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Z U S A M M E N FA S S U N G

Die Mikro- und Nanostruktur von organischen Halbleitern beeinflusst
entscheidend die Leistung von elektronischen und optoelektronischen
Bauelementen. Folglich sind experimentelle Untersuchungen mit ge-
eigneten Mikroskopiemethoden erforderlich. In dieser kumulativen
Dissertation präsentiere ich vier zugehörige Forschungsprojekte zur
Bestimmung struktureller und elektronischer Eigenschaften von or-
ganischen molekularen Halbleitern. Diese Arbeit ist in zwei Teile ge-
gliedert, erstens die Entwicklung und Anwendung neuartiger Mikro-
skopietechniken, und zweitens die Untersuchung der Photoantwort
in Transistoren mit den Halbleitern Pentacen und Epindolidion.

Im ersten Teil werden zwei neuartige Mikroskopiemethoden, die
mikrodiffraktive Bildgebung und die elektronische Terahertz Nano-
skopie eingeführt. Für mikrodiffraktive Bildgebung werden fokussier-
te Röntgenstrahlen von der Probe gestreut, mit einer Ortsauflösung
von 300nm × 3µm bei 0.1nm Wellenlänge. Mit dieser Methode un-
tersuchen wir den Polymorphismus von Pentacen und die Kristallini-
tät von Pentacen unter Goldkontakten.

Für die lokale Untersuchung von Ladungsdichten, entwickeln wir
das elektronische Terahertz Nanoskop, die Kombination eines Raum-
temperatur-Terahertz-Transceivers (Transmitters und Receivers) mit
einem Raster-Nahfeldmikroskop (SNOM). Dieser Aufbau liefert Am-
plituden- und Phasenbilder mit 50nm Ortsauflösung bei 0.5mmWel-
lenlänge. Die Bilder einer Siliciumprobe belegen eine Leitfähigkeits-
empfindlichkeit für Ladungsdichten bis hinunter zu 1016 cm−3.

Im zweiten Teil wird die Raster-Photostrommikroskopie (SPCM)
benutzt, um die elektronische Antwort von Feldeffekttransistoren auf
eine lokale optische Stimulation zu untersuchen. Für Pentacen Tran-
sistoren demonstrieren wir, dass SPCM den Hauptmechanismus für
Spannungsverlust aufzeigt. Dafür wird ein asymmetrischer Transis-
tor untersucht. Je nach Betriebsrichtung zeigt dieser Transistor stark
lokalisierte Exziton-Trennung am Quellkontakt, oder inhomogenes
Freisetzen von gefangenen Ladungsträgern im Transistorkanal.

Im Gegensatz dazu besteht die Photoantwort von Epindolidion
Transistoren aus einem schnellen Verschiebe-Beitrag unter den Kon-
takten und aus einem langsamen Beitrag durch Fallenentleerung im
Transistorkanal. Wir folgern diese Mechanismen aus der Analyse der
Photoantwort im Zeit- und Frequenzbereich, und aus dem Betrieb
der Proben als Dioden und als Feldeffekttransistoren.

Die hier erzielten Ergebnisse sollten das Verständnis von organi-
schen Halbleitern auf der Mikroskala und Nanoskala verbessern.
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A B S T R A C T

The micro- and nanostructure of organic molecular semiconductors
crucially affects the performance of electronic and optoelectronic de-
vices. Consequently, experimental investigations with suitable mi-
croscopy methods are required. In this cumulative dissertation, I
present four related research projects for the determination of struc-
tural and electronic properties of organic molecular semiconductors.
This work is organized in two parts, first, the development and appli-
cation of novel microscopy methods, and second, the investigation of
the photoresponse in field-effect transistors with the semiconductors
pentacene and epindolidione.

In the first part, two novel microscopy methods, microdiffraction
imaging and all-electronic terahertz nanoscopy are introduced. For
microdiffraction imaging, focused X-rays are scattered from the sam-
ple, with a spatial resolution of 300nm × 3µm at 0.1nm wavelength.
With this method, we assess the polymorphism of a pentacene thin
film and probe the crystallinity of a pentacene film below gold con-
tacts.

For the local charge density probing, we develop the all-electronic
terahertz nanoscope, the combination of a room-temperature tera-
hertz transceiver (sender and receiver) with a scanning near-field op-
tical microscope (SNOM). This setup provides amplitude and phase
images with 50nm spatial resolution at 0.5mm wavelength. The im-
ages of a silicon sample prove a conductance sensitivity for charge
densities down to 1016 cm−3.

In the second part, scanning photocurrent microscopy (SPCM) is
used to investigate the electronic response of field-effect transistors
on a local optical stimulation. For pentacene transistors, we demon-
strate that SPCM highlights the main voltage loss mechanism. There-
fore, an asymmetric transistor is investigated. Depending on the oper-
ating direction, this transistor shows either strongly localized exciton
splitting at the source contact, or inhomogeneous charge de-trapping
within the transistor channel.

In contrast, the photoresponse of epindolidione transistors consists
of a fast displacement contribution under the contacts and of a slow
de-trapping contribution within the transistor channel. We deduce
these mechanisms from a photoresponse analysis in the time and fre-
quency domain, and from the operation of the samples as diodes and
as field-effect transistors.

The results achieved here should improve the understanding of
organic semiconductors on the microscale and nanoscale.
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1
M O T I VAT I O N

The digital revolution is driven by the mass production of electronic
devices. Mobile computers, like tablets or smartphones, provide per-
manent information access, at any place and at any time. In addition,
more and more analog devices are now equipped with electronics,
and can process, store, send, and receive electronic data, like in smart
homes or autonomous cars. The basic building blocks of this infor-
mation technology are semiconducting electronic devices, especially
silicon (Si) transistors. In the search for additional applications, novel
semiconductors are investigated. Here, materials from organic chem-
istry, polymers and small molecules, have proven their capabilities,
with simpler processing steps saving energy and time. Organic elec-
tronics employs these materials in electronic devices like transistors,
sensors, solar cells, or light-emitting diodes [1, 2]. Currently, organic
light-emitting diodes (OLEDs) are most advanced, building smart-
phone displays with high contrast and high brightness.

The physical properties of organic semiconductors are extensively
described with concepts known from inorganic semiconductors. How-
ever, the inherent properties of both material systems need to be con-
sidered for finding new applications and designing best-performing
devices. The charge mobility of organic semiconductors is lower com-
pared to inorganic semiconductors [3], but the ability to synthesize
organic materials in chemical laboratories allows to tailor the mechan-
ical, electronic, and optical properties for novel applications. In this
way, flexible and stretchable devices can be used for portable electron-
ics, smart textiles, and medical diagnostics [4, 5]. Wearable and im-

10 cm

displays transistors lateral
structures

length scale

film
thickness

small
molecules

1 mm 10 µm 100 nm 1 nm

NO H

H N O

Figure 1: Important length scales in organic electronic devices.
The full device dimensions range from >10 cm for displays and solar cells to about
1mm for individual transistors. Lateral dimensions are typically below 100µm,
while the individual film thickness ranges from several 100nm down to about 1nm
for single molecules.
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2 motivation

plantable devices work as enzyme-based electrochemical biosensors,
with a label-free, selective, and sensitive detection [6]. These appli-
cations require the materials to be biocompatible, or even biodegrad-
able [5, 7]. The strong interaction of organic materials with light can
be used in optoelectronic devices like OLEDs, solar cells, light sen-
sors, or for artificial photosynthesis [8, 9].

Important length scales in organic electronic devices extend over
several orders of magnitude, from the centimeter scale down to the
nanometer scale. Displays or solar cells reach dimensions of >10 cm
and require a constant performance over the whole area. Single or-
ganic transistors can be easily manufactured in the millimeter scale,
with lateral structures <100µm. Individual layers of such devices are
typically <100nm thin, down to single molecule layers of about 1nm.
The intermolecular spacing, which is important for charge transfer be-
tween the molecules, is typically also <1nm.

To build electronic devices, various fabrication steps are required.
Each processing step can influence the overall electronic properties,
by changing the film structure across multiple length scales [10]. Most
polymers are solution processable, which favors convenient process-
ing steps without the need for high temperatures. However, polymer
materials are also prone to impurities, for example from the chemical
synthesis. Small molecules can be purified efficiently and can be de-
posited under vacuum conditions, in a clean and controlled process.
Dependent on the substrate modification, organic materials can either
show a de-wetting behavior with separated islands, or form closed
and smooth films [11]. Individual molecules often build crystalline
layers, with crystalline grain sizes from <100nm to >10µm. The
crystals can be very pure or can exhibit imperfections with static and
energetic disorder. Furthermore, organic films can show polymor-
phism, the presence of different crystalline structures within the same
film [12]. By incorporating guest molecules in molecular host layers,
called molecular doping, the electronic potential near preferred ag-
gregation areas is changed strongly [13, 14]. Finally, the organic layer
can be damaged by the evaporation of metal top contacts, which can
diffuse into the organic film, assembling to metal nano-clusters [15].
All these structural effects influence the electronic characteristics of
the fabricated devices.

To identify performance bottlenecks and to understand the device
properties in full detail, the local structural and the local electronic
properties need to be understood. Therefore, various microscopy
techniques can be used [16], like transmission electron microscopy
(TEM) [17, 18], transmission X-ray microscopy (STXM) [17, 19], Kelvin
probe force microscopy (KPFM) [20], infrared (IR) scattering-type
scanning near-field optical microscopy (s-SNOM) [21, 22], scanning
photocurrent microscopy (SPCM) [23–29], and electric-field-induced
optical second-harmonic generation (EFISHG) [30, 31]. Novel mi-



1.1 this work 3

m
ic

ro
sc

op
e 

re
so

lu
ti

on

wavelength λ
0.1 nm 1 nm 10 nm 100 nm 1 µm 1 mm10 µm 100 µm

THz s-SNOM

SPCM
microdi�raction
imaging

1 mm

100 µm

10 µm

1 µm

100 nm

10 nm

1 nm

0.1 nm
di�raction lim

it

Figure 2: Overview of the used microscopy methods.
In the course of this thesis, three microscopy methods were used: Microdiffraction
imaging, using X-rays at 0.1nm wavelength λ, scanning photocurrent microscopy
(SPCM) with visible light at 488nm and 633nm, and terahertz (THz) scattering-type
scanning near-field optical microscopy (s-SNOM) with a wavelength of 0.5mm.

croscopy methods, which were successfully used with inorganic semi-
conductors, need to be tested carefully for organic semiconductors.
The inherent softness of the organic materials might hinder a straight-
forward application.

1.1 this work

My research was driven by the goal of understanding structural and
electronic effects in small molecule thin films and devices through the
visualization of microscopic and nanoscopic properties. Accordingly,
I pursued a two-fold strategy. One the one hand, novel microscopy
techniques were developed and tested with organic samples. Micro-
diffraction imaging, which had been established for inorganic semi-
conductors shortly before this work, was demonstrated as a suitable
tool for organic semiconductors [32]. All-electronic terahertz (THz)
nanoscopy was developed, successfully operated with lowly doped
Si [33], and tentatively applied to organic samples. On the other hand,
pentacene [34] and epindolidione (Epi) [35] devices were investigated
with photocurrent microscopy. For these materials, the different pho-
toresponse mechanisms were determined and clarified. An overview
of the used microscopy methods with the respective wavelength and
the spatial resolution is shown in Figure 2. In summary, this thesis
should help to understand the photoresponse effects in more detail,
and should help to extend the toolset of microscopy methods for or-
ganic semiconductors. Common principles of the used microscopy
methods are emphasized in the following.



4 motivation

Development and application of novel microscopy techniques
Both utilized methods, microdiffraction imaging and terahertz (THz)
nanoscopy, employ an optical excitation and the detection of scat-
tered light from the sample. With microdiffraction imaging, using
hard X-rays at a wavelength of 0.1nm, the light is diffracted from
the crystalline planes of the measured samples. Here, we investi-
gated the local crystallinity of pentacene thin films [32]. All-electronic
THz nanoscopy is a super-resolution microscopy at a wavelength of
0.5mm, achieving a spatial resolution orders of magnitude below the
Abbe diffraction limit. Here, the light is scattered by the near-field
interaction of a sharp, metallic tip with the probed sample. THz
nanoscopy works purely optical but allows to investigate the local
conduction properties of charge carriers at low densities. We demon-
strated this sensitivity for a doped Si sample [33]. The desired near-
field signal is separated from the large background by a periodic sig-
nal modulation a given frequency, and a demodulation of the mea-
sured light at the same frequency.

Photocurrent microscopy (SPCM) of organic field-effect transistors
With the SPCM measurements, the understanding of the electronic
device response on illumination should be deepened. Here, the sam-
ple is excited optically, but analyzed electronically. The illumination
is also modulated at a specific frequency, which allows separating
the photoresponse from the background via frequency demodulation,
similar to the s-SNOM. By analyzing the SPCM maps and transistor
curves, we concluded that SPCM highlights the dominant voltage loss
mechanism in pentacene field-effect transistors (FETs), either from
contact resistance or from charge de-trapping [34]. For Epi FETs, we
could separate the influence and photoresponse position of electrons
and holes. The Epi FETs showed two kinds of photoresponse, a dis-
placement current under the contacts and an enhanced conduction
due to de-trapping in the transistor channel [35].

The following chapters provide a detailed introduction to my con-
ducted research. Important concepts of semiconductors and small
molecule semiconductors are described in chapters 2 and 3. Basic
principles and results of microdiffraction imaging and THz nanoscopy
are summarized in chapters 4 and 5. An introduction to SPCM and
a summary of the results on pentacene and Epi FETs is provided in
chapters 6 and 7. Furthermore, I discuss insights and considerations
beyond the associated publications in the respective chapters. Finally,
future prospects are outlined in chapter 8.

The results, which were published during this work, are attached
as full articles in appendix A, with the supplementary material in
appendix B. Detailed descriptions of the sample fabrication and the
SPCM setup are provided in appendices C and D, respectively.



2
E L E C T R O N I C P R O P E RT I E S O F S E M I C O N D U C T O R S

Semiconductors are characterized as solid-state materials with the
conductivity between conductors and insulators. This chapter pro-
vides an introduction to the basic concepts of semiconductors and the
application in field-effect transistors (FETs), following the textbook of
Simon M. Sze [36]. In semiconducting materials, electrons can occupy
specific energy ranges, which are described by the electronic band
structure. The closest bands to the Fermi level are called the valence
band and conduction band. These bands are separated by the band
gap, which cannot be occupied. The electrons, which partially fill
the conduction band with an electron density n, can move around
freely and respond to electric or magnetic forces. An almost com-
pletely filled valence band can be described by the concept of holes,
positively charged particles with a hole density p and similar behav-
iors as electrons. For intrinsic semiconductors at finite temperatures,
electrons are continuously excited from the valence to the conduction
band, leaving holes in the conduction band. In thermal equilibrium,
the charge carrier concentrations satisfy the relationship

pn = ni
2 ,

where ni is the intrinsic carrier concentration. The conductivity
of a semiconductor can be varied by inducing impurities to the ma-
terial, either electron donors or electron acceptors. Semiconductors
with donors are named n-type, and semiconductors with acceptors
are named p-type. The charge carriers with higher concentration are
called majority carriers, the charge carriers with lower concentration
are called minority carriers. For a p-type semiconductor, holes are
the majority carriers and electrons are the minority carriers.

In an electric field E, the charge carriers drift along the field and
contribute to a total current density j. This current density is the sum
of the electron and hole current density in opposite directions,

j = jn + jp = σE = (enµn + epµp)E ,

with the conductivity σ, the elementary charge e, the electron mo-
bility µn, and the hole mobility µp. An electron holds the charge −e,
and a hole the charge e.

If there is a spatial variation of charge concentration in the semicon-
ductor, a diffusion current can occur. The charges are moving from
a region of high concentration to a region of low concentration. For
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6 electronic properties of semiconductors

electrons in a one-dimensional gradient along the distance x, the drift
current density is

jn = eDn
dn

dx
,

with the diffusivity Dn. The diffusivity is related to the mobility
by the Einstein relation

Dn =
kT

e
µn ,

via the Boltzmann constant k, the temperature T , and the elemen-
tary charge e.

When an electrical field and a concentration gradient are present at
the same time, both current contributions are flowing. Consequently,
the current density equations for electrons and holes read as

jn = enµnE+ eDn
dn

dx
, jp = epµpE− eDp

dp

dx
.

If additional charge carriers are injected in the semiconducting ma-
terial, pn > ni2, a non-equilibrium condition is present. These charge
carriers are called excess carriers and can, for example, be injected by
biasing or optical excitation. The optical excitation, creating an elec-
tron in the conduction band and a hole in the valence band, increases
the electron and hole concentrations by the same amount. The non-
equilibrium condition tends to relax to the equilibrium condition via
charge recombination of electrons and holes. This recombination can
be radiative, emitting a photon, or non-radiative, dissipating heat to
the material.

For a direct band gap material, the thermal band-to-band gener-
ation rate Gth and recombination rate Rth describe the equilibrium
charge densities for electrons nno and hole pno. When illuminating
the semiconductor, an additional generation rate GL is introduced.
For a low optical injection in a p-type semiconductor, the lifetime
of the excess minority electrons is described by the proportionality
constant β and the equilibrium hole density,

τn ≡
1

βpno
.

In indirect band gap semiconductors, this direct recombination rate
is very low because of the nonzero momentum difference between
the electrons and holes. Instead, the recombination is mediated by
localized energy states in the band gap. These energy states can act
as generation and recombination states for electrons and holes, with
the density Nt. The lifetime for excess minority electrons in a p-type
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semiconductor, with low optical injection, and recombination centers
in the middle of the band gap can be approximated as

τn ≡
1

vthσnNt
,

with the thermal velocity of charge carriers vth, and the capture
cross section for electrons σn.

When all previous described effects, drift, diffusion, generation,
and recombination occur at the same time in a semiconductor, the
continuity equation for the density change over time t can be derived
for electrons and holes,

∂n

∂t
=
1

e

∂jn

∂x
+ (Gn − Rn) ,

∂p

∂t
= −

1

e

∂jp

∂x
+ (Gp − Rp) .

Additionally, the electric field E is dependent on the semiconductor
dielectric permittivity ε and the space charge density ρ via Poisson’s
equation,

dE

dx
=
ρ

ε
.

The space charge density is the algebraic sum of all negative and
positive charge densities. In summary, the continuity equations to-
gether with Poisson’s equation describe the most relevant effects, for
charge transport in semiconductors.

2.1 field-effect transistors

The investigated samples featured field-effect transistor (FET) geome-
tries. FETs are three-terminal devices, in which the electrical response
is controlled by an electrical field [36]. Organic FETs (OFETs) are
usually fabricated as thin-film transistors (TFTs), by depositing and
modifying several layers with a typical layer thickness below 100nm.
A schematic of an organic field-effect transistor (OFET) with top-
contacts and a bottom-gate is shown in Figure 3. The semiconducting
device channel between the source electrode and the drain electrode
is separated from the gate electrode by an insulating, dielectric layer.
The transistor current between source and drain depends strongly on
the applied gate voltage. If the gate electric field accumulates charges
at the semiconductor/dielectric interface, a current is flowing, and
the transistor is switched on. If the channel is depleted from charge
carriers, no current is flowing, and the transistor is switched off.

Different operating regimes can be distinguished in a FET, namely
the subthreshold, the saturation, and the linear regime. In the sub-
threshold regime, the charge layer starts to be accumulated and the
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Figure 3: Schematic of a top-contact OFET.
The bottom-gate contact controls the current between the source and the drain,
through the organic semiconductor.
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Figure 4: Schematic device characteristics of a thin-film transistor.
a) Output curve IDS vs. VDS. b) Transfer curve IDS vs. VGS. c) Transfer curve
IDS

0.5 vs. VGS for extracting the mobility and the threshold voltage.

current rises exponentially with the gate potential. In the saturation
regime, the charge layer is accumulated, but not over the whole tran-
sistor channel. Near the drain contact, all charge carriers are collected
by the drain, leading to a space charge transport in this region. The
transistor current IDS in the saturation regime is given by

IDS =
W

2L
µCi(VGS − Vth)

2 ,

with the channel width W, the channel length L, the mobility µ,
the capacitance per area Ci, the gate voltage VGS, and the threshold
voltage Vth of the transistor. Finally, in the linear regime, the charge
layer is accumulated over the whole transistor channel. Here, IDS is
proportional to the applied drain voltage VDS.

To operate FETs at low voltages with high current, a high mobil-
ity µ and a low threshold voltage Vth is desired. The mobility µ of the
transistor can be extracted from measuring the slope ∆IDS0.5/∆VGS,
as shown in Figure 4c. This mobility is not the intrinsic mobility of
the semiconductor but the mobility of the whole device. Therefore, it
can depend on various parameters, such as the contact resistance be-
tween the top contacts and the semiconductor, or the interface quality
to the dielectric layer. Often, the contact resistance is gate-dependent,
changing the estimated mobility by one magnitude or more [37].



3
S M A L L M O L E C U L E O R G A N I C S E M I C O N D U C T O R S

Small molecule organic semiconductors typically contain aromatic
compounds with delocalized π-electrons. The π-electrons are shared
between the atoms of the aromatic compound, which can even extend
over the whole molecule. In aggregated solids, the π-electrons can
also be exchanged between neighboring molecules, making the solid
a (semi)conductor. The π-electrons fill the molecular orbitals up to the
highest occupied molecular orbital (HOMO). The next, empty molec-
ular orbital is called the lowest unoccupied molecular orbital (LUMO),
which is separated from the HOMO by an energy gap. The molecules
can aggregate to molecular crystals, forming large single crystals, or
polycrystalline thin films. In the solid-state form, the energy levels
for charge transport are also referred as HOMO and LUMO.

Charge transport in molecular semiconductors occurs within the
range of two limiting boundaries, namely band-like transport and
hopping transport. The band-like regime features a delocalization of
the charges over several molecules, whereas, in the hopping regime,
the charges are localized on single molecules. Charge transport in or-
ganic devices is often dominated by trap states for the charge carriers,
meaning that the charges get localized on specific positions. Further
descriptions about the principles of organic electronics can be found
in the in the textbooks of Martin Pope & Charles E. Swenberg [1], and
of Markus Schwoerer & Hans C. Wolf [2].

3.1 pigment semiconductors

A variety of molecules can be used as organic semiconductors. Tra-
ditionally, these molecules form van der Waals crystals, driven by
the search for large π-electron systems. One drawback of the weak
van der Waals forces is the low stability against environmental in-
fluences, which can cause device degradation. Higher stability was
shown for pigment molecules, an emerging class of molecular semi-
conductors. These pigment molecules feature polar groups, which
form the stronger hydrogen bonds to neighboring molecules. There-
fore, on the one hand, the π-electron systems of individual pigment
molecules are smaller; but, on the other hand, the molecules can be
packed more tightly, due to the higher intermolecular forces. This
tighter molecular packing enhances the charge transfer between the
neighboring molecules, which is needed for good semiconductors.
For the interested reader, a broader overview of the field of pigment

9
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semiconductors is provided in the reviews of Eric D. Głowacki et
al. [38], and of Marcel Gsänger et al. [39].

3.2 photogeneration of charge carriers

Organic materials, especially pigments, feature a strong light absorp-
tion. Upon illumination, an absorbed photon forms an electron-hole
pair (exciton), that is bound by the Coulomb attraction potential

V =
e2

4πεε0r
,

with the electron charge e, the relative permittivity ε, the vacuum
permittivity ε0, and the electron-hole distance r. The Coulomb po-
tential of organic materials is typically in the order of a few 100meV ,
caused by the low permittivity (ε = 2− 4). With the thermal energy
of 25.7meV at 25 ◦C room temperature, the excitons do not dissociate
spontaneously, like in inorganic materials (ε = 11.7 in Si). For the
charge separation, an additional driving force is needed, like excess
energy, a local electrostatic environment, or an applied electric field.
A prevalent method to increase the yield of charge separation is the
introduction of donor-acceptor heterojunctions in the organic devices.

This sensitivity of organic semiconductors to illumination is em-
ployed in solar cells, FETs, and photodiodes. Organic phototransis-
tors are commonly described by two different effects, the photovoltaic
and the photoconductive effect. The photovoltaic effect features exci-
ton splitting with charge separation. In contrast, the photoconductive
effect comprises an enhanced conduction from secondary processes
like contact-resistance lowering or charge detrapping. This model has
been derived for inorganic transistors [40, 41] and applied for organic
phototransistors [42], but the overall description is not entirely reli-
able [43]. The optoelectronic phenomena of organic semiconductors
and devices surely are material-dependent and require an experimen-
tal investigation and verification. For further detailed descriptions
of organic optoelectronic materials, the curious reader is referred to
the reviews of Oksana Ostroverkhova [8], and of Kang-Jun Baeg et
al. [42].

3.3 pentacene

Pentacene (C22H14) is one of the best characterized organic semi-
conductors, showing high charge mobilities µ = 2 cm2 V−1 s−1 to
5 cm2 V−1 s−1 [44, 45]. The molecules consist of five benzene rings,
fused to a linear molecule from the class of polyacenes. Individual
molecules form van der Waals crystals in a herringbone structure and
can assemble in four different crystal polymorphs [46]. Two of these
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ba c

Figure 5: Structure of pentacene.
a) Structural formula of pentacene, consisting of five benzene rings. b) View along
the a-axis of the thin-film phase (TFP) unit cell. c) View along the c-axis of the TFP
unit cell, showing the herringbone structure.

polymorphs occur in electronic thin film devices, the Campbell or
bulk phase (BP) [47, 48], and the thin-film phase (TFP) [49]. The thin-
film phase is substrate induced during growth and can undergo a
phase transition into the thermodynamically stable bulk phase. Note
that the name convention for the lattice parameters of pentacene unit
cells has changed since the original publications of R. B. Campbell
et al. [50]. The unit cell of TFP pentacene is shown in Figure 5, cre-
ated with the software Mercury [51]. Pentacene thin films are pre-
pared in high vacuum conditions via molecular beam deposition.
On hydrophobic substrates, the pentacene molecules stand upright
and form molecular layers with a layer spacing of 15.4Å (TFP) and
14.4Å (BP). BP pentacene can grow in small crystallites within the
surrounding TFP pentacene. These crystallites appear as perpendic-
ular ellipsoids with a length up to several microns, as shown by IR
s-SNOM [22]. This study was mainly conducted by Christian Wester-
meier, the results are shown in appendices A.8 and B.6. Upon illumi-
nation of a pentacene film, singlet excitons are generated, undergoing
an ultrafast fission into triplet excitons [52, 53]. These triplet excitons
are tightly bound, can react with trapped charges, or decay radiation-
less. The photocurrent effects of pentacene devices are summarized
in the review of Amrita Masurkar & Ioannis Kymissis [24].

3.4 epindolidione

Epindolidione (Epi) is a pigment semiconductor, typically used by the
coloring industry as a yellow colorant. The semiconducting proper-
ties of Epi were pioneered by Eric D. Głowacki, showing a charge mo-
bility up to 1.5 cm2 V−1 s−1 [54, 55]. Neighboring Epi molecules form
hydrogen bonds, adding up to long molecular chains. These chains
are stacked to a brick-wall crystal structure with small intermolecu-
lar distances, favoring charge transfer between adjacent chains [55,
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NO H

H N O

Figure 6: Structure of epindolidione (Epi).
a) Structural formula of Epi. b) View along the a-axis of the unit cell, with hydrogen
bonds between the neighboring molecules, indicated as cyan lines. c) View along
the c-axis of the unit cell, showing the brick-wall structure.

56]. The crystal structure of Epi is shown in Figure 6, calculated
with the software Mercury [51]. The relative permittivity of Epi is cur-
rently not determined. Like pentacene thin films, Epi thin films are
produced with molecular beam deposition. A key advantage of Epi
is its outstanding chemical stability. The devices can be operated in
aqueous buffer solutions from pH 3 to pH 10 [55], can catalyze water
into hydrogen peroxide (H2O2) [57], and can be functionalized with
proteins [58].
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M I C R O D I F F R A C T I O N I M A G I N G

Part of the findings presented in this chapter have been published [32]. The
full article can be found in appendix A.1.

X-ray diffraction measures the periodic distances of atomic or molec-
ular crystals in the reciprocal space [59]. The development of mod-
ern X-ray synchrotron beamlines leads to higher photon flux, smaller
beam diameters, and advanced data handling. At the beamline ID01
of the European Synchrotron Radiation Facility (ESRF), an optimized
method of scanning X-ray microscopy has been developed shortly be-
fore this work [60]. For this method, the X-ray beam is focused by a
Fresnel zone plate to a sub-µm spot, the sample and the X-ray detec-
tor are set to a Bragg position of the investigated crystalline material:

nλ = 2d sin(θ) ,

with n ∈N, λ the wavelength, d the lattice spacing, and θ the angle
between the lattice plane and the incoming beam. The momentum
transfer q can be calculated with

q =
4π

λ
sin(θ) .

Now, the sample is scanned over the beam, recording a two-dimen-
sional (2D) map of the Bragg intensities.

During beamtime at ID01, we have successfully imaged a polymor-
phic pentacene sample with BP and TFP pentacene at the different BP

X-ray source

Fresnel zone plate

sample on xyz-stage

2D-detector

N2 gas flow

Figure 7: Schematic of microdiffraction imaging.
The X-ray beam is focused with a Fresnel zone plate on the sample. The scattered X-
rays are recorded by a two dimensional detector. To avoid beam damage, the sample
is blowed with dry N2. For imaging, the sample is scanned with respect to the X-ray
beam. Reprinted from [32].
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out-of-plane

in-plane

a b

in-plane

Figure 8: Schematic of X-ray scattering techniques for in-plane analysis.
a) Transmission X-ray scattering. b) Grazing-incidence X-ray scattering (GIXS).

and TFP Bragg positions, respectively. The 2D maps, recorded at the
same sample area show a mutually exclusive BP and TFP distribution.
The longer lattice distances, compared to inorganic semiconductors,
require lower scattering angles and lead therefore to a larger beam
footprint, and a lower spatial resolution. Furthermore, a pentacene
transistor was measured with a microdiffraction line scan, showing
that the crystal structure of the pentacene under the gold (Au) top
contacts was not damaged by the Au layer. The findings are pre-
sented in appendix A.1.

4.1 azimuthal analysis of polycrystalline pentacene

When pentacene is deposited on a heated Si substrate, a polymor-
phism of BP and TFP pentacene can develop. The amount of BP
pentacene even grows over time, often in the shape of approximately
perpendicular ellipsoids within the surrounding TFP pentacene ma-
trix [22]. While IR s-SNOM identifies the local crystal structure of
pentacene, it cannot determine the azimuthal (in-plane) orientation
of the pentacene crystallites. This additional information can be pro-
vided by scattered hard X-rays. A possible technique is the trans-
mission geometry, shown in Figure 8a, where the focused X-rays hit
the sample almost perpendicular. The scattered X-rays, with a mo-
mentum transfer parallel to the sample plane, are detected behind
the sample. To avoid absorption of the Si substrate, 15nm pentacene
was evaporated on a free-standing, 50nm thin silicon nitride (Si3N4)
membrane. For a successful measurement, the sample needs to be in
the center of rotation, while standing upright on the sample holder.
These geometrical requirements could not be met during our beam
time at ID01 so that no successful measurement was recorded.

Another method to determine the azimuthal crystalline orientation
is grazing-indicence X-ray scattering (GIXS) [61]. Here, the incoming
X-ray beam hits the sample at a small angle, almost parallel to the sub-
strate surface, and undergoes total reflection, as shown in Figure 8b.
For macroscopic X-ray beams, this method is restricted to single crys-
tals because all orientations of polycrystalline samples are present
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Figure 9: Microfocused GIXS of polymorphic pentacene.
a) Calculated diffraction indices for thin-film phase (TFP) pentacene (black) and bulk
phase (BP) pentacene (gray). b) Microfocused grazing-indicence X-ray scattering
(GIXS) detector images at different sample positions of a 15nm thin pentacene film,
showing scattering intensity variations of the diffraction peaks. The two images were
representatively chosen from a spatial line scan.
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in the beam. With a micro- or nanofocused beam, the X-rays are
scattered only from a small area of the sample with a reduced num-
ber of crystalline orientations. The Bragg conditions of the scattered
X-ray beam contain an in-plane component qxy, and an out-of-plane
component qz. The calculated diffraction indices for BP and TFP pen-
tacene, generated with the software package simDiffraction [62], are
shown in Figure 9a. The GIXS measurements were recorded with
an incident beam angle of 0.1°, corresponding to a beam footprint of
200µm × 350nm on the sample. As the grain size of the pentacene
film was about 2µm2, and therefore, the X-ray beam was scattered
from a limited number of grains. The sample was moved perpendic-
ular to the beam path and a line scan of GIXS maps was recorded.
The two representative GIXS maps in Figure 9b show a varying scat-
tering intensity for different diffraction peaks, indicating a change in
the grain rotation. As the measured pentacene film was only 15nm
thin, the diffraction features were broadened perpendicular to the
substrate [59]. Therefore, composite diffraction features were formed
from the individual scattering peaks, and the azimuthal orientation
of BP pentacene within TFP pentacene could not be determined.

In-plane information can also be gathered from scanning transmis-
sion X-ray microscopy (STXM) and near-edge X-ray absorption fine
structure (NEXAFS), using focused soft X-rays, that excite electronic
transitions from an atomic core level. With a focus size in the or-
der of 20nm, the spatial resolution of these methods is comparable
to the spatial resolution of an s-SNOM. The X-ray absorption can
be tuned to be sensitive to the film thickness or to the azimuthal
rotation, and, therefore, can determine the orientation of individual
pentacene grains [63, 64]. In the course of this thesis, we investigated
polymorphic pentacene in a combined study with IR s-SNOM, STXM,
and NEXAFS. With IR s-SNOM, I determined the position of the BP
ellipsoids of 15nm pentacene on a free-standing Si3N4 membrane.
The STXM and NEXAFS at the same sample positions measurements
were performed by Xiaoyan Du, FAU Erlangen-Nürnberg. We could
determine that the BP ellipsoids hold the same azimuthal orientation
as the surrounding TFP matrix. However, the growth direction of the
ellipsoids could not be fully identified. The results of this study can
be found in the dissertation of Xiaoyan Du [65].



5
T E R A H E RT Z N A N O S C O P Y

Part of the findings presented in this chapter have been published [33]. The
full article can be found in appendix A.2 and the supplementary material in
appendix B.1.

Scattering-type scanning near-field optical microscopy (s-SNOM) al-
lows bypassing the Abbe diffraction limit by focusing light on the
small metallic tip of an atomic force microscope (AFM) [21]. At the
tip apex, the light is strongly enhanced, and interacts with the probed
sample, if the tip is near the sample. The lateral resolution of an
s-SNOM is determined by the size of the tip apex, typically below
50nm. The near-field interaction can be qualitatively described by
a point dipole at the tip apex, which induces a mirror dipole in the
sample, scattering light with the amplitude s and the phase ϕ as

seiϕ ∝ α

1− αβ
16π(a+z)3

.

Here, α is the point-dipole polarizability of the tip, β = (ε− 1)/(ε+

1) is the response function of the sample, and z is the distance be-
tween the tip and the sample surface. This point-dipole model was
extended to a finite-dipole model, for a quantitative prediction of
the material contrasts [66]. By oscillating the tip at the frequency Ω,
corresponding to tapping mode AFM, the near-field interaction is pe-
riodically switched on and off. Therefore, the near-field signal can be
separated from the large background a signal demodulation at har-
monics of the tip frequency nΩ. Thus, near-field microscopy allows
determining the local permittivity of the probed material in a small
area under the metallic tip.

An important application of s-SNOM is the near-field conductivity
mapping of semiconductors. As in far-field spectroscopy, the collec-
tive motion of charge carriers is excited and analyzed optically. By
measuring and analyzing the optical spectra, electronic properties,
such as the charge density and charge mobility can be extracted. For
a broader introduction to s-SNOM conductivity measurements, the
interested reader is directed to the review of Fritz Keilmann et al. [67],
and of Mengkun Liu et al. [68].

Semiconductors with a low charge density can be assessed with
light at frequencies f around 1 THz (λ = 0.3mm). In this region, suf-
ficiently fast and sensitive detectors with a high dynamic ratio are
still under development. During the course of this work, we cou-
pled two emerging methods of THz light detection to an s-SNOM.

17
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Figure 10: Schematic of all-electronic terahertz near-field microscopy.
The emitted light from the THz transceiver is focused with a parabolic mirror on
the oscillating tip in the s-SNOM, and the back-scattered light is guided on the
same optical path back into the THz transceiver. In the transceiver, the light is
electronically detected and mixed to two quadrature signal outputs with a 90° phase
shift, I and Q. These signals are demodulated at the harmonic frequencies nΩ of
the tip frequency Ω, and the scattered near-field amplitude sn and phase ϕn are
calculated from the quadrature signals. Reprinted from [33].

First, laser self-detection of a liquid helium cooled quantum cascade
laser (QCL), where the signal is measured as voltage fluctuations of
the laser driving voltage [69, 70]. The results of this work are shown
in appendix A.6. Second, an all-electronic detection with a room
temperature transceiver (transmitter and receiver), that generates and
measures the THz radiation electronically. As the characteristic prop-
erty of both methods, the scattered light is guided back into the light
source, on the same optical path as the emitted light. Thus, the experi-
mental setup can be very compact, omitting, for example, an external
beam splitter.

With the all-electronic terahertz (THz) nanoscopy, we demonstrated
background-free amplitude and phase images of Si at 0.6 THz, equiva-
lent to λ = 0.5mm wavelength. The Si sample contained well-defined
nanosctructures in topography and doping density. One area of inter-
est was a p-n transition from a region, doped at an electron density
ne ≈ 2× 1017 cm−3, to a substrate region with a hole density nh =

2× 1016 cm−3. By measuring this p-n transition and calculating the
corresponding near-field spectra, we could prove a lateral resolution
of 50nm = 10−4λ. The results of our measurements are shown in
appendix A.2.

In addition to the experiments, we could confirm the measured
near-field contrasts by calculations, described in the following para-
graph. Under illumination, the free charges follow the oscillation
of the incoming electromagnetic field, for frequencies ω up to the
so-called plasma frequency ωp. Semiconductors appear metallic for
frequencies below ωp and transparent for higher frequencies. This
behavior is described by the Drude model
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Figure 11: Calculated permittivity and near-field response of Si at 0.6 THz.
a) Real part Re ε (black) and imaginary part Im ε (red) of the Si permittivity. b)
Scattering amplitude s3 (black) and phase ϕ3 (red), normalized to Au. The calcula-
tions were performed for electrons (thin curves) and holes (thick curves). Adapted
from [33].

ε = ε∞ −
ω2p

ω(ω+ iτ−1)
,

with the high-frequency permittivity of the material ε∞, and the
mean free time between charge collisions τ. The plasma frequency
strongly depends on the charge carrier density and ranges from the
infrared region for highly conducting semiconductors to the THz re-

gion for lowly conducting semiconductors [67]. With ωp =
√
ne2

ε0m
,

and τ = mµ
e , the permittivity can be written as

ε = ε∞ −

ne2

ε0m

ω(ω+ i emµ)
.

Here, n is the charge density, e the elementary charge, ε0 the
vacuum permittivity, m the effective charge carrier mass, and µ the
charge mobility. Note that the mobility µ is often dependent on the
charge density n [71–73]. The calculated real part Re ε and imagi-
nary part Im ε of the permittivity for p-doped and n-doped Si are
shown in Figure 11a. For this calculation, the frequency was set to
0.6 THz (ω = 20 cm−1), and literature values for the mass and density-
dependent mobility of electrons and holes were used [71, 74]. The
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shift between the p-doped and n-doped resonance can be mostly at-
tributed to the lower mobility of holes compared to electrons in the
low density regime. Using this permittivity, the near-field response
was calculated with the finite dipole model (effective tip length of
600nm, tip radius of 50nm, illumination angle of 60°) [21, 66]. Nor-
malized to Au, the third harmonic scattering amplitude s3/s3,Au and
scattering phase ϕ3 −ϕ3,Au are shown in Figure 11b.

5.1 applicability to organic semiconductors

THz spectroscopy of organic semiconductors allows measuring in-
trinsic properties of the investigated materials because the excited
charge carriers oscillate on the nanometer scale. Thin films of small
molecule organic semiconductors typically grow in a polycrystalline
structure, with crystalline grain sizes up to several microns [22, 54].
Therefore, most charge carriers are not affected by the grain bound-
aries. The analysis of THz spectra provides insight about the elec-
tronic properties in organic materials, characterizing band transport
and charge trapping of optically or electrically injected charge car-
riers [75–79]. Characteristic values for didodecyl[1]benzothieno[3,2-
b][1]-benzothiophene (C12-BTBT-C12), µ = 9.3 cm2V−1s−1,m = 2me
were extracted by Arend et al. [79], assuming a background permit-
tivity ε∞ = 3.5 [80].

With these values, the permittivity and near-field response can be
calculated, as shown in Figure 12. Here, the mobility was treated as a
constant but should be considered density-dependent in more precise
calculations. The calculation shows the Drude resonance for charge
densities in the range of 1017 cm−3 to 1019 cm−3. Compared to Si,
these densities are higher, which can be assumed as a general trend
of organic semiconductors, owed to the lower mobility and higher
charge mass. These calculated charge densities can be accumulated
in FETs, achieving a sheet density n2D = 1012 cm−2 in the approxi-
mately 1nm thin accumulation layer [79], yielding a charge density
of 1019 cm−3 in the accumulation layer. However, the 50nm probing
depth of the s-SNOM [81] would reduce the near-field signal drasti-
cally if it came from the 1nm thin charge sheet. Another method
of adjusting charge densities in organic semiconductors is chemi-
cal or molecular doping, which can induce densities of >1020 cm−3

throughout the molecular film [13]. Thus, in principle, organic semi-
conductors hold the required properties for a THz s-SNOM analysis.

As a first experimental test, the organic semiconductor 2, 7-didecyl-
benzothienobenzothiophene (C10-BTBT), doped with tetrafluorotet-
racyanoquinodimethane (F4-TCNQ), was investigated. Upon doping
with F4-TCNQ, dimers of C10-BTBT and F4-TCNQ are formed [82].
The samples were kindly supplied by the group of Norbert Koch,
HU Berlin. The local electronic distribution of the doping should be



5.1 applicability to organic semiconductors 21

a

b
1017

0

2

4

0

50

100

1019nc(cm-3)

1017 1019nc(cm-3)

Re
 ε

0

0.5

1.0

s 3
 /
 s

3,
A
u

Im
 ε

0

0.3

0.6

φ
3 -

 φ
3,
A
u 
(r
ad

)

Figure 12: Calculated permittivity and near-field response of C12-BTBT-C12
at 0.6 THz.
a) Real part Re ε (black) and imaginary part Im ε (red) of the C12-BTBT-C12 permit-
tivity. b) Scattering amplitude s3 (black) and phase ϕ3 (red), normalized to Au.

examined with THz s-SNOM. Accordingly, the recorded measure-
ment at 0.6 THz, with a full platinum (Pt) tip and 194nm tapping
amplitude, is shown in Figure 13. Recorded from left to right, the
images show a strong correlation of the topography with the optical
near-field amplitude s1 and s2. While the topography was increas-
ing through the scan, the near-field amplitude was decreasing. Most
probably, the organic material was adsorbed at the tip, creating a di-
electric layer around the metallic tip, because the molecules were only
loosely bound to the substrate. This layer around the metallic tip sup-
pressed the periodic near-field enhancement between the tip and the
substrate, which is crucial for operating an s-SNOM. Therefore, no
stable experimental conditions were found. For future THz s-SNOM
experiments with organic semiconductors, this adsorption behavior
needs to be understood.
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Figure 13: Single-frequency 0.6 THz s-SNOM image of C10-BTBT:F4TCNQ.
Simultaneously recorded a) topography, b) THz amplitude s1, c) THz amplitude s2,
d) extracted profiles, averaged over all lines. The image was recorded column by
column, from left to right. During the scan, the topography increased and the THz
amplitude decreased.



6
C O N TA C T R E S I S TA N C E A N D C H A R G E C A R R I E R
T R A P S I N P E N TA C E N E

Part of the findings presented in this chapter have been published [34]. The
full article can be found in appendix A.3 and the supplementary material in
appendix B.2.

Scanning photocurrent microscopy (SPCM) describes the electronic
device response on a localized optical modulation [23]. The incoming
light is pulsed with a fixed frequency f, and the current is demodu-
lated at the same frequency, extracting the photocurrent Iphoto. A
schematic of the measurement principle is shown in Figure 14. De-
tailed descriptions of the home-made SPCM setup, used in this work,
are presented in appendix D.

Previous SPCM studies of pentacene FETs have identified distinct
photoresponse contributions, with different spatial signatures [24].
Confined to the edge of the source contact, the photoresponse was
attributed to an enhanced injection or a lowering of the contact re-
sistance [25, 26]. An SPCM signal near the contacts and in the chan-
nel was assigned to contact resistance and a varying mobility in the
channel [27]. Also in the channel, an inhomogeneous photoresponse
distribution was found, marking hotspots of charge carrier traps [28].
Here, the trapped positive charges (holes) are released by the preva-
lent triplet excitons, generated after light absorption. Recently, the
channel formation of pentacene transistors was mapped by varying
the applied drain and gate voltage [29]. In summary, there are two
main effects, contributing to the photoresponse in pentacene FETs,
exciton-splitting with charge-separation near the contacts, and charge
de-trapping within the channel. These effects can be separated, us-
ing different pulse frequencies f of the exciting laser [28]. The de-
trapping can be measured up to f = 100 kHz, whereas the confined
contribution at the contact also occurs at higher frequencies. However,
it had been unclear which kind of photoresponse could be expected
from freshly prepared pentacene FETs.

In the course of this dissertation, we could determine the device
characteristics, that cause the different photoresponse contributions.
This work was done together with Daniel Reiser during his mas-
ter’s thesis [83]. For this deduction, a pentacene FET with asym-
metric source/drain contacts was investigated. Asymmetric contacts
can occur from imperfections in the device fabrication and feature a
strongly direction-dependent transistor current due to an asymmet-
ric contact resistance RC. In the high RC direction, the SPCM maps
mainly showed the photoresponse at the source contact. In the other
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Figure 14: Schematic of photocurrent microscopy.
Visible light with a pulse frequency f is focused with an objective on a field-effect
transistor (FET), where the drain voltage VDS and gate voltage VGS is applied. The
current at the source contact IDS is demodulated at the pulse frequency f, provid-
ing the photocurrent Iphoto. Reprinted from [34], with the permission from AIP
Publishing.

direction with low RC, the maps revealed the inhomogeneous pho-
toresponse distribution within the transistor channel. Thus, we con-
cluded that the SPCM maps of pentacene FETs highlight the domi-
nant voltage loss mechanism, hindering the optimal charge transport.
The findings are presented in appendix A.3.

6.1 resistor network simulation model

For SPCM measurements, a focused laser excites the devices locally,
but the current is measured globally, over the entire contact area. The
extracted photocurrent ∆Iphoto is typically three orders of magni-
tude lower than the dark current Idark. In a theoretical study, it
was investigated, if the local thin-film properties can be reconstructed
from the SPCM maps. The main work of this study was done by Mo-
hammed Darwish, TU Munich. As the basic principle, trapped holes
in the transistor channel are illuminated at the position r and released
into the HOMO energy level, as shown in Figure 15a. Being released
from the traps, the holes contribute to the charge transport in the tran-
sistor channel. The transistor was modeled as a 2D resistor network,
and reduced to an equivalent resistor R. An inhomogeneous trap
distribution was initialized by assigning different values to the indi-
vidual resistors. Blocks of four resistors represented the illuminated
position and were sequentially manipulated, as shown in Figure 15b.
At each position, the current response, corresponding to a reduced
equivalent resistor R − ∆R, was calculated. In this way, an SPCM
map was constructed. Finally, the SPCM maps were compared to
the initialized trap distribution. This comparison showed indeed the
variations of the local trap density in the SPCM maps. However, near
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Figure 15: Principle of photocurrent simulation with a resistor network.
a) Schematic of trap states, illuminated at the position r. The trapped charges are
released into the HOMO and contribute to the transistor current with ∆Iphoto(r).
b) The transistor is modeled as a resistor network, which can be simplified to an
equivalent resistor R. Under illumination, the equivalent resistor is reduced to R−

∆R. Reprinted with permission from [84].

the contacts, the high conduction of the source/drain contacts was
dominating the SPCM maps, so that the trap density could not be
seen anymore. The results of this study are shown in appendices A.5
and B.4. Our earlier experiments also show an increase of the pho-
toresponse near the contacts, but the trap distribution is still clearly
visible (c.f. Figure 3a of appendix A.3). Thus, the strength of these
two effects, found by calculation, could be adjusted in future investi-
gations.





7
E L E C T R O N S A N D H O L E S I N E P I N D O L I D I O N E

Part of the findings presented in this chapter have been published [35]. The
full article can be found in appendix A.4 and the supplementary material in
appendix B.3.

The following chapter describes our investigations of the photore-
sponse in Epi FETs. This work was done together with Simone Stroh-
mair, who has finished her master’s thesis in the course of this dis-
sertation [85], and with Henrik Hecht, who is currently working on
his master’s thesis. Our SPCM measurements allowed to character-
ize the kinetics of electrons and holes in Epi transistors. In contrast
to previous SPCM measurements of pentacene [28, 83], the Epi de-
vices showed a strong photoresponse at positive gate voltages VGS,
while the holes were depleted from the semiconducting layer. A com-
prehensive understanding of the Epi photoresponse, containing drift,
diffusion, generation, and recombination, was achieved by a time
and frequency domain analysis at different voltage configurations.
Applying a negative drain voltage VDS, the device was operated as
a FET, while for VDS = 0V , it was operated as a metal-insulator-
semiconductor (MIS) diode. The SPCM measurements at different
pulse frequencies f of the incident light allowed us to identify the
photoresponse as a fast displacement current under the semitrans-
parent source/drain contacts. The charge carriers for this contribu-
tions were generated by exciton-splitting in the electric field between
the gate and the top contacts. In the FET configuration, the device
showed an additional low-frequency response, that was recognized
as exciton-assisted de-trapping of holes in the transistor channel. The
findings are presented in appendix A.4.

7.1 effects of contact resistance on the displacement

photoresponse

The photoresponse contribution from displacement currents was mea-
sured for positive and negative gate voltages VGS with respect to
the threshold voltage Vth, yet at different pulse frequencies f. For
VGS > Vth, the illumination-induced a higher total charge in the Epi
layer, and the displacement current was measured also at lower fre-
quencies, compared to VGS < Vth. Here, less charge was induced on
illumination, and the process finished faster. A similar effect can be
observed for two different FETs at negative gate voltages VGS. These
transistors presumably had a different contact resistance RC, result-
ing from a varying fabrication protocol. The high contact resistance
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Figure 16: Transient photocurrent of Epi FETs.
a) Comparison of two Epi FETs with high and low contact resistance RC. Gray areas
mark the times under illumination. b) The transient of the high RC transistor decays
within 0.5ms. c) The transient of the low RC transistor decays within 5µs

was the result of a titanium (Ti) adhesive layer under the slowly evap-
orated Au top contacts. The low contact resistance was achieved by
omitting the Ti layer and evaporating the Au contacts at a higher rate
of 11Å s−1. With the applied VGS < Vth and VDS = 0, holes are
accumulated at the Epi/tetratetracontane (TTC) interface but are not
drifting from source to drain. This configuration is equivalent to MIS
diodes with ohmic contacts of different quality. The response of the
devices to pulsed, global illumination is shown in Figure 16. Upon il-
lumination, negative transients are induced, with a fast rise time and
a slower decay. The transients of the high RC device show a decay
within 0.5ms, the low RC device is two orders of magnitude faster,
with a rise time of 0.2µs and a decay within 5µs. For low RC, the
holes are efficiently injected into the Epi layer and accumulated at
the TTC interface. Only a small amount of holes does not reach the
interface, due to traps within the Epi layer. For high RC, the hole
injection is hindered, meaning that the hole density at the TTC inter-
face is lower. The excitons in the Epi layer are split by the electric
field under the top contacts and positive charges are shifted toward
the TTC interface. The negative charges are drawn toward the top
contacts and eventually get extracted. Thus, for high RC, a higher
net charge needs to be shifted to the TTC interface, meaning that this
process is slower.
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O U T L O O K

In this work, the microscopic and nanoscopic properties of organic
thin-films and organic transistors were investigated. A comprehen-
sive SPCM analysis of pentacene and Epi revealed distinct, material-
specific contributions to the photoresponse. For pentacene FETs, the
SPCM maps highlight the dominant voltage-loss mechanism, either
contact resistance at the source contact, or trap states in the transistor
channel. Epi FETs show fast, light-induced displacement currents,
determined as electron-hole dissociation in the electric field under
the contacts. Additionally, in the channel, a slow response was mea-
sured, increasing the transistor current due to de-trapping of holes.
Besides resolving these SPCM contributions, organic thin-films were
analyzed with microdiffraction imaging and with THz s-SNOM. Mi-
crodiffraction imaging characterizes the local crystal structure, also
under metal contacts. THz nanoscopy probes the local charge den-
sity. A limiting factor are the fairly large lattice constants, which
increase the beam footprint for the Bragg scattering conditions in the
case of microdiffraction. The weak intermolecular binding compared
to the adhesivity of the metal AFM tip causes the molecules to attach
to the tip, and, therefore, to damp the periodic near-field interaction
of the THz nanoscopy. These issues need to be considered in future
investigations with these methods.

Futures studies could the combine the available microscopy meth-
ods to gain an in-depth understanding of the structure-function rela-
tionship in organic semiconductors. Some prospects are given in the
following, final paragraphs of this thesis.

Heterostructures of 2D Materials and Organic Semiconductors
Hybrid heterojunctions of 2D materials and organic semiconductor
nanosheets promise to combine the best properties of these two ma-
terial systems [86–90]. The organic layer strongly absorbs light, the
interface to the 2D material is used for efficient charge separation, and
the 2D material features efficient charge transport. For an excellent
device performance, the interface quality is crucial, which is hard
to achieve with poor growth of organic semiconductors on the 2D
materials. Therefore, a method, developed mainly by Simon Noever
in our laboratories, is used to stabilize and transfer the organic thin
films from a substrate with superior thin-film growth onto arbitrary
substrates [91]. The results of this work are shown in appendices A.7
and B.5. With these hybrid heterojunctions, the device response on
charge separation, electron transport and hole transport can be ex-
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perimentally investigated. The first investigated hybrid devices with
pentacene and molybdenum disulfide (MoS2) require N2 atmosphere
for operation. This atmosphere is provided by an encapsulation of
the sample stage, which shows first promising results at the moment.

Single-charge measurements of THz s-SNOM
In the presented results, the achieved lateral solution of 50nm also
implies a probing depth of the order of 50nm, giving a probing vol-
ume of (50nm)3 [81]. From this probing volume and a measured
charge density of 2× 1016 cm−3, the mean number of charges in the
probing volume is calculated to be 2.5. The limiting charge sensitiv-
ity in the used setup is certainly lower because the acquisition time
per pixel can be chosen longer, giving a higher signal to noise ra-
tio. Furthermore, a lower THz frequency, which is sensitive to even
lower charge densities, will probably enable a direct probing of single-
charge phenomena.
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Abstract
Tailoring device architecture and active film morphology is crucial for
improving organic electronic devices. Therefore, knowledge about
the local degree of crystallinity is indispensable to gain full control
over device behavior and performance. In this article, we report on
microdiffraction imaging as a new tool to characterize organic thin
films on the sub-micron length scale. With this technique, which
was developed at the ID01 beamline at the ESRF in Grenoble, a fo-
cused X-ray beam (300nm diameter, 12.5 keV energy) is scanned over
a sample. The beam size guarantees high resolution, while material
and structure specificity is gained by the choice of Bragg condition.
Here, we explore the possibilities of microdiffraction imaging on two
different types of samples. First, we measure the crystallinity of a
pentacene thin film, which is partially buried beneath thermally de-
posited gold electrodes and a second organic film of fullerene C60.
The data shows that the pentacene film structure is not impaired by
the subsequent deposition and illustrates the potential of the tech-
nique to characterize artificial structures within fully functional elec-
tronic devices. Second, we investigate the local distribution of intrin-
sic polymorphism of pentacene thin films, which is very likely to have
a substantial influence on electronic properties of organic electronic
devices. An area of 40µm by 40µm is scanned under the Bragg con-
ditions of the thin-film phase and the bulk phase of pentacene, respec-
tively. To find a good compromise between beam footprint and signal
intensity, third order Bragg condition is chosen. The scans show com-
plementary signal distribution and hence demonstrate details of the
crystalline structure with a lateral resolution defined by the beam
footprint (300nm by 3µm). The findings highlight the range of appli-
cations of microdiffraction imaging in organic electronics, especially
for organic field effect transistors and for organic solar cells.
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Abstract: Tailoring device architecture and active film morphology is crucial for improving organic 

electronic devices. Therefore, knowledge about the local degree of crystallinity is indispensable to 

gain full control over device behavior and performance. In this article, we report on microdiffraction 

imaging as a new tool to characterize organic thin films on the sub-micron length scale. With this 

technique, which was developed at the ID01 beamline at the ESRF in Grenoble, a focused X-ray 

beam (300 nm diameter, 12.5 keV energy) is scanned over a sample. The beam size guarantees high 

resolution, while material and structure specificity is gained by the choice of Bragg condition. 

Here, we explore the possibilities of microdiffraction imaging on two different types of samples. 

First, we measure the crystallinity of a pentacene thin film, which is partially buried beneath 

thermally deposited gold electrodes and a second organic film of fullerene C60. The data shows that 

the pentacene film structure is not impaired by the subsequent deposition and illustrates the potential 

of the technique to characterize artificial structures within fully functional electronic devices. Second, 

we investigate the local distribution of intrinsic polymorphism of pentacene thin films, which is very 

likely to have a substantial influence on electronic properties of organic electronic devices. An area 

of 40 µm by 40 µm is scanned under the Bragg conditions of the thin-film phase and the bulk phase 

of pentacene, respectively. To find a good compromise between beam footprint and signal intensity, 

third order Bragg condition is chosen. The scans show complementary signal distribution and hence 

demonstrate details of the crystalline structure with a lateral resolution defined by the beam footprint 

(300 nm by 3 µm). 

The findings highlight the range of applications of microdiffraction imaging in organic 
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electronics, especially for organic field effect transistors and for organic solar cells. 

Keywords: focused X-ray; polymorphism; multilayer; morphology; scanning X-ray diffraction 

microscopy; synchrotron 

 

1. Introduction 

Organic electronics allow for large scale, low cost, and low energy device fabrication. Today, 

organic electronics have found mass market application in digital displays consisting of organic light 

emitting diodes (OLED). In order to improve the performance of organic electronic devices, a 

detailed understanding of the device physics is essential. The challenge for highly ordered materials 

is twofold; on the one hand side, intrinsic properties, such as charge carrier mobility, depend on 

details of the pi-electron overlap [1] and polymorphism. Polymorphism is common among a variety 

of organic small molecule semiconductors [2–5]. Consequently, the domain size and the mutual 

distribution of the polymorphs are of great concern [6]. On the other hand, processing steps and 

interface phenomena often induce additional structural changes at the nm to micron scale, which may 

influence device performance. Close attention should be paid to contact regions because metal top 

contacts can influence the underlying organic layer by metal clusters diffusing in the organic film [7], 

while the growth mode of many organic materials on bottom contact metals is strongly disturbed, 

which changes the energy alignment of these materials [8]. In practice, top contact configuration in 

pentacene thin film transistors shows preferable device characteristics when not employing bottom 

contact electrodes which are functionalized [9]. Furthermore, the manufacturing of multilayer 

devices, such as organic light emitting diodes, organic photovoltaics and ambipolar organic field 

effect transistors (OFETs), demands the application of various sequential processing steps, including 

photolithography, imprint, shadow masks, spin casting, and annealing [10]. These subsequent 

processing steps can also modify the structure of subjacent films [11]. 

An experimental approach that allows nm-resolved, non-destructive probing of the crystal 

structure of organic devices, e.g. on top or below metal contacts of an OFET and in the conduction 

channel, would be very attractive. Recently, we introduced scattering-type scanning near field 

infrared optical microscopy (s-SNOM) to probe polymorphism in organic films [6]; however, this 

gentle technique does not work below Au contacts, which reflect back the IR light so that no 

information from below is accessible. Transmission electron microscopy (TEM) instead allows to 

image depth profiles of organic devices with close to molecular resolution, revealing interdiffusion of 

Au, originating from the top contact deposition [7]. However, the demanding cross section 

preparation requires cutting the device apart and the electron flux alters [12] or even disintegrates the 

molecular structure at prolonged exposure. 

In principle, X-ray techniques combine all needed properties: X-ray reflectometry, for example, 

is used to depth profile stratified media on sample surfaces as well as buried layers [13], whereas 

scattering geometries, such as grazing incidence X-ray scattering allow for surface sensitive probing 

of thin organic single and multilayers [14,15]. Although X-rays are commonly used to probe rather 

large areas, typically several hundred microns squared, there is so far only a small amount of reports 

on scanning X-ray diffraction with a sub-micron focused X-ray beam [16–19]. This microdiffraction 

imaging was used to study inorganic materials and can for example resolve local strain and lattice 
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orientation of semiconductors like Si and Ge. Studies using microdiffraction techniques on organic 

semiconductors are mostly limited to transmission measurements which resolve depth profiles of 

organic devices [20]. Ideally, the energy should be in the vicinity of ~ 20 keV because irradiating 

organic carbon compounds with high flux per area X-rays at lower energy leads to severe beam 

damage by incoherent scattering [21]. Here, we employ microdiffraction imaging in reflection 

geometry to study organic films, using a beam of 300 nm diameter at an energy of 12.5 keV, and 

cannot observe any beam damage. In this experiment, we map the lateral distribution of artificial and 

intrinsic structures in organic single- and multilayer thin-film devices. With microdiffraction imaging, 

it is possible to resolve the local crystalline structure on the surface and in buried layers, by scanning 

the beam over the sample and recording the intensity at specific angles, matching designated Bragg 

conditions. Furthermore, we discuss the current limitations of the lateral resolution and possible 

applications for this method. 

2. Materials and Method 

2.1. Sample preparation 

The organic semiconductor pentacene served as a model system for our microdiffraction 

experiments. When grown on silicon oxide, pentacene thin films are known to crystallize in two 

main structural phases, the so-called thin-film phase (TFP) and bulk phase (BP) [4,5,22–24]. 

For measuring buried organic structures in working multilayer devices, an ambipolar organic 

field-effect transistor (OFET) was fabricated. Here, a 40 nm layer of pentacene was used as p-type 

semiconductor, followed by 40 nm gold top contacts, and finally 30 nm of fullerene C60 as n-type 

semiconductor. The channel width and length were 2 mm and 50 µm, respectively. Highly n-doped 

silicon with 300 nm SiO2 acted as combined gate/dielectric substrate. After consecutively sonicating 

in acetone, isopropyl alcohol, and de-ionized water for 10 min each, the sample was cleaned with 

oxygen plasma for 180 s. Prior to pentacene deposition, the dielectric surface was finished with a   

~ 5 nm thick layer of cyclic-olefin-copolymere (COC), by spin casting a 0.25% solution of COC in 

toluene for 30s at 6000 rpm and annealing at 100 °C for 60 s. Pentacene and fullerene C60 layers 

were produced at room temperature and ~ 90 °C, respectively, by molecular vapor deposition, at a 

rate of 0.1 Å/s, respectively, and gold contacts were fabricated by electron beam deposition, at a rate 

of 1 Å/s. All structures were defined by shadow masks under ultra high vacuum conditions. The 

upper part of the pentacene layer (~ 5 nm) was cross-linked by e-beam irradiation prior to gold 

evaporation. 

To study the polymorphism of TFP and BP pentacene, a 60 nm thick pentacene film was 

prepared on a silicon wafer with 20 nm thick SiO2. The substrate was cleaned by sonicating, as 

described above, and the pentacene film was deposited by molecular vapor deposition, at a rate of  

0.1 Å/s. With this deposition rate, pentacene crystallizes at room temperature in the TFP with the 

[001] direction perpendicular to the substrate surface. However for this sample, a substrate 

temperature between 40 °C and 50 °C was chosen, which is known to induce mixed growth of TFP 

and BP pentacene [5,22–24] and to exhibit ellipsoidal structures on a sub-micron length scale [6]. 

The coexistence of the two phases on this sample was verified with an in-house reflectometer prior to 

the reported experiment. 
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2.2. X-ray diffraction 

2.2.1. Reflectometry 

The X-ray reflectometry curve shown here was measured at the P08 beamline at PETRA III at 

DESY in Hamburg, Germany [25]. Here, the X-ray energy E was set to 18 keV, which corresponds to 

a wavelength λ of 0.6888 Å. 

2.2.2. Microdiffraction imaging 

Microdiffraction imaging was performed at the beamline ID01 at the European Synchrotron 

Radiation Facility (ESRF) in Grenoble, France. Here, the synchrotron X-ray beam with an energy of 

12.5 keV, which corresponds to a wavelength λ of 0.9919 Å, was focused by a Fresnel zone plate 

with a central beam stop, followed by an order sorting aperture (to block unfocused beam parts and 

higher diffraction orders) to a nominal beam size of 300 nm (for further details, we refer to [17]). A 

sketch of the measurement geometry is shown in Figure 1a. Here, the angle of the incident beam θ 

was adjusted to a Bragg condition of the film and the diffracted beam was recorded with a 2D 

detector (MAXIPIX, 516 × 516 pixels², 55 × 55 µm² pixel size) [26] with adjusted regions of interest 

(ROI) at about 40 cm distance from the sample holder. Additionally, lead tape between the incident 

beam and the detector was used as a beam knife-edge to prevent air scattering from disturbing the 

recorded signal. To avoid radiation damage from reactive oxygen species, the sample was blown with 

dry nitrogen. First, the sample was positioned with a light microscope, illuminating from the top. 

Subsequently, the sample was continuously mapped in real space with a piezoelectric stage for short 

distances (<100 µm) or a hexapod (>100 µm) with step size resolutions of 5 nm and 100 nm, 

respectively. This so-called K-Map, a quick mapping procedure developed at ID01 has significantly 

reduced the measurement time needed for these scans, by optimizing positioning, exposure, and data 

acquisition [17]. The K-Maps in this report had a size of 40 × 40 µm² and a resolution of 80 × 40 

pixels² (0.5 × 1 µm²), leading to a total measuring time of only 16 min and 43 min, corresponding to 

a pixel time of 0.3 s and 0.8 s, respectively. 

However, the lateral resolution of the K-Maps is inherently limited by the footprint f of the 

beam. In the direction perpendicular to the X-ray beam, the footprint f⊥ corresponds to the diameter 

b of the focused beam, which was set to 300 nm during our experiments. Additionally, in the 

direction parallel to the incident X-ray beam, the geometrically enlarged footprint f‖ is given by 

   
 

      
   (1)  

with the beam diameter b and the incident angle θ. Consequently, the footprint f‖ is smaller for higher 

incident angles θ, which improves the lateral resolution of the K-Maps. A good lateral resolution in 

both directions can be achieved with inorganic crystals like VO2, Si, or Ge [16–19], owing to their 

high crystallinity. However, it is difficult to record K-Maps at high incident angles θ for organic 

crystals, because of their overall lower scattered intensity and their larger lattice constants. Therefore, 

finding a suitable compromise between footprint size and signal to noise ratio is essential, when 

measuring crystalline organic thin films. Here, the pentacene samples were measured at the (002) and 

(003) Bragg conditions. 
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3. Results and Discussion 

We characterized an ambipolar pentacene-C60 OFET as a representative sample for multilayer 

devices, as they are commonly used in organic electronics. A sketch of the experimental geometry is 

shown in Figure 1 a). Here, the source and drain electrode of the transistor are indicated by the 

T-structures and the scan profile is indicated by the white arrow. At this position, the gold contacts 

had a length of 100 µm, each, which adds, together with the channel length of 50 µm, to a total 

device length of 250 µm. An illustration of the vertical section of the device is shown in Figure 1 b), 

with the C60 layer depicted on top of the gold and the pentacene layer. The pentacene top contact 

configuration is needed to optimize charge carrier injection in bi-layer ambipolar transistors [15]. 

To investigate the pentacene layer beneath the gold contacts, we measured two 400 µm scans 

over the device. First, we performed a reference measurement, to determine the exact sample 

position [Figure 1 c)]. The incidence angle θ was set to the Au (111) Bragg condition, i.e. 12.15°, 

which is very pronounced, since vacuum deposited gold on SiO2 crystallizes in fcc structure in [111] 

direction [27]. Here, the footprint size parallel to the beam f‖ corresponded to 1.43 µm, according to 

equation (1). The scan was done using the hexapod because the scan width of 400 µm exceeded the 

hardware limitation of the high-resolution piezoelectric stage. As seen from Figure 1, the intensity 

profile of the scan traces the channel geometry quite well. Second, we set the incidence angle to the 

pentacene TFP (002) Bragg condition, i.e. to 3.69°, which corresponded to a footprint f‖ of 4.65 µm. 

This led to good signal strength with an acceptable footprint. The intensity profile of the TFP (002) 

scan indicates a complementary behavior to the Au (111) scan [Figure 1 c)]. The drop in intensity 

beneath the gold contacts can be explained rather well by absorption of X-rays while passing through 

the gold layer. The absorption of a planar layer is given by: 

            
  

        
  (2) 

where d is the nominal gold layer thickness, θ the incident angle, µ = 3.2 µm the attenuation length 

of gold and I0 the scattered intensity without gold. The factor two in the exponent accounts for the 

way in and out of the gold layer. As a result, the signal intensity should calculate to Ir ~ 0.68 * I0. 

However, the acquired signal only drops about 20% and is thus higher than expected from this 

calculation. One explanation for this observation might be the uncertainty of the actual Au film 

thickness deposited onto the pentacene layer. The quartz microbalances, which were used to read out 

the nominal Au thickness, do not address any eventual deviations from growth on e.g. smooth SiO2 

surfaces. 

For these reasons, the decrease of the pentacene signal beneath the gold contacts could be 

ascribed to the absorption of the beam propagating through the gold film. Thus, we have no 

indication that the top contact strongly reduces the crystallinity of the pentacene film. 

Furthermore, the pentacene signal increased only slowly with growing distance to the right gold 

contact, even though no electrode material was present in the beam pathway. Here, the preparation of 

the contact geometry could have led to a damaged film. For example, removing the shadow mask 

could have led to a mechanical damage of the subjacent pentacene film after contact fabrication. 

Moreover, it is necessary to address the large variations in the pentacene (002) signal, compared 

to the Au (111) signal. The grain size of pentacene is usually on the micron scale, far larger than for 

Au, and its topography shows thickness variations of the order of the nominal film thickness when 

grown on SiO2. Therefore, the scattered intensity should depend strongly on the beam position on the 
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pentacene surface. 

 

Figure 1. Schematic and X-ray line scans of an ambipolar pentacene-C60 OFET. a) 

Sketch of the experiment geometry. b) Cross section of the sample geometry. c) 

Incident angle adjusted to the gold (111) Bragg condition. d) Incident angle adjusted 

to the pentacene TFP (002) Bragg condition. 

As a representative sample for investigating the local polymorphic structure of organic thin 

films and to determine the potential of the setup to resolve sub-micron features, we investigated a 

pentacene thin film, which exhibits three different Bragg signatures from the thin-film phase [TFP 

(00L)], the bulk phase [BP (00L)] and the lying phase, as verified via X-ray reflectometry (Figure 2 

a). The crystalline lying phase nucleates after a critical film thickness, which is strongly dependent 
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on the substrate temperature during the pentacene deposition (>100 nm at room temperature, 30 nm 

at 87 °C) [24,28]. In contrast, the coexistence of TFP and BP pentacene is induced by temperature 

dependent stress at the SiO2 interface [5,6,22–24]. Here, we focus on this coexistence of TFP and BP 

pentacene. Using s-SNOM with a lateral resolution as small as 20 nm has shown that, in fact, the 

lateral distribution of TFP and BP pentacene exhibits ellipsoidal structures on a length scale of 100 

nm [6]. However, the s-SNOM probes to a depth of typically 30–50 nm [29], whereas X-ray 

microdiffraction yields information of the whole depth of the film. 

To resolve the intrinsic lateral distribution of TFP and BP pentacene, we recorded two 2D 

K-Maps of the same sector of the sample surface, one for each polymorph. To gain high lateral 

resolution, we used the piezoelectric motors to move the sample stage. The incident angle θ was set 

to 5.54° and 5.93°, which corresponded to a footprint of 3.10 µm and 2.90 µm at the TFP (003) and 

BP (003) Bragg condition, respectively. Choosing the (003) Bragg conditions therefore reduced the 

footprint by 33% compared to the (002) Bragg conditions. For this system, choosing higher order 

Bragg conditions led to an undesirable signal to noise ratio. The K-Maps were recorded with the 

incident beam along the slow scan direction. To image a lateral inhomogeneity with full resolution, 

the scan size was set to 40 µm and the motor steps were set to 500 nm in the fast scan direction and 1 

µm in the slow scan direction. 

 

Figure 2. a) Wide (normal) beam X-ray reflectivity of a 60 nm thick pentacene film 

with the indicated Bragg series of TFP and BP pentacene. Inset shows a sketch of 

TFP and BP pentacene. b) and c) K-Maps of the microdiffraction X-ray intensity of 

the same sample area, measured at the TFP(003) and BP(003) Bragg condition, 

respectively. Diamonds and triangles indicate maxima in TFP and BP intensity, 

respectively. The continuous line profiles at the bottom correspond to the white 

section indicated in the map (the dashed lines compare the profile to the respective 

other phase). 

We have blown the samples with dry nitrogen during all measurements to minimize radiation 

damage from reactive oxygen species, activated by hard X-rays in ambient air. During the short 

exposure times of the maps and scans shown here (typically several seconds per data point), we 

could not observe any beam damage for repeated measurements, i.e. loss of Bragg signal, and thus 

conclude that microdiffraction imaging is suited for investigating organic thin films. Recent test 
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measurements indicate that beam damage can be further minimized by using higher beam energies, 

i.e. at 20 keV exposure times of several minutes are possible. 

As result, we obtained a map of the TFP and the BP distribution within the thin film [Figure 2 b) 

and c)]. The two K-Maps show a complementary intensity profile, revealing micron scaled domains 

exclusively grown in TFP (diamonds) and BP (triangles), respectively. This behavior can also be seen 

in the line profiles of TFP and BP pentacene. The elongated beam footprint indicated in Figure 2 c) 

leads to an overall smearing of the signal parallel to the beam direction. 

4. Conclusion 

We used microdiffraction imaging with a focused X-ray beam to study the structure of organic 

thin films. Within these films, we were able to resolve intrinsic structures as well as artificial 

structures, which are used to build organic electronic devices like multilayer ambipolar OFETs. We 

demonstrated a lateral resolution for organic thin films of 300 nm in the direction perpendicular to 

the beam and about 3 µm in the direction parallel to the beam. To acquire K-maps with the lateral 

resolution of the focus size in both directions, two subsequent K-Maps at the same sample position 

with a sample rotation of 90° would be needed. By further improving the focusing optics, ID01, for 

example, offers a beam size of 100 nm diameter after its upgrade in 2014 and it will be interesting to 

see, if this is confirmed in microdiffraction experiments. 

Furthermore, changing the measurement geometry from reflection to transmission, could avoid 

the problem of large footprints parallel to the beam. This transmission geometry would require 

thinner substrates, e.g. sapphire [30] or ultra-thin Si3N4 membranes, which are commonly used for 

scanning transmission X-ray microscopy (STXM) [31,32]. 

Nevertheless, the current resolution is already well suited to study organic electronic devices, 

e.g. organic thin-film transistors, because the commonly used channel lengths of these devices are in 

the range of 20 µm to 50 µm. Furthermore, the local nanostructure of state of the art organic solar 

cells, fabricated by self-organization or nanoimprint [33], could also be examined, even with metallic 

contacts on top. X-ray microdiffraction therefore complements to other scanning techniques, like 

STXM [32], s-SNOM [6,16], scanning photoresponse microscopy [34], or micro-Raman 

spectroscopy [19], to gain a deeper understanding of fundamental device physics. 

Acknowledgments 

The authors gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft 

through the SFB 1032 as well as by the Bavarian Ministry for Science through the initiative "Solar 

Technologies Go Hybrid” (SolTech). Parts of this research were carried out at the light source 

PETRA III at DESY, a member of the Helmholtz Association (HGF). We would like to thank Dr. O. 

H. Seeck for assistance in using beamline P08. 

Conflict of Interest 

The authors report no conflict of interests in this research. 

 

 

 



377 

AIMS Materials Science  Volume 2, Issue 4, 369-378. 

References 

1. Bredas JL, Beljonne D, Coropceanu V, et al. (2004) Charge-transfer and energy-transfer 

processes in pi-conjugated oligomers and polymers: A molecular picture. Chem Rev 104: 

4971–5003. 

2. He T, Stolte M, Burschka C, et al. (2015) Single-crystal field-effect transistors of new Cl2-NDI 

polymorph processed by sublimation in air. Nat Commun 6: 5954. 

3. Tang Q, Zhang DQ, Wang SL, et al. (2009) A Meaningful Analogue of Pentacene: Charge 

Transport, Polymorphs, and Electronic Structures of Dihydrodiazapentacene. Chem Mater 21: 

1400–1405. 

4. Schiefer S, Huth M, Dobrinevski A, et al. (2007) Determination of the crystal structure of 

substrate-induced pentacene polymorphs in fiber structured thin films. J Am Chem Soc 129: 

10316–10317. 

5. Mattheus CC, Dros AB, Baas J, et al. (2003) Identification of polymorphs of pentacene. Synth 

Met 138: 475–481. 

6. Westermeier C, Cernescu A, Amarie S, et al. (2014) Sub-micron phase coexistence in 

small-molecule organic thin films revealed by infrared nano-imaging. Nat Commun 5: 5101. 

7. Durr AC, Schreiber F, Kelsch M, et al. (2002) Morphology and thermal stability of metal contacts 

on crystalline organic thin films. Adv Mater 14: 961–963. 

8. Kahn A, Koch N, Gao WY (2003) Electronic structure and electrical properties of interfaces 

between metals and pi-conjugated molecular films. J Polym Sci Part B Polym Phys 41: 

2529–2548. 

9. Necliudov PV, Shur MS, Gundlach DJ, et al. (2003) Contact resistance extraction in pentacene 

thin film transistors. Solid State Electron 47: 259–262. 

10. Klauk H, (2006) Organic Electronics: Materials, Manufacturing, and Applications, 1 Eds., 

Wiley-VCH. 

11. Dam HF, Andersen TR, Pedersen EBL, et al. (2015) Enabling flexible polymer tandem solar cells 

by 3D ptychographic imaging. Adv Energy Mater 5: 1400736. 

12. Fuller T, Banhart F (1996) In situ observation of the formation and stability of single fullerene 

molecules under electron irradiation. Chem Phys Lett 254: 372–378. 

13. Tolan M, (2013) X-Ray Scattering from Soft-Matter Thin Films: Materials Science and Basic 

Research, Springer. 

14. Fritz SE, Martin SM, Frisbie CD, et al. (2004) Structural characterization of a pentacene 

monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction. J Am Chem 

Soc 126: 4084–4085. 

15. Noever SJ, Fischer S, Nickel B (2013) Dual Channel Operation Upon n-Channel Percolation in a 

Pentacene-C60 Ambipolar Organic Thin Film Transistor. Adv Mater 25: 2147–2151. 

16. Qazilbash MM, Tripathi A, Schafgans AA, et al. (2011) Nanoscale imaging of the electronic and 

structural transitions in vanadium dioxide. Phys Rev B 83: 165108. 

17. Chahine GA, Richard MI, Homs-Regojo RA, et al. (2014) Imaging of strain and lattice 

orientation by quick scanning X-ray microscopy combined with three-dimensional reciprocal 

space mapping. J Appl Crystallogr 47: 762–769. 

18. Chahine GA, Zoellner MH, Richard M-I, et al. (2015) Strain and lattice orientation distribution in 

SiN/Ge complementary metal–oxide–semiconductor compatible light emitting microstructures by 

quick x-ray nano-diffraction microscopy. Appl Phys Lett 106: 071902. 



378 

AIMS Materials Science  Volume 2, Issue 4, 369-378. 

19. Zoellner MH, Richard M-I, Chahine GA, et al. (2015) Imaging Structure and Composition 

Homogeneity of 300 mm SiGe Virtual Substrates for Advanced CMOS Applications by Scanning 

X-ray Diffraction Microscopy. ACS Appl Mater Interfaces 7: 9031–9037. 

20. Paci B, Bailo D, Albertini VR, et al. (2013) Spatially-resolved in-situ structural study of organic 

electronic devices with nanoscale resolution: the plasmonic photovoltaic case study. Adv Mater 

25: 4760–4765. 

21. Reich C, Hochrein MB, Krause B, et al. (2005) A microfluidic setup for studies of solid-liquid 

interfaces using x-ray reflectivity and fluorescence microscopy. Rev Sci Instrum 76. 

22. Dimitrakopoulos CD, Brown AR, Pomp A (1996) Molecular beam deposited thin films of 

pentacene for organic field effect transistor applications. J Appl Phys 80: 2501–2508. 

23. Knipp D, Street RA, Volkel A, et al. (2003) Pentacene thin film transistors on inorganic 

dielectrics: Morphology, structural properties, and electronic transport. J Appl Phys 93: 347–355. 

24. Yanagisawa H, Tamaki T, Nakamura M, et al. (2004) Structural and electrical characterization of 

pentacene films on SiO2 grown by molecular beam deposition. Thin Solid Films 464: 398–402. 

25. Seeck OH, Deiter C, Pflaum K, et al. (2012) The high-resolution diffraction beamline P08 at 

PETRA III. J Synchrotron Radiat 19: 30–38. 

26. Ponchut C, Rigal JM, Clément J, et al. (2011) MAXIPIX, a fast readout photon-counting X-ray 

area detector for synchrotron applications. J Instrum 6: C01069. 

27. Kaefer D, Ruppel L, Witte G (2007) Growth of pentacene on clean and modified gold surfaces. 

Phys Rev B 75. 

28. Bouchoms IPM, Schoonveld WA, Vrijmoeth J, et al. (1999) Morphology identification of the thin 

film phases of vacuum evaporated pentacene on SiO2 substrates. Synth Met 104: 175–178. 

29. Govyadinov AA, Mastel S, Golmar F, et al. (2014) Recovery of Permittivity and Depth from 

Near-Field Data as a Step toward Infrared Nanotomography. ACS Nano 8: 6911–6921. 

30. Seiki N, Shoji Y, Kajitani T, et al. (2015) Rational synthesis of organic thin films with 

exceptional long-range structural integrity. Science 348: 1122–1126. 

31. Collins BA, Cochran JE, Yan H, et al. (2012) Polarized X-ray scattering reveals non-crystalline 

orientational ordering in organic films. Nat Mater 11: 536–543. 

32. Hub C, Burkhardt M, Halik M, et al. (2010) In situ STXM investigations of pentacene-based 

OFETs during operation. J Mater Chem 20: 4884–4887. 

33. Weickert J, Dunbar RB, Hesse HC, et al. (2011) Nanostructured Organic and Hybrid Solar Cells. 

Adv Mater 23: 1810–1828. 

34. Westermeier C, Fiebig M, Nickel B (2013) Mapping of trap densities and hotspots in pentacene 

thin-film transistors by frequency-resolved scanning photoresponse microscopy. Adv Mater 25: 

5719–5724. 

© 2015 Bert Nickel, et al. licensee AIMS Press. This is an open 

access article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 





45

a.2 all-electronic terahertz nanoscopy

Clemens Liewald, Stefan Mastel, Jeffrey Hesler, Andreas J. Huber,
Rainer Hillenbrand, and Fritz Keilmann
Optica (2018), 5, 159

DOI: 10.1364/OPTICA.5.000159

© 2018 Optical Society of America under the terms of the OSA Open Ac-
cess Publishing Agreement.

Abstract
Probing conductivity in a contactless way with nanoscale resolution
is a pressing demand in such active fields as quantum materials, su-
perconductivity, and molecular electronics. Here, we demonstrate a
laser- and cryogen-free microwave-technology-based scattering-type
scanning near-field optical microscope powered by an easily aligned
free-space beam with a tunable frequency up to 0.75 THz. It uses
Schottky diode components to record background-free amplitude and
phase nano-images, for the first time in the terahertz range, which is
uniquely sensitive for assessing conduction phenomena. Images of
Si with doped nanostructures prove a conductance sensitivity corre-
sponding to 1016 cm−3 mobile carriers, at 50nm spatial resolution.

Contribution
Experimental work for setting up the instrumentation was done by
Stefan Mastel, Jeffrey Helser, Fritz Keilmann, and myself. I measured,
calculated, and analyzed the data. The Manuscript was written by
Fritz Keilmann and myself.

http://dx.doi.org/10.1364/OPTICA.5.000159
https://www.osapublishing.org/library/license_v1.cfm#VOR-OA
https://www.osapublishing.org/library/license_v1.cfm#VOR-OA


All-electronic terahertz nanoscopy
CLEMENS LIEWALD,1,2 STEFAN MASTEL,3 JEFFREY HESLER,4 ANDREAS J. HUBER,5 RAINER HILLENBRAND,6,7

AND FRITZ KEILMANN1,*
1Fakultät für Physik & Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, 80539 München, Germany
2Nanosystems Initiative Munich, 80799 München, Germany
3CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
4Virginia Diodes Inc., Charlottesville, Virginia 22901, USA
5Neaspec GmbH, 82512 Martinsried, Germany
6CIC nanoGUNE and UPV/EHU, 20018 Donostia-San Sebastián, Spain
7IKERBARSQUE, Basque Foundation of Science, 48013 Bilbao, Spain
*Corresponding author: fritz.keilmann@lmu.de

Received 25 September 2017; revised 15 December 2017; accepted 21 December 2017 (Doc. ID 307805); published 2 February 2018

Probing conductivity in a contactless way with nanoscale resolution is a pressing demand in such active fields as
quantum materials, superconductivity, and molecular electronics. Here, we demonstrate a laser- and cryogen-free
microwave-technology-based scattering-type scanning near-field optical microscope powered by an easily aligned
free-space beam with a tunable frequency up to 0.75 THz. It uses Schottky diode components to record back-
ground-free amplitude and phase nano-images, for the first time in the terahertz range, which is uniquely sensitive
for assessing conduction phenomena. Images of Si with doped nanostructures prove a conductance sensitivity cor-
responding to 1016 cm−3 mobile carriers, at 50 nm spatial resolution. © 2018 Optical Society of America under the terms of

the OSA Open Access Publishing Agreement

OCIS codes: (180.4243) Near-field microscopy; (180.5810) Scanning microscopy; (300.6495) Spectroscopy, terahertz; (310.6628)

Subwavelength structures, nanostructures; (300.6310) Spectroscopy, heterodyne; (300.6370) Spectroscopy, microwave.

https://doi.org/10.1364/OPTICA.5.000159

1. INTRODUCTION

Scattering-type scanning near-field optical microscopy (s-SNOM)
provides ∼20 nm resolution at any frequency from ultraviolet to
microwave [1], where the far-infrared region is in high demand
in solid-state physics. Signatures of Drude-type semiconductors
allow quantification of carrier concentration to low values, while
signatures of non-Drude materials such as transition metal oxides
and organic conductors reveal underlying rich physics of corre-
lated electrons entangled by charge, orbital, spin, and lattice de-
grees of freedom [2]. Such behavior leads to exotic materials like
correlated quantum matter, highly susceptible to external pertur-
bation and hence showing intrinsic phase complexities, examples
of which are unconventional superconductors, multiferroics, or
Mott insulators [3]. Characteristic length scales of intrinsic phase
separation reach far below an infrared wavelength and thus call for
applying advanced near-field nanoscopy methods that have
emerged over the past two decades. In s-SNOM, a metal AFM
tip is illuminated by a focused light that concentrates at the tip
apex and interacts with a sample. Scattered light is coherently
detected, simultaneously with topography, such that scanning
generates two optical images, one of the scattering efficiency am-
plitude s, the other of the phase φ of scattering [1]. A former
attempt at far-infrared s-SNOM imaging suffered from demand-
ing instrumentation, especially a liquid He-cooled detector with

inadequate dynamic range that was inadequate for determining
phase contrast [4]. Pioneering microwave s-SNOMs [5,6] based
on waveguide-connected tips demonstrated [5] the principle of
tip-confined optical nanoscopy, the use of interferometry to record
amplitude and phase images, and the value of electrostatic theory
for understanding the near-field interaction mechanism. Here, we
introduce a terahertz (THz) s-SNOMwhere a high-frequency mi-
crowave circuit connects via free space with a standard s-SNOM
(Fig. 1) and achieves high S/N and thus fast imaging, with no need
to use a beamsplitter for cooling, or an external detector.

2. EXPERIMENT

The THz transceiver, custom-built by Virginia Diodes Inc., fea-
tures high-harmonic (54th) generation of a synthesized micro-
wave at frequency ω, which is precisely and quickly tunable
from 9 to 14 GHz, to launch a vertically polarized, diverging
THz beam of ∼10 μW from a 1.3 mm × 2.5 mm aperture, tun-
able from 0.5 to 0.75 THz. The solid-state multiplication chain
consists of transistor-based amplifiers and Schottky diodes
mounted in a hollow metal waveguide (depicted as red in the cir-
cuit scheme of Fig. 1). By band filtering and the use of balanced
multiplier designs, a clean 54th-harmonic output is achieved.
In addition, the transceiver redirects any THz radiation that
propagates backward from the launching aperture via an internal
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waveguide directional coupler, and downconverts it to a 50 MHz
signal using a Schottky diode mixer (see operation principle in
Supplement 1) depicted as the upper circle in Fig. 1. For this
heterodyne detection process, in our realization of backscattered
THz light from the probing tip, the reference wave is generated by
×54 multiplication of a synthesized microwave at frequency
ω� Δ with Δ � 0.926 MHz chosen such that the mixer gen-
erates the IF (intermediate frequency) signal at a fixed frequency
of 54 × 0.926 � 50 MHz, independently of the tuning of ω (i.e.,
of both THz frequencies).

A single 90° off-axis paraboloidal mirror of 50 mm effective fo-
cal length couples the THz beam to and from a standard s-SNOM
(NeaSNOM of Neaspec GmbH; see photograph in Supplement 1
[Fig. S1]); its alignment is facilitated by a pilot beam (not shown)
from the second, opposite input port of the NeaSNOM. A com-
mercial full-metal tip of 80 μm shaft length (Rocky Mountain
25PT200B-H), five times longer than in common infrared
s-SNOMs, provides sizable (even if not optimal) antenna efficiency
at the long wavelength of 500 μm corresponding to 0.6 THz. An
initial alignment of the s-SNOM’s internal paraboloidal mirror is
uncritical as expected from the large focal volume.

Note that the IF signal faithfully replicates amplitude s and phase
φ of the tip-backscattered THz radiation, and furthermore, that the
present scheme is a low-frequency analog of the first heterodyne,
complex-contrast and background-free s-SNOM that worked in
the visible [7]. The IF signal is fed to an I-Q Schottky mixer, de-
picted as the middle circle in Fig. 1, together with a reference signal
at 54 × Δ. This unit forms two output signals, I and Q, because it
contains two mixers of which one has its reference wave delayed
by 90°. Both are fed into the standard electronics controller of
the s-SNOM, which determines their modulation components
simultaneously for several harmonics of the tip tapping frequency
Ω. Recall the tip oscillates normally to the sample surface; in this
work with 200 nm amplitude, it oscillates at the cantilever’s reso-
nance frequency of 70 KHz. Selecting a component with a har-
monic number high enough guarantees suppression of unwanted
background-scattered radiation, and thus pure near-field imaging
[1]. A unique practical advantage of synthesized microwaves is their

tight control of frequency to <1 Hz, because this allows a tempo-
rarily offsetting ofΔ by a few Hz, such that both I-Q mixer outputs
visibly oscillate between their extreme levels and thus facilitate the
final alignment of the s-SNOM’s internal paraboloidal mirror in all
translational degrees of freedom.

3. RESULTS

The THz s-SNOM’s performance is demonstrated with an all-Si
sample (SRAM, available from Bruker Nano Inc.) that exhibits
multiply repeated nanostructures of various doping levels and also
high topographic steps that allow their recognition in any micro-
scope. Figure 2 displays the 0.6 THz image (cut from the larger
one in Supplement 1, Fig. S2, left) of the SRAM sample. Both
amplitude s3 and phase φ3 images exhibit topography-induced
stripes next to high topography steps due to an “edge-darkening”
effect [1]. Otherwise, the THz images distinguish several regions
with differing amplitude and phase contrasts, indicating varied
conditions of the free carrier population; namely, carrier type,
density, and mobility. In passing, note dark dots in the amplitude
image that correlate with topography humps; we assign them to
low-refractive-index dust particles of about 50 nm height,
preventing the tip from reaching the surface whereby they reduce
the strength of the near-field interaction but not its phase. Four
regions (A–D) are depicted in Fig. 2 by dashed boxes, which show
homogeneous THz contrasts and are assigned by the supplier of

Fig. 1. Sketch of s-SNOM illuminated by a free-space THz beam, tun-
able between 0.5 and 0.75 THz, from a microwave–harmonic transceiver
circuit that also provides heterodyne detection of back-propagating THz
waves and generates output signals I and Q. These signals become
demodulated in the s-SNOM controller at low-order harmonics n of
the tip tapping frequency Ω, to generate simultaneous, background-free
near-field amplitude and phase images together with topography.

Fig. 2. Single-frequency 0.6 THz s-SNOM of Si exhibiting topo-
graphical as well as doping nanostructures, namely, the simultaneously
recorded topography (top), THz amplitude s3 (mid), and THz phase
φ3 nano-images (bottom); acquisition time, 10 min.
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the Si test structure with the following characteristics. D is the
homogeneously p-doped substrate with nominal hole density
of 2 · 1016 cm−3. The others are ion implanted: A, p-type with
hole density 4 · 1019 cm−3; and B and C, n-type with electron
densities of 2 · 1020 cm−3 and 2 · 1017 cm−3, respectively.

At the tapping amplitude of 200 nm used in Figs. 2 and 3, and
Supplement 1, Fig. S2, left, the scattering signals are nearly back-
ground-free already in the second tapping harmonic, and certainly
background-free in the third harmonic images presented in this
work. This is proven by approach curves in the Supplement 1,
Fig. S3, where the THz amplitude s3 decays to 20% at a tip-
sample distance z of about 50 nm. This behavior is compatible
with the specified tip radius of the order of 50 nm, and thus, with
a 50 nm lateral resolution as well as a 50 nm effective probing
depth into the Si sample [1].

The arrows in the phase image of Fig. 2 point to two ∼500 nm
wide regions of distinct contrast, which are not mentioned in the
sample’s description; also, they are not visible in its mid-infrared
s-SNOM nano-image (Supplement 1, Fig. S2b). While following
their origin would be beyond the scope of the present paper, they
directly illustrate our method’s sensitivity to low carrier density.

Next, we demonstrate the capability of 0.6 THz s-SNOM to
map low carrier-density gradients, by recording a higher-resolved
image of the transition region between areas C and D. The images
in Fig. 3 reveal an interesting substructure across the doping edge,
as each of the three observables in s-SNOM, topography, THz
amplitude, and THz phase seemingly have the edge at different
positions, offset up to hundreds of nm. As seen in Fig. 3(b) in
detail, the amplitude decreases evenly over a ∼300 nm distance
covering sections b and c; the topography features a 1 nm deep
depression within section b only; the phase increases monoton-
ically over ∼500 nm distance covering sections a to e, but stays
constant within section c. Obviously, the transition between
n-type and p-type regions studied here extends over a ∼500 nm
distance.

4. THEORY

To understand these contrasts, we recall that the dielectric re-
sponse due to charge carriers of density nc moving freely in a neu-
tral medium (plasma) is governed by the dynamical conductivity
σ�ω�, which in Drude approximation is constant from DC up to
the plasma frequency ωp. The plasma frequency scales with the
carrier density nc and mass mc as ωp ≈

p
nc∕mc , and lies in the

visible for metals. Near-field interaction with a Drude-type semi-
conductor leads to a resonant response characterized by a phase
peak and an amplitude step near ωp, as was first predicted using
the point dipole model of near-field interaction and verified ex-
perimentally at high nc ≈ 1019 cm−3 in the mid-infrared [8]. The
first far-infrared nano-imaging of carrier distributions at 2.5 THz
[4] demonstrated sensitivity from the 1018 to below 1017 cm−3

range, which is centrally important for semiconductor science
and technology (that demonstration was a tour de force because
of the required, low-dynamic-range superconducting detector
[4]). To focus on our observed contrasts in Fig. 3, we calculate
the complex near-field response at 0.6 THz using the finite dipole
model of tip-sample near-field interaction (effective tip length
600 nm, tip radius 50 nm, illumination angle 60°) [1,9]. The
extended Drude dielectric data of Si were calculated from liter-
ature values for the mass and mobility of electrons and holes,
respectively [10,11,12]. The theory result in Fig. 4 demonstrates
a clear difference between electrons and holes, especially that a
Drude resonance at 0.6 THz can arise from either an electron
density of 3 · 1016 cm−3 or a hole density of 8 · 1016 cm−3.
Such densities are of the same order of magnitude as those speci-
fied by the sample supplier for areas C and D depicted in Fig. 2.
In passing, we point out that our s-SNOM imaging of the same
sample in the mid- infrared (see Supplement 1, Fig. S2) shows no
contrast in areas C and D; indeed, at that 45-fold higher fre-
quency (27 THz), a Drude resonance would necessitate a
2000-fold higher carrier density.

5. DISCUSSION

The curves in Fig. 4 predict that for Si, even a single-frequency
measurement of s-SNOM amplitude and phase at 0.6 THz can

Fig. 3. Single-frequency 0.6 THz s-SNOM image (1 μm × 2 μm)
of Si as in Fig. 2 extending over the edge of the ion-implanted region
C 0. (a) Simultaneously recorded topography (top), THz amplitude s3
(mid), and THz phase φ3 (bottom); acquisition time, 2.5 min;
(b) Line profiles (dots) along the full 2 μm width of the image (a), height
(grey), amplitude (black), and phase (red) obtained by averaging the
lower 400 nm each of the respective images; curves are obtained by
smoothing.
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both identify the carrier type and quantify the carrier density in
the 1016 to>1017 cm−3 range. To do so, the mass and mobility of
electrons and holes must be known and the measurement must be
calibrated with a known reference material such as Au. This
calibration was not attempted in the present study, however,
considering that the unknown depth profile of ion implantation
in area C should cause problems of interpretation. Clearly, a sim-
ilarly qualitative and quantitative material characterization is
possible with our method, not only for doped semiconductors
but for any conducting or even dielectric system whose dielectric
function exhibits contrast in the THz region.

The predictions of Fig. 4 can qualitatively explain several fea-
tures of the experimental near-field profiles of Fig. 3(b). Consider
first the region D 0, which represents p-type Si substrate of nominal
density nh � 2 · 1016 cm−3, certainly a standard substrate homo-
geneous throughout the depth of the probing near-field into the
sample. Approaching the edge of the doped area C 0, starting from
around D 0 along sections e and d, reveals that the phase decreases
but the amplitude stays constant, just as predicted by the thick
curves in Fig. 4, for the case that nh decreases from about
2 · 1016 cm−3 to a lower value because of recombination with elec-
trons. A second example is the approach to the edge from around
C 0 along sections a, b, and c, where we observe a decreasing
amplitude and an increasing phase, also just as Fig. 4 (thin curves)
would predict for an electron density decrease from ne ≈
2 · 1017 cm−3 to ≈3 · 1016 cm−3. Other observed features, such
as a mismatch of predicted phases in sections c and d close to
the edge, need further consideration that goes beyond the scope
of this paper. In fact, the significant depression of the surface in
section b is an indication that the doping/annealing process may
have produced a more complex nanostructure in the n-p transition
than simple in-plane density gradients (one process step for area C 0

was implanting 900 kV P� ions that, according to literature, deposit
acceptors primarily in 1� 0.5 μm depth below the surface).

6. OUTLOOK

There are two promising extensions of the presented nano-
imaging, which would allow further insight. One is the estab-
lished tomography method of s-SNOM, which can detect

sub-surface layers and quantify depth profiles by systematically
varying the tapping conditions or analyzing different demodula-
tion orders [12–15]. The other is to repeat nano-imaging at
precisely varied (>8 digits of precision) transceiver frequencies
anywhere between 0.5 and 0.75 THz with the present device
(0.75 to 1.1 THz with a new model being developed). Tuning
can currently be achieved within 3 ms and should enable fast
spectroscopic s-SNOM acquiring half-octave-wide THz point
spectra in a matter of seconds. For comparison, time-domain
THz nano-spectroscopy covering a decade of frequencies centered
around 0.7 THz has matured from early demonstrations [16,17]
into a commercial product (neaspec.com) that has recently en-
abled taking amplitude-and-phase point spectra of the present
sample in a few min/pixel acquisition time [18,19].

7. CONCLUSION

We conclude that our all-electronic THz nano-imaging is capable
of quantifying conductivity of lowly doped semiconductors not
only on the 50 nm scale in a matter of few min acquisition time
for a 10,000 pixel image, but also at sub-order-of-magnitude
precision in carrier density, including identification of carrier type,
without a calibration procedure, as required with microwave-
impedance-measuring AFMs [6,20]. Moreover, all-electronic
THz s-SNOM is ready for correlative microscopy using infrared
or Raman channels to be operated from the second port of the
NeaSNOM nanoscope. A practical advantage of our all-electronic
THz nanoscope is that THz generation and coherent detection are
both contained and permanently aligned inside a compact device.
No cryogenic detectors are needed, as is the case with lasers or syn-
chrotrons, and, indeed, no external detector must be operated, as
with time-domain THz systems.

All-electronic THz nanoscopy opens up fast and simple nano-
scale probing to a wealth of actively studied physics phenomena
and materials exhibiting low, exotic, and/or non-Drude conduc-
tion mechanisms, such as in high-Tc superconductivity, ballistic
transport, charge density wave, or electronic phase separation, in
conventional as well as in quantum materials like topological
insulators and polaritonic two-dimensional materials, or in
molecular electronics.
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channel. We argue from basic transport models that bright areas in
SPCM maps indicate areas of large voltage gradients or high electric
field strength caused by injection barriers or traps. Thus, SPCM al-
lows us to identify and image the dominant voltage loss mechanism
in organic field-effect transistors.
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We use a pentacene transistor with asymmetric source drain contacts to test the sensitivity of

scanning photocurrent microscopy (SPCM) for contact resistance and charge traps. The drain current

of the device strongly depends on the choice of the drain electrode. In one case, more than 94% of

the source drain voltage is lost due to contact resistance. Here, SPCM maps show an enhanced

photocurrent signal at the hole-injecting contact. For the other bias condition, i.e., for ohmic contacts,

the SPCM signal peaks heterogeneously along the channel. We argue from basic transport models

that bright areas in SPCM maps indicate areas of large voltage gradients or high electric field

strength caused by injection barriers or traps. Thus, SPCM allows us to identify and image the domi-

nant voltage loss mechanism in organic field-effect transistors. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960159]

Organic field-effect transistors (OFETs) have a planar

arrangement of the contacts which is beneficial for the

investigation of charge transport on the micro- to nanoscale

by scanning probe and microscopy techniques.1–4 Injection

barriers and electronic trap states obstruct the intrinsic

charge transport of OFETs and pose critical challenges to

the reproducibility of organic devices. Here, we explore

scanning photocurrent microscopy (SPCM)5 to obtain

insight into the predominant limitation of an OFET. In

SPCM, a focused laser is modulated and scanned across the

transistor channel at ambient conditions. The light-induced

current, the so-called photocurrent, is separated from

the dark current by lock-in techniques. Previous SPCM

measurements of pentacene OFETs showed qualitatively

different spatial distributions of the SPCM signal.6 One

experiment with a line-shaped laser focus showed a strong

SPCM signal near both contacts and was explained by a

varying mobility and a distributed contact resistance.7 In

other experiments with a diffraction-limited, point-like laser

beam, an inhomogeneous distribution along the source con-

tact dominated the signal. This enhancement was attributed

to the dissociation of excitons, charge extraction, and

enhanced injection of holes by lowering the injection bar-

rier.8,9 On the other hand, large area illumination of trap

states in pentacene diodes was also reported to cause photo-

response by trap release.10 Indeed, SPCM allowed observing

a dispersed and structured SPCM signal within the transistor

channel, interpreted as charge release from local trap densi-

ties.11 However, a consistent description that combines the

microscopic phenomena for thin-film transistors near con-

tacts and within the channel is still missing.

Here, we elucidate the physical mechanisms that evoke

SPCM signals in OFETs by making use of a pentacene tran-

sistor with asymmetric contacts. Asymmetric contacts are

present in the case of a contact resistance which depends on

the polarity of the source-drain voltage, i.e., the injection bar-

rier for one of the source-drain contacts is considerably

larger.12 Such a behavior unintentionally occurs in some devi-

ces, due to fabrication imperfections. However, the asymmet-

ric device can be used for studying the sensitivity of SPCM

toward contact resistance and other imperfections. Switching

the source-drain voltage polarity without changing other

physical parameters allows for imaging the same device in

high and low contact resistance mode. We find that an opera-

tion in high contact resistance mode results in a SPCM

enhancement exclusively at the contacts, whereas an opera-

tion of the same device in low contact resistance mode allows

us to observe the SPCM signal deep within the channel, due

to trap states. We argue that high contact resistance acts as a

voltage divider, significantly reducing the potential and elec-

tric field within the transistor channel.4,13 SPCM is sensitive

to areas with high electric field, which occur at the contacts

for injection-limited devices and at areas of high trap densities

for devices with low resistance ohmic contacts.

The investigated pentacene transistors were fabricated on

highly n-doped silicon wafers (CrysTec) with an 82 nm thick,

thermally grown SiO2 layer as a gate dielectric. To clean the

substrate, it was subsequently sonicated in acetone and iso-

propyl alcohol, for 10 min each, and rinsed with deionized

(DI) water. Afterward, the substrate was cleaned in piranha

solution, with three parts of sulfuric acid (H2SO4) and one

part of hydrogen peroxide (H2O2), for 35 min and rinsed with

DI water. Finally, the substrate was cleaned with oxygen

plasma for 3 min. On top of the cleaned SiO2 layer, a 5 nm

thick film of cyclic olefin copolymer (COC, TOPAS 6013S-

04) was spin-coated from a 0.25 wt. % solution in toluene

and subsequently annealed for 2 min at 100 �C. A 30 nm thick

layer of pentacene was evaporated with a deposition rate of

0.08 Å/s at a substrate temperature of about 60 �C and a pres-

sure of 4� 10�8 mbar. As source and drain top contacts, a

2 nm thick titanium layer was evaporated with a deposition

rate of 0.5 Å/s, followed by a 30 nm thick gold layer with aa)Electronic mail: nickel@lmu.de
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deposition rate of 0.8 Å/s. The contacts were defined by

shadow masks, resulting in a transistor length of 23 lm and a

width of 1 mm. After the deposition process, the sample was

glued with conductive silver lacquer into a chip-carrier and

wire-bonded. A scheme of the complete transistor layout is

shown in Figure 1. On this sample, the two investigated tran-

sistors are referred to as transistor I and transistor II.

The working principle of the used SPCM setup is also

shown in Figure 1. A HeNe laser at 633 nm wavelength

impinges on the OFET with a rectangular pulse shape at a

frequency of 5.5 kHz. At this pulse frequency, SPCM is sen-

sitive to both signal contributions, the depopulation of trap

states and the exciton dissociation.11 The intensity of the

focused, diffraction-limited laser spot is set to 2 lW and

is typically Gaussian distributed with a diameter of about

600 nm. To scan the transistor channel in x- and y-direction

across the fixed laser focus, the sample is mounted on an

xyz-stage (ANPx/z101/RES, ANC350, Attocube Systems).

Two power supply units (7651, Yokogawa) are used to apply

the drain and gate voltages with respect to source. The

source contact is grounded via a current-to-voltage converter

(DLPCA-200, Femto), which is read out by a voltmeter

(34410A, Agilent) and a lock-in amplifier (7265, SIGNAL

RECOVERY). The voltmeter reads out the DC transistor

current IDS between the source and drain, while the lock-in

amplifier reads out the AC signal Iphotoð~xÞ induced from the

pulsed laser at the position ~x ¼ ðx; yÞ. For an illumination

with a diffraction-limited spot, the amplitude of Iphotoð~xÞ is at

least three orders of magnitude lower than the dark transistor

current IDS.9,11,14 To ensure a precise positioning of the sam-

ple and to correct possible drifts of the piezo step motors,

the reflection intensity of the HeNe laser is simultaneously

recorded with a photodiode. The used setup is described else-

where in more detail.8,11 We call the 2D representation of

the Iphotoð~xÞ signal a scanning photocurrent microscopy

(SPCM) map.

The transfer curves of transistor I for both polarities of the

applied drain voltage VDS¼�20 V are shown in Figure 2(a).

Technically, the polarization change was obtained by exchang-

ing the wires at the source-drain contacts named A and B. In

the preferential direction (AB direction—electrode A is source

and electrode B is drain), the charge carrier mobility was about

15 times higher than in the BA direction (lAB¼ 1.2�10�2

cm2 V�1 s�1, lBA¼ 7.8�10�4 cm2 V�1 s�1)15 if contact resis-

tance is neglected. In other words, transistor I showed reason-

able transfer characteristics in the AB direction but poor

characteristics in the BA direction. The transfer curves,

together with the mobility calculations for transistor I and, as a

comparison, for the symmetric transistor II are summarized in

the supplementary material.15 As the channel itself acts as a

tunable ohmic resistor Rch, an injection barrier at the hole

injecting electrode B in the BA configuration is most likely the

origin of the asymmetric behavior.8,12,16,17 To quantify this

hypothesis, we adapt a minimal equivalent circuit from

Elhadidy et al.,18 which is shown in Figure 2(b). Here, each

contact is represented by a diode and a resistance in parallel,

and the channel is represented by an ohmic resistance. At the

source contact (e.g., contact A in the AB direction), the diode

DA is biased in the reverse direction and the transistor current

IDS entirely flows through the resistance RA, which accounts

for the hole injection barrier at contact A. At the drain contact

(e.g., contact B in AB direction), the diode DB is biased in the

forward direction and therefore, the transistor current entirely

flows through this diode, assuming that hole extraction is not

hindered. Thus, the applied drain-source bias VDS drops across

RAþRch in the AB direction and across RBþRch in the BA

direction. Here, VA and VB are the potential drops across

the specific contact and Vch is the potential drop across the

connecting channel. In order to estimate the contact resistance

of the poor electrode B, we analyze the transistor behavior

at negative gate bias (VGS¼�20 V).17,19,20 The preferred

AB direction sets an upper limit of the channel resistance

FIG. 1. Schematic of the SPCM setup. The drain voltage VDS and gate volt-

age VGS are applied against ground, the transistor current IDS is detected

between the source contact and ground. For recording a SPCM map, the

pulsed laser is focused on the transistor channel and the sample is raster

scanned in the xy-plane. The transistor current IDS is analyzed with a lock-in

amplifier to read out the SPCM signal Iphoto.

FIG. 2. (a) Transfer curves (forward and backward sweep) of transistor I for

both bias polarities. The preferred AB direction (light green) exhibits a

higher current and a lower turn-on voltage compared to the defective BA

direction (dark green). Inset: schematic of the source drain contacts with the

arrows indicating the polarity of the electric field. (b) Equivalent circuit for

a field-effect transistor, represented by a diode and a resistance in parallel at

each contact, and the channel resistance between the contacts. The resistan-

ces result in a voltage drop VA, Vch, and VB, respectively.
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Rch � RA þ Rch ¼ VDS

IDS
¼ 0:84 MX. The contact resistance RB

at electrode B, which reduces the current in BA direction, is

calculated from the total resistance in BA direction RBA

minus the channel resistance Rch according to RB ¼ RBA

�Rch � 15 MX� 0:84 MX � 14 MX. These two resistors

act as a voltage divider. From this analysis, the main conclu-

sion is that in the BA direction, approximately 94% of the

voltage drops at the hole-injecting electrode B and only 6%

drops across the channel. Note that this decomposition into

channel and contact resistance can only be applied to an

asymmetric device where one contact resistance RB is much

larger than the channel resistance Rch, which itself is much

larger than the other contact resistance RA (i.e., RB � Rch

� RA). For symmetric devices, a different method for

extracting the contact resistance needs to be applied.17,19,20

In the following, we apply SPCM in order to verify con-

clusions of the equivalent circuit model by a local probe.

The recorded SPCM maps of transistor I, operated in AB and

BA directions, are shown in Figure 3. Both maps were mea-

sured at the same sample area. The top part of each SPCM

map was recorded outside of the channel, i.e., beyond the

extension of the pentacene film; thus, no signal is observed at

this position. The boundaries of the source and drain electro-

des are indicated as white dotted lines. The slight bending of

the boundaries can be attributed to a drift of the piezo step-

ping motors. The operation in the AB direction (VDS¼�8 V,

VGS¼�16 V, linear regime) is shown in Figure 3(a). Here,

the SPCM map shows local hotspots of high photoresponse

across the whole channel region. The characteristic timescale

of the release and capture of trapped charges was determined

by frequency resolved SPCM measurements.11 Areas with

high photoresponse are areas of high trap density, which con-

tribute to the photocurrent via the depopulation of occupied

charge traps by triplet excitons.11

In contrast, the SPCM map in the BA direction is strik-

ingly different (Figure 3(b)). An inhomogeneous signal next

to the B electrode dominates the SPCM map, which can be

attributed to dissociation of excitons into free charge carriers

and to an enhanced injection of holes by lowering the injec-

tion barrier.8,9 Logarithmic line profiles of the SPCM maps

across both electrodes and the transistor channel (single line

and the averaged profile over 50 lines) are shown in Figure

3(c). In the BA direction, they reveal a faint SPCM signal

(0.015 nA) in the center of the transistor channel. In the sup-

plementary material, balanced SPCM maps of the symmetric

transistor II are shown for comparison.15

Apparently, the SPCM maps correlate directly with the

regions of high electric field strength, which is at electrode

B for high contact resistance in the inferior BA bias direc-

tion and within the channel in regions of high trap density

in the superior AB bias direction. To quantify this assump-

tion, we rationalize that illuminating a pentacene OFET

locally (600 nm) gives rise to an enhanced current density
~jphoto ¼ r~E. Two contributions to the current density
~jphoto ¼~jpr þ~jpc have been identified. The first one is photo-

response ~jpr ¼ preleasedð~xÞ el~Eð~xÞ, originating from the

release of trapped charge carriers due to triplet excitons from

a local illumination. Here, preleasedð~xÞ is the density of

released charge carriers, l is the intrinsic mobility, and ~Eð~xÞ
is the lateral field strength at the spot of illumination. The

second contribution is photocurrent ~jpc ¼ psplitð~E;~xÞel~Eð~xÞ,
evoked by exciton splitting and charge separation at the illu-

minated point. Note that photocurrent ~jpc does not occur at

low field strengths because free charge carriers recombine

with charged trap states,21 i.e., significant charge carrier den-

sities psplitð~E;~xÞ are only expected in regions of large voltage

drops. Both contributions scale with the electric field

strength ~Eð~xÞ along the channel. Qualitatively, SPCM is sen-

sitive to regions of high electric field, i.e., large voltage

drops due to traps and contact barriers. Therefore, SPCM can

be added to the group of microscopy methods which map the

local electric field, like optical second-harmonic genera-

tion3,20 and Kelvin probe microscopy.1,4,5 A detailed analysis

of SPCM maps combined with the electric potential measured

by, e.g., Kelvin probe would be an interesting endeavor to

separate photocurrent and photoresponse in OFET devices,

i.e., charge separation and trap release, respectively.

In summary, we analyzed scanning photocurrent micros-

copy maps from a pentacene OFET with asymmetric con-

tacts. Devices with large injection barriers show an enhanced

FIG. 3. SPCM maps of transistor I in the linear regime. The boundaries of

the contacts A and B are indicated by the white, dotted lines. The arrows

indicate the polarity of the electric field. (a) AB direction. The SPCM map

shows photoresponse with local hotspots of areas with high trap density. (b)

BA direction. The SPCM map shows photocurrent, mainly located at the

boundary of the source contact, with decreasing intensity underneath the

contact and a suppressed photoresponse within the transistor channel. (c)

Logarithmic line profile of a single line (AB direction: filled squares, BA

direction: open squares) and averaged over 50 lines (continuous lines).
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SPCM signal at the limiting contact. For ohmic contacts,

SPCM maps peak in the regions of high trap state density

within the accumulation channel of the OFET. In both cases,

the SPCM signal scales qualitatively with the local electric

field. SPCM is a valuable microscopy technique allowing for

imaging of the dominant defective regions in organic devices

with a lateral resolution of about 600 nm at ambient condi-

tions. SPCM can also be applied to heterojunction devices of

2D materials, which intrinsically show high electric fields,22

or to connected devices in an integrated circuit. Here, SPCM

could be adapted for quality control.

Note added in Proof. Recently, insufficient gate overlap

was reported to cause asymmetric contact resistance in

organic transistors.23
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Abstract
Photocurrent microscopy is used to characterize the kinetics of elec-
trons and holes in organic field-effect transistors (FETs) with the hy-
drogen-bonded pigment epindolidione as active layer. The method
relies on electrons and holes, generated on local illumination, which
are provided after exciton splitting, to probe charge trapping. In the
dark, hole conduction is observed for negative gate voltage while no
electron conduction is observed for positive gate voltage. However,
under illumination, a fast displacement current with 60µs onset time
and 1 ms exponential decay occurs for positive gate voltage, which
can be explained by exciton splitting underneath the semitranspar-
ent top contact followed by subsequent electron trapping and hole
extraction. Afterward, trapped electrons hop via further trap states
within the film to the insulator into interface traps (13ms exponen-
tial decay) which induce a positive threshold voltage shift in the FET
transfer curves for hole transport. Photocurrent microscopy confirms
that the displacement current occurs only for illumination under and
near the semitransparent source/drain contacts, which act here as
metal-insulator-semiconductor (MIS) diodes. For negative gate volt-
age instead, the photocurrent comprises an enhanced hole current in
the FET channel between the contacts. In the channel region, the
detrapping of holes at the interface with the insulator (3ms time
constant) enhances the transistor current at low frequencies <1kHz,
whereas the displacement current between the contacts and the gate
is observed only at frequencies >10kHz. Thus, we show here that
photocurrent microscopy allows to identify the kinetics of electrons
and holes in traps close to the contacts and in the FET channel of
pigment transistors.
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A B S T R A C T

Photocurrent microscopy is used to characterize the kinetics of electrons and holes in organic field-effect
transistors (FETs) with the hydrogen-bonded pigment epindolidione as active layer. The method relies on
electrons and holes, generated on local illumination, which are provided after exciton splitting, to probe charge
trapping. In the dark, hole conduction is observed for negative gate voltage while no electron conduction is
observed for positive gate voltage. However, under illumination, a fast displacement current with 60 μs onset
time and 1ms exponential decay occurs for positive gate voltage, which can be explained by exciton splitting
underneath the semitransparent top contact followed by subsequent electron trapping and hole extraction.
Afterward, trapped electrons hop via further trap states within the film to the insulator into interface traps
(13ms exponential decay) which induce a positive threshold voltage shift in the FET transfer curves for hole
transport. Photocurrent microscopy confirms that the displacement current occurs only for illumination under
and near the semitransparent source/drain contacts, which act here as metal-insulator-semiconductor (MIS)
diodes. For negative gate voltage instead, the photocurrent comprises an enhanced hole current in the FET
channel between the contacts. In the channel region, the detrapping of holes at the interface with the insulator
(3 ms time constant) enhances the transistor current at low frequencies< 1 kHz, whereas the displacement
current between the contacts and the gate is observed only at frequencies> 10 kHz. Thus, we show here that
photocurrent microscopy allows to identify the kinetics of electrons and holes in traps close to the contacts and
in the FET channel of pigment transistors.

1. Introduction

Hydrogen-bonded pigments have emerged in recent years as a new
class of organic semiconductors [1,2]. One representative is the pig-
ment epindolidione (Epi), which is typically used as a yellow colorant
in the printing and coating industry. Utilized as a semiconductor, Epi
shows a hole transport mobility up to 1 cm2 V−1s−1, combined with
outstanding chemical stability in the pH range 3–10 [3,4]. Poly-
crystalline Epi films consist of linear chains of H-bonded molecules that
are π-π stacked in a close, brick-wall arrangement, favoring charge
transport between the individual Epi chains [3,5]. These properties
allow for multidisciplinary applications with Epi thin films, such as
photoelectrodes for H2O2 production or the bioconjugation with func-
tional proteins in an aqueous environment [6,7]. Field-effect transistors
(FETs) with a semiconducting Epi layer show bipolar charge transport
of electrons or holes if proper metal contacts for charge injection are
employed [3]. In Epi FETs, electron transport with reduced mobility of

2× 10−3 cm2 V-1 s-1 is observed in N2 atmosphere, suggesting that
electron traps hinder the conduction at ambient conditions even fur-
ther. The formation of defects in organic films can furthermore occur
from interface effects, polymorphism, or mechanical strain [8,9]. A full
picture of trap states and trap dynamics in Epi thin films is crucial for an
optimization of the various devices produced with this material. As
charge carrier trap states are a limitation of many organic semi-
conductor devices, elaborating methods for the evaluation of majority
and minority carriers is a primary motivation behind this work. Fol-
lowing common descriptions of organic semiconductors, the high-mo-
bility holes are here named majority charge carriers, and the low-mo-
bility electrons are named minority charge carriers [10].

Using photoresponse microscopy measurements, we image the ki-
netics of electron and hole trap filling in p-type Epi transistors at am-
bient conditions. A variation of the applied drain voltage VDS allows for
using the tested devices in two operating modes, as FETs with
VDS< 0 V, or as metal-insulator-semiconductor (MIS) diodes with
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VDS= 0 V [11]. Also, the gate voltage VGS controls the charge dis-
tribution in the different device layers. For negative VGS, holes are in-
jected from the source/drain contacts into the Epi layer. Here, ohmic
contacts but also injection barriers are possible, affecting the device
performance strongly [12]. For positive VGS, electrons are blocked at
the source/drain-Epi interface. This electron barrier can induce a high
electric field E > 105 V/cm in the Epi below the contacts, sufficient for
charge separation in organic semiconductors [13].

The photoresponse microscopy maps for these different operation
modes differ profoundly, and they show two major contributions. First,
operated as FETs with negative VGS, i.e. in hole accumulation, the de-
vices show a conduction enhancement in the FET channel region due to
de-trapping of holes. This de-trapping mechanism has previously been
used for imaging of trap densities in pentacene films [14,15]. In addi-
tion to this FET photoresponse, a MIS photoresponse of Epi is observed,
spatially confined to the area below the top contacts. We argue that this
response stems from electron and holes obtained by exciton dissociation
in the high-field region between the contacts and the gate. Subse-
quently, the generated charges move toward the contact and the gate
insulator, similar to a time-of-flight setting. Time and frequency re-
solved measurements reveal fast and slow components due to different
trapping behavior of majority and minority charge carriers (holes and
electrons) for negative and positive VGS, respectively. With pentacene
devices, however, no significant photocurrent was observed for positive
VGS [14]. This missing contribution for pentacene could be owed to the
ultrafast singlet fission and generation of triplet excitons in pentacene
preventing charge separation [16]. Thus, photocurrent microscopy al-
lows to identify electron and hole traps under the contacts and within
the transistor channel. The method introduced here can be applied to a
range of semiconductor materials, which show photoresponse in thin
film geometry, including Perovskites, 1D and 2D materials [17–30].

The investigated Epi transistors were fabricated by deposition and
formation of different functional layers in a bottom-gate/top-contact
device geometry. A schematic of the transistor structure with electrical
connections for biasing and measuring the drain-source current IDS and
the photocurrent Iphoto is shown in Fig. 1. Further descriptions of the
used materials and methods are provided in the Experimental section.

2. Results and discussion

First, we discuss the photoresponse for global illumination of the
Epindolidione devices in FET mode (VDS=−10 V). The transfer curves
in the dark and under illumination are shown in Fig. 2. A full set of
transfer and output curves is shown in the Supplementary Information.
Typical for p-type organic semiconductors, these transfer curves allow
to define two distinct operating conditions. At positive gate voltages
VGS, no significant current was measured. At sufficiently negative gate
voltages, a linear increase of I1/2 indicates that a conductive hole
channel formed. In the fabricated transistors, the work function dif-
ference between the Al gate and Au top contacts induced a negative

threshold voltage Vth, calculated with a linear fit on IDS1/2 vs. VGS.
The effect of global illumination on the transfer curves is in-

vestigated with the following experiment, shown in Fig. 2a: Starting in
the dark with VGS=−15 V at a chosen IDS,0, the gate voltage was
gradually increased to VGS = 5 V (A), with a sweep rate of 1 V/1.13 s.
Then, a blue laser with λ=488 nm wavelength uniformly illuminated
the transistor with 2mW cm−2 for 2 s (B). Afterward, again in the dark,
the gate voltage was gradually decreased to VGS=−15 V (C), followed
by a waiting time, here 140 s, until IDS reached the starting value IDS,0.
The consecutive control experiment in dark showed only a slight in-
crease of IDS. The extracted transfer curves in Fig. 2b show a significant
hysteresis, i.e. a transfer curve shift toward more positive VGS due to
illumination [31]. This bias stress is quantified by calculating the
threshold voltage difference between the sweeps C and A, here
ΔVth = 2.1 V for the illumination time t=2 s. In contrast, only little
bias stress, ΔVth= 0.25 V, was observed in the dark. The extracted
voltage shifts ΔVth for different illumination times (ms to s) are drawn
in Fig. 2c and show a substantial increase for longer illumination. By
comparing the dark value to ΔVth under illumination, we could detect
light-induced bias stress for illumination times as low as 2ms, or
4 μJ cm−2. Often, bias stress is induced by localized charges, i.e. filled
trap states, at the semiconductor-dielectric interface. Trap filling can be
quantified by the relation ΔQ=−c ΔVth. Here, a positive ΔVth is in-
duced by the negative charge of trapped electrons [31]. In the dark,
only little bias stress was observed because the high energy barrier
between the work function of Au and the lowest unoccupied molecular
orbital (LUMO) of Epi prohibits electron injection, so that electron traps
cannot be filled from the contacts [3].

As a 30 nm thick Au layer shows 13% transmission at λ=488 nm
[32], the incoming light reached the Epi layer below the Au contacts,
creating excitons. Thus, it is reasonable to assume that the trapped
electrons, causing the bias stress upon illumination, originate from
exciton splitting in the high field between the blocking top contact and
the gate.

In the following, the kinetics of bias stress is further analyzed with
time-resolved current measurements, recording the transient response
of IDS on global illumination. These measurements are shown in Fig. 3a)
and b) for VGS= 5 V and VGS=−15 V, respectively. Here, the tran-
sistor was exposed to pulsed light with a pulse frequency f=48Hz, i.e.
switching every 10.4 ms between full illumination and dark; gray areas
mark the times during illumination. For light exposure at VGS= 5 V, IDS
reached its maximum value of 3.5 nA within 60 μs and decreased slowly
to a finite value above zero. Switching from light to dark, IDS peaked
equally fast at a minimum value of−1.6 nA and likewise decreased to a
finite value above zero. For VGS=−15 V, an average current of
−2.78 μA was measured. Here, the current changed on the ms time
scale from −2.74 μA in the dark to −2.82 μA during illumination. Both
time-resolved current measurements follow a bi-exponential behavior,
depicted by the red lines, with two decay time constants τ1= 1ms and
τ2= 13ms for VGS= 5 V, and τ1= 0.6ms and τ2= 3ms VGS=−15 V.
Such a bi-exponential behavior of a transient current implies that sev-
eral effects contribute [33]. Assuming an uncharged Epi layer for
VGS= 5 V in the dark due to the blocking top contact, illumination
created excitons, and the electric field between the top contacts and the
gate could then separate these electron-hole pairs. The observed dis-
placement current suggests that the electrons were driven against the
electric field to the Epi-TTC interface, filling electron traps in bulk Epi
or at the interface. The holes were extracted at the contacts.

Within this scenario, the fast component with rising time< 60 μs
and decay constant τ1= 1ms represents the initial displacement cur-
rent due to electrons and holes moving in the Epi layer and from
electron trapping in bulk Epi, in close vicinity of where the excitons
were split. After this initial process, a slower displacement current
follows, namely due to electron hopping from bulk traps toward the
Epi-TTC interface (τ2= 13ms). The decrease to a finite value above
zero could originate from a leakage in the dielectric, or from an overall

Fig. 1. Schematic of the transistor geometry with the pigment semiconductor
epindolidione, building hydrogen-bonds between neighboring molecules.
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displacement of electrons in the Epi layer toward the Epi/TTC interface.
While we cannot fully exclude the leakage current, we rationalize this
observation by considering the experimental procedure for this mea-
surement. The experiment was performed by sweeping VGS from −15 V
to 5 V and back, with a similar sweep rate like in Fig. 2. Therefore, the
condition VGS > Vth was only fulfilled for a few seconds, where the
ΔVth was not completely saturated. Thus, the remaining positive IDS
originates most probably from a displacement of electrons toward the
Epi/TTC interface, while the deep traps with release times longer than
the period of the light pulses remain essentially filled, not affecting the
current transients. The transient after turning off the light should be
induced by the free and trapped electrons, which undergo a thermally-
activated back-diffusion toward the source contact, due to a chemical
gradient from the high electron concentration at the Epi/TTC interface.
Thus, we explain the observed effects by an equilibrium of light-in-
duced charge generation, field-induced electron displacement toward
the Epi/TTC interface, and electron back-diffusion toward the top
contacts, due to the induced chemical gradient.

When the polarity of the gate electric field is switched to

VGS=−15 V, the current difference between illumination and dark
ΔIDS= 60 nA is much larger. We assign this effect to an enhanced
conductivity of the Epi transistor, either by lowering the contact re-
sistance or by releasing trapped holes in the transistor channel, as ob-
served before for pentacene transistors [14,15].

To test our hypothesis of exciton splitting beneath top contacts for
positive VGS, we probed the transistor with spatially-resolved and fre-
quency-resolved photocurrent measurements. That is, the laser was
now focused to a diffraction-limited spot and scanned in a straight line
across the transistor structure. At each position, a photocurrent spec-
trum for f=48Hz - 250 kHz was recorded with a lock-in amplifier. The
scanned photocurrent Iphoto is shown for VGS= 5 V in Fig. 4a) and for
VGS=−15 V in Fig. 4b), while the drain voltage was set to
VDS=−10 V. For illustration purposes, the complex photocurrent

Fig. 2. a) Time-resolved measurement of the drain current IDS for an epindolidione FET, while varying the gate voltage VGS. Starting in dark at IDS,0 (red horizontal
line), VGS was changed from−15 V to 5 V (A). Now, the FET was illuminated for 2 s (B), and VGS was changed back to−15 V (C). Here, IDS was increased compared to
IDS,0 and was decreasing slowly. After the starting value IDS,0 was reached, a control measurement without illumination was done. Here, IDS was only slightly
increased. b) Extracted transfer curves (A, C) from the time-resolved measurement. For 2 s illumination, a positive threshold voltage shift ΔVth= 2.1 was observed.
The red lines indicate linear fits on the measured data points. c) Threshold voltage shift ΔVth vs. illumination time at 5 V. The red line at 0.25 V marks ΔVth in the
dark. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Time-resolved drain current IDS for pulsed illumination, a) VGS= 5 V,
and b) VGS=−15 V, at 48 Hz pulse frequency. The gray areas mark the times
under illumination; the red curves depict bi-exponential fits to the measure-
ment points. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 4. Photocurrent Iphoto as a function of pulse frequency f across the lateral
transistor structure. a) VGS= 5 V, with a high-frequency contribution at the
contacts. b) VGS=−15 V, with a low-frequency contribution and its maximum
at 0 μm. Dotted lines indicate the transistor channel (x=0 µm - 50 μm) be-
tween the left source contact and the right drain contact; the contacts marked
with white lines were connected to the transimpedance amplifier.
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Iphoto was projected on the photocurrent phase θphoto=−30°. Red
color marks Iphoto in phase and blue color marks Iphoto in opposite phase.
Dotted lines indicate the edges of the gold contacts, simultaneously
measured with reflectivity, defining the transistor channel (x=0 µm -
50 μm) between the left source contact and the right drain contact. For
subsequent measurements, the lock-in amplifier was connected to the
contacts marked with white lines, measuring Iphoto at the source and the
drain contact, respectively [34]. By doing so, we could determine if the
measured Iphoto was passing only the source or drain contact, or was
passing both contacts. A further experimental description is provided in
the Supplementary Information.

Indeed, for VGS= 5 V, a positive photocurrent with 0.2 nA magni-
tude was measured, mainly located at the contacts and several μm
around the contacts. This contribution started with a small amplitude at
low frequencies, increased, and remained constant above 1 kHz.
Photocurrent was only measured at illumination positions near contact
connected to the lock-in amplifier, implying that the generated holes
were driven to the top contact closest to illumination and were ex-
tracted there. This behavior confirms the displacement character be-
tween the top contacts and the gate. As Iphoto showed no sharp con-
finement to the contacts but also appeared near to the contacts, we
exclude a photoelectric injection of electrons from Au into Epi. A
comparison of the sharp spatial resolution of reflectivity and photo-
current is shown in the Supplementary Information. Note that photo-
current for positive VGS was not observed in previous measurements of
pentacene FETs [14], presumably because exciton splitting in penta-
cene is complicated by singlet fission.

After having identified the process of photocurrent generation for
VGS= 5 V, we now discuss the line scans for VGS=−15 V (Fig. 4b).
Here, Iphoto dominates at low frequencies with 2 nA magnitude, i.e. one
magnitude larger than the photocurrent for VGS=−15 V. At low fe-
quencies, Iphoto was distributed over the whole transistor. At higher
frequencies, the broad distribution was more confined to a region in the
channel and under the source contact, with a maximum at the begin-
ning of the channel, x=0 μm. This spatial shape of Iphoto resembles
photocurrent maps of other materials [14,17]. In contrast to the line
scans for VGS= 5 V, the spatial position with the maximum at x=0 μm
did not change, whether the lock-in amplifier was connected to the
source or drain contact. Instead, the sign of the photocurrent changed,
showing a negative Iphoto when connected to the source contact, and a
positive Iphoto when connected to the drain contact. This behavior can
be explained as follows. In a p-type FET, positive charge carriers drift
from the source via the channel to the drain, leading to a negative net
current at the source contact and a positive net current at the drain
contact. The charge carriers pass both contacts, source and drain.
Photocurrent effects can arise due to a lowering of contact resistance
and de-trapping of hole traps within the channel. Both effects exhibit a
different spatial signature in photocurrent microscopy. A lowering of
the contact resistance is strongly confined to the edge of the Au contact
while de-trapping occurs in a broader range within the transistor
channel [15]. As Iphoto was dominating several microns around
x=0 μm, we assign this low-frequency component to the release of
trapped holes in the transistor channel, which enhance the overall
transistor current.

Finally, we evaluate the influence of charge carrier densities by a
variation of the voltage configurations. The model of photocurrent
generation is refined by measuring and analyzing the photocurrent
amplitude |Iphoto| and phase θphoto. For these measurements, the device
was illuminated at the source contact (x=−10 μm), where the signal
showed the highest levels. Applying different drain voltage levels al-
lowed to measure spectra in MIS configuration (VDS= 0 V) and FET
configuration (VDS=−10 V). Also, the gate voltage controlled the
charge distribution in the different layers, hole injection into Epi for
VGS=−15 V and electron blocking at the Au-Epi interface for
VGS= 5 V. The recorded spectra are shown in Fig. 5. Black filled
squares correspond to VGS=−15 V and VDS=−10 V; black filled

circles to VGS=−15 V and VDS= 0 V; white filled squares to VGS= 5 V
and VDS=−10 V; white filled circles to VGS= 5 V and VDS= 0 V. As
expected, the strongest signal was measured in the FET spectra for
VGS=−15 V, at low frequencies f < 103 Hz. This signal decreased by
one magnitude for higher frequencies and remained constant for
f > 104 Hz. In this frequency regime, the MIS spectrum at
VGS=−15 V converged with the FET spectrum. We therefore conclude
that the high-frequency spectra at VGS=−15 V were not affected by
the drain voltage. The same independence on the drain voltage can be
seen for the photocurrent at VGS= 5 V, confirming the displacement
character of these spectra. Moreover, the 180° phase difference between
the spectra for VGS=−15 V and VGS= 5 V indicates that the photo-
current was, as expected for displacement currents, induced in opposite
directions. Note that the line scans for VGS=−15 V (Fig. 4b) also
contain this high-frequency displacement current, but it can rarely be
seen due to the color scale. The same line scans, highlighting this high-
frequency component with a different color scale, are shown in the
Supplementary Information. This high-frequency displacement current
for VGS=−15 V can be explained with residual contact resistance of
the Au-Epi interface or with trapped holes in the bulk Epi below the
contacts. In either case, illumination promotes the holes closer to the
Epi-TTC interface, generating a displacement current. This process,
measured only at high frequencies f > 104 Hz, decays much faster than
the displacement current for VGS= 5 V because the hole trap density is
much lower than the electron trap density (see Fig. 5a).

3. Conclusion

In summary, we have imaged and analyzed the kinetics of electron
and hole traps in Epindolidione films and have identified two photo-
current contributions. The excitons, generated upon illumination, can
enhance the FET current by de-trapping holes in the channel, or they
can dissociate into electrons and holes due to the high electric field
between the contacts and the gate. For VGS= 5 V, exciton-splitting and
charge separation leads to two successive displacement currents.
Initially, hole extraction and electron bulk trapping occur, followed by

Fig. 5. Local photocurrent spectra at the source contact, a) amplitude |Iphoto|
and b) phase θphoto, with different voltage combinations: VGS=−15 V (black
filled symbols) and VGS = 5 V (white filled symbols), VDS=−10 V (squares)
and VDS=0 V (circles). The red line marks the spectral background of the
measurement setup, recorded in the dark. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this
article.)
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electron hopping from bulk traps to interface traps. These interface
traps cause bias stress, shifting the threshold voltage of the FET transfer
curves. Line scans of frequency-resolved photocurrent reveal that
electron trapping occurs under and also several μm next to the Au
contacts. For negative gate voltages VGS, the photocurrent also contains
this displacement contribution, and additionally a component assigned
to the de-trapping of holes. This de-trapping enhances the FET current,
mainly under the source contact and within the transistor channel. The
here presented methods of spatial distribution and dynamics analysis of
trap states should apply to a variety of emerging electronic materials
like other organic semiconductors, Perovskites, 1D and 2D materials.

4. Experimental section

4.1. Transistor fabrication

Transistors were fabricated by thermal evaporation under high va-
cuum, and the transistor structures were defined by shadow masks. A
100 nm thick Al layer was deposited as gate contact on glass substrates.
The Al layer was electrochemically oxidized to 32 nm Al2O3 in an acidic
solution with pH 6 and 20 V anodization voltage. Afterward, 34 nm
tetratetracontane (TTC) was deposited and thermally annealed for
16 h at 60 °C under N2 atmosphere to form the gate dielectric together
with Al2O3. 90 nm of purified Epindolidione was evaporated as the
semiconducting layer. Finally, 30 nm Au serve as source and drain
contacts. The fabricated transistor channel was of 50 μm length and
2mm width, defined with shadow masks. The sample was glued to a
chip-carrier and wire bonded for measuring.

4.2. Photocurrent measurements

A diode laser system (iPulse, TOPTICA Photonics) with a wave-
length of 488 nm was electronically controlled and used for excitation
of the Epindolidione layer, matching the absorption spectrum of
Epindolidione [3]. The pulse shape of the illumination was used in two
operational modes. First, in a rectangular mode, with a pulse frequency
f and a fixed pulse duty of 50%. Second, in a single-shot mode, emitting
only one light pulse of arbitrary pulse length. The Al gate contact and
one Au top contact were connected to power supply units (7651, Yo-
kogawa), the other Au top contact was connected to ground via a
transimpedance amplifier (DHPCA-100, Femto) at 106 V/A. Thus, the
transimpedance amplifier converted the current between the connected
contact and ground into a voltage output. The amplifier output was
analyzed with a digital multimeter (34411A, Agilent), measuring the
drain current IDS, and with a lock-in amplifier (7280, Signal Recovery).
The lock-in amplifier extracted the complex photocurrent Iphoto at the
reference pulse frequency of the used laser. Iphoto can be decomposed
into amplitude |Iphoto| and phase θphoto. Photocurrent spectra were
measured by subsequently changing the laser pulse frequency and
measuring Iphoto. More details of the used setup are described else-
where [14,15,34].
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ing of the microscopic origins of these variations, it is crucial to de-
velop both experimental and theoretical methods that allow to local-
ize ineffective regions in a device. Raster techniques, which manipu-
late conductivity locally, combined with global current readout may
provide this information, e.g. it has been suggested that diffraction
limited illumination of OFETs by laser scanning photo-current mi-
croscopy provides trap density distribution maps. However, the ques-
tion arises whether local variation of conductivity is indeed suited
for localization of such defects given that the detected photo-current
passes through the whole network of conductance in the thin film
device. In this study, we present a simulation model based on resis-
tor networks to investigate the effect of defective regions in organic
thin films. We show that varying conductances locally allows indeed
to reconstruct the spatial distributions of ineffective areas. We also
demonstrate how such simulations can be applied to interpret photo-
current microscopy maps in terms of trap densities.
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A B S T R A C T

Organic field effect transistors (OFETs) show considerable variation from device to device and batch to batch.
For the basic understanding of the microscopic origins of these variations, it is crucial to develop both experi-
mental and theoretical methods that allow to localize ineffective regions in a device. Raster techniques, which
manipulate conductivity locally, combined with global current readout may provide this information, e.g. it has
been suggested that diffraction limited illumination of OFETs by laser scanning photo-current microscopy
provides trap density distribution maps. However, the question arises whether local variation of conductivity is
indeed suited for localization of such defects given that the detected photo-current passes through the whole
network of conductance in the thin film device. In this study, we present a simulation model based on resistor
networks to investigate the effect of defective regions in organic thin films. We show that varying conductances
locally allows indeed to reconstruct the spatial distributions of ineffective areas. We also demonstrate how such
simulations can be applied to interpret photo-current microscopy maps in terms of trap densities.

1. Introduction

Research into organic electronics has gathered a lot of pace over the
past decade. Organic based devices can complement current technolo-
gies, but also possess numerous advantages over their inorganic coun-
terparts. From the possibility of low cost production on a large scale
(utilizing the vast array of different materials), to obtaining devices
with bendable (flexible) capabilities, this has merited the extensive
effort put into studying such a technology. The main building block of
these devices, the materials themselves, are categorized into two dif-
ferent groups, small molecules and polymers respectively. Small mo-
lecules come with some degree (usually high) of crystallinity, while
polymers are more towards being amorphous in nature. However, there
are also materials that can come as a combination of both structural
forms, such as Poly (3-hexylthiophene) [1–3]. Furthermore, small mo-
lecules can be evaporated in vacuum chambers, while polymers on the
other hand are solution processed (which is regarded as a simpler
process). An extensive database of the different materials can be found
here [4]. Both types are under investigation to realize various devices
for different applications. Examples include organic-field effect

transistors (OFETs for radio frequency identification tags or sensors)
[5–9], light emitting diodes (OLEDs for displays) [10–13], and solar
cells (OSCs for energy harvesting) [14–16]. Whichever device is chosen,
they all must exhibit and maintain good performance measures. In
OFETs which are the main focus in this study, these measures are high
charge carrier mobilities, low operating voltages, and device stability.

With all the promise that OFETs show, there still are factors that
limit their usage on a large commercial scale. One of these factors is the
presence of ineffective regions within the channel of a device. These
regions act as defects that limit device performance in terms of the
measures mentioned previously and can originate from several sources
(i.e. structural or energetic defects). Furthermore, this might lead to
charge carrier trapping. To this day, measurements taken from OFETs
are usually done in either ambient atmosphere for shorts periods of
time or inside vacuum chambers. Prolonged operation under ambient
atmosphere typically leads to performance degradation. One famous
example is oxidized pentacene species, where oxygen atoms bond with
the pentacene central rings leading to the formation of traps states
within the band gap [17,18]. Furthermore, OFETs are not made up of
only organic materials (eventhough efforts have been made to achieve
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exactly that). Other materials include metals (i.e. for the source and
drain contacts) and inorganic oxides. Therefore, interface quality has a
large effect on how OFETs perform. Charge transport in organic ma-
terials commonly occurs within the first few monolayers at the organic-
oxide interface [19,20], hence careful consideration must be taken into
account for which materials should be chosen for optimum device
performance.

The aforementioned sources of traps states in organic materials are a
consequence of the fabrication procedure or the operating conditions.
But a major source of traps states in organic semiconductors relates to
their nature (i.e. they are inherently present). This highly depends on
the partial localization of quantum states in space, due to energy and
spatial disorder. Consequently, a broadening of the energy levels in the
density of states is generated as a result of such disorder. This has been
famously described before by Bässler [21] as the Gaussian Disorder
Model (GDM). One of the main parameters of the GDM is called the
energetic disorder (denoted as σ and given in milli-electronvolts). With
higher energetic disorder, the tail of the Gaussian distribution will ex-
tend into the band gap. As the charge transport in organics often relies
on hopping from one site to the next, a certain amount of these sites will
act as trap states. This energetic disorder can be found in both small
molecules and polymers, but are more pronounced in the latter.

As far as how traps affect device performance, this highly depends
on their position relative to the transport level. There are two different
classifications of traps, shallow and deep traps respectively. Both have
very different effects on OFETs. Shallow traps target charge carrier
mobilities [22–24]. Charges are momentarily trapped as they travel
from the source to the drain. Such an effect is outlined by the multiple
trap and release model (MTR) [25,26]. This model takes into con-
sideration the amount of time a certain charge spends trapped as well as
the time it takes to travel between traps. If charges are trapped for
longer periods of time, this leads to hysteresis when switching from
forward to backward biases [24,27]. MTR is usually applied to organics
being more crytalline than amorphous because they have both localized
and delocalized states. This leads to a transition from localized to de-
localized levels, hence transport becomes based on multi-trapping and
releasing of charges. On the other hand, deep traps lead to threshold
voltage shifts and the need for higher operating voltages [28,29]. This
is obvious since more energy is required to free charges to participate in
transport.

For all these reasons, it is crucial to have an in-depth and full un-
derstanding of defective regions in organic based devices. This requires
extracting possible low conductive regions for subsequent analysis of
the identified areas (e.g. identifying polymorphs as a potential source of
traps states [30]). In this study, the investigation will be more on the
theoretical side but the experimental procedure will be presented as
well (in Section 2). This is followed by presenting the analytical model
used for our simulations and its validation in Sections 3 and 4 respec-
tively. Finally in Section 5, results are presented and comparisons
drawn between the simulation and experimental results.

2. Experimental setup

From an experimental perspective, the method chosen for our in-
vestigation is called ”Scanning Photo-Current Microscopy” (SPCM)
[31]. The measurement setup using SPCM is illustrated in Fig. (1a).
SPCM relies on scanning the surface of an organic thin film with sub-
micron precision. A laser light is shone onto a specific spot along the
length of the film with a certain wavelength. Under this illumination,
charges at that location gain the required energy to become de-trapped
and start flowing in the direction of the electric field applied between
the source and drain contacts. In pentacene, the de-trapping is governed
by the reaction of the prevalent triplet excitons [32,33] with trapped
charges [31,34]. With such a setup, the photo-response current can be
measured and a map can be drawn to show the strength of the current
difference (i.e between pre- and post-illumination) with respect to the

illuminated spot.
Our previous experimental SPCM studies of pentacene transistors

showed inhomogeneous SPCM maps, which were explained with an
inhomogeneous trap distribution, revealed by exciton-assisted de-trap-
ping [31,35,36]. According to the Thevenin theorem, any complex
network of resistors can be simplified to an equivalent circuit with just
one resistor. In this investigation, we determine the equivalent simpli-
fied network (i.e. the current before and after illumination), as shown in
Fig. (1b). Here, we want to address the question to which extent does
the total current change still contains information of the local resistance
change. We address this issue by simulations of resistors networks. This
simulation model (introduced in the following section) will also be used
to evaluate the density of traps.

3. Theoretical model

Our simulation model is based on a theory of resistor networks
presented in Ref. [37]. It is important to begin by noting that in-
vestigations of transistor operations using circuit elements has been
proposed before by Shockley [38] and Brews [39] (i.e charge sheet
model). More recently, such models have also been extended to in-
vestigate both organic and inorganic ambipolar transistors [40–42].
Here we start by considering a two dimensional resistance network with
N nodes numbered = …i N1,2,3, ., respectively (as shown in Fig. 2). The
conductance between two neighbouring nodes is given by = =−c r cij ij ji

1 ,
and according to Kirchhoff's law1

∑ ′ − = = …
=

c V V I i N( ) , 1,2,3, .,
j

N

ij i j i
1

1

(1)

where I and V are the current and voltage respectively. Eq. (1) can be
rewritten in the following form:

→
=

→
LV I (2)

From Eq. (2), L is defined as a conductance matrix (referred to as the
”Laplacian” matrix in Ref. [37]). The off diagonal elements of this
matrix correspond to the conductance between a pair of nodes. It also
should be noted that this matrix is an adjacency matrix, which means if
there is no resistor present between nodes i and j, the conductance is
equal to zero. The final representation of the conductance matrix is

Fig. 1. (a) Illustration of the SPCM measurement technique, and (b) its curcuit
equivalent based on a network of resistors. The organic film is illuminated by a
laser light (block resistances manipulated) focusing on sub-micron sized spots.
As a consequence of this illumination (manipulation) charges are de-trapped
and the photo-current is measured.

1 the prime stands for the omission of the term j= i.
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= = …L λ i NΨ Ψ 1,2,3, .,i i i (4)

where Ψi and λi are the eigenvectors and eigenvalues of the con-
ductance matrix respectively. Using Eqs. (1)–(4), one can calculate the
overall resistance between two arbitrary nodes α and β with the fol-
lowing expression:

∑= −
=

R
λ
1 Ψ Ψαβ

i

N

i
iα iβ

2

2

(5)

As the sum of all columns/rows are equal to zero, one of the ei-
genvalues is zero. This is usually the first eigenvalue (i.e at =i 1), that is
why the summation in Eq. (5) goes from =i 2 to N. Care should also be
taken when differentiating the usage of i, j, α, and β since they all re-
present the same entity (i.e nodes). Variables i and j are referred to
when constructing the network and consequently the conductance
matrix. On the other hand, α and β represent two nodes that have been
chosen, and the resistance of the network is calculated with respect to
them (see Fig. (2)). Therefore, the lowercase r are the values for the
individual resistances between the nodes within the network. The up-
percase R refers to the resistance of the entire network between two
specific nodes. Such reference will stay the same from here onwards.

Each block inside the network consists of 4 resistors r and hence
represents a spot to be ”illuminated”. Once a spot has been chosen (at
random or otherwise), all 4 resistors are changed accordingly. This
change is applied through the relation between the carrier density and
resistance given in Eqs. (6) and (7). The carrier density is raised to a
specific value which provides 4 new resistances r assigned to a block. In
this way, we can mimic the effect of the illumination process onto a
specific spot. Pre- and post-illuminated block resistances are always
calculated in this fashion.

=r ρ l
wt (6)

=ρ
qpμ

1

p n( / ) (7)

where,

a) ρ is the resistivity of the organic semiconductor.
b) l w t, , are the length, width, and thickness of the spot size.
c) q is the electronic charge.

d) p is the charge carrier density (main simulation parameter).
e) μ p n( / ) is the charge carrier mobility.

Once the manipulation process is complete, the new conductance
matrix built, and the final network resistance calculated, a voltage is
applied across the channel to calculate the ”photo-response” current
using Eq. (2). It should be taken into consideration that all nodes on
both the source and drain sides must be at the same potential assigned
to them (i.e ground on the source, a voltage V on the drain). With that
in mind, this insures that the current entering from any node on the
source will have all possible pathways available to choose from in
reaching the drain. This dictates how the conductance matrix is set up.

4. Model validation

We begin by validating the model to ensure that its functionality is
sound. Two approaches have been chosen for this validation. The first
one will be simulating a homogeneous network. This means that all
block resistances r are assigned the same initial value. The entire net-
work is then manipulated block by block in a sequential manner, and a
color map of the network is drawn at the end. Since the network is
homogeneous and the manipulation process (i.e increasing the carrier
density) is the same for every block, it should be expected that ”sister”
blocks (i.e. same distance from the edges but on opposite sides) will
result in the same photo-response current and consequently the same
current difference. That is indeed the case, as illustrated by the color
map in Fig. (3) which shows horizontal and vertical symmetry. One
important observation, is how the difference between the ”dark” cur-
rent and the photo-response current (in terms of current density) in-
creases as we get closer to the contact edges in contrast to the central
region of the channel. However this does not affect the symmetry. More
on this observation will be discussed in detail in the following section,
where simulation and experimental results are compared.

With the previous approach the entire network was scanned block
by block. In our second approach, we wanted to manipulate specific
blocks that were identified beforehand in order to draw out a certain
image. The image of choice in this case was one of the author's af-
filiation logo. From Fig. (4), it can be seen that the initials are visible
and clearly readable. The intensity is slightly different across the logo as
this depends on the position of the block in question. Pre-illumination
current and charge densities were 0.28A/cm2 and 1014cm−3, with post
illumination densities are 1017cm−3 respectively. This provides ade-
quate proof that the model responds well to a predefined input, giving
the expected output. Furthermore, this allows us to extract local
properties of the network (i.e. effect of specific positions with respect to
the entire network).

5. Results: simulation vs. experimental

In terms of running the model to compare simulation and experi-
mental results, a few changes need to applied to that of the validation
procedure. Firstly, charge densities are not homogeneously distributed
across the transistor channel. Hence, for a more realistic approach the
network in question must be of an inhomogeneous nature. This has
been done by providing the model with a range of charge densities, to
both choose from and assign individual resistances in a random fashion.
Furthermore, results of this model are to be compared with that of an
OFET, hence we must insure that the network is operating under the
same conditions similar to an OFET in order to have a justifiable
comparison. In addition to the random assignment of charges across the
network, both the effects of the gate and the drain-source must be
implemented. For the former, this is done implicitly, as for the latter it
is explicitly addressed.

In an OFET, the gate is responsible for inducing charges inside the
channel. This attribute is added by providing the network with a spe-
cific value for the charge density. A Gaussian distribution with a pre-

Fig. 2. A simple schematic of a 2D resistor network. The block highlighted in
red represents a single spot. Letters i and j represent the position of an in-
dividual resistor, while α and β (in green) denote the chosen nodes for which
the network resistance is calculated between them. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)
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defined standard deviation is centered around this value. For the drain-
source effect, we assume that the charge density across the channel
should decrease linearly as we move from the source towards the drain.
Here the network is divided into multiple segments, where a set of
values corresponding to the charge densities are assigned to each seg-
ment (based on the standard deviation of the Gaussian distribution).
The distribution is then simply shifted to a lower value while main-
taining the same standard deviation. This is repeated from one segment
to the next until we reach the drain. To insure that these assumptions
are correct, we ran a drift-diffusion (DD) simulation on a bottom gate/
bottom contact Pentacene OFET and extracted the density profile across
the channel region. This profile is shown in Fig. (S1) of the
Supplementary Information. Fig. (S1) shows the same linear drop,
hence consolidating the approach described earlier. Nevertheless,
closer to the drain contact we observe that the density profile deviates
from this linear behaviour. More on this aspect with be discussed
shortly. To summarize, in this fashion we are able to implicitly include
the gate effect (i.e. charge density value based on a Gaussian distribu-
tion), the linear decrease in density due to the explicit drain-source
effect (i.e. shifting the distribution accordingly), and finally the in-
homogeneity of charge density assignment based on the given standard
deviation.

Results presented here will be based on a Pentacene OFET, but the
model can be generally applied to other materials by properly adjusting

the parameters. The parameters used for our simulations are summar-
ized in Table 1. The operating point of the network is at a gate voltage
of 20 V and drain-source voltage of 10 V respectively. For the used
charge density range, a total of 24 values were chosen to cover the
entire range, 6 for each segment in decreasing order. This ensures the
linear drop across the channel is present. To find out how the charge
densities are assigned to the network, their corresponding number of
individual resistances were extracted (i.e for each segment). Fig. (5)
shows this assignment, and indicates that all values (i.e charge den-
sities) given to a specific segment of the network are more or less evenly
distributed. Only three values are higher as they are common between

Fig. 3. A color map representation of the manipulation process of a homogeneous network. During the manipulation process, each block was returned to it's initial
state before moving to the next one. Symmetry is present (taken either horizontally or vertically) meaning that ”sister” blocks on opposite sides give the same
intensity. This is expected since all blocks share the same initial state. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 4. Illustration of the TUM logo. Specific blocks were chosen and manipu-
lated to draw this image.

Table 1
Summary of the parameters used for the simulation of a Pentacene OFET.

Simulation Parameters

Channel Length 20 μm
Channel Width 20 μm
Channel Thickness 2 nm
Spot Size 500 nm×500 nm
Charge Density 1.15× 1017 cm−3 – 1.35× 1017cm−3

Carrier Mobility 6.5× −10 3cm2/Vs

Fig. 5. Bar chart showing the distribution of the charge carrier densities and
corresponding number of resistors across the four sections of the network.
Densities are more or less fairly distributed, except three values which are
shared between two adjacent sections.
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Fig. 6. (a) Color map of the entire network after the manipulation process. High current density difference between pre- and post-manipulation obsevered near the
contacts relating to the position of the block rather than local effects. (b) A detailed view of the central region of the network where a more local effect due to de-
trapping is observed. (c) Effect on both the promoted charges (orange) and ΔJ (blue) with respect to the ratio between saturation and initial charge densities. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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two adjacent segments. The network was divided into 4 segments.
Now that the model has been appropriately adjusted, the entire

network will be manipulated block by block. In this manner the posi-
tions which contribute to the highest (and lowest) photo-response
current and hence the corresponding defective regions are identified.
The resulting color map is depicted in Fig. (6a). The principle of SPCM
and the model used is based on the effect of illumination which triggers
the de-trapping mechanism at a specific spot, therefore identifying a
local effect relating a certain density of traps to a specific location in the
transistor channel. Similar to SPCM we can use the simulated maps to
interpret these low conductive (i.e. defective) regions in terms of traps
densities. A recurring observation from Figs. (3) and (6a) is the rather
large difference in current density near the contact edges. This raises
the question, is what being observed near the contact edges a local
effect that de-trapping is much more significant there in contrast to the
central region, or is it a global effect due to the close proximity to the
contacts that it becomes relevant or even overshadows the effect of de-
trapping. We believe it is the latter, because these edge effects are
present regardless of the type of network in question. The closer we
move towards the edges, the position of the block (i.e. global aspect)
has a greater effect on the current than the change applied to the block
itself (i.e local aspect).

Focusing on the central region of the channel, we investigate all
blocks positioned approximately 3 μm–5 μm away from either contact
edges. This allows us to exclude the non-linear behaviour previously
mentioned (see Fig. (S1)). Furthermore, this non-linearity is present at
high drain voltages (i.e 35 V), on the other hand the network is oper-
ating at a lower drain voltage of 10 V. We observe a varying intensity of
the color map as shown in Fig. (6b), and the corresponding range of ΔJ
lies between 0.01A/cm2 - 0.08A/cm2. This range is similar to what has
been measured experimentally in Ref. [31]. In order to achieve this
agreement we raised the charge density for the manipulation process to
2× 1017cm−3. To calculate the density of traps in the central region,
we extracted information from the two blocks resulting in both the
highest and lowest ΔJ. Combining Eqs. (6) and (7), the resistances r can
be rewritten as

=r l
qpμ Adark

p (8)

and

=
+

r l
q p p μ A( Δ )

,illum
p (9)

where rdark and rillum are the resistances before and after the manipula-
tion process, A and pΔ are the area and trap density respectively. Fi-
nally, the trap density is expressed as

=
−

p l
r r qμ A

Δ
( )avg

dark illum avg p (10)

Both the trap density and the block resistances have a subscript
”average” because there are 4 resistors per block and hence why the
average value is calculated. Using Eq. (10) the average trap density was
evaluated to be between 7.6× 1016cm−3 - 8× 1016cm−3. This corre-
sponds to approximately 40% of the trapped charges are promoted for
transport. Given that only 40% of charges were de-trapped, increasing

the density of the manipulation process would further promote more
charges. Naturally the ΔJ will continue to increase but only up to a
certain point, at which it saturates irrespective of any further manip-
ulation (i.e. all charges are de-trapped). To find out this onset of sa-
turation, Fig. (6c) shows the effect on both the promoted charges and
the ΔJ for different densities of the manipulation process. From Fig.
(6c), almost all charges are de-trapped (i.e. 97%) when the strength of
the manipulation is 40 times higher than the initial state of a chosen
block. This corresponds to a total local charge density of 5× 1018cm−3

and hence a trap density of 4.85× 1018cm−3.
The charge mobility given in Table 1 was chosen to obtain the

aforementioned trap densities. The mobility itself was extracted from a
DD simulation. Fig (S2) in the Supplementary Information shows the
mobility profile along the channel region of a Pentacene transistor. At
the desired operating point of our network, the mobility is almost
constant and is estimated to be 6.5× −10 3cm2/Vs. Using this mobility,
we managed to achieve a very good agreement between simulated and
experimentally evaluated trap densities, as given in Table 2.

Finally, given that the above analysis was based on certain ap-
proximations such as how the gate and drain-source effects are included
or even how we mimic the illumination process, this same investigation
can be done on the DD level. Using DD all aspects of a transistor op-
eration are explicitly considered through solving both the Poisson and
current equations. Moreover, the channel can be divided up into
smaller segments where trap states at a specific energy can be defined
for each and every segment. Then, a similar analysis as done previously
(i.e. on the resistor network) can be carried out using DD. But given that
organic transistors usually have channel lengths in the range of tens of
microns, then dividing up such long channels into sub-micron segments
and monitoring the effect on the output current due to a change in a
specific segment, it becomes increasingly complicated and time con-
suming. Furthermore, if the channel width is taken into consideration
(i.e. going from 2- to 3- dimensions) it would then be nearly impossible
to carry out an investigation similar to the SPCM procedure. Thus if an
”on the fly” investigation of the effect of traps in organic transistors is
required, the proposed resistor network model can act as an appropriate
tool for that purpose given that we have to rely on certain approx-
imations. Nevertheless, the analysis is done considering all important
aspects of a transistor operation and on an adequate time-scale. More
importantly, we have shown that the model can be used to quantify low
conductive regions in terms of trap densities and their effect on the
output current. Hence, we demonstrated that the local effect is more
pronounced than the global state of the entire network (i.e. which de-
fines the resistance pathway the current will undertake). This is critical
as the aim is to trace the effect of traps back to a specific location in the
organic film, as done by the SPCM procedure.

6. Conclusion

In this study we presented a simulation model based on a network of
resistors to investigate traps states in organic thin films. The model is
used to interpret the results provided by scanning photo-current mi-
croscopy. Blocks of resistors are chosen and manipulated accordingly to
mimic charge carrier de-trapping through an illumination process.
Initially, the model has been successfully validated. This is followed by
appropriately extending the model for a more realistic approach to
identify defective regions in organic thin films. Quantifying these de-
fective regions in term of trap densities, our analysis shows that the
difference in current observed as a result of spot illumination, can be
related to charges being de-trapped at that same spot. This is true as-
suming that we are not too close to the edges (approximately
3 μm–5 μm away from the edges), where the effect of the contacts be-
comes predominant and the local property due to charge de-trapping is
greatly overshadowed. Furthermore, to record a ΔJ similar to that of
SPCM measurements, we found that only 40% of charges were pro-
moted. Yet a higher manipulation process (i.e. 40 times higher) was

Table 2
Comparison between experimental measurements and simulation results.

Experimental Simulation

Dark Current Density 350 A/cm2 355A/cm2

ΔJ 0.01 A/cm2 - 0.07 A/cm2 0.01A/cm2 - 0.08A/cm2

Trap Density 4.4× 1018cm−3 (From Table I in
Ref. [43])

4.85× 1018cm−3
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required to promote almost all trapped charges. This corresponds to a
trap density of 4.85× 1018cm−3 which is also in agreement with ex-
perimentally measured trap densities.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://
doi.org/10.1016/j.orgel.2018.08.002.
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Abstract: At terahertz (THz) frequencies, scattering-type scanning near-field optical 
microscopy (s-SNOM) based on continuous wave sources mostly relies on cryogenic and 
bulky detectors, which represents a major constraint for its practical application. Here, we 
devise a THz s-SNOM system that provides both amplitude and phase contrast and achieves 
nanoscale (60-70nm) in-plane spatial resolution. It features a quantum cascade laser that 
simultaneously emits THz frequency light and senses the backscattered optical field through a 
voltage modulation induced inherently through the self-mixing technique. We demonstrate its 
performance by probing a phonon-polariton-resonant CsBr crystal and doped black 
phosphorus flakes. 
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1. Introduction 

Terahertz (THz) frequency electromagnetic waves (30–300 µm wavelength) can resonantly 
interact with fundamental excitations of molecules and solids and thus offer an ideal tool for 
the optical characterization of emerging low-dimensional materials and biological-systems. 
Scattering-type scanning near-field optical microscopy (s-SNOM) displayed an exceptional 
potential for nanoscale imaging of material properties [1] as has been demonstrated also at 2.5 
THz [2]. In s-SNOM, an incident light beam is focused on a sharp atomic force microscope 
(AFM) metallic tip strongly confining the radiation to the near-field region of its nanometric 
apex. Nanoscale resolved (10 - 100 nm) optical images can be retrieved by analyzing the 
scattered radiation as a function of tip position, placing the tip in close proximity to the 
sample surface. 

Coherent imaging, i.e. detection of amplitude and phase contrast, is crucial to get 
information on the real and imaginary parts of the dielectric response and hence several 
interferometric approaches have been developed allowing amplitude and phase resolved s-
SNOM imaging in the visible and infrared spectral ranges [3, 4]. Solutions based on fs pulsed 
laser sources and electro-optic sampling detection in the THz range [5, 6] or solutions based 
on microwave circuitry in the sub-THz range [7] have been reported. However, in spite of a 
strong demand to extend in the far-infrared the spectral coverage of coherent nano-imaging 
based on continuous-wave (CW) compact sources, conventional interferometric techniques [2, 
8, 9] have suffered from the poor dynamic range of cryogenically cooled bolometric detectors 
needed to measure the typically small s-SNOM signals [2]. Progress in coherent THz nano-
imaging would therefore greatly benefit from compact, room-temperature operating and fast 
detection systems for THz frequency operation. 

Here we tackle the problem by conceiving a simple, potentially fast and compact s-SNOM 
system based on a THz quantum cascade laser (QCL) operated CW in the self-detection (SD) 
mode. A similar approach has been recently exploited to produce THz images with sub-
wavelength spatial resolution [10, 11]. In this work, we demonstrate amplitude- and phase-
resolved background-free SD-s-SNOM imaging with 60-70 nm spatial resolution comparable 
to the scattering tip size, providing a key step forward to make THz nanoscopy a widely used 
tool. Our approach, based on a simple 2-parameter fitting of self-mixing interferograms, 
outperforms by far all previously reported attempts based on the use of self-mixing and either 
attaining incoherent near-field s-SNOM imaging, or using a rather complex 6-parameter 
fitting procedure for amplitude-like and phase-like images at diffraction-limited resolutions (> 
100 µm) [12]. 

2. Results and discussion 

2.1 The general concept of SD-s-SNOM 

In our experimental configuration, we use the radiation source, a THz quantum cascade laser 
(QCL) [13], (see Experimental Methods) not only for illuminating the tip but also for 
detecting the radiation field scattered from the tip, therefore avoiding the use of bulky THz 
cryogenic detectors. The near-field scattering is measured through the voltage change (ΔV) 
across the electrical contacts of the THz QCL, induced by the self-mixing effect [14, 15]. This 
effect is based on the reinjection of a small fraction ( 4 210   10− − ) of the emitted field that 
coherently interferes within the laser cavity. 
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The inherent stability of QCLs against optical feedback [16] has been recently exploited 
in a number of self-mixing interferometry (SMI) configurations, providing an interesting 
method to control the emission of THz QCLs by reconfigurable photo-generated anisotropic 
metamaterials [17], to trace the free carrier distribution in a semiconductor target [18], and to 
map the real and imaginary refractive index of polymeric materials [12], for example. 

In our system (Fig. 1(a)), the 2.7 THz QCL radiation is focused onto the apex of a Pt tip, 
which is sinusoidally dithered, normally and in close proximity to the sample surface at 
frequency Ω. The scattered field Es is collected by a parabolic mirror and focused back onto 
the QCL front facet along the same incident optical path, inducing the changes in the QCL 
voltage ( VΔ ) (see details on the experimental arrangement in Appendix 1). Hence, VΔ  
measures the optical response of the sample. To quantify this properly, we relied on the well-
established Lang-Kobayashi (LK) model [19], and extended it to encompass a complex 
sample permittivity. In the very weak feedback limit, the voltage change at the QCL terminals 
can be written (see Appendix 2): 

 0

2
cos(  )

L
V s

c
ω ϕΔ ∝ −  (1) 

where s  and ϕ  are the amplitude and phase, respectively, of the ratio between scattered and 

incident electrical fields of THz radiation, 0 2 /cω π λ=  is the unperturbed laser frequency, 

and L  is the laser-to-tip distance which varies by the tip dithering and by the piezoelectric 
mirror (PZM) displacement. By using an optical attenuator (A), the feedback remains 
sufficiently low to keep the system in the validity range of Eq. (1). In this regime, the 
proposed experimental layout is similar to a single-arm homodyne interferometer [14], in 
which the laser output facet and the tip define the external cavity of our self-mixing 
interferometer. 

Equation (1) contains all necessary physical quantities to predict observable amplitude 
and phase contrasts in SD-s-SNOM images. Although in conventional s-SNOM, the phase 
contrast is extracted by analyzing the detector signal variations induced by changing the 
optical path length of the reference beam of an interferometer, in SD-s-SNOM the amplitude 
and phase information is obtained from the analysis of the VΔ  as a function of ΔL as 
explained below. 
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Fig. 1. Self-detection scattering type near field optical microscope with nanometer resolution at 
terahertz frequencies. (a) Schematic diagram showing the experimental arrangements. The 
same optical components (two paraboloid mirrors, an attenuator (A), one fixed mirror and one 
piezo-actuated mirror (PZM)) focus the THz beam emitted by the QCL onto the apex of a Pt 
tip sinusoidally dithered at frequency Ω in close proximity to the sample surface and feeds the 
scattered radiation back into the QCL cavity to produce self-mixing. The distance L ≈60 cm 
between the QCL front facet and the tip can be varied by translating the PZM. (b) Self-mixing 
induced modulation from a Au surface of the voltage drop across the QCL obtained using the 
experimental arrangement (a) and measured by a lock-in amplifier to the n = 3 demodulation 
order, as a function of ΔL. The dots are the experimental data and the solid line is the best-
fitted curve obtained using Eq. (2). The ΔV3 signal show the expected λ/2 periodicity 
characteristic of self-mixing. (c) AFM topographic and (d) 3rd harmonic near-field THz 
imaging of the Au-on-silicon sample at a fixed mirror position. (e) Edge response profile 
extracted from (d) by averaging seven adjacent rows of pixels along the green horizontal line. 
The inset shows the corresponding spatial derivative, which has been fitted by a Gaussian 
function (red curve) with a full-width-at-half-maximum of 65 nm. 

2.2 The implementation of SD-s-SNOM 

In our arrangement, as is typical in s-SNOM for effectively distinguishing the near-field 
scattering from background scattering [1], VΔ  is demodulated at low-order harmonics of the 
dither frequency using a lock-in amplifier, and the measured harmonic amplitudes nVΔ  are 

recorded up to the order n = 5 as a function of the displacement LΔ . Decomposing VΔ  into 

harmonic components 
0

Δ cos( Ωt)n
n

V V n
+∞

=

Δ = , we show that the demodulated signals 

equivalently carry information on the optical amplitude and phase components ns  and nϕ  

(see Appendix 2): 

 
( )

0

2
  cos( )n n n

L t
V s

c
ω ϕΔ ∝ −  (2) 

The experimental   nV vs LΔ Δ  curves (e.g. ΔV3 in Fig. 1(b)) demonstrates that our SD-s-

SNOM system behaves similarly to an external interferometer and produces approximately 
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sinusoidal interference fringes, as predicted by Eq. (2). Figures 1(c)-(d) provide direct proof 
that the SD-s-SNOM signal is sufficiently stable for homodyne THz imaging. 

2.3 Deep sub-wavelength in-plane spatial resolution 

Comparison between the AFM (Fig. 1(c)) and the self-detected (Fig. 1(d)) images of a gold 
film deposited on a SiO2-coated silicon substrate demonstrates the capability of our THz 
imaging system to achieve an in-plane resolution comparable with the employed tip apex 
sizes (50-70nm). Figure 1(e) shows the ΔV3 signal collected along the green horizontal line in 
panel 1d traversing the edge of the gold-coated region. The inset of Fig. 1(e) shows the 
corresponding first-order spatial derivative. From the full-width-at-half-maximum of the 
Gaussian curve interpolating the derivative function (red curve in the inset of Fig. 1(e)), we 
can retrieve a remarkable spatial resolution of σx = 68 nm along the horizontal (fast) axis, 
corresponding to ∼λ/1500. 

2.4 Amplitude and phase contrast imaging capability 

The phase-contrast at THz frequencies between gold and SiO2 is negligibly small, as is usual 
for all combinations of non-resonant materials [9]. Hence, to provide a proof-of-principle of 
the amplitude and phase contrast imaging capability of the SD-s-SNOM, we selected a polar 
crystal (CsBr), which exhibits a strong phonon-polariton (Reststrahlen) resonance in the range 
2.2 – 3.3 THz [20]. We simulated the SD-s-SNOM near-field amplitude (s3) (Fig. 2(a)) and 
phase (φ3) signals (Fig. 2(b)) for both CsBr and Au as a function of wave number, using a 
single phonon oscillator model in the framework of the finite dipole model (see Appendix 2). 
Our findings show that, although Au exhibits the expected flat amplitude response and 
negligible phase throughout the THz frequency range investigated, CsBr shows a four-times 
stronger s3 peak at 90 cm−1, and a large phase signal φ3 ≈150° at this wave number. Hence, we 
prepared a suitable sample comprising a CsBr crystal, coated with a thin (100 nm) Au film, 
and selected a THz QCL that operated single mode in continuous wave at 90.3 cm−1 (2.7 
THz). These choices should ensure a strong near-field amplitude and phase contrast at 
CsBr/Au steps obtained by mechanically scratching the Au thin film to expose the underlying 
CsBr surface. 

Figures 2(c)-2(d) compare the AFM topography (Fig. 2(c)) and the SD-s-SNOM image 
(Fig. 2(d)) of a CsBr/Au step, simultaneously obtained while raster-scanning in the x-y plane 
underneath the tip and recording 3VΔ  at each pixel. To show the L dependence of both the 

3VΔ  signal and the optical contrast between CsBr and Au, we changed the optical phase 

0

2
( )

L

c
ω Δ

 over a 2π range in π/3 steps ( 9.25 L mμΔ = ), every Δy = 0.5 μm during the 

acquisition. We thus observe 13 striped regions in Fig. 2(d). In order to retrieve amplitude and 
phase from the collected optical images, each line in Fig. 2(c) and 2(d) were preliminarily 
horizontally shifted to straighten the CsBr/Au edge. Then the signal ΔV3 was vertically 
averaged in each stripe and associated with the corresponding ΔL value. Finally, sinusoidal 
functions (Eq. (2) were fitted to the <ΔV3> vs ΔL curves to extract the amplitude s3 and phase 
φ3 as a function of the horizontal distance from the CsBr/Au edge (Fig. 2(f) and Fig. 2(g)). 
Then the height (Fig. 2(e)) and the signal ΔV3 were vertically averaged on each stripe and 
associated with the corresponding L value. From the steep rise of the optical signal at the edge 
the Au film on the CsBr crystal, we can estimate the optical spatial resolution. To address the 
issue we have followed the same procedure detailed for Fig. 1(e). The full-width-at-half-
maximum of the Gaussian curves interpolating the derivative function of the amplitude and 
phase signals (red curves in the insets of Figs. 2(f) and 2(g)), give estimates of the spatial 
resolutions: 54 nm and 60 nm for the amplitude and phase signals, respectively. 
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Fig. 2. Amplitude and phase resolved THz nanoscopy on a resonant polar crystal. (a-b) 
Simulated, near-field resonant dielectric response of CsBr (red lines) and Au (blue lines): 
amplitude (s3) and phase (φ3) plots as a function of wave number. The dashed vertical line 
corresponds to the probing laser frequency. (c) Atomic force microscope image of a 5 μm x 5.5 
μm area of the CsBr/Au sample. Step sizes of Δx = Δy = 41.6 nm were used. (d) Self-detected 
near field 3rd order signal. Every Δy = 0.5 μm the PZM mirror position is changed in order to 
shorten the optical path by ΔL = - 9.25 μm. (e-g) average topography (e), amplitude s3 (f), and 
phase φ3 (g) as a function of the position with respect to the CsBr/Au edge. The insets in Figs. 
2(f) and 2(g) show the spatial derivative of the amplitude 2(f) and phase 2 (g) signals, which 
have been fitted by Gaussian functions (red curves) with full-width-at-half-maxima of 54 nm 
and 60 nm, respectively. 

In Fig. 3, we demonstrate the strong sensitivity of SD-s-SNOM to changes in the 
amplitude and phase of the effective polarizability of the coupled tip-sample system. For this, 
we exploited the strong dependence of s3 and φ3 on the tip sample distance z (see Appendix 2) 
[21] and recorded ΔV3 during approach curves obtained by progressively stepping the PZM 
position by ΔL = 9.25 μm. For each value of z, s3 (Fig. 3(a)) and φ3 (Fig. 3(b)) were extracted 
by fitting sinusoidal functions (Eq. (2) to the ΔV3 vs L curves. The prevalent near-field nature 
of 3rd harmonic signals is shown by the monotonic decrease of both the amplitude and phase 
signals for increasing z, with s3 becoming negligible and φ3 saturating for z > 60 nm. The 
approach curves of Fig. 3(a)-3(b) are nicely reproduced by the calculated near-field 
amplitudes (s3) (Fig. 3(c)) and phases (φ3) (Fig. 3(d)) of CsBr and Au, solving the full set of 
transcendental coupled LK equations, with no approximations, at each experimental L value 
(see Appendix 2). Similarly, our technique is expected to measure changes of the real and 
imaginary part of the effective polarizability as a function of the incident laser wavelength. 
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Fig. 3. THz near field amplitude and phase as a function of tip-sample distance (approach 
curves). (a-b) Comparison between the experimental amplitude (a) and phase (b) of CsBr (red) 
and Au (blue), collected as a function of the tip-sample distance z, using dither amplitude 106 
nm and setting L such that ΔV3 is maximum at z = 0; (c-d) Calculated near-field amplitudes (s3) 
(c) and phases (φ3) (d) of CsBr (red curves) and Au (blue curves) (see Appendix 2). 

2.5 Application for 2D material imaging 

Finally, we demonstrate the capability of SD-s-SNOM to image doped van der Waals layered 
materials. We selected black phosphorus (BP), an emerging layered semiconductor, which 
has been recently demonstrated to be a suitable material system in the THz for photodetectors 
[22, 23], and near-field optical probes [25]. Here we study BP flakes with different thickness 
and carrier densities (see the estimate of free carrier density in black phosphorus flakes in 
Experimental Methods section) that were transferred onto a Si/SiO2 substrate by mechanical 
exfoliation [23, 26]. A thin (5 nm) SiO2 protection layer was deposited via sputtering to 
encapsulate the material system and avoid degradation under ambient exposure, ensuring that 
flakes remained clean and stable for several months [22, 23]. 

Figure 4 compares the topography images (Figs. 4(a), 4(c), and 4(e) and the corresponding 
ΔV3 signals (Figs. 4(b), 4(d), and 4(f) collected on Se-doped BP flakes. A near-field contrast 
is clearly observed between the Se-doped BP-flakes and the SiO2 substrate in the 2D scans of 
ΔV3 shown in Fig. 4(b), 4(d). This effect is also evident in the profile of ΔV3 measured across 
the edge of the Se-doped BP flakes (Figs. 4 (l) and 4(m)). In Fig. 4(f) the optical phase was 
changed at constant steps of 0.39 π ( 5.5 L mμΔ = ), every Δy = 0.21 μm during the scan. 

To extract the amplitude and phase from the optical images, each line in Fig. 4(e) and 4(f) 
were preliminarily horizontally shifted to straighten the BP/SiO2 edge, in analogy to the 
analysis performed on the CsBr/Au sample (Figs. 2(c)-2(g)). Then, the height (Fig. 4(g)) was 
vertically averaged on each stripe and associated with the corresponding L value. From the 
striped image of Fig. 4(f) we extracted the near field amplitude s3 (Fig. 4(h)) and phase φ3 
(Fig. 4(i)) profiles at the BP/SiO2 step edge. Apparently, no phase contrast between BP and 
SiO2 is observed, due to the off-resonance excitation of both materials, as expected since in 
both cases optical phonon resonances fall in the mid-IR [27]. Incidentally, the detected near-
field scan results highly sensitive to the presence of oxidation-induced clusters on the surface 
of the investigated BP flake, which causes an abrupt change of the detected optical signal. 
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Fig. 4. SD s-SNOM nanoscopy at THz frequencies of doped black-phosphorus. (a, c, e) AFM 
tomographic images and (b, d, f) corresponding ΔV3 near field optical signal collected on a set 
of representative Se-doped BP flakes having thickness 130 nm (a), 300 nm (c) 100 nm (e); (f) 
Self- detected near field 3rd order signal. Every Δy = 0.21 μm the PZM mirror position is 
changed in order to shorten the optical path by ΔL = 5.5 μm. (g-i) average topography (g), 
amplitude s3 (h), and phase φ3 (i) as a function of the position with respect to the Se-doped BP/ 
SiO2 edge. The sharp features in panels (h) and (i) at Δx = 0 are known edge artifacts arising at 
the sharp edges of the mechanical exfoliated black phosphorus flakes. The dashed vertical line 
in panels (h-i) corresponds to the BP/SiO2 edge. The horizontal dashed lines in panel (g) mark 
the amplitude contrast between the two materials. (l-m) ΔV3 profiles averaged over seven 
adjacent rows of pixels along the green lines in panels (b) and (d), respectively 

3. Conclusion 

In conclusion, we have demonstrated a detector-less s-SNOM system operating at THz 
frequencies that provides both amplitude and phase contrast with deep sub-wavelength (60-70 
nm) in-plane spatial resolutions. These achievements are expected to have a profound impact 
on the flourishing field of QCL-based THz imaging, in which near-field coherent detection 
has been missing, so far. The ability of SD-s-SNOM to resolve both the amplitude and phase 
of the THz field opens up the possibility of mapping the complex permittivity of a target 
using QCLs with a high spatial resolution, down to a few tens of nanometers. The proved 
sensitivity to thin-layered samples of our novel THz SD s-SNOM opens the way to further 
investigations of resonant 2D-materials and combined Van der Waals heterostructures, with 
potential impacts in plasmonics and optoelectronics. 

Future experiments could make use of the tunable bandgap of BP [28] to control its mode-
activation energy as well as exploiting resonant excitation to retrieve plasmonic features. The 
in-plane asymmetry of BP [29] may also allow for further tunability. Looking forward, 
complex heterostructures that combine BP with graphene, transition-metal dichalcogenides 
and hexagonal boron nitride have the potential to provide a robust technological platform for 
THz nanophotonics and ultrafast plasmonics. 

Further development of SD-s-SNOM will also benefit from the availability of broadly 
tunable THz QCLs [30] and THz QCL combs [31, 32]. Also, the inherent ultrafast response 
of QCLs to optical feedback perturbations, associated with their unipolar nature and the ps-
long lifetimes of inter-subband transitions, raises a compelling perspective for new time-
resolved hyper spectral THz imaging systems with deep sub-wavelength spatial resolutions (< 
100 nm or λ/1000). 
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The unique features of SD-s-SNOM, i.e. the inherent field sensitivity and compactness, 
can in principle lead to further elimination of intermediate optical elements and true access to 
near-field radiation, opening the way to many applications in fields ranging from biosensing 
to quantum optics [33]. Also, a full integration of sample and nanoscopy set-up inside the 
same cryostat may become possible, thereby allowing to exploit in situ the potential of 
coherent THz nanoscopy at cryogenic temperatures and under high magnetic fields, for 
understanding fundamental excitations, such as phonons, magnons, polaritons, and phase 
transitions in exotic semiconductor and organic nanostructures, superconductors, 
multiferroics, and metamaterials, just to mention a few examples. 

Appendix 1 

Experimental arrangement 

A bound-to-continuum single longitudinal mode THz QCL emitting, at a wavelength λ = 111 
μm (2.7 THz, 90.3 cm−1) with a surface plasmon waveguide, was grown by molecular beam 
epitaxy employing a GaAs/Al0.15Ga0.85As heterostructure on a nominally undoped GaAs 
substrate. The 10-μm-thick active region was embedded between a doped ([Si] = 3.0 × 1018 
cm−3) 700-nm-thick GaAs bottom layer, and a doped ([Si] = 5.0 × 1018 cm−3) 200-nm-thick 
GaAs top contact layer. The GaAs semi-insulating substrate was lapped down to a thickness 
of 150 µm. Laser bars 1.5 mm long and 150 μm wide were cleaved and mounted on a copper 
bar. 

The QCL was mounted in a liquid helium continuous-flow cryostat fitted with a 
polymethylpentene window, and maintained at a fixed heat sink temperature of 15 K. To 
maximize the sensitivity to coherent optical feedback [14, 15], the QCL was driven in 
continuous wave at a current I = 450 mA (J = 132 A/cm2) which is just 5% higher than the 
threshold current density (Jth = 125A/cm2), using a highly stable current generator (Lightwave 
Electronics, mod. QCL 2000). The emitted THz beam was collimated using a 90° off-axis 
parabolic mirror with an effective focal length of 50 mm, and reflected by a mirror mounted 
on a piezo-controlled translator stage into the entrance optical port of a commercial near-field 
microscope (Mod. NeaSNOM, Neaspec, Martinsried, Germany). A 5 dB substrate-free, 
metal-mesh diffractive attenuator (Mod. 224, Lasnix, Berg, Germany) was placed in the 
beam. In the microscope, a second paraboloid mirror with an equivalent focal length of 25 
mm focused the beam onto a Pt tip (Bruker, mod. RMN-25PT300) having a nominal apex 
radius of 50 nm, a shank length of 80 μm, and which was sinusoidally dithered at its resonant 
frequency Ω = 15380 Hz. The laser polarization lay in the plane containing the tip in order to 
induce an oscillating dipole in the tip efficiently. The average optical path length from the 
QCL front facet to the tip was L ≈ 60 cm. The scattered radiation was collected by the same 
focusing paraboloid mirror and coupled back into the laser cavity along the same incident 
optical path. The voltage modulation across the QCL terminals produced by the self-mixing 
effect was pre-amplified using a low-noise amplifier (DL Instruments, mod. 1201) and 
demodulated up to the highest harmonic order (n = 5) allowed by the electronic card of the 
NeaSNOM. 

The density of free carriers ne in the black phosphorus samples was estimated by 
performing transport analysis on field effect transistors FET having flakes with identical 
thickness as active channels [20–22, 24, 25]. ne is connected with the FET threshold voltage 

Vth via the relation G th
e

G

C V
n

qA

Δ
= , where CG is the gate-to channel capacitance, AG the gated 

BP area, and q is the electron charge. We measured ne ≈ 4.0 ×1017 cm−3 for the flake shown in 
Figs 4(a)-4(b), ne ≈ 7.0×1017 cm−3 for the flake shown in Figs. 4(c)-4(d) and ne ≈ 1.5 ×1017 
cm−3 for the flake shown in Figs. 4(e)-4(f). 
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Appendix 2 

Theory of self-detection scattering-type scanning near-field optical microscopy (SD s-
SNOM) 

The near-field scattering is modeled according to the finite-dipole model, in which the tip, 
described as a spheroid having an effective length Lt and apex radius a, polarizes the sample. 
The latter, in turn, acts back on the tip, yielding a near-field interaction specific to the sample 
material. The radiation scattered by a tip, placed with its apex at a distance z from a target 
surface, is proportional to the effective polarizability effα  and can be written as 

2(1 )   , s
p eff

i

E
r

E
σ α= ∝ +  where [34] 
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 (3) 

Here, iE  and sE  are the incident and scattered fields, respectively, and pr  is the far-field 

Fresnel reflection coefficient for p-polarized incidence. The sample dielectric permittivity sε  

enters through the so-called surface response function ( ) ( )  1  / 1s sβ ε ε= − + , and tε  is the tip 

dielectric function. The apex-sample surface distance z oscillates with frequency Ω  and 
amplitude 2 Az  as ( ) cos( )A Az t z z tΩ= + ; g, is a complex factor related to the fraction of the 

total charge induced in the spheroid. 
The complex effective scattering efficiency is represented in terms of amplitude and phase 

as  ( )( ) ( ) i tt s t e ϕ= , where both s and φ show a nonlinear dependence as a function of z. We 

have found a good agreement with the experimental results by using the values Lt = 530 nm, 
and g = 0.98e0.08i. 

Coherent optical feedback in a semiconductor laser cavity is described by the Lang-
Kobayashi (LK) model [14, 15, 35], in which two coupled differential equations describe the 
evolution of the excited state population N(t) and the optical field E(t). The crucial feedback 
contribution in this model is provided by an additive term, representing the retarded field re-
entering the laser cavity. 

The LK equations read [35]: 
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 (4) 

where N0 is the carrier density at transparency, Gn is the gain coefficient, τ  = 2L/c, τ p  = 30 

ns and cτ  = 35 ns are the photon life time and the cavity round trip time inside the QCL 

cavity, respectively, and eτ  is the carriers decay time (1 10 ps− ), J is the current density, η is 

the internal quantum efficiency, d is the active layer thickness and q is the electron charge, γ 
is the feedback strength parameter, i.e. the fraction of the back-scattered field that efficiently 
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couples with the lasing mode. A value 1.5Hα =  for the linewidth enhancement factor was 

used, which is appropriate for a THz QCL close to threshold [36, 37]. 
In our theoretical approach, we consider a feedback field provided only by the tip-

scattered field sE  and neglect any contribution from the background field. The latter is a 

component well-known in s-SNOM that can be experimentally suppressed by recording 
signals at higher harmonics of Ω. Considering that the feedback path 2L depends on the 
oscillating tip position, we assume: 

 ( ) ( ) ( ) ( ) Ωt Ωt               .ni t iin in
n nn n

t t s t e e s e e
∞ ∞ϕ ϕ

∞ ∞
γ σ σ+ +

=− =−
∝ = = =   (5) 

The optical feedback coefficient C  is defined as 2 2
1  H

c

L
C

c
γ α

τ
= + . In the very weak 

feedback limit, when 210C −≈ , as appropriate under our experimental condition, the 
perturbation induced on the laser frequency can be neglected and one can assume that the 
frequency of the retro-injected laser coincides with 0 ,ω  radically simplifying the self-mixing 

formalism [14–16]. In fact, the sinusoidal line shapes unveiled in the experiments of Fig. 1 
confirm that the system is in the very weak feedback self-mixing regime [19], with estimated 
values of the feedback coefficient C ≈ 0.03 – 0.1. Hence, the LK equations are solved for the 
steady-state value of the carrier variation NΔ  induced by the self-mixing (with respect to the 
free running laser value at threshold), assuming the tip and the PZM dynamics are slow with 
respect to field and carrier timescales: 

 p
0

c
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L t
N t

c
ω ϕΔ = − −  (6) 

noting that VΔ  is proportional to NΔ  [16], we find the following expression: 
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Due to the tip oscillation, the laser-tip distance varies as ( ) 0 2 ( )AL t L z z t= + − , where 

0 2 AL z+  is the laser-target distance which may vary, if the PZM is moved, on time scales 

much longer than the tip period 2π/Ω.. Moreover, we approximate 0L L≈  in the following, 

since in our experimental configuration  Az λ . 

By introducing the spectral representation of the scattered amplitude in Eq. (4), we can 
rewrite the steady state equations accordingly, where the RHS term of Eq. (7) becomes: 
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(8) 

where Ω Ωn n= , and n ns s−= , since VΔ  is an even function of time ( VΔ  depends on time 

only through z ). Equation (8) allows information retrieval on the medium optical response 
since it provides the link between the demodulated SMI signal and the phase and amplitude 
spectral components of the scattering amplitude σ . 

 0

2
  cos(  ).n n n

L
V s

c
ω ϕΔ ∝ −  (9) 

The simulated plots presented in Figs. 2(a)-2(b) and 3(c)-3(d) have been obtained by 
solving in steady state Eq. (7) in the case of moving mirror PZM, assuming a total 
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displacement ∆L of three interferometric fringes, where each fringe is 55.5 
2

m
λ μ≈  

corresponding to a phase shift 0 2Δ
2

L

c

ω π=  (Fig. 1). The oscillating laser voltage VΔ  is 

then processed with a fast Fourier transform algorithm (equivalent to the lock-in filtering in 
the experiment) to recover the components nVΔ  corresponding to each mirror displacement. 

The amplitude and phase values ns  and nϕ , n = 1...5, are finally extracted by a fitting 

procedure based on Eq. (9). 
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Abstract
A method has been developed to stabilize and transfer nanofilms of
functional organic semiconductors. The method is based on crosslink-
ing of their topmost layers by low energy electron irradiation. The
films can then be detached from their original substrates and subse-
quently deposited onto new solid or holey substrates retaining their
structural integrity. Grazing incidence X-ray diffraction, X-ray spec-
ular reflectivity, and UV–Vis spectroscopy measurements reveal that
the electron irradiation of ≈50nm thick pentacene films results in
crosslinking of their only topmost ≈5nm (3–4 monolayers), whereas
the deeper pentacene layers preserve their pristine crystallinity. The
electronic performance of the transferred pentacene nanosheets in
bottom contact field-effect devices is studied and it is found that they
are fully functional and demonstrate superior charge injection prop-
erties in comparison to the pentacene films directly grown on the con-
tact structures by vapor deposition. The new approach paves the way
to integration of the organic semiconductor nanofilms on substrates
unfavorable for their direct growth as well as to their implementation
in hybrid devices with unusual geometries, e.g., in devices incorpo-
rating free-standing sheets.
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engineered, even if these material combi-
nations cannot be grown directly by phys-
ical vapor deposition techniques.[6] In this 
way, vdW heterostructures with tailored 
electronic and optoelectronic properties 
can be generated by combining metallic, 
insulating and semiconducting sheets.[7] 
Nanofilms of organic semiconductors are 
promising candidates to extend this mate-
rial toolbox for building hybrid devices, 
which would profit from the physical 
properties of both inorganic and organic 
materials.[8,9] To this end, they have to 
be prepared in the form of mechanically 
stable and transferable sheets. However, 
in contrast to graphene, where atoms are 
linked via strong covalent bonds, small 
aromatic molecules in pristine organic 
semiconductor films are bound via weak 
vdW forces. Therefore, it is not possible 
to peel off and deposit organic films to 
create electronic devices, in contrast to 
thicker organic crystals, which have been 

transferred successfully.[10] Here we demonstrate the prepara-
tion and implementation in field effect transistors (FETs) of 
transferable pentacene nanosheets, stabilized via electron irra-
diation-induced crosslinking of their surface layers. The irradi-
ated films possess high mechanical stability and therefore they 
can be removed from the growth substrate and transferred onto 

A method has been developed to stabilize and transfer nanofilms of func-
tional organic semiconductors. The method is based on crosslinking of their 
topmost layers by low energy electron irradiation. The films can then be 
detached from their original substrates and subsequently deposited onto new 
solid or holey substrates retaining their structural integrity. Grazing inci-
dence X-ray diffraction, X-ray specular reflectivity, and UV–Vis spectroscopy 
measurements reveal that the electron irradiation of ≈50 nm thick pentacene 
films results in crosslinking of their only topmost ≈5 nm (3–4 monolayers), 
whereas the deeper pentacene layers preserve their pristine crystallinity. The 
electronic performance of the transferred pentacene nanosheets in bottom 
contact field-effect devices is studied and it is found that they are fully func-
tional and demonstrate superior charge injection properties in comparison to 
the pentacene films directly grown on the contact structures by vapor deposi-
tion. The new approach paves the way to integration of the organic semicon-
ductor nanofilms on substrates unfavorable for their direct growth as well as 
to their implementation in hybrid devices with unusual geometries, e.g., in 
devices incorporating free-standing sheets.
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The transfer and microfabrication techniques of graphene and 
other 2D materials have revolutionized the fabrication of novel 
layered materials and their implementation in electronic, opto-
electronic, and nano-electromechanical devices.[1–5] By mechan-
ical stacking of various atomically thin sheets (e.g., graphene, 
MoS2, or BN), novel van der Waals (vdW) heterostructures are 
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new solid substrates or suspended across macroscopic cavities 
and grids as freestanding structures. We characterize in detail 
the effect of the electron irradiation on structural and optical 
properties of pentacene nanofilms employing grazing incidence 
X-ray diffraction (GIXD), X-ray reflectometry (XR), UV–Vis and 
IR spectroscopy, helium ion microscopy (HIM), and atomic 
force microscopy (AFM). The functional electronic properties of 
the formed nanosheets are studied via electric transport meas-
urements of the FET devices. We found that already about 5 nm 
(≈3–4 molecular layers) of crosslinking depth is sufficient to 
stabilize 50 nm thick pentacene films, whereas the remaining 
film preserves its pristine structure as well as electronic and 
optical properties and can be used for functional applications. 
The transferred pentacene nanosheets show superior charge 
injection characteristics in the FET devices in comparison to 
the pentacene films prepared by physical vapor deposition.

Low energy electron irradiation of aromatic self-assembled 
monolayers results in their lateral crosslinking and conver-
sion into 2D carbon sheets - carbon nanomembranes (CNMs) 
- with a thickness of only one molecule.[11] The crosslinking is 
driven by primary electron irradiation as well as low energy sec-
ondary and photoelectrons produced in the substrate resulting 
in the dissociation of CH bonds and subsequent formation 
of the new covalently bonded carbon network in the complete 

monolayer, which significantly changes its structural and elec-
tronic properties.[12] Similar to graphene, fully crosslinked 
CNMs can be removed from their substrates and transferred 
onto new holey or solid substrates or stacked into vdW het-
erostructures as free-standing sheets.[13,14] As the penetration 
depth of low energy electrons can be precisely tuned in the 
range of a few nanometers,[15] we employ this effect to crosslink 
only the topmost layers of a ≈50 nm thick film of pentacene 
preserving the pristine structure of the deeper layers and there-
with the functional electronic properties of the film. Moreover, 
the smooth bottom interface of the organic film remains acces-
sible for electronic contact resulting in the lower contact resist-
ance of the fabricated devices. In the following, we present the 
structural and functional characterization of the surface stabi-
lized free-standing pentacene nanosheets prepared in this way.

First, we describe the essential steps to crosslink and transfer 
pentacene nanosheets, Figure 1a. We use a thin sacrificial 
polyvinyl-alcohol (PVA) layer deposited on a flat and inert sub-
strate such as an oxidized Si wafer or a fused silica glass by spin 
coating and deposit a 50 nm pentacene film on this substrate 
by vacuum vapor deposition.[16] The deposited film is then irra-
diated in the same vacuum chamber with a defocused electron 
beam having an electron energy of Eirr = 500 eV and an irra-
diation dose of Dirr = 3.0 mC cm−2. To detach the pentacene 
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Figure 1.  Transfer of thin pentacene films. a) Schematic representation of the transfer method. b) Helium ion microscopy (HIM) image of a crosslinked 
and transferred 20 nm pentacene film. c) Optical microscopy image of a 50 nm thin pentacene film spanned over a 2 mm hole in a 0.5 mm brass sheet. 
d) Optical microscopy image of a 50 nm thin pentacene film transferred onto a copper TEM grid (mesh width: 300 µm).
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film from the surface, the sample is removed from the vacuum 
chamber and immersed in deionized water. Since PVA is a 
water soluble polymer, the sacrificial PVA layer dissolves and 
the pentacene film remains free-floating in the solvent.[17,18] 
These freestanding films with areas up to a size of 1 cm2 can 
then be picked up with tweezers, placed onto new substrates 
and removed from the water. The crosslinking step is essential 
for this procedure because pristine (non-irradiated) pentacene 
films disintegrate at the slightest touch by tweezers or during 
transfer through the water surface meniscus. After removing 
the wet nanosheet from water, it is possible to correct its posi-
tion on the surface and flatten it out by gentle pulling. Upon 
drying in nitrogen flow, the nanosheets laminate firmly to the 
new surface, i.e., they adhere irreversibly by van der Waals 
forces. Note, the pentacene films are sufficiently mechanically 
stable so that no stabilizing polymeric film, as typically used for 
atomically thin sheets,[4,13] is necessary for their transfer. The 
HIM image in Figure 1b shows a pentacene nanosheet, which 
was transferred in this way on an oxidized silicon wafer. Folds 
and wrinkles are recognized indicating the sheet character of 
the pentacene. The characteristic terrace-like topography of pen-
tacene is conserved after irradiation and transfer (cf. Figure S1, 
Supporting Information). In Figure 1c,d optical microscopy 
images of pentacene nanosheets spanning over holes with 
diameters of several millimeters are presented. The sheets are 
homogenous with some color variations originating from the 
wrinkle and folds due to transfer. In Figure 1c, a 50 nm penta-
cene nanosheet spans a 2 mm diameter hole in a brass sheet, 
whereas in Figure 1d the nanosheet spans a transmission elec-
tron microscope (TEM) grid with a mesh width of 300 µm. As 
we show in the following, this remarkable mechanical stability 
results from the lateral crosslinking of only the topmost 3–4 
monolayers (ML) of the pentacene films.

To analyze the penetration depth of the crosslinking, we 
employ specular XR in combination with GIXD measure-
ments.[19] As seen from the XR data presented in Figure 2, the 
pristine film shows the characteristic (0 0 L) reflections of the 
pentacene thin film phase (black curve).[20] After irradiation, the 
(0 0 L) peaks broaden and decrease in intensity (red curve). This 
observation indicates a reduction of the crystallinity due to the 
electron irradiation induced crosslinking. In comparison to XR, 
where the total thickness of the film contributes to the signal, in 
GIXD an evanescent X-ray wave selectively probes only the sur-
face region (cf. Figure 2b). Experimentally, the probing depth is 
adjusted using the X-ray beam at subcritical incidence angle for 
total reflection, typically at less than a fraction of a degree from 
the surface. The smaller the angle, the more surface sensitive 
is the measurement. GIXD measurements for a pristine pen-
tacene film and films irradiated at two different electron beam 
energies (Eirr = 300 and 800 eV, Dirr = 3.0 mC cm−2, see Table 
1, Supporting Information for details) are shown in Figure 2c. 
While there is still some GIXD intensity of the first truncation 
rod (1 1 L) after 300 eV irradiation, the signal vanishes almost 
completely after 800 eV irradiation. To quantify the number of 
disordered crosslinked layers, i.e., the number of layers on top 
of the film which do not contribute to the diffraction signal, 
we measure the GIXD signal under different incidence angles  
and model the diffracted intensities within the model of 
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Figure 2.  X-ray analysis of the influence of crosslinking on the crystal 
structure of pentacene thin films. a) Comparison of synchrotron spec-
ular X-ray reflectometry measurements of a pristine pentacene thin film 
(black) on SiO2 and a strongly crosslinked film (red, 50 min at electron 
energy >700 eV, D = 7.5 mC cm−2). The decreasing Bragg signal indicates 
that the crosslinked film contains less crystalline material. b) Schematic 
of the evanescent X-ray field penetrating the pentacene surface for dif-
ferent electron irradiation depths. c) GIXD measurements of the first 
pentacene truncation rod at different angles of incidence and different 
e-beam energies (here, θ is the out-of-plane angle and φ the in-plane 
angle). Top: exemplary GIXD data for pristine, 300 eV irradiated, and 
800 eV irradiated pentacene at αi = 0.07°. Bottom: the highest intensi-
ties of the (−1–10) peaks (middle peaks from raw data), plotted against 
the angles of incidence. The continuous lines represent the fit calculated 
from the DCGID model for truncation rods, including noncrystalline top 
layers.
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depth controlled grazing incidence diffraction (DCGID) 
(Figure 2c).[21–24] Details on the fit routine are reported in 
Figure S2 (Supporting Information). We find that the observed 
intensities are in agreement with three disordered ML of penta-
cene (or 4.5 nm crosslinking depth) for 300 eV irradiation and 
five disordered monolayers pentacene (or 7.5 nm crosslinking 
depth) for the 800 eV sample. These data unambiguously show 
that only the topmost layers of the pentacene film lose their 
crystallinity due to the crosslinking, whereas the pristine crys-
tallinity is preserved in the deeper layers of the film.

To get an insight into the crosslinking mechanisms, we 
applied Fourier transform infrared (FTIR) spectroscopy. As 
seen from the FTIR spectra (cf. Figure 3a), after irradiation the 
characteristic CH vibrations of pentacene at 910 and 733 cm−1 
are strongly diminished.[25,26] Such a behavior is indicative for 
the hydrogen abstraction via the cleavage of the CH bonds 
and formation of new carbon bonds between the unsaturated 
adjacent aromatic moieties.[12] Next, we used UV–Vis spectros-
copy to characterize the changes in the optical spectra. As seen 
from Figure 3b, the UV–Vis spectrum of a pristine pentacene 
film shows the characteristic absorption features in the spec-
tral range of 500–700 nm.[25] After electron irradiation with two 
different electron energies (500 eV and 1 keV), the intensity of 
these characteristic absorbance features is decreased. This effect 
is stronger for the irradiation with higher energy electrons, 
which is in agreement with their higher penetration depth and 
therefore the formation of a thicker crosslinked layer. Using the 

Lambert–Beer law and the corresponding inelastic mean free 
paths of 500 eV and 1 keV electrons, we estimate the thickness 
of the formed crosslinked layer to about 3 and 17 nm, respec-
tively. The formation of the crosslinked layer is also in agree-
ment with an increase of the intensity in the spectral range at 
smaller wave lengths (cf. Figure 3b), which is characteristic for 
the formation of amorphous carbon species.[27] To summarize 
the structural and optical study, we conclude that irradiation 
of pentacene films with electrons in the range of 300–500 eV 
results in the crosslinking of their topmost 3–4 MLs. These 
topmost layers have disordered, most probably amorphous, 
structure, whereas the deeper pentacene layers preserve their 
pristine crystallinity. Importantly, the formed crosslinked layer 
provides a sufficient mechanical stability to about 50 nm thick 
pentacene films in order to transfer them onto new solid and 
holey substrates as free-standing nanosheets.

In the following, we demonstrate that the formed pentacene 
nanosheets possess functional semiconducting properties and 
can be employed in effective field effect devices. To this end, 
we fabricated bottom-contact, bottom-gate pentacene FETs by 
vapor deposition of pentacene in vacuum onto the contact struc-
tures and studied electric transport properties of these devices 
before and after the irradiation, Figure 4a. After an irradiation 
with low energy electrons (Eirr = 350 eV, Dirr = 1.5 mC cm−2) 
no significant alteration in the device performance in com-
parison to the nonirradiated devices is observed (Figure 4a). 
This demonstrates that the crosslinked layer does not penetrate 
into the conduction channel, which is typically confined at the 
semiconductor-dielectric interface (Figure 4b).[28] Only after 
extensive irradiation at higher electron energies and doses 
(Eirr = 700 eV, Dirr = 4.5 mC cm−2) the device performance sig-
nificantly decreases. In the next step, we transferred the penta-
cene nanosheets onto prefabricated transistor contact pads of 
varying bottom-contacts with channel widths of Wch = 10 mm 
and channel lengths of Lch = 5, 10, and 20 µm (see the details 
in the Experimental Section in the Supporting Information) 
and compared the device performance with transistor struc-
tures prepared via conventional physical vapor deposition. The 
AFM images of the contact regions in Figure 4b show the mor-
phology on both types of devices. The typical obstructed pen-
tacene growth (i.e., small grained, pillar-like 3D morphology) 
is observed by direct vapor deposition on gold contacts.[29] In 
contrast, the structure of the pentacene films grown on PVA 
and transferred after the crosslinking onto gold contacts is 
significantly more homogeneous and shows the character-
istic Bragg peaks of the pentacene thin film phase (Figure S3, 
Supporting Information). The obstructed growth of pentacene 
on gold has a negative influence on the charge injection proper-
ties of pentacene devices and can only be reduced by a proper, 
often aggressive modification of the gold contacts.[29–33] The 
elongated pentacene structures formed on PVA most likely 
represent the lying phase pentacene.[34] First, we determine 
the total resistance R of the devices from the linear region of 
the output characteristics (Figure S4, Supporting Informa-
tion) according to R = VD/ID. The total resistances for devices 
with different channel lengths are summarized in Figure 4c.  
The contact resistance is determined from extrapolation to 
zero channel length.[35,36] For a gate voltage of VG = −15 V,  
the devices made of the transferred pentacene sheets have a 
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Figure 3.  Spectroscopic characterization of the crosslinking process.  
a) FTIR spectra of a 23 nm pentacene film on Au before and after irradia-
tion with 1 keV electrons (dose 10.3 mC cm−2), shown as dashed black 
and red curve, respectively. b) UV–Vis measurements of a 50 nm pen-
tacene film on fused silica, before and after irradiation with 500 eV and 
1 keV electrons (dose of 3 and 10.3 mC cm−2, respectively), shown as 
dashed black, blue and red curves, respectively.
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contact resistance of Rp = 0.22 MΩ. This is almost two orders 
of magnitude less than the contact resistance of the transistors 
produced by the conventional pentacene vapor deposition on 
the test pads, which was Rp = 15 MΩ. This improvement is even 
more significant for larger gate voltages. Thus for VG = −30 V 
the contact resistance of the devices made out for the trans-
ferred sheets is 0.057 versus 10 MΩ for devices prepared by 
vapor deposition. All vapor deposited films show nonideal satu-
ration behavior, i.e., a drain current reduction ID at larger drain 
voltages. On the other hand, the saturation behavior of the 
transferred films with 10 and 20 µm channel length is rather 
good; only the shortest channel (5 µm) shows some nonideal 
behavior. These findings demonstrate that the crosslinking and 
transfer technique of pentacene nanosheets enables the fabri-
cation of thin film devices with superior contact characteristics 
(cf. Figure S4, Supporting Information) and improved satura-
tion behavior for the 10 and 20 µm channel length. The mobili-
ties, typically μ ≈ 0.1 cm2 V−1 s−1 in our devices, stay largely 
unaffected, whether by electron irradiation (cf. Figure 4a) or by 
film transfer.

In summary, we have introduced a novel methodology to 
fabricate transferrable nanosheets of organic semiconductors 
with few tens of nanometers thickness via irradiation of their 
thin films with low energy electrons. The electron irradiation 
results in crosslinking of the topmost molecular layers, stabi-
lizing the whole film and enabling its transfer as a nanosheet 
onto new substrates. Because of the low penetration depth 
of the crosslinking, the studied pentacene nanosheets pre-
serve their functional semiconducting and optical proper-
ties. Moreover, employed in bottom contact FETs, they show 
a reduced contact resistance in comparison to devices fabri-
cated via direct vapor deposition on the gold electrodes. The 
proposed methodology opens up new possibilities toward the 
fabrication of organic semiconductor devices with transferable 
organic semiconductor nanosheets from a variety of aromatic 
molecules. It paves the way toward free-standing organic field 
effect devices, an area which was reserved for single crystals so 
far, as well as to their integration with other 2D materials in 
hybrid devices.

Experimental Section
The defocused electron beam was produced using a Perkin Elmer 
low energy electron diffraction (LEED) gun (PHI Model 11-020 LEED 
Electronics System). Most experiments have been performed using 
an electron gun emission current of 5 mA. The doses (mC cm−2) 
were estimated via the measured beam current IB flowing through a 

Adv. Mater. 2017, 29, 1606283

Figure 4.  Characterization of the electronic properties in the field effect 
devices. Characteristic curves of a transistor irradiated at different elec-
tron energies and contact resistance analysis of deposited and trans-
ferred pentacene on bottom contact transistor geometry. a) Transfer 
curves of an organic field effect transistor (OFET) with pristine, partially 
crosslinked, and strongly crosslinked active layer (VD = −10 V). The 
arrows indicate the sweep direction (inset: schematic of the transistor). 
When irradiated softly (low electron energy), only the top layers of the 
pentacene film are crosslinked, i.e., the conduction channel at the dielec-
tric interface is not affected. After hard irradiation (high electron energy), 
the crosslinked region penetrates the conduction channel and the device 
performance is reduced. b) AFM height micrographs of the substrate—
contact edge in a transistor channel. Pentacene was vapor deposited 
(top image), and nanosheet transferred (bottom image). The topography 

for the transferred film is unchanged on the gold electrode, while the 
vapor deposited film shows strong dewetting on the contact. The height 
scale of both AFM images is 150 nm. The insets show two height pro-
files above the contacts. The line cut is 2 µm, the y-axis covers 150 nm. 
c) Total channel resistance using vapor deposited pentacene (top) and 
nanosheet transferred pentacene (bottom), plotted against transistor 
channel lengths and evaluated for different applied gate voltages. The 
intersections of the linear fits with the ordinate indicate the extrapolated 
contact resistances. The error bars for each data point is less than 10% 
of their absolute values.
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ground electrode: D
I t
A
B= . For the used setup and an emission current 

of Iem = 5 mA, the current through an irradiated reference surface 
A = 4 mm2 at the sample position was ≈IB = 100 nA. Some experiments 
have also been performed with a reduced emission current of 2 mA after 
filament exchange and refocusing.

Further details for sample preparation and characterization are 
reported in the Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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Abstract
Controlling the domain size and degree of crystallization in organic
films is highly important for electronic applications such as organic
photovoltaics, but suitable nanoscale mapping is very difficult. Here
we apply infrared-spectroscopic nano-imaging to directly determine
the local crystallinity of organic thin films with 20-nm resolution.
We find that state-of-the-art pentacene films (grown on SiO2 at ele-
vated temperature) are structurally not homogeneous but exhibit two
interpenetrating phases at sub-micrometre scale, documented by a
shifted vibrational resonance. We observe bulk-phase nucleation of
distinct ellipsoidal shape within the dominant pentacene thin-film
phase and also further growth during storage. A faint topographi-
cal contrast as well as X-ray analysis corroborates our interpretation.
As bulk-phase nucleation obstructs carrier percolation paths within
the thin-film phase, hitherto uncontrolled structural inhomogeneity
might have caused conflicting reports about pentacene carrier mobil-
ity. Infrared-spectroscopic nano-imaging of nanoscale polymorphism
should have many applications ranging from organic nanocompos-
ites to geologic minerals.

Contribution
I measured the transistor characteristics and mapped the phase coex-
istence within the channel of a pentacene TFT, shown in Supplemen-
tary Figure 2.
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H
ighly ordered organic materials hold high promise for
novel electronics1–4. Reproducible device performance
rests on understanding the effect of molecular

arrangement on charge-carrier mobility. Pentacene is one of the
most characterized and best-performing materials for organic
thin-film devices2,5,6. To maximize its mobility, the most crucial
parameters for pentacene quality have been identified to be the
substrate and its temperature during deposition1,5–7. On the one
hand, substrate temperatures well above 50 �C result in larger
grains of the film structure with characteristic lengths of
microns8. On the other hand, deposition temperature also
controls the abundance of several crystallographic phases, such
as thin-film phase (TFP) and bulk phase (BP) pentacene5,6,9.

Here we reveal the surprising lateral nanostructure of two
coexisting pentacene polymorphs on a 300-nm scale, by mapping
infrared absorption using a near-field infrared microscope10.
We observe ellipse-shaped BP pentacene ubiquitously within the
dominant TFP, uncorrelated with grain structure. Our finding
may explain why the carrier mobility ceases to increase in
pentacene thin films deposited at elevated substrate temperature
despite increased grain size5,11,12; apparently, BP nucleation
obstructs charge transport by scattering off polarons from inter-
phase boundaries1,13. Furthermore, we observe that the BP
pentacene grows over months at room temperature without a
change of grain morphology, as we also corroborate by X-ray
diffraction. The BP ellipses come with a subtle topographical
depression, which earlier had led to interpretation of them as
cracks14,15. Infrared nanoscopy clearly has a high potential for
analyzing the molecular arrangement of organic thin films at the
nanoscale and thus for better understanding organic electronic
systems.

Results
X-ray diffraction shows recrystallization during storage. The
crystallographic phases in pentacene films can be discriminated
by their (001)-spacing of the molecular layers. For the TFP,
the pentacene molecules are oriented almost perpendicularly
on the substrate and the (001)-spacing amounts to 15.4 Å, while
for the BP it is 14.4 Å9,16,17 as the molecules are slightly tilted,
shown in the inset of Fig. 1. The sample studied in Fig. 1 was
grown at 65 �C to obtain large crystalline grains. After deposition,
X-ray diffraction measurements showed that the film was
dominated by TFP, with some weak fraction of BP (Fig. 1,
yellow curve) as expected for deposition temperatures above
50 �C5,18. However, surprisingly, the BP fraction was found
considerably increased at the expense of TFP (red curve) after the
sample had been stored over 20 months in a desiccator at room
temperature (23 �C). This observation by itself is an alarming
signal for pentacene-based device development and calls for
immediate attention.

Infrared nano-imaging reveals elliptic BP inclusions. As the
X-ray experiment geometry does not provide lateral information,
additional methods are needed to determine the domain
geometries and to understand how the phase conversion takes
place in detail. An atomic force microscopy (AFM) image
of the stored sample is shown in Fig. 2a. The film exhibits a
grainy structure on the expected characteristic lateral length
scale of 2–5 mm6. On the one hand, there is the argument that
larger grains are beneficial for high charge-carrier mobility,
simply as any kind of grain boundary will naturally impose a
barrier due to defects, lowering the mobility6,7,13. On the other
hand, film deposition at increased substrate temperatures to
obtain large grains led to diverging results of increased1,
almost unchanged11, and even reduced5 carrier mobility. In

addition, even for pentacene films deposited at constant substrate
temperature, the mobility tends to saturate with increasing
grain size12,19. In a similar direction, Shtein et al.20 have reported
that in some cases smaller grains allow for higher mobility, while
others observed that post-annealing reduces mobility due to
structure variation and nucleation of BP pentacene21,22.
Unfortunately in the experimental studies, it remains unclear
whether apparent individual grains as observed by AFM are
single crystals, and in particular, whether and on what scale BP
and TFP domains are arranged. Thus, resolving the lateral
crystallinity and the organization of BP and TFP pentacene
might resolve the conflicting reports on the interplay between
growth temperature, apparent grain size and charge transport in
pentacene films.

To map and contrast BP and TFP domains in pentacene thin-
film devices, we employ scattering-type scanning near-field
optical microscopy (s-SNOM) with mid-infrared illumination,
as it is known from far-field measurements that the different
packing of TFP and BP pentacene results in a small shift of
infrared vibrational frequencies23–25. s-SNOM enhances AFM
probing by an additional channel of local infrared spectroscopy
and should allow imaging the local distribution of both phases
with a lateral resolution given by the probing tip diameter of
typically 20 nm (see Methods)10. The near-field infrared image of
the stored pentacene film shown in Fig. 2b was recorded using
mid-infrared illumination at 907.1 cm� 1, which is close to the
resonance of BP pentacene23. Strikingly, the infrared map
is not homogeneous at all but exhibits ubiquitous nanoscale
features, at strong contrast, in the form of bright and highly
elongated ellipsoids, which, according to the choice of the
infrared frequency, originate from BP domains. These domains
appear uncorrelated to the topographic morphology recorded
simultaneously (Fig. 2a), as they even persist across grain
boundaries. Many BP ellipsoids are oriented approximately
perpendicularly with respect to their neighbours and appear to
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stay mutually aligned within larger domains comprising
several grains.

Crystalline packing of molecules shifts local infrared
resonance. To investigate the spectral origin of this strong
infrared contrast, we employ a fully spectroscopic mode of the
s-SNOM, recently termed nano-FTIR (nanoscale Fourier trans-
form infrared spectroscopy)26,27 that registers broad near-field
spectra at each sample position, here one on a BP ellipsoid and
one on TFP next to it (Fig. 3, as marked in the left inset). A
Lorentzian fit to each spectrum confirms the two distinctly
different vibrational resonances on the BP ellipsoid, peaked at
906 cm� 1 (green curve), and on the surrounding TFP, peaked at
904 cm� 1 (blue curve). These frequencies agree well with
literature values of TFP and BP pentacene23,24. A vertical,
dashed line in the spectra of Fig. 3 indicates the specific frequency
used for monochromatic imaging in Fig. 2b (907.1 cm� 1,
CO2 laser line P08). At this frequency, the nano-FTIR
absorption on the BP ellipsoid (green curve, Fig. 3) is more

than twice as high compared with the surrounding TFP material
(blue curve), explaining the bright contrast observed in Fig. 2b.

For a final verification of the optical response of the BP features
observed in Fig. 2b, we applied the monochromatic imaging
mode of the s-SNOM to a smaller sample area, with both the
previous (Fig. 4a–c) and a slightly shifted illumination frequency
(Fig. 4e,f). As expected, changing from 907.1 cm� 1 to
903.7 cm� 1, near the TFP resonance23,24, results in a reversion
of the infrared amplitude contrast (cf. Fig. 4e). This invertible
contrast proves that (i) infrared s-SNOM can selectively highlight
either BP or TFP pentacene simply by choice of the infrared
frequency, and that (ii) BP and TFP domains coexist on a ca. 300-
nm length scale and seem to be not at all correlated to the well-
known grain structure. This experimental finding is very
surprising, as it allows us to conjecture that BP pentacene
nucleates in the form of nanometre inclusions within, rather than
on top of, TFP pentacene. BP seeds seem hidden in the
morphology of the TFP and grow with storage time, as
indicated by our X-ray analysis above (Fig. 1). In addition,
s-SNOM imaging of a thick pentacene film (120 nm average
thickness) shows that pentacene BP aggregates forming on top of
the thick film18 act as growth seeds for BP nucleation throughout
the film underneath (see Supplementary Fig. 1). The strong
infrared contrasts of our s-SNOM images appear homogeneous
within BP ellipses as well as among ellipses. As the probing depth
of s-SNOM is of the order of the tip diameter10, here 20–30 nm,
the observed homogeneity suggests that BP material in the
ellipses is not mixed with TFP and extends through the full film
depth.

Discussion
A close inspection of the AFM micrograph reveals that it is
indeed possible to discern the BP ellipses also in topography, as
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subtle depressions of several nanometre depth (Fig. 4a), quanti-
fied in extracted line profiles (green curve, Fig. 4d). A similar
observation had earlier been noted in the literature14,15. There,
the depressions were interpreted as cracks in the pentacene film
and thought to be induced by its greater contraction compared
with the substrate on cooling down to room temperature after
deposition. Our experiments indeed suggest an alternative
mechanism, in which the mechanical stress is relaxed by a
continuous conversion of TFP into BP pentacene at the interface
boundaries. The direction of this phase change is determined by
BP pentacene exhibiting a larger unit-cell footprint along the
substrate plane compared with TFP16,28, thus slowing the
contraction and reducing the mechanical tension. In previous
work, a phase transition from pentacene TFP to BP during
storage under ambient air was related to the difference between
the surface energies and the bulk energies of the two pentacene
phases29,30. However, a theoretical study has already suggested
that surface stress makes a contribution to this crystallization as
well31. Here, the driving force is indeed the reduction of
mechanical tension induced by the thermal contraction
mismatch between pentacene and the substrate. Although our
study focuses on pentacene on commonly used SiO2 substrate, we
expect a similar behaviour for other substrates that feature a
thermal expansion coefficient different from the one of
pentacene.

Our observation that the BP ellipsoids appear aligned along
predominant, orthogonal directions (Fig. 2b, presumably the
crystal axes of TFP) supports the conjectured evolution of BP
from highly ordered TFP pentacene. The phase conversion from
the initial, upright molecular orientation of TFP easily explains
why the resulting BP has the molecules also upright on the
substrate, as proven in X-ray diffraction by its 14.4 Å (001)-
spacing (Fig. 1). Indeed, this height is by 1 Å smaller than that of

TFP, due to a larger tilt of the molecules (cf. inset Fig. 1)9,16,17. As
the 40-nm thick pentacene sample consists of about 30 molecular
layers, the accumulated topographical depression should be
B3 nm, as is experimentally demonstrated in the AFM line
profile (Fig. 4d, green line). This agreement confirms that the
nanoscale BP ellipses penetrate the full film depth. Thus, despite
our well-controlled growth of pentacene films with optimized
topographical homogeneity, BP ellipses may well dissect
percolation pathways in TFP and hinder carrier transport, a
phenomenon that has escaped discovery so far in spite of the
large number of studies on this material. The influence of BP
crystallization on carrier mobility might be further investigated by
recording the BP evolution in the channel of a working field-
effect transistor (see Supplementary Fig. 2) or even by direct
measurements of the local conductivity via the SNOM
technique32. During storage of the pentacene sample, BP
continues to grow at the expense of TFP pentacene (see
Supplementary Fig. 3), which may turn out to be critical for the
shelf life of pentacene electronic devices.

Altogether, our method of infrared contrasting at nanoscale
resolution has straightforwardly clarified that the larger grains in
pentacene films deposited at elevated substrate temperature
(65 �C) are subject to massive nucleation of nanometre-sized
BP inclusions in the dominant TFP. We expect that the unique
combination of molecular specificity (which includes sensitivity
to molecular arrangement) and nanometre resolution offered by
the infrared near-field interaction will allow to deepen our
understanding of the nanostructure of conjugated and aromatic
materials for organic electronics.

Our findings demonstrate that s-SNOM is ideally suited for
monitoring polymorphism and phase coexistence in highly
ordered organic films at 20-nm resolution. We also foresee great
opportunities for infrared s-SNOM in the field of semi-crystalline
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polymers, where the nanometer-scale coexistence of crystalline
and amorphous phases33,34 with fullerene domains35,36 is
discussed in the context of exciton and charge transport.
Imaging of the acceptor and donor network in terms of
structure and composition should considerably help to better
understand organic photovoltaics.

Methods
Pentacene deposition. The pentacene samples were prepared on Si substrate on
top of 20-nm thick thermally grown SiO2. The Si/ SiO2 substrates were successively
cleaned by sonication in acetone and isopropyl alcohol for 10 min each, followed by
thorough rinsing with deionized water and then dried with nitrogen. Molecular
beam deposition was employed to prepare 40-nm thick films, using triple-sublimed
pentacene (Sigma-Aldrich), at a deposition rate of 0.2 Å s� 1, a substrate tem-
perature of 65 �C and a pressure of about 2� 10� 6 mbar.

X-ray diffraction. X-ray intensity measurements were carried out by reflectometry
using a laboratory X-ray diffractometer with a Mo-Ka source (wavelength
l¼ 0.71 Å). The scattered X-ray intensity was normalized and plotted against the
momentum transfer qz¼ (4p/l) siny, where l is the wavelength and y the scat-
tering angle.

s-SNOM near-field microscope. We employed a commercial scattering near-field
microscope (NeaSNOM, neaspec.com) equipped with a standard metallized tip
(NCPt arrow, nanoandmore.com), operated in AFM tapping mode at 50 nm
amplitude to modulate the near-field interaction between the tip and sample. The
back-scattered infrared signal is detected simultaneously with the topography (see
sketch in the right inset of Fig. 3). Lock-in and heterodyne detection at the n¼ 3
harmonic of the tapping frequency (B300 kHz) provides background-free near-
field imaging. Monitoring of the infrared signal versus tip-sample separation
(approach curves) was used to ensure the optimal working settings of the tapping
amplitude, the demodulation order n and the focusing. In the monochromatic
infrared near-field imaging mode (Figs 2 and 4) a line-tunable 13C16O2 laser
attenuated to 10 mW was used for illumination. The acquisition time was 9 ms per
pixel, requiring several minutes for a 300� 300 pixel-sized image.

Nano-FTIR mode of s-SNOM. The spectroscopic mode of s-SNOM (Fig. 3)
employs illumination by a coherent broadband mid-infrared beam (here 25 mW)
from a home-built difference-frequency source driven by a o100-fs Er fibre laser
(FFS.SYS-2B with FFS-CONT, toptica.com)26. Detection and spectral analysis of
the back-scattered light is carried out via an asymmetric Michelson interferometer
that generates, by online Fourier transformation, infrared amplitude and phase
spectra simultaneously. Note that although common FTIR spectrometers are not
equipped to determine the complete, complex material response, the nano-FTIR
phase spectra valuably complement the amplitude spectra26,27. Specifically, nano-
FTIR absorption by molecular vibrational resonance can be directly determined by
multiplying the measured scattering amplitude with sin(j), where j is the
measured scattering phase27. The work of F. Huth, et al.27 also demonstrates that
near-field infrared spectra of organic substances, that is, weak oscillators, exhibit
indeed the same spectral positions, spectral widths and relative intensities as the
corresponding far-field spectra.
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This document provides supplementary information to "All-electronic terahertz nanoscopy," https://
doi.org/10.1364/OPTICA.5.000159. 

Principle of Mixer and Tapping Demodulation The basic function of an electronic mixer is two-wave interference in a nonlinear device, resulting in an output wave whose frequency and phase are the differences of frequencies and of phases, respectively, of the incident waves. Of interest in our application is the case that one wave contains a modulation to be analyzed, while the other wave, the "local oscillator" is purely sinusoidal. Thus, the effect of mixing is that the modulation content of interest is transferred from the original frequency region (THz) to the region of the much smaller difference frequency (MHz) where the modulation analysis is technically easier. The present transceiver scheme uses two such transfers by two sequential mixers down to frequency zero, after which  the original modulation of the THz wave at harmonics of the tapping frequency including phases stays fully preserved and ready to be analyzed by the NeaSNOM controller. Fig. S1.  Photograph of the THz transceiver head (left) aligned to the s-SNOM (right). The transfer paraboloidal mirror can be seen in the foreground, 5 cm from the transceiver's waveguide aperture. 
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Fig. S2.  Single-frequency THz and mid-infrared s-SNOM nano-images of Si exhibiting topographical as well as doping structures, topography (top), amplitude s3 (mid), and phase ϕ3 (bottom), a, at 0.6 THz (from which Fig. 2 is cut), acquisition time 144 min, b, at 27 THz (equiv. to 11.1 µm wavelength), acquisition time 48 min. 
Fig. S3. Approach curves, i.e., simultaneously recorded 0.6 THz amplitude signals s1, s2 and s3 as function of the tip-sample separation z, at sample position B (highly doped Si), tapping amplitude 170 nm, acquisition time 90 s.—The s3 signal is seen to fluctuate by up to ca. ± 0.07 a.u. at the used integration time of 100 ms/experimental point; this value corresponds to a S/N ratio of 7 and 14 for s3 and s2 images, respectively, if acquired at 100 ms pixel time on Au or highly doped Si.  
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A) Transfer curves of transistor II and extraction of the mobilities and threshold 

voltages. 

 

FIG. S1. (a) Transfer curves of transistor II for both polarities. The Femto amplifier was not calibrated correctly, 

resulting in a small offset current of 10−3 µA. Therefore, the turn-on voltage cannot be determined perfectly. In 

contrast to transistor I these curves are almost identical. (b) Extraction of the mobilities and threshold voltages 

out of a (𝐼DS)0.5 plot by linear approximation. 

                                                           
a) Electronic mail: nickel@lmu.de 



To extract the mobilities and threshold voltages out of a (𝐼DS)0.5 plot in the saturation regime 

by linear approximation, 

𝜇 = (
𝜕√𝐼DS
𝜕𝑉GS

)

2
2𝐿

𝑊𝐶i
 

can be used, with 𝐿 = 23 µm the length of the transistor channel, 𝑊 = 900 µm its width and 

𝐶i = 3.8 × 10−4 Fm−2 the capacitance of the insulator per area. Therefore with the slope of 

the (𝐼DS)0.5 plot, 𝜇 can be extracted. The intersection with the 𝑉GS axis determines the 

threshold voltage1. 

 

B) SPCM maps of transistor II. 

 

FIG. S2. SPCM maps of transistor II. The boundaries of the contacts A and B are indicated by the white, 

dotted lines. The arrows indicate the polarity of the electric field. (a) AB direction, (b) BA direction, recorded at 

𝑉DS = −15 V and 𝑉GS = −10 V. Both maps show the same hotspots and an equal level of photoresponse over 

the whole channel. A slight increase of the signal at the respective source contact can be seen, indicating an 

additional contribution of photocurrent. 

____________________ 

1 B. Nickel, M. Fiebig, S. Schiefer, M. Göllner, M. Huth, C. Erlen, and P. Lugli,  Phys. 

Status Solidi A 205, 526 (2008). 
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Figure S1 a) Transfer characteristics of the investigated transistor in the dark. b) Output 
characteristics IDS vs. VDS with different VGS (-5 V, -9 V, -12 V, -15 V). 

 



2 
 

 

Figure S2 Equivalent circuit for VDS = -10 V, VGS = -15 V. a) Current measurement at the source. b) 
Current measurement at the drain. The same voltage differences (VDS = VD - VS = -10 V, VGS = VG - VS 
= -15 V, VGD = VG - VD = -5 V) are present in both configurations. Configuration a) is typically used, 
while configuration b) is equivalent regarding potential differences, equally shifting the potential 
level for all three contacts. For VGS = 5 V, the gate voltage has to be adjusted accordingly. 

 

 

Figure S3 Polar plots of photocurrent line scans (same measurement as shown in Figure 3) for a) 
VGS = 5 V and b) VDS = -15 V. Photocurrent measurements at source (grey data points) and at the 
drain (black data points) are shown. For VGS = 5 V, the measurements at the source and drain 
exhibit an equal photocurrent phase around 0°. For VGS = -15 V, the phase difference between the 
consecutive measurements is approximately 180°. The projection Iphoto = |Iphoto| × cos(ϑphoto + 30°) 
of all measurement points onto the drawn color scale at -30°/330° is a compromise to equally 
display the measurements in Figure 3. 

 



3 
 

 

Figure S4 Line-scan of a) the reflected optical intensity and b) Iphoto over the lateral transistor 
structure for VGS = -15 V, VDS = -10 V, and the Lock-in amplifier connected to the drain contact. The 
reflected intensity defines the edges of the contact. Iphoto shows no sharp decrease but a 
substantial contribution when the laser was not illuminating the right contact. 

 

 

Figure S5 Line scans of frequency-resolved photocurrent Iphoto for VGS = -15 V (same measurement 
as shown in Figure 3b) with a lower color scale, revealing the negative component above 104 Hz. 
This component was measured at both contacts, source and drain, like the displacement current for 
VGS = 5 V (Figure 3a). Dotted lines indicate the transistor channel (x = 0-50 µm) between the left 
source contact and the right drain contact; the contacts marked with white lines were connected to 
the transimpedance amplifier. 
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Figure S1: Illustration of the charge (i.e holes) density profile along a channel of
a Pentacene OFET. Profiles are shown for both linear and saturation regimes.
A linear drop is observed in both regimes, but also for the saturation regime
the profiles shows a non-linear behaviour close to the drain contact. Concerning
the operating point of the network model, we use the ”blue” solid line at a gate
voltage Vg = 20 V and drain voltage Vd = 10 V.
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Figure S2: Illustration of the charge (i.e holes) mobility profile along a channel
of a Pentacene OFET. Profiles are shown for both linear and saturation regimes.
Given the operating point of the network model, we use the ”blue” solid line
represented by a gate voltage Vg = 20 V and a drain voltage Vd = 10 V, with
an average charge mobility of approximately 6.5 × 10−3 cm2/Vs.
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Experimental 

Sample preparation: For all experiments, the pentacene (Sigma Aldrich triple sublimed, 

additionally purified by Creaphys) thin films were deposited at a rate of ~ 0.1 Ås-1 under equal 

conditions. Sample temperatures were held at room temperature, while the chamber pressure was 

kept below 1·10-7 mbar. The Si/SiO2 substrates were cleaned via sonicating in acetone and 

isopropanol for 10 minutes, respectively. After thorough rinsing with DI water, the substrates were 

plasma cleaned using oxygen plasma (50 W for 30 s, LabAsh). 

The PVA layers were produced using the following protocol: first a 5 % PVA (Fluka Polyvinyl 

alcohol 6-98) solution in DI water was prepared via stirring at 800 rpm at 75 °C for 3 hours. 

Afterwards, the solution was filtered using a standard folded paper filter, and spincast onto the 

substrates (here, oxidized, highly doped Si wafers) for 60 seconds at 4000 rpm, leading to layer 

thicknesses of ~ 200 nm. The brass sheet in Fig. 2 was cleaned with acetone and isopropanol prior 

to lamination with the pentacene film.  

The gold structures for the SNOM samples (cf. SI) were defined via positive photolithography. 

First the sample surfaces were coated by LOR 3B (MicroChem) at 4000 rpm and soft baked for 3 

minutes at 150 °C. A layer of S1813 G2 (Microposit) was spincast at 5000 rpm followed by a 3 

minute soft bake at 115 °C. This photoresist was illuminated by a Karl Suss Maskaligner MJB3 

and developed with Microposit 351 Developer, diluted with DI water 1:3. The structures (3 nm 

Cr, followed by 50 nm Au) were deposited via electron beam deposition at ~ 1 Ås-1. For the lift 

off, Microposit 1165 remover was used, followed by rinsing in acetone and IPA.  
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Characterization: GIXD measurements were taken at the P08 beamline at PETRA III / DESY in 

Hamburg using an X-ray energy of 18 keV. The diffraction signal was recorded using a Perkin 

Elmer XRD 1621 detector. An oxidized Si wafer with a 300 nm SiO2 layer served as substrate.  

For the UV-VIS measurements, 50 nm pentacene films were deposited on fused silica, i.e. 

transparent glass substrates. The absorbance spectra were recorded using a PerkinElmer Lambda 

EZ201 spectrometer in wavelength scan mode. Each measurement was corrected by a baseline 

recorded with cleaned and bare silica substrates. 

Vibrational spectroscopy data were recorded using a Nicolet Nexus FTIR equipped with a 

ThermoFisher SAGA grazing incidence accessory. A 23 nm pentacene layer was deposited onto a 

100 nm Au film. Before each FTIR measurement, the atmosphere was allowed to stabilize for 10 

minutes, and no nitrogen or dry air purge was used. Background spectra were recorded from a 

clean Au film and used for the automatic baseline correction of the Omnic v6.2 software. 

The AFM micrographs were measured in tapping mode with a Veeco Dimension 3100 AFM and 

analyzed using Gwyddion 2.40. The SEM images were taken at a Zeiss-LEO 982. 

Helium ion microscopy was conducted with a Carl Zeiss Orion Plus instrument employing 

secondary electrons collected by an Everhart-Thornley detector. For this image, the film was 

grown on a 300 nm Au/mica substrate, crosslinked via a high dose flood gun (electron energy: 300 

eV, dose: 250 mC/cm2) and transferred onto an oxidized Si wafer. 

Transistor characteristics were recorded via a Keithley Instruments Source Meter 2612. The 

transfer curves in Fig. 4 were measured under high vacuum. The transistor had a channel width of 

2 mm and a channel length of 50 µm. The contact resistance measurements were taken under 
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ambient conditions. The transistor layouts for the contact resistance measurements were 

Generation 4 test wafers, purchased from the Fraunhofer IPMS, which were cleaned using the 

same protocol as all Si/SiO2 substrates. The gate-dielectric substrate consisted of n-doped Si (n ~ 

3E17 cm-3) topped by a 230 nm thick SiO2 thermal oxide layer. 30 nm Au on a high work function 

ITO (indium tin oxide) adhesion layer served as source and drain contacts. The pentacene 

nanosheets were transferred to the test pads as described in Fig. 1 and stored in a desiccator to 

remove residual water. 

Table T1: Specifications of crosslinked samples from main manuscript 

Sample electron energy Emission current irradiation time approx. dose 

GIXS sample 1 300 eV 5 mA 1200 seconds 3.0 mC/cm² 

GIXS sample 2 800 eV 5 mA 1200 seconds 3.0 mC/cm² 

TFT sample 1 350 eV 5 mA 600 seconds 1.5 mC/cm² 

TFT sample 2 700 eV 5 mA 1800 seconds 4.5 mC/cm² 

Spectroscopy 

sample 1 

500 eV 2 mA 1200 seconds 3.0 mC/cm² 

Spectroscopy 

sample 2 

1000 eV 2 mA 1200 seconds 10.3 mC/cm² 

All other samples 500 eV 5 mA 1200 seconds 3.0 mC/cm² 
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Figure S1: AFM micrographs of pristine, irradiated and transferred pentacene surface. a) 

The AFM height micrograph shows typical pyramidal growth mode of pentacene. b) After 

irradiation by a low energy electron (LEE) beam, AFM image indicates unchanged pentacene 

topography. c) After transfer to a new substrate, AFM image shows slightly disturbed topography 

from the transfer and drying, but otherwise unchanged characteristics. The z-scale for all AFM 

micrographs is 50 nm, the film thickness is 50 nm in all cases. 

 

 

  



 6

 

 

Figure S2: GIXD measurements Scheme of the grazing angle dependent penetration depth of the 

evanescent wave into pristine and crosslinked surfaces. The angle of incidence α୧ controls the 

probe depth of the X-ray beam. Here, different angles below the critical angle for total reflection 

αୡ are shown. With decreasing angle, the probe depth is more and more confined to the surface 

region. 

 

The fitted total intensities of the scattered beam are calculated by the product of transmission 

functions and the structure factor as follows:  

ܫ	 ൌ ห ௜ܶ
ଶหܵି௣ห ௙ܶ

ଶห 

The transmission functions calculate to: 	

௜ܶ,௙ ൌ
2 sin ௜,௙ߙ

sin ௜,௙ߙ ൅ ඥsinଶ ௜,௙ߙ െ sinଶ ௖ߙ
 

while the structure factor is given by the following term: 

ܵି௣ ൌ
ቚ݁
ି௣௔
୼ െ ݁ି௜ேொ೥௔ቚ

ଶ

|1 െ ݁ି௜ொ೥௔|ଶ
 

 

with ݌ dead layers on top of the sample surface. ܰ is the number of molecular layers within the 

film thickness (here, ܰ ൌ 33), Δ is the scattering depth of the evanescent wave, and  a ൌ 15.4Å 

is the lattice spacing in z-direction. ܳ௭ ൌ ௭ݍ െ 0.1909	Åିଵ is the momentum transfer parallel to 

the sample surface normal of the examined peak, corrected by the tilt of the unit cell with respect 

to said surface. This tilt was extracted from the detector image position of the first truncation rod 

peak, which is positioned at the sample horizon for upright crystal structures. The momentum 
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transfer can be calculated to: 	

௭ݍ ൌ ݇௜
௭ െ ݇௙

௭ ൌ
ଶగ

ఒ
ൣඥsinଶ α୧ െ 2δെ2iβ ൅ ඥsinଶ α୤ െ 2δെ2iβ൧, with 2δ ൌ sinଶ αୡ, and 2iβ ൌ

i
ஜ஛

ଶ஠
, where 	μ ൌ 5.8 ∙ 10‐ଽÅ‐ଵ is the absorption factor (data taken from henke.lbl.gov). The 

scattering depth of the evanescent wave calculates to: 

Δ ൌ
ఒ

ଶగሺ௟೔ା௟೑ሻ
, with 	݈௜,௙ ൌ

√ଶ

ଶ
ට൫2ߜ െ sinଶ α୧,୤൯ ൅ ඥሺsinଶ α୤ െ 2δሻଶ ൅ ሺ2ߚሻଶ. 

 αୡ ൌ 0.0915° is the critical angle for pentacene (measured via X-ray reflection. α୧ is the angle of 

incidence. The diffraction angle α୤ ൌ 1.149° was extracted from the detector data. The wavelength 

was set to λ ൌ 0.6888Å , i.e. a photon energy ܧ௣௛ ൌ 18ܸ݇݁ , for all experiments. For the whole 

fit, surface roughness and grain topography as well as exponential decay of electron beam inside 

the film are neglected. The fit parameters were the number of dead layers 	p and a scaling factor 

to normalize the intensities. 
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Figure S3: Crystallinity of transferred pentacene. In-house specular X-ray reflectometry 

measurement of crystalline pentacene after film transfer to an SiO2 substrate with Au transistor 

structures. The dominant pentacene polymorph is thin film phase (tfp). The small bulk phase (bp) 

features are probably due to long storage. The overall small intensity of the Bragg features is due 

to the low signal to noise ratio (in-house compared to synchrotron) and the small flake size of ~ 2 

mm.  
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Figure S4: Output characteristics of transferred and deposited FETs for contact resistance 

evaluation. The source-drain sweeps were measured at room temperature under ambient 

conditions. From them, the necessary data is extracted to calculate the channel resistances, 

discussed in the main text.  
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Supplementary Figure 1 | BP nucleation within pentacene TFP induced by 

aggregates of BP on top. (a) X-ray diffraction of a thick pentacene layer (average 

thickness 120 nm) deposited on SiO2/ Si at a substrate temperature of 60 °C. The 

(110) Bragg peak indicated by the pink dashed line results from aggregates of 

horizontally orientated BP pentacene, that forms on top of the thin film in case of 

higher layer thicknesses1-6. (b) AFM topography and (c) simultaneously recorded s-

SNOM amplitude image using IR illumination at 907.1 cm-1 close to resonance with 

BP pentacene. Scale bar, 2 µm. The sample exhibits the heterogeneous morphology 

(b) of an up to 300 nm thick pentacene film. Interestingly, the infrared image (c) 



 

  

reveals a broad rim of BP pentacene (yellow colour) surrounding the elevated 

aggregates on top of the thin film. So far, aggregates forming on top of organic thin 

films in case of an increased layer thickness have usually not been considered to 

interfere with transport at the lower interface with the dielectric7. However, this BP 

distribution suggests that the aggregates on top act as growth seeds for BP 

nucleation and thus increase structural inhomogeneity throughout the thin film. 



 

  

 

 

Supplementary Figure 2 | Mapping of phase coexistence within the channel of a 

pentacene TFT. (a) AFM topography and (b) simultaneously recorded s-SNOM 

amplitude image at 907.1 cm-1. Scale bar, 3 µm. The measurement was conducted 

within the channel region of a working organic thin-film transistor (OTFT) in bottom-

contact configuration. The pentacene film grown within the transistor channel shows 

homogeneous grain morphology (a) that is surrounded to the left and right by a 

filament-like growth on top of the gold electrodes. Indeed, the infrared imaging 



 

  

technique reveals a distinct inhomogeneity inside the transistor channel (b), which 

mirrors the distribution of BP inclusions within the pentacene thin film. 

(c) Conductance and (d) transconductance characteristics of the bottom-contact 

pentacene TFT used in this study. 



 

  

 

 

Supplementary Figure 3 | Monitoring recrystallization in pentacene film over 

time. A repeat of s-SNOM measurements (a,b,c) and (d,e,f) with a time interval of 

six months, showing the same section of a 60 nm thick pentacene film deposited on 

SiO2/ Si at a substrate temperature of 30 °C. (a,d) AFM topography and (b,c,e,f) s-

SNOM amplitude images using IR illumination at 907.1 cm-1. The scale bars in 



 

  

(a,b,d,e) denote 3 µm, and in (c,f) 1 µm. The dashed squares in (b,e) mark the 

enlarged section shown in (c,f). The first set of measurements shown on the left hand 

side (a,b,c) was carried out one month after fabrication of the pentacene film. These 

images can be compared with a repeated set of measurements on the right hand 

side (d,e,f) that was acquired after storing the samples at room temperature for 

another six months. Since the substrate temperature during pentacene deposition 

was only elevated up to 30 °C, i.e. slightly above room temperature, a relatively small 

number of BP inclusions are observed within the thin film after one month. The 

fraction of BP, however, clearly growths with storage time, as expected according to 

the continuous relaxation of mechanical stress within the film by conversion of TFP 

into BP pentacene. 
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C
S A M P L E FA B R I C AT I O N

In the following chapter, the fabrication steps of pentacene and Epi
TFTs are described. The basic principle for the TFT fabrication is the
formation of different functional layers on a cleaned substrate. The
transistors in this work were produced with a bottom-gate and top-
contacts.

c.1 pentacene tfts

The pentacene TFTs were fabricated on cleaved pieces from a Si wafer,
with thermally oxidized silicon dioxide (SiO2) and cyclic olefin copoly-
mer (COC) as the dielectric.

c.1.1 Substrate preparation

The SiO2 layer needs to be electrically insulating and also <100nm
thin for measuring the local photocurrent properties of the transistor
characteristics. Thicker SiO2 leads to a non-local excitation of the pen-
tacene layer via waveguide effects or surface plasmon polaritons [93–
95]. High-quality substrates, tailored to these specific requirements,
were produced by in-house thermal oxidation of bare Si wafers.

A arsenic doped wafer from CrysTec, with a polished front side
and an etched back side, 5.08 cm (2 in) diameter, (100) crystal orienta-
tion, <0.01Ωcm specific resistance, and 275µm thickness, was used
as base material for the TFT fabrication. The wafer was thermally
oxidized for 2.5h so that a 82nm thick dielectric layer of SiO2 was
formed on the front and back side. Then, individual wafer pieces of
7mm x 6mm were produced by scratching surface with a diamond

Ti & Au (drain)Ti & Au (source)

Pentacene (semiconductor)
SiO2 & COC (dielectric)

n-doped Si (gate)

Top-contact TFTa b

bond wires

Pentacene
Au contacts

transistor
channel

chip carrier

Figure 17: Design of top-contact pentacene transistors used in this work.
a) Schematic of the top-contact pentacene transistors. b) Overview of a sample with
four transistor structures, glued into the chip carrier. The two transistors on the
bottom are electrically connected to the chip carrier with bond wires.
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scriber and successively cleaving the wafer. To remove the dielec-
tric layer from the back side, the SiO2 was etched with hydrofluoric
acid (HF). During this step, it was ensured that the acid droplet did
not reach the front side of the individual wafer pieces. Afterward, the
HF was removed by rinsing with deionized water (DI water).

c.1.2 Substrate cleaning

The electrical characteristics of organic TFTs depend strongly on the
interface quality between the dielectric and the semiconducting or-
ganic layer. Therefore, the samples were thoroughly cleaned with the
following protocol:

• 10min sonication in acetone

• 10min sonication in isopropyl alcohol

• 2 x rinsing with DI water

In total, four glass beakers were used for this cleaning protocol.
The beakers should be changed quickly between the cleaning steps,
to avoid residua on the substrate surface.

After solvent cleaning, the samples were further treated with pi-
ranha cleaning. The piranha solution is prepared by mixing 3parts
of sulfuric acid (H2SO4) (98%) with 1 part of H2O2 (30%). This
mixture exhibits a strong exothermic reaction to peroxymonosulfuric
acid (H2SO5). The samples are put into the boiling piranha solution
for 35min and afterward 2 x rinsed with DI water.

The cleaned substrates were stored in DI water until the next fabri-
cation steps. Immediately before the further processing, the samples
were dried with dry nitrogen flow and cleaned with oxygen plasma
for 3min.

c.1.3 COC deposition

On the cleaned SiO2 front side of the samples, a 5nm thick layer
of COC (TOPAS 6013S-04) was spin-coated from solution. The COC
solution with a concentration of 0.25wt% was prepared before, by
dissolving COC in toluene. A clean COC solution can be used for
several years if stored in glass bottles with glass caps. The solution
was placed on the sample with a pipette, fully covering the SiO2 sur-
face, and rotated with a speed of 6000 rpm for 30 s. Afterward, the
samples were thermally annealed on a hotplate at 100 ◦C for 2min.
The COC layer forms a smooth and hydrophobic surface and pro-
motes a convenient crystal growth of pentacene [95, 96].
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c.1.4 Pentacene deposition

After the COC deposition, the samples were immediately transferred
into the pentacene evaporation chamber to avoid a contamination of
the surface. The evaporation chamber was evacuated to a pressure of
about 10−8mbar and the home-made pentacene evaporation cell was
heated with halogen lamps, until a deposition rate of about 0.1Å s−1

was obtained. After the target deposition rate was reached, the sam-
ples were exposed to the evaporated pentacene molecules and after
about 50min, a target pentacene thickness of 30nmwas reached. For
optimal device performance, the purchased pentacene (Sigma Aldrich
triple-sublimed) was purified with a gradual zone sublimation and af-
terward filled into the evaporation cells.

c.1.5 Metal contact deposition

To form the source/drain contacts on top of the pentacene layer, an
optional layer of 2nm Ti with 0.5Å s−1 deposition rate and a 30nm
thick Au layer with 1Å s−1 was deposited inside of an evaporation
chamber. The dimensions of the source/drain contacts were defined
by a shadow mask to form a transistor channel of 20µm length and
1mm width.

c.1.6 Mounting inside chip carrier

After the deposition of the source/drain contacts, the samples were
mounted inside a chip carrier, fitting to the sample stage of the SPCM
setup. Therefore, the back side of the silicon wafer was glued to the
cavity of the chip carrier with conductive silver lacquer, to provide
a mechanical adhesion together with an electrical connection to the
gate contact. The source/drain contacts were electrically connected in
a wedge bonder with aluminum (Al) bond wires. The Al wires were
used because they can be bonded at a lower temperature compared to
Au wires, preventing a melting of the COC layer and therefore giving
a higher yield of successful bonds to the sample.

c.2 epindolidione tfts

The Epi TFTs were fabricated on glass substrates after the protocol
of Głowacki et al. [54]. A sputtered Al layer served as gate electrode,
electrochemically oxidized aluminum oxide (Al2O3) and a TTC layer
formed the dielectric.
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Figure 18: Design of top-contact epindolidione transistors used in this work.
a) Schematic of the top-contact Epi transistors. b) Overview of a sample with three
Epi transistors. c) Overview of a cleaved sample with one transistor, glued into the
chip carrier. The transistor is electrically connected to the chip carrier with bond
wires.

c.2.1 Substrate cleaning

Microscopical cover slips (R. Langenbrinck, 01-1520/2) with the dimen-
sions 15mm x 20mm and 0.19mm to 0.23mm thickness were used
as substrates for the produced Epi TFTs. The substrates were solvent
cleaned, as described in appendix C.1.2, and stored in DI water until
further fabrication.

• 10min sonication in acetone

• 10min sonication in isopropyl alcohol

• 2 x rinsing with DI water

c.2.2 Aluminum gate deposition

The bottom gate contact was deposited on the sample by radio fre-
quency (RF) sputtering of 100nm Al. For the sputtering process,
argon plasma with a process pressure of about 2× 10−2mbar and
an incident power of 30W was used. The Al target was 10min pre-
sputtered for cleaning purposes before the deposition process. After-
ward, the Al film was formed with deposition rate of 9nms−1. The
desired gate structure was defined by a shadow mask.

c.2.3 Aluminum oxidation

Electrochemical oxidation (anodization) of the sputtered Al layer was
used to produce a 32nm thin layer of Al2O3. Therefore, the substrate
was fixed with a crocodile clip, which simultaneously provided an
electrical contact to the Al layer. The sample was immersed into an
acidic solution with the crocodile clip just above the surface of the
solution. In addition, a grounded Pt wire was submerged into the
solution as the counter electrode. The acidic solution with a potential
of hydrogen (pH) value of 6 was obtained with the following recipe:
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• 5ml (10%) of 0.1M citric acid (C6H8O7)

• 22ml (44%) of 0.1M trisodium citrate (Na3C6H5O7)

• 23ml (46%) of DI water

Applying a positive voltage to the substrate, the Al is oxidized to
Al2O3. The oxide is formed at the anode electrode and hydrogen is
produced at the cathode electrode.

• 2 Al + 3 H2O −−→ Al2O3 + 6 H+ + 6 e–

• 6 H+ + 6 e– −−→ 3 H2

With an oxidation rate of 1.6nmV−1, a 32nm thick oxide layer
was obtained by applying a voltage of 20V . To avoid electrolysis, the
voltage was increased slowly with 0.1V s−1 and kept constant at 20V
for 10min. After the anodization process, the sample was rinsed with
DI water and dried under nitrogen flow.

c.2.4 TTC deposition

The samples were mounted in an evaporation chamber for deposi-
tion of the oligoethylene TTC. The chamber was evacuated to a
pressure of about 10−7mbar and the home-made TTC evaporation
cell was heated with halogen lamps [97]. When the desired deposi-
tion rate of 4Å s−1 was reached, a pressure rise to about 10−6mbar
was observed and the samples were exposed to the evaporated TTC
molecules, forming a 34nm thick layer. With a thinner TTC layer of
15nm, lower operating gate voltages could have been reached. How-
ever, the fabricated samples with the thinner TTC layer showed an
insufficient electrical isolation of the dielectric. After the TTC deposi-
tion, the samples were thermally annealed over night at 60 ◦C in an
argon atmosphere.

c.2.5 Epi deposition

The active Epi layer was deposited in an evaporation chamber at a
pressure around 10−7mbar. The home-made evaporation cell was
heated with a halogen lamp to a temperature of 190 ◦C. At a de-
position rate of 0.2Å s−1, the samples were exposed to the evapo-
rated molecules, forming a layer of 90nm thickness. The purified Epi
molecules for this work were kindly provided by Eric D. Głowacki.

c.2.6 Au contact deposition

To form the source/drain contacts on top of the Epi layer, a 30nm
thick Au layer was deposited with a rate of 11Å s−1. This rather high
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evaporation rate ensured a good electrical contact between the Au
and the active Epi layer. The dimensions of the source/drain contacts
were defined by a shadow mask to form a transistor channel of 50µm
length and 2mm width.

c.2.7 Mounting inside chip carrier

To mount a fabricated transistor into a chip carrier, the samples were
scratched with with a diamond scriber and carefully cleaved. The
individual transistors were glued into the chip carrier, fitting to the
sample stage of the SPCM setup. Therefore, the sample back side was
glued into the cavity of the chip carrier with a two-component epoxy
resin adhesive. The gate contact and the source/drain contacts were
electrically connected in a wedge bonder with Al bond wires.



D
S E T U P F O R P H O T O C U R R E N T M I C R O S C O P Y

The following chapter describes the home-made setup for scanning
photocurrent microscopy (SPCM). In this setup, light of visible wave-
length is focused on an electrically connected TFT, and the response
of the connected device on illumination is analyzed. The position
of the device is controlled by a stack of three piezo motors (AN-
Px/z101/RES, ANC350 from attocube) and the position of the sample
with respect to the laser beam is controlled with a charge-coupled
device (CCD) camera (sensicam qe from PCO). This camera can also
be used to record the luminescence of the sample during the SPCM
maps. In addition, the luminescence can analyzed with a spectrom-
eter. The reflected light from the sample is coupled back into the
optical fiber and, after the fiber beam splitter, analyzed by a photodi-
ode (PDA36A from Thorlabs). Our photocurrent setup spans a whole
optical table, but these functionalities can also be implemented in a
more compact microscope [98].

d.1 light sources

For the illumination, different lasers are available. The laser should
be chosen according to desired wavelength λ, matching the absorp-
tion of the investigated semiconductor. The laser beam is coupled
into a single-mode optical fiber with a fiber beamsplitter, one part of
the laser beam was used to measure the laser intensity. The other part
of the fiber was guided through a polarization controller and was col-
limated by a lens into an objective.

Helium-Neon laser

The wavelength λ of the used line-tunable helium-neon (HeNe) gas
laser (30603 from Research Electro-Optics) can be selected from the
available laser lines at 633nm, 612nm, 604nm, 594nm, and 543nm.
The light of this continuous-wave laser can be modulated by a me-
chanical chopper with frequencies up to 10 kHz.

iPulse diode laser

A diode laser (iPulse from TOPTICA Photonics) was added to the
SPCM setup in course of this thesis. The laser emits at 488nm wave-
length and is remote controlled by a computer via a serial interface.
It can be operate in continuous wave or pulsed mode, with pulse fre-
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quencies up to 1MHz. As this laser does not provide a reference out-
put for synchronizing the illumination with the measurements, one
part of the outcoming laser beam was used for generating the refer-
ence signal. For this purpose, the laser intensity was measured with
a high speed photoreceiver (Model 2107 from New Focus). The out-
put voltage of this photoreceiver was amplified (HVA-10M-60-B from
FEMTO Messtechnik) to generate transistor-transistor logic (TTL) com-
patible voltage levels.

Laser diode system

Laser diodes of different wavelengths can used with a laser sys-
tem from Newport. This laser system consists of a laser diode mount
(Model 710), which is connected to a pulsed laser diode driver (LDP-
3811) and to a temperature controller (Model 6100). The laser diodes
can be operated in continuous wave or pulsed mode, with pulse fre-
quencies up to 1MHz.

d.2 electrical wiring

To measure the response of the fabricated devices on illumination,
the samples were electrically connected. One of the source/drain con-
tacts was connected to a transimpedance amplifier (DHPCA-100 from
FEMTO Messtechnik), the other source/drain contact and the gate con-
tact were connected to a voltage sources (7651 from Yokogawa). The
output voltage of the transimpedance amplifier was then analyzed by
a digital multimeter (34411A from Agilent Technologies), a Lock-in am-
plifier (Model 7280 from Signal Recovery), or a boxcar averager (SR200
seriesfrom Stanford Research Systems).

d.3 measurement procedure

The response of an organic FET on illumination can be analyzed in
the time domain and frequency domain. Both measurements require
a proper reference signal to trigger the measurement or to lock to the
pulse frequency.

Time domain measurements

Time domain measurements can be realized with an oscilloscope,
a digital multimeter, or a boxcar averager. The used digital multi-
meter 34411A from Agilent Technologies provided measurements with
a much lower noise level, compared to oscilloscopes. A signal trace
with 8000 samples and 20µs integration time per sample can be ac-
quired with the following settings:
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1 TRIG :SOUR EXT
TRIG :COUN 1

TRIG : DEL :AUTO 0

TRIG : DEL 0

TRIG : SLOP POS
6

SAMP:SOUR TIM
SAMP:COUNT 8000

SAMP:COUN: PRET 0

11 VOLT:DC:RANG:AUTO OFF
VOLT:DC:RANG 0.1
VOLT:DC:NPLC MIN
VOLT:DC:NULL: STAT OFF
VOLT:DC:ZERO:AUTO 0

16 SAMP: TIM MIN

Frequency domain measurements

Frequency domain measurements can be realized with a lock-in
amplifier, analyzing the signal at a given reference frequency f. Ne-
glecting all other frequencies, the lock-in amplifier can extract a clean
signal from a noisy background. The integration time should be suffi-
ciently large so that the amplifier can integrate over several periods of
the signal. Two-phase lock-in amplifiers contain two detectors, pro-
ducing orthogonal output signals X and Y. From these signals, the
lock-in amplitude and phase, equivalent to the photocurrent ampli-
tude |Iphoto| and photocurrent phase Θphoto, can be calculated.

|Iphoto| =
√
X2 + Y2 Θphoto = arctan(X/Y)

Amplitude and phase form the complex photocurrent Iphoto.

More details of this home-made SPCM setup can be found in my
master’s thesis [94], and in the master’s theses of Daniel Reiser [83]
and Simone Strohmair [85], which were conducted in course of this
work.
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