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Summary

Lymphoid B cells are part of the adaptive branch of the incredibly elaborate mammalian

immune system that evolved as a defensive barrier to protect organisms against pathogenic

invasion. The key characteristic of B cells is their highly diverse B cell receptor repertoire.

Upon antigen encounter, naive B cells form germinal centers (GC), where they terminally

differentiate into antibody-secreting plasma cells. During GC reactions, B cells undergo

somatic hypermutation and isotype class switch recombination of their B cell receptor to

improve pathogen recognition and clearance. These processes essentially require DNA

breaks. Consequently, physiology can turn into pathology as these mechanisms bear

the detrimental potential not only of self-recognition underlying autoimmunity but also

of undesired somatic DNA alterations causing malignant transformation. Indeed, the

majority of human B cell lymphomas arises from GC or post-GC B cells.

While constitutive NF-κB transcription factor activation is a hallmark of various human

lymphoid cancers, it is remarkable that c-Rel is the only of five NF-κB family members

that malignantly transforms lymphoid chicken cells in vitro. Interestingly, the REL gene

locus is frequently amplified in human B cell lymphomas and a c-Rel splice variant lack-

ing exon 9 has been exclusively detected in diffuse large B cell lymphoma patients but

not in healthy individuals. Besides these implications of c-Rel in human lymphomas,

single nucleotide polymorphisms within the REL gene locus are associated with human

autoimmune diseases. Despite this evidence, no mouse model to investigate c-Rel gain-of-

function in immune cells existed to date and the distinct role of c-Rel in B cells remains

enigmatic.

In this thesis, I present the first conditional c-Rel transgenic mouse models with the aim of

elucidating the precise in vivo consequences of c-Rel overexpression and aberrant splicing

in B cells and germinal center B cells. These novel mouse models allow for Cre-inducible

expression of transgenic c-Rel or a GFP-c-Rel fusion protein under control of a strong

CAG promoter. In addition, flippase recombinase-mediated excision of exon 9 from this

modified REL gene locus enables conditional expression of the c-Rel splice variant that

has been identified in B cell lymphoma patients.

Induction of c-Rel transgene expression specifically in B cells (CD19Cre) or GC B cells

(Cγ1Cre) causes a significant expansion of spontaneous GC B cells in lymphoid tissues

of young mice, comprising spleen, lymph nodes and gut-associated mesenteric lymph
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nodes and Peyer’s patches. This dramatic phenotype is accompanied by an increase of

specialized follicular helper T cells that provide crucial signals for GC B cells during GC

reactions. Moreover, antibody-secreting plasma cells significantly accumulate in spleen

and bone marrow upon c-Rel overexpression. These plasma cells are highly isotype class-

switched consistent with elevated serum antibody titers. Although aged c-Rel transgenic

mice do not spontaneously develop overt lymphoma or autoimmunity, aged mice produce

class-switched autoantibodies, indicating that the GC reactions are driven by self-antigens.

Cell cycle analysis suggests that higher proliferation of GC B cells could contribute to the

observed GC B cell expansion. In the same line, I also found that in the human primary

mediastinal B cell lymphoma cell line MedB-1 shRNA-mediated c-Rel downregulation

causes robust cell cycle deceleration without affecting cell viability.

On the basis of comprehensive quantitative assessment of c-Rel protein expression levels

in c-Rel transgenic and control mice, I demonstrate that c-Rel levels are B cell subtype-

dependent. In both control and c-Rel transgenic mice moderate c-Rel expression levels

are present in naive B cells, whereas c-Rel expression is dramatically upregulated in GC

B cells and strongly reduced in plasma cells. In addition, this analysis revealed that

c-Rel levels strikingly correlate with GC B cell and plasma cell expansion. During this

study, I further discovered a fundamental tight regulation of c-Rel levels in naive B cells.

Remarkably, proteasomal inhibition causes upregulation of c-Rel levels in naive B cells

but not in GC B cells, indicating that proteasome-mediated pathways are responsible for

the restricted c-Rel level in naive B cells in both c-Rel transgenic and control mice.

In conclusion, these first conditional c-Rel transgenic mouse models have not only con-

tributed to the knowledge of c-Rel function in B cells and GC B cells so far, but they can

be prospectively applied to further advance the understanding of the particular role of

c-Rel in immune cells and beyond.
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A. Maike M. Kober Introduction

Part I

Introduction

1 B cells

The highly complex mammalian immune system has evolved elaborate mechanisms to

protect an organism against intruding pathogens. The two branches of immunity, the in-

nate and adaptive immune response, intertwine to form an effectively organized network

to combat these infectious agents. While innate immune cells recognize conserved struc-

tures through germline-encoded pattern recognition receptors, lymphoid B cells and T cells

are characterized by a highly diverse somatically assembled receptor repertoire [Murphy

et al., 2007]. The principal defensive mechanism provided by the B lineage is the secre-

tion of antibodies after B cells have terminally differentiated into plasma cells, also known

as humoral immunity [Nutt et al., 2015]. Furthermore, B cell memory enables a rapid

response against previously encountered pathogens [Kurosaki et al., 2015]. Although the

protective role for antibodies had already been described in the late 19th century, it was

not until 1965 that B cells and T cells were recognized as functionally and developmen-

tally distinctive lineages [Von Behring and Kitasato, 1890; Cooper et al., 1965; Cooper,

2015]. Today, research focuses on unraveling the molecular mechanisms underlying tightly

regulated processes that enable lymphoid cells to fulfill their immune cell function.

The tremendously variable B cell receptor (BCR) repertoire is generated in the bone

marrow where B cells undergo sequential DNA rearrangements of their immunoglobulin

(Ig) gene loci [Clark et al., 2014]. This initial repertoire is further diversified through

the mechanism of somatic hypermutation (SHM) within the germinal center structures

that are formed following B cell activation upon encounter with a foreign antigen. During

this affinity maturation process, the BCR is modified and subsequently selected for an

improved fit to the initially recognized antigen [Peled et al., 2008]. In addition, mature

B cells undergo isotype class switch recombination (CSR) in order to refine the antibody’s

effector function [Stavnezer et al., 2008; Xu et al., 2012]. These activated B cells give rise

to memory B cells and plasma cells that provide both primary and long-lived humoral

protection [Shlomchik and Weisel, 2012].

1
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1.1 B cell lymphopoiesis

Cells of the hematopoietic lineages have their developmental origin in pluripotent hemato-

poietic stem cells (HSC) that reside in the fetal liver during early embryogenesis and in the

bone marrow during postnatal life [Dorshkind and Montecino-Rodriguez, 2007]. HSC give

rise to multipotent progenitors (MPP) that lose long-term self-renewal capacity – a unique

property of HSC [Wilson and Trumpp, 2006; Cabezas-Wallscheid et al., 2014]. Lineage

determination is initiated as MPPs further differentiate into oligopotent common myeloid

progenitors (CMP) or common lymphoid progenitors (CLP) that give rise to cells of the

myeloid and lymphoid lineages, respectively [Akashi et al., 1999; Murphy et al., 2007]. Al-

though it has been suggested recently that CMPs might be composed of several unipotent

progenitors rather than representing one population, it is evident that these myeloid pre-

cursors are able to develop into granulocytes (neutrophils, eosinophils, basophils), mono-

cytes and macrophages as well as mast cells or erythroid cells and megakaryocytes [Kondo

et al., 2003; Cabezas-Wallscheid and Trumpp, 2016]. CLPs can commit not only towards

the B cell lineage but also to T cell, NK cell and dendritic cell populations [Akashi et al.,

1999].

1.1.1 Early B cell development

Early B cells develop in the microenvironment of the bone marrow. In these so called

bone marrow niches, B cells closely interact with stromal cells that secrete various cy-

tokines and provide essential signals for B cell development. Amongst these factors FLT3

ligand (FLT3L), interleukin-7 (IL-7), stem-cell factor (SCF) and CXC-chemokine ligand

12 (CXCL12) have been shown to be indispensable [Nagasawa, 2006]. Moreover, studies

in mice demonstrated that several transcription factors are required to transition through

distinct early B cell developmental stages, including B cell lymphoma/leukemia 11a (Bcl-

11a) [Liu et al., 2003], E2A [Bain et al., 1994; Zhuang et al., 1994], early B cell factor

(EBF) [Lin and Grosschedl, 1995] and paired box protein 5 (Pax5) [Urbánek et al., 1994;

Nutt et al., 1999]. While Bcl-11a acts upstream of E2A and EBF that initiate B lym-

phopoiesis, Pax5 is required to confer restricted B cell fate commitment [Rolink et al.,

2000; Singh et al., 2005; Fuxa and Skok, 2007].

Stages of B cell development are defined by expression of cell surface molecules and sta-

tus of somatic recombination of Ig gene segments. Somatic recombination provides the

2
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framework of the enormous B cell receptor diversity. During this process the variable (V),

diversity (D) and joining (J) gene segments encoding for the variable region of the Ig

heavy (IgH) and light (IgL) chain are rearranged sequentially to form a functional BCR

[Murphy et al., 2007; Hozumi and Tonegawa, 1976; Tonegawa, 1983]. Pro-B cells initiate

assembly of the IgH chain (Igµ) locus, first by D to JH , followed by VH to DJH segment

rearrangement [Clark et al., 2014]. Successful rearrangements of one IgH chain allele re-

sults in arrest of rearrangement of the second allele to ensure that a single B cell only

expresses one unique IgH chain, a mechanism referred to as allelic exclusion [Melchers,

2015]. The rearranged IgH chain is transiently expressed on the cell surface together

with a surrogate light chain that is composed of VpreB and λ5. In combination with

the signaling subunits Igα and Igβ they form the pre-BCR complex [Clark et al., 2014].

Signaling through the correctly assembled pre-BCR constitutes an important checkpoint

during B cell development and provides signals that induce proliferation and allow cells to

proceed to the subsequent pre-B cell stage. Pre-BCR-expressing large pre-B cells undergo

several rounds of cell division before they become resting small pre-B cells that initiate

rearranging the VL and JL segments of the IgL chain gene loci (Igκ and Igλ) [Clark et al.,

2014; Melchers, 2015].

Gene locus rearrangements require expression of the lymphocyte-specific recombination

activation genes RAG1 and RAG2 in B cells as well as in T cells that rearrange the T cell

receptor (TCR)-encoding genes during development in the thymus [Schlissel, 2003; Schatz

and Ji, 2011]. RAG-deficient mice lack mature B and T cells emphasizing the crucial rel-

evance of these enzymes [Mombaerts et al., 1992; Shinkai et al., 1992]. Tightly restricted

RAG expression and the DNA-encoded recombination signal sequences (RSS) that flank

rearranging gene segments combined with regulated DNA accessibility by germline tran-

scription and chromatin structure modifications safeguard the temporally and spatially

restricted execution of locus rearrangements [Schlissel, 2003; Schatz and Ji, 2011]. In

addition, ubiquitous non-homologous end joining (NHEJ) repair pathway proteins are in-

volved in lymphocyte somatic gene rearrangement. These factors include DNA-dependent

protein kinase (DNA-PK) consisting of Ku (Ku70:Ku80) and a catalytic subunit DNA-

PKcs, X-ray repair cross complementing protein 4 (XRCC4), Artemis as well as DNA

ligase IV [Bassing et al., 2002; Schlissel, 2003].

Upon productive rearrangement of both IgH and IgL chains, immature B cells express

the rearranged IgM on the cell surface. B cells emerging from these processes potentially

3
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recognize auto- or self-antigens and need to undergo a selection process to avoid exit of

autoreactive B cells into the periphery in order to prevent autoimmunity [Nemazee, 2006].

This checkpoint in B cell development is crucial in establishing central B cell tolerance

as it has been reported that the majority of human and mouse B cells initially recognize

self-antigens [Grandien et al., 1994; Wardemann et al., 2003; Pelanda and Torres, 2012].

Autoreactive B cells can undergo receptor editing, i.e. these B cells proceed through addi-

tional rounds of IgL chain rearrangements. B cells that retain strong self-antigen binding

despite receptor editing face elimination by apoptotic cell death, a process referred to

as clonal deletion [Nemazee, 2006]. An alternative fate for autoreactive B cells is escape

to and persistence in the periphery with simultaneous conversion to an anergic state.

Anergic B cells are silenced and non-responsive to antigen stimulation, thus representing

another mechanism by which tolerance is sustained [Merrell et al., 2006; Cambier et al.,

2007].

1.1.2 B cell maturation

Tolerance-selected cells egress from the bone marrow to enter the periphery as tran-

sitional B cells. Transitional B cells are identified by expression of the surface marker

AA4.1/CD93 and can be subdivided into three groups. Transitional T1 B cells express

IgM. Upon maturation to the T2 stage, B cells start surface IgD expression in addition to

IgM mediated by alternative splicing. T2 B cells enter splenic B cell follicles and are able

to recirculate through the bone marrow [Allman et al., 2001; Stavnezer et al., 2008; Pillai

and Cariappa, 2009]. The population of T3 B cells was shown to consist of B cells with

an anergic phenotype and was suggested to be re-defined as An1 B cells [Merrell et al.,

2006; Allman and Pillai, 2008]. B cells are not only subject to negative selection during

maturation in the periphery but also depend on positive selection signals [Allman and

Pillai, 2008; Stadanlick and Cancro, 2008]. From the transitional stages onwards, tonic

BCR- and BAFF(B cell-activating factor belonging to TNF family)-mediated survival sig-

nals become crucial for peripheral B cell maturation and maintenance [Sasaki et al., 2004;

Stadanlick and Cancro, 2008; Srinivasan et al., 2009].

Transitional B cells differentiate into follicular (FO) B cells or into marginal zone precursor

(MZP) that further develop into marginal zone (MZ) B cells. FO B cells are able to

recirculate through blood and lymph stream to the bone marrow and home to B cell

follicles in secondary lymphoid organs, such as spleen, lymph nodes and Peyer’s patches,

4
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Figure 1: Simplified illustration of early B cell development and B cell maturation. In
the bone marrow B cells begin rearrangement of the immunoglobulin (Ig) heavy (H) chain locus during
the pro-B cell stage. Successfully rearranged IgH is expressed together with a surrogate light chain
as the pre-B cell receptor (pre-BCR) allowing the B cell to proceed to the subsequent pre-B cell stage.
Pre-B cells rearrange the Ig light (IgL) chain loci eventually resulting in mature BCR expression that
characterizes the immature B cell stage. These cells egress from the bone marrow and enter the periphery
as transitional B cells. In the spleen transitional B cells differentiate into follicular (FO) B cells or into
marginal zone precursor (MZP) and further into marginal zone (MZ) B cells. Important mouse surface
expression markers are given for each subset. The content of this figure is based on Pillai and Cariappa,
2009, and Cambier et al., 2007.

where they become central mediators of T cell-dependent (TD, also thymus-dependent)

immune responses. In contrast, MZ B cells reside in the outer white pulp adjacent to the

marginal sinus of the spleen and rapidly respond to blood-borne pathogens in a T cell-

independent (TI, also thymus-independent) manner, although they are also involved in

TD immune responses. MZ B cells have the ability of self-renewal and are characterized

by longevity, whereas FO B cells have a limited lifespan [Allman and Pillai, 2008; Pillai

and Cariappa, 2009; Cerutti et al., 2013]. While a complex interplay of BCR signaling
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strength, BAFF-mediated survival signals and downstream activation of NF-κB signaling

contributes to MZ versus FO B cell fate decisions [Pillai and Cariappa, 2009], Delta-like-1

(DL1) induced Notch2 signaling is a key linear factor for splenic MZ B cell development

[Tan et al., 2009].

Both FO and MZ B cells belong to the B-2 line of mature B cells. Besides these pop-

ulations, B-1 cells, which develop earlier in ontogeny than B-2 cells, constitute another

peripheral mature B cell population in the mouse. B-1 cells are rare in spleen and lymph

nodes but frequent in peritoneal and pleural cavity and produce natural IgM antibodies,

which are polyreactive antibodies that are present prior to antigen exposure. They are

involved in tissue homeostasis and TI immune responses and provide immune protection

against mucosal pathogens. While the pool of B-2 cells is continuously replenished by

B cells developed in the bone marrow, B-1 cells are mainly derived from fetal precur-

sors and are to a large extent sustained by self-renewal thereafter. A distinct population

representing a human functional counterpart of mouse B-1 cells remains under debate

[Dorshkind and Montecino-Rodriguez, 2007; Baumgarth, 2011].

1.2 B cell activation and terminal differentiation

Activation of mature naive B cells is initiated upon encounter with an antigen. BCR liga-

tion by specific antigen binding assembles a BCR proximal signaling cascade that culmi-

nates in B cell activation-associated gene expression [Reth and Wienands, 1997; Kurosaki

and Wienands, 2015]. These signaling events lead to internalization of the BCR-antigen

complex that is subsequently processed for loading on major histocompatibility complex

class II (MHC-II). Upon presentation in context of MHC-II on the cell surface, the antigen

peptide can be recognized by cognate CD4+ helper T cells [Pierce, 2002; Harwood and

Batista, 2010]. Formation of an immunological synapse during B cell-T cell interaction

at the border region of the B cell follicle and the T cell zone provides secondary signals,

including CD40 ligand (CD40L) and stimulatory cytokine signaling, that lead to full ac-

tivation of a B cell [Batista and Harwood, 2009; Crotty, 2015]. Activated B cells can then

rapidly become plasmablasts that secrete antibodies in extrafollicular foci [MacLennan

et al., 2003] or found germinal centers (GC). B cells can also be activated in the absence

of T cells by TI antigens [Balázs et al., 2002; MacLennan et al., 2003].
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1.2.1 The germinal center reaction

Following the phase of antigen encounter and subsequent B cell activation, B cells undergo

extensive proliferation in the center of the B cell follicle, thus forming an activated initial

GC B cell cluster surrounded by a mantle zone of naive follicular B cells [Victora and

Nussenzweig, 2012; De Silva and Klein, 2015]. GC B cells upregulate B cell lymphoma 6

(Bcl-6) that is considered to be the master transcriptional regulator of GC B cells [De Silva

and Klein, 2015]. Subsequently, the GC extends towards maturity as it polarizes into a

dark zone (DZ) and a light zone (LZ). These terms originate from historic conventional

histologic descriptions of the GC but are still used today [Röhlich, 1930; Nieuwenhuis

and Opstelten, 1984; Allen et al., 2004; Victora and Nussenzweig, 2012]. The DZ/LZ dif-

ferentiation of mature GCs represents a polarization into functional states as delineated

in detail in the following subsections. B cells of the DZ and LZ are often referred to as

centroblasts and centrocytes, respectively. The CXC-chemokine receptors CXCR4 and

CXCR5 mediate the DZ/LZ polarization and spatial structure of the GC [Allen et al.,

2004]. DZ B cells are characterized by high CXCR4 and low CXCR5 and CD83/CD86

surface expression, whereas LZ B cells appear low in CXCR4 but express high levels of

CXCR5 and CD83/CD86 [Allen et al., 2004; Victora et al., 2010, 2012]. Moreover, recent

studies identified the transcription factor forkhead box O1 (FOXO1) as a crucial regu-

lator in establishing the GC DZ phenotype that is antagonized by phosphatidylinositol

3-kinase (PI3K) signaling in the LZ [Dominguez-Sola et al., 2015; Sander et al., 2015]. In

addition, GC B cells express high levels of CD95/Fas and n-glycolylneuraminic acid that

is recognized by the GL7 antibody, bind peanut agglutinin (PNA) and lose IgD expres-

sion. While mouse GC B cells downregulate CD38, human GC B cells upregulate CD38

[Hauser et al., 2010; Victora and Nussenzweig, 2012]. In mice the temporal dynamics of

GC reactions have been well-described. Induced by antigen encounter, the GC matures

within approximately 8 days and dissolves after several weeks – depending on the ex-

perimental immunization [Victora, 2014; De Silva and Klein, 2015]. Also in mice housed

under specific-pathogen-free conditions GCs spontaneously occur without prior immu-

nization through chronic triggering by commensal bacteria in gut-associated lymphoid

tissues [Casola and Rajewsky, 2006].

Germinal center cell types GC B cells are not the only cell type within the GC.

T cells, stromal cells and macrophages provide essential cues and are engaged in spatial

7
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organization and structure of the GC [Victora and Nussenzweig, 2012]. The DZ is densely

populated by GC B cell blasts and few recently described reticular cells that express

CXCL12, the ligand for CXCR4 [Bannard et al., 2013]. In contrast, B cells in the LZ

are more sparse and surrounded by a dense network of follicular dendritic cells (FDC)

as well as specialized follicular helper T cells (Tfh). Tingible body macrophages (TBM)

that phagocytose apoptotic GC B cells are localized throughout the GC [Victora and

Nussenzweig, 2012].

FDCs produce CXCL13 that functions as a chemoattractant for B cells and Tfh cells as

it is the ligand for CXCR5 that is expressed on these lymphocytes. FDCs also represent

a source of IL-6 and BAFF that foster B cell survival [Wang et al., 2011; Aguzzi et al.,

2014; Heesters et al., 2014]. Moreover, FDCs are able to capture and display immune

complexes, which has been suggested to preserve antigens and serve as an antigen depot

in GCs [Allen and Cyster, 2008; Suzuki et al., 2009].

Tfh cell marker proteins include CXCR5, programmed cell death 1 (PD-1), high levels of

inducible T cell co-stimulator (ICOS) and CD69 as well as Bcl-6, the pivotal transcrip-

tional regulator of Tfh cell differentiation. By expression of CD40L as well as secretion

of IL-4 and IL-21, Tfh cells promote GC B cell survival [Fazilleau et al., 2009; Vinuesa

et al., 2010; Crotty, 2011]. The importance of Tfh cell interaction with GC B cells is em-

phasized by long-standing studies showing that blockade of the CD40-CD40L interaction

[Han et al., 1995; Foy et al., 1994] or deficiency for CD40 or CD40L [Xu et al., 1994;

Kawabe et al., 1994] abrogates GC formation. Despite the GC reaction being a typical

event during TD immune responses, it has been shown that GCs can initially form with-

out Tfh cell help to B cells in mice; however, these GCs do not persist [de Vinuesa et al.,

2000; Lentz and Manser, 2001].

GC B cell competition and selection Fully matured GCs are the site of clonal GC

B cell expansion, somatic hypermutation (SHM) and affinity maturation as well as class

switch recombination (CSR) (see page 12). During the process of SHM, point muta-

tions are introduced into gene segments encoding for the variable regions of the BCR (see

page 11). These mutations can alter antigen binding affinity or selectivity of the respec-

tive BCR, thus potentially improving antigen recognition. Positive selection of GC B cells

with enhanced recognition properties results in an enrichment of specifically antigen-affine

GC B cells over time – the phenomenon referred to as affinity maturation [Berek et al.,

8
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1991; Victora and Nussenzweig, 2012; De Silva and Klein, 2015]. GC B cells that have

decreased antigen binding capacities after mutation or recognize self-antigens, which is

consequently presented on MHC-II to Tfh cells, are eliminated by apoptotic cell death.

Indeed, high expression of death inducing CD95/Fas receptor on GC B cells as well as

low expression of the pro-survival protein Bcl-2 makes apoptosis the default fate of a GC

B cell [Victora and Nussenzweig, 2012]. The exact mechanism of a process of negative

selection opposed to mere death by neglect due to the lack of positive selection signals in

GCs is under debate [Vinuesa et al., 2009; Brink, 2014; Allen, 2015]. T cell populations of

the GC are implicated in mediating negative selection of GC B cells. First, overactivated

Tfh cells are associated with deregulated GC reactions and autoimmunity. Second, newly

identified follicular regulatory T cells (Tfr) are proposed to have suppressive effects on

Tfh cells as well as GC B cells and represent a novel candidate cellular population involved

in negative selection [Ramiscal and Vinuesa, 2013; Vinuesa et al., 2016]. Although the ex-

act role of CD95/Fas signaling in elimination of self-reactive GC B cells and the cell types

providing CD95L/FasL signals remain elusive, it is evident that defects in the CD95/Fas-

CD95L/FasL pathway perturb selection processes and are associated with autoimmunity

[Hao et al., 2008; Victora and Nussenzweig, 2012; Allen, 2015; Butt et al., 2015]. More-

over, it is established that GC B cells highly depend on survival signals supplied by the

GC microenvironment, hence allowing these selection processes to proceed [Victora and

Nussenzweig, 2012].

This premise entails a scenario in which GC B cells compete for limited signals that enable

their positive selection. The model of competition for antigen binding suggests that high

affinity GC B cells sequester available antigen, consequently leading to the expansion of

these clones via induction of BCR signaling [Victora and Nussenzweig, 2012]. Feedback

from newly produced antigen-specific antibodies was shown to limit antigen access and

was suggested to influence GC B cell selection pressure [Zhang et al., 2013]. However,

accumulating evidence supports the hypothesis that Tfh cells are the predominant medi-

ators of selection. In vivo imaging studies visualizing GC B cell-T cell interactions and

lymphocyte motility in the GC [Allen et al., 2007b; Schwickert et al., 2007; Victora et al.,

2010] as well as mathematical modeling [Meyer-Hermann et al., 2006, 2012] corroborate

the theory of competition for T cell help. Targeting Tfh cells to a subpopulation of GC

B cells by increasing the surface density of peptide-MHC-II independent of BCR cross-

linking results in the expansion of specifically this subpopulation of GC B cells [Victora

9
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et al., 2010]. Furthermore, GC B cells with high surface density of peptide-MHC-II form

the most lasting and highest number of contacts with Tfh cells. These GC B cell-Tfh cell

contacts are accompanied by an increase in Tfh cell intracellular Ca2+ as well as IL-4 and

IL-21 expression [Shulman et al., 2014]. As these models are not mutually exclusive, in-

tegration of both BCR and Tfh cell signals could contribute to GC B cell selection [Allen

et al., 2007a; Victora and Nussenzweig, 2012; De Silva and Klein, 2015].

Cyclic re-entry and germinal center dynamics While proliferation for clonal ex-

pansion and SHM take place in the DZ of the GC, selection mainly occurs in the LZ of

the GC [Victora et al., 2010]. A model of cyclic re-entry had been proposed early [Kepler

and Perelson, 1993], but only studies using intravital microscopy could eventually demon-

strate that GC B cells migrate between DZ and LZ and vice versa [Allen et al., 2007b;

Hauser et al., 2007a; Schwickert et al., 2007; Victora et al., 2010]. Whilst these groups

present comparable results, the groups around Michel Nussenzweig and Jason Cyster con-

clude that their findings are in support of iterative cycles between the zones [Allen et al.,

2007b; Schwickert et al., 2007; Victora et al., 2010], whereas Hauser et al. propose a

model of a predominantly intrazonal circulation pattern [Hauser et al., 2007a]. However,

as explained by Hauser et al. all data can be regarded in accordance with a cyclic re-entry

model depending on the frequency of selection [Hauser et al., 2007b, 2010]. Half of the

GC B cells transit from the DZ to the LZ within 4-6 hours, while around 15% migrate

from LZ to DZ within this time frame. According to mathematical modeling these ex-

perimental observations translate into a total fraction of 10-30% of cells that re-enter the

DZ after being in the LZ [Victora et al., 2010; Victora, 2014]. A bi-directional interzonal

migration allows antibody affinity maturation to take place as GC B cells repeatedly un-

dergo proliferation and SHM in the DZ followed by selection in the LZ. Cellular homolog

of myelocytomatosis oncogene (c-Myc)-expressing LZ GC B cells have been proposed to

represent a population of cells positively selected for DZ re-entry [Calado et al., 2012;

Dominguez-Sola et al., 2012]. A recent report indicates that the switch from DZ to LZ

cellular state is independent of signals received in the DZ. The authors suggest that the

centroblast to centrocyte transition occurs according to a timed cell-intrinsic program.

This cellular ’timer’ could be pre-set by LZ signals before cyclic re-entry [Bannard et al.,

2013]. This is in agreement with studies demonstrating that Tfh cells can influence cell

cycle dynamics in GC B cells [Gitlin et al., 2015] and that the amount of antigen captured
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by GC B cells and presented to Tfh cells positively correlates with the extent of subsequent

cell divisions and hypermutation [Gitlin et al., 2014].

The GC structure is a highly dynamic environment as both Tfh cells [Shulman et al.,

2013] and B cells [Schwickert et al., 2007] – including B cells specific for an unrelated

antigen [Schwickert et al., 2009] – can enter and invade pre-existing GCs. In addition,

recent studies describing the population dynamics of affinity maturation conclude that

clonal diversity is a feature of immune responses elicited by complex antigens and that

polyclonality can be maintained in parallel to homogenous clonal dominance [Kuraoka

et al., 2016; Tas et al., 2016]. Together, these studies on GC dynamics hint at mechanisms

evolved to warrant diversity, thus ensuring broad protective immune response also against

variable or fast evolving pathogens.

Somatic hypermutation During somatic hypermutation (SHM) point mutations in

Ig variable gene regions are introduced at an estimated frequency of 10-3 per base pair per

generation/division [Rajewsky et al., 1987; Berek et al., 1991; Jacob et al., 1991]. The

nucleotide substitutions can lead to both transition mutations, which refers to the ex-

change of a purine with a purine or a pyrimidine with a pyrimidine base, and transversion

mutations, where a purine base is exchanged for a pyrimidine base or vice versa. These

mutations are enriched within complementarity determining regions (CDR), the Ig site of

specific antigen contact, that contain preferred mutational hotspot DNA motifs [Odegard

and Schatz, 2006; Di Noia and Neuberger, 2007; Hwang et al., 2015].

The first step of SHM is triggered by activation-induced cytidine deaminase (AID) that

deaminates deoxycytidine on single-stranded DNA converting it to deoxyuridine. These

AID-catalyzed U:G lesions are substrates for enzymes of the ubiquitous base excision

repair (BER) and mismatch repair (MMR) pathways. Mutations at C:G pairs are at-

tributed to activity of uracil DNA glycosylase (UNG) of BER, whereas mutations at A:T

pairs are associated with MutS protein homolog (MSH) complexes and exonuclease 1

(Exo1) function of MMR [Di Noia and Neuberger, 2007; Teng and Papavasiliou, 2007].

Ultimately, error-prone DNA polymerases including translesion polymerase Rev1 and low-

fidelity polymerases θ (polθ) and η (polη) contribute to SHM [Martomo and Gearhart,

2006; Teng and Papavasiliou, 2007].

AID is required in both SHM and CSR as further described below [Muramatsu et al., 1999,

2000]. It has been suggested that co-factors interacting specifically with either the amino-
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or carboxy-terminus of AID are involved in mediating AID function and localization in

SHM or CSR, respectively [Barreto et al., 2003; Ta et al., 2003; Shinkura et al., 2004].

SHM is known to be closely linked to transcription [Teng and Papavasiliou, 2007] and AID

targeting to particular loci in combination with balancing error-prone and high-fidelity

DNA repair has been suggested to protect the genome during SHM [Liu et al., 2008; Liu

and Schatz, 2009]. Nevertheless, the exact mechanisms of AID targeting remain largely

unresolved [Odegard and Schatz, 2006; Daniel and Nussenzweig, 2013; Hwang et al., 2015].

Class switch recombination Ig class or isotype switching is the process in which ac-

tivated B cells couple their rearranged variable antibody determining genetic region with

an alternative heavy chain constant gene fragment. As different antibody classes are char-

acterized by distinct functional properties, class switch recombination (CSR) alters the

effector functions of an antibody while conserving the antibody’s antigen specificity. The

five major antibody classes IgM, IgD, IgG, IgE and IgA are encoded by the heavy chain

isotype loci µ, δ, γ, ε and α respectively. Class switching involves an intrachromosomal

deletional recombination event between donor and acceptor switch (S) regions located

upstream of these constant heavy chain genes [Chaudhuri and Alt, 2004; Stavnezer et al.,

2008].

CSR requires DNA double strand breaks (DSB) in S regions. Initiation of this process

is promoted by AID-mediated deamination of deoxycytidine to deoxyuridine [Muramatsu

et al., 1999, 2000; Delker et al., 2009]. Subsequently, enzymes of the ubiquitous BER

pathway, such as UNG and apurinic/apyrimidinic endonucleases (APE), generate DNA

single strand breaks (SSB). DSB formation occurs in case SSBs are in close proximity

to each other on opposite strands or is facilitated by enzymes of the MMR pathway,

including MSH complexes and Exo1. The resulting DSB in S regions are then fused by

non-homologous or alternative end-joining, thus linking the antibody’s variable segment

to an alternative heavy chain isotype [Stavnezer et al., 2008; Xu et al., 2012].

Germline transcription through a specific S region is essential for and directs class switch

to the respective isotype, predominantly by conferring accessibility for factors involved in

CSR, first and foremost AID [Xu et al., 2012; Matthews et al., 2014]. Moreover, prolif-

eration is crucial for CSR [Stavnezer et al., 2008]. CSR is triggered by CD40 signaling

or an interplay of BCR, Toll-like receptor (TLR) as well as transmembrane activator and

calcium-modulating cyclophilin-ligand interactor (TACI) signaling [Xu et al., 2012]. In
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cooperation with specific cytokines, such as IL-4, transforming growth factor-β (TGFβ)

and interferon-γ (IFNγ) that drive class switching to preferential isotypes, these stim-

uli activate multiple transcription factors leading to effective AID expression, germline

transcription at S regions and histone modifications. Transcription factors involved in

these processes include NF-κB, signal transducer and activator of transcription (STAT)

proteins, homeobox C4 (HoxC4), Pax5 and basic leucine zipper transcription factor ATF-

like (BATF) [Xu et al., 2012; Matthews et al., 2014].

plasmablasts
plasma cells

antigen-
activated 
B cell

TFH

FDC

TBM

memory 
B cell

Proliferation

Differentiation

SHM

CSR

Selection

apoptotic 
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Figure 2: Simplified illustration of the germinal center reaction. Upon antigen encounter,
activated B cells form germinal centers (GC) where they undergo extensive proliferation. GCs are the
site of somatic hypermutation (SHM) and class switch recombination (CSR). Repeated cycles of these
processes combined with competitive selection involving follicular dendritic cells (FDC) and follicular
helper T cells (Tfh) culminates in affinity maturation of the B cell receptor. GC B cells differentiate into
antibody-secreting plasma cells and memory B cells. TBM, tingible body macrophage. This figure is
based on Heesters et al., 2014, De Silva and Klein, 2015, and Vinuesa et al., 2009.
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1.2.2 Germinal center exit: plasma cells and memory B cells

Both plasma cells and memory B cells contribute to persistent, long-lasting immune pro-

tection. While long-lived plasma cells are an incessant supplier of circulating antibodies,

thus sustaining serum antibody titers, memory B cells are rapidly re-activated following

antigen re-exposure [Shapiro-Shelef and Calame, 2005; McHeyzer-Williams et al., 2012].

Although memory B cells and short-lived plasmablasts can develop outside of GCs, GCs

represent the established source of class-switched affinity-matured plasma cells and mem-

ory B cells [Radbruch et al., 2006; McHeyzer-Williams et al., 2012; Shlomchik and Weisel,

2012; Kurosaki et al., 2015]. Fate decisions of B cell terminal differentiation and GC exit

still remain enigmatic and a variety of models – that are not mutually exclusive – have

been proposed. Differentiation into the plasma cell or memory B cell pool could be de-

termined by extrinsic instructive stimuli or by an automatic, intrinsically programmed

response. Furthermore, stochastic or temporal-defined mechanisms have been suggested

to influence the memory or plasma cell fate choice [Shlomchik and Weisel, 2012; Nutt

et al., 2015]. A recent report demonstrated a timed switch for GC output of memory

B cells and plasma cells [Weisel et al., 2016]. However, the exact molecular cues lead-

ing to this switch are to date unknown. BCR affinity or BCR isotype class have been

suggested to drive B cells towards either plasma cells or memory B cells [Shlomchik and

Weisel, 2012; Zotos and Tarlinton, 2012; Gitlin et al., 2016]. Moreover, there is evidence

that IL-21 influences GC B cell fate as it is involved in driving plasma cell differentiation

[Zotos and Tarlinton, 2012].

Plasma cells Antibody-secreting cells that appear early during an immune response

are referred to as plasmablasts. Plasmablasts typically secrete antibodies with moderate

affinity and are comparably short-lived, yet dividing. In contrast, long-lived plasma cells

secrete class-switched high-affinity antibodies and are quiescent in terms of cell cycling

[Radbruch et al., 2006; Nutt et al., 2015]. Plasma cells are entirely dedicated to secretion

of large amounts of antibody reflected by their characteristic morphology of an extended

endoplasmic reticulum [Grootjans et al., 2016]. The switch from surface BCR expression

in B cells to antibody production in plasma cells demands major adaptations in gene

regulatory networks [Radbruch et al., 2006; Nutt et al., 2015]. This identity conversion

involves silencing of B cell and GC B cell lineage commitment transcription factors, namely

Pax5 and Bcl-6. In addition, BTB and CNC homolog 2 (BACH2) and E twenty-six (ETS)
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transcription factor family members are downregulated in plasma cells [Shapiro-Shelef and

Calame, 2005; Nutt et al., 2015]. The pivotal transcription factors activated in plasma

cells are B lymphocyte-induced maturation protein 1 (Blimp-1), X-box-binding protein 1

(XBP-1) and interferon regulatory factor 4 (IRF4) [Nutt et al., 2011]. The transcriptional

repressor Blimp-1 is essential in terminating distinctive B cell properties by antagonizing

Pax5 and Bcl-6 [Lin et al., 2002; Shaffer et al., 2002a; Shapiro-Shelef et al., 2003] and

setting the stage for antibody secretion, including XBP-1 upregulation [Shaffer et al.,

2004; Minnich et al., 2016; Tellier et al., 2016]. XBP-1 induces the unfolded protein

response (UPR) to enable plasma cells to cope with the endoplasmic reticulum stress

that accompanies extensive antibody production [Reimold et al., 2001; Shaffer et al.,

2004; Todd et al., 2009]. In contrast to Blimp-1 and XBP-1, IRF4 executes its functions

in both GC B cells and plasma cells in a dose-dependent manner with high levels of IRF4

promoting plasma cell fate [Klein et al., 2006; Sciammas et al., 2006; Ochiai et al., 2013].

Long-lived plasma cells reside in a limited number of bone marrow niches, where their

longevity is maintained by survival factors, including IL-6, tumor necrosis factor (TNF)

and a proliferation inducing ligand (APRIL), the ligand for B cell maturation antigen

(BCMA) that is expressed on plasma cells. In addition, surface molecules CXCR4, very

late antigen 4 (VLA4), CD44, CD28 and CD93 as well as the transcription factor Aiolos

are thought to contribute to plasma cell homing or survival [Cortés and Georgopoulos,

2004; Radbruch et al., 2006; Nutt et al., 2015]. Moreover, plasma cells can be identified

by surface expression of CD138 (syndecan-1) [Radbruch et al., 2006].

Memory B cells In contrast to plasma cells, memory B cells conserve a B cell profile

through Pax5 maintenance which is embodied by continuation of surface BCR expres-

sion and absence of antibody secretion. However, upon antigen re-challenge, memory

B cells can rapidly expand and differentiate into antibody-secreting plasma cells. This

recall response involves help provided by memory T cells [McHeyzer-Williams et al., 2012;

Kurosaki et al., 2015]. Memory B cells can also re-enter GCs allowing them to re-diversify

their BCRs within these secondary GCs [McHeyzer-Williams et al., 2015; Seifert et al.,

2015]. Both unswitched IgM-expressing as well as switched IgG-expressing memory B cells

can be found in mice and human [Shlomchik and Weisel, 2012].

This section has highlighted how B cells exert their function as central mediators of the

adaptive immune response based on the evolution of antigen recognition. While the
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BCR diversity has its origin in somatic recombination during B cell development in the

bone marrow, the highly elaborate GC reaction in peripheral immune organs provides the

structure for B cells to specifically adapt to a pathogen and provide long-lasting protection

by giving rise to hypermutated class-switched plasma cells as well as memory B cells.
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2 c-Rel – an NF-κB family transcription factor

The nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) is a universal player

in both innate and adaptive immune responses [Baltimore, 2011]. In general, NF-κB tran-

scription factors are activated through a plethora of stimuli and induce the expression of

a broad diversity of genes. Nevertheless, particular target gene expression triggered by a

defined stimulus in a distinct cell-type is tightly regulated on multiple layers, thus high-

lighting the complexity of NF-κB signaling [Sen and Smale, 2010; Smale, 2011]. Common

activators of NF-κB include not only inflammatory cytokines, antigen receptor signaling

and viral or bacterial mediators of infection but also genotoxic stress [Oeckinghaus and

Ghosh, 2009]. The subsequent downstream signals following NF-κB activation contribute

to cell survival, differentiation and proliferation and control central mechanisms of im-

mune responses including inflammation [Hayden and Ghosh, 2008; Ghosh and Hayden,

2008].

c-Rel is one of the five members of the NF-κB family of transcription factors. Besides c-

Rel the mammalian NF-κB family consists of RelA/p65 and RelB as well as p50/NF-κB1

and p52/NF-κB2. NF-κB transcription factors exert their function as regulators of gene

expression forming hetero- or homodimers. The amino-terminal Rel homology domain

(RHD) is shared amongst all NF-κB family members and is involved in dimerization,

DNA binding, inhibitor interaction and nuclear localization. While RelA, RelB and c-

Rel possess a carboxy-terminal transactivation domain (TAD), p50 and p52 lack a TAD.

Instead the precursor proteins of the latter, p105 and p100, contain a domain of inhibitory

ankyrin repeats that is proteolytically processed to form the DNA-binding molecules p50

and p52. Hence, p50 and p52 rely on pairing with TAD-containing family members

for positive regulation of target genes and are implicated in repressing transcription as

homodimers [Perkins and Gilmore, 2006; Ghosh and Hayden, 2008; Hayden and Ghosh,

2008; Vallabhapurapu and Karin, 2009].

2.1 Canonical and non-canonical NF-κB activation

Under inactive steady state conditions NF-κB dimers are sequestered in the cytoplasm by

interaction with ankyrin repeat-containing inhibitor of κB (IκB) proteins or the precursors

p100 and p105. Triggering the canonical or also referred to as the classical NF-κB signaling

cascade leads to activation of the trimeric IκB kinase (IKK) complex that consists of
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IKKα/IKK1, IKKβ/IKK2 and the regulatory subunit IKKγ/NEMO (NF-κB essential

modulator). The IKK complex phosphorylates IκB proteins, thus targeting the inhibitors

for polyubiquitination followed by proteasomal degradation. The released NF-κB dimers,

mainly RelA:p50 and c-Rel:p50, can subsequently translocate into the nucleus and activate

target genes. The non-canonical or also termed alternative NF-κB pathway is mediated

by NF-κB-inducing kinase (NIK)-dependent IKKα dimer activation. Phosphorylation of

p100 by activated IKKα dimers induces partial proteolytic processing of p100 to p52 which

primarily heterodimerizes with RelB [Perkins and Gilmore, 2006; Hayden and Ghosh,

2008; Vallabhapurapu and Karin, 2009]. In concert with co-activators or co-repressors,

NF-κB dimers act on κB sites within promoters or enhancers of target genes [Ghosh and

Hayden, 2008]. The typical 9-11 base pair κB target sequence is 5’-GGGRNWYYCC-3’

(R: purine (A, G); Y: pyrimidine (C, T); W: weak (A, T); N: any nucleotide); however,

the κB site sequence is highly degenerate [Natoli et al., 2005; Karin, 2011; Siggers et al.,

2012].

The resolution of the NF-κB response is in part governed by negative feedback loops as

NF-κB target genes include negative regulators, for instance de novo synthesis of IκB pro-

teins or expression of the negative regulator A20. Other mechanisms negatively regulating

NF-κB activation involve dissociation of the signaling complexes, displacement of NF-κB

from DNA or direct NF-κB degradation. Many of these processes are influenced by post-

translational modifications, in particular phosphorylation and ubiquitination [Wertz and

Dixit, 2010; Ruland, 2011].

2.2 The role of c-Rel in B cells

c-Rel was discovered as the cellular homolog of the transforming viral gene v-Rel of retic-

uloendotheliosis virus strain T (Rev-T), an oncogenic avian retrovirus that causes aggres-

sive lymphoma/leukemia [Chen et al., 1981; Gilmore, 1999]. Indeed, first descriptions of

c-Rel in avian species precede the discovery of the general NF-κB transcription factor fam-

ily. Characterization of c-Rel in turkey [Wilhelmsen et al., 1984; Wilhelmsen and Temin,

1984] and chicken [Chen et al., 1983; Hannink and Temin, 1989] had been initiated in the

early nineteen-eighties and was soon followed by findings in human [Brownell et al., 1985]

and mouse [Brownell et al., 1986; Grumont and Gerondakis, 1989; Bull et al., 1990]. In the

mid nineteen-eighties, independent studies led to the discovery of NF-κB, which was found

as a nuclear factor that binds to the κ light chain enhancer in B cells during attempts to
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unravel mechanisms of DNA rearrangement [Sen and Baltimore, 1986b,a]. Sequence and

functional comparisons between c-Rel and different κB-binding factors [Gilmore, 1990;

Ghosh et al., 1990; Kieran et al., 1990; Bours et al., 1990; Nolan et al., 1991] as well as

the drosophila dorsal protein [Steward, 1987] substantiated the notion that these proteins

in fact belong to the same family of transcription factors.

An increasing number of publications thereafter demonstrated that NF-κB/Rel transcrip-

tion factors by far exceed a sole function in B cells. Especially mouse models have ad-

vanced our understanding in this regard [Gerondakis et al., 2006; Pasparakis et al., 2006].

In contrast to RelA knockout in mice which is embryonic lethal, c-Rel knockout mice

are viable and show defects primarily in lymphocytes during immune responses [Kontgen

et al., 1995; Harling-McNabb et al., 1999; Gerondakis et al., 2006]. In brief, c-Rel-deficient

B cells are characterized by impaired proliferative and survival responses to mitogenic

stimuli in vitro and by abrogated germinal center reactions and antibody production in

vivo (for details see 2.2.6). Despite the enormous research efforts performed to understand

NF-κB in general and numerous studies concentrating on c-Rel in particular, the com-

plexity of subunit and cell type specificity still raises puzzling questions. The following

subsections summarize the current knowledge of c-Rel with a particular focus on B cells.

2.2.1 c-Rel protein

The human and murine REL gene loci – on chromosome 2 and chromosome 11 – encode

for the c-Rel protein with a length of 587 and 588 amino acids (aa), respectively, and

an approximate molecular weight of 65 kDa [Brownell et al., 1985, 1986; Grumont and

Gerondakis, 1989; Bull et al., 1990; Leeman et al., 2008]. Human and mouse c-Rel share

75% total aa sequence identity and more than 94% identity in the first 300 aa containing

the highly conserved amino-terminal RHD1. Besides the primary human c-Rel transcript,

the original publication reported a transcript containing an exonized Alu element between

exon 8 and 9 identified in a human B cell lymphoma cell line (Daudi) that could encode

for a 619 aa protein [Brownell et al., 1989; Leeman and Gilmore, 2008]. In addition,

a lymphoma-specific spliced version of human c-Rel lacking the entire exon 9 (aa 308-

330) with a higher in vitro transactivation activity has been described [Leeman et al.,

2008] (see also 3.2). Furthermore, this study defined the protein sequence of aa 323-422

1Application of BLASTP search on www.ensembl.org aligning parts or whole protein sequences for

transcripts ENSMUST00000102864 (mouse GRCm38.p4) and ENST00000394479 (human GRCh38.p5)
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upstream of the TAD as the Rel inhibitory domain (RID) based on biochemical analyses

demonstrating that mutants lacking this region show enhanced transactivation and DNA

binding in vitro [Leeman et al., 2008]. Within the carboxy-terminal TAD c-Rel harbors

two subdomains referred to as TAD1 and TAD2 that map to aa 425-490 and aa 518-587,

respectively [Martin et al., 2001; Starczynowski et al., 2003; Gilmore and Gerondakis,

2011]. c-Rel contains a nuclear localization signal (NLS), but in contrast to RelA it does

not have a nuclear export signal (NES) [Tam et al., 2001; Fagerlund et al., 2008]. c-Rel

is able to form homodimers or heterodimeric complexes with RelA, p50 and p52 [Bonizzi

and Karin, 2004; Gilmore and Gerondakis, 2011]. The molecular protein structures of

different NF-κB subunits have been resolved [Chen and Ghosh, 1999] including that of

chicken c-Rel homodimers [Huang et al., 2001].

TAD1 TAD2RIDRHD

exon 9

1 305 323 422 425 490 518 587

308 330

NLS

TAD1 TAD2RIDRHD

exon 9

1 305 323 422 425 490 518 587

308 330

NLS

Figure 3: Schematic representation of the human c-Rel protein. Numbers below the scheme
are amino acid start and end points of indicated protein domains. Dotted lines mark the position of the
amino acid sequence encoded by exon 9 (aa 308-330). RHD, Rel homology domain; RID, Rel inhibitory
domain; TAD, transactivation domain; NLS, nuclear localization signal. This figure is based on Gilmore
and Gerondakis, 2011, and Leeman et al., 2008. Other references assign the RHD to aa 8-290 [Perkins,
2012] or aa 8-297 (UniProt database, UniProtKB, Q04864 REL (human), www.uniprot.org).

2.2.2 c-Rel expression in B cells

The murine c-Rel promoter contains several κB sites and octamer (Oct) transcription

factor binding sites. It is not only recognized by other NF-κB subunits, but the c-Rel

promoter can also be transactivated by c-Rel itself [Grumont et al., 1993]. Furthermore,

there are PU.1/Spi-B Ets family transcription factor binding sites in the c-Rel promoter

that are elementary for its transactivation in B cells as c-Rel expression is markedly re-

duced in PU.1+/- Spi-B-/- mouse splenic B cells [Grumont et al., 1993; Viswanathan et al.,

1996; Hu et al., 2001].

In contrast to RelA that is expressed ubiquitously in mice [Sen and Smale, 2010], c-

Rel expression is under healthy conditions mainly restricted to the hematopoietic lineage

[Carrasco et al., 1994]. Already the earliest studies analyzing c-Rel expression in mouse

tissues demonstrated high c-Rel abundance particularly in lymphocytes, with exceedingly
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elevated levels in splenic B cells but low levels in bone marrow B cells [Brownell et al.,

1987; Carrasco et al., 1994]. This is in accordance with a predominant NF-κB com-

plex composition of c-Rel and p50 in mature B cells [Grumont and Gerondakis, 1994;

Wuerzberger-Davis et al., 2011], accompanied by indications that in pre-B cells p50 and

RelA could be the major subunits [Grumont and Gerondakis, 1994; Liou et al., 1994;

Miyamoto et al., 1994]. These early studies also found that expression of c-Rel can be in-

duced by activating stimuli, e.g. by lipopolysaccharide (LPS) [Grumont and Gerondakis,

1994; Carrasco et al., 1994] (see also 2.2.3). Based on biochemical analyses by Grumont

and Gerondakis, it has been inferred that in mature B cells c-Rel is primarily nuclear

[Grumont and Gerondakis, 1994; Gilmore et al., 2004a]. In contrast, Carrasco et al. ob-

served heterogeneous localization of c-Rel in the nucleus and cytoplasm of B cells applying

immunofluorescence [Carrasco et al., 1994]. More recent quantitative immunofluorescence

studies demonstrate that c-Rel nuclear translocation can be detected in around 20% of

mature resting B cells [Ferch et al., 2007; Wuerzberger-Davis et al., 2011].

B cells of mice deficient for the B cell adaptor for PI3K (BCAP) exhibit much lower tran-

script and protein levels exclusively of c-Rel but not any of the other NF-κB family mem-

bers [Yamazaki and Kurosaki, 2003]. In line with this, c-Rel protein levels are strongly

decreased in total and mature B cells of mice with genetic disruption of PI3K activity,

whereas RelA is only mildly reduced. Furthermore, PI3K inhibition of wild-type B cells

leads to a decrease in c-Rel protein levels [Suzuki et al., 1999; Matsuda et al., 2008].

These findings indicate that PI3K activity, which is thought to be downstream of tonic

BCR survival signaling in resting mature B cells [Srinivasan et al., 2009], plays a role

in maintaining c-Rel levels in B cells. Moreover, c-Rel expression is strongly reduced in

splenocytes of mice with a functionally mutant form of NIK, suggesting that c-Rel levels

are also dependent on the alternative NF-κB pathway [Yamada et al., 2000].

To date of publication of this thesis, there are no comprehensive quantitative studies on c-

Rel protein levels in activated or terminally differentiated primary B cells. A compendium

of microarray-based gene expression analyses of immune cells conclude that a typical NF-

κB signature is absent in GC B cells [Shaffer et al., 2001, based on data in Alizadeh et al.,

2000]. On the contrary, an NF-κB signaling signature was reported to be enhanced in

LZ GC B cells in comparison to DZ GC B cells also based on microarray gene expression

analysis [Victora et al., 2010]. In addition, there are studies indicating that c-Rel is

expressed in GC B cells. First, basic studies using in situ hybridization detected REL
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transcripts in GCs in spleen and lymphoid follicles of lymph nodes and Peyer’s patches

in mouse [Carrasco et al., 1994]. Second, Barth et al. mention that they found high c-Rel

expression in GC cells in non-neoplastic lymphoid tissue with predominant cytoplasmic

but also rare nuclear localization [Barth et al., 2003]. Third, Basso et al. detected c-Rel in

the majority of GC B cells in the cytoplasm and only in a fraction of centrocytes of the LZ

nuclear c-Rel was observed [Basso et al., 2004], a finding that is in agreement with data

presented by that group in a later publication [Saito et al., 2007]. Beyond these limited

experiments on GC B cells, transcriptional profiling of mouse mature B cell and plasma

cell populations suggests a decrease of REL transcript level in plasmablast and plasma cell

stages in comparison to mature B cell subsets [Shi et al., 2015]. In conclusion, despite the

strong phenotype of c-Rel-deficient mice in activated and terminally differentiated B cells

(see 2.2.6), c-Rel protein expression levels have not been quantitatively investigated in

these B cell subsets.

2.2.3 c-Rel activation and regulation

c-Rel is activated by diverse stimuli and regulated on multiple layers. The regulatory

mechanisms include nuclear shuttling and sequestration by IκB proteins as well as post-

translational modifications that are implicated in modifying c-Rel transactivation and

transforming activity as well as in regulating c-Rel protein levels. In addition, REL

mRNA is controlled on the post-transcriptional level.

c-Rel activation The cardinal triggers of canonical NF-κB signaling in B cells are lig-

ands to the BCR, TNF-receptor (TNFR) superfamily member CD40 and TLRs, namely

TLR4 and TLR9, all of which can activate c-Rel [Gilmore and Gerondakis, 2011; Kaileh

and Sen, 2012]. Several knockout mouse models provide evidence for factors involved

in the cascade of c-Rel activation downstream of the BCR. c-Rel nuclear transloca-

tion downstream of BCR signaling in mature B cells specifically requires the paracaspase

mucosa-associated lymphoid tissue protein 1 (MALT1). Together with caspase activa-

tion and recruitment domain (CARD)-containing membrane-associated guanylate kinase

1 (CARMA1) and Bcl-10, MALT1 forms the CBM signal transduction complex upon BCR

stimulation [Ferch et al., 2007; Jaworski and Thome, 2016]. In MALT1-deficient B cells

c-Rel, unlike RelA, remains in complex with IκBα and IκBβ following anti-IgM BCR

stimulation and does not translocate to the nucleus. This MALT1-dependence is specific
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for signals downstream of the BCR as c-Rel nuclear translocation upon LPS stimulation

triggering TLR4 is not impaired [Ferch et al., 2007]. Moreover, an irreversible direct

inhibitor of MALT1 protease activity, MI-2, was shown to inhibit c-Rel nuclear transloca-

tion in human lymphoma cell lines in vitro and in a xenograft mouse model [Fontan et al.,

2012]. Data obtained in B cells lacking Bruton’s tyrosine kinase (Btk) indicate that also

this signaling molecule plays a role in c-Rel activation as c-Rel DNA binding is strongly

reduced in Btk-deficient B cells upon stimulation, despite unchanged c-Rel protein levels

[Shinners et al., 2007].

When comparing NF-κB kinetics upon IgM stimulation of B cells Damdinsuren et al.

found that pulsed, single round IgM stimulation results in transient nuclear translocation

of both c-Rel and RelA for up to 6 hours. In contrast, only continuous IgM stimula-

tion leads to de novo c-Rel induction and long-term nuclear c-Rel accumulation between

6 and 24 hours, while nuclear quantities of RelA are negligible during this time period.

Combination of anti-CD40 stimulation following pulsed or continuous anti-IgM treatment

causes enhanced c-Rel nuclear expression, whereas RelA remains unaffected [Damdinsuren

et al., 2010]. These experiments demonstrate a dominant role of c-Rel in sustained NF-κB

responses in B cells.

Nuclear shuttling and IκB In contrast to RelA, c-Rel does not contain an NES. As

a consequence, RelA containing dimers are more efficiently shuttled out of the nucleus

than c-Rel complexes in vitro [Tam et al., 2001]. Taken into consideration that initial

NF-κB activation can induce de novo c-Rel expression, this mechanism could contribute

to a prolongation of the NF-κB response executed by c-Rel [Damdinsuren et al., 2010;

Sen and Smale, 2010].

IκB proteins represent a fundamental layer of negative NF-κB regulation. It has been

proposed that in pre-B cell lines c-Rel is mainly associated with IκBβ, whereas c-Rel is

associated with both IκBα and IκBβ in mature B cells, implicating that these differential

associations could be related to selective activation of subunits in particular B cell stages

[Tam et al., 2001; Liou and Hsia, 2003]. The significance of IκBα in c-Rel regulation is

demonstrated in a mouse model expressing a mutant IκBα lacking a functional IκBα NES

(NfkbiaNES/NES). In these mice c-Rel accumulates in the nucleus in mature B cells accom-

panied by a compromised c-Rel DNA-binding activity. As a consequence NfkbiaNES/NES

mice show severe defects in the B cell lineage that in part phenocopy c-Rel-/- mice (see
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2.2.6). These findings emphasize the importance of IκBα degradation achieved by proper

IκBα localization for c-Rel function in mature B cells [Wuerzberger-Davis et al., 2011].

Interestingly, a partial shift of preferential c-Rel association from IκBβ to IκBα has been

proposed during priming of naive T cells with pro-inflammatory cytokines. Subsequent

TCR stimulation is thought to allow c-Rel-mediated effector cytokine production to occur

more rapidly [Banerjee et al., 2005]. A third IκB protein, IκBε, has been shown to have

crucial regulatory impact on c-Rel in lymphocytes. B cells from IκBε-deficient mice are

characterized by an increase in basal nuclear c-Rel and enhanced nuclear DNA-binding

activity of c-Rel-containing complexes upon anti-IgM or LPS treatment [Clark et al., 2011;

Alves et al., 2014]. Intriguingly, this higher c-Rel activity is associated with a phenotype

that correlates inversely with some aspects of the c-Rel-/- mouse phenotype [Mémet et al.,

1999; Clark et al., 2011; Alves et al., 2014] (see 2.2.6).

Post-transcriptional regulation c-Rel is regulated on the post-transcriptional level

by control of REL mRNA stability. In T cells REL mRNA has been shown to be a

substrate for Regnase-1 that is thought to cleave 3’UTRs of target mRNAs [Uehata et al.,

2013]. As reported by Roquin-1/2 ablation in T cells, REL is also a target of the RNA-

binding and -regulating Roquin proteins that induce mRNA decay by binding to 3’UTRs

of target mRNAs [Jeltsch et al., 2014]. Both Regnase-1 [Uehata et al., 2013] and Roquin

proteins [Bertossi et al., 2011] are also expressed in B cells. However, the precise in vivo

impact of these mRNA-destabilizing pathways on c-Rel function in B cells has not been

described yet.

Post-translational modifications c-Rel can be modified by various post-translational

modifications [Perkins, 2006; Gilmore and Gerondakis, 2011]. Several publications pro-

vide evidence for protein phosphorylation of c-Rel within its carboxy-terminal TAD. In

vitro studies suggest that NIK [Sánchez-Valdepeñas et al., 2006] or TNFR-associated fac-

tor family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1) and

IKKε [Harris et al., 2006] can phosphorylate c-Rel, which is associated with enhanced

transactivation or nuclear accumulation, respectively. c-Rel phosphorylation is not only

implicated in transactivation by further studies [Martin and Fresno, 2000; Martin et al.,

2001; Fognani et al., 2000] but also in strengthening transforming activity of lymphoid

chicken cells measured in colony formation and outgrowth assays [Starczynowski et al.,
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2005, 2007]. In addition, the redox status of a cysteine residue in the RHD correlates with

c-Rel phosphorylation and DNA-binding abilities [Glineur et al., 2000] and mutations in

the RHD within a putative protein kinase A (PKA) recognition site were proposed to

render c-Rel temperature-sensitive [Gapuzan et al., 2003].

Ubiquitination followed by proteasomal degradation as a means of regulating c-Rel turnover

was first reported in in vitro studies that suggested that a carboxy-terminal part of c-Rel is

important in promoting degradation [Chen et al., 1998]. A more recent study in mice iden-

tified the E3 ligase Peli1 of the Pellino family as a catalyst of c-Rel lysine-48(K48)-linked

ubiquitination and subsequent proteasomal degradation in T cells [Chang et al., 2011].

Upon TCR stimulation, c-Rel accumulates in the nucleus of Peli1-deficient T cells that

have a hyper-responsive phenotype. Remarkably, Peli1-ablated mice develop syndromes

of autoimmunity establishing Peli1 as an essential negative regulator during T cell activa-

tion [Chang et al., 2011]. In macrophages c-Rel turnover is influenced by IKKα, possibly

through phosphorylation within the carboxy-terminal domain and proteasomal-dependent

degradation [Lawrence et al., 2005]. Furthermore, Jin et al. present results on c-Rel pro-

teasomal degradation in macrophages by a mechanism involving TNFR-associated factor

2 (TRAF2) and TRAF3 and the E3 ubiquitin ligase cellular inhibitor of apoptosis (cIAP)

[Jin et al., 2015].

Albeit most prominently described, phosphorylation and ubiquitination are not the only

post-translational modifications of c-Rel. The peptidyl-prolyl cis/trans isomerase, NIMA

interacting (Pin1) catalyzes isomerization of proline amide bonds. Pin1 was shown to as-

sociate with c-Rel and influence c-Rel nuclear translocation in human B cell lymphoma cell

lines as pharmacologic inhibition or knockdown of Pin1 decreased c-Rel nuclear translo-

cation [Fan et al., 2009]. In addition, c-Rel can be modified by glycosylation, namely the

addition of O-linked β-N-acetyl-glucosamine (O-GlcNAcylation) to Serine 350 in vitro,

which was suggested to activate transcription of c-Rel target genes [Ramakrishnan et al.,

2013].

2.2.4 Transcriptional activation by c-Rel

c-Rel has been suggested to associate with TATA-box-binding protein (TBP) and tran-

scription factor II B (TFIIB) of the basal transcriptional machinery [Kerr et al., 1993; Xu

et al., 1993] as well as with the histone acetyltransferase p300 that is a co-factor for vari-

ous transcription factors [Garbati et al., 2010]. A direct interaction or indirect interaction
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through complex formation of c-Rel with other transcription factors has also been pro-

posed [Gilmore and Gerondakis, 2011]. These transcription factors include IRF4 [Shindo

et al., 2011], IRF8 [Liu and Ma, 2006], nuclear factor of activated T cells 1 (NFAT1)

[Ruan et al., 2009], NFAT2 [Pham et al., 2005] and forkhead box P3 (FoxP3) [Loizou

et al., 2011].

Several reports illustrate how c-Rel might orchestrate chromatin remodeling processes.

Chromatin accessibility of the IL-2 promoter is dependent on c-Rel in T cells upon

CD3/CD28 TCR stimulation [Rao et al., 2003] and strongly correlates with nuclear c-Rel

expression and Il2 transcription [McKarns and Schwartz, 2008]. More detailed insights

have been obtained with regard to the conserved non-coding DNA sequences (CNS) of the

FoxP3 locus that is pivotal for regulatory T cell (Treg) development. The CNS3 element

is considered to be the pioneer element in FoxP3 expression due to the permissive histone

marks in T cells indicative of a poised chromatin state [Zheng et al., 2010]. c-Rel has the

ability to bind to the CNS3 even in a DNA-methylated state, while other transcription

factors can only bind in the demethylated state that is characteristic of committed natural

Treg cells and is associated with stable FoxP3 expression, suggesting that c-Rel facilitates

locus opening [Long et al., 2009; Zheng et al., 2010]. Indeed, c-Rel is amongst the first

transcription factors recruited to the FoxP3 promoter in T cells [Ruan et al., 2009]. In

addition, in primary mouse dendritic cells c-Rel was demonstrated to bind weakly to pro-

moters in unstimulated cells prior to the action of the histone demethylase Aof1 that can

remove silencing methylation marks of lysine 9 on histone H3 (H3K9). Upon stimulation

c-Rel is essential for Aof1 recruitment via direct interaction and subsequent gene expres-

sion [van Essen et al., 2010]. Finally, a recent study identified c-Rel as an activator of

histone methyltransferase enhancer of zeste homolog 2 (Ezh2) expression in stimulated

murine B and T cells [Neo et al., 2014]. This cumulative evidence supports the idea that

c-Rel is a pioneer of transcriptional activation by functioning as an auxiliary factor in

epigenetic remodeling.

26



A. Maike M. Kober Introduction

BCR

TLR CD40
BAFFR

proteasomal 
degradation

BCAP

REL gene locusc-Rel target gene locus

REL gene expression

p50c-R
el

IkB
P

p50c-R
el

IkB
U U U

p50c-R
el p50c-R

el
U

U Up50c-R
el

M

NEMO
IKK1 IKK2

CARMA
Bcl10

MALT1

PI3K

PKCβ BTK

kinase activation

PLCγ2
P PP

NIK

IKK1 IKK1

RelB

p100
PU U U

RelB

p100

p50c-R
el

 c
an

on
ic

al
 p

at
hw

ay

no
n-

ca
no

ni
ca

l p
at

hw
ay

TFIIB

TBP

p300

PU.1/Spi-B

Oct

kB

p50c-R
el

p50c-R
el

IkB

kB

2

3

4

5
6 7

1

10

REL mRNA

p52RelB

9

8

Figure 4: Simplified illustration of c-Rel activation in B cells. Both the canonical NF-κB
pathway (left) triggered by B cell receptor (BCR), toll-like receptor (TLR) or CD40 stimulation as well
as the non-canonical NF-κB pathway (right) downstream of CD40 and BAFF receptor (BAFFR) are
displayed. (1) c-Rel DNA-binding activity is strongly reduced in Btk-deficient B cells upon stimulation
(page 23). (2) MALT1 is specifically required for c-Rel nuclear translocation downstream of BCR signaling
(page 22). (3) The predominant NF-κB dimers in mature B cells are composed of c-Rel and p50 (page
21). In general the canonical pathway also leads to activation of RelA-containing complexes. c-Rel
is associated with IκBα, IκBβ and IκBε (page 23). (4) c-Rel can be modified by post-translational
modifications (M) which influence c-Rel transactivation and transforming activity (page 24). (5) c-Rel
has been proposed to associate with factors of the basal transcriptional machinery (page 25). (6) The
REL gene locus contains a κB site and c-Rel has been shown to activate its own transcription. The
REL locus also contains octamer (Oct) and PU.1/Spi-B Ets family transcription factor binding sites
(page 20). (7) REL mRNA is regulated on a post-transcriptional level (page 24). (8) PI3K signaling
is implicated in maintaining c-Rel levels in B cells (page 21). (9) Also non-canonical NF-κB signaling
could play a role in maintaining c-Rel expression levels (page 21). (10) c-Rel has been shown to be
controlled by ubiquitination and subsequent proteasomal degradation (page 25). For further details,
references and abbreviations the reader is referred to indicated paragraphs of the main text. In addition
to references provided in section 2, the content of this figure is based on Okkenhaug and Vanhaesebroeck,
2003, Siebenlist et al., 2005, and Murphy et al., 2007. P, phosphorylation; U, ubiquitination.
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2.2.5 c-Rel target genes

Numerous conditions influence target gene selectivity during the NF-κB response. The se-

lectivity is defined by stimulus and cell type that can influence the kinetics of the response.

On a molecular level, regulatory principles of selectivity range from gene expression lev-

els or post-translational modifications of subunits and dimer composition to differential

co-factor recruitment and chromatin accessibility [Sen and Smale, 2010; Smale, 2011] (see

also 2.2.3). Distinctive target gene expression is also conferred by κB site sequence. Re-

markably, several studies demonstrate that c-Rel homodimers bind to a broader range of

κB sites with a higher overall affinity in comparison to RelA or p50 homodimers suggest-

ing a lower stringency and higher flexibility for c-Rel binding motifs [Kunsch et al., 1992;

Sanjabi, 2005; Siggers et al., 2012]. A comparison of κB site motifs for all NF-κB members

corroborates these observations as the c-Rel motif is distinguished by particularly high

degeneracy in its 5’-half-site [Zhao et al., 2014].

As mentioned above, REL is a target gene of itself as c-Rel transactivates its own pro-

moter in a murine B cell line 129B [Grumont et al., 1993]. Nevertheless, as for the ma-

jority of potential target genes substantial overlap and compensation between the NF-κB

subunits complicate the identification of exclusive c-Rel target genes. Mice deficient for

c-Rel (c-Rel-/-) are a basic source for target gene discovery, although indirect mechanisms

accounting for changes in gene expression cannot be excluded.

Survival factors c-Rel target genes include survival factors. Studies in B and T cells

derived from c-Rel-/- or wild-type mice and cell lines provide evidence for the prosurvival

Bcl-2 family member A1 (Bcl2A1/Bfl1 ) as a direct c-Rel target gene [Grumont et al.,

1999; Edelstein et al., 2003]. It should be noted that despite being significantly reduced,

minor A1 transcript and protein levels could be detected in c-Rel-/- B cells upon stimula-

tion of IgM or CD40 suggesting partial compensation [Owyang et al., 2001]. In contrast,

induction of Bcl-xL, another Bcl-2 family member, is abrogated on both protein and tran-

script level in c-Rel-/- B cells upon the same stimuli [Owyang et al., 2001; Castro et al.,

2009]. Interestingly, B cells deficient in MALT1 that mediates c-Rel nuclear translocation

(see 2.2.3) also fail to upregulate Bcl-xL upon anti-IgM stimulation [Ferch et al., 2007].

In vitro work suggests binding of c-Rel, p50 and to a marginal extent RelA to a κB site

in the Bclx promoter and its transactivation by c-Rel [Chen et al., 2000]. Both A1 and

Bcl-xL proteins are not efficiently induced under stimulus conditions precluding sustained
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c-Rel nuclear translocation in B cells [Damdinsuren et al., 2010]. Furthermore, data ob-

tained in human B cell lymphoma cell lines suggests a cooperation of c-Rel with NFAT

transcription factors in activating expression of CD40L (CD154) [Pham et al., 2005] and

potentially BAFF [Fu et al., 2006].

Cell cycle and proliferation c-Rel target genes are also involved in cell cycle and

proliferation. While a strong reduction of cyclin D3, E and A proteins has been observed

in anti-IgM-treated c-Rel-/- B cells, only CCNE (encoding cyclin E) but not CCND3

(encoding cyclin D3) mRNA levels were affected [Hsia et al., 2002]. Notably, absence of

sustained nuclear c-Rel upon pulsed IgM stimulation of B cells coincides with a failure

to trigger typical features of cell cycle progression, including expression of cyclins D2

and E [Damdinsuren et al., 2010]. Moreover, c-Rel-/- B cells show almost no CCND2

(encoding cyclin D2) mRNA expression upon anti-CD40 or LPS stimulation [Zarnegar

et al., 2004] but only delayed kinetics of cyclin D2 protein induction upon continuous

anti-IgM stimulation [Hsia et al., 2002]. CCND2 has also been suggested to be a target

gene of c-Myc [Pelengaris et al., 2002]. In correlation with these results, a strong reduction

of Myc mRNA upon anti-CD40 or LPS treatment of c-Rel-/- B cells was observed [Zarnegar

et al., 2004], but no substantial change in c-Myc protein expression was detected upon

anti-IgM [Grumont et al., 1998] or combined anti-IgM/LPS stimulation in c-Rel-/- B cells

[Grumont et al., 2002]. As Myc induction upon LPS stimulation is higher in MZ B cells

compared to FO B cells [Meyer-Bahlburg et al., 2009], these results could be influenced

by the reduction of MZ B cells in c-Rel-/- mice [Cariappa et al., 2000] (see also 2.2.6).

Nevertheless, in vitro experiments suggests that an upstream regulatory element of the

c-Myc promoter is bound by c-Rel and p50 upon anti-CD40 stimulation and that this site

can be transactivated by c-Rel or c-Rel:p50 in luciferase reporter assays [Siebelt et al.,

1997; Grumont et al., 2002]. As much as these findings emphasize complex transcriptional

interconnections and the possibility of multiple upstream regulators of a single target

gene, they first and foremost highlight the impact of distinctive stimuli on c-Rel-regulated

gene expression. Furthermore, although these data implicate c-Rel in cyclin regulation,

these cell cycle regulators might not be direct c-Rel target genes. Alternatively, also

E2F transcription factors that are pivotal to cell cycle regulation [Bertoli et al., 2013]

– including E2F1, E2F2, E2F3, E2F4 and E2F5 – are not efficiently induced in c-Rel-/-

B cells [Hsia et al., 2002]. Results obtained in c-Rel-/- B cells and cell lines suggest that
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c-Rel directly activates transcription of E2f3a [Cheng et al., 2003]. Interestingly, CCNE

and CCNA are target genes of E2F transcription factors [Bertoli et al., 2013] providing a

putative explanation for the reduction of cyclin E and cyclin A observed in c-Rel-/- B cells

[Hsia et al., 2002; Cheng et al., 2003].

Germinal center B cells Several findings hint to a function of c-Rel target genes in

GC B cells. IRF4 expression is not activated in c-Rel-/- lymphocytes upon diverse stimuli.

Both c-Rel:p50 heterodimers and c-Rel homodimers bind to κB sites within the IRF4

promoter in T cells upon anti-CD3/CD28 stimulation. The authors note that equivalent

results were obtained in B cells upon anti-IgM stimulation [Grumont and Gerondakis,

2000]. Further evidence for a contribution of c-Rel to IRF4 induction is provided by work

in a B cell lymphoma line (P3HR1) [Saito et al., 2007]. In vitro c-Rel-/- B cells fail to

upregulate AID mRNA upon anti-CD40 stimulation [Zarnegar et al., 2004]. Nevertheless,

abrogated AID induction is also a prominent phenotype of IRF4-deficient GC B cells in

vivo [Klein et al., 2006; Sciammas et al., 2006] pointing to an indirect mechanism for the

lack of AID transcription as a consequence of insufficient IRF4 levels in c-Rel-/- B cells.

In addition, γ1 germline transcription is strongly decreased in c-Rel-/- B cells following

diverse in vitro stimuli [Kaku et al., 2002] and c-Rel, but not RelA or p50, was proposed

to bind to the human γ4 germline promoter in response to IL-4/anti-CD40 treatment

of a human lymphoma cell line (BL-2) [Agresti and Vercelli, 2002]. As cited above, c-

Rel activates expression of the histone methyltransferase Ezh2 in activated lymphocytes

[Neo et al., 2014]. Remarkably, not only is Ezh2 highly expressed in GC B cells, but

also GC B cell-specific Ezh2 deficiency is associated with compromised GC formation and

antibody responses [Caganova et al., 2013]. When investigating consequences of c-Rel

deletion selectively in GC B cells, Heise et al. found that a set of genes involved in

cellular metabolism is downregulated in c-Rel-/- GC B cells. The authors provide further

experimental evidence for corrupted metabolic functions in c-Rel-/- cells. Notably, gene

expression profile analysis of this work does not show a change in Aicda and Ezh2 levels

in c-Rel-/- GC B cells [Heise et al., 2014].

Mediators of immune signaling in B cells and beyond c-Rel knockout mice show a

reduction in a diversity of cytokines. Expression of the cytokines IL-6, IL-10, and IL-15 is

reduced in c-Rel-/- B cells upon stimulation with anti-IgM or anti-CD40 in vitro [Tumang
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et al., 2002]. c-Rel-/- T cells are impaired in production of IL-2, IL-3, IL-21 and granulocyte

macrophage colony-stimulating factor (GM-CSF) [Kontgen et al., 1995; Gerondakis et al.,

1996; Chen et al., 2010]. With regard to IL-2 and IL-21 a direct requirement for c-Rel in

regulating Il2 and Il21 gene transcription has been described [Rao et al., 2003; Chen et al.,

2010]. c-Rel has also been established as a central mediator of FoxP3 transcription in

Treg cells [Long et al., 2009; Ruan et al., 2009; Zheng et al., 2010] and was shown to activate

Rorc (retinoic acid-related orphan receptor γ encoding RORγ/RORγt) transcription that

is crucial for Th17 differentiation and function [Chen et al., 2011; Ruan et al., 2011]. A

general study of c-Rel target gene identification in T cells was carried out by Bunting

et al., 2007. Beyond lymphocytes, publications support a direct involvement of c-Rel in

expression of Il12b [Sanjabi et al., 2000] in macrophages and Il23a [Carmody et al., 2007],

Il12a [Grumont et al., 2001] and Il12b as well as Mdc/Ccl22 [van Essen et al., 2010]

in dendritic cells. Two further studies using a monocytic cell line or mouse embryonic

fibroblasts aimed at elongating the list of NF-κB subunit-specific or distinctively c-Rel

target genes, respectively [Schreiber et al., 2006; Wei et al., 2008].

2.2.6 Functional consequences of c-Rel signaling in B cells

Analyses of genetically modified mice yield invaluable knowledge of lymphocyte functions

in a systemic in vivo context. The following paragraphs highlight the functional conse-

quences of c-Rel signaling in B cells primarily based on selected mouse model studies.

B cell development and maturation The first publication of c-Rel knockout mice

described no defects in hematopoietic progenitors and lymphopoiesis in the bone marrow

of c-Rel-/- mice [Kontgen et al., 1995]. Both the classical and alternative NF-κB pathway

are implicated in B cell maturation following immature B cell egress from the bone marrow

[Gerondakis and Siebenlist, 2010; Sasaki and Iwai, 2016]. c-Rel expression can be induced

by anti-IgM stimulation in T2 and mature but not in T1 B cells and BAFF receptor – that

is thought to be crucial for transitional B cell development [Sasaki and Iwai, 2016] – is not

efficiently produced in c-Rel-/- B cells. Based on these findings, it was proposed that c-

Rel activation plays a role in transitional T2 B cells in providing survival signals, possibly

downstream of BCR signaling [Castro et al., 2009]. Nevertheless, no significant differences

were reported for T1 (B220+AA4.1+IgM+CD23-) or T2/T3 (B220+AA4.1+IgM+CD23+)

splenic B cell populations in c-Rel-/- mice [Almaden et al., 2016].
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Although FO B cell numbers are normal in c-Rel-/- mice, MZ B cells were found to be

markedly reduced [Cariappa et al., 2000]. Similar results were observed for RelA or p50

and also for RelB or p52, suggesting that several NF-κB subunits are involved in MZ

B cell development [Cariappa et al., 2000; Weih et al., 2001; Siebenlist et al., 2005; Pil-

lai and Cariappa, 2009]. Opposed to Cariappa et al. in a recent publication Almaden

et al. did not find a difference in MZ B cells in c-Rel-/- mice [Almaden et al., 2016]. How-

ever, while Cariappa et al. based their flow cytometry analysis on IgMhighIgDlowCD21high

MZ B cells, the authors of the latter publication defined MZ B cells exclusive of IgD as

B220+AA4.1-CD21highIgM+.

Mice deficient in the adaptor protein BCAP that binds to PI3K show a reduction of

mature B cell numbers with impaired survival and proliferation. Remaining B cells have

prominently lower levels exclusively of c-Rel. In addition, this phenotype was rescued

in c-Rel-retrovirus-transduced BM chimeras implicating a contribution of c-Rel to the

BCAP-/- phenotype [Yamazaki and Kurosaki, 2003]. A similar phenotype of decreased

mature B cell numbers and accompanying reduction in c-Rel level is observed in B cells of

PU.1+/- Spi-B-/- mice lacking Ets family transcription factors. Again c-Rel reconstitution

could counterbalance the defects [Hu et al., 2001]. Therefore, c-Rel could in part be

involved in late-stage peripheral B cell maturation or survival, although other factors

most probably act in concert with c-Rel or partially compensate for c-Rel deficiency in

c-Rel-/- mice.

Mature B cells The most remarkable consequences of c-Rel-deficiency are observed in

mature B cells, especially following activation and terminal differentiation during immune

responses. c-Rel-/- B cells show strong proliferative defects in response to mitogenic stim-

uli, including LPS, CD40 ligand and anti-IgM [Kontgen et al., 1995] and reduced survival

upon anti-IgM or LPS treatment [Grumont et al., 1998] in vitro as further discussed below

(see page 34).

Upon immunization GC B cells are barely present in c-Rel-/- mice coinciding with a strong

reduction of Tfh cells and IL-21 levels [Tumang et al., 1998; Chen et al., 2010]. While

administration of IL-21 restores Tfh cells, it does not revert the almost complete absence

of GC B cells [Chen et al., 2010]. Cγ1-Cre-mediated GC B cell-specific c-Rel ablation

in conditional c-Relfl/fl knockout mice recently demonstrated that the loss of GC B cells

is indeed B cell-intrinsic [Heise et al., 2014]. Splenic GC B cells initially form upon im-
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munization of c-Relfl/fl Cγ1-Cre mice with sheep red blood cells (SRBC), but these GCs

begin to collapse starting at day 8 post-immunization. In this model, the polarization of

GC LZ and DZ is established at day 7 and thereafter GC LZ and DZ B cells are equally

affected when c-Rel-deleted GC B cells steadily cease to exist. It is noteworthy that Bcl-2

transgene expression does not rescue the compromised GC B cells pointing towards a role

of c-Rel in GC B cells beyond mere survival. As indicated above (see 2.2.5), the authors

conclude that c-Rel establishes a cellular state providing high metabolic conditions es-

sential to GC B cell growth and maintenance [Heise et al., 2014]. The observation that

single round anti-IgM and subsequent anti-CD40 stimulation synergize in activating nu-

clear c-Rel and expression of pro-survival proteins Bcl-xL and A1, led to the hypothesis

that c-Rel could be involved in priming naive B cells to receive T cell help – a model that

could be relevant to the role of c-Rel in GC reactions [Damdinsuren et al., 2010].

c-Rel-/- mice have strikingly low IgG1 and undetectable IgG2a as well as partially reduced

IgM, IgG2b and IgG3 naive antibody titers. Specific IgM and IgG1 titers are also reduced

after immunization [Kontgen et al., 1995]. Upon intranasal influenza infection or subcu-

taneous influenza vaccination, c-Rel-/- mice show a strongly impaired antiviral antibody

response with reductions of all tested Ig subclasses comprising IgM, IgA, IgG1, IgG2a,

IgG2b and IgG3. c-Rel-/- mice develop no significant levels of virus-neutralizing anti-

bodies with essentially equal neutralizing antibody titers in naive and infected c-Rel-/-

mice. In spite of these clear disadvantages, c-Rel-/- mice successfully clear pulmonary

influenza infection – albeit with delayed kinetics – due to an effective cytotoxic T cell

response [Harling-McNabb et al., 1999]. Correspondingly, GC B cell-specific c-Rel dele-

tion in NP(4-hydroxy-3-nitrophenyl acetyl)-KLH(keyhole limpet hemocyanin)-immunized

c-Relfl/fl Cγ1-Cre mice results in a near complete absence of specific IgG1-secreting cells

as well as anti-NP-IgG1 serum titers, which is not restored by Bcl-2 transgene expres-

sion [Heise et al., 2014]. Interestingly, the impaired c-Rel DNA-binding activity seen in

NfkbiaNES/NES mice expressing IκBα lacking an NES similarly correlates with a significant

reduction in IgA, IgG1 and IgG2b serum antibody titers [Wuerzberger-Davis et al., 2011].

Conversely, the higher nuclear c-Rel activity in IκBε-deficient mice results not only in

an expansion of mature B cells in lymph nodes and MZ B cells in spleen, but it is also

associated with increased B cell proliferation and survival in the presence or absence of

stimulation as well as augmented naive and post-immunization IgG1 and IgM serum titers

[Mémet et al., 1999; Clark et al., 2011; Alves et al., 2014]. Although c-Rel-/- B cells can
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be driven towards a CD138+ plasmablast stage in vitro [Heise et al., 2014], the exact role

of c-Rel in B cell terminal differentiation in vivo remains unknown as the c-Rel-ablated

mouse models described so far are immensely compromised in their GC response, thus

impeding independent investigation of subsequent memory or plasma cell stages.

Carrasco et al. generated mice that instead of wild-type c-Rel express a carboxy-terminal-

truncated form of c-Rel devoid of the TAD (c-Rel∆CT/∆CT), which leaves the RHD and

consequently DNA binding and dimer formation intact. These mice develop a complex

phenotype involving diverse hematopoietic tissues and cell types, including B cell hyper-

plasia and enlarged spleen and lymph nodes. This multilayered immune phenotype hinders

distinction of primary from secondary effects [Carrasco et al., 1998]. c-Rel∆CT/∆CT B cells

have been analyzed separately in vitro [Zelazowski et al., 1997] (see page 36).

In summary, the studies describing consequences of c-Rel-deficiency highlight the partic-

ular role of c-Rel in activated B cells and GC B cells. The central processes in these B cell

subsets during which c-Rel exerts its function are delineated in the following paragraphs.

B cell survival Both the canonical and alternative NF-κB pathway are implicated in

the maintenance of mature B cells in vivo [Senftleben et al., 2001; Kaisho et al., 2001;

Pasparakis et al., 2002; Li et al., 2003; Sasaki and Iwai, 2016]. Mature B cell survival is

controlled by BAFF, which can activate the alternative pathway, but constitutive canon-

ical NF-κB activation uncouples B cell survival from BAFF signals [Sasaki et al., 2006,

2008; Sasaki and Iwai, 2016]. Although c-Rel expression is strongly reduced in NIK mutant

mice [Yamada et al., 2000], mice with stabilized high expression of NIK via truncation

of the domain mediating TRAF3-dependent proteasomal degradation in B cells do not

show an increase in nuclear c-Rel level [Sasaki et al., 2008]. The unaltered mature B cell

numbers in c-Rel-/- mice (see 2.2.6) and the observation that apoptosis is not accelerated

when culturing c-Rel-/- B cells in the absence of stimuli [Grumont et al., 1998] indicate

that c-Rel is not essential for mere maintenance survival of resting mature B cells.

On the contrary, apoptosis is markedly enhanced in c-Rel-/- B cells in comparison to con-

trol cells upon stimulation, including anti-IgM and LPS [Grumont et al., 1998]. Similarly,

MALT1-ablated B cells, which are deficient in BCR-initiated c-Rel nuclear translocation,

present reduced survival in vitro upon anti-IgM treatment [Ferch et al., 2007]. Further-

more, in the presence of stimuli, c-Rel-/- B cells are more sensitive to cell death in vitro

induced by γ-irradiation or the glucocorticoid dexamethasone that is used as an immuno-
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suppressive [Owyang et al., 2001]. As discussed above (see 2.2.5), there is substantial

evidence that c-Rel is involved in activation of the survival factors A1 and Bcl-xL fol-

lowing stimulation. Intercrosses of c-Rel-/- mice with transgenic Bcl-2 or Bcl-xL mice

demonstrate restoration of c-Rel-/- B cell survival in vitro conferred by Bcl-2 [Grumont

et al., 1998] or Bcl-xL [Owyang et al., 2001] transgene expression. In the same line, loss

of Bcl-2 interacting mediator of cell death (Bim), a pro-apoptotic antagonist of Bcl-2

family pro-survival proteins [Strasser, 2005], can counteract stimulus-induced apoptosis

of c-Rel-/- B cells [Banerjee et al., 2008].

Cell cycle c-Rel-/- or c-Rel∆CT/∆CT B cells are impaired in their proliferative response

to in vitro stimulation [Kontgen et al., 1995; Tumang et al., 1998; Carrasco et al., 1998].

In addition, c-Rel-/- B cells are more sensitive to the anti-proliferative effects of IFNs,

which is likely a consequence of impaired IRF4 expression in c-Rel-/- B cells upon stimula-

tion [Grumont and Gerondakis, 2000]. Importantly, Bcl-2 or Bcl-xL transgene espression

that restores c-Rel-/- B cell survival does not rescue the proliferative defects and c-Myc

upregulation is not altered in c-Rel-/- B cells upon anti-IgM stimulation pointing to an

independent role of c-Rel in cell cycle regulation [Grumont et al., 1998; Owyang et al.,

2001].

Indeed, several studies provide evidence for a failure of c-Rel-/- B cells to transit to cell

cycle S phase as a result of a block in early G1 phase. c-Rel-/- B cells synthesize reduced

amounts of RNA and DNA as well as protein in response to stimulation indicating de-

fective progression through late G1 and S phase [Grumont et al., 1998; Tumang et al.,

1998]. As mentioned above (see 2.2.5), the expression of multiple E2F transcription fac-

tors and cyclins that are key cell cycle regulators is impaired in c-Rel-/- B cells [Hsia et al.,

2002; Cheng et al., 2003]. In addition, c-Rel-/- B cells show decreased activity of G1 cyclin-

dependent kinases CDK4 and CDK6 that are central to G1/S transition despite unaltered

CDK4/6 protein levels [Hsia et al., 2002]. This is accompanied by reduced expression and

phosphorylation of retinoblastoma protein (Rb) [Hsia et al., 2002], which is thought to

be mediated by G1-CDKs and important for releasing activator E2F transcription fac-

tors from inhibition by Rb [Bertoli et al., 2013]. In contrast, degradation of the CDK

inhibitor p27 and the E2F inhibitory protein p130, which is expressed in quiescent cells

[Bertoli et al., 2013], does not appear to be strongly affected in c-Rel-/- B cells, suggesting

that c-Rel-/- cells are able to exit the G0 resting state [Hsia et al., 2002]. In agreement
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with these data, only stimulative conditions resulting in sustained c-Rel nuclear translo-

cation correlate with signs of G1 progression, including expression of cyclin D2 and E as

well as CDK4, phoshorylation of Rb, and degradation of p27 [Damdinsuren et al., 2010].

Moreover, c-Rel – but also RelA – has been proposed to associate with CDKs [Perkins

et al., 1997; Chen and Li, 1998]. Notwithstanding the multilayered feedback-loop control

of cell cycle progression that complicates identification of cause and consequences, these

findings clearly demonstrate that the hallmarks of G1 progression are dependent on c-Rel

in B cells.

The block in cell cycle G1 phase in c-Rel-/- B cells can only be partially overcome by combi-

nation of mitogenic stimuli or addition of cytokines, indicating that also c-Rel-independent

pathways can promote cell cycle progression in B cells given certain conditions in vitro

[Grumont et al., 1998; Tumang et al., 1998]. Moreover, cyclin E protein transduction into

c-Rel-/- B cells that additionally express the Bcl-xL transgene can resolve G1 cell cycle

arrest to a certain degree [Cheng et al., 2003].

Class switch recombination The decreased in vivo serum Ig titers described upon

c-Rel ablation in mice [Kontgen et al., 1995; Harling-McNabb et al., 1999; Heise et al.,

2014] (see 2.2.6) are consistent with deficits of c-Rel-/- or c-Rel∆CT/∆CT B cells in class

switch assays in vitro [Zelazowski et al., 1997; Kaku et al., 2002; Heise et al., 2014].

The central role of c-Rel in proliferation and GC responses probably underlies these

observations at least in part as CSR depends on proliferation [Hodgkin et al., 1996].

The identification of IRF4 as a central coordinator of CSR [Klein et al., 2006; Sciammas

et al., 2006] together with the finding that induction of IRF4 fails in c-Rel-/- lymphocytes

[Grumont and Gerondakis, 2000] represent another pathway for involvement of c-Rel in

CSR.

Besides c-Rel also other NF-κB subunits are implicated in class switching to distinct Ig

isotypes [Snapper et al., 1996a; Doi et al., 1997; Snapper et al., 1996b]. Evidence for a

direct role for c-Rel and other subunits is provided with regard to germline transcription

through Ig constant heavy chain loci that directs CSR to distinct isotypes [Stavnezer et al.,

2008; Xu et al., 2012]. The murine γ1 promoter has been shown to be bound by c-Rel,

RelA, p50 and RelB in response to CD40 stimulation in vitro [Lin et al., 1998]. Based on an

in vitro transactivation assay the authors suggest that RelA:p50 or RelB:p50 heterodimers

can activate the γ1 promoter, whereas c-Rel:p50 or p50:p50 dimers fail to activate it
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[Lin et al., 1998]. Opposed to this notion, p50-/-, p50-/- RelA-/- and RelB-/- B cells are

still able to efficiently switch to IgG1 [Snapper et al., 1996b,a; Horwitz et al., 1999].

Additionally, in accordance with almost undetectable IgG1 serum titers and abrogated in

vitro class switch to IgG1 of c-Rel-ablated B cells [Heise et al., 2014], Kaku et al. show

that germline γ1 transcription is considerably reduced in c-Rel-/- B cells accompanied

by a strong reduction of IgG1 secretion in vitro [Kaku et al., 2002]. Further evidence

for an involvement of c-Rel in germline transcription is provided by in vitro analysis of

B cells from c-Rel∆CT/∆CT mice that lack the c-Rel TAD. The observation of abolished

switching to IgG1, IgG3 and IgE but unaltered IgA class switch in c-Rel∆CT/∆CT B cells

is corroborated by undetectable germline transcripts of γ1 or γ3 but normal levels of γ2b,

γ2a, ε and α germline transcripts, pointing out that germline transcription is required

but not sufficient for class switching [Zelazowski et al., 1997]. Nevertheless, also RelA was

shown to be important for γ3 germline transcription and IgG3 class switching [Horwitz

et al., 1999]. Finally, a role for c-Rel, but not RelA or p50, has been suggested for

human γ4 germline transcription [Agresti and Vercelli, 2002]. The discrepancies or NF-

κB subunits delineated above could in part be explained by the differential use of single or

combinatorial stimuli applied to induce class switch in these studies – exemplified also by

stimuli-dependent regulation of the Ig heavy chain enhancer complex located 3’ to the IgA

locus by p50 and c-Rel [Zelazowski et al., 2000]. Nevertheless, these experiments clearly

demonstrate the role of NF-κB in germline transcription and emphasize the importance

of c-Rel in CSR, especially in class switch to IgG1. However, these results also hint to a

partial functional redundancy between the NF-κB subunits.

This section has illustrated distinct characteristics of the c-Rel transcription factor amongst

the NF-κB family members. c-Rel has a unique role in mature B cells that is of central rel-

evance during immune responses. In particular, c-Rel is required for proliferation during

B cell activation and is essential for pivotal processes in GC B cells during GC reactions.
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3 c-Rel signaling in B cell pathology

Aberrant constitutive NF-κB activation is a hallmark of numerous cancers including lym-

phoid tumors [Staudt, 2010; Lim et al., 2012]. Intriguingly, c-Rel is the only member of

the NF-κB family that has the capacity to malignantly transform lymphoid chicken cells

in vitro [Gilmore et al., 2001]. This section focuses on literature that lays the foundation

for the proposed role of c-Rel in human B cell lymphomas.

3.1 Malignant transformation of B cells

Following activation upon antigen encounter, B cells initiate the formation of GCs, where

the fundamental immunological mechanisms of SHM and CSR require DNA breaks in

GC B cells (see 1.2.1). Higher tolerance of DNA damage is an essential condition for

progression through SHM and CSR rendering GC B cells more permissive to incidents of

genetic instability that can promote lymphomagenesis. Hence, at this stage physiologi-

cal processes can turn into pathology once DNA missarrangements or aberrant somatic

mutations occur. These translocations, deletions, mutations or amplifications alter the

function or regulation of proto-oncogenes or result in their ectopic expression [Küppers,

2005; Klein and Dalla-Favera, 2008; Basso and Dalla-Favera, 2015]. Notably, deregulated

GC reactions are also implicated in development of autoimmunity [Vinuesa et al., 2009].

Indeed, approximately 95% of human lymphomas arise from B cells, the majority of which

carry somatically mutated Ig genes indicative of GC or post-GC origin [Küppers, 2005].

Chromosomal translocations involving Ig genes are a common feature of human B cell

lymphomas [Küppers, 2005] and somatic hypermutation has been shown to affect many

genes, including proto-oncogenes, besides the actually targeted Ig loci [Pasqualucci et al.,

2001; Shen et al., 1998; Liu et al., 2008]. Interestingly, B cells with Ig loci translocations are

present in healthy mice and human at very low frequency. This observation is consistent

with the clinical presentation of lymphomas with a variety of oncogenic lesions that finally

trigger malignant transformation [Küppers and Dalla-Favera, 2001]. These driving genetic

aberrations typically provide a B cell with enhanced proliferative capacities and viability

that is often accompanied by a block in differentiation [Küppers and Dalla-Favera, 2001;

Shaffer et al., 2002b]. Beyond these intrinsic determinants, the microenvironment is of

relevance to tumor cell proliferation and survival [Küppers, 2005] and the malignantly

transformed cells need to escape or break immune surveillance that is for instance exerted
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by T cells [Zhang et al., 2012; Afshar-Sterle et al., 2014].

3.2 REL amplification in human B cell lymphoma

Gains or amplifications of the genetic locus containing the human REL gene that maps

to chromosome 2 to band p16.12 are frequently found in human B cell lymphomas. As de-

scribed in detail below (see page 40) and summarized in Table 1, these most predominantly

include classical Hodgkin lymphoma (cHL) and B cell non-Hodgkin lymphomas (B-NHL),

specifically diffuse large B cell lymphoma (DLBCL) and primary mediastinal B cell lym-

phoma (PMBCL). Many reports distinguish amplifications that refer to high copy number

increases within the total number of reported gains that may also include moderate ge-

nomic overrepresentations. While most studies define an amplification as a gene copy

number ≥ 4, an extreme case of DLBCL was diagnosed with more than 100 copies of the

REL locus [Houldsworth et al., 2004]. REL amplifications were also discovered in follicular

lymphoma (FL) and the respective successively transformed DLBCL counterparts [Goff

et al., 2000; Martinez-Climent et al., 2003]. Gains of the REL-including gene segment

were additionally found in two other types of B cell lymphoma, namely nodular lympho-

cyte predominant Hodgkin lymphoma (NLPHL) and T cell/histiocyte rich large B cell

lymphoma (THRLBCL) [Hartmann et al., 2015]. Interestingly, gains of 2p16.1 were also

observed in peripheral T cell lymphoma, not otherwise specified (PTCL NOS) [Hartmann

et al., 2010] and enhanced c-Rel expression was associated with poor response to therapy

in adult T-cell leukemia/lymphoma (ATLL) [Ramos et al., 2007]. Other discovered ge-

netic REL aberrations are REL-positive double minute chromosomes in FL [Reader et al.,

2006] and REL translocations in cHL [Martin-Subero et al., 2002, 2006].

Besides the discovery of these genetic variations, c-Rel protein alterations were shown

to influence c-Rel in vitro transactivation and transforming capabilities. A c-Rel splice

variant devoid of Exon 9 (c-Rel∆Ex9) has a higher in vitro transactivation activity com-

pared to full length c-Rel. Remarkably, this c-Rel∆Ex9 splice variant has been detected

in primary DLBCL patient material and lymphoma cell lines but not in normal lymphoid

tissue [Leeman et al., 2008]. Furthermore, point mutations of serine residues in the c-Rel

TAD1 into residues that preclude phosphorylation enhance c-Rel transforming activity.

Conversely, mutation into a phosphomimetic residue have a positive effect on c-Rel trans-

2Genomic location of REL ENSG00000162924 accessible on www.ensembl.org (human GRCh38.p5)
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activation [Starczynowski et al., 2005]. Interestingly, an identical point mutation resulting

in a change of serine 525 to proline in the c-Rel TAD2 that also strengthens c-Rel trans-

formation in vitro has been discovered in one patient with FL and another patient with

PMBCL [Starczynowski et al., 2007]. Finally, deletion of either of the two c-Rel TADs or

introduction of substitution of acidic residues with alanine in the TAD2 decreases c-Rel

transactivation ability while increasing transforming potency [Starczynowski et al., 2003;

Fan and Gelinas, 2007].

Due to the lack of suitable in vivo models, the proposed lymphoma-promoting role of

REL amplification and aberrant splicing has not been investigated in any mouse studies

until today. Opposed to that, a recent publication reported an unexpected earlier dis-

ease onset in the Eµ-Myc and pEµ-B29-TCL1 lymphoma/leukemia mouse models upon

loss of c-Rel. The authors suggest that the results could be explained by the observed

downregulation of the tumor suppressor Bach2 in Eµ-Myc c-Rel-deficient mice [Hunter

et al., 2015]. However, it remains unclear whether the phenotypes are B cell-intrinsic and

in contrast to the human cHL and B-NHL disease entities mentioned above, the Eµ-Myc

mouse strain mainly develops pre-B cell tumors [Harris et al., 1988].

3.2.1 Diffuse large B cell lymphoma

DLBCL is the most frequent form of B-NHL representing roughly 40% of all B-NHL

diagnoses [Basso and Dalla-Favera, 2015]. DLBCL is considered an aggressive lymphoma

of rather broad heterogeneity and despite initial therapy response in most patients, durable

remission is accomplished only in a minority [Alizadeh et al., 2000; Küppers, 2005]. The

origin of DLBCL is thought to be GC- or post-GC-derived B cells [Küppers, 2005]. Two

early studies identified REL copy number amplifications of 4 or more copies in 23% of

DLBCL cases when analyzing a cohort of 111 [Houldsworth et al., 1996] or 96 [Rao et al.,

1998] patients, respectively, that is for the most part redundant.

Based on gene expression profiling, Alizadeh et al. defined subgroups of DLBCL that

were classified according to molecular phenotypes. The germinal center B cell-like (GCB)

cluster expresses a gene signature associated with GC B cells, whereas the gene profile

of the activated B cell-like (ABC) cluster resembles in vitro activated peripheral blood

cells [Alizadeh et al., 2000]. A third subgroup termed type 3 DLBCL identified in a large

cohort of 240 patients expresses neither genes of the ABC nor the GCB profiling set at high

levels [Rosenwald et al., 2002]. In these studies, the subgroups were related to clinical
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Table 1: Frequency of 2p REL gains in selected human B cell lymphomas. Frequen-
cies of gains including amplifications are displayed. Total or the respective fraction of patient
numbers are given in parentheses. Average calculation was performed considering patient num-
bers and average for DLBCL includes data from GCB- and ABC-DLBCL subgroups. This
table summarizes the literature cited in this thesis with no claim to completeness of published
datasets. *1largely redundant cohorts; numbers displayed as given in Houldsworth et al. [1996].
*26/21 GCB- and 10/21 ABC-DLBCL, 5/21 unclassified. *3based to large extent on same co-
hort. *4Weniger et al. selected 5 samples with and 15 samples without gain/amplification from
the Bentz et al. cohort. *5Barth et al. studied samples from the Joos et al. cohort.

Reference DLBCL GCB-DLBCL ABC-DLBCL PMBCL cHL

Houldsworth
et al. [1996]
Rao et al.
[1998]

23% (26/111)*1

Bea et al.
[2004]

14% (9/64)

Jardin et al.
[2010]

18% (21/114)*2

Rosenwald
et al. [2002]*3

15% (17/115) 0% (0/73)

Bea et al.
[2005]*3

17% (15/87) 15% (12/77) 47% (9/19)

Lenz et al.
[2008]*3

35% (72) 12% (74) 26% (31)

Houldsworth
et al. [2004]

28% (5/18) 17% (2/12)

Feuerhake et al.
[2005]

17% (10/57) 5% (1/22) 3% (1/34)

Tagawa et al.
[2005]

33% (6/18) 7% (2/28)

Joos et al.
[1996]

27% (7/26)

Bentz et al.
[2001]*4

19% (8/43)

Weniger et al.
[2007]*4

75% (15/20)

Palanisamy
et al. [2002]

36% (4/11)

Martin-Subero
et al. [2002]

35% (11/31)

Joos et al.
[2002]*5

54% (22/41)

Barth et al.
[2003]*5

41% (7/17)

Steidl et al.
[2010]

28% (53)

Salipante et al.
[2016]

40% (8/20)

Average 17% 21% 9% 28% 39%
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parameters and the authors detected a superior clinical outcome for the GCB-DLBCL

subgroup [Alizadeh et al., 2000; Rosenwald et al., 2002]. This was, however, not confirmed

in reports of 58 [Shipp et al., 2002] or another 46 [Houldsworth et al., 2004] DLBCL

samples. Nevertheless, a significantly better survival rate for GCB-DLBCL patients was

again determined for 2 of the data sets [Rosenwald et al., 2002; Shipp et al., 2002] by

Wright et al. using a new subgroup prediction algorithm designed to be independent of

the microarray platform that differed in the two original publications [Wright et al., 2003].

In agreement with this, a correlation of the GCB-DLBCL phenotype with better overall

survival was found in an independent cohort [Curry et al., 2009]. Monti et al. suggested

a DLBCL classification that focuses on cell-intrinsic signaling pathways and response to

the microenvironment rather than the cell of origin. When clustering their data according

to Wright et al., these authors also found extended survival rates for the GCB-DLBCL

subgroup [Monti et al., 2005].

Rosenwald et al. detected a REL amplification exclusively within the GCB-DLBCL sub-

group at a frequency of 15% (17/115) using quantitative polymerase chain reaction [Rosen-

wald et al., 2002]. On the contrary, applying comparative genomic hybridization (CGH)

on the same patients, a DNA gain or amplification in 2p14-p16 ranks as the second most

frequent overrepresentation observed and is distributed with 17% in GCB-DLBCL (15/87)

and 15% in ABC-DLBCL (12/77). Of these gains, amplifications are more frequent in

GCB- (8/14) than in ABC-DLBCL (2/11) [Bea et al., 2005]. Partially the same cohort

was evaluated using array-based CGH (aCGH). Considering both gains and amplifications

of 2p, Lenz et al. detected this genomic alteration in 35% of GCB- and 12% of ABC-

DLBCL. Restricting the analysis to amplifications, the authors still found copy number

changes > 3.5 in 28% and 5% of all samples for the GCB and ABC subgroup, respectively

[Lenz et al., 2008].

In agreement with a higher abundance of REL overrepresentation in the GCB-DLBCL

subgroup, Feuerhake et al. found 17% (10/57) and 5% (1/22) REL amplifications in

GCB- and ABC-DLBCL-classified samples, respectively [Feuerhake et al., 2005]. In an-

other published patient group, 28% of GCB (5/18), 17% of ABC (2/12) and 15% of type

3 DLBCL (2/13) display REL amplifications with at least 4 copies [Houldsworth et al.,

2004], hence further corroborating this tendency. Similarly, an additional study observed

an association with the GCB-DLBCL subtype with gains of 2p15-p16.1 in 33% (6/18) of

GCB-DLBCL patients and in only 7% (2/28) of ABC-DLBCL patients [Tagawa et al.,
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2005]. In a cohort of 114 DLBCL cases, Jardin et al. observed REL gains in 18% (21/114)

of all samples with a distribution amongst the GCB and ABC cluster of 6/21 and 10/21,

respectively, while the remaining 5 samples were not classified. Bea et al. did not distin-

guish subtypes by gene expression profile and found 5/64 gains and 4/64 amplifications

summing up to 14% (9/64) of DLBCL patients with 2p14-p16 overrepresentation [Bea

et al., 2004].

In summary, gains or amplifications in 2p16.1 containing the REL locus are highly abun-

dant in DLBCL with a somewhat higher prevalence in the GCB-DLBCL compared to the

ABC-DLBCL subset.

3.2.2 Primary mediastinal B cell lymphoma

PMBCL originates in the mediastinum, probably with involvement of the thymus [Barth

et al., 2002]. Thus, it appears that thymic medullary B cells are the proposed cells of

origin [Küppers, 2005; Savage, 2006]. Originally grouped within the DLBCL lymphoma

entity, PMBCL was recognized as a distinguishable separate lymphoma type later on

[Barth et al., 2002]. Subsequently, the use of gene expression profiling to identify PMBCL

by molecular diagnosis has been suggested [Rosenwald et al., 2003; Savage, 2003]. Both

of these studies conclude that PMBCL shares characteristics with cHL on the molecular

phenotype level [Rosenwald et al., 2003; Savage, 2003].

Two of the publications cited above for DLBCL also assessed 2p overrepresentations in

PMBCL samples. While Bea et al. detected gains in 47% of analyzed samples, Lenz

et al. report gains including amplifications for 26% and sole amplifications for 19% of

all PMBCL cases [Bea et al., 2005; Lenz et al., 2008]. In an independent cohort, a

gain in 2p was detected in 27% (7/26) PMBCL biopsies. Two of these cases display

high level REL amplifications of 5- and 10-fold as quantified by Southern blot [Joos

et al., 1996]. Moreover, Southern blot quantification for a small number of 11 PMBCL

patients showed copy numbers ≥ 4 in 36% (4/11) of samples [Palanisamy et al., 2002].

Using CGH another study detected an overrepresentation of 2p14-16 in 19% (8/43) of

PMBCL cases [Bentz et al., 2001]. Interphase cytogenetics employing fluorescence in situ

hybridization (FISH) analysis of material from 20 of these patients substantiated 2 gains

and 3 amplifications previously found by CGH in this selected sample set and revealed 8

gains and 2 amplifications in addition, which amounts to a total number of 15 REL copy

number changes in 20 samples [Weniger et al., 2007].
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3.2.3 Classical Hodgkin lymphoma

cHL accounts for about 10% of human mature B cell lymphomas [Küppers, 2005]. A

hallmark of cHL are mononucleated Hodgkin cells and multinucleated Reed-Sternberg

cells. Remarkably, these Hodgkin and Reed-Sternberg (HRS) cells constitute only 1% of

tumor cells. Although HRS cells have lost major B cell gene expression characteristics and

even acquired markers of other lineages, they originate from GC B cells based on their

rearranged and somatically mutated Ig gene loci [Küppers, 2009, 2012].

In a study of 41 cHL tumors, Joos et al. detected gains in 2p by CGH as the most frequent

alteration in 54% of cases [Joos et al., 2002]. Interphase cytogenetic analysis of 17 samples

from the same cohort by FISH demonstrates 5 gains and 3 amplifications. Only in 1 case

the amplification contradicted the CGH data summing up to an overrepresentation of the

REL locus in 41% (7/17) of cHL patients substantiated by both methods [Barth et al.,

2003]. A similar assessment of interphase cytogenetic by FISH of 31 cHL biopsies showed

REL locus gains in 35% (11/31) including 8 cases with high-level amplifications (26% of

total cases) [Martin-Subero et al., 2002]. Applying aCGH profiling on 53 cHL specimens

Steidl et al. detected gains in the 2p15-16.1 genomic locus in 28% of patients [Steidl et al.,

2010]. In a recent publication, whole genome sequencing determined significant copy

number gains ≥ 4 of the chromosomal segment containing the REL locus in 40% (8/20)

of cHL patients [Salipante et al., 2016]. Finally, the 2p16.1 REL locus was identified as

a susceptibility locus for cHL in a genome-wide association study (GWAS) [Enciso-Mora

et al., 2010].

3.2.4 REL amplification and c-Rel protein expression and localization

REL amplification is a highly frequent event in GC-derived human B cell lymphomas, but

the functional consequences remain elusive. Several studies investigated the relation of

REL genomic status and c-Rel expression level and localization.

DLBCL In the large cohort of 224 DLBCL patients, REL is significantly higher ex-

pressed in GCB-DLBCL samples with 2p14-p16 gains, whereas in ABC-DLBCL samples

with 2p14-p16 gains REL levels are only slightly increased and this trend is insignificant

[Bea et al., 2005]. Similarly, two other studies observed augmented REL mRNA levels

in specimens with REL locus gains in DLBCL patient cohorts of 127 [Feuerhake et al.,

2005] and 114 [Jardin et al., 2010] subjects, respectively. Other publications focused on
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assessment of c-Rel nuclear protein level. Houldsworth et al. observed heterogeneity with

regard to c-Rel nuclear accumulation based on immunofluorescence and no correlation

with REL amplification. At least 70% positive c-Rel nuclei were found in 44% (17/39) of

cases with a higher prevalence in the ABC-DLBCL subgroup despite the higher percent-

age of REL amplifications within the GCB-DLBCL subgroup of this cohort [Houldsworth

et al., 2004]. With nuclear positivity in 64% of 113 DLBCL samples, c-Rel was found to

be the most frequently expressed nuclear subunit when comparing the five NF-κB family

members for which positivity was reached when more than 30% of tumor cells exhibited

nuclear staining. In this cohort, positive nuclear c-Rel expression is equally distributed

amongst the GCB- and ABC-DLBCL subgroups and correlates with favorable prognosis

[Odqvist et al., 2014]. Curry et al. set a cutoff for positivity of c-Rel nuclear protein in

20% of neoplastic cells, which results in a comparable frequency of 65% (44/68) of DLBCL

cases that fall into this category. The authors did not observe a significant correlation

of nuclear c-Rel with the DLBCL subgroups or overall survival of patients. Nevertheless,

this data set suggests a trend for worse survival of patients with positive nuclear c-Rel

expression within the GCB-DLBCL cluster [Curry et al., 2009]. Despite an even lower

cutoff of 5% of tumor cells with c-Rel-stained nuclei considered positive, Li et al. found

only 26% (137/460) of DLBCL patients with positive nuclear c-Rel staining and similar

distribution of cases amongst the subclasses. REL mRNA levels and nuclear positivity

show no correlation in this large cohort, but REL mRNA is significantly higher in the

GCB-DLBCL group [Li et al., 2015]. Moreover, Rodig et al. found nuclear c-Rel staining

only in 18% (28/160) of DLBCL samples that were not further subclassified [Rodig et al.,

2007]. Finally, in a small group of 9 GCB- and 5 ABC-DLBCL patient samples and 19

DLBCL-derived cell lines, c-Rel DNA binding was found to be more prominent in the

GCB-DLBCL subtype [Pham et al., 2011].

PMBCL In order to study the relation of genomic REL gains and c-Rel protein level

on a single cell basis, Weniger et al. combined FISH interphase cytogenetics with im-

munofluorescence staining (FICTION, fluorescence immunophenotyping and interphase

cytogenetics as a tool for investigation of neoplasms). This analysis demonstrated a pos-

itive correlation of REL genomic overrepresentation and c-Rel nuclear staining for the

10 analyzed PMBCL samples [Weniger et al., 2007]. In two other studies, c-Rel nuclear

localization was observed by immunohistochemistry in 5 of 6 PMBCL patient samples
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[Savage, 2003] and in all of 7 PMBCL biopsies [Feuerhake et al., 2005]. In a considerable

cohort of 48 PMBCL patients, 65% (31/48) of samples were characterized by the presence

of nuclear c-Rel [Rodig et al., 2007].

cHL In a cohort of 25 cHL patients, Barth et al. demonstrated a strong correlation of

REL gain with nuclear c-Rel staining in HRS cells. While the 12 cases with REL copy

number gains show positive nuclear c-Rel staining in at least 30% of HRS cells in 5/12 and

more than 70% of HRS cells in 7/12 specimens, the majority of samples with balanced

REL loci displayed less than 30% of positive HRS cells [Barth et al., 2003]. In addition,

nuclear c-Rel was detected in two independent studies in 80% (23/25) [Rodig et al., 2005]

and even 86% (51/59) [Xiao et al., 2004] of cHL patient material.

In summary, the publications cited above provide evidence for a positive correlation of

REL gene locus amplification and c-Rel expression level accompanied by frequent observa-

tions of nuclear c-Rel protein accumulation for both PMBCL and cHL. This contrasts with

the heterogeneity amongst the DLBCL cases, which is illustrated by a broad spectrum of

varying frequencies for nuclear c-Rel staining and in part inconsistent conclusions with re-

gard to subtype distribution and relation of REL locus overrepresentation and expression

levels. As indicated above, it is noteworthy that gene expression analyses demonstrate

that PMBCL is related to cHL with closer resemblance than to other DLBCL subtypes

[Rosenwald et al., 2003; Savage, 2003]. Interestingly, shared features of cHL and PMBCL

are an association with high NF-κB activity as well as lack of detectable BCR expression

[Savage, 2003; Weniger et al., 2007; Küppers, 2009]. It is worth mentioning that cell

line-based studies suggest that predominant nuclear or cytoplasmic c-Rel localization is

not necessarily a prognostic clue for malignant transformation [Gilmore et al., 2004b].

Finally, c-Rel localization and expression level could be characteristic and specific for the

lymphoma cell of origin [Gilmore and Gerondakis, 2011].

3.2.5 Co-amplification of BCL11A with REL

Especially studies that did not find a positive correlation between REL gene amplifica-

tion and c-Rel protein expression questioned whether REL is indeed the target of the

2p16.1 locus gains and amplifications. In fact, REL is not the only gene in the commonly

amplified genetic region. Amongst others, the BCL11A gene also maps to 2p16.1 and is
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located only within 300 kB of REL3. The Krüppel zinc finger transcription factor Bcl-11a

is essential for lymphocyte development and in particular B cells are virtually absent in

Bcl11a-deficient mice [Liu et al., 2003]. Intriguingly, Bcl-11a is highly expressed in the GC

and a translocation involving BCL11A and the Ig heavy chain locus has been discovered

in B cell malignancies [Satterwhite, 2001; Küppers et al., 2002].

Several studies provide evidence for a frequent co-amplification of the REL and BCL11A

loci in the B cell lymphoma subtypes introduced above. In 4 of 7 DLBCL cases analyzed

by Fukuhara et al. using aCGH both REL and BCL11A are gained, whereas 3 cases

show an exclusive REL gain and these genomic gains correlate with mRNA expression

levels [Fukuhara et al., 2006]. On the contrary, in a study by Bea et al., all 9 DLBCL

patients with 2p14-p16 gains or amplifications show elevated copy numbers for both REL

and BCL11A assessed by real-time quantitative polymerase chain reaction (RQ-PCR)

[Bea et al., 2004]. Similarly, in a large cohort of 224 patients, the vast majority of cases

of GCB- and ABC-DLBCL as well as PMBCL show concomitant copy number changes

of REL and BCL11A according to RQ-PCR [Bea et al., 2005]. Also in a series of 15

PMBCL cases, copy numbers for BCL11A and REL were shown to be simultaneously

increased [Weniger et al., 2006b, 2007]. Weniger et al. observed nuclear Bcl-11a protein

in 88% (14/16) of analyzed PMBCL. However, only in 25% (4/16) of cases, BCL11A

copy number alterations, transcript levels and nuclear protein clearly correlate [Weniger

et al., 2006b]. Lastly, more than 90% (10/11) of cHL cases with REL amplification

and gains show concomitant BCL11A amplification and gains, respectively. In two cases

(2/21) of this cohort with balanced BCL11A status, the authors found indications for

modifications of the REL locus without affecting BCL11A [Martin-Subero et al., 2002].

These studies demonstrate that in the majority of analyzed lymphoma cases the BCL11A

gene is indeed frequently co-amplified with the REL gene. Hence, both c-Rel and Bcl-

11a represent interesting candidates for prospective gain-of-function studies, in particular

with regard to investigation of compound effects.

3.3 Human B cell lymphoma cell lines

Patient-derived B cell lymphoma cell lines constitute a versatile tool box to discover

lymphoma-associated signaling pathways and have been applied as an approach to deci-

3Genomic location of BCL11A ENSG00000119866 accessible on www.ensembl.org (human

GRCh38.p5)
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pher the role of c-Rel in this context. A decrease in viability upon short hairpin RNA

(shRNA) knockdown of c-Rel, RelA or RelB in 3 cHL cell lines, including U-HO1, has been

shown [Ranuncolo et al., 2012]. Also in a murine B cell lymphoma cell line and primary

mouse B cells, si(small interfering)RNA-mediated c-Rel knockdown negatively affects cell

survival and cell cycle progression [Tian and Liou, 2009]. Similarly, treatment of human

B cell lymphoma cell lines with the synthetic compound calafianin monomer CM101 that

inhibits DNA binding of c-Rel and RelA lowers proliferation and cell viability correlating

with a diminished c-Rel DNA-binding activity in certain sensitive cell lines, including the

cHL cell line L-428 [Yeo et al., 2015]. In addition, inhibition of MALT1 protease activity

selectively reduces viability and proliferation in ABC- but not GCB-DLBCL cell lines

that is accompanied by decreased nuclear c-Rel and basal Bcl-xL expression [Ferch et al.,

2009].

Based on the consistent correlation of REL amplification and c-Rel expression in PMBCL

and cHL, human B cell lines derived from these lymphoma subtypes represent suitable

candidates to further investigate the consequences of c-Rel signaling. Therefore, two

PMBCL and two cHL cell lines were chosen for a c-Rel loss-of-function approach in the

present work and are introduced in the following paragraphs.

The cell line MedB-1 was established from a PMBCL tumor followed by an initial im-

munophenotypic description [Moller et al., 2001; Bentz et al., 2001]. Weniger et al. re-

ported that in MedB-1 the REL and BCL11A gene loci are amplified in 20% of cells and

observed a higher transcript level of REL but not BCL11A. While 30% of MedB-1 cells

show c-Rel nuclear translocation, nuclear Bcl-11a is not detectable in this cell line [Weniger

et al., 2006b, 2007]. Karpas1106P is also classified as a PMBCL cell line and was estab-

lished and initially characterized by Nacheva et al. [Nacheva et al., 1994]. Karpas1106P

was described to have a gain in REL and BCL11A without increased transcription of

these two genes. However, 70% of Karpas1106P cells show nuclear c-Rel staining but no

detectable nuclear Bcl-11a [Weniger et al., 2006b, 2007]. Wessendorf et al. observed a

gain in 2p by aCGH in Karpas1106P but not in MedB-1 [Wessendorf et al., 2007]. This 2p

gain in Karpas1106P was also detected in a recent publication, but the gained region does

not include the REL locus [Dai et al., 2015]. Accordingly, no consistent rearrangement or

copy number alterations of either the REL or BCL11A locus in MedB-1 or Karpas1106P

were determined, but yet REL expression levels are high in both PMBCL cell lines in

comparison to numerous other B cell lymphoma cell lines [Dai et al., 2015]. In addition,
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Karpas1106P and MedB-1 show high NF-κB DNA-binding activity [Weniger et al., 2007].

The cell line L-428 was established from a cHL patient sample [Schaadt et al., 1979]. L-428

shows a gain of the 2p16 chromosomal band by CGH [Joos et al., 2003; Mader et al., 2007].

FISH analysis indicated that L-428 harbors chromosomal translocation breakpoints within

2p15-p16 as well as a duplication of the REL and BCL11A genomic region [Joos et al.,

2003]. L-428 expresses an inactive truncated form of IkBα [Krappmann et al., 1999]

and c-Rel is predominantly localized to the nucleus in this cell line [Bargou et al., 1996;

de Oliveira et al., 2016]. U-HO1 was established from a cHL patient. FISH analysis

demonstrated that U-HO1 carries a six-fold amplification of the REL and BCL11A locus

coinciding with a strong nuclear c-Rel staining [Mader et al., 2007].

3.4 Disease associations of c-Rel beyond lymphoma

Genome wide association studies found associations of single nucleotide polymorphisms

(SNPs) within the REL gene locus for several human diseases with immunological etiol-

ogy, including rheumatoid arthritis [Gregersen et al., 2009; Eyre et al., 2010], psoriasis

[Strange et al., 2010], ulcerative colitis [McGovern et al., 2010] and celiac disease [Trynka

et al., 2009; Dubois et al., 2010]. Studies in mouse models substantiate implications for

a role of c-Rel in immune system-related diseases beyond lymphoma. c-Rel-/- mice are

protected from allergen-induced pulmonary inflammation and airway hyperresponsiveness

that serves as a mouse model for asthma [Donovan et al., 1999]. With regard to mouse

models of arthritis, c-Rel-deficiency can preclude development of collagen-induced arthri-

tis, but c-Rel-/- mice respond comparable to controls in an acute arthritis model [Camp-

bell et al., 2000]. c-Rel also has a central driving function in mouse models of colitis as

c-Rel-deficiency can confer protection [Wang et al., 2008; Visekruna et al., 2015]. More-

over, c-Rel-/- mice are resistant to experimental autoimmune encephalomyelitis (EAE), a

mouse model for inflammatory diseases of the central nervous system, such as multiple

sclerosis [Hilliard et al., 2002]. In addition, combining mutant mice unable to generate

membrane-bound Fas ligand (FasL∆m/∆m) with c-Rel-deficiency can dramatically increase

the lifespan and reduce the typical autoimmune pathology that characterizes FasL∆m/∆m

mutant mice [O’Reilly et al., 2015]. Finally, c-Rel plays a crucial role in transplantation

immunology as c-Rel-deficiency improves graft tolerance in mice in a diabetes model of

pancreatic islet allografts [Yang et al., 2002] or for allograft heart transplants [Finn et al.,

2002] and as c-Rel-deficiency alleviates murine graft-versus-host disease (GVHD) after al-
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logenic bone marrow transfers [Yu et al., 2013]. The involvement of c-Rel in malignancies

beyond the hematopoietic system includes for instance fibrosis and solid tumors [Hunter

et al., 2016].

3.5 c-Rel as a therapeutic target

Given the manifold predicted and partially validated involvement of c-Rel in human dis-

eases, the concept of c-Rel as a therapeutic target has been pursued. Specifically targeting

c-Rel could have advantages over general NF-κB inhibition which acts systemically and

has dramatic effects on non-immune cells [Pasparakis, 2009; Gilmore and Garbati, 2011].

The viability of c-Rel-/- mice and their defects primarily affecting the immune system

corroborate this strategy. In light of the fact that transcription factors are not regarded

as easily targetable [Gilmore and Garbati, 2011], it is especially important to thoroughly

elucidate the specific signaling pathways that lead to c-Rel activation.

The NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) has been reported to

target conserved cysteine residues and to form adducts with c-Rel as well as other NF-κB

subunits, thus impairing their DNA-binding ability [Yamamoto et al., 2008; Ouk et al.,

2009]. The inhibitor CM101 targeting at least c-Rel and RelA has been used in hu-

man B cell lymphoma cell lines [Yeo et al., 2015] (see 3.3). In a small molecule screen

based on a biochemical assay determining c-Rel DNA binding, Shono et al. identified

compounds that inhibit NF-κB and are claimed to show specificity for c-Rel in particu-

lar. Subsequently, derivatives of these compounds, namely the thiohydantoin IT-603 and

the naphthalenethiobarbiturate IT-901, have been demonstrated to ameliorate GVHD in

mouse models and compromise growth of human B cell lymphoma cell lines [Shono et al.,

2014, 2016]. In addition, treatment with siRNA targeting c-Rel delivered in micelles via

intraperitoneal (i.p.) injection in a mouse model of imiquimod (IMQ)-induced psoriasis

has been shown to prevent or mitigate disease symptoms [Fan et al., 2016].

In conclusion, it is evident that c-Rel not only plays a particular role in B cell development

and function, but this NF-κB transcription factor is also implicated in human lymphoma

and autoimmunity, in which B cells are the malignant cell type or are major disease drivers

or contributors, respectively. The genetic basis of this association lies within the frequent

observation of amplifications of the REL locus and the identification of SNPs within the

REL locus potentially connected to higher susceptibility for autoimmune diseases.
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Part II

Aim of the thesis

Although the question whether c-Rel can drive malignant transformation has been posed

many years ago [Gilmore et al., 2001], there is still no conclusive answer to this subject in

an in vivo setting. In light of the numerous studies identifying frequent REL gene locus

amplifications in human B cell lymphomas and associations of SNPs within the REL locus

with human autoimmune diseases, this puzzling question is more relevant than ever. To

date, studies of c-Rel function in vivo primarily rely on c-Rel knockout mouse models.

In this context, it appears almost surprising that no c-Rel transgenic mouse model for

gain-of-function analysis of c-Rel in B cells exists until present. Remarkably, unsuccessful

attempts as stated by Gerondakis et al., 2006, do not only emphasize the urgent need for

such a model but also prove that this is not a trivial task.

The central objective of this thesis is the generation of novel conditional c-Rel transgenic

mouse models that allow investigation of c-Rel gain-of-function in B cells and germinal

center B cells in vivo. This research project is complemented with a c-Rel loss-of-function

approach in human B cell lymphoma cell lines in vitro. The combination of these strate-

gies establishes the fundament for unraveling the precise role of c-Rel overexpression in

activated and terminally differentiated B cells, which constitutes the central aim of this

thesis. In order to achieve this aim, I defined the following pivotal research milestones

that are addressed in the indicated sections of the results part (part IV) in this thesis.

◦ Generation and characterization of novel c-Rel transgenic mouse models (section 1)

◦ Analyses of consequences of c-Rel overexpression in B cells (subsection 1.2 and 1.3)

and germinal center B cells (subsection 1.5) as well as elucidation of the mechanism

underlying the ensuing phenotypes (subsection 1.7.4 and 1.7.5)

◦ Quantification of c-Rel protein levels and identification of regulatory mechanisms of

c-Rel expression in B cell subsets (subsection 1.7 and 1.8)

◦ Investigation of effects of c-Rel downregulation in human B cell lymphoma cell lines

(section 2)
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Part III

Materials and Methods

1 Standard materials and methods

Standard essential methods of extraction, purification, quantification, analysis and ma-

nipulation of DNA, RNA and proteins were performed according to Sambrook et al. [1989]

and Sambrook and Russell [2001] unless otherwise specified in the following sections.

Plasmid DNA isolation and gel extraction was based on kits (Qiagen, Macherey-Nagel).

Reagents and materials for methods of molecular biology were purchased from New Eng-

land Biolabs, Promega, Metabion, Eurofins, GenScript and Thermo Fischer Scientific.

Chemicals were purchased from the following manufacturers: Applichem, Calbiochem,

Fluka, Merck, Roth and Sigma-Aldrich. Consumables were obtained from companies

including Corning, Costar, Braun, Eppendorf, Greiner bio-one, Sarstedt and TPP. Com-

panies of general lab equipment included Bio-Rad, Bosch, Eppendorf, Gilson, Heraeus,

Liebherr, Thermo Fisher Scientific and Zeiss.

2 Generation and characterization of mouse lines

2.1 Mouse generation

2.1.1 BAC transgenesis and construct verification

Several modifications of a bacterial artificial chromosome (BAC) containing the endoge-

nous mouse REL genetic locus but no other genes (BAC RP23-259L5) were performed

in SW102 bacteria: (1) insertion of flippase (Flp) recognition target (Frt) sites flanking

exon 9 by galactokinase (galK) selection; (2) insertion of a 3xflag-IRES(internal ribosomal

entry site)-hygromycin B-resistance cassette at the REL carboxy-terminus; (3) addition of

a CAG(CMV early enhancer/chicken β actin promoter)-loxP-Stop-neomycin/kanamycin-

resistance-loxP cassette combined with an HA-tag or GFP-tag to the first translated REL

exon.

Plasmid-based fragments were inserted by BAC recombination-mediated genetic engi-

neering (recombineering). Electrocompetent SW102 bacteria were transformed with the
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required BAC by electroporation (Bio-Rad GenePulser XCell, pre-set bacterial protocol,

0.2 cm cuvette, 25µF, 200 Ω, 2500 V) and subsequently plated on lysogeny broth (LB)

agar under selection with chloramphenicol. BAC-carrying bacteria were maintained at

30 ◦C and stored in glycerol stocks at -80 ◦C. For recombineering BAC-containing SW102

bacteria were grown up to an OD600 of 0.5-0.6. The bacterial suspension was heat-shocked

for 15 min at 42 ◦C and subsequently cooled down on icy water of 4 ◦C for 5 min. Bacte-

rial cells were washed twice in double-distilled water (H2Odd) with centrifugation steps at

3200 xg, 4 ◦C, for 5 min. The cell pellet was resuspended in H2Odd and used for electro-

poration with 200 ng of linearized gel-purified plasmid DNA (Bio-Rad GenePulser XCell,

pre-set bacterial protocol, 0.2 cm cuvette, 25µF, 200 Ω, 2500 V). Electroporated bacterial

cells were recovered in LB medium under shaking for 60 min at 30 ◦C and then plated on

LB agar with appropriate selection antibiotics and grown for 24-30 h at 30 ◦C.

BAC colonies were screened by polymerase chain reaction (PCR) (2.1.4). BAC DNA was

prepared using plasmid purification kit buffers (Qiagen) for small scale preparations or

the NucleoBond BAC100 kit (Macherey-Nagel) for large scale preparations.

To initially test the functionality of the BAC construct, mouse embryonic fibroblasts

(MEF) prepared from c-Rel-/- mice were complemented with the BAC construct (Invitro-

gen Lipofectamine) and essentially the same analysis methods were applied as described

in the following for embryonic stem (ES) cell screening and verification, including Cre

transduction (1µM TAT-Cre/HTNC (Protein core facility Max Planck Institute of Bio-

chemistry) in 1:1 PBS:serum-free culture medium (Gibco), 12 h), antibiotic selection and

adenoviral-based Flp expression followed by (GFP-)c-Rel protein expression analysis by

flow cytometry (2.3) and Western blot (3.3).

2.1.2 Embryonic stem cell culture

Selection, isolation, expansion and storage of ES cells was performed essentially as pub-

lished [Schmidt-Supprian et al., 2000]. C57BL/6 ES cells (Artemis Pharmaceuticals) were

grown on embryonic feeder (EF) cell layers that were pre-treated for mitotic inactivation

with mitomycin C (MMC, Sigma-Aldrich) and plated on gelatinized (gelatine solution,

Sigma-Aldrich) plates. ES cells were cultured in KnockOut DMEM (Gibco) supplemented

with serum (FBS special designed for embryonal stem cells, PAN), L-glutamine (Gibco),

non-essential amino acids (NEAA, Gibco), β-mercaptoethanol (Sigma-Aldrich), leukemia

inhibitory factor (LIF, culture supernatant) and GSK3 inhibitor (BIO/GSK3 IX, Bio-
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zol/Cayman chemical, or SB216763, Selleckchem). Trypsinization solution (Gibco) was

supplemented with chicken serum (Sigma-Aldrich).

20µg BAC DNA and 5µg CAG-IsceI plasmid DNA were introduced into C57BL/6 ES

cells for each BAC construct by electroporation (Bio-Rad Gene Pulser XCell, 240 V,

500µF). Transfected ES cells were kept under selection with G418 (Sigma-Aldrich) and

single clones were subjected to further verification. ES cell clones were first screened by

PCR (2.1.4) and Southern blot (2.1.3). Selected clones were Cre-transduced (1µM TAT-

Cre/HTNC (Protein core facility Max Planck Institute of Biochemistry) in ADCF-MAb

without L-glutamine (HyClone, Thermo Scientific), 4-5 h) and functionally validated by

hygromycin B (Sigma-Aldrich) selection and (GFP-)c-Rel protein expression was assessed

by flow cytometry (2.3) and Western blot (3.3).

Following blastocyst injection of extensively validated ES cell clones at the transgenic

core facility of the Max Planck Institute of Biochemistry, germline transmission of the

BAC transgenic loci was achieved.

2.1.3 Southern blot

Genomic DNA was digested with BamHI (NEB). DNA fragments were separated by

agarose gel electrophoresis and transferred to Amersham Hybond-XL membranes (GE

Healthcare Life Sciences) by alkaline capillary transfer. DNA fixation was performed

by UV-crosslinking. Southern blot probes were radioactively labelled based on random

primer labeling (Prime-it II Random Primer Labeling Kit, Agilent technologies) and fil-

tered to remove unincorporated nucleotides (Whatman Grade GF/C Glass Microfiber Fil-

ter, GE Healthcare Life Sciences). Hybridization with the labeled probe was performed

over night in Church hybridization buffer (0.17% phosphoric acid, 0.25 M Na2HPO4, 1%

BSA, 7% SDS, 1 mM EDTA, 100µg/ml salmon sperm ssDNA). Following stringency

washes (2x SSC, 0.1% SDS; 1x SSC, 0.1% SDS; 0.5x SSC, 0.1% SDS and further di-

lutions of SSC if required), signals were detected using a phosphorimager (FLA 7000, GE

Healthcare Life Sciences). Southern blot probes detecting the neomycin (673 bp; BamHI,

PstI fragment from pMMneoflox-8 [Kraus et al., 2001]) or hygromycin B (900 bp; HincII

fragment of the EM7-hygromycin-resistance locus) resistance cassette were applied. The

probe for BAC locus integration quantification (359 bp) was amplified by PCR from the

endogenous REL locus using a forward 5’-AAAAGAGCACCTCCCTCGTG-3’ and re-

verse 5’-ATATGTTTCACCTGCCCTCAG-3’ primer [Heise et al., 2014].
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2.1.4 PCR for ES cell screening and genotyping

The primers used for screening of ES cell clones and for mouse genotyping are listed in

Table 2. PCRs for screening covered both the amino-terminal CAG promoter as well as

the carboxy-terminal hygromycin B resistance locus. The newly established genotyping

PCRs detect not only the transgenic loci but also the endogenous REL locus. DNA for

genotyping was prepared from mouse earclip biopsies.

Table 2: Primers. Primers used for ES cell screening (S) or genotyping (G) are specified.
Sequences are displayed in 5’ to 3’ orientation. for, forward; rev, reverse.

Designation Purpose Direction Sequence

Exon9frt G, S for CTGCTGCAAGATTGTGGTAAGA

rev AATAGTGAGAGTGTGCGGGA

c-Rel/GFP-c-Rel G for CACTGCATTCTAGTTGTGGTTT

for CTCTCAGCAAGGACCCCAAC

for TGACGTAAGCAGCGGGAAAT

rev TGAAAGGCAGACCGTCCTAAC

CAG promoter S for ACCGGAGCGCGAAGAT

rev GAAAGGTATTGCAACACTCCCCT

rev ACTTGAAAGGCAGACCGTCC

Hygromycin B resistance S for TTGTATGGAGCAGCAGACGC

rev AGCAAGCACGTGGACTTTAG

2.2 Genetically modified mice

All mouse lines described in this work were maintained on a C57BL/6 background. Mice

were housed in specific pathogen-free animal facilities of the Max Planck Institute of

Biochemistry and the Klinikum rechts der Isar of the Technische Universität München.

All animal procedures were approved by the Regierung of Oberbayern.

The Frt-flanked exon 9 was removed to generate c-Rel∆Ex9 mice by crossing the c-Rel

BAC transgenic mice to an FLPe-deleter strain [Rodŕıguez et al., 2000]. The CD19Cre

and Cγ1Cre mouse lines used in this work have been described previously [Rickert et al.,

1997; Casola et al., 2006].

Young mice were sacrificed for experiments at 8 weeks to a maximum of 16 weeks of age.

Aged mice ranged between 409 and 571 days of age at day of analysis, with a median

age of 511 or 521 days for c-Rel CD19CreI/+ experimental and CD19CreI/+ control mice,

respectively.
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2.3 Flow cytometry and imaging flow cytometry

Single cell suspensions were prepared from mouse lymphoid organs and red blood cell

(RBC) lysis was performed using Gey’s solution. Blocking of Fc receptors to minimize

non-specific antibody binding was achieved by incubation with anti-mouse CD16/CD32

(93, eBioscience) preceding extra- or intracellular stainings of single cell suspensions with

antibodies listed in Table 3 or with peanut agglutinin (PNA, Vector Laboratories). Bi-

otinylated primary antibodies were visualized using streptavidin fluorochrome conjugates

(eBioscience, BioLegend). For intracellular stainings the FoxP3/transcription factor stain-

ing buffer set (eBioscience) was applied according to the manufacturer’s instructions.

7-AAD staining solution (7-amino-actinomycin D, eBioscience) or live/dead fixable near-

IR(infrared) dead cell staining kit (Invitrogen) were used for discrimination of viable cells.

Doublets were excluded based on FSC-H/A and SSC-W/A characteristics. DNA content

visualization for cell cycle analysis or nuclear staining in imaging flow cytometry was

based on DRAQ5 (Abcam). For staining of apoptotic cells, the CaspGlow active caspase

staining kit (fluorescein, BioVision) was combined with 7-AAD and the Annexin V apop-

tosis detection kit (APC, eBioscience). Active caspases were labelled in vitro according

to the CaspGlow kit instructions and the subsequent staining was performed following

the Annexin V detection kit procedure.

Samples were acquired on a FACS Canto II (BD Biosciences) flow cytometer or the Im-

ageStream MK II (Amnis Cooperation) imaging flow cytometer. Cell sorting was per-

formed on a FACS Aria II (BD Biosciences).

2.4 Magnetic activated cell sorting (MACS)

Single cell suspensions were pre-stained with monoclonal antibodies anti-IgD-biotin (11-

26c, eBioscience) or anti-CD138-PE (281-2, BioLegend) and subsequently labelled with

anti-Biotin or anti-PE magnetic microbeads (Miltenyi Biotec), respectively, or directly

labelled with anti-CD43 magnetic microbeads (Miltenyi Biotec) according to the manu-

facturer’s instructions. Samples were separated on an autoMACS Pro Separator (Miltenyi

Biotec) device using recommended programs for positive enrichment or negative depletion.
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Table 3: Flow cytometry antibodies. Antibodies used in flow cytometry are listed including
information on clone and manufacturer.

Specificity clone Manufacturer Specificity clone Manufacturer

AA4.1/CD93 AA4.1 eBioscience Bcl-6 K112-91 BD Biosciences

B220 RA3-6B2 eBioscience Blimp-1 5E7 BD Biosciences

CD1d 1B1 eBioscience CD95/Fas Jo2 BD Biosciences

CD4 RM4-5 eBioscience CXCR4/CD184 2B11 BD Biosciences

CD5 53-7.3 eBioscience CXCR5 2G8 BD Biosciences

CD8a 53-6.7 eBioscience CD138 281-2 BD Biosciences

CD11b/Mac1 M1/70 eBioscience CD21/CD35 7G6 BD Biosciences

CD11c N418 eBioscience IgA C10-1 BD Biosciences

CD19 1D3 eBioscience IgG1 A85-1 BD Biosciences

CD21/CD35 8D9 eBioscience IgG3 R40-82 BD Biosciences

CD23/FcεRII B3B4 eBioscience Igκ 187.1 BD Biosciences

CD25 3C7, PC61.5 eBioscience Igλ R26-46 BD Biosciences

CD38 90 eBioscience B220 RA3-6B2 BioLegend

CD43 eBioR2/60 eBioscience CD4 RM4-5 BioLegend

CD44 IM7 eBioscience CD19 6D5 BioLegend

CD62L MEL-14 eBioscience CD38 90 BioLegend

CD69 H1-2F3 eBioscience CD138 281-2 BioLegend

CD80 16-10A1 eBioscience Siglec-F E50-2440 BioLegend

CD86 GL1 eBioscience TCRβ H57-597 BioLegend

c-kit 2B8 eBioscience c-Rel REA397 Miltenyi Biotec

c-Rel 1RELAH5 eBioscience CAR Rmcb Millipore

GL7 GL7 eBioscience CAR sc-56892 Santa-Cruz

Gr1 RB6-8C5 eBioscience F4/80 CI:A3-1 AbD serotec

ICOS/CD278 7E.17G9 eBioscience IgM polyclonal Dianova

IgD 11-26c eBioscience

IgM II/41 eBioscience

IRF4 3E4 eBioscience

Ki-67 SolA15 eBioscience

MHC-II M5/114.15.2 eBioscience

PD-1/CD279 J43 eBioscience

TCRβ H57-597 eBioscience
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2.5 Primary mouse cell culture

Splenocytes or MACS-purified B cells – based on CD43+ cell depletion with a purity of

>85-90% – were cultured in RPMI 1640 medium supplemented with 5% FCS, NEAA,

sodium-pyruvate, HEPES, L-glutamine and penicillin/streptomycin (all Gibco). Stimuli

were added at the following final concentrations: anti-IgM 10µg/ml (Jackson ImmunoRe-

search Laboratories), anti-CD40 4µg/ml (HM40-3, eBioscience), CpG 0.1µM (Invivo-

Gen), LPS 20µg/ml (Sigma-Aldrich). In order to prolong the survival of GC B cells

in culture, the pan-caspase inhibitor Q-VD-OPh (R&D Systems) was added to the cul-

ture medium if indicated. For inhibition of the proteasome MG-132 (Z-Leu-Leu-Leu-al,

Sigma-Aldrich) was applied at indicated concentrations.

2.6 Western blot

Whole cell lysates for protein extracts of defined cell numbers were prepared by incubation

of cells for 30 min on ice in high salt whole lysis buffer (20 mM HEPES pH 7.9, 350 mM

NaCl, 20% glyerol, 1 mM MgCl2, 0.5 mM EDTA pH 8, 1% NP-40) containing 1 mM

DTT (dithiothreitol), 1 mM PMSF (phenylmethylsulfonylfluorid), 5 mM NaF (sodium

fluorid), 1 mM Na3VO4 (sodium orthovanadate), 8 mM β-glycerophosphate, 10µg/µl leu-

peptin and 10µg/µl aprotinin. Protein samples were separated by sodium dodecyl sul-

fate polyacrylamide gel electrophoresis (SDS-PAGE) and blotted (both Bio-Rad system)

to polyvinylidene fluoride (PVDF 0.45µM, Immobilon-P, Millipore) membranes that

were subsequently incubated with primary antibodies against c-Rel (sc-71, Santa-Cruz

Biotechnology), PLCγ2 (sc-407, Santa-Cruz Biotechnology) or flag (M2, HRP(horseradish

peroxidase)-conjugated, Sigma-Aldrich) and HRP-conjugated secondary antibodies (Di-

anova). Blots were developed using a chemiluminescent HRP substrate (Immobilon West-

ern, Millipore) and a digital imager (FLA 4000, GE Healthcare Life Sciences).

2.7 Immunization

Sheep red blood cells (SRBC, Oxoid Limited, Thermo Scientific) were washed three times

in PBS, adjusted to 109 cells/ml in PBS and 100µl per mouse were injected intraperi-

toneally. Mice were analyzed 10-12 days post-immunization.
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2.8 ELISA

Enzyme-linked immunosorbent assay (ELISA) to detect IgA, IgG2b, IgG2c and IgG3

mouse serum antibody subclasses was performed using kits (Bethyl Laboratories) accord-

ing to the manufacturer’s instructions. For determination of IgM and IgG1 serum titers

96-well ELISA plates (Nunc MaxiSorp) were coated with anti-mouse λ/κ (goat anti-mouse

lambda-UNLB and kappa-UNLB, Southern Biotech) and sample detection was based on

anti-mouse IgG1-biotin (biotin rat anti-mouse IgG1, A85-1, BD Pharmingen) or IgM-

biotin conjugate (biotin rat anti-mouse IgM, R6-60.2, BD Pharmingen) combined with

streptavidin-HRP (Invitrogen). Absolute concentrations were calculated with reference to

serial dilutions of mouse IgMκ or IgGκ isotype controls (BD Pharmingen). Assessment of

anti-nuclear antibodies (ANA) and cardiolipin antibodies was based on kits (Varelisa Pha-

dia) combined with anti-mouse IgG-HRP conjugate (goat anti-mouse IgG-HRP, Southern

Biotech) for detection. For quantification of rheumatoid factor 96-well ELISA plates

(Nunc MaxiSorp) were coated with rabbit IgG (Jackson ImmunoResearch Laboratories)

and mouse serum Igs were detected applying IgG kit components (Bethyl Laboratories)

or as described for IgM above. Tetramethylbenzidine (TMB) served as an HRP-substrate

(BD OptEIA, BD Biosciences).

2.9 Data analysis, statistical evaluation and visualization

Flow cytometry data were analyzed with FlowJo (Treestar). For cell cycle analysis the

FlowJo cell cycle platform selecting the Watson pragmatic model was applied. IDEAS

(Amnis Cooperation) software was used for analysis of imaging flow cytometry data. In

order to quantify nuclear translocation, data analysis was performed applying the nuclear

translocation wizard of the IDEAS software. ImageJ [Schneider et al., 2012] was used for

quantification of Western blot images. Calculations were performed in Excel (Microsoft).

GraphPad Prism (GraphPad Software) and R [Raschka, 2013; R Core Team, 2016] were

applied for graphical representation and statistical analysis. Where statistically significant

results are indicated, p values are provided in figure legends. Adobe Illustrator (Adobe

Systems) was employed for data presentation and figure preparation. This thesis was

typeset with LATEX.

59



A. Maike M. Kober Materials and Methods

3 Manipulation of human B cell lymphoma cell lines

3.1 Generation of shRNA constructs by Golden Gate cloning

In the present thesis, transposon-based expression constructs that allow the induction

of shRNAs by the tetracycline repressor (tetR)/doxycycline system were applied [Klein-

hammer et al., 2011]. For this approach, constitutive expression of the tetR by a CAG

promoter and inducible shRNA expression under the control of an H1 promoter containing

a tet operator (tetO) sequence were combined on the same DNA construct. Addition-

ally, these constructs carry a puromycin-resistance-2A-Thy1.1-cassette linked to CAG-

controlled tetR expression by an IRES sequence which allows stable selection and expres-

sion of the surface marker Thy1.1 connected via a self-cleaving 2A site [Szymczak et al.,

2004; Kim et al., 2011]. The transposases hyperactive piggyBac (hyPB) and sleeping

beauty (sb100x) were used to facilitate stable genomic integration of the shRNA con-

structs [Mátés et al., 2009; Yusa et al., 2011]. In order to enable highly efficient insertion

of shRNAs using Golden Gate cloning that is based on a single restriction-ligation reaction

[Engler et al., 2008, 2009; Engler and Marillonnet, 2011], modifications of the knockdown

construct were introduced by CloneEZ PCR Cloning Kit (GenScript) and Golden Gate

cloning techniques. Sequences of shRNAs used in the present study are listed in Table 4.

Table 4: shRNA knockdown sequences. Sequences of shRNAs used for knockdown in this
thesis are listed. shRNAs targeting c-Rel [Barbie et al., 2009; Meylan et al., 2009] and controls
[Barbie et al., 2009; Cheung et al., 2011] have been published previously.

Designation Sequence

shcRel 1 GCCTCATCCTCATGATTTA

shcRel 2 CCAGGAAGTTAGTGAATCTAT

shcRel 3 CTTCAGTTGTGCAGATAACAG

shGFP 1 AAGCTGGAGTACAACTACAT

shGFP 2 ACAACAGCCACAACGTCTATA

shLacZ TCGTATTACAACGTCGTGACT

3.2 Cell culture: transfection, selection and induction

The PMBCL cell lines MedB-1 and Karpas1106 as well as the cHL cell lines L-428 and

U-HO1 were maintained in RPMI 1640 medium (Gibco) supplemented with 20% FCS,

sodium-pyruvate, HEPES, L-glutamine and penicillin/streptomycin (all Gibco) at 37 ◦C,
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5% CO2.

For the generation of stable cell pools carrying the shRNA knockdown constructs, cell lines

were transfected and subsequently subjected to antibiotic selection. The cHL lymphoma

cell lines were transfected using Amaxa Nucleofector technology (Lonza), while for the

PMBCL cell lines suitable transfection conditions were established using the Neon trans-

fection system (Invitrogen, Thermo Fisher Scientific). Detailed information is provided

in Table 5.

Knockdown constructs were co-transfected with PGK(phosphoglycerate kinase)-sb100x

or CMV(cytomegalovirus)-hyPB transposase expression plasmids at ratios of 1:10 or 1:3.

Stable cell pools were selected using appropriate puromycin (InvivoGen) concentrations.

In part, independent cell pools were generated for the same knockdown construct. For

induction of shRNA expression, cells were counted and seeded in medium containing

doxycycline (Sigma-Aldrich) at indicated concentrations.

Table 5: Transfection. Transfection methods for human lymphoma cell lines.

Cell line System cell number DNA Parameters

MedB-1 Neon 2.5x106 10µg 100µl buffer R, pulse: 1400 V, width 10 ms, # 3

Karpas1106P Neon 2.5x106 10µg 100µl buffer R, pulse: 1500 V, width 10 ms, # 3

L-428 Amaxa 2x106 5µg 100µl buffer V, T13

U-HO1 Amaxa 2x106 5µg 100µl buffer V, X-001

3.3 Western blot

Whole cell lysates for protein extracts were prepared by incubation of cells for 30 min

on ice in RIPA buffer (50 mM Tris pH 7.5, 0.25% sodium deoxycholate, 150 mM NaCl,

1% NP-40) containing 1 mM DTT, 1 mM PMSF, 5 mM NaF, 1 mM Na3VO4, 8 mM β-

glycerophosphate, 10µg/µl leupeptin and 10µg/µl aprotinin. Protein concentrations were

determined using the Pierce BCA (bicinchoninic acid assay) protein assay kit (Thermo

Fisher Scientific) according to the manufacturer’s instructions. Protein samples of de-

fined amounts were separated by SDS-PAGE and blotted (both Bio-Rad system) to PVDF

(0.45µM, Immobilon-P, Millipore) membranes that were subsequently incubated with pri-

mary antibodies against c-Rel (sc-71, Santa-Cruz Biotechnology) and tubulin (MAB1864,

YL1/2, Millipore) and HRP-conjugated secondary antibodies (Dianova). Blots were de-

veloped using a chemiluminescent HRP substrate (Immobilon Western, Millipore) and a
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digital imager (FLA 4000, GE Healthcare Life Sciences).

3.4 Flow cytometry

Cells were harvested, washed and single cell suspensions were stained using primary an-

tibodies against Thy1.1 (HIS51) and c-Rel (1RELAH5) (eBioscience). For intracellular

stainings the FoxP3/transcription factor staining buffer set (eBioscience) was applied ac-

cording to the manufacturer’s instructions. 7-AAD staining solution (eBioscience) or

live/dead fixable near-IR dead cell staining kit (Invitrogen) were used for discrimination

of viable cells. Doublets were excluded based on FSC-H/A and SSC-W/A characteris-

tics. Samples were acquired on FACS Calibur and FACS Canto II (BD Biosciences) flow

cytometers.

3.5 Cell count assay

Cells in medium containing 0.5 or 1µg/ml doxycycline or without doxycycline were seeded

in triplicates into a 96-well-plate. Assessment of viable cell numbers was performed ev-

ery day or every second day following treatment start using a Guava ViaCount (Guava

Technologies, Merck Millipore). Discrimination of viable cells was based on staining cells

with propidium iodide (PI, Sigma-Aldrich) and LDS751 (Invitrogen).

3.6 Competitive co-culture assay

Equal numbers of the unmodified original cell line (MedB-1, L-428) and cell pools de-

rived from that original cell line stably expressing knockdown constructs were seeded in

medium with 0.5µg/ml doxycycline or without doxycycline at day 0 for defined time pe-

riods. Ratios of Thy1.1-expressing and non-Thy1.1-expressing cells were assessed by flow

cytometry-based surface staining (3.4) starting from day 1 and every second following day

until day 11.

3.7 Cell cycle analysis

For cell cycle analysis, cells were treated with 0.5µg/ml doxycycline or left untreated for

defined time periods. After harvesting and washing cells in PBS, cells were resuspended

in 300µl PBS and 700µl ethanol were added dropwise while slowly vortexing the cell
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suspension to achieve a final concentration of 70% ethanol. Samples were placed at 4 ◦C

for 60 min or overnight. For longer storage periods, the cell suspension was stored at

-20 ◦C. After incubation, cells were pulse centrifuged followed by regular centrifugation,

washed in PBS and resuspended in staining solution containing 50µg/ml PI (Sigma-

Aldrich) and 100µg/ml ribonuclease A (RNase A, Sigma-Aldrich). After incubation for

30 min at 37 ◦C, cells were directly acquired on a FACS Canto II (BD Biosciences) flow

cytometer.

3.8 Active caspase assay

For assessing apoptotic cell death, the CaspGlow active caspase staining kit (fluorescein,

BioVision) was applied. Cells were treated for 4 d with 0.5µg/ml doxycycline or left

untreated. For active caspase detection, cells were stained with FITC-VAD-FMK in

RPMI supplemented with 1% FCS (Gibco) for 60 min at 37 ◦C. Cells were washed twice

in wash buffer provided in the kit and the procedure was continued as described for flow

cytometry (3.4).

3.9 Data analysis and visualization

Data analysis and representation was performed using the same software as listed for

methods of generation and characterization of mouse lines (2.9).
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Part IV

Results

1 The first conditional c-Rel transgenic mouse mod-

els to investigate enhanced c-Rel function in B cells

1.1 Generation of novel c-Rel transgenic mouse lines

I used bacterial artificial chromosome (BAC) transgenesis for generation of conditional

c-Rel transgenic mouse lines. Several modifications of a BAC lacking other genes than

the endogenous mouse REL genetic locus were performed (Figure 5A). To drive strong

transgene expression on a conditional Cre recombinase-mediated basis, a CMV early en-

hancer/chicken β actin (CAG)-promoter followed by a loxP-site-flanked neomycin/kana-

mycin-resistance stop cassette was inserted upstream of an HA-tag added to the first trans-

lated REL exon. Exon 9 was flanked with Flp recombinase-recognizable Frt sites. At the

carboxy-terminal part of REL, a 3xflag-IRES-hygromycin-resistance cassette was inserted

to enable selection of the intact modified locus. In addition, a second version based on

the same construct allowing expression of a GFP-c-Rel fusion protein was generated. The

BAC constructs were electroporated into C57BL/6 ES cells and neomycin resistant clones

were selected, isolated, expanded and stored essentially as published [Schmidt-Supprian

et al., 2000]. ES cell clones were verified for functional c-Rel or GFP-c-Rel protein expres-

sion upon Cre-transduction and for carrying single BAC integrants quantified by Southern

blot (Figure 5B-D). Suitable ES cell clones were injected into blastocysts for chimera gen-

eration and germline transmission was obtained resulting in 3 transgenic mouse strains:

2 c-Rel and 1 GFP-c-Rel mouse line. Conditional GFP-c-Rel transgenic mice were crossed

to the CD19Cre mouse line [Rickert et al., 1997] for B cell-specific GFP-c-Rel transgene

expression and further functional validation. As expected [Schmidt-Supprian et al., 2007],

transgenic GFP-c-Rel expression is induced with B cell maturation in the bone marrow

and spleen of GFP-c-Rel CD19CreI/+ (I, insertion; +, wild-type) mice, but GFP-c-Rel is

not expressed in T cells (Figure 6A and 6B) or other cell types. GFP-c-Rel is expressed

in mature B cell subtypes in immune organs, including spleen, lymph nodes, mesenteric

lymph nodes, Peyer’s patches, peritoneal cavity as well as thymus (Figure 6C).
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Figure 5: Strategy and generation of novel c-Rel transgenic mouse models. (A) The endoge-
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1.2 Developmental and naive mature B cell physiology is largely

unaltered

Initial analyses of conditional c-Rel transgenic mice of the 3 germline-transmitted clones

crossed to the CD19Cre mouse line showed that in the B lineage c-Rel protein expression

levels slightly differ for these clones, despite comparable c-Rel levels in ES cells and tail-

tip fibroblasts (Figure 5D-E). While the two c-Rel clones are characterized on average

by a high or intermediate c-Rel protein level, respectively, mice of the GFP-c-Rel line

express total c-Rel levels comparable with the intermediate c-Rel line. The extent of

c-Rel expression is discussed in detail in subsection 1.7. To investigate the consequences

of c-Rel overexpression, I focused on analyzing conditional c-Rel transgenic mice of the

high c-Rel level-expressing clone in this thesis. These c-Rel CD19CreI/+ mice are compared

to heterozygous CD19CreI/+ littermate controls for all subsequent analyses.

Young mice develop normal and do not show alteration in weight when sacrificed for

analysis of general immune organs by flow cytometric characterization at an age of 8-

16 weeks (Figure S1). B cell lymphopoiesis in the bone marrow of c-Rel CD19CreI/+

mice is unaltered (Figure S2A). No significant difference in spleen weight was observed

and immature and mature splenic B cell numbers are not changed. However, within the

immature transitional B cell subsets there is a trend for a lower percentage and cell number

of transitional 1 (T1) B cells accompanied by slightly higher percentages and cell numbers

of T2 and T3 subsets (Figure 7A). There is no difference with regard to mature follicular

(FO) or marginal zone (MZ) B cells (Figure 7B). Within the marginal zone subset of

B cells one can distinguish CD23high MZ precursor cells. There is a trend for a higher

frequency and cell number of these MZ precursor cells in c-Rel CD19CreI/+ mice. Both

transitional as well as MZ precursor B cell subsets rely on gating on CD23. Quantification

of CD23 surface expression demonstrates that CD23 levels are in general enhanced in

both immature and mature B cells of c-Rel CD19CreI/+ mice (Figure 7). Accordingly,

the observed trends in transitional and MZ B cell subsets could be a consequence of

differential CD23 expression. In addition, no significant changes were observed in B cells

of the peritoneal cavity (Figure S2B) or thymic B cells (Figure S3).

Interestingly, while splenic lymphocyte and B cell numbers are equal, there is a trend

for higher lymphocyte and B cell numbers in lymph nodes and gut-associated mesenteric

lymph nodes and the lymphoid follicle structures known as Peyer’s patches (Figure 9).
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1.3 c-Rel overexpression causes expansion of GC B cells and

plasma cells

1.3.1 Expansion of germinal center B cells

As the developmental and naive mature B cell physiology is largely unaltered in

c-Rel CD19CreI/+ mice, I further investigated post-activation and terminal differentiated

B cell stages. Remarkably, spontaneous germinal center (GC) B cells are substantially

expanded in young, naive c-Rel CD19CreI/+ mice. Both GC B cell percentages and num-

bers are significantly higher in peripheral immune organs, including spleen, lymph nodes,

mesenteric lymph nodes and Peyer’s patches (Figure 10A-C). For these central experi-

ments c-Rel mice not carrying the CD19Cre allele were included as additional controls to

exclude an influence of BAC locus integration site.

To further characterize the c-Rel transgenic GC B cells, I quantified intracellular expres-

sion of the pivotal GC B cell transcription factor Bcl-6 [Victora and Nussenzweig, 2012].

Bcl-6 protein levels are indistinguishable in c-Rel CD19CreI/+ and CD19CreI/+ control

mice, demonstrating that these cells are valid GC B cells (Figure 10D). Moreover, these

c-Rel CD19CreI/+ GC B cells are positive for stainings with the GC B cell markers GL7

and PNA as expected (Figure S4). GC B cells are polarized into dark zone (DZ) cen-

troblasts and light zone (LZ) centrocytes that can be distinguished by surface expression

of CXCR4 and CD86. DZ GC B cells are CXCR4highCD86low, while LZ GC B cells are

CXCR4lowCD86high [Victora et al., 2010]. c-Rel CD19CreI/+ GC B cells show a DZ/LZ

marker expression pattern comparable to CD19CreI/+ controls, albeit with a trend for a

higher proportion of LZ GC B cells in c-Rel transgenic GCs resulting in a lower DZ/LZ

ratio (Figure 11).

Analysis of various cell surface activation markers on directly ex vivo isolated B cells

did not reveal significant differences between c-Rel CD19CreI/+ and CD19CreI/+ con-

trols (Figure S5A). Also upon over night stimulation with anti-IgM, anti-CD40, CpG or

LPS, activation markers are comparably upregulated on purified B cells isolated from c-

Rel CD19CreI/+ and CD19CreI/+ control mice. Only MHC-II levels are marginally higher

in c-Rel CD19CreI/+ mice (Figure S5B). The similar activation marker expression provides

evidence that B cells in c-Rel CD19CreI/+ mice are not generally hyperactivated, but that

the observed phenotype selectively affects GC B cells.
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Figure 10: Expansion of GC B cells in c-Rel CD19CreI/+ mice. (A) Representative flow cytom-
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plotted. Bars and numbers below graphs are median values. (B) Representative flow cytometry plots
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1.3.2 Activated T cells

I found that B cell-specific c-Rel transgene expression has small effects on distinct T cell

subpopulations in vivo. While frequencies of CD4+ and CD8+ T cell populations are

largely unaltered in c-Rel CD19CreI/+ mice, there is a trend for a lower proportion of

central memory like (CML) and higher percentages of effector memory like (EML) T cells

within the CD4+ and CD8+ T cell subsets (Figure 12A and 12B and Figure S6-S10).

This trend also translates into elevated effector memory like T cell numbers (Figure 12C

and Figure S6C, S8 and S10). In lymph nodes and mesenteric lymph nodes, numbers

of CD4+CD25- and CD8+ as well as CD4+CD25+ T cells including the regulatory T cell

(Treg) pool are generally increased (Figure S7 and S9) reflecting the trend for higher total

lymphocyte cell numbers observed in c-Rel CD19CreI/+ mice (Figure 9).

Moreover, specialized follicular helper T cells (Tfh) of the GC are consistently expanded

in c-Rel CD19CreI/+ mice, although reaching a statistical significant extent only in lymph

nodes (Figure 13A and 13B). Tfh cells are characterized by high expression of ICOS that is

slightly augmented in Tfh cells of c-Rel CD19CreI/+ mice (Figure 13C and 13D). A similar

tendency is in part observed for the activation marker CD69 (Figure S11). These find-

ings indicate that T cells are not strongly activated in c-Rel CD19CreI/+ mice in general,

while the moderately elevated Tfh cell population could be secondary to the significantly

expanded GC B cell phenotype in particular.
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1.3.3 Expansion of class-switched plasma cells

During B cell terminal differentiation, GC B cells can give rise to plasma cells [Nutt et al.,

2015]. Remarkably, plasmablasts or plasma cells are expanded two-fold in both spleen

and bone marrow of c-Rel CD19CreI/+ mice (Figure 14A and 14B). The protein expression

level of two central mediators of plasma cell fate, IRF4 and Blimp-1, is comparable in

c-Rel CD19CreI/+ and CD19CreI/+ control mice, thus validating the plasma cell identity

of this expanded population (Figure 14C and 14D).

Analysis of plasma cell immunoglobulin (Ig) subtypes revealed that c-Rel transgenic

plasma cells are largely class-switched. The proportion of unswitched IgM-expressing

plasma cells is significantly lower than in controls, whereas the frequency of switched

IgA- and IgG1-positive plasma cells is dramatically increased. Especially IgG1-expressing

plasma cells are almost not detectable in CD19CreI/+ control mice (≤ 0.5%), but reach

7.4% and 10% in spleen and bone marrow of naive c-Rel CD19CreI/+ mice, respectively.

In contrast, the percentage of the plasma cell population expressing IgG3 is reduced in

c-Rel CD19CreI/+ mice (Figure 15A and 15B). The higher percentage of class-switched

plasma cells corresponds to increased serum Ig titers of IgG1, IgG2c, IgG2b and to a

lesser extent IgA coinciding with a decrease in IgM serum titer in naive c-Rel CD19CreI/+

mice. Serum IgG3 titers are not significantly changed (Figure 15C). The class-switched

phenotype of c-Rel transgenic plasma cells suggests that this population is of GC origin.

Interestingly, there is a trend for detectable serum levels of anti-nuclear antibodies (ANA)

and antibodies against cardiolipin in young (age range 8-13 weeks) c-Rel CD19CreI/+ mice

(Figure 15D).

In order to evaluate whether the plasma cell expansion driven by c-Rel in vivo can be

recapitulated in vitro, I performed an in vitro assay of plasmablast differentiation. In the

presence of LPS, c-Rel CD19CreI/+ splenocytes display a slight trend for stronger plas-

mablast differentiation than CD19CreI/+ controls (Figure S12). This indicates that the

enlarged plasma cell population in vivo is most likely related to the expanded spontaneous

GCs.
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1.4 Validation of phenotype in GFP-c-Rel CD19CreI/+ mice

Detailed analyses of GFP-c-Rel CD19CreI/+ mice further corroborate the phenotypes

caused by c-Rel overexpression. As in c-Rel CD19CreI/+ mice, B cell development and

maturation as well as activation status is largely unaltered in GFP-c-Rel CD19CreI/+

mice (Figure S13-S16); while B cell-specific GFP-c-Rel expression leads to an expansion

of GC B cells (Figure 16 and Figure S17), Tfh cells (Figure S18) and plasma cells (Fig-

ure S19 and S20) that is comparable to the consequences of c-Rel overexpression in B cells.

These results not only validate the observed phenotypes in an independently generated

c-Rel transgenic mouse line but also substantiate that the GFP-c-Rel fusion does not

impair c-Rel function in vivo. Accordingly, this novel GFP-c-Rel transgenic mouse line

constitutes a useful tool for investigating c-Rel function.
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1.5 Induced GC reactions and acute expression of c-Rel at the

GC B cell stage

1.5.1 Expansion of GC B and plasma cells upon immunization

As delineated above, c-Rel transgene expression in B cells enhances spontaneous GC for-

mation and plasma cell numbers. In order to investigate the effects on GC B cells and

plasma cells in the context of induced immune reactions, I immunized c-Rel CD19CreI/+

mice intraperitoneally with sheep red blood cells (SRBC) and analyzed spleens of these

mice 10-12 days post-immunization. Although spleen weight and total B cell numbers

are unchanged, GC B cells are increased in spleens of c-Rel CD19CreI/+ mice also upon

immunization (Figure 17A). These GC B cells express high levels of Bcl-6 as expected

(Figure 17B) and the polarization into LZ and DZ GC B cells is consistent with the dis-

tribution in spontaneous GCs (Figure S21A). This phenotype is again accompanied by a

trend for higher Tfh cell numbers (Figure S21B).

Plasma cells strikingly accumulate in spleens of c-Rel CD19CreI/+ mice also upon immu-

nization (Figure 17C). This plasma cell population is composed of a significantly lower

proportion of unswitched IgM-expressing cells and a higher frequency of IgG1- and IgA-

class-switched plasma cells (Figure 17D).

These results demonstrate that also during induced GC reactions transgenic c-Rel ex-

pression results in elevated GC B cell and plasma cell numbers resembling the phenotype

in naive mice. Intriguingly, although the extent of enhanced GC formation upon immu-

nization is slightly lower than in spontaneous GC reactions, the significant expansion of

plasma cells is at least of equivalent magnitude. This finding indicates that c-Rel indeed

could have an independent role in driving plasma cell generation or maintenance and that

the accumulated plasma cell population might not merely be due to excessive GCs.
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Figure 17: Expansion of splenic GC B cells and plasma cells in SRBC-immunized
c-Rel CD19CreI/+ mice. Mice were immunized with SRBC and spleens were analyzed 10-12 days
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1.5.2 c-Rel Cγ1CreI/+ mice phenocopy c-Rel CD19CreI/+ mice

I next asked the question whether developmental timing of c-Rel overexpression is a

relevant factor for the observed phenotype. Crossing c-Rel transgenic mice to the Cγ1Cre

mouse line allows Cre recombinase expression and, thus, acute c-Rel transgene induction

specifically in GC B cells [Casola et al., 2006].

Remarkably, GC B cells are expanded in spontaneous GCs in spleen, lymph nodes, mesen-

teric lymph nodes and Peyer’s patches of c-Rel Cγ1CreI/+ mice (Figure 18). Consistent

with findings presented above, there is a trend for a higher proportion of LZ GC B cells in

c-Rel Cγ1CreI/+ mice (Figure S22). This phenotype coincides with higher cell numbers of

Tfh cells (Figure S23 and S24). As in c-Rel CD19CreI/+ mice, plasma cell percentages and

cell numbers are significantly higher in c-Rel Cγ1CreI/+ mice compared to controls (Fig-

ure 19). Furthermore, SRBC-immunization of c-Rel Cγ1CreI/+ mice shows a comparable

trend (Figure S25).

In conclusion, c-Rel Cγ1CreI/+ mice substantially phenocopy c-Rel CD19CreI/+ mice. The

characteristic properties of the present conditional c-Rel transgenic mouse model appear to

be independent of c-Rel transgene induction before or during GC reactions. These findings

indicate that the phenotype is not caused by alterations during initial GC formation but

rather originates from effects influencing the maintenance of ongoing GC reactions.
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Figure 18: Expansion of GC B cells in c-Rel Cγ1CreI/+ mice. (A) Representative flow cytom-
etry plots of GC B cells. Numbers are median percentages of GC B cells of total B cells. (B) Percentages
of GC B cells of total B cells and (C) GC B cell numbers. Individual data points obtained in 2 inde-
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c-Rel and Cγ1CreI/+ mice. * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001, unpaired t test. GCB
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1.6 Aged c-Rel CD19CreI/+ mice

Given the high frequency of REL gene locus amplifications in human B cell lymphomas of

GC origin (see introduction subsection 3.2) and the expansion of GC B cells and plasma

cells in young c-Rel CD19CreI/+ mice, I monitored aged mice in order to investigate

whether c-Rel overexpression could act as a potential driver of lymphomagenesis or au-

toimmunity. c-Rel CD19CreI/+ and CD19CreI/+ control mice were analyzed at a median

age of 511 or 521 days, respectively (age range 409-571 days).

There was no visible difference between c-Rel CD19CreI/+ and CD19CreI/+ control mice

with regard to general appearance of organs. Spleen weight and total cell numbers of

analyzed organs are largely unaltered in aged c-Rel CD19CreI/+ mice compared to con-

trols, except for a trend for higher cell numbers in thymi of c-Rel CD19CreI/+ mice (Fig-

ure S26). B cell populations in spleens, lymph nodes and mesenteric lymph nodes are

not significantly changed (Figure S27). Both GC B cell and plasma cell populations of

aged c-Rel CD19CreI/+ mice still show a trend for enhanced cell numbers in spleen, lymph

nodes and mesenteric lymph nodes or spleen and bone marrow, respectively (Figure S28),

albeit not to the significant extent that characterizes young animals.

Comparable to findings in young mice, the proportion of class-switched IgG1-expressing

plasma cells is substantially increased in aged c-Rel CD19CreI/+ mice, which is accom-

panied by lower percentages of unswitched IgM-expressing plasma cells (Figure 20A). In

accordance with this observation, IgG1 serum titers are significantly higher in aged c-

Rel CD19CreI/+ mice and there is a trend for elevated serum Ig titers of IgG2c, IgG2b

and IgA, while IgM and IgG3 are slightly lower (Figure 20B). Interestingly, analyses of

autoantibodies demonstrate that the trend for detectable ANA titers in young mice is

established as significantly augmented ANA titers in aged mice, while anti-cardiolipin

antibodies are not significantly different from controls. In addition, rheumatoid factor

(RF) of the IgG subtype but not the IgM subtype is detectable in c-Rel CD19CreI/+ mice

(Figure 20C). These signs of class-switched autoantibody production suggest that the

spontaneous GCs in c-Rel CD19CreI/+ mice are driven at least in part by self-antigens.

87



A. Maike M. Kober Results

0

1

2

3

4

0

1

2

3

4

0

20

40

60

80

100

0

20

40

60

80

100

1

10

100

1000

10000

100000

IgM IgG1 IgG2c IgG2b IgG3 IgA

na
ive

 Ig
 tit

er
 [µ

g/
m

l]

B c-Rel CD19Cre I/+CD19Cre I/+

SPL

 Ig
M

+  p
la

sm
a 

ce
lls

 [%
]

73 43
 Ig

G
1+  p

la
sm

a 
ce

lls
 [%

]
0.2 3.4

BM

0.2 1.252 26

A c-Rel CD19Cre I/+CD19Cre I/+

****
SPL BM

0

2

4

6

0

3

6

9

12

ANA

ab
so

rb
an

ce
 4

50
nm

anti-cardiolipin
C c-Rel CD19Cre I/+CD19Cre I/+

****
RF IgG RF IgM

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.5

1.0

1.5

0.23 1.36 0.42 0.68 0.004 0.154 0.120 0.135

***

* * ***

***

Figure 20: Class-switched autoantibody production in aged c-Rel CD19CreI/+ mice. (A)
Percentages of IgM- and IgG1-expressing plasma cells determined by intracellular flow cytometry. Indi-
vidual data points and bars representing median values are plotted. Data were obtained in 8 independent
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1.7 c-Rel levels are B cell subtype-dependent and correlate with

cellular expansion

1.7.1 c-Rel is upregulated in GC B cells and decreased in plasma cells

In order to comprehensively characterize the novel conditional c-Rel transgenic mouse

model and to elucidate the mechanisms underlying the selective impact on terminally

differentiated B cell subsets, I performed detailed analyses of c-Rel protein levels.

To calculate the proportion of transgenic c-Rel of total c-Rel, Western blot was applied

as it allows size-dependent resolution and hence distinction of endogenous c-Rel from the

3xflag-tag-containing c-Rel transgene. Quantitative Western blot analysis demonstrates

that endogenous c-Rel levels are on average comparable in splenic B cells or total cellular

populations of lymph nodes, mesenteric lymph nodes or Peyer’s patches isolated from

CD19CreI/+ or c-Rel CD19CreI/+ mice (Figure 21A and 21B). Transgenic c-Rel accounts

for 24% of total c-Rel in splenic B cells. With regard to the organs for which total cells

were analyzed, the proportion of c-Rel transgene increases from 27% in lymph nodes and

31% in mesenteric lymph nodes to 42% in Peyer’s patches corresponding to the increase of

GC B cell percentages in these organs (Figure 21C, compare to Figure 10 for percentage

of GC B cells).

Given the higher contribution of transgenic c-Rel to the total c-Rel pool in organs with

higher proportions of GC B cells, I quantified c-Rel protein expression at single cell level

by intracellular flow cytometry. Intriguingly, c-Rel levels are highly upregulated in GC

B cells in comparison to naive B cells in spleen and lymph nodes as well as gut-associated

mesenteric lymph nodes and Peyer’s patches. In sharp contrast, c-Rel levels are dramati-

cally decreased in plasma cells. These marked B cell subtype-dependent switches in c-Rel

protein levels affect both CD19CreI/+ control and c-Rel CD19CreI/+ transgene-expressing

mice (Figure 22). Consistent with the total c-Rel level in isolated splenic B cells quantified

by Western blot, B cell-specific c-Rel transgene expression leads to only marginally higher

total c-Rel levels in naive B cells (≤ 1.3-fold), whereas total c-Rel levels are 2-3-fold higher

in transgenic GC B cells compared to control GC B cells (Figure 22A and 22B). The c-Rel

level in transgenic plasma cells is on average 1.6-fold higher and reaches roughly the level

observed in naive control B cells (Figure 22C). Interestingly, within the population of GC

B cells c-Rel levels are generally higher in LZ than in DZ GC B cells irrespective of the

genotypes (Figure 22B).
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Figure 21: Quantification of c-Rel transgene levels. (A) Representative Western blot images and
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Figure 22: c-Rel levels are highly upregulated in GC B cells and decreased in plasma cells.
Intracellular flow cytometry data of c-Rel protein levels in B cell subpopulations. Median fluorescence
intensities (MFI) were normalized to CD19CreI/+ controls. Individual data points obtained in ≥ 3 in-
dependent experiments and bars representing geometric means are plotted. (A) c-Rel level in B cells
and GC B cells. MFIs were normalized to non-GC B cells of CD19CreI/+ controls. Geometric mean
values are given for c-Rel CD19CreI/+ and CD19CreI/+ populations below graphs. The shaded part of
the bars represents the fraction of total c-Rel that is additionally present in transgene-expressing mice
in comparison to the respective control subpopulation. (B) c-Rel level in DZ and LZ of GC B cells.
MFIs were normalized to GC B cells of CD19CreI/+ controls. (C) c-Rel level in plasma cells. MFIs were
normalized to splenic B cells (non-PC) of CD19CreI/+ controls. Geometric mean values are given below
graphs. The shaded part of the bars represents the fraction of total c-Rel that is additionally present in
transgene-expressing mice in comparison to the respective control subpopulation. (D) Representative his-
tograms illustrate c-Rel levels in indicated B cell subpopulations. GCB CD19+/B220+CD95highCD38low;
B (non-GCB) CD19+/B220+CD95-CD38high; DZ CXCR4highCD86low; LZ CXCR4lowCD86high; plasma
cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; BM, bone marrow; SPL, spleen; LN, lymph
nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Total c-Rel levels in GC B cells and plasma cells of induced GC reactions upon SRBC-

immunization or acute c-Rel transgene expression in c-Rel Cγ1CreI/+ mice are equivalent

to c-Rel levels of spontaneous GC reactions (Figure S29). Flow cytometric assessment of

GFP fluorescence signals in GFP-c-Rel CD19CreI/+ mice demonstrates that GFP-c-Rel

levels follow the same switches in expression strength as c-Rel levels: intermediate ex-

pression of GFP-c-Rel in naive B cells, higher levels in GC B cells and lowest levels in

plasma cells. Moreover, GFP fluorescence of GFP-c-Rel protein is of higher intensity in

LZ GC B cells than in DZ GC B cells mirroring the general findings of c-Rel levels in

these polarized GC B cell states (Figure 23). This pattern is also reproduced by total c-

Rel levels in GFP-c-Rel CD19CreI/+ mice measured by intracellular flow cytometric c-Rel

staining (Figure S30). Furthermore, c-Rel and GFP-c-Rel levels in in vitro-differentiated

plasmablasts are lower than in non-plasmablast cells, illustrating that the downregula-

tion of c-Rel in plasma cells is a steady feature of this differentiated state that can be

recapitulated in vitro (Figure S31).

Expression of c-Rel is induced upon stimulation [Grumont and Gerondakis, 1994; Carrasco

et al., 1994; Damdinsuren et al., 2010] (see also introduction section 2). Upon treatment

for 60 min, c-Rel is upregulated more than 2-fold by selective stimuli in B cells and GC

B cells but almost unchanged in plasma cells, except for a marginal responsiveness to-

wards LPS treatment. Although c-Rel levels are still higher in GC B cells and plasma

cells of c-Rel CD19CreI/+ mice compared to CD19CreI/+ controls (Figure S32A), the rel-

ative induction compared to unstimulated cells within the control or transgenic genotype

are comparable (Figure S32B). Total c-Rel levels are strongly elevated also upon over

night treatment with the same stimuli compared to unstimulated controls in isolated

B cells of both c-Rel CD19CreI/+ and CD19CreI/+ mice (Figure S32C). GFP fluorescence

signals are to a certain degree enhanced upon over night stimulation compared to the un-

stimulated control population in GFP-c-Rel CD19CreI/+ mice (Figure S32D). However, a

partial influence of the increased cell size on the fluorescent signal cannot be excluded.

Consequently, stimulation has a strong effect on total c-Rel levels as expected, but no

dramatic additional effect with regard to transgenic c-Rel is observed.
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Figure 23: GFP fluorescence signals in GFP-c-Rel CD19CreI/+ mice follow the same ex-
pression pattern as c-Rel levels. Flow cytometry data of GFP-c-Rel protein levels assessed by
GFP fluorescence signal in B cell subpopulations of GFP-c-Rel CD19CreI/+ mice. Median fluorescence
intensities (MFI) were normalized. Individual data points obtained in ≥ 2 independent experiments
and bars representing geometric means are plotted. (A) GFP-c-Rel level in B cells and GC B cells in-
cluding LZ and DZ GC B cells. MFI normalization to non-GC B cells. (B) GFP-c-Rel level in plasma
cells. MFI normalization to non-PC B cells. (C) Representative histograms for GFP-c-Rel level in GC
B cells of GFP-c-Rel CD19CreI/+ mice. (D) FSC-A median intensities for B cells and GC B cells normal-
ized to non-GC B cells show that changes in cell size cannot be the cause for the differences in GFP-
fluorescence observed in GFP-c-Rel CD19CreI/+ transgenic cells. GCB CD19+/B220+CD95highCD38low;
B (non-GCB) CD19+/B220+CD95-CD38high; DZ CXCR4highCD86low; LZ CXCR4lowCD86high; plasma
cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; SPL, spleen; LN, lymph nodes; MLN, mesenteric
lymph nodes; PP, Peyer’s patches; FSC-A, forward scatter area.
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1.7.2 c-Rel level switches are not caused by transgenic promoter regulation

The dramatic alterations in c-Rel level were confirmed by applying an independent c-Rel

antibody clone or the same antibody clone coupled to an alternative fluorochrome for

intracellular flow cytometry stainings (Figure S33A and data not shown).

The forward scatter area (FSC-A) parameter can serve as a correlate for cell size. GC

B cells are greater in size than naive B cells, while plasma cells are even larger than GC

B cells. Thus, the largest cell type, namely plasma cells, is characterized by the lowest

c-Rel level. Accordingly, the observed c-Rel levels are not correlated to cell size (Fig-

ure S33B). Importantly, this also applies to the differences observed in LZ GC B cells and

DZ GC B cells, which are comparable in size based on forward scatter area (Figure S34)

but express clearly distinguishable c-Rel levels. Likewise, GFP fluorescence signals of

GFP-c-Rel CD19CreI/+ mice are not correlated to cell size (Figure 23D).

As in the present mouse model the c-Rel transgene is driven by a CAG promoter, I aimed

to exclude the possibility that the differential extent of transgene expression in naive

B cells, GC B cells and plasma cells could be a result of potential variations in promoter

activation in these subpopulations. For this purpose, I took advantage of a conditional

transgenic knock-in mouse line in which transgenic coxsackie/adenovirus receptor (CAR)

is driven by a CAG promoter (R26/CAG-CAR∆1StopF) [Heger et al., 2015]. R26/CAG-

CAR∆1StopF VavCreI/+ mice, in which CAR is expressed within the hematopoietic lineage

[de Boer et al., 2003], show equal levels of intracellular CAR expression in naive B cells and

GC B cells. Expression of CAR in plasma cells is even enhanced but certainly not reduced

(Figure 24). In conclusion, the unequal strength of transgene expression in B cell sub-

populations of c-Rel transgenic mice are not a property of developmental CAG promoter

regulation. This validation rather suggests B cell subtype-dependent post-transcriptional

c-Rel regulation that affects both endogenous c-Rel and transgenic c-Rel.
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Figure 24: Differential extent of transgene expression in B cell populations is independent
of CAG promoter strength. Intracellular flow cytometry stainings of CAG promoter-driven CAR
transgene expression in R26/CAG-CAR∆1StopF VavCreI/+ and R26/CAG-CAR∆1StopF control mice.
Median fluorescent intensities (MFI) were normalized to (A) non-GCB or (C) non-plasma cell B cell
population of R26/CAG-CAR∆1StopF control mice. Individual data points obtained in ≥ 2 independent
experiments and geometric means are plotted. (A) CAR transgene expression in B cells and GC B cells.
(B) Representative flow cytometry plot of GC B cells and representative histogram of CAR expression
in B and GC B cells. (C) CAR transgene expression in B cells and plasma cells. (D) Representative flow
cytometry plot of plasma cells and representative histogram of CAR expression in B cells and plasma cells.
GCB B220+CD95highCD38low; B (non-GCB) B220+ CD95-CD38high; plasma cells (PC) B220lowCD138+;
B (non-PC) B220+CD138-; SPL, spleen; MLN, mesenteric lymph nodes.
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1.7.3 Higher c-Rel nuclear translocation in germinal center B cells

In light of the profound differences in c-Rel levels, I determined the subcellular localization

of c-Rel in B cell subpopulations and characterized the properties of transgenic c-Rel in

(GFP-)c-Rel CD19CreI/+ mice by imaging flow cytometry. This method constitutes a

high throughput approach to quantitatively investigate nuclear translocation in distinct

cell populations of a single sample as it allows simultaneous fluorescent parameter and

image acquisition of events in single cell suspension. Analysis of nuclear localization

is based on a similarity feature that scores the correlation of a nuclear image (DNA

stain) and the respective image of a translocation probe. High similarity scores represent

high correlation of nuclear image and translocation probe, thus indicating high nuclear

translocation. In contrast, low similarity scores are indicative of cytoplasmic localization

[George et al., 2006].

As expected, different stimuli, namely anti-CD40, anti-IgM, CpG and LPS, trigger nu-

clear translocation of c-Rel in splenic B cells of CD19CreI/+ control mice as well as

c-Rel CD19CreI/+ transgenic mice (Figure S35). Assessment of GFP fluorescence in GFP-

c-Rel CD19CreI/+ mice shows that nuclear translocation of the GFP-c-Rel fusion protein

is comparably inducible upon stimulation providing further evidence for the functionality

of this fusion protein (Figure S36).

Interestingly, quantification of c-Rel localization in lymph nodes reveals higher c-Rel nu-

clear translocation scores and percentage of cells showing c-Rel nuclear translocation in

GC B cells compared to B cells in unstimulated conditions. Moreover, the present data

point towards a trend for slightly enhanced c-Rel nuclear translocation in GC B cells of

c-Rel CD19CreI/+ mice compared to CD19CreI/+ controls (Figure 25, Figure 26 and Fig-

ure S37). In addition, analyses of stimulatory conditions demonstrate that c-Rel nuclear

translocation can be triggered not only in B cells but also in GC B cells from mice of

both genotypes. For instance, anti-CD40 treatment results in c-Rel nuclear translocation

in almost the entire cellular population of both B cells and GC B cells of lymph nodes

with minimally higher nuclear translocation scores obtained for GC B cells (Figure 25,

Figure 27 and Figure S38). Similar results were obtained for B cells and GC B cells in

mesenteric lymph nodes (Figure S39-S43) and spleen (Figure S35).
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Figure 25: Quantification of c-Rel nuclear localization in B cells and GC B cells by imag-
ing flow cytometry. Cells of lymph nodes (LN) were stimulated with anti-CD40 or left unstimulated
(unstim) for 60 min in the presence of 10µM Q-VD to prolong the survival of GC B cells in culture.
(A) Median c-Rel nuclear localization score and (B) percentage of cells with c-Rel nuclear transloca-
tion for B cells and GC B cells of LN from c-Rel CD19CreI/+ and CD19CreI/+ mice. Individual data
points obtained in 3 independent experiments are plotted. (C) Representative flow cytometry plots
illustrating the gating strategy. (D) Representative histograms for c-Rel nuclear translocation score. Ex-
ample images are provided in Figure 26 and Figure 27. GCB CD19+CD95highCD38low; B (non-GCB)
CD19+CD95-CD38high.
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Figure 26: Higher c-Rel nuclear translocation in GC B cells in unstimulated state. Repre-
sentative images for unstimulated (unstim) (A) non-GC B cells and (B) GC B cells of lymph nodes from
CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels as well as
magnified images of merged c-Rel/nucleus signals are displayed for each cell type and genotype. Exem-
plary cells were selected based on average nuclear localization scores. Quantification and gating strategy
are displayed in Figure 25. White bar, 10µm; BF, bright field.
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Figure 27: c-Rel nuclear translocation upon stimulation in B cells and GC B cells. Repre-
sentative images for anti-CD40 stimulated (A) non-GC B cells and (B) GC B cells of lymph nodes from
CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels as well as
magnified images of merged c-Rel/nucleus signals are displayed for each cell type and genotype. Exem-
plary cells were selected based on average nuclear localization scores. Quantification and gating strategy
are displayed in Figure 25. White bar, 10µm; BF, bright field.
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Splenic B cells analyzed directly ex vivo recapitulate the observation of higher nuclear

translocation in the GC B population in general and a trend for elevated nuclear translo-

cation in c-Rel transgenic mice in particular (Figure 28). While an average of around 20%

of CD19CreI/+ control B cells show c-Rel nuclear translocation, nuclear c-Rel is observed

in 40% of the GC B cell population in these mice. In sharp contrast to B cells and GC

B cells, c-Rel is predominantly cytoplasmic in plasma cells with roughly 5% of cells with

c-Rel translocation in CD19CreI/+ control mice accompanied by lower nuclear translo-

cation scores in plasma cells than in B cells (Figure 28). Preliminary data obtained for

total c-Rel in B cells of GFP-c-Rel CD19CreI/+ mice that were analyzed directly ex vivo or

following stimulation further support these findings. Of note, this analysis indicates that

plasma cells appear to be rather refractory to c-Rel nuclear localization upon stimulation

with the tested stimuli (Figure S44).

In summary, c-Rel levels are not only dramatically increased in GC B cells, but also GC

B cells are characterized by an enhanced c-Rel nuclear translocation in comparison to

non-GC B cells. On the contrary, c-Rel is primarily cytoplasmic in plasma cells.

100



A. Maike M. Kober Results

BF nucleus c-Rel B220 CD138 c-Rel/nucleus

A SPL

c-
R

el
 n

uc
le

ar
 tr

an
sl

oc
at

io
n 

sc
or

e

B GCB PC

B SPL all

c-Rel nuclear translocation score

ce
lls

 [%
 o

f m
ax

]

CD19Cre I/+

c-Rel
CD19Cre I/+

SPL

ce
lls

 c
-R

el
 n

uc
le

ar
 tr

an
sl

oc
at

io
n 

[%
]

B GCB PC
0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

B GCB PC

plasma cellsC

CD19Cre I/+

c-Rel 
CD19Cre I/+

c-Rel CD19Cre I/+
B PCGCB

CD19Cre I/+
B PCGCB

Figure 28: Cytoplasmic c-Rel localization in plasma cells. (A) Median c-Rel nuclear localization
score and percentage of cells with c-Rel nuclear translocation for splenic B cells, GC B cells and plasma
cells directly analyzed ex vivo. Individual data points obtained in 2 independent experiments and bars
representing median values are plotted. (B) Representative histograms for c-Rel nuclear translocation
score. (C) Representative images for splenic plasma cells. A panel of images for indicated channels as well
as magnified images of merged c-Rel/nucleus signals are displayed for each genotype. Exemplary cells
were selected based on average nuclear localization scores. GCB B220+CD95highCD38low; B (non-GCB)
B220+CD95-CD38high; plasma cells (PC) B220lowCD138+; white bar, 10µm; BF, bright field.
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1.7.4 Strong correlation of c-Rel level with GC B cells and plasma cells

Based on the particularly high c-Rel levels observed in transgenic GC B cells combined

with an expansion of this cell type, I aimed at analyzing the relation of GC B cell per-

centages and c-Rel level. For this study, I integrated data obtained for controls and the

novel mouse models presented in this thesis. The highest c-Rel expression in GC B cells

is observed for the c-Rel transgenic mouse line presented for the major analysis of this

work, while GFP-c-Rel transgenic mice express intermediate total c-Rel levels (compare

Figure 22 and Figure S30). The elementary endogenous c-Rel level of control mice com-

plements the extensive data set to span a range of different c-Rel levels in GC B cells.

Remarkably, I found a highly signifiant positive correlation of GC B cell percentage and

c-Rel protein expression level in all analyzed organs comprising spleen and lymph nodes

as well as the gut-associated mesenteric lymph nodes and Peyer’s patches (Figure 29A).

Accordingly, c-Rel CD19CreI/+ transgenic mice are not only characterized by the highest

c-Rel level in GC B cells but also show the highest accumulation of GC B cells. In addition,

a comparable result is obtained for the same analysis of c-Rel levels and percentages of

plasma cells (Figure 29B). Consistently, a significant correlation of c-Rel level with the

GC B cell and plasma cell gain is determined for cell numbers (Figure S45). These data

demonstrate that the expansion of GC B cells and plasma cells as a consequence of c-Rel

overexpression in (GFP-)c-Rel CD19CreI/+ mice significantly correlates with the enhanced

c-Rel level in these cells.
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Figure 29: Strong positive correlation of c-Rel levels with cellular expansion of GC B cells
and plasma cells. Individual data points for c-Rel level and percentage of (A) GC B cells or (B)
plasma cells is plotted. c-Rel levels are relative median fluorescence intensity (MFI) values normalized
to the B cell population excluding GC B cells or plasma cells, respectively, of CD19CreI/+ control mice
in each experiment. Spearman correlation coefficient (rS) and respective statistical significance analysis
p values (two-tailed) are given for each dataset. GCB: nSPL = 110; nLN = 77; nMLN = 78; nPP = 59; PC
nSPL = 70; GCB CD19+/B220+CD95highCD38low; plasma cells (PC) B220lowCD138+; SPL, spleen; LN,
lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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1.7.5 Higher proliferation could contribute to expansion of GC B cells

GC B cells are in principle highly proliferative, but at the same time this post-activated

B lineage population is highly prone to apoptotic cell death [Victora and Nussenzweig,

2012; De Silva and Klein, 2015] (see also introduction subsection 1.2.1). In order to

elucidate the mechanism of how higher c-Rel levels in c-Rel CD19CreI/+ transgenic mice

lead to an expansion of GC B cells, analysis of apoptosis and cell cycle was performed

as alterations in cell death or proliferation could underlie this interesting phenotype.

Preliminary quantification of apoptosis indicates that GC B cells of c-Rel CD19CreI/+

mice could be to a certain extent less sensitive to apoptosis in vitro based on a lower

proportion of apoptotic cells within the GC B cell population (Figure S46B).

Remarkably, ex vivo analysis of cell cycle stages of GC B cells in lymph nodes demonstrates

that a significantly higher proportion of c-Rel CD19CreI/+ transgenic GC B cells exists in

the proliferative G2 and S phase of the cell cycle, while a significantly lower percentage

of GC B cells accounts for cells within the G0/G1 stage (Figure 30A). Splenic GC B cells

of c-Rel CD19CreI/+ mice are characterized by a comparable shift to a higher proportion

in proliferative cell cycle phases (Figure 30B).

Although in mesenteric lymph nodes and Peyer’s patches no significant difference within

the GC B cell population is observed (Figure S48), the total B cell population shows a

significantly higher percentage of G2/S phase proliferative cells accompanied by a reduc-

tion of G0/G1 resting cells reflecting the enlarged GC population in c-Rel CD19CreI/+

transgenic mice (Figure S47A).

In conclusion, higher proliferative capacities of c-Rel transgenic GC B cells could con-

tribute to the expansion of this population in c-Rel CD19CreI/+ mice.
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Figure 30: Increased proliferation in GC B cells of c-Rel CD19CreI/+ mice. Percentages of GC
B cells in cell cycle phases for (A) lymph nodes and (B) spleen from c-Rel CD19CreI/+ or CD19CreI/+

mice. Percentages of total GC B cells represent cells in G0/G1 and G2/S cell cycle phases, whereas
Ki-67-expressing GC B cells include only cells in G1 and G2/S cell cycle phases as the proliferation
marker Ki-67 is present in active cell cycle phases but absent in G0 resting cells [Scholzen and Gerdes,
2000]. Individual data points obtained in 3 independent experiments are plotted and bars represent
median values. Representative flow cytometry plots and histograms of (C) lymph nodes and (D) spleen
illustrating the gating and analysis strategy. In the Ki-67/DRAQ5 staining plot a light blue contour plot
of GC B cells is overlaid with a dot plot of the B cell population in dark blue. Numbers in plots represent
median percentages. Colors of cell cycle stages in histograms correspond to colors used in bar graphs:
G0/G1 dark blue, S medium blue, G2 light blue. * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, unpaired t test.
GCB CD19+CD95highCD38low; B (non-GCB) CD19+CD95-CD38high; SPL, spleen; LN, lymph nodes.
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1.8 c-Rel levels are tightly regulated

1.8.1 c-Rel levels are limited in GC B cells of double transgenic mice

In light of the correlation between c-Rel expression level and the expansion of GC B cells

and plasma cells, I crossed the c-Rel and GFP-c-Rel transgenic mouse lines to gener-

ate c-Rel/GFP-c-Rel CD19CreI/+ double transgenic mice. Comprehensive comparative

analyses of c-Rel CD19CreI/+, GFP-c-Rel CD19CreI/+ and c-Rel/GFP-c-Rel CD19CreI/+

mice with CD19CreI/+ controls were performed. GC B cell populations are enlarged in all

three c-Rel transgenic mouse models as expected. Nevertheless, the extent of GC B cell

expansion in c-Rel/GFP-c-Rel CD19CreI/+ double transgenic mice is only slightly higher

in lymph nodes and gut-associated lymphoid follicles compared to c-Rel CD19CreI/+ sin-

gle transgenic mice, but this marginal increase is not significant (Figure S49). Plasma

cell numbers in spleen and bone marrow are higher in c-Rel/GFP-c-Rel CD19CreI/+ dou-

ble transgenic mice compared to c-Rel CD19CreI/+ single transgenic mice, but also not

significantly changed (Figure S50).

Quantification of c-Rel protein expression demonstrates that total c-Rel levels in GC

B cells and plasma cells are comparable in c-Rel CD19CreI/+ single and c-Rel/GFP-c-

Rel CD19CreI/+ double transgenic mice (Figure 31 and Figure S51). Hence, despite the

additional c-Rel transgene locus, total c-Rel levels are not further increased. Intrigu-

ingly, GFP-c-Rel levels based on GFP fluorescence signals are lower in c-Rel/GFP-c-

Rel CD19CreI/+ double transgenic mice compared to GFP-c-Rel CD19CreI/+ single trans-

genic mice (Figure 32). This decrease of GFP-c-Rel levels in double transgenic mice is

independent of cell size (Figure S52). These findings suggest that there is a limit to total

c-Rel protein amounts in GC B cells and provides evidence for a tight regulation of c-Rel

levels not only in naive B cells but also in GC B cells.
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Figure 31: c-Rel levels in c-Rel/GFP-c-Rel CD19CreI/+ double transgenic mice are compa-
rable to c-Rel CD19CreI/+ single transgenic mice. Intracellular flow cytometry data of c-Rel pro-
tein levels in B cell subpopulations. Median fluorescence intensities (MFI) were normalized to CD19CreI/+

controls. Individual data points obtained in ≥ 3 independent experiments and bars representing geometric
means are plotted. (A) c-Rel level in B cells and GC B cells. MFIs were normalized to non-GC B cells of
CD19CreI/+ controls. (B) c-Rel level in plasma cells. MFIs were normalized to splenic B cells (non-PC)
of CD19CreI/+ controls. GCB B220+CD95highCD38low; B (non-GCB) B220+CD95-CD38high; plasma
cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; SPL, spleen; LN, lymph nodes; MLN, mesenteric
lymph nodes; PP, Peyer’s patches.
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Figure 32: GFP-c-Rel levels in c-Rel/GFP-c-Rel CD19CreI/+ double transgenic mice are
reduced in comparison to GFP-c-Rel CD19CreI/+ single transgenic mice. Flow cytometry
data of GFP-c-Rel protein levels assessed by GFP fluorescence signal in B cell subpopulations. Median
fluorescence intensities (MFI) were normalized to GFP-c-Rel CD19CreI/+ mice. Individual data points
obtained in 3 independent experiments and bars representing geometric means are plotted. (A) GFP-c-Rel
level in B cells and GC B cells including LZ and DZ GC B cells. MFI normalization to non-GC B cells.
(B) GFP-c-Rel level in plasma cells. MFI normalization to non-PC B cells. The data set for GFP-c-
Rel CD19CreI/+ control mice is also presented in Figure 23B. (C) Representative histograms for GFP-c-
Rel level in GC B cells and plasma cells of GFP-c-Rel CD19CreI/+ mice. GCB B220+CD95highCD38low; B
(non-GCB) B220+CD95-CD38high; DZ CXCR4highCD86low; LZ CXCR4lowCD86high; plasma cells (PC)
B220lowCD138+; B (non-PC) B220+CD138-; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph
nodes; PP, Peyer’s patches.
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1.8.2 c-Rel level in B cells is sensitive to proteasomal inhibition

The dramatic switches in c-Rel level in different B lineage subpopulations, which are

phenocopied by c-Rel transgenic mice despite the in principle high activity of the CAG

promoter in these cell types, prompted me to address the mechanism of this to date

unidentified regulation. It has been previously shown that c-Rel can be modified by post-

translational modifications (see introduction subsection 2.2.3). In T cells ubiquitination

and subsequent proteasomal degradation serves as a regulatory mechanism to control

c-Rel levels [Chang et al., 2011].

In light of a possible control of c-Rel protein on a post-translational level, I treated spleno-

cytes with the proteasome inhibitor MG-132 for 6 h or 12 h in culture and subsequently

quantified c-Rel levels by intracellular flow cytometry as it allows simultaneous analysis

of B cells and GC B cells. As GC B cells are highly prone to cell death, I added the

pan-caspase inhibitor Q-VD to prolong the survival of GC B cells in vitro. Interestingly,

inhibition of the proteasome causes an increase of c-Rel levels relative to untreated cells

in B cells but not in GC B cells (Figure 33A). In detail, c-Rel levels in GC B cells remain

unchanged after 6 h or 12 h of proteasomal inhibition, whereas c-Rel protein expression in

B cells reaches an amount comparable to the elementary level observed in GC B cells (Fig-

ure 33B). This sensitivity of c-Rel levels in response to proteasomal inhibition is observed

in both CD19CreI/+ control and GFP-c-Rel CD19CreI/+ transgenic mice.
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Figure 33: c-Rel level in B cells is sensitive to proteasomal inhibition. Splenocytes were
treated or left untreated for indicated time periods with MG-132 in the presence of Q-VD to prolong
the survival of GC B cells in culture followed by analysis of total c-Rel levels by intracellular flow cy-
tometry. Individual data points and geometric means of 3 (6 h) or 2 (12 h) independent experiments are
plotted. (A) Normalization of c-Rel median fluorescence intensities (MFI) to untreated control within
the B cell or GC B cell subpopulation for each genotype. (B) Normalization of c-Rel MFI to untreated
control of B cell population for each genotype. MG-132 25µM or 50µM; Q-VD 10µM or 20µM; GCB
CD19+CD95highCD38low; B (non-GCB) CD19+CD95-CD38high; SPL, spleen.
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1.9 Expression of the novel c-Rel∆Ex9 splice variant

Alterations of c-Rel protein can impact c-Rel transactivation activity in vitro (see intro-

duction subsection 3.2). A c-Rel splice variant lacking exon 9 has been shown to potentiate

c-Rel transactivation activity in comparison to full length c-Rel in vitro. Intriguingly, this

c-Rel∆Ex9 splice variant was found to be expressed exclusively in DLBCL patients but

not in healthy individuals [Leeman et al., 2008]. These data were reproduced in our

laboratory [Kumar et al., unpublished].

I crossed my novel c-Rel transgenic mice to the FLPe-deleter strain [Rodŕıguez et al.,

2000], in order to remove the Frt-flanked REL exon 9 to obtain c-Rel∆Ex9 mice that

conditionally express the shortened c-Rel protein without exon 9. c-Rel∆Ex9 CD19CreI/+

mice were compared to full-length transgenic c-Rel-expressing c-Rel CD19CreI/+ mice and

CD19CreI/+ control mice (Figure S53-S58 and data not shown).

c-Rel∆Ex9 CD19CreI/+ mice are characterized by an expansion of GC B cells and plasma

cells that is similar to c-Rel CD19CreI/+ mice. Despite a more pronounced elevation of

GC B cells in lymph nodes and mesenteric lymph nodes of c-Rel∆Ex9 CD19CreI/+ mice

(Figure S53) and minimally higher plasma cell numbers (Figure S57), I did not encounter

significant differences between c-Rel full length and c-Rel∆Ex9 transgenic mice. Further-

more, total c-Rel protein levels assessed by intracellular flow cytometry are comparable

in c-Rel∆Ex9 CD19CreI/+ and c-Rel CD19CreI/+ transgenic mice (Figure S58).
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2 Consequences of c-Rel knockdown in human B cell

lymphoma cell lines

In light of the frequent REL gene locus amplifications in human B cell lymphomas, I ap-

plied a c-Rel loss-of-function approach to address the role of c-Rel in this disease context.

Human B cell lymphomas with REL amplifications include classical Hodgkin lymphoma

(cHL, 39%), diffuse large B cell lymphoma (DLBCL, 17%) and primary mediastinal B cell

lymphoma (PMBCL, 28%). Amongst these disease entities, a positive correlation of REL

gene locus amplification with c-Rel expression levels and nuclear c-Rel localization is

predominantly observed in cHL and PMBCL (see introduction subsection 3.2). Accord-

ingly, I chose 2 cHL cell lines, L-428 and U-HO1, and 2 PMBCL cell lines, MedB-1 and

Karpas1106P, to investigate the consequences of c-Rel downregulation in human B cell

lymphoma cell lines (see introduction subsection 3.3).

2.1 Strategy for c-Rel knockdown

In order to achieve c-Rel downregulation in human B cell lymphoma cell lines, I generated

a system for transposon encoded inducible shRNA-mediated c-Rel or control knockdown.

Here, shRNA expression is under control of an H1 promoter containing a tet operator

(tetO) sequence that is repressed by the tetracycline repressor (tetR) [Kleinhammer et al.,

2011]. As tetR is constitutively expressed from the same construct under a strong CAG

promoter, this H1tetO promoter is only active in the presence of doxycycline that impedes

tetR binding to the promoter. In addition, these constructs contain a puromycin resistance

cassette followed by the surface marker Thy1.1 connected by a self-cleaving 2A site [Szym-

czak et al., 2004; Kim et al., 2011] and linked to CAG-controlled tetR expression by an

internal ribosomal entry site (IRES) sequence (Figure 34A). To facilitate stable genomic

integration of the shRNA constructs, the transposases hyperactive piggyBac (hyPB) and

sleeping beauty (sb100x) were applied as transposase-mediated cut-and-paste integration

has the advantage of generating single integrants in diverse loci opposed to bulk copy

integration [Izsvák et al., 2009; Mátés et al., 2009; Yusa et al., 2011]. shRNA knockdown

sequences used in this thesis for shRNAs targeting c-Rel [Barbie et al., 2009; Meylan

et al., 2009] and controls [Barbie et al., 2009; Cheung et al., 2011] have been published

previously.
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Figure 34: Strategy for c-Rel downregulation in B cell lymphoma cell lines. (A) Schematic
representation of shRNA knockdown construct. Expression of an shRNA (red) is controlled by an H1tetO

promoter that contains a tet operator (tetO) sequence. Expression of the tetracycline repressor (tetR,
blue) followed by an IRES(internal ribosomal entry site)-puromycin-resistance(puroR)-2A-Thy1.1 cassette
is driven by a constitutively active CAG promoter. The construct is flanked by inverted terminal repeat
(ITR) recognition sites for the transposases hyperactive piggyBac (PB) and sleeping beauty 100x (SB).
(B) Representative histograms displaying Thy1.1 expression in stable cell pools of indicated human B cell
lymphoma cell lines carrying shRNA constructs as shown in (A).

Inducible transposon encoded shRNA knockdown constructs were transfected together

with plasmids for transient transposase expression into the human B cell lymphoma cell

lines by electroporation-based methods and subsequently selected with puromycin to gen-

erate stable cell pools. Selected cell pools with stable incorporation of the construct can

be identified by expression of the surface marker Thy1.1 as assessed by flow cytometry

(Figure 34B).

2.2 Efficient c-Rel knockdown in human lymphoma cell lines

c-Rel knockdown in the generated human lymphoma cell pools was induced by doxycy-

cline and the knockdown efficiency assessed by Western blot quantification. In L-428 cHL

cells c-Rel knockdown can be observed already after 1 day of doxycycline treatment and

reaches its maximum extent after 3 days as comparable results were obtained for knock-

down efficiency after 3 to 5 days of doxycycline treatment (Figure 35). Similarly efficient

knockdown is induced by 0.5 or 1µg/ml doxycycline (Figure 36A).

The efficiency of c-Rel knockdown in cHL cell lines L-428 and U-HO1 as well as the

PMBCL cell lines MedB-1 and Karpas 1106P is summarized in Figure 36B-E. Cell pools

for 3 different shRNAs targeting c-Rel and 3 control shRNAs were generated from each

cell line. In part, independent cell pools were generated for the same shRNA to verify
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Figure 35: Kinetics of doxycycline-inducible c-Rel knockdown. (A-C) Representative Western
blots of shRNA-mediated c-Rel knockdown in L-428 cell pools. Cells were treated with 1µg/ml doxycy-
cline or left untreated for the indicated time periods. (D) Quantification of Western blot c-Rel protein
levels in L-428 for different doxycycline treatment periods (1 day to 5 days). c-Rel levels are normalized
to tubulin and the fold change difference of doxycycline-treated to untreated sample for each cell pool
is displayed. Bars represent means and error bars are the standard error of the mean. n1d=1, n3d=3,
n4d=2, n5d=1. cR1/2/3, shcRel 1/2/3; G1, shGFP 1; dox, doxycycline; d, day.

the results. The highest knockdown efficiency is achieved in MedB-1 and L-428 cell lines

reaching efficiencies greater than 90% for all 3 shRNAs targeting c-Rel in MedB-1. In cell

pools of U-HO1 and Karpas 1106P knockdown efficiency for the 3 c-Rel-targeting shRNAs

varies and is in part only moderate to low.

The c-Rel knockdown was verified by intracellular flow cytometry measurement of c-Rel

protein levels in MedB-1 cell pools (Figure 37). The uniform distribution of reduced

c-Rel expression in the cell pool visualized by flow cytometry indicates that c-Rel is

downregulated to a comparable extent in the entire cellular population (Figure 37B).
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Figure 36: Efficient doxycycline-inducible c-Rel knockdown in MedB-1 and L-428 human
B cell lymphoma cell pools. (A) Representative Western blots of shRNA-mediated c-Rel knockdown
in MedB-1 cell pools. Cells were treated with 1µg/ml or 0.5µg/ml doxycycline or left untreated for 3
days. (B-E) Quantification of Western blot c-Rel protein levels. c-Rel levels are normalized to tubulin
and the fold change difference of doxycycline-treated to untreated sample for each cell pool is displayed.
Displayed data was obtained in ≥ 2 independent experiments including 1-4 independently generated cell
pools for each construct. Bars represent means and error bars are the standard error of the mean. L-428:
3d, 0.5/1µg/ml dox; MedB-1: 3d, 0.5µg/ml dox; U-HO1: 3d, 0.5/1µg/ml dox; Karpas: 3d/5d, 0.5µg/ml
dox. cR1/2/3, shcRel 1/2/3; G1/G2, shGFP 1/2; L1, shLacZ; dox, doxycycline; d, day.
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Figure 37: Verification of efficient doxycycline-inducible c-Rel knockdown by flow cy-
tometry. (A) Quantification of c-Rel knockdown of shcRel 2 and shGFP 1 control by flow cytometry.
Quantification is based on median fluorescence intensity values (MFI) by subtraction of values for isotype
control or unstained cells and normalization of all samples to untreated MedB-1 or in case no untreated
population was included in the experiment normalization to doxycycline-treated MedB-1 control cell line.
Data from 1 (shGFP 1 untreated) to ≥ 3 (all others) independent experiments is shown. Bars represent
means and error bars are the standard error of the mean. (B) Representative histograms of intracellular
flow cytometry staining of c-Rel upon doxycycline treatment of MedB-1 control cell line and MedB-1 cell
pool carrying shcRel 2. cR2, shcRel 2; G1, shGFP 1; dox, doxycycline; d, day.
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2.3 c-Rel knockdown in MedB-1 cells reduces cellular expansion

Activation of c-Rel can contribute to cell survival and proliferation (see introduction

section 2). In order to investigate consequences of c-Rel knockdown, I therefore analyzed

cell proliferative capacities assessed by cell count upon doxycycline treatment of MedB-1

and L-428 cell pools as I could achieve high knockdown efficiencies of ≥ 85% in these cell

pools.

c-Rel knockdown leads to decreased cell numbers in MedB-1 cells (Figure 38A). Reduced

cell counts for shcRel 2/3 but not the control shGFP 1/2 and shLacZ appear around 6 days

of doxycycline treatment and continue to decline subsequently. In contrast, no difference

with regard to cell counts could be observed in L-428 cell pools upon doxycycline treatment

to induce c-Rel downregulation (Figure 38C).
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Figure 38: Cell numbers of MedB-1 and L-428 cell pools upon induced c-Rel knockdown.
(A, B) MedB-1 or (C, D) L-428 cell pools were treated with doxycycline or left untreated. Viable cell count
was assessed starting at day 1 following treatment start. Data are cell numbers of treated normalized
to untreated samples for original cell line or each cell pool. Data points and error bars represent mean
values and standard deviation, respectively. Data are combined from 3 independent experiments for 1-4
independent cell pools for each construct. While in (A, C) data for each c-Rel knockdown and control cell
pool are shown individually, the average of the 3 shcRel or control cell pools based on the same dataset
is shown in (B, D). cR1/2/3, shcRel 1/2/3; G1/G2, shGFP 1/2; L1, shLacZ; dox, doxycycline.
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2.4 c-Rel knockdown causes a clear disadvantage in competitive

co-cultures

Based on the interesting results of the cell count assay, I designed a co-culture assay that

allows evaluating the effects of c-Rel knockdown under competitive conditions. For this

purpose, cell pools carrying c-Rel or control knockdown constructs were cultured in equal

ratios with the unmodified original cell line in the absence or presence of doxycycline to

induce shRNA expression in the cell pool. Thy1.1 surface expression on selected cell pools

but not the original cell line allows distinction of shRNA construct-expressing cells in the

mixed culture (Figure 39A).

Remarkably, MedB-1 cells clearly outcompete MedB-1 cells with c-Rel knockdown but not

any of the control shRNAs (Figure 39B). c-Rel knockdown causes a disadvantage in the

competitive co-culture as early as day 3 after shRNA induction consistent with the strong

knockdown efficiency observed at this timepoint. MedB-1 cell pools carrying shcRel 2/3

disappear within the following days until they are almost extinguished at day 11 after

induction of c-Rel knockdown. Despite an efficient c-Rel knockdown observed for all 3

shRNAs targeting c-Rel, the cell pool carrying shcRel 1 does not show a disadvantage in

co-culture with the original MedB-1 cell line. This finding corresponds to data obtained

in the cell count assay (Figure 38A) and correlates with the lower knockdown efficiency

for shcRel 1 in comparison to shcRel 2/3 (Figure 36C).

Preliminary results indicate that under competitive conditions L-428 cells show a trend

for a slightly reduced percentage of the population with c-Rel knockdown relative to the

respective uninduced cell pool and in comparison to control shRNAs (Figure 39C). How-

ever, this tendency is by far not as pronounced as the observed competitive disadvantage

in MedB-1 cells upon c-Rel knockdown.

Analysis of cell viability data obtained during the competitive co-culture assays demon-

strates that viability is not altered in either the mixed cultures of shRNAs targeting c-Rel

or of shRNA controls upon doxycycline-induced shRNA expression (Figure 39D). Accord-

ingly, enhanced cell death is most likely not the reason for the disadvantage of MedB-1

cells with c-Rel downregulation in a competitive setting. In agreement with this finding,

analysis of apoptosis by active caspase staining suggests that c-Rel knockdown in MedB-1

cells does not cause apoptotic cell death (Figure 39F).
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Figure 39: c-Rel knockdown in MedB-1 cells causes competitive disadvantage in co-culture.
Percentages of Thy1.1+ cells in doxycycline-treated mixed cultures of a distinct cell pool were normalized
to the percentage of Thy1.1+ cells in the respective untreated mixed culture. Data points and error bars
represent mean values and standard deviation, respectively. (A) Representative flow cytometry plots of
competitive co-culture on day 7 of assay. Numbers are percentages of Thy1.1+ and Thy1.1- cells for the
shown data set. (B) MedB-1. Data are combined from 2 independent experiments for 1-2 independent cell
pools for each construct. (C) L-428. Data are from 1 experiments for 1-4 independent cell pools for each
construct. Cell viability data for (D) MedB-1 and (E) L-428 of the competitive co-culture assays shown
in (B, C). Percentages of viable cells in doxycycline-treated mixed cultures were normalized to respective
untreated mixed cultures. (F) MedB-1 cells or MedB-1 cell pools of indicated shRNA constructs were
treated with doxycycline or left untreated for 4 days and apoptotic cells were assessed by flow cytometric
active caspase staining. Data are from 1 experiment for 1-2 independent cell pools for each construct.
cR1/2/3, shcRel 1/2/3; G1/G2, shGFP 1/2; L1, shLacZ; dox, doxycycline; nt, non-treated.
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2.5 c-Rel knockdown reduces proliferative cell cycle phases

I next aimed at elucidating the mechanism underlying the observed phenotype upon c-

Rel knockdown in MedB-1 cells. c-Rel is involved in cell cycle progression as studies in

c-Rel-deficient mouse B cells demonstrate a block in early G1 cell cycle stage and failure

to transit to S phase (see introduction subsection 2.2.6).

Interestingly, cell cycle analysis demonstrates that c-Rel knockdown in MedB-1 cells leads

to a strong reduction of cells in the proliferative S and G2 phase of the cell cycle in con-

trast to control cell pools and untreated cell pools (Figure 40). A decrease in proliferative

capacities in MedB-1-shcRel 2/3 cell pools can already be observed after 4 days of doxycy-

cline treatment. While in untreated MedB-1 cell pools roughly one third of the population

accounts for each of the three determined cell cycle fractions – G0/G1, S and G2 – more

than 70% of MedB-1-shcRel 2 cells accumulate in G0/G1 phase upon c-Rel knockdown af-

ter 10 days of doxycycline treatment. Again, no alteration in the proliferative population

is observed for knockdown mediated by shcRel 1.

In conclusion, c-Rel knockdown in MedB-1 human B cell lymphoma cells reduces the per-

centage of cells in proliferative S and G2 cell cycle stages and consequently results in

decreased proliferation and a clear competitive disadvantage in co-culture with MedB-1

cells that express regular c-Rel protein levels. These strong consequences of c-Rel knock-

down are observed for two out of three shRNAs targeting c-Rel. Whether the absence of

these deficits for shcRel 1 could be due to a threshold effect based on the lower but still

> 90% knockdown efficiency of this shRNA remains to be determined.

The results of this cell line-based study indicate that high c-Rel expression could play a

role in maintaining proliferative capacities in human B cell lymphoma cells. While the

PMBCL cell line MedB-1 clearly relies on c-Rel expression for sustained proliferation, the

cHL lymphoma cell line L-428 seems to be less dependent on c-Rel, although there is a

trend for a contribution of c-Rel to proliferation in a competitive scenario.

Figure 40: (figure on following page) MedB-1 cells stably expressing indicated shRNA con-
structs were treated with doxycycline or left untreated for (A) 4 days, (B) 6 days, (C) 8 days and
(D) 10 days followed by flow cytometric cell cycle analysis. Data are combined from 2 indepen-
dent experiments for 1-2 independent cell pools for each construct. Bars and error bars represent
mean values and standard deviation, respectively. (E-H) Representative histograms of cell cycle
stages for the data shown in (A-D). Color code for cell cycle stages: G0/G1 white, S grey, G2
dark blue. Percentages of cell cycle stages are mean values of the indicated cell pools. cR1/2/3,
shc-Rel 1/2/3; G1/G2, shGFP 1/2; L1, shLacZ; dox, doxycycline; PI, propidium iodide; d, day.
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Figure 40: Cell cycle analysis in MedB-1 cell pools upon c-Rel knockdown. For figure legend
see previous page.
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Part V

Discussion

In this thesis, I present comprehensive analyses of the first mouse models for cell type-

specific overexpression of c-Rel. My study established the first in vivo data regarding the

consequences of enhanced c-Rel expression in B cells, GC B cells and plasma cells. Fur-

thermore, the quantification of general c-Rel expression levels in B cell subpopulations also

led to the discovery of fundamental regulatory mechanisms restricting c-Rel expression in

B cell subtypes.

1 Generation of the first conditional c-Rel transgenic

mouse models

Much that is known about the immune system today has been established in geneti-

cally engineered mouse models that can yield invaluable information of systemic cellular

functions in vivo. In particular lymphocytes are tightly intertwined with their microenvi-

ronment composed of both immune and non-immune cells limiting in vitro recapitulation

and eventually requiring mouse models to precisely delineate lymphocyte function.

Conventional c-Rel knockout mice were established more than 20 years ago [Kontgen

et al., 1995] and mice carrying a conditional c-Rel allele were published recently [Heise

et al., 2014]. Carrasco et al. generated mice that express the transforming viral gene

v-Rel of an oncogenic avian retrovirus in the mouse thymus [Carrasco et al., 1996] and

a mouse line that expresses a carboxy-terminal-truncated form of c-Rel lacking the TAD

instead of endogenous c-Rel [Carrasco et al., 1998] (see introduction subsection 2.2.6).

To my knowledge, beyond these studies only mice with c-Rel cDNA expression under a

mouse mammary tumor virus promoter have been been published [Romieu-Mourez et al.,

2003]. Hence, despite the frequent REL locus amplifications in human B cell lymphomas

and associations of single nucleotide polymorphisms within the REL gene with human

autoimmune diseases (see introduction section 3), no mouse model to investigate the

consequences of enhanced c-Rel function in a cell type-specific manner existed to date.

Remarkably, Gerondakis et al. stated 10 years ago ”Of note, my lab has been unable

to generate transgenic mice with c-rel under the control of a B-cell-specific promoter,
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suggesting that overexpression of c-Rel may be toxic at some stage of B-cell development

(S Gerondakis, unpublished observations)” [Gerondakis et al., 2006]. This statement

emphasizes the long-standing need for a conditional c-Rel gain-of-function mouse model

and proves that the generation of such a model is not a trivial task.

The novel c-Rel transgenic mouse models presented in this thesis permit conditional ex-

pression of c-Rel/c-Rel∆Ex9 or GFP-c-Rel from a single BAC-transgenic locus to facilitate

dissection of an autonomous cell type-specific role of c-Rel overexpression. These care-

fully validated mouse models provide versatile tools for exploring c-Rel overexpression

and basic function in future studies. Research could be extended from the B lineage as

presented in this work to the T lineage, where c-Rel is known to have important functions

for instance in Treg cells (see introduction subsection 2.2.4), and other immune cell subsets

as well as non-immune cells.

2 c-Rel in terminal B cell differentiation

Studies of c-Rel conventional and conditional knockout mice demonstrated that GC re-

actions are strikingly impaired or not maintained in the absence of c-Rel [Kontgen et al.,

1995; Heise et al., 2014]. Nevertheless, gain-of-function experiments frequently do not

inversely correlate with loss-of-function experiments. Here, I demonstrate for the first

time that c-Rel overexpression causes an amplification of the GC reaction. This pheno-

type emerges irrespective of whether conditional c-Rel transgene expression is specifically

induced in B cells (CD19Cre) or GC B cells (Cγ1Cre). Therefore, my results suggest that

c-Rel overexpression does not drive GC B cell expansion during GC entry or during the

very early GC seeding phase. This finding is consistent with Heise et al. who report that

GC reactions can initially form in c-Relfl/fl Cγ1-Cre mice and conclude that c-Rel is re-

quired for GC maintenance [Heise et al., 2014]. Cγ1Cre-mediated recombination has been

shown to affect 25-50% of GC B cells already at day 4 post-immunization [Casola et al.,

2006], thus preceding vast GC B cell expansion and the fully mature GC state according

to current models [Victora, 2014; De Silva and Klein, 2015] at least in a fraction of cells.

c-Rel overexpression-mediated effects could influence the GC reaction as early as this

phase. Nevertheless, the cell cycle analysis and the accumulation of class-switched plasma

cells observed in the present work support the notion that c-Rel exerts its pivotal functions

during the proliferative phase and mature stages of GC reactions.
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Not only GC B cells are expanded in c-Rel transgenic mice, but also Tfh cells are gained

to a certain extent although the c-Rel transgene is specifically expressed in B cells. While

Tfh cells can promote GC B cell survival [Fazilleau et al., 2009; Vinuesa et al., 2010; Crotty,

2011] (see introduction subsection 1.2.1), it has also been shown that GC B cell-mediated

signaling is important for Tfh cell development [Nurieva et al., 2008] highlighting the

interdependent linkage of GC B cells and Tfh cells [Linterman et al., 2010]. This mutual

impact provides a possible explanation for the observed Tfh cell increase.

The essential character of GC B cell-Tfh cell interactions is established by long-standing

studies demonstrating that CD40 or CD40L deficiency [Xu et al., 1994; Kawabe et al.,

1994] or blockade of CD40-CD40L signaling [Han et al., 1995; Foy et al., 1994] causes

GC reactions to collapse. I demonstrate that anti-CD40 stimulation can trigger c-Rel

nuclear translocation in GC B cells at least in vitro. Tfh cells have been shown to influence

proliferation of GC B cells [Gitlin et al., 2014, 2015] and my data suggests that higher

proliferation in c-Rel-overexpressing GC B cells contributes to the observed GC B cell

expansion. I therefore hypothesized that c-Rel might be involved in mediating downstream

effects of Tfh cell signals to GC B cells that culminate in proliferation.

LZ GC B cells expressing c-Myc were proposed to constitute a cellular fraction that re-

enters the GC DZ where rapid proliferation occurs [Calado et al., 2012; Dominguez-

Sola et al., 2012]. Of note, Myc mRNA levels are reduced upon anti-CD40 stimulation

in c-Rel-/- compared to wild-type B cells [Zarnegar et al., 2004], suggesting that c-Rel

contributes to activation of c-Myc downstream of CD40. It would therefore be of interest

to study c-Myc expression and c-Myc-dependent pathways in c-Rel transgenic mice.

Certainly, c-Rel is known to be directly involved in cell cycle control as studies in c-

Rel-/- B cells provide substantial evidence that c-Rel deficiency causes a block in G1 to S

phase transition (see introduction subsection 2.2.6). Accordingly, it is also a possibility

that elevated c-Rel levels independently promote higher proliferation. Only few cells

are needed to seed and initiate GC formation [Schwickert et al., 2007] highlighting the

massive proliferation that characterizes GC B cells. It can be imagined that also minor

acceleration of proliferation or elongation of the proliferative phase driven by higher c-Rel

levels in c-Rel transgenic mice could have strong potentiating effects as GC B cells cycle

in repetitive rounds between LZ and DZ.

The complementary loss-of-function approach in B cell lymphoma cells lines presented in

this thesis shows that c-Rel downregulation reduces the fraction of cells in proliferative
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cell cycle stages in the MedB-1 B cell lymphoma cell line corroborating the idea that c-Rel

levels influence cell cycle entry or progression to proliferative phases.

Plasma cells in c-Rel transgenic mice are highly class-switched accompanied by elevated

serum titers of class-switched antibody isotypes. The opposite effect is observed in mice

with c-Rel deficiency that show reduced class-switched serum antibody titers [Kontgen

et al., 1995; Harling-McNabb et al., 1999].

The increased proliferation of transgenic c-Rel GC B cells could influence the enhanced

isotype class switch as this process is closely linked to proliferation [Hodgkin et al., 1996].

However, a defect to switch to IgG1 in plasmablast cultures [Heise et al., 2014] and

to produce γ1 germline transcripts [Kaku et al., 2002] as a result of c-Rel-deficiency

provides evidence for additional direct involvements of c-Rel in class switch recombination

(see introduction subsection 2.2.6). Besides c-Rel also other members of the NF-κB

transcription factor family are known to have an impact on class switch recombination

[Snapper et al., 1996a,b; Doi et al., 1997; Xu et al., 2012]. IgG3 is the only analyzed

class-switched subtype that is reduced in percent in c-Rel transgenic mice. Amongst the

NF-κB subunits, RelA is implicated in IgG3 class switching and γ3 germline transcription

[Horwitz et al., 1999]. Therefore, I hypothesize that c-Rel overexpression could indeed

actively promote preferential class switch recombination to certain isotypes including

IgG1, while switching to IgG3 that is induced by RelA is reduced as a result of a potentially

changed NF-κB subunit balance due to c-Rel transgene overexpression. This hypothesis

and a possible influence of cell division on class switching in c-Rel transgenic mice are not

mutually exclusive.

The study of c-Rel in plasma cells in vivo has been impeded by the crucial role of c-Rel in

GC B cells entailing the collapse of GC reactions in studied c-Rel deficient mouse models.

Also in the c-Rel transgenic mouse model presented in this thesis, it is likely that higher

plasma cell counts are in part a result of enhanced GC reactions. Plasmablast differen-

tiation in vitro shows a trend for slightly higher percentage of c-Rel transgenic plasma

cells, indicating that c-Rel potentially enhances plasma cell differentiation. In contrast,

Heise et al. observed a higher percentage of plasmablasts in in vitro differentiation of

c-Rel-/- cells [Heise et al., 2014]. However, this in vitro differentiation approach is a model

for extrafollicular plasma cell generation and does not reflect the follicular GC-dependent

plasma cell response. In vivo c-Rel transgenic plasma cells are significantly expanded in
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both naive and immunized mice, whereas the extent of enhanced GC B cells is slightly less

pronounced upon immunization. These findings could hint towards an independent role

of elevated c-Rel levels in plasma cell differentiation. However, at this stage the distinct

delineation of c-Rel function in plasma cells requires further investigation.

3 c-Rel protein expression and regulation

Based on microarray gene expression studies of immune cells, it was reported that GC

B cells lack a typical NF-κB signature [Shaffer et al., 2001, based on data in Alizadeh et al.,

2000]. A reason for the absence of a usual NF-κB signature in GC B cells could be that

in particular c-Rel but not RelA plays a central role in GC reactions [Heise et al., 2014].

Possibly, a general NF-κB signature does not represent a characteristic c-Rel signature.

Indeed, c-Rel is unique amongst the NF-κB subunits with regard to κB site sequence

recognition as several studies suggest a lower stringency and higher degeneracy for c-

Rel binding motifs associated with an increased flexibility for c-Rel target gene sequence

binding [Kunsch et al., 1992; Sanjabi, 2005; Siggers et al., 2012; Zhao et al., 2014].

In studies of GC B cells in human lymphoid tissue, c-Rel was found mainly in the cyto-

plasm and only rarely in the nucleus [Barth et al., 2003; Basso et al., 2004; Saito et al.,

2007]. Unfortunately, none of these publications show a quantitative analysis of c-Rel

expression. In contrast to these data, as discussed above, c-Rel-deficient mouse models

demonstrate that c-Rel certainly plays a crucial role in GC B cells. Moreover, I establish

by comprehensive analyses in this work that c-Rel expression is generally higher in GC

B cells than in naive B cells. These results are associated with a functional implication

as c-Rel expression levels strikingly correlate with cellular expansion of GC B cells and

plasma cells. Furthermore, quantitative imaging flow cytometry data of this thesis sug-

gests a higher c-Rel nuclear translocation in around 40% of ex vivo analyzed splenic GC

B cells compared to roughly 20% of naive B cells. While I am not aware of another study

that quantitatively assessed c-Rel nuclear localization in non-malignant primary mouse

GC B cells, the nuclear translocation observed in the splenic mature B cell population is

in agreement with published quantitative immunofluorescence data [Ferch et al., 2007;

Wuerzberger-Davis et al., 2011].

The few GC B cells for which c-Rel nuclear localization is found by Basso et al. and

by the same group in the later publication by Saito et al. are centrocytes of the LZ
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[Barth et al., 2003; Basso et al., 2004]. In addition, LZ GC B cells were described to

be enriched for an NF-κB signaling signature in comparison to DZ GC B cells [Victora

et al., 2010]. Consistently, I demonstrate that the highest levels of c-Rel within the GC

B cell population can be detected in LZ GC B cells, while DZ GC B cells express relatively

lower c-Rel levels. There is evidence that PI3K activity is involved in maintaining c-

Rel levels in mature naive B cells [Suzuki et al., 1999; Yamazaki and Kurosaki, 2003;

Matsuda et al., 2008] (see introduction subsection 2.2.2). In this line, it is interesting

that recent publications report that PI3K signaling is particularly active in LZ GC B cells

[Dominguez-Sola et al., 2015; Sander et al., 2015]. However, at this point in time the

connection of high PI3K activity and c-Rel expression levels in LZ GC B cells remains

speculative.

The drop of c-Rel protein level that I detect in plasma cells is in agreement with a low-

ered REL mRNA level in plasma cells in a recent publication of transcriptional profiling

of plasma cell populations [Shi et al., 2015]. Furthermore, I found that the reduction of

c-Rel protein expression is recapitulated in in vitro plasmablast differentiation, indicating

that the decrease of c-Rel in plasma cells is a central feature of this terminally differen-

tiated cell type. These reduced c-Rel protein levels are in accordance with the observed

predominantly cytoplasmic localization of c-Rel in plasma cells.

Transcription factor expression levels in immune cells are pivotal determinants of cell

fate decisions. For instance, in GC B cell versus plasmablast fate choice, IRF4 and IRF8

have been described to act in a dose-dependent manner [Klein et al., 2006; Sciammas

et al., 2006; Ochiai et al., 2013], which was proposed to be controlled by an antagonistic

feedback loop [Xu et al., 2015]. Dose-dependent effects of c-Rel expression level were

reported upon heterozygous c-Rel deficiency in lymphocytes or GC B cells that present

intermediate phenotypes [Kontgen et al., 1995; Heise et al., 2014]. As mentioned above, I

find a highly significant correlation of c-Rel levels with the expansion of both GC B cells

and plasma cells. These analyses clearly demonstrate that c-Rel is a potent driver of GC

reactions in a dose-dependent manner.

The data presented in this thesis provide evidence for a tight regulation of c-Rel protein

levels in B cell subpopulations. Although c-Rel transgene overexpression in the B lineage

is induced in the course of development in the bone marrow mediated by CD19Cre, total

c-Rel levels are only marginally higher in mature naive B cells but several fold increased
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in GC B cells of c-Rel transgenic mice. Analysis of CAG-CAR-reporter mice illustrates

that these sharp switches are not a consequence of differential transgenic CAG promoter

activity that drives c-Rel transgene expression. I conclude that c-Rel levels are regulated

in naive B cells, possibly on the post-transcriptional or post-translational level. Similarly,

the limited extent of c-Rel transgene expression in plasma cells, despite strong CAG pro-

moter activity, suggests that also in this terminally differentiated B lineage cell type c-Rel

protein expression levels are restricted. With the intention to generate even higher c-Rel

overexpression levels, I generated c-Rel/GFP-c-Rel double transgenic mice. Surprisingly,

this did not have an additive effect as total c-Rel levels in GC B cells are comparable

in double and single transgenic mice. Intriguingly, GFP-c-Rel levels are even reduced

in c-Rel/GFP-c-Rel double transgenic mice. This observation indicates that despite the

strongly elevated c-Rel transgene levels in GC B cells, there appears to be a limit of c-Rel

expression also in this cell type. I therefore postulate that c-Rel protein expression levels

are constrained by tight regulation, possibly on multiple molecular layers.

Indeed, I provide first evidence for a molecular mechanism involving proteasomal degra-

dation of c-Rel in naive B cells but not in GC B cells. Proteasomal degradation as a means

of c-Rel protein turnover has been reported for other immune cell types (see introduc-

tion 2.2.3). In T cells the E3 ubiquitin ligase Peli1 has been identified as a fundamental

negative regulator of c-Rel and Peli1-deficient mice develop syndromes of autoimmunity

[Chang et al., 2011]. Furthermore, the E3 ubiquitin ligase cIAP has been suggested to be

involved in c-Rel proteasomal degradation in macrophages [Jin et al., 2015].

c-Rel has also been shown to be controlled on the post-transcriptional level. The RNA-

regulating protein Regnase-1 that acts through cleavage of 3’UTRs of target mRNAs

controls REL mRNA in T cells. The authors further show that Regnase-1 is cleaved

by MALT1 protease downstream of TCR stimulation serving as a mechanism that is

suggested to stabilize REL mRNA [Uehata et al., 2013]. It is noteworthy that MALT1

is specifically required for c-Rel nuclear translocation downstream of BCR signaling in

mature B cells [Ferch et al., 2007] and that c-Rel levels are rapidly upregulated following

stimulation. However, Ferch et al. found no difference in total c-Rel amounts in MALT1-/-

and control B cells after 4 h of anti-IgM stimulation. In addition, REL is a target of

the RNA-binding and -regulating Roquin proteins as shown by Roquin-1/2 ablation in

T cells [Jeltsch et al., 2014]. As both Regnase-1 [Uehata et al., 2013] and Roquin proteins

[Bertossi et al., 2011] are also expressed in B cells, it would be interesting to investigate
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the potential relation of c-Rel and these RNA-regulators in activated and terminally

differentiated B cells.

4 c-Rel in lymphoma and autoimmunity - a yet un-

resolved question

The dose-dependent correlation of c-Rel protein with GC B cell and plasma cell expan-

sion provides evidence for a physiological relevance of tight control of c-Rel expression.

In light of the frequent REL gene locus amplifications in human B cell lymphoma, the

interesting finding that c-Rel transgene expression can drive GC reactions and the sub-

sequent appearance of class-switched plasma cells has an implication for the role of c-Rel

in B cell lymphomagenesis. This is substantiated by the observation that the vast ma-

jority of human B cell lymphomas show indications of GC or post-GC origin [Küppers,

2005]. Yet, aged B cell-specific c-Rel transgenic mice do not spontaneously develop overt

lymphoma. Lymphoma development requires not only intrinsic malignant transformation

but is also coupled to the microenvironment and its cell types that provide protection by

immune surveillance [Küppers, 2005; Schreiber et al., 2011]. In mouse models, T cells were

found to control B cell lymphoma development [Zhang et al., 2012; Afshar-Sterle et al.,

2014]. However, the B cell-specific phenotype of c-Rel transgenic mice is accompanied

by only moderate T cell activation, suggesting that this pathway does not lead to strong

cell-extrinsic activation of the immune system.

The findings that enhanced proliferation could contribute to the expansion of the GC B cell

population in c-Rel transgenic mice and that c-Rel knockdown in the PMBCL cell line

MedB-1 strongly decreases proliferation are of particular interest as unrestrained prolifer-

ation is considered one of the hallmarks of lymphoma [Küppers and Dalla-Favera, 2001;

Shaffer et al., 2002b]. My findings indicate that high c-Rel expression could play a role in

maintaining proliferative capacities in human B cell lymphoma cells. The observation that

one out of three c-Rel-targeting shRNAs of my cell line-based loss-of-function approach

does not exhibit proliferative defects correlates with the lower but still > 90% knock-

down efficiency of this shRNA compared to > 95% knockdown efficiency for the other two

shRNAs. Whether a threshold effect for c-Rel levels or potential off-target effects account

for these results remains to be determined. A subsequent attempt to validate the findings
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using an inducible strategy mediated by the reverse tetracycline transactivator (rtTA)

and the tetracycline-responsive element (TRE) [Zuber et al., 2010] was not successful due

to toxicity effects of the induced transactivators. During the course of my studies, the

novel CRISPR/Cas9 genome engineering technology emerged as a novel versatile tool for

targeted loss-of-function approaches [Jinek et al., 2012; Mali et al., 2013b,a; Doudna and

Charpentier, 2014] and represents the method of choice to further investigate the role of

c-Rel in human B cell lymphoma cell lines in future studies.

Lymphoma patients clinically present with multiple genetic lesions corroborating the

model that multiple oncogenic hits eventually cause malignant transformation [Küppers

and Dalla-Favera, 2001; Shaffer et al., 2002b]. In the present mouse model, c-Rel does not

act as a sole driver of lymphomagenesis despite conferring enhanced proliferation on GC

B cells. It can be speculated that a higher number of GCs that undergo class switch recom-

bination at higher frequency, which mechanistically involves gene rearrangements, might

lower the threshold to acquire additional genetic aberrations by increasing the incidence of

the processes that constitute the peril of GC reactions. This could especially represent a

possible pathway under physiological circumstances outside of the hygienically controlled

microenvironment of mouse facilities. Nevertheless, these theoretical possibilities demand

practical investigation in future studies.

c-Rel probably acts in cooperation with other proto-oncogenes and several studies provide

evidence for possible candidates. First, the negative regulator of NF-κB signaling A20 is

implicated in autoimmune diseases and as a tumor suppressor in human B cell lymphomas,

including cHL, PMBCL and DLBCL [Compagno et al., 2009; Kato et al., 2009; Schmitz

et al., 2009; Vereecke et al., 2009; Chu et al., 2011]. As published recently, A20 inactivation

and REL amplification can occur in the same tumor entities: in a cohort of 19 cHL

patients, more than half (4/7) of the cases with heterozygous loss of TNFAIP3, the

gene encoding A20, showed concurrent REL copy number gains > 4 [Salipante et al.,

2016]. Second, although translocations involving Myc and Ig loci are best known as a

characteristic of virtually all Burkitt lymphoma cases, genetic alterations deregulating

c-Myc have for instance also been found in DLBCL [Kramer et al., 1998; Stasik et al.,

2010; Ott et al., 2013]. In a cohort of 114 DLBCL cases, Jardin et al. found an association

of REL and Myc gains as 75% (8/12) of cases with Myc gain showed concomitant REL

gains. Third, another possible candidate to be investigated in compound studies is Bcl-

11a. The gene locus of BCL11A is frequently co-amplified with the REL locus and whether
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c-Rel, Bcl-11a or both are targets of the locus amplifications remains controversial (see

introduction subsection 3.2.5).

In addition, Janus kinase 2 (JAK2) amplifications [Joos et al., 1996, 2000, 2003; Savage,

2006] or loss of its negative regulator, the suppressor of cytokine signaling 1 (SOCS1)

[Melzner, 2005; Melzner et al., 2006; Weniger et al., 2006a; Mottok et al., 2007], is fre-

quently found in cHL and PMBCL patient samples and cell lines. Amongst common

aberrations in DLBCL, further candidates for compound mouse studies include Bcl-2

translocation [Rosenwald et al., 2002] or amplification of the genomic region containing

the microRNA (miRNA) cluster miR-17-92 [Tagawa and Seto, 2005; Xiao et al., 2008].

Accordingly, there are numerous genetic aberrations occurring in human B cell lymphomas

that could possibly cooperate with c-Rel and therefore represent interesting candidates

for future studies aiming at investigation of potential additive or synergistic effects of

c-Rel in combination with these proto-oncogenes or tumor suppressors.

Initial analyses of c-Rel transgenic mice overexpressing the lymphoma-specific aberrant

splice version of c-Rel lacking exon 9 (c-Rel∆Ex9) [Leeman et al., 2008] did not reveal

significant differences in comparison to full-length c-Rel overexpression in B cells. Never-

theless, I observed an interesting trend for higher GC B cell numbers in lymph nodes and

for higher plasma cell numbers in bone marrow despite similar or only slightly enhanced

total c-Rel levels, respectively. In this regard, it would be of particular interest to delin-

eate the specific signals that activate c-Rel in lymph nodes and bone marrow plasma cells

as well as to investigate target gene expression to continue the evaluation of this c-Rel

splice variant in B cells.

Aberrant GC reactions and plasma cells are also associated with autoimmunity and au-

toantibodies are a central characteristic for most autoimmune diseases and are commonly

used in diagnosis [Vinuesa et al., 2009]. Interestingly, aged c-Rel transgenic mice show

signs of class-switched autoantibody production, indicating that the spontaneous GCs

are driven by self-antigens. Human disease-associated autoantibodies are often of class-

switched isotypes and autoantibody-secreting cells frequently carry somatic mutations

in Ig variable gene segments, indicating that they have undergone GC reactions and

are antigen-selected [Shlomchik, 2008]. While the extent of somatic hypermutation in

terminally differentiated c-Rel transgenic B lineage cells remains to be determined, the

anti-nuclear antibodies (ANA) and rheumatoid factor (RF) autoantibodies detectable in
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aged c-Rel CD19CreI/+ mice are of the IgG class-switched isotype.

Detection of autoantibodies is not only characteristic for most autoimmune diseases but

can precede appearance of clinical symptoms [Arbuckle et al., 2003; Scofield, 2004; Bizzaro,

2007]. Therefore, although no overt signs of disease were visible in aged c-Rel transgenic

animals, the appearance of class-switched autoantibodies indicates that enhanced c-Rel

activation could indeed contribute to autoimmunity. In this line, it is remarkable that

SNPs within the REL locus are associated with numerous autoimmune diseases, including

rheumatoid arthritis [Gregersen et al., 2009; Eyre et al., 2010], psoriasis [Strange et al.,

2010], ulcerative colitis [McGovern et al., 2010] and celiac disease [Trynka et al., 2009;

Dubois et al., 2010].

In conclusion, c-Rel overexpression in B cells in the present mouse model does not cause

overt lymphoma or autoimmune disease when aging mice up to 1.5 years of age. Never-

theless, the results of this thesis are still in support of a potential disease-promoting role

of c-Rel, as I could demonstrate that c-Rel is a potent dose-dependent driver of GC reac-

tions and causes accumulation of class-switched autoantibody-producing plasma cells in

vivo and confers proliferative capacities to the human B cell lymphoma cell line MedB-1

in vitro. However, under which circumstances this might have an impact on severe disease

manifestation needs to be addressed in future studies.

5 Concluding remarks and outlook

Despite more than 30 years of research since the discovery of c-Rel as an NF-κB family

transcription factor followed by an enormous progress of delineating c-Rel function in im-

mune cells, still intriguing questions remain unanswered. The significance of elucidating

the precise molecular mechanisms and consequences of c-Rel signaling in GC reactions

is emphasized by the implication of c-Rel in human B cell lymphoma and autoimmune

disease – in particular with regard to paving the way towards development of novel ther-

apeutic approaches (see introduction subsection 3.5).

The first conditional c-Rel overexpression mouse models presented in this thesis did not

only reveal that c-Rel is a potent driver of GC reactions and plasma cell expansion and

led to the discovery of tight c-Rel protein level regulation, but they also permit to further

advance the knowledge of c-Rel function in lymphocytes and beyond.
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Figure S1: Weight gain of c-Rel CD19CreI/+ mice. (A) Mouse weight at the indicated days
after birth. Individual data points are plotted. Lines connect mean values averaged over females or
males of each genotype. (B) Mouse weight assessed at day of analysis. Individual data points and bars
representing median values are plotted. M, male; F, female.
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Figure S2: B cells in bone marrow and peritoneal cavity of c-Rel CD19CreI/+ mice. Repre-
sentative flow cytometry plots illustrating the gating strategy for B cell subsets in (A) bone marrow (BM)
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individual data points are plotted and bars are median values. Data were obtained in ≥ 3 independent
experiments. B cell subsets: Pro/Pre B220+IgM-; Pro B220+IgM-CD25-c-kit+; Pre B220+IgM-CD25+c-
kit-; immature B220lowIgM+; recirculating/mature B220highIgM+; PerC B2 CD19+B220high; PerC B1
CD19+B220low; PerC B1a CD43+CD5+; PerC B1b CD43lowCD5-.
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Figure S3: B cells in thymus of c-Rel CD19CreI/+ mice. Representative flow cytometry plots
illustrating the gating strategy for B cell subsets in (A) thymus (TH). Numbers within plots are median
percentages calculated from the same dataset considered for bar graph representation of cell numbers for
the respective B cell subsets where individual data points are plotted and bars are median values. Data
were obtained in 5 independent experiments. B cells B220+CD19+.

A

CD19Cre I/+

c-Rel
CD19Cre I/+

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

CD95

G
L7

LN MLN

0 103 104 105

0

102

103

104

105

0 103 104 105

0

102

103

104

105

0 103 104 105

0

102

103

104

105

0 103 104 105

0

102

103

104

105

CD95

P
N

A

MLN PP

4.5

18.0 37.2

13.5

2.8

5.6 16.6

5.6

Figure S4: Staining of GC B cells in c-Rel CD19CreI/+ mice with GL7 and PNA. (A)
Representative flow cytometry plots of GL7 and PNA stainings for identification of GC B cells within the
population of CD19+/B220+ B cells. Numbers are percentages of gated populations for displayed plots.
Data are representative for ≥ 2 independent experiments. LN, lymph nodes; MLN, mesenteric lymph
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Figure S5: Regulation of B cell activation markers in c-Rel CD19CreI/+ mice. Heatmap
representation of log2 values of geometric means of relative change of activation marker protein amounts
for c-Rel CD19CreI/+ mice and CD19CreI/+ controls. (A) Flow cytometry data of activation markers
of CD19+ B cells in indicated organs. Activation markers were assessed directly ex vivo. Data were
normalized to CD19CreI/+ controls for each organ. Data are representative for ≥ 6 mice per genotype
and were obtained in ≥ 2 independent experiments. (B) Flow cytometry data of activation markers
after over night stimulation of MACS-isolated splenic B cells with indicated stimuli (LPS 20µg/ml, CpG
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Figure S6: T cell subsets in spleen of c-Rel CD19CreI/+ mice. (A) Representative flow cy-
tometry plots illustrating CD8, CD4 and CD25 expression on splenic TCRβ+ T cells. Numbers are
median percentages. (B) Cell numbers of splenic T cell subsets. Individual data points obtained in
3 independent experiments are plotted and bars represent median values. (C) Cell numbers of naive
(CD44intCD62Lhigh), central memory like (CML, CD44highCD62Lhigh) and effector memory like (EML,
CD44highCD62Llow) T cells within indicated T cell subsets (all pre-gated on TCRβ+ and CD8/CD4 or
CD4/CD25 as indicated). Data were obtained in 3 independent experiments. These cell numbers corre-
spond to the percentages shown in Figure 12A. (D) CD69 protein expression on indicated splenic T cell
subsets. All data are normalized to TCRβ+ T cells of CD19CreI/+ controls. Individual data points
obtained in 3 independent experiments are plotted and bars represent geometric means. SPL, spleen.
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Figure S7: T cell subsets in lymph nodes of c-Rel CD19CreI/+ mice. (A) Representative
flow cytometry plots illustrating CD8, CD4 and CD25 expression on TCRβ+ T cells in lymph nodes.
Numbers are median percentages. (B) Cell numbers of T cell subsets in lymph nodes. Individual data
points obtained in 3 independent experiments are plotted and bars represent median values. (C) CD69
protein expression on indicated T cell subsets of lymph nodes. All data are normalized to TCRβ+ T cells
of CD19CreI/+ controls. Individual data points obtained in 3 independent experiments are plotted and
bars represent geometric means. ** p≤ 0.01, unpaired t test. LN, lymph node.
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Figure S8: Naive and memory like T cell subsets in lymph nodes of c-Rel CD19CreI/+

mice. (A) Representative flow cytometry plots illustrating CD44 and CD62L expression of T cell subsets
in lymph nodes (all pre-gated on TCRβ+ and CD8/CD4 or CD4/CD25 as indicated) representing naive
(CD44intCD62Lhigh), central memory like (CML, CD44highCD62Lhigh) and effector memory like (EML,
CD44highCD62Llow) T cells. Numbers are median percentages. (B) Cell numbers of naive, CML and EML
T cells within indicated T cell subsets. Individual data points obtained in 3 independent experiments and
bars representing median values are plotted. Cell numbers for EML T cell subsets are also shown in
Figure 12C. * p≤ 0.05, ** p≤ 0.01, unpaired t test. LN, lymph node.
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Figure S9: T cell subsets in mesenteric lymph nodes of c-Rel CD19CreI/+ mice. (A) Repre-
sentative flow cytometry plots illustrating CD8, CD4 and CD25 expression on TCRβ+ T cells in mesen-
teric lymph nodes. Numbers are median percentages. (B) Cell numbers of T cell subsets in mesenteric
lymph nodes. Individual data points obtained in 3 independent experiments are plotted and bars repre-
sent median values. (C) CD69 protein expression on indicated T cell subsets of mesenteric lymph nodes.
All data are normalized to TCRβ+ T cells of CD19CreI/+ controls. Individual data points obtained in 3
independent experiments are plotted and bars represent geometric means. MLN, mesenteric lymph node.
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Figure S10: Naive and memory like T cell subsets in mesenteric lymph nodes of c-
Rel CD19CreI/+ mice. (A) Representative flow cytometry plots illustrating CD44 and CD62L expres-
sion of T cell subsets in mesenteric lymph nodes (all pre-gated on TCRβ+ and CD8/CD4 or CD4/CD25
as indicated) representing naive (CD44intCD62Lhigh), central memory like (CML, CD44highCD62Lhigh)
and effector memory like (EML, CD44highCD62Llow) T cells. Numbers are median percentages. These
percentages correspond to the frequencies shown in Figure 12B. (B) Cell numbers of naive, CML and EML
T cells within indicated T cell subsets. Individual data points obtained in 3 independent experiments and
bars representing median values are plotted. MLN, mesenteric lymph node.
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Figure S11: Characteristics of Tfh cells of c-Rel CD19CreI/+ mice. (A) Flow cytometry data
of CD69 protein levels of Tfh cells normalized to the non-Tfh cell population of CD19CreI/+ controls.
Geometric mean and individual data points obtained in 5 independent experiments are plotted. (B) Rep-
resentative histograms illustrating the bar graphs shown in (A). Tfh TCRβ+CD4+PD-1highCXCR5high;
non-Tfh TCRβ+CD4+PD-1-CXCR5-; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph nodes;
PP, Peyer’s patches.
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Figure S12: In vitro plasmablast differentiation with c-Rel CD19CreI/+ splenocytes. (A)
Representative flow cytometry plots of plasmablasts. (B) Percentages of plasmablasts after 3 days or
4 days of LPS treatment in vitro. Individual data points obtained in 3 independent experiments and bars
representing median values are plotted. (C) Intracellular flow cytometry data of Blimp-1 protein levels
in plasmablasts after 3 days of LPS treatment in vitro normalized to the non-plasmablast cell population
of CD19CreI/+ controls. Representative histograms illustrate the bar graphs for which the geometric
mean and individual data points obtained in 3 independent experiments are plotted. Plasmablasts (PB)
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Figure S13: B cells in peripheral mouse immune organs of GFP-c-Rel CD19CreI/+ mice.
(A) Mouse weight and spleen weight assessed at day of analysis. (B) Total lymphocyte cell numbers
for indicated immune organs. Flow cytometry-based analysis of (C) B cell percentages displayed in
representative histograms and (D) B cell numbers in bar graphs. Individual data points obtained in ≥ 2
independent experiments are plotted. Bars and numbers below graphs are median values. SPL, spleen;
LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S18: Tfh cells in GFP-c-Rel CD19CreI/+ mice. (A) Representative flow cytometry plots
of follicular helper T (Tfh) cells. Numbers are median percentages of PD-1highCXCR5high Tfh cells of
TCRβ+CD4+ T cells. (B) Tfh cell numbers. Individual data points obtained in 2 independent experiments
are plotted. Bars and numbers below graphs are median values. (C) Flow cytometry data of ICOS protein
levels in Tfh cells normalized to the non-Tfh cell population of CD19CreI/+ controls. Geometric mean and
individual data points obtained in 2 independent experiments are plotted. (D) Representative histograms
illustrate the bar graphs shown in (C). Tfh TCRβ+CD4+PD-1highCXCR5high; non-Tfh TCRβ+CD4+PD-
1-CXCR5-; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S20: In vitro plasmablast differentiation with GFP-c-Rel CD19CreI/+ splenocytes.
(A) Representative flow cytometry plots of plasmablasts. (B) Percentages of plasmablasts after 3 days
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Figure S21: SRBC-immunized c-Rel CD19CreI/+ mice. Mice were immunized with SRBC
and spleens were analyzed 10-12 days post-immunization. (A) Representative flow cytometry plots and
median percentages of light zone (LZ) and dark zone (DZ) splenic GC B cells. Individual data points
obtained in 4 independent experiments are plotted. Bars and numbers below graphs are median values.
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experiments are plotted. Bars and numbers below graphs are median values. (C) Intracellular flow
cytometry data of Blimp-1 and IRF4 protein levels in splenic plasma cells normalized to the non-PC
population of CD19CreI/+ controls. Individual data points obtained in 2 independent experiments and
the geometric mean are plotted. ** p≤ 0.01, paired t test. GCB CD19+/B220+CD95highCD38low; DZ
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Figure S22: B cells and GC B cells in c-Rel Cγ1CreI/+ mice. (A) Percentages and cell num-
bers of B cells. Individual data points and medians represented as bars are plotted. (B) Intracellular
flow cytometry data of Bcl-6 protein levels in GC B cells normalized to the non-GC B cell popula-
tion of controls. Representative histograms illustrate the bar graphs for which the geometric mean
and individual data points are plotted. (C) Frequencies of dark zone (DZ) and light zone (LZ) GC
B cells. Individual data points are plotted and bars represent median values. Controls include c-
Rel and Cγ1CreI/+ mice. Data were obtained in 2 independent experiments. * p≤ 0.05, ** p≤ 0.01,
*** p≤ 0.001, unpaired t test. B CD19+/B220+ in (A); GCB CD19+/B220+CD95highCD38low; B (non-
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Figure S23: Expansion of Tfh cells in c-Rel Cγ1CreI/+ mice. (A) Representative flow cytometry
plots of follicular helper T (Tfh) cells. Numbers are median percentages of PD-1highCXCR5high Tfh cells of
TCRβ+CD4+ T cells. (B) Tfh cell numbers. Individual data points obtained in 2 independent experiments
are plotted. Bars and numbers below graphs are median values. Controls include c-Rel and Cγ1CreI/+

mice. Tfh TCRβ+CD4+PD-1highCXCR5high; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph
nodes; PP, Peyer’s patches.
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Figure S24: Characteristics of Tfh cells in c-Rel Cγ1CreI/+ mice. Flow cytometry data of (A)
ICOS or (C) CD69 protein levels of Tfh cells normalized to the non-Tfh cell population of controls. Geo-
metric mean and individual data points obtained in 2 independent experiments are plotted. (B) and (D)
show representative histograms illustrating the bar graphs shown in (A) and (C), respectively. Controls
include c-Rel and Cγ1CreI/+ mice. Tfh TCRβ+CD4+PD-1highCXCR5high; non-Tfh TCRβ+CD4+PD-
1-CXCR5-; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S25: GC B cells and plasma cells in SRBC-immunized c-Rel Cγ1CreI/+ mice. Mice
were immunized with SRBC and organs were analyzed 10-12 days post-immunization. GC B cell (A)
percentages of total B cells and (B) cell numbers. (C) Frequencies of dark zone (DZ) and light zone
(LZ) GC B cells. (D) Plasma cell percentages and cell numbers. Individual data points obtained in
2 independent experiments are plotted. Bars and numbers below graphs are median values. Controls
include c-Rel and Cγ1CreI/+ mice. * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001, unpaired t
test. GCB CD19+/B220+CD95highCD38low; DZ CXCR4highCD86low; LZ CXCR4lowCD86high; plasma
cells (PC) B220lowCD138+; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s
patches.
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Figure S26: Immune organ cell numbers in aged c-Rel CD19CreI/+ mice. (A) Mouse weight
and spleen weight of aged c-Rel CD19CreI/+ mice and CD19CreI/+ control mice. (B) Total cell numbers
for indicated immune organs. Individual data points and bars representing median values are plotted.
Data were obtained in 4-8 independent experiments. BM, bone marrow; TH, thymus; SPL, spleen; PerC,
peritoneal cavity; LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S27: B cells in aged c-Rel CD19CreI/+ mice. Percentages and cell numbers of (A) mature
and (B) immature B cell subpopulations in spleens of c-Rel CD19CreI/+ and CD19CreI/+ control mice.
(C) Mature B cell percentages and cell numbers in lymph nodes and mesenteric lymph nodes. Individual
data points obtained in 8 independent experiments and bars representing median values are plotted. For
gating strategy of indicated B cell populations see Figure 7. * p≤ 0.05, unpaired t test. SPL, spleen; LN,
lymph nodes; MLN, mesenteric lymph nodes.
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Figure S28: GC B cells and plasma cells in aged c-Rel CD19CreI/+ mice. Percentages and
cell numbers of (A) GC B cells and (B) plasma cells of aged c-Rel CD19CreI/+ and CD19CreI/+ control
mice. Individual data points obtained in 8 independent experiments and medians represented as bars are
plotted. ** p≤ 0.01, unpaired t test. GCB CD19+CD95highCD38low; plasma cells (PC) B220lowCD138+;
BM, bone marrow; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S29: c-Rel levels are highly upregulated in GC B cells and decreased in plasma
cells. Intracellular flow cytometry data of c-Rel protein levels in B cell subpopulations. Median fluo-
rescence intensities (MFI) were normalized to (A) CD19CreI/+ controls or to (B) and (C) controls (for
more information on normalization for individual populations see Figure 22). Individual data points
obtained in ≥ 2 independent experiments and bars representing geometric means are plotted. Controls
in Cγ1CreI/+ experiments include c-Rel and Cγ1CreI/+ mice. (A) c-Rel level in B cells, GC B cells
and plasma cells of SRBC-immunized c-Rel CD19CreI/+ mice. (B) c-Rel level in GC B cells of naive
c-Rel Cγ1CreI/+ mice. (C) c-Rel level in GC B cells of SRBC-immunized c-Rel Cγ1CreI/+ mice. GCB
CD19+/B220+CD95highCD38low; B (non-GCB) CD19+/B220+CD95-CD38high; DZ CXCR4highCD86low;
LZ CXCR4lowCD86high; plasma cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; SPL, spleen; LN,
lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S30: Total c-Rel levels in GFP-c-Rel CD19CreI/+ mice. Intracellular flow cytometry
data of c-Rel protein levels in B cell subpopulations. Median fluorescence intensities (MFI) were normal-
ized to CD19CreI/+ controls. Individual data points obtained in ≥ 2 independent experiments and bars
representing geometric means are plotted. (A) c-Rel level in B cells and GC B cells. MFIs were normalized
to non-GCB of CD19CreI/+ controls. (B) Representative histograms illustrate c-Rel level in B and GC
B cells. (C) c-Rel level in plasma cells. MFIs were normalized to splenic B cells (non-PC) of CD19CreI/+

controls. GCB CD19+/B220+CD95highCD38low; B (non-GCB) CD19+/B220+CD95-CD38high; plasma
cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; SPL, spleen; LN, lymph nodes; MLN, mesenteric
lymph nodes; PP, Peyer’s patches.
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Figure S31: c-Rel and GFP-c-Rel levels in in vitro-differentiated plasmablasts. Displayed
data were obtained after LPS treatment of splenocytes for 3 days in vitro in 3 independent experi-
ments. Representative histograms illustrate the bar graphs for which the geometric mean and indi-
vidual data points are plotted. Median fluorescence intensity (MFI) values were normalized to non-
plasmablasts of CD19CreI/+ controls. c-Rel level in plasmablasts of (A) c-Rel CD19CreI/+ and (B)
GFP-c-Rel CD19CreI/+ mice and (C) GFP-c-Rel level in plasmablasts of GFP-c-Rel CD19CreI/+ mice.
Plasmablasts (PB) B220lowCD138+; B (non-PB) B220+CD138-.
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Figure S32: Induction of c-Rel following stimulation. c-Rel levels after (A, B) stimulation of
splenoytes for 60 min or (C, D) stimulation of MACS-isolated B cells over night with the indicated stimuli
(LPS 20µg/ml, CpG 0.1µM, anti-IgM (aIgM) 10µg/ml, anti-CD40 (aCD40) 4µg/ml). (A) Heatmap
representation of log2 values of geometric means of relative change of c-Rel protein amounts. All data
were normalized to unstimulated (unstim) B cells of CD19CreI/+ controls. (B) Individual data points
with geometric mean bar graph representation for the same dataset presented in (A) but with data
normalization to unstimulated cells within each subpopulation separately for each genotype. For (A,
B) data are representative for 4 mice per genotype from 2 independent experiments. (C) c-Rel level
in c-Rel CD19CreI/+ B cells normalized to unstimulated B cells of CD19CreI/+ controls. (D) GFP-c-
Rel level and FSC-A in GFP-c-Rel CD19CreI/+ B cells normalized to unstimulated B cells. For (C, D)
individual data points obtained in 3 independent experiments and bar graphs representing geometric
means are plotted. GCB CD19+CD95highCD38low; B (non-GCB) CD19+CD95-CD38high; plasma cells
(PC) B220lowCD138+; FSC-A, forward scatter area.
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Figure S33: Verification of c-Rel level switches in B cell subpopulations by use of a dif-
ferent antibody clone. Intracellular flow cytometry data of (A) c-Rel protein levels or (B) FSC-A
levels in B cells, GC B cells and plasma cells. Median fluorescence intensities (MFI) were normalized
to non-GC B cells of CD19CreI/+ controls. Individual data points obtained in 2 independent experi-
ments and bars representing geometric means are plotted. GCB CD19+CD95highCD38low; B (non-GCB)
CD19+CD95-CD38high; plasma cells (PC) B220lowCD138+; SPL, spleen; LN, lymph nodes; MLN, mesen-
teric lymph nodes; FSC-A, forward scatter area.
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Figure S34: Cell size of DZ and LZ GC B cells. (A) FSC-A level in LZ and DZ of GC B cells. Data
were normalized to GC B cells of CD19CreI/+ controls. Individual data points obtained in 3 independent
experiments and bars representing geometric means are plotted. GCB CD19+/B220+CD95highCD38low;
DZ CXCR4highCD86low; LZ CXCR4lowCD86high; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph
nodes; PP, Peyer’s patches; FSC-A, forward scatter area.
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Figure S35: Quantification of c-Rel nuclear localization in splenic B cells and GC B cells by
imaging flow cytometry. Splenocytes were stimulated with the indicated stimuli or left unstimulated
(unstim) for 60 min in the presence of 10µM Q-VD to prolong the survival of GC B cells in culture.
(A) Median c-Rel nuclear localization score and (B) percentage of cells with c-Rel nuclear transloca-
tion for splenic B cells and GC B cells from c-Rel CD19CreI/+ and CD19CreI/+ mice. Individual data
points obtained in 3 independent experiments are plotted. GCB CD19+CD95highCD38low; B (non-GCB)
CD19+CD95-CD38high.
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Figure S36: GFP-c-Rel nuclear localization in splenic B cells analyzed by imaging flow cy-
tometry. Splenocytes were stimulated with the indicated stimuli or left unstimulated (unstim) for 60 min
in the presence of 10µM Q-VD to prolong the survival of GC B cells in culture. Images representative for
(A, B) 5 mice from 2 independent or (C, D, E) 3 mice from 1 experiments are shown. Exemplary cells
were selected based on average nuclear localization scores. B (non-GCB) B220+CD95-CD38high; white
bar, 10µm; BF, bright field; nuc, nucleus.
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Figure S37: Higher c-Rel nuclear translocation in GC B cells in unstimulated state. Repre-
sentative images for unstimulated (unstim) (A) non-GC B cells and (B) GC B cells of lymph nodes from
CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels is shown for
all merged c-Rel/nucleus magnified images displayed in Figure 26 for which the panel is not shown there.
White bar, 10µm; BF, bright field.
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Figure S38: c-Rel nuclear translocation upon stimulation in B cells and GC B cells. Repre-
sentative images for anti-CD40 stimulated (A) non-GC B cells and (B) GC B cells of lymph nodes from
CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels is shown for
all merged c-Rel/nucleus magnified images displayed in Figure 27 for which the panel is not shown there.
White bar, 10µm; BF, bright field.
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Figure S39: Quantification of c-Rel nuclear localization in B cells and GC B cells by imaging
flow cytometry. Cells of mesenteric lymph nodes (MLN) were stimulated with anti-CD40 or left
unstimulated (unstim) for 60 min in the presence of 10µM Q-VD to prolong the survival of GC B cells
in culture. (A) Median c-Rel nuclear localization score and (B) percentage of cells with c-Rel nuclear
translocation for B cells and GC B cells of MLN from c-Rel CD19CreI/+ and CD19CreI/+ mice. Individual
data points obtained in 3 independent experiments are plotted. (C) Representative flow cytometry
plots illustrating the gating strategy. (D) Representative histograms for c-Rel nuclear translocation
score. Example images are provided in Figure S40-S43. GCB CD19+CD95highCD38low; B (non-GCB)
CD19+CD95-CD38high.
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Figure S40: Higher c-Rel nuclear translocation in GC B cells in unstimulated state. Repre-
sentative images for unstimulated (unstim) (A) non-GC B cells and (B) GC B cells of mesenteric lymph
nodes from CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels
as well as magnified images of merged c-Rel/nucleus signals are displayed for each cell type and genotype.
Exemplary cells were selected based on average nuclear localization scores. Quantification and gating
strategy are displayed in Figure S39. White bar, 10µm; BF, bright field.
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Figure S41: c-Rel nuclear translocation upon stimulation in B cells and GC B cells. Rep-
resentative images for anti-CD40 stimulated (A) non-GC B cells and (B) GC B cells of mesenteric lymph
nodes from CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels
as well as magnified images of merged c-Rel/nucleus signals are displayed for each cell type and genotype.
Exemplary cells were selected based on average nuclear localization scores. Quantification and gating
strategy are displayed in Figure S39. White bar, 10µm; BF, bright field.
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Figure S42: Higher c-Rel nuclear translocation in GC B cells in unstimulated state. Repre-
sentative images for unstimulated (unstim) (A) non-GC B cells and (B) GC B cells of mesenteric lymph
nodes from CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels
is shown for all merged c-Rel/nucleus magnified images displayed in Figure S40 for which the panel is
not shown there. White bar, 10µm; BF, bright field.
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Figure S43: c-Rel nuclear translocation upon stimulation in B cells and GC B cells. Rep-
resentative images for anti-CD40 stimulated (A) non-GC B cells and (B) GC B cells of mesenteric lymph
nodes from CD19CreI/+ controls and c-Rel CD19CreI/+ mice. A panel of images for indicated channels
is shown for all merged c-Rel/nucleus magnified images displayed in Figure S41 for which the panel is
not shown there. White bar, 10µm; BF, bright field.
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Figure S44: Quantification of c-Rel nuclear localization in B cell subsets of GFP-c-
Rel CD19CreI/+ mice by imaging flow cytometry. Intracellular c-Rel staining of total c-Rel levels
in GFP-c-Rel CD19CreI/+ mice. Individual data points obtained in 1 experiment are plotted. Bars rep-
resent median values. (A, B) Splenocytes were stimulated with the indicated stimuli or left unstimulated
(unstim) for 60 min in the presence of 10µM Q-VD to prolong the survival of GC B cells in culture.
(A) Median c-Rel nuclear localization score and (B) percentage of cells with c-Rel nuclear translocation
for splenic B cells, GC B cells and plasma cells from GFP-c-Rel CD19CreI/+ mice. (C) c-Rel nuclear
translocation score and (D) percentage of cells with c-Rel nuclear translocation of directly ex vivo ana-
lyzed B cells, GC B cells and plasma cells of indicated organs from GFP-c-Rel CD19CreI/+ mice. GCB
CD19+CD95highCD38low; B (non-GCB) CD19+CD95-CD38high; plasma cells (PC) B220lowCD138+;
SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph nodes.
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Figure S45: Strong positive correlation of c-Rel levels with cell numbers of GC B cells
and plasma cells. Individual data points for c-Rel level and cell number of (A) GC B cells or (B)
plasma cells is plotted. c-Rel levels are relative median fluorescence intensity (MFI) values normalized
to the B cell population excluding GC B cells or plasma cells, respectively, of CD19CreI/+ control mice
in each experiment. Spearman correlation coefficient (rS) and respective statistical significance analysis
p values (two-tailed) are given for each dataset. GCB: nSPL = 110; nLN = 77; nMLN = 78; nPP = 59; PC
nSPL = 70; GCB CD19+/B220+CD95highCD38low; plasma cells (PC) B220lowCD138+; SPL, spleen; LN,
lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S46: Assessment of apoptotic cells in c-Rel CD19CreI/+ mice. In order to stain active
caspases splenocytes of SRBC-immunized mice were cultured for 1 h in vitro. For longer time periods of
culture (2 h, 4 h) cells were stained during the last hour of culture. (A) Representative flow cytometry plots
of Annexin V/active caspase staining in B cells and GC B cells. Quantification of viable and apoptotic
cells in (B) GC B cell and (C) B cell population for indicated culture time periods. Individual data points
obtained in 1 preliminary experiment and median values represented as bar graphs are plotted. Due
to the preliminary character of the experiment, no statistical analysis was performed. viable: caspase-,
Annexin V-, 7-AAD-; early apoptotic: caspase+Annexin V-/caspase-Annexin V+/caspase+Annexin V+,
7-AAD-; late apoptotic: caspase+Annexin V-/caspase-Annexin V+/caspase+Annexin V+, 7-AAD+; non-
apoptotic dead: caspase-, Annexin V-, 7-AAD+; GCB CD19+B220+CD95highCD38low; B CD19+B220+;
SPL, spleen.
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Figure S47: Cell cycle stages of B cells and Ki-67-expressing cells in c-Rel CD19CreI/+

mice. Percentage of (A) total CD19+ B cells and (B) non-GC B cells in G0/G1 and G2/S phase of cell cy-
cle for indicated organs from c-Rel CD19CreI/+ or CD19CreI/+ mice. (C) Percentage of Ki-67-expressing
cells in indicated B cell populations. Individual data points obtained in 3 independent experiments are
plotted and bars represent median values. * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001, unpaired
t test. GCB CD19+CD95highCD38low; B (non-GCB) CD19+CD95-CD38high; SPL, spleen; LN, lymph
nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S48: Cell cycle stages of GC B cells in c-Rel CD19CreI/+ mice. Percentages of GC
B cells in cell cycle phases for (A) mesenteric lymph nodes and (B) Peyer’s patches from c-Rel CD19CreI/+

or CD19CreI/+ mice. Percentages of total GC B cells represent cells in G0/G1 and G2/S cell cycle phases,
whereas Ki-67-expressing GC B cells include only cells in G1 and G2/S cell cycle phases as the proliferation
marker Ki-67 is present in active cell cycle phases but absent in G0 resting cells [Scholzen and Gerdes,
2000]. Individual data points obtained in 3 independent experiments are plotted and bars represent
median values. Representative flow cytometry plots and histograms of (C) mesenteric lymph nodes and
(D) Peyer’s patches illustrating the gating and analysis strategy. In the Ki-67/DRAQ5 staining plot a light
blue contour plot of GC B cells is overlaid with a dot plot of the B cell population in dark blue. Numbers
in plots represent median percentages. Colors of cell cycle stages in histograms correspond to colors
used in bar graphs: G0/G1 dark blue, S medium blue, G2 light blue. GCB CD19+CD95highCD38low; B
(non-GCB) CD19+CD95-CD38high; LN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S49: GC B cells in c-Rel/GFP-c-Rel CD19CreI/+ double transgenic mice. (A) Rep-
resentative flow cytometry plots of GC B cells. Numbers are median percentages of GC B cells of total
B cells. (B) Percentages of GC B cells of total B cells and (C) GC B cell numbers. Individual data points
obtained in 4 independent experiments are plotted. Bars and numbers below graphs are median values.
* p≤ 0.05, ** p≤ 0.01, one-way ANOVA. GCB B220+CD95highCD38low; SPL, spleen; LN, lymph nodes;
MLN, mesenteric lymph nodes; PP, Peyer’s patches.

179



A. Maike M. Kober Supplemental Figures

0 103 104 1050 103 104 105

0 103 104 1050 103 104 105

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

8

10

GFP-c-Rel CD19Cre I/+
c-Rel CD19Cre I/+
CD19Cre I/+

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

0 103 104 105

0

103

104

105

A SPL BM

CD19Cre I/+

GFP-c-Rel
CD19Cre I/+

SPL BM

C
D

13
8+ B

22
0lo

w
 p

la
sm

a 
ce

lls
 [%

]

B

C
D

13
8+ B

22
0lo

w
 p

la
sm

a 
ce

lls
 [x

10
6 ]

C

SPL BM

0.23

0.33

0.07

0.09

Bl
im

p-
1 

pr
ot

ei
n 

[re
la

tiv
e 

M
FI

]
IR

F4
 p

ro
te

in
 [r

el
at

iv
e 

M
FI

]

SPL BM

B PC B PC

B PC B PC

Blimp-1

IRF4

SPL B SPL PC

0.0

0.5

1.0

1.5

2.0
2
3
4
5

0.0

0.1

0.2

0.3

0.4
0.6
0.8
1.0

*
**

0.0

0.5

1.0

1.5

2.0
2
4
6
8

0.00

0.05

0.10

0.15* **

CD138

B
22

0

c-Rel
CD19Cre I/+

c-Rel
GFP-c-Rel
CD19Cre I/+

0.61

0.97

0.15

0.24

GFP-c-Rel CD19Cre I/+
c-Rel CD19Cre I/+
CD19Cre I/+

D CD19Cre I/+ GFP-c-Rel CD19Cre I/+
c-Rel CD19Cre I/+ c-Rel/GFP-c-Rel CD19Cre I/+ E CD19Cre I/+

c-Rel CD19Cre I/+
GFP-c-Rel CD19Cre I/+
c-Rel/GFP-c-Rel CD19Cre I/+

c-Rel/GFP-c-Rel CD19Cre I/+

c-Rel/GFP-c-Rel CD19Cre I/+

PC

B

Figure S50: Plasma cells in c-Rel/GFP-c-Rel CD19CreI/+ double transgenic mice. (A)
Representative flow cytometry plots of plasma cells. Numbers are median percentages. Plasma cell (B)
percentages and (C) cell numbers. Individual data points obtained in 4 independent experiments are
plotted. Bars and numbers below graphs are median values. (D) Intracellular flow cytometry data of
IRF4 and Blimp-1 protein levels in plasma cells normalized to the non-plasma cell B cell population of
CD19CreI/+ controls. Individual data points obtained in 3 independent experiments and the geometric
mean represented as a bar are plotted. Three data points per genotype of IRF4 and Blimp-1 protein
levels in BM of CD19CreI/+ and c-Rel CD19CreI/+ controls are also included in the data set shown in
Figure 14C. (E) Representative histograms illustrate the bar graphs shown in (D). * p≤ 0.05, ** p≤ 0.01,
one-way ANOVA. plasma cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; SPL, spleen; BM, bone
marrow.
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Figure S51: c-Rel levels in c-Rel/GFP-c-Rel CD19CreI/+ double transgenic mice are com-
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Figure S52: Cell size of GC B cells and plasma cells in c-Rel/GFP-c-Rel CD19CreI/+
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Figure S53: Expansion of GC B cells in c-Rel∆Ex9 CD19CreI/+ mice. (A) Representative
flow cytometry plots of GC B cells. Numbers are median percentages of GC B cells of total B cells. (B)
Percentages of GC B cells of total B cells and (C) GC B cell numbers. Individual data points obtained in
3 independent experiments are plotted. Bars and numbers below graphs are median values. * p≤ 0.05,
** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001, one-way ANOVA. GCB B220+CD95highCD38low; SPL, spleen;
LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S56: Characteristics of Tfh cells in c-Rel∆Ex9 CD19CreI/+ mice. Flow cytometry
data of (A) ICOS or (C) CD69 protein levels of Tfh cells normalized to the non-Tfh cell population of
CD19CreI/+ controls. Geometric mean and individual data points obtained in 3 independent experiments
are plotted. (B) and (D) show representative histograms illustrating the bar graphs shown in (A) and (C),
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LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Figure S57: Expansion of plasma cells in c-Rel∆Ex9 CD19CreI/+ mice. (A) Representative
flow cytometry plots of plasma cells. Numbers are median percentages. (B) Plasma cell percentages and
cell numbers. Individual data points obtained in 3 independent experiments are plotted. Bars and num-
bers below graphs are median values. (C) Intracellular flow cytometry data of IRF4 and Blimp-1 protein
levels in plasma cells normalized to the non-plasma cell B cell population of CD19CreI/+ controls. Individ-
ual data points obtained in 3 independent experiments and the geometric mean represented as a bar are
plotted. (D) Representative histograms illustrate the bar graphs shown in (C). ** p≤ 0.01, *** p≤ 0.001,
**** p≤ 0.0001, one-way ANOVA. plasma cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; SPL,
spleen; BM, bone marrow.
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Figure S58: c-Rel levels in GC B cell and plasma cells of c-Rel∆Ex9 CD19CreI/+ mice.
Intracellular flow cytometry data of c-Rel protein levels in B cell subpopulations. Median fluorescence
intensities (MFI) were normalized to CD19CreI/+ controls. Individual data points obtained in 3 indepen-
dent experiments and bars representing geometric means are plotted. (A) c-Rel level in B cells and GC
B cells. MFIs were normalized to non-GCB of CD19CreI/+ controls. (B) c-Rel level in DZ and LZ of GC
B cells. MFIs were normalized to GCB of CD19CreI/+ controls. (C) c-Rel level in plasma cells. MFIs
were normalized to splenic B cells (non-PC) of CD19CreI/+ controls. 6 data points per genotype for c-Rel
level in BM of CD19CreI/+ and c-Rel CD19CreI/+ controls are also included in data set shown in Fig-
ure 22C. GCB B220+CD95highCD38low; B (non-GCB) B220+CD95-CD38high; DZ CXCR4highCD86low;
LZ CXCR4lowCD86high; plasma cells (PC) B220lowCD138+; B (non-PC) B220+CD138-; BM, bone mar-
row; SPL, spleen; LN, lymph nodes; MLN, mesenteric lymph nodes; PP, Peyer’s patches.
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Mémet, S., Laouini, D., Epinat, J. C., Whiteside, S. T., Goudeau, B., Philpott, D., Kayal, S., Sansonetti, P. J., Berche, P.,
Kanellopoulos, J., and Israel, A. (1999). IκBε-deficient mice: reduction of one T cell precursor subspecies and enhanced
Ig isotype switching and cytokine synthesis. The Journal of Immunology, 163(11):5994–6005.

199



A. Maike M. Kober References

Merrell, K. T., Benschop, R. J., Gauld, S. B., Aviszus, K., Decote-Ricardo, D., Wysocki, L. J., and Cambier, J. C. (2006).
Identification of anergic B cells within a wild-type repertoire. Immunity, 25(6):953–962.

Meyer-Bahlburg, A., Bandaranayake, A. D., Andrews, S. F., and Rawlings, D. J. (2009). Reduced c-myc expression levels
limit follicular mature B cell cycling in response to TLR signals. The Journal of Immunology, 182(7):4065–4075.

Meyer-Hermann, M., Mohr, E., Pelletier, N., Zhang, Y., Victora, G. D., and Toellner, K.-M. (2012). A theory of germinal
center B cell selection, division, and exit. Cell Reports, 2(1):162–174.

Meyer-Hermann, M. E., Maini, P. K., and Iber, D. (2006). An analysis of B cell selection mechanisms in germinal centers.
Mathematical Medicine and Biology, 23(3):255–277.

Meylan, E., Dooley, A. L., Feldser, D. M., Shen, L., Turk, E., Ouyang, C., and Jacks, T. (2009). Requirement for NF-κB
signalling in a mouse model of lung adenocarcinoma. Nature, 462(7269):104–107.

Minnich, M., Tagoh, H., Bönelt, P., Axelsson, E., Fischer, M., Cebolla, B., Tarakhovsky, A., Nutt, S. L., Jaritz, M., and
Busslinger, M. (2016). Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation.
Nature Immunology, 17(3):331–343.

Miyamoto, S., Schmitt, M. J., and Verma, I. M. (1994). Qualitative changes in the subunit composition of κB-binding
complexes during murine B-cell differentiation. Proceedings of the National Academy of Sciences, 91(11):5056–5060.
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Abbreviations

aa amino acid

ABC-DLBCL activated B cell-like DLBCL

aCGH array-based CGH

AID activation-induced cytidine deaminase

ANA anti-nuclear antibodies

APE apurinic/apyrimidinic endonucleases

APRIL a proliferation inducing ligand

ATLL adult T-cell leukemia/lymphoma

BAC bacterial artificial chromosome

BACH2 BTB and CNC homolog 2

BAFF B cell-activating factor belonging to TNF family

BATF basic leucine zipper transcription factor ATF-like

BCAP B cell adaptor for PI3K

Bcl-2A1 prosurvival Bcl-2 family member A1

Bcl-6 B cell lymphoma 6

BCMA B cell maturation antigen

BCR B cell receptor

BER base excision repair

Bim Bcl-2 interacting mediator of cell death

Blimp-1 B lymphocyte-induced maturation protein 1

BM bone marrow

B-NHL B cell non-Hodgkin lymphomas

Btk Bruton’s tyrosine kinase

Ca2+ calcium ion

CAG CMV early enhancer/chicken β actin promoter

CAR coxsackie/adenovirus receptor

CARD caspase activation and recruitment domain

CARMA1 CARD-containing membrane-associated guanylate kinase-1

CD40L CD40 ligand

CDK cyclin-dependent kinase

CGH comparative genomic hybridization

cHL classical Hodgkin lymphoma

cIAP cellular inhibitor of apoptosis

CMV cytomegalovirus

c-Myc myelocytomatosis oncogene cellular homolog

CNS conserved non-coding DNA sequences

c-Rel cellular v-Rel avian reticuloendotheliosis viral oncogene homolog

c-Rel∆Ex9 c-Rel splice variant devoid of Exon 9

CSR class switch recombination

CXCL12 CXC-chemokine ligand 12

CXCR4 CXC-chemokine receptor 4

DHMEQ dehydroxymethylepoxyquinomicin

DL1 Delta-like-1

DLBCL diffuse large B cell lymphoma

DNA deoxyribonucleic acid

DNA-PK DNA-dependent protein kinase
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DSB double strand breaks

DTT dithiothreitol

DZ dark zone

EAE experimental autoimmune encephalomyelitis

EBF early B cell factor

EF (cell) embryonic feeder (cell)

ELISA enzyme-linked immunosorbent assay

ES (cell) embryonic stem (cell)

ETS E twenty-six

Exo1 exonuclease 1

Ezh2 enhancer of zeste homolog 2

FDC follicular dendritic cells

FICTION fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasms

FISH fluorescence in situ hybridization

FL follicular lymphoma

Flp flippase

FLT3L FMS-like tyrosine kinase 3 ligand

FO follicular

FOXO1 forkhead box O1

FoxP3 forkhead box P3

Frt flippase recognition target

FSC-A/H forward scatter area/height

galK galactokinase

GC germinal center

GCB germinal center B cell

GCB-DLBCL germinal center B cell-like DLBCL

GFP green fluorescent protein

GVHD graft-versus-host disease

GM-CSF granulocyte macrophage colony-stimulating factor

GWAS genome-wide association study

H2Odd double-distilled water

H3K9 lysine 9 on histone H3

HoxC4 homeobox C4

HRP horseradish peroxidase

HRS Hodgkin and Reed-Sternberg

hyPB hyperactive piggyBac

ICOS inducible T cell co-stimulator

IFNγ interferon-γ

Ig immunoglobulin

IgH immunoglobulin heavy

IgL immunoglobulin light

IκB inhibitor of κB

IKK IκB kinase

IL-7 interleukin-7

IMQ imiquimod

ITR inverted terminal repeat

i.p. intraperitoneal

IR infrared

IRES internal ribosomal entry site

IRF4 interferon regulatory factor 4

JAK2 Janus kinase 2
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K48 lysine-48

LB lysogeny broth

LIF leukemia inhibitory factor

LN lymph nodes

LPS lipopolysaccharide

LZ light zone

MALT1 mucosa-associated lymphoid tissue protein 1

MEF mouse embryonic fibroblasts

MFI median fluorescence intensity

MHC-II major histocompatibility complex class II

miRNA microRNA

MLN mesenteric lymph nodes

MMC mitomycin C

MMR mismatch repair

MSH MutS protein homolog

MZ marginal zone

MZP marginal zone precursor

NEAA non-essential amino acids

NEMO NF-κB essential modulator

NES nuclear export signal

NFAT nuclear factor of activated T cells

NF-κB nuclear factor κ-light-chain-enhancer of activated B cells

NHEJ non-homologous end joining

NIK NF-κB-inducing kinase

NLPHL nodular lymphocyte predominant Hodgkin lymphoma

NLS nuclear localization signal

NP-KLH 4-hydroxy-3-nitrophenyl acetyl-keyhole limpet hemocyanin

Oct octamer

O-GlcNAcylation O-linked β-N-acetyl-glucosamine

Pax5 paired box protein 5

PB plasmablast

PC plasma cell

PCR polymerase chain reaction

PD-1 programmed cell death 1

Peli1 Pellino E3 ubiquitin protein ligase 1

PerC peritoneal cavity

PGK phosphoglycerate kinase

PI3K phosphatidylinositol 3-kinase

Pin1 Peptidyl-prolyl cis/trans isomerase, NIMA interacting

PKA protein kinase A

PMBCL primary mediastinal B cell lymphoma

PMSF phenylmethylsulfonylfluorid

PNA peanut agglutinin

PP Peyer’s patches

PTCL NOS peripheral T cell lymphoma, not otherwise specified

PVDF polyvinylidene fluoride

RAG recombination activation gene

RANKL receptor activator of nuclear factor-κB ligand

Rb retinoblastoma protein

RBC red blood cell
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Rev-T reticuloendotheliosis virus strain T

RF rheumatoid factor

RHD Rel homology domain

RNase A ribonuclease A

RID Rel inhibitory domain

RNA ribonucleic acid

RORγt retinoic acid-related orphan receptor γt

rtTA reverse tetracycline transactivator

S switch

sb100x sleeping beauty 100x

SCF stem-cell factor

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis

SHM somatic hypermutation

shRNA short hairpin RNA

siRNA small interfering RNA

SNP single nucleotide polymorphism

SOCS1 suppressor of cytokine signaling 1

SPL spleen

SRBC sheep red blood cells

SSB single strand breaks

SSC-A/H side scatter area/height

STAT signal transducer and activator of transcription

TACI transmembrane activator and calcium-modulating cyclophilin-ligand interactor

TAD transactivation domain

TBK1 TNFR-associated factor family member-associated NF-κB activator (TANK)-binding kinase 1

TBP TATA-box-binding protein

TCR T cell receptor

TD T cell-dependent or thymus-dependent

tetO tet operator

tetR tetracycline repressor

Tfh follicular helper T cell

TFIIB transcription factor II B

TGFβ transforming growth factor-β

TH thymus

THRLBCL T cell/histiocyte rich large B cell lymphoma

TI T cell-independent or thymus-independent

TLR toll-like receptor

TNF(R) tumor necrosis factor (receptor)

TRAF2 TNFR-associated factor 2

TRE tetracycline-responsive element

Treg regulatory T cell

UNG uracil DNA glycosylase

UPR unfolded protein response

VLA4 very late antigen 4

XBP-1 X-box-binding protein 1

XRCC4 X-ray repair cross complementing protein 4

zVAD-fmk carbobenzoxy-valyl-alanyl-aspartyl-(O-methyl) fluoromethylketone

7-AAD 7-amino-actinomycin D

-/- homozygous knockout

-/+ heterozygous knockout

I/+ heterozygous insertion

212



A. Maike M. Kober Acknowledgements

Acknowledgements

First and foremost I would like to thank Marc Schmidt-Supprian. I am especially im-

pressed by his incredible way of scientific thinking which caught me immediately when I

first introduced myself as a PhD candidate and I am still grateful that I could join his

laboratory. Ever since I have learned incredibly much from him and greatly value his

brilliant ideas, exceptional support and encouraging mentoring.

I would like to thank my Doktorvater Matthias Mann for his continuous interest, advice

and support. He always provided great input from a different perspective on my project.

I also want to thank Daniel Krappmann for his helpful comments and input during my

thesis advisory committee meetings and for being a member of my thesis committee.

Furthermore, I thank PD Dr. Dietmar Martin, Prof. Dr. Olivia Merkel and Prof. Dr. Veit

Hornung for taking the time to review my thesis and being members of my thesis com-

mittee.

I am greatly thankful to the former and current members of the Schmidt-Supprian labora-

tory. During the years of my PhD, I experienced more than countless scientific discussions,

helpful suggestions and pleasant hours at the bench as this journey also contributed to

building up many great memories and lasting friendship.

I thank Dilip Kumar who started the first steps of the c-Rel project in the Schmidt-

Supprian laboratory, Arianna Bertossi and Paola Sansonetti who accompanied me during

the first year of my PhD, Basma Abdel Motaal and Mayra Lorenz as well as Carina

Steinecke and Sabrina Bortoluzzi who brought new spirit to the lab. I thank Tim Ammon

for having an eye for things that need to be organized and for his sense of humor, Christoph

Vahl for his helpfulness with regard to experiments and beyond the lab as well as his

encouragement and positive way of thinking, Christoph Drees for being a great successor

of Wal by likewise bringing along his positive point of view, Klaus Heger for his scientific

expertise and many great conversations about data and experiments, scientific life and

beyond, Yuanyuan Chu not only for providing me with experimental protocols but also

for many conversations beyond science, David Rieß and Valeria Soberón – with whom I

shared the life of a PhD student throughout the whole time – for conversations about

everything and anything in scientific life and far beyond and Valeria in addition for being

my bench and desk partner and roommate at conferences as well as for not hesitating to

213



A. Maike M. Kober Acknowledgements

visit art exhibitions with me. I am very grateful to Barbara Habermehl, Julia Knogler

and Claudia Mugler not only for technical assistance during experiments but also for

constantly keeping our laboratory up and running.
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