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2 Summary

Summary

During the transit of seismic waves the earth and the ground is not only translating but

it also rotates. Traditionally seismologists could only measure translations along three

cardinal axes but earthquakes also generates tilt motions which rotate the ground. This

fact was predicted by the linear elasticity theory but it took more than thirty years of

technological progress in the instrumentation to achieve the sensitivity needed to record

this tiny but extremely important ground motion. The most reliable instruments to cap-

ture rotational motions are optical gyroscopes. The large ring lasers (RLG) provide top

sensitivity and are able to detect any M7+ earthquake. The new portable fiber optic

gyroscopes (FOG) specifically designed for seismology, at the expense of a lower sensi-

tivity, provide the great advantage of portability, which is a mandatory requirement for

in-field measurements. We have, since at least ten years, consistent four components (three

translations and one vertical rotation rate) observations from the G-ring in Wettzell, Ger-

many. These observations permitted to establish the importance of colocated rotational

and translational measurements for the study of earthquakes and ocean generated noise.

Still at the beginning of this Ph.D. project there was need of confirming and expanding

the observations to di↵erent sites, possibly in a di↵erent structural context and exploring

higher amplitude signals and closer epicentral distances with a large RLG. Broadband six

component (6C) measurements from a portable rotational sensor of local earthquakes were

missing too. These open questions are faced in this work whose chapters are constituted by

scientific publications in chronological order. From 2015 I contributed to the experimental

activity, construction and data analysis of a new RLG located in gran Sasso underground

laboratories named Gingerino. The first three chapters regard the measurements of the

Gingerino RLG instrument inside the Gran Sasso, in a deep underground environment. In

the first chapter I report the detection and the analysis of the first underground rotational

signals from a tele-seismic event. The characterization of the instrument as well as an
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analysis of the noise of the installation site can be found in chapter two. The analysis of

the data from the 2016 central Italy seismic sequence is presented in chapter three. In this

chapter we report a large dataset of events that a are studied with new methods based on

the wavelet decomposition of the signals. The last chapter shows the results of the first

field campaign with 6C observations (three rotational and three translational degrees of

freedom) during the aftershocks of the MW 6.1 Norcia earthquake of 2016. This configu-

ration can be alternative to a seismometer array; this is an undeniable logistic advantage

for future applications in extreme environments as well as in planetary seismology. By

the time of writing this abstract we have three large ring laser gyroscope operative in the

world: G-wettzell, Gingerino and the new ROMY, a four components RLG that allows the

reconstruction of the ground rotation vector with a record sensitivity. We expect then very

soon advances in this research field thanks to the recent developments in instrumentation

and processing techniques, some of them are already present in this work.
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2 Introduction

Rotational seismology is the field of study devoted to the investigation of all aspects of

rotational motions induced by any kind of seismic signal e.g. earthquakes, explosions and

environmental noise. It plays an important role in a wide range of disciplines. These vary

from various branches of seismology to earthquake engineering and seismic exploration.

The impact on seismology itself is expected to be large and involving many aspects like

seismic tomography [Bernauer et al., 2012, Wassermann et al., 2016]; point and finite source

inversion [Donner et al., 2016, Donner et al., 2017]; volcano source inversion [van Driel

et al., 2015], scattering phenomena constraints, wavefield reconstruction, tilt-translation

coupling.

The results of modern seismology are primarily based on observations of translational

ground motions and strain. However, since at least two centuries, it was possible to proof

theoretically the existence of three components of rotational ground motions around three

orthogonal axes. The lack of an adequate broadband instrument delayed their observation

until today. This thesis deals with two aspects of rotational seismology, the first is the

instrumental aspect, the second one is about the observation and the interpretation of

colocated measurements of ground rotation and translation. The introduction to this work

guides the reader trough an historical overview of the developments in instrumentation

and outlines fundamental works on the observation of rotational ground motion. Like in

many other fields of science theory can predict some aspects of nature that can only be

proven experimentally by suitable instruments. This can happen years decades or centuries

after the prediction of a particular phenomenon; a great recent example is the detection of

gravitational waves ([Phy, 2016]). In a similar way also the existence of ground rotations

was predicted by linear elasticity theory but the technological limits of the instrumentation

hindered their detection for several decades.

The technological deficit include, in chronological order:

• the sensitivity of the rotational sensors.
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• the number of rotational components that could be recorded at the same time.

• the portability in order to permit an in-field deployment of rotational sensors.

Two fundamental questions arise: why measuring rotations in seismology and how ?

0.1 Basic theory

Here the basic theoretical background of seismic rotations is described. We use there-

fore classical elasticity approximation where the symmetry of stress and strain tensors

is assumed. We also remark that, as pointed out by [Lee et al., 2009], some near field

measurements report observations of rotational motions that are one or two orders of mag-

nitude larger than what expected from linear elasticity. In addition some theoretical works

suggests that in granular materials or in cracked continua, the asymmetries in the stress

and strain tensors can cause rotations others than those predicted by linear elasticity [Pu-

jol, 2009, Teisseyre, 2012].

Following [Cochard et al., 2006a] and [Aki and Richards, 2002], in the framework of linear

elasticity and the infinitesimal deformation assumption, the displacement of a point in x

is related to that of a neighboring point x+ �x by

u(x+ �x) = u(x) +G�x

= u(x) + "�x+⇥�x

= u(x) + "�x+ ✓ ⇥ �x

(1)

where the second-order strain " and rotation ⇥ tensors are the symmetric and antisym-

metric parts of the displacement gradient G and ✓ represents the rotation vector, the angle
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of rigid rotation generated by the seismic perturbation.

✓ =
1

2
r⇥ u(x) =

1

2

0

BBBB@

@u
z

@y
� @u

y

@z

@u
x

@z
� @u

z

@x

@u
y

@x
� @u

x

@y

1

CCCCA
. (2)

In other words if we want to characterize the change in the elastic medium around

x we must measure three components of translation, six components of strain and three

components of rotation. Let’s recall Hooke’s law

�ij = ��ij

3X

k=1

"kk + 2µ"ij (3)

here �ij and "ij are generic components of stress and strain tensors,
P3

k=1 "kk = r · u, �,

µ, are the Lame’ constants and �ij is the Kroneker delta. Let’s suppose the free surface on

the xy plane and assume the zero traction boundary condition, a direct application of eq.

3 in a homogeneous, isotropic medium on the free surface gives us

@ux

@z

= �@uz

@x

;
@uy

@z

= �@uz

@y

;
@uz

@z

= � �

�+ 2µ

✓
@ux

@x

+
@uy

@y

◆
. (4)

from eq. 2 and 4 we can derive

✓x =
@uz

@y

; ✓y =
@uz

@x

; (5)

and

✓z =
1

2

✓
@uy

@x

� @ux

@y

◆
. (6)

these are the expressions for rotation angles respect to displacement gradient elements. In

order to start from the simplest condition, we treat now the case of plane wave propagation
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and the zero traction boundary condition i.e. at the free surface.

0.1.1 Rotations by Love waves

Love-waves are horizontally polarized surface waves, at constant velocity (which is not the

case of Love waves in a multilayered medium), the displacement for a wave propagating

along the X-axis can be expressed by

u(x, y, z, t) = (0, uy(t� x/cL), 0) (7)

with cL being the horizontal phase velocity. Love-waves induce rotations around the Z-axis

that can be expressed using eq. 2 and 4 by

✓z =
1

2

@u̇y

@x

= � u̇y(t� x/cL)

2cL
(8)

and in rotation rate

⌦z =
@✓z

@t

= � üy(t� x/cL)

2cL
(9)

The transverse acceleration and rotation rate about Z-axis are in phase and scaled by a

factor �1/2cL. A ring-laser installed horizontally to the ground free surface is in principle

sensitive only to rotations about vertical axis, that means, only to Love and S waves that

are horizontally polarized i.e. SH waves.

0.1.2 Rotations by Rayleigh waves

Rayleigh waves are surface waves characterized by a retrograde elliptic particle motion

that takes place in the vertical plane containing the propagation direction. This kind of

waves can be recorded both on the vertical and longitudinal component of a seismometer.

For a half space Poisson solid we can express the displacement caused by a Rayleigh wave
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propagating along the x-axis at zero depth by [Lay and Wallace, 1995]

ux = �0.42Ak sin(!t� kx)

uz = 0.62Ak cos(!t� kx)
(10)

Where A is the incident P-wave scalar potential for a plane wave characterized by the

frequency ! and the wavenumber k. In velocity and acceleration we have:

u̇x = �0.42Ak! cos(!t� kx)

u̇z = �0.62Ak! sin(!t� kx)
(11)

üx = +0.42Ak!2 sin(!t� kx)

üz = �0.62Ak!2 cos(!t� kx)
(12)

If we use eq. 2 we can obtain the rotation angle around y axis

✓y = �0.62Ak2 sin(!t� kx) (13)

and the rotation rate by di↵erentiating:

⌦y = ✓̇y = �0.62Ak2
! cos(!t� kx) (14)

Considering the observables {u̇x, üx} and {✓y,⌦y}, we calculate the ratios

üx

⌦y

= �0.42

0.62

!

k

sin(!t� kx)

cos(!t� kx)
(15)

üx

✓y

= �0.42

0.62

!

2

k

= �0.677
⇣
!

k

⌘
! = �0.677cR! (16)
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u̇x

⌦y

= 0.677/k (17)

where !
k
= cR by definition is the phase velocity of the Rayleigh wave. From eq.15 we

see that the acceleration in x-direction and the rotation rate in y-direction are shifted by

⇡/2 and scaled by the Rayleigh waves phase velocity. Eq.16 shows that x-acceleration is

in phase with y-rotation angle and scaled by frequency and phase velocity. The eq.17 says

that the x-velocity and y-rotation rate are in phase and scaled by the wavenumber. Finally,

comparing the z-acceleration to the y-rotation rate we get

üz

⌦y

=
!

k

= cR (18)

i.e. the two observables are in phase and scaled by the phase velocity of the Rayleigh

wave cR. The previous derivation is valid for an homogeneous half space where a solution

to the wave equation exists and propagates along the free surface and the ground motion

at one station can be described by the equations above. [Marano and Fah, 2014] showed

that if we account also for the ellipticity in the description of the ground motion, still in

the comparison of eq. 18 this term cancels out, so in the end if we compare the vertical

acceleration to the transverse rotation rate (tilt) we get rid of the ellipticity unknown and we

can still estimate the phase velocity for a single Rayleigh wave. We know from observations

that Rayleigh waves exhibit a dispersive behavior that is clear in the seismograms, specially

in the vertical component of a seismometer, where mainly Rayleigh surface waves should

be observed. This is evident for example from the data recorded by the ROMY ring laser

after the 23-01-2018 Alaska MW 7.8 earthquake. In the Fig. 1 in fact we can clearly see

how, also for the rotational part of the wave-field the period decreases with time after

the Rayleigh waves onset. We know that this behavior is generally driven by the increase

in Vp and Vs velocities with depth in the earth, as well as the presence of multi layered
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structures. The Rayleigh waves in multilayered media were studied e.g. by [Haskell,

1953] with the important result of being then able to calculate synthetic phase velocity

dispersion curves for Rayleigh waves. In rotational seismology the dispersion curves are

experimentally derived assuming plane wave propagation, the principle of superposition

and a bandpass approach that allows us to estimate via amplitude ratios in di↵erent bands

the relation C = C(f) for Rayleigh and Love waves. The di↵erence that occurs between

Love and Rayleigh waves is that for Love waves their existence implies automatically the

dispersivity. This is not the case for Rayleigh waves where the dispersivity is due to the

change in elastic properties of the medium with depth.

Figure 1: Rayleigh component (acceleration and rotation rate) of the Alaska MW 7.8
23/01/2018 Earthquake recorded at the ROMY station
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0.2 Why measuring rotations in seismology ?

Seismology is a science based on the observation of ground motions. With suitable instru-

ments seismologist follow the motion of a particle placed at the position x = (z, y, z) at the

time t0 in a defined reference frame. When the ground moves, this particle is dislocated,

at time t, in the position defined by the coordinates u + x = (u + x, v + y, w + z). The

quantity defined by u = u(x, t) is what we want to measure i.e. the ground displacement.

The previous is known as Lagrangian formulation and it is the approach that we use when

we perform measures of the ground motion. In fact what we do is to attach to that ideal

particle e.g. a seismometer or other instruments. In seismology two types of measures are

routinely implemented, translations and strain. The observation of translations is based on

the inertial seismometer. The observation of the displacement of two nearby points on the

Earth is called strain, observed by strain meters based on optical or mechanical principles.

Then, as [Aki and Richards, 2002] states at pag. 598

”In principle a third type of measurement is needed in seismology and geodesy,

namely rotation”

In earlier times there were attempts to measure and investigate the rotational ground

motions. [Ferrari, 2006] reports a first attempt to measure the so called ”vortical motion”.

P. Filippo Cecchi in 1876 built two models of an electrical seismograph with sliding smoked

paper, dedicated to record three-component translational motions and also the rotational

movements from earthquakes. That experiment did not show any evidence of ground

rotations. Nevertheless there were examples of obelisks and monuments rotated after

strong earthquakes. This was suggesting probably a much larger amplitude for rotations.

However [Lee et al., 2011] show that those e↵ects could be caused by only simple linear

accelerations. [Schlueter, 1903] provides a more quantitative intuition of the utility of
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measuring horizontal tilt (rotation) and vertical acceleration:

Nun knüpfen sich hieran interessante Folgerungen. Würde man im Stande

sein, an einer Stelle der Erdoberfläche für die langen Wellen zu gleicher Zeit

die Neigung und die Vertikalekomponente der Bewegung zu messen, so würde

dadurch o↵enbar die Wellenlänge und mit Hinzuziehung der Schwingungsperi-

ode auch die Fortpflanzungsgeschwindigkeit der über die Erdoberfläche dahinge-

henden Neigungswelle bestimmt sein. ...So würde man also eine Methode haben,

um die wichtige Konstante der Fortpflanzungsgeschwindigkeit an jedem beliebi-

gen Ort der Erdoberfläche unabhngig von Beobachtungen an anderen Orten zu

bestimmen.

The translation of this passage is:

Now interesting conclusions follow. If one was able to measure the inclina-

tion (tilt) and the vertical component of the motion at the same time at a

point on the surface of the Earth for the long waves, the wave length and the

propagation velocity of the inclination would be determined by the oscillation

period, thus we would have a method of determining the important constant

of the propagation velocity at any place on the Earth’s surface, independently

of observations at other places.

In this fragment the author anticipates the importance and the potential of point-like

colocated measurements based on observations of vertical accelerations and horizontal tilts

(rotations). Note that also an important seismologist like [Richter, 1958] reasoned that the

rotations were not only negligible by theory but also that their non-existence was already

confirmed experimentally. Years later this claim was confirmed to be false.
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0.3 How to measure rotations ?

Proven that ground rotations exist it is time to understand how to measure those tiny

ground movements. Let’s start with a wish list for the sensor.

• The first requirement is to have a very high sensitivity (better than 10�9
rad/s for peri-

ods longer than one second) associated with a complete decoupling from ground trans-

lations. Given an amplitude in acceleration from a tele seismic event of 10�7
m/s

2 a

simple scaling of a factor 103 i.e. a reasonable phase velocity for periods longer than

one second gives rotation rates of the order 10�10
rad/s

• Secondary three components of ground rotation must be measured with the same

high sensitivity.

• Seismology is an experimental science, where field applications play a major role, the

last wish is to have a portable broadband rotational motion sensor, that measures

all three components of rotational motions with high sensitivity.

[Aki and Richards, 1980] proposed the use of a suspending mass at its center of mass,

coupled to the ground with a spring and a dashpot as a rotational sensor. This approach

never produced good results. Another idea is the use of a mechanical gyroscope and

exploit the angular moment conservation principle to detect rotations. Also this approach

has two problems: first, the sensitivity depends on the mechanical machining quality of the

parts. Second, the measurement principle is based on moving masses that are intrinsically

sensitive to inertial forces an so coupled to linear accelerations. The decoupling from

inertial forces is achieved by using massless particles i.e. photons circulating clockwise

and anti-clockwise in a closed loop interferometer. Let’s give now some definitions. An

active circular interferometer is called Ring Laser Gyroscope (RLG). It is the most sensitive

rotational sensor nowadays and in general is not deployable in field campaigns. A passive
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circular interferometer is a Fiber optic Gyroscope (FOG), it is less sensitive than the state of

the art RLGs but much lighter and field deployable. The basic operating principle of a ring

laser is the Sagnac e↵ect. This was discussed by [Sagnac, 1913] when he considered the use

of a ring interferometer as a rotation sensor. The Sagnac e↵ect can be easily understood

by considering an ideal circular interferometer of radius R, shown in Fig. 2. The light

enters the interferometer at point A and is divided by a beam splitter into two counter

propagating beams. If the interferometer does not rotate, the light beams recombine in

A after a time t = 2⇡R/c, where c is the speed of light in the active medium. When the

system is rotating at an angular velocity ⌦, around an axis perpendicular to the plane of

the interferometer, the two beams recombine at di↵erent times. The travel times for the

Figure 2: Scheme of the Sagnac principle

CW and CCW beams are

t± =
2⇡R

c

✓
1⌥ R⌦

c

◆�1

(19)
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using the approximation of R⌦ << c

�t =
4⇡R2⌦

c

2 � (R⌦)2
⇡ 4⇡R2⌦

c

2
(20)

. The last approximation is largely valid for reasonable values of R and ⌦.

The optical path di↵erence can be written as

�L = c�t =
4⇡R2⌦

c

(21)

this equation can be generalized in the case of a general loop path as

�L = 4
~⌦ · ~A
c

(22)

where ~

A is the area vector. Due to the presence of the c factor in the denominator, the

value of �L for the range of rotations we are interested in becomes much smaller than

the wavelength of the visible light. This di�culty is overcome in two ways: for fiber optic

gyroscopes (FOG) the length of the path is maximized using very long optical fibers (order

of 103 m). This makes the phase di↵erence detectable in an easier way. Another way is to

translate a typically di�cult phase di↵erence measure to a frequency di↵erence measure.

This is achieved by constructing an active ring laser. An extended closed ring cavity is

filled with an active medium, which in our case consists of a gas mixture of Helium and

Neon. This mixture is able to amplify light by stimulated emission radiation (LASER).

A resonant cavity can amplify the light only if in the length of the cavity L there is

a whole number of wavelengths �. In a ring cavity we have two electromagnetic waves

(light) traveling in opposite directions. In this configuration, an optical path di↵erence

for the two circulating beams translates into an optical frequency di↵erence. The optical
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frequencies of the two beams are

!± =
2⇡Nc

L±
(23)

with N an integer value that indexes the longitudinal cavity mode and L± the lengths of

the cavity as seen by the two beams. The frequency di↵erence for two beams lasing in the

same longitudinal mode is therefore proportional to the rotation rate of the optical cavity

and can be written:

�f = (f+ � f�) = Nc

✓
1

L+
� 1

L�

◆
= 2⇡Nc

�L

L

2
(24)

Applying eq. 22 and eq. 23 we obtain

f = 4
~

A · ~⌦
L�

(25)

which is the equation that finally connects the Sagnac frequency to rotation rate for a RLG.

In brief, the Sagnac principle can be exploited for seismology in two forms depending on

its experimental implementation:

• In an active interferometer (RLG): the di↵erence in travel time of the counter-

propagating light is translated in a frequency di↵erence detection problem, this is

experimentally easier but involves bulky and heavy structures for the instrument

frame. We have higher sensitivity (the highest among gyroscopes) but no trans-

portability.

• In a fiber-optic gyroscope i.e. a passive Sagnac interferometer, the primary measure is

the phase di↵erence between the optical path length of two counter propagating laser

beams, which is proportional to the externally applied rotation rate. Usually a phase

di↵erence measurement is more di�cult and requires more complex electronics but

also permits a lighter and compact and consequently transportable implementation
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at the price of a lower sensitivity compared to (RLG)

0.4 Literature review of earthquakes observations by

optical gyroscopes

The first RLGs did not allow to measure the ground rotations with the necessary sensitivity

in the frequency range suitable for seismology. Until today the observations by RLGs

were limited only to a single component of rotation rate, depending on the instrument

orientation. Recently, the largest RLG system in the world called ROMY romy-erc.eu, a

specific project devoted to measure the entire ground rotation vector has been concluded

and is starting to acquire data. This RLG system has a tetrahedral geometry to record 4

components of rotations (3+1 redundant component). The ROMY project represent the

state of the art in application of RLG technology to seismology.

0.4.1 The first observations in New Zealand

The first work to report seismological observations of rotations around a vertical axis par-

allel to the gravity vector is in [Stedman et al., 1995]. The instrument is a RLG named

”Canterbury Ring Laser” known also as C1, the e↵ective area is 0.75 m

2 and the shape of

the optical cavity is a square. The sensitivity of the instrument is su�cient to detect four

earthquakes ranging from MW 6.3 to MW 5; These events occurred in June 1994 during

the Arthur Pass-Coleridge seismic sequence. The epicenters of the events were located ap-

proximately at 110 km from the RLG. In their paper, the authors report a long recording

of ten hours showing a visual correspondence of the RLG rotational data with a seismic

colocated station data named MQZ.

After the experimental evidence of ground rotations, [Takeo and Ito, 1997] raised the ques-

romy-erc.eu
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tion, what can be learned from rotational motions excited by earthquakes? For the authors

the first answer to this question is: ”we will have more accurate data for arrival times of

SH waves, because the rotational component around the vertical axis is sensitive to SH

waves although not to P-SV waves”. The authors then treat important aspects about the

seismic sources mechanisms. In this thesis we will show how it is possible to identify SH

arrivals at local distances. Traditionally this is a hard task due to the complexity of the

seismograms.

Using data from the same instrument [McLeod et al., 1998] detect an event of ML 5.3

located at 230 km from the seismic station in the Cashmere cavern (NZ). The authors

report a peak rotation angle of 5 milliradiants. They also provide a comparison of the

waveforms with a colocated seismometer and they analyze the amplitude spectral density

of the rotational signal. The authors also discussed the possibility to ”estimate the mag-

nitude of the rotation angle at a remote distance” on the basis of the local Richter scale.

This is an open question that we will solve in this work. In the conclusions, they discuss

the possibility to use the RLG technology for the detection of ground rotation motions,

pointing out that despite this instruments are bulky and expensive they have the advantage

of an intrinsic construction simplicity and a very important, by principle, insensitivity to

ground displacement.

[Pancha et al., 2000] report the first observations of rotational motions induced by earth-

quakes at tele seismic distances. Meanwhile two new instruments were established. The

first one was C-II, a monolithic RLG made of Zerodur, the material with the lowest thermal

expansion coe�cient. Despite the size of only 1,2m this instrument showed outstanding

performances in therms of sensitivity: C-II was installed horizontally and was able to mea-

sure rotations around a vertical axis. The second one, G-0 is bigger in size, 4-m of side

length. It was constructed solid to a vertical wall, with sensitivity to rotations around a

horizontal axis. Both instruments recorded a Mw 7 earthquake generated in New Ireland.
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A second tele seismic event from Vanuatu was recorded by the C-II instrument. [Pancha

et al., 2000], thanks to the increased sensitivity of the instruments, were able to see the

very high correlation between the vertical and horizontal observations of rotations and the

relative associated translational observables i.e. the transverse acceleration for the first and

the vertical acceleration for the second. This confirms what was expected and predicted

from theory for a seismic wave that propagates under the plane wave assumption.

0.4.2 The ”Grossring” in Wettzell-Germany

The feasibility of a RLG of the size of 4 m in side was proved by the construction of G-0

and the undeniable benefits of the zerodur monolithic structure was clearly shown by the

C-II results. This experience led to the construction of the G-ring in the Geodetic observa-

tory in Wettzell-Germany. Merging together the benefits of the size and of the monolithic

Zerodur structure led to an instrument whose performance are outstanding in therms of

sensitivity, stability and observation time.

[Igel et al., 2005] shows the first measurements of vertical rotations from an earthquake

8830 km distant from the Wettzell station WET. This paper shows that the RLG tech-

nology provides the required resolution for consistent broadband observations of rotational

motions induced by very distant earthquakes. For the first time the physical relations

that connect the vertical rotation rate to the transverse acceleration is used to obtain a

time/seismic phase dependent phase velocity estimation. In the same period a low-cost

project for a vertical ring laser installed in Pinon Flat, California was deployed. The so

called Geosensor is specifically designed for the observation of earthquakes in an area of

high seismological interest (The San Andreas fault) from local to tele seismic distance. The

details of this project are reported by [Schreiber et al., 2006b].

A few years later, [Igel et al., 2007] reports the observations and the analysis of 18 earth-

quakes recorded by the G-Wettzell RLG. The epicenter of the reported events span from



18 Introduction

390 km for a ML 5 regional earthquake to 9000 km for the Great Sumatra-Andaman MW

9.0 earthquake. The first step of processing in this paper is aimed to achieve a period de-

pendent magnitude scale for rotations for surface waves. Later in this paper is introduced

an estimator for the level of correlation between the observed rotation rates and transverse

acceleration, the zero-lag correlation coe�cient (ZLCC). The goodness of the correlation

is an important validation tool that permits to give a quantitative meaning to concept of

”similarity” between the seismic traces. Another important question that is analyzed is

the propagation direction determination, i.e. the determination of the incoming wave-field.

This aspect will be analyzed in this thesis using a novel wavelet based approach.

The G-Wetzell ring is providing observations since years and the large database that cov-

ers nowadays a decade of events recorded is available at https://rotations-database.

geophysik.uni-muenchen.de/, where also the online processing of the earthquakes is

available.

0.4.3 The Ring laser Gyroscopes in Italy

At the ”Istituto Nazionale di Fisica Nucleare” of Pisa, Italy a research group developed a

large RLG of 1.2 m side length devoted to investigate the role of horizontal tilt noise at the

gravitational waves detector site VIRGO in cascina. [Belfi et al., 2012c] reports the record-

ing and the analysis of the MW 9.0 Tohoku-Oki earthquake in a configuration that was

sensitive mainly to Rayleigh waves. The rotational contribution given by Rayleigh waves

was already observed by [Pancha et al., 2000] from the G-0 ring laser in New Zealand but

in the paper of [Belfi et al., 2012c] the more advanced processing permitted an estimation

of the Rayleigh waves phase velocity as well as the direction of the incoming wave-field.

This confirmed that multi-component observations allow the estimate of wave-field prop-

erties (e.g., phase velocities, propagation direction) as [Igel et al., 2007] did for a vertically

oriented RLG.

https://rotations-database.geophysik.uni-muenchen.de/
https://rotations-database.geophysik.uni-muenchen.de/
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At the same time, the Tohoku-Oki earthquake was detected by the G-Wettzell RLG and,

thanks to his higher sensitivity achieved after the 2009 upgrade. [Nader et al., 2012] could

observe the toroidal free oscillations of the Earth. This phenomenon is observed also in

other large previous events like the MW 8.8 occurred in Chile the 27 Feb 2010 and the

MW 8.1 occurred in Samoa the 29 Sept 2009. Later the G-Pisa instrument was moved

to the Gran Sasso national laboratories in an underground environment at 1500m depth

below the free surface of the Earth inside the gran sasso massif. During the period of

operation of G-Pisa in Gran Sasso, no seismological signals were observed. It is assumed

that the reason lies in the fact that the surface waves decays at depth proportionally to

their wavelength, for this reason the observation of rotational signal underground could be

more di�cult than on the free surface. The conclusions abut the first experience of G-Pisa

in Gran Sasso were that the instrument was too small to be sensitive enough to measure

seismological signals.

A second attempt to measure underground rotations was made in 2015 when the construc-

tion of the Gingerino RLG started, this is a 3.6 m side square vertically oriented RLG. The

commissioning of the instrument to which the author contributed largely in all the experi-

mental aspects finished in May 2015 when the instrument started to record the first data.

Finally after few weeks of operations [Simonelli et al., 2016] observed the first earthquake

at tele seismic distance. The paper of the author is completely reported in this thesis as

Chapter 1. The analysis of the performances and the description of the instrument is given

in [Belfi et al., 2017] i.e. Chapter 2, where the author contributed largely to data analysis,

figures and manuscript preparation, especially for what concerns the seismological part. In

fall 2016 the central sector of Italy was struck by a very intense seismic sequence. During

this period we recorded a large dataset of roto-translational measures. The analysis and

the interpretation of the results led to the work by [Simonelli et al., 2017b] i.e Chapter 3. In

November 2016 during the aftershock activity following the Mw 6.5, of 30 October, a field
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experiment was performed. For the first time a couple of FOGs specifically designed for

seismological applications were installed near Colfiorito. An LCG-demonstrator from Litef

and a BlueSeis3A from iXblue. The last one represent today the state of the art in terms of

sensitivity and portability (see [Bernauer et al., 2017]) for rotational measurements. The

first analysis of the six components recorded events is reported in chapter 4 i.e. [Simonelli

et al., 2017a].

0.4.4 Open questions

These are the open question that will be treated in this thesis.

• In [Igel et al., 2007] the need of observations of colocated translations and rotations

at di↵erent sites is outlined. We know that from this kind of measurements we can

investigate the local velocity structure. For this reason it is important to implement

similar stations (portable or permanent) in di↵erent sites on the Earth.

• Is it possible to observe rotational motions in an underground laboratory ?

• In the context of an underground experiment, can we still estimate the BAZ ( i.e.

the source direction ) and the phase velocity under the plane wave assumption ?

• Can we measure high amplitude local or regional events with a large RLG ?

• Which is a possible way to process an event data set in order to give a statistical

meaning to our measurements ?

• Can we use a 3C rotational sensor in a field experiment and measure local events ?

• What can we get from the processing of 6C ground motion data at local distance ?

• Can we estimate the BAZ of the incoming Rayleigh waves as well as we do for Love

waves ?
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• From the processing point of view, can we give a time/frequency measure of the

correlation between observables and an estimation of the amplitude ratios in the

time frequency domain, higlighting then the di↵erent apparent (SH, SV) or real

phase velocities for di↵erent seismic phases ?

To all this questions we will try to provide an answer in the next chapters.
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Chapter 1

First deep underground observation

of rotational signals from an

earthquake at teleseismic distance

using a large ring laser gyroscope

Simonelli, A., Belfi, J., Beverini, N., Carelli, G., Virgilio, A. D., Maccioni, E., Luca, G.

D., and Saccorotti, G. (2016). First deep underground observation of rotational signals

from an earthquake at teleseismic distance using a large ring laser gyroscope. Annals of

Geophysics, 59(0).

The contributions as a first author to this paper consist in:

• The experimental activity involving the instrument construction, tuning of the optical

parts, alignment, optimization and final commissioning.

• Row data preparation and preprocessing
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• Coding of the routines used for the analysis of the earthquake

• Manuscript preparation
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Abstract

Recent advances in large ring laser gyroscopes (RLG) technologies opened the possibility

to observe rotations of the ground with sensitivities up to 10�11 rad/sec over the frequency

band of seismological interest (0.01-1Hz), thus opening the way to a new geophysical dis-

cipline, i.e. rotational seismology. A measure of rotations in seismology is of fundamental

interest for (a) the determination of all the six degrees of freedom that characterize a rigid

body’s motion, and (b) the quantitative estimate of the rotational motions contaminat-

ing ground translation measurements obtained from standard seismometers. Within this

framework, this paper presents and describes GINGERino, a new large observatory-class

RLG located in Gran Sasso underground laboratory (LNGS), one national laboratories of

the INFN (Istituto Nazionale di Fisica Nucleare). We also report unprecedented observa-

tions and analyses of the roto-translational signals from a tele-seismic event observed in

such a deep underground environment.

1.1 Introduction

Ring Laser Gyroscopes (RLG) are the best sensors for capturing the rotational motions

associated with the transit of seismic waves, thanks to the optical measurement principle,

these instruments are in fact insensitive to translations. The claim for a rotational sensor

in geophysics is outlined in a fundamental text about seismology [Aki and Richards, 2002],

where the authors state that ”... note the utility of measuring rotation near a rupturing

fault plane (...), but as of this writing, seismology still awaits a suitable instrument for

making such measurements ”. The search for such a sensor is of actual interest, as shown by

many recent studies [Kaláb et al., 2013, Brokešová and Málek, 2010, Schreiber et al., 2006a].

Nowadays RLGs allowed to achieve important results, spanning from geodesy [Schreiber

et al., 2004] to the analysis of earthquakes recorded over a wide range of distances [Pancha



26
1. First deep underground observation of rotational signals from an
earthquake at teleseismic distance using a large ring laser gyroscope

et al., 2000, Simonelli, 2014, Schreiber et al., 2006a]. The size or RLG changes, depending

on the scope, from some centimeters to more than four meters. RLGs for navigation

are very small and lightweight; they are produced commercially and are widely adopted

for either underwater or airborne platforms. Their sensitivity, however, is not su�cient

for geophysical applications. Sensitivity and accuracy of RLGs increase with size, thus

maximizing dimensions causes a minimization of physical e↵ects that cause the gyro to work

out of an ideal linear regime. Scientific results like the solid tides monitoring or a measure

of the length of the day (LOD) are only achievable by very large frame RLG. Actually,

the G-ring apparatus in Wettzel Germany represents the reference RLG for geodetic and

seismological observations. Smaller in size and less expensive is the range of RLG of the

class Geosensor, [Schreiber et al., 2006b, Belfi et al., 2012a]. The GINGERino apparatus

funded by INFN in the context of a larger project of fundamental physics is intended as

a pathfinder instrument to reach the high sensitivity needed to observe general relativity

e↵ects; more detail are found at the URL (https://web2.infn.it/GINGER/index.php/

it/ and in [Belfi et al., 2016].

1.2 Instrumental apparatus

The Gingerino is located Inside the Gran Sasso National Laboratory (LNGS) of the INFN

(Fig. 3.10). The equipment of geophysical and seismological interest is constituted by the

following instruments: The large He:Ne ring laser visible in Fig. 3.1; this is a 3.6 m side

square cavity ring laser installed over a granite structure block anchored to the rock of

the B knot tunnel of the LNGS. This is our rotation sensor, it is able to detect rotations

around the symmetry axis (oriented vertically) with a sensitivity better than 10�10 rad/s

in the band of interest for global seismology (5 Hz-300s). A Nanometrics Trillium 240s

seismometer which is installed at the center of the RLG granite frame Fig. 1.3. This

https://web2.infn.it/GINGER/index.php/it/
https://web2.infn.it/GINGER/index.php/it/
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Figure 1.1: Map of the LNGS underground laboratories

instrument is part of the national earthquake monitoring program of the Istituto Nazionale

di Geofisica e Vulcanologia (INGV hereinafter), provides the ground translation data to be

compared to the RLG rotational data in order to infer the phase velocity measurements

during the transit of shear and surface waves from earthquakes at local, regional and tele

seismic distances. Further details on this station are at the URL (http://iside.rm.

ingv.it/iside/standard/info_stazione.jsp?page=sta&sta=2571). A Lippmann 2-K

digital tilt-meter with a resolution better then one nrad is placed beside the seismometer

in order to monitor the possible slow ground tilt related to either local or wide scale (solid

earth tides) e↵ects. A second broadband seismometer, Guralp CMG 3T60s (Fig. 1.3) is

placed in the central block for data redundancy.

http://iside.rm.ingv.it/iside/standard/info_stazione.jsp?page=sta&sta=2571
http://iside.rm.ingv.it/iside/standard/info_stazione.jsp?page=sta&sta=2571


28
1. First deep underground observation of rotational signals from an
earthquake at teleseismic distance using a large ring laser gyroscope

t

Figure 1.2: The GINGERino RLG

1.3 Method

RLG are based on the Sagnac e↵ect; this e↵ect is caused by a di↵erence in the optical path

as seen by two counter propagating laser beams that leads to a di↵erence in the optical

frequency between the clockwise and anti-clockwise propagating beams. The two beams

are mixed out of the optical cavity in order to reveal the beat of the two slightly di↵erent

frequencies. The beat frequency f , also called the Sagnac frequency can be related to the

rotation rate around the normal vector to the surface outlined by the square optical path

(see Fig. 3.1) using the simple following equation:

⌦ =
�He:Ne

L sin ✓
f (1.1)
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Figure 1.3: The NANOMETRICS Trillium 240 s (left) and Guralp CMG 3T360s (right)
and the Lippmann 2-K tilt meter (on top), the red arrow shows the North direction

where �He:Ne is the wavelength of the He:Ne laser (632 nm), L is the square side length and

✓ is the angle between the versor n̂ and ~⌦. We know from theory [Aki and Richards, 2002]

that rotations can be retrieved from ground displacement as the curl of the wave-field.

~⌦ =
1

2
(r⇥ ~u) (1.2)

Referring to our setup (Fig. 3.1) for example, the displacement caused by a Love wave

traveling as a plane wave along the x-direction is expressed through the equation:

uy = Ae

i!(x/C
L

�t) (1.3)
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By applying eq. 3.3 to eq.3.2 we obtain the relationship:

⌦z = � üy

2cL
(1.4)

which provides a direct estimation of the phase velocity CL by using only a single-site

measurement. From this latter formulation it is also evident that the sensing of ground

rotations over the seismic frequency band requires high sensitivity: the phase-velocity scal-

ing implies in fact that ground rotations are two to three orders of magnitude smaller than

the associated translational movements. For this purpose a very sensitive and completely

decoupled from translations device is required and at present large RLGs are the best

candidates.

1.4 First results

An earthquake with magnitude 7 occurred on 17-06-2015 12:51:32 (UTC) with epicenter

in the Southern Mid Atlantic Ridge [Sea] has been recorded by our instruments during

the longest run of continuous data acquisition from 11/6/15 to 19/6/15. Though the

recordings exhibit a poor signal-to-noise-ratio (SNR) their quality is su�cient to perform

some analysis of seismological interest. The processing steps have been:

• The N-S and E-W seismometer traces are rotated by a step of 1 deg. over the {0, 2⇡}

range and for each rotation step, the zero-lag-cross-correlation (ZLCC) between the

rotational signal and transverse accelerations is calculated. The maximum is found

at a rotation angle of 198 N, the theoretical azimuth derived from epicenter and

station coordinates is 202 N. The discrepancy between the observed and theoretical

azimuthal values is small, once considering possible seismometer misorientation and

deviation of surface wave trajectories from the great circle path as a consequence of
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lateral velocity heterogeneities.

• The ZLCC between translational and rotational traces is calculated using a 200-

seconds-long window, sliding with 50% overlap. The Love-wave arrival is marked by

a clear correlation peak (see Fig.1.4)

• Ground rotations and Transverse accelerations (respectively blue and black lines in

Fig. 1.6) are narrow band filtered with a FIR filter with a 1 s large passband region

form 1 s to 50 s of Period. In the frequency bands where ZLCC is above a threshold of

0.7, the amplitude ratio between the maxima of the envelopes evaluated via Hilbert

transform gives a direct measure of phase velocity for that particular period (see Fig.

1.6).

Figure 1.4: (top) Ground rotation and transverse acceleration time histories (black and
red lines, respectively), time zero is at 12:40:00 UTC. (bottom) ZLCC between the above
traces.
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Figure 1.5: Map of correlation versus rotation of transverse acceleration

1.5 Conclusions

Gingerino is a test apparatus, and improvements in sensitivity and stability of the appa-

ratus are foreseen in the near future. At present the RLG is running in a preliminary test

mode in order to optimize the experimental parameters that will allow us to let it run con-

tinuously together with tilt-meters and seismometers and to increase sensitivity in order to

be able to detect the secondary microseism peak that is only a factor five below our noise

floor at the 10 seconds period. In a previous study we used a smaller RLG oriented along

an horizontal axis and we obtained consistent estimates of ground rotations associated

with the transit of Rayleigh waves from the 2011, Mw=9.0 Japan earthquake [Belfi et al.,

2012c]. The present availability of a larger and much more sensitive RLG as Gingerino

now permits extending the analysis to earthquake signals over a wider magnitude range.

The simultaneous measurement of ground translation and rotation of these sources will

allow the definition of the dispersion curve of Love waves over a broad frequency range,
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Figure 1.6: Superposition of trace-by trace normalized narrow band filtered signals (rota-
tion in blue and transverse acceleration in black respectively), for every dominant period
we report the estimated phase velocity

from which a local shear-wave velocity profile can be inferred with resolutions on the order

of 100 m and penetration depths up to several tens of kilometers. To conclude we remark

that a seismic station co-located with a RLG has been installed in the underground labo-

ratories of INFN under the Gran Sasso. The Gingerino station is now a good companion

of the Wettzel observatory station. For the first time a tele seismic rotational signal has

been recorded in an underground environment. The source backazimuth inferred from

the directional analysis is in excellent agreement with the theoretical one, suggesting that

with a RLG and a seismometer the direction of the incoming wave-field may be estimated

accurately. Corresponding to high ZLCC time intervals, we obtained estimates of phase

velocities which, though being limited by the low SNR, are consistent with what expected



34
1. First deep underground observation of rotational signals from an
earthquake at teleseismic distance using a large ring laser gyroscope

for Love waves propagating in the PREM Earth’s model [Dziewonski and Anderson, 1981]

i.e. in the range of 3800 ms

�1 (at T = 10 s) to 4500 ms

�1 (at T = 50 s).
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The contributions as a coauthor of this paper consist in:

• The experimental activity involving the instrument construction, tuning of the optical

parts, alignment, optimization and final commissioning.

• Row data preparation and preprocessing

• Coding of the routines used for the analysis of the earthquakes and of the seismic

noise
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• Preparation of the figures and of the paragraph relative to the seismic interpretation

of the data



2.1 Introduction 37

Abstract

GINGERino is a large frame laser gyroscope investigating the ground motion in the most

inner part of the underground international laboratory of the Gran Sasso, in central Italy.

It consists of a square ring laser with a 3.6 m side. Several days of continuous measurements

have been collected, with the apparatus running unattended. The power spectral density

in the seismic bandwidth is at the level of 10�10(rad/s)/
p
Hz. A maximum resolution of

30 prad/s is obtained with an integration time of few hundred seconds. The ring laser

routinely detects seismic rotations induced by both regional earthquakes and teleseisms. A

broadband seismic station is installed on the same structure of the gyroscope. First analysis

of the correlation between the rotational and the translational signal are presented.

2.1 Introduction

Large Ring Laser Gyroscope (RLG) technology [Schreiber and Wells, 2013a] provides very

sensitive inertial rotation measurements. Among the most relevant recent results there are

the direct observation of the rotational microseismic noise [Hadziioannou et al., 2012a] up

to the detection of very long period geodetic e↵ects on the Earth rotation vector [Schreiber

et al., 2011]. The scientific community working on large frame RLGs had a rapid growth in

the last decade. After the seminal work started in the ’90s at the Canterbury University of

Christchurch, (New Zealand) [sit, a], today, other laboratories around the world [Schreiber

et al., 2006b, Dunn and Hosman, 2014] both in Europe and US, use RLGs to detect ground

rotational motions superimposed on the Earth rotation bias. A dedicated observatory of

3D seismic rotations, named ROMY [sit, b], was started this year in Fürstenfeldbruck

(Germany). The state of the art precision, is achieved by the Gross ring G [Schreiber

et al., 2009] in Wettzell (Germany), and it is better than some fractions of prad/s, not

far from 10�14rad/s, that is the order of magnitude of the General Relativity e↵ects in a
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ground based reference frame. The target of the GINGER (Gyroscopes IN GEneral Rela-

tivity) proposal is to measure the gravito-magnetic (Lense–Thirring) e↵ect of the rotating

Earth, by means of an array of high sensitivity RLGs [Bosi et al., 2011]. Underground lo-

cations, far from external disturbances as hydrology, temperature and barometric pressure

changes, are essential for this challenging experiments, and LNGS (Laboratori Nazionali

del GranSasso, the underground INFN laboratory) may be a suitable one. In order to

test the local ground noise, a single axis apparatus called GINGERino, has been installed

inside LNGS. This installation is a pilot-prototype for GINGER, and at the same time

can provide unique information for geophysics [Simonelli et al., 2016]. In addition, under-

ground installations of large RLGs, free from surface disturbances, could provide useful

informations to Geodesy [Nilsson et al., 2012]. Here the goal is to achieve a relative preci-

sion of at least 1 ppb in few hours of integration time, in order to integrate the information

on Earth’s rotation changes provided by the International Earth Rotation System (IERS)

that, being based on the collection and elaboration of the observations of Very Large Base

Interferometry (VLBI) and GPS systems, does not provide precise subdaily performance.

The paper is organized as follows: in section 2.2 we describe the GINGERino optical and

mechanical apparatus; section 2.3 is about the data acquisition and transfer; section 2.4

contains the noise characterization and the illustration of the drift removal method based

on the backscattering noise identification and subtraction. In section 2.6 we discuss some

preliminary results on the seismic properties of the underground site as well as the analysis

of the roto-translations induced by two far located earthquake events. Section 2.7 contains

the conclusions of this work and the future perspectives of the experiment.
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2.2 GINGERino working principle and experimental

setup

RLGs measure rotation rate using the Sagnac e↵ect. Oppositely propagating laser beams,

generated inside a ring resonator undergo a frequency splitting �f . For a horizontal RLG,

located at colatitude ✓, the splitting �f induced by the Earth’s rotation rate ⌦E, is ex-

pressed in function of the cavity area A, perimeter P and laser-wavelength �:

�f =
4A⌦E

�P

cos(✓ + ��NS) cos ��EW , (2.1)

where ��NS and ��EW are the tilt angles, respectively in the North-South and in the

East-West directions. GINGERino is a He-Ne laser operating on the red line at 633 nm.

The square optical cavity, 3.6 m in sidelength, is made of four spherical mirrors with 4 m

radius of curvature. The plane of the cavity of GINGERino is horizontal, thus the Sagnac

frequency bias is provided by the projection of the Earth’s rotation vector along the local

vertical. At the latitude of LNGS the Sagnac frequency is 280.4 Hz. The whole optical

path of the beam inside the cavity is enclosed in a steel vacuum chamber, composed by 4

mirror chambers connected by vacuum pipes. The design is based on the GeoSensor design

[Schreiber et al., 2006b, Belfi et al., 2012b, Belfi et al., 2012a], where the alignment can be

tuned by means of micrometric tip-tilt systems acting on the mirror chambers orientation.

From each corner of the cavity is possible to extract and detect the two counterrotating

beams, so that the system has eight optical output beams. While monolithic cavities

made of ultra-low expansion materials, like the Gross ring G in Wettzell, have an excellent

passive stability, they are not suited to form 3D arrays of very large size. On the other side,

heterolithic systems require active stabilization, which is achieved by active control schemes

of the cavity geometry, exploiting very accurate optical wavelength references [Di Virgilio
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et al., 2014, Santagata et al., 2015]. The present structure of GINGERino does not allow

the full implementation of these techniques, and this sets a limit to its present long term

stability.

Mirrors dissipative losses set the shot noise limit to the sensitivity of a RLG, while

the backscattering characteristics are responsible of the drift induced by the nonlinear

coupling between the two counter-propagating laser beams (see ref.[Schreiber and Wells,

2013a]). Dielectric deposition of thin films realized by very accurate ion beam sputtering

procedures are typically applied and top quality substrates, with roughness of the order

of fractions of angstrom, are necessary. State of the art dielectric mirrors can reach a

reflectivity higher than 99.999%, with a total scattering of less than 4 ppm. These mirrors

must be manipulated with the maximum care, possibly in clean environment (better than

class 100) in order to avoid dust and humidity. A pyrex capillary with internal diameter of

4 mm is installed in the middle of one side and allows to excite the active medium (He-Ne

plasma) by means of a radiofrequency capacitive discharge. The capillary diameter forces

the laser to operate on single transversal mode (TEM00), while single longitudinal mode

operation is obtained by keeping laser excitation near to threshold. Two piezoelectric

translator stages can be used to stabilize the optical frequency of the laser against the

cavity length variations induced by thermal expansion and mechanical relaxations. This

makes it possible to avoid laser mode hops, increasing the device duty cycle up to about

100%. The four mirror chambers are tightly attached to a cross structure made of granite

(african black), composed by a central octagonal massive block (3 tons), and four lightened

arms each weighting ⇡ 800 kg (see Fig.2.1).

The granite structure is screwed to a reinforced concrete block anchored to the under-

neath bedrock. The African black granite has been chosen because it can be machined

with high precision and has a low thermal expansion coe�cient (6.5 ⇥ 10�6
/

�
C). Being

the whole set-up coupled to the ground in its central part, ground strain coupling to the
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Figure 2.1: Top: the granite frame of GINGERino, just after its installation in the LNGS
tunnel. Bottom: completed setup inside the isolation chamber.

cavity shape are minimized. The installation area has a natural temperature of 8 �
C and

a relative humidity close to the dew point all the year round. The whole installation is

now protected by a large anechoic box. Infrared lamps are used to increase the tempera-

ture inside the box thus reducing the relative humidity from more of 90% down to about

50� 60%. We checked that no oscillations of temperature and humidity on the daily time

scale are introduced by this method. Better isolation systems joined to a humidity control

systems can be considered in the future. So far, this infrastructure has been running for

several months, and has shown that it keeps the GINGERino area at a temperature around
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Figure 2.2: Optical setup. Three optical signals are continuously acquired: the combined
beams intensity (Sagnac interferogram) S and the two monobeam intensities I1 and I2.
The G signal is the intensity of the plasma fluorescence, filtered around the laser line. It
is acquired as a monitor of the laser excitation level. IBS: Intensity Beam Splitter, PMT:
Photo Multiplier Tube, LF: Line Filter (633 nm), TA:Transimpedance amplifier, FC=Fiber
Coupler, CL: Collimating Lens.

13 �
C with a stability better than 0.1�C for several days of operation. On top of the central

part of the granite frame we installed additional instruments consisting in: one tiltmeter

with nrad resolution (2-K High Resolution Tiltmeter (HRTM), Lipmann) and two high

performance seismometers (Trillium 240s and Guralp CMG 3T360s). The combination of

di↵erent instruments is essential in the interpretation of the data and the characteriza-
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tion of the site. In Fig.2.2 is sketched the optical scheme of GINGERino in the present

configuration. Three transimpedance amplified silicon photodiodes, with a bandwidth of

4 kHz, are used to detect the Sagnac interference signal at 280.4 Hz and the two single

beam intensities. A photomultiplier (PMT), with a bandwidth of 400 MHz, is used for

a double purpose: to detect the radiofrequency signals produced by the beating between

higher order lasing modes and to occasionally perform ring-down time measurements for

estimating the intracavity losses.

2.3 Data acquisition

GINGERino runs unattended, in this way man made disturbances are minimized. We have

developed a remote interface with the experiment that allows us to monitor the status of

the apparatus and also to drive the mirror positioning PZT actuators sketched in Fig. 2.2.

The DAQ system itself is remote-controlled and transfers the data from INFN-LNGS to

INFN-Pisa. The DAQ hardware has been selected in order to be transportable; it is based

on the PXI-8106 controller by National Instruments. Its main tasks can be listed as follows

(referring to Fig. 2.2):

• analog to digital conversion and storage of the Sagnac signal S and the two mono

beams signals I1,2 with 5 kHz sampling rate;

• analog to digital conversion and storage of environmental signals (temperature, hu-

midity, pressure), laser parameters (plasma fluorescence gain monitor G, average

intensities, piezoelectric transducers driving voltage) and tiltmeters, with 1 Hz sam-

pling rate;

• real-time processing of experimental parameters connected to laser gain, backscat-

tering parameters, actuators signals required by active control loops;



44
2. Deep underground rotation measurements: Gingerino ring laser gyroscope

in gran sasso

• digital to analog generation of the signals driving the laser, necessary for some of the

controls of the apparatus.

Acquired data are written in the PXI local hard-disk. Both frequency and time accuracy

are important since the former a↵ects the estimation of the Sagnac frequency and the latter

introduces errors in the synchronization of the RLG data stream with the data streams

of other instruments (mainly seismometers). The PXI receives a GPS-synchronized PPS

(pulse per second) signal and is connected to a local NTP server in order to obtain a time

stamp with the required precision. The frequency accuracy is obtained by disciplining the

10 MHz clock of the PXI-6653 board to the PPS via the PXI-6682. The error on the time

stamp is limited by the uncertainty on the NTP, which is of the order of a few milliseconds.

The data written on the PXI hard-disk are copied via FTP into a dedicated directory on

a local virtual machine and then copied into the final data storage destination (at INFN

Pisa).

2.4 Sensitivity of the apparatus

From a direct estimate of the Sagnac frequency by means of the Hilbert transform of the

interferogram, we deduced an instrumental sensitivity limit at the level 100 prad/sec/
p
Hz

in the range (10�2 � 1)Hz. A typical rotational noise spectrum is shown in Fig.2.3. Data

refer to 1 hour acquisition on the 11th of June 2016. For this run the cavity ring-down time

was ⇠ 250µs corresponding to a total loss per round trip of about 190 ppm. As clearly

visible, the long term stability of the raw data is limited to 10-20 s, mainly by radiation

backscattering on the mirrors. A reduction of the backscattering induced frequency noise

can be obtained by identifying and subtracting its contribution from the measurements of

the single beam outputs from the cavity. This has been done for the run of June 2016, and

it is discussed in the next section.
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Figure 2.3: Angular velocity linear spectral density of GINGERino calculated a dataset of
3600 s from 11-06-2016 at 00:00. Power spectral density is estimated from the raw data
interferogram.

2.5 Backscattering analysis

The strategy for subtracting backscattering noise from ring-laser data has been extensively

discussed in [Beghi et al., 2012] and [Cuccato et al., 2014], where we have shown how and

why backscattering noise can be e�ciently subtracted, by applying an Extended Kalman

Filter (see [Cuccato et al., 2014] for details). The time dependence of backscattering contri-

bution can be also estimated using a model which assumes reciprocal ring laser parameters.

This approach has been exploited in [Hurst et al., 2014], where the backscattering param-

eters were estimated by fitting amplitudes and phases of the two monobeam intensities. It

has been tested that the two methods give similar results. For this analysis purpose several
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service signals are necessary: the two monobeam intensities and the laser gain. Data were

processed following the procedure already developed for G-Pisa [Belfi et al., 2012a], tuning

the pre-filters to the GINGERino Sagnac frequency, and estimating the laser parameters

by averaging over 10 seconds the mono-beams intensities. We firstly extract from the data

mono-beam intensities, modulations and phase di↵erences, then we use these quantities

to estimate the laser parameters connected to backscattering at a rate of 1 sample every

10 seconds. After the parameter identification, backscattering contribution is calculated.

Results for a time series of 12 days are shown in Fig.2.4. The relative Allan deviation of

Figure 2.4: Black: raw data. Red: backscattering corrected data.

the backscattering corrected data is shown in Fig.2.5.
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Figure 2.5: Relative Allan deviation for the Sagnac frequency after backscattering subtrac-
tion. Straight line represents the calculated shot noise limit.

2.6 Seismological observations

The two independent digitizers for the RLG and the seismometers are synced to the GPS

time reference. This allows the direct comparison between rotational and translational

signals [Igel et al., 2007]. Two teleseismic events are reported in the following. Results are

shown in Fig.2.6 and 2.7. The upper two traces indicate the time history of transverse ac-

celeration and rotation rate as detected by the seismometer and RLG, respectively. The N

and E components of the seismometer, after being corrected for the instrumental response,

have been rotated in order to construct the transverse component which is analyzed in

comparison with the gyroscope signal. We evaluated the Zero-Lag Correlation Coe�cient

(ZLCC) between transverse acceleration and rotation using a time window of 50 seconds,

sliding with 50% overlap.
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For Love seismic waves [Cochard et al., 2006b], in the plane wave approximation, the

transverse acceleration and the vertical rotation signals are in phase and their ratio is

proportional to the phase velocity. Phase velocity measurements contain information about

the elastic properties of the ground, and are typically obtained by means of seismometer

arrays installations. A system composed by a horizontal RLG and a seismometer provide

the same information in a single site installation. An example of this estimate is given in

lowest plot of Fig.2.6 and 2.7.

Surface wave phase velocity is calculated in the two cases for the points where the

ZLCC is above 0.6.

z

T
acc

ZLCC

Phase velocity

Figure 2.6: Mid Atlantic ridge earthquake, June 17, 2015, 12:51 p.m., MWC 7. Top:
seismograms for the transverse acceleration (black) and vertical rotation (red). Center:
the zero lag correlation coe�cient between rotation and transverse acceleration. Bottom:
apparent phase velocity of the surface waves. Phase velocities are computed for the seis-
mograms parts where the correlation between rotation and translation is larger than 0.6.
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Figure 2.7: Rykyu Islands earthquake, November 13, 2015, 08:51 p.m., MWC 6.8. Plot
legend is the same as in Fig.2.6.

2.6.1 Background noise analysis

The characteristics of the background seismic noise at the site are illustrated in Figure 2.8,

where the probabilistic power spectral densities (Pround PSD) of the three components of

ground acceleration are compared to the High- and Low-Noise Models (NHNM and NLNM,

respectively) [Peterson et al., 1993]. The typical spectra are close to the NLNM and shows

a very good behavior throughout the spectral region of the primary and secondary micro-

seism (i.e., at periods spanning the 1-10s interval), exhibiting however larger and unwanted

noise at low frequency (long periods) for the N and E components. This A deeper analysis

consisting in the calculation of the noise polarization over the horizontal plane shows that
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Figure 2.8: Probabilistic power spectral densities for the three components of ground
acceleration as recorded by the seismometer. Vertical scale is relative to 1m2s�4Hz�1. For
each frequency bin, the maps illustrate the probability of observing a given spectral power,
according to the color scale at the right.

the noise polarization is markedly directional and directed along the tunnel (see Fig.2.9).

Accordingly to the literature [Beauduin et al., 1996], a possible explanation is that the

long-period, high-amplitude noise is induced by the conveyed air motion in the tunnel.
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Figure 2.9: Principal polarization direction of the background noise over the 50� 200 s
period range. Results from the two seismometers are coherent within a 5 degrees tolerance,
indicating ground oscillations aligned along the tunnel’s direction. This suggests a main
control of the underground cavity in the generation of seismic noise at very long periods.

The analysis of the noise polarization is obtained by rotating the horizontal components

of the seismometer and then finding the direction of maximum ground acceleration. This

appears to be directed as the tunnel, is still not clear by the way if this e↵ect is a direct

coupling of the air flow to the instrument or an air flow induced ground motion. In

order to clarify this, an high sensitivity 1D hot wire anemometer has been purchased and

his installation is planned as a monitoring device for the seismic station. A day-night and

week-end/working week dependency of this noise level has been proved by a time frequency

analysis of the seismometer data. The anthropic activity in the laboratories in fact involves
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also the opening and closing of the doors connecting the underground cavities, this leads

to a more unstable and turbulent air flow. We miss a quantitative measure of the air

flow but, to have an idea, the feeling of a light wind is always present in the tunnel, this

ventilation is needed to expel the radon that is naturally present in the rock. A future

plan is to close inside pressure doors the ring laser facility as it is standard for high end

seismic observatories. We are non yet convinced that the signal we record is a real ground

motion at long periods (>10 s). In any case the mechanism of pressure-to-seismic coupling

eventually driven by the ventilation in the tunnel should generate mainly a Rayleigh-like

kind of ground motion. In our setup we are sensitive to transverse propagating seismic

waves since we record the vertical rotation rate. In general the actual noise level of the

Gingerino RLG is higher than the NHNM and unfortunately we do not see the ocean

generated noise rotational component. In this sense our roto-traslational measurements

are limited by the noise level of the RLG.

2.7 Conclusions

GINGERino has been constructed inside LNGS and performs ground rotation measure-

ments with a very high duty cycle. The system provides Earth rotation rate measurements

as well as seismic rotational data thanks to a dedicated architecture for laser remote control,

data acquisition and data transfer. The sensitivity curve shows a level around 10�10 rad/s

compatible with the actual instrument shot noise and ringdown time. During the first runs

all the major teleseismic events present in the Global CMT Catalog have been detected.

The standard rotation/transverse-acceleration correlation analysis is presented for two dif-

ferent events. Long term stability of raw data is limited by backscattering noise, which

can be subtracted in large part via post processing. After correcting the backscattering

induced drift a maximum resolution of about 30 prad/s for 500 s of integration time is
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obtained. The correlation between the observed instabilities of the gyroscope and the en-

vironmental parameters fluctuation (temperature, pressure, humidity, anthropic activities)

is under investigation.
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Luca, G. D., and Saccorotti, G. (2017b). Rotational motions from the 2016, central italy

seismic sequence, as observed by an underground ring laser gyroscope. Geophysical Journal
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The contributions as a first author to this paper consist in:

• The experimental activity involving the instrument construction, tuning of the optical

parts, alignment, optimization and final commissioning.

• Row data preparation and preprocessing
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• Coding of the routines used for the analysis of the earthquakes of the sequence

• Manuscript preparation
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Abstract

We present the analysis of rotational and translational ground motions from earthquakes

recorded during October/November, 2016, in association with the Central Italy seismic-

sequence. We use co-located measurements of the vertical ground rotation rate from a large

ring laser gyroscope (RLG), and the three components of ground velocity from a broad-

band seismometer. Both instruments are positioned in a deep underground environment,

within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica

Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and

epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented

observation of the vertical rotational motions associated with an intense seismic sequence

at local distance. Under the plane wave approximation we process the data set in order

to get an experimental estimation of the events back azimuth. We compare this results

to the theoretical ones. In a second step, after identifying the direction of the incoming

wave-field, we extract phase velocity dispersion curves. This analysis is performed on the

rotational signals present in the P-coda, S-coda and Lg phase. The number of events

recorded permits to provide a statistical error to our measures.

Keywords: ring laser, rotational ground motion, central Italy, phase velocity

3.1 Introduction

On August 24, 2016, at 01:36:32 UTC a Mw=6.0 struck the central sector of the Apen-

nines chain (Italy), (see [Michele et al., 2016]) , causing almost 300 casualties and exten-

sive destruction. During the following two months, both rate and energy of aftershocks

decreased progressively. On October 26, 2016, the activity renewed with two energetic

events (Mw=5.4 and Mw=5.9) until climaxing, four days later, with a Mw=6.5 shock (see

[Chiaraluce et al., 2017]). The colocated observation of ground translations and vertical
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rotations permits, with a single station approach, to estimate the back azimuth (hereinafter

BAZ) of the incoming wave-field generated by seismic events as well as the phase velocity

for surface Love waves and horizontally polarized shear waves. The latter ones can be gen-

erated by the P-SH conversion after the onset of the P phase (P-coda) and are present in

the S-coda itself. The seismological observations of rotational motions by means of Large

Ring Laser Gyroscopes (RLG) (see. [Schreiber and Wells, 2013b]) started from the first

pioneering experiments by [Stedman et al., 1995, McLeod et al., 1998, Pancha et al., 2000]

in New Zeland. A more quantitative and extensive analysis is performed on the G-Wettzel

ring laser data in [Igel et al., 2005, Igel et al., 2007, Cochard et al., 2006a, Simonelli et al.,

2016, Belfi et al., 2017] are reported detections and analysis of teleseismic events recorded

by the Gingerino RLG inside the LNGS underground laboratories. The vast majority of

the previous works are based on teleseismic observations, where, under the plane wave

assumption, it is successfully shown the possibility of measuring both the event BAZ and

the local phase velocity. The location of the Gingerino RLG and its sensitivity permits

to measure earthquakes generated rotations from tele-seismic distances to very local, high

amplitude events. As an example, the Campotosto fault system, that generated during

this sequence a Mw 5.5 earthquake, is located only 20 km away from the LNGS. Under

these conditions, the joint analysis of ground rotation and translations is made challenging

due to the higher dominant frequencies of the incoming wavefield and near-field e↵ects.

The aim of this paper is to investigate, through the analysis of an unique data set, the

performance of co-located rotational and translational sensors toward the wavefield char-

acterization and source location of energetic earthquakes at local distance. On a long term

perspective an extensive analysis of many earthquakes having a large span of epicentral

distances and BAZ angles will allow us to characterize the local structure of the Gran Sasso

region.
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3.2 Geological and Structural Framework

Moment tensor solutions (http://cnt.rm.ingv.it/tdmt) for the vast majority of signif-

icant quakes indicate the activation of extensional faults striking NNW-SSE and dipping

40�-50� to west. Ongoing extension in the area is testified by the analysis of crustal strain

and seismicity data ([Bird and Carafa, 2016]), yet the tectonic setting and the landscape of

the region are still dominated by the contractional structures of the Neogene-Quaternary

Apennines fold-and-thrust belt. The extension in the Apennines is indeed a relatively

young process (e.g. [Malinverno and Ryan, 1986]) that proceeds at the relatively slow

rate of 2-3mm/yr ([Bird and Carafa, 2016]). Consequently, the currently active struc-

tures have not yet fully reshaped the Apennines highs-and-lows of contractional origin

with extensional basin-type landforms. It is worth recalling that some of the well-exposed

extensional faults, generally bounding an intermountain basin, were created by a pre-

orogenic (Mesozoic) or by a synorogenic extensional (Miocene) regime and were shifted to

their present location during the Neogene thrusting phase, for instance through a shortcut

mechanism (positive inversion tectonics; e.g. [Tavarnelli, 1996, Butler et al., 2006, Scis-

ciani and Calamita, 2009]). The complex framework described above explains why iden-

tifying and characterizing seismogenic sources in the Apennines is extremely challenging

(see [Di Domenica et al., 2014] for a discussion on this topic).

3.3 The experimental setup

The four components (4-C) seismic station is constituted by the RLG Gingerino and a

broadband seismometer Trillium 240 from Nanometrics. The first instrument senses the

rotations of the ground around the local vertical axis, while the latter detects ground

velocity along three orthogonal axes. GINGERino is an He-Ne Ring Laser Gyroscope

http://cnt.rm.ingv.it/tdmt
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(RLG) operating at a wavelength of 632 nm. The optical cavity is a square of 3.6 m

side length and is defined by four spherical mirrors with 4 m radius of curvature. The

design of the corners is based on the GeoSensor project (see [Schreiber et al., 2006b]). The

alignment can be tuned by means of a micrometric system acting on the mirror chambers

orientation. More details on the instrument are described in [Belfi et al., 2017]. Within

the active optical cavity two laser beams are circulating in clockwise and anti-clockwise

directions. The perimeter represented by the path of the two beams encloses an area

A. When an active cavity is rotating around an axis having an orthogonal component

with respect to the area A, the optical frequencies of the two laser beams propagating

in opposite directions are shifted (with respect to the non-rotating cavity) by a quantity

that is proportional to the rotation rate. This is known as Sagnac e↵ect. The detection of

this frequency shift is made easier by letting the two beams to interfere out of the optical

cavity with an optical system called beam combiner. The raw data from a RLG that is

fixed to the Earth ground consist in a sinusoidal interference signal whose mean frequency

f is proportional to the earth rotation rate, ⌦ according to eq. 3.1.

f =
⌦A sin ✓

P�He:Ne

(3.1)

Here �He:Ne is the wavelength of the He:Ne laser (632 nm), P is the perimeter of the

square cavity, A is the enclosed area, ✓ is the latitude at the experiment site and ⌦ is the

Earth rotation vector. At the latitude of LNGS the Sagnac frequency is 280.4 Hz. During

the transit of a transverse polarized seismic wave, the rotation generated is summed to

the constant bias given by the Earth rotation (i.e. 7.29 µrad/s). The Saganc frequency

induced by the Earth rotation rate for the Gingerino RLG is 280.4 Hz. This bias sets

a reference value to which is possible to compare the peak rotation rates generated by

seismic waves in terms of �⌦ = ⌦max/⌦. In fact the Earth rotation signal can be treated
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�Z

üT

k̂

Figure 3.1: The GINGERino RLG and the seismometer Trillium 240 in the central box.
The arrows indicates the observables that are object of this study, i.e. vertical rotation
rate in red (from the RLG) and transverse acceleration in black (after processing the
seismometer data) and the direction of the wavefield k̂. In this figure the vector k̂ is
pointing to the North. It corresponds for example to the direction of a propagating shear
wave causing a transverse acceleration in the üT direction.

as a constant signal on which the rotational motion of earthquake signals are superimposed.

The broadband seismometer, installed at the center of the RLG, is part of the national

monitoring program of the italian Istituto Nazionale di Geofisica e Vulcanologia (INGV

hereinafter), under the station code GIGS.

3.4 Data analysis

Theory ([Aki and Richards, 2002]) predicts that the rotation vector ~⌦ can be obtained

from the ground displacement as the curl of the wave-field ~u.

~⌦ =
1

2
(r⇥ ~u) (3.2)
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Table 3.1: List of earthquakes analyzed in this study.

Event Start Time Lat Long Mag Dist [Km] BAZ [deg] Depth [km]
Peak Rot. rate
[rad][s]�1

Peak Acc.
[m][s]�2

1 26-Oct-2016 19:18:05 42.909 13.129 5.9 62.3 324.6 7.5 1.74e-05 4.30e-02
2 26-Oct-2016 17:10:35 42.88 13.127 5.4 59.8 322.6 8.7 1.68e-05 2.72e-02
3 01-Nov-2016 07:56:36 42.999 13.158 4.8 69.5 331.0 9.9 7.26e-06 2.51e-02
4 03-Nov-2016 00:35:00 43.029 13.049 4.7 77.0 326.4 8.4 5.65e-06 1.07e-02
5 30-Oct-2016 13:34:54 42.803 13.165 4.5 51.2 319.5 9.2 2.24e-06 3.64e-03
6 30-Oct-2016 12:06:59 42.844 13.078 4.5 59.4 317.2 9.7 5.55e-06 7.88e-03
7 26-Oct-2016 21:41:59 42.861 13.128 4.5 58.1 321.4 9.9 3.88e-06 8.06e-03
8 27-Oct-2016 08:21:45 42.873 13.1 4.3 60.6 320.5 9.4 1.70e-06 3.79e-03
9 31-Oct-2016 07:05:44 42.841 13.129 4.2 56.4 320.1 10.0 2.08e-06 5.02e-03
10 30-Oct-2016 10:19:25 42.815 13.145 4.1 53.3 319.1 10.8 2.45e-06 2.24e-03
11 27-Oct-2016 03:19:26 42.844 13.15 4.0 55.5 321.6 9.2 4.56e-06 8.03e-03
12 16-Oct-2016 09:32:34 42.748 13.176 4.0 46.1 315.4 9.2 3.57e-06 6.03e-03
13 31-Oct-2016 06:17:19 42.771 13.207 3.9 46.3 319.9 9.9 1.07e-06 1.35e-03
14 27-Oct-2016 17:22:22 42.846 13.108 3.9 57.9 319.1 9.0 9.18e-07 4.19e-03
15 08-Oct-2016 18:11:08 42.738 13.185 3.9 44.8 315.1 9.5 1.73e-06 2.97e-03
16 07-Nov-2016 18:56:15 42.888 13.151 3.8 59.4 324.6 8.1 3.23e-06 4.40e-03
17 28-Oct-2016 15:56:58 42.788 13.119 3.8 52.6 315.2 9.8 1.84e-06 3.43e-03
18 26-Oct-2016 19:43:42 42.893 13.069 3.8 63.9 320.1 12.6 1.61e-06 2.44e-03
19 09-Nov-2016 06:13:09 42.661 13.192 3.7 38.8 306.7 10.7 4.18e-06 4.93e-03
20 30-Oct-2016 12:32:56 42.715 13.243 3.7 39.7 317.3 8.2 8.28e-07 7.40e-04
21 30-Oct-2016 11:14:20 42.803 13.19 3.7 49.9 321.3 9.4 1.42e-06 1.90e-03
22 28-Oct-2016 19:56:31 42.866 13.162 3.7 56.9 323.9 13.2 1.51e-06 2.61e-03
23 26-Oct-2016 21:24:51 42.867 13.078 3.7 61.3 318.8 10.3 2.41e-06 3.32e-03
24 06-Nov-2016 18:15:17 42.806 13.185 3.6 50.5 321.2 8.9 7.63e-07 1.32e-03
25 05-Nov-2016 08:17:39 42.699 13.147 3.6 44.3 308.2 11.1 1.29e-06 7.50e-04
26 31-Oct-2016 09:34:16 42.816 13.151 3.6 53.1 319.6 9.2 1.25e-06 1.33e-03
27 30-Oct-2016 23:56:19 42.828 13.09 3.6 57.4 316.7 7.9 1.40e-06 2.20e-03
28 30-Oct-2016 10:26:24 42.836 13.071 3.6 59.1 316.2 10.8 1.21e-06 1.40e-03
29 09-Oct-2016 04:42:42 42.74 13.185 3.6 45.0 315.3 11.8 7.65e-07 1.17e-03
30 02-Nov-2016 06:41:12 42.796 13.167 3.5 50.6 319.1 10.3 6.14e-07 5.42e-04
31 01-Nov-2016 17:59:12 42.806 13.135 3.5 53.1 317.8 10.8 1.75e-06 3.08e-03
32 30-Oct-2016 13:14:16 42.766 13.061 3.5 54.4 309.9 8.7 1.00e-06 1.26e-03
33 28-Oct-2016 23:18:08 42.88 13.094 3.5 61.5 320.6 14.0 1.53e-06 2.01e-03
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Figure 3.2: The map shows the epicenters locations and the focal mechanism of the 10
strongest events. Red triangle denotes the Gingerino seismic station. The top figure in
the inset shows a map of the underground laboratories, while the bottom one shows the
Gingerino RLG.
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Figure 3.3: The recorded event waveforms, in red the vertical rotation rate, in black the
transverse acceleration. The time window is 45-seconds long. Individual rotation and
translation traces are normalized to their respective peak value.



3.4 Data analysis 65

For example, the displacement caused by a Love wave traveling as a plane wave along the

k̂-direction (see Fig. 3.1) can be expressed through the equation:

uT = Ae

i!( xk

C

L

�t)
(3.3)

Combining eq.3.3 with eq.3.2 we yelds:

⌦̇z =
�üT

2cL
(3.4)

which provides a direct estimation of the phase velocity cL from a single-site measurement,

as an amplitude ratio. Our data set, consisting in 33 events (see Table 4.1), permits us to

extend the vertical rotation-rate/tranverse acceleration analysis to regional events whose

epicentral distance and magnitude ranges from 30 km to 70 km and Ml 3.5 to Mw 5.9

respectively. First we try to provide a statistical estimation of the misfit between the

theoretical back-azimuth (i.e the one derived from station and epicenter coordinates) and

the estimated one. Then we calculate a frequency dependent phase velocity for di↵erent

seismic phases in those frequency bands where we have high correlation between vertical

rotation rate and transverse acceleration. Our analyses address three separate arguments

which aim at verifying the ability of the 4D deployment to consistently retrieve magnitude

and location of the the source, and the phase velocity of the incoming wavefield.

3.4.1 Source Magnitude

[Igel et al., 2007] considered the definition of the surface wave magnitude Ms and, using

the relationship between displacement and rotation rate, they obtained an explicit rela-

tionship between the distance- and period-dependent rotation rate and Ms, for the domain

of applicability of the surface wave magnitude scale (i.e. from 20� to 160� of epicentral
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range). After measuring the peak rotation rate for Love waves from a dozen of tele-seismic

events. [Igel et al., 2007] found that the magnitudes derived in that manner were in a fairly

good agreement with those predicted on the base of the Ms scale (see Fig. 2 in [Igel et al.,

2007]). Given the range of epicentral distances of our earthquakes a di↵erent magnitude

scale should be adopted. We use then the definition of eq. 3.5.

M = log10(A) + Blog10(d) + C (3.5)

where A is the peak ground displacement, d is the epicentral distance in km, and (B,C)

are constants to be determined empirically. We fit the equation 3.5 to our rotational

data expressed in angular displacement. The coe�cients that best fit the eq. 3.5 in the

least square sense are B = (0.427 ± 1.478) and C = (1.829 ± 2.565). The Peak angular

displacement is represented versus distance in Fig. 3.4.

3.4.2 Back Azimuth estimation

The horizontal components of ground acceleration are rotated in steps �✓ of one degree

within the range [0,2⇡] and, for each trial backazimuth theta, we calculate the radial and

transverse acceleration traces {üR(✓), üT (✓)}, where ✓ is the trial BAZ. Assuming that the

hypothesis of plane-wave propagation and linear elasticity holds, we know that vertical

rotation and transverse acceleration ([Aki and Richards, 2002], [Cochard et al., 2006a])

should show in the seismograms as the same waveform scaled by the frequency dependent

phase velocity C(f) (See eq. 4). We use the Wavelet coherence tool (WTC) [Grinsted

et al., 2004] to obtain time-frequency maps of correlation between the vertical rotation

rate ⌦z and the transverse accelerations set {üT (✓)}, obtained by the rotations described

above. The result of this processing is an array of correlation values C(✓, t, f) that are

functions of time and frequency and the trial backazimuth of the seismometer horizontal
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Figure 3.4: Peak angular displacement for the recorded events vs. epicentral distance, the
continuous lines represents the local magnitude scale that we fit to the data
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Figure 3.5: The back azimuth analysis in di↵erent frequency bands for the Visso M 5.9
mainshock, In this plot the red color denotes the correlation in red and anticorrelation in
blue (see the colorbar). On top of the figure the superposition of rotation rate (red) and
transverse acceleration (black).
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Figure 3.6: The Visso M 5.9 mainshock; histogram for the distribution of maximum corre-
lation values in the Love waves time windows and in the 2 seconds to 5 seconds of period
range. The solid red line represent the KDE estimation of the distribution. For this event
the theoretical BAZ is 324�
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Figure 3.7: Theoretical and observed BAZ for all the events listed in Table 4.1

components. This representation allows us to obtain a time-frequency estimation of the

back azimuth. This analysis is shown in Fig. 3.5 in the case of the the Visso MW 5.9

earthquake. The solid line in Fig. 3.5 represents the theoretical back azimuth. For this

event the surface Love waves are very clear in both rotational and translational traces

and, at periods longer than 3 seconds, the estimated BAZ is in good agreement with the

theoretical one. In the frequency band around 2 Hz, a region of high coherence identifies

the SH-wave arrival, whose BAZ corresponds to the theoretical one. A more quantitative

and statistically consistent analysis of the back azimuth for the entire event database is

described hereinafter. The C(✓, t, f) array is calculated for every event. We find the
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Figure 3.8: Misfit distribution and the relative gaussian KDE modeling in solid red line

maxima of correlation in a time window that goes from the beginning of the S-coda to

the end of the surface waves phase. The obtained values are binned in histograms and the

distribution is modeled with a gaussian function (KDE gaussian). In Fig. 3.6 we show the

histogram and the gaussian KDE for the Visso earthquake. For this event, surface waves

are well-defined, and the best agreement between predicted and observed BAZ is observed

in concomitance of the Love-wave time-frequency window. We apply this processing to

all the events and we resume the analysis by plotting the estimated backazimuth and the

theoretical one for the entire set in Fig. 3.7. In Fig. 3.8 we represent the polar histogram

of the misfits and the relative gaussian kernel modeling of the distribution. We outline that

the theoretical BAZ is just an indication of the possible direction of the wave field. As a

matter of fact, once accounting for lateral velocity variations, the complex topography and

the underground setting of our instruments, the propagation direction of surface waves may
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di↵er significantly from the expected one. From the analysis of teleseismic Love-wave at

periods longer than 10s , [Simonelli et al., 2016] observed a misfit of about 5 degrees. From

the analysis on this entire data set we can state that we observe a 10 degrees systematic

misfit that can be compatible with the orientation error of the seismometer or caused

by a structural e↵ect. A future measure with a triaxial fiber optic gyroscope, used as

a gyroscopic compass will allow us to orient our instrument and measure the previous

orientation with a precision lower than 0.1 deg. We tried a cluster analysis in order to

check if the misfit could be dependent on the events parameters reported in Table 4.1 and

on the S/N ratio but the result does not show any clear dependence. In conclusion an

average misfit of ✓misf. = 10� ± 18� is observed.

3.4.3 Phase velocity estimation

The previous processing provided us the BAZ measurements, which allow us to orient the

acceleration traces according to a ray parameter system RTZ oriented to the measured

BAZ angles for each seismic event. For retrieving phase velocity data from our joint

rotational-translational measurements, we use the frequency-domain formulation of eq. 4.

In order to provide a seismic-phase dependent phase velocity dispersion measure we divide

the seismograms to three time windows. The first one goes from the the P arrival to the

SH arrival, describing then what we suppose to be the P to SH conversion in the P coda.

The second window goes from the SH arrival, identified in the rotational trace, to end of

the S-coda. The last window includes the regional Lg phase where surface waves should

be observed. The visual inspection through all the events of the WTC between ⌦z and üT

permitted us to select the spectral region where we have high correlation, this region ranges

from [0.125 Hz to 4 Hz]. Our measurements are limited to time windows corresponding to

di↵erent seismic phases and to a frequency window where the WTC shows and allow us to

perform spectral ratios i.e WTC greater than 0.7. The amplitude spectral densities (ASD)
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Figure 3.9: The amplitude spectral densities calculated with the multitaper method, in
black the transverse acceleration and in red the vertical rotation rate. From left to right
the three seismic phases that we analyzed, in blue the noise level of the RLG
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of the signals are then calculated by using a multitaper method described by ([Thomson,

1982]) with a time/half-bandwith product of eight. For the three time windows we report

the ASD values for the rotational (red) and translational (black) observables in Fig. 3.9.

Eq.3.6 defines the dispersion curve for the j-th phase as the average of the single event

derived dispersion curves. We omit from the calculation of the average those rotational

ASD estimations at the generic frequency fk for the events that are below a S/N ratio of

2.

Cj(fk) = N

�1
NX

i=1

cj(fk) = N

�1
NX

i=1

aT (fk)

2⌦z(fk)
(3.6)

The well known fact that the noise level of an instrument is frequency dependent justifies

the choice of applying this selection criterium. The final result of the phase velocity analysis

is shown in Fig.3.11. The error for the value of Cj(fk) at the discrete frequency fk and for

the phase j is quantified as the standard deviation of the estimates derived for individual

events. For the Lg time window we observe a normal dispersion curve from 0.1 - 1 Hz, this

is expected given the dispersive nature of surface Love waves. For the P-phase we see a

general less dispersive behavior associated with a larger error. This is also quite evident if

we focus on the relative amplitudes of the rotational/translational p-coda signals in Fig.

3.3. For the S-coda we find a pretty constant value of 2.8 km/s, in this case the error

is in general smaller than the one for the P-coda. This estimates are compatible to the

one reported by [Li et al., 2010], where a velocity profile crossing the Gran Sasso shows

a similar shear waves velocity value. For the Visso mainshock we also provide the phase

velocity analysis in the time domain (Fig. 3.10). This representation allows us to easily

check the correlation between rotation and acceleration in band-pass filtered time windows

by visual inspection. The phase velocity values in each line are estimated as the ratio of

the peak values of the envelopes for that component. Each component is normalized for

graphical reasons. The values obtained by this method are in agreement with the ones
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obtained using the spectral ratios method described above.

3.5 Conclusions

This work presented the results from the operation of GINGERino, a Ring Laser Gyroscope

co-located with a broad-band seismometer inside the INFN’s Gran Sasso laboratories.

Our data constitute some of the very first observations of earthquake-generated rotational

motions by an intense seismic sequence at local distance. The observed events permitted us

to fit a magnitude-distance relation for vertical rotation rates to the recorded peak values

at local distance. We extended the application of roto-translational observations of ground

motion to local events, thus exploring higher frequency ranges and larger rotation rate

amplitudes. The Wavelet coherence (WTC) is used as a filter for identifying those regions of

the time-period representation where the rotation rate and transverse acceleration signals

exhibit significant coherence. The BAZ of the observed events has been estimated and

compared to the predicted ones. This analysis confirms that also at regional distances we

are able, by using 4C observations, to find the direction of the wave-field with an error that

has been quantified as the standard deviation of the misfit distribution, in other words,

supposing to perform an experiment with a station on a planet, without any seismic array

present, still we can infer the direction of the wave field an possibly locate the epicenter

of the event with only one station. This analysis shows a systematic mean value of 10

degrees of misfit that can be due to both a misalignment of the seismometer or to a

structural e↵ect. In a second step, after finding the set of BAZ angles, we oriented our

seismometer components according to the ray parameters. We divided the seismograms in

three di↵erent time windows that identifies the P-coda, S-coda and surface waves phases.

For each time window and for all the events we calculated the amplitude spectral densities

both for transverse acceleration and vertical rotation rate. The spectral ratio of transverse
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Figure 3.10: The Visso MW 5.9 mainshock. Superposition of vertical rotation rate (red)
and transverse acceleration (black) and determination of phase velocities as a function of
central frequency of the half octave bandpass filter. The phase velocity values are measured
by taking the ratio of the envelopes of the band passed seismogram
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Figure 3.11: The result of the phase velocity estimation method applied to P-coda, S-coda
and Love waves time windows
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acceleration ad twice the rotation rate gives a measure of three dispersion curves. This

allowed to retrieve estimates of phase velocities over the period range spanned by correlated

arrivals. Coherency among ground rotation and translation is also observed throughout the

coda of the P-wave arrival, an observation which is interpreted in terms of near-receiver

P-SH converted energy due to 3D e↵ects associated with the complex topography and

anisotropy. Those particular coda waves, however, do exhibit a large variability in the

rotation/acceleration ratio, as a likely consequence of di↵erences in the wave-path and/or

source mechanism. The future steps of this experiment are to increase the number and the

span of observations both in therms of azimuthal coverage and distance. This will allow us

to increase the robustness of phase velocity measurements. These are expected given the

strong lateral heterogeneities in the lithospheric structure which are expected in a complex

area such the central Apennines.
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Abstract

For many years the seismological community has looked for a reliable, sensitive, broad-

band three-component portable rotational sensor. In this preliminary study, we show

the possibility of measuring and extracting relevant seismological information from lo-

cal earthquakes. We employ portable three-component rotational sensors, insensitive to

translations, which operate on optical interferometry principles (Sagnac e↵ect). Multiple

sensors recording redundantly add significance to the measurements. During the Central

Italy seismic sequence in November 2016, we deployed two portable fiber-optic gyroscopes

(BlueSeis3A from iXBlue and LCG demonstrator from Litef) and a broadband seismome-

ter in Colfiorito, Italy. We present here the six-component observations, with analysis

of rotational (three redundant components) and translational (three components) ground

motions, generated by earthquakes at local distances. For each seismic event, we compare

coherence between rotational sensors and estimate a back azimuth consistent with theo-

retical values. We also estimate phase velocities fro the Lg and Rg regional seismic phases

in the 5 to 10 Hz frequency range.

4.1 Introduction

The rotational seismology is an emerging field of the Earth sciences that is devoted to un-

derstanding and exploitation of observations of rotational ground motions for improvement

of a wide range of seismological applications . Several studies have already shown the high

impact of a colocated broadband observation of the three linear components of translation

and three components of rotation [Takeo and Ito, 1997, Cochard et al., 2006a, Ferreira

and Igel, 2009, Bernauer et al., 2014, Donner et al., 2016]. [Igel et al., 2007] show that is

possible to compare the component of vertical rotation measured at the G-Wettzell RLG to

the transverse acceleration measured my a broadband seismometer. From this comparison
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Lg waves dispersion curves are estimated. On the same instrument [Hadziioannou et al.,

2012b] show the possibility to estimate the direction of the ocean generated noise. The

importance of six component observations and the potential of this method in understand-

ing the direction of the incoming wave-field and the local velocity structure is describer

by [Wassermann et al., 2016]. This potential finds a natural field of application specially

in the environments where it is hard to deploy arrays of seismometers like for example

in planetary seismology or in ocean bottom seismic installations. [Lindner et al., 2016]

demonstrate using the data collected in an OBS experiment the possibility of improving

the performances of an OBS seismometer by correcting for the induced tilts, increasing thus

his sensitivity. Rotational seismology as an experimental science is strongly connected with

the advances in instrumentation. In fact, the need of observing the complete rotational

ground motion vector was outlined by theoreticians [Aki and Richards, 2002]. Still, [Igel

et al., 2014] the authors state that ” Despite the success of ring laser-based observations,

seismology still awaits an appropriate portable rotation sensor that is comparable in sen-

sitivity with today high-quality broadband translation sensors”. Today, this gap is closed

and a rotational sensor that fulfills to the requirements for field measurements of the three

components of ground rotation is finally available. The instrument called BlueSeis3C, is

described in detail in [Bernauer et al., 2017].

In this paper, we report the first three components recording from two colocated fiber optic

gyroscopes. The fiber optic gyroscope is a passive Sagnac interferometer, the measurement

principle is described in the book from [Lefèvre, 2014] and o↵ers the great advantage of be-

ing based on massless photons which ensures the complete decoupling from inertial forces.

By principle it implies the insensitivity to translations and guarantees a pure rotation

measure as an output. The setup of this experiment is shown in Fig. 4.1 and consists

of two rotational and two translational sensors. The rotational sensors are respectively

the BlueSeis3C, a new highly sensitive broadband, three component instrument by IxBlue,
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Figure 4.1: The experimental setup: (top left) the BlueSeis3C; (top right) the seismometer
Trillium 120c, (bottom left) the LCG-demonstrator; Bottom right the Guralp CMG-5
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and an LCG-demonstrator from Litef. Ground translations were recorded by means of

a seismometer from Nanometrics (Trillium compact 120s) and by an accelerometer from

Guralp (CMG-5) installed in case of strong motions. The instruments were installed in

an old uninhabited country house hosting located near Colfiorito-Italy (lat: 43�1041.5900N,

long: 12�52040.5000E).

4.2 Geological framework

The central part of the Apennines chain in Italy is characterized by a quaternary NE-

SW striking extensional regime, overstamping older compressional tectonics, composed by

layers of Miocene Flysch deposits and Meso-Cenozoic carbonate rocks ([Martini et al.,

2001], [Pucci et al., 2017]). High-resolution GPS measurements ([Hreinsdóttir and Ben-

nett, 2009];[D’Agostino, 2014]) revealed an annual extension of 2-4 mm, which is primarily

accommodated by an extensive system of high-angle SW dipping normal-faults. The par-

ticular sector of the Central Apennines struck by the 2016/17 seismic sequence is charac-

terized by two major NNW-SSE trending extensional fault systems of adjacent, WSW dip-

ping, active fault systems: developing in the western part along Gubbio-Colfiorito-Norcia -

Lquila and aligning in the eastern part along Mount Vettore-Amatrice-Campotosto (Mount

Gorzano fault) - Gran Sasso ridge ([Boncio et al., 2004];[Galadini and Galli, 2000];[Lavec-

chia et al., 2012];[Pucci et al., 2017]]. The main shocks of recent moderate damaging

earthquakes in the Central Apennines (M5.8 - Norcia 1979, M6.0 Umbria-Marche 1997,

M6.1 - Lquila 2009) occurred mainly on this western fault system and bear witness of the

seismogenic activity, whereas the Mount Vettore and Gran Sasso faults seem to have been

silent since historical times [Boncio et al., 2004]. However, the only important seismic

event raising suspicion to indicate seismic activity on the eastern fault system is the Me6.2

earthquake of 7 October 1639 (I = IX-X MCS, M= 6.2, CPTI15) on the northern portion
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Table 4.1: The recorded events
Event 1 Event 2

Date 12 Nov 12 Nov
Time 12:34:11 12:59:18
Lat. 42.996 42.997
Long. 13.140 13.138
Mag. 3.8 ML 3.7 ML
Dist [km] 20.8 20.5
Depth [km] 9.0 9.0
BAZ [deg] 101.5 102
Peak Z rot. rate [rad][s]�1 7.46e-5 7.39e-5
Peak N rot. rate [rad][s]�1 6.96e-5 5.55e-5
Peak E rot. rate [rad][s]�1 7.03e-5 4.85e-5
Peak Z acc. [m][s]�1 6.65e-3 6.60e-3
Peak N acc. [m][s]�1 1.45e-2 1.4e-2
Peak E acc. [m][s]�1 1.30e-2 1.3e-2

of the Gorzano fault, while the southern segment was struck also recently by the L’Aquila

2009 sequence [Lavecchia et al., 2012]; [Chiaraluce, 2012].

4.3 Observations and processing

This test campaign lasted a couple of days, in this time interval we record two earthquakes,

the principal properties of this events are summarized in Tab. 4.1. The data contain three

components of rotation rate from each sensor (BlueSeis3A and LCG) and three components

of ground velocity. In Fig. 4.3 and Fig. 4.2 we show in red the three components of rotation

rate measured with the BlueSeis3A instrument and in black the three components of ground

acceleration from Trillium 120 for the two analyzed events, respectively.

We analyzed the data in these stepsThe processing of the data and the relative anal-

ysis develops in three steps: 1) The coherence check between the two rotational sensors

signals 2) The Back azimuth estimation in di↵erent frequency bands 3) The phase velocity

estimation both for Lg and Rg phases.
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Figure 4.2: Event 1. Broadband ground acceleration after numerical instrumental response
correction and numerical di↵erentiation in black; rotation rate (red) measured of the ML
3.8 earthquake of the 12 Nov 2016 at 12:34:11



86
4. 6-Component Ground Motion Observations of Local Earthquakes: The

2016 Central Italy Sequence

-0.02

0

0.02

a
N

[m
][
s
]−

2

-0.02

0

0.02

a
E
[m

][
s
]−

2

-0.02

0

0.02

a
Z
[m

][
s
]−

2

-5

0

5

Ω
N
[r
a
d
][
s
]−

1

×10−5

-5

0

5

Ω
E
[r
a
d
][
s
]−

1

×10−5

0 10 20 30 40 50 60 70 80

Time [s]

-5

0

5

Ω
Z
[r
a
d
][
s
]−

1

×10−5

Figure 4.3: Event 2. Broadband ground acceleration after numerical instrumental response
correction and numerical di↵erentiation in black; rotation rate (red) measured after the
ML 3.7 earthquake of the 12 Nov 2016 at 12:59:18
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Figure 4.4: The ZLCC check between the rotational components recorded by LCG demon-
strator in black and BlueSeis3A for the event number one of Tab. 4.1, the data are
band-pass filtered in the interval [5-10 ] Hz

4.3.1 Zero lag correlation check on the rotational data

We name the rotational data measured with the BlueSeis3A sensor as {⌦Z,N,E} and the

data measured with Litef as {!Z,N,E} where the subscripts indicates the orientation of

each component. The traces are bandpass filtered in the (5-20 Hz) range. The choice of

this frequency interval is given after visual inspection of the events magnitude spectra,

see Fig 4.6. The LCG sensor in fact was showing signal only in that frequency band. In

order to check the coherence between the two sensors we calculate the Zero lag correlation

coe�cient functions (ZLCC) for every combination of {⌦i,!j} and for both events. The

window length used for this estimation is one second and the overlap is 50 %.
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Figure 4.5: The ZLCC check between the rotational components recorded by LCG demon-
strator in black and BlueSeis3A for the event number two of Tab. 4.1

As expected the correlation is very high and positive for the components that shares

the same orientation as we can see from Fig. 4.4 and 4.5. From the figures the di↵erence in

the signal-to-noise ratio between the two sensors is also evident. For the LCG the onset of

s-waves is barely visible. Especially the z-component of the event number one as seen by

the LCG (Fig. 4.4) is buried in the noise but still the comparison with the same component

recorded by the Blueseis3C gives a clear correlation higher than 0.8. In the time regions

out of the s-phase the correlation is low since the instrumental noises of the two instrument

are independent. This test of inherent coherence between di↵erent sensors based on the

same robust optical detection principle is a very important cross check for our recordings.

It is also important to note that the peak values of the rotation rates for the two events

are compatible.
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Figure 4.6: Amplitude spectra calculated for the S phase window of the recoded events.

4.3.2 BAZ determination

• The velocity data are corrected for the instrumental response of the seismometer and

di↵erentiated respect to time in order to get the ground acceleration

• The horizontal components of ground acceleration are rotated clockwise from Nord

in steps �✓ of one degree from 0� to 360�, we get then a set of horizontal compo-

nents {Ri, Ti} where R and T are the radial and transverse components of ground

acceleration at the BAZ angle ✓i.

• For every couple of observables {⌦Z , Ti} we calculate the wavelet coherence (WCT)

in order to identify the time-frequency regions where the two signals exhibits a cor-
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relation that is higher than 0.7. The result of this processing consists is an array

WCT (t, f, ✓). This step of processing permits to identify the direction of the incom-

ing wave-field for di↵erent seismic phases at di↵erent wavelengths.

• We determine the maximum values of WTC in seven frequency bands and in a time

windows starting at the P onset and lasting until the end of the Lg phase

• We bin the BAZ values obtained in the previous step in histograms in order to identify

the most probable direction for every frequency band. The result of this analysis is

shown in Fig. 4.7 and Fig. 4.8 for event one and two respectively.

A completely symmetric approach of the processing described above permits to estimate

the direction of the wave-field using Rg waves. We rotate this time the horizontal rotation

rates (tilts) an we let the vertical acceleration fixed. The processing is identical the only

di↵erence is the sign of the correlation that , as predicted by theory is opposite. In most

of the frequency bands where the BAZ has been estimated, the peak of the distribution

of maxima of correlation coincides with the theoretical Back azimuth. There are by the

way some spectral regions where the BAZ estimated with our method di↵ers from the

theoretical one. In particular for Rg waves, the estimation of BAZ is in agreement with

the theoretical BAZ only for frequencies below 1 Hz. Further studies on a larger data set

may resolve this issue

4.3.3 Phase velocity measurements

The availability of 6C observations permits to estimate the phase velocity both for Lg

and Rg waves. We rotate our components according to ray-parameters assuming the BAZ

estimated in the previous step. The couple of observables that we use for the purpose are

{⌦Z , aT} and {⌦T , aZ} where the first set is the transverse acceleration and the vertical

rotation rate and the second one is the vertical acceleration and the transverse rotation
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rate i.e the rotation rate measured around the axis that is transverse to the direction

of propagation of the seismic wave. It’s well known from literature that with the first

couple of observables it is possible to obtain Love waves phase velocity measurements [Igel

et al., 2005] by using the formula cL = �aT/2⌦T and for Ryleigh waves cR = aZ/⌦T see.

[Suryanto, 2006]. We rewrite the equations above and we get

aZ = cR⌦T , (4.1a)

aT = �2cL⌦Z , (4.1b)

Assuming plane wave propagation the equations are solved by orthogonal linear regression

(ODR), see [Wassermann et al., 2016]. Those data points in the rotational data that has

a signal-to-noise ratio close to one are excluded from the fit together with the associated

acceleration data, the aim of this step is to exclude noise from the fit . The goodness of

the ODR is estimated as the sum of the orthogonal distances.

The results of this analysis is shown in Tab.4.2. We can see clearly both from Fig.4.11 and

from the data reported in Tab.4.2 that for Lg waves the single event derived estimations

are consistent each other, they di↵er only by 6%. Also the mean value between the two

estimations is in accordance with the expected phase velocity for Lg waves in the [5-10 Hz]

span [Eslick et al., 2008].

For Rg waves only the event number one gives a result that is acceptable, we get a value

that is 13% slower than the relative Lg waves estimation; this is in accordance with theory.

For the event number two the slope of the experimental data scatter plot is not in accord

with equation 4.1 b. We have to note from Tab. 4.2 that in general the value of Zero

lag correlation of the observables {⌦Z , aT} is higher than {⌦T , aZ}, this of course reflects

also on the error on the ODR fit that, in the case of Rg waves estimation is two orders of

magnitude larger.
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Table 4.2: The results of the ODR on the events band pass filtered in the [5-10] Hz interval;
we report the estimated phase velocity for Lg and Rg waves, the Error on the linear fit
of equations 4.1 as the sum of orthogonal distances and the maximum values of zero lag
correlation coe�cient estimated my means of sliding one second long window

Event Lg [m][s]�1 Fit error
Max
ZLCC

Rg [m][s]�1 Fit error
Max
ZLCC

1 784 4.1e-9 0.92 350 1.7e-7 0.62
2 739 8.7e-9 0.94 644 3.7e-7 0.66

4.4 Discussion and conclusions

In this paper we presented the first 6C broadband observations from two local earthquakes

during the 2016 Central Italy seismic sequence. After validating the rotational observations

by comparing via ZLCC the recordings of the two 3C rotational sensors we proceeded with

the analysis of vertical rotation rate versus transverse acceleration in order to identify the

back-azimuth of the incoming wave-field for Lg and SH arrivals. This analysis confirms

the goodness of this method in the 4 to 8 Hz band where the peaks of the BAZ values

distributions coincides with the theoretical Back azimuth. In the spectral region where the

couples of observables are coherent {⌦Z , aT} and {⌦T , aR} we could estimate the phase

velocity values both for Lg and Rg waves. This work shows that 6C earthquakes obser-

vations at local distances can provide a correct estimation of the event BAZ, the phase

velocities that we measure are in good agreement with the theoretical relations that we

expect for Lg waves. A future deployment of a similar setup on a longer time window will

permit to give to our promising first observations a statistically consistent meaning.
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Figure 4.7: The BAZ estimation and the distribution of the maximum vales of WTC
vs angle for event 1 estimated after step-rotation of horizontal seismometer traces and
correlation with vertical rotation rate (Lg waves). The red trace represents the vertical
rotation rate and the black trace the transverse acceleration. The black continuous line is
the theoretical BAZ: 101.5�
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Figure 4.8: The BAZ estimation and the distribution of the maximum vales of WTC
vs angle for event 2 estimated after step-rotation of horizontal seismometer traces and
correlation with vertical rotation rate (Lg). The red trace represents the vertical rotation
rate and the black trace the transverse acceleration. The black continuous line is the
theoretical BAZ: 102�
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Figure 4.9: The BAZ estimation and the distribution of the maximum vales of WTC
vs angle for event 1 estimated after step-rotation of horizontal rotation rate traces and
correlation with vertical acceleration (Rg waves). The red trace represents the transverse
rotation rate and the black trace the vertical acceleration. The black continuous line is the
theoretical BAZ: 101.5�
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Figure 4.10: The BAZ estimation and the distribution of the maximum vales of WTC
vs angle for event 2 estimated after step-rotation of horizontal rotation rate traces and
correlation with vertical acceleration (Rg waves). The red trace represents the transverse
rotation rate and the black trace the vertical acceleration. The black continuous line is the
theoretical BAZ: 102�
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Figure 4.11: Scatter plot of the couple of sets {⌦Z , aT} in Black (Lg waves) and {⌦T , aZ}
in Red (Rg waves); on the left panel the event number one, on the right panel the event
number two.
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The interest on measuring rotational motions of the ground dates back to at least two

centuries ago. The existence of this type of ground motions was predicted in the theory

of linear elasticity. Monuments and obelisks rotated after the occurrence of strong seismic

events are reported in historical documents and suggested as an evidence the existence of

the ground rotations. However those e↵ect we know today that they could be caused by

only simple linear accelerations. This was suggesting probably much larger amplitude for

rotations induced by earthquakes. Several experiments aimed at measuring this type of

ground motion failed due to the unsu�cient sensitivity of the first mechanical instruments.

After the fifties, the first active laser gyroscopes were developed for navigation purposes

and after a few years they were able to ”see the Earth’s rotation”. The first measurements

of rotational motions induced by earthquakes by the way date back only to 1995. The

first complete characterization and quantitative connection with the translational motions

was given only after the first measurements made with the G-Wettzell RLG. These mea-

surements demonstrated the possibility of estimating the direction of the wave field of

an earthquake with a single station and the possibility to measure the phase velocity of

surface waves or shear waves. At the beginning of this Ph.D. project only the G-wettzell

measurements supported with real data the power of the methods derived from rotational

seismology. It was necessary to confirm and verify this results in others geological and

structural contexts. It was necessary to expand the study to local and regional events, to

measure large events near the source. To check the behavior of the rotational motions with

the depth. Moreover, given the experimental nature of seismology, if was desirable to test

the power of a portable six components station in a field experiment. This is expected to

replace the logistical complexity of an array of seismometers, with a simpler single station

configuration . Hereinafter we recap the steps of this work before moving on to the fu-

ture perspectives for this research field. In the introduction we provided the mathematical

expressions for the expected rotation rates under linear elasticity and plane wave assump-
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tion. The basic principles that permits to measure precisely and accurately the rotational

motions are described starting from the Sagnac principle to its implementation in RLG

and FOG. An historical review of earthquake-induced rotations guided the reader up to

nowadays performing a parallel comparison of the state of the instruments development

and of the techniques of data processing. The open questions present at the beginning

of this thesis work are described. The following chapters are structured as stand alone

papers, sorted in chronological sense. Here we just briefly recall the conclusions present at

the end of every chapter.

• After G-Wettzell another large ring laser, with an area larger than 10m2 was built

in Gran Sasso underground laboratory, it has a sensitivity of the order of 10�10

rad/s, in the frequency band of interest for seismology. Together with the colocated

seismometer it constitutes an underground rotational observatory. This enlarge the

possibility to observe earthquakes from tele seismic distance to very local, given the

geographical location of the instrument. This permits also to compare the rotational

observations of large distant events with the newborn ROMY system of ring lasers

and the above mentioned G-Wettzell, opening thus a new season for multi station

observations.

• Underground rotations has been observed after the first unsuccessful attempt of the

G-Pisa ring laser, a first observation of a teleseismic event is reported in chapter 2

and its relative analysis. This confirms in another structural context the possibility

of BAZ estimation for tele seismic events. The phase velocity analysis for Love waves

show a normal dispersion in agreement with the PREMmodel of the Earth for periods

longer than 10 seconds

• After the first light other events were recorded and characterized; a study on the

seismometers noise indicate that the site is good in the microseism region but a high
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noise at long period is present; we show that this noise is probably due to the forced

air convection since it seems directed as the tunnel orientation where the air flows.

• A large dataset of local and regional events occurred during the 2016 seismic sequence

of central Italy is recorded. The quantity of data collected permitted a statistical

study on the BAZ estimation at shorter distances and in di↵erent frequency bands.

The phase velocity for di↵erent seismic phases is estimated my mean of spectral ratios

far all the events and the results are stacked in order to obtain a dispersion curve for

three time intervals: the P-coda, S-coda and Lg phase.

• A first campaign is performed using the state of the art of portable 3C rotational

sensors in Colfiorito. The ”BlueSeis3A” and the ”LCG-demostrator” recorded si-

multaneously the seismic activity following the Mw 6.5 main shock of Norcia. Both

sensors show coherent data for what concern the measured rotations. For the first

time the six components observations of earthquakes at local distances are reported.

The data are processed in order to estimate the BAZ of the incoming wave field using

the Love waves and for the first time (given the availability of the horizontal rotation

rates) using Rayleigh waves. An estimation of the local phase velocity is given in the

5-10 Hz range for Love and Rayleigh waves.

The 2017 has been a turning point for what concerns the seismic instrumentation

dedicated to the detection of rotational ground motions. For the first time a large ring

laser system called ROMY is able to reconstruct with unprecedented sensitivity the ground

rotation vector. With this new experiment the number of rotational observatories grows up

to three. We have since years consistent observations from the G-ring in Wetzell, Germany

and, since 2015 stable observations from Gingerino in Gran-Sasso, Italy. At the same

time a commercially available three component portable sensor is available (Blueseis3A

by IxBlue). It common practice since decades to observe translational ground motions
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generated by earthquakes in a global scale by means of broadband seismometers networks

but global multi-site observations of the rotational component of tele-seismic events is still

missing. In this work for the first time we compare and analyze the rotational ground

motion generated by the same earthquakes (Mexico Mw 8.0, Kamchatka Mw 7.6, Iraq Mw

7.2) occurred in 2017, as detected by di↵erent Instruments at di↵erent sites. This will

permit for example to highlight the role of the local crustal structure causing the P-SH

near-receiver conversion. This causes the observed rotational signals in the P-wave coda.

On the other hand, the availability of six components observations from the ROMY ring

laser and from the BlueSeis3A will permit to completely characterize the seismic wave field

in terms of wave type, direction of propagation and polarization on real data. As a general

conclusion the waveforms are gaining more and more importance in seismology not only for

ground translations but also for all the possible degrees of freedom of the ground motion.
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Appendices





The wavelet decomposition method

for phase velocity estimation
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In this appendix we describe more in detail the mathematics that underlies to the

wavelet analysis performed in the last two chapters of this thesis. Let suppose to have the

couple of sets of observables defined as: {!Z ,aT} and {!T ,az}.

As we know from theory these two couples of observables should show themself in the

respective seismograms as the same waveform scaled respectively by the phase velocity for

Love and Rayleigh waves. In the following we consider for example the set {!Z ,aT}. In

order to check the coherence of the the two couples of seismic signals we define the zero lag

wavelet coherence (ZLWC) following the next steps. We define the wavelet cross spectrum

for our couple of observables e.g. the transverse acceleration and vertical rotation rate as:

C!
Z

,a
T

= S(C⇤
!
Z

(a, b)CaT (a, b)) (2)

here the W!
Z

= C

⇤
!
Z

(a, b) and Wa
T

= Ca
T

(a, b) are the continuos wavelet transforms of

{!Z ,aT} and S is a smoothing function we can calculate then the wavelet coherence between

the two signals as

WCT (a, b) =
|S(C!

Z

,a
T

)|2

|S(W!
Z

)|2|S(Wa
T

)|2 (3)

we multiply eq. 3 by

�(a, b) =

8
>><

>>:

1 if \C!
Z

,a
T

is 0 or 2⇡

0 elsewhere

(4)

where \C!
Z

,a
T

in the angle of the wavelet cross spectrum, thus accounting for the signal

phase relationships.

F (a, b) = WCT (a, b)S(�(a, b)) (5)

We know that the phase velocity for Love waves can be calculated as a simple amplitude



109

ratio CL = �aT (t)/(2!T (t)) we express this equation in the wavelet domain as follow:

CL(a, b) =
W!

Z

(a, b)

2Wa
T

(a, b)
(6)

We then select the regions of the scale/translation plane where we are allowed to consider

the values of CL(a, b) as reliable by multiplying the obtained estimation by the veto function

5 i.e.

C

Cohere
L (a, b) =

W!
Z

(a, b)

2Wa
T

(a, b)
F (a, b) (7)

A similar processing applies to the couple of observables !T ,az for Rayleigh waves, where

eq. 7 assumes in this case the form

C

Cohere
R (a, b) =

W!
T

(a, b)

Wa
Z

(a, b)
F (a, b) (8)

We report two examples of the method described applied to the MW9.0 Tohoku-Oki earth-

quake. In Fig. 12 we report the BAZ estimation in di↵erent period ranges, is easy to notice

how in the microseism period range the BAZ flips from the expect direction of the ocean

noise at the WET station to the event BAZ at about 37 deg. In Fig. 13 we report the

analysis that permits to estimate the phase velocity in the time-period domain as described

by eq. 7.
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Figure 12: Wavelet decomposition BAZ analysis fot the MW9.0 Tohoku-Oki earthquake
recorded at the Wettzell station
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Figure 13: The phase velocity estimation method applied to to Tohoku-Oki earthquake as
recorded by the Wettzell station, in this case we measure the Love waves phase velocity
and SH
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man, G., and Wiltshire, D. (2004). Direct measurement of diurnal polar motion by ring

laser gyroscopes. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B6).

[Schreiber et al., 2009] Schreiber, K. U., Klügel, T., Velikoseltsev, A., Schlüter, W., Sted-
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