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1 Introduction 

Ten years ago, African swine fever (ASF) was a so-called exotic animal disease in Europe, but 

nowadays the picture has changed drastically. The disease is currently one of the most 

important threats to the European pig farming sector and the wild boar population. After ASF 

reached Georgia in 2007, the disease was expected to either spread rapidly or die-out due to 

self-limitation, especially in the wild boar population. The current situation in Eastern Europe, 

where the disease can be regarded as endemic, shows, that none of these predictions of the 

disease spread held true. ASF was re-introduced into the Eastern part of the European Union 

(EU) in 2014 and spread since then slowly but constantly through the Baltic States and Poland. 

In 2017, the disease leapt over to the Czech Republic and single cases were reported from 

Romanian backyard farms. However, most cases occur within the wild boar population leading 

to new challenges regarding surveillance and early disease detection. The compliance of 

hunters and foresters is indispensable to get samples of fallen wild boar, the first hint for 

disease outbreak. So far, blood, organ samples or bone marrow are the common diagnostic 

samples. Nonetheless, the sampling procedure is inconvenient and constitutes the risk of 

contamination. To address this issue, a practical and easy-to-use sampling tool is required 

leading to the target of the first presented study. Previous experiments already showed that 

easy-to-use dry-swabs are suitable for this purpose. Hence, the conducted study strengthened 

this fact and extended the applicability of dry blood swabs to pathogen and antibody detection 

under field conditions together with point-of-care test systems. However, not only the 

surveillance of the disease offers new challenges. In order to explain the unexpected 

distribution pattern of ASF, a detailed knowledge about the disease dynamics and 

pathogenesis of relevant virus strains is fundamental. For this reason, the second study 

focused on peculiarities reported from North Eastern Estonia, where a relatively high antibody 

prevalence was found in hunted wild boar, raising the hypothesis of natural virus-attenuation. 

To approach this question, four animal trials including different pig breeds were carried out. 

All pigs were infected with a re-isolated African swine fever virus (ASFV) field-strain from 

North Eastern Estonia, representative strains were subjected to next-generation sequencing 

(NGS), and full-genomes have been investigated. A tailored PCR was subsequently designed 

to screen field samples for the variant virus strain that was discovered. Another issue of the 

endemic disease situation in Eastern Europe is the long-term fate of wild boar that recover 

from ASFV infection. The role of these survivors, acting as potential carriers that could help 
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the disease spread, is controversially discussed already since the first outbreaks in the EU in 

the 1960s. In order to evaluate, if and how long the recovered swine can transmit the disease, 

another study was conducted. Pigs were infected with a moderately virulent ASFV strain to 

obtain a representative number of surviving animals. The clinical course was assessed 

together with virus shedding and distribution. To proof if the recovered animals are able to 

transmit the disease, they were commingled to sentinels to investigate the potential 

transmission by pig-to-pig contact.  
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2 Literature review 

2.1     Virus taxonomy, morphology and viral genome 

African swine fever virus (ASFV) belongs to the genus Asfivirus and is the only member of the 

Asfaviridae family. Due to the sylvatic transmission pathway that includes soft ticks of the 

genus Ornithodoros, it is further classified as the only DNA arthropod-borne (ARBO) virus 

(Sanchez-Vizcaino et al. 2015). Molecular classification based on the partial sequencing of the 

gene encoding the p72 protein revealed 23 different circulating genotypes (Achenbach et al. 

2017). The virion shows an icosahedral shape (Carrascosa et al. 1984) and with a size of 175-

215 nm it is quite large compared to e.g. Classical swine fever virus with a size of 50 nm (Swiss 

Institute of Bioinformatics 2018). Four concentric layers constitute the virus particle: the 

central nucleoid, the core shell, the inner envelope and the icosahedral capsid (Salas et al. 

2013). The precise origin of the inner envelope remains controversial but a complex wrapping 

mechanism involving intracellular membrane cisternae, similar to Poxviruses, seems to be the 

most likely (Rouiller et al. 1998). By budding through the plasma membrane, the extracellular 

virus acquires an additional external envelope (Breese et al. 1966) lacking glycoproteins which 

is atypical compared to the majority of viruses (del Val et al. 1986). 

The viral genome consists of linear double-stranded DNA with a length of 170 to 193 kilobase 

pairs (kbp) (Chapman et al. 2008). It contains between 151 and 167 open reading frames (ORF) 

resulting in more than 50 identified structural proteins and around hundred non-structural 

proteins. Those are not only required for replication and morphology but also involved in the 

evasion of host defense systems (Dixon et al. 2004).  

The viral polypeptides can be divided in early and late classes according to their time of 

occurrence in the infected cells (Carvalho et al. 1986). One of the structural proteins 

synthesized in early times of infection (Afonso et al. 1992) is p30. Since it is the most 

abundantly expressed protein in the early infection phase, and has been found in the 

supernatant of infected cells, secretion was anticipated but refuted by Prados et al. (1993). 

However, it is one of the highly immunogenic viral proteins inducing a strong antibody 

response in pigs (Letchworth et al. 1984). Another protein of the early class is p22 which is 

one of the external viral structural proteins and was also found incorporated transiently into 

membranes of infected cells (del Val et al. 1986). With its N-terminal hydrophobic region it 

shows characteristics of a signal peptide (von Heijne 1985). P54 is one of the structural 

proteins assigned to the late class: it has been described as one of the proteins essential for 
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virus viability (Rodriguez et al. 1996) and plays an essential role in the viral morphogenesis by 

forming disulfide-linked homodimers in the replication factories (Rodriguez et al. 2004). 

Another late protein, is the before mentioned p72 major capsid protein (Lopez-Otin et al. 

1990) which also plays an important immunogenic role. High loads have been located in the 

endoplasmic reticulum cisterna, which is incorporated in the viral morphogenesis by wrapping 

the viral structure (Garcia-Escudero et al. 1998). P72 was shown to be externally and internally 

located in the intracellular virus (Cobbold et al. 1996) protecting the virus membrane from 

trypsin and other proteases.  As the encoding gene is highly conserved (Yu et al. 1996), the 

protein is suitable for virus classification and is basis for both direct and indirect diagnostic 

methods 

After an early nuclear phase, the viral replication occurs in perinuclear cytoplasmic viral 

assembly sites involving enzymes that are immediately expressed after virus entry (Dixon et 

al. 2013). DNA replication intermediates consisting of predominantly head-to-head and tail-

to-tail concatemers similar to vaccinia virus have been detected (Gonzalez et al. 1986, Rojo et 

al. 1999).  

2.2     Clinical signs, lesions and pathogenesis 

Clinical picture and differential diagnoses 

ASF induces a broad range of severe but unspecific clinical signs in infected pigs. The disease 

course is similar to CSF and differential diagnosis based on clinical signs and lesions is not 

possible.  Apart from CSF, Porcine Reproductive and Respiratory Syndrome (PRRS), Porcine 

Dermatitis and Nephropathy Syndrome, Aujeszky's disease, Swine Erysipelas, several bacterial 

infections, and coumarin poisoning range among the differential diagnoses (Kleiboeker 2002, 

OIE World Organisation for Animal Health 2013). Peracute forms, characterized by sudden 

death of the infected animals as well as chronic disease courses without any obvious sign of 

the disease can occur (Blome et al. 2013). However, the acute disease course is the common 

form in animals infected with higher virulent strains (Gabriel et al. 2011). After an incubation 

period of 2 to 7 days (in rare cases up to 14 days) (Mebus 1988) the infected animals start 

showing the eponymous high fever together with other unspecific clinical signs like lethargy, 

reddened skin (especially at the acra), anorexia and conjunctivitis. Respiratory problems such 

as coughing and tachypnoe accompanied by tachycardia and cyanosis have been observed. In 

addition, digestive findings such as vomiting and diarrhea (watery or bloody) can occur. In 

later stages of the disease, neurological signs (paddling, convulsions) and walking difficulties 
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such as staggering are described. Animals suffering the acute course commonly die within the 

first two weeks after onset of clinical signs. Chronically infected animals often show a 

prolonged disease course over several months with joint swelling and wasting along with 

secondary infections (European Food Safety Authority (EFSA) 2009). Abortions of pregnant 

sows especially within the first days of high fever are reported from experimentally infected 

animals (Schlafer et al. 1987). The same is described for natural infections in outbreak 

situations where abortion rates up to 90% are described (Mc Daniel 1978). Stable loads of viral 

antigen have been found in tissues of necrotic uterus and ovaries whereas the occurrence of 

antigen in fetal tissues seems to be unreliable and dependent on the employed strain. Thus, 

vertical transmission of the disease remains possible but unlikely (Schlafer and Mebus 1987, 

Antiabong et al. 2006). The course of the disease in animals infected with highly virulent 

strains is not age dependent under experimental conditions (Blome et al. 2012), although field 

observations in Estonia report higher antibody prevalence in wild boar piglets, indicating that 

milder disease courses could occur in this age class (Nurmoja et al. 2017).  

 

Virus dissemination and pathogenesis 

Regarding the dynamics of viremia and virus shedding, studies show that stable loads of 

antigen are detectable in blood starting with the onset of clinical signs. Throughout the 

evaluated disease courses, viral shedding via saliva, nasal fluids and faeces is much lower 

compared to the amount of virus in blood and limited to the acute phase of the disease 

(Gabriel et al. 2011, Guinat et al. 2014, Nurmoja et al. 2017).  

Apart from the arthropod-driven infections, where the virus primarily infects Langerhans cells 

in the skin (Bernard et al. 2016), the virus enters the body via the oronasal route.  Primary 

replication takes place in the lymphatic tissues of the oropharynx, i.e. tonsils and regional 

lymph nodes. Main target cells are monocytes and, to a lesser extent, lymphocytes (Munoz-

Moreno et al. 2015). In the late stages of infection, several cell types are infected. Monocyte 

derived macrophages show viral replication and the following secretory activation has a pro-

inflammatory, pro-coagulant profile leading to hemorrhages (through activation and 

dysregulation of endothelial cells) and lymphoid depletion (by apoptosis of lymphocytes) 

(Gomez-Villamandos et al. 2003, Gomez-Villamandos et al. 2013). In the blood fraction, 90% 

of the virus is associated with erythrocytes (Wardley et al. 1977) which is not surprising for an 

arthropod-borne virus. The viral particles attached to the red cell surface can ultimately lead 
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to hemolysis in infected animals (Karalyan et al. 2016) causing hemolytic anemia contributing 

to the typical picture of a hemorrhagic fever in acute lethal disease courses.  

 

Pathological findings 

The mentioned hemorrhages characterize the picture of pathological lesions after acute-lethal 

disease courses. Necropsy of these animals reveal generalized or single enlarged, hemorrhagic 

lymph nodes of marbled appearance or ebony colour (Gabriel et al. 2011, Nurmoja et al. 2017). 

The spleen of acutely affected animals can be highly enlarged with rounded edges and a friable 

consistency. Petechiae occur in the renal pelvis and cortex, as well as the mucosa of the 

urinary bladder, epicardium, endocardium, pleura and the gastric mucosa (Mebus et al. 1979, 

Hervás et al. 1996, Sanchez-Vizcaino et al. 2015). In chronically infected animals, necrotic 

lesions of skin or tonsil, arthritis and different kinds of secondary bacterial infections, like 

pleural adhesions and fibrinous pericarditis are common (Sanchez-Botija 1982). 

 

2.3    Global distribution, epidemiology and risk factors 

 

History and global spread 

ASF was described for the first time by Montgomery in 1921 (Mebus 1988) when he described 

the outbreak in Kenya between 1909 and 1915. He already mentioned contact to wild suids 

as source of infection. Later it was hypothesized, that the virus was already present in its 

natural wildlife host, such as African wild suids, for a long time (Penrith et al. 2004). The first 

outbreak on the European continent took place in 1957 in Portugal where contaminated waste 

from international airports was fed to domestic pigs. After a second introduction of the 

disease in 1960 the disease remained endemic in Portugal until the mid of 1990ies (Costard et 

al. 2009). During this time, the disease spread to several European countries such as Belgium, 

the Netherlands, France, and Italy. In all these places the disease was successfully eradicated 

apart from Sardinia where ASF is endemic until today (Gallardo et al. 2015). After this first 

wave of minor outbreaks it remained silent on the European continent until 2007. In this year, 

the first cases of African swine fever were reported from Georgia. It is most likely, that free-

ranging pigs got infected by contact to dumped port waste near the Black sea harbour of Poti 

(FAO/OIE mission 2007). Starting from this initial introduction, the disease spread through the 

neighbouring countries, such as the Russian Federation, Armenia and Azerbaijan, following 
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the main transportation routes (Beltrán-Alcrudo et al. 2008, Khomenko et al. 2013). The 

isolates circulating in the Trans-Caucasian region showed high virulence accompanied by high 

lethality rates in case reports and under experimental conditions (Gabriel et al. 2011). 

Therefore, two potential scenarios of disease spread were initially assumed: Either the disease 

would spread rapidly or die out due to self-limitation. Both models were proven wrong and 

ASF spread slowly but constantly forward. In 2012 and 2013, Ukraine (Dietze et al. 2012) and 

Belarus (WAHID 2013) reported their first cases, respectively. In January 2014, ASF was 

detected for the first time in the Eastern part of the European Union. Four wild boar were 

found dead in Lithuania and Poland not far from the Belarussian border (Gallardo et al. 2014). 

Today, the disease is endemic in the Baltic States and further outbreaks have been reported 

from the Czech Republic and Romania. The outbreak in wild boar of the Czech Republic in June 

2017 was 400-500 kilometres away from the nearest known outbreak in Poland or Ukraine 

and locally limited to the area of Zlín (ISZAM 2017). Consequently, a lot of effort has taken 

place in trying to stop further disease spread. Among the measures were fencing of a 

designated high-risk area (repellents and electric fences), initial hunting ban, removal of 

carcasses and limited access to the infected zone. These measures were meant to keep the 

potentially infected wild boar in the restricted area. In the surrounding regions, intensified 

and concerted hunting actions were carried out to reduce the susceptible wild boar 

population. Both hunting and search for carcasses was facilitated through the payment of 

incentives. However, in December 2017 the disease was confirmed in five dead wild boar 

south of the high risk area (WAHID 2017) leading to a controversial discussion about the most 

effective disease control also regarding the outbreak situation in Moldova (WAHID 2017).  

 

Transmission routes and risks 

Hosts of the disease are all members of the Suidae family including domestic pigs (Sus scrofa 

domesticus) and wild boar (Sus scrofa scrofa). African wild suids like bushpigs (Potamochoerus 

larvatus), red river hogs (Potamochoerus porcus), Giant Forest hogs (Hylochoerus 

meinertzhangi) and warthogs (Phacochoerus africanus) are susceptible as well, but show only 

mild or asymptomatic clinical courses (Thomson et al. 1980, Anderson et al. 1998, Costard et 

al. 2009, Jori et al. 2009). Warthogs (Phacochoerus africanus) are regarded as the original and 

most important vertebrate host in Africa and play a major epidemiological role in the sylvatic 

cycle together with soft ticks of the genus Ornithodoros, the only non-vertebrate host of the 
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disease (Burrage 2013). ASF can be transmitted via direct or indirect pig contact or the before 

mentioned tick-vector. This second transmission route can be neglected in Central and most 

parts of Eastern Europe due to the lack of soft ticks in the natural arthropod fauna 

(Pietschmann et al. 2016, European Centre for Disease Prevention and Control 2018). 

Epidemiological studies revealed human factors as the main risk for disease spread over larger 

distances (Costard et al. 2009). Transport of untreated pork meat and the inadequate disposal 

of virus positive material such as swill-feeding led to several new outbreaks particularly in 

backyard farms. The tenacity of the virus in raw and cooled pork products is very high (Mebus 

et al. 1993). Studies have shown, that the virus can be inactivated safely by temperatures over 

70°C (Plowright et al. 1967), but is still infectious in 399 days old Parma ham. In this context, 

the role of wild boar carcasses succumbed to the disease has been discussed (Probst et al. 

2017). Wild boar could get infected by contact to those infectious bodies and contribute to 

the disease spread.  

 

2.4     Control strategies and diagnostics 

Legal framework of disease control 

The recent outbreak situation leaves Germany and the other neighbouring countries that are 

still disease-free but at high risk, severely alarmed. Several national strategies to prevent the 

introduction of the notifiable disease (TierGesG 2013) have been implemented: Since illegal 

import of contaminated pork products is under the main risk factors, the government is trying 

to sensitize the public to the issue with warning signs on traffic routes and airports 

(Bundesministerium für Ernährung und Landwirtschaft 2017). Furthermore, hunting on wild 

boar has been intensified to reduce the susceptible population. Since December 2017 cash 

rewards for hunted wild boar are paid e.g. in Mecklenburg-Western Pomerania, a Federal 

State with high wild boar density (Ministerium für Landwirtschaft und Umwelt Mecklenburg 

Vorpommern 2017). The EU regulates ASF control measures in Council Directive 2002/60/EC 

(RAT DER EUROPÄISCHEN UNION 2002) and Commission Decision 2003/422/EC (DIE 

KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN 2003). This legal framework is 

transposed in the German Schweinepest-Verordnung  (Verordnung zum Schutz gegen die 

Schweinepest und die Afrikanische Schweinepest, (SchwPestV 1988)). The SchwPestV is 

currently under revision to accommodate necessary changes to the overall strategy. In order, 

to detect outbreaks of ASF as early as possible, passive surveillance is one of the main goals. 
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An introduction of the disease into naïve populations would lead to a high number of fallen 

wild boar. Therefore, hunters are told to report these carcasses to the local veterinary service 

and sample them for diagnostic workup. The same applies for hunted wild boar, showing the 

typical clinical or pathological signs (SchwPestMonV 2016). To facilitate reporting, an App for 

the use on smartphones has been established (Deutscher Jagdverband 2017). The optimal 

diagnostic sample is blood or organ material such as spleen or lung. If the carcass is already 

decomposed or skeletonized larger bones like the humerus or the femur are good alternatives 

(Deutscher Jagdverband und Friedrich-Loeffler-Institut 2017). However, these samples are 

difficult to take and in order to simplify the sampling process and to avoid contamination, 

swab sampling has been tested and showed good performance for pathogen and antibody 

detection. Without direct contact to the infectious material, hunters can soak the swab in 

body liquids or brush it on remaining organ tissues (Blome et al. 2014, Petrov et al. 2014, 

Carlson et al. 2017). If the applied tests reveal a positive result and the outbreak has been 

officially confirmed, control measures have to be implemented. In case of outbreaks in pig 

holdings the legal situation is quite clear stating culling of the infected herds and a total stand-

still of the farms in the affected areas similar to other notifiable diseases. Treatment efforts 

of infected animals or vaccination are prohibited (SchwPestV 1988). Regarding the particular 

situation of ASF cases in wild boar, the legal specifications are less detailed and specified. Thus, 

the implementation of measures depends on the competent authorities. An expert group 

should be established including veterinarians, hunters, wildlife biologists and epidemiologists 

to assist the competent authorities. Local hunters are obliged to facilitate all means of disease 

control, e.g. carry out concerted hunting actions in certain areas while hunting could be 

banned in others, depending on the epidemiological situation. All feral pigs, shot or found 

dead in a certain area have to be inspected by an official veterinarian and tested for the 

disease. Furthermore, the measures to eradicate the disease should be checked for 

effectiveness by objective investigations (SchwPestV 1988, RAT DER EUROPÄISCHEN UNION 

2002, DIE KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN 2003). 

Old and new diagnostic tools 

The national reference laboratory (NRL) for ASF provides several validated diagnostic tests in 

the Amtliche Methodensammlung (Friedrich-Loeffler-Institut 2016) according to  EU 

Diagnostic Manual  (Commission Decision 2003/422/EC). For genome detection, the real-time 

polymerase chain reaction (qPCR) according to King et al. (2003) is the routine test with slight 
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modifications. This assay is listed in the Manual of Diagnostic Tests and Vaccines  for Terrestrial 

Animals (World Organization for Animal Health (OIE) 2017). For confirmation of doubtful 

results, the protocol according Tignon et al. (2011) is routinely performed at the NRL. Since 

ASFV is the only swine related virus showing hemadsorption, the standard method for direct 

detection of replicating ASFV is the hemadsorption assay (Malmquist et al. 1960, Sierra et al. 

1991). It is based on the culture of the virus on macrophage cultures obtained from 

anticoagulated blood, lung lavage or bone marrow. Homologue erythrocytes are added to the 

culture after 24 hours of incubation and if replicating virus is present, hemadsorption can be 

observed as rosette formation around infected macrophages (European Union Reference 

Laboratory for ASF 2013). The hemadsorption reaction is linked to two different ASFV proteins 

(encoded in ORF EP402R and EP153R) responsible for the adhesion and stabilization of the 

erythrocyte on the cell surface (Galindo et al. 2000). Most ASFV strains show this 

phenomenon. Exceptions are e.g. found in some serogroups within genotype I (Leitao et al. 

2001, Boinas et al. 2004) For antigen detection of non-hemadsorbing ASFV strains, 

immunofluorescence staining of permanent cell or macrophage cultures is suitable. 

Immunofluorescence or –peroxidase staining can also be used on cryosections. 

Due to the presence of natural attenuated strains, leading to seroconversion in the recovering 

swine, antibody detection can be as important as reliable pathogen detection. It also helps to 

estimate the possible time point of disease introduction. In Germany, two commercial enzyme 

linked immunosorbent assays (ELISA) are approved for routine diagnosis of ASFV-specific 

antibodies. The INGEZIM PPA COMPAC K3 (INGENASA, Spain) is a blocking ELISA detecting 

antibodies against the viral protein (VP) 72 (Pastor et al. 1990). The second commercial kit 

named ID Screen® ASF (ID Vet, France) is an indirect system detecting antibodies against the 

viral proteins P32, P62 and P72. Doubtful results have to be confirmed by the indirect 

immunoperoxidase test (IPT) or immunoblotting (Cubillos et al. 2013).  

 

 



Objectives 

 

11 
 

3 Objectives 

Simplified sampling for improved African swine fever surveillance in the field 

Since passive surveillance in wild boar is currently the most effective strategy for early 

detection of ASFV, simple sampling-tools are required to increase the compliance of hunters 

and foresters to take samples from fallen wild boar. Dry blood swabs have already shown to 

be a suitable approach in earlier publications so the main goal of the present study was to 

demonstrate the suitability of the swab sampling method for both routine ASFV genome and 

antibody detection under field conditions. 

 

Biological and genomic characterization of recent African swine fever virus field strains from 

Estonia 

ASF was re-introduced into the EU in 2014, affecting domestic pigs and wild boar in the Baltic 

States and Poland. As high virulence has been observed in Caucasian ASFV strains, it was 

anticipated that the virus would either spread rapidly or die out due to self-limitation. In fact, 

the disease became endemic, spreading slowly but constantly in the wild boar population. As 

virus attenuation is among the explanations for this pattern, selected field-isolates were 

biologically characterized. For this purpose, four animal trials were carried out, including 

different pig breeds. Since the survival rates and clinical courses were rather variable, 

representative samples from each trial were subjected to next-generation sequencing and 

whole-genomes were investigated to see if there is a genetic basis for this variance. 

Subsequently, screening for variant viruses was carried out with tailored PCR systems. 

 

Evaluation of the potential carrier status of African swine fever virus infected pigs  

ASF survivors were suggested to play a crucial role in disease maintenance as so-called “silent 

carriers” but long-term studies with a representatively high amount of animals were lacking. 

Therefore, this study targeted the assessment of a potential ASFV carrier state of 30 pigs in 

total which were allowed to recover from infection with ASFV “Netherlands’86” prior to 

contact exposure to six healthy sentinel pigs for more than two months. Mainly viremia, virus 

shedding and seroconversion were analyzed to evaluate the epidemiological role of recovered 

animals.
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4 Results 

The publications for this thesis are grouped according to their topic. The reference section of 

each manuscript is presented in the style of the respective journal and is not included at the 

end of this document. The numeration of figures and tables corresponds to the published form 

of each manuscript. 
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Summary 

African swine fever (ASF) is a notifiable disease with serious socio-economic consequences 

that has been present in wild boar in the Baltic States and Poland since 2014. An introduction 

of ASF is usually accompanied by increased mortality, making fallen wild boar and hunted 

animals with signs of disease the main target for early warning and passive surveillance. It is 

difficult, however, to encourage hunters and foresters to report and take samples from these 

cases. A pragmatic and easy sampling approach with quick-drying swabs could facilitate this. 

In this study, we further evaluated the use of dry-blood swabs for the detection of ASFV 

antibody and genome with samples from animal trials and diagnostic submissions (blood, 

bone, and organs) from Estonia. Compared to serum samples, dried blood swabs yielded 

93.1% (95% confidence interval: [83.3, 98.1]) sensitivity and 100% [95.9, 100.0] specificity in a 

commercial ASFV antibody ELISA. Similarly, the swabs gave a sensitivity of 98.9% [93.4, 100.0] 

and a specificity of 98.1% [90.1, 100.0] for genome detection by a standard ASFV p72 qPCR 

when compared to EDTA blood. The same swabs were tested in a VP72-antibody lateral flow 

device, with a sensitivity of 94.7% [85.4, 98.9] and specificity of 96.1% [89.0, 99.2] compared 

to the serum ELISA. When GenoTube samples tested in ELISA and LFD were compared, the 

sensitivity was 96.3 % [87.3, 99.5] and the specificity was 93.8% [86.0, 97.9].   

This study demonstrates reliable detection of ASFV antibody and genome from swabs. A field 

test of the swabs with decomposed wild boar carcasses in an endemic area in Estonia also 

gave promising results. Thus, this technique is a practical approach for surveillance of ASF in 

both free and endemic areas. 

 

Keywords: African swine fever, early warning, passive surveillance, antibody detection, 

genome detection, diagnostics, forensic swab 
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1. Introduction 

African swine fever (ASF) is an often-fatal hemorrhagic disease of domestic swine, feral swine, 

and wild boar (all Sus scrofa) caused by a double-stranded DNA virus, ASF virus (ASFV). African 

swine fever affects swine of all ages producing a wide range of clinical signs. Since 2007, ASF 

has spread to the Caucasus region, the Russian Federation, and neighboring Eastern European 

countries such as Estonia, Latvia, Lithuania, Poland, Ukraine, Moldova (Costard et al., 2009, 

Costard et al., 2015, European Food Safety et al., 2017), and the Czech Republic (OIE, 2017). 

In most regions, both domestic pigs and wild boar were affected and, especially in the Baltic 

States, long-term persistence of the disease in affected wild boar populations was observed 

(Olsevskis et al., 2016, Guinat et al., 2016). Contact to wild boar plays a key role in the 

introduction into the domestic pig population and subsequent spread . 

The introduction of ASF to naïve wild boar populations is associated with high morbidity and 

mortality (Costard et al., 2013). Passive surveillance of wild boar and syndromic surveillance 

of pig mortality are considered the most effective strategies for a timely detection of disease 

introduction and the control of ASF spread (Guinat et al., 2017). Sampling of fallen wild boar 

to obtain blood or bone specimens is crucial for surveillance, but it requires great effort by 

hunters or other untrained personnel. Therefore, a simple sampling tool that is easy to handle 

and transport could facilitate the collection of samples by hunters, foresters and veterinary 

services.  

Alternative methods for collecting field samples that are stable in warm climates have been 

described. Braae et al. (2013) investigated the use of FTA cards for blood collection and qPCR 

testing under field conditions in Tanzania. In later work by Randriamparany et al. (2016) and 

Michaud et al. (2007), ASFV diagnosis and characterization were successfully performed with 

dried blood on filter paper, for both experimental and field samples and over extended 

periods of time. Randriamparany et al. (2016) also demonstrated the suitability of dried blood 

for antibody detection. No problems with specificity were encountered. 

Along the same lines as the FTA cards and filter papers, Petrov et al. (2014) showed that dry-

blood swabs are an easy method to test carcasses for ASFV and CSFV genomes. The advantage 

is that the swab is already combined with a shipment-suitable receptacle, and no further 

equipment is needed. Swabs give the user a greater separation from the sample, allowing for 

quicker and easier handling and storage. Among the different materials and products tested, 

GenoTubes (Thermo Fisher Scientific) were the optimum in terms of ease of handling and 
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sample stability. The suitability of these swabs for ASFV antibody detection by ELISA was 

demonstrated in a proof-of-concept study (Blome et al., 2014).  

Quick-drying swabs decrease the growth of opportunistic organisms and preserve sample DNA 

or RNA without refrigeration (Costa et al., 2014). In previous studies, sample material in 

GenoTubes remained usable for genome and antibody detection for more than a week 

(unpublished results show stability over several month), and gave good results with accredited 

qPCR and ELISA methods (Blome et al., 2014, Petrov et al., 2014). 

The objectives of the present study were to demonstrate the suitability of the swab sampling 

method for routine ASFV genome and antibody detection. To this means, blood and other 

routine sample matrices were compared to swabs dipped into EDTA blood. In the majority of 

cases, paired samples of the same animal were tested to ensure comparability. In addition to 

the blood and serum that had been previously tested (Blome, 2014), organ and bone marrow 

samples were included in this comparative study to broaden the scope. Furthermore, the 

analyses were extended to a lateral flow device (LFD) for antibody detection, which could 

provide a useful and easy tool for point-of-care tests. 

 

2. Materials and methods 

2.1 Swine Studies and Sample Origin 

Paired EDTA and serum samples from experimentally infected animals at the Friedrich-

Loeffler-Institut (FLI) were used for the study (see Table 1). The same EDTA blood sample was 

used for routine PCR testing and generation of dried-blood swabs. Animals used in this study 

were infected with either ASFV genotype I, II or IX, with some surviving long enough to mount 

an antibody response. We also included older multi-vaccinated sows for specificity assessment 

as they can often have false positive reactions. Swine used for these studies were kept in 

accordance with Directive 2010/63/EU. None of the animal experiments were specifically 

performed for this study. The animal experiments were approved by the competent authority 

(LALLF Rostock, Germany) under reference numbers 7221.3-1-059/16, 7221.3-1-021/15, and 

7221.3-2-023/15. The swabs were directly dipped into vials of thawed whole blood or serum 

from animal trials that had been stored at -80°C. The swabs were then stored at room 

temperature to mimic the time in transit from the field to the laboratory: for 8 days prior to 

processing for DNA extraction, for 10 days prior to processing for ELISA, and for 2 months prior 

to testing with LFD. After storage, small pieces (2.5 mm in diameter for PCR, 5 mm in diameter 
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for ELISA) were excised from the dried-blood (or serum) swabs with sterile scissors and 

processed. 

 

Table 1: Summary of samples used from the FLI. 
 

     Sample type 
 

Virus Animal EDTA Blood Serum Total 

ASFV Estonia 2014 (genotype II) Minipigs 24 24 48 

ASFV Netherlands 1986 (genotype I) domestic pigs 78 78 156 

ASFV Estonia 2014 (genotype II) domestic pigs 10 10 20 

ASFV Kenya 05 (genotype IX)  domestic pigs 3 3 6 

ASFV Estonia 2014 (genotype II) wild boar 19 19 38 

ASFV-naive Sows 0 8 8 

ASFV-naive  Piglets 0 5 5 

Total  134 147 281 

 

2.2 Additional sampling in Estonia 

A short-term scientific mission was conducted at the Estonian Veterinary and Food Laboratory 

(VFL), the Estonian National Reference Laboratory for ASF and CSF, in collaboration with the 

Estonian University of Life Sciences. Forty-two swabs were dipped in various field samples 

from the VFL collection. These samples were collected from previously archived blood (29), 

bone marrow (5), and other organs (8) stored at -80°C. All samples were left under the 

biosafety cabinet until samples were completely thawed to obtain a swab sample. The swabs 

were then stored at room temperature for 72 hours prior to processing for routine diagnostics. 

All 42 samples were tested by PCR, while only 25 were tested by ELISA. The processing time 

differed from the studies conducted at the FLI due to the nature of the short-term scientific 

mission. 

For a small pilot study during this scientific mission, two decomposed wild boar carcasses 

(Figure 1) in a forest near Vihula, Lääne-Viru County, Estonia (GPS Coordinates 59,5100153; 

25,8536846), were sampled with GenoTube swabs. The time of death was not determined; 

however both carcasses were severely decomposed. For routine diagnostics, bone marrow 

was also collected (see Table 2). 
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Figure 1. Wild boar carcass sampled in an Estonian forest. (a) The first carcass was severely 

decomposed. The remaining body cavity was swabbed, and bone marrow from the humerus 

was submitted to the lab for routine diagnostics. (b) In the second carcass, organs and tissues 

were still present, and (c) it was possible to soak the GenoTube in some blood-tinged liquid. 

 

Table 2: Summary of samples tested at VFL 

Sample/Assay EDTA Blood Organ Bone Marrow Total 

GenoTube Ingezim ELISA 18 3 4 25 

GenoTube Tignon PCR 29 5 8 42 
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2.3 Pathogen detection 

For qPCR, viral nucleic acid was extracted using the Qiagen® MagAttract Virus Mini M48 kit 

(Qiagen, Hilden, Germany) and the KingFisher® extraction platform (Thermo Fisher Scientific, 

Vantaa, Finland). The nucleic acid extraction was performed with 75 µl of whole blood or a ~5-

mm2 piece of a GenoTube swab that had been dipped in whole blood (Figure 2) and later 

soaked and incubated in 200 µl of phosphate-buffered saline (PBS). At the FLI, GenoTube 

pieces were macerated with a metal bead in a 2 ml microcentrifuge tube with 200 µl PBS, 

mixing for 3 min at 30 Hz in a Qiagen TissueLyser II. Subsequently, qPCR was performed 

according to the King et al. protocol (King et al., 2003) and an EGFP internal control (Hoffmann 

et al., 2006), with results recorded as quantification cycle (Cq) values. At the VFL, a slightly 

modified protocol was used. GenoTube pieces were soaked in 200 µl PBS and the tubes were 

vortexed thoroughly. We used 140 µl of starting material for the automated extraction with a 

Qiagen QIAcube platform and QIAamp Viral RNA Mini Kit (Qiagen). Thereafter, qPCR was 

performed on all Estonian samples according to the protocol published by Tignon et al.  

(Tignon et al., 2011) using swine β-actin as an endogenous control. 

 

Figure 2. GenoTube after dipping in EDTA-treated whole blood (a). Trimming the foam of the 

swab for testing in multiple assays (b). Pieces of foam cut for DNA extraction (5 mm2) (c). 

 

2.4 ELISA antibody detection 

To detect antibodies against ASFV, the commercial ID Screen® African Swine Fever Indirect 

ELISA (IDvet, Grabels, France) which detects antibodies against the viral proteins p32, p62 and 

p72 was used at the FLI. To this end, GenoTube samples were incubated in 200 µl of the ELISA 

sample dilution buffer shaking at room temperature overnight in a 96 deep-well plate. The 

protocol was completed as described by the manufacturer for testing filter paper punches. 

At the VFL in Estonia, a p72 antibody ELISA (Ingezim PPA Compac, INGENASA, Madrid, Spain) 

was performed according to the manufacturer’s instructions with a slight modification using 
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a smaller buffer volume. The GenoTube was vortexed in individual tubes with 100 µl of the 

sample diluent-buffer from the ELISA kit. 

 

2.5 Lateral flow device for antibody detection 

Antibodies against p72 were detected using the commercial INGEZIM PPA CROM lateral flow 

device (INGENASA, Madrid, Spain). A 5-mm2 GenoTube sample was cut from the same 

GenoTube used previously. Samples were then incubated in 200 µl ELISA dilution buffer for 20 

minutes shaking at room temperature. Subsequently, 50 µl were pipetted on the LFD and 

incubated for one minute, then 3 drops of running buffer were added. Results were read 

within 10 minutes of incubation at room temperature. 

 

2.6 Calculations for linear regression 

For each comparison, a simple linear model (Montgomery et al., 2015) was fitted with R 

(https://www.r-project.org/). The calculations were completed using "lm" from package 

"stats" and "geom_smooth" from package "ggplot2".To test associations between results 

obtained with different assays, Pearson's product moment correlation coefficient (r) (Lewis, 

2009) was calculated and evaluated against a t distribution with n−2 degrees of freedom.  

 

2.7 Estimation of sensitivity, specificity, and agreement between tests 

Sensitivity and specificity were calculated for the ELISA (values between 30-39 percent 

positive, PP) and LFD with results in the doubtful range counted as positive, since a doubtful 

result would alert a diagnostic lab to run further tests.  

Sensitivity was calculated as True Positive / (True Positive + False Negative). 

Specificity was calculated as True Negative / (True Negative + False Positive). 

The confidence intervals were also calculated with R using the exact binomial test with the 

“binom” package also described by (Clopper and Pearson, 1934). 

 

3. Results 

3.1 Pathogen detection 

At the FLI, results from the GenoTubes and the EDTA blood had minor qualitative differences 

(see a summary of qualitative and quantitative results in supplementary table 1). In qPCR, 

GenoTubes swabs had lower viral genome loads compared to the original EDTA blood 

https://www.r-project.org/
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(difference in Cq value up to 13), and the r2 was 0.917 (Figure 3a). The qPCR sensitivity was 

98.8% (one false negative result; [93.4, 100.0]), while the specificity was 98.1% (one false 

positive result from a true negative animal with a very high Cq value, i.e. >40; [90.1, 100.0]). 

However, samples tested at VFL had a sensitivity of 85.7% [71.5, 99.6], an r2 of 0.665, while Cq 

values differed by up to 12 between the original sample and GenoTube (Figure 3b). Specificity 

was not determined since only positive samples were tested. A summary of these results is 

provided in supplementary table 2. 

The two GenoTube swabs sampled from the almost completely decomposed and frozen 

carcasses (Figure 1) yielded positive results in the qPCR with Cq values of 37.5 (carcass A) and 

37.4 (carcass B) when swabbing bones moistened with water. In both cases the Cq values of 

the corresponding bone marrow samples were 28.2 and 28.5, respectively.  

 

 

Figure 3. Cq values for GenoTubes dipped in whole blood compared to the whole blood itself 

after automated nucleic acid extraction at the FLI (a) and at VFL (b). The coefficient of 

determination (r2), the linear equation and the regression line are shown. Equality is marked 

with a black dotted line. 

 

3.2 Antibody detection 

In comparative studies with the IDvet antibody ELISA, serum and GenoTube swabs dipped in 

whole blood had similar results (see a summary of results in supplementary table 1). The PP 

values of positive samples tested at the FLI ranged from 41 to 120 for the GenoTube swab 

samples and from 43 to 121 for the serum samples (Figure 4). There was a tight correlation 
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(r2=0.969) between the serum sample and the blood-dipped GenoTube swab. Sensitivity was 

93.1% with 100% specificity when comparing GenoTube to serum samples tested with the 

ELISA at the FLI (Table 3, top). In Estonia, the ELISA (Ingezim PPA Compac ELISA) results had a 

sensitivity of 83.3% and a specificity of 100% (Table 3, bottom, supplementary table S2). 

 

 

 

 

Figure 4. GenoTubes dipped in whole blood compared to the corresponding serum samples 

in the IDvet antibody ELISA.  The coefficient of determination (r2), the linear equation and the 

regression line (red) are shown. Equality is marked with a black dotted line. The black solid 

line represents the positive cut-off of the ELISA on the x and y axis. Above the dotted line on 

the x and y axis, results are considered doubtful, while below this line, results are considered 

negative. 

 

 

 

 

 

 



Simplifying sampling for African swine fever surveillance: Assessment of antibody and pathogen 
detection from blood swabs 

 

26 
 

Table 3: IDvet and Ingezim ELISA of serum and corresponding whole-blood GenoTube samples 

at FLI (top) and the VFL (bottom). Sensitivity and specificity were calculated with doubtful 

results (PP values ≥30) considered positive. Confidence intervals (95%) for the estimates are 

presented in square brackets. 

FLI 
Serum IDvet ELISA 

Total 
Pos Neg 

Geno 
Tube 

Pos 54 0 54 

Neg 4 89 93 

Total 58 89 147 

Sensitivity 93.1% [83.3, 98.1] 

Specificity 100% [95.9 ,100.0] 

 

VFL 
Serum Ingezim ELISA 

Total 
Pos Neg 

Geno 
Tube 

Pos 15 0 15 

Neg 3 7 10 

Total 18 7 25 

Sensitivity 83.3% [58.6, 96.4] 

Specificity 100% [59.0, 100.0] 

 

3.3 Antibody detection by lateral flow device  

A total of 134 whole blood-dipped GenoTube samples were tested with the Ingezim LFD and 

compared to parallel serum samples tested in the IDvet ELISA, resulting in 94.7% sensitivity 

and 96.1% specificity (See Table 4, top and Figure 5). When we compared the GenoTubes 

samples tested by ELISA or LFD, 96.2% sensitivity and 93.8% specificity were found (See Table 

4, bottom). Three GenoTube samples which were negative by LFD were positive by the serum 

ELISA. Two of these samples were false negative by the GenoTube LFD compared to the ELISA 

performed with the GenoTube samples.  
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Figure 5. Antibody ELISA and lateral flow assay. Percent positive (PP) values from the ELISA 

are shown for the whole-blood GenoTube samples and the corresponding serum sample. Red 

dots represent samples that were positive in the LFD, yellows were doubtful and blue dots 

were negative. See examples of LFDs on right. 
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Table 4. Results for GenoTube samples tested with a lateral flow device compared to IDvet 

ELISA results for the same GenoTube sample (top) and the corresponding serum (bottom). 

Sensitivity and specificity were calculated with doubtful results considered positive. 

Confidence intervals (95%) for the estimates are presented in square brackets. 

  
GenoTube IDvet 
ELISA Total 

  
Pos Neg 

GenoTube 
LFD 

Pos 52 5 57 

Neg 2 75 77 

Total 54 80 134 

Sensitivity 96.3% [87.3, 99.5] 

Specificity 93.8% [86.0, 97.9] 

 

  
Serum IDvet ELISA 

Total   
Pos Neg 

GenoTube 
LFD 

Pos 54 3 57 

Neg 3 74 77 

Total 57 77 134 

Sensitivity 94.7% [85.4, 98.9] 

Specificity 96.1% [89.0, 99.2] 

 

 

4. Discussion 

Currently only a few reports describe the use of GenoTubes for infectious disease detection 

(Blome et al., 2014, Sattler et al., 2015, Petrov et al., 2014, Barros et al., 1986). Apart from 

African and classical swine fever, these reports have demonstrated the value of GenoTubes 

for oral sampling of swine for porcine reproductive and respiratory syndrome virus  and the 

detection of Brachyspira hampsonii in feces (Costa et al., 2014). However, oral and fecal swabs 

may be less suitable for ASF testing as these matrices contain much lower genome loads 

(Blome et al., 2013). Whole blood or tissues are preferable because they yield much higher 

genome loads. Moreover, the Commission Implementing Decision (2014/709/EU, 2015) 

requires the collection of blood samples of all hunted wild boar in endemic areas. In Germany, 

which currently remains disease-free but is at risk, sampling of fallen wild boar and roadkill is 
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mandatory for early disease detection (Regulation on swine fever monitoring, SchwPestMonV, 

2016). In order to achieve this goal, we must rely on the cooperation of hunters or foresters 

to collect tissue, bones or blood in tubes. Since this is inconvenient, a swab could increase 

their compliance because it is easy to handle and transport. The use of GenoTubes or quick-

drying swab minimizes the risk of carryover between carcasses because the length of the swab 

allows sampling while limiting direct contact of the hunters with bodily fluids, thereby 

increasing sterility and overall sample quality. At a price of €2 per swab, they provide excellent 

preservation and safe transport. The GenoTube swabs are made of foam that can be 

conveniently cut into multiple pieces to run multiple assays from one swab. Since cutting 

methods are already applied to organ samples tested in the laboratory, this could easily be 

adapted to swabs. It is important to note that swabs can be directly dipped in AVL or ELISA 

buffer without cutting to run one assay, if cutting is inconvenient (see Petrov et al., 2014). FTA 

cards have also shown promising results (Uttenthal et al., 2013, Braae et al., 2015, Michaud 

et al., 2007, Randriamparany et al., 2016), however, a trained person must handle the samples 

as it is difficult to avoid contamination during close contact with bloody carcasses and 

additional transport devices are needed. In studies by (Petrov et al., 2014), FTA cards gave 

similar qualitative results when compared to the GenoTube swab.  

Our studies have demonstrated that qualitative results obtained with GenoTube material 

were consistent with the original sample used in routine diagnostics. This work demonstrated 

a tight correlation (r2=0.917) of Cq values from the GenoTube samples and paired EDTA blood 

(sensitivity 98.8% and specificity 98.1%). One false positive result had a very low genome load 

and was considered doubtful. One false negative qPCR result, attributed to poor handling, was 

repeated twice more from two separate cuts of the GenoTube, resulting in Cq values of 28.5 

each time. Although initially negative in GenoTube qPCR, separate ELISA and LFD GenoTube 

pieces were positive for antibodies. Since positive antibody results would require further tests, 

routine diagnostics would not have missed the infected animal from the sample taken with 

GenoTubes. The GenoTube swab samples when compared to the IDvet serum ELISA had a 

tight correlation of r2=0.969. On several occasions, Cq values were higher on GenoTube 

samples which is probably due to a dilution effect of the swab in PBS. The six false negative 

results from Estonian GenoTubes can be explained by poor sample quality and the low initial 

genome load (Cq value > 34) of the original samples, but differences in extraction could also 

be partly responsible. From these samples, one out of six would have been identified as 
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infected by the detection of antibodies (sensitivity was 83.3% and specificity was 100% with 

the Ingezim PPA Compac ELISA).  

The dilution of the GenoTube samples in buffer had little effect on the analysis of antibodies 

with the ELISA as the PP values between paired samples were tightly correlated. The LFD 

GenoTube compared to the GenoTube ELISA resulted in only two false negatives. The false 

negative results are likely due to a decreased sensitivity of the LFD device compared to the 

ELISA. It is also possible that a smaller swab piece was used, and possibly less sample was on 

that swab piece used for the LFD. In addition, samples of poor quality (hemolysed or clotted 

blood) submitted to the VFL showed reliable results in LFD. Studies by (Gallardo et al., 2009) 

also showed that samples stored at 37°C for one month had little effect on the qualitative 

ELISA result. While (Petrov et al., 2014) demonstrated that samples stored at 37°C for 7 days 

gave the same qualitative results. This demonstrates the utility and robustness of this 

sampling strategy combined with a point-of-care test. Even when the LFD qualitative results 

were compared to the serum ELISA, only 3 samples were false negative.  

It is important to mention that each reference lab predominantly uses one of the two 

accredited qPCRs (King et al., 2003, Tignon et al., 2011) and one of the different ELISAs 

commercially available (IDScreen ASFV Indirect ELISA by IDvet and Ingezim PPA Compac by 

Ingenesa). Using multiple assays with same dry swab demonstrates the versatility of these 

samples and the ease of adapting them in different reference laboratories (see comparison of 

different PCRs in supplementary table 3).  

Since lab samples are hardly comparable to undefined body liquids obtained from 

decomposed carcasses, the study was extended to the field to test the applicability of 

GenoTubes. From decomposed carcasses (skeletons), the only available sample is often bone. 

Their sampling and processing is cumbersome especially since decomposition occurs rapidly 

in summer. Comparing qPCR from bone marrow to GenoTube samples obtained by swabbing 

the rotten bodies had higher Cq values, but remained detectable in our qPCR assay. This 

preliminary data underlines the versatility of the GenoTube. 

Under this premise, it is conceivable to expand the use of these swabs while culling swine 

during an outbreak or sampling hunted wild boar. A sufficient number of samples must be 

taken during the culling while considering the same risks and obstacles as previously 

mentioned (2002/60/EG, Article 5, 2002). In outbreaks involving large farms, CO2 is often the 

preferred culling method (Estonian-Swine-Fever-Code, 2017), leaving masses of unopened 
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carcasses. The GenoTubes could facilitate this process by swabbing the eye’s medial canthus 

or other source of peripheral blood. 

In summary, of the 178 samples from diverse sources and varying quality, only five cases (2.8 

%) would not have been identified as infected using the GenoTubes. Fast-drying swabs are 

therefore an excellent alternative for ASF detection. They have several advantages from easy 

handling to long-term storage and the ability to cut and use one swab for multiple diagnostic 

tests. Another key feature of this swab is the diversity of samples it may be used with, 

including organs and bone marrow from fallen wild boar. In conclusion, these swabs are a 

practical, inexpensive, and straightforward approach for passive surveillance of ASFV in the 

deceased wild boar. 
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Supplementary table 2: Overview on samples tested at the FLI 
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Supplementary table 3: Overview on samples tested at the FLI 
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Summary 

Due to its impact on animal health and pig industry, African swine fever (ASF) is regarded as 

one of the most important viral diseases of pigs. Following the ongoing epidemic in the Trans-

Caucasian countries and the Russian Federation, African swine fever virus was introduced into 

the Estonian wild boar population in 2014. Epidemiological investigations suggested two 

different introductions into the southern and the north-eastern part of Estonia. Interestingly, 

outbreak characteristics varied considerably between the affected regions. While high 

mortality and mainly virus positive animals were observed in the southern region, mortality 

was low in the north-eastern area. In the latter, clinically healthy, antibody positive animals 

were found in the hunting bag and detection of virus was rare. Two hypotheses could explain 

the different behavior in the north-east: (i) the frequency of antibody detections combined 

with the low mortality is the tail of an older, so far undetected epidemic wave coming from 

the east or (ii) the virus in this region is attenuated and leads to a less severe clinical outcome. 

To explore the possibility of virus attenuation, a re-isolated ASFV strain from the north-eastern 

Ida-Viru region was biologically characterized in European wild boar. 

Oronasal inoculation led to an acute and severe disease course in all animals with typical 

pathomorphological lesions. However, one animal recovered completely and was 

subsequently commingled with three sentinels of the same age class to assess disease 

transmission. By the end of the trial at 96 days post initial inoculation, all animals were 

completely healthy and neither virus nor viral genomes were detected in the sentinels or the 

survivor. The survivor however showed high antibody levels.  

Concluding, the ASFV strain from north-eastern Estonia was still highly virulent but 

nevertheless, one animal recovered completely. Under the experimental conditions, no 

transmission occurred from the survivor to susceptible sentinel pigs.  

Keywords: African swine fever virus, Estonia, wild boar, infection experiments, virulence 
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1. Introduction 

African swine fever (ASF) is one of the most important and complex notifiable disease of 

domestic and wild pigs. It is caused by the eponymous virus which belongs to the genus 

Asfivirus within the Asfarviridae family (Takamatsu, 2011). Depending on host and virus 

factors, the disease can run acute, sub-acute and chronic courses. The former is especially 

linked to highly virulent virus strains and is characterized by severe clinical signs including high 

fever, general depression, anorexia, gastrointestinal signs, neurological disorders, and 

hemorrhagic lesions in the final stage of the disease (EFSA Scientific Report, 2009). In general, 

the disease course does not differ when comparing European wild boar and domestic pigs 

(Blome et al., 2013, Gabriel et al., 2011) 

In 2007, a highly virulent genotype II ASF virus (ASFV) was introduced into Georgia and 

subsequently into several Trans-Caucasian countries, the Russian Federation, and in 2014, into 

the European Union (OIE WAHID, visited September 18th 2016). Among the currently affected 

countries is Estonia. Estonian authorities reported the first outbreaks in wild boar in 

September 2014, and in this year, a total of 41 ASF cases in wild boar were found in four 

different counties out of fifteen. In the first four months of 2015, 52 new wild boar cases were 

reported from four previously infected counties in the southern (three affected counties) and 

north-eastern part (Ida-Viru county) of the country (see figure 1). By December 2015, the 

number of ASF cases in wild boar had risen to 723, and 11 counties were affected almost all 

over the territory of Estonia. Apart from the wild boar population, 18 ASF outbreaks were 

reported from the domestic pig sector in 2015. Interestingly, outbreak characteristics varied 

considerably between the southern introduction and the north-eastern introduction. While 

high mortality (up to 16 dead animals found in one place) and mainly virus positive animals 

were observed in the southern affected region, mortality was low in the north-eastern 

outbreak area. In the latter, clinically healthy, antibody positive animals were found in the 

hunting bag and detection of virus or viral genome was rare. In order to explain the different 

behavior of the virus in the north-east, two hypotheses were phrased: (i) the frequency of 

antibody detections combined with the low mortality is the manifestation of an older, so far 

undetected epidemic wave coming from the east, i.e. we see its tail represented by surviving 

animals or (ii) the virus in this region is attenuated and leads to less severe courses. An 

attenuated virus could significantly complicate disease detection and may facilitate long-term 

endemicity.   
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To test hypothesis (i), we made an attempt to re-isolate the virus from PCR-positive organ 

samples from the Ida-Viru region. While isolation in macrophage cultures failed, the virus 

could be re-isolated by animal passage. Subsequently, the resulting virus was biologically 

characterized in terms of disease course, virology and serology in ten young wild boar at the 

Friedrich-Loeffler-Institut (FLI), Isle of Riems, Germany. 
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Figure 1: ASF cases in Estonia from September 2014 to end of April 2015.  
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2. Materials and Methods 

2.1 Experimental design 

To re-isolate the causative ASFV strain from weak PCR-positive organ samples from Ida-Viru, 

three young wild boar were intramuscularly inoculated with an organ homogenate in standard 

cell culture medium (no viral growth in macrophage cultures). Upon onset of clinical signs and 

confirmation of infection by real-time PCR (qPCR), the animals were euthanized and 

standardized blood and organ samples were collected during necropsy. A pooled spleen 

suspension with a titer of 104.5 hemadsorbing units (HAU) per ml was subsequently used for 

the trial detailed below.  

The main study included a total of ten European wild boar from the breeding unit at the FLI 

aged approximately four month at the start of the trial. The animals were moved from the FLI 

quarantine stables into the high containment facilities (L3+) where they were kept in one pig 

pen. All animals were individually ear-tagged with numbers #11 to #20. Over the course of the 

trial, the animals were fed a commercial pig food with corn and hay-cob supplement and had 

access to water ad libitum. After an acclimatization phase, the wild boar were inoculated 

oronasally with 2 ml of the above mentioned spleen suspension. Clinical parameters of all 

animals were assessed daily based on a harmonized scoring system as previously described 

(Pietschmann et al., 2015). In brief, parameters anorexia, recumbency, joint lesions, breathing, 

ocular discharge, digestive findings, and neurological disorders were assigned points 

according to the severity of findings. The sum of the points was recorded as the clinical score 

(CS) that was also used to define humane endpoints. Over the course of the trial, levels of 

viremia, virus distribution, virus shedding, and antibody responses were assessed. For this 

purpose, blood samples were collected along with oropharyngeal and fecal swabs at days 0, 

4, 7, and 10 post inoculation (dpi), and at the day of necropsy. Animals reaching the humane 

endpoint or that were suffering unacceptably without reaching the endpoint were euthanized 

through intracardial injection of embutramide (T61, Merck) after deep anesthesia with 

tiletamine/zolazepam (Zoletil®, Virbac). Necropsy was performed on all animals, and at the 

same time, tissue samples (lymph nodes, spleen, tonsil, salivary gland, lung, and liver), blood 

(EDTA, serum) and swab samples were collected for reference purposes. 

At the end of the initial trial, one wild boar (#19) had recovered completely. To assess virus 

transmission to susceptible animals, the survivor was commingled with three sentinel wild 

boar (#1, #2, #3) from day 50 post initial inoculation. The sentinels were roughly the same age 
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and were purchased from a game park in Mecklenburg Western-Pomerania. The trial ended 

at 96 dpi. At this day, the remaining animals were euthanized and subjected to necropsy as 

described above.  

In all trial parts, all applicable animal welfare regulations, including EU Directive 2010/63/EC 

and institutional guidelines, were taken into consideration. The animal experiments were 

approved by the competent authority under reference number 7221.3-2-023/15. 

 

2.2 Cells 

Blood for the preparation of Peripheral Blood Mononuclear Cells (PBMC)-derived 

macrophages was collected from healthy domestic donor pigs. In brief, PBMCs were obtained 

from EDTA anticoagulated blood using Pancoll Animal density gradient medium (PAN Biotech, 

Aidenbach, Germany). PBMCs were grown in RPMI-1640 cell culture medium with 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 10 % fetal calf serum (FCS) at 37 

°C in a humidified atmosphere containing 5 % CO2. The medium was supplied with 

amphotericin B, streptomycin and penicillin to avoid bacterial and fungal growth. To facilitate 

maturation of macrophages, GM-CSF (granulocyte macrophage colony-stimulating factor, 

Biomol, Hamburg, Germany) was added to the cell culture medium at 2 ng/ml. 

 

2.3 Laboratory investigations 

2.3.1 Processing of samples 

Oropharyngeal swabs were soaked in 1 ml of medium (EMEM without addition of FCS), 

vortexed for approximately 15 seconds, incubated for one hour at room temperature, and 

decanted in microcentrifuge tubes. Serum samples, which were obtained from native blood 

by centrifugation at 2500 x g for 20 minutes at 20°C, were aliquoted and stored at -80 °C until 

further use. Tissue samples of tonsil, spleen, salivary gland, liver, lung, and lymph nodes were 

collected at necropsy and stored at -80 °C. For qPCR and virus isolation (hemadsorption tests), 

tissue samples were homogenized in 1 ml phosphate-buffered saline (PBS) using a TissueLyser 

II (QIAGEN® GmbH). 

 

2.3.2 Virus detection 

For qPCR, viral nucleic acid was extracted, using the QIAamp® RNA Viral Mini Kit (Qiagen) or 

the NucleoMagVet-Kit (MACHEREY-NAGEL) and the KingFisher® extraction platform (Thermo 
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Scientific). Both extraction methods were slightly modified through the addition of an internal 

control DNA. The nucleic acid extraction was performed with 75 µl of whole blood and 150 µl 

of organ homogenate and swab material. Subsequently, qPCR was performed according to the 

protocol published by King et al. (2003) with slight modifications. For confirmatory reason, the 

virotype ASFV PCR Kit (Qiagen) was employed according to the manufacturer’s instructions. 

Results of both qPCRs were recorded as quantification cycle (cq) values. 

To detect ASFV in serum and tissue samples, a hemadsorption test (HAT) was carried out using 

PBMC-derived macrophages according to slightly modified standard procedures (Carrascosa 

et al., 2011). In brief, isolated PBMCs were seeded into a 96 well microplate with a density of 

app. 1.9 x 106 cells/ml. After 16-24 hours, non-adherent cells were removed and cell culture 

medium containing GM-CSF was replenished. The culture was then incubated for 24 to 48 

hours to allow initial maturation of macrophages. Subsequently, 20 µl of serum samples and 

30 µl of organ homogenate were added to each well. Tests were performed in duplicates. 

When using organ homogenates, cells were washed after 2 hours adsorption time using luke-

warm PBS, whereas serum was left on the cells until the evaluation of the test. After 24 hours 

of incubation 20 µl of homologues 1 % erythrocyte suspension was added to each well. For 

readout, cultures were analyzed for hemadsorption phenomena over a period of two days. 

Virus back titration was performed by endpoint titration of the diluted spleen suspensions. In 

this case, the PBMC preparation was seeded into 96-well microplates, the test volume was 

100 µl per dilution step and 20 µl of a 1 % homologous erythrocyte suspension was added. 

These samples were tested in quadruplicate. 

 

2.3.3 Antibody detection 

For the detection of antibodies against African swine fever virus, two commercial enzyme-

linked immunosorbent assays (ELISA) were carried out following the manufacturer’s 

instructions (Ingezim PPA COMPAC, Ingenasa; ID SCREEN African swine fever virus INDIRECT, 

IDvet). The Ingezim PPA ELISA detects antibodies directed against p72 in a competitive format. 

The ID SCREEN is an indirect ELISA using antigens p32, p62 and p72. All serum samples were 

tested in duplicate.  

 

All data were recorded and evaluated using Microsoft Excel 2010 (Microsoft Deutschland 

GmbH) and SigmaPlot for Windows version 11.0 (Systat Software, Inc.). 
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3. Results  

3.1 Clinical course and pathomorphological findings 

Following oronasal inoculation, all animals developed severe, unspecific clinical signs starting 

from 4 to 6 dpi including general depression, lack of appetite, huddling and respiratory 

distress. Three animals reacted with some delay, namely animals #17, #18, and #19. These 

animals were still very active and interested in food at day 4, and showed only mild signs on 

day 7. Between days 7 and 13, all but one animal (#19) showed worsening clinical signs with 

dyspnea and ataxia, and were euthanized in a moribund state or died over night 

spontaneously (#16). Wild boar #19 showed decreasing severity of clinical signs starting app. 

14 dpi and completely recovered over the following week. 

During necropsy, typical ASF lesions of varying severity were observed in all animals that 

succumbed to infection (for exemplary findings see figure 2). Lesions ranged from slight lung 

edema and ebony colored gastro-hepatic lymph nodes to multiple hemorrhages in several 

organs, hemorrhagic and edematous lymph nodes in all parts of the body, and severe lung 

edema. Sporadic findings included gall bladder edema, renal infarction, gastritis and arthritis. 

Severity of lesions increased with time in the experiment. 

After commingling of the survivor with three sentinels, no clinical signs were observed and all 

animals stayed in good health until the end of the trial at day 96. No ASF related lesions were 

observed during necropsy.  
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Figure 2: Examples of gross pathological findings during necropsy of acute-lethally infected 

wild boar upon infection with the ASFV strain from north-eastern Estonia. A) hemorrhagic 

intestinal lymph nodes and striate bleedings in the gut. B) ebony colored, hemorrhagic lymph 

nodes in the gastro-hepatic area. C) lung edema, fibrinous pleuritis and hemorrhages, D) and 

E) petechiae in the kidney, F) kidney petechiae and infarction 

 

3.2 Detection of virus and viral genome 

At 4 dpi, seven out of ten animals were positive in qPCR from EDTA blood with cq-values below 

30 (see figure 3A), and two additional animals were weak positive (cq 34 and 41). Animal #17 

was still negative at this time. In oropharyngeal swabs, five animals were found positive by 

qPCR with moderate to low viral loads (cq 28 to 38, see figure 3B). Here, animal #17 was 

among the weak positives (cq 37), but the two other animals with a low genome load in the 

blood and with almost no clinical signs were negative (see figure 3B). The qPCR from fecal 

swabs also yielded five but not completely congruent positive results (see figure 3C). Again, 

viral loads were low (cq values ranging from 31 to 45). Hemadsorption tests from serum were 

positive for all but animals #17 and #18. At 7 dpi, all available blood and swab samples were 

positive in qPCR with moderate to high genome loads in blood (cq 25-29, see figure 3A), and 

moderate to low genome loads in swabs (cq 30 to 37, see figures 3B and 3C). Here, only five 

hemadsorption tests were clearly positive, but the positive results included samples from 

animals #17 and #18. The remaining animals were all strong positive in qPCR from blood at 10 

dpi (see figure 3A), but only one oropharyngeal swab (#19) was very weak positive (cq 41, see 
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figure 3B). Hemadsorption tests from sera were positive for all animals. Spleen, tonsil, lung, 

salivary gland, and lymph node samples taken during necropsy of animals that succumbed to 

infection were all positive by qPCR (see table 1), and all spleen samples reacted positive in 

hemadsorption tests.  

Samples taken from the survivor and the sentinels during necropsy at 96 dpi were all negative 

for ASF virus and viral genome in two independent qPCR systems (see table 1). Among the 

samples were nine lymph nodes from all over the body (mandibular, parotideal, lung-

associated, renal, gastro-hepatic, intestinal from the large and small intestines, inguinal, 

popliteal).  
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Figure 3: Genome detection by qPCR in blood (A), oropharyngeal (B) and fecal swabs (C). 

Results are depicted as cycle quantification (cq) values.  
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3.3 Detection of antibodies against ASFV 

First positive reactions were seen in both ELISA systems between days 9 and 13 post 

inoculation (see figure 4 A and B). At 10 dpi, #19 was found positive in both test systems, #14 

showed doubtful reactions in the Ingezim PPA and positive reactions in the ID SCREEN African 

swine fever virus. An additional doubtful result for the serum of animal #11 was found in the 

Ingezim PPA (see figure 4B). At the respective end day, only animal #19 (96 dpi) showed high 

antibody levels in the Ingezim PPA ELISA (see figure 4B). However, several animals were close 

to the cut-off (see figure 4B). In contrast, three animals were found positive (#14, 11 dpi; #17, 

13 dpi; #19, 96 dpi) and one doubtful (#13, 9 dpi) in the ID SCREEN African swine fever virus 

(see figure 4A). 

 

4. Discussion  

African swine fever is no longer an exotic disease in several eastern European countries. Since 

the introduction into the EU in 2014, ASF has spread continuously despite enormous efforts 

towards controlling the disease. The causative virus strains are of genotype II and showed high 

virulence for both domestic pigs and European wild boar under experimental conditions 

(Blome et al., 2012, Gabriel et al., 2011, Pietschmann et al., 2015, Gallardo et al., 2015, Guinat 

et al., 2014). This would mean that introduction into a free area would be expected to lead to 

obvious clinical signs and mortality.  

While mortality and virus positive animals were observed in Southern Estonia, this outbreak 

behavior was missing in the north-eastern outbreak area. One explanation could be local virus 

attenuation.  

In an attempt to understand the different outbreak characteristics and to investigate the 

virulence of the local viral variants, an animal trial was conducted with a re-isolated ASFV 

strain from Ida-Viru.  

In a nutshell, the ASFV strain from north-eastern Estonia was still highly virulent for young wild 

boar, but nevertheless, one animal recovered completely. In direct comparison with previous 

studies (Pietschmann et al., 2015, Tauscher et al., 2015, Blome et al., 2012, Gabriel et al., 

2011), genome loads seemed to be slightly lower and detectable antibody responses were 

observed more often. However, as only cq values but not exact genome copy numbers could 

be compared, it cannot be ruled out that the differences were only due to variability of PCR 
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machines and extraction methods. The course of infection, and the pathomorphological signs 

did not differ for the animal that succumbed to infection. The virological data suggest that at 

least one animal (#17) got infected later. This confirms that oral infection is error prone and 

needs a quite high dose. It was reported previously that for oral infection, virus titers >104 

HAU are usually necessary and that the ratio of viral titers needed for infection of a susceptible 

animal via the intramuscular/intravenous inoculation versus the oral/nasal route is 1 : 140.000 

with less than 1 HAU for the parenteral route (McVicar, 1984). The high dose needed for oral 

infection, and the moderate contagiosity of ASF without blood contact could be part of the 

explanation why the epidemic in eastern Europe spreads rather slowly. 

The survival of one animal gave us the opportunity to study the long-term fate of recovered 

animals and their potential of transmitting the virus on a limited scale. So far, solid data are 

missing regarding this issue and are needed to estimate the long-term effects of ASF in the 

wild boar population. It was suggested that survivors will become virus carriers (Sanchez-

Vizcaino et al., 2012), and thus contribute to the long-term persistence of ASF in a region. At 

least under our experimental conditions, the single survivor was able to eliminate the virus, 

and it did not transmit to sentinels, even under conditions with slight hierarchical fights upon 

introduction of the new animals. Consequently, a carrier state is not inescapably for all 

surviving animals.  

Hence, we did not find a clear explanation for the different disease dynamics in north-eastern 

Estonia. Additional data on viral sequences, viral behavior upon animal passaging and 

epidemiological drivers are needed. 
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Table 1: Disease course, viral genome and antibody detection upon oronasal (o.n.) inoculation of ten wild boar with an ASFV strain from north-

eastern Estonia (ASFV EE). The sentinel animals were commingled with the surviving animal #19 from 50 to 96 days post inoculation (dpi). Genome 

detection in organs is presented as cycle quantification value (cq). 
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Abstract 

African swine fever (ASF) was introduced into the Eastern European Union in 2014 and led to 

considerable mortality among wild boar. In contrast, unexpected high antibody prevalence 

was reported in hunted wild boar in north-eastern Estonia. One of the causative virus strains 

was recently characterized. While it still showed rather high virulence in the majority of 

experimentally infected animals, one animal survived and recovered completely. Here, we 

report on the follow-up characterization of the isolate obtained from the survivor in the acute 

phase of infection. As a first step, three in vivo experiments were performed with different 

types of pigs: twelve minipigs (trial A), five domestic pigs (trial B), and five wild boar (trial C) 

were inoculated. 75% of the minipigs and all domestic pigs recovered after an acute course of 

disease. However, all wild boar succumbed to infection within 17 days. Representative 

samples were sequenced using NGS-technologies, and whole-genomes were compared to 

ASFV “Georgia 2007/1”. The alignments indicated a deletion of 14560 base pairs at the 5’ end, 

and genome reorganization by duplication. The characteristic deletion was confirmed in all 

trial samples and local field samples. In conclusion, an ASFV variant was found in Estonia that 

showed reduced virulence. 

 

Keywords: African swine fever virus, Estonia, attenuation, in vivo characterization, next-

generation sequencing 
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1. Introduction 

In 2014, African swine fever virus (ASFV) was introduced into Poland and the Baltic European 

Union (EU) member states Latvia, Lithuania and Estonia. Since then, slow but constant spread 

of this notifiable disease has been observed 1. With regard to outbreak characteristics, 

detection of fallen animals and virus prevails. However, in some regions, a different pattern in 

cause of the epidemic has been observed 1. In the follow-up of those observations, we recently 

reported an animal experiment that aimed at the biological characterization of an ASFV strain 

from north-eastern Estonia, where an unexpectedly high ASFV-antibody prevalence was found 

in hunted healthy animals 2. In this previous animal trial, ten wild boar were inoculated with 

the above mentioned ASFV strain to evaluate if the clinical course of the disease differed from 

infections with the so far known highly virulent Caucasian strains 3,4,5,6. In brief, nine out of ten 

animals succumbed to the infection showing typical lesions. The surviving wild boar recovered 

completely and was slaughtered in good health status 96 days post infection (dpi). Comingling 

of the survivor with three sentinel wild boar from 50 dpi did not lead to disease transmission. 

Taken together, the virus showed still considerable virulence and lethality, but one animal 

recovered and could represent one of the antibody positive wild boar found in the hunting 

bags of north-eastern Estonia. These results left us with several unanswered questions, 

including: Is the survival of one animal within the normal range of clinical courses of a highly 

virulent ASFV strain or is it an indication for true attenuation? Could a further animal passage 

lead to a more attenuated phenotype? If there is attenuation, what is the genetic basis? 

To address these questions and to further characterize the virus isolated from the surviving 

boar, three additional animal trials were performed to characterize the virus with different pig 

types. Since the survival rates and clinical courses were rather variable in the different trials, 

representative samples from each trial were full-genome sequenced using next-generation 

sequencing technologies and the resulting sequences were compared to ASFV “Georgia 

2007/1” (FR682468.1). In order to confirm the circulation of the variant strain, Estonian field 

samples were screened for the mentioned mutation by real-time quantitative polymerase 

chain reaction (qPCR). 
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2. Results  

2.1 Clinical course and pathomorphological findings 

In all trials, the animals showed unspecific clinical signs during the first 10 days after oronasal 

inoculation.  

In trial A (12 minipigs), all animals developed transient high fever (up to 41°C on day 7 pi). The 

minipigs also showed transient anorexia and lethargy. One minipig (#69) was found dead the 

day after blood sampling (8 dpi). Necropsy revealed a mild pericarditis and atelectasis in the 

left lung. Two animals (#72 and #67) had to be euthanized due to severe respiratory distress 

(8 dpi and 15 dpi). Animal #72 showed lung edema and several hemorrhagic lymph nodes in 

necropsy. The other nine minipigs recovered completely and were slaughtered in good health 

at 36 dpi. The post-mortem examination revealed that two of the recovered minipig sows (#61 

and #70) were pregnant around the 45th day of gestation according to the size of the fetuses. 

The fetuses did not show any pathological findings indicative for ASF or any other disease 

while one of the pregnant sows (#61) presented a pericarditis. None of the other recovered 

pigs did have any visible lesions.  

In trial B (5 domestic pigs), four out of five pigs started showing mild clinical signs such as 

lethargy, reduced feed intake and increased body temperature 4 to 6 dpi. Animal #98 reacted 

slightly later on day 10 pi and started with unspecific clinical signs like the other pigs. The 

second week after inoculation, the animals showed more severe clinical signs with transient 

high fever (see Fig. 1), reduced liveliness and responsiveness, and transient anorexia. At 17 

dpi, animal #97 showed short-term (less than 24 hours) cyanosis on the acra (ears, mouth and 

tail). After this acute phase, all pigs recovered. From 19 dpi on, no clinical signs were observed, 

apart from animal #98 with a single body temperature peak at 29 dpi. Apart from one pig (#99) 

with fibrinous pericarditis, the post-mortem examination did not reveal any pathological 

findings indicative for an ASFV infection. 

In trial C (5 wild boar), the animals developed unspecific clinical signs such as reduced feed 

intake and lethargy at 3-4 dpi. One female adult wild boar (#1) was found dead the morning 

after blood sampling (8 dpi). The next day, the second adult female (#3) was found dead and 

the male adult wild boar (#8) was euthanized due to severe respiratory distress. None of the 

animals had been near the humane endpoint the previous evening preceding death or 

euthanasia. The piglets survived until day 16 dpi (#81) and 17 dpi (#82) when they were 

euthanized reaching the humane endpoint. Necropsy revealed typical findings for an acute 
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ASFV infection such as lung edema, hemorrhagic lymph nodes and petechiae in the renal 

cortex.  

 

 

Fig. 1: Trial B; body temperature and qPCR results in whole blood; grey bars indicate the 

mean cq-values at the sampling days; mean rectal body temperature is graphed as line and 

scatter plot; medium-dashed line represents the fever-cutoff (40°C); in case of “dpi a.m. / 

p.m.” rectal temperature was assessed twice a day, upper standard deviation is shown in error 

bars 

 

2.2 Detection of virus and viral genome 

In trial A, the first animals started yielding positive qPCR results in whole blood samples from 

7 dpi on. All animals were positive for ASFV genome in qPCR at day 15 pi and the recovering 

minipigs showed stable genome loads until the end of the trial (see Fig. 2). In organ pools of 

the fetuses of two pregnant sows (#61 and #70), no ASFV genome was detectable by qPCR 

while the sows showed positive qPCR results in whole blood on the day of necropsy. Regarding 

trial B: body temperature and qPCR-results in whole blood 
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the tissue samples, minipigs that died during the acute phase of the disease yielded much 

higher viral genome loads in most organs compared to the recovered minipigs (see 

supplementary Tab 1). The oropharyngeal and fecal swabs showed single weakly (quantitation 

cycle (cq) value >35) or moderately (cq value >22) positive qPCR results during the acute phase 

of the disease. 

Results of the hemadsorption test of the sera were corresponding to the samples with 

detectable virus genome at day 7 and 15 pi. At the day of necropsy, serum samples of the 

animals that died during the acute phase reacted positive in the hemadsorption test, while 

the sera of the recovered pigs were negative. The tissue samples of the recovered minipigs 

showed positive results in lungs or tonsils while all other organs were negative for virus 

isolation (see supplementary Tab. 2). 

In trial B, on 3 dpi two animals started with positive results in whole blood tested in qPCR. On 

7 dpi, all pigs but animal #98 were tested positive in whole blood by qPCR and from 10 dpi on, 

ASFV genome was detectable in the whole blood of all pigs until the end of the trial (see Fig. 

1). At the day of necropsy (36 dpi), samples of spleen and tonsils of all pigs except animal #100 

showed weak positive results in qPCR. The tissue samples of the different lymph nodes and 

the salivary gland showed sporadic weak positive qPCR results in different pigs, whereas no 

ASFV genome was detectable in lung tissues (see supplementary Tab. 1). The oropharyngeal 

and fecal swabs showed single weakly (cq values > 35) positive qPCR results during the acute 

phase of the disease (see supplementary Fig. 1a+b). 

The hemadsorption test of the serum from 3 dpi reflects these results with one clearly positive 

result from animal #99 and a doubtful result of animal #97. On 7 dpi, all pigs with positive 

qPCR results in whole blood showed clearly positive hemadsorption phenomena in serum 

samples. The serum of animals #97 and #100 reacted positive in the hemadsorption test while 

the serum of animal #60 was negative. From animals #98 and #99 no serum samples were 

taken due to their critical health status during the acute phase of the disease. Two weeks after 

the inoculation, serum of all pigs reacted positive in the hemadsorption test. Subsequently, at 

21 dpi the serum of two pigs (#99, #100) showed negative results in the hemadsorption test. 

At 28 dpi, again animal #100 was the only animal reacting positive for hemadsorption using 

serum, and only three tissue samples were positive for virus isolation (see supplementary Tab. 

2).  
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In trial C, on 7 dpi all wild boar were highly positive for viral genome in qPCR reaching a mean 

cq value of 17 in whole blood. The tissue samples of the three adult wild boar were all tested 

positive in qPCR. The tissue samples of the two piglets showed overall lower genome loads 

and some organs of animal #81 were tested negative for viral genome in the qPCR assays (see 

supplementary Tab. 1). Homogenized spleen samples showed high titers (104.5-105.5 

hemadsorbing units (HAU)/mL) for the three adult wild boar. The two piglets yielded lower 

titers around 102-103 HAU/mL in their spleen suspensions. The same distribution was seen in 

the hemadsorption assay of lung and tonsil tissue: titers from 103.25 -104.25 HAU/mL in the three 

adult wild boar while the same tissues were negative for hemadsorption in the two piglets 

(see supplementary Tab. 2). The blood samples from the day of necropsy showed high titers 

from 105.25 HAU/mL (#1) to 107.25 HAU/mL (#8). 

 

 

 

Fig. 2: trial A; qPCR results whole blood cq values graphed as line and scatter plot 
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2.3 Detection of antibodies against ASFV 

In trial A, 15 dpi four minipigs were tested positive for antibodies against ASFV and at 21 dpi 

all but one of the recovered minipigs showed positive enzyme-linked immunosorbent assay 

(ELISA) results. At the necropsy on the end of the trial, all nine minipigs that survived the acute 

phase of the disease were still positive for ASFV-specific antibodies (see Fig 3). 

The pigs of trial B showed the first positive ELISA results on 10 dpi and two weeks after the 

inoculation four out of five pigs were tested clearly positive for antibodies against ASFV. From 

21 dpi until the end of the trial at 36 dpi, all animals were tested positive for antibodies (Fig. 

3). 

The wild boar in trial C showed negative ELISA results in samples from 7 dpi. The sera taken 

from the two piglets at the necropsy showed positive results (see Fig. 3), while the sera from 

the adult wild boar were still negative for antibodies at their endpoints. 
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Fig. 3 antibody response trial A-C ELISA results in [%] inhibition graphed as line and scatter 

plots 
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2.4 Next-generation sequencing (NGS) 

For four out of five samples (inocula for animal trials and trial samples), the full ASFV-genome 

sequence could be assembled. The genomes comprise 182,446 base pairs (bp) with an overall 

sequence identity of 99.99 % among themselves. In comparison to the reference genome 

ASFV “Georgia 2007/1” (FR682468.1), which comprises 189,344 bp, the first 14,560 bp at the 

5’ end are missing. This deletion results in the loss of 26 complete genes including I83L, I60L 

and KP177R as well as members of the MGF110 (1L-14L), MGF360 (1L-3L), and the partial 

MGF110 13L gene. Furthermore, 7271 bp from the 3’ end were found to be inversely bound 

at the 5’ end leading to the duplication of 10 complete genes including members of the 

MGF360 (18R and 21R) and L11L as well as one partial gene I10L (Fig. 4). In comparison to 

FR682468.1, the sequence identity of the core genome of ~175 kB amounts to 99.9 %, thereby 

not considering the very different 5’ end and a 344 bp longer tail at the 3’-end. 
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Fig. 4: deletion and reorganization site overview of the ASFV Estonia reorganization sites and comparison with ASFV Georgia07 and the natural 

attenuated ASFV OURT 88/3 
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2.5 Confirmation of deletion site and field sample screening 

Representative samples from all animal experiments including the initial wild boar trial 2 and 

the original Estonian field sample were examined by tailored PCR and Sanger sequencing. The 

deletion site was confirmed in all samples (see supplementary Fig. 2). 

Sixty-one Estonian field samples from 2014 were screened for the characteristic deletion site 

and three samples were tested positive for the mutation by qPCR. All three samples were from 

Ida-Viru county in north-eastern Estonia and one of them was the original field sample used 

in the first trial (see map in Fig. 5). The other 58 samples were tested positive for the ASFV 

wild-type sequence. 

 

 

Fig. 5: map of Estonia including the results of the field sample screening  

The screening included 61 original field samples from 2014 provided by Estonian Veterinary 

and Food Laboratory. 
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3. Discussion  

Compared to what is so far known about the virulence of ASFV genotype II in both domestic 

pigs and European wild boar under experimental conditions 3-7 , the north-eastern Estonian 

strain re-isolated from a surviving animal during acute infection showed a clearly attenuated 

phenotype in trials A and B. After all pigs developed acute clinical disease, these trials ended 

with survival rates between 75% and 100% (see Fig. 6 and Fig. 7).  

The deaths of three minipigs in trial A were not clearly linked to ASFV infection and could as 

well be consequence of their high stress sensitivity and the invasive sampling procedures 

during the acute phase of the disease. The use of minipigs with potbelly pig ancestry for ASF 

trials with blood sampling has to be reassessed for animal welfare reasons. In our experience, 

stress responses were much less pronounced in domestic pigs and even in (tame) wild boar. 

In both trials, all recovering animals showed seroconversion that was detectable by all routine 

diagnostic methods. The first antibody responses were detected at day 10 pi (trial B) and 15 

dpi (trial A), respectively. This matches the results of previous studies2,7. However, there are 

not many reports about the time point of seroconversion of ASFV genotype II infected animals 

because up to now in most trials the animals died before the development of an antibody 

response. The fecal and oral shedding of ASFV genome was quite low compared to the genome 

load in blood samples and limited to the acute phase of the disease. This agrees with results 

of previous experiments 3,7. With regard to gastrointestinal signs in general, only slight 

obstipation was observed in the febrile phase of infection, and macroscopically no blood 

admixture was seen. Based on the observed detection frequency and the low viral genome 

load, the suitability of fecal and oral swab samples for reliable and timely detection of the 

disease has to be questioned. The qPCR-negative results of the minipig fetuses indicate that 

transplacental transmission did not occur over the whole study period. Given the estimated 

stage of gestation (roughly 45 days), the mothers were inoculated in very early pregnancy and 

did not transmit the virus over 36 days of infection. This is in line with unpublished field 

observations but not with a case report from Nigeria 8. However, under our experimental 

conditions, all fetuses remained negative and did not show any negative effects related to the 

infection of the mothers. 

The outcome of trial C is in contrast to the other trials. However, it reflects more or less the 

disease course in the initial wild boar trial 2 in which all but one wild boar succumbed to the 

infection. This could lead to the assumption that wild boar are more susceptible to infection 
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with this ASFV strain than domestic pig breeds which is not in accordance with the literature 

5 and is also only partially in line with the field observations that showed several apparently 

healthy, but sero-positive wild boar in the hunting bag of north-eastern Estonia. The slightly 

higher inoculation dose in trial C is not a sufficient explanation for the higher mortality either, 

since previous studies 5 did not reveal a measurable dose dependency. However, the piglets 

survived at least until dpi 16 and 17. Therefore, it could be discussed if they are more resistant 

compared to the adult wild boar, which is inconsistent with former studies on ASFV Armenia 

9 but fits with the observation that the detection of antibodies was more likely in the young 

age class 1. In general, a negative influence of the necessary immobilization of the adult 

animals during the acute phase of the disease has to be taken in consideration. However, this 

had no influence in previous trials but harmonized experiments targeting the direct 

comparison of the clinical course together with the assessment of immunological parameters 

in domestic pigs and wild boar, infected with the variant strain, would be required to finally 

clarify this issue. 

The attenuated disease course shown especially in trials A and B can be associated with the 

results of the full-genome sequencing.  

Among the 26 genes missing from the viral genome, thirteen belong to the multigene family 

MGF110 (1L-14L) 10,11 and three to the MGF360 (1L-3L). While the specific functions of these 

genes are unknown 12 , it was shown that members of the MGF110 carry C-Terminal KDEL 

endoplasmic reticulum retention motifs and might be involved in preparing the ER for viral 

morphogenesis 13. Although the respective MGF360 1L-3L genes are not characterized and 

their function is also unknown, other MGF360 members were found to be important for ASFV 

replication in ticks 14 , macrophages 15,16 as well as domestic pigs 17,18,19,20. 

Further deleted genes include MGF100 1R, L83L, L60L and KP177R. While for the first three, 

no function is known 12, the KP177R genes encodes for the early membrane protein P22 21. 

The mechanism by which this major genome re-organisation occurred remains unclear. 

Nonetheless, the 5’ end deletion as well as the duplication and inverse binding of ~7kb from 

the 3’ to the 5’ end could be explained by a false separation of head-to-tail concatamers during 

viral DNA replication 22.  

Whether the duplication of ten genes including DP71L and DP96R, two genes which were 

previously reported as important for virulence 12,23,24 and the uncharacterised genes MGF360 
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18R, MGF360 21R, L11L and DP60R as well as the partial duplication of the I10L gene, which 

codes for a P22 homologue, has an effect on virulence remains to be investigated.  

A direct comparison of the ASFV Estonia strain with the naturally attenuated ASFV strain OURT 

88/3 reveals some similarities (see figure 4) but also major differences. While both strains lack 

members of the MGF110 (4L-7L and 12-13L) 25,26, the major deletions are at different 

positions. While the main changes of the Estonian strain are at the true 5’-end of the coding 

sequence, the major deletion of OURT88/3 is further downstream concerning e.g. members 

of the MGFs 306 and 505. Yet, one can speculate that the shared deletions are already part of 

the attenuation process.  

It could be hypothesized that large-scale mutations could occur more often but an ASFV strain 

that has an attenuated phenotype with lower mortality rates in swine, in the absence of a 

reservoir vector, will probably vanish due to the animals clearing the virus before it is 

transmitted via bloody excretions or the dead animal’s carcass. The low case number and the 

limited geographical distribution of the sub-genotype in 2014 can substantiate this 

hypothesis: all three samples positive for the deletion site are located in Ida-Viru county, 

around 200 kilometers from the outbreak in southern Estonia (see map in Fig. 5). At the same 

time, two of the wild boar infected with the sub-genotype were tested positive for ASFV-

specific antibodies, a fact that fully supports the theory of an attenuated phenotype.  

The question whether the variant strain occurred in the local wild boar population by 

spontaneous mutation or was introduced from somewhere else, remains unanswered and 

needs further investigation.  

However, the presence of attenuated phenotypes, leads to new challenges regarding 

surveillance of wild boar population as well as domestic pig farms. The observed 

inconspicuous clinical signs and low mortality of the animals in the first two trials could easily 

go unnoticed under common pig farm conditions. Thus, farmers and veterinarians should be 

sensitized to suspect ASF not only if severe signs are observed. The occurrence of almost silent 

infections with mild and unspecific signs carries the risk of undetected disease spread and 

surveillance should be adapted accordingly.  In this context, it might be reasonable to sample 

not only wild boar carcasses in ASF-free areas, but also to test hunted wild boar. Otherwise 

the occurrence of such an attenuated ASFV-subtype could be missed. 
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Fig. 6: survival rates trial A-C survival rates of the inoculated animals in [%] graphed as line 

and scatter plot 
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Fig. 7: overview of antibody response, disease course and viremia data between sampling days has been assumed

Group Animal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

WB 11 ~ w w w w w w U

WB 12 ~ w w w w w U

WB 13 ~ w w w w w U

WB 14 ~ w w w w w w w U

WB 15 ~ w w w w w w U

WB 16 ~ w w w w U

WB 17  ~ w w w w w w U

WB 18  ~ w w w U

WB 19 ~ w w w w w w w **

WB 20 ~ w w w U

MP 61  ~ w *

MP 62 ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

MP 63  ~ w *

MP 64 ~ w w w w w w w w w *

MP 65 ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

MP 66 ~ w w w w w w w w w w w w w w w w w w w w w w w w *

MP 67  ~ U

MP 68 ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

MP 69 ~ w U

MP 70 ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

MP 71 ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

MP 72 ~ w U

DP 60  ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

DP 97 ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

DP 98  ~ w w w w w w w w w w w w w w w w w w w w w w w w w w *

DP 99 ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

DP 100  ~ w w w w w w w w w w w w w w w w w w w w w w w w w w w w w *

WB 1 ~ w U

WB 3 ~ w w U

WB 8 ~ w w U

WB 81 ~ w w w w w w w w w U

WB 82 ~ w w w w w w w w w w U

Legend: 

DP domestic pig  inoculation positive in HAT in serum/blood U animal euthanized/succumbed to the disease

WB wild boar ~ tentative day of infection doubtful ELISA result * euthanized in good health status

MP minipigs w qPCR positive in blood positive ELISA result ** euthanized 96 dpi in good health status

sampling day positive ELISA result, positive in HAT

doubtful ELISA result, positive in HAT

wild boar I 

(Nurmoja 

et al. 2017)

minipigs 

(trial A)

domestic 

pigs     

(trial B)

wild boar Il 

(trial C)
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4. Materials and Methods 

4.1 Experimental design 

The study comprised three animal experiments (trials A, B and C) that were carried out to 

collect suitable reference materials and to assess virulence and pathogenesis characteristics 

of genotype II ASFV from Estonia upon animal passaging. To this end, an ASFV-positive blood 

suspension was prepared that contained ethylenediaminetetraacetic acid (EDTA)-treated 

blood samples from a wild boar with acute-transient ASF 2 diluted in phosphate-buffered 

saline (PBS) to a final titer of app. 105 HAU per mL. The suspension was used to inoculate the 

pigs in trial A and B.  

Trial A comprised 12 sub-adult minipigs of both sexes from the breeding unit at the Friedrich-

Loeffler-Institut (FLI) aged approximately six months at the start of the trial. For the 

experiment, the animals were moved from the FLI quarantine stables into the high 

containment facilities (L3+) where they were kept together in one pen. All animals were 

individually ear-tagged with numbers #61 to #72. Over the course of the trial, the animals 

were fed a commercial pig food with hay cob supplement and had access to water ad libitum. 

After an acclimatization phase, the minipigs were oronasally inoculated with 2 mL of the 

above-mentioned blood suspension using a single-use syringe without needle. Clinical 

parameters of all animals were assessed daily based on a harmonized scoring system as 

previously described 5. In brief, parameters like temperature (assessed only on sampling days), 

anorexia, recumbency, skin alterations (cyanosis, hemorrhages, necrosis), joint lesions, 

breathing, ocular discharge, digestion, and neurological disorders were assigned points 

according to the severity of findings. The sum of the points was recorded as the clinical score 

(CS) that was also used to define humane endpoints. Over the course of the trial, levels of 

viremia, virus distribution, virus shedding, and antibody responses were assessed. For this 

purpose, blood samples were collected along with oropharyngeal and fecal swabs at days 0, 

7, 15, 21 dpi and at the end of the trial (36 dpi). Animals reaching the humane endpoint or 

that were suffering unacceptably without reaching the endpoint were euthanized through 

intracardial injection of embutramide (T61, Merck) after deep sedation with 

tiletamine/zolazepam (Zoletil®, Virbac). Necropsy was performed on all animals, and at the 

same time, tissue samples (lymph nodes, spleen, tonsil, salivary gland and lung), blood (EDTA, 

serum) and swab samples were collected for reference purposes. 
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Trial B comprised five commercial domestic pigs aged approximately six months at the start 

of the trial. All animals were individually ear-tagged upon arrival with numbers #60 and #97 

to #100. After an acclimatization phase under the husbandry conditions detailed above, the 

animals were oronasally inoculated with 2 mL of the above-mentioned blood suspension. As 

in trial A, clinical monitoring took place on a daily basis, and levels of viremia, virus distribution, 

virus shedding, and antibody responses were assessed. 

For this purpose, blood samples were collected along with oropharyngeal and fecal swabs at 

0, 3, 7, 10, 14, 21, 28 dpi and at the end of the trial at 36 dpi. All animals were slaughtered 36 

dpi (exsanguination after electro-stunning) and necropsy was performed. Again, tissue 

samples (lymph nodes, spleen, tonsil, salivary gland and lung), blood (EDTA, serum) and swab 

samples were collected for reference purposes. 

Trial C comprised five wild boar from the breeding unit at the FLI of different sexes and ages 

(three adult wild boar around two years old and two piglets app. 6 months old). The wild boar 

were immobilized with an intramuscular injection of tiletamine/zolazepam (Zoletil®, Virbac) 

and moved to the high-containment facilities. They were individually eartagged (#1, #3, #8, 

#81, and #82) and oronasally infected with 2 mL blood suspension (titer of app. 106.5 HAU/ mL) 

from trial B (a mixture of blood samples from different pigs). 

As in trials A and B, clinical monitoring took place on a daily basis, apart from the rectal body 

temperature assessment, due to working safety conditions. Levels of viremia, virus shedding, 

and antibody responses were assessed. For this purpose, blood samples were collected along 

with oropharyngeal and fecal swabs at day 0 and day 7 pi. Since it was necessary to immobilize 

the wild boar to take blood samples, the sampling time points were reduced to a minimum. 

Animals reaching the humane endpoint or that were suffering unacceptably without reaching 

the endpoint were euthanized through exsanguination after deep sedation with 

tiletamine/zolazepam (Zoletil®, Virbac). Necropsy was performed on all animals and tissue 

samples (lymph nodes, spleen, tonsil, salivary gland and lung) and blood (EDTA, serum) were 

collected for reference purposes. 

In all trial parts, all applicable animal welfare regulations, including EU Directive 2010/63/EC 

and institutional guidelines, were taken into consideration. The animal experiments were 

approved by the competent authority (Landesamt für Landwirtschaft, Lebensmittelsicherheit 

und Fischerei (LALLF) Mecklenburg-Vorpommern) under reference number LALLF 7221.3-2-

023/15. 
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4.2 Cells 

Blood for the preparation of Peripheral Blood Mononuclear Cells (PBMC)-derived 

macrophages was collected from healthy domestic donor pigs that are routinely kept at the 

FLI. In brief, PBMCs were obtained from EDTA-treated blood using Pancoll Animal density 

gradient medium (PAN Biotech). PBMCs were grown in RPMI-1640 cell culture medium with 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 10 % fetal calf serum (FCS) at 

37 °C in a humidified atmosphere containing 5 % CO2. The medium was supplied with 

amphotericin B, streptomycin and penicillin to avoid bacterial and fungal growth. To facilitate 

maturation of macrophages, granulocyte macrophage colony-stimulating factor (GM-CSF) was 

added to the cell culture medium at 2 ng/mL. 

 

4.3 Laboratory investigations 

4.3.1 Processing of samples 

Oropharyngeal swabs were soaked in 1 mL of medium (EMEM without addition of FCS), 

vortexed for app. 15 seconds, incubated for one hour at room temperature, and decanted in 

microcentrifuge tubes. Serum samples, which were obtained from native blood by 

centrifugation at 2500 x g for 20 minutes at 20°C, were aliquoted and stored at -80 °C until 

further use. Tissue samples of tonsil, spleen, salivary gland, lung, and lymph nodes were 

collected at necropsy and stored at -80 °C. For qPCR and virus isolation (hemadsorption tests), 

tissue samples were homogenized with a metal bead in 1 mL phosphate-buffered saline (PBS) 

using a TissueLyser II (Qiagen). 

 

4.3.2 Virus detection 

For qPCR, viral nucleic acid was extracted using the QIAamp® RNA Viral Mini Kit (Qiagen) or 

the NucleoMagVet-Kit (Macherey-Nagel) and the KingFisher® extraction platform (Thermo 

Scientific). Both extraction methods were slightly modified through the addition of an internal 

control DNA. The nucleic acid extraction was performed with 75 µl of whole blood and 150 µl 

of organ homogenate and swab material. Subsequently, qPCR was performed according to the 

protocol published by King et al. 29 with slight modifications. For confirmation, the virotype 

ASFV PCR Kit (Qiagen) was employed according to the manufacturer’s instructions. Results of 

both qPCRs were recorded as quantification cycle (cq) values. 
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To detect ASFV in serum and tissue samples, a hemadsorption test (HAT) was carried out using 

PBMC-derived macrophages according to slightly modified standard procedures 30. In brief, 

isolated PBMCs were seeded into a 96-well microplate at a density of 1.9 x 106 cells/mL, 100 

μL per well. After 16-24 hours, non-adherent cells were removed and cell culture medium 

containing GM-CSF was replenished. The culture was then incubated for 24 to 48 hours to 

allow initial maturation of macrophages. Subsequently, 20 µl of serum samples and 30 µl of 

organ homogenate were added to each well. Tests were performed in duplicates. When using 

organ homogenates, cells were washed after 2 hours adsorption time using lukewarm PBS, 

whereas serum was left on the cells until the evaluation of the test. After 24 hours of 

incubation 20 µl of homologues 1 % erythrocyte suspension was added to each well. For 

readout, cultures were analyzed for hemadsorption phenomena over a period of two days. 

Doubtful results were confirmed by an additional passage. Virus titration was performed by 

endpoint titration of the diluted blood suspensions. In this case, the PBMC preparation was 

seeded into 96-well microplates, the test volume was 100 µl per dilution step and 20 µl of a 1 

% homologous erythrocyte suspension was added. These samples were tested in 

quadruplicate. 

 

4.3.3 Antibody detection 

For the detection of antibodies against African swine fever virus, two commercial ELISA kits 

were carried out following the manufacturer’s instructions (Ingezim PPA COMPAC, Ingenasa; 

ID SCREEN African swine fever virus INDIRECT, IDvet). The Ingezim PPA ELISA detects 

antibodies directed against p72 in a competitive format. The ID SCREEN is an indirect ELISA 

using antigens p32, p62 and p72. All serum samples were tested in duplicate.  

 

4.4 Full-genome sequencing 

4.4.1 Sample preparation 

The material for the full-genome sequencing was gained by salting-out of viral DNA 31 after 

propagation of the virus on PBMC-derived macrophages to avoid high loads of swine related 

DNA. Therefore, the protocol was slightly modified regarding a shortened incubation time (60 

minutes at 37°C) and the addition of RNase A (10 mg/ml) in the first step instead of proteinase 

K (10 mg/mL), which was added in the next step and incubated for 60 minutes at 56°C. 
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4.4.2 Sequencing 

For full genome sequences, 500 ng of input material were fragmented using Covaris M220 

Focused-ultrasonicator™ (Covaris), and ligated to suitable Illumina adapters (NEXTflex-96™ 

DNA Barcodes, BiooScientific) using a SPRI-TE library system (Beckman Coulter) with 

SPRIworks Fragment Library Cartridges II (for Roche FLX DNA sequencer; Beckman Coulter). 

Size exclusion was performed manually with AMPure XP magnetic beads in two steps for a 

final size distribution of 500 - 600 bp long fragments. After quality control of the libraries on a 

Bioanalyzer 2100 (Agilent Technologies), the libraries were quantified using using Kapa Library 

Quantification Kit for Illumina platforms (Kapa Biosystems), pooled and sequenced on a MiSeq 

instrument (Illumina) with MiSeq reagent Kit v3 in 2x300bp PE mode (Illumina). For data 

analysis, the reads were mapped against the nearest reference genome (Newbler v3.0, 

Roche). All mapped reads were extracted and de novo assembled (Newbler v3.0, Roche). Since 

this approach delivered three or more contigs, the software ContigGraph (unpublished) was 

used to determine the connections of single contigs for manual assembly of the full genome. 

Afterwards the whole data set was mapped against the full genome (Newbler v3.0, Roche).  

 

4.4.3 Sanger sequencing, PCR and qPCR screening  

All nucleic acids for PCR and qPCR were extracted using the High Pure DNA Template 

Preparation Kit (Roche) or the QIAamp® RNA Viral Mini Kit (Qiagen) according to the 

manufacturer’s instructions. For classical PCR, Phusion Green Hot Start II High-Fidelity PCR 

Mastermix (Thermo-Scientific) and for qPCR, QuantiTect Multiplex PCR NoROX Kit (Qiagen), 

were used according to the manufacturer’s instructions.  

For classical PCR and sanger sequencing, primers were designed to amplify either the 

reorganised or the wild type sequence by placing them overlapping the reorganisation site.  

For qPCR screening, tailored primers were designed amplifying short DNA-fragments of the 

reorganisation site with an additional Taqman-probe inside the target fragments. The tested 

field samples were provided by the Estonian Veterinary and Food Laboratory. The panel of 61 

samples contained blood, spleen and bone marrow specimens from Estonian wild boar 

collected during the outbreak situation in 2014.  

All primers and probes were designed using Geneious v. 10.0.9 (supplementary table). 
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All data were recorded and evaluated using Microsoft Excel 2010 (Microsoft Deutschland 

GmbH) and SigmaPlot for Windows version 11.0 (Systat Software, Inc.) 

 

4.4.4Data availability 

All sequence data was uploaded to the European Nucleotide Archive (EMBL-EBI) under the 

study accession number PRJEB24381. 
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Supplementary figures and tables 

 

supplementary Fig. 1a: Trial B; qPCR results of fecal swabs cq values graphed as line and 

scatter plot 

 

supplementary Fig. 1b: Trial B; qPCR results of oral swabs cq values graphed as line and 

scatter plot 
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trial B: qPCR results oral swabs 
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supplementary Fig. 2: PCR products of the screening for the deletion site. The amplicon 

length of the wildtype primers was 172bp and the amplicon length of the deletion site primers 

was 375bp. Representative trial samples of the trials were chosen and ran on one single gel 

exposed as a whole.   
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supplementary Tab. 1: qPCR results of tissue samples of trial A-C cq values detected in 

different tissue samples; higher and lower genome loads highlighted 

 

 

 

 

 

 

 

 

 

pig ID spleen tonsil lung salivary gland
mandibular 

lymph node
day of death

# 61 no cq no cq no cq no cq no cq dpi 36

# 62 no cq no cq 33 36 no cq dpi 36

# 63 36 no cq no cq no cq 45 dpi 36

# 64 no cq 44 no cq no cq no cq dpi 36

# 65 29 31 34 no cq no cq dpi 36

# 66 no cq 34 no cq no cq no cq dpi 36

# 67 23 25 27 26 26 dpi 15

# 68 no cq no cq no cq 35 45 dpi 36

# 69 25 26 28 33 28 dpi 8

# 70 37 33 no cq 37 no cq dpi 36

# 71 30 31 no cq 37 43 dpi 36

# 72 23 26 26 33 28 dpi 8

# 60 35 30 no cq no cq no cq dpi 36

# 97 44 36 no cq no cq no cq dpi 36

# 98 34 35 no cq 38 no cq dpi 36

# 99 36 43 no cq no cq 34 dpi 36

# 100 no cq no cq no cq no cq no cq dpi 36

# 1 21 29 24 25 26 dpi 8

# 3 18 24 27 29 25 dpi 9

# 8 17 25 18 29 25 dpi 9

# 81 35 40 34 no cq 33 dpi 16

# 82 31 30 27 36 29 dpi 17

trial A

trial B

trial C

  low genome load

  high genome load

  died during the first 20 dpi

  died during the first 10 dpi
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supplementary Tab. 2: virus isolation results of tissue samples pos + indicates weakly 

positive, pos ++ strongly positive virus isolation results; neg marks negative virus isolation 

results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pig ID spleen tonsil lung salivary gland
mandibular 

lymph node
day of death

# 61 pos ++ dpi 36

# 62 neg neg neg dpi 36

# 63 pos ++ neg dpi 36

# 64 neg neg dpi 36

# 65 neg pos ++ neg dpi 36

# 66 pos + pos ++ dpi 36

# 67 pos ++ pos ++ pos ++ neg dpi 15

# 68 pos ++ neg neg dpi 36

# 69 pos ++ pos ++ pos ++ pos ++ pos ++ dpi 8

# 70 pos ++ pos ++ neg dpi 36

# 71 pos + neg neg dpi 36

# 72 pos ++ neg pos + pos ++ pos ++ dpi 8

# 60 neg neg dpi 36

# 97 pos + neg dpi 36

# 98 pos ++ pos ++ neg dpi 36

# 99 neg neg neg dpi 36

# 100 dpi 36

# 1 pos ++ pos ++ pos ++ pos ++ pos ++ dpi 8

# 3 pos ++ pos ++ pos ++ pos ++ pos ++ dpi 9

# 8 pos ++ pos ++ pos ++ pos + pos ++ dpi 9

# 81 pos + neg neg neg pos + dpi 16

# 82 pos + neg neg neg pos + dpi 17

neg   negative result

  weakly positive result

  not done due to negative qPCR result   strongly positive result

trial A

trial B

trial C

  died during the first 20 dpi

  died during the first 10 dpi
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Summary 

This study targeted the assessment of a potential ASF virus (ASFV) carrier state of 30 pigs in 

total which were allowed to recover from infection with ASFV “Netherlands’86” prior 

exposure to six healthy sentinel pigs for more than two months. Throughout the whole trial, 

blood and swab samples were subjected to routine virological and serological investigations. 

At the end of the trial, necropsy of all animals was performed and viral persistence and 

distribution assessed. 

Upon infection, a wide range of clinical and pathomorphological signs were observed. After 

an initial acute phase in all experimentally inoculated pigs, 66.6% recovered completely and 

seroconverted. However, viral genome was detectable in blood samples for up to 91 days. 

Lethal outcomes were observed in 33.3% of the pigs with both acute and prolonged courses. 

No ASFV transmission occurred over the whole in-contact phase from survivors to sentinels. 

Similarly, infectious ASFV was not detected in any of the tissue samples from ASFV 

convalescent and in-contact pigs. These findings indicate that the suggested role of ASFV 

survivors is overestimated and has to be reconsidered thoroughly for future risk assessments. 

 

 

Keywords: African swine fever, long-term persistence, carrier state, transmission, virus 

shedding 
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1. Introduction 

African swine fever (ASF) is one of the important diseases of pigs worldwide and is notifiable 

to the World Organization for Animal Health (OIE). The causative agent is African swine fever 

virus (ASFV), a large double-stranded DNA virus of the genus Asfivirus within the Asfarviridae 

family (Takamatsu, 2011). It is the only known DNA virus which can be transmitted by 

arthropods (ARBO-virus = arthropod borne virus), in this case, soft ticks of the Ornithodoros 

genus (Penrith, 2009). 

The disease is endemically present in several countries of Sub-Saharan Africa and on Sardinia. 

Moreover, an unresolved disease cluster is found in Eastern Europe and the Caucasus region. 

Following the introduction of ASF into Georgia in 2007, the disease has spread into several 

Trans-Caucasian countries, the Russian Federation, Belarus, and Ukraine. In 2014, the disease 

reached the Eastern Borders of the European Union and as of today, the Baltic Member States, 

Czech Republic, and Poland are affected, especially in the wild boar population. Most recent 

outbreaks affected also Moldova and Romania (OIE WAHID interface, visited online 

11.11.2017).  

The causative virus strains in Eastern Europe and the Caucasus region are of genotype II and 

showed a high virulence for both domestic pigs and European wild boar under experimental 

conditions (Blome et al., 2012, Gabriel et al., 2011, Nurmoja et al., 2017, Pietschmann et al., 

2015, Gallardo et al., 2015a, Mur et al., 2014, Guinat et al., 2016). Given the high lethality in 

all age classes, disease dynamics could have shown self-limitation after introduction into the 

wild boar population. This behaviour was seen previously on Sardinia (Laddomada et al., 1994) 

and in Spain (Perez et al., 1998), but up to now not in the Baltic Member states. Explosive 

spread based on both the high tenacity and contagiosity could have been an alternative 

option. In the end, neither happened (Depner et al., 2016), and at present, numerous new 

cases are reported from a quite stable geographical region every week, an endemic cycle was 

apparently established within the affected wild boar populations, and further spread can be 

seen. The latter is evidenced by the most recent cases that were reported from Czech Republic 

(Animal Disease Notification System of the EU at https://ec.europa.eu/food/animals/animal-

diseases/not-system_en ,visited December 13th 2017). The affected region in Zlin county is 

about 500 km away from the next reported case in Ukraine and thus the disease jumped a 

long distance. 
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The factors leading to a long-term perpetuation of the disease and the overall dynamics are 

far from being understood. Amongst the factors that were discussed for the observed long-

term persistence of the virus in a region was a possible carrier status of recovered animals 

(Arias and Sánchez-Vizcaíno, 2008). In the past and also very recently, clinically recovered pigs 

were suggested to play a crucial role in disease persistence as silent carriers (Allaway et al., 

1995, Boinas et al., 2004, Sanchez-Vizcaino et al., 2012). In 2015, a possible transmission was 

shown from animals surviving infection with a low virulent ASFV strain (Gallardo et al., 2015b). 

However, reports targeting the assessment of an ASFV carrier status are very rare and often 

highly contradictory. A limited data corpus is mainly seen due to the fact that long-term 

experiments with surviving animals are expensive and difficult to perform. Nevertheless, we 

could show very recently that a wild boar surviving the infection with an Estonian ASFV strain 

did not transmit the virus to commingled sentinel pigs after clinical recovery, and was able to 

eliminate the virus (Nurmoja et al., 2017). However, also this report is still only anecdotal and 

does not allow reliable risk assessment. 

Therefore, in the presented study, long-term infection and the possible carrier status of 

recovered pigs was reassessed with a larger number of animals and for longer time frames. 

Due to the fact that a considerable number of recovered animals could not be expected from 

an infection with the Eastern European genotype II isolates, a moderately virulent ASFV isolate 

from the Netherlands (Netherlands’86) was used as a model virus. In the initial outbreak that 

occurred near The Hague in 1986, this ASFV strain caused 19% mortality within a farm over a 

period of 21 days (Terpstra and Wensvoort, 1986). This virus was already used for transmission 

and pathogenesis studies (de Carvalho Ferreira et al., 2013, de Carvalho Ferreira et al., 2012, 

de Carvalho Ferreira et al., 2014) and thus, important background data were available.  
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2. Methods 

2.1 Experimental design: 

The long-term animal trial consisted of two steps: at first, the experimental infection of pigs 

(potential „carrier“-pigs/ „c-pigs“) with moderately ASFV „Netherlands’86“ and secondly, the 

exposure of healthy pigs („sentinel“-pigs/ „s-pigs“) to the surviving c-pigs. In total, 36 mature 

cross-bred domestic pigs of about five to six month of age were employed, 30 served as c-pigs 

for initial inoculation and six as in-contact s-pigs which were commingled after about three 

month post infection (99 dpi). 

All animals were individually ear-tagged upon arrival in the facilities of the Friedrich-Loeffler-

Institut (FLI). All applicable animal welfare regulations, including EU Directive 2010/63/EC and 

institutional guidelines, were taken into consideration. The animal experiment was conducted 

in the high containment facilities of the FLI and was approved by the competent authority 

under reference number LALLF 7221.3 – 1 – 021/15.  

At the beginning, all c-pigs were divided into three groups of ten animals each which were 

kept in separate pens of one stable unit. Animals suffering from acute lameness during the 

acclimatization phase were treated with Metapyrin 500 mg/ml (Medistar, 

Arzneimittelvertrieb GmbH, Ascheberg, Germany) for three consecutive days.  

After acclimatization, each c-pig was oro-nasally inoculated with 2 ml cell culture supernatant 

containing 2 x 104 hemadsorption units (HAU) of ASFV “Netherlands’86”, kindly provided by 

W.L.A. Loeffen, Central Veterinary Institute (CVI), Virology Department, AB Lelystad, The 

Netherlands. Prior to infection, the absence of ASFV and related antibodies was confirmed. 

Over the course of the trial, rectal body temperatures and clinical signs were recorded daily. 

Fever was defined as a body temperature ≥ 40.0°C for at least two consecutive days. The 

evaluation of clinical signs was based on the adapted scoring system by Mittelholzer et al. 

(2000) comprising liveliness, bearing, breathing, gait, skin, eyes, faeces and feed intake as vital 

parameters (reaching from 0 (asymptomatic) to 3 points each (severe)). The sum of score 

points was documented as clinical score (CS). End points were defined as a CS ≥ 14 or in cases 

of unjustifiable sufferings according to assessment by the responsible veterinarian. For 

euthanasia  embutramide (T61, Merck) was injected intracardial after deep anaesthesia with 

tiletamine/zolazepam (Zoletil®, Virbac) and Xylazin (Rompun® 2% Bayer HealthCare, 

Leverkusen, Germany). 
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In order to assess levels of viremia, virus shedding and immune responses, blood samples 

(EDTA blood and sera) were taken from the jugular vein prior to infection and at days 3, 7, 10, 

14, 20, 29, 42, 48, 63 and 91 post infection (dpi). Along with that, swab samples were collected 

comprising fecal and two kinds of oral cotton swabs (common saliva swabs routinely used for 

superficial oral application and in addition, cotton swabs („salivettes“) which were sampled 

from the deeper oropharynx. From 105 to 126 dpi, swabs were taken on a weekly base. 

At 99 dpi, the surviving c-pigs (19) were remixed (to receive equal distribution) and six s-pigs 

were commingled (two per group) which were also shown to be free of ASFV and related 

antibodies prior to exposure. Evaluation of clinical parameters and sample collections were 

conducted similarly until 28 days upon exposure, at 105, 112, 119 and 126 dpi. Afterwards, 

experimental measures focused on clinical observations and pathomorphological 

investigations when necessary. 

The animal trial ended at day 164/ 165 post infection of the c-pigs. The remaining pigs where 

slaughtered (electro-stunning and exsanguination). 

Necropsy was performed on all animals. Thereby, the following tissue samples were collected: 

tonsil, salivary gland, spleen, lung and the mandibular lymph node. From clinical convalescent 

c-pigs and from all s-pigs additional lymph nodes were sampled: pulmonary, inguinal, jejunal, 

colical, gastrohepatic, renal, parotideal and popliteal. Further samples comprised the 

submandibular lymph node and the ovary in several cases. In addition, spleen samples from 

eleven fetuses were gathered from one sow (s-pig) which was unexpectedly found pregnant 

during necropsy. 

 

2.2 Cells and Viruses 

Primary macrophages derived from peripheral blood mononuclear cells (PBMCs) were used 

for virological and serological issues. For generation, EDTA-blood obtained from donor pigs 

was subjected to density gradient centrifugation using Pancoll animal, density 1.077 g/ml 

(PAN-Biotech GmbH, Aidenbach, Germany) and buffered ammonium chloride solution (155 

mM NH4Cl, 10 mM KHCO3, 1 mM EDTA/pH 7.4) for lysis of remaining erythrocytes. Cells were 

cultured in Ham's F12 / IMDM (1:1) cell culture media including 10% fetal calve serum (FCS) 

as well as antibiotics/ antimycotics (Anti-Anti, Amphotericin B) at 37°C in a humidified 

atmosphere containing 5% CO2. In order to facilitate maturation of macrophages GM-CSF 
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(granulocyte macrophage colony-stimulating factor, Biomol, Hamburg, Germany) was added 

at 2 ng/ml. 

The used ASFV strain “Netherlands´86” could be assigned to genotype I and was originally 

isolated during an outbreak in The Netherlands in 1986 (Terpstra and Wensvoort, 1986). Virus 

containing cell culture supernatant was diluted with cell culture medium to obtain a titer of 2 

x 104 HAU for experimental inoculation per pig. The administered dose was verified by end 

point virus titration on PBMCs.  

 

2.3 Laboratory investigations 

2.3.1 Processing of samples 

All swabs, were soaked with 1 ml serum-free cell culture medium and incubated for 1 hour at 

room temperature upon intense vortexing/ squeezing. Thereafter, standard oral and fecal 

swabs were decanted into micro-centrifuge tubes while salivettes were centrifuged for 1 min 

at 1000 g with subsequent decantation. 

EDTA-blood samples were subjected to nucleic acid extractions immediately. Serum was 

obtained from native blood samples through centrifugation for 20 min at 2031 g at room 

temperature and was stored at -70°C until further usage. Tissue samples were aliquoted and 

stored at -70°C as well. 

 

2.3.2 Virus detection 

Viral DNA was extracted from all swab-, EDTA blood-, and tissue samples automatically on the 

King Fisher 96 Flex instrument (Thermo Scientific). 

For swabs and EDTA-blood the MagAttract® Virus Mini M48 Kit (QIAGEN GmbH, Hilden, 

Germany) was employed according to the manufacturer’s instructions. Tissue samples were 

extracted with the NucleoMag® VET kit for Viral RNA / DNA isolation from  MACHEREY-NAGEL 

(Düren, North Rhine-Westphalia, Germany) according to manufacturer’s instructions upon 

homogenization in 1 ml serum-free cell culture medium using a TissueLyser II (QIAGEN® 

GmbH). 

All nucleic acids were subjected to ASFV-specific real-time PCR (qPCR) according to (King et 

al., 2003), performed with a Bio-Rad CFX 96 Real-Time Detection Systems (Bio-Rad, Hercules, 

CA, USA). Organ samples from reconvalescent pigs were additionally subjected to the 

commercial virotype ASFV real-time PCR (Qiagen Leipzig). In order to exclude other 
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pathogens, whole blood samples from ten selected animals were screened for Porcine 

reproductive and respiratory syndrome virus (PRRSV), Aujeszkey’s disease virus (Suid 

herpesvirus 1 (SuHV1)),  Foot-and-mouth disease virus (FMDV),Porcine circovirus type 2 

(PCV2), Classical swine fever virus (CSFV), Porcine Epidemic Diarrhea Virus (PEDV) and  

Influenza A Virus (IAV) by (RT-) qPCR (Wernike et al., 2013, with slight modifications). 

For detection of viable ASFV in serum and tissue samples, the hemadsorption test (HAT) was 

employed as previously descried (Pietschmann et al., 2015) on the basis of standard 

procedures (Carrascosa et al., 2011). In brief, 100 µl of sera/ tissue samples were added in 

duplicates to 200 µl PBMC derived macrophages seeded in 48-well microplates (5 x 106 

cells/µl) which were allowed to mature for three days. After 24 h, homologue erythrocytes 

were added in a 1 % dilution in sterile phosphate-buffered saline (PBS) (40 µl/ well). 

Subsequently, cultures were analysed for hemadsorption phenomena over a period of two to 

four days. 

Similarly, the HAT was used for read-out of virus back-titration which was performed by end 

point titration of the diluted inoculation virus. For this purpose, 100 µl per virus dilution step 

and 20 µl of a 1 % homologue erythrocyte dilution were added to mature PBMC derived 

macrophages seeded in 96 well microplates (100 µl/well). All virus dilution steps were tested 

in quadruplicates. 

 

2.3.3 Immune responses 

2.3.3.1 Serology 

The INGEZIM PPA COMPAC ELISA (Ingenasa) was used for the detection of ASFV p73-specific 

antibodies in all serum samples. The test was carried out according to the manufacturer’s 

protocol. 

In addition, selected serum samples were screened for their neutralizing capacities against 

different test viruses (ASFV „Netherlands’86“ and „Armenia’08“) by neutralization assays 

(NPLA; neutralization peroxidase-linked antibody assay) on mature PBMC-derived 

macrophages. Each test virus was employed in two inoculation titers verified by back 

titrations, „Netherlands’86“ was used at 100 and 400 HAU, „Armenia’08“ at 10 and 100 HAU 

respectively. Sera were chosen from six pigs showing highly varying clinical courses, antibody 

ELISA -, qPCR - and HAT - results, ranging from acute -lethal in combination with negative or 

weak-positive ELISA-results, and highly positive virus detection-results to acute-transient pigs, 
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strongly positive in the ELISA-test and negative in all virus detection assays. All employed 

serum samples were heat-inactivated for 2 h at 56 °C prior to usage. For read - out, the HAT 

test was employed as described above. 

 

3. Results 

3.1. Clinical and pathological findings 

The (potential „carrier“-pigs/ „c-pigs“) showed a wide range of clinical signs and courses upon 

experimental infection, ranging from acute-lethal over prolonged-lethal to complete clinical 

convalescence. An overview comprising the different disease courses, time points of death, 

and predominating clinical and pathological findings is given in table 1 and supporting 

information table 1. 

In brief, all inoculated pigs developed clinical signs including fever. However, some animals 

were more likely infected through contact to sick pen-mates (see supporting information table 

1) as they developed fever at a later time point and stayed negative in diagnostic tests for a 

prolonged period of time. Detailed information concerning the clinical score (CS) and fever 

development as well as the mortality are illustrated in supporting information fig. 1. In the 

majority of cases, first raises in CS and body temperatures were detected from four to six days 

post infection (dpi), and the latest from 24 dpi. The individual onset, duration and extent of 

fever are depicted in fig. 1 and supporting information table 1. During this acute phase, 

general depression, conjunctivitis, loss of appetite, reddened skin - especially on ears and 

around the eyes - huddling, obstipation as well as deficiencies in bearing and gait were 

predominating, accompanied by moderate to high fever up to 41.8 °C (see supporting 

information fig. 1). One animal developed central - nervous disorders five days after onset of 

fever and reached the humane endpoint. The acute phase lasted on average eight to ten days 

per animal (ranging from 4 – 19 days) with maximum CS ranging from 7 to 14 (see supporting 

information fig. 1). Thereby, three animals succumbed to infection, two on day 16 and one at 

17 dpi. These courses are regarded as acute-lethal, and the major pathomorphological findings 

comprised hemorrhages in several organs, swollen and hemorrhagic peripheral lymph nodes 

(especially gastrohepatic and renal), petechiae in kidneys and lung edema. 

Afterwards, an overall decline of clinical symptoms and fever was observed and only re-

emerged sporadically in five pigs at later disease stages. Parallel to the clinical recovery, many 

pigs developed petechiae-like lesions and cyanotic areas which were either punctiform 
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(especially on ears or anogenital regions) or extensive and map-like (almost covering the 

whole body). These signs were observed for a couple of days from 13 dpi and a peak at 19 dpi 

(40.7 % affected pigs). The temporary recovery after the acute fever-phase was noticed in all 

but two of the remaining pigs. Those animals (assigned as „chronic-like“ in table 1) showed an 

early onset of clinical signs upon inoculation (four to five dpi). Despite of variable fever 

durations both showed clinical signs over a long period. Predominating signs comprised 

anorexia, wasting, gastro-intestinal signs (vomiting, bloody diarrhea, severe weight loss, 

growth retardation and polyarthritis, either associated with cyanotic joints or necrotic skin 

ulcers on the limbs). While one of them recovered from disease starting from 34 dpi, the other 

had to be euthanized at 28 dpi (#76). During necropsy of animal #76, several hemorrhagic, 

enlarged and absceding lymph nodes, interstitial pneumonia and ascites were found. At 

necropsy (128 dpi), the recovered animal (#66) showed an absceding mandibular lymph node, 

renal infarction (old scar, right), and edema of the periarticular tissues of the right tarsal joint. 

Subsequently to the phase of temporary recovery, a second CS-peak occurred (reaching 

maximum CS ranging from  5.5 to 14) between 21 to 34 dpi. During that time, six pigs (#83, 

65, 70, 63, 86, 74) succumbed to infection within one to three days after a sudden onset of 

respiratory signs (severe tachypnea and dyspnea), a pronounced icterus (affecting the whole 

body surface and mucosal membranes), mostly in absence of fever (assigned as „prolonged-

lethal“ course in table 1 and supporting information table 1). Most animals (54.2 %) were 

affected on day 27. A severe lung edema with a strong alveolar focus including alveolar 

hemorrhages, an extensive icterus as well as effusions in diverse body cavities were major 

pathological findings. Afterwards, all remaining c-pigs recovered from infection and showed 

no pathomorphological changes upon necropsy. 

The timely correlation between CS and fever development along with the onset of skin 

petechiae/cyanosis and respiratory signs is displayed in supporting information fig. 2. 

With regard to the („sentinel“-pigs/ „s-pigs“), no clinically or pathomorphological changes 

could be observed. 

During the long-term trial, three C- pigs and one s-pig had to be euthanized due to unrelated 

causes, i.e. limb injuries (arthritis and tendovaginitis) or lesions from hierarchical fights (one 

c-pig at 86 dpi, two c-pigs at 128 dpi, one s-pig at 135 dpi) revealing either none or unspecific 

pathological signs during necropsy.
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Table 1: Overview about clinical courses, signs and pathomorphological lesions. 

Clinical courses upon experimental infection including the respective number of pigs (“no.”) and the time point of death (“† dpi“). Pigs were assigned 

to different clinical courses according to their clinical and pathomorphological signs given in this table. The complement „1x“ indicates that one of 

all pigs assigned to a clinical course had died at the mentioned time point (“† dpi“). „Early virus clearaence“ is defined as negative ASFV-specific 

qPCR results prior 91 dpi and „late virus clearaence“ after 91 dpi respectively. 

clinical course no. † dpi clinical signs pathomorphological signs 

acute-lethal 3 16 - 17 early onset of fever, general depression, bearing/ gait 

dysfunctions, conjunctivitis, huddling, anorexia, 

reddened skin, central-nervous disorders (1x) 

"typical"/ ASFV-related (hemorrhages in several 

organs, swollen and hemorrhagic peripheral 

lymph nodes, petechiae in kidneys, lung edema) 

prolonged-lethal 5 24 - 32 sudden onset of severe respiratory disorders 

(tachypnoe/ dyspnoe) leading to death within 1-3 days; 

intense icterus (whole skin, mucosal membranes)  

alveolar lung edema and alveolar hemorrhages, 

thoracal/ pericardial/ abdominal effusions, 

icterus 

chronic-like 

(transient or lethal) 

2  28 (1x) 

 

 

 

 

(1x) 

 

long-lasting clinical signs, recurrent fever, anorexia, 

vomiting, diarrhea, loss of body weight, growth 

retardation, polyarthritis, cyanotic joints and ears, skin 

ulcers 

 

long-lasting clinical signs, recurrent fever, loss of body 

weight, vomiting, lameness, cyanotic skin areas 

several hemorrhagic, enlarged and absceding 

lymph nodes, interstitial pneumonia, ascites 

 

 

 

absceding mandibular lymph node, renal 

infarction (old scar, right side), periarthritis 

 

acute-

transient 

early virus clearance 9 86 (1x),  

128 (1x) 

complete clinical convalescence after an acute phase (1x 

severe limb injuries/ lameness, 1x injuries due to 

hierarchical fights) 

none or variable unspecific signs, not indicative 

for ASFV   

late virus clearance 10   complete clinical convalescence after an acute phase 
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Fig. 1. Development of rectal body temperatures from 0 to 40 dpi per animal (“no”) and per group (“gr”). 

 No fever (< 40°C) is marked green, increasing body temperatures are marked in corresponding red intensity and deaths of pigs are marked in grey.
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3.2 Pathogen detection 

Prior to inoculation, all animals were tested negative in the ASFV specific qPCR and 

hemadsorption test (HAT). The back titration of the challenge virus verified the administered 

titer of 2 x 104 hemadsorbing units (HAU) per pig. 

ASFV genome and viable virus was found in blood samples from all experimentally infected 

animals over the course of the trial. First individual positive qPCR results in EDTA blood 

samples mainly correlated to the onset of clinical signs/fever, apart from seven cases in which 

ASFV genome was detected prior to the clinical onset (see supporting information table 1). 

The course of ASFV genome detection in whole blood samples by qPCR over the first 91 days 

is illustrated in fig. 2 along with the percentage of positive animals at each time point. First 

positive results were detected between 3 and 21 dpi. Starting from day three, the number of 

qPCR positive animals increased steadily until at 29 dpi all pigs were found positive. Highest 

genome loads were detected at 10 and 14 dpi by reaching maximum Cq values of 18 to 19. On 

day 29, a Cq decrease up to six was detected. At 42 dpi, first negative qPCR results were 

recorded in six pigs, seven at 48 dpi and ten at 63 dpi respectively. After 91 dpi, 52 % c-pigs 

were still positive qPCR results with decreased genome loads (Cq 28 - 30). The duration of 

detection is depicted in table 1. 

In general, first ASFV detections by HAT in sera were in accordance with whole blood qPCR 

results (see fig. 3), apart from four exceptions in which positive HATs were detected earlier 

and one case showing a positive qPCR result prior to the first positive HAT reaction. Most 

positive HAT results were observed at 14 dpi when 28 out of 30 pigs were found positive. In 

contrast to the qPCR, first negative HAT results occurred at 29 dpi (two pigs). Subsequently, a 

rapid decline of positive HAT samples was observed until all surviving pigs were found negative 

from day 63 on (see fig. 3). 

Virus shedding was observed in all kinds of swabs in each experimentally infected pig at 

different amounts as illustrated in fig. 4. Standard oral cotton swabs (OPF) revealed first weak 

positive qPCR results on day three (two pigs). At seven and ten dpi most OPFs were found 

positive with Cq-
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values ranging from 30 to 41 (34 to 36 on average). The total number of positive swabs 

decreased from 14 dpi until on days 21 and 29 only one sample reacted positive. All OPFs were 

negative 42 dpi (see fig. 4). In the so-called salivettes, the course of ASFV genome detection 

was generally in line with OPFs by showing a peak of positive results at seven and ten dpi and 

decreasing numbers starting from 14 dpi, however with more positive results, higher genome 

loads (maximum Cq 28) and a longer detection period up to 63 dpi (see fig. 4). In fecal swabs, 

qPCR results were similar, showing a clear peak at ten dpi with Cq values of about 34 and the 

last positive result at 29 dpi (see fig. 4).  

In contrast to the c-pigs, all s-pigs revealed negative qPCR and HAT results in all sample 

matrices including organs during the whole course of the trial. 

With regard to tissue/organ samples, ASFV was only detected in pigs who succumbed to 

infection (see table 2 for detailed information concerning the genome loads and viral 

distribution). In brief, high and homogeneous genome loads were found in EDTA blood, 

spleen, and lungs, whereas rather variable genome loads were detected in tonsils and parotid 

gland samples. Mandibular lymph nodes showed high genome loads for almost all animals 

with two exceptions (reproducible negative results). Virus was isolated from spleen samples 

of all pigs that showed a lethal course of the disease.  

All surviving c-pigs and all s-pigs were tested negative in the HAT and the routine PCR (King et 

al., 2003) including the spleen samples from fetuses of one s-pig. Using the commercial 

virotype ASFV PCR kit, a few lymph node samples were found positive with Cq values above 

35.  With one exception, the respective animals were the ones that were most likely infected 

through contact. None of these findings was accompanied by the detection of replicative virus. 

In addition, ten pigs were screened for other pathogens as mentioned in 2.3.2 by qPCR. Those 

were selected according to the occurrence of petechiae-like lesions and cyanotic areas. No 

other pathogens apart from ASFV could be detected. 
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Fig. 2. Group mean values  (“MV”) of ASFV specific qPCR results of EDTA blood samples of 

experimentally infected pigs (c-pigs) from 0 to 91 dpi. Results are displayed as 45 – Cq. Error 

bars indicate standard deviations. Presented mean values were generated from all qPCR 

positive pigs per time point. The total percentage [%] of qPCR positive pigs is illustrated at the 

top (“[%] positive”). 
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Table 2: ASFV qPCR results from blood and tissue samples from lethal cases 

Results of ASFV specific qPCR (Cq values) from blood and tissues/ organs collected during 

necropsy from pigs succumbing to infection during the acute phase (16 – 34 dpi) are shown. 

Pigs were referred to their individual ear tag numbers (“pig no.”) and ordered according to the 

time points of death (“† dpi“). „ln.mand“ = mandibular lymph node 

 

 

pig no. † dpi blood tonsil parotis spleen lung ln.mand. 

71 16 18.50 24.80 29.30 19.42 24.73 25.04 

75 16 21.53 27.31 27.61 21.71 22.53 27.10 

79 17 23.55 41.43 34.38 23.14 26.03 28.76 

83 24 21.82 29.38 40.69 25.92 28.25 30.97 

65 25 27.94 30.21 33.24 26.03 29.22 29.43 

70 26 24.12 no Cq 31.44 21.60 26.13 28.01 

76 28 22.73 43.11 32.01 24.13 27.35 no Cq 

63 30 27.53 31.01 40.89 27.09 30.11 29.10 

86 30 26.66 41.98 43.14 25.29 28.24 no Cq 

74 34 27.27 33.91 33.05 25.80 30.21 30.49 
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Fig. 3. Comparison of ASFV genome detection by qPCR and viable ASFV detection by virus 

isolation (“VI”) through hemadsorption test (“HAT”). The total amount of animals reacting 

positive in the corresponding assay is given as percentage of all surviving pigs at each time 

point. Both assays were performed on the basis of blood samples: EDTA blood was used for 

ASFV specific qPCR and sera for HAT respectively. 
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Fig. 4. Overall mean values  (“MV”) of ASFV specific qPCR results of swab samples: faecal 

swabs (“MV Faecal”), oropharyngeal swabs from the superficial oropharynx (“MV OPF”), 

oropharyngeal swabs from the deeper oropharynx (“MV Salivette”) from all experimentally 

infected pigs (c-pigs) from 0 to 91 dpi. Results are displayed as 45 – Cq. Error bars indicate 

standard deviations. Presented mean values were generated from all qPCR positive swabs 

samples per time point. The total percentage [%] of qPCR positive swab samples from each 

kind of swab is illustrated at the top (“[%] positive”). 
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3.3 Immune responses 

3.3.1 Serology 

After all pigs were shown to be free of ASFV-specific antibodies prior to the trial, ASFV p73-

specific antibodies could be detected by ELISA in sera from all but one initially infected pigs 

four to nine days after the individual onset of clinical symptoms including fever. As illustrated 

in fig. 5, first doubtful (5) and positive (13) results were observed at ten dpi. Subsequently, a 

steady increase of positive animals and blocking values was detected (see fig. 5) until all pigs 

were found positive from 29 dpi on (blocking values 74% - 98%). The quantitative results kept 

increasing and reached 99 - 100 % in all c-pigs at 63 dpi (see fig.5). All surviving animals were 

still positive by the end of the trial. 

No neutralizing capacities could be revealed for any of the ELISA-positive samples in the 

employed NPLAs on mature macrophages. The inoculation titers of the selected ASFV strains 

were confirmed by back titration. However, all HATs revealed equally infected wells in each 

dilution step in all serum samples. In s-pigs, no ASFV p73-specific antibodies could be detected 

throughout the whole trial. 
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Fig. 5. Mean values (“MV”) of ASFV p73-specific antibody responses in serum samples from 

all infected groups using the INGEZIM PPA COMPAC ELISA (Ingenasa). Results are given as 

blocking values in % from 0 – 63 dpi. ELISA cut-offs are illustrated as straight lines, bars indicate 

standard deviations.   
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4. Discussion 

The possible ASFV carrier status of surviving animals, i.e. persistent or chronic infections that 

result in constant or remittent shedding and transmission of ASFV by apparently healthy 

convalescent animals, is most controversially discussed. While it may not play an important 

role under industrialized settings with a stamping out strategy of affected domestic pig herds, 

the fate of long-term survivors is of particular importance for wild boar populations where 

these animals will remain in the population for months or years. Should it hold true that viral 

persistence/long term chronicity is established in a considerable number of surviving animals, 

survivors would be a risk factor of utmost importance which could not be easily eliminated. 

In the past, it was suggested that, apart from chronically infected pigs, also those which 

recovered from ASFV infection might further shed and transmit the virus (Wilkinson, 1984) 

and in this way cause new outbreaks (Bech-Nielsen et al., 1995). This would be of particular 

importance in areas with longer ASFV persistence for which decreased mortality and thus 

higher survival rates were reported frequently (Allaway et al., 1995, Fasina et al., 2010, 

Owolodun et al., 2010, Thomson, 1985).  

Against this background, our study was undertaken to add the missing data by using a well-

controlled dataset and a considerable number of survivors that resulted from experimental 

infection of domestic pigs with a moderately virulent ASFV strain of genotype I. Inoculation of 

30 subadult fattening pigs resulted in 20 survivors of which 19 were commingled after 99 days 

with six sentinel pigs.  

The trial ended after more than two months with the very clear results that no transmission 

occurred.  

Moreover, all tissue samples taken at necropsy were negative for ASFV in virus isolation tests 

suggesting that the survivors were able to fully control and eliminate the virus. Routine PCR 

was also negative, and only very low genome loads could inconsistently be found by a 

commercial PCR kit.  

Taken together, these results do not suggest a major role of survivors as 

persistently/chronically infected carriers. Given the experience with another moderately 

virulent ASFV strain from the Dominican Republic reported by Hamdy and Dardiri (Hamdy and 

Dardiri, 1984) that comingling of sentinels at 120 days post infection and hemadsorption tests 

gave negative results while transmission through direct injection of pooled blood still resulted 

in infection of susceptible animals, it cannot be completely excluded that the virus content 
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was just below the limit of detection in our test systems. However, in an epidemiological 

situation without tick involvement, direct parenteral inoculation is rather unlikely and for oral 

infection, virus titers >104 HAU are usually needed (McVicar, 1984). The ratio of viral titers 

needed for infection of a susceptible animal via the intramuscular/intravenous inoculation 

versus the oral/nasal route was reported to be 1 : 140.000 with less than 1 HAU for the 

parenteral route (McVicar, 1984). Even if we would take the low titers (10 HAU) that were 

sufficient in our hands to infect weak wild boar piglets by the oro-nasal route, it is still way 

above the detection limit (Pietschmann et al., 2015). 

In terms of valid transfer of results and conclusions to the situation in wild boar, we do not 

expect major differences between domestic pigs and wild boar based on parallel trials that 

had very similar outcomes for both pig types (e.g. Pietschmann et al., 2015). Another point of 

discussion is the influence of strain type and virulence. Here, the data body is rather limited 

and may need additional input. However, neither the surviving wild boar in a study with a 

genotype II strain from Estonia (Nurmoja et al., 2017) nor the surviving wild boar of an 

infection study with a genotype I strain (Cossu et al., 1991, described by Bech-Nielsen et al., 

1995) transmitted the virus to commingled sentinels. 

A factor that was not covered by our experimental setting is immunosuppression. One could 

argue that the commingling stress was accompanied by slight immunosuppression, but this 

was not systematically assessed. Nevertheless, stress and immunosuppression were 

previously suggested to play a role in reactivation of virus from apparently healthy carriers 

(Wilkinson, 1984, Hamdy and Dardiri, 1984, Sanchez Botija, 1982) and this should be further 

studied in future trials. 

Despite the above said, clearance took also a long time, i.e. >90 days for viral genome from 

blood (though viable virus was not detected from 63 dpi) and thus, we could speak of long-

term persistence of the virus. In view of the fact that ASFV is considered to be associated to 

erythrocytes, wrapped safely into their membranes (Bastos et al., 2003, Gallardo et al., 2009), 

these results might be explained by the estimated maximum life span of porcine erythrocyte 

of about 65 to 85 days (Liebich, 2003). Also in Bluetongue virus (BTV) infection, erythrocyte 

association leads to long-term detectability (MacLachlan et al., 1994). Our results are also in 

line with the study reported by de Carvalho Ferreira et al. (2012) detecting ASFV 

„Netherlands´86“ genome in blood even after 70 dpi, but in contrast to this study also in oral 
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swabs over the whole trial. To further investigate the kinetics of virus potentially hidden in 

erythrocyte membrane folds, HAT could be performed on lysed blood samples in future trials. 

While differentiation of “long-term persistence”, “persistent infection” or “chronic infection” 

might be a matter scientific discussion, the long-term impact on affected regions is still not 

the same. True and live-long persistence could mean an almost uncontrollable situation in 

wild boar with recovered animals as loose cannon as mentioned above; whereas long-term 

persistence but final elimination of virus would mean that recovered animals are only a limited 

problem. 

Our results are somewhat in contrast to recent suggestions (de Carvalho Ferreira et al., 2012, 

Gallardo et al., 2015b), but it has to be kept in mind that our study lasted much longer (165 

days) and is in line with long-term detectability of ASFV in blood and deep oropharyngeal swab 

samples for up to 70 days. The detection of very limited numbers of viral genomes in some 

lymph node samples may need some further discussion although it was in no case 

accompanied by virus isolation, and limited to animals that were probably infected at a later 

time point.  

In terms of risk assessment, one has to take the worst case scenario into consideration. Should 

the wild boar die from whatever other cause, the carcass could be a point of infection for 

susceptible animals. In this case, we have to assume oral infection rather than parenteral 

routes. In this case, the above said should be true and only a hypothetic reactivation would 

yield viral titers sufficient to infect another animal.  

Seroconversion and the role and nature of antibodies is also a matter of constant debate. In 

our study, seroconversion was detected in all animals within four to nine days upon clinical 

onset except for one pig which had to be euthanized due to central nervous disorders within 

four days. Despite the fact that ELISA blocking values increased steadily up to 100 %, no 

neutralizing capacities could be found by neutralization assays on macrophage cultures, 

neither against the currently circulating „Armenia’08“ strain (genotype II) nor against the 

homologue isolate. This contrasts observations that transfer of serum antibodies but also 

colostral antibodies can confer a quite highy level of protection (Schlafer et al., 1984a, Schlafer 

et al., 1984b, Onisk et al., 1994). Also, studies with attenuated and recombinant viruses 

(Gomez-Puertas et al., 1995) have shown in vitro neutralization (reviewed by Escribano et al. 

2013).  In this respect, it has to be kept in mind that our assays were done with wild-type virus 

on macrophage cultures only. This assay looks for complete in vitro neutralization in a rather 
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diagnostic manner and does not evaluate beneficial responses in the host. Yet, in contrast to 

classical swine fever virus, where the antibodies are able to induce this complete block, ASFV 

was not blocked to a visible extent. 

Generally, our study shows that clinical outcome and measurable antibody production (at 

least against p73) is not well correlated. In this context, future studies must target not only 

cellular responses but also reactions against other antigens.  

 

5. Conclusion 

Taken together, we did not see any evidence of a carrier status in animals surviving infection 

with a moderately virulent ASFV strain. The long-term detectability of viral genome in blood 

is not only a risk but also a chance for diagnosis. For at least 90 days, PCR will be able to detect 

the virus in infected pigs. The observed atypical clinical and pathomorphological lesions 

elucidate the urgent necessity of laboratory analyses in ASFV diagnosis and the need for 

awareness among farmers and veterinarians. 
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Supporting information fig. 1.  

Daily summation of clinical parameters of experimentally infected pigs (c-pigs) during the 

acute phase. Top (“no. pigs”): survival of pigs is shown by presenting the total number at each 

time point; middle (“body temp. °C”): group mean values  (mean value ± standard deviation) 

of rectal body temperatures; bottom (“clinical score sum”): group mean values  (mean value 

± standard deviation) of clinical score (CS) sums basing on the scoring system by Mittelholzer 

(2000). Error bars indicate standard deviations. 
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Supporting information fig. 2.  

A summary of all vital parameters from all experimentally infected pigs (c-pigs) during the 

acute phase (0 – 40 dpi) comprising the onset of “fever” (defined as >40.0°C), sum of clinical 

score points (“clinical score”), numbers of pigs displaying respiratory findings (“tachypnoea/ 

dyspnoea”) and cyanotic or petechial lesions (“skin cyanosis/ petechiae”) respectively at each 

time point. All parameters are illustrated as percentage values. The “fever” curve illustrates 

the percentage of pigs displaying fever in correlationship to all living animals per time point 

(calculated as 100% per time point). The “clinical score” curve was calculated on the basis of 

a clinical sore sum of 14 which was defined as maximum end point criterion and therefore 

regarded as 100%. For illustration of occurrence of the clinical signs “tachypnoea/ dyspnoea” 

and “skin cyanosis/ petechiae” the number of pigs displaying the symptom in question was 

correlated to the total amount of living pigs at each time point as 100%. 
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Supporting information Table 1:  

Overview over disease courses, time points of death, and predominating clinical and 

pathological findings Time points of ASFV positive qPCR results from blood, feces and OPF-

swabs, positive virus isolation, detection of ASFV specific antibodies, fever and clinical disease 

course 

 
Animal Course Fever Virus detection Viral genome blood Viral genome feces Viral genome OPF Antibody detection Final day Remarks

# 68 T 11 - 20 dpi 10 - 29 dpi 10 - 91 dpi 14 - 20 dpi 7 dpi from 20 dpi 164 CI possible

# 71 AL 12 - 16 dpi 14 dpi 14 - 20 dpi 14 dpi 14 dpi not detected 16

# 73 T

5 - 17 dpi

32 - 33 dpi

36 - 38 dpi

7 - 20 dpi 7 - 29 dpi 7 - 10 dpi 7 - 42 dpi from 10 dpi 164

# 74 PL
6 - 11 dpi

31 - 32 dpi
from 7 dpi 7 - 29 dpi not detected 10 and 29 dpi from 10 dpi 32

# 76 PL
5 - 17 dpi

26 - 27 dpi
from 7 dpi 7 - 29 dpi 7 - 10 dpi

7 - 10 dpi

20 dpi

doubtful 10 dpi

positive from 14 dpi
28 chronic-like signs

# 82 T 5 - 16 dpi 7 - 29 dpi 7 - 91 dpi 7 - 10 dpi
7 - 10 dpi

48 dpi
from 10 dpi 164

# 87 T 6 - 15 dpi 7 - 29 dpi 7 - 91 dpi 7 - 10 dpi
7 - 14 dpi

48 dpi
from 10 dpi 164

# 88 T 24 - 33 dpi 29 - 48 dpi 29 - 91 29 dpi 29 dpi from 29 dpi 164 CI likely

# 92 T 14 - 24 dpi 20 - 42 dpi 14 - 91 dpi 20 dpi 20 and 63 dpi from 20 dpi 164 CI possible

# 93 T 5 - 13 dpi
7 - 29 dpi

48 dpi
7 - 48 dpi 10 dpi 7 dpi

doubtful 10 dpi

positive from 14 dpi
164

# 63 PL 11 - 19 dpi from 10 dpi 10 - 29 dpi not detected 7 - 14 dpi from 20 dpi 30 CI possible

# 66 T 7 - 10 dpi 3 - 29 dpi 7 - 29 dpi 10 - 14 dpi 7 - 10 dpi from 10 dpi 128
transient chronic-like signs

euthanized due to other causes

# 67 T 5 - 10 dpi 7 - 29 dpi 7 - 91 dpi 10 dpi 7 - 10 dpi
doubtful 10 dpi

positive from 14 dpi
164

# 69 T 11 - 20 dpi 14 - 29 dpi 14 - 29 dpi 14 dpi 7 - 14 dpi positive from 20 dpi 164 CI possible

# 70 PL
4 - 15 dpi

24 - 26 dpi
from 3 dpi 14 - 29 dpi

7 - 10 dpi

20 dpi
7 - 14 dpi positive from 10 dpi 26

# 75 AL 4 - 15 dpi from 3 dpi 3 - 20 dpi 7 - 10 dpi 10 dpi
doubtful 10 dpi

positive from 14 dpi
16

# 83 PL 5 - 12 dpi from 7 dpi 7 - 29 dpi 7 - 10 dpi
7 - 10 dpi

20 dpi

doubtful 10 dpi

positive from 14 dpi
24

# 84 T 9 - 17 dpi 3  - 48 dpi 10 - 91 dpi 10 dpi
10 - 14 dpi

42 - 48 dpi
from 14 dpi 164 CI possible

# 86 PL 6 - 17 dpi from 7 dpi 7 - 29 dpi not detected 7 - 14 dpi from 14 dpi 30

# 89 T 9 - 27 dpi 10 - 29 dpi 10 - 42 dpi not detected 7 and 42 dpi from 14 dpi 164 protracted clinical signs, CI possible

# 64 T 5 - 16 dpi
7 - 29 dpi

48 dpi
7 - 48 dpi 10 dpi 7 - 20 dpi from 14 dpi 164

# 65 PL 5 - 14 dpi from 7 dpi 7 - 29 dpi 10 dpi 7 - 10 dpi from 10 dpi 25

# 77 T 4 - 14 dpi 3 - 48 dpi 3 - 91 dpi not detected
7 - 10 dpi

42 dpi
from 10 dpi 164

# 78 T 9 - 18 dpi 7 - 29 dpi 10 - 48 dpi not detected
7 - 10 dpi

48 dpi
from 14 dpi 164 CI possible

# 79 AL 4 - 16 dpi from 7 dpi 3 - 20 dpi 10 dpi 7 - 14 dpi from 10 dpi 164

# 80 T

6 - 15 dpi

27 - 30 dpi

32 - 34 dpi

7 - 29 dpi 7 - 29 dpi not detected 7 dpi from 10 dpi 164

# 81 T 5 - 16 dpi 7 - 29 dpi 7 - 91 dpi 7 dpi
7 - 20 dpi

63 dpi
from 10 dpi 164

# 85 T 6 - 10 dpi 7 - 20 dpi 7 - 29 dpi 7 - 10 dpi 7 - 14 dpi from 10 dpi 128 euthanized due to other causes

# 90 T 4 - 14 dpi 3 - 48 dpi 3 - 91 dpi 14 dpi
7 - 10 dpi

42 and 63 dpi
from 10 dpi 164

# 91 T
6 - 9 dpi

12-15 dpi

3 - 14 dpi

29 - 42 dpi
7 - 91 dpi 7 - 14 dpi 7 - 14 dpi from 14 dpi 164

PL = prolonged lethal CI = contact infection

AL = acute lethal dpi = days post infection

T = transient
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5 Discussion 
 

Over the last decade, ASF has changed from an exotic disease of Sub-Saharan Africa to a 

considerable and tangible threat to pig industry in Central Europe. With its re-introduction 

into the European Union in 2014, the disease has apparently also found a fertile breeding 

ground in the abundant wild boar population. Based on previous experience on the Iberian 

Peninsula and Sardinia, wild boar were so far not considered as major and long-term reservoir 

for ASFV (Laddomada et al. 1994, Perez et al. 1998), and self-sustaining cycles were not 

anticipated (Efsa Panel on Animal Health and Welfare 2010). However, disease dynamics were 

completely different under the North-Eastern European conditions and long-lasting endemic 

cycles without domestic pig involvement were established in all affected countries once the 

virus was introduced into the wild boar population. Despite high virulence of the virus strains 

and considerable mortality among wild boar, these cycles are self-sustained over several years 

now. This leaves competent authorities, veterinary services and other decision makers at loss 

for reliable risk assessments and design and implementation of reasonable control measures.  

The first step for both risk assessment and strategy design is knowledge about critical factors 

of disease transmission and dynamics. A major part of the presented studies was therefore 

done to elucidate some of these factors. Among them was the integration of pragmatic 

sampling schemes into disease surveillance as basis for both diagnosis and epidemiological 

studies, the in-detail characterization of Estonian ASFV strains and the evaluation of possible 

carrier states of surviving animals.  

 

5.1    Simplified tools for effective surveillance  

Early disease detection as prerequisite for timely intervention is the main target in areas that 

are free of the disease but at risk. For this reason, all efforts have to be directed towards 

collection of representative and risk-based samples from the susceptible population. With 

regard to the wild boar population, this means intensification of passive surveillance by 

encouraging hunters and foresters to sample fallen wild boar and animals that show clinical 

signs when addressed for hunting. These efforts are currently carried out in all parts of 

Germany.  

As sampling of fallen wild boar is not the main interest and duty of this group of persons, it 

should be on one hand as easy and convenient as possible, and on the other hand allow a 

reliable ASFV-detection. Thus, a compromise has to be found that makes sampling as 
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pragmatic as possible. Up to now, blood and/or organ samples (spleen if possible) were 

prescribed, or a larger bone for decomposed carcasses (World Organization for Animal Health 

(OIE) 2017).  Taking these samples means often very close contact with the rotting carcass and 

necessitates opening it. This is both rather disgusting and bears the risk of contamination for 

the surroundings and the tools that are used to process the sample. In addition, proper 

collection and transport tubes are necessary. Regarding this issue, colleagues from the 

Estonian Veterinary and Food Laboratory, where all samples from hunted wild boar in Estonia 

have to be sent, report from blood samples arriving in recycled glass bottle or misused gloves 

(I. Nurmoja, personal communication, February 2017). These special “sampling tools” are 

difficult to transport and handle, and are usually highly contaminated from the outside. To 

avoid these severe sampling and handling problems, a convenient, clean and stable sampling 

tool is required. One approach would be sampling on filter papers or so-called FTA cards that 

allow immobilization and stabilization of nucleic acids. FTA cards dipped in bloody fluids, 

already showed good performance for pathogen detection even after long-term storage under 

tropical conditions without cooling (Michaud et al. 2007, Braae et al. 2015), but still with the 

disadvantages of direct contact with the carcass, need for a transport device and, to a lesser 

extent, contamination. For this reason, our study continued the validation of fast-drying  

GenoTube Livestock swabs that had shown very promising results for African swine fever virus 

genome and antibody detection in proof-of-concept studies(Blome et al. 2014, Petrov et al. 

2014). These devices allow transport and storage without refrigeration directly in the swab 

receptacle. In detail, the presented study targeted further validation of both ASFV antibody 

and genome detection from these blood swabs and included a proof-of-concept part that 

employed point-of-care test systems for antibody detection (lateral flow assays) together with 

the swab. It was confirmed on both experimental samples and field samples of bad quality 

that reliable diagnosis is possible using the swab samples, and the point-of-care test proved 

to be highly robust. The use of the latter would need discussion, especially when it comes to 

the group of people that would be allowed to use it for the detection of a notifiable disease.  

However, it has to be added that a disadvantage of the GenoTubes is the relatively high price 

compared to normal cotton swabs or blood collection tubes.  However, if the simplified 

sampling technique could increase the number of samples within the passive surveillance and 

lead to an early disease detection, the financial effort would be very quickly relativized.  
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Taken together, one approach for the above mentioned compromise between practical 

handling and reliable diagnosis was found. For this reason, it was already included in the 

“Amtliche Methodensammlung” (Friedrich-Loeffler-Institut 2016) and is mentioned in the 

“Schweinepest-Monitoringverordnung” (SchwPestMonV 2016).  

 

5.2    Understanding disease dynamics in the Baltics through 

characterization of recent ASFV strains from Estonia 

In addition to the overall observation of endemic cycles, some regions showed peculiarities 

that needed to be explained. One example was the high seroprevalence in the North-Eastern 

part of Estonia, an EU-country which can serve as a model case especially for ASF-spread in 

the wild boar population. Positive animals occurred mainly in hunting bags and mortality was 

almost absent.  

The present studies on the characterization of an Estonian ASFV strain isolated from wild boar 

out of an area with such particular disease dynamics, add to a deeper understanding about 

the epidemiological behaviour and evolution of the disease in wild boar populations. In the 

initial trial, the re-isolated strain did not act like a low or moderate one since only a single wild 

boar survived the acute phase of the infection. However, the survivor allowed to investigate 

the long-term fate of recovering animals and the transmission risk to commingled sentinel 

animals. In a nutshell, the obtained data supported the hypothesis, that recovering animals 

can get rid of infectious virus and already 56 days after the infection, when the animal was 

probably still positive for viral genome in the blood, the risk of transmission to other swine by 

direct contact is low. The further characterization of the Estonian strain in different pig breeds 

led to highly variable disease courses. Nonetheless, even though the animals were tested 

positive for viral genome in blood until the end of the trials, no viable virus could be isolated 

in their blood at the day of necropsy 36 days post inoculation.  These findings highlight the 

importance of differentiation between detection of the viral genome and the detection of 

infectious virus when it comes to risk assessment. The viral particles attached to erythrocytes 

seem to lead to positive qPCR results over the whole live-span of these red cells (app. 86 days) 

(Bush et al. 1955), even if the virus is already inactivated. However, this was only a side effect 

of the performed study and it could still be discussed, that infectious virus hidden in the bone 

marrow (Carrillo et al. 1994) could be reactivated e.g. in a case of immunosuppression.  
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Main target of the studies presented here was the final characterization of the Estonian strain. 

The observed low lethality in domestic pigs and the still high virulence in wild boar associated 

with a genomic variation gave new insights into virus evolution on the one hand but raised 

new questions on the other. Literature actually indicates nearly identical disease courses in 

wild boar and domestic pigs when inoculated with the same ASF strain (Blome et al. 2013, 

Pietschmann et al. 2015). Studies comparing the immune systems of wild boar and domestic 

pigs in detail are lacking. The few available data demonstrate only minor immunogenetical 

differences between the two closely related species (Chen et al. 2013, Frantz et al. 2013). 

Other studies hint more to the direction of farmed swine being more susceptible to bacterial 

infections due to a downregulation of Major Histocompatibility Complex (MHC) II genes 

(Goedbloed et al. 2015). In case of ASF, downregulated MHC could eventually be of advantage 

for domestic pigs suffering the disease, since it could help to avoid excessive immune reactions 

leading to immunopathological lesions. After all, this is still highly speculative and needs 

further investigation. In addition, the trial-related immobilizing of the wild boar for sampling 

procedures during the acute phase of the disease and the hereby caused stress could have 

had an impact on the disease course. Thus, future experiments investigating this issue should 

be run with harmonized conditions. Nonetheless, the attenuated disease course in domestic 

swine and the field reports of higher survival rates in the area where the investigated strain 

comes from, (Nurmoja et al. 2017) support the thesis of a lowered virulence of the 

investigated variant strain. It was detectable in field samples from 2014 but could not be found 

in samples obtained a few years later. This raises the hypothesis, that attenuation might be 

an evolutionary drawback for ASFV strains in the absence of a potent arthropod vector. 

Naturally attenuated strains have been found in areas where soft ticks are part of disease 

transmission, like OUR T 88/3, isolated from Portuguese soft ticks (Ornithodoros erraticus) 

(Boinas et al. 2004, Sanchez-Cordon et al. 2016). If these potent vectors are not available, the 

picture might look different: Due to the limited shedding of the virus via saliva and feces 

(Guinat et al. 2014), and the lack of an competent arthropod vector, the virus seems to be 

trapped in the infected swine as long as it is alive. This could explain the temporally limited 

occurrence of the variant strain. For proof of principle, further studies are required and the 

transmission of the disease by other potential arthropod vectors such as biting midges and 

hard ticks needs to be excluded. In addition, it would be interesting to screen more field 

samples of regions in the vicinity to the place where the variant has been re-isolated, to see 
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where and when it came up for the first time. If the assumption of a disadvantage of 

attenuated strains holds true for areas lacking the tick-vector, it could be further 

hypothesized, that genetic variations and deletions altering the pathogenicity, occur more 

often than it was anticipated. For a more profound insight in the evolution of the complex 

viral genome of ASFV, further information is required especially in regard to genome-based 

similarities and differences of relevant ASFV strains. However, the possibility of randomly 

occurring attenuated strains, has to be taken in consideration regarding outbreaks in pig 

farms. The mild and unspecific clinical signs observed in the presented trials could easily go 

unnoticed under farming conditions. Responsible veterinarians and farmers in endemic, but 

also in still disease-free areas, should be sensitized for this problem and it might be reasonable 

to intensify surveillance measures and apply early differential diagnostic measures for 

diseased pigs. 

 

5.3    Evaluation of possible carrier states in recovered animals  

“Survivors are virus carriers for life” has been stated officially in the Scientific review on ASF 

of the European Food Safety Authority (EFSA) in 2009. The role of animals surviving the disease 

has been and is controversially discussed as the neutralizing capacity of ASFV-specific 

antibodies seems to be limited (Neilan et al. 2004) or at least debatable  (Escribano et al. 

2013). During the first wave of outbreaks in Europe it was anticipated, that pigs, recovering 

from the disease, stay persistently or chronically infected and shed the virus for the rest of 

their life acting as a source for new outbreaks (Bech-Nielsen et al. 1995). When the disease 

was re-introduced onto the European continent in 2007, the circulating strain was found to 

be highly virulent leading to mortalities up to 100% (Gabriel et al. 2011, Blome et al. 2012). 

Therefore, the question addressing the role of recovering animals acting as potential carriers 

was of minor importance. Nowadays, the picture changed and the disease situation can be 

regarded as endemic in the Baltic States such as Estonia (Nurmoja et al. 2017) indicating a 

higher number of wild boar surviving at least the acute phase of the disease. At this point, the 

question concerning the role of potential carriers is coming up again. If the assumption of 

“carriers for life” holds true, it creates catastrophic scenarios for the wild boar population in 

areas like Eastern Europe: Every single surviving wild boar could migrate and lead to new 

outbreaks by mingling with uninfected sounders. This would help the disease to spread fast 

and enter new naïve populations easily. During the early outbreaks on the European 
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continent, scientists argued with the role of warthogs: persistently infected young warthogs 

bitten by soft ticks maintain the natural wild cycle when infected ticks transmit the disease 

effectively to other naïve swine (Sanchez-Vizcaino et al. 2015). Epidemiological observations 

of re-occurring outbreaks in Portugal and Spain without a clear source of infection supported 

their idea of persistently infected survivors acting as transmission vehicles even in the absence 

of an arthropod vector (Wilkinson 1984). However, even in early studies (Sanchez-Botija 

1982), isolation of infectious virus from tissues of pigs 5 to 10 month after infection failed. 

Direct injection of blood, obtained from recovered animals 120 days post infection, into 

sentinels resulted in acute disease courses while direct contact to the survivors at the same 

time point did not lead to infection (Hamdy et al. 1984). This parenteral infection route is 

important in areas with potent vectors, but not in Central Europe where soft ticks are lacking. 

More recent infection experiments with low virulent strains, where sentinels were 

commingled to recovered pigs 72 days post infection showed that ASF can be transmitted by 

direct contact up to this time point (Gallardo et al. 2015). Although this is no proof of long-

term carrier status of recovered animals, the impact of carrier animals is expected to be high 

at least up to two months after the infection.  

The here presented study on a moderately virulent ASFV strain of genotype I does not give 

any evidence for a long-term carrier status of recovered pigs. Sentinels commingled with the 

survivors 99 days post inoculation did not show any signs indicative for an ASFV infection and 

no viable virus could be isolated from any tissue sample of a surviving pig at the end of the 

trial, 165 days post inoculation. Therefore, the role of recovering animals acting as carriers 

seems to be temporarily limited to the first 2-3 months after the infection. This does not 

exclude that longer carrier states are possible, but it does not seem to be a major outcome. 

This knowledge helps to understand the epidemiological behaviour of the disease in the 

European wild boar population and contributes important data for decent risk analyses.  
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6 Outlook 

The reliability of dry-swabs as alternative sampling strategy has been proven and the obtained 

data could contribute to a higher compliance in sampling fallen and hunted wild boar and thus, 

increase the chance to detect the disease as early as possible. However, the competent 

authorities need to be convinced about the advantages of the swab sampling and it will take 

time, until the modified workflows are broadly established as routine diagnostics.  

The characterization of the Estonian ASFV strain served as an example for the evolution of the 

virus and brought many ends together for a general understanding of altered disease 

dynamics. Nonetheless, further investigation of differences and similarities within the immune 

response of domestic pigs and wild boar is required. In addition, control measures and 

awareness campaigns might need adjustment to make sure, farmers and veterinarians are 

familiar with the variable disease courses that can occur.  

The role of recovered animals acting as carriers that contribute to the disease spread might 

have been overestimated in the past, as the performed study indicates. However, for a final 

risk assessment, further evaluation of the virus distribution in different kinds of tissues 

throughout the whole disease course is necessary. 
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6 Summary 

African swine fever (ASF) is a notifiable animal disease with large impact on the pig farming 

sector and the wild boar population. As of March 2018, ASF is present in the Baltic Member 

States of the European Union, Poland, Czech Republic, and Romania, and it threatens to 

spread further towards Germany. Against this background, early warning strategies have to 

be implemented and possible control measures updated. Since an effective vaccine is lacking, 

a profound understanding of the pathogenesis and epidemiology is of utmost importance to 

design suitable control measures, especially for wild boar. While profound data is available for 

the sylvatic cycle of the disease in Africa, disease dynamics among European wild boar are far 

from being understood and remain to be elucidated. For this reason, the presented studies 

targeted the characterization of relevant virus strains and the further validation of suitable 

alternative sampling tools to generate diagnostic data.  It was already known, that dry-swabs 

are suitable for pathogen and antibody detection of Classical and African swine fever but the 

applicability on field samples of poor quality and the combination with point-of-care test 

systems needed to be assessed. It could be shown, that dry-swabs minimize the risk of 

contamination and allow still decent diagnostic results without the need of a cooling device 

during transport and storage.  This simple tool could encourage hunters and foresters to 

intensify the sampling of fallen wild boar which is urgently required for early disease 

detection. Furthermore, an Estonian field strain has been characterized in detail. Four animal 

trials including wild boar and different domestic pig breeds have been carried out for biological 

characterization. Rather variable disease courses with lethalities ranging from 0% (domestic 

pigs) to 100% (wild boar) have been observed. Full-genome sequencing revealed a large-scale 

mutation (14 kilo base pairs) in the re-isolated strain and screening of field samples 

demonstrated a locally and temporally limited circulation of the strain in north-eastern 

Estonia. In addition, a long-term animal trial provided data on the controversially discussed 

role of persistently or chronically infected survivor pigs acting as potential carriers. It could be 

shown, that swine surviving the acute phase of the disease, can recover completely and 

eliminate the virus. Under the experimental conditions no transmission to sentinel pigs, 

commingled 99 days after the inoculation was observed. This data contributed to the deeper 

understanding of the epidemiological behavior of ASF and could help to optimize disease 

control.
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7 Zusammenfassung 

Aufgrund ihrer enormen Bedeutung für die Schweinefleischindustrie und die 

Wildschweinpopulation gehört die Afrikanische Schweinepest (ASP) aktuell zu den 

gefürchtetsten anzeigepflichtigen Tierseuchen. Die Erkrankung tritt derzeit unter anderem im 

Baltikum, in Polen, Tschechien und Rumänien auf und eine Ausbreitung nach Deutschland ist 

zu befürchten. Da kein wirksamer Impfstoff zur Verfügung steht, kommt dem Verständnis der 

Pathogenese und Epidemiologie eine noch größere Bedeutung zu. Über den sylvatischen 

Zyklus der Erkrankung in Afrika ist schon relativ viel bekannt, während die 

Wiedereinschleppung der Tierseuche in die europäische Wildschweinpopulation viele neue 

Fragen aufwirft. Die vorgestellten Studien umfassen die Charakterisierung von relevanten 

Virusstämmen und die weiterführende Validierung von alternativen Beprobungsverfahren. 

Tupferproben waren als brauchbare Alternative für den Nachweis der klassischen und 

Afrikanischen Schweinepest bereits bekannt, aber die Belastbarkeit der Methode im Einsatz 

mit schlechter Probenqualität und die Kombination mit Sofortdiagnostika musste noch 

erprobt werden. Es konnte gezeigt werden, dass die verwendeten Tupfer, die ungekühlt 

transportiert werden können, eine simple und kontaminationsarme Probennahme erlauben. 

Dieses vereinfachte Verfahren könnte Jäger und Förster zur intensiveren Beprobung von 

Fallwild motivieren und so zu einer frühzeitigen Entdeckung der Tierseuche beitragen. 

Außerdem wurde ein estnisches Isolat des Virus der Afrikanischen Schweinepest im Detail 

untersucht. Zu diesem Zweck wurden zunächst vier Tierexperimente mit Haus- und 

Wildschweinen durchgeführt. Die beobachteten Krankheitsverläufe waren mit einer Letalität 

zwischen 0% (Hausschwein) und 100% (Wildschwein) sehr variabel. Eine 

Vollgenomsequenzierung zeigte eine große Mutation (14 Kilobasenpaare) im Genom des Re-

Isolates. Untersuchte Feldproben konnten das temporär und regional begrenzte Vorkommen 

des Isolats im Nordosten Estlands belegen. Des Weiteren lieferte ein Langzeittierexperiment 

wichtige Daten zum Thema der persistent oder chronisch infizierten Schweine, die als 

potenzielle Überträger der Erkrankung kontrovers diskutiert werden. Es konnte gezeigt 

werden, dass Schweine, die die akute Phase der Erkrankung überleben, in der Lage sind, sich 

vollständig zu erholen und das Virus zu eliminieren. Unter experimentellen Bedingungen 

konnte 99 Tage nach der ASP-Infektion keine Übertragung der Tierseuche auf zugestallte 

Sentineltiere beobachtet werden. Diese Daten tragen zu einem tieferen Verständnis der ASP-

Epidemiologie bei und können helfen die Tierseuchenbekämpfung zu optimieren
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9 Abbreviations 

ASF African swine fever 

ASFV  African swine fever virus 

CSF Classical swine fever 

cq quantitation cycle 

DNA deoxyribonucleic acid 

dpi days post inoculation 

EDTA ethylenediaminetetraacetic acid 

EGFP Enhanced Green Fluorescent Protein 

ELISA Enzyme-linked Immunosorbent Assay 

EU European Union 

FCS fetal calf serum 

FLI Friedrich-Loeffler-Institut 

GM-CSF granulocyte macrophage colony-stimulating factor 

HAT hemadsorption test 

HAU hemadsorbing units 

kbp kilobase pair 

LFD Lateral flow device 

MGF multigene family 

nm nanometer 

NRL national reference laboratory 

OIE World Organisation for Animal Health 

ORF open reading frame 

PBMC Peripheral Blood Mononuclear Cells 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PP percent positive 

PRRS Porcine Reproductive and Respiratory Syndrome 

qPCR quantitative polymerase chain reaction 

RNA ribonucleic acid 

VFL Estonian Veterinary and Food Laboratory 

VP viral protein
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