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1 INTRODUCTION 

1.1 Alveolar epithelial type II cells  

1.1.1 The alveolus 

Alveoli are the terminal ends of the respiratory tree and cover a surface of around 70 

m2 (Aumüller et al. 2007). The two major functions of the alveoli are gas exchange and 

defense against inhaled microorganisms and particles (Mason 2006). Different cell 

types contribute to this work: these are alveolar epithelial type I (ATI) cells, alveolar 

epithelial type II (ATII) cells as well as alveolar macrophages on the alveolar side and 

endothelial cells on the blood side. 

ATI and ATII cells differ greatly in their number, morphology and function. ATI cells are 

thin, squamous cells with fine cytoplasmic extensions. ATI cells constitute only 8% of 

all lung cells, but account for 93% of the alveolar epithelial surface area in human lungs 

(Crapo et al. 1982). A fused basement membrane between ATI cells and endothelial 

cells provides the gas-blood-barrier for gas exchange. ATII cells are cuboidal and 

smaller in size than ATI cells. They account for 16% of all lung cells. However, only 7% 

of the alveolar surface area is covered by this cell type (Crapo et al. 1982). Multiple 

functions have been attributed to ATII cells (as described in 1.1.2).  

1.1.2 ATII functions 

The wide variety of ATII cell functions early coined the term “defender of the alveolus” 

(Figure 1) (Mason & Williams 1977) .  

 

Figure 1. ATII cell as the defender of the alveolus. ATI cells comprise most of the alveolar 
surface and are responsible for gas exchange. ATII cells are small, cuboidal cells that secure 
alveolar homeostasis by surfactant production, regulation of immune response, salt and water 
transport and regeneration into ATI cells upon injury (Mason 2006). 
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The most studied function of ATII cells is the production of lung surfactant. Surfactant 

is composed of ~ 90% lipids, mainly phospholipids, and ~ 10% proteins, including the 

surfactant proteins (SP) SP-A, SP-B, SP-C and SP-D (reviewed in (Griese 1999)). SP-

B and SP-C are small hydrophobic proteins, which accelerate the spreading of 

surfactant phospholipids on the alveolar surface. The hydrophobic monolayer reduces 

surface tension, thus, preventing alveolar collapse. This is essential for effective gas 

exchange (Mason 2006). 

SP-A and SP-D are large hydrophilic lectins involved in innate host defense. Both 

proteins can stimulate or suppress the inflammatory response of the lung (Gaunsbaek 

et al. 2013; Giannoni et al. 2006; Kantyka et al. 2013; Ariki et al. 2012). To further 

support the immune response, ATII cells secrete additional antimicrobial proteins, 

transport immunoglobulins to the alveolar surface and produce components of the 

complement system (Mason 2006). 

Apical epithelial sodium channels (ENaCs) and basolateral sodium/potassium 

adenosine triphosphatase (ATPase) enable transepithelial transport of sodium from the 

alveolus into the interstitium. By this fine modulation of salt and water transport, ATII 

cells secure optimal gas exchange (Eaton et al. 2004). 

ATII cells have the potential to transform into other cell types. This can be essential for 

lung repair, but also enhances a risk to develop lung diseases when dysregulated (as 

described in 1.3.2, page 10). During lung injury, ATII cells have the capability to restore 

alveolar epithelial cells. Early studies gave evidence that ATII cells were capable of 

proliferating and differentiating into ATI cells (Evans et al. 1975). Morphologic changes 

were characterized by an increased surface area, thin cytoplasmic extensions and 

protruding nuclei (Cheek et al. 1989). Biochemical changes included a decreased 

expression of SP-C (Fuchs et al. 2003; Demaio et al. 2009) and upregulation of the 

ATI-expressed proteins caveolin-1 (Fuchs et al. 2003) and T1α (Borok et al. 1998). 

Recently, lineage tracing studies showed that SP-Cpositive ATII cells gave rise to ATI 

cells (Rock et al. 2011), but also replaced ATII cells (Barkauskas et al. 2013). These 

findings suggest that ATII cells function as stem cells of the alveolar epithelium 

(Fehrenbach 2001). 

The diverse functions of ATII cells illustrate the important role of this cell type in the 

maintenance of alveolar homeostasis, but also emphasize that injury, loss or 

dysregulation of ATII cells may result in a pathologic state of the lung. 
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1.2 MicroRNAs  

1.2.1 Small RNAs 

Small ribonucleic acids (RNAs) are a subgroup of non-coding RNAs (ncRNAs). 

NcRNAs are RNAs which are not translated into protein. For a long time, the best-

known function of ncRNAs was to support the information transfer from gene to protein. 

For instance, transfer RNA (tRNA) and ribosomal RNA (rRNA) are involved in 

translation, small nuclear RNAs (snRNAs) in splicing and small nucleolar RNAs 

(snoRNAs) in chemical modification of other RNAs (Mattick & Makunin 2006). 

However, with the discovery of small RNAs an entirely new role of ncRNAs was 

elucidated. 

Small RNAs are RNAs of ~ 20-30 nucleotides (nt) in length and operate together with 

associated Argonaute (Ago) proteins. By their biogenesis, function and associated Ago 

protein, they were divided into three main classes: microRNAs (miRNAs), small 

interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs) (V. N. Kim et al. 2009). 

The best-characterized class is miRNAs. The first two miRNAs, lin-4 and let-7, were 

detected in Caenorhabditis elegans as small temporal RNAs involved in timing of larval 

developmental stages. Both miRNAs showed sequence complementarity to the 3’ 

untranslated region (UTR) of messenger RNAs (mRNAs) suggesting a downregulation 

of mRNAs by RNA-RNA sequence pairing (Lee et al. 1993; Reinhart et al. 2000). 

Further RNAs of 21-25 nt were discovered and they were categorized as the miRNA 

family in 2001 (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee & Ambros 2001). Due 

to new detection technologies such as small RNA deep sequencing, the number of 

identified miRNAs has been rapidly expanding in the last years. From 2010 to 2014, 

the miRBase Sequence Database had nearly doubled from 15172 loci in 142 species 

(version 16, 2010) to 28645 loci in 223 species (version 21, 2014) (Kozomara & 

Griffiths-Jones 2014; miRbase 2016). The identified miRNAs were shown to be 

involved in a great variety of functions such as proliferation, differentiation, 

development, apoptosis and metabolism (Bartel 2004; He & Hannon 2004). 

Another class of small RNA was identified soon and - based on their function - termed 

siRNAs (Elbashir, Lendeckel, et al. 2001; Elbashir, Harborth, et al. 2001). SiRNAs are 

double-stranded 19-23 nt long RNAs. It is assumed that the primary function of siRNA 

is the defense against exogenous nucleic acids and endogenous genomic by-products 

such as inverted repeat transgenes and abnormal transcription products (Carthew & 

Sontheimer 2009; Ghildiyal & Zamore 2009; V. N. Kim et al. 2009).  

PiRNAs are the third and largest group of small RNAs. They are longer than miRNAs 

and siRNAs with 24-32 nt in length (Aravin et al. 2006; Girard et al. 2006; Grivna et al. 



INTRODUCTION 

 4 

2006; Lau et al. 2006; Watanabe et al. 2006). For a long time their main function was 

thought to be the protection of germ cell genome integrity by silencing mRNA of 

transposable elements, which can interrupt the genome by insertion or transposition 

(Siomi et al. 2011). However, recent studies have elucidated additional functions in 

somatic cells, such as genome rearrangement and epigenetic programming (Ross et 

al. 2014).  

Hence, the three different classes of small RNAs are involved in distinct biological 

functions. Yet, all they have in common is that they operate by gene silencing by small 

RNA-mRNA sequence pairing with the help of associated Ago proteins: miRNAs in 

endogenous genes for expression regulation, siRNAs in viral genes and genomic by-

products for host defense and piRNAs in transposon genes for maintenance of 

germline integrity. This mechanism of double-stranded RNA (dsRNA)-mediated mRNA 

silencing is called RNA interference (RNAi) and has revealed a whole new role of 

ncRNAs (Fire et al. 1998). In the last decade, the role of ncRNAs in the development of 

chronic diseases has been more and more elucidated. Thus, ncRNAs have become 

promising therapeutic targets (Adams et al. 2017). 

1.2.2 MiRNA biogenesis 

MiRNA biogenesis involves three major steps: miRNA transcription, miRNA maturation 

and assembly of the miRNA-containing RNA-induced silencing complex (miRISC) 

(Bartel 2004). The standard pathway of miRNA biogenesis in mammals is depicted in 

Figure 2, page 5. 
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Figure 2. Standard pathway of miRNA biogenesis in mammals. The miRNA gene is 
transcribed by RNA polymerase (Pol) II. The transcript is cleaved by Drosha in the nucleus and 
Dicer in the cytoplasm. The miRNA-miRNA* duplex is loaded on the RNA-induced silencing 
complex (RISC) assembly. One duplex strand is degraded and the survival strand binds to the 
target mRNA. Alternative pathways for miRNA biogenesis and binding proteins for other 
animals are not shown (adapted from Ameres and Zamore 2013). m7Gppp: 7-methylguanosine 
cap, AAAA(n): 3’ poly(A) tail, 2’ OH: 2’ hydroxyl group, ORF: open reading frame. Other 
abbreviations are explained in the text below. 
 
MiRNA genes are typically transcribed by Pol II (Lee et al. 2004). However, miRNAs 

within Alu repetitive elements are transcribed by Pol III (Borchert et al. 2006). The 

resulting primary miRNA (pri-miRNA) is composed of a ~ 33 nt long double-stranded 

stem, a terminal hairpin and single-stranded flanking segments (V. N. Kim et al. 2009). 

The maturation of miRNAs involves two cleaving steps on the 5’ and 3’ ends of the 

double-stranded pri-miRNA. Both steps are performed by ribonuclease (RNase) III 

enzymes: Drosha in the nucleus and Dicer in the cytoplasm. These dsRNA-specific 

nucleases operate together with dsRNA-binding proteins to improve substrate 

restriction, affinity and cleavage site accuracy (Ameres & Zamore 2013). In the first 

cleavage step, the pri-miRNA is cleaved ~ 22 nt from the loop/stem junction by the 
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microprocessor complex (Zeng et al. 2005), composed of the nuclear RNAse III Drosha 

and its dsRNA-binding protein DiGeorge syndrome critical region 8 (DGCR-8) in 

mammals and Pasha in other animals (Gregory et al. 2004; Landthaler et al. 2004; 

Denli et al. 2004). DGCR-8 ensures accurate binding and cleavage by recognition of 

the single-stranded RNA (ssRNA)/dsRNA junction (Han et al. 2004; Han et al. 2006). 

The resulting small hairpin is ~ 60-70 nt long and it is termed precursor miRNA (pre-

miRNA). For further processing, pre-miRNA is actively transported from the nucleus 

into the cytoplasm by the nuclear export factor Exportin-5 and the ras-related nuclear 

protein guanosine triphosphate (Ran-GTP) cofactor (Gwizdek et al. 2003). 

In the second step of miRNA maturation, the generated pre-miRNA is cleaved near the 

terminal hairpin by the cytoplasmic RNase III Dicer. This results in a ~ 22 nt long 

duplex containing the mature miRNA and the fragment of the opposing arm, known as 

the pre-miRNA* sequence (Bartel 2004). Dicer is associated with Ago proteins and, like 

Drosha, with dsRNA-binding proteins. In mammals dsRNA-binding proteins are 

transactivation response RNA binding protein (TRBP) (Chendrimada et al. 2005) and 

protein kinase R-activating protein (PACT) (Lee et al. 2006). 

Dicer, TRBP/PACT and Ago proteins contribute to the formation of the RISC assembly. 

The miRNA:miRNA* duplex is loaded on the Ago protein assisted by the heat shock 

cognate protein 70 (HSC70) and the heat shock protein 90 (HSP90) (Ameres & 

Zamore 2013). A helicase unwinds the duplex and degrades one of the duplex strands, 

while the surviving strand is retained to the Ago protein (V. N. Kim et al. 2009). The 

asymmetry theory suggests that the strand with the less extensive base pairing at the 

5’ end survives, which is typically the miRNA strand (Schwarz et al. 2003).  

The single-stranded miRNA directs the miRISC to recognize complementary mRNAs 

(Meister et al. 2004). For this process, the two major RNA-binding motifs of the Ago 

proteins play an essential role: the P-element induced wimpy testis (Piwi) and the Piwi-

Argonaute-Zwille (PAZ) domain. With the PAZ domain, Ago binds the miRNA at 3’ end 

while the 5’ half rests in a pocket in the Piwi domain. Thereby, the miRNA is positioned 

within the complex such that primarily the bases in position 2-8 of the 5’ end are 

exposed and able to undergo base pairing (Carthew & Sontheimer 2009). These 7 nt 

are called the “seed sequence“ of the miRNA and are mainly responsible for target 

recognition by Watson-Crick base pairing with the mRNA (Huntzinger & Izaurralde 

2011). 

In recent years, alternative pathways of miRNA maturation have been identified, which 

are distinct for individual miRNAs (reviewed in (Winter et al. 2009)). 
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1.2.3 MiRNA function 

More than 60% of the protein-coding genes in humans are estimated to be controlled 

by miRNAs (Friedman et al. 2009). As the short seed sequence of 7 nt is sufficient for 

complementarity, a single miRNA can regulate several hundreds of mRNAs (Selbach 

et al. 2008) and one mRNA can be regulated by several miRNAs (Bartel 2009). 

The best-characterized mechanism of miRNA-induced gene regulation is gene 

silencing at the posttranscriptional level. This is achieved by at least two distinct 

mechanisms: mRNA decay and translational repression. The proportion of sequence 

complementarity was thought to determine the silencing mechanism with perfect 

complementarity leading to cleavage and imperfect base pairing resulting in 

repression. While plant miRNAs show nearly complete base-pairing with the target 

mRNA, animal miRNAs typically pair the mRNA with mismatches and bulges. 

Therefore, it was assumed that plant miRNAs degrade and animal miRNAs repress 

target mRNAs (Bartel 2004; He & Hannon 2004). However, recent studies have shown 

that there is no clear tendency to one silencing mechanism, neither of plant nor of 

animal miRNA. Both cause repression and decay (Huntzinger & Izaurralde 2011; 

Dalmay 2013). Guo and colleagues suggested that decay of mRNAs might actually be 

the main mechanism of animal miRNA-induced gene silencing. 84% of the measured 

protein production was associated with decreased mRNA levels (Guo et al. 2010). One 

pathway by which mRNA decay might be triggered involves GW182, a downstream 

molecule of AGO proteins. It was demonstrated that GW182 can not only induce 

repression of translation initiation (Ding & Grosshans 2009), but also recruits 

CCR4:NOT deadenylation complex (Fabian et al. 2011; Chekulaeva et al. 2011; Braun 

et al. 2011). CCR4:NOT removes mRNA poly(A) tail, which directs target mRNAs to 

degradation. Therefore, the role of repression or degradation and the mechanisms that 

lie behind it remain to be identified. 

Controversial data exist on whether miRISC induces repression at translation initiation 

or post-initiation (Carthew & Sontheimer 2009). Several studies have demonstrated 

that for miRNA-mediated mRNA repression a 5’ 7-methylguanosine cap and 3’ poly(A) 

tail are necessary (Humphreys et al. 2005; Wang et al. 2006; Wakiyama et al. 2007). 

Ryu and colleagues found that the eukaryotic translation initiation factor 4GI (eIF4GI) 

supports miRISC binding of 5’ cap structure-associated complex (Ryu et al. 2013). 

These data suggest that miRNA-induced gene silencing is due to repression of 

translation initiation. Observations that target mRNAs are distributed with 

polyribosomes, however, indicate that miRNAs repress translation at the post-initiation 

stage (Nottrott et al. 2006; Petersen et al. 2006; Maroney et al. 2006). Therefore, it is 

still unclear which or maybe even both mechanisms contribute to mRNA repression. 
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In recent studies, activation of gene expression has been revealed as another miRNA 

regulatory mechanism (Iwasaki & Tomari 2009; Vasudevan 2011). Vasudevan and 

colleagues showed that miRNAs are involved in cell cycle regulation and stimulate 

translation in quiescent cultured cells (Vasudevan et al. 2007). The highly conserved 

miRNA-10a was found to enhance protein translation, intriguingly by binding to the 5’ 

UTR of target mRNAs (Ørom et al. 2008). Further, the miRNA-122, which is abundantly 

expressed in the liver, was demonstrated to bind to the 5’ end of Hepatitis C virus 

(HCV) genome. Likewise to miRNA-10a the binding resulted in an upregulation of HCV 

translation (Henke et al. 2008; Jopling et al. 2006). 

1.2.4 MiRNA organization and regulation 

MiRNA genes are localized in intergenic or protein coding regions, mainly introns. 

Several miRNAs are often located in close proximity within the genome, named miRNA 

clusters. Further, several miRNAs can share conserved sequences at nt 2-8 of the 5’ 

end of the mature miRNA, a feature which classifies them as miRNA families. MiRNA 

family members often target overlapping mRNAs sharing similar functions (reviewed in 

(Ha & Kim 2014)). The miRNA families are highly conserved within different species. 

Mammals share at least 196 conserved miRNA families (Chiang et al. 2010). This 

implies a fundamental role of miRNAs in gene regulation. Family members can be 

located in clusters, but can also have different genomic origins. Further, miRNA cluster 

members can not only be of one miRNA family, but also have distinct sequences 

(Natarajan et al. 2013). 

Despite the diverse mechanisms miRNAs exert on gene expression, miRNAs 

themselves are regulated at different levels such as transcription, maturation and 

turnover. MiRNAs can be transcribed from an intron of a certain gene in response to 

the same transcription factors as the protein itself (Hammond 2015). This enables a 

tight regulation of miRNA and protein expression (Bartel 2004; Kim et al. 2005). 

Further, miRNAs can be controlled by its own promoter and miRNA cluster members 

can share a polycistronic transcript (Ha & Kim 2014). By conjoint transcription 

regulation, miRNAs having similar targets in one signaling pathway can enhance the 

rather small effect of one single miRNA on the overall outcome of the pathway (Inui et 

al. 2010). Epigenetic mechanisms such as DNA methylation and histone modification 

additionally alter miRNA gene expression (Liu et al. 2013; Davis-Dusenbery & Hata 

2010). 

MiRNA maturation and turnover are also thought to be controlled. For instance, let-7g 

pri-miRNA is expressed at constant levels. However, due to a block at the Drosha 

cleaving step mature let-7g is found at high levels in mature cells, but not in embryonic 
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stem cells (Thomson 2006). However, many mechanisms of miRNA regulation still 

remain elusive (Davis-Dusenbery & Hata 2010; Ha & Kim 2014). 

1.3 Epithelial-to-mesenchymal transition 

1.3.1 Phenotypic changes in EMT 

Epithelial-to-mesenchymal transition (EMT) is a gradual process of epithelial cells 

changing into mesenchymal cells undergoing intermediate phenotypes (Kalluri & 

Neilson 2003; Kalluri & Weinberg 2009). The process is reversible, called 

mesenchymal-to-epithelial transition (MET), and retransformation of mesenchymal 

cells often coexists with EMT (compare Figure 3) (Li et al. 2010; Samavarchi-Tehrani 

et al. 2010; Esteban et al. 2012). 

 

Figure 3. Phenotypic changes in EMT and MET. EMT is a gradual process of downregulation 
of epithelial markers and upregulation of mesenchymal markers leading to increased cell 
motility, migration capacity, fibrosis and resistance to senescence and apoptosis. 
Retransformation of mesenchymal cells, called MET, often coexists (adapted from Bartis et al. 
2014). Abbreviations are explained in the text below. 
 
Epithelial cells have an apical-basal polarity, are located on a basement membrane 

and are connected by cell-cell junctions (Lamouille et al. 2014). The main phenotypic 

alterations in EMT include change in cell surface proteins with loss of intercellular 

junctions, reorganization of the cytoskeleton and change of extracellular components. 

The major element of adherens junctions, epithelial cadherin (E-cadherin), is 

downregulated while neural cadherin (N-cadherin) is upregulated. The intermediate 

filaments change from cytokeratin to the fibroblast specific protein 1 (FSP1), also 

known as S100A4, and to vimentin (Zeisberg & Neilson 2009). Vimentin is expressed 

in fibroblasts, but also by endothelial cells and hematopoietic cells (Franke et al. 1978; 
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Dellagi et al. 1983). It is important for cell motility with vimentin-deficient cells showing 

decreased motility and migration capacity (Eckes et al. 1998). α-smooth muscle actin 

(α-SMA) is expressed in transformed myofibroblasts (Zeisberg & Neilson 2009). 

Extracellular components of the basement membrane are degraded (Yilmaz & 

Christofori 2009) and extracellular matrix components are synthesized by the 

transformed cells, such as type I collagen (K. K. Kim et al. 2009). Hence, EMT 

promotes a mesenchymal phenotype with increased cell motility, cell migration 

capacity, production of extracellular proteins leading to fibrosis and resistance to 

senescence and apoptosis (Zeisberg & Neilson 2009; Lamouille et al. 2014). 

Of note, while for the epithelial phenotype certain markers as E-Cadherin are specific 

and ubiquitous, mesenchymal markers are nonspecific or only expressed by a subset 

of mesenchymal cells (Zeisberg & Neilson 2009; Willis & Borok 2007). Therefore, a 

profile of several markers is necessary to characterize EMT. 

1.3.2 ATII cell changes by EMT and its impact on lung diseases 

EMT physiologically takes place in embryonic development, during gastrulation and 

organogenesis, and in repair of epithelial injury. Under pathologic conditions, EMT can 

induce organ fibrosis as well as cancer development and progression (Thiery et al. 

2009; De Craene & Berx 2013; Puisieux et al. 2014). In the lung, various groups of 

diseases have been discussed to be affected by EMT of ATII cells: developmental 

disorders, lung malignancies and non-malignant diseases with fibrotic remodeling 

(Bartis et al. 2014). 

Organ fibrosis is currently considered as a pathologic response to organ injury. It can 

be divided in four phases: the primary injury, activation of effector cells, production and 

deposition of extracellular matrix (Rockey et al. 2015). In the lung, fibrosis leads to 

airway remodeling contributing to asthma, chronic obstructive pulmonary disease 

(COPD) and interstitial lung disease. The effector cells are primarily fibroblasts and 

myofibroblasts. The origin of mesenchymal cells has been controversially discussed. 

Numerous studies have suggested that under certain conditions, ATII cells differentiate 

into mesenchymal cells by EMT. EMT has been documented in vitro (Königshoff et al. 

2009; Tanjore et al. 2011; Felton et al. 2009) and in vivo (Tanjore et al. 2009; Kim et al. 

2006; Degryse et al. 2010). However, several lines of evidence support the original 

concept of ATII cells being the defender of the alveolus (Fehrenbach 2001). An 

increasing body of literature suggests that apoptosis of ATII cells plus increased 

proliferation of mesenchymal cells leads to pulmonary fibrosis. Induction of apoptosis in 

alveolar epithelial cells resulted in pulmonary fibrosis (Hagimoto et al. 1997) and 

abnormal lung fibroblasts induced apoptosis of alveolar epithelial cells in vitro and in 
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vivo (Uhal et al. 1995; Uhal et al. 1998). Lineage trace experiments labeling the 

endogenous SP-C promoter found no evidence of ATII cells transforming into 

myofibroblasts in vivo (Rock et al. 2011). In the murine kidney, mesenchymal cells 

originated from local fibroblasts (50%), bone marrow (35%), endothelial-to-

mesenchymal transition (10%) and EMT (5%) (LeBleu et al. 2013). These findings 

suggest that mesenchymal cells might arise from diverse sources. To what extent this 

can be transferred to the lung is still to be determined (Bartis et al. 2014). 

Local tumor invasion and distant metastasizing of epithelial malignancies (carcinomas) 

have also been contributed to EMT. The loss of cell-cell-adhesion, loss of apical-basal 

polarity and reorganization of cytoskeleton enables pro-oncogenic migration capacity of 

epithelial cells. At sites of metastases, regaining epithelial functions of the primary 

tumor is thought to occur by MET (Hugo et al. 2007). Further, EMT allows tumor cells 

to acquire stem-cell characteristics (Abell & Johnson 2014). Several studies have 

correlated lung cancer progression and metastases with EMT (Mittal 2016). EMT 

transition was shown in specimens of primary non-small cell lung cancer (NSCLC), 

especially squamous cell carcinoma, and brain metastases showed a decreased 

epithelial phenotype compared to the primary tumor (Prudkin et al. 2009). At the 

invasive border of NSCLC, desmoplastic stroma and other markers of EMT were highly 

expressed (Soltermann 2012). However, it is still highly debated whether EMT actually 

leads to metastases in humans, mainly because little conclusive data exist on 

epithelial-mesenchymal changes in the metastatic process in vivo (Bastid 2012; Mittal 

2016; Brabletz 2012; Bartis et al. 2014). 

1.3.3 Molecular changes in EMT: TGF-beta superfamily signaling pathway 

Several pathways have been described to promote EMT. Transforming growth factor 

beta (TGF-beta) superfamily signaling is one of the key pathways (Gordon & Blobe 

2008). The TGF-beta superfamily participates in many cellular pathways such as 

proliferation, differentiation and apoptosis. Thus, it plays an important role in many 

physiological processes from embryonic development to homeostasis of mature tissue 

(Massagué 1998). 

The TGF-beta superfamily of intercellular signaling mediators consists of more than 30 

members in mammals. In addition to the TGF-beta isoforms (TGF-beta 1, TGF-beta 2 

and TGF-beta 3), the superfamily comprises bone morphogenetic proteins (BMPs), 

growth and differentiation factors (GDFs), activins and nodals. The ligands bind to type 

II transmembrane receptor serine-threonine kinases. This leads to formation of a 

heteromeric complex with and activation of type I transmembrane receptor serine-

threonine kinases by phosphorylation (Weiss & Attisano 2013). 
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Downstream signaling is primarily mediated by a group of proteins called the SMAD 

family (depicted in Figure 4), named after the homologous proteins in Caenorhabditis 

elegans (SMA) and Drosophila melanogaster (mothers against decapentaplegic, 

MAD). SMA and MAD were the first members of the SMAD family described (Brown 

2007; Brushart 2011). 

Receptor-regulated SMAD1, 2, 3, 5 and 9 are phosphorylated by the activated type I 

transmembrane receptor in the cytoplasm. Phosphorylated SMAD proteins form a 

heteromeric complex with common mediator SMAD protein, SMAD4, and accumulate 

in the nucleus. SMAD6 and 7 promote negative feedback within the pathway (Weiss & 

Attisano 2013; Moustakas & Heldin 2009). 

 

Figure 4. SMAD-dependent TGF-beta superfamily signaling pathway. The TGF-beta 
superfamily ligands bind to type II transmembrane receptor, which actives type I 
transmembrane receptor (A). This leads to phosphorylation of SMAD proteins (B). 
Phosphorylated SMAD proteins form a heteromeric complex with SMAD4 (C). After 
translocation in the nucleus, the complex associates with transcription factors and binds to 
promoters. This regulates the expression of target genes (D). SMAD6 and 7 regulate negative 
feedback. SMAD7 is activated by proinflammatory cytokines such as interferon-γ (INF-γ) and 
tumor necrosis factor-α (TNF-α) (E) (Zandvoort et al. 2006). 
 
SMAD-dependent signaling is ubiquitous in all cell types studied so far. In addition, cell 

specific SMAD-independent pathways modulate TGF-beta superfamily signaling in 

distinct cell types. For EMT, an interplay of SMAD and non-SMAD signaling is 

necessary. Direct activation of partitioning-defective protein 6 (Par6) by TGF-beta 

receptors leads to destruction of tight junctions (Ozdamar et al. 2005). However, TGF-

beta signaling needs SMAD-mediated transcriptional alteration for the complete 

process of EMT (Weiss & Attisano 2013; Moustakas & Heldin 2009). 

Within the nucleus, the SMAD complex associates with transcription factors. This 

complex regulates gene expression by binding to promoters (Zandvoort et al. 2006). 

Depending on the gene context and cellular milieu, TGF-beta signaling can either 

result in upregulation or suppression of target genes (Massagué 2012). In EMT, 

phosphorylation of the Smad 2–Smad 3 complex, which in turn
can interact with the transporter Smad 4. This complex is able
to enter the nucleus and initiate gene transcription. Smad 7 in
turn can affect this pathway by inhibiting the phosphorylation
of the Smad 2–Smad 3 complex. Smad 7 is activated by pro-
inflammatory cytokines, such as tumour necrosis factor-a and
interferon-c [11]. The TGF-b–Smad pathway regulates tran-
scription of ECM proteins, such as decorin and biglycan, but
also matrix metalloproteinases (MMP) and tissue inhibitors of
MMP [6, 9]. In the past, it has been demonstrated that decorin
and biglycan, two important proteoglycans of the ECM, show a
diminished presence in lung tissue of COPD patients [12, 13].
In addition, isolated fibroblasts of stage IV COPD patients
showed strongly reduced decorin production under the
influence of TGF-b stimulation [14]. Other ECM components,
such as elastin and collagens, are also differentially
expressed in lung tissue of COPD patients [15]. This led the
current authors to hypothesise that the TGF-b–Smad
pathway is altered in COPD patients and could serve as an
explanation for the defective tissue repair observed in
COPD [14].

The present study analysed several components of the TGF-b–
Smad pathway on protein level in lung tissue of patients with
moderate (stage II Global Initiative for Chronic Obstructive
Lung Disease (GOLD) criteria [16]) and very severe COPD
(GOLD stage IV). Aberrant Smad pathway expression was
associated with the expression of decorin in COPD lung
tissue. Since smoking may directly affect protein expression,
the patient groups were stratified according to smoking
history.

PATIENTS AND METHODS

Subjects
Lung tissue was obtained from 27 individuals. Classification of
COPD severity was based on the 2003 GOLD criteria [16],
using three criteria groups: 1) patients with moderate COPD
(GOLD stage II, n511); 2) patients with very severe COPD
(GOLD stage IV, n58); and 3) individuals with histologically
normal lungs (n58). Chronic bronchitis and a1-antitrypsin-
deficient patients were excluded. No patient or control used
inhaled corticosteroids. Emphysema is defined as histologi-
cally abnormal permanent enlargements of the airspaces distal
to the terminal bronchioles, accompanied by destruction of
their walls [17, 18]. Emphysema was assessed by routine
histological examination of lung tissue, which was performed
by an experienced pulmonary pathologist (W. Timens). The
clinical characteristics of the groups are presented in table 1.

Tissue of GOLD stage II COPD patients (average forced
expiratory volume in one second (FEV1) 68% of predicted) was
derived from noninvolved lung tissue from patients under-
going resective surgery for pulmonary carcinoma. Tissue was
always taken as far away as possible from the tumour, or from
a noninvolved lobe. Histopathologically emphysematous
lesions were present, however, of limited but varying severity.
The moderate forms can be histopathologically demonstrated
by the finding of isolated or free-lying segments of viable
alveolar septal tissue or isolated cross sections of pulmonary
vessels.

Tissue of GOLD stage IV COPD patients (average FEV1 21%
pred) was obtained from patients with COPD undergoing
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FIGURE 1. The transforming growth factor (TGF)-b–Smad pathway. Binding of TGF-b1 to its type-II receptor in concert with the type-I receptor (A) leads to the formation

of a receptor complex and phosphorylation (P) of the type-I receptor. The type-I receptor subsequently phosphorylates Smad 2 or 3 (B), allowing this complex to associate

with Smad 4 and move into the nucleus (C). In the nucleus, the Smad complex associates with a transcription factor and this complex binds to specific enhancers in target

genes, (down-) regulating transcription (D). Tumour necrosis factor (TNF)-a and interferon (IFN)-c are able to interfere with the TGF-b1 signalling, through the upregulation of

the inhibitory Smad 7 protein (E).
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mesenchymal genes are upregulated and epithelial genes are downregulated. In this 

context, three transcription factor families play an important role in EMT: zinc finger 

transcription factors of the SNAIL family (SNAIL1 and SNAIL2), zinc-finger E-box 

binding factor (ZEB1/ZEB2) and basic helix-loop-helix proteins (e.g. TWIST 1, TWIST 

2) (Lamouille et al. 2013; Hill et al. 2013). Transcription factors can either activate or 

downregulate SMAD-induced transcription (Hill et al. 2013). While ZEB1 enhances, 

ZEB2 downregulates SMAD-induced transcription (Postigo 2003). Further regulation of 

TGF-beta signaling happens during signal transduction and by epigenetic modulation 

(Massagué 2012). 

MiRNAs are involved in regulation of the TGF-beta signaling pathway on all three 

levels: signal transduction, transcription and epigenetic modulation (as described in 

1.3.4). 

1.3.4 MiRNAs in TGF-beta mediated-EMT and its impact on lung diseases 

MiRNAs have been shown to be essential regulators of many pathways. For that very 

reason, dysregulation of miRNAs contributes to multiple pathologic processes such as 

central nervous system disorders (Jimenez-Mateos & Henshall 2013; Maciotta et al. 

2013), cardiovascular diseases (Vickers et al. 2014) and human cancers (Natarajan et 

al. 2013). 

MiRNAs are relevant regulators of the TGF-beta superfamily signaling pathway having 

targets at different levels. They alter signal transduction by regulation of ligands, 

receptors and SMAD proteins (Itoh & Itoh 2011). Further, they alter transcription and 

there are emerging data on miRNAs modifying TGF-beta signaling by epigenetic 

mechanisms (Butz et al. 2012). Vice versa, the TGF-beta signaling pathway controls 

miRNA expression. This forms a negative feedback loop of regulation. For instance, 

the miR-200 family members repress the TGF-beta pathway maintaining an epithelial 

phenotype, while these miRNAs are downregulated by TGF-beta (B. Wang et al. 

2011).  

Within the lung, miRNAs play a significant role in lung development and homeostasis. 

Changes in the fine-tuned miRNA expression levels trigger pulmonary diseases. 

Numerous dysregulated miRNAs are linked to the TFG-beta superfamily signaling 

pathway.  

Expression profiling of lung tissue from patients with interstitial lung disease compared 

to controls in two studies revealed 46 and 125 differentially expressed miRNAs, 

respectively (Pandit et al. 2010; Cho et al. 2011). One of the downregulated miRNAs, 

let-7d, showed an upstream binding site for SMAD3. TGF-beta 1 reduced let-7d 

expression in vitro and inhibition of let-7d showed EMT-like changes in vitro and in vivo 
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(Pandit et al. 2010). Several studies endorsed the important role of miRNAs in the 

pathogenesis of idiopathic pulmonary fibrosis (IPF) by the TGF-beta signaling pathway. 

Identified miRNAs were found to function either as inhibitors (Cushing et al. 2011; 

Yang et al. 2012; Das et al. 2014) or promoters of the TGF-beta signaling pathway (Liu 

et al. 2010; Yamada et al. 2013). 

In asthma, most miRNA studies so far focus on regulation of cytokines and 

inflammation (Greene & Gaughan 2013). However, it was also shown that miRNAs 

modulate TGF-beta induced airway remodeling. In human asthmatic airway smooth 

muscle cells miR-221 is upregulated by TGF-beta leading to increased proliferation 

and interleukin (IL)-6 production (Perry et al. 2014). MiR-23b inhibited TGF-beta 

mediated proliferation by suppression of the TGF-beta type II transmembrane receptor 

in murine airway smooth muscle cells (Chen et al. 2015). 

Few studies have traced the role of miRNAs contributing to COPD (Hassan et al. 2012; 

Sato et al. 2010; Pottelberge et al. 2011). Ezzie et al. explored the relation between 

miRNAs in COPD and TGF-beta signaling (Ezzie et al. 2012). Seventy miRNAs were 

found to be differentially expressed in lung tissues from smokers with COPD compared 

to smokers with no airway obstruction. In situ hybridization identified one of the 

upregulated miRNAs, miR-15b, mainly in bronchial epithelial cells and ATII cells. 

Interestingly, expression of SMAD7 was decreased in miR-15b expressing cells. 

SMAD7 is as an inhibitor of TGF-beta signaling and is known to be downregulated in 

COPD patients compared to healthy controls (Zandvoort et al. 2006). Therefore, miR-

15b might serve as an enhancer of TGF-beta signaling. 

In lung cancer, miRNAs of TGF-beta mediated pathways can act as tumor suppressors 

or oncogenes. The loss of miR-200c was correlated with an aggressive, invasive 

phenotype of NSCLC (Ceppi et al. 2010). MiR-200c represses TGF-beta signaling by 

downregulation of ZNF217 and ZEB1, two transcriptional activators of the signaling 

pathway (Bai et al. 2014). In contrast, the oncogenic miR-21 was upregulated in the 

sputum of patients with lung adenocarcinoma (Yu et al. 2010) and in the plasma of 

patients with malignant lung cancer compared to healthy controls (Tang et al. 2013). 

MiR-21 is assumed to play an important role in the TGF-beta signaling pathway. TGF-

beta upregulates miR-21 via SMADs by binding the SMAD binding element (SBE) of 

the pri-miRNA (Davis et al. 2010). In esophageal cancer cells the upregulation of miR-

21 by nicotine lead to TGF-beta induced EMT (Y. Zhang et al. 2014).  

In summary, EMT is a key mechanism in ATII cells leading to lung disease. TGF-beta 

signaling pathway is a crucial pathway in EMT with numerous pathway components 

controlled by miRNAs. 
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2 AIM AND OBJECTIVES 

ATII cells act as progenitors for ATI cells and play a central role in the maintenance of 

the alveolar homeostasis and local tissue repair. 

This present study therefore aimed to identify miRNA-regulated networks which control 

the homeostasis of murine ATII cells. To achieve this end, three main goals were 

defined in the project: 

1. Establishment of a protocol for the isolation of highly pure and viable 

“untouched” ATII cells from healthy mice in comparison to a previously 

published method. 

2. Identification of miRNAs expressed by murine ATII cells under normal, non-

pathologic conditions defined as a cut-set of miRNAs obtained from ATII cells 

isolated by two different methods (novel and previously published method) to 

decrease potential method-related bias due to differences in ATII purity and 

variation in enrichment of putative ATII subpopulations by different methods. 

3. In silico identification of potential pathways of ATII cell homeostasis regulated 

by miRNAs. 
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3 MATERIAL AND METHODS 

3.1 Material 

3.1.1 Mice 

C57BL/6NCrl mice were obtained from the inhouse breeding facility at Helmholtz 

Zentrum Munich in Großhadern. Animals were kept under specific pathogen-free (SPF) 

conditions in individually ventilated cages with a 12/12 hours day/night cycle at 

constant temperature and humidity and provided with standard rodent chow and water 

ad libitum. For the experiments unchallenged, female, 6 to 12 weeks old mice were 

used. All experiments were conducted under the federal guidelines for the use and 

care of laboratory animals. 

3.1.2 Chemicals and reagents 

Table 1. Chemicals and reagents. 

Chemical/reagent Provider  

Acetone AppliChem Darmstadt, DE 

Agarose Invitrogen, Life Technologies Darmstadt, DE 

Bovine serum albumin (BSA) Sigma-Aldrich Taufkirchen, DE 

D-(+)-Glucose AppliChem Darmstadt, DE 

Dulbecco’s Modified Eagle Medium 

(DMEM) 

Gibco, Life Technologies 

 

Darmstadt, DE 

 

DMEM/F12 (1:1) Gibco, Life Technologies Darmstadt, DE 

Deoxyribonuclease (DNase) I AppliChem Darmstadt, DE 

Dispase BD Pharmingen Heidelberg, DE 

Entellan Merck Millipore Darmstadt, DE 

Ethanol Merck Millipore Darmstadt, DE 

Fentanyl Janssen-Cilag Neuss, DE 

Fetal bovine serum (FBS) Gold PAA Cölbe, DE 

Hematoxylin solution, Mayer’s 

hemalum solution for microscopy 

Merck Millipore 

 

Darmstadt, DE 

 

Heparin Ratiopharm Ulm, DE 

Lithium carbonate Sigma-Aldrich Taufkirchen, DE 
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Medetomidin Pfizer Berlin, DE 

Methanol AppliChem Darmstadt, DE 

Midazolam Ratiopharm Ulm, DE 

Paraformaldehyde (PFA) Microcos GmbH Garching, DE 

Penicillin/Streptomycin PAA Cölbe, DE 

Phosphate buffered saline (PBS) Gibco, Life Technologies Darmstadt, DE 

Propidium iodide (PI) Sigma-Aldrich Taufkirchen, DE 

ProLong® Gold antifade reagent 

with 4',6-diamidino-2-phenylindole 

(DAPI) 

Invitrogen, Life Technologies 

 

 

Darmstadt, DE 

 

 

Xylene AppliChem Darmstadt, DE 

 

3.1.3 Cell culture media 

Table 2. Media for cell separation (medium I) and further processing (medium II). 

 Reagent Volume Concentration 

Medium I DMEM/F12 (1:1) 500 ml -  

 D-(+)-Glucose 1.8 g 3.6 mg/ml 

 Penicillin/Streptomycin 5 ml 1 % 

 DNase I 20 mg 0.04  mg/ml 

Medium II DMEM/F12 (1:1) 500 ml -  

 D-(+)-Glucose 1.8 g 3.6  mg/ml 

 Penicillin/Streptomycin 5 ml 1 % 

 FBS Gold 10 ml 2 % 

 

3.1.4 Antibodies 

Immunoglobulins (Igs) used for “panning” are shown in Table 3, page 18. Antibodies 

and adequate isotype control (ITC) with the fluorochromes allophycocyanin (APC), 

fluorescein isothiocyanate (FITC) and phycoerythrin (PE) used for cell sorting and flow 

cytometry are listed in Table 4, page 18. Primary and secondary antibodies used for 

immunofluorescence staining are listed in Table 5, page 18. Antibodies were obtained 

from BD Pharmingen (Heidelberg, DE), BioLegend (Fell, DE), Abcam (Cambridge, 
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UK), Sigma (Munich, Germany), Millipore, Merck Chemicals (Schwalbach, DE) and 

Invitrogen, Life Technologies (Darmstadt, DE). 

Table 3. Antibodies for “panning”. 

Antigen Host Isotype Clone Provider mg/ml  

CD45 rat IgG2b, κ 30-F11 BD Pharmingen 0.5  

CD16/32 rat IgG2b, κ 2.4G2 BD Pharmingen 0.5  

 

Table 4. Antibodies and ITC for cell sorting and flow cytometry. 

Antigen Host Isotype Fluorochrome Clone Provider mg/ml Dilution 

CD31 rat IgG2a, κ APC MEC 13.3 BD Pharmingen 0.2 1:10 

ITC for CD31 rat IgG2a, κ APC R35-95 BD Pharmingen 0.2 1:10 

CD31 rat IgG2a, κ PE 390 BioLegend 0.2 1:10 

ITC for CD31 rat IgG2a, κ PE RTK2758 BioLegend 0.2 1:10 

CD45 rat IgG2b, κ APC 30-F11 BD Pharmingen 0.2 1:20 

ITC for CD45 rat IgG2b, κ APC A95-1 BD Pharmingen 0.2 1:20 

CD74 rat IgG2b, κ FITC In-1 BD Pharmingen 0.5 1:10 

ITC for CD74 rat IgG2b, κ FITC A95-1 BD Pharmingen 0.5 1:10 

 

Table 5. Antibodies for immunofluorescence staining. 

Primary antibodies for immunofluorescence staining: 

Antigen Host Isotype Clone Provider Dilution 

pan-cytokeratin goat IgG1 C-11 Abcam 1:500 

E-Cadherin mouse IgG2a, κ 36/E-Cadherin BD Pharmingen 1:500 

α-SMA mouse IgG2a 1A4 Sigma 1:200 

CD31 rabbit IgG polyclonal Abcam 1:200 

pro-SPC rabbit IgG polyclonal Chemicon/Millipore 1:100 

CCSP rabbit IgG polyclonal Upstate/Millipore 1:100 

CD45 rat IgG2b, κ 30-F11 BD Pharmingen 1:500 

Secondary antibodies for immunofluorescence staining: 

Antigen Host Isotype Fluorochrome Provider Dilution 

rabbit-IgG (H+L) goat IgG Alexa Fluor 555 Invitrogen 1:1000 
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mouse-IgG (H+L) goat IgG Alexa Fluor 555 Invitrogen 1:1000 

rat-IgG (H+L) goat IgG Alexa Fluor 555 Invitrogen 1:1000 

goat-IgG (H+L) donkey IgG Alexa Fluor 488 Invitrogen 1:1000 

 

3.1.5 Solutions for miRNA profiling 

All components of master mixes for reverse transcription (RT), preamplification of 

complementary DNA (cDNA) and polymerase chain reaction (PCR) were obtained from 

Applied Biosystems, Life Technologies (Darmstadt, DE) (see 3.1.7, page 21). The 

TaqMan® microRNA Reverse Transcription Kit contains deoxyribonucleoside 

triphosphates (dNTPs) with deoxythymidine triphosphate (dTTP), MultiScribe™ 

Reverse Transcriptase, RT buffer, RNase Inhibitor and nuclease-free water. 

Table 6. Composition of master mix for RT. 

Reagent Volume 1x Volume 6x 

MegaPlex™ RT Primers 10x (Pool A or B) 0.80 µl 4.80 µl 

dNTPs with dTTP (100 mM) 0.20 µl 1.20 µl 

MultiScribe™ Reverse Transcriptase (50 U/µl) 1.50 µl 9.00 µl 

RT buffer 10x 0.80 µl 4.80 µl 

MgCl2 (25 mM) 0.90 µl 5.40 µl 

RNase Inhibitor (20 U/µl) 0.10 µl 0.60 µl 

Nuclease-free water 0.20 µl 1.20 µl 

Total volume 4.50 µl 27.00 µl 

 

Table 7. Composition of master mix for preamplification of cDNA. 

Reagent Volume 1x Volume 6x 

TaqMan® PreAmp MasterMix 2x 12.5 µl 75.0 µl 

MegaPlex™ PreAmp Primers 10x 2.5 µl 15.0 µl 

Nuclease-free water 7.5 µl 45.0 µl 

Total volume 22.5 µl 135.0 µl 
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Table 8. Composition of master mix for PCR. 

Reagent Volume 

TaqMan® Universal Master Mix II, no UNG 450 µl 

Diluted preamplified product 9 µl 

Nuclease-free water 441 µl 

Total volume 900 µl 

 

3.1.6 Oligonucleotides 

Cd74, Pecam1 and Ptprc were designed using Primer-BLAST (see 3.1.10, page 24). 

The other primers were obtained by the group of Königshoff et al. as previously 

published: Acta2 (Königshoff et al. 2009), Aqp5 (Königshoff & Eickelberg 2011), Cdh1 

(Königshoff & Eickelberg 2011), Hprt (Mutze et al. 2015), Sftpa1 (Mutze et al. 2015), 

Sftpc (Mutze et al. 2015), Tjp1 (Mutze et al. 2015). 

Table 9. Primer sequences for reverse transcription of mRNAs. 

Gene 

symbol 
Full name 

NCBI 
GenBank 

accession 

Primer sequences (5'->3') bp 

Acta2 

actin, alpha 2, 

smooth muscle, 

aorta 

NM_ 

007392 

fwd: GCTGGTGATGATGCTCCCA 

rev: GCCCATTCCAACCATTACTCC 
81 

Aqp5 aquaporin 5 
NM_ 

009701 

fwd: CCTTATCCATTGGCTTGTCG 

rev: CTGAACCGATTCATGACCAC 
115 

Cd74 CD74 antigen 
NM_ 

001042605 

fwd: GATGGCTACTCCCTTGCTGA 

rev: TGGGTCATGTTGCCGTACT 
93 

Cdh1 
cadherin 1  

(E-cadherin) 

NM_ 

009864 

fwd: CCATCCTCGGAATCCTTGG 

rev: TTTGACCACCGTTCTCCTCC 
89 

Hprt 

hypoxanthine 

guanine 

phosphoribosyl 

transferase 

NM_ 

013556 

fwd: CCTAAGATGAGCGCAAGTTGAA 

rev: CCACAGGACTAGAACACCTGCTAA 
86 

Pecam1 
platelet/endothelial  

cell adhesion 

molecule 1 

NM_ 

008816 

fwd: ATCGGCAAAGTGGTCAAGAG 

rev: GGCATGTCCTTTTATGATCTCAG 
111 
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(protein: CD31) 

Ptprc 

protein tyrosine 

phosphatase, 

receptor type, C 

(protein: CD45) 

NM_ 

001111316 

fwd: GTCCCTACTTGCCTATGTCAATG 

rev: CCGGGAGGTTTTCATTCC 
115 

Sftpa1 

surfactant 

associated protein 

A1 

NM_ 

023134 

fwd: GGAGAGCCTGGAGAAAGGGGGC 

rev: ATCCTTGCAAGCTGAGGACTCCC 
124 

Sftpc 

surfactant 

associated protein 

C 

NM_ 

011359 

fwd: AGCAAAGAGGTCCTGATGGA 

rev: GAGCAGAGCCCCTACAATCA 
153 

Tjp1 
tight junction 

protein 1 

NM_ 

009386 

fwd: ACGAGATGCTGGGACTGACC 

rev: AACCGCATTTGGCGTTACAT 
112 

 

3.1.7 Commercial kits 

Table 10. Commercial kits. 

Kit Provider  

Diff-Quick Staining Set Medion Diagnostics Düdingen, CH 

IntraPrep™ Permeabilization Reagent Beckman Coulter Krefeld, DE 

LightCycler® 480 SYBR Green I Master 

Mix 

Roche 

 

Mannheim, DE 

 

Megaplex™ PreAmp Primers, Rodent 

Pool Set v3.0 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

Megaplex™ RT Primers, Rodent Pool Set 

v3.0 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

miRNeasy Mini Kit Qiagen Hilden, DE 

MuLV Reverse Transcriptase 

 

Invitrogen, 

Life Technologies 

Darmstadt, DE 

 

Random Hexamers 

 

Invitrogen, 

Life Technologies 

Darmstadt, DE 

 

TaqMan® Array Rodent MicroRNA A+B 

Cards Set v3.0 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

TaqMan® microRNA Reverse 

Transcription Kit 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 
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TaqMan® PreAmp Master Mix 

 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

TaqMan® Universal Master Mix II,  

no UNG 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

 

3.1.8 Consumables 

Table 11. Consumables. 

Consumable Provider  

Cell strainer, BD Falcon, 35 µm:  

Round-Bottom Tube with Cell-Strainer 

Cap, Polystyrene, 5ml 

BD Biosciences 

 

 

Heidelberg, DE 

 

 

Cell strainer, BD Falcon, 40 / 100 µm BD Biosciences Heidelberg, DE 

Conical tube, BD Falcon, Polypropylene, 

15 ml / 50 ml 

BD Biosciences 

 

Heidelberg, DE 

 

Culture dish, BD Falcon, 100 x 15 mm BD Biosciences Heidelberg, DE 

Culture slides, BD Falcon BD Biosciences Heidelberg, DE 

Eppendorf tube, 5.0 ml Eppendorf Hamburg, DE 

Needle, BD Microlance 3, 27 gauge x ¾’’ / 

20 gauge x 1 ½’’ 

BD Biosciences 

 

Heidelberg, DE 

 

Nylon mesh, 10 / 20 / 100 µm Sefar AG Heiden, CH 

Peripheral venous catheter, Safety IV 

Catheter with Injection port, 20 gauge x 1 

¼’’ 

Braun 

 

 

Melsungen, DE 

 

 

Pipettes, Cellstar, 5 ml / 10 ml Greiner Bio-One Frickenhausen, DE 

Pipettes, Costar Stripette, 25 / 50 ml Corning Incorporated New York, US 

Pipette Tips, epT.I.P.S., 0.1-10 / 2-200 / 

50-1000 µl 

Eppendorf 

 

Hamburg, DE 

 

Round-bottom Tube, BD Falcon, 

Polystyrene, 5 ml 

BD Biosciences 

 

Heidelberg, DE 

 

Syringe, BD Discardit II, 2 ml / 10 ml BD Biosciences Heidelberg, DE 

Syringe, BD Plastipak, 1 ml BD Biosciences Heidelberg, DE 
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3.1.9 Devices 

Table 12. Devices. 

Device Provider  

7900HT Fast Real-Time PCR System 

 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

BD FACSAria II Cell Sorter BD Biosciences Heidelberg, DE 

BD LSR II Flow Cytometer BD Biosciences Heidelberg, DE 

Bioanalyzer, 2100 Agilent Technologies Stuttgart, DE 

Centrifuge, Micro 200R  Hettich Tuttlingen, DE 

Centrifuge, Rotina 420R Hettich Tuttlingen, DE 

Concentrator plus Eppendorf Hamburg, DE 

Cytocentrifuge, CytoSpin* 4 

 

Thermo Fisher 

Scientific 

Waltham, US 

 

Refrigerator, ProfiLine 

 

Liebherr 

 

Biberach an der Riss, 

DE 

Freezer - 20°C, Comfort 

 

Liebherr 

 

Biberach an der Riss, 

DE 

Freezer - 80°C, Innova U725-G 

 

New Brunswick 

Scientific, Eppendorf 

Hamburg, DE 

 

LightCycler® 480 II System Roche Mannheim, DE 

Microscope, Axio Imager.M2 Zeiss Jena, DE 

Pipettes, Eppendorf Research Plus,  

2.5 / 10 / 20 / 100 / 200 / 1000 µl 

Eppendorf 

 

Hamburg, DE 

 

Pipet-Aid, Eppendorf Easypet Eppendorf Hamburg, DE 

Pipet-Aid, BD Falcon Express BD Biosciences Heidelberg, DE 

Spectrophotometer, NanoDrop 1000 

 

Thermo Fisher 

Scientific 

Waltham, US 

 

Thermocycler, peqSTAR 96 Universal 

Gradient 

PEQLAB 

 

Erlangen, DE 

 

Water bath, Aqualine AL 12 

 

Lauda 

 

Lauda-Königshofen, 

DE 
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3.1.10 Software 

Table 13. Software. 

Software Provider  

AxioVision Release 4.8.1 Zeiss Jena, DE 

DataAssist v3.0 

 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

FACSDiva Version 7.6.5 BD Biosciences Heidelberg, DE 

FlowJo vX 10.0.6 for Mac Tree Star Ashland, US 

GraphPad Prism 5 

 

GraphPad Software, 

Inc. 

La Jolla, US 

 

Ingenuity® Software Ingenuity Systems, Inc. Redwood City, US 

Inkscape X11 for Mac http://inkscape.org  

Mendeley Mendeley, Inc. New York, US 

Primer-BLAST http://www.ncbi.nlm.nih.gov/tools/primer-blast 

Sequence Detection Software (SDS) v2.4 

 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

SDS RQ Manager 1.2.1 

 

Applied Biosystems, 

Life Technologies 

Darmstadt, DE 

 

 

3.2 Methods 

3.2.1 Workflow 

Lung single cell suspensions were prepared from unchallenged, female, 6-12 week old 

C57BL/6NCrl mice. ATII cells were isolated by Fluorescence Activated Cell Sorting 

(FACS) (termed sATII) or “panning” (termed pATII). The viability and purity of isolated 

cells were compared. MiRNA profiles were obtained of both sATII and pATII. MiRNAs 

with similar expression levels in both preparations were subjected to Ingenuity® 

pathway enrichment analysis. An overview of the workflow is outlined in Figure 5, page 

25. 
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Figure 5. Overview of the workflow. Lung single cell suspensions were prepared from 
unchallenged mice. ATII cells were isolated by sorting or “panning". The viability and purity were 
compared. Isolated cells were subjected to miRNA profiling. Similarly expressed miRNAs were 
used for Ingenuity® pathway enrichment analysis. 
 

3.2.2 Preparation of lung single cell suspensions 

Lung single cell suspensions were prepared as previously described with few 

alterations (Corti et al. 1996; Königshoff 2009; Königshoff et al. 2009). Mice were 

narcotized with medetomidin 0.5 µg/g, midazolam 5 µg/g and fentanyl 0.5 µg/g and 

blood coagulation was minimized with heparin 60 µl/mouse (5 IU/µl), both injected 

intraperitoneally.  

Mice were positioned on the back and secured with 20 gauge needles. The skin was 

disinfected with 70% ethanol. A median incision from the abdomen to the chin was 

made and the skin and subcutis were dissected to the sides. The trachea was 

identified, mobilized and a 20 gauge peripheral venous catheter was inserted. The 

peritoneum was opened and the inferior vena cava was cleaved. A pneumothorax was 

induced with forceps and the diaphragm was removed (Figure 6 A1-2, page 26). The 

ribcage was opened and fixed to each side with 20 gauge needles. The lung vessels 

were perfused via the right ventricle with 10 ml PBS using a 10 ml syringe with a 20 

gauge needle until the lung parenchyma appeared exsanguinous (that is white) (Figure 

6 B1-2, page 26). The respiratory tract was filled via the tracheal catheter with 1.5 ml 

dispase (stored at -20°C, defrosted at 4°C overnight), followed by instillation of 0.3 ml 
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agarose solution (100 mg / 10 ml DMEM, boiled to dissolve, then kept liquid at 45°C in 

a water bath), both with 2 ml syringes (Figure 6 C1-3). After 2 minutes for agarose 

gelling, the trachea and esophagus were cut and the lungs were carefully removed 

(Figure 6 D). Lungs were incubated in 2.5 ml dispase in a 15 ml conical tube for 45 

minutes at room temperature. 

 

Figure 6. Extraction of murine lungs. A) Diaphragm intact (A1) and after induction of 
pneumothorax (A2). B) Lungs sanguised (B1) and exsanguised after transcardial perfusion (B2, 
arrow: cannula in right ventricle). C) Successive filling of lungs with dispase and agarose (C1-3, 
arrow: catheter in trachea). D) Removal of lungs after gelling of agarose. 
 
For the preparation of single cell suspensions, lungs were consecutively transferred 

into a culture dish containing 5 ml of medium I (composition as described in Table 2, 

page 17). Lungs were separated into lobes. The trachea and bronchi were discarded. 

Lobes were consecutively transferred into a culture dish containing 8 ml of medium I. 

With one forceps holding the lobar bronchus, cells were detached by gently scraping 

the tissue with a second curved forceps. The preparation steps are shown in Figure 7. 

The suspension was aspirated several times with a 10 ml pipette until homogenized. 

The cell suspension was collected in a 50 ml conical tube and sequentially filtered 

through 100-, 20- and 10-µm nylon meshes. The filtered suspension was centrifuged at 

200g for 10 minutes at 15°C, the supernatant discarded and the pellet resuspended in 

medium II (composition as described in Table 2, page 17). 

 

Figure 7. Preparation of single cell suspensions from lungs. A) Lungs were separated into 
lobes. B) Trachea and main bronchi were removed. C) Cells were detached by carefully 
scraping the tissue with a curved forceps.  
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3.2.3 Fluorescence Activated Cell Sorting 

Lung single cell suspensions were obtained as described in 3.2.2, page 25, and pooled 

from 3-4 mice. Cells were stained with rat anti-mouse CD45-APC (diluted 1:20 in PBS) 

and rat anti-mouse CD31-APC (diluted 1:10 in PBS) for 20 minutes on ice. Cells were 

washed with 3 ml of medium II and centrifuged at 200g for 10 minutes at 4°C. The 

supernatant was discarded and the pellet was resuspended in medium II to a final 

concentration of 10 x 106 / ml. To minimize clumps, the cell suspension was 

sequentially filtered through 100, 40 and 35 µm cell strainers shortly before sorting.  

Cells were sorted by FACS using BD FACSAria II Cell Sorter (Figure 8) and FACSDiva 

software according to the manufacturer’s instructions (BD Biosciences 2009). The most 

relevant settings are displayed in Table 14.  

 

Figure 8. FACSAria II. A) Cell sorter. B) Flow cell and sort block with deflection plates. 
 
Table 14. FACSAria II settings for cell sorting. 

Parameter Setting 

Nozzle Size 85 µm 

Sheath Fluid Pressure 45 PSI 

Cell Concentration 10 x 106 / ml 

Flow Rate ≤ 3 (1.0 -11.0 = ~ 10-80 µl/min) 

Event Rate ≤ 10000 evt/s 

Precision Mode Purity 

Temperature Sample Chamber / Collection Chamber 4°C 

 

Subsequent gating was performed to sort ATII cells (gates are depicted in Figure 10, 

page 35, upper row). First, debris and doublets were excluded by using connected 
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gates on forward scatter (FSC) plots. In the FSC-area (FSC-A) versus (vs.) side 

scatter-area (SSC-A) dot plot, debris was excluded by low FSC-A and low SSC-A due 

to the small size. In the FSC-A vs. FSC-height (FSC-H) dot plot, doublets were 

depleted by a great area to height ratio, because doublets tend to position in the 

direction of the stream. In the FSC-A vs. FSC-width (FSC-W) dot plot, doublets were 

excluded by a great width to area ratio, because they take more time to pass through 

the laser stream equivalent to an increase in width (Houtz et al. 2004). 

Second, the ATII cell population was identified by fluorescence parameters. 

Leukocytes were depleted by the CD45-surface marker and endothelial cells by the 

CD31-surface marker, both excluded using the APC-channel. The autofluorescence of 

ATII cells, measured in the FITC-channel, was used to isolate ATII cells from any other 

contaminating cells. Thus, AT II cells were isolated as the CD45-negative and CD31-

negative (CD45-CD31-) and autofluorescence (FITC-channel)high population. Cells 

isolated by this procedure were designated as sATII. 

Isolated cells were immediately processed for the analysis of purity and viability. For 

prospective RNA isolation, cells were instantly centrifuged in 5.0 ml Eppendorf tubes at 

maximum speed for 5 minutes at room temperature. The supernatant was carefully 

removed and the pellet stored at -80°C until further use. 

3.2.4 Isolation of cells by negative selection (“panning”) 

Lung single cell suspensions were prepared as described in 3.2.2, page 25, and cells 

were isolated by “panning” as previously described by Königshoff et al. with few 

alterations (Königshoff 2009; Königshoff et al. 2009). In summary, culture dishes were 

coated with CD45 and CD16/32 antibodies (for each culture dish 15 µl of each antibody 

in 10 ml DMEM) overnight at 4°C. Shortly before isolation, culture dishes were washed 

twice with 5 ml DMEM. For removal of lymphocytes and macrophages, 5 ml of single 

cell suspension were incubated on the CD45-CD16/32-coated culture dishes for 35 

minutes at 37°C. Unattached cells were collected and incubated on uncoated culture 

dishes for 35 minutes at 37°C for adherence of fibroblasts. The supernatants were 

pooled and centrifuged at 200g for 10 minutes at 15°C. Primary ATII cells were 

resuspended for flow cytometric analysis or pellet stored at -80°C for prospective RNA 

isolation. ATII cells isolated by this procedure were designated as pATII cells. 

3.2.5 Flow cytometric analyses 

In order to identify dead cells, PI (2 mg/ml in PBS) was added to the freshly sorted 

population for 10 minutes at 4°C prior to the analysis. 
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For the simultaneous staining of extra- and intracellular antigens IntraPrep Kit was 

used. According to the manufacturer’s protocol for intracytoplasmic and membrane 

staining, cells were stained with a concentration of 1 x 105 in 50 µl with the extracellular 

antibody CD31-PE or adequate ITC (diluted 1:10 in PBS) for 20 minutes on ice 

protected from light. Cells were fixed with 100 µl IntraPrep Reagent 1 for 15 minutes at 

room temperature. Cells were washed with PBS and centrifuged at 200 g for 10 

minutes at 4°C. The supernatant was discarded and cells were permeabilized with 50 

µl IntraPrep Reagent 2 for 5 minutes at room temperature, then the intracellular 

antibody CD74-FITC or adequate ITC (diluted 1:10 in PBS) was added for 20 minutes 

on ice. Cells were washed as described above and resuspended in PBS. 

Expression markers were analyzed using BD LSR II Flow Cytometer (Figure 9) and 

FlowJo software. Antibodies and adequate ITC for cell sorting and flow cytometry are 

listed in Table 4, page 18.  

 

Figure 9. LSR II Flow Cytometer. 
 

3.2.6 Papanicolaou staining 

For morphologic identification of ATII cells, inclusion bodies were stained using a 

modified Papanicolaou staining as described by Dobbs (Dobbs 1990) . 

In brief, 1 x 105 cells in 200 µl / slide were centrifuged at 400 rpm for 10 minutes on 

coverslips with CytoSpin* 4 Cytocentrifuge and dried overnight. Cells were stained with 

hematoxylin solution for 3.5 minutes and rinsed with distilled water. Cells were 

incubated with lithium carbonate solution (2 ml saturated solution of lithium carbonate 

in 158 ml distilled water) for 2 minutes and rinsed with water. Cells were stepwise 

incubated with increasing concentrations of ethanol solutions: 50% ethanol for 1.5 

minutes, 80% ethanol for 15 seconds, 95% ethanol for 15 seconds and 100% ethanol 

for 30 seconds. Then cells were incubated in xylene:ethanol 1:1 for 30 seconds and 

xylene for 1 minute. Afterwards cells were embedded in Entellan. 
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3.2.7 Immunofluorescence staining 

For immunofluorescence staining 1 x 105 cells in 200 µl / chamber were centrifuged at 

200 g for 5 minutes at 4°C on culture slides. The supernatant was taken off carefully 

and slides were fixed with ice-cold acetone:methanol (1:1) for 10 minutes, then blocked 

with 5% BSA in PBS for 30 minutes and stained with the respective primary and 

secondary antibodies diluted in 0.1% BSA in PBS for 60 minutes for each antibody. 

Cells were fixed with 4% PFA for 10 minutes and mounted with ProLong Gold antifade 

reagent with DAPI. All steps were performed at room temperature, after each step cells 

were washed three times with 0.1% BSA in PBS. The immunofluorescence expression 

was analyzed using Axio Imager.M2 and AxioVision software. Primary and secondary 

antibodies for immunofluorescence staining are listed in Table 5, page 18. 

3.2.8 RNA isolation and assessment of RNA integrity and concentration 

The total RNA, including miRNAs, was isolated from 5 samples of 2 independent 

experiments of primary sATII and 2 samples of one experiment of primary pATII stored 

at -80°C with miRNeasy Mini Kit according to manufacturer’s protocol.  

In brief, cells were lysed and homogenized in 700 µl QIAzol Lysis Reagent. To 

separate RNA from DNA and proteins, 140 µl chloroform was added and shaken for 15 

seconds. After incubation for 2-3 minutes at room temperature, the suspension was 

centrifuged at 12000 g for 15 minutes at 4°C. The aqueous phase, containing the RNA, 

was mixed with 525 µl ethanol, transferred to a RNeasy Mini spin column and 

centrifuged at ≥ 8000 g for 15 seconds at room temperature, then washed twice by 

adding 500 µl Buffer RPE and centrifuging at ≥ 8000 g for 15 seconds and 2 minutes at 

room temperature. The added ethanol enabled binding of RNA molecules from 18 nt 

and more to the membrane of the RNeasy Mini spin column, while other substances 

were removed. The RNA was then eluted by addition of 30-50 µl RNase-free water and 

centrifuging at ≥ 8000 g for 1 minute at room temperature. 

RNA concentrations were measured by absorbance at 260 nm in the 

spectrophotometer. The RNA purity was assessed by 260/280 ratios with values ≥ 1.85 

being accepted for further processing. The RNA integrity was analyzed by 

electrophoresis using an Agilent 2100 bioanalyzer according to the manufacturer’s 

instructions. The RNA Integrity Number (RIN), calculated by a software algorithm, was 

assessed for each sample with values ranging from 1-10: 1 meaning completely 

degraded and 10 meaning completely intact (Mueller et al. 2004). Sufficient RNA 

integrity was defined as RIN ≥ 6.5. 
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3.2.9 Reverse transcription and quantitative PCR of mRNAs 

The synthesis of cDNA was performed with 350 ng total RNA using random hexamers 

and MuLV reverse transcriptase according to manufacturer’s protocol.  

The real-time quantitative PCR (RT-qPCR) reaction was conducted with LightCycler® 

480 SYBR Green I Master Mix on a LightCycler® 480 II system. Primers are listed in 

Table 9, page 20. Primer designs for Cd74, Pecam1 and Ptprc were performed using 

Primer-BLAST with an optimum annealing temperature of 60°C. The melting curve 

analysis was done to control for primer dimers and unspecific products. To control for 

contamination by genomic DNA or carry-over cDNA either reverse transcriptase 

enzyme (reverse transcriptase-controls) or cDNA (no template controls, NTCs) were 

omitted, respectively. All primers showed an amplification efficiency ≥ 92.5%. Raw 

cycle threshold (Cq) values > 35 were defined as not expressed. 

The relative quantification of mRNA expression was determined using the ΔΔCq 

method (Livak & Schmittgen 2001). The mean values of four independent experiments 

and two technical replicates of each sample were used for sATII and pATII, 

respectively. Hprt was used as reference gene and Sftpc mRNA expression in sATII 

was defined as the calibrator. Standard deviation (S) was calculated for each ΔCq 

value as S = (s1^2 + s2^2)^1/2 with s1 and s2 being the standard deviations of the 

Cq(target) and Cq(Hprt), respectively. Fold changes were calculated as 2^-(ΔΔCq) and 

the range of values due to sample variation was determined as 2^-(ΔΔCq + S) and 2^-

(ΔΔCq - S). 

3.2.10 MiRNA profiling of ATII cells by TaqMan® MicroRNA Array 

The reverse transcription and quantification of miRNAs were performed with TaqMan® 

microRNA Reverse Transcription Kit and TaqMan® Array Rodent MicroRNA A+B 

Cards Set v3.0 according to the manufacturer’s protocol. TaqMan® arrays are 

microfluidic cards including 384 assays per card. Card A and B enable quantification of 

641 miRNAs specific to mouse with species-specific endogenous controls and one 

negative control assay per card (Applied Biosystems Life Technologies 2010). The 

content for the rodent microRNA assays is based on Sanger miRBase v15 (miRbase 

2016), released April 2010, with nearly full coverage. 

The miRNA profiling included: reverse transcription with stem-loop primers, an optional 

preamplification step for small RNA amounts and quantification by real-time PCR. 

3.2.10.1 Reverse transcription 

The reverse transcription was performed for the synthesis of single-stranded cDNA 

from miRNA using stem-loop primers. The RNA was concentrated to ~ 45 ng/µl using 
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Concentrator plus. For each sample ~ 135 ng total RNA in 3 µl and for the NTCs 3 µl of 

water were used. Master mixes for each Primer Pool (A and B) were prepared as 

described in Table 6, page 19. 

4.5 µl of the RT reaction mix was pipetted in a 0.2 ml PCR Clean tube and 3 µl of total 

RNA or water for NTC was added to a final volume of 7.5 µl. The samples were 

incubated for 5 minutes on ice. The RNA was transcribed into cDNA at the thermal-

cycling conditions as shown in Table 15. 

Table 15. Thermal cycling conditions for reverse transcription. 

Cycle Temperature Duration 

40 cycles 16°C 2 min 

 42°C 1 min 

 50°C 1 sec 

Hold 85°C 5 min 

Hold 4°C ∞ 

3.2.10.2 Preamplification of cDNA 

The preamplification reaction was performed due to limited RNA amounts. 

Master mixes for each Primer Pool (A and B) were prepared in a 0.5-mL 

microcentrifuge tube as depicted in Table 7, page 19. 

In a 96-well plate, 2.5 µl of each reverse transcription product were pipetted into its 

corresponding well and dispensed with 22.5 µl of preamplification master mix and 

incubated for 5 minutes at 4°C. The cDNA was amplified in a thermocycler at the 

conditions shown in Table 16. 

Table 16. Thermal cycling conditions for preamplification of cDNA. 

Cycle Temperature Duration 

Hold 95°C 10 min 

Hold 55°C 2 min 

Hold 72°C 2 min 

12 cycles 95°C 15 sec 

 60°C 4 min 

Hold 99.9°C 10 min 

Hold 4°C ∞ 
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After amplification, 75 µl of 0.1x TE buffer pH 8.0 (1x TE diluted with nuclease-free 

H2O) was added to each well and cDNAs were transferred to 0.5 ml PCR Clean tubes. 

3.2.10.3 Real-time PCR reaction 

The real-time PCR reaction was performed to quantify miRNAs using 641 unique 

assays. The reaction mix was prepared as shown in Table 8, page 20. TaqMan® Array 

MicroRNA Cards were loaded with 100 µl of the reaction mix for each port, centrifuged 

and sealed. The quantitative real-time PCR was performed on a 7900HT Fast Real-

Time PCR system.  

3.2.10.4 Analysis of real-time PCR microRNA array data 

Cq was obtained with automatic settings for baseline and threshold detection using 

SDS and SDS RQ Manager. 

MicroRNA assays with the following characteristics were excluded: 1) Cq differences > 

1 between replicates (sATII 1 / 2 and pATII 1 / 2, respectively). 2) Cq > 32 (defined as 

not detectable). Normalized relative quantities (NRQs) of the remaining miRNAs were 

calculated using global mean normalization. MiRNAs with |fold difference| < 1.5 

between the two different preparation methods (sATII vs. pATII) were defined as 

equally expressed (termed ATII miRNAs) and used for pathway enrichment analysis. 

MiRNAs with fold difference ≥ 1.5 were defined as upregulated in sATII and fold 

difference ≤ -1.5 as upregulated in pATII. MiRNAs with Ct > 32 (defined as not 

detectable) in one of the preparation methods were named as only expressed in the 

respective other preparation method. 

For volcano plots, the fold difference and statistical significance determined by 

Benjamini-Hochberg (BH)-correction (BH-adjusted p-value) (Benjamini & Hochberg 

1995) were analyzed using DataAssist. 

3.2.11 Pathway enrichment analysis by Ingenuity® software 

The pathway enrichment analysis was performed using the Ingenuity® Pathway 

Analysis (IPA) module of the Ingenuity® software (Ingenuity® Systems 2012). IPA is 

based on the Ingenuity® Knowledge Base which is derived from experimentally 

demonstrated findings published in peer-reviewed journals, curated knowledge (e.g. 

pathways) and trusted third party databases. The input data set can be interpreted by 

analyzing networks and canonical pathways. Networks describe the interaction of the 

different molecules within the input data set. Canonical pathways reveal the biologic 

functions affected by the input data within well-established metabolic and signaling 

pathways based on biomedical literature. Canonical pathways are grouped in pathway 

categories. They cannot be changed by the input data (Ingenuity® Systems 2012). 



MATERIAL AND METHODS 

 34 

The data set of ATII miRNAs was uploaded into IPA. Ingenuity® microRNA target filter 

was applied to restrict mRNA targets to only experimentally observed miRNA-mRNA 

interactions. These miRNA-mRNA targets were used for pathway enrichment analysis. 

MiRNA-mRNA pairs with the mRNA participating in a canonical pathway in the 

Ingenuity® Knowledge Base were identified. The relevance of the association between 

the data set and a given canonical pathway was analyzed in two ways by Ingenuity®: 

1) A ratio of the number of molecules from the data set that map to the pathway divided 

by the total number of molecules that map to the canonical pathway was determined. 

2) Fisher’s exact test was used to calculate a p-value determining the probability that 

the association between the genes in the data set and the canonical pathway is 

explained by chance alone. The adjustment to multiple testing was performed using 

BH-correction (BH-adjusted p-value) (Benjamini & Hochberg 1995). An enrichment of 

target mRNAs in a canonical pathway with BH-adjusted p-values < 0.001 was regarded 

as significant. 

3.2.12 Literature research on autofluorescence based ATII isolation 

The following search terms were used to inquire about previous work on 

autofluorescence based isolation of ATII cells in PubMed (NCBI 2016). 

Syntax:  

AECII OR AEC2 OR ATII OR AT2 OR alveolar epithelial type II OR alveolar epithelial 

type 2 OR type II pneumocytes OR type 2 pneumocytes AND autofluorescence. 

AECII OR AEC2 OR ATII OR AT2 OR alveolar epithelial type II OR alveolar epithelial 

type 2 OR type II pneumocytes OR type 2 pneumocytes AND natural fluorescence.  

13 scientific articles were found, however, none of these articles reported about 

autofluorescence based isolation (Rochat et al. 1988; Baker et al. 1992; Pataki et al. 

1996; Agarwal et al. 2001; Griese et al. 2001; Kotton et al. 2005; Zander et al. 2006; 

Loh et al. 2006; Davies et al. 2007; Ravasio et al. 2010; Wu et al. 2013; Xu et al. 2014; 

Lee et al. 2015). 

The last search was performed in July 2016. 
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4 RESULTS 

4.1 Isolation of primary murine ATII cells by sorting 

4.1.1 Fluorescence Activated Cell Sorting 

Based on previous reports showing autofluorescence of ATII cells (Kim et al. 2005; 

Cunningham et al. 1994), a method was established to isolate “untouched” ATII cells 

taking advantage of their autofluorescence characteristic. 

Lung single cell suspensions from healthy mice (preparation see 3.2.2, page 25) were 

subjected to FACS. After exclusion of debris and doublets, the population for sorting 

was defined as CD45/CD31-APCnegative and autofluorescence-FITChigh (gating strategy 

described in 3.2.3, page 27, and shown in Figure 10, upper row). In brief, leukocytes 

were excluded by CD45- and endothelial cells by CD31-surface markers using the 

APC-channel for both cell types. ATII cells were isolated from any other contaminating 

cell types based on their autofluorescence in the FITC-channel. 

The reanalysis of the sorted cells showed a homogeneous CD45/CD31negative cell 

population with high residual autofluorescence (displayed in Figure 10, lower row). 

 

Figure 10. Gating strategy for FACS. Debris was excluded in the FSC-A vs. SSC-A dot plot. 
Doublets were excluded by increased FSC-A to FSC-H and FSC-W to FSC-A ratio. Population 
for sorting was defined as high in autofluorescence (measured in the FITC channel) and 
negative for the surface markers CD45 and CD31 (both measured in the APC-channel). The 
gating strategy is shown in the upper row. The sorted cell population was reanalyzed with the 
same settings as illustrated in the lower row. All dot plots are representative of four independent 
experiments. Each subsequent dot plot only displays cells that have been gated in the previous 
dot plot. 
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4.1.2 Confirmation of epithelial and ATII phenotype of sorted primary cells 

ATII cells can be distinguished from other cell types within the lung by dark blue 

inclusion bodies using modified Papanicolaou staining (Dobbs 1990). To confirm ATII 

phenotype of the isolated cells, modified Papanicolaou staining of cytospin slides was 

performed. Sorted cells uniformly showed dark blue inclusion bodies characteristic for 

ATII cell phenotype (Figure 11, right image). 

 

Figure 11. Modified Papanicolaou staining of cytospin prepared slides of whole lung 
suspension cells (before sorting) and sorted cells. ATII cells were identified by 
characteristic dark blue inclusion bodies in the cytoplasm. Light microscopic images. 
 
To further certify ATII phenotype, biochemical markers for ATII and non-ATII cells were 

assessed by immunocytochemistry of cytospin preparations of sorted cells in 

comparison to whole lung suspension cells. The ATII cell-specific marker prosurfactant 

protein C (proSP-C) as well as the epithelial cell markers E-Cadherin and pan-

cytokeratin were highly expressed in sorted cells (Figure 12 A, lower row, page 37). 

The leukocyte marker CD45, endothelial cell marker CD31 and mesenchymal cell 

marker α-SMA were not detectable after sorting. Very few sorted cells were positive for 

the club cell secretory protein (CCSP) (Figure 12 B, lower row, page 37). 
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Figure 12. Immunocytochemical staining for ATII-associated and non-ATII phenotypic 
markers in whole lung suspension cells (before sorting) and sorted cells.  
A) Cytocentrifuged preparations of whole lung suspension cells and sorted cells were stained 
with an ATII cell-marker (proSP-C, red fluorescent) and epithelial cell markers (E-Cadherin, red 
fluorescent, and pan-cytokeratin, green fluorescent). B) Cytocentrifuged cells of whole lung 
suspension cells and sorted cells were tested for markers of the non-ATII cell types leukocytes 
(CD45, red fluorescent), endothelial cells (CD31, red fluorescent), smooth muscle cells (α-SMA, 
red fluorescent) and club cells (CCSP, red fluorescent). 
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4.2 Comparison of primary ATII cells isolated by sorting vs. “panning” 

Based on cell morphology and immunocytochemistry the isolated sATII population 

showed epithelial and ATII phenotypes. In order to determine the advantages and 

limitations of the newly developed isolation protocol, sATII were compared with an 

already published isolation method by “panning” (pATII) (Königshoff et al. 2009). PATII 

have been described to be positive for pan-cytokeratin and SP-C and negative for α-

SMA and CD45 (Königshoff et al. 2009). 

The two isolation methods were compared based on following criteria: 1) viability and 

2) purity. Viability was assessed by PI exclusion from viable cells analyzed by flow 

cytometry. Purity was compared by two quantitative methods: 1) expression of 

phenotypic markers examined by flow cytometry and 2) expression of mRNA of 

phenotypic markers analyzed by RT-qPCR. 

4.2.1 Viability of isolated cells 

After debris and doublets were eliminated (Figure 13 A, page 39), viable cells were 

identified as PI negative by flow cytometry (Figure 13 B and C, page 39). 

Before isolation, lung single cell suspensions had an average viability above 98%. After 

isolation, sATII and pATII demonstrated viabilities higher than 95%. The average 

viability in pATII was slightly higher (96.7%) than in sATII (96.2%). 
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Figure 13. Flow cytometric analysis of viable cells by PI exclusion before and after 
sorting in the sATII and pATII cell populations. A) Debris and doublets were excluded to 
obtain single cells for further viability analysis. Each subsequent dot plot only displays cells that 
have been selected in the previous dot plot. B) Whole lung suspensions without PI staining 
were used as negative control (left panels). Viable cells were identified for sATII (upper row) 
and pATII (lower row) in the whole lung suspension (before isolation) and isolated cells by PI 
exclusion (middle and right panels). C) Viability of cells before and after isolation. Viable cells 
were defined as PInegative as shown in B. Each value is the mean of four independent 
experiments for sATII and two independent experiments for pATII. T-bars show the standard 
error of mean (SEM). 
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4.2.2 Purity of isolated cells 

4.2.2.1 Expression of phenotypic markers assessed by flow cytometry 

Purity of sATII and pATII was quantified by flow cytometric analysis of phenotypic 

markers for ATII cells and contaminating cell populations. 

After exclusion of debris and doublets by FSC-characteristics (Figure 14 A, page 41), 

cell-specific surface molecules were examined. ATII cells have been described to 

express major histocompatibility complex (MHC) class II antigens on the cell surface 

(Cunningham et al. 1994). The MHC II-associated invariant chain CD74 has been 

shown to be uniformly co-expressed in proSP-C positive, freshly isolated, murine ATII 

cells (Marsh et al. 2009). As CD74 has also been documented to be highly expressed 

in primary alveolar macrophages (Takahashi et al. 2009), ATII cells in this analysis 

were defined as CD45-CD31-APCnegative and CD74-FITCpositive (Figure 14 B, page 41). 

Although CD74 is an extracellular epitope, it is quickly internalized when antibodies 

bind. To identify all CD74-containing cells with certainty, staining was performed 

intracellularly. 

In order to differentiate between contaminating leukocytes and endothelial cells, cells 

were additionally stained with CD31-PE-antibody which recognizes a different epitope 

than the CD31-APC-antibody (Chacko et al. 2012). Cells not expressing CD45, CD31 

or CD74 were labeled as others (see Figure 14 C, page 41). 

Before sorting, the three main cell populations were leukocytes, ATII cells and 

endothelial cells. After isolation, sATII showed an enrichment of ATII cells from 21.0% 

before sorting to 98.4% in the sorted cells while pATII demonstrated an increase from 

24.0% to 72.6%. Of note, endothelial cells in pATII showed a relative increase from 

6.69% before sorting to 12.3% in sorted cells (data shown in Figure 14 C, page 41). 
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Figure 14. Flow cytometric quantification of purity in sATII and pATII preparations.  
A) Debris and doublets were excluded to obtain single cells for prospective analysis of purity. 
Each subsequent dot plot only displays cells that have been selected in the previous dot plot.  
B) Dot plots of cells before and after isolation stained with CD45-APC, CD31-APC and CD74-
FITC-antibodies (middle and right panels) or IgG2b, κ (ITC) (left panels). Right panel shows an 
overlay of sATII and pATII sorted cell populations. Dot plots are representative of four 
independent experiments for sATII and two independent experiments for pATII. C) Cell 
composition before and after isolation. ATII cells were defined as CD45/CD31-APCnegative CD74-
FITCpositive, leukocytes as CD45/CD31-APCpositive without CD31-PEpositive cells, endothelial cells 
as CD31-PEpositive and others as CD45/CD31-APCnegative and CD74-FITCnegative. Each value is 
the mean of four independent experiments for sATII and two independent experiments for 
pATII. T-bars show SEM. 
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4.2.2.2 MRNA expression of phenotypic markers assessed by qPCR 

The difference in purity between sATII and pATII was further evaluated by mRNA 

expression levels of phenotypic markers (Figure 15). Fold changes in mRNA 

expression were analyzed by RT-qPCR normalized to Hprt and relative to the ATII cell 

marker Sftpc in the sATII population.  

Both isolated cell populations showed high expression of the ATII cell marker Sftpc 

(mean Cq value of 11.6 ± 0.97 in sATII and 13.6 ± 0.45 in pATII). Likewise, markers 

associated with epithelial and ATII identity Sftpa1, Cd74, Aqp5, Cdh1 and Tjp1 were 

highly expressed in both sATII and pATII.  

However, markers for the contaminating cell populations smooth muscle cells (Acta2), 

endothelial cells (Pecam1, protein name CD31) and leukocytes (Ptprc, protein name 

CD45) were clearly expressed at lower levels in sATII as compared to pATII. 

 

Figure 15. MRNA expression of markers associated with ATII cells and markers for non-
ATII cell types. Total RNA from isolated cells by sorting (sATII, blue bars) and “panning” (pATII, 
red bars) was used for mRNA quantification by RT-qPCR. ATII-associated markers (Sftpc, 
Sftpa1, Cd74, Aqp5, Cdh1 and Tjp1) as well as markers of the non-ATII cell types smooth 
muscle cells (Acta2), endothelial cells (Pecam1) and leukocytes (Ptprc) were determined. 
Target and Sftpc mRNA were normalized to Hprt and fold changes are displayed relative to 
mRNA expression of Sftpc in sATII. Each value is the mean of four independent experiments 
and two technical replicates. T-bars show the maximum expression. 
 

4.3 MiRNA profiling of ATII cells 

4.3.1 Overview 

For miRNA profiling of ATII cells, a cut-set of miRNAs obtained from ATII cells isolated 

by the two preparation methods (sorting and “panning”) was used in order to reduce 

potential method-related bias. Two samples of sATII and pATII, respectively, were 

eligible for miRNA profiling as assessed by RNA integrity and RNA quantity 

measurements. 111 miRNAs were expressed at similar levels (|fold difference| < 1.5) in 

sATII and pATII, termed ATII miRNAs. Using Ingenuity® target filter, 40 ATII miRNAs 

were identified with 662 previously experimentally validated mRNA targets. 38 of these 
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miRNAs had 343 mRNA targets in the canonical pathway library of Ingenuity®. Of 

note, 19 of these 38 miRNAs binding in a canonical pathway had 21 mRNA targets in 

the TGF-beta signaling pathway and 16 of these 19 miRNAs were expressed above 

median level in the ATII miRNA expression profile (see Figure 16). 

 

Figure 16. Overview of miRNA results. ATII miRNAs were defined as similar expressed (|fold 
difference| < 1.5) in sATII and pATII. Target filter and pathway library modules of Ingenuity® 
were used to filter ATII miRNAs with experimentally validated and canonical pathway mRNAs. 
Then, ATII miRNAs involved in TGF-beta signaling were identified. 
 

4.3.2 Assessment of RNA integrity and RNA quantity 

Total RNA of sATII was isolated from five samples of two independent experiments. 

Assessment of RNA integrity by bioanalyzer showed high quality for two samples of 

two independent experiments with clear ribosomal bands for the 18S and 28S subunits 

in the electropherogram and RIN of 8.2 (termed sATII 1) and 7.5 (termed sATII 2) 

(Figure 17, page 44, upper row). These two samples were further processed, while the 

other three sATII RNA samples were excluded due to bands of degradation products 

on the electropherogram and/or low RIN.  

Total RNA of pATII was isolated from two samples of one experiment. Both samples 

passed quality control determined by electropherogram as well as RIN values of 7.3 

(termed pATII 1) and 6.6 (termed pATII 2) (Figure 17, page 44, lower row). 

SATII 1 / 2 and pATII 1 / 2 showed sufficient 260/280 ratios and RNA quantities above 

350 ng in the spectrophotometer (Table 17, page 44). These four samples were used 

for reverse transcription and miRNA profiling. 
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Figure 17. Electropherogram and RIN values for RNA samples used for further analysis. 
Total RNA of sATII and pATII samples were analyzed using bioanalyzer. Electropherogram 
depicts RNA bands with peaks for 18S and 28S ribosomal subunits marked in purple / green, 
respectively. RIN values were assessed for each sample. Shown are the four samples which 
were further processed. Three samples of sATII were discarded due to low RNA quality. 
 
Table 17. RNA concentration, total RNA quantity and 260/280 ratio. 

Sample 
 

RNA concentration 
(ng/µl) 

Total RNA quantity 
(ng) 

260/280 ratio 
 

sATII 1 46.05 368.40 1.87 
sATII 2 46.67 373.36 1.85 
pATII 1 44.34 354.72 1.92 
pATII 2 44.45 355.60 1.99 

 

4.3.3 MiRNA expression profile of ATII cells  

MiRNA expression was assessed using TaqMan® MicroRNA array microfluidic cards 

including 641 assays for mature murine miRNAs based on miRBase v15 (miRbase 

2016). A total of 316 miRNAs were expressed in sATII and/or pATII.  

111 miRNAs were expressed at equal levels in sATII and pATII (|fold difference| < 1.5) 

and termed ATII miRNAs (Figure 18, page 45; for a list of ATII miRNAs with NRQ-

values see Appendix, Table 22, page 72). Within the ATII miRNAs, 13 miRNAs were 

expressed at very high levels (> 20x median), 41 miRNAs were expressed at high 

levels (20x median > miRNA > median), 45 miRNAs were expressed at moderate 

levels (median > miRNA > 0.05x median) and 12 miRNAs were expressed at low levels 

(< 0.05x median). The 111 ATII miRNAs were used for pathway enrichment analysis. 

182 miRNAs were differentially expressed in the two preparation methods (|fold 

difference| ≥ 1.5). 121 miRNAs were upregulated in sATII vs. pATII (fold difference ≥ 



RESULTS 

 45 

1.5) and 61 miRNAs were upregulated in pATII vs. sATII (fold difference ≤ -1.5). The 

differentially expressed miRNAs were further analyzed using volcano plot (Figure 19, 

page 46). MiRNAs with |fold difference| > 4 were defined as highly differentially 

expressed. MiRNAs with a high probability to be differentially expressed were 

determined by setting the BH-adjusted p-value < 0.01. In pATII 22 miRNAs and in 

sATII one miRNA were highly differentially expressed. Three miRNAs of the highly 

differentially expressed miRNAs in pATII had a high probability to be differentially 

expressed: Mus musculus (mmu)-miR-126-3p, mmu-miR-10a and mmu-miR-29c 

(Figure 19, page 46, upper left quadrant).  

Three miRNAs were only expressed in sATII and 20 miRNAs were only expressed in 

pATII (outlined in Table 18, page 46). MiRNAs with Ct > 32 were regarded as not 

expressed (compare 3.2.10.4, page 33). 

 

Figure 18. MiRNA expression profile of ATII cells. 111 miRNAs were expressed at similar 
levels (|fold difference| < 1.5) in sATII and pATII (termed ATII miRNAs). ATII miRNAs are 
displayed by decreasing expression level (analyzed by global mean normalization). 13 miRNAs 
were expressed at very high levels (> 20x median), 41 miRNAs were expressed at high levels 
(20x median > miRNA > median), 45 miRNAs were expressed at moderate levels (median > 
miRNA > 0.05x median) and 12 miRNAs were expressed at low levels (< 0.05x median). 19 
miRNAs were found to target molecules within the TGF-beta signaling pathway (highlighted in 
yellow, discussed in 4.3.5, page 50). Only miRNA assays with complete sequence 
complementarity to mouse miRNAs were investigated. 
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Figure 19. Volcano plot of miRNAs expressed in sATII and pATII. 182 miRNAs were 
differentially expressed (|fold difference| ≥ 1.5) (illustrated in grey). 121 miRNAs were 
upregulated in sATII (fold difference ≥ 1.5) and 61 miRNAs in pATII (fold difference ≤ -1.5). 
Mmu-miR-126-3p, mmu-miR-10a and mmu-miR-29c were highly differentially expressed (fold 
difference > -4) with a high probability to be differentially expressed (BH-adjusted p-value < 
0.01). The 111 ATII miRNAs with similar expression in sATII and pATII are highlighted in yellow. 

Table 18. MiRNAs only expressed in one of the isolation methods. Three miRNAs were 
only expressed in sATII and 20 miRNAs were only expressed in pATII. 

MiRNA (mmu) only expressed in sATII MiRNA (mmu) only expressed in pATII 
mmu-miR-423-5p mmu-miR-1903 
mmu-miR-1981  mmu-miR-701 
mmu-miR-376a# mmu-miR-137 
 mmu-miR-1960 
 mmu-miR-135a 
 mmu-miR-1194 
 mmu-miR-335-3p 
 mmu-miR-342-5p 
 mmu-miR-511 
 mmu-miR-202-3p 
 mmu-miR-467c 
 mmu-miR-467d 
 mmu-miR-677 
 mmu-miR-142-5p 
 mmu-miR-1195 
 mmu-miR-10b 
 mmu-miR-1940  
 mmu-miR-1941-5p  
 mmu-miR-551b-3p 
 mmu-miR-338-5p 
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4.3.4 MRNA target identification and pathway enrichment analysis 

In the next step, miRNA-controlled pathways of ATII cell homeostasis were identified in 

silico. In order to decrease potential method-related bias, the 111 ATII miRNA 

expressed at similar levels in sATII and pATII were used for IPA (Ingenuity® Systems 

2012). Ingenuity® microRNA target filter was restricted to experimentally validated 

miRNA-mRNA pairs and identified 40 miRNAs with 662 mRNA targets. In the 

Ingenuity® Knowledge Base, 38 of these miRNAs were associated with 343 mRNAs 

within the canonical pathway library (the miRNA selection strategy is outlined in Figure 

16, page 43). 

The pathways with significant enrichment of target mRNAs were determined by BH-

adjusted p-value < 0.001. 143 signaling, but only two metabolic pathways showed 

significant enrichment. The top 20 signaling and the top 20 metabolic pathways are 

depicted in Figure 20, page 48. Of the top 20 signaling pathways nine have already 

been associated with fibrosis and/or EMT (Figure 20 A, page 48, yellow bars) including 

“G1/S checkpoint regulation in the cell cycle” (Cui et al. 2013), “cyclins and cell cycle 

regulation” (Cheung et al. 2015; Ju et al. 2014), “phosphoinositide 3-kinase 

(PI3K)/protein kinase B (AKT) signaling” (Xu et al. 2015), “p53 signaling” (Lenfert et al. 

2015; X. Yang et al. 2015), “phosphatase and tensin homolog (PTEN) signaling” (H.-Y. 

Zhang et al. 2014), “hepatic fibrosis” (Bi et al. 2012), “Insulin-like growth factor 1 (IGF-

1) signaling” (Nurwidya et al. 2014; Liao et al. 2014), “integrin-linked kinase (ILK) 

signaling” (J. Yang et al. 2015) and “TGF-beta signaling” (described in 1.3.4, page 13). 

Nine pathways were related to cancer (Figure 20 A, page 48, green bars). The 

pathway categories with the most significant ATII miRNA target enrichment included 

“cancer”, “cellular growth, proliferation and development” as well as “cytokine signaling” 

(Table 19, page 48). 
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Figure 20. Top 20 canonical signaling and metabolic pathways. A) The top 20 signaling 
pathways are shown. Pathways associated with fibrosis and/or EMT are highlighted in yellow, 
pathways associated with cancer are featured in green. B) The top 20 metabolic pathways are 
displayed. Two markers for the significance of the association between the data set and the 
canonical pathway are shown. The common logarithm of the BH-adjusted p-value is depicted as 
bars. Threshold for significant enrichment was defined by BH-adjusted p-value < 0.001 
(illustrated as a dashed line). The ratio of the number of molecules from the data set that map to 
the pathway divided by the total number of molecules that map to the canonical pathway is 
displayed as diamonds. 
 
Table 19. Categories of pathways with significant ATII miRNA target enrichment. 
Classification of pathways was performed based on Ingenuity®’s pathway library. 

Pathway category Pathways 
per category 

Examples for pathways within the 
category 

Cancer 30 Small and non-small cell lung cancer, 
p53  

Cellular growth, proliferation and 
development 28 PI3K/Akt, ILK, TGF-β, Integrin, FAK, 

mTOR 

Cytokine signaling 27 Chemokine, IL-6, IL-8, IL-9, IL-10, IL-
15, IL-17, IL-22, TNFR1 

Cellular immune response 22 CXCR4, HMGB1, NF-κB, dendritic 
cell maturation 

Growth factor signaling 21 IGF-1, EGF, GM-CSF, VEGF, FGF, 
PDGF 

Apoptosis signaling 16 PTEN, death receptor, 14-3-3, 
JAK/Stat, tight junction signaling 

Cell cycle regulation 13 G1/S checkpoint regulation, G2/M 
DNA damage checkpoint regulation 

Intracellular and 2nd messenger 13 Glucocorticoid receptor, ERK/MAPK, 
Rac, Rho, Gα12/13, PAK 

Neurotransmitters and other nervous 
system 13 Neuregulin, ErbB, Ephrin receptor, 

axonal guidance 

Organismal growth and development 13 Stem cell pluripotency, HGF, BMP, 
Wnt/β-catenin 

Disease-specific pathways 9 Hepatic fibrosis, rheumatoid arthritis, 
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Huntington's disease 

Cardiovascular signaling 7 Cardiac hypertrophy, atherosclerosis, 
thrombin signaling 

Cellular stress and injury 6 HMGB1, HIF1α, p70S6K 
Humoral immune response 5 CD40, IL-4, B cell receptor signaling 

Nuclear receptor signaling 5 PPARα/RXRα activation, PPAR, RAR 
activation, VDR/RXR activation 

Pathogen-influenced 3 LPS-stimulated MAPK signaling 

Transcriptional regulation 2 
Role of NANOG and Oct4 in 
mammalian embryonic stem cell 
pluripotency 

Xenobiotic metabolism 1 Aryl hydrocarbon receptor signaling 

Metabolism of cofactors and vitamins 1 Nicotinate and nicotinamide 
metabolism 

Metabolism of complex lipids 1 Inositol phosphate metabolism 

 

Next, upstream regulators were investigated for all 662 mRNAs that have been 

identified as experimentally validated targets of 40 miRNAs using Ingenuity® 

(Ingenuity® Systems 2012). Upstream regulators include transcription factors, miRNAs 

and any other molecule that affects the expression of other molecules. Thus, the 

biological activities controlled by the input data can be assessed. The top 20 upstream 

regulators are shown in Table 20. The top five consisted of three miRNAs (miR-16-5p, 

miR-30c-5p and miR-302d-3p) and two growth factors (TGFB1 and epithelial growth 

factor (EGF)). These findings are endorsed by the fact that miR-16-5p and miR-30c-5p 

had very high expression levels (> 20x median) in the ATII miRNA expression profile 

(Figure 18, page 45). 

Table 20. Top 20 upstream regulators. 

# Upstream Regulator Molecule Type 
p-value 
of 
overlap 

1 miR-16-5p  
(and other miRNAs w/seed AGCAGCA) mature miRNA 6.62E-82 

2 miR-30c-5p  
(and other miRNAs w/seed GUAAACA) mature miRNA 6.88E-47 

3 TGFB1 growth factor 1.70E-43 

4 miR-302d-3p  
(and other miRNAs w/seed AAGUGCU) mature miRNA 2.45E-41 

5 EGF growth factor 1.29E-40 
6 beta-estradiol chemical - endogenous mammalian 3.34E-38 
7 TP53 (includes EG:22059) transcription regulator 1.36E-37 
8 ERBB2 kinase 2.23E-36 
9 tretinoin chemical - endogenous mammalian 3.58E-36 
10 IGF1 growth factor 5.23E-36 
11 TNF cytokine 1.69E-34 
12 EGFR kinase 8.40E-34 
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13 FGF2 growth factor 1.53E-33 
14 LY294002 chemical - kinase inhibitor 1.69E-32 
15 PTEN phosphatase 2.01E-31 
16 PD98059 chemical - kinase inhibitor 7.22E-31 
17 Pdgf (complex) complex 4.67E-30 
18 E2F1 transcription regulator 6.27E-30 
19 HRAS enzyme 8.22E-30 
20 phorbol myristate acetate chemical drug 1.3E-29 

 

4.3.5 ATII miRNA regulation of the TGF-beta signaling pathway 

TGF-beta signaling pathway is a canonical pathway with a crucial role in EMT 

(described in 1.3.4, page 13). In the present study, this pathway showed a strong 

regulation by the identified ATII miRNAs. 19 of the 38 ATII miRNAs binding in a 

canonical pathway were identified within the TGF-beta signaling pathway, of which 16 

miRNAs were expressed above median level in the ATII miRNA expression profile 

(Figure 18, page 45, yellow bars). MiRNAs showed 21 targets on different functional 

levels from extracellular ligand to target genes (Figure 21 and Table 21, page 51). 10 

miRNAs targeted more than one TGF-beta pathway component and 11 components 

were targeted by more than one miRNA with SMAD3 being targeted by four miRNAs. 

The important role of TGF-beta signaling is endorsed by the fact that TGF-beta is one 

of the top five upstream regulators. 
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Figure 21. ATII miRNA targets within the canonical TGF-beta signaling pathway. On the 
right, graphical representation of the TGF-beta signaling pathway from the Ingenuity® pathway 
library is shown. Red arrows indicate ATII miRNAs. The pathway components are represented 
as nodes. Bold highlights protein families or complexes. The orange outline marks the family 
members or complex partners that are targeted by ATII miRNAs. The arrows show the 
biological relationship of the pathway components. On the left, ATII miRNAs, the number of 
targets, their target genes and the functional level of the target are listed. For more information 
see Table 21. 
 
Table 21. MiRNAs targeting TGF-beta pathway components. 

MiRNA name MiRBase 
MIMAT ID 

# of 
targets 

Experimental 
observation 
of miRNA 
seed-target 
interaction 
(PMID) 

Target 
gene Level of target 

      Mmu-miR-22-3p 0000531 1 19011694 BMP7 Extracellular ligand, 
growth factor Mmu-miR-29a-3p 0000535 2 19342382 TGFB3 

      Mmu-miR-30c-5p 0000514 3 18258830 ACVR1 

Plasma membrane 
receptor, kinase 

Mmu-miR-24-3p 0000219 6 17906079 ACVR1B 
Mmu-miR-210-3p 0000658 1 19520079 ACVR1B 
Mmu-miR-29a-3p 0000535 2 19342382 ACVR2A 
Mmu-miR-125a-
5p 0000135 1 19738052 BMPR1B 

Mmu-miR-19a-3p 0000651 1 19390056 BMPR2 
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Mmu-miR-25-3p 0000652 2 19390056 BMPR2 
Mmu-miR-17-5p 0000649 3 19390056 BMPR2 
Mmu-miR-17-5p 0000649 3 20709030 TGFBR2 

      Mmu-miR-18a-3p 0004626 1 19372139 KRAS 
Cytoplasmic signaling, 
enzyme Mmu-miR-181a-

5p 0000210 2 20080834 KRAS 

      
Mmu-miR-16-5p 0000527 4 20065103 MAP2K1 

Cytoplasmic signaling, 
kinase 

Mmu-miR-16-5p 0000527 4 19861690 MAP2K4 
Mmu-miR-24-3p 0000219 6 19861690 MAP2K4 
Mmu-miR-25-3p 0000652 2 19861690 MAP2K4 
Mmu-miR-24-3p 0000219 6 19502786 MAPK14 
Mmu-miR-7a-5p 0000677 2 19072608 RAF1 

      
Mmu-miR-199a-
3p 0000230 1 19251704 SMAD1 

Transcription factor 

Mmu-miR-23b-3p 0000125 3 19582816 SMAD3 
Mmu-miR-24-3p 0000219 6 19582816 SMAD3 
Mmu-miR-27a-3p 0000537 3 19582816 SMAD3 
Mmu-miR-140-5p 0000151 1 20071455 SMAD3 
Mmu-miR-23b-3p 0000125 3 19582816 SMAD4 
Mmu-miR-24-3p 0000219 6 19582816 SMAD4 
Mmu-miR-27a-3p 0000537 3 19582816 SMAD4 
Mmu-miR-23b-3p 0000125 3 19582816 SMAD5 
Mmu-miR-24-3p 0000219 6 19582816 SMAD5 
Mmu-miR-27a-3p 0000537 3 19582816 SMAD5 
Mmu-miR-7a-5p 0000677 2 17028171 FOS 
Mmu-miR-222-3p 0000670 1 20299489 FOS 
Mmu-miR-16-5p 0000527 4 18362358 JUN 
Mmu-miR-30c-5p 0000514 3 18668040 JUN 
Mmu-miR-30c-5p 0000514 3 21628588 RUNX2 
Mmu-miR-218-5p 0000663 1 21628588 RUNX2 

      
Mmu-miR-16-5p 0000527 4 18449891 BCL2 

Transcription factor 
target, transporter 

Mmu-miR-17-5p 0000649 3 19666108 BCL2 
Mmu-miR-181a-
5p 0000210 2 20204284 BCL2 
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5 DISCUSSION 

5.1 Novel ATII cell isolation procedure by sorting based on their 

autofluorescence 

5.1.1 Rationale for development of sorting procedure 

Understanding of the pathways regulating the diverse functions of ATII cells remains 

highly elusive. This is hardly surprising since in vitro analyses of ATII cells have been 

so far challenging. First, no cell line exists that represents the full range of ATII cell 

functions. Second, primary ATII cells in culture change rapidly their phenotype. It is 

possible that this transformation represents their behavior in vivo, when changes of 

environmental factors occur: 1) ATII cells provide alveolar repair presumably by 

transforming to ATI cells (Uhal 1997; Fehrenbach 2001). 2) ATII cells differentiate to 

mesenchymal cells by EMT (Willis et al. 2005). 

Therefore, freshly isolated, primary ATII cells are necessary to explore the full range of 

ATII cell functions. However, the isolation of primary cells with high viability and purity 

remains challenging. ATII cells were first isolated by Kikkawa and Yoneda in 1974 from 

rabbits using Ficoll density gradient centrifugation after barium loading of macrophages 

(Kikkawa & Yoneda 1974). Since then, a variety of species has been used to purify 

ATII cells such as rats (Mason & Williams 1977; Douglas & Farrell 1976), hamsters 

(Myles et al. 1989), guinea pigs (Sakamoto et al. 2001), fetal (Ballard et al. 1986) and 

adult human lungs (Robinson et al. 1984). From mice, ATII cells have been isolated by 

numerous methods (see below). 

The present study focused on the isolation of ATII cells from C57BL/6 mice, because 

this strain is commonly used as a model animal for ATII-relevant diseases, especially 

IPF. Fibrotic response to bleomycin was documented to be high in C57BL/6 in contrast 

to a low response in BALB/c (Schrier et al. 1983). 

Until today, many investigators have used variants of a common method to prepare a 

single cell suspension from murine lungs that optimizes prospective ATII isolation (Rice 

et al. 2002; Königshoff et al. 2009; Gereke et al. 2012; Messier et al. 2012). The 

protocol is based on the report of Corti et al. published in 1996 (Corti et al. 1996). The 

procedure was also used for the preparation of lung single cell suspensions in the 

present study with few alterations. Important steps include the perfusion of lungs for 

mechanical removal of blood cells, enzymatic and mechanical dissociation of 

parenchymal lung cells, agarose instillation and subsequent filtering.  
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For enzymatic digestion dispase was chosen. This enzyme specifically cleaves type IV 

collagen and fibronectin present within the ATII basement membrane (Stenn et al. 

1989). Therefore, dispase is possibly more specific in releasing epithelial cells than 

other proteases while maintaining viability and cell characteristics (Corti et al. 1996). 

Agarose was instilled following enzyme placement to minimize Agarose-sensitive club 

cells (Harrison et al. 1995; Corti et al. 1996). Bronchoalveolar lavage was not 

performed as it could lead to dilution of dispase, diminishing enzyme activity (Corti et 

al. 1996), and further to lung injury with destruction and/or activation of AT II cells. 

In contrast to preparation of single cell suspension, no consensus exists on a protocol 

for the separation of ATII cells from the other lung cell populations in mice. Until now, 

many different procedures have been described to isolate ATII cells from mice 

including magnetic bead separation (Messier et al. 2012; Corti et al. 1996), “panning” 

using antibody-coated cell culture dishes (Rice et al. 2002; Königshoff 2009; 

Königshoff et al. 2009) and FACS (Fujino, Ota, Takahashi, et al. 2012; Gereke et al. 

2012). ATII cells are difficult to isolate in high purities, because, first, extracellular ATII-

specific markers for mice are rare and, second, labeling could change the activation 

status of purified cells. A combination of epithelial cell adhesion molecule (EpCAM) and 

T1α protein antibody staining was used to isolate ATII cells by FACS as the 

EpCAMhigh/T1αnegative subpopulation in humans with 94.0% of purified cells expressing 

proSP-C (Fujino, Kubo, et al. 2012). However, it is assumed that EpCAM is involved in 

diverse intracellular processes such as cell signaling, migration, differentiation and 

proliferation (Trzpis et al. 2007). Monoclonal antibodies to EpCAM were described to 

induce antibody-dependent cellular cytotoxicity in colorectal cancer therapy (Flieger et 

al. 2001). Antibody to CD74, which was recently documented as an ATII-specific 

marker (Marsh et al. 2009), stimulated the cleavage of the CD74 cystolic fragment 

inducing NF-ƙB activation (Starlets et al. 2006). Therefore, a positive selection of ATII 

cells carries the risk of activating cellular pathways. Gereke et al. described a negative 

isolation method by FACS using SSChigh as the distinct property of ATII cells and 

labeling other cell types with fluorescent antibodies (Gereke et al. 2007; Gereke et al. 

2009; Gereke et al. 2012). In a recent report describing the exact isolation procedure, 

the purity was reported to be variable with 92 ± 5% and a viability of ~ 90% (Gereke et 

al. 2012). In the present study, an isolation procedure to negatively enrich “untouched” 

ATII cells was aimed for in order to obtain a population of highly pure and viable ATII 

cells for prospective miRNA profiling. 

For this purpose, a new method to isolate ATII cells from mice was developed based 

on the autofluorescence characteristic of ATII cells. This feature has been described 

previously. Murine ATII cells characterized as CD45/CD31/Sca-1/CCSPnegative and SP-
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Cpositive showed high autofluorescence (Kim et al. 2005). A population of alkaline 

phosphatasepositive and lamellar bodiespositive cells isolated from human lungs has been 

reported to display autofluorescence, which, however, is less intense than in the 

purified alveolar macrophage population (Cunningham et al. 1994). This is in 

concordance to the findings in the present study that there existed a CD45positive 

population with slightly higher autofluorescence than the ATII cell population, which 

likely represented macrophages. 

Autofluorescence arises from the presence of endogenous fluorophores in cells and 

extracellular matrix. Fluorophores are substances which emit light after absorption of 

light. Cellular autofluorescence emerges mainly from the metabolic coenzymes 

reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide 

(FAD), whose natural fluorescence has been used for evaluation of metabolic activities 

(Heikal 2010). Further, porphyrins, which are present in hemoglobin and chlorophyll, 

and aromatic amino acids exhibit natural fluorescence (Monici 2005). 

In ATII cells, different fluorophores could contribute. First, ATII cells have high 

metabolic activity due to surfactant production such that a high amount of metabolic 

enzymes is present in these cells (Fehrenbach 2001). Second, hemoglobin has been 

found in primary ATII cells isolated from normal rat and mouse lungs. The function of 

hemoglobin in these cells is still unknown (Bhaskaran et al. 2005; Newton et al. 2006). 

Nevertheless, no study has been found in which autofluorescence has been used to 

isolate ATII cells previously (see 3.2.12, page 34).  

5.1.2 ATII cells isolated by sorting show high viability and purity 

For the isolation of primary ATII cells, the aim was to establish a preparation method 

that provides intact cells for prospective miRNA profiling. Therefore, the isolated cells 

had to have three main properties: 1) “untouched”, 2) high viability and 3) high purity. 

An “untouched” cell population of ATII cells was isolated by taking advantage of the 

autofluorescence of this cell type and by staining of the surface markers CD45 of 

leukocytes and CD31 of endothelial cell. The isolated cells showed a high viability of 

96.2% and purity of 98.4% analyzed by flow cytometry. Morphologic and biochemical 

characterization confirmed ATII phenotype of the sorted cells. Expression of CCSP, 

which was found in very few sorted cells, might be due to contaminating club cells. 

Although agarose digestion was demonstrated to nearly eliminate club cells (Corti et al. 

1996), some residual cells might still be present after agarose incubation. Due to their 

high autofluorescence characteristic that was documented after elastase digestion and 

sorting (Teisanu et al. 2009), persistent club cells would be sorted in the 

CD45/CD31negative autofluorescencehigh population. Further, progenitor cells could have 
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been within the sorted ATII cell population. Bronchioalveolar stem cells (BASCs), which 

can develop into bronchiolar and alveolar epithelial cells, as well as club cells were 

shown to co-express CCSP and proSP-C (Teisanu et al. 2009; Wang et al. 2012). 

BASCs, however, were documented to have low autofluorescence (Teisanu et al. 

2009). On the other hand, intermediate precursor cells might still express CCSP, but 

nonetheless be highly autofluorescent due to increasing metabolic activity. Thus, they 

could have contaminated the sorted cell population. 

5.1.3 ATII cells isolated by sorting are superior in purity to cells isolated by 

“panning” 

To understand the advantages and limitations of the novel sorting procedure, the newly 

developed method was compared to a previously published isolation method based on 

“panning” (Königshoff et al. 2009). Both procedures use a negative selection strategy 

and were compared regarding the following properties: 1) viability and 2) purity. 

Both sATII and pATII showed viabilities greater than 95% throughout the study with the 

average viability being minimally higher in pATII than sATII (96.7% vs. 96.2%). This 

finding might be explained by 1) a slightly higher viability of the single cell suspension 

before cell isolation (99.0% vs. 98.5%) and 2) isolation by “panning” being more gentle 

than isolation by sorting. To improve cell viability by sorting one could increase nozzle 

size and/or reduce sheath pressure (Arnold & Lannigan 2010). However, increasing 

nozzle size will decrease the quality of droplet formation, which can lower purity. 

Further, reducing sheath pressure leads to fewer cells per second. In addition, the 

longer sorting time might reduce viability. By FACS with 100 µm nozzle size, Gereke et 

al. achieved a viability of ~ 90% (Gereke et al. 2012). Therefore, no larger nozzle size 

or lower fluid pressure were chosen. 

The analysis of the single cell suspension revealed enrichment of leukocytes and ATII 

cells already before the isolation procedure. An enrichment of ATII cells was expected 

as the preparation of single cell suspension included dispase dissociation (discussed in 

5.1.1, page 53).  

Isolated cells showed higher purity in sATII than pATII (98.4% vs. 72.6%) as assessed 

by surface marker expression in flow cytometry. In sATII, the few contaminating cells 

were mainly within the CD45/CD31negative CD74negative cell population. In principle, an 

ATII subpopulation could exist which is negative for the CD74 cell marker. Further, 

contaminating cells could have included club cells, which could have been sorted in the 

autofluorescencehigh population (discussed in 5.1.1, page 53). In addition, in the 

reanalysis after sorting before PI/CD74 staining few events appeared as 

autofluorescencelow, which was mainly attributed to cell debris. However, some 
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CD45/CD31negative autofluorescencelow cells could have contaminated the cell 

population such as ATI cells and BASCs. Most ATI cells are expected to be destroyed 

by the preparation procedure of the single cell suspension. 

In pATII, the contaminating cells mainly consisted of leukocytes and endothelial cells. 

Endothelial cells showed a relative enrichment in the isolated population (6.7% before 

sorting vs. 12.3% after sorting). This finding might illustrate the fact that the “panning” 

protocol does not use antibodies to deplete endothelial cells (described in 3.2.4, page 

28). The remaining leukocyte population (12.0% after sorting), however, illustrates that 

even after incubation on antibody-coated dishes specific to this cell type, it is difficult to 

achieve a high purity by “panning”. 

MRNA analysis of phenotypic markers confirmed flow cytometric data. Markers for 

epithelial and ATII identity were highly expressed in sATII and pATII. The water 

channel AQP5, which has been suggested to be ATI-specific in the distal lung of rats 

and humans (Nielsen et al. 1997; Kreda et al. 2001), is expressed in both alveolar cell 

types, ATI and ATII cells, in mice (Matsuzaki et al. 2009; Krane et al. 2001). This study 

confirmed this finding with sATII and pATII expressing moderate levels of Aqp5 mRNA. 

Markers for the contaminating cell populations confirmed higher purity of sATII than 

pATII with pATII expressing moderate levels of mRNA specific for smooth muscle cells, 

endothelial cells and leukocytes. 

5.1.4 Limitations 

Taken together, these results suggest that sorting provides considerably higher purity 

of ATII than “panning” with similar viabilities in both methods. However, there are some 

limitations to this study.  

Some aspects concern the comparison of sATII and pATII. 1) Considering the small 

sample size caution must be applied to the interpretation. The data of four independent 

experiments in sATII and two independent experiments in pATII might not be 

transferable to general differences between these methods. A greater sample size of at 

least three independent experiments in both study groups would be desirable. In the 

present study, this was not possible within the time frame of the thesis. 2) Purity of 

pATII can differ based on the routine of the investigator as time for cell adherence and 

amount of washing steps have to be judged for each experiment individually. Isolation 

by “panning” was performed by a trained researcher. However, experiments of at least 

two independent investigators would minimize person dependent variations. In the 

present study, only one trained researcher was available. 3) Previous data on isolated 

ATII cells by “panning” suggest that this method does provide purities with high 

percentages of greater than 90% after one incubation step (Rice et al. 2002) and 95% 
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± 3% after two incubation steps as it was performed in the present study (Königshoff et 

al. 2009). Differences between previous results and the results in the present study 

might be due to aspects discussed in 1) and 2). Moreover, different methods were 

used to assess purity in the current study compared to previous studies. Rice et al. 

assessed purity by modified Papanicolaou staining, electron microscopy and 

immunostaining (Rice et al. 2002) and Königshoff et al. quantified ATII purity by 

immunostaining (Königshoff et al. 2009). In the present study, purity of pATII was 

analyzed by flow cytometry. 

Further, some limitations concern the feasibility of the sorting method itself. 1) No 

information was obtained on biological functionality of the cells. Sorting does stress 

cells. ATII cells are under high sheath pressure and have to pass the nozzle tip. 2) It is 

unclear how ATII cells obtained from a murine disease model e.g. for IPF would react 

to the isolation procedure. ATII cells of pathologic lungs could be more easily affected 

by the sorting procedure, resulting in a lower viability. ATII cells isolated by FACS from 

mice infected with influenza A virus made up a smaller proportion of all lung cells due 

to influx of immune cells (Gereke et al. 2012) and on day three postinfection the 

absolute number of isolated ATII cells was reduced (Stegemann-Koniszewski et al. 

2016, supplemental data). However, the authors did not report whether the viability of 

ATII cells isolated from influenza A infected mice was lower compared to cells from 

uninfected mice (Gereke et al. 2012; Stegemann-Koniszewski et al. 2016). 3) A recent 

workshop on IPF of the National Heart, Lung and Blood Institute (NHLBI) of the United 

States claimed to focus in future studies on profiling models that most closely represent 

human IPF (Blackwell et al. 2014). Autofluorescence in human ATII cells, however, has 

been described as low compared to alveolar macrophages (Cunningham et al. 1994). It 

therefore remains open whether the established method using unchallenged C57BL/6 

mice could be applied to different species, especially human lungs. 

In addition, ATII cells are not a uniform population (Fehrenbach 2001). In every 

isolation procedure chosen, there is the possibility that a subtype of the ATII population 

is preferentially isolated over other subpopulations. The subsequently studied ATII 

functions in vitro may not be representative for all ATII cells in vivo. For these reasons, 

in the present study a cut-set of miRNAs obtained from ATII cells isolated by two 

different methods was chosen for miRNA profiling (see 5.2.1). 

5.2 Functional role of miRNAs in ATII cells under healthy conditions 

5.2.1 Rationale for the profiling strategy 

Several studies have linked aberrant miRNA expression to ATII-associated diseases 

(as described in 1.3.4, page 13). Until now, profiling of miRNAs in pulmonary diseases 
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and healthy controls has been mainly performed in cell lines and human whole lung 

samples. Few studies have analyzed miRNAs in primary ATII cells. Let-7d and miR-

15b expression in ATII was documented by in situ hybridization (Pandit et al. 2010; 

Ezzie et al. 2012) and levels of miR-21 in sorted ATII cells were compared between 

saline- vs. bleomycin-treated mice and IPF vs. control patients (Yamada et al. 2013). 

However, as far as known, a comprehensive miRNA profile of primary ATII cells 

remains unaccounted. 

Therefore, the aim of the present study was to generate a thorough miRNA expression 

profile in primary, “untouched” ATII cells of healthy mice. Further, the regulated 

pathways of the target mRNAs were investigated. This provides insight into the role of 

miRNAs in ATII cells in a healthy state. 

A cut-set of miRNAs from ATII cells isolated by the novel sorting method and a 

previously published method was used for further pathway analysis. This approach 

was chosen, because 1) it reduces miRNAs from contaminating cell types present in 

cell samples from one of the isolation methods, 2) it identifies miRNAs which are 

common to the whole ATII cell population and not restricted to a subpopulation that is 

enriched by one of the isolation methods and 3) it minimizes changes in miRNA 

expression due to activation of pathways during specific isolation steps. 

5.2.2 Differentially expressed miRNAs support purity of sATII over pATII 

Out of the 316 identified miRNAs, 42 miRNAs were highly differentially expressed or 

only expressed in pATII compared to only four miRNAs in sATII. Mmu-miR-126-3p, 

mmu-miR-10a and mmu-miR-29c were the most significant miRNAs with increased 

expression based on the BH-adjusted p-values. All of them were upregulated in pATII. 

MiR-126-3p was expressed in endothelial cells, controlling the response to vascular 

endothelial growth factor (VEGF) (Fish et al. 2008; Harris et al. 2008), and platelets 

(Gatsiou et al. 2012). MiR-10a has been mainly found in lung, kidney, muscle and liver 

(Beuvink et al. 2007; Landgraf et al. 2007). Within the lung, miR-10a was reported to 

be the most abundant miRNA in primary human smooth muscle cells. It showed 

cellular specificity within the lung with >30x higher expression in smooth muscle cells 

than in alveolar epithelial cells (Hu et al. 2014). This miRNA induced smooth muscle 

differentiation and proliferation (Huang et al. 2010; Hu et al. 2014). MiR-29c is part of 

the miR-29-family (miR-29a, miR-29b, miR-29c). All three members were found in 

murine fibroblasts of healthy lungs (Xiao et al. 2012). MiR-29 showed high expression 

in two mouse fibroblast cell lines compared to low expression in an ATII-like epithelial 

cell line (Cushing et al. 2011). Thus, a preferential expression in mesenchymal cells 

was suggested (Cushing et al. 2011). 
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Taken together, the great amount of highly differentially or only expressed miRNAs in 

pATII compared to sATII and the fact that the miRNAs with the most significant 

increased expression in pATII are those that have been described in non-ATII cell 

types support the results of a higher purity in sATII than pATII. 

5.2.3 Similarly expressed miRNAs give insight into miRNA regulated ATII 

pathways 

To identify potential pathways of ATII cell homeostasis regulated by miRNAs, the 111 

ATII miRNAs were used for pathway enrichment analysis. 143 pathways with 

significant enrichment were classified as signaling pathways and only two pathways 

regulate metabolic processes. This suggests that miRNAs may not play an important 

role in regulation of metabolic pathways in ATII cells under normal conditions. From the 

top 20 signaling pathways nine were related to cancer and nine were related to fibrosis 

and/or EMT. 

This role of miRNAs was confirmed by the analysis of the pathway categories: The top 

pathway categories revealed involvement of ATII miRNAs in pathways linked to 

“cancer” and to “cellular growth, proliferation and development”. Recently, these 

pathways have been elucidated as major pathways in ATII cells. Fujino et al. showed 

by gene enrichment analysis that “positive regulation of cell differentiation” and “lung 

development” are among the four highest enriched gene ontology terms in ATII cells 

isolated from human lungs and ATII-like cells derived from alveolar epithelial progenitor 

cells, following “transcription” and “RNA splicing”. Further, genes that downregulate 

EMT pathway were upregulated in mature ATII cells (Fujino, Ota, Suzuki, et al. 2012). 

The miRNA-regulated pathways and pathway categories suggest that miRNAs in ATII 

cells play an important role for cell differentiation and proliferation. In this context, EMT 

is a key mechanism and the TFG-beta superfamily signaling pathway is a crucial 

regulator for maintaining epithelial homeostasis (see 1.3.4, page 13). In the present 

study, several findings revealed strong miRNA-regulation of TGF-beta signaling 

pathway in ATII cells at normal conditions: 1) The growth factors TGF-beta and EGF 

were identified within the top five upstream regulators. 2) 19 miRNAs of which 16 

miRNAs were expressed above median levels in the isolated ATII cells have targets in 

the canonical TGF-beta signaling pathway. 3) Two of these miRNAs were within the 

top five upstream regulators. 

In the present study, TGF-beta 1 and EGF were found to be within the top five 

upstream regulators. Like TGF-beta, the EGF family promotes EMT by stimulation of 

alveolar epithelial cell proliferation and migration (Crosby & Waters 2010). A close 

cross-talk between EGF and TGF-beta signaling pathways had a synergistic effect on 
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EMT in pancreatic cancer (Ouyang et al. 2014; Deharvengt et al. 2012) and renal 

fibrosis (Tian et al. 2007). In breast cancer cells, miR-21 repressed SMAD7, an 

inhibitor of the TGF-beta signaling pathway, which enhanced TGF- and EGF-

dependent cancer cell invasion and migration (Han et al. 2016). This suggests that 

both growth factors interact within the TGF-beta signaling pathway. However, the exact 

mechanism of the interplay remains to be elucidated. 

MiR-30a-3p/5p, miR-30c-5p and miR-30e-3p/5p were amongst the 13 very high 

expressed miRNAs. MiR-30a-3p and miR-30e-3p were the most abundant miRNAs 

while miR-30c-5p has three targets within the TGF-beta signaling pathway and was 

one of the top five upstream regulators. The miR-30 family-members (miR-30a, miR-

30b, miR-30c, miR-30d, miR-30e) all contain the same seed sequence at the 5’-

terminus, potentially regulating similar targets. MiR-30c was downregulated in human 

lung biopsies of patients with IPF and NSCLC compared to healthy controls (Pandit et 

al. 2010; Zhong et al. 2014). Besides suppression of TGF-beta-mediated EMT, miR-30 

family directly inhibited the EMT-inducing transcription factor SNAIL1 in human 

hepatocytes (Zhang et al. 2012). Thus, the high abundance of three miR-30 family-

members in the present study suggests that this family plays an important role in 

suppressing EMT in ATII cells at normal, physiological conditions. 

The miR-200 family-member miR-429 was also expressed at high levels. The miR-200 

family consists of five members (miR-200a, miR-200b, miR-200c, miR-141 and miR-

429). The family can be divided into two groups by two different criteria. The first is by 

their gene localization in two clusters on chromosome 1 (miR-200a, miR-200b and 

miR-429) and chromosome 12 (miR-200c, miR-141). The second is by their function 

differing in one nucleotide of the seed sequence in the first group (miR-200a, miR-141) 

compared to the second group (miR-200b, miR-200c, miR-429) (Park et al. 2008). The 

miR-200 family is a well-known inhibitor of EMT. An increasing body of literature 

suggests that many, maybe even all, epithelial cell types contain a high abundance of 

the miR-200 family-members (Hill et al. 2013). Low expression of the miR-200 family-

members in tumor cells has been associated with poor prognosis in ovarian cancer, 

gastric cancer, spindle cell carcinoma of the head and neck, thyroid carcinoma and 

many more (Hu et al. 2009; Kurashige et al. 2012; Zidar et al. 2011; Braun et al. 2010). 

In immortalized human bronchial epithelial cells, miR-200 family-members were 

repressed during EMT induced by tobacco carcinogens (Tellez et al. 2011) and by 

arsenic exposure (Z. Wang et al. 2011). In a lung adenocarcinoma mouse model, miR-

200 family overexpression restricted the cancer cells to an epithelial phenotype and 

stopped metastases (Gibbons et al. 2009). Functional studies showed that inhibition of 

miR-200 induced EMT and overexpression of miR-200 provoked MET and suppressed 
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cancer cell motility by direct repression of ZEB1 and ZEB2 (Park et al. 2008; Korpal et 

al. 2008; Gregory et al. 2008). Both transcription factors were involved in the TGF-beta 

signaling pathway (see 1.3.3, page 11) forming a negative feedback loop with miR-200. 

In addition to the high expression of miR-30 family-members, the presence of a miR-

200 family-member reinforces the concept of ATII miRNAs playing an important role in 

maintaining epithelial homeostasis.  

Interestingly, members of the polycistronic miR-17-92 cluster and its two mammalian 

paralogs miR-106a-363 cluster and miR-106b-25 cluster were highly represented in the 

ATII miRNAs. These clusters contain four seed families: miR-17, miR-18, miR-19 and 

miR-92 (Concepcion et al. 2012). In the present study, four miR-17-92 cluster 

members (miR-19a, miR-17, miR-20a, miR-18a) were detected. MiR-19a and miR-17-

5p were expressed at high levels with miR-17-5p having three targets within the 

canonical TGF-beta signaling pathway. Further, miR-106a from the miR-106a-363 

cluster and all three members of miR-106b-25 cluster (miR-25, miR-93, miR-106b) 

were expressed at moderate levels. MiR-20b of the miR-106a-363 cluster was found at 

low level. So far, most studies have described the main role of the miR-17-92 cluster 

and its paralogs as oncogenes with upregulation in hematopoietic and solid cancers 

(Concepcion et al. 2012). However, there is growing evidence on its physiological 

function in normal development with loss of function of miR-17-92 cluster leading to 

early postnatal death (Ventura et al. 2008) and its potential role in tumor suppression. 

TGF-beta type II transmembrane receptor was directly inhibited by miR-17, miR-20a 

and miR-20b and these miRNAs were upregulated in A549 with cisplatin sensitivity 

compared to cisplatin resistance (Jiang et al. 2014). Further, in oral squamous cell 

carcinoma miR-17 and miR-20a repressed tumor migration (Chang et al. 2013). Of 

special interest for the present study, in lung development miR-17, miR-20a and miR-

106b controlled E-cadherin expression and distribution, thus, provoking an epithelial 

phenotype. MiR-17 and miR-20a were expressed more highly during lung development 

than in adult lung, while miR-106b had even higher levels in adult lungs (Carraro et al. 

2009). In the present study, miR-17, miR-20a and miR-106b were expressed above 

median levels in ATII cells in adult, healthy mice. These data suggest that not only 

during lung development, but also in adult mice all three miRNAs have a physiological 

role in maintaining epithelial homeostasis.  

Further, the data in the current study suggest that miR-16-5p has a crucial role in ATII 

homeostasis. The miRNA was expressed at a very high level, was the top upstream 

regulator and showed four targets within the TGF-beta signaling pathway. The other 

member of its family, miR-15, was also expressed at a high level. The two miRNAs are 

located as a cluster on chromosome 14. The miR-15 family has been described as a 
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tumor suppressor in nasopharyngeal carcinoma, pituitary tumors, glioma and NSCLC 

(Jiang et al. 2016; Renjie & Haiqian 2015; Wang et al. 2014; Bandi et al. 2009). Within 

the EMT-pathway, miR-16 and miR-15 were documented to repress activating protein-

4 (AP4). This transcription factor promoted EMT by upregulation of E-cadherin and 

SNAIL (Shi et al. 2014). MiR-16 and miR-15 were induced by p53, which was also 

confirmed for the miR-200 family (Shi et al. 2014). P53 is a tumor suppressor and 

downregulation of p53 led to EMT-associated stem cell phenotypes (De Craene & Berx 

2013). This suggests that miRNAs in normal ATII cells are regulators of p53-controlled 

epithelial phenotype. 

These data enforce the findings that the highly expressed miRNAs found in healthy 

ATII cells in the present study are important for guarding the maintenance of the ATII 

cell phenotype while protecting from fibrotic changes and cancer progression. 

5.2.4 Limitations 

In summary, the pathway enrichment analysis of ATII miRNAs suggests a strong role 

of miRNAs in homeostasis and during proliferation and differentiation, and in particular 

within the TGF-beta signaling pathway. However, there are limitations to the present 

study.  

1) Two samples of each preparation method were used for miRNA profiling. Due to the 

small sample size the result for similarly expressed miRNAs might not represent the 

general miRNAs present in ATII cells in a healthy state. At least three samples of each 

isolation method would be desirable for analysis. 2) Some aspects account for 

exclusion of some miRNA-mRNA target interactions: a) The applied microRNA arrays 

do not include all known miRNAs. b) For pathway enrichment analysis the 111 miRNAs 

detected at similar levels in sATII and pATII were restricted to 40 miRNAs with 662 

experimentally validated targets. c) By using a cut-set of two different preparation 

methods the identified miRNAs exclude miRNAs which might have been present in a 

subgroup selectively enriched by one of the isolation methods. Therefore, further 

miRNA-mRNA target interactions might play a relevant role, which were not listed in 

the database so far or were excluded by the study design. 3) No functional 

characterization was performed to link the changes in miRNAs to target gene 

expression.  

In the present study, these issues could not be addressed within the time frame of the 

thesis. Hence, the findings should be supported by further research analyzing the 

miRNA effect on downstream effects. Moreover, additional pathways regulated by 

miRNAs might be elucidated in the future. 
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6 CONCLUSIONS AND OUTLOOK 

ATII cells are important regulators in lung homeostasis. Alterations in this cell type by 

EMT contribute to various lung diseases, the main groups being developmental, fibrotic 

and malignant diseases. However, diagnostic and therapeutic options affecting this cell 

type remain highly elusive. One aspect is the difficulty to obtain ATII cells that can be 

used for analysis and functional studies including miRNA analysis. 

In this work, three main findings contribute to the research field of ATII cells in regard 

to the goals defined at the beginning of this study (see 2, page 15): 

1. By this work a new method was established to gain highly pure and viable 

“untouched” ATII cells from healthy mice at day 0 (day of isolation). This 

isolation method is superior to a previously published isolation method 

(“panning”) in regard to the purity of the freshly isolated cells with similar 

viability. The newly developed method can be used for future studies on 

primary ATII cells. 

2. For the first time a coherent ATII miRNA profile of healthy mice was 

established. The profile was obtained from a cut-set of miRNAs isolated by two 

different methods. This is the basis for further studies comparing ATII miRNA 

profiles of healthy mice to mouse models of lung diseases. Thereby, changes in 

miRNA expression profile during pathogenesis of diseases can be identified.  

3. TGF-beta signaling pathway was identified as a key target for miRNAs in ATII 

cells regulating homeostasis. Distinct miRNAs depicted in the present study as 

regulators of the TGF-beta signaling pathway can be used for specific miRNA 

analysis in fibrotic and/or cancer models compared to healthy mice. 

Identification of dysregulated miRNAs in ATII cells will have potential use in human 

diseases as 1) biomarkers and 2) therapeutic targets. MiRNAs have been studied in 

various diseases as biomarkers for diagnosis, patient stratification, treatment 

monitoring and prognosis of diseases (Mishra 2014). MiRNAs have several 

characteristics that make them ideal biomarkers. They are stable in biological fluids 

such as plasma, serum, urine and saliva (Chen et al. 2008; Mitchell et al. 2008; Mall et 

al. 2013; Park et al. 2009). They are easy to measure and alteration of miRNA profiles 

does correlate with disease manifestation, status and prognosis in a variety of diseases 

such as malignancies (Shen et al. 2013; Cortez et al. 2011), cardiovascular diseases 

(Rawal et al. 2014; Siasos et al. 2013), neurologic/psychiatric diseases (Maciotta et al. 

2013; Rao et al. 2013) and autoinflammatory diseases (Ma et al. 2014; Chen et al. 
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2014). Further, identified miRNAs could be used as therapeutic targets in the future 

(Moreno-Moya et al. 2014). 

However, there are limitations to the study, which could not be addressed within the 

time frame of the thesis, indicating that further research has to be performed in the 

future. 1) The newly developed isolation procedure has not been used for functional 

studies. Therefore, the biological functionality of the cells and their potential use for 

functional studies remain to be investigated. 2) On behalf of the identified ATII 

miRNAs, their role in ATII cells was analyzed using a bioinformatic prediction program. 

However, functional studies linking the identified miRNAs to changes in target mRNAs 

need to be performed. 3) In the present study, further analyses of the ATII miRNA 

regulated pathways focused on EMT. Today, many more pathways such as Wnt 

signaling have been described contributing to lung diseases including fibrosis and 

malignancies (Bartis et al. 2014). Further, contradictory studies suggest that 

mesenchymal cells in fibrotic disease do not originate from epithelial cells (Rock et al. 

2011). Therefore, whether EMT contributes to lung disease and if so, which pathways 

are accountable for lung disease, needs to be understood in the future. 
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7 SUMMARY 

7.1 Summary 

Alveolar epithelial type II (ATII) cells play an important role in the maintenance of 

alveolar homeostasis. During injury, loss or dysregulation, however, ATII cells can lead 

to lung fibrosis and cancer by epithelial-to-mesenchymal transition (EMT). The complex 

regulatory networks that maintain ATII cells under physiologic condition are still little 

understood. MicroRNAs (miRNAs) are important regulators of gene expression at the 

posttranscriptional level. Hence, the goal of this study was to identify miRNAs 

expressed by murine ATII cells under normal, non-pathologic conditions and to 

elucidate potential miRNA-controlled pathways of ATII cell homeostasis. 

A new protocol was established to isolate “untouched” murine ATII cells by 

Fluorescence Activated Cell Sorting (FACS) based on their autofluorescence (termed 

sATII). The purity and viability of sATII were compared to ATII cells obtained by the 

previously published isolation method “panning” (termed pATII). MiRNA profiles were 

obtained of both sATII and pATII using TaqMan® MicroRNA Arrays. MiRNAs with 

similar expression levels in sATII and pATII (|fold difference| < 1.5; termed ATII 

miRNAs) were used for Ingenuity® Pathway Analysis (IPA) with restriction to 

experimentally observed miRNA-mRNA interactions and canonical pathways. 

Isolated sATII showed a higher purity than pATII (98.4% vs. 72.6%) with a similar 

viability in sATII and pATII (96.2% vs. 96.7%). 111 miRNAs were expressed at similar 

levels in ATII cells obtained by the novel sorting method and the previously published 

method. In the Ingenuity® pathway enrichment analysis, nine pathways were 

associated with fibrosis and/or EMT and nine pathways were related to cancer within 

the top 20 signaling pathways. The transforming growth factor beta (TGF-beta) 

signaling pathway was identified as a key pathway regulated by 19 ATII miRNAs 

targeting 21 TGF-beta pathway components. 

This work contributes to the research field of ATII cells with three main findings. First, 

the newly developed isolation protocol can be used for future studies on primary 

murine ATII cells with the need for “untouched” cells with high purity and viability at the 

day of isolation. Second, for the first time a coherent ATII miRNA profile of healthy 

mice was obtained. Third, the identified ATII miRNAs seem to play an important role in 

the regulation of fibrosis/EMT, especially within the TGF-beta signaling pathway. 

Future studies investigating miRNAs in mouse models of lung diseases e.g. pulmonary 

fibrosis can compare their findings with the ATII miRNA profile of healthy mice of the 

present study and, thus, identify miRNA changes during pathogenesis of diseases. 
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7.2 Zusammenfassung 

Alveolarepithel-Typ II (ATII) Zellen spielen eine wichtige Rolle in der Erhaltung der 

alveolaren Homöostase. Bei Verletzung, Verlust oder Dysregulation können ATII Zellen 

jedoch zu Lungenfibrose und malignen Erkrankungen durch epithelial-mesenchymale 

Transition (EMT) führen. Die komplexen Signalnetzwerke, die den physiologischen 

Zustand der ATII Zellen aufrechterhalten, sind bislang nur wenig verstanden. 

MicroRNAs (miRNAs) sind wichtige Regulatoren der Genexpression auf 

posttranskriptionaler Ebene. Das Ziel dieser Arbeit war die Identifikation von miRNAs, 

die von ATII Zellen unter physiologischen Bedingungen exprimiert werden, und die 

Ermittlung potentieller miRNA-regulierter Signalwege der ATII Zell-Homöostase. 

Ein neues Protokoll wurde für die Isolation von „unberührten“ murinen ATII Zellen 

mittels Fluorescence Activated Cell Sorting (FACS) basierend auf deren 

Autofluoreszenz entwickelt (bezeichnet als sATII). Die Reinheit und Viabilität der sATII 

wurden mit ATII Zellen, die durch die bereits publizierte Methode „Panning“ isoliert 

wurden (bezeichnet als pATII), verglichen. MiRNA Profile wurden von sATII und pATII 

mittels TaqMan® MicroRNA Arrays erstellt. Die ähnlich exprimierten miRNAs in sATII 

und pATII (|fold difference| < 1.5; bezeichnet als ATII miRNAs) wurden für Ingenuity® 

Signalweganalysen mit Beschränkung auf experimentell bestätigte miRNA-mRNA 

Interaktionen und kanonische Signalwege verwendet. 

Die isolierten sATII zeigten eine höhere Reinheit im Vergleich zu pATII (98.4% vs. 

72.6%) bei ähnlicher Viabilität von sATII und pATII (96.2% vs. 96.7%). 111 miRNAs 

wiesen eine ähnliche Expression in ATII Zellen aus beiden Isolationsmethoden auf. In 

der Ingenuity® Signalweganalyse waren innerhalb der 20 häufigsten Signalwege neun 

mit Fibrose und/oder EMT und neun mit malignen Erkrankungen assoziiert. Der 

transforming growth factor beta (TGF-beta) Signalweg wurde mit 19 ATII miRNAs, die 

21 TGF-beta Signalwegkomponenten regulieren, als ein zentraler Signalweg ermittelt. 

Die vorliegende Arbeit trägt drei wesentliche Erkenntnisse zu dem Forschungsgebiet 

der ATII Zellen bei. Erstens kann das neu etablierte Isolationsprotokoll für zukünftige 

Studien verwendet werden, die „unberührte“ murine ATII Zellen mit hoher Reinheit und 

Viabilität am Tag der Isolation benötigen. Zweitens wurde erstmalig ein umfassendes 

ATII miRNA Profil von gesunden Mäusen erstellt. Drittens scheinen die identifizierten 

ATII miRNAs eine wichtige Rolle in der Regulation von Fibrose/EMT, insbesondere im 

TGF-beta Signalweg, zu spielen. Zukünftige Studien, die ATII miRNAs in 

Mausmodellen von Lungenerkrankungen untersuchen, können diese mit dem 

Expressionsprofil gesunder Mäuse aus dieser Arbeit vergleichen und dadurch miRNA 

Veränderungen während der Pathogenese von Erkrankungen identifizieren. 
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8 APPENDIX 

8.1 Abbreviations 

2’ OH 2’ hydroxyl group 

α-SMA α-smooth muscle actin 

AAAA(n) 3’ poly(A) tail 

Acta2 actin, alpha 2, smooth muscle, aorta 

Ago Argonaute 

AKT protein kinase B 

AP4 activating protein-4 

APC allophycocyanin 

Aqp5 aquaporin 5 

ATI alveolar epithelial type I 

ATII alveolar epithelial type II 

ATPase adenosine triphosphatase 

BASC bronchioalveolar stem cell 

BH Benjamini-Hochberg 

BMP bone morphogenetic protein 

BSA bovine serum albumin 

CCSP club cell secretory protein 

Cd74 CD74 antigen 

Cdh1 cadherin 1 (E-cadherin) 

cDNA complementary DNA 

COPD chronic obstructive pulmonary disease 

Cq raw cycle threshold 

DAPI 4',6-diamidino-2-phenylindole 

DGCR-8 DiGeorge syndrome critical region 8 

DMEM Dulbecco’s Modified Eagle Medium 

DNase deoxyribonuclease 

dNTP deoxyribonucleoside triphosphate 
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dsRNA  double-stranded RNA 

dTTP deoxythymidine triphosphate 

E-cadherin epithelial cadherin 

EGF epithelial growth factor 

eIF4GI eukaryotic translation initiation factor 4GI 

EMT epithelial-to-mesenchymal transition 

ENaC apical epithelial sodium channel 

EpCAM epithelial cell adhesion molecule 

FACS Fluorescence Activated Cell Sorting 

FAD flavin adenine dinucleotide 

FBS fetal bovine serum 

FITC fluorescein isothiocyanate 

FSC forward scatter 

FSC-A forward scatter-area 

FSC-H forward scatter-height 

FSC-W forward scatter-width 

FSP1 fibroblast specific protein 1 

GDF growth and differentiation factor 

HCV Hepatitis C virus 

Hprt hypoxanthine guanine phosphoribosyl transferase 

HSC70 heat shock cognate protein 70 

HSP90 heat shock protein 90 

Ig immunoglobulin 

IGF-1 Insulin-like growth factor 1 

IL interleukin 

ILK integrin-linked kinase 

INF-γ interferon-γ 

IPA Ingenuity® Pathway Analysis 

IPF idiopathic pulmonary fibrosis 

ITC isotype control 
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m7Gppp 7-methylguanosine cap 

MAD mothers against decapentaplegic 

MET mesenchymal-to-epithelial transition 

MHC major histocompatibility complex 

miRISC miRNA-containing RNA-induced silencing complex 

miRNA microRNA 

mmu Mus musculus 

mRNA messenger RNA 

N-cadherin neural cadherin 

NADH reduced nicotinamide adenine dinucleotide 

ncRNA non-coding RNA 

NHLBI National Heart, Lung and Blood Institute 

NRQ normalized relative quantity 

NSCLC non-small cell lung cancer 

nt nucleotides 

NTC no template control 

ORF open reading frame 

PACT protein kinase R-activating protein 

Par6 partitioning-defective protein 6 

pATII ATII cells isolated by “panning” 

PAZ Piwi-Argonaute-Zwille 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PE phycoerythrin 

Pecam1 platelet/endothelial cell adhesion molecule 1 (protein: CD31) 

PFA paraformaldehyde 

PI propidium iodide 

PI3K phosphoinositide 3-kinase 

piRNA piwi-interacting RNA 

Piwi P-element induced wimpy testis 
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Pol RNA polymerase 

pre-miRNA precursor miRNA 

pri-miRNA primary miRNA 

proSP-C prosurfactant protein C 

PTEN phosphatase and tensin homolog 

Ptprc protein tyrosine phosphatase, receptor type, C (protein: CD45) 

Ran-GTP ras-related nuclear protein guanosine triphosphate 

RIN RNA Integrity Number 

RISC RNA-induced silencing complex 

RNA ribonucleic acid 

RNAi RNA interference 

RNase ribonuclease 

rRNA ribosomal RNA 

RT reverse transcription 

RT-qPCR Real-time quantitative PCR 

S standard deviation 

sATII ATII cells isolated by sorting 

SBE SMAD binding element 

SDS Sequence Detection Software 

SEM standard error of mean 

Sftpa1 surfactant associated protein A1 

Sftpc surfactant associated protein C 

siRNA small interfering RNA 

SMAD acronym combined from SMA and MAD 

snoRNA small nucleolar RNA 

snRNA small nuclear RNA 

SP surfactant protein 

SPF specific pathogen-free 

SSC-A side scatter-area 

ssRNA single-stranded RNA 
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TGF-beta transforming growth factor beta 

Tjp1 tight junction protein 1 

TNF-α tumor necrosis factor-α 

TRBP transactivation response RNA binding protein 

tRNA transfer RNA 

UTR untranslated region 

VEGF vascular endothelial growth factor 

vs. versus 

ZEB zinc-finger E-box binding factor 

 

8.2 List of miRNAs similarly expressed in sATII and pATII 

Table 22. MiRNAs similarly expressed in sATII and pATII. 111 miRNAs were expressed at 
similar levels (|fold difference| < 1.5) in sATII and pATII (termed ATII miRNAs). Mean NRQ was 
determined of NRQ of sATII and pATII. 13 miRNAs were expressed at very high levels (> 20x 
median), 41 miRNAs were expressed at high levels (20x median > miRNA > median), 45 
miRNAs were expressed at moderate levels (median > miRNA > 0.05x median) and 12 miRNAs 
were expressed at low levels (< 0.05x median). 

Index Detector (ABI) MiRNA MiRNA 
(mmu) 

MiRBase 
accession 

Mean 
NRQ 

log10 
NRQ 

1 hsa-miR-30a-
3p-000416 

hsa-miR-30a-
3p 

mmu-miR-
30a-3p 

MIMAT0000129 25498116 7.41 

2 hsa-miR-30e-
3p-000422 

hsa-miR-30e-
3p 

mmu-miR-
30e-3p 

MIMAT0000249 24660029 7.39 

3 mmu-miR-24-
4373072 mmu-miR-24 mmu-miR-24-

3p 

MIMAT0000219 22745232 7.36 

4 mmu-miR-19a-
4373099 mmu-miR-19a mmu-miR-

19a-3p 

MIMAT0000651 19888530 7.30 

5 mmu-miR-30c-
4373060 mmu-miR-30c mmu-miR-

30c-5p 

MIMAT0000514 18189872 7.26 

6 mmu-miR-484-
4381032 mmu-miR-484 mmu-miR-

484(-5p) 

MIMAT0003127 9335209 6.97 

7 mmu-miR-29a-
4395223 mmu-miR-29a mmu-miR-

29a-3p 

MIMAT0000535 9059648 6.96 

8 mmu-miR-429-
4373355 mmu-miR-429 mmu-miR-

429-3p 

MIMAT0001537 8918566 6.95 

9 mmu-miR-16-
4373121 mmu-miR-16 mmu-miR-16-

5p 

MIMAT0000527 5425638 6.73 

10 mmu-miR-
467F-002886 

mmu-miR-
467F 

mmu-miR-
467f(-3p) 

MIMAT0005846 4732664 6.68 

11 mmu-miR-30a-
4373061 mmu-miR-30a mmu-miR-

30a-5p 

MIMAT0000128 4572894 6.66 

12 mmu-miR-17-
4395419 mmu-miR-17 mmu-miR-17-

5p 

MIMAT0000649 2267710 6.36 

13 mmu-miR-30e-
4395334 mmu-miR-30e mmu-miR-

30e-5p 

MIMAT0000248 2261515 6.35 

14 hsa-miR-22-
000398 hsa-miR-22 mmu-miR-22-

3p 

MIMAT0000531 1521069 6.18 

15 mmu-miR- mmu-miR- mmu-miR- MIMAT0000385 1488258 6.17 
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106a-4395589 106a 106a-5p 

16 mmu-miR-375-
4373027 mmu-miR-375 mmu-miR-

375-3p 

MIMAT0000739 1453573 6.16 

17 mmu-miR-222-
4395387 mmu-miR-222 mmu-miR-

222-3p 

MIMAT0000670 1101376 6.04 

18 
mmu-miR-
125a-5p-
4395309 

mmu-miR-
125a-5p 

mmu-miR-
125a-5p 

MIMAT0000135 1039820 6.02 

19 
mmu-miR-
2182-
241119_mat           

mmu-miR-
2182 

mmu-miR-
2182(-5p) 

MIMAT0011286 1013419 6.01 

20 mmu-miR-20a-
4373286 mmu-miR-20a mmu-miR-

20a-5p 

MIMAT0000529 999774 6.00 

21 rno-miR-7#-
001338 rno-miR-7* mmu-miR-7a-

1-3p 

MIMAT0004670 755796 5.88 

22 mmu-miR-
872#-002542 

mmu-miR-
872* 

mmu-miR-
872-3p 

MIMAT0004935 736923 5.87 

23 mmu-miR-
181a-4373117 

mmu-miR-
181a 

mmu-miR-
181a-5p 

MIMAT0000210 731896 5.86 

24 hsa-miR-423-
3P-002626 

hsa-miR-423-
3P 

mmu-miR-
423-3p 

MIMAT0003454 662507 5.82 

25 rno-miR-664-
001323 rno-miR-664 mmu-miR-

664-3p MIMAT0012774 562810 5.75 

26 mmu-miR-
106b-4373155 

mmu-miR-
106b 

mmu-miR-
106b-5p 

MIMAT0000386 534359 5.73 

27 mmu-miR-331-
3p-4373046 

mmu-miR-
331-3p 

mmu-miR-
331-3p 

MIMAT0000571 492723 5.69 

28 hsa-miR-421-
002700 hsa-miR-421 mmu-miR-

421-3p 

MIMAT0004869 397700 5.60 

29 mmu-miR-
301a-4373064 

mmu-miR-
301a 

mmu-miR-
301a-3p 

MIMAT0000379 359723 5.56 

30 mmu-miR-27a-
4373287 mmu-miR-27a mmu-miR-

27a-3p 

MIMAT0000537 359594 5.56 

31 mmu-miR-140-
4373374 mmu-miR-140 mmu-miR-

140-5p 

MIMAT0000151 353672 5.55 

32 mmu-miR-425-
4380926 mmu-miR-425 mmu-miR-

425-5p 

MIMAT0004750 347158 5.54 

33 mmu-miR-27b-
4373068 mmu-miR-27b mmu-miR-

27b-3p 

MIMAT0000126 343986 5.54 

34 mmu-miR-322-
4378107 mmu-miR-322 mmu-miR-

322-5p 

MIMAT0000548 332636 5.52 

35 mmu-miR-
301b-4395730 

mmu-miR-
301b 

mmu-miR-
301b-3p 

MIMAT0004186 315728 5.50 

36 mmu-miR-218-
4373081 mmu-miR-218 mmu-miR-

218-5p 

MIMAT0000663 313732 5.50 

37 mmu-miR-322-
001059 mmu-miR-322 mmu-miR-

322-3p 

MIMAT0000549 294531 5.47 

38 mmu-miR-15a-
4373123 mmu-miR-15a mmu-miR-

15a-5p 

MIMAT0000526 294464 5.47 

39 mmu-miR-
877#-002548 

mmu-miR-
877* 

mmu-miR-
877-3p 

MIMAT0004862 272988 5.44 

40 hsa-miR-149-
002255 hsa-miR-149 mmu-miR-

149-5p 

MIMAT0000159 260557 5.42 

41 mmu-miR-210-
4373089 mmu-miR-210 mmu-miR-

210-3p 

MIMAT0000658 238402 5.38 

42 mmu-miR-93-
4373302 mmu-miR-93 mmu-miR-93-

5p 

MIMAT0000540 200408 5.30 

43 hsa-miR-22#-
002301 hsa-miR-22* mmu-miR-22-

5p 

MIMAT0004629 189242 5.28 

44 mmu-miR-
15a#-002488 

mmu-miR-
15a* 

mmu-miR-
15a-3p 

MIMAT0004624 171640 5.23 
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45 mmu-miR-23b-
4373073 mmu-miR-23b mmu-miR-

23b-3p 

MIMAT0000125 164476 5.22 

46 hsa-miR-
106b#-002380 

hsa-miR-
106b* 

mmu-miR-
106b-3p 

MIMAT0004582 148777 5.17 

47 mmu-miR-320-
4395388 mmu-miR-320 mmu-miR-

320-3p 

MIMAT0000666 139481 5.14 

48 mmu-miR-186-
4395396 mmu-miR-186 mmu-miR-

186-5p 

MIMAT0000215 139369 5.14 

49 mmu-miR-25-
4373071 mmu-miR-25 mmu-miR-25-

3p 

MIMAT0000652 137232 5.14 

50 mmu-miR-
467b-001684 

mmu-miR-
467b 

mmu-miR-
467b-5p 

MIMAT0003478 136262 5.13 

51 mmu-miR-212-
002551 mmu-miR-212 mmu-miR-

212-3p 

MIMAT0000659 134387 5.13 

52 mmu-miR-221-
4373077 mmu-miR-221 mmu-miR-

221-3p 

MIMAT0000669 130551 5.12 

53 hsa-miR-140-
3p-002234 

hsa-miR-140-
3p 

mmu-miR-
140-3p 

MIMAT0000152 125211 5.10 

54 mmu-miR-
302b-4378071 

mmu-miR-
302b 

mmu-miR-
302b-3p 

MIMAT0003374 108824 5.04 

55 mmu-miR-
193b-4395597 

mmu-miR-
193b 

mmu-miR-
193b-3p 

MIMAT0004859 97676 4.99 

56 
mmu-miR-
669n-
197143_mat           

mmu-miR-
669n 

mmu-miR-
669n(-5p) 

MIMAT0009427 93714 4.97 

57 mmu-miR-
1198-002780 

mmu-miR-
1198 

mmu-miR-
1198-5p 

MIMAT0005859 89614 4.95 

58 mmu-miR-20b-
4373263 mmu-miR-20b mmu-miR-

20b-5p 

MIMAT0003187 88621 4.95 

59 mmu-miR-29b-
4373288 mmu-miR-29b mmu-miR-

29b-3p 

MIMAT0000127 78207 4.89 

60 mmu-miR-214-
4395417 mmu-miR-214 mmu-miR-

214-3p 

MIMAT0000661 76485 4.88 

61 
mmu-miR-
199a-3p-
4395415 

mmu-miR-
199a-3p 

mmu-miR-
199a-3p 

MIMAT0000230 75574 4.88 

62 mmu-miR-872-
4395375 mmu-miR-872 mmu-miR-

872-5p 

MIMAT0004934 74360 4.87 

63 
mmu-miR-
466g-
241015_mat           

mmu-miR-
466g 

mmu-miR-
466g(-3p) 

MIMAT0004883 70096 4.85 

64 mmu-miR-
193#-002577 

mmu-miR-
193* 

mmu-miR-
193-5p 

MIMAT0004544 69717 4.84 

65 hsa-miR-213-
000516 hsa-miR-213 mmu-miR-

181a-1-3p 

MIMAT0000660 65495 4.82 

66 mmu-miR-434-
3p-4395734 

mmu-miR-
434-3p 

mmu-miR-
434-3p 

MIMAT0001422 64543 4.81 

67 mmu-let-7a#-
002478 mmu-let-7a* mmu-let-7a-1-

3p 

MIMAT0004620 64136 4.81 

68 mmu-miR-
503#-002536 

mmu-miR-
503* 

mmu-miR-
503-3p 

MIMAT0004790 63231 4.80 

69 hsa-miR-26b#-
002444 hsa-miR-26b* mmu-miR-

26b-3p 

MIMAT0004630 44764 4.65 

70 hsa-miR-744#-
002325 hsa-miR-744* mmu-miR-

744-3p 

MIMAT0004820 44587 4.65 

71 mmu-miR-340-
5p-4395369 

mmu-miR-
340-5p 

mmu-miR-
340-5p 

MIMAT0004651 41069 4.61 

72 
mmu-miR-
450B-3P-
002632 

mmu-miR-
450B-3P 

mmu-miR-
450b-3p 

MIMAT0003512 40759 4.61 

73 mmu-miR-339- mmu-miR- mmu-miR- MIMAT0004649 38532 4.59 
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3p-4395663 339-3p 339-3p 

74 rno-miR-29c#-
001818 rno-miR-29c* mmu-miR-

29c-5p 

MIMAT0004632 38463 4.59 

75 mmu-miR-
186#-002574 

mmu-miR-
186* 

mmu-miR-
186-3p 

MIMAT0004540 32461 4.51 

76 hsa-miR-27b#-
002174 hsa-miR-27b* mmu-miR-

27b-5p 

MIMAT0004522 31512 4.50 

77 mmu-miR-194-
4373106 mmu-miR-194 mmu-miR-

194-5p 

MIMAT0000224 27064 4.43 

78 mmu-miR-
181c-4373115 

mmu-miR-
181c 

mmu-miR-
181c-5p 

MIMAT0000674 27051 4.43 

79 mmu-miR-340-
3p-4395370 

mmu-miR-
340-3p 

mmu-miR-
340-3p 

MIMAT0000586 25986 4.41 

80 mmu-miR-
18a#-002490 

mmu-miR-
18a* 

mmu-miR-
18a-3p 

MIMAT0004626 19116 4.28 

81 mmu-miR-
130b#-002460 

mmu-miR-
130b* 

mmu-miR-
130b-5p 

MIMAT0004583 18917 4.28 

82 mmu-miR-187-
4373307 mmu-miR-187 mmu-miR-

187-3p 

MIMAT0000216 18814 4.27 

83 
mmu-miR-
1930-
121201_mat           

mmu-miR-
1930 

mmu-miR-
1930-5p 

MIMAT0009393 17619 4.25 

84 hsa-miR-9#-
002231 hsa-miR-9* mmu-miR-9-

3p 

MIMAT0000143 16097 4.21 

85 mmu-miR-667-
4386769 mmu-miR-667 mmu-miR-

667-3p 

MIMAT0003734 14574 4.16 

86 mmu-miR-188-
5p-4395431 

mmu-miR-
188-5p 

mmu-miR-
188-5p 

MIMAT0000217 13323 4.12 

87 mmu-miR-
199b-001131 

mmu-miR-
199b 

mmu-miR-
199b-5p 

MIMAT0000672 12203 4.09 

88 mmu-miR-185-
4395382 mmu-miR-185 mmu-miR-

185-5p 

MIMAT0000214 11161 4.05 

89 
mmu-miR-
450a-5p-
4395414 

mmu-miR-
450a-5p 

mmu-miR-
450a-5p 

MIMAT0001546 10939 4.04 

90 
mmu-miR-
1982.2-
121154_mat           

mmu-miR-
1982.2 

mmu-miR-
1982.2-3p 

MIMAT0009461 10472 4.02 

91 hsa-let-7e#-
002407 hsa-let-7e* mmu-let-7e-

3p 

MIMAT0017016 9156 3.96 

92 mmu-miR-361-
4373035 mmu-miR-361 mmu-miR-

361-5p 

MIMAT0000704 8352 3.92 

93 hsa-let-7i#-
002172 hsa-let-7i* mmu-let-7i-3p MIMAT0004520 8216 3.91 

94 mmu-miR-16#-
002489 mmu-miR-16* mmu-miR-16-

1-3p 

MIMAT0004625 8141 3.91 

95 hsa-miR-189-
000488 hsa-miR-189 mmu-miR-24-

1-5p 

MIMAT0000218 7800 3.89 

96 mmu-miR-
470#-002589 

mmu-miR-
470* 

mmu-miR-
470-3p 

MIMAT0004760 7050 3.85 

97 
mmu-miR-
465C-5P-
002654 

mmu-miR-
465C-5P 

mmu-miR-
465c-5p 

MIMAT0004873 6280 3.80 

98 mmu-miR-708-
4395452 mmu-miR-708 mmu-miR-

708-5p 

MIMAT0004828 5314 3.73 

99 mmu-miR-7a-
4378130 mmu-miR-7a mmu-miR-7a-

5p 

MIMAT0000677 5149 3.71 

100 mmu-let-7c-1#-
002479 mmu-let-7c-1* mmu-let-7c-1-

3p 

MIMAT0004622 4334 3.64 

101 mmu-miR-542-
5p-4395693 

mmu-miR-
542-5p 

mmu-miR-
542-5p 

MIMAT0003171 3745 3.57 
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102 hsa-miR-671-
5p-197646_mat           

hsa-miR-671-
5p 

mmu-miR-
671-5p 

MIMAT0003731 2745 3.44 

103 mmu-miR-542-
3p-4378101 

mmu-miR-
542-3p 

mmu-miR-
542-3p 

MIMAT0003172 2546 3.41 

104 mmu-miR-491-
4381053 mmu-miR-491 mmu-miR-

491-5p 

MIMAT0003486 2493 3.40 

105 mmu-miR-804-
002044 mmu-miR-804 mmu-miR-

804(-3p) 

MIMAT0004210 2457 3.39 

106 mmu-miR-544-
4395680 mmu-miR-544 mmu-miR-

544-3p 

MIMAT0004941 2396 3.38 

107 
mmu-miR-
465a-3p-
4395574 

mmu-miR-
465a-3p 

mmu-miR-
465a-3p 

MIMAT0004217 1795 3.25 

108 mmu-miR-184-
4373113 mmu-miR-184 mmu-miR-

184-3p 

MIMAT0000213 1745 3.24 

109 mmu-miR-7b-
4395685 mmu-miR-7b mmu-miR-7b-

5p 

MIMAT0000678 1479 3.17 

110 mmu-miR-380-
5p-4395731 

mmu-miR-
380-5p 

mmu-miR-
380-5p 

MIMAT0000744 1043 3.02 

111 mmu-miR-741-
4395587 mmu-miR-741 mmu-miR-

741-3p 

MIMAT0004236 524 2.72 
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