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Abstract

Scientific theories can generally be understood to predict and explain claims
about phenomena. If empirical data is available to support a theory, then phe-
nomena are often identified with patterns in these data. Data is idiosyncratic to
the particular contexts of its origin, but phenomena are usually described as not
being so. Therefore, a direct identification of phenomena with patterns is intri-
cate. More specifically, phenomena are sometimes described as being real features
of an observer-independent world, whereas patterns are purely syntactical and are
chosen by an observer out of arbitrarily many possible options to decompose a set
of data. In this thesis I focus on this explanatory gap and propose a solution by
explicating the notions of data and of patterns in, according to my knowledge, a
novel way. I explain the relations between data, patterns in them and phenom-
ena. It turns out that these three kinds of objects or properties or utterances are
distinctively related to each other without any pair being identical.

In conclusion, I defend the view that the notion of phenomena does not have to
be a realistic one, as authors such as Bogen and Woodward suggest. My notion of
phenomena is explicated by clarifying the criteria of phenomenon selection, which
is the demarcation between features of the empirical world that are interesting
to scientists on the one side and the other features of the empirical world on the
other side. An outside world might be real or caused by something real or not
real, but the notion of phenomena is not a realistic one. Instead, I defend the view
that the notion of phenomena is best explained by reference to a complex body
of background assumptions, as well as cognitive and sensory capabilities of the
relevant agents in science. This view has, in different forms, a tradition from Kant
to Kuhn, to name only some highly influential philosophers, but central aspects
might also be traced back to thinkers of classical antiquity. I aim to provide an
account of phenomena with both descriptive and normative implications.

To defend this view I have to present a sufficiently powerful epistemological
framework that does not leave the door open for anything unexplained to happen
in processes of phenomenon selection and that could be responsible for letting
completely observer-independent criteria for phenomenon selection in favour of
phenomenon realism creep in. Strategies for the defence of phenomenon realism
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are usually to deflate the notion of realism by elevating human consciousness or
interests to the status of instantiating or creating reality (Dennett), or to stipulate
that reality is best explained by notions that neatly fit to our human ways of
describing the world (e.g. ontic structural realism). In my view, both of these
defence strategies are unjustified.

I defend my view in three successive steps. We need to have a notion of pat-
terns to clarify the relation between patterns and phenomena. Patterns occur or
are detected in data. Therefore, a notion of data needs to be explicated first. As
opposed to some notions from the literature (Hacking; Leonelli) but with simi-
larities to others (Suppes) data is non-material and purely mathematical. Data
itself does not play a representing role, due to the problem of relation without
relata. In a second step, I follow Grenander’s epistemological approach to define
patterns by a genuinely constructive (with an idiosyncratic notion of constructiv-
ity) mathematical approach in opposition to, for this application in philosophy,
more influential notions of information in data from information theory (Shan-
non; Kolmogorov). In a third step, I argue that not only data and patterns are
mathematical, scientific inferences that lead to phenomena selection and theory
formation can, in principle, be expressed in purely mathematical terms, too. This
view has classical proponents (Russell) and can even be defended empirically with
reference to recent developments in artificial intelligences that are employed to
mind games (e.g. Go; poker).

Under this view of a mathematised epistemology, scientific reasoning is inde-
pendent from having or not having a specific human consciousness and there is
no reason to believe that human agency is necessary to accomplish cognitive tasks
of even our most accomplished scientific reasoning, as some authors contrarily im-
ply (Searle). The empirical world presents itself to agents of science by material
causal interactions with sensory organs or measurement devices. What patterns in
observation data appear as phenomena and what as uninteresting depends on the
shared body of the agents’ background assumptions, as well as the agents’ sensory
and cognitive capabilities. This distinction is misunderstood by some due to the
extreme complexity of human cognitive processes and not due to the real fabric of
the world or the importance of consciousness for scientific reasoning.



Contents

Abstract v

List of Figures x

Deutschsprachige Zusammenfassung (German) xi

Preface xv
Reading of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1 Introduction 1
1.1 Historical Remarks on ‘Phenomenon’ in Philosophy . . . . . . . . . 8
1.2 The Notion of Science in this Thesis . . . . . . . . . . . . . . . . . . 10
1.3 Empirical World, Parts of the Empirical World, Empirical Objects,

Physical Systems and Ding an sich . . . . . . . . . . . . . . . . . . 14

2 Data under an Ante Rem View on Mathematics 19
2.1 Available Literature on the Explication of Data . . . . . . . . . . . 26
2.2 Data are Mathematical Objects . . . . . . . . . . . . . . . . . . . . 38
2.3 Representations of Data . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Data and the Information about its Origin . . . . . . . . . . . . . . 53
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Mathematics, Mathematical Agents and Computers 61
3.1 What a Mathematical Object is . . . . . . . . . . . . . . . . . . . . 63
3.2 Everything Computable is Mathematical . . . . . . . . . . . . . . . 84
3.3 Algorithms, Machine Learning and Epistemology . . . . . . . . . . 89
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 From Data to Patterns 101
4.1 General Patterns, Concrete Patterns and Pattern Similarity . . . . 102
4.2 Problems and Literature Regarding Patterns in Science . . . . . . . 107
4.3 Patterns are Mathematical: Discussion and Objections . . . . . . . 112



viii Contents

4.4 Patterns are Mathematical: Explication . . . . . . . . . . . . . . . . 131
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Conclusion about Phenomena 147
5.1 Explication of Phenomena . . . . . . . . . . . . . . . . . . . . . . . 148
5.2 Relation between Patterns and Phenomena . . . . . . . . . . . . . . 158
5.3 Supervenience and Representation . . . . . . . . . . . . . . . . . . . 162
5.4 Are Phenomena Theory-Laden? . . . . . . . . . . . . . . . . . . . . 165
5.5 Evidence, Phenomena and Patterns . . . . . . . . . . . . . . . . . . 167

6 Replies to some Articles about Phenomena 173
6.1 McAllister’s Criticism and the Example of Albinism? . . . . . . . . 173
6.2 Glymour’s Approach to Weaken the Distinction between Data and

Phenomena is Misleading . . . . . . . . . . . . . . . . . . . . . . . . 180
6.3 Massimi’s Kantian Approach to Phenomena . . . . . . . . . . . . . 185

7 Conclusion 189

A Appendix 193
A.1 Decomposition of Data into Patterns and Noise from the Perspective

of Statistical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.2 Volatility Clustering in Financial Market Data as an Example of

Phenomenon Selection . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.3 A summarising illustration . . . . . . . . . . . . . . . . . . . . . . . 215

References 216

Subject Index 245

Person Index 249

Mathematical Notation 253



List of Figures

1.1 Schematic view of the role of scientific theories and observation ac-
cording to classical empiricism . . . . . . . . . . . . . . . . . . . . . 2

1.2 Schematic view of (Bogen and) Woodward’s perspective on the role
of scientific theories, phenomena and data . . . . . . . . . . . . . . 3

2.1 Electronic micrograph of a bacillus (left) and LIGO data (right) . . 21
2.2 Data for inspection of a chick . . . . . . . . . . . . . . . . . . . . . 30
2.3 Adaption of Suppes’ schematic view on the levels of conceptual ab-

straction between observation and theory for a much more mundane
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Photograph of a red flower (top left), the same photograph in lower
resolutions (bottom left) and a mathematical matrix to explicate
the data (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 One year’s daily DAX in index points (left) and net returns (right) 49

3.1 Toy example of a C script (left) and a part of its compiled version . 85
3.2 Kurzweil’s comparison of computational power and biological brains 92
3.3 Three exemplary images and an AI’s answer what it shows . . . . . 93
3.4 Exemplary task from ImageNet Challenge . . . . . . . . . . . . . . 94

4.1 Albinism’s DNA permutation and a photograph of an affected child 103
4.2 Part of the facade of the Dome of the Rock in Jerusalem . . . . . . 108
4.3 Plot of monthly international airplane passengers from 1949 to 1960 109
4.4 Sierpinski triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Autocorrelogram for a long-range dependent stochastic process . . . 116
4.6 Four visualisations of sets of data with 3200 binary information . . 119
4.7 Schematic diagram of a general communication system . . . . . . . 133
4.8 Entropy for two possibilities with probabilities p and (1− p) . . . . 134
4.9 Three ways to construct a thick rectangle edge . . . . . . . . . . . . 143
4.10 Three ways to construct a thick rectangle edge from filled rectangles 143

5.1 Representation of a child with albinism by cartoonist . . . . . . . . 164



x List of Figures

5.2 Examples of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3 Horwich’s illustration of diverse and of narrow data . . . . . . . . . 170
5.4 Bayesian network for relations between data, evidence and hypothesis171

7.1 Schematic view of my ideas about the role of scientific theories,
phenomena and data . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.2 Several plots for the statistical analysis of the data from figure 4.3 . 194
A.3 Returns of an AR(1) process (left) and its autocorrelogram (right) . 196
A.4 Sample path of a geometric Brownian motion with drift . . . . . . . 201
A.5 Several plots of market returns indicating non-normal distribution . 202
A.6 Plots illustrating non-normal distribution of a GARCH(1,1) process 204
A.7 Illustrations of an ARCH(1) process . . . . . . . . . . . . . . . . . . 206
A.8 Illustrations of a GARCH(1,1) process . . . . . . . . . . . . . . . . 208
A.9 Probability distribution functions of the normal distribution (left)

and log-normal distribution (right) . . . . . . . . . . . . . . . . . . 212
A.10 One year of daily closing prices of two DAX stocks . . . . . . . . . 214
A.11 Summarising illustration of the relation between phenomena, data

and patterns in science as introduced in this thesis . . . . . . . . . . 215



Deutschsprachige
Zusammenfassung

Ziel wissenschaftlicher Theorienbildung ist die empirisch zugängliche Welt zu
beschreiben. Unabhängig davon, welche Kriterien für gute Theoriebildung maß-
gebend sind, stellt sich die grundsätzliche Frage, welcher Teil oder Aspekt der
überbordend komplexen empirisch zugänglichen Welt durch Theorien beschrieben
werden soll. Wissenschaftler würden antworten, dass sie sich für Phänomene in-
teressieren und könnten Beispiele nennen: Änderungen von Aggregatzuständen in
der Physik, Albinismus in der Biologie oder Hitlers Verhältnis zu Juden in der
Geschichtsforschung. Die zentrale Frage, die ich in dieser Arbeit zu beantworten
versuche, ist, ob man für die Erklärung der Unterscheidung zwischen Phänomenen
und die für Wissenschaftler weniger interessanten Eigenschaften der empirischen
Welt auf irgend eine Form von ontologischen Realismus zurückgreifen muss, oder
ob es eine anti-realistische Erklärung auf erkenntnistheoretischer Grundlage für
die Phänomenauswahl gibt. Mein Ergebnis wird sein, dass zweiteres der Fall ist.

In einer ersten Annäherung kann man sagen, dass Phänomene Muster in Daten
sind. Der kürzliche Nachweis von Gravitationswellen durch Abbott u. a. (2016)
als ganz bestimmte Kurve in einer langen Zahlenreihe, die Messergebnisse aus
einer komplizierten kausal-mechanischen Apparatur darstellt, ist ein anschauliches
Beispiel. Allerdings sind Muster zu ein und dem selben Phänomen in jedem Daten-
satz zumindest etwas anders. Es gibt sogar völlig unterschiedliche Muster zu
ein und dem selben Phänomen, wie etwa bei Albinismus der Phänotyp (d. h.
weißes Haar und helle Haut) und der Genotyp (d. h. eine bestimmte Genmu-
tation). Das heißt, man kann die beobachtbaren Eigenschaften eines Phänomens
keinesfalls einfach mit einem bestimmten Muster identifizieren, auch wenn Autoren
wie Bogen und Woodward das in ihren einflussreichen Arbeiten allem Anschein
nach implizieren. Darüber hinaus sind Muster etwas mathematisches, wobei die
Phänomene selbst etwas echtes in der Welt sind. Ihr stabiles Auftreten in der
von uns erforschbaren Welt legt nahe, dass sie durch irgendeinen bewusstsein-
sunabhängigen Prozess außer uns kausal verursacht werden. All dies macht eine
Identifizierung von Phänomenen mit Mustern sogar ontologisch hochgradig prob-
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lematisch. Die Klärung der Beziehung zwischen diesen beiden Konzepten, oder
Klassen von Dingen oder Eigenschaften ist das zentrale Thema dieser Doktorar-
beit.

Anstatt sich uns durch die tatsächliche Konstitution der von uns unabhängi-
gen, aber empirisch erforschbaren Welt unmittelbar aufzudrängen, wählen wir die
Phänomene unserer Wissenschaften, wie ich glaube, nach Kriterien, die an uns
selbst liegen, aus. Genauer gesagt ist unsere Phänomenauswahl geprägt durch die
Gesamtheit der wissenschaftlichen Annahmen, die wir als sehr gesichert für ausre-
ichend adäquat akzeptieren, sowie unseren ganz menschlichen, natürlichen Voraus-
setzungen von sensorischen und kognitiven Fähigkeiten. Beides ist aus (vermutlich)
biologischen Gründen eigenartig und in seiner Leistung beschränkt.—Man vergle-
iche die Situation nur einmal mit den kürzlich auf prominenter Bühne vorgeführten
Denksportpartien zwischen menschlichen Go-Meistern und selbstlernenden Com-
puterprogrammen, die ihre Gegner mit nicht direkt nachvollziehbaren Strategien
schlagen konnten. Die Idee, dass wir die empirische Welt bereits auf der grundle-
gendsten Ebene der Beobachtung vor-ordnen ist nicht neu und wird bei Kant schon
als Begriff der Anschauung diskutiert. Man kann sogar über Verwandtschaften mit
dem antiken Begriffen von Ideen und Substanzen diskutieren, wenn man diese eher
epistemisch als ontologisch begreift.

Die Klärung des Phänomen-Begriffs in dieser Arbeit ist deskriptiv in dem
Sinne, dass das Ergebnis mit dem übereinstimmen soll, was Wissenschaftler im
alltäglichen Sprachgebrauch als ‘Phänomen’ bezeichnen. Sie ist normativ in dem
Sinne, dass der Begriff vollständig erklärt und in ein umfassendes erkenntnistheo-
retisches Rahmenwerk eingeordnet werden soll.

Um meine Position zu stärken, muss ich eine ausreichend überzeugende Erken-
ntnistheorie anbieten, die die Phänomenauswahl so gut erklärt, dass keine be-
deutsamen Stellen unklar bleiben, die dafür verantwortlich gemacht werden kön-
nten, dass sich realistische, das heißt von der menschlichen Beobachtung völlig
unabhängige, aber für die Phänomenauswahl bedeutsame Kriterien einschleichen.
Eine Strategie zur Verteidigung eines Phänomen-Realismus besteht üblicherweise
darin, den Realismusbegriff im ausreichenden Maße zu deflationieren, indem man
das menschliche Bewusstsein und menschliche Interessen in den Stand erhebt, Re-
alität auf irgend eine Weise zu instantiieren oder zu kreieren (Dennett). Eine
andere Strategie besteht darin zu behaupten, dass die tatsächliche, von uns un-
abhängige Außenwelt durch einen glücklichen Zufall genau so konstituiert ist, wie
unsere besten Beschreibungen es nahelegen (z. B. ontischer Strukturrealismus).
Aus meiner Sicht sind diese beiden Ansätze nicht zu vertreten.

Ich lege meine Position in drei inhaltlichen Schritten dar. Um die Beziehung
zwischen Mustern in Daten und Phänomenen näher zu beleuchten, müssen wir ex-
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plizieren, was genau Muster sind. Da Muster in Daten erkannt werden, muss zuerst
geklärt werden, was genau Daten sind. Im Gegensatz zu anderen explizierenden
Ansätzen in der Literatur (Hacking, Leonelli), allerdings mit Verwandtschaften
zu anderen (Suppes), schlage ich vor, Daten als nicht-materielle und rein math-
ematische Objekte oder Aussagen oder Äußerungen zu verstehen. Daten können
keine repräsentative Rolle für das nicht direkt Beobachtbare spielen, weil es dann
ein Problem mit einer Beziehung ohne Bezugsobjekt (engl. relation without re-
lata) gäbe, weil nichts durch etwas repräsentiert werden kann, wenn über das
vermeintlich repräsentierte nicht mehr gewusst werden kann, als die unterstellte
Repräsentation offenbart.

Im zweiten Schritt folge ich Grenanders erkenntnistheoretischer Idee Muster als
genuin konstruktive (in einem ganz bestimmten Sinne) mathematische Objekte zu
verstehen. Dies steht betont im Gegensatz zu weit verbreiteten Ansätzen der Ex-
plikation von Informationen in Daten aus der Informatik (Shannon, Kolmogorov).

Drittens stelle ich dar, dass nicht nur alle Fälle von Daten und Mustern in
wissenschaftlichen Schlussvorgängen im Prinzip mathematisch expliziert werden
können, sondern auch die Schlussvorgänge selbst, die zur Phänomenauswahl und
zur Theorienbildung führen. Eine solche Ansicht ist keinesfalls neu und hat bere-
its klassische, einflussreiche Vertreter, wie etwa Russell, und kann sogar auf Basis
neuerlicher Ergebnisse aus der Forschung an künstlicher Intelligenz empirisch un-
termauert werden, weil alle auch noch so komplexen Computerprogramme durch
Dekompilierung immer auf rein mathematische Funktionen zurückgeführt werden
können.

Auf Basis dieser Erkenntnistheorie prinzipieller mathematischer Explizierbar-
keit erscheint auch das wissenschaftliche Schließen nicht als ein von einem men-
schlichen Bewusstsein notwendig abhängiger Prozess. Daraus folgt, dass es keinen
Grund gibt anzunehmen, dass ein spezifisch menschlicher Geist nötig wäre, um
große kognitive Leistungen, wie etwa unsere beeindruckendsten wissenschaftliche
Argumentation zu vollbringen, wie es einige Autoren (Searle) nahelegen.

Die empirische Welt präsentiert sich uns durch materielle kausale Interaktion
mittels Messgeräten und unseren Sinnen. Welche Muster in den Beobachtungs-
daten uns als Phänomene erscheinen und was uninteressante Eigenschaften der
Daten sind, hängt einzig von unseren theoretischen Annahmen über die Welt,
sowie unseren sensorischen und kognitiven Voraussetzungen ab. Diese Einordnung
wird oft scheinbar aufgrund der extremen Komplexität menschlicher Kognition-
sprozesse missverstanden und ist in keinster Weise als durch die Konstitution der
realen Welt selbst begründet nachweisbar oder hätte in irgendeiner substanziellen
Weise mit menschlichem Bewusstsein zu tun.





Preface

After studying mathematics with a focus on stochastic processes and mathe-
matics of finance I spent some years as a practising consultant in finance. Appli-
cations of mathematical methods of pattern detection on actual market data was
a crucial part of my daily work environment. Expensive computer hardware and
modern computer applications, such as neural networks, deep learning and GPU
programming are intensely discussed opportunities by practioners of quantitative
hedge funds.

Coincidentally, I was confronted with the philosophical debate on the expli-
cation of scientific phenomena and patterns in data. I was deeply puzzled about
how prominent author’s of the field came to conclusions that seemed very coun-
terintuitive to me and could easily be challenged with the help of some good
empirical examples. I surveyed more philosophical work on the topic, in particular
Machamer’s 2011 Synthese special issue, and could not find any account that was
sufficiently similar to my intuitions at that time. These intuitions are namely that,
firstly, no realism is necessary to explain phenomena selection, secondly, scientific
reasoning does not depend on human consciousness, and, thirdly, valid scientific
reasoning and in particular pattern detection procedures can in principle always
be explicated in mathematical terms.

For these reasons I changed my originally planned topic for the dissertation
thesis from an epistemological analysis of scientific methods in the field of quanti-
tative finance to the topic of an explication of scientific phenomena and patterns
in data. This topic is, of course, highly general and it is therefore a particularly
risky endeavour to tackle it as a rather inexperienced philosopher. If one aims
to provide a big picture in a very general manner, then he faces an increased risk
to be challenged from many different angles. However, as a learning experience I
deem it more worthy to work on risky and general questions of epistemology, than
to look for an immature niche of an established branch that a young researcher
could try to fill.

The topic of phenomena and their relation to patterns in data is obviously a
very relevant one in the field of epistemology, if the related notions do not fully
deflate into aspects from other accounts from the general philosophy of science,
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which I believe they do not. That is why I am overall surprised about the com-
paratively little attention that the notion of phenomena received by philosophers,
given the extensive use of the term ‘phenomenon’ in science and the philosophy of
science.

Reading of the Document

These are some editorial comments regarding stylistic considerations of this
text.

To increase readability, chapters are written in a manner that allows them
to be read in isolation. This means that I prefer to tolerate slight redundancies
over too many cross-references between very different text passages. Chapters and
sections in them are numbered for referential purposes rather than a strict order
of arguments, and both come with an abstract except for the introduction, the
conclusion and some rare cases of very short sections. I use various forms of illus-
trations more often than common in the relevant branches of philosophy, because,
in my view, illustrations are epistemically very advantageous for the discussion.
Many footnotes were added to, firstly, provide broader philosophical backgrounds,
secondly, mention further literature, and, thirdly, provide further scientific infor-
mation about mentioned examples from empirical sciences. In the appendix a more
thorough view is provided on some mathematical and scientific examples that play
a non-negligible role for some philosophical arguments in the text.

For the PDF version of the text all links to chapters, sections, pages, figures and
also referred to literature in the reference list are made clickable. I added a subject
index and a person index, which should significantly increase the readability (and
possible critical scrutiny) of the text, in particular if read as PDF version on a
computer screen.

Citations of other authors are given in double quotation marks (“...”), whereas
references to terms, strings or signs are given in single quotation marks (‘...’).
Italic words are meant to be specifically emphasised and were chosen with extra
care. I use British English and widely used standard LATEX libraries with only
slight modifications, and in particular the 2002 version of LMU’s template for
dissertations from R. Dahlke and S. Stintzing.
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Geman (2016) provides a thorough obituary in the name of the Royal Statistical
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Chapter 1

Introduction

A classical position to explain the aim of scientific theories is the view of logical
empiricism1 as held by Nagel (1961) and Carnap (1966). It implies, among many
other things, as an essential aspect that theories are formulated by scientists to
explain and predict facts about observables. Observables are properties or relations
that are “directly” perceivable by human senses or with the help of only “relatively
simple” (Carnap, ch. 23) auxiliary equipment. The notion of observables and
observability is intricate on its own, but I take it as roughly understandable at
this point for introductory purposes.2 Figure 1.1 shows a schematic illustration of
this essential view in its simplest form.

Bogen and Woodward (1988), and Woodward (1989; 2000; 2011)—in the fol-
lowing abbreviated as ‘(Bogen and) Woodward’—criticise this logical empiricists’
account in this regard. They propose an alternative approach with realistic impli-
cations to explain the motivation for the formulation of theories in science. They
highlight that in science observations are processed in the form of data, which are
records of observations. They point out, using examples, that this data is often
edited and modified. (cf. 1988, p. 308-310 and 315-316) And this modification and
editing is a crucial aspect of the scientific inference from observation to theory. If a
set of measurement data shows only noise, then it gets discarded, or it may occur
that only a few out of thousands of pictures are considered to show interesting
results.3

1I make no distinction between the historical labels ‘logical empiricism’ and ‘logical positivism’
whatsoever, even if some historical proponents from either the Vienna Circle or the Berlin Society
of Empirical Philosophy (later renamed to Berlin Society of Scientific Philosophy) may stress
differences, which are not relevant for my purposes. For a more detailed historical survey see
Creath (2011).

2Observables play a central role for various non-realistic approaches about scientific theories
and theoretical objects. Concerning its importance for van Fraassen’s (1980; 1985; 2001) con-
structive empiricism, Churchland (1985) and Hacking (1985) criticise the notion of observables
and Teller (2001) wants to extend it.

3Suppes (1962) offers a descriptive account for the inference from direct observation or raw
data to theory. However, his influential account of models of data does not provide an epistemo-
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Figure 1.1: Schematic view of the role of scientific theories and observation in accordance
with classical logical empiricism. Boxes indicate common notions from the description
of scientific practice. Full arrows and lines indicate relations between the concepts. Dot-
ted lines and lights arrows indicate concepts and relations with minor importance to
the explanation of scientific practice. Note that, prima facie, observations from very
specifically designed experiments (e.g. tracks of weak neutral currents in bubble cham-
bers) provide more relevant examples for possible theory-ladenness than more incidental
observations (e.g. photograph of a black raven).

A classical defence stresses the so-called theory-ladenness of observation. At
this introductory point of the thesis, I mention this defence as a prior notice to
which (Bogen and) Wooward’s criticism is a reaction to. As advocated by Hanson
(1958), and also subject of discussion in classical accounts from Feyerabend (1962)
and Kuhn (1962), this defence states that to a certain scientist, observations can
be (and for epistemic reasons are) biased by a theory under test. Bogen and
Woodward argue that theory-ladenness may have an effect on some observations,
but it does not sufficiently explain the aim of this bias, that is, why and how the
observation is biased. (cf. 1988, p. 346)

If the only reason for this bias is that data is modified to verify a theory that
was already proposed based on empirical knowledge, then the chain of scientific
reasoning, which is, first, theory formation, then experimenting, and then theory
verification, corroboration or falsification, seems empty prima facie. Bogen and
Woodward’s example to illustrate this aspect are the detection of weak neutral cur-
rents by bubble chamber photographs. In experiments from the 1970s, 290’000 of
these photographs were taken, but only approximately 100 of them were considered
to show interesting information with regard to testing the theory that introduces
weak neutral currents. In their view, this practice is broadly inconsistent with
classical logical empiricism and can, as well, not be explained by theory-ladenness,

logical explanation or any metaphysical implications about this inference. I investigate Suppes’
and further, more contemporary accounts of data in 2.1
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because if only the theory tells us, what data we have to accept, then it seems
impossible to falsify it. That is why theory-ladenness cannot be the answer to
describe this scientific practice.

The introduction of phenomena is a strategy to overcome these alleged problems
with the logical empiricists’ explanation of the aim of scientific theories and the
introduction of the concept of theory-ladenness. Phenomena are real properties
or relations of the part of the world under investigation by science. They play
a crucial role in the scientific progress of theory construction and testing, but
they are neither a part of theories (i.e. syntactical) nor a part of observation
(i.e. observer dependent). Phenomena are best described by the role they play in
science:1 scientific theories aim to explain claims about phenomena, and these can
be detected by patterns in data. Or, to put it another way, without a phenomenon
data from some empirical part of the world under investigation has no information
that is useful for scientific theory construction.

Figure 1.2: Schematic view of (Bogen and) Woodward’s perspective on the role of scien-
tific theories, phenomena and data. Box and line styles are used with the same meaning
than in figure 1.1. I adapt this schematic view to my explication of phenomena in the
conclusion of this thesis (figure 7.1 on page 191).

Despite the intuitively conclusive description of phenomena by its role in scien-
tific processes of inference, an exact philosophical explanation is intricate. Wood-

1I do not introduce this terminology (‘play’, ‘role’) as an indication for a strong fictionalism
about science. I want to give only a brief outline of the terminology used in this text.
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ward provides the vivid description that “[d]etecting a phenomenon is like looking
for a needle in a haystack or (...) like fiddling with a malfunctioning radio until
one’s favourite station finally comes through clearly” (1989, p. 438, also cited by
Massimi 2011). Phenomena are characterized as

(i) not idiosyncratic to the different ways that are used to detect them,

(ii) real in an ontological sense, and

(iii) identifiable via patterns in data.

Figure 1.2 provides a schematic view in direct comparison to the logical empiricists’
version as shown by figure 1.1. In this thesis I want to focus on a philosophical
explication of phenomena by challenging these three properties, which are central
to a characterization of phenomena.

As it turns out, a mere identification of phenomena with patterns is problematic
for more than one reason. Firstly, even if patterns in data are a common and well
explicated notion in the field of statistical analysis, it is hard to explicate it more
generally to a suitable extent according to the use of the term ‘pattern’ in the
everyday language of science from the various different fields. Secondly, the same
phenomenon can be detected by different patterns in different data. Apparently,
a phenomenon must, depending on the specific understanding of the concept of a
pattern, rather be identified with a group of patterns and not with a single pattern,
as will be shown.

(Bogen and) Woodward are philosophically motivated to highlight the impor-
tant distinction between data and phenomena. They aim to bury the logical
positivists’ idea of science following an, in their view, overly simplified system-
atic, which is that the empirical world is observable and theories are formulated
to describe or explain the observation:

Our general thesis, then, is that we need to distinguish what theories explain
(phenomena or facts about phenomena) from what is uncontroversially ob-
servable (data). Traditional accounts of the role of observation in science
blur this distinction and, because of this, neglect or misdescribe the details
of the procedures by which scientists move from claims about data to claims
about phenomena. In doing so, such accounts also overlook a number of con-
siderations which bear on the reliability of scientific knowledge. (Bogen and
Woodward 1988, p. 314)

The notion of reliability of data and its role for the explication of scientific phe-
nomena will be discussed in the context of Massimi’s (2011) comments on (Bogen
and) Woodward in 6.3. What Bogen and Woodward do not aim for is to explain
the relation between phenomena and patterns in more detail. Woodward gives a
description how patterns come into play in this picture:
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[S]cientific investigation is typically carried out in a noisy environment; an
environment in which the data we confront reflect the operation of many
different causal factors, a number of which are due to the local, idiosyn-
cratic features of the instruments we employ (including our senses) or the
particular background situation in which we find ourselves. The problem of
detecting a phenomenon is the problem of detecting a signal in this sea of
noise, of identifying a relatively stable and invariant pattern of some sim-
plicity and generality with recurrent features – a pattern which is not just
an artifact of the particular detection techniques we employ or the local en-
vironment in which we operate. (Woodward 1989, p. 396–7, my emphasis)

This wording indicates that Woodward’s notion of phenomena and of patterns
are at least very closely tied to each other. I cannot find any substantially more
revealing information on the relation between phenomena and patterns in their
texts. An identification, including all metaphysical and epistemic consequences,
may even be intended. Brown summarises his understanding of relation between
phenomena, data and patters as follows:

Phenomena are to be distinguished from data, the stuff of observation and
experience. They are relatively abstract, but have a strongly visual charac-
ter. They are constructed out of data, but not just any construction will
do. Phenomena are natural kinds (or patterns) that we can picture. (Brown
1994, p. 141)

If phenomena are “constructed out of data” and “natural kinds (or patterns)”, then
I want to raise the question whether an identification of phenomena and patterns
in data is intended. I claim that a mere identification is problematic due to several
reasons and aim to explain the relation more thoroughly. My, in my view, most
substantial objection is that phenomena and patterns in data must have a very
different ontological status; according to my findings that I present in this thesis
phenomena are empirical features of the world and patterns are mathematical
objects (or descriptions).

Phenomena are not idiosyncratic. They can recur in different experimental
setups in the form of different patterns in the data. This fact is strongly related
to their alleged reality, since it would be hard to explain the occurrence of a
phenomenon as patterns in different data without it being real. Mathematical
methods, including statistical data analysis, are used to detect patterns and can
to some extent be used to describe them. As a simple, illustrative example I
introduce the biological phenomenon of albinism in animals and use it to make
the basic ideas of this thesis more tangible.

Not only does a working conceptual identification of phenomena with patterns
demand further explanation, the concept of a pattern in data itself does to. Data
can for instance be given as a list of numbers, as photographs or as text reports.
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Due to this variety of formats of data, an explication of the notion of patterns
must be very flexible to be applicable to all kinds of data relevant for all scien-
tific fields. An explication of patterns in data and the relation between patterns
and phenomena is helpful to achieve a thorough understanding of phenomena in
science. This understanding helps to philosophically describe science.

Do I aim to provide a normative or a descriptive account of phenomena and
patterns? My approach is descriptive in the sense that I make a lot of use of
examples from various scientific fields and I aim to provide adaptable descriptions
for these examples. My approach is normative in the sense that I provide ex-
plications for good scientific reasoning in very general. In my view, descriptively
inadequate normative approaches are are of not much philosophical interest be-
cause they seem to explicate something different than what they are named after.
Descriptively adequate but normatively unacceptable approaches (e.g. logically
inconsistent) hint to either problems with proper reasoning among a significant
proportion of scientists or an philosopher’s inadequate set of background assump-
tions for the normative framework (e.g. where consistency matters). However,
I believe that the problem of philosophically explicating phenomena is one that
demands a rather wide-angled view on science with a significant amount of de-
scriptive considerations, than a to a lesser amount empirically inferred normative
drill-down based on axioms of reasoning.

Defending his methodological approach towards phenomena implicitly, Bogen
describes why, in his view, explications with “rigor [and] precisions” are not ap-
propriate for “universally applicable accounts of scientific reasoning”:

It’s plausible that philosophers who value the kind of rigor, precision, and
generality to which logical positivists, logical empiricists, and other exact
philosophers aspired could do better by examining and developing tech-
niques and results from logic, probability theory, statistics, machine learn-
ing, and computer modelling, etc. than by trying to construct highly general
theories of observation and its role in science. Logic and the rest seem unable
to deliver satisfactory, universally applicable accounts of scientific reasoning.
But they have illuminating local applications, some of which can be of use
to scientists as well as philosophers. (Bogen 2017)

The important question regarding “highly general theories of observation [or phe-
nomena] and [their] role in science” in the context of logical and mathematical
explications is whether these explications can either exemplify how generally pow-
erful this philosophical methodology is by means of concrete examples, or whether
they are general enough to capture everything in science that falls under these no-
tions. As I elaborate on in chapters 2-4, classics such as Russell, Frege and Hempel
had, according to my interpretation, such a high degree of generality for formal
explications in mind, and I follow their approach by discussing a formal frame-
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work for patterns with maximum generality. I conclude in this thesis that, given
relevant arguments from epistemology and philosophy of mind, an anti-realistic no-
tion of phenomena and a mathematical notion of patterns are the most adequate
explications.

In my view, my conclusive account of phenomena is able to provide sufficient
answers to all the problems that I read about in the mentioned literature and that
were put forward after my talks and in personal discussions.

This thesis is organised as follows. Throughout the text I comment on problems
from recent and classical literature on phenomena and related epistemological and
metaphysical topics. In chapter 2 I discuss available ideas regarding the explica-
tion of data and I suggest an explication of it that implies that sets of data are
mathematical objects, which can and often are represented in processes of scientific
inferences by human agents. In chapter 3 I defend the central role of mathematics
in my epistemology by showing its expressive strength, its extensive application
via computers and the empirical epistemic strength of these computer applications.
Furthermore, in this chapter I provide an explicative notion of mathematics for any
reader without an indepth knowledge of philosophy of mathematics. In chapter
4 I explicate patterns and discuss the epistemological as well as the metaphysical
implications of my view. The notions of concrete and of general patterns prepare
the ground for the explanation of the relation between patterns and phenomena,
which is provided in chapter 5. Here I also comment on some problems with the
notion of phenomena as they are discussed in the literature. My results provide
a descriptively adequate notion of phenomena, whereas earlier chapters prepared
the ground for the view that this descriptive notion substantially differs from a
normative notion of good phenomenon selection. More precisely, scientist’s actual
selection of phenomena via patterns in data are not epistemically grounded to a
sufficient degree. In the following chapter 6 I comment on some articles that specif-
ically criticise (Bogen and) Woodward’s work. Chapter 7 contains a conclusive
discussion of the, in my view, most central questions and concerns regarding the
relation between patterns and phenomena with reference to the relevant chapters
and sections throughout this thesis. I added some comments from the perspec-
tive of mathematical statistics and its applications to the appendix, because these
insights aid the philosophical discussion as an exemplary case of mathematically
explicated detections of patterns and the discussion of related phenomena. In the
remainder of this introductory chapter I discuss some historical aspects and central
terminology for the topic of this thesis.
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1.1 Historical Remarks on ‘Phenomenon’ in Phi-
losophy

Section Abstract
Bogen and Woodward (1988) raised awareness for the necessity of a philosophical ex-
plication of the notion of phenomena. They focus on the use of the notion from science
direcly rather than from the history of philosophy. For Suppes and Carnap the notion
is unproblematic. Van Fraassen defends an anti-realistic notion of phenomena. The
notion of phenomena in science and philosophy of science has some commonalities with
the notion from philosophical phenomenology, but has, all things considered, a sub-
stantially different meaning.

The term ‘phenomenon’ is used in various different contexts in philosophy and is
also widely used among scientists. Its meaning varies substantially. Some historical
remarks maybe useful for the reader.1

The semantic connection between Bogen and Woodward’s (1988) introduction
of the term on the one side and the historical use in most parts of philosophy on
the other side is very loose, but cannot be completely denied. More importantly,
Bogen and Woodward adopt ‘phenomenon’ from its use in the empirical sciences
(in particular physics) rather than from its occurrences in the history of philosophy.
For the discourse in philosophy of science, van Fraassen (1980) uses ‘phenomenon’
with a distinct anti-realistic meaning in chapter 3, which is titled ‘To Save the
Phenomena’:

When Newton wrote his Mathematical Principles of Natural Philosophy and
System of the World, he carefully distinguished the phenomena to be saved
from the reality to be postulated. He distinguished the “absolute magni-
tudes” which appear in his axioms from their “sensible measures” which are
determined experimentally. He discussed carefully the ways in which, and
extent to which, “the true motions of particular bodies may be determined
from the apparent”, via the assertion that “the apparent motions ... are the
differences of true motions”. (p. 44, quotes in quote from Cajori 1960, p.
12)

Later in the text he writes:

Electrified and magnetic bodies appear to set each other in motion although
they are some distance apart. Early in the nineteenth century mathematical
theories were developed treating these phenomena in analogy with gravita-
tion, as cases of action at a distance, by means of forces which such bodies
exert on each other. (p. 48)

1This introduction seems very noteworthy to me, since I was confused about the use of the
term at my first contact with the topic.
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For van Fraassen phenomena are an unproblematic notion and are whatever
appearance an observing scientists in the context of a theory might have interest
in without any further stipulation about reality, which is what we should expect
from a constructive empiricist.

Suppes (1969) is philosophically more agnostic and uses ‘phenomenon’ in the
same pragmatic and ambiguous way as scientists do1 (i.e. without ontological
or epistemological commitments). Carnap (1966) uses ‘phenomenon’ similar and
does not mention it in his four pages long subject index. All in all, it seems fair to
conclude that (Bogen and) Woodward were the first to influentially raise awareness
for the philosophical problems with the notion of phenomena to a larger audience
with a focus on philosophy of science.—Of course, I may not be aware of other
authors’ significant contributions to the topic.

Adopted from the ancient greek word ‘φαινóμενον’ (‘phainómenon’), which
means that which appears (cf. Preus 2007, p. 298), ‘phenomenon’ became a widely
used term in philosophy describing, as Smith (2008) puts it, “appearances of things,
or things as they appear in our experience, or the ways we experience things, thus
the meanings things have in our experience”. This notion is anti-realistic towards
phenomena and I tend to claim that ‘things’ should more appropriately be replaced
with ‘(parts of) the empirical world’ according to my elaborations in 1.3.

Lewis (1929, 1929, ch. VI) pools positions that accentuate the unknown dif-
ference between the actual world and its appearance to us under ‘phenomenalism’.
Accordingly, Husserl2 introduced phenomenology as a philosophical discipline fo-
cussing not on how things may be, but on how they are perceived, or what the
structure of various types of experiences is. In classical Husserlian phenomenology
our experiences are directed by intentions and therefore, similar to Kant (1787),
the reality is in most cases3 considered to be epistemically inaccessible. (cf. Smith
2008)4

Due to the different use of ‘phenomenon’ in the philosophy of science, I avoid
the use of the term in the meaning as described by Smith. The substantial differ-
ence is that for science and philosophers of science phenomena are not only features
of the empirical world how they appear to us. They need to fulfil a further impor-
tant criterion. As I conclude in this thesis (chapter 5), scientific phenomena are a

1He uses the term in various of the papers from the 1950s and 1960s that are collected in the
mentioned volume.

2Due to Husserl’s style of writing and publishing it is improper to refer to some single text
explaining phenomenology. A more extensive survey would be needed. Nevertheless, for our
purpose I refer to the study by Moran (2000) and the encyclopaedia entry by Smith (2008). The
original source, which may be considered to be the most important one, is Husserl (1913).

3An exception is, if ideal or abstract objects, for instance mathematical objects, are considered
to be real.

4For extensive historical surveys on phenomenology see Spiegelberg (1994) or Moran (2000).
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predominantly interesting target for scientific explanation on the background of a
scientific agent’s background assumptions and his epistemic capabilities. Phenom-
ena in Smith’s sense do not need to fulfil this criterion. Furthermore, scientific
phenomena may only be observable with the help of technically aided scientific
measurements (e.g. microscope). It is at least a non-trivial problem for Smith’s
account of phenomena where to draw the demarcation line between apparent and
non-apparent with regard to all sorts of technical observation aids, according to
his notion of appearance.

On the other hand, all philosophical notions of phenomena focus on how we
perceive or theoretically describe parts of the empirical world in accentuated oppo-
sition to the constitution of a real empirical world itself. For this reason we can say
that the philosophical notions of phenomena have a common semantic core. But
due to the very different conceptual demands of philosophical phenomenology on
the one hand, and a philosophical view on science on the other hand, the notions
diverge. The philosophers of science adopted the scientist’s notion of phenomena.
I do the same throughout this thesis.

1.2 The Notion of Science in this Thesis

Section Abstract
Science is an activity, but it is hard to explicate what makes and act scientific. Sci-
entific reasoning aims for explanations and predictions of parts of the empirical world.
Scientific agency is not restricted to human beings. My notion of science is as broad
as possible and includes also fields such as psychology, philology and historical studies.
The defining criterion for my notion of science is the use of empirical data as evidence
to corroborate or falsify hypotheses. Everyday reasoning of laymen that fulfils this cri-
terion falls under my notion of science, as well. My approach to explicate phenomena is
agnostic regarding a syntactic, semantic or pragmatic view towards scientific theories.

The meaning of the term ‘science’ is ambiguous, often used by speakers with various
backgrounds (e.g. scientists; politicians; tabloid media), and subject of a substan-
tial amount of works in philosophy of science. More specifically, it is a very hard
task to explicate descriptively or normatively what qualifies an agent’s activity as
scientific or, more specifically, what scientific reasoning exactly is. Approaches to
explain what science is can include arguments concerning the motivation for the ac-
tivity (e.g. explain or predict empirical phenomena), its results (e.g. confirmation
of a theory) and even arguments that aim for social or institutional circumstances
(e.g. is discussed by academic professionals).
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What can be said for certain at this point is that science is done by agents,
because only the psychological or pragmatical motivations to gain knowledge and
the epistemic restrictions that make knowledge hard to access make science neces-
sary. In other words, god does not need science, because he has unbounded access
to knowledge, and a stone or a horse does not do science because they are not
motivated to gain knowledge.

However, in my view, we can, as a first approach, accept that the notion of
science is very ambiguous, but it somehow includes the search for explanations
and predictions of parts of the empirical world. Furthermore, there is no reason
to restrict scientific activity to human agents; artificial intelligences or aliens can
do science, as well. Various technical auxiliaries (e.g. pattern recognition with
neural networks) already indicate that science is not a solely human activity. The
argument for this is that these pattern recognition applications can come to conclu-
sions that are impossible to reach with a human mind (e.g. due to complexity).—I
elaborate on this argument in chapter 3.

Not independent of, but also not fully determined by the question what qual-
ifies an activity as scientific, is the question what parts of the empirical world
can be subject of scientific explanation or prediction. Science is often understood
to explain nature. Nature certainly includes matter (physics; chemistry) or liv-
ing organisms (biology). It is a philosophical question whether the human mind
(psychology) can fully be understood as being a part of the nature; free will,
indeterminism and qualia are keywords of philosophical positions against the in-
terpretation of the human mind as a part of the nature in a very narrow sense.
The philosophy of mind may be seen as a philosophical field in which the mind’s
relation to nature is investigated. (Empirical) psychology may usually be accepted
as a science by traditional and for normative reasons, but what about social studies
or academic fields that aim for the explanation of arts and human culture?

The aim of this thesis is to explain the relation between patterns and phenom-
ena. Since Bogen and Woodward introduce phenomena simply and broadly as
“features of the empirical world”, there is no restriction to the empirical subject
of study, in which these features appear, at all. On the other side of the relation
that I aim to explain are patterns. I claim that patterns are mathematical objects
(chapter 4), which can be detected in data and which are also mathematical ob-
jects (chapter 2). I imply that we understand the term ‘pattern’ in such a broad
way, in which it is also used in everyday language and science. Data can be a
series of numbers, as well as a facsimile of an ancient Roman law text. That is
why, since my notion of phenomena, data and patterns in science is as broad as
possible, the notion of science needs to be as broad as possible, as well.

I include into my notion of science all activities that involve data, phenomena
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and pattern recognition in this described sense. Examples of these activities are
science of history, science of literature, physics, biology, history of art, psychology,
linguistics and others. The defining criterion for my notion of science is the use of
data as evidence to corroborate or falsify hypotheses that imply descriptions of em-
pirical phenomena (chapter 5). Mathematics does therefore not count as a science
according to my account, since there are no empirical phenomena in mathematics.
Doing art does not count as doing science either, even if it is used to illustrate or
highlight features of the empirical world that may have to do with phenomena; in
arts data is not gathered or used to corroborate or falsify hypotheses. However, I
emphasize the activity character of science, because designing or carrying out an
experiment is undoubtedly a crucial part of science, but not necessarily fully based
on conscious reasoning.

Can we say more to characterise science, in particular by explicating a scientific
method? I believe it is very hard to justify an adequate descriptive account for
the scientific method. Many attempts of various sorts have been made to provide
normative accounts for scientific activity. Aristotle, Ockham, Descartes, Leibniz,
Newton, Hume, Kant, the logical empiricists and Popper are only a short list of
authors who provide normative accounts of good scientific reasoning throughout
their philosophical works.1

But I want to point out that my notion of science is particularly broad. Many
of the normative works in the literature focus on pragmatically convenient exam-
ples from, roughly, physics, astronomy or biology (even if our modern notions for
these branches do not completely fit the more classical notions, such as natural
philosophy). This plain environment helps to focus on specific normative aspects,
but it implicitly oversimplifies relevant pragmatic issues for descriptive accounts.
For instance, rules for parsimony of an explanation in psychology or social sciences
are much more intricate than they are for common examples of heliocentrism in
astronomy or evolutionary theory in biology. Another example is the impossibility
to falsify a palaeontologic hypothesis about an extinct animal, if the only source of
data is one single incomplete fossil without the possiblity to get another specimen.

Furthermore, if we do not include only the activities that aim for the evaluation
of a hypothesis into our account of a scientific method but also all the psychological
causes and the creativity—whatever that may be in detail—that lead to new ideas
for hypotheses than it is even more apparent to reject the idea of a good scientific
method. In my view, Feyerabend (1975) provides a good historical survey about
how much methodological diversity, which include social and irrational factors, was
involved in some of our most influential scientific revolutions (e.g. heliocentrism;

1Sober’s (2015, ch. 1 and 2) historical account provides further details and references with a
focus on parsimony criteria for theory selection.
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general relativity). As Feyerabend, I am more interested in a descriptive notion of
science how it is actually done by the agents than in normative accounts how good
science should normatively be.1 It is a further question, which is not in scope of
this thesis, whether it is even possible to provide such an normative account that
covers all branches of science.

What then is the difference between the allegedly distinct field of science in very
general on the one hand, and everyday reasoning from observations to conclusions
on the other hand? I may speculate why I got sick last week or why my favourite
party did get only that few votes in the last election. My answer to this question
is that there is no principle difference and that everyday reasoning entails a lot of
reasoning about ad hoc working hypotheses. Science cannot be characterised as
avoiding reasoning fallacies, since in this case, we need to exclude from our list of
what counts as scientific a substantial part of our historical scientific heritage, as
well as some modern scientific positions.—Time will hopefully tell which positions
exactly those are. The agents of science receive some specific training at the uni-
versities, but these lessons are build upon pre-scientific reasoning on the individual
level, as well as on the level of the scientific community. That is why everyday
reasoning of laymen falls under my notion of science as well and, what follows
from this, every claim about scientific reasoning in this thesis is also a claim about
everyday reasoning.

In this thesis I suggest explicit notions of data, of patterns and of phenomena.
The reason for this is that in my view to explicate phenomena we need a clear
understanding of patterns and of data in which these patterns can occur. However,
I do not elaborate on my view on theories or hypotheses. Common candidates to
explicate what a theory is are the syntactic view, the semantic view2 and the prag-
matic view3. These views on theories were developed to further clarify how exactly
theories should be linguistically framed (i.e. in a predicate logic or mathemati-
cally) and what content exactly is part of the theory and what not (e.g. models;
intended applications). The only claim that I need to accept for this thesis is that
theories are aimed to make claims about phenomena. Since I defend the view that
phenomena do not depend on particular theories (cf. 5.4) I can remain agnostic
regarding the particular view towards explicating theories.

1Throughout the book, Feyerabend criticises the logical empiricists and Popper in a very
polemic tone for their allegedly erroneous descriptive understanding of science. In my view, their
accounts are rather normative and the authors were well aware that the history of actual science
is something very different.

2For a brief introduction and discussion of the syntactic and the semantic view see Lutz
(2014).

3For a discussion of the pragmatic view see Winter (2016).
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1.3 Empirical World, Parts of the Empirical
World, Empirical Objects, Physical Sys-
tems and Ding an sich

Section Abstract
Classical ideas from Descartes, Kant, logical empiricists, Wittgenstein and Everett in-
dicate that our observations cannot fully grasp what I call the empirical world. The
empirical world is what causes our observations and we cannot know whether the em-
pirical world is a play of Descarte’s demon or whether it is composed of objects or a
structure or something else. I avoid ‘systems’ and ‘objects’, because these terms imply
too detailed ontological commitments. I avoid ‘outside world’, because of Descarte’s
possible demon and the unwanted exclusion of psychological phenomena.

The empirical (world)1 and a proper notion of it is obviously a very relevant
aspect for any theoretical understanding of scientific inferences. Some very influ-
ential ideas from the history of philosophy indicate how intricate the notion of
the empirical (world) is. Descartes (1641, Meditation I) claims that we cannot
be certain that there is such a thing as an outside world, and according to Kant
(1787) the Ding an sich may be something very different from what we humans
are able to observe and imagine in space and time. Consequently, logical empiri-
cists describe our epistemic access to the outside world, if there is such a thing, as
tied to the form of observation sentences (or protocol sentences)2 to emphasise our
epistemic restrictions to, firstly, sensorially gathered observations and, secondly,
the grammatical form of sentences.

A concept of the empirical world is threatend by further classical ideas, if
we leave the door sufficiently wide open for complaints. Everett’s (1957) many-
worlds interpretation of quantum mechanics suggests that we need to get rid of the
‘the’. Wittgenstein (1953) implies that our human preconditions for observation
are not even stable in the sense that inner perception (Kant) or sentence grammar
(logical empiricists) are more or less observer independent. For him, our language

1I put ‘world’ in brackets to emphasise some general problems with the description of the
empirical (world or universe). On the one hand, ‘the empirical’ has the advantage to remain
indifferent about any further metaphysical characterisations of what we observe and may be an
acceptable designation for proponents of all ontological positions concerning the distinguishability
or indistinguishability of the empirical from something else. On the other hand, the description
as a world or universe already indicates the realists’ idea of alternative worlds, which I consider
to be a pragmatically useful description.

2The most adequate notion for observation sentences was heavily discussed among Moritz
Schlick (1934), Otto Neurath (1932) and Rudolf Carnap (1932; 1958), Karl Popper (1935) and
W.V.O. Quine (1981). The best brief encyclopaedic overview over the discussion that I am aware
of is the German Wikipedia entry Beobachtungssatz (2017).
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adaption is much less driven by widely shared grammatical rules, and much more
influenced by less organised rules of the language game. This may imply that
linguistic descriptions of observations are crucially observer-dependent, which does
not support a view of epistemic access to an empirical world.

The conceptional role of a notion of the empirical world is in my terminology,
roughly speaking, to play the counterpart to descriptions or abstractions in the
two sided conception to explain science or specific parts or aspects of it. In other
words, the empirical world is what causes observations, even if those observations
are constraint by certain sensory or human epistemic conditions. Kant’s Ding
an sich is the classical concept that is closest to my use of ‘the empirical world’.
However, my notion is open to Descarte’s demon scenario or Bostrom’s simulation
scenario, which imply that we may observe only a demon’s play or that we live
in another civilization’s computer simulation. In these cases the empirical world
would be the demon with his acts and possible intentions or, respectively, the
computer that causes our experiences.

In this sense, I use the notion of the empirical (world) in my epistemological
framework in a manner of a primitive notion as explained by Tarski (1994) (for
deductive sciences) and de Beauregard Robinson (1959) (for knowledge): it is an
impression that we cannot further explain and that is necessary as a “root” of
knowledge and can be used to “define” further, more complex terms.1

However, in the history of philosophy the description if the empirical (world) is
1 Tarski defines primitive (or undefined) terms for deductive sciences, which are mathematics

and logic:

When we set out to construct a given discipline, we distinguish, first of all, a cer-
tain small group of expressions of this discipline that seem to us to be immediately
understandable; we call the expressions of this group PRIMITIVE TERMS or UN-
DEFINED TERMS, and we employ them without explaining their meanings. At
the same time we adopt the principle: not to use any other expression of the dis-
cipline under consideration, unless its meaning has first been determined, with the
help of primitive terms and of such expressions of the discipline whose meanings
were explained previously. The sentences which determine the meanings of terms
in this way are called DEFINITIONS, and the expressions themselves whose mean-
ings are thereby determined are accordingly known as DEFINED TERMS. (1994,
p. 110)

I extend this idea of primitive notions to my philosophical explications, which are—of course—
not one or a couple of theories of a deductive science. In the case of the notion of the empirical
world, I deem the notion as unproblematic, even if I do not want to commit myself to Robinson’s
epistemic description that all knowledge is based on primitive notions (for which a thorough
justification is a substantial philosophical endeavour by itself):

To a non-mathematician it often comes as a surprise that it is impossible to define
explicitly all the terms which are used. This is not a superficial problem but lies at
the root of all knowledge; it is necessary to begin somewhere, and to make progress
one must clearly state those elements and relations which are undefined and those
properties which are taken for granted. (1959, p. 8)
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not unambiguous. This specifically holds, if we do not only take into account the
use of the terminology in philosophy, but also in the sciences themselves. In this
section I want to further illuminate the problems of the terminology and support
my preferred use of ‘the empirical world’, which plays in important role throughout
this thesis. I want to introduce and further justify my use of the terminology and
discuss the problems with it regarding the topic of an explication of the relation
between pattern and phenomena in science.

I explain why I prefer ‘the empirical world’ over ‘outside world’ or the like. To
ontologically classify thoughts, Frege (1918–1919) identifies three “realms” that we
can briefly paraphrase as the following: the abstract, the mental and the empirical.
The interesting point that I want to highlight is his criterion to separate these
three ontological classes. He introduces the empirical as being objects in the
“outside world” (Ger. Dinge der Außenwelt), as opposed to the mental, which
are the “objects of imagination” (Ger. Dinge der Vorstellung). The abstract is
defined as objects for which none of these two criteria apply. What is interesting
about the characterisation of the empirical as objects in the outside world? Firstly,
the empirical world is composed of objects, which is not an approach without
alternatives, as we will see. Secondly, the exclusion of mental state from the
empirical world indicates that for Frege the empirical objects are given without
any conceptualisation. This makes the assumption that the empirical world is
composed of objects even more radical.

To interpret the empirical world as something that is composed by empirical
objects seems natural, if we base this interpretation on the use and the structure of
the languages. This includes everyday languages, as well as specialised languages,
such as used in science. When I refer to the empirical world, I mostly want to
refer to what scientific experiments or measurements are applied to and to the
aim of scientific theories, which is the explanation of phenomena. In this context,
the talk of empirical objects may be misleading. This is because in many cases
the objects that play a role in the experiment or measurement are described as
theoretical objects. Electrons or genes are the empirical objects investigated by
certain experiments. But the reality of such objects is an assumption. There-
fore the terminological use of ‘empirical objects’ should always be considered very
carefully in these contexts.

A common approach in physics to refer to the empirical (world) is the reference
to systems. In many cases the aim of physical theories is to explain phenomena of
these empirical systems. The introduction of systems is a technique of idealisation
in scientific processes, since all parts of the empirical world and processes outside
of the system, which can be subsumed as environment, are ignored in the scientific
endeavour of describing the behaviour of the system.
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The rules for the boundaries of empirical systems to its environment are man-
ifold and differ among the several different applications of the physical concept of
systematisation. In the simple examples from thermodynamics a system could be
a closed and thermally insulated container, such as a refrigerator, which is also an
isolated system in terms of the theory, due to the thermal insulation.1 Another
common way to define systems in physics are scaling criteria: a certain part of the
empirical world is understood as a system, but only on a certain scale. The water
in an ocean can be considered as a meteorological system on the macro scale, as
a fluid mechanic system on an intermediate scale and as a molecular system on
the atomic scale. The important point for us is that the describing theories in
different systems describing the same parts of the empirical world cannot always
be consistently transferred into one big theory for all systems; physical theories
are not necessarily scaling invariant.

A classical debate about the consistency or inconsistency of explanations of
phenomena on a micro and on the macro scale is the explanation of irreversible
macroscopic laws that can or cannot be inferred from time-reversible laws of mi-
croscopic physics. Irreversible macroscopic laws show themselves in events, such
as the breaking of a glass or the death of a human being, which can occur only in
one direction of time, but not reversibly; there are no natural incidents of broken
bits of glass recompose into the glass or the resurrection of a human being. A
widely discussed irreversible law is the second law of thermodynamics2, since ac-
cording to it, the entropy of an isolated thermodynamic system increases to a max-
imum, but never decreases. As Goldstein (2001) and Lebowitz (1993; 1994; 1995)
discuss, Ludwig Boltzmann showed, how the second law of thermodynamic orig-
inate in time-reversible microscopic laws. His Argumentation was famously, but
unsuccessfully, criticised by contemporaries, including Ernst Zermelo and Josef
Loschmidt.

How are we affected by the physical approach of describing the empirical world
partitioned into systems? When writing about to the aim of scientific theory
construction or pattern detection in scientific data, it is often inappropriate to
refer to the behaviour of empirical objects, even if the talk of objects and its
properties is a very established approach in the realists’ ontology, as indicated by
Frege. A more appropriate use of vocabulary is to talk about objects in a specific
system, which is neither practical, nor does it provide any gain for our discussion.

But since I want to stay agnostic regarding the ontological reality of what is

1Strictly speaking, this is not an isolated system. The thermal insulation is not perfect and
the heat exchanger transports heat out of the system.

2One simple expression of the second law of thermodynamics is:

Heat cannot spontaneously flow from a colder location to a hotter location.
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observed, I avoid both ‘system’ and ‘object’ (and ‘system of objects’ or the like).
Furthermore, I avoid ‘outside world’, because, firstly, we do not know whether
there is an outside (e.g. Descarte’s demon), secondly, even if there is an outside,
it may not be what causes our observation (e.g. Matrix movie), and thirdly,
our mental states are subject to the scientific field of psychology, which is not
properly described as outside, if we accept that we all are driven by psychological
phenomena, which is obviously the case. That is why I choose ‘the empirical world’
and a part of the empirical world can be any kind of part of it—in many actual
cases of picking or branching questions in science the partition criteria are hard to
explicate in detail.

However, what can be said for certain is that the empirical world or a specific
part of it causes in one way or another all observations of human agents or our
superior artificial intelligences. How it does that exactly, may be a question that
cannot be answered scientifically due to the agents’ inherently restricted epistemic
access to observation.



Chapter 2

Data under an Ante Rem View on
Mathematics

Chapter Abstract
I narrow down how the term ‘data’ is used in this survey and provide a descriptive ex-
plication of data in science. A brief survey about the available philosophical literature
on data is given, which includes Suppes’ concept of models of data, Hacking’s idea of
data as material externalisations of human acts and Leonelli’s functional characterisa-
tion of data as portable material objects. I conclude, opposing to some of the views
from the literature, that data is non-material and mathematical. Data, in the most
general sense, is the class of all the mathematical representations of the actual data
sets that are used for actual scientific inferences.

The aim of this thesis is to explain the relation between phenomena and patterns
in data. Therefore, we need to provide a sufficiently detailed account of these
two concepts. I start this elaboration with a discussion on data. It will turn out
that sets of data are abstract objects. I understand abstractness as fulfilling the
simple criterion of not having a specific position in time and space. Data can be
represented by physical objects or mathematically and in particular, if computer
processing is applied, by finite mathematical objects. The following explication
of data in this chapter is the basis for the philosophical analysis of patterns in
data that will follow in chapter 5 and which is necessary to describe the relation
between patterns and phenomena.

The notion of data plays a central role for the methodology of the empirical
sciences. The concept of data is frequently used in the specialists’ literature of sci-
ences, such as physics, biology and the social sciences. Examples include numerical
measurement results for the melting point of lead, the result of a gene analysis, an
X-ray photograph, a photograph of a black raven, Goebbel’s Sportpalast speech1

1In this often cited speech he praises to the audience the “total war”, which should be an
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and last Sunday’s survey about the German citizens’ vote preferences for the Bun-
destag. I mention these examples to stress how broad this idea of data is and that
I understand social and historical studies as scientific endeavours that do not differ
from physics by any fundamental epistemological reasons regarding the treatment
of data. That is why I do not stipulate any fundamental distinction between data
from the different scientific branches. I aim to provide a justification for this epis-
temologically equal treatment of physics and non-physical sciences throughout the
course of this thesis, since physics, according to my survey of the literature, seems
to be the predominant example for investigations in the philosophy of science in
general and regarding the treatment of data in particular.

The common translation of the Latin ‘datum’ (with its plural ‘data’) into ‘what
is given’ does—obviously—not directly apply to the use of the notion in the con-
text of scientific inferences, because actual scientific data is often not gathered
from any form of direct observation, but by the use of highly specialised routines
or laboratory equipment and translated into different formats. However, it is also
not completely unrelated, since data plays the crucial role in scientific inferences
to record empirical observations in a language that makes inferences between data
and theories (by humans or computers) possible. For example: a modern the-
ory about the detailed trajectories of planetary motion can best be confirmed
by numerical measurement results of actual planetary motions and hardly by any
non-quantitative observation of the empirical part of the world under investigation
(e.g. a child’s story about it seeing Venus in the night sky).

If googled today, the term ‘data’ refers in the majority of search results to binary
stored information1 in computer hardware. The starting point of our discussion of
data is another: I use ‘data’ in the way (Bogen and) Woodward use it and how it
is referred to in Illustration 1.2. Data is something that plays a role in scientific
inferences and whereas the notion of observation seems to imply a certain role of
an agent, the observer, data does not so much. Data is rather a somehow finished
record from some measurement routine, that can be stored and transferred in
relative isolation to any agent. In this sense, data is the intersubjective, observer
independent counterpart to observation. One important result of my philosophical
investigations will be the claim that a set of data is a mathematical object and this
claim holds not only for (mathematical) physics, but for the empirical sciences in
general. That is why the idea that data is some information stored in a computer
system is a more adequate description than it might seem from the starting point
of (Bogen and) Woodward.

absolute dedication to the war with the aim to end it quickly, devastating and victorious.
1My notion of information in this chapter and throughout the thesis is the one from infor-

mation theory, which is a subfield of computer science. Information are linguistic signals (e.g.
ASCII strings; English sentences).
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time (seconds) strain ∗ 1.e21
2.500000000000000000e-01 2.454791884395226415e-02

2.500610351562500000e-01 1.529268268197186628e-02

2.501220703125000000e-01 6.372337209458739903e-03

2.501831054687500000e-01 -2.075009545624776318e-03

... ...

Figure 2.1: Left: electronic micrograph images for a “structural analysis” of a bacillus
from Tsai et al. (2007)1. Right: part of the LIGO data in which Abbott et al. (2016)
found strong evidence for the existence of gravitational waves.

In the context of a specific scientific discussion, ‘data’ usually has a more or
less unambiguous meaning or reference class, because scientists share a common
understanding about the meaning of ‘data’ inside of their very specific and often
strongly separated scientific communities, which implies a shared use of techni-
cal language. Borders between these communities lie not only between academic
branches (e.g. physics; biology; economics), but also between different groups
of experts on the investigation of specific scientific phenomena inside a scientific
discipline (e.g. micro- and macroeconomics; scales above or below the quantum
effect threshold in physics). There are even phenomena that are investigated by
scientists from very different academic branches with very different basic concepts
and strategies (e.g. biophysics; econophysics). In these cases scientists make use of
the same or to some extent similar sets of data, but discuss them in the respective
language of their specific fields.

To be more concrete, a cell biologist may regard microscope images of living
tissue as data. An astrophysicist, who is interest in gravitational waves, expects
a series of numbers (or respective wave patterns in plots) as result of some mea-
surements from highly specialised equipment. Figure 2.1 shows examples for these
two cases from modern scientific investigations. How do these two specific exam-
ples highlight the differences in the meaning of ‘data’? To answer this question,
we can simply discuss features of sets of data that are only necessary for the one
side, but not for the other. The feature of a direct mathematical form: the grav-
itational physicist needs mathematical data, because his theoretical assumptions
and hypotheses are formulated in mathematical terms and make extensive use of
the mathematical calculus in a non-trivial way; the cell biologist, in this example,
needs her data in a form that enables her to inspect it with her human visual
capabilities, because she uses these capabilities to draw inferences in her field.

1The original caption reads:

(A) A thin-section electron micrograph of H. neapolitanus cells with carboxysomes
inside. In one of the cells shown, arrows highlight the visible carboxysomes.
(B) A negatively stained image of intact carboxysomes isolated from H. neapoli-
tanus. The features visualized arise from the distribution of stain around proteins



22 2. Data under an Ante Rem View on Mathematics

In this thesis I defend the view that there is in fact no substantial difference
between these and other different forms in which data can be presented or circu-
lated. But the use of the concept in the various very different scientific fields and
its subfields makes it challenging to pin down one useful explication of data that
applies to all scientific applications.

One quite simple route to answer the question to what ‘data’ in the different
scientific fields refers to is a Wittgensteinian idea from the Philosophical Investiga-
tions (1953) about human speech acquisition. It states that there are no strict and
specific primary concepts to which the nouns of our language refer to, but rather
acquired habits of the word’s use in our linguistic communities.1 This idea implies
that ‘data’ can refer to very different and unrelated things in different communities
as long as the scientists receive their training and the acquisition of their field’s
terminology, which involves the reference to data, in strict separation from other
scientific communities (which does not seem completely unrealistic, given the ac-
tual customs of our scientific education). However, I believe that there are general
epistemic rules of scientific reasoning and a general epistemic framework for it.
A notion of data is a substantial part of this framework and one can give a de-
scriptive explication. The Wittgensteinian position implies that a universal notion
of data for empirical sciences would be a fortunate coincidence or has to rest on
some pre-specialised notion of data from our shared everyday language. The latter
option cannot be easily disputed. In the following course of this chapter I focus
on a descriptive account of data rather than on reasons why such an account ex-
ists, whereas Wittgenstein’s account can be seen as an approach to consolidate my
position that such an overall account of data is reasonable. I give philosophically
less contestable arguments for my view by the actual elaboration of my account
of data and by the reference to several examples from science with which I aim to
show that the account applies in the suggested generality.

Concerning problems with the explication of a concept of data I distinguish
the two following general aspects:

Problem of definition and demarcation: A set of data is usually not
scientifically discussed in strict isolation, but instead with additional infor-

forming the shell as well as around the RuBisCO molecules that fill the carboxysome
interior. Scale bars indicate 100 nm.

1Wittgenstein’s position about the reference or meaning of words in the Philosophical Inves-
tigations is best described by the following quote:

For a large class of cases–though not for all–in which we employ the word ‘meaning’
it can be defined thus: the meaning of a word is its use in the language. And the
meaning of a name is sometimes explained by pointing to its bearer. (Wittgenstein
1953, §43)
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mation and assumptions about the part of the empirical world it was gathered
from and the equipment that was used to gather it, as well as with theoreti-
cal descriptions of relevant methods and equipment. This set of information
is—obviously—vastly complex. If we want to refer to a concept of data in a
diligent philosophical way, then we need to clarify where exactly the border
lies between a set of data and additional information about the data.

Ontological classification: What is data ontologically speaking? Some
sets of data are given as mathematical objects, like a finite series of num-
bers, but others are given in a human language, as sounds, photographs or
other forms that do, prima facie, not seem to be mathematical objects. In
other influential debates from the general philosophy of science evidence from
observations are explicated or modelled as logical propositions1 or events in
a probability space2, which can be interpreted to imply that data belongs to
one of these ontological classes, too.

The problem of definition and demarcation is, according to my knowledge, only
rarely the subject of discussion in the philosophical literature. Most references to
data, in particular in the discussion about phenomena that we scrutinize within
this thesis, do not imply or presuppose any precise notion of data. The reason for
these vague kinds of reference seems to be that, firstly, the articles and talks usually
discuss very specific examples of scientific phenomena (e.g. the melting point of
lead; weak neutral currents and bubble chamber photographs; the existence of an
extrasolar planet) with very specific exemplary sets of data. In these examples,
the specific sets of data are described in detail and the demarcation between the
set of data and other information that play a role in the inferences from data to
theories (e.g. description of the measurement routine) is more or less apparent.
In other cases, examples are described without a specific demarcation between the
data and further information about it. Secondly, given the very specific exemplary
setups, a more precise concept of data does not seem to illuminate the examples
more regarding the aspects of the inferences from data to phenomena or from data
to theory or vice versa, which the examples are intended to highlight.

The ontological classification of data has to be answered in a larger metaphysi-
cal and also epistemological context. With this I mean that a philosopher’s answer
about how he ontologically classifies data (e.g. as real abstract objects; as syntac-
tical propositions; as physical objects) reveals a lot about his philosophical beliefs
regarding metaphysics and epistemology in general. The reason for this is that

1I refer to discussions that started with Hempel’s accounts of scientific confirmation (1943;
1945a; 1945b) and explanation (with Oppenheim 1948).

2I refer to Bayesian accounts in general, for example the discussion on scientific confirmation;
Fitelson (1999) provides an introduction and overview.
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data plays a crucial conceptual mediating role between the empirical world and
our human theorising.

I do not aim to provide a fully fleshed out ontological survey of the basic
concepts from general philosophy of science (e.g. observation; evidence; theory).
However, I want to provide a sufficient ontological account about data, patterns
and phenomena to provide the answers to the main questions about phenomena
that were introduced in this thesis.

If we restrict our survey about data to empirical investigations that are un-
doubtedly scientific, then reasoning without a sufficient amount of data support is
usually accompanied with profound practical obstacles and the need for expensive
solutions to gather useful data. Examples of such cases with the problem of under-
determination include many fields of social sciences and economics (e.g. political
surveys; risk distributions for a stock positions). But also questions from physics
on the extreme micro or astronomical level demand laborious ways to gather useful
data (e.g. CERN Large Hadron Collider; extraterrestrial telescopes). The reason
for these mentioned cases with the problem of underdetermination in social sci-
ences is that social systems or markets are non-stationary phenomena that change
quickly over time, are vasty complex and the amount of data that can possibly
be gathered is simply restricted by the fact that there is only one or at maximum
very few societies or markets. In the mentioned exemplary cases from physics en-
gineering and financial limitations restrict our abilities to gather every set of data
that we are interested in via appropriate measurements. However, we cannot infer
any distinctions in principle between these sets of data from these distinguish-
ing aspects regarding the explication of data and the more general framework of
inference from data to phenomena, which I aim to provide.

What makes data scientific? The demarcation of science from non-science or
pseudoscience is a subject of discussion in the philosophy of science. Concerning
isolated empirical questions and the methods to answer these questions, which
include the processing of observation in any way, the most influential approach to
detect non-scientific theories is Popper’s (1962) falsificationism.1 I aim to avoid
examples from science that may be declared as unscientific according to Popper’s
criterion for scientific data. I also focus on the often mentioned criterion of repro-
ducibility2 for observations or sets of data that we want to discuss. This criterion
is relevant to many standard cases and all our discussed examples of scientific in-

1He states that an empirical theory is scientific, if it is “capable of conflicting with possible,
or conceivable observation” (p. 39). A theory must be testable by a routine to gather data, such
as a measurement, and would turn out to be false if the resulting data does not show a specific
pattern that was predicted under the assumption of the theory being valid.

2We find this criterion explicitly stated in Vollmer (1992) and Merton (1973); Mahner (2007)
provides a more thorough survey of criteria for science in the philosophical literature.
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vestigation. But it is not suitable for a strict demarcation between scientific and
non-scientific theories, due to the already mentioned lack of possible observations
for decent scientific investigations; these include the explanation of the following
phenomena: the Big Bang, the political success of Hitler and the sudden extinc-
tion of large dinosaurs. For none of these phenomena we are able to reproduce
sufficiently useful repetitions of the observations.

The view that I lay out here does not imply that a set of data has to play any
role in a scientific discovery. It also does not imply that data has to be gathered
with the aim of being fruitful for any scientific discovery. Here, as will be shown,
I disagree with Leonelli (2015, my discussion in 2.1) who claims that data is data
due to its “prospective usefulness as evidence”. Some data of anthropology and his-
torical sciences (e.g. outline of the arrangement of the Giza pyramids; cataloguing
of biological species) was not produced or gathered with the aim of being evidence
for a specific hypothesis. Leonelli herself mentions DNA sequences to promote the
related point that data is often gathered without the aim to validate a specific
scientific claim, but rather to catalogue data that may become interesting to the
field for whatever scientific reasons in detail. However, she does not include cata-
loguing data as an end in itself for her notion of data. Tycho Brahe’s1 gathering
of astronomical observations, which was intensely and fruitfully used by later as-
trophysicists, is a more historical example that supports our claim that data does
not have to play an inferential role as evidence (or may be used to defend other
claims). A set of data can also turn out to be bad or useless due to, for example,
a broken measurement device or empirically inadequate theoretical assumptions.
But it still counts as data, according to my notion.

What does the title of this chapter mean? The distinction between abstract
and concrete objects is a subject of intense metaphysical discussion. However,
this distinction is relevant to the problem of ontological classification of data.
To characterise abstractness, concepts of it for mental objects, sensible objects,
physical objects and causality are employed.2 For our purposes, the term is used
in a very simplified way. Basically, I call an object abstract, if it is a mathematical
object. I justify this terminology in 3.1. I motivate this terminology by the fact
that the abstract objects that are discussed in this text are solely mathematical
objects, but I want to highlight their property of being abstract objects. My
philosophical position is that data in science are always mathematical objects.

1Tycho Brahe (1546–1601) was a Danish astronomer, who provided very precise records of
the positions of fixed stars and planets without the aid of a telescope, which had not yet been
invented. Brahe’s data was of crucial importance for Johannes Kepler’s claim that planets move
on ellipses and not on circular trajectories around the sun. For a historical survey on Brahe see
Ashworth’s (1999) encyclopaedia entry.

2For an introduction to abstract objects see Rosen’s (2012) encyclopaedia entry.
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Given our very broad understanding of science (e.g. including social sciences and
historical studies), this position seems quite radical prima facie, but I argue that
the crucial role of data in science, which is to be analysed for patterns, cannot be
explained without mathematics.

A notorious problem of abstract objects can still be highlighted regarding our
account of it. Opponents may argue that a set of data, as an abstract object,
is simply not there before it is gathered by the execution of an experiment or
measurements. But this argument applies analogously to mathematical objects in
general: a probability space, for example, is and always was something mathemati-
cal and abstract in our sense independent of Kolmogorov’s (1933) first formulation.
As elaborated on in 3.1, in my view mathematical objects are so-called ante rem
structures or positions in those. This view implies that the ontological classifica-
tion of mathematical objects or propositions does not depend on the fact whether
a human has defined or imagined it, or whether they are unknown to us.

Why should we care about a more precise concept of data?—Other authors
with a focus on scientific phenomena do not do this. The reason why I bother
with explicating the notion of data is that I want to provide a very general expli-
cation of phenomena and their relation to patterns in data. Therefore, we need
to make precise what patterns in data are, and the first step to achieve this is to
explicate the concept of data itself. As it turns out, specific philosophical views
on data and patterns in them are necessary to satisfyingly pin down a notion of
phenomena. These views are often not explicated by previous authors due to the
aim of their articles, limited printing space or the assumption that a sufficiently
common agreement about these matters can be presupposed (which is not the
case, in my opinion).

2.1 Available Literature on the Explication of
Data

Section Abstract
I elaborate on some influential historical and recent philosophical positions concerning
an explication of data in science. Suppes distinguishes between data, models of data
and theories of models of data in a formalised framework. In this framework theories,
which are something linguistic, are strictly separated from models, which are something
set-theoretical. According to Hacking’s view, data are marks, which are material ex-
ternalisations of human acts. For Leonelli, data is material, too, and it is characterised
by its functional role as evidence and its portability.
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Some philosophical literature about what data is is available. I introduce positions
that I deem noteworthy and helpful for our discussion.

Suppes: Data in a Hierarchy of Theories with Models

Patrick Suppes (1962) is one influential source for an attempt to explicate data. He
introduces models of data, which are, roughly speaking, possible outcomes of data
after extracting from raw observational data only the aspects that are relevant for
a specific inference between data and hypothesis. This implies that a model of
data does not depend only on the methods and equipments to gather the data,
but also on the theory in question to confirm or to corroborate or to estimate
parameters of.

Let us investigate his idea about data a little bit further; this investigation
helps to shed more light on the distinction between data and other concepts that
play a part in scientific reasoning and are not data (e.g. theories; phenomena).
For Suppes “a theory is a linguistic entity consisting of a set of sentences” in, for
instance, a logical language. In his terminology, theories can be realised, whereas
“a possible realization of a theory is a set-theoretical entity” (1960, p. 5). His
example is: the theory of algebraic groups1 is the list of group axioms, and an
actual group, e.g. {R,+} or {Q\{0}, · }, is a realisation of it.2

This distinction between the linguistic theory, and its realisations as set-theoretic
structures is an adaption from Tarski’s (1953) logical model theory. Among many
others, Ebbinghaus et al.’s (1994) introductory textbook on mathematical logic
is one example of this influence. Here, logical theories, which are a finite list of

1 A group is defined in purely logical terms by the following list of formulae with variables
a, b, c, constant e, the unary function ·−1 and the binary function · ◦ · :

(G1) a ◦ (b ◦ c) = (a ◦ b) ◦ c

(G2) a ◦ e = a

(G3) a ◦ a−1 = e

The logical group axioms G1-G3 express the full logical structure about a group, but, however,
only the formulation of a group with sets adds an additional property: the closure under · ◦ · .
This can be formulated as the property of a model

(G*4) All variables in G1-G3 refer to elements in a set G for which holds that

∀ a, b ∈ G (a ◦ b ∈ G)

Realisations (or models) of a group based on a set G and the binary function · ◦ · are written
(G,◦).

2In fact, other authors, including Tarski (1953, ch. III), and Balzer et. al. (1987), use the
same example due to its simplicity and clarity to exemplify related points. However, seen from a
more critical angle, this repeated use of the same example also sheds light on the fact that other,
non-algebraic but still convincing examples from scientific theorising and mathematics are not
easy to find.
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axioms, have models, which are set-theoretic objects that fulfil the axioms of the
theory like the above example of group theory shows:

A possible realization in which all valid sentences of a theory T are satisfied
is called a model of T . (Tarski, 1953, p. 11)

What then is data in Suppes’ account? Data for a scientific theory is a possible
realisation of it that fulfils further constraints, so that not every possible reali-
sation can be data. Functionally, data has to be gathered by some experiment
or measurement. Mathematically, data has to be finite or, respectively, at least
bounded, since, for example, “no actual experiment can include an infinite number
of discrete trials” (1962, p. 254). This mathematical criterion hints at the fact
that the gathering and recording of data has to be feasible, meaning that it must
at least be possible to gather this set of data by an actual action of an apparatus
with or without any human interaction.

What are models of the data for Suppes? A model of the data is a set-theoretic
object, which is consistent with the elaborations on Suppes’ concept of a model as
given above. But according to this criterion, we need to have a theory of models
of the data (sic!), which are the sentences that have to be satisfied by the model
of the data. The theory of models of the data are sentences that describe what
properties the data should have (e.g. be a series of length 10 of real numbers
between 2 and 4). One can give a theory of models of the data only if one has
sufficient theoretical knowledge about, on the one hand, the scientific hypothesis
that motivates the scientist to gather the data and, on the other hand, the entire
measurement procedure used to gather the information that will be transformed
into data.

As opposed to data, a model of the data has not to be gathered by some exper-
iment or measurement, but can be inferred from purely theoretical considerations.
That is why a theory of models of the data has to be distinguished from a theory
of data: the latter one may include claims about the data that are irrelevant to
the inferential role of the data for the scientific hypothesis in question. Those
irrelevant claims occur due to the rather mundane fact that experiments and mea-
surements can often not be designed to produce only the results of observations
in which the scientist is interested in the specific context of conducting them. A
model of the data does not encode these irrelevant features of the data. But to be
able to pin down a model of the data, theoretical knowledge of the experiment or
measurement must be available as well. This knowledge can be vastly complex and
may involve large social groups of collaborating expert agents who carry different
pieces of the relevant knowledge. To sum up this view more generally, a scientific
theory and the most basic descriptions of how the raw data is gathered are “two
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extremes between which a hierarchy of theories and their models is to be fitted in
a detailed analysis” (1962, p. 255).

The data may have features that are not features of the model of the data, be-
cause they are not relevant for the inferential role of the data in the relevant scien-
tific context. However, many inferences between data and hypothesis incorporate
a treatment of noise, which is the distortion of the idealised data that would have
been gathered without any theoretically disregarded or unknown or pragmatically
unavoidable influences. This is my proposed notion of noise, which is particularly
suitable for statistical physics. Noise may not be mistaken for uncertainties that
are intentionally described by the theory in question (e.g. by the wave function in
quantum mechanics). Where do we have to locate the noise in Suppes’ distinction
between data and models of data? The answer to this question helps to further
clarify Suppes’ notion of models of data. There is an important distinction between
noise and the features of the data that are certainly not features of a model of this
data; noise is—adopting some terminology from statistics—the true residual in the
data after all the theoretical knowledge (about the measurement, the experiment,
the empirical part of the world etc.) involved at the inferential process is taken
account of; noise are the features of the data that remain unexplained by the the-
oretical knowledge. But the with the model of the data intentionally disregarded
features of the data are the features that the scientist can disregard concerning the
inferential role of the data by reference to his theoretical knowledge. That is why
I understand under Suppes’ notion of models of data not the exclusion of noise. It
is very common in scientific inferences from data to hypothesis to formalise statis-
tical tests that take an acceptable level of noise into consideration. That is why we
have good reasons to simply add a stipulated noise term (e.g. a Gaußian random
variable called ‘ε’) to the theory of the model of the data. This noise term marks
a noticeable difference between a model of data (having noise) and an idealised
outcome of data (being free of noise). However, in some cases a model of data may
specifically exclude noise, for instance, the only two-valued answer to the question
‘Are the lights on in this room?’.

What conceptual role, under closer scrutiny, does a model of the data play in
the inference from observation to theory? It should, in the context of an already
understood experimental design, exemplify all the information from the observa-
tion that is relevant to an affirmation or falsification of the hypothesis in question
and strip away all the irrelevant information. This concept is most apparent in
statistically formulated scientific setups:

The characterization of models of data is not really determined, however,
by relevant information about experimental design which can easily be for-
malized. (...)
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The central idea, corresponding well, I think, to a rough but generally clear
distinction made by experimenters and statisticians, is to restrict models
of the data to those aspects of the experiment which have a parametric
analogue in the theory. A model of the data is designed to incorporate all
the information about the experiment which can be used in statistical tests
of the adequacy of the theory. (1962, p. 258)

These ideas from statistics illuminate Suppes’ approach, but I want to point out
that these ideas are by no means restricted to a statistical framework. I claim that
we can find analogies in all frameworks of empirical scientific reasoning indepen-
dent of the degree of mathematical explications involved. I see no reason why for
Suppes’ account the “parametric analogue in the theory” (e.g. the melting point of
lead as a temperature in degree Kelvin), which is statistically testable in a math-
ematical framework, should not translate to important aspects in a framework of
scientific inferences without any worked out mathematical tests and even without
data from experiments (e.g. Hitler’s 1939 perception of America’s future influence
on the war1).

Figure 2.2: Data for
inspection of a chick

The model of the data plays a middle level role in five
levels of conceptual abstraction between the observational
data in its rawest form and the model of the actual scien-
tific theory in question. I further describe these five levels
(plus the theory itself on top) by figure 2.3 with the help
of a very simple example. This example is the distinction
between females and males among one day old chicks by
visual inspection.2 Photographs of the chicks play the role
of data in this example. Figure 2.2 shows the data of this
example.

I intentionally selected an example of an everyday inference between data and
theory, rather than a mathematically formalised one such as Suppes’ case of learn-
ing theory. The reason is that, again, there is no principle reason to distinguish
mathematically explicated inferences from ones that are performed by a human
(e.g. identifying a black raven), an animal (e.g. finding a truffle) or an apparatus
(e.g. detecting smoke in a building). My example fits our purpose much better
than Suppes’ example about learning theory, which is formulated in a formalised
probabilistic setup. Furthermore, my example is easy to understand without any
lengthy introduction or expertise in mathematical statistics.

Concerning figure 2.3, it may be debatable which claim has to be assigned
1Data in this example include original documents, testimonies, secondary sources and the

like.
2Chickens have cloaca and can therefore not be distinguished as easily as mammals. For

farming purposes distinction procedures were developed, including a breeding that aims to make
chicks distinguishable by visual criteria like down colours.
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Theory of Exemplary claims Model of
(“linguistic”) of theory (“set-theoretic”)

Chicken sexes - There are two sexes
- Only hens lay eggs
- Only roosters crow

Sex selection model - White spot on the head
shows male

- Dark grey spot on the head
make the sex selection fail

m ∈ {
female,
male,
undecidable
}

Models of experiment - Image processing for better
visibility (e.g. contrast en-
hancement)

- Use more than one photo-
graph per chick

Models of data - It must look like a chick
- Head must be detectable
- Spot on the head must be de-
tectable

- Every other datum is irrele-
vant

Experimental Design - Photography equipment
- Distance and angle for pho-
tograph

Ceteris paribus conditions - Lighting conditions
- One day old chicks

Figure 2.3: Adaption of Suppes’ (1962, p. 259) schematic view on the levels of concep-
tual abstraction between observation and theory for a much more mundane example.
(Original photograph by FreeImages.com/shelley Cunningham)
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to which level in detail; what part is of the ceteris paribus conditions, or of the
experimental design, or of the experiment is in some cases only a matter of stipula-
tion motivated by very practical concerns. Suppes emphasizes his aim to provide a
framework in which the “[t]heory at one level is given empirical meaning by making
formal connections with theory at a lower level” (1962, p. 260). As my choice of
the example already hints at, I reject a fundamental epistemological or ontological
distinction between formalised and non-formalised sciences, branches or specific
theories. Suppes’ example is formulated in statistical terms and the data is used
to estimate parameters. This approach may help to clarify his ideas concerning
their applicability to an already worked out formal framework. However, such a
worked out formal framework is not necessary for his general concept of the many
levels of theories.

The models in figure 2.3, right column, are mostly images and obviously not
“set-theoretic” in any direct sense. However, the information given by an image
can easily be stored in form of a purely mathematical structure (figure 2.4 on
page 42 shows an example). Image storing and processing with computers is a
simple example for this. I do not agree with Suppes predominant implication that
mathematical structures have to be—or at least: are usually—expressed in set-
theoretic terms. Mathematical structures are rather those abstract objects, that
can be unambiguously expressed in principle, and therefore everything that can
be transformed into a digital computer signal is mathematical by definition (but
not vice versa due to infinities in mathematics).—For more details on this view
and the mentioned examples see 3.2 of this thesis. Suppes’, Tarski’s and other’s
preferences for set-theoretically expressed models seem to be motivated by some
realistic (in the metaphysical sense) implications concerning sets or mathematical
objects in general that do not apply to logical propositions, which are in their view
therefore something linguistic and not set-theoretical. However, if sets are real in
some sense, since we have some imagination or intuition or Anschauung about
them, then two-dimensional images have to be as well. A historical perspective
without metaphysical implications is that Tarski’s model theory is an approach
to make predicate logic applicable to proofs and other forms of inference from
the actual body of mathematics.1 If these proofs or other inferences are noted in
strictly set-theoretic terms, which was and still is an influential claim, then strictly
set-theoretic models are a very natural approach for Tarski’s goals. As I conclude
a couple of paragraphs below more thoroughly, Suppes’ focus on set-theory is too
narrow and seems to have been influenced by Tarski’s noticeably different goals

1Tarski (1953, p. 5) introduces the distinction between theories and models in this way
with reference to Hilbert’s and Bernays’ (1934/1939) predicate logical approach to mathematical
reasoning.
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for introducing set-theoretic objects and call them ‘models’.
To conclude, what do we learn about data from Suppes’ ideas? He offers

an approach to conceptualise theories and data in one and the same framework
via models, which may seem counterintuitive, on the background of the classical
logical empicists’ and in particular Carnapian (1966) picture of a more or less strict
epistemic distinction between observables and theoretical terms. This distinction is,
more precisely, that for Suppes theories already come with models—whereas I do
not care much about whether they belong to the theory not—and data comes in the
light of a specific theory with a model of data. The inference from observation to
theory happens via abstractions of the models from the different conceptual levels;
Carnap, on the contrary, needs to stipulate “correspondence rules” to connect
theory to an actual observation. For our aim to understand what data is, Suppes’
view implies that theories are descriptions of possible data that enter several levels
of conceptual modelling, rather than a vehicle to stipulate “observable or non-
observable” entities, which is an important aspect of Carnap’s view. In contrast
to Carnap’s notion of observation, Suppes’ notion of data puts much more weight
on the actual data gathering regarding the formulation of a theory, since the theory
has models, which are, in the end, abstractions of gathered data.

Suppes explains why interesting aspects of data are explicable before actually
gathering the data (because the data has to show the aspects according to a model
of data). Furthermore, he introduces the idea that the hypothesis in question is
not the only theory involved, because theories also occur at the level of data
and experiment. Bogen and Woodward’s (1988) (cf. 5.1) motivating example
for the discussion about phenomena is that bubble chamber photographs for the
detection of weak neutral currents are selected from a much larger collection of the
experimental results from which most of the resulting photographs are ignored.
This example can straightforwardly and successfully be explained with Suppes’
concept about models of data and models of experiment.

I agree with the idea to offer a comprehensive formal approach for scientific
inference from observation to theory via different conceptual levels of abstraction,
and I also agree with the predominant role of mathematics for the models in these
levels. But I disagree with Suppes’ view that the models, which are always math-
ematical, have to be set-theoretic or at least set-theoretically expressed. Modern
mathematical structuralism (see part 3.1) offers a too convincing fundamentally
non-set-theoretic approach for a characterisation of mathematics to claim that
mathematics is best described as a business of working on a set-theoretic funda-
ment. In much later works, Suppes (2002) adapts his approach to the mathematical
developments towards a non-set-theoretical vocabulary for the expression of math-
ematical structures. He admits “that a pluralistic attitude toward the concept of
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structure [= mathematical objects or propositions] can be taken. The modern
mathematical theory of categories [(find a definition on page 74 of this thesis)]
provides other arguments [against sets as the conceptual basis or fundamental lan-
guage for mathematics] of a different sort.” (p. 35) And he defends the choice of
set-theory as the vocabulary for the expression of structures for scientific purposes
as pragmatic:

Total adherence to a reduction of all entities to sets, or sets and individuals,
is not really crucial to the viewpoint adopted here. It is also natural and
sometimes easier to use creative definitions of identity to make available new
abstract entities that are not necessarily sets. Such definitions are called
creative because new propositions can be proved with their introduction.
Already in my book on set theory (1960) I departed from pure set theory
(...) (p. 34)

After this passage he mentions examples of these abstract entities, including
ordered pairs (which I also use and formally develop as an example for category
theory at part 3.1). It may be fair to speculate that Suppes’ often cited arti-
cles about models in science (1960) and models in data (1962) would imply less
reference to set-theory, if he had published them much later, for instance after
2002.

Hacking: Data as Material Externalisations of Human Acts

Ian Hacking (1992) provides a description of data for the “laboratory sciences”.
His notion of data is embedded in a more general conceptual framework for these
sciences, and this framework is “metaphysics and epistemology, a contribution to
our radically changing vision of truth, being, logic, reason, meaning, knowledge
and reality” (p. 29). Be that as it may, with his text he aims to provide support
for the claim that laboratory sciences “tend to produce a sort of self-vindicating
structure that keeps them stable” (p. 29–30) throughout the historical changes of
our scientific knowledge. ‘Laboratory sciences’, in his terminology, is only loosely
defined as studying “phenomena that seldom or never occur in a pure state before
people have brought them under surveillance” with the use of “apparatus[es] in
isolation to interfere with the course of nature that is under study” (p. 33). What
are data in his account?

Data: what a data generator produces. By data I mean uninterpreted in-
scriptions, graphs recording variation over time, photographs, tables, dis-
plays. These are covered by the first sense of my portmanteau word “mark.”
(p. 48)

I comment this quoted passage. Data generators, in his terminology, are objects or
agents that produce data, for instance “people or teams who count”, “micrographs”
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or “automatic printouts”. (p. 48) He generally distinguishes between three general
groups of “elements” for his description: ideas, things and marks. Things and ideas
are very much what our common understanding of these concepts suggest. Marks,
however, are a concept that is more unique to Hacking’s account. He introduces
marks as “outcomes of an experiment” or “manipulations of marks” (p. 44). Given
that we want to know what data are and we read above that they are marks, this
answer is not informative and almost circular. He further states that “marks are
‘visible impressions’, ‘signs or symbols that distinguish something’, ‘written or
printed signs or symbols’, ‘indications of some quality’ and also ‘goals’ ”. These
things are hard to put into one class by any traditional philosophical approach
(epistemological or ontological); however, Hacking later clarifies that “marks are
things”, but not all things are marks. (p. 44)

But how can impressions or indications be things? Hacking clarifies his views,
implying that the data (things) are some sort of externalised human acts:

Some will pleonastically call such marks [= data as introduced above] “raw
data.” Others will protest that all data are of their nature interpreted: to
think that there are uninterpreted data, they will urge, is to indulge in “the
myth of the given.” I agree that in the laboratory nothing is just given.
Measurements are taken, not given. Data are made, but as a good first
approximation, the making and taking come before interpreting. (p. 48)

“The myth of the given” is a reference to the influential debate inaugurated by
Wilfrid Sellars (1956), whose position is best described by Eric Watkins’ (2008)
summary that “empiricists are mistaken in thinking that what is given through
sensibility could be sufficient for knowledge, since sensations do not have the struc-
ture, however it is characterized, that knowledge has”.1

What can we take from this quote? It is important to note that the “making
and taking” of data is not “interpreting” them, which is completely consistent
with an everyday description of scientific work. The “making and taking” can
best be classified as (human) acts in very general. No theoretical description of
them is necessary, but only a sufficient instruction for the agent (e.g. experimental
physicist; programmer). As an example, for LIGO’s 2015 data to be a thing that
is isolated from any mind and interpretation I understand the notion of a thing
in this context in a way that this set of data is the actual storage statuses on the
hard drive on LIGO’s data server; it is the magnetic configurations. However, one
can make the point that a mark can be a mathematical object (e.g. a series of
numbers), too, given a sufficient degree of mathematical realism.

1A good starting point to further investigate the discussion is, in my opinion, Watkins article.
Other influential philosophers, including Donald Davidson (1980; 2004), Robert Brandom (1994)
and John McDowell (1994) responded to the discussion, whereas Kant (1787) provides an implicit
influential position on the subject—without, of course, using Sellar’s label for it and motivating
the eponym neo-Kantianism for a modern adaption of his stance in this discussion.
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The description of data as things, as opposed to set-theoretic objects in Suppe’s
account, accentuates that a set of data can be as bad scientifically understood as
any other thing in our world. For Suppes, a “possible realisation”, which a set of
data is, is a possible realisation of a theory. That is why he needs to introduce
theories for every level of conceptual abstraction. Hacking opens the door for data
being some outcome of an act, which in itself does not have to be completely
scientifically understood and described by theories. If, hypothetically, data is
gathered to support a specific hypothesis, but the outcome is negative and the data
shows only results that cannot be explained by any known theory, then, according
to Suppes account, the model of the data and the actual set of data at hand do
not have any important common features. That is why Suppes account neglects
unexpected data and could be called blind to it. A further important argument
against Suppes’ account to explicate data in science in general is that in almost no
realistic scientific episode of important inference between data and hypothesis are
all the conceptual levels of theories clearly described or available; it would be a lot
of work to actually reveal all the intermediate theories in a non-trivial but realistic
example from, for example, gravitational physics. However, negative measurement
results are data too and Hacking’s account provides an open door for any kind of
unexpected data.

Leonelli: Data as Portable Material Objects

Sabina Leonelli (2015) describes data as “first and foremost, material artifacts”,
that are “essentially fungible objects, which are defined by their portability and
their prospective usefulness as evidence” (p. 811). Why is the materiality of data
important? “The crucial role of portability is also what leads me [Leonelli] to char-
acterize data as material artifacts, independently of whether they are circulated in
a digital form or not.” (p. 819) According to her account, strictly speaking, every
material object can be data, if it is some “research output” and plays the role to
“provide evidence for knowledge claims of interest to the researchers involved” (p.
811).

I criticise this view, because, roughly speaking, ‘data’ does not refer to material
objects in any strict sense (e.g. X-ray photographs; sheets of paper with numbers
on it; specific configurations of magnetic polarisations on a computer hard drive).
A distinction between material and abstract is well established in ontology, fruitful
and should not become indistinct here. Instead ‘data’ refers to the information
that is illustrated or stored by the object. Information is something structural and
abstract, and not something material. In my view, this information is structural
and therefore mathematical. This difference is more important than it may seem
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at first sight, because in my view the inferential transition from something in
the empirical world (e.g. a chair; a light beam; a scream) to an object of our
thought—how Frege famously put it—has to be located in the process of producing
or reading data and not at the interpretation of material objects. With this I mean
that data is something that is already formulated in a humanly accessible and
for humans unambiguous way (e.g. series of numbers; images); we would by no
means consider an, for instance, invisible infrared light signal as data, but rather
a somehow transformed visible image of it with the additional information that
this image shows an infrared signal. My account is descriptively more adequate to
what physicists and other scientists refer to by using the term ‘data’.

The portability criterion has two important implications: firstly, data has to
be genuinely non-idiosyncratic, meaning that it can be read by everyone with
the proper background knowledge, which has to be accessible (unlike e.g. the
golden plates that allegedly only Joseph Smith could read to write the book of
Mormon). Secondly, it must be logistically possible to move data from one recipient
to another. This second criterion is less trivial than it may seem at a first sight.
Imagine an archaeologist, who finds some interesting excavation site of an ancient
city. If we identify the old foundations of the city as interesting archaeological
data in the context of the discussion of some hypotheses about ancient societies,
then the portability criterion seems violated. We may save the portability criterion
by claiming that everyone can just visit the excavation site. But this is not what
Leonelli and also me have in mind. We would both not be willing to call the actual
foundations the data, the actual data are the photographs or written measurement
results that the archaeologists circulate in their working group. If an original
photograph gets lost in a building fire, then the data is still available when copies
were made; what the photograph shows is the data and not the photograph itself.
However, my claim is the more general one that only the (structural) information
on or in the circulated material objects (e.g. photographs; hard drives) is the data.
That is why the portability criterion is well fulfilled in may account, too.

Furthermore, Leonelli (2009) criticises (Bogen and) Woodward’s description
of data as being “idiosyncratic to particular experimental contexts, and typically
cannot occur outside of those contexts” (1988, p. 317) in contrast to phenomena.
She discusses the example of DNA sequences, which are in many cases not gath-
ered to provide evidence for particular claims about a phenomenon, but rather to
provide a more general database for several possible claims about genetics in very
general.
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2.2 Data are Mathematical Objects

Section Abstract
Sets of data are mathematical objects, which are not defined by any functional role
in scientific reasoning. Data comes always with a description of how it was gathered
without this description being part of the data itself. Manipulation of a set of data
must be explained by theories of measurement and experiment; some aspects of Suppes’
approach are convincing. Data does not represent anything empirical, but material
objects can represent data. Computer technology to store data exemplifies how data
is mathematical. Scientific data is mathematical, because patterns can be explicated
only mathematically. More specifically, a set of data is an equivalence class over some
minimal structure.

Before we dig deeper into the philosophical discussion about why data is something
mathematical, let us have a look at how data is actually processed and stored in
everyday scientific applications. This helps to sharpen the view on what aspects
of data and data processing are without much doubt mathematically explicable
and for what aspects further argumentative work has to be done.

An interesting aspect of data is that it does not only appear in various forms
(e.g. lists of numbers; photographs; texts), but is also epistemically approached in
very different ways. Statisticians developed an extensive mathematical body for
the recognition of patterns and the construction of models of data in rather simple
mathematical forms, such as time series of numbers. Another approach to detect
patterns in data, which may be called semi-statistical, is to provide unambiguous
detection rules for human agents, but no full mathematical explication. Examples
of semi-statistical pattern detection are the detection of a lung tumour by an X-ray
image or the astronomical classification of stars (e.g. blue giant; red dwarf) by tele-
scope images. The phenomena involved are relatively clearly described and false
reports occur only very rarely, if the scientist or expert is well trained. But with
many other forms of scientific empirical investigations, not even semi-statistical
techniques of pattern recognition are applied. In historical, psychological or social
studies, texts or the behaviour of a test person are the subject of pattern detec-
tion, but the patterns or the detection procedure are usually not mathematically
explicated. Clinical psychology is an exemplary field in which the phenomena
(e.g. psychopathy) are often described only very vaguely and the explication of
the corresponding patterns is a substantial aspect of further investigation.

Data can be stored digitally or non-digitally. The following discussion about
techniques of digital data storage and pattern recognition via software helps us in
the further discussion about data and pattern recognition on a general epistemic
level. Computers need digital transformations of the data to store it. Physical,
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non-digital storage techniques may be used for photographs, videos, sound tracks
or documents in physical archives as, for instance, negatives or magnetic tapes. If
data is translated into digital signals, then it is basically always translated into
a finite list of binary numbers that can be stored using different techniques (e.g.
magnetic tape; optical storage). Note that for this translation into binary numbers
a multi-level setup of software plays a determining role. But this software setup
does not obscure the fact that there is nothing more to a set of data than what
can be mathematically explicated. Images are approximated by translating them
into discrete and bounded grids of pixels (see figure 2.4) that are further coded
into binary signals. Sound tracks are approximated by fragmenting them into
discrete and bounded spectra of waves1. These digitalisation techniques, if applied
in science, are optimised to store the aspects of the physically represented data
that are interesting to the scientists of a specific community or who are engaged in
a certain topic. These image or sound track digitalisations are designed to apply
intended data analysis techniques by either computers or human beings. Digitally
stored X-ray photos, for instance, are intended to be as informative to the naked
eye as the original physically stored photos.

Strictly speaking, digitally stored data sets are examples of models of data in
Suppes’ (1962) sense. But the rules that govern which aspect or information in
the data is stripped away are comparatively rigid and rather driven by technical
standards than by specialised needs for a specific set of data in question (e.g. the
scanner at the MCMP can provide a 600 dpi scan of a photograph). Most often
the rules for approximating the data by the digital transformation are chosen very
conservatively concerning the possible loss of information. If we store an image,
we can easily approximate it by an image file that shows us the same picture to
the naked eye, but not necessarily to a more indepth inspection with the help of
more advanced visual inspection techniques (e.g. a microscope). However, due
to needs concerning storage capacities or software restrictions, the approximation
for digitalisation can be more substantial than just stripping away what a human
agent would neglect in every data analysis routine for sensory and epistemic reasons
without auxiliary equipment anyway.

For the concept of data that we want to explicate it is not of crucial interest
whether data is stored or processed in computer systems or not. The point of in-
terest is, whether computational storing and pattern recognition is something that
exemplifies data perception and pattern recognition in data in general. If data
and pattern recognition can satisfactorily be reduced to mathematical objects and
algorithms applied to these objects, then these concepts can be explained more

1A translation of a signal into a spectrum of waves is mathematically explicated by the
Fourier-transformation.
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simply on the basis of our knowledge about mathematics. This idea leads to a
program of a specific mathematical formalisation of data, patterns and pattern
recognition. I will follow this approach under certain assumptions in chapter 4.
I further explain my claim that the modern development of computer technology
should strengthen the belief that there is nothing more to human pattern recog-
nition in science than what can be mathematically explicated, because it can be
implemented—see my elaborations in 3.3.

An aspect of interest concerning the ontological classification of data (cf. p. 23)
is: what are sets of data that are originally not mathematically represented, such as
the information on an X-ray photographs, ontologically speaking? If data were not
mathematical, then pattern recognition techniques directly applied to them cannot
be purely mathematical either and further explanation is necessary to clarify the
concepts of pattern and pattern recognition. As mentioned, digital translation
of data always results, basically, in a finite list of binary numbers. Therefore,
some digitalised photograph is information stored as some digital signal and, in
principal, nothing other than a finite mathematical object, such as the number four
or a triangle. On the other hand, objects that show data such as photographs or
sound tracks are not always directly analysed by mathematical algorithms. These
are often analysed via the sensory impressions they cause in human beings. I state
that in all of these exemplary cases the set of data is a mathematical object, and
opposing intuitions are misleading. Rather naive arguments against my claim, but
also some strong ones will be presented throughout this section and rebutted.

Further arguments can be put forward to strengthen the position that not all
data is reducible to mathematical objects without the loss of important infor-
mation. These are that some data are still stored physically for actual scientific
applications (e.g. non-digital audio tapes; X-ray photographs), digitalisation is
often conducted only for pragmatic storage needs (e.g. hundreds of thousands
of night sky photographs) and translations into digital formats are never unique
(e.g. different choices of resolutions for raster images). A further argument is that
common scientific analyses of images or sound tracks seem very non-mathematical;
recall the example of animal noises or historical speeches as data in science.

When we refer to data in scientific contexts, we do not refer to some physical
object. We refer to what it shows, what sound is recorded on it or what the results
of an analysis procedure applied to it are. Sets of data are abstract objects in the
sense that they do not have a determinate position in time and space. Therefore,
a physical object (e.g. piece of paper; computer hard drive) can only represent
some data (with a notion of representation that is, admittedly, idiosyncratic to this
thesis but thoroughly introduced in 2.3). The time-spatial position of a physical
X-ray photograph is, of course, irrelevant for the data it shows, that is, the data
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it represents.
However, I claim that data are mathematical objects and patterns in data

are mathematical properties of these mathematical objects, which seems more
surprising in the cases of social and historical studies than for physics. As opposed
to Hacking and Leonelli (see 2.1), I do not believe that data is material in any
sense. A set of data is rather an abstract or linguistic object—this distinction
is, in my view, not relevant, since I see no ground for a substantial metaphysical
distinction between a logical proposition on the one side, and a mathematical
or abstract object on the other side.1 My account is agnostic about realism or
nominalism regarding mathematical objects or propositions. When I claim that
data are mathematical objects, I do not refer only to any model of data in Suppes’
sense, but rather to the raw data itself (e.g. the actual measurement results)
without any form of modification.

I need to strengthen my position on data being purely mathematical. I for-
mulate my replies to two substantial challenges to my position, that I received so
far.

Objection against Data as Mathematical Objects: Mental
States are not Mathematical or Reducible to Mathematical
Objects

A lot has been written about the philosophical nature of mental states,2 which are
experienced feelings like a headache or the sensation of the colour red for humans. I
do not intend to provide a thorough discussion of the field. But an objection to my
claim from proponents of irreducibility of mental states to anything independent
of a human mind (i.e. physical brain processes) would read like the following:
a photograph or political speech may be transferable into a mathematical object
and digitally stored as such, but the colours or the impression of a voice is by no
means mathematical, though they are substantial parts of the data.

Figure 2.4, top left, shows an example of some observational data that is simply
a photograph of a flower. In case you doubt this being a proper example of scientific
data, imagine a botanisc who shows it to some audience as a newly discovered
plant. In the figure, bottom left, we find an outline how the photograph might
be stored as a raster graphics in a computer. Due to presentational reasons, the
raster graphics shows only 16 × 16 pixels and is reduced to 4′096 = 163 colours.
We could chose more pixels and colours, but there are obvious practical obstacles

1As further elaborated on in 2.1, this distinction originates in the application of Tarskian
model theory, which was invented to bridge the gap between predicate logic and actual mathe-
matics, to philosophy of science by Suppes.

2I use ‘mental state’ in accordance with Putnam’s (1967) classical paper.
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with the complete presentation that I aim to give with the help of this figure. On
the right side of the figure you can find the image transferred to a matrix with a
common mathematical notation.

D =



368 378 368 367 378 379 378 368 267 267 267 267 256 256 368 257

267 368 368 267 368 379 378 268 268 267 267 267 256 267 378 256

267 267 267 267 267 267 367 567 467 268 368 267 267 267 379 267

368 267 268 367 455 944 845 C22 C33 666 268 257 257 267 379 267

368 267 267 367 445 834 B22 D11 D10 D64 CA6 466 267 267 367 267

368 267 256 256 356 434 633 811 900 D76 E43 E21 A33 267 267 267

267 267 256 444 711 700 800 922 A44 B33 C11 B00 D11 934 267 267

256 267 267 267 533 711 811 811 912 801 800 A11 C11 A44 267 267

267 267 267 268 356 711 800 711 811 700 811 A11 A23 955 156 256

257 267 378 368 268 456 533 711 800 700 801 900 656 457 256 257

267 267 378 267 267 378 367 355 445 445 834 B22 845 268 267 267

267 378 368 267 267 378 267 366 355 267 378 367 257 368 257 267

378 378 368 368 368 378 267 367 366 267 267 267 256 368 256 267

368 367 267 256 267 378 267 367 476 256 257 267 256 378 256 267

378 257 267 257 267 368 368 377 465 257 267 267 267 379 368 267

378 267 378 368 378 267 267 488 476 267 378 267 267 378 267 378


Figure 2.4: Top left: cut from an observation, bottom left: data that is sufficient for the
inference, right: one of many possible mathematical explication of the data (a 16 × 16
matrix, the positions i and j for dij ∈ D refer to the position of the pixels in the image,
the three digit hexadecimal number per pixel refers to the RGB colour code).

My opponent may have read Frank Jackson’s (1982; 1986) widely discussed
knowledge argument1, which I use as a paradigmatic example in the discussion
of irreducibility of mental states. My opponent would stress the point that the
impression of red, which the left images in the figure provide, is not provided by the
mathematical object, which is described on the right in the figure. For Mary from
the thought experiment, who never experienced seeing red, the left image and
the matrix carry equivalent information, but for everyone else (without colour-
blindness) the unique, non-physical sensation of red gets lost in the translation
into a mathematical object.

Here is my answer: our human sensation of red has nothing to do with the
information (or: datum) that there is red colour. Regarding the role of data in
scientific inferences the proposition ‘the flower is red’ is as useful as a picture that
shows only that the flower is red (and nothing more, which is—obviously—hard

1Jackson presents a thought experiment to argue in favour of the claim that not all knowledge
is physical: the brilliant scientist Mary has a perfect physical and biological knowledge about the
colour red, why objects can be red (i.e. wavelengths of light) and how we are able to perceive red
with our human senses (i.e. how eyes and brain work). However, she never experienced seeing
red, since she always worked and lived in rooms without red objects. Jackson claims that with
the first experience of a red colour sensation, she learns something new, which is not physical
knowledge (which in my approach is mathematically explicable knowledge).
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to make up). There is no inference between data and theory that could be done
only with only one of these two options and not with the other. That is why the
matrix in the figure carries all the information that the photograph does and is
therefore the data.—And that is why Mary, who never experienced seeing red, can
still be a brilliant scientist with flawless and full-featured scientific reasoning: the
sensation of red does not have any value for scientific inferences, it explains noth-
ing and it does not have to be explained. In other words, mere sensations cannot
enter any process of scientific inference, since they are by definition not externalis-
able, whereas externalisability is a predominant criterion of data, as Hacking and
Leonelli point out, too. And this arguments still holds, if we remain agnostic about
the irreducibility of mental states.

This point is related to the points I raise against Dennett in 4.2. Dennett
claims that for humans detectable patterns in data (e.g. glider in Game of Life)
have another metaphysical status than the ones to which we humans are blind to
(e.g. AlphaGo’s analysis results for a match of Go). I reject any relevance of this
distinction for the purpose of scientific inferences. That is why Jackson’s Mary
can be a brilliant scientist.

Leonelli emphasizes that an important criterion of data is portability. Without
even having to dig into computational theory, data portation is a topic of digital
information theory1. Data has a mathematical form due to its crucial role of
being portable. But do mental states, like the sensation of red, influence creative
processes in science (e.g. designing experiments; finding new patterns)? The next
objection deals with this question.

Objection against Data as Mathematical Objects: There is
no Convincing Theory of Good Data or of a Good Experiment

A common objection against the claim that data and the inferences between data
and hypotheses are mathematical objects and procedures is that, very roughly
speaking, doing science is an art (whatever that means in detail). A more concrete
aspect put into words by the same intuition is: designing a successful experiment
that produces fruitful data in a difficult empirical context is a highly creative act
(whatever that means in detail) that can by no means be understood as being
logically or mathematically inferred by a set of mathematically explicated rules.

At 3.3 I elaborate in a more general context on the view why I believe that
scientific inferences and the information and abstract objects involved can in prin-
ciple always be mathematically explicated. In the following, I outline my answer

1Claude Shannon’s (1948a; 1948b) ideas became influential, because he provides an approach
to transfer digital data over long distances via conducting wires or electromagnetic waves without
any loss of information. This is at the core of the theory of computer networks.
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for the specific case of data that is useful for a scientific inference, and the methods
of gathering it.

The above outlined objection is based on the assumption that a human being
acts or thinks in some regard differently than any machine could do. I want
to remind the reader—with reference to 3.1—that ‘mathematical’ does not mean
only actually explicated by an algorithm. Something is mathematical, if it can be
explicated in mathematical terms in principle. That is why the inferential work
that a computer can provide (e.g. pattern recognition by an algorithm or neural
net) is always mathematical. This includes the execution of vastly CPU-expensive,
but terminating algorithms or executions in accord with rules that were established
via machine learning and that may never be understood by a human being (e.g
AlphaGo playing Go).

Given the fact that our body, and our brain in particular, is a biological cellular
automaton, the view that a human being acts or thinks in some regard differently
than any machine could do needs a convincing foundation. To be more specific,
the argument for such a view should not only explain why a human being may
have mental states and a machine does not; it has to explain why a human being
can make inferences or act in a way that a machine can not. Some arguments for
this claim were developed in the context of the philosophy of mind and have their
roots in Descartes’ Meditationes (1641).

A candidate to frame this issue is the discussion about mental causation, which
can be regarded as being “at the heart of the mind-body problem” (Shoemaker
2001, p. 74). The mind-body problem refers to the philosophical tradition of
claiming a general ontological distinction between bodies, which are spatiotempo-
ral, and the unextended minds, which are traditionally related to a terminology of
souls (Thomas Aquinas1) or monads (Leibniz 1714). Since these are two distinct
realms, any sort of mutual influence between them has to be explained by, so to
speak, bridging principles (in an ontological sense). A non-reductive stance about
mental causation implies that mental events (e.g. having a thought) can cause
bodily actions (e.g. tasting the water), but these actions are not caused by the
physical brain functions that correspond to the mental event. To be clear, the
difference between free will and mental causation is, according to this terminology,
that free will implies the much stronger claim that human actions are not guided
by fully deterministic rules (neither mental, nor physical).

By this terminology, electromagnetic processes in a computer are bodily pro-
cesses, and human thoughts are mental processes. The critical view of my oppo-
nent at this point would be that inferences between data and hypotheses performed

1Aquinas’ (1225–1274) main notes on souls coined this notion and are described in his writings
De spiritualibus Creaturis and Summa theologica, which is one of his major works.
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by a computer may be mathematical, but this tells us nothing about inferences,
thoughts and decisions performed by a human mind, since a computer and also
any form of mathematical explication does not carry any mental consciousness.

I agree with Shoemaker’s assessment and want to reintepret it with respect to
my topic by claiming that mental causation is at the heart of the problem whether
data, data gathering and inferences with data are in principle purely mathematical
or not.—What else than mental causation can draw a line between the capabilities
of a computer and the epistemic capabilities of a human being? Without the
philosophical introduction of mental consciousness, the human brain is a mere
cellular automaton and it is hard to believe that we could not just classify it as
a computer (with a very different architecture than our electromagnetism based
computers, of course). That is why I focus on mental causation at this point. In
the earlier objection I explained why mental states are irrelevant to a concept of
data; a further step is this claim that mental causation does not play a relevant
role for the scientific practices that involve data.

The literature on mental causation is extensive1 and I do not aim to provide a
thorough discussion. However, my philosophical conviction is that there is, over-
all, no convincing argument for mental causation in general and for our purpose in
particular. In this regard I generally agree with the epiphenomenological camp in
this discussion. Traditionally, the relevant discussion on epiphenomenalism starts
with Huxley (1874), but newer empirical based investigations from the psycholo-
gist’s direction—like the ones from Wegner (2002; 2004)2—strengthen my negative
stance. No convincing operational criterion for the existence of mental causation
has been proposed. Such an operational criterion would have to show how mental
causation influences human actions for which a purely physical explanation is in
principle insufficient.

As elaborated on in 3.3, recent software developments show, roughly speaking,
that computer programs can accomplish tasks that some may claim to necessitate
specific human creativity (which presupposes consciousness according to my un-
derstanding of the notion). Examples includes IBM Deep Blues’ victory in a game
of chess against reigning world champion Gary Kasparov in 1996, IBM Watson’s
victory against Jeopardy! champions in 2011 and Google AlphaGo’s victory in
Go over Fan Hui in 2015. Many examples of remarkable performances by visual
pattern recognition software are available, too—see 3.3.

At 3.2 I also explain why the Church–Turing thesis aids my general conclusion
that an actual implemented software proves mathematical explicability. Compu-
tational logic provides a carefully developed ground about what is computational

1See Robb and Heil (2013) for an introduction and overview.
2Find more on this at Robb and Heil, 1.2.
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in general and what is not. However, my empirical arguments about the recent
software developments rest on the constructive successes rather than fundamental
boundaries.

One important criterion of a mathematical explication or mathematical proof
or computational function is its finiteness or, respectively, termination. Is it possi-
ble that a creative human act cannot be finitely explicated in mathematical terms?
If this was the case, then we have a simple argument at hand to oppose the view
that a creative human act can always be mathematically explicated. However,
for this to be the case we need some plausible explanation where the mathemat-
ically inexplicable infinities may occur. But epistemology and logic provide good
arguments to believe that human scientific reasoning is best explicated by finite
propositions and human scientific inferences are best explicated by the use of a
logical language. And our scientific knowledge in biology, chemistry and physics
provides good arguments to believe that the cellular automaton in our body works
in accordance with deterministic rules (even if they are very complex). That is why
there is not much room left to believe that mathematically inexplicable infinities
are possible.

I introduced the opponent’s view with the note that there is no theory or even
any form of loose guide about designing an experiment or gathering data for the
cutting-edge scientific developments. My opponent may claim that, such as with
many other practices and arts, it takes years of experience to master these fields
of science and every scientist has a very unique personal mindset and style about
what he is doing. My answer to this opponent is that all of this is true, but
it is no argument against my claim. The human brain and cognition are vastly
complex (by any adequate notion of complexity) and so are almost all parts of the
empirical world under investigation (e.g. physical; biological; human psych) by
the different scientific disciplines. Empirical studies about the neural complexity
and mere amount of neurons in a brain support this description. I do not see any
reason why we should not believe that a groundbreaking experimental design can
be mathematically inferred by a set of rules; the important point is that this set
of rules is vastly complex and incorporates a lot of idiosyncratic knowledge and
assumptions of the one experimental physicist. It was designed by a biological
cellular computer that works with a very different architecture and magnitude of
performance than our laptops or smartphones can provide.

Let us go on with the discussion about the claim that data is purely mathemat-
ical. The most compelling argument in favour of this claim is, in my view, that
inferences from data to hypothesis are in many worked out scientific examples
straight-forwardly mathematically explicated. Statistical parameter estimating
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and testing of null hypotheses, as well as pattern detection in general are applied
mathematical algorithms. Bogen and Woodward (1988) introduce phenomena,
which are the important intermediate layer between data and theory, as “patterns
in data” on the background of this intuition: data are mathematical objects to
which we apply routines to detect patterns. In 4.4 I discuss how Ulf Grenander’s
general pattern theory is a sufficient and purely mathematical approach to expli-
cate patterns with sufficient generality. In chapter 5 I discuss how my notion of
phenomena illuminates the inferences between data and theory, which are, in my
view, in principle an application of a mathematical routine.

Most sets of data can serve only in a role in scientific reasoning with proper
additional information about the experiment or measurement or its origin in more
general. A series of tuples can only serve as evidence for the existence of black
holes with the additional information that it shows the observed trajectories of a
certain distant star captured by a specific telescope directed with a specific angle
into space. But this information is not part of the data. I use the term ‘data’ as
close as possible to the everyday use by scientists. This implies that a set of data
has to be gathered via an observation or measurement routine. With ‘observation
or measurement routine’ I do not refer to any elaborated concept of observation
or measurement; this terminology refers only to the mere fact that data has to
come with a description (in the most general sense of ‘description’) of how it was
gathered by a human agent and/or a technical device.

What then classifies a mathematical object as data, if we do not imply any
degree of actual use or usefulness for scientific reasoning at our concept of data?
Data always has to come with a description about how it was gathered. The data
does not represent1 anything empirical, but to be data scientists have to know
how it was gathered. One could claim that under this view, data has to be a tuple
of the data itself in the narrow sense and the information how it was gathered,
i.e. a description of the observation or measurement routine. But I reject such a
definition, because when scientists refer to data, they do not refer to such a tuple,
but to the data itself in the narrow sense: if a gravitational physicist asks another
one for the data, he does not receive a series of numbers with a comprehensive
survey about the interferometer with all its technical details and the body of
relevant theory; he would receive the later as an answer for the question what the
data means or what it shows.

Mathematical objects are afflicted with metaphysical problems themselves,
which are widely discussed in the philosophy of mathematics.2 Are mathematical

1I give some remarks on the recent discussion on the notion of representation in science in
2.3.

2Shapiro (2007) offers a survey of the field that serves well as an introduction.
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objects real or should we take a nominalistic approach? Can mathematical objects
be described in isolation, or should mathematics be described using the structural-
ist’s approach? For an explication of data the ontological classification of data as
mathematical objects is sufficiently meaningful, since a thorough metaphysical dis-
cussion of these objects is available within the philosophy of mathematics. We can
clearly distinguish a mathematical object from a non-mathematical object, even if
the ontological classification of a mathematical object is a subject of discussion in
the philosophy of mathematics. The assumption that a set of data is a mathemat-
ical object prepares the ground to provide a more concrete explication of patterns
in data, as will be given in 4.2. Since, as will be argued in 4.2 about the explication
of patterns, there is no way around explicating patterns as mathematical. That is
why data has to be mathematical, as well.

Under my suggested view, problems for an explication of data arise in scientific
contexts where data is usually analysed by not only purely algorithmic methods,
but rather genuine human “creativity”, whatever that may be. In chapter 4,
we discuss non-algorithmic pattern recognition procedures conducted by human
agents. Data with respect to such an analysis include images, texts and sound
tracks. Examples of images as data are photos of the night sky in astronomy, X-ray
and ultrasonic photographs in biology and medicine, bubble chamber photographs
in physics and patients’ drawings in clinical psychology. Examples of texts as data
include interviews in psychology and social sciences, poetry and prose in literary
studies, and historical documents in historical sciences. Examples of sound tracks
as data include voice recordings in linguistics, music for musicology and animal
noises in biology.

Translations of data into mathematical objects are not unique; recall the several
digital encoding formats for images or sound tracks with computers.1 Analogous to
the case of physically stored data, scientists do not refer to a specific mathematical
representation of a set of data when they refer to data. As already mentioned
above, the relation of identity or representation between two mathematical objects
is not a trivial subject of matter in the first place.

A typical example from the field of quantitative finance are historical asset
returns that are used to model the statistical behaviour of certain financial asset
prices in financial markets. Imagine a simple example of prices of a liquidly traded
stock. For reasons of applicability we are interested in one price listings per day
for the last ten years and choose the end-of-business-day price quotes delivered by
a certain quote provider. This information is commonly already given as a time
series, but not in a unique mathematical format. The data can be given in the
form of

1For images: BMP, JPEG etc., for sound tracks WAV, MP3, OGG etc.
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Figure 2.5: Illustration of one year daily DAX performance. Left: time series of index
points. Right: time series of simple net returns.1

• prices, which is a vector of positive real numbers (St)t∈{0,1,...,T},

• simple net returns, which is a vector of real numbers in (−1,∞)
(Rt)t∈{1,2,...,T} =

(
St

St−1
− 1

)
t∈{1,2,...,T}

, or

• log-returns, which is a vector of real numbers in (−∞,∞)
(rt)t∈{1,2,...,T} =

(
ln
(

St

St−1

))
t∈{1,2,...,T}

with some T ∈ N. 0 denotes the first data point of the time series, which is usually
associated with a date as, for instance, June 3st 2013 and T denotes the last date
of the time series as, for instance, June 2nd 2014. This example is illustrated for
the DAX (German top 30 industrial index) by figure 2.5.

This example of asset price or return time series illustrates a very common
treatment of data not only in finance, but in science in general. Photographs in cell
biology or astrophysics get manipulated by altering contrasts or brightness, signs
in classical texts change for new prints after language reforms, and measurements
of temperatures can be given in degree Celsius or degree Kelvin. These alterations
clearly do not have to be located at the model of data-level in Suppes’ (1962)
approach. According to his terminology they should rather be located on the
experimental level.

If they do not refer to physical objects, nor to specific mathematical repre-
sentations, then to what do scientists refer when they talk about data? If some
scientific analysis of financial market data is conducted, then the scientist will
choose the data in or transform the data to the most convenient format for her
specific purposes. Prices show the absolute level of investment gain in one asset.
Simple net returns show the relative returns in percentage. Log-returns show more
symmetric empirical distributions than simple net returns and are therefore ana-
lytically more convenient to model. If the scientist is interested in the volatility,
then prices, simple returns or log-returns are suitable mathematical representa-
tions of the data. If the scientist needs to know whether the asset price broke
through a certain threshold, then simple returns or log-returns are not suitable
mathematical representations of the data.

1To produce this plot I adapted a script that I wrote for my diploma thesis (2012).
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However, when scientists talk about data, they rather refer to the abstract
(mathematical) object that is represented by all of its mathematical translations,
which’s use in science depends on the scientist’s specific interests of application.
More specifically, the data is the class of all mathematical representations of it
and therefore also a mathematical object. Next, I give a more thorough view on
the notion of representation of data.

2.3 Representations of Data

Section Abstract
Data are abstract, mathematical objects. We epistemically access data via a mathe-
matical or physical representation of it. A mathematical representation of data is an
element of the class, which is the data. On the other hand, data is most often treated as
the direct (measurement) results from an experiment, which is a specific representation
of it; in many simple cases all the information given by the data can be given by one
of its representations. But as in the exemplary cases of stock returns or photographs,
translations of the data for unique pragmatic reasons are common in scientific practice.
Therefore, data are abstract, and more precisely: data are mathematical classes and
we epistemically access them via mathematical or physical representations of them.

I distinguish between physically represented data and data in the direct form of
an (abstract) structure, that is: a mathematical object. I will elaborate on this
distinction further in this section. In many cases, representations of data can be
translated between these two forms and remain useful for scientific reasoning. A
historical time series of earth quakes that shows numbers according to the Richter
scale is useful written down in an old book as well as given as a digital file in a
computer. Here, simple translations from one into the other form can be applied.
However, ancient accounts of volcanic eruptions in written texts or drawings are
not straightforwardly translatable into numerical records. Aspects that are not in
the focus of a translation can be important for future scientific use of this data.1

Representation of one object by another, and more specifically: scientific rep-
resentation, is a topic of discussion recently focused on by, amongst others, van
Fraassen (2008) and Suárez (1999; 2003; 2004). The representation of data by
mathematical objects, as we want to discuss it, should not be mistaken with the
“mathematical imaginary”, as discussed by van Fraassen (2008, p. 39–49) Under
mathematical imaging he understands the representation by selective resemblance

1Volcanic eruptions coincide with certain kinds of earthquakes. Anyhow, even if detailed
records of the earthquakes are available, then not all information on volcanic eruptions are
given.
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of genuinely non-mathematical objects or parts of the nature by mathematical
models1 of them. I restrict my survey about representation to mathematical or
physical objects, which are called ‘data’ in everyday scientific contexts (e.g. a
computer file; a piece of paper with ink on it), and state that these actually repre-
sent something abstract that is referred to and should more appropriately bear the
name ‘data’. Note that I do not use the concept of representation to the extent that
van Fraassen and Suárez have in mind. My motivation for the introduction of this
notion of representation is mainly pragmatic and its denotation ‘representation’
hints to its similarities to other notions of representation, but this denotation is to
some extent chosen due to the absence of better alternatives (at least in English).
My philosophical motivation for the introduction of representation in this descrip-
tion is to bridge the ontological gap between physical objects that seemingly play
the role of data and the mathematical objects that are the data. This is how
my account of data deviates from Hacking’s and Leonelli’s: data are not material
artefacts, data is rather represented by these artefacts.

As van Fraassen points out, the available mathematical representations of na-
ture are—scrutinised in detail—generally inaccurate descriptions for pragmatic
reasons; a mathematical model that is formulated to describe an empirical phe-
nomenon or part of the nature is usually formulated on the basis of idealising as-
sumptions to achieve a tangible simplicity of the mathematical model. How is this
fact related to representations of data? The physical or mathematical representa-
tions of data that are used for scientific inferences are not distorted or idealised in
any substantial way in comparison to the abstract data itself and regarding their
usefulness for the intended scientific inferences. In fact, these representations, or
at least a high proportion of them, manifest the data they represent. Even if the
data that is shown by an X-ray photograph is something abstract, it cannot have
any properties that are not shown by the photograph. There are naturally—that
means: by definition—no properties of data that cannot be represented by one
of its representations. An illuminating example is a developed (non-digital) pho-
tograph: it shows something, but it cannot represent more data than the most
informative representation of the data, which is the original negative the photo-
graph was developed from. The abstract object that they refer to as data can
inherit only the properties that at least one of their physical or mathematical rep-
resentations show. Any notion of idealisation for representations of data would
therefore be misleading.

In van Fraassen’s terminology a physical object, the nature, can be represented
by a mathematical object, a scientific model. In my use of the terminology the

1Here, ‘models’ has the meaning that it most often has in science: a model exemplifies certain
aspects of a phenomenon.
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mathematical object, the data, is represented by a mathematical or by a physical
object, for instance: computer files or photographs. But more strictly speaking
(and more complex), such a representing physical object represents a mathematical
object (a structure), which is a representation of the data. Since a set of data can
be translated into various mathematical forms (see the example from figure 2.5 at
page 49), the data itself is the class of all possible mathematical translations. This
class is then, of course, mathematical, too.

A sound is something physical, and not mathematical; human beings or an-
imals obviously do not hear a mathematical object, when they hear something.
But the data of a sound, irrelevant of it being stored digitally or on a magnet
tape as an analogue signal, is abstract and even mathematical. This distinction is
not only a distinction of mere wording; the physical phenomenon of sound waves
and the biological (or mental1) phenomenon of hearing are involved in sensorially
perceiving the data. But, as will be shown later on, by stating only this prop-
erty of data as being mathematical makes it possible to explain patterns, pattern
recognition and therefore phenomena detection in data. Aspects of human minds
do not influence the ontological classification of data and patterns in them—I sub-
stantiate this claim regarding patterns in the discussion about Daniel Dennett’s
(1991) “real patterns” (see 4.2), which is in some regard an opposing position to
my views.

Not only material objects can represent data. A mathematical object can repre-
sent another mathematical object, which is some data. I sympathise with category
theory and ante rem structuralism (see 3.1) regarding an answer to the question
what a mathematical object metaphysically is. However, structural equivalence in
these terms may make two mathematical objects be identical, even if they are for-
mulated very differently (e.g. one in set theory and the other in category theory—
see the example of an ordered pair at page 75). There is room for arguments in
this direction for cases in which one set of data is isomorphic to another set; those
cases can be seen as mutual representations or as identities. Be that as it may,
more convincing cases of representation of a set of data by another mathematical
object are those in which approximations or data compressions for very pragmatic
reasons are involved. If you scan an X-ray image to a computer raster graphic,
it loses information due to the restricted amount of pixels. Compression methods
for computer files (e.g. JPEG) often decrease the amount of information they

1Taking the specific field of the philosophy of mind into consideration, we should at this point
in the discussion not fully omit the fact that a sensation may be a different kind of phenomenon
than other (complex) biological phenomena, such as digestion. But the main point that I want
to raise here is the general ontological difference between phenomena and data in which patterns
that correspond to the phenomena may be detected. It is a further aim to fully describe all the
metaphysical varieties and aspects of phenomena. As it turns out (see chapter 5), phenomena
selection strongly depends on human sensory and cognitive capabilities.
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provide. In such cases the original data is represented by another mathematical
object without isomorphism, but by a mapping that is surjective and not injective.

The fact that data are abstract objects, which have representations does—of
course—not include that data are some kind of a perfect ideal object that carries
all the information which can be inferred from the experiment. A repeated per-
formance of a certain experiment under different circumstances certainly produces
different data. A phenomenon, as a certain pattern, may not be detectable in the
data from the first measurement, but in the data from the second one (e.g. signs
of weak neutral currents in bubble chamber photographs). But if a pattern can
be detected in data, then this pattern should not depend on the quite arbitrary
representation of the data it is detected in. The scientist’s choice of a specific rep-
resentation is driven by merely pragmatic considerations. Similar to data being a
class of all of its mathematical representations, a pattern is a class of all concrete
patterns that can be detected in suitable representations of the data. Concrete
patterns are mathematical objects as well and will be discussed in 4.1.

This theoretical framework may look overcomplicated at the first sight. But, as
we will see, this detailed construction is necessary to explain the relation between
patterns and phenomena. We need this clear picture about data and representa-
tions of it to explain what patterns in data are. Patterns are something that can
or cannot be recognised in a specific set of data. The representations of data are
used to apply the pattern recognition procedures (mathematically explicated or
not) to them. Different representations of data may be chosen by a scientist due to
pragmatic reasons, which are, in parts, guided by the available pattern detection
routines.

2.4 Data and the Information about its Origin

Section Abstract
Information about the part of the empirical world under investigation, about the exper-
iments or the measurement routines is not part of the data, which is purely mathemat-
ical. The reasons for this are, firstly, how scientists use the term ‘data’ and, secondly,
Hacking’s criterion of externality of data that also demands investigator-independence
of data. Different claims about scientific phenomena from different parts of the empir-
ical world can be made, defended or argued against on basis of the same data, since
scientific inferences from data can imply investigator-dependent background knowledge.

Data are mathematical objects in the ontological sense. For scientific fields, in
which mathematical vocabulary is often used to express theories, propositions
and sets of data, such as in some parts of physics, this approach seems natural.
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For other fields in science I aimed to consolidate this approach earlier in this
chapter. Disregarding the mentioned problems with an explication of data as
purely mathematical (i.e. data and pattern recognition are in many cases in science
done without the explicit application of defined mathematical algorithms, but by
human agents) I believe there is a bigger threat to my position and I want to discuss
it in the following paragraphs. In a nutshell, it is this: is a set of data sufficiently
described, if we identify it with the mathematical measurement result and neglect
the experimental setup and further information about the empirical part of the
world under investigation? Or do we need to incorporate these descriptions into
our account of data?

I describe this problem more thoroughly. If we restrict a set of data to be the
mathematical object to that scientists usually refer to with the term ‘data’, then
all information about the empirical object or system it describes properties of are
completely excluded. Think of an X-ray image showing a very specific part of a hu-
man lung without us knowing that it shows this part of a lung. Therefore—being
rigorous—it is theoretically irrelevant to the data itself from which part of the em-
pirical world and how it was gathered. At another part of this text, I introduce the
example of long-range dependence, a statistical property that describes a pattern
that can be found in a variety of very different sets of data. (see pages 115 ff.)
These sets of data may be gathered from some meteorological measurements, or
from internet traffic data or from other very different parts of the empirical world.
The long-range dependence that is found in sets of data with different empirical
origin may be exactly the same pattern. More specifically, the parameters describ-
ing the long-range dependence in the model and the magnitude of approximation
of the pattern of long-range dependence in the data may be identical in both cases.

The question whether these two sets of data, which were gathered from very
different empirical parts of the world are identical, modulo different noise, or not
is related to the question whether the same phenomenon is detected in these two
sets of data. Statisticians would agree that they can detect the statistical phe-
nomenon of long-range dependence in both sets of data. As elaborated on in 4.2,
the example of long-range dependence has the peculiarity that its general pattern
and the concrete pattern (see 4.1 for the explications), which is only one unique
concrete patter in this case, are identical, since there is no further description
of the phenomenon apart from the statistical definition. Recall that for (Bogen
and) and Woodward a phenomenon “is” a pattern in data. Therefore, long-range
dependence is an extreme case of a phenomenon that occurs in various empirical
parts (or systems) of the world, but may still be considered to be one and the
same phenomenon in every case of its occurrence due to its sole statistical nature.

By their structuralist’s account in the philosophy of science Balzer et al. (1987)
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and Sneed (1971) aim for an explication of scientific theories, but a similar concep-
tual problem to the one that I introduced about data and the information about it
occurs to them. It does not suffice to describe an empirical theory solely as a set of
formalised mathematical propositions. They introduce “intended applications” to
restrain the empirical realm of application for the theory by informal descriptions
of the intended part of the empirical world (e.g. motion of matter on certain scale
for Newtonian mechanic; electromagnetic phenomena for Maxwell’s equations).
The question whether theories can be described directly in purely mathematical
terms is therefore denied by the structuralists.

Is there any common ground between the ontological status of scientific theories
and the one of scientific data that could lead to a related conclusion regarding
the ontological classification of data as mathematical objects? Theories and data
have in common that they can both be seen as propositions in a language that
provides in some way descriptions of parts of the empirical world. Theories are
formulated to explain and predict claims about a part of the empirical world, or
more precisely: about its phenomena. Data is gathered to detect patterns in it.
The relation between a pattern and a phenomenon is a surjective assignment (i.e.
every phenomenon can be detected by at least one pattern, but there can be more
than one pattern that correspond to a specific phenomenon). But to really define
this assignment, that is to describe which pattern exactly has to be detected to
validate the occurrence of a certain phenomenon or not, the empirical background
information about the set of data is necessary. To detect, for instance, albinism
in a human being we need to know that the data we have at hand is the resulting
record of a gene analysis (more on this example at 4.2). Theories and data have
in common that they can play only their role in processes of scientific inference,
if appropriate empirical information is included at this inference. It is important
to note that this information plays a role in the process of inference, which is
something different than the data.

A simple example can lead us to a decision about the open question how the
additional information about the data is related to the data. Let us assume one and
the same pattern can be detected in two sets of data that were gathered from very
different parts of the empirical world. The one set of data describes the amount of
bacteria in an artificial colony in a nutrient solution over five days. The other set of
data describes the average prices for a litre of beer in Munich’s bars in Euro over the
last 50 years1. In both sets of data the pattern of exponential growth can clearly
be detected. The phenomenon of a constant reproduction rate per individual

1Prices in Deutsche Mark until 2001 are simply converted by the foreign exchange rate as fixed
in 1999, which is the common conversion rule for price statistics including prices in Deutsche
Mark and in Euro.
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bacterium is assigned to this pattern in the data set that shows the growth of the
bacterial colony, but is obviously not a reasonable phenomenon of beer prices in
Munich. Here, the pattern of exponential growth may be assigned to a phenomenon
concerning conditions of wealth and rental prices in Munich, inflation rates, the
inhabitant’s drinking habits and so on. Various other examples can easily be
found,1 including the already mentioned case of long-range dependence.

If only the purely mathematical set of data would guide the inference from
data to the phenomenon, then it could never be decided whether it validates the
occurrence of a certain empirical phenomenon or not. It may even be possible
to construct artificial examples in which one and the same part of the empirical
world is investigated by two very different experiments. Patterns may be detected
in the two resulting sets of data, but one and the same pattern in one set of data
may validate the occurrence of an empirical phenomenon. But it does not so in
the other set of data, due to the different experimental setup and measurement
routines. That is why the additional empirical information that has to be added
to the purely mathematical set of data does not only have to give information
about the empirical part of the world under investigation, but also a detailed
account of experimental setup and the applied measurement routines. That is why
Suppes’ (1962) proposes a conceptually extensive five level hierarchy of models in
his account (see 2.1).

In my view, the solution to the riddle is that, even with data being mathe-
matical objects that imply no information about the experiments or measurement
routines, the inference from data to phenomena is a processes that is strongly
guided by further background knowledge. For the detection of gravitational waves
with LIGO by Abbott et al. (2016), the inference from the detected pattern to
the phenomenon could be drawn only with regard to a vast amount of background
knowledge about LIGO (e.g. the exact position of the lasers and receivers; the
exact locations on the earth’s surface).

Why is this additional background information not a part of the data itself?
There are two main reasons for this. Firstly, when scientist refer to data, they refer
to the highly standardised and limited record of some experiment and measure-
ment and not to any description of these experiments and measurements them-
selves. Secondly, if we incorporate this background information into the concept
of data, then the data itself becomes something very investigator-dependent and
even ambiguous. Experiments in many scientific fields are often highly collabora-
tive and no involved agent has the epistemic capabilities to cognitively process all

1The standard tools of statistical data analysis include many very simple patterns, which can
be detected in time series or signals from various sources. See Brockwell and Davis (1991) for an
introductory survey. This criterion of a wide range of applicability is rather a criterion that the
most basic statistical methods have to fulfil to be regarded as most basic.
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the relevant information about the measurement and experiment (e.g. a detailed
description of the entire LIGO architecture). Additionally, there is no report or
an in any form organised way of a sufficient description of all the involved back-
ground information. Therefore, there would not even be a practical way to really
externalise the data with all the background information. But the externalisation
is substantial criteria of data in Hacking’s (1992) approach with which I agree in
this regard. In the case of the LIGO example, we trust the experts that the mea-
surement works in the way that was only briefly outlined to us. There is no trust
in data, but only in scientific agents, who make scientific inferences that involve
not explicated background assumptions.

In other words, in many processes of scientific inference a vastly complex set of
more or less idiosyncratic background assumptions are stipulated and necessary.
This set of background assumptions provides a more or less idiosyncratic seman-
tics (in a more mundane sense of the term, without having much model-theoretic
implications) to the data and to the pattern recognition routines. And the in-
formation about the data’s origin is part of this set of background assumptions,
which are necessary to make inferences from data to theory or phenomenon.

If the data is mathematical and all the information about the part of the empir-
ical world under investigation, about the experiments and measurement routines
is not part of the data, then what are these ontologically speaking? I believe that
these assumptions are mathematically explicable, too, but in a way that is much
more complex and may differ from human agent to human agent, who are the
believers. I further elaborate on this non-trivial matter, which is fundamental to
the validity of many of my claims in this thesis, in chapter 3. However, Russell
(1927) provides an account that expresses exactly this basic epistemological claim
that I want to revitalise:

[W]herever we infer from perceptions, it is only structure that we can validly
infer; and structure is what can be expressed by mathematical logic (...)
The only legitimate attitude about the physical world seems to be one of
complete agnosticism as regards all but its mathematical properties. (p.
254 and 270–1)

A more specific elaboration on the perception of colours and sounds:

Colours and sounds can be arranged in an order with respect to several
characteristics; we have a right to assume that their stimuli can be arranged
in an order with respect to corresponding characteristics, but this, by itself,
determines only certain logical properties of the stimuli. This applies to
all varieties of percepts, and accounts for the fact that our knowledge of
physics is mathematical: it is mathematical because no non-mathematical
properties of the physical world can be inferred from perception. (p. 253)

The concept of time is derived as a “logical or mathematical property”, too:
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[A]ll that we perceive is in the present, and the time-order of the original
events is inferred from the relations among the simultaneous events which
constitute our present recollection. Thus the conclusion seems to be: Psy-
chological time may be identified with physical time, because because neither
is a datum, but each is derived from data by inferences of the sort we have
found elsewhere, namely, inferences which allow us to know only the logical
or mathematical properties of what we infer. (p. 254)

This stance of Russell also fits well to my explication of data being mathematical
objects (section 2.2).

Why is this distinction between data and inferences that are drawn from the
data important? I introduced a justified descriptive taxonomy that we use and
that is most adequate for the use of the terminology in actual scientific practice. In
later chapters of this thesis much of the argumentation is based on a thoroughly
explicated conceptual basis of which the concept of data is an important part.
Patterns in data are scrutinised in chapter 4 and their relation to phenomena in
chapter 5.

I do not believe that a further formalisation of this stated structure of the
description of data is useful for the cause of this thesis. The reason for this is
simply the vast variety of mathematical formats in which data in science occur.

2.5 Conclusion

At the beginning of this chapter I introduced the problems of definition and de-
marcation, and of ontological classification for which an explication of data has
to imply a satisfactory solution. The first problem is solved by the conceptual
separation of data as purely mathematical objects from all further background as-
sumptions and knowledge involved, whereas this separation is guided by the actual
scientist’s use of the term ‘data’. The latter problem is addressed by the fact that
there is a well established field in metaphysics that deals with the issue what a
mathematical proposition or object ontologically is. I prefer an ante rem version
structuralism, but my explication of data also works well under alternative views
about mathematical propositions or objects.

My account of data is descriptive in the sense that it corresponds well with
what scientists actually refer to with ‘data’. It is normative in the sense that
it ontologically and epistemologically classifies data strictly to the extent that
Hacking’s and Leonelli’s material notion of data is rejected. As will be elaborated
on in chapter 4, patterns can be described only mathematically, which implies that
the data’s role in scientific inferences is the one of having or not having a certain
mathematical property; this gives further strong support for my claim that there
is ontologically nothing more to a set of data than being a mathematical object.
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According to a newly and pragmatically introduced notion of representation,
data can be represented by finite or infinite mathematical translations, or by phys-
ical objects, such as photographs. The set of data itself can be characterised by
all of its mathematical representations and is therefore identified with the class of
all of its mathematical representations.





Chapter 3

Mathematics, Mathematical
Agents and Computers

Chapter Abstract
I commit myself to an ante rem version of mathematical structuralism and mention
category theory as our best current approach to explicate such a view mathematically.
Agents of mathematics are not restricted to human beings and include artificial in-
telligences, aliens and the like. Therefore, mathematics is not restricted to human
cognitive capabilities. Since mathematics is expressively very powerful, and some parts
of scientific inferences are already explicated in mathematical terms (e.g. statistics),
mathematics is pragmatically very suitable to explicate scientific inferences and theo-
retical objects. Computer processes can be explicated mathematically via decompiling.
Given the recent success of artificial intelligences, following an optimistic induction, we
should assume that artificially intelligent agents play a more important role for scien-
tific hypothesising at some future point in time.

Having a sufficient grasp of a philosophically adequate notion of mathematics is
necessary to follow (or criticise) a large part of the discussion in this thesis. Given
the extensive literature and history of the philosophy of mathematics with the aim
to explicate what mathematics is, this question is intricate. Since my arguments
rest heavily on the expressive power of mathematics, this chapter is aimed to
clarify my notion of mathematics to the degree necessary to understand to what I
refer to with ‘mathematics’. Computer agents are relevant to this study, because
in later stages of it I imply that good science does not need to be a science of solely
human agents. Overall, in the thesis in general and in this chapter in particular
I aim to strengthen the view that mathematics is the study of structure. That
is why I claim that classes of things or propositions like sets of data, patterns or
background assumptions are something mathematical.

A general objection against such a view may be to stress the point that only
a very small fraction of these things or propositions are actually mathematically
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explicated. In today’s science, we have mathematical models for, for instance,
classical mechanics, dividend payments or the determination of dates for palaeon-
tological fossils with chemical methods. However, the vast majority of what we
consider as empirical knowledge is not explicated in any mathematical way. The
reason for this is, I believe, very pragmatic: the biological cellular computer, which
is our brain, remembers and communicates on different levels of abstractness. And
the level we are explicitly aware of and can use intentionally is one after the appli-
cation of a massive amount unintentional preprocessing. An example for a rough
comparison with worked-out mathematical theory is to compress matrices to its
determinants.

It is important to note that mathematics does not comprise only the body of
already defined mathematical objects and proven theorems from our libraries. It
also comprises those objects and theorems that can be defined in mathematical
terms. Mathematics does not comprise objects that cannot be defined in math-
ematical terms in principle or theorems that cannot be proven in mathematical
terms. Gödel (1931)1 showed with his incompleteness theorems that some theo-
rems in some weak logical calculi cannot be proven to be false or true.

To say it more mundanely, mathematics is not only about numbers, and not
about an academic branch. It is rather an ontological and epistemological con-
cept. This approach is completely consistent with the results about foundations
of mathematics at the Grundlagenstreit and later developments. These results
include, among others, Cantor’s introduction of set theory as the vocabulary of
mathematics, Hilbert’s efforts the establish the need of a characterisation of math-
ematics by axioms and Bourbaki’s comprehensive work to show that the actual
body of known mathematics can be formulated on such foundations. The most
important later development for the aims of this thesis is the composition of cate-
gory theory. I elaborate on my view about how to explicate and justify the notion
of mathematics from category theory in section 3.1.

Why do I focus so much on mathematics instead of logic for the explication of
concepts like data or assumptions? The vast majority of philosophical explicative
formal work in epistemology and ontology makes use of propositional or predicate
logic. Further candidates are modal logic, probabilistic logic (i.e. probability the-
ory over logical propositions) and fuzzy logic. The reason for their wide use in
philosophy seems to be that these logics are the sparsest formal approach to tackle
philosophical problems. The development and foundation of mathematics, how-
ever, is to a substantial amount driven by problems of application like geometry
or number theory. Why then do I want to focus on mathematics? The reason

1Incompleteness has two versions and depends on the axiomatic formal system under investi-
gation. See Raatikainen’s (2015) encyclopaedia entry for a survey.
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is that my epistemological aim is to cover actual scientific inferences in general
and not only a conveniently facilitated version of it that ignores the complexity
of actual data, scientific data processing and other scientific inferences. I elabo-
rate further on these substantial differences between these two views on scientific
inference and data in another article (2018). The central point is that scientific
data analysis often makes use of mathematical methods, and newer developments
regarding artificial intelligences exemplify how human-like inferences are made by
a machine that offers us the complex mathematical structure of this inference via
decompiling. I elaborate on the close relation between computability and mathe-
matical explicability in section 3.2 and on the regarding implications of artificial
intelligence in section 3.3.

3.1 What a Mathematical Object is

Section Abstract
Throughout the thesis I pragmatically use the term ‘mathematical object’, but commit
myself to an ante rem version of mathematical structuralism. Mathematical objects can
be identically imagined by different agents, they can be fully described with relatively
few signs, they can be epistemically fully accessed, they are composed of less complex
mathematical objects, and they allow for infinities. Category theory is our most ade-
quate approach to explicate structures and therefore mathematical objects. Following
classical notions from Russell and Frege, abstract objects are mathematical objects.
Since my notion of epistemology is not restricted to human agents, I do not have to
distinguish between epistemology and ontology regarding mathematical objects.

A central point regarding our explanation of the relation between patterns and
phenomena is the ontological and epistemological classification of patterns and of
data as mathematical objects. Despite all controversies about the specific ontic
nature of mathematics in the philosophy of mathematics, the reference of the term
‘mathematical object’, that is, what counts as a mathematical object and what
does not, is rather unproblematic. There is prima facie little doubt about the fact
that a four or a Hilbert space are mathematical, but a tiger is not (except for the
most extreme version of ontic structural realism as discussed in section 4.3).

However, for the sake of a complete explanation of the philosophical ideas
in this thesis, I introduce my use of the term ‘mathematical object’. At first,
I clarify the very pragmatic motivation for the use of the terminology, which is
the one of a realist, such as Frege (1884; 1918–1919) according to most historical
interpretations1, Gödel (1944), Maddy (1990) or Putnam (1971), who are also

1Frege (1918–1919, p. 69) presents an unambiguous account of his interpretation of thoughts
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called ‘Platonists’ (named after Plato’s ontological concept of a realm of ideal
objects) about mathematical objects. The realists’ doctrine about mathematics
is, as Dummett (1991) puts it, “that mathematical theories relate to systems of
abstract objects, existing independently of us, and that the statements of those
theories are determinately true or false independently of our knowledge.” (p. 301)
The main alternative and rivalling approach to ontologically describe the references
of mathematical terms is the complete denial of referenced (abstract) entities and
to explain mathematics as a mere system of syntactic rules; this approach is the
one of a nominalist, such as Hilbert (1926)1, Goodman and Quine (1947), Field
(1980), Hellman (1989) and Azzouni (2004). At second, I discuss properties and
historical controversies concerning mathematical objects.

When using the term ‘mathematical object’, as done throughout the entire text
of the thesis, I seem philosophically committed to a realism about mathematical
objects. A nominalist cannot talk about mathematical objects, but rather about
mathematical terms. However, I choose this terminology mainly for pragmatic
reasons. It is applied to distinguish between terms or objects that everyone should
be willing to accept as mathematical and those that are not mathematical rather
than to really emphasise a strong commitment about the ontology of mathematics.2

When talking about abstract objects and mathematical objects I intend to avoid
a more thorough discussion on the ontological nature of what we call a mathemat-
ical object. The distinction between abstract and mathematical on the one side,
and not abstract and physical on the other side is unambiguous in the cases that
are relevant for our purpose; my explications of data, patterns and phenomena do
not depend on pathological cases in between these two strictly distinguishable sides
of ontological classifications. Therefore, the vocabulary is very pragmatic and the
philosophical argumentation is, in principle, open for a translation into nominalis-
tic vocabulary. However, nominalistic vocabulary is much more impractical than
the talk of mathematical objects. Note that, even if we deem the distinction be-
tween mathematical and non-mathematical objects as unproblematic for the cases
relevant to us, a possible distinction between mathematical on the one side, and
abstract, but non-mathematical on the other side is intricate; I elaborate on this
distinction later in this section for further clarification of my use of vocabulary.

as abstract objects by the negative criterion of being non-mental and non-physical, as elaborated
on later in this text (p. 79). In his much earlier text (1884, §47–§49) he suggests an interpretation
of numbers as concepts (Ger., Begriffe), which are independent of any physical instantiation (Ger.
Gegenstand als Träger). However, discussions on the historical interpretation of Frege as a realist
are held by, amongst others, Burge (1992) and Weiner (1995).

1Hilbert’s position is often titled as formalism. However, I believe it is fair to mention him
as the historical father of mathematical nominalism in the realism/nominalism dichotomy, in
particular due to his role as an opponent to Frege. Blanchette (2014) provides an historical
overview over the Frege-Hilbert debate.

2The realists’ terminology seems more intuitive and pragmatically applicable to me.
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In my terminology, mathematical objects are not restricted to any form of com-
plexity, uncomplexity or primitivity whatsoever. One can argue—but this rarely
happens—that more complex mathematical objects are defined by basic atoms
of mathematics and are therefore no mathematical objects in a very strict sense
of foundationalism. However, reference to and quantification over mathematical
objects are applied in everyday mathematics in the same general form regardless
of the specific philosophical interpretation of the mathematical terms that denote
these objects; quantification over relatively complex mathematical objects, such as
operators in functional analysis or measures in measure theory is in no fundamental
manner different from quantification over very basic mathematical objects, such
as natural numbers in number theory.1 Thus, in my terminology, mathematical
objects are simply everything that is or can be denoted by a mathematical term in
principle. Note that mathematical objects that were explicated by computers can
be vastly more complex (e.g. measured by the used numbers of characters to de-
note the object) than any human-made mathematics.2—Note also that complexity
does not imply creativity.

Some controversies from the philosophy of mathematics and the arguments that
are used to strengthen or weaken a specific position in it shed some light on the
differences between mathematical and non-mathematical objects. Mathematical
objects can be characterised by having the properties as listed below. Some of these
properties depend on each other in one way or another, but this list is intended
to highlight one specific particular aspect of mathematical objects per list item,
that show an important defining aspect of mathematical objects. I briefly mention
some historical discussions concerning these properties. These discussions make
the properties, their philosophical implications and their (partial) absence at non-
mathematical objects more comprehensible.

(a) Mathematical objects can be imagined in exactly the same way by different
individual agents (including non-human agents). The number four I think of
does have exactly the same mathematical properties than the number four
you think of. Note how this is not true for non-mathematical objects (e.g. a
pen; a tiger; your grandmother). Realists state, motivated by this property,
that mathematical objects exist in an extra, agent-independent realm and

1It is interesting to note that mathematical problems that are considered as being hard to solve
by the mathematician’s community do not depend on any form of complexity of the mathematical
objects that are necessary to formulate these problems. The list of proofs discussed in Aigner and
Ziegler (2004) is an exemplary manifest of the idea that mathematics is a discipline of problems
that are expressed very simple, but only solvable by employing new perspectives of mathematical
thinking.

2The discussion on the proof for the four-colour theorem is an example for this. Another
example are geometric 3D sceneries in modern computer games that are composed of millions of
triangles.



66 3. Mathematics, Mathematical Agents and Computers

independent of the space and time of the physical realm. Thus, they state,
the number four is an object in this realm and we both perceive it. As
also endorsed by the following properties of mathematical objects in this
list, Platonism is so attractive due to its simplicity and explanatory power
that Bernays (1935) alleged that mathematicians are usually—outspoken or
silent—Platonists.

(b) Mathematical objects can be fully described in a finite and pragmatic way.
Under pragmatic I understand, that we are able to communicate about math-
ematical objects as unambiguously as necessary (which may not be the case
for many non-mathematical objects). This fact is independent from ones de-
tailed position in philosophy of mathematics and the specific language that
is used.1

(c) Mathematical objects are epistemically accessible to human beings without
the implication of any lack or approximation of their referential2 properties
as necessarily involved in the epistemic treatment of empirical objects (e.g.
a zoologist knows more about a tiger than I do). We can imagine them and
we can even reason about them. The scientific discipline of mathematics
is nothing else than defining (or from the perspective of a true Platonist:
finding) mathematical objects and studying their mathematical properties.
Kant (1787) in his epistemology was strongly motivated to find a solution
to the riddle why human beings can reason about mathematical objects and
how this reasoning is related to reasoning about empirical objects.3 Benac-

1This point can be illustrated by the historical fact that mathematics (which is formulating
theorems and finding proofs) was successfully accomplished by Greeks or Leibniz before or during
the invention of a more advanced formal calculus. According to Gödel’s realism, mathematical
objects are accessed by human beings with mathematics similar to empirical access to physical
objects with physics: via descriptions, which can be incomplete or wrong. However, there is no
reason why well known mathematical objects cannot be described fully and correctly (which is
not the case for non-mathematical objects).

2A number theorist may know more about 73 (e.g. that it is part of a prime twin) than you,
but these are not referential properties, since we know exactly what 73 refers to without this
knowledge.

3For Kant, in his transcendental aesthetics of his Critique of Pure Reason (Ger. Kritik der
reinen Vernunft) mathematical objects can be epistemically accessed via pure intuition (Ger.
reine Anschauung), whereas Anschauung is the ability to fully imagine an object in the mind
without direct empirical contact to it. In Kant’s epistemology, pure intuition plays a central role,
because, for him, it gives us the ability for non-empiric and non-trivial reasoning, the synthetic
judgements (Ger. synthetische Urteile) a priori. For him, mathematical reasoning is of this kind
of reasoning. Note that Kant developed his views before Frege’s invention of a predicate calculus
(in the Begriffsschrift 1879) and in the Grundgesetze der Arithmetik (1893/1903), and before the
general discussion on a mathematics-describing axiomatic formal system, which comprises a large
part of the history of the philosophy of mathematics from the ending decades of the 19th century
on. By the successfully formalised mathematical calculus the epistemology of mathematical
reasoning received further insights and arguments in favour of a nominalistic account. However,
Kant’s ideas still shed some light on the specific metaphysical nature of mathematical objects
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erraf (1973) formulates an argument against Platonism on the basis of the
epistemic accessibility of mathematical objects: if we accept that knowledge
can be gained only by causal interaction with the objects we gain knowledge
about,1 then Platonists are forced to explain how we can causally interact
with objects from another ontic realm, which is, in this case, the abstract
realm of mathematical objects.

(d) Mathematical objects are assembled from more simple mathematical ob-
jects, or can at least be interpreted and formulated as being so. Even if
it is a relatively late historical discovery for many parts of mathematics,
most, if not all, mathematical objects can be and are usually defined solely
on the basis of more simple mathematical objects.2 Many discussions in
the history of the philosophy of mathematics (including the debates on the
positions of formalism, logicism and intuitionism) make implicit or explicit
claims about the appropriate fundament of mathematics. This fundament is
characterised by the basic objects and the calculus with which mathematics
is build up. Today, sets usually play the role of the fundamental building
blocks for mathematical objects for the working mathematician (for an ex-
emplary survey see Deiser’s (2010) introduction into the “basic notions of
scientific mathematics”), but types and categories are alternatives.3 Struc-
turalists in the philosophy of mathematics, such as Hellman (1989), Parsons
(1990), Shapiro (1997) and Resnik (1997),4 infer from the simplicity of the
basic building blocks with their very simple own properties (in case of sets:
some set is an element of another set or not) and the missing uniqueness

and reasoning, due to its intricate relation to the empirical world.
1The causal theory of knowledge, as initiated by Goldman (1967; 1976), states—in the most

simplified version—that agent A’s belief in fact f is caused by fact f . For a survey see Shope
(1983, ch. 5). The crucial question for Benacerraf is how an object in the mathematical realm
can have causal relation to a human being, which is an empirical object.

2Axiomatic rules for geometry and the construction of geometric objects out of its geometric
parts may be a mathematical concept since Euclid’s (1908) antique geometric manifest. However,
an axiomatic foundation and the definition of basis objects for other mathematical fields, such
as analysis, is a modern endeavour usually referred to as Grundlagenstreit or Grundlagenkrise
and chronologically located in the first third of the twentieth century.

3For a survey on categories see Mac Lane (1971). Type theory was initiated by Russell (1903,
1908) to deliver an alternative approach to set theory, which he considered to be substantially
problematic, due to the paradox he formulated by strictly using set theory. It underwent fur-
ther elaboration and extension by (amongst others, but most influential) Church (1940) by the
introduction of a useful calculus for type theory and Martin-Löf (1970; 1973) by the addition of
further types to make the calculus more useful for a foundation of mathematics.

4Historically, Benacerraf (1965) is often mentioned as an initiator for mathematical struc-
turalism, but Dedekind (1888) formulates similar arguments against the identification of natural
numbers with specific sets and therefore in favour of mathematical structuralism. For a compre-
hensive list of literature about mathematical structuralism see the references in Reck and Price
(2000), and in particular footnote 1 for a remark on the historical development of mathematical
structuralism.
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in the formulation of a mathematical object, as highlighted by Benacerraf
(1965) that mathematical objects are structures or positions in a structure.
Structures are nothing else than descriptions of arrangements for positions
without any own properties apart from their position in the arrangement. To
say it in other words: for structuralists mathematical objects are not really
objects, but places or structures in a larger structure. Note that many, in
different aspects varying forms of structuralism are worked out in the phi-
losophy of mathematics. For a more comprehensive survey on structuralism
in contemporary philosophy of mathematics see Reck and Price (2000).

(e) Mathematical objects can be, and are in fact often, infinite (in various
forms)1—at least in everyday mathematics.

As Shapiro (1997) highlights, the common use of infinities in mathematics is
an argument in favour of Platonism, since without the acceptance of abstract
objects, we need an explanation on how we can epistemically deal with (or:
how we are motivated to define a calculus including) infinities on the basis of
our finite perception of the empirical world. Opponents of abstract objects,
such as Hilbert (1926), Goodman and Quine (1947), or Field (1980), argue
for a nominalism in mathematics instead of a Platonism and are forced to
explain exactly this point, which turns out to be an intricate task.

On the other hand, empirical sciences make extensive use of mathematics,
especially in physics, to formulate their theories. Accepting Quine’s (1969)
naturalistic thesis that our best scientific theories give guidance to the philo-
sophical questions on what we know and what entities exist and applying this
approach to mathematics, as Putnam (1971) argues, mathematical objects
must exist, since without them it is hard to understand scientific theories
at all. Furthermore, as Colyvan (2001) states, since empirical evidence and
experimental confirmation is available for successful scientific theories, math-
ematical objects can even be seen as indispensable in a naturalistic ontology.

The intuitionist Brouwer (2004) states that mathematics is a mental activity
of construction by human beings. Therefore, infinite mathematical objects
need to be finitely constructed. This leads to a rejection of actual infinity
in mathematics, as—seemingly—used by working mathematicians everyday;

1The existence and nature of infinity or the infinite is a classical topic of discussion in meta-
physics as Moore (1990) examines by his survey. The most influential mathematical formulation
of infinities is Cantor’s (1895, 1897) concept of transfinite cardinal numbers. However, math-
ematicians outside the specialised field of set theory and scientists who apply mathematics for
theory formulation, modelling or theoretical inferences do usually not further distinguish between
different concepts of mathematical infinities; the most obvious indicator for this pragmatic treat-
ment of mathematical infinities is the common and simple (and even for the pragmatic purposes
of applied mathematics sloppy) use of the symbol ‘∞’ to denote it.



3.1 What a Mathematical Object is 69

in his view, mathematical objects can only be potentially infinite, such as
a construction of the natural numbers by repeatedly applying the successor
operator +1. From the intuitionist’s point of view, many objects in today’s
mathematics are unacceptable or their intuitionistic justification needs still
to be shown.

There is, in principle, no difference for all of these properties between their rel-
evance for very simple mathematical objects and their relevance for very evolved
ones. Simple mathematical objects include integers, simple geometric objects, such
as triangles and parallelograms, or finite sets of simple mathematical objects. More
evolved mathematical objects are those objects, which may not be epistemically
accessible to individuals without a specific mathematical training, due to the com-
plexity of these objects or the high order infinities that are involved. These math-
ematical objects include foliations from differential topology, Sobolev spaces HS,
and the probability space (Ω,F ,P) induced by the Brownian motion (mainly due
to the high cardinality of Ω). The distinction between simple and evolved math-
ematical objects is purely pragmatic without any systematic relevance, which is
the point I want to make.

More on Mathematical Objects Being Structures

The use of the terms ‘structures’ and ‘patterns’ are manifold in the philosophi-
cal literature. Some authors use it interchangable and for some structures and
patterns are not the same things, whereas the differences in the meaning are not
identical as well. Therefore, we need a clarification of the terminology for the
purpose of explaining what it means that mathematical objects are structures.
Both terms ,‘structures’ and ‘patterns’, refer to something purely mathematical.
Briefly summarised, structures are mathematical objects in general, and patterns
are properties of data, which are mathematical objects (see chapters 2 and 4).

From the structuralists’ description of mathematics follows that today’s worked
out mathematics is only a part of what we understand as mathematics. The
mathematical objects that were subject to mathematical work in the history of it
were defined by different motivations. The need for a mathematical framework for
applications (e.g. functional analysis; probability theory) or a specific intellectual
appeal (e.g. number theory; algebra) may be reasons why certain structures are
defined and investigated by mathematicians, but others are not. When I refer to
mathematics or mathematical objects I do not refer only to the mathematics that
can be find in the worked out theory of mathematics; I refer to proposition and
objects that are mathematical in principle, that is, that can be worked out by
mathematics in principle.
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Following Reck and Price (2000), I want to introduce structures as discussed
in the philosophy of mathematics by citing and commenting some of the main
proponents of structuralism. I outline my notion of structures on the basis of
characterisations given by Resnik and Parsons (1997), which Reck and Price dis-
cuss under “pattern structuralism” (p. 363–71)—which is, of course, already a
violation of my suggested terminology.

The underlying philosophical idea here is that in mathematics the primary
subject-matter is not the individual mathematical objects but rather the
structures in which they are arranged. The objects of mathematics, that is,
the entities which our mathematical constants and quantifiers denote, are
themselves atoms, structureless points, or positions, in structures. As such
they have no identity or distinguishing features outside a structure. (p. 201,
my emphasis)

Are structures objects? Benacerraf (1965) emphasises that for him positions
in structures, which is what mathematical denotations refer to, are not something
that we should call ‘objects’, due to the lack of properties that go beyond their
purely structural properties:

Therefore, numbers are not objects at all, because in giving the properties
(that is, necessary and sufficient) of numbers you merely characterize an
abstract structure—and the distinction lies in the fact that the “elements”
of the structure have no properties other than those relating them to other
“elements” of the same structure.

(...)

That a system of objects exhibits the structure of the integers implies that
the elements of that system have some properties not dependent on struc-
ture. It must be possible to individuate those objects independently of the
role they play in that structure. But this is precisely what cannot be done
with the numbers. (p. 70)

As the second part of this quote indicates, for Benacerraf something qualifies as
an object, only if it has more properties to it than its position in (or its being an
“element” of) a structure. Benacerrafs consideration highlight our differing use of
the vocabulary. As noted, I use the notion of objects in mathematics for merely
pragmatic purposes, even if I commit myself to a version of structuralism from the
philosophy of mathematics.

A precise definition of a structure is available and well-established in mathe-
matics. Structures are associated as being fundamental mathematical concepts in
the branches of model theory and universal algebra. Model theory is the genuine
field in which models that provide the semantics for logically expressed axiom
system are investigated, universal algebra studies the most general forms of the
algebras, which include groups, rings and fields. Apparently, structures in this
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sense (find the definition below) are very fundamental building blocks in every
algebraic or set-theoretic approach to build up a corpus of mathematical objects
and theorems. However, I argue that there is an even more general understanding
of structures that is rather an ontological notion than a mathematical one.

From a historical perspective, Bourbaki (1939–) is commonly associated as
having undertaken “the monumental task of reorganizing mathematics in terms of
basic structural components” (Thom1 1971, p. 699), which includes a concept of a
structure that is intended to play the mentioned fundamental role for mathematics
in general. ‘Bourbaki’ is a pseudonym for a working group of mainly French
mathematicians that was founded in the 1930s and became very influential among
mathematicians with their program to define and discuss a basis for mathematics
in general. The reason for this influence in the mathematicians’ community may
not only be the claim to offer a fundamental, comprehensive and structural account
for mathematics, but also the presentation of their result in a pragmatic and well
adaptable notation in a well-organised overall notational framework.

Sets are the most basic building blocks of mathematics in Bourbaki’s account,
which is not surprising given the historical state of the discussion on a foundation
for mathematics at this time.2 They introduced a definition of a structure (1968,
ch. IV), which is based on sets and not the one that is widely used in today’s
mathematics; but one of Bourbaki’s special forms of a structure, the algebraic
structure, resembles the established definition that we mention below. As Corry
(1992) claims, the formal notion of a mathematical structure in Bourbaki’s sense
as well as in the modern definition cannot do the job of explicating mathematical
structures in the non-formal sense of the philosophical position of mathematical
structuralism. Corry also claims that Bourbaki himself does not make much use
of his notion of a structure from the Theory of Sets volume, which he uses as an
argument to strengthen his point.

I introduce the among mathematicians widely shared modern definition of a
mathematical structure from model theory, which is equivalent to the one given in
Ebbinghaus’ (1994, p. 26) textbook:

Definition (S-structure)

Be A 6= ∅ a set and S a set of symbols. A = (A, a) is a S-structure, if

(a) S = R∪ F ∪ C with R,F and C being pairwise disjoint, and
1René Thom was a topologist and awarded with the Fields Medal in 1958.
2The ground for ZFC (Zermelo-Fraenkel axioms plus axiom of choice) as an axiomation for

set theory according to which many mathematical objects and reasoning can be formulated was
prepared by, mainly, Dedekind (1888), Cantor (1895; 1897), Zermelo (1904; 1908; 1908; 1930),
Fraenkel (1922), Skolem (1923) and von Neumann (1923; 1925). See Kanamori (2011) for a
historical survey on ZFC, including a detailed overview on how the mentioned references led to
ZFC.
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(b) a is a map with dom(a) = S and

(1) ∀R ∈ R (∃n ∈ N ( a(R) ⊂ An )),

(2) ∀ f ∈ F (∃n ∈ N ( a(f) ≡ An → A )),

(3) ∀ c ∈ C ( a(c) ∈ A ).

The set of symbols S denotes relations R, functions F and constants C of the
structure, e.g. Sar := {<,+, · , 0, 1} for basic arithmetics. Since often a first-order
logical language L is given by some contextual background and the symbols S are
taken from L, the S−structure is also called an ‘L−structure’.

‘An’ with n ∈ N denotes the set of all n-tuples with elements from A. ‘An → A’
denotes a function. Bourbaki’s structures are defined purely on sets, whereas this
common sense definition mixes n-tuples and functions with sets. However, this no-
tation is pragmatic rather than something substantially different from Bourbaki’s
intentions. Deiser’s (2002) introductory mathematical textbook about set theory
expresses this view that is widely shared among mathematicians:

It has been shown that the new framework of axiomatic set theory was
large enough to interpret all mathematical objects—numbers of all kind,
functions, geometric objects[, relations] etc.—in it. This means there is
a definition for all of these concepts that is based on sets and provides
all wanted and for mathematics necessary properties of these objects. Set
theory therefore is a basic discipline for mathematics and it is unrivalled
universal regarding the interpretation of mathematical constructs. (p. 11,
translation from German by me)

S-structures are generally successful in covering a lot of mathematical objects,
in particular algebras and spaces of various kinds. Algebraic objects like groups,
rings and fields are straightforwardly S-structures. With a proper amount of
mathematical work objects like vector spaces, measurable spaces, geometric oder
topological objects can be expressed by S-structures.

I now highlight why such a definition cannot do the job of explicating structures
in the sense of mathematical structuralism. The problematic aspect with Bour-
baki’s account and also the pragmatic definition of S-structures is that they are
defined on sets and therefore a mathematical structure in the structuralists sense
or object cannot be uniquely identified with an S-structure. The classical example
from Benacerraf (1965) suffices to fully explain this point: two alleged structural-
ists regarding mathematics, who use set constructions as structures, cannot agree
on what natural numbers exactly are. Among the infinitely many possible solutions
are the following two:

(E) {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, ...
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(J) {∅}, {{∅}}, {{{∅}}}, ...

The denotations of the two versions are intended to honour the mathematicians,
who proposed these structures, Ernst Zermelo and John von Neumann.1 Both
solutions follow clear construction rules to express succession, which is the funda-
mental characteristic of the natural numbers structure, by certain constructions
of sets. In particular, (E) translates n + 1 into n ∪ {n} and (J) translates n into
{n}. But there is no further argument that can be applied to rule out one of the
two options to be the structure in question.

The problem of mathematically explicating structures in the sense of mathe-
matical structuralists leads Corry (1992) to distinguish between structures in two
different meanings, the “formal one and the nonformal one” (p. 315). Parsons
often cited characterisation of mathematical structuralism describes the targets of
a worked-out structuralism:

By the “structuralists view” of mathematical objects, I mean the view that
reference to mathematical objects is always in the context of some back-
ground structure, and the objects have no more to them than can be ex-
pressed in terms of basic relations of the structure. (Parsons 1990, p. 303)

In fact, the philosophical discussions about mathematical structuralism are to
a large extent non-formal.2 And if we can find formal aspects that do not include
sets, then it is not clear how the formalism to express a very specific structure
should be generalised to express mathematical structures in general.

But, are alternatives available to sets in which we can express the “basic rela-
tions” in a unique way? This implies that they express mathematical objects in a
way that, strictly speaking, if the expression differs, then the referred mathemat-
ical objects always have to be different as well. One important attempt into this
direction has to be mentioned at this point and is widely discussed among math-
ematicians and philosophers of mathematics since the 1940s: category theory.

As Marquis (2014) describes in his survey, Eilenberg and Mac Lane (1945) in-
troduced categories “in a purely auxiliary fashion” (sect. 1.1). In particular due to
the often referred-to work of Lawvere (1963, PhD thesis), category theory is dis-
cussed to provide an alternative to set theory as the foundation of mathematics. It
is “a general mathematical theory of structures and systems of structures” (Mar-
quis, introduction) and therefore we should have a look whether it can provide a

1Benacerraf refers to them via the representative fictional child characters Ernie and Johnny,
who learn basic algorithm as a set theoretic structure in the first place and struggle with the
mentioned problem of identification.

2See Reck and Price (2000) for an introductory survey that is also exemplary for the use
of formal methods in the discussion. Further examples are the often referred to books about
the topic from Hellman (1989), Shapiro (1997) and Resnik (1997) and the article from Parsons
(1990).
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notion of structures that is general enough to capture structures in the sense of
mathematical structuralism.

Most of the following discussion revolves around the question whether cate-
gories can provide a foundation for mathematics that is not afflicted with Benac-
erraf’s identification problem from above and is at least as general as set theory
is. This means that all the mathematical objects for which we have set construc-
tions, constructions based on categories must be possible as well. However, I aim
to explicate what structures are and not what the foundation of mathematics is.
The discussion of this issue helps to clarify the ontological and epistemological
implications of my explication of data, patterns and phenomena. Structures in the
most general meaning of the term are something purely mathematical and every
mathematical object is a structure.

I introduce a very common definition of categories that is used by, among
others, Lambek (1968; 1969; 1972), Mac Lane (1971) and Awodey (1996). I follow
their functor style notation.

Definition (category)

A category consists of c-objects A,B,C, ... and morphisms (or arrows) f, g, h, ...
with

(i) Every morphism f has the form f : A → B, i.e. it has a domain (here A)
and a codomain (here B)

(ii) The composition of morphism is unique and associative, i.e.

h ◦ (g ◦ f) = (h ◦ g) ◦ f

(iii) For each object B there is a morphism 1B : B → B with

1B ◦ f = f and g ◦ 1B = g for f : A→ B and g : B → C

Morphisms and c-objects are primitive notions at this point, meaning that have
have no further properties than these defined ones. Throughout the literature,
c-objects are usually denoted as ‘objects’, but I want to pragmatically establish a
distinction in wording here to be always sure whether we refer to c-objects from a
category or to a mathematical object in the very general sense; however, a strict
proponent of category theory as a way to express mathematical objects would
reject that there can be a distinction. In the application of categories, c-objects
are often restricted to well known mathematical objects, such as sets or topological
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spaces. But this aspects of “categories for the working mathematician” (this is the
title of Mac Lane’s 1971 text book) is not in the main scope of my survey.

The very simple, and often mentioned1, example of a Cartesian product X×Y
of two c-objects shows how categories help to avoid Benacerraf’s identification
problem.

W

X×YX Y

gf h

p q

This plotted graph shows the categorical specifica-
tion of a product, which is, in other words, an or-
dered pair of two c-objects in a category. In set lan-
guage, a product of sets XS × YS can be expressed
in infinitely many ways. The Cartesian product
{(xs, ys) : xs ∈ XS, yS ∈ YS} can, for instance, be
{{{xs}, {xs, ys}} : xs ∈ XS, ys ∈ YS} (as proposed

by Kuratowski 1921) or {{{{xs}, ∅}, {{ys}}} : xs ∈ XS, yS ∈ YS} (as proposed by
Wiener 1914) or one of infinitely many other solutions. In the illustrated category,
to define the product X × Y , for any given W and morphisms f and g the mor-
phism h has to be unique such that g = h ◦ q and f = h ◦ p. W and h assure that
the product is an ordered pair. X and p, as well as Y and q assure that X × Y is
in fact a product of two c-objects X and Y .

Along this simple example we can point at the advantages and disadvantages of
category theory. This category of a product is a very pragmatic way to specify what
in set language mathematics is usually described as identity up to isomorphism.
It is not prima facie given what the class of isomorphism of (E) (p. 72) are,
but the category of the product × provides a structural description of what all the
isomorphic sets that represent ordered pairs have to express. This is the advantage
that categories have over sets.

The disadvantage is that in most mathematical elaborations on categories the
c-objects are assumed to come from a certain class of mathematical objects like
sets or topologies. But we are interested in a specification of structures in gen-
eral and not in one under the assumption that the basic objects of our epistemic
conceptualisation are sets or topologies. Lawvere’s categories of categories are a
specific approach to overcome this problem. He introduces them as categories
“whose maps [i.e. morphisms] are ‘all’ possible functors [which are morphisms
between categories], and whose [c-]objects are ‘all’ possible (identity functors of)
categories” (1963, p. 26). This is a way to naturally define categories as structural
in the sense of category theory all the way down.

In the following, I discuss two further major concerns regarding the acceptance
of categories from category theory as a general notion for structures. I claim that
structures are mathematical, and I want to find out whether categories can do the

1It is mentioned by Lawvere (1963), Mac Lane (1971) and Awodey (1996).
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job of describing the mathematical objects that are structures in this most general
sense.

The following quote from Marquis (2014) introduces the first problem:

There is no such thing, for instance, as the natural numbers. However, it
can be argued that there is such a thing as the concept of natural numbers.
Indeed, the concept of natural numbers can be given unambiguously, via the
Dedekind-Peano-Lawvere axioms, but what this concept refers to in specific
cases depends on the context in which it is interpreted, e.g., the category of
sets or a topos of sheaves over a topological space. It is hard to resist the
temptation to think that category theory embodies a form of structuralism
that it describes mathematical objects as structures since the latter, pre-
sumably, are always characterized up to isomorphism. Thus, the key here
has to do with the kind of criterion of identity at work within a categorical
framework and how it resembles any criterion given for objects which are
thought of as forms in general. One of the standard objections presented
against this view is that, if objects are thought of as structures and only as
abstract structures, meaning here that they are separated from any specific
or concrete representation, then it is impossible to locate them within the
mathematical universe. (See Hellman (2003) for a standard formulation of
the objection, McLarty (1993), Awodey (2004), Landry & Marquis (2005),
Shapiro (2005), Landry (2011), Linnebo & Pettigrew (2011), McLarty (2011)
for relevant material on the issue.)

It seems he thinks of mundane mathematical objects, like the natural numbers or
triangles, which have to be “locate[d] (...) within the mathematical universe” and
the “concept of natural numbers” cannot be thought of as an “abstract structure”
alone without any “specific or concrete representation” e.g. “the category of sets”.
This position is one of an in re structural realist about mathematics, which I do
not share.1 It implies that structures, which mathematical objects are, have to, as
Shapiro (1997) puts it, be “exemplified in a nonstructural realm” (p. 89). Marquis
further describes this point:

A slightly different way to make sense of the situation is to think of math-
ematical objects as types for which there are tokens given in different con-
texts. This is strikingly different from the situation one finds in set theory,
in which mathematical objects are defined uniquely and their reference is
given directly. Although one can make room for types within set theory via
equivalence classes or isomorphism types in general, the basic criterion of
identity within that framework is given by the axiom of extensionality and
thus, ultimately, reference is made to specific sets. Furthermore, it can be
argued that the relation between a type and its token is not represented
adequately by the membership relation. A token does not belong to a type,
it is not an element of a type, but rather it is an instance of it. In a categor-
ical framework, one always refers to a token of a type, and what the theory

1See Reck and Price (2000, p. 366 ff.) with reference to Shapiro (1997, ch. 3) for a discussion
on in re structural realism about mathematics and the distinction between in re - and ante rem
structuralism. Shapiro is an ante rem structuralist.
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characterizes directly is the type, not the tokens. In this framework, one
does not have to locate a type, but tokens of it are, at least in mathematics,
epistemologically required. This is simply the reflection of the interaction
between the abstract and the concrete in the epistemological sense (and
not the ontological sense of these latter expressions.) (See Ellerman (1988),
Marquis (2000), Marquis (2006), Marquis (2013).)

I believe that here he has no substantial point of criticism to offer. Cantor
famously introduces a set as “a gathering together into a whole of definite, distinct
objects of our perception [Ger. Anschauung] or of our thought—which are called
elements of the set.” (1895; 1897) This indicates that the elements of a set do
epistemically refer to mathematical or non-mathematical objects. However, this
is not the way mathematicians use sets in der everyday use and in particular not
in the discussion about a mathematical foundation. The cases (J) and (E) (p.
72) show how a primitive element ∅ that refers to nothing is used with the basic
relation ∈ to construct the structure of the natural numbers without any further
referencing elements at all.

In abstract algebra, elements a, b ∈ A from the set A of a S-structure (A, a),
for instance a group, do not refer to anything different than what the S-structure
expresses. The elements of A are simply variables for something pairwise non-
identical, but they are still variables, i.e. placeholders for something arbitrary;
and this is how the mathematicians of the field epistemically treat these elements
of A. Even in probability theory the set Ω of a probability space (Ω,F ,P) has
elements ω1, ω2, ... that do not have any specified reference. Probability theorists
usually construct probability distribution functions and stochastic processes with-
out even specifying to what scenario a certain element refers to. The elements,
while doing mathematics, are seen as variables for arbitrary mathematical or, in
contexts of modelling applications, non-mathematical reference objects. Seen from
this perspective, mathematicians are true structuralists, even when they work in
a set-theoretic framework. Another very common and simple examples of miss-
ing references is the imaginary constant i, which is the solution of i2 = −1. It
makes no sense to speak of any “concrete” i. Your grandmother will not be able
to offer you a

√
−1 share of birthday pie, even if she has a PhD in math. That

is why the only remaining criterion of any instantiation of a mathematical object
could be an agent, who thought about it or wrote it down. The ontological status
of mathematical objects then boils down to the classical Heideggerian question
whether mind processes should influence our ontology or not. I reject this view
regarding mathematical objects1 and advertise an ante rem structuralism about

1The arguments are, briefly, that (i) the vast amount of possible agents (e.g. artificial in-
telligences; aliens from Zeta Reticuli) make it likely that every mathematical object is already
instantiated somewhere, and (ii) since mathematical objects are truely intersubjective in the
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mathematical objects.
I expressed a view concerning a question that is deeply imbedded in the history

of philosophy of mathematics. It was an aspect of the early 20th century Grundla-
genstreit that is usually historically connected to Hilbert (mathematics is a game
of signs and axioms) and Frege (mathematical terms refer to objects of thought).

However, even if we do not believe that Marquis has a substantial point of
criticism to offer, the second concern is more threatening. Awodey (2004), one
of the most convinced proponents of the view that category theory helps us to
understand what mathematical structures are, is very reluctant when it comes
to nominate category theory as the approach to define mathematical structures in
some global sense. Under a global account of mathematical structures I understand
an approach that is structural, i.e. it is purely based on relations without any
further referenced objects, and foundational for mathematics. One approach of
this sort would be to formulate the whole body of discovered (or known or defined)
mathematics in Lawvere’s categories of categories. Awodey states:

No one doing category theory thinks we are someday going to find the one
‘true topos’, in which all mathematics happens. The translations of set
theory into topos theory (and other categories) are intended to show that
categories like toposes can be used to do a lot of mathematics for those
used to doing mathematics in set theory; they are not supposed to show
that topos theory is the new universal ‘system of foundations’, intended to
replace set theory. (p. 55)

A topos is a sort of category axiomatically defined by Tierney (1972). Marquis
(2014) summarises that “an elementary topos is a category possessing a logical
structure sufficiently rich to develop most of ‘ordinary mathematics’, that is, most
of what is taught to mathematics undergraduates” (sect. 2). What can category
theory offer regarding our interest to explicate what structures are? Awodey goes
on:

As opposed to this one-universe, ‘global foundational’ view, the ‘categorical-
structural’ one we advocate is based instead on the idea of specifying, for
a given theorem or theory only the required or relevant degree of informa-
tion or structure, the essential features of a given situation, for the purpose
at hand, without assuming some ultimate knowledge, specification, or de-
termination of the ‘objects’ involved. The laws, rules, and axioms involved
in a particular piece of reasoning, or a field of mathematics, may vary from
one to the next, or even from one mathematician or epoch to another. (p.
56)

sense that a four is the same for you than it is for me, it makes little sense to make the reality
of a four for me dependent on your thoughts about it.
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This quote fits well to the actual development in category theory. Our simple
example of ordered pairs (x, y) ∈ X × Y (p. 75) provides the structural interpre-
tation of a Cartesian product, but in this case we have to stipulate that X and Y
are sets, which a true category structuralists according to a “‘global foundational’
view” would have to replace with a categorical account of sets. Such an account
is worked out by Lawvere (1964), but this is not the case for the whole body of
mathematics. Awodey:

No one claims that category theory is the only way to talk about structures
of structures of ... . Or even that it is the best way (although I know of
no better one). The only claim being made in this connection is that it is a
very good way. (...) Category theory was developed so extensively because
the notion of a category, and the related notions of functoriality, naturality,
and adjointness, proved to be so effective in modern, abstract, mathematics.
And the reason for this broad applicability has a lot to do precisely with
their effectiveness at specifying and manipulating structures. (p. 61)

I agree with Awodey’s position. Categories are the best explications of struc-
tures that today’s mathematics has to offer. They are based on very simple axioms
(p. 74) and their graph-like style is epistemically easily accessible. As shown in our
discussion above, they are a true step forward in our endeavour of an explication of
structures in general in comparison to sets, which are still the common approach
for the foundation of mathematics among most communities of mathematicians.

However, I use ‘structure’ not with a strict reference to categories, but in the
usual non-formal sense from philosophy of mathematics. The hereby given insight
into the discussion on how globally fundamental category theory can or cannot be
for mathematics helps to grasp a better understanding about what a mathematical
object, a structure, is (in particular to readers without a strong mathematical back-
ground). In my view, actual approaches to mathematically explicate the notion of
structure are too often neglected in the philosophical discussion on mathematical
structuralism. As Lawvere emphasises, category theory is a step forward regarding
an explication of the notion of structures in comparison to set theory.

Are There Abstract and Non-Mathematical Objects?

The introduced notion of abstractness is relatively simple: I call an object ab-
stract, if it has no spatiotemporal location. This criterion is the descendant of
Frege’s (1918–1919) introduction of the ontological “third realm” where he locates
thoughts to be. Objects in Frege’s “third realm” are neither materially located
in the world, nor do they depend on being the content of someone’s conscious
imagination.1 I interpret the criterion of non-spatiotemporality to fulfil Frege’s

1Frege writes:
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criteria of being in the “outside world” and the independence from being a “con-
tent of consciousness”. There are opponents of such an interpretation putting forth
legitimate doubts, but I do not aim to discuss these problems in this text.1

I make use of the concept of abstract objects, as introduced above, to formu-
late a sharp counterpart to empirical objects. This twofold universe is of specific
interest to us, due to the clear ontological distinction between the scientific phe-
nomena, which are features of the empirical world, and the pattern in data, which
are abstract and also mathematical objects (or terms).

Physical objects are not abstract, but every mathematical object is. Further-
more, the only sort of abstract objects I use in the argumentation are mathematical
objects. That is why I use the two adjectives ‘abstract’ and ‘mathematical’ syn-
onymously in this text. The title of this section is somewhat provoking, since many
examples of abstract objects come to mind that are usually not considered to be
mathematical: propositions, concepts, the game of chess, Goethe’s Faust. If the
distinction between abstract and concrete objects is interpreted as being identical
to the distinction between particulars and universals, such as Quine (1961, esp. ch.
I, IV, V, VI) suggests, then the possibility of non-mathematical abstract objects
is even more appealing.

However, here is a justification for my use of the terminology. The start-
ing point of the argumentation is my choice of a pragmatic position concerning
mathematical objects: they are positions in structures or structures themselves.
Furthermore, I stated that a set of scientific data is a mathematical object that

Thus, the result seems to be: Thoughts are neither objects of the outside world,
nor of imagination.
A third realm needs to be acclaimed. Objects in this realm have something in
common with imaginations: they cannot be perceived with the senses. But they
have in common with the objects from the outside world that they do not require
a mental bearer of whoms consciousness they are content of. For instance, the
thought that is expressed by Pythagoras’ theorem is timelessly true and its truth
is independent of any individual mind’s opinion about its truth. No mental bearer
is necessary. The theorem is not only true, because someone discovered it. It is
true like it is true that a planet has already interacted with other planets before
someone discovered it.

translated (by me) from German:
So scheint das Ergebnis zu sein: Die Gedanken sind weder Dinge der Außenwelt
noch Vorstellungen.
Ein drittes Reich muß anerkannt werden. Was zu diesem gehört, stimmt mit den
Vorstellungen darin überein, daß es nicht mit den Sinnen wahrgenommen werden
kann, mit den Dingen aber darin, daß es keines Trägers bedarf, zu dessen Be-
wußtseinsinhalte es gehört. So ist z. B. der Gedanke, den wir im pythagoreischen
Lehrsatz aussprachen, zeitlos wahr, unabhängig davon wahr, ob irgendjemand ihn
für wahr hält. Er bedarf keines Trägers. Er ist wahr nicht erst, seitdem er ent-
deckt worden ist, wie ein Planet, schon bevor jemand ihn gesehen hat, mit andern
Planeten in Wechselwirkung gewesen ist.

As Rosen (2012) mentions, similar ideas were already proposed by Brentano (1874).
1Rosen (2012) provides an encyclopaedic overview.
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can be represented physically or mathematically plus the additional empirical in-
formation of its experimental origin. (see chapter 2) The main reason for this
assumption is that patterns can be explained only mathematically and scientific
data analysis is explained to be the detection of patterns in scientific data. Data
are abstract objects not only in the interpretation of abstractness I chose, but
also in other common interpretations of it. A set of data fits well into the list of
exemplary abstract objects above. If mathematical objects are structures and do
have the expressive power to distinguish all possible sets of scientific data, why do
they not have the power to express all abstract objects? I want to disentangle this
thread of argumentation more thoroughly in the following passages.

First, structures, which are a composition of relations between propertyless
primitive objects, have a high expressive power. But are structures possible,
which are not mathematical? I believe the description of mathematical objects
as structures is an equivalence: every structure is a mathematical object and ev-
ery mathematical object is a structure. To say it in other words, close to those of
Resnik (1997)1, mathematics is the science of structures.

Second, assuming you agree with my conclusions from chapter 2 about data
being mathematical, other abstract objects can easily be regarded as forms of pos-
sible data. A written down proposition (in a logical or any other language) or a
thorough description of a concept differs only—if at all—from data by the irrele-
vance of the information of its origin, which is highly important for some sets of
data. The claim that there is no difference between the class of all abstract objects
in general and the class of all mathematical objects is strongly related to Russell’s
(1927) idea (that I already mentioned at page 57): “wherever we infer from per-
ceptions, it is only structure that we can validly infer; and structure is what can be
expressed by mathematical logic” (p. 254). This claim is epistemic, but as elabo-
rated on later (p. 82), I believe that epistemic criteria that are not restricted to
human agents serve perfectly as indications of what counts as an ontology (what-
ever this is in me detail). If this is the case, then a Kantian-Russellian argument
serves to strengthen the idea that the ontological class of abstract objects concurs
with the one of mathematical objects. Kant suggests that objects of thought can
be accessed only by inner illustration (Ger. “innere Anschauung”), Russell claims
that all perceptions (inner and outer) result in mathematical objects or terms. To
summarise the argument: abstract objects must be epistemically accessible, what
is epistemically accessible needs to be a result of possible perception (Kant), and
perceptions result in structures (Russell), which are mathematical objects.

The biggest step in my argumentation is the following. Abstract objects, such
as propositions, concepts, the game of chess or a piece of literature may in many

1In his structuralism, Resnik uses ‘patterns’ interchangeable with ‘structures’. (cf. p. 202)
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cases be describable as structures. And if every structure is a mathematical object,
then how can an abstract object be non-mathematical? I want to examine this
statement more thoroughly on the basis of the mentioned examples.

Propositions may be reasonably decomposable into a logical structure. If so,
then their logical form can easily be identified as a structure in a more general sense.
Usually, parts of a proposition may refer to non-logical objects or properties, such
as concepts or predicates of empirical objects or empirical objects themselves. The
important question at this point is: is the proposition only the logical form or are
the referenced objects and propositions parts of the proposition itself? I do not
think that this latter option is a good one. The physical sun is not part of pthe sun
raises every morningq.1 One argument in favour of this position is the reference
to fictional objects, which do not physically exist. If unicorns have to be a part of
punicors neighq, then this proposition could not exist, which would be very odd.

If We Accept Computers as Agents of Mathematics, then
the Ontology regarding Mathematics already Implies all
Epistemological Aspects for Mathematics

Epistemology is, very roughly, the study of human perception and cognition, or, in
other words, how human beings perceive information, think and judge. Ontology
is, very roughly, the classification of things in this world on a level of abstraction
that is not covered by any (other) scientific field. Given these descriptions, there
should—one may think prima facie—not be much debate about whether a specific
philosophical claim is an epistemological one or an ontological one: Being seems
to be a rather different philosophical concept than perceiving or reasoning are.

However, Heidegger (1927) influentially incorporates being a conscious human
as a crucial and non-reducible aspects into his ontological study. I discuss how
Dennett infers from human perception an extra ontological class of “real patterns”
in section 4.3. The idea behind these approaches is that something that can be
perceived or thought about by a human agent is something distinct and cannot be
ontologically reduced by any means.

In my approach, data and pattern, and even background assumptions in science
are something structural and therefore mathematical. Otherwise, intersubjectiv-
ity of scientific evidence and inference would not be possible. How epistemological
and how ontological is this claim? If the notion of epistemology is restricted to
human epistemology, which it is in most epistemological accounts, then my claim
does not have anything to do with epistemology due to the extensive use of tech-

1‘p’ and ‘q’ denote quasi-quotation.
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nical aids in science (e.g. statistical pattern analysis performed by computers)1.
One may now oppose this claim by stressing that, even if a set of data may be
a vastly complex mathematical object, propositional background assumptions are
still human-made and must be conceivable for human agents. However, as stated
earlier in this chapter, for pragmatic and historical (meaning here: future) reasons
background assumptions, sets of data and patterns are not restricted to human
agents. According to my notion of mathematics, Deep Blue’s considerations about
its next move are surely something mathematical and qualify as (scientific) reason-
ing, too, but no human agent may be capable of understanding it. Applications
of a calculator are common in all fields of quantitative science and are part of
scientific reasoning.

If the notion of epistemology is not restricted to human agents and also aims to
describe non-human agents, such as calculators, artificial intelligences, extraterres-
trials and the like, then, regarding mathematical objects, the notion of epistemol-
ogy is identical to the notion of ontology. The reason is, as elaborated on in this
section above, mathematical objects are explicated as being structures. Without
any extra epistemic restrictions (e.g. complexity) that force us to exclude spe-
cific structures from the class of all mathematical objects, everything that counts
as mathematical from an ontological view point does so from the epistemological
point of view, too. Therefore, a notion of structure is sufficient to extensionally
define all mathematics. This extensional foundation for mathematics sufficiently
covers the epistemology of mathematics. Why is that? If we restrict the episte-
mology of mathematics to human agents,2 then we had to exclude all the humanly
inconceivable mathematical objects that AIs use in their reasoning. And this
would not be an epistemology of mathematics, it would be an epistemology of
restricted mathematics. That is why an epistemology of mathematics has to be an
epistemology that applies to possible AIs and aliens, too. But since this class of
reasoning machines and beings is arbitrary large and diverse, the only reasonable
claim we can make about mathematical epistemology is what we already know
from its ontology: mathematical objects are structures. And the foundational ap-
proaches for mathematical structuralism, such as category theory, provide all there
is epistemically to know about mathematics: what the primitives are, how objects
are composed of its components etc.

1The statistician or programmer may understand aspects of the computer aided analysis, but
the scientist himself does often not have to.

2One exemplary episode for such a restriction of mathematics to human agents is the dis-
cussion about the proof of the four-colour theorem. The proof is no proof according to an
epistemology of mathematics that is restricted to human agents. However, it is a proof if we
eliminate this restriction and allow non-human mathematical agents. More on the discussion can
be found at Tymoczko (1979) and Swart (1980)—both are more concerned with forms of truth,
whereas I am mainly concerned with the epistemological implications.
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3.2 Everything Computable is Mathematical

Section Abstract
Mathematics is explicatively more powerful than a purely logical language under prag-
matic considerations and provides therefore a more suitable language to explicate data
and patterns in science. The Church-Turing thesis shows that computer tasks are
equivalent to a certain class of mathematical functions. It follows that the notion of
a mathematical object or term incorporates all possible computer data and processes.
However, non-constructive mathematics is not computable, which makes the class of
mathematical objects a superset to computable data and processes.

Why do I put so much emphasis on explaining that data and patterns in them
are mathematical, as opposed to, for instance, explicable in predicate logical terms,
which arguably has more support in the recent explicative philosophical literature,
beginning with Frege’s, Carnap’s and Hempel’s works? As stated throughout this
thesis, the reason is that today’s scientists use more and more aid from computers
to process data, find patterns and even explicate them.—Just try to explicate a
64 × 64 pixel image in predicate logic. Data sets or patterns are often stored
and processed as statistical signals, time series, encoded files or the like. That
is why for actual examples of scientific reasoning, purely logical explications fall
pragmatically short, since it does not seem pragmatically feasible to explicate
actual data sets (see the examples discussed in chapter 2) and computer aided
pattern detection processes in common predicate logic. In this section I defend
the claim that the notion of mathematics, as discussed in the former section, is
powerful enough to play the role of the language of the demanded explications of
data and patterns in science, including all possible involved computer processes.

Briefly outlined, the argumentation in this section is as follows. Logic is moti-
vated to explicate the language of (human) reasoning and is therefore the preferred
candidate for formal explications by the majority of today’s philosophers. Mathe-
matics is the language (or provides the objects) for the study of structures, which
has more similarities to visual imagination (Kant) and relational thinking than
what logics aim for. Computers are deterministic machines that are designed to
execute computational tasks. These tasks are often, but not always, formulated in
a programming language, which may have some substantial similarities to a logical
language and may make use of a mathematical calculus. Tasks that are results of
machine learning applications, are examples for tasks that are not directly formu-
lated in a programming language. However, every task for any computer can be
described in the compiled computer language, which describes the task for the com-
puter, but is in many cases not easily epistemically accessible to a human agent.
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1 #include <stdio.h>

2 int main()

3 {

4 int a = 2 + 2;

5 printf("%d", a);

6 return 0;

7 }
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Figure 3.1: Left: a C script that calculates two plus two and shows the answer on the
screen. Right: the first of 8520 bytes of the compiled version for my computer and
visualised as characters with UTF-8 interpretation.

Figure 3.1 provides a small example of a program in the programming language
and in a computer language. Roughly stated, the computer language determines
which sequence of electric currents has to flow to which part of the computer.

For our purposes of discussing computers on a basic level there is no useful
distinction between software and hardware.1 A Turing machine is a specific ar-
chitecture for a computer. For mainly historical reasons2, Turing machines are
theoretically well understood.

The crucial argument for my claim that it is very reasonable to assume that
every computer task can be explicated in mathematical terms is the Church-Turing
thesis. Many versions of this thesis were discussed and the two original versions
from Alonzo Church and and Alan Turing are sometimes misinterpreted and mis-
represented. (cf. Copeland 2002) I present a version that is, in my view, sufficiently
historically accurate, understandable without specific theoretical background from
the field of computational logic, and strong enough to provide sufficient support
for my claim.

Church–Turing thesis

Be N the set of positive integers. For a function f : N→ N

f is effectively calculable =⇒

1This sentence should avoid confusion for readers who are very unfamiliar with computer
architecture. Software is always physically stored and therefore not distinguishable from an
architectural perspective.

2Turing machines were first discussed by Turing (1937). I speculate that Turing’s theoretical
architecture for a computation machine was appealing to logicians and philosophers due to
its conceptual simplicity, which helps to theorise about computability without any constraints
regarding engineering feasibility. Note that Leibniz (1646–1716) and others already correctly
discussed mechanical computing machines in detail (cf. Davis 2000, ch. 1) and Konrad Zuse’s
patented the mechanical switch for the Z1 in 1936 (2017).
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f is general recursive⇐⇒
(a)

f is λ-computable⇐⇒
(b)

f is Turing computable.

Being effectively calculable is an informal concept expressing that a function can
be calculated by (i) using a finite number of finitely formulated exact instructions,
(ii) produce the result in a finite number of steps, (iii) can be carried out by a
human being with only paper and pencil, and (iv) demands no further insight,
intuition, or ingenuity. (cf. Copeland 2002, 1) General recursive functions are
introduced by Herbrand (1932) and Gödel (1934). Without giving a detailed
introduction, we can roughly describe general recursive functions to be functions
f : N→ N that are identical to a finite repetition of equations from a finite list (e.g.
3·a = c ⇔ a+a = b ∧ b+a = c).1 They are introduced to explicate the arithmetic
of positive integers. The equivalence (a) is discussed by Church (1936) and Kleene
(1936a; 1936b). λ-definable functions are introduced by Church (1932; 1936) and
Kleene (1935). As opposed to general recursive functions, functions in the λ-
calculus can be expressions with variables for integers and without any reference
to recursions (e.g. a polynomial). The λ-calculus is very sparse and the allowance
for abstract terms make it more similar to large parts of actual mathematics (e.g.
analysis; algebra) than general recursion.2 Equivalence (b) is discussed by Turing
(1937). The function f is Turing computable, if f can be executed by a Turing
machine in finitely many steps (cf. Turing 1937); more explanation follows below.

The thesis3 is, to my knowledge, not proven, but also not disproven. For a
disproof it is sufficient to show that there is at least one task that can be performed
via a general recursive function in finite time, but not by a Turing machine or vice
versa. Given the attention that computational logic received over the last decades
it is at least fair to assume that the validity of the thesis is widely accepted.

How much does the Church-Turing thesis tell us about my claim, which gives
the title to this section? We have to look at the two interesting notions from the
Church-Turing thesis and relate them to computability in a more pragmatically
applicable sense for the computers that we actually use on the one side, and to
mathematical objects in general on the other side. Namely, we should have a look
at how much Turing computability tells us about our actual computers and how

1A condensed English definition for general recursive functions can by found at Kleene (1936a,
§1).

2Alama (2017) provides an introduction into the λ-calculus.
3My given version of the Church-Turing thesis does not refer to the pre-formal notion of

effectiveness, which is the most appropriate historical starting point in any discussion about
the thesis. However, the referred to notions of general recursivity and Turing computability
are suitable for my aim to explain the relation between the capabilities to perform tasks by a
computer and by an agent who is able to use only mathematical reasoning. Effectiveness is not
thoroughly formalised and is intended to specifically explicate the capabilities of a human agent,
who uses paper and pencil to perform (mathematical) tasks.—That is why Turing machines
write and erase on tapes, which seems to be a rather unpractical approach in comparison to the
architecture of actual computers (e.g. von Neumann architecture).
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much general recursive functions tell us about mathematical objects.
I start with the computability aspects and want to keep it brief. Turing com-

putability is very powerful and every digital computer that was built1 until now
can be emulated by a Turing machine. A Turing machine has a program and some
storage space on its tape. As Hopcroft, Motwani and Ullman (2001, sect. 8.6),
to which I refer regarding any computational theoretic claim in this paragraph,
show, the number of steps to simulate any of today’s known computer program
by a Turing machine is at most polynomial to the number of steps of the original
computer program. The relevant information for our theoretical investigation is
that this number of steps is always finite, since our today’s actually built digital
computers can execute only a finite number of computations.

The computation of the value of a certain mathematical function f(~n) for some
~n ∈ Nm with somem ∈ N is, intuitively speaking, a recursive process. That is why,
intuitively, general recursion theory provides a suitable approach for the explica-
tion of actual mathematical functions. But what do theoretical insights about
general recursive functions tell us about mathematical objects or terms in gen-
eral? Note that set theory, which is today’s most common approach to formulate
a foundational vocabulary for mathematics, does not have to imply any recursion.
However, constructive approaches for the real numbers (e.g. Cauchy sequences;
Dedekind cuts) hint to the fact that recursive methods are seen as epistemically
more suitable for a foundation of mathematics by a significant proportion of work-
ing mathematicians. An illustrative example for such a constructive and also
recursive approach is Heron’s method for the description of the irrational number
√

2 via an iteration:

x0 ∈ R>0 , xn+1 = 1
2 ·
(
xn + 2

x2

)
for which xn n→∞−→

√
2.

Due to the build-up approach that the fundamental mathematical vocabulary im-
plies which resulted from the Grundlagenstreit (e.g. set theory; predicate logic),
and due to the many approaches to constructively define mathematical objects,
it seems reasonable to stipulate that many mathematical objects are recursively
constructable objects, even if our everyday mathematical vocabulary does not in-
dicate this in every case clearly. That is why I believe that the theory of general
recursive functions tells us a lot about mathematical objects in general and I can
adopt the conclusion of the Church-Turing thesis to some extent for mathematical

1In the field of hypercomputation various sorts of computers are theoretically discussed that
cannot be emulated by a Turing machine. These include computers that can solve the halting
problem, that can store irrational numbers, or that can compute infinitely many steps in finite
time. However, no actually hypercomputing machine exists today, including (qubit) quantum
computers, which can solve only Turing computable tasks (cf. Bernstein and Vazirani, 1997).
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objects in general.
If the reader is not convinced by these arguments (which are not proofs), I

remind him that the Church-Turing thesis is convincing since no known theoretical
problem can disproof it (e.g. halting problem). However, it should be noted that,
as is widely discussed, the axiom of choice stipulates the existence of functions,
which cannot be constructively described in set theoretic terms or by any known
logical language. Since such a function is not constructive it can therefore also not
be recursively defined. This counterexample is sufficiently highlighted throughout
the literature1 and the epistemological implications for mathematics were discussed
to a sufficient degree.

However, my title giving claim in this section is not threatened by any non-
constructive parts of mathematics. The claim is not build upon the equivalence
that is stated by Church-Turing thesis; it gives a strong interpretation to the
implication that Turing computable functions are always mathematical, but it does
not imply any further interpretation for the other direction of the equivalence from
general recursiveness to Turing computability. This leads to the conclusion that
computers cannot execute tasks, which cannot also be described in mathematical
terms (even if there are non-constructive mathematical objects that can never be
instantiated by a computer).

As elaborated on in section 3.1, I suggest that category theory is the best
widely discussed approach to explicate mathematical objects and I chose Grenan-
der’s general pattern theory as the epistemically preferable approach to explicate
patterns due to its crucial criterion of providing a way of construction for a pat-
tern. An epistemically easily accessible way of construction does not have to be
given for sets of data, but data sets are always finite and can therefore always be
trivially constructed by a finite description. That is why, for the purposes of this
thesis, I can simply restrict the notion of mathematics to the one that mathemati-
cal constructivists suggest2, who reject the axiom of choice. Mathematical objects
in accordance with this notion are the mathematical objects or terms that can be
constructed in mathematical terms, and these objects are equivalent to objects or
terms that can be constructed by a computer, such like a von Neumann computer,
if we accept this very strong version of the Church-Turing thesis.

1For a survey on the history and literature about the axiom of choice see Bell’s (2015) ency-
clopaedia entry.

2Bridges and Palmgren’s (2013) encyclopaedia entry provides an overview and a history of
constructive mathematics.
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3.3 Algorithms, Machine Learning and Episte-
mology

Section Abstract
Recent and not so recent developments in artificial intelligence, including machine
learning, help to strengthen the view that scientific inferences, data and patterns can
be mathematically explicated. Every computer program can be translated into a mathe-
matical algorithm via decompiling. Actual recent technical developments help to under-
mine important implications of positions from Dennett and Searle from the philosophy
of mind. In principle, only computable tasks can be rational scientific inferences by
human agents. I take the following as a premise: an open question is when artificial
intelligences have the computational power to perform all tasks that humans can per-
form regarding science, but not that this will happen.

In this thesis, mathematics plays a central role for epistemological and ontological
explications. One of the reasons for this is that computer-made inferences play an
important role in scientific practice (e.g. statistical analysis; data base searching).
As mentioned earlier in this chapter, these inferences can, in some cases, only
hardly be explicated in purely logical terms under pragmatic considerations, but
they can always be explicated in mathematical terms. In this section I want to fur-
ther strengthen the view that this epistemology of mathematics via computability
is very powerful. With this I mean that the following doubt is not very threatening:
computers and mathematics may play an auxiliary role for science, but any purely
mathematical explication of data and pattern recognition falls short in regard to
grasp the full epistemic role of data and patterns in the epistemic process of the
human scientist’s mind.

The argument implied in this threat has some similarities to the old philo-
sophical question whether human decision making ist completely determined or
in other words: is there freedom of will? In this section I, of course, cannot pro-
vide an answer to this long debate that would be convincing enough to persuade
every reader and this is not my aim. What I aim for is to refer to very recent
philosophical speculations about future computer technology that are usually re-
ferred to by the umbrella term ‘artificial intelligence’ (abbreviated ‘AI’), and from
these I follow that, firstly, the human organism does not, regarding the making
of scientific inferences, provide any special capabilities that cannot be replicated
by a machine,1 and, secondly, since the arguments from the former section are

1I feel convinced that I am aware of the radical metaphysical, epistemological and religious
implication of such a claim.
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still valid for these future computers, reasoning and objects of reasoning can be
mathematically explicated.

In section 2.2, commenting figure 2.4, I already highlighted my view that the
qualia impressions that are induced by a set of data (e.g. the impression of red from
an image) are not a part of the data, which can be explicated in mathematical terms
and computer image storing is an example for this. Analogously, if an artificially
intelligent agent makes inferences from a colourful image, this qualia seems to
be absent from this process anyways, if we believe that qualia impressions are
something only biological organisms (e.g. humans; bats1) can have. If we accept
that qualia are not restricted to those organisms, and should be seen as aspects
of artificial intelligences (made from silicon and copper instead of proteins, water
and fat), too, then the elaborations from section 2.2 still apply.2

It is not a simple task to explicate what artificial intelligences are. They are
most often described as computers or computer programs that are in some sense
intelligent (whatever this may mean in detail)3. Intelligence may be defined by
the classes of problems that can be solved—a program needs to be more intelli-
gent to beat a grand master in chess than to calculate

√
17. But, obviously, the

classification of tasks that can be solved only by an intelligent agent is as intricate
as defining intelligence is. Turing (1950) suggests an imitation game, according to
which a machine has a human level of intelligence, if it can convince any human
after a merely textual interrogation that it could be a human agent. However, for
the purposes of this thesis it is not necessary to explicate (artificial) intelligence.
It is sufficient to say that there are artificial intelligences (find examples in the
list below). The reason for me to still use this notion is that it is widely used in
certain parts of the literature and it is used to solve problems that do not seem to
be solvable by more classical computation methods like the implementation of a
static algorithm that was preconceived by a human agent. Static means that the
algorithms does not change itself with iterations.

I believe that there is no empirical ground for believing that humans can ac-
complish tasks that a machine could principally not and artificial intelligences
are very suitable to support my conviction. These tasks include inferences in all
scientific fields, creating art (whatever our notion of art is), using any language
and driving a car. I also believe that a rejection of such a claim is less grounded

1This example is, of course, a little tribute to Thomas Nagel’s (1974) paper.
2The idea of extending the notion of qualia from humans and animals to machines is not so

far off as it may seem to some. For example, for a physical reductionist’s or supervenience notion
of qualia a perfect computer replication of a biological organism can instantiate pain or feelings
by instantiating the corresponding physical state in the replication.

3An introductory discussion on the notion of (artificial) intelligences can be found at Russell
and Norvig (2010, ch. I). A collection of recent papers on notions and tests for intelligence of
computers can be found in an AI Magazine issue (2016).
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on convincing arguments from the philosophy of mind, but rather on a dull be-
lief in human uniqueness or grandeur, which has an influential philosophical and,
more prominently, religious history.1 This false traditional belief is nicely exem-
plified by Gary Kasparov’s claim after being defeated in the first round of the
chess match against IBM’s computer, as Hsu (2002, blurb and p. 265) reports,
“that only human intervention could have allowed Deep Blue to make its decisive,
‘uncomputerlike’ moves” that lead to its victory over the human world champion.

My argumentative technique—which is also the one of Bostrom, Kurzweil,
Musk and others—could be called ‘optimistic induction’2: the success of artificial
intelligences that we observed so far makes me (and many others) believe that a
human-level or even superior artificial intelligence is possible. Furthermore, we
do not need more than to upscale our known computer architecture to built com-
puters that match or exceed the cognitive performance (which I identify with the
computational power) of a human brain. Figure 3.2 shows a numerical prediction
of future computational power with some further explanation in the caption.

For a more detailed history and explanation on AI I refer to Bostrom (2014).
For the purposes of this thesis it is sufficient to know that the upscaling in com-
putational power of supercomputers does not have a general upper threshold3 and
that many intelligent solutions from computers (e.g. beating master Go players)
are achieved by machine learning (and in particular deep learning4). Machine
learning is the ability of a program to adapt its own program as a reaction to some
feedback it received regarding an earlier application of one of its algorithms.—
Figure 3.3 illustrates the case for an AI that is aimed to identify objects that are
shown in an image.

One simple strategy to address an opponent’s claim that human epistemic
capabilities can never be matched by a silicon-copper based computer is to present
a list of historical incidents at which machines accomplished tasks that only human

1The best study that I am aware of on the interplay between human consciousness, Chris-
tianity and specific human cultural capabilities is Jordan Petersons lecture on the psychological
relevance of the Biblical stories (2017).

2This is, of course, a little reference to the pessimistic (meta-)induction, which is an idea from
the debate about realism about unobservable objects and scientific theories. It roughly states
that we should be pessimists about the reality of an unobservable entity or about the truth of an
empirical theory, because so many earlier theories and stipulated unobservable entities turned
out to be false or non-existent.

3Scales of computer chips are usually restricted by upper thresholds (due to cooling issues) and
lower thresholds (due to the avoidance of quantum effects). However, arbitrarily large computers
can be built by the use of cluster architectures and are constrained only by the availability of
resources. Note that all computers that are connected to the internet can be seen as one large
computer cluster.

4Deep learning is the application of artificial neural networks with more than one hidden
layer. For our purposes it is enough to say that this implies that it is, for a human investigator,
not easy or even epistemically impossible (depending on the sizes and number of hidden layers)
to understand the causal processes of the artificial neural network after its training.
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Figure 3.2: Prediction of future computational power in instructions per second for a
fixed financial budget by Kurzweil (2005, p. 70). The growth rate is justified by an adap-
tion of Moore’s law about efficiency gains in processor production. The computational
power of human (and animal) brains are estimated by calculating the necessary number
of calculations that the retina has to do for visual image processing empirically observed
at humans and extrapolating this performance to the mass of the entire brain.—Kurzweil
adopted this method from Hans Moravec (cf. ch. 3, see there for further references).

beings were able to accomplish before the development of the machine. These are
the starting points of the optimistic induction. However, the optimistic induction
is neither a fully convincing empirical study (since we have no super AI yet), nor a
proof of anything. But it serves as falsifications for the claims that the mentioned
accomplishments demand human consciousness. To provide convincing arguments
to confirm my belief in human-level future AIs to a sufficient degree much more
work would have to be done. A lot more insights into the workings of the human
brain and the mind are necessary. Therefore, for the aim of this thesis, I take this
belief as a premise and the following list, at least, corroborates this belief. The
examples include AI and machine learning:

• IBM’s Deep Blues beat reigning world champion Gary Kasparov in a game
of chess in 1996. Deep Blue uses an evaluation function to assign numerical
values to the possible next moves from which the highest ranking one gets
chosen. It demands, according to 1996 standards, massive parallel processing
power. The evaluation function is statically programmed, meaning that no
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canine
cavy
batnam
domestic dog

backseat
wheeled vehicle
self-propelled vehicle
motor vehicle

flaming poppy
corn poppy
iceland poppy
opium poppy

Figure 3.3: Three examples of images that were used as illustrations or characters in
this thesis and the suggestions from Wolfram’s (2015a) Image Identification Project.
The first name in bold print is the AI’s preferred solution. The next three names are
the most likely alternatives according to the AI. These are results from August 9, 2017.

machine learning is involved. (cf. IBM 2001)1

• IBM’s Watson achieved a victory over a group of human Jeopardy! cham-
pions in 2011. Watson is based on IBM’s DeepQA software, which aims to
operationally understand content that is phrased in the English language.
(cf. IBM 2009) This operational understanding is the ability to provide ad-
equate answers and questions in a conversation. For the match of Jeopardy,
Watson was given an amount in the ballpark of 200 million pages of content
from various sources as machine learning input. (cf. Best 2013) As Deep
Blue, Watson demands massive parallel processing power. Watson received
the answers, to which he has to find the correct questions, in text form and
did not use speech recognition.

• DeepMind’s AlphaGo beat the European champion Fan Hui in the board
game Go, and after that it beat world champion Lee Sedol in 2015. DeepMind
(2016) summarises their conclusions regarding AlphaGo’s style of play and
the game Go:

During the games, AlphaGo played a handful of highly inventive win-
ning moves, several of which - including move 37 in game two - were so
surprising they overturned hundreds of years of received wisdom, and
have since been examined extensively by players of all levels. In the
course of winning, AlphaGo somehow taught the world completely new

1Campbell, Hoane and Hsu (2002) provide a more detailed computer scientific description of
the Deep Blue project. The leading computer scientist of the IBM project, Feng-Hsiung Hsu
(2002) also provides a historical survey, including social aspects of the working group and the
personal interaction with Kasparov.
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knowledge about perhaps the most studied and contemplated game in
history.

As Silver et al. (2016) calculate, Go is combinatorially vastly more complex
than chess. AlphaGo uses machine learning and a neural network, which was
trained by human supervising experts and via reinforcement learning from
games of self-play with introduced random events. It uses GPU processing
architecture.1

• The Wolfram Language Image Identification Project (2015a) uses machine
learning of an artificial neural network to identify objects in photographs
(e.g. a cat; a bridge). It is trained with a few tens of millions of curated
photographs and uses GPU processing architecture. (cf. Wolfram Research
2015b, Stephen Wolfram 2015). Figure 3.3 shows some results of the soft-
ware.

• In 2015, a machine learning algorithm was able to reach human-level re-
sults in a narrowed version of the ImageNet Large Scale Visual Recogni-
tion Challenge. (cf. ImageNet 2016) For all of the
five tasks a single visual example is given, and a
classification or reproduction of the shown object
has to be made by the AI. Figure 3.4 shows an ex-
emplary classification task. The program runs on
a GPU architecture and uses probabilistic reason-
ing. The relevant information for this example is
that it seems particularly challenging to build an
AI that is able to provide human-level results for
a tasks with only one single input image, which
significantly differs from mastering chess or Go
via millions of examples and training games. (cf.
Lake et al. 2015, and NVIDIA 2017, p. 16)

Figure 3.4: The task
is to find a similar ob-
ject in the list with the
framed object as single
input (Lake et al.).

• Libratus, an AI programmed by Tuomas Sandholm and Noam Brown from
Carnegie Mellon University, beat a team of four professional human poker
Texas hold’em players in January 2017. Libratus uses machine learning
and, as opposed to the other mentioned AIs, it uses a regret minimization
function. The case of poker is of particular interest in comparison to chess or

1Graphical processing units can execute a vast amount of similar calculations much vaster
than the classical central processing unit, which is the common processing unit in the von
Neumann architecture. GPUs were first applied for the rendering of large images on computer
screens, and more powerful GPUs were developed for video gaming applications. The archi-
tectonical difference between CPUs and GPUs is that for CPUs all information that enters the
processing on the input side has to be buffered (i.e. physically stored), whereas GPUs receive a
their input as a direct stack and they are optimised for automated parallel processing.
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Go, since it is a game with imperfect information (i.e. you do not know your
opponent’s cards, but he does) and possible deception (e.g. bluffing). (cf.
Hsu 2017) Libratus’ success hints to the possibility that AIs can be superior
to humans in other imperfect information games, such as price negotiations
or military battle strategies.

• Almost all major car makers develop hard- and software to achieve full au-
tonomous driving. The chip manufacturer NVIDIA claims to provide ar-
tificial intelligence chips with sufficiently high performance, low scale and
economic affordability. (cf. NVIDIA 2017, p. 19-20)

Recent discussions about (super-human) AI focus on civilizational and ethical
implications of future AI development. Relevant questions are how future AI may
act towards humans and what regulatory constraints should be enforced rather
than what they are able to do. The answer to the last question is that they can do
everything computable. Note that no human can solve an incomputable problem
either. However, human cognition does usually not require explications of neither
the tasks, nor the solutions that a human can provide. This thesis is not the place
to discuss these mentioned problems. However, we can very reasonably assume
that AI will be more and more capable of achieving things only human beings can
do so far (and even beyond that). The only relevant remaining question is how
fast does the available computability power grow (see figure 3.2).

Some disagree with my convictions at this point. In particular, Dennett (see
section 4.3) introduces an ontological distinction between patterns in the sense of
information technology or mathematics on the one hand, and “real patterns” that
can be recognised by humans on the other hand. Obviously, AIs are not restricted
to “real patterns” in Dennett’s meaning. Such a anthropocentric epistemological or
even ontological perspective can also be directly aimed to the comparison between
humans and AI. Another fitting example of anthropocentric is Searle’s (2014)
recent comment concerning Bostrom’s (2014) predictions (and warnings) regarding
super-human AI. His ideas have a strong relation to Dennett’s thoughts by claiming
that the human mind adds something extra to the process of reasoning and this
extra is in principle unachievable with any silicon-copper architecture.

I strongly reject Dennett’s and Searle’s claims and I speculate that they have
their roots in a profound misconception of AI and machine learning. It is true
that computers can execute only algorithms like a common pocket calculator.
But the examples above (e.g. chess; Go) show that this leads to remarkable
accomplishments, if we consider the mere vastness and calculation speed that
can be realised with a computer.—Recall the confidence in their abilities of the
challenged human master players before the matches. I show Searle’s reasoning
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in a longer passage to further discuss this opposing position and to highlight the
misconception:

When I, a human computer, add 2+2 to get 4, that computation is observer
independent, intrinsic, original, and real. When my pocket calculator, a me-
chanical computer, does the same computation, the computation is observer
relative, derivative, and dependent on human interpretation. There is no
psychological reality at all to what is happening in the pocket calculator.

(...)

If we ask, “How much real, observer-independent intelligence do computers
have, whether ‘intelligent’ or ‘superintelligent’?” the answer is zero, ab-
solutely nothing. The intelligence is entirely observer relative. And what
goes for intelligence goes for thinking, remembering, deciding, desiring, rea-
soning, motivation, learning, and information processing, not to mention
playing chess and answering the factual questions posed on Jeopardy! In
the observer-independent sense, the amount that the computer possesses
of each of these is zero. Commercial computers are complicated electronic
circuits that we have designed for certain jobs. And while some of them do
their jobs superbly, do not for a moment think that there is any psychological
reality to them.

Why is it so important that the system be capable of consciousness? Why
isn’t appropriate behavior enough? Of course for many purposes it is enough.
If the computer can fly airplanes, drive cars, and win at chess, who cares if it
is totally nonconscious? But if we are worried about a maliciously motivated
superintelligence destroying us, then it is important that the malicious mo-
tivation should be real[sic!]. Without consciousness, there is no possibility
of its being real.

What is the argument that without consciousness there is no psychological
reality to the facts attributed to the computer by the observer-relative sense
of the psychological words? After all, most of our mental states are uncon-
scious most of the time, and why should it be any different in the computer?
For example, I believe that Washington was the first president even when I
am sound asleep and not thinking about it. We have to distinguish between
the unconscious and the nonconscious. There are all sorts of neuron firings
going on in my brain that are not unconscious, they are nonconscious. For
example, whenever I see anything there are neuronal feedbacks between V1
(Visual Area 1) and the LGN (lateral geniculate nucleus). But the trans-
actions between V1 and the LGN are not unconscious mental phenomena,
they are nonconscious neurobiological phenomena.

The problem with the commercial computer is it is totally nonconscious. In
earlier writings, I have developed an argument to show that we understand
mental predicates—i.e., what is affirmed or denied about the subject of a
proposition—conscious or unconscious, only so far as they are accessible to
consciousness. But for present purposes, there is a simpler way to see the
point. Ask yourself what fact corresponds to the claims about the psychol-
ogy in both the computer and the conscious agent. Contrast my conscious
thought processes in, for example, correcting my spelling and the computer’s
spell-check. I have a “desire” to spell correctly, and I “believe” I can find
the correct spelling of a word by looking it up in a dictionary, and so I do
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“look up” the correct spelling. That describes the psychological reality of
practical reasoning. There are three levels of description in my rational be-
havior: a neurobiological level, a mental or conscious level that is caused by
and realized in the neurobiological level, and a level of intentional behavior
caused by the psychological level.

(...)

Bostrom tells us that AI motivation need not be like human motivation.
But all the same, there has to be some motivation if we are to think of it
as engaging in motivated behavior. And so far, no sense has been given to
attributing any observer-independent motivation at all to the computer.

(Searle, 2014)

What went wrong here? He infers from consciousness the possibility of having
a motivation. Obviously, his notion of motivation requires consciousness. But
Bostrom’s notion of motivation is a different one. For him it is reasonable to say
that a chess computer has the motivation to beat his opponent, because it was
programmed to aim for a victory. First, in this thesis I do not want to argue about
the notion of consciousness and also not about the notion of motivation. Second,
I do see how we can rule out that a computer, which we may build in a distant
future may have consciousness; one way to try this is to perfectly replicate the
physical processes in a human brain with a computer. Searle discusses this idea
more thoroughly in an earlier paper:

Any attempt literally to create intentionality artificially (strong AI) could
not succeed just by designing programs but would have to duplicate the
causal powers of the human brain. (1980, p. 417)

A replication can be a mere program and therefore the above mentioned author’s
and I disagree with Searle. Third, even if we totally agree with Searle’s claim
that AIs are and will ever be principally non-conscious, what operational differ-
ence does it make for our society and science? A non-conscious future AI may be
better than any human can be at proving mathematical theorems or formulating
physical theories. For the practical reality of science it does not make any differ-
ence, if the super-human AI provides better scientific solutions consciously or not.
Operationally, consciousness is nothing more than a terminology of specific human
pride, which has religious roots, and in particular religious roots. More specifically,
Searle’s idea is, at its core, a rebranding of the classical Christian idea of a hier-
archy of souls, as discussed by Thomas Aquinas’ Summa Theologiæ (1265–1274,
Ia.75) and others.1 According to this tradition, a human inherits another class of
soul than a thing or a plant or an animal or an angel. This classification is norma-
tive without any physical arguments like a reference to neurological complexity.

1These include Aristotle’s De anima (see Bekker 1831–1870) and Leibniz’ Monadology (1714).
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That is why according to this Christian account, a mentally disabled person or
a living human person with extreme physical brain damage is as much a human
person as any other human is, because every human inherits a human soul. One
could bring forward the argument that a certain brain function must be intact at
a human organism to classify this human as a person. And this brain function is
exactly what has to be replicated by a AI to count as a person as well.

Searle adapts Dennett’s meaning of the term ‘real’, which is very central in
their account and profoundly misleading, as I elaborate on in a later part of this
thesis (section 4.3). However, to give a vivid example, if an AI sends a drone to kill
you, this problem will become very real (by every possible meaning of the word)
to you very soon. In such a discussion it is fruitless and irrelevant for Bostrom to
attribute conscious motivation to it or not.

Bostrom warns of the danger that a future AI can be programmed by not
well-meaning people (e.g. terrorists), or that it can ethically misinterpret a pro-
grammed maxim (e.g. autonomous car kills his driver to avoid accidents that are
caused by the driver’s flawed interventions). My aim is to strengthen the view
that scientific inferences can always be mathematically explicated. A scientist
may have consciousness, but so does the chess player. Nevertheless, an AI can
be the superior chess player. The fact that they can be outperformed by an AI
shows that consciousness is not a relevant factor for these cognitive achievements.
As I elaborate on later (4.3), for my aim it is sufficient to restrict the analysis
of scientific reasoning to the operationally explicable aspects and those are the
aspects that matter, whereas states of minds or consciousness are not relevant for
my topic. With this I mean that these things or processes do not add anything
operationally relevant to a scientific inference.

In order to make things more clear, as one substantial claim of this thesis
I defend the position that scientific data, patterns, inferences and background
assumptions are mathematical, ontologically speaking. An important argument
for this position is the introduction of AI agents into science for auxiliary purposes,
but also for more profound tasks like hypotheses formulation. This implies that
a lot of epistemological questions of science can be answered with relative ease
via the reference to mathematics. However, as will become more apparent in the
next chapter, this position does by no means imply any ontological commitment
towards the empirical world out there, the Kantian Ding an sich. My position is
agnostic towards the option of us living in a Cartesian-Bostromian dystopia and
only because we think and we reason in mathematically explicable terms, which
are structures, this does not imply any arguments in favour of an ontic structural
realism as Ladymann and Ross (2007) propose it. In my ontology, science pictures
the world mathematically, but the world itself is something we have insufficient
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metaphysical access to, to get to know what it is.

3.4 Conclusion

I presented a structuralist’s notion of mathematical objects that may best, but not
perfectly, be explicated by category theory. Furthermore, according to this notion,
we do not have to distinguish between epistemological and ontological aspects
regarding mathematics and regarding scientific inferences. The reason is that I
reject any fundamental distinction between mathematical and scientific knowledge
by a human agent on the one side and by an artificially copper- and silicon-based
intelligent agent on the other side. Mathematics is a superior approach to predicate
logic for the pragmatic explication of scientific inferences since it is already widely
used in explications for everyday science and computer programs can much more
easily be explicated in mathematical terms than in terms of predicate logic.

The Church-Turing thesis shows that computer tasks are equivalent to a cer-
tain class of mathematical functions. That is why computer programs, including
all forms of today’s and future artificial intelligences, can be explicated in mathe-
matical terms via decompiling. This is true even for cases in which human agents
were not epistemically able to understand this mathematical explication due to
its complexity or magnitude. Current developments in the field of artificial in-
telligence can be extrapolated to the assumption that any epistemically possible
human scientific achievement can be a result of an artificially intelligent problem
solver. I take this as a premise. It follows that we have very good arguments
to suppert the view that scientific inferences can always be mathematically expli-
cated and this general explicative classification of scientific reasoning also holds
for non-human scientific agents, which are already in use in everyday science in
form of, for instance, statistical pattern recognition programs.





Chapter 4

From Data to Patterns

Chapter Abstract
The relation between patterns and phenomena is not as simple as (Bogen and) Wood-
ward’s examples indicate. We need to distinguish between concrete and general pat-
terns. Patterns cannot depend on human sensory and cognitive capabilities, but non-
anthropocentric epistemological criteria play a substantial role for an explication of the
notion of a pattern. Patterns are purely mathematical, but they have to be constructive
for epistemic reasons. That is why we cannot explicate patterns with classical informa-
tion theory and I apply the more adequate general pattern theory for this.

Due to the great variety in which data occur in science and that are used to detect
phenomena, the concept of patterns in data needs to be very flexible. If data are
abstract objects in the sense described in chapter 2 (i.e. mathematical objects),
then patterns in data are abstract objects in this sense as well. Mathematical
objects can have only mathematical properties. An important, but rather episte-
mological question is whether all pattern recognition techniques that are used in
science can be described as mathematical algorithms. This implies that pattern
recognitions by human beings would be nothing else than a very efficient execution
of mathematical algorithms. As we will see, patterns are mathematical objects,
even if we are not always able to explicate them precisely as such in practice.

In this chapter with ‘patterns’ I refer to something that plays the role in scien-
tific inferences that (Bogen and) Woodward imply by their use of term ‘pattern’.
This notion is more appropriately named ‘patterns in data’, since patterns are
always an actual or possible feature of an actual or possible set of data. As will
become clear in this chapter, this notion excludes other meanings of ‘pattern’,
such as what in this thesis is named ‘structure’ (e.g. Resnik 1997). However, the
notion of patterns that is applied here is neither trivially explicated, nor restricted
to occurrences in strictly scientific contexts in a narrow sense.
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It is rather the case that data in science are something mathematical because
inferences from data to phenomena (or to theory) can in principle be explicated
as mathematical pattern detection routines than the other way round.

4.1 General Patterns, Concrete Patterns and
Pattern Similarity

Section Abstract
I introduce the concepts of a general and of a concrete pattern. Both of them are
mathematical objects. General patterns are the patterns that are most similar to what
(Bogen and) Woodward refer to with ‘pattern’. Concrete patterns are the specific
mathematical objects that are identified in data. I also introduce the notion of pattern
similarity. Two concrete patterns are similar to each other, if there is a not very complex
mathematical algorithm definable to transform the one concrete pattern into the other
one.

A pattern is a property that a set of data can have and, if so, the pattern is
called to be detected or recognised in the data. I already mentioned that data is
epistemically accessible only via physical or mathematical representations. Given
the explanation of data and of data representations in chapter 2 and in particular
2.3, a pattern can be explained to be detected in data, if at least one representation
of the data exists in which the pattern can be detected. The distinct advantage of
this explication of pattern detection in data is that we can apply it to the different
representations of data, but still have an appropriate explication for the data as a
concept that fits more to the everyday use of the term ‘data’ in scientific contexts.

Different sets of data from the same part of the empirical world under inves-
tigation that are scientifically used to detect the same phenomenon can be very
difficult. A simple illustrative example is to detect albinism in an animal or in a
human being. One set of data can be measurement results from the colour of skin,
hair and eyes. The other set of data can be results from a genetic analysis. Figure
4.1 illustrates this example. Scientists would likely not say that they can recognise
the according pattern of albinism in both sets of data. That is why it is not easy to
define this specific exemplary pattern as a feature of one set of data. This problem
does also occur in a simplified scenario, in which both sets of data are translated
into purely numerical representations and the pattern(s) are recognised solely by
the application of mathematical methods.

In 2.3 I introduced the distinction between the data and its representations
that human beings can epistemically access. If a phenomenon can be detected
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1 MLLAVLYCLL WSFQTSAGHF PRACVSSKNL MEKECCPPWS GDRSPCGQLS
51 GRGSCQNILL SNAPLGPQFP FTGVDDRESW PSVFYNRTCQ CSGNFMGFNC

101 GNCKFGFWGP NCTERRLLVR RNIFDLSAPE KDKFFAYLTL AKHTISSDYV
151 IPIGTYGQMK NGSTPMFNDI NIYDLFVWMH YYVSMDALLG GSEIWRDIDF
201 AHEAPAFLPW HRLFLLRWEQ EIQKLTGDEN FTIPYWDWRD AEKCDICTDE
251 YMGGQHPTNP NLLSPASFFS SWQIVCSRLE EYNSHQSLCN GTPEGPLRRN
301 PGNHDKSRTP KAPLFSDVEF CLSLTQYESG SMDKAANFSF RNTLEGFASP
351 LTGIADASQS SMHNALHIYM NGTMSQVQGS ANDPIFLLHH AFVDSIFEQW
401 LRRHRPLQEV YPEANAPIGH NRESYMVPFI PLYRNGDFFI SSKDLGYDYS
451 YLQDSDPDSF QDYIKSYLEQ ASRIWSWLLG AAMVGAVLTA LLAGLVSLLC
501 RHKRKQLPEE KQPLLMEKED YHSLYQSHL

Figure 4.1: Left: The amino acid sequence of the 11th chromosome with the permutations
(underlined) that indicate albinism. (Tomita et al. 1989). For an explanation of the
used abbreviations see footnote 3 on page 114. Right: The appearance of a child with
albinism (Wikimedia).

in two different representations of a set of data by the according pattern(s), then
it is vague whether we want to call this a pattern or two different patterns. On
the one hand, in the case of an entirely mathematical describable scenario, the
two representations of the data and the according pattern(s) can be very similar.
Consider the example of stock prices: we can analyse the volatilities on the basis
of the data given as prices in Euro and two digits for the cents (e.g. EUR 45.37),
but also on the basis of the same data in a log-return format of full percentages
(e.g. -17%).—An example is plotted by figure 2.5 on page 49. Rather simple
calculations without additional empirical knowledge are sufficient to translate one
representation of the data into the other. But in the example of albinism it is very
unlikely that a biologist will be able to find this sort of similarity between sets of
data from a genetic analysis and results from the measurement of skin colour.

This intuitive notion of similarity between two sets of data or patterns in them
is hard to mathematically specify fully. Price times series and return time se-
ries seem to be very similar sets of data, because very simple rules for conversion
between them are available. The same holds for many other scientifically interest-
ing patterns in these sets of data. For the two mentioned sets of data regarding
albinism a simple conversion rule is exactly what is missing. An epistemically
unbounded agent could explain how exactly, biologically speaking, one of these
patterns always coincides with the other (e.g. via melanin production) but a vast
amount of empirical scientific knowledge (not only assumptions) is necessary to do
this. We would have to perfectly understand DNA (and RNA) to say which amino
acid lead to which phenotype.

Even if all pattern recognition procedures in science can be described by math-
ematical algorithms that are employed on mathematical data, a possible similarity
cannot be explained by some form of sophisticated isomorphism. Other specifi-
cations of simple relations between mathematical structures, fail to explain this
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similarity to its full extent as well. Therefore, albinism can be detected by patterns
that are structurally completely dissimilar to each other.

Again, consider a scenario in which not only the representations, but also the
two sets of data are structurally very different, and have been gathered with the
intention to detect the same phenomenon by pattern recognition. In the jargon
adopted by (Bogen and) Woodward, scientists would talk about only one pattern
in this scenario (e.g. “the pattern of albinism”). But it might be hard to justify
this ambiguous designation even in a very simple scenario setup with only numer-
ical data and (a) mathematical pattern(s). Depending on the type of data, the
mathematical techniques that are used to recognise the patterns can be completely
different; this applies even if the relevant theory indicates that these two patterns
in the data can be recognised due to the same phenomenon, as the example of
albinism shows.

The solution to the described problems is to conceptually distinguish between
the notions of a concrete and of a general pattern that I introduce here. This idea
is in some aspect analogue to my explanation of data, but in some not. What is
usually called a pattern in the terminology of (Bogen and) Woodward is in my
terminology a general pattern, which is a class of concrete patterns. Two of these
concrete patterns from the example of albinism above are the following. Firstly,
the measurement results show a white-pink colour of skin, white hair and light blue
eyes with red parts. Secondly, in the records of a genetic analysis the tyrosinase
(TYR) gene in the 11th chromosome is mutated in a certain way.1

We can outline a formalisation for the resulting general pattern. The actual
general pattern of albinism may consist of much more concrete patterns, but this
is a simplified example based on the discussed two concrete patterns.

general pattern
of albinism

 =



white hair and
light skin and
reddish eyes


︸ ︷︷ ︸

concrete pattern

,


mutation of positions

311, 312, 314, 315, 316, 317
at the 11th chromosome


︸ ︷︷ ︸

concrete pattern



How then are general and concrete patterns related to data and its represen-
tations? Let us, at first, discuss an example of one set of data with two different
representations of it. Analogously, we then speak of one (general) pattern and
two different concrete patterns of it. But we need to be careful with the following
point. Let us assume two sets of data are available in which a phenomenon can be

1For simplicity, I focus only on a certain strong form of albinism biologically classified as
OCA1A.
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detected in different representations for each set of data. Since we want to assign
only one pattern to a phenomenon, we, again, speak of one general pattern with
two concrete patterns that are detected in the different representations for each
set of data.

To further prepare the ground for the explanation of concrete patterns I want
to provide a little excursus concerning data representation and mathematics to
recall the results from chapter 2. Representations of data are not all mathemat-
ical. Photographs or texts are examples. The more important question for us is
whether the pattern recognition procedures that are used in science are reducible
to the execution of mathematical algorithms in principle. If this is the case, then
the interesting aspects of representation of data are always mathematical. To
illustrate this point more simple: if pattern recognition techniques executed by
human beings can be translated into the executions of (possibly extremely com-
plex) mathematical algorithms, then these algorithms must be applied to a purely
mathematical representation of the data. In this case, every non-mathematical
aspect of a representation of data is only pragmatic to support the accessibility of
data to human beings with their sensory and cognitive capabilities.

Should we reduce our philosophical analysis to mathematical representations
of data? Pattern recognition techniques that are conducted by computers are a
relative novelty in the history of science. Furthermore, for many needs concerning
pattern recognition in science computational routines are not developed enough.
To illustrate this point with an example from outside of the sciences, already very
simple tasks for pattern recognitions in images are designed for computer security
reasons to distinguish real human IT users from programmed automatisations.1

These tasks can easily be performed by most human beings, but they cannot
easily be performed with today’s computers. Thus, the picture of today’s actual
pattern recognition in science as a discipline of applied mathematics seems wrong.
But can it be reduced to this in principle?

The applications of statistical methods in various scientific fields are exam-
ples for the use of mathematical algorithms to detect patterns. But the question
whether all pattern recognition procedures that are conducted solely by human
beings are nothing else than a pragmatic way to conduct a possibly unknown and
very complex mathematical algorithm is unanswered. Due to the historical success
of computational data analysis (find a thorough discussion in 3.3) and the lack of
arguments for the opposite position we should rather affirm than refute this po-
sition. This point can be illuminated and strengthened by simply asking for the

1These CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans
Apart) are a simple illustration of the boundaries of today’s computerised pattern recognition in
images.



106 4. From Data to Patterns

falsifying fact: Is there a pattern recognition procedure in science that in principle
cannot be described by a mathematical algorithm for some reason?

Under the assumption that all aspects of the data itself that are relevant to
science can be expressed by a mathematical representation of this data, what then
are the concrete patterns? A concrete pattern in a mathematical data represen-
tation is a mathematical model (in the sense of: exemplifying certain aspects) to
which the data representation has to fit (in the statistical meaning of ‘fit’). Fit-
ness in this sense is a concept that is very difficult to mathematically explicate.
Analyses of photographs, texts or sounds in science must be applicable to this
theoretical concept of mathematical models and its fitness to data. Therefore, this
explication is an ambitious task. In this text I can only assert that this concept
seems intuitively adequate. A photograph of an elephant fits to the visual concrete
pattern of an elephant. This example shows how hard it is to explicate fitness, but
since we and also modern AI software (cf. 3.3) are able to recognise the elephant,
there must be a concept of fitness in the described sense.

Why is the relation between a phenomenon and a corresponding pattern not
a representation? Two cases need to be considered: first, does a concrete pat-
tern represent a phenomenon, and, second, does a general pattern represent a
phenomenon? However, the answer to the full question can be outlined briefly.
Whatever our notion of representation may be in detail (see 5.3 for further dis-
cussion), a precondition for a relation of representation is that one object or term
represents another object or term. But as the example of albinism exemplifies, the
notion of the phenomenon is empty, if we strip away its general pattern (and there-
fore all concrete patterns). This implies that the relation between a phenomenon
and the corresponding pattern is much more defining for the phenomenon than
the relation of representation between objects or terms is. In other words, this is a
case of relation without relata-problem on the phenomenon side. The general pat-
tern specifies the phenomenon on the background of further empirical assumptions
and nothing but the general pattern can be a specification of the phenomenon. I
elaborate more on the relation between phenomena and representation in section
5.3.

To summarise, patterns exist in two ways: in a concrete form and in a general
form. The concrete patterns can in principle be formalised by a mathematical
model that can be applied to certain mathematical representations of data. Not
mathematically explicated pattern recognition procedures in science occur due to
merely pragmatic reasons. General patterns are classes of concrete patterns and
specify the phenomenon.
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4.2 Problems and Literature Regarding Patterns
in Science

Section Abstract
Patterns are related to repetition and the human sense for aesthetics. However, it is not
an easy task to explicate the class of all patterns. Pattern recognition, unlike rationality,
depends on specific agents or types of agents (e.g. humans; aliens). Mathematical
approaches for the explication of the class of all patterns are available.

The term ‘pattern’ is widely used by scientists and philosophers of science. It
is also used in various artistic and everyday contexts. Most scientists and also
philosophers would agree on the claim that patterns have a lot to do with repetition
and, in more particular, visually perceivable repetition. According to the common
understanding, mosaics of tiles or certain repetitions in an one-dimensional time
series are examples of patterns; see figures 4.21 (p. 108) and 4.3 (p. 109) for
illustrations of everyday examples according to these descriptions.

Furthermore, human beings seem to apprehend certain visual patterns as easy-
to-detect with their natural sensory and cognitive capabilities. To other patterns,
which are, for instance, very complex (in the sense of: we would need a lot of place
on a sheet of paper to describe them) or spread out over a very vast amount of data,
we are more or less blind. Visual patterns are also even considered aesthetically
harmonic (whatever that means in detail), as their various uses for decorational
purposes indicate. These intellectual and aesthetic compatibilities of patterns to
the human perception and mind indicate that patterns are a very cornerstone
of human perception and the cognitive processing of their surrounding world in
general. Aiming for a description of basic human epistemic capabilities and the
scientific method, pattern detection seems to be an ability that is pragmatically at
least as fundamental as rationality (in the sense of: applying logical reasoning) is.
However, scientists and philosophers often refer to a concept of patterns without
a further explanation, what a pattern is, and without any references to other
clarifying texts about the topic. If patterns are at least as fundamental to the
scientific method as rationality is, then we need a convincing description of what
a pattern is. The disregard of this explication indicates that most philosophers
do not find it to be an intricate task (or deem it not worth doing); however, as

1The Islamic dome is often considered as an iconic landmark in Jerusalem and Islamic archi-
tecture in general. It was built in the seventh century and is heavily influenced by the architecture
of churches in the city. The shown part of the facade is the result of a redesign under the Ot-
toman Suleiman the Magnificent in the 16th century. For the art-historical survey that is the
source of this information, see Avner (2010).
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we will see, some philosophical and mathematical discussions are available and I
claim that this explication of patterns is neither trivial, nor fruitless concerning
our main task, which is a better understanding of scientific phenomena and their
relations to patterns in data.

Figure 4.2: Part of the facade of the Dome of the Rock in Jerusalem. The tiles are
arranged in (a) pattern(s). (Photo by A. Shiva via Wikimedia Commons)

The illustrated examples show some important aspects concerning the expli-
cation of a concept of patterns. I selected them with care to exemplify various
important aspects of patterns. They stimulate some specific questions one may
have about patterns prima facie.

Do we see one or many patterns in figure 4.2? Are there patterns of patterns,
such as known from self-similar1 geometric objects as more apparent at, for ex-
ample, the Sierpinski triangle (figure 4.4)? The aesthetic effect that the mosaic
has for human beings is obviously influenced by the colours, too; do we have to
include not only shapes, but also colours into our concept of patterns? Is the text
in the top part a pattern or not or a part of the pattern? It surely contributes to
the aesthetic effect, but it behaves differently concerning the repetition of shapes.

The plot in figure 4.3 is not directly motivated by aesthetic purposes, but
rather by (socio)scientific or business analytical needs. Apparently, the number of
monthly passengers follows seasonal trends (i.e vacation travel) and overall growth

1I (2012) offer a brief introduction into self-similar geometry and stochastics in my diploma
thesis about multifractal stochastic processes.
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Figure 4.3: Plot of monthly international airplane passengers from January 1949 to
December 1960. The exponential drift and seasonal spikes are a pattern. (image from
Brockwell and Davis 1991, data from Box and Jenkins 1976)

Figure 4.4: A Sierpinski triangle, a self-
similar geometric object. (Wikimedia)

(i.e. decreasing ticket costs in average working hours). A mathematically more
detailed discussion on statistical pattern analysis and on this example in particular
is given in the appendix, section A.1. Do the exponential drift and the seasonal
influences make one pattern or many patterns or one pattern with sub-patterns?
This ideal pattern is comparatively easy to explicate in common mathematical
terms and seems to be deformed by noise, but it is very easy to detect with the
naked eye. What separates a pattern from noise and what exactly is noise? Can
a pattern be noisy by itself or are there ideal patterns that are distorted by noise?
What does it tell us epistemologically that this pattern is very easy to grasp for a
human being?

Do, ontologically speaking, patterns depend on human sensory or cognitive
capabilities in general, or do they even depend on single investigating agents?
Recall that—let us compare—for rationality most philosophers would deny similar
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claims, but for patterns many, such as Dennett (1991), would not. Rationality is,
if anything, normative and therefore a postulated ideal for reasoning in scientific
contexts and in general. In the case of the dependence of a pattern on a single
agent, would this agent be idealised or does it have to be an actual agent, with
all of his/her individual peculiarities and limitations like specialised education,
professional experiences, blindness, colour-blindness, autism, dyslexia, racism and
so on? If patterns depend on human investigating agents, how are they related to
the solely visual capabilities—note that for Kant (1787) it is a cornerstone of his
conception that synthetic Urteile (engl. judgements) a priori are possible by only
our innere Anschauung (engl. inner illustration (sic!)1), which has very strong
relations to our visual capabilities.

In the following course of this chapter I defend the view that there is a nor-
mative and descriptive account for patterns in science, in a similar way as there
is one for rationality (even if there is a lively philosophical discussion about the
correct account). Our specific human sensory and cognitive capabilities do play
only a pragmatic role regarding patterns without any ontological implications. In
my explication and the examples of patterns I focus on patterns that play a role
in a process of scientific discovery. But I believe that there is not much more
to add to the concept of patterns, if we loosen this restriction and refer to also
non-scientific purposes, e.g. patterns that occur in the context of engineering, of
art, of decoration or in children’s games. My account also provides a descriptive
answer to the question what exactly a pattern extensionally is, but not so much
what sorts of patterns are easy-to-detect with basic human sensory or cognitive
capabilites, whatever these may include. This account is epistemologically nor-
mative by providing a precise structural and therefore mathematical and logical2

account of patterns; the account is descriptive by covering all of our empirical
examples—but also many more—of patterns from several scientific fields.

Apart from the discussion about scientific phenomena from (Bogen and) Wood-
ward and in the 2011 Synthese special issue, patterns are a subject of philosophical
examination in some further philosophical writings. Dennett (1987; 1991), Hauge-
land (1993) and Ladyman and Ross (2013) discuss the ontology of patterns; I
discuss their results and I present my view in section 4.3.

1‘Anschauung’ at Kant is often translated as ‘intuition’ or ‘contemplation’ (see Carus 1892),
and the issue of translating the word appropriately is a subject of discussion among Kantians.
The reason vor my suggested translation is that Anschauungen for are in space and time, which
form a sort of inner and intersubjective epistemic framework. They are as similar as possible to
what we can see from the empirical world, but they are our inner illustration of something in
space and time, like triangles in the ideal mathematical sense, but they are not ideas or thoughts.
The extension of a body is something that can be an Anschauung, but its weight, its smell and
its reputation cannot.

2I am a structuralist about mathematics (see section 3.1).
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Grenander (1970) presents a detailed mathematical explication of the concept
of a pattern in scientific contexts with a maximum of generality. His general
pattern theory is an algebraic approach that is general enough to cover not only
examples from very quantitative fields, such as physics, but also patterns from
linguistic, historical or social studies, for which no mathematical explications are
known. In later works, Grenander and Miller (2007) show the applicability of the
general theory by various well known examples of pattern recognition in the well
established fields of statistics, communication technology and image recognition.

I present the basic algebraic ideas from the general pattern theory in section
4.4. This theory is of importance for this thesis for two reasons. Firstly, the al-
gebraic approach provides a purely mathematical, and therefore purely structural
and precise account of patterns and pattern recognition. This structural explica-
tion helps us to grasp a better understanding of these topics. Secondly, I believe
that there is not much more to say about the specific philosophical matter of
patterns and pattern recognition, after accepting this algebraic explication as an
adequate mathematical and philosophical explication; general pattern theory, by
it being purely mathematical, provides epistemological and metaphysical implica-
tions concerning patterns and pattern recognition. If we deem this mathematical
explication of patterns as suitable for our philosophical purposes, then a pattern
is ontologically nothing else than a mathematical object, such as the number 4 or
the vector space of all polynomials.

However, the algebraic approach of general pattern theory does not provide
detailed information of the class of patterns from actual scientific data. To say it
more precisely, general pattern theory provides a general structural that is math-
ematical, explication of scientific patterns (i.e. a description of the data, certain
operations on the data, a very general definition of the pattern based on these
operations), but it remains an open question how to fill some of the proposed al-
gebraic mappings with more concrete criteria that tell us what separates a pattern
from mere noise in widely occurring cases of actual scientific data. Grenander and
Miller’s (2007) later pattern theory provides a series of answers to this question for
many widely used pattern detection techniques from different scientific fields and
engineering. I chose a route for explicating patterns that is on the one hand not
to a large extent adapted to the specific techniques that are used in actual science,
but that is, on the other hand, much more informative than the very general no-
tion of patterns from general pattern theory. Based on Shannon’s (1948a; 1948b)
information theory, Kolmogorov (1965) introduces an algorithmic notion of com-
plexity of data; I use this Kolmogorov complexity to define patterns in data and
discuss its advantages and disadvantages compared to the solution suggested by
general pattern theory.
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4.3 Patterns are Mathematical: Discussion and
Objections

Section Abstract
Patterns are mathematical objects without any criterion of complexity or repetition
necessary to define them. The examples of albinism and long-range dependence illu-
minate this. Dennett’s notion of “real patterns” restricts patterns to human agents,
which is inadequate for science with all its technical auxiliaries. Wallace and Dennett
imply unjustified ontological roles of patterns, which are in fact epistemic and struc-
tural rather than metaphysical. Haugeland confuses patterns with different degrees of
awareness for patterns by certain agents.

As already introduced, I understand patterns as mathematical objects such as the
number

√
2 or the set N. We face two challenges to strengthen this claim. First,

I need to defend this general ontological claim against critics. Second, I need to
describe what kind of mathematical objects patterns are; to say it in other words,
is there a certain class of mathematical objects, which are the patterns? In this
section I aim to address possible concerns against my claim; these concerns are,
in particular, brought forward by Dennett (1987; 1991) and Haugeland (1993),
who propose a richer ontology concerning patterns. The detailed mathematical
explication of patterns follows in the section after this one.

Furthermore, I focus on examples from actual science, but imply that my de-
scriptions and arguments in favour of patterns being mathematical do apply to
everyday reasoning in the same way. As already state earlier in the introduction,
section 1.2, of this thesis, I claim, on a general level, that everyday reasoning is
well described as the science of laymen. That is why our explication is not only
a matter of interest concerning philosophy of science, but also for epistemology in
general. In the following paragraphs, I briefly introduce the critiques of Dennett
and Haugeland. I do not agree with their philosophical position, but their role as
well-established opponents helps to sharpen the view on the subject.

Due to the simplicity of many patterns in data that correspond to empiric
phenomena, we cannot reasonably propose any criterion of minimal complexity for
patterns in data whatsoever. Recall the example of the melting point of lead:
we have a very simple time series of measurement results showing temperatures
(e.g. 600.59 K, 600.61 K, 600.61 K, 600.60 K). The pattern simply is the melting
point of 600.61 K, which is nothing else than a constant rational number, or it is,
more general, a certain form of clustering around this number. Due to the lack of
knowledge we may not be sure about the actually correct pattern in many cases.
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There are not many mathematical objects that are less complex, disregarding how
exactly one understands complexity of mathematical objects in detail.

What are patterns mathematical more concretely? Measurement results in
science can look very different. In the simple case of measuring the melting point
of lead there can be a time series of measured temperatures were the lead was
detected to melt as given above. In a little bit more artificial approach the results
could also be given as a time series of tuples showing arbitrary temperatures next
to an measured aggregate state from repeated runs, for example600.50

l

 ,
600.55

l

 ,
600.60

l

 ,
600.65

s

 ,
600.50

l

 ,
600.55

l

 ,
600.60

s

 ,
600.65

s

 , ...

whereas the upper scalars denote the measured temperature in degree Kelvin and
the lower scalars denote a measured aggregate state (s for solid, l for liquid).
For this two simple examples one concrete pattern of the melting point of lead is
detected by two mathematically different concrete patterns.

How can we explicate the concrete patterns of albinism? The measurement
results for the phenotype could be given by a triple of numbers (x, y, z) with, for
instance, x ∈ Q indicating a skin tone with 0 being the palest white and 9 the
darkest black skin tone, y ∈ Q indicating the colour of the hair from purely white
to black and z describing the colour of the eyes. Since eye colours are not easily
scalable by brightness, the z indicator has to be more thought out. A solution
would be

z = z1 + 0.1 · z2 ∈ Q

with z1 ∈ N indicating a general colour tone and z2 ∈ Q ∩ [0,10[ the general
brightness. In this toy scenario the pattern that corresponds to albinism could
be a simple criterion of the data (xH , yH , zH) from an individual denoted with H:
xH ∈ [0, 0.5], yH ∈ [0, 0.5], zH ∈ [11.0, 11.5]. The pattern in this example is the set

{(r1, r2, r3) ∈ R3 : r1 ∈ [0, 0.5], r2 ∈ [0, 0.5], r3 ∈ [11.0, 11.5]},

but only for this specific measurement procedure. With an alternative measure-
ment procedure the patter that corresponds to albinism has to be adapted, but
this newly adapted pattern is still an element of the same concrete pattern.

The other concrete pattern that corresponds to albinism is a certain result of
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a gene analysis. The form of albinism, in which we are interested in, OCA1A, is
represented by a defect in the TYR gene in the 11th chromosome. Specific genes
of organisms can be measured1 as DNA, RNA or protein sequences. The amino
acid sequence of the TYR gene can be coded in the form shown by figure 4.1, left
side.2 In this case of an individual with albinism, the pattern can be described
mathematically as indicated by the following table (cf. Tomita et al. 1989, p.
992–3): 3

Position Amino acid in non-mutated gene Amino acid in mutated gene
311 R K

312 L A

314 S L

315 S F

316 A S

Patterns that correspond to phenomena may be not fully discovered by the
scientists. Amongst others, Oetting et al. (1998), Spritz et al. (1997), or Wang et
al. (2009) specify further mutations that seem to lead to OCA1A. In the Human
Gene Mutation Database4 a comprehensive list of analysed mutations of the TYR
for OCA1A patients can be found. Thus, in fact the scientific results are not
sufficient to fully explicate the pattern that corresponds to the phenomenon of
albinism.

The sought-for pattern of OCA1A albinism in gene analysis records may be
identified by one of many sufficient mutations: many different positions of amino
acids in the TYR gene may cause albinism, if properly mutated. There is no clarity

1In fact, reading out DNA is a biochemical process, which may not properly be described as
measurement in the sense physicists use this term.

2In protein isoform Iso 1 according to http://www.nextprot.org/db/entry/NX_P14679/
sequence

3A list of the abbreviated amino acids for completeness:
Amino acid name abbreviation
Alanine A
Arginine R
Asparagine N
Aspartic acid D
Cysteine C
Glutamic acid E
Glutamine Q
Glycine G
Histidine H
Isoleucine I

Amino acid name abbreviation
Leucine L
Lysine K
Methionine M
Phenylalanine F
Proline P
Serine S
Threonine T
Tryptophan W
Tyrosine Y
Valine V

4See http://www.hgmd.cf.ac.uk/ac/gene.php?gene=TYR, the entry for the tyrosinase gene
TYR in a database for published gene lesions responsible for human inherited disease by the In-
stitute of Medical Genetics in Cardiff. The database is openly available to read after registration.

http://www.nextprot.org/db/entry/NX_P14679/sequence
http://www.nextprot.org/db/entry/NX_P14679/sequence
http://www.hgmd.cf.ac.uk/ac/gene.php?gene=TYR
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about whether these mutations can be disjoint in the sense that for two individ-
uals with albinism no mutated position in the TYR gene of the one individual is
mutated in the TYR gene of the other individual. The literature presents a list
of positive examples of mutations of the TYR gene from patients with OCA1A,
and this known list of mutations is very likely not complete to describe all possible
mutations that lead to the phenotype of OCA1A.

The selection of the TYR gene from the whole DNA already counts as a part
of the pattern corresponding to OCA1A in the strict sense. We do not know the
exact pattern that corresponds to OCA1A, but there is scientific evidence that the
amino acid sequence of the TYR gene is a sufficient set of data to detect it. My
explication of phenomena, of patterns and their relation to each other does not
depend on the validity of this statement, but only on the reality of a pattern in
a set of data that corresponds to albinism. I use this example and the discussion
about its biological details to illustrate the aspects of patterns in science I am
interested in. These are its explicability in mathematical terms in principle, as
well as the lack of scientific knowledge to do this exactly in realistic cases from
everyday scientific work.

Various examples can be found to further illustrate that patterns in science
that correspond to phenomena are often very uncomplex. This is the case for
most patterns that are already explicated mathematically due to the common use
of the mathematical language by the science in question. Patterns of this kind
include the so called long-range dependence, which is a statistical property of a
time series of real numbers, but also a pattern in data that corresponds to a
phenomenon or, respectively, to a group of phenomena. I outline the definition
of long-range dependence for stochastic processes to discuss the general idea of
it. The statistical test for it in time series and the statistical estimation of the
calibrated parameter 1−α ∈ ]0,1[ , the intensity, is a topic of intense mathematical
research on its own.1

Definition (long-range dependence)

A covariance stationary, real-valued stochastic process (Xt)t∈Z is called long-
range dependent (or persistent or strongly dependent or having long mem-
ory), if for all t ∈ Z

lim
n→∞

cov(Xt, Xt+n)
c · n−α

= 1 for a c ∈ R>0 and a α ∈ {r ∈ R : 0 < r < 1}.

1For a discussion from various perspectives see Doukhan, Oppenheim and Taqqu (2003).
Several estimation procedures were developed to improve the statistical stability and convergence
speed of the estimation. For an overview of estimation methods see also appendix C of Biagini,
Øksendal and Zhang (2008).
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In other words, a process or a time series is long-range dependent, if the autoco-
variance decreases hyperbolically with increasing lag above a certain threshold of
the lags. As the term already indicates, a prima facie assumption in many time
series from repeated measurements along a time-line is the complete vanishing of
any autodependence at a sufficient increase of the lag. This would amount to a
convergence of the autocovariance to 0 with increasing lag, which is opposed to the
criterion given above. The divergence of a long-range dependent stochastic process
(Xt)t∈Z can be seen by flooring the covariance series by the harmonic series, which
is already diverging:

∞∑
n=1

cov(Xt, Xt+n) large n̂≈ Ĉ +
∞∑
n=n̂

cn−α = Ĉ + c
∞∑
n=n̂

1
nα

α∈]0,1[
> Ĉ + c

∞∑
n=n̂

1
n

=∞

for sufficiently large n̂ ∈ N and a constant Ĉ ∈ R. The diverging autocovariances
of long-range dependent stochastic processes or time series is illustrated by figure
4.5.
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Figure 4.5: The autocovariance of a process (Xt)t∈Z with long-range dependence for
different given intensities 1− α and for lags from 1 to 150. The volatility of the process
is constant σt = 1 for all t ∈ Z. The process is perfectly long-range dependent in the
sense that the covariance does not converge to the defining property for only large lags
n ∈ N, but fulfils the defining criterion for all lags n ∈ N.1

The pattern of longe-range dependence does not play the role of only a concrete
pattern, but also the one of a full description of the phenomenon itself, which is its
general pattern. Contrary to many empirical phenomena in science, there are no
other pragmatic ways to identify the empirical behaviour of long-range dependence
in an empirical system than by the statistical analysis itself. There is nothing

1To produce this plot I adapted a script that I wrote for my diploma thesis (2012).
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like a phenotype or any other concrete pattern of long-range dependence that is
accessible to human beings with the naked eye. Long-range dependence is a case
in which the general pattern consists of only one concrete pattern. However, long-
range dependence should be explained by scientific theories and is a phenomenon
that occurs in very different empirical data.

Long-range dependence is identified in historical measurement data of the
Agyptian Nile flood from a.d. 662 to 1469 (cf. Hurst 1951) or hydrological time
series in general (cf. Mandelbrot 1968 and Klemeš 1974). It is discussed as a phe-
nomenon of financial asset price time series or its in absolute or squared financial
asset returns (cf. Mandelbrot 1969 and 1971, Lobato and Savin 1997, Lux 1996,
and Grau-Carles 2000). Furthermore, long-range dependence is a phenomenon of
traffic in data networks, such as the World Wide Web (cf. Crovella and Bestavros
1997) or in Ethernets in general (cf. Leland et al. 1994).1

I want to discuss two noticeable properties of the phenomenon of long-range
dependence. First, it is already expressed in its form of a statistical pattern.
Second, this pattern can be found in scientific data from various very different and
not related parts of the empirical world. Due to this first property, it is really easy
to define the concrete and the general pattern of long-range dependence. Both
of them are fully given by the mathematical definition of long-range dependence.
But do we have to distinguish between the occurrences of long-range dependence
in this very different parts of the empirical world? Is long-range dependence in
water levels a different phenomenon than long-range dependence in the volatility
of daily asset returns in the financial market?

My answer to this question is that, even if the pattern that corresponds to
these phenomena is identical, the phenomena themselves are not. The empirical
fact (or “feature”) that the Nile floods are long-range dependent is not the same
empirical fact that the data traffic in the internet is long-range dependent. It may
be possible to formulate theories on a micro level that describe the internet and the
meteorological circumstances influencing the Nile floods by the same theoretical
propositions. In this case, not only the statistical pattern of long-range dependence
could be identically detected in the data of these two different empirical systems,
but also the reasons in the systems that lead to long-range dependence could be
theoretically identical. However, the pattern of long-range dependence is identical
in all these cases, but it corresponds to different phenomena, which are selected

1As Willinger et al. (2003) point out, the phenomenon of long-range dependence in network
traffic is caused by user and application characteristics rather than by the architecture of the
network. The scientific discussion of it does not revolve around only the popular—how they
call it—“black box” approach of statistical time series analysis, which is the mere statistical test
for the occurrence of a statistical phenomenon. Instead the physical mechanisms of the broader
networking context is scrutinised to not only identify the occurrence of long-range dependence,
but also explain it on a single agent level.
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and defined with the use of a whole body of further background assumptions, as I
elaborate on in chapter 5.

Let us consider—purely hypothetically—a theory about the two systems can
explain the long-range dependence to be caused by a certain seasonal clustering
of larger amounts of flow in the system. The record of the Nile flood may be
strongly influenced by some meteorological circumstances in the rainy months of
the summer; in a theoretically identical way the data flow in the internet may be
strongly influenced by the users’ surfing behaviour directly after the office ours
in the United States and in Europe. In both cases the theory may explain the
long-range dependence in the data by these theoretical influences. Even in this
case, were not only the phenomenon, but also its theoretical explanation in a
smaller scale is identical, the phenomena are still different. The reason for this is
that the theoretical explanation is not identical to the empirical part of the world
under investigation by the science that needs to be explained. The application
of the same theory does not involve the explanandum to be the same scientific
phenomenon, as I elaborate on in chapter 5.

Objection: Dennett’s “Real Patterns” for Humans’ Prag-
matic Concerns

Dennett1 distinguishes between patterns in general and—how he famously coined
the terminology—“real patterns” (cf. Dennett 1991), which are, in his view, dis-
cernible by intentional states, such as beliefs or desires. Real patterns have an
extra, real, metaphysical status. The following passage indicates his view:

I claim that the intentional stance provides a vantage point for discern-
ing similarly useful patterns. These patterns are objective – they are there
to be detected – but from our point of view they are not out there entirely
independent of us, since they are patterns composed partly of our own “sub-
jective” reactions to what is out there; they are the patterns made to order
our narcissistic concerns (Akins 1986). It is easy for us, constituted as we
are, to perceive the patterns that are visible from the intentional stance –
and only from that stance.(...) Martians might find it extremely difficult,
but they can aspire to know the regularities that are second nature to us
just as we can aspire to know the world of the spider or the fish. So I am a
sort of realist. (Dennett 1987, p. 39–40)

I comment this quote. The intentional stance is a central idea in Dennett’s
contributions. It refers to an—as he claims—metaphysical stance about intentional

1My thanks go to Max Kistler, who organised the conference New Trends Metaphysics of
Science in Paris in December 2015. He brought to my attention that the claim of patterns being
purely mathematical is attacked by Dennett and this attack received a significant amount of
attention among philosophers.
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states, such as beliefs or desires. It roughly says that such a state is a “perfectly
objective phenomenon” (Dennett 1987, p. 15) like “the question of whether a
person is infected with a particular virus” (p. 14) and unlike “the question of
whether a person is immoral, or has style, or talent, or would make a good wife”
(p. 15). This objectivity is what makes Dennett “a sort of realist”, whereas this
realism incorporates human intentional states into the ontology.

However, not all possible intentional states are allowed according to the in-
tentional stance; agents have to be rational and their “behavior is reliably and
voluminously predictable” (p. 15) and they are therefore “true believers” (p. 15).
Such as we use medical procedures to detect a virus in an organism, we can de-
tect an agent’s set of beliefs by investigating his behaviour. Since the agents are
nevertheless bounded by the cognitive and sensorial equipment of a human being,
Dennett’s “similarly useful patterns”, which can be detected in the world, are only
a certain selection of all the possible patterns, as I define them later on in this
text. These patterns may be detectable by algorithms, artificial intelligences or—a
little bit outdated—“Martians”.

Figure 4.6: Four simple visualisations of sets of data: 80×40 = 3200 binary information
per image in a specific order. We can stipulate the upper left one as an ideal pattern;
this choice is epistemically natural to a human, since this pattern is easy to remember
and describe. Based on this ideal pattern, the other three images show realisations of
the pattern plus a noise with a level of 0.1 (upper right), 0.5 (lower left) and 0.8 (lower
right). Here, a level of noise of ρ ∈ [0,1] means that (ρ · 100)% of the points in the image
are white or black by random and the rest are coloured according to the ideal pattern.

The metaphysical difference between a real pattern according to the intentional
stance and any other pattern in a set of data is given by the fact that they are
“composed partly of our own ‘subjective’ reactions to what is out there”. Akins’
(1986) referenced PhD thesis On Piranhas, Narcissism, and Mental Representation
is a fruitful neuroscientific perspective for our endeavour. This reference highlights
Dennett’s guiding principle to put actual human cognition much more into the
centre of the ontological investigations than I am willing to do. We read:
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This dissertation is motivated by the following question: Is the portrayal
of mind/brain processes as representations–as entities that in some sense
reflect, correspond with, or symbolize the world–particularly apt? Through
detailed examples from the neuroscientific literature, with an emphasis on
sensory processing, I argue that this way of viewing brain functioning is typ-
ically misleading. It depicts neural functioning as a bipartite process: first
the production of a set of neural “calibrational” states with properties in the
world, and then their interpretation by “higher” functions. On the contrary,
even at the transducer level, sensory organs cannot be characterized as relay
mechanisms for the brute facts. The form and content of all information
gleaned about the external world conforms to the particular needs, hence
neural functions, of the organism. Evolution, it seems, is not concerned
with “the truth”, but only with that which proves necessary or expedient.
Relaxing the grip of the representational metaphor, I argue, affords us the
means to reconstrue or even dissolve some standard philosophical questions
about content and intentionality. (...) (Akins 1986, abstract)

Her conclusion of mind processes being guided by rather pragmatic “narcissistic
concerns” is not surprising whatsoever prima facie—at least to me. A little exam-
ple similar to Dennett’s1 (1991) about visual patterns illuminates this point even
more. Figure 4.6 shows four visualised sets of data. If we ask laymen in regard to
statistics and data analysis where he can find a pattern, then most would answer
that the upper left one shows the pattern and the other three show it, but distorted
by different levels of noise. However, this choice of a pattern is rather arbitrary
and guided by the sensory-cognitive capabilities of human beings in general and
laymen (regarding e.g. computer imagery) in particular. On the contrary, the
bottom left image may show the exact pattern of interest for a certain analysis
of the data, and there is no need apart from the sensory-cognitive capabilities of
human beings to prohibit this choice.

Akins’ depiction, which leads Dennett to his conclusion about “real patterns”,
is a neurologically derived version of neo-Kantianism. Kant (under the label of
transcendental aesthetics) already provided a description how all our perceptions
are framed by our distinct human cognitive framework.

Disregarding any lack of specific focus on ontological questions, it is helpful to
elaborate on our arguments why any ontological or other philosophical distinction
between patterns and “real patterns” in the described sense is in principle futile to
describe patterns in science—Dennett’s texts also have ambiguous parts concerning
what his final position on the subject is.2

1Dennett’s (1987; 1991) favourite example is the Game of Life, a simple zero-player game
that produces patterns of two binary states on a surface; it starts with a certain state and in
deterministic subsequent steps the binary states of the single pixels change according to a very
simple transition rule. Some very distinctive patterns, such as the gliders occur that are stable
along the next steps of the Game. The Wikipedia entry Conway’s Game of Life (English) is very
informative about this cellular automaton.

2Simply compare the following two passages with the one already cited above (p. 118):
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In the following paragraphs I explain why the distinction is futile for any charac-
terisation of patterns in science. According to Dennett, the criteria that distinguish
a “real pattern” from any other pattern are determined by the pragmatic needs
of the human organism; obviously those criteria make different “real patterns” for
different individuals, such as chess players, experimental physicists, decorators or
any other group of trained persons. These differences do not occur only among
different contemporary groups, but also in historical contexts. Newton deemed
other patterns in experimental data interesting than modern statistical physicists.
The same holds for painters like Rubens and Cy Twombly.

Thus, it is hard to define an agent-independent class of “real patterns”, but is
it impossible in principle? If someone has a perfect scientific knowledge about how
the human brain works, can she then define this class that describes all the patterns
that a human being can detect in principle? Dennett seemingly wants to affirm this
question with the aim to secure his point by stipulating for his intentional stance
only rational agents who are “true believers”. His strategy is then to sort out all
patterns that do not contribute to any rationally and somehow personally beneficial
strategy in life. But this strategy does not work, since scientific and aesthetic
criteria of interest for patterns change drastically from context to context. Even
with a perfect knowledge about how the human brain works, there is no convincing
criterion about a pattern that excludes it from being interesting for a rational
strategy of a human being. The only acceptable claim, if we include scientific
applications of pattern detection by human agents into the notion of patterns, is
to refer to epistemic restrictions (e.g. patterns that are too complex in some sense
to be detected by human agents), but this criterion is rather arbitrary bounded by
physical brain power, which is exactly what Dennett’s intentional stance opposes.

My view is, I insist, a sort of realism, since I maintain that the patterns the Martians
miss [but we humans or at least some of us recognise] are really, objectively there to
be noticed or overlooked. How could the Martians, who “know everything” about
the physical events in our world, miss these patterns? What could it mean to say
that some patterns, while objectively there, are visible only from one point of view?
(Dennett 1987, p. 37)

but also
A pattern exists in some data—is real—if there is a description of the data that is
more efficient than the bit map, whether or not anyone can concoct it. (Dennett
1991, p. 34)

Ladyman, Ross and Collier (2007) put specific emphasis on Dennett’s presentation regarding
metaphysical implications, too:

However, in a now-classic paper ‘Real Patterns’ (RP; 1991), he [Dennett] emerged
from this neutrality [about metaphysics] to frame his view of mind in the context
of what Haugeland (1993) rightly regards as a distinctive metaphysical thesis. Ac-
cording to RP, the utility of the intentional stance is a special case of the utility of
scale-relative perspectives in general in science, and expresses a fact about the way
in which reality is organized—that is to say, a metaphysical fact. (p. 199)
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Scientific development repeatedly produces new patterns of interest in various sets
of data (e.g. long-range dependence).

Furthermore, it seems futile to draw a strict demarcation line between genuinely
human pattern detection and procedures that make use of technical or other aux-
iliary equipment or procedures. The pattern of a chess board is easy-to-detect by
the naked eye, but this does not apply to patterns in thousands of pictures from
the Hubble telescope, which are analysed by either powerful computers or a group
of scientists or laymen.

Another strategy to defend Dennett’s metaphysical implications is to stipulate
that there must be actual human agents, who actually recognised this pattern to
make it a “real pattern”. But this defence contradicts with the idealisation of
dealing with rational agents and true believers, as stated above. All in all “real
pattern” turns out to be a vague notion. Therefore, the notion is not very useful
for an ontological or epistemological classification. This is one reason why I want
to drop Dennett’s notion.

A more compelling reason to reject the use of Dennett’s notion for my pur-
pose is the following. Even if the convictions of a human scientist and the human
scientific communities play a crucial role in science, scientific pattern detection
undergoes a constant process of technical enhancement. Scientists do not use
mathematical algorithms to only detect certain patterns, they can use artificial
intelligences to define relevant patterns in the first place. The detection of cogni-
tively accessible patterns is replaced with patterns that are defined by machines
in which the scientists trust. This trust is the same trust that the economist may
have in a human expert in statistics, who provides him certain results. Under
this view, the patterns that serve our human “narcissistic concerns” cannot play
a prominent role for an explication of patterns in science.

Another important remark regarding my view on patterns and the philosophy
of mind is that my view is by no means hostile to an ontological acceptance of
consciousness. I claim that patterns, pattern detection and scientific inference have
nothing to do with consciousness. We do not have any indication that complex
cognitive tasks require consciousness and the optimistic induction (see 3.3) rest on
empirical evidence of the contrary.
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Objection: Wallace’s Patterns in Science as Universals

Wallace (2003) develops a view about indefiniteness in quantum mechanics ac-
cording to which macroscopic physical objects should be understood in terms of
Dennett’s patterns rather than by the common physicists formalism of quantum
mechanics. I do not elaborate on this specific view, which is not in the direct
scope of this survey, but I want to focus on his usage of the concept of a pattern;
he refers directly to Dennett’s texts but adds some further ontological aspects to
it. They help us to get further insights into Dennett’s view and to sharpen my
suggested view about patterns.

We start with a quote in which Wallace introduces his notion of patterns that
he named “in recognition of a very similar view proposed by Dennett (1991)”:

Dennett’s criterion: A macro-object is a pattern, and the existence of a
pattern as a real thing depends on the usefulness—in particular, the ex-
planatory power and predictive reliability—of theories which admit that
pattern in their ontology. (Wallace 2003, p. 93)

For him, a pattern is a “macro-object” and therefore also some part of the
empirical world (assuming he is not a strict nominalist, which he is not). In his
text he exemplifies this notion of a pattern by a tiger (sic!), which is prima facie
“to be understood as a pattern or structure in the physical state.” (p. 92) But
do physical states “admit that pattern [of a tiger] in their ontology”? No, this
ontology is rather based on particles, but the science and language of “zoology
and evolutionary adaptationism” (p. 93) does admit tigers and therefore “a tiger
is any pattern which behaves as a tiger” (p. 93) according to this language.

He is a structural realist, whereas he uses ‘structure’ and ‘pattern’ interchangable.
‘Structural realism’ denotes the ontological orientation in philosophy of science
according to which we should, in the context of scientific theories, enter into onto-
logical commitments on the level of structures and not on the level of individuals.
Worrall (1989) revitalised this general idea for contemporary philosophy and high-
lights it with the help of the example of Fresnel’s1 elastic solid ether theory and
the transition to the theory of electromagnetic fields from Maxwell2; according
to Worrall there “was continuity or accumulation in the shift [from Fresnel’s the-
ory to Maxwell’s], but the continuity is one of form or structure, not of content”

1The French physicist Augustin-Jean Fresnel (1788–1827) explained the propagation of light,
which can be observed in transparent matters, but also in empty spaces, by the existence of the
ether. In his theory, the ether carries light waves and has to fill the whole physical space. The
propagation speed of light indicates for the ether the properties of an elastic solid material.

2The British physicist James Clerk Maxwell (1831–1879) interpreted light as an electromag-
netic radiation, because the electromagnetic radiation he investigated propagates through empty
space with the speed of light, too. However, Fresnel’s empirical laws of light propagation remain
intact under this new interpretation of light.
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(p. 117). The reason for this interpretation is that the existence of the ether as
the matter in which light travels through space, could be fasified by experiments,
but the relations that Maxwell inferred under the assumption of the ether hold
empirically in electromagnetic fields.1

For Wallace a pattern is something that is usually called a universal in an-
cient and medieval metaphysical debates; examples of universals include tigers,
the colour red and triangles. Universals are manifested by, at least, a name for
them in everyday or a specialised language, which is, in essence, the criterion that
Wallace expresses in the given quote by “the usefulness (...) of theories which ad-
mit that pattern in their ontology”. We have a word for tigers because it is useful
for grasping the animal kingdom. For Dennett real patterns are manifested by the
intentional stance, which does not refer to terms in a language, but to something
very similar that has its place in human minds.

Wallace’s motivation for his realists’ position is a version of the no-miracle
argument, which in its most common version roughly states that our best scientific
theories about the empirical world must at least be approximately true and the
terms used by them must refer to actual objects by virtue of their predictive success
and the functioning applications in engineering.2 But in Wallace’s version it is not
the predictive success that has to be explained by something else than a miracle,
it is the explanatory success of our scientific theories:

Why is it reasonable to claim, in examples like these [of tigers], that higher-
level descriptions [in the language of zoology] are explanatorily more power-
ful than lower-level ones [in the language of microphysical states]? In other
words, granted that a prediction from microphysics is in practice impossible,
if we had such a prediction why would not it count as a good explanation?
To some extent I am inclined to say that this is just obvious–anyone who re-
ally believes that a description of the trajectories followed by the molecular
constituents of a tiger explains why that tiger eats a deer means something
very different by ‘explanation’. But possibly a more satisfying reason is that
the higher-level theory to some extent ‘floats free’ of the lower-level one, in
the sense that it does not care how its patterns are instantiated provided
that they are instantiated. (Hence a zoological account of tigers requires us
to assume that they are carnivorous, have certain strengths and weaknesses,
and so on, but does not care what their internal makeup is.) So an expla-
nation in terms of the lower-level theory contains an enormous amount of

1Structural realism is not an entirely new view. Among others, Poincaré (1902; 1905), Russell
(1927) and Cassirer (1936) expressed in crucial regards similar ideas. Structural realism is often
subclassified into the ontic and the epistemic version; ontic structural realism expresses the view
that the world is in fact composed of structures and not of individuals, epistemic structural
realism expresses the view that our conceptualisation of the world is structural for epistemic
reasons. Ladyman (2014) provides a survey on structural realism in which he focuses on the
contemporary discussion.

2I refer to, mainly, Putnam’s (1975, p. 73) often referred to introduction of the no-miracle
argument. Find an encyclopaedic discussion at Chakravartty (2011, sect. 1.2).
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extraneous noise which is irrelevant to a description in terms of higher-level
patterns. (Wallace 2003, p. 94)

To sum up his view: since our best explanations of our surrounding world
introduce tigers, this universal must be real (no-miracle) and since our theories
express patterns—or in terms of Ladyman and Ross (2007): structures—these real
things must be patterns (ontic structuralism).

Structural realism is, like other ontological positions, to a certain degree a
metaphysical commitment one can believe in or not rather than a debatable posi-
tion. However, why should we reject Wallace’s realists notion of a pattern? The
reason is that this notion simply does not describe what we refer to, when we talk
about patterns in the everyday language, as well as in almost every language of a
scientific field. With the term ‘patterns’ I refer to examples of the sort illustrated
by figures 4.2 (p. 108) and 4.3 (p. 109), and not to tigers or the colour red.

What Wallace calls ‘patterns’ are in fact universals, and some of them stand in
a strong relation to patterns in data in the same way as (Bogen and) Woodward
assume patterns to stand in a strong relation to phenomena. Referring to univer-
sals with ‘patterns’ is motivated by the stipulated identity of those with patterns
in data according to a scientific theory in the same way (Bogen and) Woodward
stipulate an identity between pattern and phenomena. However, both use a de-
scriptively inadequate notion of patterns regarding the actual use of the notion by
scientists. In Wallace’s case, this does not have to count as a mistake, but may
be misleading for a reader. In (Bogen and) Woodward’s case, it is a mistake, as I
discuss in section 4.1 with help of the example of albinism.

How do Wallace’s ideas help to sharpen our view on patterns in data? Pat-
terns in data have to be strictly distinguished from structures in the sense of ontic
structuralism. But how exactly? Patterns in data are certain mathematical (i.e.
structural) properties of some data, which are mathematised reports of an observa-
tion. Wallace’s patterns are sub-structures or positions in the complex structure,
which is a certain subset of our body of knowledge (of e.g. zoology). It is cor-
rect to say that a picture of a tiger shows a tiger by means of the visual pattern
that corresponds to a tiger and can be detected in the picture. However, this
pattern is not the tiger and we may not know what a tiger really is (i.e. scientific
anti-realism) despite all sorts of descriptions we come up about it.

How does this distinction relate to the notions of concrete and general patterns
from section 4.1? As a reminder, the phenomenon of albinism corresponds to
the general pattern that includes the concrete patterns of its genotype and its
phenotype. General patterns are classes of concrete patterns that are defined by
the actual occurrences of the phenomenon and we may not know every concrete
pattern that corresponds to albinism. However, according to Wallace’s account
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we know every structural property of the tiger, since a tiger is an object that is
completely described by our language with which we refer to a tiger. This leads
to an important difference between phenomena/(general) patterns on the one side
and Wallace’s suggested tiger structure as “patterns” on the other side: we do not
know a general pattern of a phenomenon due to newly developed forms of data
and undiscovered properties of the phenomenon, but we know everything about a
Wallace pattern since it is defined by our reference to it.

Haugeland’s Objection: Patterns are more than a Compo-
sitions of Bits or Elements

For Haugeland1 (1993) patterns, and any ontological classification of them, do not
depend on the “special case” (p. 267) of intentional states, as Dennett suggests.
In Haugeland’s view, all patterns that are in any manner recognisable by a human
agent, count as patterns from the same ontological and epistemological class.

What all counts as a pattern for Haugeland? The following quote shows how
broad his notion is:

For instance, when I recognize the faces of my friends, or the expressions
on their faces, or the genre of a book, there are no particular bits or other
elements that these are patterns of. A delighted smile is not a pattern of epi-
dermal cells, still less of pixels or light waves; if anything, it’s a concurrence
of cheek lift and brow movement, of lip shape and eye sparkle. But these are
no more antecedently determinate than smiles themselves, perhaps less so.
Smiles, as the definition suggests, are what they are because we recognize
them to be, and not the other way round. (p. 274)

If a smile or face or book genre counts as a pattern, then this notion seems to be
a similar one to Wallace’s notion. Again, in classical ontological terms, a smile or
a tiger would be a universal. For Haugeland, a pattern is a pattern by it being
recognisable for the human agent. It is central to his view that “there are no
particular bits or other elements that these are patterns of”, but this is the crucial
mistake of his view. Yes, we are not aware what structural recognition of a human
face makes us categorise it as smiling. However, one could explicate a smile in
purely mathematical (i.e. structural) terms. In fact, modern facial recognition
software does exactly that.2

He goes on regarding the claim that patterns are something merely structural
(i.e. mathematical):

1My thanks go to Philipp Haueis, who brought to my attention that Haugeland criticises
Dennetts depiction of the relation between intentional states and patterns, as well as he attacks
the claim of patterns being purely mathematical.

2An example of software for the recognition of facial expressions is Sightcorp Crowdsight SDK.



4.3 Patterns are Mathematical: Discussion and Objections 127

In the meantime, requiring determinate prespecification of the bits or ele-
ments, as the mathematical definition does, can be a philosophical embar-
rassment, in more than one way. First, many relevant patters—conspicuously
including the behavioral patterns that support intentional interpretation—
do not seem to be made up of well-defined bits or elements. Just which
causal commerce with the environment amounts to perception and action
is by no means specifiable in advance, nor can it be precisely delineated
in any case. Second, the account of patterns as orderly arrangements of
predetermined elements is an invitation to metaphysical reductionism: the
thesis that these patterns are ‘nothing but’ their elements arranged. Clearly,
however, (whatever else one thinks about it) this runs counter to Dennett’s
motivating insight that ‘real patterns’ might be of distinctive ontological
status and interest. Third, if (in spite of all the foregoing) an attempt were
made to merge the two notions of pattern, such that recognizable patterns
must at the same time be arrangements of prior elements, then, arguably,
their recognizability would have to be via prior recognition of those elements;
and that would be a version of epistemic foundationalism. (p. 275, original
emphasis)

In the following, I want to carefully reply to the three listed concerns.
Regarding the first point, all patterns are structural and can be explicated as

such. All of the sensorial input that humans are capable of perceiving, can be
fully described by images, waves spectrums or other structural forms. However,
the more relevant aspect of the first point seems to be that it is not easy to
mathematically explicate “in advance” what qualifies as a pattern by being relevant
for human’s “perception and action”. Obviously, our well-developed skills in facial
recognition serve our daily social routines, but I see no reason, why all of this could
not be mathematically explicated. To illuminate my point, I, again, suggest some
analogies. A human Go player recognises specific patterns on a Go board during
a game. A competitive Go computer recognises patterns of no less complexity.
When IBM’s Watson wins a match of Jeopardy!, then this is a strong indication
that Watson is able to recognise the relevant linguistic and semantic patterns to a
similar degree than the competing humans can. And we can decompile the exact
mathematical explication of the pattern detection routine and the rules why these
patterns are relevant from the computer. I elaborate more on the argument that a
computer performed task exemplifies its mathematical explicability in chapter 3,
sections 3.2 and 3.3.

Regarding the second point, I obviously endorse a metaphysical and epistemical
reductionism in the restricted area of explaining patterns, pattern recognition and
inferences in science. This reductionism, on the one hand, is consistent with scien-
tific practice that makes vast use of automation and computers, and on the other
hand, promotes an ontology that is more sparse than Dennett’s or Haugeland’s
accounts imply. And if this would be a foremostly ontological discussion (which it
is not, since for me it is a discussion about the explication of patterns in science)
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than we would need to take the merits of a sparse ontology into consideration.1

The third point of concern is very misleading from more than one perspective.
As described earlier in his text and cited above the last quote, Haugeland refers
to patterns not only in the way how humans would explicate them, but also how
they actually occur to us. To explicate a smile on the basis of the movements of
individual facial muscles is “epistemic foundationalism” for him, since we recog-
nise the smile directly, without us analysing the muscle movements before the
recognition. However, as mentioned above, it is irrelevant to an explication of
a pattern, whether we are aware of how we infer it as a structure. The crucial
difference between his and my position is that I want to talk about what a pattern
is and not how it is for a human being’s lay awareness. Even a human autistic
person, who may have trouble with reading facial impressions, can give us a good
description of a smile by the individual muscle movements of the smiling person.
Furthermore, there is no problem in mathematically explicating a smile in terms
of image recognition software.

Overall, Haugeland and also Dennett, provide an important insight into the
difference of an explication of patterns in science on the one hand and pattern
awareness of an untrained person on the other hand. Only the first notion is
of relevance for this thesis and should not be confused. Even if one has a very
friendly position towards the philosophical fruitfulness of philosophy of mind, a
person’s individual gift, neurological disorders, extreme training, technical aids
or artificial cognition enhancement make any narrow class of all “real patterns”
notoriously incomplete. That is why, even on the background of philosophy of
mind, the mathematical approach of general pattern theory to explicate the notion
of a pattern is more convincing than any other approach. This will be discussed
in section 4.4 below.

Objection: the Optimistic Induction does not Provide a
Suitable Comparison with Scientific Tasks

An opponent of my views may claim that, even if AIs show levels of performances
above any human agent in games like chess, Go and poker, this still does not
justify a view according to which scientific inferences can be made by AIs without
actual or even only possible human epistemic supervision. These opponents may
hold the view that science is something substantially different than these games.

1Quine (1948) recommends sparseness as a relevant criterion for ontologies with analogies
to William of Ockham (Ockham’s Razor). However, he uses this criterion to make the case to
exclude abstract entities, whereas my ante rem structuralism about mathematical objects or
propositions reduces empirical objects from everyday experiences (e.g. patterns) and thoughts
to mathematics.
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My answer to this objection is that at least one crucial criterion for the accep-
tance of a theory as a scientific and also scientifically valid theory is its success
as empirical predictor. Even if our notion of scientific explanation is restricted
to explanations for human agents, the reference to predictability still allows for
theories that might not be accessible to a human mind.

We use technical aids like computers to solve mathematical calculations in
science for decades. Monte Carlo methods are widely used in the social sciences to
test agent level properties on a macro level. The mental games of chess, Go and
poker provide a foreshadowing empirical study on what AIs can provide for the
solution of a very specific scientific question or broader scientific fields in future
decades and centuries. Overall, there is no need to exclude AIs in the epistemically
and socially vastly complex game of science if, for instance, neural networks provide
successful solutions with regard to empirical predictability.

More descriptively, the following example helps to support my view. The rocket
company SpaceX was able to significantly increase the thrust of their rocket engines
in comparison to other rockets.1 It is important to note that rocket engineering
is a field that very likely attracted many highly motivated and gifted engineers
who put intense effort into optimisation of rocket engines over several decades.
Therefore the field that can be used to showcase roughly the results of the best
human engineering efforts. Due to the importance of propellant flows and chamber
pressures, fluid mechanics plays a crucial role in the theoretical considerations of
this topic. However, the actual flow of the propellant is extremely complex and
rocket engineers in earlier decades depended on rough models and estimations.
Modern GPU based simulations helped to significantly increase SpaceX’s engine
performance. (cf. Lichtl 2015)

How can such an example from engineering be compared to scientific models or
goals? The reason is that GPU based simulations helped to increase the engine’s
performance in a testable and predictable manner. Different than with examples
of simulations from social sciences (e.g. economics), the example from SpaceX
exemplifies superiority of model calculations that can be conducted only with
computational aid. But are these GPU based simulations not mere applications
of well known differential equations from fluid mechanics? Yes, but if we, as a
toy example, define the scientific goal pdescribe the ideal rocket engineq than the
computer aided model, which manifests how the chamber and tubes should be
formed, provides an empirically significantly more adequate model than anything
what could be expressed based on mere human cognitive capabilities.

1Rounded thrust-to-weight ratio of selected rocket engines: Space Shuttle’s RS-25 (54), Saturn
V’s Rocketdyne F-1 (82), Ariane 5’s Vulcain (84), Soyuz-2-1v’s NK-33 (136), SpaceX’s Merlin
1D FT (200), SpaceX’s Raptor (estimated �200, still in development). Find a detailed list of
references at the English Wikipedia entry Comparison of orbital rocket engines (2018).
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Here is a list of well-known scientific problems that are easy to describe and in
a similar manner too complex to be solved without computer aided help, whereas
microscopic properties of parts of a larger empirical system are well understood
by more simple models that are cognitively comprehensible by a human agent:

• Determining what setup of DNA, RNA, proteins, cytoplasma, nourishment
and possible other influences causes an arbitrarily chosen phenotype (e.g.
being born with exactly 100 upper eyelashes) in a human being without the
possibility of analysing a sufficient number of affected individuals (as is the
case for e.g. albinism). (cf. Weiß 2009) This task requires a super-human
level of model complexity.

• The exact mapping of mental states and thoughts to brain processes down
to the sub-cell level seems to be a task of super-human complexity.

• Financial market models with the aim to provide detailed predictions based
on available information seem to exemplify super-human complexity, due to
the vast amount of psychological agents, information, politics and regulation
that influence financial market activity.

• The common and extensive use of idealisation and approximation in models
of physics in general hint to the fact that physical reality is too complex
to be grasped by human’s scientific models—however, human’s physics with
this methodology of phenomenon isolation is one of the most successful fields
regarding the criterion of predictability.

Given the empirical examples from the optimistic induction (3.3) and how theo-
retically non-trivial games like Go and poker are, it is reasonable to assume that
the above listed problems can in parts be solved by future AIs with empirically
predictive success but without cognitive access for human agents.

Can a Pattern be Arbitrarily Complex?

If a pattern is an arbitrary mathematical property of a set of data and a human
agent must somehow grasp it, according to some accounts from the philosophy of
mind, then is there an upper bound of the complexity (according to any reasonable
notion of it) that a pattern can have? The reason for this suggestion is that a
human brain has limited capabilities.

A closer look to our human cognitive capabilities regarding scientific pattern
recognition reveals that our limits are surprisingly low. When it comes to numerical
tasks, a very rudimentary calculator can vastly outperform a human in a task like
writing down or recognise the multiplicative series of three (i.e. 3, 9, 27, 81,
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243, ...). However, a pattern like this, and many other vastly more complex ones,
occur in various actual scientific applications. On the other hand, humans are of
course specialised to recognise certain patterns very good (e.g. facial impressions;
distinguishing objects seen from various different angles and lighting conditions).

The conviction of the scientists in the believability of a certain hypothesis is a
major goal of scientific endeavours. How could a human scientist be convinced in
a hypothesis if the relevant reasoning makes use of pattern recognition procedures
that are not accessible to a human agent? As stated earlier, he trusts in experts
and machines that do the work of pattern recognition for him. At least an expert
has trust in the machine and the scientists lends his trust from the machine expert
(transitively, so to speak).

That is why, at least until now, there is no upper complexity bound for patterns
necessary. Future scenarios, in which artificially intelligent non-human agents use
vastly more cognitive resources to formulate theories and patterns that humans
may not able to understand, demand further analysis regarding the mentioned
lending of trust. But such an analysis depends on the actual scientific involvement
of these non-human agents that we cannot assess today.

4.4 Patterns are Mathematical: Explication

Section Abstract
Modern information theory provides a theoretical framework for data and its appli-
cability on computer hardware demonstrates its adequateness for this explicative role.
The notion of information entropy illuminates how patterns are always discussed on the
background of an information space. The notion of Kolmogorov complexity illuminates
that an important property of a pattern is that it should be constructable for epistemic
reasons. General pattern theory is a sufficiently general algebraic approach to actually
define the class of all patterns.

In the former sections of this chapter I discussed how patterns should roughly be
classified with regard to their relevance for phenomena into concrete and general
patterns (4.1), why there is historically a philosophical debate about the notion of
patterns (4.2) and why mathematics is all what we need to sufficiently explicate the
notion for pragmatic, epistemological and metaphysical needs (4.3). In this final
section I present an actual mathematical solution to the problem of the general
explication of the notion of a pattern.

The route to the mathematical solution can be outlined as follows. First, we
take a look into mathematical information theory and the notion of complexity
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to define a pattern in the broadest and conceptually simplest way. The problem
with this view is that we gain a general notion of patterns without any further
knowledge about a specific pattern. This notion is not constructive in a somewhat
stricter sense of constructivism than common in the philosophy of mathematics.
To say it in more concrete terms, according to this first explication of the notion
of a pattern, a set of data may show a pattern to a certain statistical degree,
but there is no way to find this out, because the pattern, according to this first
notion, does not come with a description to test it in data or to construct it
mathematically. That is why, secondly, I introduce general pattern theory as an
approach to constructively define patterns without any unnecessary restrictions.

I prefer the constructive approach over the adaption of the notion of complexity
due to its epistemological merits. Even if we do not restrict the agents of our
epistemology to human agents, every agent (e.g. artificial intelligences; aliens)
has to reason by constructive inferences.—It is another question whether a human
agent is able to reenact these inferences or not.

A Simple but Unconstructive Approach: Complexity

It seems natural to appeal to established mathematical theory for the aim to fur-
ther specify what a pattern in scientific data is. Since data can occur in various
mathematical forms (from images; sound waves; via measurements etc.) the main
obstacle to a mathematical specification of patterns in data is the necessary gen-
erality of such a specification.

A common philosophical idea for a most general structural definition is to
make use of the theory of a logic. But for the sake of our endeavour, I do not want
to specify relations between non-mathematical objects, such as propositions or
natural kinds; my aim is to specify what property of a set of data makes it to show
a pattern and what a pattern mathematically is. Fortunately, a fleshed out theory
is available with mathematical theory that seems suitable for my endeavour: the
so-called information theory. Ladyman and Ross (2013) refer to this solution as
“mere patterns”:

Mere patterns—stable but nonredundant relationships in data—are distin-
guished from ‘real’ patterns [in Dennett’s sense] by appeal to mathematical
information theory. A pattern is redundant, and not an ultimately sound
object of scientific generalization or naturalized ontology, if it is generated
by a pattern of greater computational power (lower logical depth). (p. 108)

To me this description of patterns as “stable but nonredundant relationships in
data” and the reference to “greater computational power” is not sufficiently precise.
In my view, a thorough introduction into information theory and its notion of
complexity is necessary.
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In the following, I briefly introduce the field and explain what part of it is
of specific use to us. I also mention other cornerstones of the discussion of data
processing in the field to highlight why the approach that I chose is the most useful
one for our purpose. My general idea here is to identify a set of data, as well as
a pattern in data with information, as explored by this field; further specification
follows.

Information theory is a discipline of mathematics and engineering that is moti-
vated by the applications for electrical engineering and computer science. Claude
Shannon, in his now classical paper (1948a; 1948b), articulated a theoretical frame-
work for the transmission of discrete data over channels without and with noise. A
noisy channel implies that a set of data was sent, and must be interpreted or recon-
structed by a receiver, which receives a distorted version of the data set. The trans-
mitted data is usually referred to as information. Figure 4.7 provides a schematic
illustration. As we will see, due to its close relation to pattern recognition in the
most general sense, we are mostly interested in the aspects of information theory
concerning compressing data for transmission.

Figure 4.7: Schematic diagram of a general communication system (Shannon 1948a)

As Kolmogorov (1965) stresses, several very different approaches were intro-
duced to mathematically quantify the amount of information in an information-
theoretical framework. I want to explain the preconditions of the discussion by a
very simple example. Assume we have a set of data d, which is a binary string1 of
the length of 3, i.e.

d ∈ {(b1, b2, b3) : b1, b2, b3 ∈ {0,1}} =: {0,1}3,

and this set of data, for example d = 010, has to be transmitted via a noisy
channel. For the sake of applicability to our problem I want to emphasise that, in

1In information theory information is often referred to as ‘strings’ or ‘words’ (instead of e.g.
‘texts’; ‘numbers’) to highlight that the treatment of the data is purely syntactical without taking
any non-syntactical meaning (e.g. natural kinds; propositions; objects that are stipulated by a
physical theory) of it into consideration.
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principle, strings can also be texts, images, descriptions of waves or the like.
An important insight for the designer of a technical communication system con-

cerning the space of possible data D := {0,1}3 is what the probability distribution
of the 23 = 8 possible different receivable outcomes

000, 001, 010, 011, 100, 101, 110, 111

is; if the actually sent strings can be only one or two entries from this list, the
transmitter design has to be different from a scenario in which every outcome is
equally probable. That is why the entropy of the space of possible data D is a
widely discussed measure in the context of quantifying the amount of information
of a string. Be

P : 2D → [0,1]

a probability measure (with 2D being the power set ofD) that induces a probability
distribution over D. The entropy for D with regard to P is defined as

H(D,P) := −
∑
d∈D

P({d}) log2 P({d})

with the convention1 0 log2 0 := 0. Fig-
ure 4.8 provides an intuitive illustra-
tion. A base of 2 for the logarithm is
natural in a computer theoretic setup
since the addition of one bit doubles the
number off expressible strings.

Figure 4.8: Entropy for two possibilities
with probabilities p and 1 − p (Shannon
1948a, p. 11)

The entropy H(D,P) is a measure of how
much information is given by a string, e.g.
010, with regard to the space of possibili-
ties D and the probabilities P. In fact, as
Shannon shows (sect. 6, theorem 2), en-
tropy is the unique measure for this un-
der some rather weak and natural con-
straints. That is why entropy plays such
a prominent role in thermodynamics (in
particular due to its use in formulations
of the second law).

1Due to log2(0) = −∞ we need to introduce this convention; null sets naturally occure in
many setups: strings that will certainly never be sent. 0 · −∞ is undefined in the common
calculus.
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How are entropy and complexity of information related? And how do these
help to explicate patterns in data? As figure 4.6 (p. 119) illustrates and Ladyman
and Ross’ adaption of Dennett’s notion of ‘real patterns’ hints at, the possibility of
a distinction between the formerly defined pattern and the distorting noise in the
data is the crucial aspect of a pattern. An information space (D,P) with maximum
entropy implies that every string has the same probability (or propensity) to occur,
which means that no pattern is expected to play a relevant part at all. This is not a
trivial point. Imagine the images from figure 4.6; maximum entropy means that all
four images are realisations of the noise with the same probability to occur. And
this is not want we want, when we talk about the pattern in this figure. Another
example that Shannon and Kolmogorov refer to is the use of everyday language;
the string ‘house’ is much more likely to occur than ‘KKHGU’, because our language
shows patterns like words, grammar and sentence structure.

Complexity of information can be seen as a measure of how epistemically sim-
ple a string is regarding a defined information space (D,P). Given the information
space of the English language, ‘KKHGU’ is more complex than ‘house’—just imagine
how an English speaking agent could remember these strings. In other scientific
discussions, like Bennett’s (1990), complexity is used to describe the fundamen-
tal differences between living organisms (high complexity) and other matter (low
complexity) on the background of the information space of physics and chemistry.
In a low entropy information space (e.g. English language) many strings with low
complexity (e.g. ‘house’) occur. In a high entropy information space (e.g. the last
four digits of the phone numbers in your personal phone book) most strings have
a very high complexity.

What is a pattern? For epistemic reasons, a pattern should be relatively
uncomplex—this seems to be Dennett’s reason to introduce “real patterns” (on
the background of the information space of human cognition and sensory capabili-
ties) with the problems of them depending on human agents and having ontological
implications. But the complexity depends on the information space—‘house’ is
uncomplex in English, but complex in Latin. Therefore, it seems to make sense
to loosely explicate a pattern as a string with relatively low complexity regarding
the information space. Note that the information space in a scientific context is
given by the full body of scientific background assumptions and the language that
is used for it, which undergoes changes with time.

One could start an approach to explicate patterns by, firstly, explicating com-
plexity and then by, secondly, stipulating that a pattern is a string under a certain
complexity threshold, or with relatively low complexity in comparison to most
other strings with regard to the information space, or the like. However, to make
the notion of complexity more accessible and to make its weaknesses for our ap-
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plication more apparent, I briefly introduce an influential and useful approach,
the Kolmogorov complexity. The Kolmogorov complexity, which is also applied to
quantify the degree of randomness, also helps to further illuminate the important
role of the information space.

Despite many definitions that are well-embedded in modern information the-
ory, for instance by Vitányi and Li (2000), I use a definition and syntax close to
Kolmogorov’s (1965) original introduction with some simplifications, due to its
brevity and clarity for our purpose. The intuition is that the Kolmogorov com-
plexity of a pattern is given by the length of its shortest description in a given
language. For simplicity, we assume to have

y ∈ {0,1}n, which we call patternK

with some realistically large n ∈ N, e.g. the number of pixels in the images at
figure 4.6 (p. 119). We define

{0,1}∞ :=
∞⋃
i=0
{0,1}i × (0, 0, 0, ...)

to denote the set of all infinitely long binary series and

[ · ] :
∞⋃
i=0
{0,1}i → {0,1}∞, [ · ] : y 7→ y × (0, 0, 0, ...)

the translation of a finite binary series into {0,1}∞. Furthermore,

l : {0,1}∞ →N ∪ {∞},

l : s 7→ max
i∈N

(si 6= 0 for s = s1s2s3... with sn ∈ {0,1} for all n ∈ N)

defines the length of a string s ∈ {0,1}∞. Be p ∈ {0,1}∞ with l(p) <∞ a program
and a ϕ with

ϕ : {0,1}∞ → {0,1}∞ and

ϕ is partial recursive

is the programming method. Partial recursiveness means that it can be computed
by Turing machines and, intuitively speaking for our purpose, foremostly avoids
that ϕ is chosen in a way that it cannot be explicated and computed in a finite
way.1 ϕ is fixed for an information space and can be thought of as, for instance,

1Partial recursive functions are most often defined on the domain of Nn for some n ∈ N. But
the notion can easily be redefined for {0,1}∞ by the use of the standard transformation of binary
numbers to decimal numbers and vice versa. In other words, there are trivial bijective mappings
{0,1}∞ → N. For the definition of partial recursive function I refer to Minsky (1967, sect. 10.5).



4.4 Patterns are Mathematical: Explication 137

the parser of a programming language or the interpreter of the English language
that provides the physical reference to ‘house’ (in a Fregean sense of reference).

Finally, we can define the complexityK K of a patternK and a given program-
ming method ϕ as

Kϕ : {0,1}∞ → N ∪ {∞}, Kϕ : [y] 7→ min
ϕ(p)=[y]

l(p)

Kϕ([y]) = l([y]) describes the case of a maximum complexityK . Importantly, the
more powerful the stipulated ϕ is (e.g. a C++ parser with a lot of libraries; a
scientifically highly specialised terminology), the lower is the complexity of many
patterns.

I give an example. Assume, ϕ̂ maps the binary codified version of our standard
mathematical set-theoretical language to the binary number that is expressed with
this language. Be ŷ a series of one million 1’s and after that only zeros. A program
could be outlined as

p̂ = {1}106 × (0, 0, 0, ...)

and Kϕ̂(ŷ) would be very small, Kϕ̂(ŷ)� l(ŷ).
This is the general idea of Kolmogorov complexity. The approach is not re-

stricted to series of binary numbers and can be adapted to every string and there-
fore every set of data and patterns with according definitions of the patternK , the
length, the programming method and the program. It should be mentioned that
Kolmogorov defines the complexity of a pattern originally based on some dataK
d ∈ {0,1}m with some sufficiently large m ∈ N. His programming method is then
ϕ(p, x) = y, but I ignored this further aspect for simplicity.

Some further theoretical insights are of interest here. Regarding the program-
ming method ϕ, the invariance theorem roughly states that for a given pattern
or class of patterns a complexity optimal programming method is only as good
as any other descriptively sufficiently powerful programming method plus some
constant that is necessary to describe the optimal programming method with the
other programming method.1 Chaitin (1992) showed that, roughly said and also
very intuitive, the choice of the programming method ϕ and a maximum program
length l(p) (which is necessary to actually run the routines on computers) always
determines a maximum threshold of Kolmogorov complexity L ∈ N that can be
determined. He denoted this result ‘incompleteness theorem’, due to the unprov-
ability of a statement like: Kϕ(s) < L + 2, if we now that Kϕ(s) > L for some
string s ∈ {0,1}∞.

1For a discussion on the invariance theorem, see Li and Vitányi (2008, sect. 2.1)
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Kolmogorov complexity seems very promising after our discussion so far. What
are the problems? For the definition we use minϕ(p)=[y], which refers to the set of all
programs p. Even if the set of all p is countably infinity it is practically very hard
to feasibly determine the optimal p under ϕ. If a certain pattern from a realistic
example is given and we have a lot of computational power at hand, it may still
be take millions of years until even our best computers made a decision about the
optimal program to compress the pattern x in question. But this is not the way we
(including non-human agents) epistemically talk about patterns. Usually, when
we refer to a statistical or visual pattern, we are able to provide a (maybe vague)
description of it in the first hand. We know that ‘house’ is a pattern to us English
speakers, since we already have a list of vocabulary at hand. It is not the case that
we see ‘house’ and then think about every possible combination of five letters, find
possible references for all of these mostly made-up words and finally find out that
houses are objects that can be referenced very easily. The pattern that is shown in
the top left image from figure 4.6 (p. 119) is a pattern for us since we can construct
the depicted geometric object very easily from everyday geometry by referring to
rectangles and lines and not by going through every possible arrangement of black
and white pixles, and then find out that it might be a pragmatically good idea to
talk about lines and rectangles specifically. This route of explicating complexity
is therefore not a good approach to provide a descriptive epistemological account
of what patterns in science are; this inadequateness holds for all relevant agents
(e.g. humans; AIs; aliens). Again, Dennett is right regarding his neo-Kantian
implications, but he is wrong by his restriction to some kind of epistemically fixed
human agent and the ontological implications.

These are the reasons why, in the following, I want to focus on general pat-
tern theory which provides an answer to the problem of pattern construction and
keeping the merits of the complexity approach, which is the distinction from com-
pressibly describable patterns from noise.

The Constructive Approach: General Pattern Theory

In accordance with (Bogen and) Woodward’s intentional use of the term, we dis-
cussed “patterns” (“in science”) in the broadest possible meaning. Obviously, it
is a very extensive endeavour to actually show that one can mathematically expli-
cate all cases of patterns. Ulf Grenander’s1 œuvre revolves to a significant amount
around exactly this goal. I want to point out that every judgement regarding how
well he achieved his goal can be only unfair without a sufficiently comprehensive
investigation of his work and this is not the aim of this thesis.

1Mukhopadhyay (2006) provides a helpful overview over Grenander’s œuvre and academic
career.
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General pattern theory is constructive in the most general sense, meaning that
every pattern comes with a finite and recursive construction rule, but these con-
struction rules use one of the most general epistemic and mathematically fleshed
out sets of vocabulary, which is mathematical algebra.—I justify this epistemologi-
cal view in chapter 3 about mathematics and my ante rem structuralist’s position.
The epistemological aims of general pattern theory are also stated by Grenander
in an interview with Mukhopadhyay (2006):

[T]he emphasis in pattern theory is on the actual act of knowledge and act
of understanding. The key phrase is “act of,” that is, we want to learn the
process of understanding and the emphasis is not necessarily on specifics of
what it is that we understand. Pattern theory is more like mathematics of
knowledge representation[.] (p. 14, original emphasis)

Regarding the patterns in science that are to a significant amount mathematically
explicated (e.g. everything that is statistically tested) general pattern theory can
be seen as a project of a diligent foundation for these patterns quite similar to
the attempts of defining axiomatic set theory or category theory as a general
foundation for the entire body of mathematics.

This is how I approach general pattern theory for our purpose. I introduce
only the most basic mathematical ideas of Grenander’s approach from one of his
first papers (1970) on the topic. These provide sufficient insight into the pro-
gram to roughly understand the motivations and solutions. However, patterns
from Grenander’s approach that are explicated in his later works, are used in var-
ious applied fields, such as biomedical engineering, computer science, electrical
engineering, speech recognition, and computer linguistics. The most accessible
comprehensive sources are his late book with Miller (2007) and (1993). To make
the ideas more accessible, I provide examples for every definition.

Be S a set of signs with φ ∈ S, which are assigned to the most primitive
epistemically accessible objects. Examples include a pixel in the images from
figure 4.6 (p. 119) (S := {black, white, φ}) or the letters and punctuation marks
for the English language (S = {a, b, c, ..., A,B,C, ..., ., , , ?, , !, ..., φ}). φ denotes the
empty sign. Note that the elements of S denote the most primitive epistemically
accessible objects in a modelling sense and it is not the case that they are these
objects. Otherwise the element black from the first example would have been
replaced with �. A crucial aspect of this approach to explicate also non-visual
patterns, like patterns in sound data that we can hear. However, we can still
maintain the view that the patterns are mathematical, even if the signs denote
something phenomenologically distinct, like a most primitive piece of a hearable
sound, like one note in Bach’s Goldberg variation1.

1Piano music is a very nice example for our purpose. The reason is that we might have the
first impression that the notes should be the range of the signs, since the notes seem to already
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Any sign s ∈ S with s 6= φ belongs to one and only one paradigmatic class
Sσ, which are disjoint except for the empty sign φ. The idea behind paradigmatic
classes is to establish a very general separation of signs that can be exchanged
only individually among each other. (cf. 1993, p. 547) For the example of the
English language the signs for the end of a sentence Sσ1 = {., !, φ} or the capital
letters for the start of the sentence Sσ2 = {A,B,C, ...} may serve as an example
here, but those have some obvious shortcomings. These are namely that for Sσ1 we
need very restricted rules for punctuation and for Sσ2 we need to forbid capitalised
proper names.

A vector ~c = (s1, s2, ..., sn) with n ∈ N and sν ∈ S is a configuration. An
example is an English sentence or word (e.g. ‘house’). Furthermore, we have a set
of syntactical rules (e.g. pa ‘ ’ occurs only between two other signsq) R, which is
the grammatic for the configuration. ‘Knnn k ! ..’ is not an English sentence
and can therefore not be a configuration in the pattern explication of the English
language.

Given the disjoint partition of S into paradigmatic classes, modulo the empty
sign φ, for any paradigmatic class Sσ there is a semigroup (Tσ, ◦) of transformations
Tσ 3 t : Sσ → Sσ with t(φ) = φ. Furthermore, the identity mapping is in these
semigroups of transformations, i.e. Tσ 3 te : sσ → sσ for all sσ ∈ Sσ. Sometimes
there is a subset S(pr)

σ ⊂ Sσ such that for any s ∈ Sσ there are unique s(pr) ∈ S(pr)
σ

and t(s) ∈ Tσ such that s = t(s)(s(pr)). S(pr)
σ is called the set of prototypes and the

t(s)’s are the paradigmatic transformations.
Why are prototypes important here? A very crucial aspect of patterns in data

is that we conceptually distinguish them from the (usually unavoidable) noise.
Furthermore, one and the same pattern, may show slightly different features in
different sets of data. The intuition behind prototypes is that they are used to
describe a certain raw or idealised version of the structure, the actual pattern, and
the paradigmatic transformations are applied to describe the relation between this
pattern and the actual data. Take, for instance, an English text and for our pattern
analysis it might be completely sufficient to consider only Fregean references1 of
the words. The sentences

(a) My car is red.

(b) My automobile is red.

(c) My sedan is red.

denote the patterns. However, performances of, for instance, the Goldberg variation by Glenn
Gould or by Igor Levit are considered to differ significantly regarding its artistic content. That is
why we cannot simply translate Bach’s notes into signs to explicate the relevant artistic patterns
of these two pianist’s performances.

1References (Ger. Bedeutung) of nouns are discussed in Frege’s (1892) classical paper.
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are surely different sets of data. However, since given the information that I own
only one car ‘car’, ‘automobile’ and ‘sedan’ are completely synonymous here, it
is very reasonable to identify these two sentences for the purpose of an analysis of
patterns in a text. One could chose, s1 := automobile, s2 := sedan, s(pr) := car
with t(s1)(car) = automobile and t(s2)(car) = sedan. In this example Sσ is the
set of all words that refer to cars. We could even extend the example to German
words (e.g. ‘Auto’) very naturally, since the grammar of the exemplary sentence is
similar. However, note that ŝ(pr) := would not be a proper choice, because
‘ ’ is not a word in Latin letters and therefore ŝ(pr) 6∈ S ⊃ Sσ.

To mention an example that is even closer to what we intuitively have in
mind when talking about patterns, I refer to biometric identification algorithms
for human faces. In a first step, the image is transferred into greyscale (because
the colour tones of an individual differ too much in different circumstances like
health or lighting conditions). If we explicate the patterns on a pixel level, then
the prototypes are greyscale pixels, whereas S contains all visible colours.

For an entire configuration ~c = (s1, s2, ..., sn) any transformation t ∈ Tσ can be
applied as t(~c) = (t(s1), t(s2), ..., t(sn)) with the natural extension t(s) = s for all
s 6∈ Sσ.

Finally, an equivalence relation R over configurations is introduced to define
images I, which are the equivalence classes of R. The idea is that R defines
configurations that are indistinguishable according to the interest of the observer.
For the example of English sentences with Fregean references above the further
sentence

(d) I have a red car.

can be introduced with (I have a red car., My car is red.) ∈ R. This exam-
ple illuminates the general difference between the transformations t ∈ Tσ and the
images defining equivalence relation R. Transformations separate the signs that
are relevant for pattern detection, the prototypes, from other signs, whereas R
describes the structure of the pattern itself. The given example already indicates
how extremely hard it is to really explicate R in realistic examples.

The described theory focusses on transformations of signs, and the general aim
of this theory is to define patterns. The image characterises a pattern, but all the
laid out vocabulary above is a preparation to define patterns constructively. As
Grenander (1970) puts it, “an array whose entries describe the history of formation
of I” (p. 179) gives an epistemic route to a pattern. The pattern itself is defined
as an image I with a construction A(I) that determines the signs, the grammar
for the configurations, the prototypes, the paradigmatic transformations and the
equivalence relation R. All these mathematical objects that are part of A(I) can



142 4. From Data to Patterns

be explicated, but the actually used mathematics for this depends on the cognitive
and sensory capabilities of the relevant agents. Even if the relevant patterns are
quite similar, the analysis algebra Achess of Garri Kasparow and Deep Blue differs
vastly due to the very different cognitive and sensory capabilities of these two chess
players.

This description is a crude simplification of general pattern theory, but it is,
in my view, sufficient to show its merits. To make it more accessible I provide
a very simple and visual step-by-step example that makes use of all the notions
developed above:

1. We want to develop a pattern theory for geometric objects. For epistemic
reasons the signs are rectangles of various forms colours and scales. An easy
way to denote this is

S =
{

1 , 2 , .87 , 47 , 14 , ..., φ
}

with the little number in the rectangles being a size scaling factor that I
introduce for merely presentational purposes. S is obviously very large.

2. The grammar for the configurations states that the signs can be compiled to
create a gapless surface without any overlaps like the following examples: ,

, , whereas I ignore any scale indication here. An exemplary pattern is
a thick rectangle edge, which is illustrated by figures 4.9 and 4.10.

3. We consider only the distinction between white and non-white areas as rel-
evant for geometrical patterns. That is why we introduce the two paradig-
matic classes accordingly:

Sσw =
{

1 , 2 , .87 , 47 , 14 , ..., φ
}

and
Sσc =

{
1 , 2 , .87 , 47 , 14 , ..., φ

}
.

The grammar restricts the cases in which we can replace one sign with an-
other from the same paradigmatic group. Furthermore, we cannot replace
a sign from Sσw with a sign from Sσc and vice versa without changing the
pattern.

4. Since all non-white colours fall into one paradigmatic class, we can chose one
colour as a prototype. I chose gray mainly for optimised visibility:

S(pr)
σc

=
{

1 , 2 , .87 , 47 , 14 , ..., φ
}
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Figure 4.9: Three of the many possible ways to construct a thick rectangle edge with
indication how they are composed from signs (left, right) and without (mid).

Figure 4.10: Three of the many possible ways to construct a thick rectangle edge from
filled rectangles.

with S(pr)
σw

= Sσw .

5. The paradigmatic transformations are the inverses of the natural projections
of the signs and configurations to S(pr)

σw
∩ S(pr)

σc
. Examples of t ∈ Tσw ∩ Tσc

include t−1( 1 ) = 1 , t−1( 2 ) = 2 and t−1( ) = .

6. The hardest explication in this task is the one for the equivalence relation
R. Figure 4.10 illustrates that there are many different ways to construct
the exemplary geometric object from rectangles. However, if we restrict all
the sizes and numbers involved to countable sizes and numbers (e.g. by
restricting it to rational numbers Q), which we should do for exactly this
epistemic reason, then the class R is perfectly constructable. One could do
this construction by, firstly, starting with the finite list of ways to construct
the rectangle edge with the minimum number of rectangles and, secondly,
iterate a further division of the used rectangles into arbitrarily small rectan-
gles.

Note that this example helps to understand why the upper left shape from
figure 4.6 is considered by human agents to be a simpler pattern than the other
three examples. The exemplary shapes in figures 4.9 and 4.10 are chose to make
this more apparent.

To summarise, the merits of general pattern theory is its constructiveness that
can directly adapt to any peculiarity of the relevant epistemic agents. Other than
Dennett’s unexplicated version of real patterns and Kolmogorov complexity, this
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approach to patterns provides the ground to not only define patterns, but also test
them based on the paradigmatic transformations and equivalence relation over
images.

4.5 Conclusion

According to some influential accounts of anthropocentric epistemology and even
metaphysics, what counts as a (“real”) pattern depends on the human being’s
sensory and epistemic capabilities, as well as human motives and interests. But
since scientists make use of various kinds of technical auxiliaries, human sensory
and epistemic capabilities cannot serve to restrict the class of patterns in science.
To make our notion of patterns in science adaptable to past, contemporary and
future developments in science in principle, we cannot claim much more than that
patterns are (in an ontological and epistemological sense) mathematical properties.

This claim is justified by the historical fact that computers are more and more
able to precisely explicate various patterns in data, including very non-trivial cases,
such as human facial recognition. However, if I accept such an abstract notion
of patterns, which I do, I can still claim that a pattern must be constructive
for epistemic reasons. Even if we use our fastest computers or some help from
an extraterrestrial colleague, there must still be a mathematical way to test or
explicate the pattern feasibly. This cannot be achieved with the general framework
from the information theory of Shannon, Kolmogorov and Chaitin. Grenander’s
general pattern theory provides a well-suited approach, due to its constructiveness.

To clarify the connection between patterns and phenomena, which is not an
identity, I distinguish between general and concrete patterns. Further scientific
assumptions that are additional to the observations and data in question, deter-
mine what class of concrete patterns make a general pattern that corresponds to
a phenomenon. In principle, these assumptions can be mathematically explicated,
but the significant structural dissimilarities between many different concrete pat-
terns of the same general pattern justify my differentiation between concrete and
general patterns.

I raise some introductory questions in section 4.2 (p. 108) about the demar-
cation between parts or features of the data that are relevant to the pattern in it
and the other parts or features of the data that are irrelevant to the pattern in it
(e.g. noise). To answer these questions I want to emphasize that every construc-
tive mathematical property of a set of data can be regarded as a pattern in this
data. Every mathematically explicable feature of a picture that shows the Dome
of the Rock (figure 4.2) or the Sierpinski triangle (figure 4.4) can be a pattern



4.5 Conclusion 145

or be excluded from a pattern by an agent. Multifractal geometry1 shows that
self-similarity can be mathematically explicated. A written text can be a visual
pattern and its semantic content can be a pattern of references or meanings. The
separation from a pattern and the noise in the data is purely stipulated and based
on the scientific interests, too. If a scientist, for instance, investigates empirical
data to evaluate a hypothesis which’s validity makes him to expect only white noise
in the data (e.g. molecule movement follows a Brownian motion), then the white
noise is the scientific pattern, whereas any deviation from the white noise counts
as noise regarding the scientific pattern detection in such a scenario. Aesthetic
criteria of human agents play a defining role for phenomena (cf. 5) but we cannot
refer to them to narrow down the large class of possible patterns by any manner.
The important point is that a (not necessarily human) agent defines patterns on
the basis of his specific scientific interests and assumptions that guide the phe-
nomenon selection. Indications of colours can play a role (e.g. for the phenotype
of albinism) but they do not have to. In the facade image 4.2, only the very coarse
grained pattern of sub-pattern changes can be regarded as a pattern, but quite
contrary to this the whole configuration of pixels can be regarded as patterns, as
well.

1For an introduction into multifractal geometry see Mandelbrot (1983).





Chapter 5

Conclusion about Phenomena

Chapter Abstract
The distinction between phenomena and non-phenomenal features of the empirical
world is not realistic, but pragmatic and based on the shared body of background
assumptions, as well as the agents’ sensory and cognitive capabilities. A phenomenon
is a feature of the empirical world and it is described by its general pattern, which can be
fully known only by an epistemically unbounded agent. Therefore, a phenomenon has
an investigator-independent reference in the empirical world (whatever that may be)
and it is not theory-laden in a strict sense. A phenomenon is not supervened and also
not represented by its general pattern or by one of its concrete patterns. The notions
of evidence and of phenomena have some similarities, but they are not identical, due
to the different roles they play in processes of scientific inference.

The overall aim of this thesis is to, firstly, explicate phenomena, data and patterns,
and, secondly, to explain the relation between these concepts in science based on
these explications. In this chapter I aim to explain what phenomena in science are
and how they are related to data and patterns. Much of what is discussed in this
chapter makes significant use of the concepts that I describe in earlier chapters.

In section 5.1 I introduce my explication of a notion of phenomena. The other
sections of this this chapter focus each on one specific aspect related to phenomena
(the section titles give clear indications).

In a large part of this chapter I discuss the relation of phenomena to some widely
discussed notions in philosophy of science, namely natural kinds, structures, prop-
erties, utterances, scientific explanation, scientific representation, supervenience,
theory-ladenness and evidence. I introduce and discuss these notions by reference
to very general and widely shared philosophical explications of them. Naturally,
due to the scope and volume of the thesis, I do not aim to provide a thorough
explicative discussion on these notions, but I want to show that the relation of
them to phenomena can straightforwardly be decided upon on the basis of my
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sparse anti-realistic and pattern based notion of phenomena.

5.1 Explication of Phenomena

Section Abstract
I aim to develop an empirically adequate descriptive notion of phenomena. I defend an
anti-realistic, pragmatic distinction between phenomena and non-phenomenal features
of the empirical world. Phenomena are real features of the empirical world, but the
distinction between phenomena and non-phenomenal features of the empirical world is
based on the shared body of scientific background assumptions, as well as the agents’
sensory and cognitive capabilities. Ones metaphysical position towards phenomena
is closely related to ones metaphysical position towards natural kinds. The notion
of phenomena is closely related to the of notion scientific explanation, because one
criterion for the selection of a phenomenon is that a theory about a phenomenon has
good explanatory power over other observations.

I introduce phenomena separated from the introduction of data (chapter 2) and
patterns (chapter 4). The reason for this is the strict conceptual distinction be-
tween the explication of phenomena, which are features of the empirical world, and
the one of data, which are mathematically explicable information. More precisely,
data are mathematical objects about which we need further background informa-
tion regarding its origin to make scientific inferences with it. However, as I discuss
below, even if phenomena are features of the empirical world, the selection between
phenomena and non-phenomenal features of the empirical world is an epistemic
act of a scientific agent, which can be a human scientist or an AI (in the broadest
meaning of “artificial intelligence”, cf. 3.3) or any other intelligent (cf. p. 90)
agent.

Most importantly, I propose a notion of phenomena that incorporates an anti-
realistic distinction between phenomena and non-phenomenal features of the em-
pirical world. I claim that this notion is an empirically adequate descriptive expli-
cation of the scientists’ use of the term ‘phenomenon’.

Phenomena are a well established concept in the philosophy of science. There-
fore, I want to briefly introduce the concept as far as necessary to prepare the
ground for the explanation of the relation between phenomena and patterns in
data. Phenomena are hard to define due to their specific heterogeneity; they play
an essential role in every field of science and are in some cases formulated in math-
ematical terms (e.g. in some cases in physics) and in other cases not very math-
ematical (e.g. most cases in psychology). Hence, the concept of a phenomenon
needs to be sufficiently flexible. In this section I also introduce the problem of
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identification of phenomena with patterns in data, which is often overlooked, in
particular by (Bogen and) Woodward.

Phenomena for (Bogen and) Woodward are features of the world that play
an important role in science, but they are neither a part of theories, nor can
they be identified with the data. The authors introduce them as “features of
the world that in principle could recur under different contexts or conditions.”
(Woodward 2011, p. 166) If the concept of phenomena is introduced in this way,
then notorious problems in the explanation of science can be avoided. These
problems are described by the following questions: Why do scientists edit or modify
raw data before using them for confirmation (or falsification) of a theory? Can
an observation be theory-laden, if the observation is a process in which the theory
itself plays no role?

The mere identification of phenomena with patterns in data might be conclusive
to some prima facie. Let us consider the simple example of the melting point of
lead.1 Let the data from experiments be a time series of numbers that denote
temperatures. These numbers from different repetitions of the experiment slightly
deviate from each other. The phenomenon is detected in the data by the clustering
of the numbers around a certain discrete number. Further background assumptions
also play a role in the detection of the phenomenon, such as a specific probability
distribution (e.g. normal2), which is assumed to describe the samples from the
measurement. These background assumptions influence the resulting description
of the melting point (i.e. what number it exactly is). In this example, the discrete
melting point is the expectation value of the probability distribution that is fitted
to the samples gathered by the repetitions of the experiment. This expectation
value can change, if another probability distribution is assumed to describe the
samples (in many cases in science the number of available or producible samples
is not sufficient to determine a real distribution, if such one exists).

What exactly is the phenomenon and the corresponding pattern(s) in this ex-
ample? The phenomenon is the fact that there is a melting point. More precisely,
the phenomenon is the constitution of what appears to us as an outside world that
can be measured as the general pattern (cf. 4.1) of the melting of lead. That a
unique melting point Θ/Co ∈ R under a presupposed air pressure really exists is a

1This is a common example from Nagel (1961, p. 79), and Bogen and Woodward (1988, pp.
307–310).

2It is not a trivially valid assumption that a normal distribution statistically describes the
outcome of an empirical sample. This assumption already implies strong (in)dependency proper-
ties of the underlying processes on lower scales. The mathematical theorem that describes these
implication of the normal distribution is the central limit theorem (See Klenke, 2008, ch. 15, for
details). The common mistake of ignoring these implied (in)dependency properties has lead to
serious issues in financial risk management (this a conclusion I draw from my work experience
in the field).
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theoretical assumption that may not be fully verifyable or adequate. A probabilis-
tic or vague description of a melting point (or: melting area or melting situation)
could be more adequate. Nevertheless, this is a question of physics itself and not
of philosophy of physics. The phenomenon is a property of lead in the sense that
there is very convincing evidence that there is what we call melting without the
knowledge how it should be described perfectly, for example as a specific discrete
temperature.

What is the corresponding pattern in the data in this example? Roughly speak-
ing, the pattern is the clustering of the numbers in the results from the repeated
measurements. This pattern is prima facie accessible, but a precise mathematical
explication is no simple task. One problem for the explication is that every se-
ries from a new measurement shows different numbers. Therefore, the explicated
pattern must be defined statistically or with integral vagueness.

Since the data is a list of rational numbers and therefore a comparably sim-
ple mathematical object, the pattern must be definable in mathematical terms as
well. For this example, we need to clarify what clustering is. This definition must
be applicable to all possible versions of series of measurements from experiments
that are intended to detect the melting point of lead. Naturally, for more compli-
cated examples of phenomena the definition of the corresponding pattern is much
more complicated and may not be directly available in mathematical terms. Since
clustering is in this example explicated by being a series of numbers that can be
tested positive as being a sample from a certain distribution (e.g. normal) with
an expected value, the pattern is exactly this mathematical description. But it
is important to note that this pattern depends on the experimental design and
could be different if we chose another experimental design for the investigation of
the same phenomenon. According to my terminology, this pattern is one concrete
pattern of the phenomenon (see section 4.1).

Can a general explication of phenomena be derived from this illustrative exam-
ple? Phenomena are just features or supposed features of the part of the empirical
world under investigation by the science. A phenomenon does not need to be de-
scribed or understood completely by a scientific theory. That is why Bogen and
Woodward (1988) write that scientists are more concerned with “claims about
phenomena” than with “claims about data” (p. 314). Empirical data can hint
at a phenomenon by showing a certain pattern, but the data and the information
about its origin alone cannot provide any indication of whether the corresponding
feature of the empirical world is non-phenomenal or whether it counts as a phe-
nomenon. As will be further commented on in section 5.2, phenomena themselves
are metaphysically completely independent of any knowledge of scientists and they
are most often not completely describable by them in practice. With this I mean,
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trivially, that lead has a melting point and there are albinistic animals without
any scientist discovering it. Quite obviously a newly discovered jungle frog was a
biological species already before the first zoologist recognised it.

However, the notion of a specific phenomenon is to some degree observer de-
pendent, because the demarcation between a phenomenon and a non-phenomenal
feature of the empirical world is determined by the scientist’s body of theoretical
background assumptions and his available capabilities. This observer dependence
is not restricted to human individuals and not to human societies. Quantitative
macro economics is a good example in which the positive dependence between two
variables (e.g. interest rate and GDP growth) may be regarded as a phenomenon,
if it occurs in a roughly linear form, which is statistical correlation. If the two
variables are statistically dependent in a non-linear way that cannot be detected
by the common analysis methods (including the ones that are executed by soft-
ware) the underlying empirical feature does not count as a phenomenon, even if it
could, in principle, be detected by a pattern in the data. The reason for this is that
the scientific community cannot detect it with their available body of statistical
knowledge.

Some may object at this point that the melting point of lead perfectly counts
as a phenomenon, even before any human or machine may have discovered that
metals melt at high temperatures. But in my view, this objection implies a wrong
descriptive conception of a phenomenon, which may not be obvious. Here are my
reasons. Human beings are biologically restricted by their sensory (e.g. visible
light, non-dark matter) and cognitive (e.g. slow at calculations, finite life time)
abilities. We can describe features of the empirical world only under these con-
straints. We have access to the empirical aspects of world that can be described
under these constraints, but we are inherently blind to the rest (e.g. overly complex
features of the empirical world).

This may remind some readers of the classical distinction between observable
and unobservable (see chapter 1). Humans expand their sensory (e.g. microscope)
and cognitive (e.g. software) abilities for scientific endeavours. However, the
causal works of such an expansion device counts as part of the body of scientific
knowledge—these devices are not magical and devices that are not sufficiently
understood with the body of scientific knowledge (e.g. magical crystals) are not
scientifically accepted as devices for the expansion of our capabilities for scientific
inferences. To say it more directly, even if we constantly expand our body of
scientific knowledge and use this knowledge to leverage our capabilities for further
observations, we are still restricted by our human capabilities. Science happens in
a historically grown network of trust in expert knowledge and technical auxiliary
devices. Our academic textbook education for young researchers that inroduces
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the methods and topics of the field may aim to a large extend to establish criteria
for trust rather than rationality alone, since the rational scrutiny of the full body
of a field’s knowledge is not feasible for a human agent.

These agents’ restrictions also include artificial intelligences, because we de-
sign them in a non-magical way, even if the programmers may not be able to
understand the vastly complex decisions that a trained AI with machine learning
makes. (cf. 3.3) Since humans and also artificial intelligences are blind to certain
parts of the empirical world (e.g. dark-matter realm, gods, ghosts, a possible com-
puter simulation we live in)1 we cannot distinguish between phenomenal features
of the empirical world and all the non-phenomenal features. We simply cannot
have a sufficiently comprehensive and accurate epistemic notion of features of the
empirical world.

However, scientific agents make explicit or implicit distinctions between phe-
nomena and non-phenomenal features of the empirical world all the time. In my
view, phenomena are of specific interest, because they play, metaphorically speak-
ing, the role of conceptual anchor points in the body of knowledge of the relevant
agents, which socially form a scientific field. Albinism is more interesting for ge-
netics than many other mutations, because its phenotype is very easily detectable
with our human sensorial equipment and culturally pragmatic connotations, such
as witchcraft or racial implications of skin tones, make it a subject of increased
interest for a broader community, too. In the periodic table chemical elements
are sorted by their atomic number, which is the number of protons. Chemical
elements can be distinguished via several properties from a very long list (e.g.
aggregate state at a certain temperature, reactivity, degree of toxicity to a cock-
roach, taste to a human, sound of a flute made of it). The number of protons
were chosen as the distinguishing feature because Dmitri Mendelejew and Lothar
Meyer derived the masses of one atom from measurements and grouped the ele-
ments roughly into subgroups according to very noticeable criteria (e.g. aggregate
state at room temperature). Later, atomic models lead to the conclusion that
the order is determined by the number of protons.2 Isotopes, which are versions
of the same chemical element with differing numbers of neutrons, on the other
hand, are not distinguished in the periodic table despite their differing chemical
properties. These are examples in which the relevance of certain features of the
empirical world are measured by their accessibility to human agents with their
specific background knowledge, assumptions and stipulations (e.g. room temper-

1It is obviously hard to find useful examples about things we are inherently blind to.
2A neutron and a proton have approximately the same mass. An element occurs with different

numbers of neutrons. These non-standard atoms are called isotopes. Since elements in the
period table are ordered by the number of protons alone, the atomic masses do not increase
monotonically with the atomic number if we include all possible isotopes into this list.
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ature is a somehow normal state for matter; weight is a very noteworthy specific
property of matter). Laws of nature are phenomena under a very basic level of
epistemic capabilities without many more theoretical background assumptions.

The role of phenomena as conceptual anchor points can also be seen the other
way round: we formulate our body of theoretical background assumptions to re-
duce the number of anchor points for the sake of epistemic sparseness. Friedman
(1974) suggests exactly this sparseness of phenomena for the predominant goal of
scientific explanation:

I claim that this is the crucial property of scientific theories we are look-
ing for; this is the essence of scientific explanation – science increases our
understanding of the world by reducing the total number of independent
phenomena that we have to accept as ultimate or given. A world with fewer
independent phenomena is, other things equal, more comprehensible than
one with more. (p. 15)

The criteria that we have to explicate to explain why a phenomenon is con-
sidered a phenomenon are the background knowledge, the sensory and cognitive
capabilities that a certain scientific community shares. I give a vivid and very
simple example: a blind person in a laboratory can reliably distinguish liquids by
the sound of their boiling (due to his trained hearing senses), but this distinctive
feature is very unpractical for his non-blind colleagues. It may only be promoted
to the rank of an accepted observation routine, if the shared body of scientific
knowledge in the field implies a pragmatically favourable use for it. These prag-
matic and social aspects of phenomenon selection seem very obvious to me, but
to my knowledge they are usually neglected or fully ignored in the philosophical
literature on phenomena.

Adapting their terminology, Kuhn’s (1962) paradigms and Lakatos’ (1978) hard
core may play a predominant role in the body of background assumptions that
guide the phenomenon selection. This may explain why some evidentially suffi-
ciently supported phenomena were or are not accepted as such and tabooed by
the majority of scientists (e.g. continental drift; strong architectonic similarities
in (pre-)ancient buildings on different continents; UFOs in military reports)1.

Are Phenomena Structures, Properties of - or Utterances about
the Empirical World?

If, as (Bogen and) Woodward suggest, phenomena are patterns in data and we
accept my notion of patterns, then phenomena would be mathematical objects.

1For a historical and contemporary survey on the demarcation between science and pseudo-
science see Regal (2009).
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But in contrast to that, an adequate descriptive explanation of phenomena needs
to take into account that a scientist refers with ‘phenomenon’ to a feature of the
empirical world about which he may not have sufficient knowledge.

If someone wants to defend (Bogen and) Woodward’s pattern view of scien-
tific phenomena (terminology suggested by Apel 2011, p. 24), then he may refer
to a construction of the corresponding general pattern from an epistemically un-
bounded perspective. This epistemically unbounded agent is able to define the
general pattern as the class of all of its concrete patterns from all possible exper-
iments, which can obviously be listed only on a very (often infinitely) large list.
This general pattern would be a mathematical object, but can we identify it with
the phenomenon? Regarding its epistemic role for scientific inferences, the phe-
nomenon and the general pattern are indistinguishable, because we (e.g. human
scientists, AIs) will never be able to find out more about the phenomenon than
what the general pattern already implies. However, ontologically, we can still make
the case that there may be an actual empirical world out there, which can onto-
logically not be identified with a mathematical structure. In case this is false, as
ontic structural realists (cf. Ladyman and Ross 2007) claim or Bostrom’s (2003)1

Cartesian simulation thesis implies, phenomena would in fact be identical to the
general pattern.

At this point, I want to remain agnostic regarding the existence of an external
world in the sense of a Kantian Ding an sich, but I am a sufficiently convinced
anti-realist regarding our actual scientific knowledge to claim that it is impossi-
ble or at least extremely rare that the set of all scientifically discussed concrete
pattern of a phenomenon (e.g. for albinism) that were actually explicated by the
scientific experts of the field, implies all the scientific knowledge about it that the
general pattern exhibits. This epistemic reason is sufficient to reject a conceptual
identification of phenomena with patterns.

If ontic structuralists are right, then phenomena are, of course, structures, too.
In this case, our description in our science textbooks of the phenomenon might be
very different from its actual structural constitution, due to different scalings and
pragmatic concerns. Furthermore, in this case, it seems, a normative demarcation
between phenomena and non-phenomenal structures can possibly be made precise
by the number of occurrences of a structure, or a vague version of it, in the actual
world. The reasoning is the following: if the empirical world is a giant structure,
then the accurate mathematical description of this structure allows for the search

1One of Bostrom’s claims in this paper is that there is a non-negligible chance that we humans
are living in an ancestor-simulation of a posthuman civilization. Such a civilization implies a level
of technology, “where humankind has acquired most of the technological capabilities that one
can currently show to be consistent with physical laws and with material and energy constraints”
(p. 245).
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of patterns in the empirical world itself and not only in descriptions of it. If
certain patterns occur more often than others (however we define the rules for
such a counting in detail), these may rightfully be regarded as phenomena. Such
an approach would fit quite well to the realists’ intuition that phenomena are
somehow more often or more prominently manifested in the actual fabric of the
real world.

However, in my view, we cannot rule out that the empirical world is not merely
structural. Furthermore, our structural scientific description of it is (in most cases)
very different from any actual structural constitution of the world due to epistemic
limitations. In this case, there is no correct language for reference to parts of the
empirical world. Then, our descriptions of phenomena, its concrete patterns, as
well as the best possible description, its general pattern, are rather utterances
about the empirical world than anything else. Under an utterance I understand
a somehow grammatically formed unit from signs from a language, which also
includes mathematics.

The difference between a proposition and an utterance is, in my terminology,
that a proposition is grammatically more restricted. Since descriptions of phenom-
ena are patterns, we do not have sufficient grammatical structure (i.e. subject;
predicate; object) to classify it as a proposition.

Descriptively, a phenomenon is a property of the empirical world. We cannot
claim anything more about phenomena. Note that we consider many singular
events as phenomena that are worthy of scientific investigation, examples include
the Holocaust or Bloop1. That is why a phenomenon is not well explicated by
recurrence.

Why am I not an ontic structural realist?—The general pattern is restricted
only to agent independent epistemic access; even if a super-AI formulates, for
instance, an empirically perfectly adequate atomic model, we still do not know
whether the Cartesian demon is feeding to us and to the AI the illusion of atoms.
The general pattern is the best description of a phenomenon that can be gained
via the epistemic access of any agent.

Phenomena and Natural Kinds

According to a realists view on objects to which scientific theories refer our best
theories describe natural kinds or, at least, natural kinds exist and are to be dis-
covered by science. As Bird and Tobin (2017) put it, this idea “corresponds to a
grouping that reflects the structure of the natural world rather than the interests
and actions of human beings”. A possible relation to phenomena, as (Bogen and)

1Bloop was an unique and extremely powerful ultra-low-frequency underwater sound detected
by the U.S. National Oceanic and Atmospheric Administration in 1997.
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Woodward describe them, suggests itself: if there are natural kinds, then should
not phenomena be features of natural kinds? This serves as a strategy to explain
why they recur via corresponding concrete patterns in different sets of data. Then,
a realist view on phenomena could be supported.

However, in my view we do not have sufficient reason to believe that any of our
scientific descriptions refer to natural kinds, and we can also not defend the much
weaker claim that there are natural kinds (due to the classical Cartesian-Bostrom
argument). If one takes this stance, it is as unclear how to separate phenomenal
features of the empirical world from other features of the empirical world, as it
is unclear to separate alleged natural kinds from stipulated theoretical objects,
which do not qualify as natural kinds. That is why, overall, ones metaphysical
view towards phenomena is closely intertwined with ones view towards natural
kinds. But as stated in this thesis, I defend a neo-Kantian anti-realistic position.

Assuming we are realists about natural kinds and about phenomena (such as
Woodward), then how would these classes of things and properties be related
to each other? An obvious difference between natural kinds and phenomena is
that natural kinds are mostly discussed as kinds of things (e.g. lead), whereas
phenomena are properties (e.g. melting point of lead). I cannot think of a good
reason why a natural kind view and phenomena realism are not consistent. In the
same way in which natural kind realism allows for an agent to have insufficient
knowledge about a real natural kind, it allows for an agent to have insufficient
knowledge about the phenomenon. If there are natural kinds, they must have
properties. Are some or even all of these properties phenomena? All of them would
be, because the selection criterion about what is real and what not is manifested in
the distinction between natural kinds (e.g. lead) and classifications due to “human
interests” (e.g. a flute made out of lead). That is why, according to realists, the
melting point of lead is a phenomenon (since it is a property of the natural kind
lead), but the sound that a lead flute makes is not (since a lead flute is not a
natural kind). That is why natural kind realism is not only closely related to
phenomena realism, but also implies it.

However, briefly summarised, the history of science (i.e. pessimistic meta-
induction) and my intentional inclusion of social sciences (and other fields), make
a realists’ position about our best scientific knowledge seem extremely naive.

Phenomena as Explanatory Key Properties

The discussion of McAllister’s account (cf. 6.1) points to an important question:
what qualifies a specific deterministic function that can be detected in a set of
data as a pattern corresponding to a phenomenon in (Bogen and) Woodward’s
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sense? McAllister argues that no principal criterion could be given to identify a
deterministic function as a pattern of this special kind. I summarise my answer
briefly. The reason for this is that such a detailed account demands a vast study
of the empirical phenomenon of science as a (human) activity. To answer more
detailed which background assumptions, cognitive and sensory capabilities exactly
guide our phenomenon selection is obviously a much larger task than this thesis
is able to tackle. Aspects not only from general and special philosophy of science,
but also from sociology and psychology of science, from neurology and various
other fields need to be considered to tackle this enormous task.

I want to address this important point in a very general way: apart from any
data, what qualifies a property of the world as a phenomenon? Obviously, every
part of the empirical world has many different properties, but no scientist would
be willing to say that every part of the empirical world exemplifies arbitrarily
many phenomena. What scientists call phenomena are interesting properties of the
empirical world in the sense that their explanation inherits a lot of explanatory
power that can be applied to answer further related problems to the empirical
part of the world in question. For example, if a biologist can explain albinism
as being a specific gene defect, she does also find evidence for explaining the
different human appearances by the colour of the hair and eyes by or partly by
mutations at this specific chromosome. Albinism is, so to speak, an indicative
extreme case and therefore a scientific phenomenon. Due to the strong contrast
in their appearance, albinos play a noticeable role in parts of African sub-Saharan
mythology and superstition.1 This is a further clue in favour of the claim that
albinism is something for which humans show a stronger demand for explanation
than most other genetic mutation.

In the example of the melting point of lead this phenomenon is critical2 in the
sense that something more informative seems to be measured here compared to the
measurement of other properties of lead under a specific arbitrary temperature.
Why is it more interesting to investigate the exact melting point of lead and not,
for example, its electrical conductivity under various different temperatures3, or
the sound that a solid lead recorder makes? The aim of such experiments is to
characterise the metal and the critical phenomenon of the change of the aggregate

1For a survey that focuses on legislative and medical implications see Cruz-Inigo, Ladizinski
and Sethi (2011).

2Under critical phenomena I understand phenomena that stand in connection to phase tran-
sitions as studied in statistical physics and introduced by, for example Sornette (2006, ch. 9).
When a substance melts, this phenomenon influences the behaviour of it on many scales, as
opposed to other properties of a substance that may be described and relevant either on only
a macro level or on only a micro level. This scale invariance makes a critical phenomenon very
interesting for physics.

3Note that this property becomes a phenomenon in the case of ultra cold superconductors.
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state seems more informative for this purpose than, for example, the electrical
conductivity at 300 degree Kelvin.

Overall, we can make the connection between phenomena selection and the
explanatory power that a theory of the phenomenon would have over other obser-
vations. Does this mean that the notion of phenomena can somehow be reduced
to a notion of explanation? At least not in a very direct way. Accounts of ex-
planation try to explain or to explicate why a theory provides a good explanation
for a phenomenon. I investigate what makes a phenomenon a phenomenon. So it
seems a lot of additional thought has to put into the project of binding an account
of phenomena closer to an account of explanation. However, I do not pursue this
idea further, because the philosophical discussion about scientific explanation is
already very intricate and vast on its own.

5.2 Relation between Patterns and Phenomena

Section Abstract
A phenomenon is a feature of the empirical world and is described by its general pattern.
Two different phenomena have different general patterns and a general pattern can de-
scribe only one phenomenon; otherwise, the principle of identity of indiscernibles would
be violated. General patterns and therefore phenomena are investigator-independent,
because they can only be fully defined by an epistemically unbounded agent. An epis-
temically bounded investigator cannot fully define a phenomenon, but only some of its
concrete patterns.

We are now prepared to explicate the relation between patterns and phenomena,
which needs a further explanation that is based on the mere identification that
(Bogen and) Woodward suggest. To do this, we have to put the theoretical pieces
together that were developed so far. The relation between patterns and phenomena
is a relation between phenomena and general patterns. Let us consider the example
of albinism again (cf. 4.1). We need to clarify: what is the general pattern in this
example? And what is the phenomenon? How are they related to each other?

What is the general pattern? As already mentioned, the two exemplary sets
of data concerning an individual with albinism are the following. At first, the
results from measurements of the colour of the skin, of the hair and of the eyes.
At second, the records of a gene analysis. The general pattern is a class of concrete
patterns and includes the ones recognised in the mathematical representations of
each of these two sets of data plus possible patterns that we do not know about
from possible measurements that we do not know. Due to the very different nature
of the two sets of data, these two concrete patterns do structurally not have much
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in common. It does not make sense to look for any kind of structural similarity
between these two concrete patterns. Thus, it is very hard to actually define this
class, which is the general pattern of albinism, with appropriate generality.

What is the phenomenon? In the case of albinism pre-theoretical criteria based
on visual impressions of human beings are available. The phenomenon of albinism
is that there are some people having exceptionally light coloured hair and reddish
eyes. But not for all phenomena in science are such simple criteria for observation
with the naked eye available. Many interesting phenomena can be detected only
by very specific measurements or experiments. Obviously, we distinguish between
the phenomenon itself and its appearance to a layperson and to different scientists
who are specialised in the respective field.

For the explication of the concepts of patterns and phenomena a philosophical
decision has to be made as an assumption. To illustrate, let us assume human
beings with albinism would have a slower rate of growth of the hair on their left
leg directly under the knee, but no scientist ever discovered this fact. Let us assume
this effect is so significant that it makes it possible to distinguish human beings
with albinism and without it solely by this empirical criterion. Thus, clearly, in a
time series of measurements of the hair length in the respective spot on the body
a concrete pattern of albinism can be detected. Is this undiscovered fact of hair
growth also part of the biological phenomenon of albinism?

A scientific theory is constructed to explain claims about phenomena; data is
gathered to detect phenomena. Seen from this perspective, it seems reasonable
to exclude facts from the concept of a phenomenon that are scientifically not yet
discovered. The same holds for the concept of a general pattern. The peculiarity
of this specific growth of leg hair from human beings with albinism—that I fiction-
ally assume for toy reasons—could be a scientifically uninteresting side effect of
albinism (whatever that means in detail). To say it in Aristotelian metaphysical
terms: phenomena could have accidental effects as opposed to substantial ones.
What is the different between albinism itself and properties that are caused by
albinism? On the other hand, such a distinction between accidental and substan-
tial concrete patterns forces scientists to update their understanding of a specific
phenomenon or a specific general pattern with development of science, due to new
discoveries (e.g. motion of stars in the night sky after discovering that they are
large and very distant celestial bodies with own gravitational forces). This is not
a reasonable approach to explicate phenomena or patterns. Scientists just say
that there is the phenomenon of albinism and our knowledge of it does not have
anything to do with it. There is no reasonable distinction between substantial
and accidental effects of phenomena. Even phenomena realists have to agree that
our knowledge about phenomena changes substantially over time with scientific
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progress (or decline).
I conclude that, in fact, it is most often not feasible for human scientists to

give a full description of a phenomenon in science or of its general pattern in data,
due to the notorious lack of knowledge, as illustrated for the simple example of
albinism above. Therefore, it can only be assumed, but not constructively shown
that the general pattern, which fully describes a phenomenon, is a class that is in
principle definable, but not in practice by the human scientists’ community. Only
an epistemically unbounded agent with access to all empirical knowledge of the
world may be able to give such a precise description of every phenomenon that is
discussed in science.

A general pattern that is associated with a specific phenomenon, is the class
of all concrete patterns, which can be recognised in all possibly producible data
from the part of the world under investigation and which are associated with
the respective phenomenon. This is, of course, a circular definition. How does
a biologist know that different concrete patterns in very different data without
any form of reasonable similarity between them can be used to detect the same
phenomenon of albinism? That the appearance of a human being is related to its
genes is a theoretical assumption itself and therefore, again, only the epistemically
unbounded agent is able to describe a phenomenon to its full extent. It knows that
every human being with albinism has the mentioned bright optical appearance and
the genetic mutation of the 11th chromosome. All descriptions of a phenomenon
from real scientists are more or less sketches from a specific scientific perspective.
To say it in other words: the property that defines a general pattern as a class
of concrete patterns is usually unknown and subject or even in the centre of the
scientific speculation around the phenomenon itself.

Every possible concrete pattern that results from a measurement, if the phe-
nomenon occurs, is element of the general pattern. This takes into consideration
that patterns from confounding factors are excluded. Where should we conceptu-
ally locate the information about the experimental design and the measurement?
As I elaborate on in 2.4, for an inference from data background assumptions of
the data’s origin are necessary. In the same way, a concrete pattern of a phe-
nomenon can only be discovered by a scientist with the help of proper background
assumptions about the origin of the data in which the pattern is detected. How-
ever, the general patter is not restricted to any specific form of measurement and
is therefore extremely large and contains a lot of scientifically not pragmatically
interesting concrete patterns.1 The most important property of general patterns

1An analogy to DNA as an information carrier might be helpful. Bananas and humans have
large parts of identical DNA, which is junk, when it comes to distinguishing different life forms
on earth.
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is that two different phenomena have two structurally different general patterns.
Can a phenomenon be identified with the respective general pattern? This

question states a more refined version of the original position of (Bogen and)
Woodward, which is the mere identification of phenomena with patterns (with-
out a distinction between general and concrete patterns). An objection against
the mere identification of phenomena with general patterns is that, from an onto-
logical perspective, a pattern is rather a description of the phenomenon than the
phenomenon itself. If we assume that data and patterns are always mathematical—
and this is what I suggest—and phenomena can be identified with patterns, then
it follows that phenomena have to be mathematical objects as well. Not many
philosophers (of science) are willing to say that the biological phenomenon of al-
binism or the physical phenomenon of a melting point of a metal are mathematical
objects or properties. They are just properties of the empirical world that may
be describable by a mathematical model, they would state intuitively. And we
do not possess sufficient knowledge about the empirical world to make the bold
metaphysical claim that everything that causes phenomena is mathematical.

A phenomenon is (mathematically) described by its associated general pat-
tern and is not identical to it. This description is a one-to-one relation; every
phenomenon is associated with one and only one general pattern. But a general
pattern cannot be constructed as an arbitrary set of concrete patterns. A phe-
nomenon is an empirical feature of the world and its ontic properties therefore
depend on our ontological attitude towards the empirical world. The crucial dis-
tinction at this point is that a phenomenon is a feature of the world, but patterns
are (mathematical) properties of data, which are measurement results from some
part of the empirical world and not a part of this part of the empirical world itself.

The assumption that all pattern recognition procedures that are used in science
are reducible to the execution of mathematical algorithms is not as adventurous
as it may sound prima facie to some. The application of formal systems in episte-
mology, and in particular in Bayesian epistemology, to model the rules of gaining
knowledge and justified beliefs shows analogies to this assumption: reasoning is
modelled by a formal calculus. Why then should it not be possible to model hu-
man beings’ recognition of patterns in photographs, sound tracks or texts with the
formal calculus, which is mathematics?

With this overall picture the discussed problems with the identification of phe-
nomena with patterns (i.e. ontological difference and non-isomorphic patterns)
vanish. That albinism is scientifically defined rather as a pattern in genes than by
the optical appearance of a human being by biologists is not of relevance for the
description of the phenomenon of albinism. But in this picture the crucial distinc-
tion between the general pattern, its concrete patterns and the phenomenon itself
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must be clear.
To summarise, the relation between phenomena and patterns in data is ex-

plained as a one-to-one description, but the concept of general patterns and its
representations needed to be introduced. General patterns are classes of its con-
crete patterns in the data. Some of these representations may be known pre-
theoretically and some are revealed only after further scientific insights. Anyhow,
due to the notorious lack of knowledge about all possible concrete patterns in all
possible data by the actual scientific community, a phenomenon, or more precisely:
the general pattern that describes it, can in many cases virtually not be defined
by a scientist or a group of scientists.

5.3 Supervenience and Representation

Section Abstract
A phenomenon is not supervened by its pattern(s), because we have epistemic access to
and a reference language for only patterns, but not for the world an sich. Phenomena
are not represented by its corresponding pattern(s), because the patterns are all there
is to describe phenomena without us having any epistemic access to a possibly real
target system in this alleged relation of representation. The most adequate view is:
a phenomenon is described by its general pattern and patterns that correspond to
phenomena are what is scientifically represented by models.

A common way out of the ontological problem of the phenomena/pattern demar-
cation is the claim that a phenomenon is supervened by its corresponding pattern.
Supervenience has its roots in the philosophy of mind and bridges the alleged on-
tological difference between a physical brain process and the corresponding mind
process, like having a feeling or a though. In my terminology this idea might be
adapted in the way that as long as a phenomenon, in an alternate world, would be
different, its pattern would be different, as well, but phenomena and its patterns
can still fall into different ontological classes.

If lead would have a different melting point, then this would clearly show in
the patterns in measurement results from respective experiments. It is inherently
true that, if the phenomenon would be somehow different, then its general pattern
would be different as well. However, the problem with a supervenience explana-
tion of the phenomenon/pattern relation is that we do not have epistemic access
to both sides of the supervenience bridge. The problem with the mind/body du-
ality is that we can physically measure the brain processes on the one hand, but
we are also absolutely certain that at least we have conscious feelings. For the
phenomenon/pattern relation, we can measure the relevant part of the empirical
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world under investigation to observe its structural properties, which are the pat-
terns, but we are completely blind to the other side of the bridge. We simply
cannot know what causes the patterns in the data. In other words, we have a well
established language for the patterns of this world, but we cannot talk about the
empirical world an sich, due to the lack of epistemic access. We cannot make any
claim about the empirical world itself; we can refer to only empirical adequateness
of our best theories in van Fraassen’s (1980) sense.

That is why supervenience does not seem to provide a satisfying solution.
We would need to stipulate a strong form of realism that implies an ontology
of phenomena with the exact same demarcation lines between phenomenon A and
phenomenon B that the patterns in data suggest. This is exactly the assumption
that I reject throughout this thesis.

Another idea to explain the relation between phenomena and patterns is rep-
resentation, however we want to explicate it in detail.1 As Frigg and Nguyen point
out, there are many philosophical explicative accounts for representation. Since
I am mostly concerned about phenomena and patterns in scientific discourse, I
focus on scientific representation, which is the representation of a target system
by a model. My notion of a scientific model here is as broad as possible (cf. Frigg
and Hartmann 2017), which implies that the notion of scientific representation is
very broad as well.

Is representation a valid solution? I do not think so. The reason is that
representation rather refers to, roughly speaking, a relation in which an object,
system, proposition or property is represented by another object or proposition
based on its observable features.

What exactly characterises the nature of representation is subject of the dis-
cussion about scientific representation? Common candidates are similarity (Giere
1988; 2004; 2010), morphisms between structures (Ubbink 1960; van Fraasen 1980,
2008; Bueno and French 2011), inferential purposes (Huges 1997; Suárez 2004,
2015; Contessa 2007), fictionalism (Frigg 2010a, 2010b; Godfrey-Smith 2006) and
representation-as (Goodman 1976; Elgin 2010). Be that as it may, the crucial
aspect is that all accounts refer to a target system or object on one side of the
relation of representation.

The crucial point is that patterns play, in some sense, a more important role
for phenomena than representation does for what it represents. What is albinism,
if the phenotype and the genotype would only be representations of it? Without
the patterns it corresponds to, albinism would be an epistemically empty notion,
because there is nothing we can refer to except its patterns. The reason for this

1Scientific representation received a lot of specific philosophical attention from the 1980s on
until now. I refer to Boesch’s (2015), and Frigg and Nguyen’s (2016) encyclopaedic surveys.
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Figure 5.1: Left: Representation of a child with albinism. Note that, due to the cartoon
character, the phenomenological concrete pattern of albinism is represented, but not
exemplified as in the photograph 4.1, right side (p. 103). Right: Other cartoon children
from same cartoonist for stylistic comparison. (Source: screenshot cuts from TV cartoon
series Family Guy)

lies in the very nature of the concept of phenomena: it is a pragmatic and anti-
realistic notion and we can refer only to specific descriptions of a phenomenon, but
in no reasonable sense to a phenomenon itself. We can reasonably assume that
there is something that causes the observation of a phenomenon (e.g. a certain
part of real matter; Descarte’s demon; a part of the program code from Bostrom’s
simulation), but we cannot make any claims about it, since for that we have to
have direct epistemic access to it. In summary, a phenomenon is described by its
general pattern and this general pattern, a subset of it or one concrete pattern can
be represented by a model. Figure 5.1 shows an example of a representative model
of albinism by a cartoonist impression. Figure 4.1, right side (p. 103) illustrates
the respective concrete pattern.

In the case of scientific representation the representing models are empirically
meaningful on their own and we can understand their empirical meaning quite
isolated from the actual representation target. This is not so much the case for
patterns, which receive their only empirical meaning (in addition to the mere math-
ematical structure, which they are) by stipulating the existence of the phenomenon.
Here is an example to make more precise how I use ‘(empirical) meaning’: ether
theory is an attempt to represent the laws for the propagation of light and the
theory turned out to be empirically wrong. However, the theory and the model of
a cosmos with ether is still meaningful, because we roughly understand how the
phenomenon of light propagation is represented by this model, even if it fails to
represent the patterns of light propagation in some scientifically crucial regards.
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If we assume that there is in fact no extrasolar planet in Apel’s (2011) example,
then the detected pattern of a sine curve is still a mathematical object, but we
have to look for another interpretation, to give it any empirical meaning. In other
words, representing models are, in contrast to mere patterns in data, empirically
meaningful in isolation because we can understand them as being embedded in a
broader semantic context than possibly rather arbitrary patterns.

Furthermore, as the example in figure 5.1 also exemplifies, a representation
is in some way distorted in comparison to the pattern. However, one explicative
account of representation comes close to the phenomena/pattern relation. Hughes
(1997) claims that representation by physical models denotes their targets, which
then serve for demonstrational and interpretational purposes. This idea of repre-
sentation comes very close to my account of the phenomena/pattern relation. The
difference, however, is that Hughes’ models are designed to be epistemically very
accessible (e.g. Bohr’s atomic model), whereas a general pattern and also many
concrete patterns can be very complex and cannot be used by a human agent to
make inferences. Additionally, as Frigg and Nguyen point out Hughes’ account “is
unsatisfactory because it ultimately remains unclear what allows scientists to use
a model to draw inferences about the target” (sect. 5.1). That is why I cannot use
Hughes’ account to tie the problem of representation any closer to the problem of
the phenomena/pattern relation.

5.4 Are Phenomena Theory-Laden?

Section Abstract
Phenomena are nor theory-laden in a circular sense, neither do they have to be real in
the realists’ sense. Scientists share basic assumptions, interests and aesthetic criteria
about the part of the empirical world under investigation that leads them to agree
on whether patterns in data correspond to a phenomenon or not. Phenomena are not
theory-laden, because phenomena selection is guided by a scientists’ community’s whole
body of shared theoretical assumptions and also non-theoretical criteria.

An observation is theory-laden, if theoretical background knowledge is necessary to
infer from the data evidence for or against the hypothesis in question. Woodward
(and Bogen) refer to the notion of theory-ladenness often. Bogen describes it:

For example we can challenge the use of a thermometer reading, e, to support
a description, prediction, or explanation of a patient’s temperature, t, by
challenging theoretical claims, C, having to do with whether a reading from a
thermometer like this one, applied in the same way under similar conditions,
should indicate the patient’s temperature well enough to count in favour of or
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against t. At least some of the C[ ]will be such that regardless of whether an
investigator explicitly endorses, or is even aware of them, her use of e would
be undermined by their falsity. All observations and uses of observations
evidence are theory laden in this sense. (2017, sect. 4)

Since I believe that our phenomena selection is based on a vast body of shared
background assumptions, the notion of theory-ladenness is interesting to get a
clearer grasp of the topic. Regarding phenomena and the discussion of theory-
ladenness, Bogen and Woodward (1988) write that those are “recent attempts to
cast doubt on the possibility of objective, non-circular tests of competing theo-
ries” (p. 304). As phenomena realists, they, of course, argue against any theory-
ladenness of phenomena selection.

Even if our phenomena selection is based on shared background assumptions,
does this imply the circularity to which Bogen and Woodward refer? No, it does
not. We need a lot of theoretical background assumptions to understand that a
DNA record has something to do with how a person’s hair and skin appears. But
this does not imply that a detected genotype of albinism corresponds with the
phenotype of albinism. According to my account of phenomena, everything that
we can investigate about a phenomenon is its general pattern. The only relevant
scientific test with relation to albinism is whether the concrete patterns, which
are elements of the general patterns, are correct in the sense that a person with
albinism exemplifies them. If it turns out that a certain concrete pattern is not
shown in all measurements of persons with albinism, biologists have to reconsider
their notion of albinism, which is a selection of the known concrete patterns of
albinism’s general pattern.

The reference to circularity is in general not substantial, because every human
proposition is based on various sorts of assumptions and capabilities. Another,
more technical example are LIGO detectors for the observation of gravitational
waves. With them, gravitational waves can be detected in a non-circular way
despite all the theoretical knowledge that is necessary to interpret the data (e.g.
laser beam propagates with speed of light; tectonic activity shown in data). The
important aspect is that the occurrence of gravitational waves and the theoretical
knowledge that is necessary to interpret the data are to a crucial amount theo-
retically independent—at least according to today’s relevant physical knowledge
that was considered at designing LIGO. In a trivial sense every observation is
theory-laden (except for the claim that I have a certain mental state, as Descartes
already pointed out), but the non-trivial aspect of theory-ladenness is whether it
undermines the role that empirical evidence plays in scientific reasoning, which
would be manifested by occurrences of circularities regarding the actual evidential
support of a hypothesis.
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In the same way as the LIGO example Bogen’s initial example is not circular,
because our background assumptions imply that a feverish patient shows a tem-
perature > 37° on a proper thermometer and there is no need to commit ourselves
to any further realistic interpretation.1 The thermometer is proper if our best the-
oretical knowledge is applied to make it work (e.g. empirically often corroborated
and never falsified heat expansion of mercury) and the risk for false measurement
results is minimised by the application of this best knowledge.

Another problem with the notion of theory-ladenness is its reference to theo-
retical assumptions. Regardless of whether you prefer a syntactic or a semantic
view towards scientific theories, not every criterion for phenomenon selection can
rightfully be called theoretical. Aestetical criteria or human cognitive and sensory
capabilities play a profound role, as the exmple of albinism exemplifies. Further-
more, pragmatic concerns are very important in science—how does it help us in
our society to understand the phenomenon?

One may oppose that all these criteria can be explicated in theoretical terms
in principle. I agree, but we do not now these explications and otherwise there
would be no need for explicative philosophy.2 Therefore, it does not seem right to
me to claim that our phenomena selection is theory-laden, it is rather laden with
all sorts of human interests and ideas.

5.5 Evidence, Phenomena and Patterns

Section Abstract
The difference between phenomena descriptions (i.e. general patterns) and evidence is
that evidence shows in many cases only one concrete pattern but not the whole general
pattern. Like phenomena, evidence has to be epistemically accessible to the scientific
agent. Evidence plays the role of confirmation, corroboration or falsification in the
epistemic process of scientific inference and is therefore formulated in terms according
to the hypothesis in question. Phenomena are formulated in more general terms of
background assumptions. That is why the notions of evidence and of phenomena are
different.

The concept of evidence plays an important role in various epistemological discus-
sions, in particular the discussions on confirmation3, explanation and explanatory

1One may object that we know that fever has the aim to kill viruses by overheating them or
the like. Heat is a very successful pragmatic notion and we should use it. However, Descartes’
demon may have planted the idea of actual heat very thoroughly.

2Explications of relevant but unprecise concepts is one philosophical task.
3I refer to Crupi’s (2015) encyclopaedia entry for a comprehensive historical introduction into

confirmation theory and my discussion concerning confirmation theory is in most parts based on
his exposition of the topic.
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strength1. Due to the general aim of this thesis, I do not accept the notion of evi-
dence as unproblematically given. Since we want to explicate the distinction and
relation between phenomena and patterns in data, it is helpful to this discussion
to make clear, how evidence fits into this picture. However, most authors, who
will be further specified below and contribute to the mentioned discussions do not
put a lot of effort into explicating the notion of evidence; they rate this notion as
unproblematically given.

As I explain more thoroughly in another paper (2018), for both Bayesian and
deductive explications of confirmation, explanation and explanatory power, a dis-
tinction between data on the one hand and evidence on the other hand is impor-
tant. Evidence has to be propositional to make logical (probabilistic or deductive)
inferences from it possible. Data is often given as a vast amount of numbers or
pixels or the like. Data cannot enter a propositional logical calculus in its original
raw form, instead, a presupposed propositional evidence has to be confirmed by
the data.

In this section, I, firstly, present a brief history of the common understanding
of the notion of evidence among philosophers. On the background of this history
I can support my claim that a distinction between data and evidence is neglected
by the vast majority of influential authors. Secondly, I elaborate on my concept of
evidence and how it is related to data. Thirdly, I discuss in which regard exactly
my concept of evidence is problematic for the mentioned historical notions of
evidence and in which it is unproblematic. Lastly, I describe how exactly evidence
are related to phenomena and patterns.

Hempel and Oppenheim (1948) state in their introductory essay on the deductive-
nomological model (‘DN model’) that under the explanandum regarding a scientific
explanation they understand “the sentence describing the phenomenon to be ex-
plained (not that phenomenon itself); by the explanans, the class of those sentences
which are adduced to account for the phenomenon” (p. 137). Thus, their logic
of explanation is in fact a logic, which is a purely syntactical calculus on logical
sentences.

In my view, a logical sentence that plays the role of the explanans in an appli-
cation of the DN model is in many realistic cases rather a certain description of
observed data and not the observed data itself. This idea becomes more apparent
by investigating the following simple examples about black ravens and a patient
with measles. Figure 5.2 shows possible observation data according to the three
explananda black raven, red rash, gravitational waves signal (only a part of the
actual data), which would have to be expressed in purely logical terms. These im-

1For a brief historical discussion of Bayesian explanatory strength see the introductions of
Schupbach and Sprenger (2011) and Schupbach (2011).
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time (seconds) strain ∗ 1.e21
2.500000000000000000e-01 2.454791884395226415e-02

2.500610351562500000e-01 1.529268268197186628e-02

2.501220703125000000e-01 6.372337209458739903e-03

2.501831054687500000e-01 -2.075009545624776318e-03

... ...

Figure 5.2: Examples of data (Ströing 2018)

ages may still not represent the actual observations perfectly; for technical reasons
we are restricted to a finite number of colours and pixels, these pictures are not
animated videos and so on.

The point that I want to raise is that we have to interpret the data, that is,
we have to infer an explanandum from a set of data before we can consider an
explanation. Why can a set of data not be the explanandum in the DN model?
An explanation can explain only a very specific aspect of the data (e.g. why the
raven’s feathers are black), but most information of the data is necessarily ignored
(e.g. the contrasts of the image). In some cases of inference from data to evidence,
the irrelevant aspects of the data have presupposed features and to one sort of these
irrelevant aspects is usually referred to as noise.

However, for Hempel and Oppenheim (1948) evidence comes into the picture
to support or confirm an explanans:

The sentences constituting the explanans must be true. That in a sound
explanation, the statements constituting the explanans have to satisfy some
condition of factual correctness is obvious. But it might seem more appro-
priate to stipulate that the explanans has to be highly confirmed by all the
relevant evidence available rather than that it should be true. This stip-
ulation however, leads to awkward consequences. Suppose that a certain
phenomenon was explained at an earlier stage of science, by means of an
explanans which was well supported by the evidence then at hand, but which
had been highly disconfirmed by more recent empirical findings. In such a
case, we would have to say that originally the explanatory account was a
correct explanation, but that it ceased to be one later, when unfavorable
evidence was discovered. This does not appear to accord with sound com-
mon usage, which directs us to say that on the basis of the limited initial
evidence, the truth of the explanans, and thus the soundness of the explana-
tion, had been quite probable, but that the ampler evidence now available
made it highly probable that the explanans was not true, and hence that
the account in question was not—and had never been—a correct explanation
(...) (p. 137–8, my emphasis)

Later in the text they refer to evidence in the context of confirmation:

The requirement of truth for laws has the consequence that a given empirical
statement S can never be definitely known to be a law; for the sentence
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affirming the truth of S is logically equivalent with S and is therefore capable
only of acquiring a more or less high probability, or degree of confirmation,
relatively to the experimental evidence available at any given time. (...)
(footnote 18a, p. 152–3, my emphasis)

Confirmation is a well explicated notion for Hempel in his work (1943; 1945a;
1945b) in which evidence is modelled by a logical sentence as well. At no point
in their text Hempel and Oppenheim identify evidence with an explanandum in
the DN model. But since evidence in the model seem to be logical sentences,
the difference between an explanandum and evidence is the role they play in a
specific case of scientific explanation rather than any metaphysical aspect. But
this implies that the discussed problem for the explanandum applies to evidence,
too: we need to distinguish between some evidence and the observed data from
which this evidence is inferred from.

Why do I focus so much on Hempel’s notions of evidence and explanandum?
Influential works from other authors, most importantly Popper (1935) and Carnap
(1966), use these notions in very similar ways without focussing much on specific
explications for them.1 Hempel serves as a proxy for modern classics of confirma-
tion and explanation theory, due to the noticeable influence he seemingly had, or
at least due to the strong commonalities of his conceptual ideas about this subject
with the other mentioned authors.

Horwich (1982), in his Bayesian essay on scientific knowledge, subjective proba-
bilities and evidence, identifies evidence with sets of data. Note that he introduces
his text as being about “particularly the concept of evidence” (p. 1) and titles a
chapter ‘Evidence’ (p. 118–129). Figure 5.3 illustrates his concept of evidence by
the use of an example. Horwich’s text is a further example of the negligence of
the distinction between data and evidence.

Figure 5.3: Illustration from
Horwich (p. 119) for more di-
verse data (ED) and narrow
data (EN ). In fact, as the la-
bels ‘ED’ and ‘EN ’ indicate, he
refers to these data as evidence.

Apart from this section, I use only my notion of evidence throughout this thesis
1Popper and Carnap provide carefully edited subject indices at the end of their books. Carnap

does not include “evidence” or some other reference to it in the subject index. Popper refers
more explicative to evidencel only in a later appendix of his book (1959, appendix IX), which
consists of a reprinted series of papers (1954; 1957; 1958) with minor corrections.
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and not the one from the influential authors that I mention above. Interestingly,
whereas scientists often use phrases like ‘the data shows’, ‘evidence’ is a term that
occurs more prominently in reasoning by lawyers in court. This may hint to the
fact that in science it is more common to apply statistical routines on the data,1

whereas lawyers are usually not very familiar with statistical methods.
What can we say about the relation between evidence and phenomena? If evi-

dence play the role of explananda in explanatory relations and if scientific theories
“explain claims about phenomena”, then, it seems, evidence and phenomena must
at least be closely related. Is there any substantial difference between these two
notions?

Evidence are propositional in the sense that it, as opposed to data, must be
epistemically accessible to a human agent—this holds at least for the classical
idea of science as an endeavour for the creative human mind. A much larger
class of possible evidence is epistemically accessible to an AI scientific agent in
principle. However, even an AI or alien scientific agent, a neural network for
instance, implies some narrowing structural criteria for whatever can play the role
of evidence according to its methods of inference. Figure 5.4 illustrates an example
of scientific inference by a human scientific agent via a Bayesian network.

H E D

Figure 5.4: Bayesian network for
H : the earth rotates around the sun,
E : pattern of an elliptic orbit (basic geometry),
D : records of the sun position (lots of numbers).
(Ströing 2018)

In the following, I provide a more detailed analysis of the different roles of
evidence, phenomena and patterns in the epistemic process of scientific inference.

The pragmatic description of a phenomenon, which is its most discussed con-
crete pattern(s), is based on the full body of the scientist’s background assumptions
and knowledge. It plays the role of describing epistemically crucial properties in
this theoretical and sensorial framework. Evidence, on the other hand, is for-
mulated in the terms that are linguistically predetermined by the hypothesis in
question. There is no concept of evidence, when there is no hypothesis in question
for or against which the evidence has to be formulated.

A phenomenon is fully described by its general pattern and a hypothesis is a
claim about one or more phenomena. A hypothesis cannot be a claim about a
feature of the empirical world that is not considered as a phenomenon due to the
points raised by my descriptive account of phenomena; non-phenomenal features

1However, note that the pragmatic quality of applied statistics varies greatly among different
scientific fields and working groups. Derived from personal experience I dare to claim that
statistical tests are often conducted without proper mathematical understanding of them in, for
instance, some branches of social sciences.
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are not considered worth investigating. Otherwise, we are forced to accept them
as phenomena.

Since evidence plays the role to confirm, corroborate or falsify a hypothesis, it
is something different than a pattern. More specifically, the class of all patterns
(see chapter 4 for explication and discussion of patterns) is very broad and a
pattern can occur in complete epistemic isolation, meaning that it does not have
to play any role in any inferential process of science (e.g. an aesthetic pattern
for decorative purpose). This implies that, for instance, we can observe Venus’
movement on the horizon as a pattern, but remain completely puzzled by it, if
we do not have any theory of planetary motion at hand. Quite contrary to this,
evidence is always evidence for or against a hypothesis. That is why evidence has
to be formulated in the proper linguistic terms of the hypothesis. An example:
if the hypothesis in question is that Venus revolves around the sun in an elliptic
orbit, then the evidence cannot be only the observation of Venus’ motion seen from
an arbitrary point of the earth’s surface. We need the appropriate compilation of
information to accept it as evidence or counterevidence. In this case, this includes
the position of observation on earth and knowledge about the earth’s own motion,
but it does not include the observers aesthetic opinion about nail polish or the
latest winning Lotto numbers at the observation date.



Chapter 6

Replies to some Articles about
Phenomena

I comment on some selected articles about phenomena in science.

6.1 McAllister’s Criticism and the Example
of Albinism?

Section Abstract
McAllister (1997) criticises (Bogen and) Woodward’s account of patterns in scientific
data. He stresses that every set of scientific data can be decomposed into a sum of an
arbitrarily chosen pattern and the remaining noise. I reject his objection by stating
that his accounts of patterns in data, as well as of empirical phenomena in science are
generally misleading. Patterns that correspond to phenomena are a specific subset of
all arbitrarily selectable patterns, but this subset cannot be fully defined in isolation of
our shared background assumptions. Patterns that correspond to scientific phenomena
can be non-discrete mathematical objects that express vagueness or uncertainties. An
agent’s knowledge of one phenomenon’s concrete pattern may be insufficient to describe
it precisely. Investigators make decisions on whether a pattern can be detected in a set
of data, but the pattern itself is investigator independent.

McAllister (1997) criticises (Bogen and) Woodward’s account of the relation be-
tween patterns and phenomena in a very general way. I start with reconstructing
his arguments.

(Bogen and) Woodward claim(s) that phenomena are real in the ontological
sense. McAllister stresses the conclusion that, given the relatively few scientifically
discussed phenomena, a list of all the phenomena of the empirical world needs not
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only to be finite, but also not very long. Brown (1994, p. 124–5) stresses ex-
actly this point, too. This means that there are only relatively few phenomena
in contrast to the infinite variety of all the possible patterns in all the possible
sets of scientific data. Different sets of scientific data are as various as possible
measurement designs and further external influences on the experiments are, in-
cluding noise. The relatively low number of scientific phenomena follows from the
reality assumption regarding them and the philosophical desire to deal with an on-
tologically sparse universe. If a list of all phenomena of the empirical world would
be infinitely long, then the very fundamental naturalistic claim that the empirical
world can be, at least approximately, described by a finite catalogue of natural
laws—including physical, psychological and social laws—seems misleading.1 From
the reality assumption also follows that phenomena, and therefore patterns, must
be independent from an investigator.

McAllister’s criticism is based on the idea that every set of scientific data can
generally be described by a deterministic function plus some random noise, whereas
there are infinitely many options for the deterministic function and the noise part.
In more rigorous mathematical terms, a deterministic function

f : I → E

is a function that maps every data point indexed by an i ∈ I to a value from the
set of possible data results E without any modelling of probabilities or inherent
vagueness. McAllister identifies patterns with the deterministic part of this sum,
which is in accordance with (Bogen and) Woodward’s wording that “phenomena
are patterns” and that I criticise throughout this thesis. McAllister’s idea that
every deterministic function counts as a pattern is also in accordance with my
definition of a pattern (see chapter 4).

He infers from this description that patterns are far from being only a few very
distinct cases in actual scientific data and could therefore be identified with the
very few phenomena of the empirical world. It is rather the case that infinitely
many patterns can be detected in data and therefore infinitely many more or
less resembling patterns that each correspond to a certain phenomenon. Even
worse, infinitely many patterns can be detected in only one set of data by properly
adjusting the noise term. In an easy example one can always find a slightly different
deterministic function and tolerate a higher proportion of noise in the sum to
describe one and the same set of scientific data.

1For a further discussion of the assumption of only relatively few phenomena see Brown (ch.
7) and McAllister (p. 218).
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This all leads to the problem that either a phenomenon cannot correspond to
only one single pattern, or that there are as many different phenomena (or ‘struc-
tures’ as McAllister suggests in a later text 2011) in the empirical world than
different patterns can be found in scientific data. In this later case the notion of
phenomena would be deflated in the sense that one says nothing more about a
pattern than that it is a pattern. It remains an open question in (Bogen and)
Woodward’s account, how either many patterns in data disqualify for correspond-
ing to a phenomenon or how different patterns can correspond to one and the same
phenomenon.

In fact, noise is a very common concept in statistical modelling and is in some
contexts precisely defined (see appendix A.1 for details). In the context of mathe-
matically explicated patterns in time series noise is usually modelled as a specific
stochastic process, for example a Brownian motion. These precise definitions may
count as a counterexample to McAllister’s description of patterns and noise in
data, since a precise definition of noise leads to a unique solution or at least to a
vastly restricted space of solutions for the deterministic function in the decompo-
sition of data. However, examples to strengthen McAllister’s position regarding
this objection can easily be found by questioning the appropriateness of a spe-
cific definition of noise, in particular for an explanation of patterns in science in
more general without a restriction to the established mathematical framworks of
statistical modelling.

McAllister (1997) suggests the solution that phenomena are in fact not inves-
tigator independent, as (Bogen and) Woodward imply, since the investigators are
the ones who decide which level of noise is tolerable to detect a phenomenon via
a pattern in data. I believe this critique is not very substantial, because McAllis-
ter’s interpretation of patterns is a misconception. As he points out, (Bogen and)
Woodward are realists. For them phenomena are features of the empirical world
that can be studied via data. It seems, for them, the notion of patterns has a Pla-
tonic feature to it in the sense that a phenomenon has a single corresponding ideal
pattern (or a finite list of ideal concrete patterns), which can be detected in data
in approximation to find evidence of the phenomenon in question. Measurement
errors, side effects, insufficiently isolated objects under investigation and other
technical circumstances make gathered data most often non-ideal in this Platonic
sense. Conclusively, almost every pattern that corresponds to a phenomenon and
occurs in an actual set of data is non-ideal in this sense as well.

To further illustrate my criticism of McAllister’s account, note the following
implication: if two different sets of data from two different measurements show
the same pattern in (Bogen and) Woodward’s terminology with which the same
phenomenon is detected, these two patterns may still be different in McAllister’s
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understanding of differing patterns. A simple example for this could be two mea-
surement runs to detect the melting point of lead. If two time series of 100 mea-
sured melting points in degree Kelvin are given, then the two sets of data are very
likely not completely identical. But every physicist is willing to admit that the
same pattern was detected by the two measurement runs under exactly the same
experimental conditions. The crucial point is that the pattern of a phenomenon
does not have to be a completely deterministic function. In my view, as well as
for—seemingly—(Bogen and) Woodward, a certain level of vagueness, which may
even be mathematically expressed in statistical theory, can be a genuine part of a
concrete pattern of a phenomenon.

A specific deterministic mathematical explication of a pattern, as McAllister
suggests, that was detected in real data is not the pattern (Bogen and) Wood-
ward refer to. It is undoubtedly mathematically very similar to the ideal pattern
corresponding to the specific phenomenon, but in fact only similar in some of its
mathematical properties. In McAllister’s terminology every deterministic function
falls under the term ‘pattern’, whereas for (Bogen and) Woodward only a few
ideal versions, from which some deterministic functions are approximations of, fall
under this label. This is the confusing misconception in McAllister’s account. In
my account, every deterministic function counts as a pattern, but only relatively
few possible patterns in data count as patterns that correspond to phenomena.
As elaborated on in chapter 5, the body of our shared background assumptions,
cognitive and sensory capabilities determine our phenomenon selection and not
the fact that there are some patterns in data. Most patterns in scientific data are
irrelevant for scientific investigations of phenomena.

What then are patterns in data that correspond to phenomena? They are the
mathematical correspondences of the empirical phenomena. And as such they have
a precise mathematical form, but it is another question whether a scientific agent
actually explicates this form or not. I elaborate on this in chapter 4. A scientist
may even define a pattern sharply, but this definition can simply be wrong, which
may often be the case in actual scientific practice. Furthermore, we know that an
animal with albinism has white hair and reddish eyes, but we do not fully know
what biological abnormalities it has apart from these obvious facts. In the same
way, patterns corresponding to a phenomenon have a precise form, but may be
only defined imprecisely. To say it in other words, phenomena are empirically real
and patterns (that correspond to phenomena) are mathematical ideal objects, but
knowledge about them must be gained and can be imprecise or wrong in both
cases.

A precise definition does not imply discreteness of the mathematical object
or determinism of some process, which is the pattern (e.g. the wave function in
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quantum mechanics is a non-deterministic pattern). A pattern can be defined
as an analytic object, i.e. with continuities and uncountable sets, or an object
in a probability space, i.e. with uncertainties, or with the use of some other
mathematical version to model vagueness or uncertainties, such as fuzzy logic. For
albinism, a corresponding concrete pattern is the gene defect in the TYR gene in
the eleventh chromosome, but the exact form of the mutation may be unique for
each individual with albinism. So, at this point the concrete pattern needs to be
open for vagueness concerning the specific form of the gene defect.

But this vagueness is not the noise that we discussed above based on McAl-
lister’s description of patterns. Noise is the deviation of the data, or parts of it,
from the concrete pattern that corresponds to the phenomenon in question. Noise
is caused by measurement errors and disturbing influences to the measured part of
the empirical world, whereas vagueness is a property of the concrete pattern and
the phenomenon in question itself. This distinction is a fundamental one and does
not depend on the knowledge of any scientist. This distinction is exactly what
McAllister does not take into account accordingly. To say it in other words, two
forms of uncertainties are involved at pattern detection in scientific data: one of
it origins from the vagueness as a property of a concrete pattern itself, the other
one is caused by the lack of experimental isolation of the phenomenon and other
pragmatic imprecisions regarding the measurement procedure.

A criterion for a deterministic function in data to be a pattern in (Bogen
and) Woodward’s sense cannot easily be given in purely mathematical terms. The
reason for this is that a pattern in this sense must correspond to a phenomenon.
But a phenomenon can in many interesting cases not be characterised in terms of
a developed theory and also not as a pattern in data from measurement results. A
phenomenon in science is, such as the ancient Greek origin of the word indicates, a
property of the empirical world that obtrudes itself to the observer by means of the
observer’s interests and epistemic capabilities. A melting point of a metal or the
occurrence of albinism force us to find explanations before any theory construction
has started and may be the motivation to start a theoretical endeavour to explain
them. Measurement procedures are very uniquely designed for the explanation of
specific phenomena and phenomena may in many cases not be fully understood
with the available theories. Therefore, no simple mathematical criterion to identify
patterns that correspond to a phenomenon is possible.1

McAllister reasons that, since different scientific investigators may not fully
agree on the acceptable level of uncertainty in pattern recognition, the phenomenon

1An epistemically unbounded agent may be able to provide such a mathematical criterion in
principle. It would imply a full description of human and, depending on its scope, non-human
sensory capabilities and background assumptions.
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itself depends on the investigator. If two scientists can disagree on the occurrence
of a phenomenon based on analyses of the same set of data, then the phenomenon
cannot be something real that simply is there or is not, he infers. Woodward’s
recent response (2011, sect. 5) is a very natural one from the realists’ perspective:
of course, investigators can disagree over the detection of a phenomenon in the
same set of data, but one of them can simply be false in his inference. If a coin
is tossed twenty times in a row and it lands head twelve times, then investigators
may disagree whether the coin passed a statistic test of fairness or not. But this
disagreement does not change anything about the phenomenon of a coin being fair
(i.e. the occurrence of head in repeated tosses converges to 50%)1. Phenomena are
real in this sense. The data is not our subject of study in science, but the empirical
world is. A set of data may—and often does—give only insufficient evidence of the
occurrence of a phenomenon. A phenomenon may not even be correctly described
by science due to, for instance, bad noise filtering, but it may still exist.

However, the role of the noise needs to be explained. The ideal pattern in
data for this phenomenon is that 50% of the tosses show a head as a result. The
experiment of a coin toss can only be repeated finitely often. Even two tosses can
fulfil the criterion to exemplify the ideal pattern, if a scientist decided that this
evidence is sufficient (which would reveal a poor intuition regarding statistics).
Therefore, an investigator’s decision on whether a phenomenon is detected via a
pattern in a set of data does not depend only on the set of data itself, but also
on his personal attitude towards statistical confidence or on the number of data
points. But this fact still does not change any properties of the general or the
concrete pattern that corresponds to the phenomenon in question. It is not the
pattern corresponding to a phenomenon that depends on an investigator, only the
interpretation whether it is detected in a set of data or not does. What McAllister
introduces as the noise is, in parts, the acceptable level of deviation from the ideal,
but can also, in parts, be a vagueness that a phenomenon may naturally has, when
it comes to detecting it in scientific data. For the first case, the occurrence of the
noise does not have any metaphysical implications whatsoever. In the second case,
it has, since here a pattern is assumed to be a non-discrete mathematical object.2

1This explanation of probability is a frequentist’s one. Convergence is a mathematical concept
applied to infinite series (xi)i∈N with, for example, xi ∈ R for all i ∈ N and the metric d : R2 →
R≥0, d(x, y) 7→ |x− y |. Therefore, this explanation of probabilities can be objected by stressing
the problems with modelling finite empirical objects and time-frames with infinite mathematical
models. However, my argumentation is open to alternative interpretations of probabilities and
does not crucially depend on any specific choice in this regard.

2The uncertainty principle in quantum mechanics and its standard interpretation, as opposed
to the Bohmian view, may serve as an example, here.
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I introduced the term ‘pattern similarity’ (cf. 4.1) to denote concrete patterns
that differ by mere simple mathematical transformations, in, for example, time
series from asset price data in returns or, alternatively, in log-returns. McAllister’s
description of noise is not very much related to this concept, even if it may seem so.
In cases of pattern similarity the patterns are not identical or in any way related to
each other according to McAllister’s account. He chooses the maximum possible
version of unrelatedness among concrete patterns: every two patterns that are not
identical mathematical objects, differ from each other in the same general way.
To me it seems much more reasonable to distinguish between two rather similar
concrete patterns (e.g. melting point in Celsius or in Kelvin) on the one hand,
and very different concrete patterns (e.g. genotype and phenotype of albinism) on
the other hand.

To sum up, McAllister’s notion of noise is not problematic for (Bogen and)
Woodward’s concept of a pattern, as well as for my further specification of con-
crete and of the general patterns. In fact, it describes what I further specify as
either vagueness or non-determinism of a pattern or the approximation of a pattern
in data. Investigators decide whether a phenomenon can be detected via a pat-
tern in a set of data, but all properties of a pattern are investigator independent.
My criticism to McAllister is that he misinterpretes patterns that correspond to
phenomena in one sense too strict as deterministic, discrete mathematical objects,
but in another sense too broad as an arbitrary object so that every feature of the
empirical world becomes a phenomenon. Her infers that the concept of a phe-
nomenon is empty by stressing that there is no property of a pattern to qualify
it as being a pattern that corresponds to a phenomenon. I believe that there is
no simple mathematical property fulfilling this criterion, but there are real empir-
ical phenomena that are selected on the basis of the agents’ shared background
assumptions, cognitive and sensory capabilities.
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6.2 Glymour’s Approach to Weaken the Distinc-
tion between Data and Phenomena is Mis-
leading

Section Abstract
Glymour claims that the distinction between data and phenomena as unnecessary,
since, in his view, it does not add anything to the distinction than concepts that are
already known from basic statistics. This view is misleading, because, firstly, not all
phenomena are recognised by applying explicated statistical routines and statistical
pattern recognition does not well represent all pattern detection routines. Secondly, in
such an account it needs to be explained why certain statistical routines for pattern
detection are employed, whereas infinitely many others are not employed.

Glymour (2000) aims to challenge the distinction between data and phenomena,
which is the essential distinction in (Bogen and) Woodward’s account. The review
of his position helps us to further sharpen our concepts of phenomena and data.

In a nutshell, his arguments are as follows: firstly (i), according to Bogen
and Woodward, data and phenomena are distinguished ontologically and with
respect to their epistemic roles in science. Secondly (ii), scientific data should be
understood as statistical samples (i.e. one- or more-dimensional series of numbers
(rt)t∈{1,2,...,N}, N ∈ N, rt ∈ R). At least, statistical samples are a common case
of scientific data and can play the role of sufficiently representative example case
for us. Thirdly (iii), patterns in data are nothing more than statistical features
of these samples (e.g. autocorrelations) and do not differ from the data itself
in respect to their “ontological and epistemological status.” (p. 30) Therefore,
Glymour states, “the distinction between data and phenomenon simply gives a
new name to a distinction which is already deeply embedded in the literature on
statistical inference.” (p. 34)

I believe that the second point is too narrow and therefore inadequate to de-
scribe the general concept of data in science: in my view, data cannot be boiled
down to statistical samples and from a philosophical analysis of statistical samples
we cannot gain much sufficiently general knowledge about the concept of scientific
data. Consider the simple example of recognising a specific animal in a picture.
Please note that McAllister’s (1997) example of data and patterns in it is one of a
simple statistical sample with statistical features in it, as well.1 But only a minor
fraction of what counts as scientific inferences are applications of well explicated

1More specifically, see the introduced example of a pattern as a finitely described function
F : R → R at pages 219–223, more specific F (x) 7→ (a sinωx + b cosωx) + R(x) with a, b ∈ R,
ω ∈ R[0,2π] and R describing the noise part.
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routines of statistical pattern recognition. I claim that even if scientific inferences
can be mathematically explicated in principle, the interesting aspect is what makes
one pattern more interesting (i.e. corresponding to a phenomenon) than others.

The third point, I believe, is also misleading due to the fact that the general,
as well as the concrete patterns in a set of data are ontologically not equal to the
phenomena, as I elaborate on in 5.2. A property of the empirical world cannot be
equal to a mathematical object or property. This is the same error that (Bogen
and) Woodward make. And patterns are mathematical objects or properties and
Glymour’s restriction of data to statistical samples even strengthen this position.
I reconstruct Glymour’s arguments with comments on them more thoroughly.

For the second (ii) point, we want to introduce some basic vocabulary to dis-
cuss the arguments raised by Glymour with a sufficient precision. Glymour’s aim
for the use of these terms is to further specify data and phenomena on the basis of
statistics to present an exemplary account for data and phenomena.1 A sample is
a series of real numbers or vectors of real numbers that is gathered by measuring
in observational or experimental contexts. The statistical structure of the sample,
sample statistics or sample structure are statistical properties of the sample as, for
example, mean values, variances or correlations between different dimensions of
or autocorrelations in the sample. A population is a set of empirical items that
is subject to the statistical analysis. The structure of a population or population
structure are structural properties of a population; a population structure is in-
vestigated with statistical analysis by gathering samples and specifying its sample
structure.

Glymour speculates that statistical analyses present a common and useful ex-
ample for scientific use of data. He follows as the third step (iii) in his argument
concerning the epistemic status:

If we are certain, at least in the relevant sense, of the observations comprising
a data set, then the mean value of a variable[2] in the data, or its variance,
the shape of the distribution, correlations between variable values, and so
on, are no less certain. So sample statistics have the same epistemic status
as the observation reports comprising the data in the sample. But it is
precisely this sort of statistical feature of data sets that are explained by
scientific theories. (Glymour 2000, p. 33)

As we will see in the following passages, this argument is the core of Glymour’s
critique on (Bogen and) Woodward’s concept of data and phenomena: there would

1Glymour’s use of statistical vocabulary, including ‘sample’, ‘population’, ‘sample statistics’,
‘sample structure’, ‘population structure’ is in fact not sufficiently well introduced in his article.

2Apart from Glymour’s use I want to avoid the use of the term ‘variable’ since a set of data,
e.g. a series of real numbers, does not have anything to do with variables. According to the
strict use of vocabulary I want to follow, variables come into play only if some model for the
data is introduced.
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be no substantial epistemic difference between the set of data, if it is exemplified
as a sample, and the sample statistics. This may be true from our perspective
as well. Let us take a view on a very simple example of a sample being a set of
numbers

X := {2, 3, 3, 2, 4, 1},

its mean

µ(X) :=
∑
xi∈X xi
|X|

= 15
6 = 2.5,

its variance1

σ2(X) := µ([X .− µ(X)].2) = µ({−0.5, 0.5, 0.5,−0.5, 1.5,−1.5}.2)
= µ({0.25, 0.25, 0.25, 0.25, 2.25, 2.25})

= 5.5
6 = 0.916̄

and the largest number in it divided by 2

λ(X) := max(X)
2 = 4

2 = 2.

These numbers, 2.5, 0.916̄ and 2, express something about the sample X, but
what is expressed is only some arbitrarily chosen mathematical property of it out
of infinitely many mathematical properties. I introduce the statistically uncom-
mon λ(X) to illustrate this arbitrariness. Of course, 2.5, 0.916̄ and 2 do not have
any special epistemic status above the sample X itself. From a mathematical per-
spective, these numbers plus their mathematical origin, which are the definitions
of µ, σ2 and λ, simply tell us some information about X.

But this is not the point of interest concerning the distinction between data
and phenomena. The point of interest is, why is the mean µ(X) of specific interest
concerning this sample (e.g. it scientifically describes the melting point)? Why
are µ and σ2 more interesting and common in statistical analysis than λ? The
answers to these questions can by no means be given on grounds of only the sam-
ple X or some arbitrary sample statistics µ(X), σ2(X) or λ(X). This is the same
misleading view McAllister shows in his inquiry. Both, Glymour and McAllister

1I use non-standard operations on sets according to the following definitions:

.− : Rn × R→ Rn, n ∈ N, {r1, r2, ..., rn} .− r 7→ {r1 − r, r2 − r, ..., rn − r},

.2 : Rn → Rn, n ∈ N, {r1, r2, ..., rn}.2 7→ {r2
1, r

2
2, ..., r

2
n}.
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interpret phenomena as being detectable via purely mathematical properties of
purely mathematical data. But in fact the central question for the explication of
the notion of phenomena is why certain mathematical properties are more inter-
esting to the scientists than other properties. And my answer to this question is
that the shared body of background assumptions and human capabilities make
a pattern to be a pattern of a phenomenon. Statistics is a suitable example to
defend this view, since notions like variance σ2 are to some extent chosen due to
pragmatic concerns, but also to some extent arbitrarily (in particular the exponent
2 : R→ R≥0).1

However, let us take a more detailed look at Glymour’s idea how samples and
sample statistics are related to data and phenomena:

We can either take the distinction between data and phenomena to corre-
spond exactly to the distinction between sample and population structure,
or not. Suppose we take the distinction between data and phenomena to
involve something over and above the distinction between sample and popu-
lation structure. Then statistical inference procedures, and methodological
justifications for them, will not require the distinction between data and
phenomena, and hence the distinction will be unnecessary. Suppose we
deny that the distinction between data and phenomena involves something
over and above the distinction between sample and population structure,
i.e. we take the statistical structure of data samples, i.e. sample statistics,
to correspond to data and population structure, i.e. population parameters,
density functions and conditional independencies, to correspond to phenom-
ena. Then the distinction between data and phenomenon simply gives a new
name to a distinction which is already deeply embedded in the literature on
statistical inference. (Glymour 2000, p. 33–34, my emphasis)

Let us first discuss the position that I deny and which is discussed secondly in
this quoted passage: phenomena are nothing more than the population structure.
Concerning the highlighted (in italics) part, I do not see any reason to identify
the data with a sample structure, that is: sample statistics; if any, the sample
corresponds to the data and the sample structure corresponds to a pattern in this
set of data. Note that it is our specific choice for what “structure” we look for in a
set of data. But since ‘population structure’ is a term that denotes properties of a
set of empirical items and is investigated via statistical analysis it does not seem to
be very useful to grasp a better understanding about the distinction between data
and phenomena after all. Glymour’s philosophical analysis does not tell us more
about our riddle of what exactly counts as a phenomenon. We need to further
investigate what would count as a population structure.

1The variance operator is applied to measure a form of dispersiveness of a random variable or
a time series. A measure with this aim should be positive but the square seems to be established
for historical reasons and due to the pragmatic aim to provide an epistemically well accessible
stochastic calculus.
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According to the common use of terminology I understand under a popula-
tion the set of empirical items under statistical analysis, but, on the other hand,
Glymour implies that “[o]ne treats the sample as a sample from a population of
data with a particular statistical structure” (Glymour (2000), p. 32, my emphasis).
With this use of the terminology it is hard to see how the term ‘population’ is used
and what is implied with it. If there is a population of data, then ‘population’
seems to denote something purely mathematical.

The firstly discussed option of a solution to the riddle what data and phenom-
ena are in our statistical setup is the one that I prefer: the statistical objects intro-
duced, as well as statistical inference, cannot fully describe what a phenomenon is
in this setup. Glymour suggests that in this case the distinction between data and
phenomena would be unnecessary, because “statistical inference procedures, and
methodological justifications for them, will not require the distinction”. He goes
on about the proclaimed unnecessity of the distinction:

The terminological reform is unnecessary and in some respects misleading,
and hence should be avoided. Moreover, since on some statistical inference
procedures, e.g. Bayesian scoring procedures, one infers directly from sam-
ple structure to theory, the distinction between data and phenomena will
not play any essential role in these sorts of inferences or the justification of
these inferential methods. (Glymour 2000, p. 34)

He deems the distinction between data and phenomena unnecessary, in case
it involves something over and above the distinction between statistical samples
and the population structure. But the point of interest for us is that scientific
detection of phenomena cannot be exhaustively explained by the explicated body of
stastitical pattern detection. There is more to most phenomena than an arbitrarily
chosen pattern in data, as McAllister suggests, or theory-laden interpretation of
some data. As I elaborate on in chapter 5, the distinction between phenomena
and non-phenomenal features of the empirical world is based on the shared body
of scientific background assumptions, as well as the agents’ sensorial and cognitive
capabilities.
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6.3 Massimi’s Kantian Approach to Phenomena

Section Abstract
Massimi stresses the important role that reliability of data plays for the defence of (Bo-
gen and) Woodward’s realists’ notion of phenomena. I agree with her conclusion that
reliability depends too much on the agents’ understanding of involved causal mecha-
nisms to defend phenomena realism by reference to it. In my view, her Kantian stance
towards phenomena selection with reference to Kant and Suppes neglects other impor-
tant influences for phenomena selection that are important for a descriptive account.
These are non-Kantian background assumptions that are better described in Kuhnian
terms and related approaches.

How do (Bogen and) Woodward defend their phenomenon realism? Massimi
(2008; 2011) rightly focusses on “a distinct feature of reliabilism [which] is that
it licenses theory-free data-to-phenomenon inferences” (2011, p. 103). This con-
trasts McAllister’s observer-dependent notion of phenomena. What makes data
reliable? Massimi cites Woodward (1989, p. 403–4): “in order for data to be
reliable evidence for the existence of some phenomenon (...), it is neither necessary
nor sufficient that one possesses a detailed explanation of the data in terms of
the causal process leading to it from the phenomenon.” The crucial aspect is that
reliability of the data does not have to be epistemically explained by reference to
scientific knowledge of causal mechanisms. Confounding factors may occur here
and there, but overall the non-idiosyncrasy of data in which the patterns of a phe-
nomenon can be detected make—somehow—sure that these data reliably provide
evidence for the occurrence of a phenomenon.

I agree with Massimi that “reliability cannot be entirely detached from the
causal knowledge of the mechanism that generates true beliefs with high frequency.”
(p. 106) Why is that?

Unless we somehow know already how the phenomena that we are search-
ing for should look like, how can we appraise whether data production and
data reduction provide reliable evidence for them? In a way, this problem
is a re-elaboration of what Harry Collins (1985/1992) has described as the
experimenter’s regress: in order to prove that an experimental process is
reliable, we have to show that it identifies the phenomenon correctly. But
in order to identify the phenomenon correctly, one has to rely on the exper-
imental process whose reliability is precisely at stake. So reliability seems
to fall back into a justificatory circle. (p. 108, original emphasis)

The crucial point is that data and patterns in them are to some degree idiosyn-
cratic. Even if we discuss (Bogen and) Woodward’s example of the detection of
weak neutral currents, some idiosyncrasies (e.g. exact angle of the trace) occur
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and to decide whether these idiosyncrasies are relevant for the phenomenon detec-
tion or not we need to know how the measurement apparatus works, or in other
words, we need sufficient “causal knowledge of the mechanism that generates true
beliefs” about weak neutral currents in bubble chambers. In the more extreme
exemplary case of albinism the two very distinct concrete patterns are integral
parts of the scientific description of the phenomenon of albinism, but agents need
a lot of knowledge about the involved data gathering techniques to be able to
properly refer to the phenomenon of albinism. A reference to a certain mutation
of the 11th chromosome is not a reference to albinism; all known concrete patterns
are necessary to properly describe the phenomenon of albinism according to the
relevant scientific community.

Conclusively, since reliability of data cannot be detached from causal knowledge
about the data gathering routines, phenomena realism cannot be defended by
reference to reliability.

In other parts of this thesis I already stated that Kantianism provides a fruitful
approach for our analysis of phenomena.1 Massimi follows this route in claiming
that “[p]henomena are not ready-made in nature, instead we have somehow to
make them. And we make them by first ascribing certain spatiotemporal properties
to appearances (...), and then by subsuming them under a causal concept.” (p. 109)
This is an accurate brief summary of the cornerstone of Kantian epistemology.
Massimi also discusses Suppes’ (1962) hierarchy of models (cf. 2.1) to derive from
these approaches that “phenomena scientists investigate are often the end product
of these intermediate steps, at quite a distance from the original data” and these
steps “may also require a significant amount of conceptual construction.” (p. 110)

However, in my view, pure Kantianism too much neglects the role of empirical
assumptions that are not so deeply grounded by reasons of basic human epistemic
capabilities or even science. Phenomena are not global in the sense that at every
historical phase of science every scientist of a specific branch applies the same
criteria for the distinction between phenomena and non-phenomenal features of
the empirical world. I want to add a specific focus on background assumptions
that are neither rational nor justified by natural human epistemic restrictions.

One well-known approach to add further criteria to any descriptively adequate2

account of phenomena selection is Kuhn’s (1962) idea of paradigmatic science. If

1The prominent role of mathematical objects for Kant’s transcendental aesthetics support
my claim that data and patterns are epistemically nothing more than mathematical objects.
(cf. ch. 2 and 4) Furthermore, Kant’s focus on fundamental epistemic preconditions for human
perception support Grenander’s pattern constructivism that I follow (cf. 4.3).

2Massimi explains that she “want[s] to endorse an approach to the data—phenomena distinc-
tion which is normative and naturalised at the same time” meaning that she takes “the natural
sciences as paradigmatic of scientific knowledge” (p. 102).
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science is organised in paradigms, which I believe it is, then a proper account of
paradigms need to be a part of or need to be referenced for any descriptive account
of phenomena. Furthermore, even a normative account of phenomena needs to take
criteria of paradigmatism into account. According to Kuhn, not only hypothesis,
but also scientific methodology and criteria for relevant scientific questions are
part of a paradigm. Therefore, a paradigm may also guide the distinction between
phenomena and non-phenomenal features of the empirical world. This seems at
least valid to me for the science of human agents.





Chapter 7

Conclusion

I provide the results of my thesis that I deem to be the most crucial ones. I start
with replies to central questions and concerns first, and then I correct (Bogen and)
Woodward’s notion of phenomena in accordance with my conclusions. Chapters
and sections are referenced in brackets.

Answers to Central Questions and Concerns

• In the discussion I made a very fundamental epistemological assumption:
every pattern recognition technique that is used in science can in principle
be reduced to the execution of a mathematical algorithm. This position is,
of course, subject of discussion and opposed by some in the philosophy (of
mind) and to a lesser degree in neurobiology. I argued in favour of this po-
sition by reference to some classics, in particular Russell (2.4 and 3.1), and
to the optimistic induction (3.3). Mathematical structuralism shows how
broad an adequate notion of mathematics is (3.1) and Grenander’s general
pattern theory (4.4) is an approach for a mathematical pattern epistemology.
Nevertheless, rejecting or accepting this assumption leads to very different
philosophical views towards science and, in particular, of phenomena in sci-
ence. It even leads to different views towards human cognition in general,
since the whole variety of pattern detection procedures that human beings
carry out in science may already reflect many different features of human
cognition. However, I focus on scientific data and inferences that have to be
intersubjectively accessible (2) and explicable to other agents in principle.
Therefore, possibly inexplicable criteria of pattern selection (if such exist)
are genuinely unscientific and play no inferential role in science.

• Historically, science is a human endeavour. This is due to the fact that, at
least until very recently, humans are the only agents that we are aware of
being able to do science to the full extent of this activity. Concerning this
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point I make two claims. First, laymen’s everyday reasoning and scientific
inferences from scientific experts does not differ in principle. (1.2) Both
have the same normative grounds but can be executed erroneously. Second,
science cannot in principle be restricted to human agents.—This statement
is meant to have normative as well as a descriptive implications. Artificial
intelligences, in particular deep learning AIs, exemplify that computers can
make inferences that are creative in the sense that a human agent is not
capable of explaining how this inference was made. (3.3) The optimistic
induction implies that this will extend to scientific applications of AI agents
in the future. Furthermore, possible aliens (from other planets, physical
realms or periods) may be able to formulate theories with predictive empirical
success and, therefore, we would have to accept them as scientific agents.

• Concrete patterns are the elements of the classes that are the general pat-
terns and therefore describe the phenomena (4.1). In most cases, scientific
agents know only some concrete patterns and even those usually not in a
fully explicated way due to pragmatism and epistemic restrictions. Almost
without exception only an epistemically unbounded agent (4.1) is able to
know the full general pattern of a phenomenon. In the example of an animal
with albinism there are at least two concrete patterns in very different data:
(a) in the measurements of the colour of the hair, skin and eyes and (b) in
the records of genetic analyses. Since the knowledge about (b) is itself part
of a theory, the description of a phenomenon seems to depend on theories,
but the phenomena themselves are not theory-laden in the strict sense. (5.4)
They are real features of the empirical world that do not depend on theories
or knowledge and they cause observations. (5.1) But we need to remain ag-
nostic to what exactly this real world is; actual physical particles, Descartes’
demon, Bostrom’s simulation or the like (1.3). Concerning phenomena that
are described in the context of a scientific field that makes use of references
to many very theoretical entities, such as theoretical physics, there may be
only theory-dependent descriptions of respective patterns possible. But this
theory-dependence is nothing substantially different than the agents’ natural
epistemic restrictions due to shared background assumptions, sensory capa-
bilities and epistemic limitations. (5) One can say that the phenomena of our
science are not theory-laden but they rather are human-laden, since human
epistemic and sensory capabilities play the most important part for the his-
torically changing list of scientific phenomena. That is why phenomena are
real features of the empirical world, but the selection between phenomena
and non-phenomenal features has no parallel part in the empirical world.



191

Conclusive Answer to (Bogen and) Woodward

Figure 7.1: Schematic view of my ideas about the role of scientific theories, phenomena
and data. Box and line styles are used with the same meaning than in figure 1.2 on page
3. Double line width indicates my adaptions with regard to figure 1.2 but no different
meaning than regular line widths. The box for the phenomena is dotted because the
phenomenon selection depends crucially and in principle on the background assumptions
and epistemic capabilities (which I here subsume under the background assumptions for
illustrative simplicity).

In the introduction I expressed a need for further clarification on how (Bogen
and) Woodward’s view on phenomena can be maintained or criticised. According
to their view, phenomena are best described as being (i) not idiosyncratic to the
different ways that are used to detect them, (ii) real in an ontological sense, and
(iii) identical to patterns. These points can be answered as follows.

Regarding (i), the not idiosyncratic occurrences of a phenomenon, which are the
occurrences of concrete patterns from the respective general pattern in proper data,
can be explained by, firstly, the relation of representation for data (2.3) and for
patterns (4.1) and, secondly, by the classification of non-similar concrete patterns
under one general pattern (4.1) on the basis of shared theoretical background
assumptions (5). The general patterns describe the phenomena one-to-one (5.2).

Regarding (i) and (ii), phenomena are real features of the empirical world,
but the demarcation between phenomena and non-phenomenal features of the em-
pirical world is based on the body of shared background assumptions, sensory
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and epistemic capabilities of the relevant agents. Regarding (iii), phenomena are
not ontologically identical to patterns, but they are fully described by their corre-
sponding general pattern and pragmatically described in the context of the agents’
assumptions and capabilities by the scientifically discussed concrete patterns. Fig-
ure 7.1 provides a schematic view with reference to the schemes that are given in
the introduction (1).

To summarise, the explanatory gap between the idiosyncratic data and patterns
on the one side and the not idiosyncratic phenomena on the other side of this
dichotomy is closed by the introduction of representations for data and for patterns,
and the account of a description of phenomena by general patterns.



Appendix

A.1 Decomposition of Data into Patterns and
Noise from the Perspective of Statistical
Modelling

Section Abstract
McAllister’s view on the (statistical) decomposition of data into patterns and noise is
empirically inaccurate. As part of the scientists’ shared background assumptions a body
of worked out and established statistical methods is applied in scientific applications of
pattern analysis. Therefore, any descriptive notion of noise in data needs to incorporate
actual notions of noise from the field of statistics.

McAllister (1997) states that sets of data can, in principle, be decomposed into
infinitely many combinations of a pattern and of a noise term. The intuition behind
this decomposition is very simple: a set of data, or at least a proper representation
of it, can be understood as a mathematical time series or signal. A pattern in
this set of data is, according to McAllister, a deterministic statistical model that
describes this time series or signal in approximation. The noise are the statistical
residuals, which are not modelled and are of no further crucially significant purpose
for the scientific analysis of the data. Without any scientific preconditions, that
is if the data, pattern and noise are interpreted as purely mathematical objects
without having to fulfil any further (mathematical) criterion, McAllister’s problem
occurs.

He stresses the argument that, if we cannot define any satisfactory criterion
to explain what properties of a set of data belong to the pattern part and which
belong to the noise, then the choice of the pattern in data is arbitrary. Therefore
phenomena cannot be explained as patterns in data, because in this case phenom-
ena are necessarily arbitrary properties of the empirical world, which would no
proponent of phenomena in science be willing to admit. He further infers that, if
patterns in data are arbitrarily defined and occur infinitely often, then phenomena
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must so, too. I argue against this criticism in part 6.1.
The plots in figure A.2 show a very common textbook example (that I already

mentioned in 4.2) on mathematical time series analysis and they are very illus-
trative to describe the idea of the decomposition of data into a pattern and the
residual noise, whereas the noise carries no statistical information in terms of the
specific statistical theory applied.

Figure A.2: Monthly international airplane passengers from January 1949 to December
1960 as an illustrative example of data for statistical data analysis and modelling. (plot
from Brockwell and Davis 1991, data from Box and Jenkins 1976) A more thorough dis-
cussion of the classical decomposition model applied on these data is given in Brockwell
and Davis (§1.4 and §9.2).
Top left: plot of totals in thousands of passengers (Pt)t∈{1,2,...,144}.
Top right: natural logarithm (Lt)t∈{1,2,...,144} := (lnPt)t∈{1,2,...,144} of the data.—The ap-
plication of the natural logarithms is the application of a variance-stabilising technique,
as discussed by Box and Cox (1964).
Bottom left: residuals (Yt)t∈{1,2,...,144} after removing the linear trend (mt)t∈{1,2,...,144}
and seasonal component (st̂)t̂∈{1,2,...,12} with period 12 from (Lt)t∈{1,2,...,144}. That is the
following equation holds:
xxxxxxxxxxxxxxxx Lt = mt + stmod 12 + Yt for all t ∈ {1, 2, ..., 144}.
Bottom right: differenced series Dt = ∆1∆12Lt+13 for all t ∈ {1, 2, ..., 131} with ∆n,
n ∈ N being the difference operator defined by ∆nXm := Xm − Xm−n for any series
(Xt)t∈Z.

However, despite McAllister’s view that patterns in statistical data can be ar-
bitrarily chosen I want to point out that the notion of noise is for actual scientific
inferences in fact not that arbitrary. In the field of mathematical statistics, which
is a straight-forward application of McAllister’s description of the decomposition
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of data into a pattern and residual noise, the notion of noise is pecisely speci-
fied. More importantly, an established statistical framework that includes precise
definitions of noise is widely applied in everyday science of various quantitative
fields (e.g. social studies; particle physics; astrophysics). In the mathematical
theory concerning the modelling with stochastic processes solutions are available
to carefully avoid the scenario presented by McAllister for many practical cases.
This is achieved by simply constraining noise with very specific properties that are
reasonable from a modelling perspective.

Following McNeil et al. (2005, p. 127), we can define (strict) white noise: a
real valued, covariance stationary1 stochastic process (Xt)t∈Z with autocorrelation
of zero for all lags,

corr(Xt, Xt+n) = 0 ∀ t ∈ Z, n ∈ N,

is called white noise. A stochastic process (Xt)t∈Z is called strict white noise,
if it is a series of identically and independently distributed random variables with
finite variances.

Please note that strict white noise is a special case of white noise since identical
and independent distribution is a stronger constraint than covariance stationarity.2

According to these common definitions, (strict) white noise has a constant volatility
for every time t ∈ Z, but this parameter is not fixed, that is, every (strict) white
noise process can have a different constant volatility.

In statistical time series analysis it is a usual approach to describe the empirical
time series as a composition of a deterministic process and white noise or strict
white noise. In this setup the deterministic part plays the role of McAllister’s
version of a pattern and the (strict) white noise plays the role of McAllister’s
version of noise. A simple example of this approach is the AR(1) model discussed
by McNeil et al. (2005, p. 129).

The AR(1) model or - process is defined as a stochastic process (Xt)t∈Z
satisfying the following condition:

Xt = φXt−1 + εt ∀ t ∈ Z,

1Be I a set that is closed under addition + : I × I → I. A stochastic process (St)t∈I with
values in Ω′ ist called covariance stationary (or weakly stationary), if

(cs1) E[S2
t ] <∞ for all t ∈ I,

(cs2) ∃ m ∈ Ω′ : E[St] = m for all t ∈ I and

(cs3) cov(St, Ss) = cov(St+r, Ss+r) for all r, s, t ∈ I.

2One can define stochastic processes that are covariance stationary, but is not a series of
independently distributed random variables. For an example see Ströing (2012, 3.1.4).
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with (εt)t∈Z being white noise and φ ∈ {r ∈ R : −1 < r < 1}.1

‘AR’ is shortened for autoregressive, ‘1’ denotes the number of variables, and
the process is an easy example to model dependencies in empirical time series. It
is intended to model autocorrelation and, in most applications to empirical data,
positive correlations are produced by a choice of φ ∈ {r ∈ R : 0 < r < 1}. Figure
A.3 illustrates the produced autocorrelation in an example.
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Figure A.3: From McNeil et al. (2005, p. 130). A series sampled from an AR(1) process
with φ = 0.8 (left plot) with theoretical autocorrelations over the different lags (right
plot, dashed line), autocorrelations of the sampled series (right plot, vertical bars) and
95% confidence interval according to the sample size (right plot, dotted lines).

The statisticians’ motivation behind the AR(1) model is representative to a
standard approach that aims for a separation of empirical time series into a deter-
ministic and a noise component by statistical modelling. Several further models,
such as the MA -, ARMA -, ARCH - and GARCH processes follow this approach
and are empirically applied to risk models for liquid financial markets.2 As op-
posed to McAllister’s description, the pattern and the noise term are precisely
defined. To model an empirical time series with the AR(1) model the parameter
φ ∈ ]0,1[ can be uniquely estimated to describe a unique pattern and the volatility
of the white noise (εt)t∈Z can be uniquely estimated to describe the unique noise
part.

If an AR(1) model does not fully describe a specific set of empirical data we
would not admit that there is something wrong with the noise part or the pattern,

1The constraint φ ∈ {r ∈ R : −1 < r < 1} is stricter than most definitions of the AR(1)
process in the literature in which often only φ ∈ R is demanded. However, with our stricter
constraint the AR(1) model is always a causal process that converges with a solution

Xt =
∞∑
i=0

φiεt−i.

See McNeil et al. for details.
2‘MA’ denotes moving average and this model is very similar to the AR, but provides a easier

control of the autocorrelations for higher lags. ARMA is a model that is defined as a sum of a
AR process and a MA process. (G)ARCH models are further described and discussed in section
A.2.
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via the deterministic part, it describes. A scientist would interpret such a result
as an approximation for which he has to decide whether he considers the pattern
he assumed as detected or not. But there is not much room to alter the pattern
except for choosing or defining another statistical model.

Another approach to mathematically specify noise of an empirical time series
or signal that is is the decomposition into independent random drivers, which is a
very common technique in statistical analysis. I introduce this approach first in
an outline and discuss the consequences for a concept of noise. The general idea
behind this modelling approach is that the data points of the time series or signal
are described by a random variable X in a probability space (Ω,F ,P) and can
further be described as the result of a function

f : (Y1, Y2, ..., Yn)→ X

on n ∈ N, n ≤ 2, independent random variables (Yi)i∈{1,2,...,n} on the same proba-
bility space or on subspaces (i.e. (Ω,Fi,P) with Fi ⊂ F for all i ∈ {1, 2, ..., n}).1

The most common approach of the described kind in various scientific and
engineering contexts is the so called principal component analysis (‘PCA’) as in-
tuitively introduced by Pearson (1901). PCA models the random variable X as a
linear combination of its independent random drivers (Xi)i∈{1,2,...,n}

f : (Y1, Y2, ..., Yn)→ X, f : (Y1, Y2, ..., Yn) 7→ λ1Y1 + λ2Y2 + ...+ λnYn

with λi ∈ R, i ∈ {1, 2, ..., n}. Due to the linearity, PCA can make use of two
comparatively simple mathematical theories, which are numerically worked out
for the purposes of application in science and engineering: covariances2 of random
variables or statistical samples on the one side and linear algebra on the other
side. In the PCA the components (Yi)i∈{1,2,...,n} are called factors (motivated by
the linearity, of course) and are defined as pairwise orthogonal (i.e. 〈Yi,Yj〉 = 0 for
all i, j ∈ {1, 2, ..., n}, i 6= j, for a scalar product 〈 · , · 〉 : {Y : Y random variable
}2 → R) according the specific scalar product

〈 · , · 〉PCA : {(Y1,Y2) : Y1, Y2 real-valued random variable} 7→ cov(X1, X2).

1Note that (Fi){1,2,...,n} is not necessarily—and in fact in all useful cases—a filtration (i.e.
Fs ⊂ Ft for all s, t ∈ {1, 2, ..., n} with s < t), but fulfils another modelling purpose: whereas a
filtration is used to model the progress of knowledge along, for example, the time, the subspaces
(Ω,Fi,P) are introduced to model different risk drivers that are independent.

2Note that the correlation corr(X,Y ) ∈ {r ∈ R : −1 ≤ r ≤ 1}, which is the variance-normed
covariance, of two random variables X and Y describe the strength of the linear dependency
between these random variable. Even uncorrelated (i.e. corr(X,Y ) = 0) random variables can
be strongly dependent in various ways. For a discussion and examples see Ströing (2012, ch. 3).
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PCA is most often applied to multivariate empirical time series, empirical signals or
defined random variables ~X = (X1, X2, ..., Xn), n ∈ N, n ≥ 2, and the covariances
are applied to the time series, signals, or random variables of different dimensions.
Certain univariate empirical time series, empirical signals or stochastic processes
(Xt)t∈Z can, however, be modelled with a independent random drivers analysis,
such as PCA, for which the orthogonality is not defined for different dimensions.

For both cases, PCA as an approach to model a multidimensional or an one-
dimensional empirical time series or signal, simple examples may help to explain
the general idea of PCA and the approach of analysis of independent risk drivers
in general. I introduce examples from the modelling of financial market data due
to the very intuitive nature of dependencies in these data.

For the multidimensional case consider the price time series of two stocks that
are in some aspect considered to be related and are therefore significantly non-
independent concerning their price evolution. This relation can be that they share
a geographic home market (e.g. both are mainly active in France), a business
model (e.g. both are airlines) or their well-being depends on certain other market
influences (e.g. both depend on the prices of a certain commodity that is subject to
heavy price fluctuations itself). Due to this simple form of dependence, a positive
and significant correlation between the two price time series is detectable. The
dominant random driver according to a PCA on these data results in the modelling
of all uncertainty that both time series have in common. The second, orthogonal
random driver in the PCA models the remaining risk from all uncertain influences,
except this most driving factors. Another, more complex, but very illustrative
example of a PCA model for a multidimensional time series would be a bigger
portfolio of stocks, as the German DAX, which consists of the 30 biggest German
public limited company fulfilling certain criteria describing the tradability of their
shares. A PCA with the choice of some n ∈ N, n < 30, approximates the 30 real
dimensions of risk by a lower dimension of risk drivers that may be interpretable
(e.g. a German financial institutions factor, an global car sales potential factor,
an energy price factor and so on).

A one-dimensional example of a decomposition into independent random drivers
could be explained by modelling data of the financial market, too. Consider the
price time series of an international conglomerate. A model can reasonably de-
scribe this time series as the sample from a stochastic process, which is a function
on other stochastic processes that model the independent (or negligibly depen-
dent) random drivers. Those random drivers are semantically assigned to foreign
exchange rates, commodity prices, refinancing costs and others. Note that, strictly
speaking, this approach os useless as a model in isolation; it only makes sense in a
market with data from further assets that depend on the random drivers or these



A.1 Decomposition of Data into Patterns and Noise from the
Perspective of Statistical Modelling 199

random drivers themselves as isolated prices.
Why is the statistical technique of decomposition into independent random

drivers interesting for our analysis of noise in scientific data? In practice PCA is
applied in the following way: first, a number of PCA random factors n ∈ N is
chosen, second, the n most driving random factors are determined by eigenvalue
decomposition of the covariance matrix from the empirical time series or signal
that is aimed to be modelled; if n is not the maximum, that is the dimension of
the time series or signal in the multivariate case, the remaining components of
the empirical time series, empirical signal or random variable is left unexplained
by the model and therefore interpreted as noise. The point of interest to us is
that this noise component is uniquely determined after the choice of the number
of PCA random factors.

The analysis of independent random drivers is a widely used statistical tech-
nique in which the noise and the pattern are very explicitly distinguished and this
is another example against McAllister’s problem of an arbitrary decomposition
of scientific data into the pattern and into the noise part. The point I want to
highlight is that the common use of modelling techniques for scientific pattern
detection often implies a clear definition of the residual noise.

A proponent of McAllister’s criticism may stress the point that no princi-
pal objection to McAllister is given by the argument that the commonly applied
framework of statistical pattern detection precisely define the residual noise by
their models. However, these two cases are examples of how a large proportion of
pattern detection in science is based on a very restricted repertoire of established
methods. In a similar way in which we can easily identify a person with albinism
by his/her appearance with our senses, we can detect autocorrelations in a time
series from a scientific measurement. Our well-trained sense for the detection of
skin colour and our statistical knowledge are two sides of the same coin, because
they are both part of the shared epistemic background that guide our phenomenon
selection. But is the detection of a phenomenon not something very different than
the mere detection of a pattern in accordance with these shared epistemic back-
ground assumptions? No, in my view there is no reason to believe that.
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A.2 Volatility Clustering in Financial Market Data
as an Example of Phenomenon Selection1

Section Abstract
Volatility clustering is an example to illuminate various discussed aspects of phe-
nomenon selection. Volatility clustering can be observed with the naked eye in plots
of raw data. It can be tackled with approaches from different scientific fields and has
important implications for them. The mathematical explication of its pattern(s) is a
highly regarded, Nobel Prize awarded scientific task.

I discuss the example of a phenomenon from quantitative finance with implica-
tions for economics and psychology: volatility clustering and ARCH type models
that were rewarded with the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel in 2003.2 In part A.1 I discuss the common concept of
decomposition of a set of statistical data into some pattern and residual noise.
With the discussion in this section I aim to investigate a very specific example
of a statistical analysis according to this standard statistical procedure of pattern
detection. I focus on a scientific example of a widely discussed phenomenon to
highlight the import characteristics of phenomena in general. Main questions, in
accordance with our general discussion about phenomena, are: how theory-laden
are phenomena? Can phenomena be identified only on the grounds of statistical
pattern analysis? What makes scientific agents pick a phenomenon?

In a nutshell, ARCH type models extend the model of the (geometric) Brow-
nian motion, as used by Bachelier (1900), Merton (1973), and Black and Scholes
(1973), for returns of financial assets by an additional local volatility component for
risk applications instead of option pricing.3 Find a plot of the geometric Brownian
motion at figure A.4. Local volatility models have parameters to fit the simulated
absolute level of returns to market phases with high volatility due intensive trading
activities, and market phases with low volatility due to less trading activity. These
changes are observed in many financial data and are commonly listed under the

1I adapted plotting scripts from my diploma thesis (2012) to produce the plots in this section.
2See nobelprize.org (2003)
3These mentioned sources predominated the introduction of option pricing models and there-

fore established the (geometric) Brownian motion as an asset price model. Merton and Scholes
received the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel in 1997
(see nobelprize.org 1997).—Please note the very long time-gaps between the different publica-
tions and the awarding. Bachelier’s text was only poorly received by the contemporary scientists,
despite the fact that his instructor was Henri Poincaré. Paul Samuelson, receiver of the Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred Nobel in 1970, popularised Bachelier’s
text among economists in the 1950s. (cf. Taqqu 2001) The period of 24 years between the
publication of the Black-Scholes model and the reception of the Nobel honours can be explained
by the establishment of the model among practioners in the 80s and 90s.
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Figure A.4: Sample path of a geometric Brownian motion (‘GBM’) with drift µ = 0.08
and volatility σ = 0.20. The GBM makes use of the normal distribution to model
log-returns. The description of the axis indicate its use as an asset price model. See
figure A.5 (bottom) for a plot of the probability distribution function of the normal
distribution. A GBM (St)t∈R≥0 is usually defined as a stochastic differential equation
oooooooooooooooooooooooooodSt = µSt dt+ σSt dWt

with drift and volatility µ, σ ∈ R≥0 and (Wt)t∈R≥0 a Brownian motion, that is a time
continuous process with normally distributed, independent and stationary increments;
see Klenke (2008, ch. 21) for an introductory discussion.

so-called stylised facts of financial time series in the literature.1 The local volatility,
often also called volatility clustering, is the phenomenon we discuss in this exam-
ple from science. In a brief outline, volatility clustering is the phenomenon that
financial markets undergo calm phases of low absolute returns and hectic phases
of large absolute returns without any implication for the direction of the returns.

The scientific aim of ARCH type models is to explain and predict the return
distributions of financial assets under the assumption that these assets can be
described by a stationary stochastic process in sufficient approximation. Observa-
tions of real market data show that log-returns are not normally distributed, as
suggested by the mentioned classical asset return models introduced by Bachelier
or Black, Merton and Scholes. But the returns have a leptokurtic distribution
which imply more return outcomes close to the mean and more return outcomes
very far away from the mean than predicted by a normal distribution. Figure
A.5 illustrates this statistical behaviours found in financial data. Figure A.6 illus-
trates how the most often discussed ARCH type model, the GARCH(1,1) process,
explains leptocurtic heavy-tail behaviour of the financial data.

The Brownian motion as a model for financial price data has a theoretical
justification. By application of the Central Limit Theorem2 the Brownian motion

1See, for example McNeil et al. (2005, ch. 4.1.1).
2 In a nutshell, the central limit theorem states that the probability distribution of the sum∑
iXi of independent and identically distributed random variables X1, X2, ... with real values

and finite variance converges to a normal distribution. This theorem may not be intuitive, but
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Figure A.5: Top left: simple sketch from Fama (1965) to illustrate the findings in stock
market price data—the solid line shows the empirical probability distribution compared
to a normal probability distribution indicated by the broken line.
Top right: study from Tintner (1940), quoted by Mandelbrot (1963), showing a his-
togram of the fifth difference of historical monthly wool prices from 1890-1937 indicating
the non-normality features.
Mid left: The quantile-quantile plot from Eberlein (1998) based on daily NYSE return
data from the 1990s confirms the leptocurtic behaviour of the empirical probability dis-
tribution far away from the mean—so-called heavy tails occur.
Bottom: study from Geman (2002) showing a fitted leptocurtic density of daily returns
in the 1990s from the stock of Schering, a large German pharmaceutical company. The
hyperbolic model is one of many non-normal models to fit empirical stock prices.
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follows to be the appropriate model, if returns over a certain time interval (in many
applicatory cases daily returns) can be assumed to be pairwise independent. Due
to market efficiency pairwise independence—at least in approximation—is often
considered a reasonable assumption.

However, this assumption is misleading according to the available empirical
measurement data, the financial time series. As common properties of stock asset
price data show positively autocorrelated volatilities (or absolute returns) can be
found and are usually mentioned under the stylised facts. For the scientific aim of
ARCH type models it is important to note, that they do not aim for a prediction of
specific returns to aid routines for return maximisation. They explain and predict
return distributions based on historical time series of the asset in question. And
the crucial discovery by the development of ARCH type models is that the non-
normality of asset log-return distributions is caused by a certain local behaviour
of the volatilities.

For the sake of a thorough historical introduction we mention that the geo-
metric Brownian motion as a model of asset prices (see figure A.4) is not a very
good model from the perspective of the stylised facts. However, Merton (1973),
Black and Scholes’ (1973) aim for the discussion of this model does not only imply
the prediction and explanation of the stylised facts. They rather discuss the ful-
filment of practical requirements such as hedging routines that can be realised in
the Black-Scholes model, but cannot be realised with other models that may show
more empirically adequate modelling behaviour in accordance with the stylised
facts.

After these precedent introductory notes I introduce the ARCH type models in
further detail. ARCH is shortened for autoregressive conditional heteroscedasticity
and these models aim to explain statistical asset price behaviour of, for instance,
liquidly traded stocks. Scedasticity is a statistical term denoting the distribution
of error terms from a signal to which a model is applied to. Heteroscedasticity
denotes non-identically distributed error terms, and more particular error terms
with varying variances.1

On the background of the classical Brownian motion model to describe statis-
tical asset price behaviour in the case of ARCH this heteroscedasticity refers to

affirms the outstanding role of the normal distribution in many applications of statistics. It can
be applied to price time series, if we assume that the market prices are driven by sufficiently
small time atoms (for convergence) and in a world with bounded amounts of resources (to ensure
finite variances). However, the empirical results of, among other contributions, the ARCH type
models show that the assumption of the time atoms being driven independently of each other
is wrong. It can be shown that current market volatilities depend on earlier volatilities in the
market. See Klenke (2008, ch. 15.5) for a thorough mathematical discussion of the central limit
theorem.

1Find a statisticians introduction to scedasticity in Armitage and Colton (2005).
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Figure A.6: Top: 300 realisations of Z := (Zt)t∈N normally distributed Zt ∼ N (0,1) for
all t ∈ N.
Mid: realisations of GARCH(1,1) process X := (Xt)t∈N with α0 = 0.3, α1 = 0.4,
β1 = 0.3 and covariance stationary second moment based on the normally distributed
realisations (Zt)t∈N above.
Bottom: Empirical probability distribution of Z and X from the mid plot based on 107

realisations. Please note the logarithmically scaled second axis.

The top and mid plots explain why the distribution of the GARCH(1,1) process in
the bottom plot shows heavy tails. After an extremely large return in Z medium size
returns of Z become relatively large returns in X as well (e.g. t ≈ 90). After a series
of consecutive large returns of Z blow up effects with very large absolute returns in X
occur (e.g. t ≈ 230).
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the local changes in volatility that are subsumed under the error terms in the clas-
sical constant volatility model of a Brownian motion with its constant volatility
parameter. Nevertheless, ARCH type models tackle the phenomenon of volatility
clustering by modelling the volatility conditionalised on earlier realisations of the
volatility.1 That is, squared returns of the near future are stochastically modelled
positively correlated to recent realisations of squared returns. These squared re-
turns of ARCH are autoregressive in the sense that the expected value of future
volatilities change with the realisations of the process.2

Engle (1982) introduces ARCH motivated by rates of inflation in the United
Kingdom. Bollerslev (1986) expands the model to GARCH (Generalized ARCH) to
define a more empirically adequate model process with respect to runaway values
in realisations of the process, as will be explained more detailed below. We call
ARCH and later specifications and enhancements based on ARCH ARCH type
models. Further ARCH type models are defined to specify the autocorrelations of
the volatilities of return processes.

I introduce the original ARCH model.

Definition (ARCH process)

Be (Zt)t∈Z a stochastic process of iid.3 random variables with E[Zt] = 0 and
Var[Zt] = 1 for all t ∈ Z. The stochastic process (Xt)t∈Z is anARCH(p) process,
if it is strictly stationary4 and for all t ∈ Z and a strictly positive (σt)t∈Z

Xt = σt · Zt, (A1)

σ2
t = α0 +∑p

i=1 αiX
2
t−i (A2)

holds with α0 > 0, αi ≥ 0 for i = 1, ..., p.

The volatility σt scales with earlier realisations of the processes variance X2
t for all

t ∈ Z and therefore models the volatility clustering. In many discussions in the
literature the parameter choice p = 1 is chosen. Plot A.7 illustrates the statistical
behaviour of the ARCH process. Note the specific modelling results of the volatility
clustering in form of the autocorrelation function in part (d) of figure A.8.

An enhanced version of ARCH, called GARCH, is widely considered to describe
the empirical data more appropriately with sufficient pragmatic simplicity.

1Find a more elaborated mathematical treatment in Ströing (2012, ch. 3.2). For proofs of
mathematical propositions I refer to this text.

2For another introduction see McNeil et al. (2005, ch. 4.3). For a more general introduction
into autoregressive processes see Brockwell and Davis (1991, ch. 3).

3The common abbreviation ‘iid’ stands for independent and identically distributed.
4Be I a set that is closed under an addition operator + : I × I → I. A stochastic process

(St)t∈I is called (strictly) stationary, if L[(St)t∈I ] = L[(St+s)t∈I ] for all s ∈ I.
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Figure A.7: Illustrations of an ARCH(1) process from McNeil et al. (2005, p. 140) with
α0 = α1 = 0.5.
Top left (a): realisations Xt, t ∈ {1, 2, ..., 1000}.
Top right (b): volatilities σt, t ∈ {1, 2, ..., 1000} of realisations.
Bottom left (c): autocorrelations of the realisations from (a) to lags 0 to 30.
Bottom right (d): autocorrelations of the squared realisations from (a) X2

t of lags 0 to
30. The dashed line shows the true form of the autocorrelations that was analytically
inferred.
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Definition (GARCH process)

Be (Zt)t∈Z a stochastic process of iid. random variables with E[Zt] = 0 and
Var[Zt] = 1 for all t ∈ Z. The stochastic process (Xt)t∈Z is a GARCH(p,q)
process, if it is strictly stationary and for all t ∈ Z and a strictly positive (σt)t∈Z

Xt = σt · Zt, (G1)

σ2
t = α0 +∑p

i=1 αiX
2
t−i +∑q

j=1 βjσ
2
t−j (G2)

holds with α0 > 0, αi ≥ 0 for i = 1, ..., p, βj ≥ 0, j = 1, ..., q.

Parameter choices are most often p = q = 1. Note the illustration in figure A.8
and in particular the autocorrelation function in part (d).

IGARCH (Integrated GARCH), coined by Franses (1995) but already indicated
by Engle and Bollerslev (1986), is constrained by a pathological parameter choice—
for clarification see the definition of GARCH process below—fulfilling

p∑
i=1

αi +
q∑
i=1

βi = 1.

This parameter choice is motivated by empirical analysis of asset price data and
the need for respectively strong autocorrelations of the squared log-returns in mod-
elling, but the process has a unit root and therefore non-stationarity of the process
can be shown.1 Without the property of stationarity ARCH type models cannot be
applied reasonable. The reason is that statistical estimators of probability distri-
butions and auto-dependencies in time series can be defined reasonably only if the
sample data is assumed to be described by a strictly stationary process. Otherwise
the specific non-stationarity, that is the change of the probability distributions and
auto dependencies in the stochastic model process over time need to be described
specifically. This endeavour calls for another box of non-trivial statistical tools
than the ARCH approach delivers.

As a further approach to model the observed data more adequately FIGARCH
(Fractionally Integrated GARCH) is introduced by Baille, Bollerslev and Mikkelsen
(1996). In the FIGARCH processes class autocorrelations of volatilities can be
modelled with long-range dependence, that is an only hyperbolic decay of auto-
correlation in time, as already defined (p. 115). This long-range dependency of
autocorrelations is indicated by several empirical studies of market data2.

1For the empirical evidence and parameter estimators to find these estimations see Franses
(1995). For a statistician survey on unit roots at stochastic processes, see Box and Jenkins (1976,
ch. 7.5).

2As also mentioned by Baille et al. (1996) examples of such studies are Baillie and Bollerslev
(1989), Bollerslev (1987), Hsieh (1989), and McCurdy and Morgan (1988).



208 APPENDIX

Figure A.8: Illustrations of a GARCH(1,1) process from McNeil et al. (2005, p. 147)
with α0 = 0.5, α1 = 0.1 and β = 0.85.
Top left (a): realisations Xt, t ∈ {1, 2, ..., 1000}.
Top right (b): volatilities σt, t ∈ {1, 2, ..., 1000} of realisations.
Bottom left (c): autocorrelations of the realisations from (a) to lags 0 to 30.
Bottom right (d): autocorrelations of the squared realisations from (a) X2

t of lags 0 to
30. The dashed line shows the true form of the autocorrelations that was analytically
inferred.
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It should further be mentioned, that the family of ARCH type models is more
widely discussed and several further models in this family are introduced. For an
overview see the glossary by Bollerslev (2008).1 In addition to the development
of stochastic processes to model volatility dependencies in financial time series
by ARCH type models extensions to multivariate models are introduced, as for
instance the Multivariate GARCH model to model markets of more than one asset
that have positively, negatively or not correlated log-returns with each other. (cf.
McNeil et al. 2005, ch. 4.6)

I choose the ARCH type models to discuss phenomena in science due to the
very apparent relation between the phenomenon, which is the volatility clustering,
and the statistical patterns, which are mathematically explicated above. We find
some very standard characteristics of phenomena and patterns in this example:

(a) The phenomenon of volatility clustering can be described without the use
of vocabulary that is connected to some empirical theory. It is solely based
on the data of market prices as a time series in any form. That is why
it is mentioned under the common stylised facts of financial data. Simple
illustrations of return time series show this stylised fact to the naked eye
without any mathematical explication.

(b) The concrete patterns corresponding to the phenomenon in different sets
of data are not completely identical. In the case of different asset classes
or markets, the patterns may slightly differ. To say it in other words, the
estimated parameters α0, αi, i ∈ {1, ..., p}, (and βj, i ∈ {1, ..., q}) of the
(G)ARCH model are significantly different in sets of data from different asset
classes, different historical phases or different markets.2 These differences
are too large to be just explained by measurement inaccuracies. However,
in the economists view all these cases still count intuitively as instances of

1To say it more frankly, the development of ARCH type models is promoted by many re-
searchers, as the introduction of the referred glossary indicates. The topic may be appealing due
to the relative simplicity of model construction, the empirical explanatory power and empirical
applicability to log-return time series, as well as the non-trivial mathematics, that comes into
need for proving crucial properties of the models. To proof for instance the existence of second
and forth moments, and covariance stationarity (see p. 195) under certain constraints in the
parameter choices stochastic recursion equations are used. These were explicitly discussed by
Brandt (1986) and goes back to earlier works by Kesten (1973). For details on this point see
Ströing (2012, proposition 3.2.6) and McNeil et al. (2005, p. 141–142).

2Chou (1988) investigates weekly return data of a New York Stock Exchange value-weighted
index from 1962 to 1985. His estimations of the α and β of the GARCH(1,1) model signifi-
cantly differ for different time intervals before and after 1974. Malkiel’s (1979) and Pindyck’s
(1984) hypothesis about the rising investment uncertainty in the overall market around 1974 is
a scientific explanation for this change of market behaviour in general, and volatility clustering
in particular. Franses and van Dijk (1996) show estimation results for GARCH(1,1) for weekly
returns from main indices from different European countries from 1986 to 1989. The parameters
α and β differ significantly, too.
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the one phenomenon of volatility clustering. Thus, unlike other phenomena,
such as the melting point of the elements, we face clear indications that the
phenomenon of volatility clustering is detected by a concrete pattern that
is not discrete in the mathematical sense and therefore vague to a certain
degree. In opposition to the following point (c), this vagueness is, in principle,
not caused by the scientists’ specific model choices, instead it is caused by
the data itself.

(c) Scientists developed a variety of different ARCH type models to further spec-
ify the pattern that corresponds to the phenomenon of volatility clustering.
Therefore, the actually defined concrete patterns have approximative fea-
tures, which is not generally uncommon for many mathematically specified
concrete patterns in science. This is an easily comprehensible feature of
modelling results in scientific fields in which scientists face a principal lack of
data to define more refined models based on solely empirical grounds, such
as in social and economic sciences. However, the heterogeneity of the defined
models is a matter of practising science and producing conveniently appli-
cable results rather than of the pattern in question in general. In the case
of ARCH type models one may be able to define an “overall”, very cumber-
some, model with many parameters to incorporate all statistical effects as
descibed by each of every ARCH type model. If completely successful, this
pattern would be the general pattern of volatility clustering.

Based on these facts I want to further discuss the example. If (a) is true, how
then can volatility clustering be a phenomenon and many other arbitrary patterns
in time series of asset prices do not correspond to any phenomenon?—This is the
question McAllister raises (6.1). Even if (a) is true, asset prices have an obvious
empirical interpretation that is shared by every scientist of the relevant field: prices
are caused by investors’ decisions, stock market infrastructure, macroeconomic
circumstances, implemented algorithms and other influences; all these influences
take place in a very large and complex world of many market participants. This
shared empirical interpretation of the data implies certain expectations on the
time series of asset prices, such as the level of tolerance against arbitrary statistical
effects and noise that is deemed insignificant, stationarity of a modelling process,
and boundaries of statistical values like the drift and volatilities.

Against the background of these shared expectations about the empirical be-
haviour of asset markets volatility clustering is a phenomenon because it is neither
an obvious implication of the common empirical interpretations nor do these em-
pirical interpretations exclude the observed volatility clustering. This phenomenon
is something that has to be explained in addition to the statistical behaviour of
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asset price data that can usually be explained be the mentioned common empirical
interpretations that are shared by all scientists of relevant fields.

Furthermore, the other way round, volatility clustering brings interesting im-
plications for the different relevant scientific fields with it. Some of these can be
outlined by the following questions: is volatility clustering consistent with market
efficiency, as introduced by Fama, in the field of economics?1 What does volatility
clustering, which is in most parts caused by the decisions of human traders, tell us
about herding behaviour and applied rationality among human beings in the field
of psychology? To conclude, volatility clustering is a phenomenon because it is
interesting due to its causational relations and implications by empirical influences
and for different scientific theories and even different scientific fields. Furthermore,
its pattern is easily detectable with the naked eye in plots of market data. However,
the analysed set of data has to be appropriately modified to log-returns2

The characteristics of volatility clustering mentioned with (b) and (c) indicate
that the concrete patterns that correspond to it are defined by certain boundaries,
which can be mathematically specified, or are even vague. These boundaries can be
expressed in certain parameter choices of the ARCH type models. The definition
of acceptable boundaries for a certain financial time series to explicate the pattern
of volatility clustering is no simple task. To do this may even not be possible in an
observer-independent way. To use the mathematical vocabulary proposed by the
ARCH process, one scientist may consider a time series at which we can estimate,
for example, α1 = 0.1 showing volatility clustering and another scientist may not
be willing to say so. However, to clarify philosophical aspects of boundary cases

1Market efficiency is a widely discussed economical hypothesis for which a proper definition
is a subject of debate itself. Fama’s (1965) introductory explanation may be sufficient to outline
the general idea:

In an efficient market, competition among the many intelligent participants leads
to a situation where, at any point in time, actual prices of individual securities
already reflect the effects of information based both on events that have already
occurred and on events which, as of now, the market expects to take place in the
future. In other words, in an efficient market at any point in time the actual price
of a security will be a good estimate of its intrinsic value.

The literature about the efficient markets hypothesis usually refers to Fama’s (1970) later and
specific discussion of it. Concerning volatility clustering one can raise the question whether
significantly different temporal volatility clusters can occur in efficient markets in which “actual
prices” already “reflect the effects of information”. Critics, including Shiller (1981; 1981), state
that the volatility in financial markets tends to be too high to be explained solely by changes in
the “intrinsic value” and available information about it. Keynes (1936) criticises the idea of a
stock price reflecting its intrinsic or fundamental value by comparing stock markets with casinos
and traders’ preferences for certain stocks are driven by criteria that are better comparable to
beauty than to the application of a rational calculus on available information.

2The returns of a geometric Brownian motion in the Black-Scholes model are log-normal
distributed and the log-returns of a geometric are normally distributed. Thus, ARCH type
models model log-returns of financial assets. See figure A.9 for illustration. See Ströing (2012,
ch. 2.3.3) for a brief discussion on log-returns with example.
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Figure A.9: Probability distribution functions of the normal distribution (left) and log-
normal distribution (right).

and is concerning phenomena is another question we do not want to discuss here.
But at already stated above, that volatility clustering is a phenomenon is not an
observer-dependent proposition, but borderline cases may are so.

Against the background of characteristics (b) and (c), and the mentioned vague-
ness, there is still no problem in talking about the phenomenon of volatility cluster-
ing. All the patterns that are defined by different mathematical models according
to (c) with differently estimated parameters according to (b) have to be put to-
gether in one class to define the general pattern of volatility clustering. No scientist
would disagree on this.

We already discussed the case of the—mathematically rather simple—concrete
pattern for the exemplary phenomenon of the melting point of lead. (p. 149 f.) I
argued that an ideal pattern in the realists’ sense is a reasonable approach to ex-
plain the ontology of phenomena based on this example. The vagueness of volatility
clustering, as indicated by characteristic (b) seems to undermine this interpreta-
tion of phenomena prima facie. However, as already elaborated on, vagueness is
not a problem for the ontological classification of a phenomenon. (cf. 6.1)

In our example of volatility clustering, we may not interpret data reliability as a
critical subject prima facie. If we consider time series of asset prices (St)t∈{1,2,....,T},
T ∈ N, to be given in a reliable way via market quotes, then we can simply calculate
the respective log-returns Rt = ln

(
St

St−1

)
for all t ∈ {2, 3, ...., T} and check for

volatility clustering by estimating the parameters of an ARCH type model.
On the other hand, one can argue that the market quotes themselves do not

have to be reliable in every case. Due to market incidents the liquidity of a traded
asset can be insufficient in certain time windows or, to say it in other words,
not enough sell and buy activities take place to produce sufficiently reliable prices.
Another scenario is that a stock can be subject to extreme or untypical price move-
ments by sudden strategic actions of investors, managers or politicians, or a rapid
change of available information; figure A.10 shows two exemplary stock price time
series that motivate this discussions. Concerning quantitative risk management
for banks, funds and investors the interpretation of a typical and untypical price
movement, and whether this distinction is useful or even justified in principle is
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subject to discussions of practioners in the field.1

So, even in our example that does not require measurements comparable to
those usually designed for various fields in experimental physics and where the
pattern is fully mathematically specified, data reliability is a point of concern in
our discussion. Volatility clustering can simply be detected by the application of
statistical analyses to reliable sets of data, but the data reliability for asset prices
is a subject of a—not very intricate—discussion on its own.

I briefly summarise the results from the discussion about the phenomenon of
volatility clustering. To classify volatility clustering as a phenomenon does not
depend on a specific theory an observer may favour, but it is not completely
observer independent either. The community of scientists from the relevant fields
share some very basic assumptions and interpretations, in our case the influences on
asset price volatilities, and volatility clustering is accepted as a phenomenon since
it is an empirical finding observable with the naked eye that cannot be explained
by the assumptions and interpretations that are shared by the scientists. Another
aspect we focussed on is that the reliability of the relevant sets of data is not a
trivial matter in our example regardless the absence of experimental design and
measurement routines. The mathematical explication of volatility clustering is a
non-trivial task on its own and is aimed to further specify the concrete patterns
and the general pattern of volatility clustering.

1 This is a subject matter often criticised by econophysicists. Bouchaud (2008), and Bouchaud
and Potters (2003, ch. 4 and 6) present a general critique of the economists and mathematicians
lack of formulating models for the data as they really are. The natural scientists aim to build a
proper model for the available market data is often corrupted by economists fundamental theo-
retical principles that may not and even should not be empirically justifiable. Another problem
is the interest to fulfil certain criteria of elegance or rigour that is common in mathematical
communities instead of choosing the best empirical model. Furthermore, practioners interests to
discuss models that artificially lower risks and raise potential for financial gain comes into play,
too. The econophysicists’ criticism of the specific custom to neglect certain untypical data points
in time series from market data is expressed by Mandelbrot:

When the weather changes and hurricanes hit, nobody believes that the laws of
physics have changed. Similarly, I don’t believe that when the stock market goes
into terrible gyrations its rules have changed. It’s the same stock market with the
same mechanisms and the same people. (2004)
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Figure A.10: Daily closing prices of stocks as quoted by Yahoo! Finance. Prices are
adjusted for dividend payments and stock splits.—This is a common technical routine
to gain more comparable data. Both stocks are listed in the German DAX since July
1988 and are therefore suitable examples of liquidly traded stocks.
Left: Prices for Volkswagen AG from mid-June 2008 to mid-May 2012. Due to a large
amount of shares that were hold by Porsche Automobil Holding SE (up to 74.1%, cf.
Schrinner 2008), including call options) and the fact that the federal state of Lower
Saxony held 20% of all shares, short sellers were forced to pay extremely high prices
for the remaining available stocks at the market in October 2008. The management of
Porsche aimed for an acquisition of Volkswagen but later failed due to financing issues.
(cf. Waldermann 2009) The resulting market scenario is referred to as short squeeze and,
in this occurrence, reached its peak at October 28th 2008.
Right: Prices for Commerzbank AG from mid June to mid-June 2008 to mid-May 2012.
These stock prices are heavily influenced by the financial crisis of 2007–2008 and the
subsequent European debt crisis. The financial crisis resulted in many defaults in the pri-
vate and in the banking sector. The first heavy decrease of the price in autumn 2008 can
be explained by the default of the American investment bank Lehman Brothers Holdings
Inc. in September 2008. The US Government decided against the bail-out of the insti-
tution. Investors were alarmed that financial institutions are not safe from defaulting.
The second heavy decrease of the price in mid-2011 can be explained by the European
debt crisis. Market participants raised their believed probabilities that some European
states, including Greece, Ireland and Portugal, default. Since the Commerzbank is a
debtor of these states to a certain amount, a decrease of its value is reasonable.
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Mathematical Notation

The mathematical notation used in the text is listed below. These symbols origin from
different branches of mathematics, such as set theory, analysis, theory of probability and
stochastic processes, and statistics. I list only symbols that may be ambiguous and are
not explicitly introduced in the text elsewhere.

{a, b} set with elements a and b
N set of natural numbers {1, 2, 3, ...}
N0 natural numbers unified with {0}
N≤a,N≥a natural numbers less/greater than or equal to a ∈ R
Z set of integers {...,−2,−1, 0, 1, ...}
Q set of rational numbers, i.e. z1

z2
with z1, z2 ∈ Z

R,R≥0,R>0 set of real -/non-negative real -/positive real numbers
∅ empty set {}
2M power set (i.e. set of all subsets) of a set M
|M | cardinal number of a set M
M \N, set difference
M ⊂ N,M ⊃ N set M is a strict subset/strict superset to set N
M ⊆ N,M ⊇ N set M is subset or identical/superset or identical to set N
]a,b[, [a,b], ]a,b], [a,b[ a, b,∈ R: open/closed/half-open interval on R
(e1, ...,en) ordered list of n ∈ N elements from (ei)i∈{1,...,n}
An ordered list of n ∈ N elements from set A
M ×N Cartesian product of sets, i.e. {(m,n) |m ∈M,n ∈ N}
~v variable for vector/ordered list (transposition indistinct)
(Xi)i∈I family {Xi : i ∈ I} of mathematical objects

with an index set I
|x| absolute value of an x ∈ R
X ∼ µ random variable X has a distribution µ

in some unambiguous probability space
L(X) distribution of random variable X

in some unambiguous probability space
N (µ, σ2) normal distribution in the measurable space (R,B(R))

with expected value µ and variance σ2
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var(X) variance of a random variable X
cov(X,Y ) covariance of two random variables X,Y , or

estimated empirical covariance of two time series
(Xt)t∈{1,2,...,N}, (Yt)t∈{1,2,...,N}, N ∈ N

corr(X,Y ) correlation of two random variables X,Y , or
estimated empirical correlation of two time series
(Xt)t∈{1,2,...,N}, (Yt)t∈{1,2,...,N}, N ∈ N

EP[X] expected value of a random variable X
under probability measure P

E[X] expected value of a random variable X,
if applied probability measure is unambiguous
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