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Einleitung 

 
 

1. Einleitung 

 

Das Pankreas spielt in der Wahrnehmung der meisten Menschen im täglichen Leben 

eine untergeordnete Rolle. Ein bewusstes Empfinden, wie beispielsweise das Schlagen 

des Herzens oder eine willkürliche Steuerung der Atmung, ist nicht möglich. Jedoch ist 

dieses unscheinbare Organ für unser Wohlbefinden von entscheidender Bedeutung. 

Im Allgemeinen wird heutzutage bei Erkrankungen des Pankreas der weitverbreitete 

Diabetes Mellitus Typ II assoziiert. Das klinische Bild einer akuten Pankreatitis, sowie 

die glücklicherweise nur in wenigen Fällen fulminant und dann leider oftmals letal ver-

laufende Form dieser Erkrankung, sind außerhalb der medizinischen Fachwelt hinge-

gen kaum bekannt. 

In der sich anschließenden Arbeit soll die Physiologie sowie die Pathophysiologie des 

Pankreas und der akuten Pankreatitis näher erläutert werden. Nach einer allgemeinen 

Einführung werden im speziellen die beteiligten inflammatorischen Signalwege be-

schrieben. Es schließt sich der tierexperimentelle Teil mit den notwendigen Methoden 

und den verwendeten Materialen an. Darauf folgt die Präsentation der Forschungser-

gebnisse. Den Abschluss bildet eine kritische Diskussion der erhobenen Daten unter 

Berücksichtigung des aktuellen Wissensstandes. 

1.1 Die akute Pankreatitis im historischen Kontext 

 

Die Aufgabe und Funktionsweise des Pankreas beschäftigt Anatomen und Physiologen 

nicht erst seit dem letzten Jahrhundert. Es existieren historische Aufzeichnungen in 

denen Symptome beschrieben werden, die auf eine akute Pankreatitis hinweisen 

könnten. Die Überlieferungen lassen zwar keinen eindeutigen Schluss zu. Aber neben 

der klassischen Vergiftungstheorie kann der Verdacht geäußert werden, dass Alexand-

er der Große im Alter von 32 Jahren im Jahr 323 vor Christus, möglicherweise an einer 

akuten Pankreatitis erkrankte und letztlich daran verstarb (1). In der Epoche der Auf-

klärung werden die Aufzeichnungen und Beschreibungen des Anatomen Giovanni 
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Morgagni (1682-1771) bereits etwas konkreter. Er beschrieb 1761 möglicherweise das 

Bild einer akuten Pankreatitis mit Kollaps, Schweißausbruch, Sialorrhoe, Oberbauch-

schmerzen und galligem Erbrechen. Die Funktion des Pankreas lag aber für lange Zeit 

im Dunkeln. Die vorherrschende Theorie der mechanischen Schutzfunktion des Pan-

kreas war über viele Jahrhunderte anerkannt. Erst mit der Entdeckung des Ductus pan-

creaticus durch Johann Wirsung (1589-1643) entwickelte sich ein neuer Gedanke zur 

Funktion des Organs. Wirsung, der seine Entdeckung weder den Arterien noch zu den 

Venen rechnen wollte, konnte aber keine für ihn logisch Funktion des Ganges erschlie-

ßen. Thomas Bartholin (1616-1680) brachte erstmals den Gedanken ein, dass die „trü-

be Flüssigkeit“, die von Wirsung beschrieben wurde, möglicherweise zur „fermentatio“ 

dient. Erst Mitte des 19. Jahrhunderts gelang es, die Funktionen des Bauchspeichels 

besser zu charakterisieren. Im Jahr 1867 konnte der Arzt Willi Kühne (1837-1900) (2) 

ein sogenanntes „Pankreasferment“ isolieren. Dieses Ferment erhält zu einem späte-

ren Zeitpunkt den Namen Trypsin. Der Arzt W. Balser berichtet 1882 erstmalig über 

eine „Fettgewebsnekrose“ am Pankreas und beschreibt die klinischen Symptome einer 

schweren Pankreatitis. Nur wenige Jahre später begründet der Pathologe Hans Chiari 

(1851-1916) die Lehre der „tryptischen Selbstverdauung“ des Pankreas. Bayliss (1860-

1927) und Starling (1866-1927) konnten im Jahr 1902 nachweisen, dass die Abgabe 

von Sekretin in das Blut wiederum essenziell für die Trypsinsekretion ist (3). Aufgrund 

dieser Entdeckung wurde in den folgenden Jahren die Theorie der „chemical Messen-

gers“ entwickelt – uns besser bekannt unter dem Begriff – Hormon (4). Diese beschei-

denen Anfänge führten in den folgenden Jahrzehnten zur Identifizierung hochkomple-

xer zellulärer Vorgänge, die unser heutiges Verständnis dieser molekularen Reaktionen 

prägen (5). 

1.2 Anatomie und Physiologie 

 

Das Pankreas hat sowohl eine endokrine als auch eine exokrine Funktion. Die endokri-

nen Aufgaben des Organs sollen hier nur der Vollständigkeit halber erwähnt werden. 

Der wichtigste und bekannteste Mechanismus ist die Regulation des Blutglukosespie-

gels durch Sekretion der Hormone Insulin und Glukagon aus den Langerhans´schen 
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Zellen (6). Die endokrinen Zellen sind überwiegend in Corpus und vor allem in der Cau-

da lokalisiert. Bekannt als die Langerhans-Inseln geben die endokrinen Epithelzellen 

die produzierten Hormone direkt ins Blut ab. Im Einzelnen sind zu erwähnen: 

- α-Zellen  (ca. 40%, produzieren Glukagon) 

- β-Zellen  (ca. 50%, produzieren Insulin) 

- δ-Zellen  (ca. 10%, produzieren Somatostatin) 

- PP-Zellen (produzieren pankreatisches Polypeptid) 

- ε-Zellen  (produzieren Ghrelin) 

Das humane Pankreas ist in etwa 15 – 20cm lang und das Gewicht beträgt zwischen 70 

g und 120 g. Etwa 98 Prozent der Gesamtmasse des Organs bilden den exokrinen Teil. 

Man unterscheidet drei Abschnitte – Caput, Corpus und Cauda. Das Caput Pancreatis 

wird vom „C“ des Duodenums umschlossen. Die Sekretion des Pankreassaftes erfolgt 

über den circa 3 - 5 mm im Durchmesser messenden Ductus pancreaticus, dessen Ende 

die Vatersche Papille mit der Mündung in das Duodenum darstellt. In vielen Fällen 

mündet der Ductus Choledochus in einer gemeinsamen Endstrecke. Je nach anatomi-

scher Varianz, kann beim Menschen auch mehr als nur ein Ausführungsgang vorkom-

men (7). Die arterielle Versorgung wird in aller Regel durch drei große Gefäße gewähr-

leistet. Die Arteria hepatica communis, Arteria splenica und die Arteria mesenterica 

superior. Der venöse Abfluss erfolgt über die Vena splenica, Vena pancreaticoduo-

denalis und die Vena mesenterica in die Vena portae (8). Innerviert wird die Bauch-

speicheldrüse über sympathische sowie parasympathische Fasern. Letztere haben ih-

ren Ursprung aus dem Nervus Vagus. Die sympathische Versorgung erfolgt über den 

Nervus splanchnicus major und das Ganglion Coeliacum (9), (10). Im Rahmen der 

exokrinen Funktion sezerniert das Pankreas bis zu 30 unterschiedliche Verdauungs-

enzyme, die Zucker, Eiweiße und Fette spalten. Diese Enzyme sind überwiegend noch 

inaktiv und werden als sogenannte Zymogene bezeichnet. Durch die Speicherung als 

Proenzyme innerhalb des Organs wird eine Selbstverdauung des Organes verhindert. 

Erst nach Sezernierung in das Duodenum kommt es zur Aktivierung (10), (11), (12). Die 

läppchenförmig angeordneten Acinus-Zellen werden zu den merokrinen Drüsen ge-
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zählt. Ein Acinus besteht aus circa 70 Drüsenzellen. Ein Acinus-Komplex wiederum aus 

2 bis 4 Acini. Mehrere Acini enden dabei immer in einen gemeinsamen Gang (13). Die 

Acinus-Zellen sind pyramidenförmig angeordnet und zwischen 10 bis 20 µm hoch. Api-

kal sind die Drüsen schmal und ragen mit ihren Mikrovilli in das Drüsenlumen. Im api-

kalen Drittel liegen die bis zu 1 µm großen Zymogengranulae (14), (15). Pro Tag bildet 

der exokrine Anteil des Pankreas in etwa 1,5 bis 2 Liter Sekret. Die reine Enzymmenge 

macht davon nur circa 20 Gramm aus. Durch Sezernierung von Bikarbonat wird ein pH-

Wert von circa 8 erreicht (7), (13), (16), (17), (18). Zu Beginn des 20. Jahrhunderts ge-

lang Bayliss und Starling aus Pankreassekret die Isolation einer Verbindung, der sie den 

Namen Sekretin gaben (3). Erst 1928 bestätigten Ivy und Oldberg die Ergebnisse und 

isolierten Cholecystokinin (CCK) erstmals erfolgreich (19). Cholecystokinin (20) und 

Gastrin (21) sind strukturell eng miteinander verwandt. Bei beiden Molekülen ist die 

Aminosäuresequenz der C-Termini identisch. Kommt es nun zur Stimulation, so unter-

liegt die exokrine Funktion des Pankreas durch Sekretin zum einen einer hormonellen 

Kontrolle. Auf der anderen Seite werden durch cholinerge neurale Stimulation und 

Cholecystokinin die Acinus-Zellen zur Sekretion von Verdauungsenzymen veranlasst 

(22). Cholecystokinin hat im Rahmen der Nahrungsaufnahme somit eine regulatorische 

Funktion der pankreatischen Enzymproduktion (23), (24). 

1.2.1 CCK-Rezeptor 

 

Man unterscheidet zwischen den G-Protein gekoppelten CCK-1 (CCK-A) und CCK-2 

(CCK-B) Rezeptoren (25). Während CCK-1 (26) hauptsächlich im Verdauungsapparat 

vorkommt, wird der CCK-2 Rezeptor auch in neuronalen Gewebe exprimiert (27). Hier 

übernimmt Cholecystokinin die Rolle als Neurotransmitter (28). In den vergangenen 

Jahren konnte nachgewiesen werden, dass Gastrin mit gleicher Affinität an CCK-2R-

Rezeptor (neue Nomenklatur) bindet wie Cholecystokinin (29). CCK-1R (neue Nomen-

klatur) scheint dagegen spezifisch für Cholecystokinin zu sein (30). 
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1.3 Die experimentelle Pankreatitis am Mausmodell 

 

Die hier durchgeführten Experimente verfolgten das Ziel, eine wissenschaftliche Hypo-

these zu klären und entsprachen im Ansatz keiner klinischen Studie. Zur Erforschung 

dieser Grundlagen wurden Substanzen verwendet, für die keine Zulassung beim Men-

schen vorliegt, beziehungsweise deren Verabreichung den Tatbestand einer Körperver-

letzung erfüllen würde. Die ausschließliche Verwendung von Zellkulturen war nicht 

praktikabel, da sich die Fragestellung auf einen Gesamtorganismus und damit verbun-

den auf andere Organsysteme bezog. Das gewählte Tiermodell ist eine seit Jahren 

etablierte Methode zur Induktion einer Pankreatitis mit Caerulein. Die dem Cholecys-

tokinin sehr ähnliche Struktur löst in unphysiologisch hoher Konzentration eine in-

terstitielle Entzündung im Pankreas aus (31). Willemer et al. passten das vorhandene 

Tiermodell auf Mäuse an. Durch repetitive Gaben supramaximaler Caerulein-Dosen 

intraperitoneal (i.p.) kann bei Mäusen im Einzelfall nicht nur eine ödematöse, sondern 

auch nekrotisierende Pankreatitis induziert werden (32). 

Ein in-vivo Tiermodell ist für die Fragestellung eines Experimentes immer eine Heraus-

forderung. Unabhängig von allen Fortschritten in der Wissenschaft, durch Standardi-

sierung der Umweltbedingungen und der Versuch die Zahl der unbekannten Faktoren 

so gering wie möglich zu halten, können Versuche am Tier immer nur eine Annäherung 

an die Gegebenheiten beim Menschen sein und stellen keine absolute Abbildung der 

realen Verhältnisse dar. Eine direkte Übertragung der Ergebnisse auf den Menschen ist 

somit eine Herausforderung und in den seltensten Fällen 1:1 möglich. 

1.3.1 Cholecystokinin und Caerulein 

 

Cholecystokinin wird zur Gruppe der Peptidhormone gezählt. Stimuliert durch Fett- 

und Aminosäuren, wird das Prohormon des Cholecystokinin in den enteroendokrinen 

Zellen (I-Zellen) der gastrointestinalen Mucosa produziert. In seiner aktiven Form – 

beispielsweise als CCK 58, wirkt es auf die Pankreassekretion ebenso positiv wie auf 

http://de.wikipedia.org/wiki/Peptidhormon
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die Kontraktion der glatten Muskulatur und damit auf die Motilität des gesamten Ver-

dauungstraktes (33). 

Caerulein (Ceruletide, Cerulein) ist ein Cholecystokininanaloga welches ursprünglich 

von der Haut des Frosches „Litoria caerulea“ gewonnen wurde (34), (35). Dieses Deka-

peptid unterscheidet sich von Cholecystokinin nur durch 2 zusätzliche Aminosäuren, 

die sich im Anschluss an das für die biologische Aktivität zwingend notwendige Hepta-

peptid befinden (20). Die Wirkung von Caerulein und Cholecystokinin an den CCK-

Rezeptoren sind aber identisch. 

 

 

 

 

 

 

Wenn Cholecystokinin oder Caerulein in supraphysiologischen Konzentrationen verab-

reicht werden, kommt es zu einer Blockierung der zellulären Enzymsekretion (36). Zu-

dem lässt sich ein deutliches Pankreasödem, eine höhere Serumamylase-Aktivität ge-

genüber unbehandelten Tieren, sowie eine intrazelluläre Zymogenaktivierung und ver-

stärkte lysosomale Aktivität nachweisen (37). Otte und Forell konnten in ihren Versu-

chen ebenfalls eine Steigerung der Sekretion von Amylase, Chymotrypsin, Trypsin und 

Lipase sowie von Wasser und Bikarbonat im Pankreassekret zeigen (38). Ein entschei-

dender entzündungsauslösender Faktor ist in der Folge schließlich die intrazelluläre 

Aktivierung von Trypsinogen (39). 

 

Abbildung 1:Strukturformel von Caerulein (Quelle: en.wikipedia.org : Ceruletide) 
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1.3.2 Sekretion, Autodigestion und protektive Mechanismen 

 

Schon zu Beginn des 20. Jahrhunderts stellte Hans Chiari die These der Selbstverdau-

ung des Pankreas auf (40). Das grundlegende Verständnis für den Sekretionsmecha-

nismus der Pankreaszelle konnte 1975 schließlich von Palade in seiner Arbeit gezeigt 

werden (41). Die Synthese lysosomaler Hydrolasen und Verdauungsenzyme erfolgt 

durch die Ribosomen des rauen endoplasmatischen Retikulums. In Vakuolen verpackt, 

verlassen die neuen Proteine getrennt voneinander den Golgi-Apparat. Die Zymogene 

sind in dieser Speicherform inaktiv. Proteasen liegen in diesem Stadium noch als Pro-

enzyme vor (42). Die nun hoch konzentrierten Zymogengranulae sammeln sich norma-

lerweise auf der apikalen Zellseite (14). Sie sind nun bereit zur Exozytose in das Acinus-

lumen. Bei dem gesamten Vorgang kommt dem Aktin-Zytoskelett der Zelle eine wich-

tige Rolle zu. Es wird so eine mechanische Barriere aufgebaut, die es ermöglicht die 

Zymogengranulae in der Nähe der Zellmembran zu halten. Dort bilden diese Filamente 

das „terminal web“. Nach intrazellulärer Stimulation (Stimulus-Sekretionskopplung) 

(43) sind die Aktin-Filamente aktiv am Sekretionsvorgang mit beteiligt (44). Die Zy-

mogengranulae verbinden sich mit der Zellmembran und geben ihre Inhaltsstoffe nach 

außen ab (24). Die Konformationsänderung des Aktin-Netzwerkes ist möglicherweise 

ein wichtiger Aspekt für die später folgende Hemmung der Sekretion (45). 

 

Abbildung 2: Schematische Darstellung des Sekretionsvorgangs in der Acinus-Zelle 
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Die Autodigestion ist ein komplexes multifaktorielles Ereignis. Untersuchungen legen 

nahe, dass die zentrale Rolle am Anfang der Pathophysiologie die intrazelluläre Zy-

mogen- und insbesondere die Trypsinaktivierung ist (46). Parallel dazu kann man eine 

deutliche Zunahme des intrazellulären Calciumspiegels feststellen. In der Stimulus-

Sekretionskopplung ist Calcium als Messenger unerlässlich (43). Inwiefern erhöhte 

intrazelluläre Calciumwerte eine Pankreatitis auslösen, begünstigen oder unterhalten 

ist zu diesem Zeitpunkt noch nicht vollständig geklärt. Im Tierexperiment konnte nach-

gewiesen werden, dass bereits 15 Minuten nach Induktion mit Caerulein deutlich er-

höhte Trypsinwerte im Pankreasgewebe messbar waren. Eine Ödem- und Vakuolenbil-

dung, oder erhöhte Blutserumwerte waren frühestens nach 30 Minuten zu erkennen 

(47). Somit stellt die akute Pankreatitis eine Reaktion auf ein zuvor induziertes in-

flammatorisches Ereignis dar. 

Im Allgemeinen wird von dem Modell der Co-Lokalisation ausgegangen. Darunter ist zu 

verstehen, dass es durch einen Stimulus der Acini-Zelle zu einem gestörten Transport 

der neu synthetisierten Enzyme kommt. Die nun stattfindende Co-Lokalisation (Ver-

schmelzung) von lysomalen Enzymen und Verdauungsenzymen in den Organellen des 

Zytoplasmas ist eine der ersten Reaktionen (31). Die zuvor noch inaktive lysosomale 

Hydrolase Cathepsin-B wird bei diesem Vorgang aktiviert und initiiert ihrerseits wiede-

rum Zymogene – also auch Trypsin. Diese neuen Vakuolen lösen sich im Verlauf auf. 

Die dann freigesetzten Verdauungsenzyme schädigen die Zelle weiter. Bereits 1959 

zeigten Greenbaum et al, dass Cathepsin-B ein Teil der Aktivierungskaskade ist (48). 

Dass Cathepsin-B tatsächlich diese Wirkung hat, konnte Saluja et al nachweisen, in 

dem bei einem in vitro Experiment isolierte Ratten Acini-Zellen einem spezifischen 

Cathepsin-B Inhibitor exponiert wurden und sich hier eine deutlich geringere Trypsin-

aktivierung zeigte (49). Die Genese der frühen akuten Pankreatitis ist somit in drei Sta-

dien einteilbar, bevor sie klinisch manifest wird (50). Zu Beginn steht die zelluläre sek-

retorische Blockade (51). Als Folge der Co-Lokalisation kommt es dann zur intrazellulä-

ren Aktivierung der Verdauungsenzyme (49). Das Resultat aus diesem Vorgang ist die 

Bildung entzündlicher Mediatoren (52), (53). Man kann davon ausgehen das auch un-

ter physiologischen Umständen gelegentlich eine intrazelluläre Zymogenaktivierung 
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vorkommt. Die Zelle produziert zu diesem Zweck selbst einen Trypsin-Inhibitor (54) 

und eine Protease um Trypsin abzubauen (42). Bei der Caerulein-induzierten Pankrea-

titis lässt sich zudem nachweisen, dass die Expression von Hitze-Schock-Proteinen 

(HSP) in Verbindung mit dem Zytoskelett eine Zellprotektion ermöglichen (55). Siehe 

auch 1.6.2. 

1.4 Epidemiologie und Klinik der akuten Pankreatitis 

 

Das Erstereignis einer akuten Pankreatitis, bezogen auf ein Jahr, liegt in Deutschland 

bei einer Inzidenz von weniger als 20 Patienten in einem Kollektiv von 100.000 Men-

schen (56). Im Allgemeinen ist zwischen den leichten Formen einer akuten Pankreati-

tis, die in der Regel nach wenigen Tagen abgeklungen ist und einer schweren, bezie-

hungsweise nekrotisierenden Pankreatitis zu unterscheiden. Laborchemisch lassen sich 

neben den allgemeinen Entzündungsparametern erhöhte Werte für Amylase und Lipa-

se im Serum nachweisen. Je nach Genese sind möglicherweise auch die Cholestase-

Werte erhöht. Statistisch ist der typische Pankreatitis-Patient männlich und zwischen 

50 und 60 Jahren alt (57). Klinisch zeigen sich stärkste abdominale Schmerzen, teils 

gürtelförmig in den Rücken ausstrahlend, begleitet von Übelkeit, Erbrechen, Meteo-

rismus, paralytischen Ileus, Fieber und Kreislaufinstabilität. Bei manchen Verläufen 

sind weitere physische Zeichen wie beispielsweise das Cullen-Zeichen – eine hämorr-

hagische Verfärbung (Ekchymosen) in der Subcutis im periumbilikalen Bereich zu be-

obachten. Typisch ist zudem ein prall-elastisches Abdomen bei der Palpation, gerne 

auch als „Gummibauch“ bezeichnet (58). Die akute Pankreatitis tritt in allen Teilen der 

Welt auf. Für annähernd achtzig Prozent aller akuten Pankreatitiden gelten zwei Fakto-

ren als Hauptauslöser. Zum einen die Cholelithiasis und zum anderen der permanente, 

übermäßige Alkoholkonsum (59). In Deutschland ist die Verteilung der akuten Pankre-

atitis bedingt durch Gallensteine und Alkohol in etwa gleich (60). Ganz allgemein 

scheinen Patienten mit kleinen Gallensteinen (< 5 mm) ein erhöhtes Risiko zu haben 

(61). Bei einer Verlegung des Ductus Pankreaticus durch ein oder auch mehrere Kon-

kremente aus der Gallenblase sind kolikartige Oberbauchschmerzen ein häufiges 
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Symptom. Bei übermäßigem Alkoholkonsum erleiden Frauen und Männer in ungefähr 

gleichen Maße eine Pankreatitis (62). Mit zunehmenden Alter (> 65 Lebensjahre) steigt 

aber bei beiden Geschlechtern das Risiko für eine gallensteininduzierte Pankreatitis an 

(63). Die an dritter Stelle noch zu nennende relevante Größe ist die idiopathische Form 

der akuten Pankreatitis. Sie ist in weniger als zehn Prozent der Fälle für eine akute 

Exazerbation verantwortlich. Hierzu werden Ereignisse gezählt, denen kein eindeutiger 

ätiologischer Faktor zugeordnet werden kann. In den letzten Jahren wurde durch neue 

Erkenntnisse und Methoden die Zahl der Patienten größer, deren Leid beispielsweise 

aufgrund eines Gendefektes ausgelöst wurde und sich aus einem akuten ein chroni-

scher Verlauf entwickelte (64). Sonstige Ursachen für eine akute Pankreatitis haben 

nur einen sehr geringen Anteil an der Gesamtzahl aller Fälle. Im Einzelnen noch zu er-

wähnen sind die Hyperlipidämie (65), Medikamente (66) und iatrogene Ursachen (67). 

Inwiefern Fehlbildungen der Ausführungsgänge (68) oder ein Pankreas divisum (69) 

das Risiko für eine akute Pankreatitis wesentlich erhöhen, wird noch diskutiert. Be-

trachtet man je nach Studie die Gesamtmortalität der akuten Pankreatitis, so liegt die 

Sterblichkeitsrate im Durchschnitt in etwa zwischen fünf und zehn Prozent (70). Über 

achtzig Prozent der Fälle sind jedoch als milde, interstitielle, ödematöse Pankreatitis zu 

bewerten. Die Letalität liegt hier unter fünf Prozent (71). Nur circa 15 bis 20 Prozent 

aller akuten Pankreasentzündungen sind als schwere Verläufe einzustufen. Entwickelt 

sich hieraus jedoch die nekrotisierende Variante, so ist mit einer deutlich erhöhten 

Mortalität in 20 bis 25 Prozent der Fälle zu rechnen (57), (72). Liegt zusätzlich eine Su-

perinfektion des nekrotisierten Gewebes vor, steigen die Zahlen weiter auf über 30 bis 

40 Prozent (73). Kommt es zu diesem fatalen Verlauf, ist die Hälfte der Todesfälle be-

reits in den ersten ein bis zwei Wochen zu beklagen und in aller Regel mit einem Mul-

tiorganversagen (MOV) assoziiert (74). Die Wahrscheinlichkeit ein Organversagen zu 

entwickeln, steigt mit dem Erwerb einer Infektion. In Verbindung mit einem Multior-

ganversagen (MOV) erhöht sich die Mortalitätsrate dann auf bis zu 50 Prozent (63). Im 

Rahmen des SIRS/Sepsis Geschehens beziehungsweise des MOV sind letztlich dann 

Begleitkomplikation, wie Kreislaufversagen, eine Verbrauchskoagulopathie, ein akutes 

Nierenversagen oder das ARDS die Hauptursache für die Mortalität der akuten Pankre-
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atitis (75), (76). Generell gilt: Patienten, die während eines Krankenhausaufenthaltes 

eine Pankreatitis entwickeln, haben eine ungünstigere Prognose. 

1.4.1 Pathophysiologische Aspekte 

 

Wie bereits beschrieben, liegen die inaktiven Proenzyme und Zymogene in der Acinus-

Zelle vor und verhindern so eine Selbstverdauung der Zelle. Normalerweise findet eine 

Aktivierung erst nach dem Transport aus der Zelle in das Duodenum statt. Naheliegend 

und allgemein anerkannt ist, dass eine intrazelluläre Aktivierung der Zymogene die 

grundlegende Ursache einer akuten Pankreatitis ist. Die Acinus-Zelle antwortet darauf 

mit einer Inflammationsreaktion. Dass diese Annahme korrekt ist, lässt sich mit dem 

Nachweis aktivierter Enzyme in Pankreaszellen und histologisch erkennbaren Nekrosen 

in Pankreasgewebe führen (77). 

 

 

 

Abbildung 3: Schematische Darstellung der pathophysiologischen Abläufe bei der akuten Pankreatitis 
(Quelle: nach Saluja und Steer) 
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1.4.2 Schwere der Pankreatitis anhand von Laborparametern und Ödemisierung 

 

Zur Diagnose der akuten Pankreatitis gehören im Verbund der täglichen Praxis auch 

die Bestimmung von Laborparametern wie der Serum-Amylase und Lipase sowie der 

Cholestaseparameter. Zudem wird gerade Interleukin-6 bei der akuten Pankreatitis 

eine gute Korrelation zum Schweregrad und Krankheitsverlauf in der frühen Phase 

nachgesagt (78). Zusätzlich steht zur Diskussion, dass Interleukin-6 nicht nur Marker, 

sondern auch selbst als proinflammatorischer Faktor ein akutes Lungenversagen zu-

mindest begünstigt (79). Keim et al. geben an, dass ein mindestens um den Faktor drei 

erhöhter Amylase-Wert im Serum gegenüber der Referenz gut geeignet sein soll, die 

Verdachtsdiagnose einer akuten Pankreatitis zu bestätigen (80). Die Serumbestim-

mung der α-Amylase des Pankreas ist in Bezug auf Spezifität und Sensitivität bei einer 

Pankreatitis allerdings nur sehr schlecht geeignet und als alleiniges Diagnosekriterium 

unzureichend, da auch extrapankreatische Erkrankungen eine Erhöhung der Amylase 

nach sich ziehen können (81). Anhand der Amylase lässt sich jedoch im Tierversuch gut 

bestimmen, ob die Induktion mit Caerulein erfolgreich war. Die frühzeitige intrazellulä-

re Trypsinogenaktivierung ist wesentlich an der Pankreatitisauslösung beteiligt. 

Trypsin, beziehungsweise die physiologischer Weise in den Acini-Zellen vorliegende 

Vorstufe Trypsinogen, scheinen dabei relativ gut mit dem Schweregrad vor allem in der 

Frühphase der akuten Pankreatitis zu korrelieren (82). Einschränkend gilt dies zumin-

dest für die alkoholassoziierte Pankreatitis und ist somit nur begrenzt auf andere Fälle 

übertragbar (83). Interleukin-6 gehört zur Gruppe der Zytokine und ist in der Regulie-

rung von Inflammationsreaktion in einem Organismus beteiligt. Dabei scheint Interleu-

kin-6 im Speziellen besser wie andere Entzündungsparameter bei der Pankreatitis eng 

mit der Schwere der Erkrankung zu korrelieren und ist möglicherweise auch ein geeig-

neter Faktor zur Prognoseabschätzung (84). Systemische Komplikation wie ein ARDS, 

SIRS oder MOF sind bei niedrigen Interleukin-6 Werten seltener zu erwarten. Die Mye-

loperoxidase ist ein lysosomales Enzym und wird unter anderem in neutrophilen Gra-

nulozyten gebildet. Die in das Lungengewebe eingewanderten Granulozyten lassen 

über die Aktivität der Myeloperoxidase Rückschlüsse auf eine systemische Inflammati-
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onsreaktion (85) auch im Rahmen einer akuten Pankreatitis zu (86). Die Einwanderung 

der neutrophilen Granulozyten korreliert dabei gut mit dem Gewebeschaden (87). Zu-

sätzlich zu den biochemischen Parametern, ist eine Beurteilung des Ödemisierungs-

grades mit der Messung des Nass-/Trocken-Gewichtes als Marker für die Schwere ei-

ner Pankreatitis möglich. Gewebe das eine Inflammation durchläuft, lagert als Reakti-

on daraufhin Flüssigkeit in die Zellen ein und bildet eine ödematöse Veränderung. Eine 

derartige Veränderung ist bei physiologischen Vorgängen in der Pankreaszelle nicht zu 

beobachten. 

1.4.3 Aktuelle Behandlungsmethoden 

 

Auch in der modernen Medizin ist die Behandlung der akuten Pankreatitis kausal nicht 

möglich und beschränkt sich im Wesentlichen auf supportive Maßnahmen. An obers-

ter Stelle im Behandlungskonzept steht, wenn möglich, die Beseitigung und Vermei-

dung auslösender Faktoren. Wird bei gesicherter Pankreatitis eine biliäre Ursache mit 

Cholestase und Choledocholithiasis identifiziert, ist die zeitnahe ERC mit Sphinktero-

tomie und Steinentfernung die Methode der Wahl (88). Das Konzept der strikten Nah-

rungskarenz wurde zugunsten der früh-enteralen Ernährung aufgeben (89), da die Er-

haltung der Darmmukosa sich günstig auf den Krankheitsverlauf auswirkt (90), (91). 

Vorteile bezüglich einer enteralen Ernährung über eine Magen- oder Jejunalsonde sind 

mit der aktuelle Studienlage nicht korrekt zu beantworten. Ebenso ist eine ausreichen-

de Flüssigkeitssubstitution (92) und eine suffiziente Analgesie wichtig (93). Eine radio-

logische Bildgebung sollte bei progredienten Verläufen frühzeitig angestrebt werden. 

Eine kalkulierte antibiotische Therapie wird aktuell als nicht sinnvoll betrachtet und 

sollte nur bei Keimnachweis erfolgen (94). 

1.5 Die Mitogen-aktivierten Kinasen (MAPK) 

 

Die MAP-Kinase Signalwege (engl.: Mitogen-Activated Protein Kinases  „MAPK“) ha-

ben im Rahmen dieser Arbeit eine bedeutende Rolle und bedürfen zum besseren Ver-

ständnis der pathologischen Prozesse der akuten Pankreatitis einer näheren Betrach-
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tung. Der Begriff Mitogen leitet sich von dem Wort Mitose, - sprich der Zellteilung ab - 

und verrät uns dabei eine wichtige Aufgabe der Kinasen. Es ist davon auszugehen, dass 

MAP-Kinasen ubiquitär in eukaryoten Zellen zu finden sind (95). Parasekevas et al. 

konnten in in-vitro Kulturen isolierter pankreatischer Langerhans-Zellen von Kanin-

chen, Schweinen und Menschen sowohl die Existenz als auch eine vergleichbare Aktivi-

tät der MAP-Kinasen nachweisen (96). Zu Beginn der neunziger Jahre des letzten Jahr-

hunderts wurde die erste MAP-Kinase entdeckt und beschrieben. Bei den drei wich-

tigsten Vertretern der MAP-Kinasen Familie handelt es sind im Einzelnen um: 

 SAPK/JNK 

 p38  

 ERK1/2 

MAP-Kinasen gehören zu einer Gruppe von Proteinen, die nach heutigen Erkenntnis-

stand eine zentrale Aufgabe bei der Zellteilung, Apoptose, Embryogenese, Differenzie-

rung und Regulation inflammatorischer Ereignisse haben (97), (98). Gleichzeitig sind 

MAP-Kinasen Teil der physiologischen Zellfunktion, ohne die eine geregelte zelluläre 

Antwort auf bestimmte Stimuli vermutlich nicht möglich wäre (99), (100). Hierzu ge-

hört auch der Aspekt der Zellprotektion (97). Die Großfamilie der MAP-Kinasen wird 

der Gruppe der Serin/Threonin-Kinasen zugeordnet. Die über 100 bisher bekannten 

Proteine stehen dabei in einer hochkomplexen Verbindung zueinander und beeinflus-

sen sich vermutlich gegenseitig (101). Die Basis dieser Arbeit beruht auf früheren Er-

kenntnissen, dass nachweislich eine Aktivierung aller hier beschriebenen MAP-Kinasen 

in Pankreasacinuszellen durch CCK beziehungsweise Caerulein stattfindet (102), (103), 

(104), (105), (106). Durch die zentrale Position in der Vermittlung von zellulären Ent-

zündungsprozessen bei der akuten Pankreatitis und der Verfügbarkeit von pharmako-

logischen Hemmstoffen, stellen MAP-Kinasen einen möglichen medikamentösen An-

satzpunkt dar. So ist es möglich, durch die Inhibition von SAPK/JNK, p38 und ERK die 

Produktion von inflammatorischen Zytokinen und Interleukinen zu beeinflussen (107). 

Wie zuvor bereits angedeutet, ist die Funktion der MAP-Kinasen vielschichtiger als 

man zuerst angenommen hat. Während durch eine andauernde SAPK/JNK Aktivierung 
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die Pankreatitis weiter unterhalten wird (108), ist die Funktion von p38 nicht eindeutig 

festzulegen. Während eine Untersuchung die bisherigen Vermutung unterstützt, dass 

durch Inhibition von p38 vor allem die systemischen Entzündungsfaktoren verringert 

werden kann, zeigt eine andere Studie, dass die Inhibierung von p38 bei der Caerulein-

induzierten Pankreatitis zu Organschäden führen kann (109). 

Für gewöhnlich findet die Aktivierung der MAP-Kinasen über membranständige Rezep-

toren statt. Das Besondere ist die Vielzahl der unterschiedlichsten Rezeptorfamilien 

und die Fülle der Stimuli, die in der Lage sind, Signale in das Zytosol zu vermitteln 

(110). Hierzu zählen Hormone, Zytokine, Wachstumsfaktoren, Neurotransmitter oder 

schlicht „zellulärer Stress“ (111) in Form von UV-Licht, Strahlung, Hitze, Noxen, osmoti-

schen Druck (112). Zielstrukturen sind unter anderen beispielsweise die Gruppe der 

Serin/Threonin-Kinase Rezeptoren, RTK´s (Rezeptor-Tyrosin-Kinasen) (113), Integrine 

und Rezeptoren der Superfamilie der G-Proteine. Diese sind nun unterteilbar in: EGF 

(Epidermal Growth Factor), der PDGF (Platelet-Derived Growth Factor), TNF (Tumor 

Necrosis Factor) und weitere Zytokin- sowie Hormon-Rezeptoren, um eine Auswahl zu 

nennen (114), (115). Die intrazelluläre Domäne vieler Rezeptoren ist oftmals mit den 

„kleinen GTPasen“ (Small Guanosin Triphosphat (GTP) Binding Proteins) der RAS-

Superfamilie eng assoziiert (116). Dies gilt besonders für die SAPK/JNK (99), (117), 

(118). Kommt es nun zu einer Aktivierung des Rezeptors, wirken diese als Schaltprotei-

ne und stehen somit am Beginn der MAP-Kaskaden Aktivierung (119), (120), (121). 

Zudem ist die direkte Aktivierung der SAPK/JNK möglich (122). Im Gegensatz dazu 

konnte bisher für ERK-1/2 ausschließlich eine rezeptorvermittelte Aktivierung durch 

Hormone und Wachstumsfaktoren bewiesen werden. Aktivierung von Proteinen durch 

Phosphorylierung ist bei zellulären Vorgängen weit verbreitet. MAP-Kinasen sind in 

ihrer inaktiven Form dephosphoryliert. Wird eine Phosphatgruppe mithilfe einer Pro-

teinkinase an ein Zielmolekül kovalent gebunden, findet eine Konformationsänderung 

statt. Die dafür benötigte Energie wird für gewöhnlich durch ATP zur Verfügung ge-

stellt. Diese Kinase ist nun ihrerseits in der Lage das für sie spezifische Substrat zu akti-

vieren (99). In aller Regel ist dieser Vorgang durch eine Protein-Phosphatase auch wie-

der umkehrbar (123). Da die Dephosphorylierung zur Inaktivierung der Kinase führt, ist 
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sie Teil des Regulationsmechanismus (124), (125), (126). Die katalytischen Regionen 

bei den für uns relevanten MAP-Kinasen bestehen jeweils aus einem spezifischen 3-

Peptid-Sequenzmotiv. Bei ERK, SAPK/JNK und p38 ist die mittlere Aminosäure spezi-

fisch für die Kinase, wird aber immer fix von Threonin und Tyrosin umschlossen (Thr – 

Aminosäure X – Tyr) (127), (128). Findet nun eine Aktivierung der Kinasen über die 

endständigen Threonin/Tyrosin Reste statt, spricht man bei MAP-Kinasen von einer 

dualen Phosphorylierung (129). Eine vollständige Aktivierung findet dabei immer über 

beide Andockstellen statt (99), (130), (131). Ein Merkmal aller MAP-Kinasen ist die se-

quenzielle Kinase-Kaskade, dargestellt in (Abbildung 4). Die Signalkaskade mündet da-

rauf in eine 3-Stufige Kinase Kette ein. Am Ende stehen die eigentliche Ziel-MAP-

Kinasen – SAPK/JNK, ERK oder p38 (132). Diese Kinasen sind nun in der Lage in den 

Zellkern zu translozieren, um dort wiederum selbst einen Transkriptionsfaktoren durch 

Phosphorylierung zu aktivieren (133). Wie aus den Schaubildern ersichtlich, sind vor 

allem in der frühen Aktivierungsphase und ebenso bei den Ziel-Transkriptionsfaktoren 

Überschneidungen möglich (126), (134). 

 

Abbildung 4: Signalkaskade der MAP-Kinasen (Quelle: von Cellsignal.com) 
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1.5.1 Die SAPK/JNK Kinase 

 

Die SAPK (Stress Activated Protein Kinase) verdankte ursprünglich ihren Namen der 

extrazellulären Aktivierung durch sogenannten „Zellstress“ (135), beziehungsweise JNK 

für c-Jun N-terminale Kinase -sprich die Fähigkeit den Transkriptionsfaktor c-Jun an 

dessen N-terminalen Domänen mit den Serinresten 63 und 73 zu phosphorylieren und 

zu aktivieren (125), (136), (137), (138). Über Oberflächenrezeptoren oder direkt im 

Zytosol kommt es zur Initiierung der SAPK/JNK - Signalkaskade (122). Im Rahmen der 

Genexpression werden zwei unterschiedlich große Proteine hergestellt. Funktionelle 

Unterschiede zwischen der 46 kDa und der 54 kDa großen Variante konnten bisher 

noch nicht nachgewiesen werden. Durch alternatives „Splicen“ können bis zu zehn 

weitere Isoformen entstehen (100), (125), (139). JNK1 und JNK2 scheinen in allen Zel-

len vorzukommen. Beide Isoformen haben eine hohe Übereinstimmung in Struktur 

und Regulation. Deutliche Unterschiede sind allerdings in ihrer katalytischen Wirkung 

zu erkennen. JNK2 bindet deutlich effektiver an den Transkriptionsfaktor c-Jun als JNK1 

(140), (141). Wie bereits erwähnt, hat die SAPK/JNK eine zentrale Rolle bei der zellulä-

ren Inflammationsreaktion und ist in den Azinuszellen des Pankreas nachweisbar. Wird 

im Tierexperiment eine Caerulein-induzierte akute Pankreatitis ausgelöst, so ist die 

Phosphorylierung der SAPK/JNK eines der am frühesten zu beobachtenden Ereignisse. 

Bereits wenige Minuten nach Applikation ist eine deutliche Aktivitätssteigerung der 

SAPK/JNK messbar (142). Die Signalkette stützt sich dabei überwiegend auf G-Protein 

gekoppelte Kinasen. Dies sind meist bekannte Vertreter aus den Superfamilien der 

kleinen GTPasen (143), (144). Über zwischengeschaltete Kinasen wird dann die 

SAPK/JNK schließlich phosphoryliert und damit aktiviert (145), (146), (147), (148), 

(149). Die SAPK/JNK kann durch Dephosphorylierung jederzeit wieder in ihren inakti-

ven Zustand überführt werden. Die aktivierte SAPK/JNK ist nun ihrerseits in der Lage 

im Zellkern Transkriptionsfaktoren zu phosphorylieren und deren Transkription zu star-

ten. Ziele der SAPK/JNK sind im Zellkern liegende Transkriptionsfaktoren wie c-Jun, c-

fos, AP-1 (SAP-1), Elk-1 oder auch ATF-2 (97), (125), aber auch das Zellzyklus kontrollie-

rende p53 (150). Bei c-Jun handelt es sich um ein Leucin-Zipper-Protein und ist als 
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Glied innerhalb des Activator proteins-1 (AP-1/SAP-1) Komplexes beschrieben. AP-1 

wiederum hat als Hauptzielgen c-Jun, was so zu einer positiven Rückkopplung führt 

(110), (151), (152). Zu der ohnehin bereits komplexen Kinasensteuerung kommt noch 

eine zusätzliche Regulierungsmöglichkeit über sogenannte „Scaffold-Proteine“ hinzu. 

Diese Träger- oder Vermittlerproteine können Proteinkomplexe bilden (153). Die 

SAPK/JNK interagiert in diesem Fall mit den Mitgliedern der JIP-Familie (c-jun-amino-

terminal kinase-interacting proteins) (154), (155). Ist der Zelltod unausweichlich, so ist 

die Aktivierung des mitochondrialen Cytochrom C durch die SAPK/JNK ein wichtiger 

Baustein des pro-apoptotischen Weges (156). 

 

Abbildung 5: Vereinfachte Übersicht über den SAPK/JNK-Signalweg (Quelle: sabiosciences.com) 
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Im Zusammenhang mit der SAPK/JNK wird hauptsächlich über dessen Rolle als in-

flammatorisches Protein berichtet. Die SAPK/JNK hat aber auch physiologische Aufga-

ben (157), (158). 

1.5.2 Die p38 Kaskade 

 

Die zweite große Kinase-Familie ist nach dem Protein p38 benannt (159), (160). Die 

Namensgebung lässt sich durch das Molekulargewicht von 38 kDa ableiten (161). Bis-

her wurden vier Varianten (Alpha bis Delta) von p38 identifiziert (162). Nach Stimulati-

on der membranständigen Rezeptoren läuft eine der zentralen Aktivierungskaskaden 

über das G-Protein gekoppelte Cdc42 (163). 

 

Abbildung 6: Vereinfachte Übersicht über den p38 Signalweg (Quelle: sabiosciences.com) 
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Durch vorgeschaltete Kinasen kommt es schließlich zur p38-Aktivierung (148). p38 ak-

tiviert nun im Zellkern Transkriptionsfaktoren wie zum Beispiel ATF-1/2 oder CHOP 

(164). Aber auch Kinasen wie MAPKAP-2/3, die in dieser Arbeit von Bedeutung sind 

(97), (165) werden aktiviert. Wagner et al. konnten nachweisen, dass es nach Caerulein 

Gabe zu einer deutlichen Steigerung der p38-Expression in Pankreaszellen kommt 

(105). Die direkte Folge ist eine Zunahme nachweisbarer proinflammatorischer Zytoki-

ne und eine T-Zell-Proliferation (161), (166). Neuere Erkenntnisse zeigen das p38 eine 

Kinase mit zwei Gesichtern ist. Durch das Vorhandensein unterschiedlicher Isoformen 

ist es denkbar, dass p38 auch eine protektive Funktion ausüben kann (167). So vermit-

telt p38 über MAPKAP-2 eine Aktivierung von Hitzeschockproteinen wie zum Beispiel 

HSP-27 (168). Diese sind in die Regulierung des Aktincytoskeletts involviert und sind 

Teil der pathologischen Vorgänge bei der Pankreatitis (55), (104) siehe Punkt 1.6.2. In 

den letzten Jahren waren p38-Inhibitoren öfter Gegenstand medizinischer Untersu-

chungen. Es konnte gezeigt werden, dass sich die pharmakologische Hemmung von 

p38 günstig auf die Behandlung der COPD auswirken kann (169), (170). 

1.5.3 Der ERK-Kinase Weg (p44\42) 

 

Die „Extracellular Signal Regulated Kinase“ wurde 1990 als erster Vertreter der MAPK 

entdeckt. Der Name bezieht sich auf die Entdeckung, dass eine extrazelluläre Rezep-

torstimulation zu einer intrazellulären Phosphorylierungs-Kaskade führte (171), (172). 

Die Abkürzung ERK-1 und ERK-2 oder die Bezeichnung p44\42 nach der Molekülmasse 

in Dalton sind üblich. Die Isoformen von ERK 1 und ERK 2 stimmen zu circa 85 % mitei-

nander überein, wobei die Bindungsdomänen die größte Ähnlichkeit besitzen (171). 

ERK wird vermutlich ausschließlich über Oberflächenrezeptoren aktiviert (172). Diese 

Kinase nimmt ihren Platz wahrscheinlich nur in der regulatorischen Funktionen des 

Zellzyklus als Vermittler für Zellwachstum, Differenzierung und Proliferation ein (173). 

Die ERK-Signal-Kaskade kann von einer Vielzahl unterschiedlicher Rezeptoren aktiviert 

werden. Darunter sind GPCR´s (G-Protein Coupled Receptors), RTK´s (Receptor Tyro-

sine Kinases) und Ionenkanäle. In gerichteter Abfolge kommt es intrazellulär zur Sig-

nalweitergabe (174). Exemplarisch hierfür ist die Stimulation von RTK´s über Wachs-
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tumsfaktoren. Kleine GTP bindende Proteine spielen dabei eine wichtige Rolle. Das 

Signal wird nun über den GRB2/SOS-Komplex an Ras weitergeleitet. Ras ist als Mitglied 

der Ras-Superfamily eine GTPase, die als Zielpunkt für viele zelluläre Aktivierungsvor-

gänge fungiert und somit eine zentrale Funktion bei der Signalweitergabe hat (175). 

Ras seinerseits stimuliert c-Raf (176), (177). Weiter über MEK1/2 kommt es schließlich 

zu einer Phosphorylierung von ERK 1/2 (178), (179). Als Zielfaktoren von ERK gelten 

Elk-1 und c-Myc, sowie MAPKAPK-1 und Mnk1/2 (97). 

 

Abbildung 7: Vereinfachte Übersicht über den ERK-Signalweg (Quelle: sabiosciences.com) 

 

Das nun aktivierte ERK-Dimer transloziert in den Zellkern und aktiviert durch Phospho-

rylierung seine Ziel-Transkriptionsfaktoren (98), (180). Durch die Rolle von ERK inner-
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halb des Zellzyklus wird auch eine mögliche Beteiligung der Kinase im Rahmen der Tu-

morgenese diskutiert (181), (182). 

1.6 MK-2 (-/-) Knock-out Tiere 

 

Unter Knock-out (-/-) versteht man das gezielte deaktivieren bestimmter Gene. 

Dadurch ist es möglich, bestimmte Fragestellungen zum Beispiel zur Funktion eines 

Genes zu beantworten. Ein wichtiger Baustein dieser Arbeit ist die Verfügbarkeit von 

MK-2-/- Knock-out Tieren. Diese Linie wurden erstmalig aus C57BL (Wild-Typ) Mäusen 

generiert (183). Eine entsprechende Mauspopulation konnte im Rahmen einer frühe-

ren Arbeit aus Tieren der genetischen Reihe C57BL/6J erfolgreich in der Forschungs-

gruppe etabliert werden (184). Für die in dieser Arbeit durchgeführten Versuche konn-

te somit auf ein bereits bestehendes Tierkontingent zurückgegriffen werden. 

1.6.1 MAP kinase-activated protein kinase 2 (MAPKAP-2-Kinase, MK-2) 

 

Die MAPKAP-2-Kinase gehört zur Familie der Serin/Threonin-Kinasen und wurde von 

Stokoe et al. zuerst beschrieben (185). Es wurden bisher zwei Transkriptionsvarianten 

mit einer Masse von 60 kDa bzw. 53 kDa isoliert, die sich in ihrer Spezifität und Aktivi-

tät sehr ähnlich sind und wahrscheinlich durch alternatives „Splicen“ einer gemeinsa-

men mRNA entstehen (185), (186), (187). Die Kinase ist dabei in verschiedenste zellulä-

re Prozesse eingebunden. Sie ist Teil der Regulation bei der Genexpression. MK-2 bil-

det zusätzliche eine Kontrollstelle innerhalb des Zellzyklus bei der Zellproliferation be-

ziehungsweise der Apoptose (188) und ist an der Vermittlung der zellulären Antwort 

auf Zellstress und Inflammation beteiligt. MK-2 ist bisher in allen untersuchten Zellar-

ten nachgewiesen worden und ist ein Hauptsubstrat für die Kinase p38 (185). Wie be-

reits unter Punkt 1.5.2 erläutert hat p38 teilweise sich widersprechende Eigenschaften. 

Dies spiegelt sich an ihrem Substrat der MK-2 wieder. Auch hier gibt es eine teils pro-, 

teils anti-inflammatorische Komponente. Die aktivierte MK-2 führt zur Expression von 

Zytokinen wie Interleukin-6 (IL-6) und TNF-α (183), (189), die beide maßgebliche Ent-

zündungsmediatoren sind. Es konnte nachgewiesen werden, dass MK-2-defiziente 



Einleitung 
 

23 
 

Mäuse eine deutlich geringer ausgeprägte Caerulein-induzierte Pankreatitis erleiden 

als eine Vergleichsgruppe, die aus nicht-transgenen Mäusen besteht (184). Anderer-

seits werden durch phosphoryliertes MK-2 außerhalb des Nucleolus Hitze-Schock-

Proteine -im speziellen HSP 27– aktiviert (190), welches in diesem Zusammenhang ei-

nen zellprotektiven Effekt hat (160). Siehe unter Punkt 1.6.2. Gleichzeitig sind MK-2 

Knock-out-Mäuse nicht oder nur in sehr geringem Maß in der Lage HSP 27 zu phospho-

rylieren (184). Im inaktiven Zustand ist MK-2 hauptsächlich im Nucleolus zu finden. 

Bindet phosphoryliertes p38 an den C-Terminus von MK-2, gehen beide Kinasen einen 

stabilen Komplex miteinander ein. Diese wird aus dem Kern in das umgebende Zyto-

plasma ausgeschleust und kann seiner Funktion nachkommen (191), (192). Im Gegen-

zug wird dabei phosphoryliertes p38 in den Zellkern transportiert (193). 

1.6.2 Hitze Schock Proteine (HSP) 

 

Bereits 1962 wurde das erste Hitze-Schock-Protein (Heat-shock-protein, HSP) be-

schrieben (194) und 1974 wurde gezeigt, dass die Synthese dieser Proteine unter Zell-

stress zunimmt (195). Hitze-Schock-Proteine werden vermutlich ubiquitär in allen Zel-

len exprimiert und sind Teil der zelleigenen Schutzfunktion. Bei entsprechender Stimu-

lation der Zelle kommt es zur Phosphorylierung der Hitze-Schock-Proteine, die dann 

ihrer Funktion als „Chaperone“ nachkommen und einen stabilen Komplex mit anderen 

Proteinen eingehen, um diese vor einer Denaturierung zu schützen (196), (197), (198). 

Auf diese Weise kann eine Zelle - bis zu einem gewissen Punkt - vor den negativen 

Auswirkungen einer Inflammationsreaktion geschützt werden (199). Dieses Ereignis ist 

auch bei der Caerulein-induzierten Pankreatitis zu beobachten (59). Vermittelt durch 

MK-2, kommt es zu einer deutlichen Steigerung der Konzentrationen von Hitze-Schock-

Proteinen in den Pankreasacinuszellen (168). Die aktivierten HSP 27-, 60 und 70 mil-

dern die Entzündungsreaktion ab (55), (200), (201), (202), (203), (204). Bei HSP 27 

kommt ein weiterer wichtiger Faktor in der Aktinfilamentformung und Polymerisation 

des Zytoskelettes hinzu. Dies geschieht durch Anlagerung von HSP 27-Oligo- und Mo-

nomeren an das Zytoskelett. Wie an anderer Stelle beschrieben, ist die Aufrechterhal-

tung der Aktinfilamente für die Entwicklung der Pankreatitis von Bedeutung (205), 
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(206), (207). Die Integrität des Zytoskelettes hinreichend zu stabilisieren scheint eine 

zentrale Aufgabe zu sein, um das Überleben der Zelle im Ganzen zu sichern (208), 

(209). 

1.7 Die Fragestellung zu dieser Arbeit 

 

Im Rahmen dieser tierexperimentellen Arbeit sollten folgende Fragestellungen erarbei-

tet werden: 

 Verringert die pharmakologische Hemmung der SAPK/JNK-Kinase mittels SP 

600125 die Inflammationsreaktion der Caerulein-induzierten Pankreatitis im in-

vivo Experiment? 

 Hat die zusätzliche pharmakologische Hemmung der SAPK/JNK bei MK-2 Knock-

out-Mäusen mittels SP 600125 einen zusätzlichen anti-inflammatorischen Ef-

fekt? 
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2. Materialien und Methoden 

 

In diesem Kapitel werden die verwendeten Materialen und Methoden näher beschrie-

ben. Sämtliche Analysemethoden und biochemische Verfahren wurden über einen 

Zeitraum von mehreren Wochen unter der Aufsicht einer erfahrenen MTA und Biolo-

gin erlernt. Die Datenerfassung erfolgte mit Microsoft „Excel®“. Diese Arbeit wurde mit 

Microsoft „Word®“ erstellt. Die am Ende aufgeführte Publikationsliste wurde mit der 

programminternen Funktion von MS Word® generiert und verwaltet. Zur statistischen 

Datenaufbereitung wurde die Software „R“ in der Version 3.1.2 benutzt. Die vorliegen-

de Arbeit wurde auf einem Notebook der Firma Fujitsu-Siemens geschrieben. 

2.1 Gerätschaften 

 

Firma Technisches Gerät 

Agfa-Gevaert AG, Mortsel, BE 
 
Amersham Pharmacia Biotech, 
Buckinghamshire, UK 
 
Bandelin Electronic, Berlin, Dtl 
 
Becton Dickinson GmbH, Heidelberg, Dtl 
 
BioRad, München, Dtl 
 
B. Braun, Melsungen, Dtl 
 
Corning, NY, USA 
 
Drägerwerk, Lübeck, Dtl 
 
Eppendorf AG, Hamburg, Dtl 
 
Fröbel Labortechnik, Lindau, Dtl 
 
GE Healthcare, Chalfont St Giles, UK 
 
GFL, Burgwedel, Dtl 
 
Hettich, Dtl. 
 
Hybraid 
 
IKA Werke, Staufen, Dtl. 
 

Agfa Curix 60 
 
Power Supply 
Ultrospec 3100 pro 
 
Sonoplus Bandelin HD 2070 
 
Kanülen, 27G 
 
Blot Kammer, Kämme, Glasplatten 
 
Wasserbad Thermomix 1441 
 
Stripette (2ml – 25ml) 
 
Isofluran Verdampfer 
 
MiniSpin Zentrifuge, Pipetten, Zentrifuge 541712 
 
Kreisrüttler Rocky 3D 
 
Ultrospec 3100pro Spektrophotometer 
 
Wasserbad GFL 1083 
 
Zentrifuge EBA 12R 
 
Mini Oven Trockenofen 
 
Magnetrührer RTCbasic 
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Kinematika, Luzern, Ch 
 
Liebherr, Bulle, CH 
 
Millipore, Billerica, USA 
 
NeoLab, Heidelberg, Dtl 
 
PerkinElmer, Waltham, USA 
 
Sarstedt, Nümbrecht, Dtl 
 
Satorius, Göttingen, Dtl 
 
Scaltec, Heiligenstadt, Dtl 
 
Schleicher & Schüll, Dassel, Dtl 
 
Schütt Biotech, Göttingen, Dtl 
 
Techne, Jahnsdorf, Dtl 
 
VWR-Jencons, West Sussex, UK 
 
WTW, Weilheim, Dtl. 
 

Polytron Homogenisator PT 2100 
 
KT 1840 (4 °C.) Kühlschrank) 
 
MilliQ A10TOC Entsalzungsanlage 
 
Vortex Mixer 2020 
 
Luminescence Spectrometer LS 50B 
 
Einmal-Küvetten, 10x4x45mm Ref. 67.742 
 
Analysenwaage 
 
Waage 
 
Gel-Blotting Papier, Nitrocellulosemembran „Protran“ 
 
HomogenPlus, Teflon-Pistille, Glaskolben konisch 40ml 
 
DriBlock DB 2A Heizblock 
 
Folienschweißgerät 
 
pH Meter InoLab pH Level 1 
 

Tabelle 1:Liste der Gerätschaften 

 

2.2 Chemikalien und Materialien 

 

Firma/Hersteller Präparat/Artikel Artikelnummer, Vollnamen Verwendungszweck 

Abbott GmbH & Co. 
KG Wiesbaden, Dtl 

Forene 
Isofluran (1-Chloro-2,2,2,-

trifluorethyl-difluoromethylether) 
 

Narkosegas 
 

Adefo-Chemie GmbH, 
Dietzenbach, Dtl 

Adefo GV60 Fixierkonzentrat Röntgenfilmentwicklung 

AMERSHAM 
BIOSCIENCE 
Freiburg, Dtl 

Anti-mouse IgG 
peroxidase-linked species-

specificwhole antibody 
(from sheep)NA 931 Zweit-Antikörper für Wes-

tern-Blot 
Anti-rabbit IgG 

peroxidase-linked species-
specificwhole antibody 
(from donkey) NA 934 

Bachem, Bubendorf, 
CH 

Trypsin Substrat 
 

Bachem I-1550 
Substrat zur Trypsinbe-

stimmung 

BIO RAD, 
München, Dtl. 

Blotting Grade Blocking Non Fat Dry Milk 
Blocksubstanz für Western-

Blot 

Protein Dye 
Protein Assay Dye reagent con-

centrate 
Proteinbestimmung nach 

Bradford 

TEMED Tetramethylethylendiamin 
Quervernetzung des SDS-

Gel Pages 

Carl Roth GmbH+Co. 
KG Karlsruhe, Dtl 

Tween 20 
Polyoxethylene-Sorbitan-

Monolaurate 
Blocking-Lösung 

Cell Signaling 
Technology 

Frankfurt/Main, Dtl 

phospho p38 
Phospho-p38 MAP Kinase 

(Thr180/Tyr182) Antibody #9211 Erst-Antikörper für Wes-
tern-Blot 

phospho SAPK/JNK 
Phospho-SAPK/JNK 

(Thr183/Tyr185) Antibody #9251 
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phospho p44\42 
Phospho-p44\42 MAPK 
(Thr202/Tyr204) (E10) 

Mouse mAb #9106 

SAPK/JNK 
SAPK/JNK 

Antibody #9252 

p44\42 
p44\42 MAP Kinase 

Antibody #9102 

FLUKA 
Biochemika 
Seelze, Dtl. 

BSA Bovines Serum Albumin Blocking-Lösung 

SDS 
Sodium dodecyl sulfat 

C12H25NaO4S 
 

Merck Chemicals, 
Darmstadt, Dtl 

TRIS 
Tris(hydroxy-methyl)-

aminomethan 
Puffer 

Proteaseinhibitor-Set Cat# 539131 Proteaseinhibitation 

Pharmacia&Upjohn 
Uppsala, S 

Glycin 
 

C58H114O26 
 

Amylase-Bestimmung 

Phadebas® Phadebas®Amylase-Test Amylasemessung 

R&D Systems. Inc., 
Minneapolis, USA 

ELISA IL6 Kit Quantikine® Mouse IL-6 Kit IL-6 Bestimmung 

Röntgen Bender 
GmbH & Co. KG, 

Baden-Baden, Dtl 
Vision GV 60 Entwicklerkonzentrat Röntgenfilmentwicklung 

Santa Cruz 
Biotechnology 
Santa Cruz,USA 

p38 (C-20) sc-535 
Erst-Antikörper für Wes-

tern-Blot 

Sigma-Aldrich 
Seelze, Dtl. 

 

Wasserstoffperoxid H2O2 30%  

MOPS 
(3-N-Morpholino) propanesulfo-

nic acid 
Pufferlösung 

o-Dianisidine Dimethoxybenzidin Redoxindikator 

Caerulein 
pGlu-Gln-Asp-Tyr-[SO3H]-Thr-Gly-

Trp-Met-Asp-Phe-NH2 
CCK-Analogon zur Pankrea-

titis Induktion 

EDTA Ethylendiamintetraessigsäure Komplexbilder 

APS Ammoniumpersulfat (NH4)2S2O8 
Polymerisationsreaktion im 

SDS-Gel 

Trypsin T-4665 Kalibrier-Kontrolle 

SBTI 
Trypsin inhibitor, Type I-S From 

Soybean T9003 
MPO Bestimmung 

PMSF Phenylmethylsulfatflourid Proteaseinhibitor 

Natrium orthovandate Na3VO4 Proteaseinhibitor 

TocrisCooksonInc., 
Ellisville, USA 

SP 600125 Cat. No. 1496 JNK-Inhibitor 

Tabelle 2: Liste der Materialien 

 

2.3 Die verwendeten Puffer 

 

Die in den Versuchen verwendeten Puffer wurden frisch angefertigt oder in einem kur-

zen Zeitraum zuvor angesetzt und entsprechend kühl gelagert. Die Mengenangaben 

der verwendeten Chemikalien für die Herstellung der Pufferlösungen sind in Gramm 

oder Milligramm und jeweils auf die Menge von 1000 ml angegeben. Abweichende 

Mengen sind vermerkt. Der pH-Wert wurde je nach Notwendigkeit mit HCl oder KOH 

korrigiert. 
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2.4 Methoden 

2.4.1 Herstellung des Standards zur Proteinbestimmung nach Bradford 

 

Das Prinzip der Methode nach Bradford beruht darauf, dass die enthaltene Protein-

menge einer Probe sich bei einer photometrischen Messung gegenüber dem Nullwert 

proportional verhält. Der Triphenylmethan-Farbstoff Coomassie-Brilliant Blau G-250 

hat ein Absorptionsmaximum von 465 nm. Geht der Farbstoff mit den Proteinen einen 

Komplex ein, ändert sich das Absorptionsmaximum, welcher im Photometer gemessen 

werden kann (210), (211). Die Proteinbestimmung erfolgt mithilfe eines Photometers, 

BSA-Lösung und Protein-Dye. Aus einer Stammlösung von 1mg/ml wird eine Standard-

kurve (siehe Tabelle 3: Standard nach Bradford) hergestellt. Anschließend wird eine 

1:5-Verdünnung aus Protein-Dye und destilliertem Wasser als Arbeitslösung herge-

stellt. In 1 ml Arbeitslösung wird nun 20 µl BSA-Lösung in aufsteigender Konzentration 

in vier Küvetten pipettiert und geschüttelt. Nach einer Inkubationszeit fünf Minuten 

wird nun photometrisch bei einer Wellenlänge von 595 nm zuerst ein Nullabgleich mit 

der Arbeitslösung, dann die vier folgenden Werte in aufsteigender Konzentration be-

stimmt. Der Standard sollte nun eine lineare Progression zeigen. 

Tabelle 3: Standard nach Bradford 

BSA-Stock Aqua dest. Konzentration BSA 

20µl 80µl 0,2mg/ml 

40µl 60µl 0,4mg/ml 

60µl 40µl 0,6mg/ml 

80µl 20µl 0,8mg/ml 

 

Die nun zu messenden Proben wurden zuvor in einer Verdünnungsreihe 1:10 bzw. 1:20 

mit Aqua destillata vermischt. Als Startmenge wird aus diesen Verdünnung mit 10 oder 

20 µl begonnen. Die Messung wird wie bei der Standardbestimmung durchgeführt. Im 

Fall dass die Konzentration die Standardkurve über- bzw. unterschreitet, wird die 

Menge der eingebrachten Probenmenge korrigiert. Dies wird in der anschließenden 

Berechnung berücksichtigt. Der erfolgte Farbumschlag des Protein-Dye wird vom Pho-

tometer in einen logarithmischen Zahlenwert ausgegeben und direkt in eine Excel Ta-
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belle übertragen. Anhand dieses Wertes und der eingebrachten Menge wird nun die 

Protein Menge des Lysates errechnet. Diese Methode der Proteinbestimmung erfolgte 

sowohl bei der Herstellung von Western-Blot Proben als auch bei der Trypsinbestim-

mung. 

2.4.2 Messung der Amylase 

 

Zur Bestimmung der α-Amylase im Blutserum wurde ein Amylase-Reagenz (Phade-

bas®)der Firma Pharmacia & Upjohn, Schweden verwendet. Die Durchführung erfolgte 

nach Herstellerangaben. Dieser Test beruht auf dem Prinzip der Fällungsreaktion. Wird 

die Phadebas®-Tablette in die Pufferreagenz gegeben, fällt der an Stärke gebundene 

wasserunlösliche Farbstoff aus. Durch Zugabe von Amylase wird die Stärke gespalten 

und der Farbstoff kann sich im Medium lösen. Der Farbumschlag kann nun photomet-

risch bestimmt werden. 

Tabelle 4: Amylase-Puffer 

H2O 1000 ml 

NaCl 2,92 g 

NaH2PO4 2,4 g 

NaN3 0,2 g 

pH 7,4  

 

Tabelle 5: Stop Lösung für Amylase Reaktion 

H2O 1000 ml 
NaOH 20 g 

 

Das Testreagenz wurde unter permanentem Rühren angesetzt. Zu 28 ml Amylase-

Puffer wurden 2 Phadebas-Tabletten® gegeben. Jede Probebestand aus 10 µl Serum, in 

die jeweils 1020 µl Testreagenz gegeben wurden. Für den Nullabgleich und als Nega-

tivprobe wurde ein Reagenz mit Aqua destillata vermischt. Nach Vortex-Mischung der 

Reagenzgläser folgte unter ständigem Schütteln eine fünf-minütige Inkubation im 

Wasserbad bei 37° Celsius. Die Fällungsreaktion wurde durch die Zugabe von je 300 µl 

einer 0,5-molaren NaOH-Lösung zum Stoppen gebracht. Zu jeder Probe wurden nun 4 

ml H2O zugefügt und im folgenden Schritt bei 4° Celsius und 4000 rpm abzentrifugiert. 
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Aus dem Überstand wurde 1ml entnommen und in Messküvetten gegeben. In Relation 

zum Nullwert wurden die Proben im Photometer bei einer Wellenlänge von 620 nm 

gemessen. Die aus den Proben resultierenden Absorptionen wurden mit dem Verdün-

nungsfaktor 725 multipliziert, woraus sich die Aktivität der Amylase in U/l berechnen 

lässt. 

2.4.3 Messung der Myeloperoxidase (MPO) 

 

Eine Möglichkeit die systemische Entzündungsreaktion zu messen, ist die Bestimmung 

der Myeloperoxidase in den neutrophilen Granulozyten, die in das Lungengewebe ein-

gewandert sind. Die ursprüngliche Messmethode geht auf Mullane et. al. zurück (87). 

Die nach Bhatia et al. beschriebene Methode zur Bestimmung der MPO-Aktivität aus 

Lungengewebe, wurde zu einem früheren Zeitpunkt innerhalb der Arbeitsgruppe an-

gepasst und war bereits etabliert (55), (212). 

Tabelle 6: MPO Homogenisationspuffer 

H2O 1000 ml 
KH2PO4 40 mM = 2,72 g 
pH 7,4  
4° C.  

 

Tabelle 7: MPO Extraktionspuffer Gebrauchslösung 

SBTI 1 ml = 200 µM 
PMSF 2 ml = 2 mM 

Hexadecyltrimethyl- 
ammoniumbromid 5% 

5 g in 100 ml Messpuffer 

Extraktionspuffer Stock 5 ml ad 100 ml Aqua 

 

Tabelle 8: MPO Messpuffer 

H2O 1000 ml 
KH2PO4 100 mM = 6,8 g 
pH 6,0  

Raumtemperatur  

 

Tabelle 9: MPO Extraktionspuffer Stock Lösung 

5mM EDTA = 186mg/100 ml Messpuffer 
ph 6,0  

bei 4° C.  
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Tabelle 10: Soy Bean Trypsin Inhibitor (SBTI) in Hepes-Ringer Puffer 

SBTI 100 µM in Hepes-Ringer Puffer 
Hepes-Ringer Puffer 

ph 7,4 
2-[4-(2-Hydroxyethyl)-1-

piperazinyl]ethansulfonsäure (Sigma) 
gelagert bei -20° C. 

 

Tabelle 11: Phenylmethylsulfonfluorid (PMSF) 

PMSF 1 mM 1:1 gelöst in  
Methanol/Isopropanol 

-20° C.  

 

Tabelle 12: Sonstiges 

Wasserstoffperoxid 7 µl / ml Messpuffer auf Eis 
Hexadecyltrimethyl- 

ammoniumbromid 5% 
Gelagert bei Raumtemperatur 

 

Das entnommene Gewebe wurde am Präparationstag gewogen, anschließend in flüssi-

gem Stickstoff schockgefroren und bei – 80°C verwahrt. Bei der Herstellung der Proben 

wurden zwischen 50 und 100 mg Lungengewebe verwendet. Die Homogenisation des 

Gewebes erfolgte in einem entsprechend für diesen Zweck hergestellten MPO-

Homogenisationspuffer im Verhältnis 1:10 (Gewebegewicht x 9 = Menge Homogenisa-

tionspuffer). Mit einem Polytron-Homogenisator wurde das Gewebe mit dem Douncer 

bei 2400 rpm in einem mit Eis gekühlten Glaskolben homogenisiert. Nach Überführung 

des Lysates in Plastik Tubes erfolgte eine zehnminütige Zentrifugation bei 10000 G und 

einer Temperatur von 4° Celsius, der Überstand wurde verworfen. Das zurückbleiben-

de Gewebepellet wurde im Folgenden mit Extraktionspuffer vermischt (500 µl oder 

300 µl bei Ausgangsgewicht < 50 mg)und mit Hilfe eines Spatels wieder resuspendiert. 

Zur weiteren Auflösung der Zellstrukturen wurden die Gewebepellets nun im Wechsel 

je vier Mal zuerst in flüssigen Stickstoff schockgefroren und im Anschluss für je fünf 

Minuten im Wasserbad bei 37° Celsius wieder aufgetaut. Abschließend erfolgte die 

Ultraschallsonifizierung der Proben. Alle Lysate wurden jeweils zwei Mal mit einer Leis-

tungsabgabe von 75% bei einer Wiederholungsrate von 7 x 10 Zyklen/min über einen 

Zeitraum von zehn Sekunden bearbeitet. Nach erneuter Zentrifugation bei 4° Celsius, 

10000 G für fünf Minuten, konnte der Überstand abpipettiert werden. Bei nicht sofort 

erfolgter Messung wurden die Proben schockgefroren und bei – 80° Celsius verwahrt. 

Nach Vorbereitung der Proben wurde mit dem Photometer bei 460 nm die Absorption 
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gemessen. Hierzu wurde aus 880 µl MPO-Messpuffer, 10 µl o-Dianisidin-Lösung und 10 

µl H2O2 ein Reaktionsgemisch hergestellt. Zuerst erfolgte die Bestimmung des Leerwer-

tes über 60 Sekunden. Im Anschluss wurden in die Küvetten je 100 µl der zu messen-

den Probe pipettiert. Die nun ablaufende Reaktion wurde über 240 Sekunden photo-

metrisch gemessen. Die Aktivität der Myeloperoxidase ist nun mit dem Feuchtgewicht 

des Lungengewebes und der gemessenen Absorption der Steigung berechenbar. 

2.4.4 Messung der Trypsin-Aktivität 

 

Die Messung der Trypsin-Aktivität wurde nach der Methode von Kawabata et. al. 

durchgeführt (213) und geringfügig an die Bedürfnisse innerhalb der Arbeitsgruppe 

adaptiert (55). Die Bestimmung der Aktivität wurde fluorometrisch mit einem Lumi-

neszenz Spektrometer durchgeführt. Dabei wird eine bestimmte Menge Standard-

Substrat (Boc-Glu-Ala-Arg-MCA•HCl) der Probe beigemischt und einer Anregungswel-

lenlänge von 380 nm ausgesetzt. Aktiviertes Trypsin kann dieses Substrat nun in einer 

fluoreszierenden Reaktion spalten. Die Messung erfolgte bei einer Emissionswellen-

länge von 440 nm. Die Trypsin-Aktivität ist proportional der zeitlichen Zunahme der 

Emission. Anhand einer Standardkurve kann die Aktivität berechnet werden. 

Tabelle 13: TAB-Puffer (Trypsin-Assay-Buffer) 

H2O 100 ml 
TRIS Base 50 mM = 0,605 g 

NaCl 150 mM = 0,876 g 
CaCl2 1 mM = 0,0147 g 
BSA 0,01 g 

pH 8,1  
Verwahrung bei 4° C.  

Gebrauch bei Raumtemperatur  

 

Tabelle 14: MOPS-Puffer 

H2O 100ml 
Sucrose 8,55g 
MOPS 0,104g 
MgSO4 0,024g 
pH 6,5  

Verwahrung und Gebrauch bei 4° C.  
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Tabelle 15: Sonstiges 

Substrat Boc-Glu-Ala-Arg-MCA•HCl 
Bachem I-1550 

Stammlösung 10 mM Substrat in DMSO 
verwahrt bei 4° C. 

Arbeitslösung 1:50 verdünnt in H2O 
Trypsin Standard Sigma T-4665 

10 mg/ml 
verwahrt bei 4° C. 

 

Vor Beginn jeder Messung wurde eine Trypsinverdünnungsreihe (Tabelle 16: Trypsin-

verdünnungsreihe) zur Bestimmung der Standard Eichgeraden erstellt und die Zunah-

me der Fluoreszenz über die Zeit gemessen. 

Tabelle 16: Trypsinverdünnungsreihe 

V1 100 µl/ml 10 µl Aliquot + 990 µl TAB 
V2 1 µl/ml 10 µl V1 + 990 µl TAB 
V3 100 ng/ml 100 µl V2 + 900 µl TAB 
V4 10 ng/ml 100 µl V3 + 900 µl TAB 

 

Zur Herstellung der Substratarbeitslösung wurden 20 µl Substrat-Stock in 980 µl H2O 

gegeben, mit Alufolie vor Licht geschützt und auf Eis gestellt. Zur Bestimmung der 

Trypsin-Aktivität der Proben wurde ein Pankreasstück mit einem Gewicht zwischen 50 

mg und 100 mg zunächst in 1000 µl MOPS-Puffer mit einem Douncer bei 2400 Umdre-

hungen pro Minute lysiert. Die Abzentrifugation des Lysates erfolgte mit der auf vier 

Grad Celsius abgekühlten Zentrifuge bei 3000 Umdrehungen für fünf Minuten. Der 

Überstand wurde daraufhin separiert, das Pellet verworfen. Die Proteinmenge des 

Überstandes wird mit der bereits beschriebenen Methode nach Bradford (siehe 2.4.1) 

bestimmt. Die so hergestellten Lysate wurden entweder sofort zur Messung verwen-

det oder andernfalls bei -80°C. gelagert. Im Doppelansatz wurden nun die Proben ge-

messen. Dabei wurden in die Küvetten je 900 µl TAB-Puffer, 50 µl Probe und 100 µl 

Substratarbeitslösung gegeben. Anhand der Messgeraden der Proben, im Vergleich zur 

Steigung der Standardgeraden, ist es mit der zuvor ermittelten Proteinmenge möglich, 

die Trypsin-Aktivität in mU/mg Protein zu berechnen. 
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2.4.5 ELISA für IL-6 Bestimmung 

 

Interleukin-6 (IL-6) ist ein pro-inflammatorisches Zytokin, welches von T-Zellen und 

Makrophagen beispielsweise im Rahmen einer Infektion die Immunantwort stimuliert 

(214). IL-6 ist auch bei der Pankreatitis erhöht (184) und ist möglicherweise bei schwe-

ren und nekrotisierenden Pankreatitiden ein geeigneter Prädiktor für den Verlauf der 

Infektion (84). 

Tabelle 17: ELISA Kit 

Waschpuffer 25-fach konzentrierte Surfactant 
Color-Reagent Reagent A: 

 12,5 ml Hydrogenperoxid 
 Reagent B: 

 12,5 ml Tetramethylbenzidin 
Stopp-Lösung HCl 

 

Zur Bestimmung von IL-6 wurde ein ELISA Kit der Firma R&D verwendet (Quantikine® 

Mouse IL-6, Immunoassay, R&D Systems, Inc., Minneapolis, USA). Die Messung erfolg-

te gemäß der beiliegenden Anleitung. Zunächst wurden die Reagenzien auf Raumtem-

peratur gebracht, um im Anschluss aus dem mitgelieferten Calibrator Diluent eine 

Standardverdünnungsreihe herzustellen. Beginnend mit einer Konzentration von 500 

pg/ml (1:1), wurde diese Reihe in absteigender Konzentration fortgesetzt, bis eine 

Verdünnung von 7,8 pg/ml (1:64) erreicht wurde. Die zu benutzenden „Wells“ auf der 

Platte wurden nun mit 25 µl Assay Diluent befüllt. Nun wurden je 50 µl der Standard-

verdünnungsreihe in aufsteigender Konzentration in die „Wells“ pipettiert. Im folgen-

den Schritt wurden die restlichen „Wells“dann mit je 50 µl der vorbereiteten Serum-

probe befüllt. Zur Kontrolle diente ein nur mit Calibrator Diluent gefülltes „Well“. Die 

nun fertig beladene ELISA-Platte wird für eine Minute mit der Hand geschüttelt, mit 

einer Klebefolie verschlossen und für zwei Stunden bei Raumtemperatur inkubiert. 

Nach erfolgter Inkubation der Platte wurde der Inhalt der „Wells“ verworfen. Es folgen 

insgesamt fünf Waschgänge, bei dem die „Wells“ in jedem Durchgang mit 300 bis 400 

µl der Waschlösung (25 ml Konzentrat und 600 ml H2O) gespült wurden. Im Anschluss 

an den letzten Waschgang wurde die Platte mehrmals ausgeklopft, um eventuell noch 
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vorhandene Reste vollständig zu entfernen. Nun wurde das Konjugat vorbereitet. 

100µl der zuvor hergestellten Lösung wurden mit der Multipipette in jedes „Well“ ein-

gebracht. Die anschließende Inkubationsphase bei Raumtemperatur dauerte wiede-

rum zwei Stunden. Der zweite Waschgang wurde wie bereits im vorherigen Absatz 

beschrieben durchgeführt. Im nächsten Schritt wurde eine Färbelösung aus den mitge-

lieferten Color-Reagentien A+B im Verhältnis 1:1 angesetzt. In jedes „Well“ wurden 

100 µl pipettiert. Es folgte eine 30-minütige Inkubationszeit im Dunkel und bei Raum-

temperatur. Nach Ablauf der Zeit wurden in die „Wells“ je 100 µl Stopplösung gege-

ben. Die Absorption der Proben konnte nun im ELISA-Reader bei einer Wellenlänge 

von 450 nm bestimmt werden. Die Datenausgabe erfolgte in eine Excel-Tabelle. 

2.4.6 SP 600125: ein selektiver SAPK/JNK Kinase-Inhibitor 

 

Der verwendete pharmakologische Hemmstoff SP 600125 ist eine chemische Verbin-

dung aus der Gruppe der Anthrone. Anthrone gehören zur Hauptgruppe der trizykli-

schen aromatischen Ketone. Anthrapyrazolone beziehungsweise deren Strukturver-

wandten Substanzen sind ursprünglich Stoffe, die in der Onkologie Anwendung finden 

(215). Ein bekannter Vertreter ist Doxorubicin. Pharmazeutika dieser Art greifen im 

Rahmen der mitotischen Teilung in den Zellzyklus ein und verhindern die Ausbildung 

des Spindelapparates und stoppen die weitere Zellteilung. SP 600125 (1,9-

Pyrazoloanhtrone) als synthetisiertes Derivat dieser Wirkstoffklasse ist als biochemi-

scher Inhibitor in der Lage an die SAPK/JNK (c-Jun-terminale Kinase) zu binden und 

somit dessen katalytische Funktion zu blockieren. SP 600125 steht dabei in kompetiti-

ver Konkurrenz mit ATP zur ATP-Bindungsstelle. Dadurch ist die Wirkung von SP 

600125 Dosisabhängig und reversibel. Wie bereits von anderen Kinaseinhibitoren be-

kannt, ist die Wirkungsweise auch in diesem Fall eng an das Vorhandensein einer 

freien NH-Gruppe innerhalb des Moleküls gekoppelt (216). Als Folge, dass SP 600125 

eine Aktivierung von JNK durch Phosphorylierung erfolgreich verhindert, sind die Sub-

strate von JNK – die Transkriptionsfaktor c-Jun, ATF-2, etc. ebenfalls inhibiert. Dadurch 
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kann theoretisch die Expression weiterer proinflammatorischer Verbindungen wie bei-

spielsweise Interleukine verhindert werden (217), (218). 

In der Literatur wird SP 600125 als hochselektiver Inhibitor beschrieben. In Messungen 

gegenüber den nahen Verwandten MAP-Kinasen bestätigt sich dies. Allerdings scheint 

bei höherer Konzentration von SP 600125 zumindest teilweise eine Blockierung von 

p38 und ERK-2 möglich (219). 

 

Abbildung 8: Struktur SP 600125 (Quelle: chemicalbook.com) 
 

50 mg der Chemikalie wurde von der Firma Tocris (Tocris Cookson, USA) bezogen. In 

seiner Ausgangsform hat SP 600125 eine gelbe, kristalline Struktur. Aufgelöst wurde es 

gemäß Vorgabe der Herstellerfirma in Dimethylsulfoxid (DMSO). Die 10-fach Stock Lö-

sung wurde mit 3,3 ml DMSO angesetzt und bei Bedarf Gebrauchsfertig auf eine Kon-

zentration von 1,5 mg/ml (1:10) mit NaCl 0,9 % verdünnt. Gewichtsadaptiert wurde 

eine 6,7 % DMSO/NaCl-Lösung 15 µg/kg KG den Tieren i.p. gespritzt. 

2.5 Induktion der Pankreatitis mit Caerulein 

 

Gemäß Versuchsschema wurden den Tieren eine supramaximale Caerulein-Dosis in 

einer gewichtsadaptierten Menge von 50 µg/g Körpergewicht injiziert (siehe 1.3.). Als 

Kontrollsubstanz wurde entsprechend dem Versuchsschema zur Negativkontrolle den 

Mäusen 0,9 % NaCl injiziert. 
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2.6 Das Pankreasödem 

 

Durch die Inflammation im Organ kommt es zu einer interstitiellen Ödembildung. Das 

Ödem korreliert dabei mit der Schwere der Entzündung. Dies ist nicht nur mikrosko-

pisch erkennbar, sondern auch makroskopisch und geht mit einer Zunahme des Or-

gangewichts einher. Zur Erfassung wurden in der Arbeitsgruppe zwei Methoden etab-

liert. 

2.6.1 Pankreas-/Körpergewicht-Ratio des Pankreas (Ödemisierungsgrad) 

 

Um die Stärke der Ödembildung zu erfassen, wurde unmittelbar nach der Präparation 

des Pankreas und Organentnahme eine Gewichtsbestimmung durchgeführt. Der soge-

nannte „Ödemisierungsgrad“ wurde dann im Verhältnis von Organgewicht zu Körper-

gewicht berechnet. Der „Ödemisierungsgrad“ errechnet sich wie folgt: 

Ö𝑑𝑒𝑚𝑖𝑠𝑖𝑒𝑟𝑢𝑛𝑔𝑠𝑔𝑟𝑎𝑑 =  
𝑃𝑎𝑛𝑘𝑟𝑒𝑎𝑠𝑔𝑒𝑤𝑖𝑐ℎ𝑡 𝑥 1000

𝑀𝑎𝑢𝑠𝑔𝑒𝑤𝑖𝑐ℎ𝑡
 

Erreicht der Ödemisierungsgrad einen hohen Wert, geht man von einer hohen Was-

sereinlagerung und damit stärkeren Entzündung aus. 

2.6.2 Die Trocken-Feuchtgewicht-Ratio 

 

Zusätzlich zur Bestimmung der Stärke des Ödems im Pankreasgewebe wurde eine 

Feucht-/Trockengewicht Bestimmung durchgeführt. In die zuvor mit einer Präzisions-

waage gewogenen Tubes wurde ein von sonstigem Gewebe gereinigtes und auf Zell-

stoff getrocknetes Pankreasstück gegeben. Es folgte erneut eine Gewichtsbestimmung. 

Das Tube wurde nun für 48h in einem Inkubator bei 80° C. belassen. Nach erneutem 

Wiegen und Berechnung der Differenz lässt sich der Anteil des Wassers im Gewebe 

bestimmen. Die Ratio gibt den Anteil des Wassers in der Gesamtmenge des Pankreas-

stückes in Prozent an. Liegt eine entsprechende Ödembildung im Pankreasgewebe vor, 
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so ist ein erhöhter Wert zu erwarten. Der Anteil des Wassers in der Gesamtmasse er-

rechnet sich wie folgt: 

𝑊𝑎𝑠𝑠𝑒𝑟𝑎𝑛𝑡𝑒𝑖𝑙𝑑𝑒𝑟𝐺𝑒𝑠𝑎𝑚𝑡𝑚𝑎𝑠𝑠𝑒 =  
𝐹𝑒𝑢𝑐ℎ𝑡𝑔𝑒𝑤𝑖𝑐ℎ𝑡 − 𝑇𝑟𝑜𝑐𝑘𝑒𝑛𝑔𝑒𝑤𝑖𝑐ℎ𝑡

𝐹𝑒𝑢𝑐ℎ𝑡𝑔𝑒𝑤𝑖𝑐ℎ𝑡
 

2.7 Western-Blot 

 

Das nach dem Prinzip von Renart et al. beschrieben Verfahren beruht auf den moleku-

laren Eigenschaften, dass sich Proteine in einem elektrischen Spannungsfeld elektro-

phoretisch der Größe nach auftrennen lassen. Je größer ein Molekül, desto langsamer 

ist die vertikale Wanderung in dem Trenngel. Im Anschluss findet der sogenannte 

Transfer, statt bei dem durch Anlage einer horizontalen Spannung Proteine aus dem 

Gel auf eine Nitrocellulose-Membran übertragen werden. Darauf folgt die Markierung 

mit dem für das gesuchte Protein spezifischen Erstantikörper. Im letzten Schritt wird 

ein Zweitantikörper aufgetragen, welcher an den Erstantikörper bindet. An den Zwei-

tantikörper kann eine Verbindung gekoppelt werden, die ein Substrat spalten kann. 

Dabei kommt es zu einer Lichtreaktion, die unter Zuhilfenahme eines Röntgenfilms nun 

detektierbar ist (220), (221), (222). In dieser Arbeit wurde die Methode angewendet, 

um die Existenz der Stresskinasen und deren Aktivierung zu belegen. 

2.7.1 Pankreaslysat-Herstellung 

 

Um Proteine in einem Gel aufzutrennen, musste das Pankreasgewebe zuerst Western-

Blot fähig gemacht werden. Zur Lysatherstellung wurden Pankreasgewebestücke mit 

einem Gewicht zwischen 50 und 100 µg verwendet und in einem Reagenzgefäß mit 

1000 µl Homogenisations-Puffer (Mixturen siehe Tabelle) homogenisiert. Das so vorbe-

reitete Gewebe wurde nun in der Zentrifuge bei 4°C. und 14.000 rpm für fünf Minuten 

abzentrifugiert. Der gewonnene Überstand wurde in ein neues Tube überführt und für 

30 Minuten auf Eis inkubiert um die Zelllyse abzuwarten. Es folgte eine erneute Zentri-

fugation bei 4°C und 14.000 rpm, dieses Mal für 30 Minuten. Der so wiederum gewon-

nene Überstand bildete die Basis für die Western-Blot Proben. Die Proteinkonzentrati-
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on wurde nun mit der Methode nach Bradford (siehe 2.4.1) bestimmt. Im letzten 

Schritt wurden die Proteinkonzentration der Lysate mit SDS Puffer, ß-Mercapto-

Ethanol und Homopuffer auf eine Proteinkonzentration von 2 mg/ml eingestellt (Stan-

dard: 25 Volumen-Prozent SDS, 0,025 Volumen-Prozent ß-Mercapto-Ethanol). Zum 

Schluss wurden die Proben für fünf Minuten bei 95°C gekocht. Wurden die Lysate nicht 

sofort verwendet, so wurden Sie umgehend bis zum Gebrauch bei -80° C. eingefroren. 

Tabelle 18: Homogenisations-Puffer 

Tris / HCl 7,88 g 
KCl 14,9 g 

ß-Glycerolphosphat 10,8 g 
DTT 0,16 g 
NaF 0,84 g 

EGTA 100 mM 10,0 ml 
EDTA 100 mM 1,0 ml 

Benzamidin 200 mM 2,5 ml 
H2O  ad 1000ml   

pH 7,4   

 

Gebrauchsfertig machen auf 10ml abfüllen, eine Spatelspitze Na3VO4 und 100 µl Pro-

teaseinhibitor dazugeben. 

2.7.2 Durchführung Western-Blot 

 

Zur Auftrennung der Proteine wurden zehnprozentige Acrylamid-Trenngele mit je zehn 

Taschen angefertigt. Die Gele wurden in die Elektrophorese-Kammer gestellt und dann 

komplett mit Laufpuffer überdeckt. Erst dann wurden die Taschen beladen. Bei allen 

durchgeführten Blots wurde in die linke erste Tasche 5µl Proteinstandards (Precision 

Plus All Blue Standards, Bio-Rad Lab., Inc. Hercules, USA) pipettiert. Nach einbringen 

der restlichen Proben wurde für fünfzehn Minuten das Proteingemisch lediglich mit 

einer Spannung von 100 Volt langsam in das Trenngel einlaufen gelassen. Nun wurde 

die Spannung auf 150 Volt angehoben. Ein Gel-Lauf dauert bei diesem Aufbau circa 90 

Minuten. Es folgte der Transfer auf eine Nitrocellulose-Membran (Protran®, Whatman 

Int. Ltd., Kent, UK). Die Kammer wurde mit Transferpuffer vollständig aufgefüllt. Nach 

Anlage einer Stromstärke von 300mA über circa 90 Minuten war es nun möglich, die 

im Gel aufgetrennten Proteine auf die Membran zu übertragen. Der Puffer wurde mit 
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Eis und ständigem Rühren während des Transfervorgangs gekühlt. Nach Abschluss des 

Transfers wurde die Membran für eine Stunde bei Raumtemperatur in einer fünf pro-

zentigen Mischung aus TBS-T-Trockenmilch (Bio-Rad Lab., Inc., Hercules, USA) für 60 

Minuten geschwenkt. So wurden die Proteine auf der Membran geblockt, was die un-

spezifische Bindung der Antikörperspäter verringert oder auch ganz verhindert. In fri-

sche TBS-T-Milch 5% (5 ml) wurde nun der Erstantikörper eingebracht, in Folie ver-

schweißt (Jencons-PLS, VWR-Jencons, West-Sussex, UK) und über Nacht bei 4°C. unter 

ständigem Schütteln inkubiert. Am darauffolgenden Tag wurde die Membran in TBS-T 

drei Mal à fünf Minuten gewaschen. Nach diesem Waschvorgang wurde in 5% TBS-T-

Milch (15 ml) der entsprechende Zweitantikörper gegeben und die Membran für eine 

Stunde bei Raumtemperatur ebenfalls unter ständigem Schütteln inkubiert. Es folgten 

wiederum drei Waschgänge in TBS-T. Mithilfeeiner Chemolumineszenz-Reaktion war 

nun die Belichtung von Röntgenfilmen möglich. Die Detektionslösungen ECL 1 und ECL 

2 (ECL Detection Fluid, GE Healthcare, Chalfont St. Giles, UK) wurden 1:1 vermischt und 

die Membran darin für 60 Sekunden geschwenkt. In der Dunkelkammer wurde nun 

Röntgenfilm (CL-XPosure Film, Thermo Fisher Scientific, Rockville, USA) auf die Memb-

ranen zur Belichtung aufgelegt. Die Belichtungszeit variierte je nach Antikörper zwi-

schen Sekunden und einer Stunde. Nach Entwicklung (Agfa-Curix 60, Agfa-Gevaert, 

Morsel, Belgien) des Films konnten nun die Protein-Banden identifiziert werden. Die 

Membranen wurden zuerst mit dem Antikörper für phosphorylierte Kinasen inkubiert. 

Hier war anschließend die Belichtungszeit auf dem Röntgenfilm zwischen 30 und 60 

Minuten durchweg deutlich länger als für den Gesamtantikörper. Nach einem Wasch-

vorgang wurde dann in einem Re-Inkubationsverfahren der Gesamtantikörper getes-

tet. Durch die kurze Belichtungszeit von meist weniger als einer Minute konnte das 

schwache Signal des Phospho-Antikörpers vernachlässigt werden. Der Vorteil dieser 

Variante ist, dass die zu vergleichenden Proteinmengen identisch sind und somit ver-

glichen werden können. 

Tabelle 19: Trenn-Gel (10% Acrylamid) 

Trenn-Gel-Puffer 4 ml 
Aqua destillata 6,7 ml 

Acrylamid/Bis-Lösung 30 % 5,3 ml 
Ammonium Persulfat 10 % 50 µl 

TEMED 25 µl 
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Tabelle 20: Sammel-Gel 

Sammel-Gel-Puffer 2,5 ml 
Aqua destillata 5,8 ml 

Acrylamid/Bis-Lösung 30 % 1,6 ml 
Ammonium Persulfat 10 % 60 µl 

TEMED 20 µl 

 

Tabelle 21: Trenn-Gel-Puffer 

H2O ad 1000 ml 
TRIS Base 181,6 g (1492,52 mmol/l) 

SDS 4 g (13,87 mmol/l) 
pH 8,8  

 

Tabelle 22: Sammel-Gel-Puffer 

H2O ad 1000 ml 
Tris Base 60,56 g (500 mmol/l) 

SDS 4 g (13,87 mmol/l) 
pH 6,8  

 

Tabelle 23: Waschmedium TBS 10-fach Stock-Lösung 

H2O ad 1000 ml 
Tris Base 24,1 g 

NaCl 80 g 
pH 7,6  

 

TBS-T 1-fach Gebrauchs-Lösung 

Vor Gebrauch wurde die Stammlösung auf 1-fach verdünnt: 

100 ml TBS – Stock Lösung + TWEEN 20 1,5ml + Aqua destillata ad 1000 ml. 

Tabelle 24: Blocking Lösung 

Waschmedium  
+ Trockenmilch (entfettet) 50 g/l 

 

Tabelle 25: Gel-Elektrophorese Lauf-Puffer 10-fach Stock-Lösung 

H2O ad 1000 ml 
Tris Base 30,3 g 

Glycin 144 g 
SDS 10 g 

 

Vor Gebrauch der 10-fach Stock-Lösung, wurde der Laufpuffer auf 1-fach verdünnt: 

100 ml Stock-Lösung+ a.d. ad 1000 ml. 
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Tabelle 26: Protein-Transfer-Puffer 10-fach Stock-Lösung 

H2O ad 1000 ml 
Tris Base 30 g 

Glycin 144,1 g 
SDS 30 g 

 

Vor Gebrauch der 10-fach Stock-Lösung, wurde der Transfer-Puffer auf 1-fach ver-

dünnt: 100 ml Stammlösung + 200 ml MeOH (Methanol) + a.d. ad 1000 ml 

Tabelle 27: Erstantikörper 

Kinase Konzentration 

p-38 1:1000 
phospho p-38 1:500 

JNK 1:1000 
phospho-JNK 1:500 

P-44/42 1:1000 
Phospho p-44/22 1:500 

 

Tabelle 28: Zweitantikörper (NA 934) 

Antikörper 
Zu detektierender 

Erstantikörper 
Konzentration 

peroxidase-linked-
species-specific whole 

antibody (from donkey) 
NA 934 

Anti-Rabbit-IgG 

p-38; phospho p-38; JNK, 
phospho-JNK;  

p-44/42 
1:5000 

 

Tabelle 29: Zweitantikörper (NA 931) 

Antikörper 
Zu detektierender 

Erstantikörper 
Konzentration 

peroxidase-linked-
species-specific whole 
antibody (from sheep) 

NA 931 
Anti-Mouse-IgG 

phospho p-44/42 1:5000 

 

2.8 Tiermodell und Versuchsaufbau 

 

Um die Auswirkung von SP 600125 untersuchen zu können, wurde als Grundlage des 

Experimentes ein bereits gut etabliertes Tiermodell für die Caerulein-induzierte akute 

Pankreatitis gewählt (31). Durch Willemer et al. wurde das Modell bereits an Mäuse 

angepasst (32) (siehe 1.3). Für die vorliegende Experimentierreihe wurden C57/Black 
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und MK-2 -/-Mäuse als Versuchstiere gewählt. Als zusätzlicher Leitfaden diente die 

Arbeit von Minutolia et al. (223). Die durchgeführte Applikationsabfolge wird in Tabelle 

32: Injektionsplan - exemplarisch erläutert. Die Versuchstiere wurden am Morgen vor 

Beginn des Experiments gewogen, um eine gewichtsadaptierte Menge von Caerulein 

applizieren zu können. Während des Experimentes wurden die Käfige in einem speziel-

len Arbeitsraum deponiert. Das Versuchsvorhaben wurde vorher bei der zuständigen 

Tierversuchsbehörde der Regierung von Oberbayern beantragt und genehmigt. 

2.8.1 Versuchstiere 

 

Insgesamt wurden sechs IVP´s (In-vivo-Pankreatitis) mit einem gemischten Pool aus 

Männchen und Weibchen von insgesamt 39 nicht-transgenen Tiere und 18 MK-2 -/- 

Tieren durchgeführt. Die Gruppe der nicht-transgenen Tiere war zwischen 6 und 16 

Wochen, die Knock-out Gruppe (MK-2 -/-) zwischen 12 und 30 Wochen alt. Den Stamm 

für die Gruppe der nicht-transgenen Tiere bildete die Linie C57/Black, der Firma 

CharlesRiver (Wiga, Sulzfeld, Deutschland). Die MK-2 -/-Tiere wurden ursprünglich 

ebenfalls aus der C57/Black Linie generiert (183). In diesem Fall konnte auf einen be-

reits bestehenden Pool mit einer limitierten Anzahl von Mäusen zurückgegriffen wer-

den. Sämtliche Tiere wurden gemäß dem Tierschutzgesetz in Käfigen gehalten. Im Tier-

stall herrschte ein konstanter 12 h Licht-Dunkel-Zyklus. Der Transport entfiel, da die 

Tiere bereits seit mehreren Wochen im hauseigenen Stall untergebracht waren. Am 

Vorabend des Versuchs wurde den Tieren lediglich die Nahrung entzogen. Zugang zu 

Wasser und Futter war am Tag während des Experiments jederzeit ungehindert mög-

lich (Sniff®, Soest, Dtl.). Die Mäuse verblieben während des gesamten Versuches in 

Gruppen zu drei oder vier Tieren in ihren Käfigen und wurden nur zur Behandlung her-

ausgenommen. Dabei wurde streng darauf geachtet, dass die wiederholte Verabrei-

chung von Caerulein und Inhibitor mittels einer 27-G-Kanüle immer intraperitoneal, 

nahe des rechten Hinterlaufs in einem flachen Winkel und nach kranial gerichtet, inji-

ziert wurden. Die verabreichte Menge sämtlicher Stoffe erfolgte gewichtsadaptiert. 
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Tabelle 30: Übersicht nicht-transgene Mäuse 

Versuch # 
NTG C57/B6 

Anzahl Tiere ♂ ♀ 
Ø Gewicht in 

Gramm 
Ø Alter in 
Wochen 

IVP 1 8 4 4 22,7 7 

IVP 2 8 8 0 25,9 9 

IVP 3 9 9 0 29,6 13 

IVP 4 6 6 0 28,5 11 

IVP 5 4 1 3 25,6 14 

IVP 6 4 0 4 23,4 7 

Gesamt 39 28 11 26 10 

 

Tabelle 31: Übersicht MK-2 -/- Mäuse 

Versuch # 
MK 2 -/- 

Anzahl Tiere ♂ ♀ 
Ø Gewicht in 

Gramm 
Ø Alter in 
Wochen 

MK 1 6 6 0 31,5 13 

MK 2 6 2 4 39,8 28 

MK 3 6 2 4 36,1 32 

Gesamt 18 10 8 35,8 24 

 

Es erfolgte die Gabe von Inhibitor, Caerulein sowie NaCl nach einem festgeschriebenen 

Schema (s.u.). Vor jedem Versuch wurden die Reagenzien frisch angesetzt. Die NaCl-

Kontrolltiere erhielt insgesamt vier Injektionen. Die Kontrolltiere mit ausschließlich SP 

600125 lediglich zwei Injektionen. Tiere, die ausschließlich für Caerulein vorgesehen 

waren, erhielten ebenfalls vier Injektionen. Die letzte Gruppe mit Caerulein und Inhi-

bitor bekam insgesamt sechs Injektionen. Begonnen wurde jeder Versuch mit der In-

duktion der Tiere durch Verabreichung des Inhibitors SP 600125. Bei Versuchsminute 

120‘ wurde außer den Kontrolltieren, allen Caerulein intraperitoneal injiziert. Weitere 

30‘ Minuten später bekamen alle für den Inhibitor vorgesehen Tiere eine Injektion mit 

SP 600125. Bei Versuchs-Minuten 180‘, 240‘ und 300‘ je eine erneute Gabe von Caeru-

lein. Das Versuchsende lag 360‘ Minuten nach der ersten Injektion. Alle Tiere überleb-

ten bis zu diesem Zeitpunkt. 
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Tabelle 32: Injektionsplan am Beispiel IVP 1 

 
S
e
x 

Genotyp Gewicht 
Cerulein 
Menge 

Inhi-
bitor 

SP600125 Cerulein SP600125 Cerulein Cerulein Cerulein Getötet Alter 

   Gramm µl µl min. min. min. min. min. min. min. Wochen 

Kontrolle 
NaCl 

w C57/Black 24 
nur NaCl 

240 
  NaCl  NaCl NaCl NaCl 360 6-8 

Kontrolle 
SP 

w C57/Black 20,5  205 0  150    360 6-8 

Cer+SP w C57/Black 20,8 208 208 0 120 150 180 240 300 360 6-8 

Cer w C57/Black 21 210   120  180 240 300 360 6-8 

Cer m C57/Black 23,5 235   120  180 240 300 360 6-8 

Cer+SP m C57/Black 24,5 245 245 0 120 150 180 240 300 360 6-8 

 

2.8.2 Versuchsaufbau mit Fragestellung und Hypothese 

 

Nach der unter 1.7 formulierten Fragestellung ergeben sich nun folgende zu untersu-

chende Versuchsanordnungen und Auswertungen. 

Tabelle 33: Fragestellung zum Versuchsaufbau 

Fragestellung und Hypothese Versuch und Auswertung Aussage 

Ist mit Caerulein bei allen Versuchstieren 
eine akute Pankreatitis ausgelöst worden? 

Vergleich der Amylase Werte bei 
der Gruppe der Kontrolltiere mit 

den Tieren aus der Caerulein Grup-
pe für Wildtyp und Knock-out 

Ja/Nein 

Ist bei den Tieren mit Agonist und Antago-
nist gegenüber den Tieren nur mit Agonist 
ein besserer? vergleichbarer? oder schwe-

rer Verlauf der Pankreatitis zu sehen? 

Vergleich der Gruppen Caerulein + 
SP 600125 und nur Caerulein für die 

Ergebnisse aus Trypsin, MPO und 
IL-6. Getrennt nach Wildtyp und 

Knock-out Tieren 

Bestätigung der Wirksamkeit 
des Antagonisten und ein 

möglicher Therapieansatz? 

Ist im Vergleich zwischen der Wildtyp- und 
Knock-out Tieren ein zusätzlicher Effekt 
durch die pharmakologische Hemmung 

der SAPK/JNK Kinase bei der MK-2 Gruppe 
zu sehen? 

Vergleich der Ergebnisse zwischen 
der NTG-Gruppe die mit Caerulein + 

SP 600125 und der MK-2 Gruppe 
mit demselben Spritzschema 

Durch Kombination eine effek-
tivere Therapiemöglichkeit? 

 

2.8.3 Asservation von Blut, Pankreas- und Lungenpräparation 

 

Am Ende des Applikationsregimes wurde wie folgt vorgegangen: Sämtliche Tubes wur-

den mit der Nummer der Maus und dem Organ beschriftet. Zur Präparation standen 

unterschiedliche Pinzetten, Scheren und weiteres chirurgisches Material zur Verfü-

gung. Das Vorgehen bei der Präparation ist bereits aus früheren Versuchen innerhalb 

der Arbeitsgruppe standardisiert und diente als Qualitätssicherung. Die Versuchstiere 
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wurden zuerst mit Isofluran in einem Exsikkator narkotisiert und nach Wirkungseintritt 

dekapitiert. Es folgte sogleich die Asservierung von Vollblut. Durch sofortige Zentrifu-

gation für zehn Minuten bei 14000 rpm und 4° Celsius wurde das Blut von seinen zellu-

lären Bestandteilen separiert. Das überstehende Serum wurde mit einer Pipette ent-

nommen und in flüssigen Stickstoff schockgefroren. Die weitere Verwahrung erfolgte 

anschließend bei – 80° Celsius. Zur Pankreasexstirpation wurde das Peritoneum groß-

flächig eröffnet und als Leitstruktur die Milz aufgesucht. Das Pankreas wurde unter 

Schonung von Magen und Duodenum präpariert, um eine mögliche Kontamination mit 

denaturierenden Enzymen zu vermeiden. Das herausgelöste Pankreaspräparat wurde 

nun sofort in 0,9% NaCl-Lösung gelegt und von verbliebenen Geweberesten gesäubert. 

Im Anschluss daran erfolgte die Feuchtgewichtsbestimmung mit einer Feinwaage. In 

weitere Teile separiert, wurde je ein Gewebeteil für eine histologische Aufarbeitung in 

PBS 3,7% eingelegt, ein weiteres zur Trockengewichtsbestimmung und insgesamt vier 

weitere Organstücke zur späteren Verwendung auf vier Tubes verteilt. Es folgte die 

Entnahme der Lunge. Nach einem Schnitt durch das Brustbein konnten beide Lungen 

nah am Hilus entfernt werden. Die entnommenen Organe wurden in 0,9% NaCl gesäu-

bert und gewogen. Es folgte nun das Schockgefrieren in flüssigem Stickstoff und eine 

sofortige Verwahrung bei -80°Celsius. 

 



Ergebnisse und statistische Auswertung 
 

47 
 

3. Ergebnisse und statistische Auswertung 

 

Die präsentierten Ergebnisse wurden wie beschrieben in Kapitel 2 erfasst und bearbei-

tet. Aus Gründen der Übersichtlichkeit wird die Gesamtheit der Rohdaten nicht ge-

zeigt. Die präsentierten Werte sind eine Zusammenfassung der Ergebnisse. Den nicht-

transgenen Versuchstieren wurde je eine Nummer von 1 – 39, und den Knock-out Tie-

ren (-/-) mit dem Attribut MK sowie je eine Zahl von 1 – 18 zugeordnet. Zusätzlich wird 

die Art der Behandlung angegeben. Kontrolltiere die nur physiologische NaCl-Lösung 

erhielten, sind mit dem Zusatz „NaCl“ (Behandlung 0) versehen. Mäuse, die lediglich 

mit dem Inhibitor SP 600125 behandelt wurden, haben die Abkürzung „SP“ (Behand-

lung 1) erhalten. Tiere, denen ausschließlich Caerulein injiziert wurde, sind mit „Cer“ 

(Behandlung 2) gekennzeichnet. Mäuse, denen beide Stoffe - Caerulein und SP 600125 

- injiziert wurden, haben die Abkürzung „Cer+SP“ (Behandlung 3). Analog zu diesem 

Schema, wurde die Gruppe der MK-2 -/- Tiere behandelt. 

Für die Gesamtanzahl (n) der nicht-transgenen Tiere gilt: 

Tabelle 34: Anzahl der Wildtyp Tiere 

Kontrolle NaCl 
Kontrolle 

SP 600125 
Caerulein 

Caerulein 
+ SP 600125 

Gesamtzahl 

6 6 10 17 39 

 

Für die Gesamtanzahl (n) der MK-2 -/- Tiere gilt: 

Tabelle 35: Anzahl der Knock-out Tiere 

Kontrolle NaCl 
Kontrolle 

SP 600125 
Caerulein 

Caerulein 
+ SP 600125 

Gesamtzahl 

3 3 6 6 18 

 

Zur Fehlerminimierung wurden die Analysen bei allen Proben im Doppelansatz be-

stimmt und der daraus resultierende Mittelwert als Ergebnis verwendet. Für die Be-

rechnung wurden keine Tiere ausgeschlossen. Eine Subgruppen-Analyse beispielsweise 

nach Geschlecht oder Gewicht ist aufgrund der geringen Zahl an Versuchstieren als 

kritisch zu beurteilen und wurde nicht durchgeführt. Bei der Grundbetrachtung der 
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Datenanalyse wird von einer Normalverteilung der Werte ausgegangen, welche ma-

thematisch die Anwendung eines linearen Modells ermöglicht. Zur statistischen Aus-

wertung (p-Wert) wurde ein Zweistichproben-T-Test mit den Mittelwerten der zu be-

stimmenden Behandlung einer Signifikanzanalyse für unabhängige Stichproben und 

ungleicher Standardabweichung nach Welch unterzogen. Als Signifikant wurde eine 

Abweichung von p ≤ 0,05 gewertet. Ausreiser wurden nicht als größte Beobachtung 

angegeben, flossen aber in die Berechnung mit ein. Eine Auswertung erfolgte für nach-

stehende Parameter: 

 Amylase (Serum) 

 Trypsin (Pankreas) 

 MPO (Lunge) 

 Interleukin-6 (Serum) 

Zur Veranschaulichung der Interaktion zwischen den Gruppen erfolgte die grafische 

Darstellung mittels Boxplot (                            Abbildung 9:Beispiel für Boxplot). Auf Signi-

fikanz wurden die unterschiedlichen Behandlungen innerhalb der nicht-transgenen 

und MK-2 -/-Gruppen, sowie im Vergleich beide Gruppen gegeneinander getestet. Zu-

nächst wurden in beiden Kohorten die Kontrolltiere „NaCl“ (Behandlung0) und 

SP600125 (Behandlung1) auf Signifikanz gegeneinander getestet. Da keine signifikan-

ten Unterschiede in den Laborparametern zu erwarten waren, wurden zur Vergröße-

rung der Population die Kontrollen „NaCl“ und Kontrollen „SP600125“ (Behandlung 0 

und 1) für die weitere statistische Auswertung zusammengefasst und die Nullhypothe-

se formuliert. Es folgt der Vergleich der Kontrollen (Behandlung 0 und 1) mit Caerulein 

(Behandlung 2) und die Testung der Kontrollen (Behandlung 0 und 1) mit Caerulein + 

SP600125 (Behandlung 3). Die letzte Signifikanzprüfung innerhalb der Gruppen erfolgt 

zwischen der Caerulein (Behandlung 2) und Caerulein + SP600125 (Behandlung 3). Zur 

Überprüfung der unter 2.8.2 formulierten Hypothese wurden in einem weiteren Aus-

wertungsschritt dann nicht-transgene und MK 2 -/- Tiere verglichen. Hier wurden aus 

beiden Kohorten die mit Caerulein behandelten Tiere, sowie die Caerulein + SP 600125 

Gruppen gegeneinander verglichen. Zur Überprüfung der Annahme, dass die Kombina-
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tion der deletierten MK-2 mit dem JNK-Inhibitor SP 600125 einen zusätzlichen Effekt 

hat, wurde die Caerulein Gruppe der nicht-transgenen Tiere mit der Caerulein + 

SP600125 Gruppe der MK-2 -/- miteinander verglichen. Zusätzlich wurden die Abwei-

chungen in Prozent angegeben. Diese beziehen sich auf den Median der ermittelten 

Wert in den Kontrollgruppen. Zusätzlich wurde als nicht-laborchemischer Parameter 

zur Bestimmung der Inflammation die Menge der Wassereinlagerung des Pankreasge-

webes erfasst. Für das Nass-Trocken-Gewicht wurde ebenso eine statistische Analyse 

durchgeführt. Die Visualisierung erfolgt über ein separates Balkendiagramm. 

 Ödemisierungsgrad (Pankreas) 

Bei allen Tieren - auch den Kontrollen - ist zu erwarten, dass eine Grundaktivität der 

untersuchten Parameter vorliegt. Mäuse, die nur mit Caerulein behandelt wurden, 

sollten bei allen untersuchten Werten eine signifikant höhere Aktivität gegenüber den 

Kontrollen aufweisen. Bei den Tieren, die zusätzlich mit dem JNK-Inhibitor SP 600125 

behandelt wurden, ist in der Theorie eine geringe Aktivität der Inflammation gegen-

über den ausschließlich mit Caerulein behandelten Mäusen zu erwarten. SP 600125 

hätte demnach einen positiven Effekt auf die akute Pankreatitis. Bei den Knock-out 

Tieren ist davon auszugehen, dass die Entzündungsparameter insgesamt niedriger sind 

als bei den nicht-transgenen Tieren. Zur Bestätigung der zweiten Arbeitshypothese 

sollte in Verbindung mit dem Inhibitor SP 600125 ein zusätzlicher positiver Effekt in der 

Inflammationsreaktion nachweisbar sein. 

Die im Diagramm dargestellten Daten sollen 

die Lage und den Bereich der ermittelten Da-

ten anzeigen. Dargestellt werden der Median, 

die Quartilen, die Extremwerte und gegebe-

nenfalls Ausreißer. 

 
 
 
 

                            Abbildung 9:Beispiel für Boxplot 



Ergebnisse und statistische Auswertung 
 

50 
 

3.1 Ergebnisse der Stimulation innerhalb der Kontrollen 

 

Zur Verifizierung der angenommenen Nullhypothese wurde in einem ersten Auswer-

tungsschritt der Vergleich auf signifikante Unterschiede in den Kontrollgruppen, zwi-

schen NaCl (Behandlung 0) und SP 600125 (Behandlung 1) durchgeführt. 

 

Abbildung 10: Amylase Aktivität Kontrollen 

 

Für die Amylase Aktivität (Abbildung 10: Amylase Aktivität Kontrollen) konnte weder 

bei den nicht-transgenen Tieren (p = 0,549), noch bei den MK-2 -/- Tieren (p = 0,876) 

ein signifikanter Unterschied festgestellt werden. 

Bei der Trypsin-Aktivität (Abbildung 11) der nicht-transgenen Kontroll-Tiere ist auf den 

ersten Blick zwar mit einer Signifikanz zu rechnen, nach der statistischen Analyse be-

stätigt sich der optische Eindruck jedoch nicht (p = 0,206). Die Trypsin-Aktivität der 

MK-2 -/- Tiere ist erwartungsgemäß ebenfalls nicht signifikant (p = 0.784). 
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Abbildung 11: Trypsin Aktivität Kontrollen 

 

Auch in der Aktivitätsbestimmung der MPO (Abbildung 12) lassen sich in beiden Kon-

trollgruppen keine statistischen unterschiede nachweisen. Der p-Wert, für die nicht-

transgene Tiere liegt bei p = 0,837 und die MK-2 -/- Tiere bei p = 0,771. 

 

Abbildung 12: MPO Aktivität Kontrollen 

 

Zuletzt noch die Testung der Interleukin-6 Aktivität (Abbildung 13). Zwischen den Kon-

trollen der nicht-transgenen Tiere besteht nach NaCl und SP600125 Gabe eine deutli-

che Signifikanz mit einem p = 0,002. Auch für die MK-2 -/- Gruppe erscheint optisch ein 
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deutlicher Unterschied. In der Analyse wird jedoch kein signifikanter Wert mit p = 

0,236 erreicht. 

 

Abbildung 13: Interleukin 6 Aktivität Kontrollen 
 

3.1.1 Ergebnisse des Ödemisierungsgrades der nicht-transgenen Tiere 

 

Abbildung 14: Ödemisierungsgrad nicht-transgene Mäuse 

 

Alle entnommenen Pankreata wurden vor und nach Trocknung gewogen. Hierbei 

ergaben sich Gewichtsunterschiede in den untersuchten Gruppen. Durch die Gabe von 

Caerulein kommt es als Ausdruck eines entzündlichen Vorganges zu einer verstärkten 

Wassereinlagerung in das Pankreasgewebe. Der zuvor berechnete Mittelwert des 
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Größte 
Beobachtung 

 388,2  876,2  911,7 

75% Quantil  305,25  780,1  818,5 

Median  242,15  707,8  773,6 

25% Quantil  230,95  663,7  706,2 

Kleinste 
Beobachtung 

 162,4  641,6  644,5 

Mittelwert  272,9  734,9  774,4 

 

Ödemisierungsgrades für die Caerulein Tiere von 1,04 liegt 30 % über den Kontrollen 

(0,8). Im Zweistichproben T-Test wird mit diesem Unterschied ein Signifikanzniveau mit 

einem p-Wert von 0,00045 zwischen den Gruppen erreicht. Die Tiere, die zusätzlich 

noch SP 600125 erhalten haben, sind mit einem Ödemisierungsgrad von 1,03 mit 28,75 

% über den Kontrollen fast identisch mit den Caerulein-Tieren. Ein p-Wert von 0,834 

zeigt hier keine Signifikanz an. Somit ergibt sich ein statistisch signifikanter Wert zwi-

schen den Kontrollen und den Tieren mit Caerulein und SP600125. Der p-Wert liegt bei 

0,00004 (Abbildung 14). 

3.1.2 Ergebnisse der laborchemischen Parameter für die nicht-transgenen Tiere 

 

Es folgt die Vorstellung der Daten für die Tiere mit Caerulein und SP 600125 Stimulati-

on. 

3.1.3 Ergebnisse der Serum Amylase-Aktivität (nicht-transgene Tiere) 

 

Abbildung 15:Amylase Bestimmung bei nicht-transgenen Tieren im Serum 
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Größte 
Beobachtung 

 12,68  22,20  14,67 

75% Quantil  7,22  14,57  13,53 

Median  3,34  9,32  8,86 

25% Quantil  2,61  7,02  5,49 

Kleinste 
Beobachtung 

 0,88  2,71  1,61 

Mittelwert  6,7  10,81  9,63 

 

Die ermittelten Werte der Amylase-Aktivität zeigt in allen drei Gruppen eine relativ 

gleichmäßige Verteilung ohne nennenswerte Ausreiser. Ausgehend von der Kontroll-

gruppe (Behandlung 0 und 1) ist die Amylase-Aktivität deutlich geringer gegenüber 

Caerulein (Behandlung 2) und Caerulein + SP600125 (Behandlung 3), Die Aktivität der 

α-Amylase im Serum ist für die Caerulein-Tiere mit +192 % deutlich über den unbe-

handelten Tieren und erreicht eine deutliche Signifikanz mit p = 3,9e-16. Für die Caeru-

lein + SP 600125 Gruppe besteht sogar eine +219 % höhere Aktivität gegenüber der 

Kontrolle, was einem deutlichen Signifikanzniveau mit p = 2e-16 entspricht. In der Tes-

tung zwischen Caerulein und Caerulein + SP600125 wird dagegen keine statistische 

Signifikanz mit einem p = 0,21 erreicht. 

 

3.1.4 Ergebnisse der Trypsin-Aktivität aus Pankreasgewebe (nicht-transgene Tiere) 

 

Abbildung 16: Trypsin Bestimmung bei nicht-transgenen Tieren im Pankreasgewebe 
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Größte 
Beobachtung 

 4,28  7,72  5,26 

75% Quantil  2,51  7,72  3,42 

Median  1,53  6,27  2,34 

25% Quantil  0,58  5,40  1,73 

Kleinste 
Beobachtung 

 0,06  3,08  0,47 

Mittelwert  2,09  7,77  2,61 

 

Bei Betrachtung des Boxplots ist die Breite der erhobenen Werte mit deutlichen Ab-

weichungen um den Median auffällig. Die ausschließlich mit Caerulein behandelten 

Tiere haben erwartungsgemäß die größte Aktivität im Pankreasgewebe. Bei den Cer + 

SP 600125 Tieren ist bis auf einen Ausreiser die höchste gemessene Aktivität in etwa 

auf dem Niveau der 75 % Quantile der Caerulein-Tiere. Im Median beider Gruppen ist 

jedoch kaum ein Unterschied. Ausgehend vom Median ist die prozentuale Steigerung 

der Trypsin-Aktivität von den mit Caerulein stimulierten Tiere mit +179 % gegenüber 

den Kontrollen zwar eindrücklich und man kann von einer aktiven Pankreatitis ausge-

hen, eine statistische Signifikanz wurde jedoch bei keiner der drei Testungen gefunden. 

Die Trypsin-Aktivität der Caerulein + SP 600125-Tiere verglichen mit den Kontrollen ist 

mit + 165 %, nur unerheblich unter der Caerulein-Gruppe. Behandlung 0 und 1 vergli-

chen mit Behandlung 2 ergab ein p =0,16. Behandlung 0 und 1 verglichen mit Behand-

lung 3 ergab ein p = 0,25 und Behandlung 2 verglichen mit Behandlung 3 ein p = 0,66. 

3.1.5 Ergebnisse der MPO-Aktivität aus Lungengewebe (nicht-transgene Tiere) 
 

Abbildung 17: MPO Bestimmung bei nicht-transgenen Tieren im Lungengewebe 
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Größte 
Beobachtung 

 54,42  349,72  770,46 

75% Quantil  40,61  214,70  146,94 

Median  31,18  124,97  90,91 

25% Quantil  16,87  96,97  70,93 

Kleinste 
Beobachtung 

 2,21  33,83  41,19 

Mittelwert  28,8  160,97  186,91 

 

In der Aktivitätsbestimmung der MPO im Lungengewebe sind zwischen den Gruppen 

teilweise signifikante Unterschiede festzustellen. Bis auf wenige Ausreiserwerte nach 

oben bei den Kontroll- und Caerulein-Tieren, die statistisch keine Relevanz haben, sind 

die Werte relativ homogen verteilt. Mit einem p-Wert von 3,5e-5 ist ein signifikanter 

Unterschied zwischen der Kontroll- und Caerulein Gruppe festzustellen, dies entspricht 

einer prozentualen Zunahme um knapp 310 %. Der ebenfalls signifikante p-Wert von 

4,9e-5 zwischen den Caerulein-Tieren (Behandlung 2) und den Caerulein + SP 600125 

Tieren (Behandlung 3) zeigt, dass die Inhibitor-Gabe auf die Aktivität der Entzündung 

im Lungengewebe einen Einfluss hat. Hier ist die Steigerung der Aktivität nur um 52 % 

angestiegen. Letztlich ist der Unterschied zwischen den Kontrollen (Behandlung 0 und 

1) und Caerulein + SP 600125-Tieren (Behandlung 3) mit einem p-Wert von 0,63 nicht 

mehr Signifikant. 

3.1.6 Ergebnisse der Interleukin-6 Aktivität aus Serum (nicht-transgene Tiere) 

 

 

Abbildung 18: Interleukin-6 Bestimmung bei nicht-transgenen Tieren im Serum 
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Die erhobenen Werte für Interleukin-6 sind bei den Kontroll-Tieren in einem niedrigen 

und eng umschriebenen Bereich. Die Aktivität für die mit Caerulein stimulierten Tiere 

sind gegenüber den Kontrollen höher und erreichen mit einem p-Wert von 0,046 eine 

statistische Signifikanz mit + 301 %. Der Streuungsbereich der einzelnen Werte ist da-

bei jedoch sehr breit. Für die mit Caerulein + SP 600125 behandelten Tiere ergibt sich 

aus den Zahlen eine Besonderheit. Hier liegen Median- und Mittelwert sehr weit aus-

einander und zudem ist der Mittelwert (186,91 pg/ml) höher wie in der Caerulein-

Gruppe (160,97 pg/ml). Dies lässt sich damit erklären das zwei Messwerte bei den Cae-

rulein + SP 600125 Tieren massiv nach oben abweichen. Im Boxplot werden diese Aus-

reiser nicht dargestellt, aber in der t-Testung berücksichtigt. Behandlung 0 und 1 ha-

ben im Vergleich mit Behandlung3 deswegen eine höhere Signifikanz mit einem p-

Wert von 0,0081 gegenüber Behandlung2. Aufgrund dessen fallen die Werte zwischen 

Caerulein und Caerulein + SP600125 Gruppe unerwartet aus. Tiere, die mit Behandlung 

3 behandelt wurden, wie im Boxplot (Abbildung 18) anhand des geringen Konfidenzin-

tervalls zwischen 61,78 und 120,04 erkennbar ist, haben vermutlich grundsätzlich eine 

geringere Interleukin-6 Aktivität gegenüber den Tieren, die nur Caerulein erhalten ha-

ben. Statistisch kommt es durch die hohen Ausreiser allerdings zu einem verzerrten 

Bild. Ein Signifikanzniveau wird mit einem p-Wert von 0,67 zwischen Behandlung 2 und 

3 zwar nicht erreicht, der höhere Mittelwert von Caerulein SP 600125 suggeriert je-

doch das die mit Inhibitor behandelten Tiere ungünstiger auf die Behandlung reagie-

ren. 

3.2 Ergebnisse der Stimulation für MK-2 -/- Tiere 

 

Die Auswertung der Ergebnisse für die MK-2 -/- Tiere erfolgte analog zu den nicht-

transgenen Tieren. Zu erwarten ist auch hier in der Kontrollgruppe eine Grundaktivität 

der laborchemischen Parameter. Insgesamt sollten die stimulierten Versuchstiere je-

doch eine geringer ausgeprägte Pankreatitis haben und in Verbindung mit dem Inhi-

bitor SP 600125 einen zusätzlichen Benefit gegenüber den nicht-transgenen Tieren, die 

ebenfalls mit SP 600125 behandelt wurden, aufweisen. Begonnen wurde auch hier mit 
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der Signifikanzprüfung zwischen den Kontrolltieren NaCl und SP 600125. Eine graphi-

sche Darstellung und Beschreibung ist zuvor unter Kapitel 3.1 erfolgt. 

3.2.1 Ergebnisse Ödemisierungsgrades MK-2 -/- Tiere 

 

Analog zur Kontrollgruppe der nicht-transgenen-Tiere haben die Knock-out Tiere eine 

geringere Ödembildung. Die mit Caerulein behandelten Tiere haben gegenüber der 

Kontrolle dabei eine 29,49 % höher Ödemisierung erreicht. Das entspricht im Zwei-

stichproben T-Test einem p-Wert von 0,0042 und ist signifikant. Die Tiere, die zusätz-

lich SP 600125 erhalten haben, zeigen im Vergleich mit der Kontrolle eine Zunahme um 

rund 19 %, was einem p-Wert von p = 0,0967 entspricht und kein Signifikanzniveau 

aufweist. Zu den reinen Caerulein-Tieren errechnet sich ein p-Wert von p = 0,2733 was 

ebenfalls nicht signifikant ist. 

 

Abbildung 19:Ödemisierungsgrad MK-2 -/- Mäuse 
 

3.2.2 Ergebnisse der klinischen Parameter für MK-2 -/- Tiere 

 

Auch bei den MK-2 Tieren sind durch die Caerulein-Gaben laborchemisch nachweisba-

re Reaktionen auslösbar. Die Testung erfolgte analog zu den nicht-transgenen Tieren. 
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Größte 
Beobachtung 

 550,3  923,7  920,4 

75% Quantil  518,0  915,3  884,5 

Median  414,0  861,5  829,45 

25% Quantil  395,5  839,2  747,1 

Kleinste 
Beobachtung 

 373,0  831,9  746,8 

Mittelwert  444,1  872,2  826,3 

 

3.2.3 Ergebnisse der Amylase Aktivität aus dem Serum (MK-2-/- Tiere) 

 

 

Abbildung 20: Amylase Bestimmung bei MK-2-/- Tieren im Serum 

 

Die Werteverteilung liegt bei allen Gruppen und Behandlungen in einem relativ eng 

umschriebenen Bereich ohne Ausreiser. Die Kontrolle unterscheiden sich zu den Caeru-

lein-Tieren mit einem p-Wert von 8,9e-9 statistisch signifikant und weißt eine 108 % 

Aktivität auf. Auch die Caerulein + SP600125-Tieresind gegenüber der Kontrolle statis-

tisch signifikant mit einem p-Wert von 3,8e-8, was in etwa einer 100 % höheren Aktivi-

tät entspricht. Kein Signifikanzniveau wurde zwischen der Caerulein und Caerulein + 

SP600125 Gruppe mit einem p-Wert von 0,24 erreicht. 
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Größte 
Beobachtung 

 7,96  9,08  9,82 

75% Quantil  5,44  8,72  7,50 

Median  5,10  4,32  5,54 

25% Quantil  4,58  1,33  4,09 

Kleinste 
Beobachtung 

 4,58  1,15  3,35 

Mittelwert  5,16  4,82  5,97 

 

3.2.4 Ergebnisse der Trypsin Aktivität aus dem Pankreasgewebe (MK-2 -/- Tiere) 

 

 

Abbildung 21: Trypsin Bestimmung bei MK-2-/- Tieren im Pankreasgewebe 

 

Bei Betrachtung der Trypsin-Aktivität ist ein sehr enges Konfidenzintervall im Blot zu 

erkennen, was für homogene Werte innerhalb der Kontrollgruppe mit nur wenigen 

Ausreißern um den Median spricht. In der Caerulein-Gruppe ist die Streuung dagegen 

deutlich größer. Prozentual ist Aktivität der Caerulein-Tiere gegenüber den Kontrollen 

um knapp über 15 % geringer. Insgesamt liegt aber kein signifikanter Unterschied zwi-

schen der Kontrollgruppe und der Caerulein-Gruppe mit einem p-Wert von 0,83 vor. 

Ein ähnliches Bild ergibt sich für die Gruppe, die mit Caerulein und SP600125 behan-

delt wurde. Die Aktivität dieser Gruppe liegt mit 8,6 % etwas oberhalb der Kontrolle 

und ist ebenfalls nicht signifikant mit einem p-Wert von 0,6. Im Vergleich von Behand-

lung 2 und 3 ergibt sich mit einem p-Wert von 0,46 auch keine Signifikanz. 
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Größte 
Beobachtung 

 4,41  11,81  6,85 

75% Quantil  3,74  10,28  6,25 

Median  3,18  8,11  4,45 

25% Quantil  2,79  7,03  3,40 

Kleinste 
Beobachtung 

 2,79  7,01  2,34 

Mittelwert  2,93  8,73  4,62 

 

3.2.5 Ergebnisse der MPO Aktivität aus dem Lungengewebe (MK-2 -/- Tiere) 

 

 

Abbildung 22: MPO Bestimmung bei MK-2-/- Tieren im Lungengewebe 

 

Bei der Aktivitäts-Messung der Myeloperoxidase zeichnet sich in der Knock-out Gruppe 

ein ähnliches Bild wie bei den nicht-transgenen-Tieren ab. Behandlung 2 ist im Ver-

gleich zu Behandlung 0 und 1 um +155 % erhöht und somit auch signifikant (p = 3,5e-5). 

Behandlung 0 und 1 unterscheidet sich zu Behandlung 3 nur um eine 40 % Aktivitäts-

erhöhung und ist statistisch nicht signifikant (p = 0,11). Der Vergleich von Behandlung 

2 mit Behandlung 3 zeigt schließlich nochmals eine signifikante Abnahme der Aktivität 

bei den mit Inhibitor behandelten Tieren (p = 0,00093). 

3.2.6 Ergebnisse der Interleukin-6-Aktivität aus dem Serum (MK-2 -/- Tiere) 

 

Betrachtet man die Boxplots für die Interleukin Messung, so ist bei allen 3 Gruppen 

eine relativ homogene Gruppierung um den Median zu erkennen. Lediglich ein Wert 

bei TBehandlung2 ist als Ausreiser zu verzeichnen. Die gemessenen Interleukin-6 Wer-
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te der Tiere, die nur NaCl oder SP 600125 bekommen haben, sind erwartungsgemäß 

gegenüber den Caerulein-Tieren niedriger. Die Serumaktivität von Interleukin-6 ist bei 

den Caerulein Mäusen um +750 % bezogen auf die Kontrolle höher. Das entspricht 

einer signifikanten Steigerung mit einem p-Wert von 0,0062. In der weiteren Auswer-

tung der Tiere, die Caerulein und SP 600125 bekommen haben, ist im Vergleich zur 

Kontrolle eine Steigerung der Aktivität von +486 %. Trotz dieser hohen Aktivitätssteige-

rung lässt sich keine Signifikanz messen. Der errechnete p-Wert im T-Test liegt bei p = 

0,093. Gegenüber den Caerulein-Tieren ist zwar eine Abnahme zu verzeichnen, aller-

dings ist diese nicht signifikant (p = 0,185). 

 

Abbildung 23: Interleukin 6 Bestimmung bei MK-2-/- Tieren im Serum 

 

 

 

 

 

Größte 
Beobachtung 

 32,47  96,10  96,09 

75% Quantil  24,13  96,10  68,34 

Median  8,93  75,96  52,30 

25% Quantil  4,36  35,36  39,48 

Kleinste 
Beobachtung 

 1,94  34,51  22,52 

Mittelwert  13,46  87,43  55,17 
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3.3 Ergebnisvergleich zwischen nicht-transgenen und MK-2 -/- Tieren 

 

Die noch verbliebene These aus der Hauptfragestellung zu dieser Arbeit soll eine Ant-

wort darauf geben, ob die Kombination aus MK-2 -/- und der Hemmung der SAPK/JNK 

Kinase zu einer Verbesserung der akuten Pankreatitis führen kann. 

Im ersten Auswertungsschritt betrachten wir die Unterschiede zwischen Kontrollen der 

nicht-transgenen-Mäuse und den MK 2 -/- -Tieren, die nur NaCl (Behandlung 0) bezie-

hungsweise SP 600125 (Behandlung 1) erhalten haben. 

Zunächst ist auffällig, dass die Basisaktivität gerade der MK-2 -/- Kontrollen im direkten 

Vergleich zu den nicht-transgenen Kontrollen zumindest im Median bei allen unter-

suchten Werten erhöht ist. Insgesamt scheint die Streuung der Werte bei den nicht-

transgenen Tieren deutlich größer zu sein. 

Für die Amylase (Abbildung 24) tritt dieser Unterschied besonders deutlich hervor. In 

der Signifikanztestung errechnet sich ein p-Wert von p = 0,00078. 

 

Abbildung 24: Vergleich der Amylase Aktivität bei den Kontroll-Tieren zwischen der nicht-transgenen und MK-2 -/- 
Gruppe 

 

Bei Trypsin (Abbildung 25) liegen die MK-2 -/- Mäuse im Median oberhalb der nicht-

transgenen Tiere. Letztere zeigen zudem eine sehr starke Streuung der einzelnen Wer-

te an. Ein signifikanter Unterschied zwischen den Gruppen liegt aber nicht vor (p = 

0,5348). 
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Abbildung 25: Vergleich der Trypsin Aktivität bei den Kontroll-Tieren zwischen der nicht-transgenen und MK-2 -/- 
Gruppe 

 

Für die Kontrollen in der MPO Bestimmung (Abbildung 26) ergeben sich statistisch kei-

ne signifikanten Unterschiede zwischen den verglichenen Gruppen (p = 0,351). 

 

Abbildung 26: Vergleich der MPO Aktivität bei den Kontroll-Tieren zwischen der nicht-transgenen und MK-2 -/- 
Gruppe 

 

Im Vergleich der Kontrollen für Interleukin-6 (Abbildung 27) ist schließlich knapp ein 

signifikanter Unterschied messbar. Der errechnete p-Wert im T-Test beträgt p = 0,046. 
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Abbildung 27: Vergleich der Interleukin-6-Aktivität bei den Kontroll-Tieren zwischen der nicht-transgenen und MK-2 
-/- Gruppe 
 

3.3.1 Gegenüberstellung der Ergebnisse für die Serum-Amylase 

 

In den noch zu verbleibenden Auswertungsschritten der laborchemischen Parameter 

werden folgende Behandlungen und Gruppen miteinander verglichen: die Caerulein-

Tiere (Behandlung 2) und die Caerulein + SP 600125-Tiere (Behandlung 3). Der Ver-

gleich Caerulein (Behandlung 2) und Caerulein + SP 600125 (Behandlung 3) aus der 

nicht-transgenen Mäuse-Population, sowie der entsprechende Vergleich in der MK-2 -

/- Gruppe. Schließlich als letzter und entscheidender Vergleich zur Beantwortung einer 

Hauptfragestellung: Caerulein-Tiere (Behandlung 2) der nicht-transgenen Gruppe mit 

den Tieren der MK-2 -/- Gruppe, welche Caerulein + SP 600125 (Behandlung 3) erhal-

ten haben. 

Die Aktivität der Amylase (Abbildung 28) ist bei den Caerulein-Tieren im Vergleich zwi-

schen den nicht-transgenen und Mk-2 -/- -Tieren mit einem p = 0,0004 signifikant, was 

eine Steigerung um rund 19 % bei den Knock-out Tieren bedeutet. Ebenfalls signifikant, 

wenn auch nur knapp, mit einem p-Wert von 0,0438, ist der Vergleich der nicht-

transgenen Caerulein-Mäuse (Behandlung 2) mit der MK-2 -/- Gruppe, die zusätzlich 

noch inhibiert wurden (Behandlung 3). Die MK-2 -/- Tiere haben eine 12 % höhere Ak-

tivität gegenüber den nicht-transgenen Tieren. Für die restlichen Testungen bestehen 

keine signifikanten Unterschiede. 
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Abbildung 28: Vergleich Amylase Aktivität der Caerulein und Caerulein + SP600125 Tiere zwischen der nicht-
transgenen und MK-2 -/- Gruppe 

 

3.3.2 Gegenüberstellung der Ergebnisse für Trypsin 

 

Der Aussagekräftigste Parameter in dieser Untersuchungsreihe über die schwere einer 

akuten Pankreatitis ist die Trypsin-Aktivität im Pankreasgewebe. Für die ermittelten 

Ergebnisse der Trypsin-Aktivität (Abbildung 29) gelten im Vergleich der untersuchten 

Tiere folgende Werte: In der Caerulein-Gruppe (Behandlung 2) wurde im Vergleich 

zwischen den nicht-transgenen und MK-2 -/- Tieren eine statistisch signifikante Ab-

nahme der Trypsin-Aktivität zugunsten der Knock-out Tiere um etwa -55% gemessen (p 

= 0,027). Ebenso existiert bei den Caerulein + SP 600125 Tieren (Behandlung 3) zwi-

schen den beiden Gruppen ein signifikanter Unterschied (p = 0,046). Auch hier fällt das 

Ergebnis zugunsten der MK-2 -/- mit -38 % geringerer Aktivität aus. Vergleicht man die 

Aktivitäten zwischen den Caerulein und Caerulein + SP 600125 Tieren (Behandlung 2 

und 3) innerhalb der jeweiligen Gruppen, so findet man keine signifikanten Unter-

schiede. Der Vergleich Caerulein (Behandlung 2) nicht-transgene Tiere mit Caerulein + 

SP 600125 der MK-2 -/- Tiere zeigt wiederum einen signifikanten Unterschied zuguns-

ten der Knock-out Tiere (p = 0,046), was einer geringeren Aktivität von -45 % ent-

spricht. 
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Abbildung 29: Vergleich Trypsin Aktivität der Caerulein und Caerulein + SP600125 Tiere zwischen der nicht-
transgenen und MK-2 -/- Gruppe 

 

Betrachtet man die Werte für die Tiere, die mit dem Inhibitor behandelt wurden 

(Behandlung 3) gegenüber den Tieren, die Caerulein erhalten haben (Behandlung 2), so 

ergibt sich in der nicht-transgenenGruppe für die inhibierten Tiere zwar eine Abnahme 

der Trypsin-Aktivität, diese ist jedoch nicht signifikant. Die MK-2 -/- Gruppe weist bei 

gleicher Testung in absoluten Zahlen sogar geringfügig höhere Werte gegenüber den 

Caerulein-Tieren aus. Eine Signifikanzniveau wird aber auch hier nicht erreicht. 

 

3.3.3 Gegenüberstellung der Ergebnisse für MPO: 

 

Für die aus Lungengewebe bestimmte Myeloperoxidase (MPO) (Abbildung 30) ist op-

tisch klar zu erkennen, dass die zusätzliche Gabe von SP 600125 in beiden Gruppen die 

Aktivität der MPO gegenüber den Caerulein-Tieren verringert. Vergleicht man die bei-

den Gruppen, die nur mit Caerulein behandelt wurden (Behandlung 2), so ist eine et-

was höhere Aktivität bei den MK-2 -/-Tieren messbar. Diese ist jedoch nicht signifikant 

(p = 0,573). Führt man die Testung für die beiden Gruppen aus, die zusätzlich noch SP 

600125 (Behandlung 3) erhalten haben, so sind die erhobenen Werte bei den nicht-

transgenen Tieren überraschend gegenüber den MK-2 -/-Tieren mit 77 % signifikant 

geringer (p = 0,0395). Der Unterschied zwischen Behandlung 2 und 3 ist sowohl bei den 

nicht-transgenen (p = 4,9e-5) (ca. -66 Prozent) als auch bei den Knock-out-Tieren (p = 



Ergebnisse und statistische Auswertung 
 

68 
 

0,00093) (ca. – 47 Prozent) jeweils zugunsten der Inhibierten Versuchstiere signifikant. 

Der letzte Vergleich, Caerulein (Behandlung 2) der nicht-transgenen Tiere mit MK-2 -/- 

Tieren Caerulein + SP600125 (Behandlung 3) ist mit einem p-Wert von 0,077 noch 

nicht signifikant. 

 

Abbildung 30: Vergleich MPO Aktivität der Caerulein und Caerulein + SP600125 Tiere zwischen der nicht-transgenen 
und MK-2 -/- Gruppe 
 

3.3.4 Gegenüberstellung der Ergebnisse für Interleukin-6: 

 

Analog zu den vorangegangen Messwerten wurde auch die Interleukin-6 Aktivität bei-

der Tierpopulationen miteinander verglichen (Abbildung 31). Wie bereits zuvor be-

schrieben, fällt auch hier die nicht-transgene Caerulein-Gruppe auf. Im Vergleich der 

Caerulein-Tiere (Behandlung 2) in beiden Gruppen zeigt sich kein statistisch messbares 

Signifikanzniveau. Für Caerulein + SP600125 (Behandlung 3) wird zwischen den Kohor-

ten eine Signifikanz erreicht (p = 0,02). Im Mittel werden für den Vergleich von Be-

handlung 2 und 3 innerhalb der Gruppen bei den Tieren mit Inhibitor geringere Werte 

ermittelt, diese sind jedoch nicht signifikant. Der abschließende Vergleich zwischen 

den nicht-transgenen Tieren mit Caerulein-Behandlung (Behandlung 2) und MK-2 -/- 

Tieren mit Caerulein + SP600125-Behandlung (Behandlung 3) zeigt jedoch einen statis-

tisch signifikanten Vorteil für die Knock-out Tiere mit einem p-Wert von 0,015 für die 

Interleukin-6 Aktivität im Serum. 



Ergebnisse und statistische Auswertung 
 

69 
 

 

Abbildung 31: Vergleich Interleukin-6 Aktivität der Caerulein und Caerulein + SP600125 Tiere zwischen der nicht-
transgenen und MK-2 -/- Gruppe 

 

3.4 Western-Blot 

 

Die Western-Blots wurden nach der Methode von Renart (220) beschrieben in Kapitel 

2.7 durchgeführt. Analysiert wurden p38, JNK/SAPK und p44\42 je als Gesamtprotein 

und in der phosphorylierten Form. Bei dem zusätzlich gewählten und am Ende der 

Kaskade stehenden Protein ATF-2, welches als Transkriptionsfaktor fungiert, konnte 

trotz Verwendung verschiedener Antikörper, Konzentrationen, Inkubations- und Be-

lichtungszeiten, keine stabile Phosphorylierung nachgewiesen werden. Auch die vom 

Hersteller bereitgestellten Positiv-Kontrollen zeigten keine Reaktion. Aus diesem 

Grund muss im Rahmen dieser Arbeit auf die verfügbare Literatur zur Funktion von 

ATF-2 und dessen Transkriptionsprodukte verwiesen werden. Aufgrund der niemals 

gleichen Bedingungen bei der Durchführung eines Western-Blots ist eine klare Aussage 

sehr schwierig und allenfalls als Trend anzusehen. In dieser Arbeit wird mit Hilfe der 

Software ImageJ (National Institutes of Health, USA) eine Hell/Dunkel Analyse der ein-

zelnen Banden in einem vor der Messung zu bestimmenden Bildausschnitt durchge-

führt. So kann jedem einzelnen Pixel ein Zahlenwert zugeordnet werden. Die genaue 

Durchführung ist im Folgenden beschrieben. Ein als Viereck gewählter Ausschnitt wird 

auf jede zu analysierende Bande des Western-Blots dupliziert. Das Ergebnis der Grau-
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stufenmessung wird in einer Kurve ausgegeben. Dabei hat ein rein weißer Punkt den 

Wert „null“ und tiefes schwarz „eins“ auf der y-Achse. Graustufenwerte liegen dazwi-

schen. Um den Fehler durch den Hintergrund zu reduzieren, wird parallel zur X-Achse 

eine gerade an den tiefsten Punkten der Kurve angelegt. Anhand dieses nun festgeleg-

ten Areals lässt sich die Fläche unter der Kurve berechnen. Die dabei ermittelten Zah-

lenwerte sind dimensionslos. Je dunkler der Blot umso größer die Kurve und somit die 

Proteinkonzentration. Eine weitere statistische Analyse wurde nicht durchgeführt, da 

die Qualität einiger Western-Blots für eine genauere Analyse nicht ausreichend war. 

Ebenso ist die Gesamtanzahl zu gering und die manuelle Begrenzung der „Area under 

the curve“ (AUC) mit einer hohen Toleranz verbunden. Die erhobenen Zahlen wurden 

aus allen zur Verfügung stehenden Western-Blots errechnet. Die Unterschiede sind in 

Prozent angegeben und zeigen somit lediglich einen Trend an. 

3.5 Pixelanalyse und Darstellung der Beispiel Western-Blots 

 

Die hier gezeigten Western-Blots und deren Ergebnisse sind lediglich eine Auswahl. 

Aus Gründen der Übersichtlichkeit werden nur die relevanten Ausschnitte gezeigt. In 

den nachfolgenden Balkendiagrammen wird aus den zur Verfügung stehenden Wes-

tern-Blots die durchgeführte Pixelanalyse Graphisch dargestellt. 

3.5.1 Gesamt und phospho SAPK/JNK Antikörper der nicht-transgenen Tiere 

 

 

Abbildung 32: phospho JNK und Gesamt JNK aus IVP 4 
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Die Funktion von SP 600125 besteht in der Hemmung der Stresskinase SAPK/JNK. Diese 

Hemmung betrifft allerdings nicht die Expression des Proteins an sich. Der Inhibitor 

verhindert nur die Phosphorylierung von JNK zu phospho-JNK und damit die Überfüh-

rung in die aktive Form. In denen als Beispiele gezeigten Blots ist gut zu erkennen, dass 

die Kontrolltiere ein deutliches Signal, eine für diese Kinase typische Doppelbande, im 

Gesamtantikörper für SAPK/JNK liefern. Wie zu erwarten sind nur sehr schwache Ban-

den bei der Detektion nach phosphorylierten JNK/SAPK Antikörper zu erkennen. Dies 

ist in der (Abbildung 32) und den korrespondierenden Zahlenwerten gut zu erkennen 

(Abbildung 33). Die phosphorylierte Variante ist deutlich geringer in der Zelle expri-

miert worden. Die ausschließlich mit Caerulein behandelten Tiere hingegen haben ein 

deutliches Signal bei phospho-JNK was für eine Aktivierung der Kinase spricht. Das ab-

geschwächte Signal im Gesamtantikörper lässt folgern dass es zu einem Verbrauch der 

unphosphorylierten Kinase zugunsten der phosphorylierten Form gekommen ist. Auch 

das lässt sich an den Zahlen im Balkendiagramm gut erkennen. Die mit Caerulein und 

Inhibitor behandelten Tiere dagegen haben ein abgeschwächtes Signal bei dem phos-

phorylierten Antikörper, was eine erfolgreiche Inhibierung nahe legt. 

 

Abbildung 33: Pixelmessung NTG JNK/phospho JNK 
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Für die zusätzlich mit Inhibitor behandelten Tiere sieht man eine geringere Zahl bei 

beiden Proteinvarianten. Das phosphorylierte Protein wird dabei gegenüber dem inak-

tiven Protein weniger exprimiert. 

3.5.2 Gesamt und phospho p38 Antikörper der nicht-transgene Tiere 

 

Der Nachweis von p38 war nahezu in allen Western-Blots möglich. Eine Phosphorylie-

rung war jedoch nicht durchgehend nachzuweisen. Dabei konnte bei den Kontroll-

Tieren überwiegend ein stabiles Signal detektiert werden. Für Mäuse mit Caerulein 

und Caerulein mit SP 600125 war dies nicht immer möglich (Abbildung 34). 

 

Abbildung 34: phospho p38 und Gesamt p38 aus IVP 4 

 

Betrachtet man die Pixelanalyse von allen Western-Blots, so ist im Gegensatz zu dem 

hier exemplarisch aufgezeigten Western Blot erkennbar, dass bei Caerulein-Tieren so-

wohl bei dem Gesamtantikörper als auch in der phosphorylierten Form wenig Unter-

schiede bestehen. Im Balkendiagramm (Abbildung 35) ist abzulesen, dass der Grad der 

Phosphorylierung geringfügig bei den NaCl Kontrollen abfällt. Kommt ein Agens in 

Form von Caerulein oder SP 600125 hinzu, ist die Phosphorylierung etwas stärker aus-

geprägt. In absoluten Zahlen sind aber kaum Änderungen zu erkennen. 
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Abbildung 35: Pixelmessung NTG p38/phospho p38 

 

3.5.3 Gesamt und phospho p44\42 Antikörper der nicht-transgenen Tiere 

 

In den angefertigten Western-Blots ist im Balkendiagramm zu erkennen, dass die Kon-

trolltiere eine überwiegend stabile Phosphorylierung von p44\42 bei den mit Caerulein 

behandelten Tieren nachweisbar. Auch für die restlichen Versuchstiere, die mit Caeru-

lein beziehungsweise SP 600125 behandelt wurden, ist eine stärkere Phosphorylierung 

gegenüber dem Gesamtantikörper erkennbar (Abbildung 36). 

 

Abbildung 36: phospho p44\42 und Gesamt p44\42 aus IVP 3 
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Abbildung 37: Pixelmessung NTG p44\42 / phospho p44\42 
 

Die Zusammenfassung der Pixelmessung für p44\42 zeigt bei den Kontrolltieren für die 

phosphorylierte Form gegenüber dem Gesamtantikörper eine etwas geringere Aktivie-

rung. Der optische Eindruck für die Caerulein und Caerulein + SP 600125 Tiere bestätigt 

sich auch in den Zahlen der Pixelmessung (Abbildung 37). 

3.6 Western-Blot MK-2 -/- 

 

Analog zu den nicht-transgenen Mäusen, wurde eine Auswertung der Western-Blots 

auch für die MK-2 -/- Tiere durchgeführt 

3.6.1 Gesamt und phospho SAPK/JNK Antikörper der MK-2 -/- Tiere 

 

Die Deaktivierung der Mapkap-Kinsase-2 (MK-2) sollte sich in der Expression von 

SAPK/JNK nicht auswirken. In dem gezeigten Beispiel Blot (Abbildung 38) ist dies gut zu 

erkennen. Die mit Caerulein stimulierten Tiere zeigen gegenüber den Kontrollen und 

den mit Inhibitor behandelten Tieren deutlich kräftigere Banden und damit für eine 

erfolgreiche Phosphorylierung. 
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Abbildung 38:phospho SAPK/JNK und Gesamt SAPK/JNK aus IVP 6 

 

Dies spiegelt sich auch in den Zahlen nach der Pixelanalyse wieder (Abbildung 39). Bei 

den Kontrollen ist der Gesamtantikörper stärker exprimiert. Dies kehrt sich bei den 

Caerulein Tiere und inhibierten Tieren um. Hier ist die phosphorylierte Form der 

SAPK/JNK dominierend. 

 

Abbildung 39: Pixelmessung MK2 JNK/phospho JNK 
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3.6.2 Gesamt und phospho p38 Antikörper der MK-2 -/-Tiere 

 

Auch für die MK-2 -/- Gruppe wurden Western-Blots mit der MAPK p38 angefertigt. In 

der Gesamtanalyse der Pixel fallen vor allem die deutlich geringeren Zahlen gegenüber 

den nicht-transgenen Tieren auf (Abbildung 41). Zudem ist das Signal bei phosphory-

lierten p38 bei den Tieren die den Inhibitor SP 600125 erhielten deutlich niedriger ge-

genüber dem Gesamtantikörper. Ein Effekt der bei den nicht-transgenen Tieren nicht 

ersichtlich war (Abbildung 40). 

 

Abbildung 40:phospho p38 und Gesamt p38 aus IVP 6 
 

 

 

Abbildung 41: Pixelmessung MK-2 p38/phospho p38 
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3.6.3 Gesamt- und phosphorylierte p44/42-Aktivität in MK-2-/- Tieren 

 

 

Abbildung 42: phospho p44\42 und Gesamt p44\42 aus IVP 6 

 

 
 
Abbildung 43: Pixelmessung MK2 p44\42 / phospho p44\42 

 

Entsprechend den nicht transgenen Tieren ist im Western-Blot auch bei den MK-2 -/--

Tieren die typische Doppelbande für p44\42 zu sehen (Abbildung 42). In der Pixelana-

lyse der Gesamten Western-Blots erkennt man, dass die Kontrolltiere im Vergleich zu 

dem Gesamtantikörper eine geringere Phosphorylierung aufweisen. Bei den Caerulein-

Tieren halten sich beide Formen in etwa die Waage. Erst durch die Zugabe des Inhi-

bitors wird die Expression der phosphorylierten Variante gegenüber dem Gesamtanti-

körper verringert (Abbildung 43). 

15640 

11804 11280 

9445 

13280 

9205 

11427 

8042 

0

5000

10000

15000

20000

Kontrolle
NaCl

Kontrolle
SP 600125

Caerulein Caerulein
+ SP

600125

P
ix

e
l 

Pixelmessung p44\42 / phospho p44\42 (MK-2 -/-) 

p44/42

phospho p44/42



Diskussion 
 

78 
 

4. Diskussion 

 

Obwohl in den letzten Jahrzehnten deutliche Fortschritte im Verständnis der Patho-

physiologie der akuten Pankreatitis und in der intensivmedizinischen Behandlung ge-

macht wurden, sinkt die Zahl der Todesfälle gerade bei schweren oder schwersten Ver-

läufen kaum (224). Die Notwendigkeit eine kausale Therapie anbieten zu können be-

steht aus mehreren Gründen. Nicht nur für die Behandlung exazerbierter Pankreatiti-

den, die aufgrund von Alkohol oder Gallensteinleiden entstehen. Sondern auch für 

chronische Pankreatitiden, deren Auslöser in der autoimmunen oder hereditären Ge-

nese zu suchen sind und schließlich die iatrogen verursachte akute Pankreatitis, die 

nach medizinischen Eingriffen wie etwa der endoskopisch retrograden Cholangio-

Pankreatikographie (ERCP) vorkommen kann. Im günstigsten Fall könnte mit einer me-

dikamentösen Prophylaxe gerade die sogenannte post-ERCP Pankreatitis (225) ver-

mieden werden. Betrachtet man die Zahlen der post-ERCP Pankreatitiden, dann sind 

diese über Jahre relativ stabil. In einem nicht selektionierten Patientenkollektiv und je 

nach Studie, liegt die Inzidenz bei bis zu 10 % und die Mortalität aufgrund des iatroge-

nen Eingreifens in Folge bei knapp unter einem Prozent (226), (227). Diverse Untersu-

chungen zeigen zwar, dass die prophylaktische Gabe von unterschiedlichen Medika-

menten hilfreich sein kann. Die Wirksamkeit ist in der aktuellen Studienlage nicht hin-

reichend bewiesen aber aktuell Gegenstand der Diskussion. In jüngster Zeit wird die 

Gabe von Indometacin zur Hemmung der Prostaglandinfreisetzung bei Hochrisikopati-

enten propagiert (228). Dieses Vorgehen scheint vor allem in Kombination bei frustra-

nen Stenteinlagen sich als günstig zu beweisen (229). Konnten Döbrönte et al. für die 

breite Masse der Patienten noch keine signifikante Verbesserung in der Prävention der 

post-ERCP Pankreatitis nachweisen (230), so haben Luo et al in einer Multi-Center Stu-

die zeigen können, dass die rektale Gabe von Indometacin das Auftreten einer post-

ERCP Pankreatitis deutlich reduzieren kann (231). Ausgehend von neuen Erkenntnissen 

ist die langfristige Zielsetzung eine wirksame Therapie zu etablieren. Durch die weiter 

voranschreitende Identifizierung der beteiligten Signalkaskaden und die Verfügbarkeit 
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von effektiven pharmakologischen Hemmstoffen, stehen Ansätze bereit, neue Wege in 

der Behandlung der akuten als auch der chronischen Pankreatitis aufzuzeigen. Die In-

hibierung der Stresskinasen gilt hier als ein möglicher pharmakologischer Ansatzpunkt 

in der Therapie einer akuten Pankreatitis. 

Das Ziel dieser Arbeit war die Beantwortung von zwei Fragestellungen: Ist durch die 

selektive Inhibierung der SAPK/JNK mit SP 600125 eine Behandlung der akuten Pan-

kreatitis möglich? Und im speziellen: Hat die zusätzliche Hemmung von SAPK/JNK bei 

MK-2 -/- Mäusen einen zusätzlichen positiven Effekt bei der akuten Pankreatitis? 

4.1 Diskussion der Ergebnisse 

 

Mit den hier durchgeführten Experimenten konnte gezeigt werden, dass mit einer int-

raperitonealen Injektionen von Caerulein eine akute Pankreatitis bei beiden Genoty-

pen auslösbar ist und die beschriebenen Stresskinasen in dieses geschehen involviert 

sind. Aus den Ergebnissen der Inhibierung von SAPK/JNK lassen sich Rückschlüsse auf 

die Funktion der Kinasen und deren pathophysiologischen Rolle bei der akuten Pan-

kreatitis ableiten, die im Folgenden näher erläutert werden. 

Vergleicht man die Ergebnisse für die Amylase, liegen unerwartet die Werte der nicht-

transgenen Tiere, die zusätzlich zu Caerulein den Inhibitor SP 600125 erhalten haben, 

mit der Amylase-Aktivität über denen, die ausschließlich mit Caerulein behandelt wur-

den (Abbildung 15). Diese Werte sind zwar nur gering und nicht signifikant erhöht, eine 

einfache Erklärung für die Zunahme der Aktivität ist jedoch nicht möglich. Bekannt und 

bewiesen ist, dass ausgeschaltete MK-2-Kinasen einen protektiven Effekt bei der Cae-

rulein-induzierten Pankreatitis haben. Bei den MK-2 -/- Tieren ist zu erkennen, dass die 

Aktivität der Amylase bereits bei den Kontrollen erhöht ist (Abbildung 10 + Abbildung 

20). Dementsprechend fällt der Unterschied zu den Caerulein-Tieren geringer aus. Hier 

ist ein Ansatz zur Erklärung dieses Phänomens die deletierte MK-2-Kinase. Es könnte 

sein, dass das im Normalfall von MK-2 mitaktivierte HSP hierfür verantwortlich ist. Be-

legbar ist diese Aussage aber an den vorhandenen Ergebnissen nicht. Laborchemisch 

zeigt sich in beiden Gruppen keine signifikanten Veränderungen in der Amylase-
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Aktivität bei den Tieren mit Caerulein und SP 600125. Die Fragestellung, ob die Kombi-

nation von SAPK/JNK Inhibitor zusammen mit MK-2 (-/-) (Behandlung 3) eine signifi-

kante Veränderung gegenüber nicht-transgenen Caerulein-Mäusen (Behandlung 2) 

bringt, kann mit Ja beantwortet werden. Der p-Wert liegt hier bei 0,0438. Allerdings 

liegt die Signifikanz in diesem Fall zugunsten Caerulein-Tiere. Die Knock-out Tiere, die 

zusätzlich noch SP 600125 erhalten haben, weisen eine um 12 Prozent höhere Aktivität 

aus (Abbildung 28).Die etwas geringeren Aktivitätswerte von Behandlung 3 gegenüber 

Behandlung 2 in der MK-2 (-/-) sind mit einem p-Wert von 0,24 nicht signifikant 

(Abbildung 20). Es kann somit festgestellt werden, dass in dieser Untersuchung die 

Hemmung der SAPK/JNK mit SP 600125 innerhalb des Beobachtungszeitraums keinen 

positiven Einfluss in beiden Gruppen auf die Aktivität der Serum-Amylase hat. Die Be-

stimmung der Amylase ist eine gängige laborchemische Untersuchung und geht in vie-

len Fällen mit einer Erhöhung der Serum-Amylase einher. Sie ist aber nicht beweisend 

für eine Pankreatitis und ist keinesfalls ein Marker für die Schwere der akuten Pankrea-

titis. Ebenso ist die Amylase kein pankreasspezifisches Enzym. Zu vermuten ist, dass 

durch die anfängliche Induktion mit Caerulein bereits sehr früh eine erhöhte Serum-

Amylase unabhängig von einer späteren erfolgreichen Inhibierung der Inflammations-

kaskade vorliegt. Innerhalb des in dieser Untersuchung gewählten Beobachtungszeit-

raums ist demnach bei einer Halbwertszeit der Amylase von 9-18 Stunden nicht von 

einer Abnahme der Amylase-Werte auszugehen (232). 

 

Abbildung 44: Halbwertszeit Amylase (Quelle: Selig et. al) 
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Der zweite analysierte Pankreatitis Parameter ist das Trypsin aus lysierten Pankreas-

gewebe. Trypsin korreliert bereits erheblich besser mit der Schwere der Pankreatitis 

und ist deutlich spezifischer. Anhand der Grafiken ist zu erkennen, dass die nicht-

transgenen Mäuse eine deutlich höhere Aktivität des Trypsins gegenüber den MK-2 

Tieren aufweisen. Dieses Ergebnis wurde bereits in der Arbeit von Tietz beschrieben 

(184). Interessanterweise ist zu beobachten, dass nicht-transgene Tiere, die nur mit 

Inhibitor behandelt, wurden einen Anstieg in den Trypsinwerten gegenüber den reinen 

NaCl-Kontroll Tieren aufweisen. Die MK-2 -/- Kontrollen bewegen sich auf vergleichba-

ren Aktivitätsniveau (Abbildung 11). In beiden Fällen wird aber kein Signifikanzniveau 

erreicht. Eine mögliche Erklärung für diese Beobachtung ist schwierig. Man kann mut-

maßen, dass SP 600125 neben seiner Inhibitorfunktion auch als Noxe gegenüber den 

Pankreaszellen fungiert und selbst eine Translokation in die Azinus-Zelle auslösen 

könnte. Nicht-transgene Tiere die Caerulein und SP 600125 erhielten, zeigen im Ver-

gleich zur ausschließlichen Caerulein-Stimulation eine nur gering erniedrigte Aktivität 

(Abbildung 16). In der MK-2 -/- -Gruppe ist, wie bereits erwähnt, eine geringere Ge-

samtaktivität des Trypsins zu sehen. Überraschend ist, dass sowohl Kontrollen, Caeru-

lein und Caerulein + SP 600125-Tiere sich im Aktivitätsniveau des Trypsins kaum unter-

scheiden (Abbildung 21). Dies kann als Beleg für eine wirksame Protektion durch Dele-

tierung von MK-2 interpretiert werden. Als letzter Baustein zur Klärung der zweiten 

Hauptfragestellung wird schließlich, wenn auch nur knapp, ein signifikanter p-Wert von 

0,046 im Vergleich der nicht-transgenen Caerulein- mit den MK-2 -/- -Tieren mit Caeru-

lein und SP 600125 erreicht (Abbildung 25). Das entspricht einer um 44 Prozent gerin-

geren Aktivität. Dieses Ergebnis lässt in der Tat Spielraum für die Aussage, dass die 

duale Hemmung von zwei potenziell Pankreatitis-begünstigenden Faktoren einen posi-

tiven Effekt auf die Caerulein-induzierten Pankreatitis haben könnte. 

Das im Blutserum bestimmte und in der Humanmedizin als systemischer Entzündungs-

parameter verwendete Interleukin-6 zeigt wie bei den anderen Parametern Unter-

schiede zwischen den verschiedenen Behandlungsgruppen. Sowohl bei den nicht-

transgenen (Abbildung 18) als auch bei den MK-2 -/- -Mäusen (Abbildung 23) ist die 

Aktivität der Kontroll-Tiere signifikant geringer als bei den Tieren, die mit Caerulein 
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stimuliert wurden, so dass von einer systemischen Entzündungsreaktion gesprochen 

werden kann. In der Theorie sollten die ausschließlich mit Caerulein behandelten Tiere 

bei der Interleukin-6 Messung in derMK-2 -/- Gruppe erwartungsgemäß durch eine 

schwächer ausgeprägte Pankreatitis gegenüber den nicht-transgenen Tieren auffallen. 

In den dargestellten Diagrammen ist in absoluten Zahlen die niedrigere Interleukin-6 

Aktivität im Vergleich zu den nicht-transgene Mäusen gegenüber den MK-2 -/- Tieren 

tatsächlich zu erkennen. In beiden Gruppen, die zusätzlich mit Inhibitor behandelten 

wurden (Behandlung 3), nimmt die Aktivität von Interleukin-6 gegenüber den Caeru-

lein-Tieren ab (Behandlung 2), diese bewegt sich aber jeweils in einem nicht signifikan-

ten Bereich. In der nicht-transgenen Gruppe muss jedoch bedacht werden, dass durch 

einige extrem hohe Werte eine statistische Verzerrung möglich ist. Diesem Umstand ist 

möglicherweise zu verdanken, dass im Vergleich die MK-2 -/- Tiere mit Inhibitor und 

Caerulein (Behandlung 3) gegenüber den nicht-transgenen Mäusen eine signifikante 

Abnahme der Aktivität von Interleukin-6 aufweisen. Es überrascht nicht, dass die inhi-

bierten MK-2 -/- Tiere gegenüber den nicht-transgenen Caerulein Tieren ebenfalls eine 

signifikante Aktivitätsabnahme verzeichnen (Abbildung 31). Ähnlich wie bei Trypsin ist 

auch bei Interleukin-6 zu vermuten, dass die protektive Wirkung bei den MK-2 -/- Tie-

ren eine systemische Inflammationsreaktion abschwächen kann und somit die Gabe 

von SP 600125 nur unwesentlich zu einer Verbesserung beiträgt. 

In den aus Lungengewebe ermittelten Ergebnissen für die Myeloperoxidase (MPO), 

lässt sich eine extrapankreatische Organbeteiligung bei der akuten Pankreatitis ablei-

ten. Dass eine pulmonale Affektion erfolgt, ist in der signifikant erhöhten MPO Aktivi-

tät bei den Caerulein-Tieren in beiden Gruppen gegenüber den Kontrollen erkennbar. 

Wichtigstes Ergebnis ist jedoch die signifikante Reduzierung der MPO-Werte bei den 

SP 600125 Tieren (Behandlung 3) gegenüber den Caerulein-Tieren (Behandlung 2) so-

wohl in der nicht-transgenen als auch in der MK-2 -/- Gruppe. Vergleicht man nun noch 

die Wirkung von SP 600125 (Behandlung 3) in der MK-2 -/- Gruppe mit den Caerulein-

Tieren (Behandlung 2) der nicht-transgenen Tiere, so kommt es zwar zu einer Aktivi-

tätsabnahme, diese ist jedoch nicht signifikant (Abbildung 30). Die Inhibierung der 

SAPK/JNK ist demnach in beiden Gruppenerfolgreich. Allerdings ist die Kombination 
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von JNK-Kinaseninhibierung und MK-2 Gendeletion zumindest in dieser Untersuchung 

nur bedingt erfolgreich und erbringt keinen zusätzlichen Vorteil im Sinne einer milde-

ren Pankreatitisverlaufsform. 

Auch die Flüssigkeitseinlagerung in das Pankreasgewebe, die sog. Ödemisierung, ist 

Ausdruck eines entzündlichen Prozesses. In beiden Gruppen liegen die Werte der Kon-

trolltieren unter denen der Caerulein-Tiere. Letztere haben als Ausdruck einer akuten 

Pankreatitis eine signifikante Zunahme des Ödems (Abbildung 14). Bei den mit Caeru-

lein stimulierten MK-2 -/- Tieren ist die Ödemisierung etwas geringer (Abbildung 19). 

Hierfür ist möglicherweise der protektive Effekt durch die Deletion von MK-2 -/- er-

kennbar. Der Unterschied zu den nicht-transgenen Tieren ist aber nicht signifikant. 

Durch die zusätzliche Gabe von SP 600125 ist in der MK-2 -/- -Gruppe sogar ein deutli-

cher Rückgang des Ödems zu sehen. Ein Effekt der durchaus in das Bild der sonst erho-

benen Daten für die Knock-out Tiere passt. Auch im Ödemisierungsgrad der nicht-

transgenen Gruppe spiegeln sich die restlichen Laborwerte eher wider. Dort bewegen 

sich Caerulein und die zusätzlich inhibierten Tieren auf fast gleichem Niveau. SP 

600125 hat in der nicht-transgenen Gruppe somit keinen nennenswerten Effekt auf 

den Ödemisierungsgrad. In der Knock-out Gruppe ist ein kleiner unwesentlicher Vorteil 

erkennbar. 

In Anbetracht der Ergebnisse kann die Annahme unterstützt werden, dass die 

SAPK/JNK Aktivierung eine Folge der durch Caerulein ausgelösten sekretorischen Blo-

ckade und einer sich darauf anschließenden intrazellulären Zymogenaktivierung sein 

muss. Allerdings darf bei der akuten Pankreatitis angenommen werden, dass die 

SAPK/JNK eine Doppelrolle innehat. Einerseits wird die Kinase durch Entzündungsme-

diatoren aktiviert, andererseits ist die SAPK/JNK selbst in der Lage pro-inflammatorisch 

zu wirken. Nimmt man beispielsweise als Ausgangspunkt die Trypsinaktivierung, dann 

führt diese zwar zu einem großen Zellschaden im Pankreas, für das Voranschreiten der 

lokalen und systemischen Entzündung scheint das aktivierte Trypsin jedoch nicht wei-

ter benötigt zu werden (233). Wird jedoch Cathepsin B gehemmt, ist zwar die Trypsin-

aktivierung geringer, die Aktivierung von SAPK/JNK bleibt davon unbeeindruckt (234). 
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Zudem scheint es nur wenige Kinasen zu benötigen um den Prozess in vollem Umfang 

anzustoßen. Die Gruppe der Versuchstiere, die mit dem SAPK/JNK Inhibitor SP 600125 

behandelt und dann wiederholt mit Caerulein stimuliert wurden, zeigen im Western-

Blot zwar eine geringere Phosphorylierung und damit eine Hemmung der SAPK/JNK. 

Dies hat offenbar auf die bereits einsetzende Inflammation in der Akutphase nur einen 

sehr geringen Effekt und ist wohl alleine nicht in der Lage das Voranschreiten der 

akuten Pankreatitis entscheidend zu beeinflussen. Zudem ist denkbar, dass die akti-

vierte SAPK/JNK eine Pankreatitis weiter begünstigt und das zusätzliche Faktoren und 

Mechanismen die Caerulein-induzierte akute Pankreatitis beeinflussen. Die Zymogen-

aktivierung ist vermutlich im Pankreasgewebe demnach nur ein Faktor neben der Akti-

vierung durch pro-inflammatorische Zytokine bei der SAPK/JNK-Induktion. Die nicht 

pankreasspezifischen Marker scheinen diese Theorie zu stützen. Die mit SP 600125 

behandelten Tiere haben bei den systemischen Entzündungsparameter Interleukin-6 

und MPO geringere Werte gegenüber den Caerulein Tieren. Dies ist bei beiden Phäno-

typen zu beobachten. Ein Umstand der sich durch das ubiquitäre Vorkommen von 

SAPK/JNK erklären lassen könnte. Wie bereits erläutert, wird nach Resorption von SP 

600125 die SAPK/JNK auch in anderen Zellen gehemmt. In diesem Kontext ist erklär-

bar, warum die systemischen Inflammationsparameter sehr gut auf die Inhibierung 

durch die SAPK/JNK reagieren, während die dem Pankreas zuordenbaren Parameter 

überwiegend fast unverändert bleiben.  

Wie an anderer Stelle bereits erläutert, wurden zur weiteren Analyse der zellulären 

Signalkaskaden eine Reihe von Western Blots angefertigt. Aufgrund mangelnder Re-

produzierbarkeit und damit fehlender semiquantitativer Analyse diverser Western 

Blots war eine statistische Auswertung nicht möglich. Die abgebildeten exemplarischen 

Western Blots und korrespondierender Balkendiagramme zeigen nur einen Trend. 

Die SAPK/JNK MAP-Kinase nimmt eine zentrale Rolle innerhalb der Inflammationsreak-

tion, nicht nur bei der Pankreatitis, sondern vermutlich in allen Zellen des Organismus 

ein. Mit SP 600125 steht pharmakologisch ein potenter Inhibitor speziell für diese 

Kinase zur Verfügung. Dass die Phosphorylierung der SAPK/JNK in gewissen Grenzen 
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erfolgreich bei beiden Genotypen gehemmt wurde, lässt sich durch die angefertigten 

Western Blots gut zeigen. Allerdings sind Unterschiede erkennbar und es entsteht op-

tisch und anhand der Zahlen der Eindruck, dass die Hemmung der Phosphorylierung 

bei den nicht-transgenen Mäusen stärker gegenüber den Knock-out Mäusen ausge-

prägt ist (Abbildung 32 + Abbildung 33). Besonders ausgeprägt ist diese Beobachtung 

bei den SP 600125 Kontrollen. Ebenso ist die erfolgreiche Hemmung der nicht-

transgenen Tiere die mit Caerulein und SP 600125 behandelt wurden zu sehen. Für 

dieselbe Behandlung bei den MK-2 -/- Mäusen gilt dies jedoch nicht. Hier halten sich 

die inaktive und aktive Kinase in etwa auf gleichen Niveau (Abbildung 38 + Abbildung 

39). Schlussendlich lassen sich die Unterschiede somit durch die deletierte MK-2-

Kinase erklären. Ausgehend von der Tatsache, dass MK-2 -/- Tiere einen gewissen 

Schutz gegenüber der Caerulein-induzierten Pankreatitis haben, sind mehrere Erklä-

rungsansätze denkbar. Da die Zelle vermutlich versucht ihr originäres Reaktionsmuster 

auf einen Stimulus aufrechtzuerhalten, könnten durch die Deletion von MK-2 unter 

Umständen über Seitenwege andere Enzyme hochreguliert werden, die eine Phospho-

rylierung der SAPK/JNK anstoßen. Möglich ist aber auch, dass durch den protektiven 

Effekt des abgeschalteten MK-2-Gens die SAPK/JNK, die zuvor in geringerer Menge 

exprimiert wurde, nun schließlich eine unveränderte Menge an Inhibitor auf wenige 

inaktive Kinasen trifft. Eine eindeutige Erklärung für diese Beobachtung ist jedoch nicht 

möglich. 

Die Funktion von p38 ist dagegen weniger eindeutig zu charakterisieren. Diese Kinase 

hat in Bezug auf die akute Pankreatitis ein ambivalentes Verhalten. Einerseits ist die 

MAPK p38 mit einer pro-inflammatorischen Komponente über die Aktivierung von 

Zytokinen wie Interleukin-6 und TNF-α versehen. Andererseits hat nach aktuellem Wis-

sensstand p38 auch eine protektive Funktion. Die schwache Phosphorylierung der Cae-

rulein Tiere in der nicht-transgenen Gruppe spricht zumindest für eine Interaktion bei 

der Pankreatitis (Abbildung 34 + Abbildung 35). Denkbar ist eine negative Rückkoppe-

lung bei parallel ablaufender SAPK/JNK-Phosphorylierung. Wie in früheren Arbeiten 

bereits nachgewiesen (184), haben auch die in dieser Untersuchung verwendeten MK-

2 -/- Tiere eine höhere Toleranz gegenüber der Caerulein-induzierten Pankreatitis 
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(Abbildung 40 + Abbildung 41). Wenn man den Bogen anhand der geringen Steigerung 

der Trypsinwerte bei den MK-2 -/- -Tieren mit Caerulein-Behandlung im Vergleich zu 

den nicht-transgenen Tieren schließt, ist dies erkennbar. Aber auch HSP 27, welches 

übergeordnet von p38 und dann über die Mapkap-Kinase-2 stimuliert wird, besitzt 

eine protektive Wirkung bei der akuten Pankreatitis (97), (104), (205). Dieser scheinba-

re Widerspruch lässt sich möglicherweise an den Trypsin-Werten der MK-2 -/- Kontroll-

Tiere erklären. Die Basisaktivität von Trypsin liegt hier über den Werten der nicht-

transgenen Tiere. Demnach könnte die fehlende Mapkap-Kinase-2 zu einer geringen 

HSP 27 Stimulation führen und so zu einer basalen Erhöhung der Trypsinaktivität bei 

den Kontrolltieren. Allerdings ist die Mapkap-Kinase-2 nicht die einzige Kinase, die HSP 

27 aktivieren kann. Aktivierungsvorgänge und Zielsubstrate der Mapkap-Kinase-3 de-

cken sich in hohem Maße mit Mapkap-Kinase-2 (235). Es ist demnach denkbar, dass 

nach Induktion mit Caerulein über Mapkap-Kinase-3 eine HSP27-Aktivierung erfolgt 

und sich der schützende Effekt von p38 so erklären lässt (201). 

Die p44\42 (ERK) ist wie auch schon bei früheren Untersuchungen erwartungsgemäß 

nachweisbar. Diese MAP-Kinase wird sehr früh im Rahmen eines inflammatorischen 

Geschehens aktiviert. In der Pixelanalyse der Western-Blots überrascht die nicht-

transgene Gruppe diesbezüglich nicht. Es ist zu erkennen, dass die mit Caerulein be-

handelten Tiere eine verstärkte Expression von phosphorylierten p44\42 gegenüber 

den Kontrollen haben. Als Ausdruck der Inflammationsreaktion kommt es schnell zur 

Hochregulierung der phosphorylierten p44\42. SP 600125 beeinflusst diesen Vorgang 

offensichtlich nicht. Die Tiere die zusätzlich noch SP 600125 bekommen, liegen in etwa 

auf dem gleichen Niveau zu den Caerulein-Tieren (Abbildung 36 + Abbildung 37). Wie 

an anderer Stelle schon erwähnt, spricht diese Beobachtung dafür, dass bereits ein 

kleiner Stimulus zu einer alles oder nichts Reaktion führen kann. In der MK-2-Gruppe 

sind jedoch Unterschiede erkennbar. Zwar liegen die Kontrolltiere beider Genotypen in 

der Pixelanalyse noch auf einem vergleichbaren Niveau - auf die Stimulation mit Caeru-

lein reagieren die Knock-out Tiere jedoch unerwartet. Der Analyse nach, nimmt die 

Konzentration der Kinase ab. Es findet keine verstärkte Phosphorylierung und damit 

Aktivierung statt. In Verbindung von MK-2 -/- mit SP 600125 ist zu beobachten, dass 



Diskussion 
 

87 
 

die Phosphorylierung gegenüber dem Gesamtantikörper nochmals abfällt (Abbildung 

42 + Abbildung 43). Interessant ist nun, dass die Kombination aus pharmakologischer 

Inhibierung und MK-2 -/- gegenüber der ausschließlichen Gabe von SP 600125 einen 

derartigen Unterschied bei einer Kinase zeigt, die eher mit der Zellzyklus Regulierung in 

Verbindung gebracht wird. Dass MK-2 -/- Tiere mit einer abgeschwächten akuten Pan-

kreatitis auf Caerulein reagieren ist bereits beschrieben. Überraschend ist allerdings, 

dass in Verbindung mit dem Inhibitor SP 600125 die Phosphorylierung von p44\42 

nach unten reguliert wird. Eine simple Erklärung hierfür erscheint nicht möglich. Zwar 

beschreiben Doan et al. eine verstärkte Aktivität von p44\42 nach Hemmung von p38, 

was auf eine Rückkopplung der Kinasen schließen lässt (236). Jedoch wurde diese Be-

obachtung bei Knochenmarksstammzellen gemacht und es betrifft nicht die MK-2 di-

rekt. Eine Übertragung auf Pankreaszellen und das Ergebnis dieser Arbeit ist demnach 

kritisch zu bewerten. Da p44\42 hauptsächlich als MAP-Kinase bei der Zellzyklusregula-

tion in Erscheinung tritt, kommt ein protektiver Effekt gegenüber Apoptose möglich-

erweise in Frage. Inwieweit sich diese Beobachtung auf den Verlauf der akuten Pan-

kreatitis auswirkt bleibt zunächst unbeantwortet. Zur Klärung dieser speziellen Frage-

stellungen bedarf es noch weiterer Untersuchungen. Schließlich sind auch Kinasen in 

Betracht zu ziehen, die bisher noch nicht als entzündungsauslösend in Erscheinung 

getreten sind, oder bislang nicht Identifiziert wurden. 

Wie bereits in zahlreichen früheren Untersuchungen, konnte auch in dieser Arbeit er-

neut gezeigt werden, dass SP 600125 in der Lage ist, die Phosphorylierung von 

SAPK/JNK erfolgreich zu beeinflussen. Durch die geringere Phosphorylierung des Pro-

teins im Western-Blot ist also von einem korrekten Wirkmechanismus des Inhibitors 

und im Folgenden von einem Effekt auszugehen. In Bezug auf die akute Pankreatitis 

lässt sich nach Auswertung der laborchemischen Daten jedoch feststellen, dass SP 

600125 eine anti-inflammatorische Komponente hat. Für die akute Pankreatitis hat die 

isolierte Gabe des SAPK/JNK Inhibitors in dieser Untersuchung allerdings nur eine ge-

ringe positive Auswirkung. Eine mögliche Erklärung für den geringen Erfolg in der Un-

terdrückung der akuten Pankreatitis kann nicht eindeutig gegeben werden. Nahelie-

gend ist die Vermutung, dass die initiale Stimulation mit Caerulein bereits ausreichend 
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war, einen Prozess in den Acinus-Zellen in Gang zu setzen, der durch die späteren Ga-

ben von SP 600125 nicht mehr ausreichend zu beeinflussen war. Die alleinige Hem-

mung von SAPK/JNK könnte demnach die akute Pankreatitis nicht mehr stoppen, da 

die eingeleitete Therapie einen Schritt zu spät ansetzt. Es müsste bereits die Ko-

Lokalisation und Zymogenaktivierung verhindert werden. Eine bereits angelaufene 

Zymogenaktivierung ist möglicherweise in der Lage den Prozess der Inflammation in 

den Pankreaszellen auf unterschiedlichste Wege anzuschieben und zu unterhalten. In 

dieses Bild passt die Tatsache, dass die Gabe von SP 600125 bei den MK-2 -/- Tieren 

eine durchaus signifikante Reduzierung der Trypsinaktivität erbrachte und damit eine 

Abschwächung der Pankreatitis. In diesem speziellen Fall bestand aber bereits schon 

die schützende Komponente durch die fehlende Mapkap-Kinase-2 und die damit 

schwächere Zymogenaktivierung. In dieser Kombination lässt sich durchaus von einer 

erfolgreichen Behandlung der akuten Caerulein-induzierten Pankreatitis sprechen. Ins-

gesamt scheint somit jedoch – ausgenommen MK-2 -/- Tiere - die nachträgliche Hem-

mung der Stresskinasen in der Akutsituation kein geeigneter Ansatzpunkt zu sein, die 

Inflammation wirksam in den Acinus-Zellen zu unterbrechen. Allerdings hat SP 600125 

durch die Hemmung von SAPK/JNK in anderen Organen sehr wohl eine messbare Wir-

kung gezeigt. Geht man von der Annahme aus, dass SP 600125 nach i.p.-Gabe in einer 

gewissen Menge vom Organismus resorbiert wird, dann hat ein primär nicht von Cae-

rulein betroffenes Organsystem durch die zeitliche Verzögerung der systemischen Im-

munantwort die Chance durch Inhibierung der SAPK/JNK die Inflammationsreaktion 

abzumildern. Dazu passt die Überlegung, dass sich die Interleukin-6 Werte im Serum 

unter SP 600125 und ebenso die Werte für die Myeloperoxidase aus dem Lungenge-

webe günstig verändert haben. Geht man wie beim Menschen davon aus, dass ein 

ARDS mit zu den gefürchtetsten Komplikationen bei den schwersten Verläufen der 

akuten Pankreatitis gehört, so ist die Infiltration von Lungengewebe im vorliegenden 

Mausmodell eine mögliche klinische Parallele und Teil der Organbeteiligung im Rah-

men eines SIRS/ARDS/MOV. Inwiefern eine Hemmung der SAPK/JNK die klinische Situ-

ation positiv beeinflusst, lässt sich in diesem Rahmen nicht beantworten. Die Übertra-

gung der Erkenntnisse auf den Menschen sind schwierig. Sollten sich die Ergebnisse 
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beim Menschen allerdings bestätigen und eine Inflammation an sekundär beteiligten 

Organen gehemmt werden können, würde sich das auf die Mortalität der akuten Pan-

kreatitis sicher positiv auswirken. 

4.1.1 Kritische Bewertung der Experimente und Methoden 

 

In den vergangenen Jahren gab es einige Veröffentlichungen zur akuten Pankreatitis 

und SP 600125. Dabei kommen sowohl ältere und neuere Untersuchungen wiederholt 

zu dem Ergebnis, dass MAP-Kinasen ein essenzieller Bestandteil in der pathophysiolo-

gischen Kaskade bei der Entwicklung einer akuten Pankreatitis sind (107), (237), (238), 

(239). Die ermittelten Ergebnisse der früheren Arbeiten sind aufgrund der unterschied-

lichen Ansätze jedoch nicht einheitlich. Grundlage der vorliegenden Arbeit sind die 

Versuche von Minutolia et al. (223). In einem vergleichbaren Versuchsaufbau konnte 

durch die Inhibierung von SAPK/JNK mit SP 600125 eine Abnahme der Inflammation 

nachgewiesen werden und damit vermeintlich deutliche Abschwächung der akuten 

Pankreatitis. Eine Beobachtung die für alle laborchemischen Parameter gemacht wur-

de. Dem gegenüber stehen die Arbeiten von Wagner et al. und Clemons et al. Deren 

Untersuchungen lassen lediglich auf eine geringfügige Besserung der akuten Pankreati-

tis schließen (108), (240). Darüber hinaus wurden Studien mit SP 600125 an unter-

schiedlichsten Geweben und Spezies mit Erfolg durchgeführt. Ein Teil der verfügbaren 

Literatur beschreibt SP 600125 dabei als selektiven SAPK/JNK-Kinaseinhibitor. Diese 

Aussage ist so jedoch nicht haltbar. SP 600125 ist in der Lage beispielsweise CREB 

(cAMP response element binding protein) zu aktivieren (241). Zudem ist die Hemmung 

einer ganzen Reihe weiterer Enzyme nachgewiesen (242). In höheren Konzentrationen 

ist auch die Hemmung von p38 möglich (219). Zudem gibt es Hinweise, wonach eines 

der Zielproteine von SAPK/JNK, der Transkriptionsfaktor c-Jun, unabhängig von 

SAPK/JNK aktiviert werden kann (243). Um Fehlerquellen möglichst zu minimieren, 

wurde der Versuchsaufbau sowie der Ablauf standardisiert. Die Methoden wurden im 

Vorfeld erlernt und konnten somit sicher angewendet werden. Die gewählte Variante 

der Caerulein-induzierten Pankreatitis ist eine bewährte experimentelle Methode, die 

in vielen Forschungseinrichtungen angewendet und im eigenen Labor bereits etabliert 



Diskussion 
 

90 
 

war. Probenmessungen wurden zusätzlich in einem Doppelansatz durchgeführt. Unab-

hängig davon waren teilweise viele einzelne Arbeitsschritte notwendig, bei denen sich 

Fehler addieren können. Auch die Anfertigung von Western-Blots zur Identifizierung 

der intrazellulären Signalkaskaden ist eine gängige und standardisierte Methode. 

Überwiegend war die Detektion erfolgreich und auch nach kurzer Belichtungszeit des 

Röntgenfilms möglich. Erschwerend war bei der Auswertung teilweise ein starkes Hin-

tergrundrauschen, was die genaue Abgrenzung der Banden auch mit der Auswertungs-

software erschwerte und die Quantifizierung nur zum Teil ermöglichte. Eine mögliche 

Ursache bestand in der Qualität der Antikörper zum damaligen Zeitpunkt, welche zur 

quantitativen Analyse teilweise unzureichend war. Wie bereits beschrieben, ist durch 

Caerulein in supramaximaler Dosierung mit hoher Wahrscheinlichkeit innerhalb von 30 

Minuten eine Pankreatitis auslösbar. Die wiederholte Applikation verringert zusätzlich 

die Chance dass Tiere nicht adäquat stimuliert werden. Es ist allerdings nicht vollstän-

dig auszuschließen, dass auch bei wiederholten Applikation es zu einer insuffizienten 

intraperitonealen Gabe von Caerulein gekommen sein kann. Demnach ist denkbar, 

dass sich bei der Euthanasierung der Versuchstiere die Entzündung in unterschiedlich 

starken Stadien befand. Im Umkehrschluss gilt dies selbstverständlich auch für den 

SAPK/JNK Inhibitor SP 600125. Ebenso muss das Applikationsregime berücksichtigt 

werden. Die zeitliche Veränderung der Versuchsanordnung, andere Konzentrationen 

des Inhibitors oder die Art der Applikation können zu anderen Ergebnissen führen. Die 

Verlängerung der Wirkphase von SP 600125 oder die Euthanasierung der Tiere zu ei-

nem späteren Zeitpunkt sind denkbare Modifikation, um Änderungen der pankreas-

spezifischen Parameter besser zu erfassen. Die zeitliche Verlängerung des Versuchs-

aufbaus könnte somit interessante Möglichkeiten bieten und dementsprechend wäre 

eine Messung nach 24 Stunden oder noch später vermutlich mit anderen Ergebnissen 

verbunden. Letztlich ist es nicht auszuschließen, dass eine verlängerte Gabe von SP 

600125, beispielsweise über Tage, einen möglichen positiven Effekt haben könnte. Ein 

zusätzlicher Kritikpunkt ist die geringe Gesamtzahl der verfügbaren Tiere. Die statisti-

sche Aussagekraft ist somit eher als schwach einzuordnen und bezeugt allenfalls einen 

Trend. In einem weiteren Schritt ließen sich auch noch weitere Faktoren wie Alter, Ge-
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schlecht und Gewicht homogenisieren. Aus welchem Grund vereinzelte Tiere sehr ho-

he Inflammationswerte aufweisen, auch wenn diese ausschließlich mit NaCl-Lösung 

behandelt wurden, ist nicht eindeutig zu klären. Denkbar ist die Kombination mehrerer 

Ursachen. Es ist davon ausgehen, dass auch einzelne Kochsalz Injektionen bei den Ver-

suchstieren zu einer allgemeinen Stressantwort führen. Da der Amylase-Wert bei die-

sen Tieren deutlich geringer ist als bei den Tieren die mit Caerulein behandelt wurden, 

kann man von einer nicht-pankreasspezifischen Aktivierung ausgehen. Alle Tiere sind 

während des Versuchstages einem hohen Stressniveau ausgesetzt. Der Umgebungs-

wechsel, beginnend mit dem Transport aus dem Tierstall in das Labor, die wiederhol-

ten Injektionen und das Risiko einer nicht erkannten Verletzung innerer Organe bei 

jeder intraperitonealen Applikation, begünstigen die Aktivierung zahlreicher Botenstof-

fe. Sämtliche Faktoren sind in der Lage eine oder mehrere MAP-Kinasen zu aktivieren. 

Gerade Interleukin-6 ist sehr sensibel und reagiert bereits auf geringste Stimuli unter-

schiedlichster Art mit einer Erhöhung (244). Dieser Umstand erklärt möglicherweise 

auch die vereinzelt ungewöhnlich hohen Aktivitätswerte von Interleukin-6. Eine nicht 

erkannte Infektion des Versuchstieres oder die unbeabsichtigte Verletzung von Orga-

nen bei der intraperitonealen Applikation zählen hierzu. Eine zusätzliche Induktion der 

Pankreatitis, beziehungsweise von pro-inflammatorischen Faktoren durch das verwen-

dete Isofluran sind mit hoher Wahrscheinlichkeit auszuschließen. Die Exposition der 

Versuchstiere mit dem Narkosegas vor Dekapitation dauert in etwa nur circa dreißig 

Sekunden und die Gewebeproben wurden unmittelbar anschließend entnommen. 

Doch gerade die Gewebeentnahme als letzten Punkt darf nicht unterschätzt werden. 

Wie von Blinman et al. bereits beschrieben, wirkt durch die Präparation der Organe 

eine nicht unerhebliche mechanischer Belastung auf das Gewebe. Eine Beeinflussung 

der Ergebnisse ist somit möglich (245). 

4.2 Zusammenfassung und abschließende Beurteilung 

 

Die auslösenden Faktoren für eine akute Pankreatitis sind im Wesentlichen in der Akti-

vierung pankreatischer Proteasen zu finden. Die naheliegende Theorie war nun in die-



Diskussion 
 

92 
 

ser Arbeit, den Fokus auf die Hemmung einer der zentralen Schaltstellen der Inflam-

mation der intrazellulären Signalkaskade SAPK/JNK zu legen. Das zweite wichtige Theo-

rem dieser Arbeit bestand darin, dass mit Hilfe einer weiteren Gruppe, den MK 2 -/- 

Mäusen und dem gleichzeitigen Ausschalten von zwei Schlüsselpositionen, einen noch 

deutlicher positiven Effekt von SP 600125 auf die akute Pankreatitis nachweisen zu 

können. 

In den angefertigten Western-Blots ist die Wirkung von SP 600125 direkt durch die 

verringerte Phosphorylierung von SAPK/JNK in Pankreasgewebe belegbar. Diese ver-

ringerte Aktivität zeigt sich jedoch kaum in den pankreasspezifischen Messwerten. Dies 

lässt vermuten, dass bereits wenige aktivierte SAPK/JNK-Kinasen die Inflammations-

maschinerie in Gang setzen können, oder dass es noch weitere, bisher nicht beachtete 

inflammatorische Faktoren gibt, die zeitgleich aktiviert werden beziehungsweise eine 

Redundanz in den Aktivierungsmechanismen der Kinasekaskaden vorliegt. 

Bezogen auf die Anfangs formulierten Fragestellungen konnte zumindest innerhalb des 

Beobachtungszeitraums und bei ausschließlicher Betrachtung der Pankreatitisparame-

ter in beiden untersuchten Gruppen durch die Hemmung der SAPK/JNK mit SP 600125 

keine, beziehungsweise nur eine unwesentliche Verbesserung der akuten Pankreatitis 

laborchemisch nachgewiesen werden. Erwartungsgemäß und bezogen auf die nicht-

transgenen Mäuse waren in der Vergleichsgruppe bei den MK-2 -/- Tieren im Durch-

schnitt laborchemisch geringere Entzündungswerte zu sehen. Vergleicht man die ge-

messenen Werte beider Kontingente, dann ist durch die Gabe von SP 600125 in der 

MK-2 -/- Gruppe gegenüber der nicht-transgenen Gruppe jedoch kein signifikanter 

Unterschied erkennbar. Ein erhoffter positiver Effekt durch MK-2 -/- in Kombination 

mit SAPK/JNK Hemmung zeigte somit keine wesentliche Verbesserung der akuten Pan-

kreatitis. Für die systemischen Entzündungsparameter, Myeloperoxidase und Interleu-

kin-6, gilt jedoch eine etwas andere Beobachtung. Die gemessenen Aktivitätswerte 

sind nach Gabe von SP600125 in beiden untersuchten Gruppen gefallen. Jedoch gilt 

auch für die systemischen Werte, dass in der Kombination von SP 600125 und MK-2 -/- 

kein zusätzlicher Benefit entsteht. In der Annahme, dass die Hemmung der SAPK/JNK 
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aber für die systemische Inflammationsreaktion von Vorteil wäre, könnte die Gabe 

eines Inhibitors eine sinnvolle Ergänzung der medikamentösen Therapie bei schwers-

ten Verläufen, beispielsweise bei einem begleitenden ARDS, darstellen. Dieser Ansatz 

ist grundsätzlich auch auf weitere septische Krankheitsverläufe bei anderen Grundlei-

den übertragbar. Inwiefern eine solche Reduzierung der systemischen Entzündung die 

klinische Situation positiv beeinflusst, lässt sich in diesem Rahmen nicht beantworten. 

Der Transfer auf höhere Säugetiere ist schwer, wenn nicht gar unmöglich und so ist in 

allen anzunehmenden Fällen der Bedarf an weiteren Untersuchungen und Studien 

notwendig. 

Anhand der vorliegenden Ergebnisse erscheint es zum jetzigen Zeitpunkt als sehr un-

wahrscheinlich, dass im speziellen SP 600125 oder ein vergleichbarer Kinasen Inhibitor 

als therapeutisches Mittel zum Einsatz kommt, welches pharmakologisch die SAPK/JNK 

Signalkaskade hemmt und bei der Behandlung einer akuten Pankreatitis erfolgverspre-

chend sein könnte. 
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5. Abstract 

 

Bis heute existiert keine kausale Therapie zur Behandlung einer akuten Pankreatitis. Hauptur-

sache ist der akute Verschluss des Ductus pancreaticus durch Gallensteine oder der chronische 

Alkoholabusus. Mit zunehmendem Verständnis der Pathophysiologie auf zellulärer Ebene, 

rücken molekularbiologische Ursachen in das Blickfeld des Interesses. Anerkannt ist, dass eine 

frühzeitige intrazelluläre Aktivierung der von den Acinus-Zellen produzierten Zymogene einen 

wesentlichen Trigger der gesamten Inflammationsreaktion darstellen. Die Familie der Mitogen 

aktivierten Protein Kinasen (MAPK) besitzt in diesem Kontext eine zentrale Rolle. Bestehend 

aus den drei bisher beschriebenen großen Signalkaskaden (SAPK/JNK, p38, ERK), sind diese für 

Differenzierung, Entzündung und Apoptose der Zellen verantwortlich. Die vorliegende Arbeit 

beschäftigt sich damit, ob die selektive Inhibition des SAPK/JNK Signalweges mit SP600125 bei 

nicht-transgenen Mäusen einen positiven Effekt auf die Pankreatitis hat und inwieweit eine 

zusätzliche pharmakologische Hemmung des SAPK/JNK Signalweges bei MK-2 -/- Mäusen ei-

nen additiven Effekt zeigt. Bei den Knock-out Tieren ist bekannt, dass eine Caerulein stimulier-

te akute Pankreatitis einen schwächeren Verlauf nimmt. Es wurde in beiden Kohorten Kon-

trollgruppen mit Kochsalz oder Inhibitor SP600125 (NaCl, SP), Caerulein (Cer) und Caerulein + 

SP600125 (Cer+SP) gebildet und miteinander verglichen. Mittels intraperitonealer Gabe wurde 

in supramaximaler Dosierung Gewichtsadaptiert nach einem vorgegeben Injektionsplan, be-

ginnend mit Caerulein, eine akute Pankreatitis ausgelöst. Sämtliche Tiere wurden am Ende des 

Versuchstages dekapitiert. Laborchemisch wurden Werte für Amylase und Interleukin-6 im 

Serum, sowie Trypsin im Pankreas- und die Myeloperoxidase im Lungengewebe und der Grad 

der Ödemisierung des Pankreas per Gewicht, analysiert. Begleitend wurden Western Blots aus 

lysierten Pankreasgewebe der oben genannten MAP-Kinasen zum Phosphorylierungsstatus 

angefertigt. Die signifikante Erhöhung der Amylase-Aktivität im Serum gegenüber den Kontrol-

len wurde als gesicherte Pankreatitis gewertet. Sämtliche untersuchten Proben waren nach 

diesem Kriterium positiv. In der nicht-transgenen Gruppe waren im Vergleich von Caerulein 

(Cer) mit Caerulein + SP600125 (Cer+SP), bei Amylase (p=0,21), Trypsin (p=0,66), Interleukin-6 

(p=0,67)und Ödemisierungsgrad (p=0,834) besteht keine Signifikanz. Für die MPO (p=4,9 e-5) ist 

ein signifikanter Unterschied messbar. In der MK-2 -/- Gruppe waren für Amylase (p=0,24), 

Trypsin (p=0,46), Interleukin-6 (p=0,185), MPO (p=0,00093) und dem Ödemisierungsgrad 

(p=0,2733)keine signifikanten Unterschied zu finden. In einem zweiten Schritt wurden die Cae-
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rulein-Tiere beider Kohorten miteinander verglichen. Unerwartet lag die absolute Amylase-

Aktivität der MK-2 -/- -Tiere signifikant über den nicht-transgenen Tieren (p=0,0004) und eben-

falls die Werte für die MPO-Aktivität (p=0,573), jedoch in einem nicht signifikanten Bereich. 

Die Trypsin-Aktivität war wieder signifikant unter den Werten der nicht-transgenen Tiere 

(p=0,027).Dies galt auch für Interleukin-6 (p=0,112), erreichte aber keine Signifikanz. Abschlie-

ßend erfolgte der Vergleich zur Fragestellung ob nicht-transgene Caerulein-Tiere von einer 

pharmakologischen Hemmung in Verbindung mit einer gezielten Gendeletion (Caerulein + 

SP600125) profitieren. Auch in diesem Vergleich waren die absoluten Amylase Werte der MK-2 

-/- -Tiere über der Aktivität der nicht-transgenen Tiere(p=0,0438). Für Trypsin war in der MK-2 

-/- Gruppe ein leichter Vorteil erkennbar(p=0,046), ebenso bei Interleukin-6 (p=0,015). Für die 

MPO-Aktivität (p=0,077) wurden zwar geringere Werte gemessen, diese waren aber noch nicht 

signifikant. In den zusätzlich angefertigten Western Blots war für die MAPK p38 und ERK 

(p44\42) in beiden Kohorten durch die Gabe von SP600125 keine wesentliche Änderung in der 

Phosphorylierung erkennbar. Bei SAPK/JNK war in beiden Gruppen das Signal der Caerulein-

Tiere deutlich erkennbar, wohingegen die Signale der inhibierten Tiere eine schwächere Phos-

phorylierung zeigten. Die Hemmung der SAPK/JNK MAP-Kinase hat in dieser Arbeit sowohl 

innerhalb, als auch im Vergleich beider Kohorten miteinander keine signifikante Reduzierung 

der akuten Pankreatitis bewirkt. Bei den systemischen Inflammationsparametern Interleukin-6 

und der Myeloperoxidaseaktivität waren tendenziell positive Effekte, teilweise auch signifi-

kant, der mit SP600125 behandelten Tiere erkennbar. Ein möglicher Erklärungsansatz wäre, 

dass eine bereits ablaufende Pankreatitis durch eine nachträgliche Hemmung der SAPK/JNK 

nicht mehr zu unterbrechen, jedoch aber die systemische Organbeteiligung und Inflammati-

onsreaktion durch die zeitliche Latenz günstig beeinflussbar ist. Hierfür wäre ein längerer Be-

obachtungszeitraum notwendig. Zudem lässt die nach wie vor vorhandene Restaktivität der 

MK-2 -/- Mäusen darauf schließen, dass weitere pro-inflammatorische Faktoren eine Rolle 

spielen. Die Gabe von SP600125 verbesserte die Caerulein-induzierte Pankreatitis allenfalls in 

punktuellen Parameter. Da schwere Pankreatitiden in vielen Fällen mit erheblichen Einschrän-

kungen weiterer Organsysteme einhergehen, bietet sich Möglicherweise die Hemmung der 

SAPK/JNK als supportive Medikation an. Hierfür sind jedoch weitere Untersuchungen notwen-

dig. Abschließend lässt sich sagen, dass ein selektiver SAPK/JNK Kinase Hemmer zur kausalen 

Therapie als Medikament für die akute Pankreatitis wahrscheinlich nicht geeignet ist. 
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°C  Grad Celsius  

0,9 % NaCl  0,9 % Natrium Chlorid - Lösung  

A  Ampère  

AC  Adenylatzyklase  

AK  Antikörper  

AMP  Adenosinmonophosphat  

APS  Ammoniumpersulfat  

ARDS Acute respiratory distress syndrom 

ATF  AMP-dependent transcription factor  

BSA  Bovine serum albumin  

cAMP  zyklisches Adenosinmonophosphat  

CCK  Cholezystokinin  

Cer Caerulein, Cerulein 

DAB  Diaminobenzidine  

DAG  Diacylglycerol  

DMSO  Dimethylsulfoxid  

DNA  Desoxyribonukleinsäure  

EDTA  Ethylendiamintetraessigsäure  

ELISA  Enzyme linked immunosorbent assay  

ER  endoplasmatisches Retikulum  

ERCP endoskopische retrograde Cholangiopankreatikographie  

ERK  Extracellular regulated kinase  

et al.  et alia  

g  Gramm  

GDP  Guanosindiphophat  

G-Protein  Guaninnukleotid-bindendes Protein  

Grb  Growth-factor receptor-bound protein  

GTP  Guanosintriphosphat  

GTPase  Guanosintriphosphatase  

h  Stunde  

H2O  Wasser  

H2O2  Wasserstoffperoxid  

Hsp  Hitze-Schock-Protein  

IgG  Immunglobulin G  

IL-1/ IL-6  Interleukin-1 / Interleukin-6  

i.p. Intra-peritoneal 

IVP In-vivo-Pankreatitis 

JNK  c-jun n-terminale Kinase  

kD Kilodalton  

kg Kilogramm  

KG Körpergewicht  

l Liter  

M Mol / Liter  

mmol milimol 

MAPK Mitogen-aktivierte-Protein-Kinase  

MAPKAP-
Kinase 2/3, 
MK-2/3 

Mitogen-activated protein kinase-activated protein kinase 2/3  

MAPKK MAP-Kinase-Kinase  
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MAPKKK MAP-Kinase-Kinase-Kinase  

min Minute  

ml Milliliter  

MOPS (3-N-Morpholino) propanesulfonic acid  

MOV Multi Organ Versagen 

MPO  Myeloperoxidase  

n Anzahl  

NaCl Natriumchlorid  

NaOH Natriumhydroxid  

nm Nanometer  

n.s. Nicht Signifikant 

NTG Nicht-Trans-Gen, Wildtyp 

p  p-Wert  

p38  p38-Map-Kinase  

PEA  Palmitylethanolamid  

pg  Pikogramm  

pH  negativer dekadischer Logarithmus der Wasserstoffionen-Aktivität  

PMSF  Phenylmethylsulfonylfluorid  

RNA  Ribonukleinsäure  

rpm  Rounds per minute  

RT  Raumtemperatur  

s Sekunde  

SAP-1  Serum response factor accessory protein 1  

SAPK  Stress activated protein kinase  

SBTI  Soy bean trypsin inhibitor  

SDS  Sodium dodecyl sulfat  

SIRS  systemic inflammatory response syndrome  

SP Inhibitor SP 600125 

TAB  Trypsin assay buffer  

TBS-T  Tris-buffered saline Tween 20  

TEMED Tetramethylethylendiamin  

TNF-α Tumor-Nekrose-Faktor α  

Tris  Tris-(Hydroxymethyl)-Aminomethan  

TRIS base Tris-(hydroxymethyl)-aminomethan  

TWEEN 20 Polyoxyethylene-sorbitan-monolaurate  

UV  Ultraviolett  

V Volt  

μg  Mikrogramm  

μl  Mikroliter  

μm  Mikrometer  
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