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Summary 

Reactive oxygen species (ROS) have long been regarded as destructive molecules that have 

harmful effects. However, research data emerging over the last decade have demonstrated 

that ROS can positively influence a range of cellular events in a manner similar to that seen 

for traditional second messenger molecules. Hydrogen peroxide (H2O2) appears to be the main 

ROS with such signalling properties, and this molecule has been shown to affect a variety of 

cellular functions. Its synthesis by the NADPH oxidase (NOX) family of enzymes and how these 

enzymes are regulated in the human ovary are poorly investigated topics. In the ovary, ROS 

are involved in fundamental reproductive processes, as implicated by previous studies. 

However, ROS can also cause oxidative stress, which is associated with impaired oocyte 

quality and a negative outcome of assisted reproductive techniques.  

Oocytes grow and mature in ovarian follicles, formed by granulosa cells (GCs) and theca cells 

(TCs). NOX4, a member of the ROS-producing NOX family, was identified in cultured human 

in-vitro fertilization (IVF)-derived GCs as well as in corresponding GCs and TCs of growing 

preantral and antral follicles in human ovarian sections. It was further detected in GC- and TC-

derived luteal cells of the corpus luteum. IVF-derived GCs resemble ovulatory GCs and/or the 

corpus luteum, but do not proliferate. Therefore, as a model for the growing follicle, the 

granulosa-like tumour cell line KGN was further studied. These cells also express NOX4. 

Accumulation of ROS in the medium of cultured GCs and KGN could be detected and was 

inhibited by the specific NOX4 blocker GKT137831. This blocker reduced specifically the 

production of H2O2 by around 45 % in GCs and KGN. This indicates a major contribution of 

NOX4 activity to the generation of H2O2. This is a rather long-lived and the only membrane-

permeable ROS. H2O2 may diffuse to neighbouring cells, and studies implicated aquaporins in 

the uptake of extracellular H2O2 into GCs. The gonadotropins follicle stimulating hormone 

(FSH) and human chorionic gonadotropin (hCG) play a key role in reproduction. They induce 

the maturation of ovarian follicles, and the ovulation process. FSH and hCG, however, did not 

alter expression of NOX4, but elevated mRNA expression of antioxidant enzymes including 

catalase. This indicates a role of these hormones in ovarian ROS homeostasis.  

H2O2 and FSH also increased MAPK-phosphorylation, suggesting convergence of the 

signalling pathways. Furthermore, H2O2, when added to GCs, elevated several cytokines. This 

implicates H2O2 in inflammatory events, which are possibly involved in ovulation and/or 

regression of the corpus luteum. Inhibition of H2O2 production by GKT137831 did not affect cell 

viability of GCs but lowered expression of CYP11A1, a crucial enzyme for steroid synthesis. 

This suggests involvement in the maintenance of the steroidogenic phenotype of GCs.  

In proliferating KGN cells, GKT137831 reduced cell growth. This may implicate a role of H2O2 

in cell proliferation and possibly in follicular growth.  
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Taken together, the results imply important roles of H2O2 in the regulation of GCs. As ROS are 

potentially harmful molecules, the full elucidation of the two sides of the ROS-signalling system 

in the human ovary is important to guide future therapeutic strategies. 
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Zusammenfassung 

Reaktive Sauerstoffspezies (englisch reactive oxygen species, ROS) wurden lange Zeit als 

potentiell schädliche Moleküle betrachtet, die nachteilige Effekte haben. Forschungsdaten des 

letzten Jahrzehnts zeigen jedoch, dass ROS eine Reihe von zellulären Ereignissen positiv 

beeinflussen können, ähnlich wie traditionelle Second Messenger Moleküle. 

Wasserstoffperoxid (H2O2) scheint das wichtigste ROS mit einer solchen Signaleigenschaft zu 

sein. Es wurde beobachtet, dass dieses Molekül eine Vielfalt von zellulären Funktionen 

beeinflusst. Seine Synthese durch die Enzymfamilie NADPH Oxidasen (NOX) und dessen 

Regulierung im menschlichen Ovar sind kaum erforschte Themen. ROS sind im Ovar in 

fundamentalen Reproduktionsprozessen involviert, was frühere Studien implizieren. Allerdings 

können ROS auch oxidativen Stress verursachen, welcher mit schlechter Oozytenqualität und 

negativem Ergebnis bei assistierten Reproduktionstechniken verbunden ist.  

Oozyten wachsen und reifen in ovariellen Follikeln, welche aus Granulosazellen (GZs) und 

Thekazellen (TZs) gebildet werden. NOX4 ist ein Mitglied der ROS-produzierenden NOX 

Familie und wurde sowohl in kultivierten menschlichen GZs, die aus In-Vitro-Fertilisation (IVF) 

stammen, als auch in den korrespondierenden GZs und TZs von wachsenden Preantral- und 

Antralfollikeln in menschlichen Ovarschnitten identifiziert. Des Weiteren wurde es in 

Lutealzellen des Gelbkörpers, welche aus den GZs und TZs hervorgehen, festgestellt. IVF-

abstammende GZs ähneln den ovulatorischen GZs und/oder dem Gelbkörper, aber 

proliferieren nicht. Deshalb wurde zusätzlich die Granulosa-ähnliche Tumorzelllinie KGN als 

weiteres Model für den wachsenden Follikel untersucht. Diese Zellen exprimieren auch NOX4. 

Die Akkumulation von ROS im Medium durch kultivierte GZs und KGN konnte ermittelt werden 

und wurde von einem spezifischen NOX4 Blocker GKT137831 gehemmt. Dieser Blocker 

reduzierte spezifisch die H2O2-Produktion um 45 % in GZs und KGN, was auf einen 

erheblichen Beitrag der NOX4-Aktivität an der H2O2-Produktion hinweist. Dies ist vielmehr ein 

langlebiges und das einzig membran-permeable ROS.  

H2O2 könnte zu Nachbarzellen diffundieren und Studien weisen auf eine Aufnahme von 

extrazellulärem H2O2 in GZs hin, an welcher Aquaporine beteiligt sind.  

Die Gonadotropine, follikelstimulierendes Hormon (FSH) und humanes Choriongonadotropin 

(hCG), spielen eine Schlüsselrolle in der Reproduktion. Sie induzieren die Reifung von 

ovariellen Follikeln und den Eisprung. FSH und hCG veränderten jedoch nicht die Expression 

von NOX4, aber erhöhten die Expression von antioxidativen Enzymen, einschließlich der 

Katalase. Dies weist auf einen Einfluss dieser Hormone auf die ovarielle ROS-Homöostase 

hin.  

H2O2 und FSH erhöhten auch die MAPK-Phosphorylierung, was auf eine Konvergenz der 

Signalwege hinweist. Zusätzlich erhöhte H2O2 nach Zugabe zu den GZs einige Zytokine. Dies 
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bringt H2O2 mit inflammatorischen Ereignissen in Verbindung, welche möglicherweise beim 

Eisprung und/oder dem Abbau des Gelbkörpers beteiligt sind.  

Die Hemmung der H2O2-Produktion durch GKT137831 zeigte keinen Einfluss auf die 

Zellviabilität, aber senkte die Expression von CYP11A1, ein zentrales Enzym der 

Steroidsynthese. Dies deutet auf eine Beteiligung des Erhalts des steroidogenen Phänotyps 

der GZs hin.  

In proliferierenden KGN Zellen reduzierte GKT137831 das Zellwachstum. Dies könnte eine 

Rolle von H2O2 in der Zellproliferation und möglicherweise im Follikelwachstum implizieren. 

Die Ergebnisse dieser Studie deuten zusammenfassend auf eine wichtige Signalrolle von H2O2 

in der Regulierung der GZs hin. Da ROS potenziell schädliche Moleküle sind, ist die 

vollständige Aufklärung der gegensätzlichen Seiten des ROS-signalisierenden Systems im 

menschlichen Ovar wichtig, um zukünftige therapeutische Ansätze zu entwickeln.  
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1. Introduction 

1.1 Ovary and follicle development 

1.1.1 Function and structure of the ovary 

The mammalian ovary, i.e. the female gonad, is a highly organized organ composed of two 

regions with indistinct boundaries, namely an outer cortex and an inner medulla. The cortex is 

occupied by the developing follicles, while the inner medulla contains prominent blood vessels, 

lymphatics and nerves. The ovaries, which are paired organs lying on either side of the uterus, 

have two main functions: the production and release of functional female gametes (the 

oocytes) and a substantial endocrine function. The production of steroid hormones includes 

oestrogens, which are essential for the development of female genitalia, and progesterone, 

which is necessary for the establishment of pregnancy. The ovary presents a composite of 

germ cells (oocytes or eggs) and somatic cells (granulosa cells, thecal cells, and stromal cells) 

whose interactions edict maturation of oocytes, development of follicles, ovulation, and 

formation of the corpus luteum (CL). Folliculogenesis is a dynamic process involving a 

continuous differentiation of the three cell types. The oocyte and the surrounding granulosa 

cells (GCs) and theca cells (TCs) are under the control of two hormones, the follicle-stimulating 

hormone (FSH) and the luteinising hormone (LH). These hormones are secreted by the 

anterior pituitary gland under the control of pulses of gonadotropin-releasing hormone (GnRH) 

from the hypothalamus (Edson et al., 2009; Georges et al., 2014; Richards et al., 2010; Ross 

et al., 2015). 

GCs, proliferating in association with the oocyte within developing follicles, play a central role 

in the coordination of folliculogenesis through their direct communication with the oocyte and 

TCs. In addition, GCs are sensitive to the pituitary hormones FSH and LH and produce 

oestrogens, anti-Muellerian hormone (AMH), activins etc. (Georges et al., 2014). 

 

1.1.2 Follicular phase and its hormonal regulation 

The maturation of a follicle can be classified into two phases according to its developmental 

stage and gonadotropin dependence, see Figure 1:  

1. Preantral phase: follicular growth from primordial to primary and secondary stages 

(FSH/LH -independent phase). 

2. Antral phase: transition from preantral to antral and preovulatory stage and to the 

ovulation (FSH/LH -dependent phase). 
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Figure 1 - Ovarian follicular development. Follicles progress through various stages of development from 

primordial to preovulatory/Graafian. Preantral phase: growth and formation of primordial follicles gets activated 
which form the primary follicles before they develop to secondary follicles. Antral phase: transition to tertiary/antral 
follicle consisting of an antral-filled follicular fluid cavity. Selection occurs between growing follicles, and only one 
continue growing to the preovulatory stage till ovulation while others undergo atresia. Whereas follicular growth to 
the secondary/preantral stage is independent of gonadotropins, progression beyond this stage strictly depends on 
FSH stimulation. A peak of FSH and LH triggers the ovulation. Modified after (Orisaka et al., 2009). 

 

During the entire period of female reproductive life, there is a finite reservoir of germ cells, the 

primordial follicles, which become activated and are continuously recruited to undergo 

folliculogenesis. This process is very dynamic, strongly controlled and still not fully understood 

(Sanchez et al., 2012).  

The growing follicle consists of an enlarging oocyte encapsulated by a single layer of cuboidal 

epithelial cells. With continued development, this lining becomes stratified epithelium 

composed of cuboidal GCs surrounded by an outer layer of TCs (primary follicle) followed by 

the formation of the so-called zona pellucida. This is an acellular layer of proteoglycans and 

glycoproteins that separates the developing oocyte from the surrounding GCs. A basal lamina 

separates the GCs from the TCs. These cells secrete androgens, which are converted into 

oestrogens in GCs. GCs begin to proliferate more and more and form a multilayer around the 

oocyte (secondary to late preantral follicles).  

 

Ovarian follicular development and ovulation are regulated by hypothalamic (GnRH) and 

pituitary (LH and FSH) hormones. GnRH acts in the anterior pituitary gland to stimulate 

synthesis and secretion of FSH and LH. FSH and LH act on their specific receptors in the 

plasma membranes (PMs) of GCs and TCs of growing follicles (Luderer, 2014). Thus, the 

secondary follicle is the first stage of FSH receptivity, as now the follicle has acquired FSH 

receptors (FSHR), and preovulatory follicles have an absolute requirement for gonadotropins 

for survival (Kishi et al., 2018).  

The ovarian steroids, oestradiol (E2) and progesterone (P), and the peptide hormone, inhibin, 

are synthesized in the GCs and TCs. These hormones feed back to regulate the synthesis and 

secretion of GnRH, LH, and FSH, see Figure 2 (Richards et al., 2010).  
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By the sustained proliferation of GCs, the antrum is formed (tertiary/antral follicle) and GCs are 

separated into two populations with distinct characteristics and functions: mural GCs 

(endocrine function by producing steroid hormones) and cumulus cells (supportive function for 

oocyte development). The antrum is filled with follicular fluid (FF) which is in immediate 

proximity to the oocyte and enables the communication between the cells (Hennet et al., 2012).  

While many follicles undergo atresia, only one or a limited number of follicles are selected from 

the cohort of recruited follicles, develop to preovulatory stage (Graafian follicle) surrounded by 

two layers of theca (theca interna and externa), and ovulate. The follicle produces enough 

oestrogens resulting in a decrease in plasma FSH. This negative feedback combined with an 

increase of inhibin secretion by GCs causes a decrease in FSH and results in atresia (follicle 

degradation) of the non-dominant follicles (Ginther et al., 2001). Also, numerous peptides 

secreted by the GCs of the growing follicles may play an autocrine/paracrine role in the 

inhibition of progress of the nearby follicles (Reed et al., 2000).  

 

Due to the rising levels of oestrogen in the preovulatory follicle, a positive feedback loop causes 

a rise of levels of LH. As a consequence, the so-called LH surge leads to a high concentration 

of LH and 24 h later to the release of the mature oocyte, i.e. the ovulation. The LH surge 

induces luteinisation of the GCs and TCs and forms the CL, which is required for establishing 

and maintaining pregnancy (Araujo et al., 2014; Georges et al., 2014; Orisaka et al., 2009; 

Reed et al., 2000). 
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Figure 2 - Feedback loops in the hypothalamic-pituitary-ovarian axis. Synthesis and secretion of FSH and LH 

by the anterior pituitary is regulated by GnRH from the hypothalamus. Follicular growth and hormone synthesis is 
stimulated by FSH and LH acting on ovarian GCs and TCs. GCs secrete inhibin that inhibits FSH synthesis and 
secretion by the pituitary. The negative feedback loop triggered by E2 and P stops secretion of GnRH, LH, and FSH. 
When E2 reaches a threshold, it has a positive feedback effect on hypothalamic GnRH followed by ovulation. GnRH, 
gonadoptropin-releasing hormone; FSH, follicle-stimulating hormone; LH, luteinising hormone; A, androgens; E2, 
oestradiol; P, progesterone. Modified after (Luderer, 2014). 

 

1.1.3 Luteal phase 

This phase begins after ovulation and lasts usually 14 days. After the release of the mature 

oocyte, there are remaining GCs, which form together with the theca-lutein cells the CL. The 

CL presents an important transient endocrine organ and is the main source of steroid 

hormones. Its main function is to prepare the endometrium of the uterus for implantation of the 

fertilized oocyte by secreting progesterone and oestrogens (Devoto et al., 2009; Reed et al., 

2000). The basal lamina dissolves and capillaries invade into the granulosa layer of cells. The 

steady LH support is essential for the life span of the CL. The expression of LH receptor (LHR) 

is fundamental during pregnancy. CL function declines by the end of the luteal phase unless 

hCG is produced due to a pregnancy.  

If pregnancy does not occur, the CL degenerates under influence of oestradiol and 

prostaglandins, and forms a scar tissue called corpus albicans (Reed et al., 2000). 

 

1.2 Ovarian steroidogenesis 

Steroidogenesis is the biological process in which cholesterol is converted to biologically active 

steroid hormones regulating a wide variety of developmental and physiological processes from 

fetal life to adulthood (Miller et al., 2011). Different groups of steroid hormones are generally 

known and can be distinguished based on their physiological function: mineralocorticoids; 

glucocorticoids and sex hormones. The latter consists of oestrogens, which induce female 

secondary sexual characteristics; progestins, which are essential for reproduction; and 

androgens, which induce male secondary sexual characteristics (Miller, 1988). All steroid 

hormones are derived from cholesterol and differ only in the ring structure and the attached 

side chains. They are also lipid soluble and can thus permeate freely the PMs. There are 

different steroidogenic tissues where the synthesis primary takes place: cortisol and androgens 

are produced in the adrenal cortex; testosterone in the testis; oestrogens and progesterone in 

the ovary and progesterone in the placenta.  

There are two crucial proteins priming the steroid synthesis, namely cytochrome P450 family 

11 subfamily A member 1 (CYP11A1) and Steroidogenesis Acute Regulator (StAR). 

CYP11A1, also known as cholesterol side-chain cleavage enzyme, is the enzyme that converts 

cholesterol to pregnenolone. It is encoded by the CYP11A1 gene and is associated with the 
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matrix side of the inner mitochondrial membrane (Miller, 2017). In the adrenals and gonads, 

StAR is responsible for the rapid transport of cholesterol from the outer mitochondrial to the 

inner mitochondrial membrane (Miller et al., 2011).  

During the follicular phase, the major product generated by follicles is oestradiol, whereas 

during the luteal phase, the major products of the CL are the progestins. In the follicular phase, 

LH initiates the TCs to convert cholesterol to androstenedione (Figure 3). The next step, 

generation of oestradiol from androstenedione, requires aromatase which is not available in 

TCs. Thus, the androstenedione diffuses to the GCs where the aromatase converts the 

androstenedione to oestradiol. This aromatase activity has been stimulated by FSH. In the 

luteal phase, the vascularization of the CL makes low density lipoprotein, a source for 

cholesterol, available to the granulosa-lutein cells. Thus, both the theca-lutein and the 

granulosa-lutein cells can produce progesterone, the major product of the CL (Koeppen et al., 

2009). 

 

Figure 3 - Synthesis of steroid hormones in the ovary. Schematic outline of the two gonadotropin hypothesis of 

regulation of oestrogen synthesis in the human ovary. The transport of cholesterol from the cytoplasm into the 
mitochondria of TCs is triggered by StAR. Followed by the conversion of cholesterol to pregnenolone by CYP11A1. 
After several stages androstenedione is generated which is transported into GCs where it gets aromatized by the 
enzyme aromatase to form oestrogens.  

 

1.3 In-vitro fertilization (IVF) 

After the successful implementation of the IVF technology in the year 1978 (Steptoe et al., 

1978), the estimation of worldwide born babies due to IVF is 7 million. Almost 20 % of couples 

worldwide suffer from some form of infertility problem. Today, the main reason for infertility is 

the increasing age in women, but also physiological causes are associated (Hamilton et al., 

2006). Also, lifestyle factors such as smoking, bodyweight and stress can induce infertility. 
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Europe is leading in assisted reproductive techniques (ART) by reporting 50 % of all treatment 

cycles and 35 % mean pregnancy rate per embryo transfer (Duranthon et al., 2018).  

The process of IVF involves daily injections of the gonadotropins FSH and LH/hCG to stimulate 

follicular development and to increase the number of oocytes available for fertilization (Macklon 

et al., 2006). The use of gonadotropins for ovarian stimulations is essential in the treatment of 

infertility. However, the use of FSH remains associated with severe disadvantages such as the 

risk of ovarian hyperstimulation syndrome (OHSS), a potentially life-threatening condition 

(Vloeberghs et al., 2009).  

 

Clinical gonadotropin treatment for induction of ovulation in anovulatory women began in the 

1960s, and for stimulating multi-follicular development in ovulatory women, began in the 1980s 

(Practice Committee of American Society for Reproductive Medicine, 2008). In natural cycles, 

GnRH stimulates the secretion of FSH and LH, which are regulating follicle development in the 

ovary and the selection of a dominant follicle. The inducing step for the ovulation is caused by 

a mid-cycle surge of LH (Alper et al., 2017).  

There are various gonadotropin products available for controlled ovarian stimulation protocols. 

The most commonly used gonadotropins to trigger the follicular development and maturation 

are highly purified urinary human menopausal gonadotropin and recombinant FSH. Final 

oocyte maturation and ovulation is typically initiated by a bolus of either GnRH agonist or 

human chorionic gonadotropin (hCG), or both. hCG, a hormone that is biologically similar to 

LH, but has a longer half-life, can be human derived from urine of pregnant women or 

manufactured using recombinant technology (Practice Committee of American Society for 

Reproductive Medicine, 2008). 

Transvaginal ultrasonography serves for monitoring the growing follicles. After a successful 

ovarian stimulation, mature follicles are gained by means of ultrasound-guided transvaginal 

aspiration of FF. Obtained oocytes get isolated from the aspirated fluid and in general fertilized 

in vitro by culturing together with motile sperms. The other option of fertilization is to use the 

intracytoplasmic sperm injection, where a single sperm is injected into the oocyte using a thin 

glass pipette. Originally, this method was applied to treat male infertility, but is nowadays often 

used for IVF. After the subsequent cultivation of multiple embryos, the selected one is 

transferred to the uterus. The cultivation can last three days till the fertilized oocyte reaches an 

eight-cell stage or the blastocyst embryo stage after five days. Are there more good-quality 

embryos as than needed for the transfer, they are often cryopreserved (Van Voorhis, 2007). 
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1.3.1 Granulosa cells (GCs) 

Due to the easy access during ART and the essential roles of GCs in the development of the 

oocyte and maintenance of pregnancy, luteinised GCs are identified as a valuable tool for 

studies in reproductive biology (Greenseid et al., 2011). Somatic GCs show as special feature 

the remaining interaction to the germ cell during growth, differentiation, maturation and 

fertilization of the oocyte, and they are essential for a successful maturation (Buccione et al., 

1990). Due to their significant role within the follicle, GCs are suitable for investigation of 

physiological and pathological processes within the human ovary. Human primary luteinised 

GCs can be easily obtained for in vitro studies to clarify multiple questions in ovarian functions. 

The GCs are isolated before the ovulation but were already in contact with LH. GCs and FFs 

present a suitable model to study mechanisms in mature follicles or CL. 

 

1.3.2  Granulosa-like tumour cell line - KGN 

As cultured human GCs do not proliferate and to study proliferation, a crucial mechanism in 

follicular growth, the granulosa-like tumour cell line KGN was implemented.  

The KGN cell line stem from pelvic space tumour diagnosed as ovarian cancer stage III. The 

cultured cell line maintains most physiological activities including the expression of functional 

FSHR, as well as the same pattern of steroidogenesis as those observed in primary ovarian 

GCs (Nishi et al., 2001). Also other similarities including cAMP-inducible aromatase expression 

and gonadotropin responsiveness makes this cell line attractive for studying ovarian G-protein-

coupled-receptor signal transduction. In addition, KGN cells were characterized to a specific 

mutation in a transcriptome factor involved in proliferation and differentiation in GCs (Tremblay 

et al., 2017). Therefore, KGN cells became more attractive to study various aspects of 

physiological regulations of human ovarian GCs. 

A recent published transcriptome analysis in KGN revealed that protein kinase A (PKA) and C 

signalling pathways play an important role in various major functions of ovarian follicle 

development such as cell differentiation, final maturation, luteinisation, and ovulation 

(Tremblay et al., 2017). Another transcriptional analysis was performed with KGN cells to 

reflect that mutant of the transcription factor FOXL2 is able to differentially regulate the 

expression of many genes, including StAR (Rosario et al., 2012). 

 

1.4 FSH, FSHR and signalling 

Follicle stimulating hormone (FSH) is released from the anterior pituitary and targets GCs of 

growing follicles in the ovary and Sertoli cells in the testis, which both express FSHR (Simoni 
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et al., 1997). FSH is essential for normal growth and maturation of ovarian follicles in women 

and for normal spermatogenesis in men (Themmen et al., 2000).  

FSH, is a heterodimeric pituitary glycoprotein. It shares an α-subunit with other glycoprotein 

hormones, and is characterized by a specific β-subunit (Gloaguen et al., 2011). FSH binds to 

and activates the FSHR, which belongs to the G protein-coupled receptors (7 transmembrane 

domains receptor family). This leads to the activation of a battery of signalling pathways 

depending on the developmental and physiological context. In females, FSH mainly acts to 

regulate ovarian folliculogenesis and steroidogenesis (Das et al., 2018).  

 

The human FSHR gene is large and contains more than 1300 single nucleotide polymorphisms 

(SNPs), of which only eight are located in the coding region. The correct function of FSHR is 

of high importance. Mutations can cause significant reproductive defects in both sexes (Laan 

et al., 2012). It has also been reported that FSHR isoforms differ in sensitivity to FSH 

stimulation, hence they have a significant effect on female serum FSH concentration and 

ovarian FSH response (Perez Mayorga et al., 2000). 

 

Activation of the FSHR is linked to diverse downstream signalling pathways. In GCs, one of 

the downstream consequences of FSHR stimulation is the classical GαS/cAMP/PKA signalling 

pathway. Hereby, the FSHR couples to GαS subunit after FSH activation, which in turn induces 

activity of adenylyl cyclase. The resulting cAMP activates PKA (Gloaguen et al., 2011). As a 

consequence, many targets in the nucleus or the cytosol are being phosphorylated by the 

active catalytic subunits of PKA. The mitogen-activated protein kinase (MAPK)/extracellular-

signal regulated kinase (ERK) pathway is also induced by FSH (Gloaguen et al., 2011). A 

further important transduction mechanism linked to FSHR leads to transactivation of the 

epithelial growth factor receptor (EGFR). A possible mechanism resulting in EGFR activation 

upon FSH stimulation involves the metalloprotease ADAM17. Once activated by 

phosphorylation, ADAM17 cleaves pro-EGF-like protein, releasing an EGF-like ligand, which 

then binds to and activates EGFR (Yamashita et al., 2009). A downstream event of EGFR 

includes reactive oxygen species (ROS). It has been demonstrated that for growth factors such 

as EGF, ligand binding stimulated a burst of ROS production. Inhibiting this increase in ROS 

levels (including hydrogen peroxide; H2O2) was shown to block normal signalling induced by 

EGF (Finkel, 2011). EGFR transactivation also results in activation of Ras, which in turn 

induces the Raf1/MEK/ERK MAPK module. Furthermore, it has been reported that in GCs, 

sustained FSH exposure results in a self-activation loop involving the MAPK module 

(Gloaguen et al., 2011). 
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In addition to the typical target cells in the gonads, i.e. GCs and Sertoli cells, FSHR was also 

reported to be expressed on the surface of the blood vessels of a wide range of tumours (Radu 

et al., 2010). In this context, a recent report showed that in ovarian tumour cells, FSH increased 

ROS levels (Yang et al., 2014; Zhang et al., 2013). The mechanisms involved are not well 

known and this aspect has not been described in ovarian GCs, yet. 

 

1.5 Reactive oxygen species (ROS) 

1.5.1 Different types of ROS 

ROS, by-products of cellular respiration, protein folding, and end products of multiple metabolic 

reactions, are generated by the sequential addition of electrons to molecular oxygen, forming 

two different types of radicals, namely free and non-free radicals (Reczek et al., 2015). Free 

radicals include hydroxyl radical (OH•), superoxide anion radical (O2
•-), and nitric oxide (NO•) 

and among non-free radicals include H2O2 and peroxynitrite (ONOO-) (Spitz et al., 2004). 

Whereas O2
•- and OH• are, due to their unpaired electron, short-lived and highly reactive with 

cellular macromolecules, H2O2 is long-lived and membrane-permeable, and so the only ROS 

which can diffuse from its site of origin within or among cells, and may specifically act as 

extracellular, short-range auto-/paracrine signalling factor (Giorgio et al., 2007; Luderer, 2014). 

Furthermore, it is becoming clear that specifically H2O2 plays fundamental roles in cell 

proliferation, migration and metabolism, as well as cell death (Sies, 2017). H2O2 and other ROS 

play an important role in oxidation of redox-sensitive cysteine residues in proteins altering their 

function (Jones, 2006, 2008).  

 

1.5.2 Sources of ROS  

Several intracellular sources of ROS or modes of generation of ROS exist (Finkel, 2011; Sies, 

2017), ranging from the mitochondrial respiratory chain to diverse oxidases, which produce 

oxidants as part of their normal enzymatic function. During mitochondrial oxidative 

phosphorylation, oxygen is converted to O2
•- and H2O2 (Finkel, 2011; Giorgio et al., 2007). 

Enzymes, which produce H2O2, are distributed in the cell including phagocyte NADPH oxidase 

(NOX) on the cell membranes, peroxisomal oxidases in the peroxisomes, sulfhydryl oxidase 

in the endoplasmic reticulum (ER), superoxide dismutase (SOD) 1 and cyclooxygenase in the 

cytoplasm, and SOD2 in the mitochondria (Giorgio et al., 2007). Also, steroidogenic 

cytochrome P450 enzymes occurring in the ovary (Hanukoglu, 2006) and xenobiotics (Pizzino 

et al., 2017) can generate ROS.  
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However, in the human ovary very little is known about these sources, or the mechanisms of 

their actions compared to animal models. It was shown that ROS levels in IVF-derived, cultured 

human GCs are increased upon cellular uptake and intracellular enzymatic metabolism of the 

catecholamines dopamine and norepinephrine in FF. The studies suggest that dopamine and 

the dopamine-metabolizing enzymes monoamine oxidases are players in the human ovarian 

follicle, which in a dopamine-independent way appear to contribute to ROS homeostasis 

(Blohberger et al., 2016; Saller et al., 2014; Saller et al., 2012). ROS generation in GCs was 

also increased upon activation of EGFR induced by FSH, as well as pigment epithelium derived 

growth factor (Adam et al., 2012; Kampfer et al., 2014).  

The major enzymatic generator of intracellular oxidants is, however, a family of 

transmembrane-bound enzymes, called NADPH oxidases. 

 

1.5.3 Functional roles in the ovary 

ROS and reactive nitrogen species (RNS) are generated in the body and although historically 

considered as purely damaging, function as physiological regulators of hormone actions and 

signalling pathways, to affect e.g. processes in the female gonad (Finkel, 2011; Reczek et al., 

2015).  

It is still not well known what roles physiological ROS levels may play, but reports about the 

beneficial functions of ROS in many physiological events is increasing, as well as in the 

homeostasis of ovarian follicles. In fact, follicular vascularity, intrafollicular oxygen content and 

mitochondrial activity are factors supporting an optimal oocyte development (Finkel, 2011; 

Maraldi et al., 2016). Consequently, some studies found a positive correlation between FF 

ROS levels and maturation parameters. For example, ROS were reported to improve bovine 

oocyte developmental potential during in vitro maturation and women with a positive IVF 

outcome had significantly higher ROS levels in the FF than non-pregnant patients (Attaran et 

al., 2000; Revelli et al., 2009). Another study in mice confirmed that ROS plays an important 

role in oocyte maturation. They stated that NOX and its ROS products are essential to FSH-

induced cumulus-oocyte complex maturation (Chen et al., 2014). Low levels of ROS may 

trigger oocyte maturation following the LH surge (Downs et al., 1988).  

In response to the pre-ovulatory gonadotropin surges, antioxidant levels fall and ROS levels 

rise. Studies provide the evidence that the absence of ROS prevent ovulation as well as a 

whole repertoire of essential pre-ovulatory responses. ROS are indispensable ovarian 

molecules for ovulatory-associated cellular events like cumulus expansion or LH-induced 

progesterone production by pre-ovulatory follicles. Furthermore, ROS in GCs appear to act as 

mediators of p42/44 MAPK-signalling, which implicates an important role of redox signalling in 

the ovary (Sato et al., 1992; Shkolnik et al., 2011). 
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There are some published studies in animal models elucidating possible roles of ROS such as 

a work in the rat revealed roles in ovulation (Shkolnik et al., 2011). In the CL, ROS are 

beneficial for steroid production shown in a rat model (Carlson et al., 1993).  

Nonetheless, the precise role that ROS play remains controversial and very less is known 

about these processes in humans (Finkel, 2011). 

 

1.5.4 Oxidative stress (OS) and fertility 

ROS are a “double-edged sword” due to the fact that a dysregulation of ROS levels may cause 

or accelerate pathological conditions. OS, a state characterized by an uncontrolled 

accumulation of ROS, has been identified to play a key role in infertility in males and females 

(Avila et al., 2016; Devine et al., 2012; Finkel, 2011; Jones, 2006, 2008). Multiple reasons 

leading to OS are e.g. environmental changes, lifestyle changes, pathological conditions or 

drugs treatment (Agarwal et al., 2012). 

 

Regarding spermatogenesis, it has been reported that OS secondary leads to increased lipid 

peroxidation, biomembrane damage or protein and DNA damage of sperm (Avila et al., 2016).  

The maturation of an oocyte depends on a complex process of proliferation and differentiation 

of several cell types during follicle development that govern gamete quality. Systemic and local 

studies regarding process of follicular maturation, oocyte quality, and global fertility efficiency 

in combination with the level of OS resulted in direct relationship between fundamental 

processes and OS in the ovary. These processes include atresia of primordial and primary 

follicles, oxidative damage of lipids resulting in poor oocyte quality, oocyte fertilization, early 

embryonic development, and decreased female fertility (Luderer, 2014; Prasad et al., 2016; 

Rizzo et al., 2012). It has been reported that increased levels of OS markers and decreased 

levels of antioxidants are related to poor IVF outcome (Avila et al., 2016). The repeated ovarian 

stimulation by exogenous gonadotropin induces OS in the ovary and leads to ovulation of poor 

quality oocytes (Prasad et al., 2016). OS is known to play a pathogenic role in endometriosis 

(Nassif et al., 2016) and polycystic ovarian syndrome (PCOS) (Avila et al., 2016). An increase 

in OS in the GCs correlates with reduced expression of FSHR and may be implicated in poor 

response of FSH in women with aging (Avila et al., 2016).  

 

1.5.5 Hydrogen peroxide - a signalling molecule 

Hydrogen peroxide (H2O2) is a long-lived and the only membrane-permeable ROS (Schroder 

et al., 2012). H2O2  can be converted into OH•, see Figure 4 (Bienert et al., 2006). It acts as 

signalling molecule in various cellular processes as either a paracrine or an autocrine signal. 
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An intercellular signalling function means that the signal molecule needs to be transported 

across at least one membrane. The extracellular enzyme activities of NOX enzymes localized 

on the PM result in the generation of extracellular ROS, including H2O2 (Bienert et al., 2014).  

 

Figure 4 - Conversion of H2O2 into ROS. H2O2 can be converted into other more reactive ROS by various means 

including enzymes. The reduction of the hydroxyl radical to water occurs non-enzymatically. Modified after (Bienert 
et al., 2006) 

For a long time, it has been known as a hazardous ROS with the potential to damage proteins, 

lipids and nucleic acids. However, recently, the picture of H2O2 has changed towards seeing 

H2O2 as having an indispensable role in a large variety of pathways. It plays an essential role 

in the redox signalling network, and hence in cell proliferation, migration and death (see Figure 

5). As one of the most abundant and stable ROS molecules in the organisms, H2O2 regulates 

a large set of developmental and physiological processes as well as stress response within 

the cells. Either it triggers directly chemical reactions or influences responsive targets, or it acts 

via signalling pathways involving MAPKs (Bienert et al., 2014). It has been reported that 

MAPKs are activated in response to H2O2 (Bienert et al., 2006). However, the regulation of 

H2O2 signalling is not fully understood and might take place at multiple levels in the signalling 

pathway from receptor to nucleus. 
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Figure 5 - Role of H2O2 in redox signalling and in oxidative damage. NOX enzymes are activated upon ligand-

receptor interaction, and extracellular SOD converts the O2
•-, generated by NOX, to H2O2, which is imported by 

AQPs (peroxiporins).  

 

1.6 Characteristics of NADPH oxidases (NOX) 

1.6.1 Function, structure, and activation 

The phagocyte NADPH oxidases (NOX) are enzymes, which generate ROS not as by-

products, but rather as the primary function of the enzyme system. They produce ROS by 

moving an electron across cellular membranes and transferring it to oxygen. Thereby, they 

generate the O2
•-, which usually is very rapidly dismutated to H2O2 (Bedard et al., 2007; 

Lambeth et al., 2014). This function is not limited to phagocytes, but the ROS-producing 

enzymes are described in essentially every tissue (Bedard et al., 2007; Sirokmány et al., 2016). 

NOX enzymes have been reported to be involved in host defence, hormone synthesis, 

fertilization, cell proliferation and differentiation (Bedard et al., 2007; Lambeth et al., 2014).  

NOX enzymes are multicomponent, transmembrane proteins, of which seven members are 

known: NOX1-5 and dual oxidases (DUOX) 1 and 2; see Figure 6 and e.g. (Guo et al., 2015; 

Sirokmany et al., 2016; Wong et al., 2004).  



Introduction  14 

 

  

 

Figure 6 - Composition of NOX enzyme complexes. Seven NADPH oxidase enzymes have been described and 

can be classified by domain structure, regulation, and ROS product. All NOX isoforms are membrane proteins that 
are localized in the PM or cellular compartments’ membranes. Oxidase activity occurs when NADPH binds to NOX 
on the cytosolic side, where it transfers electrons to oxygen on the outer membrane surface. Stabilizing or 
maturation factors of NOX1-4 are p22phox in green and DUOXA1/2 for DUOX enzymes in blue. Modified from 
(Brandes et al., 2014). 

 

The members of the NOX family differ according to the ROS that is produced (Table 1). 

NOX1-3 and NOX5 generate primarily O2
•-, whereas the major product of NOX4, DUOX1, and 

DUOX2 is H2O2 (Lambeth et al., 2014).  

The enzyme family originates from phagocytic cells and contains a homologous catalytic 

subunit, NOX (Altenhofer et al., 2015; Sirokmány et al., 2016). All family members have some 

conserved structural properties in common: 1. a NADPH-binding site at the C-terminus, 2. a 

FAD-binding region, 3. six transmembrane helices, and 4. four highly conserved heme-binding 

histidines (Bedard et al., 2007). The name dual oxidase 1 and 2 originate from an additional 

transmembrane domain and an extracellular N-terminus containing a peroxidase-like domain. 

The transmembrane protein is dependent on interaction partners for the correct trafficking to 

its site of activity, its maturation and heme incorporation, as well as for maturation and 

stabilization (Brandes et al., 2014). There are cytoplasmic and membrane-associated proteins 

(Table 1), as well as stimuli like calcium, which interact with NOX members increasing the 

enzymatic ROS production (Altenhofer et al., 2015; Meitzler et al., 2014). All NOX homologues 
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except NOX5 have the same interaction partner, namely p22phox, a small membrane-bound 

associate factor that is necessary for complex formation and stability. 

NOX4 presents a constitutively active form due to the fact that no other activation 

requirements, aside from interaction with p22phox is needed (Meitzler et al., 2014). NOX5, 

DUOX1 and 2 do not need additional activating subunits, but are activated by Ca2+ (Bedard et 

al., 2007). DUOXA1 and 2 are required as scaffold for maturation and proper function of 

DUOX1 and 2 (Brandes et al., 2014).  

 

1.6.2 Localization and distribution 

While the NOX family seems to be widely distributed from the kidney, and the thyroid tissues 

to the brain and inner ear, cellular localization is somewhat less diverse (see Table 1). 

DUOXs were found in different tissues (DUOX1 in the mammalian thyroid and in respiratory 

epithelia; DUOX2 in the thyroid and in gastrointestinal glandular epithelia), but not yet in the 

human gonads. A reproductive role in an insect was reported for DUOX-generated H2O2 that 

fuels egg chorion hardening, and thereby plays an essential role during eggshell waterproofing 

(Dias et al., 2013). In contrast, the NOX4 and NOX5 forms were found in the human gonads. 

Of those, NOX4 and 5 were described in human GCs previously by RT-PCR (Kampfer et al., 

2014), NOX1-3 were not found, and DUOX1 and 2 were not studied yet. 

NOX5 is also the least well understood of the NOX isoforms, since the gene is not present in 

mice or rats (Bedard et al., 2007). NOX5, the Ca2+-activated NOX isoform, is highly expressed 

in human testis. In ovary, expression of NOX2, in addition to NOX4, and NOX5 was reported, 

but it is very likely that ovarian NOX2 originates from leukocytes (Cheng et al., 2001). That 

leaves NOX4 and 5 specifically found in the (human) male and female gonad, but the 

knowledge about expression and functional roles in testis and ovary is at best rudimentary. 

 

Table 1 - Characteristics and expression sites of NADPH oxidase family. Modified after (Bedard et al., 2007; 

Meitzler et al., 2014) 
 

Enzyme Interaction 
partners 

Cellular 
localization 

Major tissue 
distribution 

ROS 
products 

NOX1 p22phox, 
NOXA1/p67phox, 
NOXO1/p47phox, Rac 

PM, lipid rafts Colon 
epithelium 

O2
•- 

NOX2 p22phox, p67phox, 
p47phox, Rac 

PM Phagocytes O2
•- 

NOX3 p22phox, 
NOXA1/p67phox, 
NOXO1/p47phox, Rac 

PM Inner ear O2
•- 

NOX4 p22phox PM, ER, 
mitochondrial and 
nuclear membranes 

Kidney, ovary, 
brain 

O2
•-/H2O2 
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NOX5  PM, ER, nuclear 
membrane 

Spleen, testis, 
lymph nodes 

O2
•- 

DUOX1 DUOXA1 PM Thyroid, lung, 
prostate, testis 

H2O2 

DUOX2 DUOXA2 PM, ER, vesicles Thyroid, 
salivary gland, 
colon, pancreas 

H2O2 

 

1.6.3 NOX4 

In the year 2001, a novel non-phagocytic NOX enzyme NOX4 was identified in the kidney 

(Shiose et al., 2001). Compared to the other homologues, NOX4 is highly expressed, 

demonstrates unique structures, and results therefore in the only isoform producing 

constitutively H2O2 (Brown et al., 2009). Another ROS released from NOX4 is O2
•-, however 

due to its rapid conversion to H2O2 by SOD, it is almost undetectable (Brown et al., 2009).  

In general, NOX4 tissue distribution is ubiquitous, and NOX4 shows an especially high 

expression in kidney and blood vessels. The sub-cellular localization of NOX4 is cell-type 

specific and ranges from mitochondria, ER, focal adhesions, nucleus, and PM (Block et al., 

2009).  

The NOX4 gene is located on chromosome 11 and the existence of four NOX4 splice variants 

has been reported (Bedard et al., 2007). The other NOX genes are located on chromosome 

22 (Guo et al., 2015). 

As mentioned above, NOX4 only requires the membrane subunit p22phox for ROS-producing 

activity. It has been shown that the activity of NOX4 is proportional to NOX4 protein expression 

alone (Brown et al., 2009). The regulation of protein expression is not clearly understood yet, 

but there is a series of exogenous and endogenous stimulus. A number of stimuli have been 

identified as transcriptional regulators: hypoxia, angiotensin II (Ang II), platelet-derived growth 

factor (PDGF), transforming growth factor β (TGF-β) and insulin, see Figure 7 (Brown et al., 

2009; Guo et al., 2015).  

NOX4-derived ROS production has multiple faces in regulating the cellular physiology and 

pathology. While high levels of ROS and dysregulated production cause cell damage and 

death, ROS at regulated levels serve as second messengers. Notably, NOX4-derived H2O2 

promotes cell proliferation in multiple cell types. Moreover, it activates MAPK family members, 

which phosphorylate and activate MEF2C, a transcription factor important in cardiomyocyte 

differentiation (Guo et al., 2015). It also upregulates MAPK phosphatase-1 (MKP-1), which 

reduces activation of extracellular signal regulated kinase (ERK) 1/2. Cell migration plays 

essential roles in physiology including wound healing and embryogenesis and multiple 

evidences showed that NOX4 is involved in this process. Activation of matrix metalloprotease 

(MMP)-2 initiating migration is induced by insulin-like growth factor-1 (IGF-1) that is mediated 
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by NOX4. Previous reports showed that NOX4 is involved in cell death inducing apoptosis in 

many cells. Data suggested that NOX4 plays a role in TGF-β and tumour necrosis factor (TNF)-

α-induced oxidative stress (OS) leading to apoptosis (Guo et al., 2015). 

 

Figure 7 - Signalling pathways of NOX4. NOX4-derived H2O2 is thought to be elevated by multiple exogenous 

and endogenous stimulus followed by activation of downstream redox sensitive proteins. Downstream signalling by 
NOX4 activity occurs in many fundamental cellular processes like cell proliferation, migration and apoptosis. 
Modified after (Guo et al., 2015). 

 

Interestingly, a recent study not only confirmed expression of NOX4 in IVF-derived GCs, but 

demonstrated lower NOX4 levels in GCs from women older than 40 years (Maraldi et al., 

2016). This correlates with the naturally occurring decline in fertility with age. Beneficial and 

physiological roles of H2O2 and NOX4 have also been reported for the vasculature (Sies et al., 

2017). 

 

1.7 Aquaporins/peroxiporins  

H2O2, which is produced in membrane-surrounded organelles, such as mitochondria, 

peroxisomes, nuclei, and the ER, as well as at the PM, has been demonstrated to act as a 

signal molecule outside these organelles and inside the cell. This is of particular interest here, 

since an intracellular signal needs to be kept within a cell, while an extracellular signal implies 

that the signal molecule needs to be transported across at least one membrane: 1. the PM of 

the H2O2-producing cell and 2. the PM of H2O2 signal-perceiving cell. In neither case, unlimited 

diffusion of H2O2 across membranes would be compatible with its role as a signal molecule 

and both mechanisms again imply that there is a need to control transport of H2O2 across 

membranes. Experimental findings have suggested, that aquaporins (AQPs) are responsible 



Introduction  18 

 

  

for the facilitated diffusion of H2O2 across membranes (Bienert et al., 2014; Bienert et al., 2007; 

Bienert et al., 2006).  

AQPs are part of the major intrinsic proteins (MIPs), a large family of transmembrane channel 

proteins, and also known as water channels. The AQP family consists of small membrane-

spanning proteins (monomer size around 30 kDa) that are present at PMs in many cell types. 

These proteins consist of cytoplasmic N and C termini and six membrane spanning α-helical 

domains (Verkman et al., 2000). MIPs build tetramers, in which a monomer presents a 

hydrophilic bidirectional channel pathway facilitating the transport of substrates given by their 

chemical gradient. Several AQPs are highly selective for the passage of water, whereas others 

also transport glycerol or a variety of metabolically important small uncharged solutes, like 

urea, carbon dioxide, nitric oxide, and H2O2 (Bienert et al., 2014).  

Some AQPs (3, 8 and 9) facilitate the transport of H2O2 across biological membranes, for which 

they are called peroxiporins (Miller et al., 2010; Sies, 2017; Watanabe et al., 2016). 

 

1.8 Antioxidant defence mechanisms 

As mentioned above, a complex set of antioxidant molecules is needed for the maintenance 

of intracellular redox homeostasis (Figure 5). To ensure an equilibrated cellular homeostasis, 

a correct balance between the production of oxygen radicals and antioxidant agents is of 

crucial significance (Gupta et al., 2014). Hence, there are two cellular protective mechanisms 

against ROS generation: first, activation of expression of enzymes neutralizing ROS, mainly 

SOD, catalase (Cat), peroxiredoxin (PRX), glutathione peroxidase (GPX), and second, 

neutralizing ROS by several antioxidant substances like albumin, glutathione or vitamin C 

(Birben et al., 2012). But also AQPs play an important role by regulating the transport of H2O2 

(Patterson et al., 2015). Cat, GPXs and PRXs e.g. convert H2O2 to water, while SODs convert 

O2
•- into H2O2. However, the relative contributions of these enzymes in ROS removal depend 

on the site of generation and the enzymatic equipment (Sies, 2017). So, GPXs and PRXs are 

likely distributed in multiple cell compartments (e.g. the cytosol, mitochondria, and ER), 

whereas the occurrence of Cat is mostly limited to the peroxisomes (Reczek et al., 2015). 

Nonenzymatic antioxidants including the vitamins ascorbic acid, vitamin E, and vitamin A 

directly scavenge free radicals (Luderer, 2014). 

An adequate balance between the production of oxygen radicals and these antioxidant agents 

is of utmost importance for the maintenance of cellular homeostasis allowing appropriate 

cellular development and function. An imbalance leads to increased damage to the main types 

of cellular molecules and induces OS (Avila et al., 2016).  
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1.9 Aims of the study 

Although historically viewed as purely harmful, recent evidence suggests that reactive oxygen 

species (ROS) function as important physiological regulators of intracellular signalling 

pathways. Emerging evidence suggests that ROS regulate diverse physiological parameters 

ranging from the response to growth factor stimulation to the generation of the inflammatory 

response, and that dysregulated ROS signalling may contribute to a host of human diseases 

including oxidative stress (OS). OS may contribute to several diseased states affecting female 

reproduction. However, it became clear that hydrogen peroxide (H2O2), an oxygen metabolite 

and messenger molecule, serves fundamental regulatory functions in metabolism beyond the 

role as damage signal. One important generator of ROS is a family of membrane-bound 

enzymes that rely on NADPH for their activity. The only clear function of these NADPH-

dependent oxidases (NOX) is the regulated generation of ROS. 

The central question of this study was to clarify the sources and roles of ROS in the human 

ovary. Therefore, NOX enzymes in in-vitro fertilization (IVF)-derived, differentiated GCs were 

examined by focusing on NOX4 as a H2O2-producing enzyme. Because primary IVF-derived 

GCs do not proliferate and to explore a possible involvement of NOX4-derived H2O2 in 

proliferation, the granulosa-like tumour cell line KGN was used as additional model of this 

study.  

The first aim of the dissertation was to explore whether IVF-derived cultured human granulosa-

lutein cells and KGN cells express functional NOX4, linked to the production of H2O2. This was 

approached by the elucidation of gene and protein expression using cultured cells as well as 

ovarian sections. Functional, cellular studies verified the production of specific ROS species. 

 

Follicular stimulating hormone (FSH) and human chorionic hormone (hCG) are central 

regulators of female reproductive function and extensively used in reproductive medicine and 

assisted reproductive technology. However, these gonadotropins are involved in downstream 

signalling pathways including ROS generation, possibly via the NOX enzymes, which could 

result in noxious consequences. Thus, the second aim was to explore whether the 

gonadotropic hormones FSH/hCG are involved in ROS production. 

 

H2O2 modulates the activity of phosphatases and many other signalling molecules through 

oxidation of redox-sensitive cysteine residues in proteins, which led to the notion that initiation 

of ROS signalling is broad, and may play an essential role in signalling pathways in the human 

ovary. Hence, a third question of this study was: what are the functional roles of physiological 

H2O2 in ovarian cells?   
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2. Results 

2.1 NOX and ROS in cultured human GCs 

2.1.1 Identification of NOX  

The presence of the NOX family in vitro was shown by RT-PCR and Western blotting 

experiments. RT-PCR followed by sequencing revealed that GCs on the day of isolation (day 

0 = d0) and on culture day 3 (d3) express NOX4, NOX5, and DUOX1 and DUOX2 (Figure 8A). 

This experiment was repeated using n = 5 independent pooled GC preparations. NOX1-3 are 

not expressed by GCs as described previously (Kampfer et al., 2014). 

NOX4 protein was detected in three GC preparations by use of a specific anti-NOX4 antibody 

and WB (Figure 8B; NOX4: 68 kDa). Also, NOX5 was detectable at the expected size of 86 kDa 

(Figure 8C; n = 3). Experimental studies on DUOX1/2 were limited by the lack of specific 

antibodies. 

 

Figure 8 - NOX expression in cultured human GCs. (A) RT-PCR identified NOX4/5 and DUOX1/2 after isolation 

(d0) and on culture day 3 (pooled GCs from two to five individuals). Controls including RNA (-RT) and H2O instead 
of cDNA (H2O) were negative. (B) NOX4 protein was detected by WB (Antibody No. 1). (C) The identification of 
NOX5 was confirmed by WB.  

 

2.1.2 Localization of NOX4 and NOX5  

To localize NOX4, immunocytochemistry was performed using the same antibody as for WB 

(Table 9), and NOX4 protein was identified in the cytoplasm and the nucleus of GCs on culture 

day 3 (Figure 9; experiment repeated with four independent GC pools). Negative controls of 

all immunocytochemical experiments performed without primary antibody did not show any 

staining (data not shown). 
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Figure 9 - Localization of NOX4 in cultured human GCs. Localization of NOX4 (green) was detected by 

immunocytochemistry. Staining in intracellular compartments and the nucleus (blue: DAPI counterstain) of GCs (d3; 
antibody No. 1). Scale bar = 10 µm.  

 

NOX5 localization was detected in GCs on culture day 2 mainly in intracellular compartments. 

Staining was also seen in organelle-like membranes, and nucleus lacked staining.  

 

Figure 10 - Localization of NOX5 in cultured human GCs. NOX5-positive staining (green) on culture day 2 (blue: 

DAPI counterstain). Scale bar = 10 µm. 

 

2.1.3 Localization of NOX4 in ovarian tissue 

Immunohistochemistry revealed NOX4 in preantral and antral follicles of different sizes and 

the CL of the human ovary. Follicular GCs, theca cells, and small and large luteal cells were 

stained in the cytoplasm (Figure 11). This staining pattern was obtained with the same antibody 

as used for the WB (Figure 11). Specificity of this antibody was shown by replacing the primary 

antibody by serum (serum control), which lacked staining (Figure 11D+F).  
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Figure 11 - Presence of NOX4 in ovarian cells ex vivo. Immunohistochemistry using human ovarian sections 

and anti-NOX4 antibody (No. 1) showed positive staining for NOX4 in granulosa (GC) and theca cells (TC) of a 
secondary follicle (A), of a small antral follicle (B), of a large antral follicle (C) as well as in luteinised GC (LGC) and 
luteinised TC (LTC) of the CL (E). Serum controls lacked primary antibody and are negative (D and F). Scale bars: 
A-E= 30 µm, F = 50 µm. 

 

2.1.4 Functional activity of NOX4  

To examine the function of NOX4, the general ROS production and specific ROS, namely H2O2 

and O2
•- were determined. Fluorometrical measurements of ROS employing H2DCFDA (Figure 

12A; n = 8 GC pools) and measurements of H2O2 by Amplex® Red reagent (Figure 12B; n = 4) 

confirmed basal generation of ROS, including H2O2. O2
•- was detected only in small amounts 

(Figure 12C; n = 4) by the oxidation of luminol. An increase in ROS, and specifically in H2O2 

during the 2 h measurement-period was seen in all independent measurements. The initial 

values and increments differed, which is likely due to heterogeneity of primary cells taken from 

different patients.  
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Figure 12 - Basal ROS including H2O2 and O2
•- production of cultured human GCs. Basal production of ROS 

(identified by the indicator dye H2DCFDA, n = 8), specifically of H2O2 (measured by Amplex® Red, n = 4) was 

measured on culture day 2 to 4 for 2 h (A+B). (C) Graph shows basal production of O2
•- determined by 

chemiluminescence measurements over 2 h on culture day 2 to 3 (n = 4). Each line presents an independent 
measurement of a patient pool, and results are presented as mean only (six technical repetitions) and as fold-
change relative to t0.  

 

To inhibit the activity of NOX4, the specific NOX4-blocker GKT137831 was added 24 h prior 

measurement. The blocker significantly reduced ROS generation by 55 % and H2O2 production 

by 36 %, respectively, after 2 h of measurement (Figure 13A+C). Data are depicted as 

percentage deviation between blocked values and control values at endpoint of 2 h. Also, the 

values of inhibited versus control group of a representative measurement over 2 h is shown 

(Figure 13B+D; n = 1). Values are shown as mean only of six technical replicates. 
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Figure 13 - Inhibition of NOX4 activity in cultured human GCs. The NOX4 blocker GKT137831 (20 µM) reduced 

the ROS/H2O2 levels. Endpoint values at 2 h (means ± SEM) of multiple independent measurements show 
significant reduction of ROS production by 55 % (A; n = 6) and of H2O2 generation by 36 % (C; n = 4). (B) and (D) 
show the measurements of one representative example (mean only) over 2 h. Statistics: one-sample t test, 

theoretical mean: 0 (* p<0.05; *** p<0.001). 

 

To exclude cytotoxic effects of the blocker, the ATP content and cell morphology of treated 

cells were determined. The blocker did neither affect ATP content consequently cell viability 

nor morphology of GCs after 24 h treatment (Figure 14; n = 3).  
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Figure 14 - GKT137831 did not affect viability and morphology of cultured human GCs. 24 h pre-treatment 

with 20 µM GKT137831 did neither alter ATP content in GCs (indicator for viable cells), compared to control group 
(A; n = 3), nor did it change cell morphology (B). Statistics: paired t test with single measurements. 

 

2.1.5 Influence of FSH and hCG  

2.1.5.1 Regulation of receptors and signalling pathways 

FSH and LH/hCG are considered the principal reproductive hormones. Consequently, cultured 

human luteinised GCs express receptors for both (Figure 15 and (Simoni et al., 1997)). 

 

Figure 15 - Expression of LHR and FSHR. RT-PCR identified FSHR and LHR in pooled GCs on culture day 4. 

Controls including RNA (-RT) and H2O instead of cDNA (H2O) were negative.  

 

FSH treatment (2 h) yielded an increased MAPK phosphorylation as revealed by 

immunoblotting (Figure 16A). Three out of four experiments resulted in elevated protein levels 

of pMAPK compared to MAPK of FSH treated GCs normalized to control cells (data not 

shown). Also, 24 h treatment of FSH/hCG influenced mRNA levels of ADAM17, a 

metalloprotease involved in activation of EGFR.  
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Figure 16 - FSH increases phosphorylation of MAPK and mRNA levels of ADAM17. (A) WB membrane of a 

representative example shows the increase in phosphorylated MAPK in GCs on culture day 4 after FSH treatment 
(2 h). (B) qRT-PCR revealed that mRNA levels of ADAM17 were significantly elevated after hormonal stimulation 
(24 h). All values shown were normalized to RPL19 (means ± SEM). For statistics, ΔΔCq values were used. 
Numbers of repeated experiments are shown inside the columns. Statistics: one-sample t test, theoretical mean: 1 
(* p<0.05). 

 

FSH/hCG showed a complex influence on mRNA levels of FSHR and LHR (Figure 17). FSH 

increased mRNA expression level of LHR, while hCG elevated LHR, but decreased FSHR 

expression. 

 

 

Figure 17 - FSH/hCG influences receptors.FSH significantly increased expression of LHR and hCG of FSHR, 

respectively, as seen by qRT-PCR. All values shown were normalized to RPL19 (means ± SEM). For statistics, 
ΔΔCq values were used. Numbers of repeated experiments are shown inside the columns. Statistics: one-sample 
t test, theoretical mean: 1 (* p<0.05). 
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2.1.5.2 FSH/hCG and ROS production in cultured human GCs 

The hormonal treatment with FSH/hCG did not influence the basal ROS production of cultured 

GCs. Neither the acute stimulation nor the hormonal pre-treatment had any consequences on 

ROS production. Overall ROS generation after 2 h of stimulation with 1 IU/ml FSH or 10 IU/ml 

hCG was measured over 2 h (Figure 18). All values are depicted as mean ± SEM from four 

independent experiments and normalized to the starting point (relative to t0). The end-point 

values at 2 h relative to control made clear that there was no difference between control and 

stimulated group (Figure 18C).  

 

 

Figure 18 - No acute effect of FSH/hCG on ROS production. (A) Measurements of ROS using H2DCFDA did 

not show a difference in ROS production after acute addition of FSH/hCG (n = 4). (A) and (B) depict process of 
ROS-production over 2 h (n = 4). Values (means ± SEM) are shown as fold-change to t0. (C) End-point values at 
2 h are shown relative to control. Statistics: one-sample t test, theoretical mean: 1. 

 

Addition of either hormone for 24 h did not affect levels of the main source of ROS, namely 

NOX4 mRNA, but elevated those of DUOX 1 and 2. FSH significantly elevated mRNA of 

DUOX2, whereas hCG significantly increased mRNA levels of DUOX1/2 (Figure 19). 
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Figure 19 - FSH/hCG increased levels of DUOX. qRT-PCR showed that mRNA expression levels of NOX/DUOX 

were changed after hormonal stimulation for 24 h of GCs. Results (means ± SEM) shown were normalized to 
RPL19. For statistics, ΔΔCq values were used. Numbers of repeated experiments are shown inside the columns. 
Statistics: one-sample t test, theoretical mean: 1 (* p<0.05). 

 

Also, a hormonal pre-treatment did not change the overall ROS production of cultured human 

GCs. No difference in ROS levels were detected after 24 h of stimulation with 1 IU/ml FSH or 

10 IU/ml hCG (Figure 20). 

 

 

Figure 20 - ROS production was not influenced by pre-treatment with FSH/hCG. (A) and (B) ROS formation 

(using H2DCFDA) over 2 h did not show a difference between stimulated and control cells after hormonal pre-
treatment for 24 h. Values (means ± SEM) are presented relative to t0. (C) End-point values at 2 h of measurement 
relative to control are depicted. Statistics: one-sample t test, theoretical mean: 1. 

 

A hormonal pre-treatment led to an increase of mRNA levels of the antioxidative system. FSH 

significantly up-regulated SOD 1, Cat, DJ-1 and GST, whereas hCG significantly elevated 

mRNA levels of SOD1, Cat and GST (Figure 21). 
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Figure 21 - FSH/hCG influenced expression of antioxidative enzymes. qRT-PCR showed that mRNA 

expression levels of SOD1/2, Cat, DJ-1, and GST were elevated after hormonal stimulation for 24 h of GCs. Results 
(means ± SEM) shown were normalized to RPL19. For statistics, ΔΔCq values were used. Numbers of repeated 
experiments are shown inside the columns. Statistics: one-sample t test, theoretical mean: 1 (* p<0.05). 

 

In addition, FSH and hCG are involved in regulation of steroid biosynthesis by up-regulating 

mRNA levels of two crucial enzymes of the biosynthesis, namely StAR and CYP11A1 (Figure 

22). The expression of those was significantly increased after hormonal treatment (24 h). Also, 

the protein expression of StAR was elevated after FSH treatment as seen by immunoblotting 

(Supplementary Figure 3).  

 

 

Figure 22 - Regulation of steroidogenesis by FSH/hCG. Gene-expression analysis elucidated that FSH and hCG 
treatment led to significant increase in StAR and CYP11A1 mRNA levels (n = 10). All values shown were normalized 
to RPL19 (means ± SEM). For statistics, ΔΔCq values were used. Statistics: one-sample t test, theoretical mean: 1 
(* p<0.05). 
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2.1.6 Roles of H2O2  

To explore specific roles of NOX4-derived H2O2 in GCs three strategies were employed.  

Consequences of direct addition of H2O2 were studied, as well as consequences of the NOX4 

blocker GKT137831, thereby lowering production of H2O2, and consequences of the 

irreversible Cat blocker 3-AT, hereby inhibiting breakdown of H2O2 (Margoliash et al., 1960; 

Ruiz-Ojeda et al., 2016).  

H2O2 treatment (2 h) resulted in an increased MAPK phosphorylation expression 

(representative examples shown in Figure 23). Two out of three experiments resulted in 

elevated protein levels of pMAPK compared to MAPK of H2O2 treated GCs normalized to 

control cells (data not shown). 

 

 

Figure 23 - Influence of H2O2 on phosphorylation of MAPK. WB membrane shows the expression of MAPK 

and pMAPK of treated and untreated GCs on culture day 1 (arrows show expected size at 42 and 44 kDa).  

 

GKT137831 did not affect cell viability (Figure 14), but lowered expression levels of CYP11A1 

(Figure 24B; n = 8) as seen by qRT-PCR. 3-AT reduced cell viability (Figure 24C; n = 3), 

detected by ATP-assay, but did not affect CYP11A1 levels (Figure 24A; n = 4).  
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Figure 24 - Action of NOX4 and catalase-blocker. GCs (pools of two to five preparations) were cultured for up to 

4 days, stimulated with 10 mM 3-AT or 20 µM GKT137831 for 24 h on culture day 2 to 4, respectively, and mRNA 
expression levels of StAR and CYP11A1 were determined by qRT-PCR (A + B). Relative mRNA expression levels 
are presented as fold-change relative to the expression levels of according controls. RPL19 was used as control 
gene. For statistics, ΔΔCq values were used. Statistics: one-sample t test, theoretical mean: 1 (* p<0.05). (C) 24 h 

incubation with 10 mM 3-AT significantly reduced ATP content and hence viability of GCs. All values are shown as 
means ± SEM. Statistics: paired t test with single measurements (* p<0.05). 

 

In addition, it has been shown that the treatment of H2O2 (50 µM) for 24 h increased the protein 

expression of multiple cytokines measured in supernatant of GCs. Shown are the one which 

are at least increased by 1.5-fold compared to untreated control (Figure 25). 
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Figure 25 - H2O2 increased cytokine expression. Detection of relative expression levels of cytokines and 

chemokines of H2O2 treated GCs vs. control group (culture day 3-4, 24 h stimulation). Nitrocellulose membrane 
treated with cell culture supernatant of control GCs (A) showed spots which had higher intensity after treatment with 
50 µM H2O2 (B) representing GROα, MCP-1 and IL-8. Graph (C) shows mean pixel density of control vs. treated 
group and (D) presents the normalized values relative to control.  
 

2.1.7 Role of aquaporins/peroxiporins 

Recently, our group showed the expression of AQP3, 8, and 9 by RT-PCR (Supplementary 

Figure 4A; performed by Theo Hack). Treatment of GCs with the AQP inhibitor AgNO3 did not 

influence cell viability (ATP assay, Figure 26C; n = 3). Quantitative fluorometric evaluations 

showed that the increase in intracellular fluorescence intensity upon extracellular application 

of H2O2 was significantly reduced in the presence of AgNO3 (Figure 26D+E; data were 

generated in cooperation with Theo Hack).  
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Figure 26 - H2O2-transporting aquaporins in cultured human GCs. (A) Shown are ATP values from GCs treated 

with aquaporine blocker AgNO3 (500 nM) and PO1 compared with control cells treated with PO1 only. Statistics: 
paired t test with single measurements. (B) H2O2 generation of GCs treated with AgNO3 (500 nM) compared to 
control group is shown. Fluorescence values are depicted as mean of six technical repetitions of a representative 
example over 2 h (relative to t0; n = 1). (C) Percentage decreases of four H2O2 measurements compared to control. 
AgNO3 (500 nM) significantly decreased H2O2 production by 22 %. Statistics: one-sample t test, theoretical mean: 
0 (* p<0.05).  

 

2.2 NOX and ROS in the proliferating cell model KGN 

2.2.1 NOX expression and localization  

To also study the role of NOX and ROS in GC proliferation, the human granulosa tumour cell 

line KGN as a proliferating GC model was used. qRT-PCR followed by sequencing revealed 

that KGN cells express NOX4, NOX5, and DUOX2, but not DUOX1 (Figure 27A). This 

experiment was repeated using three different KGN passages. Figure 27B shows a Western 

blot membrane positive for NOX4 protein using anti-NOX4 antibody No. 1 (three repetitions). 

NOX4 protein was identified in intracellular compartments and the nucleus of KGN using 

immunocytochemistry (Figure 27C; experiment repeated with three KGN passages).  
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Figure 27 - NOX expression in KGN. RT-PCR identified NOX4/5 and DUOX2 in cultured KGN. Controls including 

RNA (-RT) and H2O instead of cDNA (H2O) were negative (A). NOX4 protein was detected in KGN by 
immunoblotting (B). The arrow shows the expected size (68 kDa). (C) Localization of NOX4 (red) was detected by 
immunocytochemistry. Staining in intracellular compartments and the nucleus (blue: DAPI counterstain) of KGN 
(antibody No. 1). Scale bar = 10 µm. Controls without primary antibody were negative (not shown).  

 

2.2.2 Roles of NOX4  

ROS and H2O2 production could be identified and blocked in KGN. The ROS generation was 

measured fluorometrically by H2DCFDA (Figure 28A) and H2O2 production by Amplex® Red 

(Figure 28B) over 2 h, and values of control versus treated cells are shown. Figure 28C shows 

the percentage decrease of ROS production of three independent measurements (significant 

decrease by 45 %).  
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Figure 28 - Inhibition of NOX4 activity in KGN induced lower production of ROS and H2O2. The NOX4 blocker 

GKT137831 (20 µM) reduced the ROS/H2O2 levels produced by KGN. Fluorescent measurements over 2 h (means 
± SEM of six technical replicates) show reduction of ROS production (A) determined by H2DCFDA and of H2O2 
generation (B) identified by Amplex® Red. Endpoint values at 2 h (means ± SEM) of three multiple independent 

measurements show significant reduction of ROS production by 45 % (C; n = 3). Statistics: one-sample t test, 
theoretical mean: 0 (* p<0.05). 

 

Treatment with the NOX4-blocker GKT137831 did not affect cell viability (Figure 29D; LDH 

assay, n = 5), but significantly reduced the cell number (Figure 29A; n = 6) and confluence of 

KGN cells (Figure 29B; n = 4). The treatment also reduced proliferating cell nuclear antigen 

(PCNA), a proliferation marker (Figure 29C; n = 4). 
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Figure 29 - Actions of NOX4-blocker in KGN. KGN treatment with GKT137831 showed a significant reduction in 

cell number (A; n = 6) and a (not significant) decrease confluence (B; n = 4), as well as reduced PCNA content. (C) 
PCNA in KGN compared to control (blotted membrane of one representative example is shown). Diagram shows 
PCNA levels normalized to β-actin (n = 3). (D) Treatment with GKT137831 had no effect on cytotoxicity in KGN 
compared to control (LDH cytotoxicity assay; n = 5). Statistics: (A+B) paired t tests (two-tailed; * p<0.05); (C+D) 
one-sample t test, theoretical mean: 1/0. 
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3. Discussion 

This study demonstrates that human primary luteinised GCs and proliferating KGN cells 

express the H2O2-generating NOX4. Intra- and extracellular detection of H2O2 imply that H2O2 

may serve as a diffusible signalling molecule. Its cellular uptake into GCs is facilitated by AQPs. 

H2O2 is involved in the regulation of cell functions, including proliferation, steroid biosynthesis 

and signalling.  

 

3.1 Identification of NOX enzymes in ovarian cells  

The central question of this study was to elucidate whether the human ovary expresses NOX 

enzymes and whether it produces ROS. This was studied in two models: the luteinised GCs 

and the proliferating KGN cell line. 

There are few studies examining NOX enzymes, their specific ROS products, and their roles 

in the ovary (Altenhofer et al., 2015; Bedard et al., 2007; Brandes et al., 2014; Sirokmany et 

al., 2016). NOX1-3 genes were not found in GCs, but previous studies showed expression of 

NOX4 and NOX5 in human GCs (Bedard et al., 2007; Kampfer et al., 2014; Maraldi et al., 

2016). This was confirmed by our study (Figure 8). In ovary, expression of NOX2, beside NOX4 

and 5 was reported, but it is very likely that ovarian NOX2 originates from leukocytes (Cheng 

et al., 2001). That leaves NOX4 and 5 specifically found in the male and female gonad, but the 

knowledge about expression and functional roles in the human ovary is at best rudimentary.  

In this study, NOX4 protein was further detected by immunohistochemistry in the human ovary, 

in granulosa, theca and luteal cells. As previously reported, the sub-cellular localization of 

NOX4 is cell-type specific and ranges from mitochondria to endoplasmic reticulum, focal 

adhesion and nucleus (Block et al., 2009; Guo et al., 2015; Meitzler et al., 2014). In this study, 

immunohistochemistry elucidated NOX4-positive staining not only in the cytosolic regions 

(Figure 8) but also in the nucleus of luteinised cells (Supplementary Figure 2). The 

immunocytochemical staining in cultured human GCs revealed the presence in the PM and 

nucleus (Figure 9) as well as in cell organelles, probably such as mitochondria or ER 

(Supplementary Figure 1). Exact intracellular localization in GC requires however further 

examination. These results are in line with previous reports (Graham et al., 2010; Koziel et al., 

2013; Kuroda et al., 2005), and could be found also in situ. In addition, NOX4 protein 

expression was confirmed in human proliferating KGN cells by immunoblotting and -staining 

(Figure 27). In KGN, NOX4 protein also seemed to be located in organelles. 

Immunocytochemical experiments in KGN cells elucidated similar staining patterns as seen in 

GCs. 
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Besides NOX4, gene analysis also revealed expression of NOX5, DUOX1 and 2 in GCs 

(Figure 8). Thus, this is the first study reporting expression of DUOX1 and DUOX2 by cultured 

human GCs. NOX5, the Ca2+-activated and human specific NOX isoform, demonstrates the 

least well understood of the NOX family members, because the gene is not present in mice or 

rats (Bedard et al., 2012). Experimental studies on NOX5, as well as DUOX1/2 are limited by 

the lack of specific antibodies and pharmacological tools (Altenhofer et al., 2015). 

Nevertheless, NOX5 protein expression in human cultured GCs could be confirmed by 

immunoblotting, and cellular staining also proved presence of NOX5 in cytoplasmic 

compartments (Figure 8 and Figure 10). Gene expression analysis revealed mRNA expression 

of NOX4, NOX5 and DUOX2, but not for DUOX1 in the KGN cell line.  

Taken together, the here used cell models, GCs and KGN cell line, express both mRNA and 

protein of NOX4.  

 

3.2 NOX-derived ROS 

NOX5 generates O2
•-, while DUOX1/2, as well as NOX4 generate mainly H2O2 (Altenhofer et 

al., 2015). Using a functional assay, where O2
•- oxidases luminol resulting in the formation of 

chemiluminscence light, only traces of O2
•- could be detected. Measurements of extracellular 

H2O2 by Amplex® Red reagent result in abundant detectable H2O2 amounts expressed by 

cultured human GCs (Figure 12). These findings are in line with the published insights that 

O2
•- , once generated by NOX, is very rapidly dismutated to H2O2 by SOD (Bedard et al., 2007; 

Lambeth et al., 2014). H2O2 may be the result of NOX4, as well as DUOX1 and DUOX2 

activities. Consequently, amount of general ROS in cultured human GCs and KGN by the 

indicator dye H2DCFDA was detected. In the presence of intracellular ROS, H2DCFDA is 

converted to the highly fluorescent compound DCF, which was measured in both cell models, 

GCs (Figure 12) as well as KGN (Figure 28). 

 

NOX4 is considered a constitutive enzyme and contributes approximately one-third of cellular 

H2O2 formation in the vascular endothelium (Altenhofer et al., 2015; Sies et al., 2017). A study 

in mice suggests that NOX4 is crucial for the survival of kidney tubular cells (Nlandu Khodo et 

al., 2012). NOX4-deficient mice exhibited more interstitial fibrosis and tubular apoptosis as well 

as reduced expression of hypoxia-inducible factor and vascular EGF. Notably, another study 

shows that NOX4-derived ROS are involved in signalling of growth factors, e.g. via the EGFR, 

playing a crucial role in the ovulatory signalling cascade linked to the induction of ovulatory 

genes in rodents (Maraldi et al., 2016). Thus, ROS appear indispensable for ovulation, at least 

in rodents.  

To study NOX4-derived H2O2 in ovarian cells, a purely extracellular H2O2 detection method by 
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means of the Amplex® Red reagent and a cell permeable boronate compound (PO1) 

specifically activated by intracellular H2O2 were applied. The fluorometrical measurements 

confirmed the presence of intra- and extracellular H2O2 in GCs (Figure 12, Figure 26, and 

Figure 28). The results indicate that GCs, as well as KGN, produce H2O2 on a basal level, 

which apparently can leave its intracellular sites of generation. The transport from the cell 

organelles through the PM may be facilitated by AQPs as discussed further in 3.4. An 

extracellular localization is in line with a report on the presence of H2O2 in human FF (Hennet 

et al., 2013). 

 

To further address the NOX4-mediated ROS and especially H2O2 contribution in ovarian cells, 

GCs and KGN were tested with NOX1/4 inhibitor GKT137831. GKT137831, a novel, 

pharmacological compound, demonstrates a preferential inhibition of NOX1 and 4. Genetic 

deletion of NOX1 and 4, has revealed no significant spontaneous pathologies and a 

pathogenic relevance of both NOX1 and 4 across multiple organs in a wide range of diseases. 

This has stimulated interest in NOX inhibitors for therapeutic application. This small molecule 

blocker belongs to a structural class of pyrazolopyridinedione derivate, and has been reported 

to slow or prevent disease progression in a range of models of chronic inflammatory and fibrotic 

diseases by modulating common signal transduction pathways (Aoyama et al., 2012; Gaggini 

et al., 2011; Guo et al., 2015; Teixeira et al., 2016). A study elucidates the potential benefits of 

GKT137831 for attenuating proliferative pathways in pulmonary hypertension and see it as a 

highly promising orally bioavailable drug for the treatment of pulmonary hypertension (Green 

et al., 2012). In contrast to gene deletion, this inhibitor does not completely suppress ROS 

production, maintaining some basal level of ROS. However, it is well tolerated and effective 

(Teixeira et al., 2016).  

As both of the used cell types do not express NOX1, GKT137831 presents a specific NOX4 

blocker. To test whether GKT137831 is harmful to cultured GCs, the cell viability was 

measured (using an ATP assay), and the morphology of the cells was observed. Neither the 

viability nor the morphology was changed after GKT137831 treatment (Figure 14). In KGN, 

cytotoxicity of GKT137831 treatment was determined by LDH amount, which is released into 

the media from damaged cells indicating cellular cytotoxicity and cytolysis. GKT137831 

treatment did not show any cytotoxic effect on KGN (Figure 29). 

The administration of GKT137831 elucidated significant contribution of NOX4 to overall ROS 

generation in GCs and KGN over 2 h of measurement (Figure 13 and Figure 28). Inhibition 

experiments revealed a decrease of ROS production by 55 % in GCs and by 45 % in KGN at 

the endpoint 2 h. Regarding the H2O2 generation, a percentage change by -36 % in GCs and 

-44 % in KGN could be achieved after 2 h.  
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These findings elucidated a tremendous contribution of NOX4 to the general ROS and 

especially H2O2 generation in cultured GCs and KGN cells. 

 

3.3 Regulation by FSH and hCG  

The human ovarian samples available for immunohistochemistry showed expression in 

growing follicles. FSH is required for growth and maturation of ovarian follicles and the LH 

stimulation induces the ovulation process, including follicular wall rupture, GC luteinisation, 

cumulus cell expansion and meiotic maturation of the oocyte (Landomiel et al., 2014). 

Hormonal effects of hCG very closely resemble those of pituitary LH (Pierce et al., 1981). FSH 

and LH/hCG and its receptors play a key role in reproduction (Abel et al., 2003; Simoni et al., 

1997). IVF-derived cultured GCs express both, FSHR and LHR (Figure 15).  

FSHR exists as four alternatively spliced isoforms of which each one has diverse biological 

functions. This may help explain multiple actions of FSH including cellular growth, proliferation, 

differentiation, and steroidogenesis (Bhartiya et al., 2015).  

Recent reports showed that GCs express EGF-like factors that activate the EGF receptor 

(EGFR)-mitogen-activated protein kinase (MAPK) (also known as extracellular signal-

regulated kinase (ERK)) pathway. The metalloprotease ADAM17 (also called TACE), which is 

known to be a proteolytic enzyme of EGF-like factors in many types of tissue, was found to be 

expressed in FSH/LH-stimulated GCs together with activation of the EGFR-MAPK pathway 

(Chen et al., 2014; Yamashita et al., 2012). This is in line with the findings of the present study. 

Both, FSH and hCG stimulated significantly ADAM17 mRNA expression in GCs. Further, the 

FSH treatment triggered the phosphorylation of MAPK seen by immunoblotting (Figure 16). 

Consequently, it could be shown that human IVF-derived cultured GCs express functional 

active FSHR and LHR. It has been reported that LHR expression in GCs was induced by FSH. 

However, FSHR expression is regulated through a mechanism other than FSH and LH/hCG 

stimulation. Also, LH/hCG is needed for induction of LHR expression (Kishi et al., 2018). This 

was confirmed by the current study (Figure 17). 

 

While FSH/hCG stimulation had no influence on mRNA expression levels of NOX4 and 5, FSH 

significantly increased DUOX2, and hCG elevated DUOX1 and 2 (Figure 19). The increase 

was however without measurable consequences with regard to overall ROS or specifically 

H2O2 production. Neither an acute hormonal stimulation (Figure 18) nor a pre-treatment (Figure 

20) of FSH/hCG resulted in an increase of ROS generation in GCs. A possible explanation is 

either that the consistent expression of the main contributor, NOX4, does not lead to a rise of 

ROS or the counteraction of the antioxidative system. The hormonal stimulation significantly 
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increased levels of antioxidant enzymes. Treatment with FSH significantly increased mRNA 

expression levels of SOD1, Cat, DJ-1, and GST, and hCG significantly up-regulated mRNA 

amounts of SOD1, Cat, and GST (Figure 21). These findings indicate roles of gonadotropins 

in the control of the ROS environment in GCs and, since GCs are apt models presumably in 

the follicle and the CL, as well.  

A further effect of gonadotropins in GCs was elucidated in combination with the steroid 

biosynthesis. As FSH and hCG stimuli induced mRNA expression levels of the two main 

regulators of steroidogenesis StAR and CYP11A1, it became clear that these gonadotropins 

also play a crucial role in steroid synthesis (Figure 22). To underline this finding, it was shown 

that FSH stimulation also increased StAR protein expression seen by immunoblotting 

(Supplementary Figure 3).  

 

3.4 H2O2 transport  

Transcellular water movement can occur by two mechanisms. The first is by simple diffusion 

through the hydrophobic interior of the membrane, which is a slow and unregulated process. 

The second mechanism is through water channels, AQPs, which are able to support a large 

volume of water flow (McConnell et al., 2002). As a diffusible signalling factor, H2O2 may act 

on neighbouring cells or oocytes, this also requires a controlled transport. It is known that 

specific AQP isoforms facilitate the passive diffusion of H2O2 across biological membranes and 

control H2O2 membrane permeability and signalling in living organisms (Bienert et al., 2014). 

In a related study (mainly performed by Theo Hack) we examined whether H2O2 may be able 

to enter GCs. Fluorescence imaging using PO1 confirmed the intracellular uptake of 

extracellular H2O2 (not shown). AQP3, 8 and 9 facilitate transport of H2O2 and are referred to 

as peroxiporins (Miller et al., 2010; Watanabe et al., 2016). In line with previous and present 

studies, AQP3, 8 and 9 were identified in GCs (Supplementary Figure 4) and (Lee et al., 2016). 

As a new finding in GCs, it could be shown that AQPs are functionally active and contribute to 

the H2O2 transport. Blocking AQPs with AgNO3 (Niemietz et al., 2002) in the presence of 

extracellular H2O2 showed a significant contribution of these channels in the uptake of H2O2 

(Figure 26). The remaining H2O2 content may diffuse passively through the PM. Whether they 

are also involved in the release of this ROS remains to be studied. The results may indicate 

that AQPs/peroxiporins, their abundance, and possibly the subtypes expressed are involved 

in the uptake and thus, presumably in the subsequent intracellular actions of H2O2 in GCs.  
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3.5 Physiological roles of H2O2 

3.5.1 Studies in cultured human GCs 

Another central question of this study was whether NOX4-derived H2O2 plays a physiological 

functional role in cultured human GCs. Because of its relatively low reactivity (as a mild 

oxidant), H2O2 has a comparatively long intracellular half-life and a high diffusion rate, all of 

which makes H2O2 an efficient signalling molecule (Walker et al., 2018). 

 

The NOX family is known to be the predominant contributor of ROS in many cellular systems 

(Bedard et al., 2007). NOX-derived ROS are involved in signalling of growth factors, e.g. via 

the EGFR, playing an indispensable role in the ovulatory signalling cascade linked to the 

induction of ovulatory genes (Chen et al., 2014; Maraldi et al., 2016; Shkolnik et al., 2011).  

The widespread expression of NOX4 in the human ovary may imply a physiological role of 

NOX4-derived H2O2. A look to the vascular system is instructive. As determined for GCs, NOX4 

activity accounts for about one-third of cellular H2O2 formation in vascular endothelium 

(Schroder et al., 2012).  

 

To explore specific roles of NOX4-derived H2O2 in GCs three strategies were employed.  

First, direct addition of extracellular H2O2; second, lowering production of H2O2 by applying the 

NOX4 blocker GKT137831, and third, inhibiting breakdown of H2O2 by catalase blocker 3-AT.  

 

One functional role of H2O2 revealed after direct addition of H2O2 followed by protein expression 

analysis of MAPK and phosphorylated MAPK. Immunoblotting showed that addition of H2O2 

induced phosphorylation of 42/44 MAPK (Figure 23). Thus, H2O2 plays an important role as 

signalling molecule in downstream pathways. This is in line with a recently published paper 

demonstrating the necessity of NOX-derived ROS for the EGF/MAPK signalling pathway in 

uterine leiomyomas (Mesquita et al., 2010). A further study reported that ROS is involved in 

activation of the EGFR which initiates a subsequent signalling cascade inducing 42/44 MAPK 

phosphorylation. Other signalling pathways take part in the activation of 42/44 MAPK as well. 

ROS may also be involved in activation of the PKA signalling and the MEK signalling cascade 

(Shkolnik et al., 2011). 

 

H2O2 demonstrates important roles in immune system. Although, GCs are no immune cell, 

they are able to produce cytokines. Inflammation plays a role in ovulation and regression of 

CL, therefore inflammatory markers were examined. Expression analysis of cytokines and 

chemokines elucidated that three of them are increased considerably after H2O2 treatment, 
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namely GROα, MCP-1 and IL-8 (Figure 25). These revealed candidates play important roles 

in inflammation, but unfortunately, very little is known about them in GCs. In general, growth-

related oncogene alpha (GROα) protein, also known as CXCL1, exerts its effects on 

endothelial cells in an autocrine fashion. Monocyte chemoattractant protein 1 (MCP1) 

augments monocyte anti-tumour activity. Interleukin 8 (IL-8) is a chemotactic factor that 

attracts neutrophils, basophils, and T-cells.  

It has to be reflected that the here used human GCs have been isolated before ovulation and 

differentiate into luteal cells. The CL consisting of luteal cells is a unique, transient endocrine 

structure with the main function to produce progesterone, which is necessary for the 

establishment and maintenance of pregnancy (Shirasuna et al., 2017). The development of 

the CL following ovulation is a physiological injury involving an inflammatory response. 

Consequently, a high number of immune cells (neutrophils and macrophages) and 

considerable levels of IL-8 have been found (Best et al., 1996; Jiemtaweeboon et al., 2011). 

Another study reported that the early CL induces neutrophil migration in vitro by secreting IL-

8 (Goto et al., 2002). It is also known, that macrophages are important to maintain vascular 

integrity in the CL (Turner et al., 2011). Thus, immune cells such as neutrophils and 

macrophages play a crucial role in the development of the CL and in ensuring pregnancy 

success (Shirasuna et al., 2017). Very little is known about the regression of the CL, however 

studies of many animal models have postulated that macrophage-derived secretions (e.g., 

TNF) participate in both the development and regression of CL (Ye et al., 2016). 

This experiment was performed with one GC pool only, and therefore repetitions are required. 

 

These findings are in line with a previous report claiming that the MAPK pathway and the 

expression of genes related to inflammation including interleukins and chemokines also 

affected by H2O2. Because of the multi-mechanistic nature of this molecule, they suggest novel 

therapeutic approaches on the use of H2O2 (Vilema-Enriquez et al., 2016). 

 

GKT137831 did not affect cell viability but lowered expression levels of CYP11A1, as seen by 

qRT-PCR (Figure 14 and Figure 24). This links H2O2 to a positive regulation of CYP11A1, the 

crucial enzyme in steroid biosynthesis. In contrast, the catalase blocker 3-AT reduced viability 

of cells as determined by ATP measurements, but did not affect CYP11A1 mRNA levels 

(Figure 24). The results imply a noxious action of H2O2 as it reduced cell viability. However, 

less vital cells still expressed comparable levels of CYP11A1. Hence, the result also links H2O2 

to the positive regulation of the steroidogenic phenotype of GCs.  
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NOX4 was only recently identified to be lower in GCs of women of higher age compared with 

those of younger age (≥ 40 years versus ≤ 37 years) at time of IVF (Maraldi et al., 2016). Thus, 

age-associated factors, possibly epigenetic ones, may regulate NOX and ROS levels. As 

female fertility declines with age, it is possible that NOX4-generated physiological H2O2 may 

play a crucial role, and that sufficient levels are required for ovarian homeostasis. 

 

3.5.2 Studies in KGN cells 

These cells, derived from a human granulosa cell tumour (Nishi et al., 2001) proliferate, in 

contrast to primary GCs.  

The NOX4 blocker not only reduced H2O2 production, but also cell number and confluence of 

KGN cells. The findings that no cytotoxicity was observed and PCNA (linked to proliferation) 

was reduced elucidated a strong evidence that physiological NOX4-generated H2O2 is involved 

in cell proliferation (Figure 29). The precise mechanisms of action and possible other roles 

remain to be studied. However, earlier reports confirmed these findings as H2O2 was shown to 

stimulate cell proliferation at low concentrations (Burdon et al., 1989). Also, it has been found 

that certain ROS, especially H2O2, may also have an important physiological role in the 

stimulation of cell proliferation in response to peptide growth factors (Karin et al., 2001). It is 

now accepted that, at low levels, H2O2 participates in cellular differentiation, migration, and 

proliferation, and can dramatically alter gene expression profiles, hence the recent prominence 

of H2O2 as an important cell signalling molecule (Walker et al., 2018) 

 

To substantiate the results of the loss of function experiments, a more specific approach like a 

gene knockdown by small interfering RNAs (siRNAs) would be desirable. As the transfection 

efficiency of primary GCs is very low, only preliminary siRNA transfection experiments in KGN 

cells have been performed to address this point (Supplementary Figure 5). These experiments 

showed both, a decrease in cell number (Supplementary Figure 5A) as well as a reduced cell 

confluence (Supplementary Figure 5B) of NOX4 siRNA transfected KGN compared to non-

target control by more than 20 % after 48 h live cell imaging. All the NOX4 knockdown 

experiments are in line with the revealed data in this study, suggesting NOX4 action is involved 

in cell proliferation. Its precise involvement has to be further examined. 

 

Taken together, differentiated GCs and proliferating KGN cells express NOX4, which 

represents a major producer of H2O2 in human GCs in vitro. While NOX4 mRNA levels are not 

under the control of FSH or LH/hCG in GCs, these hormones are involved in ROS 

homeostasis, in downstream signalling as well as steroid synthesis. H2O2 may serve as a 

diffusible signal to neighbouring cells and peroxiporins (AQPs 3,8, and 9) facilitate H2O2 cellular 
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uptake. H2O2 presents a stable and abundant ROS, and acts as an important signalling 

molecule involved in the regulation of cell functions, like cell proliferation and steroid synthesis 

as well as in pathways like MAPK signalling. The consequences of H2O2 signalling remain to 

be fully explored, yet expression of NOX4 ex vivo, in growing follicles, and results in KGN may 

indicate a role in proliferation of ovarian cells.  

Even though, this work reflects functional studies in isolated cells which are not equivalent with 

the physiological ovarian environment, there is no doubt that NOX is expressed and 

functionally active based on cellular studies. If applicable to the situation in the ovary, the full 

elucidation of the ROS-generation and signalling system in the human ovary is important to 

guide future therapeutic strategies to address questions in female infertility. 
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4. Material and Methods 

4.1 Cell culture 

4.1.1 Human GC isolation, culture, and treatment 

Follicular fluid (FF) containing GCs was derived from patients (age range between 28 and 40 

years) undergoing IVF due to poor quality of sperm or restricted tubal patency (Table 18). The 

stimulation of the patients and the acquisition of the aspirates where performed using standard 

protocols, i.e. the “long” protocol (Bulling et al., 2000; Mayerhofer et al., 1992; Mayerhofer et 

al., 2006; Mayerhofer et al., 1993; Saller et al., 2014; Saller et al., 2012) by A.R.T. Berg 

(Bogenhausen, Munich). The ethics committee of the Ludwig-Maximilian-University (LMU) of 

Munich approved the use of follicular aspirates and GCs for scientific experiments. The study 

was carried out according to the guidelines of the 1975 Declaration of Helsinki. A written 

consent of the patients was obtained, samples and clinical information were anonymized. 

Studies were performed in the course of a DFG project MA1080/26-1. 

FF aspirates from two to five patients were pooled for GC preparation, following a method 

previously described (Ferrero et al., 2012), which utilizes a cell strainer (40 μm) for filtration. 

GCs, remaining in the cell strainer, were retrieved by washing with Dulbecco’s modified Eagle’s 

medium (DMEM)/Ham’s F12 medium. The filtrate with remaining cell aggregates was 

suspended mechanically by using a 0.9-mm hypodermic needle, transferred into a Falcon tube 

(15 ml) and centrifuged at 700 x g for 3 min. The cell pellet was resuspended in DMEM/Ham’s 

F12 medium supplemented with penicillin (100 U/ml), streptomycin (100 μg/ml) (P/S) and 10% 

FCS (Bulling et al., 2000; Mayerhofer et al., 1992) and seeded into petri dishes. The day of 

isolation corresponds to cultivation day 0. Cells were cultured for up to 4 days at 37 °C and 

with 5 % CO2 and 95 % humidity. They were rinsed on day 1 of culture with fresh medium to 

remove non-adherent and dead cells. For all experimental treatments, DMEM/Ham’s F12 

medium without FCS was used. For the treatment with stimulants like FSH and hCG or NOX4 

and catalase inhibitors, the cells were serum starved by incubation in DMEM/Ham’s F12 

containing 1% P/S for 2 h, then exposed to reagents and according control for 24 h (see Table 

2), respectively, before performing the experiments. For cell-based assays performed in 96-

well microtiter plates, GCs growing on one petri dish 60 x 15 mm were trypsinated, separated 

equally, and seeded on 6 x 6 wells (100 µl cell suspension/well) one day prior to the 

experiment. 
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Table 2 - Stimulants and inhibitors. 

Treatment  Control 

1 IU/ml FSH PBS 

10 IU/ml hCG 0.01 M sodium phosphate + 2.5 mg/ml D-Mannitol 

10 mM 3-AT DMEM/Ham’s F12  

20 µM GKT137831 DMSO 

 

4.1.2 Cultivation of KGN 

The KGN cell line presents a steroidogenic human ovarian granulosa-like tumour cell line 

originating from a patient with invasive ovarian granulosa cell carcinoma. KGN was obtained 

from RIKEN BioResource Center, and cultured as described (Nishi et al., 2001). Briefly, KGN 

had a population doubling time of about 46.4 h and was cultured like GCs using culture medium 

consisting of DMEM/Ham’s F12 medium with 1% P/S and 10% FCS at 37 °C, 5 % CO2 and 95 

% humidity. As adherent cells, they grew in culture flasks in 10 ml of culture medium. For sub-

cultivation the cells were seeded at a cell density of 5.0 x 105 cells/ml into fresh media every 

week. To count the cells, the LUNA-II automated cell counter was used, which is based on 

liquid lens technology (Logos Biosystems). For cell-based assays performed in 96-well 

microtiter plates, 1.5 x 104 KGN/well were seeded (100 µl cell suspension/well) one day prior 

to the experiment. 

 

4.2 Immunological analysis 

4.2.1 Western immunoblotting 

1.1.1.1 Protein isolation 

To isolate the whole protein lysate, the cells were removed from the surface of the cell culture 

vessel by cold NPE-buffer and a cell scraper. The suspension was centrifuged at 10,000 rpm 

at 4 °C for 3 min, and the pellet was washed with cold 10 mM PBS. After repeating this washing 

step, the pellet was resuspended in 100 µl inhibitor cocktail, and the cells broken up by 

ultrasound. The protein concentration was measured by using the DCTM protein assay and 

transparent 96-well microtiter plates. The reaction is similar to the Lowry assay. The 

absorbance was measured at 690 nm, and the protein content was determined using a 

standard curve. Isolated protein was stored at -20 °C until use. 

Proteins of human GCs (pooled from two to five aspirates) and KGN were then denatured 

using a heating cycle at 95 °C for 5 min at the presence of 10 % β-mercaptoethanol and 10 % 

bromophenol blue.  
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4.2.1.1 SDS-PAGE and Western blot 

In the Western blot, cellular proteins were separated via SDS-Polyacrylamide-Gel-

Electrophoresis (SDS-PAGE) by (Laemmli, 1970). Proteins were first concentrated in a running 

front using a low concentrated stacking gel and then separated via molecular weight using a 

12 % SDS-gel (Table 3). Therefore the stacking gel was layered above the separating gel. The 

gel was loaded with about 10 µg protein and electrophoresed at 120 V for 1 h.  

Table 3 - Composition of SDS-PAGE. 

 Separating gel Stacking gel 

30 % acrylamide 5.2 ml 0.9 ml 

4x separating gel buffer 3.25 ml - 

4x stacking gel buffer - 1.5 ml 

H2O 4.55 ml 3.55 ml 

TEMED 26 µl 15 µl 

10 % APS 52 µl 25 µl 

 

For the immunologic analysis, the proteins were transferred to a nitrocellulose membrane 

using a Mini Trans-Blot® cell. By a specific primary antibody and a secondary antibody 

conjugated with horseradish peroxidase (POX), the detection of the antigen of interest was 

performed (Burnette, 1981).  

The transfer of the proteins onto the nitrocellulose membrane performed in transfer buffer (see 

Table 14) at 100 V for 75 min was verified by Ponceau-staining. To block the free binding 

sides, the membrane was put into powdered milk for 30 min, followed by incubation with 

primary antibody (Table 9) overnight at 4 °C. Blocking buffer was composed of 5 % powdered 

milk diluted in 1x Tris-buffered saline-Tween®20 (TBS-T), and antibodies were diluted in 0.5 

% powdered milk/1x TBS-T.  

Afterwards, membranes were washed intensively with 1x TBS-T (4 times for 10 min) and 

incubated with the corresponding secondary antibody conjugated with POX (1:10,000) (see 

Table 10) for 1 h at RT. After further washing steps (4 x 4 min), protein-antibody complexes 

were imaged on an image acquisition system (Chemi-Smart 5000) using a super sensitive 

Enhanced-Chemiluminescent-Substrate (ECL) (SuperSignal West Femto Maximum 

Sensitivity Substrate) according vendor’s protocol. The intensity of the detected bands was 

analysed by ImageJ and compared to housekeeping proteins.  

 

4.2.2 Immunocytochemistry 

The cellular localization of NOX4/NOX5 proteins in cultured GCs and KGN was determined by 

immunocytochemistry. Therefore, GCs on culture day 2 or 3 or KGNs were seeded on cover 
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glasses placed in a 24-well plate 24 h prior use. After removing culture media by washing with 

10 mM PBS (pH 7.4), the cells were fixed with ice-cold 3.7 % formaldehyde for 10 min followed 

by further washing steps with ice-cold PBS. To also detect intracellular target proteins, the cells 

were permeabilized with ice-cold 0.2 % Triton X-100/PBS on ice for 10 min. The cover glasses 

were then transferred into a humidified chamber where the rest of the process took place. The 

cells were blocked with 0.1% Triton X-100/PBS and 5% normal serum (blocking buffer) for 

30 min, followed by the incubation with primary antibody diluted in 5 % normal serum/PBS 

(Table 9) for 2 h at RT. For control purposes, the primary antibody was replaced with normal 

serum. To remove unbound residuals of primary antibody, cells were washed with 0.1 % Triton 

X-100/PBS (3 times for 5 min). Incubation with secondary antibody conjugated with Alexa Fluor 

488 or FITC (Table 10) diluted in blocking buffer was carried out for 1 h at RT. After further 

washing steps (3 x 5min) the cell nuclei were counterstained with 1 µg/ml DAPI for 5 min at 

RT. Cover glasses were then rinsed with PBS followed by mounting with a drop of glycerol-

based liquid mountant onto microscope slides. After sealing of the cover glasses with nail 

polish and curing overnight at RT, they were stored in dark at 4 °C. Slides were examined with 

a fluorescence microscope (Zeiss). 

 

4.2.3 Immunohistochemistry 

Sections of human ovaries embedded in paraffin were used for immunological staining (Table 

18). For the purpose of deparaffining and rehydrating of the sections, they were treated with 

xylol and a decreasing alcohol row (2 times xylol for 3 min; 2 times 100 % isopropyl alcohol for 

3 min; once 96 %, 80 % and 70 % isopropyl alcohol for 3 min each; once PBS for 10 min). To 

unmask the antigens, the sections were boiled in 10 mM citrate buffer (pH 6.0) for 25 min. After 

a washing step with PBS (3 times for 5 min), the tissues were bordered with a PAP-pen. All 

further reagents were dropped on the sections very carefully. To block endogenous 

peroxidase, the sections were incubated with 9 % methanol and 3 % H2O2 in PBS for 30 min 

at RT in a humidified chamber. After further washing steps with PBS (3 times for 5 min), the 

protein-binding sides were blocked with 5 % goat normal serum for 30 min at RT in a humidified 

chamber. Afterwards, the incubation with the primary antibody (Table 9) diluted in 5 % goat 

normal serum in PBS over night at 4 °C in a humidified chamber took place. For primary 

antibodies made in goat, a donkey normal serum was used. For control purposes, the primary 

antibody was replaced by normal serum. To confirm the specificity of the primary antibody, it 

was pre-adsorbed with the corresponding blocking-peptide (Table 11). Therefore, a mix of the 

antibody and peptide was incubated at 4 °C for 2 h followed by a centrifugation step at 

13,000 rpm at 4 °C. The supernatant was treated and used as the primary antibody. After the 
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incubation, the sections were washed with PBS (3 times for 5 min), and incubated with the 

corresponding secondary antibodies conjugated with biotin (Table 10) diluted in 5 % normal 

serum in PBS for 2 h at RT in a humidified chamber. For amplifying the target antigen signal, 

the sections were incubated with an Avidin–Biotin Complex (ABC) reagent for 2 h at RT in a 

humidified chamber according to the vendor’s protocol. After further washing steps (2 times for 

5 min and once with Tris/HCl for 10 min) the final staining step by the chromogen 3,3'-

diaminobenzidine (DAB) took place. DAB is oxidized in the presence of peroxidase and H2O2 

resulting in the deposition of a brown precipitate. When the satisfied intensity of staining is 

reached, the reaction with DAB can be stopped by ddH2O (max. 10 min). Optional a nuclear 

staining with haematoxylin-eosin could be performed. Therefore, the sections were put into 

haematoxylin-eosin for 10 sec, stained by running tap water for 5 min, and finally dehydrated 

by an increasing alcohol row (96 %, 80 % and 70 % isopropyl alcohol for 3 min each; 2 times 

100 % isopropyl alcohol for 3 min; 3 times xylol for 5 min). At the end, the slides were dried, 

embedded in mounting media Entellan®, and cured overnight at RT. Images were taken with 

an axiovert microscope (Zeiss). 

 

4.2.4 Human cytokine array 

GCs were treated with 50 µM H2O2 on culture day 3-4 and tested for cytokines using the 

Proteome Profiler Array by following the protocol. Briefly, after 24 h of incubation, the cell 

culture supernatant was centrifuged (at 8000 rpm for 3 min) and mixed with a cocktail of 

biotinylated detection antibodies. After incubation of sample/antibody mixture on the 

nitrocellulose membrane coated with selected capture antibodies, Straptavidin-HRP and 

chemiluminescent detection reagents were added. Successful cytokine/detection antibody 

complexes were detected by an image acquisition system (Chemi-Smart 5000). Analysis of 

spot intensities was done by using ImageJ software. For comparison of the control and treated 

group, means of spot densities were normalized to protein content followed by normalization 

of treated values to control values.  

 

4.3 Analytical methods 

4.3.1 Reverse transcription-PCR and quantitative RT-PCR 

4.3.1.1 RNA isolation 

Total RNA was isolated using the RNeasy Plus Micro Kit form Qiagen according to the vendor’s 

protocol. In brief, cells were washed with PBS, lysed in RLT-buffer plus 1 % β-mercaptoethanol 

and homogenized by vortexing. After removing genomic DNA (gDNA) by means of a 
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centrifugation step (10,000 rpm, 30 sec) via a gDNA Eliminator spin column, the flow-through 

was mixed with 70 % ethanol (one sample volume), and total RNA was bound onto RNeasy 

MinElute spin column by centrifugation (10,000 rpm, 15 sec). The column was then washed 

with RW1 and RPE buffer (10,000 rpm, 15 sec), 80 % ethanol (10,000 rpm, 2 min), and finally 

dried via centrifugation (15,000 rpm, 5 min). Total RNA was then eluted with 20 µl RNase-free 

water and centrifuged (15,000 rpm, 1 min). 

RNA concentration and purity was determined by UV-spectrometry at 260 and 280 nm using 

a NanoDrop® spectrophotometer. If the 260/280 ratio was about 2.0, the RNA was accepted 

as “pure” and could be used for experiments (storage at -80 °C).  

 

4.3.1.2 cDNA synthesis  

Complementary DNA (cDNA) was synthesized via reverse transcription by mixing 200 – 

400 ng of total RNA with 1.6 µg random 15-mer primers and filling up to 11.5 µl with 

diethylpyrocarbonate (DEPC) water. The incubation steps and procedure are listed in Table 4, 

while the nucleotide mix consists of 4 µl 5x fist strand buffer, 2 µl 0.1 M DTT, 1 µl 10 mM dNTPs 

and 0,5 µl RNasin. For control purposes, one mixture per sample without the reverse 

transcriptase (-RT) were also synthesized. The synthesized cDNA was stored at -20 °C.  

Table 4 - Reverse transcription. 

Time [min] Temperature [°C] 

10 70 

5 25 

Add nucleotide mix 

10 25 

2 42 

Add 1 µl Superscript II Reverse Transcriptase 

50 42 

15 70 

10 4 

 

4.3.1.3 RT-PCR 

Gene amplification was arranged with different oligomer primers synthesized by metabion 

international AG listed in Table 8 and a GoTaq DNA Polymerase Kit from Promega in a 25 µl 

reaction approach. Primers were designed using following software Primer3 and PrimerBLAST 

(http://primer3.ut.ee/; https://www.ncbi.nlm.nih.gov/tools/primer-blast/; 2018/03/27). The 

content and composition of one reaction mixture is described in Table 5 and the settings for 

the thermocycler is listed in Table 6. To exclude impurities, negative controls with H2O instead 

of cDNA (H2O) were performed.  
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Table 5 - Reaction mix for one RT-PCR sample. 

Reagent  Volume [μl]  

5x GoTaq-Buffer  5  

dNTPs [2 mM]  2.5  

Primer forward [100 μM]  0.5  

Primer reverse [100 μM]  0.5  

Nuclease free H2O  15.37  

cDNA Template  1  

GoTaq-Polymerase  0.13  

 

Table 6 - Thermocycler settings for RT-PCR. 

Stage Cycles Temperature Time 

Denaturation  1  95 °C  2.5 min  

Denaturation 35  95 °C  45 min  

Annealing  35  60 °C  30 sec  

Elongation  35  72 °C  45 sec  

Final elongation  1  72 °C  5 min  

Hold - 4 °C For ever 

 

To visualize the PCR products, they were separated by size via gel electrophoresis. Therefore, 

a 2 % agarose gel was produced and mixed with Midori Green (0.005 %). The samples and a 

DNA ladder with known sizes (50 and 100 bp) were loaded onto the cured gel. The gel 

electrophoresis was performed in TBE-buffer at 90 V for 40 min and images were taken with a 

gel documentation system from BioRad. 

Identity of all products were confirmed by sequencing by the company GATC biotech AG 

(Konstanz, Germany) and analysed by use of BLAST software 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi; 2018/03/27). 

 

4.3.1.4 qRT-PCR 

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed for relative 

quantification of gene expression by using the QuantiFast SYBR Green PCR Kit from Qiagen 

and a LightCycler® 96 System from Roche. Therefore, a master mix consisting of 1.125 μl of 

forward primer (10 µM), 1.125 μl of reverse primer (10 µM) and 6.25 μl of 2x QuantiFast SYBR 

Green Mix was prepared, and 8.5 μL of master mix was transferred to a Roche LightCycler®96 

well plate (for primer information see Table 8). Finally, 4 μL of pre-diluted cDNA (1:20 in 

RNase-free H2O) was added to the respective wells and the plate was sealed with Roche 

LightCycler®480 sealing foils. A minus-reverse transcriptase control (-RT), where RNA instead 

of cDNA was added, and a non-target control (H2O), H2O instead of cDNA, served as negative 
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controls. For qRT-PCR analysis, technical duplicates were performed and the following cycler 

programme was used: 

Table 7 - LightCycler settings for qRT-PCR. 

 

 

Relative gene expression differences were calculated by applying the comparative ∆∆Cq 

method with a static efficiency of 2 (Pfaffl, 2001) as follows: 

∆Cq = Cq target – Cq reference gene 

∆∆Cq = ∆Cq treatment - ∆Cq control 

Ratio = 2-∆∆Cq 

Whereas Cq = quantification cycle describes the cycle at which the fluorescence of a sample 

first crosses the vertical threshold line. The arithmetic formula 2-∆∆Cq defines the relative 

expression difference of a sample between treatments and control normalized to a reference 

gene and referred to a standard sample. As reference gene RPL19 was used and as standard 

the according control (Table 2). To ensure that mRNA levels of housekeeping genes stay 

stable after the treatments, three further genes were tested beside RPL19. The mRNA levels 

of RPL19, UBC, PPIA, and GAPDH are not changed by the addition of FSH, hCG or 

GKT137831 (Figure 30).  

Stages Temperature [°C] Time [sec] 

Heat activation 95 300 

Denaturation (40 cycles) 95 10 

Annealing 60 30 

Melting Curve 95 10 

 65 60 

 97 1 

Cool Down 37 120 
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Figure 30 - Expression levels of multiple reference genes do not change after treatment. Cq values of RPL19, 

UBC, PPIA, and GAPDH are depicted as mean ± SEM of GCs treated with FSH (A; n = 5), hCG (B; n = 3), and 
GKT137831 (C; n =4), and do not show a difference compared to control. Statistics: paired t tests (two-tailed). 

 

4.3.2 Cell viability assay 

Cell viability was estimated by measuring ATP content using the CellTiter-Glo® Luminescent 

Cell Viability Assay. ATP serves as indicator for metabolically active cells. For the ATP assay, 

cells were seeded on white 96-well microtiter plates, cultured for 24 h, serum starved for 2 h, 

and then exposed to 20 µM GKT137831 or 10 mM 3-AT, respectively in serum-free culture 

medium (100 µl/well). After 24 h incubation, wells were washed with PBS and 100 µl of a 1:1 

mix of CellTiter-Glo® reagent, and DMEM/F12 without phenolred were added to each well 

containing control or stimulated cells, avoiding direct light. The contents were mixed for 2 min 

at 500 rpm on a plate shaker followed by incubation for 10 min at RT. The luminescence of the 

samples was measured by a luminometer (FLUOstar Omega) using a lens as emission filter. 

In addition, the cell morphology was examined and documented by a Leica microscope. 
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4.3.3 Cytotoxicity assay 

Cytotoxicity was measured in KGN seeded in transparent 96-well microtiter plates employing 

the LDH Cytotoxicity Assay Kit. The assay measures lactate dehydrogenase (LDH) released 

into the media from damaged cells which indicates cellular cytotoxicity and cytolysis. The used 

diaphorase reduces a tetrazolium salt by NADPH, a product of LDH catalysis, to a red 

formazan product that can be measured at 490 nm. The absorbance was determined in 

quadruplicates after 24 h treatment with 20 µM GKT137831 and background (690 nm) was 

subtracted.  

 

4.3.4 Superoxide anion detection 

Superoxide anion levels in cultured GCs were quantified in white 96-well microtiter plates using 

a Superoxide Anion Detection Kit according to the vendor’s protocol. Superoxide anions 

oxidase luminol resulting in the formation of chemiluminscence light. Briefly, 

chemiluminescence of GCs without any stimulation was determined using a plate-reading 

luminometer (FLUOstar Omega) after addition of Superoxide Anion Assay Medium-Reagent 

Mixture containing 200 µM luminol, 250 µM enhancer and 200 ng/ml phorbol-12-myristate-13-

acetate (PMA). As positive control 1 µM carbachol was added, and samples without enhancer 

and PMA served as negative controls according to vendor’s protocol. For demonstration the 

measured relative light units (RLU) were plotted as mean of six technical replicates each 

normalized to the starting value over 2 h. 

 

4.3.5 Measurement of ROS generation 

To determine ROS generation of cultured human GCs and KGN, a method based on the dye 

2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) was performed. In the presence of 

intracellular ROS, including H2O2, H2DCFDA is converted to the highly fluorescent compound 

2',7'-dichlorofluorescein (DCF). For the measurement of basal ROS level, GCs of independent 

preparations of cells pooled from two to five patients were seeded into black 96-well microtiter 

plates, cultured under standard conditions, and measured at the next day. In case of treatment 

with the NOX4 inhibitor and hormonal stimulation, 20 µM GKT137831 and 1 IU/ml human 

recombinant FSH or 10 IU/ml hCG were added to the cells and incubated for 24 h. For each 

treatment, six technical replicates were prepared. Prior measurement, media was replaced by 

serum-free DMEM/Ham’s F12 medium without phenol red, and loaded with H2DCFDA (10 µM) 

for 30 min at 37 °C. After replacing the dye with fresh media, fluorescence levels due to ROS 

generation were measured at 485 nm excitation/520 nm emission in a fluorimeter (FLUOstar 
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Omega) for 2 h at 37 °C. Fluorescence intensities are shown as means of six technical 

replicates, each normalized to the starting value over 2 h.  

 

4.3.6 Measurement of H2O2 generation 

The generation of H2O2 was measured using an Amplex® Red Kit. Briefly, cells were seeded 

and treated like for the ROS measurement. Amplex® Red reagent (10-acetyl-3,7-

dihydroxyphenoxazine) was used in a final concentration of 2.5 µM and fluorescence levels 

were measured at 544 nm excitation/590 nm emission in a fluorimeter (FLUOstar Omega) for 

2h at 37 °C. The mean values were normalized to the starting point value. 

 

4.3.7 Measurement of H2O2 uptake via aquaporins 

Intracellular H2O2 levels in culture of human GCs were quantified in black 96-well microtiter 

plates using a cell permeable boronate-based fluorescent probe Peroxy Orange 1 (PO1) by 

exogenous preloading as described by Dickinson et al. (Dickinson et al., 2010). Briefly, for the 

preparations and during the measurement culture medium was replaced with extra cellular 

(EC) fluid buffer (140 mM NaCl, 3 mM KCl, 1mM MgCl2, 1 mM CaCl2, 10 mM HEPES and 10 

mM glucose; pH 7.4). Cells were preloaded with 1 µM PO1 and 500 nM AgNO3, untreated 

control group with PO1 only, and incubated for 20 min. After replacing the dye and the blocker 

by fresh EC buffer, fluorescence was determined using a fluorimeter (FLUOstar Omega) after 

addition of 100 µM H2O2 in EC buffer (544 nm excitation/590 nm emission).  

 

In addition, intracellular H2O2 production by PO1 was examined using a Leica confocal 

microscope. GCs were cultured on a µ-Dish35mm, high, ibiTreat for 2 days. Prior to microscopy, 

culture medium was replaced by 1 µM PO1 diluted in EC buffer, the dish was placed into a 

heating unit at 37 °C belonging to the microscope, and after 20 min H2O2 (end concentration: 

333 µM) was added. Fluorescence imaging was performed at t = 0 and t = 20 min (552 nm 

excitation/562-650 nm emission via HyD detector). 

 

4.4 Statistics 

Statistical analyses were performed using Prism 6 (GraphPad Software, San Diego, CA, USA). 

Data are expressed as means ± SEM unless indicated otherwise in the text and graphs. Paired 

t test, two-tailed was employed for ATP results, and one-sample t tests with a theoretical mean 

of 1 or 0 were used to verify statistic relevance of percentage decrease of ROS and H2O2 
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measurements, qRT-PCR, WB LDH, cell number, and confluence results. Statistical 

significance was accepted for p < 0.05. 

 

4.5 Material 

4.5.1 Primers 

Table 8 - Information about oligonucleotide primers used for PCR studies. 

Gene  Reference Primer sequence (5’-3’) Product size [bp] 

RPL19 NM_000981.3 F: agg cac atg ggc ata ggt aa 

R: cca tga gaa tcc gct tgt tt 

199 

UBC AB_362574.1 F: gcc tta gaa ccc cag tat cag 

R: aag aaa acc agt gcc cta gag 

74 

GAPDH NM_002046.6 F: gtc ttc act acc atg gag aag g 

R: tca tgg atg acc ttg gcc ag 

197 

PPIA KJ_905864.1 F: aga caa ggt ccc aaa gac 

R: acc acc ctg aca cat aaa 

118 

NOX4 NM_001143837.1 F: ccg aac act ctt ggc tta cc 

R: gtt gag ggc att cac cag at 

160 

NOX5 NM_024505.3 F: gct gtc gag gag tgt gac aa 

R: gct cag agg caa aga tcc tg 

146 

DUOX1 NM_175940.2 F: cct ctg agc agt tcc tgt cc 

R: aaa tcc cgc aca tct tca ac 

247 

DUOX2 NM_014080.4 F: ggc aaa ttc tcc cgt aca ga 

R: agc tgg gat agg tcc tgg tt 

194 

SOD1 NM_000454.4 F: gaa ggt ggg gaa gca tta 

R: acc ttt gcc caa gtc atc tg 

300 

SOD2 BC_016934.1 F: ggg gtc aaa gtt cac aag ga 

R: cca aaa ggc aca gac tca aa 

189 

Catalase NM_001752.3 F: gcc tgg gac cca att atc tt 

R: gaa tct ccg cac ttc tcc ag 

203 

DJ-1 NM_001123377.1 F: tga gtc tgc tgc tgt gaa gg 

R: ccg tct ttt tcc aca cga tt 

201 

GST NM_146421.2 F: atg ccc atg ata ctg ggg ta 

R: gtg agc ccc atc aat caa gt 

204 

AQP3 NM_001318144.1 F: ttt ggc ttt gct gtc act ct 199 
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R: gcc aga ttg cat cat aat aca gc 

AQP8 NM_001169.2 F: gtc tgg agg ctg cat gaa tc 

R: cca atg aag cac cta atg agc a 

138 

AQP9 NM_020980.4 F: cgg tgt ctc tgg tgg tca 

R: cca caa agg ctc cca aga ac 

119 

CYP11A1 NM_000781 F: agt cca cct tca cca tgt cc 

R: aga gaa ggg cca cat ctt ca 

113 

StAR NM_000349 F: cct gag cag aag ggt gtc at 

R: cga tgc tga gta gcc acg ta 

109 

FSHR NM_000145.2 F: ctg ctc ctg gtc tct ttg ct 

R: ggt ccc caa atc ctg aaa at 

208 

LHR NM_000233.3 F: tgg aaa tgg att tga aga agt aca 

R: cac gga agg ctc cat tgt 

113 

 

4.5.2 Antibodies 

Table 9 - List of primary antibodies. 

Antigen  Host Method and 
dilution 

Reference # and manufacturer 

NOX4 No. 1 rabbit WB (1:1000) 
IHC (1:500) 
ICC (1:200) 

7927; ProSci; Fort Collins, CO, USA 

NOX4 No. 2 goat IHC (1:1000) NB110-58849; Novus Biologicals, Littleton; CO; 
USA 

NOX4 No. 3 goat ICC (1:50) sc-21860; Santa Cruz, Dallas, Texas, USA 

NOX5 rabbit WB (1:2000) 
ICC (1:100)  

ab191010; Abcam, Cambridge, UK 

MAPK rabbit WB (1:2000) 4695; Cell Signaling, Danvers, MA, USA 

pMAPK mouse WB (1:1000) 9106; Cell Signaling, Danvers, MA, USA 

StAR rabbit WB (1:500) Texas Tech University 

PCNA mouse WB (1:2500) 610664; BD, Franklin Lakes, NJ, USA 

β-Actin mouse WB (1:5000) A5441; Sigma-Aldrich, St Louis, MO, USA  

 

Table 10 - List of secondary antibodies. 

Antibody  Host Conjugate Method and 
dilution 

Reference #  

Anti-rabbit IgG goat POX WB (1:10000) 111-035-144 +  

Anti-mouse IgG donkey POX WB (1:10000) 715-036-150 + 

Anti-rabbit IgG goat Alexa Fluor 488 ICC (1:1000) R37116 ++ 

Anti-rabbit IgG goat Cy3 ICC (1:800) 111-165-144 + 

Anti-goat IgG donkey FITC ICC (1:100) 705-096-147 + 
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Anti-rabbit IgG goat Biotin IHC (1:500) 111-065-144 + 

Anti-goat IgG donkey Biotin IHC (1:500) 705-066-147 + 
+ Jackson, Bar Harbor, Maine, USA 

++ Thermo Fisher Scientific, Waltham, Massachusetts, USA 

Table 11 - Blocking peptide. 

Gene Method and dilution Reference # and manufacturer 

NOX4 IHC (1:3) NB110-58849PEP; Novus Biologicals, Littleton; CO; USA 

 

4.5.3 Consumables  

Table 12 - List of used consumables. 

Material Manufacturer 

µ-Dish35mm, high, ibiTreat  ibidi GmbH, Martinsried, Germany 

0.9-mm hypodermic needle Braun, Melsungen, Hessen, Germany 

Cell scraper Kisker, Steinfurt, Germany 

Cell strainer (40 μm) BD, Franklin Lakes, NJ, USA 

Cover glasses (thickness no 1.5) Paul Marienfeld, Lauda-Koenigshofen, 

Germany 

Falcon tubes (15/50 ml) Sarstedt, Nuernbrecht, Germany 

Injekt one-way syringe (10 ml) B. Braun, Melsungen, Germany 

LUNA™ Cell Counting Slides Logos Biosystems, Dongan-gu, South Korea 

Micro tubes (0.25/0.5/1.0/2.0 ml) Sarstedt, Nuernbrecht, Germany 

Microscope slides VWR, Darmstadt, Germany 

Nitrocellulose membrane Machery-Nagel, Dueren, Germany 

Nunc EasYFlask 75cm2 Thermo Fisher Scientific, Waltham, 

Massachusetts, USA 

NuncTM 96-well microtiter plates 

(transparent/black/white) 

Thermo Fisher Scientific, Waltham, 

Massachusetts, USA 

PAP-Pen Science Services, Munich, Germany 

Petri dish (35/60 x 15 mm) Sarstedt, Nuernbrecht, Germany 

Pipette tips (10/20/100/200/1000 μl) Rainin, Greifensee, Switzerland 

Reagent reservoir (25 ml) VWR, Darmstadt, Germany 

Roche LightCycler®480 sealing foils  Roche, Basel, Switzerland 

Roche LightCycler®96 well plate Roche, Basel, Switzerland 

TC-plate 24 well  Sarstedt, Nuernbrecht, Germany 

Urine beaker Sarstedt, Nuernbrecht, Germany 
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Feather Disposable Scalpel Feather, Osaka, Japan 

Serological pipettes (5/10/25/50 ml) Sarstedt, Nuernbrecht, Germany 

 

4.5.4 Chemicals 

Table 13 - List of used chemicals. 

Chemicals Manufacturer 

3.7 % formaldehyde Sigma-Aldrich, St Louis, MO, USA 

3-Amino-1,2,4-triazole (3-AT) Sigma-Aldrich, St. Louis, Missouri, USA 

4′,6-Diamidin-2-phenylindol (DAPI) Thermo Fisher Scientific, Waltham, 
Massachusetts, USA 

5x First Strand Buffer Invitrogen - Life Technologies, Carlsbad, CA, 
USA 

5x Go Taq-Buffer Promega, Madison, WI, USA 

Acrylamid  AppliChem, Darmstadt, Germany 

Agarose Biozym, Hessisch Oldendorf, Germany 

AgNO3 Honeywell, Seelze, Germany 

Albumin Standard Pierce - Thermo Fischer Scientific, Waltham, MA, 
USA 

Ammoniumpersulfat (APS) Merck, Darmstadt, Germany 

Boric acid Roth, Karlsruhe, Germany 

Bromophenol blue Serva, Heidelberg, Germany 

CaCl x2 H2O Sigma-Aldrich, St Louis, MO, USA 

Carbachol Sigma-Aldrich, St Louis, MO, USA 

Citric acid Roth, Karlsruhe, Germany  

DCFDA-H2 Molecular Probes, Eugene, OR, USA 

Diethylpyrocarbonate (DEPC) water Ambion - Life Technologies, Carlsbad, CA, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, St. Louis, Missouri, USA 

Dithiothreithol (DTT) Invitrogen - Life Technologies, Carlsbad, CA, 
USA 

D-Mannitol Sigma-Aldrich, St Louis, MO, USA 

dNTPs (dATP/dCTP/dGTP/dTTP) Qiagen, Hilden, Germany 

EDTA Roth, Karlsruhe, Germany 

Entellan®  Merck Millipore, Billerica, MA, USA 

Ethanol Roth, Karlsruhe, Germany 

Follicle stimulating hormone (FSH) Cedarlane, Burlington, NC, USA 

GeneRuler 50/100 bp DNA Ladder Thermo Fischer Scientific, Waltham, MA, USA 

GKT137831 Selleckchem, Houston, TX, USA 

Glucose Sigma-Aldrich, St Louis, MO, USA  

Glycerine Merck, Darmstadt, Germany 

Glycine AppliChem, Darmstadt, Deutschland 

GoTaq DNA Polymerase Promega, Madison, WI, USA 

H2DCFDA Invitrogen - Life Technologies, Carlsbad, CA, 
USA 

H2O2 (30 %) Sigma-Aldrich, St Louis, MO, USA 

Haematoxylin-eosin  Roth, Karlsruhe, Germany  

HCl Roth, Karlsruhe, Germany 
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HEPES Sigma-Aldrich, St Louis, MO, USA 

Human chorionic gonadotropin (hCG) Sigma-Aldrich, St. Louis, Missouri, USA 

Isopropyl alcohol Roth, Karlsruhe, Germany 

K2HPO4 x 3 H2O Merck, Darmstadt, Germany 

KCl Merck, Darmstadt, Germany 

Methanol Roth, Karlsruhe, Germany 

MgCl x6 H2O Sigma-Aldrich, St Louis, MO, USA 

Midori Green Nippon Genetics Europe GmbH, Dueren, 
Germany 

N, N, N', N'-Tetramethylethylendiamin 
(TEMED)  

Bio-Rad, Hercules, CA, USA  

Na2HPO4 x 2 H2O Merck, Darmstadt, Germany 

NaCl Roth, Karlsruhe, Germany 

NaH2PO4 x H2O Honeywell, Seelze, Germany 

Normal goat serum Sigma-Aldrich, St Louis, MO, USA 

Normal rabbit serum Chemikon, Billerica, MA, USA  

PageRuler Plus Prestained Protein 
Ladder 

Pierce - Thermo Fischer Scientific, Waltham, MA, 
USA 

PBS Thermo Fisher Scientific, Waltham, 
Massachusetts, USA 

PBS-Dulbecco Biochrom GmbH, Berlin, Germany 

Peroxy Orange 1 (PO1) Tocris, Bristol, UK 

pH calibration standard pH 4/7/10 Roth, Karlsruhe, Germany 

Pierce Protease and Phosphatase 
Inhibitor Mini Tablets 

Thermo Fisher Scientific, Waltham, 
Massachusetts, USA 

PIPES Roth, Karlsruhe, Germany 

Ponceau S  Sigma-Aldrich, St Louis, MO, USA  

Powdered milk Vitalia, Bruckmühl, Germany 

ProLong™ Diamond Antifade 
Mountant 

Thermo Fisher Scientific, Waltham, 
Massachusetts, USA 

Random 15-mer primers metabion international AG, Munich, Germany 

Rnasin Plus Promega, Madison, WI, USA 

Saccharose Merck, Darmstadt, Germany 

Sodium Dodecyl Sulfate (SDS) Roth, Karlsruhe, Germany 

Superscript II Invitrogen - Life Technologies, Carlsbad, CA, 
USA 

Tris Roth, Karlsruhe, Germany 

Tri-Sodium Citrate Dihydrate Roth, Karlsruhe, Germany  

Triton X-100 Sigma-Aldrich, St Louis, MO, USA 

Trypsin PAA, Pasching, Austria 

Tween 20 Roth, Karlsruhe, Germany 

Xylol Roth, Karlsruhe, Germany 

β-Mercaptoethanol  Sigma-Aldrich, St Louis, MO, USA  
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4.5.5 Buffers and solutions 

Table 14 - Composition of used buffers and solutions. 

Buffer Composition  

10x Laemmli sample buffer 30.3 g Tris  
144.1 g Glycine  
10 g SDS  
Fill up to 1 l ddH2O 

10x PBS 4.4 g NaCl  
93.3 mg KCl  
400.47 mg Na2HPO4 x2 H2O  
171.2 mg K2HPO4 x3 H2O  
Fill up to 0.5 l with ddH2O; pH 7.5 

10x TBE buffer  108 g Tris  
55 g boric acid  
40 ml 0.5 M EDTA  
Fill up to 1 l with ddH2O; pH 8.0 

10x Transfer buffer 30.3 g Tris 
144.1 g Glycine  
Fill up to 1 l with ddH2O; pH 8.3 
100 ml 10x transfer buffer  
100 ml Methanol  
Fill up to 1 l with ddH2O 

20x TBS-T  116.8 g NaCl  
12.1 g Tris  
10 ml Tween 20  
Fill up to 1 l with ddH2O; pH 7.5 

4x Separating gel buffer 45.43 g Tris  
0.75 g EDTA 
1 g SDS  
Fill up to 0.25 l with ddH2O; pH: 8.8  

4x Stacking gel buffer 15.15 g Tris (0.5M) 
0.75 g EDTA 
1 g SDS 
Fill up to 0.25 l with ddH2O; pH: 6.8 

APS (10 %)  1 g APS  
10 ml ddH2O 

Bromophenol blue 0.1 M Tris  
2.4 ml Glycerine 
50 mg SDS  
1 spate point bromophenol blue 
Fill up to 10 ml with ddH2O; pH: 6.8 

Citric acid solution 21.01 g citric acid  
Fill up to 1 l with ddH2O 

Disodium phosphate (0.1 M) 17.78 g Na2HPO4 x 2 H2O 
Fill up to 1 l with ddH2O 

EC solution  8.18 g NaCl  
0.22 g KCl  
0.2 g MgCl x6 H2O  
0.15 g CaCl x2 H2O  
2.38 g HEPES  
1.98 g Glucose  
Fill up to 1 l with ddH2O; pH 7.4 
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Inhibitor cocktail 1 inhibitor tablet in 10 ml sample buffer 

Monosodium phosphate 
(0.1 M) 

13.8 g NaH2PO4 x H2O 
Fill up to 1 l with ddH2O 

NPE-Buffer 4.4 g NaCl 
1.5 g PIPES 
S0.15 g EDTA 
 Fill up to 0.5 l with ddH2O; pH 7.2 

PBS (10 mM) 9.55 PBS  
Solve in 1 l ddH2O 

Sample buffer  1.9 g Tris  
5 g SDS  
25 g Saccharose  
Fill up to 0.25 l with ddH2O; pH 6.8 

Sodium citrate solution 29.41 g Tri-Sodium Citrate Dihydrate 
Fill up to 1 l with ddH2O 

Sodium phosphate (0.01 M) Titrate 0.01 M Na2HPO4 x 2 H2O with 0.01 M NaH2PO4 x 
H2O till pH 7.4 

Tris/HCl (50 mM)  6.06 g Tris  
38.9 ml HCl  
Fill up to 1 l with ddH2O; pH 7.6 

 

4.5.6 Cell culture media and reagents 

Table 15 - List of cell culture media and supplements. 

Cell culture media and 

supplements  

Manufacturer 

DMEM/F-12 Thermo Fisher Scientific, Waltham, Massachusetts, USA 

DMEM/F-12, no phenol red  Thermo Fisher Scientific, Waltham, Massachusetts, USA 

Fetal calf serum (FCS) PAA, Pasching, Austria  

Penicillin/Streptomycin PAA, Pasching, Austria 

 

4.5.7 Kits and assays  

Table 16 - List of used kits. 

Kits Manufacturer 

Amplex® Red Kit  Invitrogen - Life Technologies, Carlsbad, 

CA, USA 

CellTiter-Glo® Luminescent Cell Viability 

Assay 

Promega, Mannheim, Germany 

DCTM Protein Assay  Bio-Rad, Hercules, CA, USA 

GoTaq DNA Polymerase Kit Promega, Mannheim, Germany 
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LDH Cytotoxicity Assay Kit Pierce - Thermo Fischer Scientific, 

Waltham, MA, USA 

MinElute Gel Extraction Kit Qiagen, Hilden, Germany 

Proteome Profiler Array - Human Cytokine R&D Systems, Inc., Minneapolis, MN, USA 

QuantiFast SYBR Green PCR Kit  Qiagen, Hilden, Germany 

RNeasy Plus Micro Kit  Qiagen, Hilden, Germany 

SIGMAFAST™ 3,3′-Diaminobenzidine 

tablets 

Sigma-Aldrich, St Louis, MO, USA 

Superoxide Anion Detection Kit  Calbiochem, San Diego, CA, USA 

SuperSignal West Femto Maximum 

Sensivity Substrate 

Thermo Fisher Scientific, Waltham, 

Massachusetts, USA 

Vectastain ABC Kit Vector Laboratories, Burlingame, CA, USA 

 

4.5.8 Equipment 

Table 17 - List of used equipment. 

Equipment Manufacturer 

Cell culture centrifuge 5810 R Eppendorf, Hamburg, Germany 

Chemi-Smart 5000 Peqlab/VWR, Erlangen, Germany 

Clean bench B-[MaxPro]2-160 Berner, Elmshorn, Germany 

CO2 incubator - Galaxy® 170 S Eppendorf, Hamburg, Germany 

Cooling centrifuge Biofuge Fresco Haraeus, Hanau, Germany 

FLUOstar Omega BMG Labtech, Ortenberg, Germany 

Freezer -80 °C Liebherr, Ochsenhausen, Germany 

Freezer and fridges Liebherr, Ochsenhausen, Germany 

Gel Doc™ XR+ Gel Documentation System Bio-Rad; Hercules, CA, USA 

ibidi Gas Incubation System ibidi, Planegg, Germany 

ibidi Heating System ibidi, Planegg, Germany 

Leica TCS SP8 confocal microscope  Leica, Wetzlar, Germany 

LightCycler® 96 System  Roche Diagnostics, Penzberg, 

Germany 

LUNA-II™ Automated Cell Counter Logos Biosystems, Dongan-gu, South 

Korea 

Microliter centrifuge 5418 Eppendorf, Hamburg, Germany 

Microscope Axio Observer Zeiss, Oberkochen, Germany 

Microscope Axiovert 135 Zeiss, Oberkochen, Germany 
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Microscope Axiovert 200 M Zeiss, Oberkochen, Germany 

Microscope DMIL LED Leica, Wetzlar, Germany 

Microwave M690  Miele, Guetersloh, Germany 

Micrsocope confocal TCS SP8 Leica, Wetzlar, Germany 

Mini Trans-Blot® cell Bio-Rad, Hercules, CA, USA 

Multichannel pipette 20-200 µl Rainin, Greifensee, Switzerland 

Multipipette® M4 Eppendorf, Hamburg, Germany 

NanoDrop® spectrophotometer Thermo Fisher Scientific, Waltham, 

Massachusetts, USA 

Orbital shaker Duomax 1030/2030 Heidolph, Schwabach, Germany 

ph-Meter FE20/EL20 Mettler-Toledo, Greifensee, 

Switzerland 

Pipettes Research® plus 

2/10/20/100/200/1000/5000 μl 

Eppendorf, Hamburg, Germany 

Pipetus Hirschmann, Heilbronn, Germany 

Precision balance BP 310 S Sartorius, Goettingen, Germany 

Sub Cell GT Agarose Gel System Bio-Rad, Hercules, CA, USA 

Thermomixer R Eppendorf, Hamburg, Germany 

Ultraturax T25 IKA-Werk, Staufen, Germany 

Vortex Genie 2 Scientific Industries, Bohemia, NY, 

USA 

Water bath Memmert, Schwabach, Germany 

XS-analytical balance Mettler-Toledo, Greifensee, 

Switzerland 

 

4.5.9 Biological material 

Table 18 - List of biological material and cells. 

Material Origin 

Ovarian sections (Homo sapiens) Institute for cell biology (Anatomy III), LMU Munich, 
Germany 

Follicular fluid (Homo sapiens) A.R.T. Bogenhausen, Munich, Germany 

KGN cell line RIKEN BioResource Center 
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7. Supplement 

In addition, a further specific antibody was used and positive staining for NOX4 was detected 

in GCs on culture day 2 (Supplementary Figure 1). Note, the intracellular compartments were 

stained only, the nucleus lacked staining. Negative controls of all immunocytochemical 

experiments performed without primary antibody did not show any staining (data not shown). 

 

Supplementary Figure 1 - Localization of NOX4 in cultured human GCs. Staining in intracellular compartments 

of GCs (d2; antibody No. 3). Scale bar = 5 µm. 

The CL showed staining of the nucleus (Supplementary Figure 2, arrow). The pre-adsorption 

of the anti-NOX4 antibody No. 2 with a specific blocking peptide (Table 11) and omission of 

primary antibody prevented staining (inset, Supplementary Figure 2). 

 

Supplementary Figure 2 - NOX4 localization in the CL. (A) Cells of CL of a human ovarian section are positive 

for NOX4 staining using immunohistochemistry and anti-NOX4 antibody No. 2. (A) Staining is seen in the cytoplasm 
and the nucleus (arrows) of luteinised cells. (B) The pre-adsorption control is devoid of staining. Scale bars = 50 µm.  
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GCs on culture day 1 treated with FSH (1 IU/ml) for 2 h showed an increased protein 

expression of StAR. 

 

Supplementary Figure 3 - FSH increased StAR protein expression in cultured human GCs. The WB shows 

an increase in StAR protein expression after FSH treatment (2 h). The arrow shows the expected size (30 kDa). 

 

The expression of AQP3, 8, and 9 in GCs could be shown by RT-PCR (experiment performed 

by Theo Hack). 

 

Supplementary Figure 4 - H2O2-transporting peroxiporins in cultured human GCs. RT-PCR identified AQP 3, 

8, and 9. Controls performed with RNA (-RT) and without cDNA (H2O) were negative.  
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SiRNA-mediated knockdown of the NOX4 gene in the proliferating KGN cell line was achieved 

using the InvitrogenTM SilencerTM Pre-designed siRNA by ThermoFisher Scientific (F: caa cuc 

aua ugg gac aag att; R: ucu ugu ccc aua uga guu gtt) and as negative control InvitrogenTM 

SilencerTM Select Negative Control No. 1 siRNA. SiRNA transfections were carried out with 

Lipofectamine 2000 at a final concentration of 25 nM siRNA. Culture medium was exchanged 

5 h post-transfection and the knockdown was analysed 48 h post-transfection by cell counting 

(n = 3) and confluence measurement (n = 1). 

 

 

Supplementary Figure 5 - Preliminary experiments with siRNA transfection in KGN. RNA silencing led to 

decreased cell number and cell confluence of KGN cells. (A) Transfection of KGN cells with NOX4 siRNA for 48 h 
showed a reduction in cell number (n = 3) and confluence (B; n = 1). Statistics: (A) paired t tests (two-tailed).  
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