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Summary  
 

In plants and algae, oxygenic photosynthesis occurs in chloroplasts, subcellular structures that originate 

from the endosymbiosis of a cyanobacterium. The study of the photosynthetic apparatus of higher 

plants, its assembly and regulatory mechanism is of great importance for understanding the flexibility 

of photosynthesis. The investigation of the photosynthetic proteins and assembly factors, however, is 

hampered by the technical and biological limits of plants as model organism. The generation of model 

prokaryote organism, carrying a plant-like photosynthetic apparatus, offers a new strategy for studying 

and improving plant photosynthesis. To this aim, the photosynthetic apparatus of A. thaliana could be 

introduced in the cyanobacterium Synechocystis, where it would be easier to be studied and 

manipulated. The focus of my thesis is to assemble a functional plant PSII in Synechocystis. For this 

purpose two synthetic constructs, RC1, encoding the PSII plant proteins D1, D2, CP43 and PsbI, and RC2, 

encoding Cytb559, PsbL, PsbJ, CP47, PsbT and PsbH, were generated and independently cloned into 

Synechocystis. The strain ΔpsbA2DC RC1, KO for the endogenous psbA2 and psbDC genes, was able to 

grow photoautotrophically and accumulate the plant proteins CP43 and PsbI, carried by the RC1 

construct. This strain could also accumulate the transcripts of the synthetic plant genes AtpsbA2 and 

AtpsbD but further analysis are needed to determine whether the protein is present. In contrast, the 

psbEFLJ RC2 strain, KO for the endogenous psbEFLJ operon, could not accumulate the transcripts of the 

RC2 construct, probably due to transcript instability or activation of a transcriptional regulatory 

mechanism. 

DEAD-box RNA helicases (DBRHs) modify RNA secondary structures and are involved in RNA 

metabolism. Many DBRHs are targeted to the chloroplast, but the role of the majority of them is still 

unknown. RH50 is a chloroplast-located DBRH that co-localizes and is co-expressed with GUN1, a key 

factor in chloroplast-to-nucleus signaling. When mutations in rh50 and gun1 genes were introduced 

into genetic backgrounds impaired in plastid gene expression (prors1-1, prpl11-1, prps1-1, prps21-1, 

prps17-1 and prpl24-1) rh50 and gun1 show similar phenotypic patterns at physiological and molecular 

level. Moreover, the double mutant of rh50-1 gun1-102 exhibit a reduction in size, supporting the idea 

that RH50 and GUN1 are functionally related. RH50 is involved in PRORS-triggered-plastid-to-nucleus 

retrograde signaling as PHANGs repressor like GUN1. The rh50 mutant showed sensitivity to 
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erythromycin and cold-stress and is impaired in processing of the 23S-4.5S intergenic region. The RH50 

protein co-migrates with ribosomal particles and can bind the 23S-4.5S intergenic region in vivo and in 

vitro. Based on these results, I conclude that RH50 is a plastid rRNA maturation factor. 
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Zusammenfassung 
 

In Pflanzen und Algen findet die oxygene Photosynthese in den Chloroplasten statt. Diese Organellen 

sind subzelluläre Strukturen, die aus der Endosymbiose eines Cyanobakteriums hervorgegangen sind. 

Die Erforschung des Photosynthese-Apparates höherer Pflanzen, seine Zusammensetzung und 

Regulationsmechanismen sind von großer Bedeutung für das Verständnis der Flexibilität der 

Photosynthese. Die Untersuchung photosynthetischer Proteine und deren Assemblierungsfaktoren 

wird jedoch limitiert durch technische und biologische Grenzen in Bezug auf genetische Manipulation 

in höheren Pflanzen. Die Entwicklung eines prokaryotischen Modellorganismus, der einen 

pflanzenähnlichen Photosynthese-Apparat trägt, bietet eine neue Strategie zur Untersuchung und 

Verbesserung der Photosynthese von Pflanzen. Die grundlegende Idee dahinter ist es den 

photosynthetischen Apparat von A. thaliana in das Cyanobakterium Synechocystis einzufügen, wodurch 

Funktionen einfacher zu untersuchen und zu manipulieren wären. Daher lag der Schwerpunkt meiner 

Arbeit auf der Assemblierung eines funktionellen Photosysthem II (PSII) von höheren Pflanzen in 

Synechocystis. Für diesen Zweck wurden zwei synthetische Konstrukte, RC1, das die PSII-

Pflanzenproteine D1, D2, CP43 und PsbI kodierten, und RC2, welches Cytb559, PsbL, PsbJ, CP47, PsbT 

und PsbH kodiert, erzeugt und jeweils in Synechocystis kloniert. Der Stamm ΔpsbA2DC RC1 ist in der 

Lage photoautotroph zu wachsen und die Pflanzenproteine CP43 und PsbI zu akkumulieren. Die 

Akkumulation der Transkripte AtpsbA2 und AtpsbD konnte nicht gezeigt werden, daher sind weitere 

Analysen erforderlich, um die Anwesenheit der Proteine zu bestimmen. Im Gegensatz dazu konnte der 

psbEHLJ-RC2-Stamm die Transkripte des RC2-Konstrukts nicht akkumulieren, wahrscheinlich aufgrund 

von Transkript-Instabilität oder Aktivierung eines Transkriptionsregulationsmechanismus. 

DEAD-Box-RNA-Helikasen (DBRHs) modifizieren RNA-Sekundärstrukturen und sind am RNA-

Metabolismus beteiligt. Viele DBRHs werden in Chloroplasten importiert, aber die Rolle der meisten 

von ihnen ist noch unbekannt. RH50 ist ein Chloroplasten-lokalisierter DBRH, der mit GUN1, einem 

Schlüsselfaktor bei der Signalübertragung vom Chloroplasten zum Nukleus, co-lokalisiert und co-

exprimiert wird. Die Mutationen der Gene rh50- und gun1wurden in Mutanten mit unterschiedlichen 

genetischen Hintergründen eingeführt, welche in der Plastidengenexpression (prors1-1, prpl11-1, 

prps1-1, prps21-1, prps17-1 und prpl24-1) beeinträchtigt sind. Dies ergab ein ähnliches phänotypisches 
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Pattern für rh50 und gun1 auf physiologischer und molekularer Ebene. Darüber hinaus zeigt die 

Doppelmutante von rh50-1 gun1-102 eine Verringerung der Größe, was die Idee unterstützt, dass RH50 

und GUN1 funktionell verwandt sind. RH50 ist an der PRORS-getriggerten retrograden 

Signalübertragung vom Plastiden zum Nukleus als PHANG-Repressor wie GUN1 beteiligt. Des Weiteren 

zeigt die rh50-Mutante eine Empfindlichkeit gegenüber Erythromycin und Kältestress und ist bei der 

Verarbeitung der 23S-4.5S-intergenischen Region beeinträchtigt. Das RH50-Protein migriert mit 

ribosomalen Partikeln und kann die 23S-4.5S-intergenische Region in vivo und in vitro binden. Basierend 

auf diesen Ergebnissen folgerte ich, dass RH50 ein Plastid-rRNA-Reifungsfaktor ist. 
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1 Introduction 

1.1 Oxygenic photosynthesis in plants and cyanobacteria 

Oxygenic photosynthesis is one of the most important biological process on earth, it is capable of 

converting sun light into chemical energy generating oxygen and providing the energy to produce most 

of the biomass of the planet (nCO2 + nH2O + light → (CH2O)n + O2). In particular, the light reactions are 

the key components that perform photochemistry coupled to water oxidation. In higher plants, 

photosynthesis takes place in specialized organelles, the chloroplasts, which evolved from an ancient 

cyanobacterial endosymbiont. In the chloroplast, the photosynthetic machinery is embedded in the 

thylakoid membranes. As described schematically in Figure 1.1, the chlorophyll P680 of Photosystem II 

is excited by photons collected by the light harvesting antenna (LHC), one electron is ejected and is 

rapidly transferred over several electron carriers to the plastoquinone QB. The “electron hole” 

generated at P680+ is filled by an electron from a nearby redox-active tyrosine (YZ), which is then 

reduced by an electron from the oxygen-evolving-complex (OEC) harvested from the oxidation of water. 

After another photocycle, fully reduced plastoquinol QB is released into the membrane and electrons 

are transferred by the plastoquinone (PQH2) to the cytochrome b6f complex (Cyt b6f). Through the 

action of the OEC, oxygen and protons are produced. The protons accumulate in the luminal side of the 

thylakoids, where a proton gradient is generated. Next, the electrons flow from Cyt b6f to the small 

soluble protein plastocyanin (PC) and finally to the chlorophyll P700+ of photosystem I (PSI). The 

electron transfer through the Cyt b6f further contributes to build up the proton gradient into the lumen. 

The photochemistry of PSI is initiated by a P700 chlorophyll-a (Chla) dimer that transfers electrons to a 

chlorophyll a monomer (Ao). In the PSI the electrons are transferred sequentially to the phylloquinone 

A1, three iron-sulfur complexes, a ferredoxin protein and ultimately to NADP+ for the generation of 

NADPH. The luminal proton gradient is used by the multi subunit complex of ATP-synthase for the 

synthesis of ATP. The chemical energy stored in ATP and the reducing power of NADPH is then used for 

metabolic processes, in particular for carbon fixation.   
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Figure 1.1: Schematic overview of oxygenic photosynthesis in plants. 

Major protein complexes of the chloroplast photosynthetic apparatus. Photosystem II, PSII; Light-harvesting 

complex, LHC; Plastoquinone, PQH2; Cytochrome b6f; Plastocyanin, PC; Photosystem I, PSI; Ferredoxin, Fd; 

Ferredoxin-NADP+ reductase, FNR; Electron, e-; Proton, H+. See text for details. 

 

As previously mentioned, chloroplasts derived from an ancient endosymbiotic event between a 

cyanobacterial endosymbiont and a eukaryotic host. During evolution, the cyanobacterial-derived 

genome has been drastically reduced in size, mainly because of gene loss and large-scale transfer to 

the nucleus (Kleine et al., 2009). For this reason, the majority of chloroplast proteins is encoded by the 

nuclear genome and must be imported post-translationally into the organelle. This is true also for the 

photosynthetic apparatus, which are a mosaic of nuclear and plastid encoded proteins (Fig. 1.2 A) (Allen 

et al., 2011). It is interesting to note that the photosynthetic apparatus of plants and cyanobacteria 

shows little differences (Fig. 1.2 B). The degree of similarity is higher in the core membrane proteins 

compared to the more soluble and peripheral ones. The high degree of conservation has been proved 

by the successful exchange of photosynthetic core subunits between different organisms. Six genes of 

the PSII core of Chlamydomonas reinhardtii (psbA, psbD, psbE, psbF, psbB and psbC) could be 

successfully replaced by their homologous genes of three different green algae, reconstituting the 

photosynthetic activity till up to 85 % of the wild-type level (Gimpel et al., 2015). The PSII core protein 

D1 is highly conserved between species, sharing an approximately 85% identity between the 

cyanobacterial and higher plant forms (85% with Poa annua, 81% with Arabidopsis).  
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Figure 1.2: Photosynthetic apparatus of (A) the higher plant Arabidopsis thaliana and (B) the cyanobacterium 

Thermosynechococcus elongatus. Protein subunits encoded by the plastidial or cyanobacterial genome are 

colored in green, the one encoded by the nucleus are colored in yellow. Figure adapted from Allen et al, 2011. 

 

It has been shown that D1 from Synechocystis could be replaced by the homologous protein of the 

higher plant Poa annua, generating a functional chimeric PSII (Nixon et al., 1991). The low molecular 

weight protein PsbH of Synechocystis, which shares a degree of similarity between 70 and 80 % among 

different species, could be replaced by the homologous subunit from Zea mays resulting in a chimeric 

PSII, able to perform photosynthesis even though with higher susceptibility to photoinhibition 

(Chiaramonte et al., 1999). Recently, also the PSI subunit PsaA of Synechocystis could partially be 

replaced by the homologous protein of Arabidopsis (Viola et al., 2014). Although the photosystems of 

A 

B 
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plants and cyanobacteria are highly conserved, they display differences in their structure and assembly 

(Fig. 1.2). The antenna systems of cyanobacteria and land plants present a great variety of protein 

structures and pigments, suggesting that they diverged during evolution to adapt to different light 

environments.  Many cyanobacteria, like Synechocystis, have water-soluble light-harvesting phycobili-

proteins organized in large structures, the phycobilisomes, which are attached to the stromal side of 

the thylakoid membranes (Liu et al., 2013). The plant light-harvesting-complex (LHC) proteins instead, 

are composed of three transmembrane helices and are embedded into the thylakoid membrane, where 

they are associated with the core complexes. Some variation can be observed in the subunit 

composition of the PSII, in particular of the OEC (Fig. 1.2) where plants and green algae bind the PsbP 

and PsbQ proteins, while red algae and cyanobacteria bind  the PsbU and PsbV proteins (De Las Rivas 

and Barber, 2004). Differences are also found in the plant-specific factors involved in PSII assembly that 

might have evolved as functional substitutes for cyanobacterial equivalents (Nickelsen and Rengstl, 

2013).  

 

 
 

Figure 1.3: Crystal structure of PSII of the cyanobacterium Thermosynechococcus elongatus. Overview of the 

PSII dimer perpendicular to the thylakoid membrane. Helices are represented as cylinders with D1 in yellow, D2 

in orange, CP43 in green, CP47 in red, cyt b559 in wine red; PsbM, PsbL and PsbT in medium blue; PsbH, PsbK, 

PsbI, PsbJ, PsbX, PsbZ and PsbN in grey. The extrinsic proteins are PsbO in blue, PsbU in magenta and PsbV in 

cyan. Chlorophyll of the D1/D2 RC are light green, pheophytins are blue, chlorophylls of the antenna complexes 

are dark green, β-carotenes are in orange, hemes are in red, nonheme Fe is red, QA and QB are purple. The OEC 

is shown as red (oxygen atoms), magenta (Mn ions) and cyan (Ca2+) balls. The Figure is taken from (Ferreira, 2004)  
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1.2 PSII structure, assembly and repair 

PSII is a water-plastoquinone photo-oxidoreductase, a highly conserved multi-subunit pigment-protein 

complex found in plants and cyanobacteria. PSII mediates the initial charge separation to generate the 

high-energy electrons for photosynthetic electron transport. The PSII core monomer has a molecular 

mass of 350 kDa, it consists of at least 20 protein subunits, 35 chlorophylls, two pheophytins, eleven β-

carotenes, two plastoquinones, one heme (two hemes in cyanobacteria), one nonheme iron, and the 

Mn4CaO5 cluster that catalyzes the splitting of water and the production of O2 (Fig. 1.3) (Umena et al., 

2011). The structure of PSII has been extensively studied thanks to several crystallography studies 

conducted in the last years. Of particular interest is the crystal structure of PSII from 

Thermosynecococcus elongatus resolved at 3.5 Å (Fig. 1.3) (Ferreira, 2004) which reveals the 

arrangement of protein subunits and cofactors. A more recent high resolution crystal structure of PSII 

from T. vulcanus at 1.9 Å (Umena et al., 2011) could further uncover the structure of the oxygen-

evolving-complex. The protein components of the PSII core complex of A. thaliana and their 

homologous in Synechocystis are listed in Table 1.1.  

 

Table 1.1: List of proteins and genes coding for the PSII core of A. thaliana and Synechocystis 

PSII core proteins A. thaliana PSII core genes Synechocystis PSII core genes Protein similarity 

D1 psbA-AtCg00020 psbA1, psbA2, psbA3- slr1181, srl1311,sll1867 88,3% -92,5% -92,5% 
D2 psbD-AtCg00270 psbD1, psbD2- sll0849, srl0927 92,4% - 92,4% 
CP43 psbC-AtCg00280 psbC- sll0851 87,1% 
CP47 psbB-AtCg00680 psbB- srl0906 89,2% 
Cytb559 α  psbE-AtCg00580 psbE- ssr3451 86,7% 
Cytb559 β  psbF-AtCg00570 psbF- smr0006 75,0% 
PsbL psbL-AtCg00560 psbL- smr0007 76,9% 
PsbJ psbJ-AtCg00550 psbJ- smr0008 82,9% 
PsbI psbI-AtCg00080 psbI- sml0001 81,6% 
PsbT psbT-AtCg00690 psbT- smr0001 63,3% 
PsbH psbH-AtCg00710 psbH- ssl2598 67,9% 

 

PSII is assembled in a highly ordered process, and large numbers of additional factors are involved in 

forming this multiprotein complex. PSII assembly occurs in three phases: early, later and final phase 

(Fig. 1.4). The early phase takes place directly at the membrane where the nascent polypeptide can 

integrate into the lipid bilayer (Zhang et al., 1999). The first subcomplex accumulating is the so called-
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RC complex, which consists of D1, D2, cytb559 (PsbE and PsbF) and PsbI (Fig. 1.4). The formation of the 

cytb559 is a prerequisite for the accumulation of D2. The D2- cytb559 subcomplex is the platform for the 

incorporation of a dimer of the precursor of D1 (pD1) and PsbI. During the formation of the RC complex, 

CtpA (C-terminal processing protease) processes pD1 at the C-terminus. During this step, the 

cyanobacterial PSII-specific assembly factor PratA interacts directly with the C-terminus structure of 

pD1 and seems to load the early PSII complex with Mn2+ (Fig. 1.4 B) (Stengel et al., 2012). 

 

 

 

Figure 1.4: Assembly of PSII in (A) plants and (B) cyanobacteria. The assembly of PSII in plants and cyanobacteria 

occurs in three main steps indicated by the arrows at the bottom (early, later and final phase). Transiently 

interacting factors are indicated by ovals. Homologous proteins have the same color. PSII core subunits are 

indicated with their common name (D1, D2, CP47 and CP43). PSII subunits are indicated with the letter or number 

of their protein names (for example PsbI, I). Abbreviations: E and F, cytochrome b559 ; pD1, precursor form of D1; 

RC, reaction center complex lacking CP47 and CP43; RC47, reaction center complex lacking CP43; PSII [1], 

monomeric; PSII, dimeric; LHCII, light-harvesting complex II. 
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In plants, LPA1 showed a similar function (Fig. 1.4 A)(Ma et al., 2007). The later phase consists in the 

conversion of the RC complex into the PSII monomer with the sequential attachment of the two inner 

antenna proteins CP47 and CP43 as well as the assembly of the extrinsic subunits that shield the 

Mn4CaO5 cluster (Fig. 1.4). CP47 is first integrated into the membrane as a precomplex with several low 

molecular-mass PSII subunits, which include PsbH, PsbL, and PsbT in cyanobacteria (Fig. 1.4 B) and just 

PsbH in spinach chloroplasts (Boehm et al., 2012; Rokka et al., 2005). Next, a preformed complex of 

CP43 (the second inner antenna protein) together with PsbK, PsbZ and Psb30 in cyanobacteria or only 

PsbK in chloroplasts (Boehm et al., 2011; Sugimoto and Takahashi, 2003) incorporates in the RC47 

complex with the help of an assembly factor called Psb27 in cyanobacteria and LPA19 in chloroplast. 

With the attachment of CP43, PSII monomer is formed. PSII monomer carries all the amino acid residues 

necessary for the photoactivation of the OEC (Dasgupta et al., 2008). Furthermore, the extrinsic 

subunits PsbO, PsbP, PsbQ, PsbU and PsbV are attached at the luminal side of the cyanobacterial PSII 

monomer generating a shielding cap for the stabilization of the Mn4CaO5 cluster. In chloroplasts the 

shielding cap is formed by PsbO, PsbP and PsbQ (Bricker et al., 2012). The final step of the biogenesis 

of PSII consist in the dimerization and the attachment of the peripheral antenna with the help of Alb3, 

Deg1 and FKBP20-2 in plants (Lima et al., 2006; Moore et al., 2000; Sun et al., 2010).  

Being responsible for the water splitting reaction, PSII is essential for photosynthesis, however, it is also 

the rate limiting protein component, due to the fact that it is extremely susceptible to light. When 

exposed to high light, PSII activity declines rapidly, facing photoinhibition (Aro et al., 2005, 1993; Barber 

and Andersson, 1992). The core protein D1 is the main target of photodamage. For this reason, D1 has 

an unusually high turnover rate, in order to replace the damaged D1 with a newly synthesized one and 

in this way avoid the complete inactivation and disassembly of PSII (Mulo et al., 2012). During the PSII 

repair cycle, damaged PSII is disassembled to the level of the RC47 complex. In chloroplasts but not in 

cyanobacteria the damaged D1 is phosphorylated and migrates from the grana stacks to the stroma 

lamellae where it is then dephosphorylated and degraded (Tikkanen et al., 2008). In chloroplast and 

cyanobacteria, the damaged D1 is removed by FtsH metalloproteases (Nixon et al., 2010). Finally newly 

synthetized pD1 is assembled following the usual PSII assembly pathway (Nickelsen and Rengstl, 2013). 
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1.3 Synechocystis PCC6803 as a model organism to study and improve plant 
photosynthesis 

Photosynthesis is a relatively inefficient process, being able to convert just 8-10% of the sunlight into 

biochemical energy and biomass (Zhu et al., 2010). Therefore, photosynthesis as it is cannot meet the 

increasing demand of food, feed and biofuel that will occur over the next decades (Ort et al., 2015). In 

the last years the scientific community is developing ideas for photosynthesis improvement, being 

convinced that there are processes that can be ameliorated (Blankenship et al., 2011; Jensen and 

Leister, 2014a; Leister, 2012; Ort et al., 2015). Genetic engineering and synthetic biology can help in 

reaching this goal. New genetic engineering methods have been developed in plants, such as the 

genome editing mediated by CRISPR/Cas9 (Feng et al., 2013) or the TALEN (Christian et al., 2013) 

system. However, due to the complexity of both higher plants and the photosynthetic process, 

photosynthesis improvement remains difficult to achieve in plants. Plants can do homologous 

recombination but at very low frequency, it is therefore not possible to introduce or remove specific 

mutations or genes in short time. The plastid genome of several land plants can be transformed and 

progress has been made in the last years in order to make plastid transformation more efficient in 

recalcitrant plants, like for example in A. thaliana (Yu et al., 2017). The CRISPR/Cas9 system, that 

recently revolutionized genome editing thanks to its efficiency and simplicity, can still not be used to 

target the chloroplast genome. In comparison to plants, cyanobacteria are an easier platform for 

genetic manipulation, thanks to various techniques and toolkits, which allow large-scale genetic 

modifications in a reasonable time frame (Jensen and Leister, 2014a). Compared to A. thaliana, 

Synechocystis is a less complex photosynthetic organism. Synechocystis has a short life cycle with a 

duplication time of 6 hours, it is naturally competent, it is able to perform homologous recombination 

and it has a small genome, which is completely sequenced. Moreover, glucose-tolerant strains of 

Synechocystis are available, which can grow heterotrophically in the dark (Williams, 1988), thus making 

it possible to study mutants of plastidial genes that are lethal or albinotic in plants. All these features, 

together with the available molecular tools, make Synechocystis an ideal model organism to study and 

improve plant oxygenic photosynthesis (Jensen and Leister, 2014a). The generation of a new model 

prokaryote carrying a plant-like photosynthetic apparatus is a new strategy for studying and improving 

it (Rühle and Leister, 2015). With this aim, the Synechocystis endogenous PSI, PSII (Rühle and Leister, 
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2015), cyt b6f and ATP-Synthase complexes would be replaced with plant ones and subsequently plant 

specific proteins and assembly factors would be introduced. Marker-less gene deletion and 

replacement strategies needing only a single transformation step (Viola et al., 2014) as well as novel 

approaches for chromosomal integration and expression of synthetic gene operons (Bentley et al., 

2014) are some of the strategies that will help in making large scale replacement. Several attempts in 

the introduction of plant proteins in Synechocystis have already been carried out. The PSII core protein 

D1 of the land plant Poa annua has been introduced in a Synechocystis strain lacking the endogenous 

D1, generating a strain with an hybrid PSII that was able to grow photoautotrophically and oxidize water 

at a rate comparable with the wild type (Nixon et al., 1991). Synechocystis lacks the capability to 

synthetize chlorophyll b and LHCII (the chlorophyll a/b-binding light-harvesting complex 

of photosystem II). Therefore the chlorophyll(ide) a oxygenase gene (cao) of A. thaliana, which is 

responsible for the conversion of chlorophyll a into chlorophyll b , was introduced in Synechocystis PSI-

less  strain, containing only 15–20% of the amount of chlorophyll a present in wild type. Chlorophyll b 

could accumulate in high amount in the mutant, replacing chlorophyll a in PSII, only when LHCII  from 

pea was introduced in the strain (Xu et al., 2001). The plant LHCII alone was also introduced in 

Synechocystis, where it could transiently accumulate but was rapidly degraded and could not be 

assembled in the thylakoids (He et al., 1999). The reason was probably the lack of some plant specific 

assembly factors like SRP54 and HSP70, usually present in the stroma to assist in the integration of a 

protein in the thylakoid membrane (Li et al., 1995; Yalovsky et al., 1992). All these attempts drive to the 

idea that the generation of a Synechocystis strain carrying a plant-like photosynthetic apparatus can be 

achieved and that probably unknown plant auxiliary factors will be necessary to stabilize the complex.  

The generation of a novel synthetic organism, carrying the Arabidopsis photosynthetic apparatus in a 

cyanobacteria cell background would allow us: (1) the adaptation of photosynthesis to different 

environmental stress conditions through in vitro adaptive evolution (Leister, 2017); and (2) the 

generation of more stable chimeric complexes with direct protein manipulation (Jensen and Leister, 

2014a).  
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1.4 Chloroplast evolution and chloroplast gene expression  

It is well accepted by the scientific community that some organelles of eukaryotic cells originated from 

prokaryotic organisms. In particular, the chloroplast generated from an endosymbiotic event occurred 

between an eukaryotic cell and a cyanobacterium. During the evolution, most of the cyanobacterial 

genome was transferred to the nuclear genome and only a small part was retained by chloroplasts 

(Kleine et al., 2009). The chloroplast genome of A. thaliana contains only 120-130 genes, which encode 

for 75-90 proteins most of which are subunits of the transcription and translation machinery and of the 

photosynthetic apparatus (Wang et al., 2014). About 95% of the plastid proteins are nuclear encoded 

and have to be imported post-translationally into the chloroplast (Jarvis and Lopez-Juez, 2013; Martin 

et al., 2002). In order to modulate the expression of nuclear genes according to developmental and 

physiological needs of chloroplasts, communication mechanisms between organelles and nucleus is 

necessary (Fig. 1.6) (Koussevitzky et al., 2007; Leister, 2005). This is evident when it comes to plastid 

transcription. Plastid transcription is performed by two RNA polymerases: the plastid encoded 

polymerase (PEP) and the nuclear encoded polymerase (NEP). PEP transcribes plastid-encoded 

photosynthetic genes. Non-photosynthetic housekeeping genes are transcribed by both PEP and NEP, 

whereas a few genes, such as rpoB and accD, are transcribed exclusively by NEP (Hajdukiewicz et al., 

1997). The communication pathway from the nucleus to the organelles is called anterograde signaling. 

It is a really important communication pathway since many chloroplast proteins are encoded in the 

nucleus and must be imported into the organelle after their translation in the cytosol, where they can 

modify the function and expression of plastidial genes. The signaling from organelle-to-nucleus is called 

retrograde signaling and the nature of this mechanism is still under investigation. Several putative 

retrograde signals have been identified: i.e. tetrapyrrole intermediates (Pogson et al., 2008;Woodson 

et al., 2011), reactive oxygen species (ROS) (Kim and Apel, 2013) and the redox state of the organelle 

(Pfannschmidt et al., 2003). Recently, secondary metabolites like the phosphonucleotide 3’-

phosphoadenosine 5’-phosphate (PAP) involved in drought and high light response and the 

methylerythritol cyclodiphosphate (MEcPP) a precursor of isoprenoids which induces under stress 

conditions, like excess light or a wound (Estavillo et al., 2011; Ramel et al., 2013; Xiao et al., 2012), have 

been discovered to be involved in the retrograde plastid signaling pathway (Fig. 1.5).  
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Figure 1.5: Communication between Chloroplast, Mitochondria and Nucleus. 

Details of anterograde and retrograde signaling between the nucleus and the organelles are discussed in the 

text. Anterograde signaling is indicated by the blue arrow, retrograde signaling by the red arrow. Abbreviations: 

NEP, nuclear encoded polymerase; ROS, reactive oxygen species; PAP, 3’-phosphoadenosine 5’-phosphate; 

MEcPP, methylerythritol cyclodiphosphate; Redox, redox state. 

 

In the chloroplast, multiple copies of highly condensed cpDNA, RNA and several proteins are organized 

in nucleoids (Powikrowska et al., 2014). Nucleoids contain the molecular machinery necessary for 

transcription replication and segregation of the plastid genome (Sakai et al., 2004). Plastid transcription 

occurs in the transcriptionally active part of the nucleoids, the pTAC complex. The pTAC is membrane 

attached and consists of multimeric protein complexes (Pfalz et al., 2006). It has been shown that pTAC 

can transcribe rRNA, tRNA and plastid protein-coding genes (Suck et al., 1996). Forty different 

polypeptide have been identified as part of the pTAC complex among them are subunits of the PEP. 

As part of the pTAC complex also helical repeat proteins, like octatricopeptide (OPRs), 

pentatricopeptide (PPRs) or tetratricopeptide-repeat (TPRs) have been  identified, in agreement with 

their primary role in modulating gene transcription and RNA editing, maturation or stability. In addition, 
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GUN1 (GENOME UNCOUPLED 1), a member of the PPR protein family, has been also described as pTAC 

component (Koussevitzky et al., 2007). GUN1 integrates several retrograde signaling pathways 

(Koussevitzky et al., 2007), modulates the accumulation of PRPS1 and genetically interacts with plastid 

ribosomal proteins (Tadini et al., 2016).  COE1 (Chlorophyll A/B-Binding Overexpression 1)/mTERF4 was 

recently proposed to be part of GUN1-mediated retrograde signaling pathway (Sun et al., 2016). 

Because the coe1 mutant accumulates high levels of unprocessed RNAs, it was speculated that these 

unprocessed RNAs might represent a retrograde signal for the down-regulation of nuclear 

photosynthetic gene expression (Sun et al., 2016).  

 

1.5 DEAD-box RNA helicases 

DEAD-box RNA helicases (DBRHs) participate in many cellular processes, including RNA metabolism 

(synthesis, modification, cleavage and degradation), ribosome biogenesis and translation initiation 

(Cordin et al., 2006; Silverman et al., 2003). In fact, non coding RNA molecules (tRNA and rRNA) must 

fold into a correct conformation in order to interact with proteins, and DBRHs are responsible for 

rearranging the RNA secondary structure, by unwinding duplexes in a local strand separation reaction 

(Jarmoskaite and Russell, 2011). To this end, helicases bind directly to the duplex region,  where the 

interaction occurs, and exploit the energy from the hydrolysis of ATP to move directionally along one 

of the strands (Jarmoskaite and Russell, 2011). DBRHs contain at least nine conserved motifs that 

constitute the helicase core domain, in particular a stretch of highly conserved Asp-Glu-Ala-Asp (D-E-A-

D) residues in motif II (Caruthers and McKay, 2002; Cordin et al., 2006).  In A. thaliana, ten out  of 58 

annotated DBRHs (Mingam et al., 2004) are predicted to be plastid-localized (RH3, 11, 17, 22, 26, 33, 

41, 50, 52, 58) (Asakura et al., 2012). Mass spectrometry analyses have identified seven DBRHs in A. 

thaliana chloroplasts, namely RH3, 22, 26, 39, 47, 50 and 58 (Majeran et al., 2012; Olinares et al., 2010). 

Phylogenetic analyses cluster the plastid DBRHs in different groups: RH3 together with mitochondrial 

and nuclear orthologous; RH26 is part of a clade with proteins with unknown function, whereas RH22, 

RH39, RH47, RH50 and RH58 form a separate group (Asakura et al., 2012; Chi et al., 2012). Some of the 

plastid helicases have been functionally characterized. The rh39 mutant accumulates precursors of the 

23S rRNA, indicating that RH39 is involved in plastid rRNA maturation by introducing the hidden break 
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into the 23S rRNA (Nishimura et al., 2010). Also RH22 is involved in the assembly of the 50S ribosomal 

subunit in the chloroplast: complete loss of RH22 causes a lethal phenotype, while a knockdown line 

displayed delayed cotyledon greening and defects in chloroplast rRNA accumulation, in particular of 

the precursor of the 23S and 4.5S rRNA (Chi et al., 2012). Yeast two-hybrid and pull-down assays 

indicated that RH22 can interact with the plastid 50S ribosomal protein PRPL24 and with a small 

fragment of 23S rRNA. RH3 was characterized in both A. thaliana and maize (Asakura et al., 2012; Gu 

et al., 2014). The atrh3 null mutant is embryo lethal and a weak allele (rh3-4) resulted in pale-green 

seedlings due to defects in splicing of group-II introns reduced amount of the 50S ribosomal subunit 

due to the decrease in the accumulation of the 23S and 4.5S rRNA (Asakura et al., 2012; Gu et al., 2014). 

A tobacco RH58/VDL mutant displayed defects in plastid differentiation and plant morphogenesis 

(Wang et al., 2000). The rice homologue of Arabidopsis RH50 (OsBIRH1) exhibits RNA helicase activity 

in vitro but no direct target of OsBIRH1 has been identified yet (Li et al., 2008).  In A. thaliana, RH50 

was detected in the pTAC, together with PRPs, the PEP-core enzyme and proteins involved in 

transcription, translation and RNA metabolism (such as RNAses and DEAD-box RNA helicases) (Majeran 

et al., 2012; Olinares et al., 2010). 
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1.6 Aim of the work: 

1.6.1 Replacement of Synechocystis PSII core complex 
 

The assembly of PSII - and more in general - of the photosynthetic apparatus and its regulation 

mechanisms it’s a complex process. Knowledge on the assembly of this multiprotein complex and the 

factors involved in this process is still incomplete. Most of the plant and cyanobacteria PSII assembly 

factors, so far identified, have been studied by a ”top-down” approach with forward and reverse genetic 

by disrupting singular components of the photosynthetic apparatus and of the assembly process and 

characterizing the phenotypic effect obtained on the generated mutants. These methods are suitable 

tools for the in-depth study of molecular mechanisms but they will hardly be able to identify the 

sufficient set of proteins, assembly factors and cofactors required for the assembly and well-functioning 

of PSII (Rühle and Leister, 2015). A “bottom-up” approach, meaning the synthesis and introduction of 

the subunits of the PSII core complex in a new environment where genetic engineering can be easily 

applied and later on characterize the protein complex functionality, would be more suitable for the 

complete understanding of PSII assembly and repair and eventually its improvement. This concept 

however cannot be completely implemented in higher plants particularly in the model organism A. 

thaliana, given their long life cycle and inefficient genetic engineering technology (Jensen and Leister, 

2014b; Rühle and Leister, 2015). On the other hand, cyanobacteria, in particular Synechocystis, are a 

more suitable candidate for this approach. Synechocystis has a short life cycle, is fast growing, can grow 

both in autotrophic and heterotrophic conditions and has a small genome easy to manipulate. All these 

characteristics make Synechocystis a good model organism to be used for a new “bottom up” approach.  

This work focused on the replacement of the multi-protein complex known as Photosystem II of 

Synechocystis with the one of A. thaliana. The main goal is to substitute the cyanobacterial PSII core, 

first by introducing the synthetic plant PSII complex and then by removing the cyanobacterial 

endogenous PSII genes (Fig. 1.6). To support plant PSII assembly in Synechocystis, plant specific 

assembly factors would have to be also introduced (Fig. 1.6). In this way, the generation of a hybrid 

organism carrying plant type PSII and later on the whole plant photosynthetic apparatus would be 

achieved. This will give us the chance to better understand photosynthesis by revealing unknown plant 
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specific assembly factors and the precise mechanism of assembly and repair and will give us a chassis 

to be used as a platform for photosynthetic improvement.  

 

 

 

 

Figure 1.6: Schematic overview of the substitution of the Synechocystis PSII core with a plant type PSII.  

The A. thaliana PSII core complex is represented in green, while the one of Synechocystis is in blue. A synthetic 

construct carrying genes encoding the plant PSII core will be introduced in Synechocystis wild type cells through 

natural transformation. Endogenous PSII core genes will be deleted and at the same time plant specific assembly 

factor will be introduced in the Synechocystis genome. A final strain, Synthetic Synechocystis, carrying a fully 

assembled PSII core complex of A. thaliana, will be isolated. 
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1.6.2 Characterization of the DEAD-box RNA helicase RH50 of A. thaliana 

 

DBRHs play an important role in RNA metabolism and ribosome biogenesis (Cordin et al., 2006). Several 

DBRHs are targeted to the chloroplast and for some the function is still unknown. Ribosome biogenesis 

is a complex multistep process which requires transcription of the ribosomal gene cluster, rRNA 

processing and ribosome assembly (Kaczanowska and Rydén-Aulin, 2007). DBRHs, with the ability of 

unraveling RNA secondary structures, help RNA molecules in reaching the right conformation for the 

interaction with their target protein. RH50 is a DBRH, which was found in the chloroplast proteome as 

part of the nucleoids in the pTAC complex, together with OPR, TPR and PPR proteins, involved as well 

in RNA metabolism. The PPR protein GUN1, the integrator of several retrograde signaling pathway, has 

been also localized in the pTAC complex (Koussevitzky et al., 2007). The gun1 mutant fails to repress 

the expression of nuclear encoded photosynthetic genes like Lhcb and RbcS, in conditions of plastid 

translation inhibition (lincomycin-treatment) or chloroplast photo-bleaching (norflurazon-treatment) 

or in mutant backgrounds where protein import (ppi2 mutant), plastid transcription (sig2) and 

translation (prors1-1) are affected (Kakizaki et al., 2009; Koussevitzky et al., 2007; Tadini et al., 2016; 

Woodson et al., 2013). Although, GUN1 has been shown to be part of pTACs, not much is known about 

its functional partners and about the molecular details of its function as an integrator of plastid 

retrograde signals.  

The aim of this work is to elucidate the role of RH50 in RNA metabolism, ribosome biogenesis and 

chloroplast gene expression, and its possible involvement in the complex network of retrograde 

signaling. The introgression of RH50 mutation in genetic backgrounds impaired in plastid gene 

expression, such as prors1-1 (down-regulated expression of the nuclear gene Prolyl-tRNA Synthetase1), 

gun1 (complete loss of retrograde signal regulation) and mutants lacking plastid ribosomal proteins, 

will allow us to elucidate the role of RH50 in RNA metabolism and its functional relation with GUN1 and 

the retrograde signaling pathway. 
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2 Materials and Methods 
 

2.1 Materials and methods of Synechocystis  

 

2.1.1   Chemicals, enzymes, radioactive substances and antibodies 
 

Standard chemicals were purchased from Roth (Karlsruhe, Germany), Duchefa (Haarlen, Netherlands), 

Applichem (Darmstadt, Germany), Serva (Heidelberg, German), Invitrogen (Darmstadt, Germany) and 

Sigma-Aldrich (Steinheim, Germany).  

Restriction enzymes were purchased from New England Biolabs (Ipswich, MA, USA) and Fermentas 

(Thermo Scientific, Rockford, USA). DNA purification kit, plasmid kits and Taq DNA polymerase from 

QIAgen (Venlo, Netherlands) and Metabion GmbH (Martinsried, Germany). 

Q5 High-Fidelity DNA polymerase and Phusion High-Fidelity DNA polymerase were purchased from New 

England BioLabs.  

Radiochemicals (32P-dCTP,35S-Met) were from Hartmann Analytic (Braunschweig, Germany).  

 

All primers used in this study were purchased from Metabion GmbH. GeneRulerTM 1 kb Plus DNA 

ladder (Thermo Scientific, Rockford, USA), was used as DNA length standard. The apparent molecular 

weight of proteins in SDS-polyacrylamide gel electrophoresis was determined according to PageRuler 

pre-stained molecular weight marker (10 to 170 kDa) from Pierce (Thermo Scientific). 

Immuno-decoration of Western blot membranes was done with following antibodies specific for PsbE, 

PsbI, CP43 and D2 (Agrisera, Vännäs, Sweden). 

 

2.1.2 Database analysis and software tools 
 

Synechocystis sp. PCC6803 sequences were obtained from Cyanobase 

(http://genome.kazusa.or.jp/cyanobase/Synechocystis) and from NCBI 

(https://www.ncbi.nlm.nih.gov/nuccore/BA000022), Arabidopsis thaliana sequences were obtained from 

TAIR (https://www.arabidopsis.org/). Vectors were designed with ApeVector 

(http://biologylabs.utah.edu/jorgensen/wayned/ape/) and VectorNTI 
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(https://www.thermofisher.com/de/de/home/life-science/cloning/vector-nti-software.html). Melting 

temperature of primers for PCR analysis was calculated using the Thermo Fisher online Tm calculator tool 

(https://www.thermofisher.com/de/de/home/brands/thermo-scientific/molecular-biology/molecular-

biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/tm-

calculator.html#/legacy=www.thermoscientificbio.com). 

 

2.1.3 Bacterial cell culture and growth conditions 
 

The bacterial strains and plastids used in this study are described in Table 2.1 and 2.2. CopyCutter™ 

EPI400™ Electrocompetent E. coli and DH5α E. coli bacterial strain were grown in Lysogeny broth 

(Bertani, 2004) (LB, see abbreviations) medium at 37°C and shaking at 225 rpm or on LB containing 1% 

w/v agar for growth on plates.  

Synechocystis sp. PCC 6803 glucose tolerant wild type strain (GT, H. Pakrasi, Department of Biology, 

Washington University, St. Louis) and all the mutant generated in this study, unless otherwise indicated, 

were grown at 25°C in BG11 medium containing 5 mM glucose (Rippka et al., 1979) under continuous 

illumination at 30 μmol photons m-2 s-1. Liquid cultures were shaken at 120 rpm. For growth curves 

experiments, liquid culture were grown in a Multi-Cultivator MC1000 (Photon System Instrument, PSI, 

Brno, Czech Republic). For growth on plates, 1.5 % (w/v) agar and 0.3 % (w/v) sodium thiosulfate were 

added to the BG11 medium. PSII-defective mutant strains were grown in low light conditions (5-10 μmol 

photons m-2 s-1). For positive selection of the mutants, increasing concentrations of kanamycin and/or 

spectinomycin (10 to 200 μg/ml) were added to the medium. For negative selection of markerless 

mutant strain, BG11 containing 5 % (w/v) sucrose was used. 

Table 2.1: Bacterial strains used in this study 

Strain  Characteristics Selection Source 

E. coli    

DH5α competent cells used for cloning procedures    

EPI400™ electrocompetent cells used for expression of pUC57_RC2  Amp GenScript 

Synechocystis    

PCC6803 GT Glucose tolerant  
Prof. H. Pakrasi (Washington University, St. Louis, 
Missouri) 

ΔD1 psbA1, A2 and A3 KO   Prof. P. Nixon (Imperial College, London) 
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Table 2.2: Plasmids used in this study  

Plasmid   Characteristics Selection Source 

pRL250 nptI-sacB, double selection cassette Kan, Suc P. Wolk (Michigan University) 

pICH69822 Destination vector for Golden Gate cloning Kan 
E. Weber (Icon Genetics GmbH, 
Halle) 

pUR2LT donor 
pVZ derived, mobilizable plasmid, with modified cloning site: ribosomal sliding 
site (T13) downstream ATG, SfiIA and SfiIB as cDNA cloning Kan, Spec unpublished 

pUC57_RC1 At psbDC_opt, At psbA_opt, At psb_I Amp  GenScript, this study 

pUC57_RC2 At psbEFLJ_opt, At psbB_opt, At psbT_opt, At psbH_opt Amp  GenScript, this study 

ΔpsbA2 RC1 
psbA2 flanking regions + RC1 synthetic construct+ nptI-sacB in pICH69822 
destination vector Kan, Suc this study 

ΔpsbEFLJ RC2 
psbEFLJ flanking regions + RC2 syntehtic construct + nptI-sacB in pICH69822 
destination vector Kan, Suc this study 

ΔpsbA2 KO psbA2 flanking regions + nptI-sacB in pICH69822 destination vector Kan, Suc this study 

ΔpsbDC KO psbDC flanking regions + nptI-sacB  in pICH69822 destination vector Kan, Suc this study 

ΔpsbDC KO spec psbDC flanking regions + spec cassette  in pICH69822 destination vector Spec this study 

pUR2LT donor RC2 RC2 synthetic construct + nptI-sacB in self replicative vector 
Kan, 
Spec, Suc this study 

psbA2 RC1 no cassette 
psbA2 flanking regions + RC1 synthetic construct in pICH69822 destination 
vector Kan this study 

Selections: Kan, Kanamycin; Suc, sucrose; Spec, spectinomycin; Amp, ampicillin. 

 

2.1.4 Synthetic construct design 
 

Synechocystis sp. PCC6803 sequences were obtained from Cyanobase 

(http://genome.kazusa.or.jp/cyanobase/Synechocystis) and from NCBI 

(https://www.ncbi.nlm.nih.gov/nuccore/BA000022) (see before); A. thaliana sequences were obtained 

from TAIR (https://www.arabidopsis.org/). The flanking region sequences of each construct were PCR 

amplified and then purified from 1 % agarose gel with the QIAgen (Venlo, Netherlands) or Metabion 

(see before) gel extraction kit following the producer’s instructions. All vectors were assembled using 

the one-step Golden Gate Shuffling cloning strategy (Engler et al., 2008). For all constructs, the plasmid 

pICH69822 was used as destination vector. The nptI-sacB double-selection cassette was amplified from 

the pRL250 plasmid, the spectinomycin resistance cassette was amplified from pICH30971, using the 

primers 43 and 44 (Table 2.1). The synthetic constructs, RC1 and RC2, were designed to express the A. 

thaliana core of Photosystem II. In particular, RC1 was carrying the A. thaliana psbDC, psbA, psbI genes 

and RC2 the psbEFLJ, psbB, psbT, psbH genes. All A. thaliana genes were codon optimized using 

OptimumGene™ - Codon Optimization tool by GenScript (Codon Adaptation Index value >0.8) for 

expression into Synechocystis sp. PCC6803 (At psbDC_opt, At psbA_opt, At psbI_opt, At psbEFLJ_opt, At 

psbB_opt, At psbT_opt and At psbH_opt), purchased from GenScript (Hong Kong) and cloned into the 
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EcoRV restriction site of pUC57. The synthetic construct RC2 was amplified with primer 45 and 45 (Table 

2.1) designed with a restriction site for SfiI restriction enzyme, using Phusion high fidelity DNA 

polymerase. This was subsequently digested with SfiI at 50°C for 2h. pUR2LT expression vector was also 

digested with SfiI. Purified RC2-SfiI construct and digested pUR2LT were ligated at 4°C over-night 

generating the pUR2LT donor RC2 vector. 

 

2.1.5 Synechocystis’ natural transformation 

 

Synechocysts wild type and mutant strains were transformed with plasmid vectors purified using 

Plasmid Midiprep kit from Qiagen or Metabion. For each transformation, 10 ml of growing cells at an 

OD730 of 0.6 were harvested by centrifugation at 4000xg for 10 min and resuspended in 1/20 volume 

of BG11. 2 μg of plasmid DNA per transformation were added to the cells. Transformations were 

incubated in light for 5 hours, the last 3 hours with shaking. For recovery, 1 mL of fresh BG11 was added 

and the transformations were incubated overnight in the dark with shaking at 25 °C. On the next day, 

cells were collected by centrifugation at 4500xg for 10 min, resuspended in a small volume of fresh 

BG11 medium and plated on BG11 agar plates containing low concentration (5-10 ug) of the correct 

antibiotic. Unless otherwise indicated, plates of transformed cells were incubated in light at 25 °C.  

 

2.1.6 Conjugation of cyanobacteria with pUR2LT donor RC2 
 

Liquid culture of E.coli helper strain JM53/RP4 and E. coli donor strain (DH5α or F10) carrying the 

desired target plasmid (pUR2LT donor RC2) were grown in LB medium with appropriate antibiotic with 

shaking at 180 rpm. The cultures were then diluted 1:40 in LB without antibiotics, to a final volume of 

10 mL and grown for 2,5h at 37°C at 180 rpm. The cells were gently harvested by centrifuging for 10 

min at 2000xg and resuspended in 1/10 volume (1 mL) of LB. 1 mL of helper and donor strain were 

collected in a 2 mL tube, centrifuged for 5 min at 2000xg and resuspended in 100 µl LB. The cell mixture 

was incubated for 1 h at 30°C without shaking and then 800 µl of recipient cyanobacteria strain 

(Synechocystis OD750nm about 0.9) were added. The cell were harvested by centrifuging at 2000xg for 5 

min and resuspended in 30µl BG11-medium. The solution was dripped onto sterile filter (nitrocellulose) 

and placed on a BG11 agar plate containing 5% LB medium without antibiotics. The plates were 



 

21 
 

incubated overnight at 30°C in dim light.  The filters were then rinsed with fresh BG11-medium and 

different volume of this suspension were plated on BG11agar plates containing the appropriate 

antibiotic. Plates were let at 30°C with 50 µE for 10-14 days. The clones were transferred in new plates 

with higher concentration of antibiotic. 

 

2.1.7 PCR (standard and High fidelity)  
 

For genotyping of bacterial strains, PCR analysis was performed using 0.5 μl of genomic DNA as 

template in a total reaction volume of 20 μl. The reaction mix contained 1x PCR-buffer (QIAgen), 100 

μM dNTPs, 200 μM primers, 0.5 units of Taq DNA polymerase. The PCR products were then loaded on 

a 1% agarose TAE (150 mM Tris-HCl, 1.74 M Acetic acid, 1 mM EDTA) gel and visualized by Ethidium 

bromide staining.  

DNA fragments were amplified from Synechocystis genomic DNA or A. thaliana Col-0 cDNA with the 

Phusion High-Fidelity DNA Polymerase (New England BioLabs) or Q5 High-fidelity DNA Polymerase 

(NEB). Reactions were performed in a total volume of 20 μl each containing 1x HF reaction buffer, 200 

μM dNTPs, 200 μM of each primer (listed in Table 2.3) and 0.4 units of HF DNA Polymerase. The PCR-

products were loaded on a 1% agarose gel and then cut from the gel and purified with the QIAgen gel 

extraction kit following the producer’s instructions. 
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Table 2.3: Primers used in this study  

Primer Name  Sequence 5'-3' Purpose 

HR1 FW  TTTGGTCTCTAGGTTTCCTTGTCATAGCTCCGAGC psbA2 RC1 and psbA2 KO constructs HR1 

HR1 RV TTTGGTCTCTGGGTACCATAGTTCTGGGCTGTGTAG psbA2 RC1 construct HR1 

HR 1 RV_2  TTTGGTCTCTAACGACCATAGTTCTGGGCTGTGTAG psbA2 KO construct HR1 

HR2 FW TTTGGTCTCTTATGAGTCCGGGGCAGTTACCATTAG psbA2 RC1 and psbA2 KO constructs HR1 

HR2 FW_2  TTTGGTCTCTCGTTAGTCCGGGGCAGTTACCATTAG markerless psbA2 RC1 construct HR2 

HR2 RV TTTGGTCTCTAAGCATCGCCTATTGCAACTGCGC psbA2 RC1 and psbA2 KO constructs HR2 

HR3 FW TTTGGTCTCTAGGTAGCCGACATCATCCAAAC psbEFLJ RC2 construct HR3 

HR3 RV TTTGGTCTCTAACGCTAGGGAACCATTGCCAC psbEFLJ RC2 construct HR3 

HR4 FW TTTGGTCTCTGGTTTAAGGTGGGCTTGG psbEFLJ RC2 construct HR4 

HR4 RV TTTGGTCTCTAAGCAAATACAGTCCTGGCTCTGC psbEFLJ RC2 construct HR4 

HR5 FW  TTTGAAGACTTAGGTACCTTCAACAGTCTCCACG psbDC KO construct HR5 

HR5 RV TTTGAAGACTTAACGAAATGCAAATCCTCTTGCGTAGC psbDC KO construct HR5 

HR6 FW TTTGGTCTCTTATGAACTGGATGGGGATGGC psbDC KO construct HR6 

HR6 RV TTTGGTCTCTAAGCTAGAGCGTCGCCATAGGAAATTAG psbDC KO construct HR6 

psbA2 Syn FW AAACTGACTGACCACTGACC genotyping 

psbA2 Syn RV TTACCAGCGGCATTAATGGC genotyping 

AtpsbD FW ACTCATGGATTGGCCTCCAG PCR, N.B. 

AtpsbD RV AGCACGTAAATTCAAGGCCAGC PCR, N.B. 

AtpsbC FW TATTTAATGGGACTCTGGCC PCR, N.B. 

AtpsbC RV AACAGGCAATAAAACCGCAC PCR, N.B. 

AtpsbB FW GCCATTATTCCCACCAGTGC PCR, N.B. 

AtpsbB RV ACCGGCTGTTGTTAAAGCTG PCR, N.B. 

AtpsbI FW ATGTTGACCCTGAAACTGTT PCR, N.B. 

AtPsbI RV TCCGGCCGGGATCGTTACTC PCR, N.B. 

psbEFLJ Syn FW AATGGAGCGATGTGATTGCTCC genotyping 

psbEFLJ Syn RV ATAGGCATCGGGATCTAAACG genotyping 

AtpsbE FW ACAGCATTACTATTCCCTCTC PCR, N.B. 

AtpsbE RV TTCGTCTAACTGTTCCAAGGG PCR, N.B. 

AtpsbF FW ATGACTATTGACCGCACTTATCC PCR  

AtpsbF RV AAATTGCATGGCACTAATGGAC PCR  

AtpsbL FW ATGACTCAATCCAATCCCAATG PCR  

AtpsbL RV  TAATTGGAAAACAACACGGC PCR  

AtpsbJ RV TTACAAACTGGAACCCAGGC PCR  

AtpsbB FW TTGTGTTTAGCGGGCTGTG PCR, N.B. 

AtpsbB RV TTGATTTTCAGCCAAGCCGG PCR, N.B. 

AtpsbT FW TTGTTAGTTTCCACTTTGGG PCR  

A psbT RV TTTGGTACTAATTTTGGGgg PCR  

AtpsbH RV TACCATCTAACAACACACTGG PCR  

psbDC Syn FW GGCTAAAGCGTGATCGTTTC genotyping 

psbDC Syn RV TGTGGAAGGGGTTCAAAGTC genotyping 
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psaA Syn FW TGGTTCCACTACCACGTCAA PCR  

psaA Syn RV TAGAGTTCCGCCATCTTGCT PCR 

Spec Fw TTTGGTCTCTCGTTTTGAATTCGATCCATGGTCG psbDCKO spec construct 

Spec RV TTTGGTCTCTCATATAGAGCTTGAGTTAAGCCGC psbDCKO spec construct 

SfiI RC2 FW TTTTGGCCATTATGGCCGCGGCTCACAAAATAGTAGAC pUR2LT donor RC2 

SfiI RC2 RV TTTTGGCCGAGGCGGCCCTGACTAGCCAATGACAG pUR2LT donor RC2 

Bold: restriction site.GGTCTC, BsaI; GAAGAC, BbsI; GGCC, SfiI. italis: sticky end 

 

2.1.8 Genomic DNA isolation 
 

Small-scale genomic DNA isolation was performed according to the xanthogenate-SDS method (Tillett 

and Neilan, 2000). In brief, 1 ml of exponentially growing cell cultures were pelleted and resuspended 

in 50 μl of TER buffer (10 mM Tris/HCl pH 7.4, 1 mM EDTA pH 8.0 and 100 μg/ml RNAse A). 750 μl of 

freshly made XS buffer (1% calciumethylxanthogenate, 100 mM Tris/HCl pH 7.4, 20 mM EDTA pH 8.0, 

1% SDS, 800 mM ammonium acetate) were added to each sample which were then mixed by inversion 

and incubated at 70oC for 2 h in order to dissolve membranes. The samples were vortexed for 10 sec 

and incubated on ice for 30 min. To remove cells debris, the samples were centrifuged for 10 min at 

13,000xg . The supernatant was transferred to a new tube containing 750 μl isopropanol for DNA 

precipitation. The DNA was collected by centrifugation at 12,000xg for 10 min and washed with 70% 

ethanol. Finally, the DNA was air dried and resuspended in 100 μl ddH2O. 

 

2.1.9 RNA isolation  
 

Total RNA was isolated from Synechocystis samples using the TRIzol method. Cells from 50 ml liquid 

cultures (OD730=0.7) were pelleted at 6,000xg for 15 min, resuspended in 1 ml TRIzol (Thermo Fisher) 

and vortexed thoroughly. The samples were immediately frozen in liquid nitrogen and incubated at 

65oC for 15 min, (this step was repeated 2 times). Cell debris was removed by centrifugation at 12,000xg 

for 15 min at 4oC. The supernatant was transferred into a new tube and mixed with 0.2 volumes of 

chloroform and incubated at room temperature for 15 min. After phase separation by centrifugation at 

12,000xg for 15 min at 4oC, the aqueous phase was transferred into a new tube. RNA was precipitated 

with 0.25 volume of isopropanol and 0.25 volume of a high salt solution (1.2 Μ NaCl and 0.4 Μ sodium 
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citrate) and washed with 70% ethanol. The dried RNA pellet was resuspended in 100 μl H2O and the 

concentration was measured by Nanodrop (Nanodrop 200, Peqlab). 

 

2.1.10 Arabidopsis cDNA Synthesis 
 

Synthesis of Arabidopsis thaliana cDNA was performed using the iScript reverse transcriptase kit (Bio-

Rad, Hercules, CA, USA, www.bio-rad.com). During the whole procedure, DEPC-treated water was used. 

For digestion of DNA contaminations, DNAse treatment of 1 μg of RNA was performed in a total reaction 

volume of 10 μl, containing 1x PCR buffer (Qiagen, Venlo, Netherlands) + MgCl2 and 0.5 units of DNAse 

I. The reaction mix was incubated at room temperature for 30 min and the enzyme was then inactivated 

by adding 2.5 mM EDTA and further incubating for 15 min at 65 °C. Each RNA sample was then used in 

a total reverse transcription reaction volume of 20 μl, containing 1x iScript reaction mix buffer and 1 μl 

of iScript reverse transcriptase. The first-strand cDNA synthesis was performed according to the 

following protocol by using a thermocycler (BioRad): 5 min at 25 °C, 40 min at 42 °C and 5 min at 85 °C. 

 

2.1.11 Northern blot analysis 
 

Northern blot analysis was performed according to Green and Sambrook (2001). 10 μg total RNA 

samples were mixed with 5x RNA loading dye and incubated at 65oC for 15 min and then kept on ice for 

5 min.  After denaturation, the samples were loaded on an denaturing 2% (w/v) agarose gel, which 

contains 1x MOPS buffer (200 mM MOPS, 50 mM sodium acetate and 10 mM EDTA, pH 7) and 1% 

formaldehyde and run for 2-3 h, at 60 V, in a 1x MOPS running buffer.  

The gel was then subjected to the following manipulations for the RNA capillary transfer to the 

membrane. The gel was equilibrated in 10x SSC (1.5M Na-chloride and 150 mM Na-citrate, pH 7). The 

capillary transfer was performed by placing the gel upside down on the transfer bridge (made of 

Whatman paper 3MM). The positively charged nylon membrane (Hybond N+; GE Healthcare, Freiburg, 

Germany) was shortly equilibrated in 2x SSC and layered on top of the gel, as well as three Whatman 

papers (3MM) also equilibrated in 2x SSC. On top of this stack, paper towels and an extra weight were 

placed in order to start the capillary transfer. The transfer solution was 10x SSC and the transfer was 

carried out overnight (16-20 h). The RNAs were cross-linked on the membrane by UV radiation 
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(Stratalinker® UV Crosslinker 1800, Stratagene, USA) at 1200 μJ cm-2. The membrane was stained in a 

methylene blue solution (0.02% (w/vol) in 0.3 M Na-acetate (pH 5.5)) until the rRNAs became visible (

3–5 min) and then rinsed with ddH2O to wash away the excess dye. For the pre-hybridization step, 

the membrane was placed into a glass cylinder containing 20 ml prehybridization buffer (7% SDS, 0.25 

M Na2HPO4 pH 7) and 160 μl denatured herring sperm. The membrane was incubated at 65oC for at 

least 4 h prior to hybridization. For probe preparation approximately 100 ng of PCR-product were filled 

up to 12 μl with ddH2O, denaturated at 95°C for 5 min and cooled down on ice for 5 min. Afterwards, 4 

μl of 5x OLB buffer (50 mM Tris pH6.8, 10 mM MgOAc, 50 mM DTT, 0.5 mg/ml BSA, 33 μM of dATP, 

dTTP and dGTP), 1 μl of Klenow DNA polymerase and 3 μl of radioactive 32P-dCTP were added to the 

probe and incubated for 3h at 37°C. For probe purification, Illustra MicroSpinTM G-25 Columns were 

used according to the producer’s instructions. The radioactive labeled probe was then added and the 

hybridization was performed for 16 h at 65oC. Hybridization buffer was discarded and 10 ml of pre-

warmed washing buffer (0.1% SDS, 0.2 M NaCl, 20 mM NaH2PO4, 5 mM EDTA; pH7.4) was added to the 

membrane and incubated for 30 min at 65oC. The second washing step was performed with the same 

buffer but incubated for 15 min at 65oC. The final washing step was carried out with 1x RT buffer (6 mM 

NaH2PO4, 1 mM EDTA, 0.2% SDS; pH 7.0) for at least one hour on a shaker at room temperature. The 

membrane was then exposed to a radioactive sensitive screen (Storage Phosphor Screen, Fuji) 

overnight. The signals were detected with the Phosphorimager (Typhoon, GE Healthcare). 

 

2.1.12 Protein extraction  
 

For total protein extraction, Synechocystis cultures in the exponential growth phase were collected by 

centrifugation and resuspended in 1 volume of thylakoid buffer (50 mM HEPES/NaOH pH 7.0, 5 mM 

MgCl2, 25 mM CaCl2, 10 % glycerin). Cell suspensions were transferred into a 2 ml tube together with 

0.5 volumes of glass beads (0.25-0.5 mm diameter), and vortexed 5 times for 20 sec. Samples were 

placed on ice for 1 min between each vortexing step. Beads and unbroken cells were pelleted by 

centrifuging at 1600xg for 3 min and then the supernatant, corresponding to the total protein fraction, 

was transferred into a new tube.  
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2.1.13 Thylakoid preparation 
 

For preparation of thylakoid fractions, the crude extract was diluted in 2 volumes of thylakoid buffer and 

membranes were pelleted at 16000xg, 4 °C, for 30 min. The thylakoid pellet was washed once more in 

thylakoid buffer and resuspended in a small volume of it. 

 

2.1.14 Immunoblot analysis 
 

For Immunoblot analysis the protein samples were loaded on a Tris-tricine SDS-Polyacrylamide gel 

(Schagger and von Jagow, 1987) with the desired acrylamide concentration and, afterwards, the 

proteins were transferred to PVDF membranes (Immobilon-P, Millipore, Germany). After Western 

blotting according to the manufacturer’s instructions using a semi dry blot system (Bio-Rad), 

membranes were saturated with 5 (w/v) milk proteins dissolved in 1x TBS-T (150 mM NaCl, 10 mM Tris 

pH 8.0, 0.1 % v/v Tween20) and incubated overnight at 4°C with the specific primary antibody diluted 

in TBS-T containing 5 % milk proteins. The primary antibody was then removed and the membranes 

were washed 3 times in TBS-T (10 min each). The membranes were afterwards incubated for 1 hour 

with the corresponding secondary antibody, diluted in TBS-T containing 5 % milk proteins, conjugated 

with horseradish peroxidase. Detection of the horseradish peroxidase signal was performed using the 

Pierce ECL Western Blotting Substrate kit (Thermo Scientific, Rockford, USA).  

 

2.1.15 Bacterial whole cell absorbance spectra 
 

Absorbance spectra of Synechocystis cells cultures were recorded using a spectrophotometer 

(Shimadzu, Kyoto, Japan). The optical density of the suspensions was measured at 730 nm.  

 

2.1.16 Low temperature (77K) fluorescence emission spectra 
 

77K fluorescence was recorded using an in-house built spectrofluorometer. Synechocystis samples of 

different mutants were used. Cells were harvested, washed and resuspended in BG11 liquid medium 

to a final OD730 of 0.5, dark-adapted for 10 min and then rapidly frozen in liquid nitrogen. To investigate 

the stoichiometry of the PSI and PSII complexes, their fluorescence emission spectra under the Chl a 
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excitation at 435 nm were recorded between 600 and 800 nm. Fluorescence emission peaks of PSI (720 

nm) of the different strains were compared by normalizing the PSII emission peak (695 nm) to the one 

from WT. 

 

2.1.17 Accession Numbers 
 

PSII A. thaliana genes used in the synthetic constructs: psbA (AtCg00020), psbDC (AtCg00270-280), psbI 

(AtCg00080), psbEFLJ (AtCg00580-570-560-5550), psbB (AtCg00680), psbT (AtCg00690) and psbH 

(AtCg00710).  

PSII Synechocystis genes: psbA1 (slr1181), psbA2 (slr1311), psbA3 (sll1867), psbD1C (sll0849-0851), 

psbD2 (slr0927), psbEFLJ (ssr3451, smr0006-0007-0008), psbB (slr0906), psbH (ssl2598), psbT (smr0001) 

and psbI (sml0001). PSI Synechocystis gene psaA (sllr1834). 
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2.2 Materials and methods A. thaliana 

 

2.2.1 Chemicals, enzymes, radioactive substances and antibodies 
 

Chemicals, enzymes and radioactive substances as described in chapter 2.1.1. Commercially available 

antibodies were used against RbcL (Agrisera, see before) PRPS1 (Agrisera), PRPS5 (Agrisera), PRPL11 

(Meurer et al., 2017) and GFP (Life technologies, Carlsbad, USA). A RH50 antibody (GenScript, New 

Jersey, United States, www.genscript.com) was raised against the peptide CDNERGLRGGSHSKG. 

 

2.2.2 Database analysis and software tools 
 

Gene and protein sequences were obtained from NCBI and TAIR (www.ncbi.nlm.nih.gov, 

www.arabidopsis.org). The chloroplast transit peptide lengths were predicted using ChloroP 1.1 

(http://www.cbs.dtu.dk/services/ChloroP/). Nucleic acid sequence analysis was performed using the 

Gene Runner (www.generunner.net) and BioEdit Sequence Alignment Editor 

(www.mbio.ncsu.edu/bioedit/bioedit.html) software. ImageJ software (rsbweb.nih.gov) was used for 

growth measurements. 

 

2.2.3 Plant material, propagation and growth measurements  
 

The A. thaliana T-DNA insertion mutant line rh50-1 (GABI_629A10, genetic background Col-0) was 

obtained from the GABI-KAT collection  (Rosso et al., 2003) and the transposon line rh50-2 

(GT_5_111858, genetic background Ler) from the GT collection (http://gt.jbei.org/arabidopsis.html). 

The regions flanking the T-DNA and transposon insertions were PCR-amplified and sequenced (primer 

sequences in Table 2.4). Both rh50-1 and rh50-2 contain the T-DNA or transposon insertion in exon 2 

(at positions 433 and 429 relative to the start codon, respectively). In addition, the following previously 

described mutant lines were used in this work: gun1-102 and prps21-1 (Tadini et al., 2016), prors1-1 

(Pesaresi et al., 2006), prpl11-1 (Pesaresi et al., 2001), prps1-1, prps17-1 and prpl24-1 (Romani et al., 

2012). A. thaliana plants were grown on soil in a climate chamber as described (Pesaresi et al., 2009). 

For the norflurazon (NF), lincomycin (LIN) and erythromycin treatments, surface-sterilized mutant and 

http://www.cbs.dtu.dk/services/ChloroP/
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wild type (WT) seeds were plated on Murashige and Skoog (MS) medium (PhytoTechnology 

Laboratories, LLC™, USA) containing 1% (w/v) sucrose and 0.8% (w/v) agar supplemented with either 

5 μM NF (Sandoz Pharmaceuticals, Vienna, Austria) or 220 μg ml–1 of LIN (Sigma, St Louis, MO, USA) or 

50 μg ml–1 erythromycin (Sigma-Aldrich, Munich, Germany). For the cold stress treatments, surface-

sterilized mutant and WT seeds were plated on MS medium containing 1% (w/v) sucrose. The seeds 

were allowed to germinate in a climate chamber at 4°C under long day conditions (16h light and 8h 

dark) at either growth or low light (100 and 30 µmol photons s-1 m-1, respectively) conditions for 6 weeks 

and then transferred at 22°C under same long day conditions.  

 

Table 2.4. Primer used in this study. 

Locus  Gene Sense primer (5' to 3') Antisense primer (5' to 3') Use 

Nucleo
tide 
added 
at 5' 
end 

AT3G06980 RH50 TGTTTCGTAACGGCGGAGGAG CAAAACGCCTATCTTCTCTAC 
genoty
ping 

/ 

AT3G06980 rh50-1 CCCATTTGGACGTGAATGTAGACAC CAAAACGCCTATCTTCTCTAC 
genoty
ping 

/ 

AT3G06980 rh50-2 TGTTTCGTAACGGCGGAGGAG CGAATAAGAGCGTCCATTTTAG 
genoty
ping 

/ 

AT3G06980 RH50 GTGGATCCTTGTTTCGTAACGGCGGAGG 
GTCGACTTATTTTTCGAACTGCGGGTGGCTCCA
AGCGCTCAAAAGAAGAGGCTGTAAAGCAAAC 

EMSA 
BamHI/St
rep-tag-
SalI 

AT1G61520 LHCA3 AGGCTGGTCTGATTCCAGCA ACTTGAGGCTGGTCAAGACG NB / 

AT3G47470 LHCA4 TGAGTGGTACGATGCTGGGA GTGTTGTGCCATGGGTCAGA NB / 

AT1G29910 LHCB1.2 GACTTTCAGCTGATCCCGAG CGGTCCCTTACCAGTGACAA NB / 

AT5G01530  LHCB4.2 AGCTAGTGGATGGATCATCT CAGGAGGAAGAGAAGGTATC NB / 

AT4G02770 PSAD1 AAGCCGCCGGGATCTTCAAC CTAAGCCTTGTCCCCAAAGC NB / 

AT4G28750 PSAE1 ATGGCGATGACGACAGCATC TGTTGGTCGATATGTTGGCG NB / 

AT1G08380 PSAO ATGGCAGCAACATTTGCAAC GTAATCTTCAGTCCTGCCCT NB / 

AT1G30380 PSAK ATGGTCTTCG AGCCACCAAA CGTTCAGGTGCATGAGAATA NB / 

ATCG00490 rbcL CGTTGGAGAGACCGTTTCTT CAAAGCCCAAAGTTGACTCC NB / 

ATCG00020 psbA CGGCCAAAATAACCGTGAGC TATACAACGGCGGTCCTTATG NB / 

ATCG00920 rrn16S AGTCATCATGCCCCTTATGC CAGTCACTAGCCCTGCCTTC NB / 

  
23S-4.5S intergenic region 

CATCCCCGCAGGGGCGGAGAACCCGTTGCTGTCTCGGCTGTGCTACCGGAGGCTCTGGGGAAGTC
GGAATCTC**** 

NB/SB / 

  
23S-4.5S intergenic region 

***TGCTCTCCTATTCCGACTTCC TACCGGTCTGTTAGGATGCC EMSA / 

ATCG01180 rrn23S GTTCGAGTACCAGGCGCTAC CGGAGACCTGTGTTTTTGGT NB/SB / 

    
TAATACGACTCACTATAGGGggacctttccctag
tacgagag 

GGAGAGCACTCATCTTGGGG EMSA / 

ATCG00960 
4.5S 
rRNA 

GAAGGTCACGGCGAGACGAGCC GTTCAAGTCTACCGGTCTGTTAGG NB / 
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ATCG00970 5S rRNA TATTCTGGTGTCCTAGGCGTAG G ATCCTGGCGTCGAGCTATTT NB / 

ATCG00770 rps8 ATGGGGAAAGACACCATTGC TCCGCCGATTCTTTTTAGTC NB / 

ATCG00830/ 
rpl2 GAGGAATAATTACCGCAAGG CTCTACCCAAACTTTTCTGG NB / 

ATCG01310 

ATCG00800 rps3 AGACTTGGTACAACCCAAAG TGTAAAGGAACTCTGCCTTC NB / 

ATCG00840/ 
ATCG01300 

rpl23 ATGGATGGAATCAAATATGCAG TCTAAGAGGTGGAATAGAATAACC NB / 

AT3G06980 RH50 GTGGATCCTGTTTCGTAACGGCGGAGGAG 
GTGGATCCGGTCAAGATGAAGAGTTACTTAGGT
TGTG 

Yeast 
2H 

BamHI/Ba
mHI 

AT2G31400 GUN1 GTGAATTCGCTCATCTTTCACAGACTACTC  GTGGATCCCACAGAGCCAAACATTGTTAGG 
Yeast 
2H 

EcoRI/Ba
mHI 

AT1G32990 RPL11 GTGAATTCGCCATGGCTCCACCTAAACCC GTGGATCCATAGAAACTACCAACCAGGC  
Yeast 
2H 

EcoRI/Ba
mHI 

AT5G30510 RPS1 GTGAATTCGTTGCAATGTCTAGCGGTC  GTGGATCCCTAAATATCAACTGCAGAAGGAATG  
Yeast 
2H 

EcoRI/Ba
mHI 

AT1G79850 RPS17 GTGAATTCGCCATGAAAACGATGCAGGG GTGGATCCCTACGCCGGCTGCTGAGAC 
Yeast 
2H 

EcoRI/Ba
mHI 

AT3G27160 RPS21 GTGAATTCGAATCAATGGCGGTCGAAG  GTGGATCCTCAAGAAGGTACATCTCCACCAG  
Yeast 
2H 

EcoRI/Ba
mHI 

AT1G08520 CHLD GTGGATCCGTGCCTCCGCGAATGCTAC  GTGGATCCGTATTGCAGACAAAATGAGGTCAAG  
Yeast 
2H 

BamHI/Ba
mHI 

AT3G06980 RH50 *AGATGTTGGCGAGAGCTCCAC **TTGTGAACTCGTAAGCGTTTGG 

Subcell
ular 
localiz
ation 

attB sites 

AT2G31400 GUN1 *TCCTTTCAATGGCGTCAACG **ACAAAAGAAGAGGCTGTAAAGCAAACG 

Subcell
ular 
localiz
ation 

attB sites 

NB, Northern Blot; SB, Slot Blot; attB sites: GGGGACAAGTTTGTACAAAAAAGCAGGCT*; GGGGACCACTTTGTACAAGAAAGCTGGGT**; 
TAATACGACTCACTATAGGG***; CCCTATAGTGAGTCGTATTA****      

 

2.2.4 Transient co-expression in A. thaliana leaf protoplasts 
 

GUN1 and RH50 cDNA were cloned without their stop codons into the gateway entry vector pDONR207 

(Invitrogen; Carlsbad, CA) as described (Tadini et al., 2016). The entry vector was then recombined with 

pK7RWG2 and pB7FWG2 (Vinti et al., 2000) to generate 35S promoter-driven C-terminal GUN1-RFP and 

RH50-GFP fusions. Seedlings of 2-week-old wild-type A. thaliana plants were cut into small pieces and 

incubated for 16 h at 24°C in the dark in a protoplasting solution (10 mm MES, 20 mm CaCl2, 0.5 m 

mannitol, pH 5.8, 0.1 g mL−1 macerozyme (Duchefa, Haarlem, Netherlands), and 0.1 g mL−1 cellulase 

[Duchefa]). Protoplasts were then isolated as described (Dovzhenko et al., 2003) and transfected by the 

PEG–calcium-mediated transfection with the GUN1-RFP and RH50-GFP constructs. Protoplasts were 

incubated for 24 h to allow gene expression. The samples were then studied with a confocal microscope 

(Leica TCS SP5 CLSM). 
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2.2.5 Chlorophyll a fluorescence measurements  
 

Five plants of each genotype were analyzed and average values and standard deviations were 

calculated. In vivo chlorophyll a fluorescence of single leaves was measured using the Dual-PAM 100 

(Walz, Germany). Pulses (0.5 s) of saturating red light (5,000 μmol photons m−2 s−1) were used to 

determine the maximum fluorescence and the ratio (Fm − F0)/Fm = Fv/Fm, where F0 is the minimum 

fluorescence. A 15-min exposure to red actinic light (37 μmol photons m−2 s−1) was used to drive 

electron transport before measuring the effective quantum yield (ΦII) (Armbruster et al., 2010). In vivo 

Chl a fluorescence of whole plants was recorded using an imaging Chl fluorometer (Imaging PAM; Walz, 

Germany). Dark-adapted plants were exposed to a pulsed, blue measuring beam (1 Hz, intensity 4; F0) 

and a saturating light flash (intensity 4) to obtain Fv/Fm, as the maximum quantum yield of PSII. 

 

2.2.6 Co-expression analysis performed by Dr. Tatjana Kleine 
 

To identify genes represented on the ATH1 Affimetrix microarray (22K) chip that show a significant 

degree of co-expression with GUN1, an expression correlation analysis with the “CoExSearch” tool 

implemented in ATTED-II (htt://atted.jp/; (Obayashi et al., 2009, 2007) was performed. Hierarchical 

clustering was done with the single linkage method of the „HCluster“ tool in ATTED-II. 

 

2.2.7 Transcriptome sequencing and analysis 
 

Total RNA was extracted from 3-week-old wild type and rh50-1 plants, using standard TRIzol extraction 

and purification. RNA was tested for quality using a spectrophotometer, agarose gel visualization and 

PCR. RNA-Seq library preparation and lnRNA sequencing (LncRNAs) were both performed at Novogene 

Biotech (Bejing, China) using standard Illumina protocols. The RNA-Seq libraries were sequenced on an 

Illumina HiSeq 2500 system with the paired-end mode.  At least 3 biological replicates were used for 

each analysis. The quality of the raw data was verified with FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequences were filtered and trimmed 

using Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) (Bolger et al., 2014). Reads 

were mapped to the Arabidopsis reference genome (TAIR10) using HISAT with default parameter 

settings (https://ccb.jhu.edu/software/hisat/index.shtml). Transcript assembly and FPKM (RPKM) 

http://www.plantphysiol.org/content/169/1/627.long#def-6
http://www.plantphysiol.org/content/169/1/627.long#def-5
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values were calculated using htseq-count (http://www-huber.embl.de/HTSeq/doc/count.html, version 

of 2016). Deregulated genes were identified with DESeq2 

(https://bioconductor.org/packages/release/bioc/html/DESeq2.html) (Love et al., 2014). These 

analyses were performed using a local Galaxy server (http://galaxyproject.org) (Giardine et al., 2005). 

To obtain a more detailed view of the chloroplast genome, the reads of the WT and rh50-1 were 

mapped to the chloroplast genome of A. thaliana using the Qiagen CLC Genomics Workbench v.8.5.1 

(hereafter CLC). Before assembly, the reads were trimmed using CLC with default settings. The trimmed 

sequence were then mapped to the chloroplast genome of A. thaliana (NC_000932.1). Fold change was 

calculated and visualized with Excel.  

 

2.2.8 Nucleic acid analysis 
 

A. thaliana genomic DNA was isolated as described (Ihnatowicz et al., 2004)  and RNA was purified from 

total leaf frozen tissue as described before (Armbruster et al., 2010). Northern analyses were 

performed under stringent conditions (Green and Sambrook, 2001) using 5 µg samples of total RNA. 

Probes complementary to nuclear and chloroplast genes were used for the hybridizations. Primers used 

to amplify the probes are listed in Table 2.4. Probes used were cDNA fragments except for the 23S-4.5S 

intergenic region, for which DNA fragments labelled with 32P were used. Signals were quantified by the 

ImageJ software (http://imagej.nih.gov/ij/index.html). 

 

2.2.9 Immunoblot analyses 
 

Frozen plant material was homogenized in 2X Laemmli buffer (200 mM Tris-HCl pH 6.8, 4% SDS, 20% 

glycerol, 5% β-mercaptoethanol) and solubilized for 15 min at 65°C. After a centrifugation step 

(16,000xg, 10 min) the supernatant was boiled 5 min to denature the sample. The total protein 

extraction was then loaded on a Tris-glycine 12% SDS-PAGE (Schagger and von Jagow, 1987), 

afterwards, proteins were transferred to PVDF membranes (Ihnatowicz et al., 2004) and immuno-

decorated with antibodies. Signals were quantified by the ImageJ software 

(http://imagej.nih.gov/ij/index.html). 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/NC_000932.1
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2.2.10 Protein complex and polysome analysis 
 

For two-hybrid assays, the coding sequences for the mature proteins (without the chloroplast transit 

peptides cTP) of interest (see Table 2.4 for primer sequences), were cloned into pGBKT7 (RH50) and 

pGADT7 (GUN1, PRPS21, PRPS17, PRPL11 and PRPL24) vectors (Clontech Otsu, Japan), or vice versa. 

Interactions in yeast were then analyzed as described before (DalCorso et al., 2008). Polysome loading 

experiments were conducted as described by Barkan (1993) were performed by Dr. N. Manavski. 

 

2.2.11 In vivo translation assay 
 

The in vivo translational assay was performed essentially as described (Tadini et al., 2016). Twelve leaf 

discs of 4 mm diameter were incubated in a buffer containing 20 μg ml–1 cycloheximide, 1 mM K2HPO4 

– KH2PO4 (pH 6.3), and 0.1% (w/v) Tween-20 to block cytosolic translation. Then, [35S] methionine was 

added to the buffer (0.1 mCi ml–1) and the material was vacuum-infiltrated. Leaves were exposed to 

light (20 μmol photons m−2 s−1) and four leaf discs were collected at each time point (5, 15 and 30 min). 

Total proteins were extracted as described (Martínez-García et al., 1999) and loaded on glycine SDS-

PAGE (12% PAA). Signals were detected and quantified using a Phosphoimager (GE Helathcare Life 

Sciences, Little Chalfont, England, www3.gehealthcare.com) and the program Image Quant (GE 

Healthcare Life Sciences).  

 

2.2.12 Co-immunoprecipitation and slot blot analysis performed by Dr. Manavski 
 

Chloroplasts from three-week-old WT plants were isolated as described previously (Stoppel et al., 

2012). Lysis was achieved by passing the chloroplast-containing solution (30 mM HEPES pH 8.0; 10 mM 

Mg acetate; 60 mM K acetate; freshly added Protease Inhibitor Cocktail (Roche, Basel, Swiss) 25 times 

through a 0.45 mm needle. Lysates were cleared by centrifugation at 45.000 g for 30 min at 4°C. One 

milligram of stroma was diluted with the same volume of Co-IP buffer (20 mM Tris pH 7.5; 150 mM 

NaCl; 1 mM EDTA; 0.5% Nonidet P40, Protease Inhibitor Cocktail (Roche) and incubated either with 

RH50-specific antibodies (30µl) or with the pre-serum (2µl) for 1 h at 4°C and for another hour with 50 

µl SiMAG-Protein G beads (Chemicell, Berlin, Germany). Washing, RNA extraction and slot-blot analysis 

were performed as described by Manavski et al. (2015).  
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2.2.13 Production of recombinant protein and EMSA performed by Dr. Manavski 
 

The RH50 coding region, devoid of the chloroplast transient peptide (cTP), was cloned into pMAL-Tev 

vector using a restriction enzymes strategy (BamHI-SalI). The coding sequence for Strep-Tag 

(WSHPQFEK) was added to the reverse primer (see Table 2.4 for primer sequences). The pMAL-Tev 

vector was kindly provided by Alice Barkan. Expression, purification and proteolytic digestion were 

conducted as described previously (Chi et al., 2012). The EMSA experiments were essentially performed 

as described previously (Meurer et al., 2017). Binding reactions (20 µl) contained 40 mM Tris HCl pH 

8.0; 30 mM KCl; 1 mM MgCl2; 0.01% w/v NP40; 1 mM DTT, 50 µg/ml heparin, trace amounts of radio-

labelled probes and increasing concentrations of recombinant RH50 (100 nM, 200 nM, 400 nM, 800 

nM). Probes were generated by in vitro transcription using PCR products as described. 

 

2.2.14 Size exclusion chromatography (SEC) performed by Dr. Manavski 
 

Chloroplasts were isolated from three-week-old plants as described previously (Stoppel et al., 2012). 

Chloroplasts were lysed in extraction buffer (10 mM HEPES-KOH, pH 8.0, 5 mM MgCl2, and protease 

inhibitor cocktail (Roche) by passing the suspension 20 times through a 0.5 mm needle. Membranes 

were pelleted by centrifugation (45.000xg, 30 min, 4°C). 3 mg of RNase A-treated (300 µg RNase A, 

Qiagen, 1 h on ice). or untreated stroma extracts were fractionated by SEC using Superose 6 10/300 GL 

column (GE Healthcare) and an ÄKTA FPLC system (Amersham Biosciences) as described  (Olinares et 

al., 2010). Fractions (0.5 ml) were precipitated with TCA and separated on 10% SDS-PAGE.  

 

2.2.15 Accession Numbers 
 

The genes co-expressed with RH50 code for: RH11, DEAD-box ATP-dependent RNA helicase 11 

(At3g58510); RH52, DEAD box ATP-dependent RNA helicase 52 (At3g58570); RH58, DEAD box ATP-

dependent RNA helicase 58 (At5g19210); GUN1, Genome Uncoupled 1 (At2g31400); PRPS1, plastid 

ribosomal protein S1 (At5g30510);CHLD, magnesium-chelatase subunit D (At1g08520); PPOX, 

protoporphyrinogen oxidase (At4g01690); RH17, DEAD box ATP-dependent RNA helicase 17 

(At2g40700); RH22, DEAD box ATP-dependent RNA helicase 22 (At1g59990); RH26, DEAD box ATP-

dependent RNA helicase (At5g08610). 
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The genes analyzed by Northern blots, size exclusion chromatography and polysome analysis were: 16S 

rRNA (AtCg00920), 23S rRNA (AtCg01180), 4.5S rRNA (AtCg00960), 5S rRNA (AtCg00970), rbcL 

(AtCg00490), psbA (AtCg00020), LHCA3 (At1g61520), LHCA4 (At3g47470), LHCB1.2 (At1g29910), 

LHCB4.1 (At5g01530), PSAE1 (At4g28750), PSAK (At1g30380), PSAO (At1g08380), PSAD1 (At4g02770), 

psaA (ATCg00350), rpl2.1 (AtCg00830), rpl23.1(AtCg00840), rps8 (AtCg00770) and PRPS3 (At3g07040). 

The following proteins were analyzed by Y2H: PRPS1, GUN1, CHLD (see above), RH50 (At3g06980), 

PRPS21 (At3g27160), PRPL11 (At1g32990), PRPL24 (At5g54600), PRPS17 (At1g79850). 
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3 Results 

3.1 Replacement of the Synechocystis PSII core complex 

3.1.1 Construction of synthetic vectors carrying an A. thaliana PSII core 
 

For the introduction of the Arabidopsis PSII core complex in Synechocystis, two vectors containing 11 

genes of the PSII core of A. thaliana have been designed. The first construct, called RC1 (Fig. 3.2 B), 

carries the plant genes psbA (encoding for the protein D1), the psbDC operon (encoding for proteins D2 

and CP43) and the psbI gene (encoding for the low molecular weight protein I). The second one, called 

RC2 (Fig. 3.2 C), was designed to carry the operons psbEFLJ (encoding for the cytb559 α and β subunit, 

and the low molecular weight proteins L and J) and psbBTH (encoding for the antenna protein CP47 and 

the low molecular weight proteins T and H) (see PSII structure in Figure 3.2 A). These genes encode for 

the PSII core which structural composition and assembly pathway is highly conserved between plants 

and cyanobacteria (Nickelsen and Rengstl, 2013). To maintain the endogenous genetic regulatory 

elements and therefore protein stoichiometry, each of the plant coding sequences were cloned 

downstream the corresponding Synechocystis’ endogenous promoters and terminators.  

To ensure efficient translation, the plant coding sequences were codon optimized for Synechocystis, 

bringing the Codon Adaptation Index to a value >0.8 (see Materials and Methods). 

The two constructs were synthesized by the GeneScript sequencing company (See Materials and 

Methods). Each construct was designed with a double selection cassette, (nptI-sacB) that allows both 

positive and negative selection of Synechocystis recombinants and enabled the generation of marker-

less mutants (Cai and Wolk, 1990). To both sides of the synthetic constructs homologous regions (HR) 

were added to integrate each construct in a specific genomic region. As shown in Fig. 3.2B, RC1 was 

introduced in place of the psbA2 coding region and RC2 in place of the psbEFLJ operon-coding region 

(Fig. 3.2 C). With this strategy, the endogenous core genes were deleted whilst the A. thaliana genes 

were introduced.  
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Figure 3.2: Scheme of RC1 (B) and RC2 (C) synthetic constructs and the respective regions of insertion in 

the Synechocystis genome. (A) Schematic representation of the PSII core complex encoded by RC1 and 

RC2 synthetic construct. (B) RC1 construct has been designed with HR1 and 2 that are regions homologous 

to upstream and downstream flanking sequences of Synechocystis psbA2 gene, endogenous promoter 

(arrow), AtpsbD (D2), AtpsbC (CP43) AtpsbA2 (D1) and AtpsbI (I) coding regions of plant and double 

selection cassette (nptI-sacB) nptI encodes for kanamycin resistance, sacB which mediates sucrose 

sensibility. (C) RC2 construct has been designed with HR3 and 4 that are regions homologous to upstream 

and downstream flanking sequences of Synechocystis psbEFLJ operon, double selection cassette (nptI-

sacB), endogenous promoter (arrow), AtpsbEFLJ operon (cytb559 α and β subunit, L and J) AtpsbB (CP47), 

AtpsbT (T) and AtpsbH (H) plant coding regions.  

 

3.1.2 Generation of Synechocystis RC1 mutant 
 

To generate a ΔpsbA2 RC1 Synechocystis mutant strain, glucose-tolerant wild type cells were 

transformed with the psbA2 RC1 construct (see Table 2.2). Transformed cells were selected on 

kanamycin-containing BG11 plates and then sequentially plated on increasing concentration of 

kanamycin, to obtain complete segregation of the mutant. This is necessary, since Synechocystis carries 

multiple genome copies per cell and increasing selective pressure has to be applied in order to 
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substitute all wild type gene copies. Complete segregation of the mutant ΔpsbA2 RC1-7 was confirmed 

by PCR (Fig. 3.3). The presence of the whole synthetic construct was also confirmed by PCR (Fig. 3.3) 

performed with primers designed specifically on the codon optimized plant genes (see Table 2.3).  

 

 

Figure3.3: Analysis of the ΔpsbA2 RC1 mutant strain. (A) PCR analysis to test the complete segregation of 

the mutant ΔpsbA2 RC1-7 and the introduction of each gene with the psbA2 RC1 synthetic construct. (-) is 

the negative control. Primers used psbA2 Syn FW-RV, AtpsbC FW-RV, AtpsbB FW-RV and AtpsbI FW-RV 

listed in Table 2.3. Fragment size: psbA2 Syn 1772 bp, AtpsbA 568 bp, AtpsbD 708 bp, AtpsbC 816 bp, AtpsbI 

91 bp. (B) Growth rate analysis of wild type and psbA2 ΔRC1-7 mutant grown in photoautotrophic 

conditions (BG11-Glucose). Optical density at 730 nm was measured every 24 hours for 7 days and three 

independent cultures were used. 

 

Growth curve analysis were performed on Synechocystis wild type and 3 independent psbA2 RC1 clones 

(psbA2 RC1-7 1, 2, 3). The cultures were grown in BG11 media without glucose. Their growth was 

monitored every 24h for 5 days (Fig. 3.4 B). No phenotype was observed in any of the culture analyzed. 

To check whether the loss of psbA2 gene would result in an inability of heterotrophic growth, psbA2 

KO construct was generated (Fig. 3.5), carrying a double selection cassette (nptI-sacB) between 

homologous regions of psbA2 upstream and downstream region (HR1 and HR2) as for psbA2 RC1 

construct. Synechocystis knock-out mutant of psbA2 gene were generated by applying selective 

pressure with increasing concentrations of kanamycin on BG11 plates. ΔpsbA2KO mutant was then 

checked for photoautotrophic growth in BG11 media without glucose, together with ΔpsbA2 RC1-7 
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mutant and Synechocystis wild type. As it is shown in Fig. 3.4B, ΔpsbA2KO mutant was not affected in 

its growth. This phenotype is explained by the fact that Synechocystis has three genes encoding for the 

protein D1 (Table 1.1): psbA2 and psbA3, which are expressed under normal and stress conditions and 

psbA1, which is instead induced under anaerobic conditions (Mulo et al., 2009). Therefore the KO of 

just one of these three genes would not affect the growth of Synechocystis. Since no phenotype could 

be observed in ΔpsbA2 RC1-7 mutant, further investigation were necessary in order to check the 

accumulation of plant proteins in Synechocystis.  

 

 

 

 

Figure 3.4: Generation of ΔpsbA2 KO mutant line. (A)  Schematic representation of the psbA2 KO vector 

and of the endogenous Synechocystis psbA2 gene target of the vector. HR1 and HR2 are the regions 

homologous to the upstream and downstream flanking sequences of Synechocystis psbA2 gene and nptI-

sacB is the double selection cassette. (B) Phenotypic analysis of ΔpsbA2 RC1-7 and ΔpsbA2 KO mutant lines 

under normal light conditions in BG11 media without glucose.  

 

Immunoblot analysis were performed on thylakoid proteins of A. thaliana, Synechocystis wild type and 

ΔpsbA2 RC1-7 mutant, using the plant specific antibody for PsbI (Fig. 3.5 A). It has to be considered that 

all Synechocystis PSII genes were still present in both mutants, except for psbA2. Due to the high degree 

of conservation of photosynthetic complexes, few available antibodies can discriminate between plant 

and cyanobacterial homologs proteins, one of those being PsbI. 
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The western blot analysis in Fig. 5A showed that plant PsbI accumulated in the ΔpsbA2 RC1-7 line. The 

Immunoblot signal was much stronger in the A. thaliana sample since they have been normalized on 

the chlorophyll content, without adjusting the PSI:PSII ratio. Synechocystis has indeed multiple PSI 

copies for each PSII (Fraser et al., 2013). The result of the western blot gave us a good indication that 

the plant genes introduced with the psbA2 RC1 construct can be expressed in Synechocystis. Lacking 

plant specific antibodies for D1, D2 and CP43, their transcription was confirmed through reverse 

transcriptase PCR (RT-PCR). As shown in Fig 5B, AtpsbD (D2), AtpsbC (CP43) and AtpsbA2 (D1) fragments 

of the correct size in cDNA samples of the ΔRC1-7 mutant line could be amplified.  

 

 

 

Figure 3.5: Expression analysis of Synechocystis ΔpsbA2 RC1-7 mutant. (A) Western blot analysis of plant 

PsbI protein in thylakoid fractions of A. thaliana, Synechocystis wild type (Wild type) and ΔpsbA2 RC1-7 

mutant strain. 30 µg of thylakoid proteins were loaded. (B) PCR analysis of plant psbD, psbC and psbA2 

genes in DNA and cDNA samples of Synechocystis wild type (wild type) and ΔpsbA2 RC1-7. Primer used: 

AtpsbD FW-RV, AtpsbC FW-RV and AtpsbI FW-RV listed in table 2.3. Fragment size: AtpsbD 708 bp, AtpsbC 

816 bp and AtpsbA 568 bp. DNA and cDNA of Synechocystis wild type have been used as a control for 

primer specificity. 

 

3.1.3 Generation of Synechocystis the RC2 mutant 
 

To generate a ΔpsbEFLJ RC2 mutant strain, the same procedure described for ΔpsbA RC1-7 mutant was 

applied. A completely segregated ΔpsbEFLJ RC2 mutant strain was obtained and confirmed by PCR (Fig. 

3.6A). With primers specific for the Synechocystis psbEFLJ operon it was possible to confirm the 



 

41 
 

complete loss of the endogenous operon and the presence of the RC2 synthetic construct in the 

ΔpsbEFLJ RC2 mutant (Fig 3.6 A, psbEFLJ RC2: 7800 bp). The complete construct was also amplified with 

specific primers (see Table 2.3) designed on the codon optimized sequences of the RC2 construct (Fig. 

3.6 A).  

 

 

 

Figure 3.6: Analysis of the ΔpsbEFLJ RC2 mutant strain. (A) PCR analysis performed on DNA extracted from 

Synechocystis wild type and ΔpsbEFLJ RC2 mutant to check for complete segregation of the mutant and the 

presence of all genes introduced with the RC2 construct. (-) indicates the negative control. Primers used psbEFLJ 

FW-RV, AtpsbE FW-AtpsbL RV, AtpsbF FW-AtpsbJ RV, AtpsbB FW-RV and AtpsbT FW-AtpsbHRV listed in table 2.3.  

Fragment size: psbEFLJ RC2 7800 bp, psbEFLJ Syn 4350 bp, AtpsbEFL 454 bp, AtpsbFLJ 401 bp, AtpsbB 587 bp and 

AtpsbT-psbH 473 bp. (B) Phenotypic analysis of ΔpsbA2 RC1-7 and ΔpsbEFLJ RC2 mutant lines under normal light 

conditions in BG11 - Glucose and + Glucose.  

 

Phenotypic analysis was performed on the mutant. ΔpsbEFLJ RC2 was grown in BG11 media containing 

or lacking glucose (Fig. 3.6 B), together with Synechocystis wild type and ΔpsbA2 RC1-7 mutant as 

control. ΔpsbEFLJ RC2 was not able to grow photoautotrophically (BG11-Glucose) and it was growing 

at a slower rate than the wild type and the ΔpsbA2 RC1-7 mutant in heterotrophic conditions 

(BG11+Glucose). This phenotype is in line with previously published data about the loss of the 

endogenous psbEFLJ operon (Pakrasi et al., 1988). 

The ΔpsbEFLJ RC2 mutant was further analyzed for the expression and accumulation of the newly 

introduced A. thaliana genes. As previously described in paragraph 3.1.2, only few antibodies for PSII 
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are available which can discriminate between plant and cyanobacterial proteins, PsbE was one of these. 

Immunoblot analysis was performed on thylakoid extract of ΔpsbEFLJ RC2 mutant and of A. thaliana 

and Synechocystis wild type as control with PsbE antibody (Fig. 3.7 A). The western blot showed no 

accumulation of PsbE protein in the mutant ΔpsbEFLJ RC2.  PCR analysis were further performed on 

cDNA of ΔpsbEFLJ RC2 mutant and wild type (Fig. 3.7 B) in order to check the transcripts of AtpsbE, 

AtpsbF, AtpsbL and AtpsbT (Fig. 3.7 B). The transcripts analysis confirmed the absence of the transcripts 

of the genes introduced with the synthetic construct RC2.  

 

 

 

Figure 3.7: Expression analysis of Synechocystis ΔpsbEFLJ RC2 mutant. (A) Immunoblot analysis of plant 

PsbE protein in thylakoid fractions of A. thaliana, Synechocystis wild type and ΔpsbEFLJ RC2 mutant strain. 

(B) PCR analysis of plant psbE, psbF, psbL, psbT genes and Synechocystis psaA gene as control, in DNA and 

cDNA samples of Synechocystis wild type and ΔpsbEFLJ RC2 and RNA of the ΔpsbEFLJ RC2. Primer used are 

AtpsbE FW-RV, AtpsbF FW-RV, AtpsbL FW-RV and AtpsbT FW-RV listed in table 2.3. Fragments size: AtpsbE 

167 bp, AtpsbF 108 bp, AtpsbL 104 bp, AtpsbT 72 bp and psaA 250 bp. 

 

The fact that the transcripts could not be detected indicated a problem in mRNA synthesis or 

stabilization. Different causes can be ascribed for inefficient mRNA synthesis, for example 

rearrangement in the mRNA secondary structure due to codon bias as well as inaccessibility of Shine-

Dalgarno sequence due to chromatin rearrangements (Lehmann et al., 2014).  
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To investigate these possible problems, RC2 synthetic construct was introduced into Synechocystis wild 

type on a self-replicative plasmid (pUR2LT) via conjugation (Fig. 3.8 A) generating the RC2.2 mutant. In 

this way, the functionality of the synthetic construct could be tested independently of the genome. The 

expression vector pUR2LT has been modified in our lab from a pUR vector (Wiegard et al., 2013). The 

RC2 was cloned in the expression vector downstream of an inducible promoter (PetJ). The successful 

transformation of the self-replicative plasmid carrying the synthetic construct RC2 into the 

Synechocystis wild type strain was confirmed by PCR in two independent mutant clones RC2.2-1 and 

RC2.2-2 (Fig. 3.8 B).  

 

 

Figure 3.8: Generation and transcription analysis of the RC2.2 mutant. (A) Schematic overview of the generation 

of RC.2 mutant. The RC2 synthetic construct (represented in green) in a self-replicative vector (pUR2LT red) is 

introduced in Synechocystis wild type cells through conjugation, generating the RC2.2 mutant. (B) PCR analysis 

performed on DNA extracted from Synechocystis wild type and RC2.2 mutant to check for the presence of the 

synthetic construct. (-) negative control.  Primer used: AtpsbE FW-AtpsbJ RV and AtpsbB FW-RV listed in table 

2.3. Fragment size: AtpsbEFLJ 622 bp and AtpsbB 587 bp. (C) Northern blot analysis of AtpsbE and AtpsbB gene 

transcripts of Synechocystis wild type and RC2.2 mutant. Membranes were stained with methylene blue (M.B.) 

as RNA loading control. 
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The AtpsbEFLJ operon and AtpsbB gene could be amplified in the RC2.2 mutant but not in Synechocystis 

wild type. Northern blot analyses was then performed on RC2.2 mutant in order to check for transcript 

accumulation (Fig. 3.8 C). RNA was extracted from wild type and RC2.2-1 mutant, loaded on 

formaldehyde gels, blotted on nitrocellulose membrane and hybridized with radioactive probes for the 

synthetic AtpsbE and AtpsbB transcripts (Fig. 3.8 C). Both transcripts were detected in the RC2.2 mutant 

indicating that the synthetic construct itself was correctly assembled and that there were no secondary 

structures blocking the transcription process. 

 

3.1.4 Generation of a ΔpsbA2DC RC1 mutant  
 

The next important step for the project would be to delete the endogenous PSII genes to avoid 

interference between endogenous and exogenous homologous proteins and let the plant proteins 

assemble in Synechocystis thylakoids. As previously shown, the ΔpsbA2 RC1-7 mutant already lacks the 

psbA2 gene, so the next step would be to delete the Synechocystis psbD1, psbD2, psbC and psbI genes. 

Synechocystis contains two psbD genes coding for the D2 core protein of the PSII reaction center (Table 

1.1): psbD1 and psbD2. psbD1 is cotranscribed with psbC whereas psbD2 is monocistronic. In order to 

obtain a complete KO of the cyanobacterial D2 protein, both psbD1C operon and psbD2 have to be 

deleted. ΔpsbA2 RC1-7 strain would be used as background for the subsequent replacements, in order 

to have a final strain with none or just one marker gene. For this reason, a markerless psbA2 RC1 

construct (without double selection cassette) was designed and used to transform the ΔpsbA2 RC1-7 

strain, in order to excise the nptI-sacB cassette and obtain a marker less strain. After 5 days of recovery, 

no transformants were able to survive on the selection plate with 5% sucrose. Longer recovery time 

and lower concentrations of sucrose were tested. Unfortunately, it was never possible to obtain a 

marker less ΔpsbA2 RC1 mutant strain (Fig. 3.9 A). The psbDC KO construct (Fig. 3.9 B), that was firstly 

generated to transform the marker less ΔpsbA2 RC1 strain, was instead used to transform Synechocystis 

wild type cells to have a control strain (Fig.3.9 A). A second psbDC KO construct was generated, carrying 

a single selection cassette coding for spectinomycin resistance, called psbDC KO spec construct (Fig. 3.9 

B). ΔpsbA2 RC1-7 mutant was then transformed with psbDC KO spec construct (Fig. 3.9 A). With 

increasing antibiotic selective pressure, two segregated mutant strains were obtained, ΔpsbA2DC RC1 

and ΔpsbDC KO mutants, both lacking the endogenous psbDC operon (Fig. 3.9 C). 
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Figure 3.9: Generation of ΔpsbDC KO and ΔpsbA2DC RC1 mutants. (A) Scheme of the generation of new mutant 

strains. Arrows indicate the transformation process. X indicates that no mutants were obtained from the 

transformation. (B) Composition of the psbDC KO vector and of the endogenous Synechocystis psbDC gene target 

of the vector. HR5 and HR6 are the regions homologous to the upstream and downstream flanking sequences of 

Synechocystis psbDC operon and nptI-sacB is the double selection cassette. (C) PCR analysis to test the complete 

segregation of the psbDC KO mutant and of the ΔpsbA2DC RC1 mutant (DNA of 2 independent clones ΔpsbA2DC 

RC1-4 and -6). (-) negative control. Primer used: psbDC Syn FW-RV listed in table 2.3. Fragment size: psbDC Syn 

6790 bp. (D) Northern blot analysis of AtpsbD and AtpsbC transcripts on RNA extracted from Synechocystis wild 

type (wild type), psbA2 RC1 and ΔpsbA2DC RC1. Transcripts size: 2.5 kb. Membranes were stained with 

methylene blue (M.B.) as RNA loading control.  

 

Expression of the plant psbD and psbC genes was analyzed by Northern blot in Synechocystis wild type, 

ΔpsbA2 RC1-7 and ΔpsbA2DC RC1 (Fig. 3.9 D). In plant chloroplasts as well as in cyanobacteria, the psbD 

gene overlaps with the open reading frame of the psbC gene, and the two genes are cotranscribed 

generating a transcript of about 2.5 kb (Chisholm and Williams, 1988). When hybridizing the filters with 

radiolabelled probes of psbD At and psbC At, the target transcript, of about 2.5 kb, was detected only 
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in the two mutants carrying the synthetic construct RC1, ΔpsbA2 RC1-7 and ΔDC psbA2 RC1, and not in 

the wild type. This confirmed the presence of the RC1 construct in both mutants and that the plant 

operon could be transcribed.  

 

3.1.5 Characterization of psbA2 RC1-7 and ΔpsbA2DC RC1 mutant strains 
 

The growth phenotype of the psbA2 RC1-7 and ΔpsbA2DC RC1 mutant strains was analyzed by growing 

them in liquid culture in heterotrophic (BG11+Glu) and autotrophic (BG11-Glu) conditions (see 

materials and Methods) (Fig. 3.10 A, B).  The growth of the two mutant strains was compared with the 

Synechocystis wild type and the two KO mutant, ΔpsbA2 KO and ΔpsbDC KO, as control (Fig. 3.10 A, B). 

All mutants could grow in heterotrophic conditions but at slightly different rates (Fig. 3.10 A), in 

particular ΔpsbDC KO and ΔpsbA2DC RC1 were showing a shorter exponential phase and lower 

maximum OD at 730 nm. A strong phenotype was observed in autotrophic conditions (Fig. 3.10 B) 

where the ΔpsbDC KO mutant was not able to grow photoautotrophically, Yu and Vermass in 1990 

already described a mutant lacking PsbD-I and PsbC proteins. They showed a strong reduction of the 

PSII proteins which severely affected the functionality of the photosynthetic apparatus, in agreement 

with the phenotype observed in this study. Interestingly, ΔpsbA2DC RC1 was able to grow 

photoautotrophically (Fig. 10 B), indicating that AtpsbD and AtpsbC were able to replace the function 

of the Synechocystis homologs (Yu and Vermaas, 1990).  
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Figure 3.10: Growth rate analysis of the ΔpsbA2DC RC1 strain. (A) Growth rate analysis of Synechocystis wild 

type (Wild type), ΔpsbA2KO, ΔpsbA2 RC1-7, ΔpsbDC KO and ΔpsbA2DC RC1. Cells were cultured under 

heterotrophic conditions (BG11 + Glucose) in a Multi-Cultivator MC1000 (see Materials and Methods) at 25°C 

and illuminated with 30 μmol photons m-2 s-1. The OD was measured at 720 nm every hour for 7 days. On the 

right panel: phenotype of 7 days old liquid culture. (B) Growth rate analysis under autotrophic conditions (BG11 

–Glucose). 
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In the attempt to detect the presence of PSII, fluorescence emission spectra of the two photosystems 

at low temperature (77K) were measured in cell suspensions of wild type, ΔpsbA2 KO, ΔpsbA2 RC1-7, 

ΔD1 (Fig. 3.11 A), ΔpsbDC KO and ΔpsbA2DC RC1 grown in BG11 media containing glucose. Chlorophyll 

a was excited with light at 435 nm and the recorded fluorescence emission was double normalized at 

600 nm (Fig. 3.11 A) or at 680 nm (Fig. 3.11 B) and to the PSI emission peak at 730 nm. Three main 

peaks could be observed in the wild type sample; two originating from PSII, at 685 and 695 nm (CP43 

and CP47 antenna) and one at 730 nm which corresponds to PSI. As expected, PSI fluorescence at 730 

nm was higher than PSII fluorescence at 695 nm, because the PSI/PSII ratio varies from about 1 to 

almost 4 in Synechocystis depending on the growth light conditions (Murakami et al., 1997). ΔD1 

mutant (Prof. Nixon, Imperial College, London), lacking all three genes encoding for D1, has been used 

in this analyses as control for the complete loss of PSII. The emission spectra of ΔpsbA2 KO, lacking 

psbA2 endogenous gene, and ΔpsbA2 RC1-7 mutant, lacking psbA2 endogenous gene and carrying the 

RC1 construct, showed a wild type PSII emission spectra (Fig. 3.11 A). Loss of only one of the three genes 

encoding for D1 did not affect the PSII assembly and accumulation (Mulo et al., 2009). The emission 

spectra of ΔpsbDC KO, lacking psbDC endogenous operon, showed a reduction in PSII (Fig. 3.11 B) with 

respect to the wild type. The same was observed for the ΔpsbA2DC RC1 mutant, lacking psbA2 and 

psbDC endogenous genes and carrying the synthetic construct RC1. Both ΔpsbDC KO and ΔpsbA2DC 

RC1 displayed an additional peak at 665 nm, which indicate an accumulation of allophycocyanin, (Yu et 

al., 1999) not observed in the wild type. 
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Figure 3.11: PSII characterization. (A) Steady-state fluorescence emission spectra at 77 K of cell of Synechocystis 

wild type, ΔpsbA2 KO, ΔpsbA2 RC1-7 and ΔD1. Cell suspensions were adjusted to an OD720 of 1.5 and dark-

adapted for 10 min prior to freezing. Fluorescence emission spectra were measured by exciting cells at 435 nm 

and were double normalized at 680 nm and at the PSI emission peak at 730 nm. The curves are representative 

of 3 repetitions. (B) Steady-state fluorescence emission spectra at 77 K of cell of Synechocystis wild type, ΔpsbDC 

KO and ΔpsbA2DC RC1. Fluorescence emission spectra were double normalized at 680 nm and at the PSI emission 

peak at 730 nm. The curves are representative of 3 repetitions. 
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These data indicated that no improvement in the accumulation of functional plant PSII reaction center 

was observed in ΔpsbA2DC RC1 mutant. This was in contrast with the phenotype observed in 

autotrophic conditions for ΔpsbA2DC RC1 (Fig. 3.10 B). Western blot analysis were further performed 

on total protein of wild type (100% and 50%), ΔpsbA2 KO, ΔpsbA2 RC1-7, ΔD1, ΔpsbDC KO, ΔpsbA2DC 

RC1 and A. thaliana with CP43 and D2 antibody (Fig. 3.12). CP43 and D2 antibody both recognize plant 

and cyanobacterial proteins in particular the A. thaliana D2 protein runs slightly faster than the 

cyanobacterial one Fig. 3.12 (different apparent weight). This allows us to understand weather the plant 

proteins are indeed expressed in Synechocystis. The Immunoblot (Fig. 3.12) confirmed that ΔpsbDC KO 

mutant is a complete KO, since at the protein level there is no accumulation of CP43 and D2. ΔD1 

showed very low amount of D2 and of CP43 in accordance with loss of PSII previously observed at the 

77K emission spectra (Fig. 3.11 A). ΔpsbA2 KO and ΔpsbA2 RC1-7 mutants showed wild type level of 

CP43 and D2 proteins. In ΔpsbA2DC RC1 both CP43 and D2 proteins were detected at very low level. 

Moreover, the D2 protein had the same apparent weight as the one of Synechocystis.  

 

 

 

Figure 3.12: Immunoblot analysis of CP43 and D2 proteins. Total proteins were extracted from Synechocystis 

wild type, ΔpsbA2 RC1-7 (lacking the endogenous psbA2 and carrying the synthetic construct RC1), ΔpsbA2 KO 

(lacking the endogenous psbA2), ΔD1 (lacking the endogenous pbsA1,-2 and -3), ΔpsbDC KO (lacking the 

endogenous psbDC), ΔpsbA2DC RC1 (lacking the endogenous psbA2, psbDC genes and carrying the synthetic 

construct RC1) and A. thaliana. Signals were detected for CP43 and D2 proteins. 30 µg of total proteins were 

loaded and fractionated on SDS-PAGE. Wild type 100%= 30 µg, wild type 50%= 15 µg. Membrane was stained 

with Ponceau (P.) and used as protein loading control.  
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3.2 Characterization of the DEAD-box RNA helicase RH50 

3.2.1 RH50 is co-expressed with the GUN1 regulon  
 

In order to identify genes with a tentative role in plastid protein homeostasis and plastid signaling a 

guilt-by-association approach was employed. With the help of this approach, poorly characterized 

DEAD-box RNA helicase (DBRH) gene, in our case RH50, was revealed. Expression data of all predicted 

plastid-located A. thaliana DBRHs were compared with the GUN1 co-expression cluster (Tadini et al., 

2016), which includes the plastid ribosomal protein S1 (PRPS1), two tetrapyrrole biosynthesis enzymes 

genes (the protoporphyrinogen oxidase (PPOX) and the D subunit of the Magnesium-chelatase (CHLD), 

as well as a set of proteins involved in plastid protein homeostasis. This comparison identified RH50 as 

the DBRH that was most co-regulated with GUN1, PPOX and CHLD. Moreover, RH50 also showed a high 

co-expression score with RH58 (Figure 3.13), whose homologues in tobacco (VDL) and maize (RH58) 

were shown to be involved in plastid differentiation (Wang et al., 2000) and in rRNA metabolism 

(Majeran et al., 2012), respectively. A second co-expression cluster is formed by RH17, RH22 and RH26. 

RH22 interacts with the 50S ribosome subunit and facilitates its assembly by processing the 23S rRNA 

(Chi et al., 2012). The function of RH17, RH26, RH11, and RH52 is still elusive. RH3, RH33 and RH41, 

which are also predicted to be plastid localized, could not be included in the co-expression cluster due 

to the fact that they are not represented on the ATH1 Affimetrix Array.  
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Figure 3.13: RH50 is co-expressed with the GUN1 regulon. Within the set of genes coding for chloroplast-

localized DBRHs, RH50 shows the highest co-expression score with GUN1. The degree of co-expression was 

measured with mutual rank (MR). Low distance values indicate high co-expression. Full names and accession 

numbers of corresponding proteins encoded are provided in Materials and Methods (paragraph 2.2.15). All gene 

products are predicted or experimentally confirmed chloroplast proteins.  Performed by Dr. Tatjana Kleine.  

 

3.2.2 RH50 is a subunit of the GUN1-containing subdomain of pTAC-complexes  
 

The RH50 gene is highly co-regulated with GUN1, which was shown to be located inside the nucleoids 

in the pTACs (Koussevitzky et al., 2007). Although mass spectrometry analyses failed to detect GUN1 so 

far, most likely due to its very low abundance, RH50 was identified previously in pTAC complexes 

together with several other DBRHs and components of the protein expression machinery (Olinares et 

al., 2010). To confirm the co-localization of RH50 and GUN1, transient expression of GUN1-RFP and 

RH50-GFP protein fusions was performed in A. thaliana protoplasts (see Paragraph 2.2.4). GFP and RFP 

signals could be clearly detected as overlapping fluorescence foci inside chloroplasts (Figure 3.14), 

indicating that RH50 and GUN1 belong to the same subcompartment.  
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Figure 3.14: RH50 and GUN1 co-localize in chloroplasts.  Protoplasts isolated from 2 week-old A.thaliana 

cotyledons and transiently cotransfected with GUN1-RFP and RH50-GFP fusion proteins. The RFP signal (red 

fluorescence) clearly co-localizes with the GFP signal (green fluorescence) within the chloroplast. Fluorescence 

was imaged by confocal microscopy. 

 

3.2.3 The rh50 mutation suppresses transcriptional downregulation of PhANGs  
 

RH50 and GUN1 are co-regulated at the mRNA level and located in the same cellular sub-compartment, 

for this reason we investigated whether RH50 does also play a role in retrograde signaling and plastid 

protein homeostasis, as it was demonstrated for GUN1. Two independent loss-of-function RH50 alleles 

(rh50-1 and rh50-2, Figure 3.15 A) were isolated. In rh50-1 mutant plants, the mutation is caused by a 

T-DNA insertion, whereas in rh50-2 a transposon is inserted in the RH50 gene locus. Both insertions are 

located in the second exon and completely suppress the accumulation of RH50 protein (Figure 3.15 B). 

The involvement of RH50 in GUN1-mediated retrograde signaling was analyzed by testing rh50 plants 

for the genome uncoupled (gun) phenotype in terms of LHCB1 expression in the presence of norflurazon 

(NF) or lincomycin (Lin) (Figure 3.15 C). Both, NF, which is an inhibitor of carotenoids biosynthesis and 

Lin, an inhibitor of chloroplast protein synthesis, block the expression of photosynthesis-associated 

nuclear genes (PhANGs) like LHCB1, in wild type plants. In contrast, gun mutants can express PhANGs 

after NF and Lin treatment. Similar to the wild type, LHCB1 expression was strongly reduced in the rh50-

1 single mutant after Lin and NF treatments, while gun1-102 control plants displayed de-repressed 

LHCB1 expression, as expected for gun mutants. Moreover, rh50-1 gun1-102 double mutant did not 

show a significant additive phenotype in comparison to gun1-102.   

To further investigate the involvement of RH50 in plastid gene expression (PGE)-mediated retrograde 

signaling, rh50-1 was crossed into the prors1-1 genetic background and the expression of PhANGs was 

examined (Figure 3.15 D).  
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Figure 3.15:  The rh50 mutant is not a gun mutant but is involved in PRORS1-triggered retrograde signaling.  

(A) Schematic representation of the RH50 locus and its mutant alleles. The rh50-1 and rh50-2 mutations are due 

to the insertion of a T-DNA and a transposon, respectively. Left (LB) and right (RB) borders indicate the 

orientation of the T-DNA, 5’ and 3’ the one of the transposon. Numbered boxes symbolize the exons and black 

lines the introns. Start and stop codons are indicated. (B) Immunoblot analysis of total protein extracted from 

wild type (Col-0 and Ler), rh50-1 and rh50-2 plants with an antibody specific for RH50 or, as control, for RbcL.  (C) 

RNA gel blot analyses of LHCB1.2 transcript levels on total RNA isolated from seedlings of wild type (Col-0) and 

mutant (gun1-102, rh50-1, rh50-1 gun1-102) plants grown for 10 days in the presence of norflurazon (NF) or 

lincomycin (Lin). (D) RNA gel blot analysis of transcripts of nuclear- (LHCA3, LHCA4, LHCB1, LHCB4, PSAD1, PSAE1, 

PSAO and PSAK) and plastid- (rbcL and psbA) encoded photosynthetic genes light-adapted wild type (Col-0), rh50-
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1, prors1-1 and rh50-1 prors1-1 plants. Blots were stained with methylene blue (M.B.) as RNA loading control. 

Quantification of signals (by ImageJ) relative to Col-0 (=100%) is provided below each panel. 

 

The prors1-1 mutation causes the downregulation of the proline tRNA synthetase1 (PRORS1), creating 

a perturbation in the PGE (Pesaresi et al., 2006). Interestingly, the expression of LHCA3, LHCA4, LHCB1, 

PSAO and PSAK genes, which is downregulated by about 20-30% in prors1-1 mutant, was restored to 

wild type-like levels in rh50-1 prors1-1 mutant, similarly to what was observed before in the gun1-102 

prors1-1 mutant (Tadini et al., 2016). This implies that, like GUN1, RH50 is capable to modulate the 

chloroplast-to-nucleus communication when the PGE-machinery is mildly affected as in case of prors1-

1. However, under more severe conditions, as the NF or Lin treatment, only GUN1 can trigger plastid 

signaling. 

 

3.2.4 RH50 genetically interacts with components of the 50S plastid ribosomal subunit 
 

When the gun1 mutation was introduced into genetic backgrounds carrying mutations for plastid 

ribosomal proteins, over-additive (gun1 prpl11) or suppressor (gun1 prps1) phenotype was observed, 

pointing to a functional link between GUN1 and plastid ribosomes (Tadini et al., 2016). Therefore, 

double mutants combining the rh50 mutation, gun1 or several other mutations (prors1-1, prpl11-1, 

prps1-1, prps21-1, prps17-1 and prpl24-1) were generated and characterized (Figure 3.16 A-D). In 

contrast to A. thaliana plants defective for RH3, 22 or 39 with arrested embryo development (Asakura 

et al., 2012; Chi et al., 2012; Nishimura et al., 2010), both rh50 mutant alleles behaved like the wild type 

with respect to growth and photosynthetic performance  (ΦII) under standard growth conditions (Figure 

3.16 A,D). Interestingly, the gun1-102 rh50-1 double mutant displayed a clear reduction in size (50% of 

the wild type at 26 d.a.p.) compared to the wild type-like parental single mutants, supporting the idea 

of a functional interaction between GUN1 and RH50. However, the photosynthetic performance of 

adult gun1-102 rh50-1 double mutant plants was unaffected.  

In terms of PhANG expression, rh50-1 phenocopied gun1-102 in the prors1-1 genetic background (see 

Figure 3.15 D). Moreover, the restoration of PhANG expression observed in both rh50-1 prors1-1 and 

gun1-102 prors1-1 double mutants had a positive impact on growth and photosynthetic performance 

(0.73 ± 0.02 for both double mutants versus 0.68 ± 0.02 in prors1-1) (Figure 3.16 A).  

 

http://www.plantphysiol.org/content/169/1/627.long#def-5
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Figure 3.16: Genetic interaction between rh50, gun1 and several mutation (prors1-1, prpl11-1, prps1-1, prps21-

1, prps17-1 and prpl24-1) affecting plastid gene expression (PGE).  (A) Phenotypes of 26 day old wild type (Col-

0 and Landsberg erecta “Ler”), single (rh50-1, gun1-102, prors1-1, prpl11-1, prps1-1, prps21-1, rh50-2 (Ler 

background), prps17-1) and double (rh50-1 gun1-102, rh50-1 prors1-1, gun1-102 prors1-1, rh50-1 prpl11-1, rh50-

1 prps1-1, gun1-102 prps1-1, rh50-1 prps21-1, gun1-102 prps21-1, rh50-2 prps17-1) mutant plants grown in a 

climate chamber under long day condition and light intensity of 80 µmol photons m–2s–1. The effective quantum 

yield of photosystem II (ΦII) was determined for each genotype (average ± SD; n≥ 12) as described in Materials 

and Methods. (B) Characterization of embryo development in wild type (Col-0), single (rh50-1, rh50-2, prps24-1) 
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and double (rh50-1 prps24-1, rh50-2 prps24-1) mutant plants. Bars = 20 µm. (C) Images of fully mature embryos 

(bent cotyledon stage) from wild type (Col-0), single (prpl11-1, prpl24-1, prpl17-1, gun1-102) and double (gun1-

102 prpl11-1, gun1-102 prpl24-1, gun1-102 prpl17-1) mutant plants. Bars = 200 µm.  (D) Growth kinetics of the 

different plant lines was measured from 5 to 26 days after germination (d.a.g.). For each time point, the average 

leaf area was measured (n≥ 15). (E) Immunoblot analysis of PRPS1 ribosomal protein performed on the wild type 

(Col-0), rh50-1, prps1-1 and rh50-1 prps1-1 double mutants using a PRPS1-specific antibody. C.B.B. is used as 

loading control and quantification of signals (by ImageJ) relative to the wild type (100%) is provided. A-E done by 

Dr. Luca Tadini, Dr. Paolo Pesaresi and Roberto Ferrari. 

 

The rh50 and gun1 alleles were also combined with mutations affecting the 30S (prps1-1, prps17-1 and 

prps21-1) and 50S (prpl11-1 and prpl24-1) subunit of the plastid ribosome. Unlike gun1-102 (Tadini et 

al., 2016), the rh50-1 mutation did not recover prps1-1 growth phenotype in the corresponding double 

mutant. However, also in rh50-1 prps1-1 the photosynthetic performance was slightly improved, if 

compared to prps1-1, as in gun1-102 prps1-1 (prps1-1, 0.49 ± 0.02; gun1-102 prps1-1, 0.66± 0.02; rh50-

1 prps1-1, 0.54 ± 0.02) (Figure 3.16 A). The improvement of photosynthetic parameters in the rh50-1 

prps1-1 double mutant was due to the partial de-repression of PRPS1 protein accumulation, from 40% 

of the wild type level in prps1-1 single mutant to 75% in rh50-1 prps1-1 mutant background (Figure 3.16 

E). A similar effect was previously observed in the gun1-102 prps1-1 double mutant, where loss of GUN1 

induced the accumulation of PRPS1 protein to wild type-like levels (Tadini et al., 2016). The rh50-1 

prps21-1 and gun1-102 prps21-1 double mutants resembled the prps21-1 single mutant in terms of 

growth rate and photosynthetic efficiency (Figure 3.16 A). Moreover, the rh50-2 mutation had no effect 

in prps17-1 genetic background, the single prps17-1 mutant (Romani et al., 2012) and the rh50-2 

prps17-1 double mutant showed a similar phenotype, whereas gun1-102 led to albino seedling lethality 

in combination with prps17-1 (Figure 3.16 B). More severe effects were observed when rh50-1 was 

crossed into prpl11-1 and prpl24-1 backgrounds. The rh50-1 prpl11-1 double mutant was stronger 

affected compared to prpl11-1 single mutant in terms of growth rate and photosynthesis (Figure 3.16 

A,B), whereas the combination of gun1-102 and prpl11-1 mutations caused seedling lethality (Tadini et 

al., 2016). At last, the combination of rh50-1 with prpl24-1 resulted into embryo lethality (Figure 3.16 

D), a phenotype that is more severe than gun1-102 prpl24-1 phenotype, which similar to gun1-102 

prpl11-1 and gun1-102 prps17-1 resulted in albino-lethal seedlings (Figure 3.16 C). In particular 25% of 

embryos from RH50/rh50-1 prpl24-1/prpl24-1 and RH50/rh50-2 prpl24-1/prpl24-1 siliques stopped 
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developing and remained arrested at a disordered globular stage. The arrested embryo development 

at the globular stage observed also in rh50-1 prpl24-1 double mutants, has been reported for several 

ribosomal mutants (such as prps20, prpl1, prpl4, prpl21, prpl27 or prpl35) that were severely affected 

in plastid protein translation (Romani et al., 2012; Yin et al., 2012). Taken together, these genetic 

analyses suggest that the loss of RH50, similarly to GUN1, has an impact on plastid ribosomes and 

translation. Furthermore, rh50 and gun1 mutations often showed a similar phenotypic trend in the 

mutant background of genes encoding plastid ribosomal proteins (as in case of prors1, prps1, prps21, 

prpl11 and prpl24).  

 

3.2.5 RH50 interacts with the plastid ribosomal large subunit 
 

As described above, RH50 specifically interacts genetically with mutants lacking proteins of the large 

plastid ribosomal subunit (Figure 3.16). In order to study the structural integrity of the ribosomes in the 

absence of RH50-1, we analyzed the response of the mutant and wild type to the antibiotics 

chloramphenicol, lincomycin and erythromycin known to target the prokaryotic-like large ribosomal 

subunit (Wilson, 2009). Chloramphenicol and lincomycin are known to prevent peptide bond formation 

(Monro and Marcker, 1967; Tompkins, 1970), while erythromycin inhibits the entrance of the nascent 

peptide into the ribosome exit tunnel (Lovmar et al., 2004; Tenson et al., 2003).  

 

 

 

Figure 3.17: Investigation of protein-protein interactions via Yeast-2-Hybrid assay. Yeast cells were co-

transformed  with a plasmid expressing mature RH50 lacking the chloroplast signal peptide (cTP) as bait protein 

and plasmids expressing potential interaction partners as pray proteins. Cells were grown on permissive (-Trp -

Leu) and selective (-Trp -Leu -His, -Trp -Leu - His - Ade) medium (which reveal interactions). 
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Although the mutant showed no visible phenotype when treated with lincomycin and chloramphenicol 

(data not shown), rh50-1 showed higher sensitivity to erythromycin in respect to the wild type, as 

seedlings were smaller and paler and exhibited reduced photosynthetic efficiency (Figure 3.18 A), 

indicating that ribosome stability was affected. This effect points to a role of RH50 in the biogenesis of 

the 50S ribosomal subunit.  

To further investigate whether physical interactions between RH50 and plastid ribosomal proteins 

occur, yeast two hybrid (Y2H) assays were performed. RH50 was exploited as bait (Bd vector) and tested 

for interaction with GUN1, RPL11, RPL24, RPS1, RPS17 and RPS21 as preys (Ad vectors). Besides the 

previously described GUN1BD-CHLDAD interaction, used as positive control, no interaction was detected 

(Fig. 3.17).  

In order to study a possible association of RH50 with ribosomes in vivo, size exclusion chromatography 

of chloroplast soluble fraction (stroma) was conducted. RH50 was identified in megadalton complexes 

(with a main peak in fractions 5 – 7) containing ribosomal proteins, as demonstrated by 

immunodetection using RH50-, PRPL11- and PRPS5-specific antibodies (Figure 3.18 B). Moreover, when 

extracts were treated with RNase A, RH50 accumulation was lost in fraction 5 - 7, indicating that RH50 

is associated with RNA-containing RNAse-sensitive particles. Similar trend was observed for proteins of 

the large and small ribosomal subunit, pointing to the association of RH50 with immature ribosome 

that are more accessible for RNAses than their mature form found in fractions 3 and 4. The co-migration 

with ribosomes has also been documented  for other plastid-localized and well-characterized DBRHs, 

such as RH22 (Chi et al., 2012). 
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Figure 3.18: RH50 is associated with chloroplast ribosomes. 

(A) rh50-1 is sensible to erythromycin. 10 day-old wild type and rh50-1 seedlings germinated on MS containing 

50 µg/mL erythromycin (left panel) or MS plates without antibiotic, as control (right panel). The maximum 

quantum yield of photosystem II (FV/FM) was determined for each condition (average ±SD; n≥12). The color scale 

at the bottom indicates the signals intensities. (B) Size exclusion chromatography of RNAse-treated and 

untreated wild type stroma. Protein fractions were precipitated, transferred onto PVDF membranes and 
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immunodecorated with antibodies against RH50, RPL11 and RPS5. Equal loading is demonstrated by Coomassie 

Brilliant Blue (C.B.B.) staining of the membrane. Fractions are indicated at the top. LMW (Low Molecular Weight). 

Performed by Dr. Nikolay Manavski. 

 

3.2.6 RH50 is required for cold stress acclimation 
 

Several DBRHs have been reported to be involved in cold stress adaptation response. RH7, which plays 

a role in pre-18S rRNA processing and small ribosome subunit biogenesis, participates in plant growth 

development under low temperature conditions (Huang et al., 2016a; Liu et al., 2016); the cytosolic 

RH5, RH9 and RH25 helicases are involved in the response to both salt and cold stresses (Kant et al., 

2007; Kim et al., 2008); the plastid located RH3, required for intron splicing, mediates salt and cold 

stress responses, as well (Gu et al., 2014; Larkin et al., 2003). 

 

 

 

Figure 3.19: The rh50-1 mutant is cold-stress sensitive. 

rh50-1 and Col-0 seedlings were germinated at 4°C (left panel) and 22°C (right panel) and transferred at 22°C for 

1 week. The maximum quantum yield of photosystem II (FV/FM) was determined for each condition (average ±SD; 

n≥12).  The color scale at the bottom indicates the signals intensities. 

 

Under standard growth conditions, 7-day-old rh50-1 mutant seedlings showed a slight reduction in 

maximum quantum yield of PSII compared to the wild type (FV/FM 0.67 ± 0.01 versus 0.77 ± 0.01, 
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respectively) (Figure 3.19), a phenotype which is lost already with the appearance of the first true leaves 

(10 day old seedling Figure 3.18 A).  

 

 

 

Figure 3.20: The rh50-1 mutant is sensitive to cold stress.  Seedlings of rh50-1 and Col-0 germinated at 4°C (left 

panel) and 22°C (right panel) on Murashige and Skoog (MS) media with or without 1% sucrose (+ and – 

respectively). Seedlings germinated at 4°C were then transferred to 22°C for 1 week and cultivated under growth 

light (100 µmol photons m-2s-1) or low light (30 µmol photons m-2s-1). The maximum quantum yield of 

photosystem II (FV/FM) was determined for each condition (average ±SD; n≥12).  
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Intriguingly, rh50 mutants displayed impaired cold-stress tolerance since rh50-1 seedlings, germinated 

and grown on MS medium supplemented with 1% sucrose for 6 weeks at 4°C, and then transferred to 

22°C for 1 week, showed reduced growth, chlorophyll accumulation  and maximum quantum yield of 

PSII  (FV/FM 0.07 ± 0.07 versus 0.72 ± 0.02) compared to the wild type (Figure 3.19). In the absence of 

sucrose, this phenotype was enhanced and rh50-1 mutants failed completely to accumulate 

chlorophyll, thus causing seedling lethality (Fig. 3.20). Reducing the light intensity to decrease oxidative 

stress, failed to rescue the lethality of rh50-1 seedlings (Fig. 3.20). The pale phenotype of the cold-

stressed seedlings is likely to result from translational impairments, as it has been reported for other 

mutants involved in biogenesis of ribosomal subunits (RPL33, RPS5 and RBD1) (Rogalski et al., 2008; 

Wang et al., 2016; Zhang et al., 2016). To test this hypothesis, polysome loading experiments were 

performed with cold-treated wild type and rh50-1 seedlings (Figure 3.21 A).  

 

 

 

Figure 3.21: rh50-1 shows translation impairments. (A) RNA gel blot analysis of psaA transcripts in polysome 

fractions (1 to 11) collected from sucrose gradient of cold-treated wild type and rh50-1 extracts.  (B) EtBr staining 

of total RNA from cold-treated rh50-1 and wild type plants. Performed by Dr. Nikolay Manavski. 
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The psaA mRNA, which is efficiently loaded on polysomes hence migrates deep into the sucrose 

gradient, was chosen as example (Amann et al., 2004; Manavski et al., 2015). In rh50-1 mutant plants, 

the psaA transcripts shifted towards the low molecular weight fractions, indicating that psaA was less 

efficiently loaded with polysomes as compared to the wild type control, suggesting a reduced 

translation rates. This was further supported by the reduced levels of plastid ribosomal RNAs in the 

mutant (Figure 3.21 B). 

 

Table 3.1: RNA-seq analysis 

Locus ID Gene Log2 (fold change) fold change p-value 

GL2 (Glabra2) AT1G79840 1,6603 2,448 0,00023 

GD2 (glutamate decarboxylase 2) AT1G65960 1,6208 1,7676 0,0004 

Hypothetical protein AT3G16525 1,4392 1,7254 0,0186 

Antisense long non coding RNA AT5G07885 1,4219 1,666 0,03465 

F-box family protein AT5G10340 1,2916 1,6603 2,44804 

PKS4 (phytochrome kinase substrate 4) AT5G04190 0,8218 1,6208 1,76756 

Protein of unknown function AT5G07940 0,7869 1,551 1,72542 

RecA1  AT1G79050 0,7364 1,4392 1,66603 

RNA polymerase II fifth largest subunit, E AT3G54490 0,7058 1,4219 0,04789 

Calcium-binding EF hand family protein AT4G27790 0,6789 0,7058 0,04807 

Protein of unknown function AT4G18215 0,6667 0,6789 0,03984 

MET1 AT1G55480 0,6658 0,6667 0,0133 

ATMRD1 (mto 1 responding down 1) AT1G53480 0,6594 0,6658 0,0365 

TRNG.1 ATCG00100 0,6466 0,6594 0,00067 

LHCB4.1 AT5G01530 0,6453 0,6466 0,03645 

TRNT.2 ATCG00390 0,6332 0,6453 1,55099 

PSBK ATCG00070 0,6304 0,6304 0,00045 

Protein of unknown function AT1G50710 0,6303 0,6303 0,04351 

Protein phosphatase 2C family protein AT1G09160 0,6288 0,6288 0,0499 

Reticulon family protein AT3G54120 0,6235 0,6235 0,04805 

DPE1 (disproportionating enzyme) AT5G64860 0,5981 0,5981 0,01593 

Protein of unknown function AT1G74440 0,5526 0,5526 0,01858 

ABCI15 TGD2  (trigalactosyldiacylglycerol2) AT3G20320 0,5412 0,5412 0,01771 

RH50 AT3G06980 0,0038 0,0038 3,12E-180 
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3.2.7 RH50 is involved in plastid RNA metabolism 
 

As suggested by the severe phenotype observed in rh50-1 prpl11-1 and rh50-1 prpl24-1, RH50 shows a 

genetic interaction with genes encoding proteins of the large plastid ribosomal subunit. RNA helicase 

activity has been shown in vitro for RH50 homolog protein in rice (Li et al., 2008), suggesting that RH50 

might be able to bind RNA in vivo. To investigate the role of RH50 in chloroplast RNA metabolism, RNA-

seq analyses was performed on total RNA extracted from wild type and rh50-1 three-week-old plants. 

No obvious changes in gene expression were detected in the nuclear transcriptome of rh50-1 when 

compared to the wild type control (Table 3.1). A closer look at the chloroplast gene expression, 

however, revealed a strong accumulation of the 23S-4.5S intergenic region in the mutant (Figure 3.22). 

In several genetic backgrounds, RH50 showed a similar phenotypic behavior as GUN1 (as seen for 

prors1-1, prps1, prps21, prpl11 and prpl24), suggesting functional similarities. 

To further characterize the role of RH50 in ribosome biogenesis and to validate the RNA-seq data, 

plastid rRNAs in wild type (Col-0), gun1, rh50-1, gun1 rh50-1 plants were investigated via RNA gel blot 

analyses. The plastid rRNA gene cluster is transcribed as one RNA molecule and further processed by 

different nucleases, generating, as intermediate products, 16S precursor, 23S-4.5S bicistronic precursor 

and 5S precursor (Shajani et al., 2011). The 23S and 4.5S rRNAs precursor (3.2 kb) undergoes 

endonucleolytic cleavage to produce 4.5S and a 23S fragments (2.9 kb).  
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Figure 3.22: Differential enrichment of plastid-encoded genes. (A)Fold change of the read coverage of three 

rh50-1 and wild type RNA-seq replicates in the chloroplast genome. Differentially regulated loci are indicated by 

an arrow carrying the respective name. (B) Fold change of read coverage between rh50-1 mutant and wild type 

(Col-0) in the 23S and 4.5S rRNA genomic region. Gene names and positions are indicated by the arrows.  
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The 23S precursor is further processed and eventually generates three mature transcripts species of 

1.3 kb, 1.1 kb and 0.5 kb which lead the assembly of 50S subunit (Bollenbach et al., 2005). To determine 

whether RH50 plays a role in such mechanisms, 16S, 23S, 4.5S and 5S rRNA transcripts were 

investigated in gun1-102, rh50-1 and rh50-1 gun1-102 genetic background (probe a, b, d and e in Figure 

3.23 A). RNA gel blot analyses revealed that 16S and 5S rRNA transcripts (probe a and e, respectively; 

Figure 3.23 A) accumulated to the same level as in the wild type and in all the mutant backgrounds 

analyzed (Figure 3.23 B). However, RNA blots hybridized with specific probes for 23S (b) and 4.5S (d) 

revealed processing defects of 23S and 4.5S rRNA transcripts in the absence of RH50. In rh50-1 and 

rh50-1 gun1-102, mature 23S and 4.5S transcripts appeared slightly reduced while unprocessed 

transcripts were accumulating as compared to wild type and gun1. Hybridization with a probe specific 

for 23S-4.5S intergenic region (c) showed seven times stronger accumulation of this region in rh50-1 

and gun1-102 rh50-1 mutants as compared with the wild type and gun1 (Figure 3.23 B). These findings 

strongly suggest the involvement of RH50 in processing of the 23S-4.5S intergenic region. In such a 

scenario, RH50 could promote the maturation of 23S and 4.5S rRNAs, as RNA helicase, by unravelling 

the 23S-4.5S intergenic region and facilitating the cut of a sequence-specific endonuclease. No 

additional effect could be detected in gun1-102 rh50-1 samples, compared to rh50-1, implying that 

GUN1 plays no role in this pathway.  

Several other plastid transcripts were checked but only insignificant differences were observed, 

suggesting that those might be secondary effects resulting from translation impairments as it was 

shown previously for other mutants defective in plastid translation (Fristedt et al., 2014; Tiller et al., 

2012; Yu et al., 2008). 
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Figure 3.23: RH50 is required for the processing of the 23S-4.5S rRNA polycistronic transcript. (A) Schematic 

representation of chloroplast rRNA gene cluster in Arabidopsis, position of the probes (a-e) used for the RNA gel 

blot analysis is indicated. All precursors, intermediates and mature forms with their respective dimension in kilo-

nucleotides (knt) are shown. The arrows indicate the position of the hidden breaks.  (B) RNA gel blot analysis 

with probes specific for plastid rRNAs (16S, 5S, 23S, 4.5S, 23S-4.5S intergenic region, rpl2, rpl23, rps8, rps3 and 

psbA) in total RNA from wild type (Col-0) and mutant (gun1-102, rh50-1, gun1-102 rh50-1) plants.  
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3.2.8 Lack of RH50 affects plastid translation in the prpl11 genetic background 
 

As previously observed, lack of RH50 in prpl24-1 and prpl11-1 genetic background (mutants affected in 

large plastid ribosomal subunit) led to the exacerbation of the single mutant phenotypes (Figure 3.16 

A, B), causing embryo-lethality in prpl24-1 and enhancing the prpl11-1 phenotype. rh50-1 prpl11-1 

double mutant plants showed indeed a severe, but viable, phenotype. To determine whether the 

additivity of rh50-1 prpl11-1 double mutant phenotype can be related to a synergistic impairment of 

the plastid protein synthesis, in vivo labelling assays were performed. To this end, the rate of 

incorporated 35[S] methionine into plastid proteins in young leaves of wild type (Col-0), rh50-1, prpl11-

1, and rh50-1 prpl11-1 mutant plants was monitored after 5, 10 and 15 min of light exposure (Figure 

3.24).  

 

 

 

Figure 3.24: The rh50-1 mutation impairs plastid translation in prpl11-1 genetic background. Leaves isolated 

from 6-leaf-rosette plants were pulse-labeled with [35S]methionine under low-light illumination (20 μmol 

photons m−2 s−1) for 5, 10, and 15 min in the presence of cycloheximide to inhibit cytosolic protein synthesis. 

Total leaf proteins were then isolated, fractionated by SDS-PAGE and detected by autoradiography. A portion of 

the SDS-PAGE stained with Coomassie Brilliant Blue (C.B.B.), corresponding to the RbcL migration region, was 

exploited as internal standard for loading normalization. Quantification of signals (by ImageJ) relative to Col-0 

15’ (=100%) is provided below each panel.  
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The synthesis rates observed were slightly reduced in rh50-1 and prpl11-1 single mutants in respect to 

the wild type. The double mutant rh50-1 prpl11-1 showed strongly reduced synthesis rates at all three 

time points, when compared to wild type and prpl11-1. At the end point of 15 minutes the D1/D2 

synthesis reached 37% in respect to the wild type control (Figure 3.24). The phenotype of rh50-1 prpl11-

1 double mutant suggests a synergistic effect on the 50S ribosomal subunit biogenesis. According to 

these observations, it was suggest that the lack of PRPL11 generates instability in the 50S subunit 

(Pesaresi et al., 2001), while the accumulation of 23S-4.5S rRNA and  reduction of their mature forms 

additionally impairs the translation rate. 

 

3.2.9 RH50 associates with 23S-4.5S intergenic region 
 

The enriched accumulation of the 23S-4.5S intergenic region (Figure 3.22 B and Figure 3.23 B) in rh50 

mutant plants suggests an involvement of RH50 in its processing. For this reason, we investigated the 

interaction of RH50 with the 23S-4.5S intergenic region in vivo. Immunoprecipitation (IP) experiments 

were performed using RH50-specific antibodies and pre-serum as control on wild type stroma extracts 

(Figure 3.25 A). 

 

 

Figure 3.25: RH50 is associated with the 23S-4.5S intergenic region in vivo. (A) Western blot analysis on 

immunoprecipitated RH50.  (B) Slot-blot analysis of co-immunoprecipitated RNAs. RNAs recovered from 

supernatant (S/N) or immunoprecipitation pellets (P) were applied to a nylon membrane using a slot blots 

manifold and hybridized with probes specific for 23S-4.5S intergenic region and  rrn16S as control. A and B 

performed by Dr. Manavski. 
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 As expected, the 23S-4.5S intergenic region was specifically enriched in the IP (Pellet) fraction, whereas 

16S control rRNA was not enriched to the same extend, as demonstrated by slot-blot analysis (Figure 

3.25 B). As this interaction might indirect, an electrophoretic mobility shift assay (EMSA) was performed 

utilizing purified recombinant RH50 proteins and radio-labelled RNA probe covering the 23S-4.5S 

intergenic region (Figure 3.26 A and 3.26 B). RH50 was able to bind the 23S-4.5S intergenic region 

(Figure 3.26 B), whereas no binding was observed with the 23S rRNA probe that was used as control. 

This observation indicates that RH50 itself is capable of binding the 23S-4.5S intergenic region. An 

intrinsic RNA-binding properties were  also reported for other RNA helicases such as RH22 (Chi et al., 

2012) and RH39 (Nishimura et al., 2010).  

 

 

 

Figure 3.26: RH50 binds to the 23S-4.5S intergenic region in vitro. (A) Affinity purification of MBP-RH50 proteins 

before and after AcTEV cleavage. Purified proteins were stained with Coomassie Brilliant Blue. (B) The RNA-

binding capacity of RH50 was analyzed by EMSA using radiolabelled RNA probes of the 23S rRNA and 23S-4.5S 

intergenic region as indicated. Increasing concentrations of the purified RH50 protein (black triangles) were used. 

B; bound, U; unbound. A and B performed in collaboration with Dr. Manavski. 
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4 Discussion 
 

4.1 Introduction of a plant photosystem II into the cyanobacterium Synechocystis 

Aim of the project was to replace the endogenous PSII of Synechocystis with the one of A. thaliana. Two 

synthetic construct carrying 11 genes encoding for the PSII core proteins of A. thaliana: RC1 (D1, D2, 

CP43 and I) and RC2 (cytb559 α and β subunit, L, J, CP47, T and H), were independently introduced in 

Synechocystis. In previous studies several attempts to express PSII genes of higher plants in 

Synechocystis were performed. The psbA gene from Poa annua, encoding for D1 protein, was 

introduced in a Synechocystis mutant strain lacking all three D1 genes (psbA1, 2 and 3). They could show 

that the chimeric strain was able to grow photoautotrophically and that the hybrid PSII core reaction 

center could assemble and function in the mutant (Nixon et al., 1991). Attempts in replacing the CP43 

from Synechocystis with the homologous one from spinach have been made. However, despite the high 

amino acid sequence identity between the two proteins (85%), CP43 of spinach seemed to be unable 

to incorporate in the PSII complex of Synechocystis (Carpenter et al., 1993). Only when the 3’ half of the 

spinach protein was replaced with the endogenous cyanobacterial one, PSII complex could be 

assembled, indicating that the C-terminus of CP43 is necessary for its stability (Carpenter et al., 1993).  

The replacement of psbA2 of Synechocystis with the codon-optimized synthetic construct RC1, in the 

generated psbA2 RC1-7 strain, resulted in the complete loss of the endogenous psbA2 gene and in the 

accumulation of the plant PsbI protein (Fig. 3.5A). The expression of the AtpsbA, AtpsbD and AtpsbC 

plant genes was confirmed via RT-PCR (Fig. 3.5B). The further knock-out of the psbDC operon in the 

ΔpsbA2 RC1-7, produced the strain ΔpsbA2DC RC1. Loss of psbD and psbC in Synechocystis has been 

shown to cause decreased levels of D1, D2 and CP47 proteins that together with the lack of CP43 which 

leads to the formation of an unstable PSII complex and a mutant which is unable to grow 

photoautotrophically (Yu and Vermaas, 1990). In contrast, the ΔpsbA2DC RC1 mutant showed a partial 

rescue and was able to grow photoautotrophically but with slow growth rate (Fig. 3.10). The fact that 

the mutant showed only a partial rescue could not be traced back to a lack of transcripts, since all plants 

genes were proven to be transcribed (Fig. 3.5B and 3.9C). However, it could be due to a lack of 

accumulation of the plant protein D2 (Fig. 12). The Immunoblot showed the accumulation of the 
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Synechocystis D2, instead of the plant one. It is important to consider that Synechocystis has two psbD 

genes, psbD1 and psbD2, encoding for the D2 core protein of PSII reaction center and three psbA genes, 

psbA2, psbA3 and psbA1 (Mulo et al., 2009), encoding for the PSII core complex protein D1 (See also 

Table 1.1). Inactivation of psbA2 or psbA3 or of one of the two psbD genes up-regulates the expression 

of the other gene to wild type levels indicating that cells carrying just either gene alone is able to grow 

photoautotrophically (Mulo et al., 2009). The ΔpsbA2DC RC1 mutant generated so far still contains 

psbD2, psbA1 and psbA3. The presence of two copies of the same gene (endogenous and synthetic 

genes) could indeed reduce the PSII activity by sequestering an increased amount of post-

transcriptional and transcriptional factors that are required for the expression of the other genes and 

operons (Gimpel et al., 2016). It is also possible to speculate that several combinations of chimeric PSII 

might form or coexist. Therefore, it is unclear whether the newly introduced plants subunits are 

assembled in a functional stable structure or whether they transiently interact to be subsequently 

unassembled and degraded. Mass spectrometry analysis would help to understand more precisely if 

the plants proteins are actually assembling or not. Further experiments as the measurement of the 

activity of PSII in ΔpsbA2DC RC1 mutant and the analysis of the composition of the PSII complex with 

Blue Native PAGE would help to better understand the life cycle of the plant subunits and identify the 

limiting step in the assembly of the chimeric PSII.  

The successful replacement of the Synechocystis psbEFLJ operon with the RC2 construct resulted in 

generation of the mutant strain psbEFLJ RC2. The mutant was confirmed to be completely KO for the 

endogenous psbEFLJ operon and to carry all plant genes introduced with the RC2 construct (Fig. 3.6). 

The psbEFLJ RC2 mutant was not able to grow photoautotrophically, this phenotype was proven to be 

related to the lack of transcripts accumulation of the plants genes introduced with the construct (Fig. 

3.7). As already reported in previous studies, KO of the psbEFLJ operon prevents PSII accumulation. The 

psbEFLJ mutant could not grow photoautotrophically and it was growing three times slower than the 

wild type in heterotrophic conditions (Pakrasi et al., 1988). Absence of cytb559 is inhibiting the 

production of D2 protein, whereas D1, CP43 and CP47 synthesis is independent of the presence of the 

cytb559 (Komenda et al., 2004). This behavior has been previously described for the cyt b6f assembly in 

Chlamydomonas, where the absence of the subunit IV of the cytochrome b6f complex downregulated 

the synthesis of the cytochrome f protein (Choquet et al., 2001). This epistatic synthesis regulation may 
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prevent the waste of energy for the synthesis of proteins that cannot be assembled (Komenda et al., 

2004). The fact that the genes introduced with the RC2 construct were not expressed was investigated 

by introducing the RC2 synthetic construct in Synechocystis wild type strain on a self-replicative 

plasmid, in order to avoid the simultaneous disruption of the psbEFLJ operon. The RC2.2 mutant strain 

accumulated the transcripts of at least psbE and psbB plant genes (Fig. 3.8C). These results led to the 

conclusion that the position of the RC2 construct in the genome, in the psbEFLJ Synechocystis operon 

specifically, was inhibiting its transcription. Transcription could be affected by rearrangements of the 

DNA secondary structure or by the activation of transcriptional regulatory mechanism. Efficient 

transcription is one of the major concern when heterologous proteins are expressed in cyanobacteria 

and different components like, the cyanobacterial RNA polymerase, sigma factors, promoters, 

chromatin rearrangement or activation of protection mechanism against foreign DNA may have an 

impact on it (Lehmann et al., 2014; Stensjo et al., 2017; Vasu and Nagaraja, 2013).  

Bacterial genomes show a periodic bias in nucleotide frequencies, every 11 bp in cyanobacteria, which 

is related to the DNA structure (Herzel et al., 1999; Mrazek, 2010). This “signal” correlated indeed with 

the curvature of the DNA double helix (Rohs et al., 2009). Loss of the periodicity, due to introduction of 

synthetic genes, might lead to structural DNA changes and inefficient transcription process. The 

expression of the construct outside of the genomic context, on the pUR2LT plasmid could help in 

overcoming genome accessibility problems; moreover, the presence of the petJ promoter at the 5’ of 

the RC2 construct could facilitate the recruiting of the ribosomes and induce efficient translation. To 

avoid the interference with possible regulatory elements present on the genome another possible 

solution could be to integrate the synthetic construct in one of the few neutral site of Synechocystis 

genome recently published (Ng et al., 2015; Pinto et al., 2015; Stensjo et al., 2017). 

Several protecting systems are known in bacteria: (1) restriction-modification (R-M) systems, which 

uses the activity of a methyltransferase (MTase) to discriminate between self and non-self DNA and a 

restriction endonuclease (REase) that recognize and cleaves foreign DNA (Bickle and Kruger, 1993); (2) 

CRISPRs systems, which along with their associated genes (cas genes) are involved in immunity against 

phages (Barrangou et al., 2007; Brouns et al., 2008); (3) RecBCD system, distinguish the host genome 

which is carrying a cis element (Chi sequence) from the phage DNA (Dillingham and Kowalczykowski, 

2008); (4) transcriptional silencing, where a transcription termination factor and nucleoid-associated 
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proteins selectively bind to xenogenic DNA with AT content higher than the that of the genome and 

silence it (Gordon et al., 2010). One of these systems might be involved in the inactivation or silencing 

of the synthetic construct psbEFLJ RC2.  

The assembly of a chimeric PSII is not straightforward. Gene and protein similarities are not sufficient 

to predict the outcome of subunits replacement. This was also a conclusion of the work of Gimpel and 

coworker (Gimpel et al., 2016)  on a mutant of Chlamydomonas reinhardtii lacking six genes of the PSII 

core. The complementation of this KO mutant with the core PSII gene of two different green algae 

resulted in partial reconstitution of PSII activity, which was however far from wild type levels (Gimpel 

et al., 2016). These data together with our results indicate that the replacement of PSII with the one of 

different species and its use as a synthetic biology module is possible but many limiting steps are still 

present. First, probably there are still many unknown assembly factors and accessory proteins involved 

in PSII assembly and repair that might be necessary for the correct assembly of all PSII. Second, as 

previously described, the bacterial protection systems against foreign DNA can interfere with the 

expression of the exogenous synthetic genes and synthetic circuits. The generation of well-

characterized regulatory systems, like for example the introduction of short-regulatory RNAs (antisense 

RNAs) for the control of the endogenous protection systems (Higo et al., 2017) would be a useful tool 

for the  progress of genetic engineering.  

In this work, in line with the study of Viola (Viola, 2014), Vamvaka (Vamvaka, 2016) and Gandini 

(Gandini, 2017), Synechocystis has been used as platform for the identification and functional 

characterization of plant photosynthesis-related proteins. Synechocystis is becoming a prominent 

synthetic biological chassis to study and exploit photosynthesis thanks to the combination of its simple 

cellular organization and the development of new genetic and molecular biological tools.  Fine-tuning 

and further progress in new synthetic biology strategy is a necessary step in order to help the scientific 

community in the dissection of complex biological processes as plant photosynthesis. 
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4.2 Characterization of the DEAD-box RNA helicase RH50 

4.2.1 RH50 is involved in PGE-triggered plastid-to-nucleus retrograde signaling and shows 

comparable genetic interaction with GUN1 
 

Organelle gene expression is regulated mainly at posttranscriptional levels through RNA processing, 

intron splicing, RNA editing and translational control (del Campo, 2009). Many proteins are encoded in 

the nucleus and are subsequently transported into the chloroplast where they play essential roles in 

posttranscriptional RNA metabolism (del Campo, 2009; Nott et al., 2006; Pesaresi et al., 2007). It is 

therefore clear that the fine-tuning of the anterograde and retrograde signaling pathway is necessary 

for organelle gene expression and function. It has recently been shown that RNA binding proteins play 

a central role in plant development and stress response (Lee and Kang, 2016). Among RNA binding 

proteins are the DEAD-box RNA helicase that can assist the formation of functional mRNA in 

chloroplasts and mitochondria (Cordin et al., 2006). DBRHs consist of 8 conserved motifs Q, Ia, Ib, II, III, 

IV, V and VI (Caruthers and McKay, 2002). Motif II is the so called “DEAD” (Asp-Glu-Ala-Asp) box, motif 

III is required for NPTase and helicase activity, it performs the unwinding of the RNA (Pause and 

Sonenberg, 1992). Motifs Ib, IV and V are probably involved in RNA binding (Rocak and Linder, 2004).  

In A. thaliana, 120 RNA helicases member have been predicted by the TAIR database of which 58 have 

been identified as DBRH. Among them, 7 have been predicted to be plastid localized (RH3, 22, 26, 39, 

47, 50 and 58) and only RH3, RH22 and RH39 have been so far functionally characterized (Asakura et 

al., 2012; Chi et al., 2012; Nishimura et al., 2010). Phylogenetic analyses cluster RH22, -39, -47, -50, -58 

in one clade, separate from RH3 and RH26 (Asakura et al., 2012). Our expression data indicate for RH50 

a high co-regulation score with RH58, as well as with GUN1, PRPS1, PPOX and CHLD, previously 

identified as highly co-expressed gene cluster (Figure 3.13) (Tadini et al., 2016). Similar to GUN1, RH50 

is located in plastid nucleoids, megadalton complexes responsible for plastid encoded protein synthesis 

(Koussevitzky et al., 2007; Olinares et al., 2010). GUN1 protein, known as the master regulator of 

chloroplast-to-nucleus retrograde signaling, physically interacts with proteins involved in plastid 

protein homeostasis, like chaperones, proteases, ribosomal proteins and DBRHs (Koussevitzky et al., 

2007; Tadini et al., 2016). However, the function of GUN1-containing complex is still elusive and the 

signaling molecules, which the signaling relies on, are still under discussion. It has been suggested that 
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the accumulation of unprocessed plastid transcripts might trigger plastid signaling, in order to regulate 

gene expression of nuclear photosynthesis genes (Sun et al., 2016). The rh50 mutants did not display 

any gun phenotype in presence of either NF or Lin, conditions in which the chloroplast is severely 

impaired. The rh50-1 mutant was also analyzed in the prors1-1 genetic background. The prors1-1 

mutation represents a milder PGE-defective condition, which does not severely affect the chloroplast 

physiology but mimics, nevertheless, the effect of Lin-treatment. Interestingly, the rh50-1 prors1-1 

double mutant revealed the restoration of PhANGs to a wild type level, as observed before for the gun1 

prors1-1 (Figure 3.15C) (Tadini et al., 2016). Moreover, rh50 mutation does not alter the gun phenotype 

in gun1 seedlings in which PhANGs are not repressed (Figure 3.15C). Such findings suggest the 

involvement of RH50 in PRORS1-triggered plastid-to-nucleus retrograde signaling as PhANGs repressor 

in GUN1-like manner. Moreover, RH50 also suppresses the accumulation of the chloroplast ribosomal 

protein PRPS1 like GUN1 (Fig. 3.16E). GUN1 can genetically and physically interact with PRPS1 and, only 

genetically, with PRPL11 (Tadini et al., 2016).  

In this study, mutations for rh50 and gun1 genes were introduced into genetic backgrounds defective 

for 30S (prps1-1, prps17-1 and prps21-1) and 50S (prpl11-1 and prpl24-1) subunits of the plastid 

ribosome (Figure 3.16A-D). The additive (in combination with prpl11 and prpl24) or suppressor (in 

combination with prps1 and prors1) effect was stronger in the gun1-containing double mutants, except 

for prpl24 where the rh50-containing double mutant was embryo lethal while gun1 prpl24 was seedling 

lethal. In the case of prps17, the introduction of the rh50 mutation had no additive effect whereas gun1 

prps17 was seedling lethal (Fig. 3.16C). Such findings are consistent with the previous observation that 

several RNA helicases interact with ribosomal proteins as described for RH3, RH39 and RH22 (Nishimura 

et al., 2010; Asakura et al., 2012; Chi et al., 2012).  

Altogether, our data suggest that both RH50 and GUN1 are functionally connected with the plastid 

physiology but the role of GUN1 has broader functions. Since GUN1 has been proposed to be the 

integrator of both, the tetrapyrrole biosynthesis and the plastid gene expression pathway and RH50 

shows a functional interaction only with the OGE pathway, we hypothesize that RH50 might function 

downstream of GUN1 in a plastid gene expression specific pathway. 
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4.2.2 RH50 promotes the biogenesis of the plastid ribosome large subunit by assisting in the 23S-4.5S 

rRNA processing 

 

Ribosome biogenesis is a complex and fine-tuned process, that involves events like the transcription of 

the ribosomal gene cluster, rRNA processing and ribosome assembly (Kaczanowska and Rydén-Aulin, 

2007). Several proteins involved in plastid ribosome biogenesis have been described. RHON1, as an 

example, was identified to bind the inter-cistronic region on the 23S-4.5S rRNA precursor and to confer 

sequence specificity to the A. thaliana endonuclease RNAseE (Stoppel et al., 2012). SUPPRESSOR OF 

THYLAKOID FORMATION1 (SOT1), a plastid localized pentatricopeptide repeat protein, is required for 

the correct processing of 23S-4.5S rRNA precursor (Wu et al., 2016). RAP, an octotricopeptide repeat 

protein, binds to the 5’ region of 16S rRNA precursor and assists its maturation (Kleinknecht et al., 

2014). The chloroplast DEAD-box RNA helicase RH39 plays an important role in the introduction of the 

hidden-brake in the 23S rRNA together with an unknown endonuclease (Nishimura et al., 2010). A 

second plastid localized DBRH, RH22 is also involved in 50S ribosomal subunit biogenesis by assisting in 

the processing of 23S rRNA and, at the same time, binding the ribosomal protein RPL24 (Chi et al., 

2012). DBRHs not only play an important role in rRNA metabolism but they seem to have a pivotal role 

in plant stress responses (Kant et al., 2007; Liu et al., 2002; Owttrim, 2006; Vashisht and Tuteja, 2006). 

Several studies show that chloroplasts function as temperature sensor, by perceiving the changes in 

membrane plasticity, enzyme activity and inhibition of the photosynthetic performance (Crosatti et al., 

2013; Kindgren et al., 2015; Svensson et al., 2006). The role of RNA helicases in cold conditions relies 

on their ability to unwind RNA, which, at low temperatures, tends to form stable non-functional 

secondary structure. Several DBRHs have been identified so far to be involved in both cold stress 

response and rRNA metabolism. The cytosolic RH7, involved in pre-18S rRNA processing and small 

ribosome subunit biogenesis, participates in plant growth development under low temperature (Huang 

et al., 2016b; Liu et al., 2016). RH5, RH9 and RH25 helicases are involved in the response to salt and 

cold stresses (Kant et al., 2007; Kim et al., 2008) as well as the plastid located RH3, required for intron 

splicing (Gu et al., 2014). 

In this study, were collected several evidences in favor of a role of RH50 in the rRNA metabolism.  As 

previously described, plants mutated in RH50 and genes encoding for proteins of the large ribosomal 
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subunit, rh50 prpl11 and rh50 prpl24, showed severely impaired growth rate and photosynthetic 

efficiency (Fig. 3.16 A, C), indicating genetic interaction of RH50 with genes encoding proteins of the 

50S ribosomal subunit. In addition, the rh50 mutant resulted to be more sensitive to erythromycin and 

cold-stress suggesting ribosomal instability and a possible translational impairment. rh50 seedlings 

treated with erythromycin (Fig. 3.18A) or germinated at low temperatures (4 °C) and then transferred 

to normal temperature condition (22 °C) (Fig. 3.19), displayed a smaller and paler phenotype respect 

to the wild type and a reduced photosynthetic efficiency. Accordingly, polysome-loading experiments 

performed with cold treated wild type and rh50 mutant seedlings (Fig. 3.21A) proved aberrant 

polysome loading and reduced translation efficiency in the absence of RH50.  Moreover, RH50 co-

migrated with the ribosomal particle when size exclusion chromatography of chloroplast soluble 

fraction was performed (Fig. 3.18B). Finally, RNA gel blot of rh50 and rh50 gun1 mutants revealed 

accumulation of unprocessed 23S and 4.5S rRNA transcripts whereas their mature form appeared to be 

slightly reduced (Fig. 3.23B). Strong accumulation of the specific 23S-4.5S intergenic region was also 

observed in these mutants (Fig. 3.23B), indicating a processing impairment in this specific region. 

Confirming this result, accumulation of the 23S-4.5S intergenic region was also clearly observed in RNA 

seq data performed on rh50 total RNA (Fig. 3.22). The association of RH50 with the 23S-4.5S intergenic 

region was finally proved both in vivo with Co-Immunoprecipitation experiments (Fig. 3. 25B) and in 

vitro with EMSA experiments (Fig. 3.26 B). Such findings, all strongly suggest a role of RH50 in the 

biogenesis of the large 50S ribosomal subunit in general, and in the correct processing of the 23S-4.5S 

intergenic region in particular. 
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Appendix  
 

Optimized coding regions are indicated in capital letters, promoter and terminator regions in small 

letters. BsaI restriction site are indicated in bold. 

Complete sequence of the synthetic construct RC1 

Optimized coding sequences of A. thaliana AtpsbA, AtpsbD, AtpsbC and AtpsbI genes are indicated in 

capital letters. 

tttggtctctacccataagaaaatggcatcaggagaacaaatattgttccaccgacaggccgcatttgggttttggccaaccgctataccccggcggtgtagtttc

caatcgtctcgtcttattagagaatggagtctaaatgg 

cataacccaaattacaaaagcctcctttagaaattcttgcctttgatgctagctacgcaagaggatttgcatttATGACTATTGCCCTGGGAAAATTTA

CTAAAGACGAAAAAGACTTGTTTGACATTATGGATGATTGGTTACGCCGTGATCGGTTTGTGTTTGTGGGGTGGAGCGGA

TTGTTACTGTTTCCCTGTGCCTATTTTGCTTTAGGCGGTTGGTTTACCGGGACCACTTTTGTTACCTCCTGGTATACTCATGG

ATTGGCCTCCAGTTACTTAGAAGGCTGCAATTTTCTGACCGCCGCTGTGAGTACTCCCGCCAACAGCCTGGCTCACTCTTTG

TTACTGTTGTGGGGACCCGAAGCCCAAGGCGATTTTACCCGTTGGTGTCAGCTGGGGGGATTGTGGGCCTTTGTTGCTTTA

CATGGTGCCTTTGCTCTGATTGGGTTTATGTTGCGGCAATTTGAATTAGCCCGGTCCGTGCAGTTGCGCCCCTATAATGCCA

TTGCTTTTAGCGGCCCCATTGCCGTGTTTGTTTCTGTGTTTTTAATTTACCCCCTGGGCCAATCCGGTTGGTTTTTCGCCCCC

AGTTTTGGTGTTGCCGCTATTTTTCGCTTTATTTTGTTTTTCCAGGGGTTTCATAACTGGACTTTGAACCCCTTTCACATGATG

GGGGTTGCCGGAGTGTTAGGCGCCGCTTTACTGTGCGCCATTCATGGTGCTACCGTGGAAAATACTTTGTTTGAAGATGG

CGACGGTGCCAATACCTTTCGTGCTTTTAACCCCACCCAAGCCGAAGAAACTTACAGTATGGTTACCGCTAATCGCTTTTGG

TCCCAGATTTTTGGAGTGGCCTTTAGTAACAAACGTTGGCTGCATTTCTTTATGTTGTTTGTTCCCGTGACCGGCTTATGGA

TGAGCGCCCTGGGTGTGGTTGGGCTGGCCTTGAATTTACGTGCTTATGATTTTGTGTCTCAAGAAATTCGGGCCGCTGAAG

ATCCCGAATTTGAAACCTTTTACACTAAAAACATTTTGTTAAACGAAGGTATTCGTGCTTGGATGGCTGCTCAAGACCAGCC

CCACGAAAATTTGATTTTTCCCGAAGAAGTGTTGCCCCGCGGGAACGCCTTATAAacccataagaaaatggcatcaggagaacaaat

attgttccaccgacaggccgcatttgggttttggccaaccgctataccccggcggtgtagtttccaatcgtctcgtcttattagagaatggagtctaaatggcataa

cccaaattacaaaagcctcctttagaaattcttgcctttgatgctagctacgcaagaggatttgcatttATGAAAACTTTGTATTCTTTACGCCGCTTT

TATCACGTTGAAACTTTATTTAATGGGACTCTGGCCTTGGCTGGTCGGGATCAGGAAACCACTGGTTTTGCCTGGTGGGCT

GGGAATGCCCGCTTGATTAACTTATCCGGGAAATTGTTAGGAGCCCATGTGGCCCACGCTGGGTTAATTGTGTTTTGGGCC

GGAGCTATGAATTTGTTTGAAGTGGCCCATTTTGTTCCCGAAAAACCCATGTATGAACAAGGCTTGATTCTGTTGCCCCACC

TGGCTACCTTGGGATGGGGAGTGGGTCCCGGCGGTGAAGTTATTGATACTTTTCCCTACTTTGTGTCCGGTGTTTTGCATTT

AATTTCCAGTGCCGTGCTGGGGTTTGGGGGAATTTATCACGCCTTACTGGGCCCCGAAACCTTAGAAGAAAGTTTTCCCTT

TTTCGGCTACGTGTGGAAAGATCGTAACAAAATGACCACTATTCTGGGTATTCATCTGATTTTGCTGGGGGTGGGAGCTTT

TCTGTTGGTTTTTAAAGCCTTGTACTTTGGTGGTGTGTACGATACCTGGGCTCCCGGGGGAGGCGACGTTCGTAAAATTAC

CAACCTGACTTTGAGCCCCTCTGTGATTTTTGGTTATTTACTGAAATCCCCCTTTGGTGGGGAAGGGTGGATTGTGAGTGTT

GATGACTTGGAAGATATTATTGGAGGCCATGTGTGGTTAGGCAGTATTTGTATTTTTGGTGGGATTTGGCACATTTTAACC

AAACCCTTTGCCTGGGCTCGTCGGGCTCTGGTGTGGTCCGGAGAAGCTTATTTGTCCTACAGTTTAGCCGCTCTGAGTGTG

TGCGGTTTTATTGCCTGTTGCTTTGTTTGGTTTAATAACACCGCCTATCCCAGCGAATTTTACGGGCCCACTGGACCCGAAG

CCTCTCAAGCCCAGGCTTTTACCTTTTTGGTGCGGGATCAACGCTTAGGCGCTAATGTTGGTAGCGCTCAGGGACCCACTG

GCTTGGGTAAATATTTAATGCGTTCTCCCACCGGCGAAGTGATTTTTGGAGGCGAAACTATGCGTTTTTGGGACTTGCGTG

CTCCCTGGTTGGAACCCTTACGTGGCCCCAATGGTTTAGATCTGAGCCGTTTGAAAAAAGACATTCAACCCTGGCAGGAAC

GTCGGAGTGCTGAATATATGACCCATGCCCCCCTGGGTTCCTTGAACAGTGTGGGTGGGGTTGCTACTGAAATTAATGCC

GTGAACTACGTTAGCCCCCGGTCTTGGTTGAGCACCTCTCATTTTGTGCTGGGCTTTTTCTTGTTTGTTGGCCATTTATGGCA
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CGCTGGTCGTGCTCGTGCTGCTGCTGCTGGATTTGAAAAAGGCATTGATCGCGACTTTGAACCCGTGTTATCCATGACCCC

CCTGAATTAAattgagacttttctgattttgcaaaggttttgctttagttaaacccaattgattagtgtcccctgcccatttggtgggggattattatttttaagat

aatcctattttttggagtgaggccagttacctattagacgcgcgactcgaaagtcgttcaggggagttggaacggcttccaaaaacctttccccgctggtgtttttg

gttataattccttatgtatttgtcgatgttcagattggaactgactaaacttagtctaaaggattaatgagagttttgtaaagctttgtaacaggaagttaatataca

cgaagcttatagatgacataagttttactttcttgtaattgtcgttttttccatgggATGACTGCTATTCTGGAACGGCGTGAAAGCGAAAGCCTG

TGGGGTCGGTTTTGTAACTGGATTACTTCTACTGAAAATCGGTTGTATATTGGGTGGTTTGGAGTTTTGATGATTCCCACCT

TGTTAACCGCTACTTCCGTGTTTATTATTGCCTTTATTGCCGCTCCCCCCGTTGATATTGACGGCATTCGGGAACCCGTGAGC

GGCTCTCTGTTGTACGGTAATAACATTATTTCCGGGGCCATTATTCCCACCAGTGCCGCTATTGGACTGCATTTTTATCCCAT

TTGGGAAGCCGCTTCCGTGGATGAATGGTTGTATAATGGCGGTCCCTACGAACTGATTGTTTTGCATTTTCTGCTGGGGGT

GGCCTGTTACATGGGACGCGAATGGGAATTAAGCTTTCGGCTGGGTATGCGCCCCTGGATTGCTGTGGCCTACTCTGCTCC

CGTTGCTGCTGCTACCGCTGTGTTTTTAATTTATCCCATTGGCCAAGGTTCCTTTAGTGACGGGATGCCCCTGGGCATTAGT

GGTACTTTTAACTTTATGATTGTGTTTCAGGCCGAACATAACATTTTAATGCATCCCTTTCACATGCTGGGGGTGGCCGGAG

TTTTTGGGGGATCCTTGTTTAGTGCCATGCACGGTTCCCTGGTTACCTCCAGTTTGATTCGCGAAACCACTGAAAATGAAAG

TGCCAACGAAGGGTATCGTTTTGGACAAGAAGAAGAAACCTACAACATTGTGGCTGCCCATGGCTACTTTGGTCGTTTAAT

TTTTCAGTACGCCAGCTTTAACAACAGCCGGTCCTTGCATTTCTTTTTGGCTGCCTGGCCCGTGGTTGGCATTTGGTTTACC

GCTTTGGGTATTAGTACTATGGCCTTTAACCTGAACGGCTTTAACTTTAACCAAAGCGTGGTTGATTCTCAGGGTCGTGTGA

TTAATACCTGGGCTGACATTATTAATCGGGCCAACTTAGGGATGGAAGTTATGCATGAACGCAATGCCCACAACTTTCCCT

TGGATTTAGCTGCCGTGGAAGCCCCCTCCACCAATGGCTAAttccttggtgtaatgccaactgaataatctgcaaattgcactctccttcaatgg

ggggtgctttttgcttgactgagtaatcttctgattgctgatcttgattgccatcgatcgccggggagtccggggcagttaccattagagagtctagagaattaatc

catcttcgatagaggaattctccccaaagcctagaccgaaatggggtaaagtaggcaaggtagaatggtttctgcgcccggatttttacccaaattaagctttgc

acgcctttgcatttaactaaggagaatttATGTTGACCCTGAAACTGTTTGTGTACACTGTGGTTATTTTCTTTGTTTCCTTGTTTATTTT

TGGCTTTTTGAGTAACGATCCCGGCCGGAACCCCGGTCGCGAAGAATAAgctttagcccaaaattcttccttctctccctagactaattttg

gtgccaagggtagattggaacctgattactctcccccaccggagagttttttgtcactggcgttagagaccaaa 

 

Complete sequence of the synthetic construct RC2 

Optimized coding sequences of A. thaliana AtpsbEFLJ, AtpsbB, AtpsbT and AtpsbH genes are indicated 

in capital letters. 

tttggtctcttatggcggctcacaaaatagtagactagactctacttgctttgcatttgtcagtcaatgttgttttgaaaaattgaaggagaacacaaaATGTCT

GGGTCCACTGGGGAACGGTCTTTTGCCGATATTATTACCTCCATTCGCTACTGGGTTATTCACAGCATTACTATTCCCTCTCT

GTTTATTGCCGGGTGGTTGTTTGTGAGCACCGGATTAGCTTATGATGTTTTTGGTTCTCCCCGGCCCAATGAATACTTTACC

GAAAGTCGCCAAGGCATTCCCCTGATTACTGGTCGTTTTGATCCCTTGGAACAGTTAGACGAATTTTCCCGGAGTTTTTAAa

acatttaattgttcttttttagttggtaattaacaATGACTATTGACCGCACTTATCCCATTTTTACTGTTCGCTGGTTGGCTGTTCACGGG

CTGGCTGTTCCCACTGTTTCCTTTTTAGGGTCCATTAGTGCCATGCAATTTATTCAGCGGTAAgagtttttcATGACTCAATCCA

ATCCCAATGAACAATCTGTGGAACTGAACCGCACCTCTTTATACTGGGGTCTGCTGTTAATTTTTGTTTTAGCCGTGTTGTTT

TCCAATTATTTCTTTAACTAAacttttttaatacgcaatttaggaggcatggtATGGCCGATACCACTGGGCGGATTCCCTTGTGGGTGA

TTGGCACCGTTGCTGGTATTTTGGTGATTGGGTTAATTGGAATTTTCTTTTATGGTAGCTACTCCGGCCTGGGTTCCAGTTT

GTAAtcgagggctagccgccacacaatatcatggtacagcttgcagaaatcctggccgctcgttacaatccttcaaaatattctcactttgtaagggataatgg

ataaaacttgactctgtctgtcttgttcggttaacacaacctatagacaagggttttatttacccaacgcagaataaaaattaaaacgtctttaagacacaaaaca

ctattcgttactagaaggagcgtcaATGGGATTGCCCTGGTATCGCGTTCACACCGTGGTTTTAAATGACCCCGGACGTTTGCTGGC

TGTTCACATTATGCACACCGCCCTGGTGGCCGGGTGGGCTGGATCTATGGCCTTGTATGAATTAGCTGTTTTTGACCCCTCC

GATCCCGTGCTGGATCCCATGTGGCGCCAAGGGATGTTTGTGATTCCCTTTATGACCCGTTTGGGCATTACTAATAGTTGG

GGCGGTTGGAACATTACCGGGGGAACCATTACTAATCCCGGTTTATGGAGTTATGAAGGCGTTGCCGGTGCTCATATTGT
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GTTTAGCGGGCTGTGTTTTCTGGCCGCTATTTGGCACTGGGTGTACTGGGACTTGGAAATCTTTTGTGATGAACGGACCGG

CAAACCCTCTCTGGATTTGCCCAAAATTTTTGGCATTCATTTATTTCTGTCCGGTGTTGCCTGTTTTGGGTTTGGAGCTTTTC

ACGTGACCGGTCTGTATGGCCCCGGTATTTGGGTTTCCGACCCCTACGGGTTGACTGGAAAAGTTCAACCCGTGAATCCCG

CCTGGGGCGTTGAAGGTTTTGATCCCTTTGTGCCCGGCGGTATTGCCAGTCATCACATTGCCGCTGGGACCTTAGGAATTC

TGGCCGGCTTGTTTCATTTAAGCGTGCGTCCCCCCCAGCGGCTGTATAAAGGGTTGCGGATGGGAAACATTGAAACCGTTT

TATCCAGTAGCATTGCCGCTGTGTTTTTCGCCGCTTTTGTGGTTGCCGGCACCATGTGGTACGGTAGTGCCACCACTCCCAT

TGAATTGTTTGGGCCCACTCGCTATCAATGGGATCAGGGATACTTTCAACAGGAAATTTATCGGCGCGTGTCCGCCGGCTT

GGCTGAAAATCAAAGTTTAAGCGAAGCCTGGGCTAAAATTCCCGAAAAATTGGCCTTTTACGATTACATTGGTAATAACCC

CGCCAAAGGGGGATTATTTCGTGCTGGGAGTATGGACAATGGGGATGGAATTGCCGTTGGCTGGTTAGGTCATCCCGTGT

TTCGTAACAAAGAAGGTCGGGAACTGTTTGTGCGTCGGATGCCCACCTTTTTCGAAACTTTTCCCGTGGTTTTAGTTGATGG

CGACGGTATTGTTCGGGCCGACGTGCCCTTTCGCCGTGCTGAAAGTAAATATAGCGTGGAACAAGTGGGCGTTACCGTGG

AATTTTACGGCGGTGAATTAAACGGTGTTTCTTATTCCGATCCCGCCACTGTGAAAAAATACGCCCGTCGGGCTCAGCTGG

GGGAAATTTTTGAATTAGACCGCGCCACCCTGAAATCTGATGGCGTGTTTCGCTCTTCCCCCCGTGGGTGGTTTACTTTTGG

ACACGCCAGCTTTGCTTTGTTGTTTTTCTTTGGCCATATTTGGCACGGTGCTCGTACCCTGTTTCGTGACGTGTTTGCCGGTA

TTGATCCCGACTTGGATGCCCAAGTTGAATTTGGGGCTTTTCAGAAATTAGGAGATCCCACCACTAAACGTCAAGCCGTGT

AAgtgcttcttgcacagcttttaaccacagcttaagagcgtgtttgaaaagcctccctggtcacccaagtttggggggaaactaagtcaaagtcccccagcatcg

ggagatttagggagcagagtcagactttacaaacaggttctaagtcttgggagttatccctcataattcgagcccgcagtgtttggttcttggccaagtcggtcta

gttgtcaggggacaggggaatgtatagattagtgtgtaaggataaacttttaggaattttttagattATGGAAGCCCTGGTGTATACCTTTTTGTTA

GTTTCCACTTTGGGCATTATTTTCTTTGCTATTTTCTTTCGGGAACCCCCCAAAATTAGTACCAAAAAATAAtccaattaaagggt

cttttttccaggtgttttttgcctggacactcccttaaaaccccagtttttacctctgtttcaaccgtgggctagcttgactttgactggggtaagattgatagttgtttc

tgttgtcttatattattacagaacattacaaaaactcatttagtcatttttacgggaagtctATGGCTACTCAGACCGTTGAAGATTCCTCTCGCAG

CGGCCCCCGTTCTACTACCGTTGGCAAACTGTTGAAACCCTTAAACTCCGAATATGGGAAAGTGGCCCCCGGCTGGGGTAC

CACTCCCTTAATGGGAGTGGCCATGGCTCTGTTTGCTGTTTTTCTGAGCATTATTTTGGAAATTTACAACTCCAGTGTGTTGT

TAGATGGTATTTCCGTTAACTAAtggggggttgttgacatattcctgacccaatttaatcccaacttaattttggttaactttctttagatcccgccccgcc

gggatttttttgtcttatggagcatagggggccacaaactgtcattggctagtcagggttagagaccaaa 
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