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1 Introduction 

‘How can I find my way through a complex environment?’ – The work of last year's Nobel 

laureates, John O'Keefe, May-Britt and Edvard Moser contributed substantially to clarify this 

essential issue. These scientists discovered a positioning system in the brain that constitutes 

the basis for orientation in space. The hippocampal formation, including the hippocampus and 

the entorhinal cortex (EC), is an important brain area involved in this orientation system. 

Specialized neuronal cells, called place cells and grid are crucially involved in spatial navigation 

(Fig. 1).  

 

 

Figure 1   Function of place and grid cells 

A schema of the function of place cells in the hippocampus (yellow) and grid cells in the EC (blue). Place cells fire at particular 

locations in the environment. Every place cell is activated at a different place. A single grid cell fires when the animal or human 

reaches particular locations and these locations are arranged in a hexagonal pattern. 

Adapted from © 2014 The Nobel Committee for Physiology or Medicine; Illustration and layout: Mattias Karlén 

 

The firing of these neurons is strongly modulated by the theta rhythm, one of the most 

important oscillations in the mammalian brain firing in the frequency range of 4 to 12Hz [4-6]. 

These oscillations are critically involved in the controlling of neuronal networks and the 

communication between different brain areas. Theta waves are particularly present during 

wake, especially during activity states, such as walking or exploratory sniffing and also during 
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rapid eye movement (REM) sleep [1].  At REM sleep onset, waves characteristic for non-rapid 

eye movement (NREM) sleep (sharp ripple waves) are terminated and the oscillation pattern 

is switched to theta waves within the hippocampus. This theta band is maintained during the 

whole REM sleep episode (Fig. 2).  

 

 

Figure 2   Exemplary theta trace and behaviors associated with this oscillation 

The trace shows theta waves in the frequency range of 4 to 12Hz recorded from the hippocampus occurring primarily during 

activity states and REM sleep. 

Modified from [2] and images from: http://mentalfloss.com and http://www.shutterstock.com  

 

Theta rhythm generation and modulation originates from brainstem (BS) nuclei and depends 

critically on projections from medial septum (MS). MS receives input from deeper brain areas 

via two different pathways. The direct pathway which projects directly from BS to MS [58, 59] 

and the indirect one which passes the hypothalamus (HT) [60] (Fig. 3). MS GABAergic neurons 

inhibit hippocampal GABAergic (inhibitory) interneurons, which in turn target principal 

neurons of the hippocampal formation. Thus MS GABAergic neurons contribute to induce 

theta rhythms within the hippocampus by transmitting a disinhibitory signal to hippocampal 

pyramidal cells [3]. In previous studies it could be shown that stimulation of MS neurons drives 

theta rhythm [2] and MS lesions eliminate theta rhythm in the hippocampal formation [3, 4]. 

Consequently MS has been designated as pacemaker for the theta rhythm [5]. 

http://mentalfloss.com/
http://www.shutterstock.com/
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Figure 3   Pathways regulating theta oscillations 

Direct and indirect pathways mediating the activation of medial septum (MS). Both pathways originate from the brainstem 

(BS), the indirect one passes the hypothalamus (HT), the direct one goes directly to MS. GABAergic neurons in MS project to 

the hippocampal formation. 

Modified from [4] 

 

The circuits involved in generating theta rhythm are well studied, but it is little known how ion 

channels contribute to the electrical activity pattern of single cells involved in the regulation 

mechanism. In this context the expression of hyperpolarization-activated cyclic nucleotide-

gated cation (HCN) channels within the MS could be highly relevant, since it is known that they 

contribute to the regulation of rhythmic bursting and network oscillations in various brain 

areas [5-8]. Consistent with this hypothesis, preliminary evidence suggests that selective 

blocking of HCN channels within MS neurons reduces the firing activity of septo-hippocampal 

GABAergic neurons in vivo [9]. As septo-hippocampal GABAergic neurons projections lead to 

an induction of brain activity in hippocampal pyramidal cells, a HCN channel blockade could 

lead to an inhibition of these cells and thus to a reduction of the theta rhythm.  

HCN channels belong to the superfamily of voltage gated pore-loop cation channels and are 

activated by hyperpolarization [10, 11]. The current produced by HCN channels, Ih has been 

termed as pacemaker current because of its importance for controlling the rhythmic activity 

of cardiac cells and neurons [12-20]. Ih is a mixed cationic current carried by Na+ and K+ and its 

activation is modulated by cAMP [21, 22].  
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It is known that HCN channels contribute via several mechanisms to the regulation of 

excitability and electrical activity of neurons. HCN channels are constitutively open at rest and 

pass a depolarizing inward current, playing a role in determining the membrane potential in 

many neurons. Furthermore HCN channels may counteract both, membrane 

hyperpolarization by conducting a depolarizing inward current (caused by Ih channel 

activation) and depolarization by facilitating hyperpolarization (due to Ih channel 

deactivation), thus HCN channels demonstrate a negative-feedback property [11]. As a 

consequence HCN channels are able to reduce inhibitory and excitatory stimuli leading to a 

stabilization of the membrane potential. The relation between the activation curve and the 

reversal potential of Ih is responsible for this characteristic because the reversal potential of Ih 

declines close to the base of its activation curve. Hyperpolarization augments the number of 

open HCN channels and the depolarizing inward current causes a membrane potential of 

initial values near the resting membrane potential (depolarizing voltage sag). In contrast 

depolarization leads to deactivation of the Ih and thereby causes a loss of the tonic 

depolarizing current (hyperpolarizing voltage sag) and returns membrane potential back to 

rest [11]. In addition there is evidence that Ih facilitates resonance and network oscillations 

crucially involved in information processing in neuronal circuits. The most extensively studied 

system regarding neuronal oscillations is the thalamo-cortical system, which operates in two 

distinct firing modes, transmission mode and burst mode (Fig. 4A). During burst mode there 

is an interaction of a low-threshold Ca2+ current (IT), conferred by T-Type Ca2+ channels, and Ih. 

Hyperpolarization activates Ih leading to a depolarization of the membrane potential and 

causes an activation of IT. Further membrane depolarization facilitates a threshold for a burst 

of Na+ and K+ dependent action potentials. Repolarization, caused by IT deactivation, is 

followed again by hyperpolarization and by an activation of Ih. The cycle repeats again and 

continuous rhythmic burst firing is sustained (Fig. 4B) [11]. The time course of activation of 

HCN channels determines the frequency of membrane potential rhythms [7, 8] and the 

sensitivity is adjusted by neurotransmitters modulating cAMP levels. The transition between 

burst mode and transition mode is highly controlled by neurotransmitters and neuropeptides 

that elevate cAMP levels leading to an enhancement of Ih activity [23]. Pathological alterations 

in this process are associated with the generation of epileptic seizures [24]. It could be 

demonstrated previously that an absence of HCN channels leads to an increased oscillatory 
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activity in the thalamo-cortical network and thus to spike and wave discharges (SWDs), the 

major feature of absence epilepsy [25].  

 

 

Figure 4   The involvement of Ih in the generation of thalamic oscillations 

(A) Thalamic neurons generate spontaneously rhythmic bursts of action potentials due to the interaction of IT and Ih. 

Depolarizing the neuron leads to a change of the firing mode from rhythmic burst firing to tonic action potential generation. 

Removal of the depolarization leads again to rhythmic burst firing. (B) Detailed view of rhythmic burst firing mode (left panel) 

and tonic firing mode (right panel).  

Adapted from [11] 

 

HCN channels consist of four subunits forming homotetramers or heterotetramers. Each HCN 

channel subunit is composed of the transmembrane core, the cytosolic N-terminal and the C-

terminal domain. The transmembrane channel core consists of six α-helical segments (S1-S6) 
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and an ion-conducting pore loop between S5 and S6. The pore contains the glycine-tyrosine-

glycine (GYG) motif that represents the characteristic selectivity filter in K+ channels [26]. The 

C-terminus contains a cyclic nucleotide binding domain (CNBD), which is connected to the S6 

segment via the C-Linker [27]. Direct cAMP binding to the CNBD affects the voltage dependent 

activation of HCN channels. The C-linker of the CNBD is an autoinhibitory domain that lowers 

open probability in the absence of cAMP. Binding of cAMP increases channel activity by 

removing tonic channel inhibition that is conferred by this domain. That means the binding of 

cAMP leads to a shift of the voltage dependence of activation towards more positive values. 

For the voltage sensitivity of HCN channels the positively charged S4 segment is responsible. 

It carries nine arginine or lysine residues regularly spaced at every third position [28, 29] (Fig. 

5).  

 

 

Figure 5   Structure of HCN channels 

HCN channels consist of four homologous subunits. Each subunit consists of six α-helical transmembrane segments (S1-S6) 

containing the voltage sensor (S4) and the pore between segment S5 and S6, including the selectivity filter (GYG). N- and C-

terminus are localized intracellularly. The C-Terminus consists of three parts, the C-Linker, the CNBD and the sequence 

downstream of the CNBD. 

 

There is evidence that HCN channels contain auxiliary proteins in addition to the principal 

pore-forming subunits. These auxiliary proteins are required for modifying 

electrophysiological properties, the functional coupling to signaling pathways and trafficking 

to specific cellular compartments. An important auxiliary protein is the MinK-related protein 
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MiRP1. It interacts with several HCN channel types and increases current densities. The 

transmembrane protein KCR1 was reported to interact with HCN2. It acts as an inhibitory 

auxiliary subunit of HCN channels and serves as a regulator of cardiac automaticity. An 

important neuronal auxiliary subunit of HCN1 channels is TRIP8b (TPR-containing Rab8b-

interacting protein), an accessory protein that determines the cell surface expression and 

dendritic localization of the channel and reduces the cyclic nucleotide dependence of HCN1 

channels [30] 

The HCN channel family comprises four isoforms (HCN1-4). The members of the family are 

characterized by different biophysical properties. HCN1 channels activate quickly on 

hyperpolarization and are modulated barely by cAMP [31]. HCN2 channels activate more 

slowly and respond strongly to cAMP [32]. HCN3 has also a moderate activation kinetic and is 

only weakly affected by cAMP [10] while HCN4 is the slowest channel and shows strong 

response to cAMP [33, 34]. 

HCN channels in general are expressed in cardiac cells and in a variety of peripheral and central 

neurons [35, 36].  Studies examining the mRNA distribution reveal that all four HCN isoforms 

are expressed throughout the brain, with different distributions and levels. HCN1 mRNA is 

especially expressed in cortical areas, HCN2 shows a ubiquitous expression at a high level, 

HCN3 is weakly expressed throughout the brain with higher expression levels in the 

hypothalamus and olfactory bulb [37] and HCN4 is particularly expressed in subcortical areas 

[31, 32, 38]. As HCN2 is the dominant subunit expressed in MS neurons, an important 

structure involved in control and generation of the theta rhythm, it is possible that HCN2 

channels are involved in theta rhythm generation [39, 40]. Further initial data reveal that 

elevation of cAMP in MS neurons results in an increase of hippocampal theta frequency [41] 

or induction of theta burst firing [42] while a decrease of cAMP levels leads to a reduction of 

firing activity and theta bursting [43]. As HCN2 is highly regulated by cAMP it is interesting to 

investigate whether the theta modulating effect in MS neurons via cAMP is HCN2-mediated. 

So it is essential to clarify which impact a cAMP insensitivity of HCN2 channels would have on 

theta regulation mechanisms.  

It was shown in previous studies that HCN1 has also a slight effect in theta regulating 

mechanisms. Deletion of HCN1 increases the power of theta oscillations slightly and enhances 

hippocampal-dependent learning and memory [44]. These findings suggest a direct 
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involvement of HCN1 channels in suppressing theta frequency activity. It is likely that the theta 

augmentation is not due to the absence of HCN1 in MS, as HCN1 expression is low in this area 

and Ih block leads to a reduction of theta power [9]. Possibly its expression within the 

hippocampus, which may contribute partly to theta regulation, is responsible for this effect. 

Furthermore HCN1 has been identified as a determinant of spatial scale in the EC. It is known 

that the grid cell firing field expanses from dorsal to ventral EC. It was demonstrated that 

entorhinal cells in HCN1 KO mice show an increased grid field size [45]. However, in vitro data 

of a HCN1 KO model predict an increase in grid cell spacing that is far larger than what was 

observed in vivo. This suggests that the grid spacing in vivo is maintained by residual Ih [45-

47]. The increase of the grid field size occurs simultaneously with an augmentation in the size 

of place fields within the hippocampus [48], indicating that the same mechanisms play a role 

in influencing the scales of grid and place cells. It needs to be determined whether the scale 

change is induced locally or if it results from a HCN deficiency upstream of the EC and 

hippocampal region. A promising nucleus could be MS, which has projecting neurons to the 

hippocampus and EC influencing the theta rhythm. As the HCN2 subunit is highest expressed 

in MS [39] it can be assumed that this isoform could have a major impact on determining theta 

frequency within the hippocampal formation. 
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2 Aim of this study 

In this study, the contribution of HCN2 channels to the regulation and control of neuronal 

oscillations should be investigated. The main focus of this work was to investigate the role of 

HCN2 within the MS, the pacemaker nucleus for theta regulation. Firstly, the protein 

expression of HCN2 in the MS should be examined by performing immunohistochemistry 

staining. To estimate the impact of HCN2 on neuronal rhythms in vivo electroencephalography 

(EEG) measurements should be established and performed. Both, global and MS-restricted 

HCN2 KO animals should be used for EEG recordings. The MS-selective KO was generated by 

using an in vivo AAV-mediated cre-dependent gene silencing approach in floxed HCN2 mice. 

To estimate the effect of cAMP-insensitive HCN2 channels on neuronal oscillations, EEG 

measurements should be performed with HCN2 FEA and EA mutant mice. Both mutants are 

insensitive to cAMP while the FEA mutant is additionally activated at more positive values in 

comparison to WT in systems with low basal cAMP levels. The behavioral phenotype of a HCN2 

loss in MS neurons should be assessed by conducting the water cross maze (WCM), a 

behavioral test for assessing spatial memory capabilities. Another important question 

addressed by this study was to investigate the contribution of HCN2 to the occurrence of 

absence seizures by performing EEG measurements in global HCN2 KO, FEA and EA animals.  
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3 Material and methods 

3.1 Chemicals, solutions and buffers 

Unless indicated otherwise, all used chemicals were obtained from Merck, Roth and Sigma-

Aldrich. The quality used standard was pro analysi or for molecular biological use. For all 

working solutions high pure and deionized water was used (high pure water system Easypure 

UV/UF, Werner GmbH). Solutions for sensitive applications (e.g. PCR) or solutions for long-

term use were autoclaved or sterile filtered. 

 

3.2 Mouse lines 

In the present thesis HCN2 knockout (KO,L1) and HCN2 floxed (L2) male mice as well as male 

mice of the HCN2 mutant lines HCN2 EA and HCN2 FEA including corresponding WT 

littermates were used. Unlike WT mice, HCN2 L2 mice possess two loxP sites, which flank exon 

2 and 3 of the HCN2 gene. In the HCN2-deficient mouse line exon 2 and 3 encoding for the 

transmembrane segments 2 to 6 and the pore were eliminated via cre-mediated deletion [25]. 

The HCN2 EA mutant displays an insensitivity to cAMP. It shows two point mutations (R591E 

and T592A) in Exon 7 in the CNBD of the HCN2 channel. The resulting change in the CNBD 

abolishes high affinity binding of cAMP leading to a suppression of the coactivaton of the 

channel. The HCN2 FEA mutant is additionally activated at voltages that are more positive. In 

native cells HCN channels are possibly preactivated to some extent by basal cAMP levels [49]. 

To imitate this conceivable preactivation an additional third mutation (Y449F) in Exon 4, which 

encodes for the C-Linker of the channel was inserted. This mutation leads to an activation 

curve shift to more positive values (Fig. 6). 
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Figure 6   Schematic illustration of HCN2 mutant alleles 

Schematic illustration of WT, HCN2 floxed (L2), HCN2 KO (L1), HCN2 EA and HCN2 FEA alleles. Numbered boxes are exons, 

mutated exons are marked by blue and green boxes respectively, dark gray triangles indicate loxP sites, UTRs are light gray 

boxes. 

 

The mating of HCN2 KO, HCN2 EA and HCN2 FEA mouse lines was heterozygous, the mating 

of HCN2 floxed was homozygous. The HCN2 KO mouse was bred on a mixed background of 

129SvJ and C57-Bl6/N strains and all other used mouse lines were on a background of the C57-

Bl6/N strain. All animals received food (Ssniff; regular feed: R/M-H, breeding feed: M-Z 

Extrudat) and water ad libitum and were maintained under a 12h light/dark cycle. 

 

3.3 Immunohistochemistry 

Mouse brains were removed due to legal regulations. They were directly frozen and 

dehydrated in 2-methylbuatnol for 5min. To evaporate the mouse brains they were 

maintained on dry ice for approx. 30min and then stored at -80°C. The brains were sectioned 

with a cryostat (Leica CM3050S) into 30µm thick coronal sections. 
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Brain tissues were rehydrated 10min in PBS. Sections were fixed and permeabilized in  ice cold 

100% Methanol at -80°C for 30 min, incubated 1h with PBS and washed 3x with PBS for 10min. 

Sections were blocked with 10% normal goat serum (NGS) (Sigma), 0.1% Triton-X100 for 1h. 

The incubation with αHCN2 primary antibody (1:1000) (#APC-030, Alamone labs), diluted in 

1%NGS, 0.1% Triton-X100 was accomplished for 2h, followed by extensive washing with PBS 

and secondary antibody Cy3 (1:400) (Jackson ImmunoResearch) incubation for 1h. After 

washing with PBS for 10min a Hoechst staining (5µg/ml) (Hoechst 33342) was performed. 

Sections were embedded in Mowiol mounting medium. All chemicals were diluted in ice cold 

PBS. Images were captured and analyzed using Leica SP8 SMD Confocal Microscope. Figures 

were prepared using ImageJ software. Manipulation of images were restricted to threshold 

and brightness adjustments applied to the entire image. 

PBS 10x (1M) 

100 mM Na2HPO4 

1.37 M NaCl 

27 mM KCl 

18 mM KH2PO4 

 

3.4 Electroencephalography (EEG) 

3.4.1 EEG surgery 

The appropriate surgical anesthesia was administered and eye ointment was applied to each 

eye. The body hair was removed liberally from all intended incision sites. The incision sites 

were disinfected. A 2-3cm incision through the skin along the neck was made. A subcutaneous 

pocket was formed by blunt dissection from the neck incision across the back and down along 

the animal’s flank. The tunnel was irrigated with sterile saline and the transmitter (F20-EET 

Mouse Telemetry for CNS Research, DSI) was inserted into the subcutaneous pocket with the 

biopotential leads orientated cranially. 

The lead pair of channel 2 (orange) was used to monitor postural muscle electromyography 

(EMG). The cervical trapezius muscle in the dorsal region of the neck was located and an area 

of the muscle that can accommodate lead attachment was selected. One of the leads was cut 
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to length and 4-5mm of the insulation from the terminal end of the lead was stripped. Using 

a 21-gauge needle, it was tunneled through approx. 3mm of muscle tissue perpendicular to 

the long axis of the fiber bundles. The bare lead wire was passed into the lumen of the needle 

so that, as the needle was withdrawn, the lead wire was left embedded in the muscle. The 

saved piece of insulation was put onto the terminal end of the lead wire, secured with several 

suture ties. This procedure was repeated for the other lead. Both leads were placed 1-2mm 

apart along the same group of muscle fibers. 

The mouse was fixed in a stereotaxic apparatus (Model 902 Dual Small Animal Stereotaxic 

Instrument, TSE). in sternal recumbence. An approx. 2cm incision was made through the skin 

along the dorsal midline from the posterior margin of the eyes to a point midway between the 

scapulae. The skull was cleared of tissue down to the bone by using a cotton bud soaked in 3% 

hydrogen peroxide. The bone was dehydrated again with application of sterile saline. The 

correct positions (ML 1.8; AP 2.0 recording electrode and ML -0.5; AP 1.0 reference electrode) 

were identified and marked by using lambda/ bregma as a reference. If the lambda to bregma 

distance was less than 4.0mm, the coordinates were adjusted. Using a 1.0mm micro drill bit 

(K-control 4970 with K5 plus-tool holder, KaVo), the skull was perforated at the marked 

locations. The holes passed completely through the skull but did not perforate the dura 

membrane. 

The channel 1 (blue) EEG leads were pervaded subcutaneously from the neck incision to the 

cranial one. The leads were cut to length. 1mm of the insulation was stripped from the 

terminal end of the leads. The wire coil were grasped between two pairs of fine forceps and 

the coil was gently stretched to a length of 3mm. With fine forceps, the lead wire was bent to 

a U-form. The bent loop portion of the wire was compressed and inserted into the skull 

perforation. The wire loop was advanced into the hole until the wire was in contact with the 

dura membrane. The compressed loop needed to expand and the spring tension held 

temporarily the bent wire in place. The procedure was repeated using the other lead from 

channel 1. The skull was dried with a cotton tip. The dental acrylic was applied sparingly to the 

lead entry holes and the surrounding bone. The dental acrylic covered all bare wire and 

incorporate the insulation of both lead wires. Once the dental acrylic was cured, the remaining 

leads were stored and the incisions were sutured and/or clipped. 



Material and methods 

19 
 

Post-surgical analgesia and antiseptic PVP-iodine ointment were administered. The mouse 

was monitored closely for the return of normal postures and behaviors. In addition, mice were 

maintained under a 12h light/dark cycle, with the light cycle beginning at 7pm. Animals were 

allowed approx. 14 days of recovery from surgery and habituation before the recording 

started. 

The animals were placed into a separate housing cage with free access to food and water 

several days before the recording started. The same number of WT and mutant mice were 

included in one recording session to equally distribute the environmental variations. Four 

animals were recorded simultaneously in one session with the Dataquest A.R.T. ™ system 

(Data Sciences International). In each session, EEG, EMG, activity and video signals were 

recorded continuously for at least 24h that means at least a full 12h light period and a full 12h 

dark period without any disturbance. Before each recording every transmitter had to be 

configured within the Dataquest A.R.T. ™ system. The EMG and the EEG signal were sampled 

at 2 kHz while activity data was sampled at 0.1Hz. Before starting the recording, the 

transmitters had to be turned on by a magnet. An AM radio tuned to 550 kHz served as an 

audible function control. 

 

3.4.2 EEG analysis 

NeuroScore™ analysis software and Matlab™ were used to analyze the neurophysiology data 

collected in Dataquest A.R.T.™. Recordings were analyzed with focus on seizures, oscillations 

and sleep staging. Vigilance states were scored by the manual, visual inspection of the traces. 

The whole recording was divided into 4s epochs. Each of these 4s epochs was scored as wake, 

NREM or REM sleep on the basis of the video, EEG, EMG and activity data due to general 

approved criteria. Wake state includes a broad variety of behaviors (e.g. drowsiness, 

exploratory behavior, grooming), therefore it is characterized by an EEG pattern of various 

frequency contents and a low-amplitude. Not only lower frequency components (delta waves 

during drowsiness) but also higher ones (theta waves during exploratory behavior) contribute. 

Muscle tone is present and can be highly variable and the animal can be active. REM sleep is 

characterized by regular low-amplitude theta waves (4-12Hz) in the EEG. To clearly identify a 

REM sleep period, the theta ratio (quotient of theta power to delta power) was calculated. 
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The theta ratio greater than approx. 3.2 indicates a REM sleep episode. Further hallmarks of 

a REM sleep period are muscle atonia and no activity. NREM sleep is dominated by high-

amplitude slow waves in the delta frequency range (1-4Hz). The muscle tone is low-mid and 

there is no activity recognizable [51].  

Each 4s epoch of the 24h recording was visually scored as wake, NREM and REM. Artifacts 

were excluded from further analysis. All scoring data was saved in the database. The spectrum 

including EEG and EMG signal, time stamps, sleep stages in the frequency range 0.75-25Hz 

was exported into Excel using Discrete Fourier Transform (DFT) and signal window Hamming. 

To investigate the time the mice spent in the different behavioral states, all the epochs that 

had been scored as wake, NREM or REM were summed up into three separate categories. The 

total recording time minus the artifact periods was calculated. The total time spent in each 

behavioral state in the light period, the dark period and/or the total recording time was 

calculated and normalized to the total recording time. 

To calculate the mean episode duration, the artifacts were removed and then the mean of all 

individual bouts scored as wake, NREM or REM were calculated in three separate categories. 

The number of transitions from one behavioral state to another was determined and 

normalized to the total number of transitions within the total recording time. 

For determining the power change of each frequency bin over time, a 3-dimensional plot was 

created. The power intensity is visualized by a color code while the time is plotted (x-axis) 

against the frequency (y-axis). The power intensity was calculated by using Fast Fourier 

Transform (FFT). 

For power spectra analysis, the raw EEG data was imported into MatlabTM (see appendix for 

scripts). For determining power spectra, every single 4s epoch of the EEG recording was 

subjected to DFT between 0.75 and 25Hz (0.25Hz bins, 4s epoch, signal window Hamming). If 

a 4s epoch of one vigilance state was adjacent to an epoch scored as a different state, it was 

excluded from spectral analysis. The mean power spectrum was calculated in total and 

separately for each vigilance state. To correct interindividual variations in overall EEG signal 

amplitude, absolute spectral values were normalized to the mean total EEG power for all 

frequency bins of the three vigilance states. The relative EEG spectral power was averaged 
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over all mice. The relative spectral EEG power was plotted against the frequency in total and 

for each vigilance state. 

The EEG dynamics at state transition reveals the time course of the EEG changes immediately 

before and after a transition from one behavioral state to another. Based on the vigilance 

state scoring, at least 8 consecutive episodes of one behavioral state followed by at least 8 

consecutive episodes of another vigilance state were identified using a Matlab™ based script 

(see appendix). All characteristic power values of selected transitions are aligned with respect 

to the time of transition (=time 0). The power values of selected frequency ranges of 

corresponding 4s-epochs were averaged and expressed as percentage of mean power scored 

as NREM 2min before or after the transition. The power values of the particular frequency 

range were plotted against the time. 

 

3.5 Viral injection 

Adult mice were anesthetized with inhaled isoflourane and virus was delivered to MS area by 

stereotactic injection. Before starting the surgery, the surgical area and all tools and reagents 

were cleaned by wiping with 70% ethanol. The fur on the skull was shaved and the animal was 

put in the stereotaxic apparatus (Model 902 Dual Small Animal Stereotaxic Instrument, TSE). 

A dissecting microscope (OPMI 1 FR pro, Zeiss) was used to visualize the top of the animal’s 

skull. A midline incision with small surgical scissors was made and the subcutaneous and 

muscle tissue was removed. The bregma and lambda areas were cleaned using a cotton bud 

soaked in 3% hydrogen peroxide and the skull is kept moist with sterile PBS throughout the 

surgery. The position of the coordinates of bregma were measured and the coordinates of MS 

area were calculated (AP 0.7; ML 0.0; DV -3.9). A small hole <1mm in the skull was drilled with 

a dentist’s drill (K-control 4970 with K5 plus-tool holder, KaVo). The micro syringe (Nanofil 

syringe, WPI) including the needle (NF34BL, WPI) filled with rAAV8 hSyn-GFP-cre virus 

(purchased from: The Vector Core at the University of North Carolina at Chapel Hill) or control 

virus (own production) was brought carefully to the correct x, y and z position, therefore the 

needle was inserted through the hole in the skull manually. The injector (UMPIII with SYS-

Micro4 controller, WPI) covering the micro syringe was used to deliver 0.7µl virus (100nl/s) 

into the area. 2-3 min after the injection the needle was withdrawn slowly to avoid backflow. 
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The scalp wound was sutured and disinfected with PVP-iodine. The mouse was given an 

intraperitoneal injection (IP) of analgesic. The recovery and expression time was 2 weeks. 

 

3.6 Behavioral test 

The behavioral experiments testing for spatial memory were performed due to the publication 

of Kleinknecht et al [50]. The animals were 7-8 weeks old. Two weeks prior the start of the 

experiments the mice got to use to an inverse 12h day- /night cycle (start of the light phase 

7pm). So that the nocturnal animals were in the active phase while conducting the 

experiments. The water cross maze (WCM), using for this experiment consists of 4 arms, 

arranged crosswise. The four arms were marked as North, East, South and West arm in a 

clockwise manner. It was made of transparent acrylic glass, so that the visual orientation of 

the animals via external cues was possible. A removable separation enables it to block the arm 

opposite the starting arm (either North or South arm). That means the part accessible for the 

animals had a ‘T’ shape. A platform (8 x 8 cm), also made from acrylic glass was positioned 

permanently in the West arm approx. 1cm below the water surface.  So it was invisible for the 

animals. The water was renewed regularly during the experiment. A rescue bar was used to 

bring the mice back in their home cage after each run. Animals were tested in cohorts of 7. 

On every experimental day, directly prior to the test start the animals were transported from 

the holding room to the test room. For every run the mice were inserted carefully into the 

water in the start arm, the head facing the wall. The experimenter behaved quietly and stood 

still behind the experimental setup during the testing period. After having located the 

platform the animal was retrieved and put back into the home cage. The mice were dried 

under infrared light. If the animal was not able to find the platform within 30s, it was guided 

gently to the platform and after remaining 5s on the platform for orientation purposes it was 

put back into the cage. To exclude olfactory orientation as track aid, after every run the water 

was stirred thoroughly.  

Every animal passed 6 trials a day for a period of 5 days. These runs served the mice to learn 

the platform location whereas the platform position did not change. However the starting 

position changed in a pseudorandom manner during the 6 runs between North and South 
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arm. The alternating starting position forced the animal to use external cues for orientation. 

This learning type makes use of the hippocampus-dependent place learning.  

The learning efficiency was assessed by using 3 parameters: Latency, accuracy and the 

accurate learner criterion. The latency was defined as the time the animals needed to locate 

the platform. The latency was indicated as mean of all 6 trials a day. In case the animal was 

not able to locate the platform within 30s, the value of 31s was taken. Every entrance of the 

mouse into an arm was counted by the experimenter. It was assessed as entrance if the whole 

body of the mouse (tail excluded) was within the arm. A second entrance into the same arm 

was just counted if the mouse has completely left the arm before. A trial was evaluated as 

‘accurate’ if the animal chose immediately the arm in which the platform was positioned and 

located the platform correctly. Every other behavior was counted as incorrect. The accuracy 

is the percentage of accurate trials per animal and per day. An animal reached the criterion of 

an accurate learner, if it accomplished more than 83% accurate trials per day (i.e., ≥5 out of 6 

trials). The number of accurate learners was indicated as percentage of the sum of all animals 

exceeding the threshold on each day. 

 

3.7 Statistics 

OriginTM 6.1 (Originlab Corp.) was applied for the statistical analysis. The Two-Sample t-test 

was applied. A p-value < 0.05 was considered as significant and the results were indicated as 

mean +/- SEM. 
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4 Results 

4.1 Electroencephalography (EEG) 

In order to investigate the impact of HCN2 channels on the regulation of neuronal circuits an 

appropriate method had to be applied. Thus, in a first step EEG measurements suitable for 

estimating the overall brain activity were established and validated. A telemetric, wireless and 

invasive system was used to measure and analyze the voltage fluctuations resulting from ionic 

currents within the neurons. The following procedure, compromising the surgery of the 

transmitters, the recording and the analysis was installed in order to generate appropriate 

datasets.  

 

4.1.1 EEG surgery 

In order to implant the transmitters for recording EEG and EMG data into the animals the 

following surgical procedure was applied. To assure aseptic conditions all instruments and 

materials as well as the work bench were disinfected prior to surgery and during the operation 

the disinfection was repeated regularly. The appropriate surgical anesthesia was administered 

and eye ointment was applied to each eye (Fig. 7A). The body hair was removed liberally from 

all intended incision sites with the electric shaver. The incision sites were disinfected. The 

transmitter was removed from its sterile package and the serial number was noted because it 

was important to ensure that the device had been identified with the animal in which it was 

implanted. Two biopotential leads are attached to the transmitter, one for recording EEG data 

(blue, channel 1) and the other one for recording the EMG signal (orange, channel 2) (Fig. 7B). 

The leads of the transmitter were shortened to an appropriate length according to the size of 

the animal. For 6-8 week-old mice, weighing 20-25g the EEG lead was cut to approx. 40mm 

and the EMG lead to a length of approx. 35mm. The absence of the animal’s pinch toe reflex 

was confirmed and the animal was put in ventral recumbence on a temperature controlled 

surgery pad set to 37°C. A 2-3cm incision through the skin along the neck was made by using 

small, blunt dissecting scissors. A subcutaneous pocket was formed by blunt dissection from 

the neck incision across the back and down along the animal’s flank. The tunnel and the 

subcutaneous pocket were as small as possible to keep the transmitter in position. The tunnel 
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was irrigated with sterile saline and the transmitter was inserted into the subcutaneous 

pocket with the leads orientated cranially (Fig. 7C and D). 

 

 

Figure 7   EEG surgery - preparation and placement of the transmitter 

(A) Application of anesthesia IP (B) F20-EET transmitter with EMG (orange) and EEG (blue) electrodes (C) Incision and irrigation 

of the subcutaneous pocket with sterile saline (D) Transmitter and electrodes in subcutaneous pocket and orientation of 

electrodes. 

 

The lead pair of channel 2 to monitor postural muscle EMG was retrieved. The cervical 

trapezius muscle in the dorsal region of the neck was located and an area of the muscle that 

could accommodate lead attachment was selected. Using two 21-gauge needles, it was 

tunneled through approx. 3mm of muscle tissue perpendicular to the long axis of the fiber 

bundles and through a second part of muscle tissue being 1-2mm apart from the first one 

along the same group of muscle fibers (Fig. 8A). The lead wire was passed into the lumen of 

the needle so that, as the needle was withdrawn, the lead wire was left embedded in the 

muscle (Fig. 8B). 4-5mm of the insulation from the terminal end of the lead was stripped by 

using a scalpel (Fig. 8C) and the saved piece of insulation was put onto the terminal end of the 

lead wire not covered by the muscle (Fig. 8D and E). The leads were secured with several 

suture ties (Fig. 8F). The open wound was moisturized with sterile saline (Fig. 8G).  
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Figure 8   EEG surgery - EMG positioning 

(A) The 21-gauge needles tunneled through musculus trapezius (B) The lead wire passed into the lumen of the needle (C) and 

(D) The insulation from the terminal end of the lead was stripped (E) The insulation putted on the terminal end (F) The wire 

secured with several suture ties (G) The finished suture moisturized with sterile saline. 

 

Next the mouse was fixed in the stereotaxic apparatus in sternal recumbence in order to place 

the EEG leads (Fig. 9A). An approx. 2cm incision was made through the skin along the dorsal 

midline from the posterior margin of the eyes to a point midway between the scapulae. The 

skull was cleared of tissue down to the bone by using a cotton bud soaked in 3% hydrogen 

peroxide (Fig. 9B). The bone was dehydrated again with application of sterile saline. The 

correct positions (ML 1.8; AP 2.0 recording electrode and ML -0.5; AP 1.0 reference electrode) 

were identified and marked by using lambda and bregma as a reference (Fig. 9C and D). If the 

lambda to bregma distance was less than 4.0mm, the coordinates were adjusted.  Using a 

1.0mm micro drill bit, the skull was perforated at the marked locations (Fig. 9E). The holes 

passed completely through the skull but did not perforate the dura membrane. Care was taken 

to prevent bleeding (Fig. 9F). 
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Figure 9   EEG surgery - EEG positioning 

(A) Fixed mouse in stereotactic apparatus (B) Incision on the scalp and clearing skull with 3% hydrogen peroxide (C) 

Orientation points bregma and lambda are visible (D) Marking of identified correct position (E) Perforating the skull at marked 

positions (F) Drilled holes are visible. 

 

The EEG leads were pervaded subcutaneously from the neck incision to the cranial one (Fig. 

10A). 1mm of the insulation was stripped from the terminal end of the leads by using a scalpel 

(Fig. 10B). The wire coil were grasped between two pairs of fine forceps and the coil was gently 

stretched to a length of 3mm (Fig. 10C). With fine forceps, the lead wire was bend to a U-form. 

The bent loop portion of the wire was compressed and inserted into the skull perforation. The 

wire loop was advanced into the hole until the wire was in contact with the dura membrane. 

The compressed loop needed to expand and the spring tension held temporarily the bent wire 

in place (Fig. 10D and E). The procedure was repeated using the other EEG lead. The skull was 

dried with a cotton tip. The dental acrylic was blended and applied sparingly to the lead entry 

holes and the surrounding bone (Fig. 10F and G). The dental acrylic needed to cover all bare 

wire including the insulation of both lead wires (Fig. 10H). Once the dental acrylic was cured, 

the remaining leads were stored and the incisions were sutured and clipped (Fig. 10I). 
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Figure 10   EEG surgery - EEG fixation 

(A) Pervaded leads to the cranial incision (B) Stripped insulation from the terminal end (C) Wire coil is stretched (D) Schema 

how coil is inserted (E) Inserted wire into the cranium (F) Mixed cement for fixation (G) Cement put on wires (H) Cement 

covered on wires (I) All incisions were sutured.  

 

Post-surgical analgesia and antiseptic PVP-iodine ointment were administered. The animal 

was placed back in a cage and put on a warm (37°C) platform until it was awake. It was 

transferred to a cage with one of its littermates to allow social interaction. The mouse was 

monitored closely during the recovery period of 4-10 days and parameters like wound healing, 

general health condition, body weight and vital parameters were assessed regularly. In 

addition, mice were maintained under a 12h light/dark cycle, with the light cycle beginning at 
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7pm. Animals were allowed approx. 14 days of recovery from surgery and habituation before 

the recording started. 

 

4.1.2 EEG recording 

The animals had been placed into a separate housing cage with free access to food and water 

several days before the recording started. The same number of wild type (WT) and mutant 

mice were included in one recording session to equally distribute the environmental 

variations. Four animals were recorded simultaneously in one session. In each session EEG, 

EMG, activity and video signals were recorded continuously for at least 24h that means at 

least a full 12h light period and a full 12h dark period without any disturbance and stored 

within the Dataquest A.R.T. ™ software. In order to improve the signal to noise ratio the 

receivers were placed directly under the animals’ cages (Fig. 11). Before each recording every 

transmitter was configured within software system. The EMG and the EEG signals were 

sampled at 2 kHz while activity data was sampled at 0.1Hz. 

 

 

Figure 11   Radiotelemetric setup for EEG monitoring 

The implanted probes transmit data from mice to the Receiver (RPC1-, DSI™), further processed to the Data Exchange Matrix, 

which serves as a multiplexer. Data is finally transferred to a data acquisition and then to an analysis system. 
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4.1.3 EEG analysis 

NeuroScore™ and Matlab™ analysis software were used to analyze the neurophysiological 

data collected in the Dataquest A.R.T. ™ system. Recordings were analyzed with focus on 

seizures, oscillations and sleep staging. Vigilance states were scored by the manual, visual 

inspection of the traces. The whole recording was divided into 4s epochs. Each of these 4s 

epochs was scored as wake, NREM or REM sleep on the basis of the video, EEG, EMG and 

activity data due to general approved criteria [51]. Wake state includes a broad variety of 

behaviors (e.g. drowsiness, exploratory behavior, grooming), therefore it is characterized by 

an EEG pattern of various frequency contents and low-amplitude. Not only lower frequency 

components (delta waves during drowsiness) but also higher ones (theta waves during 

exploratory behavior) contribute. Muscle tone is present and can be highly variable, further 

the animal can show activity. NREM sleep is dominated by high-amplitude slow waves in the 

delta frequency range (1-4Hz). The muscle tone is low-mid and there is no activity 

recognizable. NREM sleep is intersected regularly by REM sleep episodes. Normal REM sleep 

is characterized by regular low-amplitude theta waves (4-12Hz) in the EEG. To clearly identify 

a REM sleep period, the theta ratio (quotient of theta power to delta power) is calculated. The 

theta ratio greater than approx. 3.2 indicates a REM sleep episode. Further hallmarks of a REM 

sleep period are muscle atonia and the animals displays no activity (Fig. 12).  
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Figure 12   Representative EEG and EMG traces and appropriate power spectra for each vigilance state 

Wake is characterized by a variable EEG and a variable EMG (upper panel). NREM sleep is characterized by a peak in the delta 

frequency range (1-4Hz) and by a low EMG (middle panel). REM sleep is dominated by a peak in the theta wave (4-12Hz) and 

a very low EMG (lower panel).  

 

Each 4s epoch of the 24h recording was visually scored as wake, NREM and REM and artifacts 

were excluded from further analysis. All scoring data were saved in the database. The spectra 

including EEG and EMG signal, time stamps and sleep stages in the frequency range 0.75 to 
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25Hz were exported into Excel using Discrete Fourier Transform (DFT) and signal window 

Hamming or into Matlab™. 

4.1.3.1 Time spent in behavioral states 

All the epochs that had been scored as wake, NREM or REM were summed in three separate 

categories. The total recording time minus the artifact periods was calculated. The total time 

spent in each behavioral state in the light period, the dark period and the total recording time 

was calculated and normalized to the total recording time. 

4.1.3.2 Mean episode duration 

The artifacts were removed and then the mean of all individual bouts scored as wake, NREM 

or REM were calculated in three separate categories. 

4.1.3.3 Transitions 

The number of transitions from one behavioral state to another was determined and 

normalized to the total number of transitions within the total recording time. 

4.1.3.4 Color-coded spectrograms 

For determining the power change of each frequency bin over time, a 3-dimensional plot was 

created by using Matlab™ (see appendix for scripts). The power intensity was visualized by a 

color code while the time was plotted (x-axis) against the frequency (y-axis). The power 

intensity was calculated by using Fast Fourier transform (FFT).    

4.1.3.5 Spectral analysis – power spectra 

The raw EEG data was imported into Matlab™ (see appendix for scripts). For determining 

power spectra, every single 4s epoch of the EEG recording was subjected to DFT between 0.75 

and 25Hz (0.25Hz bins, 4s epoch, signal window Hamming). If a 4s epoch of one vigilance state 

was adjacent to an epoch scored as a different state, it was excluded from spectral analysis. 

The mean power spectrum was calculated in total and separately for each vigilance state. To 

correct interindividual variations in overall EEG signal amplitude, absolute spectral values 

were normalized to the mean total EEG power for all frequency bins of the three vigilance 

states. The relative EEG spectral power was averaged over all mice. The relative spectral EEG 

power (x-axis) was plotted against die frequency (y-axis) in total and for each vigilance state. 
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4.1.3.6 EEG dynamics at state transitions 

This analysis reveals the time course of the EEG changes immediately before and after a 

transition from one behavioral state to another. Based on the vigilance state scoring, at least 

8 consecutive episodes of one behavioral state followed by at least 8 consecutive episodes of 

another vigilance state were identified using a Matlab™ based script (see appendix). All 

characteristic power values of selected transitions were aligned with respect to the time of 

transition (=time 0). The power values of selected frequency ranges of corresponding 4s-

epochs were averaged and expressed as percentage of mean power scored as NREM 2min 

before or after the transition. The power values of the particular frequency range was plotted 

against the time (Fig. 13). 
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Figure 13   Schematic illustration of the EEG dynamics at state transition 

Consecutive episodes of one behavioral state (e.g. wake state) followed by consecutive episodes of another vigilance state 

(e.g. NREM state) were identified. A DFT of every single 4s epoch was performed and all characteristic power values were 

aligned with respect to the time of transition (=time 0).  
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4.2 EEG recordings in HCN2 mutant mouse lines 

To test whether and to what extent HCN2 channels and their regulation via cAMP are involved 

in neuronal rhythmicity, combined EEG and EMG measurements including an activity signal 

plus video data in freely moving mice were applied. The data provided information about the 

electrical activity of the brain because the EEG recording primarily detects the signal 

generated by the synchronized postsynaptic potentials which vary considerably between the 

different vigilance states and activities. In addition coherent signals from deeper brain layers, 

such as hippocampus, can also importantly contribute to the rodent’s EEG [48]. The raw data 

analysis was focused on two major interests. Firstly, the occurrence of seizure events was 

assessed in every mouse line. Secondly, the EEG in combination with the EMG trace was used 

to distinguish between the different vigilance states and activities by their characteristic 

pattern, as a base for further analysis [51, 52]. 

 

4.2.1 HCN2 KO 

To assess the consequences of the general lack of HCN2 channels on brain activity, EEG and 

EMG raw traces including activity data and derived signals were analyzed in global HCN2 KO 

and WT littermates (WT n=8; HCN2 KO n=9). Preexisting EEG data of global HCN2 KO animals 

[25] had been acquired with a non-telemetric method which meanwhile became obsolete. 

That is why the data was regathered using a state-of-the-art wireless, telemetric system.  

As previously reported HCN2 KO mice display epileptiform activity including general SWDs, 

the neurological correlates of absence epilepsy, in the raw EEG trace [25]. These findings were 

confirmed and it was shown that the time within two seizure events is mostly shorter than 

20s. In addition generalized seizures were detected in these animals (Fig. 14).   
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Figure 14   HCN2 KO - EEG and EMG raw traces 

Representative raw EEG and EMG patterns of WT (left panel) and HCN2 KO (right panel) animals of 30s recordings. Asterisks 

indicate SWDs (top) and cumulative numbers of the seizure-free time between two absence epilepsy epochs in HCN2 KO 

animals (bottom). 

 

To investigate whether there were changes of the frequency’s content and its power, the 

global power spectrum between 0.75-25Hz was analyzed in order quantify the contribution of 

the various frequencies that constitute the EEG signal. The total KO spectrum showed an 

increase in low-frequency delta rhythms (1-4Hz), which are mainly of thalamic origin. In 

addition a drop down in the theta frequency band (4-12Hz) was remarkable. The theta wave 

is MS driven and partially generated in the hippocampus. The theta band decrease is overlaid 

by a power increase at around 5 Hz. This augmentation is likely a result of the absence seizures 

occurring in HCN2 KO animals, because the SWDs fire in this range [25] (Fig. 15). This multitude 
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of effects apparent in the global power spectrum was consistent with the fact that HCN2 is 

expressed in numerous brain regions [39, 40].  

 

 

Figure 15   HCN2 KO - global power spectrum 

Average total EEG power spectra of 24h recording time between 0.75 and 25Hz (0.25Hz bins, 4s epoch, Hamming) are shown 

in corresponding graphs. HCN2 KO spectrum shows an increase in the delta frequency range (1-4Hz) and a decrease in the 

theta frequency range (4-12Hz). Rectangle shows frequency content of absence seizures reflecting the peak at 5Hz in the 

global HCN2 KO spectrum. Asterisks indicate points with significant genotype differences (p<0.05, Two-Sample t-test). 

 

To take a closer look at these findings the different vigilance stages should be analyzed in 

detail. The color-coded spectrogram (Fig. 16), indicating the power density of each frequency 

as a function of time showed that WT animals display a vigilance state pattern typical for 

rodents. During the wake state the EEG was rather variable, it consisted of slower (delta band 

range; 1-4Hz) and faster (theta band range; 4-12Hz) frequency components and it was 

characterized by a higher and variable EMG. The EEG of NREM sleep was dominated by a high 

delta frequency component while the EMG remained low. The NREM sleep was interjected by 
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REM sleep episodes characterized by a high theta frequency fraction and also a low EMG. (Fig. 

16, left panel). Due to this criteria it was possible to distinguish clearly between the different 

vigilance states in WT animals. However, the HCN2 KO EEG and EMG color-coded heat maps 

seemed to be totally messed up thus a vigilance state classification was impossible. The EEG 

spectrogram allowed no real differentiation because many different frequencies were present 

throughout the whole recording (Fig. 16, right panel). Due to the impossibility of a vigilance 

state classification a general statement could not be made regarding the duration and the 

quality of the different arousal states. It is further conspicuous that there is an additional band 

visible in the HCN2 KO EEG spectrogram at around 13Hz and that the EMG is rather high 

throughout the recording. These phenomena are known from mice which experienced fear 

conditioning [53].   

 

 

Figure 16   HCN2 KO - color-coded spectrogram 

Representative sections of a color-coded heat map of EEG and EMG power between 0.75–25 Hz (0.25-Hz bins) as a function 

of time. WT animals show a normal distribution including wake, NREM and REM portions clearly distinguishable (left panel). 

However, HCN2 KO animals show a uniform frequency distribution thus a classification in different vigilance states was 

impossible (right panel). Scale indicates intensity showing red for high and blue for low intensity levels. 
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To further elucidate possible abnormalities in HCN2 KO animals which could be associated 

with the changes in the power spectrum, the activity level during light and dark phases was 

analyzed. During baseline conditions, WT mice yielded an activity pattern typical for nocturnal 

rodents, being more active during the dark phase and quieter during the light phase. The 

behavior of HCN2 KO mice was distinct from that of WT littermates, because the activity 

pattern differed barely between the 12h light and dark period (Fig. 17). 

 

 

Figure 17   HCN2 KO - activity pattern 

Comparison of the activity pattern of HCN2 KO and WT animals. WT mice show a behavior normal for nocturnal rodents, 

being more active during the dark phase (dark gray) and less active during the light phase (light gray). However, HCN2 KO 

animals show an activity pattern equal during dark and light period. Activity pattern is indicated as counts per minute over a 

period of 24h containing a 12 hour light and dark period respectively.  

 

This effect could either be due to reduced locomotor activity and hypoactivity, which is known 

to occur in HCN2 KO mice [25] or it could be due to other dysfunctions e.g. a disturbed 

circadian rhythm.  
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In conclusion the data reveals that HCN2 channels contribute profoundly to the generation 

and regulation of the theta frequency but it remains unknown which nuclei, expressing HCN2 

are actually involved. 

 

4.2.2 Selective HCN2 KO 

Preexisting evidence demonstrated a role for MS in controlling theta rhythms [54]. 

Predominant HCN2 expression on mRNA level in this brain area [39] leads to the hypothesis, 

that the loss of HCN2 channels in this brain area might be responsible for the attenuated theta 

power, observed in global HCN2 KO mice. First the HCN2 expression in MS neurons was 

confirmed on protein level. Therefore immunohistochemistry was performed on brain slices 

containing MS area using WT and HCN2 KO animals serving as negative control. A distinct 

HCN2 expression pattern was observed in MS area in WT slices while immunofluorescence 

staining for HCN2 was absent in HCN2 KO brain sections (Fig. 18B). To investigate the 

expression level of other HCN isoforms in this nucleus further staining was carried out. It was 

shown that both HCN1 and HCN4 were expressed much weaker than HCN2 whereas HCN4 

showed a little higher expression level (Fig. 18C). These findings confirm that HCN2 is the 

major isoform expressed in MS and therefore might be crucially involved in theta regulation. 
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Figure 18   HCN2 staining in MS neurons 

(A) Location of MS area (gray) in coronal (upper panel) and sagittal (lower panel) brain sections. (B) HCN2 expression in MS 

neurons in WT and HCN2 KO brain slices, rectangles show higher magnification; HCN2 staining in green and DAPI in magenta. 

Immunofluorescence staining of HCN2 is obvious in WT sections but absent in HCN2 KO slices in MS area. (C) HCN1 and HCN4 

expression in MS neurons in WT slices. 

 

To further investigate the causal relationship between a lack of HCN2 in MS neurons and the 

immense reduction of theta power, cre-mediated gene silencing using a floxed HCN2 (HCN2 

L2) mouse line was applied.  To locally knockdown HCN2 gene expression, simultaneously with 

the EEG surgery, 0.7µl of an adeno-associated virus (AAV) was delivered stereotactically into 

MS cells of 8-week-old HCN2 L2 mice. The virus contained either GFP-cre under the control of 
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the human Synapsin (hSyn) promoter, which transduces primarily neuronal cells (rAAV8/hSyn-

GFP-cre, further referred as GFP-cre) or a control (control n=5; GFP-cre n=6).  The GFP-cre 

virus showed a titer of 4.7x1012 virus molecules/ml and was dialyzed in w/350mM NaCl and 

5% D-Sorbitol in PBS. After having finished the EEG measurements, approx. 4 weeks after 

surgery and injection, in postmortem examinations of brains immunohistochemistry staining 

for HCN2 was performed. It could be shown that just one population of the cells within the 

MS was positive for HCN2, indicated by the green loop structure around the nucleus in Fig. 19. 

These cells might be GABAergic neurons because former data reveal that just this population 

is positive for HCN2 [55]. It could be demonstrated that the cells, which express GFP-cre (cyan 

in Fig. 19), are negative for a HCN2 staining, indicating a successful knockdown (Fig. 19).  
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Figure 19   HCN2 expression in MS after GFP-cre injection 

Stereotactic injections were used to deliver AAV-viruses containing GFP-cre or control into MS of 8-week old HCN2 L2 mice. 

The staining, performed approx. 4 weeks after injection, show that not only in the GFP-cre animals but also in control animals 

just a part of the cells are positive for HCN2 (green) suggesting that just the GABAergic population is HCN2-positive. The 

immunofluorescence staining for HCN2 (green) in MS area of GFP-cre injected cells (cyan) is diminished. Rectangles show 

higher magnification; HCN2 staining in green, DAPI in magenta and GFP-cre expression in cyan. 

 

Analyzing the EEG and EMG recordings (control n=5; selective HCN2 KO n=6), it was 

investigated whether selective knockdown of HCN2 expression in MS neurons replicates the 

phenotype seen in HCN2 KO mice. Raw EEG traces looked normal and did not show any signs 
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of epileptiform activity, notably including the absence of SWDs, which were present in the 

global HCN2 KO mouse (Fig. 20).  

 

 

Figure 20   Selective HCN2 KO - EEG and EMG raw traces 

Representative EEG and EMG patterns of WT and selective HCN2 KO animals of 30s recordings. Selective HCN2 KO trace does 

not show any abnormalities. 

 

The total EEG spectral profile between 0.75 - 25 Hz was examined in selective HCN2 KO and 

control animals. In the selective HCN2 KO group, the total EEG power showed a reduction in 

theta power and an increase in delta power, similar to the pattern observed in HCN2 KO mice 

(Fig. 21A). Taking a closer look to the power spectra of the individual vigilance states, which 

were classified due to general approved criteria, it could be demonstrated that the absence 

of HCN2 channels in MS compromised the REM sleep EEG to the greatest extent. A significant 

drop down in the theta power (4–12Hz) was observed within this vigilance state. For the wake 

state a pronounced reduction was also noted in the theta frequency range. However, the 

NREM sleep power was unaltered in the theta frequency range in the selective HCN2 KO group 

(Fig. 21B). 
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Figure 21   Selective HCN2 KO - power spectra 

(A) Total power spectra of 24h recording time between 0.75 and 25Hz (0.25Hz bins, 4s epoch, Hamming) of control and 

selective HCN2 KO animals. (B) Mean spectral profiles for wake, NREM and REM sleep between 0.75 and 25Hz (0.25Hz bins, 

4s epoch, Hamming) are shown in corresponding graphs. Selective HCN2 KO shows a decrease in theta power and an increase 

in delta power. 

 

As the theta rhythm is a major hallmark of REM sleep and the theta power drop down is most 

prominent during this sleep stage, in a next analysis step it was investigated whether the 

quality and the duration of sleep is affected by a selective HCN2 KO in MS area. Initially the 

color-coded spectrogram of selective HCN2 KO and WT animals was analyzed. The 

spectrograms of both groups showed clearly that the NREM sleep is interrupted by REM sleep 

episodes (Fig. 22, blue bars). Normally, as it is the case in WT animals, at the transition from 

NREM sleep stage into REM sleep stage there is a change to a desynchronized EEG state. The 

delta waves, present during NREM sleep disappear and theta waves become the prevailing 
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oscillation during REM episodes. However, in the selective HCN2 KO spectrogram this theta 

band (peaking at around 8Hz) was clearly diminished during REM sleep. 

 

 

Figure 22   Selective HCN2 KO - color-coded spectrogram  

Representative sections of a color-coded heat map of EEG power between 0.75 - 25Hz (0.25Hz bins) as a function of time. 

The control as well as the selective HCN2 KO animal show a normal NREM sleep interrupted by shorter REM sleep episodes 

(blue bars, arrows indicate theta). However, in the selective HCN2 KO animal the theta frequency oscillation is clearly reduced 

during REM sleep. Scale indicates intensity showing red for high and blue for low intensity levels. 

 

To exclude further vigilance state specific effects, sleep-wake architecture was analyzed. Both 

animal groups showed a sleep-wake distribution typical for this nocturnal species with high 

and low sleep times during the light and the dark phase, respectively. There were no group-

dependent differences in total NREM, REM or wake time during either light or dark phase (Fig. 

23A). The mean episode duration of wake, NREM and REM bouts was comparable in the 

selective HCN2 KO and control group (Fig. 23B). 
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Figure 23   Selective HCN2 KO - time in different vigilance states 

(A) Percentage of time spent in wake, NREM and REM sleep in total and separated for the 12h light/ dark periods. Selective 

HCN2 KO time spent in wake, NREM and REM sleep is similar to WT. (B) Mean episode duration of wake, NREM and REM 

sleep during total time is unchanged. 

 

Also the relative transition from one behavioral state to another was unchanged and the total 

number of transitions was equal in both groups (Fig. 24A and B). 
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Figure 24   Selective HCN2 KO - transition  

(A) Values indicate the relative number (mean +/- SEM) of transitions between wake, NREM and REM sleep per 24h for control 

and selective HCN2 KO animals. The relative number of transitions is unchanged (B) Absolute number of transitions within 

24h is also unaffected. 

 

Further analysis of the EEG theta power at the state transitions was carried out, in particular 

the transitions from NREM to REM sleep (NREM-REM) as well as from wake to NREM sleep 

(wake-NREM) and vice versa were examined. The control group showed the characteristic 

theta power peak at the NREM-REM sleep transition [51], while the selective HCN2 KO group 

revealed a steep decrease in theta power at the transition, which remained significantly lower 

during the subsequent REM sleep episode. Regarding the NREM-wake and wake-NREM 

transition respectively a similar phenomenon occurred. During the wake state, which was 

determined partly by its theta frequency content, the EEG theta power was significantly 

reduced in the HCN2 KO group (Fig. 25). 
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Figure 25   Selective HCN2 KO – spectral changes at state transition 

Time course of EEG power in the theta frequency range (4-12Hz) at the transition between NREM and REM, wake and NREM 

and NREM and wake. Data were expressed as a percentage of baseline values during NREM sleep. Only data for the 2min 

before and after transition are shown. Vertical dashed line indicates transition at time 0. Selective HCN2 KO animals show a 

decrease in theta power. 

 

These data indicate that the loss of HCN2 channels in MS contributes substantially to the 

generation of theta frequency, which is indeed a characteristic feature of normal REM sleep 

and also characteristic for the exploratory behavior of the wake state [51], but the REM sleep 

itself remains unaffected. 

 

4.2.1 HCN2 EA and HCN2 FEA 

To examine the impact of the cAMP-dependent HCN2 channel modulation on theta control 

mechanisms, mutants of the channel being insensitive towards cAMP, HCN2 EA (WT n=6; EA 

n=7) and HCN2 FEA (WT n=6; FEA n=7), were employed for telemetric EEG and EMG recordings 
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in freely moving mice. The HCN2 EA mutant shows two point mutations (R591E and T592A) in 

Exon 7 in the CNBD of the HCN2 channel. The resulting change in the CNBD abolished high 

affinity binding of cAMP leading to a suppression of the coactivaton of the channel. In addition 

the HCN2 FEA mutant was activated at voltages that are shifted to more positive values in 

comparison to WT in the absence of cAMP. In some native cells HCN channels are likely 

preactivated to some extent by basal cAMP [38]. To imitate a possible preactivation the 

additional F mutation (Y449F) in Exon 4, which encodes for the C-Linker of the channel was 

inserted (Fig. 26). This mutation leads to an activation curve shift to more positive values 

under basal conditions. As a consequence at the same potential more HCN2 channels are in 

the opening state than in WT control cells (mouse models were generated by Christian 

Gruner). 

 

 

 

 

 

Figure 26 HCN2 EA and HCN2 FEA - point mutations in the C-Terminus of HCN2 channels 

Transmembrane topology of HCN2 channels. The C-Terminus responsible for cAMP modulation is marked by a yellow circle 

(upper left). The mutated amino acids replaced in HCN2 EA and HCN2 FEA are indicated (upper right). V0.5 values of 

heterologous expressed mutant HCN2 channels in HEK293 cells (lower left). 

Schema adapted from [27] and chart shows unpublished data from Xiangang Zong 

 V 0.5 Δ V max cAMP 

HCN2 -89.7 +/- 0.8 (19) + 18.7 
HCN2 EA -88.4 +/- 1.0 (3) no shift 
HCN2 FEA -78.8 +/- 0.7 (11) no shift 
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The raw EEG and EMG traces demonstrated that absence epilepsy was absent in HCN2 FEA 

mice while HCN2 EA mutant mice suffered from SWDs (Fig. 27). 

 

 

Figure 27   HCN2 FEA and HCN2 EA – EEG and EMG raw traces 

Representative EEG and EMG patterns of HCN2 FEA, HCN2 EA and WT animals. Representative 30s recordings. Asterisks 

indicate SWDs. HCN2 FEA shows no abnormalities while HCN2 EA shows SWDs. 

 

To investigate the impact of a cAMP insensitive channel on the frequencies’ power, the total 

power spectrum and the power spectra of the three different vigilance states were assessed. 

The total power spectrum of the HCN2 FEA mice showed no significant difference in the 

broader theta frequency range (4-12Hz), but a slight decrease in the main theta frequency 

range (7-9Hz) compared to WT spectrum while the HCN2 EA spectrum was unchanged (Fig. 

28A). During the wake stage the power in the 5Hz range was slightly increased in both 

mutants. The power spectra of the NREM sleep stage of the HCN2 FEA and HCN2 EA mutants 

respectively resembled the WT power spectrum, only the theta power seemed to be slightly 
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reduced in the HCN2 FEA mouse. Also during the REM sleep stage the theta power showed a 

reduction in the HCN2 FEA animals, while it was comparable to WT in the HCN2 EA mice (Fig. 

28B). 

 

 

Figure 28   HCN2 FEA and HCN2 EA – power spectra 
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(A) Total power spectrum of 24h recording time between 0.75 and 25Hz (0.25Hz bins, 4s epoch, Hamming) for WT (gray), 

HCN2 FEA (green) and HCN2 EA animals (orange) (B) Mean spectral profiles for wake, NREM and REM sleep between 0.75 

and 25Hz ( 0.25Hz bins, 4s epoch, Hamming) are shown in corresponding graphs. 

 

As in HCN2 FEA animals the theta power is slightly affected it should be ruled out that the 

sleep architecture and quality was affected as a consequence, therefore the color-coded 

spectrogram of selective HCN2 FEA and EA animals with corresponding WT littermates was 

analyzed. The spectrograms of both groups showed clearly that the NREM sleep was 

interrupted by REM sleep episodes (blue bars) and the theta band (peaking at around 8Hz) 

was comparably present during REM sleep within all groups (Fig. 29).  

 

 

Figure 29   HCN2 FEA and HCN2 EA – color-coded spectrogram 

Representative sections of a color-coded heat map of EEG power between 0.75.25Hz (0.25Hz bins) as a function of time. All 

groups show a normal NREM sleep interrupted by shorter REM sleep episodes (blue bars) and the theta frequency oscillation 

is clearly visible during REM sleep within all groups. 

 



Results 

54 
 

To assess the role of the cAMP insensitive channel for behavioral state duration, the time 

spent in the different vigilance states was analyzed. Both groups showed a sleep-wake pattern 

typically for nocturnal animals, they showed high sleep times during the light phase and low 

sleep times during the dark phase. The HCN2 FEA and HCN2 EA mice did not demonstrate any 

significant differences regarding the duration of the three different vigilance states. Both in 

the HCN2 FEA and the HCN2 EA mutants the duration of individual episodes spent in wake, 

NREM and REM sleep was unchanged (Fig. 30A and B).  

 

 

Figure 30   HCN2 FEA and HCN2 EA - time in different vigilance states 

(A) Relative time spent in wake, NREM and REM sleep in total and separated for the 12h light/ dark periods for HCN2 FEA and 

HCN2 EA mice with corresponding littermates. Relative time is similar in all groups. (B) Mean episode duration during total 

time only in HCN2 FEA and HCN2 EA animals is unchanged.  

 

The relative transition from one behavioral state to another was comparable to WT in HCN2 

FEA and HCN2 EA and the total number of transitions was unchanged (Fig. 31A and B). 
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Figure 31   HCN2 EA and HCN2 FEA - transition 

(A) Values indicate the relative number (mean +/- SEM) of transitions between wake, NREM and REM sleep per 24h for control 

and selective HCN2 KO animals. The relative number of transitions is unchanged. (B) Absolute number of transitions within 

24h is also unaffected. 

 

Regarding the NREM to REM transition it is evident that theta power increased to a marginally 

lesser extent at the transition in the HCN2 FEA mouse while the augmentation was 

comparable to WT in the HCN2 EA mouse line (Fig. 32).  
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Figure 32   HCN2 EA and HCN2 FEA – spectral changes at state transition 

Time course of EEG power in the theta frequency range at the transition between NREM and REM for HCN2 FEA (left panel) 

and HCN2 EA (right panel).  Data were expressed as a percentage of baseline values during NREM sleep. Only data for the 

2min before and after transition are shown. Vertical solid lines indicate transitions at time 0. Theta power is slightly reduced 

after the transition in HCN2 FEA animals while it is comparable to WT in HCN2 EA animals. 
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4.3 Hippocampus-dependent learning  

To clarify whether the reduced theta power due to the loss of HCN2 channels in MS has an 

effect on the hippocampus-dependent place learning, a behavioral test using the water cross 

maze (WCM) was conducted [50]. For this experiment the selective HCN2 KO population was 

used, because the global HCN2 KO animals show severe physical impairments. The animals 

were 7-8 weeks old at the start of the experiment (selective HCN2 KO n=7; control n=7). The 

WCM used for this experiment consisted of 4 arms, arranged crosswise. The four arms were 

marked as North (N), East (E), South (S) and West (W) arm. A removable separation enabled 

to block the arm opposite the starting arm (either N or S arm), meaning that the part accessible 

for the animals had a ‘T’ shape. A platform was positioned permanently in the W arm below 

the water surface, invisible for the animals (Fig. 33). For every run the mouse was inserted 

carefully into the water in the start arm. After having located the platform the animal was 

retrieved and put back into the home cage. Every animal passed 6 trials a day for a period of 

5 days. These runs served the mice to learn the platform location whereas the platform 

position did not change. However the starting position changed in a pseudorandom manner 

during the 6 runs between N and S arm. The alternating starting position forced the animal to 

use external cues for orientation. The learning efficiency was assessed by using three different 

parameters: Latency, accuracy and the accurate learner criterion. The latency was defined as 

the time the animals needed to locate the platform. A trial was evaluated as ‘accurate’ if the 

animal chose immediately the arm in which the platform was positioned and located the 

platform correctly. The accuracy resembled the percentage of accurate trials on every day for 

each animal. Animals have been rated as accurate learners if they succeeded in 5 out of 6 trials 

(83.3%), meaning they located the platform correctly in 83.3% of the cases. 

Both groups, selective HCN2 and control littermates, showed no difference regarding the 

latency. However, the accuracy was significantly reduced in selective HCN2 KO animals. 

Hence, it can be concluded that the selective HCN2 KO group had more problems to locate 

the platform correctly than their control injected littermates. Assessing the accurate learners 

on day 5 this finding was even more obvious. The number of animals reaching the accurate 

learner criterion was significantly lower in the selective HCN2 KO group. That means the 

selective HCN2 KO leads to an impairment in learning the platform’s location (Fig. 33). 

 



Results 

58 
 

 

Figure 33   Selective HCN2 KO - place learning 

Experimental setup: crosswise basin in which the northern (N) and southern (S) arm respectively is blocked by a Plexiglas 

barrier. The mice were trained 5 days long, 6 trials a day with alternating starting points (N or S). The hidden platform was 

located in the western arm. During the trials the latency (upper right panel), accuracy (lower left panel) and accurate learners 

(lower right panel) were calculated. Selective HCN2 KO group shows a significant reduction in accuracy and reached the 

accurate learner criterion rarer. 
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5 Discussion 

Within the framework of the present thesis the electrical brain activity of various HCN2 

mutants was assessed by applying EEG measurements. The main conclusion of the work is 

that correct HCN2 channel function is essentially involved in the control of neuronal rhythms 

both in the thalamo-cortical system and in the septo-hippocampal system. 

As a first goal it could be demonstrated that not only a loss but also a cAMP insensitivity of 

HCN2 channels contribute to evoke SWDs, a major hallmark of absence epilepsy originating 

probably from the thalamo-cortical system. 

Further the present work showed evidence that the activity of HCN2 channels, expressed in 

MS neurons, play a major role in regulating theta rhythm. A loss of HCN2 in MS area leads to 

a considerable drop down of theta power. Finally, in a behavioral test, checking the spatial 

navigation capabilities, MS-selective HCN2-deficient mice perform significantly worse in 

comparison to their WT littermates. Overall, an impairment or loss of HCN2 channel function 

in MS leads to a dysfunction of theta wave generation that finally results in an impairment of 

spatial memory. In the following sections the main conclusions were interpreted. 

 

5.1 Influence of cAMP on SWDs 

Within the context of this work it could be confirmed by using state-of-the-art methods that 

HCN2 KO animals show absence seizures assumably of thalamic origin [25]. In subsequent 

experiments the area of seizure origin needs to be confirmed, possibly by performing EEG 

measurements in selective thalamic HCN2 KO animals. These animals could be generated by 

employing the HCN2 cre/loxP system and a viral approach. It is likely that a dysfunction of the 

thalamo-cortical feedback loop is involved in seizure generation. The following model has 

been proposed for a proper function. Hyperpolarization activates Ih which leads to a 

depolarization of the membrane towards a threshold for a Ca2+ spike. The activation of the 

Ca2+ current (IT), conferred by T-type Ca2+ channels, depolarizes the membrane towards a 

threshold for a burst of Na+- and K+-dependent action potentials. Repolarization caused by IT 

inactivation is followed again by hyperpolarization (Fig. 34A, left panel). It is possible that the 
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time course of activation of HCN channels determines the frequency of membrane potential 

rhythms [7, 8]. A defect in this mechanism is highly associated with the occurrence of absence 

seizures. In HCN2-deficient thalamo-cortical rely neurons there is a hyperpolarizing shift in the 

resting membrane potential. This hyperpolarizing shift promotes recovery from inactivation 

of T‐type Ca2+ channels and leads thereby to a facilitation of low‐threshold burst firing in 

response to depolarizing inputs. This results in an increased oscillatory activity in the thalamo-

cortical network contributing to SWDs [23] (Fig. 34A, right panel). In the present thesis it was 

investigated to what extent the channel modulation via cAMP plays a role for the seizure 

activity. Interestingly SWDs were detected in HCN2 EA animals but not in HCN2 FEA mice. Both 

mutants display an insensitivity towards cAMP whereas under basal conditions in the absence 

of cAMP the HCN2 FEA mutant shows an additional voltage shift to more positive values (e.g. 

in HEK 293 cells, Fig. 34B, left panel). By adding cAMP to the system the WT activation curve 

shifts to more positive values and as a result in cAMP preactivated systems WT and HCN2 FEA 

show similar V0.5 values while the HCN2 EA activation curve is shifted to negative values (Fig. 

34B, right panel). It is known that different cell types show different basal cAMP levels [56]. 

HEK293 cells show very low basal cAMP levels (approx. 0.1µM). Other cell types e.g. primary 

mouse cardiomyocytes demonstrate considerable higher basal cAMP levels (approx. 1 µM) 

whereas in thyroid cells the basal cAMP concentration is medium (approx. 0.5µM) [56]. It is 

possible that the basal cAMP levels differ not only between cell types but also within different 

brain regions. It is possible that during non-activated states the cAMP concentration is 

relatively high within the thalamo-cortical circuit. It might also be that the concentration of 

cAMP, which acts in discrete subcellular microdomains varies microdomain-specifically and is 

different from the cAMP levels in the cytosol [57]. Possible high subcellular cAMP 

microdomain concentrations could also contribute to the effect. In subsequent experiments 

these hypotheses need to be confirmed e.g. by expressing FRET-based cAMP sensors within 

this brain region and performing FRET measurements. The model of high cAMP leads to the 

hypothesis that in the thalmao-cortical system WT neurons are strongly preactivated by basal 

cAMP levels (Fig. 34B, right panel). According to this model the results identifying differences 

regarding the occurrence of SWDs in the different mutant models are explainable. In thalamo-

cortical neurons in the basal state HCN2 FEA channels act like WT channels because the 

preactivation is mimicked by the positive voltage shift. Due its insensitivity towards cAMP a 

preactivation of HCN2 EA channels is not possible and consequentially in thalamo-cortical 
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relay neurons the V0.5 values are more negative in comparison to WT. In vivo it is possible that 

the lower V0.5 membrane potential values of HCN2 EA channels could not be reached in 

thalamo-cortical neurons resulting in a limited opening probability of the channel under 

physiological conditions. As the channel function is restricted in the thalamo-cortical area in 

HCN2 EA mice acting as a functional HCN2 KO, the inactivation of T‐type Ca2+ channels is 

impaired. This leads to a facilitation of low‐threshold burst firing, like it is the case in HCN2 KO 

animals and this augmented oscillatory activity is highly associated with SWDs (Fig. 34A, right 

panel). 

 

 

Figure 34   Burst mode in thalamo-cortical neurons of HCN2 mutants and activation curve in various cell types 

(A) Shown is a schema of the burst firing mode of both WT, HCN2 FEA and HCN2 KO, HCN2 EA neurons. In HCN2 KO and EA 

neurons the inactivation of T‐type Ca2+ channels is impaired. This leads to a promotion of low‐threshold burst firing and the 

augmented oscillatory activity is highly associated with SWDs. (B) Shown are schemas of the activation curves of HCN2 

mutants in HEK293 cells (left panel) and in the thalamo-cortical system (right panel). In HEK293 cells WT channels are barely 

preactivated by cAMP leading to similar V0.5 values like in HCN2 EA cells and the activation curve of HCN2 FEA overexpressing 
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cells shows a positive shift. However in the thalamo-cortical system the basal cAMP levels are elevated and WT channels are 

preactivated leading to similar V0.5 values like in HCN2 FEA cells.  

 

5.2 Theta regulation via HCN2 

To evaluate the role of HCN2 for theta control within the septo-hippocampal pathway it is 

essential to understand the mechanisms underlying theta wave generation. To switch the 

network state of the hippocampus from a resting state, occurring during immobile wake state 

and NREM sleep [61] into the theta mode, appearing during activated brain states and REM 

sleep, a trigger is necessary. This transition is facilitated and sustained by the pacemaker 

activity of MS neurons [62] which receive input from the HT and BS area and project to the 

hippocampal formation. The MS contains a large variety of distinct neurons. There are 

cholinergic [63], GABAergic [14, 64, 65] and glutamatergic [66, 67] cells. An inactivation of MS 

GABAergic neurons in mice reduces significantly theta power [69], suggesting that in vivo 

GABAergic neurons are the neuron type primarily involved in theta wave generation. Due to 

acknowledged theories, MS GABAergic projecting cells inhibit GABAergic interneurons of the 

hippocampal formation [3], triggering a disinhibitory action on pyramidal cells and MS 

GABAergic neurons receive intraseptal regulating inputs from both cholinergic and 

glutamatergic neurons [58] (Fig. 35).  

 

 

Figure 35   Ascending system of theta rhythm control 



Discussion 

63 
 

The theta rhythm of the hippocampal formation is mainly controlled and regulated by the cholinergic (Ch), glutamatergic 

(Glu) and GABAergic (G) neurons of MS, which receive inputs from deeper BS and HT areas. 

Modified from [59] 

 

The present study revealed that HCN2 channels expressed in MS neurons have a major effect 

on theta band generation. It could be shown that the pacemaker channel HCN2 is the major 

isoform expressed throughout MS nucleus and HCN1 and HCN4 are expressed considerably 

weaker. Electrophysiological recordings in acute brain slices in MS confirmed largely the 

expression data because the Ih inward currents were significantly lower in HCN2 KO cells in 

this nucleus (experiments performed by Henrik Huelle, data not shown). There are data 

indicating that HCN2 immunoreactive cells are primarily GABAergic and that the hippocampus 

is among the targets of these projections neurons [55]. In consecutive experiments these data 

need to be confirmed either by performing immunohistochemistry co-staining with GABA- 

and HCN2-antibodies or by creating a selective GABA-specific MS HCN2 KO expressing a GFP-

cre virus under a selective GABAergic promoter (e.g. GAD65 promoter [60]) in HCN2 L2 

animals. 

Due to the theory that HCN2-positive cells are GABAergic, it is possible that these neurons fire 

rhythmically at theta frequencies and act as impulse generator for theta rhythms in the 

hippocampal formation [61]. HCN2 pacemaker channels can trigger action potentials. 

Neurons, expressing HCN2, could pass through a cycle, consisting of an action potential, 

afterhyperpolarization and depolarization followed again by another action potential. A 

prominent role for HCN2 channels in contributing to the rhythmic firing of theta frequency in 

MS neurons could be proofed by the genetic deletion of HCN2 leading to a disruption of theta 

frequency membrane potential oscillations.  

It is possible that the timing of the theta frequency oscillations in hippocampal formation 

neurons may be determined by the time course of activation and deactivation of Ih currents, 

which means faster time constants lead to theta rhythms of higher frequencies [62, 63]. These 

findings suggest that HCN2 subunits could be also involved in determining and maintaining 

place cell firing in the hippocampus and grid spacing the EC, which underlay intact theta wave 

firing [64]. EC grid cells show periodic firing locations that scale up within the EC. This 
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expansion is in accordance with changes in cellular properties depending on HCN channels 

[45]. HCN2 channels expressed in MS, projecting to EC and hippocampus, contribute possibly 

to the scale change in grid firing. The results that MS-selective HCN2 KO animals showed an 

impairment in spatial learning consolidates the hypothesis that navigation and orientation, 

which requires intact grid and place cell firing might be impaired in these animals.  

Although the relation between theta and REM sleep is clearly established in rodents [65], no 

abnormalities regarding REM sleep duration and architecture could be detected in all HCN2 

mutant animals. To interpret these results it is necessary to focus on the neuronal circuits 

responsible for switching between NREM and REM sleep. Recent findings propose a BS flip–

flop switch, consisting of coordinated inhibitory REM-off, which fire when the brain is not in a 

REM state and REM-on areas, which fire during REM sleep in the mesopontine tegmentum. 

The REM-on area consists of two different neuron populations, one projecting to the basal 

forebrain (BF) including MS which regulates the EEG components of REM sleep. The other one 

projects to the BS and spinal cord (SC) and regulates atonia and eye movement during REM 

sleep, another important hallmark [66]. Due to this model it is explainable that the REM sleep 

itself is not affected. Because the actual trigger location for REM sleep, the mesopontine 

tegmentum seems to be not affected by an absence of HCN2 likely due to the weak expression 

in this area [40]. However the EEG components of REM sleep, the theta oscillations are 

compromised in consequence of a HCN2 loss in theta regulating brain areas, the basal 

forebrain implying MS neurons. Further at the transition from NREM to REM sleep the theta 

power decreases more rapidly in selective HCN2 KO animals suggesting that the BS is 

incapable to execute the frequency shift correctly (Fig. 36).  
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Figure 36   The flip-flop switch for control of REM sleep 

A schema indicating the REM sleep flip-flop switch in the mesopontine tegmentum. Neurons in the mesopontine 

tegmentum (red and green squares) are REM-off and REM-on neurons which act as mutual antagonists. Projecting neurons 

(green arrows) originating from the REM-on zone lead to the basal forebrain (BF) to cause EEG desynchronization. Other 

neurons send axons to the BS and spinal cord (SC), where they control eye movements and muscle tone.  

 

5.3 Theta regulation via cAMP 

To investigate to what extent a cAMP insensitivity of HCN2 influences theta regulation, the 

mutant mouse models HCN2 FEA and HCN2 EA were used. The HCN2 FEA mutant displays an 

insensitivity towards cAMP caused by the EA mutation and a positive voltage shift in systems 

with low basal cAMP levels provoked by the F mutation. The HCN2 EA mutant shows just an 

insensitivity towards cAMP. Surprisingly the power analysis of the EEG spectra showed a 

reduction of the theta power in HCN2 FEA and no change in HCN2 EA animals. To interpret 

these results it is assumed that within the septo-hippocampal circuitry the basal cAMP levels 

are low or that there are at least low subcellular cAMP microdomain concentrations 

preventing that possible high cytosolic cAMP levels could reach the target [56]. These 

hypotheses need to be clarified in further FRET-based experiments. As a consequence HCN2 

channels are barely preactivated leading to similar activation curves of WT and HCN2 EA but 

to a positive activation curve shift of HCN2 FEA due to the F mutation (Fig. 37A). To explain 

the results within this context it is necessary to consider the effects of an increasing 

membrane conductance on the excitability of a neuron (Fig. 37B). Activation of HCN channels 

by hyperpolarization leads to an opening of the channels and consequently Na+ inflow, which 

depolarizes the membrane further and additional channels are opened which results in a rapid 
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increase of the conductance.  In conclusion the excitability elevates with increasing 

conductance until a maximum is reached, which reflects the pacmaking activity of HCN2 

channels and the ascending part of the curve in Fig. 37B. The value of the maximum depends 

critically on the balance between HCN2 and other channels. After having exceeded maximal 

values, the excitability decreases again with a further increase in conductance. This is probably 

due to shunting inhibition that means a reduction of the amplitude and the duration of 

excitatory postsynaptic potentials (EPSPs) by increasing the membrane conductance [67] or 

due to an inactivation of Na+ channels. This condition simulates the descending part of the 

curve in Fig. 37B. 

It is evident that in global HCN2 KO animals the conductance is minimal and as a consequence 

ion flow is vanished due to the absence of the channel. Consequently the excitability of 

neurons is marginal leading to a limited generation of a theta oscillation. Thus, in HCN2 KO 

animals the greatest effect on theta power was monitored. In WT and HCN2 EA animals the 

channels act as pacemaker, because at a defined conductance value a corresponding 

excitability value on the ascending part of the curve is given (Fig. 37B). However, in HCN2 FEA 

mutant mice the opening probability of the channel at a defined membrane potential is higher 

than in WT and HCN2 EA because the basal activation curve is shifted to more positive values, 

that means the conductance is increased. At this point the excitability already exceeded the 

peak, so that the excitability in HCN2 FEA neurons is lower than in WT cells and thus leading 

to a diminished theta power (Fig. 37B).  

 

 

Figure 37   Activation curve in septo-hippocampal system and excitability-conductance-diagram 
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(A) Shown is a schema of the activation curve of HCN2 mutants in the septo-hippocampal system. Within this system there 

are low cAMP levels and WT channels are barely preactivated by cAMP leading to similar V0.5 values like in HCN2 EA cells and 

the activation curve of HCN2 FEA cells shows a positive voltage shift. (B) Activation of HCN channels by hyperpolarization 

leads to a depolarization of the membrane and an increase of the conductance.  The excitability elevates with increasing 

conductance until a maximum is reached. The ascending part of the curve reflects the pacemaking activity of HCN2 channels. 

After having exceeded maximal values, the excitability decreases with a further increase in conductance. This is probably due 

to shunting inhibition or due to an inactivation of Na+ channels. This condition simulates the descending part of the curve. 
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6 Summary 

Rhythmic oscillations of various frequencies are essential for signal transmission within 

neuronal networks and for the communication between different brain areas. An important 

neuronal rhythm is the theta rhythm which occurs primarily during REM sleep and active wake 

states. In addition there is strong evidence that the theta rhythm is involved in spatial learning 

and navigation by influencing the firing of place and grid cells. It has been suggested that the 

medial septal (MS) nucleus acts as pacemaker and controls the theta rhythm. There is initial 

evidence that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in MS 

neurons play a role in regulating these oscillations. The HCN channel family comprises four 

isoforms (HCN1-4) which are gated by voltage and by the direct binding of cAMP. In the 

context of this thesis it was shown that HCN2, expressed within the MS, is the main isoform 

involved in theta control mechanisms. To characterize the specific role of HCN2 channels for 

the regulation of the theta rhythm global and MS-selective HCN2 KO animals were used for 

EEG measurements. The MS-restricted KO was generated by using an in vivo adeno-associated 

virus mediated cre-dependent gene silencing approach in floxed HCN2 mice. The EEG data 

revealed that not only a global lack of HCN2 but also a MS-specific absence of the channel lead 

to an impairment of theta oscillations. The theta power was significantly reduced in these 

animals. In addition, EEG recordings were performed with two HCN2 knockin mouse models, 

HCN2 FEA and HCN2 EA. In both mutants the channel is insensitive towards cAMP. Within the 

MS the activation curve of the FEA mutant is probably shifted to more positive values in 

comparison to WT while it is similar to WT in the EA mutant. The FEA animals showed a slight 

decrease in theta power while the power spectra of the EA mutant was unchanged. 

Furthermore MS-specific HCN2-deficient mice showed an impairment in spatial learning 

behavior. Future experiments need to investigate the causal link between the theta drop 

down and the impairment of spatial navigation in HCN2-deficient animals. As it is known that 

grid and place cell firing depend critically on intact theta rhythm, it is likely that a loss of HCN2 

leads to an impairment of grid and place cell function and thus to defects in spatial learning.  

Within this study it was further demonstrated that also in other neuronal systems HCN2 

channels contribute to oscillation control. In global HCN2 KO as well as in HCN2 EA animals 

spike and wave discharges, a hallmark of absence epilepsy, were detected. It has been 
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suggested that these spike and wave discharges possibly originate from the thalamo-cortical 

system.  

In conclusion, the present thesis shows evidence that HCN2 is of crucial importance for 

controlling und regulating neuronal oscillations in vivo in rodents. 
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10 Appendix 

10.1 Primer 

10.1.1 HCN2 genotyping 

Primer Sequence 

HCN2 14F 5‘-GGTCCCAGGCACTTCCATCCTTT-3‘ 

HCN2 15bR 5‘-GGAAAAATGGCTGCTGAGCTGTCTC-3‘ 

HCN2 16F 5’CAGCTCCCATTTGCCCTTGTGC-3‘ 

 

10.1.2 HCN2 EA and HCN2 FEA genotyping 

Primer Sequence 

HCN2Genolxpfor 5’-AGTTGTACTCAACCAGTGGC-3’ 

HCN2Genolxprev 5’-TAGTCACGGTCACTGCCAAG-3’ 
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10.2 Matlab™ scripts 

10.2.1 EEG spectrogram plotting for staging purpose 

Contents 

 EEG plot 
 

function varargout = EEG(varargin) 

 
GUI initializing code 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @EEG_OpeningFcn, ... 

                   'gui_OutputFcn',  @EEG_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

 

Function will be executed when pushbutton is pressed 

function pushbutton ‘plot’_Callback(hObject, eventdata, handles) 

 

tic 

eeg = EbmRead('EEG.ebm'); 

emg=EbmRead('EMG.ebm'); 

 

 

Calculate spectrogram from EEG 

[y, f, t, FStats]=mtcsglong(eeg ,4096*4,2000); 

[ym, fm, tm, FStatsm]=mtcsglong(emg ,4096*4,2000); 

 

 

Plot normalized spectra 

subplot(2,1,1) 

file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%233
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imagesc(t,f,20*log10(abs(sq(y(:,:,1))')));axis xy; colormap(jet) 

colorbar 

caxis([-70 40]) 

title('EEG') 

 

subplot(2,1,2) 

imagesc(tm,fm,20*log10(abs(sq(ym(:,:,1))')));axis xy; colormap(jet) 

colorbar 

caxis([-70 40]) 

title('EMG') 

 

toc 

 

Executes just before EEG is made visible 

function EEG_OpeningFcn(hObject, eventdata, handles, varargin) 

 

Choose default command line output for EEG 

handles.output = hObject; 

 

Update handles structure 

guidata(hObject, handles); 

 

 

Outputs from this function are returned to the command line 

function varargout = EEG_OutputFcn(hObject, eventdata, handles) 

 

Get default command line output from handles structure 

varargout{1} = handles.output; 

  

function Untitled_1_Callback(hObject, eventdata, handles) 
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10.2.2 REM sleep staging 

Contents 

 REM duration 
 

function [a,tot_rem]=REM(g); 

Input: g = cell with REM data 
 
REM duration 

rem1 = zeros(1,0.5*length(g)); 

rem2 = zeros(1,0.5*length(g)); 

 

k=0; 

for i=1:2:length(g) 

 

k=k+1; 

 

Extract values from cell; first 12h and second 12h (= light and dark phase) 

if g(1,i).Position(1) <= 43200 

rem1(k) = g(1,i).Position(1) - g(1,i+1).Position(1); 

 

else 

rem2(k) = g(1,i).Position(1) - g(1,i+1).Position(1); 

 

end 

end 

 

rem1 =rem1(rem1~=0); 

rem2 =rem2(rem2~=0); 

tot_rem = [rem1 rem2]./60; 

 

 

R_1 = sum(rem1); 

R_2 = sum(rem2); 

 

R=R_1 + R_2; 

 

 

Calculate REM duration in min 

rem_duration = R/60; 

rem_dur1 = R_1/60; 

rem_dur2 = R_2/60; 

 

file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%233
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Calculate number of REM episodes 

episodes = length(rem1) + length(rem2); 

mean_rem_duration = (mean([ rem1 rem2]))/60; % min 

 

 

 

a={'total REM', 'REM light', 'REM dark','number of REM Episodes', 'mean duration';... 

 rem_duration rem_dur1 rem_dur2 episodes mean_rem_duration }; 

 

figure 

hist(tot_rem,10) 
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10.2.3 REM sleep plot 

Contents 

 REM plot 

function plotREM(g); 

 

eeg = EbmRead('EEG.ebm'); 

 

Calculate and plot spectrogram 

[y, f, t, FStats]=mtcsglong(eeg ,4096*4,2000); 

 

Figure(1) 

imagesc(t,f,20*log10(abs(sq(y(:,:,1))')));axis xy; colormap(jet) 

colorbar 

caxis([-70 40]) 

hold on 

 

Plot REM phases 

for i=1:2:length(g) 

 

   x=[g(1,i).Position(1) g(1,i+1).Position(1)]; 

   y=ones(1,length(x)); 

   figure(1) 

    plot(x,y,'b','LineWidth',8); 

    hold on 

end 

 

  

file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%233
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10.2.4 Total sleep staging 

Contents 

 Sleep duration 

 

function [a,tot_nrem]=NREM(h); 

Input: h = cell with sleep data 

Sleep duration 

sleep1 = zeros(1,0.5*length(h)); 

sleep2 = zeros(1,0.5*length(h)); 

 

k=0; 

for i=1:2:length(h) 

 

k=k+1; 

 

Extract values from cell; first 12h and second 12h (= light and dark phase) 

if h(1,i).Position(1) <= 43200 

sleep1(k) = h(1,i).Position(1) - h(1,i+1).Position(1); 

 

else 

sleep2(k) = h(1,i).Position(1) - h(1,i+1).Position(1); 

 

end 

end 

 

sleep1 =sleep1(sleep1~=0); 

sleep2 =sleep2(sleep2~=0); 

tot_sleep = [sleep1 sleep2]./60; 

 

R_1 = sum(sleep1); 

R_2 = sum(sleep2); 

 

R=R_1 + R_2; 

 

Calculate Sleep duration in min 

sleep_duration = R/60; 

sleep_dur1 = R_1/60; 

sleep_dur2 = R_2/60; 

 

a={'total sleep', 'sleep light', 'sleep dark';... 

 sleep_duration sleep_dur1 sleep_dur2}; 

file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%233
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figure 

hist(tot_sleep,10) 
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10.2.5 NREM sleep plot 

Contents 

 NREM plot 

 

function plotNREM(g,h); 

Input:  g = cell with REM data 

 h = cell with sleep data 

 

eeg = EbmRead('EEG.ebm'); 

 

 

Calculate and plot spectrogram 

[y, f, t, FStats]=mtcsglong(eeg ,4096*4,2000); 

 

figure(1) 

imagesc(t,f,20*log10(abs(sq(y(:,:,1))')));axis xy; colormap(jet) 

colorbar 

caxis([-70 40]) 

hold on 

 

a=[g,h]; 

 

Extract values from cell 

for i=1:length(a) 

 

    points(i)= a(1,i).Position(1); 

end 

 

Sort them 

sleep=sort(points); 

 

Calculate duration of NREM 

for i=1:2:length(a) 

 

    nrem (i)= sleep(i+1)-sleep(i); 
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end 

 

for i=1:2:length(a) 

 

   x=[sleep(i) sleep(i+1)]; 

   y=ones(1,length(x)); 

   figure(1) 

    plot(x,y,'k','LineWidth',8); 

    hold on 

end 
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10.2.6 Wake vigilance staging 

Contents 
 
 Wake Power 

 

function [f,wake_power]=wake_EEG() 

 

Calculate power of wake stage with medium – high activity 

act=EbmRead('activity.ebm'); 

act_1=nan(1,8640); 

 

t_act=linspace(0,86400,8640); 

 

Moving average of activity  

mov_av=tsmovavg(act,'s',18,1); 

 

for i=1:1:8640 

    if (mov_av(i)>=3) 

        act_1(i)=1; 

    end 

 

end 

 

Plot activity, moving average and analyzed wake phases 

figure 

plot(t_act,act,'k','LineWidth',1) 

hold on 

plot(t_act,act_1,'g','LineWidth',6) 

hold on 

plot(t_act,mov_av,'r','LineWidth',2) 

 

 

title('Activity') 

legend('activity','wake', 'Moving average') 

 

Find indices of medium and high activity phases 

indices=find(act_1==1); 

 

low=round(indices.*10); 

 

eeg = EbmRead('EEG.ebm'); 
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[tot_power,f] = pwelch(eeg,4096,2048,4096,2000); 

 

Mean power for normalization 

meanPower = mean(tot_power); 

 

Calculate power  

k=0; 

for j=1:length(low)-1 

    k=k+1; 

ab= eeg((low(j)*2000-6000):((low(j)*2000+6000))); 

 

[Pxx,f]=pwelch(ab,4096,2048,4096,2000); 

Pxx=Pxx/meanPower; 

powi(k,1:length(Pxx))=Pxx; 

 

end 

 

 

wake_power = mean(powi); 

 

 

 

 

 

  



Appendix 

91 
 

10.2.7 Power spectra calculation in total and for each vigilance state 

Contents 
 
 Total power 
 REM Power 
 NREM power 
 Wake power 
 Figures 
 

 

function [power]=EEG_Power(g,h) 

Input:  g = cell with REM data 
h = cell with sleep data 

 
Total power 

Load EEG data 

eeg = EbmRead('EEG.ebm'); 

 
Calculate total power using Welch´s method 

[tot_power,f] = pwelch(eeg,4096,2048,4096,2000); 

 
Normalize to mean power 

meanPower = mean(tot_power); 

 

total_power=tot_power/meanPower; 

 
REM Power 

points_rem=ones(1,length(g)); 

 
Extract indices 

for i=1:length(g) 

 

    points_rem(i)= g(1,i).Position(1); 

 

end 

 

len=length(g); 

k=0; 

file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%233
file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%234
file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%235
file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%236
file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%236
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for j=1:2:length(g) 

 

k=k+1; 

 
Calculate REM power two sec after REM starts and two sec before it ends 

 [Pxx,f]=pwelch(eeg((points_rem(j+1)*2000+4000):(points_rem(j)*2000-

4000)),4096,2048,4096,2000); 

 

Normalize to total power  

Pxx=Pxx/meanPower; 

 

Write power in matrix 

rem_power(k,1:length(Pxx))=Pxx; 

warning('off','all') 

end 

 

Calculate mean REM power in all REM episodes 

REM_power = mean(rem_power); 

 
NREM power 

Combine REM and sleep data cells 

a=[g,h]; 

 

Extract indices 

for i=1:length(a) 

 

    points_nrem(i)= a(1,i).Position(1); 

end 

 

sleep=sort(points_nrem); 

 

If the first value equals zero replace it by 1/2000 ( 1/2000 * Fs =1) 

if sleep(1) ==0 

    sleep(1)=1/2000; 
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end 

 

k=0; 

for j=1:2:length(sleep) 

 

k=k+1; 

 
Calculate power of NREM episodes two seconds before NREM starts and two seconds before 

it ends 

if ((sleep(j+1)*2000)-(sleep(j)*2000)) >= 4096 

[Pxx,f]=pwelch(eeg((sleep(j)*2000+4000):(sleep(j+1)*2000-

4000)),4096,2048,4096,2000); 

 

Normalize to total power 

Pxx=Pxx/meanPower; 

 
Write power in matrix 

nrem_power(k,1:length(Pxx))=Pxx; 

else 

    k=k-1; 

end 

warning('off','all') 

end 

 

NREM_power = mean(nrem_power); 

 
Wake power 

[f,WAKE_power]=wake_EEG; 

Figures 

Plot power of REM, NREM, wake phases and total power 

figure 

subplot(2,2,1) 

plot(f,REM_power,'k') 

xlim([0 25]) 

ylim([0 300]) 

xlabel('Frequency'); 

ylabel('Power'); 

title('REM power') 
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subplot(2,2,2) 

plot(f,NREM_power,'k') 

xlim([0 25]) 

ylim([0 300]) 

xlabel('Frequency'); 

ylabel('Power'); 

title('NREM power') 

 

subplot(2,2,3) 

plot(f,WAKE_power,'k') 

xlim([0 25]) 

ylim([0 200]) 

xlabel('Frequency'); 

ylabel('Power'); 

title('WAKE power') 

 

subplot(2,2,4) 

plot(f,total_power,'k') 

xlim([0 25]) 

ylim([0 200]) 

xlabel('Frequency'); 

ylabel('Power'); 

title('total power') 

 

 

power=[f REM_power' NREM_power' WAKE_power' total_power]; 

value = ['Frequency' 'REM power'  'NREM power'  'wake power' 'total power']; 

 

  



Appendix 

95 
 

10.2.8 Power spectra plot 

Contents 
 
 REM Power 
 NREM power 
 Wake power 
 Total power 
 Figures 

 

function [REM, NREM, wake, total]=powerPlot(varargin) 

Input: matrices with REM, NREM, wake and total power 

 

l=length(varargin); 

 

varargin{l+1}=zeros(length(varargin{1}'),5); 

varargin{l+2}=zeros(length(varargin{1}'),5); 

varargin{l+3}=zeros(length(varargin{1}'),5); 

varargin{l+4}=zeros(length(varargin{1}'),5); 

varargin{l+5}=zeros(length(varargin{1}'),5); 

 

a=varargin{1}; 

b=varargin{2}; 

c=varargin{3}; 

d=varargin{4}; 

e=varargin{5}; 

f=varargin{6}; 

g=varargin{7}; 

 
REM power 

REM=[a(:,2) b(:,2) c(:,2) d(:,2)  e(:,2)  f(:,2)  g(:,2)]; 

REM=REM(:,1:l); 

meanREM = mean(REM'); 

REM_SEM = std(REM')/sqrt(l); 

 
NREM power 

NREM=[a(:,3) b(:,3) c(:,3)  d(:,3)  e(:,3)  f(:,3) g(:,3)]; 

NREM=NREM(:,1:l); 

meanNREM = mean(NREM'); 

NREM_SEM = std(NREM')/sqrt(l); 

 
wake power  

wake=[a(:,4) b(:,4) c(:,4)  d(:,4)  e(:,4)  f(:,4) g(:,4)]; 

wake=wake(:,1:l); 

file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%234
file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%235
file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%236
file:///C:/Users/Franziska%20Auer/Desktop/EEG_Power.html%236


Appendix 

96 
 

meanWake = mean(wake'); 

Wake_SEM = std(wake')/sqrt(l); 

 

total power 

total=[a(:,5) b(:,5)  c(:,5) d(:,5)  e(:,5)  f(:,5) g(:,5)]; 

total=total(:,1:l); 

meantotal = mean(total'); 

total_SEM = std(total')/sqrt(l); 

 

Extracting frequency  

f=a(:,1); 

 
Figures 

figure(1) 

title ('REM Power') 

hold on 

errorbar(f(1:53),meanREM(1:53),REM_SEM(1:53),'r'); 

hold on 

xlim([0 25]); 

xlabel ('Frequency') 

ylabel('Power % total power'); 

hold on 

 

 

figure(2) 

title ('NREM Power') 

hold on 

errorbar(f(1:53),meanNREM(1:53),NREM_SEM(1:53),'r'); 

hold on 

xlim([0 25]); 

xlabel ('Frequency') 

ylabel('Power % total power'); 

hold on 

 

figure(3) 

title ('wake Power') 

hold on 

errorbar(f(1:53),meanWake(1:53),Wake_SEM(1:53),'r'); 

hold on 

xlim([0 25]); 

xlabel ('Frequency') 

ylabel('Power % total power'); 

hold on 

 

 

figure(4) 

title ('total Power') 
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hold on 

errorbar(f(1:53),meantotal(1:53),total_SEM(1:53),'r'); 

hold on 

xlim([0 25]); 

xlabel ('Frequency') 

ylabel('Power % total power'); 

hold on 
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10.2.9 Identification of state transitions 

Contents 

 Transition identification 

Load stages (= variable I) 

load 'stage_45217_EA.mat' 

I=I'; 

 

Preallocate variables 

Z1=ones(1,8); 

Z2=ones(1,8).*2; 

min=7; 

max=30; 

index=1; 

Location=[]; 

numofone = []; 

numoftwo = []; 

 

for i=(min+1):length(I)-8 

 

Find transitions from one vigilance stage to another 

    if I(i)==1 & I(i+1)==2 

 

Check if at least 8 epochs before transition = 1 and at least 8 epochs after transition = 2 

        if I(i-min:i)==Z1 & I(i+1:i+min+1)==Z2    

 

Safe location of transition 

            Location(index)=i; 

            numofone(index)=0; 

            numoftwo(index)=0; 

 

Count number of ones (max. 30) before transition 

            for j=i:-1:i-(max-1) 

                if I(j) == 1 
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                    numofone(index) = numofone(index) + 1 

                else 

                    break 

                end 

            end 

 

Count number of twos (max. 30) after transition 

            for j=i+1:i+max 

                if I(j) == 2 

                    numoftwo(index) = numoftwo(index) + 1 

                else 

                    break 

                end 

            end 

            index=index+1; 

        end 

 

    end 

end 
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10.2.10 Calculation of power values at state transitions 

Contents 

 Power calculation at transitions 

Load theta power values (= variable C) 

load ('theta_45217_EA.mat') 

C=C'; 

    Location 

data = {}; 

 

Extract power data at location of transition 

for j=1:length(Location) 

    data{j}{1} = C(Location(j):-1:Location(j)-numofone(j)+1); 

    data{j}{2} = C(Location(j)+1:Location(j)+numoftwo(j)); 

end 

 

Preallocate of variables 

means_ones = {}; 

means_twos = {}; 

 

for i=1:30 

    means_ones{i} = zeros(1,length(numofone)); 

    means_twos{i} = zeros(1,length(numoftwo)); 

end 

 

Length of data equals number of transitions 

for block = 1:length(data) 

 

Rewrite cells with power (adjust dimensions) 

    for position = 1:length(data{block}{1}) 

        means_ones{position}(block) =  data{block}{1}(position); 

    end 

    for position = 1:length(data{block}{2}) 

        means_twos{position}(block) =  data{block}{2}(position); 

    end 

end 

 

merke = means_twos; 
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Remove zeros and take mean of power 

for position = 1:length(means_ones) 

    means_ones{position} = mean(means_ones{position}(means_ones{position} ~= 0)); 

end 

for position = 1:length(means_twos) 

    means_twos{position} = mean(means_twos{position}(means_twos{position} ~= 0)); 

end 
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