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1 Abstract 

Inflammatory bowel disease (IBD) is a group of relapsing inflammatory conditions resulting 

from dysregulation of the mucosal immune system in the colon and small intestine. Although 

the pathophysiology is not yet fully understood, possible mechanisms include genetic 

disposition, damage of the mucosal barrier with increased epithelial permeability, 

endoluminal bacterial triggers resulting in the activation of lymphocytes and macrophages, 

and imbalance in the production of proinflammatory and antiinflammatory cytokines. 

Increased levels of interleukin (IL)-1β and IL-18 have been detected in the mucosa of 

intestines of patients suffering from IBD as well as in IBD animal models. The immature 

forms (pro-IL-1β and pro-IL-18) of these two inflammatory cytokines are mainly activated via 

a caspase-1 activating multiprotein complex, the Nlrp3 inflammasome. Dextran sodium 

sulphate (DSS)-induced colitis is an important model for the study of mucosal damage and 

innate immunity in IBD. Previous work of our group reported the ability of macrophages to 

take up DSS, leading to activation of the Nlrp3 inflammasome. Nlrp3-deficient mice were 

protected from deleterious effects of DSS administration. However, this model is generally 

believed to be less appropriate for studying the role of the adaptive immune system in IBD. 

Therefore, further studies with alternative models that are capable of clarifying the 

immunological mechanisms underlying the regulation of intestinal inflammation are urgently 

needed. 

The main aims of this project were: a) to investigate the role of Nlrp3-dependent cytokines  

IL-1β and IL-18 in induction of colitis in a T cell transfer model of colitis, b) to characterise 

intestinal dendritic cells (DCs) as the cellular platform of Nlrp3 effects resulting in the 

regulation of T cell plasticity, c) to investigate the role of IL-1R and IL-18R signalling in 

adoptively transferred T cells, and d) to rule out biasing effects of differences in microbiota 

compositions of Nlrp3-sufficient and Nlrp3-deficient mice. 

This study showed that Nlrp3 inflammasome plays a critical role in inducing T cell-mediated 

inflammation. The balance of Nlrp3-dependent cytokines IL-1β and IL-18 regulated the T cell-

induced inflammation with IL-1β proving to be the main inducer of T cell-mediated colon 

inflammation. Nlrp3-deficient mice that were adoptively transferred with CD4+CD45RbHigh      

T cells had less colonic inflammation. Reduced colonic inflammation correlated with less 

pronounced T cell infiltration. In Nlrp3-sufficient mice, lamina propria (LP)-infiltrating T helper 

cells demonstrated an inflammatory Th17/Th1 phenotype, resulting in increased levels of     

T cell-dependent inflammatory cytokines such as IL-17, IL-22, and IP-10. 
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CD4+ T cells primed with Nlrp3-sufficient DCs demonstrated an inflammatory phenotype, 

pinpointing DCs as the cellular platform of Nlrp3 effects, resulting in the regulation of T cell 

plasticity. Nlrp3-deficient DCs had increased expression of CD103, while reduced expression 

of CD103 on LP-DCs was observed in Nlrp3-sufficient mice after induction of colitis. 

Increased expression of CD103 on Nlrp3-deficient DCs correlated with increased expression 

of FLT3L and decreased expression of GM-CSF. Coculture of Nlrp3-deficient DCs with         

T cells resulted in an increase of FLT3L production by T cells. Vice versa, coculture of Nlrp3-

sufficient DCs with T cells resulted in an increase of GM-CSF production by T cells.  

It was also shown that T cell-mediated inflammation was negatively regulated by IL-18R 

signalling of adoptively transferred T cells, as lack of IL-18R expression resulted in more 

severe colonic inflammation, increased expression of proinflammatory cytokines and 

increased colonic infiltration with immune cells. Biasing effects of differences in microbiota of 

Nlrp3-sufficient and Nlrp3-deficient mice were ruled out by cohousing of the two mouse 

strains, as evidenced by PCR-based microbial analysis.  

These data suggest a mechanism, through which Nlrp3-dependent IL-1β promotes a         

Th-17/Th1-dependent intestinal pathology. Additionally, antigen presentation to T cells by 

Nlrp3-deficient DCs results in a shift in the balance of the growth factors FLT3L and GM-CSF 

towards FLT3L. This microenvironment could be the deciding factor in the induction of 

tolerogenic CD103+ DCs as well as T cells with a non-inflammatory phenotype, a finding with 

potential therapeutic application for the treatment of IBD. 
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2 Zusammenfassung 

Als chronisch entzündliche Darmerkrankungen (CED) bezeichnet man rezidivierende 

entzündliche Erkrankungen des Dünn- und Dickdarms, die als Folge einer Dysregulation des 

mukosalen Immunsystems auftreten. Die Pathophysiologie der CED ist unvollständig 

verstanden; zu den möglichen Ursachen zählen eine genetische Disposition, Schädigung der 

Schleimhautbarriere mit erhöhter epithelialer Permeabilität, endoluminale bakterielle 

Auslöser, welche zur Aktivierung von Lymphozyten und Makrophagen führen, sowie ein 

Ungleichgewicht der Produktion von pro-inflammatorischen und anti-inflammatorischen 

Zytokinen. Erhöhte Spiegel an Interleukin (IL)-1β und IL-18 konnten in der Schleimhaut des 

Darms von Patienten mit CED sowie in CED-Tiermodellen nachgewiesen werden. Die 

unreifen Formen (pro-IL-1β und pro-IL-18) dieser beiden entzündlichen Zytokine werden 

hauptsächlich über einen Caspase-1-aktivierenden Multiproteinkomplex, das Nlrp3-

Inflammasom, aktiviert. Die Dextran Sulfat Sodium (DSS)-induzierte Kolitis ist ein wichtiges 

Tiermodell, das essentielle Aspekte der mukosalen Schädigung und der angeborenen 

Immunität bei CED widerspiegelt. Unsere Arbeitsgruppe konnte im Mausmodell zeigen, dass 

das Nlrp3-Inflammasom bei der Pathogenese der DSS-induzierten Kolitis eine zentrale Rolle 

spielt. Hierbei  erwies sich die Nlrp3-Defizienz in diesem Modell als protektiv. Zusätzlich 

wurde gezeigt, dass die Aufnahme von DSS durch Makrophagen zu einer Aktivierung des 

Nlrp3-Inflammasoms führt. Jedoch ist das DSS-Modell nicht geeignet Vorgänge der 

adaptiven Immunantwort im Rahmen der CED-Pathogenese zu untersuchen. Daher sind 

weitere Studien mit alternativen Modellen, die die immunologischen Mechanismen der 

Regulierung der Darmentzündung klären, dringend erforderlich. 

Die Hauptziele dieses Projekt waren: a) die Untersuchung der Rolle der Nlrp3-abhängigen 

Zytokine IL-1β und IL-18 bei der Induktion von Kolitis in einem T-Zelltransfermodell der 

Kolitis, b) die Charakterisierung der Darm-dendritischen Zellen (DCs) und deren Nlrp3-

vermittelter Einfluss auf die T-Zell-Plastizität, c) die Untersuchung der Rolle des IL-1R- und 

IL-18R-vermittelten Signalweges in adoptiv transferierten T-Zellen und d) die Untersuchung 

des Einflusses der Mikrobiota von Nlrp3-suffizienten und Nlrp3-defizienten Mäusen.  

Diese Arbeit zeigt, dass das Nlrp3-Inflammasom eine entscheidende Rolle bei der Induktion 

von T-Zell-vermittelten Entzündungen spielt. Das Gleichgewicht der Nlrp3-abhängigen 

Zytokine IL-1β und IL-18 ist essentiell für die Induktion T-Zell-basierter Entzündungsprozesse 

im Darm, wobei IL-1β hier eine Schlüsselrolle übernimmt.  
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Nlrp3-defiziente Mäuse, die CD4+CD45RbHigh T-Zellen transferiert bekamen, wiesen ein 

geringeres Maß an Entzündung und eine reduzierte T-Zell-Infiltration im Kolon auf. In Nlrp3-

suffizienten Mäusen zeigten Lamina Propria (LP)-infiltrierende T-Helferzellen einen 

entzündlichen Th17/Th1-Phänotyp auf, was zur Ausschüttung einer erhöhten Menge an      

T-Zell-abhängigen entzündlichen Zytokinen, wie IL-17, IL-22 und IP-10, führte. Die 

Aktivierung von CD4+ T-Zellen mit Nlrp3-sufizienten DCs führte ebenfalls zu einem 

entzündlichen Phänotyp und lässt auf die Abhängigkeit von DCs gegenüber Nlrp3-basierten 

Effekten schließen.  

Auf Nlrp3-defizienten DCs wurde eine erhöhte Expression von CD103 im Vergleich zu      

LP-DCs in Nlrp3-suffizienten Mäusen nach Kolitisinduktion beobachtet. Die erhöhte 

Expression von CD103 auf Nlrp3-defizienten DCs korrelierte mit einer erhöhten Expression 

von FLT3L und einer reduzierten Expression von GM-CSF. Die Ko-Kultivierung von Nlrp3-

defizienten DCs mit T-Zellen führte zu einer gesteigerten FLT3L-Produktion von T-Zellen. 

Umgekehrt führte die Ko-Kultivierung von Nlrp3-suffizienten DCs mit T-Zellen zu einer 

vermehrten      GM-CSF-Produktion von  T Zellen. 

Es wurde auch gezeigt, dass die T-Zell-vermittelte Entzündung negativ durch den IL-18R-

Signalweg der adoptiv transferierten T-Zellen reguliert wird. Der Defekt in der IL-18R-

Expression führte zu einer stärkeren Kolonentzündung, einer erhöhten Expression von     

pro-inflammatorischen Zytokinen und einer erhöhten Immunzelleninfiltration in das Kolon. Ein 

wesentlicher, diese Effekte überlagernder Einfluss der Mikrobiota von Nlrp3-suffizienten 

versus Nlrp3-defizienten Mäusen wurde durch eine PCR-basierte mikrobielle Analyse nach 

Zusammensetzung der beiden Stämme  ausgeschlossen.  

Zusammengefasst ergeben sich aufgrund dieser Arbeit Hinweise darauf, dass Nlrp3-

induziertes IL-1β eine Th-17/Th1-abhängige Darmpathologie	  begünstigt. Zusätzlich führt die 

Antigenpräsentation von Nlrp3-defizienten DCs zu einer Verschiebung des Gleichgewichts 

zwischen den beiden Wachstumsfaktoren FLT3L und GM-CSF in Richtung FLT3L. Dies 

könnte der entscheidende Faktor bei der Induktion von tolerogenen CD103+ DCs, sowie       

T-Zellen mit einem nicht-entzündlichen Phänotyp sein, und stellt somit einen potentiellen 

therapeutischen Ansatz für die Behandlung der CED dar. 
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3 Introduction 

3.1 Inflammatory bowel disease  

Inflammatory bowel disease (IBD) is a chronic, recurring inflammatory disorder of the 

gastrointestinal tract (Puren, Fantuzzi et al. 1999; Podolsky 2002). The highest incidence 

rates and prevalence have been observed in northern Europe, the United Kingdom and 

America (Baumgart and Carding 2007). Nevertheless, rising rates in low incident areas have 

been documented in recent studies (Ng, Bernstein et al. 2013). The two main entities of IBD 

are Crohn’s disease (CD) and ulcerative colitis (UC). Despite similarities between the two 

IBD forms, they are characterised by certain differences in the location and the nature of 

inflammatory modifications. Crohn’s disease is a relapsing transmural inflammatory disease 

that can potentially extend to any part of the gastrointestinal tract. On the other hand, 

ulcerative colitis is a non-transmural chronic inflammation restricted to the colon (Baumgart 

and Sandborn 2007). IBD symptoms differ depending on the location and severity of 

inflammation; however, common symptoms include diarrhoea, rectal bleeding, abdominal 

pain and weight loss. 

The pathophysiology of IBD is not yet fully understood, but studies have shown that incorrect 

immune reaction to gut microbiota in a genetically susceptible host drives intestinal 

inflammation (Abraham and Cho 2009). Understanding the interplay between environmental 

factors and genetic disposition have been intensified through genome-wide association 

studies, which have highlighted the importance of microbe sensing in intestinal immunity 

(Vermeire and Rutgeerts 2005; Cho 2008; Gregersen and Olsson 2009; Van Limbergen, 

Wilson et al. 2009). Additionally, studies have shed light onto the importance of intestinal 

epithelium in shaping mucosal immunity. 

The epithelial barrier is a selectively permeable interface that regulates the balance between 

tolerance and immunity to bacteria and non-self antigens. Increasing evidence has shown 

that deterioration of the mucosal barrier with increased epithelial permeability allows 

translocation of antigens to the lamina propria, leading to uncontrolled inflammation 

(Mankertz and Schulzke 2007; Jager, Stange et al. 2013; Antoni, Nuding et al. 2014). 

Specialised epithelial cells like goblet cells are indispensable in regulating the epithelial 

barrier. These cells secrete mucin glycoproteins (MUC2), which regulate mucus production, 

leading to reduced bacterial adhesion to the epithelium (Van der Sluis, De Koning et al. 

2006; Johansson, Phillipson et al. 2008). 
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3.2 Animal models of inflammatory bowel disease 

Animal models of IBD are classified into different categories depending on the nature of 

inflammation and the mode of induction (Elson, Cong et al. 2005). These categories 

comprise of chemically-induced models, spontaneous models, genetically engineered 

models and adoptive T cell transfer models. Despite the fact that none of the IBD animal 

models fully mirror IBD pathogenesis in humans, they allow important new insights into the 

pathogenesis of gut inflammation. The most widely used experimental models are 

chemically-induced models using 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran 

sodium sulphate (DSS). Although both chemicals act by damaging the epithelial barrier, 

TNBS-induced colitis is believed to closely mimic CD, while DSS-induced colitis might mimic 

certain aspects of UC (Alex, Zachos et al. 2009). Despite the simplicity of chemically-induced 

models, and the fact that these models are ideal for studying mucosal damage and innate 

effector mechanisms, they are limited in the investigation of the adaptive immune system. 

Adoptive T cell transfer colitis is an IBD model, in which T cells are adoptively transferred to 

immunocompromised mouse strains, such as recombinant activating gene (RAG) knock out 

or severe combined immunodeficiency (SCID) mice, leading to the disruption of T cell 

homeostasis and colitis induction. The classical model in this group is characterised by 

adoptive transfer of CD4+CD45RbHigh T cells (naïve T cells) from healthy mice into 

immunoincompetent mice lacking T and B cells (Powrie 1995; Powrie 2004). Adoptive 

transfer of CD4+CD45RbHigh T cells is widely used because it is clearly more compatible to 

human IBD than the erosive self-limiting models. Additionally, this model is ideal for studying 

immunological mechanisms responsible for induction as well as regulation of gut 

inflammation.  

3.3 NLR family, pyrin domain containing (Nlrp3) inflammasome 

Not only have recent studies demonstrated the importance of the Nlrp3 inflammasome in 

regulating intestinal homeostasis, but they have also emphasised on the consequences of 

single nucleotide polymorphisms, which affect the expression of Nlrp3 components (Villani, 

Lemire et al. 2009; Chen and Nunez 2011; Zhang, Wang et al. 2014). IL-1β and IL-18 are 

important inflammatory cytokines, which significantly contribute to intestinal inflammation and 

are activated by caspase-1, a component of Nlrp3 inflammasome (Siegmund 2002).  

The Nlrp3 inflammasome, which is the inflammasome that has been studied most 

extensively to date, is a large protein complex consisting of three sub-units; Nlrp3, the 

adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) and 

caspase-1 (Agostini, Martinon et al. 2004). This inflammasome senses pathogens and 



Introduction 

7 

 

danger signals like bacterial toxins, external ATP or molecules associated with stress. Upon 

activation Nlrp3 oligomerises through corresponding interactions between NACHT domains; 

the PYD on Nlrp3 interacts with the PYD domain of ASC. CARD domain of ASC then recruits 

the CARD domain of caspase-1, leading to cleavage of active caspase-1 (fig. 2-1). The 

cleaved caspase-1 leads to maturation of proinflammatory cytokines IL-1β and IL-18, which 

mediate immune responses. 

 

Figure 3-1: Activation of Nlrp3 inflammasome. 

Upon detection of cellular stress caused by danger signals, e.g. bacterial toxins (nigericin), external 
ATP or molecules associated with stress (e.g. crystalline structures), Nlrp3 oligomerises through a 
corresponding interaction between NACHT domains. PYD domain of the oligomerised Nlrp3 subunit 
then binds PYD domains of ASC subunit thereby allowing binding of CARD domains of pro-caspase-1 
subunit leading to cleavage of caspase-1. Active caspase-1 then cleaves inactive forms of IL-1β and 
IL-18. Adapted from (Schroder, Zhou et al. 2010). 

3.4 IL-1β and IL-18 in intestinal inflammation 

Proinflammatory cytokines are indispensable for fighting infections and establishing 

immunity. The two main proinflammatory cytokines IL-1β and IL-18 are closely related not 

only because they belong to the IL-1 family, but also because their immature forms are 

inactive until cleaved by the protease caspase-1, a subunit of Nlrp3 inflammasome. 

IL-1β, primarily produced by innate leucocytes for example neutrophils, macrophages and 

dendritic cells has a broad spectrum of systemic and local effects. This cytokine has the 

ability to not only stimulate dendritic cells (DCs), macrophages and neutrophils (Dinarello 
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1996; Dinarello 2009), but also to promote antigen-dependent proliferation and differentiation 

(Ben-Sasson, Hu-Li et al. 2009). IL-1 receptor (IL-1R1), which is expressed on several types 

of cells, binds mature IL-1β and initiate IL-1R1 signalling (Sims and Smith 2010). The 

significance of IL-1β in intestinal immune regulation was confirmed by recent work, which 

showed its importance in mediating chronic gut inflammation. IL-1β was essential in initiating 

the infiltration of IL-17A-producing innate lymphocytes and CD4+ T cells to the colon (Coccia, 

Harrison et al. 2012). Concordantly, numerous studies have described an enhanced 

secretion of IL-1β in the colon of IBD patients (Mahida, Wu et al. 1989; Ligumsky, Simon et 

al. 1990; Brynskov, Tvede et al. 1992; Dionne, D'Agata et al. 1998). Correlation of high 

colonic IL-1β secretion with increased disease intensity suggests the importance of IL-1β in 

promoting IBD. Furthermore, high levels of this cytokine have been reported in animal 

models of colitis (Cominelli, Nast et al. 1990; Okayasu, Hatakeyama et al. 1990). Blockage of 

IL-β was able to reverse IBD-induced inflammation (Cominelli, Nast et al. 1992; Siegmund, 

Lehr et al. 2001). 

IL-18, another IL-1 family cytokine also pivotal for intestinal inflammation, was originally 

described as “IFN-γ-inducing factor”, but termed IL-18 in 1995 after purification (Okamura, 

Nagata et al. 1995). Despite regulation and signalling similarities that IL-18 shares with IL-1β, 

biologic functions differ substantially. While IL-1β is barely detectable in healthy humans and 

mice, IL-18 precursor is detected in blood monocytes, peritoneal macrophages, mouse 

spleen and in the epithelial cells of the entire gastrointestinal tract in healthy subjects (Puren, 

Fantuzzi et al. 1999).  

The role of IL-18 has been very controversial, depending on the cytokine milieu: IL-18 can 

either be antiinflammatory or proinflammatory. In concert with IL-12, IL-18 drives Th1 

differentiation by inducing the production of IFN-γ (Seki, Tsutsui et al. 2001). In agreement 

with this, neutralisation of IL-18 in chemically-induced models of colitis proved to be 

protective and was linked to reduction of IFN-γ production (Siegmund, Lehr et al. 2001; Ten 

Hove, Corbaz et al. 2001). Additionally, IL-18 was detected in inflamed intestines of CD 

patients as a mature protein, but its inactive form was detected in healthy intestinal tissue 

(Pizarro, Michie et al. 1999). Defective inflammasome-dependent epithelial integrity has been 

linked to decreased levels of IL-18 (Zaki, Boyd et al. 2010).  

Nevertheless, contradicting results have shown that administration of exogenous IL-18 

restores mucosal healing in caspase-1 deficient mice (Dupaul-Chicoine, Yeretssian et al. 

2010). Attempts have been made to reconcile these conflicting observations. Siegmund 

proposed that the type of effect induced by IL-18 is site-dependent (Siegmund 2010). It was 

argued that IL-18 activation within the epithelium leads to the preservation of the intestinal 
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barrier by inducing epithelial cell proliferation, therefore regenerating the damaged epithelial 

barrier. Nevertheless, hyperactive IL-18 intercepts the transcriptional program controlling 

goblet cell development, leading to depletion of goblet cells, therefore promoting DSS-

induced colitis (Nowarski, Jackson et al. 2015). A recent study adding more debate to the 

effect of IL-18 reported that IL-22 directly promotes the expression of IL-18 in intestinal 

epithelial cells, hence contributing to inflammation (Munoz, Eidenschenk et al. 2015).  

Effects of IL-18 on T cells was also described in a previous study, which showed that IL-18 is 

a key epithelial-derived cytokine that regulates the differentiation of distinct subsets of CD4+ 

T cells during both homeostatic and inflammatory conditions (Harrison, Srinivasan et al. 

2015). They showed that IL-18, which is constitutively produced by intraepithelial cells (IEC) 

acted directly on IL-18R1 expressed on CD4+ T cells by limiting Th17 differentiation in part by 

neutralising IL-1R signalling. Additionally, it was also shown that IL-18R signalling was critical 

for FoxP3+ regulatory T cells (Treg) cell-mediated regulation of gut inflammation. 

3.5 Dendritic cells and intestinal immune regulation 

The intestinal immune system maintains a fragile balance between immunogenicity against 

foreign pathogens and tolerance of commensal bacteria. This critical immune response is 

initiated by DCs, a subset of innate immune cells, which are responsible for antigen uptake 

and presentation to T cells. Depending on the type of antigen sensed, DCs can either induce 

an inflammatory or a tolerogenic immune response. 

The regulatory function of DCs is indispensable in the gut, where the immune system is not 

only constantly challenged by non-harmful antigens and commensal bacteria, but also by 

pathogens. Intestinal DCs have the ability to react towards signals received in their local 

environment, enabling them to discriminate between commensal microorganisms and 

potentially dangerous pathogens, therefore maintaining the balance between tolerance and 

active immunity (Chirdo, Millington et al. 2005; Hart, Al-Hassi et al. 2005). 

The crossroad between tolerance initiation and an active immune response relies on the sub-

populations of DCs characterised by their specific surface receptors, and factors present in 

the tissue environment during activation of DCs and T cell priming. Numerous subsets of 

DCs have been characterised in the mesenterial lymph node (MLN), Peyer’s patches and in 

the primary effector site lamina propria (LP) (Iwasaki and Kelsall 2001; Johansson-Lindbom, 

Svensson et al. 2005; Siddiqui and Powrie 2008; Rescigno 2009). Of all the subpopulations 

of DCs found in the intestine, recent research has put special interest on the expression of 

Integrin αE (CD103) on DCs. αE integrin is expressed together with β7 as a heterodimer, 



Introduction 

10 

 

forming the αEβ7 complex (Kilshaw and Murant 1990; Teixido, Parker et al. 1992). This 

integrin is not only found on a subset of DCs but also on CD4+, effector memory CD8+ and 

CD8+ regulatory T cells (Lehmann, Huehn et al. 2002; Uss, Rowshani et al. 2006).  The best-

known ligand of integrin αE is E-cadherin expressed by epithelial cells, which allows the 

adhesion of CD103+ cells on the epithelial layer (Siddiqui, Laffont et al. 2010). 

3.6 CD103+ and CD103- dendritic cells 

The study of intestinal DCs has been intensified over the past years, and there is a better 

understanding regarding their phenotype und function (Bogunovic, Ginhoux et al. 2009; 

Yuan, Dee et al. 2015; Muzaki, Tetlak et al. 2016). CD103+ and CD103- DC subsets have 

been described in the intestine. Despite the fact that both phenotypes prime and promote the 

expression of gut homing receptors on naïve T cells, the fate of T cells they activate differs. 

CD103- DCs have been described to cause a rapid generation of effector T cells in the gut, 

while CD103+ DCs induce differentiation of naïve CD4+ T cells into regulatory T cells 

(Coombes, Siddiqui et al. 2007; Sun, Hall et al. 2007; Cerovic, Houston et al. 2013; Scott, 

Bain et al. 2015). An increased expression of transforming growth factor-β (TGF-β) and 

retinaldehyde dehydrogenase (RALDH2), which supports the differentiation of FoxP3+ Tregs, 

has also been observed in CD103+ DCs.  

In the absence of pathogen recognition (steady state), a small population of CD103+ DCs is 

believed to migrate from the LP to the intraepithelial compartment, where they survey the gut 

content (Farache, Koren et al. 2013). At steady state, a minimal release of inflammatory 

signals or an inherent differentiation programme of DCs in the absence of TLR signalling 

(Buza, Benjamin et al. 2008), induces an essential CCR7-dependent intestinal DC migration 

from the LP to the MLN (Jang, Sougawa et al. 2006; Worbs, Bode et al. 2006; Stagg 2007). 

In the MLN, CD103+ DCs metabolise vitamin A into retinoic acid (RA) using the key enzyme 

RALDH2, which together with TGF-β converts naïve T cells into FoxP3+ Tregs (Coombes, 

Siddiqui et al. 2007; Svensson, Johansson-Lindbom et al. 2008; Agace and Persson 2012). 

Additionally, CD103+ DCs induce the expression of gut homing receptors CCR9 and α4β7 on 

T cells (Johansson-Lindbom, Svensson et al. 2005; Johansson-Lindbom and Agace 2007). 

Furthermore, increased expression of additional factors like indoleamine 2,3-dioxygenase 

(IDO) and thymic stromal lymphopoietin (TSLP) boost the ability of CD103+ DCs to inhibit 

effector cells (Matteoli, Mazzini et al. 2010; Spadoni, Iliev et al. 2012).  

Murine intestinal DC populations are further classified into CD11b+ and CD11b- subsets 

(Bogunovic, Ginhoux et al. 2009; Schulz, Jaensson et al. 2009; Varol, Vallon-Eberhard et al. 

2009). CD103+CD11b- DCs are equivalent to classical splenic CD8α DCs (Liu, Victora et al. 
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2009) stemming from pre-conventional DCs (pre-cDCs) lineage (Bogunovic, Ginhoux et al. 

2009; Varol, Vallon-Eberhard et al. 2009), which are dedicated to give rise to cDCs (Liu, 

Victora et al. 2009). On the other hand, CD103+CD11b+ DCs display classical DC activities, 

characterised by their ability to migrate to MLN, where they are able to present digested 

antigen to T cells (Johansson-Lindbom, Svensson et al. 2005; Jaensson, Uronen-Hansson et 

al. 2008; Bogunovic, Ginhoux et al. 2009; Schulz, Jaensson et al. 2009). 

 

Figure 3-2: Tolerogenic CD103+ dendritic cells in the mesenterial lymph nodes. 

In the MLN, CD103+ DCs metabolise vitamin A into retinoic acid (RA) using the key enzyme retinal 
aldehyde dehydrogenase.  In concert with TGF-β and IDO, RA converts naïve T cells into FoxP3+ Tregs 
and inhibits the development of effector T cells. Additionally, thymic stromal lymphopoietin (TSLP) also 
boosts the ability of CD103+ DCs to inhibit effector T cells. 

Despite the fact that CD103+ DCs are believed to be mainly tolerogenic at steady state, they 

also have the potential to convert naïve T cells into effector T cells. Under inflammatory 

conditions, CD103+ DCs (unlike their steady-state counterparts), displayed lower expression 

of RALDH2, and induced an inflammatory Th1 response in a TLR- and chemokine-

dependent manner (Laffont, Siddiqui et al. 2010; Farache, Koren et al. 2013). 

In contrast to CD103+ DCs, studies have shown that CD103- DCs have an immunogenic 

phenotype in both steady state and inflammation (Siddiqui, Laffont et al. 2010). CD103- DCs 
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not only have the ability to migrate to the lymph node and to prime T effector cells, especially 

IFN-γ- and IL-17-producing T cells, but also produce factors like osteopontin that drive 

intestinal inflammation (Cerovic, Houston et al. 2013; Atif, Uematsu et al. 2014; Kourepini, 

Aggelakopoulou et al. 2014; Scott, Bain et al. 2015). 
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4 Objectives 

Contact of bacterial components with immune cells of the lamina propria seems to be the key 

mechanism in regulating IBD pathogenesis. Different cell populations of the innate and 

adaptive immune system (e.g. DCs, macrophages and T cells) in lamina propria and 

mesenterial lymph nodes are involved in regulating the transition from steady state to 

inflammation. Further studies clarifying the mechanisms involved in the immune processes, 

which lead to intestinal inflammation, are needed. The four main objectives of this study 

were: 

1) To investigate the role of Nlrp3-dependent cytokines IL-18 and IL-1β in a T cell transfer 

model of colitis, particularly at the early phase of colitis induction; 2) To characterise 

intestinal DCs as the cellular platform of Nlrp3 effects, resulting in the regulation of T cell 

plasticity; 3) To investigate the role of T cell IL-1R and IL-18R signalling and its imbalance as 

a mechanism of tolerogenic versus inflammatory outcome after CD4+ T cell transfer into 

immunoincompetent mice; 4) To rule out biasing effects of differences in microbiota of Nlrp3-

sufficient and Nlr3-deficient mice through cohousing experiments and PCR-based microbial 

analysis of the intestinal microbiome. 

Previous work of our group has shown that Nlrp3 plays a major role in the pathogenesis of 

DSS-induced colitis, a chemically-induced inflammation (Bauer, Duewell et al. 2010). 

Reduced IL-1β production in the macrophages of Nlrp3-/- mice after oral DSS administration 

and protection from the DSS colitis was observed. Despite several advantages of the DSS 

model, such as simplicity, high reproducibility and almost immediate induction of mucosal 

inflammation, it has certain limitations in studying the adaptive immune response. In order to 

overcome these limitations, CD4+CD45RbHigh T cell transfer colitis model was employed in 

this study. This model was used to investigate the earliest immunological events that initiate 

intestinal inflammation. The questions addressed were: Do Nlrp3-deficient mice after 

adoptive T cell transfer have similar protection, as observed in DSS-induced colitis? Does 

Nlrp3-dependent inflammation correlate to levels of IL-1β and other associated 

proinflammatory cytokines, such as IL-17? Is the polarisation of transferred naïve T cells 

Nlrp3-dependent? 

As it has been widely described, DCs are the first line of defence in intestinal immunity. They 

are able to discriminate between non-harmful and harmful antigens and present antigens to 

T cells, therefore inducing active immunity or tolerance. That is why it was important to 

investigate the effect of Nlrp3 inflammasome on the differentiation of DC subsets, and the 

role of the different subsets in the regulation of T helper cells differentiation. 
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IL-1R and IL-18R do not only share a downstream signalling pathway in T cells, but 

maturation of their ligands is also caspase-1-dependent (Thomassen, Bird et al. 1998; Lee, 

Kim et al. 2004). A deeper understanding of the effect of these two related yet different 

signalling pathways on the fate of T cell differentiation is inevitable for clarifying their role in 

IBD. With this in mind, it was important to investigate the role of IL-1R and IL-18R signalling 

in T cells in the regulation of gut inflammation. 

It has been shown both in animal models of intestinal inflammation and in IBD patients that 

microbiota is one of the key players that mediate intestinal inflammation. Several species 

have been described that either have inflammatory or antiinflammatory potential. In order to 

rule out biasing effects of differences in microbiota composition of Nlrp3-deficient and Nlrp3-

sufficient mice, it was important to perform deep sequencing analysis of the microbial content 

in the colon of both mouse strains as well as studying the influence of cohousing, leading to 

the exchange of the microbiome, on microbiome content and colitis induction. 
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5 Materials 

5.1 Equipments 

Table 5-1 : Equipments 

Name Company 

Blotting system  Bio-Rad, Germany 

Cell culture CO2 incubator (BD 6220) Heraeus, Germany 

Cell culture Laminar Flow  Thermo Scientific, Germany 

Centrifuge (5424 and 5415R) Eppendorf, Germany 

Centrifuge (Multifuge 3L-R)  Thermo Scientific, Germany 

Cover glass  VWR, Germany 

Dissociator, gentle MACS Dissociator MACS Miltenyi Biotech 

ELSIA reader (Mithras LB940)  
Berthold Technologies, 

Germany 

FACSCanto II  BD Bioscience, Germany 

Fine scale, MC1 Analytic AC 210 S Sartorius, Germany 

Gel blotting paper  Whatman Paper GmbH, UK 

Gel electrophoresis system, Power-pac 3000 Biorad, Germany 

Gel electrophoresis system, Power-pac P25 Biometra, Germany 

Glass capillary pipette  Hirschmann, Germany 

Insulin U-100 0.3 ml  BD Microfine, Germany 

Lab-Tek® Chamber slide  Thermo Scientific, Germany 

Lightcycler® 480 II  Roche, Germany 

Microscope Axiovert25 and Axiovert200M  Zeiss, Germany 

Microscope slides (Superfrost® Plus Menzel-Gläser)  Thermo Scientific, Germany 

Microscope TCS SP5 II  Leica, Germany 

Microscope,Nikom TMS-F Nikon,Japan 

NanoDrop® 2000c  Thermo Scientific, Germany 

Nitrocellulose membrane (AmershamTM-HybondTM-ECL)  GE Healthcare, Germany 

Oven, Mini Oven MKII MWG Biotech, Germany 
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PCR machine, Biometra UNOII-Thermoblock Biometra, Germany 

pH meter  WTW, Germany 

Power Pac Basic  Bio-Rad, Germany 

Rotator, Assistent 348 RM5 Karl Hecht AG, Germany 

Scale SBC21  Scale Tec, USA 

Scalpel (No. 22) Feather, Japan 

Shaker,IKA-Schüttler MTS4 
Janke & Kunkel IKA 

Labortechnik 

Sutures (Prolene 5-0) Ethicon, USA 

Thermocycler T3  Biometra, Germany 

Thermomixer 5436 Eppendorf, Germany 

Vortex Genie 2  Scientific Industries, Germany 

Vortex, Galxy Mini  Merck Eurolab, Germany 

Water bath  Köttermann, Germany 

Western Blot analyzer (LAS4000 mini) FujiFilm, Germany 

5.2 Chemicals and reagents  

Table 5-2: Chemicals and reagents 

Name Company 

 1,4-Dithiothreitol (DTT) Sigma-Aldrich, Germany 

10x Cell Lysis Buffer Cell Signalling, USA 

3,3-diaminobenzidine (DAB)  Dako, USA 

4-dimethylamino-benzaldehyde (Ehrlich’s reagent)  Sigma-Aldrich, Germany 

Alcian Blue solution (pH 2.5) Sigma-Aldrich, Germany 

Ammonium acetate  life technologies, Germany 

Antisedan  Pfizer, USA 

Bio-Rad DCTM Protein Assay Reagent A  Bio-Rad, Germany 

Bio-Rad DCTM Protein Assay Reagent B  Bio-Rad, Germany 

Bio-Rad DCTM Protein Assay Reagent S Bio-Rad, Germany 

Bovine serum albumin Roth, Germany 
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Brefeldin A, Ready Made Solution 10 mg/ ml in DMSO Sigma-Aldrich, Germany 

Catalase  Sigma-Aldrich, Germany 

Cell lysis buffer (10x)  Cell Signalling Technology, USA 

Chloroform  Roth, Germany 

Collagenase  Sigma-Aldrich, Germany 

Collagenase D Roche, Germany 

CountBrightTM absolute Counting Beads  life technologies, Germany 

DC Protein Assay (Bradford) Bio-Rad, Germany 

Deoxyribonucleotide triphosphate (dNTP)-Mix Invitrogen, Germany 

Dimethyl sulfoxide  Roth, Germany 

DNase I  Roche, Germany 

dNTP-Mix, 10mM each Thermo Scientific, Germany 

dNTP-Mix, 10mM each Thermo Scientific, Germany 

Dorbene  Pfizer, USA 

DPX  Merck, Germany 

Dream Taq Green PCR Mastermix Thermo Scientific, Germany 

Dulbecco’s PBS (1x)  Lonza, Belgium 

Easy Coll solution (d=1.124g/l) Biochrome, Germany 

Eosin Y  Merck, Germany 

Ethanol  Sigma-Aldrich, Germany 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich, Germany 

FACSFlow, FACSClean  BD Biosciences 

Flumazenil  Inresa, Germany 

Formal-FIXX  Thermo Shandon, UK 

Glacial acetic acid  Merck, Germany 

Heparin-Natrium Braun 25000 I.E./5 ml  Rathiopharm, Germany 

Hydrogen peroxide (H2O2, 30%)  Merck, Germany 

Ionomycin calcium salt Sigma-Aldrich, Germany 

Isoflurane-CP®  CP-Pharma, Germany 
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Isopropanol  Apotheke Uni Munich, Germany 

Isopropanol  Applichem, Germany 

KAPA PROBE FAST Universal qPCR Master Mix peqlab, Germany 

Larid-buffer pH 8.3 Apotheke Uni Munich, Germany 

Lipofectamine RNAiMax  life technologies, Germany 

Lipopolysaccheride-EK, ultrapure (LPS)  InvivoGen, USA 

L-Tryptophan  Sigma-Aldrich, Germany 

Mayer’s Hemalum  Roth, Germany 

Methanol  Merck, Germany 

Midazolam  Ratiopharm, Germany 

MolTaq Molzym GmbH, Germany 

Naloxone  Inresa, Germany 

Oligo dT 18 Primer Eurofins, Germany 

PageRuler TM Plus Thermo Scientific, Germany 

PageRulerTM Plus Prestained Protein Ladder  Thermo Scientific, USA 

Paraformaldehyde (PFA)  Merck, Germany 

Phenol-chlorofrom isoamyl alcohol  Sigma-Aldrich, Germany 

Pierce ECL Western Blotting Substrate  Thermo Scientific, Germany 

PMA (Phorbol 12-myristate 13-acetate) Sigma-Aldrich, Germany 

Potassium hydrogenphosphate  Merck, Germany 

Primer-probe mix, 10x conc.  Roche, Germany 

Propidium iodide  Sigma-Aldrich, Germany 

Proteinase Inhibitor Cocktail (Complet Mini) Roche, Germany 

Proteinase K Sigma-Aldrich, Germany 

Revert Aid H Minus RT (Reverse Transkriptase) Thermo Scientific, Germany 

Revert Aid H Minus RT (Reverse Transkriptase) Thermo Scientific, Germany 

RiboLock RI (RNAse Inhibitor)  Thermo Scientific, Germany 

RiboLock RI (RNAse Inhibitor)  Thermo Scientific, Germany 

Saponine  Sigma-Aldrich, Germany 
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Sodium ascorbate  Sigma-Aldrich, Germany 

Sodium azide (NaN3, 10%)  Sigma-Aldrich, Germany 

Sodium chloride (NaCl 0.9%)  Baxter, UK 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich, Germany 

Sodium Hydroxide (NaOH) Apotheke Uni Munich, Germany 

Sulfuric acid (H2SO4, 2N)  Apotheke Uni Munich, Germany 

Super Signal Western Maximum sensetive Signal  Thermo Scientific, Germany 

Target antigen retrieval solution (10 x, pH 6.0)  Dako, USA 

TEMED Roth, Germany 

Temgesic (Buprenorphin)  RB Pharmaceuticals, UK 

TMB Substrate Reagent Set BD Bioscience, Germany 

Trichloroacetic acid  Roth, Germany 

TRIS BASE Ultra Qualität Roth, Germany 

Trypan blue  Sigma-Aldrich, Germany 

Trypsin-EDTA (10x)  PAA, Austria 

Turbo-DNase  life technologies, Germany 

UltraComp eBeads® eBioscience, Affymetrix , USA 

Vectashield mounting medium  Vector Laboratories, USA 

Xylene J.T. Baker, Netherlands 

5.3 Buffers 

5.3.1 Western blot 

Laemmli buffer (6x)      Stacking buffer (4x, pH 6.8) 

347 mM SDS       248 mM Tris 

299 µM Bromphenol blue     14 mM SDS 

4.7 ml Glycerol      15 µM Bromphenol blue 

0.5 M Tris, pH 6.0      in ultrapure water 

649 mM DTT 4.1 ml ultrapure water 
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Separating buffer (4x, pH 8.8)    Running buffer (10x) 

1.5 M Tris       248 mM Tris 

14 mM SDS      1.92 M Glycine 

in ultrapure water      35 mM SDS 

in ultrapure water 

Transfer buffer (20x)      Transfer buffer (1x) 

198 mM Tris       20x stock 

2 M Glycine       10% MeOH 

in ultrapure water                                                       in ultrapure water 

Blocking buffer      Washing buffer (TBST) 

5% BSA       165.9 mM Tris-HCl 

in TBST       44.5 mM Tris 

1.5 M NaCl 

0.5% Tween 20 

in ultrapure water 

5.3.2 Immunocytochemistry 

Fixation buffer      Permeabilisation buffer 

4% PFA       0.2% TritonX-100 

in PBS       in PBS 

Blocking buffer 

2% BSA 

in PBS 
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5.3.2.1 Flow cytometry 

FACS buffer       Permeabilisation buffer 

2 mM EDTA       0.5% saponine 

2% FBS       in PBS 

0.1% NaN3 

in PBS 

Fixation buffer 

1% PFA in PBS 

5.3.3 T cell assay 

Dyna/MACS-buffer 

0.2% FBS 

2mM EDTA in PBS 

5.3.4 Cell culture reagents and media 

Table 5-3: Cell culture reagents and media 

Name Company 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid PAA, Austria 

DMEM High Glucose (4.5 g/l) without L-Glutamine PAA, Austria 

Dulbecco´s PBS (1x) without Ca2+ and Mg2+ PAA, Austria 

Dynabeads® Mouse T activator CD3/CD28 life technologies,Germany 

Ethylenediaminetetraacetic acid (EDTA) DISOD.SALT 0.5 M, Sigma-Aldrich, Germany 

Fetal bovine serum (FBS) life technologies,Germany 

Hank's balance salt solution (HBSS) with Ca2+ and Mg2+ PAA, Austria 

Hank's balance salt solution (HBSS) without Ca2+ and Mg2+ PAA, Austria 

Hanks´Salt solution without Ca2+ and Mg2+ Biochrome, Germany 

L-glutamine (200 mM) PAA, Austria 

LPS-EB ultrapure InvivoGen, USA 

MEM-NEAA (non-essential amino acids) life technologies, Germany 
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Opti-MEM life technologies, Germany 

OVA class II (H-ISQAVHAAHAEINEAGR-OH) JPT, Germany 

Penicilline/Streptomycin (100 x) PAA, Austria 

Roswell Park Memorial Institute (RPMI) 1640 medium Biochrome, Germany 

Sodium pyruvate Biochrome, Germany 

TRYPSIN-EDTA (10X) 100ML PAA, Austria 

VLE RPMI 1640 (very low endotoxin) Biochrome, Germany 

β-mercaptoethanol Roth, Germany 

Plastic materials for cell culture experiments were purchased from BD Bioscience 

(Germany), Corning (USA), Eppendorf (Germany), Greiner bio-one (Germany) or Sarstedt 

(Germany). 

Tumour cell medium     T cell medium  

10% FBS      10% FBS 10% FBS  

2 mM L-glutamine     2 mM L-glutamine  

100 IU/ml penicillin     100 IU/ml penicillin  

100 µg/ml streptomycin   100 µg/ml streptomycin 

in DMEM      1 mM sodium pyruvate 

1% MEM-NEAA 

50 µM β-mercaptoethanol  

in RPMI 1640 in  

DC medium      

2 mM L-glutamine 

100 IU/ml penicillin 

100 µg/ml streptomycin 

1 mM sodium pyruvate 

1% MEM-NEAA 

50 µM β-mercaptoethanol in VLE RPMI 1640 
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5.4 Breeding lines 

Table 5-4: Mice breeding lines 

Genotype Origin 

Nlrp3-/- 

Donation from Prof. Jurg Tschopp (Department of Biochemistry, University of 

Lausanne, Switzerland) 

Rag1-/- 

Donation from Prof. Dr. Norbert Gerdes (Institute of Cardiovascular Prevention, 

University Hospital of Ludwig-Maximilians-Universität München) 

Nlrp3-/-Rag1-/- 

Generation by crossing Nlrp3-/- and Rag1-/-mice. Embryo Transfer in ZVH 

(Zentrale Versuchstierhaltung, SPF room), University Hospital of Ludwig-

Maximilians-Universität München)  

5.5 Kits 

Table 5-5: Kits 

Name  Company 

Bio-Plex Cell Lysis Kit  Bio-Rad, Germany 

CD11c MicroBeads, mouse Miltenyi Biotech, Germany 

CD4+ T Cell Isolation Kit, mouse Miltenyi Biotech, Germany 

Cell TraceTM CFSE Cell Proliferation kit life technologies, Germany 

Dyna Mouse CD4 Negative isolation Kit Invitrogen, Germany 

KAPA PROBE FAST Universal 2X qPCR Master Mix   peqlab, Germany 

Lamina Propria Dissociation Kit, mouse Miltenyi Biotech, Germany 

LS columns  Miltenyi Biotech, Germany 

Mouse FLT3L Duoset ELISA Set  R&D Systems, Germany 

Mouse GM-CSF Duoset ELISA Set  R&D Systems, Germany 

Mouse IFN-gamma DuoSet ELISA R&D Systems, Germany 

Mouse IL-1 beta/IL-1F2 DuoSet ELISA,  R&D Systems, Germany 

Mouse IL-12 (p70) DuoSet ELISA R&D Systems, Germany 

Mouse IL-18 Platinum ELISA eBioscience, Germany 

Mouse IL-22 ELISA Ready-SET-Go!® eBioscience, Germany 

Mouse IL-23 DuoSet ELISA R&D Systems, Germany 

Mouse TNF-alpha DuoSet ELISA R&D Systems, Germany 
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peqGOLD RNA Lysis Buffer T  peqlab, Germany 

peqGOLD Total RNA Kit (S-Line) peqlab, Germany 

RevertAidTM First strand cDNA Synthesis kit  Thermo Scientific, USA 

TGF-β, murine (ELISA)  eBioscience, Germany 

TNF-α, murine (ELISA)  R&D Systems, Germany 

5.6 Antibodies 

5.6.1 Primary conjugated antibodies 

Table 5-6: Primary conjugated antibodies 

Specificity Fluorochrome Host Isotype Reactivity Concentration Company 

CD3 APC/Cy7 rat IgG2b, κ mouse 1/200 BioLegend, USA 

CD3 PB hamster IgG mouse 1/200 BioLegend, USA 

CD4 PerCP rat IgG2a, κ mouse 1/200 

BD, Phamingen, 

Germany 

CD4 PE rat IgG2b, κ mouse 1/200 

BD, Phamingen, 

Germany 

CD8 APC rat IgG2a, κ mouse 1/200 BioLegend, USA 

CD8 APC/Cy7 rat IgG2a, κ mouse 1/200 BioLegend, USA 

CD11b PerCP/Cy5.5 rat IgG2b, κ mouse/human 1/200 

BD, Phamingen, 

Germany 

CD11c APC/Cy7 hamster IgG mouse 1/200 BioLegend, USA 

CD11c PB hamster IgG mouse 1/200 BioLegend, USA 

CD25 APC rat IgG1 mouse 1/200 Caltag, Germany 

CD44 FITC rat IgG2b, κ human/mouse 1/200 eBioscience, Germany 

CD45Rb FITC rat IgG2a, κ mouse 1/200 

BD, Phamingen, 

Germany 

CD62L APC rat IgG2a, κ mouse 1/200 

BD, Phamingen, 

Germany 

CD86 PE rat IgG2b, κ mouse 1/200 BioLegend, USA 

CD103 Alex Fluor 488 hamster IgG mouse 1/200 BioLegend, USA 
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F4/80 APC rat IgG2a, κ mouse 1/200 eBioscience, Germany 

Foxp3 PE rat IgG2a, κ mouse 1/200 eBioscience, Germany 

MHC-II FITC mouse IgG2a, κ mouse 1/200 

BD, Phamingen, 

Germany 

NK-1.1 PerCP mouse IgG2a, κ mouse 1/200 BioLegend, USA 

5.6.2 Primary unconjugated antibodies 

Table 5-7: Primary unconjugated antibodies 

Specificity Host Isotype Reactivity Company 

CD103 hamster IgG mouse BioLegend, USA 

CD3 rat IgG2b, κ mouse BioLegend, USA 

CD4 rat IgG2a, κ mouse BioLegend, USA 

E-cadherin  mouse IgG2a, κ mouse BD, Phamingen, Germany 

IL-1β/IL-1F2 goat IgG mouse R&D Systems, Germany 

5.6.3 Secondary conjugated antibodies 

Table 5-8: Secondary conjugated antibodies 

Specificity Fluorochrome Host Isotype Reactivity Company 

Donkey anti-goat IgG (H+L) 

Alexa Fluor®488 AF488 donkey IgG goat Invitrogen, Germany 

Donkey anti-goat IgG-HRP HRP donkey IgG goat 

Santa Cruz 

Biotechnology, USA 

Donkey anti-rat IgG (H+L) 

Alexa Fluor®488 AF488 donkey IgG rat Invitrogen, Germany 

Goat anti-hamster IgG AF488 

(H+L) AF488 goat IgG hamster 

life technologies, 

Germany 

Goat anti-mouse IgG (H+L) 

Alexa Fluor®488  AF488 goat IgG mouse Invitrogen, Germany 

Goat anti-mouse IgG (H+L) 

Alexa Fluor®647 AF647 goat IgG mouse Invitrogen, Germany 

Goat anti-mouse IgG1-HRP 

(γ1 chain specific) HRP goat IgG1 mouse Southern Biotech, USA 

Goat anti-mouse IgG2a-HRP HRP goat IgG2a mouse Southern Biotech, USA 
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(γ2a chain specific) 

Goat anti-mouse IgG2c-HRP 

(γ2c chain specific) HRP goat IgG2c mouse Southern Biotech, USA 

Goat anti-mouse IgG-HRP HRP goat IgG mouse 

Santa Cruz 

Biotechnology, USA 

Goat anti-mouse IgG-HRP (γ 

chain specific) HRP goat IgG mouse Southern Biotech, USA 

Goat anti-rabbit Ig FITC  FITC goat Ig rabbit 

BD Bioscience, 

Germany 

Goat anti-rabbit IgG (H+L) 

Alexa Fluor®488 AF488 goat IgG rabbit Invitrogen, Germany 

Goat anti-rabbit IgG (H+L) 

Alexa Fluor®546  AF546 goat IgG rabbit Invitrogen, Germany 

Goat anti-rabbit IgG (H+L) 

Alexa Fluor®555 AF555 goat IgG rabbit Invitrogen, Germany 

Goat anti-rabbit IgG-HRP HRP goat IgG rabbit 

Santa Cruz 

Biotechnology, USA 

Goat anti-rat IgG (H+L) Alexa 

Fluor®546 AF546 goat IgG rat Invitrogen, Germany 

Goat anti-rat IgG (H+L) Alexa 

Fluor®647 AF647 goat IgG rat Invitrogen, Germany 

Goat anti-rat IgG AF546 (H+L) AF546 goat IgG rat 

life technologies, 

Germany 

Goat anti-rat IgG-HRP HRP goat IgG rat 

Santa Cruz 

Biotechnology, USA 

Rabbit anti-goat IgG (H+L) 

Alexa Fluor®555 AF555 rabbit IgG goat Invitrogen, Germany 
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5.7 Recombinant cytokines and proteins 

Table 5-9: Recombinant cytokines and proteins 

Name  Company 

Recombinant murine FLT3L Peprotech, Germany  

Recombinant murine GM-CSF Peprotech, Germany  

Recombinant murine IL-1β Peprotech, Germany  

Recombinant murine IL-12 Peprotech, Germany  

Recombinant murine IL-18  Biovision incoporated 

Recombinant murine IL-2 Peprotech, Germany  

Recombinant murine IL-23 Peprotech, Germany  

Recombinant murine IL-4 Peprotech, Germany  

Recombinant murine IL-6 Peprotech, Germany  

5.8 Primers 

5.8.1 Primer sequences for genotyping PCR 

Table 5-10: Primer sequences for genotyping PCR 

Gene  Sequence 5´-> 3´ 

Nlrp3 common aaatcgtgctgcttcatgt 

Nlrp3 wild-type tcaagctaagagaactttctg 

Nlrp3 mutant acactcgtcatcttcagca 

Rag1 common ccggacaagtttttcatcgt 

Rag1 wild-type gaggttccgctacgactctg 

Rag1 mutant tggatgtggaatgtgtgcgag 

5.8.2 Primer sequences for rt-qPCR 

Table 5-11: Primer sequences for rt-qPCR 

Gene mRNA Species   Sequence 5´-> 3´ Probe No. 

BCL2 Left mouse left  agtacctgaaccggcatctg   

75 BCL2 Right mouse right ggggccatatagttccacaaa 

Caspase-1 Left mouse left ttggtcttgtgacttggaggac   
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Caspase-1 Right mouse right agaaacgttttgtcagggtca 105 

Caspase-11 Left mouse left  tctccagagcgagtttcttctt   

17 Caspase-11 Right mouse right tgttttctgaccggctgac 

CCL2 Left mouse left  catccacgtgttggctca   

62 CCL2 Right mouse right gatcatcttgctggtgaatgagt 

CCR9 Left mouse left  catccacgtgttggctca   

105 CCR9 Right mouse right gatcatcttgctggtgaatgagt 

CD103 Left mouse left  cctggaccactacaaggaacc   

11 CD103 Right mouse right ttgcagtccttctcgtaggg 

CD11c Left mouse left  atg gag cct caa gac agg ac   

20 CD11c Right mouse right gga tct ggg atg ctg aaa tc 

CD3 Left  mouse left  cttgtacctgaaagctcgagtg   

10 CD3 Right mouse right tgatgattatggctactgctgtc 

CD4 Left  mouse left  agggctgtggcagtgtctac   

109 CD4 Right mouse right gccaggaacactgtctggtt 

FLT3L Left mouse left  aggcctgccagaatttctct   

25 FLT3L Right mouse right gcttctagggctatgggactc 

FoxP3 Left mouse left  tca gga gcc cac cag tac a   

78 FoxP3 Right mouse right tct gaa ggc aga gtc agg aga 

GM-CSF Left mouse left  gcatgtagaggccatcaaaga   

79 GM-CSF Right mouse right cgggtctgcacacatgtta 

GM-CSFR Left mouse left  cagacggacggacacagac   

4 GM-CSFR Right mouse right ggtgatgttcatggcatgtg 

IDO 1 Left mouse left  ttgctactgttttgaattgtaatgtg   

96 IDO 1 Right mouse right aagctgcccgttctcaatc 

IDO 2 Left mouse left  tgcacctggaattacgacac   

1 IDO 2 Right mouse right gcaagagatcttggcagca 

IFN-γ Left mouse left  atctggaggaactggcaaaa   

21 IFN-γ Right  mouse right ttcaagacttcaaagagtctgaggta 
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IL 27 Left mouse left  catggcatcacctctctgac   

38 IL 27 Right mouse right aagggccgaagtgtggta 

IL-12(p35) Left mouse left  ccaggtgtcttagccagtcc     

62 IL-12(p35) Right mouse right gcagtgcaggaataatgtttca  

IL-17 Left mouse left  catgagtccagggagagctt   

74 IL-17 Right mouse right gctgagctttgagggatgat 

IL-18 Left mouse left  caaaccttccaaatcacttcct   

46 IL-18 Right mouse right tccttgaagttgacgcaaga 

IL-1β Left mouse left  agttgacggaccccaaaag   

38 IL-1β Right  mouse right agctggatgctctcatcagg 

IL1R1 Left mouse left  attgttgaacatcgccactg     

2 IL1R1 Right mouse right aaatgagccccagtagcactt     

IL-22 Left mouse left  tttcctgaccaaactcagca      

17 IL-22 Right mouse right tctggatgttctggtcgtca       

IL-22BP Left mouse left  acaacagcatctactttgtgcag   

21 IL-22BP Right mouse right cccccagcagtcaactttat 

IL-22R Left mouse left  tgctctgttatctgggctacaa   

9 IL-22R Right mouse right tcaggacacgttggacgtt 

IL-23 Left mouse left  tccctactaggactcagccaac   

19 IL-23 Right mouse right agaactcaggctgggcatc 

IL-6 Left mouse left  gctaccaaactggatataatcagg   

6 IL-6 Right mouse right ccaggtagctatggtactccagaa 

IP-10 Left mouse left  gctgccgtcattttctgc   

3 IP-10 Right mouse right tctcactggcccgtcatc 

IRF4 Left mouse left  ggagtttccagaccctcaga   

6 IRF4 Right mouse left  ctggctagcagaggttccac 

NLRC4 Left   mouse right gaagaatcctgtgatctccaagag   

40 NLRC4 Right mouse left  gatcaaattgtgaagattctgtgc 

Nlrp3 Left  mouse right cccttggagacacaggactc   
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Nlrp3 Right  mouse right ggtgaggctgcagttgtcta 82 

Nlrp6 Left  mouse left  ccagcttctgcatctgagagt   

15 Nlrp6 Right  mouse right ctcccttgccactgcatc 

PUMA Left mouse left  tacagcggagggcatcag   

79 PUMA Right mouse right ttctccggagtgttc 

RALDH2 Left mouse left  catggtatcctccgcaatg   

33 RALDH2 Right mouse right gcgcatttaaggcattgtaac 

RORγT Left mouse left  agagacaccaccggacatct   

71 RORγT Right mouse right caagggatcacttcaatttgtg 

Smad1 Left mouse left  tgaaaacaccaggcgacata   

25 Smad1 Right mouse right tgaggcattccgcatacac 

Smad2 Left mouse left  aggacggttagatgagcttgag   

9 Smad2 Right mouse right gtccccaaatttcagagcaa 

Smad3 Left mouse left  tccgtatgagcttcgtcaaa   

32 Smad3 Right mouse right ggtgctggtcactgtctgtc 

Smad5 Left mouse left  catggattcgaggctgtgta   

32 Smad5 Right mouse right gtactggtgacgtcctgtcg 

SOCS3 Left mouse left  atttcgcttcgggactagc   

83 SOCS3 Right mouse right aacttgctgtgggtgaccat 

SPP1 Left mouse left  gaggaaaccagccaaggac   

52 SPP1 Right mouse right tgccagaatcagtcactttca 

β-Actin Left mouse left  ctaaggccaaccgtgaaaag   

64 β-Actin Right mouse right accagaggcatacagggaca 

Stat3 Left mouse left  gttcctggcaccttggatt   

71 Stat3 Right mouse right caacgtggcatgtgactctt 

Stat5b Left mouse left  cgagctggtctttcaagtca   

77 Stat5b Right mouse right ctggctgccgtgaacaat 

TGF-β Left mouse left  tggagcaacatgtggaactc   

72 TGF-β Left mouse right cagcagccggttaccaag 
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TNF-α Left mouse left  ctgtagcccacgtcgtagc 

25 TNF-α Right mouse right tttgagatccatgccgttg 

5.9 Software 

Table 5-12: Software 

Name Company 

Adobe Illustrator CS4  Adobe Systems, USA 

Adobe Photoshop CS4  Adobe Systems, USA 

Axiovision Rel.4.4  Zeiss, Germany 

EndNote X4  Thomson Reuters, USA 

FACSDiva  BD Bioscience, Germany 

FlowJo 7.6.5  Tree Star, USA 

Graphpad Prism 5.0  Graphpad Software, USA 

Image J  Image J Software, USA 

LAS AF V2.2.1  Leica, Germany 

Lightcycler 480 SW 1.5  Roche, Germany 
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6 Methods 

6.1 Cell culture 

Cells were cultivated at 37°C with 5% CO2 and 95% humidity. Cell number and viability were 

determined by hemocytometer using 0.5% trypan blue in PBS. Cell culture experiments were 

performed under a sterile laminar flow hood unless stated otherwise. 

6.2 Immunological methods 

6.2.1 Enzyme-linked immunosorbent assay (ELISA) 

Detection of chemokines and cytokines by ELISA kits was performed according to the 

manufacturer’s instructions. 

6.2.2 Western blot 

Cells were harvested and then lysed in an appropriate volume of lysis buffer for 30 min on 

ice. Debris was pelleted for 10 min at 14 000 g at 4°C, and protein concentration was 

determined by Bradford assay. Samples were then diluted with Laemmli buffer and 

denatured for 5 min at 95°C. Appropriate amount of protein samples were loaded on 10-15% 

sodium dodecyl sulphate (SDS) gel depending on the size of the protein of interest. Protein 

samples and 5 µl PageRulerTM plus prestained Protein Ladder were separated for 90 min at 

100 V. Proteins were then transferred to a nitrocellulose membrane using Trans-Blot® 

Electrophoresis Transfercell for 60 min at 350 mA at RT. The membrane was either blocked 

with 5% BSA/TBST or 5% fat free milk for 60 min at RT. Afterwards, protein samples were 

stained with the first antibody overnight at 4°C, followed by a secondary antibody staining for 

60 min at RT. The membrane was washed three times for 10 min after every antibody 

staining and then developed using chemiluminescence substrate ECL according to the 

manufacturer’s instructions. The membrane was then exposed using Western Blot analyser 

LAS4000 mini.  

6.3 Molecular biology methods 

6.3.1 Polymerase chain reaction 

Different mouse genotypes developed were verified using polymerase chain reaction (PCR). 

Mouse genomic DNA samples were prepared from 2 mm tail tips, which were incubated with 

75 µl alkaline lysis buffer (25mM NaOH/0.2 Mm EDTA) for 30 min at 95°C.  After incubation, 

samples were cooled to 15 °C and then neutralised by 75 µl 40mM Tris HCl (pH 5.5). PCR 
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reactions was performed using either Nlrp3-specific or Rag1-specific primer pairs with the 

following programs; Nlrp3 (94oC, 3 minutes; 94oC, 30 seconds, 58oC 30 sec, 72oC, 1 min for 

39 cycles) and then 72°C, 10 min or Rag1 (94oC, 15 min; 94oC, 30 sec, 63oC 30 sec, 72oC,  

1 min for 35 cycles and then 72°C, 10 min). 

6.3.2 Quantitative analysis of mRNA 

6.3.2.1 RNA isolation  

RNA isolation was performed using the peqGOLD Total RNA isolation kit from peqlab 

according to the manufacturer’s instructions. A highly denaturing guanidine-thiocyanate 

containing lysis buffer, which inactivates RNAases, and an Ultra Turrax instrument were 

used to lyse and homogenise tissue or cells. Lysed samples were loaded on a column and 

centrifuged for 1 min at 12,000 g. Flow through was mixed with an identical volume of 70% 

methanol and vortexed carefully, and then loaded on a PerfectBind RNA column. 

Contaminants were washed with two different washing buffers. RNA was eluted with RNase 

free water and the concentration was determined via a photometrical method by Nano Drop®. 

6.3.2.2 cDNA transcription 

RNA was reverse transcribed into cDNA using RevertAIDTM First stranded cDNA Synthesis 

kit from Thermo Scientific according to manufacturer’s instructions. The kit uses RevertAIDTM 

reverse transcriptase with a lower RNase H activity and RiboLockTM, which inhibits all 

eukaryotic RNases, therefore protecting the RNA from degradation. Additionally, a synthetic 

single-stranded 18-mer primer oligonucleotide (Oligo (dt)18), which allows selective reverse 

transcription of RNA through its 3’-end poly (A) was used to enable selective annealing to 

poly (A) tailed mRNA. 

For the cDNA synthesis, 2 µg isolated RNA was incubated for 60 min at 42°C for 

amplification with 1 µl Oligo(dT)18 primer, 1 µl RiboLockTM  (20 U/µl), 4 µl Reaction buffer (5x), 

2 µl dNTP mix (10mM), 1 µl RevertAidTM M-MuLV (200 U/µl) and nuclease free water to a 

final volume of 20 µl. The reaction was completed by heating at 70°C for 10 min then cooled 

down at 4°C. 

6.3.2.3 Quantitative real time polymerase chain reaction 

Quantitative real time PCR is a very sensitive method used to quantify copy numbers of PCR 

templates such as cDNA. KAPA PROBE FAST qPCR Kit from peqlab was used. The 

appropriate gene primers were designed with respect to Roche Library and the matching 

probes were purchased from Roche. The procedure was performed according to the 



Methods 

34 

 

manufacturer’s instructions except for the total volume that was scaled down from 20 µl to  

10 µl (5 µl KAPPA PROBE FAST UNIVERSAL qPCR Maste Mix  (2x), 0.2 µl forward primer,  

0.2 µl reverse primer, 0.1 µl probe and then scaled to 10 µl by 1.5 µl water). β-actin was used 

as housekeeping gene, and target transcripts were quantified by 2-ddCT relative quantification, 

which relates the PCR signal of the target transcript in a treatment group to an untreated 

control. 

6.4 Polymerase chain reaction-based microbial analysis 

Fresh stool samples were collected from single-housed Nlrp3-deficient and Nlrp3-sufficient 

mice (both Rag1-/-) and then shock-frozen in liquid nitrogen. The same mice were then 

cohoused for three weeks, after which fresh stool samples were collected again and shock-

frozen in liquid nitrogen. Microbial communities in the stool samples were then analysed by 

high-throughput 16S ribosomal RNA gene sequencing at the Technical University of Munich 

in Freising-Weihenstephan in cooperation with Dr. Thomas Clavel (Zentralinstitute für 

Ernährung- und Lebensmittelforschung) as described in their previous work (Schaubeck, 

Clavel et al. 2016). 

6.5 Animal experiments 

6.5.1 Animals 

Nlrp3-/- and Rag1-/- mice were bred and maintained under specific pathogen free (SPF) 

conditions in an accredited animal facility at the University Hospital of LMU Munich. IL-18R-/- 

(Il18r1tm1Aki) and IL-1R-/- (Il1r1tm1Imx) mice were provided by PD Dr. med. Gerald Denk 

(Medizinische Klinik II, LMU Munich). OT II mice	   (Tg(TcraTcrb)425Cbn) were  provided by 

Prof. Dr. Thomas Brocker, (Institute  of Immunology, LMU Munich) and wild-type mice were 

purchased from Janvier laboratory (St. Berthevin Cedex, France). Mice were fed standard 

mice chow pellets and had access to autoclaved tap water supplied in bottles. All 

experiments were approved by the regional animal study committee and are in agreement 

with the guidelines for the proper use of animals in biomedical research. Mice used for 

experiments were more than 8 weeks of age and were anesthetised with isoflurane for blood 

withdrawal, subcutaneous (s.c.) tumour cell inoculation and adoptive T cell transfer. 

6.6 Organ and single cell preparation 

6.6.1 Isolation of spleen cells 

Spleen was homogenised into a single cell suspension by gentle dissociation through a 40 

µm cell strainer wetted by cell isolation buffer (PBS supplemented with 2% foetal bovine 

serum (FBS)). Splenocytes were pelleted at 400 g for 5 min at RT and erythrocytes were 
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then lysed with 2 ml prewarmed ammonium chloride-Tris (ACT) buffer for 5 min at RT. Lysed 

cells were washed off and then cell count and viability was determined. 

6.6.2 Isolation of mesenterial lymph nodes 

Mesenterial lymph nodes (MLN) were gently homogenised through a 100 µm cell strainer 

wetted with cell isolation buffer. Erythrocytes were lysed before MLN-derived cells were 

further used. 

6.6.3 Isolation of murine T cells  

For isolation of mouse T cells (untouched CD4+ T cells), MACS T cell isolation kit from 

Miltenyi Biotech was used according to manufacturer’s instructions. The principle of this 

system is isolation of untouched CD4+ T cells by depleting non CD4+ T cells using a biotin-

conjugated antibody cocktail against CD8a, CD11b, CD11c, CD19, CD45R (B220), CD49b 

(DX5), CD105, Anti-MHC-class II, Ter-119 and TCRγ/δ. Further labelling with magnetic anti-

biotin MicroBeads allows the retention of unwanted cells in the magnetic field, while 

unlabelled target cells pass through the column. 

Lysed splenocytes were incubated with 10 µl biotin-conjugated antibody cocktail in 40 µl 

MACS buffer per 107 cells for 5 min at 8°C. 20 µl anti-biotin MicroBeads in 30 µl MACS buffer 

per 107 cells was added to the splenocytes and then further incubated for 10 min under 

rotation at 8°C. Unbound antibody was washed with MACS buffer for 5 min at 400 g, 4°C. 

Cells were resuspended with MACS buffer and loaded on an LS column attached to a 

magnetic field. Unlabelled CD4+ T cells passed through the column (negative fraction) and 

their purity was controlled by flow cytometry. 

6.6.4 Isolation of intraepithelial cells and lamina propria 

Intraepithelial lymphocytes (IELs) and lamina propria (LP) cells were isolated using Mouse 

Lamina Propria Dissociation Kit from Miltenyi Biotec. This method is based on a combination 

of mechanical dissociation and enzymatic degradation of extracellular adhesion proteins 

using gentleMACSTM Dissociation. 

Colon tissue was cleaned with 1x Hank’s balanced salt solution without calcium and 

magnesium (1x HBSS w/o) and then cut longitudinally. Colon sections were then cut into 

small fragments and incubated with 20 ml predigestion solution (1× HBSS w/o containing      

5 mM EDTA, 5% FBS and 1 mM DTT) for 20 min at 37°C. Incubated colon tissue suspension 

was passed through a 70 µm cell strainer and LP tissue, which was retained on the cell 

strainer, was predigested again. 
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Flow through containing epithelial and subepithelial cells as well as intraepithelial 

lymphocytes was removed and the remaining LP tissue was collected into a gentleMACSTM  

C tube containing 2.35 ml preheated digestion solution (1×HBSS  with calcium and 

magnesium, containing 5% FBS). LP tissue was dissociated using gentleMACS Dissociator 

(m_intestine_01 program). Finally, debris was discarded by passing the dissociated tissue 

through a 100 µm cell strainer and the flow through containing LP-derived cells was washed 

before further analysis. 

6.7 Generation of bone marrow-derived dendritic cells 

Bone marrow cells were isolated from murine femur and tibia. Bones were sterilised with 

70% ethanol and then dried. Epiphyses were cut off and bone marrow was flushed out using 

culture medium. Contents of the bone marrow were then filtered through a 40 µm cell strainer 

and centrifuged for 5 min at 400 g. Erythrocytes were lysed for 3 min at RT and isolated cells 

were differentiated with either 20 ng/ml IL-4 and 20 ng GM-CSF for 7 days or with 100 ng/ml 

FLT3L for 9 days in RPMI complete medium. Medium on the GM-CSF/IL-4-differentiated 

DCs was changed on the second and fifth day. 

6.8 Adoptive T cell transfer colitis 

Adoptive T cell transfer colitis is a well-characterised model of chronic colitis, in which 

inflammation is induced by disruption of T cell homeostasis. In this model, naïve precursors 

of T effector cells (CD4+CD45RbHigh T cells) are isolated from healthy donor mice and 

reconstituted into immunoincompetent mice (in our case Rag1-/- mice). This protocol was 

established by Fiona Powrie and colleagues (Powrie, Leach et al. 1993; Powrie, Correa-

Oliveira et al. 1994). CD4+ T cells were purified from splenocytes using Dynabeads® 

UntouchedTM Mouse CD4 Cells Kit according to manufacturer’s instruction.  

Splenocytes were incubated for 20 min at 8°C with 140 µl antibody mix solution (20 µl 

antibody mix, 100 µl Dyna buffer and 20 µl FBS) per 107 cells. Unbound antibody was 

washed off and then cells were incubated for 15 min at RT with 1 ml Dynabeads suspension 

(800 µl Dyna buffer and 200 µl Dynabeads®) per 107 cells. 1 ml Dyna buffer was added to the 

cell suspension and then placed on a magnet for 2 min. 

The supernatant containing CD4+ T cells was then collected. Isolated cells were washed with 

FACS buffer and stained with appropriate antibodies against CD4 and CD45Rb. 

CD4+CD45RbHigh cells were then FACS purified using the BD FACSAria™ III.  

CD4+CD45RbHigh population was identified as the 40% of CD4+ cells exhibiting the brightest 

CD45Rb staining.  
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Purified naïve T cells were washed with PBS to discard FBS and then 0.4 x 106 cells 

resuspended in 100 µl were adoptively transferred into Rag1-/- mice via i.p. injection. Disease 

progression and development was monitored for a period of 4 weeks. 

6.9 Histological and clinical score 

Blinded investigators monitored body weight change, presence of blood in stool and stool 

consistency. For stool consistency, normal-formed stool-pellets were scored 0, soft and not 

well-formed stool-pellets were scored 2 and severe diarrhoea was scored 4. For haemoccult 

test, 0 points were given to negative test results, 2 points for positive results, and mice with 

rectal bleeding were given 4 points. An overall clinical score ranging from 0 for healthy mice 

to 4 for severe colitic mice was determined by dividing the total of both stool consistency and 

haemoccult test score and then divided by two. Colon weight per length, a parameter widely 

used as an indicator of inflammation in the colon, was determined by weighing the entire 

colon from caecum to anus and measuring its length. 1 cm of distal colon was used for 

histological analysis and the rest was used for further analysis ex vivo. 4% formalin was used 

to fix distal colon tissue rings, which were then embedded in paraffin. Haematoxylin and 

eosin (H&E) was used to stain 4 µm colon tissue sections and analysed in a blinded fashion. 

For sub-score of inflammatory cell infiltration, 0 scores were given to scarce inflammatory 

cells in the lamina propria, 1 scores were given to elevated frequency of infiltrating cells, 2 

scores were given to increased number of inflammatory cells infiltrating the submucosa, and 

3 scores were given to inflammatory cells extending to the transmural layer. The level of 

epithelial damage was determined by the following scores; 0 points for lack of mucosal 

damage, 1 point for minimal focal lymphoepithelial lesions, 2 points for erosion or ulceration 

of the mucosal layer, and 3 points for to severe mucosal injury extending to the structures of 

the intestinal wall. Both the inflammatory cell infiltration score and epithelial damage score 

were added up, with healthy mice getting 0 total sub-scores and mice with maximal colitis-

induced inflammation getting 6 total sub-score. 

6.10 T cell proliferation/polarisation assay  

CD4+ T cells were isolated using CD4+ T Cell Isolation Kit mouse (Miltenyi Biotec, Germany) 

according to manufacturer’s instruction. MACS-isolated untouched CD4+ T cells were stained 

with fluorescence markers allowing the selection of T cells. Murine CD4+ T cells were then 

purified by sorting on a FACSAria III. 1 x 105 purified CD4+ T cells were cultured in 200 µl 

complete RPMI medium in 96- well U-bottom plates. Sorted naïve CD4+ T cells were labelled 

with 2.5 µM CFSE, stimulated with 5 µg of plate-bound anti-CD3 and 2 µg of soluble CD28 

for 72 hrs. For stimulation of T cells, different exogenous cytokines were added to 
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CD3/CD28-stimulated CD4+ T cells (20 ng/ml IL-1β, 10 ng/ml IL-18 or 10 ng/ml IL-18 and 

2 ng/ml IL-12).  

2 x 104 of either MACS isolated splenic DCs or BM-DCs were stimulated with 0.5 µg/ml LPS 

overnight. DCs were then pulsed with 25 µg/ml MHC-II-specific peptide OVA class II 

(ISQAVHAAHAEINEAGR). 2 x 104 LPS-stimulated and peptide-loaded DCs were cocultured 

with 105 purified CD4+ T cells for 5 days. 

6.11 Flow cytometry 

The flow cytometer used in this study was BD FACSCanto II which uses three different 

lasers; a blue laser (488 nm, air-cooled, 20 mW solid state), a red laser (633 nm, 17 mW 

HeNe) and a violet laser (405 nm, 30 mW solid state). The advantage of these lasers is their 

adequate filter bands, which allow simultaneous detection of different emissions of different 

fluorochromes. In order to omit spectral overlap, compensation of different emissions was 

done using single-stained UltraComp eBeads. 

For extracellular staining, cells were incubated with appropriate antibody concentration for  

20 min at RT in the dark. After incubation, cells were washed with 500 µl FACS buffer and 

then analysed by BD FACSCanto II. In order to stain intracellular proteins, stained surface 

molecules were fixed and then the cells were permeabilised in order to allow intracellular 

antibodies to pass through the membrane. FoxP3 Fix/Perm buffer set was used for the 

fixation and permeabilisation of cells. After surface staining, cells were fixed with fix buffer for 

30 min at 4°C, then washed and permeabilised for 30 min at 37°C with perm buffer. Finally, 

cells were stained with intracellular antibodies for 25 min at room temperature.  

Analysis of flow cytometry data was performed using the FlowJo software. Data is 

represented as pseudocolour plots, contour plots or histograms.  

 

 

 

 

 



Methods 

39 

 

Table 6-1: Fluorescence characteristics of used fluorochromes, wavelength of the excitation 

lasers and detection filters using the LSR-II flow cytometry 

Fluorochrome 
Absorption 

maximum (nm) 

Emission 

maximum (nm) 

Excitation wave 

length (nm) 
Detection filter (nm) 

7-AAD    543 648 543 670/14 

Alexa-Fluor-488     495 519 488 695/40 

Alexa-Fluor-647    650 665 633 660/20 

APC 650 660 633 660/20 

APC-CY7 650 785 633 780/60 

FITC     495 525 488 695/40 

Pacific Blue   410 455 405 450/50 

PE     564 575 488 575/26 

PE-Cy7     564 767 543 780/60 

PerCP     490 675 488 575/26 

PI     493 619 543 610/20 

6.12 Statistical analysis 

Data are expressed as means ± SEM. Statistical significance of differences between different 

groups and controls was determined by Student t test. Differences were considered 

statistically significant at p < 0.050. Statistical analysis was conducted using GraphPad Prism 

software (version 5.02). 
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7 Results 

7.1 Establishment of breeding lines 

Three breeding lines of immunodeficient mouse strains, all stemming from a C57BL/6 

genetic background, were established: Nlrp3-/-, Rag1-/- and Nlrp3-/-Rag1-/-. A modified 

breeding strategy using breeding pairs of Nlrp3 heterozygous and homozygous mice 

(Nlrp3+/Rag1-/- x Nlrp3-/-Rag1-/-) was applied. This strategy resulted in offspring that exhibited 

in 50% a Nlrp3+/-Rag1-/- genotype and in 50% a Nlrp3-/-Rag-/- genotype, but was otherwise of 

identical genetic background. Genotyping confirmed successful establishment of these 

breeding lines (fig. 6-1 a and b). 

 

Figure 7-1: Generation and genotyping PCR of Nlrp3-/-Rag1-/- double knock-out mice. 

Analysis of Nlrp3 (a) and Rag1 (b) genotypes by PCR from tail DNA. Results obtained from; wild-type 
Nlrp3 (a lane 2 and 4) and Rag1 (b lane 1 and 4), heterozygous Nrlp3 (a lane 1) and Rag1 (b lane 2), 
and knock-out Nlrp3 (a lane 3) and Rag1 (b lane 3). Rag1 wild-type band and Rag1 knock out (KO) 
band have 474 bp and 530 bp respectively and Nlrp3 wild-type and Nlrp3 knock out (KO) have 250 bp 
and 530 bp respectively.   

7.2 Nlrp3-deficient Rag1-/- mice are protected from CD45RbHigh T cell transfer colitis 

The T cell transfer colitis model is based on adoptive transfer of naive, wild-type 

CD4+CD45RbHigh T cells into Rag1-/- mice lacking functionally active T and B cells. Adoptively 

transferred CD4+ T cells encounter their respective antigens in a contact-dependent manner 

with host myeloid cells, particularly DCs. Mice develop clinical signs of colitis within four 

weeks when 0.4 x 106 CD4+CD45RbHigh T cells are transferred, but not after transfer of 

CD45RbHigh and CD45RbLow CD4+ T cells containing regulatory T cells (data not shown). 

Eight to twelve week old Nlrp3-sufficienct and Nlrp3-deficient Rag1-/- mice were reconstituted 

with sorted CD4+CD45RbHigh T cells (purity 98%) (fig. 6-2 a) isolated from wild-type mice. 

Weight loss was significantly reduced in Nlrp3-deficient compared to Nlrp3-sufficient mice 

(fig. 6-2 b). Concordantly, Nlrp3-sufficient mice displayed an aggravated clinical and 

histological colitis score four weeks after colitis induction (fig. 6-2 c-e). Higher colon weight 
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per length of Nlrp3-sufficient mice was indicative of increased colonic inflammation (fig. 6-2 

f). Histological scoring of inflammatory infiltration and epithelial damage correlated with 

higher CD3 mRNA expression in colonic tissue (fig. 6-2 g). Collectively, these findings 

suggest a protective effect of Nlrp3-deficiency during the early phase of adoptive T cell 

transfer colitis.  

 

Figure 7-2: Nlrp3-deficiency protects mice from colitis after CD45RbHigh T cell transfer. 

Nlrp3-deficient and Nlrp3-sufficient mice were reconstituted i.p. with CD4+CD45RbHigh T cells (a) from 
C57BL/6 mice. Percentage body weight change (b, n = 16-18) and clinical score (c, n = 11) after 
adoptive transfer were monitored for 29 days. Subsequently mice were sacrificed and intensity of 
inflammation was analysed by blinded histological scoring (d and e, n=11), as well as calculating colon 
weight per length (f, n=11). Expression of T cell marker CD3 was analysed by rt-qPCR (g, n = 11).  
Clinical score, histological score, colon weight per length and CD3 mRNA expression data are shown 
as mean ± SEM of one out of three independent experiments. *p<0.050, **p<0.010, ***p<0.001 as 
calculated by t test. 

7.3 Nlrp3-dependent inflammation correlates with increased IL-1β levels and is 

associated with other proinflammatory cytokines 

NF-κB signalling is a pivotal pathway involved in colonic inflammation. This pathway 

regulates expression of various cytokines and chemokines and modulates inflammatory 

processes involved in IBD (Schottelius and Dinter 2006). Activation of the NF-κB pathway 

induces transcriptional upregulation of pro-IL-1β and its active form induces TNF-alpha  

(TNF-α), a proinflammatory cytokine, which plays an integral role in the pathogenesis of IBD 

(Ikejima, Okusawa et al. 1990; Bethea, Gillespie et al. 1992; Saperstein, Chen et al. 2009). 
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In order to investigate the role of IL-1β and other proinflammatory cytokines in T cell-induced 

colitis, colon tissue was analysed 29 days post transfer for the expression of cytokines both 

on mRNA and protein level.  

Protection of Nlrp3-deficient mice was associated with a significantly reduced level of TNF-α 

(fig. 6-3 a). It has been described that Nlrp3 expression is induced by TLR agonists in a   

NF-ҡB-dependent manner (Qiao, Wang et al. 2012). As expected, unreconstituted Nlrp3-

sufficient mice expressed low levels of Nlrp3 at steady state, whereas adoptive T cell transfer 

strongly induced Nlrp3 expression (fig. 6-3 b). This was not the case for other inflammasome 

components, such as Nlrp6 or NLRC4 (fig. 6-3 i and j). As anticipated, no upregulation of 

Nlrp3 mRNA was found in Nlrp3-/- mice. Similarly, Nlrp3-sufficient mice strongly upregulated 

IL-1β mRNA expression after colitis induction, which was significantly reduced in Nlrp3-/- mice 

(fig. 6-3 c). 

The role of IL-18 expression was more complex. Unexpectedly, IL-18 mRNA expression was 

significantly suppressed in diseased Nlrp3-deficient mice after T cell transfer and highest 

expression levels were found in healthy animals (no T cell transfer) (fig. 6-3 d). Thus, IL-18 

mRNA expression under steady state appeared to be independent on Nlrp3 inflammasome 

signalling. IL-6, an inflammatory cytokine produced by immune cells infiltrating the inflamed 

gut during IBD (Jones, Crabtree et al. 1994; Baumgart and Carding 2007; Bernardo, Vallejo-

Diez et al. 2012), plays an important role in supporting T cell survival and apoptosis 

resistance in the LP at the inflamed site (Atreya, Mudter et al. 2000; Neurath, Finotto et al. 

2001). IL-6 mRNA expression followed the expected pattern of significantly increased 

expression in diseased Nlrp3-sufficient mice (fig. 6-3 e). In accordance with mRNA levels, 

protein expression of TNF-α, IL-1β and IL-6 in colon tissue were significantly higher in Nlrp3-

sufficient as compared to Nlrp3-deficient mice (fig. 6-3 f-h). 
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Figure 7-3: Expression of proinflammatory cytokines in colonic tissue is reduced in Nlrp3-

deficient mice after CD45RbHigh T cell transfer. 

Nlrp3-deficient and Nlrp3-sufficient Rag1-/- mice were reconstituted i.p. with CD4+CD45RbHigh T cells 
from C57BL/6 mice to induce colitis. At sacrifice four weeks later, expression of proinflammatory 
cytokines (a, c, d and e; n=11) and inflammasome subunits (b, i and j, n=11) were analysed on mRNA 
level by rt-qPCR; cytokine levels were also measured on protein level by ELISA (f, g and h, n=5). Data 
from one out of three independent experiments are shown represented as means ± SEM. *p<0.050, 
**p<0.010, ***p<0.001 as calculated by t test. 

7.4 Nlrp3 inflammasome plays a role in Th1/Th17 polarisation of adoptively 

transferred CD4+ T cells 

Next, the role of the Nlrp3-inflammasome in T cell polarisation during colitis induction was 

assessed. Four weeks after adoptive T cell transfer, single cell suspensions were isolated 

from the LP; cells were stained for T cell markers and analysed by flow cytometry. Frequency 

of CD4+ T cells in the LP was higher in Nlrp3-sufficient than in Nlrp3-deficient mice, 

correlating with a more severe clinical score (fig. 6-4 a). Concordantly, mRNA expression of 

CD4 in the colon tissue of Nlrp3-suffiecient mice was higher (fig. 6-4 b). A significant 
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increase in the frequency of CD4+ T cells was also observed in the MLN (fig. 6-5 a and b), 

as well as in the in the spleen (fig. 6-5 e and f). A similar trend was also observed in blood 

(fig. 6-5 i and j). 

Intracellular IFN-γ expression of isolated CD4+ T cells was slightly elevated in Nlrp3-sufficient 

mice (fig. 6-4 c and e), however this effect did not reach statistical significance. More 

pronounced effects were found when investigating chemokines and cytokines commonly 

associated with a Th1 phenotype of T cells. IP-10 (CXCL10) was significantly increased in 

Nlrp3-sufficient mice after adoptive transfer (fig. 6-4 d). IP-10 is a chemokine secreted by a 

wide range of tissue under proinflammatory conditions (Farber 1997; Neville, Mathiak et al. 

1997) and preferably attracts Th1 lymphocytes to sites of inflammation (Taub, Lloyd et al. 

1993; Taub, Longo et al. 1996). IL-12, primarily produced by antigen presenting cells (APCs) 

(Trinchieri 1998), is one of the key factors in the differentiation and expansion of Th1 cells. Its 

subunit IL-12(p35), which has been described among other functions to contribute to 

autoimmunity by negatively regulating IL-27 (Vasconcellos, Carter et al. 2011), was 

analysed. Expression of IL-12(p35) was significantly elevated in colon tissue of Nlrp3-

sufficient mice, correlating with increased IP-10 levels (fig. 6-4 f); in line with this finding, 

levels of IL-27 were decreased (fig. 6-4 g). 
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Figure 7-4: Nlrp3 inflammasome promotes Th1 and Th17 polarisation in the lamina propria. 

Nlrp3-deficient and Nlrp3-sufficient Rag1-/- mice were reconstituted i.p. with CD4+CD45RbHigh T cells 
from C57BL/6 mice to induce colitis. At sacrifice four weeks later, single cell suspensions isolated from 
the LP were characterised for CD4+ T cellular infiltration and CD4 expression in colon tissue (a and b 
respectively). Frequency of IL-17- and IFN-γ-expressing CD4+ T cells was analysed by flow cytometry 
(c and h) (n = 5 - 6 mice per group). mRNA expression of T cell-associated cytokines and chemokines 
in colonic tissue was analysed by rt-qPCR, measuring Th1 cytokines IP-10, IFN-γ, IL-12(p35) and     
IL-27 (d - g), Th17-associated cytokines IL-17, IL-22 and GM-CSF (i, j and l ), as well as IL-22bp (k) a 
soluble inhibitor of IL-22. (n = 5 - 11). Flow cytometry and mRNA data are shown as means ± SEM of 
one out of three independent experiments. *p<0.050, **p<0.010, ***p<0.001 as calculated by t test. 
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Figure 7-5: Increased CD4+ T cell infiltration into MLN and spleen, and IL-17 production in 

spleen and MLN of Nlrp3-sufficient mice after adoptive T cell transfer. 

Nlrp3-deficient and Nlrp3-sufficient Rag1-/- mice were reconstituted i.p. with CD4+CD45RbHigh T cells 
from C57BL/6 mice to induce colitis. At sacrifice, frequency of MLN-derived CD4+ T cells (a and b) and 
their IL-17 production (c and d) were analysed by FACS analysis. Frequency of CD4+ T cells in the 
spleen (e and f) and IL-17 production (g and h) were analysed by FACS analysis. Frequency of    
CD4+ T cells in peripheral blood (i – j) were analysed per FACS analysis. Data are presented as 
means ± SEM (n = 4 - 6). One out of three independent experiments are shown. *p<0.050, **p<0.010, 
as calculated by t test. 

T cell activation and survival is promoted by IL-1β (Ben-Sasson, Hu-Li et al. 2009). Several 

studies have pointed out that IL-1β acts in concert with other proinflammatory cytokines to 

induce Th17 differentiation and autoinflammatory disorders (Horai, Saijo et al. 2000; Sutton, 

Brereton et al. 2006; Acosta-Rodriguez, Napolitani et al. 2007; Brydges, Mueller et al. 2009; 

Sutton, Lalor et al. 2009). Having this in mind, the effect of Nlrp3-deficiency in the 

development of Th17 polarisation in adoptive T cell transfer model was investigated.  

Intracellular IL-17 expression of LP CD4+ T cells was significantly higher in Nlrp3-sufficient 

than Nlrp3-deficient mice (fig. 6-4 h). Increased IL-17 levels were also observed in the MLN 

(fig. 6-5 c and d) and in the spleen (fig. 6-5 g and h). Accordingly, mRNA expression of IL-
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17 in the colon tissue of Nlrp3-sufficient mice was significantly higher than in the colon of 

Nlrp3-deficient mice (fig. 6-4 i).  

Moreover, Th17-associated cytokines IL-22 and GM-CSF showed increased mRNA 

expression levels in Nlrp3-sufficient mice (fig. 6-4 j and l); in contrast, expression of IL-22bp, 

a soluble inhibitor neutralising IL-22 by binding to its receptor, was reduced (fig. 6-4 k).  

7.5 Intestinal dendritic cell infiltrate is increased after adoptive T cell transfer and 

consists predominantly of CD103+ dendritic cells in Nlrp3-deficient mice  

DCs as key initiators and regulators of adaptive immune responses play a critical role in 

regulating the balance between tolerance and immunity in the intestinal mucosa. Phenotypic 

and functional characteristics of DCs are partly defined by signals they receive within the 

local microenvironment or from their immediate precursors. Depending on the type of DCs 

and their activation state, DC/T cell interaction leads to initiation of either immunity or 

tolerance. 

For a better understanding of the role DCs play in the induction of colitis, cells derived from 

the LP were isolated and CD103+ and CD103- DC subpopulations were analysed by flow 

cytometry. Adoptive transfer of CD4+CD45RbHigh T cells resulted in an increased DC 

infiltration into LP as compared to untreated Rag1-/- mice, irrespective of Nlrp3 expression 

(fig. 6-6 a). In Nlrp3-suficient mice the DC infiltrate was dominated by proinflammatory 

CD103-, whereas in Nlrp3-deficient mice the fraction of CD103+ DCs was significantly 

increased (fig. 6-6 b and c).  
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Figure 7-6: Intestinal DC infiltrate is induced by CD4+CD45RbHigh T cell transfer and is shifted 

towards CD103+ DCs in the absence of Nlrp3 inflammasome. 

Nlrp3-deficient and Nlrp3-sufficient Rag1-/- mice were reconstituted i.p. with CD4+CD45RbHigh T cells 
from C57BL/6 mice to induce colitis. At sacrifice, LP-derived DCs were analysed by flow cytometry 
and DC-associated marker genes were analysed by rt-qPCR. A representative FACS plot and a bar 
diagram (a) show frequency of CD11c+ DCs in LP. Frequency (b) and expression level (c) of     
CD103+ DCs amongst CD11c+MHCII+ cells was analysed per FACS. Relative expression of CCL2 (d), 
osteopontin (SPP1) (e), IRF4 (f) and CCR9 (g) in colon tissue was analysed by rt-qPCR. Data are 
presented as means ± SEM (n = 11 per transfer group, and n = 6 per control group). One experiment 
out of three independent experiments is shown. *p<0.050, **p<0.010, ***p<0.001 as calculated by t 
test. 

CCL2 expression in colon tissue was significantly increased in Nlrp3-sufficient mice after 

adoptive T cell transfer as compared to Nlrp3-deficient mice (fig. 6-6 d). This observation is 

in line with previous work, which described CCL2 expression as a driver of intestinal 

inflammation (Reinecker, Loh et al. 1995; Mazzucchelli, Hauser et al. 1996; Popivanova, 

Kostadinova et al. 2009).  

Recent studies suggest a proinflammatory role of osteopontin (SPP1) in TNBS- and DSS-

induced colitis (Zhong, Eckhardt et al. 2006; Oz, Zhong et al. 2012). Its expression in DCs 

has been associated with disease severity (Shinohara, Jansson et al. 2005; Murugaiyan, 

Mittal et al. 2008; Shinohara, Kim et al. 2008; Murugaiyan, Mittal et al. 2010). As expected, 

expression of osteopontin was significantly higher in Nlrp3-sufficient mice (fig. 6-6 e). This 

finding is concordant with recent reports about excessive levels of osteopontin in         

CD103- DCs, driving intestinal inflammation (Kourepini, Aggelakopoulou et al. 2014). In 

contrast, expression analysis of IRF4 and CCR9 in colonic tissue showed lower levels in 

Nlrp3-sufficient mice (fig. 6-6 f and g). 
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Figure 7-7: Increased expression of CD103+ by DCs in the MLN, spleen and blood of Nlrp3-

deficient mice. 

Nlrp3-deficient and Nlrp3-sufficient Rag1-/- mice were reconstituted i.p. with CD4+CD45RbHigh T cells 
from C57BL/6 mice to induce colitis. At sacrifice, MLN-derived DCs (a and b) and spleen DCs (e and f) 
were analysed for CD103 expression by flow cytometry.  MLN (c and d) and spleen (g and h) 
CD11c+MHCII+ DCs were further characterised for expression of CD11b and CD103.  Secretion of 
proinflammatory cytokines was determined in MLN tissue by ELISA (i and j). Data are presented as 
means ± SEM (n = 4 - 6). One of three independent experiments is shown. *p<0.050, **p<0.010, 
***p<0.001 as calculated by t test. 

Infiltration of DCs in the MLN, a destination where DCs from the LP migrate to was analysed. 

DC infiltration of MLN was increased after adoptive transfer of T cells (fig. 6-7 a). Total DCs 

infiltration of MLN differed only slightly between Nlrp3-sufficient and Nlrp3-deficient mice. 

However, DC phenotype was significantly shifted towards CD103+ DCs in Nlrp3-/- mice (fig. 

6-7 b-d). Analysis of cytokine levels in MLN demonstrated lower secretion of the 

proinflammatory cytokines IL-6 and TNF-α in Nlrp3-deficient mice (fig. 6-7 i and j).  

In addition, splenocytes were isolated 4 weeks after adoptive T cell transfer and DCs 

analysed by flow cytometry. Interestingly, the frequency of DCs was significantly higher in 
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Nlrp3-sufficient mice (fig. 6-7 e). However, similar to MLN, the expression of CD103 was 

significantly higher in splenic DCs of Nlrp3-deficient mice (fig. 6-7 f). Again, the total 

frequency of CD11b+ DCs was comparable, but the frequency of CD103+ DC among the 

CD11b+ DCs was higher in Nlrp3-/- mice (fig. 6-7 g and h).  

7.6 FLT3L and GM-CSF determine the phenotype of intestinal dendritic cells 

FLT3L plays an indispensable role in regulating DC homeostasis in secondary lymphoid 

tissue (Maraskovsky, Brasel et al. 1996; Saunders, Lucas et al. 1996), while GM-CSF 

induces differentiation of inflammatory DCs (Blyszczuk, Behnke et al. 2013; Reynolds, 

Gibbon et al. 2016). CD103+ DCs have been described to originate from macrophage DC 

precursors in a FLT3L-dependent manner, while CD103- CD11b+ DCs have been described 

to originate from Ly6CHigh monocytes in response to GM-CSF (Varol, Vallon-Eberhard et al. 

2009). Recent studies have shown that DC differentiation is partly dependent  on T cells, 

especially CD4+ T cells, which can produce GM-CSF as well as FLT3L (Saito, Boddupalli et 

al. 2013; Reynolds, Gibbon et al. 2016). 

To assess whether the Nlrp3 inflammasome regulates the balance between GM-CSF and 

FLT3L, the phenotype of BM-DCs generated from Nlrp3-deficient or Nlrp3-sufficient mice 

were analysed in vitro. BM-derived cells were differentiated for one week with either GM-CSF 

and IL-4, or for nine days with FLT3L. FLT3L-differentiated DCs demonstrated a higher 

frequency of CD103+ cells amongst resulting DCs, as compared to DCs differentiated with 

GM-CSF and IL-4. Interestingly, cells derived from Nlrp3-deficient mice and differentiated 

with FLT3L had a significantly higher expression of CD103 compared to Nlrp3-sufficient mice 

(fig. 6-8 a and b). BM-DCs were then stimulated overnight with LPS, and secretion of 

proinflammatory cytokines in supernatant was determined by ELISA. As expected, IL-1β 

secretion in DCs of Nlrp3-deficient mice was significantly reduced due to lack of IL-1β 

processing by the inflammasome (fig. 6-8 c). Secretion of TNF-α and IL-12(p70), which are 

IL-1β-associated proinflammatory cytokines, was also significantly reduced in Nlrp3-deficient 

BM-DCs (fig. 6-8 d and e). In contrast, secretion of IL-6 was comparable in both groups (fig. 

6-8 f). Of note, cytokine secretion was most pronounced in GM-CSF and IL-4 generated DCs 

as compared to FLT3 DCs (fig. 6-8 c-e). The data confirm the reduced inflammatory 

properties of FLT3L-derived DCs in response to TLR4 stimulation.  
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Figure 7-8: Nlrp3-deficient DCs express a less inflammatory phenotype and increased 

expression of FLT3L in Nlrp3-deficient CD4+ T cells correlates with higher CD103 expression 

levels by lamina propria DCs. 

BM-derived DCs generated from Nlrp3-deficient and Nlrp3-sufficient mice were cultured in the 
presence of either GM-CSF and IL-4, or FLT3L. At the end of culture period DCs were analysed by 
flow cytometry. A bar diagram displaying frequency of CD103+ DCs (a) and a representative FACS 
plot (b) are shown. BM-derived DCs were stimulated for 12 hrs with LPS and secretion of 
proinflammatory cytokines IL-1β (c), TNF-α (d), IL-12(p70) (e) and IL-6 (f) was measured in 
supernatant by ELISA. Data are shown as means ± SEM (n = 4). Frequencies of CD103+ DCs in the 
LP in T cell-deficient Rag1-/- and T cell-sufficient wt mice (Nlrp3-deficient versus Nlrp3-sufficient, 
respectively) were analysed at steady state by flow cytometry (g). Data are shown as means ± SEM of 
independent experiment (n = 9 to11), reproduced 3 times. Colon and MLN tissue from Rag1-sufficient 
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mice at steady state was analysed for FLT3L protein by ELISA (h). Data are shown as means ± SEM 
(g: n = 6-8, and h: n = 11). One out of three independent experiments are shown. Splenic CD4+ T cells 
were sorted to 99% purity and analysed for expression of FLT3L by rt-qPCR (i). Data are shown as 
means ± SEM (n=4). Rag1-/- mice (either Nlrp3-sufficient or Nlrp3-deficient) were characterised for 
FLT3L production at steady state and after adoptive transfer of CD4+CD45RbHigh T cells (j). Data are 
shown as means ± SEM (n = 11). One of three independent experiments is shown. *p<0.050, 
**p<0.010, ***p<0.001 as calculated by t test. 

To characterise the phenotype of steady state intestinal DCs, frequency of CD103+ DCs in 

Nlrp3-deficient versus Nlrp3-sufficient Rag1-/- and wild-type (Rag1+/+) mice was determined. 

Interestingly, LP infiltration of DCs was low in Rag1-/- mice at steady state (before having 

received T cell transfer) compared to steady state Rag1+/+ mice (that also harbour a 

population of intestinal T cells). These data indicate that presence of T cells is mandatory for 

LP DC infiltration. Importantly, in the absence of T cells no difference between Nlrp3-deficient 

and Nlrp3-sufficient mice was found regarding frequency of CD103+ DCs, whereas Rag1-

sufficient, but Nlrp3-deficient mice had significantly increased numbers of CD103+ DCs (fig. 

6-8 g). These results confirmed literature reports (Saito, Boddupalli et al. 2013) and earlier 

findings of our group (Bauer, Duewell et al. 2012). In summary, presence of T cells in Nlrp3-

deficient mice seemed mandatory for shifting intestinal DCs towards a CD103+ phenotype. 

FLT3L has been found indispensable for development of CD103+ DCs (Waskow, Liu et al. 

2008). In order to investigate the role of growth factors associated with DC phenotype in our 

model, FLT3L levels were determined in colon and MLN tissue of immunocompetent 

(Rag1+/+) mice at steady state. Nlrp3-deficient mice had significantly higher levels of FLT3L 

than Nlrp3-sufficient mice (fig. 6-8 h). Accordingly, splenic CD4+ T cells isolated from Nlrp3-

deficient mice demonstrated a higher expression of FLT3L mRNA (fig. 6-8 i). Corroborating 

these findings, Rag1-/- mice, devoid of functionally active T cells exhibited low levels of FLT3L 

(fig. 6-8 j). Importantly, Nlrp3-deficient, but not Nlrp3-sufficient Rag1-/- mice exhibited 

increased FLT3L levels in colon tissue after adoptive transfer of CD4+CD45RbHigh T cells, 

possibly indicating that CD4+ T cell-derived FLT3L mediates induction of CD103+ DCs (fig. 6-

8 j). In summary, Nlrp3-dependent differential expression of FLT3L may link the finding of 

increased frequency of CD103+ DCs and reduced inflammatory phenotype of intestinal         

T cells in Nlrp3-deficient mice after T cell transfer.  

Coculture of splenic OVA-peptide-loaded DCs with naive CD4+ T cells from OT-II mice (fig. 

6-9 d) demonstrated a shifted ratio of FLT3L and GM-CSF secretion, with Nlrp3-deficient 

DCs producing higher levels of FLT3 and Nlp3-sufficient DCs secreting more GM-CSF (fig. 
6-9 a  
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Figure 7-9: Nlrp3 inflammasome in DCs controls the balance of FLT3L and GM-CSF as well as 

proinflammatory cytokine production by OT-II CD4+ T cells. 

Rag1-/- and Nlrp3-/- Rag1-/- (DKO) splenic CD11c+ DCs were MACS sorted and stimulated with LPS 
overnight. DCs were pulsed with MHC-II-restricted OVA-peptide and co-cultured with CD4+ OT-II         
T cells for 5 days (e). Secretion of FLT3L, GM-CSF, IL-17 and IFN-γ was measured supernatants by 
ELISA (a-d). Data are shown as means ± SEM (n = 4). One of three independent experiments is 
shown: *p<0.050, **p<0.010, ***p<0.001 as calculated by t test. 

and b). Accordingly, secretion of IL-17 and IFN-γ by the CD4+ T cells were higher when 

cocultured with DCs from Nlrp3-sufficient mice (fig. 6-8 c and d). Thus, the Nlrp3 
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inflammasome controls the balance of FLT3L and GM-CSF production and as a 

consequence CD103 expression by DCs.  

7.7 IL-1β induces CD4+ T cell polarisation into Th17 cells 

As host Nlrp3 status determines DC phenotype and shifts CD4+ T cells towards a Th17/Th1 

phenotype, differential contribution of Nlrp3-dependent cytokines IL-18 and IL-1β towards     

T cell plasticity was investigated. Under cell culture conditions, IL-1β, not IL-18, induced 

secretion of Th17-associated proinflammatory cytokines in splenic CD4+ T cells, activated 

with CD3/CD28 mAb for 3 days. Proliferation of CD4+ T cells was not affected by addition of 

IL-1β or IL-18 (fig. 6-10 a).  

 

Figure 7-10: IL-1β induces secretion of Th17- and Th1-related cytokines in CD4+ T cells. 

Splenic CD4+ T cells were polarised on anti-CD3/CD28 mAb-coated round bottom well plates in the 
presence of either 20 ng/ml IL-1β or 10 ng/ml IL-18. After 72 hrs, proliferation of T cells was analysed 
by the CFSE dilution (a) and secretion of IL-17, IL-22, GM-CSF IFN-γ and FLT3L was analysed by 
ELISA (b – f, n = 4, respectively). One experiment out of three independent experiments is shown. 
Data are shown as means ± SEM. One of three independent experiments is shown. **p<0.010, 
***p<0.001 as calculated by t test.  

CD4+ T cells polarised in the presence of IL-1β demonstrated significantly higher secretion of 

IL-17 and IL-22 (fig. 6-10 b and c), as compared to IL-18. Both IL-1β and IL-18 induced 

secretion of the Th1 cytokine IFN-γ (fig. 6-10 e). IL-18 but not IL-1β slightly increased FLT3L 

production of CD4+ T cells (fig. 6-10 f), whereas IL-1β induced secretion of GM-CSF        

(fig. 6-10 d). In summary, our data indicate that Nlrp3-dependent IL-1β mediates 
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proinflammatory effects in T cell transfer colitis. In addition, the balance between GM-CSF 

and FLT3L production by T cells is inversely regulated by IL-1β and IL-18. 

7.8 Lack of IL-18R signalling in CD4+ T cells promotes intestinal inflammation 

It was shown in a recent study that, at steady state, IECs constitutively produce IL-18, which 

inhibits Th17 differentiation. IL-18 acts directly on IL-18R-expressing CD4+ T cells, partly by 

antagonising MyD88-dependent signalling effectors downstream of IL-1R. In the same work 

authors showed that IL-18R expression of FoxP3+ Treg cells played an important role in 

prevention of experimental colitis (Harrison, Srinivasan et al. 2015). 

As described above, inflamed colon tissue of mice receiving adoptively transferred CD4+      

T cells showed significantly reduced expression of IL-18 mRNA levels (fig. 6-3 d), 

strengthening the “IL-18 protective effect” hypothesis. To further clarify the role of T cell 

signalling of Nlrp3-dependent cytokines IL-1β and IL-18, CD4+CD45RbHigh T cells, derived 

from wild-type C57BL/6, IL-1R-deficient or IL-18R-deficient mice were adoptively transferred 

into Rag1-/- mice to assess colitis induction. 

Rag1-/- mice receiving IL-18R-/- CD4+ T cells lost more body weight, developed more 

pronounced symptoms of colitis and demonstrated exacerbated intestinal inflammation and 

epithelial damage on histological analysis (fig. 6-11 a-d) compared to mice reconstituted with 

WT CD4+ T cells. Colonic CD3 expression was higher in mice reconstituted with IL-18R-/- 

CD4+ T cells correlating with the increased colon weight per length as surrogate parameter of 

cellular infiltration and inflammation (fig. 6-11 e and f). In contrast, mice reconstituted with 

CD4+CD45RbHigh T cells from IL-1R-/- mice demonstrated no significant difference to mice 

reconstituted with WT T cells.  
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Figure 7-11: IL-18R signalling in adoptively transferred CD4+ T cells dampens T cell-mediated 

colitis. 

Rag1-/- mice were reconstituted i.p. with CD4+CD45RbHigh T cells from either C57BL/6, IL-18R- or      
IL-1R-deficient mice and monitored for 4 weeks. Weight loss (a) and clinical score comprising of 
haematochezia and stool consistency (b) were determined. Histological analysis of colon tissue (c) 
was performed by blinded scoring (d). Colon weight per length (e) was calculated as surrogate 
parameter of inflammation. CD3 gene expression in colonic tissue was examined by rt-qPCR (f). Data 
are shown as means ± SEM (n = 12 to14). Data pooled from 3 experiments are shown. *p<0.050, 
***p<0.001 as calculated by t test. 

In addition, TNF-α, Nlrp3, IL-1β, IL-6 and IL-12p35 mRNA expression was significantly higher 

in colon tissue of mice reconstituted with IL-18R-deficient T cells (fig. 6-12 a-d and f 

respectively). Verifying earlier findings on downregulation of IL-18 mRNA expression levels 

after adoptive T cell transfer (fig. 6-3 d), IL-18 mRNA expression was significantly 

suppressed in all subgroups having received T cells (fig. 6-12 e). Expression of inflammatory 

markers SPP1 and CCL2 were highest in mice that received IL-18R-/- T cells (fig. 6-12 g-h). 
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Figure 7-12: IL-18R signalling in adoptively transferred CD4+ T cells regulates proinflammatory 

cytokine expression in colon tissue. 

Rag1-/- mice were reconstituted i.p. with CD4+CD45RbHigh T cells from either IL-1R-/-, IL-18R-/- or 
C57BL/6 WT mice. Mice were sacrificed 29 days after adoptive T cell transfer and relative mRNA 
expression levels of TNF-α (a), Nlrp3 (b), IL-1β (c), IL-6 (d), IL-18 (e), IL-12p35 (f), SSP1 (g) and 
CCL2 (h) was analysed by rt-qPCR, Data are shown as mean ± SEM (n = 12-14). Data pooled from 3 
experiments are shown.. *p<0.050, **p<0.010, ***p<0.001 as calculated by t test. 

Recruitment of CD4+ T cells into the LP was significantly increased after transfer of IL-18R-/-

CD4+CD45RbHigh T cells, as compared to transfer of WT or IL-1R-/- T cells (fig. 6-13 a and b). 

Flow cytometry analysis of LP-derived cells showed no difference between mice that 

received WT or IL-18R-/- T cells in terms of IFN-γ or IL-17 production, as assessed by 

intracellular cytokine staining (fig. 6-13 c and d). Expression of Th1 cytokine mRNA for      

IP-10, but not IFN-γ, was higher in mice that received IL-18R-/- CD4+ T cells, compared to 

mice that had received WT or IL-1R-/- CD4+ T cells (fig. 6-13 e and f). Analysis of Th17-

associated cytokine mRNA expression revealed no significant effects of IL-18R signalling on 

IL-17, GM-CSF or IL-22, however, mice that had received IL-1R-/- T cells showed reduced 

expression of IL-17 mRNA. No significant differences were observed for GM-CSF, IL-22 and 

IL22bp (fig. 6-13 g-j). 

Systematic mRNA expression analysis of cytokines, chemokines and growth factors relevant 

to the pathogenesis of T cell transfer colitis, clinical scores and infiltration of immune cells 

strengthened the concept of IL-18-mediated protective effects in T cell transfer colitis.  
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Figure 7-13: IL-18R signalling regulates T cell-mediated colitis. 

Rag1-/- mice were reconstituted with CD4+CD45RbHigh T cells from either IL-1R-/-, IL-18R1-/- or C57BL/6 
WT mice. Experimental mice were sacrificed 29 days after adoptive T cell transfer and infiltration of 
CD4+ T cells in the lamina propria (a and b), as well production of Th1 and Th17 associated cytokines 
were analyse per FACS analysis (c and d). Expression of Th1 (e and f) and Th17 (g-j) related 
cytokines were analysed per rt-qPCR. Data are shown as mean ± SEM (n = 12-14). Data pooled from 
3 experiments are shown. *p<0.050, **p<0.010, as calculated by t test. 
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Figure 7-14: Co-housing of Nlrp3-sufficent and -deficient mice leads to assimilation of 

microbial content without influencing reduced colonic inflammation in Nlrp3-deficient mice. 

Composition of the intestinal microbiome was investigated by 16S rRNA gene sequence analysis 
under steady state conditions in Nlrp3-deficient versus Nlrp3-sufficient Rag1-/- mice that had been 
housed individually or cohoused for four weeks. Then, fecal samples were collected, 16S rRNA gene 
sequence analysis was performed and data were assessed using a non-parametrical multiple 
dimensional scaling analysis at the Technical University of Munich in Freising-Weihenstephan. 
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Microbiota data are depicted in a beta diversity plot (a and b) Cohoused Nlrp3-deficient versus Nlrp3-
sufficient mice were investigated for phenotypical differences after colitis induction. Mice were           
co-housed for 6 weeks, after which mice were reconstituted i.p. with CD4+CD45RbHigh T cells from 
C57BL/6 mice. Clinical score (c) after adoptive transfer were monitored for 29 days (n = 6). After four 
weeks mice were sacrificed. Intensity of inflammation was assessed by measuring colon weight per 
length (d). Expression of Nlrp3 (e) and inflammatory markers was analysed by rt-qPCR (f, g, k and i, 
n = 6). Frequency of LP-derived T cells was analysed by flow cytometry (j) and colon explants were 
cultivated overnight at 37°C in complete medium and IL-17 secretion was measured by ELISA (k). 
Data are represented as means ± SEM. *p<0.050, **p<0.010, ***p<0.001 as calculated by t test. 

7.9 Protection of Nlrp3-/- mice from T cell-mediated colitis is maintained under 

cohousing conditions 

To investigate potential differences in microbiota in Nlrp3-deficient and –sufficient mice that 

might impact the extent of T cell-mediated colitis, stool samples were collected from single-

housed Nlrp3-deficient and Nlrp3-sufficient mice for 16S rRNA gene sequence analysis. The 

same mice were then cohoused for 3 weeks, after which stool samples were collected again 

for 16S rRNA gene sequence analysis (fig. 6-14 a and b). Microbiota analysis of non-

cohoused stool demonstrated that Nlrp3-deficient mice (fig. 6-14 a, green circles) and Nlrp3-

sufficient mice (fig. 6-14 a, blue circles), both with a Rag1-/- genotype, differed in composition 

of their intestinal flora. However, after three weeks of cohousing, the microbiota of Nlrp3-

sufficient mice (circles in dark pink) had adjusted to the microbiota of Nlrp3-deficient mice 

(circle in magenta). In particular, the role of segmented filamentous bacteria (SFB) was 

examined, as SFB have been associated with Th17 responses (Ivanov, Atarashi et al. 2009; 

Goto, Panea et al. 2014). No significant differences were found between the subgroups (data 

not shown). 

Mice were co-housed for three more weeks, when colitis was induced by transfer of 

CD4+CD45RbHigh T cells from C57BL/6 mice. 29 day after colitis induction, mice were 

sacrificed and the intensity of colon inflammation was analysed through clinical score and 

colon weight per length (fig. 6-14 c and d). Protection of Nlrp3-/- mice from colitis was still 

observed. Proinflammatory genes, such as Nlrp3, IL1β, IL-6, IL-12 and SPP1, were analysed 

per rt-qPCR. Reduced expression of pro-inflammatory genes (fig. 6-14 e-i) correlated with 

protection observed in the clinical score, slightly reduced numbers of CD4+ T cells infiltrating 

the LP (fig. 6-14 j), as well as reduced secretion of IL-17 in cultured colon explants           

(fig. 6-14 k). Together, the results from the cohousing experiments disqualify biasing effects 

resulting from microbiota composition as explanation for the protection observed in Nlrp3-/- 

mice after adoptive transfer of CD4+CD45RbHigh T cells. 
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8 Discussion 

8.1 Proinflammatory role of Nlrp3 in T cell transfer colitis 

Despite the importance of Nlrp3 inflammasome in a number of inflammatory and 

autoimmune diseases, its exact role in IBD is still heavily disputed. Contradicting studies 

have described either a beneficial or a detrimental effect of Nlrp3 inflammasome (Bauer, 

Duewell et al. 2010; Dupaul-Chicoine, Yeretssian et al. 2010; Zaki, Boyd et al. 2010).  These 

contradicting results were reconciled by previous work in our group (Bauer, Duewell et al. 

2012), which showed that the composition of intestinal microflora significantly influenced 

disease severity in IBD models comparing wild-type and Nlrp3-/- mice. Notably, most of those 

studies describing the role of Nlrp3 inflammasome in IBD used erosive and self-limiting 

chemically-induced models, such as the DSS model. Despite the suitability of these models 

for investigating mucosal damage and innate immunity, they lack important aspects of IBD-

induced inflammation in humans. In this study, the role of Nlrp3 inflammasome was 

investigated using T cell transfer colitis, a model that is significantly more compatible to 

immunological aspects of human IBD, and is instrumental in studying T cell-driven cellular 

interactions responsible for the onset as well as regulation of intestinal inflammation.  

Nlrp3-sufficient Rag1-/- mice adoptively transferred with CD4+CD45RbHigh T cells showed 

increased inflammation mirrored by clinical and histological scores (fig. 6-2 b-f). A significant 

30-fold increase of Nlrp3 mRNA expression in colon tissue of diseased mice confirms 

induction of Nlrp3 during inflammation (fig. 6-3 b). These results were concordant with 

published work showing the ability of TLR agonist to induce Nlrp3 inflammasome in an      

NF-ҡB-dependent manner (Qiao, Wang et al. 2012; Boaru, Borkham-Kamphorst et al. 2015). 

Although a role of the Nlrp6 inflammasome has been described in intestinal inflammation 

(Elinav, Strowig et al. 2011; Seregin, Golovchenko et al. 2016), there was no increase of 

Nlrp6 mRNA expression during T cell-induced inflammation. Its expression was even lower in 

mice with colitis (fig. 6-3 i). Likewise, in our model, colonic expression of NLRC4  another 

member of the NLR family barely changed after colitis induction (fig. 6-3 j), contradicting 

studies describing its role in regulating intestinal inflammation (Carvalho, Nalbantoglu et al. 

2012; Franchi, Kamada et al. 2012; Nordlander, Pott et al. 2014). These results could be 

partly explained by the fact that Nlrp6 and NLRC4 are of major importance for epithelial 

repair mechanisms, but probably less important for regulation of T cell-induced inflammation. 

Most studies showing the role of Nlrp6 and NLRC4 in intestinal inflammation were carried out 

in chemically-induced models, which focus more on epithelial damage and innate immunity. 
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Synthesis, maturation and release of IL-1β are tightly regulated and require two signals;     

NF-ҡB signalling and assembly of Nlrp3 inflammasome. NF-ҡB signalling resulting from TLR 

stimulation, leads to translation of an inactive 31 kDa IL-1β precursor (pro-IL-1β). Caspase-1 

(Thornberry, Bull et al. 1992), a component of Nlrp3 inflammasome then cleaves pro-IL-1β 

into its active 17 kDa form. As anticipated, IL-1β mRNA expression as well as IL-1β protein 

level were reduced in Nlrp3-deficient mice reconstituted with CD4+CD45RbHigh T cells, 

correlating with reduced disease levels (fig. 6-3 c and g). This observation corroborates our 

hypothesis that lack of Nlrp3 inflammasome, which is the main regulator of bioactive IL-1β, 

leads to reduced levels of active IL-1β in T cell transfer colitis. Consistently, these results 

were not only in line with studies linking excessive secretion of Nlrp3-dependent IL-1β to 

intestinal inflammation (Seo, Kamada et al. 2015; Higashimori, Watanabe et al. 2016), but 

also corroborate studies showing high levels of IL-1β in IBD patients and in animal models of 

colitis (Satsangi, Wolstencroft et al. 1987; Mahida, Wu et al. 1989; Cominelli, Nast et al. 

1990; Arai, Takanashi et al. 1998).  

It has been shown that IL-1β not only induces TNF-α gene expression (Ikejima, Okusawa et 

al. 1990; Bethea, Gillespie et al. 1992), but also enhances TNF-α-mediated inflammatory 

responses (Saperstein, Chen et al. 2009). Notably, the importance of TNF-α in driving 

intestinal inflammation is mirrored in IBD therapies targeting TNF-α (Hanauer, Feagan et al. 

2002; Atzeni, Doria et al. 2007). Additionally, IL-6, which is also induced by IL-1β (Tosato 

and Jones 1990; Yamaguchi, Matsuzaki et al. 1990; Cahill and Rogers 2008), has received 

constant attention as a marker of intestinal inflammation in IBD (Jones, Crabtree et al. 1994; 

Bernardo, Vallejo-Diez et al. 2012). This cytokine supports T cell survival and apoptosis 

resistance in the LP (Atreya, Mudter et al. 2000). Corresponding to the observation of 

reduced IL-1β levels, TNF-α and IL-6 levels were lower in Nlrp3-deficient mice (fig. 6-3 a, f, e 

and h). Taken together, these results confirm the role of Nlrp3-dependent IL-1β in inducing 

inflammation-associated cytokines and inflammatory processes in our model.  

On the contrary, high mRNA expression of IL-18, which is also a Nlrp3-dependent cytokine, 

did not correlate with disease intensity. Healthy mice had higher levels expression of IL-18 

compared to diseased mice. In this line, colon tissue of adoptively transferred Nlrp3-sufficient 

mice, which showed most severe colitis, expressed the lowest IL-18 mRNA levels (fig. 6-3 

d). In order to take a closer look at the role of IL-18 in adoptive T cell transfer colitis, mice 

were injected with IL-18bp two hours before transfer and then weekly after transfer for a 

period of 4 weeks. Since downregulation of IL-18 in T cell transfer colitis correlated to 

disease intensity, treatment with IL-18bp, which is a soluble inhibitor of IL-18, was expected 

to result in more inflammation. Surprisingly, intestinal inflammation mirrored by clinical score 

and histological scores was slightly lower in mice treated with IL-18bp (data not shown). 
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Unexpectedly, IL-18 secretion from colon explants cultivated overnight in medium was 

significantly higher in mice treated with IL-18bp compared to mice without treatment (data not 

shown). Corresponding to the disputes surrounding the effects of IL-18 in intestinal 

inflammation, secretion of IL-18 in colon explants showed that IL-18 was independent of 

Nlrp3 inflammasome (data not shown). These results confirmed a recent study showing 

independence of IL-18 on Nlrp3 inflammasome (Wilson, Duewell et al. 2014). Notably, colitis-

induced destruction of the epithelial cells, may attempt to explain reduced IL-18 mRNA 

expression levels observed in diseased mice.  

Together these data indicate Nlrp3-dependent IL-1β as the driving force of T cell-dependent 

inflammation and induction of inflammatory-associated cytokines. The quick detrimental 

effect of IL-1β has been emphasised in studies showing that blocking IL-1β alone was 

ineffective in treating DSS-induced colitis and IBD (Kojouharoff, Hans et al. 1997; Carter, 

Valeriano et al. 2003). 

8.2 Tolerogenic versus inflammatory dendritic cells in colitis 

Uninterrupted exposure of the intestine to a wide range of antigens and immunomodulatory 

stimulation for example, components in the diet, normal microflora and pathogens, calls for a 

strict regulation of the immune response (Mowat 2003). The intestinal immune system has to 

distinguish harmful from non-harmful antigens by inducing protective immune response 

against pathogens, and at the same time develop active tolerance to harmless antigens; 

failure of keeping this balance is believed to result in IBD. APCs like DCs and macrophages 

take centre stage in intestinal immune regulation, playing specific yet integral roles. While 

DCs have the ability to  migrate to the lymph node after antigen uptake and prime naïve        

T cells, macrophages use their phagocytic ability to digest bacteria and damaged cells 

(Coombes and Powrie 2008; Schulz, Jaensson et al. 2009; Cerovic, Houston et al. 2013). 

The path taken by DCs at the juncture of induction of tolerance and active immunity is 

dependent on the DC subpopulations as well as activation via surface receptors and on 

tissue microenvironment. 

Despite differences in severity of colitis symptoms, Nlrp3-sufficient and Nlrp3-deficient mice 

demonstrated equally increased LP DC infiltration (fig. 6-6 a). However, composition of DC 

pools differed significantly. Nlrp3-deficient mice had recruited three times as many CD103+ 

DCs to the LP compared to Nlrp3-sufficient mice (fig. 6-6 b). Evidence in the literature has 

shown that the expression of CD103 on DCs shifts the direction of an immune response by 

influencing the balance between intestinal effector and regulatory T cell activity (Annacker, 

Coombes et al. 2005; Cerovic, Houston et al. 2013). Increased frequency of CD103+ DCs in 
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Nlrp3-deficient mice correlating with reduced inflammation was in line with these findings, 

describing CD103+ DCs as regulatory cells. These DCs constitutively traffic the draining 

lymph node, where they induce conversion of naïve T cells into induced Tregs, a mechanism 

that relies on TGF-β (Coombes, Siddiqui et al. 2007; Sun, Hall et al. 2007; Iliev, Spadoni et 

al. 2009). mRNA expression of IL-27, a DC-derived cytokine described to downregulate 

Nlrp3-inflammasome  by limiting pathogenic T cell response and development of immunity 

was also increased in Nlrp3-deficient mice (Mascanfroni, Yeste et al. 2013) (fig. 6-4 g). 

Additionally, Muzaki et al. found that absence of CD103+CD11b- DCs aggravated DSS-

induced colitis by diminished expression of IDO1 and IL-18bp in IECs during early stages of 

colitis. (Muzaki, Tetlak et al. 2016). Furthermore, CD103+ DCs are an important source of 

retinoic acid (Iwata, Hirakiyama et al. 2004; Jaensson, Uronen-Hansson et al. 2008; Yokota, 

Takeuchi et al. 2009), allowing them to induce gut homing receptors CCR9 and α4β7 on       

T cells (Johansson-Lindbom, Svensson et al. 2005; Jaensson, Uronen-Hansson et al. 2008). 

In correlation with increased CD103+ DCs in the LP of Nlrp3-deficient mice, the expression of 

gut homing receptor CCR9 was elevated in colonic tissue of (fig. 6-6 g).  

On the contrary, LP-derived DCs isolated from inflamed colon of Nlrp3-sufficient mice barely 

expressed CD103 (fig. 6-6 b and c). This reduced expression of CD103 correlated with 

increased disease intensity and increased expression of myeloid cell-derived 

proinflammatory cytokines (fig. 6-2 and fig. 6-3). Osteopontin, another proinflammatory 

marker (Ashkar, Weber et al. 2000; O'Regan 2003; Uaesoontrachoon, Wasgewatte 

Wijesinghe et al. 2013), which has an inflammatory role in TNBS- and DSS-induced colitis 

(Zhong, Eckhardt et al. 2006; Oz, Zhong et al. 2012), and is mainly expressed by CD103- 

DCs (Kourepini, Aggelakopoulou et al. 2014) was elevated in the colon tissue of Nlrp3-

sufficient mice compared to Nlrp3-deficient mice (fig. 6-6 e). Increased expression of  

osteopontin in diseased Nlrp3-sufficient mice supports previously published work 

demonstrating that Nlrp3 inflammasome upregulated chemotaxis-related proteins like SPP1 

(Inoue, Williams et al. 2012). The exact nature of these LP-derived CD103- DCs is still 

disputed, with some groups describing them as macrophage-like cells (Panea, Farkas et al. 

2015). However, Cerovic et al. showed that intestinal CD103- DCs are equally capable of 

migrating to MLNs and inducing T cell responses (Cerovic, Houston et al. 2013). Additionally, 

recent work has demonstrated that CD103- DCs constitutively express IL12/IL-23(p40) and 

are capable of inducing proinflammatory Th17 (Scott, Bain et al. 2015). In line with the work 

of Scott and his colleagues, expression of IL-12(p35), a subunit of IL-12 was significantly 

elevated in Nlrp3-sufficient mice (fig. 6-4 f). Further studies also identified CD103- CX3CR1+ 

LP cells as drivers of Th17 cell responses to certain commensal bacteria, such as 

segmented filamentous bacteria (SFB) (Panea, Farkas et al. 2015).  
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It appears that under steady state conditions, APCs possibly irrespective of CD103 

expression status are essentially antiinflammatory. These cells express a high quantity of    

IL-10, which participates in restimulation of T regulatory cells in situ (Hadis, Wahl et al. 

2011). In contrast, in an on-going inflammation, myeloid-derived LP cells develop 

proinflammatory properties. Infection with pathogenic bacteria is the typical situation, which 

adjusts steady state mechanisms towards inflammation and a more aggressive T cell-based 

immune response. In an infection model of Citrobacter rodentium, CD103+ intestinal cells 

have been shown to mediate polarisation of T cell responses towards Th17 (Schreiber, 

Loschko et al. 2013). However, it is generally believed that CD103- DCs play the key role in 

driving intestinal inflammation. Rivollier et al. reported that during colitis, monocytic cells 

switch their differentiation program and develop into CD103-CX3CR1+CD11b+ DCs, which 

massively infiltrate the LP and act in a proinflammatory manner, by producing IL-12, IL-23, 

and TNF-α (Rivollier, He et al. 2012). These DCs acquire migratory properties and after 

reaching the MLN, drive differentiation of IFN-γ-producing T cells. In the course of colitis, 

frequency of CD103+ DCs dramatically decreases. 

Results of this study are quite concordant with these paradigms, finding increased numbers 

of LP DCs, with a high percentage of CD103- DCs in Nlrp3-sufficient mice. Reduced levels of 

proinflammatory cytokines are associated with higher frequency of CD103+ DCs, indicating 

that CD103- DCs are the cellular platform for induction of colitis in CD45RbHigh T cell transfer 

colitis. In line with these results, Laffont et al. found that inflammation dampens the 

tolerogenic properties of MLN CD103+ DCs, which was associated with lower expression of 

TGF-β2 and ALDH1A2 (Laffont, Siddiqui et al. 2010). Unfortunately, the origin and the fate of 

CD103+ and CD103- DCs was not investigated, leaving the possibility open that CD103+ DCs 

down-regulate CD103 expression under inflammatory conditions.  

In summary, the balance between stimulatory DCs (primarily CD103-DCs) and tolerogenic 

DCs (CD103+ DCs) is critical for maintaining intestinal immune homeostasis under steady 

state conditions. In the absence of colitis, Nlrp3-deficient mice recruit higher levels of CD103+ 

DCs in LP and MLN (Bauer, Duewell et al. 2012) . The Nlrp3 inflammasome could thus serve 

as a regulator of DC homeostasis in the gut and as a switch for colitis induction. Evolutionary 

conserved mechanisms shift this balance towards inflammation in case of challenge by 

pathogenic bacteria. T cell transfer into immunoincompetent hosts can mimic inappropriate 

activation of these mechanisms as found in IBD. However, phenotypical analysis of intestinal 

DC subsets based on surface marker expression has to be interpreted in the context of the 

intestinal inflammatory cytokine network. Despite their tolerogenic function, CD103+ DCs can 

switch from a tolerogenic to an immune-promoting phenotype, when appropriately stimulated 

(Uematsu, Fujimoto et al. 2008; Siddiqui, Laffont et al. 2010; Fujimoto, Karuppuchamy et al. 
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2011; Semmrich, Plantinga et al. 2012). Most importantly, IL-1β holds a prominent position 

as a master regulator of inflammatory responses.  

8.3 Association of host Nlrp3 inflammasome with the inflammatory phenotype of 

adoptively transferred intestinal T cells 

This study links Nlrp3 and elevated IL-1β levels to increased intestinal inflammation, 

mediated by shifting adoptively transferred T cells towards an inflammatory phenotype. It 

could be demonstrated that IL-1β levels were higher in diseased Nlrp3-sufficient mice 

compared to Nlrp3-deficient mice. In Nlrp3-sufficient mice, IL-17 levels were increased, too. 

Importantly, Th17 cells were shifted towards a Th1 phenotype, as indicated by increased 

IFN-γ and IP-10 production. 

IL-17’s function in intestinal inflammation is highly disputed, very similar to the controversy 

surrounding detrimental versus protective effects of Nlrp3 and caspase-1. Increased 

inflammation as a result of  neutralisation of IL-17 indicated a protective effect of IL-17 in a 

chemically-induced model of IBD (Ogawa, Andoh et al. 2004). However, in a model of 

Helicobacter hepaticus driven colitis,   IL-17 had a pathogenic role (Buonocore, Ahern et al. 

2010). Correspondingly, not only did blockage of IL-17 dampened inflammation in a genetic 

model of spontaneous colitis (Chaudhry, Rudra et al. 2009), but also adoptive transfer of 

ROR-γ-deficient T cells into immunoincompetent mice failed to induce colitis (Leppkes, 

Becker et al. 2009). Finally, the group of Fiona Powrie could demonstrate that IL-1β was 

indispensable in induction of chronic intestinal inflammation in both T cell-independent and   

T cells-mediated colitis (Coccia, Harrison et al. 2012). 

In this study, the role of Nlrp3 and IL-1β are concordant with recent findings on a 

proinflammatory role of IL-1β in adoptive transfer colitis. Basu and colleagues characterised 

the role of IL-1 in homeostasis of Th17 cells and induced Treg (iTreg) (Basu, Whitley et al. 

2015), thereby shedding some light on the contradictory results that have been documented. 

While TGF-β promotes differentiation of both iTreg and Th17, IL-6 favours Th17 cell 

differentiation to the detriment of iTreg differentiation. (Bettelli, Carrier et al. 2006; Mangan, 

Harrington et al. 2006; Veldhoen, Hocking et al. 2006; Littman and Rudensky 2010). Most 

importantly, IL-1 signalling augments the IL-6 pathway thereby reversing retinoic acid-

dependent FoxP3 expression and inducing Th17 cell responses (Basu, Whitley et al. 2015). 

Considering these findings, the expression of FoxP3 in Th17 cells and in colonic tissue was 

analysed. Concordant with the paradigm of IL-1 effects on plasticity of CD4 T cells, Nlrp3-

deficient mice had higher mRNA expression levels of colonic FoxP3 (data not shown). 

Supporting the findings of Basu and his colleagues, Meng et al., described an association 
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between Nlrp3 and Th17. Increased level of IL-1 observed in mice with a hyperactivating 

Nlrp3 mutation induced proinflammatory Th17 dominance (Meng, Zhang et al. 2009). Nlrp3-

mutant DCs co-cultured with CD4+ T cells induced IL-1-dependent Th17 differentiation. 

Interestingly, increased frequency of Th17 correlating with high IL-17 levels in serum was 

observed in patients with hyperactive Nlrp3 mutations (Lasiglie, Traggiai et al. 2011). 

Not only has it been shown that Th17 cell-mediated inflammation is associated with 

neutrophil infiltration and increased GM-CSF production (Kroenke, Carlson et al. 2008), but 

also that IL-1β upregulated GM-CSF production by Th17 (Codarri, Gyulveszi et al. 2011; El-

Behi, Ciric et al. 2011). Based on these findings, expression of colonic GM-CSF mRNA was 

analysed. As anticipated, expression of GM-CSF was increased in Nlrp3-sufficient as 

compared to Nlrp3-deficient mice (fig. 6-4 l). Another Th17-derived cytokine is IL-22, which 

is a member of the IL-10 family of cytokines.  IL-22 has been implicated as an effector 

cytokine in defence against mucosal pathogens (Zheng, Danilenko et al. 2007; Ouyang, Rutz 

et al. 2011). It is involved in tissue homeostasis as well as epithelial repair (Sugimoto, Ogawa 

et al. 2008; Zenewicz, Yancopoulos et al. 2008). Beside these beneficial effects, IL-22 can 

be a potent inducer of inflammation (Sonnenberg, Fouser et al. 2011). Th17 cells have been 

described as major source of IL-22 (Chung, Yang et al. 2006; Liang, Tan et al. 2006). 

Analysis of colonic IL-22 expression after adoptive T cell transfer into Rag1-/- mice found 

increased IL-22 mRNA levels and Nlrp3-sufficient mice had a significantly higher expression 

of IL-22 mRNA compared to Nlrp3-deficient mice (fig. 6-4 j). All in all, these results are in line 

with published data, which identify IL-1β as the master regulator that shifts naïve T cells into 

proinflammatory Th17 cells. Reduced colitis associated with reduced Th17 was observed in 

Nlrp3-deficient mice. Reduced IL-17, which is the main cytokine produced by Th17 cells, and 

reduced GM-CSF and IL-22, inflammatory markers of Th17, were observed in Nlrp3-deficient 

mice. These results point out a clear role of IL-1β in this process in vivo, which was 

confirmed in vitro, where the addition of IL-1β to CD4+ T cells induced secretion of the three 

main Th17-dependent inflammatory cytokines, IL-17, GM-CSF and IL-22 (fig. 6-10 b, c and 
d). 

Due to the ambivalent feature of IL-22, its regulation is vital. This cytokine is strictly regulated 

by endogenous binding protein IL-22bp, which is a soluble IL-22 receptor that specifically 

binds to IL-22 and prevents binding of IL-22 to the membrane bound receptor, IL-22R1 

(Kotenko, Izotova et al. 2001; Xu, Presnell et al. 2001; Wei, Ho et al. 2003). It has been 

shown that IL-22bp expression is down-regulated after intestinal tissue damage 

(Sonnenberg, Nair et al. 2010), possibly as a protection mechanism against invading 

bacteria. Recently, Huber et al. linked IL-22bp expression to activation of Nlrp 

inflammasomes. IL-22bp was highly expressed by colonic DCs at steady state conditions. 
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However, sensing of intestinal tissue damage via Nlrp3 or Nlrp6 inflammasome led to an    

IL-18 dependent down-regulation of IL-22bp, resulting in an increased ratio of IL-22/IL-22bp 

(Huber, Gagliani et al. 2012). An association between CD103+ DCs and IL-22bp was shown 

by Martin et al. who described constitutive production of retionic acid-dependent IL-22bp in 

lymphoid- and gut-derived CD103+CD11b+ DCs (Martin, Beriou et al. 2013). Here, 

expression of IL-22bp in colon tissue of T cell-transferred Rag1-/- mice was investigated.     

IL-22bp expression was higher in healthy, mice than in mice that had received T cell transfer. 

In this line, IL-22bp expression was significantly higher in diseased Nlrp3-deficient mice 

compared to diseased Nlrp3-sufficient mice (fig. 6-4 k). 

8.4  The ratio of T cell-derived FLT3L and GM-CSF as predictor of the inflammatory 

phenotype of dendritic cells 

DCs have been shown to be the “ringleader” of the immune system, not only because of their 

antigen-presenting capacity, but also because they can migrate to the lymph node and 

initiate tolerance to self-antigens as well as induction of immune response (Steinman, 

Hawiger et al. 2003; Steinman 2012). Development of intestinal DC subsets is therefore 

tightly regulated. The growth factors GM-CSF and FLT3L regulate the two main populations 

in the LP. CD103+CD11b+ LP DCs are derived through a FLT3L-dependent pathway, 

whereas CX3CR1+CD103-CD11b+ LP DCs are thought to derive through a CSF-dependent 

pathway (Bogunovic, Ginhoux et al. 2009; Varol, Vallon-Eberhard et al. 2009).  

IL-1 has been shown to promote GM-CSF production by Th17 cells, indicating a key role of 

both cytokines in experimental autoimmune encephalomyelitis (EAE), a Th17-mediated 

model of an autoimmune disease (El-Behi, Ciric et al. 2011). Coccia et al. from the Powrie 

group found that colonic IL-1R-/- CD4+ T cells isolated after T cell transfer secreted 

significantly less GM-CSF than colonic wild-type CD4+ T cells, developing more severe colitis 

than IL-1R-sufficient mice (Coccia, Harrison et al. 2012). Both non hematopoietic-derived 

and T cell-derived FLT3L have been shown to mediate local DCs replenishment at steady 

state and during inflammation (Saito, Boddupalli et al. 2013). Saito and his colleagues were 

able to show that T cells generally produce FLT3L, but CD4+ T cells were the more potent 

producers of FLT3L. Concordant with the literature, FLT3L differentiated a population of bone 

marrow-derived DCs that mainly expressed CD103, while GM-CSF and IL-4 differentiated 

DCs with a reduced expression CD103 (fig. 6-8 a and b). FLT3L-differentiated DCs, which 

had higher expression of CD103, secreted lower levels of proinflammatory cytokines after 

stimulation with LPS (fig. 6-8 c-f), confirming their tolerogenic property (Annacker, Coombes 

et al. 2005; Coombes, Siddiqui et al. 2007). 
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Since it has been shown that DC differentiation is partly dependent on T cell-derived growth 

factors, the effect of presence versus absence of T cells in DC development was analysed. 

Rag1-/- mice lacking T cells at steady state had a significantly lower frequency of CD103+ 

DCs in the LP compared to T cell-sufficient mice at steady state (fig. 6-8 g). Like already 

shown in our previous work (Bauer, Duewell et al. 2012), Nlrp3-deficient mice had a lower 

frequency of CD103+ DCs at steady state (fig. 6-8 g). Correspondingly, presence of    T cells 

was indispensable for intestinal DCs in general as well as for CD103+ and CD103- DCs in 

particular (fig. 6-6 a and b).  

Increased level of FLT3L in the MLN and in the colon of healthy Nlrp3-deficient mice 

suggested a link to increased frequency of CD103+ DCs observed in these mice (fig. 6-8 h). 

Accordingly, FACS-sorted splenic and MLN-derived CD4+ T cells from Nlrp3-deficient mice 

had a significantly higher expression level of FLT3L compared to their Nlrp3-sufficient 

counterparts (fig. 6-8 i). Furthermore, the level of FLT3L was significantly increased in Nlrp3-

deficient mice after T cell transfer (fig. 6-8 j). Saito et al. showed that DC homeostasis during 

inflammation is maintained by T cell-produced FLT3L, which provides a feedback loop to 

DCs to induce DC differentiation (Saito, Boddupalli et al. 2013). The significant increase of 

FLT3L secretion by OT II CD4+ T cells cocultured with LPS-stimulated and OVA peptide-

pulsed Nlrp3-deficient DCs indicated the role of Nlrp3 expression by DCs in inducing FLT3L 

secretion by T cells (fig. 6-9 a). On the contrary, Nlrp3-sufficient DCs cocultured with OT II 

CD4+ T cells under the same conditions induced an elevated secretion of GM-CSF, IL-17 and 

IFN-γ, which are inflammatory markers of effector T cells (fig. 6-9 b-d). It can be speculated 

for Nlrp3-deficient mice, based on the correlation of FLT3L expression (fig. 6-8 h, i and j) 

and CD103 frequency (fig. 6-6 b and c), that increased expression of CD103 on DCs of 

Nlrp3-deficient mice is dependent on T cell-derived FLT3L. These findings are concordant 

with data in FLT3L-deficient mice, where a marked effect on mucosal CD4+ T cell priming 

with decreased numbers of FoxP3+ Tregs was described (Darrasse-Jeze, Deroubaix et al. 

2009; Panea, Farkas et al. 2015).  

Intestinal DCs might be the cellular platform integrating proinflammatory and 

antiinflammatory cytokine effects. At steady state, intestinal DCs, which are primarily 

tolerogenic, migrate to the MLN and activate naïve T cells into regulatory T cells (Coombes, 

Siddiqui et al. 2007; Agace and Persson 2012). However, in a situation of harmful bacterial 

challenge, DCs migrate to the MLN, where they present bacterial antigen to T cells and 

induce the activation of naïve T cells (Annacker, Coombes et al. 2005; Coombes, Siddiqui et 

al. 2007; Scott, Bain et al. 2015). Results of this study suggest that, DC-derived Nlrp3-

dependent IL-1β predicts the fate of naïve T cells during inflammation. Nlrp3-sufficient DCs, 

which have a high level of IL-1β, are biased to activate naïve T cells into GM-CSF producing 
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T cells. These GM-CSF producing T cells are not only proinflammatory but also provide a 

feedback loop to DCs, supporting the differentiation of more CD103- DCs. On the contrary, 

Nlrp3-deficient DCs induce FLT3L-producing T cells, which are less inflammatory and 

similarly provide a feedback loop to DCs allowing differentiation of more CD103+ DCs. 

All in all these data indicate that FLT3L and GM-CSF are derived at least in part from 

adoptively transferred T cells and regulate recruitment of intestinal DC subpopulations during 

adoptive T cell transfer colitis. Whereas FLT3L promotes CD103+ DCs, which retain certain 

tolerogenic aspects (at least in Nlrp3-deficient mice), GM-CSF promotes intestinal infiltration 

with CD103- DCs. In Nlrp3-sufficient mice this was associated with higher levels of 

proinflammatory cytokines, primarily IL-1β, and increased colitis severity. 

8.5 IL-18R signalling in T cells plays a pivotal role in adoptive T cell transfer colitis 

IL-18 is hardly a recapitulation of IL-1β, despite the fact that they share aspects of regulation 

and signalling pathways. IL-18 precursor is expressed in blood monocytes, peritoneal 

macrophages, mouse spleen and in the epithelial cells of the entire gastrointestinal tract in 

healthy subjects, as opposed to IL-1β (Puren, Fantuzzi et al. 1999). In agreement with 

literature reports, mRNA expression of IL-1β in steady state was barely present and almost a 

40-fold increase was detected in colon tissue of inflamed Nlrp3-sufficient mice (fig. 6-3 c). 

On the other hand, mRNA expression of IL-18 was higher in colon of steady state mice and a 

significant decrease was detected in mice after adoptive T cell transfer colitis, with Nlrp3-

sufficient mice showing the least expression level (fig. 6-3 d). 

There is controversy about the role ofIL-18 in inflammatory processes; its proinflammatory or 

antiinflammatory effect is dependent on the cytokine milieu. In combination with IL-12, IL-18 

is involved in Th1 differentiation leading to the production of IFN-γ (Nakanishi, Yoshimoto et 

al. 2001). Inhibition of IL-18 has been shown to induce protection against intestinal 

inflammation (Kanai, Watanabe et al. 2001; Ten Hove, Corbaz et al. 2001). On the other 

hand, protective effects have been observed in chemically-induced models of colitis and 

mature IL-18 has been detected in affected intestinal lesions from CD patients (Siegmund, 

Lehr et al. 2001; Ten Hove, Corbaz et al. 2001; Dupaul-Chicoine, Yeretssian et al. 2010). 

Furthermore, administration of exogenous IL-18 has been shown to restore mucosal healing 

in caspase-1-deficient mice (Dupaul-Chicoine, Yeretssian et al. 2010), and defective 

inflammasome-dependent epithelial integrity has been linked to decreased IL-18 (Zaki, Boyd 

et al. 2010). 

A suggestion that the effect of IL-18 was dependent on the site of activation attempted to 

reconcile contradicting observations (Siegmund 2010). IL-18 is important in maintaining the 
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integrity of epithelium. Upon damage, IL-18 induces proliferation, therefore regenerating 

damaged epithelial cells. Conversely, lamina propria-derived IL-18 synergises with IL-12, 

creating an inflammatory milieu. Additionally, Dinarello et al. addressed this controversy by 

suggesting that the balance of IL-18 and its soluble receptor IL-18bp could be the deciding 

factor (Dinarello, Novick et al. 2013). Recently, Nowarski et al. showed that regardless of the 

cellular origin, IL-18 during DSS-induced colitis specifically targeted IL-18R signaling on 

epithelial cell and not hematopoietic or endothelial cells (Nowarski, Jackson et al. 2015). 

Furthermore, epithelial-derived IL-18 consequently inhibited maturation of goblet cell and 

hyperactive IL-18 completely depleted goblet cells. On the contrary, Harrison et al. showed 

that IL-18, which was mainly derived from the epithelial cells, not only drove Th1 

differentiation, but also regulated different subgroups of intestinal CD4+ T cells during both 

steady state and intestinal inflammation (Harrison, Srinivasan et al. 2015). 

Adoptive T cell transfer of IL-18R-/- T cells resulted in a more intensive form of colitis 

compared to mice that received WT T cells or IL-1R-/- T cells (fig. 6-11 a-f).  These results 

were in line with work published by Harrison et al. showing that IL-18R signalling in T cells 

promoted an antiinflammatory effect due to its ability to limit Th17 differentiation. Additionally, 

they showed that IL-18 was critical for FoxP3+ Treg cell-mediated control of intestinal 

inflammation. These results point out the important role of IL-18R signalling in the control of 

T cell-induced intestinal inflammation, because lack of IL-18R signalling on T cells resulted 

into an increase of not only proinflammatory cytokines (fig. 6-12 a-d and f), but also an 

increase in chemokines responsible for recruiting immune cells especially T cells to sites of 

inflammation (fig. 6-12 g and h). Although there was more infiltration of CD4+ T cells in the 

LP after adoptive T cell transfer of IL-18R-/- T cells correlating with disease intensity (fig. 6-13 

a and b), expression of Th17 cytokines was comparable to mice transferred with wild-type   

T cells (fig. 6-13 g, h and i). Possible explanation for this observation could be that the 

inflammatory effects of Th17 reached a plateau; alternatively, IL-18R-dependent reduction of 

inflammation was in fact Th17-indepent, but rather dependent on other T cell subsets, 

presumably Treg. 

Although the mechanism of IL-18R signalling on T cells in the regulation of T cell-dependent 

inflammation is still not fully clear, these results suggest an important role of this signalling 

pathway in the regulation of intestinal inflammation. 

8.6 Role of intestinal microbiota in susceptibility to T cell-mediated colitis  

The intestinal microbiota is instrumental in regulating homeostatic and pathogenic T cell 

responses in the gut. In a lymphopenic host, adoptively transferred with naive T cells, gut 
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flora will determine the phenotype of the induced T cell response. Since the group of Dan 

Littman described segmented filamentous bacteria, spore forming gram positive bacteria 

most closely related to the genus Clostridium, as inducers of intestinal Th17 responses in 

2009, the role of microbiota in intestinal adaptive immune responses has been extensively 

investigated (Ivanov, Frutos Rde et al. 2008; Goto, Panea et al. 2014). Germ free mice, 

which lack Th17 cells in the colon, acquired Th17 cells after colonisation with intestinal 

microbiota. Treatment of new-born mice with vancomycin resulted in lower numbers of 

intestinal Th17 cells. Importantly, generation of Th17 cells required antigen presentation by 

MHC II in the periphery. Other commensal species, most prominently the firmicutes phylum 

and bifidobacteria, have been associated with the induction of intestinal Treg and reduction of 

Th17 responses (Lopez, Gonzalez-Rodriguez et al. 2011; Round, Lee et al. 2011; Atarashi, 

Tanoue et al. 2013). Plasticity of the intestinal T cell pool towards a Th17/Th1 versus a Treg 

phenotype might in turn regulate composition of steady state microbiota (Kumar, Moideen et 

al. 2016). Importantly, Th17 cells possess a remarkable plasticity, and inflammation is not 

induced by all Th17 cells. It has been shown that Th17-derived IL-10, which regulates Th17 

plasticity, is dependent on either TGF-β1 and IL-6 or IL-23. Maintenance of Th17 with     

TGF-β1 and IL-6 favoured IL-10-producing Th17 cells, while stimulation  with IL-23 inhibited 

production of IL-10 (McGeachy, Bak-Jensen et al. 2007). Basu and colleagues shed some 

light into the controversies surrounding Th17, by showing that Th17 and iTreg actually stem 

from a shared developmental axis (Basu, Hatton et al. 2013). Importantly, Th17 cells 

possess a remarkable plasticity, and inflammation is not induced by all Th17 cells. It has 

been shown that Th17-derived IL-10, which regulates Th17 plasticity, is dependent on either 

TGF-β1 and IL-6 or IL-23. Maintenance of Th17 with TGF-β1 and IL-6 favoured IL-10-

producing Th17 cells, while stimulation  with IL-23 inhibited production of  IL-10 (McGeachy, 

Bak-Jensen et al. 2007). Basu and colleagues shed some light into the controversies 

surrounding Th17, by showing that Th17 and iTreg actually stem from a shared developmental 

axis (Basu, Hatton et al. 2013).  

Colonisation of mice with SFB in an adoptive T cell transfer model caused severe intestinal 

inflammation, while mice colonised with other commensal bacteria excluding SFB had 

reduced colitis (Stepankova, Powrie et al. 2007), therefore disqualify the pathogenicity of 

Th17 per se. However, inflammation-inducing antigens can switch Th17 cells into 

proinflammatory cells. It remains unclear, which molecular mechanisms determine 

pathogenicity of adoptively transferred T cells, however, Nlrp3 is a strong candidate. T cells 

found in this model were not only producing more IL-17, but also more IFN-γ, when isolated 

from Nlrp3-sufficient mice. The transformation of Th17 cells into inflammation-inducing cells 

characterised by the production of IFN-γ has led to the term Th1-like cells. These Th1-like 

cells are capable of driving intestinal inflammation by releasing proinflammatory cytokines, 
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which boost inflammation (Feng, Qin et al. 2011; Sujino, Kanai et al. 2011). Importantly,     

IL-1β has been demonstrated to convert human IL-10-producing Th17 cells into 

proinflammatory IFN-γ-producing cells (Zielinski, Mele et al. 2012). Correspondingly, Basu 

and colleagues observed that that IL-1 was indispensable in fully overriding retinoic acid-

mediated expression of FoxP3 and induced protective Th17 response (Basu, Whitley et al. 

2015). All in all, Th17 cells are homeostatic and antiinflammatory per se in the presence of 

normal microflora; however stimulation with IL-1β and IL-12 or IL-23 converts these cells into 

proinflammatory Th17 cells capable of producing IFN-γ, therefore favouring intestinal 

inflammation. 

Intestinal microflora might also determine the cytokine microenvironment that mediates T cell 

responses. In general, the role of microbiota in induction of intestinal inflammation is 

supported by reduction of colitis in various models after antibiotic treatment and in germ-free 

mice (Hudcovic, Stepankova et al. 2001; Garrett, Lord et al. 2007; Kirkland, Benson et al. 

2012). Certain microbial strains are able to directly activate proinflammatory mechanisms. 

Escherichia coli isolated from inflammatory bowel diseases patients has been shown to 

activate the Nlrp3 inflammasome in macrophages (De la Fuente, Franchi et al. 2014). 

It has been shown that Nlrp3 inflammasome status and resulting plasticity of the T cell pool 

might determine composition of the intestinal microflora (Elinav, Strowig et al. 2011). 

Amongst inflammasomes, Nlrp3 might be a particularly prominent key player. Polymorphisms 

in Nlrp3, found in CD patients, are associated with lower expression of Nlrp3 (Villani, Lemire 

et al. 2009). A weak inflammatory response towards E. coli might result in deficient bacterial 

clearance and sustained inflammation. Accordingly, absence of Nlrp3 signalling has been 

described to result in intestinal dysbiosis, with increased colonisation of certain pathogenic 

species, such as Enterobacteriaceae, Mycobacterium, and Clostridium (Hirota, Ng et al. 

2011). Hirota et al. linked intestinal dysbiosis in Nlrp3-/- mice to increased susceptibility 

towards DSS- and TNBS-induced colitis. We previously described  that cohousing of Nlrp3-/- 

mice with wild-type mice as well as treatment with antibiotics could minimize effects of Nlrp3-

deficiency in colitis models based on innate immune phenomena, such as the DSS (Bauer, 

Duewell et al. 2012) model. Accordingly, susceptibility of Aim2–/– mice to DSS-induced colitis 

was associated with a dysregulated host response to the gut microbiota (Hu, Wang et al. 

2015).  

On the contrary, absence of Nlrp3 and IL-1β results in increased susceptibility to infection 

and mortality (Hasegawa, Kamada et al. 2012). Nlrp3-deficiency might therefore result in 

beneficial and detrimental effects: a protective role against pathogenic bacteria collides with 

detrimental effects on autoimmune phenomena. Whereas steady state activation of Nlrp3 
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regulates host defence, excessive activation results in inflammatory diseases mediated by 

proinflammatory cytokines including IL-1β. Seo et al. recently described that pathobiont 

Proteus mirabilis induces robust IL-1β via the Nlrp3 inflammasome (Seo, Kamada et al. 

2015). Proteus mirabilis enhanced DSS-induced inflammation via Nlrp3 and IL-1R signalling.  

Importantly, in the absence of Nlrp3, Proteus mirabilis had no effect on DSS-induced colitis, 

indicating a proinflammatory role of IL-1β and IL-1R-signalling in DSS-induced colitis, 

confirming our results in the DSS model. Anakinra, an antagonist of IL-1R signalling, 

reversed the increase in DSS-induced colitis associated with Proteus mirabilis colonisation. 

In summary, differences in the intestinal microbiota might explain contradicting results 

obtained in Nlrp3-/-, caspase-1-/- and IL-18-/- mice, however, when bias by differences in the 

intestinal microbiota is controlled, Nlrp3, and particularly Nlrp3-mediated IL-1β, has a 

proinflammatory role in colitis induction. 

The simplest way to reduce bias by intestinal microbiota between genetically different mouse 

strains is performing cohousing experiments. Microbiota of Nlrp3-sufficient and Nlrp3-

deficient Rag1-/- mice were analysed before and after cohousing at steady state, finding that 

the microbiota differed before cohousing and that Nlrp3-sufficient mice adjusted to the 

microbiota of Nlrp3-deficient mice three weeks after cohousing (fig. 6-14 a and b). Despite 

the fact that the microbiota of Nlrp3-sufficient mice adjusted to the microbiota of Nlrp3-

deficient mice, no significant differences were found between the subgroups upon analysis of 

SFB. Nlrp3-deficient mice cohoused with Nlrp3-sufficient mice had reduced inflammation just 

like their non-cohoused counterparts (fig. 6-14 c-k). These data indicate that at least in the 

early phases of adoptive T cell transfer colitis, microbiota do not play a role in the observed 

phenotype of colitis protection in Nlrp3-deficient mice. 	  

Results of this study show that Nlrp3-dependent IL-1β is instrumental in shaping T cell 

responses towards a proinflammatory Th17/Th1 phenotype. Proinflammatory, Th17-

dependent cytokines, such as IL-17, IL-22 and GM-CSF, were upregulated. A prominent role 

of Nlrp3 in the plasticity of a homeostatic T cell response towards inflammation is concordant 

with recent literature. Under steady state conditions, gut microbiota constitutively primes LP 

macrophages to induce pro-IL-1β (Shaw, Kamada et al. 2012). Production of pro-IL-1β by 

stimulation of TLRs or members of the IL-1/IL-18 receptor family is tightly regulated and 

might involve epithelial and stromal cells (Franchi, Kamada et al. 2012). It remains unclear 

what kind of intestinal signal leads to the processing of pro-IL-1β into mature IL-1β. ATP, 

produced by microbiota, might play an important role (Mariathasan, Weiss et al. 2006; 

Atarashi, Nishimura et al. 2008; Iwase, Shinji et al. 2010; Hironaka, Iwase et al. 2013; 

Killeen, Ferris et al. 2013). Notably, Nlrp3 is a major candidate that controls the switch from 

homeostatic to proinflammatory Th17 cells. Control of this switch is mandatory to control 
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pathogenic bacteria on the one hand, but limit autoimmune responses on the other hand. 

Successful induction of inflammatory T cell responses would inhibit outgrowth of pathogenic 

bacteria. 

Nlrp3 might not only be a key player in colitis models mediated by innate immune effects, but 

also in T cell-driven models of intestinal inflammation. Whereas the DSS model mimics 

effects of IBD on the epithelial barrier, with immunological phenomena being secondary to 

barrier malfunction, the T cell transfer model of colitis is a primarily immunological model, in 

which barrier function is, at least initially intact. Thus, early immunological responses in the    

T cell transfer model may mimic initial steps in the pathogenesis of Crohn’s disease.  

8.7 Conclusion 

In summary, this study shows a clear role of Nlrp3 inflammasome in the initiation of T cell-

induced intestinal inflammation. Nlrp3 inflammasome-dependent IL-1β does not only drive 

the differentiation of effector T cells, but also induces the secretion of key inflammatory 

cytokines, which regulate intestinal inflammation (fig. 7-1a). Results of this work also 

highlight the importance of maintaining the equilibrium between GM-CSF and FLT3L, two 

growth factors, which are crucial in regulating tolerogenic CD103+ DCs and inflammatory 

CD103- DCs. In the presence of Nlrp3-dependent IL-1β, DCs activate CD4+ T cells to secrete 

GM-CSF, therefore shifting the FLT3L/GM-CSF balance towards GM-CSF, an environment 

that favours the differentiation of CD103- DCs (fig. 7-1a). On the contrary, lack of IL-1β shifts 

FLT3L/GM-CSF balance to FLT3L, a milieu that is beneficial for CD103+ DC development 

(fig. 7-1b). Importantly, although IL-18 production to be independent of Nlrp3 inflammasome, 

its signalling in CD4+ T cells through IL-18R is critical for reducing T cell-induced intestinal 

inflammation.  

The rapid and irreversible effects of IL-1β signalling induce a chain reaction of 

proinflammatory processes. This mechanism could explain the failure of anakinra in the 

treatment of an already established intestinal immune reaction, such as in human IBD (Lin, 

Hegarty et al. 2011). As effects of dysregulated IL-1β are potentiated so early and easily in 

IBD patients by IL-1β-dependent effector T cells and IL-1β-associated proinflammatory 

cytokines, targeting Nlrp3 inflammasome, which acts upstream of active IL-1β, might be a 

more promising therapeutic approach for controlling intestinal inflammation, than blocking   

IL-1R. 
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Figure 8-1: Proposed immunological mechanism in the induction of adoptive T cell transfer 

colitis in Nlrp3-sufficient and –deficient mice. 

(a) TLR-dependent luminal trigger on DCs induce transcription of pro-IL-1β via NF-ҡB signalling.    
Pro-IL-1β is then activated to IL-1β by Nlrp3 inflammasome. Active IL-1β is a potent inducer of 
proinflammatory cytokines, such as TNF-α, IL-12 and IL-6. Activated DCs then migrate to the MLN 
where they present antigen to naïve CD4+ T cells. The combination of antigen recognition via TCR and 
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binding of IL-1β via IL-1R induces differentiation of Th1 and Th17 effector T cells, secreting increased 
levels of IFN-γ, IL-17 and IL-22, respectively. IL-1β-activated effector T cells predominantly produce 
GM-CSF which favours the recruitment of CD103- DCs into LP and MLN. Importantly, the secretion of 
IL-18 appears to be predominantly Nlrp3-independent. Its signalling in T cells is critical for the 
limitation of intestinal inflammation. (b) Conversely, luminal microbial invasion in a Nlrp3-deficient 
organism results in significantly reduced levels of IL-1β, resulting in reduced levels of proinflammatory 
cytokines like TNF-α, IL-12 and IL-6. Reduced IL-1β results in T cells, which have a reduced secretion 
of T cell-associated proinflammatory cytokines, like IFN-γ, IL-17 and IL-22. Additionally, these T cells 
upregulate FLT3L secretion, resulting in a cytokine milieu favouring CD103+ DC differentiation. 
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10  Appendices 

10.1 Abbreviations 

APC Allophycocyanin 
APC Antigen presenting cell 
ASC Apoptosis-associated speck-like protein containing a CARD 
BMDC Bone marrow-derived dendritic cell 
BP  Binding protein 
CARD Caspase-recruitment domain 
CCL  Chemokine (C-C motif) ligand 
CCR C-C chemokine receptor 

CD Crohn's disease 
CD  Cluster of differentiation 
cDC  Conventional dendritic cell 
cDNA  Copy deoxyribonucleic acid 
CFSE Carboxyfluorescein diacetat succinimidyl ester 
CXCL  Chemokine (C-X-C motif) ligand 
DAMP Damage-associated molecular pattern  

DAPI  4',6-diamidino-2-phenylindole 
DC  Dendritic cell 
DMEM  Dubelcco’s modified magle medium 
DMSO  Dimethyl sulfoxide 
DSS  Dextran sodium sulphate 
DTT  Dithiotreitol 
EDTA Ethylenediaminetetraacetic acid 
ELISA  Enzyme-linked immunosorbent assay 
FACS  Fluorescence activated cell sorter 
FBS  Fetal bovine serum 
FITC  Fluorescein isothiocyanate 
FLT3L FMS-like tyrosine kinase 3 ligand  

FoxP3  Forkhead box P3 
GM-CSF  Granulocyte macrophage-colony stimulating factor 
hr  Hour 
H&E  Hematoxylin and eosin 
HPRT  Hypoxanthin-phosphoribosyl-transferase 
HRP  Horse radish peroxidase 
i.p.  Intraperitoneal 
IBD Inflammatory bowel disease 
IDO  Indoleamine 2,3-dioxygenase 
IEL  Intraepithelial lymphocytes 
IFN  Interferon 
IHC  Immunohistochemistry 
IL  Interleukin 
IP-10  Interferon gamma induced protein 10 
LP Lamina propria 
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LPS  Lipopolysaccheride 
LRR leucine-rich repeat 
MFI  Median fluorescence intensity 
Min  Minute 
MHC  Major histocompatibility complex 
MLN Mesenterial lymph nodes 
mRNA  Messenger RNA 

NACHT 
NAIP (neuronal apoptosis inhibitor protein),  
C2TA [class 2 transcription activator, of the MHC,  
HET-E (heterokaryon incompatibility) and TP1 (telomerase-associated protein 1 

NLR  Nod-like receptor 
NLRC4 NLR family CARD domain-containing protein 4 
Nlrp NACHT, LRR and PYD domains-containing protein  
PAMP  Pathogen-associated molecular pattern 
PCR Polymerase chain reaction 
PB  Pacific blue 
PBS  Phosphate buffered saline 
pDC  Plasmacytoid dendritic cell 
PE  Phycoerythin 
PerCP Peridinin chlorophyll 
PFA  Paraformaldehyde 
PI  Propidium iodide 
PYD Pyrin domain 
qRT-PCR Quantitative real time PCR 
Rag Recombinant activating gene 
RALDH  Retinal aldehyde dehydrogenase 
RPMI Roswell Park Memorial Institute 
RNA  Ribonucleic acid  
 RT Room temperature 
sec  Second 
s.c.  Subcutaneous 
SDS  Sodium dodecyl sulphate 
TBST  TRIS-buffered saline with Tween 20 
TCR  T cell receptor 
TGF-β  Transforming growth factor β 
Th cells  T helper cells 
TLR  Toll-like receptor 
TMB 3, 3’, 5, 5’ –tetramethylbenzidine 
TNBS  2,4,6-trinitrobenzene sulfonic acid 
TNF-α  Tumour necrosis factor alpha 
Treg  Regulatory T cell 
UC Ulcerative colitis 
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