

microscopy. Furthermore, the near infrared laser excitation wavelengths used for 2-photon microscopy 
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scatter much less in tissue than visible light. This leads to much better penetration of light even in 

relatively deep brain areas.   

 

1.4.2 Circuit mapping in the brain 

Circuit connectivity in acute brain slices can be readily studied using optical approaches. A focused 

light beam is optimal for the activation of neurons since it can be controlled both spatially and temporally 

with great precision. Furthermore, the wavelength, shape of light waves and strength of light can be 

tightly controlled.  

In most circuit mapping approaches, whole-cell patch-clamp recordings of either a single 

postsynaptic cell or multiple postsynaptic cells are performed simultaneously. Since cells cannot be 

activated by light per se, two main approaches are prominently used for circuit mapping: Photolysis of 

caged compounds or the expression of channelrhodopsins in presynaptic cells. For LSPS, a focused light 

beam is rapidly moved across different sites in the tissue activating presynaptic cells. An alternative 

strategy is to use wide-field illumination leading to the detection of the net synaptic input of the recorded 

postsynaptic cells.   

The most prominently used caged compound for photolysis is the excitatory transmitter 

glutamate bound to a caging moiety via a photoscissile bond (Katz et al. 1994). Upon stimulation by a 

focused UV beam, glutamate is locally released and activates endogenous receptors of nearby cells. 

Sufficient glutamate release will lead to AP generation in potential presynaptic cells and will only be 

detected as postsynaptic input if the stimulated pre- and recorded postsynaptic cell(s) are connected.  

Importantly, caged compounds can only be used to study local connectivity since the somata of the 

presynaptic cells as well as their axons need to be present within the same slice as the recorded 

postsynaptic cell. For single-photon LSPS using caged glutamate, recordings are performed on a single cell 

or multiple postsynaptic cells while the intralaminar as well as translaminar presynaptic partners are 

stimulated. This approach enables single cell resolution on the postsynaptic but not on the presynaptic 

side. Ionotropic glutamate receptors are mostly found in the soma membrane as well as along the 

dendrite of a neuron and therefore glutamate uncaging does not activate en passant axons, making this 

technique a suitable approach to map the local translaminar circuitry. The resolution of this technique 

depends mostly on the point spread function of the UV light source as well as the scattering of light by 

neuronal tissue. Importantly, the resolution should be calibrated by adjusting the glutamate 

concentration and the laser intensity to restrict action potential firing of all different cell types across 
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layers to their peri-somatic region.  Once correctly calibrated, this technique provides sublaminar 

resolution for the presynaptic input (~50 µm, Shepherd et al. (2003), Anastasiades et al. (2012), Xu et al. 

(2016)). LSPS by glutamate uncaging has been used in many studies in different brain areas  to understand 

the translaminar connectivity of specific cell types  within a cortical region and the development as well 

as plasticity-related alterations of these (Shepherd et al. 2003, Bureau et al. 2004, Shepherd et al. 2005, 

Bureau et al. 2006, Brill et al. 2009, Hooks et al. 2011, Apicella et al. 2012, Kuhlman et al. 2013, Kratz et 

al. 2015, Xu et al. 2016, Deng et al. 2017, Meng et al. 2017).  

The second prominent approach for studying cortical connectivity is the photostimulation of 

channelrhodopsin-expressing presynaptic cells of interest. In contrast to caged compounds, optogenetic 

approaches can be applied for both local and long-range circuit mapping since light-sensitive opsins are 

expressed throughout dendrites and axons. Therefore, the presynaptic soma does not need to be 

preserved in the same slice as the recorded postsynaptic cell(s). Severed axons can still be activated in 

acute slices because synaptic terminals remain intact and presynaptic release can be triggered using brief 

light pulses. By combining optogenetic stimulation with LSPS (so called ChR2-assisted circuit mapping, 

CRACM,  Petreanu et al. (2007))  it is possible to map the input of ChR2-expressing neurons across brain 

areas onto postsynaptic cells in different layers. Further refinement of this approach, enables mapping 

the subcellular location of ChR2-postive axon terminals onto target cells by blocking fast transient sodium 

channels using TTX and potassium channels by 4-AP (subcellular CRACM, sCRACM, Petreanu et al. (2009)).  

By blocking sodium channel-mediated action potential conductance along the axons and at the same time 

blocking the repolarization of the axon mediated by potassium channels, it is possible to map 

monosynaptic inputs across the postsynaptic dendrite.  

A further advancement of circuit mapping combined with optogenetic is the possibility to use 

dual-channel photostimulation in order to map multiple types of presynaptic input onto the same 

postsynaptic cell (Hooks et al. 2015). For this, two channelrhodopsin variants that are excited by different 

wavelengths are expressed in two neuronal populations and then the convergence of these neuronal 

populations is mapped onto single presynaptic cells (Klapoetke et al. 2014). 

 

1.4.3 In vivo / in vitro approaches 

High-resolution analysis of circuit connectivity and cellular and synaptic properties can only partially be 

performed in vivo. Therefore, in vitro methods are necessary to characterize neuronal circuits at high 

resolution. In order to directly correlate in vivo measured response properties with the underlying cellular 
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and synaptic properties as well as the neuronal connectivity the challenge is to re-identify the very same 

neurons between in vivo as well as in vitro. 

Two different experimental approaches for re-identifying neurons between the in vivo and in vitro 

preparation have been described so far. In the first approach, neurons acutely labelled with a synthetic 

calcium indicator are matched using precise alignment and transformation of image stacks recorded in 

vivo and in corresponding in vitro brain slices (Ko et al. 2011). The synthetic calcium indicator OGB-1 labels 

basically all cells and therefore the goal is to record as many cells as possible in the brain slice. The actual 

matching of cells between the in vivo and in vitro condition is done post-hoc. In the second approach, 

specific neurons of interest are labelled in vivo by optically activating photo-activatable-GFP (pa-GFP) 

allowing these cells to be targeted for further analysis in vitro (Lien et al. 2011, Peter et al. 2013). The 

neuronal activity is here recorded with a synthetic calcium indicator expressed in all cells.  

Taken together, these in vivo / in vitro approaches have not yet been applied to GECIs which would 

enable performing long-term 2-photon calcium in vivo experiments and then re-identifying neurons in 

brain slices to characterize neuronal circuits.  

 

1.5 Objectives of this study 

There is still limited understanding whether the visual tuning of single L2/3 PCs is directly linked to the 

spatial arrangement and strength of its excitatory and inhibitory laminar input sources. Furthermore, 

neighbouring L2/3 PCs in V1 display different functional properties suggesting that distinct types of L2/3 

PCs exist that participate in functional subnetworks within V1.  

Therefore, the first main objective of this thesis is to assess the detailed relationship between the 

organization of synaptic connections and neuronal response properties at the level of single L2/3 PCs in 

mouse V1.  For this, the fundamental electrophysiological and morphological properties of L2/3 PCs are 

first characterized in acute brain slices of V1. Secondly, the principal excitatory and inhibitory laminar 

input sources of L2/3 PCs are studied using LSPS by UV glutamate uncaging. In order to relate function to 

connectivity, an in vivo / in vitro approach is developed enabling first the characterization of the visual 

response properties of individual L2/3 PCs expressing GECIs with in vivo 2-photon calcium imaging. 

Subsequently, the same neurons are retrieved in brain slices for laminar circuit analysis with LSPS. With 

this approach, visual response properties (orientation/direction selectivity, temporal/spatial preferences, 

ocular dominance and spontaneous activity) of individual L2/3 PCs are directly related with their laminar 
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input patterns. The properties measured both in vivo and in vitro within the same L2/3 PCs enable cell 

classification based on hierarchical clustering using the extracted parameters separately and then 

evaluating the interrelation of the individual cluster solutions across properties.  

In the last part of the thesis, the adult retinogeniculate synapse is investigated. Recent work 

demonstrates the existence of binocular visual responsive TCs in the dLGN of the adult mouse beyond 

development arguing against the classical view of strict eye segregation at this level of the visual system. 

Within this context the main question is whether there are TCs that already receive input from both eyes 

at the level of the adult retinogeniculate synapse.  Therefore, a dual-color optogenetic approach is 

developed in this thesis to study the retinogeniculate inputs from both eyes to individual TCs in the dLGN 

of the adult mouse. 
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2 Material and Methods 
 

2.1 Viruses/DNA 

The GECI AAV2/1-Syn-FLEX-mRuby2-CSG-P2A-GCaMP6m-WPRE-SV40 (titer: 2.9 x 1013 GC per ml, Addgene 

accession no. 102816) in combination with the Cre recombinase AAV2/1.CamKII0.4.Cre.SV40 (titer: 1.8 x 

1013 GC per ml, University of Pennsylvania Vector Core accession no.  AV-1-PV2396) were used. For the 

optogenetic experiments AAV2/2.Syn-Chronos.EGFP (titer: 2.1 x 1012 GC per ml, Virus Vector Core, 

University of North Carolina) or AAV2/2.Syn-ChR2(H134R).EYFP (titer: 2.25 x 1013 GC per ml, Addgene 

accession no. 26973) and AAV2/2.Syn-ChrimsonR.tdT (titer: 3.7 x 1012 GC per ml, Virus Vector Core, 

University of North Carolina) were used. All viruses were aliquoted (3-4 µl per aliquot) and stored at -80°C.  

 

2.2 Equipment 
 

2.2.1 Surgical tools 
 

Equipment Supplier 

26G virus loading needle 

 

34G injection needle  

 

20 ml (24 ml) NORM-JECT® syringe  

Biopsy punch (4 mm) 

Cotton-swab applicators (15 cm) 

Dental drill (Presto II)  

Dissecting microscope SOM-62 

Dumont #5/45 Cover Slip Forceps 

 

Dumont #5 Forceps-Assorted Styles straight 

 

Dumont #7 Forceps-standard 

 

Drill bits HM1 005  

Eppendorf tubes 0.5 ml 

Pulse generator/trigger Master-8 

World Precision Instruments, cat. no. NF26BV-2  

(Sarasota, USA) 

World Precision Instruments, cat. no. NF34BV-2 

(Sarasota, USA) 

HSW (Tuttlingen, Germany) 

Pfm Medical, cat. no. 48401 (Cologne, Germany) 

Medical Care & Serve® (Wurmlingen, Germany) 

NSK (Illinois, USA) 

Karl Kaps GmbH (Aßlar, Germany)  

Fine Science Tools GmbH, cat. no. 11251-33 

(Heidelberg, Germany) 

Fine Science Tools GmbH, cat. no. 11251-10  

(Heidelberg, Germany) 

Fine Science Tools GmbH, cat. no. 11271-30  

(Heidelberg, Germany) 

Meisinger (Neuss, Germany) 

Sigma, cat. no. T891 (Missouri, USA) 

A.M.P.I (Jerusalem, Israel) 
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Gelfoam stypro 

Glass capillaries for virus, bead injection and 

cranial window stabilization (Ø: 0.8 mm, 

thickness: 0.28 mm) 

Glass coverslips, round, Ø: 4 and 10 mm, 

thickness: 0. 13 mm 

Hamilton syringe (NANOFIL) 

Head bar holder with screws attached to a 

hydraulic magnetic measuring stand with base 

Headbar (chamber type, 46 x 14 mm, titanium or 

stainless steel) 

Heating blanket 

 

Hot glass-bead sterilizer steri 350 

Infra-red lamp 

Micropipette puller for virus injection pipettes, P-

97 

Parafilm 

Petri dishes (Ø: 30 mm) 

Pipette beveling apparatus 

 

 

Pressure micro-injection system 

Rapid-Filtermax, 0.22µm Pore Size, Nr. 99505 

Scalpel blades #11 

Skin hooks 

 

 

Stereotaxic apparatus  

 

Sterile surgical gloves 

Sterile single use syringe 1ml 

 

Student Iris Scissor, 11.5 cm, straight 

 

Sugi® versatile cellulose sponge material Sterile 

Curasan (Kleinostheim, Germany) 

Hilgenberg, cat. no. 1408472 (Waldkappel, 

Germany) 

 

Menzel GmbH (Braunschweig, Germany) 

 

World Precision Instruments (Sarasota, USA) 

Hoffman Group (Munich, Germany) 

 

MPI Neurobiology machine shop, design see ref.  

(Martinsried, Germany) 

Custom design (Martinsried, Germany); 

commercial alternative e.g. CWE, cat. no. TC-1000 

Sigma, cat. no. Z378585EU (Missouri, USA) 

Glamox Luxo GmbH (Bremen, Germany) 

Sutter Instruments (California, USA) 

 

Sigma, cat. no. P7793 (Missouri, USA) 

Greiner Bio-One (Kremsmünster, Austria) 

Custom design based on computer hard disc 

modification (Canfield 2006) (Martinsried, 

Germany) 

Toohey Company (New Jersey, USA) 

TPP Rapid (Trasadingen, Switzerland) 

Fine Science Tools GmbH, cat. no. 10011-00 

Custom; injection needles with bend tips for 

retracting skin; commercial alternative e.g. 

EliteMedical  

Custom (Martinsried, Germany); commercial 

alternative e.g. KOPF, cat. no. 940  

Semperguard (Wien, Austria) 

OMNICAN®, B. Braun Melsungen AG (Melsungen, 

Germany) 

Fine Science Tools GmbH, cat. no. 91460-11 

(Heidelberg, Germany) 

Kettenbach Medical (Eschenburg, Germany) 
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2.2.2 Intrinsic optical signal imaging equipment 

 

 

2.2.3 In vivo 2-photon calcium imaging equipment 

 

Equipment Supplier 

Homeothermic blanket with rectal probe 

 

Fiber-Coupled LED, 530 nm 

Fiber-Coupled LED, 735 nm 

scA1400-17gm CCD camera 

XL Fluor x4/340, 0.28 NA, air objective 

 

Harvard Apparatus (Holliston, Massachusetts, USA) 

 

Thorlabs (Dachau, Germany) 

Thorlabs (Dachau, Germany) 

Basler AG (Ahrensburg, Germany) 

Nikon (Tokyo, Japan) 

 

Equipment Supplier 

In vivo benchtop 2-photon setup, B-scope 

CFI75 LWD x16, 0.8 NA, water immersion 

objective 

Controller for Pockels cell, model 302RM 

Dichroic beam splitter, 560 nm 

Emission filter 525/50-25 nm bandpass filter  

Emission filter 607/70-25 nm bandpass filter  

Emission filter 720/25 nm short pass filter  

Epifluorescence microscope Lumar.V12 Stereo 

GaAsP photomultiplier tubes, H7422P  

Image acquisition software: ScanImage 4.2 

(Pologruto et al. 2003) 

Image processing software  

 

MaiTai HP DeepSee Ti:Sapphire laser 

 

P-726 PIFOC® high load objective scanner  

PCI Digitizers, 125 MS/s  

Photodiode (PDA100A-EC) 

Pockels cell, model 350-80 

 

 

Thorlabs (Dachau, Germany) 

Nikon (Tokyo, Japan) 

 

Semrock (Rochester, USA) 

Conoptics (Danbury, USA) 

Semrock (Rochester, USA) 

Semrock (Rochester, USA) 

Semrock (Rochester, USA) 

Zeiss (Oberkochen, Germany) 

Hamamatsu (Herrsching, Germany) 

Vidrio Technology (Janelia Farm, Virginia, USA) 

 

Image J, Wayne Rasband, National Institutes of 

Health (Bethesda, Maryland, USA) 

Spectra-Physics/Newport (Santa Clara, California, 

USA) 

Physik Instrumente (Karlsruhe, Germany) 

Alazartech (Pointe-Claire, Canada) 

Thorlabs (Dachau, Germany) 

Conoptics (Danbury, USA) 
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2.2.4 Brain slice preparation equipment 

 

2.2.5 In vitro imaging, opto- and electrophysiology equipment 

Equipment Supplier 

2x light-shielded slice incubation chambers  

 

525-555 nm, emission filter, 590-660 nm 

 

Dumont #5 Forceps-Assorted Styles straight  

 

Filter paper, round, Ø: 110 mm  

Fine scissors  

 

Glass capillaries for patch-clamp recording 

pipettes (Ø: 1.5 mm, thickness: 0.3 mm) 

 

Glass coverslips, round, Ø: 12 mm, thickness: 

0.13 mm  

Micropipette puller for patch pipettes PC10  

Miners lamp with light source, excitation filter  

 

Razor blade  

Small Spatula  

 

Standard Pattern Forceps  

 

Thin razor blade Razolution for vibratome  

Tissue Flotation Bath  

Vibratome (VT1200S) 

 

 

Custom incubation chamber wrapped with 

aluminum foil 

BLS Biological Laboratory Equipment (Budapest, 

Hungary) 

Fine Science Tools GmbH, cat. no. 11251-10 

(Heidelberg, Germany) 

Whatman (London, UK) 

Fine Science Tools GmbH, cat. no. 14090-09 

(Heidelberg, Germany) 

World Precision Instruments, cat. no. TW150F-3,  

Sarasota, USA) 

 

Menzel GmbH (Braunschweig, Germany) 

 

Narishige (Japan) 

BLS Biological Laboratory Equipment (Budapest, 

Hungary) 

Martor (Solingen, Germany) 

VWR, cat. no. 231-2151 (Ismaning, Germany) 

 

Fine Science Tools GmbH, cat. no. 11000-12 

(Heidelberg, Germany) 

Simbatec (Solingen, Germany) 

Medite (Chicago, Illinois, USA) 

Leica (Wetzlar, Germany) 

 

Equipment Supplier 

2-color combiner (RB42F1) 

In vitro benchtop 2-photon setup, A-scope 

(setup B)  

2x CCD camera Retiga-EXi 

Thorlabs (Dachau, Germany) 

Thorlabs (Dachau, Germany) 

 

QImaging (Surrey, Canada) 
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2.2.6 Reagents and solutions 

CFI75 LWD x16, 0.8 NA, water immersion 

objective 

2x controller for Pockels cell, model 302RM  

Fiber-coupled laser sources: 473 and 637 nm 

(S3FC473, S4FC637) 

Fiber-collimator (F230FC-A) 

Image acquisition software: ScanImage 4.2 

Image processing software 

 

LSPS acquisition software: Ephus  

LUMPlan x60, 0.9 NA water immersion objective 

LUMPlan x40, 0.8 NA water immersion objective   

MaiTai HP DeepSee Ti:Sapphire laser 

 

 

2x mechanical shutter (VMM-D1) 

Neutral density filter (NE03A-A) 

Neutral density filter wheel (NDC-50C-4M) 

2x Patch-clamp amplifier Multiclamp 700 B  

 

PCI Digitizers, 125 MS/s  

Perfusor 

2x Peristaltic minipump  

2x Photodiode (PDA100A-EC) 

2x Pockels cell, model 350-80  

UPlanFLN x4, 0.13 NA air objective  

Upright microscope (BX series, setup A) 

UV laser A (3500 series) 

UV laser B (Explorer One) 

 

Nikon (Tokyo, Japan) 

 

Conoptics (Danbury, USA) 

Thorlabs (Dachau, Germany) 

 

Thorlabs (Dachau, Germany) 

Vidrio Technology (Janelia Farm, Virginia, USA) 

Image J, ref 23 Wayne Rasband, National 

Institutes of Health (Bethesda, Maryland, USA) 

Vidrio Technology (Janelia Farm, Virginia, USA) 

Olympus (Tokyo, Japan) 

Olympus (Tokyo, Japan 

Spectra-Physics/Newport (Santa Clara, 

California, USA) 

 

Uniblitz Vincent Associates (Rochester, USA) 

Thorlabs (Dachau, Germany) 

Thorlabs (Dachau, Germany) 

Axon Instruments, Molecular Devices (California, 

USA) 

Alazartech ( Pointe-Claire, Canada) 

B. Braun Melsungen AG (Melsungen, Germany) 

Gilson (Middleton, WI, USA) 

Thorlabs (Dachau, Germany) 

Conoptics (Danbury, USA) 

Olympus (Tokyo, Japan) 

Olympus (Tokyo, Japan) 

DPSS Lasers, Inc. ( Santa Clara, California, USA) 

Spectra-Physics (Santa Clara, California, USA) 

 

Reagent Supplier 

70% (vol/vol) Ethanol  

96% (vol/vol) Ethanol  

Alexa 594  

 

CaCl2  

VWR, cat. no. 97064-768 (Darmstadt, Germany) 

VWR, cat. no. 159010 (Darmstadt, Germany) 

Thermo Fisher, cat. no. A10438 (Munich, 

Germany) 

Sigma, cat. no. 21115 (Missouri, USA) 
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Carbogen (95% (vol/vol)  O2, 5% (vol/vol)  CO2) 

CsMeSO4  

Dental cement Paladur®  

Disinfectant Mikrozid® AF liquid  

Ethylene-bis(oxyethylenenitrilo)tetraacetic acid 

(EGTA) 

Eye cream  Isopto-Max 

Glucose  

HEPES  

Histoacryl® cyanoacrylate  

Iodine solution Braunol®7.5 

KCl  

K-gluconate  

KH2PO4  

MgCl2  

MgSO4   

MNI-L-caged glutamate  

Na-ATP  

NaCl  

 

Na-GTP  

NaH2PO4  

NaHCO3  

Na-L-ascorbate  

NaOH  

Na-phosphocreatine  

Neurobiotin tracer 

 

Pattex® Ultra Gel  

Poly-D-Lysine hydrobromid  

Red retrobeadsTM IX 

Sterile electrolyte solution Sterofundin®  

Sterile saline 0.9% (wt/vol) NaCl  

Sucrose  

Tamoxifen 

UHU® super glue liquid  

Ultrasound gel  

Drugs 

4-AP 

Atipamezole Antisedan® 

 

Merck, cat. no. C1426 (New York, USA) 

Heraeus Kulzer GmbH (Hanau, Germany) 

Schülke (Norderstedt, Germany) 

Sigma, cat. no. E3889 (Missouri, USA) 

 

Alcon Pharma GmbH (Freiburg, Germany) 

Carl Roth, cat. no. X997.2 (Karlsruhe, Germany) 

Carl Roth, cat. no. HN77.2 (Karlsruhe, Germany) 

Aesculap AG 

B. Braun Melsungen AG 

Sigma, cat. no. 60135 (Missouri, USA) 

Sigma, cat. no. G4500 (Missouri, USA) 

Merck, cat. no. 104873 

Sigma, cat. no. 63069 (Missouri, USA) 

Merck, cat. no. 105886 (New York, USA) 

Tocris, cat. no. 1490 (Bristol, UK) 

Sigma, cat. no. A2383 (Missouri, USA) 

VWR, cat. no. 470302-522 (Darmstadt, 

Germany) 

Sigma, cat. no. 51120 (Missouri, USA) 

Merck, cat. no. 1063460 (New York, USA) 

Merck, cat. no. 1063290 (New York, USA) 

Sigma, cat. no. A7631 (Missouri, USA) 

VWR, cat. no. SS0580 (Darmstadt, Germany) 

Sigma, cat. no. P7936 (Missouri, USA) 

Vector labs, cat. no. SP-1120 (Burlingame, 

California, USA) 

Henkel AG & Co. KGaA (Garching, Germany) 

Sigma, cat. no. P6407 (Missouri, USA) 

Lumafluor (Durham, North Carolina, USA) 

B. Braun Melsungen AG (Melsungen, Germany) 

B. Braun Melsungen AG (Melsungen, Germany) 

Merck, cat. no. 107687 (New York, USA) 

Sigma, cat. no. 275875 (Missouri, USA) 

UHU (Buehl, Germany) 

Dahlhausen (koeln, Germany) 

 

Sigma, cat. no. T5648 (Missouri, USA) 

Orion Pharma (Espoo, Finland) 
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The following solutions were prepared:  

Sterile cortex buffer  

125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM HEPES, 2 mM CaCl2 (2 ml 1M CaCl2) and 2 mM MgSO4 (2 

ml 1M MgSO4) were dissolved in 1 l distilled H2O and then passed through a sterilization filter. The buffer 

was maintained at pH 7.4.  

Sterile phosphate buffered saline (PBS)  

137 mM NaCl, 2.7 mM KCl, 10 mM NaH2PO4 and 1.8 mM KH2PO4 were dissolved in 1 l distilled H2O and pH 

was adjusted to 7.4 using NaOH.  

4% (wt/vol) Paraformaldehyde (PFA)  

40 g PFA were dissolved in 800 ml distilled H2O and 10 ml 1 M NaOH was added over low heat (max. 60  °C) 

until the solution clears. The solution was cooled down, 100 ml 10x PBS were added and the pH was 

adjusted to 7.4 with 1 M HCl. The solution was filled to 1000 ml with distilled H2O and then filtered through 

a sterilization filter. 

Medetomidin/Midazolam/Fentanyl (MMF) mix  

The following concentrations were used: Fentanyl, 0.05 mg kg-1; Midazolam, 5 mg kg-1; Medetomidin, 0.5 

mg kg-1 mix. For this, 0.005 mg ml−1 of Fentanyl, 0.5 mg ml−1 Midazolam and 0.05 mg ml−1 Medetomidine 

were added to sterile saline.  

Bicuculline 

Carprofen (Rimadyl®) 

Fentanyl  

Flumazenil  

Isoflurane Forane 

Medetomidine Dormitor® 

Midazolam  

Naloxone  

QX-314 chloride 

Tetrodotoxin (TTX) 

Xylocaine liquid (Lidocaine 1% (wt/vol) + 

epinephrine 1:100,000 solution) 

 

Sigma, cat. no. 14340 (Missouri, USA) 

Zoetis (Madison, New Jersey, USA) 

HEXAL AG (Oberhaching, Germany) 

HEXAL AG (Oberhaching, Germany) 

Baxter (Deerfield, Illinois, USA) 

Orion Pharma (Espoo, Finland) 

Ratiopharm (Ulm, Germany) 

Ratiopharm (Ulm, Germany) 

Alomone labs, cat. no. Q-150 (Jerusalem, Israel) 

Tocris, cat. no. 1078 (Bristol, UK) 

AstraZeneca (London, UK) 
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Atipamezol/Flumazenil/Naloxon (AFN) mix  

The following concentrations were used: Naloxone, 1.2 mg kg-1; Flumazenil, 0.5 mg kg-1; Atipamezole, 2.5 

mg kg-1. For this, 0.12 mg ml−1 of Naloxon, 0.05 mg ml−1 Flumazenil and 0.25 mg ml−1 Atipamezole were 

added to sterile saline. 

Fluorescent beads  

Fluorescent beads were diluted 1:10 with either sterile cortex buffer or distilled H2O. The beads were 

stored in a light-shielded 0.5 ml Eppendorf tube at 4°C.   

Cutting solution 

Carbogenated (95% (vol/vol)  O2, 5% (vol/vol) CO2): 85 mM NaCl, 75 mM sucrose, 2.5 mM KCl, 23 mM 

glucose, 1.25 mM NaH2PO4, 4 mM MgCl2, 0.5 mM CaCl2 and 24 mM NaHCO3, 310-325 mOsm. This solution 

was prepared fresh on the same day as the brain slicing was performed. 

Extracellular recording solution (ACSF)  

Carbogenated (95% O2, 5% CO2): 127 mM NaCl, 2.5 mM KCl, 26 mM NaHCO3, 2 mM CaCl2, 2 mM MgCl2, 

1.25 mM NaH2PO4 and 11 mM glucose, 305-315. This solution was prepared fresh on the same day as the 

brain slicing was performed. 

Cs-based intracellular recording solution  

122 mM CsMeSO4, 4 mM MgCl2, 10 mM HEPES, 4 mM Na-ATP, 0.4 mM Na-GTP, 3 mM Na-L-ascorbate, 10 

mM Na-phosphocreatine, 0.2 mM EGTA, 5 mM QX-314, 0.3-0.5% (wt/vol) Neurobiotin tracer and 0.03 

mM Alexa 594, pH 7.25, 295-300 mOsm. The solution was filtered, aliquoted (~70 µl) and stored at -20°C.  

K-based intracellular recording solution  

126 mM K-gluconate, 4 mM KCl, 10 mM HEPES, 4 mM Mg-ATP, 0.3 mM Na-GTP, 10 mM Na-

phosphocreatine, 0.3-0.5% (wt/vol) Neurobiotin tracer and 0.03 mM Alexa 594, pH 7.25, 295-300 mOsm. 

The solution was filtered, aliquoted (~70 µl) and stored at -20°C.  

MNI-caged-L-glutamate  

A 50 mM stock solution was prepared by adding distilled H2O. 40 µl aliquots were prepared and stored at 

-20°C.  
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The following equipment was prepared:  

Poly-D-lysine coated coverslips  

Coverslips were washed in 96% (vol/vol) ethanol. Poly-D-Lysine hydrobromide was dissolved in distilled 

H2O to 1mg/ml, aliquoted to 1 ml and stored at -20°C. Poly-D-lysine stock solution was then diluted 1:10 

with distilled H2O. A drop of 100 µl was added on each coverslip in a petri-dish on filter paper and then 

left to dry completely. The petri-dish was covered and stored in a dark place.  

Gelfoam pieces  

Gelfoam pieces were cut into ~ 7 mm2 blocks and soaked in sterile cortex buffer.  

Ethanol bath  

Round coverslips were sterilized and stored in 70% (vol/vol) Ethanol in a petri dish. 

 

2.3 Methods and approaches 

All experimental procedures were carried out in compliance with institutional guidelines of the 

Max Planck Society and the local government (Regierung von Oberbayern).  

 

2.3.1 Virus dilution, mixing and loading 

AAV2/1.CamKII0.4.Cre.SV40 (start titer: 1.8 x 1013 GC per ml) was diluted with sterile PBS 1:2000-

1:3000, leading to a final titer of 6 x 109 - 9 x 109 GC per ml. Next, AAV2/1-Syn-FLEX-mRuby2-CSG-P2A-

GCaMP6m-WPRE-SV40 (start titer: 2.9 x 1013 GC per ml) was mixed 1:1 with the pre-diluted 

AAV2/1.CamKII0.4.Cre in a sterile 0.5 ml Eppendorf tube. The total volume was 4 µl and the final titer of 

AAV2/1-Syn-FLEX-mRuby2-CSG-P2A-GCaMP6m-WPRE-SV40 was 1.4 x 1013 GC per ml. 

For the virus and bead injection pipettes, long tapered glass capillaries were marked with a scale 

at 1 mm intervals using a fine permanent marker. For the given glass capillaries 1 mm length corresponded 

to a volume of 45 nl. The glass capillaries were pulled (puller: PC-97), the tip was broken off using fine 

forceps (Dumont #5 Forceps-Assorted Styles straight) and then beveled using a modified computer hard 

disk apparatus (45° angle, Canfield (2006)). The tip opening was 40-50 µm for the virus injection pipettes 
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and 80-100 µm for the bead injection pipettes. In addition, several pipettes with blunt opening were used 

for cranial window stabilization (see section 2.3.2). 

A 2-µl drop of virus mixture was then pipetted onto a pre-cut piece of parafilm. A virus injection 

pipette was placed into the holder of a stereotaxic arm and connected to a 20-ml syringe via thin plastic 

tubing at the top end. The pipette tip was then carefully immersed into the virus drop under visual control 

using a dissecting microscope. About 100-200 nl of virus mixture was frontloaded into the pipette by 

applying negative pressure with the 20-ml syringe. After loading, suction was released and the pipette tip 

was retracted from the virus drop. Multiple glass capillaries were loaded in a similar way.  

 

2.3.2 Head bar mounting, IOS imaging, virus injection and window implantation 

Surgeries were performed on female C57bl/6 mice (postnatal days P27-P35) that were 

intraperitoneally (i.p.) anesthetized with MMF mix (0.010 ml g-1). Additional drugs applied were Carprofen 

(4mg/kg, subcutaneous (s.c.)) before surgery (also on first day of post-surgical recovery) and Lidocaine 

(10%, topical to skin prior to incision).  

Head bar mounting  

The surgery area as well as the surgical equipment were disinfected prior to surgery. Surgery tools 

were heat sterilized multiple times during the surgery. Once the animal showed deep anesthesia indicated 

by the loss of responses to toe pinches, the animal was placed on a heat mat and mounted in a stereotaxic 

frame.  Eye-cream was applied to keep the eyes moist during the time of surgery. The top of the mouse 

skull was visualized using a dissecting microscope at a low magnification (x10 to x20, see (see Figure 2.1). 

Then, the skin was disinfected using 70 % Ethanol and 7.5 % iodopovidine (Figure 2.1A1). Using scissors 

and forceps, a section of skin over the right hemisphere starting from the dorsal scalp was removed so 

that bregma, lambda and the sutures were exposed (Figure 2.1A2 and A3). The remaining skin edges were 

held back by skin hooks (Figure 2.1A4, yellow arrows). Periosteum tissue was carefully scraped from the 

skull using fine forceps, a scalpel as well as Sugis and part of the muscles were cut (Figure 2.1A4 and A5, 

blue arrows). Next, thin lines on the skull of the left hemisphere were scraped to ensure a better 

attachment between dental cement and bone (Figure 2.1A6). Following this, a custom machined metal 

head bar (oval with an 8 mm opening and two screw notches) was carefully placed and angled over the 

binocular zone of the primary visual area (Figure 2.1A7). The head bar was initially mounted with super 

glue and then fixed to the skull with dental cement sparing the area of interest (Figure 2.1A8). A premixed 
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solution containing cortex buffer and ultrasonic gel was applied on the mouse skull and a 10 mm cover 

glass was placed on top of the head bar for IOS imaging (Figure 2.1A9).  

 

Figure 2.1 Surgical steps 

A1-A3: Mounting of animal, disinfection of skin, skin removal and cleaning. A4-A6: Skin hook 

placement (A4, yellow arrows), temporalis muscle (A4 and A5, blue arrow) and periosteum removal. 

A7-A9: Head bar placement, head bar fixation with dental cement and window placement for IOS 

imaging. A10-A17: Marking of circular craniotomy and region of interest (A11, green arrow) with hand-

held biopsy punch and drilling of bone flap removal grooves (A12, blue arrows). Removal of bone flap 

with hand-held drill and fine forceps. A18-A24: Single viral injection into the binocular zone of V1 and 

fluorescent bead injections. A25-A30: Window placement and mounting of the glass window using 

stabilizer micropipette, Histoacryl® (A27, blue arrow) and dental cement (scale bars: 1 mm).  
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IOS imaging 

IOS imaging during the surgery was used to locate the binocular zone of the visual cortex for 

subsequent targeted virus injection. For IOS imaging, the optical axis was orthogonal to the head bar for 

each animal. The brain surface was first illuminated with light of 530 nm to visualize the blood vessel 

pattern and subsequently with 735 nm to localize the BZ. Images were acquired using an x4 air objective 

(NA 0.28, Olympus) and a high speed CCD camera (12 bit, 250x348 pixel, 40 Hz). The camera was focused 

to ~500 µm below the pial surface. Image acquisition and analysis software were custom written in 

Matlab.  

A patch with a size 20° x 40° was displayed randomly to either the left or the right mouse eye at 

two distinct positions next to each other in the central visual field. The patch was a sinusoidal grating 

displayed in eight directions for 7 s (the orientation of the grating was changed every 0.6 s) with a temporal 

frequency of 2 cycles/s and a spatial frequency of 0.04 cycles/degree. A blank grey screen (50% contrast) 

was displayed for 5 s between each stimulus presentation. Individual trials were separated by 8 s and the 

entire stimulus sequence was repeated at least 2 times per eye and patch position during the surgery and 

at least 3 times per eye and patch position during the first in vivo imaging session.   

Craniotomy 

After IOS imaging, the mouse  a s.c. injection of MMF mix (0.0025 ml g-1) was performed to 

maintain anesthesia. The cortical area of interest (determined by IOS imaging) was marked with a pen or 

scalpel blade and a circular craniotomy (4 mm diameter) centered over the binocular zone of the right 

primary visual cortex was performed (Figure 2.1A10 and A11). The craniotomy was made using a 

combination of a hand-held biopsy punch (Figure 2.1A10) and a high-speed micro drill. To facilitate 

removal of the bone with forceps after drilling, two small holes (~0.5 mm apart from each other) were 

drilled into the central flap of skull without full perforation of the bone (Figure 2.1A12, blue arrows). After 

drilling, fine forceps were inserted into the two drilled holes without perforation and the bone flap was 

carefully lifted and removed (Figure 2.1A13-A16). Small gelfoam pieces were applied on the cortical 

surface preventing the brain from drying out (Figure 2.1A17).   

Virus injection 

The premixed virus (see Material and Methods 2.3.1) was injected 200-500 µm below the pial 

surface at a single site in the binocular zone of V1 (50-100 nl/injection, ~ 10 nl/min ejected by pressure 

pulses at 0.2 Hz controlled by the pulse generator Master-8). The exposed brain surface was kept moist 
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using sterile cortex buffer during the entire injection procedure. The glass pipette was then carefully 

retracted 2-3 minutes after the virus injection (Figure 2.1A18-A20).  

Next, diluted fluorescent retrobeads (1:20 with ddH2O, Lumafluor Inc.) were directly frontloaded 

from a 0.5 ml Eppendorf tube into a glass capillary. The beads were then pressure injected (10-20 

nl/injection, 5 nl/min) medial and lateral (optional: caudal and rostral) to the virus injection site at a 

distance of ~1500 µm from its centre (Figure 2.1A21-A24).  

Cranial window implantation  

The craniotomy was then covered with a glass cover slip that was held in place with a glass 

capillary as window stabilizer (Figure 2.1A25 and A26). The window was sealed flush with drops of 

histoacryl (Figure 2.1A27 and A28, blue arrow).  The head bar and cover glass were then further stabilized 

by the addition of dental cement (Figure 2.1A29-A30).  

After surgery, the animal was injected s.c. with saline (500 µl) and the anesthesia was antagonized 

by i.p. injection of Naloxone (1.2 mg kg-1), Flumazenil (0.5 mg kg-1) and Atipamezole (2.5 mg kg-1).  

The animal was placed back in its home cage and cells were allowed to express the virus for at 

least 2 weeks before in vivo imaging. 

 

2.3.3 In vivo imaging 
 

2.3.3.1 Anesthesia 

Mice were initially anesthetized with an i.p. injection of MMF mix (0.006 ml g-1). Additional MMF mix (25% 

of induction level) was injected s.c. every 45-60 mins to maintain the level of anesthesia. Mice were fixated 

under the microscope by screwing the metal head-plate to two posts and stable thermal homeostasis was 

guaranteed by using a heated blanket throughout the imaging session. Eye and pupil positions were 

recorded with two cameras throughout the imaging sessions. 

2.3.3.2 Two-photon calcium imaging 

Before in vivo 2-photon imaging, low magnification overviews of the cranial window of each 

animal containing the location of the virus bolus, the fluorescent bead tracks and the blood vessel pattern 

were acquired using an epifluorescence microscope (see Figure 3.8, Figure 3.10).  
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Neurons co-expressing GCaMP6m and a bright structural marker mRuby2 (mRuby2-CSG-P2A-

GCaMP6m) were imaged in vivo as well as afterwards in vitro using a tunable pulsed femtosecond 

Ti:Sapphire laser. The principal setup of the microscope and the light path is shown in Figure 2.2B. 

For the in vivo experiments, the 2-photon laser was tuned to λ=940 nm in order to simultaneously 

excite GCaMP6m and mRuby2. An x16 0.8 NA water immersion objective was used to detect red and 

green signals. The excitation light was short passed filtered (720/25 short-pass) and the emitted photons 

passed through a primary beam splitter (FF560 dichroic), green and red band pass filters onto GaAsP 

photomultiplier tubes.  

Multiple imaging planes were acquired by rapidly moving the objective in the z-axis using a high-

load piezo z-scanner. The image volume for functional cellular imaging was 250 x 250 x 100 µm3 with 4 

inclined image planes that were each separated by 25 µm in depth (Figure 3.9 A). Imaging frames of 512 

x 512 pixels (pixel size 0.49 µm) were acquired at 30 Hz by bidirectional scanning of an 8 kHz resonant 

scanner while beam turnarounds were blanked with an electro-optic modulator (Pockels cell). Imaging 

was performed between 150-300 µm below the pial surface. Excitation power was scaled exponentially 

(exponential length constant ~150 µm) with depth to compensate for light scattering in tissue with 

increasing imaging depth. The optical axis was adjusted to be orthogonal to the cranial window in each 

animal. ScanImage 4.2 (Pologruto et al. 2003) and custom written hardware drivers were used to control 

the 2PLSM microscope. 

After the functional characterization of neurons, at least two high-resolution structural image 

stacks with different field of view sizes (low and high) were acquired at λ=940 nm/1040 nm. These stacks 

were acquired from the pial surface to L5/L6 and contained the functionally characterized L2/3 pyramidal 

cells of interest. These structural stacks usually consisted of 1) 450 sections (512 x 512 pixels) with a pixel 

size of 0.5 µm collected in z-steps of 1.4 µm (resulting in an imaged volume of 256 x 256 x 630 µm3). 2) 

350 sections (512 x 512 pixels) with a pixel size of 1.9 µm collected in z-steps of 2 µm (resulting in an 

imaged volume of 972 x 972 x 700 µm3). 

2.3.3.3 Visual stimulation 

Visual stimuli were generated using the MATLAB Psychophysics Toolbox extension and displayed 

on a gamma-corrected LCD monitor (http://psychtoolbox.org). The screen measured 24.9 x 44.3 cm, had 

a refresh rate of 60 Hz and was positioned in portrait 13 cm in front of the eyes of the mouse.  The monitor 

was adjusted in position (rotation and tilt) for every mouse to cover the binocular visual field of the mouse 

and an OpenGL shader was applied to correct for the increasing eccentricity on a flat screen relative to 
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the spherical mouse space (Marshel et al. 2011). Monocular stimulation of the eyes was achieved by 

servo-motor driven eye shutters that were operated by a microcontroller (see: 

http://csflab.nin.knaw.nl/protocols/eyeshutters) and MATLAB.  

 

Figure 2.2 Imaging and electrophysiological setups 

A Circuit mapping setup (setup B) for UV photostimulation and dual color optogenetics. Only primary LSPS beam 

path of UV laser light displayed. Secondary 2-photon imaging beam path is comparable to 2-photon-setup shown 

in B. See text for further explanation. RFL: red fiber coupled laser; BFL: blue fiber coupled laser; FC: fiber coupler; 

DM: dichroic mirror; PD: Photodiode; MS: Mechanical shutter; SCM: galvanometric scanner; SCL: scan lens; CCD: 

Camera; TB: tube lens; OB: objective; SP: Specimen; CO: Condenser; TrL: transmission light. B 2-photon setup. 

PC: electro-optic modulator; M: silver mirror; TL1/TL2: telescope lenses; MS: Mechanical shutter; SCM: 

galvanometric scanner; SCL: scan lens; TB: tube lens; DM1/DM2: Dichroic mirrors; OB: objective; SP: Specimen; 

CO: Condenser; TrL: transmission light; CL: collector lens; BF1/BF2: band-pass filters; PMT1/PMT2: 

photomultiplier tubes. In vitro application for secondary imaging beam path for circuit mapping setup in A. 
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2.3.3.4 Visual stimulation protocols for 2-photon calcium imaging 

For all visual stimuli presented, the backlight of the LED screen was synchronized to the resonant 

scanner to turn on only during the bidirectional scan turnaround periods when imaging data was not 

recorded. The mean luminance with 16 kHz pulsed backlight was 0.01 cd/m2 for black and 4.1 cd/m2 for 

white.  

Ocular dominance, orientation and direction selectivity  

The right or left eye was visually stimulated in a random order using sinusoidal gratings of eight 

directions with a temporal frequency of 3 cycles/s and a spatial frequency of 0.04 cycles/degree. In order 

to cover the binocular visual space, the visual stimuli were presented at -25° to 25° azimuth and -15° to 

35° elevation relative to the midline. Stimulation duration for moving gratings was 5 s interleaved by 6 s 

of a full-field grey screen. Trials were repeated 4 times per eye and direction. 

Temporal and spatial frequency selectivity 

Full field binocular stimulation was used. Stimulation occurred in a random order using sinusoidal 

gratings of eight directions with temporal frequencies of 1, 2 and 4 cycles/s and spatial frequencies of 

0.02, 0.08 and 0.16 cycles/degree. Stimulation duration for moving gratings was 3 s interleaved by 3 s of 

a full-field grey screen. Trials were repeated 4 times per spatial and temporal frequency combination and 

direction. 

Spontaneous activity measurements  

Spontaneous activity was measured during 10 min in complete darkness with the monitor being 

turned off and eye shutters removed.  

 

2.3.4 In vitro experiments 
 

2.3.4.1 Slice Preparation 

Wild type C57bl/6 mice (postnatal days P28-P70) were used for experiments. In a subset of 

experiments a Wfs1-Tg2-CreERT2 expressing line(stock no: 009614, background C57bl/6, The Jackson 

Laboratory) crossed with tdTomato expressing line Ai9 was used for experiments (Madisen et al. 2010). 

The tdTomato expression was Cre dependent and was triggered by i.p. injections of Tamoxifen (75 µL/10 

mg body weight) for 5 days. Slices were prepared at least three days after the last Tamoxifen injection. 

Florian Matznick performed experiments with the Wfs1-Tg2-CreERT2 mice.  
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 The cutting solution was cooled down to ~0 °C and slice preparation tools were submerged in the 

cutting solution prior to slice preparation.  Another 250 ml of cutting solution was heated to 32°C. Both 

solutions were carbogenated. To prepare acute coronal brain slices of the primary visual cortex, animals 

were deeply anesthetized with Isoflurane in a sealed container (>100 mg/kg) and rapidly decapitated.   

For animals with implanted cranial windows, the metal head bar was carefully removed by holding 

the maxillary bone of the mouse with forceps while manually grabbing and carefully twisting the head 

until the head bar detached from the mouse head.  

The head was then placed into ice-cold cutting solution. The brain was exposed by removing the 

remaining skull bone using fine scissors, forceps and a small spatula. The dura mater was carefully 

detached using fine forceps. The brain was removed with a small spatula blade and then transferred into 

fresh ice-cold cutting solution. The cerebellum as well as the rostral part of the brain were cut away and 

the two hemispheres were gently separated by a razor blade. The brain was then glued onto a vibratome 

stage and 320-380 µm thick coronal brain sections were cut in ice cold oxygenated cutting solution.  

For in vivo / in vitro experiments, fluorescent bead deposits and the virus bolus were detected 

with fluorescence goggles and used as guidance cues during the slice cutting procedure. The cutting angle 

was kept constant across animals and was chosen to be as perpendicular to the in vivo field of view as 

possible. Unlabeled brain slices were discarded at this point.  

Brain slices were gently transferred to a light shielded oxygenated slice chamber containing 

cutting solution and then incubated 30 min to 1 h at 32°C. After this initial incubation period, slices were 

kept in recording ACSF (rACSF) (in mM: 127 NaCl, 2.5 KCl, 26 NaHCO3, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4 and 

11 glucose) at room temperature for up to 7 hours.   

 

2.3.4.2 Re-identification of cells and targeted recordings 

A single brain slice was mounted on a poly-D-lysine coated coverslip and then transferred to the 

recording chamber of the in vitro 2PLSM while keeping track of the rostro-caudal orientation of the slice. 

For in vivo / in vitro experiments, the fluorescent bead deposits in the brain slice where used to 

locate the area of interest by comparing the recorded distance to the ones obtained in vivo. Following 

this, a high-resolution image stack was acquired from the slice surface to the bottom using an x16 

objective and a wavelength of 940-1040 nm to excite mRuby2. ScanImage 4.2 (Pologruto et al. 2003) and 

custom written hardware drivers were used to operate the in vitro 2PLSM microscope. The in vitro stack 

consisted of 200-320 sections (512 x 512 pixels; 0.5 -2 µm per pixel) recorded in z steps of 1-2 µm. As a 
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next step, the relative positions of cells and morphological details such as blood vessel patterns were 

compared between the side view of the in vivo stack and the face view of the in vitro stack. More 

specifically, the in vivo as well as the in vitro stack were simultaneously opened in ImageJ and labelled 

cells were readily re-identified just simply based on their unique morphology and dendritic branching 

pattern by eye while scrolling through the stacks. In addition, z-projections of sections of the in vivo and 

in vitro stacks were created (50 sections with 1 µm spacing using Image J) and used to compare and match 

cell patterns in z-projections by eye. 

2.3.4.3 LSPS by UV glutamate uncaging 

For the uncaging experiments using UV laser light two different setups were used. For clarification 

the setups are termed setup A and setup B. In contrast to setup A, setup B had an additional 2-photon 

laser pathway besides the one-photon pathway used for UV-stimulation. Therefore, setup B was used for 

the in vivo / in vitro experiments. The principal setup of the microscope and light path is shown Figure 

2.2A.   

Coronal brain slices were visualized with an upright microscope (setup A: BW51X, Olympus, setup 

B: A-scope, Thorlabs) using infrared Dodt gradient contrast (DGC). Slices were visualized using a low 

magnification UV transmissive objective (4x objective lens) and images were acquired by a high resolution 

digital CCD camera. The digitized images from the camera were used for registering photostimulation sites 

in cortical brain sections.  

MNI-caged-L-glutamate aliquots were thawed and added to 10-20 ml of circulating ACSF on the 

experimental day to obtain a working concentration of 0.2 mM. The bath solution was replaced after 3 h 

of recording, and bath evaporation was counterbalanced by adding a constant small amount of distilled 

H2O to the solution reservoir using a perfusor. A perfusion system ensured a constant fluid level in the 

recording chamber.  

For in vitro experiments without previous cell characterization in vivo, pyramidal cells in the 

binocular region of V1 were primarily targeted using morphological landmarks and then whole cell 

recordings were performed at high magnification using a x60 objective. Targeted pyramidal cells bodies 

were at least 50 µm below the slice surface. 

For the in vivo / in vitro experiments, 2-photon guided targeted patching was performed on cells 

that were matched in vivo and in vitro. 

Borosilicate glass patch pipettes (resistance of 4-5 MΩ) were filled with either a Cs-based internal 

solution when measuring excitatory and inhibitory postsynaptic currents (EPSC: voltage clamped at -70 
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mV, IPSC: voltage clamped at 0-5 mV) or a K-based internal solution when recording active intrinsic cell 

properties. Electrodes also contained 30 µM Alexa 594 for detailed morphological visualization using 2-

photon microscopy.  Once stable whole-cell recordings were obtained with good access resistance 

(usually  < 30 MΩ) the microscope objective was switched from x60 to x4. In some experiments basic 

electrophysiological properties were examined in current-clamp mode with 1 s long hyper- and 

depolarizing current injections.  

For circuit mapping, the slice was positioned within the CCD camera´s field of view and a stimulus 

grid (16 x 16 with 69 µm spacing) was aligned to the pial surface using Ephus software (Suter et al. 2010). 

The location of the cell soma was noted in Ephus. The UV laser power was adjusted to 10-15 mW in the 

specimen plane and then the mapping was initiated (1 ms pulses, 1s interstimulus interval). Multiple maps 

were recorded in a pseudo-random fashion while clamping the cell at -70 mV (2-3 repetitions with change 

of mapping sequence during each trial). Optionally, multiple (2-3 repetitions) inhibitory laminar input 

maps were recorded at 0 mV.  

On setup A, a DPSS laser was used to generate 355 nm UV laser pulses for glutamate uncaging. 

The duration and intensity of the laser pulses were controlled by an electro-optical modulator, a neutral 

density filter wheel and a mechanical shutter. The beam of light was controlled using voltage-controlled 

mirror galvanometers. An UV-sensitive photodiode measured the power of the UV laser beam. A dichroic 

mirror reflected the UV beam into the optical axis of the microscope while transmitting visible light for 

capturing bright-field images by the CCD camera.  The beam passed a tube/scan lens pair in order to 

underfill the back aperture of the x4 mapping objective. 

On setup B, the UV laser for glutamate uncaging was an Explorer One 355-1. The duration and 

intensity of the laser pulses were directly controlled using analog signals and the built-in software L-Win 

and a mechanical shutter as well as neutral density filters. An UV-sensitive photodiode measured the 

power of the UV laser beam.  

Electrophysiological data were acquired with a Multiclamp 700B amplifier, data acquisition 

boards and Ephus. Data were digitized at 10 kHz and stored on a computer.  

The spatial resolution of photostimulation was estimated by using excitation profiles. Excitation 

profiles describe the spatial resolution of uncaging sites that generate action potentials in stimulated 

neurons. For this, excitatory as well as inhibitory cells in the different neocortical layers of V1 were 

recorded in cell-attached configuration with the amplifier in current-clamp mode. The microscope 

objective was then switched from x60 to x4 and a 8x8 or 8x16 stimulus grid with 50 or 69 µm spacing was 
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overlaid on the slice image and the soma location was registered. The interstimulus interval was set to 1 

s and then a map was acquired.  

 

2.3.4.4 Image acquisition for morphological imaging 

The patch pipette was carefully retracted from the cell after successful recording and filling with 

Alexa 594. A detailed structural 2-photon image stack of the dendritic morphology of the entire cell was 

acquired with excitation light of λ=810 nm using ScanImage 4.2 (Pologruto et al. 2003). The structural 

image stacks typically consisted of 250 sections (1024 x 1024 pixels; 0.3-0.8 µm per pixel) collected in z 

steps of 1-2 µm. For cells that contained mRuby2 as structural marker, a second identical image stack was 

acquired at λ=940/1040 nm. An overlay of the acquired stacks (in ImageJ) was then used to verify that the 

in vivo functionally characterized cell of interest was successfully re-identified, recorded and filled with 

Alexa 594. 

 

2.3.4.5 Morphological reconstruction and analysis 

The reconstruction of dendritic cell morphology was performed manually using the Simple 

Neurite Tracer of ImageJ. Reconstructions were quantitatively analyzed in MATLAB and with the open-

source TREES toolbox (Cuntz et al. 2011). The 21 morphological parameters that were extracted are listed 

in Table 3.2. The features were separated into 2 groups composed of the parameters for the apical tree 

(1-10) and the basal tree (11-21). The radial distance was measured as the Euclidean distance from the 

soma to each section terminal. The total length was measured as the sum of all internode sections of the 

neurite. The path length was computed as the path length from a terminal to the soma. The center of the 

somas was defined as the mean distance of all soma points from the center.   

 

2.3.4.6 Extraction of electrophysiological parameters 

Electrophysiological parameters were extracted using the PANDORA Toolbox (Günay et al. 2009) 

and custom-written software in Matlab (also refer to Table 3.1 and Figure 3.1). The active single spike 

parameters were measured using the first spike evoked by current injection (at Rheobase). The extracted 

parameters were measured/calculated and defined in the following way:  
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1. Minimal membrane voltage during Afterhyperpolarization (AHP, Vmin): This was estimated as the 

minimal deflection during the period of the AHP. 

2. Peak membrane voltage of spike (Vpeak): After detecting a single spike, the absolute maximum 

voltage of the spike was considered. 

3. Threshold voltage at spike initiation (Vthresh): The voltage at spike initiation. 

4. The maximal slope of the spike (Vslopemax): The maximal rate of rise of membrane voltage during 

the spike rise phase. 

5. Membrane voltage at spike half (Vhalf): Voltage of the spike at half-height. 

6. Amplitude of the spike (Vamp): The absolute amplitude of the spike calculated as the difference 

between the voltage at Vthresh and Vpeak. 

7. Maximal amplitude of AHP (AHPmax): It was measured as the difference between the voltage at 

the end of the spike and the resting membrane potential. 

8. Rise time of spike (Spikerise): Time for a spike to rise from threshold to peak. 

9. Fall time of spike (Spikefall): Time for a spike to fall from peak to threshold. 

10. Entire width of spike (Spikebase width): The duration of the entire spike. 

11. Half width of spike (Spikehalf width): The duration at the spike half-height. 

12. First spike latency (FSL): Time for the first spike to occur after current injection (measured at 

Rheobase).  

13. Resting membrane potential (Vrest): The membrane potential measured after break-in. 

14. Membrane time constant, τm (ms): This was estimated using an exponential fit to the recovery of 

the voltage response following hyperpolarizing step currents.  

15. Input resistance, RIN (MΩ): Estimated by the linear fit of the I-ΔV curve (using subthreshold de- 

and hyperpolarizing pulses). 
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16. Sag in percentage (Sag ratio): 100 (
𝑉𝑠𝑠−𝑉𝑚𝑖𝑛

𝑉𝑟𝑒𝑠𝑡−𝑉𝑚𝑖𝑛
), where Vss is the voltage at steady-state, Vrest the 

resting membrane potential and Vmin the minimum voltage reached after hyperpolarizing current 

injections of -300 pA.  

17. Rheobase (pA): The minimum current amplitude of infinite duration required for action potential 

generation.  

18. Spike frequency, FS (Hz): The maximum spike number divided by the pulse duration. 
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2.3.5 dLGN dual-color mapping experiments 

 

2.3.5.1 Intravitreal eye injections 

All eye injections were carried out by Joel Bauer and Juliane Jaepel. Eye injections were performed 

on female C57bl/6 mice (P27-P35) that were intraperitoneally anesthetized with MMF mix (0.010 ml g-1). 

Before starting the experiment, all surgical instruments were heat-sterilized and washed with ethanol. 

The 34G injection needle, 26G virus loading needle and Hamilton syringe were first rinsed with distilled 

H2O several times followed by ethanol and then distilled H2O again. Chronos- or (AAV2/2.Syn-

Chronos.EGFP) ChR2-expressing AAVs (AAV2/2.Syn-ChR2(H134R).EYFP) and ChrimsonR-expressing AAVs 

(AAV2/2.Syn-ChrimsonR.tdT) were carefully loaded without adding air into the Hamilton syringe using the 

loading needle. The loading needle was then replaced with the smaller injection needle. The eye that was 

not injected was covered with eye cream. The target eye was first slightly popped out of its socket and 

held in place using forceps by the connective tissue at the back of the eye. The eye injection (0.5 to 1 µl 

injection volume) was performed in an oblique angle (lateral to medial ~40°) just behind the corneo-scleral 

junction in order to avoid damaging the lens. After injection, the needle was carefully retracted and the 

eye was then covered with eye-cream. 

The virus expressed for at least 4 weeks before the brain slice experiments.  

 

 

2.3.5.2 LGN slice preparation 

The preparation of dLGN-containing slices of P50-P70 old animals was similar to the visual cortex 

slice preparation described in section 2.3.4.1. The expression span of Chronos-eGFP/ChR2-eYFP and 

ChrimsonR-tdTomato within the dLGN was screened using fluorescent detection googles with different 

excitation light and filters (green and red) during the slice preparation. Only slices with sufficient 

transduction of Chronos-eGFP/ChR2-eYFP and ChrimsonR-tdTomato were considered for experiments. 

Brain slices were used for up to 6 hours.  

 

2.3.5.3 Dual-color stimulation 

Coronal brain slices containing the dLGN were mounted on poly-D-lysine coated coverslips and 

then transferred to the slice perfusion chamber and visualized with an upright microscope using infrared 
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differential interference contrast optics (iDIC). Slices were visualized using a low magnification 

transmissive objective (x4 objective lens) and images were acquired by a high resolution digital CCD 

camera (only Setup B was used for these experiments).  

An overview 2-photon image stack of the dLGN was obtained using λ=940 nm to simultaneously excite 

eGFP/eYFP and tdTomato.  

Whole cell voltage-clamp recordings of TC neurons were performed with borosilicate glass patch 

pipettes (resistance of 4-5 MΩ) filled with Cs-based internal solution. The cell was held at -70 mV and/or 

+40 mV to assay the AMPAR- mediated and NMDAR-mediated EPSCs, respectively. Series resistance was 

usually below 30 MΩ. Experiments were performed in the presence of the GABAA receptor antagonist 

bicuculline (20 µM) to block inhibitory disynaptic connections.  

For dual-color sCRACM experiments, 1 ms light pulses were delivered in a pseudo-random fashion 

on an 8x8 stimulus grid through an x4 or an x40 objective. The grid spacing was 50 µm both in x and y 

when using the x4 objective and 30 µm in x and 25 µm in y when using the x40 objective. The mapping 

was controlled using Ephus software. Sequence-specific activation during multiple repetitions was 

avoided by flipping and rotating the stimulus pattern between maps. For sCRACM experiments, 4-AP (100 

µM) and TTX (1 µM) were added to the recirculating bath.   

For wide-field dual-color photostimulation, a single full-field laser pulse (1 ms duration) was used 

in order to map the net synaptic input to the recorded cell.  

For each cell, the laser power was adjusted to cause reliable EPSCs without overstimulation. Blue laser 

powers ranged from 20 to 800 µW and red laser powers from 500 µW to 2 mW. 

 

2.3.6 Data Analysis 
 

2.3.6.1 Intrinsic optical imaging 

Custom-written Matlab software was used for acquisition as well as data analysis. First, acquired images 

were high-pass filtered and clipped (1.5%) to calculate blank-corrected image averages for each condition.  

Additionally, a threshold criterion (image background mean + 4 x standard deviation) was set to determine 

the responsive region within the averaged image. The mean background value of the non-responsive 

region was subtracted from each pixel and all pixel values within the responsive area were summed to 

obtain an integrated measure of response strength.  
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2.3.6.2 In vivo 2-photon image Analysis 

Custom-written Matlab software was used for image and data analysis. The calcium indicator in 

combination with a structural marker gave the possibility to perform ratiometric imaging. Image 

sequences were full-frame corrected for tangential drift and small movements caused by heart beat and 

breathing. An average of 160 image frames acquired without laser excitation was subtracted from all 

frames of the individual recording to correct for PMT dark current as well as residual light from the 

stimulus screen.  

Cell body detection was based on the average morphological image derived from the structural 

channel (mRuby2) for each recording session. ROIs (Region of interest) were drawn manually, annotated 

and re-identified in subsequent imaging sessions.  

The fluorescence time course of the area within the cell body was calculated by averaging all pixel 

values with the ROI on both background-corrected channels. Cell calcium traces were then low-pass 

filtered (0.8 Hz cut-off) and the neuropil signal subtracted using a neuropil factor r of 0.7 similarly to Kerlin 

et al. (2010).  The green and red fluorescence signal were estimated as:  

 

𝐹𝑔𝑟𝑒𝑒𝑛𝑐𝑒𝑙𝑙(𝑡) = 𝐹𝑔𝑟𝑒𝑒𝑛𝑐𝑒𝑙𝑙_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − 𝑟  × 𝐹𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑢𝑟𝑜𝑝𝑖𝑙(𝑡) + 𝑟  

×  𝑚𝑒𝑑𝑖𝑎𝑛(𝐹𝑔𝑟𝑒𝑒𝑛𝑛𝑒𝑢𝑟𝑜𝑝𝑖𝑙(𝑡))  

 

𝐹𝑟𝑒𝑑𝑐𝑒𝑙𝑙(𝑡) = 𝐹𝑟𝑒𝑑𝑐𝑒𝑙𝑙_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − 𝑟  × 𝐹𝑟𝑒𝑑𝑛𝑒𝑢𝑟𝑜𝑝𝑖𝑙(𝑡) + 𝑟  ×  𝑚𝑒𝑑𝑖𝑎𝑛(𝐹𝑟𝑒𝑑𝑛𝑒𝑢𝑟𝑜𝑝𝑖𝑙(𝑡))  

 

The ratio R(t) was then calculated as:  

𝑅(𝑡) =  
𝐹𝑔𝑟𝑒𝑒𝑛𝑐𝑒𝑙𝑙(𝑡)

𝐹𝑟𝑒𝑑𝑐𝑒𝑙𝑙(𝑡)
 

 

Slow timescale changes were removed by subtracting the 8th percentile of a moving 14 s temporal 

window from R(t). ΔR/R0 was calculated as:  

 

ΔR/𝑅0  =  
𝑅 − 𝑅0

𝑅0
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where R0 was measured over a 1 s period before the visual stimulation as the median of the individual 

mean baseline ratio signal of each trial. Visual responses were then extracted from trial-averaged 

responses as mean fluorescence ratio change over the full stimulus interval. 

To determine visual responsiveness, a one way ANOVA was performed over all averaged 

stimulation trials per orientation as well as R0 periods for each eye in the case of monocular stimulation. 

For binocular stimulation, a one way ANOVA was performed over all averaged stimulation trials per 

condition as well as R0 periods. In both cases, neurons with p-values < 0.05 were identified as visually 

responsive.  

Orientation-tuned cells were defined as neurons that showed a significant difference in 

responsiveness (p < 0.01, one way ANOVA) to all presented grating directions in the ipsilateral, 

contralateral or both eyes. The calculation of stimulus selectivity was performed on eye-specific responses 

that were significant in 50 % of the trials of at least one stimulus direction of a single eye exposure.  

 

2.3.6.3 Visual feature analysis 

Ocular dominance  

OD was determined by the OD index (ODI) for each individual cell: 

𝑂𝐷𝐼 =  

∆𝑅
𝑅0

 𝑐𝑜𝑛𝑡𝑟𝑎𝑝𝑟𝑒𝑓_𝑑𝑖𝑟 −  
∆𝑅
𝑅0

 𝑖𝑝𝑠𝑖𝑝𝑟𝑒𝑓_𝑑𝑖𝑟  

∆𝑅
𝑅0

 𝑐𝑜𝑛𝑡𝑟𝑎𝑝𝑟𝑒𝑓_𝑑𝑖𝑟 +  
∆𝑅
𝑅0

 𝑖𝑝𝑠𝑖𝑝𝑟𝑒𝑓_𝑑𝑖𝑟 

 

 

Where an ODI value of 1 or -1 displays exclusive contra- and ipsilateral dominance, respectively.  

 

Orientation and direction tuning 

Global orientation selectivity index (gOSI) was computed as 1 - circular Variance (circ. Var.):  

𝑔𝑂𝑆𝐼 = 1 − 𝑐𝑖𝑟𝑐. 𝑣𝑎𝑟. =  │
∑ 𝑅(𝜃𝑘)𝑒2𝑖𝜃𝑘

∑ 𝑅 (𝜃𝑘)
│ 

and global direction selectivity index (gDSI) was computed as:  

𝑔𝐷𝑆𝐼 = 1 − 𝑑𝑖𝑟. 𝑐𝑖𝑟𝑐. 𝑣𝑎𝑟. =  │
∑ 𝑅(𝜃𝑘)𝑒𝑖𝜃𝑘

∑ 𝑅 (𝜃𝑘)
│ 

 𝑅(𝜃𝑘) is here the mean response to the direction angle (𝜃𝑘). Perfect orientation/direction 

selectivity is indicated with gOSI/gDSI of 1 whereas a gOSI/gDSI value of 0 indicates no 

orientation/direction selectivity.  
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Spatial and temporal frequency tuning 

SF and TF tuning curves were extracted for all orientations and directions for each cell using the 

average ΔR/R0 response for each condition across trials. The spatial and temporal frequency data shown 

was calculated by measuring the average ΔR/R0 response for each condition and then determining which 

direction, for a given combination of SF and TF, gave the maximal response. This generates then a matrix 

that depicts the preferred direction for a given SF and TF combination and the intensity of the response, 

normalized to each cell when depicted. 

Spontaneous activity  

The baseline (R0) was calculated by taking the 8th percentile of a 20 s moving window across the 

entire spontaneous activity period, and averaging these values. Then this R0 was used in the same way as 

the one described above for the visual stimulation protocols to yield ΔR/R0.  

Calcium event detection was performed by first taking the derivative of the low passed calcium 

trace (cut-off at 5 Hz). An event onset was defined as any point where the z-scored trace crossed a value 

of 2. 

Population coupling of each cell was estimated by the correlation of its ΔR/R0 trace to the 

average ΔR/R0 trace of the rest of the population within the same recording. The population values were 

z-scored within each recording to compare data across multiple experiments (compare to Okun et al. 

(2015)).   

 

2.3.6.4 Principal component analysis and hierarchical clustering 

Principal component analysis, (PCA, Jolliffe (1986)), was used separately on the measured 

electrophysiological,  morphological, laminar input, as well as on the in vivo functional response 

properties, to extract the parameter combinations that carry the most variance, and reduce redundancy 

in the forthcoming data processing. Individual principal components were selected starting at the one 

explaining the most variance and until their combination explained between 75-80 % of the variance in 

the data set. These principal components were then utilized to hierarchically cluster the data. The 

distances between points were Euclidean and were grouped based on complete linkage (using MATLAB 

functions “linkage” and “cluster”). To determine the cut-off distance for the distance tree to define 

individual clusters, a shuffle approach was used, where the distributions of the individual parameters are 

left intact, but their values are shuffled independently across cells. This should break the relationship 
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between the variables on a cell per cell basis while still preserving the contents of the data set. This 

shuffling procedure was performed 1000 times to yield an approximated null distribution of the data. The 

cut-off distance then was defined as the distance lying at the 95th percentile of the null distribution (i.e. 

the distance at which in 5 % of the cases, the clusters would be due to random assortment). 

 

2.3.6.5 Analysis of LSPS data 

Excitation profiles 

The spatial resolution of LSPS by UV glutamate uncaging was calculated based on the size of the 

excitation profiles as the mean weighted distance from the soma (dsoma) of AP generating sites using the 

following equation:  

𝑅 =
∑ 𝐴𝑃𝑠 × 𝑑𝑠𝑜𝑚𝑎

∑ 𝐴𝑃𝑠
 

  

LSPS input maps 

LSPS by UV glutamate uncaging induces two major types of responses: 1) direct glutamate 

uncaging responses originating from the direct activation of the glutamate receptors of the recorded 

neuron. 2) synaptically mediated responses originating from the activation of presynaptic neurons (Figure 

3.15).  

Responses to the LSPS stimulation protocol (both for EPSCs and IPSCs) were quantified in the 150 

ms window following uncaging, since this is the time window were evoked activity is normally observed. 

Considering the diversity of responses encountered in these experiments, a heuristic analysis scheme was 

devised to address the main cases present:  

1) Inactive traces were excluded by only considering those responses with a deflection higher than 

2 S.D. over the baseline at any point. Additionally, traces that only had a significant response in 

one repetition were also excluded. 

2) Then, purely synaptic responses, i.e. those that correspond only to activation of the presynaptic 

terminal via uncaged glutamate - the ones of main interest in this study - were selected by taking 

the traces that pass the 2 S.D. threshold only after a 7 ms window from the offset of stimulation. 

3) For the responses that did not pass the previous criterion, manual observation indicated that 

several of them presented all the identifiable features of purely synaptic responses but seemed 
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to cross the threshold slightly earlier than 7 ms. An additional study performed on a subset of 

cells, where maps were measured before and after application of TTX (and hence before and after 

only direct responses are present) showed that by using a secondary window of 3.5 ms the error 

incurred in the small fraction of traces additionally included (~5 %) is ~20 % (data not shown). 

Therefore this secondary window was used to include a second batch of traces into the synaptic 

response pool. 

4) Finally, those traces that did not pass the secondary window where then blanked, and a 4-

dimensional interpolation method (via MATLAB function “griddata”) was used to infer their 

temporal profiles based on their neighbor activities in space and time. In the aforementioned TTX 

experiments (data not shown) every position with a response is observed to have a synaptic 

component, and their addition is non-linear. Therefore, this interpolation method was used to 

extract the synaptic information masked in the original traces by the direct responses. The 

approach relies on the fact that the synaptic responses of neighboring positions look similar across 

time, therefore indicating that information on the synaptic responses masked by direct responses 

is contained in the responses surrounding them. These interpolated responses were then 

incorporated into the maps as synaptic responses, and used in all the forthcoming calculations 

and displays. 

Spatial overlap of excitation and inhibition  

The excitation and inhibition maps were each binarized. The overlap index per layer (L2/3, L4 and 

L5) was calculated as follows:  

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
∑ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑝𝑖𝑥𝑒𝑙𝑠

∑ 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑖𝑥𝑒𝑙𝑠
 

 

2.3.7 Statistics 

Data are reported as mean ± standard error of the mean (SEM) or median ± interquartile range 

as indicated in individual figures. Correlation coefficients were calculated as Pearson’s correlation 

coefficient. Multiple comparisons were taken into account by using the Hochberg correction when 

comparing multiple correlation coefficients, and the Bonferroni correction when comparing data groups 

with each other.  

Before comparison of data, individual data sets were checked for normality using the Kolmogorov-

Smirnov Goodness-of-Fit test. None of the data sets considered in this study was found to be normally 
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distributed. Therefore, unpaired nonparametric statistics (Wilcoxon rank sum test or Kruskal-Wallis test 

on ranks with Bonferroni’s post hoc test for multiple comparison) were used for comparison. Asterisks 

indicate significance values as follows: *p<0.05, ** p<0.01, *** p<0.001 (unless otherwise stated). 
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3 Results 
3.1 Electrophysiological and morphological classification of L2/3 

principal cells in V1 

In order to determine whether there are different types of L2/3 PCs based on intrinsic 

electrophysiological properties, acute slices of mouse V1 were prepared and 137 neurons were recorded 

throughout the depth of L2/3 using the whole-cell configuration of the patch-clamp technique. From the 

137 cells a subset of 58 cells was recorded in a Wfs1-Tg2-CreERT2 expressing mouse line (see Material 

and Methods section 2.3.4.1).  

Additionally, 189 L2/3 PCs were filled with Alexa 594 in acute slices and their morphology was 

reconstructed post-hoc. From the 189 cells, a subset of 25 cells was recorded in the Wfs1-Tg2-CreERT2 

expressing mouse line.  

Comparison of L2/3 PCs between wild type and Wfs1-Tg2-CreERT2 expressing mice did not show 

any differences in their extracted morpho- and electrophysiological properties (data not shown) and were 

therefore combined.  

In a subset of 33 cells both the morphology and electrophysiology data were obtained, enabling 

directly correlating the two.    

 

3.1.1 L2/3 principal cell electrophysiological analysis 

To characterize their electrophysiological properties, the responses of L2/3 PCs to hyper- and 

depolarizing somatic current injections were analysed (Figure 3.1). Typically, 1-2 spikes appeared at the 

first supra-threshold current pulse (Rheobase, Figure 3.1A). A single spike trace evoked at the first supra-

threshold current pulse is depicted at the bottom in Figure 3.1A (insets i and ii). The extracted 

electrophysiological parameters such as spike peak amplitude (Vamp, parameter 6) and spike width 

(Spikebase width, Spikehalf width, parameters 10 and 11) as well as maximal AHP amplitude (AHPmax, parameter 

7) and further parameters are highlighted with numbers and their corresponding abbreviations (see also 

Table 3.1 and Material and Methods section 2.3.4.6 for further explanation on the definitions and 

calculations). The voltage response to a hyperpolarizing current pulse is shown in Figure 3.1B. By fitting 

an exponential curve to the decay of the voltage response after the end of the current injection, the 

membrane time constant τm (parameter 14) was estimated for each of the recorded L2/3 PCs.  A 
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representative ∆V-I curve with a linear fit is shown in Figure 3.1C. The input resistance RIN (parameter 15) 

was estimated from the slope of the linear fit (∆V/I) for each neuron (Figure 3.1C).  

 

Figure 3.1 Electrophysiological features of L2/3 principal cells in V1 

A Left, example of a recorded L2/3 PCs (scale bar: 50 µm). Right, voltage response to a depolarizing step current 

of 120 pA (current step that evoked first spike(s), Rheobase) for the cell displayed at the left (scale bars: 20 mV, 

50 ms). The dotted boxes labelled with i and ii refer to the insets shown at the bottom. Bottom, zoom-in into 

individual parts i and ii of a single spike. Displayed are the extracted electrophysiological features labelled with 

the corresponding number and abbreviation (see also section 2.3.4.6 and Table 3.1). B Left, voltage response to 

a hyperpolarizing step current of -300 pA (scale bars: 5 mV, 50 ms). Right, inset i displays the extracted values 

used for calculation of the voltage sag (see section 2.3.4.6, scale bars: 5 mV, 100 ms) and inset ii shows an 

exponential fit (purple line) to the voltage response following the termination of the step current. The 

exponential fit was used to estimate the membrane time constant τm (see Material and Methods section 2.3.4.6, 

scale bars: 5 mV, 10 ms). C Left, voltage responses to subthreshold de- and hyperpolarizing current steps (scale 

bars: 10 mV, 100 ms). Right, a ∆V-I curve is obtained by plotting the difference between the voltage at rest and 

at steady state (green arrow) against the injected current. The slope of a linear fit (red line) to the ∆V-I curve 

was used to estimate the input resistance RIN for each cell.    

 

 

 



   
 
Results   55 

 
Table 3.1 summarizes the 18 electrophysiological parameters extracted and their mean values 

across all cells. Parameters 13-17 are passive intrinsic properties, the rest of the parameters are active 

intrinsic firing properties. For the population of 137 cells, the distribution of each measured parameter is 

displayed in Supplementary Figure 5.1.  

To check for gradual depth-dependent changes of the 18 electrophysiological parameters within 

L2/3, the correlation coefficient for each parameter and the somatic depth of the cells with respect to the 

pia was calculated. After correction for multiple comparisons (see Material and Methods section 2.3.7), 

there was no significant correlation with pial depth for most of the extracted parameters. Only a single 

active intrinsic property, the maximal slope of the spike (Vslopemax, parameter 4) and three passive 

intrinsic properties, τm, RIN and Rheobase (parameters 14, 15 and 17), displayed a small but significant 

correlation with depth (Table 3.1, far right column, significance marked by asterisk). Significant 

correlations between the electrophysiological parameters are displayed in Supplementary Figure 5.2. 

 

# Description Mean ± SEM Correlation 
r with pial 
depth 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Vmin: Minimal membrane voltage during AHP 
Vpeak: Peak membrane voltage of spike 
Vthresh: Threshold voltage at spike initiation 
Vslopemax: The maximal slope of the spike 
Vhalf: Membrane voltage at spike half 
Vamp: Amplitude of the spike 
AHPmax: Maximal amplitude of AHP 
Spikerise: Rise time of spike 
Spikefall: Fall time of spike 
Spikebase width: Entire width of spike 
Spikehalf width: Half width of spike 
FSL: First spike latency 
Vrest: Resting membrane potential 
τm: Membrane time constant  
RIN: Input resistance 
Sag ratio: Sag in percentage  
Rheobase: Minimal current necessary to evoke spike 
Spike frequencymax: Maximal spike frequency  

-48.81 ± 0.41 mV 
46.1 ± 0.69 mV 

-33.96 ± 0.26 mV 
141.75 ± 3.05 ∆mV/∆ms 

6.07 ± 0.37 mV 
80.06 ± 0.72 mV 
14.85 ± 0.41 mV 
1.23 ± 0.02 ms 
3.34 ± 0.25 ms 
6.73 ± 0.15 ms 
2.93 ± 0.07 ms 

329.34 ± 13.73 ms 
-71.82 ± 0.59 mV 
35.26 ± 0.86 ms 

122.23 ± 2.57 MΩ 
7.06 ± 0.31 % 
115.7 ± 5 pA 

9.99 ± 0.37 Hz 

-0.12 
0.07 
-0.15 
0.32* 
0.01 
0.12 
0.02 
-0.17 
-0.03 
-0.19 
-0.21 
-0.02 
-0.2 

-0.3* 
-0.27* 
-0.14 
0.35* 
0.18 

 

Table 3.1 Electrophysiological parameters 

The 18 extracted parameters used for biophysical analysis with their corresponding averaged values of the n=137 

cells and their correlation with pial depth. Features with a significant correlation are marked with an asterisk 

(p<0.05, after correcting for multi-comparison).   
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Given the large data set with different electrophysiological parameters, PCA was used to reduce 

the dimensionality of the data. Before conducting PCA, all measurements were z-scored to standardize 

the PCA since the individual parameters varied in mean and variance (Table 3.1). The fraction of variance 

represented by each of the first 10 principal components as well as the cumulative fraction is shown in 

Figure 3.2A. Over 30 % of variance was explained by the first principal component and approximately 95 % 

of the variance was captured by the first 10 principal components (Figure 3.2A).  

 The weight of the contribution of each of the 18 parameters to the first five principal components 

is displayed in Figure 3.2B. Various parameters carry substantial weight contributing to the source of 

variability in the data.  Noticeably, the three passive intrinsic properties showing pial depth-dependence 

only contributed weakly to the source of variability in the first principal component (Figure 3.2B). For 

subsequent analyses only the top five ranked principal components were used, which together accounted 

for approximately 80 % of the variability in the data (Figure 3.2A). 

To group the 137 cells, hierarchical clustering on the first five principal components was 

performed using Euclidean distances in feature space (see Material and Methods section 2.3.6.4). 

Hierarchical clustering grouped the 137 cells into the dendrogram depicted in Figure 3.3A. Each end point 

represents a single L2/3 PC and the connecting branches represent linkages between cells. The distance 

 

Figure 3.2 PCA of electrophysiological parameters 

A Percentage of variance explained by each of the first 10 principal components. The line shows the cumulative 

sum of the variance explained. B The weight of the contribution of each of the 18 parameters to the first five 

principal components. Two features with relatively high weights are highlighted with black boxes. 
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between a pair of clusters is determined by the farthest distance of a pair of cells in each cluster (complete 

linkage method, see Material and Methods section 2.3.6.4). 136 out of 137 cells could be assigned to six 

main clusters of cells and a single cell was assigned in a seventh cluster which was disregarded for further 

analysis. The cluster number was determined by using a shuffle approach to choose a cut-off distance (50 

% in this case) of the Euclidean distances between clusters (Figure 3.3A, red dotted line). In particular, this 

cut-off was determined by approximating the distribution of Euclidean distances derived from shuffling 

the data using 1000 iterations (Supplementary Figure 5.3A). The 95th percentile in the histogram of the 

shuffled data was chosen as cut-off Euclidean distance for the separation of individual clusters in the 

actual data set (Supplementary Figure 5.3B). Therefore, using lower cut-off distances would increase the 

probability of performing a false separation of cells and higher cut-off distances would increase the 

probability of missing an actual separation of cells into two different clusters (Supplementary Figure 5.3A 

and B). Out of the six clusters there were two large clusters with 59 and 43 members (C5 and C6, 

respectively), and four smaller clusters with 14, 10, 5 and 5 members (C2, C3, C1 and C4, respectively, 

Figure 3.3A). When comparing the electrophysiological parameters between the two main clusters, C5 

and C6, 13 out of 18 parameters were significantly different. The comparison between the clusters are 

displayed in Figure 3.3B for two exemplary parameters with relatively high weights in the first principal 

component (Vslopemax and spike frequencymax, highlighted with black boxes in Figure 3.2B; for comparison 

of all parameters see Supplementary Figure 5.4). Since only few of the 18 electrophysiological parameters 

showed pial-depth dependence, the pial depth was not significantly different among each of the groups 

(Figure 3.3C).  

Comparing the two large clusters, C5 contained L2/3 PCs that displayed approx. 25 % lower 

maximal firing rates on average (Figure 3.3B) and had a shorter first spike delay than C6 (Supplementary 

Figure 5.4). Furthermore, the peak voltage, spike amplitude, maximal AHP amplitude and sag ratio were 

smaller in C5 than C6 (Supplementary Figure 5.4). Additionally, the spike rise time, spike base width as 

well as spike half width were longer compared to C6. Finally, the input resistance was larger compared to 

C6 (Supplementary Figure 5.4). Noticeably, the group difference in these parameter combinations is 

reasonable given the relations of these parameters with each other (Supplementary Figure 5.2). The other 

four smaller clusters displayed differences for various combinations of electrophysiological parameters 

(Supplementary Figure 5.4). C1 and C2 displayed the highest maximal spiking frequencies as well as the 

greatest maximal spike slope of the 6 clusters (Figure 3.3B). 
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Taken together, 75 % of the measured L2/3 PCs can be classified into two main groups of cells 

that are distinguishable by most of the extracted active as well as passive electrophysiological properties. 

Noticeably, the clusters are indistinguishable based on their mean distance to the pial surface and 

consequently there is no explicit spatial arrangement of the clusters within the depth of L2/3 of mouse 

V1 (Figure 3.3C).   

 

Figure 3.3 Hierarchical clustering of L2/3 principal cells based on electrophysiological properties 

A Hierarchical dendrogram for the 137 L2/3 PCs. Individual branch points represent the splitting of a cluster into 

two clusters. The end points display single cells. Red dotted line indicates the cut-off set at 50 % of the maximum 

Euclidean distance (height of ~8 arbitrary units in principal component (PC) space, see text for further 

explanations). The resulting 6 clusters are displayed in different colors with their corresponding cell numbers 

indicated at the bottom. The cluster with a single cell (far right) is not included in the analysis. B The group 

averages for electrophysiological parameter 4 (maximal slope of AP) and 18 (maximal spike frequency) of the 6 

clusters. Asterisks indicate significant difference (p<0.05, Kruskal-Wallis test, corrected for multi-comparison). 

Color indicates which two clusters are compared, starting from left to right. C Average pial depth of the 6 clusters 

(n.s.: not significantly different).  
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3.1.2 L2/3 principal cell morphological analysis 

189 L2/3 PCs in mouse V1 were successfully filled with Alexa 594 and then manually reconstructed 

(Figure 3.4A). The data set covers the whole depth of L2/3 with cells reconstructed in the upper part as 

well as in the lower part of L2/3 (two representative examples shown in Figure 3.4A, population 

distribution across L2/3 displayed in Supplementary Figure 5.5). All 189 reconstructed morphologies are 

displayed in Supplementary Figure 5.6. The cells are sorted by their distance to the pia in descending 

order. Additionally, other measured characteristics such as electrophysiology, laminar synaptic input as 

well as visual tuning are indicated for each cell.  

 

 

Figure 3.4 PCA of morphological parameters 

A Left, Maximum z-projections of two L2/3 PCs filled with Alexa 594 located in the upper and lower part of L2/3 

(scale bar: 50 µm). Right, Corresponding reconstructed neurons. Apical trees are depicted in red, basal trees in 

black and somas in blue. B Percentage of variance captured by each of the first 10 principal components. The 

line shows the cumulative sum of the variance explained. C The weight of the contribution of each of the 21 

parameters to the first five principal components. The dotted line separates the 10 apical (numbers in red) 

from the 11 basal tree parameters. Two parameters with relatively high weights are highlighted with black 

boxes. 
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In order to perform a systematic analysis of the data set, 21 morphological parameters were 

extracted for each cell. The parameters were separated into two main groups composed of 10 parameters 

for the apical dendritic tree (1-10, marked in red, Table 3.2 and Figure 3.4A) and 11 parameters for the 

basal dendritic tree (11-21, marked in black, Table 3.2 and Figure 3.4A). Table 3.2 summarizes the 21 

morphological parameters extracted and their mean values across all L2/3 PCs. For the population of 189 

cells, the distribution of each morphological parameter is displayed in Supplementary Figure 5.5.  

 

 

# Description Mean ± SEM Correlation r 
with pial 
depth 

Apical 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
Basal 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

 

 
RDAmax: Maximal radial distance from soma  
LAtotal: Total length  
PLAmax: Maximal path length from soma  
BPA: Number of branch points  
BOAmax: Maximal branch order 
BLA: Mean branch length  
PLA: Mean path length  
WHA: width/height 
XSA: horizontal span  
YSA: vertical span  
 
RDBmax: Maximal radial distance from soma  
LBtotal: Total length  
PLBmax: Maximal path length from soma  
BPB: Number of branch points  
BOBmax: Maximal branch order 
BLB: Mean branch length  
PLB: Mean path length  
WHB: width/height 
XSB: horizontal span  
YSB: vertical span  
NB: Number of basal trees 

 
225.98  ± 3.46  µm 
2035  ±  45.32 µm 
359.65  ± 5.62 µm 

16.5 ± 0.39 
8.02  ± 0.14 

59.9  ± 0.7 µm 
175.07  ±  3.98 µm 

1.51  ± 0.04 
291.41  ± 6.04 µm 
216.81  ± 4.1 µm 

 
140.15 ± 2.94 µm 
2392 ± 56.58 µm 
331.2 ± 14.83 µm 

23.26 ± 0.59 
8.31 ± 0.18 

50.02 ± 0.58µm 
156.78 ± 7.9 µm 

1.25 ± 0.02 
238.59 ± 4.06 µm 
196.86 ± 3.17 µm 

5.86 ± 0.1 µm 

 
0.66* 
0.087 
0.43* 
0.02 

0.26* 
0.17 

0.46* 
-0.64* 
-0.18 
0.91* 

 
-0.1 
-0.1 

-0.002 
-0.22* 
-0.16 
0.3* 
0.04 

-0.24* 
0.07 
0.18 
-0.07 

 

Table 3.2 Morphological parameters 

The 21 extracted parameters (10 for apical dendrite, 11 for basal dendrite) used for morphological analysis with 

their corresponding averaged values of the n=189 cells and their correlation coefficient with pial depth. Features 

with a significant correlation are marked with asterisk (p<0.05, after correcting for multi-comparison). 
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In contrast to the extracted electrophysiological parameters, 9 out of the 21 morphological 

parameters exhibited a significant correlation with pial depth (Table 3.2, third column, marked by 

asterisk). Since all L2/3 PCs reached the pia it is probably not surprising that the vertical span of the apical 

tree (YSA, parameter 10) as well as the maximal path length (PLAmax, parameter 3) were strongly 

correlated with depth (r=0.91 and r=0.43, p<0.0005, n=189, respectively). However, also other parameters 

such as the mean branch length of the basal tree (BLB, parameter 16) displayed a significant positive 

 

Figure 3.5 Hierarchical clustering of L2/3 principal cells based on electrophysiological properties 

A Hierarchical dendrogram for the 189 L2/3 PCs (see also Figure 3.2C). Red dotted line indicates the cut-off 

set at approximately 60 % of the maximum Euclidean distance (height of ~8 arbitrary units in principal 

component (PC) space, see text for further explanations). The resulting 7 clusters are displayed in different 

colors with their corresponding cell numbers indicated at the bottom. Note that the two clusters with a single 

cell (grey) each are excluded from analysis. B The group averages for morphological feature 7 (average path 

length of apical tree) and 17 (average path length of basal tree) of the 7 clusters. Asterisks indicate significant 

difference (p<0.05, Kruskal-Wallis test, corrected for multi-comparison). Color indicates which two clusters 

are compared, starting from left to right. C Average distance to pial surface of the 7 clusters (p<0.05, Kruskal-

Wallis test, corrected for multi-comparison). 
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correlation with pial depth (r=0.3, p<0.0005, n=189). Other significant correlations between the extracted 

morphological parameters are displayed in Supplementary Figure 5.7. 

Following the approach of the electrophysiological classification, PCA was first performed on the 

21 extracted morphological parameters. The fraction of variance explained by each of the first 10 principal 

components as well as the cumulative fraction is shown in Figure 3.4B. The weight of the contribution of 

each of the 21 parameters to the first five principal components is shown in Figure 3.4C. The top five 

ranked principal components were used for further analysis, which together accounted for approximately 

80 % of the variability in the data similar to the electrophysiological data set (Figure 3.4B).  

Hierarchical clustering grouped the data into seven main clusters. Two out of 189 cells could not 

be assigned to any of the seven main clusters and were disregarded for further analysis. A similar distance 

cut-off approach to the electrophysiological data was chosen based on generating shuffled data and 

determining the 95th percentile (in this case, cut-off at 60 % of the maximum Euclidean distance between 

any two neurons, red dotted line, Figure 3.5A). Around 65 % of the L2/3 PCs were separated into two main 

clusters, C5 and C3, with 64 and 58 members, respectively. Additionally, there was a third larger cluster, 

C4, with 30 members and 4 smaller clusters with 16, 8, 7 and 4 members (C6, C2, C7 and C1, respectively, 

Figure 3.5A). In strong contrast to the electrophysiological groups, the morphological groups displayed a 

gradual pial depth-dependency (Figure 3.5C).   

From the 21 morphological parameters 13 were significantly different between the two large 

clusters of cells with L2/3 PCs of C5 being located more superficial than C3 (Figure 3.5C). L2/3 PCs of C3 

had longer apical and basal trees on average (LAtotal and LBtotal, parameters 2 and 12), had more branching 

points both on the apical and basal tree (BPA and BPB, parameters 4 and 14) and the vertical and 

horizontal span of their apical tree (XSA and YSA, parameters 9 and 10) was greater compared to L2/3 PCs 

of C5 (Supplementary Figure 5.8). Furthermore, cells of C5 had fewer basal trees (NB, parameter 21) 

compared to C3. The remaining differences (8 out of 13) between the two clusters were solely related to 

the apical tree (Supplementary Figure 5.8). For example, the mean path length of the apical but not the 

basal tree was significantly different on average between cells of C3 and C5 (Figure 3.5B). 

Taken together, L2/3 PCs of mouse V1 can be classified based on the extent and complexity of 

their dendritic branching. Interestingly, different clusters seem to be spatially separated within the depth 

of L2/3.        
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3.1.3 Relation between electrophysiological and morphological groups 

In a subset of 33 cells both the electrophysiology and morphology could be characterized. This 

provided the opportunity to evaluate the degree of overlap between the separately obtained clusters for 

electrophysiology and morphology (Figure 3.6A). Overall there was little overlap between the two cluster 

distributions (Figure 3.6A) and L2/3 PCs being assigned to the same clusters in both distributions were low 

(Figure 3.6B). Therefore, there was limited predictability for anatomy given the electrophysiological 

parameters and vice versa.  

 

Figure 3.6 Overlap assessment between separated electrophysiological and morphological cluster solutions 

A For the 33 cells with combined electrophysiology and morphology measurements the direct comparison 

between the obtained clusters for electrophysiology (top row) and morphology (bottom row) is displayed. Each 

color represents a cluster, each bar represents a cell. Cells are sorted according to the clusters of the 

electrophysiology B Matrix displaying the overlap measured in counts (represented with the color bar) between 

the obtained electrophysiology and morphology clusters.    
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3.2 An in vivo / in vitro approach to study laminar connectivity of 

functionally characterized L2/3 principal cells 

In order to perform circuit mapping of functionally characterized L2/3 PCs in acute coronal brain 

slices, a highly reproducible four-step in vivo / in vitro protocol was developed. The four steps are 

summarized in Figure 3.7.  

 

Figure 3.7 Flow chart displaying the main four steps of the in vivo / in vitro protocol  

Adapted with permission from Weiler et al. (2018) 
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IOS imaging, craniotomy and virus injection 

In the first step, IOS imaging was performed through the mouse skull to localize the binocular 

zone of V1 followed by a craniotomy and a single targeted virus injection (Figure 3.8A and B). A single 

virus injection was desirable to control viral spread and greatly facilitated re-identification of cells in acute 

slices (Figure 3.10B and C). The viral spread in the target area was further controlled by keeping the 

injection pipette tip diameter as small as possible and injecting a small volume with little pressure 

 

Figure 3.8 IOS imaging through the mouse skull and targeted virus injection into the cortical region of 
interest 

A Top, a metal head bar is mounted on the mouse skull after removing the overlying skin. The animal is placed 

in front of a monitor displaying visual stimuli at two positions to coarsely map retinotopy. Both eyes can be 

stimulated independently using shutters. Bottom, the IOS responses for each eye are shown in color-coded 

maps overlaid on an image of the skull. Scale bar: 0.5 mm. B Viral vectors containing a Cre-dependent GECI 

(here: mRuby2-P2A-GCaMP6M, top) and Cre-recombinase are pressure-injected into the binocular zone of 

V1. Additionally, red fluorescent beads are injected to mark the virus injection site (middle). Epifluorescence 

image depicting the region containing labelled neurons (yellow arrowhead), the beads deposits (enclosed 

arrowhead) and the blood vessel pattern (dotted line, circumference of cranial window; scale bar: 500 µm). 

Corresponding maximum intensity projection of 2-photon image stack (area marked by box in epifluorescence 

image; scale bar: 250 µm). Adapted with permission from Weiler et al. (2018). 
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(50- 100 nl, ~ 10 nl/min, pressure 10 psi, 90° trepanation angle relative to dura). This procedure was 

successfully performed in 32 animals. For unambiguous re-identification between in vivo and in vitro, it 

was important to use a structural marker in combination with a GECI.  Moreover, for sparse expression of 

mRuby2-GCaMP6M in PCs within L2/3, a Cre-dependent version of mRuby2-GCaMP6M in combination 

 

Figure 3.9 2-photon calcium imaging and structural image stack 

A Moving gratings of different orientations and directions are displayed in front of the mouse. Shutters allow 

for independent stimulation of either eye. 2-photon calcium imaging of layer 2/3 PCs  in a small volume of 

the binocular zone of V1 (sequential acquisition of four image planes in a 270 x 270 x 100 µm3 volume; image 

plane depth increment  ∆zslice = 25 µm, scale bar: 50 µm). Bottom, Calcium transients of two example neurons 

(cell 1 and 2) in response to ipsi- or contralateral eye stimulation (scale bars: ∆R/R0=200%, 10 s). B Pixel-wise 

ocular dominance index (ODI) maps of an imaged volume (cell 1 and 2 same as in A). Red and blue hues 

indicate ipsilateral dominance (ODI<0) and contralateral dominance (ODI>0), respectively. Pixel intensity 

scales with response amplitude (scale bar: 50 µm). C Structural image stack including the volume containing 

functionally characterized cells (cell 1 and 2 as in (A, B); red planes, top and bottom borders of the 2-photon 

calcium imaging volume in A (scale bars: 50 µm). Adapted with permission from (Weiler et al. 2018). 
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with CamKII Cre-recombinase was injected (Figure 3.8B, Rose et al. (2016)). By controlling the titer of the 

CamKII0.4.Cre.SV40, labelling of 10-20 % of excitatory L2/3 cells within each animal was achieved (on 

average 16.9 ± 1.5 % excitatory cells labelled, N=32; two representative examples displayed in Figure 

3.11). For this part, a virus dilution series at the beginning of the experiments greatly helped to achieve 

the optimal sparseness of cells (Figure 3.11). In addition to the virus injection, red fluorescent beads were 

injected during the craniotomy at 2-4 locations marking the transduced area in each animal (Figure 3.8B, 

Figure 3.10). These red fluorescent bead injections were at least 500 µm away from the target area and 

did not interfere with calcium imaging (Figure 3.8B, Figure 3.10). Conducting the individual steps of IOS 

imaging as well as the subsequent craniotomy in a similar manner in each animal yielded highly 

reproducible results across animals.  

 

 

 

 

Figure 3.10 Preparation of acute coronal brain slices containing functionally characterized cells 

A Functionally characterized area (red box) imaged with 2-photon and epifluorescence microscopy (same 

preparation as in Figure 3.8 B; scale bars: 250 µm). B Preparation of acute coronal brain slices with a 

vibratome. Cutting levels are numbered and indicated by lines. Fluorescence goggles are used to visualize the 

fluorescent bead deposits and the region containing infected cells (bottom, scale bar: 500 µm). C Acute brain 

slices (320 µm thick) numbered from caudal to rostral containing fluorescent bead deposits and the virus 

transduced region (slice 1-7). The fluorescent bead deposits and the virus expression pattern indicate the slice 

containing the region imaged in vivo (red box; here: slice 4; scale bar: 500 µm). Adapted with permission from 

(Weiler et al. 2018). 
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In vivo 2-P imaging 

In the second step, functional in vivo calcium imaging of L2/3 PCs in the binocular zone of V1 was 

performed (Figure 3.9). Monocular stimulation was applied by eye shuttering to record the ocular 

dominance as well as the eye specific orientation and direction tuning of single L2/3 PCs (Figure 3.9A and 

B). Furthermore, moving gratings with different temporal and spatial frequencies as well as different 

 

Figure 3.11 In vivo / in vitro matching of neurons 

A The in vivo structural image stack is transformed from the top to the side view, corresponding to the face 

view in the coronal brain slice in vitro (examples of matched cells are numbered; cell 1 is the same cell as cell 

1 in Figure 3.8; in vivo and in vitro side view, maximum intensity projection of 50-70 sections, 1 µm spacing; 

scale bars: 20 µm). In this example the titer of the AAV2/1.CamKII0.4.Cre.SV40 is 3 x 109 GC per ml. B Same as 

in A, for an experiment with a higher virus titer (4.5 x 109 GC per ml, scale bars: 20 µm). C After the preparation 

of 320 µm thick coronal brain slices for in vitro recordings, the same slices were fixed,  resliced to 40 µm thick 

sections on a sliding microtome, followed by antibody stainings (here against NeuN; NeuN, blue; mRuby2, 

red).  The titer of the AAV2/1.CamKII0.4.Cre.SV40 is 3 x 109 GC per ml and results in labelling of approximately 

10% of the excitatory cells (scale bars: 20 µm). D Same as C except with a higher titer of the 

AAV2/1.CamKII0.4.Cre.SV40 of 4.5 x 109 GC per ml, resulting in labelling of approximately 20% of excitatory 

cells (scale bars: 20 µm). Adapted with permission from (Weiler et al. 2018). 
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orientations were used for stimulation to further probe the visual responsiveness of L2/3 PCs. Finally, the 

spontaneous activity in the dark of the same L2/3 PCs was recorded. At the end of each functional imaging 

session, a high resolution structural stack was obtained spanning from the pial surface to L5/L6 containing 

the cells of interest (Figure 3.9C).  

 

Re-identification of L2/3 principal cells in coronal brain slices  

In the third step, acute coronal brain slices were prepared followed by the re-identification of the 

functionally characterized L2/3 PCs (Figure 3.10). During slice preparation, the brain slices containing the 

 

Figure 3.12 In vitro circuit analysis of functionally characterized cells 

A Schematic illustrating the principle of circuit mapping by LSPS with UV-glutamate uncaging: Potential 

presynaptic neurons are activated by UV-glutamate uncaging while either excitatory or inhibitory postsynaptic 

inputs are recorded in the patched target cell. B In vivo / in vitro matching of cells (corresponding cells are 

numbered). Top right, 2-photon guided targeted patch-clamp recording of cell 2 (scale bars: 10 µm).  Bottom 

right, 16 x 16 stimulus grid (blue dots) covering all cortical layers. Each spot is addressed in a pseudo-random 

fashion, and glutamate is uncaged using an UV laser (scale bar: 100 µm). C Top, examples of excitatory (cell 

clamped to -70 mV) and inhibitory currents (cell clamped to 0 mV) arising from the stimulus locations enclosed 

by grey boxes in the bottom row and B (scale bars: 300 pA, 100 ms). Bottom, pixel-based excitatory and inhibitory 

input maps of color-coded current amplitudes across cortical layers. Reconstructed L2/3 PC dendritic cell 

morphology is overlaid (scale bar: 200 µm). Adapted with permission from (Weiler et al. 2018). 

 
 

 



   
 
Results   70 

 
cells of interest were identified by the injected beads using fluorescence detection goggles (Figure 3.10B 

and C). In vitro structural image stacks were then acquired of the transduced area using a 2-photon 

microscope (Figure 3.11A and B). Neurons were matched between the in vivo and in vitro image stacks by 

comparing the relative positions of the sparsely labelled cells and the reference frame provided by the 

fluorescent bead tracks. More specifically, neurons from the in vivo and in vitro recording session were 

matched by comparing the relative positions of cells and morphological details using the side view of the 

acquired in vivo stack and the face view of the acquired in vitro stack. In most cases, labelled cells were 

already matched based on their unique morphology and dendritic branching pattern by eye (Figure 3.11, 

for details see Material and Methods section 2.3.4.2). Furthermore, functionally characterized L2/3 PCs 

could also be re-identified in fixed slices enabling post-hoc immunolabelling (Figure 3.11C and D).  

 

Circuit mapping of functionally characterized L2/3 principal cells  

In the fourth step, targeted patch-clamp recordings were performed on the re-identified neurons 

in order to study their excitatory and inhibitory laminar connectivity using LSPS by UV glutamate uncaging 

(Figure 3.12). In each of the 32 animals, effectively all cells visible in brain slices could be matched to cells 

characterized in vivo. For patch clamp recordings and circuit mapping, cells located between 50 and 150 

µm below the slice surface were targeted. More superficial cells were excluded because of potential 

damage by slicing and cells deeper in the slice could hardly be accessed. Thus, in 320 µm thick slices, the 

accessible fraction corresponded to 25-30 % of all functionally characterized L2/3 PCs.     

Taken together, the established in vivo / in vitro approach provided the means to relate functional 

response properties of individual L2/3 PCs in mouse V1 directly to their underlying laminar inputs.   
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3.3 Calibration of the laser scanning photostimulation system  
 

3.3.1 Spatial resolution of LSPS by UV glutamate uncaging 

Before starting circuit mapping experiments, the spatial resolution of uncaging was assessed by 

recording excitation profiles (Shepherd 2012). For this, excitatory as well as inhibitory cells across all layers 

of V1 were recorded either in whole-cell or cell-attached configuration, and glutamate was uncaged at 

specific stimulus locations spanning the dendritic tree of the recorded cell (Figure 3.13A, B). Extracellular 

glutamate concentration, laser power as well as laser pulse duration were adjusted until spiking of the 

individual cell types across layers was confined to the soma location (0.2 mM MNI-caged glutamate, 10-

15 mW laser power, 1 ms duration; Figure 3.13B). This resulted in a spatial resolution of approximately 80 

µm for different excitatory and inhibitory cells within different layers at both uncaging setups (see 

Material and Methods section 2.3.4.3), therefore providing laminar resolution for circuit mapping (setup 

A and B, Figure 3.13C). Noticeably, glutamate uncaging occasionally evoked APs at the apical tuft dendrites 

in layer 1 of L4 and L5 PCs in addition to somatic AP generation (Figure 3.13B, right). Considering that 

there are no excitatory cells in layer 1, the excitatory input from layer 1 was excluded in final 

quantifications. Likewise, the inhibitory input from layer 1 was excluded to ensure direct comparison 

between excitation and inhibition.  

Furthermore, the number of action potentials generated per stimulation site was comparable for 

all recorded interneurons across layers (Figure 3.13D). Likewise, the number of action potentials 

generated per stimulation site was similar on average for L2/3 and L4 PCs at both setups. However, L5 PCs 

at setup B generated significantly more action potentials per site compared to L4 PCs indicating greater 

excitability of these cells under the recording conditions (p<0.05, Figure 3.13D). Therefore, intrinsic 

differences in excitability need to be considered when calculating average connection strength per 

neuron.  

3.3.2 Circuit mapping using LSPS by UV glutamate uncaging 

The principle of synaptic input mapping using LSPS by UV glutamate uncaging is illustrated in 

Figure 3.14A. A single L2/3 PC was patch-clamped at a time, and its functional synaptic inputs were 

spatially mapped using a 16 x 16 stimulation grid spanning the all the layers of V1. The assignment of the 

256 stimulus spots to a specific layer was based on a layer marker staining in V1 (Figure 3.14B). The 

recorded L2/3 PCs were located across the entire depth of L2/3 (Figure 3.14B, right). 



   
 
Results   72 

 
During synaptic input mapping, direct glutamatergic responses occurred within the first 7 ms after 

the UV stimulus in addition to synaptic responses (Figure 3.15A). These direct responses were located at 

 

Figure 3.13 Spatial resolution of photostimulation across layers and cell types 

A Top, example L4 PC recorded for spatial resolution assessment. The image of the V1 slice is superimposed 

with the stimulation grid (69 µm2 spacing, scale bar: 100 µm). Bottom, response to photostimulation either 

in whole-cell (WC) or cell-attached (CA) configuration. Blue box indicates UV laser stimulation (scale bars: 

right, 2 mV, 20 ms; left, 0.2 mV, 20 ms). B Voltage traces for each stimulus spot of two layer 4 PCs held in WC 

current clamp. Generally, APs occur only close to the soma of the recorded cell (left). Neurons with apical 

tufts in L1 can also fire an AP at the apical tuft in L1 (right). For this reason, stimulation sites in layer 1 are 

excluded when evaluating synaptic input maps (scale bars: 100 pA, 100 ms). C Spatial resolution of LSPS 

evoked action potential generation in PCs and INs in the different cortical layers for setup A (SA) and setup B 

(SB). Spatial resolution of photostimulation is measured as the mean weighted distance from the soma of AP 

generating stimulation sites. The numbers of recorded neurons are displayed within the bars. D Number of 

spikes per activated stimulation spot for PCs and INs in different layers for SA and SB. The numbers of recorded 

neurons are displayed in the bars. Asterisk indicate significant difference (p<0.05, Kruskal-Wallis test, multiple 

comparison correction) 
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5-15 stimulus spots around the recorded postsynaptic L2/3 PC (Figure 3.16A). Direct responses in the 

immediate vicinity of the soma had usually large amplitudes (Figure 3.15A (i); Figure 3.16A). The direct 

glutamate response amplitudes in more distal stimulation spots were either small or absent (Figure 3.15A, 

compare (ii) to (1) and (2)). For inhibitory synaptic currents (postsynaptic cell held at 0 mV), the direct 

responses were still present albeit with much smaller amplitudes (Figure 3.15A).  

All of the direct responses, however, were followed by synaptic responses overriding on the direct 

response decay. This could be demonstrated by blocking AP generation with TTX and thus isolating the 

direct response to glutamate of the recorded neuron (Figure 3.15B). Therefore, excitatory synaptic input 

information would be neglected by just simply excluding direct traces from input analysis. In order to limit 

this synaptic information loss in the vicinity of the recorded neuron, the direct traces were first detected 

 

Figure 3.14 LSPS by UV glutamate uncaging to map laminar synaptic inputs to L2/3 principal cells 

A Left, brain slice containing part of V1 (scale bar: 500 µm). Right, scheme illustrating the basic principle of 

connectivity mapping by glutamate uncaging. Caged glutamate is delivered to the bath surrounding the acute 

slice. A postsynaptic cell is patch-clamped and potential presynaptic partners are activated by UV glutamate 

uncaging (red). Action potentials are evoked in the presynaptic cells and lead to a synaptic response in the 

recorded neuron if both neurons are connected. B Left, brain slice with schematic patch pipette on L2/3 PC. 

Blue dots indicate stimulation grid. Pattern of histological markers for neocortical layers in V1: L2/3 marker 

Calbindin (green), L5/6 marker CTIP2 (red). All cells stained with DAPI (blue). Note: L4 cells are only labelled 

with DAPI (scale bar: 200 µm). Right, distances of recorded neurons within L2/3 measured from the pial 

surface (central mark in the box indicates the median and the bottom and top edges of the box are the 25 th 

and 75th percentiles). Red dots indicate cells that were functionally characterized prior to synaptic input 

mapping. 
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by temporal windowing and then removed from the input maps. Interpolation was subsequently used to 

infer the synaptic inputs at these locations based on the responses at neighboring stimulation sites. The 

rationale behind this approach was that neighboring stimulus spots in principle include the activation of 

the same presynaptic cells, given the spatial resolution of the technique (for further details see Material 

and Methods section 2.3.6.5).  

  

 

Figure 3.15 LSPS by UV glutamate uncaging stimulation scenarios 

A Scheme illustrating different stimulation scenarios. Left, large direct glutamate responses evoked in the 

recorded neuron obscure the evoked synaptic responses arising from connected cells in the immediate vicinity 

when the laser spot hits the recorded cell (i, cell held at -70 mV). The direct response is still present (albeit much 

smaller) in the evoked synaptic responses when the laser spot hits connected cells in the immediate vicinity (ii). 

When the cell is held at 0 mV, the direct response is smaller compared to the synaptic response. Onsets of the 

direct glutamate responses are locked to the start of the laser pulse (blue lines). The direct responses can be 

detected using a temporal window (within 7 ms after UV stimulation). Right, examples of light-evoked excitatory 

(traces 1 and 2) as well as inhibitory synaptic responses arising from distal presynaptic neurons. The synaptic 

responses occur with a temporal delay after the laser pulse (scale bars: 75 pA, 50 ms). B Top, Direct glutamate 

responses are isolated by blocking photostimulation-evoked synaptic currents using TTX. In this example, a large 

direct glutamate response obscures an overriding synaptic response (black, compare also to A (i)).  The pure 

direct response component is revealed after infusion of 2 µM TTX (red) into the slice. Bottom, in this example, 

evoked synaptic currents (black) are blocked after TTX infusion (red) without revealing a direct component 

(compare to A (traces 1 and 2); scale bars: 100 pA, 50 ms).  
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3.4 Laminar synaptic inputs to functionally characterized L2/3 

principal cells 

Circuit mapping was performed on 157 L2/3 PCs in acute slices of mouse V1. From the 157 cells, 

77 were also functionally characterized in vivo prior to circuit mapping following the established in vivo / 

in vitro protocol (see Results section 3.2). This allowed a direct comparison between visual response 

properties and connectivity of L2/3 PCs. Furthermore, for 97 of the 157 L2/3 PCs, the dendritic 

morphology was reconstructed (see Supplementary Figure 5.6) enabling a direct comparison between 

laminar input and morphology as well as between laminar input, morphology and functional response 

properties. 

 

3.4.1 Excitatory and inhibitory laminar inputs to L2/3 principal cells 

Multiple excitatory and inhibitory synaptic input maps were obtained per L2/3 PC, averaged, and 

displayed in pixel-based color maps (Figure 3.16A). The laminar synaptic input sources of the 157 L2/3 PCs 

were diverse. None of the cells showed significant input from L6 and therefore this layer was not 

considered in further quantifications. The distributions of the excitatory as well as inhibitory input fraction 

coming from L2/3, L4 and L5 to L2/3 PCs are displayed in Figure 3.16B. Almost all cells received strong 

excitatory and inhibitory input from L2/3. 80 % of L2/3 PCs received at least 10 % of their total excitatory 

input from L4 whereas only 39 % of L2/3 PCs received at least 10 % of their total inhibitory input from L4. 

Regarding L5 synaptic input, 13 % of L2/3 PCs received at least 10% of their total excitatory input from L5 

and 4 % of L2/3 PCs received inhibitory input from L5 (Figure 3.16B).   

The excitatory and inhibitory laminar inputs were recorded within the same cell, enabling direct 

comparison between the spatial overlap of excitatory and inhibitory sources at the level of single cells 

(Figure 3.16C). The distribution of the spatial overlap of excitation and inhibition per cortical layer is shown 

in Figure 3.16C. Whereas excitatory and inhibitory input to L2/3 PCs coming from L2/3 was mostly spatially 

balanced, excitatory input coming from L5 to L2/3 PCs was mostly spatially unbalanced by inhibition within 

the same layer. The excitatory and inhibitory input to L2/3 PCs coming from L4 showed various degrees 

of spatial overlap. In a significant fraction of L2/3 PCs, the excitatory and inhibitory input sources in L4 did 

not overlap (Figure 3.16C).  
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Taken together, these results suggest that individual L2/3 PCs display a wide functional diversity 

in their laminar input sources as well as in the spatial overlap of excitation and inhibition arising from an 

individual cortical layer.  

  

 

Figure 3.16 Laminar excitatory and inhibitory inputs to L2/3 principal cells 

A Left, traces from LSPS evoked EPSCs (at -70 mV) and IPSCs (at 0 mV) measured across 16 x 16 locations from a 

representative L2/3 PC (scale bars: 200 pA, 50 ms). Two mapping repetitions are overlaid (blue and black). Right, 

excitatory and inhibitory input maps where color codes for average integrated input strength within the analysis 

window of 7-150 ms. The average of two repetitions is displayed (scale bars: 200 µm). Note: The synaptic 

EPSCs/IPSCs overriding on direct responses are interpolated from adjacent pure synaptic traces (see Material 

and Methods section 2.3.6.5). B Distribution of the fractional excitatory (left) and inhibitory (right) input from 

L2/3, L4 and L5 to L2/3 PCs (n = 148 cells). C Left, the pixel-based excitatory and inhibitory maps are overlaid on 

top of each other (maps from cell displayed in E). Red and blue hues indicate the amount of excitation and 

inhibition present respectively at a given pixel (scale bar: 200 µm). The dendritic morphology of the L2/3 PCs is 

superimposed (red= apical dendrite, black= basal dendrites). Right, distribution of the overlap index of excitatory 

and inhibitory input from L2/3, L4 and L5 to L2/3 PCs (for overlap index calculation per layer see Material and 

Methods section 2.3.6.5).  

 
 

 



   
 
Results   77 

 

3.4.2 L2/3 principal cell classification based on laminar connectivity 

To systematically classify L2/3 PCs based on their laminar connectivity, PCA and hierarchical 

clustering were performed using the fraction of total excitatory and inhibitory synaptic inputs to L2/3 PCs 

from L2/3, L4 and L5. More specifically, for each cell, a three-element vector, one for the fraction of 

excitatory input per layer and one for the fraction of inhibitory input per layer were obtained and then 

used for PCA and subsequent clustering (n=148 L2/3 PCs, Figure 3.17A). The individual steps for PCA and 

hierarchical clustering were similar to the ones described for the clustering of cells based on morphology 

and electrophysiology (Results section 3.1). Hierarchical clustering yielded the dendrogram depicted in 

Figure 3.17A. All L2/3 PCs except two could be assigned to three main clusters. For each L2/3 PC, the 

excitatory and inhibitory synaptic input fractions received from each layer, as well as the somatic depth 

of the cells with respect to the pia, are displayed below the dendrogram (Figure 3.17A). The average 

overlays of excitatory and inhibitory maps for each cluster are displayed in Figure 3.17B. Qualitatively, the 

three clusters differed in two major features: 1) the relative amount of excitatory and inhibitory input 

from L4. 2) The degree of spatial overlap between excitation and inhibition. Cluster 1 cells (n=22) had 

almost no input from L4 and displayed on average spatially balanced excitatory and inhibitory inputs from 

L2/3. Cluster 2 cells (n=72) showed spatially balanced excitatory and inhibitory inputs from L2/3, but 

excitatory input from L4 was mostly spatially unbalanced by inhibition. Cluster 3 cells (n=52) received on 

average the greatest fractional excitatory input from L4, which was mostly spatially balanced by inhibition. 

Interestingly, the soma location of cluster 2 cells were significantly closer to the pial surface on average 

compared to the other two clusters (p<0.05 and p<0.001, respectively; Figure 3.17B, bottom).  
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Figure 3.17 Hierarchical clustering of excitatory and inhibitory laminar input to L2/3 principal cells 

A The pattern of laminar inputs is quantified by the fraction of excitatory and inhibitory synaptic input a 

particular L2/3 PC received from L2/3, L4 and L5. For each cell, a six-element vector is generated with the 

fractions of excitatory and inhibitory input from each layer. This vector is used for PCA and hierarchical 

clustering. Top, hierarchical clustering dendrogram for the 148 L2/3 PCs. The red dotted line indicates the cut-

off set at 35 % of the maximum Euclidean distance (height of 5.3 arbitrary units in principal component (PC) 

space). Middle, the color code indicates the fraction of synaptic input received from L2/3, L4 and L5 for 

excitatory and inhibitory inputs respectively. Bottom, the soma distance from pia for each cell within L2/3. B 

Top, average overlay of excitatory and inhibitory maps for the three obtained clusters in A. Bottom, the 

corresponding soma distance from pia within L2/3 for the cells in each clusters (mean ± SEM is displayed in 

green). Asterisks indicate significant difference. 
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3.4.3 In vivo / in vitro characterization of L2/3 principal cells 

For the comparison of functional response properties and laminar input connectivity within the 

same cell, 77 L2/3 PCs were first characterized in vivo using 2-photon calcium imaging in the binocular 

 

Figure 3.18 Two examples of matched in vivo / in vitro cells with their corresponding visual response 
properties and laminar excitatory and inhibitory inputs 

A Top row, the L2/3 PC of interest is circled in the in vivo and in vitro side view (maximum intensity projections; 

scale bars: 25 µm). Independent eye stimulation paradigm (depicted in scheme). Calcium transients of the cell 

of interest in response to ipsi- or contralateral eye stimulation using drifting gratings with 8 orientations. 

Individual calcium transients are shown in black, the average is overlaid in red (scale bars: ∆R/R0=200%, 10 s).  

Polar plot of peak-normalized orientation-selective responses to the stimulation of the ipsi- and contralateral 

eye (red and blue, respectively). Second row, simultaneous binocular stimulation paradigm. Drifting gratings 

were presented with different SFs and TFs. The average calcium transients of the cell of interest in response to 

presentation of drifting gratings with a SF of 0.02cyc/deg and varying TFs (1, 2 and 4 cyc/s) for 8 orientations are 

displayed in red (scale bars: ∆R/R0=200%, 10 s). The plot on the right summarizes peak-normalized response 

amplitude of the cell of interest to the different SF/TF combinations. The orientation of the arrows depicts the 

preferred orientation for the cell at each SF/TF combination. Third row, spontaneous activity paradigm. The 

spontaneous activity was measured during complete darkness. Spontaneous calcium transients recorded from 

the L2/3 PC of interest (scale bars: ∆R/R0=5%, 50 s). Event detections are indicated at the top (red dots; see 

Material and Methods 2.3.6.3). The bar plot displays the spontaneous event frequency during dark period (SAD, 

black) and the population coupling index (PCI, green; for display, PCI is log-transformed while preserving the sign 

of the data).  Bottom row, in vitro circuit mapping. Average excitatory and inhibitory input maps as well as the 

spatial overlay of excitation and inhibition for the L2/3 PC of interest. B Similar to A, showing a second example 

of an in vivo / in vitro matched and recorded L2/3 PC. 
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zone of V1 and then re-identified in acute brain slices for circuit mapping (for further details see the 

developed protocol in Results section 3.2). The following visual features were extracted for each cell: 

ocular dominance, eye-specific orientation and direction tuning, as well as preferred spatial and temporal 

frequencies (SFs: 0.02, 0.08 and 0.16 cyc/deg; TFs: 1, 2, and 4 cyc/s). The preferred spatial and temporal 

frequencies were obtained during simultaneous binocular visual stimulation whereas the eye-specific 

orientation and direction selectivity were obtained during independent monocular stimulation. 

Furthermore, the rate of spontaneous activity for each cell in complete darkness was quantified by event 

detection. Additionally, the population coupling of each cell was extracted during darkness (see Material 

and Methods section 2.3.6.3 for further details).  

The in vivo / in vitro matching of two exemplary L2/3 PCs with their corresponding visual tuning 

features and spontaneous activity patterns, as well as their laminar excitatory and inhibitory inputs are 

displayed in Figure 3.18. For each of the 77 functionally characterized L2/3 PCs, the individual excitatory 

and inhibitory input maps as well as the corresponding functional response properties and morphologies 

are shown in Supplementary Figure 5.9.  

 

3.4.4 Visual tuning features of the in vivo / in vitro characterized L2/3 principal 

cells 

The 77 re-identified cells represented the visual tuning features of the entire population of 2777 

recorded cells measured in vivo across 32 animals (Figure 3.19). From the 2777 functionally characterized 

L2/3 PCs, 27 % were not significantly responsive in the individual eye and simultaneous binocular visual 

stimulation protocol. These cells are referred to as non-visual responsive. In the subset of 77 L2/3 PCs, 12 

cells were non-visual responsive (Figure 3.19A). Considering the visual stimulation protocols separately, 

17 cells were not significantly responsive during the individual eye stimulation (Supplementary Figure 

5.10A and B) while 21 cells were not significantly responsive to simultaneous binocular stimulation in the 

subset of in vivo / in vitro characterized cells (Supplementary Figure 5.10C). Within the subset of in vivo / 

in vitro characterized cells, visually responsive cells displayed a wide range of direction and orientation 

selectivities (Figure 3.19B). Furthermore, cells could be classified into purely ipsi- or contralateral as well 

as binocular responsive cells (Supplementary Figure 5.10B). Nearly half of the cells preferred low spatial 

and low temporal frequencies, representing the overall bias of the entire measured V1 cell population for 

low spatial and temporal frequencies (Supplementary Figure 5.10C).  
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Taken together, the in vivo / in vitro characterized cells represent an appropriate subsample of 

the whole cell population functionally measured in the binocular zone of V1.     

 

3.4.5 L2/3 principal cell classification based on functional response properties 

In order to classify the in vivo / in vitro characterized L2/3 PCs based on their functional response 

properties, only cells that were visually responsive in both stimulation protocols were considered (n=51 

cells). Similarly to the classification used for the electrophysiology, morphology and laminar connectivity, 

PCA and subsequent hierarchical clustering were performed on the following functional response 

parameters: global orientation selectivity index (gOSI), global direction selectivity index (gDSI), ocular 

dominance index (ODI), spontaneous activity in the dark (SAD), population coupling index (PCI), overall 

preferred spatial frequency (SF) and temporal frequency (TF). Again, the individual steps for PCA and 

 

Figure 3.19 Functional characterization of L2/3 principal cells in vivo 

A Top, fraction of all in vivo characterized L2/3 PCs either responsive or unresponsive to both visual 

stimulation protocols (independent eye and simultaneous binocular stimulation protocol, n=2777, N=32). 

Bottom, fraction of in vivo / in vitro characterized L2/3 PCs either responsive or unresponsive to both visual 

stimulation protocols (n=77, N=32). B Top, histogram of gOSI and gDSI for all in vivo characterized L2/3 PCs. 

Bottom, histogram of gOSI and gDSI for in vivo / in vitro characterized L2/3 PCs. 
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hierarchical clustering were similar to the ones described for the clustering of cells based on morphology 

and electrophysiology (Results section 3.1).  

Hierarchical clustering resulted in the dendrogram depicted in Figure 3.20. Cells could be classified 

into four clusters. A small cluster with 4 cells (cluster 1) and three clusters with 24, 10 and 13 cells (cluster 

2, 3 and 4, respectively). These clusters displayed significant differences in some functional response 

parameters (Figure 3.21). For example, cluster 1 cells displayed the highest preferred temporal frequency 

compared to all other clusters. Cluster 3 cells were not selectively tuned for orientation and direction 

compared to the other clusters whereas cluster 2 and 4 displayed very selective orientation tuned cells. 

Cluster 2 cells were mainly dominated by the ipsilateral eye compared to all other clusters. However, 

 

Figure 3.20 Hierarchical clustering of functional response properties of 51 visually responsive L2/3 
principal cells 

Hierarchical clustering dendrogram for the 51 L2/3 PCs. Red dotted line indicates the cut-off set at 84 % of 

the maximum Euclidean distance (height of 5.2 arbitrary units in principal component (PC) space). The cluster 

number and the number of cells in each cluster is displayed at the bottom. For comparison, the fraction of 

synaptic input received from L2/3, L4 and L5 for excitatory and inhibitory inputs is displayed for each of the 

cells below (compare to Figure 3.17). 
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when looking at the underlying laminar connectivity profiles of these groups, no clear differences between 

the functional clusters could be detected (Figure 3.20).  

 

 

3.4.6 Comparison of different cluster analyses 

So far, each of the cluster analyses using the separate datasets of morphology, laminar 

connectivity or in vivo functional response properties revealed distinct cell clusters suggesting the 

presence of L2/3 subtypes. Studies often characterize functional properties and connectivity in different 

sets of neurons and argue that subtypes in one feature correspond to subtypes in other features (e.g. 

Meng et al. (2017), Kuhlman et al. (2013)).  Importantly, these studies only provide an indirect relation 

 

Figure 3.21 Comparison of functional response properties across the 4 clusters 

The group averages are plotted for each of the 7 functional response parameters. Significant differences are 

denoted with asterisks (p<0.05, Kruskal-Wallis test, corrected for multi-comparison). Color of asterisks 

indicates which two clusters were compared, starting from left to right. gOSI, C2 vs. C3: p<0.05, C3 vs. C4: 

p<0.0001; gDSI, C3 vs. C4: p<0.05; ODI, C2 vs. C4: p<0.001; PCI, C1 vs. C4: p<0.05; SAD, C2 vs. C4: p<0.05; SF, 

C2 vs. C4: p<0.05, C3 vs. C4: p<0.005; TF, C1 vs. C2: p<0.05, C1 vs. C3: p<0.001, C1 vs. C4: 0.001. 
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between different features. Because the morphology as well as the laminar connectivity and the visual 

response properties were recorded within the same L2/3 PCs in a substantial fraction of cells in the 

present study, the correspondence between functional properties and connectivity as well as morphology 

could be directly tested compared to previous studies.  For cluster comparison, L2/3 PCs in each input 

map cluster (Figure 3.22, top row) were ordered according to their assignment to the different 

morphology clusters. In turn, cells belonging to the same input map and morphology clusters were 

ordered according to their assignment to the functional response clusters (Figure 3.22). With this 

arrangement, the correspondence or non-correspondence between clusters across the input maps, 

morphology and functional response properties could be readily visualized.   

When inspecting the inter-relation between the different cluster assignments of cells, it became 

apparent that each of the data sets led to different grouping of cells. Cells of the laminar input cluster 2 

were distributed over 6 out of the 7 morphology clusters, and distributed over all 4 functional response 

clusters. The same was observed for the cells of the other two main laminar input clusters. Hence, none 

of the clusters showed a consistent and characteristic appearance as a defined cluster across the analyses 

of the datasets of the different properties (laminar connectivity, morphology and functional response 

 

Figure 3.22 Comparison of cluster assignments across all analysed properties 

Interrelation between the cluster solutions for different datasets (fractional laminar input, morphology and in 

vivo functional response properties) obtained within the same L2/3 PCs. 
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properties). This argues against discrete non-overlapping L2/3 PC subtypes based on morphology, laminar 

connectivity and functional response properties.  
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3.5 Mapping of eye-specific retinogeniculate inputs onto mouse 

thalamic neurons 

The overall goal of this part of the thesis was to establish an experimental paradigm to investigate eye-

specific retinogeniculate inputs onto individual TCs in acute brain slices of the adult mouse dLGN. This 

chapter presents important pilot experiments that provide the basis for further investigations.     

 

3.5.1 Channelrhodopsins for dual-color optogenetic stimulation 

In order to stimulate retinogeniculate axons from the two eyes independently, the approach was 

to induce eye-specific expression of two channelrhodopsin-variants with minimal spectral overlap in RGCs 

of either eye.  

 

Figure 3.23 Dual-color optogenetic mapping of eye-specific retinogeniculate inputs onto dLGN cells 

A Scheme illustrating the dual-color optogenetic approach. Red-light excitable ChrimsonR (AAV2/2.Syn-

ChrimsonR.tdT) and blue-light excitable Chronos (AAV2/2.Syn-Chronos.EGFP) or ChR2 (AAV2/2.Syn-

ChR2(H134R).EYFP) are expressed in RGCs and their axonal terminals within dLGN by eye-specific viral 

injections. B Top, expression pattern of ChrimsonR and Chronos in the retinae (left) and axonal projection 

pattern in the right dLGN (right, scale bars: 100 µm). Potential locations of purely contra-, purely ipsilateral and 

binocular TCs within dLGN are indicated with numbers 1-3, respectively. Bottom, scheme illustrating 

retinogeniculate inputs to a purely contra-, purely ipsilateral and binocular TC. C ChrimsonR and Chronos action 

spectra reproduced with permission from Nature Publishing Group (Klapoetke et al. 2014). 
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To obtain maximum independent channelrhodopsin activation, a red-shifted channelrhodopsin, 

ChrimsonR (Klapoetke et al. 2014), and a blue channelrhodopsin, either ChR2 (Nagel et al. 2003) or 

Chronos (Klapoetke et al. 2014), were chosen for RGCs transduction. Importantly, Chronos and ChR2 can 

be excited by blue light but not with red light whereas ChrimsonR can be excited by red light. However, a 

fundamental limitation is that ChrimsonR, like all existing opsins, can be driven to some extent also by 

blue light (Figure 3.23C, taken from Klapoetke et al. (2014)). Activation by blue light, however, can in 

principle be prevented by determining the blue light intensities that are sufficient to activate 

Chronos/ChR2 without activating ChrimsonR (Klapoetke et al. 2014).  

To test the feasibility of the dual-color optogenetic approach, ChrimsonR-transducing AAVs were 

injected into one eye and either ChR2- or Chronos-transducing AAVs in the other eye (Figure 3.23A). The 

 

Figure 3.24 Two optogenetic photostimulation approaches are used for probing retinogeniculate inputs 
onto TCs in dLGN 

Left, in the first approach, a TC is patch-clamped and independent red- and blue-light photostimulation is 

used to measure light-evoked postsynaptic currents (PSCs). The synaptic input is first mapped using blue (i) 

and then red light (ii) or vice versa. Possible crosstalk activation has to be considered and assessed when 

stimulating ChrimsonR+ retinogeniculate axonal terminals (depicted in schematic light-evoked PSCs). Right, 

in the second approach, a thalamic relay cell is patch-clamped and sequential dual-color photostimulation is 

applied. Sequential red-blue photostimulation suppresses crosstalk between Chronos/ChR2 and ChrimsonR 

and therefore independent activation of ipsi- and contralateral pathways is possible.   
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tagging of ChrimsonR with the red fluorescent reporter tdTomato (tdT) and of Chronos with the green 

fluorescent reporter EGFP (EYFP in case of ChR2) allowed separated visualization of axon terminals within 

the dLGN originating from the ipsi- and contralateral eye after successful transduction (Figure 3.23B). 

 

Figure 3.25 Separate red- and blue light photostimulation using sCRACM 

A Top, scheme of dLGN illustrating in which locations TCs were patch-clamped. Bottom, bright field image 

showing the recording pipette and the 8x8 photostimulation grid overlaid on the soma of a representative TC 

in the ipsilateral core (red and blue; x-spacing: 30 µm; y-spacing: 25 µm).  Examples of ChR2-driven EPSCs by 

sCRACM stimulation (repetitions shown in grey and black). ChR2+ ipsilateral axons can be activated with blue 

(right) but not with red light (left, scale bars: 200 pA and 100 ms). B Examples of sCRACM maps obtained 

under red- (left) or blue-light (right) stimulation for individual TCs. The reconstructed morphologies of the 

recorded thalamic cells are overlaid on the input maps (scale bar: 50 µm). Purple star refers to same cell 

displayed in A. C ChrimsonR-driven contralateral input in a representative TC under red- or blue-light 

stimulation (scale bar: 50 µm). Blue-light stimulation can activate ChrimsonR+ axons. D Group averages of 

sCRACM maps under blue photosimulation using either an x40 or x4 objective lens. White circles indicate 

soma position (scale bars: 50 µm). Note the difficulty of using low magnification objectives. 
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Retinae from the two eyes, one transduced with Chronos-EGFP and the other one with ChrimsonR-tdT, as 

well as the corresponding axonal expression patterns in dLGN are shown in Figure 3.23B. Both ChrimsonR 

and ChR2/Chronos were transported effectively into axons leading to bright fluorescent axons throughout 

the dLGN in most experiments (Figure 3.23B and Supplementary Figure 5.11). Furthermore, the 

expression pattern within the dLGN revealed contralateral and ipsilateral eye projection zones (the latter 

is also referred to as ipsilateral core). However, there was substantial overlap between ipsi- and 

contralateral RGCs projection zones, especially in the dorsomedial tip of the dLGN around the ipsilateral 

projection zone (Figure 3.23B). 

The successful eye-specific expression of channelrhodpsins in RGCs axon terminals allowed us to 

test the following questions: Do binocular cells exist within the adult mouse dLGN? And if so, where are 

they located? 

 

3.5.2 Separate stimulation approach  

In order to be able to assess binocularity of TCs as a result of retinogeniculate convergence, the 

spectral activation crosstalk between the channelrhodopsin-variants used in the experimental paradigm 

had to be assessed. Since it was not just of interest to measure whether TCs get eye-specific synaptic 

input, but also where the inputs were localized across the postsynaptic dendrites, the method of sCRACM 

was used (Petreanu et al. 2009). For sCRACM, 4-AP and TTX were applied to the extracellular medium to 

block presynaptic AP initiation. A photostimulation grid was placed spanning the entire dendritic trees of 

the recorded TCs (Figure 3.25). The strategy was to use separated red- and blue-light photostimulation 

(Figure 3.24, left; Figure 3.25). First, TCs were patch-clamped in the ipsilateral core in brain slices where 

retinogeniculate axons expressed ChR2. Photostimulation of ChR2+ axons evoked reliable EPSCs (cell 

clamped at -70 mV) across the postsynaptic dendritic tree with 473 nm light (Figure 3.25A and B).  ChR2-

driven EPSCs had onsets of 10.9 ± 0.1 ms (for Chronos: 7.4 ± 0.5 ms) and decayed rapidly (comparable to 

Petreanu et al. (2009)). Photostimulation of the same cells with 637 nm light never evoked EPSCs across 

the postsynaptic dendritic tree (Figure 3.25B, left). In the same brain slices, TCs were then patch-clamped 

in the contralateral eye projection zone where retinogeniculate axons expressed ChrimsonR. 

Photostimulation of ChrimsonR+ retinogeniculate axons in the contralateral part of dLGN evoked EPSCs 

across the dendritic tree with 637 nm light (onsets: 11.1 ± 0.14 ms). However, as expected, 

photostimulation of the same cells with 473 nm light evoked EPSCs across the postsynaptic dendritic tree 
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as well (Figure 3.25C). This activation crosstalk was also further validated in animals where only ChrimsonR 

 

 

Figure 3.26 Sequential photostimulation protocol 

A Top, scheme illustrating a purely contra-, purely ipsilateral and a binocular TC. The responses to sequential 

red-blue photostimulation are displayed at the bottom. Left, photostimulation of ChrimsonR+ retinogeniculate 

axons with 637 nm light for 250 ms immediately followed by illumination at 473 nm for 50 ms suppresses the 

excitation of ChrimsonR at 473 nm both at -70 and +40 mV (scale bars: 50 pA and 50 ms). Middle, 

photostimulation of Chronos+ axons at 470 nm evokes PSCs at -70 and +40 mV irrespective of red light 

prestimulation (scale bars: 50 pA and 50 ms (top); 10 pA and 50 ms (bottom)). Right, two examples where 

stimulation with red light followed by blue light evoked two PSCs in a binocular TC (scale bars: 50 pA and 50 ms 

(top left); 100 pA and 50 ms (bottom left); 10 pA and 50 ms (bottom right)). Note, individual cells displayed a 

second PSC at +40 mV (cell 1) or at -70 mV (cell 2). B Single pulse photostimulation responses to three of the 

TCs displayed in A. Numbers indicate where each recorded TC was located within the dLGN. Note that now blue 

light leads to PSC in all cases due to excitation spectral overlap. Left and middle, Single blue-light stimulation 

can activate ChrimsonR+ retinogeniculate axons (scale bars: 10 pA and 50 ms (top); 50 pA and 50 ms (bottom)) 

as well as Chronos+ retinogeniculate axons (scale bars: 10 pA and 50 ms) both at -70 and +40 mV. Right, in a 

binocular TC, single blue-light stimulation can activate ChrimsonR+ as well as Chronos+ retinogeniculate axons 

both at -70 and +40 mV (scale bars: 5 pA and 50 ms (top); 10 pA and 50 ms (bottom)). When comparing to the 

corresponding trace in A, the evoked PSC at +40 mV under single blue-light stimulation consists of Chronos- and 

ChrimsonR-driven input.  
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was expressed in one eye (Supplementary Figure 5.11). Finding the optimal operational range where blue 

light sufficiently activates Chronos/ChR2 without activating ChrimsonR was practically not feasible, since 

the expression levels of ChrimsonR and Chronos/ChR2 varied greatly across slices and animals 

(Supplementary Figure 5.11).  

To evaluate additional experimental parameters that could affect the sCRACM approach in TCs, 

the use of objective lenses with different magnifications (x4 vs x40) was tested. Objective lenses with 

different magnifications did not change the overall outcome (Figure 3.25D). However, since mouse TCs 

are quite small in general, including multipolar dendritic arbors, the precise alignment of the grid onto the 

cell soma was much easier with a higher magnification objective and consequently an x40 microscope 

objective was used for subsequent experiments.  

 

3.5.3 Sequential photostimulation approach  

Separated red- and blue-light stimulation did not yield unambiguous mapping of eye-specific 

inputs given the activation of ChrimsonR with blue light. Therefore, the next step was to explore whether 

a sequential photostimulation approach, as described in Hooks et al. (2015), would allow to disambiguate 

ChrimsonR- and Chronos-expressing synaptic inputs to thalamic relay cells under sCRACM conditions. The 

sequential photostimulation approach makes the assumption that axons expressing red-shifted opsins 

(here ChrimsonR) become inactivated by prolonged excitation with red light, rendering them unexcitable 

to subsequent blue or red photostimuli (Figure 3.24, right). This approach was directly experimentally 

tested in the dLGN context both at -70 and +40 mV, to capture evoked AMPAR-mediated and evoked 

NMDAR-mediated responses in the same cell. Note, recurrent inhibitory circuits were blocked by the 

GABAA- receptor antagonist bicuculline. Additionally, wide-field illumination was used instead of 

patterned photostimulation to increase experimental throughput.  

Photostimulation of ChrimsonR+ retinogeniculate axons with 637 nm light for 250 ms, 

immediately followed by illumination at 473 nm for 50 ms, did not evoke a second PSC in TCs neither at -

70 nor +40 mV (Figure 3.26A, left). As control, a single blue photostimulation evoked PSCs at -70 and +40 

mV in the same cell in accordance to previous sCRACM experiments (Figure 3.25B, left). In contrast, 

photostimulation of ChR2+/Chronos+ axons at 470 nm produced PSCs at -70 and +40 mV with and without 

prestimulation with red light (Figure 3.26A and B, middle). Importantly, the PSC onset and time-to-peak 

responses of ChR2/Chronos were not altered by prestimulation (Figure 3.26A and B, middle). Thus, 
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applying sequential red-blue photostimulation successfully suppressed the crosstalk between 

ChR2/Chronos and ChrimsonR, comparable to the approach developed in Hooks et al., 2015.  

In order to identify binocular dLGN cells that receive ipsi- as well as contralateral input, TCs in the 

dorsomedial tip of the dLGN were patch-clamped. This region was of particular interest since various 

studies reported the existence of binocular TCs there. Furthermore, given the increased overlap of ipsi- 

and contralateral axonal projections observed in this region (Figure 3.23B) it appeared to be a promising 

area to screen for binocular TCs. Indeed, stimulation with red light followed by blue light evoked PSCs 

during both stimulus phases in a subset of cells (Figure 3.26A, right). Interestingly, in 3 out of 4 TCs tested, 

the second EPSC was only observed at +40 mV but not at -70 mV (Figure 3.26A, example cell 1, compared 

to cell 2) suggesting the presence of AMPAR-silent retinogeniculate input from the respective other eye. 

In comparison, a single blue photostimulation evoked a PSC at -70 mV (Figure 3.26B, right) displaying the 

crosstalk activation as observed before (see Figure 3.26B, left). Therefore, applying sequential red-blue 

 

Figure 3.27 Dual-color sCRACM protocol 

A Scheme depicting the location of the recorded TC within the dLGN (top left). NMDAR-mediated PSCs evoked 

by sequential photostimulation at different locations across the dendritic tree of the recorded cell (right). 

Binocular responses are highlighted with boxes. The reconstructed morphology of the recorded thalamic cells is 

overlaid on the PSC traces (scale bar: 40 µm; 100 pA and 100 ms). Box labelled with asterisk is enlarged at bottom 

left. Initial ChrimsonR-driven PSC highlighted in red followed by Chronos-driven PSC highlighted in blue. B Similar 

to A with the difference that the exemplary TC displays AMPAR-mediated binocular responses upon sequential 

photostimulation. Note that the dendritic tree could not be fully reconstructed (scale bar: 40 µm; 100 pA and 

100 ms). 
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photostimulation allowed sequential activation of retinogeniculate pathways defined by ChrimsonR and 

ChR2/Chronos expression.  

As a final step, dual-color sCRACM experiments were performed in cells that initially showed two 

EPSCs upon sequential wide-field photostimulation (Figure 3.26B, right). Two exemplary mapping 

experiments of binocular TCs are displayed in Figure 3.27. The TC in Figure 3.27A showed binocular 

responses only at +40 mV whereas the cell in Figure 3.27B showed binocular responses at -70 mV. For 

sCRACM experiments, each stimulus in the photostimulation grid consisted of a sequential 

photostimulation with red and blue light. Binocular as well as monocular responses were present at 

specific locations across the dendritic tree, suggesting spatially organized eye-specific inputs.  
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4 Discussion  
 

4.1 Electrophysiological and morphological classification of L2/3 

principal cells in V1 
 

In the first part of the thesis a quantitative analysis of electrophysiological and dendritic 

morphological properties of L2/3 PCs in mouse V1 has been performed for the first time.   

The analysis demonstrates distinct clusters of L2/3 PCs in a parameter space spanned by 

electrophysiological or morphological properties. However, none of the clusters obtained for different 

properties show clear correspondence, arguing against morpho-electrophysiological subclasses of L2/3 

PCs within mouse V1.  

 

4.1.1 Electrophysiological classification 

Generally speaking, electrophysiological properties of neurons are a key component in the 

understanding of cortical network function (Contreras 2004). The classification of PCs into 

electrophysiological categories based on their active as well as passive intrinsic properties has been 

performed across the entire brain in numerous studies. For the neocortex, subtypes of L5 and L6 PCs have 

been described based on electrophysiological properties in different cortical areas (Groh et al. 2010, Marx 

et al. 2013, Vélez-Fort et al. 2014, Kim et al. 2015, Elliott et al. 2018). For L2/3 PCs, however, only few 

studies characterized electrophysiological properties. Most studies on L2/3 PCs were performed in mouse 

or rat barrel cortex as well as in non-primary sensory areas such as prefrontal cortex (Elstrott et al. 2014, 

Staiger et al. 2015, van Aerde et al. 2015). To date, no study has thoroughly investigated whether there 

are electrophysiological subclasses of L2/3 PCs in the rodent visual cortex. Most studies consider L2/3 PCs 

in mouse V1 as an electrophysiological homogenous group of cells in comparison to PCs in other 

neocortical layers (Larkman et al. 1990, Xu et al. 2016, Gilman et al. 2017). However, it is unclear whether 

there are substantial differences in the passive and active electrophysiological properties of PCs within 

L2/3. Therefore, in the first chapter of this thesis, electrophysiological classification of L2/3 PCs based on 

active and passive electrophysiological parameters was performed. Cells were recorded throughout the 

entire depth of L2/3 to sample also possible previously described electrophysiological differences 

between the upper and lower part of L2/3 (Staiger et al. (2015), Luo et al. (2017); also referred to as L2 
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and L3 in some studies, see van Aerde et al. (2015)). The electrophysiological parameters for cell 

classification were extracted as well as calculated similarly to previous studies (Crockett et al. 2015, 

Deitcher et al. 2017, Martínez et al. 2017). The mean value of each extracted electrophysiological 

parameter in the current dataset was comparable to a study also performed in mouse V1 (Gilman et al. 

2017).  

The combined use of dimensionality reduction through principal component analysis (PCA) 

followed by classification through unsupervised hierarchical cluster analysis is a widely accepted 

methodological approach pursued in numerous studies (Dumitriu et al. 2007, Woodruff et al. 2011, 

Martínez et al. 2017). By applying this methodological approach, six electrophysiological clusters of L2/3 

PCs could be revealed within the mouse V1. Two major clusters, covering 75 % of the entire population, 

differed in most of the extracted passive and active electrophysiological parameters arguing for at least 

two different electrophysiological types of L2/3 PCs within mouse V1. Importantly, the two clusters also 

differed in electrophysiological parameters that were not directly or only weakly correlated with each 

other. For example, the two clusters differed in their spike amplitude as well as the maximal AHP 

amplitude, two parameters that are not directly linked to each other (see Supplementary Figure 5.4), 

supporting the idea of two independent L2/3 PC electrophysiological subtypes.  

Overall L2/3 PCs are generally considered regular spiking cells, the most common cell type in the 

neocortex, with sustained repetitive firing upon current injection or with a single spike at Rheobase 

(Larkman et al. 1990, Staiger et al. 2015). However, L2/3 PCs can also display high-frequency bursts of AP 

firing in an acute slice preparation (Zaitsev et al. 2012, van Aerde et al. 2015). The 137 L2/3 PCs recorded 

in this study displayed regular spiking behavior with different degrees of accommodation. Bursting 

behavior was not observed in a single L2/3 PCs in mouse V1, similar to a study in acute slices of the mouse 

barrel cortex (Staiger et al. 2015). A substantial fraction of the obtained electrophysiological clusters (the 

two main clusters among them) significantly differed in their maximum spike frequencies form L2/3 PCs 

that fired only few spikes to cells that showed maximum spike frequencies up to 25 Hz. 

Since L2/3 is difficult to separate into a genuine L2 and L3 in the rodent neocortex based on 

cytoarchitecture stains, it is usually treated as one layer. However, studies have reported differences in 

passive and active electrophysiological properties of upper vs. lower L2/3 PCs. The most prominent and 

consistent difference is that upper L2/3 PCs show higher input resistance compared to lower L2/3 PCs 

(Staiger et al. (2015), Luo et al. (2017), van Aerde et al. (2015); but see Deitcher et al. (2017)). Similarly, 

there was also a small but significant correlation between the input resistance and cortical depth of L2/3 
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PCs present in this study. However, none of the obtained electrophysiological clusters displayed a 

preferred depth range within L2/3. This finding was already apparent when performing PCA, where the 

input resistance displayed relatively low weights in the first principal component.   

4.1.2 Morphological classification 

Only few studies looked into a morphological classification of PCs within L2/3 similar to the 

electrophysiological classification.  

The PCA based cluster analysis of dendritic morphology presented here identified seven clusters 

of L2/3 PCs based on quantitative morphological parameters. Again, there were two main clusters. These 

were different in the extent and complexity of their dendritic branching. The cells of these two clusters 

differed also in their depth within L2/3. There was a gradual change in morphological complexity with 

distance from the pia: Neurons deeper within L2/3 had a larger spatial extent and had a more complex 

geometry expressed in more branching points both on the apical and basal dendrites. However, cells that 

were very close to the L4 border had indeed the longest apical trunk, but had less complex branching in 

L1. Both morphological types described in previous studies of L2/3 PC dendritic morphology, slender and 

broad tufted cells (van Aerde et al. 2015), were observed in this study.  Whereas the broad tufted cells 

were observed throughout the depth of L2/3, slender tufted cells were primarily located in the lower part 

of L2/3 as described in other neocortical areas (van Aerde et al. 2015). However, none of the clusters 

exclusively contained either slender or broad tufted cells.  

A recent study performed in mouse temporal cortex found L2/3 PCs that show a distinct 

morphology from a typical L2/3 PC (Luo et al. 2017). These morphologically distinct L2/3 PCs were located 

at the border between L1 and L2. These so called L2 marginal neurons have an apical dendrite running 

parallel to the pia instead of towards it. In such cases, a clear separation between apical and basal 

dendrites is not straight forward. These extreme cases of L2/3 PCs were not observed in our data set. 

However, some L2/3 PCs close to the L1 border had an oblique apical dendrite that could not be readily 

distinguished from the basal dendrites at first sight. These cells did not reside in an individual cluster in 

this study partially due to the reason that the obliqueness was not captured by any of the extracted 

morphological parameters. This should be considered in future analyses of this data set. 
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4.1.3 Relation between morphology and electrophysiology 

Given the observed differences in L2/3 PCs electrophysiological and morphological parameters, 

the question was whether morphology could predict electrophysiology and vice versa.   

Generally, there is a large body of experimental and theoretical evidence indicating that dendritic 

morphology can affect the somatic AP generation (Häusser et al. 2000).  

In this study, there were no clear morphological distinctions between cells that differed in their 

electrophysiological properties in the subset of 33 cells were both the dendritic morphology and 

electrophysiology were obtained. More specifically, the variation of apical and basal dendritic complexity 

was similar within each electrophysiology cluster (Figure 3.6). This observation is in line with studies in 

the barrel cortex where electrophysiologically distinct L2/3 PCs did not display systematic differences in 

dendritic morphology. In the same study, however, the axonal projection patterns within the same cortical 

area were different between electrophysiological subtypes of L2/3 PCs (Staiger et al. 2015). This 

observation could not be verified for the mouse visual cortex in this study since the axonal projection 

patterns were not recorded and therefore no conclusion can be drawn at this point. It should be noted 

that various studies, mostly performed in L5 PCs, showed that the increased complexity of the dendritic 

tree alone can lead to various firing behaviors of PCs (Larkman et al. 1990, Yael et al. 1990, Bastian et al. 

2001). However, although these studies could reveal a strong relationship between bursting behavior and 

cell morphology, for regular spiking cells the correlation between spiking behavior and morphology was 

not as clear.  

The explanation for the lack of association between cell morphology and firing properties for L2/3 

PCs in mouse V1 in this study could be due to differential distribution of ionic conductances that dominate 

over effects arising from dendritic cell morphology. In future experiments, these parameters should be 

experimentally recorded and considered for cell classification. Furthermore, morphological parameters 

that have been shown to be highly correlated with passive electrophysiological properties such as the 

apical trunk diameter as well as the soma size were not included in the current analysis (Gilman et al., 

2016). These morphological parameters were difficult to extract from the 2-photon imaging stack given 

the limited resolution compared to imaging of biocytin filled cells in fixed slices using confocal laser 

scanning microscopy (as in Gilman et al. (2017)). Of greatest importance will be to directly relate the 

projection targets to the electrophysiological properties of L2/3 PCs. The projection target has been 

shown to be a primary factor predicting membrane and synaptic properties (Brown et al. 2009, Shepherd 

2013) 
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4.1.4 Technical and methodological considerations 

The selected electrophysiological stimuli used to probe the input-output responses of L2/3 PCs in 

this study were classical step-change stimuli. This approach might miss some electrophysiological 

properties, and more realistic input patterns during ongoing activity could be used to probe the dynamic 

input-output relationship (Badel et al. 2008). Furthermore, somatic stimulation is not capable of 

quantifying the influence of dendritic conductances, a potentially important feature for L2/3 PC 

characterization.   

Concerning the morphological analysis, one should keep in mind that manual reconstruction of cell 

morphology is labor-intensive and bears the risks of tracing errors. To minimize this error, the 

morphological data set should also be traced using one of the various available automated reconstruction 

algorithms for direct comparison (e.g. reviewed in Acciai et al. (2016)).  

The classification of L2/3 PCs was based on PCA to reduce the parameter space into a reduced 

dimensional space with maximized variance, followed by hierarchical clustering. Hierarchical clustering, 

an unsupervised clustering method, measured the relationship between each cell in the dataset and 

iteratively grouped them into larger clusters. Hierarchical clustering produces interrelated groupings, and 

does not rely on the pre-determination of cluster number as opposed to k-means clustering. The choice 

of the threshold inter-group linkage distance determines the number of clusters. Different strategies have 

been employed to address the general problem of subjectivity of this choice. In the present study, the 

threshold linkage distance was determined based on a shuffle strategy. The distributions of the individual 

parameters are left intact (mean values and SDs are not altered), but the values are shuffled 

independently across cells, disrupting the structured correlations between the extracted parameters. By 

performing the shuffling procedure 1000 times, an approximated null distribution of the data is obtained. 

This distribution can be used to define the threshold linkage distance as the distance lying at the 95th 

percentile of the null distribution. This shuffling strategy should be cross validated with other established 

strategies. One strategy would be to add cells of different types to the data set (here: interneurons to the 

L2/3 PCs, Cauli et al. (2000), Karagiannis et al. (2009)). Another strategy would be to perform silhouette 

analysis for the comparison of the accuracy of the clustering results at different linkage distance 

thresholds (Rousseeuw 1987). The Thorndike procedure (Thorndike 1953) could also be used as method 

for the determination of the threshold linkage (Cauli et al. 2000, Crockett et al. 2015). The Thorndike 

procedure suggests that the threshold linkage distance should be chosen at that point where the largest 

increase in mean intra-cluster variance is given.  
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In general, the selection of parameters used for cluster analysis is a critical step for the 

determination of neuronal subtypes. Adding specific parameter can reduce the discriminative properties 

of the other parameters. In this study, the strategy was to separately use morpho- and 

electrophysiological parameters in the PCA and subsequent clustering. Considering the small subset of 33 

cells where both properties were measured, analyzing all parameters in one PCA would lead to the 

problem that a large number of variables would characterize a small number of cells and hence the 

generalization of the clusters would become difficult.  

 

4.1.5 Conclusion and outlook 

Are there different electrophysiological and morphological types in the mouse V1? 

The answer to this question depends on the long-standing debate of what the minimum common 

feature for a cell type is. Looking at electrophysiology by itself, it seems that there are two main clusters 

of L2/3 PCs that differed in most of their electrophysiological properties, and some smaller clusters that 

rather represent the extremes of each of the two clusters. Importantly, a clear distinction of L2 and L3 

based on electrophysiological differences could not be revealed in mouse V1.  

Considering morphology by itself, the differences in L2/3 PCs are dependent on the location within 

L2/3. This becomes apparent when looking at the various morphological parameters correlating with pial 

depth. This suggests that from a morphological point of view, L2/3 PCs form a continuum rather than 

distinct classes.  

Considering morphology and electrophysiology together, distinct morpho-electrophysiological 

groups of L2/3 PCs do not exist arguing against the presence of different cell types. The total number of 

33 L2/3 PCs where both electrophysiology and morphology was recorded is comparable to the numbers 

recorded in other studies looking at potential morpho-electrophysiological groups of L2/3 PCs (van Aerde 

et al. 2015, Deitcher et al. 2017). Yet, final conclusions on the actual subpopulations have to be validated 

with higher numbers of cells where both electrophysiology and morphology are recorded in future 

experiments.  

The differences in branching complexity, as well as the differences in passive and active 

electrophysiological parameters of L2/3 PCs, might be related to their functional response properties (see 

Yamashita et al. (2013), but see Lien et al. (2011)). To further characterize L2/3 PCs, the functional 

response properties of L2/3 PCs as well as the local and long range connectivity should be included in 
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future experiments. Parts of this have been performed in the Results section 3.4 of this thesis and will be 

discussed below.   
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4.2 An in vivo / in vitro approach to study laminar connectivity of 

functionally characterized L2/3 principal cells 

Relating the functional response properties of a neuron to its underlying circuit and synaptic 

properties at high resolution is fundamental for a mechanistic understanding of the brain. However, this 

direct relation between function and circuitry is only possible to a certain degree in an in vivo preparation 

due to technical limitations. Therefore, it is essential to develop high-yield approaches that combine 

functional response measurements with re-identification of the same neurons in brain slices for further 

analysis.  

Neuronal activity is readily recorded in vivo by either single- or multi-electrode electrophysiology 

or optical imaging of fluorescent reporter molecules. Optical imaging has the advantage that the spatial 

location of individual neurons can be directly assessed along with their activity. Most commonly, 2-photon 

laser scanning microscopy (2PLSM) of synthetic calcium indicators or GECIs is applied to record 

simultaneously the activity of many neurons in vivo (Stosiek et al. 2003, Svoboda et al. 2006, Akerboom 

et al. 2012, Goldey et al. 2014, Rose et al. 2014). For further analysis of the same neurons in brain slices, 

there are only a few studies that were able to perform successful recordings in vitro from cortical neurons 

with known responses to sensory stimuli (Ko et al. 2011, Lien et al. 2011, Peter et al. 2013). The time-

consuming, unambiguous matching of cells between in vivo and in vitro is here the most demanding task.  

The in vivo / in vitro approach described in this thesis provides a substantial improvement over 

previous approaches by enabling high-yield circuit analysis of functionally characterized neurons in brain 

slices with the use of a GECI. 

 

4.2.1 Comparison to previous in vitro / in vivo approaches 

The developed in vivo / in vitro approach provides a fast and reliable workflow for high-

throughput analysis, combining repeated recording of neuronal activity in vivo followed by analysis in 

vitro. Furthermore, the developed approach combines advantages of published in vivo / in vitro 

approaches: 1) Similar to the methods introduced by the laboratories of Scanziani (Lien et al. 2011) and 

Rumpel (Peter et al. 2013), the presented approach uses sparse labelling with a structural marker. 2) The 

matching of cells between in vivo and in vitro is performed by carefully aligning reference coordinates, 

and matching fluorescent cells based on their morphologies and mutual arrangement comparable to the 

approach introduced by Mrsic-Flogel and colleagues (Ko et al. 2011). However, there are essential 



   
 
Discussion   102 

 
differences to the published in vivo / in vitro approaches. The novel approach described here does not 

rely on time-consuming photo activation of individual, functionally characterized neurons, and instead 

uses a constantly present structural marker. This is a main advantage over the pa-GFP approaches that 

require pre-selection of target neurons, and as an additional step, their individual photo-activation during 

the in vivo experiment. Compared to the method introduced by Mrsic-Flogel and colleagues, a constantly 

present structural marker removes the limitation where the in vitro experiment has to be carried out 

within hours after in vivo imaging, before the neurons lose the OGB-1 label. Furthermore, the main 

limitation of both published in vivo / in vitro approaches by using a synthetic calcium indicator is that this 

restricts the study of neuronal activity to a single time point in vivo. The use of a GECI as performed here 

overcomes this fundamental limitation and provides the potential for repeated, chronic in vivo 

investigation, expanding the combined in vivo / in vitro analysis for studying cell-type specific neuronal 

plasticity, learning-related changes and alterations during the course of disease.  

 

4.2.2 Applications of the in vivo / in vitro approach 

The described in vivo / in vitro approach is applicable for in vivo imaging of neuronal activity in 

mouse cortex with 2PLSM, and therefore allows studying neuronal activity underlying behavior (Keller et 

al. 2012, Petreanu et al. 2012, Li et al. 2015) and assessing alterations in neuronal activity in mouse models 

of disease (Liebscher et al. 2016, Hamm et al. 2017). The developed in vivo / in vitro approach is 

particularly suited to monitor neuronal activity repeatedly over long periods of time, for example during 

learning, experience-dependent plasticity or disease progression or remission, to investigate 

corresponding changes in neuronal activity and subsequently the underlying alterations at the neuronal 

circuit and cellular level. 

Apart from mice, this approach can be adapted to any mammalian model organisms where 

cortical in vivo 2-photon calcium imaging has been established, including organisms such as rats (Scott et 

al. , Ohki et al. 2005), ferrets (Smith et al. 2015), cats (Ohki et al. 2006) and non-human primates (Heider 

et al. 2010, Li et al. 2017).  

For relating the recorded neuronal activity in vivo to the underlying neuronal substrate at the level 

of neuronal circuits, neurons and synapses, separate recordings are usually performed on the same cell 

type in vivo and in brain slices (Barnes et al. , Keck et al. 2013, Kuhlman et al. 2013). The established 
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approach allows performing such recordings on the very same neurons, thus allowing direct correlation 

of in vivo activity with the underlying cellular and synaptic properties as well as the neuronal connectivity.  

The in vivo part of the approach can be adapted to miniature 1- or 2-photon microscopy for 

investigations in freely behaving animals (Ziv et al. 2013, Resendez et al. 2016, Zong et al. 2017) beyond 

the head-fixed anesthetized (Mittmann et al. 2011, Rose et al. 2016) or awake (Pakan et al. 2016, Rose et 

al. 2016) condition. Likewise, the in vitro part can be extended to any method applied to acute brain slices, 

such as multiple patch recordings, to assess local connectivity between functionally characterized neurons 

(Hofer et al. 2011, Ko et al. 2011), pathway-specific circuit and synapse mapping using optogenetics 

(Petreanu et al. 2009), and in addition cell type characterization by single-cell PCR (Cadwell et al. 2016) or 

by immunohistochemistry for assessing neuronal markers  

 

4.2.3 Limitation of the in vivo / in vitro approach 

While the in vivo / in vitro approach allows efficient matching of cells between the in vivo and in 

vitro preparations, there are some limitations with regard to specific scientific questions. For studies in 

early development, the use of viral injections to deliver GECIs and fluorescent markers is not suitable, as 

viral transduction takes 2-3 weeks. A possible solution for this is to use transgenic animals constitutively 

expressing a calcium indicator in neurons (e.g. Tg(tetO-GCaMP6s)2Niell, Wekselblatt et al. (2016)) or 

alternativelys to perform in utero viral injections (Itah et al. 2004) or DNA electroporation (Potter et al. 

2003). 

As in previous in vivo calcium imaging approaches, the brain area of interest needs to be made 

accessible optically for 2-photon calcium imaging in order to be able to study the same cells in vivo and in 

vitro. While the long-term cranial window method has been used in young animals (P3, Portera-Cailliau 

et al. (2005)), the brain slice preparation puts an upper limit on the age that can be effectively studied. 

The older the animal, the more difficult the brain slice preparation will be for obtaining high quality acute 

tissue slices. Therefore, the described approach has only been used for brain slice preparations from 

animals up to P100. 

Another critical point is that denser labelling and a larger area of expression in the brain, beyond 

the area of interest, decreases throughput, as identification of the correct brain slice followed by the 

unambiguous identification of cells characterized in vivo takes more time. The density of expression has 

to be adapted to the individual experimental needs in order to achieve the appropriate balance between 
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imaging a sufficient number of cells in vivo, and the time it takes to successfully re-identify cells in vitro. 

Critically, the time taken for cell re-finding in vitro must be minimized in order to maximize the number of 

cells that can be recorded before the brain slices degrade. 

 

4.2.4 Conclusion and outlook 

The in vivo / in vitro approach developed in this thesis closes the gap between chronic in vivo 

imaging of neuronal activity, and investigating neuronal circuit connectivity and cellular as well as synaptic 

physiology with high resolution methods in vitro. The described approach is reliable and time-efficient, 

yielding a high-throughput. Moreover, it can be adopted to various animal models, brain areas and allows 

studying individual cell types embedded in neuronal circuits.   

In future experiments, the in vivo / in vitro approach has enormous potential for studying 

plasticity-related changes of individual cells, and the underlying circuit rewiring at high resolution.  
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4.3 Laminar synaptic inputs to functionally characterized L2/3 

principal cells 

One of the main objectives of this thesis was the characterization of L2/3 PCs to reveal potential 

subtypes embedded in different functional microcircuits. Electrophysiological and morphological 

properties of L2/3 PCs were investigated in chapter 3.1.  Both the morphology and electrophysiology 

analyses separately viewed suggested classes of L2/3 PCs with different properties but did not reveal 

distinct morpho-electrophysiological L2/3 PC subtypes within V1.  

In chapter 3.4, the functional response properties of L2/3 PCs and their laminar excitatory and 

inhibitory connections were measured within the same cells following the developed high-yield in vivo / 

in vitro approach described in chapter 3.2. Following the newly developed in vivo / in vitro approach, this 

thesis was able, for the first time, to directly link excitatory and inhibitory input patterns to functional 

response properties of individual neocortical neurons. 

The understanding of functional heterogeneity of neocortical networks requires simultaneous 

analysis of their cellular elements (Oberlaender et al. 2012, Helmstaedter et al. 2013), sensory response 

properties (Niell et al. 2008, Oberlaender et al. 2012, Yamashita et al. 2013, Vélez-Fort et al. 2014, Kim et 

al. 2015), input connectivity as well as output projections (Vélez-Fort et al. 2014, Kim et al. 2015). For the 

definition of a cell type, it is under current debate what exact properties need to be included for cell 

characterization, and how many properties need to be homogenous within a population of cells and how 

many properties need to be different to other cells. Therefore, a unified definition of a cell type is still 

missing to date (reviewed in Fishell et al. (2013), Zeng et al. (2017)). However, the genetic makeup of a 

cell is probably the most deterministic property for a cell type, and advances in gene profiling techniques 

over the past decades guided and will guide neuronal cell classification in the future (Shapiro et al. 2013).  

In the present study, laminar input connectivity, dendritic morphology and in vivo functional 

response properties were used to classify L2/3 PCs in mouse V1.  Although recent work could demonstrate 

that there are ‘genuine’ subtypes of PCs sharing the same genetic markers, input/output connectivity, 

morphology and functional response properties in the infragranular layers of V1 (Vélez-Fort et al. 2014, 

Kim et al. 2015), relating the functional response properties, laminar excitatory and inhibitory input and 

the morphology within the same cell could not reveal homogenous subtypes of L2/3 PCs in V1 in this 

study.      
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4.3.1 Laminar input connectivity of L2/3 principal cells 

The spatial organization of excitatory and inhibitory laminar inputs to L2/3 PCs were mapped using 

LSPS by UV glutamate uncaging in acute slices of V1. The excitatory and inhibitory input was mapped 

within the same L2/3 PC, enabling a direct comparison of spatial overlap between excitation and inhibition 

in contrast to previous studies where excitation and inhibition were recorded in separate sets of cells (Sun 

et al. 2016, Xu et al. 2016). Generally speaking, L2/3 PC excitatory and inhibitory synaptic connectivity 

recapitulated classical anatomical tracings (Burkhalter 1989), in that they receive excitatory inputs from 

L2/3, L4 and L5 and strong local inhibitory input. However, upon further examination different input 

patterns to L2/3 PCs were identified through unsupervised hierarchical clustering. L2/3 PCs were divided 

into three major groups based on their laminar excitatory and inhibitory inputs. Whereas cells in all 

clusters received a significant relative amount of their excitatory and inhibitory from L2/3, the relative 

amount of excitatory and inhibitory synaptic input from L4 varied in these three clusters.  L2/3 PCs in 

cluster 1 are comparable to a group of L2/3 PCs observed in the auditory cortex, receiving strong 

excitatory and inhibitory synaptic input from L2/3 while receiving a small amount of excitatory input from 

L4 (Meng et al. 2017). However, the location of these cells within L2/3 is not comparable between the two 

studies. Whereas the most superficial L2/3 PCs in the auditory cortex seem to get the smallest amount of 

excitatory input from L4, L2/3 PCs displaying similar input profiles in V1 are not specifically located in the 

most superficial part of L2/3.  The functional response properties could only be measured in two cells of 

this cluster, and hence no conclusion about their functional role within L2/3 can be drawn at this point. 

Considering the small amount of excitatory L4 contribution in these cells one could speculate that they 

have diverse visual tuning and not simply the same tuning as the feedforward input from L4 PCs. Following 

the same argumentation, L2/3 PCs that have less intercortical but strong L4 input, cluster 3 cells in this 

study, should show less diverse visual tuning since they basically ‘inherit’ their tuning from L4 PCs. 

However, cluster 3 cells do not show unique overlap with cells in clusters obtained with the functional 

response properties that display strongly selective tuning (e.g. functional response clusters 1 and 2). L2/3 

PCs in input cluster 2 were on average localized higher within L2/3 and displayed the least spatial overlap 

of excitatory and inhibitory input from L4. This property, however, is neither related to the dendritic 

morphology nor to the extracted functional response properties. In general, the strong depth-dependent 

gradient of excitatory L4 input with lower L2/3 PC receiving more L4 excitatory input observed in the 

auditory as well as barrel cortex (Staiger et al. 2015, Meng et al. 2017) cannot be confirmed for visual 
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cortex when considering all cells in this study. However, it should be noted that within cluster 2, L2/3 PCs 

do display a depth-dependent gradient of excitatory L4 input (Figure 3.17).   

4.3.2 In vivo functional response properties of L2/3 principal cells 

The extracted functional response properties in this study encompassed visually evoked as well 

as spontaneous activity of L2/3 PCs in the binocular zone of V1 in anesthetized mice. Drifting gratings were 

used to assess visual response properties of L2/3 PCs. Spontaneous activity was recorded during complete 

darkness. Independent eye stimulation gave the possibility to extract eye-specific orientation and 

direction tuning preferences, as well as to quantify the degree of ocular dominance of individual L2/3 PCs 

in the binocular zone of mouse V1, similar to a previous study (Rose et al. 2016). The distribution of 

orientation and direction selective cells was similar to previous studies (Niell et al. 2008, Jaepel et al. 

2017). Most of the 2777 recorded L2/3 PCs were located in the anterior part of binocular V1 and displayed 

a preferred SF of 0.02 cycles per degree, comparable to previous studies (Tan et al. 2015, Zhang et al. 

2015). Most cells preferred the lowest TF (1 cycles per/s) used in this study. Work in anesthetized animals 

report TF preferences of L2/3 PCs between 0.5-1 cycles/s (Marshel et al. 2011, Tan et al. 2015) and 

therefore the observed preferred TF seems to be comparableConsidering these results, future studies 

should aim at scanning the range of TFs lower than 1 cycle/s. 

The visually evoked, as well as the spontaneous properties, measured in the sample of in vivo / in 

vitro characterized L2/3 PCs was representative for the entire population of in vivo characterized cells. 

However, there was a slight bias towards orientation selective L2/3 PCs in the in vivo / in vitro 

characterized L2/3 PCs compared to the population distribution (Figure 3.19). Nevertheless, the whole 

parameter space was covered by the sample of in vivo / in vitro characterized L2/3 PCs, arguing against 

strong sampling biases towards a specific visual response property. 

Hierarchical clustering based on the visual response properties and spontaneous activity of the in 

vivo / in vitro characterized L2/3 PCs revealed four clusters of cells. Among these clusters, two contained 

L2/3 PCs that either preferred high TFs and low SFs or vice versa (cluster C1 and C4). Compared to previous 

studies looking at higher visual areas surrounding V1 (Glickfeld et al. 2013, Kim et al. 2017), one can 

hypothesize that cluster 1 contains AL-projecting whereas cluster 4 contains PM-projecting cells. 

However, cells of these two clusters did not separate into two different laminar input clusters, arguing 

against distinct excitatory and inhibitory laminar inputs to these cells.    
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4.3.3 In vivo / in vitro approach for L2/3 principal cell classification 

For relating recorded neuronal activity in vivo to the underlying circuit connectivity at high 

resolution, separate recordings are commonly performed on the same cell type in vivo and in brain slices 

(Barnes et al. , Keck et al. 2013, Kuhlman et al. 2013) but not on the very same neurons. Therefore, the 

resulting conclusions from these studies about functional response properties, and the underlying circuit 

mechanisms, are always indirectly inferred from the observation made independently in vivo and in vitro. 

In some studies, genetic markers facilitate the comparison (Vélez-Fort et al. 2014, Kim et al. 2015) but still 

different sets of cells are measured in vivo and in vitro. The established in vivo / in vitro approach allows 

for performing such recordings on the very same neurons, and thus permits directly correlating in vivo 

activity and the underlying neuronal connectivity. An already aforementioned study performed circuit 

mapping in acute auditory cortex slices, and could demonstrate differences between upper and lower 

L2/3 PCs laminar connectivity (Meng et al. 2017). The same study measured functional response 

properties in vivo on different sets of L2/3 PCs and could reveal depth-dependent differences in tuning 

properties of L2/3 PCs. The study concludes then that the differences in laminar connectivity underlie the 

observed differences in tuning properties. This indirectly drawn conclusion could be easily verified using 

the established in vivo / in vitro approach. The observation that the laminar connectivity differences of 

L2/3 PCs in this study were comparable to the ones observed in the auditory cortex, but could not be 

directly linked to visual tuning properties, argues against this conclusion at least in the visual cortex.   

 

4.3.4 Subcircuits within L2/3 

Two studies in V1 were able to classify L5 and L6 PCs into different subtypes based on their in vivo 

functional response properties and corresponding connectivity patterns, as well as genetic and 

electrophysiological characteristics (Vélez-Fort et al. 2014, Kim et al. 2015). These co-varying properties 

strongly argue for discrete cell types in the infragranular layers of V1.  

Following the common definition of a cell type, where cells display similar molecular, anatomical 

and physiological properties, the first attempt to classify cells is to use a genetic marker. For example, the 

aforementioned classification of L5 PCs in the visual cortex were based on genetic markers and the 

development of corresponding mouse lines. For L2/3 PCs, however, there are few genetic markers that 

specifically label a fraction of cells at present. One example is the genetic marker Wfs1 which is selectively 

enriched in L2/3 PCs across the mouse cortex. A study used this genetic marker to test whether Wfs1(+) 
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L2/3 PCs represent a functionally distinct subset of cells within V1. However, Wfs1(+) L2/3 PCs did not 

display functional differences when looking at orientation and direction selectivity, as well as spatial and 

temporal frequency preferences (Zariwala et al. 2010).   

Despite the lack of genetic markers labelling functional subtypes, work in L2/3 of mouse V1 has 

identified the similarity of visually evoked responses of L2/3 PCs as the prime predictor of synaptic 

connectivity on a local scale within L2/3, using both paired recordings (Ko et al. 2011, Cossell et al. 2015) 

and EM reconstructions (Lee et al. 2016).  Furthermore, L2/3 PCs in V1 make specific projections to the 

higher visual areas AL and PM (Glickfeld et al. 2013) and those L2/3 PCs that project to the same target 

preferentially connect to each other on a local scale, whereas connectivity between L2/3 PCs projecting 

to different targets is rare (Kim et al. 2017). However, the intrinsic properties of these AL and PM-

projection neurons were indistinguishable. The dendritic morphology and the laminar connectivity of 

these cells have not been investigated. Comparably, a study demonstrated that L2/3 PCs within S1 display 

functionally different response properties to passive and active tactile sensation (Yamashita et al. 2013). 

These differences in functional response properties were accompanied by target specific axonal 

projections of these cells (projecting to either higher somatosensory areas or primary motor cortex). 

Furthermore, the passive and active electrophysiological properties were different between these L2/3 

PCs. This suggests that these cells belong to different information streams within the somatosensory 

system (Yamashita et al. 2013). However, the same study did not investigate the genetic profiles, dendritic 

morphology nor the local connectivity of these cells. For all of these studies performed in L2/3, it would 

be of great interest to evaluate whether these cells are embedded in non-overlapping sub-circuits, and 

therefore define cell types of their own.  

In the present study, the excitatory and inhibitory laminar connectivity of functionally 

characterized L2/3 PCs was measured, but no clear separation into categories based on laminar synaptic 

inputs, functional response properties as well as morphological identity could be detected. There are 

several explanations for this observation. Firstly, the functional identity of a L2/3 PC might not be captured 

by its laminar inputs, but rather by its local recurrent connectivity within L2/3. In the present study, all 

L2/3 PCs received strong local excitatory inputs independent of their cluster assignment with different 

relative amounts of excitatory input from L4 and L5. Small but potentially important local connectivity 

differences cannot be resolved using LSPS by UV glutamate uncaging, and hence would not be detected. 

Secondly, the observed laminar differences could underlie functional response properties either not 

covered in the visual stimulation protocols nor in the extracted parameters to functionally classify L2/3 



   
 
Discussion   110 

 
PCs. Therefore, one could include the overall responsiveness measured in vivo rather than solely extracted 

selectivity indices such as OSI, DSI and ODI. Similarly, one could not only include the fractional synaptic 

input but look also at the absolute synaptic input in its entirety rather than in a layer-specific manner. 

Thirdly, L2/3 PCs could display a functional continuum rather than discrete types of cells, which is 

potentially reflected in the gradient of input strength as observed in a study in the barrel cortex (Elstrott 

et al. 2014). However, preliminary correlation-based analyses did not reveal any clear relation between 

input strength from the individual layers for a particular cell, and the corresponding visually evoked 

calcium amplitudes (data not shown). Finally, the time between the in vivo and in vitro experiments could 

be a potential caveat in this study. The measured tuning properties, such as ocular dominance as well as 

orientation and direction selectivity could be unstable in L2/3 PCs, and hence the underlying circuit could 

be rearranged from one day to the other. This would mean that in a highly dynamic system, the observed 

tuning property at one time point might not reflect the visual tuning observed the day before. However, 

it has been shown that the correlation of tuning properties over days does not progressively decline over 

time (Rose et al. 2016). Therefore, it can be assumed that the underlying circuit is stable and strong 

laminar synaptic input rearrangements are unlikely to occur within hours to days.  

Taken together, the overall question remains: Why can L5 and L6 PCs be separated into different 

subtypes based on their visual response properties and connectivity, but L2/3 PCs cannot?  

The most crucial differences between the infragranular layers and L2/3 are the output projections. 

L5 and L6 contain IT, PT and CT neurons whereas L2/3 only contains IT neurons. The differences in 

connectivity and visual tuning properties of L5 and L6 PCs are based on the genetically defined projection 

types of IT, PT and CT neurons in the infragranular layers (Vélez-Fort et al. 2014, Kim et al. 2015, Lur et al. 

2016). Therefore, the subdivision of IT neurons within L2/3 does not lead to further non-overlapping 

subtypes comparable to L5/L6 IT neurons. Furthermore, PCs in L2/3 have a different coding strategy 

compared to the infragranular layers. L2/3 PCs follow a sparse coding, whereas PCs in infragranular layers 

follow a dense coding strategy (Barth et al. 2012, Petersen et al. 2013). Therefore, the overall question of 

to what extent the function of a PC is determined by its individual type, or by its circuit connections, needs 

to be differentially addressed based on the laminar location. It seems that the computation of L5 and L6 

PCs is performed using subtype-specific division whereas within L2/3 cellular individuality plays a minor 

role in the context of larger neuronal networks where each PCs can be embedded in different functional 

subcircuits, thus increasing the computational role of single cells.  
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4.3.5 Methodological consideration  

The combined dataset of functional response, laminar input as well as morphological properties 

resulted in a multi-modal dataset where a few dozen L2/3 PCs were described by a larger number of 

parameters. This problem is known as n<<p (n=number of cells, p=numbers of parameters, Hastie et al. 

(2001)). To minimize this problem, separate cluster analyses were performed on the different types of 

data (electrophysiology, morphology, laminar input and functional response properties). The 

interrelations of the different cluster solutions were then compared. Additionally, as previously 

mentioned, each of the data sets were separately analyzed using a combination of PCA and hierarchical 

clustering.  

 

4.3.6 Conclusion and outlook 

Neighboring L2/3 PCs in mouse V1 display heterogeneous tuning properties and various excitatory 

and inhibitory laminar input connectivity patterns. Is the heterogeneity observed in functional response 

properties directly reflected in the differential synaptic connectivity of L2/3 PCs? 

 Directly relating the functional response properties with its underlying laminar synaptic input 

within the same L2/3 PCs did not reveal clear L2/3 PC subtypes embedded in functional microcircuits at 

this scale. The heterogeneity of visual tuning was also not reflected in the L2/3 PC dendritic morphology.  

However, potential laminar connectivity differences could be evaluated with different approaches 

providing better spatial resolution such as cell-specific optogenetics (Baker et al. 2016). Furthermore, the 

ongoing identification of specific genetic markers for PCs within L2/3 and the creation of Cre-driver lines 

(Tasic et al. 2016, Harris et al. 2018) raises hopes for more specific tools to investigate potential L2/3 PC 

subtypes. Finally, analyzing the current multidimensional data with further, more complex approaches 

(such as sparse reduced rank regression) promises more insights into the relationship between response 

properties and circuit connectivity (Kobak et al. 2018). 
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4.4 Mapping of eye-specific retinogeniculate inputs onto mouse 

thalamic neurons 

The dLGN has mostly been considered as a relay station that simply forwards the activity of RGCs 

to V1 in parallel eye-specific streams without major processing. This view has been challenged by recent 

work, demonstrating that already on the level of the dLGN TCs encode information for orientation and 

direction instead of simply providing untuned input to cortex (Sun et al. 2016). Furthermore, TCs seem to 

be part of a large complex network where individual RGCs connect to various different kinds of TCs, and 

different kinds of RGCs co-innervate individual TCs. Therefore, dLGN lacks strictly separated sensory 

pathways (Morgan et al. 2016). Moreover, there is strong experimental evidence challenging the long-

standing dogma of strict eye-segregation within the adult dLGN, arguing for binocularity already at this 

level of the visual system. Finally, recent work also observed experience-dependent plasticity at the level 

of the dLGN in the adult mouse, a property that has been assumed to be an exclusively cortical 

phenomenon (Jaepel et al. 2017, Sommeijer et al. 2017). 

Considering these findings, the exact circuit underlying binocularity of single TCs and its 

alterations through plasticity still remains to be determined in the adult visual system. In principal, direct 

binocular integration at the level of the retinogeniculate synapse could be a simple explanation. However, 

indirect integration at the level of single TCs mediated by cortical or subcortical feedback structures is also 

plausible, given the significant input from these structures (Bickford et al. 2015).  

To study the retinogeniculate synapse as a potential locus for the emergence of binocularity and 

its implication in plasticity-related changes, the last part of this thesis demonstrates an experimental 

approach enabling a direct readout for functional binocular retinogeniculate convergence.  

The in vitro dual-color photo stimulation approach developed in the context of this thesis allows 

studying eye-specific retinogeniculate transmission without any contaminating cortical and subcortical 

feedback transmission. The eye-specific expression of two light activated channels with distinct excitation 

spectra (Chronos/ChR2 and ChrimsonR), combined with sequential photostimulation, allows activating 

the inputs from both eyes separately and indeed reveals the existence of binocularity at the level of the 

retinogeniculate synapse within the adult dLGN. Preliminary results suggest that structurally present but 

functionally silent ipsilateral RGC input exist within the dorsomedial part of the adult dLGN, as is evidenced 

by the AMPAR-silent retinogeniculate responses of the respective other eye in 3 out of 4 cases. 

Furthermore, preliminary findings hint to the existence of purely ipsilateral TCs in the ipsilateral projection 

zone, an observation still under current debate.  
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4.4.1 Binocularity within the dLGN of the adult mouse 

Previous studies could show that the eye-segregation within the dLGN takes place during 

development in mammals. In the first postnatal week, dLGN axon terminals from the ipsi- and 

contralateral eye still overlap, and individual TCs respond to stimulation of both eyes. During 

development, anatomical rearrangements of RGC axon terminals into eye-specific zones occur 

accompanied by the loss of binocular responses of individual TCs (Jaubert‐Miazza et al. 2005, Z̆iburkus et 

al. 2006). Recent work, however, suggest that TCs in the dLGN of the adult mouse receive input from a 

large number of RGCs from both retinae, arguing for the existence (or persistence) of binocular cells in 

the dLGN (Rompani et al. 2017). This anatomical finding goes along with in vivo electrophysiological 

recordings in rat (Grieve 2005) and mouse (Howarth et al. 2014) that showed binocular responsive TCs in 

adult dLGN. Furthermore, a recent in vivo 2-photon calcium imaging study found binocular responsive 

thalamic afferents in layer 1 of the binocular visual cortex (Jaepel et al. 2017). Importantly, all these 

studies observed purely contra- and ipsilateral TCs besides binocular TCs although the fraction of 

binocular as well as purely ipsi- and contralateral responsive TCs varied greatly between these studies. 

Possible explanations for these nonmatching numbers could be the different experimental techniques 

(electrophysiology vs. calcium imaging), the choice of stimulus (full-field light flashes vs. moving gratings) 

or the recording locations within dLGN (shell region of the dorsomedial tip vs. vicinity to the medial dLGN 

core). However, none of the above studies could disentangle at which level the observed functional 

binocularity emerges. This is partially due to the experimental difficulties to isolate eye-specific 

retinogeniculate inputs onto single TCs in vivo without contamination of recurrent inhibitory and 

excitatory circuits as well as subcortical and cortical feedback projections.  

The acute dLGN slice approach used in the present study circumvents these difficulties associated 

with in vivo experiments. The thalamic slice preparation has the advantage that potential confounding 

feedback connections from cortex and subcortical structures to the dLGN are simply cut, and recurrent 

inhibitory circuits potentially activated by the stimulation of RGC axonal projections can be blocked by 

GABAA- receptor antagonists (here: bicuculline). This enables studying monosynaptic retinogeniculate 

inputs. This indeed revealed monosynaptic retinogeniculate inputs from both eyes onto single TCs. 
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4.4.2 Technical considerations 

Unlike the independent electrical stimulation of the two optic nerves, or the electrical stimulation 

of the optic tract using the isolated brainstem preparation (Lo et al. 2002, Ziburkus et al. 2003), sequential 

photostimulation enables specific activation of intermingled Chronos and ChrimsonR positive presynaptic 

elements independently within the dLGN. In contrast to electrical stimulation, severed axons expressing 

Chronos and ChrimsonR can still be activated by photostimulation. Furthermore, the dual-color sCRACM 

approach (Petreanu et al. 2009) allows not just the recording of eye-specific synaptic input strength, but 

also reveals the dendritic location of binocular input onto single TCs, in contrast to electrical stimulation.  

The initially applied separate photostimulation approach in this study (Figure 3.24, left) relies on 

the separate activation of ChrimsonR and ChR2/Chronos using red- and blue-light stimulation. Although 

the channelrhodospins tested display in principal distinct excitation spectra, ChrimsonR can be activated 

not only by red light, but also by blue light to a non-negligible degree (Klapoetke et al. 2014). As previously 

reported, the crosstalk prevention relies on carefully determining the blue light intensities that are 

sufficient to activate Chronos/ChR2 without activating ChrimsonR (Klapoetke et al. 2014).  In the 

presented experiments, however, a clear spectral separation could not be achieved given the variability 

in expression levels across slices as well as animals, and potential differences in intrinsic excitability of 

presynaptic fibres. Therefore, a sequential photostimulation approach was used (Figure 3.24, right). 

Although the sequential photostimulation successfully worked with ChrimsonR and Chronos/ChR2 in the 

presented experiments, a major caveat has to be considered: The approach does not allow high frequency 

stimulation protocols due to the required subsequent stimulation and the relatively slow kinetics of 

ChrimsonR (Klapoetke et al. 2014). This precludes the uses of, e.g. high frequency stimulation dual-color 

protocols in the context of long-term potentiation at the retinogeniculate synapse.  

One general disadvantage of using viral vectors for circuit mapping is the varying expression levels 

across injections and neurons. For the current approach intravitreal eye injections are used to achieve 

channelrhodospin expression in RGCs in both retinae. The main problem of intravitreal eye injections is 

potentially insufficient or incomplete transduction of RGCs in both retinae. Patchy RGC transduction could 

significantly alter experimental observations, and result in drawing wrong conclusions. Thus, future 

experiments critically rely on optimized intravitreal eye injections of the opsins, and the quantification of 

transduction efficiency at the level of the RGCs.    
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4.4.3 Silent synapses within the dLGN 

Across the developing brain, there are many excitatory synapses that show NMDAR responses in 

the absence of functional AMPARs. These synapses are termed (postsynaptically) silent synapses. Silent 

synapses can be observed when the postsynaptic cell is voltage-clamped to a depolarized potential, 

thereby releasing the Mg2+ block of NMDARs.  

Immature retinogeniculate transmission is mediated via glutamatergic synapses, containing both 

AMPARs and NMDARs (Chen et al. 2000). Interestingly, the ratio of AMPAR/NMDAR changes throughout 

development. Before eye opening (~P12) the ratio is approximately four times lower in immature 

synapses compared with mature synapses (~P30, Chen et al. (2000)).  Furthermore, about 13% of RGC 

inputs at the immature synapse do not evoke AMPAR currents (cell voltage-clamped at -70 mV), but 

NMDAR currents at a depolarized potential (+40 mV). Therefore, a significant fraction of retinogeniculate 

synapses in young animals express only NMDARs (Chen et al. 2000).     

In the presented experiments, adult retinogeniculate synapses contained both AMPAR and 

NMDARs consistent with a previous study (Esguerra et al. 1992). Interestingly, in 3 out of 4 TCs that 

received input from both eyes, the ipsilateral retinal input was only NMDAR-mediated and therefore silent 

at -70 mV whereas the contralateral input was AMPAR- and NMDAR-mediated. Moreover, silent synapses 

were present at specific location across the dendritic tree of the postsynaptic cell once investigated with 

sCRACM. The interesting question is whether the observed silent synapses in the adult animal could be 

latent synapses that are still remnants of a developmental refinement process (Chen et al. 2016). The 

presence of silent synapses could also explain the discrepancy between structurally and functionally 

identified numbers of RGCs converging onto a single TC. Structural approaches could demonstrate that 

up to 91 RGCs can converge onto a single TC (Rompani et al. 2017), whereas functional approaches could 

identify up to 10 inputs with 1-3 exceptionally strong inputs that converge onto a single TC in the adult 

(Chen et al. 2000, Litvina et al. 2017). This structure/function disconnect could be explained by structurally 

present retinogeniculate inputs that are silent and have not been observed in functional approaches so 

far.  

Noticeably, a single cell in our limited data set showed both ipsi- and contralateral responses at 

- 70 mV arguing for additional active binocular retinogeniculate synapses besides silent synapses in the 

adult animal. 
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The observed binocular responsive TCs were located in the dorsomedial region, just outside of 

the ipsilateral projection zone. This region has been previously suggested to be the prime location for 

binocular responsive TCs (Jaepel et al. 2017).  

Another topic under current debate is whether there is an exclusive ipsilateral visual 

representation in the dLGN. There are studies arguing for the existence of purely ipsilateral cells (Grubb 

et al. 2003, Jaepel et al. 2017) and against it (Howarth et al. 2014, Sommeijer et al. 2017). Purely ipsilateral 

TCs were found in the center of the dLGN ipsilateral core in the current study.    

 

4.4.4 Plasticity at the retinogeniculate synapse  

Two recent studies could demonstrate experience-dependent plasticity at the level of the dLGN 

using the monocular deprivation paradigm in the adult mouse (Jaepel et al. 2017, Sommeijer et al. 2017). 

Additionally, one study could show an involvement of AMPAR and NMDAR in short-term plasticity at the 

retinogeniculate synapse (Chen et al. 2002). In light of these studies, the observations of persistent eye-

specific silent synapses in the adult animal in this study might give prime insights into the underlying 

plasticity-related mechanism. In principle, the retinogeniculate synapses containing only NMDAR could 

serve as a silent pool of synapses that become rapidly activated through activity-dependent insertion of 

AMPARs. More specifically, the unsilencing of individual ipsilateral RGC inputs could explain the ipsilateral 

eye strengthening of originally contralateral thalamic afferents after monocular deprivation observed by 

Jaepel et al.. This hypothesis could be directly tested with the dual-color photostimulation approach 

presented here, by mapping the eye-specific inputs onto single TCs in monocular deprived and in control 

animals to reveal possible unsilencing at the retinogeniculate synapse.  

 

4.4.5 Conclusion and outlook  

In summary, this part of the thesis successfully developed a sequential photostimulation paradigm 

enabling eye-specific retinal input mapping onto single TCs. The application of this dual-color 

photostimulation approach provides first evidence of binocularity at the level of the retinogeniculate 

synapse. 

Future experiments will need to further asses the exact location of binocular TCs within the adult 

dLGN, study the proportion of eye-specific NMDAR and AMPAR-dependent retinogeniculate synapses and 

disentangle the mechanism underlying experience-dependent plasticity. 
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5 Supplementary Material 

Supplementary Material for section 3.1.1 

 

Supplementary Figure 5.1 Histogram distributions for electrophysiological properties and pial depth 

The distributions of the 18 extracted electrophysiological parameters are displayed in individual histograms 

each grouped into 8 bins for the 137 L2/3 PCs. The individual parameter numbers are indicated above the 

histograms. The last histogram depicts the somatic pial depth distribution of the cells.  
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Supplementary Figure 5.2 Correlations between all measured electrophysiological features in the 137 
L2/3 principal cells 

The color of each entry in the matrix corresponds to the Pearson coefficient values (r) according to the color 

bar displayed at the right. Multiple correlation correction was applied and coefficients with p values >0.05 

are set to 0 (white).  
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Supplementary Figure 5.3 Euclidean distance cut-off criterion determination for cluster separation 

A Euclidean distance distributions of the hierarchical dendrogram obtained from the electrophysiological data 

and the shuffled data using 1000 iterations. Lines indicate the mean ± 2xSD (middle, upper and lower lines, 

respectively). B Histogram of Euclidean distances of the hierarchical dendrogram for the data and the shuffled 

data using 1000 iterations. The 95th percentile in the shuffled data histogram was defined as the cut-off distance 

used for cluster separation in the dendrogram.  
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Supplementary Figure 5.4 Comparison of electrophysiological properties across the 6 electrophysiology 
clusters 

The group averages are plotted for each of the 18 electrophysiological parameters. The individual parameter 

numbers are indicated above the bar plots. Significant differences are denoted with colored asterisks (p<0.05, 

Kruskal-Wallis test, multi-comparison correction). Color indicates which two clusters are compared, starting 

from left to right. The last bar plot compares the cluster averages of the somatic pial depth (n.s.: not significantly 

different). For p values see Supplementary Table 5.1.   
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Supplementary Table 5.1 Comparison of the extracted electrophysiological parameters from the different 
clusters 

The nonparametric Kruskal-Wallis test was used to compare groups (after testing for normality using the 

Kolmogorov-Smirnov Goodness-of-Fit test). The p value for each test is shown (corrected for multi- 

comparison). Only tests with p values <0.05 are displayed.  
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Supplementary Material for section 3.1.2 

  

 

Supplementary Figure 5.5 Histogram distributions for extracted morphological parameters and pial depth 

The distributions of the 21 extracted morphological features are displayed in individual histograms grouped 

into 8 bins for the 189 L2/3 PCs. The individual parameter numbers are indicated above the histograms (apical 

tree parameters in red, basal tree parameters in black). The last histogram depicts the pial depth distribution 

of the cells.  
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Supplementary Figure 5.6 189 reconstructed L2/3 principal cells from mouse V1 

Cells are arranged in descending order according to somatic depth with respect to pial surface. Apical dendrites 

are indicated in red, basal dendrites in black and soma in blue. Numbers on top indicate the experimental ID of 

the cell. The colored boxes indicate which further parameters were obtained from the cell: electrophysiological 

properties (orange), laminar inputs (turquoise) and in vivo functional response properties (purple, scale bars: 

100 µm).     
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Supplementary Figure 5.7 Correlations between all measured morphological parameters in the 189 L2/3 
principal cells 

The color of each entry in the matrix corresponds to the Pearson coefficient values (r) according to the color 

bar displayed at the right. Multiple correlation correction was applied and coefficients with p values >0.05 are 

set to 0 (white).  
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Supplementary Figure 5.8 Comparison of morphological properties across the 7 morphology clusters 

The group averages are plotted for each of the 21 morphological parameters. The individual parameter numbers 

are indicated above the bar plots (apical tree parameters in red, basal tree parameters in black). Significant 

differences are denoted with colored asterisks (p<0.05, Kruskal-Wallis test, corrected for multi-comparison). 

Color indicates which two clusters were compared, starting from left to right. The last bar plot displays the 

comparison of the cluster averages for their location within L2/3 (p<0.05, Kruskal-Wallis test, corrected for multi-

comparison). For p values see Supplementary Table 5.3. 
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Supplementary Table 5.2 Comparison of the extracted morphological parameters from the different 
clusters 

The nonparametric Kruskal-Wallis test was used to compare groups (after testing for normality using the 

Kolmogorov-Smirnov Goodness-of-Fit test). The p value for each test is shown (corrected for multi-

comparison). Only tests with p values <0.05 are displayed.  
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Supplementary Material for section 3.4 
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Supplementary Table 5.3 Comparison of the extracted morphological parameters from the different 
clusters 

The nonparametric Kruskal-Wallis test was used to compare groups (after testing for normality using the 

Kolmogorov-Smirnov Goodness-of-Fit test). The p value for each test is shown (corrected for multi-

comparison). Only tests with p values <0.05 are displayed.  
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Supplementary Figure 5.9 Overview of extracted visual response properties and laminar input patterns for 
the 77 L2/3 principal cells characterized in vivo and in vitro 

The experimental ID is indicated at the top for each cell. From left to right: The morphology of each L2/3 PC if 

available. Cells with insufficient dye loading were not considered for analysis (compare to Supplementary Figure 

5.6, scale bar: 50 µm). Polar plot displaying the eye-specific orientation and direction tuning of each L2/3 PCs. 

The peak normalized response amplitude for each cell to the different SF/TF combinations. The orientation of 

the arrows depicts the preferred orientation for the cell at each SF/TF combination. The spontaneous frequency 

events and the population coupling extracted in complete darkness. The corresponding excitatory and inhibitory 

input maps as well as the spatial overlay of excitation and inhibition.  
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Supplementary Figure 5.10 Visual tuning properties of L2/3 principal cells 

A Example image volumes for one animal (four slices acquired with image plane depth increment of 25 µm, scale 

bar: 50 µm). Left, structural channel: frame-averaged mRuby2 fluorescence. Middle, response map of individual 

L2/3 PCs. Ocular dominance depicted as the pixel-wise peak fluorescence change in response to ipsi- and 

contralateral eye preferred grating presentation. Red and blue hues indicate ipsilateral dominance (ODI<0) and 

contralateral dominance (ODI>0), respectively. Right, color-coded map of preferred orientation of individual 

L2/3 PCs in response to contra- and ipsilateral eye grating stimulation. Example of a non-visually responsive 

(circle 1) and two visually responsive cells (circles 2, 3) B Top left, fraction of all in vivo characterized L2/3 PCs 

either responsive or unresponsive to independent eye stimulation (n=2777, N=32). Top right, beeswarm and 

overlaid box plots of global orientation selectivity index (gOSI) and global direction selectivity index (gDSI) of 

contra-, ipsilateral and binocular L2/3 PCs. Bottom, same as top row but only displaying the sub fraction of in 

vivo / in vitro characterized L2/3 PCs. C Top, fraction of all in vivo characterized L2/3 PCs either responsive or 

unresponsive to simultaneous binocular stimulation (n=2777, N=32). 3D histogram of preferred spatial and 

temporal frequencies from all measured L2/3 PCs. Bottom, same as top row but only displaying the data of the 

sub fraction of in vivo / in vitro characterized L2/3 PCs.  
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Supplementary Figure 5.11 Expression pattern of ChrimsonR and Chronos/ChR2 in RGC axonal projections 
in dLGN 

a-l: Expression pattern in slices of dLGN of different animals and hemispheres. LH: Left Hemisphere; RH: 

Right Hemisphere (scale bars: 100 µm).  
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