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1 Introduction 

All living organisms depend on adapting to changing environmental demands. The 

body’s ability to maintain a complex equilibrium, also referred to as “Homeostasis” is 

essential for survival (1). The challenge of homeostasis by internal or external factors 

is referred to as “stress”, which leads to different adaptive physiological reactions in 

an organism (2). This so called “stress response” encompasses neuroendocrine 

(activation of the hypothalamic-pituitary-adrenal (HPA) axis), autonomic (increased 

cardiovascular and respiratory activity) and behavioral (arousal, defense/escape or 

“fight”-response) changes and aims to reconstitute the initial homeostasis by a 

process called allostasis, meaning achieving stability through physiological or 

behavioral change (“remaining stable by being variable”) (3). Sustained over-

activation of allostatic systems as well as failure to shut off or inadequate response of 

the system, referred to as “allostatic load” can lead to the development of stress-

related psychopathologies such as anxiety and depression. 

In vertebrates, the main stress response system is the brain (4), because it 

determines what is stressful and orchestrates the stress response via two coherent 

systems: the autonomic sympathetic nervous system (SNS) and the neuroendocrine 

hypothalamic-pituitary axis. Various molecules (“stress mediators”) are released in 

response to stress, which comprise in particular monoamines, neuropeptides and 

steroids. Whereas neurotransmitters are important for the immediate (“fight-or-flight”) 

response to the stressor, corticosteroids are responsible for promoting the adaptive 

components (5). The discovery of the neuropeptide corticotropin-releasing hormone 

(CRH) in 1981 by the group of Wylie Vale (6) was a major breakthrough for the 

understanding of the neurobiological mechanisms controlling the stress response. 

CRH plays a central role in coordinating the endocrine, autonomic and behavioral 

responses to stress. CRH displays a dual capacity acting as a secretagogue within 

the scope of the HPA system and as an important integrator of the stress response 

through modulating synaptic transmission in the central nervous system. The 

biological activity of CRH is predominantly mediated via CRH receptor type 1 

(CRHR1), a G-protein coupled, 7-transmembrane receptor, which is widely 

expressed in various brain structures, where it integrates the processing of sensory 

information and motor control and in the pituitary where it mediates the release of 

adrenocorticotropic hormone (ACTH) subsequent to binding of CRH. Numerous 
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pharmacological and genetic studies published during the last decades clearly 

support a causative role of CRH/CRHR1 overactivation in stress-related psychiatric 

disorders and led to the development of CRHR1 antagonists for the treatment of 

chronic anxiety disorders and depression. Up to now – although anxiolytic and 

antidepressant effects were reported in animal experiments and human clinical trials 

- none of these compounds has successfully passed all clinical trials and therefore 

failed to reach market maturity (7). These discrepancies could potentially be related 

to a lack of consideration of the dimension of circuit- and cell-type specificity 

regarding CRH/CRHR1-mediated modulation of the stress response. Multiple 

interconnected brain regions, such as hippocampus, prefrontal cortex, amygdala and 

ventral tegmental area (VTA) are associated with stress-related pathophysiology and 

functional impairment/imbalance can independently develop in distinct 

neuroanatomical circuits, resulting in subsequent dysfunction of other brain 

regions/circuits. Moreover, recent findings suggesting that the net effect of CRHR1 

activation depends on cell-type specific receptor-neurotransmitter interactions, adds 

another level of complexity (8).  

In the past decades the molecular and genetic “toolbox” targeting CRH system 

components has evolved rapidly and genetic dissection of the CRH system via 

conventional and conditional gene targeting approaches in the mouse has increased 

our understanding of CRH/CRHR1 function within the line of the organism's stress 

response and furthermore revealed bidirectional CRH/CRHR1 neurocircuitries which 

are relevant for adaptive emotional behavior in response to stress (9). The future 

challenge is to unravel the distinct pathways, cell-types and molecular mechanisms 

by which the CRH/CRHR1-system translates stressful stimuli into the final adaptive 

and maladaptive behavioral response. Gene-specific promoter driven Cre mouse 

lines provide experimental access to specific cell types and neuronal populations that 

are the basic units of neural circuits. Therefore, we aimed to generate a CRHR1 Cre-

driver mouse line, which will complement the existing genetic tools and facilitate 

further dissection of CRH/CRHR1 related neurocircuits, cell-types and downstream 

molecular pathways. 
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2 Literature 

2.1 The central CRH system and neuropathology of stress 
 

According to the latest estimates by the World Health Organization (WHO), 

neuropsychiatric disorders including depression, bipolar affective disorder, 

schizophrenia, dementia, anxiety disorders and epilepsy, are leading courses of 

disability worldwide with devastating social and economic consequences. Mental, 

neurological and substance use disorders account for 13% of the total global burden 

of disease with anxiety and depressive disorders being among the single largest 

contributors to disability worldwide (World Health Organization, 2015) (10). A large 

amount of basic and clinical studies link dysregulation of the HPA stress axis and 

hyperactive/imbalanced corticotropin-releasing hormone (CRH) circuits within the 

hippocampus, nucleus accumbens, lateral septum, bed nucleus of stria terminalis, 

amygdala and VTA to the pathophysiology of stress-related mood disorders such as 

major depressive disorder or bipolar disorder (10-16).  

The physician and endocrinologist Hans Selye first defined the term stress in 1936 as 

a nonspecific response of the body to any internal or external demand threatening 

homeostasis. He was also the first who described the system through which the body 

copes with stress, the HPA axis (2, 17). The key structures of the HPA axis are the 

paraventricular nucleus of the hypothalamus (PVN) which contains neuroendocrine, 

hypophyseotropic neurons that synthesize and secrete CRH, the anterior lobe of the 

pituitary and the adrenal glands. Under normal, unstressed conditions the HPA axis 

coordinates diurnal events (sleep/wake activity, food intake) resulting in a peak of 

glucocorticoid hormone secretion at the onset of the diurnal activity period. In 

response to physical or psychological stimuli (this expression contains the awareness 

that not all impulses that activate the HPA axis are considered as stressful, e.g., 

appetitive/rewarding stimuli, sexual encounter), CRH, also known as corticotropin-

releasing factor (CRF), synthesized in neurons of the parvocellular subdivision of the 

PVN, is released from neurosecretory nerve terminals into hypophyseal portal 

vessels that access the anterior pituitary. Binding of CRH to its corresponding 

CRHR1, stimulates the synthesis and release of adrenocorticotropic hormone 

(ACTH) into the systemic circulation. ACTH reaches the adrenal glands via the 

central blood flow where it binds to its specific receptor in the zona fasciculata of the 

adrenal cortex. ACTH stimulation leads to the synthesis and release of 
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glucocorticoids (cortisol in humans, corticosterone in rodents; peaking 15-30 minutes 

after onset of acute stress) into the blood circulation. Glucocorticoids are the 

downstream effectors of the HPA axis that mediate an array of physiological and 

metabolic effects to prepare the organism for acute reactions to the stressor, e.g., 

increasing cardiovascular tone, energy mobilization, anti-inflammatory properties, 

inhibition of digestion and reproduction (18-21). In order to restore the HPA axis or 

prevent excessive activation, e.g., of the cardiovascular, immune and gastrointestinal 

organ system, autoregulatory feedback mechanisms occur at several sites of the axis 

in the brain and pituitary, thereby inhibiting secretion of CRH and ACTH. The 

negative feedback is mediated by the glucocorticoid (GR) and the mineralocorticoid 

receptor (MR) which are widely expressed in stress-responsive brain regions, with 

the PVN and hippocampus being of particular importance (22). Glucocorticoids inhibit 

the mRNA expression of CRH and vasopressin in the PVN via binding to the 

glucocorticoid receptors being expressed on the peptide–synthesizing neurons 

themselves (23). Additionally, as both receptors are highly expressed in the 

hippocampus, there is considerable evidence that this brain structure inhibits basal 

and stress induced HPA axis activity (24). Negative feedback on basal and induced 

ACTH secretion occurs also at the level of the adenohypophysis where 

glucocorticoids decrease levels of mRNA encoding for the ACTH precursor protein 

pro-opiomelanocortin (POMC) (25). Dysfunction of the HPA system resulting in 

increased ACTH and cortisol levels is by far the most robust finding in patients with 

major depression (13). Long lasting HPA axis hyperactivity/dysregulation can lead to 

cortisol-mediated epigenetic modifications of the glucocorticoid receptor, permanent 

morphological changes in the hippocampus and abnormalities in neuroplasticity and 

neurogenesis (26). Thus, the integrity of the HPA axis is critical to restore or maintain 

homeostasis and inadequate or excessive activation can lead to a wide array of 

stress-related disorders including autoimmune disease (27), hypertension, anxiety 

and affective disorders such as major depression (Figure 1). In addition to its role as 

main physiological regulators of basal and stress-induced HPA axis activity it was 

shown that CRH and CRH receptor 1 are widely expressed in many 

extrahypothalamic sites of the brain including the limbic system, the mesencephalic 

dopamine system and the locus coeruleus/noradrenaline (LC/NA) system in the 

brainstem (8, 28-30). CRH/CRHR1 modulate synaptic transmission via interacting 

with central neurotransmitters affecting their excitatory and inhibitory activity and 
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thereby mediate the behavioral and autonomic components of the stress response. 

Numerous animal studies revealed that intracerebroventricular (icv) administration of 

CRH results in increased anxiety-like behavior, arousal, altered locomotor activity, 

decreased food consumption, sleep disturbances and declined sexual behavior-just 

to name a few. These behavioral responses mimic those observed when an animal 

faces a stressor. It is important to mention that most of these behavioral effects are 

also present after hypophysectomy and are thus mediated by central CRH controlled 

pathways and are independent of HPA-axis activation (31). Many studies in humans 

point to centrally hyperactive CRH neurons and impaired negative glucocorticoid-

mediated feedback loops in neuropathologies associated with stress (14, 32-34). 

The core effectors within the stress system are highly interconnected and comprise 

the hypothalamic hormones arginine vasopressin (AVP), CRH and NA within the 

locus coeruleus in the brainstem and other noradrenergic cell groups within the 

central autonomic/sympathetic nervous system. The targets of these stress 

mediators are downstream systems such as the cognitive, fear, reward, 

gastrointestinal, metabolic, immune, cardiorespiratory and reproductive systems as 

well as the wake-sleep centers of the brain. In general neural pathways mediating 

arousal, alertness and cognition are promoted whereas more vegetative pathways 

such as feeding, reproduction and immunity are inhibited (35). The AVP/CRH and 

LC/NA “control centers” of the stress system are connected in a reciprocal positive 

feedback loop, for example, activation of one system in parallel activates the other as 

well. Furthermore, other excitatory and inhibitory pathways are able to activate both 

systems. For example, visceral and somatic stress stimuli 

(catecholaminergic/noradrenergic afferents from the sympathetic and 

parasympathetic nervous system) are integrated in the so-called “central autonomic 

network” including hypothalamic nuclei such as the PVN, the lateral hypothalamic 

area and the mammillary nucleus as well as extrahypothalamic structures like the LC 

and the raphe nuclei. Discharged LC neurons activate the peripheral sympathetic 

nervous system, which is responsible for the autonomic component of the stress 

response, such as increase in heart rate, increased blood pressure and respiratory 

rate, increased gluconeogenesis and lipolysis. In addition, studies have shown that 

CRH-containing terminals arising from the PVN (distinct from those projecting to the 

median eminence and initiating the HPA axis response), bed nucleus of stria 

terminals (BNST), Barrington’s nucleus and the central nucleus of the amygdala 
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synapse on noradrenergic LC neurons and that locally administered CRH increases 

the firing rate of LC neurons, increases c-fos expression and noradrenaline release in 

LC projection target sites (36) such as the forebrain, cortex and hippocampus. Given 

the roles of these areas in cognitive and memory consolidation functions, these 

neurocircuits may be involved in facilitating spontaneous and/or intuitive behavioral 

responses to stressful stimuli. Dysregulated noradrenaline circuits have been 

associated with cognitive and sensory signal-processing deficits that have been 

found in schizophrenia, dementia, Alzheimer’s and Parkinson’s disease, as well as 

stress-related disorders such as depression and anxiety (37). In this context, it is 

worth mentioning that some of the current drugs used to treat depression and anxiety 

disorders target the noradrenergic system (noradrenaline reuptake inhibitors; NRIs). 

 

Figure 1: CRH mediates endocrine, autonomic and behavioral adaptational responses 
to stress 

Simplified schematic illustration of the dual stress response and the role of CRH as a 
secretagogue within the line of the HPA axis and as a central neuromodulator. For details, 
see text. Pictures depict reporter gene expression in the PVN of Crh-IRES-Cre mice crossed 
with GFP reporter mice and in the pituitary of CRHR1Cre mice crossed with Sun1 sfGFP 
reporter mice. Transversal view of an X-Gal stained adrenal gland from R26RNatCre mice with 
reporter gene expression in noradrenaline transporter expressing cells of the adrenal 
medulla.  

Other extrahypothalamic brain sites and pathways that are activated during stress 

challenges include the mesocortical and mesolimbic dopamine system, which links 

the VTA to the prefrontal cortex, the nucleus accumbens and the extended 
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amygdala/hippocampus circuit, the latter being involved in the generation of 

fear/anxiety (amygdala) and memory consolidation (hippocampus). The 

hippocampus was the first brain structure beside the hypothalamus to be recognized 

as stress responsive and the effects of CRH on hippocampal function (learning and 

memory processes) and neuronal structure has been subject of numerous 

investigations in recent years (38, 39). Generally speaking, it is not surprising that 

stress modulates hippocampal function since remembering and learning from critical 

life events entails an evolutionary advantage. CRH expression in the hippocampus is 

well established- it is expressed in a subset of GABAergic interneurons within the 

pyramidal cell layers of areas CA1 and CA3 as well as in strata radiatum and oriens 

and in the dentate gyrus hilar region (40). The corresponding receptor (CRHR1) is 

mainly expressed on excitatory glutamatergic pyramidal cells and on dentate hilar 

mossy cells (29, 41). Based on electrophysiological ex vivo studies it was 

demonstrated that CRH, via CRHR1 amplifies neuronal excitation on its passage 

from the dentate gyrus to the CA1 field and modulates voltage-gated ion currents 

thereby increasing excitability of CRHR1 expressing CA1 pyramidal neurons (42, 43). 

Furthermore, the MR and GR receptors for adrenal steroids are highly expressed in 

all hippocampal subfields (CA1, CA2, CA3) including the dentate gyrus and 

subiculum (44). In situ hybridization studies revealed increased hippocampal Crh 

mRNA expression after stressful stimuli (45) and it depends on time and severity how 

stress influences hippocampal function and structure. CRH-induced acute activation 

of principal neurons augment memory and related cellular processes whereas 

prolonged and repeated exposure to elevated CRH levels results in dendritic spine 

atrophy and reduced synaptic plasticity which causes learning deficits and cognitive 

decline (40, 46-48). There is a striking spatial difference regarding long-term 

potentiation (the cellular correlate of synaptic strength and learning and memory, 

respectively): acute stress causes facilitation of LTP in the ventral hippocampus and 

the opposite (depression of LTP) in the dorsal hippocampus. As the hippocampus is 

interconnected with a variety of different brain structures this spatial bidirectionality 

may underlie the selective stress dependent routing, e.g., facilitation of the efferent 

output from the ventral hippocampus to the amygdala versus suppression of the 

dorsal connectivity to the cortex. (49). Neuroimaging studies in patients with stress-

related disorders such as major depression have shown volume reduction (reduction 

in neuropil) in various subfields of the hippocampus and in the posterior division, 



Literature 

8 
 

respectively, which is virtually connected to poor memory performance - one of the 

main impairments in cognitive function of depressed patients (50). Furthermore, 

many studies revealed stress-mediated suppressed hippocampal neurogenesis and 

neuronal differentiation of progenitor cells in the hippocampus (51). CRH is 

expressed in the neurogenic hippocampal granular zone and in vitro as well as in 

vivo studies provide evidence that CRH through its receptor CRHR1 is implicated in 

neurogenesis and has the potential for neuroprotection regarding the damaging 

effects of glucocorticoids on neuronal progenitor cells (52, 53).  

Within the central amygdala (CeA) and the bed nucleus of the stria terminalis (BNST) 

Crh mRNA is upregulated after exposure to stress (48). A number of studies in 

rodents and humans demonstrate that both highly connected brain regions form a 

functional interrelated circuit that plays a key role in integrating potentially threat-

relevant information, as well as in acquisition of fear memory and promotion of 

feelings of fear and anxiety (54-57). At this point it is essential to mention that in the 

literature there is no uniform classification of the terms fear and anxiety as well as of 

the underlying brain circuits (58). An early working model by Davis and colleagues 

supports the view that fear (here defined as stimulus–specific short-term response) 

and anxiety (here defined as stimulus-unspecific sustained type of response) are 

mediated independently (fear-CeA vs anxiety-BNST) (59). Later on this hypothesis 

was further refined: the CeA mediates immediate (“phasic”) responses (phasic fear) 

to threats via projections originating in the medial part of the CeA (CeAM) to the 

hypothalamus and brainstem, whereas projections from the lateral part (CeAL) to the 

BNST are responsible for the sustained responses (sustained fear) to diffuse/less 

predictable cues (60). Recently, Shackman and colleagues reviewed latest studies of 

rodents, monkeys and humans and provide new insights, which are in contrast to the 

earlier hypotheses: both, the CeA and BNST integrate aversive challenges and play 

an important role in the development of states of fear and anxiety. (57). 

CRH is highly expressed in the lateral part of the central amygdala where it mediates 

contextual fear memory (61) and facilitates conditioned fear acquisition at low threat 

levels via the CRHR1 (62). Site-specific genetic manipulation of CRH in the CeA via 

lentiviral-based knockdown or overexpression revealed stress-induced effects on 

anxiety-like behaviors as well as the impact of CeA CRH on regulating basal HPA 

axis activity (higher levels of basal plasma corticosterone in CRH knockdown 
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animals) (63-65). There is considerable evidence from human studies that link 

altered amygdala function to anxiety disorders and that treatment with anxiolytics 

reduces activation of the amygdala in a dose-dependent manner (66, 67)  

Beside the amygdala a region often referred to as “extended” amygdala, the bed 

nucleus of the stria terminalis, has garnered attention with regard to stress response, 

anxiety and addiction, the latter being highly comorbid with psychiatric disorders. As 

the BNST is interconnected with stress responsive brain regions like amygdala, 

hippocampus, hypothalamus and brain reward centers such as the nucleus 

accumbens shell and VTA, it represents a central node in both fear and reward 

neurocircuitries (68). CRH is highly expressed in the dorsal (oval nucleus) and 

ventral (fusiform nucleus) subdivisions of the BNST (69, 70) and 

immunohistochemistry studies in adult mice revealed the GABAergic identity of these 

neurons (71). Stressful stimuli increase CRH expression within the dorsolateral and 

ventrolateral subdivisions of the BNST and lentiviral-mediated chronic over-

expression of CRH within BNST neurons (thereby mimicking a state of 

physiologically CRH hyperactivity) modulates conditioned anxiety-like behaviors and 

decreases CRHR1 receptor density probably by altering CRH signaling cascades in 

local BNST microcircuits (72). The fear-potentiated startle response in humans 

(modeling conditioned anxiety in rodents) is selectively enhanced in post-traumatic 

stress patients and patients with panic disorders and is sensitive to treatment with 

benzodiazepines and SSRIs (selective serotonin reuptake inhibitors) (60). More 

recent studies revealed the possibility of two stress-related opposing circuits 

(anxiogenic and anxiolytic) within the BNST. Stress and drug abuse can upset the 

balance of these distinct pathways towards a pathological state (73). Recently, a 

BNST-VTA CRH circuit was described which controls binge ethanol consumption in 

mice via signaling at the CRHR1 within the VTA (74). Latest findings from human 

studies based on ultra-high resolution magnetic resonance imaging (7T fMRI) provide 

evidence for the involvement of the BNST in both stress-related illnesses namely 

anxiety disorders and addiction (75). Temporally-extended threat monitoring 

processes in more highly trait anxious individuals are mediated by an exaggerated 

response of the BNST (76). Patients with spider phobia display elevated BNST 

activity (77) and functional MRI scans in patients with generalized anxiety disorders 

showed increased activity in the BNST during conditions of uncertainty (78). 

Alcoholic patients exhibit increased functional neural connectivity between amygdala 
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and BNST which may contribute to stress-induced relapse (79). Deep brain 

stimulation of the BNST has turned out to be a promising treatment for obsessive-

compulsive disorders (OCD) (80). In the recent past, the BNST has gained attention 

as treatment target for anxiety and addiction due to its bidirectional connectivity with 

the VTA (the key node within the brain’s reward system) and the significant co-

morbidity between mood/anxiety disorders and substance use disorders.  

Historically the HPA axis and the LC-noradrenaline system were the main brain 

networks that have been in focus studying the stress response, whereas the 

dopamine (DA) system was considered as the drug-and natural-reward circuit of the 

brain. Over the past few years, numerous studies clearly demonstrated that also 

acute and repeated stress and aversive events activate dopaminergic neurons within 

the mesocorticolimbic pathway and can induce neuroadaptations resulting in 

intensified neuronal responses to later aversive and rewarding stimuli (81, 82). 

Dysregulation in dopaminergic neurocircuitries has been linked to many psychiatric 

and neurological disorders such as Parkinson’s disease, schizophrenia, drug abuse 

and depression. It is hypothesized that the origin of pathology lies within the complex 

afferent modulation of neuronal activity in this brain region (83). The VTA and 

substantia nigra pars compacta (SNC) include a group of adjacent neurons located in 

the ventral midbrain that represent the majority of dopaminergic cell bodies in the 

brain and the origin of the mesocorticolimbic circuit and other dopamine pathways. 

Initially, electrophysiological and behavioral studies have led to the conclusion that 

these DA neurons constitute a homogenous neuronal population which is uniformly 

activated by natural (e.g., food, sex, social interactions) and artificial rewarding (e.g., 

drug abuse), as well as reinforcing processes or reward-predictive cues (84). Several 

studies called this simplified acceptance into question as it was shown that dopamine 

neurons are potently excited in response to aversive stimuli and stressful events. For 

example, stress stimulates the release of CRH into the VTA and leads to increased 

dopamine neuron firing via CRHR1 dependent activation of the PLC–PKC signaling 

pathway (85). In addition, physical/psychological stress induces dopamine release in 

VTA projecting regions such as striatum, nucleus accumbens and medial frontal 

cortex (86, 87). The implementation of technical advances in optogenetics, mouse 

genetics and viral-mediated tracing techniques in combination with behavioral studies 

enable the dissection of neuronal cell types and connectivities within the midbrain 

dopaminergic system with unprecedented precision. Neurons within the VTA differ in 
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their cytoarchitecture, dopaminergic content, electrophysiological properties and 

connectivity within the reward circuitry (88). The VTA is made up of a mixture of 

~70% dopaminergic (identified by the expression of tyrosine hydroxylase protein), but 

also ~30% γ-aminobutyric-acid (GABA) neurons (specified by their expression of 

glutamic acid decarboxylase (GAD) 65 or 67 mRNA or vesicular GABA transporter 

(VGAT) mRNA) and a small population (~2-3%) of glutamatergic neurons 

(expressing the vesicular glutamate transporters (VGLUTs) mRNA). Moreover, 

subpopulations of VTA neurons were identified which are capable of releasing two 

neurotransmitters (DA and GABA, or DA and glutamate) and it seems likely that this 

multiplexed neurotransmission underlies heterogeneous responses of distinct VTA 

neurons (89, 90). Furthermore, the rostral and caudal subnuclei of the VTA possess 

clear topographical differences with respect to connectivities and behavioral outputs 

(91). One potential mediator that links the brain reward and stress system is CRH 

and its receptors CRHR1/CRHR2. Recently Grieder and colleagues could identify a 

subpopulation of dopaminergic neurons in rodents and humans (highest density in 

the posterior VTA) that express CRH which is released after chronic exposure to 

nicotine and blocks nicotine-induced activation of GABAergic input onto 

dopaminergic neurons via the CRHR1 (92). In vivo microdialysis demonstrated 

dynamic extracellular CRH changes in different subregions of the VTA during acute 

and repeated stress, which promotes increased cocaine taking and -seeking (88). 

These results demonstrate that the two systems (Dopamine and CRH) interact with 

each other in the VTA and that CRH is able to modulate dopaminergic 

neurotransmission. With regard to the drug addiction field, it is hypothesized that the 

brain stress system impacts key elements of the addiction cycle, particularly in the 

withdrawal state. Drug abuse may sensitize the dopaminergic system to the actions 

of CRH and continuous cycles of drug abuse/withdrawal lead to hyperactivation of 

the CRH/CRHR1 system, which provokes a negative emotional state that 

predominates the acute positive hedonic effect of drug abuse (pleasure, 

contentment). This allostatic load is then responsible for the transition to drug 

dependence and relapse because the drug abuse alleviates the CRH/CRHR1-

mediated counter regulatory negative emotional symptoms of withdrawal (93, 94). 

In recent years, several studies linked the brain’s reward regions to mood disorders 

such as depression and anxiety, partly because of the fact that most depressed 

patients exhibit anhedonia (reduced ability to feel pleasure), appetite disturbances 
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and loss of motivation - core symptoms that involve alterations in reward signaling 

(95). Studies in mice using viral mediated locally overexpression of a dominant 

negative mutant K+ channel - thereby exciting all VTA neurons regardless of 

projection or cell-type - resulted in social defeat stress-induced social avoidance and 

anhedonia and point towards the involvement of hyperactive dopaminergic neurons 

in stress-induced behavioral pathology (96). By using circuit-specific optogenetic 

tools Chaudhury and colleagues could demonstrate that increased phasic firing of 

dopaminergic VTA-nucleus accumbens (NAc) projecting neurons mediates stress 

susceptibility (97). Other studies indicate a possible bidirectional role of VTA 

dopamine neurons in the stress response, depending on the strength and nature of 

the stressor. For example, chronic cold stress (a relative mild stressor compared to 

above mentioned social defeat stress) decreases the activity of dopaminergic 

neurons in the VTA in contrast to restraint stress that increases DA neuron activity 

(98). Cell-type specific genetic deletion of CRHR1 in midbrain dopaminergic neurons 

increases anxiety-like behavior and reduces dopamine release in the prefrontal 

cortex, suggesting an anxiolytic role for CRHR1 in this specific neuronal 

subpopulation (99). Dedic and colleagues identified a subset of CRH expressing 

GABAergic BNST-VTA projecting neurons that target the CRHR1 on dopaminergic 

neurons and modulate emotional behavior by positively regulating dopamine release 

(100). So far the existing studies highlighted the complexity and heterogeneity of the 

mesolimbic dopaminergic circuits and suggest that CRH might differently modulate 

dopaminergic neurotransmission under basal and stress conditions (101). Future 

research depicting the specific molecular pathways within the mesolimbic and other 

dopaminergic circuits, which regulate mood and motivation, will open up new 

avenues for the development of antidepressant medications. New molecular targets 

in brain reward circuits represent potential therapeutic objectives also for treatment of 

drug abuse, as there is a high rate of co-morbidity between depression and addiction 

(81, 102). The first studies in humans have found encouraging antidepressant effects 

of deep brain stimulation of the medial forebrain bundle (MFB) - a white matter tract 

that mediates, among other regions, connectivity between the VTA and nucleus 

accumbens (NAc) (103).  
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2.2  The CRH family and their respective receptors 

 

Corticotropin-releasing hormone, also known as corticotropin-releasing factor or 

corticoliberin is a 41-amino acid neuropeptide in mammals derived from a 196-amino 

acid preprohormone, that was originally isolated and described in 1981 by Vale and 

colleagues (6). Initially it was considered to name the newly discovered peptide 

“Amunine” (Greek word for “to defend”) to emphasize that the CRH-mediated 

activation of the hypothalamic-pituitary-axis reflects an “acute defense of 

homeostasis” (104). Even at that time the Vale group sensed an important role for 

CRH beyond stimulation of ACTH secretion and it did not take long until Nemeroff 

and associates published experimental evidence for elevated CRH levels in the 

cerebrospinal fluid of patients with major depression (11) and reduced CRH binding 

sites in the frontal cortex of suicide victims (12). Subsequent studies found Crh 

mRNA and protein to be widely expressed in the central nervous system and to some 

extent in peripheral tissues (e.g., skin, placenta, thymus, gastrointestinal tract). In the 

brain, the main site of CRH production is the parvocellular division of the PVN, which 

projects to the median eminence. Furthermore, it is expressed in the olfactory bulb, 

cortex, nucleus accumbens, central nucleus of the amygdala (CeA) - mainly in the 

lateral subdivision (CeAL), bed nucleus of the stria terminalis (BNST), interstitial 

nucleus of the posterior limb of the anterior commissure (IPAC), hippocampus (only 

scattered interneurons), lateral hypothalamic area, medial geniculate nucleus, 

periaqueductal grey, raphe magnus, Barrington’s nucleus, medial vestibular nucleus 

and inferior olive (69, 71, 105, 106). CRH is also expressed in the spinal cord, 

indicating a role in the peripheral stress response (6, 107). In summary, it can be said 

that CRH is the main regulator of HPA axis activity during stress, thereby 

coordinating the neuroendocrine response. In addition, the presence of Crh mRNA in 

the other brain regions, mainly limbic and related to the stress response, such as 

BNST, CeA, cerebral cortex and dorsal root ganglion neurons of the spinal cord 

suggests that this peptide also modulates neuronal activity. It thereby acts as a 

neuromodulator and plays an important role in controlling behavioral and autonomic 

responses to stress (108). 

The characterization of CRH was followed in 1995 by the identification of urocortin 1 

(UCN1) (109), another mammalian CRH-related peptide (45% sequence identity) 

involved in the stress response. More recently two additional members of the CRH-
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family, namely urocortin 2 (UCN2, also called “stresscopin-related-peptide”) and 

urocortin 3 (UCN3, also called “stresscopin”) were discovered, representing a distinct 

evolutionary branch within the family (110, 111). Recent phylogenetic studies 

revealed that the “CRH-family” evolved from one ancestral gene, developing into two 

branches (CRH/UCN1 and UCN2/UCN3) through an early gene duplication event 

(112, 113). Compared to the more widespread distribution of CRH, the expression of 

the urocortins is restricted to particular brain areas and some peripheral organs. The 

main expression site for UCN1 is the Edinger-Westphal nucleus, where it is assumed 

that UCN1 expressing neurons contribute to some stress-related effects (114, 115). 

Central UCN2 is detectable in the PVN, supraoptic nucleus, brainstem nuclei and LC 

(110). Highest levels of peripheral UCN2 expression have been reported in skeletal 

muscle and skin (116). UCN3 is expressed in the medial amygdala, BNST, superior 

paraolivary nucleus, nucleus parabrachialis and the premammillary nucleus. In the 

periphery UCN3 expression has been detected in the small intestine (mucosal cells 

in the intestinal crypts and goblet cells) and in pancreatic beta-cells (117).  

CRH and its related peptides exert their biological activity via two subtypes of G 

protein-coupled heptahelical receptors, CRHR1 and CRHR2, which were discovered 

in 1993 (118) and 1995, respectively (119). In humans and rodents CRHR1α 

represents the main and fully functional isoform of the CRHR1 (120), whereas the 

CRHR2 gene encodes for three functional splice variants (variant a, b, c in humans; 

variant a and c in rodents) (118, 119, 121, 122). G protein–coupled receptors 

(GPCRs), also known as seven-transmembrane domain receptors, constitute a 

superfamily of receptors that transduce extracellular signals across the cell 

membrane and activate intracellular signal transduction pathways. GPCRs 

dysfunction/dysregulation has been linked to several human diseases and because 

of their role in cell signaling and the high number of receptors that are potentially 

druggable, this receptor family represents an important pharmaceutical target, 

estimated to be the objective of more than 40% of the drugs used in modern clinical 

medicine today (123, 124).  

 

2.2.1 CRHR1 signal transduction 

 
CRHR1 and CRHR2 belong to the class B1 or secretin family of GPCRs and consist 

of a large extracellular N-terminus (ECD1) and three extracellular loops (extracellular 
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domain ECD2-4), seven transmembrane domains (TM1-7), three intracellular loops 

(intracellular domain ICD1-3) and the C-terminal intracellular tail including a class I 

PDZ-binding motif (ICD4) (125). The seven transmembrane and intracellular domains 

of both receptors show the highest degree of sequence conservation (85-90% 

identity), especially the ICD3 which is 100% conserved in all CRH receptors and 

represents the putative coupling site for G proteins (104) (Figure 2). 

 

Figure 2: Schematic representation of the corticotropin-releasing hormone receptor 
type 1 (CRHR1) 

The CRHR1 belongs to the secretin family (subfamily B1) of G protein-coupled receptors that 
consist of an extracellular N-terminus, seven transmembrane spanning segments (TM1-7) 
connected by three extra- and intracellular loops/domains (ECD, ICD) and an intracellular C-
terminus. For details, see text. 

The N-terminal ECD1 represents the major ligand binding site of the receptors where 

binding of CRH/Urocortins leads to receptor activation in a two-step mechanism, the 

so called “two-domain” model: the C-terminus of the ligand binds the extracellular N-

terminus of the receptor, thereby promoting interaction of the N-terminal ligand 

segment with the receptor’s juxtamembrane domains resulting in a conformational 

active signaling state with increased affinity for stimulatory heterotrimeric GTP 

binding proteins (Gs and Gq). Subsequently the Gsα subunit couples to the 

receptor’s third intracellular loop resulting in an activation of the transmembrane 
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adenylyl cyclase (tmACs), which increases the level of the second messenger cyclic 

AMP (cAMP) and produces a ~1300 fold increase in the receptor’s affinity for 

CRH/UCNs. Recently, Silberstein and colleagues provide evidence for a separate 

cAMP source, produced by the soluble adenylyl cyclase (sAC), which is distributed 

throughout the cell and activated by CRHR1-induced intracellular calcium increase 

and after receptor internalization (126). Through activation of protein kinase A (PKA) 

CRHR agonists can activate cytosolic downstream events such as cAMP response 

element-binding protein (CREB) and extracellular signal-regulated kinase (ERK1/2) 

phosphorylation which in turn initiate events in the nucleus at the level of gene 

transcription via CREB (127, 128). Furthermore, CRHR1 receptors can activate the 

phospholipase C (PLC) - protein kinase C (PKC) pathway via coupling to the Gqα 

subunit. Activation of the CRHR1 has been shown to increase formation of other 

second messengers, such as triphosphoinositol (IP3), diacylglycerine (DAG) and to 

increase intracellular Ca2+ levels via PLC mediated hydrolysis of phosphatidylinositol-

bisphosphate (PIP2). There is evidence that PKC-mediated phosphorylation is 

involved in CRHR desensitization depending on the cellular context (129). Beside 

above described signaling cascades, CRHRs have also been shown to activate a 

variety of other pathways such as the NO/cGMP pathway (involved in the control of 

vascular tone), the Akt/protein kinase B (PKB) pathway, the caspase pro-apoptotic 

pathway, the NF-κB- and Nur1/Nur77 pathway and other transcription factor 

pathways (129, 130). To prevent cellular overstimulation different intracellular 

mechanisms, such as receptor phosphorylation by second messenger-activated 

PKA/PKC or G protein-coupled receptor kinases (GRKs), homologous 

desensitization via uncoupling from G-proteins and lysosomal degradation have been 

described (131). GRK3 is the major regulator of CRHR1 phosphorylation and 

requires Gβγ-subunits for its recruitment and association with the C-terminus of the 

receptor. Receptor phosphorylation leads to translocation of β-arrestins to the plasma 

membrane and binding to the receptor which initiates receptor uncoupling, 

internalization and desensitization of signaling (132). In a recent publication Bender 

and colleagues provide experimental evidence for an interaction of the C-terminal 

PDZ binding motif (amino acids S412-T413-A414-V415) of CRHR1 with members of the 

membrane-associated guanylate kinase (MAGUK) family, such as MAGI2 (125). 

MAGUK proteins can attenuate CRHR1 internalization and endocytosis of CRHR1 

upon stimulation with CRH by interfering with β-arrestin recruitment to the receptor 
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(133). Recently the crystal structure of the CRHR1-transmembrane domain has been 

published which will enable structure-based approaches to drug design (134). 

Moreover, it has become apparent that many GPCRs exist in a constitutively active 

state, where activation of the receptor and stimulation of intracellular signaling 

pathways occurs ligand- independent (135). Constitutively active mutant receptors 

are useful experimental tools for academic and industrial research; e.g., replacing the 

N-terminal domain of the CRHR1 by the amino-terminal residues (1-16) of CRH 

resulted in a chimeric receptor which displays significant levels of constitutive 

activation, measured by increased levels of intracellular cAMP (136). By applying this 

approach it was demonstrated that local CRH signaling onto adult-born neurons 

promotes/stabilizes chemical synapses in the rodent olfactory bulb (137). By using 

structural modeling and mutagenesis Yin and colleagues could identify two key 

structural elements that stabilize the inactive state of GPCRs and mutations in this 

conserved polar core next to TM6 of the CRHR1 induces constitutive G-protein 

signaling (138). Dissecting CRHR1-signaling complexity and regulatory mechanisms 

of tissue- and agonist-specific cellular responses is an essential prerequisite for 

exploiting the potential of CRHRs as novel therapeutic/drug targets (Figure 3). 
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Figure 3: Major CRHR1 downstream signaling and trafficking pathways 

For details, see text. Abbreviations: (AC) adenylyl cyclase; (ATP) adenosine triphosphate; 
(cAMP) cyclic adenosine monophosphate; (CREB) cAMP response element-binding protein; 
(DAG) 1,2-diacylglycerol; (ERK1/2) extracellular signal-regulated kinase; (GDP) guanosine 
diphosphate; (IP3) triphosphoinositol; (GRK) G protein-coupled receptor kinase; (GTP) 
guanosine triphosphate; (PIP2) phosphatidylinositol-bisphosphate; (PKA) protein kinase A; 
(PKC) protein kinase C; (PLC) phospholipase C   

 

 

 

  



  Literature 

19 
 

2.2.2 Distribution and expression of CRHRs  

 
Although both receptors share ~70% amino acid identity, they differ in their tissue 

specific distribution as well as in their binding affinities. CRHR1 displays highest 

affinity for CRH and UCN1, binding both with similar affinity. In contrast to CRHR2, 

whose binding affinities to CRH-related peptides can be ranked as follows: 

UCN1>UCN2>UCN3>>CRH (129, 139). Additionally, the biological effects of CRH 

and UCN1 are not only controlled by CRH receptors, but also via a 37kDa 

glycoprotein, the CRH-binding protein (CRH-BP). Latest studies support the thesis 

that CRH-BP plays an inhibitory role via binding CRH, UCN1 and to a lesser extent 

UCN2, thereby sequestering them away from their respective receptors CRHR1 and 

CRHR2 resulting in decreased action at hormonal and synaptic levels (140, 141).  

Both receptors are widely expressed in a number of tissues, however the CRHR1 is 

predominantly found in the CNS compared to CRHR2, which is detected to a greater 

degree in the periphery. A number of studies based on mRNA in situ hybridization 

and high-affinity radioligand binding (mainly in rodents), have indicated that CRHR1 

is found throughout the brain, for instance in the olfactory bulb, cerebral cortex (high 

levels of expression in cortical layer IV), hippocampus (CA1, CA2 and polymorph 

layer of the dentate gyrus), BNST, basolateral amygdala, reticular thalamic nucleus, 

globus pallidus, VTA, raphe nucleus and cerebellum (29, 142). A more detailed 

analysis revealed CRHR1 expression in distinct neurotransmitter systems, e.g., 

receptor expression in glutamatergic neurons of cortex, hippocampus and basolateral 

amygdala, in GABAergic neurons in the reticular thalamic nucleus, globus pallidus, 

septum and BNST, dopaminergic neurons in the VTA and SNC and 5-HT neurons in 

the raphe nuclei (99). It is also detectable at high levels in the anterior pituitary, 

where CRH/CRHR1 interaction initiates the synthesis and release of ACTH. 

Additionally, it can be found in a number of peripheral tissues, e.g., skin, eye, female 

reproductive tract, adrenal gland and gastrointestinal tract. Expression of the receptor 

in the spinal cord points towards a role in peripheral stress adaptive processes (41, 

143). In contrast, expression of CRHR2 is more restricted in the brain, compared to 

CRHR1. The predominant expressions sites comprise the dorsal and median raphe 

nuclei, lateral septum, BNST, ventromedial hypothalamic nucleus and the choroid 

plexus. In the periphery the receptor has been found in the heart, lung, 

gastrointestinal tract, adrenal gland, skeletal muscle and male reproductive system 

(139) (Figure 4). 
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Figure 4: Schematic illustration of the CRH family and their cognitive receptors  

Top: binding affinities of CRHRs and CRH-BP for CRH and the urocortins (dashed arrow 
indicates lower affinity); CRH binds with higher affinity to CRHR1 compared to UCN1. UCN2 
and UCN3 are selective ligands for CRHR2. CRH binding protein (CRH-BP) can “sequester” 
CRH and UCN1 thereby regulating the availability of the peptides.  
Bottom: spatial distribution of the “CRH ligand family” and their receptors; Abbreviations: (7) 
nucleus facialis; (12) nucleus hypoglossus; (Amb) nucleus ambiguus; (AON) nucleus 
olfactorius anterior; (AP) area postrema; (Apit) anterior pituitary; (ARC) nucleus arcuatus; 
(BLA) basolateral amygdala; (BNST) bed nucleus of stria terminalis; (CA1-3) field CA1-3 of 
hippocampus; (CC) corpus callosum; (CeA) central amygdala; (Cereb) cerebellum; (CingCx) 
cingulate cortex; (CoA) cortical amygdalar nucleus; (CPu) caudate putamen; (DBB) diagonal 
band of Broca; (Deep N) deep nuclei cerebellum; (DG) dentate gyrus; (FrCx) frontal cortex; 
(IC) inferior colliculus; (IO) inferior olive; (Ipit) intermediate lobe pituitary; (LC) locus 
coeruleus; (LDTg) laterodorsal tegmental nucleus; (LSO) lateral superior olivary complex; 
(MeA) medial amygdala; (MePO) medial preoptic nucleus; (MS) medial septum; (NTS) 
nucleus solitary tract; (OB) olfactory bulb; (OccCx) occipitale cortex; (PAG) periaqueductal 
grey; (ParCx) parietal cortex; (PFA) perifornical area; (PG) pontine grey; (Ppit) posterior 
pituitary; (PPTg) pedunculopontine nucleus; (PVN) paraventricular hypothalamic nucleus; (R) 
nucleus ruber; (RN) raphe nuclei; (SC) superior colliculus; (SN) substantia nigra; (SON) 
supraoptic nucleus; (Sp5n) nucleus spinalis trigemini; (SPO) superior paraolivery nucleus. 
With permission from Dr.Jan Deussing. 
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2.3 The role of CRH receptor 1 in stress-related disorders 

 

Over the past few years many studies including pharmacological approaches, 

conditional and conventional mouse models for the CRH/CRHR1 system and viral-

based methods have been conducted, which clearly support a role for CRH/CRHR1 

in neuroendocrine, autonomic and behavioral changes, which are implicated in 

stress-related disorders with a strong emotional component, e.g., anxiety, depression 

and post-traumatic stress disorders (16, 144, 145). Many clinical findings such as 

elevated CRH levels in the cerebrospinal fluid of patients with depression or with 

posttraumatic stress disorders, reduced CRH binding sites in the forebrain of 

depressed suicide victims, elevated number of CRH secreting neurons in the PVN of 

patients with depression and a blunted ACTH response to exogenous CRH 

application have supported the assertion that abnormal CRH neuromodulation and 

CRHR1 signal transduction play a leading role in the pathophysiology of stress-

related disorders (14, 15). Several human genetic association studies suggest an 

interaction between genetic CRHR1 variations (single nucleotide polymorphisms, 

SNPs) and the risk for stress-related disorders including depression and anxiety. Two 

SNPs (rs878886 in the 3’ UTR of the CRHR1 gene and rs28632197 in the 

vasopressin 1B receptor, AVPR1B) are significant associated with panic disorder 

(146). Several studies reported an association of SNPs within the CRHR1 with 

response to antidepressant treatment in patients with anxious depression (147, 148). 

Another set of studies analyzing gene x environment interactions demonstrated a 

strong relation of intronic CRHR1 SNP rs4792887 and stressful life events in terms of 

suicide attempts in depression (149). The SNP rs1876831 links negative life events 

and adolescent alcohol consumption (15, 150). It is likely, that the sum of genetic 

variants within the CRH system and interactions with environmental factors influence 

the susceptibility to stress-related psychiatric disorders potentially by altering the 

impact of stress on epigenetic signatures.  

In addition to human genetic studies a large number of rodent studies in which CRH 

was either injected into the brain (via intracerebroventricular administration) or 

genetically overexpressed, thereby modeling the same etiology that triggers human 

depression, clearly demonstrated that CRH accounts for behavioral changes related 

to affective disorders: increased anxiety and arousal, decreased sexual interest and 

appetite, sleep disturbances and others (151). Importantly, chronic hypercortisolism 
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alone is not sufficient to explain altered anxiety-related behavior as has been proved 

by a genetic mouse model discriminating direct effects of centrally hypersecreted 

CRH from those resulting from HPA axis hyperactivity. In general, central CRH 

hyperdrive on its own or in synergism with elevated glucocorticoid levels is 

responsible for enhanced anxiety-related behavior (152). Centrally administered 

CRHR1 antagonist or Crhr1 antisense mRNA decrease stress-elicited anxiety-related 

behavior and therefore strongly point towards a role of CRHR1 in mediating these 

behavioral changes (153). However, questions regarding the specificity of the 

antagonist and the antisense mRNA, as well as the fact that acute administration of 

exogenous peptides does not mimic long-lasting CRH effects prompted the 

generation of transgenic mice overexpressing (gain-of-function mutants) or lacking 

(loss-of-function mutants) the CRHR1 and further members of the “CRH-family” and 

provided valuable insights into the underlying brain neurocircuits (9, 154).  

 

2.3.1 Loss-of-function mouse models targeting the CRHR1 

 

In 1998, two independently generated conventionally CRHR1 knockout mouse lines 

consistently supported that CRHR1 mediates anxiogenic behavior (155, 156). 

Behavioral studies in both lines revealed reduced anxiety-related behavior under 

basal conditions. However, this targeting strategy has two drawbacks: first, due to the 

conventional targeting approach also anterior pituitary corticotrophs are lacking a 

functional active receptor, resulting in disrupted HPA axis activity, including reduced 

basal and stress-induced corticosterone levels. For this reason, it cannot be excluded 

that the altered glucocorticoid levels in these mouse lines are the main reason for the 

observed behavioral effects. Second, the ablation of a gene during embryogenesis 

might lead to compensatory mechanisms that can mask the direct effects of the 

receptor (157). To overcome the limitations a conditional CRHR1 knockout mouse 

line was generated, using the Cre/loxP system to dissect CRH/CRHR1 pathways 

responsible for the behavioral phenotype, from those controlling neuroendocrine 

functions (158). In this mouse model Cre recombinase expression under the control 

of the Camk2a promoter leads to a postnatal deletion of CRHR1 in limbic forebrain 

regions such as the hippocampus, cortex, amygdala and BNST. As expected basal 

plasma glucocorticoid and ACTH levels were normal, but disruption of CRH/CRHR1 

pathways in limbic neurocircuits significantly reduced anxiety-related behavior. 
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Further studies revealed that CRHR1 in forebrain limbic neurocircuits not only 

modulates emotional but also cognitive responses (159, 160). In addition to genetic 

loss-of-function studies, viral-mediated knockdown of Crhr1 mRNA expression is 

another useful technique to study neuronal function in the rodent brain in a spatial- 

and time- dependent manner. Sztainberg and colleagues targeted the CRHR1 in the 

basolateral amygdala (BLA) and in the external segment of the globus pallidus (GPe) 

via stereotactic delivery of lentiviral vectors expressing small interfering RNA directed 

against the receptor mRNA. Consistent with the results from genetic knockout mice 

outlined above, downregulation of the CRHR1 in the BLA significantly decreases 

anxiety-related behavior, whereas knockdown of CRHR1 in the GPe revealed a 

previously unexpected anxiolytic role of the receptor by modulating release of 

enkephalin from the striatum to the GPe (161, 162). More recently, the role of 

CRHR1 regarding the link between stress, addiction and reward was investigated via 

knockdown of the receptor in the VTA. CRHR1 knockdown within the VTA is not 

critical regarding self-administration behavior for cocaine or sucrose but effectively 

blocked stress- and cue-induced reinstatement of cocaine seeking (163). In addition, 

it was shown that the knockdown of the receptor enhances tone-conditioned fear 

most probably via modulation of GABAergic signaling (164). Future studies designed 

to dissect the specific CRH inputs to VTA subnuclei as well as the subcellular 

localization of the receptor are necessary to unravel the underlying neurocircuits that 

modulate aversive learning and memory. 

Nevertheless, one question remained unanswered for some time: which are the 

CRH/CRHR1-controlled neurotransmitter (NT) circuits that adjust stress-related 

behavior (see following chapter).  

 

2.3.2 Dissecting CRH/CRHR1-dependent neurocircuitries in the central 

nervous system  

 

To address the question of neurotransmitter identity a dual approach using double in 

situ hybridization and double immunohistochemistry was chosen to circumvent the 

lack of specific antibodies for CRHR1 (99). With these methods expression of Crhr1 

mRNA was detected/confirmed in forebrain glutamatergic neurons of the 

hippocampus and cortex, in dopaminergic neurons of the VTA and SNpc, in 

GABAergic neurons of the reticular thalamic nucleus (Rt), globus pallidus (GP) and 
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septum and in very few serotonergic (5-HT) neurons of the dorsal and median raphe 

nucleus. To dissect the underlying neurocircuits, a conditional CRHR1 knockout 

mouse line in which the exons 9 to 13 are flanked by loxP sites (158) was bred to a 

selection of neurotransmitter-specific Cre-driver lines, thereby deleting CRHR1 in 

forebrain glutamatergic (Nex-Cre), forebrain GABAergic (DLX5/6-Cre), midbrain 

dopaminergic (Dat-CreERT2) and hindbrain serotonergic (ePet-Cre) neurons. 

Disruption of CRH/CRHR1 signaling in glutamatergic neurocircuits resulted in an 

anxiolytic phenotype, a result that is in Iine with the forebrain-specific knockout line 

described above. No anxiety-related phenotype was observed in intercepted 

GABAergic and serotonergic circuits. On the contrary, an increased anxiety-like 

phenotype was observed when specifically deleting the receptor from midbrain 

dopaminergic neurons in the VTA and SNC. These results uncover a previously 

unrecognized bidirectional role of the CRHR1 with regards to anxiety, meaning that 

CRH/CRHR1 controlled anxiogenic glutamatergic and anxiolytic dopaminergic 

neurocircuits orchestrate adaptive emotional responses to stressful challenges in an 

antagonistic manner to keep the system balanced. In this context, it is important to 

note that the predominant view that CRH acts as a generally “aversive” neuropeptide 

with regard to stressful stimuli has to be reconsidered (8). This insight has also been 

supported by Lemos and colleagues who demonstrated a switch-over of CRH action 

in the nucleus accumbens from appetitive to aversive after stress (101). A most 

recent study further supports the existence of an “anxiolytic” CRH/CRHR1 circuit. 

The study revealed a novel population of CRH-expressing long range projecting 

neurons localized in the BNST and CeA targeting CRHR1-expressing dopaminergic 

neurons in the VTA/SNC that positively modulate dopaminergic neurotransmission in 

the prefrontal cortex and thereby decrease anxiety-related behavior (100). To 

summarize, the role of the CRH/CRHR1 system in HPA axis regulation as well as 

regulation of emotional behavior is well characterized (reviewed in Dedic et al., 2017) 

(Figure 5). Future challenges in this research field such as dissecting “aversive” 

versus “appetitive” CRH/CRHR1 pathways require more sophisticated tools enabling, 

e.g., bidirectional control of neuronal activity or anterograde/retrograde Cre 

dependent tracing strategies to visualize ligand/receptor connectivities in specific 

brain circuitries.  



  Literature 

25 
 

 

Figure 5: Summary of pioneering genetic mouse models targeting the CRH receptor 

type 1 

 

2.4 Cre-driver mouse lines for neural circuit mapping 

 

Since the first isolation of CRH in 1981 and its high affinity receptor CRHR1 in 1993, 

there has been remarkable progress in the field of stress research. Recently, two 

comprehensive studies dissected the neurochemical identity of CRH- and CRHR1-

expressing neurons in the mouse brain and revealed a bidirectional role of the 

CRH/CRHR1 system in modulating anxiety-related behavior (99, 100). Unraveling 

the underlying neurocircuits represents a major challenge in the future and requires 

additional genetic tools that allow for labeling, modulation of gene expression and 

manipulation of cellular activity in specific cell types and/or anatomical regions (165, 

166). To date genetically engineered mouse lines and viral vectors represent popular 

strategies in psychiatric research. In mice, the Cre/loxP recombinase system from 

the bacteriophage P1 has evolved as a powerful tool for cell-type specific 

manipulations. Cre (“causes recombination”) belongs to the integrase family of site 

specific DNA recombinases and recognizes a 34bp nucleotide sequence named loxP 

(“locus of crossing over”), thereby catalyzing recombination between two loxP sites 

depending on their orientation (167). A loxP site is composed of two 13bp-inverted 

repeats flanking an 8bp asymmetric spacer that determines directionality of the site. 

Cre-mediated recombination between two directly repeated loxP sites will finally 

result in the deletion of the intervening sequence. In contrast, opposing orientation of 

loxP sites lead to continuous inversion of the loxP flanked (“floxed”) DNA. In addition 

Cre can also exchange sequences distal to loxP sites present on two linear DNA 
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molecules and integrate DNA sequences from a circular DNA molecule (168). If the 

Cre recombinase gene is placed downstream of a specific promoter and combined 

with “inducible” conditional tools, then cell type-specific genomic manipulations are 

possible. In the past, many gene-specific Cre-driver mouse lines have been 

generated by either conventional- or bacterial artificial chromosome (BAC) 

transgenic- or knock-in approaches. In general the latter technique reflects 

endogenous gene expression more precisely compared to random transgenic 

insertion (169). Regardless which approach is selected, a detailed characterization of 

Cre expression is mandatory as various caveats to the functionality of Cre-driver 

mouse lines ,e.g., mosaic deletion activity, ectopic expression, sex differences and 

Cre toxicity have been reported (170). Regarding the members of the “CRH-family” 

various Cre-driver mouse lines have been generated in the past: three CRHR2-Cre, 

two UCN3-Cre lines and six CRH Cre-driver lines (reviewed by Dedic et al., 2017) 

(overview see Table 1; modified from Dedic et al., 2017). 

 

Table 1: Summary of Cre-driver lines targeting the CRH/UCN system 

Transgenic Line Targeting Strategy Expression/Phenotype Reference 

CRFp3.0Cre Transgenic: 
3.0kb of CRH 
regulatory elements 
upstream of the 
START codon were 
cloned in front of the 
Cre coding sequence 
and a mouse line 
was generated via 
pronuclear injection 
of the linearized 
construct 
 

Cre expression pattern matched 
CRH expression in a subset of 
neurons within the central 
amygdala (CeA), bed nucleus of 
the stria terminalis (BNST), the 
paraventricular hypothalamic 
nucleus (PVN) and the cortex; no 
Cre expression in other CRH 
positive neurons within the brain. 
Deletion of the GABA(A)α1 
receptor subunit in CRH specific 
neurons within the BNST, PVN 
and CeA enhances anxiety and 
impairs fear extinction. Deletion of 
the NMDA receptor 1 in CRH 
positive excitatory neurons within 
the CeA enhances fear memory 
acquisition and retention. 
 

(171) 
(172) 
(173)  

CRH-Cre 
(KN282) 

BAC transgenic: 
insertion of the cDNA 
encoding Cre 
followed by a poly A 
signal directly at the 
START codon of the 
CRH gene in BAC 
RP24-239F10 

Partial endogenous gene 
expression pattern; colocalization 
with CRH in the PVN. CRH 
neurons in the PVN are 
modulated by the stress-derived 
neurosteroid THDOC. Loss of 
Gabrd in CRH neurons of the 
PVN decreased stress-related 
behaviors. 
 
 

www.gensat.org 
(174) 
(175) 
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Table 1: Summary of Cre-driver lines targeting the CRH/UCN system 
(continued) 

Transgenic Line Targeting Strategy Expression/Phenotype Reference 

Crh-IRES-Cre Knock-in: 
insertion of an IRES-
Cre cassette 
followed by a poly A 
signal into the 3’ 
UTR (after the 
translational 
termination site) of 
the CRH locus 

Expression of Cre with high 
fidelity to endogenous CRH 
expression sites throughout the 
brain. 
Photoactivation of CRH terminals 
(projections from the CeA) in the 
LC causes increased tonic firing 
of LC neurons and mediates 
stress-induced anxiety. 
Oxytocin-dependent inhibition of 
CRH neurons in the PVN 
attenuates stress-induced HPA 
axis activation and promotes 
anxiolysis. 
CRH represents a marker of 
preoptic sleep neurons. 
 

(106) 
(176) 
(177) 
(178) 

Crh-IRES-Cre 
 

Knock-in: 
insertion of an IRES-
Cre cassette three 
base pairs after the 
STOP codon of the 
endogenous CRH 
gene  

The endogenous CRH promoter 
controls Cre expression and 
reporter gene expression 
recapitulates CRH expression 
pattern. 
NPY Y1 receptor (Y1R) activation 
inhibits CRF neurons within the 
BNST to suppress binge alcohol 
drinking. 
Serotonin engages a CRH 
inhibitory microcircuit within the 
BNST via actions at 5-HT2C 
receptors and silences anxiolytic 
BNST outputs to the VTA. 
Inhibition of CRH neurons 
projecting from the BNST to the 
VTA attenuates binge-like 
drinking. 
 

(179) 
(180) 
(181) 
(74) 

CRH-creERT2 BAC transgenic:  
insertion of an IRES-
CreERT2 fusion gene 
directly at the ATG of 
the human CRH 
locus in BAC RP11-
1006.F7; targeting 
into the upstream 
region of the Hprt 
locus 

Cre expression is regulated by 
CRH promoter elements and Cre 
recombination is induced by 
tamoxifen; Cre expression only 
scattered and mostly absent in 
CRH positive brain nuclei and/or 
unspecific as revealed by reporter 
gene expression (own studies, 
data not published).  
 

www.informatics 
.jax.org 
MGI:5568222 

CRH-Cre (rat) BAC transgenic: 
insertion of a ~2.7kb 
fragment containing 
a modified human 
beta-globin intron 
within the Cre coding 
sequence directly at 
the START codon of 
the CRH gene in 
BAC CH230-206D8 

BAC transgenic CRH-Cre rat; Cre 
expression limited to CeL and 
dorsal BNST neurons; no Cre 
expression detectable in ventral 
BNST and PVN and other CRH 
positive brain nuclei. 
 
 

(182) 
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Table 1: Summary of Cre-driver lines targeting the CRH/UCN system 
(continued) 

Transgenic Line Targeting Strategy Expression/Phenotype Reference 

Ucn3-Cre 
(KF31) 

BAC transgenic: 
insertion of the cDNA 
encoding Cre 
followed by a poly A 
signal directly at the 
START codon of the 
UCN3 gene in BAC 
RP23-332L13 

Cre expression detectable in 
thalamic and hypothalamic nuclei 
and neurons in the caudoputamen 
and midbrain; weak and scattered 
expression detectable in the 
cerebral cortex, basal forebrain 
and olfactory bulb. Comparison of 
tdTomato expression with 
endogenous Ucn3 mRNA 
expression confirmed high 
specificity of the transgenic line 
(~90% of UCN3 cells express the 
reporter protein) in the perifornical 
nucleus (PeF), BNST and MeA. 
Inhibition of the MeA UCN3-
CRHR2 circuit increases pro-
social behavior in mice. 
 

www.gensat.org 
(183) 

Ucn3-Cre 
(KF43) 

BAC transgenic: 
insertion of the cDNA 
encoding Cre 
followed by a poly A 
signal directly at the 
START codon of the 
UCN3 gene in BAC 
RP23-332L13 
 

Cre expression within the 
cerebellum, medulla, pons, 
midbrain, hypothalamus, 
thalamus, amygdala and striatum. 

www.gensat.org 
www.connectivity. 
brain-map.org 

 

 

Crfr2α-eGFPCre BAC transgenic: 
insertion of an 
eGFPCre-SV40pA 
cassette directly at 
the START codon in 
the third exon of the 
Crhr2α gene in BAC 
RP23-78P13 

Comparison of eGFPCre 
expression with endogenous 
Crhr2 mRNA expression 
confirmed high specificity of the 
transgenic line (~87% of Cre 
positive cells contain Crhr2 
mRNA), but restricted to a subset 
of cells in the lateral septum. 
A subset of CRHR2 positive 
projecting neurons within the 
lateral septum enhance stress-
induced anxiety related behavior 
in mice. 
 

(184) 

Crhr2-Cre 
(RT30-Cre) 

BAC transgenic: 
insertion of the cDNA 
encoding Cre,  
followed by a poly A 
signal directly at the 
initiating ATG codon 
of the CRHR2 gene  

 
 
 
 
 
 

 

Scattered signal within the 
hypothalamus; moderate to strong 
signal in the dorsal and ventral 
horn of the spinal cord. 

www.gensat.org 
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Table 1: Summary of Cre-driver lines targeting the CRH/UCN system 
(continued) 

Transgenic Line Targeting Strategy Expression/Phenotype Reference 

CRFR2-chy-Cre 
 

 

BAC transgenic: 
insertion of a 
mCherry-f2A-Cre 
cassette directly at 
the initiating ATG 
codon in the third 
exon of the alpha-
splice variant of the 
Crfr2 gene  

Detection of tdTomato reporter 
gene expression in the olfactory 
bulb, lateral septal nucleus, 
ventromedial hypothalamic 
nucleus, cortical nuclei of the 
amygdala, ventral hippocampus, 
raphe nuclei and posterior BNST. 
Activation of CRFR2 neurons in 
the posterior BNST decreases 
anxiety, attenuates corticosterone 
release after stress, ameliorates 
stress-induced anxiety and 
attenuates memory of the 
stressful event. 
Activation of CRHR2 in the medial 
amygdala increases preference 
for novel mice. 
 

(183) 
(185) 

 

Recently Arenkiel and colleagues generated a BAC transgenic CRHR1-Cre mouse 

line to virally overexpress a constitutively active CRHR1 fused to EGFP (137). The 

Cre recombinase expression pattern was validated via breeding to a lacZ reporter 

line (data not shown) and subsequent comparison with the endogenous CRHR1 

expression sites. Beside this, further characterization has not been shown, an aspect 

that deserves particularly critical scrutiny in view of known problems associated with 

BAC transgenesis, such as random genome integration, variable copy number and 

lack of genomic regulatory elements (186). Almost concomitantly with the present 

thesis, a targeted knock-in strategy was used to generate a mouse line expressing 

Cre recombinase under the endogenous promoter of the CRHR1 (62). An IRES-Cre-

GFP sequence was inserted into the 3’UTR to preserve a functional receptor. For 

validation of the Cre expression pattern Cre-positive males were bred to Ai14 

reporter mice (187), most likely due to the fact that GFP expression levels are not 

sufficient for visualization of Cre expressing cells. CRHR1 expression levels and 

corticosterone levels in CRHR1-Cre mice are reported as unaltered when compared 

to wild-type mice. The authors used this Cre-driver line to dissect the local CRH 

circuitry within the central amygdala and postulate that CRH/CRHR1 signaling in the 

CeA is critical for fear learning at low threat levels (Table 2).  
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Table 2: Summary of Cre-driver lines targeting the CRH receptor type 1 

Transgenic Line Targeting Strategy Validation Reference 

CRHR1-Cre BAC transgenic: 
insertion of the cDNA 
encoding Cre followed 
by a poly A signal 
directly at the START 
codon of the CRHR1 
gene in BAC RP23-
4B21 
 

Crossing to a Rosa-
lacZ reporter line 
(Soriano, 1999); data 
not shown. 

(137) 

CRHR1-IRES-Cre Knock-in:  
insertion of an IRES-
Cre cassette into the 
3’UTR of the 
endogenous CRHR1 
locus 
 

Crossing to the Ai14 
reporter strain (Madisen 
et al., 2010). 

(62) 

 

The expression of Cre recombinase under the endogenous CRHR1 promoter opens 

up new avenues for more precise expression and circuit analyses, especially 

because of the lack of specific antibodies and the low expression levels in certain 

brain regions (99). The following areas of application are of particular interest: 1. 

Breeding to Cre-dependent reporter strains would increase the sensitivity for 

visualization and morphological characterization of CRHR1 expressing cells and 

would enable anterograde tracing of labeled axons (187). Furthermore, it would 

facilitate co-expression analysis, laser capture dissection, fluorescence activated cell 

sorting and electrophysiological measurements 2. Cre-dependent viral delivery of 

transsynaptic tracers for circuit mapping (188) 3. Optically activating or silencing 

CRHR1 expressing neurons via Cre-dependent activation of viral vectors encoding 

opsins (e.g., channelrhodopsin, halorhodopsin) (189) 4. Cell type-specific 

transcriptome and epigenome analyses via breeding to the RiboTag mouse line, or 

Sun1-tagged line, respectively (190). 5. Gain-and-loss-of function approaches 

through breeding of the CRHR1 Cre-driver line to strains possessing “floxed genes”, 

or Cre-inducible expression cassettes, respectively. 
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2.5 Recombinase-mediated cassette exchange (RMCE) 

 
In recent years many Cre-driver mouse lines have been generated either by 

individual laboratories or by large-scale programs such as the gene expression 

nervous system atlas (GENSAT) Cre project, the EU funded project 

EUCOMMTOOLS, the inducible Cre line project from the Institute Clinique de la 

Souris (ICS) and the NIH Neuroscience Blueprint Cre Driver Network program. The 

procedures applied to generate these driver lines comprise classic random 

transgenic insertion of small promotor-driven Cre cDNA or BAC based large insert 

random insertion and several knock-in approaches (169). The targeted knock-in into 

an endogenous locus bears less risk regarding “off target activity” compared to the 

caveats of classic transgenesis, such as insertional mutagenesis, copy number 

variations or integration site dependent position effects. Nevertheless, a careful 

characterization of the Cre-driver line, e.g., breeding to respective reporter strains is 

crucial, particularly with regard to transient activation of expression during 

embryogenesis or deletion in the male/female germline. The term knock-in refers to a 

genetic engineering method which is based on homologous recombination between a 

specifically designed targeting vector and a locus of interest. As a result, the Cre 

recombinase is placed under the control of the promoter and regulatory sequences of 

the target gene and therefore expressed in replacement of the target gene. In 1989 

the first mutant mice obtained by homologous recombination in ES cells were 

reported (169). Since then the basic principles of replacement targeting vectors have 

not changed: a 5’ and 3’ homology arm flank a heterologous DNA sequence, usually 

including a positive selection marker such as the neomycin (neo) or hygromycin (hyg) 

resistance gene and/or a reporter cassette. By flanking the positive selection marker 

with loxP or frt sites it can be removed later from the target locus to prevent 

interference with expression of neighboring genes. Random insertion of the targeting 

vector can be circumvented by insertion of a negative selection marker (e.g., 

thymidine kinase gene, HSV-tk or diphtheria toxin A fragment, DTA) adjacent to the 

target homology. Random integration will result in the integration of the negative 

selection marker into the genome; HSV-thymidine kinase converts the non-toxic 

guanine analogue ganciclovir into a toxic metabolite that will subsequently kill the 

cell, whereas DTA has a direct cytotoxic effect. For gene replacement, the targeting 

vectors are routinely introduced in mouse ES cells, which have the unique ability to 

retain their pluripotency after in vitro culture. Thus, when ES cells are injected into a 
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preimplantation embryo they can contribute to all tissues of the embryo, including the 

germ line. Contribution to germ cell formation leads to transmission of the introduced 

genetic modification to offspring from the chimeric mice (191). Once the so-called 

“parental” ES cell line is established by homologous recombination, recombinase-

mediated cassette exchange (RMCE) enables rapid exchange of sequences flanked 

by specific recombinase target sequences directly in these “parental” ES cells. One 

of the big advantages compared to classical knock-in strategies is the possibility to 

generate ES cells carrying a series of different mutations in a gene of interest, 

derived from only one parental ES cell clone. This subsequently enables efficient and 

timesaving generation of a series of mutant knock-in mice at the locus of interest. To 

date three bacteriophage- or yeast-derived site-specific recombinases (SSR) are 

predominantly used. They belong to either of two families, tyrosine recombinases 

(Tyr) like Cre (recombination target sequence loxP) or Flp (recombination target 

sequence frt) and serine recombinases (Ser) such as ϕC31 integrase (phiC31) 

(recombination target sequence attP and attB) (192). Both family members can 

mediate different types of recombination events (integration, excision and inversion) 

dependening on the orientation of the respective recombination target sequences. 

Cre and Flp act in a reversible manner as they cause two identical recombinant sites, 

which enable consecutive rounds of recombination. The site-specific recombinase 

phiC31 is derived from a Streptomyces phage that catalyzes the integration of 

recombinant DNA containing attB (attachment site Bacterium) sites into a genomic 

target locus harboring attP (attachment site Phage) sites. The completed attP/attB 

recombination event leads to hybrid attL and attR (Left and Right) sites that are not 

substrates for the integrase, thus the exchange is irreversible. Other advantages of 

the phiC31 integrase is the non-necessity for synthetic/heterospecific att-sites and 

the fact that the mouse genome per se contains only a limited number of 

endogenous target sites (so called “pseudo attP sites”). The principle of RMCE using 

phiC31 integrase is depicted in Figure 6. A simultaneous recombination event 

between two heterotypic attP and attB sites results in exchange of cassettes. The 

presence of an excisable selection marker on the incoming plasmid allows for 

positive selection of the desired event. Recombination at the 5’-recognition site (type 

I insertion) or at the 3’-recognition site (type II insertion), respectively is a two-step 

process: first, integration of the complete donor plasmid followed by an integrase 

mediated deletion event between the intact attP and attB sites, resulting in removal of 
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the original “parental” cassette and the plasmid backbone (193). PhiC31 integrase 

mediated methods in mice have been used so far, among others, for transgenesis in 

mouse ES cells (193-195), for generation of transgenic mice via microinjection of 

recombinant DNA into zygotic pronuclei (196), for in vivo gene delivery (197) and for 

gene therapy of hemophilia in factor IX knockout mice (198). Of special significance 

for human stem cell research is the possibility of generating a variety of induced 

pluripotent stem cell (iPSC) lines expressing different transgenes of choice from one 

parental line and subsequent applications in gene therapy (199). 
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Figure 6: Schematic diagram illustrating different scenarios of the phiC31 integrase-
mediated cassette exchange strategy 

(A) Cassette exchange via concurrent recombination between the two pairs of heterotypic 
recognition sites. (B) Type I and type II insertion at the 5’- or 3’- recognition site, respectively. 
In a second recombination step the original “parental” cassette and the plasmid backbone 
are removed through recombination of the intact attP and attB sites. Colored triangles 
represent the different att sites. For details, see text. 

 

2.6 Beyond the Cre/lox system  

 
Expanding the toolbox of SSRs to various members of the “CRH-family” would allow 

for a series of sophisticated experiments to further dissect and manipulate the 

complex neurocircuits and pathways underlying psychiatric disorders. Flp (also 

termed “Flippase” due to the ability of inverting/”flipping” a DNA segment in 

S.cerevisiae) is another site-specific DNA recombinase of the tyrosine recombinase 

family derived from the 2µm plasmid of the yeast Saccharomyces cerevisiae. 

Analogous to the Cre/lox system it recombines DNA at frt (Flp recombinase 

recognition target) sites without the need for cofactors. Although several 

modifications to the Flp coding sequence improved either the thermostability in 

mammalian cells (“enhanced”, Flpe) or the recombination efficiency (“codon-

optimized”, Flpo), the Flp/frt system has never acquired equivalent significance to 

Cre and is most commonly used to remove frt-flanked (“flrted”) selection cassettes 

from targeting constructs (200). Accordingly, only a limited number of Flp-driver lines 

have been established (see mouse genome informatics website, Jackson Laboratory; 

http://www.informatics.jax.org). New on the scene since 2004 is the phage D6 site-

specific DNA recombinase Dre, a tyrosine recombinase closely related to Cre but 

with a distinct 32bp DNA recognition site (rox; region of crossover (x)) (201). With the 

development of a first Dre-deleter mouse strain (202) and more recently Dre-driver 

lines (Nr4a2-SA-IRES-Dre; Pvalb-2A-Dre) and double-dependent reporter lines 

(Ai66) (203) another set of efficient tools with high specificity extend the genomic 

toolbox for genome engineering (204). 

The generation of inducible SSRs variants allows for temporal control of recombinase 

expression at any time, thereby circumventing the problem of “ectopic” expression - a 

result of transient recombinase activation during development and preventing 

potential toxic side effects of high levels of Cre activity (205). The most widespread 

approach to date is the CreERT2 recombinase, which is a Cre recombinase fused to 
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the mutated human estrogen receptor ligand binding domain (LBD) 

(G400V/M543A/L544A triple point mutation, rendering the LBD insensitive to 

endogenous estrogen binding). Thus the CreERT2 recombinase is only activated by 

the systemic or topic administration of Tamoxifen - a synthetic estrogen receptor 

ligand - which is metabolized in the liver to the active form 4-hydroxytamoxifen (4-

OHT). In the absence of 4-OHT the CreER-LBD fusion protein forms a complex with 

heat shock protein 90 (hsp90) which prevents translocation from the cytoplasm to the 

nucleus. Binding of the active inducer 4-OHT leads to dissociation of the complex 

and translocation of CreER-LBD to the nucleus, where Cre-mediated recombination 

of target DNA can occur (167, 206). In the past, numerous CreERT2-driver mouse 

lines have been generated in individual labs and by large-scale projects such as 

GENSAT, NIH Blueprint Cre Driver Network, EUCOMM and others (see mouse 

genome informatics (MGI) web portal for overview). The Institute Clinique de la 

Souris (ICS) has developed a specific CreERT2 database with standardized 

characterization of different inducible Cre mouse lines (http://www.ics-

mci.fr/en/resources-and-technologies/creert2-zoo/). Recently Devine and colleagues 

generated the first inducible DreERT2 driver line for genetic fate mapping of cardiac 

progenitors (207). As an alternative to the CreER-LBD approach new alleles have 

been created via fusion of Cre with a modified E.coli dihydrofolate reductase (DHFR) 

protein. The common antibiotic trimethoprim (TMP), which is easy to administer and 

crosses the blood-brain barrier, constitutes the inducer that stabilizes the rapidly 

degraded Cre/DHFR fusion protein, which is then translocated to the nucleus and 

initiates DNA recombination. TMP-inducible Cre lines are an attractive alternative 

because they exclude the possibility of Tamoxifen binding to native estrogen 

receptors and provide faster temporal control (208). 

Intersectional approaches where reporter gene expression depends on the 

simultaneous presence of two SSRs enable temporal and spatial refined labeling, 

identification and activation/inhibition of neuronal subsets within a larger defined cell 

population (e.g., primary classification according to promoter activity, location or 

connectivity). Intersectional alleles comprise two STOP cassettes disrupting double 

reporter genes; each of the reporter cassettes is flanked by recombinase specific 

recognition sites (e.g., loxP and frt). Thus, the “intersectional” population can be 

selectively marked or activated. Intersectional alleles could also be designed for 

“subtractive” labeling strategies in a way that a “floxed” transcriptional terminator 
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blocks the activity of the reporter and additionally the reporter cassette is flanked by 

frt sites. In this constellation, the expression of the reporter protein is “turned on” by 

Cre recombinase and “turned off” simultaneously in all cells/regions where the 

Flippase is active, which means that only Cre positive/Flp negative cells are labeled. 

Dedic and colleagues identified triple-positive GABAergic/Camk2a/CRH neurons in 

the BNST and CeA by combining this dual-recombinase intersectional method with 

immunohistochemistry. Breeding the RC::FrePe double reporter mouse line (209) to 

Dlx5/6 –Flp mice leads to the expression of mCherry reporter gene in GABAergic 

neurons and subsequent crossing to Camk2a-CreERT2 mice resulted in deletion of 

the loxP-flanked mCherry STOP sequence and expression of eGFP reporter protein 

in double-positive GABAergic/Camk2a neurons. Combination with 

immunohistochemistry against CRH identified a specific CRH subpopulation within a 

fear-suppressing mesolimbic neurocircuit (100). A dual recombinase conditional 

allele (Ai80D mice, Jackson Laboratory, stock no # 025109) which enables 

expression of a mutant channelrhodopsin variant (CatCh) is also available, but 

functional testing if light-induced opsin activation effectively depolarize/activate 

neurons has not been published yet. Fenno and colleagues developed a more 

flexible viral approach-called “INTRsect” (INTronic Recombinase sites enabling 

combinatorial targeting), which circumvents transient developmental promoter activity 

triggering recombinase expression. They expand the DIO (double inverted open-

reading-frame) expression system in a way to independently manipulate ORF 

fragments. Both Flp and Cre recombinases are necessary to produce a complete 

reading frame in sense orientation. Using components of this system, they targeted 

mesolimbic dopaminergic projection neurons within the VTA: a Cre-dependent Flp 

cassette was packaged into a retrograde herpes-simplex virus (HSV) and injected 

into the nucleus accumbens (NAc) of TH-Cre transgenic mice, while a Flp inducible 

targeting construct (AAV-fDIO-ChR2-eYFP) was injected into the VTA. Only VTA-

NAc projecting dopaminergic neurons (TH positive) that both express the Cre and 

are transduced by HSV express Flp and activate ChR2-eYFP expression. With this 

approach it is possible to restrict expression of a reporter to cells which are defined 

by genetic identity and projection pattern (210).  

As alternative to the simultaneous utilization of two different SSRs, the so called 

“split-Cre system”, has been demonstrated as a highly specific technique to generate 

intersectional Cre-drivers. The system is based on the spontaneous 
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complementation of two separately inactive Cre protein fragments (termed NCre, 

amino acids 15-59 and CCre, amino acids 60-343) in overlapping expression sites 

(211). Further development of this method increased the efficiency of split-Cre 

reconstitution, because it prevents dissociation of the two fragments. The “split-intein-

split-Cre”-system is based on Cre-reconstitution through protein splicing. In short, a 

“split-intein” protein from the cyanobacterium Synechocystis sp. has the capability to 

splice the two halves of Cre recombinase (termed Cre-N-Intein-N and Intein-C-Cre-C) 

into one functional protein while excising itself. Targeting the Cre-N to a region/tissue 

specific promoter in combination with the Cre-C being expressed in a cell-type 

specific manner facilitates two-dimensional spatial and temporal (Split-CreERT2-

system) control of DNA recombination and therefore enables the precise genetic 

labeling of a distinct subpopulation (212-215). 

An overview of existing Cre-driver mouse lines related to the CRH/CRHR system is 

listed in chapter 2.4 and was recently reviewed by Dedic et al., 2017. It becomes 

obvious that there are needs for further development of Flp and Dre driver lines 

within the “CRH-family” to use all the possibilities and benefits of above described 

intersectional and subtractive approaches. With the extremely successful advent of a 

genome editing technology known as CRISPR/Cas9 (Clustered Regularly 

Interspaced Short Palindromic Repeats), the rapid generation of numerous 

reporter/recombinase/transcriptional effector knock-ins is achievable. Recently 

Quadros and colleagues published a further development of the technology termed 

“Easi-CRISPR” (Efficient additions with ssDNA inserts-CRISPR), a one-step delivery 

of long single-stranded DNA donors in combination with pre-assembled 

crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes directly into mouse 

zygotes. The robustness, efficiency and high flexibility of this method offers the 

possibility of high-throughput genome engineering applications in the future (216). 
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3 Aim of the thesis and individual development steps 

 
The aim of this study was the generation of a novel Cre mouse line with constitutive 

Cre recombinase activity restricted to CRHR1 expressing cells. 

Initially, a genetic Cre targeting vector was engineered and introduced via RMCE into 

a “pre-inserted docking site” in the genome of embryonic stem (ES) cells. The RMCE 

strategy relies on a multifunctional CRHR1 knock-in allele, which contains targeting 

sites for the phiC31 integrase. The advantage of this knock-in approach into the 

endogenous locus of the CRHR1 gene is the fact, that the Cre expression pattern is 

more likely to reflect endogenous gene expression compared to classical transgenic 

approaches, because all regulatory elements of the targeted gene are present at 

their native position. 

The resulting CRHR1tZCre mouse line however revealed an alternative recombination 

event resulting in Cre expression in a subpopulation of CRHR1 expressing neurons. 

To get rid of a residual reporter cassette and the hygromycin selection cassette a 

consecutive round of breeding was performed. The CRHR1tZCre mouse line was 

crossed with a line expressing the enhanced form of the site specific recombinase 

Flp (FLPeR, “flipper”) to generate the CRHR1 Cre-driver mouse line. 

In the next step both recombinase driver lines, CRHR1tZCre and CRHR1Cre were 

thoroughly analyzed with regard to specificity and efficiency of Cre expression and 

Cre-mediated deletion. 

This new Cre mouse line will allow a variety of sophisticated experiments that will 

contribute to a more precise circuit analysis of CRH/CRHR1 pathways in the brain. In 

this context, a Cre-dependent anterograde viral tracer was used for mapping 

forebrain CRHR1-specific output pathways. Furthermore, this Cre-driver line was 

used for ligand independent mesolimbic pathway activation by expression of a 

constitutively active version of CRHR1 in the VTA. 

In the figure below the generation and characterization of this new Cre-driver line is 

summarized in a flow chart highlighting the critical parameters associated with 

production and validation of Cre-driver transgenic lines. 
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4 Materials 

4.1 Devices 

 
Table 3: Listing of devices 

Device Manufacturer 

AxioCam MRc5 color ccd camera Zeiss, Göttingen, Germany 

AxioCam MRm greyscale ccd camera Zeiss, Göttingen, Germany 

Axioplan 2 microscope Zeiss, Göttingen, Germany 

Balance LP1040 Sartorius,Göttingen, Germany 

Biofuge Pico Heraeus, Hanau, Germany 

Bullet Blender Storm 24 Kisker, Steinfurt, Germany 

Cell Culture Incubator Heraeus, Hanau, Germany 

Centrifuge J2-MC Beckman Instruments, Krefeld, Germany 

Centrifuge Heraeus® Pico®  Thermo Fisher Scientific, Waltham, USA 

Concentrator 5301 Eppendorf, Hamburg, Germany 

Confocal Microscope LSM 800 Zeiss, Göttingen, Germany 

Cryostat HM560 M Thermo Fisher Scientific, Waltham, USA 

Cryostat CM3050S Leica, Wetzlar, Germany 

Developing automate Kodak, Rochester, USA 

DNA electrophoresis chambers Peqlab, Erlangen, Germany 

Electrophoresis power supply Peqlab, Erlangen, Germany 

Fluorescence Stereomicroscope M205FA Leica, Wetzlar, Germany 

Gel documentation  Vilber Lourmat, Eberhardzell, Germany 

Glassware Schott, Mainz, Germany 

Laminar Air Flow Cabinet HB2488 Heraeus, Hanau, Germany 

Light Source KL1500 Leica, Wetzlar, Germany 

Magnetic stirrer IKA, Staufen, Germany 

Nanophotometer P330 Implen, München, Germany 

Stereomicroscope MZ APO Leica, Wetzlar, Germany 

Orbital Mixer Unimax 2010 Heidolph, Nürnberg, Germany 

PCR Cycler Biorad, München, Germany 

pH-Meter Schott, Mainz, Germany 

Picofuge Stratagene, San Diego, USA 

Pipettes Gilson, Middleton, USAH 

Pipettes Eppendorf, Hamburg, Germany 
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Table 3: Listing of devices (continued) 

Device Manufacturer 

Pipettes Biohit, Helsinki, Finland 

Polymax 1040 Heidolph, Nürnberg, Germany 

Stereo Microscope Leica, Wetzlar, Germany 

Stereotactic frame TSE systems, Moos, Germany 

Stereotactic frame Leica, Wetzlar, Germany 

Thermomixer 5436 Eppendorf, Hamburg, Germany 

UV-Stratalinker 2400 Stratagene, San Diego, USA 

Vaporizer Key Fill Isoflurane Apollo Northern Vaporizers, Kansas City, USA 

Vibratom HM560 Thermo Fisher Scientific, Waltham, USA 

Vortex MS1 Minishaker IKA, Staufen, Germany 

Waterbath 1002 GFL, Burgwedel, Germany 

 

4.2 Cell Lines 
 
Table 4: Listing of used cell lines 

Cell Line Origin 

TBV2 (129S2) mouse ES cells R. Kühn, Helmholtz Center Munich, Germany 

EMFI (neomycin resistent fibroblasts) S. Bourier; Helmholtz Center Munich, Germany 

EMFI (hygromycin resistent fibroblasts)  S. Bourier; Helmholtz Center Munich, Germany 

Primary neuronal cells L.Tietze, MPI of Psychiatry, Munich, Germany 

 

4.3 Antibodies 

 
Table 5: Listing of used antibodies 

Antibody Supplier 

Alexa Fluor 488 goat anti chicken Invitrogen, #A11039, 1/1000 

Alexa Fluor 488 goat anti rabbit Invitrogen, #A11034, 1/1000 

Alexa Fluor 594 goat anti chicken Invitrogen, #A11042, 1/1000 

Alexa Fluor 594 goat anti rabbit Invitrogen, #A11037, 1/1000 

Alexa Fluor 594 donkey α-goat  Invitrogen, #A11058, 1/1000 

Anti-DIG alkaline phosphatase Roche #11093274910 

Anti-DIG(Fab) peroxidase Roche #11207733910 

Streptavidin alkaline phosphatase Roche #11093266910 
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Table 5: Listing of used antibodies (continued) 

Antibody Supplier 

Streptavidin horseradish peroxidase Roche # 11089153001 

Chicken anti-GFP Abcam, #13970, 1/2000 

Rabbit anti-Tyrosine hydroxylase Pel Freez, # P40101-150 1/2000 

Biotinylated donkey anti chicken Jackson ImmunoResearch #48442 

 

4.4 Mouse strains 

 
Table 6: Listing of mouse strains used in this thesis 
Mouse strain Origin 

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze; (“Ai9”) Jackson Laboratory, stock no # 007905 

Gt(ROSA)26Sortm5(CAG-Sun1/sfGFP)Nat Jackson Laboratory, stock no # 021039 

Gt(ROSA)26Sortm1(FLP1)Dym; (“Flipper”) Jackson Laboratory, stock no # 003946 

Neurod6tm1(cre)Kann; (NEX-CRE) provided by Dr. Klaus-Armin Nave, MPI of 

Experimental Medicine, Goettingen, Germany 

Crhr1ΔEgfp MPI of Psychiatry, Munich, Germany 

 

4.5 Viral Vectors 

 
Table 7: Listing of viral vectors used in this thesis 
Viral Vector Origin 

pAAV-Ef1a-DIO-mCherry Addgene #50462 

pAAV-Ef1a-DIO-Syn-eGFP pAAV-Syn-eGFP provided by Dr. Valery 

Grinevich, DKFZ, Heidelberg, Germany; 

subcloned into “Flex” vector by Dr. Nina Dedic 

EGFP ((CA)CRHR::EGFP) provided by Dr. Arenkiel, Baylor College of 

Medicine, Houston. USA 

 

4.6 Consumables 
 
Table 8: Listing of consumables 
Item Company 

1,5ml, 2ml reaction tubes Sarstedt, Nürnbrecht, Germany 

15ml Falcon tubes Greiner, Frickenhausen, Germany 

50ml Falcon tubes Greiner, Frickenhausen, Germany 
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Table 8: Listing of consumables (continued) 

Item Company 

Agarose Invitrogen, Karlsruhe, Germany 

Ampicillin Sigma, Deisenhofen, Germany 

BioMax MR film Carestream Health, Stuttgart, Germany 

DAB substrate kit (#SK-4100) Biozol, Eching, Germany 

Deoxynucleoside Triphosphate Set Roche, Mannheim, Germany 

DIG RNA Labeling Kit Roche, Mannheim, Germany 

DIG Wash and Block Buffer Set Roche, Mannheim, Germany 

DnaseI Roche, Mannheim, Germany 

DPX mounting medium Merck, Darmstadt, Germany 

Ethidiumbromide Roth, Karlsruhe, Germany 

Herculase Enhanced DNA Polymerase Agilent Technologies, Santa Clara, USA 

Hygromycin B Calbiochem, Darmstadt, Germany 

Isoflurane Abbott, Chicago, USA 

Kanamycin Sigma, Deisenhofen, Germany 

LB Agar Becton  Dickinson, New Jersey, USA 

LB Medium Becton  Dickinson, New Jersey, USA 

NalgeneTM freezing container Thermo Fisher Scientific, Waltham, USA 

NeonTM Transfection System Invitrogen, Karlsruhe, Germany 

NTB Emulsion Carestream Health, Stuttgart, Germany 

NTP mix (10mM) Roche, Mannheim, Germany 

NunclonTM cell culture petri dishes  Thermo Fisher Scientific, Waltham, USA 

Oligo(dT)15 Primer Roche, Mannheim, Germany 

PCR tubes and plates Sarstedt, Nürnbrecht, Germany 

Petri Dishes Greiner, Frickenhausen, Germany 

Pipette tips  Sarstedt, Nürnbrecht, Germany 

Protector RNase Inhibitor Sigma, Deisenhofen, Germany 

ProTaq mounting medium  Biozol, Eching, Germany 

Qiagen Plasmid Mini Kit Qiagen, Hilden, Germany 

Qiagen Plasmid Plus Maxi Kit Qiagen, Hilden, Germany 

Qiaquick Gel Extraction Kit Qiagen, Hilden, Germany 

Qiaquick PCR Purification Kit Qiagen, Hilden, Germany 
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Table 8: Listing of consumables (continued) 

Item Company 

Restriction enzymes New England BioLabs, New England, USA 

RNeasy Plus Mini Kit Qiagen, Hilden, Germany 

Serological pipettes Sarstedt, Nürnbrecht, Germany 

Shrimp Alkaline Phosphatase New England BioLabs, New England, USA 

Sp6 RNA polymerase Roche, Mannheim, Germany 

Superscript II Invitrogen, Karlsruhe, Germany 

T3 RNA polymerase Roche, Mannheim, Germany 

T4 DNA Ligase (5U/µl) Thermo Fisher Scientific, Waltham, USA 

T7 RNA polymerase Roche, Mannheim, Germany 

ThermoPrime Taq DNA Polymerase Thermo Fisher Scientific, Waltham, USA 

TOPO®TA Cloning Kit Thermo Fisher Scientific, Waltham, USA 

Trizol Invitrogen, Karlsruhe, Germany 

TSATM Biotin System  PerkinElmer, Waltham, USA 

UTPαS (35S) 1250Ci/mmol PerkinElmer, Waltham, USA 

Vectashield® Mounting Medium Biozol, Eching, Germany 

Vector Red Alkaline Phosphatase Kit Biozol, Eching, Germany 

X-Gal  Thermo Fisher Scientific, Waltham, USA 

 

4.7 Oligonucleotide Sequences 
 

All oligonucleotides were ordered at Metabion AG (Planegg, Germany) and used as 

either PCR primers, genotyping primers, primers for generation of ISH probes or 

sequencing primers. 

Table 9: Oligonucleotides 
Oligonucleotide Sequence 

Crhr1_Intron2_long_MfeI_for. caattggatctgtttcacaaactgcaga 

Crhr1_Intron2_long_SpeI_rev. actagttctcccgccggaaacgcc 

Crhr1_Intron2_small_AgeI_for. accggtctccttcaggtggagcct 

Crhr1_Exon 3 all_rev. ttgtggtgttgtagcggaca 

Crhr1_Exon 3 all_for. caatgcctccgtggacct 

Crhr1wt_AscI_rev. ggcgcgcctcacactgctgtggactgct 

AscI IRESCre fwd. ggcgcgccgaattccgcccccccccccc 
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Table 9: Oligonucleotides (continued) 

Oligonucleotide Sequence 

Cre rev.-SwaI ttaattaagatctagtggatccaga 

Hygro_BstBI_for.. ttcgaaatgaaaaagcctgaactcacc 

Hygro_BsrGI rev. tgtacaaagcttctgatggaattagaacttg 

cre fwd. gatcgctgccaggatatacg   

cre rev. aatcgccatcttccagcag 

Thy1-F1 tctgagtggcaaaggaccttagg 

Thy1-R1 ccactggtgaggttgagg 

hygro fwd. cggtgagttcaggctttttc 

Primer 2cre rev cacccatggttagtcccagt 

Flipase 1 fwd gacctgcaggaaccaactgt 

tau rev. tctgcaggggagactctttc 

neo fwd. cgatcccatggtttagttcc 

Primer 2 cre rev. cacccatggttagtcccagt 

P-PGK-fwd-2 cctaccggtggatgtggaat 

P-Cre-downs-fwd-2 aataataaccgggcaggggg 

Flipper-rev-1 gactagagcttgcggaaccc 

P-T2A-rev-1 ccacgtcaccgcatgttaga 

 

4.8 ISH probes 

 
Table 10: mRNA probes 
Target Vector Size Accession number 

CRHR1 (Exon 2-8) pCRII-Topo 654bp NM_007762 (nucleotides 265-918) 

CRHR1 (Exon 8-12) pCRII-Topo 396bp NM_007762 (nucleotides 901-1296) 

CRHR1-3’UTR pCRII-Topo 702bp NM_007762 (nucleotides 1728-2428)  

lacZ pCRII-Topo 649bp X65335 (nucleotides 2649-3281)  

Cre pCRII-Topo 575bp AB449974 (nucleotides 567-1062) 

Tomato pCRII-Topo 689bp AY678269 (nucleotides 740-1428)  

GFP pCRII-Topo 724bp U55762 (nucleotides 677-1396) 

TH pGEM 765bp NM_009377 (nucleotides 23-788) 

GAD65 pBluescript II KS 847bp NM_008078 (nucleotides 753-1600) 

GAD67 pBluescript II KS 956bp NM_008077 (nucleotides 984-1940)  
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5 Methods 

5.1 Polymerase chain reaction (PCR) 

 

Standard PCR for further cloning was performed to amplify the required DNA 

sequences from a template DNA (genomic DNA, plasmid DNA or cDNA). The 

respective flanking sequences of the target DNA were used to design primer pairs 

with the aid of Primer3 (http://primer3.ut.ee); primers were purchased from Metabion 

AG (Planegg, Germany). For a standard 50µl PCR reaction the following reaction 

mixture was prepared on ice:  

xµl  template DNA (typically 100ng-1µg) 

5µl  10x reaction buffer  

3µl  25mM MgCl2 

1µl  dNTPs (dATP, dGTP, dCTP, dTTP, 10mM each) 

0.1µl   forward primer (100mM) 

0.1µl   reverse primer (100mM) 

0.5µl   Taq DNA polymerase (5U/µl) 

Water ad 50µl 

 
The following standard PCR program was used: 

Step 1  95°C/5’  initial DNA denaturation 
Step 2  95°C/2’  DNA denaturation 
Step 3  55°-65°C/30s primer annealing (dependent on the primer melting  

temperature) 
Step 4  72°C/30s  elongation time (estimated 1kb elongation/kb PCR  
     product) 
Step 5  got to step 2   29 cycles 
Step 6  72°C/5’  final elongation  
Step 7  12°C   hold 
 
Analysis of the PCR products was made via gel electrophoresis (0.8%-2% agarose in 

1x TAE, containing 0.01% ethidium bromide). Typically 1/10 of the PCR reaction 

volume was mixed with 6x Orange G loading dye and loaded on the gel (running 

conditions 160V constant/~1h/30’). For visualization, a UV transilluminator and gel 

documentation system was used (Quantum gel documentation system 1100 from 

Vilber Lourmat, Eberhardzell, Germany). For subcloning 1-4µl of fresh PCR product 

was ligated to pCRII Topo TA vector (Topo TA Cloning kit, Invitrogen, Karlsruhe, 

Germany) following the manufactures instructions. To control for mutations, 
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subcloned PCR products were sent for sequencing (Sequiserve, Vaterstetten. 

Germany). For PCR products longer than 1kb a Taq polymerase with proofreading 

capability was applied (Herculase Enhanced DNA Polymerase; Agilent, Santa Clara, 

USA) following the manufacturer’s protocol. 

 

5.2 Molecular Cloning Procedures 

 

5.2.1 Topo TA cloning 

Taq-amplified PCR products were cloned into the pCRIITM vector (TOPO TA Dual 

promoter cloning kit, Invitrogen, Karlsruhe, Germany), containing the T7 and sp6 

promoters for efficient in vitro transcription in sense or antisense direction and M13 

forward and reverse primer sites for sequencing. The ligation set up was as follows: 

0.5-4µl fresh PCR product, 1µl salt solution, 1µl TOPO® vector, water to a total 

volume of 6µl. After incubation 5-30 minutes (depending on size of the PCR product) 

at room temperature, the reaction was placed on ice and up to 10µl were used for 

transformation in One Shot® competent E.coli (TOP10, Life TechnologiesTM., 

Carlsbad, USA) according to the manufactures instructions. For blue-white selection 

of colonies, LB-agar plates containing X-Gal (40µg/ml) were used for plating different 

volumes of the cloning reaction. 

5.2.2 Transformation of plasmid DNA into competent bacteria 

For transformation of plasmids electrocompetent or chemically competent E.coli were 

used (TOP10, Life TechnologiesTM, Carlsbad, USA), applying either the One Shot® 

chemical transformation or electroporation protocol provided by the manufacturer. 

After uptake of the plasmid DNA prewarmed SOC medium was added and bacteria 

were incubated for 1hour at 37°C on a horizontal shaker (225rpm). Subsequently 10-

50µl from the transformation was spread on prewarmed selective LB plates, 

containing the appropriate selection marker (ampicillin 100µg/ml or kanamycin 

50µg/ml) and incubated overnight at 37°C. The next day white or light blue colonies 

were picked and inoculated in 5-150ml selective LB medium and incubated overnight 

at 37°C on a horizontal shaker for subsequent DNA preparation (see next chapter). 
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5.2.3 Isolation of plasmid DNA 

Preparation of plasmid DNA was performed either with the Qiagen Plasmid Mini Kit 

(5ml overnight bacterial culture) or Qiagen Plasmid Plus Maxi Kit (150ml culture 

volume). Bacteria from overnight cultures were pelleted by centrifugation, denatured 

by alkaline lysis, filtered through microspin columns, washed twice and finally eluted 

in 50µl nuclease free water. DNA, respectively RNA concentrations were measured 

by UV-spectrophotometry at 260nm (Nanophotometer, Implen, Munich, Germany); 

the concentration can be calculated according to Beer–Lambert law with the following 

equation: X µg/ml = OD260 x n x f, with f being the dilution factor and n the default 

factor (50µg/ml double stranded DNA; 33µg/ml single stranded DNA; 40µg/ml RNA). 

5.2.4 Isolation of genomic DNA 

For genotyping murine tail DNA was isolated according to a modified protocol 

adapted from Extract-N-Amp™ Tissue PCR Kit (Sigma-Aldrich, Taufkirchen, 

Germany): genomic DNA is extracted from tail clips of 2mm length that have been 

incubated in 100µl 50mM NaOH for 30 minutes at 95°C and neutralized with 30µl 1M 

Tris-HCL pH 7.0. An aliquot of the DNA extract (1-2µl) is then added directly to 25µl 

PCR mix. The following standard PCR program was used: 95°C/3min, 34cycles of 

95°C/30sec, 57°C/30sec, 72°C/1min (per 1kb DNA), final elongation at 72°C/10 min 

and indefinite hold at 12°C. 

To prepare genomic DNA from mouse liver mice were killed in an inhalation chamber 

with an overdose (>5%) of isoflurane; the organ was isolated and homogenized in 

liquid nitrogen using a precooled mortar and pestle. The resulting powder was 

resuspended (1ml buffer/100mg tissue homogenate) in NET-extraction buffer (2mM 

Tris pH 7.5, 25mM EDTA, 100mM NaCl). After addition of 1/10 volume 10% SDS and 

1/10 volume Proteinase K (10mg/ml) the suspension was incubated overnight at 

56°C. The next day DNA was purified by phenol-chloroform extraction and 

subsequent ethanol precipitation: addition of 1 volume Phenol/Chloroform/Isoamyl 

alcohol (25:24:1), centrifugation 10min/500rpm/4°C, removal of upper aqueous 

phase, addition of 1 volume Chloroform/Isoamyl alcohol (24:1), centrifugation 

10min/500rpm/4°C and addition of 1/10 volume precipitation mix (3M NaAcetate, 2 

volumes ice-cold 100% ethanol). The DNA precipitates at room temperature and can 

be “fished” with a glass Pasteur pipette. After a short rinse in 70% ethanol the DNA is 

air dried and resuspended in an appropriate amount of ddH20. 
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5.2.5 Restriction digest 

Restriction digest of plasmid DNA either for analytical or preparative purposes was 

carried out using restriction enzymes and recommended buffers from NEB (New 

England BioLabs, New England, USA). Usually 1µg-5µg of plasmid DNA was 

digested for one hour at 37°C with 10U/µg DNA of the restriction enzyme in 

corresponding buffers. For setting up double digest reactions the Double Digest 

Finder tool from NEB was used for selection of proper conditions; particular attention 

focused on star activity, methylation sensitivity and special incubation and storage 

temperatures of the enzymes. 

5.2.6 Gel extraction 

To extract and purify DNA fragments from agarose gels the Qiaquick Gel Extraction 

Kit from Qiagen (Hilden, Germany) was used according to the manufacturer’s 

manual. DNA was eluted in 30µl nuclease free water (Ambion GmbH, Kaufungen, 

Germany). The concentration was determined by spectrophotometry and DNA 

integrity was assessed by gel electrophoresis. 

5.2.7 Ligation of DNA fragments 

For ligation of DNA fragments the T4 DNA Ligase (Thermo Fisher Scientific, 

Waltham, USA) was used which catalyzes the connection of fragments by generating 

a phosphodiester bond between the 5’- and 3’-ends. To this end 50ng of vector 

backbone was mixed with 3-10-fold molar excess of insert (depending whether 

fragments had sticky or blunt ends). H2O, 2µl of T4 DNA ligase buffer and 10U of T4 

DNA ligase were added to a final volume of 20µl and incubated overnight at 16°C. 

The next day an aliquot of the ligation mix was used without further purification for 

transformation in competent bacteria; storage is possible at -20°C. Whenever 

prevention of vector backbone religation was necessary, shrimp alkaline 

phosphatase from NEB (New England BioLabs, New England, USA) was used to 

dephosphorylate 5’-DNA termini according to the manufacturer’s protocol. 
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5.3 RNA Techniques 

 

5.3.1 RNA isolation  

RNA was isolated from mouse brain using TRIzolTM (Invitrogen, Carlsbad, USA) 

together with the Bullet Blender® homogenizer from Next Advance (Kisker, Steinfurt, 

Germany). TRIzol is a ready to use mixture of phenol and guanidine isothyocyanate, 

which effectively dissolves RNA during homogenization. For tissue disruption one 

volume of beads together with two volumes of TRIzol (1ml/50-100mg tissue sample) 

were mixed in a safe-lock tube and homogenized for 3 minutes at speed 9. To permit 

complete dissociation of nucleoprotein complexes samples were incubated 5min at 

room temperature before adding chloroform (0.2ml/ml TRIzol Reagent). During 

centrifugation (12.000rcf/15min/4°C), the mixture separates and RNA remains in the 

upper aqueous phase, which is removed and transferred into a new tube. For 

precipitation of RNA 0.5ml 100% isopropanol/ml TRIzol was added and after 

centrifugation at 12.000g/10min/4°C, RNA forms a gel-like pellet at the bottom of the 

tube. After washing with 70% EtOH the RNA pellet was air dried, resuspended in 

RNase free water and stored at -80°C. RNA concentration was determined by UV-

spectrophotometry at 260nm using the NanoPhotometer® (Implen GmbH, Munich, 

Germany); RNA integrity and RNA integrity number (RIN) were determined by 

analyzing the sample with the Agilent 2100 Bioanalyzer System (Agilent, Santa 

Clara, Germany). 

5.3.2 Reverse transcription 

To convert RNA in cDNA for subsequent PCRs, reverse transcription (RT) was 

performed using SuperScript II from Invitrogen (Carlsbad, USA) and oligo dT primers 

(Thermo Fisher Scientific, Waltham, USA). The standard approach comprised the 

following reagents: 3µg total RNA; 1µl DNase I (10U/µl), H2O to a final volume of 

10µl; to degrade genomic DNA this mixture was incubated first at 37°C/20min and 

afterwards DNase I was inactivated by heating up to 70°C for 15 minutes. Then 1µl 

oligo dT primer (500µg/ml), 4µl 5x first strand buffer, 2µl 0.1M DTT, 1µl dNTPs 

(10mM each), 1µl RNase Inhibitor (40U/µl) and finally 1µl of SuperScript II were 

added. After incubation at 42°C for 1 hour the reaction was stopped by elevating the 

temperature to 70°C for 15 minutes. To degrade template RNA 1µl RNase H was 

added and incubated at 37°C/20 min, followed by an incubation step at 70°C for 15 

minutes to stop the reaction. In conjunction with every RNA sample, a “no RT” control 
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sample (no addition of SuperScript II) was prepared to check for genomic 

contaminations. For PCR reactions 1µl of RT reaction was used as template; cDNA 

was stored at -20°C.  

 

5.4 Radioactive in situ hybridization (ISH) 

 

For ISH cryostat sections of wild-type, transgenic or reporter mice were mounted side 

by side on SuperfrostTM Plus slides (Thermo Fisher Scientific, Waltham, USA) to 

avoid technical variances and to secure precise comparison of hybridization signals. 

ISH was carried out as previously described (Refojo et al., 2011; Kühne et al., 2012). 

All relevant in situ probes had been amplified by PCR, subcloned into pCRII-TOPO® 

vector (Invitrogen, Carlsbad, USA) and sequence verified (Sequiserve, Vaterstetten, 

Germany). Specific riboprobes were generated by PCR using sp6, T3 or T7 primers 

to amplify templates for generation of sense and antisense 35S-UTP (PerkinElmer, 

Waltham, USA) radioactive labeled cRNA probes by in vitro transcription:  

  2µl PCR product  
13µl Rnase-free Water 
  3µl 10x transcription buffer  
  3µl NTP mix (10mM each) 
  1µl 0.5M DTT 
  1µl RNasin (RNase inhibitor, 40U/µl) 
  6µl 35S-UTP (12.5mCi/mM) 
  1µl sp6, T3 or T7 RNA polymerase (20U/µl) 

 
Reaction was incubated at 37°C for 1 hour, then again 0.5µl of respective RNA 

polymerase was added and incubation continued for another 2 hours. To destroy the 

DNA template 2µl of RNase-free DNase I (Roche, Basel, Switzerland) was added for 

15 minutes at 37°C and finally riboprobes were purified using the RNeasy Kit from 

Qiagen (Hilden, Germany) according to the manufacturer’s instructions. Probes were 

eluted in 100µl Rnase-free water and concentration was determined using a 

scintillation counter (LS 6000, Beckman Coulter Biomedical GmbH, Munich, 

Germany). Sections were hybridized overnight with a riboprobe concentration of 7 x 

106 cpm/µl at 57°C and washed as described below. Wherever cellular resolution was 

required, autoradiography was performed by dipping slides into Kodak NTB2 

emulsion (Sigma, Deisenhofen, Germany). Slide development and cresyl violet 

counterstain was conducted 1-4 weeks after, depending on expression levels. For 



  Methods 

53 
 

long-term storage slides were embedded with DPX mounting medium (Merck, 

Darmstadt, Germany). The exact pretreatment and washing procedure is shown 

below. 

Table 11: ISH Protocol  

Pretreatment of slides 

Step Temperature Time Solution 

1.Fixation on ice 10min 4%PFA/PBS/DEPC-H2O 

2.Washing RT 2x 5min 1x PBS/DEPC-H2O 

3.Acetylation RT 10min 0,1M Triethanolamine-HCL (TEA), pH 

8.0; add freshly 600µl acetic 

anhydride/200ml TEA with rapidly stirring 

bar 

4.Washing RT 2x 5min 2x SSC/DEPC 

5.Dehydration RT 1min 

1min 

1min 

1min 

1min 

1min 

60% Ethanol/DEPC 

70% Ethanol/DEPC 

96% Ethanol/DEPC 

100% Ethanol/DEPC 

CHCl3 

100% Ethanol/DEPC 

6.Drying RT ~1hour air dry in dust free area 

Hybridization overnight in humidified chamber at 57-62°C 

7.Washing RT 4x 5min 4x SSC 

8.RNase A 37°C 20min 1x NTE + 500µl RNase A (20µg/ml) 

9.Washing RT 2x 5min 2x SSC/1mM DTT 

10.Washing RT 10min 1x SSC/1mM DTT 

11.Washing RT 10min 0.5x SSC/1mM DTT 

12.Washing 64°C 2x 30min 0.1x SSC/1mM DTT 

13.Washing RT 2x 10min 0.1x SSC 

14.Dehydration RT 1min 

1min 

1min 

1min 

1min 

1min 

30% Ethanol/300mM NH4OAc 

50% Ethanol/300mM NH4OAc 

70% Ethanol/300mM NH4OAc 

95% Ethanol/300mM NH4OAc 

100% Ethanol/300mM NH4OAc 

100% Ethanol/300mM NH4OAc 

15.Drying RT ~1hour air dry in dust free area 
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Autoradiography: To visualize gene expression dried slides were exposed to high-

resolution X-ray films (BioMax MR, Carestream Health, Stuttgart, Germany) for 

different time intervals, depending on expression levels (3-14 days). 

Image Acquisition: Photographs were taken with digital cameras attached to a 

Zeiss Axioplan2 microscope (Zeiss, Göttingen, Germany) or a binocular 

stereomicroscope (Leica, Wetzlar, Germany). Images were digitalized using 

AxioVision Rel. 4.5 (Zeiss, Göttingen, Germany) and integrated into plates using 

Adobe Photoshop CS2 and Illustrator CS2 (Adobe, San Jose, USA). Only contrast, 

brightness and sharpness were adjusted to optimize signals. 

 

5.5 Double in situ hybridization with DIG and 35S labeled riboprobes 

 

In order to colocalize two gene transcripts in the same tissue and to analyze the 

mRNA expression in specific cell populations, radioactive- and nonradioactive- 

labeled cRNA probes were combined to the so-called “double” in situ hybridization 

(DISH). The DIG-hybridization signal was detected by an enzymatic color reaction 

resulting in a somatic red precipitate that can be visualized by light field microscopy, 

whereas the radioactive riboprobe appeared as black silver grains after dipping slides 

into an autoradiographic emulsion (NTB2, Sigma, Deisenhofen, Germany). To this 

end, one probe is tagged with 35S-UTP and the other with digoxigenin (DIG)-UTP, 

respectively. Antisense riboprobes were synthesized and labeled with 35S-UTP or 

DIG-UTP by in vitro transcription from 200ng of PCR product as described in the 

chapter before. The efficiency of DIG labeling was determined by a dot blot assay. 

For hybridization 7 x 106 counts/slide of 35S-cRNA was combined with ~200ng DIG-

cRNA in an appropriate amount of hybridization mix (100µl/slide) and slides were 

incubated overnight at 57°-62°C in a humidified chamber. The exact pretreatment 

and washing procedure is shown below (adapted from Refojo et al., 2011).  
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Table 12: Double in situ hybridization protocol 

Pretreatment of Slides for DISH 

Step Temperature Time Solution 

1.Fixation on ice 15min 4%PFA/PBS/DEPC-H2O 

2.Washing RT 2x 5min 1x PBS/DEPC-H2O 

3.Quenching RT 15min 1% H2O2 in 100%MeOH 

4.Washing RT 2x 5min 1x PBS/DEPC-H2O 

5.Blocking RT 8min 0.2M HCL/DEPC-H2O 

6.Washing RT 2x 5min 1x PBS/DEPC-H2O 

7.Acetylation RT 10min 0,1M Triethanolamine-HCL (TEA), pH 8.0; 

add freshly 600µl acetic anhydride/200ml 

TEA with rapidly stirring bar 

8.Washing RT 5min 1x PBS/DEPC-H2O 

9.Dehydration RT 1min 

1min 

1min 

1min 

60% Ethanol/DEPC-H2O 

70% Ethanol/DEPC-H2O 

96% Ethanol/DEPC-H2O 

100% Ethanol/DEPC-H2O 

10.Drying RT ~1hour air dry in dust free area 

Hybridization overnight in humidified chamber at 57-62°C 

Washing and primary antibody 

1.Washing 42°C 20min 4x SSC/0.05% Tween® 20/1mM DTT 

2.Washing 42°C 20min 2xSSC/50% Formamide/ 

0.05% Tween® 20/1mM DTT 

3.Washing 42°C 20min 1xSSC/50% Formamide/ 

0.05% Tween® 20/1mM DTT 

4.Washing 62°C 20min 0.1xSSC/0.05% Tween® 20/1mM DTT 

5.RNase A 37°C 20min 1x NTE + 500µl RNAse A (20µg/ml) 

6.Blocking 30°C 15min 15mM Iodoacetamide 

7.Washing 30°C 3x 5min 1x NTE/0.05%Tween® 20 

8.Blocking 30°C 60min 4%BSA/TNT 

9.Washing 30°C 60min TNT 

10.Blocking 30°C 30min NEN-TNB 

11.1st ab 4°C overnight Anti-DÌG(Fab)-POD in NEN-TNB 

Incubation overnight/4°C/humidified chamber 
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Table 12: Double in situ hybridization protocol (continued) 

Washing, 2nd antibody and signal amplification 

Step Temperature Time Solution 

1.Washing 30°C 3x 5min TNT 

2.TSA 
30°C 15min TSA in 300µl DMSO 1/50 in amplification 

diluent 

3.Washing 30°C 3x 5min 1x Roche wash buffer 

4. 2nd ab 30°C 30min Streptavidin-AP (1/400 in blocking buffer) 

5.Washing  30°C 3x 5min 1x Roche wash buffer 

6.Equilibration RT 5min 100mMTris/HCL, pH8.2-8.5 

7.Staining RT 1-30min Vector Red® 

8.Stop RT 10min 1xPBS 

9.Fixation RT 20min 2.5% Glutaraldehyde/PBS 

10.Washing RT 3x 5min 0.1x SSC 

11.Dehydration RT 30sec. 

30sec. 

30sec. 

30sec. 

30% Ethanol 

50% Ethanol 

70% Ethanol 

96% Ethanol 

12.Drying RT ~1hour air dry in dust free area 

 

Data analysis: See chapter before (ISH) for dipping and slide development. Bright 

field images of Vector red- and silver grain developed DISH slides were captured 

with a Zeiss Axioplan microscope (Zeiss, Göttingen, Germany) using the 40x 

objective. For quantification of Cre co-expression with Tomato and Crhr1, 

respectively, cell counts were performed on three sections (thickness 20µm) per 

region (n=3 mice).  

 

5.6 Histochemistry 

 

5.6.1 Immunohistochemistry 

Mice were euthanized in an inhalation chamber with an overdose (>5%) of isoflurane 

(Abbott, Chicago, USA) and the thorax was opened to dissect the heart. Transcardial 

perfusion was carried out with 4%PFA/PBS 1x for 5-7 minutes at a flow rate of 

10ml/minute. After perfusion was completed, brains were removed and post fixed in 
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4%PFA/PBS 1x at 4°C (2-24hours). For long term storage brains were stored in 

30%(w/v) saccharose/0.5% PFA/PBS 1x at 4°C until sectioning was performed. 

Depending on the antibody, various cutting protocols were established: either 30-

50µm cryo- or 40µm vibratome- sections were prepared and stored in 

cryopreservation solution until further use. For immunofluorescent detections, the 

following standard protocol was used; blocking solution and antibody dilution were 

adapted for each antibody (according to manufacturer’s recommendations). 

Table 13: Immunohistochemistry protocol 

Day 1 

Step Temperature Time Solution 

1.Washing RT overnight if 
slides were 

stored in 
cryoprotection 

solution 

PBS 1x 

2.Blocking RT 1 hour Blocking solution 

3.1st antibody 4°C overnight 1st antibody solution 

Day 2 

Step Temperature Time Solution 

1.Washing RT 3x 15min PBS 1x 

2.2nd antibody RT 2hrs 2nd antibody solution 

3.Washing RT 3x 15min PBS 1x 

Mounting with anti-fading mounting medium (VectaShield® medium, Biozol, Eching, Germany) 

 

5.6.2 Hematoxylin and eosin staining 

Hematoxylin and eosin (H&E) staining was performed on mounted cryosections 

according to the following protocol:  

Table 14: H&E staining protocol 

Step Time Solution 

1.Hematoxylin staining 10-20min Mayers Hämalaun 

2.Differentiation rinse 0.1% HCl 

3.Development 20min Tap water 

4.Eosin-staining 10-15min 0.1% Eosin Y 

5.Washing rinse H2Odest. 

6.Differentiation rinse 80% Ethanol 
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Table 14: H&E staining protocol (continued) 

Step Time Solution 

7.Dehydration 5min Ethanol 70% 

8.Dehydration 5min Ethanol 96% 

9.Dehydration 5min Ethanol 100% 

10.Incubation 5min Xylol 

11.Mounting  DPX 

 

5.6.3 LacZ-staining 

X-Gal staining was performed either on mounted or on free floating sections by 

incubating the sections or whole organs overnight at 37°C in lacZ staining solution 

according to the following protocol: 

Table 15: LacZ-staining protocol 
Day 1 

Fixation intracardial perfusion using lacZ-Fix 

30’’ – 1min PBS 1x 

5 – 7min lacZ Fix 

30’’ – 1min PBS 1x 

Brain transfer into 20% sucrose/PBS, containing 

0.005M EGTA and 0.001M MgCl2; 

overnight/4°C 

Day 2 

Cutting freeze the brain rapidly on dry ice 

prepare 50µm thick cryosections 

transfer sections into PBS containing 0.005M 

EGTA and 0.001M MgCl2 (storage overnight 

possible) 

Staining immerse sections for 5min in lacZ-wash buffer 

immerse them in lacZ-stain at 37ºC (up to 12hrs) 

wash for 6x 10min in 0.1M PBS1x 

fix at least for 1h in 4% PFA/PBS (here storage 

possible) 

Embedding wash sections in PBS 1x (3x 10min) 

mount them on slides and embed them with 

aqueous mounting medium 
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5.7 Image acquisition 

Bright-and dark field images ware taken with a color CCD camera (AxioCam MRc5, 

Zeiss, Göttingen, Germany) attached onto a Leica MZ APO stereomicroscope (Leica, 

Wetzlar, Germany) or the Axioplan 2 microscope from Zeiss. Fluorescence images 

were captured with either a CCD camera (AxioCam MRm attached to Axioplan2) and 

a X-cite fluorescence illuminator (EXFO Photonic Solutions), or with the M205FA 

fluorescence stereomicroscope from Leica, or with the LSM 780 confocal microscope 

from Zeiss, respectively. Pictures were digitalized using AxioVision Rel. 4.5 or LSM 

ZEN software from Zeiss and exported for further image processing with Adobe 

Photoshop CS2 or Illustrator CS2 (Adobe, San Jose, USA). Location relative to 

bregma was determined using The Mouse Brain in Stereotaxic Coordinates (Atlas 

from Franklin&Paxinos, 2008). 

 

5.8 Endocrine Analyses 

 

One week before experiments, animals were separated and single housed. To 

determine basal plasma hormone levels, mice were left undisturbed the night before 

the experiment. Blood sampling was performed in the morning (07:30-09:30 am) and 

afternoon (04:30-05:30 pm) by tail punctation within 45s of initial cage disturbance. 

For evaluation of stress-induced hormone elevations, blood was collected 

immediately after 10min of restraint stress, for which the animals were placed in a 

50ml falcon tube with the bottom removed. Plasma corticosterone was measured 

using a commercially available RIA kit (ICN Biomedicals, Irvine, USA). 

 

5.9 Statistical Analysis 

 

In the figures results are presented as mean ± standard error of mean (SEM). 

Significant statistical results are indicated with stars *** p<0.001, ** p<0.01, * p<0.05. 

Data processing and statistics were performed with the commercially available 

GraphPad Prism5 software (GraphPad software Inc, La Jolla, USA). Pairwise group 

comparisons were evaluated with Student’s T-Test or Mann-Whitney U-Test (for 

non–Gaussian distribution). 

 



Methods 

60 
 

5.10 BLAST and Digital Vector Constructions 

 

Sequiserve (Vaterstetten, Germany) or Eurofins (Ebersberg, Germany) carried out 

sequencing reactions. For sequence analysis the program BLAST (Basic Local 

Alignment Search Tool) was used to compare nucleotide sequences to the sequence 

databases of NCBI (https://blast.ncbi.nlm.nih.gov). Alignment of multiple sequences 

was done by using the algorithm published by Corpet et al, 1988. Sequence data 

were copied into the MultAlin web interface with default parameters 

(http://multalin.toulouse.inra.fr/multalin). The commercially available Vector NTI 

software package (Thermo Fisher Scientific, Waltham, USA) was used to generate 

DNA constructs in silico. 

 

5.11 Cell Culture Techniques  
 

5.11.1 Preparation of mouse embryonic feeder plates  

Hygromycin resistant embryonic mouse fibroblast (EMFI) feeder cells were prepared 

by the staff of the transgenic mouse facility of the Institute of Developmental Genetics 

(IDG) at the Helmholtz Center Munich from E14 embryos of mouse line C57BL/6 Y-

TGN pgkneobpA 3-Emg (obtained from Charles River). For preparation of feeder cell 

plates, one aliquot (3x107cells) was transferred from LN2 to ice and thawed quickly in 

a 37°C water bath until cells are in liquid. Cells were immediately transferred in a 

15ml Falcon tube containing 9ml of feeder cell medium and centrifuged at 1400rpm 

for 5 minutes. The cell pellet was resuspended in 9ml medium and cells were seeded 

onto 3x 15cm petri-dishes containing 22ml feeder cell medium. Incubation conditions 

for cultivation of feeder cells or embryonic stem cells were 37°C/5% CO2 constant. At 

~70% confluency, feeder cells were splitted on the one hand to maintain untreated 

cells for expansion, on the other hand to mitotically inactivate them for seeding ES 

cells. For this, the medium was exchanged with culture medium containing 150µl 

mitomycin C (1mg/ml)/15ml feeder cell medium. Subsequently plates were incubated 

at 37°C/5% CO2 for 2.5 hours, followed by trypsinization. After washing two times 

with phosphate buffered saline (PBS), 7,5ml trypsin/EDTA was added to each plate 

and incubated for 5 minutes at 37°C. To avoid cell damage equal amounts of feeder 

medium were added and the resulting cell suspension was pipetted gently up and 

down to avoid cell aggregates. After pelleting at 1200rpm for 5 minutes at room 
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temperature feeder cells were resuspended to a final concentration of 2x105cells/ml 

and immediately plated at a density of 6x105 cells/10cm diameter petri dish (EMFI 

feeder plates). Feeder plates were prepared at least one day in advance of seeding 

ES cells. Excess of feeder or ES cells was resuspended in freezing medium and 

transferred for one day to -80°C in an isopropanol freezing-container and then stored 

in liquid nitrogen. 

5.11.2 Culture of embryonic stem cells (ES cells) 

Before seeding ES cells an appropriate amount of EMFI feeder plates was prepared 

by exchanging the medium to ES cell medium at least 4h before use. A vial of frozen 

TBV2 mouse embryonic stem cells (gift from S. Bourier, Helmholtz Center Munich) 

was thawed quickly at 37°C and cells were washed once in ES cell medium. Cells 

were pelleted by centrifugation (1200rpm/5 minutes) and seeded onto 10cm feeder 

plates at about 2x106 cells/plate. For DNA preparation cells were seeded on gelatin 

coated plates (0,1%) and incubated until ~100% confluency. Growth of cells and 

stage of confluency was checked daily and medium was exchanged every day for 

optimal growth. 

5.11.3 Transfection of ES cells with donor DNA construct 

Approximately two days before electroporation ES cells were splitted and seeded on 

feeder cells so that they are in the exponential growth phase at ~70% confluency at 

the day of transfection. For transfection, the NeonTM Transfection System (Thermo 

Fisher Scientific, Waltham, USA) was used according to the user manual: ES cells 

were harvested, washed in PBS and centrifuged at 1400rpm for 5 minutes. The cell 

pellet was resuspended in resuspension buffer R (included with the transfection kit) 

to a final density of 1x107 cells/ml and 100µl of this cell suspension were transferred 

together with 25µg of the circular donor plasmid and 25µg of circular phiC31 

integrase expressing plasmid into the NeonTM pipette. Electroporation was performed 

according to the manufacture’s protocol with the NeonTM pipette station (parameters: 

1200V, 2 pulses with 20ms pulse width). Transfected cells were immediately seeded 

onto prepared feeder plates containing prewarmed ES medium and incubated at 

above-mentioned conditions. Medium was changed on a daily basis; three days after 

electroporation, selection with hygromycin (125U/ml) was initiated and drug resistant 

colonies were picked two weeks after and incubated in selection medium. Each clone 

was transferred to one well of a 96-well plate and cultured until ~80% confluency. 
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Medium was not changed before color change from red to pink to guarantee optimal 

growth conditions. Clones were passaged to produce three “master plates”: one 96-

well plate grown on EMFI feeder plates for later expansion of positive clones for 

blastocyst injection; two 96-well plates with clone duplicates grown on gelatin plates 

for DNA isolation and screening by PCR. 

5.11.4 DNA preparation for detection of positive clones via PCR 

One 96-well gelatinized ES cell plate with duplicates of clones was removed from the 

-80°C freezer and thawed for 5 minutes at room temperature. To each well 50µl of 

ES cell lysis buffer with Proteinase K was added and the plate was incubated 

overnight at 50°C in a humidified chamber. The next day the plate was spun down for 

two minutes at 4000rpm and 100µl/well precipitation mix was added. Plates were 

shaken for at least 30 minutes or until “DNA spider web” structures could be detected 

by eye. After centrifugation (1400rpm/4minutes/RT), plates were gently inverted and 

blotted onto paper towels to adsorb excessive ethanol. Subsequently DNA was 

washed three times with 150µl/well 70% EtOH; blotting procedure was repeated and 

samples were dried at room temperature. For PCR 50µl/well sterile ddH2O was 

added and the plate was incubated overnight at 4°C on a horizontal shaker. For each 

PCR reaction, 1.5µl of DNA suspension was added to the appropriate PCR master 

mix. 

5.11.5 Expansion of targeted ES cell clones for blastocyst injection 

After putative positive clones have been identified by PCR they are pulled from the 

96-well master plate and expanded for microinjection. Therefore, the master plate - 

stored at -80°C in freezing medium – was thawed quickly in a water bath at 37°C. 

After centrifugation freezing medium was replaced by ES cell medium without 

antibiotics. Cells were transferred to freshly prepared 96-well EMFI feeder plates and 

subsequently expanded by repeated splitting onto 24-well plates, 6-well plates and 

10cm EMFI feeder plates when ~70% confluency was reached. For storage, 

expanded clones from one 10cm plate were trypsinized, splitted into three vials 

containing ES cell freezing medium and stored in liquid nitrogen. Three days before 

microinjection the desired clone was thawed and plated onto one 6cm EMFI feeder 

plate. The day before injection the positive clone was seeded onto a gelatin coated 

6cm petri dish. For blastocyst injection, the cells were trypsinized and resuspended in 

1.5ml ES cell medium and stored on ice. Cells were handed over immediately to the 
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staff (Susanne Weidemann and Adrianne Tasdemir) of the transgenic mouse facility 

of the Institute of Developmental Genetics (IDG) at the Helmholtz Center Munich. 

 

5.12 Animal experiments 

 

All animal experiments were conducted in accordance with the guidelines for care 

and use of laboratory animals of the government of Upper Bavaria, Germany. The 

local government authorized the experiments (permission number 55.2-1-54-2532-

142-2015).  

5.12.1 Mouse housing 

Animals were housed in standard Macrolon type II cages (350cm2) or standard IVC 

cages (Mouse IVC Green Line, 501cm2) with food (Altromin #1324) and tap water 

available ad libitum under controlled, constant conditions (light cycle 12:12 hours-

beginning light phase at 8am; room temperature 20-22°C; air humidity 50-60%).  

5.12.2 Stereotactic surgery - viral Injection 

In-house made adeno-associated virus (AAV) serotype 1/2 was used to express the 

constitutively active CRHR1-IRES-GFP fusion protein ((CA)CRHR::EGFP) or the 

anterograde fluorescent protein mCherry in the VTA of CRHR1Cre  mice. The 

constitutively active CRHR1::EGFP fusion construct (136) was subcloned into a 

conditional flexed adeno-associated viral vector (217) and was kindly provided by Dr. 

Arenkiel (137). The plasmid pAAV-Ef1a-DIO-mCherry was purchased from Addgene 

(#50462, Addgene, Cambridge, USA). 

Stereotactic surgeries were conducted by Anna Mederer, Dr. Rosa Eva Hüttl and Dr. 

Mira Jakovcevski at the MPI core unit “Behavior and Physiology” headed by Dr. 

Carsten Wotjak. Adult male mice (10-12 weeks old) were anesthetized with 

isoflurane and fixated in a stereotactic apparatus (TSE systems, Bad Homburg, 

Germany). 20 minutes before surgery analgesic treatment (Metamizol, 200mg/kg 

s.c.) was administered. Body temperature was held at constant 37.5°C by placing a 

heat pad underneath the animal (Harvard Homothermic Blanket Control, Hugo Sachs 

Electronics, March-Hugstetten, Germany). To avoid drying of the cornea, 

Bepanthen® eye ointment was administered at the beginning of the surgery. Under 

local anesthesia (0.5% Lidocain) a small hole was drilled into the skull and a 
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Hamilton® syringe containing the virus was positioned at the appropriate coordinates 

(coordinates from bregma: anterior/posterior -3,0mm, medial/lateral +/-0,6mm, 

dorsal/ventral -4,50mm. The virus (500nl) was injected using an automated 

microinjection pump (World Precision Instruments, Friedberg, Germany) at a rate of 

100nl/min. Subsequently the skull was disinfected and the scalp sewn up; animals 

were kept warm and monitored until awakening. Postoperative analgesia 

(Meloxicam, 1mg/kg s.c.) was administered for three consecutive days. Four weeks 

after AAV delivery animals were single housed to habituate to behavioral test room 

conditions at least one week before testing. To analyze anxiety-like behavior in these 

mice a set of behavioral tests have been performed, arranged from least to most 

stressful: Open field (OF) test, Elevated plus maze (EPM) test and Dark-light box 

(DaLi) test (detailed description of test paradigms see next chapter). For anterograde 

tracing experiments the in-house made virus (AAV-EF1a-DIO-mCherry) was 

positioned at the following coordinates in mm from bregma: striatum 

(anterior/posterior 1.5mm, medial/lateral +/-1.5mm, dorsal/ventral -3.5mm); 

hippocampus (anterior/posterior -1.9mm, medial/lateral +/- 1.3mm, dorsal/ventral -

2.0mm); PVN (anterior/posterior -0.82mm, medial/lateral +/- 0.05mm, dorsal/ventral -

4.55mm); Rt (anterior/posterior -0.5mm, medial/lateral +/- 1.2mm, dorsal/ventral -

4.2mm and -3.4mm); LC (anterior/posterior -5.4mm, medial/lateral +/- 0.85mm, 

dorsal/ventral -3.75mm); CeA (anterior/posterior -1.1mm, medial/lateral +/- 2.75mm, 

dorsal/ventral -4.55mm); PFC (anterior/posterior 2.2mm, medial/lateral +/- 0.30mm, 

dorsal/ventral -1.5mm); Thalamus (anterior/posterior -1.06mm, medial/lateral +/- 

0.20mm, dorsal/ventral -3.4mm); PIR (anterior/posterior -1.54mm, medial/lateral +/- 

2.3mm, dorsal/ventral -4.6mm). 

5.12.3 Behavioral studies 

To investigate the impact of the CRH/CRHR1 system on anxiety and depression-like 

behaviors a variety of well-established behavioral tests in mice are available. The 

main principle of the tests described below is an approach-avoidance conflict, 

meaning inhibition of their naturally exploratory drive of unknown environments by 

aversive test conditions like bright illumination or elevated space. 

If not indicated otherwise all behavioral experiments were carried out in male mice 

(age 9-15 weeks); at least one week before testing mice were single housed and 

habituated to test room conditions. Behavioral tests were performed during light 
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phase (light phase adaption 1 hour) and ended at the latest 1pm, tissue collection 

included. Animal’s behavior was tracked and analyzed with an automated video-

tracking system (ANY maze, Stoelting Europe, Terenure, Ireland). All results were 

analyzed by the commercially available GraphPad Prism 5 software (GraphPad 

software Inc., La Jolla, CA) and presented as mean ± standard error of the mean 

(s.e.m.). Simple comparisons were evaluated with a two-tailed unpaired t-test. 

Statistical significance was defined as p < 0.05. 

Open field exploration test: Originally designed to measure emotional behavior in rats 

this test was successfully adapted to mice and is often used as an initial screen for 

anxiety-related behavior in rodents as it characterizes novel environment exploration 

and locomotor activity. The test apparatus comprises an evenly illuminated (<15 lux) 

large square chamber (50 x 50 x 60cm (length x width x height) made of grey 

polyvinyl chloride (PVC). The open field arena was virtually divided into an outer and 

inner zone (15 x 15cm). At the beginning, each mouse was placed into the same 

corner of the arena and was allowed to freely explore the chamber for 15 minutes 

meanwhile the following parameters were scored: total distance traveled, number of 

inner zone entries and inner zone time. Naturally, mice prefer exploring the periphery 

of the arena (protected area; mice usually keep in contact with the walls). Mice 

spending significantly more time in the inner zone demonstrate anxiolytic-like 

behavior under basal conditions. The first five test minutes reflect general locomotor 

activity, which is reflected by total distance traveled.  

Elevated plus-maze test (EPM): The elevated plus maze is designed to assess the 

competing tendency of mice to explore a novel arena versus avoidance of open, 

brightly lit areas. Mice can freely choose between enclosed, protected arms and 

open, unprotected arms, all elevated 37cm from the floor. Mice tend to avoid the 

open arms of the EPM, especially when they are brightly illuminated. The test 

apparatus consists of plus-shaped arms (30 x 5cm) extending from a central zone (5 

x 5cm) with two arms being enclosed with 15cm high walls, all made of grey PVC. 

The open arms were illuminated with 20 lux and the closed arms with <15 lux. With 

this dim light levels the natural exploratory tendency is not inhibited. Each mouse 

was placed in the central arena facing the closed arm and was allowed to freely 

explore the maze for 5 minutes, meanwhile the parameters time spent in the open 

and closed arms, number of open arm entries and total distance traveled were 

recorded. 
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Dark-light box test (DaLi): The dark-light exploration test provides an additional 

instrument to investigate anxiety-like behavior. As with the EPM it is based on the 

inherent conflict between spontaneous exploratory behavior and risk avoidance 

reflected by inhibition of exploration. The test apparatus was a rectangular, grey PVC 

box and consists of a secure black compartment (15 x 18 x 27cm, length x width x 

height; illumination <5 lux), a tunnel of 5cm length and a larger aversive white 

compartment (48 x 28 x 27cm), illuminated with 700 lux. Initially, animals were placed 

into a corner of the dark box and were allowed to freely explore the chamber for 5 

minutes. The following parameters were recorded: number of lit compartment entries, 

time spent in the lit compartment and total distance traveled. Naturally, mice prefer 

the dark, protected compartment and thus mice exhibiting anxiolytic behavior will 

have more transitions into the brightly illuminated open area. Results were 

interpreted with use of caution regarding general locomotor activity as recorded with 

the open field test. 
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6 Results 

6.1 Generation of the “parental” CRHR1 allele 

 

The RMCE strategy presented in the following section relies on the multifunctional 

CRHR1 allele, generated by Kühne et al., 2012 (see Figure 7).  

 

Figure 7: Generation of conditional CRHR1 knockout mice 

Strategy for targeted manipulation of the CRHR1 locus; based on Kühne et al., 2012. (A) 
Schematic representation of the wild-type locus and targeting vector. (B) Recombined 
reporter allele (CRHR1tz) following homologous recombination in ES cells. See text for more 
details. 

 

This knock-in allele genetically labels CRHR1-expressing cells with a tau-lacZ (tZ) 

reporter gene. In addition to this, it also offers the possibility to conditionally restore 

or delete CRHR1 via Flp and Cre recombinase, respectively. Furthermore, it contains 

targeting sites for the phiC31 integrase, allowing repetitive manipulation of the same 

“pre-inserted docking site” in the genome of ES cells via RMCE. This approach 

simplifies and accelerates the search for correct integration events in ES cells. 
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6.1.1 Generation of the targeting vector 

 

The donor construct comprises the following components, which were flanked by attB 

sites, thereby enabling a recombination event with the heterotypic attP sites of the 

“docking” allele: a 4,6kb fragment encoding the 3’ part of CRHR1 Intron 2 including 

the endogenous splice acceptor, the coding sequence of CRHR1 exon 3 -13 followed 

by insertion of an IRES Cre cassette at the 3’UTR and a reverse orientated 

hygromycin positive selection cassette, including a bovine growth hormone 

polyadenylation signal (pA). By insertion of the IRES site at the 3’UTR of the gene of 

interest the mRNA is translated into two independent proteins thus preserving 

expression of the wild-type CRHR1 and simultaneously expressing Cre recombinase 

under the control of the endogenous CRHR1 promoter (Figure 8). 

In detail: The targeting vector was based on a universal shuttle vector (constructed 

by Webb and Deussing in our group) which contains two full length attB sites inserted 

between the NotI and XhoI site of a pBluescript II KS (+) vector. Additional restriction 

sites (Mfe I, SpeI, AgeI, AscI, SwaI, AflIII, BsrGI, BstBI) where inserted via annealed 

linker oligonucleotides into the multi cloning site to facilitate further cloning steps. In 

addition, the shuttle vector contains the 34bp minimal frt site sequence (5'-

GAAGTTCCTATTCtctagaaaGtATAGGAACTTC-3') inserted between the SwaI and 

AflII site (Figure 8). Five independent rounds of PCRs were performed with the 

respective products being subcloned into the pCRII TOPO vector using the TOPO TA 

cloning kit and then sequenced. The first part of 3’ intron 2 was generated by long 

range PCR of murine C57/BL/6J genomic DNA using primer pair 

Crhr1_Intron2_long_MfeI_for and Crhr1_Intron2_long_SpeI_rev. The second half of 

3’ Intron 2 (500bp length) and first part of Exon 3 (spanning the Sbfl restriction site) 

was PCR amplified with the primer pair Crhr1_Intron2_small_AgeI_for and 

Crhr1_Exon 3 all_rev. The coding sequence of Crhr1 exon 3 -13 was generated from 

a cDNA template of the full-length receptor subcloned in the pCRII Topo (Primers: 

Crhr1_Exon 3 all_for and Crhr1wt_AscI_rev). Origin for amplification of the IRES Cre 

cassette was genomic DNA isolated from a homozygous animal of the (B6(Cg)-

Crhtm1(cre)Zjh/J (CRH-IRES-Cre) mouse line, obtained from Jackson laboratories (stock 

number 012704) (primer pair: AscI IRESCre fwd and Cre rev-SwaI). Finally the hygro 

pA cassette was generated via PCR amplification using primer pair Hygro_BstBI_for 

and Hygro_BsrGI rev. (template plasmid pBS_attB_hygro_attB, kindly provided by 
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Dr. Katharine Webb). Completion of the shuttle vector was achieved by preparative 

digests of the subcloned PCR products, gel extraction and purification, followed by 

several rounds of consecutive ligation steps (see Figure 8). 

 

Figure 8: Cloning steps for completion of the donor vector 

PCR and ligation strategy for the donor construct. (A) Schematic representation of the shuttle 
vector and five different PCR reactions with relevant restriction sites, subcloned into pCRII 
Topo®. (B) Recombined donor construct following successive ligation steps into the shuttle 
vector. For details, see text. 

 

6.1.2 Generation of recombinant embryonic stem cells via RMCE 

 

Site-specific bacteriophage phiC31 integrase mediates irreversible recombination 

between the two heterotypic sites attB and attP and can therefore be used for 

efficient DNA integration. For this, the docking site/landing path was inserted into the 

CRHR1 locus by homologous recombination in mouse ES cells (41). Subsequently, 

the circular donor plasmid (containing the coding sequence of CRHR1 exon 3 -13 

followed by insertion of an IRES-Cre cassette and a reverse orientated hygro positive 

selection cassette) – all flanked by attB sites - was introduced in these ES cells 

(Figure 9B). Simultaneously recombination between the two pairs of recognition sites 

results in cassette exchange and stable integration as the phiC31 integrase is inert 
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on the product sites of the recombination event: attL and attR sites. To prevent self-

excision of its own loxP-flanked coding sequence we made use of ES cells lacking 

the loxP site upstream of exon 2 for integrating the Cre donor cassette (Figure 7B, 9). 

 

Figure 9: Strategy for phiC31 integrase-mediated cassette exchange (RMCE) 

Exchange strategy for replacing the target cassette within the CRHR1 locus by a compatible 
donor construct. (A) Schematic drawing of the incoming RMCE-donor cassette and the 
genomic “docking site”. (B) Recombined CRHR1 allele (CRHR1Cre) following phiC31 
integrase-mediated site-specific recombination simultaneously between the two pairs (attP 
and attB) of recognition sites from the “donor cassette” and the chromosomal “acceptor 
cassette” in embryonic stem cells. See text for more details. 

 

Standard procedures for ES cell work were used (see Materials and Methods). To 

introduce the donor construct murine TBV2 ES cells (derived from strain 129S2), 

containing a single copy integrant of the docking site were electroporated via the 

Neon Transfection System from Invitrogen. ES cells were cultivated on mitotically 

inactivated feeder cells. For electroporation 1x 106 ES cells were used and 

electroporated simultaneously with 25µg of circular plasmid DNA of pBS_CRHR1-

IRES-Cre and 25µg of pPGKPhiC31obpA (mammalian phiC31 integrase expression 

vector, purchased from Addgene). Three days after electroporation positive selection 

was started with ES cell selection medium containing hygromycin B. On day 9 after 

electroporation ideal colonies with clearly defined borders were picked and further 
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cultivated under selection conditions for another week. Colonies were split at ~80% 

confluency; half of the culture was plated into a new 96 well plate dish and was 

cryopreserved at day 14 after picking. The duplicates of the colonies were seeded on 

gelatin coated plates for DNA extraction and subsequent screening for positive 

clones via polymerase chain reaction (PCR) (Figure 10). 

 

Figure 10: Appearance of EMFI feeder cells and ES cells 

(A) Mitotically inactivated feeder cells for supporting ES cell growth. (B) Appearance of ES 
cells plated on a 96-well gelatin-coated plate for DNA extraction. Scale bars represent 
100µm. 

 

6.1.3 Screening of ES cell clones for construct integration 

 

In order to identify ES cell clones with the desired recombination event, screening by 

PCR was performed. Genomic DNA as PCR template was isolated from remaining 

hygromycin resistant ES cell clones by precipitation (for details see Materials and 

Methods section). For this purpose several PCR primer pairs were designed (the 

PCR strategy is detailed in Figure 11) to examine two hypothesized scenarios 

namely (1) cassette exchange (illustrated in Figure 6) or (2) recombination at the 3’ 

attP site (type II insertion). It is important to note that the latter listed recombination 

event is theoretical followed by integrase-mediated deletion between the intact attP 

and attB sites, thereby also resulting in cassette exchange (Figure 11). 
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Figure 11: Transgene configuration after type II insertion 

(A) Schematic representation of recombination at the 3’ recognition site (type II insertion). (B) 
Type II insertion results in cassette exchange by an integrase-mediated deletion event 
between the intact attP and attB site. Primers for analyzing construct integration are 
indicated by arrows. For details, see text. 

 

All positive clones produced a band of the expected size with primer pair cre fwd./cre 

rev. as well as primer pair hygro fwd./Primer 2cre rev.. Sequencing of the latter PCR 

product confirmed the existence of the expected attR site. Surprisingly all clones 

revealed a band with primer pair Flipase 1 fwd./tau rev. indicating that the tau-lacZ-

neo cassette (tz-neo cassette) is still present. This can only occur as result of an 

“incomplete” type II insertion event without deletion of the sequence between the 

remaining attP and attB sites, most probably due to inefficient intramolecular 

recombination or insufficient/decreasing amount of phiC31 integrase. After 

sequencing of the PCR products, the existence of the intact 5’ attP site was proven. 

Additionally, all clones were screened for existence of vector backbone with primer 

pair neo fwd./Primer 2 cre rev. In 25% of all clones, the vector backbone was 
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detectable, whereas PCR results in 75% of all cases pointed towards a different 

recombination event. Thorough analysis of the sequencing results for the PCR 

product generated by primer pair neo fwd/Primer 2 cre rev revealed the existence of 

an attL site instead of pBluescript backbone sequence, hinting towards an alternative 

recombination event between the 3’ docking attP site and the incoming donor attB 

sites (Figure 12). 
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Figure 12: Resulting allele after RMCE at the 3’ attP recognition site 

Transgene configuration due to alternative recombination. (A) Schematic representation of 
recombination at the 3’ attP recognition site (type II insertion). (B) Type II insertion with an 
alternative recombination event between the 3’ docking attP site and the attB sites of the 
donor plasmid. Primers for analyzing construct integration are indicated by arrows. (C) The 
recombination between the 3’ attP site and the donor attB sites was validated by sequencing. 
For details, see text. 

 

6.2 Generation of the CRHR1tZCre mouse line  

6.2.1 Characterization of chimeras and germline transmission 

 

All positive clones showing integration of Cre recombinase at the 3’ docking site 

(Figure 11,12) were expanded and used for blastocyst injection, which were 

transferred into pseudo-pregnant foster females using standard procedures (injection 

and transfer was performed by the staff of the transgenic mouse facility of the 

Institute of Developmental Genetics (IDG) at the Helmholtz Center Munich). A 

number of chimeric mice were born of which three highly chimeric males (90% coat 

color chimerism) were mated to wild-type mice. One chimera exhibited germline 

transmission as revealed by coat color (pups with agouti fur) and genotyping of the 

heterozygous offspring; the resulting mouse line was named CRHR1tZCre and 

demonstrates the successful RMCE-based manipulation of mouse ES cells (Table 3).  

 
Table 16: Summary of the results from the blastocyst injection 

 

Blastocyst 

donor 

strain 

 

ES cell 

Clone 

(TBV2 

origin) 

 

transferred 

blastocysts 

 

born pups 

 

Chimera 

male 

 

Chimera 

female 

 

Coat color 

chimerism (%) 

male 

 

Coat color 

chimerism 

(%) female 

Balb-c C12 ? ? 1 1 5% 5% 

Balb-c A9 18 4 0 0 - - 

Balb-c A9 18 3 3 0 3x 90% - 

Balb-c B11 20 0 0 0 - - 

Balb-c B11 20 0 0 0 -  
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Table 16: Summary of the results from the blastocyst injection (continued) 

 

Blastocyst 

donor 

strain 

 

ES cell 

Clone 

(TBV2 

origin) 

 

transferred 

blastocysts 

 

born pups 

 

Chimera 

male 

 

Chimera 

female 

 

Coat color 

chimerism (%) 

male 

 

Coat color 

chimerism 

(%) female 

Balb-c B11 18 2 0 0 - - 

Balb-c B6 20 9 7 0 

80%+70% 

+2x 40% 

+1x 30% 

+2x 20% - 

Balb-c B6 20 7 2 2 2x60% 60%+30% 

Balb-c B9 20 5 0 0 - - 

Balb-c B9 20 5 1 0 20% - 

Balb-c B9 19 8 1 1 70% 10% 

Balb-c B9 20 4 0 0 - - 

 

6.2.2 Establishment of Genotyping 

 

Genotyping was performed by a multiplex PCR assay using primers Flipase 1 fwd, 

Primer 2 cre rev and tau rev. Standard PCR conditions resulted in a 232bp wild-type 

product and a 623bp product indicating the presence of the tZ-neo cassette. The 

presence of Cre recombinase was proven using primers cre fwd, cre rev, Thy1-F1 

and Thy1-F2, resulting in a Cre-specific PCR product of 574bp and a 372bp control 

product verifying addition of DNA template into the PCR master mix (Figure 13). 
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Figure 13: Genotyping of the CRHR1tZCre mouse line 

Genotyping of mice via PCR. (A) Schematic representation of the recombined CRHR1 allele; 
primers for detecting the tZ-neo cassette and the Cre recombinase are indicated by arrows. 
(B) Multiplex PCR displaying wild-type and heterozygous mice of the CRHR1tZCre mouse line. 

 

6.3 Characterization of the subpopulation-specific CRHR1tZCre mouse line  

 

By application of RMCE a “new” CRHR1 allele based on a multifunctional founder 

allele was generated. Due to an alternative recombination event, the tau-lacZ 

reporter cassette with its strong adenoviral splice acceptor is still present at the 

integration site. The splice acceptor from the intron 1/exon 2 boundary of the type II 

adenovirus has been shown to mediate efficient splicing into 3’ exons and is off 

sufficient strength to override endogenous splicing. Thus, alterations in splice site 

choice can result in alternative splicing patterns depicted in figure 14. 
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Figure 14: Result after phiC31 Integrase-mediated cassette exchange using the single 
3’ attP docking site  

(A) Schematic drawing of the recombination event at the 3’-recognition site. Recombined 
CRHR1 allele (CRHR1tZCre) representing an insertion event rather than a cassette exchange. 
Alternative splicing events leads to different potential mature mRNA molecules that generate 
multiple functional proteins. Detailed description see text. 

 

Utilization of the CRHR1 Intron 2 endogenous splice acceptor should result either in 

a wild-type Crhr1 mRNA (splice variant a in Figure 14) or in a transcript variant 

encoding for CRHR1 exon 1 - 13 followed by insertion of an IRES Cre cassette at the 

3’UTR (splice variant b in Figure 14). In the latter case, the IRES Cre cassette is part 

of a mature fusion transcript initiated from the endogenous CRHR1 promoter where 

the IRES sequence encodes an RNA motif that allows independent ribosome binding 

and initiation of translation of the Cre recombinase sequence 3’ to the IRES site. 

Alternatively, CRHR1 exon 2 could be spliced to the synthetic splice acceptor site in 

a way that the N-terminal portion of CRHR1 is in-frame with the tZ reporter gene 

(splice variant c in Figure 14). The presence of the neomycin resistance coding 

sequence involves the possibility of other splice variants, because the neomycin 

gene has been shown to contain cryptic splice acceptor and donors sites (splice 

variant d in Figure 14) (127, 218).  
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6.3.1 Evaluation of CRHR1- and Cre expression by in situ hybridization 

 

In situ hybridization was used to verify expression of the lacZ reporter, Cre 

recombinase and endogenous Crhr1 mRNA, respectively (Figure 15). Examination of 

adult mouse brain sections from heterozygous CRHR1+/tZCre mice revealed 

expression of Cre in a subset of neurons. Cre positive neurons could be identified in 

the mitral and granular layer of the olfactory bulb (Mi, GrO), cortical layer II-IV (ctx), 

pontine nuclei (Pn) and granular layer of the cerebellum (gr). Other sites of strong 

receptor expression such as the hippocampus (CA1), amygdala, globus pallidus, 

reticular thalamic nucleus (Rt), VTA, red nucleus (RMC) and medial vestibular 

nucleus (MVE) were lacking Cre expression. A nearly identical epression pattern of 

the lacZ mRNA points towards alternative splicing events.  

At this point, it is not entirely clear which particular splicing events occur. Further 

analyses such as reverse transcription polymerase chain reaction (RT-PCR) or rapid 

amplification of cDNA-ends (RACE-PCR) are necessary to decipher the splicing 

process. Single cell electrophysiological analysis of hippocampal CA1 neurons 

(Figure 18) revealed that these cells do not respond to an exogenous CRH stimulus 

(data not shown) – which would be equivalent to a knockout allele. This points 

towards aberrant splicing of neo sequences into the adjacent CRHR1 exon 3-13 

coding sequence, however, the latter splice variant results in a non-functional 

receptor due to a shift in the reading frame. Furthermore intercross of heterozygous 

CRHR1+/tZCre mutant male and female mice did not result in homozygous offspring, 

most probably due to lung dysplasia induced by a corticosteron deficit, although this 

phenomenon has been described so far only for homozygous intercrosses where low 

levels of maternal corticoids result in insufficient neonatal lung maturation (156).  
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Figure 15: Analysis of Cre and lacZ expression in the adult heterozygous CRHR1+/tZCre 

mouse brain by in situ hybridization  

An antisense riboprobe was hybridized to 20µm-thin cryosections. Representative bright field 
photomicrographs arranged from rostral to caudal showing Cre mRNA (middle) and lacZ 

mRNA (right) on coronal brain sections. ISH using a specific riboprobe detecting endogenous 
Crhr1 mRNA from the heterozygous allele (left) reveals expression of the reporter cassette 
and Cre recombinase, respectively only in a subset of CRHR1 neurons. For abbreviations 
and details, see text. 
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6.3.2 Validation of Cre expression using a reporter line 
 

To examine the spatial and temporal expression of Cre recombinase CRHR1+/tZCre 

mice were bred to the R26-CAG-tdTomato (Ai9) reporter line (187). The expression 

of the reporter gene tdTomato driven from the CAG promoter inserted into the 

Rosa26 locus relies upon Cre-mediated removal of an upstream loxP-flanked stop 

cassette (Figure 16). 

 

Figure 16: Validation of Cre recombinase expression of CRHR1+/tZCre mice  

Expression of the fluorescent tdTomato reporter gene is blocked by an upstream stop signal. 
Expression of Cre driven from the CRHR1 promoter within the same cell results in 
recombination between the flanking loxP sites and deletion of the stop cassette, thus 
activating expression of the reporter gene under control of the ubiquitous CAG promoter. 

 

The Cre-mediated recombination event and subsequent expression of the reporter 

gene will persist in all cells irrespective of whether or not they continue to express 

Cre. With this approach the cumulative expression history of the Cre recombinase 

can be made fully visible. Strong native tdTomato fluorescence allows direct 

visualization of neurons including their processes (dendrites and axons) and long-

range axonal projections. A direct comparison of the reporter tdTomato at mRNA and 

protein level by ISH and native fluorescence, respectively, is displayed in Figure 17.  
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Figure 17: Analysis of tdTomato reporter gene expression in the adult heterozygous 
CRHR1+/tZCre mouse brain 

Row (A) depicts dark-field photomicrographs arranged from rostral to caudal showing Crhr1 
mRNA expression in brain sections of wild-type mice (copyright 2000 Wiley and Sons; used 
with permission # 4257670565929 from van Pett, Distribution of mRNAs encoding CRF 
receptores in brain and pituitary of rat and mouse, Figure 1A-F, H). (B) Dark-field 
photomicrographs illustrating distribution of neurons expressing tdTomato mRNA. Areas 
framed in red, highlight brain nuclei with developmental or transient Cre recombinase 
expression resulting in a permanent “on state” of reporter gene expression. Nuclei with 
absent Cre mRNA expression during development and adulthood are surrounded by a 
yellow rectangle. (C) Coronal brain sections of adult mice depicting expression of the 
tdTomato reporter gene in a subpopulation of CRHR1 positive neurons. Regions of interest 
are highlighted. Abbreviations: arcuate nucleus (ARH), basolateral amygdaloid nucleus 
(BLA), bed nucleus of the stria terminalis dorsal (BNSTd), field CA1 of hippocampus (CA1), 
caudate putamen/striatum (CPu), dentate gyrus (DG), glomerular layer of the olfactory bulb 
(gl), globus pallidus (GP), granule cell layer of the olfactory bulb (GrO) or cerebellum (gr), 
isocortex (ISO), medial amygdaloid nucleus (MeA), medial geniculate complex (MG), medial 
septal nucleus (MS), medial vestibular nucleus magnocellular (MVeMC), medial vestibular 
nucleus parvicellular (MVePC), molecular layer cerebellum (mol), olfactory tubercle (OT), 
pontine grey (PG), posterior thalamic nuclei (Po), red nucleus magnocellular part (RMC), 
reticular thalamic nucleus (Rt), ventral tegmental area (VTA). Scale bars represent 100µm. 

 

Early developmental or temporally restricted Cre expression could be detected in the 

bed nucleus of the stria terminalis (BNSTd), dentate gyrus (DG), posterior thalamic 

nuclei (Po), medial geniculate complex (MG) and medial magnocellular vestibular 

nucleus (MVeMC) (areas marked with red rectangles in Figure 17). It should be 

mentioned that this reporter line strategy for systematic characterization of CRHR1 

promoter driven Cre recombination pattern is very sensitive to low levels of Cre, 

potentially leading to more recombined cells than expected from previous mRNA 

expression studies. In contrast, less recombination than expected when compared 

with endogenous CRHR1 expression in wild-type animals (Row A, Figure 17) was 

apparent in the granule cell layer and glomerular layer of the olfactory bulb (gl, gr), 

the olfactory tubercle (OT), the medial septum (MS), the hippocampus (CA1), the 

basolateral- and medial amygdala. Among subcortical structures tdTomato 

expression in the basal ganglia, namely the striatum (CPu), the globus pallidus (GP), 

and the VTA was absent or only sporadicly detectable. Furthermore, the reticular 

thalamic nucleus as well as the arcuate nucleus – two prominent sites of CRHR1 

expression – are almost entirely lacking reporter gene expression. It remains unclear 

whether these absent recombinations in certain cell populations are due to 

alternative splicing and subsequent nonsense-mediated mRNA decay. 
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As illustrated in Figure 17, expression of Cre during adulthood is restricted to a 

subpopulation of CRHR1 positive neurons. However, the rather sparse labeling of 

CRHR1 expressing neurons provides substantive benefits for imaging axons and 

dendrites. CRHR1 is relatively widely expressed and expression of the reporter in all 

cells would complicate tracking of processes for morphological analyses. In addition, 

isolation of individual CRHR1 positive neurons for electrophysiological recordings or 

single cell expression profiling is considerably easier in this mouse line. For example, 

a single cell electrophysiological analysis in hippocampal CA1 region of 

CRHR1+/tZCre mice revealed that the tZCre allele is a “knockout allele” as these cells, 

marked by dtTomato fluorescence, are not reactive to exogenous CRH 

administration (Figure 18; personal communication; experiment was conducted by 

Dr. Julien Dine at the electrophysiological core unit of the MPI for Psychiatry, Munich)  

 

Figure 18: Analysis of sparse labeled neurons in 
hippocampal CA1 field 

Single cells filled with tdTomato reporter protein can 
be simply identified by native fluorescence and 
targeted for patch clamp recordings. Scale bar 
represents 100µm. 

 

 

 

6.4 Generation of the CRHR1Cre mouse line 

6.4.1 Removal of the tZ-neo reporter and hygromycin selection cassettes  

 

For identification of targeted ES cell clones, the positive selection marker hygromycin 

was included within the targeting vector. As such markers can alter the splicing and 

regulation of the targeted locus, it was flanked with frt sites to enable its removal in 

vivo by crossing to a Flp recombinase deleter strain. Because of the alternative 

recombination event, the tau-lacZ-reporter cassette of the genomic docking locus is 

still present but due to residual flanking frt sites also accessible for Flp mediated 

recombination. For this, the CRHR1tZCre mouse line was bred to the FlpeR (“flipper”) 

mouse strain (obtained from the Jackson Laboratory; stock number 003946). The 

latter strain expresses a thermostable variant of Flp under control of the ubiquitous 

Rosa26 promoter. Target gene recombination can be achieved from preimplantation 
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onwards and includes most tissue types and cells of the developing germ line. As 

different recombination events are likely, a PCR based screening strategy was 

designed to detect the desired recombination event in F1 progeny (Figure 19).  

 

Figure 19: Flpe-mediated removal of the tZ-neo reporter and hygromycin selection 
cassettes 

Using the FlpeR (“flipper”) mouse strain to restore the targeted knock-in allele. (A) Overview 
of Flpe-mediated excision of the reporter (tau-lacZ) and selection (hygro) cassettes. Primers 
for detecting the tZ-neo cassette and the Cre recombinase are indicated by arrows. (B) 
Recombined CRHR1 allele (CRHR1Cre) with Cre recombinase being expressed under control 
of the endogenous CRHR1 promoter. Red rectangles indicate the PCR strategy and primer 
combinations for detection of hetero- and homozygous offspring. For details, see text. 
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6.4.2 Establishment of Genotyping 

 
PCR analyses to identify removal of the hygro selection cassette as well as the tau-

lacZ-reporter cassette was performed by a multiplex PCR assay. A 305bp product 

indicates the presence of the hygromycin gene with primer pairs P-Cre-downs-fwd 2, 

P-PGK-fwd 2 and Primer 2 cre rev. A PCR product of 425bp displayed deletion of the 

selection cassette with Cre recombinase still present. Under standard PCR 

conditions primer pairs P-Cre-downs-fwd2. and Flipper rev-1. resulted in a 376bp 

PCR product, indicating the presence of the tZ-neo cassette. After recombination and 

removal of the reporter cassette the primer combination Flipase 1 fwd and Flipper 

rev-1 resulted in a smaller PCR product of 367bp. Primer pair Flipase 1 fwd and 

Primer 2 cre rev (232bp PCR product) indicate the presence of the wild-type allele. 

(Figure 20 left panel). 

 

Figure 20: PCR analyses of CRHR1tzCre x FlpeR offspring 

Genotyping of F1 progeny from breeding heterozygous CRHR1tZCre mice to FLPeR mice. Left 
panel: removal of the tZ reporter cassette is indicated by a 367bp PCR product. An additional 
425bp product indicates simultaneously removal of the hygromycin cassette. Right panel: 
presence of the selection cassette is indicated by a 305bp product; after recombination and 
deletion standard PCR conditions resulted in a 425bp PCR product. 
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6.5 Characterization of Cre expression  

6.5.1 Systematic characterization of Cre expression by in situ hybridization 

 

To evaluate the utility of the CRHR1Cre mouse line as a tool enabling genetic access 

to CRHR1-specific subpopulations of cells in the mouse brain, the Cre expression 

pattern was systematically analyzed by radioactive ISH (Figure 21). Direct 

comparison of Cre mRNA and Crhr1 mRNA (riboprobe located in the 3’ UTR of the 

receptor) on adjacent brain sections from heterozygous animals allows for direct 

comparison of the Cre recombination pattern with the endogenous CRHR1 

expression. To summarize, expression of the Cre recombinase exactly recapitulates 

the spatial distribution of endogenous Crhr1 mRNA and is in line with previously 

described expression patterns of the receptor (29, 41). Major sites of Crhr1 mRNA 

expression include cortical layers II-VI, pyramidal cell layer of the hippocampus, 

granule and glomerular layer of the main and accessory olfactory bulbs, basolateral 

and medial amygdala, pontine nuclei and Purkinje and granule layers of the 

cerebellar cortex. As expected Flp-mediated removal of the reporter and hygromycin 

selection cassettes from the CRHR1tZCre allele restored expression of Cre in central 

components of the basal ganglia, namely globus pallidus and caudoputamen as well 

as their major sources of input, the substantia nigra and VTA. Furthermore, Cre 

expression is now detectable in the red nucleus, reticular thalamic nucleus and in 

sensory structures like the vestibular nuclei, all of them lacking signal in the 

CRHR1tZCre mouse line. Taken together, the knock-in approach inserts the Cre 

transgene cassette directly into the endogenous locus of CRHR1 thereby ensuring 

that the Cre driver line mirrors the expression pattern of the receptor and by the use 

of an IRES site the expression of the wild-type receptor is preserved.  
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Figure 21: Cre expression fully recapitulates Crhr1 mRNA expression in the brain 

The anticipated transcripts produced from the indicated allele and the localization of the 
respective in situ probes A (3’ UTR) and B (Cre) are schematically depicted on the top. 
Representative bright field photomicrographs showing Crhr1 mRNA (probe A) and Cre 
mRNA (probe B) on adjacent coronal brain sections arranged from rostral (left) to caudal 
(right). Bottom row: the level of Cre mRNA expression is gene dosage-dependent as 
demonstrated by the stronger in situ hybridization signals detected in homozygous 
CRHR1Cre/Cre (right side) versus heterozygous CRHR1+/Cre (left side) animals. Abbreviations: 
basolateral amygdaloid nucleus (BLA), field CA1 of hippocampus (CA1), glomerular layer of 
the olfactory bulb (gl), globus pallidus (GP), granule cell layer of the olfactory bulb (GrO) or 
cerebellum (gr), isocortex (ISO), medial vestibular nucleus (MV), molecular layer cerebellum 
(mol), pontine grey (PG), red nucleus magnocellular part (RMC), reticular thalamic nucleus 
(Rt), ventral tegmental area (VTA). 

 

Based on a thorough ISH analysis of homozygous transgenic mice (CRHR1Cre/Cre) 

versus wild-type littermates (CRHR1+/+) we could confirm that normally spliced 

CRHR1 mRNA is produced and that no aberrantly spliced sequences are co-

expressed from the knock-in Cre allele. A schematic representation of the wild-type 

and transgenic allele and the localization of the respective in situ probes are shown 

in Figure 22. Homozygous mutants of both sexes are viable and fertile and the 

transgenic Cre allele does not affect embryonic or neonatal survival. The level of Cre 

mRNA expression is gene dosage-dependent as demonstrated by the stronger in situ 
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hybridization signals detected in CRHR1Cre/Cre versus CRHR1+/Cre animals (Figure 

21).  
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Figure 22: Validation of the Cre mRNA expression in wild-type mice and homozygous 
CRHR1 Cre-driver mice 

A schematic representation of the wild-type and transgenic knock-in allele and localization of 
respective in situ probes are shown at the top of the chart. Endogenous Crhr1 mRNA 
expression and Cre mRNA expression was demonstrated by in situ hybridization using 
specific riboprobes (probe B and C, respectively). Depicted are representative bright field 
photomicrographs of coronal brain sections from rostral to caudal taken from 
autoradiographs. The absence of in situ hybridization signals using probe B and C as specific 
negative controls on the corresponding sections confirmed the correct splicing and 
reconstitution of the CRHR1 in the CRHR1Cre/Cre transgenic mouse line. 

 

6.5.2 Evaluation of Cre specificity by double in situ hybridization  

 
In order to further validate the specificity of Cre expression on the cellular level we 

performed double in situ hybridization on brain sections from adult heterozygous 

animals to verify that the Cre recombines exclusively in endogenously CRHR1 

expressing neurons. The double ISH approach has been chosen in preference to the 

double immunohistochemistry technique due to the lack of specific CRHR1 

antibodies. Because of the relatively weak CRHR1 promoter we expect a rather low 

expression level of the endogenous CRHR1 and the IRES-dependent downstream 

Cre. Therefore, we analyzed the Cre-dependent tdTomato reporter gene expression. 

Upon Cre recombinase-mediated removal of the transcriptional STOP cassette from 

the R26CAG::loxP-STOP-loxP-tdTomato (Ai9) allele, tdTomato-reporter expression is 

driven by a CAG promoter and continuously detected in all neurons that have 

expressed CRHR1 at any given time point within their lineage. Quantification of 

double positive cells revealed that most tdTomato-expressing neurons co-expressed 

CRHR1 and vice versa, the majority of CRHR1-positive neurons also expressed 

tdTomato (Figure 23). This outcome displays the full potential and utility of the new 

Cre driver line for providing access to CRHR1-specific neurons. It is important to 

mention that the tdTomato expression pattern reflects the cumulative/developmental 

expression history of Cre and amplifies expression levels. Thus, tdTomato-positive 

neurons that lack CRHR1 expression could represent cells that expressed CRHR1 

during the course of development, but ceased to do so in adulthood. The presence of 

CRHR1-positive, but tdTomato-negative cells, could be explained by lack of activity 

of the CAG promoter (that drives tdTomato expression) in those particular cells. Care 

must also be taken in interpreting negative colorimetric ISH results (“cold ISH”) as 

very low levels of mRNA may not be detectable even with the high sensitive TSA 

biotin plus system used here.  
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Figure 23: Validation of Cre expression/recombination specificity in CRHR1Cre mice 

Bright field photomicrographs of coronal brain sections obtained from heterozygous 
CRHR1+/Cre mice bred to Ai9 reporter mice (CRHR1Cre::Ai9) depicting high specificity of Cre 
recombinase expression. (A) The upper row depicts double ISH of endogenous Crhr1 mRNA 
(black silver grains) and CRHR1-IRES-Cre-driven tdTomato (red staining). Black arrowheads 
indicate cells expressing only Crhr1 mRNA, red arrowheads depict cells expressing only 
tdTomato mRNA, respectively. Red-framed, black arrowheads indicate Crhr1-positive 
neurons coexpressing tdTomato. (B) Quantification of double positive cells in different brain 
regions of interest; n = 3 mice, 3 sections/mouse. Most tdTomato-expressing neurons co-
expressed Crhr1, and likewise the majority of Crhr1-positive neurons also expressed 
tdTomato. Scale bar represents 100µm; all pictures were taken with the same objective 
(40x). For details, see text. 
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6.5.3 Visualization of Cre expression via breeding to reporter lines 

 
Expression analysis of Cre itself via radioactive in situ hybridization (see Figure 21-

23) is a good indicator of adult Cre expression patterns, but care must be taken as 

very low levels of mRNA may not be detectable by this method. To circumvent this 

limitation, the CRHR1Cre mouse line was crossed with two different Cre-inducible 

reporter lines that express a fluorescent reporter gene upon Cre-mediated 

recombination of loxP sites flanking a STOP cassette. Every Cre-mediated 

recombination event will lead to persistent reporter gene expression regardless 

whether the cells continue to express Cre (Figure 24). As predicted, there is a 

discrepancy between Cre mRNA expression (Figure 21, probe B) and Tomato mRNA 

expression (Figure 25 top panel) in the adult mouse brain. The two most likely cause 

of the “ectopic” tdTomato expression is a transient expression in neurons during 

development or so far undetected expression of low receptor levels due to a 

relatively weak endogenous promoter. The latter possibility could be verified by 

injection of Cre-dependent reporter viruses in respective target regions of adult mice, 

thereby excluding developmental Cre-mediated recombination events (see chapter 

6.5.4). A detailed analysis of expression with regard to temporal and spatial 

specificity using a double ISH approach is provided in chapter 6.5.2. The following 

section first outlines expression of the two reporter genes tdTomato and sfGFP, 

respectively. 
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Figure 24: Schematic diagram illustrating the R26 Tomato and R26 Sun1-sfGFP knock-

in reporter constructs 

A loxP flanked STOP cassette prevents transcription of the downstream reporter proteins. 
Cre-mediated excision of the STOP cassette activates expression of tdTomato and the 
nuclear membrane fusion protein Sun1-sfGFP, respectively, in CRHR1 positive neurons (for 
details, see text). 

 

In the R26-CAG-tdTomato (Ai9) Cre-responder line, the fluorescent marker protein 

tdTomato is expressed under the strong and ubiquitous CAG promoter inserted 

within the Rosa26 locus (Madisen et al., 2010). Cre-mediated removal of an 

upstream floxed STOP cassette activates expression of the reporter protein. The 

fluorescent reporter is a tandem fusion protein of two Tomato copies leading to an 

exceptional brightness and excellent photostability. Strong native tdTomato 

fluorescence distributes uniformly throughout the targeted cell and allows direct 

visualization of fine neuronal structures like dendritic spines and axons. Therefore, it 

is possible to trace long-range axonal projections. 
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Systematic analysis of CRHR1 distribution in the mouse brain was impeded by the 

lack of CRHR1-subtype specific antibodies (99) and therefore relies mainly on in situ 

hybridization based studies (29) and transgenic reporter mice (41, 219), the latter 

expressing the reporter gene GFP or tau-lacZ, respectively, under the relatively weak 

endogenous CRHR1 promoter. Even though both reporter lines almost entirely mimic 

the CRHR1 mRNA expression they reached their limits with respect to sensitivity in 

major stress-related central autonomic cell groups such as the central amygdala, LC 

and hypothalamic paraventricular nucleus. Moreover, expression of GFP is restricted 

to the soma and proximal dendrites and detection of the tau-lacZ reporter is not 

possible in live tissues or cells. In contrast, breeding of the CRHR1Cre mouse line to 

Cre inducible reporter lines comprising a strong and ubiquitous promoter will provide 

a definite picture of CRHR1 expressing cells and their projections. CRHR1 promoter 

driven expression of Cre and tdTomato, respectively, is detectable throughout the 

brain, including the mitral and granule cell layer of the olfactory bulb, cortical layers II-

VI, hippocampus, caudate putamen, bed nucleus of the stria terminalis, basolateral 

amygdala and granule layer of the cerebellum. In line with previous reports, reporter 

gene expression is also visible in the retina and hair follicles (41). In accordance with 

scattered CRHR1 mRNA signals in the hypothalamic paraventricular nucleus (29) 

only a few tdTomato labeled cells were detectable substantiating a rather weak 

expression of the receptor under basal conditions (Figure 25).  
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Figure 25: CRHR1 Cre-driven reporter expression reproduces endogenous CRHR1 
expression pattern during adulthood and additionally labels developmental sites 
and/or sites of very low levels of CRHR1 expression 

Top panel depicts tdTomato mRNA expression in sections of CRHR1-Cre mice crossed with 
Ai9 reporter mice (R26::loxP-STOP-loxP-tdTomato). Middle panel depicts an overview of 
tdTomato reporter protein expression in coronal sections of adult mouse brain. A dense set 
of fluorescent cells and neuronal processes is visible. Regions of interest are highlighted with 
dashed rectangles and displayed at higher magnification in the bottom panel. Abbreviations: 
bed nucleus of the stria terminalis BST), field CA1 of hippocampus (CA1), caudate 
putamen/striatum (CPu), glomerular layer of the olfactory bulb (gl), granule cell layer of the 
olfactory bulb (GrO) or cerebellum (gr), molecular layer cerebellum (mol), red nucleus 
magnocellular part (RMC), paraventricular nucleus of the hypothalamus (PVN). Scale bars = 
100µm.  

 

Due to the fact that CRHR1 is widely expressed throughout the brain and that 

tdTomato evenly distributes throughout cells, a dense net of labeled neurites 

prevented tracing of distinct neurocircuits and detection of single labeled neurons in 

prominent sites of Crhr1 mRNA expression such as globus pallidus, reticular thalamic 

nucleus, VTA, red nucleus as well as other sites of rather low expression of Crhr1 

mRNA. For tracing specific CRHR1 dependent neurocircuits a more specific 

approach via injection of Cre-dependent viruses in distinct target regions is 

preferable especially since several “FLEXed” adeno-associated viruses are 

commercially available. Here, expression of tdTomato depends on Cre-mediated 

inversion of the loxP flanked reporter cassette (so called “double-floxed inverse open 

reading frame”, DIO-AAVs). In combination with specific promoters, it is thereby 

possible to dissect region-specific or neurotransmitter type-specific CRHR1 

connectivities.  

To evaluate the full potential of the CRHR1 Cre-driver line we examined tdTomato 

reporter gene expression in peripheral organs of double transgenic CRHR1Cre::Ai9 

tdTomato mice. Consistent with previous results (29, 41, 219), expression of the 

reporter gene was detectable in pancreatic islet cells, in the spinal cord and dorsal 

root ganglia, in the optic part of the retina (inner nuclear and ganglion cell layer), in 

the root sheath and ring sinus of hair follicles, in the anterior and intermediate lobe of 

the pituitary gland as well as in a narrow band across the cortex of the adrenal gland, 

the latter indicating the superiority of cumulative tdTomato expression to GFP and 

tau-lacZ reporter gene expression (Figure 26 A-F). In line with expression studies in 

humans and rats (220) tdTomato fluorescence signal was detectable in proximal and 

distal convoluted tubes as well as collecting tubes within the cortex of the kidney 
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(Figure 26 G). Furthermore, by way of immunohistochemistry and mRNA expression 

studies, CRHR1 presence was shown in gastrointestinal tissues, thymus, spleen and 

ovary of rats (221). Up to now, corresponding studies in mice are lacking. The use of 

double transgenic CRHR1Cre::Ai9 tdTomato mice offers the possibility to detect 

cumulative expression of the receptor with highest sensitivity. With this approach 

CRHR1 expression was proven in the mucosa (villi) of the small intestine (Figure 26 

H), in filiform papilla of the tongue (Figure 26 I) and in lymphatic tissues including 

thymus, spleen and liver (Figure 26 J-L). There is experimental evidence that CRH 

modulates the immune and inflammatory responses and by means of RT-PCR 

mRNA expression of CRHR1 was shown in thymic and splenic cell populations, 

namely lymphocytes and macrophages (221, 222). The expression of CRHR1 was 

also depicted in Kupffer cells (KCs), macrophages that mediate the hepatic immune 

response (Figure 26 L), which is in line with reports of CRH receptor expression in 

human and rat liver tissue (223). Furthermore, the presence of CRH and its receptor 

type 1 is clearly demonstrated within rat ovaries. Detection of mRNA encoding 

CRHR1 revealed expression in stroma cells and the theca layer surrounding the 

ovulatory follicles (224). In cryosections from CRHR1Cre::Ai9 tdTomato mice native 

tdTomato fluorescence was also visible in ovarian stroma cells, but was absent in 

granulosa cells of primordial and maturing follicles and lutein cells of corpora lutea 

(Figure 26 M). A peripheral organ, which has recently been reported to express 

CRHR1, is the fetal lung (225, 226). Expression of tdTomato in cryosections from 

adult CRHR1Cre::Ai9 tdTomato mice was restricted to few cells within the respiratory 

epithelium (Figure 26 N). Taken together, this Cre-driver line significantly facilitates 

the neuroanatomical analysis of CRHR1 expression and opens up new avenues to 

address extrapituitary actions of the neurohormones CRH and UCN. 
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Figure 26: Characterization of Cre activity in peripheral organs of the CRHR1Cre::Ai9 
tdTomato mouse line 

(A-N) Cre-mediated expression of tdTomato in organs dissected from double transgenic 
CRHR1Cre::Ai9 tdTomato mice. For details, see text. Scale bars =100µm. 
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To analyze Cre- dependent expression pattern with maximum resolution we made 

use of a second reporter line (Gt(ROSA)26Sortm5(CAG-Sun1/sfGFP)Nat; Jackson Laboratory 

stock number 021039), where two copies of superfolder GFP are tagged to the C-

terminus of mouse SUN1, a nuclear membrane protein (227). The targeting vector 

containing a CAG promoter and an upstream loxP-flanked STOP cassette was 

inserted into the Rosa26 locus. CRHR1-dependent expression of Cre recombinase 

leads to removal of the STOP cassette and expression of the SUN1-sfGFP fusion 

protein at the inner nuclear membrane in CRHR1 expressing cells. In direct and 

indirect immunofluorescence microscopy CRHR1 expressing cells display a nuclear 

rim-like fluorescence pattern. Therefore, labeled neurons can easily be detected in 

above mentioned brain areas, where a dense network of labeled neurites prevented 

detection of single labeled neurons, such as globus pallidus (GP), reticular thalamic 

nucleus (RT), VTA and red nucleus (RMC) (Figure 27). Thorough analysis of sfGFP-

reporter gene expression revealed that expression of Cre was essentially similar to 

the spatial distribution of endogenous CRHR1 mRNA (29), as well as to the recently 

published GFP- (219) and tZ-reporter mouse lines (41). As already described in 

detail above, also here developmental expression of Cre recombinase leads to a 

permanent expression of sfGFP fusion protein. This is the reason why Cre 

expression analysis itself represents the better indicator of adult expression patterns, 

whereas expression of the reporter protein under the strong CAG promoter facilitates 

detection of neurons with low levels of CRHR1 expression (Figure 27).  
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Figure 27: Expression of Cre dependent tdTomato and sfGFP reporter protein in 
CRHR1Cre::Ai9 tdTomato and CRHR1Cre::Sun1 sfGFP mice 

(A) Localization of Crhr1 mRNA in the mouse brain; source of photomicrographs: (29). (B) 
Overview of tdTomato reporter protein expression in coronal sections of adult mouse brain 
arranged from rostral to caudal. Regions of interest, where a dense set of labeled neurites 
prevent single cell resolution, are highlighted with dashed rectangles and displayed at higher 
resolution with a second reporter in the right panel. (C) Expression of GFP at the inner 
nuclear membrane enables single cell resolution of CRHR1 expression in neurons. For 
details, see text. Abbreviations: arcuate hypothalamic nucleus (ARH), bed nucleus of the 
stria terminalis dorsal division (BNSTd), field CA1, CA2 and CA3 of hippocampus (CA1, CA2, 
CA3), caudate putamen/striatum (CPu), dentate gyrus (DG), dorsal raphe nucleus (DRN), 
glomerular layer of the olfactory bulb (Gl), globus pallidus (GP), granule cell layer of the 
olfactory bulb (GrO) or cerebellum (gr), isocortex layers (ISO), lateral hypothalamic area 
(LHA), lateral septal nucleus (LS), mitral cell layer of the olfactory bulb (Mi), medial vestibular 
nucleus (MV), molecular layer cerebellum (mol), olfactory tubercle (OT), piriform cortex (Pir), 
Purkinje cell (p), substantia nigra compact part (SNc), reticular thalamic nucleus (RT), red 
nucleus magnocellular part (RMC), ventral tegmental area (VTA). Scale bars = 100µm. 

 

6.5.4 Mismatches between the localization of CRH and CRHR1 in stress-

responsive brain nuclei 

 

Crh mRNA expression studies have demonstrated a broad distribution of CRH 

throughout the brain including stress-related limbic forebrain structures and 

autonomic cell groups. This suggests that this peptide not only acts as secretagogue 

within the HPA axis but also exhibits neuromodulatory properties, thereby controlling 

stress-related emotional behavior (such as anxiety and arousal) and autonomic 

responses (108). A whole series of different studies have shown a positive 

correlation between CRHR1 expression sites and brain nuclei that are activated in 

response to stress, central (intracerebroventricular) or local administration of CRH 

and/or antagonists (31, 151, 219, 228). Conversely, within the central autonomic cell 

group the endocrine, autonomic and/or behavioral responsiveness to a wide variety 

of stressors contrasts with expression of the CRHR1. Except for the lateral 

parabrachial nucleus which shows strong receptor expression, several approaches 

via transgenic reporter lines failed to provide a uniform/convincing picture of basal 

CRHR1 expression in the CeA, PVN, LC and solitary tract nucleus (41, 99, 219). The 

data on distribution of CRHR1 mRNA expression in activated brain regions 

responsible for integrating stress-related behavioral and autonomic responses are 

summarized in Table 17. 
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Table 17: Expression of CRHR1 mRNA in stress-related sites of CRH impact 

Anatomical region CRHR1 

mRNA expression  

(29) 

Adaptive response 

(31) 

Limbic system   

Hippocampus ++ increased anxiety-like behavior, 

enhancement of context- and tone-

dependent fear acquisition 

Bed nucleus of stria terminalis 

(BNST) 

++ increased startle amplitude, increased 

anxiety-like behavior, feeding 

inhibition, increase in depressive-like 

behavior, reduced social interaction 

Basal ganglia   

Nucleus accumbens (NAc) + changes in appetitive behavior 

Ventral tegmental area ++ modulation of dopaminergic 

neurotransmission 

Central autonomic system   

Central amygdalar nucleus (CeA) lateral division – 

medial division + 

changes in locomotor activity, 

increased anxiety-like behavior 

Paraventricular hypothalamic 

nucleus (PVN) 

+ HPA-axis activation, increase in 

grooming behavior, changes in 

locomotion, decreased food intake, 

increased social avoidance 

Lateral parabrachial nucleus (PB) +++ autonomic/sympathomimetic response 

(fluid homeostasis) 

Locus coeruleus  - increased arousal/agitation, learning 

and memory facilitation, increased 

anxiety-like behavior 

Solitary tract nucleus (NTS) - autonomic/sympathomimetic response 

(cardiovascular) 

 

Expression of Cre-dependent sfGFP reporter protein in CRHR1Cre::Sun1 sfGFP mice 

provides another level of detection sensitivity not only with regards to expression 

patterns during development but also enables persuasive qualitative and quantitative 

coexpression studies with neurotransmitter identity markers. By means of electron 

microscopic studies, in vitro electrophysiological studies and treatment with a 

selective CRHR1 antagonist, a direct stress- or CRH-induced activation of locus 
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coeruleus neurons mediated via CRHR1 has been demonstrated even though in situ 

hybridization studies failed to detect Crhr1 mRNA in these neurons (36). A recent 

study using a highly sensitive knock-in reporter allele (41) and a BAC transgenic 

reporter mouse line (219) could not provide convincing data about receptor 

expression within this noradrenergic cell group. Taking a different approach using a 

CRHR1-Cre-dependent reporter line and thereby circumventing low reporter 

expression due to a relatively weak endogenous CRHR1 promoter confirmed limited 

CRHR1 expressing neurons in the LC (Figure 28). Additionally we could confirm 

scattered expression of the receptor in the nucleus of the solitary tract, which is in 

line with previous in situ hybridization studies (29) (Figure 28). There is also an on-

going controversial debate about expression of CRHR1 in the PVN. We could not 

verify immunohistochemical data from recent studies which describe numerous 

stained CRHR1 positive neurons using either BAC-transgenic GFP reporter mice 

(219) or an antibody against CRHR1 (229). In accordance with published in situ data 

using a riboprobe against the endogenous CRHR1 mRNA (29), we see only a sparse 

number of CRHR1 positive neurons within the PVN under basal conditions (Figure 

28). As several groups have described inducible expression of the receptor in the 

PVN of brain sections derived from stressed rats we investigated reporter gene 

expression with a riboprobe against GFP mRNA (using the BAC-GFP transgenic 

reporter mouse line RP23-4B21, described by Justice et al., 2008). In contrast to the 

induced expression seen in rat, we could not detect an increase in hybridization 

signals for GFP mRNA on brain sections from mice 120 minutes after restrained 

stress (unpublished data). The central amygdalar nucleus represents another central 

autonomic structure to be considered as main stress-related site of CRH action 

where conflicting data exist about cellular CRHR1 expression. Our data revealed only 

a small number sfGFP labeled neurons in the central amygdala (Figure 28). Further 

experiments (namely co-staining with somatostatin - a marker for the lateral division 

of the CeA) are necessary to exactly localize the CRHR1 neurons within the different 

parts of the CeA.  
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Figure 28: CRHR1 Cre-dependent expression of sfGFP in neurons of the central 
autonomic cell group 

High magnification images of CRHR1 expressing neurons in main structures of stress 
responsive central autonomic cell groups. For details, see text. Abbreviations: third ventricle 
(3V), fourth ventricle (4V), basolateral amygdaloid nucleus (BLA), Barringtons’s nucleus 
(Bar), central amygdaloid nucleus (CeA), locus coeruleus (LC), nucleus of the solitary tract 
(NTS), paraventricular nucleus of the hypothalamus (PVN). Scale bars represent 100µm. 

 

As mentioned above Cre-induced expression of sfGFP produces a cumulative picture 

of all cells that have ever expressed CRHR1 during development and adulthood. One 

approach to circumvent this shortcoming is the use of Cre-dependent recombinant 

adeno-associated viruses (rAAV vectors) to drive temporally and spatially restricted 

expression of a fluorescent reporter protein. To evaluate the current expression of 

CRHR1 in the CeA, PVN and LC of adult mice we performed local injections of a 

Cre- inducible virus (AAV-EF1α-Dio-mCherry; purchased from Addgene) into the 

CRHR1 Cre-driver line. Stereotactic injection of AAV-EF1α-Dio-mCherry into the 

region of interest will transduce all neurons surrounding the injection site (n=2 mice 
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per region). Upon Cre-mediated recombination in CRHR1 expressing neurons the 

reporter gene sequence is inverted and translated. The fluorescent protein mCherry 

fills cell somata and processes of these neurons and thereby allows visualization of 

CRHR1 expression, approximately two weeks after virus injection (Figure 29). To 

demonstrate the discrepancy between cumulative and current expression analysis 

we injected AAV-EF1α-Dio-mCherry into the mediodorsal thalamic nucleus where 

van Pett et al., 2000 described absence of Crhr1 mRNA. In contrast to numerous 

sfGFP labeled cell nuclei throughout the central, lateral and medial mediodorsal 

thalamic nuclear groups, we could not detect a respective counterpart in these 

regions in adult mice. In addition, the small number of sfGFP labeled neurons within 

the PVN and LC resulted most likely from a transient expression of Cre recombinase 

during development as no reporter gene expression was seen after injection of 

rAAVs. The precise neuronal identity and functional significance of these transiently 

CRHR1 expressing cells remains to be elucidated. Consistent with mRNA studies 

only a few scattered labeled cells were visible within the CeA of adult mice. At this 

point, it should be noted, however, that we could not fully exclude false negative 

results due to low viral transduction efficacy (230, 231). 
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Figure 29: Comparison between cumulative and current reporter gene expression after 
CRHR1 Cre- mediated recombination 

Left panel: coronal mouse brain sections from CRHR1Cre::Sun1-sfGFP mice depicting 
cumulative sfGFP expression during development. Right panel: respective counterpart 
images showing Cre-dependent mCherry expression in CRHR1Cre mice after local injection of 
AAV-EF1α-Dio-mCherry into the thalamus, PVN, CeA and LC of adult mice. For a clearer 
distinction of the locus coeruleus an immunohistochemical staining against the noradrenergic 
marker tyrosine hydroxylase (anti-TH) was performed. For details, see text. Abbreviations: 
third ventricle (3V), fourth ventricle (4V), basolateral amygdaloid nucleus (BLA), Barrington’s 
nucleus (Bar), central amygdaloid nucleus (CeA), lateral parabrachial nucleus (LBP), locus 
coeruleus (LC), medial parabrachial nucleus (MBP), paraventricular nucleus of the 
hypothalamus (PVN), reticular thalamic nucleus (Rt), superior cerebellar peduncle (scp). 
Scale bars represents 100µm. 

 

6.5.5 Efficiency of Cre-mediated deletion: Breeding to the CRHR1N-Egfp mouse 

line 

 

The CRHR1Cre mouse line was created using a targeted knock-in approach and 

thorough evaluation of the Cre expression pattern by means of radioactive ISH and 

Cre-dependent reporter lines verified its specificity. Efficiency of Cre/loxP 

recombination has already been validated with the reporter gene studies, but 

differences in Cre/loxP excision efficiency can be locus dependent. Therefore, 

differences in recombination patterns between the reporter gene and a floxed target 

gene - due to different genomic locations - cannot be excluded. To this end, the 

CRHR1Cre line was crossed with the CRHR1N-Egfp mouse line (99), where GFP is 

introduced into the CRHR1 polypeptide directly behind the signal peptide cleavage 

site. Simultaneously the EGFP bearing exon 2 is flanked with loxP sites, which allows 

for conditional CRHR1 inactivation via Cre-mediated recombination. To investigate 

excision efficiency of the CRHR1 Cre-driver line at the endogenous CRHR1 gene 

locus, radioactive ISH was used to detect GFP mRNA in adult mouse brain sections. 

The Cre recombinase and GFP reporter protein are both expressed under the control 

of the endogenous CRHR1 promoter. Therefore, complete absence of GFP 

transcripts in all sites of CRHR1 expression is expected. Indeed, there was no 

detectable GFP signal in the cortex, CA1, granular and molecular layer of the 

cerebellum - all sites with high CRHR1 transcript levels. By contrast, GFP expression 

was still present - albeit at greatly reduced rate – in other prominent sites of CRHR1 

expression, such as RT, GP, VTA, RMC, PG and MV (Figure 30). This is surprising 

since the Cre expression pattern in these brain regions is consistent with the specific 

expression pattern of the endogenous CRHR1 (compare Figure 21). Interestingly, 
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reproducibility of the deletion pattern does not vary between littermates (data not 

shown), but a slightly higher Cre activity was detectable when it was inherited from 

the maternal allele (Figure 30 weaker ISH signal within the VTA, RMC and MV). 

Thus, monitoring recombination at the target locus is mandatory and has to be taken 

into consideration in functional analyses, to ensure the correct interpretation of 

resulting phenotypes. Possible factors that affect the efficiency of recombination, 

such as chromatin structure at the locus of interest, state of DNA methylation or cell 

type-dependent recombination variances are discussed in chapter 7.2 

 

 

Figure 30: Efficiency of Cre-mediated deletion 

Expression analysis of GFP mRNA transcripts in CRHR1+/cre::CRHR1+/N-Egfp mice. (A) 
Breeding strategy for Cre-mediated excision of loxP flanked (“floxed”) EGFP tagged CRHR1 
exon 2. (B) Representative photomicrographs of coronal brain sections depicting Cre 
recombinase efficiency by using a GFP-specific riboprobe. Absence of GFP signals indicates 
maximal efficiency of the CRHR1 Cre-driver mouse line. Abbreviations: field CA1 of 
hippocampus (CA1), globus pallidus (GP), granule cell layer of the cerebellum (gr), isocortex 
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(ISO), medial vestibular nucleus (MV), pontine grey (PG), red nucleus magnocellular part 
(RMC), reticular thalamic nucleus (Rt), ventral tegmental area (VTA). Regions of interest are 
highlighted with black arrowheads For details see text. 

 

6.5.6 Cre expression in the male germline 

 

The use of Cre-positive males for breeding to females of the Ai9 reporter strain 

resulted in germline deletion of the loxP flanked STOP cassette and strong 

expression of the reporter throughout the body in bitransgenic F2 offspring. Previous 

studies based on microarray and ISH data demonstrate expression of CRHR1 in fetal 

mouse Leydig cells where it plays an important role in fetal steroidogenesis (232). 

Moreover expression of Crhr1 mRNA was detected by RT-PCR in spermatocytes 

and spermatogonia, but not in mature spermatozoa (233). To localize the expression 

of CRHR1 in mouse testis we analyzed sfGFP expression in cryosections from adult 

CRHR1Cre::Sun1-sfGFP mice. To better visualize the cell-specific distribution we 

performed immunohistochemistry using a chicken anti-GFP antibody in combination 

with Hematoxylin and eosin (H&E) staining. Fluorescent- and immunolocalization of 

sfGFP was detectable in all previously reported germline cells. Furthermore, we 

could reveal the expression of the reporter protein in spermatids and epithelial cells 

of the epididymis, the latter has been described in rats so far (234) (Figure 31). The 

expression of Cre in male sperm cells must be taken into account in any experiment 

designed to study autonomic gene function, since breeding setups with heterozyous 

Cre-positive males to obtain recombined floxed alleles can lead to unwanted 

ubiquitous deletion of the target allele and misinterpretation of phenotypes. So far, 

there is no indication for Cre expression in the female germline; therefore, we use 

Cre-positive females for maintaining the CRHR1-Cre alongside floxed alleles. 
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Figure 31: Cre expression in the male germline 

Fluorescent (left panel) and immunohistochemical (right panel) detection of CRHR1 in mouse 
testis and epididymis. Immunoreactive sites were visualized brown with diaminobenzidin 
(DAB) after incubation with horseradish (HRP) conjugated chicken anti-GFP secondary 
antibody. Expression of CRHR1 was confirmed in Leydig cells, spermatogonia and 
spermatocytes. Additionally, reporter protein expression revealed existence of the receptor in 
spermatids. Scale bar represent 100µm. 
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6.6 Hypothalamic-pituitary-adrenal axis activity in CRHR1Cre mice is normal 

 

CRHR1 is highly expressed in anterior pituitary corticotrophs and essential for HPA-

axis function via activating ACTH release upon CRH stimulation. ACTH, in turn, 

stimulates the synthesis and release of glucocorticoids (corticosterone in rodents) 

from the zona fasciculata of the adrenal cortex. To determine whether the function of 

the HPA axis is impaired in the CRHR1 Cre-driver line, although Cre was inserted 

downstream of an internal ribosomal entry (IRES) site in the 3’UTR of the 

endogenous receptor, wild-type control mice (CRHR1+/+) and respective homozygous 

CRHR1Cre/Cre mice were subjected to a short physical restraint stress. Plasma 

corticosterone levels where measured in blood samples collected under basal 

conditions and after a 10-min restraint period. In CRHR1Cre/Cre mice the CRHR1 

function and concomitant HPA axis activity was indistinguishable from wild-type 

control mice as demonstrated by plasma corticosterone levels which did not differ 

significantly from the parallel tested control littermates (Figure 32). Thus, in addition 

to its expression, functionality of CRHR1 activity is not compromised in CRHR1 Cre-

driver mice.  
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Figure 32: Demonstration of full functional capacity of the HPA axis  

Top row depicts expression of CRHR1-promoter driven Cre-mediated expression of 
tdTomato (left) and sfGFP (right) reporter protein in pituitary glands from CRHR1Cre::Ai9 and 
CRHR1Cre::Sun1 sfGFP mice, respectively. Cre expression is predominantly detectable in the 
anterior lobe of the pituitary. Abbreviations: anterior lobe (A), posterior lobe (P). Bottom: 
plasma corticosterone levels of CRHR1Cre/Cre mice did not differ significantly from wild-type 
mice under all tested conditions (Unpaired t-test: am t(12) = 0.86, p = 0.41; n = 6 Crhr1+/+ , 8 
Crhr1Cre/Cre / pm t(11) = 0.41, p = 0.69; n = 5 Crhr1+/+ , 8 Crhr1Cre/Cre / stress t(12) = 0.42, p = 
0.68; n = 6 Crhr1+/+ , 8 Crhr1Cre/Cre; mean ± s.e.m). 

 

6.7 Cell type-specific sparse labeling for the analysis of neuronal morphology 

using Flp-mediated recombination 

 

Characterizing the structure of the brain at single-neuron resolution (so called 

“Connectomics”) has become a fast growing research field in neuroanatomy during 

the past few years. Recent advancement in imaging (two photon tomography, micro-

optical sectioning tomography, MOST) and labeling techniques such as mGRASP, 

iDISCO and Clarity (for review see (235)), has opened up new avenues towards 

understanding neural circuits and brain function. 

Cellular resolution of neurons requires identification of the soma, dendrites, axon and 

corresponding synapses and is extremely challenging in densly packed brain 

structures. In the past, different methods were developed and applied for 

visualization of individual neuronal morphology, such as the historic but highly 

effective Golgi silver impregnation method and Nissl staining method. Moreover, 

intracellular injection of tracers such as fluorescent dyes or transsynaptic neural 

tracers, as well as transfection with viral vectors enable expression of fluorescent 

proteins in a subpopulation of cells. Transgenic labeling techniques represent an 

alternative approach where expression of reporter proteins, restricted to a given cell 

type, is achieved via the Cre/lox system (187, 236). Unraveling the CRHR1-specific 

connectome via breeding to such a Cre-responder line (Ai9 for example) is 

challenging, because the broad expression of CRHR1 in neurons does not allow for 

morphological analyses at high resolution (compare Figure 17, 25). Therefore, we 

used a sparse labeling approach to limit the labeled population to a subset of 

neurons. To achieve sparse cell-type specific labeling we bred the two Cre-driver 

mouse lines CRHR1Cre and CRHR1tZCre to the FlpeR (“flipper”) mouse strain 

(obtained from the Jackson Laboratory; stock number 003946), which results in Flp-

mediated deletion of the frt-flanked Cre cassette (compare Figure 19). As a result, 
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excision of the loxP-flanked STOP cassette in Ai9 reporter mice and subsequent 

expression of the tdTomato reporter gene is prevented. As “Flipper”-mice – which 

express the recombinase under the ubiquitous Rosa26 promoter - display a partial 

recombination pattern (237) an “overall” reduction of ~20% CRHR1-expressing 

neurons allows for single cell analysis as demonstrated for CA1 neurons in the 

hippocampus (Figure 33). This is especially evident in progeny from 

CRHR1tZCre::FlpeR mice, as this Cre-driver line per se exhibits subset expression of 

the receptor (see chapter 6.3 for details). In addition, it should be noted that Flp-

mediated recombination in the CRHR1tZcre line allows for selective reconstitution of 

CRHR1 expression. 

 

Figure 33: Sparse labeling of pyramidal CRHR1 neurons in the hippocampal CA1 field  

Top row depicts subset labeling in the CRHR1tZCre-driver line (right) compared to the full 
labeling in the CRHR1Cre-driver line (left). Bottom row shows Flpe-mediated quantitative 
reduction of Cre and associated tdTomato expression in CRHR1-specific neurons. Scale 
bars represent 100µm. 
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6.8 The driver line: a valuable tool for circuit-level analysis of the brain 

6.8.1 Insights into forebrain neural circuits using viral tracing methods 

 

Dissecting neural brain circuits involved in mood disorders is hampered by the 

diversity of brain regions and circuits that are dysregulated. Especially CRHR1- 

specific pathway analysis via transgenic reporter lines is impeded by the widespread 

expression that limits the possibility to track individual connectivities (see chapter 

6.5.3). Recent advances in “genetic neuroanatomy” allow for labeling and 

manipulation of genetically defined neuronal types in vivo. Local injection of Cre-

dependent (FLEx) viruses into Cre-driver lines enables temporally and spatially 

restricted reporter transgene expression in specific subsets of neurons and offers the 

possibility of pathway-specific analysis and functional control of neuronal activity. 

(188, 235, 238). AAVs expressing fluorescent proteins for visualization of axonal 

projections between distinct brain areas are widely used due their stable expression, 

ease of production and low toxicity. In addition, they are available from various 

academic or commercial sources (e.g., Penn Vector Core, Pennsylvania). The 

combination with immunohistochemistry or in situ hybridization allows for further 

characterization of the infected cell type and of cell types in the projection target 

region. For injection into the CRHR1 Cre-driver line we used the serotype AAV1/2 

with a strong pan-neuronal promoter (Elongation Factor 1 alpha (EF1α) promoter) to 

drive expression of mCherry fluorescent protein. Heterotypic lox sites (loxP and 

lox2272) are placed in reverse orientation around the inverted reporter cassette. 

Upon Cre-mediated recombination between these sites the reporter gene sequence 

is inverted and translated (see Figure 29, right panel). The fluorescent protein 

mCherry is a red monomer which matures rapidly, is highly photostable and 

produces strong somatic and anterograde axonal labeling. 

We used the combination of the CRHR1 Cre-driver mouse line in conjunction with 

this “CRE-ON” rAAV based approach to dissect forebrain- and midbrain-specific 

neurotransmitter circuits that are expressing CRHR1 and are involved in mood-

related behaviors. Recent studies using region- and neurotransmitter-specific 

conditional CRHR1 knockout mice and neurochemical mapping tools revealed that 

deletion of the receptor in forebrain glutamatergic circuits reduces anxiety and that 

CRH-induced activation of CRHR1 amplifies excitatory neurotransmission within the 

trisynaptic hippocampal circuit (8, 9). Moreover it has been shown that the 
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CRH/CRHR1 system mediates medial prefrontal cortex (mPFC) impairments, such 

as temporal order memory and cognitive flexibility (239). In contrast to the anxiolytic 

effect of limbic CRHR1 in conditional knockout mice, downregulation of the receptor 

in GABAergic neurons of the globus pallidus (GP) exhibits anxiogenic properties of 

CRHR1 within the basal ganglia neurocircuit (162). To decipher respective 

glutamatergic and GABAergic CRHR1-specific connectivities within above mentioned 

forebrain structures we injected AAV-EF1α-DIO-mCherry into the prefrontal cortex, 

hippocampus, globus pallidus/reticular thalamic nucleus and caudoputamen of 

heterozygous CRHR1+/Cre mice. Cre-mediated reporter gene expression allows for 

visualization of mCherry labeled axonal projections in putative target regions (see 

Figure 34, 35).  

 

 

Figure 34: Injection of AAV vector into distinct forebrain structures of the adult mouse 
brain 

Schematic drawing illustrating the position of AAV-EF1α-DIO-mCherry injection into forebrain 
nuclei expressing CRHR1 in neurotransmitter-specific cell types. Red rectangles depict 
CRHR1 distribution in glutamatergic, GABAergic, dopaminergic and serotonergic neurons. 
Relevant abbreviations: caudate putamen (CPu); frontal cortex (FrCx); hippocampal 
formation (CA1, CA2, DG); globus pallidus externus (GPe); reticular thalamic nucleus (RTN). 
Modified with permission from Dr. Jan Deussing. 
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Figure 35: CRHR1 Cre-driver line allows for cell-specific anterograde tracing 

AAV-EF1α-DIO-mCherry was injected into the caudoputamen (A), globus pallidus/reticular 
thalamic nucleus (B), prefrontal cortex (D), entorhinal cortex (F) and polymorph layer of the 
dentate gyrus (H). Representative coronal sections showing the somatic labeling and axon 
projections of infected CRHR1 neurons are depicted in panels C,E,G,I. Scale bar=100µm. 
Abbreviations: 3rd ventricle (3V), anterior commissure (aca), basolateral amydala (BLA), field 
CA1, CA2 and CA3 of hippocampus (CA1, CA2, CA3), cingulate cortex area 2 (Cg2), 
claustrum (Cl), caudate putamen/striatum (CPu), polymorph layer of the dentate gyrus 
(DGPo), external capsule (ec), genu of corpus callosum (gcc), granule cell layer of the 
dentate gyrus (gr), ectorhinal cortex (Ect), entorhinal cortex (Ent), globus pallidus (GP), 
lateral habenula (LHb), lateral ventricle (LV), mediodorsal thalamic nucleus (MD), molecular 
layer of the dentate gyrus (mol), mamillothalamic tract (mt), perforant path (PP), piriform 
cortex (Pir), pyramidal cell layer (py), reticular thalamic nucleus (Rt). For details, see text. 

 

Two weeks after striatal virus injection (Figure 35A) prominent mCherry staining of 

cell soma and proximal neurites could be detected throughout the caudoputamen. As 

no axonal labeling was visible in main striatal output target sites such as substantia 

nigra pars reticulata (SNR) or globus pallidus we therefore speculate that CRHR1 

expressing neurons within the striatum represent locally projecting GABAergic 

interneurons which constitute about 5-10% of all striatal neurons and coexpress 

different subclasses of dopamine receptors (D1-D5). Recent work suggests an 
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important role of these interneurons in regulating the two main output pathways in 

response to a global dopamine signal (240, 241). 

Injections of AAV-EF1α-DIO-mCherry into the reticular thalamic nucleus (Rt) (Figure 

35 B) led to anterograde labeling of fibers in the following ipsilateral thalamic nuclei: 

ventrolateral (VL), ventromedial (VM), posterior (Po), posterolateral (VPL), 

posteromedial (VPM), submedial (Sub), central medial (CM), mediodorsal (MD), and 

lateral habenula (LHb) (Figure 35 C). Somatic labeling of CRHR1 was detectable 

throughout the reticular thalamic nucleus and the described projection sites are in 

line with data sets from the adult mouse connectivity atlas (242). The Rt of the mouse 

is a shell-shaped diencephalic GABAergic nucleus that lies at the thalamus-internal 

capsule interface and plays a key role in integrating sensory information between the 

thalamus and cortex as it receives input from passing corticothalamic and 

thalamocortical axons. Inhibitory afferents from the Rt project exclusively to various 

thalamic nuclei, thereby controlling thalamic transmission to the cortex (243). Up to 

now, a CRHR1-specific role within the Rt in relation to stress-related disorders has 

not been described. Due to virus spread Cre recombination and subsequent mCherry 

expression was also detectable in neurons of the globus pallidus (external segment, 

GPe). This so called “intrinsic nucleus” is part of the indirect basal ganglia pathway 

and contains sparsely distributed GABAergic neurons that are tonically active and 

project to the internal segment (GPi) and to the subthalamic nucleus thereby 

increasing the inhibitory output of the basal ganglia (244). Thorough analysis of these 

target regions failed in providing evidence for CRHR1 specific synaptic input as we 

could not detect axonal projections in these target regions. By contrast, scattered 

labeled axons could be tracked within the striatum. Anterograde and retrograde 

tracing studies in rat revealed a pallidostriatal projection that terminates within the 

striatum on proximal dendrites of medium spiny neurons (245). Although further 

experiments are necessary to prove this circuit in mice, we speculate on a 

pallidofugal projection pathway where CRHR1 positive cells in the GPe project back 

to striatal direct/indirect pathway neurons. In recent years, the original view of the 

basal ganglia as relay station coordinating proper execution of movements has been 

expanded with other roles, such as control of behavior and emotions. In this line 

there is experimental evidence that genetic downregulation and pharmacological 

blocking of CRHR1 in GABAergic neurons of the GPe results in an increased 
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anxiety-like behavior, a phenotype that could result from CRHR1 modulated 

enkephalin release in reciprocal striatopallidal projection neurons (162). 

There is accumulating evidence that abnormalities in frontal-subcortical circuits 

(FSC) play a role in the pathophysiology of neuropsychiatric disorders (246). In highly 

simplified terms the FSC system consist of two main pathways (direct and indirect 

FSC pathway), where information flows from several cortical areas through the basal 

ganglia, then on to the thalamus and finally back to the cortex. Under “normal” 

conditions a balanced dynamic between glutamatergic (excitatory) and GABAergic 

(inhibitory) information flow in both pathways leads to either a stimulating (direct 

pathway) or depressing (indirect pathway) outflow to the cortex. This provides the 

anatomical basis for emotional, motor and cognitive processing. AAV-EF1α-DIO-

mCherry injection into the prefrontal cortex (namely cingulate cortex, area 1 and 2, 

prelimbic cortex, infralimbic cortex) (Figure 35 D) revealed that within this FSC loop, 

glutamatergic CRHR1 expressing neurons project to the ipsilateral caudoputamen 

(Cpu), the basal ganglia input nucleus, as revealed by strong anterograde axonal 

labeling. Furthermore we could detect labeled commissural fibers within the corpus 

callosum (cc) that pass to the contralateral hemisphere and corticostriatal fibers that 

run within the external capsule and terminate in the claustrum (CL) (Figure 35 E). 

Taken together these data suggest an important role of the CRH/CRHR1 system 

within the corticostriatal pathway and basal ganglia circuits in motor control, cognition 

and emotion (see figure 36 summarizing the anterograde tracing results within above 

described neurocircuits). 
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Figure 36: Schematic representation of basal ganglia-thalamocortical circuitry 

Black arrows indicate direct pathway projections and black dotted arrows indicate indirect 
pathway projections. Colored red and grey arrows show CRHR1-specific excitatory (+) and 
inhibitory (-) connectivities: glutamatergic cortical CRHR1-specific neurons project to the 
caudoputamen; within the striatum CRHR1 is expressed in locally projection GABAergic 
interneurons. CRHR1 inhibitory neurons in the external segment of the globus pallidus 
project back to the striatum (pallidofugal pathway). Reticular CRHR1 GABAergic neurons 
project ipsilateral to the thalamus. For details, see text.  
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Based on our previous work (41), we used the AAV based tracing approach to further 

dissect the hippocampal CRHR1 circuits. To address this, we injected AAV-EF1α-

DIO-mCherry into the lateral and medial area of the entorhinal cortex (the main 

hippocampal entry point for sensory information) of CRHR1Cre mice (Figure 35 F). 

We thereby confirmed the participation of CRHR1-expressing neurons in the 

perforant path (PP) - the major cortical afferent projection path to the hippocampus. 

The CRHR1-specific projections from the entorhinal cortex (EC) to the ipsilateral 

dentate gyrus (DG) originate from cortical glutamatergic CRHR1 neurons in layer II 

and terminate in the outer one-third of the molecular layer of the dentate gyrus. 

Further, CRHR1 positive neurons in layer III of the EC terminate in the stratum 

lacunosum-moleculare of CA1 (so called temporoammonic path) (Figure 35 G). The 

lack of corresponding contralateral projections as well as CA3 projections from the 

EC is in line with a study using the anterograde transported tracer biotinylated 

dextran amine (BDA) and the retrograde tracer fast blue to investigate the cortico-

hippocampal connections in adult mice (247). Previous studies based on voltage-

sensitive dye imaging (VSDI) revealed that CRH – via activation of CRHR1 - 

specifically amplifies neuronal excitation in the hippocampal formation (trisynaptic 

EC-DG-CA3-CA1 network) (42, 99). Subcortical inputs to DG granule cells arise - 

amongst others - from ipsi- and contralateral neurons in the polymorphic layer (so-

called mossy cells) of the DG, which innervate the inner third of the molecular layer. 

As CRHR1 is expressed in the hilar region of the dentate gyrus we injected AAV-

EF1α-DIO-mCherry into the polymorphic layer of the DG (Figure 35 H) and in fact 

could detect intense somatic staining in this layer as well as intensive fiber labeling in 

the adjacent molecular layer of the dentate gyrus (Figure 35 H,I). We therefore 

postulate that CRHR1 is expressed in glutamatergic mossy cells within the 

polymorph layer of the dentate gyrus that synapse on the dendrites of granule cells 

(excitatory associational/commissural projections). It should be noted that we couldn’t 

exclude CRHR1 expression in the other neuron types of the polymorphic region, 

such as HICAP (hilar commissural-associational pathway related cells) or HIPP (hilar 

perforant path-associated cells). A schematic summary of CRHR1-specific 

projections within the hippocampal formation is depicted below. 
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Figure 37: CRHR1 expression in specific neuronal cell types of the hippocampal 
formation 

Schematic representation of CRHR1 neuronal connectivities: CRHR1- cortical cells within the 
entorhinal cortex layer II/III project to the molecular layer of the dentate gyrus and to the 
stratum lacunosum moleculare of hippocampal CA1 field. Hilar mossy cells expressing 
CRHR1 synapse on dentate granule cells within the adjacent molecular layer. Axonal 
projections from CA1 pyramidal neurons positive for CRHR1 are detectable in the alveus 
passing on towards the fimbria (Fi)/fornix. 

 

6.8.2 Viral vector-based dissection of CRHR1-specific projections within the 

midbrain dopaminergic system 

 

We applied AAV mediated mCherry expression in CRHR1Cre mice after injection in 

the VTA to identify CRHR1-specific afferent dopaminergic fibers within the brain’s 

reward circuitry. An increasing number of studies suggest that dysregulation in the 

brain’s reward system may be involved in mediating stress-related mood disorders, 

including anxiety and depression (95). Recent studies point towards a specific 

subpopulation of dopaminergic neurons within the VTA that are activated by stressful 

and aversive stimuli (82). Identification of this stress responsive population and 

targeting the projection sites will provide valuable insights into how stress can 

promote psychiatric disorders associated with the mesocorticolimbic dopamine 

system.  
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Along this line, it has been shown that CRHR1 is expressed in dopaminergic neurons 

of the VTA and SNC and that CRH released by stress increases the activity in VTA 

neurons via CRHR1 signaling, resulting in dopamine release in the prefrontal cortex 

(PFC). Deletion of the receptor in midbrain dopaminergic neurons increases anxiety-

like behavior in mice and leads to decreased extracellular dopamine levels in the 

PFC. (85, 99). We used the CRHR1 Cre-driver line to specifically target the CRHR1-

positive cells in the VTA/SNc and to identify their putative postsynaptic target sites 

(Figure 38). Two weeks after bilateral stereotactic injection of AAV-EF1α-Dio-

mCherry into the VTA, infected cells showing strong somatic staining were detectable 

in the following anterior and posterior VTA subdivisions (according to the atlas of 

Franklin and Paxinos, 2008): VTA, SNC, parabrachial pigmented nucleus, 

parainterfascicular nucleus (PIF) and paranigral nucleus (PN) (Figure 39 G-I). Earlier 

studies, using conventional anterograde and retrograde tracing methods, indicate 

three anatomically and functionally distinctive pathways: the mesostriatal, mesolimbic 

and mesocortical pathway (248). Although this simplified classification is still valid 

today, latest findings revealed a high degree of diversity among midbrain 

dopaminergic neurons ranging from neuroanatomical heterogeneity, 

electrophysiological properties, behavioral functions, wiring diversity to diverse 

neurotransmitter content (91, 249-251). In the present study, axonal projections 

originating from CRHR1-expressing neurons in the ventral mesencephalic 

dopaminergic complex, run within the medial forebrain bundle (mfb) and project to 

the striatum (Cpu) via the nigrostriatal bundle (ns). In addition, labeled projections 

were detectable within the cingulate cortex (cg) (mesocortical pathway), the nucleus 

accumbens core (AcbC) and shell (AcbSh) as well as the ventral pallidum, the latter 

afferents being part of the so called mesolimbic pathway (Figure 39 A-F). 

Furthermore, descending projections to the brainstem are clearly visible within the 

medial longitudinal fasciculus (mlf). This path possibly reflects the parallel 

diencephalon-spinal dopaminergic pathway, which modulates spinal locomotor 

circuits, as was described in a recent publication where dopaminergic neurons within 

the diencephalic A10/A11 group were identified after retrograde tracing with 

FluoroGold (FG) injections into the dorsal column of the mouse spinal cord (252, 

253) (see figure 39 J-L). 
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Figure 38: Dissection of CRHR1-specific projections within the midbrain dopaminergic 
system 

Schematic drawings providing a general overview of the viral vector (left) and injection of the 
AAV-mCherry vector into the VTA of CRHR1Cre mice (right). Injection site and afferent 
projections are highlighted in red color. For details, see text. Abbreviations: fourth ventricle 
(4V), anterior commissure anterior part (aca), nucleus accumbens core (AcbC), nucleus 
accumbens shell (AcbSh), bed nucleus of the stria terminalis (BNST), field CA1 of 
hippocampus (CA1), corpus callosum (cc), cingulate cortex (cg), caudate putamen (CPu), 
fornix (f), frontal association cortex (FrA), locus coeruleus (LC), lateral hypothalamic area 
(LH), lateral ventricle (LV), medial lemniscus (ml), olfactory bulb (OB), parabrachial 
pigmented nucleus (PBP), reticular thalamic nucleus (Rt), superior cerebellar peduncle (scp), 
stria medullaris (sm), substantia nigra, pars compacta (SNC), substantia nigra, pars 
reticularis (SNR), stria terminals (st), ventral tegmental area (VTA), ventral pallidum (VP). 
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Figure 39: Afferent projections from CRHR1 expressing neurons in the ventral 
mesencephalic dopaminergic complex  

(Top) Rostro-caudal coronal sections showing anterograde projections originating from 
CRHR1-expressing neurons in the ventral tegmental area. Inset in G shows transfected 
neurons expressing mCherry upon Cre-mediated recombination Scale bars = 100µm. 
(Bottom) Sagittal vibratome sections from a CRHR1Cre mouse brain showing long range 
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mesocorticolimbic projections (highlighted with white arrowheads). Note the transfected cell 
bodies within the rostral VTA (rVTA), parabrachial pigmented nucleus (PBP) and substania 
nigra pars compacta (SNC) For details, see text. Abbreviations: nucleus accumbens shell 
(AcbSh), cingulate cortex (cg), caudate putamen (CPu), cerebral peduncle (cp), fasciculus 
retroflexus (fr), internal capsule (ic), interfascicular nucleus (IF), lateral ventricle (LV), 
medium forebrain bundle (mfb), medial longitudinal fasciculus (mlf), nigrostriatal bundle (ns), 
parabrachial pigmented nucleus (PBP), parainterfascicular nucleus (PIF), paranigral nucleus 
(PN), substantia nigra, pars compacta (SNC), substantia nigra, pars reticularis (SNR), ventral 
tegmental area (VTA), ventral pallidum (VP). 

 

In order to corroborate the distal projecting sites originating from CRHR1-specific 

neurons within the mesocorticolimbic circuit we used AAV-EF1α-Dio-Synaptophysin-

eGFP for anterograde labeling of presynaptic terminals. Synaptophysin (Syp) is a 

synaptic vesicle glycoprotein, abundantly expressed in almost all neurons in the brain 

and a fusion with the green fluorescent protein GFP is commonly used to mark active 

presynaptic terminals (synapses) (254). This AAV vector is driven by the ubiquitous 

EF1α promoter and the double-floxed inverse open reading frame (“DIO”) 

arrangement ensures Cre dependent inversion of the coding sequence and 

subsequent expression of the transgene (Figure 40 A). Two weeks after bilateral 

injection of AAV-EF1α-Dio-Synaptophysin-eGFP into the VTA of CRHR1Cre mice a 

few labeled neuronal cell bodies were visible at the injection site, whereby the 

predominant labeling pattern was largely punctate, reflecting local synaptic 

connections within the VTA and SNC (Figure 40 B,C). Interestingly also somatic and 

dendritic (“pearl of string” like) localization of Syp-eGFP puncta at the injection site 

was observed (Figure 40C). This probably reflects the soma as the site of massive 

protein synthesis and redistribution of Syp between the dendritic and axonal 

compartment, a fact which has also been reported by Li et al., 2010. A recent study 

revealed various VTA projection neuron phenotypes (distinct axonal arborization 

pattern) and four different types of forebrain-projecting neurons (distinct projection 

targets: mesocorticolimbic, mesocortical, mesolimbic and mesostriatal neurons) 

(250). Thorough analysis of forebrain structures in coronal brain sections of 

CRHR1Cre mice demonstrates numerous Syp-eGFP puncta within the nucleus 

accumbens core division (Figure 40 D), the dorsal caudoputamen and cingulate 

cortical territories, which is in line with our previous findings using the fluorescent 

anterograde axonal tracer mCherry (see above) (Figure 40 E). Additional 

experiments are necessary to unravel the exact localization, neurotransmitter identity 

and axonal arborization pattern of individual CRHR1-specific neurons. 
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Figure 40: Strategy for presynaptic genetic labeling of individual CRHR1 expressing 
neurons in the VTA with a fluorescent marker 

(A) Schematic drawing of the Cre-dependent AAV-Flex vector for Synaptophysin-eGFP 
expression. (B). Coronal mouse brain section showing the injection site of AAV-EF1α-Dio-
Synaptophysin-eGFP into the VTA of CRHR1Cre mice; arrowheads depict bilateral injection 
channels. (C) Synaptophysin-eGFP distribution pattern in transduced neurons of the VTA. 
The Syp-eGFP labeled presynaptic termini are located on dendritic and axonal processes 
like pearls on a necklace. (D) Strong Syp-eGFP puncta are detectable in mesolimbic 
projection sites including the nucleus accumbens core and shell. Representative coronal 
mouse brain section, counterstained with DAPI (E) Distribution of Syp-eGFP labeled 
terminals in the prefrontal cortex (Cg1, Cg2) and caudoputamen (Cpu) of CRHR1Cre mice. 
Abbreviations: anterior commissure anterior part (aca), accumbens nucleus core (AcbC), 
accumbens nucleus shell (AcbSh), cingulate cortex area 1,2 (Cg1, Cg2), caudate putamen 
(CPu), external capsule (ec), fasciculus retroflexus (fr), genu of the corpus callosum (gcc), 
medial mammillary nucleus (MM), substantia nigra pars reticularis (SNR), ventral tegmental 
area (VTA). Scale bar represents 100µm. 
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6.8.3  Gain-of-function-circuit analysis: Cre-dependent activation of a 

constitutively active version of CRHR1 in the VTA 

 

Genetic dissection of neuronal circuits provides a unique tool to elucidate distinct 

pathways involved in neuropsychiatric disorders. One widely used approach is the 

use of Cre-driver lines as they provide access to a genetically defined cell population. 

Injection of Cre-inducible recombinant viruses into the CRHR1Cre mouse line allows 

for spatial and temporal control of reporter gene expression, including fluorescent 

proteins, transneuronal tracers, calcium indicators, optogenetic molecules or 

chemogenetic manipulators, specifically in CRHR1 expressing neurons. This is of 

special importance for the analysis of the CRH/CRHR1 system at the circuit level 

since it was shown that that CRHR1 regulates anxiety-related behavior in a 

bidirectional manner (99). CRHR1 in forebrain glutamatergic circuits enhances 

anxiety whereas CRHR1 in midbrain dopaminergic neurons mediates anxiolytic 

effects, respectively. Recent studies using a conditional CRH knockout mouse model 

revealed a new population of CRH expressing neurons in the BNST and central 

amygdala that innervate the VTA and mediate anxiolytic and fear suppressing 

behavior (100). To test whether CRH release in the VTA produces anxiolytic behavior 

several gain-of-function experiments are conceivable: (1) direct injection of CRH into 

the VTA (2) injection of a Cre inducible virus into the extended amygdala of a CRH 

Cre-driver mouse line to express light-activated channelrhodopsin-2 and subsequent 

stimulation of the respective CRH dependent BNST/CeA-VTA neurocircuit (3) 

overexpression of CRH in the VTA by injection of an inducible viral vector (4) ligand 

independent pathway activation by expression of a constitutively active version of 

CRHR1 in the VTA.  

For the latter we generated a conditional flexed adeno-associated-virus that carries a 

constitutively active version of CRHR1 fused to eGFP in an inverted orientation (136) 

(AAV serotype 1/2; the plasmid was a kind gift from Dr. Arenkiel, Baylor College of 

Medicine, Houston; virus production at the MPI virus core unit by Maria Holzapfel). 

Upon Cre-mediated recombination, the loxP-flanked receptor is switched to the 

functional orientation resulting in constitutive/ligand-independent activity of CRHR1. 

For conditional gain-of-function studies with spatiotemporal– and cell-type specificity 

we target the VTA of CRHR1+/Cre-driver mice by bilateral injection of the conditional 

AAV-flex-(CA) CRHR1::GFP virus (Figure 41 A-D). To confirm enhanced signaling 
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exclusively in CRHR1-specific neurons we performed double ISHs against GFP- and 

endogenous Crhr1 mRNA and could demonstrate that virtually all transduced cells 

coexpress the endogenous CRHR1 (Figure 41 E).  
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Figure 41: Expression of a constitutively active version of CRHR1 in the VTA 
 
(A) Schematic drawing of the experimental scheme: the VTA of adult CRHR1+/Cre mice was 
targeted by bilateral injection of the conditional AAV-flex-(CA)CRHR1::GFP. (B) In vitro 
validation of AAV-flex-(CA)CRHR1::GFP in primary neuronal cell culture. Visualization of the 
constitutive active CRHR1 in the membrane of Cre expressing primary cortical neurons. (C) 
Infusion of AAV-flex-(CA)CRHR1::GFP results in expression of the active CRHR1 in Cre-
expressing cells of the VTA. Representative image of the target region in CRHR1+/Cre mice. 
Arrowheads point to Cre-positive cells expressing the GFP tagged active CRHR1. (D) 
Sections depicting coexpression of (CA)CRHR1-GFP with the dopaminergic marker tyrosine 
hydroxylase (TH) in distinct subregions of the ventral tegmental area. Arrowheads point to 
(CA)CRHR1-GFP/TH-double positive neurons. (E) Sections from the anterior and posterior 
VTA depicting double ISH against GFP (red soma) and endogenous CRHR1 (black silver 
grains) mRNA confirmed high specificity of constitutive receptor activity; virtually all 
transduced cells co-express the endogenous CRHR1 (grey arrowheads); black arrowheads 
indicate untransfected CRHR1 positive cells. Abbreviations: parabrachial pigmented nucleus 
(PBP), parainterfascicular nucleus (PIF), paranigral nucleus (PN), substantia nigra pars 
compacta (SNC), ventral tegmental area (VTA). Scale bars =100µm.  
 

To verify whether activation of CRHR1 in the VTA is mediating the anxiolytic effect of 

CRH a general behavioral screen was conducted to investigate general locomotion 

and anxiety, namely open field test (OF), elevated plus maze test (EPM) and Dark-

Light-Box test (DaLi). In all tests the behavior of control mice (injection of control 

virus AAV-DIO-mCherry; Ctrl) was compared to mice injected with AAV-flex-

(CA)CRHR1 ((CA)CRHR1). First the OF test was conducted to assess novel 

environment exploration and general locomotor activity. Compared to the control 

mice the group with the activated CRHR1 showed increased general locomotion and 

novel environment exploration (p<0.05), whereas anxiety-related parameters of the 

OF, including time and number of inner zone entries were not significantly altered in 

CRHR1-Cre::(CA)CRHR1 mice (Figure 42, upper panel). In the EPM CRHR1-

Cre::(CA)CRHR1 mice displayed reduced anxiety-related behavior compared to 

control mice, which is depicted by increased open-arm time (p<0.05) and entries. 

Importantly, no difference in distance traveled was detected (Figure 42, middle 

panel). In addition, a decrease in anxiety-related behavior was also detected in the 

DaLi test, as revealed by increased lit zone time (p<0.05) and entries (Figure 42, 

lower panel). Taken together, the results obtained so far strengthen the working 

hypothesis that enhanced CRHR1 signaling in the VTA promotes decreased anxiety 

(100). 
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Figure 42: Activation of CRHR1 in the ventral tegmental area resulted in an anxiolytic 
phenotype 

Viral-mediated expression of a constitutively active (CA)CRHR1-EGFP fusion construct in 
VTA neurons of CRHR1Cre mice. CRHR1Cre mice expressing (CA)CRHR1-EGFP in the VTA 
exhibit decreased anxiety in the elevated plus maze test: open arm time ( t(15) = 2.2, *p = 
0.043; unpaired t-test, n = 7 Ctrl, 10 (CA)CRHR1); open arm entries ( t(15) = 1,43, p = 0.17/ 
unpaired t-test n = 7 Ctrl, 10 (CA)CRHR1); distance traveled ( t(15) = 1.3, p = 0.21/ unpaired t-
test n = 7 Ctrl, 10 (CA)CRHR1) and dark-light box test (lit zone time: U = 14, *p = 0.043; lit 
zone entries: U = 20, p = 0.1 / Mann Whitney U test, n = 7 Ctrl, 10 (CA)CRHR1); distance 
traveled (t(15) = 2.72, *p = 0,016/ unpaired t-test n = 8 Ctrl, 10 (CA)CRHR1). Open field test: 
distance traveled ( t(15) = 2.45, *p = 0.027); inner zone time (%) ( t(15) = 1.5, p = 0.15); inner 
zone entries ( t(15) = 1.8, p = 0.09); n = 8 Ctrl, 10 (CA)CRHR1. Student’s t test or Mann-
Whitney U-test in case of non-Gaussian distribution was used to analyze statistical 
differences using GraphPad prism 5 (GraphPad Software). All data values are presented as 
means ±SEM. Statistical significance was set at p<0.05 (*), p<0.01 (**), p<0.001(***). 
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6.8.4 In depth characterization of constitutively active CRHR1 expressing 

neurons in the ventral mesencephalon  

 

Accumulating studies indicate that dysregulated stress neurocircuits are linked to the 

development of mood disorders such as anxiety and depression. There is 

experimental evidence that on the one hand different brain regions (including 

different neurotransmitter systems) are “activated” by different classes of “stressors” 

(255, 256) and on the other hand that within a distinct circuit/region bidirectional 

changes in response to stress exist (101, 257). Another degree of complexity comes 

from the release of so called “stress mediators” resulting in specific downstream 

molecular changes. These mediators can be classified in neurotransmitters (e.g., 

noradrenaline, dopamine, serotonin), neuropeptides (e.g., CRH family members) and 

steroid hormones (e.g., corticosterone in rodents). Research during the last years 

revealed that they act in an overlapping spatial and temporal manner (5). The 

neuropeptide CRH for example not only coordinates the neuroendocrine response to 

stress by activation of the HPA axis, which leads to release of glucocorticoids from 

the adrenal glands, but also acts as a neuromodulator thereby regulating synaptic 

transmission within the central and peripheral nervous system (108). Therefore, CRH 

and its main receptor CRHR1 are subjects of ongoing research regarding their role in 

modulating the action of neurotransmitters by changing the electrophysiological 

properties of a given synapse (via facilitating or depressing the primary membrane 

potential induced by a neurotransmitter). In addition, the CRH/CRHR1 system seems 

to be involved in neurotransmitter receptor modifications such as phosphorylation 

and internalization, or impact the number of expressed receptors. Up to now CRH 

interactions with all main neurotransmitter systems within stress-responsive 

neurocircuits in the brain have been reported, namely monoamines, glutamate, 

GABA, serotonin and acetylcholine (8). Behavioral studies using conditional knockout 

technology revealed a bidirectional role for CRHR1 in emotionality, depending on co-

expression in glutamatergic (anxiogenic phenotype) versus dopaminergic (anxiolytic) 

neurons (99). 

Therefore, we analyzed the neurochemical identity of the constitutively active CRHR1 

expressing neurons in the ventral mesencephalon that are mediating the anxiolytic 

behavioral phenotype. Neurochemical characterization was achieved through the 

combination of CRHR1 Cre-dependent expression of EGFP in combination with 
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immunohistochemistry against tyrosine hydroxylase (anti-TH), a highly reliable 

molecular marker for dopaminergic neurons in the VTA. In addition, the double in situ 

hybridization technique was applied for simultaneous detection of (CA)CRHR1-EGFP 

and of neurotransmitter identity markers, namely tyrosine hydroxylase (TH) and 

glutamic acid decarboxylase 65/67 (Gad65/67, marker for GABAergic neurons) on 

the mRNA level (Figure 43).  

 

Figure 43: CRHR1 is expressed in dopaminergic and GABAergic neurons of the VTA  

Representative bright field photomicrographs of coronal brain sections from (CA)CRHR1-
EGFP:: CRHR1+/Cre mice showing double in situ hybridization of GFP mRNA (silver grains) 
together with (A) tyrosine hydroxylase (TH, red staining) and (B) glutamic acid decarboxylase 
65/67 (Gad65/67, red staining). Black arrowheads indicate cells only expressing 
(CA)CRHR1-EGFP (silver grains). Red framed black arrowheads indicate cells coexpressing 
GFP and TH (left) or GAD65/67 (right). Scale bars = 100µm. 

 

In line with previous results from Refojo et.al., (2011), we demonstrate that the 

constitutively active CRHR1 is predominantly expressed in dopaminergic cells within 

the VTA. Moreover, co-expression of GFP and GAD65/67 revealed expression of the 

active CRHR1 in a subset of GABAergic neurons. There is growing awareness that 

midbrain neurons within the VTA include not only dopaminergic (65%), but also 

GABAergic (33%) and glutamatergic (2-3%) neurons, and various combinations of 

co-releasing neurons, which reflect the functional diversity associated with the VTA 

(84, 258). GABAergic neurons in the VTA have been shown to form local inhibitory 

pathways on dopaminergic neurons, but also comprise long-range mesocorticolimbic 

projection neurons (89). In a recent study from Stuber and colleagues it was shown 

that colocalization between TH mRNA and GAD67 mRNA ranges from 16,7% in the 

anterior medial VTA to 0,38% in the posterior lateral VTA (259). As viral injections of 
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the constitutively active form of the CRHR1 mainly targeted the posterior VTA (see 

Figure 44) we speculate on a mixed population of both functional GABA/DA co-

expressing neurons and those exclusively expressing GABA as a genetic marker. In 

this respect, it is important to note that genetic disruption of CRHR1 in midbrain 

dopaminergic neurons (generated by breeding CRHR1flox/flox with DAT-cre/ERT2 mice; 

see Refojo et al., 2011) mediated the anxiolytic effect of CRHR1. Therefore, it is most 

likely that the behavioral phenotype results from activation of the receptor in a 

specific subpopulation of VTA projection neurons that co-express CRHR1/DA/GABA 

and target the prefrontal cortex, thereby modulating dopamine release. Further 

experiments will be needed to dissect the heterogeneity at the cellular level. Single-

cell RT-PCR can be used, e.g., for detailed molecular characterization of VTA 

CRHR1 neurons and specifically to quantify the amount of GFP positive neurons that 

coexpress GAD65/67 and DA, as well as to evaluate the gene expression profile of 

neurons that solely express the active receptor in GABAergic neurons.  

In addition, the expression pattern was recapitulated on protein level by applying 

double immunohistochemistry using antibodies against the dopaminergic marker TH 

and GFP in CRHR1+/Cre::(CA)CRHR1-EGFP mice. We could demonstrate that ~65% 

of GFP positive neurons co-express TH, which is in line with previous analyses on 

mRNA level. Various studies provide strong evidence for a functional antero-posterior 

heterogeneity of the VTA (91). We therefore analyzed the distribution of GFP positive 

neurons along the antero-posterior axis of the VTA. Most prominent GFP staining 

was detectable in the posterior part of the VTA (from bregma -3,4 to -3,8), including 

the parabrachial pigmented and paranigral subnuclei (Figure 44). Lammel and 

colleagues identified a unique subpopulation of dopaminergic neurons in the mouse 

VTA that project to the prelimbic and infralimbic cortices and mainly originate in the 

medial posterior VTA (260). These neurons are unique in a way that they do not 

express functional somatodendritic dopamine D2 autoreceptors and fire at higher 

frequencies in a sustained fashion. They conclude that this unique subpopulation 

with a low dopamine reuptake capacity could mediate behaviorally relevant and 

sustained DA release in vivo. Our anterograde studies point towards a population of 

CRHR1 expressing neurons in the VTA that project monosynaptically to the 

prefrontal cortex. Further studies are necessary to answer the question whether this 

dopaminergic CRHR1 positive neurons within the pVTA, that coexpress GABA are 

part of this unique mesocortical pathway, that mediates anxiolytic behavior by 
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modulating dopamine release. Questions that need to be addressed in the future 

include the neurochemical profile and projection patterns of the various functional 

CRHR1 subpopulations in the VTA as well as their anatomical distribution, 

electrophysiological properties and input sources.  

 

Figure 44: Expression of the constitutive active CRHR1 in the VTA and colocalization 
with dopaminergic neurons.  

Representative confocal images from the posterior part of the VTA (bregma -3.4mm to -
3.8mm) showing spread of the conditional AAV-flex-(CA)CRHR1::GFP virus injection. TH 
immunohistochemistry indicates dopaminergic neurons (labeled in red) and GFP 
immunohistochemistry was used to intensify the weak membrane restricted GFP signal 
(green neurons). Representative images of VTA sections corresponding to the transduced 
area were analyzed in CRHR1+/Cre::(CA)CRHR1-GFP animals. TH+/GFP+ neurons are 
indicated by white arrowheads. Bottom: Colocalization percentage of TH+/GFP+ neurons 
within the VTA. Sections from CRHR1+/Cre::(CA)CRHR1-GFP animals (n=3/genotype) were 
quantified within bregma -3,40mm to bregma -3,88mm (3 sections per animal). Percentage 
of GFP-expressing neurons that were also TH positive (64,9 ± 4,2%). Abbreviations: 
parabrachial pigmented nucleus (PBP), paranigral nucleus (PN), substantia nigra pars 
compacta (SNC), substantia nigra pars reticularis (SNR), ventral tegmental area, posterior 
(pVTA). Scale bars = 50µm. 
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7 Discussion 

Overview 

During the past decades, numerous well-established studies have shown that CRH 

and CRHR1 play a central role in coordinating the endocrine, autonomic and 

behavioral responses to stress. Unraveling of stress-related neurocircuits has been 

of great interest, because dysregulated stress circuits have been linked to the 

development of many neuropsychiatric disorders, such as depression and anxiety 

disorders. One of the prerequisites to functionally dissect the complex CRH/CRHR1 

system is the specific targeting of CRHR1-expressing cells and to unravel their 

connectivities and synaptic partners. Therefore, the aim of this study was the 

generation of mice with Cre expression in all CRHR1-expressing cells. This CRHR1 

Cre-driver line allows reliable experimental access to CRHR1-specific cells and sets 

the stage for systematic and comprehensive analyses of CRHR1-dependent 

neurocircuits. To this end, we used a knock-in approach - based on phiC31 integrase 

mediated cassette exchange (RMCE) - to place an IRES-Cre cassette under the 

control of the CRHR1 promoter. The IRES-Cre cassette was inserted right after the 

stop codon within exon 13 of the CRHR1, thus preserving the endogenous CRHR1 

coding region. 

In the first part of the discussion, the rationale for the establishment of a CRHR1 Cre-

driver line and the RMCE based strategy are discussed. Due to an alternative 

recombination event, Cre expression was limited to a subpopulation of CRHR1 

expressing cells (CRHR1tZCre mouse line). The possible reasons for this incomplete 

recombination are then discussed, with a special emphasis on the strategy applied 

for removal of the residual reporter cassette as well as the possible applications for 

the CRHR1tZCre mouse line. 

In the second part the potentials and limitations of Cre-driver lines, with special focus 

on the CRHR1Cre mouse line, are discussed. Subsequently, the central and 

peripheral expression pattern of the Cre recombinase and Cre–activated reporter 

genes as well as the results from anterograde tracing studies are evaluated. 

Furthermore, cell-type specific activation of the CRHR1 within the VTA resulted in an 

anxiolytic phenotype. The potentially underlying neurocircuits and CRHR1 functions 

are highlighted in the fourth part. 

Finally, future applications of the CRHR1 Cre-driver line are outlined. 
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7.1 Methodological considerations 

7.1.1 The rationale for establishing Cre-driver lines  

 

Since the discovery of basic principles in gene targeting in the 1980s, advances in 

the sophisticated manipulation of the mouse genome have evolved. After completing 

the mouse genome sequence in 2005, the International Knockout Mouse Consortium 

(IKMC) and the International Gene Trap Consortium (IGTC) started a large-scale 

effort to systematically generate a comprehensive, publicly accessible, collection of 

conditional knockout mouse lines/mutagenized embryonic stem cells (ES cells) for 

almost all known and predicted genes (~20.000 genes) in the mouse genome (169). 

In most cases, an essential sequence, or more specifically, critical exons are flanked 

by short 34bp recognition sites (loxP sites). Deleting these so-called “floxed” alleles is 

achieved through crossing with mouse lines expressing the Cre recombinase that 

efficiently mediates recombination between loxP sites. Thus, exploitation of 

conditional genetically engineered mutant (GEMM) mouse lines depends on Cre 

transgenic mice that are validated for efficient and specific Cre expression and Cre–

mediated recombination. Moreover, recent technological advances, such as Cre-

dependent viral tracing tools or optogenetics (Cre-dependent expression of light-

sensitive ion channels) and most recently, Cre-dependent DREADD (Designer 

Receptors Exclusively Activated by Designer Drugs) have brought about the need for 

new sharp tools for the genetic access to, and manipulation of specific cell types and 

neuronal circuits (261). Inserting the Cre coding cassette either at the translational 

start codon or immediately after the stop codon of an endogenous gene defines 

unique cell identity. An additional refinement is the inclusion of temporal control of the 

recombinase activity. Ligand-inducible Cre recombinases exclude the possibility of 

embryonic lethal phenotypes or compensatory mechanisms and limit the access to 

adult phenotypes. For this, a mutated ligand-binding domain (LBD) of the estrogen 

receptor (ER) is fused to the site-specific recombinase. In this arrangement the 

mutated ER can be activated only by synthetic ligands (e.g., tamoxifen), but is 

insensitive to natural estrogens. After tamoxifen binding, the Cre-ER fusion protein is 

translocated into the nucleus and can recombine “floxed” DNA substrates. 

In the meantime, a substantial number of Cre-driver lines and other site-specific 

recombinase driver lines (e.g., Flp- or Dre-driver) have been generated and made 

publicly available through, e.g., the NIH Neuroscience Blueprint Cre Driver network 
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or the International Mouse Phenotyping Consortium (IMPC). Nevertheless, at the 

beginning of the study, no specific knock-in CRHR1 Cre-driver mouse line with Cre 

expression fully recapitulating the endogenous CRHR1 expressing pattern was 

available. Existing genetic tools, including conventional and conditional mouse 

mutants targeting CRH/CRHR1 system components have contributed significantly to 

the understanding of HPA axis regulation and neuronal circuitries involved in 

controlling autonomic and behavioral adaptations to stress (9, 168). The 

implementation of a CRHR1-specific Cre-driver line provides another level of cell-

specific targeting and manipulation of stress-related neurocircuitries activated by 

CRH.  

 

7.1.2 Driving Cre expression under control of the CRHR1 promoter 

 

As stated above, the aim of the thesis was the development of a Cre-driver mouse 

line with expression of the recombinase restricted to a particular cell type as defined 

by the CRHR1 promoter. In the past, two main genetic targeting strategies have been 

used to target specific cell types in mice, bacterial artificial chromosome (BAC) 

transgenesis and knock-in strategies. BAC-based transgenesis replaced 

“conventional/classical” transgenesis due to its superiority with respect to reduced 

influence of position effects through the size of the transgenic construct, which 

protects against the influence of the chromosomal environment. Furthermore, the 

BAC vector backbone facilitates the integration of all necessary regulatory elements, 

such as enhancers or silencers, to confer reliable gene expression. However, two 

BAC transgenic mouse lines (based on BAC RP24-239F10 and BAC RP23-4B21), 

expressing GFP under the control of the CRHR1 promoter clearly highlighted the 

disadvantages of this strategy: for one thing, subset and/or ectopic gene expression 

and otherwise, low levels of reporter gene expression driven by the endogenous – 

transcriptionally weak - CRHR1 promoter (41). The latter is, however, less of an 

impact as even low levels of Cre expression will lead over time to an irreversible 

accumulation of DNA recombination events. Based on the identical mouse BAC 

(RP23-4B21) which Justice and colleagues used to generate a CRHR1-GFP reporter 

mouse line (219), Garcia et al. created a CRHR1-Cre transgenic mouse line for 

targeting granule cells in the olfactory bulb. For this, a cDNA encoding the Cre 

recombinase followed by a poly-adenylation signal was inserted right after the ATG 
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start codon of the CRHR1. The Cre expression pattern was evaluated after crossing 

to a Rosa26 lacZ reporter line and appeared almost identical compared to the 

endogenous CRHR1 expression pattern. However, there remain some doubts as 

supplementary figure S5 depicts a discrepancy between GFP and Cre-mediated 

tdTomato expression in the olfactory bulb of triple transgenic CRHR1-

EGFP::CRHR1-Cre::Rosa-LSL-tdTom mice. GFP positive/tdTomato negative cells 

suggest that one or both of these BAC transgenic lines does not fully recapitulate 

endogenous CRHR1 expression (137). It must be critically mentioned that true 

ubiquitous promoters do not exist and the above mentioned and commonly used 

Rosa26-LacZ reporter strain is known to express marginal in specific cell types of the 

brain (262). Moreover, the level of Rosa26 locus activation decreases postnatally. 

Hence, one needs to be aware that comprehensive evaluation of Cre expression 

studies must be complemented by additional data sets, such as ISH or DFISH to 

detect Cre mRNA on the cellular level (165). 

During completion of this thesis Sanford et al. published the generation of an 

additional CRHR1 Cre-driver line (CRHR1IRESCreGFP) to dissect CRHR1 signaling in 

the CeA (62). A knock-in strategy was used to place an IRES-CreGFP cassette 

under the control of the endogenous CRHR1 promoter. The targeting construct 

contains two PCR amplified homology arms flanking the IRES-CreGFP sequence, 

two negative selection marker (pgkDTA and HSV-TK) and one frt-flanked positive 

selection gene (neo cassette). To prevent disturbance of endogenous CRHR1 gene 

expression, the IRES-CreGFP cassette was targeted after the stop codon into the 

3’UTR of the CRHR1 gene. For the RMCE based strategy described in this thesis, 

the incoming vector was also designed in a way to preserve expression and function 

of the endogenous receptor. The IRES-Cre cassette was inserted downstream of the 

coding sequence of CRHR1 exon 3 -13 right after the stop codon. In both cases a 

bicistronic transcript (mRNA) is made, encoding both genes, the endogenous 

CRHR1 and the Cre recombinase, that are then translated into two separate 

proteins, resulting in expression of the transgenes without disrupting the endogenous 

gene. This is of particular significance because CRHR1 insufficiency causes a 

marked decrease in the corticosterone producing zona fasciculata region of the 

adrenal glands. Consequently, CRHR1 mutant mice have very low plasma 

corticosterone levels and, as a result, a virtually 100% neonatal mortality of the 

progeny from CRHR1 null mutant intercrosses. Neonatal lung maturation is 
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depending on sufficient maternal corticosteroid concentrations and that is why 

offspring from homozygous CRHR1 mutant females displays a marked lung 

dysplasia and develop a severe neonatal respiratory distress syndrome (156). In both 

Cre-driver lines, corticosterone levels at baseline or following restraint stress are not 

altered as shown by a radioimmunoassay.  

Bicistronic targeting vectors in which the first gene (here CRHR1) is translated in a 

cap-dependent manner and the second one (here Cre recombinase or the CreGFP 

variant, respectively) in an IRES-dependent manner have been widely used in 

transgenic animals to link two genes transcribed from a single promoter. Sanford and 

colleagues used this approach to drive Cre recombinase from the endogenous 

CRHR1 promoter and, at the same time, to monitor Cre expression via expression of 

the fluorescent GFP protein. In vitro and in vivo studies revealed that IRES-

dependent translation of a second open-reading frame (ORF) is significantly less 

efficient compared to the first ORF (263). Studies in our group and analysis of a 

CRHR1-GFP reporter mouse line (219) have demonstrated that GFP expression 

driven by the endogenous CRHR1 locus is very weak, and reliably detectable only 

following immunohistochemistry (41). We speculate, therefore, that native GFP 

fluorescence in the CRHR1IRESCreGFP mouse line from Sanford and colleagues is not 

strong enough to monitor Cre expression and that therefore only recombinase 

expression is evaluated – similar to the approach in this thesis - via a Cre-dependent 

reporter mouse line or a Cre-dependent AAV construct (see chapter 7.3.1 for 

discussion of central Cre-recombinase functionality). 

 

7.1.3 Recombinase-mediated cassette exchange (RMCE): repeated genetic 

modification of the CRHR1 locus by targeted integration  

 

In the past two decades, numerous Cre-driver mouse lines have been generated by 

employing a variety of sophisticated approaches, ranging from “traditional” random 

transgenic insertion of Cre cDNA driven by a short promoter to gene-targeting based 

Cre “knock-ins” into a defined endogenous gene driver locus (168, 169). Classical 

strategies, that rely on homologous recombination in embryonic stem cells to insert 

targeting cassettes into pre-defined suitable endogenous loci are labor intensive, 

expensive and time-consuming, mostly due to very low targeting frequencies (<1%) 

(264). For this reason, repeated genetic manipulation of the same locus via RMCE 
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evolved as a powerful tool for re-engineering mouse conditional alleles that harbor 

appropriate targeting sites, such as attP sites for the phiC31 integrase. In addition, 

dual RMCE is a highly efficient and universal tool, developed for restructuring the 

large number of available conditional alleles that harbor loxP and FRT sites (265). To 

date, three genetic mouse models targeting the CRHR1 locus in a conditional fashion 

have been developed in our research group (41, 99, 158). The previously generated 

multifunctional allele comprises the possibility to label CRHR1-expressing cells with a 

tau-lacZ reporter gene and to conditionally restore or delete CRHR1 function (41). 

Furthermore, it is suited for subsequent modifications via RMCE as the allele 

contains targeting sites for the serine integrase phiC31. The comprehensive pre-

characterization of the genomic locus so far has confirmed that the landing path in 

intron 2 offers the possibility for stable and reliable expression of other exogenous 

cassettes at physiological expression levels in a CRHR1-specific spatio-temporal 

manner. This largely “predictable outcome” at a pre-determined locus facilitates the 

future utilization of complementary techniques, such as trans-neuronal tracers, 

optogenetic and DREADD-based chemogenetic tools and site-specific recombinase 

variants - just to name a few.  

Nevertheless, at this point it must be noted that most recently genome editing tools, 

based on the bacterial CRISPR/Cas9 system (clustered regularly interspaced short 

palindromic repeats/CRISPR-associated protein), have been developed to facilitate 

site-specific genomic modifications, thereby opening up new avenues for 

neuroscientists to decipher complex neuronal circuits and their role in stress-related 

disorders (266). The CRISPR/Cas9 reagents (consisting of Cas9 nuclease and a 

single guide RNA) can be transferred directly into the mouse zygote and result in 

DNA cleavage at any genomic locus of interest. The highly conserved DNA repair 

machinery restores the DNA double-strand break either by non-homologous end 

joining, or via homology-directed recombination (HDR), thereby enabling introduction 

of specific mutations or homologous exogenous DNA donor templates. Compared to 

traditional gene targeting and RMCE (using HDR in mouse embryonic stem cells), it 

is now possible to derive genetically modified founder mice within 2 months because 

there is no waiting time for cloning of the targeting vector, transduction and selection 

of embryonic stem cells, blastocyst injection and generation of chimeras. Moreover, 

embryos from any mouse strain can be manipulated, and also multiple gene targeting 

within one zygote is possible. This avoids the necessity for genetic backcrossing and 



  Discussion 

141 
 

crossbreeding to generate double and triple mutant mice. In addition, elimination of 

“genetic background effects”, due to residues of 129 ES cell-derived genetic material, 

prevents data misinterpretation especially in the field of behavioral genetics (267). A 

future challenge will be the improvement of the efficiency (mainly introduction of 

complex and large cDNAs) and specificity of the system in order to minimize off-

target effects (268). Recently, the CRISPR/Cas9 system was used to generate a 

bicistronic knock-in Cre-driver line for gene manipulation specifically in pancreatic 

insulin-synthesizing β cells (269). The combination of a CRHR1 Cre-driver mouse 

line and local injection of Cre-inducible Cas9 and sgRNA expressing adeno-

associated viruses provide enormous combinatorial power to decipher in vivo, how a 

specific cell type influences behavior and neurocircuit function, especially stress-

related complex neuronal networks (266, 270). 

 

7.1.4 Partial RMCE – The CRHR1tZCre-driver line 

 

As described in chapter 6.2 and 6.3 of this thesis, phiC31 mediated RMCE was used 

to generate a novel CRHR1 Cre-driver mouse line. Surprisingly, the analysis of the 

first offspring demonstrated that Cre and a reporter gene expression was limited to a 

subset of CRHR1-specific cells. Possible reasons for the exceptional recombination 

event will be discussed in the following section. Large serine recombinases, such as 

phiC31, include a three-nucleotide recombination site, which determines 

directionality. In intramolecular direct orientation phiC31 integrase excises the DNA 

interval, whereas a head-to tail orientation inverts the flanked DNA. Another 

characteristic of serine-integrases is the ability to recombine intermolecular, between 

different DNA molecules, whether or not they are supercoiled or linear (271). 

Thereby, the serine integrase mode of action is based on a DNA double-strand break 

and exchange of strands by a rotational mechanism. The cleaved DNA “half-sites” 

are covalently attached to the integrase subunit and the whole complex then “flips” 

through a horizontal 180° rotation. The cleaved DNA ends are rejoined in this rotated 

configuration, resulting in attL and attR sites. In the absence of a phage encoded 

recombination directionality factor (RDF) – not present in mammalian cells - the 

integration reaction is unidirectional, because the attL and attR sites form auto-

inhibited complexes preventing intramolecular attL x attR recombination (272). 
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In 2003, Belteki and colleagues published the first successful phiC31 integrase 

mediated site-specific cassette exchange and germline transmission in mouse ES 

cells (193). In line with our data the analysis of reaction products pointed towards 

inefficient intramolecular recombination. Type I and type II insertion events (see 

Figure 6) could result in hygromycin resistant colonies without subsequent deletion of 

the sequence (including plasmid backbone sequence) between the attB and attP 

sites. Incomplete type II insertion with residual vector backbone occurred in 25% of 

our colonies, similar to the results seen in the study from Belteki et al., where 

complete cassette exchange occurred only in approximately one-third of the cases. 

One possible explanation for the intramolecular integrase inefficiency might be the 

inability to rotate the chromatin template before recombination (273). In addition, 

recombination efficiency is strongly cell type specific and depending on the 

intramolecular distance between recognition sites (271). Increased distance between 

the recombination target sites (>400bp), as well as a too short distance (<120bp) 

lead to a decrease in recombination frequencies (274). Another factor, which affects 

recombination, is the level of active recombinases. Lack of recombinases decreases 

the probability of recombination, meaning an excess of enzymes over binding sites is 

required for higher efficiency (275). Therefore, the sole use of a phiC31-encoding 

plasmid could be responsible for the inefficient intramolecular recombination due to 

delay in translation and decreasing amount of the integrase. Recently, Schilit and 

colleagues demonstrated that the efficiency in pronuclear injection-based targeted 

transgenesis is considerably improved by use of mRNA injection instead of plasmid 

DNA encoding the recombinase or integrase (276). Unfortunately, none of our ES 

cells with incomplete type II insertions resulted in chimeras in which the ES cells 

contributed to germ cells and were passed to the offspring. For this, we had 

abandoned the plan to complete the recombination by breeding offspring to the 

R26phiC31o driver mouse line (Jackson Laboratory mouse strain # 007670), to 

obtain mice that have the targeted attP-lacZneo-attB sequence deleted and replaced 

with a single att L site. 

In the majority of ES cells that where integrated into the germline, PCR results 

pointed towards a different recombination event. In these cases, phiC31 integrase 

catalyzed a typical integration reaction instead of a cassette exchange reaction. For 

this reason, the tau-lacZ reporter cassette with its strong adenovirus splice acceptor 

and the neo selection cassette are still present at the integration site. In this 
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configuration CRHR1 exon 2 could be spliced to the synthetic splice acceptor site in 

a way that the N-terminal portion of CRHR1 is in-frame with the tZ reporter gene. In 

situ hybridization, lacZ staining and reporter gene expression revealed concurrent 

translation of two functional proteins, namely Cre recombinase and β-galactosidase, 

respectively, in a subset of CRHR1 specific cells. It is known, that the neo cassette 

contains cryptic splice sites, possibly causing aberrant splicing of CRHR1 transcripts 

in a way that the mutant transcript contains sequences from the noncoding neo 

strand. The effect of neo on the expression level could be very diverse, ranging from 

promoter interference, disrupting of normal splicing patterns, premature transcript 

termination, reduction or complete inactivation of targeted gene expression (218). 

Nonsense-mediated mRNA decay (NMD) eliminates aberrant mRNAs, harboring 

premature STOP codons in a cell-type-specific and developmental regulated manner 

(277). We speculate, therefore, that aberrant splicing of neo sequences into the 

adjacent CRHR1 exon 3-13 coding sequence generates mRNAs harboring 

premature termination codons, resulting in a cell-specific NMD, thereby explaining 

the partial absence of lacZ and Cre mRNA/protein in the CRHR1tzCre mouse line. 

 

7.1.5 Generation of the CRHR1Cre-driver line via Flpe recombination 

 

As outlined in the previous chapter, the presence of the positive selection marker neo 

can have unintended consequences on the targeted gene and on adjacent genes. 

The same is true for the second positive selection marker hygromycin, which was 

included in the RMCE donor construct. Generally, the selection cassettes are flanked 

with recognition sequences (loxP or frt) for site-specific recombinases (Cre or Flp), so 

that they can be removed either by transient transfection of the targeted ES clones or 

by breeding the transgenic mouse line with Cre- or Flp-deleter strains. In the 

CRHR1tzCre mouse line the transgene configuration after RMCE is as follows: the tau-

lacZ-reporter cassette of the genomic docking locus is still present but due to residual 

flanking frt sites accessible for Flp mediated recombination as well as the positive 

selection marker hygromycin, which was included within the targeting vector and 

flanked with frt sites, to enable its removal in vivo by crossing to a Flp-deleter strain. 

The efficiency of intramolecular recombination between two frt sites depends on the 

distance between them and was observed highest at a distance of 200bp. The 

deletion of large frt-flanked segments is less efficient, as recombinase efficiency 
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decreases the further apart frt sites are (278). We therefore assumed that Flp 

mediated recombination occurs with a higher probability between the frt sites flanking 

the lacZ reporter and hygro selection cassette, thereby preserving the coding 

sequence of CRHR1 exon 3 -13 followed by the IRES-Cre cassette.  

To date, two Flp-deleter strains with generalized expression of the thermostable 

variant of Flp (Flpe) have proven as versatile tools for in vivo genetic engineering in a 

variety of tissues, including cells of the developing germ line. The largest application 

is the generation of selection marker-free conditional alleles to avoid interference of 

the selection gene. The transgenic strain hACTB::FLPe published by Rodriguez et 

al., expresses a FLP1 recombinase gene under the direction of the human ACTB 

promoter and mediates recombination in F1 progeny as early as embryonic day 10.5 

with highest efficiency (279). When breeding to the CRHR1tZCre mouse line, all F1 

progeny exhibited complete recombination, including deletion of the frt-flanked 

coding sequence of CRHR1 exon 3 -13 and the IRES-Cre cassette. As we could not 

detect any different recombination pattern or mosaicism, we assumed that 

recombination takes place between the outermost flanking frt sites (see Figure 19). 

For this, the CRHR1tZCre mouse line was bred to the FlpeR (“flipper”) mouse strain, 

which expresses Flpe under control of the ubiquitous Rosa26 promoter. This line has 

been reported as somewhat less efficient, as complete recombination was observed 

in approximately 50% of double transgenic F1 progeny (237). Screening of the F1 

generation for the desired recombination event (hygro selection cassette- and 

reporter cassette free allele) and subsequent breeding resulted in establishment of 

the CRHR1Cre line. Although residual promoterless neo sequences are still present in 

intron 2, comprehensive ISH expression analyses provide no indications for aberrant 

splicing events, nor reduction of CRHR1 gene expression. 

 

7.2 Potentials and limitations of Cre-driver lines  

 

Over the past two decades, a number of large-scale projects and individual 

laboratories have invested great effort in developing a comprehensive toolbox of Cre-

driver lines for functional and connectional studies in specific cell types and/or 

different regions of the brain and periphery. The full potential and utility of these 

various Cre lines depends on a systematic characterization of transgene expression 
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patterns and Cre-mediated recombination, to ensure that the Cre-defined cells 

represent the same population that endogenously expresses the gene of interest. 

Several studies that characterized Cre-recombination patterns in the brain and 

peripheral tissues, indicate a high variability with some Cre lines very faithfully 

recapitulating endogenous gene expression patterns, and others showing ectopic 

(both temporal and spatial) and/or subset expression. Moreover, variation among 

floxed alleles regarding efficiency of Cre-mediated recombination, unexpected germ 

line deletion or toxic effects of Cre, represent possible pitfalls and should be 

considered when interpreting experimental data (165, 187, 280-285). The key 

considerations associated with the CRHR1tZCre/CRHR1Cre-driver lines will be 

discussed in greater details in the following.  

7.2.1 Specificity and efficiency of Cre-mediated recombination 

For comprehensive validation of new Cre-driver lines, it is necessary to analyze Cre 

expression on mRNA level but also to evaluate Cre activity by reporter gene studies 

and as well by analysis of recombination pattern in mice harboring a floxed allele. 

The ability of a floxed target gene to be recombined may vary depending on the cell 

type- and/or development-specific chromatin structure/DNA methylation state at the 

gene locus of interest and should therefore be evaluated individually for each floxed 

allele, even when the Cre-driver is well characterized in the literature. In addition, the 

distance between loxP sites and chromosomal location can affect the recombination 

efficiency (203). To ensure the correct interpretation of the behavioral phenotype in 

mice that express a constitutive active version of the CRHR1 in the VTA, we 

performed double ISH with riboprobes targeting the endogenous CRHR1 and the 

“flexed” constitutive active version of the receptor (expression only after Cre-

mediated recombination of the loxP flanked inverted expression cassette). Virtually 

all cells that expressed the activated form co-expressed the wild-type receptor and 

thereby confirmed the high specificity of the driver line at least in this particular brain 

region. 

In addition, specificity and efficiency of Cre activity was validated in a mouse line, 

harboring a floxed EGFP-CRHR1 allele (Crhr1N-Egfp knock-in line, described by Refojo 

et at., 2011). Complete absence of GFP transcripts in distinct brain regions of double 

transgenic mice demonstrated that Cre activity is highly specific and efficient. On the 

other hand, residual GFP signals in the RT, GP, VTA, RMC, PG and MV point 

towards nonuniformity in Cre activity. Moreover, Cre activity might also depend on 
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the parent-of-origin (see following chapter). Although DISH experiments proved the 

high specificity of Cre expression in these brain regions, it is likely that a 

subpopulation of neurons express insufficient levels of Cre protein for recombination 

to occur efficiently. At the moment, it is only possible to speculate about possible 

reasons for this phenomenon. Gregg and colleagues reported allele-specific 

expression effects due to epigenetic regulatory factors (286). These effects can lead 

to either complete silencing of an allele or to biases in which higher expression levels 

arise form one allele versus the other, e.g., maternal versus paternal. In addition, 

allele-specific different expression of isoforms/transcripts could be possible 

mechanisms for this so-called “non-canonical” imprinting effects. For example, for the 

genes Grb10, Igf2, Ube3a, Dlk1, it has been shown, that imprinting occurs in a cell 

type-specific manner (287, 288). Furthermore, non-canonical imprinting at the cellular 

level could lead to a bias, such that each cell express slightly more of one parental 

allele (289). We therefore speculate on reduced levels of Cre-recombinase due to 

non-canonical imprinting of the “Cre-allele” in a subpopulation of cells expressing the 

CRHR1. 

7.2.2 Parent-of-origin effects 

Cre activity can vary depending on maternal or paternal inheritance of the Cre 

transgene (283, 290). Therefore, we analyzed this issue in progeny from CRHR1+/cre 

x CRHR1+/N-Egfp breeding pairs via ISH to detect GFP mRNA in brains from double 

heterozygous mice. Interestingly, we found slightly weaker/subset recombination 

pattern (loss of GFP signal) when the CRHR1 Cre allele was inherited paternally, 

although the Cre expression pattern is consistent with the brain specific expression 

pattern of the endogenous CRHR1 (Figure 21). In a recent study Perez and 

colleagues investigated genomic imprinting (a chromatin modification in the parental 

germ lines, leading to variable expression of the maternally- or the paternally 

inherited allele) in the mouse brain and identified ~200 imprinted genes with many of 

them parentally biased, meaning that either the maternal or paternal allele is 

expressed at a higher level, rather then completely silenced (291). Bonthius and 

colleagues termed this “noncanoncial genomic imprinting” and demonstrated tissue- 

and cell-type specificity. Moreover, they revealed an enrichment of noncanonical 

imprinted genes in the brain (both autosomal and X-linked) and provided examples 

for allele-specific expression of genes in distinct subpopulation of neurons (292). In 

contrast, “canonical imprinting” leads to complete silencing of one gene copy. Both 
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effects – canonical and noncanonical – are associated with allele-specific chromatin 

modifications (293). As low levels of Cre activity can lead to differential recombination 

efficiencies, we therefore speculate on noncanonical imprinting of the paternal Cre 

allele in offspring from male CRHR1+/cre x female CRHR1+/N-Egfp matings and 

consequently only partial deletion of the floxed CRHR1-GFP allele. Furthermore, 

intercross of heterozygous CRHR1+/tZCre mutant male and female mice did not result 

in homozygous offspring, most probably due to perinatal/neonatal lethality due to 

lung dysplasia. This phenomenon has been described so far only for homozygous 

intercrosses where low levels of maternal corticoids result in insufficient neonatal 

lung maturation (156). As stated in chapter 6.3.1 electrophysiological analysis 

revealed that the tZCre-allele is a knockout allele, most probably due to an aberrant 

splicing of neo sequences into the adjacent CRHR1 exon 3-13 coding sequence, 

resulting in a non-functional receptor in consequence of a reading frame shift. Cell-

specific monoallelic expression of the mutated/knockout allele in pituitary 

corticotrophs could be a possible cause for insufficient levels of maternal corticoids. 

In contrast, distinct CRHR1-specific brain regions were completely devoid of lacZ and 

Cre mRNA expression (Figure 15 ). Whether this originates from canonical genetic 

imprinting of the tZCre-allele or due to faster nonsense-mediated mRNA decay 

remains elusive at this stage of our knowledge. 

7.2.3 Cre toxicity 

Depending on its concentration, the Cre protein can be toxic for mammalian cells 

(170). Expression levels from heterozygous CRHR1+/Cre transgenic animals are 

sufficient for complete recombination of floxed alleles as demonstrated in offspring 

from CRHR1+/cre x CRHR1+/N-Egfp breedings (Figure 30). The absence of GFP mRNA 

in distinct brain regions clearly demonstrates the high efficiency and specificity of this 

driver line and it is not necessary to use animals homozygous for the Cre allele. 

Moreover, the CRHR1Cre line was maintained as homozygotes. It is worth mentioning 

that the homozygous Cre-breeding colony showed no abnormalities that point to 

affected cell physiology, decreased viability and fertility, or recombination of cryptic 

loxP sites in the genome as reported in other Cre transgenic strains (294). As high 

levels of Cre expression can cause a phenotype induced by the Cre-driver alone 

(280, 285), we subjected homozygous CRHR1Cre/Cre mice to a standard functional 

test and measured basal and stress-induced corticosterone levels. Functionality of 

CRHR1 activity was not impaired as corticosterone levels were comparable to those 
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in wild-type mice (CRHR1+/+). Moreover, we used CRHR1+/cre mice (injected with an 

AAV-Ef1a::DIO-mCherry control virus) with identical genetic background as control 

group in our behavioral studies instead of wild-type mice. Former studies have 

demonstrated that reporter gene expression driven from the endogenous CRHR1 

locus is rather weak (41) and therefore we assume that the intracellular accumulation 

of Cre protein remains below a potential toxic level.  

7.2.4 Cre-mediated germline deletion 

A Cre-dependent reporter line revealed expression of Cre protein in the male 

germline, or more exactly, CRHR1 promoter-driven expression of Cre was detectable 

in spermatids and their progenitor cells. For this reason, recombination of loxP-

flanked alleles can occur in the germ cells of Cre-positive males, with the 

consequence of generalized deletion of targeted alleles in the progeny. Therefore, 

the usage of Cre-positive males for brain-specific targeting of conditional alleles, 

and/or usage in behavioral/metabolic phenotyping experiments is restricted to the F1 

generation of double-transgenic animals. In general, specific attention has to be paid 

in the PCR design for genotyping, to detect the deleted allele, e.g., in tail lysates from 

offspring of male and also female CRHR1-Cre mice. The latter will resolve potential 

problems with post-meiotic persistence of Cre protein in oocytes which could cause 

recombination of a floxed target allele in the zygote, even when the oocyte itself does 

not carry the Cre allele. This would lead to inheritance of the recombined allele in all 

tissues of the progeny. Reporter gene expression in CRHR1+/Cre::Ai9 double 

transgenic mice was restricted to ovarian stroma cells and did not show any evidence 

for Cre expression in in the female germline. For this, we used Cre-positive females 

for maintaining the CRHR1-Cre alongside floxed alleles.  

7.2.5 Caveats associated with Cre-reporters 

Universal Cre-reporter lines are designated for Cre-dependent expression of 

transgenic marker genes, such as lacZ or fluorescent markers like GFP, YFP or 

tdTomato. The most commonly used locus for Cre-responders is the Rosa26 locus in 

combination with an inserted strong and ubiquitous promoter, e.g., the CAG 

promoter, to drive expression of the reporter gene cassette after Cre-mediated 

removal of a floxed stop cassette (187). Scientists should be aware that not all of 

them show ubiquitous and/or equal expression levels or recombination efficiencies. 

At low level of Cre activity, the R26-CAG-tdTomato responder line faithfully identifies 
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cells that underwent recombination in contrast to the R26-eYFP mouse line, which 

revealed lower recombination sensitivity. Moreover, R26-eYFP and R26-CAG-eGFP 

displayed different recombination sensitivities although they comprise identical floxed 

stop cassettes, most probably due to a different methylation status of sequence 

variances downstream of the loxP sites or different nucleasomal structures that affect 

accessibility of the recombinase target sequences (295). We made use of two 

fluorescent reporter lines to evaluate spatiotemporal CRHR1 promoter-driven Cre 

expression, the above mentioned R26-CAG-tdTomato (Ai9) line and in addition, the 

R26-CAG-SUN1-sfGFP reporter line. In both cases the reporter gene (tdTomato and 

SUN1-sfGFP fusion protein, respectively) are expressed under the control of the 

strong and ubiquitous CAG promoter, inserted within the Rosa 26 locus. We could 

not detect differences in recombination efficiencies nor sensitivities between the two 

lines, although the strong tdTomato native fluorescence outperforms the sfGFP 

fluorescence strength, which constituted a major advantage in detection of neurons 

with low levels of CRHR1 expression, respectively Cre recombinase expression. 

Finally, it must be pointed out that it is essential for every user of Cre-driver lines to 

be aware of the outlined potential caveats - even when relying on lines that have 

been “adopted” as common tools. Therefore it is a prerequisite to complement 

published data with own unbiased and additional evaluation studies, to get an 

extensive impression of Cre recombinase accuracy (169). 

 

7.3 Characterization of Cre-recombinase functionality 

7.3.1 Central CRHR1-IRES-Cre expression 

 

The bicistronic knock-in strategy for generation of the CRHR1 Cre-driver line was 

chosen because it enables endogenous gene-dependent Cre activity without losing 

one copy of the targeted CRHR1. The internal ribosomal entry site (IRES) has been 

frequently used for bicistronic gene expression although no equimolar expression of 

downstream cistrons in a cell-type specific manner has been reported (296). The use 

of a viral 2A peptide for multicistronic expression in transgenic mice has emerged as 

an attractive alternative to the IRES site. The 2A peptide mediates the co-

translational cleavage of polypeptides and lead to more reliable expression of 

multiple cistrons at equimolar levels (297). However, after cleavage, the short 2A 

peptide remains fused to the upstream protein and can potentially interfere with 
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protein performance (298). In addition, a prolin relic of the 2A self-cleaving process is 

attached to the N-terminus of the second protein (299). In a recent study Bender and 

colleagues characterized the C-terminal PDZ binding motif of CRHR1 and revealed 

protein-protein interactions with multiple members of the membrane-associated 

guanylate kinase (MAGUK) family, which directly affects receptor function (125). To 

avoid that residues of the 2A peptide at the C-terminus potentially ablate this 

interaction and interfere with receptor function we used the IRES sequence for 

expressing the Cre recombinase under control of the CRHR1 promoter. Several 

approaches were applied to evaluate functionality of the receptor and the Cre 

recombinase, respectively. First, comprehensive ISH studies were conducted to 

verify expression of Cre recombinase (Figures 21). Using a riboprobe complementary 

to the 3’UTR of the wild-type allele in comparison to a riboprobe specific for the Cre, 

CRHR1+/Cre mice showed identical expression patterns of Cre compared to wild-type 

mice. Second, plasma corticosterone levels of Crhr1Cre/Cre mice under basal 

conditions and after acute stress were indistinguishable from wild-type animals, 

confirming the full functionality of the CRHR1. In contrast, distinct CRHR1-specific 

brain regions were completely lacking Cre mRNA expression in CRHR1+/tZCre animals 

(Figure 15). Possible mechanisms for this subset expression could be nonsense-

mediated mRNA decay of an aberrantly spliced tZCre-allele, promoter inactivation 

due to residual neo sequences or cell type-specific canonical genetic imprinting of 

the tZCre-allele. Therefore the CRHR1+/tZCre driver line represents a genetic tool for 

sparse cell type-specific neuronal labeling, useful for the analysis of neuronal 

morphology, as demonstrated by crossing to the tdTomato reporter line (300, 301). 

Moreover, this line represents a unique tool for expression and visualization of 

fluorescent proteins that localize to subcellular structures, e.g., synapses, in CRHR1-

specific neurons (302).  

Crossing of CRHR1+/cre mice with the R26-CAG-tdTomato (Ai9) and R26-CAG-Sun1-

sfGFP Cre-responder lines was used to validate the functionality of Cre recombinase 

on protein level and to visualize neurons with low levels of Cre expression that might 

not be reliably detectable on mRNA level. In line with recently published data from a 

different CRHR1 Cre knock-in allele (62), tdTomato reporter gene expression 

revealed that the distribution of labeled cells was fundamentally similar to previously 

described Crhr1 mRNA expression (29, 303). It has to be noted, however, that in 

both driver lines a dense set of labeled neurites prevented evalution of single labeled 
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neurons in prominent sites of Crhr1 mRNA expression such as globus pallidus, 

reticular thalamic nucleus, ventral tegmental area and red nucleus as well as in other 

sites of rather low expression of Crhr1 mRNA. Therefore, we made use of a second 

reporter line, R26-CAG-Sun1-sfGFP, which facilitates single cell resolution. Overall, 

the results suggest that expression of Cre was essentially similar to the spatial 

distribution of endogenous Crhr1 mRNA. In certain brain regions, however, the 

recombination pattern deviates from that of the endogenous CRHR1 expression in 

the adult mouse brain. These deviations most likely result from the fact that reporter 

gene expression reflect the cumulative expression history of the CRHR1 gene. 

CRHR1 expression was detectable in ED 10-11 embryo heads of mice by means of 

RT-PCR (304). To evaluate the specificity of our Cre line we performed double ISH 

with riboprobes complementary to tdTomato and to the endogenous CRHR1 

(riboprobe located in the 3’ UTR of the receptor). Quantification of double positive 

cells revealed that the majority of CRHR1-positive neurons also expressed tdTomato, 

which proved the high specificity on the one side and demonstrated that tdTomato 

expression reflects the cumulative/developmental expression history, rather than 

ectopic Cre recombinase activity 

Sanford and colleagues used their CRHR1 knock-in Cre-driver to genetically label 

CRHR1 neurons in the central amygdala and stated that CRHR1 signaling in the CeA 

is critical for discriminative fear. They used a slightly different reporter line 

(Ai14tdTomato) to reveal CRHR1 expression and reported that CRHR1 neurons are 

“broadly localized within the central, lateral and medial CeA, partially overlapping with 

somatostatin neurons it the caudal CeAL” (62). We could not reproduce this “broad” 

reporter gene expression in sections obtained from crossing our driver line to the 

R26-CAG-Sun1-sfGFP Cre-responder line, where we could detect only a small 

number of sfGFP labeled neurons in the central amygdala. Moreover, with local 

injections of a Cre-inducible virus (AAV-EF1α-Dio-mCherry) into the CeA of our 

CRHR1 Cre-driver, we analyzed current expression of the receptor in the adult brain, 

and could detect only very few labeled CRHR1 cells in the CeA. Although we cannot 

exclude a higher recombination sensitivity of the Ai14tdTomato reporter line, nor false 

negative results due to inefficient viral transduction, we think that some control 

experiments, such as viral-mediated knockout of the receptor in the central 

amygdala, would be necessary to strengthen their conclusions. 



Discussion 

152 
 

In line with previous data, where we used a knock-in approach to visualize CRHR1 

expression via a β-galactosidase reporter, we assume that the small number of 

sfGFP labeled neurons within the PVN and LC also resulted most likely from a 

transient expression of Cre recombinase during development, as no current reporter 

gene expression was seen after injection of AAV-EF1α-Dio-mCherry into the adult 

mouse brain. This is in conflict with electrophysiological studies and electron 

microscopic studies in rats that reported a direct CRH/CRHR1 interaction within the 

LC (36). Although the distribution of Crhr1 mRNA in mouse and rat brain was found 

to be quite similar (29), the relative strength of receptor expression displayed 

differences, e.g., in cortical layer 6, in the RTN and striatum. It is therefore possible 

that low receptor, and consequently low Cre expression is not sufficient to recombine 

the reporter alleles and remove transcriptional stop cassettes to initiate transcription 

of reporter genes. Another possible explanation could be an interaction of CRH with 

postsynaptically localized receptors on dendritic processes within the LC, that 

originate from neurons located in neighbored structures, such as the medial and 

parabrachial nuclei, where strong expression of mCherry labeled somata was visible 

after viral injection of AAV-EF1α-Dio-mCherry in the adult mouse brain (Figure 29). 

Another brain structure with inconsistencies with respect to Crhr1 mRNA expression 

is the PVN. Stress inducible expression of Crhr1 mRNA in the paraventricular nuclei 

has been described so far only in the rat (29) and could not be reproduced in mice 

(own studies, data not shown). Recently Ramot and colleagues described a distinct 

population of hypothalamic CRHR1 positive neurons that play a role in modulating 

HPA axis activity and are “recruited” specifically in chronic stress conditions (305). 

Overestimation of CRHR1 expressing neurons in the used transgenic BAC-GFP 

reporter mice (219) and/or low and inefficient levels of Cre recombinase under basal 

conditions could be an explanation for the discrepancies of our expression studies 

with functional evidences.  

 

7.3.2 Peripheral CRHR1-IRES-Cre expression 

 
The most complete analysis of CRHR1 expression is based on detection of mRNA 

and has focused on central expression in brain and pituitary, particular in mice and 

rats (29, 70, 306). An immunocytochemical study using an antibody against the C-

terminus of the receptor focused on CRHR1 protein detection in the mouse brain and 
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the results are for the most part in line with published data on Crhr1 mRNA 

expression (229). Apparent discrepancies, e.g., in the cerebellar granular cell layer, 

the PVN and LC were attributed to protein transport away from the synthesis locus in 

the soma or long half-life of the CRHR1 protein. On a critical note, the evaluation of 

antibody specificity has not been proven on brain sections of complete CRHR1 

knockout mice. This is of special relevance since own studies in our group revealed 

the lack of reliable antibodies against CRHR1, especially at low physiological 

expression levels (99). To date, two CRHR1-reporter mouse lines have been 

generated that provide the possibility to visualize endogenous CRHR1 expression 

and additionally enable visualization of CRHR1 connectivities of CRHR1-expressing 

neurons (41, 219). Tau-LacZ reporter gene activity revealed novel aspects and sites 

of CRHR1 expression in mouse spinal cord, eye and skin, where expression of the 

receptor was based so far on immunohistochemistry, ISH and RT-PCR (41). The 

generation of an appropriate CRHR1-Cre mouse line in combination with a Cre-

inducible reporter line for genetic labeling of CRHR1 expressing cells opens up new 

opportunities for spatiotemporal detection of CRHR1 expression in the periphery, 

particularly in sites with low endogenous expression levels. Expression of the 

tdTomato reporter gene in double transgenic CRHR1Cre::Ai9 mice recapitulated 

CRHR1 expression obtained with the tau-lacZ reporter line in mouse pancreas, 

spinal cord, eye, skin, pituitary gland and adrenal gland (Figure 26). Expression of 

the receptor in the adrenal gland was restricted to a “stripe” of labeled cells within the 

adrenal cortex (Figure 26F). At the moment we can only speculate on the origin of 

these cells and the labeling pattern. Detection of CRHR1 in mouse adrenal gland 

was so far only detectable on mRNA level via ISH and RT-PCR and was shown to be 

most prominent in the zona fasciculata of mouse adult adrenals, whereas expression 

in adrenals from adult rat was detected via immunohistochemistry in the medulla and 

throughout the cortex (307, 308). Discrepancies between Crhr1 mRNA expression 

and reporter gene expression in mouse adrenals require further experiments and 

cannot be clarified at the moment. Interestingly, development of the murine adrenal 

gland includes fetal cortical progenitor cells, located peripherally that give rise to 

radial adrenocortical cell lineage stripes from E14.5 on (309). Therefore, we 

speculate on transient CRHR1 promoter activity and Cre activity, respectively, in fetal 

steroidogenic progenitor cells and cell lineage specific reporter gene expression.  
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So far, expression of Crhr1 mRNA in the kidney was described only in studies from 

humans and rats. Up to now, corresponding studies in mice are lacking and therefore 

tdTomato fluorescence signal in proximal and distal convoluted tubes as well as 

collecting tubes within the cortex of the kidney (Figure 26G) provides a first indication 

for potential direct CRH/CRHR1 interactions in context of stress and pathophysiology 

of chronic kidney disease (310).  

Over the past years, a growing body of evidence confirms a prominent role for CRH 

in immunomodulation. CRH and/or CRHRs have been detected in major cellular 

components of the immune system: autoradiographic studies in mouse spleen 

revealed CRH receptor expression primarily on resident splenic macrophages (311, 

312) and on human monocyte-macrophages and T-helper lymphocytes (313). 

Expression of the CRHR1 was described in granulocytes, lymphocytes, 

macrophages and perivascular mast cells within inflamed human and rat tissues 

(314, 315). The use of double transgenic CRHR1Cre::Ai9 mice has demonstrated 

expression of the receptor in lymphatic tissues including thymus and spleen, and was 

also detected in Kupffer cells (KCs), macrophages that mediate the hepatic immune 

response (Figure 26J-L). Furthermore, strong expression of the reporter gene was 

evident in lingual filiform papilla. As immune cells (dendritic cells, macrophages and 

T-lymphocytes) are present in the human lingual mucosa (316) and T-lymphocytes 

were also detectable in mouse lingual epithelium (317) we assume that CRHR1 is 

expressed on T-lymphocytes within mouse lingual epithelial cells. In addition, 

tdTomato labeled cells were visible in lung epithelial cells (Figure 26N), most 

probably T-lymphocytes that are found in the epithelium and lamina propria of the 

bronchi (318). Moreover, CRHR1 expression is visible in the mucosa (villi) of the 

small intestine (Figure 26H), but additional experiments are necessary to determine 

the distinct cell-type and and localization of the receptor. Immunohistochemistry 

studies in combination with RT-PCR showed, that the receptor is co-expressed with 

CD163, a marker for resident macrophages, in human colonic biopsies (319). 

Porcher and colleagues evaluated expression of CRHR1 and CRHR2 in rat small 

intestine (duodenum and ileum) via immunohistochemistry. Both receptors were 

detected, amongst other structures like submucosal ganglia, in mucosal cells. 

Application of a CRHR1 antagonist blocked activation of duodenal motility (320). The 

number of macrophages co-stained for CRHR1 was significantly elevated in patients 
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with ulcerative colitis and indicate a role of CRHR1 signaling in modulating intestinal 

immune-inflammatory processes (319).  

Finally, there is experimental evidence that CRH/CRHR1 modulate the 

immune/inflammatory response in a bidirectional manner: centrally released CRH 

stimulates glucocorticoid and catecholamine release, exerting anti-inflammatory 

effects and in contrast, peripherally secreted CRH is stimulating pro-inflammatory 

functions, such as proliferation of lymphocytes, expression of IL-2R antigen on T 

cells and stimulation of interleukin 1 and 2 production in an autocrine or paracrine 

manner (221). On the other hand, it has been shown that, e.g., proinflammatory 

interleukins play an important role in depression (321). Thus, the bi-directional 

relationship between the brain and immune system involves the perspective that 

CRH/CRHR1 antagonists with a central anti-inflammatory mechanism of action, 

represent a new generation of antidepressants (322) and also conversely, CRHR1 

antagonists open new therapeutic options in the treatment of allergic conditions or 

lower gastro-intestinal inflammatory diseases such as inflammatory bowel syndrome 

and ulcerative colitis, that have been associated to CRH (323). As mentioned above 

the new Cre-driver line enables genetic access to CRHR1 expressing cells in the 

periphery and facilitates further anatomical and functional studies in peripheral organ 

systems, especially in the context of stress-related pathophysiology. 

 

7.3.3 AAV-mediated identification of neural circuits 

 

Over the past decade, the development of viral vector-based genetic tools that allow 

for cell-type specific anterograde and retrograde tracing and for manipulation of 

specific neuronal cell types and circuits, have changed the scientific landscape 

significantly and offer enormous potential for modern neuroscience to decipher the 

intersection between genes and neural circuits (188). The use of viral vectors as 

tools for optogenetics, chemogenetics, cell type-specific manipulation of gene 

expression and expression of fluorescent calcium sensors has proven especially 

useful in studying the function and manipulation of the CRH system and 

CRH/CRHR1-specific neurocircuits, respectively (9). Recent findings suggest that 

region- and cell type-dependent CRHR1 signaling within neural networks plays a key 

role in mediating anxiety and stress-related psychopathologies and have lead to a 
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rethink with regard to the classical view of CRH-mediated activation being “all-

aversive”/anxiogenic. Whereas forebrain glutamatergic CRH/CRHR1-modulated 

circuits increase anxiety, dopaminergic mesocorticolimbic pathways evoke a positive 

emotional/anxiolytic state (99). Other examples of bi-directional CRH/CRHR1 

signaling include the nucleus accumbens, where activation of CRHR1 can induce 

opposing emotional states depending on discrete stress levels (101). Many of the 

studies that were applied to analyze brain region-specific roles of CRHR1 were 

based on conditional mutagenesis, pharmacological interventions, 

electrophysiological measurements and viral manipulations. Viral mediated tracing 

studies using a CRHR1 Cre-driver line provide spatio-temporal genetic access to 

CRHR1-specific neurons and their involvement in CRH circuits that mediate anxiety- 

and stress- related behaviors. 

For example, AAV based tracing proved the participation of CRHR1-expressing 

neurons in the hippocampal trisynaptic circuit, in particular in the perforant path and 

hilar mossy cells. CRH/CRHR1 signaling amplifies neuronal excitation in the 

hippocampal formation (trisynaptic EC-DG-CA3-CA1 network) and is involved in 

stress-mediated modulation of learning and memory processes in a dose-dependent 

manner (8). Latest data based on viral-genetic tracing, electrophysiological 

recordings and photostimulation, support a modulatory role of hilar mossy cells on 

the activity of dentate granule cells (“granule cell association” hypothesis) and an 

important role in integrating excitatory input from the CA3 region to granule cells 

(324). Degeneration of hilar mossy cells resulted in acute granule cell 

hyperexcitability, thereby supporting the “dormant basket cell” hypothesis (net 

inhibitory effect of mossy cells on granule cells). Moreover, acute mossy cell 

neurodegeneration led to increased anxiety behavior and impaired contextual 

discrimination (325). The CRHR1 Cre-driver mouse line enables specific genetic 

targeting of CRHR1 expressing hilar mossy cells. The combination with new 

emerging techniques, such as in vivo two photon Ca2+ imaging, or optogenetic 

manipulation in combination with voltage sensitive dye imaging (326, 327), can help 

to decipher the role of CRHR1 in modulating DG-CA3 network activity. Moreover, it is 

possible to analyze the role of CRHR1 positive hilar mossy cells in hippocampus-

associated learning and memory behaviors, post-traumatic epileptic seizures and 

stress-related effects on hippocampal morphology and function.  
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Conditional mutagenesis, namely CRHR1 knockout in dopaminergic neurons of the 

VTA, revealed an anxiolytic role for the receptor in this brain region and reduced the 

release of dopamine in the prefrontal cortex (99). Our comprehensive analysis of 

viral-based tracing strongly suggest the presence of axonal terminals in mesostriatal, 

mesolimbic and mesocortical projection sites that originate form monosynaptically 

projecting CRHR1-expressing neurons within the VTA. This probably indicates a 

widespread collateralization of these mesocorticolimbic projection neurons and a 

potential role of a CRHR1-specific subset of VTA neurons in modulating 

dopaminergic signaling simultaneously in cortical and limbic target sites. Additional 

experiments that unravel the exact localization, neurotransmitter co-expression and 

axonal arborization pattern of individual CRHR1-specific neurons are necessary to 

decipher the specific subset of CRHR1-positive dopaminergic neurons and their 

postsynaptic targets, that mediate anxiolysis. One option would be the use of a 

modified fluorescent marker (palGFP), as the fusion of GFP with a palmitoylation site 

(palGFP) was shown to enable visualization of infected neurons in a Golgi stain-like 

manner (328-330). Moreover, a dual-recombinase intersectional strategy, Cre- and 

Flp- dependent (cDIO, fDIO), to turn on doubly controlled reporter alleles or opsins 

would allow for spatiotemporal manipulation of a specific neuronal subset within this 

highly complex and heterogeneous brain region. Fenno and colleagues combined 

“fDIO” and “cDIO” with projection-targeting strategies to target dopaminergic cells of 

the VTA that project to the nucleus accumbens (210). Based on this approach it 

would be conceivable to inject retrograde LTHSV-lox-STOP-lox-mCherry-IRES-Flp 

into putative mesocorticolimbic target sites of CRHR1Cre mice. Only VTA neurons that 

are transduced by LT-HSV and express Cre (CRHR1 specific) will express Flp and 

can therefore activate ,e.g., viral transduced fDIO-Chr2-eYFP constructs within the 

VTA for subsequent optogenetic manipulations.  

Finally, our anterograde tracing studies suggest an important role of CRH/CRHR1 

signaling within corticostriatal and basal ganglia neurocircuits (Figure 36). There is 

growing evidence that aberrant functional connectivities within the striatum and 

associated cortico-basal ganglia circuits are associated with the neuropathology of 

mood disorders (246, 331, 332). In general, information originating from the cerebral 

cortex is transmitted first to the basal ganglia, then on to the thalamus and finally 

back to numerous cortical areas where the input information is processed in 

cognitive, emotional, sensory and motor domains. Information flow can either be 
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direct/net effect excitatory (cortex ► caudoputamen ► globus pallidus internal 

segment/substantia nigra pars reticulata ► thalamus ► cortex), or indirect/net effect 

inhibitory (cortex ► caudoputamen ► globus pallidus externa ► subthalamic nucleus 

► globus pallidus internal segment/substantia nigra pars reticulata ► thalamus ► 

cortex). In healthy subjects, a dynamically balanced neural tone in both pathways 

allow for appropriate behavioral execution and termination. CRHR1 is expressed in 

main structures of these circuits: in glutamatergic cortical neurons, GABAergic striatal 

neurons, in GABAergic neurons within the globus pallidus externa and in GABAergic 

neurons of the reticular thalamic nucleus, the latter playing a key role in integrating 

sensory information between the thalamus and cortex. Functional MRI and 

connectivity analyses lead to the conclusion that primary pathology of unipolar 

depression exists within subcortical components and/or altered connectivity with 

cortical regions. Additional studies hypothesized that decreased excitatory drive to 

the orbitofrontal cortex, as net consequence of reduced striatal GABAergic output 

underlies the etiology of bipolar disorders (246, 332). Up to now, there is no clear 

evidence for an exclusive region-specific role of CRHR1 within components of 

corticostriatal and basal ganglia neurocircuits in stress-related psychopathologies. 

CRH/CRHR1 signaling exhibits anxiolytic-like effects in the frontal cortex of rats 

(333). In mice, stress impairs mPFC-mediated cognition through CRH/CRHR1 

interaction (239). Genetic downregulation and pharmacological blocking of CRHR1 in 

GABAergic neurons of the GPe results in an increased anxiety-like behavior (162). 

Recent work suggests an important role of striatal GABAergic interneurons in 

regulating the two main output pathways in response to a global dopamine signal 

(240, 241). CRHR1tZ-reporter mice revealed that CRHR1 neurons in the striatal patch 

compartment are positive for the D1 dopamine receptor (41). Viral based tracing 

results in CRHR1Cre mice demonstrated the locally projecting nature of these 

neurons. Taken together, we speculate on an important role of CRHR1, expressed 

on GABAergic/D1 positive interneurons in the striatum (input nucleus of the basal 

ganglia circuitry), with regard to regulation of GABAergic medium spiny neurons. The 

precise function of interneuronal and reciprocal striatopallidal inhibition in the striatum 

needs to be further evaluated. Moving forward, the CRHR1 Cre-driver will enable to 

study and manipulate the basal ganglia on a cell-specific circuit level, which is a 

prerequisite to better understand how cell types interact in modulation of emotional 

behavior.   
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7.4 Viral - mediated upregulation of CRHR1 in the VTA results in an anxiolytic 

phenotype 

 

For a long time the research focus has been on hippocampal and frontal cortical 

circuits for their role in mood disorders and antidepressant treatment, whereas the 

mesocortibolimbic dopamine circuits were often associated with the rewarding effects 

of food, sex and drugs of abuse. Over time the VTA-associated reward and addiction 

circuits have gained attention from the scientific community with regard to their 

involvement in the etiology and treatment of depression (102). Based on defined 

genetic tools previous studies in our group revealed an anxiolytic role for a 

subpopulation of dopaminergic neurons expressing CRHR1 in the VTA (99). To test 

the hypothesis that enhanced CRH/CRHR1 signaling in the VTA modulates stress-

related emotional behavior we used the CRHR1Cre mouse line to express a 

constitutively active version of CRHR1 fused to EGFP, AAV-DIO-CA(CRHR1)-EGFP, 

specifically in CRHR1-expressing VTA neurons. CA(CRHR1) mice exhibited 

decreased anxiety-related behavior in the DaLi- and EPM test compared to controls 

(Figure 42). Collectively, our results confirmed an anxiety-suppressing CRH/CRHR1 

mesocortical circuit that acts by positively regulating dopamine release. So far, 

studies have mainly focused on stress-related/CRH-induced region-specific effects in 

the context of modulation of drug-dependent behaviors (for review see (8)). In 

summary, the various surveys led to the conclusion, that the effects of CRH on 

dopamine release seem to be pathway-specific and that a specific subpopulation of 

VTA CRHR1 expressing neurons mediates anxiety-related behavior. With the use of 

a CRHR1-EGFP knock-in reporter line (Crhr1ΔEGFP) in combination with a 

neurotransmitter-specific CRHR1 conditional knock-out mouse line (Crhr1Da-CKO) we 

could show that the majority of CRHR1 neurons in the VTA represent dopaminergic 

neurons and, moreover, a tau-lacZ CRHR1 reporter line indicated strong CRHR1 

innervation of the dorsal and ventral striatum originating from dopamine transporter 

(DAT) positive neurons (41). The use of the CRHR1 Cre-driver line in combination 

with a viral-based anterograde tracing technique allows for cell-type specific 

monosynaptic anterograde tracing and revealed mesostriatal, mesolimbic and 

mesocortical projection sites.  

To further characterize the specific-subpopulation of CRHR1 neurons within the VTA 

that mediates the anxiolytic behavioral phenotype in the gain-of-function experiment, 

we performed neurochemical characterization in CRHR1CA(CRHR1) mice on protein and 
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mRNA level through double immunohistochemistry and DISH with 

antibodies/riboprobes specific for GFP and TH or Gad65/67, respectively. DISH 

revealed a co-expression of CRHR1 with TH and Gad65/67, however, it must be 

noted that this approach does not reveal CRHR1 neurons that co-express both 

neurotransmitter markers. Recently Kim and colleagues revealed that dopamine 

neurons can synthesize GABA through an alternative synthesis pathway via 

aldehyde dehydrogenase 1a1 (not utilizing the conventional GABA synthesizing 

enzymes GAD65/67). GABA is then “co-packaged” with dopamine into vesicles, 

indicating the possibility of co-release at the same side/from the same synaptic 

vesicle (334). Another study reported co-release of GABA/dopamine in mesolimbic 

afferents, whereby GABA release relies on GABA uptake from the extracellular 

domain and is not synthesized de novo by these cells as they lack GAD65/67 

expression (335). Our DISH results indicate the presence of GAD65/67 mRNA in 

neurons expressing the CRHR1 in the pVTA. Whether this is a distinct solely 

GABAergic CRHR1 positive subpopulation, or a subtype of dopaminergic neurons 

that synthesize GABA via GAD65/67 is not clear at the moment. A triple IHC against 

GFP/GAD/TH is necessary to quantify the respective populations of dopaminergic 

neurons.  

Quantification on protein level demonstrated co-expression of TH in ~65% of neurons 

positive for CRHR1. The latter result is not consistent to the deletion pattern analyzed 

in “floxed” CRHR1 mice, that were crossed with Dat-cre/ERT2, to selectively disrupt 

CRHR1 in midbrain dopaminergic neurons. Semi-quantitative analyses of 

neurotransmitter-specific deletion patterns provided no clear evidence for a deletion 

in GABAergic CRHR1 neurons, but most likely such subtle changes in a small subset 

of neurons within a brain region that exhibits high anatomical, molecular and 

functional complexity, are not detectable by means of mRNA detection. It is of note 

that a Cre-line driven by the promoter for DAT also targets TH/GABA co-releasing 

neurons. Thus, the anxiogenic behavioral phenotype is most likely dependent on the 

co-release of both neurotransmitters. 

In single-cell axon tracing analysis four subtypes of forebrain-projecting dopaminergic 

VTA neurons were identified: “mesocorticolimibic” (target areas neocortex, basal 

forebrain); “mesocortical” (target area neocortex), “mesolimbic” (target areas basal 

forebrain, nucleus accumbens and striatum), “mesostriatal” (target area striatum). In 

addition, there is evidence for segregated mesocortical and mesolimbic output 
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systems as well as a distinct mesocorticolimbic output system. The latter comprise 

VTA neurons that simultaneously innervate cortical and limbic brain structures and 

arise mostly from the PBP (250). Furthermore, there is behavioral evidence for 

functional differences between the anterior and posterior VTA subdivisions (91, 257). 

In addition, studies that have used measurement of calcium dynamics in 

dopaminergic axon terminals within the mPFC or nucleus accumbens, have 

demonstrated that dopaminergic terminals in the NAc exhibit increased activity to a 

rewarding stimulus, whereas dopaminergic terminals in the mPFC showed increased 

calcium dynamics/activity in response to an aversive stimulus, which adds another 

level of complexity.  

Taken together, the combination of information about the anatomical distribution 

(CA(CRHR1) neurons mainly in pVTA subdivisions), neurotransmitter content (65% 

GFP/CRHR1 neurons that are positive for TH; potential co-expression of GAD65/67), 

projecting patterns (target regions dorsal and ventral striatum, PFC) and behavioral 

anxiolytic phenotype, defines a subset of dopaminergic CRHR1 neurons within the 

VTA that modulates emotional behavior. At the moment we can only speculate on a 

mesocorticolimbic subcircuit that simultaneously targets the mPFC and the basal 

forebrain (NAc, Cpu) and by this represents an integrative hub for processing of 

aversive stimuli.  

Future experiments are needed to determine which afferent VTA pathways activate 

this specific subcircuit that acts anxiolytic by modulating dopamine release in the 

prefrontal cortex. The VTA neurons receive direct input from diverse excitatory, 

inhibitory, and modulatory afferents and exhibit specific input-output relationships 

(84). Amongst them, the BNST and amygdala play a central role in modulating 

anxiety and recent results provide evidence for an anxiolytic GABAergic BNST ► 

VTA circuit (336). Moreover, the neurochemical identity of BNST neurons is 

correlated to functional differences and the identification of the respective anxiolytic 

neuronal subtype has to be addressed in the future (68, 337). In this line, we recently 

identified a subset of CRH expressing GABAergic long-range projection neurons that 

acts anxiolytic by modulating dopamine release in the prefrontal cortex (100). 

The CRHR1 Cre-driver will allow a number of sophisticated experiments, which 

combine cell-type specific optogenetic/pharmacogenetic manipulations in a 

projection-specific manner, to dissect the cellular and anatomic heterogeneity, as 
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well as to further parse out the molecular and cellular characteristics of CRHR1 

neurons within the VTA, that mediate stress-related behavior (338). This will help to 

delineate specific dopaminergic subcircuits that are altered in stress-related mood 

disorders, as well as other neuropsychiatric disorders (e.g., Parkinson’s disease, 

schizophrenia, substance abuse disorder), and opens up new avenues for the 

developing of novel therapeutic interventions. 

 

7.5 Outlook  

 

The generation of this novel CRHR1 allele specifically enables expression of Cre 

recombinase under the control of the endogenous CRHR1 promoter, thereby 

representing an essential tool for dissecting the CRH/CRHR1 system at the circuit 

level. It represents the next stage of a detailed analysis beyond brain region-

dependent effects of CRHR1 activation. Numerous studies in recent years have 

demonstrated that CRH/CRHR1 circuits modulate emotional behavior in a 

bidirectional manner. Unraveling the precise subcircuits, as well as subcellular 

location and specific-downstream targets of CRHR1 and determination of 

neurochemical identities from neuronal CRHR1 subpopulations are challenges of the 

future. The combination of the CRHR1 Cre-driver line with latest techniques for 

anatomic tracing, neural manipulation and cell-type specific transcriptome 

characterization will help to address these open questions. The following paragraphs 

will give a brief overview of possible approaches:  

AAVs have become indispensable tools for functional dissection of neurocircuits. 

Anterograde or retrograde viral-mediated gene transfer can be used to deliver Cre-

dependent light-activated channels (optogenetics), designer receptors (DREADDS) 

and genetically encoded calcium indicators (GECIs) for specific manipulation and 

imaging of neural activity in vivo. In addition, AAVs can deliver genome-editing tools 

(CRISPR) for acute manipulation of gene expression. Additionally, the CRISPR 

technique would allow for rapid generation of mice expressing various recombinase 

variants, such as CreERT2, split-Cre, Flp or Dre under control of the CRHR1 

promoter. This would expand the genomic toolbox and allow for multiple 

intersectional approaches, e.g., with available CRH-IRES-Cre lines or other Cre- and 

Flp-drivers. 
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New technologies for cell type-specific labeling of synapses in vivo allow for 

illumination of afferent synaptic partners. The GFP/CFP reconstitution across 

synaptic partners (GRASP/CRASP) technique can be used to detect the location of 

synapses. It is based on two complementary split-GFP/CFP fragments, that are per 

se non-fluorescent. When two neurons, each expressing one of the fragments, are 

closely opposed across a synaptic cleft, fluorescent GFP/CFP is reconstituted in that 

location and indicates the size, number and subcellular positions of synapses. By 

this, one can think of building up a CRH/CRHR1-specific “synaptogram”, thus 

revealing stress-related neurocircuits, by combination of Cre and Flp recombinase–

dependent viral vectors that allow for Cre/Flp-specific expression of pre- and post-

mGRASP components. 

The RiboTag method allows isolation of mRNA from a specific cell population in 

complex tissue, including the brain. The RiboTag mouse has a targeted mutation of 

the ribosomal protein L22 locus. This line is compatible with any Cre-driver line and 

Cre- induced recombination results in a HA epitope-tagged ribosomal protein and 

allows for subsequent immunoprecipitation of ribosomes bound to mRNA from 

CRHR1-specific cell types. Moreover, AAV vectors containing a Cre-dependent 

expression cassette for the tagged ribosomal protein Rpl22 (AAV1-EF1α-Rpl22-HA) 

can be used for targeting very specific brain nuclei. By replacing the EF1α promoter 

with neurotransmitter-specific promoters, it would be possible to target dopaminergic 

neurons within such heterogeneous nuclei as the VTA. By this it can be used ,e.g., 

for monitoring CRHR1 dependent pharmacological- or stress- regulated 

transcriptome changes or molecular profiling of regional differences in CRHR1-

specific gene expression. 

For cell type-specific epigenomic studies, the Cre-driver line can be crossed to the 

R26-CAG-LSL-Sun1-sfGFP knock-in mouse line and used for “INTACT” (isolation of 

nuclei tagged in specific cell types, see chapter 6.5.3). In brief, CRHR1-dependent 

expression of Cre recombinase leads to removal of a transcriptional STOP cassette 

and expression of the SUN1-sfGFP fusion protein at the inner nuclear membrane in 

CRHR1 expressing cells. Nuclei form these cells could then be purified and used for 

cell type-specific measurement of the gene expression and chromatin profiles. To 

summarize, both methods facilitate analysis of cell type-specific molecular 

adaptations underlying CRHR1-mediated signaling and can also be used to explore 
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cell type-specific transcriptomics and epigenomics after acute or chronic stress or in 

diverse mouse models of neuropsychiatric disorders.  

To summarize, the CRH/CRHR1 system modulates physiological and behavioral 

adaptation to a variety of stimuli in a brain region-, circuit- and cell type-specific 

manner. The established CRHR1 Cre-driver line will help to decipher dynamic stress-

related changes under physiological and maladaptive conditions. This is a 

prerequisite for the development of new/more effective medical treatments of mood-

related disorders. 
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8 Summary 

 
Background: The corticotropin-releasing hormone (CRH) and its type 1 receptor 

(CRHR1) play a central role in coordinating the endocrine, autonomic and behavioral 

responses to stress. A prerequisite to functionally dissect the complexity of the 

CRH/CRHR1 system is to unravel the identity of CRHR1 expressing neurons and 

their connectivities. Along these lines, transgenic fluorescent protein (GFP) reporter 

mouse lines based on bacterial artificial chromosomes (BACs) have been developed 

for CRH, CRHR1 and CRHR2 (105, 219, 339). However, even BAC-based 

transgenesis can suffer from partial lack of regulatory sequences required for correct 

temporal and spatial expression or from secondary positional effects caused by 

enhancers/repressors near to the site of transgene integration. To overcome the 

potential limitations a knock-in mouse line, expressing GFP under the control of the 

endogenous CRHR1 promoter was generated (99). Unfortunately, the sensitivity of 

eGFP is relatively limited in particular when it comes to detection of endogenous 

expression levels. Another widely used reporter is lacZ encoding for β-galactosidase 

which has proven as a highly sensitive histochemical marker which can be easily 

visualized by X-gal staining and readily detects low levels of endogenous gene 

expression. The possibility to visualize CRHR1 expressing neurons and their 

connectivities in the lacZ-CRHR1 reporter line constituted an important next step to 

functionally dissect the complexity of the CRH/CRHR1 system (41). Newly advanced 

technologies in neural tracing, neural manipulation and cell-type specific 

transcriptome analysis are mostly dependent on Cre- and/or Flp-mediated 

recombination and therefore required expansion of the genetic toolbox related to the 

“CRH-family”. The aim of this thesis was the generation and characterization of a 

novel CRHR1 allele, that enables the specific expression of Cre recombinase under 

the control of the endogenous CRHR1 promoter. It represents the next higher level to 

assess and decipher the CRH/CRHR1 system at the circuit level and comprises the 

possibility for the cell type-specific genetic manipulation of stress-related neural 

circuits. 

Results: A Cre targeting vector was engineered and applied via recombinase 

mediated cassette exchange (RMCE) to generate a novel Cre knock-in mouse line 

with constitutive Cre recombinase activity restricted to CRHR1-expressing cells. The 

first offspring (CRHR1tZCre mouse line) revealed an alternative recombination event, 
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which resulted in Cre activity in a subpopulation of CRHR1 expressing neurons only 

due to a tau-lacZ reporter cassette, which remained at the targeting site. In parallel, 

the reporter and the hygromycin selection cassette were removed by breeding to a 

mouse line expressing the enhanced variant of the site-specific recombinase Flp. As 

the first step in characterizing the novel Cre-driver lines, CRHR1tzCre and CRHR1Cre, 

respectively, expression of the endogenous CRHR1 transcript was compared to that 

of Cre and the Cre-dependent reporter tdTomato. In situ hybridization revealed a 

subset expression in the CRHR1tzCre mouse line, whereas expression in the 

CRHR1Cre line exhibited highest specificity for CRHR1 expressing cells. Moreover, 

the high efficiency of Cre-mediated recombination was revealed by absence of 

CRHR1 transcripts on brain sections from a mouse line harboring a targeted 

(“floxed”) CRHR1 allele. In a second step, the central and peripheral Cre activity was 

assessed in CRHR1Cre mice bred to two different reporter lines, expressing the 

fluorescent proteins tdTomato and sfGFP, respectively. In these dual transgenic 

mice, the pattern of reporter gene expression matched that of CRHR1 in the brain 

and periphery and additionally revealed sites of developmentally restricted 

expression of Cre. In addition, tdTomato expression was detectable in peripheral 

organs which had not been described in the mouse so far, including the kidney and 

most probably immune cells of the duodenum, tongue, thymus, spleen, liver and 

lung. Adeno-associated viral vectors (AAVs) were applied to test for current Cre 

expression and only very limited or absent expression of CRHR1 was detectable in 

the CeA, the LC and the PVN, a result which is in contrast to other studies in mouse 

and rat and topic of an ongoing discussion in the field. Viral-mediated tracing 

analyses were performed to dissect limbic forebrain neurocircuits. Anterograde 

tracing of CRHR1 neurons revealed axonal projections within the corticostriatal 

pathway and within basal ganglia circuits. Moreover, CRHR1 is expressed in 

glutamatergic mossy cells within the polymorph layer of the dentate gyrus that 

synapse on the dendrites of granule cells. In order to address the role of CRHR1 in 

mesencephalic neurons in the context of emotional behavior, viral vector based 

tracing studies and a gain-of-function experiment were conducted using a 

constitutively active version of the CRHR1, which was Cre-dependently expressed in 

the VTA. Strong expression of the mCherry reporter gene in the striatum, nucleus 

accumbens and prefrontal cortex, suggests the presence of axonal terminals in 

mesostriatal, mesolimbic and mesocortical projection sites that originate from 
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monosynaptically projecting dopaminergic and/or GABAergic CRHR1-expressing 

neurons within the VTA. Finally, anxiety-related behavior was evaluated in the open-

field test, elevated plus maze test and in the dark-light box and the obtained results 

allowed us to conclude that CRHR1-signaling in a subpopulation of 

mesocorticolimbic projection neurons within the VTA mediates an anxiolytic 

phenotype. This result complements observations from conditional inactivation of 

CRHR1 in midbrain dopaminergic neurons. 

Conclusion: This new Cre mouse line represent a valuable complement to the 

existing genetic tool box addressing “CRH-family” members and enables a variety of 

sophisticated experiments with lately advanced technologies, which will contribute to 

a more precise analysis of CRH/CRHR1 pathways on the functional and circuit level 

in the brain and periphery. 
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9 Zusammenfassung 

 
Generierung einer CRHR1-spezifischen Cre Mauslinie zur Analyse 

von CRH/CRHR1-regulierten neuronalen Schaltkreisen 

 
 
Hintergrund: Das Corticotropin-Releasing-Hormon (CRH) und sein Typ 1 Rezeptor 

(CRHR1) spielen eine zentrale Rolle bei der Koordinierung der endokrinen, 

autonomen und verhaltensbezogenen Reaktionen auf Stress. Eine Voraussetzung 

um die Komplexität des CRH/CRHR1-Systems funktionell zu analysieren besteht 

darin, die Identität von CRHR1 exprimierenden Neuronen und deren neuronale 

Verschaltungen zu entschlüsseln. Deshalb wurden in der Vergangenheit mit Hilfe von 

künstlichen Bakterienchromosomen (BACs) GFP-Reporterlinien für CRH, CRHR1 

und CRHR2 entwickelt. Bei der BAC-basierten Technologie zur Erzeugung einer 

transgenen Mauslinie kann es durch das Fehlen von regulatorischen Sequenzen 

oder durch Positionseffekte in der Nähe des Integrationsortes zur unspezifischen 

Expression des Fluoreszenzproteins kommen. Deshalb wurde eine weitere GFP-

Reporterlinie generiert, in der durch homologe Rekombination ein GFP-CRHR1 

Fusionsprotein unter der Kontrolle des endogenen Promoters exprimiert wird. 

Bedingt durch die Schwäche der nativen GFP-Fluoreszenz können Neurone mit 

niedriger CRHR1 Expression nur sehr schwer detektiert werden. Um dies zu 

umgehen, wurde eine weitere Mauslinie generiert, in der das Enzym Beta-

Galactosidase – ein hochempfindlicher histochemischer Marker – unter der Kontrolle 

des endogenen CRHR1 Promotors exprimiert wird. Die Möglichkeit, CRHR1-

exprimierende Neurone und deren Schaltkreise sichtbar zu machen, ist ein wichtiger 

nächster Schritt, um die Komplexität des CRH/CRHR1-Systems zu entschlüsseln. Im 

Laufe der letzten Jahre wurden viele neue Technologien für die Neuroanatomie, die 

Manipulation neuronaler Schaltkreise und die Transkriptom-Analyse entwickelt, die 

meistens auf dem Cre/loxP bzw. Flp/frt Rekombinations-System beruhen und daher 

eine Erweiterung der „genetischen Werkzeugkiste“ für Mitglieder der „CRH-Familie“ 

erforderlich machten. Das Ziel dieser Arbeit war die Generierung und 

Charakterisierung eines neuen CRHR1 Allels, dass die Expression der Cre-

Rekombinase unter der Kontrolle des endogenen CRHR1 Promotors ermöglicht. Es 

stellt die nächsthöhere Ebene dar, um neuronale CRH/CRHR1 Netzwerke 
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anatomisch und funktional zu entschlüsseln und beinhaltet die Möglichkeit der 

spezifischen Manipulation stressbezogener neuronaler Schaltkreise. 

Ergebnisse: Ein entsprechender Cre Vektor wurde konstruiert und mittels 

Rekombinase abhängigem Kassettenaustausch (RMCE) in das Genom integriert, um 

dadurch eine neue knock-in Mauslinie zu erzeugen, in der die Cre Rekombinase 

Aktivität auf CRHR1 exprimierende Zellen beschränkt ist. Durch ein alternatives 

Rekombinationsereignis zeigen die Nachkommen der ersten Mauslinie (CRHR1tZCre) 

nur in einem Teil der CRHR1 exprimierenden Neurone Cre Aktivität. Dies ist auf eine 

noch vorhandene tau-lacZ Reporterkassette an der Integrationsstelle 

zurückzuführen. Die Reporterkassette und parallel die Hygromycin 

Selektionskassette wurde durch Einkreuzen einer Flp-exprimierenden Mauslinie 

entfernt. Zuerst wurde in beiden Cre Linien - CRHR1tZCre und CRHR1Cre - die 

Expression des endogenen CRHR1-Transkripts mit der Expression von Cre und 

einem Cre-abhängigen Reporterprotein (tdTomato) auf der RNA Ebene (ISH) 

verglichen. Die Auswertung der ISH Daten zeigte eine sehr hohe Spezifität der 

CRHR1Cre Linie an, wohingegen Cre in der CRHR1tZCre Linie nur in einem Teil der 

CRHR1 positiven Zellen exprimiert wird. Darüber hinaus bewies die CRHR1Cre Linie 

eine sehr hohe Effizienz in der Rekombination eines „gefloxten“ CRHR1 Allels, da 

auf Gehirnschnitten keine CRHR1 mRNA Transkripte nachweisbar waren. Im 

nächsten Schritt wurde die Rekombinase-Aktivität im Gehirn und in der Peripherie 

untersucht, indem die CRHR1Cre Linie mit zwei Reporterlinien gekreuzt wurde, in der 

die fluoreszierenden Reporterproteine tdTomato und sfGFP nach Cre-abhängiger 

Entfernung einer Stopp-Kassette exprimiert werden. Das Muster der 

Reportergenexpression stimmt mit dem vom CRHR1 in adulten Mäusen überein und 

dokumentiert zusätzlich auch eine transiente Expression von Cre während der 

Entwicklung. Darüber hinaus war das tdTomato auch in peripheren Organen 

sichtbar, die bisher so noch nicht in der Maus beschrieben waren, nämlich in der 

Niere und sehr wahrscheinlich in Immunzellen die im Epithel vom Dünndarm, Zunge 

und Lunge lokalisiert sind, sowie in Makrophagen und Lymphozyten von Thymus, 

Milz und Leber. Adeno-assoziierte virale Vektoren (AAVs) wurden verwendet, um die 

Expression von Cre im Gehirn von adulten Tieren zu untersuchen. Es wurde nur eine 

sehr begrenzte bzw. keine Expression von CRHR1 in der CeA, dem LC und im PVN 

nachgewiesen. Dies ist ein Ergebnis das im Widerspruch zu anderen Studien in 

Maus und Ratte steht und Gegenstand einer anhaltenden und kontroversen 
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Diskussion auf diesem Gebiet ist. Weiterhin wurden anterograde Projektionen von 

CRHR1 Neuronen untersucht, um neuronale Schaltkreise im limbischen System des 

Vorderhirns zu entschlüsseln. Die Auswertung legt nahe, dass CRHR1 Axone aus 

dem präfrontalen Cortex ins Striatum projizieren und Synapsen innerhalb der 

Basalganglienschleife aufweisen. Darüber hinaus wird CRHR1 innerhalb des 

Hippocampus in glutamatergen Mooszellen exprimiert; diese Mooszellen sind in der 

polymorphen Schicht des Gyrus dentatus lokalisiert und projizieren auf Dendriten der 

Körnerzellschicht des Gyrus dentatus. Um die Rolle von CRHR1 Neuronen im 

Mittelhirn im Zusammenhang mit emotionalem Verhalten zu untersuchen, wurden 

einerseits anterograde Projektionsgebiete von CRHR1 Neuronen aus der VTA 

ermittelt und zum anderen ein konstitutiv aktiver CRHR1 in Abhängigkeit der Cre 

Rekombinase exprimiert, was gleichbedeutend mit einer Liganden-unabhängigen 

Rezeptoraktivierung ist. Die Expression des mCherry Reportergens im Striatum, 

Nucleus accumbens und präfrontalen Cortex deutet auf das Vorhandensein von 

synaptischen Verschaltungen in mesostriatalen, mesolimbischen und mesokortikalen 

Projektionsgebieten hin, die von einer dopaminergen und/oder GABAergen 

Subpopulation CRHR1 exprimierender Neurone innerhalb der VTA stammen. Zum 

Schluss wurde angstbezogenes Verhalten dieser Tiere in einer Reihe von 

standardisierten Verhaltenstest untersucht. Die Ergebnisse lassen den Schluss zu, 

dass spezifische CRHR1-kontrollierte Schaltkreise zwischen der VTA und dem 

präfrontalem Cortex, bzw. limbischen System für die Äußerung positiver emotionaler 

Reaktionen verantwortlich sind. Dieses Ergebnis steht im Einklang mit Versuchen in 

denen der CRHR1 in dopaminergen Neuronen des Mittelhirns inaktiviert wurde. 

Schlussfolgerung: Diese neue Mauslinie, die die Cre Rekombinase spezifisch in 

CRHR1 Neuronen exprimiert, stellt eine wertvolle Ergänzung der bereits 

existierenden „genetischen Werkzeuge“ für Mitglieder der CRH-Familie dar und 

bietet die Möglichkeit, unter Zuhilfenahme von neuesten Technologien, die 

CRH/CRHR1-Schaltkreise im zentralen und peripheren Nervensystem mit einer 

bisher nicht möglichen Genauigkeit anatomisch und funktional zu untersuchen. 

 

  



 

172 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  References 

173 
 

10 References 

 

1. S. J. Cooper, From Claude Bernard to Walter Cannon. Emergence of the 
concept of homeostasis. Appetite 51, 419-427 (2008 ). 

2. H. SELYE, Stress and disease. Science 122, 625-631 (1955 ). 
3. B. S. McEwen, Protection and damage from acute and chronic stress: 

allostasis and allostatic overload and relevance to the pathophysiology of 
psychiatric disorders. Ann N Y Acad Sci 1032, 1-7 (2004 ). 

4. B. S. McEwen, Physiology and neurobiology of stress and adaptation: central 
role of the brain. Physiol Rev 87, 873-904 (2007 ). 

5. M. Joëls, T. Z. Baram, The neuro-symphony of stress. Nat Rev Neurosci 10, 
459-466 (2009 ). 

6. W. Vale, J. Spiess, C. Rivier, J. Rivier, Characterization of a 41-residue ovine 
hypothalamic peptide that stimulates secretion of corticotropin and beta-
endorphin. Science 213, 1394-1397 (1981 ). 

7. S. W. Jeon, Y.-K. Kim, Molecular Neurobiology and Promising New Treatment 
in Depression. International Journal of Molecular Sciences 17, 381 (2016 ). 

8. M. J. A. G. Henckens, J. M. Deussing, A. Chen, Region-specific roles of the 
corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 17, 
636-651 (2016 ). 

9. N. Dedic, A. Chen, J. M. Deussing, The CRF family of neuropeptides and their 
receptors - mediators of the central stress response. Curr Mol Pharmacol,  

(2017 ). 
10. P. Y. Collins et al., Grand challenges in global mental health. Nature 475, 27-

30 (2011 ). 
11. C. B. Nemeroff et al., Elevated concentrations of CSF corticotropin-releasing 

factor-like immunoreactivity in depressed patients. Science 226, 1342-1344 

(1984 ). 
12. C. B. Nemeroff, M. J. Owens, G. Bissette, A. C. Andorn, M. Stanley, Reduced 

corticotropin releasing factor binding sites in the frontal cortex of suicide 
victims. Arch Gen Psychiatry 45, 577-579 (1988 ). 



References 

174 
 

13. F. Holsboer, U. Von Bardeleben, A. Gerken, G. K. Stalla, O. A. Müller, Blunted 
corticotropin and normal cortisol response to human corticotropin-releasing 
factor in depression. N Engl J Med 311, 1127 (1984 ). 

14. F. Holsboer, M. Ising, Central CRH system in depression and anxiety--
evidence from clinical studies with CRH1 receptor antagonists. Eur J 
Pharmacol 583, 350-357 (2008 ). 

15. E. B. Binder, C. B. Nemeroff, The CRF system, stress, depression and 
anxiety-insights from human genetic studies. Mol Psychiatry 15, 574-588 

(2010 ). 
16. E. R. de Kloet, M. Joëls, F. Holsboer, Stress and the brain: from adaptation to 

disease. Nat Rev Neurosci 6, 463-475 (2005 ). 
17. H. Selye, A syndrome produced by diverse nocuous agents. 1936. J 

Neuropsychiatry Clin Neurosci 10, 230-231 (1998 ). 
18. S. Ramamoorthy, J. A. Cidlowski, Corticosteroids: Mechanisms of Action in 

Health and Disease. Rheum Dis Clin North Am 42, 15-31 (2016 ). 
19. A. Munck, P. M. Guyre, N. J. Holbrook, Physiological functions of 

glucocorticoids in stress and their relation to pharmacological actions. Endocr 
Rev 5, 25-44 (1984 ). 

20. R. M. Sapolsky, Stress hormones: good and bad. Neurobiol Dis 7, 540-542 

(2000 ). 
21. S. M. Smith, W. W. Vale, The role of the hypothalamic-pituitary-adrenal axis in 

neuroendocrine responses to stress. Dialogues Clin Neurosci 8, 383-395 

(2006 ). 
22. J. M. Reul, E. R. de Kloet, Two receptor systems for corticosterone in rat 

brain: microdistribution and differential occupation. Endocrinology 117, 2505-
2511 (1985 ). 

23. P. E. Sawchenko, Evidence for a local site of action for glucocorticoids in 
inhibiting CRF and vasopressin expression in the paraventricular nucleus. 
Brain Res 403, 213-223 (1987 ). 

24. L. Jacobson, R. Sapolsky, The role of the hippocampus in feedback regulation 
of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12, 118-134 

(1991 ). 
25. M. E. Keller-Wood, M. F. Dallman, Corticosteroid inhibition of ACTH secretion. 

Endocr Rev 5, 1-24 (1984 ). 



  References 

175 
 

26. F. Holsboer, The corticosteroid receptor hypothesis of depression. 
Neuropsychopharmacology 23, 477-501 (2000 ). 

27. L. Stojanovich, D. Marisavljevich, Stress as a trigger of autoimmune disease. 
Autoimmun Rev 7, 209-213 (2008 ). 

28. C. E. Keegan et al., Expression of corticotropin-releasing hormone transgenes 
in neurons of adult and developing mice. Mol Cell Neurosci 5, 505-514 

(1994 ). 
29. K. Van Pett et al., Distribution of mRNAs encoding CRF receptors in brain and 

pituitary of rat and mouse. J Comp Neurol 428, 191-212 (2000 ). 
30. B. A. S. Reyes, D. A. Bangasser, R. J. Valentino, E. J. Van Bockstaele, Using 

high resolution imaging to determine trafficking of corticotropin-releasing factor 
receptors in noradrenergic neurons of the rat locus coeruleus. Life sciences 
112, 2-9 (2014 ). 

31. Y. Sztainberg, A. Chen, in Handbook of Neuroendocrinology, D. W. Pfaff, J. E. 
Levine, Eds. (Academic Press, San Diego, 2012 ), pp. 355-375. 

32. A. F. Mello, M. F. Mello, L. L. Carpenter, L. H. Price, Update on stress and 
depression: the role of the hypothalamic-pituitary-adrenal (HPA ) axis. Rev 
Bras Psiquiatr 25, 231-238 (2003 ). 

33. D. F. Swaab, A. M. Bao, P. J. Lucassen, The stress system in the human 
brain in depression and neurodegeneration. Ageing Res Rev 4, 141-194 

(2005 ). 
34. R. P. Waters et al., Evidence for the role of corticotropin-releasing factor in 

major depressive disorder. Neuroscience and biobehavioral reviews 58, 63-78 

(2015 ). 
35. P. W. Gold, The organization of the stress system and its dysregulation in 

depressive illness. Mol Psychiatry 20, 32-47 (2015 ). 
36. R. J. Valentino, E. Van Bockstaele, Convergent regulation of locus coeruleus 

activity as an adaptive response to stress. European journal of pharmacology 

583, 194-203 (2008 ). 
37. G. Aston-Jones, C. A. Meijas-Aponte, B. Waterhouse, in Encyclopedia of 

Neuroscience. (Academic Press, Oxford, 2009 ), pp. 1237-1248. 
38. T. J. Shors, Stressful Experience and Learning Across the Lifespan. Annual 

Review of Psychology 57, 55-85 (2006 ). 



References 

176 
 

39. E. J. Kim, B. Pellman, J. J. Kim, Stress effects on the hippocampus: a critical 
review. Learning & Memory 22, 411-416 (2015 ). 

40. Y. Chen et al., HIPPOCAMPAL CORTICOTROPIN RELEASING HORMONE: 
PRE- AND POSTSYNAPTIC LOCATION AND RELEASE BY STRESS. 
Neuroscience 126, 533-540 (2004 ). 

41. C. Kühne et al., Visualizing corticotropin-releasing hormone receptor type 1 
expression and neuronal connectivities in the mouse using a novel 
multifunctional allele. J Comp Neurol 520, 3150-3180 (2012 ). 

42. G. von Wolff et al., Voltage-sensitive dye imaging demonstrates an enhancing 
effect of corticotropin-releasing hormone on neuronal activity propagation 
through the hippocampal formation. Journal of Psychiatric Research 45, 256-
261 (2011 ). 

43. S. Kratzer et al., Activation of CRH receptor type 1 expressed on 
glutamatergic neurons increases excitability of CA1 pyramidal neurons by the 
modulation of voltage-gated ion channels. Frontiers in Cellular Neuroscience 
7, 91 (2013 ). 

44. A. Medina et al., Glucocorticoid and Mineralocorticoid Receptor Expression in 
the Human Hippocampus in Major Depressive Disorder. Journal of psychiatric 
research 47, 307-314 (2013 ). 

45. L. Givalois, S. Arancibia, L. Tapia-Arancibia, Concomitant changes in CRH 
mRNA levels in rat hippocampus and hypothalamus following immobilization 
stress. Molecular Brain Research 75, 166-171 (2000 ). 

46. Y. Chen, C. M. Dubé, C. J. Rice, T. Z. Baram, Rapid Loss of Dendritic Spines 
after Stress Involves Derangement of Spine Dynamics by Corticotropin-
Releasing Hormone. The Journal of neuroscience : the official journal of the 
Society for Neuroscience 28, 2903-2911 (2008 ). 

47. Y. Chen, A. L. Andres, M. Frotscher, T. Z. Baram, Tuning synaptic 
transmission in the hippocampus by stress: the CRH system. Frontiers in 
Cellular Neuroscience 6, 13 (2012 ). 

48. K. J. Kovacs, CRH: the link between hormonal-, metabolic- and behavioral 
responses to stress. J Chem Neuroanat 54, 25-33 (2013 ). 

49. M. Segal, G. Richter-Levin, N. Maggio, Stress-induced dynamic routing of 
hippocampal connectivity: a hypothesis. Hippocampus 20, 1332-1338 

(2010 ). 



  References 

177 
 

50. G. MacQueen, T. Frodl, The hippocampus in major depression: evidence for 
the convergence of the bench and bedside in psychiatric research? Mol 
Psychiatry 16, 252-264 (2011 ). 

51. D.-J. Saaltink, E. Vreugdenhil, Stress, glucocorticoid receptors, and adult 
neurogenesis: a balance between excitation and inhibition? Cellular and 
Molecular Life Sciences 71, 2499-2515 (2014 ). 

52. Y. Koutmani et al., Corticotropin-releasing hormone exerts direct effects on 
neuronal progenitor cells: implications for neuroprotection. Mol Psychiatry 18, 
300-307 (2013 ). 

53. Y. Koutmani, K. P. Karalis, Neural stem cells respond to stress hormones: 
distinguishing beneficial from detrimental stress. Frontiers in Physiology 6, 77 

(2015 ). 
54. D. L. Walker, M. Davis, Double dissociation between the involvement of the 

bed nucleus of the stria terminalis and the central nucleus of the amygdala in 
startle increases produced by conditioned versus unconditioned fear. J 
Neurosci 17, 9375-9383 (1997 ). 

55. G. F. Alheid, Extended amygdala and basal forebrain. Ann N Y Acad Sci 985, 
185-205 (2003 ). 

56. M. Davis, Are different parts of the extended amygdala involved in fear versus 
anxiety? Biol Psychiatry 44, 1239-1247 (1998 ). 

57. A. J. Shackman, A. S. Fox, Contributions of the Central Extended Amygdala to 
Fear and Anxiety. J Neurosci 36, 8050-8063 (2016 ). 

58. T. Steimer, The biology of fear- and anxiety-related behaviors. Dialogues in 
Clinical Neuroscience 4, 231-249 (2002 ). 

59. D. L. Walker, D. J. Toufexis, M. Davis, Role of the bed nucleus of the stria 
terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 
463, 199-216 (2003 ). 

60. M. Davis, D. L. Walker, L. Miles, C. Grillon, Phasic vs sustained fear in rats 
and humans: role of the extended amygdala in fear vs anxiety. 
Neuropsychopharmacology 35, 105-135 (2010 ). 

61. M. W. Pitts, C. Todorovic, T. Blank, L. K. Takahashi, The Central Nucleus of 
the Amygdala and Corticotropin-Releasing Factor: Insights into Contextual 
Fear Memory. The Journal of neuroscience : the official journal of the Society 
for Neuroscience 29, 7379-7388 (2009 ). 



References 

178 
 

62. C. A. Sanford et al., A Central Amygdala CRF Circuit Facilitates Learning 
about Weak Threats. Neuron,  (2016 ). 

63. L. Regev, M. Tsoory, S. Gil, A. Chen, Site-specific genetic manipulation of 
amygdala corticotropin-releasing factor reveals its imperative role in mediating 
behavioral response to challenge. Biol Psychiatry 71, 317-326 (2012 ). 

64. E. Keen-Rhinehart et al., Continuous expression of corticotropin-releasing 
factor in the central nucleus of the amygdala emulates the dysregulation of the 
stress and reproductive axes. Molecular psychiatry 14, 37-50 (2009 ). 

65. E. I. Flandreau, K. J. Ressler, M. J. Owens, C. B. Nemeroff, Chronic 
overexpression of corticotropin-releasing factor from the central amygdala 
produces HPA axis hyperactivity and behavioral anxiety associated with gene-
expression changes in the hippocampus and paraventricular nucleus of the 
hypothalamus. Psychoneuroendocrinology 37, 27-38 (2012 ). 

66. M. P. Paulus, J. S. Feinstein, G. Castillo, A. N. Simmons, M. B. Stein, Dose-
dependent decrease of activation in bilateral amygdala and insula by 
lorazepam during emotion processing. Arch Gen Psychiatry 62, 282-288 

(2005 ). 
67. A. Etkin, T. D. Wager, Functional neuroimaging of anxiety: a meta-analysis of 

emotional processing in PTSD, social anxiety disorder, and specific phobia. 
Am J Psychiatry 164, 1476-1488 (2007 ). 

68. M. A. Lebow, A. Chen, Overshadowed by the amygdala: the bed nucleus of 
the stria terminalis emerges as key to psychiatric disorders. Molecular 
Psychiatry 21, 450-463 (2016 ). 

69. K. Itoi et al., Visualization of Corticotropin-Releasing Factor Neurons by 
Fluorescent Proteins in the Mouse Brain and Characterization of Labeled 
Neurons in the Paraventricular Nucleus of the Hypothalamus. Endocrinology 
155, 4054-4060 (2014 ). 

70. E. Potter et al., Distribution of corticotropin-releasing factor receptor mRNA 
expression in the rat brain and pituitary. Proc Natl Acad Sci U S A 91, 8777-
8781 (1994 ). 

71. J. Kono et al., Distribution of corticotropin-releasing factor neurons in the 
mouse brain: a study using corticotropin-releasing factor-modified yellow 
fluorescent protein knock-in mouse. Brain Struct Funct 222, 1705-1732 

(2017 ). 



  References 

179 
 

72. K. S. Sink et al., Effects of continuously enhanced corticotropin releasing 
factor expression within the bed nucleus of the stria terminalis on conditioned 
and unconditioned anxiety. Mol Psychiatry 18, 308-319 (2013 ). 

73. S. E. Daniel, D. G. Rainnie, Stress Modulation of Opposing Circuits in the Bed 
Nucleus of the Stria Terminalis. Neuropsychopharmacology 41, 103-125 

(2016 ). 
74. J. A. Rinker et al., Extended Amygdala to Ventral Tegmental Area 

Corticotropin-Releasing Factor Circuit Controls Binge Ethanol Intake. 
Biological Psychiatry 81, 930-940 (2017 ). 

75. S. N. Avery, J. A. Clauss, J. U. Blackford, The Human BNST: Functional Role 
in Anxiety and Addiction. Neuropsychopharmacology 41, 126-141 (2016 ). 

76. L. H. Somerville, P. J. Whalen, W. M. Kelley, Human bed nucleus of the stria 
terminalis indexes hypervigilant threat monitoring. Biological psychiatry 68, 
416-424 (2010 ). 

77. T. Straube, H. J. Mentzel, W. H. Miltner, Waiting for spiders: brain activation 
during anticipatory anxiety in spider phobics. Neuroimage 37, 1427-1436 

(2007 ). 
78. M. A. Yassa, R. L. Hazlett, C. E. L. Stark, R. Hoehn-Saric, Functional MRI of 

the amygdala and bed nucleus of the stria terminalis during conditions of 
uncertainty in generalized anxiety disorder. Journal of psychiatric research 46, 
1045-1052 (2012 ). 

79. O. G. O'Daly et al., Withdrawal-Associated Increases and Decreases in 
Functional Neural Connectivity Associated with Altered Emotional Regulation 
in Alcoholism. Neuropsychopharmacology 37, 2267-2276 (2012 ). 

80. L. Islam, A. Franzini, G. Messina, S. Scarone, O. Gambini, Deep Brain 
Stimulation of the Nucleus Accumbens and Bed Nucleus of Stria Terminalis 
for Obsessive-Compulsive Disorder: A Case Series. World Neurosurgery 83, 
657-663 (2015 ). 

81. A. M. Polter, J. A. Kauer, Stress and VTA synapses: implications for addiction 
and depression. Eur J Neurosci 39, 1179-1188 (2014 ). 

82. E. N. Holly, K. A. Miczek, Ventral tegmental area dopamine revisited: effects 
of acute and repeated stress. Psychopharmacology (Berl ) 233, 163-186 

(2016 ). 



References 

180 
 

83. P. Belujon, A. A. Grace, Regulation of dopamine system responsivity and its 
adaptive and pathological response to stress. Proc Biol Sci 282,  (2015 ). 

84. K. T. Beier et al., Circuit Architecture of VTA Dopamine Neurons Revealed by 
Systematic Input-Output Mapping. Cell 162, 622-634 (2015 ). 

85. M. J. Wanat, F. W. Hopf, G. D. Stuber, P. E. M. Phillips, A. Bonci, 
Corticotropin-releasing factor increases mouse ventral tegmental area 
dopamine neuron firing through a protein kinase C-dependent enhancement of 
I (h ). The Journal of Physiology 586, 2157-2170 (2008 ). 

86. E. D. Abercrombie, K. A. Keefe, D. S. DiFrischia, M. J. Zigmond, Differential 
effect of stress on in vivo dopamine release in striatum, nucleus accumbens, 
and medial frontal cortex. J Neurochem 52, 1655-1658 (1989 ). 

87. J. W. Tidey, K. A. Miczek, Social defeat stress selectively alters 
mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 
721, 140-149 (1996 ). 

88. E. N. Holly et al., Episodic Social Stress-Escalated Cocaine Self-
Administration: Role of Phasic and Tonic Corticotropin Releasing Factor in the 
Anterior and Posterior Ventral Tegmental Area. J Neurosci 36, 4093-4105 

(2016 ). 
89. D. J. Barker, D. H. Root, S. Zhang, M. Morales, Multiplexed neurochemical 

signaling by neurons of the ventral tegmental area. J Chem Neuroanat 73, 33-
42 (2016 ). 

90. S. Pupe, A. Wallen-Mackenzie, Cre-driven optogenetics in the heterogeneous 
genetic panorama of the VTA. Trends Neurosci 38, 375-386 (2015 ). 

91. M. J. Sanchez-Catalan, J. Kaufling, F. Georges, P. Veinante, M. Barrot, The 
antero-posterior heterogeneity of the ventral tegmental area. Neuroscience 
282, 198-216 (2014 ). 

92. T. E. Grieder et al., VTA CRF neurons mediate the aversive effects of nicotine 
withdrawal and promote intake escalation. Nat Neurosci 17, 1751-1758 

(2014 ). 
93. O. George, M. Le Moal, G. F. Koob, Allostasis and Addiction: Role of the 

Dopamine and Corticotropin-Releasing Factor Systems. Physiology & 
behavior 106, 58-64 (2012 ). 



  References 

181 
 

94. E. P. Zorrilla, M. L. Logrip, G. F. Koob, Corticotropin releasing factor: a key 
role in the neurobiology of addiction. Front Neuroendocrinol 35, 234-244 

(2014 ). 
95. S. J. Russo, E. J. Nestler, The brain reward circuitry in mood disorders. Nat 

Rev Neurosci 14, 609-625 (2013 ). 
96. V. Krishnan et al., Molecular adaptations underlying susceptibility and 

resistance to social defeat in brain reward regions. Cell 131, 391-404 

(2007 ). 
97. D. Chaudhury et al., Rapid regulation of depression-related behaviours by 

control of midbrain dopamine neurons. Nature 493, 532-536 (2013 ). 
98. O. Valenti, K. M. Gill, A. A. Grace, Different stressors produce excitation or 

inhibition of mesolimbic dopamine neuron activity: response alteration by 
stress pre-exposure. Eur J Neurosci 35, 1312-1321 (2012 ). 

99. D. Refojo et al., Glutamatergic and dopaminergic neurons mediate anxiogenic 
and anxiolytic effects of CRHR1. Science 333, 1903-1907 (2011 ). 

100. N. Dedic et al., Chronic CRH depletion from GABAergic, long-range projection 
neurons in the extended amygdala reduces dopamine release and increases 
anxiety. Nature neuroscience,  (2018 ). 

101. J. C. Lemos et al., Severe stress switches CRF action in the nucleus 
accumbens from appetitive to aversive. Nature 490, 402-406 (2012 ). 

102. E. J. Nestler, W. A. Carlezon, Jr., The mesolimbic dopamine reward circuit in 
depression. Biol Psychiatry 59, 1151-1159 (2006 ). 

103. T. E. Schlaepfer, B. H. Bewernick, S. Kayser, B. Madler, V. A. Coenen, Rapid 
effects of deep brain stimulation for treatment-resistant major depression. Biol 
Psychiatry 73, 1204-1212 (2013 ). 

104. R. L. Hauger, V. Risbrough, O. Brauns, F. M. Dautzenberg, Corticotropin 
releasing factor (CRF ) receptor signaling in the central nervous system: 
new molecular targets. CNS Neurol Disord Drug Targets 5, 453-479 (2006 ). 

105. T. Alon et al., Transgenic mice expressing green fluorescent protein under the 
control of the corticotropin-releasing hormone promoter. Endocrinology 150, 
5626-5632 (2009 ). 

106. H. Taniguchi et al., A resource of Cre driver lines for genetic targeting of 
GABAergic neurons in cerebral cortex. Neuron 71, 995-1013 (2011 ). 



References 

182 
 

107. I. Merchenthaler, M. A. Hynes, S. Vigh, A. V. Shally, P. Petrusz, 
Immunocytochemical localization of corticotropin releasing factor (CRF ) in 
the rat spinal cord. Brain Res 275, 373-377 (1983 ). 

108. J. P. Gallagher, L. F. Orozco-Cabal, J. Liu, P. Shinnick-Gallagher, Synaptic 
physiology of central CRH system. European journal of pharmacology 583, 
215-225 (2008 ). 

109. J. Vaughan et al., Urocortin, a mammalian neuropeptide related to fish 
urotensin I and to corticotropin-releasing factor. Nature 378, 287-292 

(1995 ). 
110. T. M. Reyes et al., Urocortin II: a member of the corticotropin-releasing factor 

(CRF ) neuropeptide family that is selectively bound by type 2 CRF 
receptors. Proc Natl Acad Sci U S A 98, 2843-2848 (2001 ). 

111. K. Lewis et al., Identification of urocortin III, an additional member of the 
corticotropin-releasing factor (CRF ) family with high affinity for the CRF2 
receptor. Proc Natl Acad Sci U S A 98, 7570-7575 (2001 ). 

112. C. L. Chang, S. Y. Hsu, Ancient evolution of stress-regulating peptides in 
vertebrates. Peptides 25, 1681-1688 (2004 ). 

113. M. J. Endsin, O. Michalec, L. A. Manzon, D. A. Lovejoy, R. G. Manzon, CRH 
peptide evolution occurred in three phases: Evidence from characterizing sea 
lamprey CRH system members. Gen Comp Endocrinol 240, 162-173 

(2017 ). 
114. B. Gaszner, V. Csernus, T. Kozicz, Urocortinergic neurons respond in a 

differentiated manner to various acute stressors in the Edinger-Westphal 
nucleus in the rat. J Comp Neurol 480, 170-179 (2004 ). 

115. J. C. Bittencourt et al., Urocortin expression in rat brain: evidence against a 
pervasive relationship of urocortin-containing projections with targets bearing 
type 2 CRF receptors. J Comp Neurol 415, 285-312 (1999 ). 

116. A. Chen, A. Blount, J. Vaughan, B. Brar, W. Vale, Urocortin II gene is highly 
expressed in mouse skin and skeletal muscle tissues: localization, basal 
expression in corticotropin-releasing factor receptor (CRFR ) 1- and CRFR2-
null mice, and regulation by glucocorticoids. Endocrinology 145, 2445-2457 

(2004 ). 
117. C. Li et al., Urocortin III is expressed in pancreatic beta-cells and stimulates 

insulin and glucagon secretion. Endocrinology 144, 3216-3224 (2003 ). 



  References 

183 
 

118. R. Chen, K. A. Lewis, M. H. Perrin, W. W. Vale, Expression cloning of a 
human corticotropin-releasing-factor receptor. Proceedings of the National 
Academy of Sciences 90, 8967-8971 (1993 ). 

119. M. Perrin et al., Identification of a second corticotropin-releasing factor 
receptor gene and characterization of a cDNA expressed in heart. 
Proceedings of the National Academy of Sciences 92, 2969-2973 (1995 ). 

120. M. A. Ẓmijewski, A. T. Slominski, Emerging role of alternative splicing of CRF1 
receptor in CRF signaling. Acta biochimica Polonica 57, 1-13 (2010 ). 

121. C. P. Chang, R. V. Pearse, S. O'Connell, M. G. Rosenfeld, Identification of a 
seven transmembrane helix receptor for corticotropin-releasing factor and 
sauvagine in mammalian brain. Neuron 11, 1187-1195 (1993 ). 

122. T. W. Lovenberg, D. T. Chalmers, C. Liu, E. B. De Souza, CRF2 alpha and 
CRF2 beta receptor mRNAs are differentially distributed between the rat 
central nervous system and peripheral tissues. Endocrinology 136, 4139-4142 

(1995 ). 
123. B. Martin et al., Class II G Protein-Coupled Receptors and Their Ligands in 

Neuronal Function and Protection. Neuromolecular medicine 7, 3-36 

(2005 ). 
124. A. Bortolato et al., Structure of Class B GPCRs: new horizons for drug 

discovery. British Journal of Pharmacology 171, 3132-3145 (2014 ). 
125. J. Bender et al., Corticotropin-Releasing Hormone Receptor Type 1 

(CRHR1 ) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ 
Binding Motif. PLoS ONE 10, e0136768 (2015 ). 

126. C. Inda et al., Different cAMP sources are critically involved in G protein-
coupled receptor CRHR1 signaling. J Cell Biol 214, 181-195 (2016 ). 

127. C. J. Rossant, R. D. Pinnock, J. Hughes, M. D. Hall, S. McNulty, Corticotropin-
releasing factor type 1 and type 2alpha receptors regulate phosphorylation of 
calcium/cyclic adenosine 3',5'-monophosphate response element-binding 
protein and activation of p42/p44 mitogen-activated protein kinase. 
Endocrinology 140, 1525-1536 (1999 ). 

128. D. K. Grammatopoulos, Insights into mechanisms of corticotropin ‐releasing 
hormone receptor signal transduction. British Journal of Pharmacology 166, 
85-97 (2012 ). 



References 

184 
 

129. F. M. Dautzenberg, R. L. Hauger, The CRF peptide family and their receptors: 
yet more partners discovered. Trends Pharmacol Sci 23, 71-77 (2002 ). 

130. T. Subbannayya et al., An integrated map of corticotropin-releasing hormone 
signaling pathway. Journal of Cell Communication and Signaling 7, 295-300 

(2013 ). 
131. J. Sanders, C. Nemeroff, The CRF System as a Therapeutic Target for 

Neuropsychiatric Disorders. Trends Pharmacol Sci 37, 1045-1054 (2016 ). 
132. R. L. Hauger et al., Desensitization of human CRF2 (a ) receptor signaling 

governed by agonist potency and βarrestin2 recruitment. Regulatory Peptides 
186, 62-76 (2013 ). 

133. M. M. Hammad, H. A. Dunn, S. S. G. Ferguson, MAGI Proteins Regulate the 
Trafficking and Signaling of Corticotropin-Releasing Factor Receptor 1 via a 
Compensatory Mechanism. Journal of Molecular Signaling 11, 5 (2016 ). 

134. K. Hollenstein et al., Structure of class B GPCR corticotropin-releasing factor 
receptor 1. Nature 499, 438-443 (2013 ). 

135. G. Ladds, K. Davis, A. Das, J. Davey, A constitutively active GPCR retains its 
G protein specificity and the ability to form dimers. Molecular microbiology 55, 
482-497 (2005 ). 

136. S. M. Nielsen, L. Z. Nielsen, S. A. Hjorth, M. H. Perrin, W. W. Vale, 
Constitutive activation of tethered-peptide/ corticotropin-releasing factor 
receptor chimeras. Proceedings of the National Academy of Sciences of the 
United States of America 97, 10277-10281 (2000 ). 

137. I. Garcia et al., Local CRH signaling promotes synaptogenesis and circuit 
integration of adult-born neurons. Developmental cell 30, 645-659 (2014 ). 

138. Y. Yin et al., Rearrangement of a polar core provides a conserved mechanism 
for constitutive activation of class B G protein-coupled receptors. J Biol Chem 
292, 9865-9881 (2017 ). 

139. D. A. Lovejoy, B. S. Chang, N. R. Lovejoy, J. del Castillo, Molecular evolution 
of GPCRs: CRH/CRH receptors. J Mol Endocrinol 52, T43-60 (2014 ). 

140. A. F. Seasholtz, R. A. Valverde, R. J. Denver, Corticotropin-releasing 
hormone-binding protein: biochemistry and function from fishes to mammals. J 
Endocrinol 175, 89-97 (2002 ). 

141. M. O. Huising, W. W. Vale, in Encyclopedia of Neuroscience. (Academic 
Press, Oxford, 2009 ), pp. 231-237. 



  References 

185 
 

142. L. A. Tan, J. M. Vaughan, M. H. Perrin, J. E. Rivier, P. E. Sawchenko, 
Distribution of corticotropin-releasing factor (CRF ) receptor binding in the 
mouse brain using a new, high-affinity radioligand, [125 I]-PD-Sauvagine. J 
Comp Neurol,  (2017 ). 

143. A. Korosi et al., Corticotropin-releasing factor, urocortin 1, and their receptors 
in the mouse spinal cord. J Comp Neurol 502, 973-989 (2007 ). 

144. O. Berton, E. J. Nestler, New approaches to antidepressant drug discovery: 
beyond monoamines. Nat Rev Neurosci 7, 137-151 (2006 ). 

145. L. Arborelius, M. J. Owens, P. M. Plotsky, C. B. Nemeroff, The role of 
corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 
160, 1-12 (1999 ). 

146. M. E. Keck et al., Combined effects of exonic polymorphisms in CRHR1 and 
AVPR1B genes in a case/control study for panic disorder. Am J Med Genet B 
Neuropsychiatr Genet 147b, 1196-1204 (2008 ). 

147. E. B. Binder et al., Association of polymorphisms in genes regulating the 
corticotropin-releasing factor system with antidepressant treatment response. 
Arch Gen Psychiatry 67, 369-379 (2010 ). 

148. S. Papiol et al., Genetic variability at HPA axis in major depression and clinical 
response to antidepressant treatment. J Affect Disord 104, 83-90 (2007 ). 

149. D. Wasserman, J. Wasserman, V. Rozanov, M. Sokolowski, Depression in 
suicidal males: genetic risk variants in the CRHR1 gene. Genes Brain Behav 
8, 72-79 (2009 ). 

150. J. W. Smoller, The genetics of stress-related disorders: PTSD, depression, 
and anxiety disorders. Neuropsychopharmacology 41, 297-319 (2016 ). 

151. S. C. Heinrichs, G. F. Koob, Corticotropin-releasing factor in brain: a role in 
activation, arousal, and affect regulation. J Pharmacol Exp Ther 311, 427-440 

(2004 ). 
152. N. Dedic et al., Assessing behavioural effects of chronic HPA axis activation 

using conditional CRH-overexpressing mice. Cell Mol Neurobiol 32, 815-828 

(2012 ). 
153. G. Liebsch, R. Landgraf, M. Engelmann, P. Lörscher, F. Holsboer, Differential 

behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor 
antisense oligonucleotides into the rat brain. J Psychiatr Res 33, 153-163 

(1999 ). 



References 

186 
 

154. G. Laryea, M. G. Arnett, L. J. Muglia, Behavioral Studies and Genetic 
Alterations in Corticotropin-Releasing Hormone (CRH ) Neurocircuitry: 
Insights into Human Psychiatric Disorders. Behavioral Sciences 2, 135-171 

(2012 ). 
155. P. Timpl et al., Impaired stress response and reduced anxiety in mice lacking 

a functional corticotropin-releasing hormone receptor 1. Nat Genet 19, 162-
166 (1998 ). 

156. G. W. Smith et al., Corticotropin releasing factor receptor 1-deficient mice 
display decreased anxiety, impaired stress response, and aberrant 
neuroendocrine development. Neuron 20, 1093-1102 (1998 ). 

157. S. M. Korte, Corticosteroids in relation to fear, anxiety and psychopathology. 
Neurosci Biobehav Rev 25, 117-142 (2001 ). 

158. M. B. Müller et al., Limbic corticotropin-releasing hormone receptor 1 mediates 
anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6, 
1100-1107 (2003 ). 

159. X. D. Wang et al., Nectin-3 links CRHR1 signaling to stress-induced memory 
deficits and spine loss. Nat Neurosci 16, 706-713 (2013 ). 

160. X. D. Wang et al., Forebrain CRHR1 deficiency attenuates chronic stress-
induced cognitive deficits and dendritic remodeling. Neurobiol Dis 42, 300-310 

(2011 ). 
161. Y. Sztainberg, Y. Kuperman, M. Tsoory, M. Lebow, A. Chen, The anxiolytic 

effect of environmental enrichment is mediated via amygdalar CRF receptor 
type 1. Mol Psychiatry 15, 905-917 (2010 ). 

162. Y. Sztainberg, Y. Kuperman, N. Justice, A. Chen, An anxiolytic role for CRF 
receptor type 1 in the globus pallidus. J Neurosci 31, 17416-17424 (2011 ). 

163. N. A. Chen et al., Knockdown of CRF1 receptors in the ventral tegmental area 
attenuates cue- and acute food deprivation stress-induced cocaine seeking in 
mice. J Neurosci 34, 11560-11570 (2014 ). 

164. N. A. Chen et al., Knockdown of corticotropin-releasing factor 1 receptors in 
the ventral tegmental area enhances conditioned fear. European 
Neuropsychopharmacology 26, 1533-1540 (2016 ). 

165. J. A. Harris et al., Anatomical characterization of Cre driver mice for neural 
circuit mapping and manipulation. Front Neural Circuits 8, 76 (2014 ). 



  References 

187 
 

166. Z. J. Huang, H. Zeng, Genetic approaches to neural circuits in the mouse. 
Annu Rev Neurosci 36, 183-215 (2013 ). 

167. J. Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. 
J Zhejiang Univ Sci B 13, 511-524 (2012 ). 

168. J. M. Deussing, Targeted mutagenesis tools for modelling psychiatric 
disorders. Cell Tissue Res 354, 9-25 (2013 ). 

169. S. A. Murray, J. T. Eppig, D. Smedley, E. M. Simpson, N. Rosenthal, Beyond 
knockouts: cre resources for conditional mutagenesis. Mammalian genome : 
official journal of the International Mammalian Genome Society 23, 587-599 

(2012 ). 
170. M. Schmidt-Supprian, K. Rajewsky, Vagaries of conditional gene targeting. 

Nat Immunol 8, 665-668 (2007 ). 
171. E. I. Martin et al., A novel transgenic mouse for gene-targeting within cells that 

express corticotropin-releasing factor. Biol Psychiatry 67, 1212-1216 

(2010 ). 
172. G. M. Gafford et al., Cell-type specific deletion of GABA (A )alpha1 in 

corticotropin-releasing factor-containing neurons enhances anxiety and 
disrupts fear extinction. Proc Natl Acad Sci U S A 109, 16330-16335 

(2012 ). 
173. G. Gafford, A. M. Jasnow, K. J. Ressler, Grin1 receptor deletion within CRF 

neurons enhances fear memory. PLoS One 9, e111009 (2014 ). 
174. J. Sarkar, S. Wakefield, G. MacKenzie, S. J. Moss, J. Maguire, 

Neurosteroidogenesis is required for the physiological response to stress: role 
of neurosteroid-sensitive GABA (A ) receptors. The Journal of Neuroscience 
31, 18198-18210 (2011 ). 

175. V. Lee, J. Sarkar, J. Maguire, Loss of Gabrd in CRH neurons blunts the 
corticosterone response to stress and diminishes stress-related behaviors. 
Psychoneuroendocrinology 41, 75-88 (2014 ). 

176. J. A. Smith et al., Acute hypernatremia promotes anxiolysis and attenuates 
stress-induced activation of the hypothalamic-pituitary-adrenal axis in male 
mice. Physiol Behav 136, 91-96 (2014 ). 

177. J. G. McCall et al., CRH Engagement of the Locus Coeruleus Noradrenergic 
System Mediates Stress-Induced Anxiety. Neuron 87, 605-620 (2015 ). 



References 

188 
 

178. S. Chung et al., Identification of preoptic sleep neurons using retrograde 
labelling and gene profiling. Nature 545, 477-481 (2017 ). 

179. M. J. Krashes et al., An excitatory paraventricular nucleus to AgRP neuron 
circuit that drives hunger. Nature 507, 238-242 (2014 ). 

180. K. E. Pleil et al., NPY signaling inhibits extended amygdala CRF neurons to 
suppress binge alcohol drinking. Nat Neurosci 18, 545-552 (2015 ). 

181. C. A. Marcinkiewcz et al., Serotonin engages an anxiety and fear-promoting 
circuit in the extended amygdala. Nature 537, 97-101 (2016 ). 

182. M. B. Pomrenze et al., A Transgenic Rat for Investigating the Anatomy and 
Function of Corticotrophin Releasing Factor Circuits. Front Neurosci 9, 487 

(2015 ). 
183. Y. Shemesh et al., Ucn3 and CRF-R2 in the medial amygdala regulate 

complex social dynamics. Nat Neurosci 19, 1489-1496 (2016 ). 
184. T. E. Anthony et al., Control of stress-induced persistent anxiety by an extra-

amygdala septohypothalamic circuit. Cell 156, 522-536 (2014 ). 
185. M. Henckens et al., CRF receptor type 2 neurons in the posterior bed nucleus 

of the stria terminalis critically contribute to stress recovery. Mol Psychiatry 22, 
1691-1700 (2017 ). 

186. C. Liu, Strategies for Designing Transgenic DNA Constructs. Methods in 
molecular biology (Clifton, N.J. ) 1027, 10.1007/1978-1001-60327-60369-
60325 _60328 (2013 ). 

187. L. Madisen et al., A robust and high-throughput Cre reporting and 
characterization system for the whole mouse brain. Nat Neurosci 13, 133-140 

(2010 ). 
188. J. J. Nassi, C. L. Cepko, R. T. Born, K. T. Beier, Neuroanatomy goes viral! 

Front Neuroanat 9, 80 (2015 ). 
189. F. Zhang et al., Optogenetic interrogation of neural circuits: technology for 

probing mammalian brain structures. Nat Protoc 5, 439-456 (2010 ). 
190. E. Sanz et al., Cell-type-specific isolation of ribosome-associated mRNA from 

complex tissues. Proc Natl Acad Sci U S A 106, 13939-13944 (2009 ). 
191. H. Bouabe, K. Okkenhaug, Gene Targeting in Mice: a Review. Methods in 

molecular biology (Clifton, N.J. ) 1064, 315-336 (2013 ). 



  References 

189 
 

192. Femi J. Olorunniji, Susan J. Rosser, W. M. Stark, Site-specific recombinases: 
molecular machines for the Genetic Revolution. Biochemical Journal 473, 673-
684 (2016 ). 

193. G. Belteki, M. Gertsenstein, D. W. Ow, A. Nagy, Site-specific cassette 
exchange and germline transmission with mouse ES cells expressing phiC31 
integrase. Nat Biotechnol 21, 321-324 (2003 ). 

194. S. Delic et al., Genetic mouse models for behavioral analysis through 
transgenic RNAi technology. Genes Brain Behav 7, 821-830 (2008 ). 

195. C.-m. Chen, J. Krohn, S. Bhattacharya, B. Davies, A Comparison of 
Exogenous Promoter Activity at the ROSA26 Locus Using a PhiC31 Integrase 
Mediated Cassette Exchange Approach in Mouse ES Cells. PLoS ONE 6, 
e23376 (2011 ). 

196. B. Tasic et al., Site-specific integrase-mediated transgenesis in mice via 
pronuclear injection. Proceedings of the National Academy of Sciences of the 
United States of America 108, 7902-7907 (2011 ). 

197. Cheng, 523. Non-Viral Phi C31 Integrase Mediated In Vivo Gene Delivery to 
Adult Murine Retinal Pigment Epithelial Cells. Molecular Therapy 17, 
Supplement 1, S200 (2009 ). 

198. E. C. Olivares et al., Site-specific genomic integration produces therapeutic 
Factor IX levels in mice. Nat Biotech 20, 1124-1128 (2002 ). 

199. A. G. Kotini, M. Sadelain, E. P. Papapetrou, LiPS-A3S, a human genomic site 
for robust expression of inserted transgenes. Molecular Therapy - Nucleic 
Acids 5, e394 (2016 ). 

200. C. S. Branda, S. M. Dymecki, Talking about a revolution: The impact of site-
specific recombinases on genetic analyses in mice. Dev Cell 6, 7-28 (2004 ). 

201. B. Sauer, J. McDermott, DNA recombination with a heterospecific Cre 
homolog identified from comparison of the pac-c1 regions of P1-related 
phages. Nucleic Acids Res 32, 6086-6095 (2004 ). 

202. K. Anastassiadis et al., Dre recombinase, like Cre, is a highly efficient site-
specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2, 
508-515 (2009 ). 

203. L. Madisen et al., Transgenic mice for intersectional targeting of neural 
sensors and effectors with high specificity and performance. Neuron 85, 942-
958 (2015 ). 



References 

190 
 

204. K. Chuang, E. Nguyen, Y. Sergeev, T. C. Badea, Novel Heterotypic Rox Sites 
for Combinatorial Dre Recombination Strategies. G3 (Bethesda ) 6, 559-571 

(2015 ). 
205. V. C. Janbandhu, D. Moik, R. Fässler, Cre recombinase induces DNA damage 

and tetraploidy in the absence of LoxP sites. Cell Cycle 13, 462-470 (2014 ). 
206. S. Feil, N. Valtcheva, R. Feil, Inducible Cre mice. Methods Mol Biol 530, 343-

363 (2009 ). 
207. W. P. Devine, J. D. Wythe, M. George, K. Koshiba-Takeuchi, B. G. Bruneau, 

Early patterning and specification of cardiac progenitors in gastrulating 
mesoderm. eLife 3, e03848 (2014 ). 

208. R. Sando et al., Inducible control of gene expression with destabilized Cre. 
Nature methods 10, 1085-1088 (2013 ). 

209. S. M. Dymecki, R. S. Ray, J. C. Kim, Mapping cell fate and function using 
recombinase-based intersectional strategies. Methods Enzymol 477, 183-213 

(2010 ). 
210. L. E. Fenno et al., INTRSECT: single-component targeting of cells using 

multiple-feature Boolean logic. Nature methods 11, 763-772 (2014 ). 
211. J. Hirrlinger et al., Split-cre complementation indicates coincident activity of 

different genes in vivo. PLoS One 4, e4286 (2009 ). 
212. J. Hirrlinger et al., Split-CreERT2: Temporal Control of DNA Recombination 

Mediated by Split-Cre Protein Fragment Complementation. PLoS ONE 4, 
e8354 (2009 ). 

213. P. Wang et al., Intersectional Cre driver lines generated using split-intein 
mediated split-Cre reconstitution. Sci Rep 2, 497 (2012 ). 

214. M. Hermann et al., Binary recombinase systems for high-resolution conditional 
mutagenesis. Nucleic Acids Research 42, 3894-3907 (2014 ). 

215. G. D. Van Duyne, Cre Recombinase. Microbiol Spectr 3, Mdna3-0014-2014 

(2015 ). 
216. R. M. Quadros et al., Easi-CRISPR: a robust method for one-step generation 

of mice carrying conditional and insertion alleles using long ssDNA donors and 
CRISPR ribonucleoproteins. Genome Biology 18, 92 (2017 ). 

217. D. Atasoy, Y. Aponte, H. H. Su, S. M. Sternson, A FLEX switch targets 
Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit 
mapping. J Neurosci 28, 7025-7030 (2008 ). 



  References 

191 
 

218. I. Dragatsis, S. Zeitlin, A method for the generation of conditional gene repair 
mutations in mice. Nucleic Acids Research 29, e10-e10 (2001 ). 

219. N. J. Justice, Z. F. Yuan, P. E. Sawchenko, W. Vale, Type 1 corticotropin-
releasing factor receptor expression reported in BAC transgenic mice: 
implications for reconciling ligand-receptor mismatch in the central 
corticotropin-releasing factor system. J Comp Neurol 511, 479-496 (2008 ). 

220. R. Petryszak et al., Expression Atlas update —an integrated database of gene 
and protein expression in humans, animals and plants. Nucleic Acids 
Research 44, D746-D752 (2016 ). 

221. J. L. Quintanar, I. Guzmán-Soto, Hypothalamic neurohormones and immune 
responses. Frontiers in Integrative Neuroscience 7, 56 (2013 ). 

222. S. M. Baigent, P. J. Lowry, mRNA expression profiles for corticotrophin-
releasing factor (CRF ), urocortin, CRF receptors and CRF-binding protein in 
peripheral rat tissues. J Mol Endocrinol 25, 43-52 (2000 ). 

223. K. A. Paschos et al., The corticotropin releasing factor system in the liver: 
expression, actions and possible implications in hepatic physiology and 
pathology. Hormones (Athens ) 12, 236-245 (2013 ). 

224. R. E. Nappi, S. Rivest, Stress-induced genetic expression of a selective 
corticotropin-releasing factor-receptor subtype within the rat ovaries: an effect 
dependent on the ovulatory cycle. Biol Reprod 53, 1417-1428 (1995 ). 

225. M. Simard, M. Cote, P. R. Provost, Y. Tremblay, Expression of genes related 
to the hypothalamic-pituitary-adrenal axis in murine fetal lungs in late 
gestation. Reprod Biol Endocrinol 8, 134 (2010 ). 

226. Y. Wu, Y. Xu, H. Zhou, J. Tao, S. Li, Expression of urocortin in rat lung and its 
effect on pulmonary vascular permeability. J Endocrinol 189, 167-178 

(2006 ). 
227. A. Mo et al., Epigenomic Signatures of Neuronal Diversity in the Mammalian 

Brain. Neuron 86, 1369-1384 (2015 ). 
228. G. N. Smagin, S. C. Heinrichs, A. J. Dunn, The role of CRH in behavioral 

responses to stress. Peptides 22, 713-724 (2001 ). 
229. Y. Chen, K. L. Brunson, M. B. Muller, W. Cariaga, T. Z. Baram, 

Immunocytochemical distribution of corticotropin-releasing hormone receptor 
type-1 (CRF (1 ) )-like immunoreactivity in the mouse brain: light 



References 

192 
 

microscopy analysis using an antibody directed against the C-terminus. J 
Comp Neurol 420, 305-323 (2000 ). 

230. D. F. Aschauer, S. Kreuz, S. Rumpel, Analysis of transduction efficiency, 
tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse 
brain. PLoS One 8, e76310 (2013 ). 

231. A. Watakabe et al., Comparative analyses of adeno-associated viral vector 
serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. 
Neuroscience Research 93, 144-157 (2015 ). 

232. E. N. McDowell et al., A transcriptome-wide screen for mRNAs enriched in 
fetal Leydig cells: CRHR1 agonism stimulates rat and mouse fetal testis 
steroidogenesis. PLoS One 7, e47359 (2012 ). 

233. J. Tao et al., Separate Locations of Urocortin and its Receptors in Mouse 
Testis: Function in Male Reproduction and the Relevant Mechanisms. Cellular 
Physiology and Biochemistry 19, 303-312 (2007 ). 

234. G. Wypior, U. Jeschke, M. Kurpisz, J. Szekeres-Bartho, Expression of CRH, 
CRH-related peptide and CRH receptor in the ovary and potential CRH 
signalling pathways. Journal of Reproductive Immunology 90, 67-73 (2011 ). 

235. J. L. Cazemier, F. Clascá, P. H. E. Tiesinga, Connectomic Analysis of Brain 
Networks: Novel Techniques and Future Directions. Frontiers in 
Neuroanatomy 10, 110 (2016 ). 

236. L. Madisen et al., A toolbox of Cre-dependent optogenetic transgenic mice for 
light-induced activation and silencing. Nat Neurosci 15, 793-802 (2012 ). 

237. F. W. Farley, P. Soriano, L. S. Steffen, S. M. Dymecki, Widespread 
recombinase expression using FLPeR (flipper ) mice. Genesis 28, 106-110 

(2000 ). 
238. F. G. Wouterlood, B. Bloem, H. D. Mansvelder, A. Luchicchi, K. Deisseroth, A 

fourth generation of neuroanatomical tracing techniques: Exploiting the 
offspring of genetic engineering. Journal of Neuroscience Methods 235, 331-
348 (2014 ). 

239. A. Uribe-Mariño et al., Prefrontal Cortex Corticotropin-Releasing Factor 
Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction. Biological 
Psychiatry 80, 743-753 (2016 ). 



  References 

193 
 

240. J. M. Tepper, F. Tecuapetla, T. Koós, O. Ibáñez-Sandoval, Heterogeneity and 
Diversity of Striatal GABAergic Interneurons. Frontiers in Neuroanatomy 4, 
150 (2010 ). 

241. C. R. Gerfen, D. J. Surmeier, Modulation of striatal projection systems by 
dopamine. Annual review of neuroscience 34, 441-466 (2011 ). 

242. L. Kuan et al., Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. 
Methods 73, 4-17 (2015 ). 

243. D. Pinault, The thalamic reticular nucleus: structure, function and concept. 
Brain Res Brain Res Rev 46, 1-31 (2004 ). 

244. J. L. Lanciego, N. Luquin, J. A. Obeso, Functional Neuroanatomy of the Basal 
Ganglia. Cold Spring Harbor Perspectives in Medicine 2, a009621 (2012 ). 

245. N. Rajakumar, K. Elisevich, B. A. Flumerfelt, The pallidostriatal projection in 
the rat: a recurrent inhibitory loop? Brain Research 651, 332-336 (1994 ). 

246. W. R. Marchand, P. J. Bennett, D. V. Dilda, Evidence for Frontal-Subcortical 
Circuit Abnormalities in Bipolar Affective Disorder. Psychiatry (Edgmont ) 2, 
26-33 (2005 ). 

247. T. van Groen, P. Miettinen, I. Kadish, The entorhinal cortex of the mouse: 
organization of the projection to the hippocampal formation. Hippocampus 13, 
133-149 (2003 ). 

248. A. Bjorklund, S. B. Dunnett, Dopamine neuron systems in the brain: an 
update. Trends Neurosci 30, 194-202 (2007 ). 

249. D. M. Vogt Weisenhorn, F. Giesert, W. Wurst, Diversity matters – 
heterogeneity of dopaminergic neurons in the ventral mesencephalon and its 
relation to Parkinson's Disease. Journal of Neurochemistry 139, 8-26 

(2016 ). 
250. A. Aransay, C. Rodríguez-López, M. García-Amado, F. Clascá, L. Prensa, 

Long-range projection neurons of the mouse ventral tegmental area: a single-
cell axon tracing analysis. Frontiers in Neuroanatomy 9,  (2015 ). 

251. J. Roeper, Dissecting the diversity of midbrain dopamine neurons. Trends in 
Neurosciences 36, 336-342 (2013 ). 

252. S. A. Sharples, K. Koblinger, J. M. Humphreys, P. J. Whelan, Dopamine: a 
parallel pathway for the modulation of spinal locomotor networks. Frontiers in 
Neural Circuits 8, 55 (2014 ). 



References 

194 
 

253. S. Qu et al., Projections of diencephalic dopamine neurons into the spinal cord 
in mice. Exp Brain Res 168, 152-156 (2006 ). 

254. L. Li et al., Visualizing the distribution of synapses from individual neurons in 
the mouse brain. PLoS One 5, e11503 (2010 ). 

255. J. F. Lopez, H. Akil, S. J. Watson, Neural circuits mediating stress. Biol 
Psychiatry 46, 1461-1471 (1999 ). 

256. D. Chaudhury, H. Liu, M.-H. Han, Neuronal Correlates of Depression. Cellular 
and molecular life sciences : CMLS 72, 4825-4848 (2015 ). 

257. J. J. Walsh, M. H. Han, THE HETEROGENEITY OF VENTRAL TEGMENTAL 
AREA NEURONS: PROJECTION FUNCTIONS IN A MOOD-RELATED 
CONTEXT. Neuroscience 282, 101-108 (2014 ). 

258. L. E. Trudeau et al., The multilingual nature of dopamine neurons. Prog Brain 
Res 211, 141-164 (2014 ). 

259. G. D. Stuber, A. M. Stamatakis, P. A. Kantak, Considerations when using cre-
driver rodent lines for studying ventral tegmental area circuitry. Neuron 85, 
439-445 (2015 ). 

260. S. Lammel et al., Unique Properties of Mesoprefrontal Neurons within a Dual 
Mesocorticolimbic Dopamine System. Neuron 57, 760-773 (2008 ). 

261. J. H. Jennings, G. D. Stuber, Tools for resolving functional activity and 
connectivity within intact neural circuits. Curr Biol 24, R41-50 (2014 ). 

262. G. Miyoshi, G. Fishell, Directing neuron-specific transgene expression in the 
mouse CNS. Curr Opin Neurobiol 16, 577-584 (2006 ). 

263. H. Mizuguchi, Z. Xu, A. Ishii-Watabe, E. Uchida, T. Hayakawa, IRES-
dependent second gene expression is significantly lower than cap-dependent 
first gene expression in a bicistronic vector. Mol Ther 1, 376-382 (2000 ). 

264. R. Gerlai, Gene Targeting Using Homologous Recombination in Embryonic 
Stem Cells: The Future for Behavior Genetics? Frontiers in Genetics 7, 43 

(2016 ). 
265. M. Osterwalder et al., Dual RMCE for efficient re-engineering of mouse mutant 

alleles. Nat Meth 7, 893-895 (2010 ). 
266. M. Heidenreich, F. Zhang, Applications of CRISPR-Cas systems in 

neuroscience. Nat Rev Neurosci 17, 36-44 (2016 ). 



  References 

195 
 

267. A. F. Eisener-Dorman, D. A. Lawrence, V. J. Bolivar, Cautionary Insights on 
Knockout Mouse Studies: The Gene or Not the Gene? Brain, behavior, and 
immunity 23, 318-324 (2009 ). 

268. R. Peng, G. Lin, J. Li, Potential pitfalls of CRISPR/Cas9-mediated genome 
editing. Febs j 283, 1218-1231 (2016 ). 

269. Y. Hasegawa et al., Generation of CRISPR/Cas9-mediated bicistronic knock-
in ins1-cre driver mice. Exp Anim 65, 319-327 (2016 ). 

270. L. E. Dow, Modeling disease in vivo with CRISPR/Cas9. Trends in molecular 
medicine 21, 609-621 (2015 ). 

271. W. M. Stark, Making serine integrases work for us. Current Opinion in 
Microbiology 38, 130-136 (2017 ). 

272. K. Rutherford, G. D. Van Duyne, The ins and outs of serine integrase site-
specific recombination. Current Opinion in Structural Biology 24, 125-131 

(2014 ). 
273. F. Schnutgen, A. F. Stewart, H. von Melchner, K. Anastassiadis, Engineering 

embryonic stem cells with recombinase systems. Methods Enzymol 420, 100-
136 (2006 ). 

274. L. Ringrose, S. Chabanis, P. O. Angrand, C. Woodroofe, A. F. Stewart, 
Quantitative comparison of DNA looping in vitro and in vivo: chromatin 
increases effective DNA flexibility at short distances. Embo j 18, 6630-6641 

(1999 ). 
275. L. Ringrose et al., Comparative kinetic analysis of FLP and cre recombinases: 

mathematical models for DNA binding and recombination. Journal of 
Molecular Biology 284, 363-384 (1998 ). 

276. S. L. P. Schilit, M. Ohtsuka, R. Quadros, C. B. Gurumurthy, Pronuclear 
Injection-based Targeted Transgenesis. Current protocols in human genetics 
91, 15.10.11-15.10.28 (2016 ). 

277. L. Huang et al., RNA Homeostasis Governed by Cell Type-Specific and 
Branched Feedback Loops Acting on NMD. Molecular cell 43, 950-961 

(2011 ). 
278. R. Kuhn, F. Schwenk, Conditional knockout mice. Methods Mol Biol 209, 159-

185 (2003 ). 
279. C. I. Rodriguez et al., High-efficiency deleter mice show that FLPe is an 

alternative to Cre-loxP. Nat Genet 25, 139-140 (2000 ). 



References 

196 
 

280. L. Smith, Good planning and serendipity: exploiting the Cre/Lox system in the 
testis. Reproduction 141, 151-161 (2011 ). 

281. M. A. Magnuson, A. B. Osipovich, Pancreas-specific Cre driver lines and 
considerations for their prudent use. Cell Metab 18, 9-20 (2013 ). 

282. N. J. Dora, J. M. Collinson, R. E. Hill, J. D. West, Hemizygous Le-Cre 
transgenic mice have severe eye abnormalities on some genetic backgrounds 
in the absence of LoxP sites. PLoS One 9, e109193 (2014 ). 

283. C. S. Heffner et al., Supporting conditional mouse mutagenesis with a 
comprehensive cre characterization resource. Nature Communications 3, 
1218 (2012 ). 

284. E. Harno, Elizabeth C. Cottrell, A. White, Metabolic Pitfalls of CNS Cre-Based 
Technology. Cell Metabolism 18, 21-28 (2013 ). 

285. F. Gofflot et al., in Current Protocols in Mouse Biology. (John Wiley & Sons, 
Inc., 2011 ). 

286. C. Gregg, Known unknowns for allele-specific expression and genomic 
imprinting effects. F1000Prime Reports 6, 75 (2014 ). 

287. K. Yamasaki et al., Neurons but not glial cells show reciprocal imprinting of 
sense and antisense transcripts of Ube3a. Hum Mol Genet 12, 837-847 

(2003 ). 
288. L. S. Wilkinson, W. Davies, A. R. Isles, Genomic imprinting effects on brain 

development and function. Nat Rev Neurosci 8, 832-843 (2007 ). 
289. A. V. Gendrel et al., Developmental dynamics and disease potential of random 

monoallelic gene expression. Dev Cell 28, 366-380 (2014 ). 
290. D. Kawaguchi, S. Sahara, A. Zembrzycki, D. D. M. O ’Leary, Generation and 

analysis of an improved Foxg1-IRES-Cre driver mouse line. Developmental 
Biology 412, 139-147 (2016 ). 

291. J. D. Perez et al., Quantitative and functional interrogation of parent-of-origin 
allelic expression biases in the brain. Elife 4, e07860 (2015 ). 

292. Paul J. Bonthuis et al., Noncanonical Genomic Imprinting Effects in Offspring. 
Cell Reports 12, 979-991 (2015 ). 

293. D. P. Barlow, M. S. Bartolomei, Genomic imprinting in mammals. Cold Spring 
Harb Perspect Biol 6,  (2014 ). 



  References 

197 
 

294. S. Hayashi, A. P. McMahon, Efficient recombination in diverse tissues by a 
tamoxifen-inducible form of Cre: a tool for temporally regulated gene 
activation/inactivation in the mouse. Dev Biol 244, 305-318 (2002 ). 

295. J. Liu et al., Non-parallel recombination limits Cre-LoxP-based reporters as 
precise indicators of conditional genetic manipulation. Genesis 51, 436-442 

(2013 ). 
296. H. Y. Chan et al., Comparison of IRES and F2A-Based Locus-Specific 

Multicistronic Expression in Stable Mouse Lines. PLoS ONE 6, e28885 

(2011 ). 
297. G. Trichas, J. Begbie, S. Srinivas, Use of the viral 2A peptide for bicistronic 

expression in transgenic mice. BMC Biology 6, 40 (2008 ). 
298. G. Milligan, Exploring the dynamics of regulation of G protein-coupled 

receptors using green fluorescent protein. British Journal of Pharmacology 
128, 501-510 (1999 ). 

299. G. A. Luke, Translating 2A Research Into Practice.  (INTECH Open Access 
Publisher, 2012 ). 

300. T. Rotolo, P. M. Smallwood, J. Williams, J. Nathans, Genetically-Directed, Cell 
Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology. PLoS 
ONE 3, e4099 (2008 ). 

301. T. C. Badea et al., New mouse lines for the analysis of neuronal morphology 
using CreER (T )/loxP-directed sparse labeling. PLoS One 4, e7859 

(2009 ). 
302. D. A. Fortin et al., Live Imaging of Endogenous PSD-95 Using ENABLED: A 

Conditional Strategy to Fluorescently Label Endogenous Proteins. The Journal 
of Neuroscience 34, 16698-16712 (2014 ). 

303. G. Aguilera, M. Nikodemova, P. C. Wynn, K. J. Catt, Corticotropin releasing 
hormone receptors: two decades later. Peptides 25, 319-329 (2004 ). 

304. D. M. Juriloff et al., Investigations of the genomic region that contains the clf1 
mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth 
Defects Res A Clin Mol Teratol 73, 103-113 (2005 ). 

305. A. Ramot et al., Hypothalamic CRFR1 is essential for HPA axis regulation 
following chronic stress. Nat Neurosci 20, 385-388 (2017 ). 

306. D. T. Chalmers, T. W. Lovenberg, E. B. De Souza, Localization of novel 
corticotropin-releasing factor receptor (CRF2 ) mRNA expression to specific 



References 

198 
 

subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA 
expression. J Neurosci 15, 6340-6350 (1995 ). 

307. M. B. Muller et al., Expression of CRHR1 and CRHR2 in mouse pituitary and 
adrenal gland: implications for HPA system regulation. Endocrinology 142, 
4150-4153 (2001 ). 

308. C. Tsatsanis et al., The corticotropin-releasing factor (CRF ) family of 
peptides as local modulators of adrenal function. Cell Mol Life Sci 64, 1638-
1655 (2007 ). 

309. S. P. Chang, J. J. Mullins, S. D. Morley, J. D. West, Transition from 
organogenesis to stem cell maintenance in the mouse adrenal cortex. 
Organogenesis 7, 267-280 (2011 ). 

310. M. A. Bruce, D. M. Griffith, R. J. Thorpe, Stress and the Kidney. Advances in 
chronic kidney disease 22, 46-53 (2015 ). 

311. E. L. Webster, D. E. Tracey, M. A. Jutila, S. A. Wolfe, Jr., E. B. De Souza, 
Corticotropin-releasing factor receptors in mouse spleen: identification of 
receptor-bearing cells as resident macrophages. Endocrinology 127, 440-452 

(1990 ). 
312. M. Radulovic, F. M. Dautzenberg, S. Sydow, J. Radulovic, J. Spiess, 

Corticotropin-Releasing Factor Receptor 1 in Mouse Spleen: Expression After 
Immune Stimulation and Identification of Receptor-Bearing Cells. The Journal 
of Immunology 162, 3013-3021 (1999 ). 

313. T. Audhya, R. Jain, C. S. Hollander, Receptor-mediated immunomodulation by 
corticotropin-releasing factor. Cellular Immunology 134, 77-84 (1991 ). 

314. S. Mousa, C. P Bopaiah, C. Stein, M. Schaefer, Involvement of corticotropin-
releasing hormone receptor subtypes 1 and 2 in peripheral opioid-mediated 
inhibition of inflammatory pain.  (2004 ), vol. 106, pp. 297-307. 

315. A. N. McEvoy, B. Bresnihan, O. FitzGerald, E. P. Murphy, Corticotropin-
releasing hormone signaling in synovial tissue from patients with early 
inflammatory arthritis is mediated by the type 1 alpha corticotropin-releasing 
hormone receptor. Arthritis Rheum 44, 1761-1767 (2001 ). 

316. P. Feng et al., Immune Cells of the Human Peripheral Taste System: 
Dominant Dendritic Cells and CD4 T-Cells. Brain, behavior, and immunity 23, 
760-766 (2009 ). 



  References 

199 
 

317. P. Feng et al., Interleukin-10 Is Produced by a Specific Subset of Taste 
Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste 
Buds. The Journal of Neuroscience 34, 2689-2701 (2014 ). 

318. R. Pabst, T. Tschernig, Lymphocytes in the lung: an often neglected cell. 
Numbers, characterization and compartmentalization. Anat Embryol (Berl ) 

192, 293-299 (1995 ). 
319. P.-Q. Yuan et al., Expression of corticotropin releasing factor receptor type 1 

(CRF (1 ) ) in the human gastrointestinal tract and upregulation in the 
colonic mucosa in patients with ulcerative colitis. Peptides 38, 62-69 (2012 ). 

320. C. Porcher, A. Juhem, A. Peinnequin, V. Sinniger, B. Bonaz, Expression and 
effects of metabotropic CRF1 and CRF2 receptors in rat small intestine. Am J 
Physiol Gastrointest Liver Physiol 288, G1091-1103 (2005 ). 

321. G. E. Hodes, C. Ménard, S. J. Russo, Integrating Interleukin-6 into depression 
diagnosis and treatment. Neurobiology of Stress 4, 15-22 (2016 ). 

322. B. E. Leonard, The concept of depression as a dysfunction of the immune 
system. Current immunology reviews 6, 205-212 (2010 ). 

323. M. Nezi, G. Mastorakos, Z. Mouslech, in Endotext, L. J. De Groot et al., Eds. 

(MDText.com, Inc., South Dartmouth (MA ), 2000 ). 
324. Y. Sun, S. F. Grieco, T. C. Holmes, X. Xu, Local and Long-Range Circuit 

Connections to Hilar Mossy Cells in the Dentate Gyrus. eNeuro 4,  (2017 ). 
325. S. Jinde, V. Zsiros, K. Nakazawa, Hilar mossy cell circuitry controlling dentate 

granule cell excitability. Frontiers in Neural Circuits 7, 14 (2013 ). 
326. S. Willadt, M. Canepari, P. Yan, L. M. Loew, K. E. Vogt, Combined 

optogenetics and voltage sensitive dye imaging at single cell resolution. 
Frontiers in Cellular Neuroscience 8, 311 (2014 ). 

327. N. B. Danielson et al., In Vivo Imaging of Dentate Gyrus Mossy Cells in 
Behaving Mice. Neuron 93, 552-559.e554 (2017 ). 

328. N. Tamamaki, K. Nakamura, T. Furuta, K. Asamoto, T. Kaneko, Neurons in 
Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci 
Res 38, 231-236 (2000 ). 

329. T. Furuta et al., In vivo transduction of central neurons using recombinant 
Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-
targeted fluorescent proteins. J Histochem Cytochem 49, 1497-1508 

(2001 ). 



References 

200 
 

330. N. Kataoka, H. Hioki, T. Kaneko, K. Nakamura, Psychological stress activates 
a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose 
tissue thermogenesis and hyperthermia. Cell Metab 20, 346-358 (2014 ). 

331. A. V. Kravitz, K. Devarakonda, A. C. Kreitzer, in Handbook of Behavioral 
Neuroscience, H. Steiner, K. Y. Tseng, Eds. (Elsevier, 2017 ), vol. 24, pp. 
689-706. 

332. W. R. Marchand et al., Aberrant functional connectivity of cortico-basal ganglia 
circuits in major depression. Neuroscience Letters 514, 86-90 (2012 ). 

333. B. Zięba et al., The behavioural and electrophysiological effects of CRF in rat 
frontal cortex. Neuropeptides 42, 513-523 (2008 ). 

334. J. I. Kim et al., Aldehyde dehydrogenase 1a1 mediates a GABA synthesis 
pathway in midbrain dopaminergic neurons. Science 350, 102-106 (2015 ). 

335. N. X. Tritsch, W. J. Oh, C. Gu, B. L. Sabatini, Midbrain dopamine neurons 
sustain inhibitory transmission using plasma membrane uptake of GABA, not 
synthesis. Elife 3, e01936 (2014 ). 

336. J. H. Jennings et al., Distinct extended amygdala circuits for divergent 
motivational states. Nature 496, 224-228 (2013 ). 

337. A. Adhikari, Distributed circuits underlying anxiety. Frontiers in Behavioral 
Neuroscience 8, 112 (2014 ). 

338. D. F. Cardozo Pinto, S. Lammel, Viral vector strategies for investigating 
midbrain dopamine circuits underlying motivated behaviors. Pharmacol 
Biochem Behav,  (2017 ). 

339. S. Gong et al., A gene expression atlas of the central nervous system based 
on bacterial artificial chromosomes. Nature 425, 917-925 (2003 ). 

 

  



  Appendix 

201 
 

11 Appendix 
 

11.1 Buffers and Solutions 

 
With some exceptions (indicated) all reagents were purchased from Sigma-Aldrich 

(Taufkirchen, Germany), Roche Life Science (Mannheim, Germany), Carl Roth 

(Karlsruhe, Germany), Merck Millipore (Darmstadt, Germany) and prepared using 

purified water (H2Obidest). 

Tris acetate EDTA (TAE) buffer 

4.84g     TRIS 
1.142ml acetic acid 
20ml      0.5M EDTA, pH 8.0 
800ml    H2O 
adjust pH to 8.3 with acetic acid, adjust volume to 1 liter with H2Obidest 
 

6x DNA Loading buffer Orange 

1g       Orange G 
10ml   2M Tris/HCL, pH 7.5 
150ml glycerol 
adjust volume to 1 liter with H2Obidest 

 

1x Phosphate buffered saline (PBS) 

137mM NaCl 
2.7mM  KCl 
20mM   Na2HPO4 
2mM     KH2PO4 
adjust to pH 7.4, adjust volume to 1 liter with H2Obidest 
 

RNase free water (DEPC-H2O) 

1 liter H2Obidest 
add 1ml diethylpyrocarbonate (DEPC) and shake well 
incubate overnight (ON)/room temperature(RT) (lid unscrewed); autoclave twice 
 

20x Saline Sodium Citrate (SSC) 

3M    NaCl 
0.3M sodium citrate 
adjust to pH 7.4 with 1M HCL, adjust volume to 1 liter with H2Obidest 

 

0.2M Hydrogen chloride (HCL), RNase free for ISH 

492ml DEPC-H20 
add 8ml 37% HCL 
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10x Phosphate buffered saline (PBS), RNase free for ISH 

1.37M   NaCl 
27mM   KCl 
200mM Na2HPO4 
20mM   KH2PO4 
adjust to pH 7.4 
adjust volume to 1 liter with H2Obidest 

add 1ml DEPC/liter, incubate ON/RT (lid unscrewed); autoclave twice 
 

10x Triethanolamine (TEA) 

1M TEA, pH 8.0 
adjust volume to 1 liter with H2Obidest 

add 1ml DEPC/liter, incubate ON/RT (lid unscrewed); autoclave twice 
 

20% Paraformaldehyde (PFA), RNase free for ISH 

20% w/v PFA 
dissolve in 1x PBS under constant stirring (hood) 

adjust to pH 7.4 
 

5M Dithiothreitol (DTT), RNase free for ISH 

7.715g DTT 
4ml      DEPC-H2Obidest 

dissolve under constant shaking until powder is nearly solved 
adjust volume to 10ml with DEPC-H2Obidest; aliquot and store at -20°C 
 

0.5M Ethylendiamintetraacetic acid (EDTA 

186.1g Na2EDTA 
add 800ml H2Obidest 

adjust to pH 8.0 with NaOH 
adjust volume to 1 liter with H2Obidest 
stir vigorously on a magnetic stirrer 
sterilize by autoclaving; store at room temperature 
 

3M Ammonium acetate (NH4OAc) 

49.22g NH4OAc 
adjust volume to 100ml with H2Obidest 

adjust to pH 5.2 with glacial acetic acid  
adjust volume to 200ml with H2Obidest 

sterilize by autoclaving; store at 4°C 
 

dNTP-Mix 

10mM of each deoxynucleoside triphosphate (dATP, dCTP, dGTP, dTTP) 
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NEN-TNB blocking buffer 

0.5% blocking reagent (NEL700A Kit; Perkin Elmer) 
dissolve in 1x TNT buffer  
 

5x NTE 

146.1g NaCl 
50ml    1M TRIS/HCL, pH 8 
50ml    0.5M EDTA, pH 8 
adjust volume to 1 liter with H2Obidest  
add 1ml DEPC/liter, incubate ON/RT (lid unscrewed); autoclave twice 
 

1x TNT 

0.1M   TRIS/HCL 
0.15M NaCl 
0.05% Tween 20 
adjust volume to 800ml with H2Obidest; adjust to pH 7.6 
adjust volume to 1 liter with H2Obidest 

 

LacZ fix (for LacZ staining) 

4%        PFA/PBS, pH 7.4 (dilute the 20% PFA/PBS) 
0.005M EGTA (dilute the 0.1M stock solution) 
0.001M MgCl2 (dilute the 1M stock solution) 
 

LacZ wash buffer 

0.002M MgCl2 (dilute the 1M stock solution) 
0.01%   deoxycholate (dilute the 5% stock solution) 
0.02%   NP40 (dilute the 10% stock solution) 
PBS, pH 7.4 
 

LacZ stain 

0.1%     X-Gal (Stock-solution in DMF) 
0.005M potassium-ferrocyanide 
0.005M potassium-ferricyanide 
diluted in lacZ wash buffer 
Prepare fresh: for 120ml: solve completely 120mg X-Gal + 4ml DMF in glassware 
and give this dropwise to the ferro-/ferricyanide-lacZ-wash-solution 
 

Chamber fluid for ISH incubation chambers 

250ml Formamide 
50ml   20x SSC 
200ml H2Obidest 
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Hybridization mix for in situ Hybridization (ISH) 

50ml      Formamide (final concentration 50%) 
1ml        2M Tris/HCL, pH 8 (final concentration 20mM) 
1.775g   NaCl (final concentration 300mM) 
1ml        0.5M EDTA, pH 8 (final concentration 5mM) 
10g        dextran sulphate (final concentration 10%) 
0.02g     Ficoll 400 (final concentration 0.02%) 
0.02g     Polyvinylpyrrolidone 40 (PVP 40; final concentration 0.02%) 
0.02 g    Bovine Serum Albumin (BSA; final concentration 0.02%) 
5ml        tRNA (10mg/ml) 
1ml        Salmon Sperm (10mg/ml) 
4ml        5M DTT (final concentration 200mM) 
aliquot and store at -80°C  
 

Lysogeny Broth (LB Medium) 

10g  Bacto-Tryptone  
5g    Bacto-Yeast extract  
10g  NaCl 
adjust to 800ml with H2Obidest 

adjust to pH 7.5 with NaOH 

adjust volume to 1000ml with H2Obidest 
sterilize by autoclaving, store at 4°C 
 

LB Agar 

10g  Bacto-Tryptone  
5g    Bacto-Yeast extract  
10g  NaCl 
adjust to 800ml with H2Obidest 

adjust to pH 7.5 with NaOH 
add 15g Agar, adjust volume to 1000ml with H2Obidest  
sterilize by autoclaving, store at 4°C 
 

Ampicillin/Kanamycin 

100mg/ml salt in 75% Ethanol (storage -20°C) 

 

Culture medium for embryonic stem (ES) cells 

500ml Dulbecco’s Modified Eagle Medium (DMEM) 
75ml   Fetal Calf Serum (FCS, heat inactivated 56°C/30minutes) 
1ml     β-Mercaptoethanol (50mM) 
5ml     L-Glutamine (200mM)  
5ml     non-essential amino acids (100x MEM) 
90µl    Leukaemia Inhibitory Factor (LIF107U/ml) 
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Culture medium for feeder cells 

500ml Dulbecco’s Modified Eagle Medium (DMEM) 
50ml   Fetal Calf Serum (FCS, heat inactivated 56°C/30minutes) 
5ml     L-Glutamine (200mM)  
6ml     non-essential amino acids (100x MEM) 
 

2x Freezing medium for feeder and ES cells 

3ml DMEM 
5ml FCS 
2ml Dimethylsulfoxid (DMSO) 
 

Lysis buffer for ES cells 

5ml      1M Tris HCL  
10ml    0.5M EDTA 
1ml      5M NaCl 
12.5ml 20% N-Lauroylsarcosine 
prior to use: add 0.6ml Proteinase K (20mg/ml)/12ml buffer 
 

Precipitation mix for isolation of genomic DNA from ES cells 

10ml cold 100% Ethanol 
0.15ml 5M NaCl 
 

Cryoprotection solution 

125ml Glycerin 
125ml Ethylenglycol 
250ml 1xPBS 
 

 

  



 

206 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  Acknowledgments 

207 
 

12 Acknowledgments 

 

I am very grateful to Prof. Dr. Alon Chen for giving me the opportunity to realize my 

doctoral thesis in his department. 

I would also like to express my very special thanks to Prof. Dr. Kaspar Matiasek for 

supervising my thesis. 

Above all, I want to express my deepest gratitude to Dr. Jan Deussing. It was him 

who shared his profound knowledge and expertise about molecular biology and 

mouse genetics with me. Without his support and patience, it would not have been 

possible for me to realize this thesis. 

A heartful gratitude also goes to Dr. Nina Dedic. Thank you for all your help in the 

past years and especially the successful cooperation regarding our joint paper. 

I am also greatly indebted to the following members of our laboratory: Dr. Rosa Eva 

Hüttl, Dr. Mira Jakovcevski and Anna Mederer for help with the virus-studies; Dr. 

Martin Ableitner and Max Pöhlmann for assistance with the behavioral experiments. 

My gratitude also goes to all our collaborators: Dr. Ralf Kühn and the IDG mouse 

facility staff (for the provision of ES cells and EMFI feeder cells and for blastocyst 

injections); Dr. Valery Grinevich and Dr. Arenkiel for adenovirus preparations and 

plasmid supply. 

My warm thanks for technical assistance go to all technicians within the department 

Chen: Carola Eggert, Cornelia Flachskamm, Maria Holzapfel, Markus Nußbaumer, 

Andrea Parl, Andrea Reßle, Marcel Schieven, Bianca Schmid, Rainer Stoffel, Lisa 

Tietze and furthermore to all members of the animal facility and to the technical 

personnel of the institute. My special thanks go to Daniela Harbich for the 

constructive and collegial cooperation. In addition, I would especially like to thank all 

the colleagues that I have had the pleasure to work with from the very beginning: 

Stephanie Alam, Sabrina Bauer, Steffi Unkmeir and Barbara Wölfel.  

I want to express special thanks to Tanja Siart for her encouragement and friendship 

over the years.  

Finally, I would like to thank my parents for their continuous support, constant faith 

and love. 


