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Summary 

Of all biomolecules, proteins are arguably the most important gears in our cellular 

machinery when it comes to biological function. Mass spectrometry (MS)-based 

proteomics has become the method of choice to study proteomic systems in a global and 

unbiased manner. Yet, it still trails ‘next-generation’ genomics and transcriptomics 

technology in terms of coverage, throughput and sensitivity. In this thesis, I present three 

MS acquisition strategies that break through longstanding technological limitations and 

facilitate comprehensive and high-throughput proteomics. 

Isobaric labeling enables quantification of multiple samples in a single analysis and 

thereby increases throughput. In a first project, I established a tailored acquisition strategy 

for a new generation of isobaric labels termed EASI-tag. As opposed to previous 

technologies, the EASI-tag method is interference-free and therefore allows multiplexed 

and accurate quantification, also on widely used tandem mass spectrometers.  

A core subject of my PhD was establishing ion mobility spectrometry as an additional 

dimension of separation in MS-based proteomics. This work builds on a high-resolution 

and high-speed quadrupole time-of-flight platform, which was equipped with a trapped 

ion mobility (TIMS) device. Making use of the sensitivity and flexibility of the TIMS 

device, we developed ‘parallel accumulation – serial fragmentation’ (PASEF), which 

effectively multiplies peptide sequencing speed and sensitivity by first storing all ions and 

then switching the quadrupole isolation window synchronously with ion mobility 

separation. The PASEF method has now become an integral part of a full-fledged 

commercial proteomics instrument.  

The third method, termed BoxCar, addresses a fundamental limitation of Orbitrap mass 

analyzers, which are the main workhorses in proteomics laboratories worldwide. For 

reasons detailed in this thesis, in practice, less than 1% of all ions are used for mass 

analysis in full scans. BoxCar increases this fraction up to a factor of 10 by dividing the 

entire mass range into multiple narrow segments or ‘boxes’. This thesis establishes an 

increase in dynamic range of the mass analysis of about one order of magnitude, which 

allowed detection of 10,000 proteins in 100 min from mouse brain tissue at the MS1-

level. The method is particularly beneficial for analyses that are limited by a large protein 

abundance range, as is often the case in a clinical context. In our laboratory, BoxCar has 

already dramatically improved proteomics studies of human heart and plasma samples.  

In summary, this PhD thesis provides the basis for next-generation MS acquisition 

methods that promise to elevate proteomics to the next level, closer to the ultimate goal 

of complete and ubiquitous proteomes. Importantly, the fundamental concepts and 

methods developed here are generic and can seamlessly be applied in other MS-based 

omics fields facing similar challenges, fox example metabolomics. 
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I. Introduction 

 

A Systems Biology Perspective on Proteome Diversity and Complexity 

The decoding of the complete human genome more than a decade ago1–3 marked a 

milestone in science that has revolutionized our understanding of  biology, medicine and 

evolution4. This breakthrough was preceded by sequencing of the yeast5, C. elegans6, and 

drosophila genomes7. While these pioneering efforts to reveal the base pair sequence of 

nucleic acids built on early work from Frederick Sanger and colleagues8, the successful 

completion of the human genome project propelled the development of higher throughput 

and more cost-efficient ‘next-generation’ sequencing (NGS) technologies9,10. Massive 

parallelization and two-dimensional optical image detection now readily allow studying 

genome variation on a population-wide scale11 as well as in single cells12. At the same 

time, the cost per analysis has decreased to a level that fosters applications in clinical 

practice13 and makes it affordable even for the general public to identify personal health 

risk factors in their genomes14. Yet, knowing the sequence of base pairs alone does not 

reveal how our genetic ‘blueprint’ is translated into a biological phenotype as long as the 

functional assignment to the encoded elements remains elusive15. Studies of the 

‘transcriptome’16 therefore aim to elucidate the complex relationship between genes and 

the first step of gene expression by mapping the variety of transcribed molecules, 

including protein-coding messenger RNA (mRNA), and identifying splicing variants as 

well as post-transcriptional modifications17–19. Disentangling factors that drive the 

expression of specific genes and thus the fate of a cell, and how gene expression adapts 

to internal or external factors has become a central focus of biological research4. However, 

transcripts are not the final products of gene expression, but rather represent intermediate 

steps to proteins, which - from a functional perspective - are the key actors in any living 

cell (Fig. 1). Collectively, proteins build a fascinating and highly complex machinery - 

the proteome20 - that orchestrates essentially all of cell and organismal biology. Proteins 

precisely regulate such disparate processes as gene expression and energy conversion, act 

jointly in multifaceted signaling cascades and steer inter-cellular trafficking. However, 

the relationship between the abundance of transcripts and proteins remains incompletely 
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understood, and the transcript levels alone are not sufficient to predict the phenotype21–24. 

Therefore, to gain a detailed understanding of health and disease at the molecular level, a 

direct analysis of the proteome is highly desirable.  

At any given time, a typical mammalian cell expresses over 10,000 different genes and, 

across various tissue and cell types, transcriptional evidence for more than 85% of the 

roughly 20,000 predicted human protein-coding genes has been found15,25. A single 

mammalian cell comprises an estimated 109 to 1011 protein molecules (about 150 pg, 

ref 26), while the abundance of individual proteins ranges from tens to over ten million 

copies per gene27. The different abundance levels imply major analytical challenges for 

the detection of low-abundance proteins as over 90% of the cellular protein mass is made 

up of just a few hundred proteins. This proportion can be even worse in tissue samples 

with heterogeneous cell types28, or body fluids29,30 with highly abundant transporter 

proteins. However, given the many different and highly specialized cells in our body, the 

overall number of different proteins is surprisingly low. In fact, an unexpected finding of 

the ‘human protein atlas’ project31,32, with the ultimate goal to image the distribution of 

Figure 1 | Proteomics in systems biology. The operation of a mammalian cell is 

determined by the joint action of the hundreds of billion protein constituents and their 

interactions with other biomolecules. The ultimate goal of proteomics is to monitor and 

understand the dynamics of the proteome system, including protein synthesis, 

degradation, post-translational modification and localization.  
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all proteins in all human tissues, was that the majority of proteins are not specific to a 

certain tissue, but rather expressed across many tissues at different levels of abundance. 

This raises the question what else determines the identity and function of a cell and 

highlights the importance of protein abundances and the need to not only catalogue the 

protein content of a cell, but also quantify proteins precisely.  

Importantly, the number of expressed proteins alone provides only a glimpse of the 

complexity of the (human) proteome. Genomic variations, alternative RNA processing 

and editing, and post-translational modifications (PTMs) vastly expand the proteomic 

landscape by giving rise to multiple ‘proteoforms’33 of each expressed gene34. To 

illustrate, already a single protein with five acetylation, six phosphorylation sites, a 

potential N-terminal acetylation and one single nucleotide polymorphism, could 

theoretically be present in over 8,000 different proteoforms. From an evolutionary 

perspective, this variety of gene expression products opens up the possibility to explore a 

much wider space of protein structures and functions than would have been possible by 

genetic variations alone35. Reversible and fast modifications of molecular switches such 

as phosphorylation sites are key to exchange information between or within cells36,37, and 

the fact that a large class of drugs target kinases38 underlines the importance of PTMs. 

While the aforementioned examples emphasize the importance of single proteins and 

modification states, most proteins do not act in an isolated manner. They are part of highly 

dynamic protein complexes or macromolecular assemblies, in which subtle changes in 

one protein may influence others directly or indirectly39.   

Capturing the proteome system in its entire complexity, including protein expression, 

abundance, localization, modification state and interaction with other biomolecules, is the 

central goal of proteomics – and an enormous technological challenge. 
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Mass Spectrometry-Based Proteomics 

Historically, biochemical methods have focused on the isolation and reconstruction of a 

biological entity, typically a protein, to study its function, one at a time. Today, the 

detection and quantification of proteins is still routinely based on the recognition of target 

proteins by antibodies in conjunction with light-emitting reporters40. Due to the specificity 

of many antibody-antigen interactions41, the established nature of the assays and the 

outstanding sensitivity of light detection, this technology is still the gold standard for 

known target proteins. Examples include the visualization of protein localization in 

pathology42,43 or high-throughput clinical diagnostics in the form of enzyme-linked 

immunoassays (ELISAs)44. However, antibody-based approaches can be compromised 

by cross-reactions with proteins other than the one of interest, and monoclonal antibodies 

typically target only a single epitope, making them sensitive to structural changes caused 

by post-translational modifications or changing experimental conditions45,46. Moreover, 

the development of a specific antibody takes a lot of resources, while reproducible 

production is only possible for monoclonal antibodies and remains an expensive and 

laborious task.  

The shortcomings of antibody-based methods and the need for system-wide 

measurements of ideally all expressed proteins in a single experiment akin to genomics 

and transcriptomics, has propelled the development of an alternative technology – mass 

spectrometry (MS)-based proteomics47,48. As opposed to antibodies, it is largely unbiased 

and offers the possibility to study proteomes in a comprehensive and hypothesis-free 

manner.  

 

Bottom-up Proteomics 

The most common MS-based proteomics workflow is the so-called ‘bottom-up’ approach 

(Fig. 2), which has evolved over the years through breakthroughs in all its constituent 

parts, beginning with sample preparation and ending in computational analysis. It has now 

become universally applicable to essentially all kinds of proteomics samples and research 

questions47,48.  
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Figure 2 | The bottom-up proteomics workflow. A: Proteins are extracted from a 

biological sample of interest and solubilized prior to enzymatic digestion with trypsin or 

other proteases. Fractionation or enrichment of target proteins or PTMs can be performed 

either at the protein or peptide level. B: Purified peptides are then separated via liquid  

chromatography at nanoliter per minute flow rates and electrosprayed into the mass 

spectrometer. The MS acquires full spectra of all eluting peptides (MS spectra) or 

fragment mass spectra (MS/MS spectra) of selected precursor ions. C: The resulting 

spectra are interpreted by comparison of the observed precursor and fragment ion masses 

with in silico databases. Identified peptides are mapped onto a protein sequence and 

ultimately, bioinformatics tools are employed to analyze quantitative differences between 

sample cohorts. Adapted from ref. 58. 
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The term ‘bottom-up’ refers to the underlying working principle: proteins are extracted 

and enzymatically cleaved by sequence-specific proteases49. The cleavage products, 

peptides, are separated via liquid chromatography and analyzed in a mass 

spectrometer50,51.  

Protein identity is inferred in silico based on the specificity of the cleavage site and by 

comparing the observed mass spectral signature of a peptide to all possible peptides from 

a reference genome52. Simplified sample handling, reduction of complexity, and the much 

superior amenability of peptides to MS analysis as compared to entire proteins, generally 

more than compensate for the loss of information about protein structures and co-

occurring modifications. The alternative ‘top-down’ approach omits the proteolytic 

cleavage and analyzes whole proteins, in some cases without disrupting their native 

tertiary and quaternary structures53, however, at the expense of throughput, sensitivity and 

proteome coverage54,55. An in-between alternative, the so-called ‘middle-down’ approach, 

overcomes some of these downsides by employing proteases that produce longer peptides 

and therefore retain some co-occurring modifications56,57. While in principle very 

attractive, this approach introduces new limitations and, to date, it also cannot compete 

with bottom-up in terms of sensitivity and proteome coverage. 

Any proteomic workflow starts with the extraction and solubilization of proteins from the 

biological sample of interest, for example cell lysates, tissue homogenates or body 

fluids58. Modern methods readily overcome the challenges introduced by the poor 

solubility of membrane proteins via soluble peptides that they give rise to after digestion, 

and employ buffers that are readily compatible with mass spectrometry59. The typical 

bottom-up workflow involves reduction and alkylation of disulfide bonds to prevent 

dimerization and thus to facilitate the proteolytic cleavage. Trypsin, the most commonly 

employed protease, cleaves at the C-terminal sides of lysine and arginine60. As we will 

see later, this yields peptides with favorable properties as they are relatively short yet 

specific enough to be mapped to a reference genome52, and as they can bear a positive 

charge at both the N-terminus and the C-terminal side chain. Alternative proteases such 

as chymotrypsin, GluC, and AspN or chemical proteolysis, are less popular, but can 

provide complementary information and increase overall protein sequence coverage61,62. 

Prior to MS analysis of the resulting peptide mixture, salts and remaining detergents have 

to removed, which is typically performed via solid-phase extraction on C18 coated 

particles or similar materials63–65. Miniaturization and careful selection of cross-
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compatible reagents and conditions now allow performing all of the aforementioned steps 

in a single vial reactor66. These recent developments avoid loss-prone transfer and buffer 

exchange steps, and have tremendously simplified sample preparation. Notably, as only 

liquid-handling steps are involved, the protocols can readily be automated with robotic 

systems, which enables high-throughput processing of clinical samples in just a few hours 

from receiving the sample to MS analysis67.  

These principles also extend to the analysis of PTMs, which typically involves additional 

enrichment steps to overcome sensitivity challenges in the detection of low abundant and 

sub-stoichiometrically modified peptides68. Numerous protocols exist to enrich peptides 

with a specific modification over their non-modified counterparts. For example, analysis 

of protein phosphorylation exploits the affinity of the bivalent phosphate group to 

titanium dioxide (TiO2) beads or immobilized metal cations (IMAC) or diverse phospho-

specific antibodies69,70. An interesting strategy is used to study ubiquitination sites on a 

proteome-wide scale: an antibody targets the di-glycine remnant of the covalent ubiquitin 

modification after tryptic digestion71,72. Enrichment is also possible at the protein level if 

a suitable antibody is available. This strategy has proved very powerful to explore tyrosine 

phosphorylation, which is otherwise hard to detect, although pY antibodies are usually 

used at the peptide level as well36,73. Immunopurification or –enrichment in combination 

with bottom-up proteomics is also commonly applied to reveal interaction partners of 

specific target proteins, an approach that can in principle define entire ‘interactomes’74. 

The latter often employs GFP-tagging of gene products and enrichment via anti-GFP 

antibodies, which makes this technology applicable to entire proteomes75,76, for example 

in combination with the CRISPR-Cas9 technology77. 

After enzymatic digestion, the resulting peptide mixture is separated via reversed-phase 

liquid chromatography at low pH. Here, peptides interact with a non-polar stationary C18 

phase that is covalently bound to porous silica beads and a binary aqueous/organic mobile 

phase. During the analysis, the proportion of the organic component, typically 

acetonitrile, increases gradually so that peptides elute from the column in order of 

increasing hydrophobicity. The development of nano-flow chromatography, with flow 
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rates in the range of hundreds of nanoliters per minute and very narrow columns (typically 

75 um inner diameter), provided a boost in sensitivity and selectivity47. The column is 

interfaced ‘online’ with the mass spectrometer to allow direct mass analysis of the eluting 

peptides (LC-MS). In proteomics, as further detailed below, the mass spectrometer 

performs two fundamental experiment types: the first one yields a survey spectrum of all 

detectable peptides (MS scan), and the second yields fragmentation spectra of selected 

peptide precursor ions (MS/MS scan). It turns out that positive peptide ions follow a very 

specific fragmentation scheme that allows straightforward annotation of spectra and 

prediction of the fragment ion masses from a given amino acid sequence (Fig. 3)78,79. The 

exact type of ions generated depends on the used fragmentation method. Collisional 

Figure 3 | Fragmentation of peptide ions in the mass spectrometer. a, Roepstorff-

Fohlmann-Biemann nomenclature of peptide backbone fragmentation78. When the charge 

is retained on the C-terminal side of the peptide, x, y, and z fragments are obtained, and 

conversely, retaining the charge on the N-terminal side yields a, b, and c ions. n is the 

length of the peptide sequence in amino acids and m the position of the amino acid relative 

to the N-terminus. b, In proteomics practice, collision induced dissociation is widely used, 

which yields primarily b- and y-type ions by breakage of the lower-energy peptide bond. 

The fragment ion nomenclature is exemplified for a peptide with 5 amino acids. Adapted 

from ref. 79. 
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induced dissociation (CID) in an ion trap and higher energy collisional dissociation 

(HCD)80 are widely used and yield primarily b and y ion series. Alternative fragmentation 

methods produce different ion types, which can provide additional information under 

certain circumstances. Electron transfer dissociation (ETD), for example, yields c and z 

fragments81, and ultra-violet photodissociation (UVPD) can also yield higher-energy a 

and x ions82,83. Multiple MS acquisition methods for proteomics have evolved (see also 

below); however, these two experiments or scan modes (MS and MS/MS) are a shared 

feature of all MS-based proteomics workflows. 

In light of the inherent complexity of proteomics samples, pre-fractionation steps are often 

employed to decrease sample complexity prior to MS analysis84–86. In principle, 

fractionation is possible at different points in the workflow: at the level of cellular 

compartments, intact proteins or peptides. As only a few proteins typically constitute a 

large proportion of the total protein mass and tend to mask low-abundance proteins in the 

analysis, fractionation techniques are most efficient if they in effect reduce the dynamic 

range (which is the ratio from the highest to the least abundant protein) in a fraction prior 

to MS analysis. Fractionating a sample by cellular compartments or intact proteins usually 

does not separate high and low abundant proteins due to the relatively low resolution and 

is in any case limited to soluble proteins. This explains the popularity of peptide 

fractionation, which is readily applicable to hydrophobic proteins and is conveniently 

combined with manual peptide purification65 or performed with standard chromatography 

systems87, either offline or directly interfaced with LC-MS analysis (as in the ‘MudPIT’ 

technology88). A current trend is to use reversed-phase peptide fractionation at basic 

pH89,90, which shows good orthogonality with low pH LC-MS91 and can be combined 

with sophisticated concatenation schemes to maximize LC-MS utilization92–94. Recent 

advances in our laboratory have increased sensitivity by minimizing sample losses and 

reducing manual pipetting steps95. However, while fractionation increases the depth of 

proteome analysis, it also increases the number of sample preparation steps, requires 

higher starting amounts and multiplies the measurement time and therefore the cost.  

The publication of the first complete MS-based proteomic map of a complex organism, 

yeast, in 2008 marked a milestone in proteome research96. This pioneering effort was a 

technological tour de force building on extensive fractionation steps prior to LC-MS 

analysis. Ten years later, the multi-faceted technological developments in the field now 

make the analysis of yeast proteomes at comparable depth a matter of minutes or hours 



10 

 

instead of weeks97,98. As the technology improved, researchers tackled increasingly 

complex proteomes99, including nematodes100 and diverse mouse or human cell lines101. 

Increased throughput fostered comparative studies of tissue proteomes across entire 

animals102, and provided novel insight into cell-type and anatomy-resolved proteomes of 

murine liver103 and brain tissue28. In 2014, two research groups independently presented 

first draft maps of a human proteome, indicating that the goal of a complete human 

proteome is within reach104,105. Along the lines of previous in-depth proteome studies and 

relying on multi-dimensional protein and peptide fractionation, the Pandey group profiled 

30 human cell and tissue types in over 2,000 LC-MS experiments. In addition to data 

generated in the author’s laboratory, Küster and co-workers employed the wealth of freely 

accessible community data, and assembled their initial draft proteome from 16,857 LC-

MS experiments in total. This project is constantly updated and curated in 

ProteomicsDB106, which counts 15,721 human proteins identified from over 43 million 

MS/MS spectra at the time of writing. This data suggests a ‘core proteome’101,107 of about 

10,000 to 12,000 that is ubiquitously expressed with varying abundance across many 

tissue and cell types and readily accessible by standard proteomics workflows. It follows 

that many proteins are confined to specific cell types and organs, for example proteins of 

the immune system. Such insight into the human proteome is a first step toward answering 

the question, which of the about 20,000 human protein-coding genes are actually 

translated into proteins, and can further provide valuable information for the emerging 

field of proteogenomics108. Remarkably, Olsen and co-workers recently reported a 

comparable proteomic depth of about 14,000 protein isoforms and 12,200 protein-coding 

genes in HeLa cells alone, employing multiple proteases and rapid measurements of a 

large number of peptide fractions to increase the effective sample load for mass 

analysis109. 

It appears that we are now entering an era of proteomics covering the protein-coding 

genome to near-completeness in various biological samples, with constantly growing 

study sizes110. Numerous large-scale investigations have been initiated to link genomic 

variations with proteomics phenotypes, for example in cancer biopsies22,23,111, or to profile 

body fluid proteomes of hundreds or thousands of individuals67,112. However, so far such 

studies are only being planned or are limited to highly specialized laboratories because 

very deep proteome coverage still requires sample fractionation, which entails lower 

throughput, higher starting amounts and can complicate quantification. A grand challenge 
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in MS-based proteomics is thus to provide the maximum proteome coverage, with highly 

accurate quantification in thousands of samples, and ideally in less than one to two hours 

per sample and instrument.  

 

Computational Proteomics 

The success of bottom-up proteomics relies on the ability to match the observed 

fragmentation pattern of a peptide to its amino acid sequence, and to map the peptide 

sequence on a protein sequence with high confidence. A typical proteomics experiment 

on state of the art instrumentation now yields over 100,000 MS/MS spectra from a single 

sample in less than two hours and on a single instrument. Analyzing such an amount of 

data would clearly not be possible without the continued development of bioinformatics 

software113.  

A multitude of software tools have emerged over time, however, the aim of this section 

is to briefly introduce the underlying principles focusing on those relevant to the 

Figure 4 | MaxQuant feature detection in LC-MS runs of proteomics samples. a, In 

a single experiment hundreds of thousands of isotope patterns are detected and assembled 

into three-dimensional features (here indicated by color). b, A zoomed view into a small 

window of the feature map shown in a. c, Three-dimensional representation of b, showing 

the chromatographic elution profiles of selected peptide ions detected by high-resolution 

mass spectrometry.   
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MaxQuant software package114, which has been primarily used throughout this thesis. For 

a more in-depth review, readers are referred to a recent publication from Cox and co-

workers115.  

In the first analysis step, the detected MS signals are assembled into three-dimensional 

peaks or ‘features’ in mass, intensity and retention time dimensions (Fig. 4). As further 

described below, very fast time-of-flight mass spectrometers allow introducing ion 

mobility spectrometry as an additional dimension of separation, in which case feature 

detection is extended to four dimensions. Isotope patterns are typically fitted to an 

‘averagine’ model116, which represents the average peptide isotopic composition for a 

given mass. To simplify downstream analysis, the software collapses the detected isotope 

peaks (‘de-isotoping’). Key to the success of MaxQuant is the highly accurate 

determination of masses from high-resolution mass spectra117. In the absence of un-

resolved interferences, high-end instrumentation achieves mass accuracies in the lower 

parts-per-million (Δm/m) range, which is however, susceptible to systematic drifts over 

time. Lock-masses, which are ubiquitously present ions with known mass, can be used to 

accurately re-calibrate the mass spectra either in real-time or in post-processing and thus 

largely eliminate systematic mass errors118,119. Even more accurate masses can be 

achieved with ‘software lock-masses’ as implemented in MaxQuant120. Instead of one or 

two lock masses, the algorithm uses thousands of peptides confidently identified in a first 

pass search to correct time- and mass-dependent mass errors and thereby routinely 

achieves sub-ppm accuracies. Similarly, these identifications can also be used to align 

retention times of different runs, which is, as explained further below, crucial for 

reproducible (label-free) protein quantification across many samples. 

In standard data-dependent acquisition experiments, the acquired MS/MS spectra are next 

assigned to the detected peptide features, the ‘precursors’, based on the raw data 

information from the MS scans. Because of the predictable fragmentation patterns of 

peptides, observed fragment ions can be compared to in silico derived fragment masses 

of tryptic peptides obtained by ‘digesting’ a reference database containing all protein- 

coding regions of a genome52. This is the database search strategy most commonly used 

in proteomics and restricting the precursor mass estimate by sub-ppm mass accuracies 

greatly improves search sensitivity114. Peptides spectrum matches (PSMs) are scored by 

the number of matching fragment ion masses and, if applicable, additional peptide 

properties (see for example ref.121). To control for false discoveries, the probability 
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scoring is also performed on a decoy database122. This has the advantage that the 

combined search result can be cut off when ‘non-sense’ hits account for a desired 

proportion of all hits, typically at a threshold corresponding to an estimated maximum 

false discovery rate of 1%. Alternatively, machine learning algorithms can stratify true 

and false positive identifications123. Either way, database strategies imply that only 

peptides present in the search database (including modifications) can be identified. 

Adding too many potential modifications leads a ‘combinatorial explosion’ of the search 

space – increasing the computation time and decreasing the statistical sensitivity. The 

search space explosion does not apply to de novo search algorithms, which identify 

peptide sequences starting from the measured amino acid mass differences124,125, 

however, they generally have lower sensitivity. In-between these extremes, there are 

several hybrid strategies that can favorably combine the strengths of both approaches126–

128. An interesting recent development is the application of deep learning tools to predict 

fragment ion intensities, which provides an additional layer of information that can be 

used for scoring and improve the identification success129. This technology is still under 

development, and currently limited to non-modified peptides, but it has great potential 

and will excel with higher data quality and computational power. Further improvements 

in this area are highly needed, given that typically only 25 to 60% of the acquired MS/MS 

lead to peptide identifications, even though many more spectra appear to be of high 

quality upon visual inspection130,131.  

As the biological goal of proteomics is primarily to identify and quantify proteins rather 

than peptides, we have to assemble peptide PSMs into proteins in the next step52. The 

commonly used human reference proteome (UniProt)132 counts over 90,000 protein 

entries including isoforms, and its proteins have an average length of 480 amino acids. 

This opens up many combinatorial possibilities to match a given peptide sequence to 

proteins, and many (in particular short) peptides are non-unique. To avoid these non-

unique peptides inflating the number of identified proteins, MaxQuant, along with other 

software solutions, applies Occam’s razor principle to find the smallest subset of proteins 

that explains the entirety of observed peptides in an experiment. Similar to controlling the 

false discovery rate at the peptide level, it is important to avoid accumulation of false 

protein identifications, which could otherwise skew the analysis and ultimately lead to 

incorrect biological conclusions133,134. MaxQuant does this by calculating a combined 

score of the best PSMs for each protein, which can then be sorted in descending order and 
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truncated at a user-defined false discovery rate (typically 1%), similar to the cut-off for 

peptide identifications135.  

Having curated a high-quality list of protein identifications (and quantifications), the 

result files can be analyzed with various bioinformatics methods and software packages. 

One example is Perseus136 that is closely tied to the MaxQuant software, or the R 

computational environment or the multitude of available Python packages. These 

software packages also connect the results to meta-information, such as gene ontology 

terms137, known complex members or biological function. 

 

Quantification Strategies 

Identifying gene expression products from various biological specimens in specific 

conditions has now become more feasible than ever and recently culminated in the 

identification of more than 14,000 proteins from a single human cancer cell line in a single 

experiment109. In addition to cataloguing all expressed proteins, a central goal of 

proteomics is the accurate quantification of protein abundances across multiple biological 

samples138. In fact, biomarkers are likely present in both, health and disease states, 

however, they will be elevated in either one of them30. Reliable quantification of subtle 

changes is a tremendous challenge and requires accurate and highly precise methods. 

Protein quantities can be expressed in absolute levels, e.g. “ng/mL in blood plasma”, or 

in relative levels between two samples, e.g. “two-fold more abundant in condition x than 

in y”. In proteomic practice, relative quantification is more common, mainly for reasons 

of simplicity and straightforward application to any situation48,139,140.   

MS-based proteomics employs multi-step workflows and delicate high-end 

instrumentation, and each of these steps can introduce systematic or stochastic biases into 

the analysis. Alterations in the protein signal can arise, amongst other sources, from 

different starting amounts, different efficiencies in the protein extraction or the proteolytic 

digestion, inaccuracies of the LC autosampler, fluctuations in electrospray ionization and 

time-dependent drifts in instrument performance. Most of these errors can be corrected 

by the addition of stable isotope-labeled references, assuming that they behave just like 

their non-labeled endogenous counterparts throughout sample preparation and analysis 

steps. This is usually a valid assumption because labeling makes peptides distinct in mass 

(typically through introduction of 13C and 15N isotopes) and thus distinguishable in the 
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mass spectrometer, while they remain physio-chemically nearly identical. Protein 

quantification strategies can therefore be classified in two main groups: stable isotope 

label-based quantification (either MS or MS/MS-based) and label-free quantification138–

140. Figure 5 provides an overview of the quantitative workflows described in the 

following and Figure 6 illustrates the quantitative read-out from the MS signal in each 

case.  

Figure 5 | Common workflows for quantitative bottom-up proteomics. Red and green 

boxes represent two samples of interest, which are processed from top to bottom. Vertical 

lines indicate the step at which both samples are combined with metabolic labeling, 

chemical labeling and the label-free approaches, respectively. Steps in which quantitative 

biases due to sample handling can be introduced are indicated by dashed lines. Adapted 

from ref. 140.  
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Stable isotope label-based strategies can further be classified by the sample preparation 

step at which the labeled reference channel is admixed (Fig. 5). At the earliest, stable 

isotopes can already be incorporated metabolically into the sample of interest. A 

historically important method, ‘stable isotope labeling by amino acids in cell culture’ 

(SILAC) for in vivo labeling of cell lines141 was introduced in 2002. SILAC largely 

eliminates biases introduced during sample processing and analysis, and therefore offers 

outstanding accuracy142. After mixing the samples and tryptic digestion, the relative MS 

signals of stable isotope labeled peptides and their light counterparts represent the relative 

protein abundances in the samples. Common workflows add labeled arginine and lysine 

to the culture medium, and thereby ensure that every peptide is present in isotope-labeled 

and non-labeled states after tryptic cleavage. SILAC is still a popular method for pulse-

chase experiment to study protein synthesis and degradation143–145 and, remarkably, 

researchers have extended SILAC even to label entire living animals102,146. The invention 

of ‘super-SILAC’ broadened the application of SILAC to samples such as human tissues 

that are not directly accessible to metabolic labeling, by admixing cell lysates from 

cultured cells as a labeled reference channel147. However, the incorporation of N stable 

isotope channels multiplies the complexity of the MS signal by a factor of N. This 

complicates the quantitative analysis and generally lowers the proteome coverage as 

Figure 6 | Quantification in bottom-up proteomics. a, In stable-isotope labeling 

experiments with for example SILAC or dimethyl-labeling, samples are mixed and the 

relative quantification is read-out on the MS-level. b, In TMT and iTRAQ experiments, 

the peptide ions from different samples are indistinguishable on the MS-level and the 

relative quantification is performed on the MS/MS-level. c, In label-free experiments, 

samples are measured separately and quantified by comparing the relative intensities 

between runs. 
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compared to single-channel analysis. For this reason, SILAC is in practice limited to 

multiplexing only two or three samples (light, medium, heavy)148,149. More recent 

developments, such as neutron encoded amino acid labeling (NeuCode) avoid added 

complexity at the MS level by labeling with the delta masses of  13C and 15N isotopes 

(6 mDa), which are only resolved at very high mass resolution)150,151. However, to date, 

these methods have not overcome their limitations in terms of proteomic depth and 

number of quantitative channels.  

Even though SILAC and similar approaches provide superior accuracy, the need for 

metabolic labeling is limiting. In contrast, chemical labeling at the peptide level is 

applicable to digested proteins from any source138. In principle, various functional groups 

of peptides are modifiable using established peptide chemistry, although most protocols 

target the primary amine (–NH2) groups at peptide N-termini and lysine side chains. 

Similar to SILAC, dimethylation with stable isotope labeled formaldehyde (13C and D) 

introduces a specific peptide mass shift in each channel and therefore allows mixing the 

labeled digests and analyzing them in one LC-MS run152. The relative ratios in each 

channel (typically two or three) directly reflect the relative protein abundances. In 

practice, the toxic chemicals and the slightly different chromatographic properties of 

deuterium as compared with hydrogen153 have hampered wide adoption of dimethyl 

labeling, whose proteome coverage suffers from the multiplication of the MS signal in a 

similar way to SILAC. An increasingly popular alternative are so-called ‘isobaric 

labeling’ methods with iTRAQ154 and especially TMT155. They use established N-

hydroxysuccinimide (NHS) chemistry to specifically label reactive amine groups. In 

contrast to the methods above, isobaric labels are not distinguishable by mass at the MS 

level and therefore do not convolute the MS signal. This is very attractive as it does not 

affect the complexity and therefore the coverage of the proteome. Isobaric labels consist 

of a ‘reporter group’ and a ‘balancer group’154. Distributing stable isotopes between both 

groups in a way that the overall mass does not change allows encoding of different 

quantitative channels (Fig. 7a,b). Mixing labeled peptides from different samples and 

fragmenting the label in an MS/MS experiment yields distinguishable mass signals for 

each quantitative channel and retrieves the quantitative information (Fig. 7c). Similar to 

NeuCode, 13C to 15N differences can be used to encode additional channels156, currently 
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allowing to multiplex up to 11- with commercially available kits. Within a set of isobaric 

labels, these methods provide very accurate and complete measurements. However, in 

cohorts with more than 11 samples, entire sets of quantitative values can be missing and 

optimal strategies for inter-batch normalization are still a subject of ongoing research. In 

almost all isobaric labeling strategies, the low-mass reporter ions are quantified, however, 

the design of the labels imply that these reporter ions are the same for all peptides. As a 

result of imperfect isolation of precursor ions, co-isolated peptides distort the signal of 

Figure 7 | Isobaric labeling with TMT. a, Chemical structure of the six-plex TMT 

molecule. The dashed line indicates the fragmentation site with higher energy collisional 

dissociation (HCD). Red asterisks indicate the distribution of stable isotope labels (13C 

and 15N) in the mass reporter and normalizer groups, respectively. The molecule is 

covalently bound to the peptide N-terminus or a side-chain amine group. b, The same 

peptides from different peptides (indicated by color) are isobaric and co-isolated for 

fragmentation. c, The relative abundances of the low mass reporter ions indicates directly 

the protein abundance in the multiplexed samples. Alternatively, the high m/z 

‘complementary’ reporter ions can be quantified.   
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the target peptide – an effect often referred to as ‘ratio compression’157. Attempts to 

address this issue range from minimizing the width of the isolation window158,159, 

computational signal deconvolution160, gas phase separation161 and gas phase 

purification162, to repeated fragmentation of peptide fragment ions (MS3)163. MS3 

achieves the most accurate ratios, even though none of these methods resolves the 

problem to satisfaction. The major drawback of the MS3 method is that the additional 

fragmentation step inevitably lowers sensitivity, and that it requires more expensive MS 

instrumentation with MS3 capabilities. To increase the sensitivity, multiple fragment ions 

can be selected simultaneously for further fragmentation (‘SPS-MS3’ method)164. 

However, simply by chance, this can again result in co-fragmentation of fragment ions 

originating from different peptides and thus distorted ratios. This effect is particularly 

prominent in case of low-abundance peptides. A method termed TOMAHAQ uses prior 

knowledge of theoretical fragment masses to select exclusively fragment ions of the target 

peptide165. Although interesting, it increases the complexity of the experiment and is 

limited to pre-defined targeted peptides. A more generally applicable strategy aims to 

quantify the peptide-coupled remnant rather than the low-mass reporter ions 

(‘complementary reporter ions’)166,167. This approach is very attractive as it does not 

require MS3 and retains the precursor peptide information, allowing accurate 

quantification even of co-isolated peptides. First iterations employed commercially 

available TMT reagents, which were initially designed to generate the low-mass reporter 

ions with high yield. It turns out that these labels generate the peptide-coupled reporters 

only inefficiently and the quantitative signal is furthermore convoluted by the abundance 

of natural isotopes166. Both of these limitations have been addressed in the course of this 

thesis by a re-designed label and a tailored MS-acquisition strategy. 

In label-free quantification strategies, each sample is analyzed separately and the relative 

protein abundances are inferred from the signal intensities in each individual run140. As it 

does not involve stable isotope labels, it is universally applicable to all sample types, 

including human body fluids and tissues. The absence of a labeling step simplifies the 

sample preparation workflow, lowers the costs and in principle enables straightforward 

scaling up to 100s or 1,000s of samples. For these reasons, label-free quantification (LFQ) 

has become one of the most popular methods for protein quantification48. However, 

processing and analyzing each sample separately may introduce biases due to variations 

in sample handling and instrument performance (Fig. 5)168. Correcting for workflow- and 
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instrument-related alterations in signal intensities is very challenging and has fostered the 

development of more reproducible sample preparation workflows and more sophisticated 

computational algorithms115,140,169,170. In data-dependent acquisition methods (see below) 

the mass spectrometer selects peptides for fragmentation based on abundance, which 

introduces a bias toward high-abundance peptides. Spectral counting approaches use this 

to infer protein quantities indirectly from the number of fragmentation events related to a 

protein of interest171. Clearly, this is only a very rough estimate of a protein’s abundance, 

yet surprisingly reliable and very simple to analyze172. More sophisticated approaches 

infer protein abundances from the peptide signal integrated over their chromatographic 

elution peaks173,174. MS intensity-based method cover a much larger dynamic range and 

provide superior linearity as the signal is not quantized by the number of fragmentation 

events175–177. While the relative quantification of peptide intensities is rather 

straightforward, inference of protein abundances is not trivial52. Intuitively, one can use 

summed peptide intensities as a proxy for protein abundance178. However, quantification 

in particular of low-abundance proteins becomes more robust when the median fold-

change of peptide pairs is calculated rather than their summed intensity. Cox implemented 

the latter strategy in the MaxQuant software (termed MaxLFQ’)179. A common 

assumption used for normalization of inter-run variability is that the vast majority of 

protein abundances does not change in a biological experiment. This generally holds true 

and enables accurate quantification of small fold-changes in label-free experiments140. 

LFQ typically also achieves the most comprehensive proteome coverage of the methods 

described here and can be applied to very large data sets. However, in shotgun proteomics 

experiments of increasing size, quantitative accuracy can be limited if proteins are 

inconsistently quantified across samples, as ‘non available (N/A)’ values interfere with 

statistical testing180. This problem is often referred to as the ‘missing value’ problem and 

is addressed by novel data-acquisition methods as detailed below and diverse software 

solutions (see also below). In data-dependent acquisition schemes, missing values can 

occur due to semi-stochastic precursor selection, which results in not every peptide being 

identified in each run. However, identifications can be transferred between runs following 

rigorous retention time alignment and based on high-resolution and high-accuracy mass 

measurements101,135,181. This greatly diminishes the effect of missing values, as long as 

the peptide precursor signal is detected and mass resolved.  
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Mass Spectrometry Instrumentation for Proteomics 

The core of proteomics technology is the mass spectrometer itself, and developments in 

the field have always been closely tied to technological advances in mass 

spectrometry47,48. Mass spectrometers measure the mass, or more precisely the mass-to-

charge ratio (m/z), and the abundance of ions (Box 1). The MS measurement is performed 

in high vacuum (down to 10-10 mbar in the analyzer region of an Orbitrap instrument). 

The transfer of intact, non-volatile compounds, e.g. large biomolecules with masses 

exceeding 10 kDa, from the liquid or solid phase into the gas phase and then into the MS 

instrument was an insurmountable hurdle for researchers in the early days of biological 

mass spectrometry. In the 1980s, matrix-assisted laser desorption/ionization (MALDI)182–

184 and electrospray ionization (ESI)185–188 provided “wings for molecular elephants” 

(John B. Fenn, Nobel lecture189) and revolutionized MS for large biomolecules, which 

was awarded with a share of the Nobel Prize in 2002. In MALDI, the analyte is embedded 

in a crystalline, light-absorbing matrix. Local excitation with a pulsed (UV-) laser beam 

creates a hot plume of desorbed ion clusters which can be mass analyzed, typically by 

time-of-flight instruments190. Mass spectrometry imaging191,192 ingeniously uses the high 

spatial resolution of laser ionization and has recently rekindled interest in this method. 

Generally, applications of MALDI in proteomics are limited, mainly because the 

requirement for dried matrix spots prevents on-line coupling with liquid chromatography, 

Box 1 | Glossary of mass spectrometry terms. 

Duty cycle: The percentage of time in an acquisition cycle spent on actual analysis, and in 

particular the fraction of all ions used for mass analysis. 

Dynamic range of an MS scan or run: Ratio from the highest to the least abundant peak in 

a mass spectrum or data file. 

Isotope cluster: Set of ions with the same monoisotopic elemental composition, but different 

actual isotopic composition due to the distribution of 13C vs. 12C, for example. 

Mass accuracy: Deviation of the measured mass-to-charge ratio to the known exact value 

typically given as a root mean square value in parts-per-million [ppm].  

Mass-to-charge ratio (m/z): The mass of an ion divided by its number of charges. 

Monoisotopic mass: The mass of a molecule that contains only the most abundant isotopes.  

Resolution: Mass-to-charge ratio of a peak divided by the full peak width at half maximum 

height.  
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the prevalently used separation technique in the field. ESI by its nature yields a continuous 

beam of ions from liquid samples and has become the standard ionization method in LC-

MS. Ion formation starts from charged droplets ejected from a Taylor cone193 upon 

application of an electric field between the liquid flowing out of a capillary and the 

entrance of the mass spectrometer. Successive evaporation of solvent molecules yields 

smaller and smaller droplets until singly or multiply charged and desolvated analyte ions 

remain194. Decreasing the size of the initial droplets, by miniaturization and nL/min flow 

rates, increases the yield of ions and the transmission efficiency, leading to very high 

sensitivity in the range of attomoles and even below195,196.  

Once the ions enter the mass spectrometer, they are focused and guided through a 

succession of electrodynamic lenses and fields until they are ultimately mass analyzed. 

The quest for the ‘ideal mass analyzer’197 has produced numerous types of mass 

spectrometers with distinct performance metrics198. In proteomics, the Orbitrap mass 

analyzer has become the market leader soon after its introduction in 2005, taking over 

from time-of-flight instruments (Box 2). Both types of mass analyzers are almost always 

combined with an up-front quadrupole mass filter.  

Box 2 | Survey of mass analyzers used in MS-based proteomics. 

 

ProteomeXchange is a widely used platform for 

proteomics data submission and dissemination. At the 

time of writing, 5,437 publicly available datasets were 

deposited in ProteomeCentral. Categorizing by the mass 

analyzer used according to the submission details into 

Orbitrap, time-of-flight (TOF), ion trap and others 

(Fourier-transform ion cyclotron resonance MS and triple 

quadrupole) leads to the pie chart depicted.  

http://proteomecentral.proteomexchange.org,  

Date accessed: 2018/06/14. 
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The Quadrupole Mass Filter 

A linear quadrupole mass analyzer transmits ion through a square assembly of four 

cylindrical or hyperbolic rods199–202. Ions entering this assembly experience a quadrupolar 

electrodynamic field, which is generated by superimposed AC and DC potentials on all 

rods (Fig. 8a). The potential is applied pairwise to opposite rods in a way that the sign of 

the electric charge alternates periodically. Thus, a positively charged ion entering the 

quadrupole in z direction is first attracted by a negatively charged rod and, in the next 

moment, repulsed by the very same rod of now positive charge. This forces traversing 

ions onto oscillating trajectories in the x- and y-directions, which can be mathematically 

described by the Matthieu equations for an ion of given m/z as a function of the quadrupole 

geometry and the applied voltages203. Note that ions will only be transmitted successfully 

if the amplitude of their motion in both directions is less than the diameter of the 

quadrupole, or in other words, if they do not hit one of the rods. This offers the possibility 

to transmit individual ion species or m/z ranges of interest by appropriate AC and DC 

voltages (Fig. 8 b,c)201,202. Typically, they are in the range of 0.1-10 kV, and the AC 

component oscillates at radiofrequency (rf). In modern mass spectrometers, suitable sets 

of values can be calculated in real-time and applied in less than a millisecond, allowing 

the selection of hundreds of different ions per second. Quadrupole mass filters are 

typically operated at ‘unit resolution’, i.e. they transmit 1 Th wide m/z windows, but they 

can also be tuned to isolate 5- to 10-fold narrower windows at the expense of transmission 

Figure 8 | The quadrupole mass filter. a, Construction and applied voltages. The blue 

line indicates the simplified trajectory of an ion species traversing the quadrupolar electric 

field. Mass ranges of interest can be filtered by adjusting the AC (V) and DC (U) voltages. 

Adapted from ref. 198. b, Full mass spectrum of a complex sample acquired with a hybrid 

quadrupole-Orbitrap mass spectrometer. c, As in b, but now isolating a narrow mass range 

centered around m/z 605.4 with the quadrupole mass filter.   
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efficiency. Another feature of the quadrupole (or higher 2N-poles, such as hexa- and 

octopoles) is its ability to efficiently transmit very broad m/z ranges if no DC potential is 

applied (‘rf-only’ mode)202. This is often used to guide ions, for example through different 

vacuum stages or even on a bent flight path. In quadrupole ‘collision cells’, accelerated 

ions collide with inert gas molecules, typically N2, and dissociate into smaller fragments 

which can then be mass analyzed to elucidate the precursor structure. A standard 

configuration combines three quadrupoles in a row, where the first one is used to filter a 

mass of interest – the precursor ions -, which are then fragmented in the succeeding 

collision cell, and the resulting fragment ions are mass analyzed by scanning the entire 

mass range in a third quadrupole204,205. 

The speed and high transmission efficiency of the quadrupole mass filter, together with 

its relatively low-cost, compact setup and ease of maintenance, have contributed to its 

popularity. It is one of the most widely used mass spectrometers, either as a stand-alone 

or as part of hybrid instruments. However, quadrupole mass filters are not suitable for 

high resolution and high accuracy mass analysis. In proteomics, triple quadrupole mass 

spectrometers are mainly employed for high-sensitivity quantification of targeted 

molecules and hybrid mass spectrometers with quadrupole mass filters are an integral part 

of essentially all proteomics laboratories. 

 

The Orbitrap Mass Analyzer 

 “Electrostatic axially harmonic orbital trapping” for high resolution mass analysis was 

invented by Alexander Makarov at the turn of the millenium206. The ‘Orbitrap’ concept 

derives from the Kingdon trap207, an ion trapping device assembled from a metal wire and 

a surrounding cylindrical electrode. The actual design has undergone several iterations 

and the commercial Orbitrap analyzer now features a spindle-like central electrode and 

an outer barrel-like electrode. However, the operational principle has remained the 

same208–210: To trap ions, an attractive electric potential is applied to the central electrode 

and, perhaps counter-intuitively, ions entering the trap on a trajectory offset with respect 

to the central electrode, do not hit the latter, but are rather trapped in an orbital motion 

around it (Fig. 9). This requires extremely fast switching of the kV trap potential during 

the time the ion package enters the Orbitrap (Voltage ramp in Fig. 9).  
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In the Orbitrap, a precisely engineered quadro-logarithmic electric field induces the 

complex spiral movement of trapped ions. It can be shown that the trajectories are 

dependent on m/z, which, in principle, allows deriving the mass of an ion by the current 

induced by its motion. However, the rotational motions further depend on the initial 

kinetic energy distribution and exact position of the ions, and are therefore not suitable 

for mass analysis. In contrast, the axial movement along the central electrode is 

independent of the starting conditions and can be expressed as a simple harmonic 

oscillation with the axial frequency ω [rad s-1]: 

𝜔 = √𝑘
𝑧𝑒

𝑚
 

where e is the elementary charge, z the number of charges, m the mass of the ion, and k a 

constant. 

Figure 9 | The Orbitrap mass analyzer. Construction and operation of the C-trap and 

the Orbitrap mass analyzer. Red lines indicate the ion trajectories. During the voltage 

ramp, ions are accelerated into the Orbitrap mass analyzer and start to orbit around the 

central spindle electrode. The image current induced by the axial movement of the ions 

is amplified and detected as a function of time. Reprinted with permission from Thermo 

Fisher Scientific. 
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Makarov was the first to realize this opportunity for high resolution mass analysis, with 

very high accuracy and sensitivity206. Splitting the outer electrode in two halves allows to 

detect and amplify the differential image current induced by the axial movement of the 

ion cloud. Ions of the same m/z will move in phase, while ions of different m/z will 

oscillate at higher or lower frequencies. The sum of all individual components generates 

the total image current that is detected as a function of time, often termed a ‘transient’. 

Fourier transformation decomposes the highly convoluted signal into its constituting 

frequencies and ultimately yields a high resolution mass spectrum. The resolution R of 

the mass analysis is thus directly linked to the ability to resolve two frequencies with a 

small difference ∆ω and decreases inversely proportional to the square root of m/z: 

𝑅 =
𝜔

2 ∆𝜔
=

1

2 ∆𝜔
 √𝑘

𝑧𝑒

𝑚
=  

𝑚

∆𝑚
 

Notably, recording the image current for a longer time increases the resolving power and 

gives the user an effective handle to balance resolving power with acquisition speed. For 

example, the current generation of high-field Orbitraps achieves a mass resolution of 

15,000 at m/z 200 with only a 32 ms transient, and 120,000 at m/z 200 with a 256 ms 

transient.  

A key step in the evolution of the Orbitrap mass analyzer has been the invention of the 

‘C-trap’, essentially a bent rf-only quadrupole210–212. The C-trap decouples the Orbitrap 

mass analyzer from all preceding steps, such as ionization and mass filtering, and ensures 

precise alignment of the timings and control of the starting conditions for each ion packet, 

including the initial kinetic energy and the angular spread. Moreover, the C-trap 

accumulates and stores an ion packet, while another one is mass analyzed, which makes 

the Orbitrap compatible with continuous ion beams, e.g. generated by electrospray ion 

sources. However, the fact that ion packets rather than continuous ion beams are analyzed 

has important practical implications. It makes the overall percentage of the incoming ion 

beam that can be used for mass analysis dependent on the charge capacity of the C-trap 

with detrimental effects in cases where its maximum charge capacity is reached faster 

than the time needed for mass analysis. In this thesis, I study the consequences of this 

limitation in the context of MS-based proteomics and present a method termed ‘BoxCar’ 

that samples the ion current up to 10-fold more efficiently.  
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To enable fragment ion analysis with the Orbitrap mass analyzer, it has been combined 

with linear ion traps and quadrupole mass filters. The development of ‘higher-energy 

collisional dissociation’ (HCD)80 either in the C-trap or in a dedicated multipole (termed 

HCD cell) enabled high resolution mass analysis of low m/z fragment ions, which 

typically escape detection with ion trap fragmentation. Recent advances in Orbitrap 

technology were primarily aimed at increasing the speed and sensitivity of the analysis, 

driven by the increasing demands of the MS-based proteomics community210,213–215. This 

encompassed reduced overhead times in ion handling and more efficient ion transmission 

in the front part of the instrument with an electrodynamic ion funnel and increasing the 

diameter of the ion entrance. Recently, the ‘phase-constrained spectrum deconvolution 

method’ (ΦSDM)216 has been introduced, improving the signal processing and surpasses 

the uncertainty limits of Fourier transformation, offering an about three- to five-fold 

higher resolution at the same transient recording time. 

Today, Orbitrap instruments are the workhorses in proteomics laboratories. The Q 

Exactive series combines a quadrupole mass filter with the Orbitrap mass analyzer and 

allows streamlined analysis of proteomics samples. The high-end Lumos series 

additionally incorporates a linear ion trap, which allows for very sophisticated MS 

experiments, such as the repeated fragmentation of fragment ions (MSn experiments).  

 

The Time-of-Flight Mass Analyzer 

In contrast to the Orbitrap, time-of-flight (TOF) mass analyzers date back to the 

1940s217,218. Figure 10 shows a contemporary hybrid quadrupole TOF instrument, which 

was used in parts of the present thesis for proteomic measurements219. TOF analyzers 

build on a fundamental principle of physics, the conversion of electric potential energy 

(Eel) into kinetic energy (Ekin) and thus translational motion198. Ions are accelerated into a 

high vacuum field-free drift region by a pulse of high voltage U:  

𝐸𝑒𝑙 = 𝑒𝑧 𝑈 =  
1

2
𝑚𝑣2 =  𝐸𝑘𝑖𝑛 

where e is the elementary charge, z the number of charges and m the ion mass.  
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Assuming that the initial kinetic energy of the ion was zero, and knowing the length l of 

the drift region, the flight time t of an ion is given by a direct function of its mass m: 

𝑡 =  
𝑙

√2𝑒𝑈
√

𝑚

𝑧
 

Typical flight paths are in the range of 1-3 m and ions are accelerated with 5-10 kV, 

resulting in flight times of only 10-100s µs. In contrast to a quadrupole mass analyzer and 

similar to the Orbitrap, all ions are analyzed together and full mass spectra are obtained 

from a single pulse. When combined with ESI sources, the continuous ion beam is 

diverted into an orthogonal accelerator220,221 (Fig. 10), giving now rise to 103-104 spectra 

Figure 10 | The time-of-flight (TOF) mass analyzer. Construction of a hybrid 

quadrupole TOF mass spectrometer. Ions entering the vacuum are guided through the 

quadrupole and collision cell. An orthogonal accelerator pushes ions into the flight tube, 

where they enter a reflectron and finally impinge on a detector. Adapted from ref. 219. 
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per second. The high spectral rate is a distinct attraction of the TOF analyzer, allowing 

sampling a much larger proportion of the ion beam as compared with trapping-based 

instruments, which promises very high sensitivity, dynamic range and quantitative 

accuracy. However, in practice, the spectral rate is lowered as almost always multiple 

scans have to be accumulated to achieve sufficient signal-to-noise ratios219,222. Note that 

this is not due to the detection system, which is capable of counting and detecting single 

ions at high speed, but rather the result of inefficient ion transmission from the ion source 

to the detector. 

From the fundamental equation above further follows that there is no upper mass limit 

and the resolving power is independent from m/z, but increases proportionally to the 

length of the flight path. In practice, the resolving power is mainly limited by geometric 

constrains and the energy distribution. Modern TOF analyzers employ microchannel plate 

ion detectors and digitizers (analog-to-digital converters) converting the time-resolved 

ion signal approximately every 200 picoseconds (see also below223).  

A breakthrough in resolving power contributed by Russian scientists decades ago, was 

the invention of an ‘ion mirror’, a so-called reflectron, which forces ions onto a V-shaped 

flight path224. In addition to increasing the effective flight path by a factor of two, without 

expanding the instrument’s footprint, the reflectron accounts for different starting 

conditions of the ions in the accelerator unit. This includes different starting times, 

locations, as well as the initial kinetic energy. A reflectron is a series of ring electrodes 

with an increasing repulsive potential, into which the ions enter, come to rest and are then 

accelerated out of the reflectron in the opposite direction. Ions with higher kinetic energy 

penetrate deeper into the reflectron as compared with their lower-energy counterparts and 

these slightly different flight paths largely correct for the initial energy spread, which 

reduces the mass peak widths significantly. State-of-the-art TOF mass analyzers reach 

resolutions in the range of 30,000-70,000 throughout the entire mass range and low ppm 

mass accuracies. The concept of reflectrons can also be extended to multiple reflections, 

for example W-shaped or higher-order flight paths225–227. These setups promise even 

higher resolution as a result of the multiplied flight paths. Conversely, longer flight times 

also imply lower spectrum acquisition rates and increased ion losses, resulting from 

scattering events and Coulombic repulsion, leading to an overall lower sensitivity. 
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TOF instruments have been widely used in proteomics228, however, the invention of the 

Orbitrap largely banished them from proteomics laboratories. Recent increases in 

sensitivity and resolution and the unique advantage of fast scanning speeds, are creating 

renewed interest in TOF instruments219. The very fast scanning speed in combination with 

high resolution and mass accuracy also make it possible to nest ion mobility spectrometry 

between liquid chromatography and TOF mass analysis – a promising yet underexplored 

opportunity for MS-based proteomics229.  

 

Ion Mobility Spectrometry 

Ion mobility spectrometry (IMS) separates ions in the gas phase by their mobility in an 

electrical field230. Classical ion mobility experiments are performed in ‘drift tubes’ 

(Fig. 11), in which ions are dragged through an inert gas at relatively low pressure by an 

electrostatic field gradient231. Ions with larger collisional cross sections (CCS, Ω) collide 

more often with residual gas molecules, and are therefore retained more than their smaller 

counterparts, which arrive earlier at the detector. The mobility of ions in an electrical field 

E is expressed as the field-normalized mobility coefficient K [cm2V-1s-1], with the known 

drift length d and the measured drift time td: 

𝐾 =  
𝑑

𝑡𝑑𝐸
 

As the density of the residual gas, and thus the frequency of ion-neutral collisions, 

depends on the temperature T and the pressure p, K is further normalized to T = 273 K 

and p = 760 Torr (reduced ion mobility coefficient, K0): 

𝐾0 =  𝐾 
273

𝑇
 
760

𝑝
 

The collisional cross section Ω of ions colliding with neutral gas molecules can be 

calculated from K0 using the Mason-Schamp equation232,: 

Ω =  
3𝑧𝑒

16

1

𝐾0

√
2𝜋

𝜇𝑘𝑏𝑇
 

where z is the charge of the ion, e the elementary charge, µ the reduced mass, kb 

Boltzmann’s constant and T the temperature.  
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In this thesis, the inverted reduced ion mobility coefficient 1/K0 is used for convenience 

due to its direct proportionality with the CCS (and thus roughly with m/z). Collisional 

cross sections reported in here refer to N2 as the collision partner, even though other inert 

gases with different size and polarizability are also possible233. Notably, the models above 

are only valid with low electrical field strength, and increasing the field strength above a 

critical limit can alter the selectivity231,232,234.  

The history of IMS235–239 (and MS) dates back to the late 19th century when Rutherford 

and Thomson studied ionization processes240, and Zeleny241 and Langevin242 constructed 

apparatuses in which ions drifted in electrical fields. Later, Tyndall and others243–245 

pursued more mature versions of ion mobility spectrometers and in the early 1960s, 

McDaniel246, McAfee and Edelson247 pioneered the hybridization of IMS with mass 

spectrometry. Since then, a multitude of IMS devices has emerged, either stand-alone or 

coupled to MS, and IMS has become an integral part of the product range for many mass 

spectrometry vendors238. The millisecond time-scale of ion mobility analysis falls in 

Figure 11 | Drift tube ion mobility spectrometry. The drift tube is constructed from 

stacked ring electrodes building an electrostatic field (E) as indicated in the diagrams.  

The diagrams further illustrate the separation of ions with different collisional cross 

sections at hypothetical time points in a drift tube experiment. Adapted from ref. 237. 
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between typical up-front separation (seconds) and TOF mass analysis (microseconds) 

times, which makes IMS a promising third dimension to separate complex biological 

samples248.  

May and McLean237 categorized the various ion mobility techniques based on their 

underlying separation principles: (1) time-dispersion, (2) space-dispersion, and (3) 

trapping and selective release. Representative and commercially available devices for 

each category are briefly discussed below. 

Drift tube IMS (DTIMS) falls into the first category as ions arrive at the detector separated 

in time according to their relative ion mobility (Fig. 11). Most drift tubes are constructed 

from stacked-ring electrodes enabling long distances (up to two meters length249) between 

the ion source and the detector for high-resolution separation of ions with similar gas 

phase structures, such as isomeric peptides250–252. Ion clouds enter the drift tube through 

a pulsed ion gate and migrate in the direction of the electrical field. Even though it is 

tempting to increase the resolution by longer drift tubes, the increased footprint and the 

high voltage (> 1kV) requirements hamper routine use outside specialized laboratories. 

Moreover, axial diffusion and ion losses at the exit lower the sensitivity253, together with 

the decreased duty cycle implied by long drift times. Radio-frequency confinement254, ion 

funnels253, and multiplexed injections255 mitigate these obstacles to some extent, allowing 

the measurement of complex biological samples with adequate sensitivity256. A prototype 

instrument built by Smith and colleagues and described in ref. 256 has also shown promise 

to enhance proteomics measurements257, further highlighting the potential of IMS.  

Traveling wave ion mobility (TWIMS)258 is another time-dispersive IMS type and is 

commercially available from Waters since 2006259–261. Here, radially-confined ions ‘surf’ 

through a stacked-ring ion guide on a traveling voltage wave (Fig. 12)262. Ions experience 

repeated pushes from these waves, which moves more mobile ions quickly through the 

device, while low-mobility ions collide more frequently with residual gas and therefore 

migrate slower. The ion mobility resolution depends on the speed and amplitude of the 

traveling wave, and resolutions (Ω/ΔΩ) of 40 to 50 were reported260,263. Notably, the 

Mason-Schamp equation does not hold true under the conditions of constantly changing 

electrical fields, which somewhat complicates the interpretation of cross sections obtained 

by traveling wave experiments beyond the observed separation effect264–266. In one 

commercial configuration, the ion mobility device is placed downstream of the 
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quadrupole mass filter, which allows to separate fragment ions by their ion mobility. This 

has been advantageously used in proteomics by Küster and colleagues to increase the duty 

cycle of MS/MS scans by synchronizing the orthogonal accelerator with the ion mobility 

separation267. In data-dependent analysis of human cell lysates, this increased the number 

of protein identifications by a factor of two as compared with asynchronous operation. A 

disadvantage of data-independent analysis in general (see below), is that collision 

energies cannot be adjusted to individual precursor ions as done in data-dependent 

analyses where the mass and charge of precursor ions is known upon fragmentation. 

Tenzer and co-workers reported dramatically improved performance in data-independent 

proteomics after adjusting the collision energy as a function of ion mobility268. However, 

while promising, the TWIMS technology in general has not been widely adopted in the 

proteomics community, not least for reasons of underdeveloped post-processing software 

and compromised accuracy in the quantification of high-abundance peptides due to 

detector saturation with condensed ion packages eluting from the TWIMS device269.  

Figure 12 | Traveling wave ion mobility spectrometry. In the traveling wave analyzer 

there is an RF-potential between adjacent pairs of stacked ring electrodes. In addition, a 

DC potential (E) is applied to some of these electrodes (blue) and systematically offset in 

the following analysis step, generating traveling wave potentials.  Ion mobility separation 

is induced by ions ‘surfing’ these waves as illustrated in the diagrams. Adapted from 

ref. 237. 
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Differential ion mobility spectrometry (DMS)270 and field asymmetric ion mobility 

spectrometry (FAIMS)271 are space-dispersive types of IMS. In contrast to DTIMS and 

TWIMS, this technology employs high field strengths and is based on the different 

mobility of ions in low-field and high-field conditions272. A DMS device comprises a pair 

of electrodes that are typically less than 2 mm apart, with ions migrating through this gap 

(Fig. 13). Alternating high and low electric fields are applied perpendicular to the ion 

path, in a way that the area under the curve is zero. This means that if there was no 

difference between low- and high-field mobility, all ions would stay on a stable trajectory. 

Instead, they are pushed stepwise to either one of the electrodes depending on whether 

they are more mobile in high or low field strengths. Interestingly, the difference in the 

high- and low-field ion mobility is analyte-dependent, which causes ions to spread 

perpendicular to the flight direction in a planar setup. Superimposing a direct current 

‘compensation voltage’ forces selected ions of interest on a stable trajectory, while others 

impinge on the electrodes. The same principle applies to the FAIMS device, which is 

cylindrical instead of planar. Although a very high resolving power can be achieved under 

special circumstances273, FAIMS and DMS devices are typically employed as low-

resolution filters directly after electrospray ionization. In combination with trapping-

based mass spectrometers, FAIMS can lower the fraction of background ions and 

therefore increase the dynamic range, as already demonstrated in proteomics 

applications274–276. However, decreased transmission of the targeted ion species has been 

Figure 13 | Differential ion mobility spectrometry. An oscillating electric field (E) is 

applied to two planar electrodes. Ions experience alternating high and low electrical field 

strengths and are spatially dispersed as a function of their different ion mobility 

coefficients in both fields. A DC compensation voltage can be superimposed to select 

ions of interest. Adapted from refs. 238, 270. 
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an issue so far277. Also, the compensation voltage does not allow conclusions about the 

collisional cross section and implies that only a fraction of the total ion population can be 

analyzed at a time278. 

Figure 14 | Trapped ion mobility spectrometry. Ions are trapped in the TIMS tunnel 

build from stacked printed circuit boards with an inner diameter of 8 mm at a length of 

about 10 cm. A quadrupolar field is applied to each plate by two RF phases shifted by 

180°. The RF field is superimposed by a DC potential (E) as indicated in the diagrams. 

In addition, trapped ions experience a drag from the incoming gas stream (vg). Lowering 

the electrical field release ions to the downstream mass analyzer. Reprinted and adapted 

with permission from Bruker Daltonic. 
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Trapped ion mobility spectrometry (TIMS) is a relatively new IMS technique and was 

developed by Melvin Park and colleagues at Bruker279,280. The TIMS device traps ions 

and releases them as a function of their ion mobility281. TIMS is incorporated in the first 

vacuum stage of a mass spectrometer, where an electrodynamic ion funnel focuses 

incoming ions into a contiguous ion tunnel, which is the actual TIMS analyzer. Ions come 

to rest at a position defined by the counteracting forces of an electrical field and the drag 

of the incoming gas flow (Fig. 14). In this sense, TIMS reverses the concept of DTIMS. 

The mobility range of the trapped ions is determined by the upper and lower voltages of 

the analyzer (exit and entrance of the device, respectively), and this principle can also be 

used to selectively accumulate an ion species of interest to increase the sensitivity and ion 

mobility resolution282–284. After the initial accumulation and trapping step, lowering the 

electrical field strength releases ions from the TIMS device in the order of their ion 

mobility into the exit funnel, from where they are focused into the downstream mass 

analyzers. Note that, in contrast to DTIMS and TWIMS, ions with larger collisional cross 

sections (lower ion mobility) are trapped closer to the funnel exit and therefore arrive first 

at the detector, whereas ions with smaller collisional cross sections (higher ion mobility) 

arrive later. Interestingly, most of the ion mobility separation is effected at the electric 

plateau near the exit285–287 and by slowing down the scan out time, high ion mobility 

resolution > 200 Ω/ΔΩ has been achieved288,289. In almost all applications, linear scan 

functions are used to release ions from the TIMS device. However the simplicity and 

flexibility of the device also allow non-linear scanning modes, which can increase the ion 

mobility resolution in mobility regions of interest290. Typical accumulation times in 

proteomics applications are in the range of 20 to 100 ms and yield ion mobility peak 

widths less than 2 ms (see below). Its unique design allows operating TIMS at relatively 

low potential differences (about 130 V) and reduces the dimensions of the device to about 

10 cm in length and 8 mm inner diameter281. This implies a high sensitivity and 

furthermore allows to install two analyzers in a row, which increases the duty cycle up to 

100%291. The physical similarity to classical DTIMS means that the same equations apply 

and offers a straightforward way for the determination of collisional cross sections281. The 

use of TIMS in proteomics is a core subject of the present thesis and the unique 

characteristics and operation possibilities of the device will be discussed in more detail in 

the results section.  
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Data Acquisition Strategies for Proteomics 

Bottom-up proteomics generates hundreds of thousands of peptide species from 

biological samples such as whole-cell lysates or tissue sections292. Due to the large 

abundance range of proteins, post-translational modifications and differences in the 

ionization efficiency27,47,293,294, peptide abundances span a magnitude huge range, easily 

exceeding 10 orders of magnitude even without considering peptide modifications for 

body fluids such as plasma29,30,295. With limited sample amounts and in the absence of 

signal amplification akin what is used for RNA or DNA sequencing, sampling the 

proteome reproducibly and comprehensively in a practical timeframe presents a 

paramount analytical challenge. At the level of MS data acquisition strategies the 

contemporary experimental toolbox of proteomics researchers addressing this problem 

comprises three main types shown in Figure 15 – each with distinct advantages and 

disadvantages48.  

 

  

Figure 15 | Data acquisition methods in proteomics. a, In data-dependent acquisition 

(DDA) methods, the MS selects suitable precursors from survey scans for fragmentation 

with narrow isolation windows. b, In targeted proteomics, peptides of interest are 

constantly monitored for the time of the expected LC elution peak. c, In data-independent 

acquisition (DIA), the MS cycles repeatedly through pre-defined precursor windows 

covering the entire mass range of interest. Red boxes indicate the position of the 

quadrupole isolation window (not to scale). Adapted from ref 115. 
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Data-Dependent Acquisition 

The most widely used acquisition method for unbiased large-scale and comprehensive 

proteome studies is data-dependent acquisition (DDA), also often referred to as ‘topN’ 

strategy. In DDA, the mass spectrometer constantly cycles through a full scan acquisition 

(survey scan) and N MS/MS scans50,296. To ensure a sufficient number of sampling points 

across a chromatographic peak, cycle times are optimally around one second. Precursors 

for the MS/MS scans are selected in real-time (hence ‘data-dependent’) based on the 

survey spectrum. As indicated by the name topN, the precursor selection algorithms 

prioritize higher abundant signals, as they are more likely to yield high-quality MS/MS 

spectra. Even though this concept is well-established, precursor detection algorithms are 

still subject of active research297. Tryptic peptides mostly bear two or more charges, which 

allows excluding singly charged species (which are predominantly chemical background 

ions) from the sequencing events and thus making more efficient use of the available 

analysis time. To further increase proteome coverage, already-sequenced precursors are 

excluded from re-sequencing for a certain time period in the range of chromatographic 

peak widths, a process termed ‘dynamic exclusion’298,299. More sophisticated data-

acquisition schemes that make use of real-time data-processing are largely underexplored, 

but are likely to evolve with the next generation of instrument application interfaces and 

increasing computational power300,301. DDA is compatible with label-based and label-free 

quantification strategies on the MS level as well as with MS/MS-based quantification with 

isobaric labeling.   

The success of a DDA experiment largely depends on the rate and quality of the acquired 

MS/MS spectra, as well as the ‘purity’ with which precursor can be selected292. For this 

reason, proteome coverage has steadily improved with advances in the MS 

technology48,228,302. Almost 20 years ago, only relatively low sequencing rates of about 3 

to 5 precursors per second were practicable and only very low resolution mass spectra 

could be obtained51,303. As the sensitivity of the mass spectrometers improved, more 

MS/MS spectra could be acquired per time unit97,213,304. Today, state-of-the-art mass 

spectrometers routinely operate at sequencing rates of 20 Hz or above and thereby 

quantify thousands of proteins in single runs215,297. When combined with up-front peptide 

fractionation, virtually complete proteomes can be measured109. Similarly, the total 

number of fragmented precursor ions for a given sample (and thus the proteome coverage) 

can be increased by injecting the same sample repeatedly, and in each injection selecting 
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precursors from only a subset of the entire mass range, a technique referred to as gas-

phase fractionation298,305,306. However, even with very fast mass spectrometers and 

sequencing rates exceeding 40 Hz, only a fraction of all detectable precursors is 

fragmented, and ever faster rates inevitably imply a lower acquisition time per precursor 

and therefore a lower number of ions in each MS/MS spectrum. In addition, once all 

abundant precursors have been fragmented, less abundant peptides will be selected, 

further increasing the demand for sensitivity – a problem addressed in the present thesis 

through TIMS and the “PASEF” method. Incomplete sequencing, in particular of low-

abundance species, also introduces stochasticity in the precursor selection process, which 

results in not every peptide being fragmented and identified in every run. This situation 

impedes statistical testing and biological interpretation of the results, because ‘missing 

values’ in the data matrix need to be imputed or even worse, proteins with too few data 

points need to be discarded307. To a certain extent, this problem is alleviated by 

transferring identifications between runs based on accurate precursor mass and after 

retention time alignment101,135,181,308. 

 

Targeted Proteomics 

In some experiments, rather than exploring the proteome on a large scale, it may be 

sufficient to study a pre-defined ‘targeted’ subset of peptides or proteins by mass 

spectrometry, conceptually similar to ELISAs168,309. This is the case in some forms of 

hypothesis driven research, for example to validate biomarkers310,311 or to screen activated 

biological pathways through ‘sentinel’ proteins312. While less comprehensive in terms of 

proteome coverage, targeted proteomics aims for highly sensitive, rapid and reproducible 

protein quantification. The MS acquisition method used is rooted in selected (or multiple) 

reaction monitoring (SRM or MRM), which has been applied in small molecule research 

for decades, and was initially developed on low-resolution triple quadrupole 

instruments204,313,314. The well-defined fragmentation pathways of peptides allow 

selecting a peptide precursor in the first quadrupole, collide it with inert gas in the second 

quadrupole (collision cell), and quantify the signal by constantly monitoring the signal of 

a selected fragment ion in the third quadrupole315. In targeted proteomics jargon, pairs of 

precursor and fragment ions are referred to as ‘transitions’. As opposed to DDA, where 

precursor ions are selected on-the-fly and for single MS/MS scans, in targeted proteomics 
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the mass spectrometer is programmed to scan a pre-defined transition repeatedly for either 

the entire time of an experiment or in an elution time window where the peak is expected. 

With modern instrumentation, this approach is extended to 10-100s target proteins per 

run316,317. Due to the possibility to selectively monitor ions even in the complex 

background of tryptic digests, MRM can be quite sensitive and cover a reasonable 

dynamic range as exemplified in human plasma318. In the same manner, Aebersold and 

co-workers reported the quantification of yeast proteins spanning the whole abundance 

range with targeted proteomics319,320. Current workflows frequently make use of high-

resolution mass analyzers such as the Orbitrap to read out all fragment ions (or transitions) 

in one MS/MS scan, referred to as parallel reaction monitoring (PRM), drastically 

increasing specificity321. Of note, in quadrupole-Orbitrap mass analyzers, the quadrupole 

can select one or multiple narrow mass windows for accumulation and storage in the C-

trap, without immediately overfilling it322. In targeted analyses, this allows accumulating 

ions for a longer time than would have been possible with a standard full scan, often 

resulting in a several-fold increase in sensitivity323. In an attempt to increase the number 

of targets per run, researchers have employed trigger signals to reduce the ‘monitoring 

time’ in which targeted peptides are expected to elute from the column to seconds rather 

than minutes324. Targeted proteomics combined with isobaric labeling also shows promise 

to increase throughput, and can be extremely sensitive if the ion accumulation time is set 

to a large value165. Challenges inevitably arise due to the inherent complexity of 

proteomics samples and the resulting risk of interfering signals. This has fostered the 

development of software to automatically assess data quality and validity, in particular 

with large data sets325,326. The multitude of potential transitions and interferences 

complicates experimental design, and while balancing the number of targets, acquisition 

speed, chromatographic separation and sensitivity, the optimal choice of peptides can vary 

in-between experimental setups. This turns the selection of suitable peptides and 

transitions into a tedious process327. Therefore, in particular with human samples, the 

curation of well-characterized, quantifiable unique peptides for each protein 

(‘proteotypic’) and high-quality transitions remains a work in progress328. In addition to 

in-house libraries and the mining of community data, this motivated the development of 

large-scale in vitro329 or synthetic330 peptide libraries. In parallel, software tools are 

developed to assist users in streamlined assay development based on these libraries331.   
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Data-Independent Acquisition  

In recent years, data-independent acquisition (DIA) methods have gained attention as they 

promise to combine the advantages of targeted proteomics – sensitivity and 

reproducibility – with the comprehensive proteome coverage of DDA methods332. In 

DDA, the goal is to identify a single peptide sequence from each spectrum (with 

exceptions for co-isolated precursors121), which is ultimately limited by the number of 

MS/MS spectra that can be acquired per experiment. In principle, the number of 

identifications can be multiplied by (purposely) acquiring a combined spectrum for 

multiple peptide precursors (‘multiplexing’)333. However, depending on the number of 

simultaneously fragmented peptides, this generates increasingly convoluted MS/MS 

spectra, which are challenging to identify with conventional database search algorithms, 

resulting in lower sensitivity and identification success rates334–337. In contrast, DIA 

acquires multiplexed MS/MS theoretically from all eluting peptides by cycling through a 

pre-defined acquisition cycle rather than switching the precursor isolation window based 

on the observed ion signal. The term ‘data-independent acquisition’ was coined in 2004, 

when Yates and co-workers described a method in which an ion trap mass spectrometer 

constantly cycled through successive 10 Th windows covering a mass range from m/z 400 

to 1,400 in total. Since then, a multitude of DIA methods have been described, ranging 

from fragmenting the entire precursor mass range at once338–340 to selecting narrow 

windows with isolation widths similar to DDA341–343. Wider isolation windows enable 

faster acquisition cycles and cover a wider mass range with the downside of increasing 

spectral complexity, whereas narrower isolations contain fewer precursors and 

importantly can increase the dynamic range, although at the cost of increased cycle 

time344. In the beginning, the primary analysis strategy for this type of data was either to 

generate ‘pseudo-MS/MS’ spectra by grouping fragment ion signals together based on 

their correlation in the retention time dimension, or to search them directly with 

established DDA search engines345. A paradigm change occurred in 2012, when 

Aebersold and co-workers from Sciex proposed a different data analysis strategy with 

elements borrowed from targeted proteomics rather than the DDA search engine 

approaches. The  novelty of this method termed “SWATH-MS”346, was the ‘targeted’ or 

‘peptide-centric’ data extraction strategy, meaning that the presence of a peptide of 

interest is inferred by matching to previously generated knowledge, as opposed to 

identifying a peptide from each spectrum (‘spectrum-centric’)347. Information about 
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peptide ions are stored in ‘spectral libraries’, which include the precursor mass, isotope 

distribution, retention time as well as the masses and relative abundances of the top 

fragment ions. Such libraries can be generated specifically for each project, e.g. using 

peptide fractionation, or more comprehensive community libraries can be used348,349.  

Assuming a complete record of all fragment ions is present in the sample over the entire 

LC run time, a DIA experiments represents a nearly-complete ‘digital archive’ of the 

sample, at least within the dynamic range of the measurement, which also implies a very 

high reproducibility of protein identifications346. However, in practice, the DIA 

methodology could not compete with DDA in terms of proteome coverage, as exemplified 

by less than 1,000 identified yeast proteins in 2 hours with the first generation of 

instruments and software350. By comparison, in the same year, the Coon group published 

the identification of 3,977 protein groups in about 80 min single runs with DDA. 

Contemporary workflows have improved in terms of proteome coverage, quantitative 

accuracy and post-processing software170. On the Sciex hybrid quadrupole TOF platform, 

which is widely-used for SWATH, 4,000 to 5,000 proteins can now be detected in single 

runs of a human cell line, and good reproducibility between laboratories has been 

reported351. As all fragment ion information is recorded, DIA also holds promise to infer 

quantitative information about isoform and post-translational modifications352. Recent 

advances in the data acquisition speed of the Orbitrap mass analyzer, makes it now very 

attractive to perform DIA experiments on this instrument type as well. The performance 

is already on par or exceeds that of standard DDA measurements215,353,354. As DIA is not 

limited by the sequential sequencing speed, it is particularly attractive for high throughput 

analysis with short LC-MS runs355,356. However, with increasing size of the datasets, 

libraries and proteomic depth, more rigorous statistical controls are required and this is 

still subject of ongoing research349. Interestingly, with the advance of MS technology and 

bioinformatics, library-free data analysis has again received increased attention357,358 and 

this approach could potentially complement generic community libraries with sample-

specific protein identifications in the future.    
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Aims of the Thesis 

In the beginning of the century, the scientific community was overwhelmed by the 

decoding of the human genome, and characterizing the genome on a population-wide 

scale alone was thought to be the key to a deep understanding of human biology and the 

cure of many diseases. Genomics and transcriptomics technologies kept up with these 

high expectations and now readily provide data for single cells as well large human 

cohorts. At the same time, it has become clear that genomics by itself can only provide a 

part of the full picture, which conversely kindled interest in proteomics. However, the 

inherent complexity of proteomic systems and the absence of signal amplification turns 

proteomics on such a scale into a great technological challenge. Even though ‘complete’ 

human proteomes now appear to be within reach, the technology still lags behind in terms 

of sensitivity, coverage and throughput. The overarching goal of my thesis was thus to 

contribute novel MS data acquisition methods that should help to eventually overcome 

longstanding limitations in MS-based proteomics and pave the way for comprehensive 

and high-throughput proteomics studies.  

A straightforward approach toward increased throughput of proteomics is to measure 

multiple samples in a single LC-MS experiment. Isobaric labeling has shown much 

promise in this regard and current commercially available kits allow multiplexing of up 

to eleven samples. However, a major drawback of this technology is the so called ‘ratio 

compression’, which refers to the distortion caused by interfering ions on the observed 

abundance ratios. So far, this problem was mainly addressed with expensive 

instrumentation and at the cost of speed and sensitivity. In my PhD work, I contributed to 

the development of a novel isobaric label, termed EASI-tag, which was designed to 

generate ‘peptide-coupled reporter ions’ with excellent yields (Article 1). In conjunction 

with a tailored MS-acquisition method, this enables interference-free multiplexing on 

widely used MS platforms.  

A core subject of my thesis is ion mobility spectrometry as an extra dimension of 

separation in bottom-up proteomics. This work has been performed in close collaboration 

with Bruker Daltonic and builds on a high-resolution quadrupole TOF platform 

(Article 2). In the course of my project, this instrument was equipped with a Trapped Ion 

Mobility Spectrometry (TIMS) device. TIMS accumulates and stores ions, and then 

releases them to the downstream mass analyzer as a function of ion mobility. We made 
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use of this principle to devise the ‘parallel accumulation – serial fragmentation’ (PASEF) 

method (Article 3), in which the quadrupole quickly switches the isolation window to 

capture as many precursors as possible for fragmentation. In effect, this multiplies the 

peptide sequencing speed many-fold over conventional MS/MS methods, however, 

without diminishing sensitivity. While the first iteration was implemented on a laboratory 

prototype and limited in several aspects, PASEF has now become the heart of a full-

fledged and commercially available proteomics platform, the Bruker timsTOF Pro 

(Article 4).  

Even though TOF instruments hold great promise as demonstrated in here, the vast 

majority of proteomics laboratories nowadays use Orbitrap mass analyzers. A strong 

focus during the evolution of this technology since its invention in 2007 has been to 

increase the speed and sensitivity of MS/MS acquisition. This development entailed ion 

sources that allow more ions to enter the MS and an increased ion transfer efficiency 

inside the MS. In proteomic practice, this leads to the paradox that less than 1% of the 

available ions are now mass analyzed in full scans. During my PhD, I developed the 

‘BoxCar’ method which increases the sampling time for low-abundance ions up to 10-

fold (Article 5). This results in a dramatically increased dynamic range for full scan mass 

analysis. Employing a matching strategy, this culminated in the detection of 10,000 

proteins in a 100 min single run of mouse cerebellum digest. BoxCar is of particular 

advantage in samples with a large dynamic range. In our laboratory, first applications of 

BoxCar included proteomics of human heart tissue (Article 6) and human plasma samples 

from a clinical study (Article 7).  
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II. Accurate Multiplexed Proteome Quantification 

 

Article 1: EASI-tag enables accurate multiplexed and interference-free 

MS2-based proteome quantification 
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Label-free quantification has, at least in our laboratory, largely replaced stable isotope 

labeling as the method of choice for quantitative proteomics. This is mainly due the 

straightforward sample preparation and ready-to-use software, which both scale very well 

to large sample cohorts. Even higher throughput can be achieved with isobaric labeling, 

which allows multiplexing several samples in one analysis. TMT is a popular example for 

isobaric labels, but with current methods the quantitative accuracy is imperfect due to the 

co-isolation of other precursor ions. 

In this manuscript, we describe the development of an ‘easily abstractable sulfoxide-based 

isobaric’ (EASI) tag that overcomes this so called ‘ratio compression’ problem. Key to 

the EASI-tag method is the quantification of ‘peptide-coupled reporter ions’ as opposed 

to the low-mass reporter ions typically quantified with TMT. They retain the precursor 

peptide information which allows quantifying even co-isolated peptides. This possibility 

was exemplified with the TMT molecule by Wuhr several years ago166. However, that 

approach did not find wide application as it was limited by, first, the inefficient peptide-

coupled reporter ion generation with TMT and, second, co-isolation of natural 13C 

isotopes, which convolutes the quantitative signal and forced them to discard one 

multiplexing channel entirely. Here, we set out to broaden the applicability of isobaric 
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labeling and enable accurate multiplexed quantification on widely used benchtop mass 

spectrometers.  

To address the inefficient yield of peptide-coupled reporter ions, inspired by CID-

cleavable disucccinimidyl sulfoxide (DSSO) cross-linkers359, Sebastian Virreira Winter 

and Felix Meissner devised a sulfoxide-based label that fragments at collision energies 

below those required for peptide-backbone fragmentation. The original symmetric 

sulfoxide moiety by Kao and co-workers fragments at both sides of the sulfoxide and on 

each side, gives rise to alkene, sulfenic acid and thiol fragments. To prevent spreading of 

the quantitative signal into multiple fragments, the EASI-tag features an asymmetric 

sulfoxide that generates only one alkene fragment. In the manuscript, we proved this 

concept with thousands of EASI-tag labeled peptides from a HeLa digest and, 

importantly, demonstrated that the EASI-tag fragments at lower collision energies than 

TMT and yields the expected peptide-coupled reporter ions with high yield.  

Having established the chemical design of the label, we devised a tailored MS acquisition 

strategy, which was my major contribution to this manuscript. As mentioned above, the 

co-isolation of naturally-abundant 13C isotopes (about 1%) yields overlapping signals 

with the encoded 13C stable isotopes in the label. To some degree, this can be corrected 

computationally, which is the strategy followed by Wuhr and colleagues. However, this 

inevitably introduces inaccuracies in the quantification and becomes nearly impossible 

for high abundance ratios. Instead, we aimed to exclusively isolate the monoisotopic 12C 

peak. To do so, we employed a narrow isolation window and further shifted the isolation 

window to lower m/z, which in effect suppresses the 13C peak for doubly and triply 

charged peptide ions. With high-performance quadrupole mass filters, this strategy did 

not noticeably affect overall transmission efficiencies and identifications rates in our 

hands, while enabling a straightforward read-out of accurate ratios, even those above 

1:100.  

In the manuscript we report the quantification of six isotope encoded channels with EASI-

tag, which proved interference-free at a depth of 10,000 human and yeast proteins in a 

mixed proteome experiment, and with median coefficients of variations below 10%. 

Ongoing software developments will further boost those numbers. 
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III.  (Trapped) Ion Mobility Spectrometry for Proteomics 

 

Article 2: The Impact II, a Very High-Resolution Quadrupole Time-of-

Flight Instrument (QTOF) for Deep Shotgun Proteomics 

 

Molecular & Cellular Proteomics 14, 2014-2029 (2015). 

Scarlet Beck‡, Annette Michalski§, Oliver Raether§, Markus Lubeck§, Stephanie Kaspar§, 

Niels Goedecke§, Carsten Baessmann§, Daniel Hornburg‡, Florian Meier‡, Igor Paron‡, 

Nils A. Kulak‡, Juergen Cox¶ and Matthias Mann‡ 
 
‡ Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, 

Germany; 
§ Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany; 
¶ Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, 

Germany 

 

When I joined the laboratory, Scarlet Beck was evaluating the proteomics performance of 

a novel high-resolution QTOF instrument, the Bruker impact II. The instrument had 

undergone several design iterations, which together improved the mass resolution to over 

35,000 and ensured a highly efficient transfer of ions for high-sensitivity measurements. 

This included a re-designed collision cell, a new reflectron and careful optimization of 

the entire ion transfer path. These advances were complemented with adaptations of the 

MaxQuant software, which yielded average absolute mass deviations better than 1.5 ppm 

in proteomics experiments and enabled the MS/MS-based identification of 4,800 proteins 

in 2 h single runs of a HeLa digest. Protein quantification was very reproducible in 

technical replicates, and we were able to accurately reflect biological differences in model 

systems such as yeast and mouse cell lines. In conjunction with high pH reversed-phase 

fractionation, over 11,000 proteins were identified in mouse cerebellum, which led us to 

the conclusion that this QTOF platform is well equipped for demanding proteomics 

applications.  

I contributed to the optimization of the MS acquisition method, analyzed data and 

performed experiments in the revision of the manuscript. This work lays the ground for 

the following studies in my thesis which would later on justify the preliminary remark “it 

appears that QTOFs are set to make a comeback in proteomics”. 



54 

 

 



  55 

 

  



56 

 

  



  57 

 

  



58 

 

  



  59 

 

  



60 

 

  



  61 

 

  



62 

 

  



  63 

 

  



64 

 



  65 

 

  



66 

 

  



  67 

 

  



68 

 

 



  69 

 

  



70 

 

Article 3: Parallel Accumulation−Serial Fragmentation (PASEF): 

Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a 

Trapped Ion Mobility Device 

 

Journal of Proteome Research 14 (12), 5378-5387 (2015). 

Florian Meier†,#, Scarlet Beck†,#, Niklas Grassl†, Markus Lubeck‡, Melvin A. Park§, 

Oliver Raether‡, and Matthias Mann† 
 
† Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, 

Germany 
‡ Bruker Daltonik GmbH, Fahrenheitstrasse 4, 28359 Bremen, Germany 
§ Bruker Daltonics Inc., 40 Manning Road, Billerica, Massachusetts 01821, United States 

 
# These authors contributed equally to the work.  

 

Parallelization has greatly contributed to advances in diverse field, for example computer 

science. Conversely, data-dependent acquisition methods in mass spectrometry still 

sequence one precursor after another. This has two important implications for MS-based 

proteomics: First, the overall depth of the experiment is directly linked to the sequencing 

speed. Second, faster sequencing rates imply a lower acquisition time and therefore a 

lower ion count in the MS/MS spectrum. To resolve this dilemma, we introduced the 

concept of ‘parallel accumulation – serial fragmentation’ (PASEF).  

The PASEF scan mode employs the Trapped Ion Mobility Spectrometry (TIMS)281 device 

developed by Mel Park and colleagues at Bruker. In the course of this study, our 

collaboration partners at Bruker incorporated the TIMS device in the first vacuum stage 

of a laboratory prototype, which was based on the impact II platform. In PASEF, all 

precursor ions are accumulated in parallel in the TIMS device (restricted only by the 

charge capacity) and sequentially released from the TIMS in narrow ion mobility peaks. 

As the precursor ions elute, the quadrupole isolation window switches rapidly to fragment 

multiple peptide precursors from a single TIMS scan. In contrast to DIA, PASEF still 

operates with narrow isolation windows and therefore generates readily interpretable and 

not convoluted MS/MS spectra.  

At the time, the prototype instrument required manual programming of each precursor, 

was limited by inefficient switching of the electronics, and was therefore not compatible 

with online LC separation. To still prove the PASEF concept, we directly electrosprayed 
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mixtures of four digested proteins and used a TIMS analysis time of 50 ms, which yielded 

average ion mobility peak half widths of about 1 ms. We demonstrated that the 

quadrupole is capable of switching its position within less than one millisecond, giving 

rise to multiple MS/MS spectra per TIMS scan. A comparison of the total ion currents 

with and without PASEF indicated that the full ion signal is preserved with PASEF, which 

means that PASEF, despite being several-fold faster, does not compromise sensitivity.  

We further outlined the pre-requisite hardware improvements for a successful application 

of PASEF in proteomics and possible modes of operation. Extrapolating our results, we 

predicted an up to 10-fold increase in sequencing speed and sensitivity as compared with 

the sequential acquisition of precursors.  
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Article 4: Online parallel accumulation − serial fragmentation (PASEF) with 

a novel trapped ion mobility mass spectrometer 

 

Molecular & Cellular Proteomics, in revision. 

Pre-print published online: bioRxiv (2018), doi: 10.1101/336743. 

Florian Meier‡, Andreas-David Brunner‡, Scarlet Koch§, Heiner Koch§, Markus 

Lubeck§, Michael Krause§, Niels Goedecke§, Jens Decker§, Thomas Kosinski§, Melvin A. 

Park¶, Nicolai Bache‖, Ole Hoerning‖, Jürgen Cox**, Oliver Räther§, Matthias Mann‡,‡‡,§§ 

  
‡ Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, 

Germany 

§ Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany 
¶ Bruker Daltonics Inc., Manning Road, Billerica, Massachusetts  01821, USA 
‖ Evosep Biosystems, Thriges Pl. 6, 5000 Odense, Denmark 
** Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, 

Germany 
‡‡ NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 

Copenhagen, Denmark 

 

Having established the PASEF concept in the end of 2015, it took us over two years to 

arrive at a proteomics platform that fully integrates PASEF for online data-dependent 

acquisition – the Bruker timsTOF Pro. Major hurdles on the way were the implementation 

of an online precursor scheduling algorithm and the development of post-processing 

software for the four-dimensional LC-TIMS-MS data, which was only recently 

accomplished by Juergen Cox and his team.  

In line with our expectations from the 2015 paper, the full implementation of PASEF in 

the hard- and firmware indeed achieved sequencing rates above 100 Hz. In single runs a 

whole-cell HeLa digest, we sequenced over 20 precursors per TIMS scan depending on 

the ramp times, which is fast enough to use parts of the acquisition speed for re-

sequencing of low-abundance precursors. Optimization of the scan parameters resulted in 

the identification of about 6,000 protein groups in 2 h single runs, which outperforms the 

predecessor instrument, the impact II, by a large margin and is very competitive in the 

field. The instrument provides a high quantitative reproducibility in technical replicates 

and accurately quantified HeLa and E.coli proteins in a mixed proteome experiment. The 

performance characteristic of the instrument are particularly advantageous for low sample 

amounts and very fast LC measurements. This is exemplified by the identification of 

2,500 proteins in single runs from 10 ng HeLa digest and over 1,000 human proteins in 

only about 5 min.  
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An exciting and yet underexplored feature of the timsTOF Pro is the possibility to measure 

collisional cross sections (CCS) on a large scale. In the manuscript, we demonstrate that 

TIMS achieves a very high precision as evident from a median 0.1% absolute deviation 

of the CCS values in five replicates. In combination with the proteomic depth provided 

with this workflow, this opens up new perspectives to study gas phase properties of 

peptides on a scale that goes much beyond past reports360. 

Even though the manuscript marks the end-point of the PASEF development in my thesis, 

it appears to be only the starting point of many more advances on the basis of TIMS and 

PASEF, which will lead to powerful and widely spread applications in the field of MS-

based proteomics and beyond.  
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IV. Increasing the Dynamic Range of Orbitrap Mass Analysis 

 

Article 5: BoxCar method enables single shot proteomics at a depth of 

10,000 proteins in 100 minutes 

 

Nature Methods 15, 440-448 (2018).   

Florian Meier1, Philipp E. Geyer1,2, Sebastian Virreira Winter1, Juergen Cox3 and 

Matthias Mann1,2 

 
1 Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.  
2 NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.  
3 Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.  

 

Technological developments in MS-based proteomics over the last many years have 

always aimed to increase the depth of the proteome coverage – ideally with small starting 

amounts and in short time. Advances in MS instruments have almost entirely focused on 

the speed and sensitivity of peptide fragmentation, which led to a steep increase in the 

number of identified peptides and proteins per time unit. However, in most workflows, 

the quantitative information is derived from the full scan, which is therefore at least as 

important as MS/MS scans. Unfortunately, apart from increased resolution, this level has 

been largely abandoned. In particular, on the Orbitrap mass analyzer, which is by far the 

most widely used instrument in the field, the charge capacity has not changed since its 

introduction over ten years ago. In proteomic practice, we typically observe filling times 

below 1 ms, which is in stark mismatch with the scan time of over 100 ms for a high-

resolution mass spectrum. This implies, that less than 1% of the available ions are used 

for mass analysis in full scans.  

In the present manuscript, we break through this limitation by a novel scan mode termed 

BoxCar. Instead of filling all ions at once, BoxCar employs a serial filling scheme of 

multiple narrow isolation windows. This allows distributing the full charge capacity 

evenly across the entire mass range and filling each window separately to achieve the 

target number of ions. This resulted in over ten-fold increased filling times for low-

abundance ions, thereby dramatically improving signal-to-noise ratios and dynamic 

range. To preserve quantitative accuracy, we devised a filling pattern that resembles the 

on/off shape of the mathematical boxcar function and assigned the full mass range to two 
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or three consecutive scans. We successfully benchmarked the quantitative accuracy in 

label-free as well as SILAC experiments.  

A particularly challenging application of proteomics are clinical samples, such as human 

blood plasma samples. Their protein abundances typically span a huge dynamic range 

from overly abundant transporter proteins to extremely low-abundance regulatory 

proteins. Using BoxCar, we detected four-fold more features on the MS-level spanning 

an overall ten-fold larger dynamic range as compared with standard full scans.  

To circumvent limitations implied by the finite sequencing speed and sensitivity at the 

MS/MS level, we combined BoxCar single runs with a peptide library and transferred 

identifications based on sub-ppm mass accuracies and within narrow retention time 

alignment windows. As a result of the increased spectral quality and dynamic range, this 

greatly increased the number of identified proteins in single runs of HeLa digest, to a level 

of coverage which was sufficient to derive copy numbers estimates and accurate complex 

stoichiometries. Of note, BoxCar also greatly alleviates the missing value problem and 

reproducibly quantified about 7,500 proteins with less than 5% missing values in 45 min 

HeLa single runs. 

The excellent depth and reproducibility encouraged us to apply this strategy to a highly 

complex tissue sample of mouse cerebellum. In 100 min single runs, we found MS-level 

evidence for over 10,000 mouse proteins, broadly covering important biological functions 

and neural compartments. This highlights the performance of BoxCar and let us conclude 

that BoxCar essentially delivers the results of fractionation experiments, however, with 

minimal starting material and in single runs.  

Since its publication, the method has gained much attention in the mass spectrometry field 

and we have already received countless requests from interested researchers. While 

demonstrated in the context of DDA, many other scan modes based on BoxCar are yet to 

be explored. Furthermore, the BoxCar method is generic and can readily be applied in 

other fields with similar dynamic range challenges. To facilitate dissemination, Christoph 

Wichmann implemented BoxCar in the MaxQuant.Live software which allows users to 

seamlessly integrate BoxCar in their workflows. 
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Applications of the BoxCar Acquisition Method  

The translation of proteomics from basic research to clinical applications is a central goal 

of many laboratories, including ours. On this way, many challenges are yet to be 

overcome – some of them on the data acquisition level. In hospitals, blood samples and 

tissue biopsies are the two most common samples collected from patients. As mentioned 

above, these samples comprise proteins spanning a very high dynamic range. We reasoned 

that the BoxCar acquisition method could be particularly advantageous in this areas and 

‘battle-tested’ it in two real-life studies with human samples. 

The full text of the published paper on the human heart atlas and the manuscript of the 

plasma proteome profiling study can be found in the appendix.  
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Article 6: Region and cell-type resolved quantitative proteomic map of the 

human heart 

 

Nature Communications 8, 1469 (2017).  

Sophia Doll1,2, Martina Dreßen3, Philipp E. Geyer1,2, Daniel N. Itzhak1, Christian Braun4, 

Stefanie A. Doppler3, Florian Meier1, Marcus-Andre Deutsch3,5, Harald Lahm3, Rüdiger 

Lange3,5, Markus Krane3,5 & Matthias Mann1,2 
 

1 Department  of  Proteomics  and  Signal  Transduction,  Max  Planck  Institute  of  Biochemistry,  Martinsried, 

Germany 

2 Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 

Copenhagen, Denmark 

3 Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität München, 

Munich, Germany 

4 Forensic Institute, Ludwig-Maximilians-University, Munich, Germany 

5 DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany 

 

In this study, Sophia Doll from our group and collaboration partners from the German 

Heart Center set out to map the protein constituents of the healthy human heart by 

measuring 16 anatomical regions and three major cardiac cell types in depth. Collectively, 

this resulted in over 10,700 quantified proteins which were assembled to a quantitative 

and multi-level model of the human heart proteome – a human heart atlas. Having curated 

this in-depth resource, we applied it as a project-specific peptide library for BoxCar 

measurements of tissue samples from patients suffering from atrial fibrillation. Note that 

in this case, maximizing the proteomic depth while working with minimal starting 

material were key. With BoxCar, we quantified about 3,600 to 4,100 proteins in 100 min 

single runs of the patient samples with excellent reproducibility in technical replicates, 

and also high correlation in-between patients as expected from the assumption that only 

a small proportion of the proteome is altered in disease states. The comparison of patient 

samples to reference values from the human heart atlas revealed many alterations in the 

proteome, which appear to be linked to the disease. While the study was too small to draw 

clinical conclusions, it still highlights the potential of BoxCar in this area.  
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Article 7: Plasma proteome profiling reveals dynamics of inflammatory and 

lipid homeostasis markers after Roux-en-Y gastric bypass surgery 

 

Cell Metabolism, under review.  

Nicolai J. Wewer Albrechtsen1,2,3,4,5,*, Philipp E. Geyer1,5,*, Sophia Doll1,5, Peter V. Treit5, 

Kirstine N. Bojsen-Møller3,6, Christoffer Martinussen3,6, Nils B. Jørgensen6, Signe S. 

Torekov2,3, Florian Meier1,5, Lili Niu1, Alberto Santos1, Eva C. Keilhauer5, Jens J. 

Holst2,3, Sten Madsbad3,6, Matthias Mann1,5, 
 
1 NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark   
2 Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 

Copenhagen, Denmark  
3 NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 

Copenhagen, Denmark  
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*These authors contributed equally  

 

Over the last years, Philipp Geyer has been driving efforts in our laboratory to establish a 

robust MS-based pipeline for ‘plasma proteome profiling’30,67. In this study, the pipeline 

was applied to two longitudinal cohorts of 47 morbidly obese patients undergoing 

bariatric surgery, which is generally recognized as the most effective treatment for obesity 

and type 2 diabetes. Application of BoxCar increased the number of identified plasma 

proteins to over 1,000 per sample, which is a dramatic improvement in proteome coverage 

as compared to previous studies. This depth and scale revealed distinct rearrangements of 

the human plasma proteome after surgery, mostly in proteins related to lipid metabolism 

and inflammation response. In the manuscript, data from this study were correlated with 

a previous study on sustained weight loss361 as well as clinical parameters, resulting in a 

panel of potential marker proteins for insulin resistance. Furthermore, the ‘two study’ 

design confirmed the value of the so called ‘rectangular’ stragegy30 for biomarker 

research. This strategy aims at large-scale profiling of many patients in many diseases and 

therefore ultimately requires a very high throughput, however, without compromising 

proteomic depth. BoxCar holds promise to be a valuable addition to this workflow.    
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V. Discussion and Outlook 

We are entering an era of ubiquitous and complete proteome measurements, which will 

undoubtedly provide novel insight in human biology and unravel molecular mechanisms 

of health and disease110. A particular focus in our group is the clinical application of 

proteomics30. Routine and large-scale screenings of 1,000s of human plasma proteomes 

(Article 6) or diseased tissues (Article 7) hold great promise for revolutionizing medical 

diagnostics and could become an important pillar of personalized medicine. At the other 

end of the scale, there are heralds of proteomics on the level of single cells362. However, 

to turn these great adventures into successful journeys, many technological obstacles are 

yet to overcome. Figure 16 provides an overview of the contemporary MS-based 

proteomics workflow and areas for future improvements.  

Any proteomics experiment starts with the extraction of proteins from a biological sample 

of interest and, in case of bottom-up proteomics, proteolytic digestion. This step has 

tremendously progressed toward miniaturization and automation in the past years and by 

now, robot-assisted sample preparation enables the parallelized processing of hundreds of 

samples per day67. Excitingly, there are now also platforms operating on the nano-scale 

to process samples in volumes of less than 200 nL363. From this, one can conclude that 

sample preparation is primed for single cells well as large clinical studies.  

Figure 16 | The future of MS-based proteomics. The figure highlight areas of active 

research in the current bottom-up proteomics workflow. On the way toward robust and 

comprehensive proteomics workflows that scale to population-wide sample cohorts as 

well as single cell sensitivity multiple improvements are needed. Particularly promising 

research topics are indicated underneath the workflow.  
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The next challenge is reproducible and robust high-resolution chromatography364. Nano-

flow LC provides excellent sensitivity and resolution, however, it remains a finicky 

technology that requires frequent interventions by the user. In view of larger sample 

cohorts, there has been a trend toward higher flow rates in the lower µL/min range which 

tends to be more robust355. A novel setup that promises to improve the robustness of LC 

systems so they are ready for clinical use is incorporated into the Evosep One356. Instead 

of two high-pressure pumps, which are typically the most error prone components, this 

system employs only one high-pressure pump and stores the sample in a pre-formed 

gradient. In this way, the system also minimizes overhead times for sample loading and 

column equilibration, thus allowing analysis of more than 200 samples per day. The 

column technology itself has remained largely unchanged in recent years, and 50 cm 

columns packed with sub-2 µm particles are routinely used in our laboratory since 

2011365. However, also in this area there are new inventions just around the corner and 

promise more robust and reproducible chromatography, for example new generations of 

monolithic366 or chip-based columns367. Reproducible and standardized chromatography 

will be key to future proteomics workflows, and in particular those employing peptide-

libraries. This includes the BoxCar method described here, MS/MS-level DIA methods, 

as well as targeted proteomics, which all dramatically benefit from predictable retention 

times with narrow uncertainty intervals.  

At the interface of LC and MS there is currently no viable alternative to ESI in sight. 

However, the efficiency of the ionization process and the ion transfer decreases with 

higher flow rates194, which is why multi-nozzle emitters could provide a feasible way 

forward368. For proteomics of low cell counts or miniscule tissue biopsies, sub-ambient 

pressure ionization also appears promising to increase the number of ions entering the MS 

and thus improve sensitivity369. However, although in some cases first described over ten 

years ago, these technologies still have to prove their applicability in proteomic practice. 

Multiplexing can be a powerful answer to the demands of clinical samples and other large 

scale studies which can encompass 100s and 1,000s of samples. However, while this 

approach provides a complete quantification matrix within a set of multiplexed samples, 

it may not at all be complete in between sets of multiplexed samples due to inconsistent 

precursor selection. This problem is only partially addressed by peptide fractionation as 

this negates most of the advantages in throughput. Furthermore, to not compromise 

quantitative accuracy, the most popular method so far requires very expensive 
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instrumentation with MS3 capabilities and is, even conceptually, not free from artefacts 

as exemplified by low-abundance precursors165. In contrast, the EASI-tag technology 

introduced here provides interference-free and accurate quantification at the MS/MS level 

(Article 1). Considering that this is only the first generation of the tag, there is plenty of 

room for improvements, e.g. by increasing the number of channels. An apparent limitation 

derives from the complexity of the MS/MS spectrum as serial fragmentation events lead 

to b and y ions with the full reporter ion pattern. However, computationally, this could 

even be turned into an advantage, given that the exact position of the expected reporter 

ions can be calculated and used in scoring algorithms. Additionally, the signals with the 

correct delta masses could be stacked to clean up the spectra prior to the database search. 

Given that the noise level in MS/MS spectra with the very narrow isolation windows is 

generally very low, such strategies appear feasible and promising.  

In an ideal mass spectrometer, all ions entering the MS are ultimately used for mass 

analysis. The BoxCar method developed in this thesis highlights the dramatic 

improvements that can still be achieved in this area (Article 5). While largely abandoned 

over the last decade, full scans are now receiving more attention and BoxCar has great 

potential to fill this gap. In DDA methods, this is supported by the fact that very fast 

instruments eventually run out of suitable precursor ions297. In targeted proteomics, a 

high-quality MS signal can be used to trigger quantification events more precisely, 

thereby increasing throughput and sensitivity165,324. The improved precursor information 

with BoxCar also opens up new possibilities for ‘intelligent’ data acquisition schemes that 

go beyond standard topN picking schemes and consider further parameters to predict the 

potential information content of a precursor candidate. This should allow targeted 

proteomics on a proteome-wide scale and in a highly automated manner, avoiding manual 

optimization and validation of target peptides. Having established such a strategy, it could 

readily be extended to the EASI-tag technology for reproducible and accurate multiplexed 

quantification. In DIA methods, the growing interest in full scans is connected to re-

emerging library-free approaches, which inevitably require accurate and high-quality 

precursor ion information357,358. To a lesser extent, this is also true for library-based 

strategies, in which improved precursor information increases matching scores and allows 

better stratification of true and false hits354.  

Conceptually, TIMS-PASEF comes closest to the ideal mass spectrometer (Articles 2-4). 

Within a PASEF set, all precursor ions are stored in parallel and focused into narrow ion 
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mobility peaks. By the time precursors elute from the ion mobility device, the 

synchronized quadrupole ideally transmits all precursor ions into the collision cell. In the 

present thesis, I used this principle to multiply the peptide sequencing rate up to the 

sensitivity limit of the mass spectrometer. Reaching this limit, the tremendous speed can 

also be used in part on re-sequencing low-abundance precursors, yielding cumulative 

MS/MS spectra with increased signal-to-noise ratios. Note that this resembles targeted 

proteomics and also DIA, in which precursors of interest are sampled repeatedly over the 

entire chromatographic elution peak. In targeted proteomics, narrow isolation windows 

are employed to achieve maximum selectivity and sensitivity – at the cost of proteome 

coverage. In DIA, wider isolation windows (yielding highly convoluted MS/MS spectra) 

are used to maximize the proteome coverage and ideally acquire a digital record of 

fragment ions for all eluting precursor ions.  

Even the most sophisticated data acquisition strategy is worthless without post-processing 

software that makes good use of the data record. In this regard, it is surprising that the 

groundbreaking developments of artificial intelligence in conjunction with deep neural 

networks370 have not yet been widely translated into proteomics research. In combination 

with the improvements in data acquisition outlined above and the availability of high-

quality data for virtually all (tryptic) peptides330, it appears clear that the application of 

neural networks will render labor-intensive peptide library generation superfluous and 

revolutionize data analysis as we know it today.  

In summary, in this thesis I have presented three novel data acquisition strategies – EASI-

tag, PASEF and BoxCar – which help pave the way for the next generation of MS-based 

proteomics in its quest for comprehensive large-scale analysis and single cell sensitivity. 

These developments will go hand in hand with upcoming advances in data analysis and 

open up exciting perspectives for proteome research. Importantly, while developed in the 

context of proteomics, the strategies outlined in this thesis are generic and readily 

transferrable to other MS-based omics technologies, for example metabolomics and 

lipidomics, which face similar analytical challenges in terms of dynamic range and 

sensitivity, and perhaps even greater challenges in terms of selectivity.  
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1) Article 6: Region and cell-type resolved quantitative proteomic map of the 

human heart 

2) Article 7: Plasma proteome profiling reveals dynamics of inflammatory and lipid 

homeostasis markers after Roux-en-Y gastric bypass surgery 
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