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Abstract 

 

Nowadays, cancer is one of the most challenging diseases on earth. Since the 1970s, the 

number of patients almost doubled, due to the demographic development of mankind. Cancer 

researcher Robert A. Weinberg put it in a nutshell by claiming, "If we lived long enough, 

sooner or later we all would get cancer." Therefore, effective and targeted treatment of 

affected tissue is of immense interest as common chemotherapy suffers from severe side 

effects. One way towards selective cancer treatment is the implementation of porous 

nanocarrier systems for the targeted delivery of chemotherapeutics into tumor tissue to 

minimize side effects. To fulfil all of its ambitious tasks, the nanocarrier has to provide 

several different properties such as long circulation lifetimes in the bloodstream, a stimuli-

responsive capping system which allows drug release at the desired location or targeting 

ligands on their external surface to enhance preferential uptake in cancer cells. All these 

properties can be addressed by the functionalization of the external surface of the designated 

nanocarrier system. In recent years, metal-organic frameworks (MOFs) have attracted great 

interest in the field of drug delivery. The ability to adjust their pore sizes and to implement 

functionalities within the pores as well as on their external surface makes this material class a 

promising candidate.  

This thesis focuses on the surface modification of MOF nanoparticles (NPs) with regard to 

prospective biomedical applications. In this context, the uptake potential of porous MOF NPs 

for guest molecules and the in vitro toxicity of the MOF NPs used in this study are 

investigated in detail. Further, the possibility for external surface functionalization using 

different approaches is an important focus of this work. The resulting MOF NPs were fully 

characterized by various methods to ensure their expected morphology, composition and 

structure. The final achievement of the work is to evaluate the MOF NPs in the biological 

context. The work aims at determining how the MOF NP structure and their responsiveness to 

the surrounding biological environment are related to each other and how this behaviour can 

be correlated to their toxicity. 

The first main part (Chapter 3 and 4) demonstrates that the outer surface of MOF NPs can be 

specifically functionalized with biocompatible polymers to control the interface between 

colloidally stable MOF NPs and their environment. Chapter 3 is focused on the covalent 

attachment of different functional polymers on the external surface of the biologically well-

tolerated iron based MOF NPs (MIL-100(Fe)). With this approach, it is possible to increase 
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the chemical and colloidal stability and to provide fluorescence properties by using dye-

labeled polymers. The functionalization of the MOF NPs with fluorescent-labeled polymers 

enables the investigation by fluorescence-based techniques, as demonstrated by fluorescence 

correlation spectroscopy (FCS) and confocal fluorescence microscopy. Furthermore, the 

influence of the polymer shell on the intrinsic magnetic resonance imaging (MRI) activity of 

MIL-100(Fe) is investigated in detail. 

As already demonstrated in the third chapter, the effective bio-application of MOF NPs is still 

hampered by limited control of their surface chemistry and insuffucient understanding of their 

interactions at the biointerface. Using a self-assembly approach, the fourth chapter of the 

thesis shows that coating of MOF NPs (Zr-fum) with polymers, frequently used for 

biomedical applications, is a convenient way for peripheral surface functionalization. Detailed 

investigation of the binding reveals the mechanism to be a self-assembly modulator 

replacement by the coordinating group-containing polymers. This strong coordinative binding 

is further used to attach the shielding polymer polysarcosine onto the MOF surface, which 

results in an exceptionally high colloidal stability of the NPs. The effect of the polymer 

coatings on the biointerface is investigated with regard to cell interactions and protein 

binding. 

An important feature of MOF NPs for their use as nanocarriers is the high loading capacity 

for cargo molecules in their porous scaffold. Therefore, the molecular transport of the model-

cargo fluorescein into two MOF NPs, MIL-100(Fe) and MIL-101(Cr) is studied in detail in 

the second main part (Chapter 5). The equilibrium dissociation constants and maximum 

number of adsorbed molecules per NP are determined via fluorescence spectroscopy. The 

resulting maximum payload capacity of 65 wt% MIL-100(Fe) and 41 wt% MIL-101(Cr) is 

shown to be in agreement with the internal area estimated from nitrogen sorption 

measurements. Kinetic studies show that release and loading rates are pH dependent. 

Theoretical modeling of diffusion to target, slowed internal diffusion and equilibrium binding 

reproduce the observed loading and release times. This study helps to optimize payload and 

release rates of MOF NPs under varying pH conditions as for example encountered in medical 

drug delivery applications. 

The third main part of the thesis (Chapter 6, 7 and 8) is focused on the use of lipids for 

external surface functionalization of MOF NPs. Two different approaches were thereby 

applied for the creation of MOF-lipid NPs. The study in chapter six focuses on the synthesis 

of MOF@Lipid NPs as a versatile and powerful novel class of nanocarriers based on MOF 
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NPs (MIL-100(Fe) and MIL-101(Cr)). It is shown that the created MOF@Lipid system can 

effectively store dye molecules inside the porous scaffold of the MOF while the lipid bilayer 

prevents the premature release. Efficient uptake of the MOF@Lipid NPs by cancer cells 

makes these nanocarriers promising for drug delivery and diagnostic purposes. 

The study presented in chapter seven comprehensively analyzes the nanosafety of different 

MOF NPs used so far in this thesis, namely bare Zr-fum NPs, MIL-100(Fe) NPs and 

MIL-101(Cr) NPs as well as their MOF@DOPC NP analogs (see chapter six) with regard to 

diverse medical applications such as drug delivery via blood or lung to multifunctional 

surface coatings of medical implants. For that purpose, biocompatibility of the MOF NPs on 

different effector cells (e.g., primary human gingiva fibroblasts) which are defined as those 

cells that directly interact with NPs when these are introduced into the biological system are 

tested. Nanosafety of tested MOF NPs strongly varies with the effector cell types revealing 

their differential suitability as nanomedical agents for drug delivery and implant coatings. 

These results thus demonstrate the requirement for thorough testing of nanomaterials for their 

nanosafety with respect to their particular medical application and their interacting primary 

cell type, respectively.  

Finally, chapter eight deals with a modified lipid-coating procedure for MIL-100(Fe) NPs 

using the same lipid (DOPC). It shows the applicability of such Lip-MOF NPs as effective 

anti-cancer agents, without loading of any toxic chemotherapeutics into the framework. The 

toxicity of the particles is thereby triggered by a slightly acidic pH of the extracellular 

medium (pH = 7.2). These results are promising for a selective treatment of tumor tissue, 

which provides lower extracellular pH due to an increased lactic acid fermentation of cancer 

cells (Warburg effect). 

In summary, the thesis discusses different MOF NPs systems for their use in biomedical 

applications. It covers the highly relevant challenges of MOF nanocarriers with respect to a 

better understanding of drug loading, external surface functionalization and nanosafety. 

Furthermore, a novel Lipid-MOF nanocarrier system is examined regarding its prospective 

application as a pH-selective chemotherapeutic. The obtained results highlight MOF NPs as a 

promising platform for targeted tumor theranostics. 
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1. Introduction 

 

This chapter is based on the following book chapter: 

 

Beetz, M.; Zimpel, A.; Wuttke, S. (August 2016); Nanoparticles. In: Kaskel, S. (Ed.); The 

Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications. 

Weinheim: Wiley-VCH 

1.1. Metal-organic frameworks (MOFs) 

Metal-organic frameworks are a class of materials, which came up by the end of the 20
th

 

century. They consist of organic linker molecules and inorganic metal clusters acting as nodes 

in between. The two different building blocks are connected via coordinative bonds forming a 

rigid porous scaffold which is accessible e.g. for small molecules. Both, the choice of organic 

linker and metal strongly determine the properties of the resulting framework (structure, pore 

size, pore environment…). Due to the variety of possible combinations of metal and linker, 

the material class of MOFs offers a nearly endless number of different compounds.  

1.2. Nanoparticles 

Introduction into the nanoworld 

The term “nano” (Greek for dwarf) became an important notion in science and technology in 

the last two decades. The prefix “nano“ stands for the order of magnitude of 10
-9

. On a scale 

of length one nanometer correspond to 0.000,000,001 m = 1·10
-9 

m. In a vivid size 

comparison, a bacterium, one of the smallest forms of life on earth, is thousand times larger 

than a nanometer. A human hair in average has a diameter of around 50,000 nm.  

The so-called nanoparticles assign small particles with a diameter of 1–100 nm in size in at 

least one dimension. Today, these types of particles are technically and commonly used and 

can be found everywhere in daily life. Man-made nanoparticles are produced by various 

combustion processes or domestic activities like material fabrication and transportation 

utilizing.
1
 Carbon nanoparticles, for example, are mostly produced due to incomplete 

combustion processes like in wax candles or petrol engines and are commercially available as 

carbon black from the furnace process.
2
 The production of other particles is mainly due to 

attrition on friction-processes. Natural nanoparticles form during volcanic eruptions or forest 
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fires.
3
 Furthermore, virus particles are naturally nanostructured particles, consisting of nucleic 

acids and a protein shell.
4
 

There are different ways in which nanomaterials can be classified. The degree of structural 

order in nanoparticles can be either crystalline or amorphous. The crystalline nanoparticles are 

referred to as nanocrystals. They are mostly single-crystalline and hence, have different 

optical and electrical properties compared to them polycrystalline or bulk form.
5
 They can be 

composed of either one material or distinctly different components, the latter are denoted as 

nanocomposites. Another class of nanoparticles is found in so-called nanostructured 

materials. The main focus of such materials lies on the shape, surface structure or the 

superstructure, which give them characteristic abilities with respect to nano-properties. The 

structure of these particles causes them to have different properties compared to the bulk 

material due to nano-relevant effects. It is important to say that strong agglomeration or 

aggregation of this kind of particles mostly leads to a loss of their specific nano-properties 

and they act like the macroscopic bulk material.
5
 Nevertheless, sometimes agglomeration is 

intentionally used to adjust particles sizes and surface-structures. Colloidal nanoclusters and 

nanoparticle aerogels, for example, have interesting optical and magnetic properties, and are 

used as catalysts.  

 

Size depending forces between particles 

Nanoparticles are so tiny that some effects and forces vanish while others strongly increase. 

This leads to a shift in the balance of forces influencing the nanoparticle itself. The impact of 

gravitational force on nanoparticles is strongly reduced due to their lower weight per particle, 

leading to a more flexible particles’ behavior: they act like molecules. With smaller particle 

sizes, the influence of the force of surface charges increases, resulting in strong interactions 

(Coulomb-attraction/repulsion) between the particles themselves or towards counter ions. 

Another dominant effect is the strong increase of the surface energy. Reducing the particle 

size, the surface area to volume ratio increases drastically, leading to a high surface energy. 

Therefore, nanoparticles have a strong tendency to agglomerate between each other, as it is 

energetically favored.  

The effect of size-dependency on properties and their macroscopic consequences can be 

illustrated by the example of silicon dioxide SiO2 (Fig. 1-1). 
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Figure 1-1. Different size-depending properties of silicon dioxide. 

 

As a rock, silicon dioxide is hard and brittle. The smaller the particles of silicon dioxide are, 

for example like in sand, the softer and more flexible the material gets, and it acts rather like a 

fluid than a rock. Very small SiO2 particles like fumed silica have a very fluffy appearance. 

They are soft and can be fluidized due to the increasing impact of electrostatic repulsion and 

the very low effect that the gravitational force has on the particles. This trend continues 

towards silicon dioxide nanoparticles, where the influence of electrostatic and gravitational 

forces further increases. 

 

Nanoscale-effects 

The importance of size-relevant effects increases with decreasing particle sizes. Especially 

when particles are observed in the dimensions of about 1–100 nm (nanometer-scale) the 

properties of the material change significantly. In this scale, properties like melting point,
6
 

color,
7
 electrical conductivity,

8
 magnetic permeability,

9
 catalytic activity

10
 and chemical 

reactivity
11

 are a function of both particle size and shape. 

Effects that play a role in nanoparticles or nanostructures are mostly surface-,
12

 optical- 
13

 or 

quantum-effects
14

. One well-known example for a surface effect is the Lotus-effect.
15

 

Materials using the Lotus-effect are commonly used as self-cleaning surfaces due to their 

highly hydrophobic properties. On normal surfaces, adhesive effects ensure water droplets to 

cover the whole surface-area. Superhydrophobic-Lotus-like materials have a nanostructured 

surface that minimizes the contact area of the droplets. This causes the droplet to form its 

most stable form, the sphere. Due to the strong surface curvature of a sphere, there is almost 

no contact area and hence very little adhesive force of the material. This causes the water 

droplet to roll down along this surface until it falls off.
16

 

Another effect derived from the specific properties of nanomaterials is the surface-plasmon-

resonance. Plasmons are fluctuations in the electron density against the restoring force of the 

positive atomic cores. With the limited size of these materials in all three dimensions, the 

wave function of this electron gas can be excited in its eigenstates. Therefore, nanoparticle 
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composition, size and shape, specific resonant wavelengths resulting in a color or other 

optical properties differ from those of the bulk-material.
17

 A commercial example for such 

materials are the so-called quantum dots. These are semiconductor-nanoparticles, whose 

properties can be adjusted to a high degree by composition, doping, size distribution or 

interactions with each other.
14

 

Another interesting example, where optical properties can be adjusted by nanoscaled 

structures, is the so-called Vantablack-material (Vanta stands for Vertically Aligned Nano 

Tube Arrays). It is absorbing 99.965% of the radiation in the visible spectrum and appears 

therefore as the blackest substance known at the moment. This material has vertically aligned 

nano-tubes on its surface which scatter the light very effectively between one another and the 

energy of light is finally converted to heat.
18

 

 

Synthesis 

For synthesis, processing and analytics, it is important to obtain and manipulate 

nanostructures at the nanometer-scale. In general, the used methods can be classified in the 

so-called bottom-up and top-down approaches. Examples for bottom-up methods are the 

liquid phase synthesis (hydrothermal/solvothermal synthesis, the sol-gel processing, etc.) or 

gas phase methods (chemical vapor deposition, laser ablation deposition, sputtering 

techniques, etc.). Most top-down methods are based on milling or grinding processes.  

In order to achieve high quality nanoparticles regarding size distribution, agglomeration, 

stabilization and specific properties, different parameters have to be controlled during the 

synthesizing process (Fig. 1-2).  
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Figure 1-2. Time-dependence of nanoparticle growth and agglomeration/Ostwald-ripening. 

 

To form nanoparticles with a narrow size distribution, the nucleation and growth should be 

controlled precisely and adjusted as accurately as possible. However, some MOFs 

preferentially form nanoparticles in the regular synthesis. Another important aspect is the 

suppression of agglomeration processes. Nanomaterials lose or change their very specific 

properties when they agglomerate. Additionally, most agglomerated particle-clusters cannot 

be separated into single particles. The agglomeration behavior in liquid-phase synthesis can 

be controlled by functionalizing the surface of the nanoparticles immediately after nucleation. 

Typically, steric demanding organic molecules like long-chain alkyl compounds, surfactants 

or polymers are used. These can influence the growth direction of the particle and can prevent 

particles from interacting with each other. Another way of stabilizing single particles is the 

electrostatic stabilization, where polar molecules on the particle surface prevent 

agglomeration through electrostatic repulsion. Both strategies prevent also the Ostwald 

ripening – the process where small particles are merged into larger ones. 

In general, nanomaterials open the world to novel advanced material properties. To get such 

properties it is important to have highly reproducible and adjustable synthesis routes. In recent 

years, MOF syntheses were mostly optimized for single crystal growth to elucidate the 

structures. In future a high potential in the field of MOF chemistry will develop by working 

towards nanostructured MOF materials.  
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1.3. Metal-organic framework nanoparticles (MOF NPs) 

Metal-organic framework materials stand for crystalline materials, a huge number of 

inorganic building blocks combined with almost endless organic linkers, a tunable pore 

structure, ultrahigh porosity and different functionalization concepts. The combination of 

these properties with the nano-world offers manifold perspectives for the synthesis of well-

defined multifunctional nanoparticles with novel properties. Operating at a length scale of 

one-billionth of a meter, the properties of MOF nanoparticles differ significantly from their 

bulk substances due to the high surface-to-volume ratio and quantum size effects. By 

combining the inorganic and organic chemistry worlds, MOF nanoparticles will possibly 

display novel and enhanced properties compared to the already established nanomaterials 

such as gold nanoparticles, iron oxide nanoparticles, quantum dots, polymers, carbon 

nanotubes, liposomes, mesoporous silica etc. Further, they could be integrated in well-

established systems for enhancing diffusion paths in catalysis
19

 or as MOF membrane
20

. 

Establishing synthesis protocols for precisely tuning the composition, morphology and the 

physical properties of MOF nanoparticles (Fig. 1-3) is a huge task but at the same time a 

chance for synthesis chemists to develop new creative ideas.  

 

 

Figure 1-3. Overview of the most important design parameters for the synthesis of MOF NPs. 
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In addition, for different applications the internal and external surface can be functionalized 

with MOF specific functionalization concepts. However, the appropriate characterization and 

evaluation of the MOF nanoparticle properties are a tremendous challenge as it requires 

different and very expensive analytic instruments. Here, the MOF community is confronted 

with the challenge to prove the crystallinity of a MOF nanoparticle and with this the 

underlying MOF structure. Due to peak broadening in powder X-ray diffraction analysis and 

MOFs being beam sensitive for transmission electron microscopy (TEM) this challenge can 

hopefully be solved with the new versions of TEM instruments operating at low voltage. 

Once all the issues mentioned above have being met, well-defined and precisely 

functionalized MOF nanoparticles can possibly bring new fundamental understanding for the 

nanoscience area. 

1.4. Synthesis of MOF NPs 

Nanoparticles made of metal-organic frameworks (NMOFs) can have versatile applications. 

In general, these applications require narrow particle size distributions and uniformly shaped 

crystallites. Therefore, the controlled synthesis of well-defined MOF nanoparticles is of huge 

interest. Several techniques have been developed in recent years - this chapter deals with 

procedures which are most commonly applied in chemistry laboratories. 

Overall, the shape of the NMOFs is determined by two important factors: The intrinsic 

structure of the resulting material, which - if predominant - leads to a huge variety of non-

spherical NMOF morphologies and further, causes interactions with solvent molecules, which 

forces the crystals to a more spherical appearance.
21

 In most cases, crystal lattice energy tends 

to overcome the particle/solvent interactions leading to polyhedral NMOFs morphologies 

such as spheres, cubes, octahedra, hexagonal prisms, etc. (Fig. 1-1). The particle size can 

mainly be controlled by adjusting the reaction time and temperature.
22

 Further improvements 

in the synthesis of nanoscaled MOFs has been done in recent years. Adding modulator 

molecules or by carrying out the NMOF synthesis in nano-reactors, the morphologies and 

particle size can be tuned. The different approaches, which will be described in the following 

chapters, are summarized in Figure 1-4. 
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Figure 1-4. Overview over the different techniques for the synthesis of MOF NPs. 
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Spontaneous precipitation method 

The simplest way to synthesize MOF NPs is their precipitation after mixing metal and linker 

in a stirring solution. The spontaneous assembly of linker and metal clusters can lead, if 

controlled by time, temperature and concentration of the precursors, to the formation of 

NMOFs. Two different techniques have been applied for amorphous coordination polymers 

first and then have found their way into the synthesis of crystalline MOF NPs. The first one 

was published by Sun et al. in 2005, where they showed a successful preparation of 

amorphous spherical colloids, consisting of coordinatively bounded p-phenylenediamine 

(PPD) and platinum ions, by combining H2PtCl6 and PPD in aqueous solution.
23

 The second 

technique was introduced by the group of Chad A. Mirkin also for amorphous particles. A 

solution of M(OAc)2 (M = Cu, Zn, Ni) and carboxylate-functionalized binaphthyl bis-

metallotridentate Schiff base (BMSB) in pyridine was diluted with diethylether to induce the 

precipitation of nanospheres. They also showed the reversibility of this system by dissolving 

the particles in an excess of pyridine.
24

 Due to the versatility of these methods, the techniques 

have been extended to a wide range of coordination particles as well as NMOFs. HKUST-1 

nanoparticles, for instance, have been synthesized by pouring an aqueous solution of copper 

nitrate into a preliminary prepared aqueous solution of trimesic acid.
25-26

 Further, Pan et al. 

showed a precipitation of a zeolitic imidazolate framework (ZIF-8) out of an aqueous solution 

of Zn(NO3)2 ∙ 6 H2O and 2-methylimidazole at ambient temperature.
27

 

 

Solvo-thermal method 

A frequently used route for the formation of MOFs is solvo-thermal synthesis, where the 

reaction mixture is heated up in a sealed autoclave, which can be made of glass, teflon or 

high-grade steel. It is well known, that the solubility of precursors and products is increased at 

high temperatures, preferentially leading to crystallization vs. a rapid precipitation of 

amorphous material. Control over precursor ratio and concentration, pressure, time and 

temperature can allow the formation of homogeneous nanoparticles. Furthermore, the choice 

of solvent is very crucial for the formation and co-determines the resulting MOF structure. 

Horcajada et al. prepared a variety of iron based NMOFs of the MIL (Materials of Institut 

Lavoisier) family by solvo-thermal synthesis in DMF, ethanol, methanol or water, 

respectively.
28

 Furthermore, it was possible to expand the pore size of MIL-100/101 

topologies, using extended bi- or tricarboxylic linker molecules under solvo-thermal 

conditions.
29-30
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Microwave synthesis 

Using microwave irradiation for the production of nano-scaled MOFs turned out to be a 

useful type of solvo-thermal synthesis. Compared to the classical route, microwave synthesis 

provides the advantages of fast heating within the reaction mixture. Local superheating 

provides a huge amount of hot spots which can serve as nucleation seeds for crystal growth.
31

 

This allows short reaction times towards other techniques and narrow particle size 

distributions. Various MOF NPs have been synthesized by microwave synthesis.
32

 Jhung 

et al., for instance, were able to produce very homogeneous MIL-101(Cr) nanoparticles in 

high yield and uniform shape.
33

  

 

Preparation by ultrasonic sound 

This approach is based on the interaction of high-energetic ultrasonic sound with the reaction 

solvent, which is followed by cyclic alternating areas of compression and rarefaction. In 

rarefaction areas, occurring pressures below the vapor pressure of the solvent lead to 

cavitation. After reaching a maximum size, the cavitation collapses under rapid release of 

energy, leading to so-called hot spots were MOF formation can take place.
34

 

The ultrasonic method was established for MOF nanoparticle synthesis in 2008, when Qui 

et al. investigated the formation of Zn3(BTC)2 ∙ 12 H2O by combining zinc acetate dihydrate 

and trimesic acid in an ethanol/water mixture. Spontaneous precipitation did not occur by just 

mixing the precursors at room temperature, but sonochemical synthesis resulted in MOF 

nanoparticles with approx. 100 nm in diameter in a high yield.
35

 A few month later, Son et al. 

successfully prepared MOF-5 particles at least at the micrometer scale by applying ultrasonic 

sound. They were able to significantly reduce the reaction time compared to conventional 

solvothermal synthesis from 24 hours to about 30 minutes.
36

 

 

Reverse microemulsion method 

Another widely approved road to the production of homogeneous nanoparticles is the reverse 

microemulsion technique. It has successfully been used for a broad range of other 

nanomaterials and was applied for coordination polymer particles for the first time by the 

group of Mann in 2000.
37

 As the name already suggests, an emulsion of the precursor solution 

in a second liquid solvent is used for the creation of nanosized reactors. In these tiny droplets 

MOF formation occurs and the particle growth is limited by the border of the two liquids. 

Tuning the droplet size leads directly to a control over the size of the nanoparticles. Different 

solvent mixtures have already been applied for this method, such as water/oil, which was used 
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by Mann for the synthesis of Prussian Blue nanoparticles
37

 or an isooctane/1-hexanol/water 

mixture, which was applied by the group of Lin for the formation of [Gd(1,2,4-BTC)(H2O)3] ∙ 

H2O nanocrystals.
38

 

 

Morphology modulation using additives 

Furthermore, addition of modulators to the reaction medium can lead to an improved crystal 

shape as well as to a narrow size distribution. The idea behind this approach is to limit the 

particle growth by adding capping molecules to the reaction media. Different types of 

additives have been approved in literature and showed a confinement effect leading to 

homogeneously shaped MOF nanocrystals.  

One possibility is the usage of small molecules with the same chemical functionality as the 

linker molecule. In contrast to the linker, these molecules possess only one coordinating 

functional group and which allow for the coordination to metal centers of the framework, but 

do not provide a chemical functionality for a further crystal growth. The group of Kitagawa 

originally introduced the modulation approach, using acetic acid as a monovalent modulator 

molecule. By taking advantage of the competitive interaction between modulator and linker 

molecules, they were able to obtain small and homogeneous [{Cu2(ndc)2-(dabco)}n] 

nanoparticles 
39

 as well as bigger, heterogeneous [Cu3(btc)2] nanoparticles
40

. Further 

investigations on this synthesis approach have been performed by Behrens and co-workers, 

focusing on benzoic acid, acetic acid or formic acid as modulator for the synthesis of Zr-based 

metal-organic frameworks. They provided control over the nucleation rate of the nanocrystals 

by changing the concentration of the modulator molecule.
41-42

 

Kitagawa’s group also used the confinement effect of polyvinyl- pyrrolidine (PVP) for the 

synthesis of MOF nanoparticles for the first time.
43

 Prussian Blue nanoparticles were 

synthesized in an aqueous solution of FeCl3 and K3Fe(CN)6 in the presence of PVP. Without 

PVP, large particles (>300 nm) with a broad size distribution were formed. They attributed 

the latter to a steric stabilization effect of the PVP due to a weak coordination of its amide 

moiety to the Fe ions during the nucleation and growth process of the particles. Using the 

same technique, Kerbellec et al. stabilized ultra-small luminescent Tb2(bdc)3(H2O)4 

nanoparticles with sizes below 10 nm.
44

 

Another approach is the addition of a surfactant in order to stabilize the particles during their 

formation. Taylor et al. reported a CTAB (cetyltrimethylammonium bromide) supported 

formation of [Gd2(bhc)(H2O)6] and [Gd2(bhc)(H2O)8](H2O)2 nanoparticles in a 1-hexanol/n-
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heptane/water microemulsion.
45

 They showed that microemulsion synthesis without addition 

of surfactant resulted in an amorphous material. 

 

Top down processing and combination of different techniques 

The synthesis of high-quality nanoparticles, namely those with a defined diameter, almost 

monodispersed size distribution, and small degree of agglomeration, is often realized by 

starting from a homogeneous liquid phase solution. Especially in MOF chemistry downsizing 

by milling is detrimental causing often surface area loss and amorphization. However, some 

elaborations have recently focused on the formation of superstructures made of MOF 

nanoparticles 
46

 (see chapter “Engineering MOF NPss”). Disassembly of these hierarchical 

structured architectures can lead to nanoparticles. Maspoch and co-workers, for instance, 

developed a spray-drying strategy to build up MOF hollow spheres. After sonication in 

methanol, they obtained a colloidal dispersion of homogeneous HKUST-1 nanoparticles.
47

 

Due to the diversity of different synthetic methods towards MOF nanoparticles, researchers 

started to combine those methods for a further improved control over size and shape of the 

particles. As an example, Tanaka et al. used reversed microemulsion technique in 

combination with ultrasonic sound for the preparation of {[Zn(ip)(bpy)]}n (ip = isophthalate, 

bpy = 4,4′-bipyridyl; CID-1) nanoparticles.
48

  

1.5. Engineering MOF NPs 

External surface functionalization of MOF NPs 

The functionalization of MOF NPs on their external surface (Fig. 1-1) is of immense interest, 

especially with regard to their possible application as drug delivery vehicle (see chapter 

“Applications of MOF NPs”). Towards an explicit attachment of molecules on the particle 

shell, depending on the surface appearance, functionalization can be done effectively in 

different ways.  

Addressing coordinatively unsaturated metal centers on the particle surface has been 

attempted by Rowe et al. in 2009. They reported the attachment of RAFT copolymers 

containing thiolate functionality on vacant orbitals on Gd
3+

 ions at the surface of Gd MOF 

NPs.
49

 Alternatively, postsynthetic modification on pre-functionalized organic linker 

molecules on the external surface is a known procedure in literature. Liu et al. were able to 

cover a copper MOF selectively with an amino-functionalized isoreticular MOF (terephthalic 

acid was replaced by 2-aminoterephthalic acid) using copper acetate as a connector. The 

amino group was further functionalized with a fluorescent dye and could be observed via 
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fluorescence microscopy.
50

 This method might as well be a promising approach for the 

functionalization of MOF NPs. Furthermore, the linking groups of MOFs can also be used as 

anchoring point for modifications on the outer surface of nanoparticles. In fact, typical 

organic linkers of the MOFs contain carboxylate groups, for instance. Park and co-workers 

assumed that a certain amount of carboxylate groups is exposed on the surface and they 

confirmed this assumption by covalent attachment of enhanced green fluorescent protein 

(EGFP). They demonstrated their results on a one- dimensional indium-based coordination 

polymer, the two dimensional [Zn(bpydc)(H2O)]∙(H2O)n, and IRMOF-3 as a model system of 

a three dimensional MOF. Activation of the carboxylates was achieved with 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) or dicyclohexyl carbodiimide (DCC), 

respectively.
51

 

Structuring MOF NPs at the macroscopic scale 

In order to enrich the overall performance of MOF NPs, researchers started to focus on the 

construction of hierarchical MOF superstructures. The specific arrangement can have versatile 

advantages, considering the desired application. In general, there are four different 

possibilities for the structuring at the macroscopic scale (Fig. 1-5).  

 

 

Figure 1-5. Illustration of the different types of MOF superstructures made of nanoparticles. 

 

Zero-dimensional (0D) objects like hollow spheres can serve as shell to compartmentalize 

space. Those voids can have possible applications in energy storage,
52

 chemical catalysis,
53

 

photonics,
54

 etc. One-dimensional (1D) architectures, like MOF nanorods or MOF nanofibers, 

are promising candidates for sensing, optoelectronics, or magnetic devices, for instance.
46

 

Thin films, membranes or patterns can be created by an assembly of MOF NPs in a two-

dimensional (2D) MOF superstructure. They provide potential as photonic crystal for sensing 
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applications,
55

 as membrane for gas separation 
56

 or proton and electronic conduction.
57

 The 

advantage of a MOF nanoparticle arrangement in three dimensional (3D) frameworks is 

mainly its contribution to an increased diffusion rate of the guest molecules into the 

nanoparticle pores, compared to a packed bed system.
58

 Fast diffusion rates can be crucial in 

applications such as gas sorption, gas separation or chemical sensing. 

The assembly of these superstructures is based on two general methods, “top-down” and 

“bottom-up” approaches. “Top-down” means the pre-synthesis of MOF NPs and their further 

structuring by coating, etching or aligning techniques. As an example, the rearrangement of a 

dispersion of ZIF-8 crystals into a one-dimensional superstructure by applying an electric 

field was investigated.
59-60

 Ostermann et al. obtained MOF nanofibers with an adjustable 

diameter between 150 nm and 300 nm, adding PVP to a dispersion of ZIF-8 in methanol and 

injecting the mixture into a reaction chamber, where a voltage of 5 kV was applied.
59, 61

  

“Bottom-up” means the direct synthesis of MOF NPs in an oriented superstructure. Therefore, 

different strategies have been developed in recent years. Adding a pre-shaped macrostructural 

(hard) template or a molecular (soft) template to the reaction, can lead to controlled particle 

crystallization on the template surface. Subsequent removal of the structure directing material 

provides hierarchical architectures of the metal organic framework. Common hard templates 

which have already found their way into the synthesis of MOF superstructures, are e.g. 

carbons 
62

, silica 
63

 or organic polymers 
64-65

.  

Cao et al. showed the use of block-copolymers as soft template for the formation of three-

dimensional superstructures of ZIF-8 and HKUST-1 nanoparticles.
66

  

Interfacial reactions provide another possibility for the formation of hierarchically structured 

metal-organic frameworks. An important feature of this technique is the confinement of metal 

and precursor at different compartments of the reaction mixture. Thus, MOF formation can 

only occur at the border between those compartments.  

In literature, liquid-solid interfacial reactions and liquid-liquid interfacial reactions are well 

known. The former method is, in a way, similar to macrostrucural templates. The solid 

compartment serves as template as well as a reservoir for metal ions. The linker molecule is 

simply dissolved in the liquid phase. Using this technique, Zheng and co-workers coated zinc 

oxide nanorods with ZIF-8 nanoparticles, immersing the Zn-containing nanorods in a solution 

of 2-methylimidazole in DMF/water and heating it in an autoclave at 70 °C.
67

 Only one year 

before, the group of Kitagawa successfully performed a variation of this method, called 

coordination replication.
68

 They converted a hexagonal alumina “parent phase” into a 
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hierarchical structure of MOF NPs with same architecture, reacting the alumina in an aqueous 

solution of 1,4-naphtalenedicarboxylic acid. 

A liquid-liquid interfacial reaction for the generation of hollow spheres, consisting of 

[Cu3(BTC)2] nanocrystals was published by Ameloot et al. in 2011.
69

 Injecting droplets of an 

aqueous cupper acetate solution in a flow of trimesic acid in 1-octanol yielded homogenous 

MOF capsules in a range of 300–400 µm in size.  

Reaction confinement by evaporation has already been explored in recent years for the 

structuring of MOF NPs. Thereby, metal source and organic linker have been well stabilized 

in the reaction medium, so that reaction cannot take place spontaneously. The formation of 

the MOF is induced by the evaporation of the solvent. This strategy opens the possibility to 

“print” MOF particles on desired surfaces, which was published by de Vos and co-workers.
70

 

A stable solution of copper nitrate trihydrate and trimesic acid in DMSO was patterned by a 

stamp onto a glass substrate. After solvent evaporation, they obtained micro-sized MOF 

crystals in an ordered manner. A route towards zero-dimensional MOF hollow spheres by a 

reaction confinement approach was shown by Carné-Sánchez et al. in 2013.
47

 Spray-drying of 

the precursor solution of different MOFs resulted in spherical capsules, consisting of highly 

crystalline and homogenous nanoparticles. 

Core-shell MOF NPs 

The fascination of polyfunctional nanoparticles and their use in different fields of application 

leads to the synthesis of core-shell particles, which exhibit new or enhanced properties in 

comparison to individual units. However, rising the degree of functionality goes along with an 

increased level of synthesis complexity. Controlling the size of the core and shell, the 

composition, the dispersed nature, the colloidal stability, the spatial distribution as well as 

confinement of the core-shell nanoparticles is a huge and exciting challenge.
71

 

In general, core-shell nanoparticles are made from two or more materials. Normally, core-

shell nanoparticles are synthesized using a two-step process: the synthesis of the core and the 

synthesis of the shell. However, the uniform pore structures of MOF materials can be utilized 

as nanoreactor for the synthesis of metal nanoparticles ensuring controlled particle sizes 

inside the MOF pores (Fig. 1-6).  
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Figure 1-6. Synthesis of different core-shell MOF NPs: a) metal nanoparticles attached on the external surface 

of a MOF nanoparticle; b) multiple metal core materials covered by a MOF shell; c) one core metal material 

covered by a MOF shell; d) metal nanoparticle yolk and MOF shell nanoparticle; e) small metal core 

nanoparticles synthesized inside the pores of the MOF. 

 

This synthesis concept is known as “ship-in-bottle” approach.
72

 The MOF scaffold is loaded 

with a metal precursor solution in a first step, followed by a reduction step. In this way, 

different metals, e.g. Pd, Au, Pt, could be synthesized inside the MOF pores.
73-79

 Another 

synthesis approach was developed by Fischer and co-workers based on metal organic 

chemical vapor deposition (MOCVD).
80-85

 The main challenge of these core-shell synthesis 

approaches is the formation step in the pores of MOF NPs, which tend to agglomerate during 

this step.
72

 

A better control of the synthesis obtaining well-defined core-shell nanoparticles can be 

realized by the separate synthesis of the core metal nanoparticles, followed by coating with 

the MOF shell material (Fig. 1-6).
86-90

 Here the challenge is to provoke a heterogeneous 

nucleation of the MOF shell specifically on the core material. To address this challenge, the 

surface of the core material must be functionalized with linkers that can serve as anchoring 

point for the MOF crystallization. One interesting example reported by Furukawa and co-

workers is the surface modification of gold nanorods with PEG-chains, followed by the 

coating of amorphous alumina and finally the synthesis of the MOF shell.
91

 Another approach 

is the mercapto acetic acid (MAA)-functionalization of the metal core, joined by the step-by-

step assembly 
92-94

 of the MOF shell 
95-98

. The growth of the MOF shell is achieved through 

repeated growth cycles; immersion of the metal nanoparticle in the MOF metal precursor 

solution is followed by the organic linker solution. In this way, the MOF shell thickness can 

be controlled by the growth cycles. In terms of incorporating more than one core material and 
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controlling the spatial distribution of the core nanoparticles Hupp, Huo and co-workers 

reported an interesting work.
99

 They achieved the spatial distribution of polyvinylpyrrolidone 

(PVP) modified metal nanoparticles within the MOF matrix by simply controlling the 

moment of addition. Tsung and co-workers could even demonstrate the synthesis of yolk-

shell nanoparticles (Fig. 1-6).
100

 Last but not least, MOFs and metal nanoparticles can be 

synthesized both separately and the metal nanoparticles can be attached to the MOF 

nanoparticle surface (Fig. 1-6).
72

 

1.6. Biomedical application of MOF NPs 

MOFs NPs as drug carrier 

The delivery of drugs is an area of immense importance for human health. Main challenges in 

drug delivery include: low drug solubility, drug stability and toxicity, rapid metabolism and 

clearance, and most importantly a lack of selectivity. Nanocarriers hold the key to addressing 

these challenges. Incorporating drugs into nanoparticles offers exciting opportunities to 

redefine the pharmacokinetic properties, improving therapeutic efficiency and reducing side 

effects.
101-103

 However, the key challenge to realize this potential is to advance the 

methodologies for the enhanced design of nanoparticles with the following prerequisites:
104

  

 

 Biocombatibility  

 High loading and protection of the drug molecules 

 Zero premature release before reaching the target 

 Efficient cellular uptake 

 Efficient endosomal escape 

 Controllable rate of release to achieve an effective local concentration 

 Cell targeting 

 

In the past decades, several strategies have been developed to design drug delivery materials 

to accomplish the above mentioned goals. Several drug delivery nanocarriers based on 

organic platforms such as liposomes, polymers, and dendrimers have been used as “smart” 

systems, capable of releasing therapeutic agents under physiological conditions.
105-107

 In 

addition, recent discoveries are based on inorganic nanoparticles such as gold, iron oxide or 

mesoporous silica.
107

 Each of these classes of nanomaterials has its own strengths and 

drawbacks. However, it can be stated that although significant progress has been made in the 
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synthesis of functional nanocarriers, the goals for the targeted release of drugs in the context 

of treating severe diseases with nanomaterials are still far from being met. 

In this respect, MOFs are a unique class of porous hybrid solids with a wide range of 

compositions, structures, tunable pore sizes, and pore volumes. Their ability to combine both 

organic and inorganic design principles is one key advantage. Therefore, they could bridge 

the gap of purely inorganic and organic nanocarriers. The challenging task is the design of 

site-specific, stimuli-responsive controlled MOF drug delivery systems that - in addition - are 

biocompatible. Their successful application for medical purposes requires the development of 

MOF NPs with inner pore functionalization for controlled interaction with biologically active 

molecules as well as outer functionality for targeted cell uptake, triggered drug release, and 

with surface shielding against unwanted interactions inside the physiological environment 

(Fig. 1-7). 

 

Figure 1-7. Synthesis path of a multifunctional MOF nanocarrier as well as the cell uptake of the nanocarrier 

and triggered drug release inside the cell. 

 

In 2006, Horcajada et al. reported the first example of using MOF NPs as drug carrier system. 

Here, Ibuprofen has been encapsulated by simple adsorption into the mesoporous structures of 

MIL-100(Cr) and MIL-101(Cr).
108

 Utilizing non-covalent drug delivery, where MOF NPs are 

loaded through the suspension with the drug, has several unique advantages. First of all, non-

covalent drug delivery systems can be designed without direct modification of the drug, 

retaining its therapeutic efficiency. Secondly, optimizing the non-covalent drug transport for 

one drug can be applied to other drugs with similar properties, allowing for a broader 

assessment of how nanoparticles function in vitro and in vivo. Finally, non-covalently bound 
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drugs do not require additional external stimuli escape from the nanocarrier, but are rather 

released from the nanoparticle based on a triggered opening mechanism. 

This approach has been extended in the following years by different researchers. Horcajada 

and co-workers tested different carboxylate-linked MOF NPs for their loading capacities of 

drugs as well as the release kinetics.
109

 They could demonstrate that especially iron 

carboxylate MOF NPs are suitable for encapsulation and controlled delivery of a large 

number of drugs, such as busulfan, cidofovir, doxorubicin or azidothymidine triphosphate, but 

being at the same time biocompatible.
28, 110-111

 Due to the high surface area of MOF NPs, new 

records of loading capacity for certain drugs in comparison to other nanosystems could be 

found.  

Lin and co-workers reported an approach based on MOF decomposition behavior in 

physiological medium.
112-113

 

Silica has been used to cover and to control the MOF NP degradation and the core-shell 

nanoparticle could further be functionalized by postsynthetic covalent attachment of targeting 

ligands.
113

 The same group recently published their results of using UiO MOF NPs for the co-

delivery of cisplatin and pooled siRNAs.
114

 The interior of the particles was loaded with 

cisplatin and afterwards the external surface with siRNA. The efficiency of this multi-

functionalized system compared to the individual compartments could be demonstrated. 

Another functional system was reported by Zhang and co-workers using magnetic porous 

MOF for drug delivery.
115

 A core-shell system was synthesized with a Fe3O4 nanorod core 

and HKUST-1. The shell material could be loaded with the anticancer drug Nimesulide.  

One challenge by encapsulating sophisticated drugs into MOF NP structures is the small 

window size of the pores. Normally, MOF pores are like a space with a small entrance (pore 

window diameter) in comparison to the void itself (pore diameter). Weerapana, Tsung and co-

workers proposed a ship-in-the-bottle strategy to address this challenge by simply forming the 

MOF structure around the drug.
116

 This trapping strategy was demonstrated for ZIF-8 

nanoparticles by encapsulating fluorescein or the anticancer drug campthothecin. The 

drawback of the ship-in-the-bottle strategy is that the stability of many drugs does not match 

with the condition of the MOF synthesis. 

Another way of encapsulating a drug inside the MOF is to build up the network from 

bioactive linkers. The decomposition of the framework in the body leads to a release of the 

drug. This strategy was first proposed by the Serre group of Versailles, which constructs 

Bio-MIL-1, and afterwards many other examples, from nicotinic acid and iron as a metal 

source.
109, 117-118

 The challenge of this strategy is the necessity of a bioactive linker, that is 
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suitable for the MOF synthesis and, at the same time, does not change its bioactivity. Since 

the contergan-scandal we know that even two enantiomers can have totally different 

biological effects and we should keep this in mind when changing the structure of bioactive 

molecules.  

Recently, Lin’s group could report the synthesis of Hf-porphyrin MOF NPs (named as DBP-

UiO) being able to generate cytotoxic reactive oxygen species.
119

 Instead of encapsulating a 

drug, a photosensitizer was used as linker molecule for the MOF NPs, which can be applied 

for photodynamic therapy. The high in vivo efficacy could be demonstrated by 50-fold tumor 

volume reduction in half of the mice and complete tumor eradication in the other half of the 

mice that were treated with the Hf-porphyrin MOF NPs.  

The same group lately reported the in vivo performance of so-called nanoscale coordination 

polymers (NCPs).
120

 They are built up from metal ions and organic bridging ligands – same 

design principle like MOFs - but in contrast to MOFs they are not crystalline. However, using 

cisplatin and oxaliplatin as linkers for NCPs and applying them against different cancer 

tumors, reveal, that NCPs could be a new promising nanocarrier class and should therefore be 

mentioned here.  

Last but not least, MOF NPs can be used to transport gasotransmitters such as nitric oxide 

(NO) or hydrogen sulfide (H2S). Morris’ group of St. Andrews is the leading group for storing 

and release gasotransmitter molecules inside MOFs.
121, 109

 The occurrence of coordinatively 

unsaturated metal sites (CUSs) and the high surface area of MOFs ensure a high uptake of the 

various gases. First results show promising bioactivity of such systems, which will be further 

improved and biologically tested in the future 
109

. In this respect, Furukawa and co-workers 

recently reported a strategy for controllable NO release based on photoactive MOFs.
122

 

MOF NPs for Diagnostics 

Employing MOF NPs with diagnostic capabilities have the  

long-term objective to combine them with drug delivery properties in order to design 

theranostic MOF NPs (Fig. 1-8).  
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Figure 1-8. Schematic illustration of the theranostic idea (MRI = magnetic resonance imaging, PET = positron 

emission tomography, SPECT = single-photon emission computed tomography, NIR = near-infrared). 

 

Magnetic resonance imaging (MRI) is a non-invasive method of mapping the internal 

structure and certain aspects of function within the body. It is based on the detection of 

nuclear spin reorientations in a magnetic field. To improve the visibility and with this the 

clinical diagnostics MRI contrast agents are used. They can be classified into two groups: (i) 

MRI contrast agents with positive signal enhancement by shortening the value of the T1 

relaxation time or (ii) MRI contrast agents with negative signal enhancement by reducing the 

T2 signals.  

The most commonly used compounds for contrast enhancement are Gadolinium-based 

contrast agents for positive signal enhancement. Lin and co-workers reported first the 

effectiveness of Gd
3+

-based MOF NPs as T1-weighted contrast agents.
38

 Other MOFs based 

on Gd
3+

 or even on Mn
2+

 have been published afterwards.
45, 49, 123-124

 The main problem of 

these materials for their practical use is the poor chemical stability resulting in toxicity.  

Another approach was proposed by Horcajada and co-workers by using iron-based MOF NPs 

as a negative signal enhancement contrast agent.
28

 The key advantage of this strategy is, that 

the combination of the MRI diagnostic capability with drug delivery properties is 

straightforward.
28

 The disadvantage of the lower visibility of these MRIs in comparison with 

gadolinium-based contrast agent images should be improved in the future.  

Crystalline MOF NPs, which are used for optical imaging purposes are surprisingly 

rare.
109, 124

 Optical imaging is widely used for in vitro and in vivo monitoring. For in vivo 

imaging near-infrared (NIR) dyes must be used because of the low absorption of biological 

tissues in this region. However, until now there is no example published so far. The 

straightforward way to functionalize a MOF with fluorescence properties is the covalent 

attachment of the dye. However, the fluorescence of the dye can be completely quenched after 
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incorporation into the MOF.
125-127

 Such an example was reported by Lin and co-workers who 

functionalized MIL-101(Fe)-NH2 with a BODIPY dye.
128

 

 The dye was not fluorescent due to quenching but exhibited strong turn-on fluorescence 

based on the decomposition of the MOF NPs in the cells, which induces the release of the 

BODIPY dyes. If this degradation of the MOF is specific to one analyte, the development of a 

sensitive optical MOF sensor is possible.
125

 Lin and co-workers reported the design of a real-

time pH MOF sensor for cells by covalent attachment of fluorescein isothiocyanate (FITC) to 

a UiO NMOF.
114

 4 wt% of FITC loading was chosen for the calibration curve due to the 

absence of FITC self-quenching at such amount. Incubation of fixed cells with these 

functionalized NPs revealed a pH change over time from 6.4 to 5.6, showing the intracellular 

endocytosis of the nanoparticles.  

1.7. Toxicology of MOF NPs 

Nanotoxicology refers to the toxicity of nanomaterials and is a very important but at the same 

time a complex research field. Health effects of nanoparticles have attracted considerable and 

increasing concern of the public society. With nanomaterials offering completely different 

properties than the bulk-material, the toxicity of these materials cannot be broken down to the 

chemical composition. They can be easily incorporated into organisms due to their small 

diameter and taken up by our smallest building block unit of life – the cell.
129

 But not only 

direct incorporation is a problem since plants can take up nanoparticles from the soil and 

translocate them to organisms by the food chain.
130

 

Nanotoxicology is a relative new field of interest. There are no results from long-term studies 

about the toxicology of materials in the nanometer scale. Long-term studies are needed 

especially for cancerogenious and statistically relevant investigations. There are short-term 

investigations which show that even inert materials like gold can have toxic effects on cells in 

the nanometer scale.
130

 This compels us to handle each material in different nanometer-size 

and shape as a new material with unknown effects on living tissue. Furthermore, it has to be 

distinguished between acute and chronic exposure of the nanoparticles.  

The toxicity of nanoparticles is depending on their size 
131

, shape 
132

, surface-area 
133

, material 

134
 and amount 

135
. Because the dose is directly related to exposure time and the concentration 

of the substance, it is expected that a higher dose causes a higher toxicity of the particles. But 

generally it could be shown that the effects on the organism do not correlate with the mass 

dose but rather with the surface area of the particles.
136

 For example, nanoparticles can adsorb 

proteins or other substances in the cell and cause changes in their structure, transforming 
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proteins to work unspecifically or inhibit their function.
137

 This can cause irreversible 

damages to cells or tissues. Another important factor is the size depending toxicity of the 

particles, which determines the distribution of them in the human body. It could be shown that 

ultra-fine titanium dioxide particles were taken up significantly faster and had a faster 

clearance rate than fine titanium dioxide particles in the lung. Moreover, the shape of these 

materials can have an important influence in their toxicological effect.  

Shape depending toxicology is already known from asbestos which then was a commonly 

used thermal insulator and robust material. Its dangers were not taken seriously first, due to its 

long-term cancer hazard. The long and very thin fibers of which asbestos is built up, can find 

their way into the alveoli of the lung and cause a chronic inflammatory. The lung’s alveolar 

macrophages (dust cells) have the task to wrap around external particles like dust or soot and 

remove them from the very sensitive alveoli. In the case of asbestos fibers, it is not possible 

for these macrophages to remove the fibers if they have a width/length ratio larger than 3:1. 

This leads to the chronic inflammatory of the lung’s tissue which can result in lung cancer for 

the long term. Similar size and shape depending effects can be expected for a variety of 

nanomaterials. Further, with nanomaterials having very active structured surfaces their 

influence on special tissues is widely unknown.  

For investigation of the toxicological potential of these kinds of materials, it is important to 

have reliable and systematic methods which give information about the destination and 

influence on the surrounding tissue. At the moment the toxicological potential of a substance 

is determined by toxicokinetics, which describe the absorption of the substance by the skin or 

other organs, its distribution in the bloodstream, metabolism and its excretion. Both acute and 

chronical toxicities are also very important parameters for the toxicological potential of a 

substance. Further, long-term effects like cancerogenous, genotoxicity or neurotoxicity have 

to be well known until a substance can be introduced. All these studies are very expensive and 

take a long time until statistically relevant and reliable results can be received. With respect to 

MOF NPs, many used metal salts and linkers are toxic and not biocompatible. But the 

versatility of the MOFs also gives the chance to build up a whole new set of biocompatible 

MOFs. It is worth to note that the composition of MOF NPs is not the only important aspect 

which has to be considered in terms of toxicology (see above). Furthermore toxicology has to 

be determined in dependence of shape, size and solubility of these MOFs in tissues. This 

requires adjustment of the well-established toxicological studies and should be done in the 

future. 
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All in all, until now nanomaterials and their general effect on organisms has not yet been well 

investigated and understood. Each nanomaterial has to be examined like a new material in 

dependence of its physical and chemical properties. Further, with MOF nanomaterials often 

consisting of toxic or carcinogenic metal ions and linker substances, even their composition 

for biological applications is an important issue. At the moment, there are a few MOF NPs 

which are claimed to be biocompatible proven by the use of harmless metal salts and 

biologically used linkers 
109

. Thereby, it has not been taken into account what these particles’ 

shapes and nanostructured surfaces can cause in organisms. Hence, deeper standardized 

toxicological studies developed by medical scientists and pharmacist should be introduced 

and used. 
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2. Characterization techniques 

A complete and detailed characterization of the produced materials, composites and their 

effects and possible applications has to be part of any scientific work or publication. The 

different characterization techniques and their theoretical background are shown in this 

chapter.  

Investigations on the crystallinity of modified and unmodified nanoparticles were done using 

X-ray diffractometry (XRD). Infrared (IR) and Raman vibrational spectroscopy as well as 

nuclear magnetic resonance (NMR) spectroscopy was used to examine the composition of 

synthesized materials. UV-vis and Fluorescence spectroscopy (FS) revealed information 

about optical properties and was used further to determine loading and release behavior of dye 

molecules on- or into the MOF nanoparticles. Nitrogen sorption measurements were used to 

gain information about the porous structure (surface area, pore size, pore volume…) and 

electron microscopy (TEM/SEM) provided images of the particles and gave further evidence 

of morphology and structural details. Thermogravimetric analysis (TGA) was used to show 

the behavior under thermal treatment. The surface charge was investigated by using zeta 

potential measurement and the particle size was determined by means of dynamic light 

scattering (DLS) and/or fluorescence cross correlation spectroscopy (FCS), respectively. 

Additionally, confocal laser scanning microscopy (CLSM) and magnetic resonance imaging 

(MRI) was performed for investigations on particle-cell interactions and imaging properties. 

2.1. X-ray diffraction (XRD) 

XRD is a standard non-destructive technique to identify crystalline material. The distance 

between the lattice planes of these materials is in the same order of magnitude as the 

wavelength of X-rays (10
-8

 to 10
-12

 m), which is required for constructive or destructive 

interference, respectively. Therby, structural information as well as crystallite sizes can be 

gained from the occurring diffraction pattern. 

The technique is based on monochromatic X-radiation, which is usually generated in a 

cathode ray tube. By heating a filament electrons are emitted and are accelerated towards a 

target anode (typically Cu, Mo or Co) using high voltage. The collision of the accelerated 

electrons with the anode material leads to the emission of a continuous radiation 

(Bremsstrahlung) and characteristic X-ray radiation. After filtering by a monochromator, the 

X-ray beam is focused on the sample and scattered by the regular array of atoms within the 

crystal lattice, creating a specific diffraction pattern for each material (Figure 2-1). 
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Figure 2-1. Schematic illustration of X-ray diffraction at a crystal lattice plane according to Bragg’s relation; d: 

lattice plane spacing; θ: angle of incidence. 

 

The incident beam hits the parallel crystal lattice planes under the Bragg angle θ. Interference 

of the scattered waves occurs either in a constructive or destructive way. Constructive wave 

interference appears only if the path length difference equals an integer multiple of the 

wavelength. Thus in many directions, the waves are cancelled out due destructive 

interference, but in some directions the Bragg law is satisfied: 

 

𝑛 ∙ 𝜆 = 2𝑑 𝑠𝑖𝑛𝜃     (2-1) 

Equation 2-1. Bragg's law; n: order of interference; λ: wavelength of X-rays; d: lattice plane spacing; θ: angle of 

incidence  

 

Considering a perfect orientated crystalline sample, the diffraction pattern will show reflexes 

in exact intervals corresponding to the staggered lattice planes. Thus, structure determination 

is possible with single-crystal XRD measurement. The crystal is gradually rotated in the beam 

such that Bragg’s law is fulfilled for every orientation. The occurring regular pattern exhibits 

full structural information about the sample. 

 

In powders, every possible crystallographic orientation is represented in a statistic manner 

which leads to a disordered but characteristic diffraction pattern. Therefore, powder 

diffraction can be used to determine the crystallinity of the material as well as to analyze a 

crystalline sample by comparison to literature data. Furthermore, it is a worthy method in 
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structure determination of metal-organic frameworks via AASBU (automated assembly of 

secondary building units).
1 

 

As mentioned above, it is further possible to gain information about the crystallite size, which 

can be equated to particle size in the case of MOF NPs. It can be calculated by using the 

broadening of the reflections in the diffraction pattern. For this purpose, the Scherrer equation 

is used: 

𝐷 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
     (2-2) 

Equation 2-2. Scherrer equation; 𝐷: mean size of the crystalline domains, 𝐾: dimensionless shape factor,     

𝛽: full width at half maximum (FWHM) of the reflection corrected for the intrinsic instrumental broadening, 

𝜆: wavelength, 𝜃: diffraction angle. 

 

In this thesis, X-ray diffraction was measured with the STOE transmission diffractometer 

system Stadi MP with Cu Kα1 radiation (λ = 1.54060 Å) and Ge(111) single crystal 

monochromator. Diffraction patterns were recorded with a DECTRIS solid state strip detector 

MYTHEN 1K in an omega-2-theta scan mode using a step size of 4.71° and a counting time 

of 80 s per step. 

2.2.  Dynamic light scattering (DLS)
 

Size determination of particles in suspension is possible with DLS.
2
 Reliable values of 

measured hydrodynamic diameters of colloidal nanoparticles are thereby in the range between 

1 and 1000 nm. As DLS measurements are based on the Brownian motion of the particles, the 

important feature is the size dependent diffusion behavior of particles in solution, which is 

defined in the Stokes-Einstein equation (2-3): 

  

𝐷 =
𝑘𝑇

6𝜋𝜂𝑅
     (2-3) 

Equation 2-3. Stokes-Einstein equation; D: diffusion coefficient; T: temperature; η: viscosity; R: hydrodynamic 

radius; k: Boltzmann constant 

 

Temperature T and viscosity of the solvent η are known parameter, an therefore, the 

hydrodynamic radius of the particles R only depends on their diffusion coefficient D. It 

depends on several parameters, including the ionic strength of the suspension, the texture of 

the particle surface, and the shape of the particles. Determination of the diffusion coefficient 

is done by interpreting the scattering intensity fluctuation data. Monochromatic visible light 

(λ = 633 nm) is focused on a sample loaded cuvette. The beam is scattered by the dispersed 



2. Characterization techniques 

 

48 

particles and con- or destructive interference occurs after penetration of the cuvette. Brownian 

motion of the particles leads to fluent intensity changes in the diffraction pattern. The 

Zetasizer Nano system measures the rate of fluctuation and uses this to evaluate the 

hydrodynamic radius/diameter of the particles. The particle size distribution which is obtained 

by DLS measurements is based on intensity. This intensity-derived size distribution is suitable 

for small particles (size smaller than one-tenth of the wavelength of the illuminating light) in 

a suspension featuring monodispersity, and is well described by Rayleigh scattering. The 

Rayleigh approximation (2-4) presents the relation between the light scattering intensity I and 

the particle diameter d = 2R. 

 

𝐼 ∞ 𝑑6      (2-4) 

Equation 2-4. Rayleigh approximation, I: intensity of scattered light,  d :particle diameter. 

 

As the scattering intensity is proportional to d
6
 (Equation 2-4), the contribution of huge 

particles to the scattering intensity is much higher as compared to small ones. This leads to an 

over-estimation of the size in polydisperse samples and thus needs to be considered in data 

evaluation. To solve this issue, the intensity-based measurement data of the DLS can also be 

presented as volume-weighted (d
3
) or number-weighted (d) distributions.  

DLS measurements in this work were performed on diluted suspensions using a Malvern 

Zetasizer-Nano instrument with a 4 mW He-Ne laser (λ = 633 nm) and an avalanche photo 

detector. 

2.3. Zeta potential measurement
 

Zeta potential provides information about the external surface charge of particles in 

dispersion. The value is depending on the pH value and composition of medium as well as on 

the nature of the nanoparticles’ external surface. Therefore, it is an important tool for the 

detection of modifications on the external surface of the nanoparticles.  

The technique is based on the attraction of ions from the charged particles which form a 

surrounding dens ion layer (Stern layer). This is followed by a second layer built up from 

loosely attached ions of both charges (Figure 2-2). Within this “diffuse layer” an imaginary 

boundary occurs, which is called “slipping plane”. The slipping plane is defined as the 

spherical barrier, where everything which is inside will move with the particle. Everything 

outside this barrier will be no influence the movement of the particle. The potential which 

occurs between stationary solution and mobile particle is known as the Zeta Potential 𝜁.
2, 3 
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Figure 2-2. Schematic illustration of the spherical arrangement of ions around charged nanoparticles 

 

The Zeta Potential is calculated by determining the electrophoretic mobility Ue of the particles 

and then applying the Henry equation: 

 

𝑈e = 
2𝜀𝜁∙𝑓(𝑘𝑎)

3𝜂
          (2-5) 

Equation 2-5. Henry equation; Ue: electrophoretic mobility; ε: dielectric constant; f(ka): Henry function; η: 

viscosity; ζ: zeta potential 

 

Applying the Hückel approximation to the Henry equation which assumes small particles and 

low dielectric constant media, f(ka) becomes 1 and can be removed from the equation. Thus, 

the Zeta Potential is only dependent of the electrophoretic mobility, which can be calculated 

from the velocity of the nanoparticles at known electric field.  

 

𝑈e =
𝑣

𝐸
         (2-6) 

Equation 2-6. Definition of the electrophoretic mobility µe; v: particle velocity; E: electric field 
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The measurement of the velocity is done using Laser Dopler Velocimetry (LDV). An electric 

field of known strength is applied to a capillary cell containing the particle suspension. The 

frequency shift of the laser light passing through the suspension is used to determine the 

velocity of the nanoparticles. 

In this work, zeta potential is determained in specific biological relevant media or is plotted 

against the set pH value. In the latter case, the isoelectric point of the nanoparticles is a 

characteristic value, which is determined by the crossing of the X-axis (zeta potential equals 

zero). Zeta potential measurements were carried out on diluted suspensions (0.1 mg/mL) 

using a Malvern Zetasizer-Nano instrument with a 4 mW He-Ne laser (λ = 633 nm), an 

avalanche photo detector and an MPT-2 titration system. 

2.4. Sorption measurement 

Sorption measurements are a common tool to observe the properties of porous materials in 

matters of surface area, pore size and pore volume.
[4]

 Reversible interactions between the 

surface area and inert gas molecules (physisorption) at a known partial pressure lead to 

characteristic isotherms which are classified according IUPAC.
5
 All measurements of 

mesoporous MOF materials in this work were performed with nitrogen as an adsorptive.  

In principle, a sample of the porous material is placed into a tube with known volume. The 

tube is evacuated and heated for a few hours to clean the nanoparticle surface from adsorbed 

molecules. Afterwards the measuring cell is cooled down to the temperature of liquid nitrogen 

(T = 77 K). Small amounts of nitrogen gas are injected stepwise. The gas is adsorbed by the 

pores and until equilibrium pressure occurs. Those pressures (expressed as partial pressure 

p/p0) and the corresponding amounts of adsorbed gas are recorded. This is done until the 

value for the partial pressure reaches 1. That means that the equilibrium pressure p has 

reached the vapor pressure of the adsorptive p0. The similar procedure is performed for 

desorption, with decreasing the partial pressure until 0. 

The resulting isotherms are plotted as the amount of adsorbed nitrogen is a function of the 

relative pressure (Figure 2-3). The different types (I-VI) distinguish porous materials 

regarding pore structure and size, and the interactions of the adsorbed gas molecules with the 

adsorbent. 
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Figure 2-3. Types of sorption isotherms according to IUPAC classification.
6 

 

Type I isotherm shows a typical curve for microporous materials with a small external surface 

area. The curve reaches a maximum when the micropores are filled. Nonporous and 

macroporous solids with high energies of adsorption result in a type II isotherm. The first part 

of the isotherm represents the creation of a monolayer of the absorbed molecules. With 

increasing pressure multilayer are formed. Type III also shows nonporous and macroporous 

solids, but the weak surface-adsorptive interactions prevent the prior building of a monolayer. 

Type IV and V are reflecting mesoporous materials with strong (IV) and weak (V) surface-

adsorptive interactions. The hysteresis loop is a result of the capillary condensation which 

takes place in mesoporous materials. Type VI shows the gradual formation of individual 

adsorbate layers, which is due to a multimodal pore distribution. 

 

The specific surface area of metal-organic frameworks can be determined with the Brunnauer-

Emmert-Teller theory which was developed in 1938.
7
 It is a further development of the 

Langmuir models, in which exclusively monolayers are allowed.
8 

Walton et al. showed in 

2007 that the BET theory can be used for the evaluation of MOF surfaces by comparing the 

geometric surface area calculated from the crystal structure with the simulated adsorption 

isotherm.
9 
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The BET isotherm model assumes multilayer adsorption, neglecting interactions of the 

adsorbates among each other. The initial monolayer serves as a substrate for further 

adsorption processes, and consequently a change in adsorption enthalpy between the first and 

the subsequent layers occurs. The model is mathematically given by Equation 2-7, with na 

being the amount of adsorbate, nm the specific monolayer capacity and C the BET constant 

being exponentially related to the monolayer adsorption. 

 

𝑛𝑎

𝑛𝑚
= 

𝐶 ∙ 
𝑝

𝑝0

(1− 
𝑝

𝑝0
)(1+𝐶−

𝑝

𝑝0
)
           (2-7) 

Equation 2-7. BET equation; 𝑛𝑎:amount of the adsorbate at pressure p, 𝑛𝑚:capacity of one monolayer, C: BET 

constant; p: equilibrium pressure; 𝑝0: saturation vapor pressure of the adsorbate. 

 

The BET method is the most widely used procedure for evaluating surface areas. To 

determine 𝑛𝑚 only the linear form of the BET equation is valid, which is typically the case for 

low 
𝑝

𝑝0
 (0.0-0.3). Considering the linear form and taking into account the molecular cross-

sectional area (𝜎𝑚), the BET surface area (As) can be calculated by Equation 2-8. 

 

𝐴𝑆 = 𝑛𝑚𝑁𝐴𝜎𝑚            (2-8) 

Equation 2-8. Calculation of the BET surface are (𝐴𝑆); 𝑁𝐴: Avogadro constant; 𝜎𝑚: molecular cross-sectional 

area 
 

Further, isotherms can be used to calculate the pore size distribution. Density functional 

theory (DFT) and Monte Carlo simulations are nowadays reliable tools for pore size 

analysis.
10

 Based on fundamental principles of statistical mechanics they are able to describe 

the distribution of adsorbed materials and provide information on the local fluid structure at 

curved solid surface. Hence, different models for various pore shapes (slit, cylindrical and 

spherical) and material classes (such as zeolites, carbons and silicas) exist to determine the 

pore size and pore volume of porous materials. 

Nitrogen sorption measurements in this work were either performed on Quantachrome 

Instruments NOVA 4000e or Autosorb at 77 K. For the measurements approximately 10 mg 

of a sample were outgassed at 120 °C and 10 mTorr for approximately 16 hours.  
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2.5. Thermogravimetric analysis (TGA) 

Thermal stability of MOFs can be investigated by TGA.
11, 12

 Furthermore it is a useful 

technique to evaluate the content of organic substance within a hybrid material. The sample is 

placed onto a thermo-balance in an electrically heated oven. A constant heating rate 

(β = dT/dt) is applied and the behavior of the sample up to 900 °C can be investigated under 

desired atmosphere such as nitrogen or synthetic air. A steady laminar flow of the chosen gas 

passes the sample and volatile components are removed from the heating chamber. The 

weight loss can be caused by evaporation of volatile molecules, desorption of incorporated 

molecules and the decomposition of the sample, respectively. 

Thermogravimetric analysis was performed in this work with a thermo-microbalance 

(Netzsch, STA 449 C Jupiter) with a heating rate of 10 °C/min. Approximately 10 mg of the 

material were heated under synthetic air conditions with a flow rate of 25 mL/min. 

2.6. Infrared spectroscopy (IR) 

IR spectroscopy is based on absorption of electromagnetic waves in the infrared area. In this 

area molecule vibrations and/or rotations are encouraged depending on length and strength of 

the covalent bonds. The whole scope of infrared irradiation ranges over wave numbers from 

10 cm
-1

 to 14000 cm
-1

. It can be divided into three regions; near-infrared (14000 cm
-1

 -

 4000 cm
-1

), mid-infrared (4000 cm
-1 

- 400 cm
-1

) and far-infrared (400 cm
-1

 - 10 cm
-1

). 

Characteristic infrared absorption bands of the materials, studied in this thesis appear in the 

mid-infrared area. Due to the typical stimulation energies, it is possible to determine different 

functional groups in molecules. To describe the transitions between different vibrational 

states, the quantum mechanical model of the anharmonic oscillator is applied (Figure 2-4). 

 
Figure 2-4. Potential of the anharmoic oscillator 
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If the wavelength of the infrared light fits the energy between different vibrational states it is 

absorbed, resulting in characteristic vibrational bands in the IR spectrum of the analyzed 

molecule or material, respectively. 

 

Nowadays IR spectroscopy is performed by a Fourier-Transform-IR (FTIR) spectrometer. In 

contrast to a classical scanning IR spectrometer using monochromatic irradiation, 

polychromatic light is guided through a Michelson interferometer. The resulting time-

depending data is translated via Fourier-Transformation into the common infrared spectrum 

which is a function of the wave number.  

FTIR spectroscopy has three major advantages compared to classical spectroscopy:
13

 

 

 time saving aspect (multiplex of Fellgett's advantage) 

 better signal to noise ratio (Jacquinot advantage) 

 better wavelength accuracy (Cones advantage) 

 

However, IR spectroscopy is only applicable if a vibration is accompanied with a change of 

the dipole moment. Complementary to IR, Raman spectroscopy can be used to analyze 

molecules missing vibrational modes with change in dipole moment.  

 

IR spectroscopy was performed on an FT-IR spectrometer (Thermo Scientific, NICOLET 

6700) in transmission mode. Transparent potassium bromide pellets (150 mg) served as 

matrix for 1 mg MOF nanoparticles. 

2.7. Raman spectroscopy 

Raman spectroscopy is based on sample irradiation by monochromatic light, usually 

generated by a laser. Due to scattering of the light by interaction with the electron shells of the 

material/molecules, the composition can be analyzed (see Figure 2-5). In contrast to IR 

spectroscopy, requirement for molecules to be Raman active is the polarizability (deformation 

of the electron cloud) of the excited vibrational mode.  
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Figure 2-5. Raman excitation and relaxation processes. 

 

Electrons are exited in virtual energy states (dashed lines) and by an elastic scattering process 

they can relax back to the ground state, emitting light with the same wavelength as the 

incident beam (Rayleigh scattering). However, a small fraction of light (approximately 1 in 

10
7
 photons) is inelastically scattered, leading to the Raman effect (Stokes or Anti-Stokes 

Raman scattering, respectively). The scattered light is either shifted to higher frequencies if 

electrons are exited from N1 and are relaxing to the ground state N0 (Anti-Stokes scattering) 

or shifted to lower frequencies  if the electrons are exited from N0 and are remaining in an 

exited state after relaxation from the virtual energy state (Stokes scattering). Those changes in 

frequency are characteristic for different functional groups within the material and can 

therefore be used to identify its chemical composition. 

Raman spectra were in this thesis were measured on a Bruker Equinox 55 FTIR/FTNIR, set in 

Raman mode. Laser power was adjusted to the material properties (50 - 100 mW). 

2.8. Ultraviolet-Visible spectroscopy (UV-Vis)
 

UV-Vis spectroscopy is a common method to record absorption of electromagnetic waves in 

the ultraviolet and optical range. The energy of the irradiation in this spectral scope 

corresponds to the energy gap between highest unoccupied molecule orbital (HOMO) and the 

lowest unoccupied molecule orbital (LUMO) Thus, incoming photons are able to excite 

electrons from the ground state into a higher energetic level. Afterwards, the ground state is 

re-established by relaxation processes.
14
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UV-Vis spectroscopy can give information about the electronical properties of the analyzed 

sample. Further, the amount of analyte can be quantified using the Lambert-Beer law 

(Equation 2-9). 

𝐴 = 𝑙𝑜𝑔
𝐼

𝐼0
= 𝜀𝜆 ∙ 𝑑 ∙ 𝑐    (2-9) 

Equation 2-9. Lambert-Beer law; 𝐴: Absoption; 𝐼: intensity of transmitted light; 𝐼0: intensity of incident light; 

𝜀𝜆: extinction coefficient; 𝑑: absorption path length of light; 𝑐: concentration of analyte 

 

UV-Vis measurements were carried out using a Perkin Elmer Lambda 1050 UV-Vis-NIR 

spectrometer equipped with a 150 mm InGaAs integrating sphere. The UV-Vis light range is 

scanned in a desired step size and the transmitted light is detected. Absorption is plotted 

against wavelength, resulting in a typical UV-Vis spectrum. 

2.9. Fluorescence spectroscopy (FS)
 

FS is another type of electromagnetic spectroscopy and a useful method to quantify an 

amount of fluorescent molecules in solution. The emission of fluorescence light is based on 

induced photon absorption according to UV-Vis spectroscopy (Figure 2-6). 

 

  

Figure 2-6. (left) Jablonski diagram illustrating the absorption of light, the non-radiative deactivation and the 

relaxation to the ground state causing the emission of fluorescence light. (right) schematic absorption and 

emission spectra of a fluorescent dye. 

 

The excitation energy ℎ𝜈𝐸𝑥 lifts the molecule in an electronically exited state. The electron 

relaxes to the vibrational ground state of the excited elcetronic state by non radiative 

transition. Relaxation to the electronical ground state S0 is accompanied with the emission of 
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light with lower energy (ℎ𝜈𝐸𝑥 ≫  ℎ𝜈𝐸𝑚). The energy difference between excitation and 

emission wavelength is called “Stokes-shift” and is due to the energy loss by radiationless 

transition to the vibrational ground state S1.
14 

Fluorescence spectra in this work were recorded on a PTI spectrofluorometer with a xenon 

short arc lamp (UXL-75XE USHIO) and a photomultiplier detection system (model 810/814). 

2.10. Fluorescence correlation spectroscopy (FCS) 

FCS is a powerful single-molecule detection technique to characterize interactions and 

dynamics of fluorescent particles or molecules by correlating fluctuations in fluorescence 

intensity over time. This method was introduced by Magde, Elson and Webb in 1972. In 

1993, Rigler et al. introduced a confocal microscope to confine data gathering to a small 

volume of known size while reducing background noise. A laser of suitable wavelength 

excites the fluorophores inside the confocal volume. The intensity of the emitted light is 

measured continuously over a fixed period of time. Based upon the assumption of a high 

probability of chronologically close subsequent signals to have been emitted by the same 

particle inside the confocal volume, a so called autocorrelation function (Equation 2-10): 

𝐺(𝜏) =
〈𝐹(𝑡)𝐹(𝑡+𝜏)〉

〈𝐹〉2
     (2-10) 

can be formulated that yields information about diffusion time 𝜏𝐷 and total particle number 𝑁  

inside the confocal volume. 

 

 

Figure 2-7. Schematic view of a FCS setup.
15

 A laser excites the fluorophores in a liquid sample inside a 

confocal volume, the fluorescence intensity is measured by an APDs capable of detecting single photons. The 

resulting intensities are correlated over time using the correlation function. 
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Assuming Brownian motion causing the concentration fluctuations and therefore fluorescence 

fluctuations, these sample properties are accessible by fitting the correlation curves according 

to equation 2-11. 

𝐺(𝜏) =
1

𝑁

1

1+
𝜏

𝜏𝐷

1

√1+
𝜏

 𝑆2𝜏𝐷

    (2-11) 

𝑆 is the structure parameter, the ratio between the lateral and the axial confocal volume radius, 

while  𝜏𝐷  is the mean time a particle needs to cross the focal volume.
16

 The amplitude 𝐺(0) 

contains the mean particle count 𝑁 =
1

𝐺(0)
 within the focal volume of the autocorrelations. 

The measurement of a reference dye with known hydrodynamic Radius yields the extent of 

the confocal volume 𝜔0. Knowing that it is possible to calculate the hydrodynamic radius 𝑅𝐻 

of the sample of interest with the Stokes-Einstein equation  𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑅𝐻
  and 𝐷 =

𝜔0
2

4𝜏𝐷
. 

A poly-disperse system, e.g. free dye with labeled nanoparticles shows additional shoulders 

which have their own diffusion time. The relative height of the Shoulders provides the ratio of 

the different components.  

The FCS measurements were carried out on a ConfoCor2 (Zeiss, Jena) setup with a 40x 

NA1.2 water immersion objective employing a red 633 nm HeNe-Laser for excitation of Cy5 

fluorophore or on a home-built microscope as described elsewhere.
17 

2.11. Fluorescence microscopy 

Fluorescence microscopy is a non-invasive technique frequently used in biophysics to 

investigate interactions of nanoparticles with cells. The method is based on detection of 

fluorescent light emitted by fluorescently-labeled nanoparticles and/or specific stained 

structures within the cells. Thereby, the nanoparticles can be localized within different 

compartements of living cells.  

To get the required spatial resolution in 3 dimensions, confocal microscopy is employed for 

routine investigations on molecules, cells, and living tissues. The basic concept was originally 

developed by Marvin Minsky in the mid-1950s and advances in computer and laser 

technology, coupled to new algorithms for digital manipulation of images, led to a growing 

interest in confocal microscopy in the 1980s.
[18]

 A schematic view of a confocal laser 

scanning microscope is presented in Figure 2-8. 
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Figure 2-8. Schematic view of a confocal laser scanning microscope setup.
18 

 

A confocal microscope is improved in comparison to a simple fluorescence microscope by 

introducing pinholes in the excitation and detection pathway to block the out-of-focus 

fluorescence. Thereby, especially the axial resolution is increased, which is given by the 

Rayleigh criterion. 

𝑑𝑎𝑥𝑖𝑎𝑙 = 
2𝑛𝜆

𝑁.𝐴.
     (2-12) 

Equation 2-12. Rayleigh criterion; 𝑑𝑎𝑥𝑖𝑎𝑙: axial resolution of confocal microscope, 𝑛: refractive index, 

𝜆: wavelength, 𝑁. 𝐴.: numerical aperture. 

 

However, convential confocal microscopy is limited in temporal resolution due to the need of 

rastering the sample with the confocal spot. Further improvement was made with the 

development of spinning disc confocal microscopes. The pinholes are substituted with a 

spinning disk unit which consists of two fast rotating discs. In one disc, multiple lenses are 

concentrically arranged, while the other disc contains pinholes that allow for multiple 

simultaneous scans. With the combination of these fast rotating discs many confocal spots can 

be screened over the sample at the same time. Hence, this leads to a faster imaging compared 

to a scanning confocal microscope and to a significant increase in temporal resolution.  

In this work, confocal microscopy for live-cell imaging was performed on a Leica-TCS-SP8 

confocal laser scanning microscope fitted with an HC PL APO 63x 1.4 objective or on a setup 

based on the Zeiss Cell Observer SD utilizing a Yokogawa spinning disk unit CSU-X1, 

equipped with a 1.40 NA 100x Plan apochromat oil immersion objective or a 0.45 NA 10x air 

objective from Zeiss or a 63x Plan apochromat oil immersion objective. 



2. Characterization techniques 

 

60 

2.12. Electron microscopy 

As optical microscopy is limited by the Abbe restriction (maximal resolution of 

approximately 250 nm) nano-sized structures can only be imaged by different techniques of 

electron microscopy.
19

 Therby, free electrons are focused on the specimen by an array of 

magnetic lenses. Acceleration voltage varies from 1 kV to 300 kV depending on the method 

and desired resolution, which is proportional to the wavelength of the high energetic electrons 

(Equation 2-13). 

𝜆 =  
ℎ

√2𝑚𝑒𝐸𝑘𝑖𝑛
     (2-13) 

Equation 2-13: 𝜆: wavelength of electrons; ℎ: Planck constant; 𝑚𝑒: electron mass; 𝐸𝑘𝑖𝑛: acceleration energy 

 

The created high energetic electrons show very strong interactions with matter which makes it 

is necessary to avoid interruptions caused by foreign molecule within the electron beam. 

Therefore, ultra-high vacuum is applied in the measurement chamber. The interaction of the 

accelerated electron beam with the sample causes several effects (Figure 2-9), which provide 

information about morphology, structure and composition of the investigated material. 

 

 

Figure 2-9. Schematic illustration of the occuring effects under electron irradiation of a sample. 
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(In-)elastically scattered electrons from the primary beam are called backscattered electrons. 

Furthermore, secondary electrons are generated by inelastic scattering of high energetic 

electrons with loosely bound outer-shell electrons. They gain enough energy to overcome the 

work function, can propagate through the sample and can be emitted into the vacuum. Their 

limited kinetic energy allows short diffusion pathways and therefore presence only close to 

the sample surface is detectable. Additionally, high energetic electrons can cause inner shell 

electron displacement, which is followed by filling the holes with electrons from outer shells. 

The excess of energy is emitted by light, X-ray or Auger electrons, respectively.  

 

Scanning electron microscopy (SEM) uses the information of secondary electrons (SE), back-

scattered electrons (BSE) and emitted X-rays to visualize the sample morphology. The image 

of the topology is built up by raster scanning of the surface.
 
In most cases secondary electrons 

are detected as imaging signal. Therby, a resolution up to a few nanometer is possible.
 

Further, back-scattered electrons (BSE) can provide information about element distribution in 

the sample because the intensity of BSE is strongly related to the atomic number of the 

chemical elements. X-ray can be used to determine the elemental composition of the surface 

as the emitted frequencies are element dependent (EDX). 

SEM measurement were carried out using a FEI HELIOS NANOLAB G3 UC microscope 

equipped with a field emission gun and operated at acceleration voltages between 2 and 20 

kV. 

 

Transmission electron microscopy (TEM) is a common method to image structural details of 

crystalline materials. After penetration of the sample, transmitted electrons are detected with a 

fluorescence screen or a CCD camera. The resulting pattern provides information about cell 

parameters, pore dimensions and wall thicknesses with resolutions up to 0.1 nm, depending 

on the electron energy. Since the sample has to be penetrated, the applied acceleration voltage 

(80 kV to 300 kV) is higher than required for REM measurements (1 kV to 30 kV). As 

electron radiation is ionizing and therefore can interact in many different ways with the 

analyzed sample, it can lead to radiolysis where chemical bonds within the sample structure 

are destroyed. Other limiting factors for high resolution are spherical aberrations, chromatic 

aberrations, and astigmatism.
20 

If not stated otherwise, all samples were investigated with an FEI Titan Themis equipped with 

an extreme field emission gun (X-FEG). A 4k × 4k Ceta 16M
TM

 camera detected bright field 

and high-resolution TEM images. 



2. Characterization techniques 

 

62 

2.13. Nuclear molecular resonance (NMR)  

   Magnetic resonance imaging (MRI) 

NMR and MRI are two techniques based on the same principle of electromagnetic radiation 

absorption by magnetic nuclei in a static magnetic field. The magnetic field influences the 

energy states of isotopes with an intrinisic nuclear spin unequal to zero and hence containing 

a permanent magnetic moment µ⃗ . (e.g. 
1
H, 

13
C, etc.).

21
 

 

µ⃗ =  𝛾𝑠      (2-14) 

Equation 2-14: Magnetic moment; 𝛾: gyromagnetic constant; 𝑠 : nuclear spin 

 

Applying external magnetic field results in a differentiation of the energy levels into distinct 

energy states (2𝑠 +1), each associated with a magnetic quantum number m (e.g. 𝑠 =
1

2
; 

m =  +
1

2
 or m = −

1

2
 for 

1
H). Usually the z-axis is chosen to be along with 𝐵0, resulting in an 

effective magnetic moment µ𝑧: 

µ𝑧 = 𝛾𝑠𝑧 = 𝛾𝑚
ℎ

2𝜋
     (2-15) 

Equation 2-15: z-component of the magnetic moment 

 

The difference between the generated energetic states can be calculated by: 

 

𝛥𝐸 =  𝛥µ𝑧𝐵0 =  𝛾𝛥𝑚
ℎ

2𝜋
 𝐵0 =  𝛾

ℎ

2𝜋
 𝐵0     (2-16) 

Equation 2-16: Difference in energy levels 

 

If electromagnetic radiation of the corresponding energy or frequency ω (Larmor frequency, 

typically ranging from a few kHz to several hundred MHz) is focused on the sample, 

transition between these quantum states can be induced. 

NMR spectroscopy uses differences in the effective external magnetic field, which is 

dependent on the chemical surrounding, for fast and precise analysis of organic reaction 

products and determination of molecular structures. 
1
H-NMR spectroscopy in this thesis was 

performed on a Bruker 400 or a Bruker 400 TR NMR spectrometer, respectively. 

MRI is a medical imaging technique, which uses the detection of water protons by 

electromagnetic radiation for the visualization of the anatomy and physiological process in 

vivo. MRI in this thesis was performed with a 1.5 T clinical MRI system (Magnetom Aera, 

Siemens Health Care, Germany). 
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3. Imparting functionality to MOF nanoparticles by external 

surface selective covalent attachment of polymers 
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Peller, Joachim O. Rädler, Ernst Wagner, Thomas Bein, Ulrich Lächelt, and Stefan Wuttke, 

Chemistry of Materials 2016, 28, 3318–3326. 
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3.1. Introduction 

Manipulating the surface of nanoparticles (NPs) has been a prominent research topic in recent 

years.
1-3

 The nanoparticle surface is defined as the interface between the nanoparticle and its 

surroundings and determines the interactions with the environment.
4
 In addition, particle 

surface properties become dominant in the nanometer range due to the high surface-to-volume 

ratio. Therefore, the controlled surface functionalization is of great importance for 

nanoparticle applications in fields like sensing, imaging, or drug delivery.
5-7

 

Surface functionalization has been adapted to many different nanoparticles such as gold, 

metal oxides, carbon, polymers or mesoporous silica.
8, 9

 Metal-organic framework 

nanoparticles (MOF NPs), consisting of metal clusters and organic linker molecules, are a 

relatively new class of nanomaterials.
10-12

 Besides their unique properties such as structural 

diversity, crystalline structure, tunable porosity and high surface area, they further provide 

great potential for functionalization on their internal as well as on their external surface.
13-17

 In 

particular, the use of MOF nanoparticles in biomedical applications requires that the external-
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surface functionalization fulfills different tasks varying from inhibiting agglomeration within 

the bloodstream to the specific recognition of cancer cells.
18

 Attachment of biocompatible 

polymeric structures or proteins is a common method to achieve those functionalities.
19

 

Two different general strategies have been proposed so far, regarding the attachment of 

molecules onto the external surface of MOFs: “functionalization during synthesis”, also 

known as coordination modulation approach, and “postsynthetic modification” (PSM).
20

 

According to literature, PSM is the most common way to achieve core-shell MOF 

nanoparticles. With this approach, four different ways of external surface functionalization of 

MOFs have been already mentioned and discussed. 

Firstly, one possibility consists of grafting, through coordinative bonds, polymeric structures 

on the coordinatively unsaturated metal sites (CUS) present on the external surface of MOF 

particles (Fig. 3-1a). This was reported for the first time by Rowe et al.
21

 and was adopted by 

other groups to create core-shell functionalized MOF nanoparticles in recent years.
22, 23

 

However, due to the potential presence of CUS on the MOF particle internal surface, the latter 

can also be potentially functionalized, especially if the functional unit is smaller than the pore 

aperture. Consequently, this undesired inner functionalization, added to the weak interaction 

between the functional unit and CUS,
24

 restricts the implementation of this approach. 

 

 

Figure 3-1. Schematic illustration of the different postsynthetic functionalization possibilities for MOFs: 

coordinative binding on CUS (a), covalent binding to pre-functionalized linkers (b), ligand exchange (c), and 

covalent binding to the linking group (d, red box), which was applied in this work. 
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Secondly, covalent postsynthetic modification of MOFs, a well-known method, using linker 

molecules with functional groups to functionalize the internal surface of MOF bulk material, 

can also be implemented to functionalize the MOF NP’s external surface (Fig. 3-1b). Once 

more, the selectivity of this functionalization towards the MOF NP’s external surface is only 

achieved as long as functional units are large enough not to access the internal surface of the 

framework. To overcome this limitation, an improved method was developed by Fischer, 

Wöll and co-workers.
25

 Their approach consisted of the selective anchoring of functional 

groups on the external surface of the metal-organic framework only (surface-attached metal-

organic framework multilayers, SURMOFs).
26

 These groups were subsequently 

functionalized with a fluorescent dye, which was detected via fluorescence microscopy. 

Recently, a similar approach was reported for the preparation of MOF core-shell bulk 

structures, as demonstrated by Matzger et al..
27

 

Thirdly, the group of Kitagawa demonstrated that postsynthetic ligand exchange with 

functional linker molecules only occurs on the first external monolayer of MOF microcrystals 

(Fig. 3-1c). The authors pointed out that the key point for this functionalization strategy was 

the dynamic nature of the underlying MOF scaffold along with the chemical properties of the 

functional ligand, which somehow limits the broad applicability of this strategy to MOF NP 

surface functionalization.
28

 

Finally, unsaturated functional groups of the organic linker can be used for covalent 

attachment of functional molecules. This approach allows for the selective functionalization 

of the MOF NP external surface without further restrictions, since the functional groups are 

used within the framework for coordinative bonding to metal ions and are not addressable for 

covalent bonding (Fig. 3-1d, Fig. 3-2). It was first presented by Jung et al., who anticipated 

the presence of externally exposed carboxyl groups of the linker and addressed them by 

attachment of enhanced green fluorescent protein (eGFP) on bulk MOF material.
29

 In a water-

based carbodiimide-mediated amidation, they successfully functionalized aliphatic 

carboxylates but faced issues with aromatic carboxylic linkers, because of their reduced 

reactivity. They were able to overcome this only by changing the reaction medium to an 

organic solvent (dichloromethane). Shih et al. used a similar way to immobilize trypsin on the 

external surface and transferred this functionalization approach to the field of nanoparticles.
30

 

To the best of our knowledge, no further work was published on this interesting concept of 

MOF NPs external surface functionalization and hence it has not yet been investigated in 

greater detail. 
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In our work, we explicitly focus on the latter functionalization approach, which provides the 

advantage of covalent bonding in combination with a high selectivity for the external surface 

of the MOF nanoparticle. This allows precise control over the external nanoparticle interface 

while retaining the porous MOF scaffold. We show successful covalent surface coating of 

MOF nanoparticles containing aromatic linkers by a water-based “green” carbodiimide 

mediated reaction (Fig. 3-2). We chose MIL-100(Fe) nanoparticles (MIL: Materials of 

Institute Lavoisier) as MOF platform because of their biocompatibility
31

 and chemical 

stability in aqueous environments,
32, 33

 which is required for the chosen reaction conditions. 

Further, MIL-100(Fe) NPs already showed high potential for applications in biomedicine.
34-37

 

The framework consists of iron clusters acting as nodes and trimesic acid serving as linker 

molecules, which are expected to provide free aromatic carboxylic acid groups at the particle 

external surface.
38

 We show the covalent nature of the bonding to polymers and estimate the 

achievable amount of functionalization. For surface modification we chose two different 

kinds of polymer (shown in Fig. 3-2): i) commercially available amino-polyethylene glycol 

(PEG5000), a hydrophilic polymer, frequently used to increase colloidal stability and to 

mediate surface shielding of nanoparticles
39-41

 and ii) Stp10-C, a solid-phase synthesis-

derived oligoamino amide serving as bi-functional linking polymer, providing a primary 

amine for conjugation with the nanoparticle surface groups and a thiol for fluorescent labeling 

or additional functionalization. The two terminal groups of Stp10-C are connected via a 

repetitive diaminoethane motif with proton-sponge characteristics, which can be utilized for 

electrostatic binding of nucleic acids, enhancement of cellular uptake and improvement of 

endosomal escape.
42-44

 By means of a covalent Stp10-C attachment, we combine the high 

precision of crystalline MOF nanoparticles with the sequence-definition of solid-phase 

derived polymers and thus generate a controlled interface towards solution. In addition, the 

two polymers, PEG and Stp10-C, were chosen as representative compounds because of the 

potential prospective use of the resulting MOF@Polymer core-shell nanoparticles in 

biomedical applications and for multi-imaging purposes.
45

 We demonstrate first promising 

results of that kind of hybrid nanoparticles by fluorescence microscopy and magnetic 

resonance imaging (MRI). 
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Figure 3-2. Schematic illustration of the polymer coating and reaction scheme of the amidation by EDC 

hydrochloride and sulfo-NHS mediation. Chemical structures of the polymers used this work: i) PEG and ii) 

Stp10-C. 
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3.2. Results and Discussion 

Synthesis, Functionalization and Characterization of MOF@Polymer nanoparticles. The 

nanoparticles were synthesized following a slightly modified procedure developed by 

Agostoni et al..
46

 Iron (III) chloride hexahydrate was dissolved in bi-distilled water and 

trimesic acid was added to the solution. The mixture was sealed in a Teflon autoclave and 

heated to 130 °C by microwave irradiation, yielding a homogenous dispersion of MIL-

100(Fe) nanoparticles. The particles were filtered and washed with ethanol. For the 

functionalization process, the nanoparticles were dispersed in ethanol and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) hydrochloride was added. PEG5000 or Stp10-C 

was dissolved in water, hydroxy-2,5-dioxopyrrolidine-3-sulfonic acid sodium salt (sulfo-

NHS) was added and the solution was pipetted to the MOF suspension. After a reaction time 

of 30 min, the functionalized nanoparticles were washed with water or ethanol, respectively 

(for further details see Supporting Information).  

Functionalized as well as unfunctionalized MIL-100(Fe) nanoparticles showed characteristic 

X-ray diffraction (XRD) reflections, which indicate retained crystallinity after 

functionalization (see also Fig. S3-2). This was further confirmed by transmission electron 

microscopy (TEM), where the crystalline arrangement of the MOF could be visualized (see 

also Fig. S3-3, S3-4 and S3-5). Particle sizes measured by dynamic light scattering (DLS) in 

colloidal ethanolic dispersion revealed a hydrodynamic diameter of 130 ± 45 nm (see also 

Fig. S3-6). DLS measurements in aqueous nanoparticle dispersions showed an increased 

colloidal stability of the functionalized particles in comparison to unfunctionalized ones. After 

3 weeks in water, pure MIL-100(Fe) nanoparticles tend to form agglomerates, while polymer-

shielded particles retained their colloidal stability (see also Table S3-1, Fig. S3-7). 

Furthermore, functionalized particles provided increased stability in 10% fetal bovine serum 

(Fig. 3-3, Table S3-2). While unfunctionalized particles formed large agglomerates within 

minutes after dispersion, the functionalized ones stayed in dispersion over a time period of at 

least 72 h. This behavior can be explained by the shielding ability of the polymers and 

demonstrates the change in the physicochemical behavior of the MOF NPs by external 

surface modification. These results are promising with regard to later applications, e.g. in 

drug delivery, where colloidal stability in aqueous media is mandatory. The change of the 

external surface of the MOF NP can also be observed with zeta-potential measurements, 

revealing an increased pH value of the isoelectric point for functionalized particles (see also 

Fig. S3-8). We attribute this shift (pH 4.1 for unfunctionalized particles to pH 5.6 for PEG, 

and to pH 5.8 for Stp10-C) to the changes on the particle surface resulting from polymer 
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attachment. The acidic carboxy-groups were chemically changed and covered by the polymer, 

resulting in reduced influence of the negative charges of these groups and therefore, leading to 

an increased zeta-potential of the particles. Moreover, both polymers additionally impact zeta-

potential by shielding the surface charge or even introducing positive charges in case of the 

amine-rich Stp10-C. The calculations of the BET specific surface area based on nitrogen 

sorption measurements gave a value of 1905 m
2
/g for unfunctionalized MIL-100(Fe) 

nanoparticles. For functionalized particles, the surface areas decreased moderately to 

1338 m
2
/g or 1432 m

2
/g, for the PEG and Stp10-C treated nanoparticles, respectively (see also 

Fig. S3-9). This can be attributed to the attached amount of nonporous organic material on the 

external surface as well as to partial pore blocking under the dry and cold measurement 

conditions, where the polymer chains collapse and freeze on the external surface of the 

nanoparticles. An increase of the organic fraction after functionalization could be detected by 

thermogravimetric analysis (TGA). Heating the samples stepwise to 900 °C in synthetic air, a 

lower percentage of inorganic mass (iron oxides) remained for functionalized compared to 

unfunctionalized particles after combustion of the material (see also Fig. S3-10).  

 

 

Figure 3-3. Particles dispersion of functionalized and unfunctionalized MIL-100(Fe) nanoparticles after 3 h in 

10% FBS in water. Unfunctionalized particles start to agglomerate immediately, while polymer-functionalized 

particles retain their colloidal stability. 
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Figure 3-4. IR spectra of functionalized and unfunctionalized MIL-100(Fe) nanoparticles (offset to show 

differences): dashed lines frame the specific vibrations resulting from attached polymer, increased C-O 

stretching vibration for PEG5000 (blue line) or increased C-N stretching vibration for Stp10-C (red line).47 (full 

IR spectra are provided in the Supporting Information; Figure S3-11). 

 

A further confirmation of successful functionalization was given by IR spectroscopy, which 

revealed the appearance of bands of the C-O or C-N stretching vibrations of the polymeric 

backbone for MIL-100(Fe)@PEG5000 and MIL-100(Fe)@Stp10-C, respectively (Fig. 3-4).  

We further performed fluorescence correlation spectroscopy (FCS), a single molecule 

technique, which is able to measure the diffusion coefficient and the concentration of 

fluorescently labeled particles.
48-50

 In order to probe the binding of the functional polymer to 

MOF nanoparticles, Cy5 was attached on the free thiol group of the Stp10-C polymer tail by a 

maleimide-thiol coupling reaction. A sample of Stp10-C*Cy5 as well as a suspension of MIL-

100(Fe)@Stp10-C*Cy5 nanoparticles (50% labeled, 50% unlabeled Stp10-C) in water were 

measured. The normalized autocorrelation curve of Stp10-C*Cy5 exhibited diffusion 

corresponding to an effective hydrodynamic radius of 1.1 nm (Fig. 3-5).  
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Figure 3-5. Normalized autocorrelation curves of Stp10-C*Cy5 (black) and MIL-100(Fe)@Stp10-C*Cy5 

nanoparticles (red). The shift to higher lag-times τ of nanoparticles’ correlation curve confirms the successful 

attachment of polymer molecules to nanoparticles. 

In contrast, the FCS signal of the nanoparticle samples showed a distinct increase in the diffusion time (t=4.8 

ms), which corresponds to a hydrodynamic radius of 56 nm. As the measured hydrodynamic radius agrees well 

to the size of the particles determined by DLS (see supporting information), we conclude that labeled polymer 

molecules are attached to the non-fluorescing nanoparticles.  This indicates a successful polymer coating of 

MIL-100(Fe) particles. A variation of the amount of labeled Stp10-C in the nanoparticle coating process showed 

no difference in the normalized autocorrelation curves (see SI, Fig. S3-12), indicating that the fluorescent label 

Cy5 has no effect on the functionalization process with Stp10-C. 

 

Examination of the covalent bonding and estimation of polymer amount. The above 

results confirm the formation of MOF@Polymer core-shell nanoparticles but do not reveal the 

nature of the connection. Using UV-Vis spectroscopy, we gained first indications concerning 

the expected covalent bonding. After the conventional functionalization reaction, the 

supernatant after centrifugation of the nanoparticles was analyzed and revealed no residue of 

dye-labeled polymer, which indicated a successful attachment to the MOF. When omitting 

sulfo-NHS in the reaction mixture, which is essential for the activation of the carboxylic 

group in aqueous media, almost all initial dye-labeled polymer was still detected in the 

supernatant (see also Fig. S3-13). This led to the conclusion that the MOF-polymer bonding is 

of covalent nature, as sulfo-NHS is required for the attachment. Furthermore, for 

postsynthetic modification of the internal surface, liquid NMR analysis after digestion of the 

functionalized MOF but without destroying the newly formed bonds is a common method to 

verify the covalent attachment of molecules.
51

  

Therefore, we dissolved the functionalized nanoparticles in a gentle way by adding 

ethylenediaminetetraacetic acid (EDTA).
52

 Due to its chelate effect, EDTA is able to strongly 

bind the iron(III) ions. When performing the dissolution of the MOF NPs, we found an 
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increased stability for the PEG-functionalized particles compared to unfunctionalized ones. 

This was reflected by a prolonged dissolution time and prevention of crystallinity (see also 

Fig. S3-14). After digestion of the MOF, the aqueous solution was extracted with 

dichloromethane (DCM) for separation of the functionalized trimesic acid from the pure 

organic linker. 
1
H-NMR spectroscopy exhibited peaks in the aliphatic region for the 

polymeric part as well as an aromatic signal resulting from the trimesic acid (Fig. 3-6). 

Splitting of the aromatic peak indicates the covalent nature of the bonding, since the aromatic 

protons lose their chemical equivalence after functionalization of one carboxylic group (inset 

in Fig. 3-6). After having shown the covalent nature of the bonding, we further estimated the 

amount of anchored polymer on the NPs surface. This was again determined by UV-Vis 

measurements of unbound Stp10-C*Cy5 left in the supernatant after EDC-reaction and 

centrifugation. 

 

 

Figure 3-6. NMR spectra of functionalized trimesic acid after dissolution of the MIL-100(Fe) nanoparticles and 

extraction in DCM in comparison to calculated spectra;
53

 TrimesicAcid@PEG (top) and TrimesicAcid@Stp10-C 

(bottom). Colored lines encircle the aliphatic proton signals of the polymeric backbone (orange), the aromatic 

proton signals of the trimesic acid (green) and the tertiary proton of the cysteine or the methyl protons for 

Stp10-C or PEG5000, respectively (blue).  
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Assuming that all polymer molecules that are covalently bound to the MOF nanoparticles can 

be removed from the supernatant, we estimated the attached amount of Stp10-C to approx. 

10 – 20 nmol per milligram MIL-100(Fe) nanoparticles (see also Fig. S3-15). This amount 

corresponds to approx. 460 – 920 polymer molecules per MIL-100(Fe) nanoparticle or an 

external surface coverage of 9 – 17 pmol/cm
2
. These values were calculated from geometry 

and mass density of the NPs (ρ = 0.98 g/mL
38

; r = 26.5 nm; for further details see Supporting 

Information). Furthermore, the results are in good agreement with TGA data, which provided 

an increased mass loss of 2.7% for PEG5000 and 1% for Stp10-C functionalized 

nanoparticles, respectively (see also Fig. S3-10). Regarding the rather low functionalization 

degree, which is at the border of the brush regime,
54

 the amount of free carboxylic acid 

functions on the nanoparticles external surface is considered to be the major limiting factor. 

 

Towards application in theranostics. As we had altered the external surface of the MOF 

nanoparticles and functionalized them with fluorescent moieties, we were interested in the 

cellular uptake and toxicity of these particles. Cellular biocompatibility and the interactions 

between nanoparticles and cells were studied since they are fundamental prerequisites for 

biomedical applications. The particles were incubated with murine neuroblastoma N2A cells. 

Cell membranes were stained with WGA 488, and all non-absorbed particles were removed 

from cells by washing with buffer solution. Fluorescence microscopy revealed successful 

uptake of particles after 7 h, which can be seen in Figure 3-7a.  
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Figure 3-7. Fluorescence microscope images of N2A cells after 7 h (a) and 24 h (b) incubation with MIL-

100(Fe)@Stp10-C nanoparticles under standard cell culture conditions in serum-containing medium (insets: 3D 

images of single cells calculated from stacked confocal fluorescence microscope images55); MTT-plot of N2A 

cells after 24 h  incubation of MIL-100(Fe)@Stp10-C (red) and MIL-100(Fe) (blue) nanoparticles (c). 

 

After 24 h of incubation (Fig. 3-7b), cell images showed a significantly increased uptake of 

the functionalized nanoparticles, while further incubation showed no additional effect. Hence, 

this time period was chosen for the investigation of the influence of nanoparticle exposure and 

up take on cell viability. MTT-assays with N2A cells were carried out after 24 h incubation 

with unmodified MIL-100(Fe) and MIL-100(Fe)@Stp10-C*Cy5 in a dosing range between 

3.3 and 300 µg/mL (Fig. 3-7c). In all investigated concentrations no significant effect on the 

metabolic activity of N2A cells could be observed, indicating the good cellular tolerance 

towards the bare as well as the functionalized MOF nanoparticles.  In addition, the influence 

of the polymer shell on the MRI activity of MIL-100(Fe) was investigated. As MIL-100(Fe) 

is known to be MR active,
34

 we studied the change of the MRI signal in order to ensure that 

magnetic resonance imaging is still possible with polymer attached at the external surface. 
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Magnetic resonance imaging is a particularly attractive modality for clinical and preclinical 

imaging, e.g. in cancer research. As MIL-100(Fe) may serve either as drug carrier or as 

potentially highly selective contrast agent, we studied the visualization of both uncoated and 

coated nanoparticles and the effect of surface functionalization on longitudinal and transversal 

relaxivities of MIL-100(Fe). 

 

 

Figure 3-8. Plots of longitudinal and transverse relaxation rates R1 (top) and R2 (bottom) of coated and 

uncoated MOF particles for “per particle” (left) and “per Fe
3+

” (right).  

 

Here, the relaxivity is the property of a substance to alter the relaxation rate of the water 

protons in the aquaeous solution, in which the substance is dissolved. Two independent sets of 

samples (MIL-100(Fe), MIL-100(Fe)@PEG5000 and MIL-100(Fe)@Stp10-C) were prepared 

in concentrations up to 10 mg/mL in water, and underwent imaging at a clinical 1.5 T MRI 

system (Magnetom Aera, Siemens Healthcare) using T1-weighted saturation recovery 

sequences and T2-weighted multi-echo sequences. Longitudinal (T1) and transverse (T2) 

relaxation times and relaxation rates (R1 and R2) were calculated in region of interests (ROI) 

in each sample as described. Longitudinal and transversal relaxivities of each sample were 

estimated assuming a linear relation between concentration and relaxation time, as shown in 

Figure 3-8. Relaxivities were calculated for mmol of entire nanoparticles as well as for mmol 

Fe
3+

 ions, to ensure comparability to existing contrast agents in clinical use (Tab. 3-1). 
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Table 3-1. Relaxivities (L s
-1

 mmol
-1

) calculated from the linear slopes of Figure 8. 

 

 

All samples could be visualized in a clinical MRI setting (see Fig. 3-9). Longitudinal and 

transversal relaxation rates showed a linear dependence on the MOF NP concentration (see 

Fig. 3-8). T1 relaxivity, i.e. the slope of the relaxation rate, was highest for uncoated MIL-

100(Fe) and somewhat reduced for coated NPs (top of Fig. 3-8). In T2 (bottom of Fig. 3-8), 

this difference was less obvious, but a difference still remains between coated and uncoated 

MIL-100(Fe). As a reference, samples with clinically used Gd-DTPA-BMA (0-2.5 mM; 

Omniscan, GE) diluted in water have been examined. r1 relaxivity of 3.33 s
-1

 mM
-1

 at 35.7 °C 

or for r2 3.55 s
-1

 mM
-1

 at 35 °C which is according to literature.
56

 Based on these results and 

using the same methods, the observed relaxivities of MOF preparations were considered 

valid. 

Overall, the r2 relaxivity of the MIL-100(Fe) samples is higher than the r1 relaxivity, showing 

that the T2 relaxation process is more effective. Calculated per mmol Fe
3+

 ions, both 

relaxivities were lower than for commercially available superparamagnetic iron-based 

contrast agents (e.g. Feridex, r1 = 4.7 L s
-1

 mmol
-1

, r2 = 41 L s
-1

 mmol
-1

).
56

 We assume that the 

coating of the MOF NPs reduces water exchange between the NP pores and its surroundings 

as seen before using thermosensitive liposomes.
57

 Since T1 relaxation is a short-range effect, 

this would account for the reduced relaxivity of coated MOF NPs. T2 relaxation, on the other 

hand, is a long-range effect, which is less affected by reduced water exchange between pores 

and the surroundings.  

 

 Calculations per mmol particles Calculations per mmol Fe
3+

 

Relaxivity r1 Relaxivity r2 Relaxivity r1 Relaxivity r2 

MIL-100(Fe) 8.21 ∙ 10
4 

3.22 ∙ 10
5
 0.54 2.12 

MIL-100(Fe)@Stp10-C 4.72 ∙ 10
4
 1.92 ∙ 10

5
 0.31 1.27 

MIL-100(Fe)@PEG5000 2.40 ∙ 10
4
 2.10 ∙ 10

5
 0.16 1.36 
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Figure 3-9. Top: MR images of MIL-100(Fe) samples (left column), MIL-100(Fe)@Stp10-C samples (center 

column) and MIL-100(Fe)@PEG5000 samples (right column), at concentrations of 0.5, 1, 3, 6 and 10 mg/mL 

from top to bottom. Images are shown with recovery times of 130 ms (left), 800 ms (center) and 1250 ms (right). 

Bottom: Signal intensity curves of the three indicated samples with a concentration of 6 mg/mL. Uncoated MOF 

NP show the fastest T1 relaxation (blue), the T1 relaxation of both coated MOFs (red and green) is slower. 

 

Contrary to our results, previous reports about gadolinium based MOF nanoparticles have 

shown that surface modification can even enhance MRI properties.
58

 We point out that the 

iron-based MOF nanoparticles used in our study exhibit different MRI properties which can 

be attributed to differences in size, shape and composition.
59

 Further, the polymer nature as 

well as the way of functionalization were different from previous publications. Despite the 

reduced MR-activity of coated MOF NPs, relaxivities were still high enough to allow 

visualization by means of MR imaging. This highlights the potential of such core-shell 

particles as smart theranostic system with a wide range of possible functionalities and 

applications.  
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3.3. Conclusion 

In summary, we successfully report the selective covalent external surface functionalization 

of MIL-100(Fe) nanoparticles with two different polymeric structures. Using the mild 

reaction conditions of peptide coupling chemistry to attach the polymer at the MOF NP 

surface revealed unchanged crystallinity of the MOF scaffold, proven by XRD and TEM. The 

attachment of polymer and covalent nature of the bonding was investigated and proven by 

several techniques, e.g. IR, Zeta-Potential measurements and liquid NMR. Further, the 

amount of polymer attachable to the external surface was estimated by UV-Vis spectroscopy. 

The functionalized MOF nanoparticles showed increased colloidal stability in aqueous media 

and in initial cell studies, and they revealed potential for biomedical applications, displaying 

good uptake by cells but no cytotoxic effects up to rather high nanoparticle concentrations 

over 24 h. Furthermore, the influence of the surface coating on MIL-100(Fe) nanoparticles 

regarding their magnetic resonance imaging properties was investigated and evaluated in 

detail. Although the coating affected the MRI signal, visualization of functionalized particles 

was still possible. This allows for the modification of the coating according to the scientific 

and clinical needs and, at the same time, in vivo investigation of MOF nanoparticle 

distributions such as accumulation in a tumor. The work presented here opens the door for the 

precise functionalization of the external surface of MOF NPs and hence, defined control over 

the nanoparticle/environment interface. Furthermore, this functionalization approach provides 

the potential to be extended to a large variety of MOF-polymer combinations and thus is a 

versatile tool for the design of multifunctional nanoparticle systems. 
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3.4. Materials and Methods 

Chemicals. Iron (III) chloride hexahydrate (Grüssing GmbH), trimesic acid (BTC, Aldrich), 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC hydrochloride, Aldrich, crystalline), 

hydroxy-2,5-dioxopyrrolidine-3-sulfonic acid sodium salt (sulfo-NHS, Aldrich) sodium 

sulfate (Grüssing GmbH, water-free), 2-[4-(2-hydroxyethyl)piperazine-1-yl]ethanesulfonic 

acid (HEPES, Biomol GmbH), Glucose (Applichem), α-methoxy-ω-amino poly(ethylene 

glycol) (PEG5000 amine, Rapp Polymere, PEG-MW: 5000 g/mol), Tentagel S RAM resin 

(Rapp Polymere), Nα-Fmoc-S-trityl-L-cysteine (Fmoc-Cys(Trt)-OH, Iris Biotech), N-methyl-

2-pyrrolidone (NMP, Iris Biotech), 1-hydroxybenzotriazole (HOBt, Aldrich), 2-(1H-

benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU, Multisyntech), 

N,N-diisopropylethylamine (DIPEA, Iris Biotech), piperidine (Iris Biotech), trifluoroacetic 

acid (TFA, Iris Biotech), triisopropylsilane (TIS, Aldrich), acetonitrile (HPLC grade, VWR), 

tris(2-carboxyethyl)phosphine hydrochloride solution (TCEP, 0.5 M, pH 7.0, Aldrich), 

Cyanine5 maleimide  (Lumiprobe) were used as received. The solvents ethanol (EtOH, 

Aldrich, absolute), N-N,-dimethylformamide (DMF, Iris Biotech) and deuterated 

trichloromethane (CDCl3, Euriso-top, 99.8 % D) were used without further purification. 

Dichloromethane (DCM) and methyl-tert-butyl ether (MTBE, Brenntag) were distilled before 

use. Cell culture media, antibiotics and fetal bovine serum (FBS) were purchased from Life 

Technologies or Sigma-Aldrich, respectively. As a reference in MRI Gd-DTPA-BMA 

(Omniscan, GE Healthcare) diluted in water (0-2.5 mM) have been examined. 

 

Synthesis of MIL-100(Fe) nanoparticles. MIL-100(Fe) nanoparticles were prepared in a 

procedure similar to a literature method.
60

 For the microwave synthesis of MIL-100 (Fe) 

nanoparticles, iron(III) chloride hexahydrate (2.43 g, 9.00 mmol) and trimesic acid (0.84 g, 

4.00 mmol) in 30 ml H2O was put into a Teflon tube, sealed and placed in the microwave 

reactor (Microwave: Synthos3000, Anton Paar). The mixture was heated to 130 °C under 

solvothermal conditions (p = 2.5 bar) within 30 seconds, kept at 130 °C for 4 minutes and 30 

seconds, and the resulting solid was cooled down to room temperature. For the purification of 

the solid, the reaction mixture was centrifuged (Sorvall Evolution RC, Thermo Scientific, 

47808 rcf / 20000 rpm, 20 min), the solvent was removed and the pellet was redispersed in 

EtOH. This cycle was repeated two times and the dispersed solid was allowed to sediment 

overnight. The supernatant was filtrated three times (filter discs grade: 391; Sartorius Stedim 

Biotech), yielding MIL-100(Fe) nanoparticles, which are left in the filtrate. Afterwards the 
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material was characterized by DLS, XRD, IR, TGA, TEM, N2 sorption and zeta-potential 

measurements. 

 

External surface coating of MIL-100(Fe) nanoparticles with PEG5000. In a standard 

reaction, MIL-100(Fe) nanoparticles (1.0 mg) were dispersed in ethanol (100 µL). EDC 

hydrochloride (approx. 1 mg) and a catalytic amount of sulfo-NHS were added to the 

suspension and stirred for a few minutes. Afterwards, PEG5000amine (100 µg, 20.0 nmol) 

dissolved in bi-distilled H2O (100 µL) was poured into the MOF dispersion and the mixture 

was stirred for 30 min. The functionalized nanoparticles were centrifuged (Eppendorf 

5418/5418R, 16873 rcf / 14000 rpm; 10 min), the supernatant was removed and the pellet was 

washed three times with water by the centrifugation and redispersion technique. 

 

Synthesis of Stp10-C. The oligoamino amide Stp10-C was synthesized on solid-phase using 

the artificial oligoamino acid Fmoc-Stp(Boc3)-OH
61

 and conventional Fmoc solid-phase 

peptide synthesis conditions. 416.6 mg Tentagel S RAM resin (0.24 mmol/g loading; 100 

µmol scale size) were weighed into a 10 mL syringe microrector with PTFE frit 

(Mutltisyntech). The syringe was put on a vacuum manifold (Promega) and 5 mL DCM were 

added for resin swelling. After 30 min the DCM was discarded. The resin was washe0d once 

with 5 mL DMF and the reactor was put in the microwave reactor block of a Biotage Syro 

Wave automated peptide synthesizer. Fmoc deprotection was carried out by 5-fold incubation 

with 3 mL 20 % piperidine in DMF for 10 min under shaking. The resin was washed 5 times 

with 3.2 mL DMF after Fmoc deprotection. Coupling of the C-terminal cysteine was initiated 

by addition of 1.2 mL of a solution containing 0.33 M Fmoc-Cys(Trt)-OH and HOBt in NMP 

(400 µmol, 4 eq), 1.26 mL of 0.32 M HBTU in DMF (400 µmol, 4 eq) and 0.6 mL of 1.33 M 

DIPEA in NMP (800 µmol, 8 eq). The mixture was incubated for 60 min at room temperature 

under shaking. Subsequently, the solution was removed and the resin was washed twice with 

3.2 mL DMF. The coupling step was repeated followed by 5-fold resin washing with 3.2 mL 

DMF. Fmoc deprotection was carried out as described above followed by 5-fold resin wash 

with 3.2 mL DMF. The subsequent Stp units were coupled using the same stoichiometry 

under microwave irradiation. For this, the resin was incubated with 1.2 mL of a solution 

containing 0.33 M Fmoc-Stp(Boc3)-OH and HOBt in NMP (400 µmol, 4 eq), 1.26 mL of 0.32 

M HBTU in DMF (400 µmol, 4 eq) and 0.6 mL of 1.33 M DIPEA in NMP (800 µmol, 8 eq) 

at 60 °C for 10 min. After removal of the coupling solution and twofold resin wash with 

3.2 mL DMF, the coupling step was repeated. The solution was removed and the resin was 
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washed 5-fold with 3.2 mL DMF. The following Fmoc deprotection, washing and coupling 

steps were carried out and repeated as described above to assemble the final sequence 

H2NCO-C(Trt)-[Stp(Boc3)]10-NH2. The resin was washed once with 5 mL DCM and dried in 

vacuo. Cleavage was carried by incubation with 5 mL TFA/TIS/H2O (95/2.5/2.5, v/v/v) for 

90 min at room temperature. The mixture was collected and the resin was washed twice with 

2 mL of TFA. The combined solutions were concentrated under reduced pressure and the 

product was precipitated in 50 mL of cold MTBE/n-Hexan (25/25, v/v). The supernatant was 

discarded, the pellet was dried under a nitrogen stream. The compound was purified by size 

exclusion chromatography using the ÄKTApurifier 10 system (GE Healthcare). Sephadex G-

10 (GE Healthcare) was used as gel filtration medium and 10 mM hydrochloric acid 

solution/acetonitrile (7/3, v/v) as eluent. The absorption at 214, 260 and 280 nm was 

monitored and the fractions corresponding to the high-molecular weight oligomer were 

pooled, snap-frozen and freeze-dried. As a result of the eluent used, the HCl salt of the 

multiple amino groups was formed after purification. Stp10-C was analyzed by 
1
H-NMR (Fig. 

S3-17), MALDI-MS (Fig. S3-18) and RP-HPLC. 

 

 Synthesis of Stp10-C*Cy5. 24.1 mg of Stp10-C (6.1 µmol) were dissolved in 1000 µL 

HEPES buffer (10 mM, pH 7.4). 122 µL of 0.5 M TCEP solution (61 µmol, 10 eq) were 

added and the solution was incubated for 30 min under shaking. 5.85 mg of Cyanine5 

maleimide (9.1 µmol, 1.5 eq) were dissolved in 200 µL DMF and added to the Stp10-C 

solution. The reaction tube was flushed with nitrogen and incubated for 4 hours at room 

temperature under shaking in the dark. The compound was purified by size exclusion 

chromatography as described above using the ÄKTA purifier 10 system (GE Healthcare), 

Sephadex G-10 (GE Healthcare) as gel filtration medium and 10 mM hydrochloric acid 

solution/acetonitrile (7/3, v/v) as eluent. The absorption at 214, 280 and 646 nm was 

monitored, and the fractions corresponding to the high-molecular weight oligomer were 

pooled, snap-frozen and freeze-dried. 

 

External surface coating of MIL-100(Fe) nanoparticles with Stp10-C. In a standard 

reaction, MIL-100(Fe) nanoparticles (1.0 mg) were dispersed in ethanol (100 µL). EDC 

hydrochloride (approx. 1 mg) and a catalytic amount of sulfo-NHS were added to the 

suspension and stirred for a few minutes. Afterwards, Stp10-C (79.3 µg, 20.0 nmol) dissolved 

in bi-distilled H2O (100 µL) was poured into the MOF dispersion and the mixture was stirred 

for 30 min. The functionalized nanoparticles were centrifuged (14000 rpm; 10 min), the 
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supernatant was removed and the pellet was washed three times with water by the 

centrifugation and redispersion technique. 

 

Dissolution of MOF particles in EDTA solution and extraction of functionalized linker. 

Functionalized MIL-100(Fe) particles were dispersed in an EDTA solution (0.1 mM) to result 

in a 2 mg/mL concentration. The dispersion was stirred for approx. 24 h until complete 

dissolution had occurred. Afterwards, the aqueous phase was extracted three times with equal 

amounts of DCM (20 mL). The organic phases were combined and dried over sodium sulfate 

for 1 h. After removal of the solvent, the product was dried under high vacuum. NMR 

spectroscopy was performed in CDCl3. 

 

Cell Culture. Murine neuroblastoma (N2A) were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM), supplemented with 1 g/L glucose, 10% FBS, 100 U/mL penicillin, 

100 μg/mL
 
streptomycin and 4 mM stable glutamine. 

 

Preparation of HEPES-buffered glucose (HBG). In an aqueous solution of HEPES (20 

mM), 5% glucose was added and the pH was adjusted to 7.4 by addition of hydrochloric acid. 

 

Metabolic activity assay of MIL-100(Fe) and MIL-100(Fe)@Stp10-C*Cy5 (MTT assay). 

Murine neuroblastoma (N2A) cells were seeded in 96-well plates at a density of 10.000 cells/ 

well 24 h prior to incubation with the different particle concentrations. Before incubation with 

the particles, medium was replaced with 80 µL fresh medium containing 10% FBS. Particles 

diluted in 20 µL HBG were added to each well and incubated on cells for 24 h at 37°C and 

5% CO2. 10 μL of MTT (3-(4,5-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide) 

(5 mg/mL) were added to each well reaching a final concentration of 0.5 mg/mL. After an 

incubation time of 2 h, unreacted dye and medium were removed and the 96-well plates were 

frozen at −80°C for at least one hour. The purple formazan product was then dissolved in 

100 μL DMSO (dimethyl sulfoxide) per well and quantified measuring absorbance using 

microplate reader (TecanSpectrafluor Plus, Tecan, Switzerland) at 590 nm with background 

correction at 630 nm. All studies were performed in quintuplicate. The relative cell 

viability (%) related to control wells treated only with 20 μL HBG was calculated as 

([A] test/[A] control) × 100%. 
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Magnetic Resonance Imaging (MRI). Imaging was performed with a 1.5 T clinical MRI 

system (Magnetom Aera, Siemens Health Care, Germany). Samples were filled into 2 mL 

Eppendorf tubes that were imaged in parallel rows of 5 samples. A PMMA sample holder 

fixed the tubes submersed in a basin filled with 650 mL water and 0.4 mL Gd-DTPA 

(0.5 mmol/mL) at 24 °C. As a reference sample tubes with Gd-DTPA-BMA (Omniscan, GE 

Healthcare) diluted in water (0-2.5 mM) have been examined. This setup was placed in a 

standard MRI head coil for imaging. After using standard MRI pulse sequences for 

orientation, a gradient echo sequence with a nonselective saturation recovery (SR) preparation 

pulse was applied for calculation of T1 parameter maps varying the saturation recovery time 

from 130 – 3000 ms in 17 steps. T2-weighted multi contrast 2D spin echo sequences (SE MC) 

were repeated varying the echo time 16 times in steps of 15 ms starting with 15 ms and 

ending with 240 ms for T2 parameter map calculation. Other imaging parameters for SR were 

as follows: echo time = 1.71 ms, repetition time = 747 ms; matrix = 128 x 128; in plane 

resolution = 1 mm; slice thickness = 6 mm; α = 15°; parallel imaging acceleration factor = 2. 

Slice thickness, FOV and the parallel imaging acceleration factor were the same for SE MC. 

However, here the repetition time was 3 s; the in plane resolution was 0.5 mm; the echo train 

length was 16; and the matrix was 256 x 256.All data were transferred in DICOM format and 

processed off-line using the software PMI 0.3, written in-house using IDL 6.4 (ITT Visual 

Information Systems, Boulder, CO). Calculations were done using mean signal intensity 

values that were determined in region of interests (ROI). ROIs were placed in the center of 

each sample tube as displayed in Fig. S3-1. Least-squares fitting was done using the 

Levenberg-Marquardt-algorithm. 

 

Fluorescence Microscopy. Murine neuroblastoma (N2A) cells were seeded in Nunc chamber 

slides (Thermo Scientific, Germany) at a density of 30.000 cells/ well 24h prior to incubation 

with different particle concentrations. Before incubation with the particles, medium was 

replaced with 80µL fresh medium containing 10% fetal bovine serum (FBS). Particles diluted 

in 60µL HEPES-buffered glucose (HBG) were added to each well and incubated for 7 h and 

24 h at 37°C and 5% CO2. Cell membranes were stained with wheat germ agglutinin Alexa 

Fluor 488 conjugate (Life Technologies) at a final concentration of 5 µg/mL prior to imaging. 

Live cells were imaged using spinning disc microscopy (Zeiss Cell Observer SD utilizing a 

Yokogawa spinning disk unit CSU-X1). The objective was a 1.40 NA 63x Plan apochromat 

oil immersion objective (Zeiss). Cy5 was imaged with 639 nm and WGA 488 with 488 nm 

laser excitation, respectively. For two color detection a dichroic mirror (560 nm, Semrock) 
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and band-pass filters 525/50 and 690/60 (both Semrock) were used in the detection path. 

Separate images for each fluorescence channel were acquired using two separate electron 

multiplier charge coupled device (EMCCD) cameras (PhotometricsEvolve
TM

). 
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3.6. Appendix 

 

 

Figure S3-1. Image of axial cross section of sample tubes acquired with SE MC (TE = 15 ms). ROI (red region 

of interest) used for calculation of T2 using mean signal intensities determined in these ROIs. As the samples 

comprise a wide range of T2 times it was not possible to set the window in such a way that all samples appear 

differently. 

 

Figure S3-2. XRD pattern of functionalized and unfunctionalized MIL-100(Fe) nanoparticles. 
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Figure S3-3. TEM image of unfunctionalized MIL-100(Fe) nanoparticles. 
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Figure S3-4.  TEM image of MIL-100(Fe)@Stp10-C nanoparticles. 
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Figure S3-5. TEM image of MIL-100(Fe)@PEG5000 nanoparticles. 



3. Imparting functionality to MOF nanoparticles by external surface selective covalent 
attachment of polymers 

 

  95 

 

Figure S3-6. DLS measurements of functionalized and unfunctionalized MIL-100(Fe) nanoparticles in EtOH. 

 

 

Table S3-1. DLS (Z-Average) data of functionalized and unfunctionlized MIL-100(Fe) nanoparticles dispersed 

in bi-distilled water . After 3 weeks, MIL-100(Fe) particles start to agglomerate, while the functionalized 

particles retain their colloidal stability. 

Sample MIL-100(Fe) MIL-100(Fe)@Stp10-C MIL-100(Fe)@PEG5000 

after dispersion 159 nm 156 nm 154 nm 

after 3h 153 nm 156 nm 150 nm 

after 24h 157 nm 156 nm 150 nm 

after 72h 156 nm 154 nm 147 nm 

after 1 week 158 nm 155 nm 148 nm 

after 3 weeks 213 nm 152 nm 146 nm 
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Figure S3-7. Particles dispersion of functionalized and unfunctionalized MIL-100(Fe) nanoparticles after 3h in 

H2O 

 

Table S3-2. DLS (Z-Average) data of functionalized and unfunctionlized MIL-100(Fe) nanoparticles dispersed 

in 10% fetal bovine serum (FBS) within 3 weeks. Unfunctionalized particles start to agglomerate immediately, 

while polymer-functionalized particles retain their colloidal stability for 72 h. 

Sample MIL-100(Fe) MIL-100(Fe)@Stp10-C MIL-100(Fe)@PEG5000 

after dispersion > 1000 nm 376 nm 600 nm 

after 3h > 1000 nm 429 nm 669 nm 

after 24h > 1000 nm 432 nm 695 nm 

after 72h > 1000 nm 489 nm 715 nm 

after 1 week > 1000 nm 721 nm > 1000 nm 

after 3 weeks > 1000 nm 879 nm 958 nm 

 

 

MIL-100 (Fe)        Stp10-C       PEG5000 
                                    @                 @ 
                           MIL-100(Fe)  MIL-100(Fe) 
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Figure S3-8. Zeta-potential compared to particle size in the pH range from 4 to 8 for functionalized and 

unfunctionalized MIL-100(Fe) nanoparticles. 
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Figure S3-9. Nitrogen sorption isotherms of functionalized and unfunctionalized MIL-100(Fe) nanoparticles. 

 

Table S3-3. Pore volume and BET surface areas of MIL-100(Fe) and functionalized MIL-100(Fe) nanoparticles 

calculated from N2 sorption isothermes of Figure S-9 

 

Figure S3-10. TGA of functionalized and unfunctionalized MIL-100(Fe) nanoparticles. 

MOF pore volume (cm³/g) BET surface area (m²/g) 

MIL-100(Fe) 1.057 1905 

MIL-100(Fe)@PEG5000 0.750 1338 

MIL-100(Fe)@Stp10-C 0.823 1432 
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Figure S3-11. IR spectra of functionalized and unfunctionalized MIL-100(Fe) nanoparticles. 

 

 

Figure S3-12. Normalized FCS curves of MIL-100(Fe)@Stp10-C*Cy5 nanoparticles with varied amount of 

labelled Stp10-C. As the curves show no significant deviation we conclude that the fluorescent label has no 

effect on the function of Stp10-C. 
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Figure S3-13. UV-Vis spectra of supernatant with and without addition of sulfo-NHS to the reaction mixture. 

 

 

 

Figure S3-14. XRD spectra of PEG-functionalized (right) and unfunctionalized (left) MOF nanoparticles in 

comparison; time-based dissolution behaviour in EDTA-solution (0.1 mM; 2.0 mg (MOF)/mL). After 45 

minutes, the unfunctionalized particles are completely dissolved. PEG-functionalized nanoparticles are stable up 

to 90 minutes.  
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Figure S3-15. Averaged UV-Vis data with standard deviations (error bars indicate the deviation of three 

individual measurements) of supernatant after coating reactions of Stp10-C; for 10 nmol polymer, the whole 

amount of polymer was attached to the MOF while there is some residue for 20 nmol. Therefore the covalent 

attachable amount was estimated to be between 10 and 20 nmol. 

 

 

Figure S3-16. Time-dependent amount of polymer left in the supernatant after reaction with (left) and without 

sulfo-NHS added to the reaction mixture. After 30 minutes with sulfo-NHS the reaction is already completed. 

During the same period of time almost no dye was adsorbed unspecifically to the particles, as there is no 

decrease of polymer visible after 30 minutes reaction without sulfo-NHS. 

 

 



3. Imparting functionality to MOF nanoparticles by external surface selective covalent 
attachment of polymers 

 

102 

     

Figure S3-17. 
1
H-NMR (400 MHz, deuterium oxide) δ = 4.39 (t, 1H), 3.55 – 3.12 (m, 162H), 2.50 (s, 40H).  

 

Figure S3-18. MALDI-MS spectrum of C-Stp10. Mass calculated for [M+H]
+
 2833.1, mass found 2835.2; mass 

calculated for [M+Na]
+
 2855.0, mass found 2859.9. 
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Figure S3-19. Representative transmission electron micrograph of MIL-100(Fe) nanoparticles (left). Size 
distribution of more than 1500 analyzed MIL-100(Fe) nanoparticles acquired from TEM pictures via image 
analysis (right). The mean radius was determined to be 26.5 nm. 
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Calculations on the amount of attachable polymer 

The mass density of MIL-100(Fe), determined by structure refinement of XRD pattern, is 

𝜌 =  0.98
𝑔

𝑚𝐿
.
1
 Using a mass of 𝑚 =  1 𝑚𝑔, and a mean radius for the nanoparticles of 

𝑟 = 26.5 𝑛𝑚 taken from TEM-analysis (see Figure S3-19), one derives a number of 

particles per mg of   

 

𝑵 =
𝑽𝒐𝒗𝒆𝒓𝒂𝒍𝒍

𝑽𝑵𝑷
=  𝟏. 𝟑𝟎𝟗 ∙  𝟏𝟎𝟏𝟑   

 

with  

 

𝑉𝑜𝑣𝑒𝑟𝑎𝑙𝑙  =  𝑚/𝜌 =   1.020 µ𝐿 =  1.020 𝑚𝑚
3  

 

as the volume taken up by one mg of material, and 

 

 𝑉𝑁𝑃  =  
4

3
𝜋𝑟3  =

4

3
𝜋 (26.5 𝑛𝑚)3   =  77951.8 𝑛𝑚3  =  7.795 ∙  10−14 𝑚𝑚3,  

 

the volume of a sphere with the size of one nanoparticle. 

 

The amount of polymer used per mg nanoparticles was 10 nmol and 20 nmol. With the 

Avogadro constant the respective number of polymer molecules is 

 

10 𝑛𝑚𝑜𝑙 =  6.022 ∙ 1015 and 20 𝑛𝑚𝑜𝑙 =  1.204 ∙ 1016. 

 

Assuming a full uptake of polymer, the number of polymer molecules per particle is 

 

10 𝑛𝑚𝑜𝑙

𝑁
=

6.022 ∙1015

 1.309 ∙ 1013
 = 460 in the case of 10 nmol 

 

and 

 

 
20 𝑛𝑚𝑜𝑙

𝑁
=
6.022 ∙1015

1.204∙1016
 = 920 in the case of 20 nmol. 
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To estimate the mean area one polymer molecule could occupy on the nanoparticle surface we 

evaluate the surface area of a sphere with the size of a nanoparticle to  

 

𝑆 =  4  𝜋 𝑟2  =  8.825 ∙ 103 𝑛𝑚2. 

By dividing this number with the number of polymer molecules per nanoparticle we get the 

surface space per polymer molecule:  

 

8.825∙103𝑛𝑚2

460
=  19.2 𝑛𝑚2 in the case of 10 nmol  

 

and 

 

 
8.825∙103𝑛𝑚2

920
=  9.59 𝑛𝑚2 in the case of 20 nmol. 

 

This corresponds to a surface coverage of: 

 

8.65 𝑝𝑚𝑜𝑙/𝑐𝑚2   
in the case of 10 nmol 

 

and 

 

17.3 𝑝𝑚𝑜𝑙/𝑐𝑚2 in the case of 20 nmol 

 

Compared to the size of the polymer molecules (hydrodynamic radius determined by FCS: 

1.1 nm) the surface of one nanoparticle is loosely occupied by polymer molecules.  

 

Mass % of polymer per MOF nanoparticles was calculated to allow comparison to TGA (see 

Fig. S3-10). 

Using a molecular mass of 5000 g/mol for PEG5000 and assuming 20 -10 nmol of PEG5000 

attached to 1 mg MOF, the mass % is 

 

20 𝑛𝑚𝑜𝑙 ∙5000
𝑔

𝑚𝑜𝑙

20 𝑛𝑚𝑜𝑙 ∙5000
𝑔

𝑚𝑜𝑙
+1 𝑚𝑔

= 9.1 % in the case of 20 nmol 
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and 

 

10 𝑛𝑚𝑜𝑙 ∙5000
𝑔

𝑚𝑜𝑙

10 𝑛𝑚𝑜𝑙 ∙5000
𝑔

𝑚𝑜𝑙
+1 𝑚𝑔

= 4.8 % in the case of 10 nmol 

 

Using a molecular mass of 2800 g/mol for Stp10-C (free base) and assuming 20 -10 nmol of 

Stp10-C attached to 1 mg MOF, the mass % is 

 

20 𝑛𝑚𝑜𝑙 ∙2800
𝑔

𝑚𝑜𝑙

20 𝑛𝑚𝑜𝑙 ∙2800
𝑔

𝑚𝑜𝑙
+1 𝑚𝑔

= 5.3 % in the case of 20 nmol 

 

and 

 

10 𝑛𝑚𝑜𝑙 ∙2800
𝑔

𝑚𝑜𝑙

10 𝑛𝑚𝑜𝑙 ∙2800
𝑔

𝑚𝑜𝑙
+1 𝑚𝑔

= 2.7 % in the case of 10 nmol 

 

This is in good agreement with TGA data (2,7% and 1%, respectively; see Fig. S3-10), 

considering the accuracy of TGA. 

 

Reference 

[1] Horcajada, P.; Surble, S.; Serre, C.; Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.; Greneche, 

J.-M.; Margiolaki, I.; Ferey, G., Chemical Communications 2007, 2820-2822. 
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4. Self-assembly of different polymers on MOF nanoparticles 

for better control of interactions at the biointerface 

 

This chapter is based on the following work: 

 

Andreas Zimpel, Nader Danaf, Benjamin Steinborn, Miriam Höhn, Waldemar Schrimpf,
 
 

Hanna Engelke, Ernst Wagner, Thomas Bein, Matthias Barz, Don C. Lamb, Ulrich Lächelt,
 

and Stefan Wuttke; 2018, in preparation 

 

 

 

 

 

4.1. Introduction 

The chemistry of metal-organic frameworks (MOFs) provides great flexibility for the 

generation of crystalline inorganic-organic hybrid materials spanning an enormous chemical 

compound space for these materials.
1
 By selection of appropriate inorganic building units 

(metal ions, or metal oxide clusters) and organic linker molecules, a huge number of MOFs 
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with tailored properties can be produced in simple, scalable and cost-effective reactions 

driven by self-organizing processes.
1-5

 Beside industrial applications, such as catalysis,
6-9

 gas 

storage,
10

 separation
11-12

 or sensing,
13-15

 the materials class of MOFs is also being explored for 

biomedical purposes.
16-22

 MOF nanoparticles (NPs) have already been used as carriers for 

drugs
18, 23-26

, nucleic acids
27

, peptides and proteins
28-29

 as well as biofunctional materials on 

their own, such as MRI contrast agents
30-33

 or photosensitizers
34

. Considering the unique 

characteristics and tunable properties of MOFs, it is expected that other biomedical 

applications will follow.
18-20

 As with other classes of nanomaterials, the interaction of the 

MOF NP surface with their environment critically impacts the behavior in biological 

systems.
35-37

 Functionalization of the MOF outer surface is a rational approach to control 

interactions at the MOF-biointerface and thereby increases the potential for biomedical 

applications. Several post-synthetic modification procedures have been reported, such as 

surface adsorption
38-40

, lipid coating
41-43

, covalent conjugation
32, 44

 or coordinative binding of 

functional units
28

. Here, we systematically investigated Zr-fum MOF NP surface coating with 

polymers by simply mixing them in an aqueous medium. Zr-fum MOF NPs were selected 

because of their favorable size distribution
45

, colloidal stability
45

, nanosafety profile
46

 and 

favorable cellular uptake
28

. Self-assembly of polymers at MOF NPs appears as a powerful 

concept as it could potentially ensure a defined arrangement of these units at the outer surface 

without any guidance from external forces. This kind of process is ubiquitous in chemistry 

and biology and is increasingly used in industry as it simplifies processes, lowers costs, offers 

molecular control, and generates structures in three dimensions and on curved surfaces.
47

 

Since the feasibility of the NP-polymer functionalization based on surface adsorption depends 

on the individual nature of the coating material, we selected representative polymers with 

relevance in the biomedical field but with different physicochemical properties (Table 4-1). 

The set contained two positively charged (branched polyethylene imine, BPEI and PAMAM 

dendrimer G4), two negatively charged (polyglutamic acid, PGA and polyacrylic acid, PAA) 

and two uncharged (polyethylene glycol, PEG and polysorbate 20, Tween®) polymers. BPEI 

and PAMAM dendrimers are frequently used for nucleic acid transfections as well as for 

intracellular transport of other materials.
48-49

 Due to their cationic nature, these polymers bind 

nucleic acids by electrostatic interaction and mediate cellular uptake of the resulting 

complexes.
50-51

 BPEI can be considered to be an archetype of transfecting agents. Its 

beneficial buffer capacity in the acidic environment of endo- and lysosomes promotes cargo 

release into the cytosol due to the so called ‘proton-sponge effect’
52-53

. 
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Table 4-1. Summary of selected polymers used in this work. ‘Polymer’ defines abbreviations used in this work 

(BPEI, branched polyethylene imine; PAMAM, polyamidoamine dendrimer generation 4; PGA, polyglutamic 

acid; PAA, polyacrylic acid; PEG, polyethylene glycole; Tween®, Polysorbate 20; PGA-PS, polyglutamate-b-

polysarcosine block-co-polymer); ‘Charge’ indicates positive (+) or negative (-) netto charge at pH 7; ‘Structure’ 

shows simplified molecular structure or repeating units of selected polymers; ‘Properties’ exemplifies 

characteristics and biomedical applications. 

 

 

In contrast to the statistical polymerization product BPEI, PAMAM dendrimers represent 

perfectly defined monodisperse compounds. The anionic polymers PGA, PAA and 

corresponding block-co-polymers have been widely used as polymer scaffolds for drug 

conjugation, NP functionalization and hydrogel or micelle formation
54-58

. The neutral polymer 

PEG is the most prominent agent used for shielding and colloidal stabilization of 

nanoparticles or biopharmaceuticals; ‘PEGylation’ is even considered a generally accepted 

technical term in pharmaceutical sciences
59

. PEG is a polyether with amphiphilic character, it 

is able to form multiple hydrogen bonds generating a hydrophilic layer in an aqueous 

environment. It also reduces adsorption or aggregation at surfaces due to sterical hindrance. 

Polysorbate 20 is a neutral surfactant which also contains PEG-like structural parts and is 

used in pharmaceutical products as solubilizer or emulsifier. In addition, a co-polymer (PGA-

PS) composed of a polyglutamate and a polysarcosine block was used as an example for MOF 
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surface functionalization with more sophisticated and advanced polymer architecture.
60

 Here, 

the PGA block was expected to show binding properties similar to the bare PGA. The 

polypeptoid polysarcosine (or poly(N-methyl glycine))
61

 is highly hydrophilic and exhibits a 

very low interaction potential with biomolecules.
62

 Therefore, polysarcosine is considered as 

promising alternative to the most frequently used shielding agent PEG.
63-64

 

In this work, we study the binding of the different polymers by simple mixing in biological 

buffer and at room temperature in order to identify the most facile, reproducible and scalable 

functionalization processes under mild and biocompatible conditions (Figure 4-1a).
19

 We 

screened the selected polymers with regard to their ability to bind to Zr-fum NPs, effects on 

physicochemical properties and interactions at the MOF-biointerface. Evaluated key 

parameters were change of zeta-potential, colloidal stabilization, protein binding and cellular 

interactions (Figure 4-1b). It is worth stressing that the functionalization concept and 

polymers used can be applied to any other MOF NP. Thus the study is considered to be 

fundamental, as we established the efficient generation of MOF NPs with various surface 

properties. Moreover, our study identified relationships between functionalized MOF NPs and 

the biointerface, which will help to guide the rational design of hybrid nanomaterials.  

 

 
Figure 4-1. Schematic illustration of the coating procedures using the four different polymer groups (negatively 

charged, neutral, positively charged, block copolymer) (a), and of the investigations performed with the 

functionalized MOF NPs biointerface (agglomeration, protein binding and cell interactions) (b).  
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4.2 Results and Discussion 

Synthesis and Characterization of Zr-fum NPs 

Zr-fum NPs were prepared according to Zahn et al.
65

 under formic acid mediated 

hydrothermal conditions. The resulting NPs were dispersed in ethanol and characterized by 

dynamic light scattering (DLS), revealing Zr-fum NPs with uniform size distribution 

(72 ± 16 nm, see supporting information (SI), Figure S4-1). A spherical shape of the particles 

and a homogenous size distribution was confirmed by scanning electron microscopy (SEM; 

see SI, Figure S4-2). Evaluation of the particle size from SEM showed slightly smaller 

diameters (46 ± 8 nm), which is agreement with literature.
45

 For Zeta-potential measurements, 

HEPES buffered glucose (HBG) was chosen as medium with physiological pH and tonicity. 

Therein, bare Zr-fum NPs showed a negative value of approximately -27 mV. Finally, the 

powder X-ray diffraction (PXRD) pattern of the Zr-fum MOF NPs (SI, Figure S4-3) featured 

well-defined reflections across the entire measurement range, indicating the formation of the 

expected framework.  

 

Nanoparticle functionalization 

For the assessment of polymer binding to bare Zr-fum NPs, a coating procedure was adopted 

from Bellido et al..
40

 A Zr-fum NP suspension was added dropwisely to an aqueous polymer 

solution under vigorous stirring. The resulting NP suspension was treated by sonication and 

stirred for three minutes. The obtained NPs were washed with bi-distilled H2O and stored as 

an aqueous suspension.  

All Zr-fum@polymer NPs were characterized by PXRD to prove their retained crystallinity 

after the coating procedure (see SI, Figure S4-4). SEM images of the different Zr-

fum@polymer NPs showed no change in their morphology (see SI, Figure S4-5). Raman 

spectroscopy of the different Zr-fum@polymer NPs was performed to confirm successful 

coating by detection of additional vibrational bonds introduced by the respective polymer 

(Figure 4-2). 

 

 



4. Self-assembly of different polymers on MOF nanoparticles for better control of 
interactions at the biointerface 

 

112 

 
Figure 4-2. (left) Raman spectra (normalized to internal Zr-fum reference at 3065 cm

-1
) of unfunctionalized Zr-

fum NPs in comparison to Zr-fum@polymer NPs in the region of interest (2700 – 3100 cm
-1

). For full spectra see 
SI, Figure S4-6. (right) DLS plot (by intensity) of Zr-fum NPs in comparison to Zr-fum@polymer NPs in HBG. 

 

An increase of the CH2 vibrational bands (asym. stretch 2934 cm
-1

, sym. stretch 2975 cm
-1

) of 

the aliphatic backbone, which is included in all polymers, indicated a successful attachment 

for cationic ((+)-polymer, BPEI and PAMAM) as well as anionic  polymers ((-)-polymer, 

PGA and PAA). Neutral polymers (PEG and Tween®) showed a significantly lower intensity 

of the characteristic vibrations. The vibration triplet (approximately at 2875 cm
-1

, 2925 cm
-1

 

and 2975 cm
-1

) which is slightly visible for Zr-fum as well as for Zr-fum@PEG and Zr-

fum@Tween is attributed to ethanol and is covered by the more intense signals of polymer 

backbone modes in the case of successful coating (see SI; Figure S4-7). Therefore, both 

neutral polymers were considered to be not able to coat Zr-fum NPs and were not considered 

for further studies on biophysical properties.  

For DLS investigations, HEPES buffered glucose (HBG) solution was chosen as medium to 

simulate physiological conditions. The measurements further confirmed successful 

attachment of cationic and anionic polymers (Figure 4-2). For anionic polymer coated Zr-fum 

NPs, a significant shift of the peak maximum (≈ 125 nm for uncoated Zr-fum NPs to 170 nm 

for Zr-fum@(-)polymer) could be detected. Cationic polymer coated Zr-fum NPs showed 

much higher values due to agglomeration of the NPs. Furthermore, investigations by zeta-

potential measurements showed a significant shift of the Zr-fum@polymer NPs’ surface 

charge depending on the nature of the polymer. While anionic polymers revealed a more 

negative zeta-potential compared to unfunctionalized Zr-fum (Table 4-2) leading to an 

increased electrostatic repulsion and high colloidal stability, cationic polymers showed a shift 

towards neutrality resulting in NP agglomeration. 
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Table 4-2. Zeta-potential values of different coated Zr-fum NPs in HBG. 

MOF Zr-fum@PAA Zr-fum@PGA Zr-fum Zr-fum@PAMAM Zr-fum@BPEI 

Zeta-pot. in mV ≈-30.2 ≈-29.1 ≈-25 ≈-16.1 ≈-11.6 

 

Infrared (IR) spectroscopy was performed in addition to Raman spectroscopy but produced no 

further information, as all significant organic vibrational bands from the polymer coating 

overlapped with the organic linker vibrational bands of fumaric acid (see SI, Figure S4-8). 

Nitrogen sorption measurements revealed a BET surface area for uncoated particles of 

736 m
2
/g and, as expected, a moderate decrease of BET surface for Zr-fum@polymer NPs 

( ≈ 200 - 350 m
2
/g see SI, Figure S4-9). This can be attributed to the attached amount of 

nonporous organic material on the external surface as well as to partial pore blocking by 

polymer chains during nitrogen sorption measurements. 

 

Nature of binding 

Thermogravimetric analysis (TGA) provided hints on the nature of the polymer binding to Zr-

fum. As expected, (-)-polymer coated Zr-fum NPs showed increased weight loss after 

combustion in comparison to unfunctionalized particles, indicating the increased content of 

organic material. (see SI, Figure S4-10). In contrast, (+)-polymer coated NPs surprisingly 

showed lower weight loss which cannot be explained by a simple polymer attachment process 

since obviously organic content can also be lost during functionalization. A possible 

explanation is an exchange of formic acid molecules covering the external surface of Zr-fum 

NPs with the polymers. Due to the modulation synthesis approach, unsaturated Zr-ions at the 

external surface are covered coordinatively by carboxyl-groups of formic acid. The polymers 

contain coordinating groups as well (carboxylates + amines) and should therefore be able to 

replace formic acid by an entropically favored linker exchange reaction.
66

 Depending on the 

molecular mass and the attached amount of polymer, the organic content of the 

MOF@polymer nanocomposites can increase or decrease.  

A detailed look at BET surface areas suggests a higher degree of attachment for PGA and 

PAA as their surface areas decreased in a more significant way (736 m
2
/g to 413 m

2
/g and 

400 m
2
/g, respectively) than observed for BPEI and PAMAM (736 m

2
/g to 472 m

2
/g and 

543 m
2
/g, respectively). This is in agreement with the obtained higher organic content for Zr-

fum@(-)-polymer measured by TGA, and the lower weight loss of Zr-fum@(+)-polymer NPs 

may be the result of formic acid depletion but a comparably low degree of polymer 

attachment (see SI, Figures S4-9 – S4-11). 
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The postulated exchange mechanism was further confirmed by quantification of released 

formic acid after polymer coating. An assay kit (K-FORM, Megazyme) was used to 

specifically quantify formic acid by conversion to carbon dioxide with formate 

dehydrogenase (Scheme 4-1). The molar amount of generated NADH (abs. 340 nm) is equal 

to the amount of formic acid present in the supernatant. 

  

Scheme 4-1. Reaction of the formic acid assay for its quantitative detection by UV-VIS (NADH at λ = 340 nm). 

 

 

As a control experiment, the reaction was performed without adding polymer to the solution 

and the supernatant was tested for free residual formic acid left in the MOF pores after 

synthesis and workup. Here, only a small amount of formic acid was detectable (Figure 3, 

left, “Zr-fum”). After coating with (-)- and (+)-polymers, a significantly higher amount of 

formic acid was present in the supernatant compared to the control experiment, which 

supports the assumption of an exchange between formic acid and polymer on the external 

MOF NP surface (Figure 4-3, left). Additionally, pure polymer solutions (50 µg/mL ≡ ¼ of 

cmax.) were tested to identify assay interference and false-positive effects. This control 

experiment showed a significant absorption only for PAA control (Figure 4-3, right), which 

explains the steady increase and higher absorption of Zr-fum@PAA supernatant.  

 

 

Figure 4-3. (left) UV-VIS spectroscopic determination of NADH from the supernatant after coating reactions. 
Absorption at 340 nm was used for the determination of the formic acid release (see SI, Table S1). (right) 
Control experiments of pure polymer solutions (c = 50µg/mL), showing a steady increase for PAA control which 
indicates assay interference (same assay with a 70:30 ethanol/water mixture was used for background 
substraction) 
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Therefore, Zr-fum@PAA was excluded from the calculations of the exchanged amount of 

formic acid from experimental data. The calculations resulted in approx. 10 µg formic acid 

per 1 mg provided Zr-fum NPs (≈ 1 w%; see SI, Table S4-1). This value is in very good 

agreement with a theoretical estimate of a maximum amount of formic acid present on the 

external surface of Zr-fum NPs (≈ 0.8 w%; see SI, “Theoretical Estimate”).  

Considering all the above results, we propose the nature of binding to be coordinative self-

assembly, accompanied by an exchange of formic acid by the polymers’ coordinative groups, 

similar to functionalization mechanisms published in the literature.
67-68

 

 

Block copolymer 

Based on the above results, the effective binding of PGA was used as molecular adapter for 

surface attachment and functionalization of MOF NPs with other moieties. To this end, the 

block-copolymer PGA-PS
60

 (see Table 4-1) was attached to the Zr-fum NPs. The polymer 

consists of polysarcosine (PS), a biopolymer based on the natural subunit sarcosine (N-methyl 

glycine) which is known to provide a remarkable shielding effect,
62-64 

and polyglutamic acid, 

which is working as a biocompatible assembly domain. Preparation of Zr-fum@PGA-PS NPs 

was performed according to the procedure presented above.  

Raman spectroscopy provided information about a significant attachment of the polymer onto 

Zr-fum NPs (Figure 4-4, left), and XRD measurements confirmed the retained crystallinity of 

the Zr-fum core (Figure 4-4, right) as expected from previous polymer coatings. Furthermore, 

no change in morphology could be detected by SEM (see SI, Figure S4-12). 

 

 

Figure 4-4. Raman (left) and XRD (right) pattern of Zr-fum@PGA-PS NPs compared to unfunctionalized Zr-
fum. Black arrows highlight the characteristic polymer vibrational bands. 
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Agglomeration 

Simultaneous measurements of zeta-potential and size at different pH revealed remarkable 

results concerning the agglomeration behavior of the NP dispersion in aqueous solution at 

biologically relevant pH (pH=4 to pH=8). The pH range was chosen in view of prospective 

biomedical applications of the Zr-fum@polymer NPs (pH 7.4 within the bloodstream to 

approx. pH 4.5 in cell lysosomes).
69

 As expected, the measurements revealed a shift of 

isoelectric point (IEP, determined by interpolation of zeta-potential values) of the different 

formulations depending on the ionic nature (+ or -) of the polymer. The NP dispersions of 

bare Zr-fum as well as of (-)- and (+)-polymer coated Zr-fum tended to agglomerate at pH 

values close to the IEP (see SI, Figure S4-13) where electrostatic repulsion is minimal.
70

 For 

illustration, the titration curve of bare Zr-fum is shown in Figure 5, left. In contrast, PGA-PS 

coated NPs showed completely different behavior. Although the zeta-potential drops from 

approx. +25 mV at pH 4 to -12 mV at pH 8, resulting in an isoelectric point at pH 5.8, the 

NPs remain nanodispersed with constant size of approximately 130 nm within the entire pH 

range (Figure 4-5, right). We note that to the best of our knowledge this impressive colloidal 

stabilization is by far the best example within the MOF NP field.                                               

 

 

Figure 4-5. Nanoparticle size (Z-average, black) and zeta-potential measurements (red) of Zr-fum NPs (left) 
compared to Zr-fum@PGA-PS NPs (right). Bare Zr-fum NPs show strong agglomeration at pH 5 (≈ IEP) while 
Zr-fum@PGA-PS NPs remain colloidal over the whole pH range. 
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Protein binding experiments 

In view of the encouraging previous results, protein binding to Zr-fum NPs was investigated 

by fluorescence correlation spectroscopy (FCS). FCS provides opportunity to look at the 

interaction of labeled-proteins with the differently coated Zr-fum NPs with very high 

sensitivity. In principle, the diffusion of fluorescing molecules into and out of a small 

confined volume results in a certain fluctuating fluorescence intensity, which is recorded for 

that single observation volume. The recorded intensity fluctuations of the diffusing-

fluorescing particles through the observation volume constitute the basis for a temporal 

autocorrelation analysis. Hence, FCS is established by an autocorrelation function (ACF) of 

the temporal autocorrelation provided by the fluorescence intensity fluctuations. The fraction 

of several diffusing labeled particles and their respective diffusion coefficients can be 

deduced from the temporal information of the ACF.
71-72

  The number of diffusing particles 

and their rate of diffusion are the main criteria that determine the shape of an ACF. Fast 

diffusing particles will show a quick temporal fluctuation and thus quickly diffuse out of the 

observation volume. The fast diffusion of such particles is represented in a quick temporal 

decay of the ACF. In contrast, big particles that diffuse slowly would show a slow temporal 

fluctuation, which is represented in a slow temporal decay of the ACF. Moreover, FCS is a 

sensitive tool to investigate the interactions of different particles. Once a fraction of labeled 

fast diffusing particles interacts with bigger slowly diffusing particles, the fraction of 

interacting particles can be monitored with FCS, which would be indicated in the ACF.  

Here, Zr-fum NPs were incubated with two different fluorescein isothiocyanate (FITC)-

labeled proteins, i.e. FITC-immunoglobulin G (FITC-IgG) and FITC-albumin (FITC-alb), 

respectively. Albumin was chosen as it presents the most prominent protein in the human 

blood plasma (up to 60 %), IgG as it mediates an immune response by activating the 

complement system of the human body and thus leading to rapid particle clearance from the 

bloodstream.
73-74

 FITC-IgG and FITC-alb, respectively, were provided in HBG and Zr-fum as 

well as all Zr-fum@polymer NPs preparations were added to the solution. As shown in Figure 

6 (top, left), FITC-IgG alone shows a quick decay of the ACF that corresponds to its fast 

diffusion out of the observation volume, which is to be expected for the IgG alone without the 

bigger slowly diffusing NPs. The slower decay of the FITC-IgG ACF in the presence of all 

nanocomposites but Zr-fum@PGA-PS in Figure 4-6 (top, right) shows the interaction between 

the two partners. The slower decay indicates the slower diffusion of the FITC-IgG upon 

binding to all the NPs but Zr-fum@PGA-PS. The minimal change of the ACF of FITC-IgG in 

the presence of Zr-fum@PGA-PS underlines the exceptional high shielding capability of the 
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polysarcosin. In contrast to FITC-IgG no binding of albumin onto all the kinds of NPs studied 

here could be observed, as the ACF of FITC-alb remains unchanged in the presence of the 

different Zr-fum NPs. Furthermore, investigations on the protein binding experiments were 

performed by fluorescence cross-correlation spectroscopy (FCCS). FCCS, similar to FCS, is 

established by a cross-correlation function (CCF) of the temporal cross-correlation provided 

by the fluorescence intensity fluctuations of dually-labeled particles.
75-76

 Therefore, with 

FCCS we investigated two-colored fluorescently interacting particles, in which the Zr-fum NP 

was labeled with Atto 647N and contacted with FITC-albumin and FITC-IgG, respectively. 

FCCS allows us to look at the interaction of the Zr-fum with the two proteins of interest, 

albumin and IgG, respectively. Indeed, the absence of FITC-alb binding but strong 

association of FITC-IgG with Atto 647N-Zr-fum NPs can be validated by looking at the CCF, 

Figure 4-6 (bottom, right). A cross-correlation amplitude was only observed once FITC-IgG 

and Atto 647N-Zr-fum were present together. In contrast, the absence of any cross-correlation 

amplitude in the presence of FITC-alb and Atto 647N-Zr-fum indicated that labeled albumin 

and Zr-fum do not happen to temporally diffuse together, i.e. no interaction between them is 

present. The corresponding fluorescence fluctuation intensity traces from which the ACFs are 

deduced are reported in the SI, Figure S4-14, which shows the interaction of the FITC-IgG 

with the NPs, depicted in the different peaks. These peaks represent the high fluorescence 

intensity of several FITC-IgG bound to the bigger NPs upon diffusing into the confined 

observation volume. The lack of the high fluorescence intensity peaks in the fluorescence 

intensity traces of FITC-alb is a further validation that no interaction between FITC-alb and 

the NPs is observed.  

Furthermore, we report the fraction of interacting FITC-IgG with the Zr-fum as well as for all 

Zr-fum@polymer NPs, see SI (FCS section and Table S4-2). Analysis of the ACFs allows for 

a quantitative determination of the interaction between the FITC-IgG and the different NPs. 

The fraction of the FITC-IgG binding to the NPs can be observed and the interaction was thus 

described. Summarizing, the protein interaction with the Zr-fum NPs investigated by FCS and 

FCCS shows that the coating is a determining factor for the interaction with certain proteins, 

such as IgG. The interaction between IgG and Zr-fum NPs can be tuned based on the NP 

surface coating. On the other hand, some other important proteins like albumin showed to be 

inert regarding binding to the differently coated Zr-fum NPs.  
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Figure 4-6. FCS measurements of 100 nM FITC-alb and FITC-IgG, (top, left and right), respectively. ACFs in 

the absence (blue trace) and presence of 10 µg Zr-fum and Zr-fum@polymer NPs. (bottom, left) ACFs in the 

presence of 10 µg Atto 647N-labeled Zr-fum (FITC-IgG and Atto 647N-labeled Zr-fum ACFs, blue and orange 

traces, respectively) and (FITC-alb and Atto 647N-labeled Zr-fum ACFs, yellow and purple traces, respectively). 

(bottom, right) The corresponding FCCS measurements of FITC-IgG and Atto 647N-labeled uncoated Zr-fum 

(green) and of FITC-alb and Atto 647N-labeled Zr-fum (cyan), showing the interaction in case of IgG with Zr-

fum and its absence in case of albumin.  

 

Cell interactions 

After evaluating the bio- and physicochemical characteristics of Zr-fum@polymer NPs in 

cell-free models, in vitro studies were carried out to investigate interactions between the NPs 

and cancer cells. First, MTT cell viability assays were performed to identify effects on 

cellular metabolism and toxic interactions. All formulations were well tolerated and showed 

no obvious toxicity up to concentrations of 400 µg/mL (see SI, Figure S4-15). Next, the 

cellular association, aggregation and cell uptake profile of the different coated formulations 

was investigated by flow cytometry and confocal laser scanning microscopy (CLSM) after 30 

minutes of incubation on HeLa cells (Figure 4-7). Flow cytometry data indicated a high 

degree of interaction between Zr-fum@PAMAM as well as Zr-fum@BPEI and HeLa cells, a 

finding most likely attributable to electrostatic adhesion to the cell membrane. In direct 

comparison, the percentage of fluorescence-positive cells was in the same range in case of all 

formulations (Figure 4-7b), but median fluorescence intensity was strongly increased in case 

of (+)-polymer coated Zr-fum NPs (Figure 4-7c). CLSM provided information about the exact 

spatial localization of Zr-fum NPs within the cells. Images were in good agreement with the 
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previously observed high cellular association of (+)-polymer coated Zr-fum NPs, however 

only large aggregates on the cell surface and no intracellular particles were observed. In 

contrast, the other colloidally more stable formulations all showed cellular internalization and 

no extracellular aggregation (Figure 4-7d). These findings confirm the expected strong 

interaction of (+)-polymer coated Zr-fum NPs with cellular membranes but also point to 

unfavorable aggregation under physiological conditions. 

 

Figure 4-7. Cellular association, aggregation and uptake profile of Zr-fum@polymer NPs as determined by flow 

cytometry (a-c) and confocal laser scanning microscopy (CLSM) (d). Zr-fum NPs were labeled with calcein as 

described in the SI. All differently functionalized NPs were incubated on HeLa cells for 30 minutes at a final 

concentration of 50 µg/mL. (a) Single parameter histogram of cellular fluorescence, (b) percentage of calcein-

positive cells and (c) median fluorescence intensities of calcein-positive cell subpopulation. PAMAM and BPEI-

coated Zr-fum NPs mediated highest fluorescence intensity of cells indicating strongest cellular association; 

coating with negatively charged polymers PGA, PGA-PS and PAA resulted in cellular association in a similar 

range as uncoated Zr-fum. (d) Nuclei were stained with DAPI (blue channel), F-Actin was stained with 

Phalloidin-Rhodamin (yellow channel), calcein-fluorescence (green channel). Images were recorded 30 minutes 

after NP addition. BPEI-coated and PAMAM-coated Zr-fum NPs showed strong extracellular aggregation on the 

cell surface and low intracellular localization. Uncoated, PAA-coated, PGA-coated and PGA-PS coated Zr-fum 

NPs all showed dispersed NPs in suitable size ranges and were internalized into cells. 
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4.3. Conclusion 

In this paper, we report a straightforward functionalization approach for MOF NPs based on 

self-assembly. Different polymers could be attached onto the external surface by an 

entropically preferred exchange of the modulator (formic acid) by the coordinating groups of 

the polymers. This process can be described as self-assembly modulator replacement. The 

released formic acid could be detected in the supernatant after the coating process, which 

supports the proposed mechanism. Exploiting this efficient self-assembly approach, different 

MOF@polymer NP formulations were prepared, fully characterized and tested for their 

behavior and interactions in a biologically relevant environment. The investigations revealed 

great colloidal stability of Zr-fum NPs by coating them with the block copolymer PGA-PS. 

These Zr-fum@PGA-PS NPs retained their monodispersity independent of pH in aqueous 

solutions as well as in a broad range of environments, such as protein containing buffer 

solution and cellular medium. These findings make it a promising candidate for an 

intravenously injected nanocarrier system due to its expected long time stability in the human 

bloodstream, which is mandatory for effective passive targeting on tumor tissue by the EPR 

(Enhanced Permeability and Retention) effect. 

Our results suggest that MOF NPs can be easily functionalized with different kinds of 

polymers via self-assembly. The self-assembly of functional polymers is a powerful approach 

to “program” the MOF NP surface to i) increase colloidal stability over physiological pH 

ranges; ii) increase colloidal stability in high ionic-strength buffers; iii) control the protein 

binding in a biological environment; iv) resist being scavenged by macrophages; v) exhibit 

low nonspecific binding to healthy tissues; vi) exhibit long circulation times; and vii) 

influence biodistribution in a favorable way. Due to the easy integration of different 

functionalities (e.g. shielding, targeting, bioresponsive domains, etc.) into the polymers and 

their straightforward self-assembly onto MOF NP surfaces, we predict that this 

functionalization concept will develop into a general functionalization strategy for MOF NPs. 
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4.4. Materials and Methods 

Chemicals: Zirconium (IV) chloride (ZrCl4, Aldrich, ≥ 99.0%), fumaric acid (Sigma-Aldrich, 

≥ 99.9% trace metals basis), 2-[4-(2-hydroxyethyl)piperazine-1-yl]ethanesulfonic acid 

(HEPES, Biomol GmbH), glucose (Applichem), poly-L-glutamic acid sodium salt (PGA, 

Sigma-Aldrich, MW 15.000-50.000), polyacrylic acid (PAA, Sigma-Aldrich, average MW 

~15.000), branched polyethylene imine (BPEI, Sigma-Aldrich, average MW ~25.000), 

polyamidoamine dendrimer (PAMAM, Sigma-Aldrich, ethylenediamine core, generation 4.0), 

poly(ethylene glycol) methyl ether (PEG, Sigma-Aldrich, average Mn ~ 5.000), TWEEN
®
 20 

(Tween, Sigma-Aldrich, MW ~1228), formic acid assay kit (K-Form, Megazyme) were used 

as received. Cell culture media, antibiotics and fetal bovine serum (FBS) were purchased 

from Life Technologies or Sigma-Aldrich, respectively. 

 

Synthesis of Zr-fum NPs: Zr-fum NPs were synthesized according to a procedure reported 

by Zahn et al.
77

. ZrCl4 (120.5 mg, 0.517 mmol) and fumaric acid (180.0 mg, 1.550 mmol) 

were dissolved in bi-distilled H2O (10 mL). Formic acid (0.975 mL, 1.190 g, 25.85 mmol) 

was added and the reaction mixture was sealed in a 25 mL glass autoclave (Schott, Duran
®
). 

The mixture was heated to 120 °C for 24 h and was allowed to cool down to RT afterwards. 

Further, the resulting NPs were transferred into 15 mL Falcon
®
 tubes and centrifuged 

(7187 rcf / 10 min). After re-dispersion in bi-distilled H2O (6 mL), the Zr-fum NPs were 

transferred to Eppendorf
®
 tubes and centrifuged (16900 rcf / 10 min). The washing steps 

(dispersion + centrifugation) were repeated twice with EtOH, and Zr-fum NPs were stored in 

an ethanolic stock solution. 

 

Dye labeling of Zr-fum NPs 

Calcein-labeling: Zr-fum NPs were dispersed in an aqueous calcein solution (0.25 mM) 

resulting in a 5 mg/mL dispersion. The NPs were shaken for 15 min (600 rpm) at RT, 

centrifuged and washed with bi-distilled H2O, twice with HBG and stored in an ethanolic 

stock solution. 

Atto647n-labeling: Atto647n-labeling was performed according to a procedure reported in the 

literature.
78

 

 

Preparation of Polymer stock solutions: Polymers were dissolved in bi-distilled H2O, 

resulting in aqueous solutions of 10 mg/mL and stored at 7 °C. 
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Polymer coating of Zr-fum NPs: Polymer solution (10 mg/mL; 20 µL or 400 µL, 

respectively) was provided in bi-distilled H2O (280 µL or 5.6 mL, respectively). Zr-fum NPs 

(1,43 mg/mL in EtOH; 0.7 mL or 14 mL, respectively) were added dropwise within two 

minutes and the dispersion was allowed to stir for three minutes. Ultrasound was applied for 

one minute and the solution was again stirred for three minutes. The resulting particles were 

centrifuged (16900 rcf / 10 min) and washed twice with bi-distilled H2O (see washing step for 

“Synthesis of Zr-fum NPs”). Zr-fum@polymer NPs were stored in an aqueous stock solution. 

 

Detection of formic acid after coating of Zr-fum NPs in supernatant by formic acid 

assay kit (K-Form, Megazyme): Approx. 900 µL supernatant of the coating reactions (1 mg 

coating procedure) were aspirated after centrifugation of the NPs (16900 rcf / 10 min), 

transferred into an Eppendorf
®

 tube and centrifuged again (16900 rcf / 10 min) to remove NPs 

which might have stayed in dispersion after the first centrifugation step. 300 µL of this 

supernatant were diluted with 1.8 mL bi-distilled H2O in a quarz cuvette (QS, SUPRASIL
®
; 

Hellma Anlaytics). 200 µL buffer solution (“Bottle 1” from K-Form, Megazyme) and 200 µL 

NAD+-solution (“Bottle 2” from K-Form, Megazyme) were added and the mixture was 

allowed to homogenize for approx. 5 minutes. UV-Vis absorption was measured (A1) and 50 

µL formate dehydrogenase (“Bottle 3” from K-Form, Megazyme) was added afterwards. The 

solution was mixed by gentle inversion of the cuvette and the reaction was allowed to run for 

approx. 12 minutes. The UV-Vis absorption was measured and the absorbance difference was 

calculated (see Figure 4-2 and Table S4-1). Control experiments were performed according to 

the same procedure, using 50 µg/mL polymer solutions in an ethanol/water mixture (70:30). 

 

Synthesis of PGA-PS (Synthesis of PSar124-b-PGlu33): PGA-PS was synthesized according to 

the procedure published in the literature.
79

 For simplification, PSar124-b-PGlu33 was 

abbreviated as PGA-PS.  

 

Cell Culture: HeLa cells were cultured at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s 

medium (DMEM), supplemented with 10% FBS, 100 U/mL penicillin and 100 μg/mL
 

streptomycin. 

 

Preparation of HEPES-buffered glucose (HBG): HEPES (2.38 g, 10 mmol) and glucose 

monohydrate (28.95 g, resulting in 5 % w/v glucose) were dissolved in bi-distilled H2O 

(490 mL) and the pH was adjusted to 7.4 by addition of NaOH (approx. 10 mL, 0.5 M). 
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Metabolic activity assay of Zr-fum NPs and Zr-fum@polymer NPs (MTT assay): HeLa 

cells were seeded in 96-well plates at a density of 5.000 cells/ well 24 h prior to incubation 

with the different particle concentrations. Before incubation with the Zr-fum NPs, medium 

was replaced with 100 µL fresh medium. Particles diluted in 20 µL HBG were added to each 

well and incubated on cells for 24 h at 37 °C and 5% CO2. 100 μL of MTT solution (3-(4,5-

dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide in medium; 0.5 mg/mL) were added 

after removing the medium. After an incubation time of 2 h, unreacted dye and medium were 

removed and the 96-well plates were frozen at −80 °C for at least 30 min. The purple 

formazan product was then dissolved in 100 μL DMSO (dimethyl sulfoxide) per well and 

quantified measuring absorbance using microplate reader (Tecan SpectraFluor Plus, Tecan, 

Switzerland) at 590 nm with background correction at 630 nm. All studies were performed in 

triplicate. The relative cell viability (%) related to control wells treated only with 20 μL HBG 

was calculated as ([A] test/[A] control) × 100%. 

 

Fluorescence (cross-) correlation spectroscopy (FCS/FCCS): The fluorescence correlation 

measurements (FCS) and dual-color fluorescence cross-correlation measurements (FCCS) 

were performed on a home-built microscope as described elsewhere.
80

  The following laser 

lines were used for excitation: 470-nm (LDH-P-C-470) and 635-nm (LDH-P-C-635b) pulsed 

laser diodes for FITC-dye labeled IgG / Albumin and Atto 647N-dye labeled Zr-fum 

excitation, respectively. The laser power was measured at the sample using a slide power 

meter (S170C-Thorlabs) to be ~ 4.5 and 17.5 µW for the 470 and 635-nm lasers, respectively. 

The measurements were performed using a 60x water, NA 1.27 objective (Plan Apo 60 x WI, 

Nikon). The raw optical data and subsequent correlation analysis were performed with our 

PIE analysis with Matlab (PAM) software.
81

 PAM is a stand-alone program (MATLAB; The 

MathWorks GmbH) for integrated and robust analysis of fluorescence ensemble, single-

molecule, and imaging data. 

The  FCCS data were acquired by recording the detected photons of two single photon 

avalanche photodiodes (SPADs) on two separate time correlated single photon counting cards 

(TCSPC, SPC-150 Becker and Hickl) for a period of 15 minutes. Similarly, the FCS data 

were acquired by recording the photons with a single APD on a TCSPC card for a period of 

15 minutes. Measurements were conducted in HEPES buffered glucose (HBG) for simulating 

physiological body conditions. 
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A three-component model assuming a 3D Gaussian focus shape was used for fitting the 

autocorrelation functions (ACFs) (eq. 4-1).   

 

𝑔(𝜏) =
𝛾

(𝑁1 + 𝑁2 + 𝑁3)
2 ∙[(𝑁1 (1 + 4𝐷1∙ 𝜏
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2 )
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∙ (1 +
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1

2
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−
1

2
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𝜔𝑟
2 )

−1
∙ (1 +
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2 )

−
1

2
)]        (4-1) 

 

N is the apparent average number of particles in the observation volume. The N1 fraction 

refers to freely diffusing FITC, which accounts for the protein labeling efficiency, the N2 

fraction refers to the freely-unbound labeled proteins, and N3 refers to the proteins bound to 

the Zr-fum. D1, D2, and D3 refer to the respective diffusion coefficients of N1, N2, and N3, 

respectively. The time delay of the autocorrelation is represented by 𝜏. 𝜔𝑟 and 𝜔𝑧 are the 

lateral and axial focus sizes, respectively, defined as the distance from the focus center to the 

point where the signal intensity has decreased to 1/e
2
 of the maximum. The shape factor 𝛾 is 

2
-3/2

 for a 3D Gaussian. The correlation at zero lag time was omitted from analysis due to the 

contribution of uncorrelated shot noise. The fitting was used to extract the fraction of freely 

diffusing FITC-dye labeled IgG / Albumin and FITC-dye labeled IgG / Albumin bound to the 

Zr-fum.  

Confocal laser scanning microscopy: On the day prior to the experiment, HeLa cells were 

seeded in 8 well-chamber slides (Thermo Fisher Scientific, 20.000 cells in 300 µL medium 

per well). Cells were incubated  at 37 °C and 5% CO2. On the next day, the medium was 

aspirated and 300 µL Zr-fum@polymer (50 µg/mL in medium) was added to each respective 

well. After 30 min of incubation (37 °C, 5% CO2), each well was washed once with 400 µL 

PBS and cells were subsequently fixated with 4% paraformaldehyde in PBS (30 min 

incubation at RT). After fixation, each well was once again washed with 400 µL PBS and cell 

nuclei were stained with DAPI (2 µg/mL), F-Actin was labeled with phalloidin-rhodamine 

(1µg/mL). After 30 min of incubation (light protection, RT), the staining mixture was 

aspirated and replaced with 300 µL PBS per well. Images were recorded utilizing a Leica-

TCS-SP8 confocal laser scanning microscope equipped with an 

HC PL APO 63x 1.4 objective. DAPI emission was recorded at 460 nm, calcein at 530 nm 

and rhodamine at 580 nm. Afterwards, all images were processed by LAS X software from 

Leica. 
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Flow Cytometry: On the day prior to the experiment, HeLa cells were seeded in a 24 well 

plate (60.000 cells in 1 mL medium per well).  Next day, the medium was aspirated and 

replaced with 475 μL fresh medium. 25 μL of 1 mg/mL Zr-fum@polymer solution was added 

to the wells (2 wells per polymer). After 30 minutes of incubation, medium was aspirated and 

cells were washed with 1 mL PBS. Cells were then trypsinated with 200 μL trypsin/EDTA (5 

min, 37 °C). 400 μL medium was added to each well and the 2 wells per polymer were 

unified. Cells were centrifuged for 5 min at 1500 rpm and room temperature. The supernatant 

was removed, cells resuspended in 700 μL FACS-buffer (10 % FCS in PBS) and stored on 

ice. Shortly before the analysis, 2 µL 1 mg/mL DAPI was added to each vial. Utilizing the 

FlowJo 7.6.5 flow cytometry analysis software, cells were appropriately gated by 

forward/sideward scatter and pulse width for exclusion of cell aggregates. DAPI was used to 

discriminate between viable and dead cells. Only isolated viable cells were taken into 

evaluation. The threshold level for cellular association of calcein was set based on the 

fluorescence background of HBG treated negative control cells. 
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4.6. Appendix 

 

Figure S4-1. DLS size distribution (black) and Gauss-fit (red) of Zr-fum NPs in ethanolic dispersion. 

 

 

Figure S4-2. SEM overview of Zr-fum NPs with size distribution (inset) determined from the region of interest 
(yellow box). 
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Figure S4-3.  XRD pattern of Zr-fum NPs compared to calculated Zr-fum pattern. 

 
Figure S4-4. PXRD spectra of unfunctionalized Zr-fum and Zr-fum@polymer. 
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Figure S4-5. SEM comparison between Zr-fum@polymer NPs: Zr-fum@BPEI (top left); Zr-fum@PAMAM (top 
right); Zr-fum@PAA (bottom left); Zr-fum@PGA (bottom right). 

 

Figure S4-6. Full Raman spectra (as measured) of unfunctionalized Zr-fum and Zr-fum@polymer. 
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Figure S4-7. Partial region of Raman spectra (normalized to internal standard: fumaric acid C-H vibration at 
3064 cm

-1
) with indications for strongly appearing –CH3 and –CH2 stretching vibrations.

1
 Blue box shows more 

pronounced -CH3 bonds for PEG and Tween®, which results from EtOH residues after drying. For legend, see 
Figure S4-6. 

 
Figure S4-8. FTIR spectra of unfunctionalized Zr-fum and Zr-fum@polymer. 



4. Self-assembly of different polymers on MOF nanoparticles for better control of 
interactions at the biointerface 

 

136 

 

 
Figure S4-9. Nitrogen sorption isotherms of Zr-fum NPs in comparison to Zr-fum@polymer NPs. 

 

Figure S4-10. TGA comparison of the different Zr-fum@polymer fomulations. 
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Figure S4-11. TGA of Zr-fum NPs in comparison to Zr-fum@polymer NPs. 

 

Table S4-1. Determination of formic acid concentration in supernatant of different polymer coating reactions.  

The calculations were done using Mega-Calc
TM

 (freeware supplied by Megazyme). A1 represents the absorption 
value before addition of formate dehydrogenase, A2 represents the absorption value after the completed reaction 
(approx. 12 min). 

  Blank absorbance values (EtOH/H2O 70:30)   

    A1 A2     

    0,4669 0,7127     

            

Absorbance values (at 340 nm; Reference at 450 nm) Results   

Sample  A1 A2 
  

   Abs 

(Formic Acid) 

Formic Acid 

(g/L) 

Zr-fum@PGA 0,4873 1,0151   0,2820 0,018 

Zr-fum@PAMAM 0,5322 1,0099   0,2319 0,014 

Zr-fum@BPEI 0,5618 1,0539   0,2463 0,015 

Zr-fum@PAA 0,5259 1,4079   0,6362 0,040 

Zr-fum 0,5326 0,8752   0,0969 0,006 

Average amount of formic acid after polymer coating of 1 mg MOF (in 1 mL coating supernatant, taking PGA, PAMAM, BPEI 
into consideration): 

(18 µg + 14 µg + 15 µg)/3 = 16 µg 
Total amount of coordinatively bound formic acid per mg (after substraction of free formic acid): 

16 µg – 6 µg = 10 µg 
→ 10 µg formic acid / 1 mg MOF ≈ 1 w% 
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Figure S4-12. SEM images of Zr-fum@PGA-PS NPs at two magnifications (left: × 50000; right: × 150000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Self-assembly of different polymers on MOF nanoparticles for better control of 
interactions at the biointerface 

 

  139 

 

↑Zr-fum@(+)polymer ↑ 

 

↓ Zr-fum@(-)polymer↓ 

 
Figure S4-13. Titration curves of unfunctionalized Zr-fum and Zr-fum@polymer. Size (Z-average) and Zeta-
potential is plotted against the pH of the dispersion. Zr-fum@(+)polymer NPs are plotted at the top, 
unfunctionalized Zr-fum in the middle and Zr-fum@(-)polymer at the bottom of the figure. 

 

Zr-fum 
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Figure S4-14. The detected photon-macrotime counts of 100 nM FITC-IgG (left) and 100 nM FITC-albumin 

(right) in the absence or presence of 10 µg Zr-fum and Zr-fum@polymer NPs. 

 

Table S4-2. The values obtained from the FCS measurements, applying a 3-component diffusion fit, where N1 is 

the fraction of free dye, N2 is the FITC-IgG fraction, and N3 is the FITC-IgG fraction interacting with the Zr-fum 

and Zr-fum@polymer NPs.  

 

N1 N2 N3 Ratio = N3 / (N2 + N3) 

IgG 0.46 1.41 0.01 0.01 

IgG + Zr-fum 0.11 0.18 0.32 0.64 

IgG + Zr-fum@PAA 0.09 0.20 0.36 0.64 

IgG + Zr-fum@PGA 0.17 0.35 0.39 0.53 

IgG + Zr-fum@BPEI 0.14 0.30 0.26 0.46 

IgG + Zr-fum@PAMAM 0.10 0.30 0.33 0.52 

IgG + Zr-fum@PGA-PS 0.32 0.81 0.09 0.10 
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Figure S4-15. MTT cell viability assays of all Zr-fum@polymer formulations as well as unfunctionalized Zr-
fum. No significant toxicity can be observed up to concentrations of 0.4 mg/mL, while at highest concentration 
of 1 mg/mL effects on metabolic activity become apparent.   

 

 

Theoretical Estimate (wt% formic acid per NP) 

 

Figure  „Theoretical Estimate“: Schematical drawing of spherical Zr-fum NPs with radius r = 23 nm, consisting of unit 
cells with edge length d = 1,79 nm. 
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Assuming Zr-fum NPs to be spherical with an average diameter of 46 nm (from SEM; 

Figure S4-9), one derives a particle surface and volume of: 

 

𝑽𝑵𝑷 =
𝟒

𝟑
𝒓³𝝅 = 

𝟒

𝟑
(𝟐𝟑 𝒏𝒎)³𝝅 = 𝟓, 𝟏 ∙  𝟏𝟎𝟒 𝒏𝒎³ 

𝑺𝑵𝑷 = 𝟒𝒓²𝝅 = 𝟒(𝟐𝟑 𝒏𝒎)
𝟐𝝅 = 𝟔, 𝟔𝟓 ∙  𝟏𝟎𝟑 𝒏𝒎² 

 

The dimensions of a Zr-fum cubic unit cell were taken from Wißmann et al.
2
 resulting in a 

volume of: 

 

𝑽𝑼𝑪 = 𝒅³ =  (𝟏, 𝟕𝟗 𝒏𝒎)³ = 𝟓, 𝟕𝟒 ∙ 𝒏𝒎³ 

 

This results in a total number of unit cells per particle: 

 

𝑵𝒕𝒐𝒕𝒂𝒍 =
𝑽𝑵𝑷
𝑽𝑼𝑪

=
𝟓, 𝟏 ∙  𝟏𝟎𝟒 𝒏𝒎³

𝟓, 𝟕𝟒 ∙ 𝒏𝒎³
= 𝟖𝟖𝟖𝟓 

 

Since the area of one face of cubic unit cell is much smaller than the external particle surface  

𝑺𝑼𝑪  ≪  𝑺𝑵𝑷 

it can be assumed that the planar external cube surfaces sum up to the curved external particle 

surface. The total number of unit cells on the external surface (which can carry formic acid) 

can be calculated, assuming the surface of a unit cell on the external surface to be 

 

𝑺𝑼𝑪 = 𝒅² = (𝟏, 𝟕𝟗 𝒏𝒎)
𝟐 = 𝟑, 𝟐 𝒏𝒎² 

 

resulting in 

 

𝑵𝒔𝒖𝒓𝒇𝒂𝒄𝒆 =
𝑺𝑵𝑷
𝑺𝑼𝑪

=
𝟔, 𝟔𝟓 ∙  𝟏𝟎𝟑 𝒏𝒎²

𝟑, 𝟐 𝒏𝒎²
= 𝟐𝟎𝟕𝟖 

 

Considering 6 cubic faces of the unit cell as well as 6 fumaric acids, one fumaric acid (the one 

at the external NP surface) will be theoretically replaced by formic acid. This means 2078 UC 

per NP consist of [Zr6O4(OH)4(O2C–(CH)2–CO2)5(HCOO)] = ①, while 8885 – 2078 = 6807 

UC contain the usual chemical formula [Zr6O4(OH)4(O2C–(CH)2–CO2)6] 
7
 = ②. 
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Taking into account the different atomic masses of internal (𝑴②) and external (𝑴①)unit 

cells, the total atomic mass per NP  is: 

 

𝑴𝒕𝒐𝒕𝒂𝒍 = 𝑴① +𝑴②  = 𝟐𝟎𝟕𝟖 × 𝟏𝟐𝟗𝟑 𝑫𝒂 + 𝟔𝟖𝟎𝟕 × 𝟏𝟑𝟔𝟐 𝑫𝒂 = 𝟏𝟏, 𝟗𝟔 ∙  𝟏𝟎
𝟔 𝑫𝒂 

 

The atomic mass of formic acid per particle can be calculated by: 

 

𝑴𝒇𝒐𝒓𝒎𝒊𝒄 𝒂𝒄𝒊𝒅 = 𝟐𝟎𝟕𝟖 × 𝟒𝟓 𝑫𝒂 = 𝟗, 𝟒 ∙  𝟏𝟎
𝟒 𝑫𝒂 

 

The weight percent (w%) of formic acid in the material is therefore given by: 

 

𝑴𝒇𝒐𝒓𝒎𝒊𝒄 𝒂𝒄𝒊𝒅

𝑴𝒕𝒐𝒕𝒂𝒍
=

𝟗, 𝟒 ∙  𝟏𝟎𝟒 𝑫𝒂

𝟏𝟏, 𝟗𝟔 ∙  𝟏𝟎𝟔 𝑫𝒂
= 𝟎, 𝟖 𝒘% 

 

This estimation is in very good agreement with experimental data, revealing approx. 1 w% of 

formic acid released by the coating procedure. 
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Microporous and Mesoporous Materials 2012, 152, 64-70. 
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5. Kinetic analysis of the uptake and release of fluorescein by 

metal-organic framework nanoparticles 

 

This chapter is based on the following publication: 

 

Tobias Preiß, Andreas Zimpel, Stefan Wuttke, Joachim O. Rädler, Materials 2017, 10, 216. 

 

 

 

5.1. Introduction 

The widespread use of porous materials in the field of separation, storage and catalytic 

process technologies requires a thorough understanding of the adsorption and desorption of 

guest molecules within the porous structure. In this context, metal-organic frameworks 

(MOFs) are an interesting class of materials, as they are crystalline and hence possess a 

regular porous structure.
1–4

 In MOFs, inorganic metal nodes connected by organic linkers 

create a diverse but well-defined chemical environment, which allows specific interactions 

with guest molecules. As a matter of fact, MOFs exhibit some of the highest porosities (1000 

to 7000 m²/g) of all known porous solids, with pore sizes in the range of 0.3 to 6 nm.
5
 Their 

high porosities and, in particular, the combination of high surface area with tunable pore size 

render MOFs ideal for applications in gas storage and separation
6,7

, catalysis
8–10

, sensing
11,12

, 

electronics
13

, drug delivery
14–16

 and X-ray analysis of the structures of guest molecules within 

the MOF scaffold
4,17

. 
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Recently, several reports have pointed to the general applicability of MOF nanoparticles 

(MOF-NPs) for drug delivery, as they have high loading capacities and are functionalizable, 

and certain structures have been shown to be biocompatible (e.g. MIL-100(Fe); MIL stands 

for Materials of Institute Lavoisier)
11,15,16,18–21

. MOF-NPs have been loaded with various 

drugs, including cisplatin
22

, 5-fluorouracil
23

, ibuprofen
24

, doxorubicin and cidofovir
25

. Both 

MIL-100(Fe) and MIL-101(Cr) represent good model materials for drug delivery, due to their 

large pores (diameters of 25-29 Å for MIL-100 and 29-34 Å for MIL-101) and window sizes 

(diameters of 5-9 Å for MIL-100 and 12-17 Å for MIL-101)
26,27

. MIL-100 and 101 show high 

chemical stability and typically large BET surface areas of up to 6000 m²/g for the bulk 

material (2000-4000 m
2
/g as nanoparticles)

28–31
. Indeed, in many respects, MIL-100(Fe) NPs 

are the most promising MOF-based vehicles available for drug delivery
25,32

. 

The ability of NPs made of solid materials to load and then specifically release drug 

molecules within the human body has been at the forefront of biomedical nanotechnology for 

more than a decade.
33–39

 Yet studies on the loading and release kinetics of drugs in porous 

nanocarriers are very rare, even for established systems based on polymer, silica or liposome 

particles
34,40–42

. One basic question that remains open is how pore size affects uptake and 

offloading. It is known that, within porous materials, diffusion coefficients are reduced by a 

factor 10
4
, as transport becomes an effectively 1D diffusion process

43
. Furthermore, the 

affinity of the cargo molecules for the internal surface of the porous material (host-guest 

interaction) is likely to play an important role in determining the kinetics of transport as well 

as the loading capacity.
44

 It is conceivable that molecules undergo repeated cycles of 

absorption and desorption, and brief spells of free diffusion before an equilibrium situation is 

reached. In addition, the conditions will change during the course of in-vivo delivery. Affinity 

is likely to depend on the pH value of the environment, owing to the influence of pH on the 

charge of both cargo and MOF. As the pH varies within the human body, release kinetics will 

vary with local acidity. With the use of MOF-NPs as reliable and tunable drug carrier systems 

in mind, characterization of host-guest interaction and release is essential for optimized 

dosing. 

In this work, we study the loading and release kinetics of MIL-100(Fe) and MIL-101(Cr). Our 

goal is to elucidate -- on the basis of these representative MOF-NPs -- the mechanisms and 

limiting factors that drive and constrain, respectively, molecular transport in and out of porous 

NPs, and compare these results with theoretical estimates. To this end, we characterize the 

MOF-NPs using transmission electron microscopy (TEM), dynamic light scattering (DLS) 

and X-ray diffraction (XRD), and measure the uptake of fluorescein via fluorescence 
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spectroscopy at various pH values. We find that MIL-100(Fe) and MIL-101(Cr) NPs have 

well defined size distributions and crystallinity, and remain crystalline in buffer. DLS and 

zeta-potential measurements show that NP agglomeration is strongly pH dependent. By 

performing titration studies we determined the dissociation constants for fluorescein 

(disodium salt) and find that the NPs have a high payload capacity, which is compatible with 

the internal area estimated from BET measurements. Kinetic fluorescence studies show fast 

loading kinetics with high affinity in (unbuffered) distilled water (at low pH) and slower 

loading kinetics (i.e. lower affinity) at high pH (7.4 – 8.4), while release shows the converse 

behavior: high affinity and slow release at low pH (and in water). We show that loading and 

release kinetics can be theoretically described by diffusion to target, followed by restricted 

internal diffusion and equilibrium binding to the internal surface (physisorption). These 

findings demonstrate that physicochemical studies of MOF-NP loading enable rational, 

predictive design of release scenarios, particularly with regard to varying pH conditions. 
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5.2. Results and Discussion 

In all following experiments, we study MOF-NPs of types MIL-100(Fe) and MIL-101(Cr), 

which were synthesized as described in Wuttke et al.
45

 Prior to the loading and release 

studies, we characterized the size distribution of the MOF-NPs using DLS, FCS and TEM
46

, 

their major structural features by XRD, and their porosities by measuring nitrogen adsorption 

and deriving sorption isotherms to confirm the expected regular porosity of MOF-NPs. 

 

 

Figure 5-1. a) & b) TEM images of the two MOP-NP types used here show mesoporous structure and shape. c) 

Simplified depiction of the crystalline structure with hollow pores taking up most of the volume; yellow rods 

with red ends: organic linker, blue dots: metal centers. d) & e) Size histogram of MOF-NPs based on particle 

analysis of electron micrographs yields a typical size for MIL-100(Fe)(Fe) of 53nm and for MIL-101(Cr) of 

19nm. 

 

TEM images of MIL-100(Fe) and MIL-101(Cr) NPs reveal particles with an approximately 

spherical shape (Figure 5-1). Moreover, the TEM images indicate high crystallinity of the 

particles, as evidenced by the presence of electron diffraction fringes. We analyzed the size 

distribution based on different TEM images of MOF-NPs (see SI)
46

. Over 10,000 particles 

were examined for their projected size, assuming sphericity and employing image analysis for 

separation of closely adjacent particles (for details, see SI). The size histograms of both MOF-

NPs reveal a slightly polydisperse (𝜎 > 5% 47,48
) distribution (Figure 5-1 d) and e)). MIL-

100(Fe) NPs have a mean diameter of 52.4 nm (𝜎 = 32%, FWHM 30.9 – 69.5 nm), whereas 

MIL-101(Cr) NPs have a mean size of 18.9 nm (𝜎 = 35%, FWHM 10.3 – 25.7 nm). We 

utilized this information to estimate numbers of NPs per volume given an estimate of NP 
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mass based on the crystallographic mass densities
26,27

. For MIL-100(Fe) NPs we used a mean 

radius of 𝑟𝑀𝐼𝐿−100 = 26.5 𝑛𝑚 and a mass density of 𝜌𝑀𝐼𝐿−100 = 0.98 𝑔/𝑚𝑙
26

. We obtain a 

mean mass per NP of 𝑚𝑀𝐼𝐿−100 = 76 ⋅ 10
−18g and thus a number density of 𝑁𝑀𝐼𝐿−100 =

1.31 ⋅ 1013 NPs per mg (for details, see SI). This corresponds to an NP number concentration 

of 𝑛𝑀𝐼𝐿−100 = 21.7 𝑝𝑚𝑜𝑙. Using the corresponding values 𝑟𝑀𝐼𝐿−101 = 9.45 𝑛𝑚 and 

𝜌𝑀𝐼𝐿−101 = 0.62 𝑔/𝑚𝑙
27

, we derived a mean particle mass of 𝑚𝑀𝐼𝐿−101 = 2.2 ⋅ 10
−18𝑔 and 

thus 𝑁𝑀𝐼𝐿−101 = 4.56 ⋅  10
14 particles per milligram (𝑛𝑀𝐼𝐿−100 = 760 𝑝𝑚𝑜𝑙). These values 

were subsequently used to calculate molecular loading per NP. 

To complement the information derived from 2D projections of NPs imaged by TEM, DLS-

based analysis of MOF-NPs in solution (see SI) provided information on their diffusive 

behavior and hence on the hydrodynamic radius of the NPs. In accordance with results 

reported in the literature
45

, MIL-100(Fe) and MIL-101(Cr) NPs have hydrodynamic diameters 

of about 124 nm and 69 (±19) nm respectively. Comparison of these observations with the 

TEM size distribution results suggests that the NPs tend to form small agglomerations in 

unbuffered water. XRD measurements (see SI) confirm the crystallinity of the MOF-NPs 

observed in the TEM images
26,27

. 

In order to verify the stability of the particles over the time scales employed for loading and 

release, XRD measurements were performed on NPs that had been incubated in buffer for 1 h. 

The results (see SI) show no significant change in the diffraction pattern, indicating that there 

is no structural change in the NPs. 

On examining the size distributions of the NPs in the presence of various concentrations of 

fluorescein with DLS, we noted that the size of MIL-100(Fe) NPs increases slightly with 

increasing concentrations of fluorescein. This indicates that NPs tend to aggregate under 

varying fluorescein concentrations. One possible explanation is the alkalinity of fluorescein 

disodium salt, which will lead to concentration-dependent changes in pH. Electrostatic 

interactions between charged molecules or “crosslinking” of MOF NPs by fluorescein 

molecules, as has been found for, e.g., doxorubicin
49

 might also contribute to this effect. In 

order to examine these possibilities more closely, we performed DLS and concurrent zeta-

potential experiments on suspensions of MOF-NPs in water. The pH was increased 

incrementally in steps of 0.5 units (the initial suspension of MOFs in water has a pH of 2) by 

adding NaOH (see SI), allowing us to study the pH dependency of effective particle size in a 

well-defined system. DLS analysis yields an initial size of about 200 nm for MIL-100(Fe) and 

about 50 nm for MIL-101(Cr). With increasing alkalinity the zeta-potential drops, and below 

a value of about ±25 mV particles tend to agglomerate. This finding is in agreement with the 
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previous observation that a zeta-potential of greater than 25 mV (absolute value) is required 

for NPs to be stabilized by electrostatic repulsion.
35,50

 In the case of MIL-100(Fe) NPs, the 

zeta-potential drops to negative values at pH values higher than 5.5. This leads to newly 

emerging repulsion forces, so that agglomerates tend to separate again. The strong 

dependence of particle size and zeta-potential on the pH of the local environment is taken into 

account in our theoretical model (see below), but this could be avoided by appropriate coating 

of the MOF-NPs
32,45,51

. 

 

 

Figure 5-2. a) & b): Amounts of fluorescein loaded into MOF NP (obtained from the difference in absorption 

between the starting fluorescein solution and the supernatant recovered after loading) as a function of external 

fluorescein concentration fit to Langmuir-type curves. The calculated dissociation constants and maximum 

payload capacities per mg of NPs are: kD
MIL100 = 11 µM, kD

MIL101 = 136 µM, Pmax
MIL100 = 649.4 µg, Pmax

MIL101 =
413.5 µg. c) & d): Measurements of nitrogen gas absorption by the MOF-NPs. The BET surface area obtained 

for MIL-100(Fe) NPs is 2004 m²/g and for MIL-101(Cr) is 3205 m²/g. Taking both into account yields a mean 

area occupied by one fluorescein molecule of 2 nm² for MIL-100(Fe) and 5 nm² for MIL-101(Cr). 

 

We then turned to the loading behavior, and determined the dissociation constants and the 

maximum capacities of MOF-NPs for uptake of fluorescein. For this purpose NP suspensions 

that had been incubated for a certain time (24 h) in fluorescein solutions of different 

concentrations were centrifuged, and the fluorescein remaining in the supernatant was 
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quantified by UV-VIS absorption using a calibration curve based on a fluorescein dilution 

series (see SI). The difference in absorbance between the starting solutions and the 

supernatants recovered after centrifugal removal of both types of MOF-NPs is shown in 

Figure 5-2 a) and b) (for details see SI). We used initial fluorescein concentrations of between 

20 µg/ml and 1500 µg/ml. Each data point represents the average of three independently 

prepared and measured samples. The data were fitted to a Langmuir-type sorption function: 

𝑷(𝒄) =
𝑷𝑴𝒂𝒙 ⋅ 𝒄

𝒄 + 𝑲𝑫
  

Here c is the concentration of fluorescein, 𝑃𝑀𝑎𝑥 is the saturation value of adsorbed fluorescein 

and 𝐾𝐷 is the dissociation constant (i.e. the concentration at which half of the maximal 

possible fluorescein is adsorbed). Both MIL-100(Fe) with 𝐾𝐷
𝑀𝐼𝐿−100 = 4.4 µg/ml =

11 µM and MIL-101(Cr) with 𝐾𝐷
𝑀𝐼𝐿−101 = 11.7 µg/ml = 36 µ𝑀 were found to have low 

dissociation constants, both compared to that of doxorubicin bound to MIL-100(Fe) as 

determined by Anand et al. [91 µ𝑀] and in light of its high maximal capacity for adsorbed 

fluorescein (𝑃𝑚𝑎𝑥
𝑀𝐼𝐿−100 = 649.4 µg = 1.6 µmol and 𝑃𝑚𝑎𝑥

𝑀𝐼𝐿−101 = 413.5 µg = 1.0 µmol).
49

 We 

convert the adsorbed mass of fluorescein per mass unit of nanomaterial into a molar ratio 

(number of adsorbed fluorescein molecules per NP) using the molar mass of the NPs obtained 

from TEM analysis and 𝑀𝐹𝐶 = 412.3 𝑔/𝑚𝑜𝑙 for fluorescein disodium (see SI for further 

details). The calculated number of adsorbed fluorescein molecules per single NP is shown in 

Figure 5.2 (right axis). The large numbers (on the order of 10
3
 to >10

4
) indicate the high 

payload capacity of the MOF NPs. Note that these loading capacities correspond to a weight 

payload ratio (load weight/carrier weight) of 41% for MIL-101(Cr) and 65% for MIL-

100(Fe). The latter is in good agreement with published data for other guest molecules
25,24,49

. 

We also constructed N2 isotherms (Figure 5-2) for comparison of the amount of loaded 

fluorescein molecules with the accessible internal surface area of the MOF-NPs. The 

corresponding BET surface area is estimated to be 𝑆𝐵𝐸𝑇  = 2004 m
2/g for MIL-100(Fe) and 

𝑆𝐵𝐸𝑇 = 3205 m
2/g for MIL-101(Cr). By combining the maximum payload capacity per mg 

NPs with the BET surface results, we calculate the area occupied by one fluorescein molecule 

(AFC) for both types of MOF-NPs: 𝐴𝐹𝐶
𝑀𝐼𝐿−100 = 𝑆𝐵𝐸𝑇

𝑀𝐼𝐿−100/𝑃𝑚𝑎𝑥
𝑀𝐼𝐿−100 ⋅ 1mg = 2 nm2 and 

𝐴𝐹𝐶
𝑀𝐼𝐿−101 = 𝑆𝐵𝐸𝑇

𝑀𝐼𝐿−101/ 𝑃𝑚𝑎𝑥
𝑀𝐼𝐿−101  ⋅ 1mg = 5 nm2. For comparison, a single fluorescein 

molecule has an approximate projection area of about 1.1 nm
2
 (see SI). Hence, we can assume 

that the internal surface of both MOF-NPs is densely packed with fluorescein molecules. 
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(a) 

(b) 

(c) 

Figure 5-3. a) Fraction of fluorescein released from prefilled MOF-NPs after 90 min in buffer (HBG) at 

different pH, determined by absorption measurements of supernatant containing free fluorescein. While MIL-

101(Cr) (circles) shows almost no (<3%) release of fluorescein at any pH tested, for MIL-100(Fe) (squares) we 

observed a significant increase in release with rising pH (exponential fit to guide the eye). b) Fluorescence 

quenching over the time course of release. MIL-100(Fe) nanoparticles filled with fluorescein were suspended in 

HBG buffered at different pHs. In water there is no increase in fluorescence intensity over time, indicating that 

there is no release. c) Fluorescence quenching in the time course of loading. Fluorescein solution in HBG buffer 

at different pH and in water before and after addition of MIL-100(Fe) nanoparticles. In water the loading is the 

fastest and most efficient. In HBG at pH 4.1 to 6.2 it is slower and less efficient while at pH 7.1 to 8.4 no loading 

is observed at all. 

 

We next addressed the questions of whether the entire payload can be released by reducing 

the external concentration of fluorescein, and whether this occurs on a reasonable timescale. 

To investigate offloading we measure the amounts of fluorescein molecules released by both 

types of MOF-NPs. To this end, MOF-NPs filled with fluorescein were resuspended in HBG 

buffer (20 mM HEPES + 5% glucose) at the physiologically relevant pH values of 5.1 (late 
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endosome) , 6.2 (early endosome) and 7.4 (blood)
52

. After 90 min, particles were removed by 

centrifugation and the absorbance of the supernatant was measured via UV/VIS (Figure 5-3). 

As a reference for 100% release the absorbance of fluorescein solutions prepared in HBG at 

the same pH and concentration as the test solutions were used. In the case of MIL-101(Cr), 

almost no release (<3%) is observed within 90 min, while for MIL-100(Fe) the amount of 

released fluorescein increased with rising pH from below 3% at pH 5.1 to about 40% at 

pH 7.4. Thus it appears that fluorescein binding to MIL-101(Cr) is essentially irreversible 

under our conditions, or at least exhibits very extremely long off-times. 

The pH-dependent release from MIL-100(Fe) deserves further attention. We used time-

resolved fluorescence measurements to determine the kinetics of MIL-100(Fe) loading and 

release, making use of the fluorescence quenching effect observed when fluorescein 

molecules bind to the porous scaffold of MIL-100(Fe) NPs. Since MIL-101(Cr) does not 

exhibit this quenching effect, this assay cannot be used on these NPs. Prefilled MIL-100(Fe) 

NPs were centrifuged and the remaining supernatant was removed. Then the fluorescein-

loaded MIL-100(Fe) NPs were re-suspended in HBG buffer at various pH values (pH= 4.1, 

5.1, 6.2, 7.1, 7.4 and 8.4). Subsequently, the fluorescence signal originating from the 

fluorescein released from the MIL-100(Fe) NPs was recorded over time (see Figure 5-3b). 

The fluorescence signal at late time points increases with increasing pH, although the total 

amount of fluorescence released is more or less the same at all pHs tested, as can be seen 

when the fluorescence yield at the respective pH is taken into account. However, no rise in the 

fluorescence signal is seen in (unbuffered) water, indicating that no release occurs at all at the 

low pH of the suspension. When the fluorescence intensity after release into buffered medium 

was compared with that of the supernatant recovered after loading, it emerged that almost all 

of the fluorescein bound by the NPs is released again. When considering the release time 

traces in buffer with respect to the rates of fluorescein release, it is useful to normalize the 

data to the final fluorescence signal as shown in SI. Apart from the measurement at pH 8.4, all 

release curves end up stacked on top of each other, indicating that the temporal characteristics 

of cargo release are the same for all pH values. 

These results require a detailed look at the on-loading kinetic. Loading was monitored by 

measuring the fluorescence of a 2-ml aliquot of dilute (0.1 µM) fluorescein solution from the 

moment a small amount (10 µg) of MIL-100(Fe) NPs was mixed into the solution. This was 

done for fluorescein dissolved in water and in HBG buffered at pH values of 4.1, 5.1, 6.2, 7.1, 

7.4 and 8.4. The fluorescence of the solution was measured over time and normalized with 

respect to the fluorescence signal of the respective starting fluorescein solution without MOF-
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NPs (Figure 5-3c). This signal shows a significant decrease over time, which is interpreted as 

reflecting the decreasing amount of fluorescein remaining in solution due to uptake (and 

fluorescence quenching) by the MOF-NPs. Inspection of the normalized fluorescence signal 

after >400 s of loading time reveals a clear trend: In the case of distilled water (MilliQ), the 

fluorescence drops to ≈ 20% of the signal prior to NP addition. The drop is less obvious when 

loading is carried out in buffer (at all tested pHs from 4.1 to 8.4). In the latter case, however, a 

strong pH dependence is found: The initial level of fluorescence declines by about 35% at 

pH 4.1, the corresponding value at pH 6.1 is 14%, and no detectable change in fluorescence is 

observed at pH>7. We therefore assume there is no uptake into the NPs under alkaline 

conditions, and no quenching of fluorescein. Thus we find a clear dependence of the loading 

rate upon the pH, as revealed by the rate of decay of the fluorescence signal. To quantify this, 

we fitted an exponential decay to the data for the kinetics of loading (see SI). The resultant 

loading times are shown in Table 5-1. While loading takes place very rapidly in water, uptake 

rates in buffer fall with rising pH, and no loading can be quantified at pH 7.1 or higher.  

 

Table 5-1. Results obtained from single exponential decay fitting of loading kinetics in water and HBG buffer at 

pH 4.1 to 8.4. While the loading process is very fast in water, in buffers with defined pH values rates of loading 

fall with rising pH, and no loading is detectable at pH 7.1 or higher. 

 

pH Rates of decay [𝟏𝟎−𝟑 𝒔−𝟏]  
(from exponential fit) 

Characteristic 

time scales [s] 

Water 13 ± 10 74.5 ± 

4.1 10 ± 4 103.6 ± 

5.1 10 ± 2 98.5 ± 

6.2 6 ± 2 169.9± 

7.1 −  

7.4 −  

8.4 −  
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(a) 

 

(b) 

Figure 5-4. Fluorescence quenching in the time course of loading at various MIL-100(Fe) NP concentrations in 

HBG (pH 5.1) at fixed fluorescein to NP ratios. (a): Kinetics of the decay of fluorescein fluorescence after 

addition of NPs at time=0. Time traces were fitted with single exponential decay. (b): The resulting loading 

times (in black) show a characteristic concentration dependency. This fits well with a model (red) involving a 

three-step process: free external diffusion, internal diffusion within the lattice and adsorption to the MOF 

network. 

 

Next we asked whether the observed loading kinetics can be understood as a reaction-limited 

diffusion process. To this end, we studied the time course of the change in the fluorescein 

signal during uptake by MIL-100(Fe) at various NP concentrations but constant 

fluorescein/NP ratio. In this way, the average distance a fluorescein molecule has to diffuse 

before reaching the NP surface is varied. Experiments were carried out at constant pH of 5.1. 

The fluorescence time courses decay exponentially for all concentrations, as shown in 

Figure 5-4a. As before, we assume that fluorescein is quenched during adsorption to the 

internal MOF surface, and hence that the fluorescence decay is a measure for the rate of 

loading. Data were fitted by single exponentials and the derived characteristic loading times 

were plotted as a function of NP concentration (Figure 5-4b). If the loading is dominated by 

diffusion of molecules from the bulk phase to the MOF surface, we can calculate the on-

kinetics and compare the result to the data in Figure 5-4b. The expected time for diffusion to 

NP surfaces is estimated assuming that, for each NP, molecules are recruited from a spherical 

volume with a radius equal to half the average NP-NP distance. Diffusion of molecules in a 

spherical volume with radius R to a spherical absorber with radius r, in the center of that 

volume is described by the theory of Adam and Delbrück
53

. As further explicated in the SI we 

derive an estimate for the spherical radius R from the NP concentration. With this we obtain a 

typical diffusion-limited time for the capture of fluorescein (see also SI): 

𝝉𝒅𝒊𝒇𝒇(𝒄𝐍𝐏) ≈
𝝅 𝒓𝟐 𝝆

𝟏𝟖 𝒄𝑵𝑷 𝑫
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where D is the diffusion coefficient of fluorescein, r the NP radius, 𝜌 the NP mass density in 

𝑚𝑔/𝑐𝑚3 and cNP the NP concentration in 𝑚𝑔/𝑐𝑚3. Hence the external diffusion time is 

predicted to decay in proportion to cNP
-1

. The experimental loading times follow this 

prediction, as shown in Figure 5-4. The unbroken curve represents a fit to 𝐴 ∙ 𝑐𝑁𝑃
−1 + 𝜏0. The 

prefactor, A, is in good agreement with the time predicted assuming an effective density of 

𝜌 = 2𝑚𝑔/𝑐𝑚3 for the MOF-NPs (see also SI). However, there remains a finite loading time 

offset, 𝜏0, even at high NP concentrations, when diffusion time to the target becomes 

negligible. The latter offset time subsumes all internal processes that occur subsequently to 

diffusive transport to the NP, including internal (possibly retarded) diffusion through the 

porous lattice, sorption to the internal surface and possibly surface rearrangements. A 

schematic representation of the molecular transport processes during loading is depicted in 

Figure 5-5. If we consider a typical NP diameter to be of the order of 50 nm and assume that 

internal diffusion rates are 10,000 times slower than in water, we reach an additional delay 

time of the order of 1 ms. By comparison, the observed offset time, 𝜏0 ≈ 60 𝑠, is surprisingly 

long. A possible explanation is based on the assumption that slow relaxation processes take 

place in the adsorbed internal monolayer of fluorescein. 

 

 

Figure 5-5. Illustration of the loading process: diffusion of external fluorescein molecules into the nanoparticles, 

as described by the Adam& Delbrück model. This is followed by internal diffusion within the lattice and 

adsorption to the internal surface of the MOF NP. 
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5.3. Conclusion  

In summary, we have studied the loading (release) of a model guest molecule (fluorescein) 

into (from) porous MOF-NPs. We found for both studied NP types, MIL-100(Fe) and MIL-

101(Cr), that significant amounts of fluorescein can be adsorbed at room temperature. The 

measured loading capacities, in the range of >10³ molecules per NP, are compatible with the 

measured internal surface area available. The loading rate in the case of MIL-100(Fe) is found 

to be dependent on the pH and the solvent (water or HBG). Our studies show that optimal 

loading of fluorescein is achieved in MilliQ water, and no release from the NPs is detected in 

this case. Unlike loading, however, the pH dependence of payload release varies between the 

two types of NPs studied. Virtually no release from MIL-101(Cr) occurs at any of the pH 

values tested, whereas MIL-100(Fe) NPs release between 3% (at pH 5.1) and about 40% (at 

pH 7.4) of their adsorbed fluorescein. These findings suggest that the MOF scaffold can 

confine the guest molecule inside its pores through electrostatic interactions. Considering the 

versatile MOF chemistry as well as the different ways how to functionalize a MOF scaffold 

encompass a controlling of the MOF host-guest interactions. 

Thus MOF nanocarriers are good candidates for drug delivery and other applications where a 

high payload is desirable. In addition, MIL-100(Fe) shows release characteristics that can be 

tuned via pH. The latter result demonstrates that controlled release from MOF-NPs can be 

detected when loading and offloading of payload molecules by these nanocarriers are 

characterized. This information is vital for clinical applications as a possible drug delivery 

system. However, only a small number of relevant drugs exhibit optical fluorescence or 

optical adsorption changes that can be exploited for time-resolved release studies. Thus, there 

remains a need for alternative characterization methods to assess loading and release 

behavior, and to optimize MOF nanocarriers for regulated drug delivery using refined 

chemical functionalization. 
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5.4. Materials and Methods  

Chemicals: Chromium(III) nitrate nonahydrate (99%, Aldrich), terephthalic acid (98%, 

Aldrich), ethanol (99%, Aldrich)  Iron (III) chloride hexahydrate (Grüssing GmbH), trimesic 

acid (BTC, Aldrich). 

 

Synthesis of MIL-101(Cr) nanoparticles: The microwave synthesis of MIL-101(Cr) 

nanoparticles was based on a modified procedure reported in the literature.1 An amount of 

20 mL (1.11 mol) of H2O was added to 615 mg (3.70 mmol) terephthalic acid and 1.48 g 

Cr(NO3)3 · 9 H2O (3.70 mmol). This mixture was put into a Teflon tube, sealed and placed 

in the microwave reactor (Microwave, Synthos, Anton Paar). Four tubes were filled and 

inserted into the reactor: one tube contained the reaction mixtures described above; the 

remaining tubes including the reference tube with the pressure/temperature sensor (PT sensor) 

were filled with 20 mL H2O. For the synthesis, a temperature programme was applied with a 

ramp of 4 min to 180 °C and a holding time of 2 min at 180 °C. After the sample had cooled 

down to room temperature, it was filtrated and washed with 50 ml EtOH to remove residual 

e.g. terephthalic acid. For purification, the filtrate was centrifuged and redispersed in 50 ml 

EtOH three times. The sample was centrifuged at 20000 rpm (47808 rcf) for 60 min.  

 

Synthesis of MIL-100(Fe) nanoparticles: For the microwave synthesis of MIL-100 (Fe) 

nanoparticles, iron(III) chloride hexahydrate (2.43 g, 9.00 mmol) and trimesic acid (0.84 g, 

4.00 mmol) in 30 ml H2O were put into a Teflon tube, sealed and placed in the microwave 

reactor (Microwave, Synthos, Anton Paar).1 The mixture was heated to 130 °C under 

solvothermal conditions (p = 2.5 bar) within 30 seconds, kept at 130 °C for 4 minutes and 30 

seconds and the tube was cooled down to room temperature. For the purification of the solid, 

the reaction mixture was centrifuged (20000 rpm = 47808 rcf, 20 min), the solvent was 

removed and the pellet was redispersed in 50 ml EtOH. This cycle was repeated two times 

and the dispersed solid was allowed to sediment overnight. The supernatant of the sedimented 

suspension was filtrated (filter discs grade: 391, Sartorius Stedim Biotech) three times, 

yielding MIL-100(Fe) nanoparticles.  

 

Equilibrium measurements: Payload capacity was measured using an UV/VIS absorption 

spectrometer (NanoDrop 1000, Thermo Scientific). MOF-NPs (1 mg) in ethanol stock 

solution were centrifuged (45 min at 14,680 rpm, 20,238×g) to remove the supernatant 

ethanol. The pellet of MOF NPs was then dispersed in an aqueous dilution series of 



5. Kinetic analysis of the uptake and release of fluorescein by metal-organic framework 
nanoparticles 

 

  159 

fluorescein sodium salt (Sigma-Aldrich) by vortexing and sonication (Sonorex) and incubated 

for 96 h under continuous agitation in a tube rotator. The suspensions were then centrifuged 

as before to obtain the supernatant fluorescein solution. The absorption spectra of the 

supernatant, as well as that of the original fluorescein solution, were measured and the area 

under the curve between 400 to 550 nm, hereinafter denoted as absorbance (see SI), was 

determined (OriginPro 9 64Bit). This procedure was performed for a concentration series of 

fluorescein solutions ranging from 5 µg/ml to 1500 µg/ml. A straight line A = m c + t was 

fitted to the integrated absorbance of the original fluorescein solution concentration series, 

where A is the measured absorbance and c the concentration of the original fluorescein 

solution (inset in Fig S5-4b). 

To determine the amount of fluorescein released, 1 mg of MOF-NPs was first loaded with the 

compound by suspension in 1 ml of an aqueous solution (100 µg/ml) of fluorescein and 

incubated for 1 day on a rotary shaker at room temperature. Subsequently the nanoparticles 

were transferred into 1-ml aliquots of freshly prepared HBG buffer at pH 5.1, 6.2 and 7.4 by 

centrifugation (15/45 min at 20,238×g), removal of the supernatant and resuspension in 

buffer. This was followed by 90-min incubation on the rotary shaker at room temperature. 

After final removal of the nanoparticles by centrifugation for 45 min as before, the absorption 

spectrum of the supernatant was measured. As a reference for 100% release, the absorption 

spectra of 100 µg/ml solutions of fluorescein in HBG buffered at pH 5.1, 6.2 and 7.4 were 

also obtained. The spectra were integrated over the range between 400 and 550 nm (OriginPro 

9 64Bit) and the resulting absorbance of the released fluorescein solutions was compared with 

the reference absorbance at the same pH. 

 

Kinetics of loading/release 

Loading: For each measurement, a 2-ml aliquot of fluorescein solution (0.1 µg/ml ≈ 0.24 

µmol), made up in water or HBG at pH 4.1, 5.1, 6.2, 7.1, 7.4 or 8.4, was filled into a 

polystyrene cuvette. The fluorescence signal (divided by the instrument’s lamp reference to 

correct for fluctuations in lamp brightness) emitted upon excitation at 492 nm (slit width, 3 

nm) was recorded for at least 60 s in a Fluorolog 3 spectrometer (Horiba, Japan) at 512 nm. 

Then 2 µl of MIL-100(Fe) suspension (=10 µg) in aqueous ethanol (5 mg/ml) was quickly 

pipetted into the cuvette and mixed, and the instrument cover was closed again (denoted as 

t=0s). The fluorescence signal was then monitored over the course of at least 500 s. 

Release: For each measurement, 50-µg samples of NPs that had been incubated in 0.5 µg/ml 

fluorescein were recovered by centrifugation (for 15 min, as above), and the supernatant was 
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discarded. The pellet was then re-suspended in 10 ml of water or HBG (buffered at one or 

other of the pH values mentioned above) by sonication (see above), and a 2-ml portion was 

rapidly transferred to a cuvette and the fluorescence signal was measured for at least 700 s as 

described above. 

 

Sorption measurements (BET): Nitrogen sorption isotherms were measured at 77°K with a 

Quantachrome NOVA 4000e. Approximately 20 mg of nanoparticles was degassed at 150°C 

in high vacuum for at least 12 h prior to measurement. Evaluation of the sorption data was 

carried out using ASiQwin
TM

 software (Version 2.0, Quantachrome Instruments). BET 

surface areas were calculated with the linearized form of the BET equation. For all samples 

the correlation coefficient was higher than 0.999. Adsorption isotherms were used to calculate 

the pore size distribution by quenched-solid density functional theory (QSDFT, N2 at 77 K on 

carbon, cylindrical/spherical pores adsorption branch). 

 

Transmission Electron Microscopy (TEM): For TEM analysis 10 µl aliquots of ethanolic 

MOF-NP suspension were dried on 300 mesh Formvar/carbon copper grids (Ted Pella USA). 

Pictures of MOF NPs on grids were obtained on a JEM 1011 (JEOL, Tokyo, Japan) at an 

acceleration voltage of 80 kV. 

 

X-ray diffraction (XRD): For XRD measurements, approx. 1 mg of the powdered material 

was distributed homogeneously between two acetate foils (ultraphan) with a thickness of 

0.014 mm and fixed in the sample holder. The samples were the measured with the STOE 

transmission diffractometer system Stadi MP with Cu Kα1 radiation (λ = 1.54060 Å) and a 

Ge(111) single-crystal monochromator. Diffraction patterns were recorded with a DECTRIS 

solid-state strip detector MYTHEN 1K in omega-2-theta scan mode using a step size of 4.71° 

and a counting time of 80 s per step. 

 

Dynamic light scattering (DLS) and zeta-potential measurements: DLS and zeta-potential 

measurements of the particles in dispersion (approx. 0.1 mg/mL) were carried out using a 

Malvern Zetasizer (Nano Series, Nano-ZS). For measurements of the pH dependence of the 

zeta-potential, the instrument was equipped with a Malvern Multi-Purpose Titrator (MPT-2). 

A 10-mL aqueous suspension of nanoparticles (0.1 mg/mL) was set to the starting pH with 

HCl (0.1 M) and titrated in steps of 0.5 pH units with NaOH (0.01 or 0.1 M, respectively) up 

to the final pH value  
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5.6. Appendix 

MIL-100(Fe) 

 

MIL-101(Cr) 

Figure S5-1. Juxtaposition of exemplary original TEM image (left) and processed image used for particle 

analysis (right). Original TEM image was converted to binary image. By applying watershed filter, NP that are 

close together are separated by a thin white line for the subsequent particle analysis. The “analyse particles” 

function of ImageJ was used to determine the area of all particles larger than 5nm² (to get rid of background 

sparkles).  
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Figure S5-2. DLS (black) and Zeta-Potential (red) measurements at different pH in water. 
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Figure S5-3. XRD measurements of NPs before (black) and after incubation in buffer (red: in HBG pH=5.0, 

green: in HBG pH=7.4) certifies crystallinity and stability of MOF structure. 
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Figure S5-5. Structure of fluorescein molecule and its minimal and maximal projection area (MarvinSketch) 

max: radius = 6,27Å; min:  radius =6,15Å. Arrows indicate surface normal. 

  

 
Figure S5-1. Assay for measuring the Payload capacity established, using UV/VIS absorption. Fluorescein solutions 
were used as calibration standard. a) Preparation and loading process: 1mg MOF NPs (I) were separated from 
ethanol (II), resuspended in fluorescein solutions of different concentrations and incubated for a certain time (III). 
For UV/VIS measurement the MOF NPs were separated from incubation solution (IV). b) The absorption spectra of 
the supernatant solution as well as the original fluorescein solution were measured and integrated within the limits of 
400nm to 550nm to determine the remaining amount of fluorescein in the supernatant. Inset: Fluorescein calibration 
curve with linear fit. 
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Release kinetics in HBG Buffer: 

 

Figure S5-6. Release kinetics of fluorescein in MIL-100(Fe) NPs in HBG at depicted pH. 

 

 

 

 

Figure S5-2. Release kinetic measurements normalized to its final signal
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Loading kinetics: 

 

Figure S5-8. Loading kinetics of fluorescein into MIL-100(Fe) NPs in HBG at depicted pH and in water. 

  



5. Kinetic analysis of the uptake and release of fluorescein by metal-organic framework 
nanoparticles 

 

170 

Calculations 

Particle density 

To calculate the number of particles per mg we assume spherical particles (Volume 𝑉 =

4

3
 𝜋 𝑟3, with NP Radius 𝑟). The mass of one NP 𝑚𝑁𝑃 is then 𝑚𝑁𝑃 = 𝑉 ⋅ 𝜌 with the mass 

density 𝜌 of the NP material. The number of particles 𝑁 in 1mg is then 𝑁 =
1mg

𝑚𝑁𝑃
. For MIL-

100(Fe) nanoparticles we used a mean radius of 𝑟𝑀𝐼𝐿−100 = 26.5 𝑛𝑚 (obtained from TEM 

analysis) and a mass density of 𝜌𝑀𝐼𝐿100 = 0.98 𝑔/𝑚𝑙
2
. As a result we arrive at a mean mass 

per particle of 𝑚𝑀𝐼𝐿100 = 0.076 fg and thus the number of 𝑁𝑀𝐼𝐿100 = 1.31 ⋅ 10
13 particles 

per milligramm of material. This corresponds to 𝑛𝑀𝐼𝐿100 = 21.7 𝑝𝑚𝑜𝑙. Respectively for MIL-

101(Cr) nanoparticles with 𝑟𝑀𝐼𝐿101 = 9.45 𝑛𝑚 and 𝜌𝑀𝐼𝐿101 = 0.62 𝑔/𝑚𝑙
3
 we derived a mean 

particle mass of 𝑚𝑀𝐼𝐿101 = 2.2 𝑎𝑔 and thus 𝑁𝑀𝐼𝐿101 = 4.56 ⋅  10
14 particles per 

milligram ( 𝑛𝑀𝐼𝐿100 = 0.76 𝑛𝑚𝑜𝑙 ). 

 

On-kinetics 

To calculate the calculate the on-kinetics in a diffusion dominated process we adapt the theory 

of Adam and Delbrück
4
: The original formula for the mean time 𝜏 a molecule within a 

Volume with radius r needs to hit a sphere with radius R is  𝜏 =
(1−

𝑟

𝑅
)
2

3 𝑟 𝐷
𝑅3 with D, the 

diffusion coefficient of the diffusing molecules. This function was adapted to the system at 

hand: for r we used the particles radius we derived from DLS measurements at used pH 5.1 of 

400nm, the diffusion coefficient for fluorescein was found to be 390µm²/s (FCS 

measurement), the radius R of the volume was determined by calculating the mean solution 

volume per particle from the overall Volume V and the containing number of nanoparticles N: 

𝑅3 =
𝑉

𝑁
=

𝑀

𝑐 𝑁𝐴
. where M is the molar mass of the nanoparticle, c the mass concentration and 

the Avogadro constant NA. The molar Mass is derived by the volume of a sphere with the 

radius of one particle, its mass density 𝜌 and the Avogadro constant: 𝑀 = 
4

3
𝜋 𝑟3 𝜌 𝑁𝐴. This 

results in the following formula:  

𝜏(𝑐𝑁𝑃) =
𝐴 ⋅ 4 𝜋 𝑟2 𝜌

72 𝑐𝑁𝑃 𝐷

(

 1 −
2 

√
4 𝜋 𝜌
 𝑐𝑁𝑃 

3

)

 

2

+ 𝜏0 ≈
𝐴 ⋅ 𝜋 𝑟2 𝜌

18 𝑐𝑁𝑃 𝐷
+ 𝜏0 

. 
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Whereas an offset 𝜏0 was added to compensate for the internal diffusion through the lattice 

and sorbtion that is represented in Figure 5-5 by the sum of 𝜏𝑖𝑛𝑡𝑟𝑎 and 𝜏𝑜𝑛. Here we used the 

mass density 𝜌 = 2𝑚𝑔/𝑐𝑚3 that respects the filling of the nanoparticles with water (mass 

density of empty MOFs: 0.98mg/cm³ 
2
 + pore volume 1.030cm³/g 

5
 filled with water at 

0.997mg/cm³  results in 2 mg/ml). 
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6.1. Introduction 

The chemical synthesis of well-defined functional nano-objects is one of the intriguing 

challenges of nanoscience. In this context metal-organic frameworks (MOFs) offer the ability 

to generate crystallographically defined, functionalized, porous nanocrystals. MOFs consist of 

inorganic clusters acting as nodes connected by organic linker molecules. Together, these 

building blocks create three-dimensional porous crystalline networks with very high pore 

volume and surface area. The large range of possible compositions (metals, linkers), the 

structural diversity (pore size, structure, etc.) and the numerous options to functionalize these 

porous crystalline hybrid inorganic-organic solids make them attractive for different fields of 

applications such as small molecule storage (H2, CH4, CO2, etc.), catalysis, separation, 

luminescence, magnetism and other applications.
1-4

 In addition, MOFs can be scaled down to 

nanometer size, which makes them potentially useful as nanocarriers in medical applications.
5
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Incorporating drug molecules into nanocarriers offers exciting opportunities to redefine the 

pharmacokinetic behavior of the drug, improving its therapeutic efficiency and reducing side 

effects.
6-8

 Several types of drug delivery nanocarriers based on organic platforms such as 

liposomes, polymers, and dendrimers have been used as “smart” systems that can release 

therapeutic agents under physicological conditions.
 
Recent research has also addressed the 

potential of inorganic nanoparticles such as gold, iron oxide or mesoporous silica in this 

context.
9
 The high loading capacity of MOFs for bioactive molecules and their applications 

for drug delivery and imaging purposes have recently been demonstrated.
5 

However, the 

controlled retention of cargo inside the MOF nanoparticles (NPs) and its controlled release is 

a challenge that still needs to be addressed.
5, 10-15 

Here we report on the synthesis of MOF nanoparticle-supported lipid bilayers - MOF@Lipid - 

that synergistically combine properties of liposomes and porous particles. Our aim was to 

develop a novel route for the flexible, non-covalent encapsulation of biologically active 

molecules into porous MOF networks that can ultimately serve as functional MOF@Lipid 

nanocarriers for controlled drug delivery or imaging purposes. Conceptually, a MOF@Lipid 

nanoparticle may offer three key advantages in comparison to a liposome. First, surface 

modifications (e.g. modifying the size or the hydrophilic/hydrophobic nature of the pores) of 

the MOF nanoparticle can control the uptake and release kinetics of the drug.
5, 16

 In addition, 

a MOF@Lipid nanoparticle is expected to be significantly more stable than a liposome, which 

has an aqueous core instead of a porous MOF core. Finally, due to their high porosity MOF 

nanoparticles have been shown to offer exceptionally high loading capacities compared to 

other nanocarrier systems.
5, 11 
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6.2. Results and Discussion 

To demonstrate our new strategy, we chose the mesoporous iron(III) carboxylate MIL-

100(Fe) 
16

 and the mesoporous chromium(III) carboxylate MIL-101(Cr).
18

 MIL-100(Fe) is 

built up from octahedral trimers connected by trimesate (benzene-1,3,5-tricarboxylate) 

resulting in a MOF scaffold with large pores (diameter 2.4-2.9 nm) and window sizes (0.6-0.9 

nm). MIL-101(Cr) is built up from octahedral trimers connected by terephthalate (benzene-

1,4-dicarboxylate), also resulting in a MOF scaffold with large pores (diameter 2.9-3.4 nm) 

and window sizes (1.2-1.7 nm). Moreover, nanoparticle synthesis is already established for 

both structures.
11, 19 

Both MOF nanoparticles (NPs) were synthesized in a microwave oven from Anton Paar 

(Synthos 3000). MIL-100(Fe) NPs were obtained by reacting FeCl3·6H2O and trimesic acid in 

a 9:4 molar ratio in H2O, using a temperature controlled microwave program (heating to 

130 °C in 30 s and holding at that temperature for 2 min). MIL-101(Cr) nanoparticles were 

synthesized from an equimolar mixture of terephthalic acid and Cr(NO3)3·9H2O in H2O, using 

a temperature controlled microwave program (heating to 180 °C in 4 min and holding at that 

temperature for 2 min). The resulting nanoparticles show the characteristic XRD reflections 

of the MOFs, with line broadening due to the small particle size (Fig. S6-1 and S6-2).
18, 19

 The 

estimated size distribution of MIL-100(Fe) obtained transmission electron microscopy (TEM) 

is in the range of 54±24 nm (Fig. S6-6). For MIL-101(Cr), it is in the range of 49±20 nm (Fig. 

S6-5). In addition, TEM images (Fig. S6-7 and S6-8) confirm the high crystalline quality of 

the nanocrystals. The calculation of the BET specific surface area based on nitrogen sorption 

isotherms gave a value of 2004 m²/g for nanoscale MIL-100(Fe) (Fig. S6-9) and 3205 m²/g 

for nanoscale MIL-101(Cr) (Fig. S6-10), which is similar to reported data.
18, 19 

In the next step, MIL-100(Fe) and MIL-101(Cr) nanoparticles were coated with a lipid bilayer 

using the lipid DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine). The principle of the 

coating procedure is a controlled solvent-exchange deposition of the lipid onto the MOF 

surface.
20

 For this purpose the lipid and the MOF nanoparticles are dispersed in an EtOH/H2O 

mixture, where the lipids exist as monomers.
21

 When the water concentration is drastically 

increased, the lipids precipitate on the nanoparticle surface and form a lipid bilayer 

(Figure 6-1). The successful coating of the MOF nanoparticles with lipid was confirmed by 

different techniques.  
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Figure 6-1. Schematic description of the synthesis of lipid bilayer-coated MOF nanoparticles loaded with dye 

molecules and their uptake in cancer cells. 

 

The diffraction pattern of the two DOPC-coated nanoparticles shows the same reflections as 

the uncoated nanoparticles (Fig. S6-1 and S6-2). Hence, the MOF structures were stable 

during the procedure of lipid layer coating. Dynamic light scattering (DLS) data of the 

MIL-101(Cr)@DOPC nanoparticles showed an increased diameter of 78 ± 22 nm (vs. 69 ± 19 

nm for the pure MIL-101(Cr) nanoparticles, Fig. S6-11). This shift of the hydrodynamic 

diameter of about 10 nm is close to the expected value.
19

 Time series of DLS measurements 

of MIL-100(Fe) and MIL-100(Fe)@DOPC nanoparticles reveal the colloidal stability of the 

lipid-coated versions whereas the pure nanoparticles agglomerate in a matter of hours (Fig. 

S6-13 and S6-14). Therefore, the supported lipid can serve not only as a cap system to store 

molecules inside the MOF nanoparticles but also to increase their colloidal stability, which is 

of great importance for biomedical applications. 

In order to confirm the localization of the lipids on the MOF nanoparticles in solution, both 

components were labelled and fluorescence cross-correlation analysis (FCCS) was performed. 

FCCS provides evidence for correlated movement of two differently labelled species within 

the confocal detection volume, by cross-correlating the fluorescence fluctuation signal of both 

species.
22-23

 Figure 6-2 shows the auto-correlation curves of the Atto633-labeled MIL-101(Cr) 

and BODIPY-FL-DHPE-labelled DOPC lipids as well as the cross-correlation. The analysis 

of the cross-correlation shows a high ratio of co-localization of lipids and MOF particles and 

hence proves the successful lipid coating of the MOF nanoparticle. For the MIL-100(Fe) we 

found that the fluorescence of different fluorescence dyes is completely quenched. Therefore, 

FCCS measurements for the MIL-100(Fe)@DOPC system are not applicable. However, we 

performed fluorescence correlation spectroscopy (FCS) measurements with BODIPY FL 

DHPE-labelled DOPC lipids alone and with unlabelled MIL-100(Fe) NPs. Juxtaposition of 

both sample results shows both a completely different count rate and correlation curve, 

respectively. This strongly indicates an interaction of MIL-100(Fe) NPs with lipids. 
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Figure 6-2. FCCS of DOPC lipids (BODIPY labeled) on MIL-101(Cr) nanoparticles (Atto633 labeled). The 

high cross-correlation amplitude indicates the co-localization of lipids and MOF nanoparticles. 

 

To confirm the successful lipid coating of the porous nanoparticles with another technique, 

and more importantly, to investigate the sealing properties of the lipid bilayer, we carried out 

fluorescence release experiments. For this purpose MIL-101(Cr) and MIL-100(Fe) 

nanoparticles were loaded with fluorescein dye and the dye was encapsulated in the 

nanoparticles through the formation of the lipid bilayer (Figure 6-1). These dye-loaded 

nanoparticles were transferred into the cap of a fluorescence cuvette that was subsequently 

sealed with a dialysis membrane. Only free dye molecules, but not nanoparticles, can pass the 

membrane into the cuvette volume filled with water where the fluorescence measurement is 

recorded. Consequently, only dye molecules released from the pores of the particles 

contribute to the fluorescence intensity measured in the cuvette (detailed information is 

reported in the SI). Figure 6-3 shows the result of a typical fluorescence release experiment 

with MIL-101(Cr); the corresponding experiment with MIL-100(Fe) can be found in the 

supporting information (Fig. S6-15).  
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Figure 6-3. Fluorescence release experiments of encapsulated fluorescein in MIL-101(Cr)@DOPC nanoparticles 

(the data points correspond to the intensities at the peak maxima at 512 nm for fluorescein). After 1 hour of 

measuring time with no significant increase of the fluorescence intensity, triton was added to the cap system. The 

destabilization of the lipid bilayer can be observed in the release of the fluorescein dye. The measurement took 

place at 37 °C and was stopped after 2 h of fluorescein dye release due to an oversaturation of the detector 

(intensity maximum of the detector 2 million counts per second). 

 

The fluorescence intensity released from DOPC-coated MIL-101(Cr) nanoparticles reached 

only very low values after 1 h. Hence, we conclude that the dye is retained in the 

nanoparticles and that the dye molecules do not permeate through the DOPC bilayer. After 

one hour of monitoring without any significant increase of the fluorescence intensity, the 

nonionic surfactant triton X-100 was added into the cap. After a short induction period, the 

fluorescence intensity showed a rapid increase, which subsequently slowed over time. Release 

kinetics of the dye show a burst release within the first 30 min, which is relatively small in 

comparison with other nanocarriers,
9, 21

 and afterwards a release that is mainly governed by 

diffusion processes combined with dye-host interactions. Such behaviour can be 

advantageous for later applications as a drug carrier, because the drug release rate can be 

controlled by tuning the pore size and shape as well as the functionality of the MOF 

nanocarrier, and at the same time high burst release effects can be avoided, ensuring a fairly 

constant drug release. Therefore, the structural features of MOFs including crystalline 

porosity and widely tunable functionality are advantageous for controlling host-guest 

interactions. 

The above results demonstrate the successful creation of a lipid bilayer around MOF 

nanoparticles that enables encapsulation of a dye or other molecules inside the MOF scaffold.  
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For future applications of MOF@Lipid systems in biomedicine, the cellular uptake of these 

constructs is of particular interest. Due to the quenching effect of the MIL-100(Fe) 

nanoparticles, corresponding fluorescence tracking experiments can be only done with the 

MIL-101(Cr)@DOPC nanoparticles. For this purpose, 20.000 T24 bladder carcinoma cells 

per well with 250 µl medium were incubated with 20 µl of a suspension of Atto-633 labelled 

MIL-101(Cr)@DOPC NPs (c = 1 mg/ml). Co-staining with PKH26, a red fluorescent dye that 

stains cellular membranes incorporating biolipid structures, revealed enrichment of MOF 

nanoparticles in cellular vesicles over time as demonstrated by confocal laser scanning 

microscopy. As shown in Figure 6-4, strong accumulation of the MOF particles in cellular 

vesicles is detectable within 6 h and persists for at least 48 h. To investigate whether the 

MOF@Lipid nanoparticles alter the cellular behaviour and/or condition, an impedance-based 

real time monitoring (xCELLigence System) approach was used. Importantly, xCELLigence 

analysis showed that both MOF@Lipid nanoparticle systems themselves have no cytotoxic or 

anti-proliferative effect on the cancer cells (Figure S6-16 and S6-17). 

 

 

Figure 6-4. Cellular uptake of MOF nanoparticles in cancer cells as monitored by confocal laser scanning 

microscopy. Bladder cancer cells were incubated with fluorescently-labelled MOF particles for 6 h and 48 h and 

co-stained with the membrane marker PKH26 to confirm enrichment of MOF in cellular vesicles. 
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6.3. Conclusion 

In summary, we have developed novel metal-organic framework nanoparticles encapsulated 

by a lipid membrane. We have demonstrated that the MOF@Lipid system can effectively 

store dye molecules inside the porous scaffold of the MOF while the lipid bilayer prevents 

their premature release. Moreover, for MIL-100(Fe) the lipid bilayer drastically increases the 

colloidal stability of the nanoparticles. Employing fluorescence microscopy, we were able to 

demonstrate the high uptake of lipid-coated nanoparticles by cancer cells. Considering the 

various ways to synthesize different functionalized MOF nanoparticles as well as the richness 

of lipids with diverse functions (cap system, triggered release, incorporation of shielding 

ligand for long circulation times and targeting functions),
24, 25

 MOF@Lipid nanoparticles 

have great potential as a novel hybrid nanocarrier system. On the one hand, the MOF core 

could store different active species such as imaging, diagnostic or drug molecules, and on the 

other hand the lipid shell could be used for the incorporation of targeting or shielding ligands 

(e.g. PEG) as well as for the creation of triggered release mechanisms. Based on the above 

results with lipid layers serving as model systems, we anticipate further progress in the 

synthesis of well-defined multifunctional MOF@Lipid nanoparticles for drug delivery and 

diagnostic purposes and the clinical implementation of this nanotechnology. 
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6.4. Materials and Methods 

Chemicals 

Chromium(III) nitrate nonahydrate (99%, Aldrich), terephthalic acid (98%, Aldrich), ethanol 

(99%, Aldrich)  1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti Polar Lipids), 

fluorescein sodium salt suitable for fluorescence (Fluka), triton X-100 (Aldrich), N-(4,4-

difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)-1,2-dihexadecanoyl-sn-

glycero-3-phosphoethanolamine, triethylammonium salt (BODIPY® FL DHPE, Invitrogen). 

 

Synthesis of MIL-101(Cr) nanoparticles 

The microwave synthesis of MIL-101(Cr) nanoparticles was based on a modified procedure 

reported in the literature.
19

 An amount of 20 mL (1.11 mol) of H2O was added to 615 mg 

(3.70 mmol) terephthalic acid and 1.48 g Cr(NO3)3 · 9 H2O (3.70 mmol). This mixture was 

put into a Teflon tube, sealed and placed in the microwave reactor (Microwave, Synthos, 

Anton Paar). Four tubes were filled and inserted into the reactor: one tube contained the 

reaction mixtures described above; the remaining tubes including the reference tube with the 

pressure/temperature sensor (PT sensor) were filled with 20 mL H2O. For the synthesis, a 

temperature programme was applied with a ramp of 4 min to 180 °C and a holding time of 2 

min at 180 °C. After the sample had cooled down to room temperature, it was filtrated and 

washed with 50 ml EtOH to remove residual e.g. terephthalic acid. For purification, the 

filtrate was centrifuged and redispersed in 50 ml EtOH three times. The sample was 

centrifuged at 20000 rpm (47808 rcf) for 60 min. Afterwards the sample was characterized by 

DLS, XRD, IR, TGA, BET, REM and TEM measurements.  

 

Synthesis of MIL-100(Fe) nanoparticles 

For the microwave synthesis of MIL-100 (Fe) nanoparticles, iron(III) chloride hexahydrate 

(2.43 g, 9.00 mmol) and trimesic acid (0.84 g, 4.00 mmol) in 30 ml H2O were put into a 

Teflon tube, sealed and placed in the microwave reactor (Microwave, Synthos, Anton 

Paar).
[11]

 The mixture was heated to 130 °C under solvothermal conditions (p = 2.5 bar) 

within 30 seconds, kept at 130 °C for 4 minutes and 30 seconds and the tube was cooled down 

to room temperature. For the purification of the solid, the reaction mixture was centrifuged 

(20000 rpm = 47808 rcf, 20 min), the solvent was removed and the pellet was redispersed in 

50 ml EtOH. This cycle was repeated two times and the dispersed solid was allowed to 

sediment overnight. The supernatant of the sedimented suspension was filtrated (filter discs 
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grade: 391, Sartorius Stedim Biotech) three times, yielding MIL-100(Fe) nanoparticles. 

Afterwards the sample was characterized by DLS, XRD, IR, TGA, BET, REM and TEM 

measurements. 

 

Synthesis of MIL-101(Cr)@DOPC and MIL-100(Fe)@DOPC nanoparticles with 

encapsulated dyes for fluorescence release and for in vitro experiments 

The amount of 1 mg MIL-101(Cr) or MIL-100(Fe) nanoparticles was dispersed in 1 mL of a 

1 mM aqueous solution of fluorescein (sodium salt). 24 h later the samples were centrifuged 

for 5 min at 14000 rpm (16873 rcf). For the application of the lipid layer, the sample was 

redispersed in 100 µL of a 3.6 mM DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) 

solution in a 60/40 (v/v) H2O/EtOH mixture. 900 µL H2O was added and mixed as quickly as 

possible. By increasing the water concentration, the lipid molecules precipitate and are 

expected to cover the nanoparticle surface with a lipid layer. For purification, the suspension 

was centrifuged (5 min, 14000 rpm = 16873 rcf), redispersed in 1 mL H2O and again 

centrifuged. Finally the nanoparticles were redispersed in 200 µL H2O.  

 

Figure 6-5. (A) Illustration of the lipid DOPC. (B) Schematic depiction of MIL-101(Cr) nanoparticles which are 

loaded with a dye in the first step, and coated with a lipid bilayer on the MOF nanoparticle surface in the second 

step.  
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Synthesis of labeled MIL-101(Cr)@DOPC nanoparticles for FCCS measurements 

Loading of MOFs with dye. The amount of 1 µL ATTO 633 NHS (ATTOTec) stock 

solution (c = 1 mg/ml) was mixed with 100 µL MilliQ water (bi-distilled water from a 

Millipore system (Milli-Q Academic A10)) just before adding 25µL of this solution to 250 µL 

of a 10 mg/mL aqueous MOF suspension.  This labeling solution was then stirred at room 

temperature for 48 hours. The nanoparticles were separated from free ATTO 633 molecules 

by centrifugation (19.000rpm = 20138 rcf, 45min) and resuspending with 1mL MilliQ water, 

and repeating this cycle 5 times. 

Lipid preparation. The amount of 2.5 mg DOPC lipid (1,2-dioleoyl-sn-glycero-3- 

phosphocholine, Avanti Polar Lipids) was mixed with 0.2 µg BODIPY FL DOPE lipid (N-

(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)-1,2-dihexadecanoyl-

sn-glycero-3-phosphoethanolamine, Invitrogen) in chloroform (99.995 mol% DOPC and 

0.005 mol% BODIPY FL DHPE). After evaporating the chloroform with nitrogen gas, the 

lipids were further dried in a vacuum overnight. The lipids were then dissolved in 1 mL of a 

40 % ethanol/60 % water (v/v) solution to a final concentration of 2.5 mg/mL. 

Lipid coating of the MOFs. The amount of 2.5mg labeled MOFs (labeling solution) were 

centrifuged (19.000 rpm = 20138 rcf, 45min). Afterwards 100 µL of the DOPC/BODIPY FL 

DHPE lipid in ethanol/water mixture was added. To induce the formation of lipid bilayer on 

the MOF surface, we quickly added 900 µL of MilliQ water. Afterwards the sample was 

ready to use for the FCCS measurements.  

 

Figure 6-6. Schematic illustration of the dye labelling of MIL-101(Cr) nanoparticles in the first step and the 

formation of a labeld lipid bilayer on the MOF surface in the second step. 
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Fluorescence release experiments. An amount of 200 μL of the aqueous suspension 

containing MIL-101(Cr)@DOPC or MIL-100(Fe)@DOPC loaded with fluorescein was 

transferred into the cap of a quartz cuvette. The cap was sealed with a dialysis membrane and 

put on top of a cuvette that was filled with 3 ml H2O. Only dye molecules can pass the 

membrane, but no nanoparticles. Consequently, dye molecules that were released from the 

pores of the particles are responsible for the measured fluorescence intensity. During 

fluorescence measurement, the water inside the cuvette was stirred and was heated to 37 °C. 

For the fluorescence measurement with a PTI spectrofluorometer (model 810/814, Photon 

Technology International), the monochromator slit was set to 1.25 mm, all other slits to 

1.00 mm. The excitation wavelength of fluorescein (sodium salt) is 490 nm, the emission 

wavelength 512 nm. The measurement was run for 1 h with 1 point/min. After the addition of 

20 μL of absolute Triton X-100 into the cap-system, the lysis of the lipid bilayer on the MOF 

nanoparticles allows the diffusion of the dye molecules from the pores and their detection in 

the cuvette. 

 

 

Figure 6-7. Schematic illustration of a fluorescence release experiment. 

 

Confocal laser scanning microscopy and in vitro uptake of the nanoparticles. Membranes 

of bladder carcinoma cells were stained with the red fluorescence dye PKH26 (Sigma-

Aldrich, St. Louis, MO, USA) according to manufacturer’s instructions. In brief, adhered cells 

were detached, washed and incubated for 2 min with PKH26 dye solution. After further 

washing steps, cells were seeded on ibidi µ-slides (Ibidi, Munich, Germany) The next day, 

cells were treated with 20µl Atto-633 labelled MOF nanoparticles for indicated time points 

and fluorescence intensities were assessed using a Zeiss LSM 510 Meta microscope. 

 

Impedance-based real-time cell monitoring. Cellular behaviour of MOF treated cells was 

analysed by utilizing the xCELLigence System (ACEA Biosciences, San Diego, CA, USA), 

which monitors cellular growth in real-time by measuring the electrical impedance across 

interdigitated microelectrodes covering the bottom of E-plates. Impedance is displayed as cell 
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index values. T24 bladder carcinoma cells were seeded at a density of 5000 cells per well in 

E-plates and different charges of MOF nanoparticles (MOF#1 and #2) and amounts (4µl 

MOF/100µl medium and 8µl MOF/100µl medium) were added directly to the wells after 

about 18 h. Cell index tracings were normalized shortly after addition of the particles. 
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6.6. Appendix 
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Figure S6-1. X-ray powder diffraction patterns of  uncoated MIL-101(Cr) nanoparticles (top) and DOPC coated 

MIL-101(Cr) nanoparticles after removal of the lipid (bottom). 
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Figure S6-2. X-ray powder diffraction patterns of  uncoated MIL-100(Fe) nanoparticles (top) and DOPC coated 

MIL-100(Fe) nanoparticles after removal of the lipid (bottom). 
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Figure S6-3. Scanning electron micrograph of MIL-101(Cr) nanoparticles. 

 

Figure S6-4. Scanning electron micrograph of MIL-100(Fe) nanoparticles. 

 

 

Figure S6-5. Transmission electron micrograph of MIL-101(Cr) nanoparticles (left). Size distribution of  

MIL-101(Cr) nanoparticles from the TEM picture (right).  

 



6. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells  

 

190 

 

Figure S6-6. Transmission electron micrograph of MIL-100(Fe) nanoparticles (left). Size distribution of  

MIL-100(Fe) nanoparticles from the TEM picture (right).  

 

 

Figure S6-7. Transmission electron micrograph of MIL-101(Cr) nanoparticles – detailed image. 

 

Figure S6-8. Transmission electron micrograph of MIL-100(Fe) nanoparticle – detailed image. 
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Figure S6-9 Nitrogen sorption isotherm of MIL-100(Fe) nanoparticles. Calculated BET surface: 2004 m
2
/g. 
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Figure S6-10. Nitrogen sorption isotherm of MIL-101(Cr) nanoparticles. Calculated BET surface: 3205 m
2
/g. 
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Figure S6-11. DLS size distribution (measured in water) by number comparing uncoated and DOPC-coated 

MIL-101(Cr) nanoparticles. 
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Figure S6-1.2 DLS size distributions by number comparing uncoated and DOPC-coated MIL-101(Cr) 

nanoparticles over a time period of 72 h. 
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Figure S6-13. DLS size distribution by number (measured in water) comparing uncoated and DOPC-coated 

MIL-100(Fe) nanoparticles. 
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Figure S6-14. DLS size distribution by number, comparing uncoated and DOPC-coated MIL-100(Fe) 

nanoparticles over a time period of 72 h. 
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Figure S6-15. Fluorescein release from DOPC-coated MIL-100(Fe) nanoparticles before and after addition of 

Triton X-100. 

 

 

 

Figure S6-16. Impedance measurements of cell cultures. Bladder carcinoma cells were seeded on xCELLigence 

E-plates and treated at indicated time points with different charges (MOF#1 and MOF#2) and amounts of 6,4 µl 

and 12,8 µl of MIL-101(Cr)@DOPC nanoparticles (c = 1 mg/ml) per 200 µl medium. Similar cell index values 

indicate that cells incubated with MOF nanoparticles show a behaviour very similar to PBS-treated control cells. 

 



6. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells  

 

  195 

 

Figure S6-17. Impedance measurements of cell cultures. Bladder carcinoma cells were seeded on xCELLigence 

E-plates and treated at indicated time points with different charges (MOF#1 and MOF#2) and amounts of 6,4 µl 

and 12,8 µl of MIL-100(Fe)@DOPC nanoparticles (c = 1 mg/ml) per 200 µl medium. Similar cell index values 

indicate that cells incubated with MOF nanoparticles show a behaviour similar to PBS-treated control cells. 
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7. Validating metal-organic framework nanoparticles for their 

nanosafety in diverse biomedical applications 

 

This chapter is based on the following publication: 

 

Stefan Wuttke, Andreas Zimpel, Thomas Bein, Simone Braig, Katharina Stoiber, Angelika 

Vollmar, Dominik Müller, Kirsten Haastert-Talini,
 
Jörn Schaeske, Meike Stiesch, Gesa Zahn, 

Alexander Mohmeyer, Peter Behrens, Oliver Eickelberg, Deniz A. Bölükbas, and Silke 

Meiners, Advanced Healthcare Materials, 2016, 6, 1600818. 

 

7.1. Introduction 

Nanosized materials have been used for various biomedical applications to improve human 

disease diagnosis and treatment. These nanomedicines can offer various advantages in 

applications such as their use as imaging agents for early and minimally-invasive diagnosis, 

increased drug concentration at a local site, minimized drug degradation and clearance, the 

possibility of specific cell targeting, and the ease of creating drug-delivery formulations.
1-3

 

Metal-organic framework (MOF) materials offer the combination of both organic and 

inorganic design principles and are considered to be a promising new class of nanocarriers 

with improved biocompatibility. Generally, the MOF construct is based on the principle of 

connecting metal ions or metal-oxo clusters with organic linkers resulting in crystalline and 

porous materials.
4-8

 The flexibility with which metal clusters and organic linkers can be varied 

as well as the different possibilities to functionalize MOFs on their inner and outer surface 

provide a vast number of possibilities for creating tailored porous MOF nanoparticles (MOF 

NPs) adjusted for the specific purposes.
9-11

 MOF NPs have already been loaded with different 

drugs or with gasotransmitter gases, and the in vitro and to some degree the in vivo efficacy 

was demonstrated.
12-20

 Key parameters for biomedical applications of nanoparticles include 



7. Validating metal-organic framework nanoparticles for their nanosafety in diverse 
biomedical applications 

 

198 

their size, morphology, surface properties and chemical composition.
21-25

 These properties 

also determine the potential fields of application for MOFs, ranging from diagnosis and 

sensing to therapeutic drug delivery and multifunctional surface modification of medical 

implants (Figure 7-1).  

 

Figure 7-1. Schematic representation of the different possible applications of MOF NPs for diagnosis, therapy 

and for the creation of smart surfaces. 

 

The same nanomaterials that have been developed for improving diagnosis and therapy, 

however, may impose health risks to the patient very similar to those known from 

occupational or environmental particle exposures.
26-28

 As such, the application of any novel 

nanomaterial in the medical context calls for thorough and comprehensive analysis of its 

cellular biocompatibility and thus nanosafety. In particular, NPs are required to only 

minimally interfere with the function of their primary effector cells, which are defined as 

those cells that directly interact with NPs when these are introduced into the biological 

system. Most surprisingly, so far MOF NPs have not been comprehensively analyzed for their 

adverse effects on primary effector cells, but have mainly been studied for their in vitro 
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toxicity in cancer cells.
10, 29

 Here, we intend to fill this gap by determining and discussing the 

adverse effects of different MOF NPs for various medical applications ranging from drug 

delivery to surface coating of medical implants. We here investigated different types of MOF 

NPs that have distinct properties. All NPs tested in this study have a spherical morphology in 

common because studies suggested that this particular shape causes least cytotoxicity.
21, 22

 For 

chemical composition and surface charge diversity we choose a Zr-fumarate (Zr-fum) MOF, a 

Fe-trimesate (MIL-100, MIL standing for Material of Institute Lavoisier) and a Cr-

terephthalic MOF (MIL-101). The Zr-fumarate MOF
30

 features microporosity of 5-

8 Å whereas MIL-100(Fe)
31

 and MIL-101(Cr)
32

 exhibit mesoporosity of 25-28 Å and 30-

34 Å, respectively. A characteristic feature of the Zr-fumarate MOF is the fumaric acid linker 

which is an intermediate in the citric acid cycle and hence a biocompatible molecule. Such 

microporous MOFs as well as the MIL-100(Fe) and MIL-101(Cr) are particularly well suited 

for external surface functionalization and transport of large biomolecules such as RNA.
18

 The 

mesoporosity of MIL-100(Fe) and MIL-101(Cr) allows for the storage of drug molecules 

inside the nanoparticles and at the same time features chemical stability.
32, 33

 These particles 

are particularly promising for drug delivery applications.
34

 For systemic delivery of any type 

of functionalized MOF NP by intravenous injections, the endothelium is the first site of 

particle contact and uptake. It tightly seals the vessel wall to the surrounding tissue and 

maintains blood barrier integrity as well as controls local inflammatory responses. In contrast 

to blood cells, which also encounter nanoparticles upon systemic delivery, endothelial cells 

are less easily replenished upon damage. Any cytotoxic effects by NPs will thus have a 

profound effect on endothelial barrier function. We thus assayed survival, apoptotic cell death 

and inflammatory activation of human primary endothelial cells in response to treatment with 

our MOF-NPs. 

An additional way of NP delivery is their inhalation via the lung. In fact, inhalation of NPs is 

a natural route of entry to the body as evidenced by the sometimes detrimental uptake of 

environmental nanoparticles.
35

 Hence, the lung is a unique organ particularly suitable for local 

drug delivery via inhalation. Its large surface area, thin epithelium layer, and rich blood 

supply allow for rapid uptake of inhalatively applied nanoparticles.
3
 To assess the 

biocompatibility of our MOF NPs for inhalative applications into the lung, we investigated 

the cellular responses of murine alveolar epithelial cells that constitute the main cell type of 

the air/blood barrier. In addition, we analyzed activation of the main immune cell type of the 

lung, the alveolar macrophages. These cells are of key importance for clearing particles and 
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toxins from the lung and thus control the initial inflammatory response of the lung to foreign 

material.  

Moreover, we envision the use of MOF NPs for coatings as a promising field of application 

(Figure 1), as already proposed in the literature.
36, 37

 Medical implants are mainly artificial 

structures that are widely applied in the clinic to facilitate cellular regeneration of substitute 

body functions. Activatable coatings on medical implants allow for the control of adverse 

inflammatory reactions after implantation and progressive implant and tissue destruction.
38-41

 

To study the general applicability of MOF NPs in this field, we assayed the cytotoxicity of 

chemically stable MIL-100(Fe), MIL-101(Cr) and Zr-fum MOF NPs of different sizes on 

primary gingiva fibroblasts as effector cells for dental implants.  

A different type of medical implants is represented by nerve guidance tubes that are used to 

bridge transected peripheral nerves in reconstruction surgeries (Figure 7-1). Currently 

autologous nerve tissue is used for transplantation to the site of injury. Entubulation strategies 

with synthetic hollow nerve guidance conduits represent a promising alternative to autologous 

nerve tissue transplantation to facilitate peripheral nerve regeneration.
42

 Functionalization of 

biosynthetic nerve guidance tubes may be applied in order to deliver regeneration promoting 

molecules facilitating attraction of Schwann cells.
43-46

 To address these issues, we 

investigated our MOF NPs regarding their biocompatibility with primary adult human 

Schwann cell cultures as well as in organotypic cultures of rat dorsal root ganglia that contain 

sensory neurons. 

All in all, the aim of our study was to comprehensively investigate the nanosafety and hence 

the general applicability of different MOF NPs for distinct fields of medical applications. For 

this purpose, the different experimental setups were designed to be as close as possible to the 

later applications by the use of the primary effector cells, i.e. endothelial, lung, gingiva and 

nerve cells, of the respective application field.  
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7.2. Results and Discussion 

Synthesis and characterization of the MOF nanoparticles 

Validation of biocompatibility was performed with different MOFs that provide promising 

properties for the use as drug nanocarrier as well as for the multifunctional surface coating of 

implants. The structure and phase purity of the nanoparticles were characterized by powder x-

ray diffraction (PXRD; Suppl. Figures S7-1, S7-5, S7-9; in general: Figures S7-1 to S7-4 

corresponds to MIL-101(Cr), Figures S7-5 to S7-8 corresponds to MIL-100(Fe), Figures S7-9 

to S7-12 corresponds to Zr-fum) and transmission electron microscopy (TEM) with high-

resolution images (Suppl. Figures S7-2, S7-6, S7-10). The expected crystallinity was 

demonstrated. The calculated Brunauer-Emmett-Teller (BET) surface areas extracted from the 

nitrogen sorption isotherms (Suppl. Figures S7-3, S7-7, S7-11) are in good agreement with 

reported data.
30, 34

 The hydrodynamic diameters of the different nanoparticles determined with 

dynamic light scattering (DLS) range from about 40 to 250 nm (Suppl. Figures S7-4, S7-8, 

S7-12; Table S7-1). The formation of a supported lipid bilayer around the MIL-100(Fe) and 

MIL-101(Cr) nanoparticles, i.e. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), enhances 

their biocompatibility and prevents incorporated cargo from premature release.
34

 The smaller 

hydrodynamic diameter of the MIL-100(Fe)@DOPC in comparison with pure MIL-100(Fe) 

nanoparticles can be explained by the agglomeration behavior of the latter. This tendency to 

form agglomerates is prevented by a lipid bilayer.
34

 Zeta potential measurements were used to 

determine the effective charge of the nanoparticles and range from 3 to -43 mV for the 

nanoparticles investigated (Suppl. Table S7-1). 

 

Evaluation of nanosafety of MOF nanoparticles designed for drug delivery 

For the delivery of mesoporous NPs either by intravenous or inhalative routes, the endothelial 

and alveolar cell barriers need to be overcome without causing cell damage and activation of 

inappropriate immune responses. We thus examined the cellular response towards MIL-

101(Cr) and MIL-100(Fe) MOF NPs with and without supported lipid bilayers in endothelial 

cells, alveolar epithelial cells and alveolar macrophages and compared it to the response 

towards non-lipid-coated control particles. 

Human endothelial cells, namely primary human umbilical cord vein cells (HUVEC) and 

human microvascular endothelial cells (HMEC) were cultured to confluency, exposed for up 

to 72 hours to DOPC-coated iron or chromium MOFs at a dose range of 25 to 200 µg/ml and 

assayed for cytotoxic and inflammatory responses compared to non-treated and non-coated 

particle controls. Staining of HMECs for the cytoskeletal actin protein did not reveal any 
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stress-related rearrangement of actin fibres in response to 24 hours of exposure to MOF 

nanoparticles (Figure 7-2A and Suppl. Figure S7-13). We further analyzed for early signs of 

apoptotic cell death using Fluorescence Activated Cell Sorting (FACS)-based analysis of the 

DNA content. This technique allows for separation of cells according to their DNA content in 

the different phases of the cell cycle with dividing S and G2 phase cells containing the 

doubled amount of DNA compared to cells in the resting G1 phase (Suppl. Figure S7-14). 

Apoptotic cells contain fragmented DNA and can thus be quantified by counting the cells in a 

sub G1 peak.
47

 MIL-101(Cr)@DOPC and also uncoated MIL-101(Cr) did not induce any 

signs of apoptotic cell death for the full dose range when applied to HMECs for 72 hours. 

MIL-100(Fe)@DOPC treated HMECs had an increased sub-G1 peak only at the highest 

particle dose of 200 µg/ml, revealing significant induction of apoptosis with high doses of 

lipid coated MIL-100(Fe) particles (Figure 7-2B). This was also observed for the non-coated 

control particles and indicated that Fe-containing MOFs induce apoptotic cell death in 

endothelial cells at higher doses. Endothelial cells are easily activated upon cell damage by 

noxious stimuli and particles to express pro-inflammatory surface receptors such as the 

intercellular adhesion molecule (ICAM). These surface molecules serve as binding sites to 

capture patrolling immune cells in the blood for activation of local inflammatory responses. 

Expression of ICAM1, however, was not affected in HUVECs by any of the particles tested 

as shown by FACS-based quantification of ICAM1 expression after 24 hours of particle 

treatment in Figure 7-2C. We here used tumor necrosis factor α (TNFα) as a positive control 

to obtain maximal induction of ICAM surface expression upon inflammatory signaling via 

TNFα.
48
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Figure 7-2. Cytotoxic and inflammatory response of human endothelial cells to MIL nanoparticles.  

(A) Actin staining of MIL-101(Cr)@DOPC and MIL-100(Fe)@DOPC treated HMEC cells. HMEC cells were 

treated with the respective DOPC coated Fe- and Cr-MOFs particle doses for 24 h. Cells were fixed, actin and 

nuclei were stained and analyzed by confocal microscopy. (B) Determination of apoptosis rate in HMEC cells 

after treatment with MIL-101(Cr)@DOPC, MIL-100(Fe)@DOPC, MIL-101(Cr) and MIL-100(Fe). HMEC cells 

were treated without (0) or with the respective MOF NP concentrations for 72 h, harvested and the percentage of 

apoptotic cells was measured by FACS analysis. (C) Determination of the inflammatory response in HUVEC 

cells after treatment with DOPC coated and uncoated Fe- and Cr-MOFs. HUVEC cells were treated without (0) 

or with the respective nanoparticle concentrations for 24 h, harvested and the level of the inflammatory marker 

ICAM was determined by FACS analysis. Treatment with TNFα served as a positive control to induce maximal 

proinflammatory activation of ICAM. Values given are mean of three independent experiments ± SEM. * 

indicates a significant change compared to the respective controls (p < 0.05) using Two-Way ANOVA tests. 

 

In a next step, we studied the cytotoxic effects of the MOF nanoparticles for lung cells, 

namely murine alveolar epithelial cells (MLE12) and mouse alveolar macrophages (MH-S). 

Viability of the cells was quantified after 24 hours of particle exposure using the MTT assay 

which uses conversion of a stable tetrazolium salt into soluble formazan by metabolically 
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active and thus viable cells. In addition, we measured the amount of lactate dehydrogenase 

(LDH) in the medium which is released by necrotic cells with disrupted plasma membranes. 

Viability of MLE12 cells was affected by exposure to higher doses of MIL-101(Cr)@DOPC 

(200 µg/ml), which corresponded to an increased release of LDH (Figure 7-3A). Exposure to 

MIL-100(Fe)@DOPC particles had an even more pronounced effect on metabolic activity and 

was cytotoxic from doses of 100 µg/ml on (Figure 7-3A). These cytotoxic effects were even 

stronger with uncoated particles (Figure 7-3A) showing that lipid-functionalization improves 

biocompatibility of both the MIL-100(Fe) and MIL-101(Cr) nanoparticles in lung epithelial 

cells, respectively. Biocompatibility of Fe-containing MOFs was, however, strikingly 

different from Cr-MOFs in the alveolar macrophage cell line MH-S. Both DOPC coated and 

uncoated Fe-MOFs, showed drastically reduced cell viability in MTT and LDH assays 

(Figure 7-3B), while Cr-MOFs were well tolerated and only induced cell death at the highest 

dose of 200 µg/ml (Figure 7-3B). To investigate the inflammatory response of these particles 

in the alveolar macrophages, we determined RNA expression levels of well-known pro-

inflammatory mediators such as the cytokine interleukin 6 (IL6), TNFα, and of the enzyme 

nitrite oxide synthase 2 (Nos2) which generates high levels of nitric oxide (NO) as part of the 

phagocytotic response of macrophages towards microorganisms, toxins and particles.
49

 In 

addition, we measured expression of heme oxygenase 1 (HO1) and metallothionein 2 (MT2) 

that are activated as part of the cellular stress response to metals such as iron.
50, 51

 As a 

positive control for efficient induction of these genes, we stimulated MH-S cells with the 

lipopolysaccharide (LPS), a bacterial wall component that is a strong and well known trigger 

for inflammatory gene expression (Figure 7-3C).
52

 While LPS strongly induced expression of 

IL6, TNFα, and Nos2, we did not observe any obvious inflammatory gene activation for the 

tested MOF nanoparticles (Figure 7-3C). In contrast, Fe-containing MOFs induced distinct 

and dose-dependent upregulation of HO1 and MT2 suggesting pronounced activation of an 

anti-iron-stress response in alveolar macrophages. Cr-containing MOFs, however, were inert 

(Figure 7-3C). 
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Figure 7-3. Biocompatibility of MIL nanoparticles with the murine alveolar epithelial cell line MLE-12 and the 

murine alveolar macrophage MH-S cells. 

(A) Metabolic activity and toxicity after 24 h of MIL-100(Fe)@DOPC, MIL-101(Cr)@DOPC, MIL-100(Fe), or 

MIL-101(Cr) exposure to MLE 12 and MH-S cells (B) as analyzed by MTT (upper row) and LDH (lower row) 

assays, respectively. Untreated cells were set to 100 % survival for the MTT test and 0 % death for the LDH 

assay. (C) Inflammatory response induced by 4 h exposure to the respective MOFs in MH-S cells as determined 

by RT-qPCR analysis. 1 µg/mL LPS was used as a positive control to induce pronounced pro-inflammatory gene 

expression. Values given are mean of three independent experiments ± SEM. * indicates a significant change 

compared to the respective controls (p < 0.05). 
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Taken together, these data indicate that both Fe and Cr-containing MOFs are well tolerated by 

endothelial cells whereas the MIL-100(Fe)@DOPC NPs caused some apoptotic cell death 

from a minimum dose of 100 μg/ml onwards. In contrast, alveolar epithelial cells are 

generally more sensitive and tolerate only lipid-coated Fe and Cr-containing MOFs at lower 

doses of up to 50 -100 µg/ml, respectively. Alveolar macrophages appear to be particularly 

sensitive to iron-containing MOF particles, which cause pronounced induction of a cellular 

stress response. In contrast, Cr-containing MOFs are well tolerated by these immune cells.  

 

Evaluation of nanosafety of MOF nanoparticles designed for implant coatings 

While NPs have been primarily used as mobile nanocarriers in medical applications, they can 

also be used to modify solid surfaces such as dental implants or cellular guidance 

structures.
44, 46, 53

 In order to evaluate the influence of particle size, chemical composition and 

surface charge we examined Zr-fum MOF, MIL-100(Fe) and MIL-101(Cr) MOF NPs (Suppl. 

Table S7-1). In proof-of-concept experiments, we investigated the biological effect of the 

different MOF NPs on gingival fibroblasts, adult human Schwann cells as well as rat neonatal 

organotypic dorsal root ganglion (DRG) cultures as effector cell systems for dental implants 

and nerve guidance tubes, respectively.  

We first tested primary human gingival fibroblasts for their cytotoxic response towards the 

above mentioned MOF NPs (Figure 7-4).  
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Figure 7-4. Biocompatibility of MOFs with human primary gingival fibroblasts. 

Metabolic activity (MTT test) and toxicity (LDH-assay) after 24 h of exposure of gingival fibroblasts to Zr-fum 

MOFsmall, Zr-fum MOFlarge, MIL-100(Fe) or MIL-101(Cr) particles, respectively. Untreated cells were set to 100 

% metabolic activity for the MTT test and to 0 % toxicity for the LDH assay. Values given are mean of three 

independent experiments ± SEM. * indicates a significant change compared to the respective controls (p < 0.05). 

 

Remarkably, all of the tested MOF NPs showed only minor signs of cytotoxicity on gingiva 

fibroblasts: while Zr-fum MOFs were well tolerated even at higher doses as revealed by LDH 

release assays and Zr-fum MOFlarge NP only responded with some decrease in metabolic 

activity, MIL-100(Fe) or MIL-101(Cr) particles showed some significant increase in LDH 

release with doses of 50 mg/ml and higher but no significant decrease in metabolic activity 

indicating that they are well tolerated (Figure 7-4). Scanning electron microscopy (SEM) 

analysis did not reveal any obvious morphological signs of cell death after incubation with Zr-

fum MOF NPs (Suppl Figures S7-15A-D).  

With regard to NP coating of nerve guidance channels, we used human primary adult 

Schwann cells as they are the leading supporting cells for peripheral nerve regeneration.
54

 

Moreover, Schwann cells are in direct contact with the NP coating on the inner surface of 

nerve guidance channels (Figure 7-1). We first analyzed the morphology and metabolic 
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activity of adult human Schwann cells cultures after 72 h in response to different doses of the 

MOF NPs (Figures 7-5A, 7-5B). We detected a pronounced formation of cell clusters when 

cultures were treated with doses of 200 µg/ml of the different MOF NPs, except for Zr-fum 

MOFlarge (Figure 7-5A). In contrast, lower doses of MOF NPs ranging from 12.5 to 50 µg/ml 

did not induce any obvious morphological alterations in the growth behavior of adult human 

Schwann cells (Figure 7-5A). This corresponded well to the preserved metabolic activity in 

the presence of most of the MOF NPs at doses up to 50 µg/ml (Figure 7-5B). For the adult 

human Schwann cells, we used the WST assay to determine metabolic activities. This test is 

based on the same principle as the MTT test, but easier to use in difficult cell culture systems 

due to water-solubility and storage conditions. MIL-100(Fe) as well as MIL-101(Cr) 

nanoparticles reduced metabolic activity of adult human Schwann cell at doses of 50 µg/ml. 

This did not, however, reach statistical significance and is probably not be related to cell 

death – as indicated by maintenance of cellular morphology - but may reflect an altered 

metabolic state of the cells in response to treatment. Metabolic activity was reduced up to 

approximately 50% of untreated cultures at the highest dose of 200 µg/ml. In presence of Zr-

fum MOF NPs, the metabolic activity of the cells was almost not affected in a dose range up 

to 50 µg/ml while the highest concentration of 200 µg/ml of Zr-fum MOFlarge did significantly 

reduce metabolic activity up to approximately 65% of un-treated controls (Figure 7-5B). In 

contrast, Zr-fum MOFsmall did not affect the metabolic activity of adult human Schwann cells 

in culture at any concentration tested. These data indicate that MOF NPs are generally well 

tolerated by human adult Schwann cells irrespective of the organic components, metal ion 

content, and size at low doses. 

In addition to Schwann cells, we monitored the biological response of sensory neurons to the 

MOF NPs using rat neonatal organotypic dorsal root ganglion (DRG) cultures. The particular 

feature of these DRGs cultures is that they contain sensory neurons that extend their axons 

(neurites) into the peripheral space thus mimicking axonal outgrowth to the periphery. 

Therefore, these cultures provide a unique opportunity to study the response of the main 

effector cell type for nerve guidance tubes, i.e. neurite outgrowth behavior of sensory 

neuronal cells, to novel types of nanomaterial.
44, 55

 In this assay, the neurite outgrowth from 

neonatal rat DRG cultures is quantified by counting the numbers of neurites crossing a circle 

drawn at 600 µm distance from the center of each DRG (Figure 7-5C). Figure 7-5C shows 

representative photomicrographs of untreated control DRG and of cultures that have reduced 

neurite outgrowth upon treatment with the different MOF-NPs added in two concentrations.  
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Figure 7-5. Biocompatibility of MOFs on adult human Schwann cells and rat organotypic DRG cultures. 
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(A) Representative photomicrographs demonstrating the morphology of adult human Schwann cell cultures 

treated for 72 h with the different MOFs. The typical Schwann ell morphology is demonstrated by bi- and 

tripolar cells that are organized in a fish swarm-like way. Negatively affected Schwann cell cultures demonstrate 

cell clustering. Schwann cells are stained in green (anti-S100 antibody) and the nuclei counterstained in blue 

(DAPI). Scale bars: 200 µm. (B) Line graphs depicting changes in metabolic activity of adult human Schwann 

cell cultures treated for 72 h with the different MOFs. Values given are mean ± SEM. Significant differences (p 

< 0.05) to control levels (100 %) are marked with *, differences between different doses of MOFs are marked 

with #. (C) Representative photomicrographs demonstrating the neurite outgrowth from organotypic DRG 

cultures. Neurites have been quantified at a distance of 600 µm from the center of the DRG (green circle). 

Neurites are stained in red (anti-beta-III-tubulin antibody) and cell nuclei are counterstained in blue (DAPI). 

Upper left: example of an untreated control culture with unaffected (regular) neurite outgrowth. Upper right: 

example of a culture with clearly reduced neurite outgrowth (outliner from cultures treated with Zr-fum 

MOFsmall). Lower left: example of a culture demonstrating slightly reduced neurite outgrowth in the presence of 

50 µg/ml MIL-100(Fe). Lower right: example of a culture demonstrating rescued neurite outgrowth in presence 

of 100 µg/ml MIL-100(Fe). Scale bars: 500 µm. The bar graph depicts changes in neurite outgrowth from 

organotypic DRG cultures treated for 48 h with the different MOFs. Values given are mean ± SEM. Significant 

difference (p < 0.05) with respect to control levels is marked with *. 

 

As an example for a treatment that showed a dose-dependent effect on neurite outgrowth, 

representative pictures from the MIL-100(Fe) treated cultures are shown: surprisingly, the low 

concentration of 50 µg/ml MIL-100(Fe) significantly reduced sensory neurite outgrowth 

while the doubled concentration rescued it to control levels. For Zr-fum MOFsmall and large, we 

did not observe any loss in neurite outgrowth capacity at both doses tested (Figure 7-5C).  

In conclusion, these data demonstrate the principal feasibility of using MIL-100 (Fe) and 

MIL-101(Cr) as well as Zr-fum MOF NPs for coating of dental implants as they were well 

tolerated by human gingiva fibroblast. For coating of nerve guidance tubes, however, Zr-fum 

MOFlarge NPs appear to be the most suitable choice as they were best tolerated in both adult 

human Schwann cells and rat dorsal root ganglia up to doses of 50 µg/ml, respectively. 

 

Discussion 

In this study we comprehensively analyzed the nanosafety of different MOF NPs with regard 

to distinct biomedical applications, ranging from systemic blood and local lung-specific drug 

delivery to coatings of dental implants and nerve guidance tubes (Table 7-1). 

During systemic nanoparticle-mediated drug delivery via the blood, nanomaterials get in 

contact with the endothelium of the vessels. We show that primary human endothelial cells 

are not affected by the tested MOF NPs, i.e. MIL-100(Fe) and MIL-101(Cr) and their DOPC-

coated derivatives up to high doses of 200 µg/ml toward with regard to apoptotic cell death or 

inflammatory responses. Similar results have been shown previously for the hepatocarcinoma 

cell line Hep3B.
29 
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Table 7-1. Nanosafety of the different MOF NPs for the respective application.  

 

 

This identifies these MOF NPs to be potentially suitable nanomaterials for systemic delivery 

via the blood. Although pharmacokinetics, such as trans-endothelial migration, absorption, 

bio-distribution and elimination of the MOF NPs needs to be investigated in further studies, 

the fact that these NPs do not destroy the endothelium forms a mandatory prerequisite for 

potential intravenous (i.v.) application in the future. 

Our data on the lung-specific applications of MOFs demonstrate that differences in the 

composition of the MOF NPs reflect directly on the bio-response of the cells. In general, both 

lung epithelial and alveolar macrophage cell lines were clearly more sensitive to the lipid-

coated and non-coated MIL-100(Fe) and MIL-101(Cr) NPs compared to the primary human 

endothelial cells. This might be related to the differential cell culture conditions, as 

endothelial cells were cultured as a confluent and tight cell monolayer, while the lung cells 

were grown at subconfluent conditions. However, subconfluent dental fibroblasts were not 

sensitive to non-coated MIL-100(Fe) and MIL-101(Cr) nanoparticles. Thus, these differential 

sensitivities most probably reflect the intrinsic differences between the different cell types as 

also indicated by the differential sensitivity of lung epithelial and lung immune cells to the 

MOF NPs. Alveolar macrophages showed a striking sensitivity towards iron-containing MOF 

NPs. MIL-100(Fe)- and MIL-100(Fe)@DOPC-induced toxicity was accompanied by early 

upregulation of anti-iron stress-response genes. Of note, the iron-containing MOF NPs did not 

induce upregulation of early inflammatory marker genes such as IL-6, TNFα and Nos2 which 

are well known mediators of an acute inflammatory response in the lung to foreign material.
56

 

This is well in line with the previously observed differential response of alveolar 

macrophages to diverse nanomaterials.
56

 Alveolar epithelial cells tolerated these particles well 

up to doses of 100 µg/ml. In contrast, Cr-containing MOF NPs were well tolerated by both 
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alveolar epithelial cells and alveolar macrophages at doses up to 100 µg/ml. We tentatively 

attribute this different behavior to the high chemical stability of the Cr-containing MOF NPs. 

Only high and slightly toxic doses of 200 µg/ml induced inflammatory gene expression in the 

alveolar macrophages. A second important observation from our study on the pulmonary 

effector cells is that lipid-coated MOF NPs were better tolerated by alveolar epithelial cells 

than their non-coated counterparts. This may be due to improved cellular uptake as previously 

shown by some of us.
34

 The lipid layer might also act as a stealth coating, thus preventing 

certain cellular response mechanisms from being activated. In conclusion, lung epithelial and 

immune cells are less sensitive to Cr-based MOF NPs and induce no adverse cytotoxic effects 

at the low and middle dose-range. These particles can therefore be envisioned as 

biocompatible nanocarriers for inhalative lung-specific drug delivery, whereas the Fe-based 

MOF NPs do not seem to be suitable for pulmonary applications. Nanoparticle-mediated drug 

delivery into the lung via inhalation represents a novel concept for treatment of lung 

diseases.
57, 58

 It is hampered, however, by the fact that the applied nanocarriers have 

detrimental side-effects for the lung which may either result from acute inflammation and 

cytotoxicity or upon their accumulation in lung tissue over time causing chronic lung 

inflammation as shown previously.
59

 The here studied MOFs represent a novel type of 

biodegradable nanomaterial which may possibly overcome these limitations.  

Nanosafety of MOF NPs for surface coating of dental implants was tested in primary human 

gingiva fibroblasts, which are the effector cells that are in direct contact with nanoparticle-

coated grafts. Notably, these cells showed no obvious toxic response towards the tested MOF 

NPs, i.e. MIL-100(Fe) and MIL-101(Cr) and Zr-fum MOFsmall and large. In both assays applied, 

i.e. measurement of metabolic activity and release of LDH, gingival fibroblasts did not reveal 

a significant toxic response. Moreover, maintenance of the fibroblastoid morphology of the 

cells indicated good biocompatibility. The lack of toxicity of the MOF NPs in a wide dose-

range supports a possible application for coatings of dental implants. Regarding a future 

application of MOF NPs as coating and nanocarrier for nerve guidance tubes, our data 

demonstrate the biocompatibility of the MIL-100(Fe) and MIL-101(Cr) as well as Zr-fum 

MOFsmall and large MOF NPs with adult Schwann cells in the low dose-range. MOF NPs were 

also generally well tolerated by cultures of dorsal root ganglia and did not notably interfere 

with the outgrowth of neuronal axons with the prominent exception of Fe-containing MOFs. 

In particular the low cytotoxic response of adult Schwann cells as well as the inert behavior of 

sensory neurons towards Zr-fum MOFlarge particles makes those MOF NPs a promising 

formulation for surface coating of nerve guidance tubes as suggested previously for polysialic 
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acid and its mimetics.
60, 61, 62

 Recently we were able to demonstrate that iron oxide 

nanoparticles potentially provide a biocompatible tool to delivery of neurotrophic factors in 

peripheral nerve reconstruction approaches.
44, 63

 Our data on the MOF NPs provide now 

evidence for their potential as delivery system of regeneration promoting peptides within 

nerve guidance channels.  

In conclusion, our data on the biocompatibility of the MIL-100(Fe) and MIL-101(Cr) and the 

Zr-fum MOF NPs are well in line with published studies on cellular uptake.
12, 13, 18, 19, 25, 34 

The 

most important finding of our comprehensive validation is that there are striking differences 

in the bio-response of the diverse effector cell types to the distinct MOF-NPs (Table 7-1). For 

the MIL-100(Fe) and MIL-101(Cr) particles, differential responsiveness appears to be directly 

related to intrinsic differences of the cell types as colloidal stability of these MOFs has been 

shown to be preserved in different cell culture media for at least 24 hours.
29

 

Lipid coated MIL-101(Cr) MOF NPs can be envisioned so far as safe nanoagents for 

intravenous systemic drug delivery. We have previously shown that the lipid coated MIL-

100(Fe) and MIL-101(Cr) MOF NPs are taken up and well tolerated by the T24 bladder 

carcinoma cell line suggesting that lipid-coated MOF NPs might be feasible nanocarriers for 

delivery of cytotoxic drugs to tumor cells.
34

 In addition, MIL-100(Fe) and MIL-101(Cr) 

together with Zr-fum MOF NPs might be suitable nanoparticles for surface coating of dental 

grafts. Zr-fum MOFlarge NPs appear to be promising nanomaterial for inner surface 

modification of nerve guidance tubes. Of note, the lung is particularly sensitive to any 

nanomaterial but lipid-coated MIL-101(Cr) MOF NPs might be appropriate nanoagents for 

inhalative drug delivery at a low to middle dose ranges. The particular sensitivity of the lung 

to nanomaterial is well known and constitutes the basis for the hazardous effects of 

inhalatively taken up environmental NPs.
28

 These results unambiguously demonstrate the 

requirement for thorough testing of nanomaterials for their respective nanosafety in specific 

biomedical applications as suggested recently.
26, 58  
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7.3. Conclusion 

MOF chemistry offers a unique platform to create functional NPs for different biomedical 

applications with improved biocompatibility. However, NPs have been shown to bear 

potential risks for human health. Therefore, we validated various MOF NPs for specific 

medical fields of application. To the best of our knowledge, this is the first time that such NPs 

have been systematically evaluated for their biocompatibility with their primary effector cells. 

We demonstrate that the tested MOF NPs show differential toxicity and bio-response in 

different effector cells tested. Thus, this work defines a novel strategy that, in addition to 

highlighting the potential important risks of using MOF NPs for specific medical purposes, 

also demonstrates their differential suitability for applications in drug delivery and for implant 

coating. Importantly, for the first time we envision the use of MOF NP coatings for dental 

implants or cellular guidance tubes and show their nanosafety regarding the respective 

effector cells, such as gingiva fibroblasts and peripheral nerve cells. 

Our results thus clearly demonstrate the requirement for thorough testing of nanomaterials 

regarding their nanosafety in specific biomedical applications as suggested recently, and 

illustrate the impact of the molecular interface of the MOF NPs for their respective use for 

systemic drug delivery and surface modification of implants.
26, 56

 

  



7. Validating metal-organic framework nanoparticles for their nanosafety in diverse 
biomedical applications 

 

  215 

7.4. Materials and Methods 

Chemicals and cells: 

Chromium(III) nitrate nonahydrate (99%, Aldrich), terephthalic acid (98%, Aldrich), ethanol 

(99%, Aldrich)  1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti Polar Lipids), iron 

(III) chloride hexahydrate (Grüssing GmbH), trimesic acid (BTC, Aldrich), zirconium 

tetrachloride (Sigma Aldrich), fumaric acid (Sigma Aldrich), formic acid (Sigma Aldrich), 

propionic acid (Sigma Aldrich). 

The solvent ethanol (EtOH, Aldrich, absolute) was used without further purification. 

 

Murine alveolar epithelial cell line, MLE 12, and murine alveolar macrophage cell line, MH-

S, were purchased from American Type Culture Collection. MLE 12 cells were grown in 

complete RPMI-1640 medium (Life Sciences) supplemented with 10% fetal bovine serum 

(BioChrom) and 1% Penicillin/Streptomycin (Life Technologies), and in the case of MH-S 

cells, further supplemented with 1 mM Na-Pyruvate, 10 mM HEPES, and 50 µM 2-ME (all 

AppliChem) at 37 °C in a humidified atmosphere containing 5 % CO2. 

 

Adult human Schwann cells were harvested from donor nerve samples and highly enriched in 

selective medium and by cold jet washing as described before.
64

 Purified human Schwann cell 

cultures were cultivated on P-ORN-laminin (1 mg/ml P-ORN, 6 µl/ml laminin, both Sigma-

Aldrich, Germany) coated 24-well plates in specific medium: melanocyte growth medium 

plus supplement (PromoCell, Germany) supplemented with 2 mM forskolin (Calbiochem, 

Germany), 10 ng/ml fibroblast growth factor 2 (Peprotech, Germany), 5 µg/ml bovine 

pituitary extract (BPE-26, PromoCell, Germany), 10 nM human recombinant heregulin-beta1 

(R&D Systems, Germany) and 1% penicillin/streptomycin (pen/strep, PAA Laboratories, 

Germany). For biocompatibility testing a density of 4-6x10
4
 Schwann cells/ ml was seeded 

and cultured for 24 h prior to adding 12.5 µg/ml, 50 µg/ml or 200 µg/ml of MOFs to the 

medium for 72 h. Each condition was analysed in pairs of 2 sister cultures for WST-1 assay 

and immunocytochemistry.  

 

Primary human umbilical vein endothelial cells (HUVECs) were isolated by collagenase 

treatment of umbilical cords. Human microvascular endothelial cells (HMEC) were obtained 

from the Centers for Disease Control and Prevention (CDC, Atlanta, GA, WA). Cells were 

cultured in endothelial growth medium (Provitro, Berlin, Germany) supplemented with 10% 
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heat-inactivated fetal calf serum (FCS) and growth factors (basic fibroblast growth factor 10 

ng/ml, Heparin 0.004 ml/ml and epidermal growth factor 0.1 ng/ml) on 0.001% Collagen G. 

 

Human primary gingival fibroblasts were purchased from Provitro (Berlin, Germany). Cells 

were grown in Dulbecco’s Modified Eagle Medium (DMEM) (Biochrom) supplemented with 

10% fetal bovine serum (PAN Biotech) and 1% Penicillin/Streptomycin (Biochrom) at 37 °C 

in a humidified atmosphere containing 5% CO2. After thawing, cells were subcultured two to 

three times prior to cell testing.  

 

Preparation and cultivation of primary dissociated rat dorsal root ganglia (DRGs): DRGs were 

dissected from neonatal Hannover Wistar rats (P1-P3; Janvier, France) and collected in HBSS 

medium (Hanks balanced salt solution without magnesium and calcium) supplemented with 

1% pen/strep (all PAA Laboratories, Germany). After isolation, ganglia were incubated in 

dissociation solution (HBSS, trypsin EDTA (1x)- 0.25% [Gibco, Germany], 0.1% DNase 

[0.5% stock, Roche Diagnostics, Germany]) for 15 min at 37 °C. Then collagenase IV (160 

U/mg, PAA Laboratories, Germany) was added for another 20 min. Digestion of DRGs was 

stopped by adding N2 medium with 3% fetal calf serum (DMEM-F12 [PAA Laboratories, 

Germany], 1% N2-supplement [100x, Gibco, Germany], 0.25% bovine serum albumine 

[fraction V, 25% stock, Sigma-Aldrich Chemie GmbH, Germany)], 200 mM L-glutamine, 1% 

pen/strep, 100 mM sodium pyruvate [PAA Laboratories, Germany]). After centrifugation, the 

supernatant was discarded and fresh N2-medium added to the DRGs.  Prior to seeding of 

single DRGs in the center of wells of a 24-well plate, 150µl of growth factor reduced BD 

Matrigel
TM

 (BD Biosciences, Germany) were plated into each well. After placing a single 

DRG in the center of each well, the plate was incubated for 5 min at 37 °C. Then 50 µl of N2-

medium were carefully added followed by 60 min incubation prior to finally adding 100 µl of 

N2-medium for 24 h. Medium was then carefully replaced by regular N2-medium or N2-

medium supplemented with 50 µg/ml or 100 µg/ml of each MOF investigated. Each condition 

was tested in pairs of 2 sister cultures and cultured for an additional 48 h prior to fixation and 

immunocytochemistry. 

 

RNA preparation and qRT-PCR: MH-S cells were treated with either 50 or 200 µg/mL MIL-

100(Fe), MIL-101(Cr), MIL-100(Fe)@DOPC, or MIL-101(Cr)@DOPC for 4 h on 24 well 

plates. 1 µg/mL LPS (Sigma-Aldrich) was used as a positive control. Total RNA from cells 

was isolated using Roti®-Quick-Kit (Carl Roth, Karlsruhe, Germany). 100 - 1,000 ng per 
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sample of total RNA were reverse-transcribed using random hexamers (Life Technologies, 

Carlsbad, CA, USA) and M-MLV reverse transcriptase (Sigma-Aldrich). Quantitative PCR 

was performed using the SYBR Green LC480 System (Roche Diagnostics, Mannheim, 

Germany).  

 

Synthesis of MIL-101(Cr) nanoparticles: For the microwave synthesis of MIL-101(Cr) 

nanoparticles according to literature,
65

 chromium(III) nitrate nonahydrate (1.48 g, 3.70 mmol) 

and terephthalic acid (615 mg, 3.70 mmol) were heated in 20 mL H2O bidest. to 220 °C under 

solvothermal conditions (Microwave, Synthos, Anton Paar, p = 18 bar) within four minutes. 

The mixture was kept at 210 °C for two minutes and the resulting suspension was cooled 

down to room temperature. The nanoparticles were separated from the occurring bulk material 

by filtration. For purification, the filtrate was washed four times by centrifugation (1st: 20000 

rpm, 60 min; 2nd-4th: 20000 rpm, 45 min) and redispersion in EtOH. Afterwards the sample 

was characterized by DLS, zeta-Potential XRD, BET and TEM measurements.  

 

Synthesis of MIL-100(Fe) nanoparticles: MIL-100(Fe) nanoparticles were synthesized 

according to literature.
66

 Iron (III) chloride hexahydrate (2.43 g, 9.00 mmol) and trimesic acid 

(0.84 g, 4.00 mmol) were heated in 30 mL H2O bidest. was put into a Teflon tube, sealed and 

placed in the microwave reactor (Microwave: Synthos3000, Anton Paar). The mixture was 

heated to 130 °C under solvothermal conditions (p = 2.5 bar) within 30 seconds, kept at 130 

°C for 4 minutes and 30 seconds and the resulting suspension was cooled down to room 

temperature. For purification of the solid, the reaction mixture was centrifuged (20000 rpm, 

45 min) and the pellet was redispersed in EtOH. This cycle was repeated two times and the 

dispersed solid was allowed to sediment overnight. Afterwards the supernatant was filtrated 

three times, yielding MIL-100(Fe) nanoparticles in a well dispersed suspension. Afterwards 

the sample was characterized by DLS, zeta-potential XRD, BET and TEM measurements.    

 

Synthesis of MOF@DOPC nanoparticles: MIL-101(Cr)@DOPC and MIL-

100(Fe)@DOPC nanoparticles were synthesized according to literature.
34

 The amount of 1 

mg MIL-101(Cr) or MIL-100(Fe) nanoparticles was centrifuged for 5 min at 14000 rpm 

(16873 rcf). For the application of the lipid layer, the sample was redispersed in 100 µL of a 

3.6 mM DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) solution in a 60/40 (v/v) 
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H2O/EtOH mixture. 900 µL H2O was added and mixed as quickly as possible. By increasing 

the water concentration, the lipid molecules precipitate and are expected to cover the 

nanoparticle surface with a lipid layer. For purification, the suspension was centrifuged 

(5 min, 14000 rpm = 16873 rcf), redispersed in 1 mL H2O and again centrifuged. Finally the 

nanoparticles were redispersed in 200 µL H2O.  

 

Synthesis of Zr-fum MOF nanoparticles: Zr-fumarate MOF nanoparticles were synthesized 

according to a published procedure.
30

 ZrCl4 (0.517 mmol, 1 eq) was dissolved in 10 mL water 

and fumaric acid (1.550 mmol, 3 eq) was added. For the production of the small nanoparticles 

(sample Zr-fum MOFsmall), 50 eq of propionic acid were added as modulator; for the 

preparation of large nanoparticles (sample Zr-fum MOFlarge), 70 eq of formic acid were used. 

The mixture was then transferred into Teflon-capped glass vials that were put into an oven 

and heated to 120 °C for 24 h. The white precipitate was collected by centrifugation (10000 

rpm, 60 min) and washed with 10 mL water and 10 mL ethanol, respectively. The white 

powders were dried at room temperature.  

 

Apoptosis assay: The apoptosis rate was determined according to Nicoletti et al. 1991.
47

 

Briefly, cells were treated with the respective MOF particles for 72 h, trypsinized, washed and 

incubated with a hypertonic solution containing Triton-X100 and 50 μg/ml propidium iodide. 

Subdiploid DNA content was determined by flow cytometry (Becton Dickinson, Heidelberg, 

Germany). 

 

Flow cytometric determination of membrane ICAM level: HUVEC cells were treated with 

the respective MOF particles and cultured for 24 h. As a positive control, 1 ng/ml TNFα was 

applied. After stimulation, cells were trypsinized and fixed for 10 min with 4 % methanol-free 

formaldehyde. Next, cells were washed with PBS and labeled with a FITC-conjugated mouse 

anti human ICAM antibody (CD54-FITC # 15.2, Biozol, Eching, Germany) for 45 min. After 

another washing step the ICAM-level was determined by flow cytometry (Becton Dickinson, 

Heidelberg, Germany). 

 

Immunocytochemistry: HMEC cells were grown on a Collagen G coated (0.001%) 8-well 

ibidi μ-slide (ibidi, Martinsried, Germany) and treated for 24 h with the respective MOF 

particles. Cells were fixed with 4% paraformaldehyde, and permeabilized with 0.2 %Triton 
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X-100 in PBS. After blocking the unspecific binding sites with 1 % BSA, 0.1 %Triton in 

PBS, Hoechst22358
®
 and rhodamine-conjugated phalloidin (Invitrogen, Eugene, OR, USA) 

were diluted 1:400 in the blocking solution to stain nuclei and F-actin, respectively, for 2 h at 

room temperature. Next, cells were washed three times with PBS and once with distilled 

water and then mounted in PermaFluorTMmounting medium (Beckman Coulter, Krefeld, 

Germany). 

To evaluate Schwann cell morphologies and neurite outgrowth from DGR cultures, 

immunocytochemistry was performed. For this purpose, cell cultures were gently washed 

with phosphate buffered salt solution (PBS, Sigma-Aldrich, Germany) and fixed for 20 min 

with 4% paraformaldehyde (PFA, Merck, Germany). Human Schwann cell cultures were then 

incubated for 24 h (4 °C) with Schwann cell specific α-S100 antibody (polyclonal, 1:200, 

DAKO, Denmark) in PBS/0.3% Triton-X-100/5% BSA solution. After washing with PBS, 

incubation with Alexa 488 goat α-rabbit secondary antibody (1:500, Invitrogen, Germany) for 

~1.5 h at room temperature (RT) followed. For detection of neurite outgrowth from DRG 

cultures, blocking of unspecific antibody binding was induced by incubation with PBS/0.3 

Triton-X-100 containing 3% normal goat serum (NGS, GIBCO, Germany) for 1 hr at RT. 

DRG cultures were incubated overnight (4 °C) with neuron specific α-β-III-tubulin antibody 

(monoclonal, 1:500, Upstate Biotechnology, USA) in PBS/0.3%Triton-X-100 containing 1% 

NGS. After washing with PBS, incubation with Cy 3 conjugated goat α-mouse secondary 

antibody (1:500, Jackson Immunoresearch, USA) for ~1.5 h (RT) followed.  

Cell nuclei were counterstained with DAPI (1:1000, Sigma-Aldrich, Germany). After final 

washing, the plates were subjected to fluorescence microscopy (BX61, Olympus, Germany). 

For quantification of neurite outgrowth from DRGs, 6-8 images per condition were captured 

at 20x magnification using Cell P® (Olympus, Germany) and Image J software (Wayne 

Rasband) and merged to a complete picture. Neurites extending from the DRGs were 

quantified at a distance of 600 µm from their neuronal nuclei-containing centres.  

 

MTT assay: MTT assay was performed to assess cellular viability upon MOF exposure. 

Briefly, 3 x 10
3
 gingival fibroblasts were seeded in a 96 well plate, whereas 8 x 10

4
 cells/well 

MLE 12 or MH-S were seeded in 24 well plates. 24 h after seeding, cells were exposed to 25, 

50, 100, or 200 μg/mL MOF suspensions in fresh media for 24 h. After treatment, cells were 

incubated with Thiazolyl Blue Tetrazolium Bromide solution for determination of metabolic 

activity (Roche for gingival fibroblasts, Sigma for MLE 12 and MH-S). Absorbances were 
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measured at 570-580 nm (650 nm reference) using the plate readers Infinite F200 (Tecan) for 

gingival fibroblasts and Tecan Sunrise for MLE 12 and MH-S cells. 

 

WST-1 assay – human Schwann cells: Because primary adult Schwann cells do not 

proliferate as fast as the other cell lines used here in this study, their metabolic activity was 

measured after 72 h of culture time with the WST-1 assay. After 72 h of cultivation in the 

presence of different MOF concentrations the culture medium was removed and the wells 

washed with PBS in order to remove all nanoparticles. Then 350 µl/well of culture medium 

containing the WST-1 compound (1:10) were added. Cells were incubated for ~3.5 h at 37 °C 

in humidified atmosphere with 5 % (v/v) CO2. Afterwards triplicates of 100 µl from each 

sample were transferred to 96-well plates and the optical density (OD) was measured at 

450 nm using a multiwell plate reader (ELx800 BioTek Instruments).  

 

LDH assay: Cell death upon exposure to MOFs of gingival fibroblast, MLE12, HUVEC, and 

MH-S cells was assessed by the LDH Cytotoxicity Detection Kit (Roche). Cells were seeded 

and treated with MOFs as described above for the MTT assay. Positive controls were 

generated by lysing the cells with 1% Triton X-100 (Fluka BioChemika for gingival 

fibroblasts, AppliChem for MLE 12 and MH-S). After MOF treatments for 24 h, supernatants 

were used for the LDH reaction. Absorbances were measured at 492 nm (650 nm reference) 

using the plate readers Infinite F200 (Tecan) for gingival fibroblasts and Tecan Sunrise for 

MLE 12 and MH-S cells.  

 

Statistics: Data from adult human Schwann cell cultures and human endothelial cells were 

analyzed using Two-Way ANOVA (Tukey’s multiple comparison test), and data from DRG 

neurite outgrowth assays with the Mann-Whitney-Test using the Graph Pad Prism 6.0 

software (Graph Pad, USA). MTT and LDH assay data from gingiva fibroblast, MLE 12 and 

MH-S cells were analyzed by Two-Way ANOVA using GraphPad Prism 6.0. RT-qPCR data 

from MH-S cells were analyzed with the Kruskal-Wallis-Test with Dunn’s comparison post-

hoc test using GraphPad Prism 5.0. 
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7.6. Appendix 
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Figure S7-1. X-ray powder diffraction pattern of MIL-101(Cr) nanoparticles (top) and MIL-101(Cr) bulk 

calculated (bottom). 

 

 

Figure S7-2. Transmission electron micrograph of MIL-101(Cr) nanoparticles – detailed image (left) and 

overview (right). 
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Figure S7-3. Nitrogen sorption isotherm of MIL-101(Cr) nanoparticles. Calculated BET surface area: 

3205 m
2
/g.  
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Figure S7-4. DLS size distribution (measured in water) by number comparing  uncoated and DOPC-coated 

MIL-101(Cr) nanoparticles. 
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Figure S7-5 X-ray powder diffraction pattern of MIL-100(Fe) nanoparticles (top) and MIL-100(Fe) bulk 

calculated (bottom). 

 

 

 

Figure S7-6. Transmission electron micrograph of MIL-100(Fe) nanoparticles - detailed image (right) and 

overview (left). 
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Figure S7-7. Nitrogen sorption isotherm of MIL-100(Fe) nanoparticles. Calculated BET surface area: 

2004 m
2
/g.  
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Figure S7-8. DLS size distribution (measured in water) by number comparing uncoated and DOPC-coated MIL-

100(Fe) nanoparticles. 

 



7. Validating metal-organic framework nanoparticles for their nanosafety in diverse 
biomedical applications 

 

  229 

 

Figure S7-9. X-ray powder diffraction pattern of Zr-fum MOFsmall (top) and Zr-fum MOFlarge  (middle) 

nanoparticles and Zr-fum MOF bulk calculated (bottom). 

  



7. Validating metal-organic framework nanoparticles for their nanosafety in diverse 
biomedical applications 

 

230 

 

 

 

Figure S7-10. Transmission electron micrograph of Zr-fum MOF nanoparticles; Zr-fum MOFsmall (top) and  Zr-

fum MOFlarge (down). Detailed images (left) and overviews (right). 
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Figure S7-11. Nitrogen sorption isotherm of Zr-fum MOF nanoparticles ; Zr-fum MOFsmall (top) and  Zr-fum 

MOFlarge (down). 1250 m
2
/g and 1000 m

2
/g Calculated BET surface area of Zr-fum-MOFsmall (top) and Zr-fum-

MOFlarge : 1250 m
2
/g and 1000 m

2
/g, respectively 
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Figure S7-12. DLS size distribution (measured in water) by number comparing Zr-fum MOFsmall (top) and Zr-

fum MOFlarge nanoparticles. 

 

 

 

Figure S7-13. Actin staining of MIL-100(Fe) and MIL-101(Cr) treated HMEC cells. HMEC cells were treated 

with the respective MIL-100(Fe) and MIL-101(Cr) concentration for 24 h. Cells were fixed, actin and nuclei 

were stained and analysed by confocal microscopy. 
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Figure S7-14. Determination of the apoptosis rate by FACS analysis. Apoptotic cells undergo a DNA 

fragmentation process and are characterized by a reduced DNA content. The DNA content of cells was 

determined by the DNA intercalating dye propidium iodide (PI). Cells that appear in the subG1 phase have a 

reduced DNA content and can be identified as apoptotic cells. 

 

 

 

Figure S7-15. SEM images of gingival fibroblasts after 24 h incubation with Zr-fum MOFsmall (A, C) and Zr-fum 

MOFlarge (B, D). 326 fold magnification reveals the cellular morphology (A, B) and 10400 fold magnification 

reveals the affinity of the NP to the cells (C, D). Cells were fixated with 4% paraformaldehyde and 0.1% 

glutaraldehyde, dried with ethanol and hexamethyldisilizane and sputtered with 30 nm gold. 

 

 

 

 

 

 



7. Validating metal-organic framework nanoparticles for their nanosafety in diverse 
biomedical applications 

 

234 

Table S7-1. Structural properties, hydrodynamic diameter and zeta potential of the different nanoparticles. 

 

MOF Empirical formula Metal Linker 
Size 

(DLS) 

PDI 

(DLS) 

Zeta 

(HBG) 

MIL-100(Fe) Fe3O(H2O)2OH∙{C6H3(CO2)3}2 Fe trimesic acid 180 ± 59 nm 0,278 -42,8 mV 

MIL-100(Fe)@DOPC Fe3O(H2O)2OH∙{C6H3(CO2)3}2 Fe trimesic acid 121 ± 27 nm 0,117 -31,0 mV 

MIL-101(Cr) Cr3O(H2O)2OH∙{C6H4(CO2)2}3 Cr terephthalic acid 57 ± 12 nm 0,162 -0,1 mV 

MIL-101(Cr)@ DOPC Cr3O(H2O)2OH∙{C6H4(CO2)2}3 Cr terephthalic acid 63 ± 13 nm 0,151 2,7 mV 

Zr-fum MOFsmall Zr6O4(OH)4(C2H2(CO2)2)6 Zr fumaric acid 83 ± 14 nm 0,096 -15 mV 

Zr-fum MOFlarge Zr6O4(OH)4(C2H2(CO2)2)6 Zr fumaric acid 129 ± 28 nm 0,362 -15 mV 
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8. pH-selective toxicity of lipid-coated MOF nanoparticles for 

use as chemotherapeutics 

 

This chapter is based on the following work: 

 

Andreas Zimpel, Sabine Barnert, Stefan Krombholz, Heiko Heerklotz, Valentina Cauda, 

Stefan Zahler, Angelika M. Vollmar, Stefan Wuttke, and Hanna Engelke; 2018, in 

preparation 

 

 

 

 

8.1. Introduction 

A key challenge in chemotherapy is the selective delivery of drugs to diseased tissue. Any 

off-target effects of the drugs lead to unwanted side effects.
1
 Various kinds of nanoparticles 

have been designed to overcome this challenge. Usually, these nanoparticles act as 

nanocarriers encapsulating the drugs and releasing them at the target tissue. However, the 

employed drugs are usually highly toxic substances and any premature leakage may lead to 

severe side effects.
2
 Even very tight capping mechanisms

3-4
 or incorporation of the drug into 

the structure of the nanocarrier
5
 cannot guarantee the absence of premature leakage. 

Furthermore, after release and action at the target site the drugs may induce side effects in the 

surrounding tissue before their clearance.  An ideal alternative to avoid any off-target effects 

of these drugs would be to perform chemotherapy without the use of inherently toxic 

substances as drugs. For example, one such strategy is used in phototherapeutic approaches 

that generate radical oxygen species locally at a tumor site by irradiation of certain nanosized 
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materials, such as ZnO-nanoparticles
6-7

 that have been injected into the tumor. The radical 

oxygen species will be toxic to the surrounding cells. They will only be generated by local 

illumination and are very short-lived. Thus, they shouldn’t lead to any systemic side effects. 

However, the materials constituting these nanoparticles may cause toxic effects, penetration 

of the irradiation is limited, and patients need to be protected from sunlight.
8
 An alternative 

concept for tumor therapy without inherently toxic substances could be to induce a sudden 

lysosomal burst that has been shown to lead to cell death.
9
 Instead of employing 

lysosomotropic reagents, such a lysosomal burst could be generated by a sudden increase of 

the osmotic pressure inside the lysosome. This purely physical effect can be generated by a 

sudden increase in concentration of almost any molecule and avoids any involvement of 

inherently toxic substances.  

For the generation of such a sudden increase of osmotic pressure inside the lysosome, 

nanoparticles seem very promising candidates. They have the right size and can be 

functionalized for cellular internalization into the lysosome. Additionally, they can be 

designed to decompose under the acidic conditions of the lysosome and their degradation will 

release the building blocks of the nanoparticles at high concentrations
10

 leading to the desired 

enhanced osmotic pressure.  

Specifically, metal-organic framework (MOF) nanoparticles exhibit a range of advantageous 

properties for this purpose. They can be synthesized from a rich plethora of building blocks 

and are highly tunable in structure and design.
11-13

 Their high porosity allows degrading 

molecules to readily access the nanoparticle structure enabling a rapid decomposition.
14

 

Furthermore, their building blocks are linked via coordinative bonds that can be tuned to 

remain stable during transport, but degrade at the desired kinetics in the presence of 

competing ions in the lysosome.  

Based on the finding that lipid-coated MIL-88A is degraded in the lysosome leading to 

defects in the lysosomal membrane, yet to an extent that doesn’t trigger cell death,
10, 15

 we 

sought to find a similar MOF nanoparticle with different degradation kinetics that might 

induce a strong lysosomal burst followed by cell death. Here we show that lipid-coated MOF 

NPs (Lip-MOF NPs) consisting of the biocompatible building blocks iron and trimesic acid 

(MIL-100(Fe)), is internalized into the lysosome and that slight acidification of the 

extracellular pH leads to degradation and burst of the lysosome followed by necrosis. Neither 

the single building blocks of the Lip-MOF NPs nor the nanoparticles at physiological pH 

affect cell viability. With this dependence on the extracellular pH, the effect of lipid-coated 

MIL-100(Fe) NPs can be locally restricted, e.g., to the acidic environment of a tumor. This 
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renders them promising candidates for chemotherapy without the involvement of inherently 

toxic substances.  
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8.2. Results and Discussion 

Nanoparticle design and characterization. MIL-100(Fe) nanoparticles were synthesized as 

reported in the literature (characterization and detailed synthesis see SI).
16-18

 To facilitate their 

cellular uptake via endocytosis, the nanoparticles were coated with DOPC (=1,2-dioleoyl-sn-

glycero-3-phosphocholine)-liposomes (see SI, Figure S8-1) employing lipid fusion as 

previously described.
10, 15, 19

 

The resulting lipid-coated MIL-100(Fe) nanoparticles (DOPC-MIL-100(Fe) NPs) showed 

additional bands in the infrared spectrum resulting from C-H stretching vibrations of the fatty 

acid chains, confirming the successful lipid coating (see SI, Figure S8-2). Their zeta potential 

was enhanced compared to the uncoated particles due to the lipids covering the negatively 

charged external carboxylic groups of the MOF. BET surface area decreased (from 1576 m
2
/g 

to 846 m
2
/g) due to the partial pore clogging induced by the lipids (see SI, Fig. S8-3). 

Crystallinity of MIL-100(Fe) could be retained during the coating procedure: XRD 

measurements revealed a decrease in peak intensity after coating due to the high amount of 

organics, but the intensity could be increased again by washing the particles in ethanol (see 

SI, Fig. S8-4). TEM of the uncoated nanoparticles shows the typical fringe pattern of a 

crystalline material. In the TEM images of the Lip-MOFs, the pattern is not visible due to the 

lipid coating. The hydrodynamic radius of the Lip-MOFs was determined by dynamic light 

scattering to be 250 nm (see SI, Figure S8-5) – a size that is well suited for cellular 

internalization via endocytosis. Additionally, agglomerates (> 500 nm) can be detected and 

these findings could be confirmed by cryo-TEM measurements (see SI, Fig. S8-6). Further, 

combination of cryo- and high resolution TEM (HRTEM) measurements revealed useful 

information about the nature of the lipid shell which was created around the MIL-100(Fe) 

nanoparticles. Figure 8-1 shows images of uncoated and coated MOF NPs taken by cryo-

TEM compared to HRTEM. 
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Figure 8-1. TEM images of unfunctionalized (top) and lipid-coated MIL-100(Fe) NPs 

 

HRTEM images show defined edges and lattice planes of the MIL-100(Fe) NPs (top left). 

The shape of the particles is comparable to cryo-TEM (top right), albeit the resolution of the 

particles in not as high due to technical properties of the microscopes. Comparing the lipid 

coated nanoparticles in HRTEM and cryo-TEM (bottom), significant differences can be 

observed. While HRTEM reveals similar shape and size of the nanoparticles with grainy 

morphology, cryo-TEM images show roundish nanocomposites with increased size as already 

indicated by DLS. We attribute these differences in TEM to electron beam sensitivity of the 

lipid shell which is removed at high voltage in HRTEM but prevented in cryo-TEM due to 

sample preparation and lower applied voltage. Taking a closer look, cryo-TEM gives further 

information about the core-shell nature of the nanocomposite (Figure 8-2). Differences 

between the organic compounds of lipid shell and organic linker containing MOF are hardly 

visible, as they provide similar contrast (left). Nevertheless, by enhancing the threshold, the 

MOF nanoparticle within the nanocomposite can be resolved (right), showing again its 

characteristic edged shape. 
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Figure 8-2. cryo-TEM inzoom; original (left) and threshold enhanced (right). 

 

Further, cryo-TEM indicates that DOPC does not form a homogenous lipid bilayer with an 

aqueous interior but creates a hydrophobic emulsion which completely envelopes the MIL-

100(Fe) NPs. These findings are well in accordance with the unexpected high increase in size, 

as a tight fitting lipid bilayer would only be at the order of a few nanometers.
19 

 

Effect of DOPC-MIL-100(Fe) NPs on cells. Next, we investigated the effect of Lip-MOFs 

on cells. We loaded them with the dye calcein prior to liposome coating and incubated them 

on HeLa cells. Figure 8-3 shows the time course of events after incubation. Directly after 

incubation the particles are not visible since all calcein is quenched by the nanoparticles. 40 h 

after incubation calcein was visible in distinct green spots distributed over the cell indicating 

that it was not encapsulated in the intact Lip-MOF anymore. Shortly after, we observed a 

sudden spread of the calcein dye all over the cell followed by a burst and deflation of the 

entire cell.  

 

Figure 8-3. CLSM images (overlay of bright-field and fluorescence channel) after 30 h (left), 41 h (middle) and 
44 h (right) after incubation. Schematic explanation of the cell shape at the time points (top of each image). 
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An MTT-test 72h after incubation confirmed the observed toxicity of the Lip-MOF with an 

IC50 of approximatly 9 µg/mL (Figure 8-4A). Strikingly, this toxicity was strongly dependent 

on the extracellular pH: Metabolizing cells excrete lactic acid leading to a decrease in pH over 

time. The described cell death was observed in experiments without change of medium 

resulting in a decrease in pH from 7.4 to 7.2 over time. When the pH was kept constant at pH 

7.4 by daily changes of medium, cell viability was not affected significantly (Figure 8-4B). 

Toxicity of Lip-MOF could be restored by daily changes of medium at pH 7.2 (Figure 8-4C). 

This toxicity in the absence of any inherently toxic substances renders the Lip-MOF a 

promising candidate for a new concept of chemotherapeutics avoiding conventional, toxic 

drugs. Furthermore, the dependence on the acidic extracellular pH provides a means to 

selectively target the acidic tumor environment in addition to potential targeting ligands that 

can be attached to the outer lipid surface.
20

 

 

 

 

Figure 8-4. MTT plots of DOPC-MIL-100(Fe) NPs after incubation of 72 h (average of 3x3). 
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Mode of Action. To validate the promise of the Lip-MOF as alternative chemotherapeutic, 

we sought to investigate its mode of action. First, we studied the cellular internalization 

mechanism. Cellular uptake of Lip-MOF was quantified 30 min after incubation via 

inductively coupled plasma optical emission spectrometry (ICP-OES) (Figure 8-5). 

Comparing the uptake at 37 °C and at 4 °C shows a significant reduction in nanoparticle 

uptake at reduced temperatures. This reveals energy-dependent endocytosis to be the main 

uptake pathway for Lip-MOF. Uncoated MIL-100(Fe) on the other hand did not show any 

toxicity to cells (see SI, Figure S8-7) and its uptake was not significantly reduced at 4°C, i.e. 

endocytosis was not the main uptake pathway. This suggests that the lipid layer mediates 

efficient uptake via endocytosis as the first important step for the pH-dependent toxicity of 

Lip-MOFs. 

 

 

Figure 8-5. Iron uptake of HeLa cells measured by ICP-OES. (Normalized to highest iron uptake for DOPC-
MIL-100(Fe) at 37°C). 

 

Further investigation on the uptake mechanism was performed by inhibition of different 

endocytosis pathways with Dynasore, Cytochalasin D and Filipin, respectively.  The results 

suggest clathrin-mediated endocytosis to be the main uptake pathway as Dynasore showed the 

strongest reduction in iron uptake measured by ICP-OES (see SI, Figure S8-8). 

Lysosomal markers colocalized with the distinct green spots of the dye observed about 40 h 

after cell incubation with Lip-MOFs (Figure 8-6). Thus, 40 h after incubation via endocytosis 

the internalized Lip-MOF NPs were in the acidic lysosome, where they were degraded as 

revealed by the appearance of calcein fluorescence, which is no longer quenched by the 

nanoparticles.  
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Figure 8-6. Confocal microscopy images of HeLa cells incubated with DOPC-MIL-100(Fe)-ATTO633 after 
three days of incubation at lowered extracellular pH.  

 

Lysosomal degradation of the Lip-MOF was also confirmed by immediate decomposition in 

artificial lysosomal fluid (ALF), which simulates the lysosomal environment. Quantitative 

UV-Vis measurements of an iron marker revealed within errors a complete decomposition of 

the Lip-MOF after only one hour in ALF. In simulated body fluid, which simulates the 

extracellular body environment, no decomposition of the Lip-MOF could be detected. (see SI, 

Figure S8-9). This decomposition of the Lip-MOF in the lysosome is a crucial part of its 

toxicity. Accordingly, calcein fluorescence in the lysosome as a reporter of Lip-MOF 

degradation was observed whenever the necrotic burst of cells followed. Under conditions 

that do not induce cell death, such as MOF without lipid bilayer or constant extracellular pH 

7.4, this calcein fluorescence in the lysosome was not detected. To test the hypothesis that the 

amount of degradation products generates the lysosomal burst possibly via osmotic pressure, 

we added tiron to the cells 24 h after MOF incubation. This iron chelator is cell membrane 

permeable. It will chelate the iron in the lysosome and transport it outside the cell driven by 

diffusion. This leads to a decrease of iron in the lysosome and should thus decrease the 

osmotic pressure and inhibit the toxic lysosomal burst. Indeed, we found the addition of tiron 

to prevent cell burst confirming that the high amount of ions resulting from Lip-MOF 

degradation leads to the toxic cell death (Figure 8-4D). 
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Dependence on extracellular pH. Artificial lysosomal fluid contains citric acid, which 

causes degradation of the Lip-MOF by complexing the iron. Its role in ALF is the simulation 

of acidic lysosomal enzymes. In order to find the origin of the lysosomal degradation of Lip-

MOF we investigated the influence of lysosomal enzymes and side products of their reactions. 

A direct degradation of the Lip-MOF by enzymes is very unlikely due to their specificity and 

steric hindrances. Accordingly, none of the tested inhibitors of various lysosomal hydrolases 

had an effect on the toxicity of Lip-MOF (see SI, Figure S8-10). However, the enzymatic 

reaction of acidic phosphatases in the lysosome produces phosphoric acid.
21

 A test of Lip-

MOF stability in the presence of phosphoric acid showed an instantaneous degradation in 1 M 

phosphoric acid. The degradation in phosphoric acid depended strongly on the concentration 

of the acid. Time-based dissolution experiments in 0.1 M phosphoric acid revealed a complete 

dissolution of the nanoparticles within 3 h (see SI, Figure S8-11). Thus, the phosphoric acid 

produced by acidic phosphatase activity might cause the observed lysosomal degradation of 

the Lip-MOF. Since we observed degradation of the Lip-MOF only at an extracellular pH of 

7.2 or less, we next tested the dependence of phosphatase activity on extracellular pH. Indeed, 

we found an increase in phosphatase activity at decreased extracellular pH as shown in live-

cell images of phosphatase-activity in Figure 8-7.  

 

  

Figure 8-7. Confocal microscopy images of HeLa cells incubated at pH 7.4 (left) and pH 7.2 (right). Green dots 
show acid phosphatase activity inside the cells being concentrated in the lysosomes and with increased 
fluorescence intensity for cells incubated at pH 7.2. 
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This finding is in accordance with changes in lysosomal enzymes with extracellular pH 

reported in the literature.
22

 Given the strong sensitivity of Lip-MOF degradation on the 

concentration of phosphoric acid, this increase of phosphatase activity at slightly acidic 

extracellular pH can explain the dependence of Lip-MOF toxicity on the extracellular pH. 

Beyond an explanation of the pH-dependence, it also suggests phosphatase activity as marker 

for the efficiency of Lip-MOFs in potential applications.  
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8.3. Conclusion 

Our study demonstrates a novel approach for cancer therapy, using non-toxic components to 

create a pH-selective chemotherapeutic system. DOPC-liposomes were fused with MIL-

100(Fe) NPs, creating so called Lip-MOF NPs in an appropriate size range (approximately 

250 nm) for intravenous injection or cellular uptake. The nanocomposites were fully 

characterized and investigated in a detailed TEM study, comparing HRTEM and cryo-TEM. 

The images confirmed a successful DOPC-coating of MIL-100(Fe) NPs. Furthermore, the 

effect on cancer cells was investigated. After 72 h of incubation, HeLa cell viability decreased 

significantly for Lip-MOF NPs, while HeLa cells incubated with bare MIL-100(Fe) remained 

unaffected. The observed toxicity of the Lip-MOF NPs was found to be dependent on a 

slightly acidic external pH of the medium. This is an important feature which makes the 

system an interesting candidate for treatment of tumor tissue known to provide slightly acidic 

external pH of its environment. The mechanism of cell death was analyzed by cell uptake and 

dissolution studies, revealing a high endocytosis mediated cell uptake for the lipid-coated 

MIL-100(Fe) nanoparticles as well as a very fast dissolution in the lysosome due to increased 

phosphatase activity by reduced external pH. These results are highly promising for a 

selective treatment of tumor tissue, which provides lower extracellular pH due to an increased 

lactic acid fermentation of cancer cells (Warburg effect). 
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8.4. Materials and Methods 

Chemicals: Iron (III) chloride hexahydrate (Grüssing GmbH), trimesic acid (BTC, Aldrich), 

1,2-dioleoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids, Inc.; Alabama, USA), 

Dulbecco's Phosphate-Buffered Saline (DPBS, no calcium, no magnesium; ThermoFisher 

Scientific), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC hydrochloride, Aldrich, 

crystalline), 2-[4-(2-hydroxyethyl)piperazine-1-yl]ethanesulfonic acid (HEPES, Biomol 

GmbH), Glucose monohydrate (Applichem), Hanks’ balanced salt solution (HBSS), Tiron 

(4,5-dihydroxybenzene-1,3-disulfonic acid disodium salt, Sigma-Aldrich), LysoLive 

Lysosomal Phosphatase Assay Kit (Marker Gene, USA) 

The solvents ethanol (EtOH, Aldrich, absolute), N-N
,
-dimethylformamide (DMF, Iris 

Biotech) and deuterated trichloromethane (CDCl3, Euriso-top, 99.8 % D) were used without 

further purification. Dichloromethane (DCM) and methyl-tert-butyl ether (MTBE, Brenntag) 

were distilled before use. Cell culture media, antibiotics and fetal bovine serum (FBS) were 

purchased from Life Technologies. 

 

Preparation of MIL-100(Fe) nanoparticles: For the microwave synthesis of MIL-100 (Fe) 

nanoparticles, iron(III) chloride hexahydrate (2.43 g, 9.00 mmol) and trimesic acid (0.84 g, 

4.00 mmol) in 30 ml H2O was put into a Teflon tube, sealed and placed in the microwave 

reactor (Microwave: Synthos3000, Anton Paar). The mixture was heated to 130 °C under 

solvothermal conditions (p = 2.5 bar) within 30 seconds, kept at 130 °C for 4 minutes and 30 

seconds, and the resulting solid was cooled down to room temperature. For purification of the 

solid, the reaction mixture was centrifuged (Sorvall Evolution RC, Thermo Scientific, 

47808 rcf / 20000 rpm, 20 min), the solvent was removed and the pellet was redispersed in 

EtOH. This cycle was repeated two times and the dispersed solid was allowed to sediment 

overnight. The supernatant was filtrated three times (filter discs grade: 391; Sartorius Stedim 

Biotech), yielding MIL-100(Fe) nanoparticles, which were left in the filtrate. The 

nanoparticles were characterized as described below. 

 

Labeling of MIL-100(Fe) nanoparticles for fluorescence imaging: For fluorescence 

measurements MIL-100(Fe) NPs were covalently coupled with ATTO633-NH2 dye via EDC 

mediated amide-coupling reaction.
18

 In general, 5 mg particles were suspended in 1 ml 

ethanol. After addition of about 1 mg of EDC hydrochloride (5.2 μmol) and 5 µl of dye 

(0.01 mg; c= 2 mg/ml), the resulting mixture was stirred overnight at room temperature in the 

dark. Afterwards, the labeled particles were centrifuged (8 min / 16900 rcf) and washed three 
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times with an EtOH:H2O (1:1) mixture until the supernatant was colorless. The pellet was 

suspended EtOH and stored in the dark. 

 

Preparation of DOPC liposomes: 10 mg (12.7 µmol) 1,2-dioleoyl-sn-glycero-3-

phosphocholine were dispersed in 10 mL DPBS. The dispersion was extruded 11 times with a 

mini-extruder (Avanti Polar Lipids, Alabama, USA) equipped with a polycarbonate 

membrane (0.1 µm; Whatman, GE Healthcare) which was supported by two polyethylene 

drain discs (10 mm; Whatman, GE Healthcare). The resulting liposomes were analyzed by 

DLS and cryo-TEM measurements (see Figure S1). 

 

Preparation of DOPC-coated MIL-100(Fe) nanoparticles: 1 mg MIL-100(Fe) 

nanoparticles were dispersed in 200 µL DOPC liposome suspension. 200 µL bi-distilled H2O 

was added and the mixture was shaken for 1.5 h (600 rpm; RT). The particles were 

centrifuged and the resulting pellet was washed (3x) and stored in DPBS. The resulting 

material was characterized by DLS, XRD, IR, cryo-TEM, HRTEM, N2 sorption and zeta-

potential measurements. 

 

Preparation of HEPES Buffered Glucose (HBG), simulated body fluid (SBF) and 

artificial lysosomal fluid (ALF): HEPES (2.38 g, 10 mmol) and glucose monohydrate 

(28.95 g, resulting in 5 w% glucose) were dissolved in bi-distilled H2O (490 mL) and the pH 

was adjusted to 7.4 by addition of NaOH (approx. 10 mL, 0.5 M). SBF and ALF were 

prepared according to literature.
23

 

 

Cell culture 

HeLa cells were cultured at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s medium 

(DMEM), supplemented with 10% FBS, 100 U/mL penicillin and 100 μg/mL
 
streptomycin. 

 

Metabolic activity assay (MTT) 

Standard MTT: HeLa cells were seeded in 96-well plates at a density of 5.000 cells/well 24 h 

prior to incubation with the different particle concentrations. Particles diluted in 20 µL DPBS 

were added to each well and incubated on cells for 72 h at 37 °C and 5% CO2. Medium was 

removed and after washing each well three times with 100 µL Hanks’ balanced salt solution 

(HBSS buffer), 100 μL of MTT solution (3-(4,5-dimethylthia-zol-2-yl)-2,5-

diphenyltetrazolium bromide in medium; 0.5 mg/mL) were added. After an incubation time of 
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2 h, unreacted dye and medium were removed and the 96-well plates were frozen at −80 °C 

for at least 30 min. The purple formazan product was then dissolved in 100 μL DMSO 

(dimethyl sulfoxide) per well and quantified measuring absorbance using microplate reader 

(TecanSpectrafluor Plus, Tecan, Switzerland) at 590 nm with background correction at 

630 nm. All studies were performed in triplicate. The relative cell viability (%) related to 

control wells treated only with 20 μL DPBS was calculated as ([A] test/[A] control) × 100%. 

Additional procedures: 

 medium was changed every 24 h to maintain controlled medium pH 

 medium was adjusted to pH 7.2 by adding 15 µL HCl (1 M) per milliliter medium and 

incubation over night at 37 °C and 5% CO2. 

 10 µL of a 1 M Tiron solution was added after medium exchange (after 24 h particle 

incubation) 

 

Determination of the iron uptake in 24 h: HeLa cells were seeded in 96-well plates 

(Corning Costar, Sigma-Aldrich, Germany) (5000 cells/well; 100 µL DMEM) and were 

incubated 24 h post seeding with 10 µL Lip-MOF or MOF dispersion (1 mg/mL in DPBS) per 

well for 24 h (conditions: 37°C; 5% CO2). Medium was removed and the cells were washed 

with DPBS to remove non-internalized particles. By addition of 30 µL trypsin solution 

(Thermofisher Scientific) and incubation for 10 min at 37°C the cells were detached from the 

wells. 100 µL DPBS was added and the cells were transferred and combined into a 15 mL 

conical centrifuge tube. After centrifugation (20 min / 7197 rcf) the supernatant was removed 

and the cells were analyzed by ICP-OES (12 wells combined). 

 

Determination of uptake mechanisms by thermal endocytosis inhibition: HeLa cells were 

seeded in 96-well plates (Corning Costar, Sigma-Aldrich, Germany) (5000 cells/well; 100 µL 

DMEM) and were incubated 24 h post seeding with 10 µL Lip-MOF dispersion (1 mg/mL in 

DPBS) or 10 µL bare MIL-100(Fe) NPs dispersion (1 mg/mL in DPBS) per well, respectively 

(conditions: 37 °C; 5% CO2). After 30 min, medium was removed (12 +12 wells for Lip-

MOF and MOF, respectively) and the cells were washed with DPBS to remove non-

internalized particles. By addition of 30 µL trypsin-solution and incubation for 10 min at 

37 °C the cells were detached from the wells. 100 µL DPBS was added and the cells were 

transferred into 15 mL conical centrifuge tubes (wells of same particle type were combined). 

The well plate was afterwards cooled to 4°C for 30 min and the procedure was repeated for 

4°C (12 + 12 wells for Lip-MOF and MOF, respectively).  
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After centrifugation (7197 rcf / 7830 rpm, 20 min) the supernatant was removed and the cells 

were analyzed by ICP-OES. Experiments were performed in biological triplicates. 

 

Determination of endocytosis mechanism by addition of endocytosis inhibitors: HeLa 

cells were seeded in 96-well plates (Corning Costar, Sigma-Aldrich, Germany) 

(5000 cells/well; 100 µL DMEM). 24 h post seeding, medium was replaced by Dynasore 

(80 µM), Cytochalasin D (10 µM) or Filipin (1 µM) containing medium (12 wells each). The 

cells were incubated for 30 minutes and 10 µL Lip-MOF dispersion (1 mg/mL in DPBS) per 

well was added (conditions: 37°C; 5% CO2). After 30 min, medium was removed and the 

cells were washed with DPBS to remove non-internalized particles. By addition of 30 µL 

trypsin solution and incubation for 10 min at 37°C the cells were detached from the wells. 100 

µL DPBS was added and the cells were transferred into 15 mL conical centrifuge tubes (wells 

of same particle type were combined). 

After centrifugation (7197 rcf / 7830 rpm, 20 min) the supernatant was removed and the cells 

were analyzed by ICP-OES. Experiments were performed in biological triplicates. 

 

High resolution transmission electron microscopy (HRTEM): All samples were 

investigated with an FEI Titan Themis equipped with an extreme field emission gun (X-FEG). 

A 4k × 4k Ceta 16M
TM

 camera detected bright field and high-resolution TEM images. The 

samples were prepared by adding a droplet of the diluted ethanolic nanoparticle suspension on 

a carbon-coated copper grid followed by drying for a few minutes. 

 

Cryogenic electron microscopy (cryo-TEM): All samples were investigated with an Leo 

912 Ω-mega TEM (120 keV, Leo Elektronenmikroskopie GmbH, Oberkochen, Germany). 

The images were detected with a Proscan HSC 2 camera (Oxford Instruments, Abingdon, 

USA). For sample preparation, a droplet of the corresponding particle suspension (approx. 3 

µL) was placed on carbon-sputtered cupper grid (Quantifoil
® 

S7/2 Cu 400 mesh, holey carbon 

films, Quantifoil Micro Tools GmbH, Jena, Germany), excess of liquid was removed by a 

filter paper and the grid was shock frosted. It was placed in a cryo sample holder (Model 626-

DH, Gatan, Warrendale, USA) and transferred to the TEM. Software iTEM 5.0 (Build 1054, 

Soft Imaging System GmbH, Münster, Germany) was used to record the images. 

 

Confocal laser scanning microscopy (CLSM): Live-cell microscopy was performed 

utilizing a spinning disk confocal microscope (Zeiss Observer SD with a Yokogawa CSU-X1 
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spinning disc unit) and a 63x objective at 37 °C and 5% CO2. Excitation was with a 488 nm 

(lysosome-GFP, Calcein in Lip-MOFs) and a 639 nm laser (Atto633/Cy5-labeled MOF). 

Emission was filtered with a BP 525/50 and a LP 690 filter. Cells were seeded into ibiTreat 8-

well slides (ibidi) at a concentration of 5000 cells per well 24-72 h prior to imaging.  

For lysosomal staining, CellLight lysosomes-GFP (BacMam 2.0, Thermofisher Scientific) 

was added to the cells 24 h after cell seeding and at least 24 h before imaging according to the 

supplier’s manual. DOPC-MIL-100(Fe)-ATTO633 NPs (15µL, cStock= 1 mg/ml) were added 

24 h post seeding and after three days of incubation at lowered extracellular pH microscopy 

was performed. Lysosome-GFP was excited at 100 % of the 488 nm excitation light with an 

exposure time of 400 ms. ATTO633 was excited at 100 % of the 639 nm excitation light with 

an exposure time of 100 ms. 

For qualitative live cell phosphatase tracking, HeLa cells were seeded into an ibiTreat 8-well 

microscopy slide (ibidi, Germany) at a density of 5000 cells per well. 24 h after seeding, 

medium was exchanged to either DMEM at normal pH or at pH 7.2. 24 h later, cells were 

washed with FBS-free DMEM. 2.5 mL of DMEM was added to one vial of Marker Gene 

LysoLive Lysosomal Phosphatase Assay Kit according to the manufacturer's instructions. 

1 mL of the obtained staining solution was slightly acidified by addition of 15 µL HCl. 

Subsequently, 300 µL of the staining solution at normal pH and 300 µL of the slightly 

acidified solution were added to the cells incubated at normal pH and those at pH 7.2 

respectively. 18 h after staining, cells were washed twice in PBS, stained with WGA647 

(ThermoFisher Scientific) and imaged using the spinning-disk microscope described above. 

WGA647 was imaged using the 639 nm laser and a 690 LP filter and LysoLive was imaged 

using a 488 nm laser and a BP 525/50 filter. 

 

Inductively coupled plasma optical emission spectrometry (ICP-OES): Measurements 

were performed utilizing a radial view simultaneous ICP AES (Vista RL, Varian, Mulgrave, 

Australia) equipped with a CCD detector. Samples were dissolved in HNO3 konz. (69% for 

trace analysis, Aristar®, VWR) and diluted to an appropriate iron concentration. 

 

pH Measurement: All pH measurements were performed by a SevenEasy pH Meter (Mettler 

Toledo, Ohio, USA) which was calibrated by buffer solutions of pH 4.01, pH 7.00 and pH 

9.21. For measurements of the media under cell culture conditions (37 °C, 5% CO2) the pH 

Meter was placed in an Galaxy® 14s Incubator (New Brunswick/Eppendorf AG, Germany). 
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8.6. Appendix 

 

Figure S8-1. Cryo-TEM image of DOPC-liposomes and corresponding DLS measurement (inset) in DPBS 

buffer solution. 

 

Figure S8-2. IR spectra of DOPC-MIL-100(Fe) nanoparticles (red) in comparison to unfunctionalized MIL-

100(Fe) nanoparticles (black) and pure DOPC (blue). Inset shows a magnification of the significant C-H 

stretching vibrations present in DOPC and DOPC-MIL-100(Fe). 
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Figure S8-3. N2-sorption isotherms of unfunctionalized MIL-100(Fe) nanoparticles (black) and DOPC-MIL-

100(Fe) nanoparticles (red). 

 

Figure S8-4. X-ray diffraction pattern of MIL-100(Fe) nanoparticles (black), DOPC-MIL-100(Fe) nanoparticles 

(red) and ethanol washed DOPC-MIL-100(Fe) nanoparticles (green). 
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Figure S8-5. DLS plot of unfunctionalized MIL-100(Fe) nanoparticles (black) and DOPC-MIL-100(Fe) 

nanoparticles (red). 

 

 

Figure S8-6. Cryo-TEM image of DOPC-MIL-100(Fe) nanoparticles, showing single DOPC-MIL-100(Fe) 

nanoparticles as well as agglomerates. 

 



8. pH-selective toxicity of lipid-coated MOF nanoparticles for use as chemotherapeutics 

 

  257 

 

 
 
Figure S8-7. MTT cell viability assay of uncoated MIL-100(Fe) NPs (top) and dissolved MIL-100(Fe) (1 mg in 

1 mL ALF; bottom) showing both no significant toxicity on HeLa cells. 
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Figure S8-8. Iron uptake of HeLa cells measured by ICP-OES after incubation for 30 min at 37 °C by addition 

of different endocytosis inhibtors (80 µM Dynasore, 10 µM Cytochalasin D, 1 µM Filipin). 

 

 
Figure S8-9. Stability of Lip-MOF NPs in different media within 1 h of incubation. A colorimetric assay using 

rhodamide indicated no dissolution of the nanoparticles in HBG buffer as well as in SBF. For ALF, the evaluated 

assay showed almost complete and rapid dissolution. 
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Figure S8-10. MTT cell viability assay of DOPC-MIL-100(Fe) NPs with addition of different protease 

inhibitors (dissolved in DMSO).  

 
Figure S8-11. Dissolution profile of approx. 1 mg MIL-100(Fe) NPs in 0.1 M phosphoric acid. Iron content was 

determined by ICP-OES from supernatant. Inset shows the MOF pellet after centrifugation at the selected time 

points (5 min, 90 min, 180 min). 
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9.  Conclusion and Outlook 

The focus of the presented work was the synthesis and detailed investigation of functional 

MOF based NP systems for their prospective biomedical applications. To this end, relevant 

properties such as uptake and release behavior of guest molecules from the nanoparticles as 

well as their toxicity were studied. Further, using different approaches, MOF NPs were post-

synthetically modified on their external particle surface with biocompatible and functional 

molecules. 

In a first project, MIL-100(Fe) NPs were covalently functionalized with two different 

polymeric structures using peptide coupling chemistry. The covalent nature of the bonding 

was proven by several techniques and the amount of polymer attachable to the external 

surface was quantified. The MOF formulations showed good colloidal stability in aqueous 

media compared to bare MIL-100(Fe) NPs and displayed high uptake by cancer cells but no 

cytotoxic effects up to rather high nanoparticle concentrations over 24 h. Furthermore, the 

influence of the polymer shell on the MRI activity of MIL-100(Fe) was investigated and 

showed only a slight decrease of their longitudinal and transversal relaxivities. This allows for 

the modification of the coating according to the scientific and clinical needs and, at the same 

time, in vivo investigation of MOF NP distributions such as accumulation in a tumor.  

The modification of MOF NPs’ external surface with biomedically relevant polymers was the 

topic of the second experimental chapter. We present a straightforward functionalization 

approach for Zr-fum NPs that can be used to attach different polymers onto the external 

surface by an entropically preferred exchange of the modulator (formic acid) by the 

coordinating groups of the polymers. Using the defined block copolymer PGA-PS for external 

surface functionalization, the resulting NPs retained their monodispersity independent of pH 

in a broad range of environments, such as aqueous solutions, protein containing buffer 

solution and cellular medium. These findings make the multifunctional particles promising 

candidates for an intravenously injected nanocarrier system due to the proposed longtime 

stability in the human bloodstream which is mandatory for effective passive targeting on 

tumor tissue by the EPR (Enhanced Permeability and Retention) effect. 

In a subsequent project, the loading and release behavior of a model cargo molecule 

(fluorescein) in and out of mesoporous MOF NPs was tested regarding their potential as drug 

carrier in ensuing chapters. We found, for both studied NP types MIL-100(Fe) and MIL-

101(Cr), that significant amounts of fluorescein can be adsorbed at room temperature (>10³ 
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molecules per NP). These values were evaluated to be compatible with the measured internal 

surface area. It was found that the loading and release rates are strongly dependent on the pH 

and the solvent. Considering the results, we conclude that the MOF scaffold can confine the 

guest molecules inside its pores through electrostatic interactions. As MOF chemistry 

provides an immense toolbox of different combinations of metal, linker and structure as well 

as different ways how to functionalize the scaffold, it enables controlling the MOF host-guest 

interactions. This makes MOF nanocarriers in general good candidates for drug delivery and 

other applications where a high payload is desirable. 

The project in chapter 6 focused on the applicability of MIL-100(Fe) and MIL-101(Cr) as 

drug delivery vehicles. These MOF NPs were loaded with model drug molecules and were 

afterwards encapsulated by a lipid membrane to prevent premature cargo release. Moreover, 

for MIL-100(Fe) the lipid bilayer drastically increased the colloidal stability of the 

nanoparticles. High uptake of lipid-coated nanoparticles by cancer cells was confirmed by 

fluorescence microscopy. Considering the various ways to synthesize different functionalized 

MOF nanoparticles as well as the richness of lipids with diverse functions (cap system, 

triggered release, incorporation of shielding ligand for long circulation times and targeting 

functions), we demonstrated that MOF@Lipid NPs have great potential as a novel hybrid 

nanocarrier system. On the one hand, the MOF core could store different active species such 

as imaging, diagnostic or drug molecules, and on the other hand the lipid shell could be used 

for the incorporation of targeting or shielding ligands (e.g. PEG) as well as for the creation of 

triggered release mechanisms. 

After the coating of MOF NPs showed promising results regarding their use in biomedicine, 

we validated several of the investigated MOF NPs for specific medical fields of application. 

We demonstrate that the tested MOF NPs (Zr-fum, MIL-100(Fe) and MIL-101(Cr) with 

different sizes and coatings, respectively) showed differential toxicity and bio-response in 

different effector cells tested. The work highlights the potential important risks of using the 

tested MOF NPs for specific medical purposes and also demonstrates their differential 

suitability for applications in drug delivery or for implant coating, respectively. This includes 

the use of MOF NP coatings for dental implants or cellular guidance tubes and showed their 

nanosafety regarding the respective effector cells, such as gingiva fibroblasts and peripheral 

nerve cells. 

As lipid coated MIL-100(Fe) NPs were revealed to be toxic under certain conditions in the 

performed biocompatibility validation described in chapter 7, we further investigated the NP 
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system for use as chemotherapeutics without addition of drug molecules. In this study, we 

performed a slightly different coating procedure, where preformed DOPC-liposomes were 

fused with MIL-100(Fe) NPs, creating MOF core – lipid shell nanoparticles (Lip-MOF NPs) 

in an appropriate size range (approximately 250 nm) for intravenous injection and cellular 

uptake. The nanocomposite was fully characterized and investigated in a detailed TEM study. 

Incubation with cancer cells showed that the toxicity of the Lip-MOF NPs, which is based on 

an osmotically induced lysosomal burst followed by cell membrane rupture, is dependent on a 

slightly acidic external pH of the medium. This is an important feature which makes the 

system an interesting candidate for treatment of tumor tissue known to provide slightly acidic 

external pH of its environment. Furthermore, the mechanism of cell death was analyzed by 

cell uptake and dissolution studies, revealing a high endocytosis-mediated cell uptake for the 

lipid-coated MIL-100(Fe) nanoparticles as well as a very fast dissolution in the lysosome due 

to increased phosphatase activity by reduced external pH.  

In conclusion, this thesis elaborates on the potential for MOF NPs in biomedical applications. 

The controlled manipulation of the external surface of NPs is of paramount importance as it 

defines the interface between the NP and its surroundings and determines the overall 

performance of the NP especially in terms of circulation half-life and targeting efficiency. 

Different external surface functionalization approaches (covalent, coordinative and 

lipid-coating) were shown to provide straightforward concepts for the precise modification of 

the MOF NPs. Using the model cargo fluorescein, loading and release behavior of the 

mesoporous MOF NPs were investigated to gain information about their capablility for drug 

delivery. Selected MOF NPs were tested regarding their nanosafety for specific medial 

purposes, and a lipid-MOF nanocomposite showed promise as pH-selective 

chemotherapeutic. All in all, the presented work highlights the potential of functionalized 

MOF NPs as smart drug delivery systems or as drugs by themselves, respectively, to address 

current challenges in theranostics. 

 

 





 

  265 

10.  Curriculum vitae 

 

Personal Information 

Name:     Zimpel, Andreas 

Date of birth:    August 14
th

, 1987 

Place of birth:    Rosenheim 

Nationality:    German 

 

Education 

November 2013 – July 2018   PhD student in the group of Prof. Thomas Bein 

     Under supervision of Dr. Stefan Wuttke 

Ludwig-Maximilians-University, Munich 

April 2011 – September 2013 Master Studies in Chemistry 

Ludwig-Maximilians-University, Munich 

Degree: Master of Science (M.Sc., Grade: 1.79) 

October 2007 – November 2010 Bachelor Studies in Chemistry and Biochemistry  

Ludwig-Maximilians-University, Munich  

Degree: Bachelor of Science (B. Sc., Grade: 2.22) 

September 1998 – July 2007  Luitpold-Gymnasium, Wasserburg am Inn  

General qualification for university entrance  

(Grade: 2.6) 

 

Research Internship  

January 2013 – September 2013  Master thesis (Grade: 1.0) 

  Ludwig-Maximilians-University, Munich 

  Prof. Dr. Thomas Bein   

Synthesis and functionalization of MOF nanoparticles 

intending their use as drug delivery vehicle 



Curriculum vitae 

 

266 

May 2012 – August 2012   Research Internship 

  Ludwig-Maximilians-University, Munich 

  Prof. Dr. Thomas Bein   

Metal-organic frameworks: Synthesis of novel and 

functionalized structure as well as nanoparticles 

November 2011 – February 2012 Research Internship 

  Ludwig-Maximilians-University, Munich 

  Prof. Dr. Heinz Langhals 

Darstellung von diamantfixierten Bichromophoren 

mit orthogonalen Übergangsdipolmomenten und 

Markierung von MOFs mit Perylenfarbstoffen  

April 2011 – July 2011  Research Internship 

  Ludwig-Maximilians-University, Munich 

  Prof. Dr. Wolfgang Schnick   

Alternative Synthese von LiCa3Si2N5 und Synthese 

von neuartigen Cer-Oxonitridosilicaten 

July 2010 – November 2010  Bachelor thesis (Grade: 1.0) 

  Ludwig-Maximilians-University, Munich 

  Prof. Dr. Thomas M. Klapötke   

Hochenergetische Materialien auf der Basis von 

Diaminofurazan und Diaminoazoxyfurazan 

 

Awards and Scholarships  

CeNS Publication Award 2017; “Best Junior Scientist Publication” 

CeNS Travel Award 2016 (1.500 €) 

Travel Scholarship of the Gesellschaft Deutscher Chemiker, 2016 (300 €) 

1. Place “Hands-on-Experimente-Wettbewerb” at the NIM Nanoday 2014 

 

 



Curriculum vitae 

 

  267 

Work Experience 

September - November 2013  “studentische Hilfskraft” at LMU 

September/October 2012  “studentische Hilfskraft” at LMU 

January 2011 – September 2012 Student Job at Deutsche Post AG 

September/October 2009  Student Job at Alpenhain Käsespezialitäten GmbH 

 

Computer Skills   

MS Office, ChemDraw, Origin, ImageJ, Blender (basics) 

 

Languages   

German: native speaker 

English: business fluent 

French: basic skills 

 

Other Activities   

Since November 2013  Supervision of practical courses in inorganic and 

physical chemistry, Supervision of interns, master 

students and exchange students of the Nanosystems 

Initiative Munich (NIM) Summer Research Program 

(SRP 2015) 

 

Commitment   

private tutor in chemistry, physics and mathematics; soccer youth coach; secretary at “ASV 

Rott am Inn” soccer 

 

Hobbies   

soccer, reading, bavarian culture 



 

 



 

  269 

11. Publications and Presentations 

 

Journals: 

1,) Noncovalent Control of Absorption and Fluorescence Spectra 

Langhals, H.; Dietl, C.; Zimpel, A.; Mayer, P.; J. Org Chem. 2012, 77, 5965-5970. 

 

2,) MOF Nanoparticles Coated by Lipid Bilayers and their Uptake in Cancer Cells 

Wuttke, S.; Braig, S.; Preiß, T.; Sicklinger, J.; Zimpel, A.; Bellomo, C.; Rädler, J. O.; 

Vollmar, A. M.; Bein, T.; Chem. Commun. 2015, 51, 15752. 

 

3,) Imparting Functionality to MOF Nanoparticles by External Surface Selective 

Covalent Attachment of Polymers 

Zimpel, A.; Preiß, T.; Röder, R.; Engelke, H.; Ingrisch, M.; Peller, M.; Rädler, J. O.; Wagner, 

E.; Bein, T.; Lächelt, U.; Wuttke, S.; Chem. Mater. 2016, 28, 3318–3326. 

 

4,) Validating Metal-Organic Framework Nanoparticles for Their Nanosafety in Diverse 

Biomedical Applications 

Wuttke, S.; Zimpel, A.; Bein, T.; Braig, S.; Stoiber, K.; Vollmar, A. M.; Müller, D.; Haastert-

Talini, K.; Schaeske, J.; Stiesch, M.; Zahn, G.; Mohmeyer, A.; Behrens, P.; Eickelberg, O.; 

Bölükbas, D. A.; Meiners, S.; Adv. Healthcare Mater. 2016, 6, 1600818. 

 

5,) Multifunctional nanoparticles by coordinative self-assembly of His-tagged units with 

metal-organic frameworks 

Röder, R.; Preiß, T.; Hirschle, P.; Steinborn, B.; Zimpel, A.; Hoehn, M.; Rädler, J. O.; Bein, 

T.; Wagner, E.; Wuttke, S.; Lächelt, U.; J. Am. Chem. Soc. 2017, 139 (6), 2359–2368. 

 

6,) Kinetic analysis of the uptake and release of fluorescein by metal-organic framework 

nanoparticles 

Preiß, T.; Zimpel, A.; Wuttke, S.; Rädler, J. O.; Materials 2017, 10 (2), 216. 

 



Publications and Presentations 

 

270 

7,) Self-assembly of different polymers on MOF nanoparticles for better control of 

interactions at the biointerface 

Zimpel, A.; Danaf, N.; Steinborn, B.; Höhn, M.; Schrimpf, W.; Engelke, H.; Wagner, E.; 

Bein, T.; Barz, M.; Lamb, D. C.; Lächelt, U.; Wuttke, S.; manuscript in preparation 2018 

 

8,) pH-selective toxicity of lipid-coated MOF nanoparticles for use as chemotherapeutics 

Zimpel, A.; Barnert, S.; Krombholz, S.; Heerklotz, H.; Cauda, V.; Zahler, S.; Vollmar, A. M.; 

Wuttke, S.; Engelke, H.; manuscript in preparation 2018 

 

Review: 

Metal-Organic Framework Nanoparticles for Magnetic Resonance Imaging 

Peller, M.; Böll, K.; Zimpel, A.; Wuttke, S.; Inorg. Chem. Front. 2018, 

DOI:10.1039/C8QI00149A. 

 

Bookchapter: 

Beetz, M.; Zimpel, A.; Wuttke, S. (August 2016); Nanoparticles. In: Kaskel, S. (Ed.); The 

Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications. 

Weinheim: Wiley-VCH 

 

 

 

 

 

 

 

 

 

 

 

 

 



Publications and Presentations 

 

  271 

Oral Presentations: 

1,) 4
th

 MOF Young Investigator Symposium; La Jolla / San Diego, CA, USA, 2016 

2,) International Symposium on Composites of Metal and Covalent Organic Frameworks: 

Fundamental Design & Applications; Granada, Spain, 2017 

 

Poster Presentations: 

1,) Deutsche Zeolite Tagung (DZT 2014); Paderborn, Germany 

2,) Tagung der deutschen Bunsengesellschaft (Bunsentagung 2014); Hamburg, Germany 

3,) 6
th

 International Conference of the Federation of European Zeolite Associations (FEZA 

2014); Leipzig, Germany 

4,) CeNS Workshop Venice "Channels and Bridges to the Nanoworld", Venice International 

University (VIU), San Servolo, Venice, Italy 

5,) 1
st
 European Conference on Metal Organic Frameworks and Porous Polymers (EuroMOF 

2015); Potsdam, Germany 

6,) 5
th

 International Conference on Metal-Organic Frameworks & Open Framework 

Compounds (MOF 2016); Long Beach, CA, USA 

 


