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Zusammenfassung

Vollständigkeit ist ein äußerst wichtiges Konzept in der theoretischen Physik. Die Haupt-

idee besagt, dass eine Bewegung oder ein Freiheitsgrad eindeutig und für alle Zeiten de-

finiert ist. Die Kriterien, die Vollständigkeit in klassischen und quantenmechanischen Theo-

rien beschreiben, sind je nach Theorie unterschiedlich. Sie sind eng mit dem spezifischen

Messprozess der jeweiligen Theorie verknüpft. Unvollständigkeit geht oft mit der Präsenz

einer Singularität einher. Die Existenz einer Singularität ist untrennbar gegeben durch die

Freiheitsgrade der Theorie.

In Allgemeiner Relativitätstheorie sind Raumzeiten charakterisiert durch die Länge geo-

dätischer Kurven. Dieses Kriterium fußt auf der klassischen Punktteilchenbeschreibung

mittels Differentialgeometrie und führte zur Entwicklung der Singularitätentheoreme nach

Hawking und Penrose.

Ein Quantendetektor in einer dynamischen Raumzeit kann nicht durch Quantenmecha-

nik im engeren Sinne beschrieben werden, denn es ist nicht möglich eine konsistente re-

lativistische Einteilcheninterpretation einer Quantentheorie zu formulieren. Infolgedessen

übertragen wir den Terminus der Vollständigkeit auf Situationen deren einzig adäquate Be-

schreibung durch Quantenfeldtheorie auf gekrümmten Raumzeiten erfolgen kann. Um Uni-

taritätsverletzungen, welche sich in endlicher Zeit ereignen, auflösen zu können, nutzen wir

die Schrödingerdarstellung der Quantenfeldtheorie, da diese eine Zeitauflösung ermöglicht.

Sinnhaftigkeit der Persistenzamplitude des Wellenfunktionales, d.h. Wahrscheinlichkeits-

verlust oder Stabilität werden mit Vollständigkeit in Verbindung gebracht.

Anhand eines schwarzen Loches der Schwarzschildgattung wenden wir unser Kriteri-

um an und testen Vereinbarkeit mit freien, massiven Skalarfeldern. Abweichungen vom
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Gauß’schen Ansatz für das Wellenfunktional, angeregte Zustände und Selbstwechselwir-

kung der Testfelder, werden betrachtet und deren gutartige Entwicklung wird gezeigt.

Die Analyse wird auf eine weitere Klasse von Raumzeiten, den Kasner-Raumzeiten an-

gewandt, die hohe Relevanz durch die Vermutung von Belinskii, Khalatnikov und Lifshitz

haben.



Abstract

Completeness is a very important concept in theoretical physics. The main idea is that

the motion or the degree of freedom is uniquely defined for all times. The criterion for

completeness is different for classical and quantum theories. This corresponds to a specific

measurement process in the corresponding theories. Incompleteness is often related to the

occurrence of a singularity. The notion of a singularity is closely related to the corresponding

degree of freedom.

In general relativity space-times are characterised by the extendibility of geodesic curves.

This criterion founded on the point particle description through differential geometry has

given rise to the singularity theorems of Hawking and Penrose.

A quantum probing of dynamical space-times can not be described with quantum me-

chanics because there is no consistent relativistic one particle interpretation of a quantum

theory. Hence, we extend the notion for completeness to situations where the only adequate

description is in terms of quantum field theory on curved space-times. In order to analyse

unitarity violations occurring during a finite time, we use the Schrödinger representation of

quantum field theory which allow for time resolution. Consistency of the wave-functional’s

persistency amplitude, i.e. probability loss or stability, will be connected to completeness.

For a Schwarzschild type back hole we apply the criterion and probe with free massive

scalar fields for consistency. Furthermore, deviations from Gaussianity, i.e. excited states

and self-interaction of the probing fields are derived and consistency is showed for those

deformations.

The analysis is furthermore applied to Kasner space-times, which have high relevance

due to the conjecture of Belinskii, Khalatnikov, and Lifshitz.





1
Concerning singularities

Considering the case that an random person on the street asks you about black holes and

the big bang, most people which are educated in science would inevitably come to the

point where they have to talk about singularities, but this will trigger the next question:

”
What is a singularity?“. The concept is known to every physicist, although the notion is

not very familiar to non-physicists or non-mathematicians because it has no equivalence in

their daily life, at least, however, it seems to be important in order to understand what a

black hole or the big bang is. During a day without thoughts about physics or mathematics

the concept of singularities is not needed. From a heuristic point of view one would deny

that a system in nature becomes singular, e.g. reaches an infinite value of energy.

Amongst physicists, it is clear that the occurrence of a singularity is equivalent of having

a severe problem our theory. The black hole and the big bang singularities are a direct

outcome of Einstein’s equations, hence, they are predicted to occur by general relativity. It

is, however, not clear that these solutions can be reached dynamically. Hence, they could

also be a mathematical artefact.

Usually the term
”
singularity“ is connected to the situation where at least one observable

could be measured to grow unbounded. Experimentalists have never reported an infinite

value of a measurable quantity. This fact motivates to question the physical justification

for the concept.

Let us recall the definition of singularities in mathematics. The definition of a singular

point is [Simon, 2015a]:

Definition 1. If Ω is a region, f ∈ A(Ω) (all analytic functions on Ω) and z0 ∈ ∂Ω, we

say that f is regular at z0 if and only if there is δ > 0, g analytic in Dδ(z0) (disk of radius

δ about z0) so that f(z) = g(z) for all z ∈ Ω∩Dδ(z0). If f is not regular at z0, we say that
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f is singular at z0.

The above definition says that there exists a point z0 for which the function acquires an

infinite value: f(z0) > M, ∀M ∈ R.

The language of physics is mathematics, therefore, it is very natural that mathematical

concepts are also present in physics. Singularities appear in different theories; in some they

signal a breakdown of the description. Before we specify the notion in physical examples

we want to elucidate what is generally meant by
”
breakdown of the description“. Physical

theories are devoted to specific energy (or length) scales, below this energy scales the theory

is effectively describing the system while beyond the scale the theory loses its predictability.

In general, the pure presence of a singularity starts to become a problem only in conjunc-

tion with the possibility to dynamically reach the singularity in a finite amount of time.

Considering the mathematical definition, the first singularity, ever deduced in physics, oc-

curred in the theory of gravitation. Newton’s law of the attraction between two massive

bodies admits a singular value at the origin. The formula F = −GN
mM
r2

suggests that the

force at r = 0 will be infinitely strong. This is clearly a pathology of the theory signalling

its breakdown close to this point. If we assume two point-like particles with masses m1 and

m2 at r ≡ 0 it will not be possible to separate both, no matter how small the masses are.

The motion generated by the gravitational potential ends for both particles at the origin.

This is the first singularity ever known in physics.

In 1864 James Clerk Maxwell formulated his very successful classical field theory of

electromagnetism. This theory was a benchmark for the development of modern theoretical

physics. Its success was overwhelming, but when applied to atomic physics, it was plagued

by the singularity of the atomic potential and the stability problems due to synchrotron

emission.

For a hydrogen atom the attractive Coulomb potential serves as a suitable description for

the potential of the nucleus. The potential has a similar form as the gravitational potential

when considering a point charge: VCoulomb ∝ − 1
r
. Here again, we have a mathematical

singularity at r = 0 (this analysis holds as long as the charges are opposite, instead when

we have equal charges the potential becomes repulsive VCoulomb ∝ 1
r

and it is impossible

to reach r = 0 because the potential is unbounded from above). If this has been the whole

story, a hydrogen atom could not be stable. The energy loss due to radiation of the electron

orbiting the proton would result in a life-time of τ ≈ 10−11s. From experiments (or birthday

parties) we know it is different. This problem was unsolvable in classical physics because

the predictability of the theory has broken down.
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Quantum mechanics has provided a resolution of this singularity. The electron is now

described as a state of a Hilbert space given by a wave function and the system by a

Hamilton operator with Coulomb potential. In this notion, the wave-function of the non-

relativistic bound-state electron yields a different result than the classical point-particle

description, because the wave-function shows no support at the origin, therefore, never

reaches the pathological point r ≡ 0. The ultimate reason is the probabilistic interpretation

of quantum mechanics which prevents the electron from reaching r = 0 although the

classical point-particle motion would predict this point to be realised in a finite amount of

time.

This rather intuitive example illustrates that the term
”
singularity“ needs some specifi-

cation in physics. The mere existence of a singular point is not significant as long as the

degrees of freedom are excluded from this point. Observables constructed from the degrees

of freedom, e.g. energy, will not diverge and hence, the theory would be regular. In other

words, if theory A detects a singular point, theory B does not need to agree.

The result concerning the hydrogen atom is a hint that the quantum description is more

fundamental, because it is backed-up by experimental data.

Catching up the example of the hydrogen atom, one could think about gravity in the same

way such that the singularity in the gravitational force might be a relic of the point particle

description. The more potent theory describing gravitation is general relativity, but this

theory predicts singularities in the case of black holes and big bang. One question, which

is the key question of this thesis, arises:
”
How can we find out, whether these singularities

are a mathematical relic or not?“

The presence of a singularity is connected to the concept of completeness. This is closer

to our experience than a singularity which might be the reason for incompleteness. The

singularity acts as a sink where degrees of freedom are absorbed, e.g. the classical motion

of the electron in the Coulomb potential stops abruptly at r = 0. Completeness can be

illustrated by a pool billiard game. Blocking the pockets makes the game complete, since

no ball is able to leave the table. The walls serve as an infinitely high potential. No matter

what initial conditions we set for the kinetic energy of the balls, they will be unable to

leave. Bringing the pockets into the game means that the ball can disappear from the table,

therefore the system describing only the table is not complete, while the system covering

the room in which the table stands is still complete. Reasons for incompleteness can be

various; a singularity is just one of them.

Completeness is a powerful tool which roughly tells us whether degrees of freedom could
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leave the system or not, and is closely connected to the underlying theory and the measure-

ment process. The example of the hydrogen atom was classically incomplete but quantum

mechanically complete when measured with the bound state electron. In classical physics

it is predicted that the orbiting electron will lose energy through synchrotron radiation

and hits the proton in a very short time, but on the quantum level, the probability for the

electron wave-function is zero at r = 0. Therefore, the system is quantum-mechanically

complete, although the classical potential between proton and electron is singular in the

mathematical sense and suggests classical incompleteness. What counts for physics is the

relevance of the singularity for the measurement processes that involve the appropriate

degrees of freedom.

In general relativity methods have been developed to predict the occurrence of singulari-

ties. A characterisation of the structure of a manifold under rather generic assumptions has

condensed in the famous singularity theorems [Hawking and Ellis, 1973]. They show rigo-

rously under what conditions a singularity is inevitable. Along with this comes a notion of

completeness which is measured by free-falling point particles serving as probes. Free-falling

observers measure in proper time whether the end-point of a manifold can be reached in a

finite amount of time. Black holes are shown to be incomplete by the singularity theorems

because all radial geodesics have finite length and end at the singularity.

Famous examples for other singular space-times are Friedmann space-times, or the de

Sitter space-time, admitting the cosmological singularity at the beginning of time (big

bang). Although the big bang scenario does not meet the energy conditions of the theorems

they fit perfectly in their picture. The black hole solutions, such as the Schwarzschild, Kerr,

Reißner-Nordström, etc., and also Kasner are fully covered by Hawking and Penrose’s

theorems. However, all those mentioned solutions of Einstein’s equation contain a space-

like singularity. This means there is a singular hypersurface bordering on the physical

space-time.

Horowitz and Marolf developed a criterion for a quantum probing of space-times which

analyses quantum-mechanical probes on static space-times. Their criterion led to various

research; a vast variety of static space-times have been investigated with respect to quantum

probes.

Horowitz and Marolf’s notion is very limited since it is restricted to static space-times,

this means especially it will not be applicable to big bang and the gravitational singularity

of a Schwarzschild black hole, since they occur in dynamical, i.e. explicitly time-dependent

space-times. While these singularities are space-like, Horowitz and Marolf investigated
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time-like singularities. A spacelike singularity calls for a different treatment than a time-

or lightlike, since in dynamical set-ups quantum mechanics is not applicable. The reason

is that there is no consistent relativistic version of quantum mechanics. Dynamical space-

times support emission and absorption processes, i.e. the particle number is not conserved,

and the only adequate quantum description is via quantum field theory. The question we

want to investigate in this thesis concerns exactly the physical significance of spacelike

singularities when probed with quantum fields.

The significance of spacelike singularities can therefore only be detected with quantum field

theory on curved space-time. In this thesis we develop a probing criterion for quantum field

theory and apply it to the generalised Kasner space-time as well as to the interior of a black

hole. The thesis is structured as follows:

In Chapter 2 we provide a brief introduction into the concept of completeness in sever-

al theories. We define and motivate these notions from the general idea and show how

completeness is realised in classical physics, quantum mechanics and general relativity. We

will explicitly compare the classical and the quantum-mechanical criteria and work out the

cases where there is a tension. Afterwards, we explain the quantum probing of static space-

times invented by Horowitz and Marolf. This introduction to the concept of completeness

should motivate the notion we are proposing for quantum field theory on curved spaces.

With the concept of completeness in mind, we will proceed in Chapter 3 with a thorough

investigation of the geometrical properties of the two space-times we intend to probe, that

is, the Schwarzschild space-time and the generalised Kasner space-time. We will analyse in

great detail what their geometrical properties are. We start with the black hole space-time.

As an example we consider the Schwarzschild space-time for the reasons of simplicity,

since we are only interested in the implications of the gravitational singularity without

incorporating charged or rotating black hole solutions. We will discuss both the exterior

and interior solution of the black hole. The explicit form of the metric allows - after some

slight approximations - to transform the Schwarzschild solution into a Kasner space-time

close to the singularity. This feature will then be used to draw a connexion to the conjecture

of Belinskii, Khalatnikov and Lifshitz as well as to the following analysis of Kasner space-

times.

The second space-time we investigate is the generalised Kasner space-time which is a very

important class of space-times in physics because it has various applications especially due

to the conjecture of Belinskii, Khalatnikov, and Lifshitz which states that the behaviour

of fields close to spacelike singularities is generically described by a Kasner space-time.



6 1. Concerning singularities

In the fourth chapter we give a brief introduction into the required tools of functional

calculus which we need in order to explain the Schrödinger representation of quantum field

theory (first on Minkowski space-time, afterwards on curved spaces). After the preliminaries

we state the definition of quantum completeness, i.e. completeness where the only adequate

description is in terms of quantum field theory. Our criterion is due to the ground-states

of the Schrödinger representation but we will show that this is so far sufficient. Then

we apply the criterion to the Schwarzschild space-time, and afterwards to Kasner space-

time. Moreover we analyse non-Gaussian deformations of the ground-state wave-functionals

such as excitation with respect to the ground state and self-interaction of the quantum

probes. For the latter we give an argument why they cannot change the result, whatsoever.

In the last two sections of Chapter 4 we calculate the energy density which is in full

accordance with the result of quantum completeness and show that charges are conserved

inside Schwarzschild black hole. In the end we will draw a link to the black hole final-

state proposed by Horowitz and Maldacena. The link between Heisenberg and Schrödinger

representation is presented in the appendix.

The last chapter gives a short summary and discusses probable future directions.



2
The fellowship of completeness

We start with a warm-up introducing into different notions of completeness. A pedagogical

treatment as well as the mathematical preliminaries are presented in the books about

mathematical physics of Reed and Simon [Reed and Simon, 1980, Reed and Simon, 1975,

Reed and Simon, 1979, Reed and Simon, 1978]. We will follow basically their conceptual

punchline and provide examples which strengthen the intuition, additionally the presented

definitions, theorems, and some of the examples are taken from these books.

Starting with classical (non-relativistic) completeness we proceed with quantum me-

chanical completeness and outline differences between both notions. Afterwards, we dis-

cuss completeness for general relativity which is connected to the singularity theorems of

Hawking and Penrose.

Finally, we will conclude this section with Horowitz and Marolf’s criterion for quantum-

mechanical completeness on static space-times. For all presented notions of completeness

we come up with brief examples and comparisons in order to supplement the intuition for

the concept of completeness and its realisation in various theories.

2.1. Classical completeness

In this section we discuss the basic concept of completeness and explain in short how

we can apply it to classical motions. The basic idea of completeness is the following: A

motion generated by a potential is complete, if it is uniquely defined for all times and

under arbitrary initial conditions. In other words, a degree of freedom can not disappear

or appear out of nowhere, moreover its evolution must not be ambiguous. We will see in

the following what consequences this idea implies.
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For classical (non-relativistic) completeness [Reed and Simon, 1980] we investigate a mo-

tion of a point particle x(t) generated by a potential V(x). Let us furthermore call the velo-

city of the particle v(t) ∈ R, where t is time. We restrict ourself to the half-line (0,∞) 3 x
and we say the potential has a continuous derivative which is Lipshitz1 on every compact

subset of the half-line. This ensures that the potential and its derivative is continuous,

smooth, and does not vary too fast.

Classical completeness is potential completeness, in order to introduce this notion we

will follow essentially [Reed and Simon, 1980] and write down the Hamilton function of the

system, given by H(x, p) = 1
2m
p2+V(x). In general the potential can have an explicit time

dependence, but we will restrict ourself to static potentials for simplicity. The solution x(t)

is specified through the equations of motion:

m
dx

dt
(t) = p(t),

dp

dt
(t) = −

dV

dx
(x(t)) (2.2)

Since we have a differential equation of second order in x(t) we will need a pair of initial

conditions which fully determine the solution. The definition of classical completeness is

given by [Reed and Simon, 1980]:

Definition 2. A classical motion generated by a potential V is complete at 0, or ∞, if

there is no pair of initial conditions 〈x0, v0〉 ∈ (0,∞)×R so that the solution x(t) runs off

to 0, or ∞ in a finite time.

Completeness in classical non-relativistic physics says, no matter what initial conditions

we assume, the trajectory will not reach the end-point in a finite amount of time; the

mere existence of a singularity (at one end-point) in the potential, or the possibility for a

singular value of x(t), is not significant for the system in order to be incomplete. It should

be mentioned that the initial conditions are formulated in x and v although it would have

been more suitable to state the initial conditions in x and p.

An illustrative example can be constructed by looking at a queue game. Without pockets,

the game is totally complete, i.e. the balls cannot leave the table because the potential

describing the boundary of the table is infinite. If there are pockets, the motion on the

table will be incomplete since the balls can leave the table.

1Let (X, ρ) be a metric space. f : X → V, a normed linear space, is called Lipshitz continuous if and
only if for some C > 0 and all x, y ∈ X with ρ(x, y), we have that

‖f(x) − f(y)‖ ≤ Cρ(x, y). (2.1)
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Classical completeness puts some restriction at the potential and the analysis can the-

refore be reduced to investigations of the potential V .

Theorem 1. Let V(x) have a continuous derivative which is uniformly Lipshitz on each

compact subset of (0,∞). Then the classical motion generated by V(x):

(a) is not complete at 0 if and only if V(x) is bounded from above near zero.

(b) is not complete at ∞ if and only if V(x) is bounded from above for x ≥ 1 and∫∞
1

dx√
K− V(x)

<∞ for some K > sup
x≥1

V(x).

In other words, bounded (from above) potentials generate incomplete motions. This is

intuitively clear, we can find initial conditions such that we can reach the end-point in a

finite amount of time, for example a high initial velocity v0.

Nevertheless, classical completeness should only be considered as an introducing exam-

ple.

2.2. Quantum mechanical completeness

Quantum mechanical completeness is technically different to the notion of classical physics.

We will give a brief mathematical introduction which is based on the books by Reed and

Simon. The notion for quantum-mechanical completeness on a half-line is given by

Theorem 2. The potential V(x) is called quantum-mechanically complete if H =

− d2

dx2
+V(x) is essentially self-adjoint on C∞

0 (0,∞) (continuous functions on (0,∞)) . V(x)

is said to be complete at ∞ (respectively at 0) if at least one solution of ϕ ′′(x) = V(x)ϕ is

not in L2 near ∞ (respectively near 0).

The key requirement on the Hamilton operator is given by essential self-adjointness. The

criterion stated above is connected to Weyl’s limit point/limit circle criterion (Definition

6) for self-adjointness on a half-line. In [Simon, 2015c] the relation to the usual (not on

a half-line) definition of self-adjoint operators can be found which we will provide for the

sake of completeness in Definition 4. Before we go into details what quantum-mechanical

completeness implies, we will first explain why self-adjointness is similar to a complete

motion for a quantum state.
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Our first objective is to get some intuition for self-adjointness and how we can see that

an operator has this property. We will focus on the basic criterion stated by von Neumann

[Neumann, 1930]. A basic knowledge of functional analysis is assumed, the focus lays on

the definitions and theorems which are important for us.

Definition 3. A densely defined operator T on a Hilbert space H is called symmetric,

or Hermitian, if T ⊂ T ∗, that is, if D(T) ⊂ D(T ∗) and Tϕ = T ∗ϕ for all ϕ ∈ D(T).

Equivalently, T is symmetric if and only if

(Tϕ,ψ) = (ϕ, Tψ) for all ϕ,ψ ∈ D(T).

Here, the brackets denote the L2 bilinear product and the star the Hilbert space adjoint

of the operator which is conjugate linear. The domain of the operator is given by D(T) or

D(T ∗) for the adjoint operator. Symmetric operators are always closable, since D(T ∗) ⊃
D(T) is dense in H. A symmetric operator is the basis for self-adjointness which is defined

by

Definition 4. A densely defined operator T is called self-adjoint if T = T ∗, that is, if

and only if T is symmetric and D(T) = D(T ∗).

The main difference between symmetric and self-adjoint is given by the domain of the

operator; the distinction between both properties is very important. Self-adjointness is, for

example, the essential hypothesis for the spectral theorem, which is the decomposition of

operators into eigenvalues and eigenbasis. Additionally, only self-adjoint operators act as

generators for a one-parameter unitary group. Note, the domain of a symmetric operator is

adjustable by boundary conditions such that the operator becomes self-adjoint. In a sense,

self-adjointness can be seen as a compromise such that the domain is small enough for the

operator to be symmetric and big enough to equal the domain of the adjoint.

Since the criterion for completeness states that essentially self-adjointness is sufficient,

we will give the basic definition here:

Definition 5. A symmetric operator T is called essentially self-adjoint if its closure T̄

is self-adjoint. If T is closed, a subset D ⊂ D(T) is called core for T if T � D = T .

Essentially self-adjointness implies that the operator has a unique self-adjoint extension2.

Existence of such extensions is often sufficient, therefore essential self-adjointness is enough

2Imposition of different boundary conditions may induce different self-adjoint extensions which are mu-
tually incomparable.
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in order to formulate the completeness criterion for quantum mechanics. The standard

procedure for finding self-adjoint extensions is to construct the Friedrichs’s extension or by

exploiting Green’s identity which has been developed by von Neumann [Neumann, 1930].

The addition of suitable boundary conditions which depend on the eigenfunctions of the

adjoint operator ensures that the domains coincide. It may be difficult to determine the

domain of an operator, to give some core is much easier. This is the reason why essential

self-adjointness is important in mathematics, too. We will now present the basic criterion

for self-adjointness.

Theorem 3. Let T be a symmetric operator on a Hilbert space H. Then the following three

statements are equivalent:

(a) T is self-adjoint

(b) T is closed and Ker(T ∗ ± i) = {0}

(c) Ran(T ± i) = H.

The proof for this theorem can be found in Reed and Simon [Reed and Simon, 1980]. For

essentially self-adjointness we can find a corollary

Corollary 1. Let T be a symmetric operator on a Hilbert space H. Then the following are

equivalent:

(a) T is essentially self-adjoint

(b) Ker(T ∗ ± i) = {0}

(c) Ran(T ± i) is dense.

These so called von Neumann criteria can be condensed to one important statement. Point

(b) of the above theorem says that the equation Tϕ = ∓iϕ has no solution except from

ϕ = 0 which is similar to say that the spectrum of the operator T consists of only real eigen-

values. Looking at Stone’s theorem [Stone, 1932, Stone, 1929b, Stone, 1930, Stone, 1929a]

unveils why this is important:

Theorem 4 (Stone’s Theorem). Let U(t) be a strongly continuous one-parameter unitary

group on a Hilbert space H. Then, there is a self-adjoint operator A on H so that U(t) =

eiAt.
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Note, Stone’s theorem is only applicable in the above form when A is time-independent.

U(t) is called the infinitesimal generator of the unitary group. This U(t) can become well

known objects for example the time-evolution operator in quantum mechanics. Suppose

having the self-adjoint Hamilton operator H, by Stone’s theorem we know that it admits

U(t) = eiHt as one-parameter unitary group. H serves as the infinitesimal generator of the

time-evolution operator.

Time-evolution is crucial in order to decide whether or not a motion is complete. It is

sometimes good to begin with heuristic considerations. We start with the time-dependent

Schrödinger equation

i
dψ

dt
= Hψ. (2.3)

The solution for the time-evolution can be found by integrating the above equation

ψ(t) = exp(iHt)ψ(0). (2.4)

If the Hamilton operator were not essentially self-adjoint, we would get complex eigenva-

lues as consequence. In the time evolution (2.4) complex eigenvalues yield exponentially

decreasing and increasing real parts e±|=(H)|t of the solutions. With these one might get

amplification or damping terms depending on the sign of =(H).

In the quantum-mechanical case the von Neumann criterion can be shown to coincide

with the limit point-limit circle criterion of Weyl [Weyl, 1910, Reed and Simon, 1975]

Theorem 5. Let V(x) be a continuous real-valued function (0,∞). Then H = − d2

dx2
+V(x)

is essentially self-adjoint on C∞
0 (0,∞) if and only if V(x) is in the limit point case at both

zero and infinity.

A few lines below we will explain what is meant with limit point and limit circle, and the

etymology of the criterion for the interested reader.

Definition 6. A potential V(x) is in the limit circle case at infinity (respectively zero)

if for some, and therefore all, λ, all solutions of

−ϕ ′′(x) + V(x)ϕ(x) = λϕ(x)

are L2-functions (square-integrable) at infinity (respectively zero). If V(x) is not in the limit

limit circle case at infinity (respectively zero), it is said to be in the limit point case.



2.2 Quantum mechanical completeness 13

The origin of this terminology [Reed and Simon, 1975] is due to the idea of considering

self-adjointness problems of H = − d2

dx2
+ V(x) on (a,∞) as a limit of problems on (a, b)

in the limit of b→∞. Suppose ϕ and ψ are solutions of −ϕ ′′(x) + V(x)ϕ(x) = iϕ(x) on

(a,∞) which obey the boundary conditions ϕ(a) = ψ ′(a) = 0 and −ϕ ′(a) = ψ(a) = 1.

For a fixed b we could take a set z ∈ C and with angle α ∈ [0, 2π) we define η = ϕ + zψ

which obeys cos(α)η(b) + sin(α)η ′(b) = 0 which form for some α a circle Cb. By sending

b → ∞ this circle has two options, it either converges to a limiting circle of finite radius

or it shrinks to a point. In case of a limiting circle both solutions to the above equation

are in L2, in the other case one fails to be square integrable. Therefore, completeness,

and self-adjointness, is related to the limit point. The connection is given by failing of

one solution to be square-integrable and therefore the initial conditions do not need to be

specified. If the above equation has only one square integrable solution at 0 then we lose

the dependence on the boundary at ∞ [Weyl, 1910].

In case that the Hamilton operator is not essentially self-adjoint, one could hope to find a

self-adjoint extension by fixing the boundary conditions at the end-points.

For a spherically symmetric set-up, the criterion can be adapted [Reed and Simon, 1975]:

Theorem 6. Let V(r) be a continuous symmetric potential on Rn\{0} with r being the

distance from the origin. If the potential satisfies

V(r) +
(n− 1)(n− 3)

4r2
≥ 3

4r2
(2.5)

then the Schrödinger operator −∆ + V(r) is essentially self-adjoint on C∞0 (Rn\{0}). If in

contrast V(r) satisfies

0 ≤ V(r) + (n− 1)(n− 3)

4r2
≤ c

r2
, with c <

3

4
(2.6)

then the operator is not essentially self-adjoint on C∞0 (Rn\{0}).

This theorem shows explicitly that the Laplace-Beltrami operator is essentially self-adjoint

for all dimensions n ≥ 4 [Reed and Simon, 1975]. For the dimensions n > 4 they claim

that the proof is straightforward while it is more subtle for n = 4. The proof of the above

theorem can be found in [Reed and Simon, 1975].
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2.3. Quantum-mechanical versus classical completeness

The quantum-mechanical criterion looks very similar to the criterion of classical comple-

teness. Roughly speaking, an infinite travel time to the endpoint of a system for arbitrary

initial conditions in classical mechanics finds its analogue in the fact that no boundary

conditions for the quantum-mechanical state need to be specified at the endpoint. When

looking at the right endpoint there are sufficient conditions for the potential to be complete

[Reed and Simon, 1975]:

Theorem 7. Let V(x) be a continuous real-valued function on the half-line (0,∞) and

suppose there exists a positive differentiable function M(x) so that:

(i) V(x) ≥ −M(x)

(ii)
∫∞
1

dx√
M(x)

=∞
(iii) M ′(x)

(M(x))3/2
is bounded near ∞.

Then V(x) is in the limit point circle (complete) at infinity.

Before we proceed, we take some time to understand the theorem above. The potential is

bounded from below by −M(x) while the functionM(x) has the property that its derivative

is also bounded. Theorem 7 can be restated such that when the potential V(x) fulfils the

classical completeness criterion it suffices for V(x) to be such that V ′|V |−
3
2 is bounded near

infinity in order to be quantum-mechanically complete at∞. This condition says, that the

derivative of the potential should not be too large compared to the potential itself. In fact,

if the derivative of the potential is too large, the two notions are independent from each

other at the end-point. In this case, the classical and the quantum mechanical completeness

criteria coincide and the theorem can be reformulated

Theorem 8. Let V(x) be a twice continuously differentiable function on (0,∞) which

satisfies V(x)→ −∞ as x→∞, and suppose that∫∞
c

∣∣∣∣∣

[
(
√
−V) ′

(−V)3/4

] ′
4
√
−V

∣∣∣∣∣dx <∞ (2.7)

for some c > 0. Then V(x) is quantum-mechanical complete at ∞ if and only if V(x) is

classically complete at infinity.
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The relation between the two formulations is explained in [Reed and Simon, 1975]. Howe-

ver, there can be examples constructed which show that both notion do not need to give

the same result. This is not just a mathematical gimmick, the explanation will include

physics and will show the overwhelming evidence for the power of quantum probing.

We present two pedagogical examples following Rauch and Reed [Rauch and Reed, 1973]

and also [Reed and Simon, 1975] where quantum-mechanical and classical incompleteness

do not agree.

Example: classically incomplete, quantum-mechanically complete at ∞:

The potential be a series of steps at height −π2k4 with k ∈ N, two plateaus are smoothly

connected by steep cliffs in a very short interval (αk, βk). A sketch of the potential can be

seen in Figure 2.1. When we calculate
∫∞
0

dx
(−V(x))1/2

we see it acquires a finite value, hence,

the potential is classically complete. If the steepness of the connecting lines is high enough,

1

3

2

1 2 3 4

Figure 2.1.: Potential V(x) with steps.

the interval around the integer number k (αk, βk) should be very small, then the potential

will be quantum-mechanically complete. The idea is to construct V(x) such that it is at

least C2(0,∞) and that we can find solutions of the Schrödinger equation which are not

in L2. The potential is monotonically decreasing. Take α1 = 1 and let ϕ(x) = − cos(πx)

on (0, 1]. At x = 1, we see ϕ(1) = 1 and ϕ ′(1) = 0. Now, we can choose β1 such that the

solution has not much descended at this point. The solution ϕ(x) is concave downward
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until the next zero which we call r1. We can deduce for ϕ(x)

ϕ(x) − 1 =

∫ x
1

(∫ s
1

V(t)ϕ(t)dt

)
ds. (2.8)

The norm of the above mentioned relation allows us to estimate the upper bound on the

interval (1,min{r1, α1}) by

|ϕ(x) − 1| ≤ (x− 1)2

2
24π2. (2.9)

The potential can be put on the interval (α1, β1). We choose β1 such that ϕ(β1) ≥ 1− 1
4

is

guaranteed. On the next interval, i.e. (β1, α2) the solution is given by ϕ2(x) = A cos(4πx−

γ2) where A obeys the same estimate as ϕ(β1). We choose α2 such that it is the closest

point to 2 where ϕ2(x) has a maximum. Following the above steps we find another estimate

ϕ(β2) ≥ 1− 1
4
− 1
8

by an appropriate choice of β2. Repeating the procedure lead to a solution

ϕ(x) = An cos(n2πx− γn) (2.10)

on (βn−1, αn) with |An| ≥ 1
2
. Thus ϕ(x) /∈ L2(0,∞) and therefore it is in the limit point

case at infinity and quantum-mechanically complete.

This result calls for a physical interpretation. The quantum mechanical waves are reflec-

ted by the steps which are chosen such that the reflected waves are coherent and infinity

can not be reached because of destructive interference. The system is complete.

This looks like the quantum-mechanical completeness is superior in the sense that quan-

tum mechanics make classical systems complete but this is a fallacy. It is in another sen-

se superior; this is presented in an example where a system is classically complete but

quantum-mechanically incomplete. The observed incompleteness will give rise to a physi-

cal phenomenon which is not present in classical mechanics.

Example: classically complete, quantum-mechanically incomplete at ∞:

We consider the following potential

V(x) =
1

x2
− x4 +

∞∑
k=1

σk(x) (2.11)

where σk(x) are very narrow spikes with increasing height such that V(k) = k. The poten-

tial is classically complete because it is unbounded from above at ∞. With Theorem 7 we

can show that for the potential depicted in Figure 2.2. without the spikes the Hamilton ope-

rator is not essentially self-adjoint on C∞
0 . It can be shown [Reed and Simon, 1975] when
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Figure 2.2.: Potential V(x) with spikes.

the spikes are narrow enough that the Hamilton operator for the whole potential is not

essentially self-adjoint and the motion generated by V(x) is not complete. The particles,

if the spikes are narrow enough, can tunnel through the potential barrier and reach infini-

ty. The mathematical analysis gives rise to a phenomenon we can experimentally observe

which is not present in classical physics.

There are many other examples where classical completeness is contrasted to the quantum-

mechanical e.g. [Shubin, 1998]. In a publication by Simon the reader can find a lot of

applications of eigenvalue problems [Simon, 1991]. The power of the quantum-mechanical

completeness concept can be used in order to probe space-times. Before we evaluate on

this, we will explain the relativistic classical criterion based on geodesic completeness.

2.4. Geodesic completeness

In general relativity the motion of test bodies is governed by the background geometry

which is described by a connected four-dimensional differentiable Hausdorff C∞ manifold

M and a bilinear form defined on M, the Lorentz metric g (for mathematical definitions

cf. [Kobayashi and Nomizu, 1963, Kobayashi and Nomizu, 1969]). We use as mathematical

model for a space-time the pair (M, g) as a collections of events [Hawking and Ellis, 1973].

The space-time curvature from the point of view of a point-particle sitting on the manifold
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is interpreted as a potential which shape dictates its path in case it is freely falling. In the

non-relativistic limit of Newtonian mechanics this can be identified with the trajectory of

the test body.

It should be noticed that this description is only appropriate in the case of point masses.

For extended bodies, the motion in arbitrary geometries turns out to be more complicated

[Dixon, 1970a, Dixon, 1970b, Dixon, 1974, Ehlers and Rudolph, 1977]. By sending the size

of the object to zero, the point particle case can be reproduced.

A space-time singularity corresponds to a point or a region where the metric tensor de-

generates (at least one component of g goes to zero) or diverges (at least one component

of g goes to infinity). If the rest of the space-time is differentiable and in the above sense

non-pathologic, one could cut out the point by ensuring that no regular point is omitted

fromM. In other words, singular space-times in the framework of general relativity mean

that there are points or regions which are cut out in order to preserve Lorentzian signature

and the differentiability of the metric everywhere.

In this context, the question occur whether a space-time could be extended with the

required differentiability or not. Geodesic curves γ serve as a diagnostic tool; they descri-

be the trajectory a point mass would follow in the absence of forces. The mathematical

definition is [Kobayashi and Nomizu, 1963]:

Definition 7. A curve γ = xt, with a < t < b, where −∞ ≤ a < b ≤∞, of class C1(M)

with a linear connection Γ is called a geodesic if the vector field X = ẋt defined along γ,

that is, if the transport along X: ∇XX exists and equals 0 for all t, with ẋt being the tangent

vector to the curve γ at the point xt.

The connection of the metric g along the vector field X is given by ∇X, a dot denotes

a differentiation with respect to the parameter t. If a curve γ is parametrised by a uni-

que affine parameter then γ is turned into a geodesic. Its equation of motion can either

be deduced from the equivalence principle, or calculated through the action principle or

through parallel displacement along a curve. The curvature of the background encoded in

the connection form shapes the geodesic. The equation of motion, the so called geodesic

equation is written as:

∇XX = 0 , if X = ẋt. (2.12)

This equation can be expressed in a local coordinate neighbourhood. Let xi(t) be the
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equations of a curve γ = xt, then γ is a geodesic if and only if

d2xi

dt2
+
∑
j,k

Γ ijk
dxj

dt

dxk

dt
= 0, i ∈ N \ {0}. (2.13)

With the notion of geodesics, we are able to state the criterion for completeness which is

given by [Hawking and Ellis, 1973]

Definition 8 (geodesic completeness). A semi-Riemannian (Lorentzian) manifold is com-

plete if every geodesic can be extended to arbitrary values of its affine parameter.

The affine parameter has the physical interpretation of proper time. A geodesic with affine

parameter range from minus until plus infinity corresponds to a motion which is uniquely

defined for all (proper) time. When we have a singularity at one end-point the affine

parameter ends at a finite value, for example in Schwarzschild at r = 0 which corresponds

to a finite affine parameter depending on the initial conditions. It is impossible to extend

the geodesic through this point, the motions abruptly ends in a configuration where the

curvature diverges. However, the completeness can also be seen from the metric itself

[Hawking and Ellis, 1973]

Definition 9 (metric completeness). The pair (M, g) is metrically complete if every

Cauchy sequence with respect to the distance function converges to a point in M.

This means that for a small parameter ε > 0 and for all n ≥ N the metric acting as a

difference function g(xn, x) < ε. The above definitions, metric and geodesic completeness,

can be shown to coincide generically for Riemannian manifolds by the Hopf-Rinow theorem

[Kobayashi and Nomizu, 1963] but for Lorentzian manifolds there are counterexamples,

e.g. Clifton-Pohl torus.

Turning to the physical implications of the mathematical terms, we first want to say

something about singularities in the context of general relativity. There are three possibi-

lities of singularities: space-like, time-like, and light-like (and combinations thereof).

Space-like singularities occur at a specific time. Either a whole spatial hypersurface be-

comes singular or the whole metric collapses to one point (this can only happen for non-

vacuum solutions). These types occur for example for Schwarzschild black holes (vacuum)

and for Friedmann universes (non-vanishing energy-momentum tensor).

Time-like singularities are points in space where matter enters an infinite curvature re-

gime and are located in space. As example serves the negative mass Schwarzschild solution

which we present in the following or charged black holes.
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Light-like singularities are somehow exotic and can be found in compactified supergravity

[van Baal and Bais, 1983].

How can we find out that a space-time admits a singularity? In 1965 Penrose [Penrose, 1965]

has formulated the first of a series of singularity theorems [Hawking, 1965, Hawking, 1966,

Hawking, 1976b]. The most powerful and most general is the singularity theorem of Hawking

and Penrose [Hawking and Penrose, 1970]. They show that a manifold admits a singularity

under rather general properties. We state the version of the most popular theorem without

giving a proof [Hawking and Ellis, 1973]:

Theorem 9. A space-time (M, g) is not timelike and null geodesically complete if:

(1) Rµνv
µvν ≥ 0 holds for every non-spacelike vector v

(2) The generic condition is satisfied, that is, every geodesic contains a point at which

t[µRν]αβ[ρtσtλ]t
αtβ 6= 0, where t is the tangent vector of the geodesic.

(3) The chronology condition holds on the manifold

(4) There exists at least either a compact achronal set without edge or a closed trapped

surface or a point p such that on every past (or future) null geodesic from p the

divergence θ of the null geodesic from p becomes negative.

In this theorem Rµν denotes the Ricci curvature tensor. These rather mathematical state-

ments can be brought into a more physical language. The first condition can be paraphrased

into the statement that gravity acts always attractive, the second says that every geodesic

feels the influence of the curvature, and the chronology condition is equal to the statement

that there are no closed timelike curves, i.e. we have a notion of the light cone and causality.

The last statement is a bit more involved, but what it actually means is that at some point

geodesics tend to approach each other and the light cone is reconverging. The strength of

reconvergence is given by the parameter θ, called expansion. In other words under gravity

(which is purely attractive) generic conditions predict a singularity which can be seen in

the metric tensor by diverging or vanishing components.

However, we have to make sure, that the singularity is not just an artefact of the coor-

dinate choice. Diffeomorphism invariant quantities such as the Kretschmann scalar extract

the relevant singularities because the coordinate dependence is gone. Another way could be

to find a coordinate neighbourhood which is regular at the specific point, i.e. the Kruskal-

Szekeres for the black-hole manifold [Kruskal, 1960, Szekeres, 1960].
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The parameter θ measures how the distance of two neighbouring geodesics changes with

respect to the affine parameter. Raychaudhuri’s equation [Raychaudhuri, 1957] describes

the movement of two particles on neighbouring geodesics with affine parameter λ:

dθ

dλ
= ω2 − σ2 −

θ

3
− R(X,X) −

d(dX)

dλ
. (2.14)

The different tensors θ, σ, and ω have physical meanings: θ is the expansion tensor, σ

the shear tensor, and ω the vorticity tensor. This equation is essential in Hawking and

Penrose’s proof of the singularity theorems.

Singularity theorems only make statements about the occurrence but say little about

the nature of the singularity, like the dimensionality or the orientation, nor do they explain

their physical impact. While for example a singular region in space could be avoided by

staying far away, it is not so intuitive how a spacelike singularity can be omitted. In the

first case the geodesics which do not hit the singularity can be extended uniquely to infinite

affine parameter, in the latter case it seems pretty hopeless to extend the affine parameter

to infinity length.

Geodesic completeness is close to the basic idea of completeness, because the geodesic

should be uniquely defined for all affine parameter (which can be interpreted as proper

time) and this has to hold for all geodesics which corresponds to the demand of having

arbitrary initial conditions. No matter how much we appreciate differential geometry in

the confrontation of non-relativistic classical and quantum-mechanical completeness, the

latter scores. Before we toss in the towel in the light of spacelike singularities, we shall

consider quantum theory; first for timelike singularities and then we deploy the full power

of quantum field theory and investigate spacelike singularities.

2.5. Quantum-mechanical probes of space-time

singularities

Completeness in the theory of quantum mechanics and general relativity are rather different

because we have two quite different criteria for probing the existence of a singularity within

each theory. On the quantum-mechanical side essential self-adjointness of the Hamilton

operator, which corresponds directly to a unique time-evolution, guarantees completeness.

On the general relativity’s side we saw that a geodesic of infinite length corresponds to a

complete manifold.
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In section 2.3 we compared the classical with quantum-mechanical completeness and

uncovered that there exists a tension. We could ask, does this tension occurs when we

probe a space-time with quantum probes, which is exactly the question we address in this

section, additionally we want to point out the interdependence between both concepts.

A very intriguing example is the already mentioned hydrogen atom where the quantum-

mechanical states are ignorant of the classical singularity of the Coulomb potential. Let

us mention that quantum mechanics can only be considered on a static, globally hyper-

bolic space-time. In dynamical space-times there is no consistent relativistic one partic-

le description [Ashtekar and Magnon, 1975]. Probing of dynamical space-times is hence

only appropriate when performed via quantum field theory. Therefore, we first recap

the probing of timelike singularities which has been developed by Horowitz and Marolf

[Horowitz and Marolf, 1995].

Their argument is basically the same as for quantum mechanical completeness. We call

the space-time quantum-mechanically complete if the quantum probes have a unitary ti-

me evolution generated by a self-adjoint Hamilton operator. Quantum-mechanical as well

as classical completeness is basically a notion of potential completeness, i.e. the shape of

the potential decides whether the system is complete or not complete. The geometry of

a space-time can be transformed into an effective potential. Compared to flat space-time

the equation of motion is different because the differential operator � = g−1(∇,∇) de-

pends explicitly on the metric components of g which are functions of the coordinates,

and form effectively a potential. Albeit there are several ways to define completeness, e.g.

[Traschen and Brandenberger, 1990], we want to explain the so-called Horowitz-Marolf cri-

terion which is an accepted proposal.

When we start with a static space-time which admits a timelike Killing vector field

ξµ, no matter whether it is regular or singular, we can write down the wave function

(∇µ∇µ −m2)ψ = 0 with aid of the Killing parameter t

∂2ψ

∂t2
= VDi(VDiψ) − V

2m2ψ (2.15)

with V2 = −ξµξµ, and Da is the spatial covariant derivative on the spatial hypersurface

Σ. The idea of a quantum probing of singular space-times has been developed by Wald

[Wald, 1979], while [Blau et al., 2006] characterised a lot more solutions to (2.15) with

respect to their completeness. Horowitz and Marolf’s approach is based on Wald’s analysis.

We will briefly review their idea which presents the inspiration to the quantum probing

with respect to quantum field theory.
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In equation (2.15) we define the operator acting on ψ as A = −VDi(VDi) + V
2m2. The

underlying Hilbert space is the space of square integrable functions. This is an essential

feature in the construction of quantum mechanics, because it ensures the validity of a pro-

babilistic interpretation. Without this we would not be able to interpret a quantum theory

since the solutions of the Schrödinger equations are complex, hence, not observable. The

domain of A will be the smooth functions of compact support on the spatial hypersurface

D(A) = C∞0 (Σ) and A is positive and symmetric/Hermitian and its eigenvalues are real

which is to say that the deficiency indices are equal [Horowitz and Marolf, 1995] and a

self-adjoint extension AE always exists. Nevertheless, we shall mention the crucial question

is whether this extension is unique or not. In case of a unique extension, AE will be positive

definite and we can take the positive root of (2.15)

i
dψ

dt
=
√
AEψ. (2.16)

The solution can be found just by integration with respect to time

ψ(t) = exp
(
−i
√
AEt

)
ψ(0). (2.17)

Assume the extension of A is unique, then the quantum theory on the space-time is called

regular. If in contrast there are more than one extension, we face some ambiguity in our

theory which means a loss of predictability.

A self-adjoint operator generates a unique unitary time evolution and preserves the norm

of the state ψ.

Horowitz and Marolf picked a very easy example to illustrate what happens during a

quantum probing of static space-times. We recall this here in order to give an intuition for

their completeness criterion.

Consider the metric of a general static, spherically symmetric space-time in four dimen-

sions

g = −V2dt⊗ dt+ 1

V2
dr⊗ dr+ R2dΩ2 (2.18)

with V(r) and R(r) functions only of the radial component r and dΩ2 is the line element of

the solid angle. Our task is to test for the self-adjointness of the operator A. It is important

to note that the completeness criterion is the same as for quantum mechanics because we

will extract the impact of the metric and rewrite it as an effective potential for ψ. From

Theorem 3 we get that self-adjointness corresponds to having no solutions besides ψ = 0
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to the equation

(A± i)ψ = 0. (2.19)

The solution for the above equation can be found by a separation of variables and expansion

in spherical harmonics ψ = f(r)Y(ϑ,ϕ). Recall, the singularity of the metric is purely

timelike; it only depends on the radial component. The resulting radial equation is

d2f

dr2
+

1

V2R2
d(V2R2)

dr

df

dr
−

c

V2R2
f−

m2

V2
f± i f

V4
= 0. (2.20)

with arbitrary constant c ∈ C. Self-adjoint A implies at least one of the solutions to (2.20)

fails to be in L2 with respect to the correct measure, where the measure function denotes

R2V−2 near the origin. If one solution fails to be square integrable at the endpoint then we

are left with only one unique solution. Note, this has to hold for all c, either negative or

positive.

At r = 0 it turns out only one solution meets the condition to be square integrable

from which follows that the potential term −m2

V2
f acts as a barrier which prevents the

wave function from reaching the end-point at the origin in a finite amount of time. In

fact, it drives the smaller solution faster to zero while the larger solution diverges even

more at r = 0. The self-adjoint extension is unique. This example of a classically singular

and quantum-mechanically regular metric nevertheless shows that there is a tension bet-

ween both notions. Another example is a charged dilatonic black hole in four dimensions

[Gibbons et al., 1995]

S =

∫
d4x
√

−det(g)
[
R− 2 (∇φ)2 − e−2aφF2

]
. (2.21)

Here, φ is the dilaton and F the Maxwell field, a is the coupling constant of the dilaton

field. It is an example of a quantum-mechanically non-singular space-time. For a =
√
3 it

becomes Kaluza-Klein theory [Horowitz and Marolf, 1995] and it can be shown that this

theory is quantum mechanically complete because of the occurrence of an infinitely high

potential barrier [Holzhey and Wilczek, 1992].

In this situation the opposite outcome can occur, classically regular but singular with

respect to the quantum probing. The negative mass black hole [Ishibashi and Hosoya, 1999]

is a Schwarzschild solution with m < 0, the corresponding Penrose diagram can be seen

in Figure 2.3. This modification of the Schwarzschild space-time implies that the whole

configuration is static and spherically symmetric and the horizon vanishes; we have a naked

singularity at the origin (wiggly line on the left of Figure 2.3) where the curvature scalar
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Figure 2.3.: Penrose diagram of the negative mass Schwarzschild solution

diverges. However, this point cannot be reached in a finite amount of (proper) time because

the effective potential grows unbounded and general relativity predicts completeness for

the end-point.

The potential effectively generated from the geometry is V ∝ 1
r
; at the origin it diver-

ges to positive infinity and becomes infinite in height and steepness. Quantum mechanics

show [Horowitz and Myers, 1995] for this background that both solution of the Schrödin-

ger equation are locally normalisable near r = 0 which implies that we have two solutions

and the Hamilton operator fails to meet the criterion for essential self-adjointness, conse-

quently, we have lost predictability and time evolution is not unique. The Horowitz and

Marolf criterion classifies this system as quantum mechanically singular. This does of cour-

se no harm to the notion of quantum mechanical completeness, moreover it points out

that something pathologic is happening. To the best knowledge of todays physics, negative

mass is not realised in nature, whatsoever. Quantum mechanics, in contrast to general

relativity, points out that there is a serious problem with the construction by running in-

to a singularity. The interpretation would be that it is not possible to do any quantum

physics on this background consistently, another reasonable conclusion would be that the-

re is no negative mass. Additionally, when we consider metric perturbations around this

background, there will be only one initial configuration which leaves the fluctuations fi-

nite [Ishibashi and Wald, 2003]. In fact, a negative mass black hole is a highly unstable

configuration.
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The completeness criterion of Horowitz and Marolf inspired a lot of research. Konkow-

ski et al.[Konkowski and Helliwell, 2001, Konkowski et al., 2003, Konkowski et al., 1985,

Konkowski and Helliwell, 1985] investigated cosmologically relevant space-times which are

known to be quasiregular, the so-called Taub-NUT solution found by [Taub, 1951] and later

generalised by [Newman et al., 1963]. These are generalisations of the Schwarzschild me-

tric which combine a dynamical patch of space-time with a static one. Although the name

suggests regularity, the quasiregular spacetimes also admit a singularity which sometimes

is called a mild singularity [Helliwell et al., 2003]. The classification as mild suggests they

could be harmless, however, they are quantum mechanically singular. Furthermore they

extended the quantum probing by using different types of degrees of freedom, for example

Klein-Gordon, Dirac, and Maxwell fields.

Ishibashi and Hosoya [Ishibashi and Hosoya, 1999] set up quantum probings for naked

singularities which are forbidden in general relativity. The cosmic censorship hypothesis

claims that naked singularities are hidden behind a horizon. However, the big bang repres-

ents the most famous naked singularity. Most articles which were built upon the research in

[Horowitz and Marolf, 1995], show a tension between geodesical and quantum-mechanical

completeness.

Blau, Frank, and Weiss [Blau et al., 2006] specify the result to cases where a singular

space-time with timelike singularity fulfils the dominant energy condition3. If so, the space-

time is also singular in the sense of Horowitz and Marolf [Horowitz and Marolf, 1995].

The whole approach is strictly limited to static space-times with a timelike singularity.

The limitation is set by the probing theory. In dynamical space-times we observe emission

and absorption processes, hence the number of degrees os freedom is no longer a conserved

quantity. Quantum mechanical completeness will not be appropriate in a dynamical space-

time, and has to be amended by quantum field theory.

3The dominant energy condition: For every Wa, TabWaWb ≥ 0, and TabWa is a non-spacelike vector
[Hawking and Ellis, 1973]. This can be interpreted that no-one can observe a local negative energy
density and the energy flow is non-spacelike.
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The two singularities

Singularities are a widely discussed concept in various scientific disciplines. Originally they

were defined in mathematics but when adopted to physics they became the sign for the

breakdown of the chosen description. For example the Coulomb potential is fine in order

to describe the nuclear potential of an atom unless the electron is not too close to the

nucleus, that is, the structure of the nuclear constituents is negligible. General relativity

boosted the popularity of singularities a lot after the discovery of the black hole solution

to Einstein’s equation.

In this regard arises the important question whether a singularity is an artefact of the

used language of mathematics or a real object appearing in nature. We have seen in the

last chapter, it strongly depends on the chosen degree of freedom whether the system is

measured singular or not. While a geodesic observer would conclude there is a singularity,

the quantum-mechanical observer might not agree. In this chapter we will take the mathe-

matical point of view and analyse two distinct space-times with respect to its geometrical

properties.

The idea of the thesis is to understand the evolution of a quantum field in a singular

dynamical background geometry. Before we could reach this goal, we need to understand the

geometry which affects this evolution. Our analysis covers two space-times - Schwarzschild

and Kasner space-time - which are both singular in the sense of the singularity theorems.

Their singular structure coincides; both admit a spacelike singularity at one endpoint and

both space-times are globally hyperbolic. Similar singular structure means in this example

a whole hypersurface becomes singular - in case the space-time is foliated into spacelike

hypersurfaces with respect a global timelike Killing vector field. Let us now analyse the

two space-times and discuss their huge importance for physics.
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3.1. The gravitational singularity

Gravitational singularities describe all kinds of black hole space-times which are spheri-

cally symmetric solutions of the Einstein equation. The most prominent examples are the

Schwarzschild [Schwarzschild, 1916], Kerr [Kerr, 1963], Reißner-Nordström [Reissner, 1916,

Nordström, 1918] and Kerr-Newman [Newman and Janis, 1965] black holes. For an anti-de

Sitter Schwarzschild metric can the singularity be resolved in principle [Maldacena, 2003].

The Kerr-Newman is the most general form of a black hole. By appropriately choosing

charge and angular momentum this solution reduces to more special black holes. Classical

no hair theorems [Israel, 1967] characterise black holes by only three quantities: charge Q,

mass M, and angular momentum J. Whilst in the Kerr-Newman none are zero, we can

reduce to Kerr by setting Q = 0, to Reißner-Nordström with J = 0, and when both Q = 0

and J = 0 we get the Schwarzschild solution.

Schwarzschild’s intention was to solve Einstein’s equation for a spherically symmetric

configuration [Schwarzschild, 1916]. Birkhoff’s theorem [Birkhoff and Langer, 1923]

Theorem 10 (Birkhoff’s Theorem). Any C2 solution of Einstein’s empty space equati-

ons which is spherically symmetric in an open set V, is locally equivalent to part of the

maximally extended Schwarzschild solution in V.

tells us that all spherically symmetric objects admit a Schwarzschild geometry when the

observer is located far enough from the central object. In this limit the volume and the

shape are negligible and the description collapses to one of a point particle which deforms

the background to the Schwarzschild solution. As a side remark it has be shown that this

is also true for C0 and piecewise C1 solutions [Bergmann et al., 1965]. We will see what the

term maximally extended means in the remainder of this chapter.

General relativity predicts that all collapsing objects end in a Kerr phase [Penrose, 1965].

Nevertheless, let us focus on the most simple but also the most important case, the Schwarz-

schild black hole. Although Kerr black holes are more likely to occur, the Schwarzschild

black hole is sufficient for our analysis. The metric in the Schwarzschild coordinate neigh-

bourhood is

g = −

(
1−

2M

r

)
dt⊗ dt+

dr⊗ dr

1− 2M
r

+ r2d2Ω (3.1)

with d2Ω = dϑ ⊗ dϑ + sin2(ϑ)dϕ ⊗ dϕ the line-element for the solid angle. This metric

describes the solution around a pointlike object of mass M. Taking the limit of M → 0
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or r → ∞ we recover approximately the Minkowski space-time. Therefore, (3.1) is called

asymptotically flat. This can be seen by taking the Weyl tensor, its only non-zero compo-

nent is Ψ2 = −M
r3

. The metric belongs algebraically to the type D (two double principal null

directions) in Petrov’s classification [Petrov, 1954] which is best in order to describe the

geometry around massive objects. When we analyse the singular structure we will discover

two pathological points: r = 2M and r = 0. In both cases one of the metric coefficients

blow up and at least one goes to zero.

The first singular point has a remarkable property, it divides the space-time into two

separate patches. For r > 2M the space-time patch E is described as in (3.1) by a static

spherically symmetric solution. If r < 2M the g00 and the grr component both change

their sign. The time signature is then in front of the dr⊗ dr term which means t becomes

spatial while r becomes temporal. The metric in this coordinate patch B is dynamical and

has a different topology compared to E . The Penrose diagram is shown in Figure 3.1. We

Singularity   t = 0

Hor
izo

n

Universe

Black Hole

Singularity   t = 0

space

light
time

Figure 3.1.: Penrose diagram of the Schwarzschild solution

see the two different patches the outside region E described by (3.1) and the interior region

B by (3.4). Angular coordinates are suppressed as usual. Both regions are separated by a

S2 null surface, the event horizon1 located at r = 2M. The name event horizon is because

nothing which has crossed can ever reach the horizon again; it separates events. Of course

1Event horizons can only be defined when the observer is infinitely far away, the more general concept
are apparent horizons which can be defined at arbitrary distance from the black hole.
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this includes also photons, hence, we cannot see inside the black hole, therefore is it black.

Outside is a static spherically symmetric vacuum solution of Einstein’s equation, inside is a

dynamical spacetime. Both patches admit a timelike Killing vector field ∂t and are globally

hyperbolic on its own. In order to see this we can use Geroch’s theorem [Geroch, 1970]

Theorem 11. If an open set N is globally hyperbolic, then N , regarded as a manifold,

is homeomorphic to R × Σ, with Σ the three-dimensional manifold, and for each a ∈ R,

{a}× Σ is a Cauchy surface for N .

and choose a foliation along the timelike Killing vector with the spacelike hypersurfaces Σ

normal to ∂t. This foliation will become important for our quantum completeness criterion

but we will refer to this later on again. It has to be mentioned that the patches when

glued smoothly together will not stay globally hyperbolic near the horizon, because then

the Killing vector becomes a superposition of a space- and a time-like vector field ξ =

α(r)∂t + β(r)∂r; for r > 2M the function β decreases fast, which does α for r < 2M. The

naming of the coordinates is due to (3.1). We see at the horizon that the light cone flips

which accompanies the change of the Killing vector.

The true singular structure is given by a spacelike singularity, at the hypersurface r = 0

where all geodesics end without being extended. This fulfils the criterion of incompleteness

mentioned in the previous chapter. However, the components of the metric tensor are not

diffeomorphism invariant, especially not invariant under a coordinate transformation. We

need an invariant quantity in order to decide whether we have chosen an awkward coordi-

nate system or not. Therefore we consider the Kretschmann scalar which is a contraction

of the Riemann tensor R with itself

K = RµναβRµναβ =
48M2

r6
. (3.2)

For the metric (3.1) is the Kretschmann scalar ∝ r−6 which is a coordinate invariant

statement. K blows up in the limit r = 0 which in general relativity is the real, physical

singularity and it cannot be removed by a diffeomorphisms. The divergence at the Schwarz-

schild radius 2M has disappeared in K, which indicates that a new coordinate system could

be chosen without the singularity at the horizon. Such singularities are called coordinate

singularities.

There is a bunch of regular2 coordinate neighbourhoods for black holes like for example

Painlevé-Gullstrand [Painlevé, 1921, Gullstrand, 1922]. However, we have to pay a price

2Regular at the Schwarzschild coordinate r = 2M.
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for this, those type of coordinates come with off-diagonal elements in the metric tensor.

Kruskal [Kruskal, 1960] and Székeres [Szekeres, 1960] found independently a coordinate

system where the metric components have a finite value at the horizon and are given in

light-cone coordinates u and v. The black hole metric in these coordinates can be deduced

from Schwarzschild coordinates by the following transformations:

v = t+ r∗, u = t− r∗ with r∗ = r+ 2M ln
∣∣∣ r
2M

− 1
∣∣∣ . (3.3)

The space-time coordinate r∗ is called tortoise coordinate from the antique paradox of

Zeno: achilles and the tortoise. We can perform the transformation and end with the fully

extended solution of the Schwarzschild metric

g = −
32M3

r
dv⊗ dv+ 32M3

r
du⊗ du+ r2(dϑ⊗ dϑ+ sin2(ϑ)dϕ⊗ dϕ). (3.4)

Note that the coordinate r is now a function of the light-cone coordinates u and v where u

denotes the outgoing and v the ingoing null coordinates. The explicit dependence of r(u, v)

is given through the Lambert W-function which is defined by the functional equation

z =W(z) exp(W(z)) such that

r(u, v) = 2M
[
1+W

(
e
u+v
2M

−1
)]
. (3.5)

This function has two branches, here the upper one is used. It can be seen that the metric

components remain singular at the origin but stays regular around r = 2M. Obviously,

nothing pathological happens at the horizon. The same result can be seen by changing to

proper time; for the free falling particle nothing special occurs at this point whereas for an

observer, which is located infinitely far away, the infalling object slows down and becomes

more and more redshifted3. Kruskal-Székeres coordinates agree to the result in proper time

that at the horizon nothing special happens for a geodesic observer.

For the sake of completeness we just want to mention why solution (3.4) is called fully

extended (cf. figure 3.2.). In this coordinate neighbourhood, we get the two Schwarzschild

patches (Black Hole and Universe) as before and two additional ones. One is a second

outside region (parallel Universe) which is not causally connected to the other outside

region but geometrically the Universe and parallel Universe are equal. There is as well

3Nevertheless, this could also be the physical effect which describes the photons, sent by the infallen
object, spiralling outwards
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Figure 3.2.: Penrose diagram of the fully extended Schwarzschild solution.

something in the past similar to the black hole, with the directions of geodesics is reversed,

such that all point towards the anti-horizon. It is a reversed time black hole, called a white

hole [Hawking, 1976a]. The full setup are two universes sharing one white and one black

hole. There is the theoretical possibility to go from one universe to the other by a wormhole

acting as Einstein-Rosen bridge [Maldacena and Susskind, 2013].

Our aim in this thesis is to investigate the physical relevance of geometrical singularities.

Therefore we will focus from now on the interior of a black hole, where the geometrical

singularity is located. Note, the probing of the white hole could be similar to the case of

the interior metric but the singularity lies in the past.

As we mentioned above, the metric can be decomposed into an interior r ≥ 2M and an

exterior region. Inside the black hole the (outside) time component becomes spacelike and

the radial component timelike. By renaming the components t for the timelike and r for

the spacelike4 we get the following metric for the interior

g = −
dt⊗ dt∣∣1− 2M

t

∣∣ +
∣∣∣∣1−

2M

t

∣∣∣∣ dr⊗ dr+ t2d2Ω. (3.6)

The solid angle remains unchanged when entering the horizon but we want to emphasise

that in front of the angular part is now a time dependent function, instead of a radius

4From now on the coordinate referring to the time coordinate will be called t.
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dependent function like in E , hence the metric becomes anisotropic. Such a metric is of the

Kantowski-Sachs type with topology R× R× S2

g = −A(t)dt⊗ dt+ B(t)dr⊗ dr+ F(t)d2Ω. (3.7)

The functions A,B, F are distinct scale functions which can be read off in the Schwarzschild

interior to be B(t) = A(t)−1 =
∣∣1− 2M

t

∣∣ and F(t) = t2. Outside, the Schwarzschild metric

describes a sphere, while inside the space has the shape of a cylinder or a cigar. This leads to

a spherically homogeneous but anisotropic cosmological model. If space-times are spatially

homogeneous and isotropic then they belong to the Friedmann-Lemâıtre-Robertson-Walker

case.

Metric (3.6) admits a four-parameter group with three-parameter subgroup acting on

two-dimensional surfaces of constant curvature. The Kantowski-Sachs metric [Collins, 1977]

contains a spacelike singularity at t = 0 and is globally hyperbolic, foliation along a timelike

Killing vector field is possible. Under the assumption of a perfect fluid inside the black hole,

the black hole interior metric becomes conformally flat after a sophisticated coordinate

transformation [Buchdahl, 1971]. In general, the Schwarzschild solution is not isomorphic

to Minkowski. Nevertheless, the spatial hypersurfaces are conformally flat, which is tested

by the Cotton tensor, a 3-tensor defined as

Cot = ?∇
(
Ric −

RgΣ
4

)
, (3.8)

with Ric the Ricci tensor andR the Ricci scalar curvature, and gΣ the metric tensor of the

hypersurface. Necessary and sufficient for a three dimensional manifold to be conformally

flat is a vanishing Cot. In four dimensions the analogue is the Weyl tensor. Note, the

hypersurfaces in its conformally flat form do not need to be orthogonal to the timelike

Killing vector field admitted by the full metric. A rescaling of the coordinates by a time-

dependent function might be appropriate in order to see that the interior Schwarzschild

admits conformally flat hypersurfaces. For completeness reasons we stress that assuming a

perfect fluid inside the black hole, the interior transforms such that its Weyl tensor vanishes

and it becomes conformally flat [Raychaudhuri and Maiti, 1979].

For the the whole Kantowski-Sachs class we can show that Cot ≡ 0 therefore the time

slices are isometric to flat spacetime

g = −f(t)dt⊗ dt+ K(t)d3Σ (3.9)
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where d3Σ can be expressed as a three dimensional Euclidean space-time. This allows for

an expansion of the harmonic functions (corresponding to the spatial Laplace operator) in

exponential functions. By re-scaling r ′ →√
t3/(t− 2M)r we can bring the metric into the

form of (3.9) with K(t) = t2. Note that here occurs the effect that r′ depends on t which

produces a tilt of the spatial hypersurface with respect to the Killing vector.

Leaving this intermezzi behind, we come back to (3.6). The interior Schwarzschild solu-

tion has a very remarkable feature when asymptotically expanded for small times, namely,

ḡ = −
t

2M
dt⊗ dt+

2M

t
dr⊗ dr+ t2d2Ω. (3.10)

which is a so-called A-metric first developed by Ehlers and Kundt [Ehlers and Kundt, 1962].

This class of space-times is related to the Schwarzschild metric. For example the gravita-

tional potential of a point particle with mass M or a planet, etc. (Schwarzschild solution)

or the gravitational field of a tachyon (AIII-metric) is covered by this class. Generically,

they are given by

gA = −

(
ε−

2M

r

)
dt⊗ dt+

dr⊗ dr

ε− 2M
r

+ r2
dζ⊗ dζ∗

(1+ ε
2
|ζ|2)2

. (3.11)

The ζ ∈ C are coordinates on the Argand-Wessel-Gauß plane and yield the angular coordi-

nates through a specific transformation; ε is a parameter reflecting the Gaußian curvature

of the manifold.

For ε = 1 and ζ =
√
2 tan

(
ϑ
2

)
eiϕ we get the usual Schwarzschild solution which in this

context is called AI solution.

A particularly interesting A-metric comes with the parameters ε = 0 and the transfor-

mation ζ = ϑ√
2
eiϕ. Plugging this in (3.11) leads to

g0 = −
t

2M
dt⊗ dt+

2M

t
dr⊗ dr+ t2(dϑ⊗ dϑ+ ϑ2dϕ⊗ dϕ) (3.12)

which is called AIII and is very similar to the asymptotically expanded interior Schwarz-

schild solution ḡ - after we Taylor expand sin2(ϑ) we get in first order ϑ2 (small-angle

approximation) and receive an AIII metric which describes perfectly the two singularities

presented in this thesis. The following change of coordinates

r→ 3

√
3

4M
z, t→ 3

√
9M

2
τ2/3, ϑeiϕ → 3

√
2

9M
(x+ iy) (3.13)
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allows to re-state the AIII metric accordingly

g = −dτ⊗ dτ+ τ4/3(dx⊗ dx+ dy⊗ dy) + τ−2/3dz⊗ dz. (3.14)

that it becomes a type-D Kasner solution with exponents (p1, p2, p3) = (2
3
, 2
3
,− 1

3
).

From the Belinsky-Khalatnikov-Lifshitz conjecture (we will in the next subsection in-

troduce Kasner space-times more detailed) we know the important coordinate dependence

close to a spacelike singularity is due to time; its behaviour is given by Kasner metrics.

In our Kantowski-Sachs model, the universe is described via an anisotropic, homogeneous

space-time and it is shown that the time dependence can be factorised. Close to the sin-

gularity (asymptotically expansion in small time is meaningful), assuming a small angle ϑ

(which is not too restrictive since we could have restricted ourself to the equatorial pla-

ne) we find that the interior Schwarzschild metric corresponds to a Kasner type-D metric.

Kasner space-times belong to the Bianchi I type of symmetries but additionally need to

obey two conditions, the Kasner plane (
∑
pi = 1) and the Kasner sphere (

∑
p2i = 1)

simultaneously. The Kasner spacetime, therefore, is the intersection of the sphere and the

plane. With rescaling of z we can bring (3.14) into spatially conformally flat, or Bianchi I,

form with a purely time dependent conformal weight Ω(x) ≡ Ω(τ).

Those geometric properties will become important for quantum completeness. In Min-

kowski space-time is not much worry about conceptual things like the definition of a Fourier

transform since the harmonics are exponential functions. For Schwarzschild there might

appear some obstacles coming along with the more complicated topology and geometry.

However, the reduction to a Kasner type metric, which is Bianchi type-I, show that the

important information about the singularity is encoded in the time component which stays

untouched by just restricting to the Kasner type-D solution. Nevertheless, we will do the

calculation for the full Schwarzschild metric (3.4) and show consistency with the Kasner

metric (3.14), and we draw a connection between the black hole singularity and the BKL

conjecture.

Both singularities, the Kasner as well as the Schwarzschild case, lead to incompleteness

with respect to the singularity theorems, because both singularities can be reached within

a finite affine parameter. Since the gravitational singularity is governed by a Kasner-like

behaviour, it is natural to analyse this class of space-time, too.
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3.2. The generalised Kasner singularity

The second singular space-time which we investigate is the generalised Kasner metric. For

the first time this solution was proposed by Edward Kasner in 1921 [Kasner, 1921] as

an anisotropic5 vacuum solution of Einstein’s equation which means, the Ricci curvature

vanishes; Kasner space-times belong to the Bianchi class metrics which are generically

given by the following from

g = −dt⊗ dt+ gab(t)(eai dxi)(ebj dxj) (3.15)

The vierbeine are denoted by eij and the components of the spatial metric by gab(t).

Note, gab(t) is a purely time-dependent function; this is an essential feature of this space-

time class. Bianchi I metrics have numerous applications in cosmological models, they are

generally given by

g = −dt⊗ dt+
3∑
i=1

a2i (t)(dx
i ⊗ dxi). (3.16)

A special case of this class are for example the Kasner solutions [Kasner, 1921] or the

Friedmann space-time. They have been widely analysed by physicists and mathematicians.

Besides their belonging to the Bianchi I class the time dependent scale factors of Kasner

space-times obey two additional conditions we will show below. These conditions reflect

that the space-times are vacuum solutions.

Generalised Kasner space-times are described through a multiply warped product of a

base manifold B and fibres Fi with warping factor f : B → F . The warped product manifold

is [Dobarro and Ünal, 2005]

M = B ×fp1 F1 ×fp2 F2 ×fp3 F3. (3.17)

with metric tensor

g = −dt⊗ dt+
∑
i

(fpi ◦ π)gFi (3.18)

and projection onto the base space π and gFi the metric part corresponding to the fibre

Fi. The warping factor is given by the function f which is identical for all fibres and the

exponents fulfil so-called generalised Kasner conditions (which are only valid for vacuum

5In contrast, the Friedmann solution expands isotropically. But this is due to the presence of matter,
usually a cosmological constant or a dilaton degree of freedom.
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solutions) ∑
i

ζipi = 1,
∑
i

ζip
2
i = 1. (3.19)

First we see the generalisation of the Kasner-plane condition and the second is the Kasner-

sphere, the generalisation occurs through the number ζ. Note, the definition also applies

to space-times which are conformally isomorphic to Kasner space-times as long as the

characterising behaviour is still preserved. We will see that the Kasner conditions and the

form of the metric (3.17) simplifies if f(t) = t2. This will in the following be called Kasner

space-time. A Kasner metric is then given by

g = −dt⊗ dt+
3∑
i=1

t2pi(dxi ⊗ dxi), (3.20)

where the exponents pi form the Kasner plane
∑
pi = 1 and the (non-generalised) Kasner

sphere
∑
p2i = 1. However, through the Kasner conditions the three exponents become

linearly dependent and could be expressed by one single parameter λ via

p1(λ) =
−λ

1+ λ+ λ2
(3.21)

p2(λ) =
1+ λ

1+ λ+ λ2
(3.22)

p3(λ) =
λ(1+ λ)

1+ λ+ λ2
. (3.23)

Note, this does not hold for all λ, instead if λ < 1 then we have to do the identifications

p1

(
1

λ

)
= p1(λ) (3.24)

p2

(
1

λ

)
= p3(λ) (3.25)

p3

(
1

λ

)
= p2(λ). (3.26)

In the Schwarzschild analysis we have already referred to the conjecture of Belinskii, Kha-

latnikov, and Lifshitz (BKL) about the singularity of a Kasner metric; here, we want

to continue the discussion: BKL proposed that close to space-like singularities all space-

times behave as Kasner space-times because time gradients dominate over spacial gradients

[Ashtekar et al., 2011]. This behaviour seems to be rather general and we have already seen

that the black hole singularity fits exactly in the picture of the BKL conjecture. Belinskii et.
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al. observed complicated (chaotic) oscillations around the singularity [Belinskii et al., 1970]

and that in the vicinity of a spacelike singularity the variation of observables in space be-

comes irrelevant compared to the change in time.

Kasner metrics are related to gravitational chaos [Damour et al., 2001] which is also

called cosmological billiards. Consider a pool billiard game, we have to identify the size of

the table and the reflection at the walls. Pockets are by now excluded from the description,

this billiard game will focus on the bouncing behaviour. A group theory point of view relates

the billiard description to the Weyl chamber of a Kac-Moody algebra and the reflections at

the walls to the Weyl reflections. The size of the table corresponds to the size of the Weyl

chamber while the walls could be different things: in the gravitational context they are

connected to the spatial curvature but they could also come from off-diagonal components

of the spatial metric (symmetry walls) or electric and magnetic walls from p-forms.

When we approach the singularity, it turns out that Kasner space-times are not stable

under the influence of fluctuations, they evolve into other Kasner space-times with different

exponents [Damour et al., 2001]. These fluctuations bring the metric into this oscillatory,

chaotic behaviour, because one can show that at least one Kasner exponent must come

with a negative exponent. Consequently, in this direction the fluctuation gets boosted and

amplified, causing the change in the exponents. The rotation of the Kasner axes (spatial

vectors) induces a motion which is as chaotic as the motion in a billiard game.

The Kasner space-time can be found not only by field theoretic motivation, it also follows

from geometrical observations combined with the BKL conjecture. Let us recall the metric

and its special properties which can be written as

g = −dt2 + t2p1dx21 + t
2p2dx22 + t

2p3dx23 (3.27)

with the three Kasner exponents p1, p2, and p3 fulfilling the two relations:

(i) Kasner plane:
∑

i pi = 1,

(ii) Kasner sphere:
∑

i p
2
i = 1.

Our idea is to show that Kasner solutions arise naturally when the manifold has a singular

spatial hypersurface close to which time gradients dominate over spatial gradients (i.e. we

assume the BKL conjecture to hold).
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First of all we want to start with the defining equation for a general vacuum solution g to

Einstein’s equation

Ric ≡ 0. (3.28)

In order to understand this equation from geometrical reasons we have to understand the

interpretation of the Ricci tensor. Mathematically the Ricci tensor gives something like an

average over the curvature of all planes involving specific vectors which are given by the

indices of the components. The more concrete picture is the volume deviation; the Ricci

tensor is a measure of the volume change along a geodesic of a curved space-time compared

to the volume change along a flat space-time’s geodesic given by

D2

dτ2
δV −

D2
flat

dτ2
δV = −δVRic(T, T) (3.29)

with volume change δV and D2

dτ2
Fermi-Walker derivation with respect to an affine parameter

τ. The direction in which the volume moves is given by the vector T . Vacuum solutions

do not change the volume compared to the flat case because the right hand side of (3.29)

would be zero.

The goal is to find the form of the space-time which describes the curvature close to a

spacelike singularity. From differential geometry the criterion for a complete manifold is the

existence of a complete connection [Kobayashi and Nomizu, 1969]. Complete connection

means that all geodesic curves γ(λ) can always be parametrised by an affine parameter

ranging −∞ ≤ λ ≤ ∞ on this manifold. This implies the singular structure is encoded

in the connection Γ which is the Levi-Civita (or Riemannian) connection since we have

pseudo-Riemannian (or Riemannian) manifolds. Hence, we could on the level of connections

perform a gradient analysis where we neglect spatial gradients when compared to time

gradients.

The Levi-Civita connection Γ = g−1dg is given in a local normal coordinate neighbourhood

by

Γ lij =
1

2
glk
(
∂gki

∂xj
+
∂gjk

∂xi
−
∂gij

∂xk

)
. (3.30)

Note, we adopted the notation of Kobayashi and Nomizu’s book in order to ensure con-

sistency of the formulae. In particular, the latin indices here refer to the index set of the

four dimensional manifold.

One important step in the calculation of BKL is the choice of the coordinate frame. We

choose similarly to work in Gauß normal coordinates (which is in physics often called syn-
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chronous gauge). A normal coordinate system at a point x is a coordinate neighbourhood

where the ∂
∂xi

form an orthonormal frame. Parallel displacement along geodesics allows to

attach the normal coordinates to every point in a neighbourhood U of x.

By the choice of a normal coordinate neighbourhood we can re-express the metric in the

following form

g = −dt2 + hijdx
idxj, (3.31)

with the metric of the three dimensional hypersurface h. Now, we see why this coordinates

are called normal, the time direction has been rotated such that ∂t is normal to the spatial

part (no dtdxi terms). Therefore, we have a good notion of the vertical and horizontal

subspace. We actually have split the space-time such that we have a purely spacelike

submanifold S described by h which is a function of all coordinates and a notion of time

by t.

Differential geometry has a huge apparatus for treating submanifolds. One special set

of equations are the Gauß-Codazzi-Mainardi equations which are considered in order to

rewrite the Riemann tensor R(X, Y)Z on this manifold [Kobayashi and Nomizu, 1969]

R(W,Z,X, Y) =R(W,Z,X, Y) + g(α(X,Z), α(Y,W)) − g(α(Y, Z), α(X,W)) (3.32)

where we have the Riemann tensor of the hypersurface R(X, Y)Z lifted to the four dimen-

sional space-time and the second fundamental form α(X, Y) = h(X, Y)ξ, often called the

extrinsic curvature, which is the lifted metric of the submanifold S. In local coordinates:

Rijkl = Rijkl + KikKjl − KilKjk (3.33)

with extrinsic curvature Kij =
1
2
∂thij. Concerning the spatial metric h the indices only run

over the spatial components, i.e. h is a 3× 3 matrix and the 0-component is excluded, in

contrast to g.

We see in a normal coordinate neighbourhood we could split the manifold into a spatial

submanifold and the subspace normal to it. For the Riemann tensor we can do the same

and distinguish the parts contributing to the vertical and horizontal subspace.

We expect to get from the split into vertical and horizontal subspace the normal com-

ponent of the Riemann tensor R(X, Y)Z

⊥R(X, Y)Z =
(
∇̃Xα

)
(Y, Z) −

(
∇̃Yα

)
(X,Z) (3.34)
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with ∇̃Xα being the covariant derivative of α with respect to the connection in the tangent

space T(M)+T(M)⊥. The corresponding connections are ∇X for T(M) and DX for T(M)⊥.

In general

∇̃Xα(Y, Z) =DX

(∑
i

hi(Y, Z)ξi

)
−
∑
i

{hi(∇XY, Z) + hi(Y,∇XZ)}ξi. (3.35)

it is to say that the normal component is given exclusively by the second fundamental

form.

We are almost at the point where we can evaluate equation (3.28). Of course we could

contract the Riemann tensor but we want to advertise a more elegant way using the struc-

ture equation for a connection form ω and its curvature form Ω

dω(X, Y) = −
1

2
[ω(X),ω(Y)] +Ω(X, Y). (3.36)

On the bundle of orthonormal frames we can state by calling Ω now Ψ and ω by ψ the

above equation as

ΨBA = dψBA +
∑
k

ψkA ∧ψBk +
∑
r

ψrA ∧ψBr (3.37)

The indices denoted by capital letters range over the whole four manifold where k, and r

over the subspace normal to S which is in fact only the 0-component. We could use this

structure equation in order to derive the equation of Gauß and Codazzi

Ψij = Ω
i
j +
∑
r

ψirψ
r
i , (3.38)

where Ω denotes the curvature form of the orthonormal bundle of the spatial metric to

the orthonormal bundle of the full four dimensional metric. Note, for a tangent bundle of

a (pseudo-)Riemannian manifold the curvature form corresponds to the Ricci tensor when

we use the canonical form θi

Ωi
j =

1

2

∑
k,l

Rikjlθ
k ∧ θl. (3.39)

From this analysis we see that in a normal coordinate neighbourhood we get two contribu-

tions to the four dimensional Ricci tensor, one coming from a lift of the three dimensional

curvature form and the second from the squared connection form. Expressing these quanti-
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ties by the second fundamental form and the extrinsic curvature we get for the components

of the Ricci tensor the three relations:

(Ric)00 = −
∂

∂t
Kkk − K

l
kK

k
l , (3.40)

(Ric)0i =
∂

∂xk
Kki −

∂

∂xi
Kkk, (3.41)

(Ric)ji = −(3) (Ric)ji −
1√
det(h)

∂

∂t

(√
det(h)Kji

)
. (3.42)

All three equations have to fulfil (3.28). When we have a look at the 00-component we can

identify the two different contributions, one comes from the lifted curvature form on the

spatial submanifold and the second from the squared connection forms. Choosing a normal

coordinate neighbourhood will be already generating a system of differential equations

which have Kasner space-times as solutions. Until now we did not made any assumptions

concerning the gradients.

Since we are interested in the behaviour close to a singular hypersurface, time has come

to assume that spatial gradients are irrelevant when compared to time gradients. Next,

we will perform the gradient expansion explicitly starting from the connections. In normal

coordinates (i.e. g00 = −1, g0i = 0 and gij = hij) after exploiting that ∂xh� ∂th we have

only two types of non-vanishing Christoffel symbols

Γ tij =
1

2

∂hij

∂t
(3.43)

Γ jit =
1

2
gjk
∂hik

∂t
. (3.44)

These Christoffel symbols allow to calculate the Ricci tensor with the general formula

(Ric)ij =
∂Γ lij
∂xl

−
∂Γ lil
∂xj

+ Γmij Γ
l
lm − Γmil Γ

l
jm. (3.45)

Here, it becomes clear why an imposition of the condition ∂xh � ∂th is much less work

when it is imposed on the level of the connection. By the way if the gradient expansion

had been performed in the Ricci tensor we would have gotten the same result. With the

Christoffel symbols we have already derived above we deduce the following three equations
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for the different types of components of the Ricci tensor

(Ric)00 = −
1

2

∂

∂t

(
hik
∂hki

∂t

)
−
1

4
hlk
∂hki

∂t
him

∂hml

∂t
, (3.46)

(Ric)0i =
1

2

∂

∂xl

(
hlk
∂hki

∂t

)
−
1

2

∂

∂xi

(
hjk
∂hkj

∂t

)
, (3.47)

(Ric)ij =
1

2

∂2hij

∂t2
−
1

4

∂hki

∂t
hkm

∂hmj

∂t
. (3.48)

The 00 and the 0i-component are easily comparable to the form derived above by the

structure equation, the third will be a bit more involved. Nevertheless, what is immediately

visible is that the 00- and the 0i- components are similar to the equations above.

Now comes the point where we need that every real symmetric matrix is diagonalisable.

Let us, hence use this fact and consider a diagonal metric. It is easy to see that the 0i-

components then trivially obey (3.28). The 00-component reduces drastically to

(Ric)00 = −
1

2

[
∂

∂t

(
hii
∂hii

∂t

)
+
1

2

(
hii
∂hii

∂t

)2]
= 0. (3.49)

Since (Ric)0i is trivially zero we can find a solution to (3.49) by taking a polynomial ansatz

for h

h = tk1dx21 + t
k2dx22 + t

k3dx23. (3.50)

This is justified since no spatial derivatives occur and we get a system of coupled differential

equation for the three metric components only consisting of time derivatives. Using (3.50)

and plugging it into (3.49) we get from the part coming from the lifted Ricci tensor

Ω→ k1 + k2 + k3
2t2

(3.51)

and similarly from the squared connection form

ω∧ω→ −
k21 + k

2
2 + k

2
3

4t2
. (3.52)

When we now take into account (3.49) and additionally propose the following identification

ki = 2pi then we see immediately that we get the defining conditions for Kasner space-times
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which have to be fulfilled simultaneously

(Ric)00 = −
1

2t2

[
p1 + p2 + p3 − (p21 + p

2
2 + p

2
3)
]
= 0. (3.53)

From the lifted curvature form Ω we obtain the Kasner plane

Ω : p1 + p2 + p3 = 1 (3.54)

and from the squared connection forms ω we get the Kasner sphere

ω2 : p21 + p
2
2 + p

2
3 = 1. (3.55)

Only if those relations are fulfilled together then this metric describes the behaviour close

to a spacelike singularity properly. This behaviour we found also close to the singularity of

the Schwarzschild black hole (cf. (3.13)) which supports the BKL conjecture.

Bianchi’s classification scheme for example the Bianchi I space-time, which characteri-

ses three surfaces upon their symmetries [Bianchi, 1898] also covers Kasner space-time. In

general it has been developed in order to classify three dimensional Lie algebras and distin-

guishes eleven classes. In cosmology this scheme is used for homogeneous four dimensional

space-times with the trivial foliation.

Although not covered by the Bianchi classification the Schwarzschild space-time is related

to the conjecture of BKL because asymptotically it resembles a Kasner type-D metric. This

underlines the generality of the conjecture and shows their importance for physics.
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The return of regularity

In the previous chapter we put a lot of effort in understanding the geometry of the back-

ground in terms of general relativity. Both space-times, Schwarzschild and Kasner, ad-

mit a spacelike singularity such that for t = 0 the spatial hypersurface becomes dege-

nerate. We are almost ready to start with the quantum probing of these space-times.

Probing with quantum mechanics cannot be afforded since there is no consistent relati-

vistic one-particle description on a dynamical space-time. The reason is that the theory

will run into inconsistencies unless one of the principles of quantum mechanics is viola-

ted [Feynman et al., 2005]. An intuitive reason is that a dynamical background breaches

against the conservation of particle number [DeWitt, 1975].

Only quantum field theory in curved spaces provide an adequate description; instead of

a one particle description we use quantum fields and work in a Fock space rather than in

Hilbert space.

Chapter 3 showed that singularities occur at a specific time, therefore, as opposed to

an asymptotic framework pertinent to a scattering description, the functional Schrödinger

approach allows us to analyse unitarity violations occurring during a finite amount of time,

and, in particular, during the time interval (0, t0]. The other advantage is that we could set

up our criterion in the style of quantum-mechanical completeness because the Schrödinger

representation could be seen as a functional generalisation of quantum mechanics.

In this chapter we start with a very brief excursus into the techniques of functional

calculus (only what is needed to understand the calculations performed in this thesis).

Afterwards, we introduce the Schrödinger representation of quantum field theory on flat

and on curved backgrounds and explain explicitly the construction of the states and their

interpretation. As a first example and as a consistency check we show that Minkowski
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space-time is complete, then we state our criterion for curved space-times.

Both the Kasner and the Schwarzschild manifold are incomplete under application of the

Hawking and Penrose criterion (cf. Theorem 9). For dynamical space-times the Horowitz

and Marolf’s analysis (self-adjointness of the Hamilton operator) is not applicable, because

Stone’s theorem is not valid for time-dependent Hamilton operators. Therefore, those space-

times were filed as incomplete. Nevertheless we present in this thesis that these backgrounds

are complete when probed with quantum fields.

4.1. The Schrödinger representation of quantum field

theory

Quantum field theory is usually represented as an S-matrix theory. In this picture, we look

at initially prepared states which have to be free at past infinity [Reed and Simon, 1979].

Then we evolve the state, scatter, and look at the outgoing products at future infinity where

they are free again. This Heisenberg picture is very powerful for calculating scattering

amplitudes but due to the construction of the scattering operator, the S-matrix, there is

no possibility to do a time resolution for the scattering process.

A remedy is provided by the Schrödinger representation which allow for a time-resolution

and which will be used throughout the thesis. The idea is that dynamical quantities are

expressed in canonical variables at a fixed time and the quantisation is imposed by a

commutation relation.

Similar to quantum mechanics, Heisenberg and Schrödinger formulation are equivalent

but we have to emphasise that the Stone-von Neumann theorem will not work in this regard

because the configuration space is infinitely dimensional and a unitary mapping between

the two representations can not be assumed.

In the Schrödinger representation the completeness analysis appears to be very analogous

to Horowitz and Marolf’s analysis. We will find a criterion for the (functional) Hamilton

operator to fulfil in order to have a complete set-up. Before we are turning our atten-

tion to physics we recap a few mathematical tools, such as the functional calculus. The

preliminaries will be based on the introduction of the book [Hatfield, 1992]
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4.1.1. Functional calculus

In this subsection explain the technical and mathematical preliminaries concerning calcu-

lations in function space. A function space1 is an infinitely dimensional space where the

points are functions of space-time points. In other words, each point is a mapping of space-

time points into real or complex numbers. Those functions can be scalar functions, vectors,

tensors in general, or spinors.

If a point in function space is mapped to a number, this is called a functional. In ma-

thematical terms it is a mapping F which takes elements of a vector space V into a field

e.g. K ∈ {R,C}, in short F : V → K. This can be illustrated by figure 4.1.

space-time

f
f(x)

F[f]

function space

F

Figure 4.1.: Relation between functions f(x) and functionals F[f].

In figure 4.1 we see a comparison between a normal function and a functional. A function

f(x) maps a point in the space-time to a number in some field K. In the figure, the field K
is depicted by the two axis, the mapped point is called f(x). This kind of map could have

1For most of these spaces existence is not clearly proven but recent developments have been made (cf.
[Amour et al., 2015]).
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been a diffeomorphism for example. A functional F turns a function f into a number in K;

we see that there are similarities between both objects.

We can formulate rules for functional integration and differentiation which are compa-

rable to the calculus of functions. In the following we will evaluate the most important

features of the functional calculus which we will need in order to understand and per-

form calculations in the Schrödinger representation. First of all, we define the functional

derivative in analogy to the total derivative as a limit of a difference quotient. Consider

a functional F[a] with function a(x). Moving in function space implies a change of the

function which is done by a Dirac δ-distribution. The functional derivative is defined as

follows:

δF[a]

δa
= lim

ε→0
F[a+ εδ] − F[a]

ε
. (4.1)

One can of course define a functional derivative which is directional to another function.

In our case it is directional to the δ-distribution. From this we directly get

δa(y)

δa(x)
= δ(x− y). (4.2)

Similarly, a directional functional derivative along a function f gives f(x − y) as result.

With the above figure 4.1 we see why we have to use a function in the definition of the

derivative: in functional space functions play the role of a local bookkeeping device (similar

to x for functions). Consider the usual difference quotient of functions, here, we move a

tiny instant further in the coordinate, shrink this to zero, and receive the first derivative.

A functional derivative is motivated from this picture, because we move a tiny instant

further as well. Since we are in function space, we must do this shift by a function or a

distribution.

If we take an action we could derive the equation of motion by applying the functional

derivative. Hence, we can formulate functional differential equations. The solution techni-

ques are less powerful - or less developed - than for partial differential equations but a few

methods can be borrowed.

It is possible to define an integral of functionals over function space. In general the

measure is not well defined, such as the Feynman measure while the Wiener measure is well-

defined [Simon, 1979]. Note the latter is the Euclidean and finite dimensional version of the

Feynman measure mostly used in probability theory when describing random walks (also

called Wiener process). Nevertheless, the problems arising from the infinite dimensionality
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in the Feynman integral are cured by imposing a cut-off scale in the function space.

Nevertheless, let us come up with a natural way to define an integration. One problem is

that to present knowledge there are only a few integrable situations, one example is the

Dirac measure, ∫
Daδ[a− ξ] = 1. (4.3)

This Dirac measure is very similar to the one in Lebesgue or Riemann integration, however,

here the distribution is a functional. Integration over all paths is denoted by

Da =
⊗

x

da(x). (4.4)

This gives us an idea how to write down the functional delta distribution which is consistent

with the measure

δ[a− ξ] =
∏
x

δ(a(x) − ξ(x)). (4.5)

A functional integral is an infinite product of independent integrals. It can also be motivated

by starting with discrete objects and going to a continuum limit [Kleinert, 2009].

The second integrable function is the Gauß wave-functional which is of huge importance

for physics ∫
Dae

∫
dxa2(x). (4.6)

Note, that such a functional is also called a Wiener measure [Simon, 1979] if the function

space is finite and Euclidean. Similar to the δ-functional the Gaussian can be factorised

into separate integrations over usual Gaussian integrals∫
Dae

∫
dxa2(x) =

∏
x

∫
da(x)e−a

2(x) =
∏
x

√
π. (4.7)

If there were a function f(x) in the exponent, i.e. exp(
∫
dxf(x)a2(x)) the result would be a

quotient of π and the functional determinant Det of f(x) as long as it can be interpreted

as infinite-dimensional diagonal matrix f(x) = f(y)δ(x− y).

∫
Da exp

(
−

∫
dxdya(x)k(x, y)a(y)

)
= lim

d→∞
√
π
d

√
Det(k)

. (4.8)



50 4. The return of regularity

In order to be mathematically as exact as possible we put the limit over the infinite

dimensions of the Fock space in the above equation, and formally give the result coming

from the finite dimensional case.

One side remark on fermionic variables, the Fock space structure is much less complicated

than in the bosonic case because there we have to introduce anti-commuting numbers, i.e.

Graßmann variables which square to zero, and our fields are described by spinors. Anyone

who is interested in this topic can have a look into [Hatfield, 1992]. This thesis will restrict

only to bosonic variables which are commuting and lying in the symmetric Fock space.

Since we have all relevant tools at hand, we start with the explanation of the Schrödinger

representation of quantum field theory.

4.1.2. Flat space-time formulation

Flat space-time serves usually as the background where our intuition works best, we will

exploit this here as well and choose Minkowski space-time to be our starting point where

we introduce all relevant features of the Schrödinger representation without having the

subtleties from curved space-time. Minkowski space is blessed with Poincaré invariance

of the vacuum state, therefore the vacuum is unique; this is also one G̊arding-Wightman

axiom [Simon, 2015d].

We present a basic introduction which is based on [Hatfield, 1992]. The main description

of the Schrödinger representation is very similar to the Hamilton formulation in classical

physics: Dynamical quantities are expressed in terms of canonical variables at fixed time.

In other words, all tensors, especially the degrees of freedom, are pulled-back to the spatial

hypersurface. The elements of the Fock space are the field operators, or more explicitly,

the physical degrees of freedom which are expressed as the classical eigenvalues of the

corresponding operator.

For a better understanding we will discuss the basic issues for scalar field theory in

Schrödinger representation and discuss afterwards the implications for fermions and for

spin-1 Maxwell fields.

Scalar fields

The theory of a free real scalar field Φ(x) with mass m is described by the following action

S[Φ] = −
1

2

∫
d4x

(
∂µΦ∂

µΦ+m2Φ2
)
. (4.9)
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In the Schrödinger representation of quantum field theory we are working with the Hamilton

operator which is given through a Legendre transformation of the Lagrangian

H[π,Φ] = L∗ = π∂0Φ− L (4.10)

with L∗ being the convex conjugate to L. The momentum π is the conjugate variable to the

degree of freedom Φ. Note, both π and Φ are now time-independent. In principle we could

work with the one-particle description of quantum mechanics, however in order to introduce

the formalism we will stick to this cumbersomely appearing method. In general space-

times we would start with an ADM split [Arnowitt et al., 1960]; or similarly we could use

Gauß-Codazzi (e.g. [Kobayashi and Nomizu, 1969]); another possibility to combine general

relativity and quantum field theory would be to express the Hamilton operator like in the

Wheeler-deWitt [DeWitt, 1967] formalism2.

Our task is to write down a functional Schrödinger equation for a scalar field on Min-

kowski space-time. Therefore, we need some ingredients: the functional state, the Hamilton

operator, and the quantisation prescription. The momentum conjugate to Φ is

π(x) =
∂L

∂(∂0Φ)
= ∂0Φ(x). (4.11)

Note, π is likewise real. With the conjugate variable to Φ we construct the Hamilton

operator in terms of the field and its conjugate momentum

H[π,Φ] =
1

2

∫
d3x : π2 : + : |∂Φ|2 : +m2 : Φ2 : (4.12)

Here, ∂ denotes the purely spatial derivatives and the double dot the normal ordering. The

operators π and Φ fulfil a canonical equal-time commutation relation

[Φ(x), π(y)]|t = iδ(x− y). (4.13)

Commutation of Φ and π with itself are zero. Let us now have a deeper look at the

underlying Fock space. The construction of the Fock space is very important because it

can make calculations simple. We choose to span the Fock space by the Φ fields such that

Φ(x) is diagonal. In other words we work in the basis of eigenstates of Φ(x) which we call

2However, we have to be careful since for example in the de Sitter space we must take care of the Higuchi
bound [Higuchi, 1987] when assuming a massive field.
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|φ〉 such that

Φ(x)|φ〉 = φ(x)|φ〉 (4.14)

and the eigenvalues φ(x) represent the classical fields. In this basis Φ(x) acts as multipli-

cative operator and with (4.13) the conjugate momentum as functional derivative

π(x) = −i
δ

δφ(x)
(4.15)

on Ψ[φ] = 〈φ|Ψ〉 due the definition of the functional derivative (4.2). The differential

expression of π(x) turns the Hamilton operator into the form of a functionally generalised

Schrödinger operator

H

[
δ

δφ(x)
, Φ

]
=
1

2

∫
d3x

(
−

δ2

δφ(x)2
+ |∂Φ|2 +m2Φ2

)
. (4.16)

Note, that we have two parts of H, one containing derivative operators and the other one

multiplication operators. They do not mix unless the metric has non-diagonal components.

We want to mention that all Hamilton operators are normal ordered. With (4.16) we can

formulate the Schrödinger equation

i
∂Ψ

∂t
[φ] = H

[
δ

δφ(x)
, Φ

]
Ψ[φ] =

1

2

∫
d3x

(
−

δ2Ψ

δφ(x)2
[φ] + |∂Φ|2Ψ[φ] +m2Φ2Ψ[φ]

)
.

(4.17)

Since in our example the Hamilton operator as well as the wave-functional have no time

dependence, (4.17) reduces to an eigenvalue problem, the time-independent Schrödinger

equation

H[Φ]Ψ[φ] = EΨ[φ] (4.18)

with energy eigenvalue E. This ansatz implies the applicability of a generalised version

Stone’s theorem, which subsequently implies that a unitary time evolution operator can

be factorised out of the wave functional

Ψ[φ](t) = U(t, t0)Ψ[φ](t0). (4.19)

Note, we could always define a time-evolution operator, which is given by formally inte-

grating (4.17)

Ψ[φ](t) = exp

(
−i

∫ t
t0

dτH[Φ](t)

)
Ψ[φ](t0), (4.20)
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however, time-independent and self-adjoint Hamilton operators allow for a unitary time-

evolution in (4.19). We solve (4.18) for the ground state wave functional. Further, we

assume, the ground state functional has no nodes and is positive [Hatfield, 1992]. Our

ansatz

Ψ0[φ] = N0 exp

(
−

∫∫
d3xd3yφ(x)K(x, y)φ(y)

)
(4.21)

is a Gaussian wave packet with integral kernel K(x, y). Let us introduce a more compact

notation for the functional which will be used in the later parts of the thesis: K2[φ,φ] =∫∫
d3xd3yφ(x)K(x, y)φ(y). We add here that in time-dependent cases, K2[φ,φ](t) is a

function of time, so is K(t, x, y) as well as the measure function of the integral. This ansatz

is legitimate because power counting in the action suggests that the exponent should be

at least quadratic in the fields φ(x). Moreover, the two functional derivatives applied on

Ψ0[φ] yield one field independent term which is matched with the right hand side of (4.18):

the constant E is identified with E0 the ground state energy eigenvalue.

The Schrödinger formulation of quantum field theory allows in principle for a third

quantisation because we can find a quantisation relation for the wave-functional itself.

Whether this turns out to be useful or not has to be tested. A first attempt has been made

by Giddings and Strominger [Giddings and Strominger, 1989].

Plugging (4.21) into the Schrödinger equation (4.18) yields two relations for the kernel

K(x, y) (a field independent and a field dependent equation)∫
d3xK(x, x) = E0, (4.22)∫∫∫

d3xd3yd3zφ(x)K(x, z)K(z, y)φ(y) =
1

4

∫
d3xφ(x)(∆−m2)φ(x). (4.23)

The second equation can be reformulated into another condition∫
d3xK(x, z)K(z, y) =

1

4

∫
d3x(∆−m2)δ(y− z). (4.24)

Both sides only depend on the spatial difference y− z. The whole kernel is translationally

invariant with consequence that the left hand side is a convolution of two kernels. With the

convolution formula (A.4) applied after Fourier transformation (4.24) reduces to a simple

algebraic equation

K̂2(k) = −
1

4
(k2 +m2). (4.25)

The Fourier transform of the Laplacian gives the dispersion relation for the field Φ(x)
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which is used to construct the explicit form of the kernel:

K(x, y) =
1

2

∫
d3k
√
k2 +m2ei2πk(x−y). (4.26)

It seems from the above equation that the kernel and the propagator are closely rela-

ted: each obey Huygens’s principle. The ground state energy can easily determined once

knowing K(x, x)

E0 =
1

2

∫
d3x

∫
d3k
√
k2 +m2ei2πk(x−x) =

1

2

∫
d3k
√
k2 +m2δ3(0). (4.27)

We get a divergence due to the sum over infinite zero point energies of all oscillators which

can be renormalised and should do no harm to the theory [Hatfield, 1992], since it agrees

with the result in the operator representation. The states are normalised via the Fock space

integral

1 = 〈0|0〉 =
∫
Dφ〈0|φ〉〈φ|0〉 =

∫
DφΨ∗0[φ]Ψ0[φ]. (4.28)

The probabilistic interpretation of quantum field theory allows to set the norm of the

wave-functional to one. Therefore, we end up with

|N0|
2 =

[∫
Dφ exp

(
−2

∫∫
d3xd3yφ(x)K(x, y)φ(y)

)]−1
=

√
Det

(√
∆+m2

)

√
π
∞ . (4.29)

Note, that π is here the irrational number and not the conjugate momentum. We see (4.29)

is the infinite product of ground state harmonic oscillators. Therefore, we get infinity in

the normalisation which we cancel by de L’Hôpitale’s rule3. The wave-functional can be

written as

Ψ0[φ̂] =
∏
k

(√
−k2 +m2

π

) 1
4

exp

(
−
1

2

1

(2π)3

√
−k2 +m2φ̂2(k)

)
(4.30)

such that we can see its structure as infinite copies of one-dimensional harmonic oscillators.

We used that the harmonic functions of the Laplace operator are exponential functions.

Now, we saw how to calculate the ground state in the Schrödinger picture which is a

3This rule was actually invented by Johann Bernoulli. He had sent de l’Hôpital his verbatim copies which
he included in his textbook about calculus. The well known de l’Hôpital rule should actually be named
Bernoulli’s rule.
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wave-functional describing field configurations of φ.

Excited states

When we think of quantum mechnanics we know that there are more states than just

the ground state; we can have infinitely many excitations of Ψ0. How do they look in the

Schrödinger picture? The answer is given through the definition of creation and annihilation

operators. Their functional versions can be interpreted as including a field into the Fock

space, or destroying a field in the Fock space, with some momentum, say k1 which obeys

the dispersion relation and consequently the on-shell condition. The physical reason is

that they are produced by the space-time dynamics and, hence, they must be harmonic

functions of the d’Alembert operator of the background.

Construction of arbitrary excitations can be realised when we define the creation and

annihilation operators. First, we start with

a−[f]Ψ(0)[φ] = 0 (4.31)

that is the functional annihilation operator a−[f] containing the on-shell fields f(t, x).

How does the creation operator (a−[f])∗ acts? Similar to a quantum mechanical creation

operator! On-shell fields f(t, x) are included into the field configuration space by (a−[f])∗

acting on the state Ψ. Their representation depends on the specific system. For a free scalar

field theory in Minkowski space they are given by

a−[f] =

∫
d3xe−ikx

(√
−k2 +m2f∗(x) +

δ

δφ(x)

)
, (4.32)

(a−[f])∗ =

∫
d3xeikx

(√
−k2 +m2f(x) −

δ

δφ(x)

)
. (4.33)

Multiple application of the creation operator produces higher and higher excitations with

respect to the ground state Ψ(0)[φ]. The wave part G(0)[φ] will not change, but the nor-

malisation N(0) will. Note that in this picture excitations correspond to a functional
”
re-

normalisation“4 with respect to the on-shell fields, i.e the normalisation will be f dependent

N(0)[f]. Excitations will be discussed in more detail in the later sections where we specify

the background geometry; we explicitly construct a representation of the operators and

apply them to the ground state.

4The quotation marks shall symbolise that we do not refer to the physical process of renormalisation.
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Interacting theory

In the last two sections we have only considered free field theory. The most physically inte-

resting systems contain interaction terms. The question is what changes when we include

a polynomial self-interaction term in the action functional. In the functional Schrödinger

representation we do not use a reduction formalism nor a Green’s function. Interacting

theories are best investigated perturbatively (the coupling is weak by construction) sin-

ce unfortunately, the full equation is not soluble by current knowledge. Like in quantum

mechanics we use Rayleigh-Schrödinger perturbation theory but a functionally generalised

version which is presented in [Hatfield, 1992].

Consider as example a four-vertex interacting theory of a scalar field Φ(x) (we will

evaluate the example close to the treatment of Hatfield)

S = −
1

2

∫
d4x

(
∂µΦ∂

µΦ+m2Φ2 +
λ

4!
Φ4(x)

)
. (4.34)

The coupling strength λ is chosen such that perturbation theory is applicable, that is

λ < 1. Let us be extreme and extreme smart and prepare the system such that λ � 1.

The mass term gives the renormalised mass m and therefore the interaction Hamiltonian

is given by Hint =
∫
d3x λ

4!
: Φ4(x) :. The equal time commutation relation as well as the

field momentum are not affected and are the same as in the free field theory.

Let ΨN[φ] be the eigenfunctional of the Hamilton operator with energy eigenvalue EN,

obeying the time-independent Schrödinger equation

H[φ]ΨN[φ] = ENΨN[φ]. (4.35)

The energy eigenvalues EN correspond to the Nth iteration of the perturbation theory, that

is, the Nth correction to the energy eigenvalue.

We can decompose the Hamilton operator in its free and its interaction part with para-

meter χ which can acquire values from zero to one, such that we can control the strength

of the interaction term,

H[φ] = H0[φ] + χHint[φ]. (4.36)

For the Rayleigh-Schrödinger perturbation theory we assume the interaction strength to

be much smaller than one which allows us to expand, analogous to quantum mechanics,

both the wave functional and the energy eigenvalue as a power series in χ around the Nth
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free state and the free Nth energy eigenvalue,

ΨN[φ] =

∞∑
k=0

χkΨ
(k)
N [φ] (4.37)

EN =

∞∑
k=0

χkE
(k)
N (4.38)

and plug this into the Schrödinger equation (4.35). Equating both sides of this eigenequa-

tion order by order in χ, and taking the inner product with Ψ
(0)
N [φ], we obtain,

Ψ
(1)
N [φ] =

∑
M 6=N

〈Ψ(0)
M [φ]|Hint|Ψ

(0)
N [φ]〉

E
(0)
N − E

(0)
M

Ψ
(0)
M [φ]. (4.39)

Similarly, we get the energy eigenvalues. Here, we present the first two corrections to the

Nth free state energy

E
(1)
N = 〈Ψ(0)

N [φ]|Hint|Ψ
(0)
N [φ]〉, E

(2)
N =

∑
M 6=N

〈Ψ(0)
M [φ]|Hint|Ψ

(0)
N [φ]〉

E
(0)
N − E

(0)
M

. (4.40)

To get the first order of perturbation with respect to the previously derived ground state

energy means we have to derive E
(1)
0 . The interaction Hamilton operator is a polynomial

in the field coordinates φ(~x). We conclude from this that all expectation values will be

functional integrals that are moments of the Gauß function
(
Ψ

(0)
0 [φ]

)∗
Ψ

(0)
0 [φ].5

Spinor fields

The Schrödinger representation applies to other spin particles as well. Nevertheless, we will

see that we have to cope with some problems which we will see in the following subsections.

For fermionic fields we have the Dirac Hamiltonian

H =

∫
d3xΨ†(x)(−iγµ∇µ +m)Ψ(x). (4.41)

with γ matrices from the Clifford algebra. Note, the explicit form of the spinors depends on

their representation. Instead of commutation relations the fields Ψ and Ψ† obey equal-time

5The calculation can be simplified by construction of a generating functional. This is achieved with
addition of a source term. The interested reader is referred to [Hatfield, 1992].
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anti-commutation relations

{Ψa(x), Ψ
†
b(y)} = δabδ

(3)(x− y). (4.42)

We call the spinor indices a and b. In the same fashion as for the scalar field we choose

the eigenbasis similar and identify Ψ† with the functional derivative δ
δψ(x)

. The ψ(x) are

spinors of anti-commuting variables of Graßmann functions and it follows ψ2(x) = 0. The

phase space of the spinor theory is pretty much simpler than the bosonic phase space, due

to the Grassmann property.

We see that in general the construction goes very similar no matter what field content we

impose. In the end we receive a wave-functional obeying the Schrödinger equation. This

makes it possible to use the formulation for all types of spin. For a detailed treatment of

fermionic fields we refer to [Jackiw, 1990].

Photon field

In Maxwell theory, the photon field Aµ(x) propagates two degrees of freedom although the

tensor has four components. Therefore, we usually choose a gauge, which reduces the theory

to the physically relevant degrees of freedom. This is crucial also in the Schrödinger because

we need to perform the quantisation prescription in the physical degrees of freedom. For

electrodynamics we have three convenient gauges: Coulomb (∂iAi = 0), Lorentz (∂µAµ =

0), and temporal gauge (A0 = 0). After we fix the gauge and extract the physical degrees

of freedom, we get a Hamilton operator of the form

H =
1

2

∫
d3x(E2 + B2) (4.43)

where the physical degrees of freedom are given by E the electric and B the magnetic

field. Without going into details we just state here, that the commutation relations result

in an identification of the electric field with the functional derivative [Hatfield, 1992]. In

other words, one degree of freedom will correspond to a functional derivative. The spin

causes some complications both on a conceptional and on the technical level. The reason is

that the wave-functional which satisfies the corresponding Schrödinger equation must also

satisfy a functional version of Gauß’s law (∇E = 0) which is here nothing but an additional

constraint

∇ δ

δa(x)
Ψ[a] = 0 (4.44)
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with three-vector degree of freedom a(x). The cumbersome fact is to keep in mind the gauge

freedom and its implications. For those who intend to use the Schrödinger formulation for

spin-1 particles can find an introduction in [Hatfield, 1992]. We close this short remarks

on other spin fields and come to the purpose of this thesis, the quantum field probing of

singular space-times.

Note, it has been shown [Stewart and Háj́ıček, 1973] that spin can not prevent from

hitting the singularity. Therefore, a scalar field quantum probing seems enough for our

purpose.

4.1.3. Curved space-time formulation

Quantum field theory in curved space-times has several subtleties which are not present

in Minkowski space. For example in the Heisenberg picture it is complicated to formulate

a scattering operator. The states at infinite past and infinite future do not necessarily lie

in the same Hilbert space, Hin 6= Hout, i.e. a global vacuum can not be uniquely defined

for in- and out states. This makes it cumbersome to calculate a scattering process because

one is obliged to perform a Bogolubov transformation [Birrell and Davies, 1984] defined in

[Reed and Simon, 1975] because Poincaré invariance will not hold in curved spaces. The

Heisenberg formulation can be visualised like in figure 4.2: We start with a state in Hin

which is free and obeys an on-shell relation. (Ω−)∗ evolve this state in time to the point

where the scattering occurs, say in H0, now the state is not free. From the scattering point

(the explosion in figure 4.2) the state evolves further to the infinite future which is descri-

bed by Ω+ where we end with a state in Hout. The combination of both Ω is called the

Jauch scattering matrix, or S-matrix, S = Ω+(Ω−)∗. If both Hilbert spaces are the same

one speaks about asymptotic completeness [Reed and Simon, 1979], to emphasise again,

curved space-times are in general not asymptotically complete.

The Schrödinger representation circumvents this problem because it does not use the scat-

tering operator S. In this description the fields in the functional are not specified further,

they could be on-shell fields, but they do not need to. We could see them more or less

as local bookkeeping devices. Those can be all types of fields obeying the assumed spin

statistics. A scalar field Φ(x) in the wave functional describes field configurations of scalar

fields in the symmetric Fock space; their evolution is described by the functional Schrödin-

ger equation which for static space-times reduces to the time-independent Schrödinger

equation like we showed for Minkowski space-time.

However, we are interested to probe how a space-time singularity affects quantum field
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Figure 4.2.: Schematical illustration of the scattering operator from two to n particles.

theory. In other words, only geometrically singular space-times are relevant for our analysis.

The Minkowski background is of course interesting since our concepts and formalism should

be consistent on flat space-time as well. Static space-times allow for the application of

the Horowitz-Marolf criterion, however, we could solve the time-independent functional

Schrödinger equation as well, but this would turn out to be an overkill.

Our task is to investigate the time-evolution of the wave-functional Ψ[φ](t) describing

field configurations of scalar fields on a dynamical curved background. Because of the

explicit time-dependence of Ψ[φ](t), the Schrödinger representation is favoured because

this formalism allows for an explicit time-resolution.

Note, that throughout the analysis we will ignore backreaction of the probing fields with

the background geometry. The reason is that we intend to probe the considered space-time

with respect to quantum completeness (we will define this term later on). If backreaction

became important the previously given background geometry would be deformed and the

quantum probing of the initial set-up would become obsolete. To this extent, we were not

more restrictive than Hawking and Penrose in their formulation of the singularity theorems.
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Essentially, we follow the same steps as in flat space-time, starting with the construction

of the Hamilton operator, we define the explicit form of the wave functional and its nor-

malisation. However, it is at present knowledge not designed for generic backgrounds. The

space-time has to fulfil mild conditions like being connected and differentiable but these

conditions are not exclusive for the Schrödinger representation. We assume additionally

that the space-time is globally hyperbolic, which is, at least, not too restrictive. Due to

Geroch’s theorem a globally hyperbolic space-time foliates into R× Σ. The spatial hyper-

surfaces are denoted by Σ and are foliated along the time direction with t ∈ R. Usually,

one foliates the space-time along the time-like Killing vector field, if possible. This is called

the (1+3)-split or ADM-split6.

We start foliating the space-time (M, g) by Cauchy hypersurfaces Σt with normal n

defined through g(n,n) = −1, the vector xµ gives the coordinates and the time will be

chosen along the Killing vector. Let T ∈ V(M) a vector in the vectorspace with ∇Tt = 1,
that is, T = (∂tX)(t, x). A basic statement in differential geometry is that the manifold

can be decomposed into a horizontal and an vertical space [Kobayashi and Nomizu, 1963]

with the projectors of these subspaces given by

P(⊥) = n⊗ n, P(‖) = g+ g(V,n)n, (4.45)

for V ∈ V(M). We introduce the lapse function N and the shift vector Na by

N = g(T, n), Na = P
(‖)(T, ·). (4.46)

Hence, the vector T can be written as T = N⊥n +N‖ and the metric tensor in a similar

way. Consider first the differentials dXµ which are

dXµ = ∂tX
µ + ∂aX

µ = (N⊥n
µ +Na

‖∂aX
µ)dt+ ∂aX

µdxa. (4.47)

Now we turn our attention to the metric gµνdX
µ ⊗ dXν, with the results from above we

find the three kinds of metric components

g(∂t, ∂t) = −N2
⊥ + gabN

a
‖N

b
‖, (4.48)

g(∂t, ∂a) = gabN
a
‖ , (4.49)

g(∂a, ∂b) = gab, (4.50)

6A covariant (2+2)-split has been performed by [d’Inverno and Smallwood, 1980].
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with latin indices ranging over spatial coordinates. For the inverse metric we find similar

expressions

g−1(t, t) = −
1

N2
⊥
+ gabN

a
‖N

b
‖, (4.51)

g−1(t, xa) =
Na
‖

N2
⊥
, (4.52)

g−1(xa, xb) = gab +
Na
‖N

b
‖

N2
⊥
, (4.53)

Going through all this geometrical things helps to formulate the Hamilton operator. Let

us consider a free massive scalar field Φ(x) as quantum probe, the Hamilton operator for

a space-time g is then given by [Hofmann and Schneider, 2015]

H[π,Φ] =

∫
Σt

dµ(x)(N⊥H⊥ +N
‖
iHi‖). (4.54)

Here, all tensors are pulled back to the spatial hypersurface Σt. We have defined the measure

dµ(x) = d3xµ(x) with measure function µ(x) =
√

det(gΣ). The tensor gΣ is the induced

metric on the hypersurface Σt. Additionally, we identified the lapse function N⊥ =
√
−g00

and the shift vector N
‖
i = g0i. We should mention that we imposed a normal ordering to

the Hamilton operator. The parallel Hamiltonian density is given by

Hi‖ =
π(x)∂iΦ(x)√

det(gΣ)
. (4.55)

A quantity constructed from a Legendre transformation possesses a term which mixes the

field Φ(x) and its conjugate variable, so does the Hamilton operator (in general)

π(x) =
∂L

∂(∂0Φ(x))
=

√
det(gΣ)√
−g00

(∂0Φ(x) − g0i∂
iΦ(x)). (4.56)

We see, we will get various contributions from the metric in this set-up. If the metric tensor

depends explicitly on time this dependence will yield an explicit time-dependence of the

Hamilton operator as well as for the wave-functional which we will see later. For a diagonal

space-time the only contribution will be

H⊥ =
1

2

[
1

det(gΣ)
π2(x) + gijΣ∂iΦ(x)∂jΦ(x) + (m2 + ζR)Φ2(x)

]
. (4.57)

The Ricci scalar curvature defined as contraction of the Ricci tensor is denoted by R and
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is coupled through ζ. In four dimensions, for example ζ = 0 is known as minimal coupling

and ζ = 1
6

as conformal coupling. For all vacuum solutions of Einstein’s equation this

contribution vanishes because of the vanishing Ricci tensor.

Similar to the Minkonwski case, we could construct the basis of the Fock space such that

it is spanned by the quantum fields Φ(x). Let us just repeat, we choose the basis such that

the field operator fulfils the eigenvalue equation Φ(x)|Φ〉 = φ(x)|Φ〉, with eigenvalue φ(x)

being the classical fields. The φ-representation of an arbitrary state |Ψ〉 is a non-linear

wave functional Ψ[φ](t). In curved space-time we can formulate the canonical quantisation

prescriptions for the field and its conjugate momentum

[π(t, x), Φ(t, y)]|φ〉 = iδ(3)(x− y)|φ〉. (4.58)

We evaluated the operators π and Φ in the eigenbasis |φ〉. This implies the identification

of π(x) with the functional derivative with respect to the field φ(x)

π(x) = −i
δ

δφ(x)
. (4.59)

Now, we are able to deal with the conjugate momentum, because we know how it operates

on the state functional Ψ[φ](t). With all required ingredients we are able to give the

Schrödinger equation for time-dependent states

i∂tΨ[φ](t) = H[φ](t)Ψ[φ](t), (4.60)

in its explicit form which with (4.57) and (4.59) can be written as

i∂tΨ[φ](t) =
1

2

√
−det(g)

[
1

det(gΣ)

δ2Ψ

δφ2
[φ](t) + φ(x)(∆−m2 − ζR)φ(x)Ψ[φ](t)

]
.

(4.61)

Now we need to have a look at the wave-functional Ψ; power counting arguments motivate

a Gaussian ansatz for the ground state wave-functional Ψ(0)[φ](t). We cover the higher

excitations in a later chapter where we explicitly construct the creation and annihilation

operators for the Kasner and Schwarzschild space-time. The ground state can be factorised

into two parts

Ψ(0)[φ](t) = N(0)(t)G(0)[φ](t). (4.62)
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One part is the wave part G(0[φ](t) depending on φ(x) and time and the second is the

normalisationN(0)(t) which contains all contributions that are independent of the quantum

fields. The time dependence in Ψ(0[φ](t) stems from the explicit time-dependence of the

metric.

Consistency of the field theory is closely related to the norm of the functional states ‖Ψ(0)‖2

‖Ψ(0)‖2(t) =
∫
Dφ

(
Ψ(0)[φ](t)

)∗
Ψ(0)[φ](t). (4.63)

which is a functional generalisation of the quadratic norm of quantum mechanics. This norm

is in principle an observable quantity. A meaningful theory should at least be normalisable,

i.e. the norm should not diverge. The origin of the time-dependence lays in the construction

of the Schrödinger states, because the fields are defined on the spatial hypersurface while

the time-dependence comes from the metric. The wave-part G(0)[φ](t) in curved space-times

is

G(0)[φ](t) = exp

(
−
1

2

∫∫
dµ(x, y)φ(x)K(t, x, y)φ(y)

)
. (4.64)

The integral kernel in the exponent is now explicitly time-dependent. Plugging this into

the Schrödinger equation we get a relation for the normalisation

i∂t ln(N(0)(t))G(0)[φ](t) + i∂G(0)[φ](t) = H[φ](t)G(0)[φ](t). (4.65)

Substituting the ansatz for (4.64) into (4.65), all contributions without φ-dependence must

be contained in N(0)(t). The Hamilton operator applied on G(0)[φ](t) gives a defining

equation for the normalisation

i∂t ln(N(0)(t)) =
1

2

∫
Σt

d3z
√

det(g)(t, z)K(t, z, z). (4.66)

We integrate over the whole spatial hypersurface Σt where z denotes a spatial coordinate.

Solving (4.66) through integration with respect to t we get

N(0)(t) = N0 exp

[
−
i

2

∫ t
t0

dτ

∫
Σt

d3z
√

det(g)(t, z)K(t, z, z)

]
. (4.67)

The kernel in the above equation is evaluated at position z while the time dependence can

be seen as a normalisation on each hypersurface Σt. The second equation for K(t, x, y) is

a Riccati differential equation given by the φ-dependent part. After differentiating with
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respect to the fields and performing the integrations of the resulting Dirac measures we

receive

i∂t

[√
det(gΣ)(t, x)

√
det(gΣ)(t, y)K(t, x, y)

]

√
det(gΣ)(t, x)

√
det(gΣ)(t, y)

=∫
Σt

√
−gtt(t, z)dµ(z) K(t, x, z)K(t, z, y) +

√
−gtt(t, x)

(
∆−m2 − ζR

)
δ(3)(x, y).

(4.68)

This equation is a nonlinear integro-differential equation. The spatial part of the Laplace-

Beltrami operator is defined by

∆ =
1√

det(gΣ)
∂i

[√
det(gΣ)g

ij
Σ∂j

]
. (4.69)

We should note that the Dirac δ-distribution in curved space-times is defined with respect

to the measure

δ(3)(x, y) =
δ(3)(x− y)√

det(gΣ)
. (4.70)

Solving equation (4.68) is highly non-trivial; we can use the spatial Fourier transform in

order to transform (4.68) into a form which is easier to handle. The Fourier transform we

used is

f(t, z) =

∫
d3kei2πkzf̂(t, k). (4.71)

Note, the spatial measure must be absorbed in the δ-distribution, otherwise, the Fourier

inversion theorem will not hold. The coordinate vector is spanned by the specific coordi-

nates, e.g. in the Schwarzschild case (r, ϑ,ϕ) where the angles are interpreted as radian

which is in this example

f(t, z) =

∫
dkrdkϑdkϕe

i2π(rkr+ϑkϑ+ϕkϕ)f̂(t, k). (4.72)

Fortunately, the whole equation for the kernel (4.68) can be Fourier transformed. All hy-

persurfaces Σt are conformally flat and translational invariance in the spatial coordinates

is a consequence. The Fourier transformed version of (4.68) is then given by

i∂t

[
d̂et(gΣ)(t, k)K̂(t, k)

]
=
√̂
gtt(t, k)d̂et(gΣ)

3/2

(t, k)K̂(t, k)2 −
̂√
det(gΣ)(t, k)Ω̂2(t, k)

(4.73)
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with Fourier transformed Laplace-Beltrami operator

Ω̂2(t, k) = ĝ−1(t, k) − V̂ (4.74)

where V encodes some other terms like mass m2 and the Ricci scalar ζR.

Equation (4.73) is a Riccati type differential equation which is difficult to treat in general.

Finding a solution is possible if we know one special solution [Gradshteyn and Ryzhik, 2014].

In appendix B we will give some further information about this type of equation. It can

appear as algebraic and differential equation [Lasiecka and Triggiani, 1991]. Both are non-

trivial to solve. However, in mathematics is a lot of research on this type of equations.

For our purposes it should be enough to say that we can perform a transformation (unless

the transformation is singular) given by

K̂(t, k) = −
1

2σ(t)
∂t ln(σ(t)f2(k, t)) (4.75)

in order to rewrite the Riccati equation in terms of an ordinary second order linear diffe-

rential equation. Here, we defined the function

σ(t) = −i

√
det(g)

det(gΣ)
. (4.76)

4.2. The quantum completeness criterion

We are now at the point where we can state the completeness criterion for quantum field

theory. In chapter 2 we have seen different concepts of completeness depending on the

theory we have employed. Albeit there are different notions, the main principle stays the

same.

In quantum field theory Lorentz geometry separates completeness by its causal character

into null, time- and spacelike completeness. The singularity theorems of Hawking and

Penrose use timelike and null geodesics as diagnostic tool. Chapter 2 shows that geodesic

incompleteness does not need to coincide with unitarity violation.

Horowitz and Marolf [Horowitz and Marolf, 1995] took the example of the hydrogen

atom for pedagogical reasons because there the classical instability coming from the Cou-

lomb potential is cured by quantum mechanics. The crucial property was self-adjointness

of the Hamilton operator, since self-adjointness leads to a unitary time-evolution, in other

words the bound-state electron wave function is uniquely defined for all times under ar-
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bitrary initial conditions and hence complete. The applicability of Horowitz and Marolf’s

criterion is restricted to static space-times because a probing with quantum mechanics

can only be appropriate for systems with conserved particle number, i.e. systems with ti-

melike singularities. However, there is no simple extension of this formalism to spacelike

singularities.

The articles [Balcerzak and Dabrowski, 2006] and [Horowitz and Polchinski, 2002] pro-

posed some classical strings within a singular set-up for future null singularities while some

other attempts were made: Horowitz and Steif [Horowitz and Steif, 1990] showed that in

string theory a passing through a singular region is not well-behaved. Although string theo-

ry has some candidate for black holes [Horowitz and Strominger, 1991], it is beyond the

scope of this thesis to investigate how the dynamical resolution of the black hole geometry

can be described, nevertheless it is a compelling task to dynamically resolve the space-time

and the singularity; by the way, there are several techniques to cure singular points with

techniques from algebraic geometry (e.g. blow-up techniques). String theory might be a

viable candidate as parent theory from this point of view. Loop quantum gravity for ex-

ample allows as well for a more mighty dealing with singularities [Modesto, 2004]. In each

case the price we have to pay is we must introduce new physics.

Our attempt is to take the geometry as a given set-up which means the classical space-

time is our test object. Let us now build our detector for the space-time. Our standpoint is

we choose quantum field theory as a well established and well understood theory. We propo-

se to use quantum theories which are constructed such that they are regular and without

any intrinsic pathology. Quantum fields are usually given by operator valued distributi-

ons, so either a regularisation scheme has to be proposed, such as minimal subtraction

or dimensional regularisation [Collins, 1984], or distribution theory has to be considered

[Hörmander, 1990] in order to avoid divergencies arising from an inappropriate handling of

distributions. These divergencies which arise from the distributional character of the fields

are excluded from this quality management because there exists a treatment by Epstein

and Glaser [Epstein and Glaser, 1973] which avoids these type of divergencies just from

the beginning, called finite quantum field theory.

Nevertheless, a renormalisation prescription is also of need in order to distinguish bet-

ween divergencies arising from quantum field theory, which arise independently from the

geometry and divergencies stemming from the space-time, although it is not easy to se-

parate background contributions from field theoretic contributions. Hence, we probe a

singular background with a regularised and renormalised quantum theory such that all
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arising divergencies can be traced back to the influence of the geometry.

Before we reveal the criterion for quantum completeness we want to present the scientific

embedding. Static space-times with timelike singularities can be probed by quantum me-

chanics. For null singularities, Wald [Wald, 1980] has shown that the operator giving the

dynamics is always self-adjoint. If not, there would be a contradiction due to a non-distinct

evolution of initial conditions. Spacelike singularities occur in dynamical space-times, and

describe singular spatial hypersurfaces. Their characterising property is, that a whole hy-

persurface Σt becomes singular and for all times beyond either space-time has ended or

one has to pass through the singularity which is in general not possible. There are a few

examples like in a bouncing cosmology it has been shown to be possible and regular to

pass through a singularity [Gielen and Turok, 2016].

Concerning interpretations, a space-time in a quantum-mechanical probing could be re-

garded as an effective potential. If this is bounded from above the result is an incomplete

space-time. In other words, only an infinitely repulsive barrier or a depleting measure func-

tion (like for the 1S orbital of the hydrogen atom) prevents quantum states from populating

the singular region.

In our case, it would be possible to interpret the space-time geometry as external source.

External because the internal degrees of freedom are not resolved dynamically. Field theo-

ries influenced by external sources have been investigated by Schwinger. He identified that

the vacuum persistency (probability that the vacuum stays the vacuum) qualifies best for

describing the effect of an external source on the system. Schwinger [Schwinger, 1951] has

shown that fields coupled to external sources suffer from a dynamical principleW changing

the vacuum persistency amplitude

〈0|0〉 = eiW . (4.77)

The imaginary part ofW , which is describing the influence of the source on the fields, bears

a positive sign in a consistent theory. Even in Minkowski we observe a depletion of the

persistency amplitude in presence of a source. Hence, stability of the persistency amplitude

may be an invalid criterion. In general, a meaningful quantum field theory shows a depleting

or normalisable persistency amplitude when coupled to an external source. The idea is that

an interaction with the source excites states and cause particle production.

The equation of motion for a field φ on a time-dependent background consists of friction

terms∝ ∂tφ which produce a non-trivial dispersion which results in a transfer of probability

to the background (external source).
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Consistent evolutions are not harmed by a probability loss, for example in open systems

it is expected to see a loss, however, a gain of probability is problematic. The reason is

that the probabilistic interpretation is an intrinsic feature of quantum theory and state

normalisability must be guaranteed.

Quantum completeness means: unitarity is replaced by state normalisability. On the level

of groups it is equal to admitting a contraction semi-group [Reed and Simon, 1975]:

Definition 10. A family of bounded operators {T(t)|0 ≤ t < ∞} on a Banach space X is

called a strongly continuous semi-group if:

(a) T(0) = id

(b) T(s)T(t) = T(s+ t) for all s, t ∈ R+

(c) For each ϕ ∈ X, t→ T(t)ϕ is continuous.

Semi-groups are more general than the unitary one-parameter group we know from stan-

dard quantum mechanics, however, their importance is on equal footing. For open systems,

such as quantum field theory in curved spaces, they are expected to occur. They also turn

out to be useful for the description of ground state energies [Simon, 1982]. Contraction

semi-groups:

Definition 11. A family of bounded operators {T(t)|0 ≤ t < ∞} on a Banach space X is

called contraction semi-group if it is a strongly continuous semi-group and moreover

‖T(t)‖ ≤ 1 for all t ∈ [0,∞).

are of our special interest because the contraction could ensure that the state normalisabi-

lity is preserved. Then no observable will diverge since time-evolution is governed by the

semi-group. Such groups are well-known solutions of partial differential equations.

In open systems, the unitary group will be replaced by a contraction semi-group where

the dissipation depletes the probability amplitude. To our understanding of completeness

the contraction should happen towards the singularity because this feature would corre-

spond to the basic idea of completeness that the end-point cannot be reached in a finite

amount of time.

The Hamilton operator has to have a special property in order to generate the contrac-

tion, while self-adjointness implies unitarity, accretiveness implies normalisability:

Definition 12. A densely defined operator A on a Banach space X is called accretive

if for each ϕ ∈ D(A), Re(`(Aϕ)) ≥ 0 for some normalised tangent functional to ϕ. A
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is called maximal accretive (or m-accretive) if A is accretive and has no proper accretive

extension.

The direct consequence of this definition is that the corresponding operator acts as a

generator for a contraction semi-group if it is accretive7 and Ran(λ0 + A) = X. Note, we

could as well work in Hilbert spaces.

For the sake of understanding we should state the definition if the normalised tangent

functional:

Definition 13. Let X be a Banach space, ϕ ∈ X. An element ` ∈ X∗ that satisfies ‖`‖ =
‖ϕ‖, and ` = ‖ϕ‖2 is called a normalised tangent functional to ϕ. By the Hahn-Banach

theorem, each ϕ has at least one normalised tangent functional.

Similar to self-adjoint operators we find a core theorem (equivalent to Stone’s theorem)

about the generators of contraction semi-groups [Reed and Simon, 1975]:

Theorem 12. Let A be the generator of a contraction semi-group on a Banach space X.

Let D be a dense set, D ⊂ D(A), so that e−tA : D → D. Then D is a core for A (i.e.,

A � D = A).

Taking all this as prelude, we approach our statement defining quantum completeness.

The state functional Ψ[φ](t) is constructed in the eigenbasis of the field. Furthermore, we

assume Ψ to be the ground state and the field theory to be free. Throughout our analysis

we will neglect back-reaction. This set-up enables us to state the consistency criterion

[Hofmann and Schneider, 2015]:

Definition 14 (Quantum completeness). Let M be a globally hyperbolic manifold and g a

metric, we call a space-time (M, g) with spacelike singularity at 0 quantum complete (to

the left) with respect to a free field theory if the L2 norm of the Schrödinger wave-functional

Ψ[φ](t) of free test fields φ can be normalised at initial time t0, the normalisation is bounded

from above by its initial value for any t ∈ (0, t0), and the probability ‖Ψ‖2(t) = 0 at t = 0.

Note, we have assumed the singularity to be at the specific point t = 0 which coincides

with the Kasner and Schwarzschild singularity but we could have also defined it with a

generic t∗. In other words, we can sum the definition up in a short relation that has to be

fulfilled. Let again t0 be the time where the (regular) initial conditions are set and consider

7In Hilbert spaces m-accretiveness is sufficient in order to act as generator for a contraction semi-group.
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a Gaussian wave-functional of a free scalar field theory Ψ(0)[φ](t). Quantum completeness

requires the following relation to hold:

‖Ψ(0)‖2(t) ≤ ‖Ψ(0)‖2(t0), ∀0 ≤ t ≤ t0. (4.78)

Here, the initial time is arbitrary, however, it should be part of the space-time. This reflects

the property that completeness should hold under arbitrary initial conditions. To make it

concrete, ‖Ψ(0)‖2(t) should be a monotonically decreasing function. Note, for excited states

Ψ(exc.)[φ](t) might have nodes, hence the envelope should go to zero monotonically.

Precisely the occurrence of a contraction semi-group in the time-evolution forces the

norm to decrease, this culminates into a mathematically definition

Definition 15 (Quantum completeness). Let M be a globally hyperbolic manifold and g

a metric, we call a space-time (M, g) with spacelike singularity at 0 quantum complete

with respect to a free field theory if the functional Hamilton operator H[Φ](t) is (maxi-

mal) accretive and serves as the generator for a contraction semi-group decreasing to zero

towards the singularity.

In this definition we claim the singular hypersurface Σ0 will not be populated by any field

configuration which agrees to the idea of completeness that the end-point cannot be reached

lim
t→0 ‖Ψ(0)‖2(t) = 0. (4.79)

With the contraction groups we can formulate our criterion very smoothly. The abo-

ve definition of quantum completeness is exactly that the time-evolution is ruled by a

contraction semi-group generated by the m-accretive operator.

Let us elaborate on the criterion made in Definition 14. Quantum field theory, as well

as quantum mechanics, support a probabilistic interpretation while classical physics are

purely deterministic. The normalisability of a quantum theory should be preserved be-

cause otherwise the quantum theory becomes meaningless. If the norm diverged because

of a probability gain, we would interpret as the significant influence of the geometrical

singularity. In other words, the pathology of the geometric singularity would become mea-

surable/visible in quantum field theory by a divergent norm.

A gain of probability is interpreted as a massive particle production from the background

resulting in a backreaction that deforms the geometry; if backreaction becomes important,

the question whether a previously given space-time is quantum complete will become ob-

solete. From the point of view of a Cauchy problem, regular initial conditions running into
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inconsistencies can only be caused by pathologies in the theory.

Wrapping it up, our motivation was to find a criterion for quantum field theory in order

to probe spacelike singularities. The basic idea is the singular configuration can not be

reached under arbitrary initial conditions through a consistent/unique time-evolution. Our

definition is in accordance with this. Consistent evolution of arbitrary field configuration

under arbitrary initial conditions agrees with the basic idea. Moreover, we specify explicitly

how (i.e. with respect to what state) we measure our observables. In Minkowski space-time

this might be no big issue but in curved space-times it is essential. The probability8 to

be zero at the singular hypersurface coincides with the demand that the end-point can

not be reached. This shows that Definition 14 is a well proposed notion in the spirit of

completeness.

In Minkowski space-time is no spacelike singularity but nevertheless a unitary time-

evolution still guarantees normalisability and the probabilistic interpretation is preserved;

(4.78) holds in Minkowski. It is time to apply our criterion to a space-time with spacelike

singularity. We will begin with Schwarzschild and then proceed with generalised Kasner

space-time.

4.3. Quantum probing of Schwarzschild

The first thing an arbitrary person on the street connects with a black hole is its incomple-

teness, though they might not name it like that. It is usually seen as a hole where nothing

can escape once it has crossed the horizon. In the semi-classical picture Hawking found

that a quite strange effect occur, the black hole emits radiation with a thermal spectrum

[Hawking, 1975]. However, the thermal spectrum might be a relic of the considered appro-

ximations, but it is up to now not explained to full satisfaction. Potentially all horizons

should emit particles, for example the Rindler space-time, which is nothing but a piece

of Minkowski due to acceleration of the observer, shows this effect of particle production

[Einstein and Rosen, 1935]. Note, the particles in the Rindler space-time are described by

the so-called Unruh effect [Unruh, 1976], which might be interpreted as a fictitious force

analogue of quantum field theory.

The point of this is that the horizon causes some pathologies although the curvature

scale does not blow up. The horizon itself is a null surface, since it is spanned only by two

8In German there is a brilliant word to describe the probability to be at a specific point, it is called
Aufenthaltswahrscheinlichkeit. Unfortunately, there is no such expression in English.
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tangent vectors for Schwarzschild, namely ∂ϑ and ∂ϕ. As we mentioned in 3.1 the light-

cone swaps, i.e. the timelike Killing vector outside (3.1) becomes spacelike inside, the same

counts for the Killing vector of the interior metric.

To avoid this peculiarity and the arising confusion we could change our point of view.

Consider of being inside the black hole, the interior space-time (3.4) is globally hyperbo-

lic and admits a timelike Killing vector ∂t; this is only true without imposing matching

conditions with respect to the exterior solution. Nevertheless, we could safely assume we

are close to the singularity, such that the outside region will not affect the interior geo-

metry severely. For the sake of completeness, and for the lazy reader we state again our

test object, the interior of the Schwarzschild black hole in the classical picture of general

relativity

g = −
1∣∣1− 2M
t

∣∣dt⊗ dt+
∣∣∣∣1−

2M

t

∣∣∣∣dr⊗ dr+ t2
(
dϑ⊗ dϑ+ sin2(ϑ)dϕ⊗ dϕ

)
(4.80)

with black hole mass M. We assume for the sake of simplicity an eternal black hole. The

Schwarzschild time t, which admit a Killing vector ∂t due to global hyperbolicity, is only

defined within the range t ∈ (2M, 0). Spatial coordinates have the topology of R×S2. Note

that r ∈ R is not really a radius but it is a spatial coordinate. The interior Schwarzschild

metric loses its spherical symmetry, it has the shape of a cigar which is getting streched

and thinner during time evolution. The angles are defined as usual: azimuthal ϕ ∈ [0, 2π)

and polar ϑ ∈ [0, π). The singularity is located at t = 0 where the prefactor of the radial

part becomes infinite and all others zero. The gravitational singularity in the interior

Schwarzschild space-time is a naked one, but not similar to the singularity in a Friedmann

universe because of the symmetries: a Friedmann is isotropic and the Schwarzschild interior

anisotropic. The cosmic censorship hypothesis is not violated since the interior is seen as a

detached part from our universe and for the outside observer the singularity is still censored

by the horizon.

4.3.1. Ground state analysis

In this subsection we probe the Schwarzschild interior with quantum fields and apply our

criterion directly. Our probing device is a free scalar field Φ(x) with mass m given by the
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action

S = −1
2

∫
d4x
√

−det(g)
{
∂µΦ(x)∂µΦ(x) +m2Φ2(x)

}
. (4.81)

One could now argue that a scalar field might not be the most general case and fermionic

fields could behave differently. This is true for most parts of physics, however it has been

shown, that the spin of a particle can not prevent from falling into the black-hole singularity

[Stewart and Háj́ıček, 1973]. However, we do not know how a confining phase like quantum

chromodynamics behave in this set-up. This question is postponed to future research.

Following the steps mentioned in 4.1.3 we build the Hamilton operator (4.57) and the

canonical commutation relation (4.58) for the field Φ(x) and its conjugate momentum

π(x). Note, the spatial hypersurfaces Σt are conformally flat, while the whole space-time

admits a non-vanishing Weyl tensor. Immediate consequences can be seen by taking the

limit t → 0. The Schwarzschild space-time has one diverging coordinate and collapses in

two other spatial directions. This feature is also indicative for a Kasner space-time. With

a few modifications, (3.1) can be transformed into a Kasner type-D metric. We emphasise

this again, because in section 3.1 we showed that it can be transformed into (3.14). This

purely time-depending metric will show the same behaviour as the Schwarzschild metric

when approaching the singularity (cf. appendix F).

We construct the Hamilton operator with aid of (4.57)

H[Φ](t) =
1

2

∫
Σt

dµ(x)


 1
(
2M
t
− 1
) 3
2 t4 sin2(ϑ)

δ2

δΦ(x)2
+ φ(x)

(
∆−m2

)
Φ(x)


 (4.82)

where we used the relations (4.59) and the canonical commutation relation (4.58). For a

vacuum solution (Ric = 0) the Ricci term in the Hamilton operator vanishes. The Laplace

operator is with respect to the hypersurface Σt but we should keep in mind ∆ is also time-

dependent. The ground state defined as a Gaussian wave-functional Ψ(0)[φ](t) is given by

the equations (4.62), (4.64), and (4.158).

Now we follow the steps we have introduced in the general discussion about the Schrödin-

ger representation and it is no surprise that the Schrödinger equation (4.65) yields again

here an integro-differential equation as in (4.68). What makes it tough to solve this equation

is its additional dependence on the spatial coordinate ϑ. The polar angle should actually

bear a subscript depending on where it comes from, either x or y in (4.68). This turns

our calculation more cumbersome and we get some immediate consequence concerning the
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spatial Fourier transform. We have to think about, how to define it properly. We split the

Laplace operator into a radial part R(r) and the Laplace-Beltrami operator B(ϑ,ϕ) on the

spherical shell S2r at a specific r. Eigenfunctions of B(ϑ,ϕ) are given by the spherical har-

monics Ylm(ϑ,ϕ). A more elegant way is to define the Fourier transform by an exponential

function containing the coordinate vector (r, ϑ,ϕ). Since the hypersurfaces are conformally

flat, we use the Fourier transform (4.72) to derive the following Riccati equation from the

Schrödinger equation

i∂t

[√(
2M

t
− 1

)
t2ŝin(ϑ)K̂(t, k)

]
=

(
2M

t
− 1

)(
t2ŝin(ϑ)

)3/2
K̂(t, k)2 − t2ŝin(ϑ)Ω̂2(t, k)

(4.83)

with Ω̂2(t, k) the Fourier transformed Laplace operator

Ω̂2(t, k) = ̂g−1(∂, ∂) = −
k2r∣∣1− 2M

t

∣∣ −
k2ϑ
t2

+
i

t2
cot(ϑ)kϑ −

k2ϕ
t2 sin2(ϑ)

(4.84)

that contains an imaginary part which might cause problems. The δ-distribution is defined

by (4.70) such that

δ(3)(x, y) =
δ(3)(x− y)√

(2M− t)t3 sin(ϑ)
. (4.85)

Putting this into (4.83) and substituting K̂ ′(t, k) = d̂et(gΣ)K̂(t, k), where gΣ is the induced

metric on the hypersurfaces Σ, we end up with the final equation for our kernel

i∂tK̂ ′(t, k) = A(t)K̂ ′(t, k)
2

− B(t, k). (4.86)

This equation is again a Riccati equation (cf. B). The coefficients, here, are given by

A(t) = −i

√
−det(g)

det(gΣ)
, (4.87)

B(t, k) = i
√

−det(g)Ω(t, k). (4.88)

Solving this equation is highly non-trivial. With the following transformation, we have

already mentioned in (4.75)

K̂(t, k) = −
1

2det(gΣ)
∂t ln(A(t)F2(t, k)) (4.89)
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we are able to rewrite this equation in a form of an ordinary linear second order differential

equation (
∂2t +ω

2(t, k)
)
F(t, k) = 0, (4.90)

with the complicated dispersion relation

ω2(t, k) ≡ 1

16gϑϑ
(1− 2gtt + g

2
tt) − gttΩ

2(t, k). (4.91)

The dispersion relation (4.91) is singular at the horizon at the Schwarzschild radius rs as

well as at the geometrical singularity at t = 0 but our main interest is focussed on the

behaviour near the singularity at t = 0. Therefore, we can express ω2(t, k) asymptotically

in leading orders of the singular behaviour (t � 1), that is, the most divergent part goes

like ω2
0(t) ∝ 1

t
. Corrections of order O(

√
t
−1
) are omitted. It has to be remarked that the

dominant contribution does not depend on the momenta k, it is purely time-dependent.

As a consequence, the full solution must show a behaviour which coincides with the above

mentioned property of the differential equation, namely

K(t, x, y) = κ(t)KΣ(x, y) ∝ κ(t)δ(x− y). (4.92)

We see we get for the asymptotic limit that the differential equation contains just the time

coordinate while the momentum parts have disappeared. The solution to (4.90) is given

by

F(t) = C2
√
t

(
C1 + ln

(
t

2M

))
(4.93)

with C1, C2 constants of integration. Note, when considering more terms of lesser order of

divergence the solution gets more and more complicated, like Bessel functions (all divergent

terms), or Whittaker functions (all non vanishing terms). This will turn the inverse Fourier

transform to be impossible. Nevertheless, staying in the limit of small t it all reduces to

(4.93).

Inversion of the transformation (4.89) leads to the kernel

K(t, x− y) =
−iδ(3)(x− y)

sin(ϑ)t3
∣∣ln
(
t
2M

)∣∣

(
1+

i|Im(C1)|∣∣ln
(
t
2M

)∣∣

)
. (4.94)

The kernel (4.94) is highly divergent in the limit t→ 0. Additionally, we see it has a real

and an imaginary part. As we have already expected, dynamical space-times do not in

general admit a unitary time-translation operator, this can we see here explicitly, because
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the real part destroys unitarity of time-evolution. The immediate consequence will be a

dissipation9 effect causing a continuous probability transfer to the background. Note, the

real part Re(K)� Im(K) near the singularity.

We can now begin with the construction of the wave-functional Ψ(0)[φ](t), first the norma-

lisation, with (4.158) we get

N(0)(t) =
N0√∣∣ln

(
t
2M

)∣∣ vol(Σt)Λ
, (4.95)

where N0 is a collection of all constants. Before we go to the wave part, we briefly discuss

(4.95). Since we are working in the semi-classical picture, we introduced an ultra-violet

cut-off Λ and an infrared cut-off by the volume of the hypersurface vol(Σt) =
∫
d3x. Those

quantities can of course be regularised, however, we can see that this will not change the

picture because they are both positive and huge numbers therefore the normalisation goes

to zero - this is what we expect from a sensible normalisation (a schematic plot of N(0)(t)

is provided in figure 4.3).

The normalisation is a monotonically decreasing function, which goes to zero at t→ 0.

However, the question is, what does G(0)[φ](t) and in the end Ψ(0)[φ](t). The wave part is

oscillating from the contribution of the imaginary part, the real part in the vicinity of the

singularity will steadily decrease due to the measure functions in the exponential

Ψ(0)[φ](t) =
N0√∣∣ln

(
t
2M

)∣∣ vol(Σt)Λ
exp

(
−

−i|2M− t|

t3/2
∣∣ln
(
t
2M

)∣∣

(
1+

i|Im(C1)|∣∣ln
(
t
2M

)∣∣

) ∫
Σt

d3xφ2(x)

)
.

(4.96)

The normalisation itself gives zero in the limit of small times as well as the non-oscillating

part of G and so does the ground state Ψ(0)[φ](t) as well. Interpreting this, we come to

the result that the wave functional vanishes continuously when approaching the singular

hypersurface.

No matter how promising the result looks, the Schrödinger formulation of quantum field

theory is not formulated in observable quantities, which is similar to quantum mechanics.

Hence we will later analyse observables like the expectation value of the energy density

with respect to the Schrödinger states. For the reason how we formulated the quantum

9The dissipation does not occur when we consider the Klein-Gordon product. However, we see a similar
effect for the measurement vertices when we consider the theory of classical/quantum measurements.
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Figure 4.3.: Plot of the normalisation N(0)(t) for t ∈ (0, 0.25M)

completeness criterion 14, we have a look at the norm of the state (4.63) with (4.8)

‖Ψ(0)‖2(t) = |N0|
2

∣∣ln
(
t
2M

)∣∣ vol(Σt)Λ
(
t
3
4

∣∣∣∣ln
(
t

2M

)∣∣∣∣
)N(Λ)

(4.97)

with number of momentum modes N(Λ) with |k| ∈ [0,Λ
1
3 ]. This is a huge number corre-

sponding to the ultraviolet cut-off Λ which could be regularised as well. Again, regularisa-

tion would not change the result, whatsoever. A close look at (4.97) offers the two relevant

things we need in order to have quantum completeness: ‖Ψ(0)‖2(t) is a monotonically de-

creasing continuous function which is important for the consistency of the time-evolution.

In other words, the probabilistic interpretation is guaranteed and protected under time-

evolution.

The second criterion is the question of the population of the singular hypersurface Σ0.
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Therefore we consider the limit of (4.97)

lim
t→0 ‖Ψ(0)‖2(t) = 0 (4.98)

which is zero and the second requirement is fulfilled. What does this mean for the physics

of the system? Concerning the interpretation we consider a set of observables localised on

a hypersurface Σt. It could be expected that an observable exists with an expectation value

with respect to the ground state that is diverging, for example the trace anomaly of the

stress-energy tensor for conformally coupled fields. However, this is not the case because

the ground state does not populate Σ0. In other words, no field configuration is living on Σ0

because the probability measure vanishes there. The consequence is, that quantum fields

detect no significance of the singularity. It seems that the geometrical singularity bordering

on the physical space-time (the space-time which could be measured by quantum fields) is

detached. Although it is beyond our reckoning, we want to mention that this is a powerful

argument against the singularity theorems as a physical statement and it gives also good

reason to even doubt the dynamical formation of a black hole singularity.

The publication related to this calculation can be found in appendix C.

4.3.2. Gaussian deviations: Excited states

The ground state analysis showed no inconsistencies, however, this might not be the whole

story yet. Dynamical space-times support emission and absorption processes which lead to

excitations with respect to the ground state. Excitations are not an integral component in

the definition of quantum completeness [Hofmann and Schneider, 2017]; they can deform

the system such that a new lowest energy configuration will be realised.

Higher excitations Ψ(n)[φ](t) may admit a diverging norm; this could be the case if they

were populated close to the singularity while the ground state depletes.

Hence, it is a natural question to investigate also the norm of the excited states. They

are analogously defined to quantum mechanics by creation and destruction operators; the

destruction operator can be defined by

a[f](t)Ψ(0)[φ](t) = 0. (4.99)

Quantum mechanics provides us with the same kind of equation where the destruction

operator a(k) has a local description which erases a field in the Hilbert space. When



80 4. The return of regularity

applied on a state ψ(k1, . . . , kn) we get [Reed and Simon, 1975]

(a(p)ψ)(n) (k1, . . . , kn) =
1√
n

n∑
l=1

δ(p− kl)ψ
(n−1)(k1, . . . kl−1, kl+1, . . . , kn). (4.100)

Note, the destruction (or annihilation) operator can be defined via an eigenvalue equation

with eigenvalue 0. Here, we showed how to exclude the state with momentum p = kl. The

creation operator is defined in a similar manner

(
a†(p)ψ

)(n)
(k1, . . . , kn) =

√
n+ 1ψ(n+1)(p, k1, . . . , kn). (4.101)

We see, a state with momentum p has been included in the n-particle state ψ(n).

The Schrödinger representation provides a functional analogy of the creation and anni-

hilation operators. Similar to quantum mechanics, we use (4.99) as the defining equation

for a[f](t) which destroys an on-shell field f(t, x) in the Fock space; the vacuum state is

free of on-shell fields f(t, x) because the fields in the wave-functional are restricted to Σt

hence we get zero. Formally, the operator is defined such that the ground state lies in the

kernel Ker(a[f])

a[f](t) =

∫
Σt

dµ(x)f∗(t, x)a(t, x). (4.102)

The annihilation operator consists of two ingredients: the adjoint on-shell field f∗(t, x), or

the harmonic function on the background, and the ultra-local description of the annihilation

operator a(t, x) which is in a free scalar field theory represented by

a(t, x) =
i√

det(gΣ)(x)
π(x) +

∫
Σt

dµ(y)K(t, x, y)Φ(y) (4.103)

with K(t, x, y) given in (4.94). From the canonical quantisation prescription we find the

first term to be the functional derivative with respect to the field φ(x), like for Minkowski

shown in (4.32) and (4.33), while the second is a scalar product with the multiplication

operator Φ mediated through the kernel K(t, x, y). Conjugating the destruction operator

gives the creation operator which we apply in order to get the first excited state

Ψ(1)[φ, f](t) = (a[f](t))∗Ψ(0)[φ](t). (4.104)
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As usual, on Σt the following algebraic relation holds:

[
a[f](t), a†[f′](t)

]
= 2Re (K2[f, f′]) (t) . (4.105)

The first excited state can be interpreted as a functional re-normalisation10 of the ground

state, because we could rewrite this equation when absorbing the creation operator in the

normalisation function

Ψ(1)[f, φ](t) = N[f, φ](t)Ψ(0)(t). (4.106)

Excitations should be sensitive to the overlap between φ(x) and the on-shell fields f(t, x).

To make it precise, let F be the set of all fields and Fos the set of all fields obeying the on-

shell condition with Fos ⊂ F. All on-shell fields f(t, x) ∈ Fos whereas φ(x) ∈ F � Σt. Because

the on-shell fields are not covered by the time-evolution of the Schrödinger formalism, i.e.

they are not restricted to a hypersurface like φ(x), they obey the time-evolution given by

the harmonic equation �f(t, x) = 0. The d’Alembert operator is due to the non-trivial

geometry of the interior Schwarzschild space-time

�f(t, x) = g−1(df, df) = −
1√

−det(g)

∂

∂t

[√
−det(g)

∂f

∂t
(t, x)

]
+ gii

∂2

∂x2i
f(t, x). (4.107)

A purely time-dependent and diagonal metric simplifies the calculation a lot, such that

we can use a separation ansatz. The function f(t, x) can hence be split into spatial X(x)

and time part T(t). Our ansatz could be to employ a Fourier transform on the spatial

hypersurfaces Σ in order to solve the harmonic equation [Simon, 2015b] but there is a

smarter way in this set-up.

First of all, we use the definition (4.99) in order to state the annihilation operator which

has the same form as (4.102) and (4.103). Then, (4.104) is the defining equation for the

first excitation.

The fist excited state is given by (4.106), that is by using (4.105), it acts as a functional

derivative with respect to the fields φ(x); application of the creation operator on Ψ(0)[φ](t)

yields

Ψ(1)[f, φ](t) = 〈φ|f〉K(t)Ψ(0)[φ](t). (4.108)

The formal equation is of course identical for all space-times. At least, however, the sy-

stem is specified by the metric as well as the on-shell fields f(t, x) because they fulfil the

harmonic’s condition �f = 0 on Schwarzschild for massless case, or for massive f(t, x)s the

10See footnote 4 on page 55 in case this expression puzzles you.
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Klein-Gordon equation

(�−m2)f(t, x) = 0 (4.109)

The d’Alembert operator for (3.1) is much more complicated - compared to Minkowski -

as we see in (4.107)

� = −∂2t −
1

t
∂t +

1
2M
t
− 1

∂2r +
1

t2
∂2ϑ +

1

t2
cot(ϑ)∂ϑ +

1

t2 sin2(ϑ)
∂2ϕ. (4.110)

This d’Alembert operator has the property of admitting two single derivatives, one for time

and the other for the polar angle ϑ. These terms will produce friction terms in (4.109) which

could lead to an imaginary part in the spectrum of the Hamilton operator. Via a special

reformulation of the field f(t, x) we find the solution to equation (4.109) after Boulware

[Boulware, 1975]

f(t, x) =
∑∫

dkfml(t, k)e
i2πkrYlm(ϕ, ϑ). (4.111)

The above expression is a Fourier transform in the radial component combined with an

expansion in the eigenfunction of the angular part of the d’Alembert operator, the spherical

harmonics Ylm(ϑ,ϕ). This smart representation of f(t, x) allows for the aforementioned

smart solution of the Klein-Gordon equation. Inserting (4.111) yields as solution after

redefinition t ≡Mτ

f(τ, x) =
∑∫

dkei2πkr
[
C1I0

(√
2l(l+ 1)τ

)
+ C2K0

(√
2l(l+ 1)τ

)]
Ylm(ϑ,ϕ) (4.112)

The Bessel functions I0 of first and K0 second kind solve (4.109) up to order O(τ−1), i.e. we

have asymptotically expanded the Klein-Gordon equation for small time. The constants of

integration are named C1 and C2. In general the constants of integration are complex and

could depend on the spatial coordinates. When expanding around the singularity, i.e. for

small times, we can simplify the Bessel functions [Gradshteyn and Ryzhik, 2014]

I0(x) ∼ 1+
x2

4
+
x4

64
+O(x6), (4.113)

K0(x) ∼ − ln(x) − γ. (4.114)

Applying the asymptotic forms to (4.112) yields

f(t, x) ∼
∑∫

dkei2πkrC(r) ln(τ)Ylm(ϑ,ϕ). (4.115)
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Note, it is tricky to see why this should be consistent with the differential equation, in

other words the logarithm will not solve the asymptotic expansion for the time-dependent

part

(t∂2t + ∂t)f(t, k) = κf(t, k) (4.116)

with κ coming from the spatial part. For vanishing Schwarzschild time f(t, k) not a solution

to (4.116). Therefore, we introduce ξ ≡ ζτ and the double-scaling limit τ→ 0 and ζ→∞
while ξ stays constant. The rescaled equation of motion

(ξ∂2ξ + ∂ξ)f(ξ, k) = 0 (4.117)

will then be solved by the logarithm. We saw that a careful asymptotic expansion has to

be imposed on the level of the equation of motion. Only in this case, an expansion of the

solution is consistent with the expansion of the Klein-Gordon equation.

Note, that this solution is a classical one, therefore, we have no duty towards a specific

way to normalise the fields; in quantum mechanics we have to respect the probabilistic in-

terpretation. The classical solution is divergent in the limit t→ 0. For quantum fields the

picture changes, proper normalisation of quantum fields on a Schwarzschild background

will result in a regular field amplitude, even in the vicinity of the singularity. Elizalde

[Elizalde, 1987, Elizalde, 1988] has calculated massive scalar quantum fields in the Heisen-

berg picture and received a regular amplitude.

Heisenberg and Schrödinger representation should per construction agree but to see this

is not as easy as one might think because here, the Stone-von Neumann theorem is inapp-

licable. In the Heisenberg representation we need to consider the theory of measurements

(classical or quantum) [DeWitt, 2003], then we formulate the detection mechanism with

a vertex density describing the absorption of the test field. We evaluate then the vertex

density in the limit of sending the detector towards the singular hypersurface. Consistency

of Heisenberg and Schrödinger representation requires the vertex density to vanish in case

of quantum completeness; we show such a Heisenberg analysis11 in the charged scalar case

in G.

Let us close this intermezzo about the Heisenberg formulation and turn our attention

to our calculation of the excitations and especially the norm ‖Ψ(1)‖2(t) from (4.108) under

11This is a very important consistency requirement, because people are more familiar with the Heisenberg
picture.
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consideration of (4.105) we can deduce the nth excitation

‖Ψ(n)‖2(t) = 〈Ψ(0)|(a[f](t))n((a[f](t))∗)n|Ψ(0)〉 = κn〈f, f〉K(τ)‖Ψ(0)‖2(t) (4.118)

where κn is just a combinatorial factor. The norm is given by the K-mediated scalar product

of the on-shell fields with Mτ = t

〈f, f〉K(τ) ∼
∫∫
Στ

dµ(x, y)f∗(τ, x)Re(K)(τ, x, y)f(τ, y) ∝ |Im(C)|M(2− τ)

4| ln2(τ)|
ln2 (2l(l+ 1)τ) ;

(4.119)

the scalar product mediated by the integral kernel becomes a constant when we send

t→ 0. We see, 〈f, f〉K preserves the validity of the ground state analysis, and consequently

all excitations vanish on the singular hypersurface Σ0 because the ground state stays the

dominant part even neighbouring the singular hypersurface.

We found again that the interior of a Schwarzschild black hole is quantum complete. In

this geometry, quantum field theory has a consistent evolution and preserves the probabi-

listic interpretation. Moreover, the singular hypersurface is not populated with any field

configurations. Therefore, the properties for quantum completeness were fulfilled.

Excitations do not influence the ground-state result such that completeness is violated

because all excitations are teared to zero by the probability measure. The ground state

analysis is hence a robust physical statement. In other words, the singularity does not affect

free quantum theory.

4.3.3. Influence of polynomial self-interactions

In the last two sections we showed that the black hole is quantum complete, but only with

respect to free field theory; the interesting physics, however, occurs when we impose an

interaction term. Here, we will investigate a self-interaction. It might be that free field

theory is too special to make a sensible statement about completeness, at least in quantum

mechanics the shape of the potential is significant for quantum mechanical completeness

[Simon, 1971].

In quantum field theory, one could intuitively guess that including an interaction term in

the action changes the picture, possibly, this terms could cause trouble if the field reaches

a strong coupling regime which lead to a deformation of the Schwarzschild space-time

rendering the free field analysis void.
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The question we have to answer is: can an initially weakly coupled configuration run

into a regime of strong coupling? Let us answer this is two ways, first the brute force

method where we calculate the contribution from interaction terms in the wave functional,

second where we will give a heuristic argument about self-interaction terms. Afterwards

we connect both arguments, the brute-force derivation and the elegant thoughts.

We start with the straightforward part, the calculation: Our theory shall be a Φ4-

interaction which is stable in four dimensions, nevertheless, all other polynomial interations

of Φ(x) would be possible as well

Sint =
λ

4!

∫
d4x
√

det(g)Φ4(x). (4.120)

The dimensionless coupling constant λ is small, and we choose the initial data such that

perturbation theory is applicable. Our ground states must change and include somehow

the non-Gaussianity induced from the interaction [Hatfield, 1992]

Ψint[φ](t) = Nint(t)G(0)[φ](t) exp (λD[φ](t)) . (4.121)

All information about the interaction is encoded in the interaction (or deformation) func-

tional D[φ](t) which is a polynomial in the field consistent with the power-counting in

Sint. Note, also the normalisation acquires additional terms from the interaction part. We

will restrict ourself to first order in perturbation theory. The deformation term in (4.121)

is given by

D[φ](t) =

∫∫
dµ(x, y)φ(x)D2(t, x, y)φ(y)

+

∫∫∫∫
dµ(w, x, y, z)φ(w)φ(x)D4(t,w, x, y, z)φ(y)φ(z).

(4.122)

D2 and D4 represent the modifications of O(λ) and obey different kernel equations moti-

vated by power counting in the field variable. The first term describes the mass renormali-

sation and the second the contribution from the four-point vertex. After plugging (4.121)

into the Schrödinger equation and asymptotical expansion for small times we write down

the equations proportional to λ; afterwards we perform the rescalings D̃4 = det2(gΣ)D4
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and D̃2 = det(gΣ)D2, then the two equations read

i
∂D̃4

∂τ
(τ) =

√
det(g)

[
D̃4(τ)K̂(τ)

]
, (4.123)

i
∂D̃2

∂τ
(τ) =

√
det(g)

[
2K̂(τ)D̃2(τ) + det(gΣ)D̃4(τ)

]
. (4.124)

Like before we have defined the dimensionless time variable τ = t/M and K(τ) is the time

dependent part of the ground-state kernel. For an asymptotic expansion in small times, we

can solve for the four-point vertex contribution D4

D4(τ) ∼ τ
6 |ln(τ)|−1

τ→0−→ 0. (4.125)

We see, this equation goes to zero in the limit of small times. Applying this to (4.124) the

equation for D2 simplifies a lot:

i
∂D̃2

∂τ
(τ) =

√
det(g)

[
K̂(τ)D̃2(τ)

]
. (4.126)

Note, in the limit of small times, the ground-state kernel K(t, x, y) factorises its time-

dependence K(t, x, y) → K(t)δ(3)(x, y); this fact is consistent with the BKL conjecture

since the spatial correlation becomes trivial while the time-dependent function dominates

(here it diverges). We solve (4.126) and get a very similar result

D̂2(τ) ∼ τ
3 |ln(τ)|−1

τ→0−→ 0. (4.127)

Taking limit for small times leads to a vanishing deformation kernel. The four-point modi-

fication D4 of the wave functional becomes negligible near the origin, the same behaviour is

shown by the two-point modificationD2. As a rule of thumb, for each field in the polynomial

interaction we get a factor of
√

det(gΣ) ∝ τ
3
2 .

If we perform our asymptotic expansion less radical, the equations for the rescaled de-

formation kernels are given by two coupled nonlinear integro-differential equations which

are solved via integral exponential functions which reduce to ln(τ)−1 for small times.

The behaviour of the deformation kernels affect the interaction wave-functional such

that the normalisation Nint(τ) → N(0)(τ) for τ → 0, the same happens for G because the

integral kernels D2(t, x, y) and D4(t,w, x, y, z) vanish the functional D[φ](t) goes to zero

as well and we receive the ground state wave functional of the free theory Ψint → Ψ0.
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The brute force calculation shows that the contributions from the self-interaction term

vanish close to the singularity. However, we can make a general argument about the inter-

action terms. Whatever the polynomial interaction looks like, the exponent has to be at

least out of N.

Now we come to our heuristic argument which starts with considering self-interactions

which are polynomials in the fields Sint = λn
n!

√
gtt
∫

dµ(x)Φn(x). Their time-dependent

prefactor is the given by
√

det(g) ∝ t2 which vanishes in the limit of time going to zero.

Consequently the whole term becomes less and less important the closer the hypersurfaces

are to the singular one. We will take this as a hint that all contributions which only contain

multiplication operators will not affect regularity. For interactions involving derivatives of

Φ(x) we get terms proportional to the conjugate momentum which is identified with the

functional derivative. These terms will come with two problems, first of all they admit a

singular prefactor and additionally those terms correspond usually to non-local interactions.

From Schrödinger’s equation (4.159) we deduce the formal solution for the wave-functional

for a general Hamilton operator with interaction term and time ordering T

Ψ[φ](t) = T exp

(
−i

∫ t
t0

dτH[Φ](τ)

)
ψ[φ](t0). (4.128)

The structure shows we separated out a time-ordered time-evolution operator and a part

evaluated at initial time t0. The Hamilton operator can be split into two parts, one con-

taining the derivative operators and one the multiplication operators.

H[Φ](t) = HD

[
δ

δφ

]
+HM[Φ] (4.129)

All self-interaction is contained in the latter part which just gives real contributions which

vanish for t → 0 due to the prefactor. More significant is the asymptotic form of the Ha-

milton operator H[Φ](t) which becomes HD[Φ](t) in the limit of t → 0 because of the

diverging prefactor: csc(ϑ)/(2Mt − t2) ∼ t−2. In other words, such multiplication opera-

tor contributions do not affect self-adjointness of the Hamilton operator, or at least not

dominantly; we have identified the functional derivative operator part as dominant. This

creates an imaginary part in the time evolution of (4.128) hindering it to be unitary.

Let us do a short excursus: For the functional version we could find an (heuristic) ar-

gument very analogue to the example of a free Schrödinger particle where one can show

that for the operator − d2

dx2
on L2(0,∞) we can find a non-zero solution χ(x) on the domain
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C∞(0,∞) such that −χ ′′ = ±iχ (cf. [Reed and Simon, 1975]). The solutions can be found

as:

χ1+(x) = exp

(
1√
2
(−1+ i)x

)
, (4.130)

χ2+(x) = exp

(
1√
2
(1− i)x

)
, (4.131)

χ1−(x) = exp

(
1√
2
(−1− i)x

)
, (4.132)

χ2−(x) = exp

(
1√
2
(1+ i)x

)
. (4.133)

These solutions are strong solutions, i.e. they are infinitely many times continuously diffe-

rentiable. Although they do not lie in the Hilbert space L2(R, dµ) they lie in the domain of

the derivative. For unbounded operators the domain and the Hilbert space will in general

not coincide, it is sufficient that the domain is dense in the Hilbert space. For closed un-

bounded operators it can be shown that the domain is never the Hilbert space itself, but

the closure of the domain is [Simon, 2015c]. Of course we can find an interval on R such

that the operator will be self-adjoint but that is not the idea of a physical system.

Nevertheless, a self-adjoint extension can be derived but the squared derivative admit

infinitely many self-adjoint extensions on C∞(0,∞), or any Hilbert space L2(a, b). Note,

that − d2

dx2
admits a unique self-adjoint extension on the whole field R [Bonneau et al., 2001].

Let us try to follow a similar logic the functional derivative. At least, however, it is to say

that for the functional derivative we can take the argument only partially since the spaces

we are working in are much more general and need mathematical justification but we could

make some statements about their structure. In this sense the following argument should

be taken as heuristic idea. The interior Schwarzschild space-time is defined for the finite

time interval (0, 2M) due to the time-dependence of the metric, which is the same for

all time dependent functions. Quantum fields φ(x) are living at least in the space of two

times continuously differentiable functions C2(Σt, dµ) and are defined only on the spatial

hypersurface Σt which means they are purely depending on spatial variables, as usual in the

Schrödinger picture. The wave-functional Ψ[φ](t) collects these fields and therefore should

lie in a space similar to the L2 in quantum-mechanics, which we call L2(C2(σt),Dφ), the

space of
”
square integrable“ functionals. The term square integrable means with respect

to the functional measure Dφ.

Let us do some bookkeeping and describe the structure of the aforementioned space,
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although it needs mathematical legitimation (existence of such spaces has been proven by

[Amour et al., 2015]): We call the space of all functionals Ψ[φ] obeying:

‖Ψ‖2 =
∫
DφΨ∗[φ]Ψ[φ] <∞ (4.134)

in relation to the L2 Hilbert space, L2(C2(Σt, dµ),Dφ). It contains all normalisable func-

tionals, or square integrable functionals with respect to the functional measure. Although

there is a lack of mathematics, we will still work in this space. Let the domain of the func-

tional derivative D( δ
2

δφ2
) be dense in L2(C2(Σt, dµ),Dφ). We could construct functions

fulfilling the condition given by the von Neumann criterion

υ1+[φ] = exp

(
1√
2
(−1+ i)

∫
dµ(x)φ(x)

)
, (4.135)

υ2+[φ] = exp

(
1√
2
(1− i)

∫
dµ(x)φ(x)

)
, (4.136)

υ1−[φ] = exp

(
1√
2
(−1− i)

∫
dµ(x)φ(x)

)
, (4.137)

υ2−[φ] = exp

(
1√
2
(1+ i)

∫
dµ(x)φ(x)

)
. (4.138)

However, the solutions do not lie in the domain of the derivative Hamiltonian D(Hπ).
The problem is that the measure can not be adapted as in the quantum mechanical case

because the functional derivation will produce δ(0) terms. We may therefore expect that

the functional derivatives do not admit unique self-adjoint extensions.

What has instead to be checked is the sign of the ground-state kernel’s imaginary part

sgn(Im(K)).

sgn(Im(K)) =

−1 (implies increasing norm),

1 (implies decreasing norm).
(4.139)

We want to empasise that this condition is mandatory for a consistent and complete evo-

lution, it guarantees that neither probability can be gained from the background, nor the

singular hypersurface will be populated if K diverges in the limit t approaches zero.

We want to mention here, that the Schwarzschild kernel admits the desired positive sign

in the imaginary part:

Im(K)(t, x, y) ∼
−iδ(3)(x− y)

sin(ϑ)t3 ln
(
t
2M

) (4.140)
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The above expression seems to have a negative sign, however, the logarithm for arguments

smaller than zero admits a negative sign, therefore the whole expression is positive. This

leads then to the result of quantum completeness as we have just seen.

If the sign of the imaginary part of the kernel is negative, it will be possible that norma-

lisablility fails and probability can be gained from the background. Then the system would

be quantum incomplete.

It has to be emphasised that the occurrence of an imaginary part originates only from

the functional derivative part Hπ of H[Φ](t) while the multiplication operators do not

contribute in the limit t→ 0 because of the vanishing prefactor

H[Φ](t)→ Hπ , for t� 1. (4.141)

Perhaps we could adjust the domain such that there is a unique extension but this would

certainly not describe our system.

Altogether, Schwarzschild quantum probing shows a consistent evolution for the ground-

state probability amplitude; the imaginary eigenvalue fulfils the completeness criterion for

the free theory. Polynomial self-interactions respect quantum completeness with the above

argument which is consistent in the sense that a regular quantum theory will not evolve

into a strong coupling regime, if not initially imposed. Quantum chromodynamics could

presumably modify our analysis, but this is postponed to future research.

Quantum completeness might be rephrased in the following sense: quantum completen-

ess means that an initially well-defined Cauchy problem, stays well-defined during time-

evolution. Regular initial conditions will not evolve into singular values. Quantum regula-

rity stays robust against self-interaction of the probes.

The calculation and the result in (4.127) and (4.125) show immediately coincidence with

our heuristic argumentation. The statement that the polynomial interaction term vanishes

for small times fits in the picture of the asymptotic expansion of the Hamilton operator and

the vanishing interaction term. All contributions from polynomial interactions will conclude

with this. Nevertheless, all interactions involving conjugate momenta are excluded from this

reasoning.

Note, the dominating part comes from the kinetic part of the Hamilton operator Hπ,

and π ∝ ∂tφ, hence, it is the time gradient which dominates the behaviour near spacelike

singularities [Belinskii et al., 1970]. Quantum completeness of Hπ cannot be destroyed by

any interaction which strongly supports the validity of the BKL conjecture.



4.3 Quantum probing of Schwarzschild 91

4.3.4. Stress-energy tensor of quantum probes

The squared amplitude ‖Ψ‖2(t) of the wave-functional is a good criterion to check the

consistency but unfortunately, it is not measurable, therefore the desired quantity for phy-

sicists is usually energy because we can get some intuition when we compare the energy

of the system with the energy scale of the theory which in our case would could be the

Planck energy.

In curved space-time there are some proposals how to measure the energy of a manifold

because it might not be a well-defined quantity. In principle the Kodama vector provides

one notion of energy for space-times with spherical symmetry. Since we are interested in the

energy of the probing field and not of the whole system, i.e. the field content on the space-

time, the stress-energy tensor will do the job. It is a very good candidate, nevertheless,

in curved space-time the renormalisation might cause some difficulties. Some components

might diverging due to the coincidence limit which even occurs in flat space. Especially

the energy density ε = T00(x) is a quantity for which we have some intuition. For a scalar

field the stress-energy tensor is given by

T = dΦ⊗ dΦ−
g

2
g−1(dΦ, dΦ) +m2Φ⊗Φ (4.142)

Note, this is a local quantity and it has to be renormalised because it is defined at one space-

time point, i.e. all fields Φ(x) are evaluated at the same space-time point x; for example

we could perform the axiomatic renormalisation procedure which has been developed by

Wald [Wald, 1978].

Let us sketch an instructive example: we take the expectation value 〈φ(x)φ(y)〉 in order

to see how we can fulfil those axioms. In general the expectation value 〈T〉 consists of

parts like 〈φ2(x)〉 which if näıvely evaluated imply a multiplication of two δ-distributions

at the same point; this would not yield any finite result. Nevertheless, when calculating

the expectation value under consideration of a local bi-distribution β(x, y) with suitable

singular structure, the expression 〈φ(x)φ(y)〉 makes totally sense. The construction can

be seen by Hadamard [Hadamard, 1925] or Wald [Wald, 1994]. Basically, this is the idea of

a point-split prescription: a single point is replaced by two points but we will impose the

limit that the points coincide. For further reading consider the book of Wald [Wald, 1994]

or Birell and Davies [Birrell and Davies, 1984].

In the Schrödinger representation this coincidence limit causes problems but a subtrac-

tion of the Minkowski divergence (this is the divergence which is independent from the
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space-time curvature) will regularise T after a point-split. Furthermore a normal ordering

procedure renormalises the energy-momentum tensor and the resulting singular contribu-

tions arise purely from the metric.

Another advantage of the Schrödinger representation is that the fields are defined on the

spatial hypersurface Σt but the time dependence of the stress-energy tensor is not on the

same footing as the spatial dependence; it is more like a label for the hypersurfaces Σt.

The renormalisation will therefore affect the spatial part, the divergence occurring from

the time coordinate is identified as purely geometrical.

In quantum field theory all observables are evaluated with respect to the quantum states,

hence, we take the expectation value 〈Tµν〉(x). There is a relation between the different

notions of energy, the energy density 〈T00〉 can be identified with the expectation value

of the Hamilton operator 〈H〉 [Traschen and Brandenberger, 1990]. Note, that these two

quantities are also related to the number of produced particles 〈N〉, and consequently to

the Bogolubov transformation and its coefficient, usually named as β

〈Nj〉 =
∑
i

|βij|
2, (4.143)

where we referred to the energy produced from one single mode here indicated with the

subscript j. The leading behaviour (in time) of all three quantities is for that reason simi-

lar. In our calculation we choose the expectation value of the Hamilton operator. In the

Schrödinger representation

〈Ψ|H[φ]|Ψ〉(t) =
∫
DφΨ∗[φ](t) (H[Φ](t)Ψ[φ](t)) (4.144)

and it should be said that in the Schrödinger representation the stress-energy tensor acts as

an operator consisting of functional derivatives and field operators. To apply the Hamilton

operator and perform the path integral might get cumbersome, alternatively we may use

the Schrödinger equation in order to identify H[Φ](t)Ψ[φ](t) with i∂tΨ[φ](t). It might or

might not be that the time derivative of the ground-state wave-functional in (4.62)

〈Ψ(0)|i∂t|Ψ
(0)〉 (4.145)

is less complicated. No matter how we calculate the result will always include the expecta-

tion value 〈Φ2〉(t) and the time-dependence of the kernel function K(t, x, y). Let us have

a look at the purely time-depending function in (4.145): in the limit of approaching the
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singularity at t/M = τ ≡ 0 we get a diverging contribution ∝ τ−1. Nevertheless, we get

also a contribution which is proportional to ‖Ψ‖2(τ), the norm of the ground state which

is decreasing for the Schwarzschild space-time. Together with (4.62) the time dependence

of (4.145) can be asymptotically written as

〈i∂t〉 ∼ τ
3
4
N(Λ)−1| ln(τ)|N(Λ)−2 (4.146)

which is not decreasing in general. This can be seen in figure 4.4. We would have to

distinguish between two cases, either the case where N(Λ) ≤ 4
3

then the singularity at

zero will cause a blow up (green line) of 〈H〉, or 〈T00〉 respectively. In diagram 4.4 we see
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Figure 4.4.: Plot of the stress-energy tensor 〈T00〉 for N(Λ) ∈ {1, 5} and t ∈ [0, 0.25]

for small values of N(Λ), that is N(Λ) = 0 (not plotted) and N(Λ) = 1 (green line) the

expectation value of the 00 component of the stress-energy tensor diverges. All number of

momentum modes N 3 N(Λ) > 1 are regular at t = 0. Figure 4.4 is not suitable to observe

the higher-N(Λ) modes’s behaviour; they more or less look like straight lines. Nevertheless,
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we see the most important property: they go to zero for t→ 0. In order to investigate their

behaviour we take a deeper look at higher N(Λ) modes.

In this case, when N(Λ) ≥ 4
3
, then no divergence will occur, whatsoever. From Figure 4.5

it is visible that for N(Λ) > 1 the qualitative behaviour stays the same, i.e. the expectation

value of 〈T00〉 increases up to some point, then it starts to decrease, and vanishes in the

limit t → 0. This means the energy density vanishes at the singular hypersurface which

supports our quantum completeness calculation and the physical relevance of the quantum

completeness criterion. The red curve shows N(Λ) = 5 and the green N(Λ) = 13, the

bigger N(Λ) the lower is the maximum of the curve. We should add that the maximum

of 〈T00〉 neither exceeds the Planck scale nor are the values neighbouring. It is to say that

if the Planck scale had been reached, then we would have mistrusted the predictability

beyond this value.

Returning to our discussion about N(Λ), the question is, how strong is this restriction.

The answer is: it does not matter. The number of momentum states in between the range

of the cut-off and zero is huge; the spectrum of the momentum operator is continuous.

Therefore, infinitely many states with momentum are in the range |k| ∈ [0, 3
√
Λ]. To assume

N(Λ) be small, is very poor. It is a huge number which has to be regularised but the result

stays valid regardless of the regularisation, because regularising N(Λ) to a finite value

which is still big, will not change the picture. The stress-energy tensor is in agreement

with our results of the persistence amplitude ‖Ψ‖2(t) and the physical interpretation is

clear, a zero probability at Σ0 should not result in an infinite amount of energy at this

point. The energy density has proved to be a brilliant diagnostic tool for the validity of

our argumentation.

Nevertheless, one might wonder about the trace anomaly of the stress-energy tensor for

conformally coupled fields which is divergent for t = 0 because it scales with t−6. Here,

we refer to the same argumentation, we have already employed when we explained the

connection between Schrödinger and Heisenberg representation: in the latter, we have to

check, whether or not the divergent energy can be measured in a quantum-mechanical or

classical measurement process [DeWitt, 2003]. Moreover, DeWitt explains that the trace

anomaly is a non-critical anomaly which can not influence the consistency of quantum field

theory even if the background is dynamically resolved [DeWitt, 2003].

We expect two effects which act contrariwise: on the one hand side the squeezing of the

hyperplane and the fields on it causing the energy density to grow, and on the other the

probability measure which goes to zero at the singularity. In other words, quantum theory
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Figure 4.5.: Plot of the stress-energy tensor 〈T00〉 for t ∈ [0, 0.5].

protects itself from running into a coincident limit by its probability measure. These two

effects fight each other in the energy density, but in the end the probabilistic measure

dominates.

From (4.142) follows, the stress-energy tensor 〈T〉 is proportional to two quantities: the

expectation value of the fields 〈Φ2〉 and of its conjugate variable 〈Π2〉 because observables

are built from the variable Φ(f) and its conjugate momentum Π(f), where f is a continuous

function with compact support. Each of those expectation values can be shown to be

proportional to the ground state probability amplitude ‖Ψ(0)‖2(t).
First we introduce an auxiliary source functional J describing the absorption and emis-

sion of fields φ minimally coupled to the associated local current density J, and define

Ψ J
0 [φ](t) := 〈φ| exp(J )[Φ](t)|Ψ0〉Σt , which allows to replace compositions of the configura-

tion operator Φ by the corresponding succession of functional derivatives with respect to
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the current. In the presence of the auxiliary source,

〈Ψ J
0 |Φ

2(f)|Ψ J
0 〉Σt = [f]δ 2J exp

{
1

4

1√
det(gΣ)

[J] [Re(K)]−1 [J]
}
P0(t) , (4.147)

where [f]δ 2J denotes the second functional derivative with respect to J, smeared with an

appropriate field configuration f. In the absence of the auxiliary source, the ground-state

expectation (4.147) is real and semi-positive definite. Towards the singularity Σ0, (4.147)

approaches zero due to the temporal support granted by the probability density P0(t) :=
‖Ψ0[φ]‖2(t). Similarly,

〈Ψ J
0 |Π

2(f)|Ψ J
0 〉 = (Re(K))(t)‖Ψ0‖2(t) +

√
det(g

Σ
)|k|2(t)〈Ψ J

0 |Φ
2(f)|Ψ J

0 〉Σt . (4.148)

The ground-state expectation value (4.148) is real, semi-positive definite, and approaches

zero towards Σ0. Therefore, 〈Ψ J
0 |T00(f)|Ψ

J
0 〉 is always semi-positive definite and vanishes

towards the black-hole singularity. We present the scaling in short

〈Ψ J
0 |Φ

2(f)|Ψ J
0 〉Σt ∼ t

9
2‖Ψ0‖2(t) (4.149)

〈Ψ J
0 |Π

2(f)|Ψ J
0 〉Σt ∼

(
1+

1

t3

)
‖Ψ0‖2(t) (4.150)

which makes clear that the expectation value of Φ vanishes for t→ 0 while the conjugate

momentum part (Re(K))(t)‖Ψ0‖2(t) poses a condition on N(Λ) which we have just seen

before in the analysis of 〈H〉. Nevertheless for a suitable, and reasonable N(Λ) the expec-

tation value vanishes. It can be shown that these qualifications remain true for arbitrarily

excited states.

4.4. Charge conservation inside the black hole

This section covers charged fields inside the black-hole geometry [Eglseer et al., 2017]; alt-

hough we might repeat a lot of the steps from previous analyses we will explicitly derive

that the charge is conserved by the time-evolution inside. First of all, we come up with

the formalism derived in the previous sections but now our degree of freedom will be a

U(1)-charge of mass m.

The charged scalar Φ(x) act as test fields on the background and will not disturb the

geometry in such an amount that the Schwarzschild metric is transformed into a different
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metric. Note that the U(1)-charged fields could act as a toy model for information carriers.

Ohanian and Ruffini [Ohanian and Ruffini, 2013] explain, how an infalling charge in the

Schwarzschild background looks for an outside observer. During the infall the spherical

symmetry is broken and hence the set-up of a test charge inside a Schwarzschild black-hole

is properly described by the Schwarzschild background12. Conclusively, our system is a

charged test field placed inside a black-hole. The corresponding action is

S = −

∫
d4x
√
−g

[
∂µΦ∂

µΦ∗ +m2ΦΦ∗
]
. (4.151)

with g the metric determinant. We proceed as usual and construct the Hamilton operator

and solving the Schrödinger equation; we restrict to only the essential steps. To emphasise

it again, the Schrödinger representation generalises the quantum-mechanical picture to

infinite numbers of degrees of freedom that include fields.

The metric (3.4) is globally hyperbolic, we perform a 1+3-split and foliateM along the

timelike vector field ∂t into spacelike hypersurfaces Σt, and impose the canonical commu-

tation relations (for the charged fields)

[Π(x), Φ(y)] = [Π∗(x), Φ∗(y)] = −iδ(3)(x− y). (4.152)

in order to formulate the Hamilton operator. Using the quantisation prescription we identify

the conjugate momenta by functional derivatives

Π(x) = −i
δ

δφ(x)
. (4.153)

Note, we can find an analogue formula for Π∗(x) by application of the Hermitian conjuga-

tion. The Hamilton operator is then derived by a Legendre transformation similarly to the

real scalar field

H [Φ∗, Φ] (t) =

∫
Σt

d3x
√

−det(g)

[
−

1

det(gΣ)

∣∣∣∣
δ

δφ

∣∣∣∣
2

+ |∂Φ|
2+m2|Φ|

2

]
. (4.154)

12Suppose an electric charge reaches the singular hypersurface the background should transform into
Reißner-Nordström. Of course we could have also tested this metric, but we want to give a heuristic
argument why the Schwarzschild background threatens completeness as a worst case scenario. Reißner-
Nordström has a singularity which in leading order is dominated by the term Q2/r2. This purely
timelike singularity can be probed via quantum mechanics but will not lead to any incompleteness due
to Theorem X.11 in Reed and Simon 2 [Reed and Simon, 1975].
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The metric of the hypersurface is, as usual, denoted by gΣ and the determinant by det(gΣ).

We define the ground-state functional by a Gaussian wave package which contains the fields

as variables through

Ψ0[φ
∗, φ](t) = N (t) exp (−[V∗]K[V](t)) ,with V =

(
Φ

Φ∗

)
(4.155)

normalisation function N (t), and the kernel K represents here a 2× 2 matrix. We expect

we would have to investigate the full theory which includes excitations and self-interaction

of the theory, nevertheless, we saw for the Schwarzschild metric that close to the singu-

larity (4.154) shows a very remarkable behaviour; diagonal Hamilton operators can be

decomposed into a part consisting of derivatvives HΠ and one containing only polynomials

of multiplication operators P[Φ](t). After we applied the Schwarzschild coordinate neigh-

bourhood to (4.154) the relevant part of the system is given by HΠ which is obviously not

self-adjoint since it consists of functional derivatives. It holds for all terms polynomial in

Φ that P[Φ](t)→ 0 when t→ 0. Therefore, the ground state analysis, and moreover, the

analysis of HΠ is sufficient.

A complex Gaussian distribution is most easily expressed by a quadratic form of a vector

v containing the fields contracted with a matrix K describing the spatial correlations and

the time translation

[V∗]K[V](t) := 1

2

∫
dµ(x, y)v†(x)K(t, x, y)v(y) , (4.156)

where v†(x) = (φ∗(x), φ(x)), the kernel matrix is

K(t, x, y) =

(
K(t, x, y) L(t, x, y)

L(t, x, y) J (t, x, y)

)
, (4.157)

and the functional state Ψ0[φ
∗, φ] contains the field configurations. The norm of the state is

given by a functional integration over all field configurations localised on the hypersurface

Σt. The normalisation N (t) is purely time dependent (and therefore field-independent) and

can be expressed by the trace of K(t, x, x), which we denote tr(K)(x, y, t) ∼= k(t)δ(3)(x, y)13

N (t) = N0 exp

(
−i

∫ t
t0

dt ′
∫

d3x
√
−g k(t)δ(3)(x, x)

)
. (4.158)

13This relation holds for asymptotic expanded kernel functions in the limit of small times.
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In principle the δ(3)(x, x) will need some regularisation procedure, but for our argumenta-

tion this is not needed. Again, the time evolution of the quantum states is governed by the

Schrödinger equation

i∂tΨ0[φ
∗, φ](t) = H[Φ∗, Φ](t)Ψ0[φ

∗, φ](t). (4.159)

The real scalar field analysis should be consistent with the results of the complex fields. We

could split the complex field in its real and imaginary part and perform the calculations

in [Hofmann and Schneider, 2015] for each sector. We might expect a factorisation of the

wave functional Ψ0[φ] → Ψ0[Re(φ)]× Ψ0[Im(φ)] into real and imaginary part of the field

which are both real and could be evaluated separately, and for real scalar field we know

that the system is complete.

Taking this as a motivation we perform the calculation and solve for the kernel matrix

explicitly. In the absence of interactions, K(t, x, y) becomes diagonal and again only the

trace enters. The result, after asymptotical expansion for small times t→ 0, is

k(t) =
i4M

(2M− t)t3 sin(ϑ)(iC0 − ln(t))
, (4.160)

where C0 is an integration constant. Because the Hamilton operator is not essentially self-

adjoint, which we know because HΠ is not self-adjoint, we will get complex eigenvalues

which leads to a non-unitary time-evolution. Apart from this, when the Hamilton operator

admits a contraction semi-group a consistent evolution can be assured because the wave

functional decreases to zero towards the singularity (quantum completeness). This guaran-

tees that the amplitude ‖Ψ0‖2(t) for t → 0 goes to zero as well and the validity of the

probabilistic interpretation is protected by a bounded time-evolution.

We want to assume throughout the analysis that backreaction can be ignored because

its inclusion could deform the background which makes investigations of the original space-

time obsolete. In other words, we take the same assumptions as for the real scalar field

and no further assumptions than Hawking and Penrose in the derivation of the singularity

theorems. Recalling the quantum completeness criterion, the presence of a geometrical sin-

gularity does not need to pose a problem, the important fact is whether or not the singular

hypersurface can be populated with any field configuration. For the matrix K(t, x, y) we
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get the following amplitude

‖Ψ0‖2(t) ∝
(t3/2ln2(t))N(Λ)

|ln(t)|2vol(Σt)
t→0−→ 0 (4.161)

with volume regularisation vol(Σt) and a regulator concerning the momenta N(Λ) with

momentum cut-off Λ. We see, the Hamilton operator admits a contraction semi-group

which takes the probability amplitude to zero when we approach the singular hypersurface.

The regularisation does not sensitively influence the result. Nevertheless, it might be

seen as a sign for the existence of a fundamental parent theory. Quantum gravity should

be able to explain how field theory is protected from classical singularities. We interpret

our result to the favour of quantum gravity because if quantum field theory cannot reach a

classical singularity, this state should not even be formed. A valid quantum gravity should

provide a dynamical resolution of the black hole formation not ending in a singularity.

We conclude that the Schwarzschild interior is quantum complete for charged fields. When

we compare the integral kernels corresponding to the real and the complex field we see

that up to constant factors there are identical.

By now we only know that the probability of populating spatial hypersurfaces decre-

ases when we approach the singularity. Investigations of the charged scalar field help to

understand what exactly happens to the fields inside the black-hole.

This result is rather intuitive: The ultimate reason behind the consistency of local quan-

tum physics inside a black hole, even in a semi-classical set-up, is quantum completeness,

which also renders charge conservation sacrosanct. The geodesic information sink at the

singularity is closed because the probabilistic measure keeps Σ0 void of any charges and

information carriers. As a consequence Σ0 cannot be probed by local quantum physics, not

even indirectly in the sense of allowing the black hole interior B to leak. Quantum fields

are totally ignorant about the presence of Σ0 and the corresponding complete event space

can be interpreted as a physical space-time which is regular.

The absence of an information sink in the quantum theory can be reconsidered as follows.

Conservation laws are connected to balance equations. Since K is diagonal, we only consider

φ-configurations for the sake of brevity. The probability-current density is given by

S0(x) :=
√
−gtt
g
Σ

(Ψ0 Π(x) Ψ
∗
0 − h.c.) , (4.162)

and satisfies the functional generalisation of differential probability conservation, ∂tP0 +
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divS0 = 0, where

divS0 :=
∫
Σt

dµx iΠS0 , (4.163)

on any spatial hypersurface Σt , t ∈ (0, t0). Integrating this divergence over the field confi-

guration space, conservation of probability amounts to

∂tW(t) = i

∫
Σt

dµx

√
−gtt
g
Σ

(
〈Ψ0|Π2(x)|Ψ0〉− h.c.

)
, (4.164)

where W(t) = ‖Ψ‖2(t) denotes the total probability for populating Σt with any field con-

figuration, on- and off-shell. Towards the black-hole singularity 〈Ψ0|Π2(x)|Ψ0〉 ∈ R+
0 , see

(4.148), and soW(t) is conserved. The probability current cannot reach the geodesic infor-

mation sink because for t → 0 the expectation value 〈Π2〉 → 0. Therefore no probability

leakage occurs which is in accordance with our former statement that Σ0 cannot be popu-

lated with scalar fields. This result suggests that the geodesic information sink is closed for

quantum fields. We conclude that charges are conserved and then no information can be

destroyed by the black hole interior. This is illustrated by figure 4.6, we see that towards the

singular hypersurface Σ0 the probabilistic current depletes and there is no passing through

this hypersurface.

Instead of populating the interior B with arbitrary information carriers, consider a popu-

lation originating from an Unruh state |U〉 ≡∑ |Ψin〉⊗ |Ψout〉, where |Ψout〉 denotes a state

associated with Hawking radiation (i.e. a state describing the outgoing fields/particles)

and |Ψin〉 is the corresponding ingoing state. Let us choose an initial Cauchy hypersur-

face Σt0 inside the black hole B at time t0 such that the matter content of the interior is

|ΨB〉 = |ΨS〉⊗|Ψin〉 on this hypersurface [Horowitz and Maldacena, 2004]. The configuration

space contains dual states such as

〈BH| = 〈M|⊗ 〈R|, (4.165)

where M represents the matter fields that have participated in the gravitational collapse,

and R denotes the ingoing Hawking quanta. Evolving the states from Σt0 towards the

singular hypersurface to Σετ, the wave functional in configuration representation is given

by

ΨB[BH](ετ) = Σετ〈BH|E(ετ, t0)|ΨB〉Σt0 . (4.166)
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Figure 4.6.: Plot of the probabilistic current.

Note that ε is a smallness parameter. In order to allow for a probabilistic interpretation, the

evolution operator is required to satisfy the contraction property ‖E(ετ, t0)‖ ≤ 1 towards

Σ0. Equivalently, its generator, the Hamilton operator

H = Hcoll(M) +Hrad(R) +Hcoup(M,R) (4.167)

needs to be accretive. Here, Hcoup describes the coupling between the quanta that participa-

ted in the gravitation collapse 〈M| (corresponding to Hcoll(M)) and the ingoing Hawking

radiation 〈R| (corresponding to Hrad(R)) . If a weak coupling regime is assumed, then

ΨB[BH](ετ) ≈ ΨS[M](ετ)× Ψin[R](ετ) to leading order in the coupling. The results of our

analysis show that Ψin[R](ετ) vanishes towards Σ0. Provided ΨS[M](ετ) is sufficiently well

behaved, it then follows that ΨB[BH] vanishes at the border Σ0 of physical space-time.

Hence, our calculation provides some foundation to the black hole final state proposal

by [Horowitz and Maldacena, 2004] which has been suggested as a candidate to solve the

black-hole information paradox. We want to mention that this proposal is not a very fruit-

ful approach, since there is no physical motivation except the closing of the wanna-be
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information sink.

However, we showed that this arises naturally without imposing boundary conditions, the

wave functional of the black-hole interior satisfies a trivial Dirichlet boundary condition.

This boundary condition restricts information configurations to B in which information

processing is described by a contraction semi-group E(t, t0) with an accretive generator

H. This generator shares properties with Dirichlet operators: close to the boundary the

dynamics trivialises to free evolution, corresponding to a geometrically induced asymptotic

freedom, and information processing is only supported away from the boundary.

The whole derivation of charge conservation could also be performed in the Heisenberg

picture which is shown in appendix G.

4.5. Quantum probing of the Kasner space-time

In chapter 3.2 we motivated that the Kasner space-time is of paramount importance be-

cause of the BKL conjecture, moreover, Kasner space-times serve also as model for an early

stage of the universe which is followed by an inflationary stage [Kofman et al., 2011]. One

of the defining properties are that it is anisotropic and homogeneous on a given scale. For

our universe, satellite measurements hint towards a flat universe [de Bernardis et al., 2000,

Gomero et al., 2016]. This unusual flatness - known as the flatness problem - is one of the

naturalness problems of cosmology [Guth, 1981]. This flatness is very well explained by the

inflationary paradigm; the fast expansion in the inflationary epoch has flatten our universe

such that it is consistent with observational data.

However, the space-time describing inflationary scenarios (for example de Sitter space)

are bothered by the presence of an initial singularity. This type of singularity is different

from the black hole singularity because the degrees of freedom will inevitably come from a

coincidence limit, i.e. all fields are collected at one specific point (cosmological singularity)

where observables like the energy density diverge. A remedy can be found in an anisotropic

pre-inflationary phase which does not support a coincidence limit, because vacuum solu-

tions do not support such a limit due to the vanishing Ricci tensor. In order to get a de

Sitter phase (which describes inflationary space-times)

g = −dt⊗ dt+ e2H0t (dx⊗ dx+ dy⊗ dy+ dz⊗ dz) (4.168)

with Hubble parameter H0, out of Kasner we need an isotropisation which has been pro-

posed by [Gümrükçüoğlu et al., 2008]. In the presence of a cosmological constant we find
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a relation for the scale factors ai(t) to be

ai(t) = a
in
i (sinh(3H0t))

1
3
(
tanh( 3

2
H0t)

)pi− 13 . (4.169)

Here, each coordinate has a different scale factor, e.g. ax(t), ay(t), and az(t). The cha-

racteristic time scale of isotropisation is given by H0 [Gümrükçüoğlu et al., 2008]. We see

from (4.169), that for small times, t� H−1
0 , the scale factors exhibit Kasner like behaviour

ai(t) ∼ a
in
0 t

2pi . After crossing the scale, for t � H−1
0 the scale factors approach a de Sit-

ter behaviour ai(t) ∼ a
in
0 exp(H0t) and the spacetime becomes isotopic. A preinflationary

Kasner epoch is consistent with the number of e-folds [Kofman et al., 2011].

Nevertheless, the question arises whether or not the Kasner background provides a con-

sistent evolution for quantum fields, i.e. it is quantum complete.

This section discusses only the ground state analysis, that is, the evolution of a Gaussian

wave-functional. In appendix F, we show that a Schwarzschild analysis can be connected

to a Kasner type-D solution. Hence, non-Gaussian fluctuations and excitations will follow

the same schemes as in the previous section and do not necessarily be repeated.

4.5.1. Ground state analysis

Our aim is to check consistency for a scalar field on a general Kasner background. Usual

argument against inflation is the singularity at I− (past infinity). The past infinite incom-

pleteness poses a severe threat to the inflationary scenario. Here, we caught the idea of

[Kofman et al., 2011] and proposed an anisotropic preinflationary phase which is given by

a Kasner space-time. This family of space-times has an initial singularity but quantum

completeness of Schwarzschild is indicative that these space-times might be quantum com-

plete as well.

Our space-time is given by the Kasner metric

g = −dt⊗ dt+ t2p1dx⊗ dx+ t2p2dy⊗ dy+ t2p3dz⊗ dz (4.170)

with Kasner exponents fulfilling the Kasner sphere (
∑

i p
2
i = 1) and plane (

∑
i pi = 1)

condition. Due to the Bianchi I form of the space-time (4.168) the metric components are

purely time-dependent and the hypersurface is conformally flat (vanishing Cotton-Bach

tensor); one huge advantage is its easy form, because the determinant of the full metric is up

to a sign identical to the determinant of the hypersurface Σ: det(g)(t) = −det(gΣ)(t) = t
2.
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In the proceeding we will see how this simplifies calculations.

Our probing device is a free scalar field Φ(x) with mass m given by the action

S = −1
2

∫
d4x
√

−det(g)
{
∂µΦ(x)∂µΦ(x) +m2Φ2(x)

}
. (4.171)

In order to describe the inflationary paradigm correctly, we would have to analyse a spatial

potential which fulfils some conditions, for example a slow-roll condition. For now we will

restrict ourself to test whether the Kasner singularity could harm scalar quantum fields.

Note the scalar field case is totally sufficient because in the most promising attempts the

inflaton field is a scalar field.

Following the steps mentioned in 4.1.3 we construct the Hamilton operator (4.57) and

the canonical commutation relation (4.58) for the field Φ(x) and its conjugate momentum

π(x). Again the conjugate momentum is identified with the functional derivative (4.59).

When we explicitly plug the Kasner metric into the formula of H[Φ](t) we get

H[Φ](t) = 1
2

∫
d3x

[
1

t

δ2

δφ(x)2
+ t

(∑
i

(∂iΦ(x))2

t2pi
+m2Φ2(x)

)]
. (4.172)

Following the Schwarzschild treatment of the last subsection we are interested in the most

divergent contributions to the Hamilton operator which is the kinetic contribution due to

the BKL conjecture.

The pi are not linearly independent, they can be arranged such that p1 < p2 < p3

−
1

3
≤ p1 ≤ 0 (4.173)

0 ≤ p2 ≤
2

3
(4.174)

2

3
≤ p3 ≤ 1. (4.175)

We can find special choices where only one exponent is different from the others; the most

special is the choice (0, 0, 1) which has only an artificial singularity. This choice is nothing

but a part of Minkowski space, the so-called Milne universe which is an extremal and

outstanding case of Kasner.

In principle we could do the analysis in the parameter λ because all exponents are de-

pending on each other but we stay in the description of the pi in order to make comparison

with Schwarzschild easy. From our Schwarzschild analysis we know HΠ does not affect
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consistency of the evolution.

What about the new polynomial part P[Φ]? The divergence goes the worst (worst means

here the lowest possible power or the most divergent) with 1/t which is equal of setting

one exponent to one in which case we recover Minkowski.

More interesting cases are the configurations with a real singularity. The polynomial

part contributes with t1−2pi which is less dominant than the kinetic part. Respecting the

ordering of the Kasner exponents we are left with

P[Φ](t)
t→0−→ 1

t2p3−1
(∂zΦ)2 +

(
1

t2p2−1
(∂yΦ)2

)
(4.176)

where the contribution of the last term strongly depends on the choice of p2. Our ground

states are defined as in (4.64) and (4.158) with the specific measures in the integration.

Schrödinger’s equation (4.159) yield an explicit equation for the kernel K(t, x, y) in the

fashion of (4.68)

i∂tK(t, x, y) =
1

t

∫
d3zK(t, x, z)K(t, z, y) −

1

t2p3−1
∂2zδ

(3)(x− y), (4.177)

where the determinant of the metric is just given by t2 and consequently the kernel is

transformed like K→det(gΣ)K. As expected, we get an integro-differential equation which

can be transformed into a Riccati equation via a spatial Fourier transform (4.71) to get

(4.57) for the Kasner case.

A closed form for the solution cannot be given unless the value of the pi is specified.

Calculations show that modulo constants, the time-dependence of the kernel and therefore

the norm always scales like in the Schwarzschild case. For all but (0, 0, 1) we get the same

result and the Kasner space-time family is quantum complete.

4.5.2. Mode functions

For Kasner space-times we restrict ourself to show that the mode functions scale similar

with t to the harmonics of Schwarzschild from which we determine a verdict about excited

states. The kernel of both Kasner and Schwarzschild are very similar; the reason is they

are connected by Huygens’s principle to the solutions of the wave equation ϕ̂(k, t) (which

are similar close to the singular hypersurface). For the kernel we find

K̂(k, t) = −
i√
−g
∂t ln(ϕ̂(k, t)). (4.178)



4.5 Quantum probing of the Kasner space-time 107

The (Fourier transformed) harmonics on a Kasner background, to which we wish to apply

(4.178), is for small times t→ 0 of the form:

ϕ̂(~k, t) = c1(~k) ln

(
t

t0

)
+ c2(~k), (4.179)

with momentum dependent constants c1,2. We find the modes to be logarithmically di-

vergent, which is the same degree of divergence we get for the Schwarzschild harmonics

(4.115). Due to the BKL conjecture and the fact that the Schwarzschild metric approaches

a Kasner type-D close to the singularity, we would have expected to get similar results.

With (4.179) and (4.178) we may once more derive an asymptotic equation for the Kernel

that will be given by:

K̂(~k, t) =
−i

t2| ln(t)|

(
1−

|d(k)|

| ln(t)|

)
, (4.180)

where d(k) is a complex constant in time. Let us emphasise that the kernel function is

similar to the Schwarzschild kernel and it meets the criterion we have stated for a complete

evolution (4.139). Therefore, close to the singularity the wave-functional shows the same

behaviour compared to the evolution of a scalar field on Schwarzschild which again reflects

the BKL conjecture.

We could perform the analysis of excitations similar to Subsection 4.3.2 which would

conclude with the same result. It is important to say that the transformation from Schwarz-

schild to Kasner time is t → t2/3 which we see immediately is reflected in the time de-

pendence of the kernels (4.180) and (4.94). Here, we saw explicitly that both space-times

behave similar. Kasner spaces are hence quantum complete with respect to excitations and

additionally self-interactions vanish because of the BKL conjecture; the conjugate momen-

tum part dominates over the gradient and polynomial part because ∂tφ→ Π. BKL states

that the time gradient dominates so must the conjugate momentum created from the time

gradient.





5
Conclusion

In this chapter we briefly wrap up all relevant findings of this thesis and give an overview

about future directions in this field of research. The main purpose was to develop a notion

of completeness for quantum field theory on curved space-times which can be used to

investigate singular dynamical and also static space-times. Inspired by the work of Horowitz

and Marolf, we adapted their completeness criterion to situations where the only adequate

description is in terms of quantum field theory on curved space-times. The central point

in their notion was the self-adjointness of the Hamilton operator or the unitarity of time

evolution which would not be appropriate in a set-up where emission and absorption of

particles occur; these processes happen in dynamical space-times where friction-like terms

perturb self-adjointness of the Hamilton operator and hence unitarity of time-evolution.

In this regard, the pair unitarity and self-adjointness is replaced by the more generic pair

contractivity and accretiveness which leads to a decreasing norm towards the singularity;

the contraction group hence guarantees that the physical space-time is detached from

the singular hypersurface and that observables stay finite. We require that a consistent

evolution of quantum field theory on a specific background should respect the probabilistic

interpretation of quantum theory, i.e. that states are normalisable.

To achieve our goal we chose the Schrödinger representation of quantum field theory

which is most effective as framework in order to formulate the criterion: first, this the wave-

functions are explicitly time-dependent, and second the formulation is close to quantum

mechanics and uses a functional generalisation of the Hamilton operator. We propose as

a criterion for quantum completeness that the probability amplitude shall respect the

probabilistic interpretation of quantum theory, i.e. if once normalised it should not exceed

its initial value. Moreover, the singular hypersurface should not get populated by any
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field configuration. In other words, quantum field probes are detached from the geometric

singularity and the resulting physical space-time is regular.

The quantum completeness analysis is a Cauchy problem: we start with initial conditions

given by a regular and renormalised quantum field theory on an arbitrary hypersurface of

the space-time; we observe the system under time-evolution and study the behaviour of

this field configuration as well as of observables when they approach the singularity.

Taking Schwinger’s argument that, in the presence of an external source, quantum field

theory will experience a depletion of the vacuum persistency, we could interpret our re-

sults similar: in some sense, the classical background plays the role of the external source

because it is not resolved into dynamical degrees of freedom. The loss of probability which

might occur is explained such that it is transferred to the background but not through the

singularity.

For the Schwarzschild metric as well as Kasner space-times we get consistent evolutions

since both norms of the ground state wave-functionals (as well as the functionals on its own)

go monotonically towards zero. This leaves two ways of interpretation: either Schwinger’s

suggestion, or it could have been the decaying ground state which is not stable under the

particle production of the source.

Therefore we tested excitations with on-shell particles which led to the result that also

excitations respect completeness. The ground-state amplitude stays stable under defor-

mation of the Gaussian shape which emphasises the validity and the robustness of our

criterion.

We investigated the black-hole singularity, assuming that the geometry is given by the in-

terior Schwarzschild metric and analysed the probability amplitude of the wave-functional

and the stress-energy tensor close to the singular hypersurface. Finally, we found quan-

tum completeness inside the black hole and stability of the ground state under on-shell

perturbations. In other words, all excited states with respect to the ground state admit a

consistent evolution, i.e. the quantum fields do not experience the presence of a singularity

and quantum fields cannot reach the end-point, because the singular hypersurface is not

populated with any field configuration. This conclusion holds so far for free field theory.

The analysis of the Schwarzschild space-time unveils further that only the free part will

matter. All included (polynomial) self-interactions do not have the power of destroying

the conclusion. Intuitively one could have thought that an initially weakly coupled theory

evolves into a strong coupling regime. This is, however, a wrong conclusion because the

kinetic and the potential part of the Hamilton operator are sourced differently; close to the
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singular hypersurface, self-interaction terms vanish while the kinetic part dominates. We

gave a strong argument supporting this result coming from the Kasner space-times.

Although it might look rather counterintuitive, however, the analysis of Kasner space-

times shows instead that the vanishing of self-interations can be motivated by the conjec-

ture of Belinskii, Khalatnikov, and Lifshitz. Generalised Kasner space-times show exactly

the same behaviour, that is, the wave-functional for the ground-state goes to zero close to

the singularity. The Kasner class of metrics include one specific Kasner type-D space-time

which is connected to the Schwarzschild space-time. Close to the singularity Schwarz-

schild and Kasner type-D are more or less similar because generalised Kasner obeys the

BKL conjecture, which says, in the vicinity of spacelike singularities time-derivatives are

favoured compared to spatial gradients. With this conjecture at hand the fading of the self-

interaction is not more than an immediate consequence of BKL’s conjecture because the

kinetic part of the Hamilton operator dominates, i.e. the conjugate momentum. We found

an additional confirmation of this conjecture by our results on quantum completeness for

general Kasner space-times.

We think that quantum completeness has physical relevance and presents a physical cha-

racterisation of space-time singularities. In contrast to the singularity theorems of Hawking

and Penrose this criterion is related to a physical measurement process with respect to the

field configurations.

The behaviour of observables, like the expectation value of the stress-energy tensor,

towards the geometric singularity support our argument and give more insight into ongoing

physics. The anisotropy of both space-times pulls the fields apart. While the fields approach

the singularity the spacing between them becomes larger due to the divergent prefactor in

one spatial coordinate. The stress-energy tensor applied on the functional states decreases

towards the singularity and renders quantum completeness sacrosanct. The normalisability

condition turns out to be the major criterion prevailing over the geometrical singularity.

Decreasing wave-functionals show that no field configuration can live on the singular

hypersurface. A vanishing probability is consistent with a vanishing stress-energy tensor.

The singular hypersurface is void of quantum fields, there can be no contribution from the

field content. Therefore, the stress-energy tensor shows a behaviour in total agreement with

our interpretation. In the Heisenberg picture, we derive a similar result if the measurement

process for the stress-energy tensor is considered. The vertex density for the measurement

depletes and the singular hypersurface is free from quantum fields.

We think that this view on spacelike singularities is valid and consistent and should
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be evaluated further. We sketched a procedure how to generalise the whole argument by

looking at the kernel in the exponent but we expect that some geometrical properties can

be used in order to formulate mathematically rigorous quantum regularity theorems. This

should be in the fashion of the theorems of Hawking and Penrose; it is plausible that they

can complement or weaken the physical significance of the singularity theorems, though

they will still be a valid diagnostic tool for manifolds in general relativity; just their physical

relevance might be doubted.

The singularity in both scenarios, Kasner and Schwarzschild, does not affect the consi-

stency of the probing quantum fields. It might have been guessed that the concept of a

singular structure is not favoured by nature. Quantum completeness of black holes strongly

supports this because if we cannot reach the singular configuration by quantum fields the

formation of such a configuration seems to be against the principles of nature (or at least

quantum theory).

Our results are on the verge to open a new field of research. Not only could it be used

as classification criterion for manifolds, it serves as a technique to tackle time-dependent

problems in quantum field theory. Moreover, the formulation could be extended to field

theories which have the property to be in a confining phase, for example quantum chromo-

dynamics. Our future research is devoted also to inflationary and other physically relevant

space-times but with the focus on learning about the very structure of gravitation and its

interplay with quantum theory. A possible extension is to replace the geometric sector by a

minisuperspace and quantise it in order to see the influences of the background’s dynamical

resolution. It would also be possible to couple existent quantum gravity models to the field

theoretic sector in order to bring clarity in this vivid field of research.

Quantum completeness of black holes change the way we think about black holes. Since

there is no problem with its geometrical singularity, we see that quantum field theory

is protected from the influence of the geometrical singularity. Moreover, in this regard

quantum field theory seems to protect general relativity. This has severe consequences with

respect to the information paradox. We know that the black hole interior conserves charges,

or information, and there is no leakage through the singularity. Moreover, the singular

hypersurface bordering on the regular physical manifold is dynamically detached and could

be interpreted as a Dirichlet boundary. Consequently, the black hole itself preserves the

information which has fallen inside. The only way to destroy information can only be due

to the Hawking process or to some effect outside the black hole; the interior is safe.

Quantum completeness is a viable criterion to probe consistency of quantum theories
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on curved manifolds. Moreover, it has physical relevance and opens a wide window of

opportunity for studies concerning the interdependence of general relativity and quantum

field theory.





A
Fourier transformation

Here, we present some basics on Fourier transformations on curved space-times taken

from [Hörmander, 1990, Hörmander, 2009], [Reed and Simon, 1975] and [Simon, 2015a].

In general it is a very cumbersome topic and it is not even guaranteed that a Fourier

transform can be defined.

Usually, Fourier transforms are defined on Schwartz spaces S(Rν) (for a definition cf.

[Reed and Simon, 1975]) in the following [Simon, 2015a]

Definition 16. A Fourier transform of a function f ∈ S(Rν) is given by

f̂(k) =

(
1

2π

)ν
2
∫

exp(−ikx)f(x)dνx (A.1)

and the inverse Fourier transform by

f̌(k) =

(
1

2π

)ν
2
∫

exp(ikx)f(x)dνx. (A.2)

This is the general formula for Fourier transformations. When we have a curved manifold

the measure is non-trivial because the determinant is a function of the coordinates as well

as the harmonic functions do not need to form a complete set. The trick for the measure

is to see µ(x) as a distribution which brings us in the comfortable situation of defining the

prescription [Simon, 2015a]

µ̂(k) =

(
1

2π

)ν
2
∫

exp(−ikx)dµ(x). (A.3)
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We can use the convolution formula of the Fourier transform [Reed and Simon, 1975]

f̂ ∗ g = (2π)
ν
2 f̂ · ĝ (A.4)

or conversely,

f̂ · g =

(
1

2π

)ν
2

f̂ ∗ ĝ. (A.5)

The star ∗ denotes the usual convolution. These formulae turn out to be important when

solving the Riccati equation. In our case, the transformation of the measure will play a

crucial role.

A Fourier expansion consists of a complete set of functions. One can see it in the sen-

se that one decomposes arbitrary functions into sums of eigenfunctions for translations

[Hörmander, 1990]. In fact harmonic functions u(x) are defined

Definition 17. A real-valued function, u, on a region Ω, is called harmonics if u is C2
and

∆u(x) = 0 (A.6)

In generically curved space-times a natural expansion will not be given through the

exponential function. What we have to use instead are the harmonic functions of the curved

space-time’s Laplace operator. For spherically symmetric space-times it can be performed

by the spherical harmonics Ylm(ϑ,ϕ) at least for the angular part which are the harmonics

of the angular Laplace-Beltrami operator.

In order to give an example we take the case of the Schwarzschild metric, under conside-

ration of the conformal flatness of the hypersurfaces, we could use the plane wave expansion

in equation (4.72)

f(t, z) =

∫
dkrdkϑdkϕe

i2π(rkr+ϑkϑ+ϕkϕ)f̂(t, k). (A.7)

We work in the coordinate neighbourhood of the Schwarzschild space-time (3.1) given by

the coordinate vector (t, r, ϑ,ϕ). The angular coordinates could here be interpreted as arc

length in the coordinates ϑ and ϕ.
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Riccati differential equation

Equation (4.3.1) is called a Riccati differential equation. Finding a solution is very hard

in general case. Some methods in order to solve this type of differential equations have

been developed, for example the homotopy analysis method [Odibat and Momani, 2008]

or Adomian’s decomposition method [Abbasbandy, 2006]. If one special solution is found,

it is possible to construct the full space of solutions [Reid, 1972].

Although here, we will only restrict to the differential equation, we want to mention that

there is an algebraic version of this equation (see for example the book of Leicester and

Rodman [Lancaster and Rodman, 1995]). Let f(x) be a function, the generic form of this

type of non-linear differential equation is

df

dx
= a(x)f2(x) + b(x)f(x) + c(x) (B.1)

with a(x), b(x), and c(x) arbitrary functions. Those functions are of course known. For

our specific equation (4.3.1) we could identify these functions as:

a(t, k) = −i
√

det(g)det(q), (B.2)

b(t, k) = −∂t ln(det(q)), (B.3)

c(t, k) = i

√
gtt√

det(q)
Ω2(t, k). (B.4)

Under special circumstances, one can perform a transformation into a ordinary differential

equation [Friedman, 1981]. This is achieved by guaranteeing that no singular transforma-

tion has been made. To make it clear, none of the three given functions a(x), b(x), and
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c(x) should become zero in the domain of the solution f. Otherwise it should be clear that

the inverse transformation is ill-defined [Gradshteyn and Ryzhik, 2014].

The first step is to redefine f(x) by the solution of the linear second order differential

equation F(x)

f(x) = −
1

a(x)

d

dx
ln(F(x)). (B.5)

Having done this, it is easy to verify that by inverting (B.5) and plugging into

d2F

dx2
(x) −

[
b(x) +

d

dx
ln(a(x))

]
dF

dx
(x) + (a(x)c(x)) F(x) = 0 (B.6)

yields (B.1). For this type of differential equation we have more and more powerful methods

[Polyanin and Zaitsev, 1995] to solve and to perform an asymptotic expansion. This makes

it easier to go for the solution. It is possible to reduce the above equation further to an

equation resembling a harmonic oscillator with complicated frequency term. This should,

for our purposes, be enough in order to find a solution.
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Here, we present our first publication in Physical Review D which is the basis of this thesis.

It includes the idea of the formalism and shows quantum completeness of the black hole

space-time with respect to the ground state formulation.
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I. INTRODUCTION

Completeness is a very important concept in classical
and quantum physics. The classical motion on a half-line is
called complete at the end point if there are no initial
conditions such that the trajectory runs off to the end point
in a finite time. If the potential satisfies certain regularity
conditions, then the classical motion is complete at the end
point if and only if the potential grows unbounded from
above near the end point [1]. In general relativity, a space-
time is called geodesically complete if every maximal
geodesic is defined on the entire real line. If the space-time
is timelike or null geodesic incomplete, it is said to be
singular [2]. The physical relevance of this geometrical
notion is provided upon identifying geodesics with trajec-
tories of free test particles. In quantum mechanics on a
half-line, a time-independent potential is called quantum-
mechanically complete [1] if the associated Hamiltonian is
essentially self-adjoint on the space of C∞ functions of
compact support on the half-line with the origin excluded.
Horowitz and Marolf [3] showed that there are geo-

desically incomplete static space-times, with timelike
curvature singularities, which are quantum-mechanically
complete. Their work stimulated a lot of research
concerning geodesically incomplete but quantum-
mechanically complete spacetimes, e.g. [4–6]. As a
working analogue, they suggested the nonrelativistic
hydrogen atom. The classical motion of the electron in
the Coulomb potential is incomplete at the origin,
because the potential is bounded from above near the
origin and thus the origin can be reached by the electron
in a finite time. The Coulomb potential is, however,
quantum-mechanically complete when probed by the non-
relativistic bound-state electron. In other words, the classical
singularity of the Coulomb potential is not reflected in any
observable related to the bound-state electron.
Quantum field theory in a static, globally hyperbolic

space-time allows us to define a consistent quantum theory
for a single relativistic particle, where the energy of each
one-particle state is equal to that of the corresponding

classical field [7]. Horowitz and Marolf [3] showed that
this is still the case for certain static space-times with
timelike singularities. Their result is based on a work by
Wald [8,9], who proved that the problem of defining the
evolution of a Klein-Gordon scalar field in an arbitrary
static space-time (with arbitrary singularities consistent
with statics) can be reformulated as the problem of
constructing self-adjoint extensions of the spatial part of
the wave operator.
For a general time-dependent space-time, there is no

consistent quantum theory of a single free particle, and the
only adequate description is in terms of quantum field
theory. This requires to study the evolution of classical test
fields in a singular space-time. In static space-times, the
evolution of quantum fields is unitary and represents an
endomorphism of the physical Hilbert space. In particular,
unitarity preserves state normalization. If dynamical space-
times are treated as external backgrounds, the quantum
theory does not require a unitary evolution [10]. Therefore,
the notion of quantum-mechanical completeness needs to
be adapted to include this case.
In discussing geodesic completeness, it usually suffices

to consider geodesics defined on ð0; t0�, right end points
can be treated similarly. A convenient topological criterion
for the inextendibility of a geodesic γðtÞ; t ∈ ð0; t0� is the
following: There is a parameter sequence ftng → 0 such
that fγðtnÞg does not converge. As is well known, geodesic
parametrizations have geometric significance. If a curve has
a reparametrization as a geodesic, it is called a pregeodesic.
In particular, any spacelike or timelike curve is pregeodesic
if and only if its reparametrization by its arc-length yields
a geodesic. A spacelike or timelike pregeodesic αðtÞ; t ∈
ð0; t0� is complete (to the left) if and only if it has infinite
length [11].
We call a globally hyperbolic space-time quantum

complete (to the left) with respect to a free field theory
if the Schrödinger wave functional of the free test fields can
be normalized at the initial time t0 and if the normalization
is bounded from above by its initial value for any
t ∈ ð0; t0Þ. Note that neglecting backreaction is no severe
restriction here since if backreaction becomes important,
the question of whether a previously given space-time is
quantum complete becomes obsolete.
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Intuitively, the notion of quantum complete space-times
refers to the following: A space-time background can be
considered as an external source coupled to quantum fields.
This coupling is consistent provided that the norm of the
vacuum-to-vacuum transition amplitude does not exceed
the corresponding norm in Minkowski space-time, i.e.
unity. There is no conceptual problem if the transition is
less probable than in Minkowski space-time, although the
evolution is then nonunitary. In this case, the ground state
is not persistent, but its norm is reduced by transferring
probability to the space-time background, which is not
resolved into dynamical degrees of freedom. If, in contrast,
the transition is more probable, then unitarity is violated in
such a way that the quantum theory becomes meaningless.
This intuition is stated more precisely in our definition of
quantum completeness, which is based on the functional
Schrödinger approach to quantum field theory. As opposed
to an asymptotic framework pertinent to a scattering descrip-
tion, the functional Schrödinger approach allows us to
analyze unitarity violations occurring during a finite amount
of time, and, in particular, during the time interval ð0; t0�.
For a Schwarzschild black hole, a Cauchy hypersurface

is given by ft0g ×R × S2, where t0 ∈ ð0; 2MÞ and M
denotes the black hole mass. It follows that the black hole
interior is globally hyperbolic and foliated by smooth
spacelike Cauchy hypersurfaces [12]. The purpose of this
article is to show that the interior of a Schwarzschild
black hole is quantum complete, although it is geodesically
incomplete.

II. SETUP

We briefly review the functional Schrödinger formu-
lation for quantum field theory in generic space-times,
when backreaction can be neglected (for a detailed dis-
cussion in Minkowski space-time, see [13]). This formu-
lation will prove to be efficient for investigating qualitative
features such as the stability of ground states and the
quantum (in)completeness of generic space-times.
Due to a theorem by Geroch [14], a globally hyperbolic

space-time is diffeomorphic to R × Σ, and foliates into
hypersurfaces Σt; t ∈ R. In the ð1þ 3Þ-split formulation,
the classical theory for a free scalar field of massm is given
by the Hamiltonian

H ¼
Z
Σt

dμðxÞðN⊥H⊥ þ N∥
aH∥

aÞ: ð1Þ

Here, dμðxÞ≡ d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

, with q denoting the spatial
part of the metric, H∥

a ¼ π∂aΦ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

, where π¼
∂L=∂ _Φ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ð∂tΦ−Na
∥∂aΦÞ=N⊥ denotes the canoni-

cal momentum field, and

H⊥ ¼ 1

2

�
1

detðqÞ π
2 þ qab∂aΦ∂bΦþ ðm2 þ ζRÞΦ2

�
: ð2Þ

Here, all tensors are pulled-back to the hypersurface Σt, and
ζ is a numerical factor representing the nonminimal
coupling to gravity. Adapting the space-time coordinates
to the foliation, N∥ ¼ 0 and N⊥ ¼ ffiffiffiffiffiffiffiffi−gtt

p
.

Each hypersurface Σt is equipped with a Fock space.
In the Schrödinger representation, the basis of this Fock
space is constructed from the time-independent operator
ΦðxÞ. Its spectrum contains the classical fields ϕðxÞ as
eigenvalues [13]. The ϕ representation of an arbitrary state
jΨi in the Fock space is a (nonlinear) wave functional
Ψ½ϕ�ðtÞ. For the momentum field π canonically conjugated
to Φ, the functional version of the quantization prescription
is given by πðxÞ → −iδ=δΦðxÞ.
Ψ½ϕ�ðtÞ satisfies a functional generalization of the

Schrödinger equation,

i∂tΨ½ϕ�ðtÞ ¼ H½Φ�ðtÞΨ½ϕ�ðtÞ; ð3Þ

H½Φ�ðtÞ ¼
Z
Σt

dμðxÞHðΦðxÞ; t; xÞ; ð4Þ

where H½Φ�ðtÞ denotes an operator valued functional
constructed from the Hamilton density

H ¼ 1

2

� ffiffiffiffiffiffiffiffi−gtt
p
detðqÞ

δ2

δΦ2
þ qab∂aΦ∂bΦþ ðm2 þ ζRÞΦ2

�
: ð5Þ

Note that any explicit time dependence is due to the space-
time geometry, which can be thought of as an external
source nonminimally coupled to the quantum field.
Wave functionals are normalized in the usual sense,

∥Ψ∥2ðtÞ ¼
Z

DϕΨ�½ϕ�ðtÞΨ½ϕ�ðtÞ; ð6Þ

where Dϕ denotes the measure over all field configurations
in Σt. Stability of the state populated with ϕðxÞ requires
that the norm of the wave functional is time-independent.
This corresponds to a unitary evolution.
On a dynamical space-time, considered as an external

background, however, the evolution is not required to be
unitary; i.e., H½Φ�ðtÞ needs not be a self-adjoint operator on
the space of wave functionals. Intuitively, probability can be
lost to the background (like for dissipative systems when the
interaction causing the friction is not fully resolved in the
participating degrees of freedom). Consistency of the dynam-
ics is more subtle in this case. Let ∥Ψ½ϕ�∥2ðt0Þ denote the
probability density (with respect to the space of field
configurations) at the initial hypersurface, and consider the
interval ð0; t0� with zero marking the left end point. We call
the evolution consistent, even if it violates unitarity, provided
that ∥Ψ½ϕ�∥2ðtÞ≤∥Ψ½ϕ�∥2ðt0Þ;∀t∈ð0;t0Þ. Intuitively, prob-
ability must not be gained from a background which is not
resolved in dynamical degrees of freedom. If the above
consistency relation is violated, then backreaction effects are
relevant, and the original space-time geometry is obsolete.
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For the time-dependent ground state, a generalized
Gaussian ansatz is motivated following the example of
the harmonic oscillator in quantum mechanics:

Ψð0Þ½ϕ�ðtÞ ¼ Nð0ÞðtÞGð0Þ½ϕ�ðtÞ;

Gð0Þ½ϕ�ðtÞ ¼ exp

�
−
1

2

Z
Σt

dμðxÞdμðyÞϕðxÞKðx; y; tÞϕðyÞ
�
:

ð7Þ

Substituting the ansatz (7) in the functional Schrödinger
equation (3) gives for the ϕ-independent factor Nð0ÞðtÞ an
evolution equation that can be directly integrated,

Nð0ÞðtÞ ¼ N0 exp

�
−
i
2

Z
t

t0

dt0
Z
Σt0

ffiffiffiffiffiffiffiffi
−gtt

p
dμðzÞKðz; z; t0Þ

�

ð8Þ

while the evolution for the kernel Kðx; y; tÞ is described by
a ϕ-dependent nonlinear integro-differential equation,

i∂t½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ðxÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ðyÞKðx; y; tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ðxÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp ðyÞ
¼

Z
Σt

ffiffiffiffiffiffiffiffi
−gtt

p ðzÞdμðzÞKðx; z; tÞKðz; y; tÞ

þ ffiffiffiffiffiffiffiffi
−gtt

p ðxÞðΔ −m2 − ζRÞδð3Þðx; yÞ: ð9Þ

The spatial part of the Laplace-Beltrami operator is defined
as Δ≡ ∂a½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

qab∂b�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp

, and we use the
following convention for the Dirac distribution:ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ðxÞδð3Þðx; yÞ≡ δð3Þðx − yÞ.

III. CALCULATION

In this section, we specialize to the interior of
Schwarzschild black holes. In the usual Schwarzschild
coordinate neighborhood, the Schwarzschild function is
given by hðτÞ ¼ ð2 − τÞ=τ, where τ≡ 2t=rg is dimension-
less, and rg ≡ 2M denotes the Schwarzschild radius
(GN ≡ 1). The warped product line element for the
Schwarzschild black hole becomes

g ¼ −h−1ðτÞdt2 þ hðτÞdr2 þ ðτrgÞ2ds2=4; ð10Þ

where by this normalization, in each rest space
t ¼ constant, the surface r ¼ constant has the induced line
element ðτrgÞ2ds2=4, and is thus the two-sphere of radius
τrg=2 with Gaussian curvature 4=ðτrgÞ2 and area πðτrgÞ2.
In this parametrization, the geometry is incomplete to the
left, since tidal forces approach infinity along inextendible
timelike geodesics as τ → 0.

Since the Schwarzschild space-time is spherically
symmetric, the kernel K introduced in (7) is a function
Kðx − y; τÞ. Our convention for Fourier transforms is

Kðz; τÞ ¼
Z

d3k
ð2πÞ3 expðiqðk; zÞÞK̂ðk; τÞ; ð11Þ

with qðk; zÞ≡ qabkazb. The Fourier amplitudes K̂ ≡
~K= detðqÞ satisfy a Riccati equation,

i∂τ
~Kðk; τÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p rg
2
½ðdetðqÞÞ−1 ~K2ðk; τÞ −Ω2ðk; τÞ�:

ð12Þ

The inhomogeneous contribution Ω2ðk;τÞ≡qabkakbþm2

is just the dispersion relation of the free fields.
The kernel can alternatively be described as follows.

Suppose φðx0; t0Þ is a solution of the equation of motion for
the free fields. It is related to a solution at a later time t > t0
by Huygens’s principle [15,16],

φðx;tÞ¼
Z

t

t0

dt0h−1=2
Z
Σt0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
iKðx−x0; t0Þφðx0; t0Þd3x0:

ð13Þ

Indeed, a kernel fulfilling Huygens’s principle for the time-
dependent fields φ is a solution of the kernel equation (9).
Moreover,

ð□ − Ω2ðk; τÞÞφ̂ðk; τÞ ¼ 0: ð14Þ

Of course, from the solutions of (14) the kernel can be
calculated directly,

K̂ðk; τÞ ¼ −iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgÞjp ∂t ln φ̂ðk; τÞ; ð15Þ

but it should be clear that this is a less efficient approach
than solving the kernel equation (12). With the kernel
representation (15), however, it is straightforward to show
that the time dependence of ∥Ψð0Þ∥ is not fictitious, even
without solving (14). Using (15) in (8), we find

jNð0ÞðτÞj2 ¼ jN0j2 exp
�
−
vðΣÞ
2

Z
d3k
ð2πÞ3 ln

���� φ̂ðk; τÞφ̂ðk; τ0Þ
����
2
�
;

ð16Þ

where vðΣÞ denotes the time-independent coordinate
volume of the hypersurfaces. Furthermore,

∥Gð0Þ∥2ðτÞ ¼
�
Det

�
detðqÞffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp i

2

Wðφ̂; φ̂�Þ
jφ̂j2

��
−1=2

; ð17Þ
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with Wðφ̂; φ̂�Þ≡ φ̂ ∂t

↔
φ̂� denoting the Wronskian of the

solution and its complex conjugate, and Det is the func-
tional determinant. From this result, we can draw two
important immediate conclusions. First, for Friedman
space-times, Abel’s differential equation identity [17] gives
that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgÞjp
Wðφ̂; φ̂�Þ is time independent. As a conse-

quence, ∥Ψð0Þ∥ is time-independent (the time-dependent
contributions to (16) and (17) cancel), and the ground state
is stable in Friedman space-times. By our definition,
Friedman space-times are quantum complete, although
they are geodesically incomplete. Second, for a
Schwarzschild black hole, the situation is different, because
gtt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgÞjp
Wðφ̂; φ̂�Þ is time-dependent in this case.

Hence, the ground state cannot be stable, but the
Schwarzschild black hole can still be quantum complete
(with respect to free fields).
In order to show that Schwarzschild black holes are

indeed quantum complete, we transform the Riccati equa-
tion (12) for the Fourier amplitudes K̂ to a homogeneous,
second-order ordinary differential equation in normal form,

∂τ
2fðk; τÞ þ ω2ðk; τÞfðk; τÞ ¼ 0; ð18Þ

ω2ðk; τÞ≡ rg2

16gθθðτÞ
ð1 − 2gttðτÞ þ gtt2ðτÞÞ

− gttðτÞM2Ω2ðk; τÞ: ð19Þ

The Fourier amplitudes K̂ are related to f as follows:

K̂ðk; τÞ ¼ −
1

2 detðqÞ ∂τ lnðσðτÞf2ðk; τÞÞ; ð20Þ

with σðτÞ≡ −iM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgÞjp

= detðqÞ.
The dispersion relation for f is singular at the horizon,

τ ¼ 2, and at the classical black hole singularity, τ ¼ 0.
For our purposes, it suffices to expand f near τ ¼ 0. Let us
first give a quick argument and justify it a posteriori.
The leading singularity in the dispersion relation around
τ ¼ 0 is given by ω0 ¼ 1=ð2τÞ, with corrections Oð1= ffiffiffi

τ
p Þ.

Near τ ¼ 0, the dynamics is governed by the background;
i.e., the dominant contribution in the dispersion relation
is momentum-independent. In this regime, fðτÞ →
C0 ffiffiffi

τ
p ðCþ ln τÞ, which translates to

ImðK̂ðτÞÞ → −1
M3 sinðθÞ

1

τ3j ln τj ;

ReðK̂ðτÞÞ → jImðCÞj jImðK̂ðτÞÞj
j ln τj ; ð21Þ

near the black hole singularity. Here,C;C0 ∈ C are constants
of integration. Note that ReðK̂ðτÞÞ ≪ ImðK̂Þ near the
singularity. The real part is taken into account since
the dominant contribution gives a phase factor for Gð0Þ.
Using (21) in (8), the normalization Nð0Þ goes to zero like

Nð0ÞðτÞ → j ln τj−1
2
vðΣÞΛ: ð22Þ

Of course, this evaluation requires a volume as well as an
ultraviolet regularization. We simply introduced a coordinate
volume and an ultraviolet cut-off, vðΣÞ and Λ, respectively,
since the regularization details have no impact on the limit
Nð0ÞðτÞ → 0 as τ → 0. For Gð0Þ, we find

Gð0ÞðτÞ ¼ exp

�
−
1

2
ReðK̂ÞðτÞ

Z
Στ

dμðxÞϕ2ðxÞ
�

ð23Þ

times an irrelevant phase factor.
It is more rigorous to take all contributions in the

dispersion relation into account that are singular at τ ¼ 0,

ωs
2ðk; τÞ ¼ ω0

2ðτÞ þ
�
k2∡ðθÞ þ

1

2

�
ω0ðτÞ þOðτ0Þ; ð24Þ

where k2∡ ≡ ðτrgÞ2ds2ðk; kÞ=4. Introducing the variable

z≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2∡

p ffiffiffi
τ

p
, we find

fðk; τÞ → −
z
2
ðJ0ðzÞ − 2iK0ðizÞÞ; ð25Þ

near the black hole singularity, with J0 denoting the Bessel
function of the first kind, and K0 denoting the modified
Bessel function of the second kind. This combination
shows the same behavior near τ ¼ 0 as f subject to the
dispersion relation ω0. The momenta k∡ in angular direc-
tions appear only in an overall factor ≥ 1 and do not modify
the dominant behavior near τ ¼ 0.
Therefore, it is safe to conclude that

∥Ψð0Þ∥2ðτÞ → j lnðτÞj−vðΣÞΛðτ3=4j lnðτÞjÞNðΛÞ → 0 ð26Þ

as the black hole singularity is approached. Here, NðΛÞ
denotes the number of momentum modes with
jkj ∈ ½0;Λ1=3�. The limit (26) is our main result. In fact,
already Ψð0Þ½ϕ�ðτÞ → 0 as τ → 0; i.e., the wave functional
has vanishing support towards the singularity.
Let us stress again that we were interested in examining

the quantum completeness of Schwarzschild black holes
with respect to free quantum fields. The answer to this
question is insensitive to the details of volume and short-
distance regularization, both of which are required, in
principle.

IV. CONCLUSION AND DISCUSSION

In this article we adapted the notion of quantum-
mechanical completeness to situations where the only
adequate description is in terms of a quantum theory of
fields in generic space-times. We showed that according to
the advanced consistency criterion, a Schwarzschild black
hole is quantum complete with respect to free scalar fields
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(in the ground state). Moreover, the wave functional has
vanishing support towards the black hole singularity.
There are two types of non-Gaussianities that can be

introduced to describe processes associated with deviations
from free fields in the ground state. First of all, excitations
of the ground state can be considered. It should be clear that
the term excitation is strictly appropriate for static back-
grounds. In general, excitations will depend on eigenfunc-
tions ϵ of ðΔ −m2Þ in the background geometry. Excited
states are of the form ΨðnÞ½ϕ�ðτÞ ¼ Nn½ϕ; ϵ�ðτÞΨð0Þ½ϕ�ðτÞ.
So excitations are reflected in a (functional) renormaliza-
tion of N0ðτÞ. The difference between the ground state and
the excited states is the following: Ψð0Þ½ϕ�ðτÞ populates the
ground state with field configurations that need not satisfy
any on-shell criteria. What matters is the spatial support
of the scalar fields and the correlation between two fields
as communicated by the kernel function. This is why the
completeness concept used here poses a rather strong
consistency requirement on the kernel function. In contrast,
excited states are sensitive, in addition, to the moderated
overlap between an arbitrary field configurations and fields
obeying on-shell conditions. Moderation indicates that the
overlap is evaluated using ϕðxÞKðx; y; τÞϵðyÞ. Intuitively,
excitations show an increasing sensitivity on the on-shell
conditions.
Secondly, interactions of the Klein-Gordon field with

itself and with other fields can be introduced in the
Hamiltonian. In this case, we choose the initial data such
that the interactions can be treated in the usual perturbative
framework. If the Schwarzschild black hole fails to be
quantum complete with respect to interacting fields, then
the participating fields necessarily entered a strong cou-
pling regime, because the space-time is quantum complete
with respect to free fields.
Perhaps not surprisingly, Schwarzschild black holes are

enjoying a clash of completeness concepts. The obvious
question is how to qualify the importance of quantum
completeness relative to classical completeness. We think
that this question is related to the measurement process.
Let γðtÞ; t ∈ ð0; t0� be a geodesic, and ftng → 0 denote a
parameter sequence such that fγðtnÞg does not converge.
The inextendibility of the geodesic can be observed

by measuring any classical observable O along
γ∶ fOðγðtnÞÞg ⊂ R does not converge. Hence, geodesic
incompleteness is observable, provided the measurement
process associated with O is known. Certainly the meas-
urement process will involve quantum theory at a more or
less obvious but essential level. We can ask whether the
geodesic incompleteness has an impact on the quantum
theory underlying the measurement process. For instance, if
black holes are quantum incomplete with respect to the
degrees of freedom employed in the measurement device,
then O cannot be measured, and the geodesic incomplete-
ness is not observable. If this holds for any observable, then
the geodesic incompleteness is unobservable in principle.
This may sound impractical as a criterion. Measurement
processes, however, rely on a few principles and are
realized via universal principles such as minimal coupling.
This makes it relatively easy to pass from unobservable to
observable in principle.
We found that Schwarzschild black holes are quantum

complete, and, moreover, the ground state does not support
field configurations near the singularity. The logical con-
flict with the measurement process as described above has a
well-known resolution: Near the black hole singularity,
observables necessarily are part and parcel of the quantum
theory. So consistency of the quantum theory is not only
essential for the measurement device, but also for the very
construction of observables.
In our opinion, and in conclusion, the concept of

quantum completeness as suggested in this work has
physical relevance, and presents a physical characterization
of space-time singularities and their impact.
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The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic
incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational
framework that allows us to probe the spacelike singularity via a measurement process. Any such
framework necessarily has to be based on quantum theory. As a consequence, the notion of classical
completeness needs to be adapted to situations where the only adequate description is in terms of quantum
fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when
probed by self-interacting quantum fields in the ground state and in excited states. The measure for
populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero
towards the singularity. This statement is robust under non-Gaussian deformations of and excitations
relative to the ground state. The physical relevance of different completeness concepts for black holes is
discussed.
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I. INTRODUCTION

The singularity theorem [1] by Hawking and Penrose
identifies Schwarzschild black holes as incomplete in a
precise sense: Black holes incorporate a spacelike singu-
larity, where null and timelike geodesics end prematurely,
referring to classical point particles that reach these end
points in a finite time, because their potential is bounded
from above [2]. This relates the geometric completeness
concept to the usual notion of potential completeness. The
latter can be lifted to quantum mechanical completeness,
which implies the existence of a unique evolution in
compliance with unitarity. Unitarity remains the relevant
completeness criterion in static space-times and extends to
encompass the relativistic domain of a single particle.
In this context, Horowitz and Marolf [3] were the first to

point out that geodesic (and hence, potential) incomplete-
ness does not necessarily imply unitarity violation. They
gave examples of static space-times with timelike singu-
larities that nevertheless qualified as complete from a
quantum mechanical perspective. This was conceptually
promising since quantum field theory in a static, globally
hyperbolic space-time admits a consistent description of a
single relativistic particle, as was shown by Ashtekar and
Magnon in [4]. And it was practical, since Wald [5] showed
that the dynamics of a Klein-Gordon scalar field in arbitrary
static space-times could be examined by asking whether
the spatial part of the wave operator admits a self-adjoint
extension.
Dynamical space-times in general, however, require a

quantum theory with fields as local bookkeeping devices.
The interior of Schwarzschild black holes is a dynamical

space-time, even though the exterior is thought of as being
static. A strictly unitary evolution is no longer necessary,
even in the absence of interactions. As a consequence, a
new criterion for quantum completeness is required that
reduces to the classical one (and its quantum mechanical
descendant) in appropriate limits, but extends to quantum
field theory. While unitarity reflects the symmetry under-
lying quantum mechanical evolution, the logically more
potent concept is state normalization. Unitarity is replaced
by stability, which demands a valid probabilistic interpre-
tation instead of a conserved norm. So stability requires
only a semigroup of contractions [6]. At the intuitive
level, stability ensures a probabilistic interpretation of
the quantum system in a background dynamical space-
time. Such a stability notion clearly reflects on the
completeness of the background space-time as scrutinized
by quantum fields.
Stability investigations are usually pursued in the

asymptotic framework pertinent to scattering theory,
which is neither an option in generic space-times, nor is
it practical given that instabilities are anchored in regions
near classical singularities. In this situation, the
Schrödinger representation of quantum field theory turns
out to be extremely useful, since it conveniently allows us
to investigate stability at finite times. Based on this
framework, the following completeness criterion [7] has
recently been suggested: A globally hyperbolic space-time
is called quantum complete to the left with respect to a free
field theory, if its Schrödinger wave functional can be
normalized at an initial time t0, and if the normalization is
bounded from above by its initial value for all t ∈ ð0; t0Þ.
In a previous article [7], it has been shown that

Schwarzschild black holes are quantum complete. Here,
the notion of quantum completeness is extended to
include non-Gaussian deformations of the ground state
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induced by self-interactions and excited states. As will be
shown, all generalizations respect the concept of quantum
completeness as suggested above. Concrete calculations
are presented for a Schwarzschild black hole populated by
real scalar fields with quartic self-interactions. The wave
functionals for the ground state as well as for arbitrary
excited states are investigated near the black-hole singu-
larity. The main result is that Schwarzschild black holes
are quantum complete even if self-interactions and excita-
tions are permitted. The different completeness concepts
employed in physics are logically consistent in their
respective domains of validity. Their physical relevance
for black-hole interiors is discussed in detail.

II. GEOMETRIC PRELIMINARIES

Let us first clarify our conventions. Consider the space-
time ðM; gÞ with M ≔ R ×Rþ × S2, where S2 is the unit
two sphere. The projections t∶M → R and r∶M → Rþ
are called Schwarzschild time and Schwarzschild radius,
respectively. The Schwarzschild function hðrÞ ≔ 1 − rg=r
is increasing from minus infinity at r ¼ 0 to one as r
approaches plus infinity, passing through zero at r ¼ rg.
Here, rg ¼ 2M denotes the gravitational radius of a source
of massM. The physical conditions implied by a static and
spherical symmetric source in vacuum, supplemented with
asymptotic falloff conditions, give rise to two warped
product space-times, the Schwarzschild exterior space-time
E ≔ P> ×r S2, with P> denoting the region r > rg in the
ðt; rÞ-half plane R ×Rþ, and the Schwarzschild black hole
B ≔ P< ×r S2, with P< denoting the region r < rg. In B,
the coordinate vector field ∂t becomes spacelike and ∂r
becomes timelike. Owing to this, we write for the metric
in B

g ¼ −s−1ðtÞdt ⊗ dtþ sðtÞdr ⊗ drþ t2w: ð1Þ

Here, sðtÞ ≔ j1 − rg=tj and w denotes the metric on S2,
equipped with the usual spherical coordinates ðθ;ϕÞ.
Spatial hypersurfaces Σ in B are conformally flat as

implied by a vanishing Cotton tensor. In order to appreciate
conformal flatness, it suffices here to consider the region
t ≪ rg close to the spacelike singularity of B, where
the line element of P< takes the approximate form
−ðt=rgÞdt2 þ ðrg=tÞdr2. Following Ehlers and Kundt [8],
and demanding in addition θ ≪ 1, the metric can be
restated as a type-D Kasner solution characterized by the
exponents ðp1; p2; p3Þ ¼ ð2=3; 2=3;−1=3Þ. The corre-
sponding coordinate transformation is r ≕ ð3=2rgÞ1=3z,
t ≕ ð9rg=4Þ1=3τ2=3, and θ exp ðiϕÞ ≕ ð4=9rgÞ1=3ðxþ iyÞ.
In this coordinate neighborhood, the line element of B
becomes

ds2 ¼ −ðdτÞ2 þ τ4=3ððdxÞ2 þ ðdyÞ2Þ þ τ−2=3ðdzÞ2: ð2Þ

Harmonic analysis in Σ is similar to Euclidean space.
In particular, the Laplace operator in Σ factorizes
ΔΣ ¼ gabðτÞ∂a∂b, with τ indexing Στ. Generalized eigen-
functions of ΔΣ are plane waves exp ðigΣðk; xÞÞ, where gΣ
denotes the induced metric tensor in Σ. This coordinate
neighborhood is useful for a quick examination of our
results. Moreover, it allows us to relate to the framework
suggested by Belinskii et al. [9]. Let us stress, however, that
all the results in this paper have been derived in the usual
Schwarzschild neighborhood.

III. QUANTUM COMPLETENESS OF
SCHWARZSCHILD BLACK HOLES

In this section, we briefly review the argument
showing that B is quantum complete. The main result is
Eq. (7), which has recently been published in [7], where a
considerably more detailed derivation can be found.
Subsequently, it is shown that the free Hamilton density
in the ground state vanishes towards the classically singular
hypersurface Σ0.
Since B is a globally hyperbolic space-time, it is

diffeomorphic to R × Σ and foliates into spatial hyper-
surfaces Σt indexed by Schwarzschild time. In B, consider
the dynamical system ðH;ΦÞ, whereΦ denotes a real scalar
field with Hamilton density H ¼ Hπ þ P½Φ�. Here, Hπ ¼ffiffiffiffiffiffiffiffi−gtt
p

=2π2= detðgΣÞ with π ¼ −iδ=δΦ, and P½Φ� denotes
the effective potential. Quantum completeness refers to free
evolution, corresponding to P½Φ� ¼ ffiffiffiffiffiffiffiffi−gtt

p
=2gΣðdΦ; dΦÞ,

possibly supplemented by a mass term. The wave
functional of the ground state evolves from the initial
Cauchy surface Σt0 backwards in time to Σtðt ∈ ð0; t0ÞÞ as
Ψ½ϕ�ðtÞ ¼ Eðt; t0ÞΨ½ϕ�ðt0Þ, with

Eðt; t0Þ ¼ exp

�
−i

Z
t

t0

dt0
Z
Σt0

dμzH½Φ�
�
; ð3Þ

where dμz denotes the covariant volume form with respect
to gΣ, and z refers to the coordinate neighborhood. In B,
the evolution operator E is not unitary. Quantum complete-
ness of B with respect to ðH;ΦÞ requires ∥Ψ½ϕ�∥ðtÞ ≤
∥Ψ½ϕ�∥ðt0Þ ∀ t ∈ ð0; t0Þ, implying that B can be a sink for
probability but not a source, given it is not resolved in
dynamical degrees of freedom.
We expect that a quadratic functional K2½ϕ;ϕ�ðtÞ exists

such that the wave functional Ψð0Þ½ϕ�ðtÞ, corresponding to
the ground state of ðH;ΦÞ, is given by

Ψð0Þ½ϕ�ðtÞ ¼ Nð0ÞðtÞ exp ð−K2½ϕ;ϕ�ðtÞÞ; ð4Þ

with Nð0Þ denoting the time-dependent normalization, and
K2 can be expressed in terms of the bilocal kernel function
K2 as
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K2½ϕ;ϕ�ðtÞ ¼
1

2

Z
Σt

dμz1dμz2ϕðz1ÞK2ðz1; z2; tÞϕðz2Þ: ð5Þ

In the vicinity of the Schwarzschild singularity, the evo-
lution simplifies considerably,

Eðt; t0Þ → exp
�
−
icðt0Þ
4M

ln t
Z
Σt0

dμz
1

sin2θ
δ2

δϕ2ðzÞ
�
; ð6Þ

where cðt0Þ is a constant of integration. As a consequence,
the kernel function becomes a contact term in this limit,
K2ðz1; z2; tÞ → k2ðtÞδð3Þðz1; z2Þ, which is consistent with
the conjecture by Belinskii et al. [9]: Close to a spacelike
singularity, the variation of observables on Σt from one
location to another becomes irrelevant compared to
changes in time. Subleading corrections to the asymptotic
form of K2 deviate from a contact contribution without
changing the qualitative result.
In leading order, the evolution of the wave functional is

given by

lim
t→0

Ψð0Þ½ϕ�ðtÞ ¼ lim
t→0

j ln ðt=t0Þj−ΛvðΣtÞ=2 ð7Þ

up to constant and phase factors, which are irrelevant for
the analysis presented here. In (7), an ultraviolet cutoff Λ
and a volume regularization vðΣtÞ have been introduced.
Clearly, the limit t → 0 is not affected by this simple
choice. Hence, the wave functional has vanishing support
towards the Schwarzschild singularity, and ∥Ψð0Þ½ϕ�∥ðtÞ →
0 ≤ ∥Ψð0Þ½ϕ�∥ðt0Þ for t → 0, as required for B to
be quantum complete with respect to the dynamical system
ðH;ΦÞ.
Concerning an interpretation: Consider the set of observ-

ables AΣt
of ðH;ΦÞ localized on Σt. Following the logic of

geodesic incompleteness, it could be expected that an
observable OΣt

exists with an expectation hOΣt
iΨð0Þ in

the ground state that is ill-defined. However, this is not
the case since the asymptotic surface Σ0 does not support
any population of fields ϕ, because the associated proba-
bility measure vanishes there.
As an example, consider a free field theory ðH;ΦÞ in the

ground state described by the Schrödinger wave functional
Ψð0Þ½ϕ�ðtÞ, where ϕ denotes a classical field configuration
over the hypersurface Σt, t ∈ ð0; 2MÞ. Introducing an

auxiliary source J coupling by Ψð0Þ
J ½ϕ�ðtÞ ≔ Ψð0Þ½ϕ�ðtÞ ×

exp ðJ ½ϕ�ðtÞÞ facilitates the description of measurement
processes. Observables are evaluated in the ground state
jΩiJ in the presence of the auxiliary source, which is
subsequently set to zero. Compositions of the configuration
operator are then replaced by the corresponding succession
of derivations δϕ, where

δϕ ≔
Z
Σt

dμx
ϕðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgΣÞ

p δ

δJðxÞ ð8Þ

is a directional derivative in field space, with J denoting the
ultralocal representation of J . For instance, in the presence
of an auxiliary source

J hΩjΦ2ðϕÞjΩiJ

¼ δ2ϕ exp

�
1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgΣÞ

p ½ReðK2Þ�−1½J; J�
�
Wð0ÞðtÞ; ð9Þ

where Wð0ÞðtÞ ≔ ∥Ψð0Þ½ϕ�∥2ðtÞ. In the absence of the
auxiliary source, the ground-state expectation becomes

hΩjΦ2ðϕÞjΩi ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgΣÞ

p
½ReðK2Þ�−1½ϕ;ϕ�Wð0ÞðtÞ;

ð10Þ

which is real and semipositive definite. In particular, in
the vicinity of the limiting hypersurface Σ0, the ground-
state expectation approaches zero, due to the temporal
support properties associated with the probability density.
Similarly, it can be shown that hΩjπ2ðϕÞjΩi is real and
semipositive definite, and approaches zero towards Σ0.
Therefore, the ground-state expectation of H is in Rþ and
vanishes towards the would-be singular hypersurface Σ0.

IV. SELF-INTERACTIONS

In this section, polynomial self-interactions are included,
and their impact on the stability of the ground state is
analyzed. For definiteness, we consider the effective
potential Pint½Φ� ≔ P½Φ� þ ffiffiffiffiffiffiffiffi−gtt

p
λΦ4=4!. The dimension-

less coupling λ is chosen such that perturbation theory is
applicable in a neighborhood of Σt0 . Self-interactions
deform the ground-state wave functional away from its
Gaussian shape

Ψð0Þ
int ½ϕ�ðtÞ ¼ Ψð0Þ½ϕ�ðtÞ × exp ðλD½ϕ�ðtÞÞ: ð11Þ

The deformation functional D ¼ D2 þD4 is a sum of the
time-dependent nonlinear functionals D2∶S⊗2 → CðRþÞ
and D4∶S⊗4 → CðRþÞ, where S denotes the field space
and CðRþÞ is the space of functions depending smoothly
on time. As before, local versions can be introduced via
kernel functions D2 and D4, respectively. Close to the
singularity, Dj ¼ djðtÞΠj

a¼1δ
ð3ÞðzaÞ; j ∈ f2; 4g, i.e., any

spatial information close to Σ0 is concentrated in a single
event. Again, only the temporal gradients matter. In this
limit, the kernel functions obey the coupled kernel equa-
tions i∂td ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

detðgÞp
ad, where d ≔ ðd2; d4ÞT and a is a

two-by-two matrix with coefficients a11 ¼ kðtÞ, a12 ¼ 1,
a21 ¼ 0 and a22 ¼ kðtÞ. The asymptotic solution is dðtÞ ¼
ð1; 1ÞT=j lnðtÞj → 0 for t → 0.

NON-GAUSSIAN GROUND-STATE DEFORMATIONS NEAR A … PHYSICAL REVIEW D 95, 065033 (2017)

065033-3



As a consequence, deformations of the Gaussian
ground state, induced by self-interactions, become less
and less important towards the black-hole singularity,
D½ϕ�ðtÞ → 0 for t → 0. In greater detail, asymptotically
Dj ∝ t3j=2=j lnðtÞj for j ∈ f2; 4g and, hence,

lim
t→0

Ψð0Þ
int ½ϕ�ðtÞ ¼ lim

t→0
Ψð0Þ½ϕ�ðtÞ ¼ 0: ð12Þ

Thus, close to Σ0 (i.e., for Schwarzschild times t ≪ t0),
the dynamical systems ðH;ΦÞ and ðHπ;ΦÞ may be
identified.
This proves that self-interactions cannot cure the

classical black-hole singularity via backreaction effects
on the external geometry. Close to the singularity, self-
interactions loose their impact on the evolution of the
system. The system becomes asymptotically free, and the
stability requirement on the quantum theory is too stringent
to allow the free theory to destabilize even towards Σ0.
Hence, the quantum fields are totally ignorant about the
singularity. From this point of view, the classical singularity
needs no resolution since it appears as a mathematical
artifact with no observational consequences whatsoever,
assuming the measurements are anchored in the framework
provided by quantum theory. It seems that quantum
completeness of the Schwarzschild black hole protects
general relativity against its classical incompleteness. In
fact, the potential harmful implications associated with Σ0

decouple from quantum measurements.
A more abstract reasoning is the following: Consider

classical fields ϕ as configurations in C2ðΣÞ. In order to
ensure a probabilistic interpretation, the Schrödinger wave
functionals have to be normalizable with respect to some
functional measure Dϕ. Wave functionals enjoying this
property can be collected in a state space L2ðC2ðΣÞ;DϕÞ,
which obviously requires a mathematical justification
beyond the scope of this article. Even for these wave
functionals, Hπ is not self-adjoint, but the spectrum
contains only functions with a positive-semidefinite imagi-
nary part. As a consequence, towards the singularity,
Eðt; t0Þ becomes exponentially damped. Self-interactions
cannot harm this regularization of the classical singularity,
simply because they are given as compositions of multi-
plication operators. Furthermore, H → Hπ towards the
singularity, where the limit is taken in a generalization
of the strong operator topology appropriate for the func-
tional calculus involved here. From this point of view, a
self-interacting quantum probe is totally ignorant about the
classical singularity.

V. EXCITATIONS

Excitations of the ground state are not an integral
component in the definition of quantum completeness. If
the dynamical system ðH;ΦÞ is unstable, then excitations
might trigger a transition towards a stable ground state.

The ground state is an eigenstate of the conjugated
momentum field, ðπðt; xÞ − iδK2=δϕðt; xÞÞΨð0Þ½ϕ�ðtÞ ¼ 0,
and a kernel element of the operator valued functional
a½f�ðtÞ, describing the absorption of a field f ∈ Sos, where
the index “os” implies the restriction to on shell fields. The
above eigenstate equation is a ultralocal version of absorp-
tion. Emission can be considered accordingly using the
adjoint a†½f�ðtÞ. As usual, on Σt the following algebraic
relation holds:

½a½f�ðtÞ; a†½f0�ðtÞ� ¼ 2ReðK2½f; f0�ÞðtÞ: ð13Þ

An excitation relative to the ground state is given by
Ψð1Þ½f;ϕ�ðtÞ ≔ a†½f�ðtÞΨð0Þ½ϕ�ðtÞ. Note that ϕ ∈ S, while
f ∈ Sos ⊂ S, i.e., the emission operator creates on shell
information and stores it in the excited state Ψð1Þ½f;ϕ�ðtÞ ¼
2ReðK2½f;ϕ�ÞðtÞΨð0Þ½ϕ�ðtÞ. Therefore, exciting the ground
state by emitting an on shell quantum simply results in a
functional renormalization of the ground state. Owing to
the algebraic relation (13), we find

∥Ψð1Þ∥2ðtÞ ¼ 2ReðK2½f; f�ÞðtÞ∥Ψð0Þ∥2ðtÞ: ð14Þ

So quantum completeness of the ground state is a necessary
but not sufficient criterion for the stability of the first
excited state. In addition, ReðK2½f; f�ÞðtÞ < ∞ is required
for all f ∈ Sos.
For vanishing Schwarzschild time, the renormalization

becomes constant and is therefore inconsequential. This
can be seen as follows: Up to subleading contributions, the
time dependence of fðt; xÞ ¼ TðtÞRðxÞ is given by ðt∂2

t þ∂tÞT ¼ κT with κ a constant determined by the equation for
R. For vanishing Schwarzschild time, T should be singular.
Introducing τ ≔ ζt, and taking the limit t → 0, ζ → ∞ such
that the rescaled Schwarzschild time τ remains constant,
the equation of motion for T becomes ðτ∂2

τ þ ∂τÞT ¼ 0.
Thus, up to an additive constant, T ¼ lnðtÞ. Therefore,
ReðK2½f; f0�Þ ¼ const, because the time dependence of the
corresponding kernel function cancels exactly against the
time dependence of the mode functions and the volume
form. Note that the additive constant poses no problem due
to the prescription for taking the asymptotic limit. As a
consequence, ∥Ψð1Þ∥2 → 0 towards the black-hole singu-
larity. In fact, as can be seen by induction, all excitations
ΨðnÞðn ∈ NÞ give rise to a vanishing probability measure on
Σ0. Neither the ground state nor any excited states are
populated with fields on Σ0. The natural probability
measure protects the stability of any state, and this stability
protection can be traced back to a persistent ground state.

VI. DISCUSSION

In this article, the notion of quantum mechanical
completeness is adapted to situations where the only
adequate description is in terms of (interacting) quantum
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fields in dynamical space-times. The adaption necessarily
generalizes from requiring a unitary evolution by
demanding a normalization condition that ensures a
probabilistic interpretation. Of course, this condition
reduces to unitarity in the absence of dynamical sources.
While originally stated for free fields in a Gaussian
ground state, it is shown to extend to interacting quantum
fields in arbitrary states. It is tempting to expect that this
extension is rather trivial if the ground state admits a
Gaussian wave functional. This expectation has to be
confronted with the dynamics of the external space-time
that sources different terms in the Hamiltonian differently.
It is important to stress that both, geodesic and quantum
completeness, assume a background space-time, which is
either diagnosed by test particles or by test fields,
respectively. This assumption, however, can only be
investigated in a quantum theory of fields.
Whether a given dynamics is consistent with a prob-

abilistic interpretation is usually examined in an asymp-
totic framework pertinent to scattering theory. There the
stability of the ground state is studied in the presence of
an external source after an infinite amount of time has
passed. This is clearly not an option in arbitrary space-
times. Furthermore, it seems intuitive that stability
challenges are anchored in the vicinity of space-time
singularities, which suggests a more local stability
analysis. For these reasons, the Schrödinger representa-
tion of quantum field theory is quite convenient, which
allows us, in particular, to investigate the stability of a
given quantum system in a dynamical space-time after a
finite amount of time elapsed.
The Schrödinger representation requires a functional

generalization of many quantum-mechanical concepts. In
particular, choosing the configuration field as the multi-
plication operator, the associated momentum field becomes
a functional derivative. And the norm of a wave functional
requires a functional integral over the configuration fields.
Many of these functional techniques can be disputed on
mathematical grounds. However, the stability analysis is
entirely at the qualitative level and not based on any
specific regularization.
The main result of this article is that Schwarzschild black

holes are quantum complete, which has a very precise
meaning. However, equally precise they are qualified as
geodesically incomplete space-times by the singularity
theorem of Hawking and Penrose. Of course, both com-
pleteness notions are logically consistent within their
respective domains of validity. If we are to derive further
consequences from these notions, in particular, concerning
the consistency of black holes and of general relativity, it is
important to understand which domain and therefore which
completeness notion is applicable given the physical
conditions. Our point of view advocated here is the
following: Geodesic completeness is a concept in the
category of smooth manifolds as models for space-times.

To the extent that we can be certain that these models can be
probed by physical events, it is falsifiable. In the vicinity of
spacelike singularities, spatial correlations become trivial,
i.e., events can only be spatially correlated if they are
stacked on top of each other. As might be expected, what
matters in the vicinity of a spacelike singularity are
temporal correlations. In fact, temporal gradients corre-
spond to a characteristic length scale that is smaller than the
length scale characterizing the spatial extent of any con-
ceivable classical measurement device. Therefore, any
completeness diagnosis based on classical measurements
is inappropriate given the physical conditions. Any meas-
urement process in the vicinity of a black-hole singularity
has to rely on quantum field theory. In the context of
classical singularity theorems, the only falsifiable com-
pleteness notion applicable to black-hole interiors is quan-
tum completeness.
This argument is not in conflict with the logic under-

lying the usual quantization prescription, precisely
because the probability measure is always well-defined.
In particular, the Gaussian ground state is respected by
self-interactions, provided the system was in a weak-
coupling regime initially. This is in accordance with the
intuitive expectation that the free dynamics (temporal
correlations) dominates in the vicinity of the singularity.
Consequently, excitations relative to the ground state
cannot change the conclusion. Let us stress that these
results are in full accordance with the dynamical stability
of classical field configuration in Schwarzschild space-
time, as has been established in [10–12]. Temporal
support for field configurations is strictly restricted to
the interval ð0; t0� with the initial time t0 < rg, and the
field configurations are smooth on this interval.
Black-hole interiors are quantum complete, and this

notion is sensible from a physics point of view even in
the vicinity of the classically singular hypersurface. In
contrast, geodesic incompleteness of black holes, albeit a
mathematical rigorous qualification, is not a physical
statement since any operative measurement has to employ
physics beyond point particle dynamics. As a consequence,
the classically singular hypersurface bears no impact on
observables based on bookkeeping devices (fields) with
sensible dynamics. Less sensible is the argument that
geometrical observables such as the Kretschmann scalar
would diverge at the origin. This line of argument is already
invalidated for simple bound-state problems in quantum
mechanics, for instance, the hydrogen atom. Clearly, the
Coulomb potential enjoys geodesic and potential incom-
pleteness, which is inconsequential for hydrogen as a
quantum bound state. Albeit the singular structure in this
case is just a point, quantum completeness is established by
arguments related to the support properties of the proba-
bility measure, as well. In the case of black holes, the
singular structure is spacelike, but corresponds to a limiting
instant in time.
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The interiors of Schwarzschild black-holes border on space-like singularities which are considered
to serve as geodesic information sinks. It is shown that these sinks are completely decoupled from
local quantum physics by a dynamically generated Dirichlet boundary. Towards this boundary, local
information carriers become free and receive vanishing probabilistic support. Hence information
cannot leak and information processing in black-hole interiors is free from paradoxes.
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Introduction. Schwarzschild black-hole interiors are
considered to border on information sinks which are ac-
cessible to geodesic information carriers. Any informa-
tion carriers falling into these space-like singularities are
irreversibly lost, their recovery is forbidden by causal-
ity. In the purely geometrical description of black-hole
interiors, geodesic incompleteness is realized in its most
radical version: Any geodesic carriers of information in
the interior are destined to reach the singularity after
a finite time has elapsed. From this perspective, black
holes seem to leak information through their borders. In
other words, black holes destroy information [1].

In this letter we show that black-hole interiors cannot
loose information carried by local bookkeeping devices.
Local quantum physics is decoupled from the space-like
singularity by a Dirichlet boundary condition [2]. This
boundary condition is not imposed on the information
carriers, but emerges dynamically due to a quantum-
complete evolution given by a contracting semi-group.
The contraction property is reflected in the vanishing
probabilistic support that is assigned to local informa-
tion carriers towards the boundary. As a result, the clas-
sical information sink is closed in the quantum regime,
and local information carriers are protected from incon-
sistencies rooted in the purely geometrical description of
black-hole interiors.

After some geometrical preliminaries we present an
intuitive argument based on scaling relations in the
micropædia before giving the exact argument in the
macropædia, followed by an interpretation based on
Dirichlet decoupling. The latter can be related to the
black-hole final state proposal by Horowitz and Malda-
cena [3]. The emerging Dirichlet boundary supports their
argument for a black-hole final state from a semi-classical
perspective.

Geometrical Preliminaries. Schwarzschild black-holes
are the warped geometries B := P< ×r S2, with P< de-
noting the region r < rg := 2M in the (t, r)-half plane
R×R+, where the projections t : B → R and r : B → R+

∗ l.eglseer@physik.uni-muenchen.de
† stefan.hofmann@physik.uni-muenchen.de
‡ marc.schneider@physik.uni-muenchen.de

are the Schwarzschild time and Schwarzschild radius, re-
spectively. And S2 denotes the unit two-sphere. In
B the coordinate vector field ∂t is space-like, and ∂r
is time-like. Taking this into account, the quadratic
form associated with this geometry can be written as
ds2 = −s−1(t)dt2 +s(t)dr2 +t2w, where s(t) := |1−rg/t|
is the Schwarzschild function, and w denotes the line
element associated with the Euclidean metric on S2,
equipped with the usual spherical coordinates (φ, θ). B is
a globally hyperbolic space-time diffeomorphic to R×Σ,
where Σ is the folio of spatial hypersurfaces Σt labeled
by Schwarzschild time. The metric field associated with
the above quadratic form will be denoted by g, and its
pull-back to Σ by g

Σ
.

In this geometry, the geodesic motion of a point par-
ticle that is initially equatorial relative to Schwarzschild
spherical coordinates is bound to remain equatorial, θ =
π/2. The so-called energy equation E2 = (dt/ds)2 + Veff

holds, where E := s(t)dr/ds and L := t2dφ/ds are
constants, which have an intuitive interpretation in the
exterior as asymptotic energy per unit mass and angu-
lar momentum per unit mass, respectively. In fact, in
the exterior, the definition of L formally coincides with
Kepler’s second law. The effective potential is given
by Veff := −(1 + L2/t2)s(t). Close to the endpoint at
t = 0, the effective potential is bounded from above,
Veff = −L2rg/t

3 plus less singular contributions. Thus
the classical motion generated by Veff is not complete at
t = 0, and so B is geodesic incomplete [4]. Geodesic
completeness, however, does not imply quantum com-
pleteness (and vice versa).

Micropædia. Let us first give an intuitive argument
based on scaling relations for information conservation
in B, before providing exact statements. In B consider a
dynamical system (L,Φ∗,Φ), where Φ∗,Φ denote scalar
fields charged under U(1), and L is the corresponding
Lagrange density L = L0 + Lint, with the first term
denoting the free theory L0 = Φ∗�Φ. The intuitive
argument will be given in the absence of interactions,
Lint ≡ 0. Close to the space-like singularity Σ0 border-
ing on B, ds2 ∼= −(t/rg)dt2 + (rg/t)dr

2 + t2w, where ∼=
means equality up to sub-leading contributions in each
term as Σ0 is approached [5]. In this asymptotic regime,
� ∼= (−rg/t)(∂

2
t + (1/t)∂t) + (t/rg)∂ 2

r + (1/t2)∂ 2
^ . Here

∂ 2
^ denotes the usual angular part of the Laplace opera-



2

tor in R3 in Schwarzschild spherical coordinates.
The corresponding Green function G is sourced by

δ(t − t′)δ(σ − σ′)/
√
−det(g), with σ and σ′ denoting

Schwarzschild spherical coordinates of events localized on
Σt and Σt′ , respectively, and satisfies

D(t)G(t, σ; t′, σ′) = δ(t− t′)δ(σ − σ′) ,
D(t) := −rg∂t(t∂t) + (t/rg)t2∂ 2

r + ∂ 2
^ . (1)

In order to estimate the asymptotic relevance of each
term in the differential operator, consider D(ετ) in the
limit ε→ 0+. The effective potential for free fields scales
asymptotically as 1/t2 and develops a repulsive barrier.
It is well-known from quantum mechanics [6] that poten-
tials of this type cannot be penetrated via tunnel pro-
cesses.

Following the geometrical description of space-like sin-
gularities by Belinskii, Khalatnikov and Lifshitz [7],
temporal variations dominate over spatial variations
in the region bordering on Σ0. Therefore, D(ετ) ∼=
(1/ε)∂τ (τ∂τ ). The time-dependent part of the source
distribution scales like (1/ε)δ(τ − t′/ε). This effectively
allows to split the Green function G = T (t, t′)P (σ, σ′) in
the vicinity of Σ0, with the asymptotic dynamics given
by ∂τ (τ∂τT ) ∼= 0. Here all identifiers labeling the eigen-
value problem of the Laplace operator have been sup-
pressed for ease of notation. We find the asymptotic
solution T (t, t′) ∼= C0(t′) + C1(t′) ln(t/rg), with C0,1 suf-
ficiently well behaved to guarantee a well-posed initial
value problem on Σt′ .

In order to appreciate the rather mild divergence of the
asymptotic solution T , we introduce an emitter Qem lo-
calized on Σt′ , t

′ ∈ (0, t∗) in the asymptotic domain,
and an absorber Qab on Σετ . For instance, consider
Qab = δ(t − ετ) qab(σ), with qab encoding the spatial
extension of the detector on Σετ . This blueprint effec-
tively replaces part of Σ0 with a detector volume that can
resolve arbitrary frequencies. Note that the asymptotic
regime is controlled by the parameter ε while τ represents
a constant instant of time.

The classical measurement process is described by the
on-shell vertex density νobs =

√
det(g)Q ∗abΦos +c.c. with

Φos denoting a linear functional of Qem with a bi-local
kernel given by G [8]. In the region bordering on Σ0,
as specified by the support properties of emitter and ab-
sorber, νobs

∼= t2ln(t)δ(t − ετ)sin(θ)qab Fem, where Fem

contains the exclusive information on the emission pro-
cess and depends only on source parameters. In particu-
lar, Fem is finite in accordance with a globally hyperbolic
interior B. For ε → 0, the measurement of the emit-
ter’s influence on the detector gives a vanishing response,
νobs

∼= 0, in the distributional sense. This implies that
no information carried by local bookkeeping devices can
reach Σ0. It is possible to be more specific about the
emitter. As an example, the energy momentum tensor
for the complex scalar field scales like T ∝ 1/(ετ)2 on
Σετ and develops a singularity towards Σ0. It is easy
to accommodate this observable in the above naive mea-
surement prescription: Qem = trT ∝ 1/t′3 for t′ in the

asymptotic domain. Let us consider two detector models
in this case. First, again Qab = δ(t − ετ)qab(σ), result-
ing in a measurement of νobs = 0, as before. Second,

Q̃ab = M(ετ)U⊗U , where U ∼=
√
ετ/rgdt, and M(t) de-

notes the spatial volume integral over an energy density.
The principle of minimal coupling underlying a measure-

ment description based on Q̃ab is of course the coupling

to a gravitational wave, hence Q̃em = T . In this case,
measuring the influence of the emitter on the absorber lo-
cated at Σετ we find the scaling ν̃obs ∝M(ετ)(ετ)3ln(ετ).

From a phenomenological point of view, Q̃ab is required
to have nontrivial support towards Σ0 and εM(ετ) needs
to be bounded as ε ∈ R+ approaches zero. Then, ν̃ ∼= 0,
as well, which only confirms that the asymptotic descrip-
tion of the tree-level measurement process is indepen-
dent of the tensor providing the principal communication
channel.

Before closing the micropædia, let us briefly discuss the
asymptotic diagnostics of Noether charges. The U(1)-
current density is j = Φ∗PΦ− c.c., where P denotes the
four-momentum. Projecting the current density onto U ,
we find the following scaling relation for the charge den-
sity ρ localized on Σετ : ρ(ετ) ∼= ρ(t∗)(t∗/ετ)3/2, which
formally diverges as Σ0 is approached. Physical mea-
surements of the charge Q(ετ), however, are fine. In
fact Q(ετ) = Q(t∗), where t∗ denotes a fiducial time in
the asymptotic regime. Thus black-holes cannot be dis-
charged through the geodesic singularity Σ0 bordering on
their interiors. Any active information sink would neces-
sarily lead to charge depletion. Note that this discussion
of asymptotic charge conservation is fully based on local
physics inside black holes, and no reference to the usual
global characterization in the exterior is made.

Macropædia. A more rigorous argument is based on
the Schrödinger representation of local quantum physics.
In B consider a dynamical system (H,Φ∗,Φ), where Φ∗,Φ
denote scalar fields charged under U(1), and H is the cor-
responding Hamilton density H = :G(Π∗,Π) + V(Φ∗,Φ):
with G(Π∗,Π) :=

√−gtt Π∗Π/det(g
Σt

), and Π := −iδ/δΦ
denoting the momentum field conjugated to Φ. The effec-
tive potential density V is a pure multiplication operator.

Let |Ψ〉
Σt0

denote a Schrödinger state localized on an

initial hypersurface Σt0 . At a later time t, the initial state
has evolved to |Ψ〉

Σt
= E(t, t0)|Ψ〉

Σt0
, and is localized on

the hypersurface Σt in the folio Σ. Let C denote the
set of all possible field configuration, both on-shell and
off-shell. The C-representation of E is given by

E(t, t0) = exp


−i

t∫

t0

dt′
∫

Σt′

dµx H (Φ∗,Φ)


 , (2)

where dµx denotes the covariant measure with respect to
the metric g

Σ
, and x refers to the coordinate neighbour-

hood.
In Minkowski space-time and in the absence of external

fields, the evolution operator E is required to be a unitary
representation of time translations. Locally these are
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generated by a self-adjoint Hamiltonian which is there-
fore associated with the total energy of the dynamical
system. In dynamical space-times such as B, and there-
fore in general, E is only required to be a member of
a contraction semi-group, which implies, in particular,
‖E(t, t0)‖ ≤ 1 for all times t later than the initial time
t0, which translates in B to ∀t ∈ (0, t0). Fortunately, E
can still be approximated locally and H can still be inter-
preted as a generator density. This is more than nomen-
clature: H is called accretive if Re(〈Ψ|H|Ψ〉) ≥ 0 for any
state in the domain of H, and it generates a contraction
semi-group if and only if H is accretive. In other words,
the pair (unitary, self-adjoint) is superseded by the pair
(contractive, accretive) as the complete characterization
of consistent quantum dynamics in generic space-times.

The main criterion for the non-existence of sinks for lo-
cal information carriers is the following: Information as-
sociated with configurations of local bookkeeping devices
is conserved in a globally hyperbolic space-time border-
ing on a space-like singularity Σ0 if and only if the corre-
sponding evolution is given by a contraction semi-group
with vanishing norm on Σ0.

Consider first a free system with effective potential
V :=

√−gtt(|gradΦ|2 +m2|Φ|2). The ground state of the
corresponding dynamical system represented in C should
be given by a Gaussian wave functional

Ψ0[φ∗, φ](t) = N (t) exp (−[V ∗]K[V ](t)) , (3)

where the degrees of freedom are organised in the two-
tuple V := (φ, φ∗)T, and

[V ∗]K[V ](t) := 1
2

∫

Σt

dµx,y V
∗(x)K(x, y, t)V (y) (4)

is a quadratic functional with a bi-local representation
given by the matrix K. In the absence of interactions, K
is diagonal and only its trace enters (4). Furthermore, in
the vicinity of the Schwarzschild singularity Σ0, the evo-
lution generator simplifies to H ∼= G(Π∗,Π). As a con-
sequence, tr(K) becomes a spatial contact term towards
the singularity, tr(K)(x, y, ετ) ∼= k(ετ)δ(3)(x, y) with [9]

Im (k(ετ)) ∼= − 2

(ετ)3

1

|ln(ετ)| ,

Re (k(ετ)) ∼= |Im(C)| |Im (k(ετ))|
|ln(ετ)| , (5)

in the limit ε → 0. This is consistent with the analysis
of generalized Kasner space-times by Belinskii, Khalat-
nikov and Lifshitz: In the vicinity of space-like singu-
larities, but still in the domain of general relativity, the
spatial variation of local quantities is insignificant com-
pared to temporal gradients. In the asymptotic region,
the asymptotic kernel (5) implies for the wave functional
(3) of the Gaussian ground state that

lim
ε→0

Ψ0[φ∗, φ](ετ) = lim
ε→0
|ln (ετ)|−Λv(Σετ )

, (6)

where Λ denotes a short-distance cut-off and v(Σετ ) a
volume regularization. This choice is satisfactory for the
purpose at hand and does not affect the limit ε→ 0.

In order to show that H is accretive, it is sufficient
to introduce an auxiliary source functional J describing
the absorption and emission of fields φ minimally cou-
pled to the associated local current density J , and define
Ψ J

0 [φ](t) := 〈φ| exp(J )[Φ](t)|Ψ0〉Σt , which allows to re-
place compositions of the configuration operator Φ by the
corresponding succession of functional derivatives with
respect to the current. In the presence of the auxiliary
source,

〈Ψ J
0 |Φ2(f)|Ψ J

0 〉Σt =

[f ]δ 2
J exp

{
1

4

1√
det(gΣ)

[J ] [Re(K)]
−1

[J ]

}
P0(t) , (7)

where [f ]δ 2
J denotes the second functional derivative with

respect to J , smeared with an appropriate field config-
uration f . In the absence of the auxiliary source, the
ground-state expectation (7) is real and semi-positive def-
inite. Towards the singularity Σ0, it approaches zero due
to the temporal support granted by the probability den-
sity P0(t) := ‖Ψ0[φ]‖2(t). Similarly,

〈Ψ J
0 |Π2(f)|Ψ J

0 〉 =√
det(gΣ)|k|2(t)〈Ψ J

0 |Φ2(f)|Ψ J
0 〉Σt . (8)

The ground-state expectation value (8) is real, semi-
positive definite, and approaches zero towards Σ0. There-
fore, 〈Ψ J

0 |H(f)|Ψ J
0 〉 is always semi-positive definite and

vanishes towards the black-hole singularity. It can be
shown that these qualifications remain true for arbitrar-
ily excited states. Hence, H is accretive and the quantum
evolution is indeed given by a contraction semi-group
[10]. Furthermore, information is conserved in B and
cannot leave through the geodesic information sink Σ0

bordering on B. All these results remain true if (self-) in-
teractions are included. We checked this explicitly [10],
but it is also understandable at the qualitative level since
still H ∼= G(Π∗,Π).

This result is rather intuitive: The ultimate reason be-
hind the consistency of local quantum physics inside a
black hole, even in a semi-classical set-up, is quantum
completeness, which also renders information conserva-
tion sacrosanct. The geodesic information sink is closed
because the probabilistic measure keeps Σ0 void of any
information carriers. As a consequence Σ0 cannot be
probed by local quantum physics, not even indirectly in
the sense of allowing B to leak. Quantum fields are totally
ignorant about the presence of Σ0 and the correspond-
ing complete event space can be interpreted as a physical
space-time which is regular.

The absence of an information sink in the quantum
theory can be reconsidered as follows. Since K is diag-
onal, we only consider φ-configurations for the sake of
brevity. The probability-current density is given by

S0(x) :=

√−gtt
gΣ

(Ψ0 Π(x) Ψ∗0 − h.c.) , (9)



4

and satisfies the functional generalization of differential
probability conservation, ∂tP0 + divS0 = 0, where

divS0 :=

∫

Σt

dµx iΠS0 , (10)

on any spatial hypersurface Σt , t ∈ (0, t0). Integrating
this divergence over the field configuration space, conti-
nuity of probability amounts to

∂tW(t) = i

∫

Σt

dµx

√−gtt
g

Σ

(
〈Ψ0|Π2(x)|Ψ0〉 − h.c.

)
,(11)

where W(t) denotes the total probability for populating
Σt with any field configuration, on- and off-shell. To-
wards the black-hole singularity 〈Ψ0|Π2(x)|Ψ0〉 ∈ R+

0 ,
see (8), and so W(t) is conserved. The probability cur-
rent cannot reach the geodesic information sink. There-
fore there is no probability leakage in accordance with
our former statement that Σ0 cannot be populated with
information carriers.

Discussion. In the region bordering on Σ0 we may
expect nontrivial support for the originally pure state
|ΨS〉 that formed the black hole. Instead of populating
the interior B with arbitrary information carriers, con-
sider a population originating from an Unruh state |U〉 ≡∑ |Ψin〉⊗|Ψout〉, where |Ψout〉 denotes a state associated
with Hawking radiation and |Ψin〉 is the corresponding in-
going state. Let us choose a Cauchy initial hypersurface
Σt0 in B such that the quantum content of the interior is
|ΨB〉 = |ΨS〉⊗|Ψin〉 on this hypersurface [3]. The configu-
ration space contains dual states such as 〈C| = 〈X|⊗〈R|,
where X represents the configuration fields that partic-
ipated in the gravitational collapse, and R denotes the
ingoing Hawking quanta. Evolving the states from Σt0 to
Σετ , the wave functional in configuration representation
is given by ΨB[C](ετ) = Σετ 〈C|E(ετ, t0)|ΨB〉Σt0 . In order
to allow for a probabilistic interpretation, the evolution
operator is required to satisfy the contraction property
‖E(ετ, t0)‖ ≤ 1 towards Σ0. Equivalently, its generator

H = Hcoll(X) +Hrad(R) + Hcoup(X,R) needs to be ac-
cretive. Here, Hcoup describes the coupling between the
quanta that participated in the gravitation collapse and
the ingoing Hawking radiation. If a weak coupling regime
is assumed, then ΨB[C](ετ) ≈ ΨS[X](ετ)×Ψin[R](ετ) to
leading order in the coupling. The results of this let-
ter show that Ψin[R](ετ) vanishes towards Σ0. Provided
ΨS[X](ετ) is sufficiently well behaved, it then follows that
ΨB[C] vanishes at the border Σ0 of physical space-time.

Hence, the wave functional of the black-hole interior
satisfies a trivial Dirichlet boundary condition. This
boundary condition restricts information configurations
to B in which information processing is described by a
contraction semi-group E(t, t0) with an accretive gener-
ator H. This generator shares properties with Dirichlet
operators: Close to the boundary the dynamics trivi-
alises to free evolution, corresponding to a geometrically
induced asymptotic freedom, and information processing
is only supported away from the boundary. This bound-
ary condition is not imposed on the wave functional, it
is rather a direct consequence of a quantum complete
evolution that protects the probabilistic interpretation
of the theory against the singular structure Σ0 border-
ing on the physical space-time B. The only conceivable
way the evolution can achieve this within the usual ap-
proximation scheme is by depriving Σ0 from rendering
probabilistic support to local bookkeeping devices. As a
consequence, the geometrical information sink is closed
for local quantum physics, and there can be no leakage
of information. The analysis was restricted to B which is
sufficient to address the information paradox.

As a result, black-hole interiors respect information
in the sense that information processing is free from
paradoxes.
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F
Kasner analysis and connexion to the Schwarzschild

case

Analogous to the Schwarzschild case, we determine the integral kernel by solving (4.3.1)

in case of the Kasner space-time. We saw in Section 3.1 that the Schwarzschild metric in

the interior can be approximated by a Kasner type-D form (3.14) which is given by

g = −dτ⊗ dτ+ τ4/3(dx⊗ dx+ dy⊗ dy) + τ−2/3dz⊗ dz. (F.1)

For this metric the dispersion (Fourier transformed Laplace operator) isΩ(k, τ) = τ−4/3k2x+

τ−4/3k2y+τ
2/3k2z+m

2. All Kasner space-times are as well Bianchi I space-times. For Kasner

space-times the determinant of the spatial part and the full metric are equal det(g) =

det(gΣ) = τ2 which comes from the Kasner plane and Kasner sphere conditions. Another

such property is given by two shrinking (or expanding) coordinates while the other is

expanding (or shrinking respectively). It can not collapse to one point like a Friedmann

universe or de Sitter. Therefore, the black hole, although often mentioned to be like a

collapsing Friedmann universe inside, is completely unlike the Friedmann case which is in

contrast to Kasner not a vacuum solution of Einstein’s equation.

Taking space-time (3.14) and putting it into the calculation scheme of chapter 4 we

calculate the ground state wave-functional. This analysis brings a few more insights also

into the Schwarzschild case. Kasner space-times admits a kernel in the wave functional

which in the limit of small times goes to

K̂(τ, k) ∼ −
i

τ2 ln(τ)
. (F.2)

It is similar to the result of the full Schwarzschild interior metric (4.94). We have absorbed
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all real numbers into a constant which is for simplicity not shown here. The different ex-

ponent in the Schwarzschild case can be explained by the coordinate transformation where

t→ τ2/3. Therefore, the result for the wave functional is consistent with the Schwarzschild

case. Another remarkable fact is that the dependence on the polar angle through sin(ϑ) has

disappeared. The asymptotics are purely time-dependent and the contribution containing

the momenta vanishes in the limit of small τ. In the vicinity of the singular hyperplane

Σ0 we find that the dominant contribution is given by the time coordinate. This is what

we expected for the Schwarzschild case for geometrical reasons. Now, Kasner space-times

allow to draw the same conclusion.

As a side remark this could as well have been guessed by considering the analysis of

Belinskii, Khalatnikov and Lifshitz which says that near a singularity oscillations in time

become huge compared to oscillations in space. Our analysis totally supports this, no

contributions of the momenta arise in Fourier space which is equivalent to the fact that

the kernel factorises into a time-dependent function and a δ-distribution.

However, cosistency has to be checked within the framework of quantum completeness.

Deriving the wave functional for the Kasner type gives

‖Ψ(0)‖2 = |N0|
2

ln(τ)v(Στ)Λ
(τ

1
2 ln(τ))N(Λ) τ→0−→ 0. (F.3)

All constants have been stored into N0 which is different from the one in (4.97). The result

of the ground state amplitude yields the same behaviour in the vicinity of the singularity

and the Kasner analysis is in full agreement with the aforementioned Schwarzschild case.

The leading contribution is the same which shows consistency with the Schwarzschild case

as well as the BKL conjecture.



G
Heisenberg analysis of charge conservation inside a

black hole

In this appendix, we show the connection between the Heisenberg and the Schrödinger

picture. The derivation has been taken from the article [Eglseer et al., 2017]. The main idea

of the correspondence is mediated by the measurement theory of the Heisenberg picture

Let us first give an intuitive argument based on scaling relations for charge/information

conservation in the black hole interior B, before providing exact statements. In B consider

a dynamical system (L, Φ∗, Φ), where Φ∗, Φ denote scalar fields charged under U(1), and

L is the corresponding Lagrange density L = L0+Lint, with the first term denoting the free

theory L0 = Φ∗�Φ. The intuitive argument will be given in the absence of interactions,

Lint ≡ 0. Close to the space-like singularity Σ0 bordering on B,

ds2 ∼= −(t/rg)dt
2 + (rg/t)dr

2 + t2w, (G.1)

where ∼= means equality up to sub-leading contributions in each term as Σ0 is approached1.

In this asymptotic regime,

� ∼= (−rg/t)(∂
2
t + (1/t)∂t) + (t/rg)∂

2
r + (1/t2)∂ 2^ . (G.2)

Here ∂ 2^ denotes the usual angular part of the Laplace operator in R3 in Schwarzschild

spherical coordinates.

The corresponding Green function G is sourced by δ(t− t′)δ(σ− σ′)/
√

−det(g), with

σ and σ′ denoting Schwarzschild spherical coordinates of events localised on Σt and Σt′ ,

1For θ small, the quadratic form can be transformed into type-D Kasner line-element with exponents
(p1, p2, p3) = (2/3, 2/3,−1/3), corresponding to a spatially anisotropic cosmology.
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respectively, and satisfies

D(t)G(t, σ; t′, σ′) = δ(t− t′)δ(σ− σ′) ,

D(t) := −rg∂t(t∂t) + (t/rg)t
2∂ 2r + ∂ 2^ . (G.3)

In order to estimate the asymptotic relevance of each term in the differential operator,

consider D(ετ) in the limit ε→ 0. The effective potential for free fields scales asymptoti-

cally as 1/t2 and develops a repulsive barrier. It is well-known from quantum mechanics

[Andrews, 1976] that potentials of this type cannot be penetrated via tunnel processes.

Following the geometrical description of space-like singularities by Belinskii, Khalatnikov

and Lifshitz [Belinskii et al., 1970], temporal variations dominate over spatial variations in

the region bordering on Σ0. Therefore, D(ετ) ∼= (1/ε)∂τ(τ∂τ). The time-dependent part

of the source distribution scales like (1/ε)δ(τ − t′/ε). This effectively allows to split the

Green function

G = T(t, t′)P(σ, σ′) (G.4)

in the vicinity of Σ0, with the asymptotic dynamics given by ∂τ(τ∂τT) ∼= 0. Here all

identifiers labelling the eigenvalue problem of the Laplace operator have been suppressed

for ease of notation. We find the asymptotic solution

T(t, t′) ∼= C0(t
′) + C1(t

′) ln(t/rg), (G.5)

with C0,1 sufficiently well behaved to guarantee a well-posed initial value problem on Σt′ .

In order to appreciate the rather mild divergence of the asymptotic solution T , we in-

troduce an emitter Qem localised on Σt′ , t
′ ∈ (0, t∗) in the asymptotic domain, and an

absorber Qab on Σετ. For instance, consider Qab = δ(t− ετ) qab(σ), with qab encoding the

spatial extension of the detector on Σετ. This blueprint effectively replaces part of Σ0 with

a detector volume that can resolve arbitrary frequencies. Note that the asymptotic regime

is controlled by the parameter ε while τ represents a constant instant of time.

The classical measurement process is described by the on-shell vertex density

νobs =
√

det(g)Q ∗abΦos + c.c. (G.6)

withΦos denoting a linear functional ofQem with a bi-local kernel given byG [DeWitt, 2003].

In the region bordering on Σ0, as specified by the support properties of emitter and absor-
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ber,

νobs
∼= t2ln(t)δ(t− ετ)sin(θ)qab Fem, (G.7)

where Fem contains the exclusive information on the emission process and depends only

on source parameters. In particular, Fem is finite in accordance with a globally hyperbolic

interior B. For ε → 0, the measurement of the emitter’s influence on the detector gives a

vanishing response, νobs
∼= 0, in the distributional sense. This implies that no information

carried by local bookkeeping devices can reach Σ0. It is possible to be more specific about

the emitter. As an example, the energy momentum tensor for the complex scalar field scales

like T ∝ 1/(ετ)2 on Σετ and develops a singularity towards Σ0. It is easy to accommodate

this observable in the above naive measurement prescription:

Qem = trT ∝ 1/t′3 (G.8)

for t′ in the asymptotic domain. Let us consider two detector models in this case. First,

again Qab = δ(t− ετ)qab(σ), resulting in a measurement of νobs = 0, as before. Second,

Q̃ab =M(ετ)U⊗U, (G.9)

where U ∼=
√
ετ/rgdt, andM(t) denotes the spatial volume integral over an energy density.

The principle of minimal coupling underlying a measurement description based on Q̃ab is

of course the coupling to a gravitational wave, hence Q̃em = T . In this case, measuring the

influence of the emitter on the absorber located at Σετ we find the scaling

ν̃obs ∝M(ετ)(ετ)3ln(ετ). (G.10)

From a phenomenological point of view, Q̃ab is required to have nontrivial support towards

Σ0 and εM(ετ) needs to be bounded as ε ∈ R+ approaches zero. Then, ν̃ ∼= 0, as well,

which only confirms that the asymptotic description of the tree-level measurement process

is independent of the tensor providing the principal communication channel.

Before closing this section, let us briefly discuss the asymptotic diagnostics of Noether

charges. The U(1)-current density is

j = Φ∗PΦ− c.c., (G.11)

where P denotes the four-momentum. Projecting the current density onto U, we find the
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following scaling relation for the charge density ρ localized on Σετ:

ρ(ετ) ∼= ρ(t∗)(t∗/ετ)
3/2, (G.12)

which formally diverges as Σ0 is approached. Physical measurements of the charge Q(ετ),

however, are fine. In fact Q(ετ) = Q(t∗), where t∗ denotes a fiducial time in the asym-

ptotic regime. Thus black-holes cannot be discharged through the geodesic singularity Σ0

bordering on their interiors. Any active information sink would necessarily lead to charge

depletion. Note that this discussion of asymptotic charge conservation is fully based on

local physics inside black holes, and no reference to the usual global characterisation in the

exterior is made.
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[Hörmander, 2007] Hörmander, L. (2007). The analysis of linear partial differential opera-

tors III: Pseudo-differential operators, volume 274. Springer Science & Business Media.
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leider kenne ich keine Sprache, die ein Wort besitzt, welches die Größe meiner Dankbarkeit
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