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Zusammenfassung

Konvektiv erzeugte Zirruswoken bilden sich in der oberen Troposphére durch das Aus-
flielen von Eiskristallen aus hochreichenden konvektiven Cumulonimbus-Wolken. Da diese
Zirren einfallende Sonnenstrahlung reflektieren sowie terrestrische Wéarmestrahlung ab-
sorbieren und mit deutlich niedriger Temperatur re-emittieren, spielen sie eine wichtige
Rolle im System Erde-Atmosphire. Wenig verstanden sind jedoch die Prozesse, die den
Lebenszyklus dieser Zirren bestimmen. Sie stellen eine der groten Unsicherheiten in der
atmospharischen Fernerkundung sowie in der Klima- und Wettermodellierung dar.

Diese Arbeit untersucht die zeitliche Entwicklung der Eigenschaften von konvektiv
erzeugten Zirren wahrend des gesamten Lebenszyklus, sowie die Zusammenhénge mit
den meteorologischen Bedingungen. Eine umfassende Beschreibung der Eigenschaften
dieses Wolkentyps wurde durch die Anwendung eines neu entwickelten Fernerkundungsal-
gorithmus namens CiPS (Cirrus Properties from SEVIRI) erreicht. Mithilfe eines Satzes
kiinstlicher neuronaler Netze kombiniert CiPS die groffiraumige Abdeckung und die hohe
zeitliche Auflésung des abbildendes Radiometer SEVIRI auf dem geostationaren Satel-
liten Meteosat Second Generation mit der hohen vertikalen Auflosung und Sensitivitat
beziiglich diinner Zirruswolken des Lidars CALIOP auf dem polarumlaufenden Satelliten
CALIPSO. Im Vergleich zu CALIOP erkennt CiPS 71% bzw. 95% aller Zirruswolken
mit einer optischen Dicke (IOT) von 0.1 und 1.0. CiPS ist zudem in der Lage gle-
ichzeitig die Wolkenhdhe, die IOT, den Eiswasserpfad (IWP) und, durch eine entsprechende
Parametrisierung, den Effektivradius der Eispartikel zu bestimmen. Dies ermoglicht die
Kombination von makroskopischen, mikrophysikalischen und optischen Eigenschaften und
somit die Interpretation der zeitlichen Entwicklung der Zirruswolken.

Zusammen mit einer Methode zur Beobachtung der konvektiven Aktivitdt und einem
neuen Verfolgungsalgorithmus wird CiPS zur Analyse des Lebenszyklus von 132 konvektiv
erzeugten Zirruswolken, welche im Juli 2015 tiber Stideuropa und Nordafrika beobachtet
wurden, verwendet. Wahrend die optische Dicke der Zirruswolken in der gesamten Kon-
vektionsphase ansteigt, nimmt sie schnell wieder ab, sobald die Konvektion endet. Zwei
Stunden danach erreichen 9247 % einer Zirrusfliche die Werte IOT< 1 und IWP< 30gm 2
mit wahrscheinlichsten Werten bei 0.1-0.2 bzw. 1.5-3gm™2. Im gleichen Zeitraum nimmt
auch die Wolkenhohe ab. Da dies sowohl fiir langlebige als auch fiir kurzlebige Zirren gilt,
liegt die Schlussfolgerung nahe, dass die Eismenge in dieser Lebensphase hauptséchlich
durch Sedimentation gesteuert wird. Eine entsprechende Abnahme des abgeleiteten Ef-
fektivradius unterstiitzt diese These. Wahrend die Konvektionsstarke keinen sichtbaren
Einfluss auf IOT und IWP hat, korreliert sie eindeutig mit der Wolkenhche und dem Ef-
fektivradius. Nach 2-3 Stunden sind Unterschiede im Effektivradius nicht mehr erkennbar,
was darauf hindeutet, dass die Konvektionsstarke keinen Einfluss auf die Eiskristallgroffen
bei den alternden Zirren hat. Wie ERA5 Reanalysedaten der relativen Feuchte zeigen, ist in
dieser Lebensphase insbesondere die relative Feuchte in der oberen Troposphére wirksam.
Bei hohere relativen Feuchte entstehen mehr groflere und vor allem langlebigere konvektiv
erzeugte Zirren.
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Abstract

Anvil cirrus clouds form in the upper troposphere from the outflow of ice crystals from
deep convective cumulonimbus clouds. By reflecting incoming solar radiation as well as ab-
sorbing terrestrial thermal radiation, and re-emitting it at significantly lower temperatures,
they play an important role for the Earth’s radiation budget. Nevertheless the processes
that govern their life cycle are not well understood and, hence, they remain one of the
largest uncertainties in atmospheric remote sensing and climate and weather modelling.

In this thesis the temporal evolution of the anvil cirrus properties throughout their
life cycle is investigated, as is their relationship with the meteorological conditions. For
a comprehensive retrieval of the anvil cirrus properties, a new algorithm for the remote
sensing of cirrus clouds called CiPS (Cirrus Properties from SEVIRI) is developed. Utilising
a set of artificial neural networks, CiPS combines the large spatial coverage and high
temporal resolution of the imaging radiometer SEVIRI aboard the geostationary satellites
Meteosat Second Generation, with the high vertical resolution and sensitivity to thin cirrus
clouds of the lidar CALIOP aboard the polar orbiting satellite CALIPSO. In comparison
to CALIOP, CiPS detects 71 % and 95 % of all cirrus clouds with an ice optical thickness
(IOT) of 0.1 and 1.0 respectively. Furthermore, CiPS retrieves the corresponding cloud top
height, IOT, ice water path (IWP) and, by parameterisation, effective ice crystal radius.
This way, macrophysical, microphysical and optical properties can be combined to interpret
the temporal evolution of the anvil cirrus clouds.

Together with a tool for identifying convective activity and a new cirrus tracking al-
gorithm, CiPS is used to analyse the life cycle of 132 anvil cirrus clouds observed over
southern Europe and northern Africa in July 2015. Although the anvil cirrus clouds grow
optically thick during the convective phase, they become thinner at a rapid pace as con-
vection ceases. Two hours after the last observed convective activity, 92+7 % of the anvil
cirrus area has I0Tqps < 1 and IWP¢ips < 30gm~—2 on average, with highest probability
density around 0.1-0.2 and 1.5-3gm™? respectively. During the same time period, the
cloud top height is observed to decrease. Since this is observed for both long-lived and
short-lived anvil cirrus, it is deduced that in this life phase the amount of ice in the anvil
is mainly controlled by sedimentation. This is in line with a corresponding decrease in the
estimated effective radius. While the convective strength has no evident effect on the IOT
and IWP, stronger vertical updraught is clearly correlated with higher cloud top height
and larger effective radius. Larger ice crystals are, however, observed to be removed effec-
tively within 2-3 h after convection has ceased, suggesting that the convective strength has
no impact on the ice crystal sizes in ageing anvils. In this life stage, upper tropospheric
relative humidity, as derived from ERAb reanalysis data, is shown to have a larger impact
on the anvil cirrus life cycle, where higher relative humidity govern larger and especially
more long-lived anvil cirrus clouds.
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Chapter 1

Introduction

Cirrus clouds are optically thin clouds in the upper troposphere made up of ice crystals.
The name cirrus, which is Latin for lock of hair, refers to their common wispy visual ap-
pearance. Anwil cirrus is a type of cirrus cloud that forms from the convective outflow
of ice crystals from deep convective cumulonimbus (thunderstorm) clouds. Cumulonimbus
clouds form when sufficiently moist air is convected through an unstable troposphere, lead-
ing to condensation of water vapour and formation of cloud droplets and, when sufficiently
cold, ice crystals. The altitude at which a rising air parcel has the same temperature as
its environment is known as the equilibrium level of the atmosphere and marks the end of
convective transport. When the rising air approaches this level it spreads horizontally due
to temperature inversion. The horizontal spread of ice crystals from the convective core in
all directions together with horizontal winds that blow the ice crystals downwind, leads to
the characteristic flat anvil formed cirrus clouds. If the upward motion is strong enough,
the rising air might penetrate the equilibrium level leading to a so-called overshooting
top. The anvil shaped cirrus clouds can also form due to strong vertical wind shear that
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Figure 1.1: Anvil cirrus cloud (greyish) together with parent cumulonimbus cloud and
overshooting top (white) observed over the U.S. on 29 May 2012. Photo: R. Welser (DLR).
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spreads the ice crystals horizontally. Figure 1.1 shows an anvil cirrus and its source cumu-
lonimbus cloud over the U.S., photographed from the DLR (German Aerospace Center)
research aircraft Falcon. The brighter white colours represent the cumulonimbus cloud and
the overshooting top, whereas the dimmer greyish colours constitute the out-flowing ice
crystals forming the anvil cirrus. Furthermore, Fig. 1.2 shows an illustrative drawing of
the formation of anvil cirrus clouds, where moist air is entrained at lower levels, convected
through the troposphere and later spread horizontally around the height of the tropopause
and transported with the wind.
15 Several conditions are necessary for
anvil cirrus clouds to form. Substantial
moisture that can be entrained at lower lev-
els and brought through the troposphere is
a prerequisite for deep convection to occur.
Whether the state of the atmosphere aids
or impedes vertical motion of the moist air,
is referred to as atmospheric instability. In
a stable atmosphere a lifted air parcel will
0 return to its initial position, whereas in a
conditionally unstable atmosphere a lifted
Figure 1.2: Illustration of an anvil cirrus air parcel may start to rise without any ex-
cloud forming from the outflow of ice crystals ternal forcing if the level of free convection
from a deep convective cumulonimbus cloud is reached, i.e. the point where a lifted air
near the tropopause. Figure adapted from parcel becomes warmer and less dense than
Wallace and Hobbs (2006). the surrounding air. To initiate the vertical
motion, an external force is required that
can lift the moist air to the level of free convection. Such forces can be e.g. low-level
air convergence, cold fronts, surface heating and orographic lifting. The spatial exten-
sion of the anvil cirrus in the initial phase is partly related to the size of the convective
system, which in turn depends on the low-level moisture and the strength of the vertical
updraught. The vertical updraught of moisture from lower levels offers a continuous sup-
ply of new ice crystals at the anvil level, typically with larger ice crystals and wider size
distributions closer to the convective updraught (Yuan et al., 2011). The spatial exten-
sion and persistence of the anvil cirrus and the temporal evolution of the microphysical
properties, especially after the convective source has disappeared, further depends on the
meteorological conditions in the upper troposphere where the convective outflow and anvil
cirrus cloud formation takes place. Lower temperatures and more moisture associated with
higher supersaturation aid the persistence of anvil cirrus. Ice supersaturation, i.e. a relative
humidity with respect to ice above 100 %, is required for ice crystal persistence through
growth by water vapour deposition. In a dry upper atmosphere the anvil cirrus is likely
to quickly dissipate due to the absence of deposition growth together with sedimentation
and sublimation of the anvil cirrus ice crystals. Substantial moisture in the upper tro-
posphere could, however, have a negative feedback on the anvil cirrus persistence, due to
sedimentation of large, rapidly growing, ice crystals. Figure 1.3 shows a simple, but yet
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Figure 1.3: Hlustration of the life cycle of a convective system and following anvil cirrus.
Convective, transition and cirrus refer the parts of the cloud with an albedo > 0.7, 0.5-0.7,
< 0.5 respectively. Figure adapted from Machado and Rossow (1993).

representative, schematic of the different stages/types of convective systems and follow-
ing anvil cirrus as illustrated by Machado and Rossow (1993); from a compact convective
core, to a growing anvil and increasing fraction of thin anvil cirrus, to the dissipation and
breaking into scattered fragments.

Anvil cirrus typically reach sizes of hundreds of km across (e.g. Machado et al., 1998)
and are predominantly found in the tropics where low-level temperatures and moisture are
commonly sufficiently high to generate wide spread areas of deep convection and hence
anvil cirrus (e.g. Liu et al., 2007; Sassen et al., 2009). Although not as frequently, anvil
cirrus clouds are commonly observed during summertime in the mid-latitudes as well. In
Europe, they usually form along mountain ridges like e.g. the Alps, Pyrenees, Apennines
and Dinaric Alps (e.g. Morel and Senesi, 2002), where the orographic lifting can trigger
deep convection and hence anvil cirrus formation.

Anvil cirrus clouds, like all cirrus clouds, play an important role for the Earth’s energy
budget as they reflect incoming solar radiation and absorb outgoing terrestrial thermal
radiation. In general, the net radiative forcing by cirrus clouds strongly depends on the
height, thickness and microphysical properties (e.g. ice crystal shape, size distribution and
ice water content) of the cloud (e.g. Fu and Liou, 1993; Zhang et al., 1999; Meerkotter
et al., 1999; Liou, 2002; Wendisch et al., 2007). While the cooling effect through reflection
of solar radiation is likely to be the dominant process for thick anvil cirrus clouds, it can be
outweighed by the absorption and trapping of thermal radiation in ageing thinning anvil
cirrus, leading to a positive net radiative forcing and warming of the Earth—atmosphere
system, as is the case for thin cirrus clouds (e.g. Jensen et al., 1994; Chen et al., 2000).
This is especially true for anvil cirrus that remain into the night, where the net radiative
forcing is bound to be positive, independent of the optical and physical properties of the
cloud. Deep convection and anvil cirrus further affects the Earth’s climate by moistening
the upper troposphere through the vertical transport of water vapour and, to some degree,
the sublimation of cloud ice crystals (e.g. Luo and Rossow, 2004; Soden, 2004; Horvath
and Soden, 2008; Wright et al., 2009, and references therein).

Potential anvil cirrus feedback mechanisms on a warming climate further demonstrate
the importance of understanding the physical processes of anvil cirrus clouds. The “ther-
mostat hypothesis” (Ramanathan and Collins, 1991) describes an increase in anvil cirrus
amount with increasing sea surface temperature, leading to increased albedo and hence a
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negative feedback on a warming climate. On the contrary, the “iris hypothesis” (Lindzen
et al., 2001) suggests that higher sea surface temperatures lead to enhanced precipitation
and rainout of cloud condensate, leading to reduced anvil cirrus cloud amount. The feed-
back is nevertheless assumed to be negative as a result of the reduced absorption of long-
wave radiation. According to the “fixed anvil temperature (FAT) hypothesis” (Hartmann
and Larson, 2002) anvil cirrus top temperatures remain constant in a warming climate,
leading to increased anvil cirrus top height and hence a positive feedback on the climate.
Furthermore the “stability iris” hypothesis (Bony et al., 2016) suggests that as anvil cirrus
clouds rise in a warming climate, the convective outflow and hence the anvil cirrus amount
is reduced due to increased stability at the detrainment level.

Despite decades of research, cirrus clouds continue to introduce large uncertainties in
climate and weather models (Waliser et al., 2009; Eliasson et al., 2011). Understanding
the interaction between deep convection and upper-level cloudiness (cirrus) through anvil
cirrus formation, and the related feedbacks on a warming climate is recognised as one of
the grand challenges in atmospheric research by the World Climate Research Programme
(WCRP; Bony et al., 2015). As part of WCRP, the GEWEX (Global Energy and Water
Cycle Experiment) process evaluation study on upper tropospheric clouds and convection
aims to better understand and quantify the relationship between deep convection and anvil
cirrus (Stubenrauch et al., 2017). Anvil cirrus and stratiform convective outflow is also
one of the scientific topics within the German-wide research initiative HD(CP)? (High
Definition Clouds and Precipitation for advancing Climate Prediction), aiming towards
an improved representation of anvil cirrus clouds in weather and climate models using
enhanced observational data on cloud physical processes.

The ambition with this thesis is to increase the understanding of the temporal evolution
of thin anvil cirrus clouds and their optical, macrophysical and microphysical properties
throughout their life cycle, using satellite remote sensing data. Over the years, numerous
remote sensing studies have been performed on the temporal evolution of deep convective
systems and anvil cirrus clouds. A well-established positive correlation between the size of
convective systems and anvil cirrus and their observed lifetime has been shown in several
studies (e.g. Chen and Houze, 1997; Machado et al., 1998; Mathon and Laurent, 2001; Inoue
et al., 2009; Feng et al., 2012; Imaoka and Nakamura, 2012). During the convective phase,
the production of anvil cirrus generally outweighs the growth of the convective core itself,
leading to a continuously increasing fraction of cirrus (e.g. Machado et al., 1998; Inoue
et al., 2009; Imaoka and Nakamura, 2012; Fiolleau and Roca, 2013; Protopapadaki et al.,
2017). The anvil coverage and ice water path (IWP) has been observed to peak approx. 1-
5h after the convective intensity peaks (e.g. Soden, 2004; Horvath and Soden, 2008; Sohn
et al., 2008; Schroder et al., 2009), but can grow for longer time scales (=~ 15h) as well (Luo
and Rossow, 2004). The peak anvil coverage is followed by a gradual thinning during the
dissipating phase with decreasing anvil cirrus coverage, optical thickness and IWP (e.g.
Luo and Rossow, 2004; Mace et al., 2006; Horvath and Soden, 2008). Luo and Rossow
(2004) and Bouniol et al. (2016) also observe reduced cloud top height for ageing anvil
cirrus clouds. Although the number of convective systems decreases almost exponentially
with their observed lifetime with most systems having observed lifetimes below ~5h (Chen



and Houze, 1997; Mathon and Laurent, 2001; Feng et al., 2012; Imaoka and Nakamura,
2012), lifetimes of several days are also possible. E.g. Luo and Rossow (2004) observe anvil
cirrus lifetimes of 19-304+16h, which suggests additional meteorological conditions and
processes, in addition to the initial convection that maintains the anvil. Feng et al. (2012)
show that lifetimes longer than 6h are characterised by higher mid-upper tropospheric
relative humidity and wind shear. It has also been widely shown that stronger convective
updraught associated with colder cloud top temperatures govern larger more long-lived
anvil cirrus clouds (e.g. Machado and Rossow, 1993; Machado et al., 1998; Chou and Neelin,
1999; Horvath and Soden, 2008; Schroder et al., 2009; Feng et al., 2012; Protopapadaki
et al., 2017), higher optical thickness (Machado and Rossow, 1993) and higher IWP (for
IWP2> 20gm~2; Horvath and Soden, 2008). Stronger convection can also increase the
anvil spreading time i.e. the time lag between peak convective intensity and peak anvil
coverage (Horvath and Soden, 2008).

To study the temporal evolution of convective systems and anvil cirrus clouds, most of
the previous studies listed above use observations from geostationary imaging radiometers
like the Japanese GMS (Geostationary Meteorological Satellites) and MTSAT (Multifunc-
tional Transport Satellites), US GOES (Geostationary Operational Environmental Satel-
lites) and European MFG/MSG (Meteosat First/Second generation) that possess a large
spatial coverage and high temporal resolution, required to study the temporal evolution
of individual cloud systems. An object or pattern tracking technique is usually combined
with brightness temperature thresholds to identify convective systems and subdivide them
into classes like convective core and anvil cirrus respectively. Doing so, they are somewhat
limited to the thicker anvil cirrus though, since thin cirrus are not well defined by such
thresholds and already difficult to detect due to the limited sensitivity to thin cirrus by
geostationary imagers. Using data from infrared sounders like AIRS (Atmospheric Infrared
Sounder), the sensitivity to thin cirrus can be increased (as in Protopapadaki et al., 2017,
with a reliable detection down to visible optical thickness 0.2). The polar orbit of AIRS is,
however, insufficient for studying the temporal evolution and life cycle of individual anvil
cirrus clouds.

Luo and Rossow (2004) and Horvéath and Soden (2008) use data from polar orbiting
and geostationary imagers together with split-window techniques to determine the cloud
optical and physical properties in order to analyse the temporal evolution of the anvil cirrus
optical thickness and TWP. Still with a limited accuracy to thin cirrus clouds though, with
observed optical thickness and IWP down to approx. 1.0 and 20 gm™? respectively.

While passive sensors view an area large enough to study the horizontal structure
of anvil cirrus clouds, active radar and lidar instruments (TRMM-PR (Tropical Rainfall
Measuring Mission - Precipitation Radar), CPR (Cloud Profiling Radar), CALIOP (Cloud-
Aerosol Lidar with Orthogonal Polarization)) can be used to study their microphysical
properties and vertical structure (e.g. Mace et al., 2006; Futyan and Del Genio, 2007; Yuan
et al., 2011; Bouniol et al., 2016). Decreasing radar reflectivities and narrower distributions
have been observed with increasing distance to the convective core, representing different
ages of the anvil (Yuan et al., 2011; Bouniol et al., 2016). This is in line with the idea that
close to the convective core, many ice crystals are present with a wide size distribution,
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while with increasing distance from the core, more and more of the larger ice crystals
sediment, leading to lower radar reflectivities. The small spatial scale, also together with
the poor temporal resolution of space-borne active sensors, is, however, insufficient for life
cycle analysis of individual anvil cirrus clouds, even if geostationary imaging data can be
used to relate the observed properties to a given anvil cirrus age and/or life cycle stage by
tracking the observed cloud backwards in time (Mace et al., 2006; Futyan and Del Genio,
2007; Bouniol et al., 2016).
Although some of the studies have included mid-latitude anvil cirrus clouds (e.g. Machado

et al., 1998; Feng et al., 2012), the large majority of the previous work has been limited to
tropical convective systems and anvil cirrus.

Scientific objectives of this thesis

The main limiting factors for studying the temporal evolution of anvil cirrus clouds through-
out their life cycle have been the low sensitivity to thin cirrus by passive sensors (especially
in geostationary orbits), the small spatial scale of profiling lidar and radar as well as the
low temporal resolution of polar orbiting satellite instruments. The goal with this thesis is
to combine the large spatial scale and high temporal resolution of geostationary imagers
(required to study the anvil cirrus life cycle) and the high sensitivity to thin cirrus clouds
by space-borne lidars (required to discern thin cirrus and their properties) with a new
cirrus retrial algorithm and while doing so, allow for a comprehensive and quantitative
analysis of the anvil cirrus life cycle, focusing on the thin part of the anvil cirrus (visible
optical thickness < 2).

While much of the previous work on the life cycle and temporal evolution of anvil
cirrus clouds has focused on the morphology and horizontal structure of anvil cirrus clouds
using brightness temperature or emissivity thresholds, the strength and novelty of this
study is the combination of the large spatial coverage and high temporal resolution (from
the geostationary imager) together with the high sensitivity to thin cirrus clouds by the
new cirrus retrieval algorithm, that allows for detection of thin anvil cirrus clouds and the
retrieval of the corresponding cloud top height (CTH), ice optical thickness (IOT), IWP
and, by parameterisation, effective radius (REF) every 5 min. This allows for a quantitative
analysis of the anvil cirrus optical, mircrophysical and macrophysical properties throughout
the entire life cycle and makes it possible to address scientific questions related to the
physical processes of anvil cirrus clouds. Thus, the following scientific question (SQ) is
addressed

SQ-1 How do the anvil cirrus properties, including spatial extension, cloud top height, ice
optical thickness, ice water path and effective radius evolve with time throughout the
anvil cirrus life cycle?

The global mean surface temperature increase is likely to exceed 1.5 K by the end of the
21th century relative to 1850 to 1900 (with higher temperature increments over land) unless
greenhouse gas emissions peak and rapidly start to decrease before 2020. If the greenhouse



gas emissions continue to increase until around 2040, it is more likely than unlikely that
the global temperature increase exceeds 2 K (Collins et al., 2013; van Vuuren et al., 2011).
With increasing surface temperatures, not only more, but also stronger convection can be
expected. While the relationship between the strength of the convective updraught and the
anvil cirrus size and lifetime has been presented in the literature, this thesis aims towards
an increased understanding of the relationship between the convective strength and the
anvil cirrus optical and physical properties as well as their temporal evolution. Hence, the
following scientific question is addressed

SQ-2 How does the convective strength affect the anvil cirrus properties and their temporal
evolution?

To further investigate the observed variability of the anvil cirrus life cycle, the following
scientific question is finally addressed

SQ-3 How do the meteorological conditions influence the life cycle of anwvil cirrus clouds?

To approach and answer the scientific questions, this thesis is divided into five subse-
quent chapters. Chapter 2 describes the theoretical background of this study including the
theory of electromagnetic radiation, atmospheric radiative transfer and satellite remote
sensing of cirrus clouds. The satellite instruments, methods and data used in this study
are introduced and described in Chap. 3. Chapter 4 presents the new algorithm for the
geostationary remote sensing of thin cirrus clouds: CiPS - Cirrus Properties from SEVIRI.
Sects. 4.1-4.7 describe the technical development of CiPS, while a detailed validation and
characterisation of CiPS as well as a comparison with independent data is presented in
Sects. 4.9, 4.10 and 4.11 respectively. Chapter 5 present the life cycle analysis of anvil
cirrus clouds. First, the cirrus tracking algorithm is described in Sect. 5.1. Second, the
temporal evolution of the anvil cirrus properties throughout the life cycle is analysed in
Sect. 5.3 (case study) and Sect. 5.4.1 (statistical approach) respectively, using CiPS as the
main tool (SQ-1). Third, the relationship between the convective strength and the cir-
rus properties and their temporal evolution is investigated in Sect. 5.4.2 (SQ-2). Fourth,
the relationship between modelled meteorological conditions (convective available poten-
tial energy, humidity, temperature, horizontal wind speeds) and the anvil cirrus lifetime
and maximum spatial extension is investigated in Sect. 5.4.3 (SQ-3). Finally, the conclu-
sions drawn from this study together with an outlook is presented in Chap. 6. A list of
abbreviations is available in Appendix A.



1. Introduction




Chapter 2

Theoretical background and satellite
remote sensing of cirrus clouds

Parts of the text in Sect. 2.2 in this chapter have been published in Strandgren et al. (2017a)
and Strandgren et al. (20170).

2.1 Fundamentals of atmospheric radiative transfer

Electromagnetic radiation propagating through the atmosphere and interacting with its
matter is described by the theory of atmospheric radiative transfer. Electromagnetic ra-
diation refers to oscillating electric and magnetic fields that carry electromagnetic energy
as they propagate through a medium. Understanding atmospheric radiative transfer is
essential in order to understand and interpret satellite remote sensing in any form.

2.1.1 Radiative quantities

Electromagnetic radiation consists of a stream of photons and is characterised by its fre-
quency v, i.e. by the rate at which it oscillates and its wavelength ), i.e. the distance
between two repetitive patterns

[m] ’ (2.1&)

where ¢ is the speed of light in vacuum. The energy of a photon is described by the
Planck-FEinstein* relation

E=hv=- [, (2.2)

where h = 6.626 - 1073*Js is the Planck constant. Since ¢ and h are constants, the
energy of the photons and the electromagnetic radiation itself is directly related to the
wavelength /frequency.

Lafter the German physicists Max Planck (1858-1947) and Albert Einstein (1879-1955)
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The radiant flur (or radiant power) ® describes the radiant energy per unit time

dE

) —
dt

(W1, (2.3)

and the irradiance I describes the radiant flux received by a surface element dA per unit
area

_ add
T dA
The radiance L describes the radiant flux received by or leaving a surface element dA per
unit projected area in a specified direction Q, within a solid angle df2, oriented at an angle
¥ to the normal direction n of the surface element

L o
~ cos(V) dA dQ

I Wm™? . (24)

Wm™2sr™'] . (2.5)

Figure 2.1 shows a graphical interpretation of the radiance as measured by a satellite
sensor. The field of view of the sensor covers an area element dA of the observed surface.
The satellite sensor does not measure all radiant flux leaving the surface element, but the
radiant flux propagating in the direction of the satellite sensor (Q) within the solid angle
dS). Due to the slant view of the sensor, the projected area is calculated as cos(?) dA, where
¥ is the angle between Q) and the normal 7 to the surface element dA. The solid angle
is expressed in units of steradians (sr) and remains constant with increasing/decreasing
distance between the observed object and the sensor.

sensor

A .
A . .
dQ—I 7S
9 Ry
."". ~.' ) O
dA projected area:
\P(_ - cos(J)dA surface

Figure 2.1: Graphical interpretation of the radiance of a surface element dA measured by
a satellite sensor with solid angle df2, oriented at an angle ¥} to the normal direction n of
the surface element.

Finally, the spectral radiance describes the radiance at a given wavelength /frequency and

is defined as
L= o [Wm2sr™ ' nm™] (2.6)
A cos(V) dA dQ d ' '
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2.1.2 Black body radiation

All bodies emit electromagnetic radiation according to their temperature T that can be
characterised by Eqs. (2.3)—(2.6). A black body is an idealised body that absorbs all incident
electromagnetic radiation. According to Kirchhoff’s* law, any body in thermal equilibrium
must re-emit all absorbed radiation at a given wavelength. The electromagnetic radiation
emitted (in all directions and at all wavelengths) by a black body in thermal equilibrium
is described by Planck’s law

2 h c? 1
B\(T) = Wm2sr ' nm™], 2.7
A( ) A5 eXp(AI?BCT)_l [ m —sr - nm ] ( )

where kg = 1.381 - 1072 JK! is the Boltzmann® constant. The spectral black body radi-
ance B, is accordingly a function of the black body’s temperature alone and independent
of any other property of the black body. Black bodies only exist in theory and a grey body*
at temperature 7" emits only a fraction of the electromagnetic radiation that a black body
at the same temperature would emit. This fraction is known as the spectral directional

emissivity €y
L
€\ = . 2.8

2.1.3 Interactions with atmospheric matter

As electromagnetic radiation propagates through the atmosphere, gas molecules, aerosols,
cloud droplets and ice crystals interact with the radiation through absorption, emission
and scattering.

Absorption describes the process when an atom or molecule extracts energy from the
incident beam of radiation according to Eq. (2.2) and transitions to a higher energy
level. Processes requiring energy and hence leading to photon absorption include: (1)
atomic/molecular electronic transitions to a higher-energy electron shell, (2) changes in
molecular vibrational motion and (3) changes in molecular rotational motion. The energy
required to reach a higher energy level is discrete, leading to the characteristic spectral
lines and bands of given atoms and molecules.

Emission describes the process when an atom or molecule transitions to a lower en-
ergy level and emits a photon with corresponding energy (and wavelength) according to
Eq. (2.2). The processes causing emission are similar to those of absorption.

Zafter the German physicist Gustav Kirchhoff (1824-1887)
3after the Austrian physicist Ludwig Boltzmann (1844-1906)
4a body that does not absorb all incident electromagnetic radiation is usually referred to as a grey body
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(a) (b) (c)

Incident Beam

—_—

Forward
R
—_—

Figure 2.2: The angular distribution of visible radiation at 0.5 ym by spherical particles of
three sizes: (a) 107*pm, (b) 0.1pm and (¢) 1 pm. The forward scattering pattern for the
1 pm particle is extremely large and is scaled for presentation purposes. Figure adapted
from Liou (2002).

Scattering describes the redirection of electromagnetic radiation from the direction of
propagation. How the incident radiation is scattered depends on the wavelength and the
properties of the scattering molecule or particle (size, shape, refractive index). The size
parameter x describes the relationship between the wavelength of the incoming electro-
magnetic radiation A and the radius of a scattering particle r

2mr
Figure 2.2 shows the scattering pattern of electromagnetic radiation with A = 0.5pum
scattered by spherical particles with three different sizes: (a) 107 pm, (b) 0.1 pm and (c)
1pm. It is clear that larger particles concentrate the scattered radiation in the forward
direction, with increasingly complex scattering patterns. The angular re-distribution of
scattered radiation from the incident direction 2’ to any direction €2 is described by the
scattering phase function P(€), ).

The scattering by particles much smaller than the wavelength (z << 1), as in Fig. 2.2a,
is usually referred to Rayleigh® scattering. Under Rayleigh scattering conditions, the scat-
tering efficiency is proportional to A™*, meaning that shorter wavelengths are scattered
more effectively. This explains, for example, the characteristic blue colour of the sky, since
the shorter blue wavelengths are scattered most effectively by the air molecules that are
significantly smaller (~107%pm) than the visible spectrum of the solar radiation (0.39-
0.7pm). Scattering by spherical particles with sizes comparable to, or larger than, the
wavelength (z > 1) can be derived from Maxwell’s® equations. This is usually referred to
as the Mie" solution. In contrast to Rayleigh scattering, scattering efficiency is not (as)
wavelength dependent for Mie scattering. This explains, for example, the characteristic
white colour of clouds, since the scattering cloud droplets, that have sizes (~10pum) ap-
prox. ten times the wavelength of visible solar radiation, scatter all visible wavelengths
as effectively. In contrast to cloud liquid water droplets, that can be approximated as

Safter the British physicist Lord Rayleigh (John William Strutt, 1842-1919)
Safter the Scottish mathematician and physicist James Clerk Maxwell (1831-1879)
Tafter the German physicist Gustav Mie (1868-1957)
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spherical, cloud ice crystals have a variety of more complex shapes. Consequently, an ex-
act solution for the scattering by ice crystals covering all shapes and sizes present in the
atmosphere does not exist. Instead the scattering properties can be derived for a set of ide-
alised crystal shapes, e.g. hexagonal plates, (hollow) columns, (hollow) bullet rosettes and
droxtals, for a range of sizes using various methods (e.g. conventional /improved geometric-
optics, T-matrix, finite difference time domain). The total scattering effect by an ensemble
of ice crystals can then be estimated by averaging the scattering properties over multiple
size distributions with prescribed crystal shapes (see e.g. Yang et al. (2015) and references
therein for details).

2.1.4 The equation of radiative transfer

A beam of electromagnetic radiation propagating through an atmospheric volume V' with
area A, infinitesimal thickness ds containing N particles will lose energy due to absorption
and scattering. The combined loss in energy /radiance due to absorption and scattering is
known as extinction and given by

dLext,)\ . No-ext,)\L
ds Ads

N
= 7 Textr L (2.10)

= —N Oext, Lix
= _Bext,/\ L)\ )

where ooy ) is the extinction cross section® (in m?) at wavelength A\, V' is the volume (in
m?), n is the particle number density (in m™3) and Bex.x is the extinction coefficient (in
m~!). As mentioned above, the extinction constitutes the attenuation due to absorption
and scattering and e » is defined as the sum of the absorption coefficient Bans ) and the
scattering coefficient Bsca

ﬁext)\ = ﬂabs,)\ + /Bsca)\ . (211)

The absorption and scattering coefficients describe the radiant attenuation per unit length

in the direction of propagation due to absorption and scattering inside the volume.
Solving Eq. (2.10) for a path through the atmosphere ranging from e.g. the Earth’s

surface (s = 0) to the top of atmosphere (s = TOA) yields the Beer-Lambert-Bouguer® law

L,(TOA) = L,(0) exp( - /0 Bext.A(5) ds> = L,(0) exp(—7(TOA)) , (2.12)

8The extinction cross section is a measure for the probability that the electromagnetic radiation will
interact with a particle, either by scattering or absorption. It is defined as the ratio between the scattered
or absorbed radiant flux (Eq. 2.3) and the irradiance (Eq. 2.4)

9after the German physicist August Beer (1825-1863) and the French mathematicians Johann Heinrich
Lambert (1728-1777) and Pierre Bouguer (1698-1758)
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where
TOA
T = / Bext A (s) ds (2.13)
0

is known as the optical thickness of the atmospheric path length. The Beer-Lambert-
Bouguer law quantifies the radiative attenuation due to absorption and scattering along
the path length and thus the spectral radiance of up-welling electromagnetic radiation at
TOA.

The beam will also gain radiant energy along the direction of propagation due to emis-
sion by the medium. Any body with a temperature 7" will emit radiation in all directions
according to Planck’s law (Eq. 2.7). Hence, the gain in spectral radiance due to emission
along the path length is given by

dLemi,)\ = Bemi,)\ ds B/\(T) s (214)

where Semi is the emission coefficient of the medium. Assuming local thermodynamic
equilibrium (LTE) and invoking Kirchhoff’s law, Eq. (2.14) can be written as

dLemi,/\

s Babsx Ba(T) . (2.15)

Finally, the beam can gain energy if radiation from the outside is scattered into the direction
of propagation. The gain in spectral radiance due to scattering from an arbitrary direction
' into the direction of propagation € is given by

dLsca,)\(Qla Q) = ﬁsca,)\ ds P(Qla Q) L)\(Q,) . (216)
Integrating over all incident angles Q' yields

dLsca,)\ (Q) _ Bsca,)\
ds 4

/ P, Q) Ly () d€Y (2.17)

Combining Egs. (2.10), (2.15) and (2.17), the equation of radiative transfer can be formu-
lated

dL/\ dLext,)\ + dLemi,)\ + dLsca,)\<Q)
ds ds ds ds

(2.18)
= _ﬁext,)\ L)\ + ﬁabs,)\ B)\<T) + @ / P(Q/, Q) L/\(Q/) dQI .
4

4

The equation of radiative transfer describes the change in spectral radiance for a beam of
electromagnetic radiation propagating through an atmospheric volume with thickness ds
due to interaction (scattering, absorption, emission) with matter inside the volume.
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2.2 Satellite remote sensing of cirrus clouds

An analytical solution to Eq. (2.18) does not exist, and even if it would, it relies on several
assumptions (e.g. LTE, spectral radiation (at one wavelength/frequency), elastic scattering
(no change in wavelength /frequency), homogeneous layer) and the inversion from radiances
measured from space to e.g. cirrus cloud properties would be an ill-posed problem with
too many unknowns compared to the number of satellite measurements. Nevertheless,
cirrus clouds and clouds in general can be identified and their properties estimated from
satellite platforms using two approaches: passive and active remote sensing. The following
subsections focus on the satellite remote sensing of cirrus clouds, but describe general
methods used for liquid water clouds (and thick ice clouds) as well.

2.2.1 Cirrus cloud properties

To study cirrus clouds from space it is central to distinguish the cirrus clouds from the
surrounding cirrus-free areas i.e. to derive a cirrus cloud flag (CCF), that classifies each
observed scene as cirrus-free or cirrus-covered. The cloud top height (CTH) describes the
distance between the Earth’s surface and the top of the cirrus cloud. The CTH is an im-
portant variable as it is closely related to the cloud top temperature and hence determines
the outgoing thermal radiation. The ice optical thickness (IOT) stems from Eq. (2.13)
and is defined as the wvertically integrated attenuation of electromagnetic radiation due
to scattering and absorption by cloud ice crystals within an atmospheric column ranging
from the surface (z = 0) to the top of atmosphere (z = TOA). Similarly, the ice water
path (IWP) is defined as the vertically integrated mass of ice within the same atmospheric
column

TOA
WP = / IWC(2)dz  [gm™?], (2.19)

where the ice water content (IWC) measures the mass of ice per unit volume of air
IWC = /piceV(r)n(r)dr [gm™] , (2.20)

where pie = 917000gm™ is the mass density of ice and V(r) and n(r) are the mean
volume and number of cloud ice crystals in the size interval r to r + dr per unit volume of
air. Hence,

Vice = /V(r)n(r)dr [m?*m™3] (2.21)

is the total volume of ice per unit volume of air. IWP and IWC are, in contrast to IOT,
physical quantities, that can be directly used for comparisons with climate and weather
models. The effective radius (REF; Hansen and Travis, 1974) describes the area weighted
mean radius for an ensemble of cloud particles. For spherical cloud particles it is defined
as the ratio between the third and second moment of the cloud particle size distribution

[ rrr?a(r)dr

EF = ——F—-—
R [ mr2n(r)dr

m] . (2.22)
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Several definitions of the effective radius for an ensemble of non-spherical ice crystals have
been presented in the literature (see e.g. McFarquhar and Heymsfield (1998) for an inter-
comparison). In this study the following definition is used

3 ‘/{ce

REF =
4AAice

m] , (2.23)

where A is the total projected area of ice per unit volume of air. The fraction 3/4 is
introduced in order to solve Eq. (2.22) for spherical particles. Following Eqgs. (2.20) and
(2.21) the total volume of ice per unit volume of air can be expressed in terms of IWC

Viee = IWC/pie  [m*m™] . (2.24)

Similarly, the total projected area of ice per unit volume of air can be expressed in terms
of the (volume) extinction coefficient Sey

Ajce = /A(T)n(r)dr — Ugt(r)n(r)dr _ %

where A(r) is the mean projected area of cloud ice crystals in the size interval r to r + dr
per unit volume of air and Qe is the (constant) extinction efficiency. Using Egs. (2.24)
and (2.25), Eq. (2.23) can be rewritten as

3Qu: IWC _ 3IWC
4piceﬂext 2,0iceﬁext

for larger ice crystals (REF 2 10pm), for which Qe =~ 2 (e.g. Schumann et al., 2011).
Eq. (2.26) is used to estimate the effective radius of cloud ice crystals by e.g. Jensen et al.
(2009) and Hong and Liu (2015).

m*m™] (2.25)

REF =

m] | (2.26)

2.2.2 Passive satellite remote sensing

Passive satellite sensors like the imaging radiometers SEVIRI (Spinning Enhanced Visible
Infrared Imager; Schmetz et al., 2002), ABI (Advanced Baseline Imager; Schmit et al.,
2015), MODIS (Moderate Resolution Imaging Spectroradiometer; King et al., 1992) and
AVHRR (Advanced Very High Resolution Radiometer; Hastings and Emery, 1992) measure
radiances of thermal radiation emitted by the Earth and reflected solar radiation leaving
the Earth—atmosphere system at TOA. A passive imaging radiometer cannot resolve ver-
tical cloud features and has a limited sensitivity to thin and sub-visual (visible optical
thickness < 0.03) cirrus clouds, but typically it views an area large enough (by scanning
or otherwise) to observe complete cloud systems.

Imaging radiometers measure the TOA radiances within given wavelength ranges, re-
ferred to as channels or spectral bands. Hence, the measured radiances in the thermal
range cannot be described directly with Eq. (2.7), but are instead given by

I J erLadA _ [ orBx(Tp)d\
ngAd)\ fgp)\d)\ ’

(2.27)
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where ) is the spectral response function'® of a given channel/band and the (equivalent
black body) brightness temperature (7}) represent the temperature a black body would
have in order to emit according to the spectral radiance L, of the observed grey body. For
channels in the solar spectrum, the reflectance R can be calculated, describing the incident
solar radiation reflected by the observed object

B ngp,\L,\d/\ 7L
~cos(We) [ oalad)\  cos(Pe)I’

(2.28)

where I is the spectral solar irradiance, [ is the solar irradiance received by a given channel
and g is the solar zenith angle.

The atmosphere itself is largely transparent to incoming shortwave radiation and the
amount of reflected solar radiation reaching TOA in clear sky conditions (no clouds or
aerosols) is directly related to the Earth’s surface albedo. Ice crystals and liquid water
droplets are generally effective scatterers of solar radiation, leading to increasing reflected
solar radiation and radiances at TOA in the presence of clouds, distinguishing them from
surrounding cloud free scenes.

The solar radiation that is not reflected back to space by the Earth’s surface and at-
mosphere is absorbed by the Earth-atmosphere system. The absorbed radiation is later
re-emitted according to the Earth’s and atmosphere’s temperature (Eq. 2.7) and emissivity
(Eq. 2.8). Most of the emitted radiation is at longer wavelengths, referred to as (longwave)
thermal radiation. Cloud ice crystals and water droplets may absorb thermal radiation
and emit it in all directions. The radiant energy emitted by a cloud out to space depends
mainly on its top temperature. Hence, cirrus clouds located higher up in the atmosphere,
at colder temperatures, emit less thermal radiation out to space, leading to lower radiances
in the thermal spectra at TOA. The loss in thermal radiation at TOA is further enhanced
with increasing absorption by the cloud. Less thermal radiation reaches TOA if the ab-
sorbing cloud is optically thicker, since a larger fraction of the thermal radiation is emitted
back towards the Earth’s surface, resulting in a stronger radiative contrast to (cirrus) cloud
free scenes. On the contrary, an optically thin (e.g. sub-visual) cirrus, transmits most of
the up-welling thermal radiation and absorbs (and emits) a comparably small fraction,
leaving a weak mark on the TOA radiances and thus a small radiative contrast to (cirrus)
cloud free scenes. This makes it difficult to discern optically thin cirrus clouds from the
surrounding cirrus-free regions using imaging radiometers. Atmospheric gases also absorb
and emit parts of the thermal radiation, with water vapour (H20), carbon dioxide (COy),
methane (CH4) and ozone (O3) being some of the most important absorbers of thermal
radiation in the atmosphere. The absorption by the single molecules strongly depends on
the wavelength of the thermal radiation and there are spectral regions where the atmo-
sphere is mostly transparent to thermal radiation (atmospheric windows). Similarly, there
are spectral regions where thermal radiation is strongly absorbed by atmospheric gases, for
example by water vapour around 5-7pm, reducing or even obscuring the radiative signals
from the Earth’s surface and clouds in the lower troposphere. The thermal radiation at

0the relative efficiency of a sensor to detect photons as a function of wavelength.
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TOA, reaching a passive imaging radiometer, thus consists of the radiation directly trans-
mitted from the Earth’s surface and the radiation absorbed and emitted out to space by
clouds, aerosols and atmospheric gases. Hence, different cirrus clouds leave their unique
mark on the TOA radiances observed by an imaging radiometer, depending primarily on
the cirrus cloud temperature (height) and optical properties, but also on the presence
and properties of underlying liquid water clouds, aerosols, atmospheric gas concentrations
and the Earth’s surface properties (temperature, emissivity), which regulate the thermal
radiation emitted by the Earth.

To study cirrus clouds, their life cycle and climate impact, large-scale satellite observa-
tions with imaging radiometers are crucial. Cirrus clouds can be detected from space-borne
imaging radiometers (e.g. Saunders and Kriebel, 1988; Derrien et al., 1993; Ackerman et al.,
1998; Kriebel et al., 2003; Derrien and LeGléau, 2005; Krebs et al., 2007) by applying spec-
tral tests on brightness temperatures and temperature differences (e.g. Inoue, 1985; Ack-
erman et al., 1990). Krebs et al. (2007) extend the multispectral threshold test approach
by introducing morphological tests that take into account the shape of high-level clouds
in thermal channels characterised by strong water vapour absorption. Near-infrared water
vapour absorption channels can also be used to detect cirrus clouds (Gao et al., 2002).
Due to the limited sensitivity to thin cirrus clouds, algorithms utilising spectral and mor-
phological threshold tests tend to miss a large fraction of those thin cirrus (e.g. Ackerman
et al., 2008; Stubenrauch et al., 2010) and thus introduce a bias into the climate impact of
cirrus clouds. Another well-known problem related to cirrus cloud detection from passive
imagers is the difficulty to distinguish between cirrus clouds and cold surfaces in the polar
regions (e.g. Holz et al., 2008).

The CTH is an important variable as it regulates the outgoing longwave radiation. It
can be retrieved from passive satellite imagers during both day and night using e.g. radiance
ratioing (also referred to as CO, absorption, CO; slicing and split window technique)
(Smith et al., 1970; Smith and Platt, 1978; Menzel et al., 1983; Eyre and Menzel, 1989;
Zhang and Menzel, 2002; Menzel et al., 2008), radiance fitting (e.g. Szejwach, 1982; Nieman
et al., 1993; Schmetz et al., 1993) and optimal estimation (e.g. Heidinger and Pavolonis,
2009; Sayer et al., 2011; Watts et al., 2011). An intercomparison of different techniques
currently used for SEVIRI is presented in Hamann et al. (2014).

Nakajima and King (1990) introduced a commonly applied approach for the retrieval of
optical thickness and effective radius of clouds from reflected solar radiation in two spectral
channels (e.g. Platnick et al., 2003; Bugliaro et al., 2011; Stengel et al., 2014) for both ice
clouds and liquid water clouds. From the optical thickness and effective radius the liquid
water path (LWP) and IWP can be estimated for liquid and icy pixels respectively. The
solar dependence does, however, limit this approach to daytime and the retrieval becomes
ambiguous for optically thin clouds (Nakajima and King, 1990). The same properties can
be retrieved for optically thinner cirrus clouds during night as well using only thermal
observations (e.g. Prabhakara et al., 1988; Ackerman et al., 1990; Yue and Liou, 2009;
Minnis et al., 2011; Heidinger et al., 2015; Wang et al., 2016), but with a limited accuracy
due to the low sensitivity to large ice crystal sizes and large optical thicknesses.
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2.2.3 Active satellite remote sensing

Active satellite sensors like CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization;
Winker et al., 2003, 2009) and CPR (Cloud Profiling Radar; Stephens et al., 2002) emit
visible (CALIOP) and microwave (CPR) radiation and measure the radiation backscattered
by clouds and aerosols. Lidar and radar are short for Light/Radio Detection and Ranging.
The main principle is to emit radiation and identify objects like airplanes, rain drops,
cloud droplets, ice crystals or aerosol particles due to their stronger backscatter compared
to the background molecular backscatter (detection). When an object has been identified,
the distance between the transmitter and the object can be derived (ranging) from the
time it took for the transmitted, backscattered radiation to return to the receiver and the
speed of light. By measuring the power of the backscattered radiation for a small path
length ds (given by the vertical resolution), the level of attenuation of the layer can be
estimated. This is expressed as the extinction (lidar) and reflectivity (radar). Repeating
this down to the Earth’s surface results in vertical profiles of extinction coefficients (lidar).
By integrating the extinction coefficients for a given cloud or aerosol layer detected in the
altitude range s; — sy (see Eq. (2.13)) the optical thickness of that cloud or aerosol layer
can be estimated (e.g. Young and Vaughan, 2009). With information about the position of
the spacecraft, the height of the cloud or aerosol layer with respect to the Earth’s surface
(e.g. the CTH) can be determined.

The active satellite remote sensing using radar/lidar allows for vertical profiling of
clouds and aerosols along the satellite track with a high sensitivity to thin cirrus clouds
(using the lidar). However, those sensors have a small footprint and observe only at nadir,
which leads to a poor spatial coverage and low temporal resolution.

2.2.4 Synergistic satellite retrievals

Observations from different satellite orbits generate additional advantages and limitations.
Sensors observing the Earth from polar orbits (e.g. MODIS, AVHRR, CALIOP and CPR)
have a near-global coverage and high spatial resolution, but a low to poor temporal resolu-
tion, depending on the swath width/spatial coverage. In contrast, a geostationary imager
like SEVIRI lacks a global coverage, but has a constant large field of view, which allows
for a high temporal resolution of 15 min (Schmetz et al., 2002) required to study the tem-
poral evolution, life cycle and physical processes of clouds. The advantages of individual
instruments can be combined to enhance cloud retrievals if two or more complementary
satellite sensors operate aboard the same satellite platform (e.g. the synergistic retrievals
for the IIR (Imaging Infrared Radiometer) thermal camera and CALIOP by Garnier et al.,
2012, 2013, 2015) or fly in a satellite constellation like the A-Train (e.g. the synergistic
retrievals for lidar and radar or lidar, radar and imager by Donovan and van Lammeren,
2001; Delanoé and Hogan, 2008, 2010; Deng et al., 2010; Ceccaldi et al., 2013). Combin-
ing the advantages of satellite sensors operating in different orbits is more challenging, as
they observe given scenes at different times from possibly different perspectives. Neverthe-
less, the information from available sensor collocations can be used to learn relationships
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between different sets of observations, e.g. through machine learning.

Artificial neural networks (ANNs; Sect. 3.3) are a powerful tool for combining the
advantages of different satellite sensors operating in different orbits. With ANNs, the
relationship between observations of one set of sensors and the retrieval outcome of another
set of sensors can be approximated by learning from available sensor collocations. This has
been done by learning and approximating the relationship between collocated passive and
active satellite observations in order to indirectly increase the sensitivity and accuracy of
the passive satellite retrievals (e.g. Kox et al., 2014; Holl et al., 2014; Minnis et al., 2016).
The ultimate goal with such an approach is to retrieve active-like (cirrus) cloud properties
from passive satellite observations alone.



Chapter 3

Instrumentation, methods and data

The text in Sects. 3.3, 3.4.3, 3.5 and parts of the text in Sect. 3.2 in this chapter have been
published in Strandgren et al. (2017a,).

In this chapter the remote sensing instruments, data and methods used to develop CiPS
(Cirrus Properties from SEVIRI; Chap. 4) and analyse the life cycle of anvil cirrus clouds
are introduced. This includes instruments, methods and data developed by others than
the PhD candidate. The two main tools used to analyse the anvil cirrus life cycle have
been developed by the PhD candidate and are described in full detail in Chaps. 4 and 5.
This includes the CiPS algorithm and the cirrus cloud tracking algorithm respectively.

3.1 SEVIRI aboard the Meteosat Second Generation

SEVIRI is a passive imaging radiometer operating aboard the geostationary Meteosat
Second Generation (MSG) satellites since 2004. SEVIRI is the main instrument used for
the analysis presented in Chap. 5 as well as the main source of input data for CiPS.
SEVIRI measures the up-welling radiation within 12 channels in the visible to thermal
infrared spectrum, in which the radiances (Eq. 2.27) are measured and the corresponding
brightness temperatures (Eq. 2.27) and reflectances (Eq. 2.28) retrieved. The operational
MSG satellite is positioned ca. 35800 km above the Earth’s Equator at 0° E giving SEVIRI
an excellent view of the Earth from its remote location, with a spatial coverage from
approx. 80° W to 80° E and 80° S to 80° N (from now on referred to as the SEVIRI disc). The
broadband high resolution visible (HRV) channel has a limited coverage and includes the
European and most of the African continent. The spatial sampling of SEVIRI is 3x 3 km? at
nadir (1x1km? for the HRV channel) which increases to approx. 3.5 x5 km? on average over
Europe. The SEVIRI channel characteristics are summarised in Table 3.1. Furthermore,
Fig. 3.1 shows the spectral response functions of the SEVIRI narrowband channels (1-11
in ascending order from left to right) together with simulated spectra of reflected solar
radiation and outgoing longwave radiation. Channels 1-3 and 12 measure reflected solar
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Table 3.1: Characteristics of the SEVIRI spectral bands. Table adapted from Schmetz
et al. (2002).

Channel Spectral band Central wavelength Spatial sampling

/ pm Ae / nm at nadir / km?
1 VIS0.6 0.56 — 0.71 0.635 3x3
2 VIS0.8 0.74 — 0.88 0.81 3 X3
3 NIR1.6 1.50 — 1.78 1.64 3 x3
4 IR39 3.48 — 4.36 3.90 3 X3
5 WV6.2 5.35 —7.15 6.25 3x3
6 WVT73 6.85 — 7.85 7.35 3 X3
7 IRS8.7 8.30 — 9.10 8.70 3x%X3
8 IR9.7 9.38 — 9.94 9.66 3 %X 3
9 IR10.8 9.80 — 11.80 10.80 3x3
10 IR12.0 11.00 - 13.00 12.00 3 %X 3
11 IR13.4 12.40 — 14.40 13.40 3X%X3
12 HRV 04—-1.1 - 1x1
channel 1 2 3 4 56 7891011
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Figure 3.1: The spectral response functions of the SEVIRI narrowband channels 1-11 to-
gether with simulated spectra of reflected solar radiation and outgoing longwave radiation.
Figure adapted from Vazquez-Navarro et al. (2013).
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radiation, whereas channels 5-11 measure the terrestrial thermal radiation. Channel 4 is a
mixed channel measuring both reflected solar and terrestrial thermal radiation. Channels
5-11 have a weak solar contribution which allows for observations during both day and
night. Due to the stationary position above a fixed point on the Earth (0°E/0°N in
operational mode) SEVIRI has a high temporal resolution of 15min. Limiting the spatial
coverage to the upper part of the SEVIRI disc (north of approx. 15°N), the temporal
resolution can be increased to 5 min using the rapid scanning service.

For a graphical interpretation of the SEVIRI channel observations, Fig. 3.2 shows the
reflectances R retrieved from the three narrowband solar channels (1-3) and the brightness
temperatures (from now on also denoted as BT) retrieved from the mixed solar/thermal
channel (4) and the seven thermal channels (5-11). This gives a good overview of (1) the
type of data that SEVIRI retrieves every 15 minutes and (2) the spatial coverage of the
SEVIRI narrowband channels. The channel number and name is included in the lower
left corner of the respective figures and the data range represented by the colour scale
is included in the respective lower right corners. The black stripe along the south-east
border only present in the solar channels indicates night time conditions and hence the
absence of reflected solar radiation. The lower-right figure is a false colour RGB composite
using the three SEVIRI channels centred at 0.6, 0.8 and 10.8 pm (channels 1, 2, 9). With
this channel combination, thick and thin cirrus clouds are identified as white and bluish,
whereas the warmer liquid water clouds are recognised as yellow. A band of cirrus clouds
is observed along the intertropical convergence zone (ITCZ). Furthermore several frontal
(cirrus) clouds are observed over Europe and the southern and northern Atlantic Ocean.
In the tropics, large areas of shallow cumulus clouds can be seen over the Atlantic Ocean.

In channels 1, 2, 3 (and 12, not shown here), bright desert areas and especially clouds
have a strong signal as they reflect a large fraction of the incoming solar radiation. Ice
crystals do, however, absorb and transmit solar radiation comparably effectively in the
range 1.50 — 1.78 ym (channel 3) leading to lower reflectances by high cirrus clouds for this
channel compared to channels 1 and 2. Similarly, areas with lower albedo, like forests and
especially the ocean, have low reflectances in the solar channels.

In the thermal spectrum the atmospheric gas absorption of longwave thermal radiation
plays an important role at certain wavelengths. The two water vapour channels (6 and
7) are characterised by strong absorption by water vapour, consequently those channels
give information about the large-scale water vapour structures in the troposphere. Upper
level cirrus clouds located above the altitudes where the contribution to the water vapour
channels peak further absorb the emit thermal radiation leading to lower radiances and
brightness temperatures (Sect. 2.2.2). Channel 5 is located more in the centre of the water
vapour absorption band, leading to less transmission/contribution from the lower tropo-
sphere and hence generally lower brightness temperatures and weaker radiative contrast
between (thin) cirrus and cirrus-free areas. It is clear that the surface and low-level clouds,
e.g. the shallow cumulus over the tropical Atlantic Ocean, cannot be identified in the two
water vapour channels.

The three window channels (7, 9 and 10) are characterised by little atmospheric gas
absorption of thermal radiation (Sect. 2.2.2). In these channels, most of the thermal
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Figure 3.2: The reflectances (R) and brightness temperatures (BT) retrieved from the three
solar narrowband (1-3) and eight thermal (4-11) SEVIRI channels respectively. The images
were retrieved on 1 June 2015 at 12:30 UTC from MSG-3/SEVIRI. The channel number
and name together with the data range represented by the colour scale is included below
the respective figures. Higher reflectances and brightness temperatures are represented by
brighter colours. The lower-right figure is a false colour RGB composite using the three
SEVIRI channels 1, 2 and 9 (inverted) centred at 0.6, 0.8 and 10.8 pm respectively. Please
note that the broadband HRV channel is not depicted here.

radiation emitted by the Earth reaches the satellite if no absorbing/scattering atmospheric
particulates are present. Consequently the Earth’s surface can be recognised and especially
warm surfaces like deserts lead to high radiances and brightness temperatures observed by
the satellite. The low liquid water clouds scatter, absorb and emit parts of the up-welling
thermal radiation and due to the colder temperatures at the cloud level, this results in
reduced radiances and brightness temperatures. This can be seen for the shallow marine
cumulus over the tropical Atlantic Ocean, recognised as yellow in the RGB. The high cirrus
clouds emit an even smaller fraction of the absorbed up-welling thermal radiation due to
the considerably lower temperatures at the cirrus altitudes. Consequently, high cirrus
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clouds can easily be identified in those channels due to the large difference in brightness
temperatures compared to cirrus free areas. From 8.7 to 12.0 pm the absorption of thermal
radiation by ice increases with the wavelength, making thin cirrus clouds more pronounced
in channel 9 and especially channel 10. This is difficult to recognise by eye in Fig. 3.2,
but by looking at brightness temperature differences between the window channels, as in
Figs. 4.4 and 4.5, thin cirrus clouds can be identified more effectively. Channel 4 is also a
window channel (centred at 3.9um), but adjacent to the COy absorption band at 45 pm.
Higher radiances and brightness temperatures are observed with channel 4 compared to
channels 7, 9 and 10, both for cloudy and cloud-free areas. This is mainly an effect of the
reflected solar radiation that is not considered in the brightness temperature definition, but
nevertheless contributes to the observed radiances and indirectly increases the brightness
temperatures.

Channels 8 and 11 are characterised by moderate absorption of thermal radiation by
ozone and CO, respectively. Consequently lower brightness temperatures are observed for
those channels compared to the window channels.

3.2 CALIOP aboard CALIPSO

CALIOP was launched as the main instrument aboard the CALIPSO (Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations) satellite in 2006. CALIPSO is flying in
a sun-synchronous orbit as part of the A-Train (Stephens et al., 2002). Cirrus cloud
properties derived from CALIOP retrievals are used as training reference data for CiPS as
well as for the validation and characterisation in Chap. 4.

CALIOP is an elastic backscatter lidar operating at two wavelengths: 532 and 1064 nm.
By emitting approx. 20 laser pulses per second, a ~70 m footprint is produced every 335 m
on the Earth’s surface, resulting in curtains of attenuated backscatter profiles along the
CALIPSO track (Winker et al., 2009). The left panel in Fig. 3.3 shows a vertical profile of
the CALIOP attenuated backscatter coefficients at 532 nm, averaged over 5km in the hor-
izontal. The right panel shows a 20 min orbit segment of CALIOP attenuated backscatter
coefficients. The red arrow at the top shows the location where the vertical profile in the
left panel was retrieved. Such vertical profiles are continuously retrieved at both 532nm
and 1064 nm as CALIPSO orbits the Earth. Due to the enhanced backscatter by clouds,
aerosols and the surface of the Earth, those can be discerned from the background molec-
ular backscatter intensity. If a layer of atmospheric particulates is too optically thick,
the laser beam will get saturated, meaning that the backscatter return is too weak to be
discerned form the background molecular backscatter. This is evident around 3-17° N and
39-45° N, where no signal is received from low altitudes. Due to the narrow swath width,
CALIOP has a poor temporal resolution of around 16 days.

A long set of algorithms are applied to the backscatter profiles in order to detect cloud
and aerosol layers (Vaughan et al., 2009), differentiate between the two (Liu et al., 2009),
determine the cloud phase (Hu et al., 2009) and finally derive profiles of volume extinction
coefficients (Young and Vaughan, 2009). For the cloudy regions where the cloud phase
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Figure 3.3: Left: 5km horizontal average of the attenuated backscatter coefficients ac-
quired by CALIOP at 532nm on 13 August 2006. Right: A 20min orbit segment of
attenuated backscatter coefficients illustrating the type of data CALIOP retrieves. The
red arrow on top of the right panel shows the location where the vertical profile in the left
panel was retrieved. Figure reproduced from Vaughan et al. (2009).

is determined to be ice, the IWC is calculated from the retrieved extinction coefficients
using a parameterisation derived by Heymsfield et al. (2005) based on extensive in situ
measurements. The layer IOT and IWP are obtained by integrating the vertical profiles
of extinction coefficients and TWC.

3.3 Artificial neural networks

An artificial neural network (ANN) consists of a number of neurons that exchange infor-
mation with each other, in a similar manner as biological nerve cells transmit information
via synapses in the human brain. By assigning each neuron-neuron connection a numeric
tunable weight, the ANN has the ability to learn patterns and approximate functions. The
goal of an ANN is to derive a vector of unknown output variables given a vector of known
input data. This tool is applied in Sect. 3.4.3 and Chap. 4 to the remote sensing of cirrus
clouds and is thus introduced in the following.

3.3.1 Multilayer perceptron

In this study a multilayer perceptron (MLP), a feed-forward ANN, is used. An MLP
consists of three major units; (1) the input layer, (2) the output layer and (3) the hidden
layer(s). The input layer holds as many neurons as input variables and the output layer as
many neurons as desired output variables. The hidden layer(s) hold an arbitrary number of
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Figure 3.4: Generic structure of a multilayer perceptron (MLP), a form of a feed-forward
ANN used in this study. Figure reproduced from Strandgren et al. (2017a).

additional neurons distributed over an arbitrary number of hidden layers (Haykin, 1999).
All connections between the neurons within the MLP are in the forward direction (input
layer — hidden layer(s) — output layer). Connections backward or within a layer are
forbidden (Rumelhart et al., 1986). The value of a neuron is calculated by processing
the output from the preceding neurons connected to that neuron and the corresponding
weights through an activation function. These non-linear functions allow the ANN to solve
complex problems with a limited number of neurons (Haykin, 1999). A generic structure of
an MLP is illustrated in Fig. 3.4. In addition to the input and hidden neurons, a constant
bias neuron is commonly added to the input and hidden layers in order to give the MLP
more flexibility during the training.

When the MLP is given a vector of input data it uses the connection weights, possible
bias neurons and the activation function to estimate the vector of output data. Thus, it is
crucial that the weights and bias neurons are assigned correct values.

3.3.2 Learning through back-propagation

The weights are tuned by training the MLP, which is done with a teacher—trainer approach,
more known as supervised training. A commonly used training algorithm is the back-
propagation algorithm. The most essential steps in the back-propagation algorithm are
explained below, but for the curious reader the algorithm as a whole is well explained in
Rumelhart et al. (1986).

Using back-propagation the network is fed with a set of training examples where the
vector of input variables as well as the vector of expected output variables is known. From
the training input data the MLP estimates its own output data using the current weights.
From the vector of estimated output and the corresponding vector of expected output the
total error F (squared difference) is calculated. The error is then propagated backwards
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through the MLP and used to update each weight using gradient descent in such a way
that the total error is minimised. Each weight is updated using the following equation:

. OF
Wiy = Wi =15, = = Wij — Aw;j, (3.1)
ij

where w;; and wj; are the old and new values for a weight connecting the two neurons i

and 7. fTE describes how much a change in w;; affects the total error £. To adjust how
ij

aggressive the weight updates should be, a learning rate n is multiplied with 5E before the
weight update. A larger learning rate means larger changes in the weights and thus a faster
training. This can, however, lead to an oscillation of the total error around a minimum
solution. With a small learning rate the total error will not oscillate around a minimum
solution, but the training is slower and the risk of getting stuck in local minima is higher.
By introducing a momentum term «, possible oscillations in the iterative search for the
minimum error are attenuated, which allows for a larger learning rate. The momentum
makes use of the previous update of the corresponding weight in order to get a weighted
sum of the current and previous error gradients. The momentum term is added to the
second term on the right-hand side of Eq. (3.1) such that
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+ ozAwfj_l , (3.2)
where k represents the kth update of the weight w;;, meaning that Awfj_l is the previous
update of weight w;; (Rumelhart et al., 1986).

To find the minimum total error between the estimated and expected output vectors for
a complex problem and tune the weights accordingly, a large training dataset is required.
Training an MLP is an iterative process, where each training example is presented to
the ANN multiple times until a satisfying result has been achieved. With common ANN
terminology the training completes one iteration every time the weights are updated and
one epoch when all training examples contained in the training dataset have been presented
to the ANN. The amount of iterations required for one epoch does therefore depend on
the amount of training examples the ANN is given for every update of the weights, i.e.
the batch size. With stochastic gradient descent (sometimes referred to as momentum
stochastic gradient descent, when the momentum term is used) the weights are updated
for each training example (batch size = 1), whereas for full batch gradient descent the
weights are updated using all training examples at once (batch size = N, where N is the
total number of training examples). Stochastic gradient descent leads to a noisy error
gradient whereas the full batch gradient descent requires more computational power to
converge. With mini-batch gradient descent an intermediate number of training examples
is used for each weight update (1 < batch size < N).

While in recent years very potent new learning methods that are based on back-
propagation were developed, stochastic gradient descent is still the most used method
due to its simplicity and robustness (Schmidhuber, 2015).
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3.4 Supporting data

3.4.1 Cb-TRAM

Cb-TRAM (Cumulonimbus Tacking and Monitoring; Zinner et al., 2008, 2013; Merk and
Zinner, 2013) was initially developed to identify, track, monitor and nowcast deep con-
vection and early stages of it from SEVIRI. Parts of Cb-TRAM are used to identify deep
convective cumulonimbus clouds and monitor their convective activity in Chap. 5, and
Cb-TRAM thus shortly introduced here.

Cb-TRAM identifies three stages of thunderstorm development/activity (Zinner et al.,
2013):

Stage 1 early development
Stage 2 rapid development/convective initiation,
Stage 3 mature stage.

Stage 2, which represents rapid cooling in the upper troposphere, is defined as regions with
a brightness temperature cooling of more than 1K (15min)~! in the water vapour channel
centred at 6.2pm. Stage 3 targets mature convective cell patterns, including the active
cell centres within a developed anvil cirrus cloud. To this end, the brightness temperature
difference between the two channels centred at 6.2 and 10.8 pm (BT62um — BTi08um) is
used together with texture/smoothness information from the HRV channel (WV 6.2 during
night time). Furthermore, the brightness temperature difference BT gum — BT12.0pm 18
used to identify and exclude cirrus clouds that match these two criteria (Zinner et al.,
2013). Stage 1 is not used in this study and therefore not further described here. Using
Cb-TRAM Stage 2 and 3, 85 to 95 % of all thunderstorms (> 10 flashes pixel ™! (15 min)~1)

are detected on average during daytime (Zinner et al., 2013).

3.4.2 ECMWEF ERA5

The European Centre for Medium-Range Weather Forecasts (ECMWF') recently released
the first segment of the fifth major global reanalysis dataset FRAS5. For ERA5, ECMWF
uses a wealth of past and present satellite and in situ measurements in order to model a
long time series of climate data. ERAb provides estimates of more than 240 atmospheric,
land and oceanic climate variables, both at the surface and at 137 pressure levels (down to
0.01hPa). Two major improvements over its predecessor, ERA-Interim, are the increased
spatial resolution from 79 km to 31 km globally and the increased temporal resolution from
6h to 1h for analysis data (Hersbach and Dee, 2016).

ERAS5 air temperature, relative humidity (RH), convective available potential energy
(CAPE) and horizontal wind analysis data are used in Chap. 5 to characterise the meteo-
rological conditions in which deep convective cumulonimbus clouds and anvil cirrus form.
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3.4.3 COCS

The COCS (Cirrus Optical properties from CALIOP and SEVIRI; Kox et al., 2014) algo-
rithm retrieves CTH and IOT of cirrus clouds from SEVIRI. It combines Version 2 (V2)
CALIOP level 2 (L2) cloud layer data, SEVIRI thermal observations and auxiliary data
using an ANN in order to retrieve CALIOP-like cirrus properties for the full SEVIRI field
of view every 15 min and 24 h per day. The cirrus properties retrieved with COCS are used
for comparison with CiPS in Sect. 4.9 and COCS is thus shortly introduced here.

COCS is an MLP with 10 input neurons (7 BTs and BT differences, viewing zenith
angle (VZA), land-sea mask and latitude), 2 output neurons (IOT and CTH) and 600
neurons in one single hidden layer. COCS was trained with 3 years of data including
SEVIRI observations from both MSG-1 and MSG-2. The detection of cirrus clouds takes
place indirectly in COCS: a pixel is cirrus-covered if its IOT (IOT¢ocs) > 0.1, meaning
that pixels with IOTcocs < 0.1 are considered too uncertain and regarded as cirrus-free.
The value of 0.1 was chosen as a trade-off between high probability of detection (Eq. 3.3)
and low false alarm rate (Eq. 3.4).

The V2 CALIOP L2 cloud layer products contain no information on data quality and
the feature classification flag and feature optical thickness among other variables were
released as beta products (early release). V2 CALIOP layer data used in Kox et al. (2014)
therefore had to fulfil three filtering conditions to be classified as a cirrus cloud: (1) to
exclude inaccurate retrievals due to diverging extinction retrievals in opaque cloud layers,
the maximum IOT was limited to 2.5. (2) To ensure that the cirrus clouds were not falsely
classified layers of aerosols or liquid water clouds, the mid-layer temperature had to be
243 K or colder. (3) The layer top height had to exceed 9.5km in the tropics and 4.5km
in polar regions, with a linear decrease between these two values in mid-latitudes.

3.5 Validation metrics

This section introduces the validation metrics used for the validation and characterisation
of CiPS in Chap. 4. The probability of detection (POD) is used to measure how efficiently
CiPS detects cirrus clouds and is given by

NTP

POD= ———,
Nrp + Npn

(3.3)

where the number of true positives, Ntp, is all points correctly classified as cirrus and the
number of false negatives, Ngy, all cirrus clouds that remain undetected. The denominator,
Ntp + Npn, is thus the total number of points with a reference cirrus cloud. The false
alarm rate (FAR) measures the fraction of cirrus-free points that are falsely classified as
being cirrus clouds:

NFP

FAR= ————.
Npp + Nrn

(3.4)
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Table 3.2: Contingency table for the cirrus detection from CALIOP and CiPS. Table
reproduced from Strandgren et al. (2017a).

CALIOP
Cirrus No cirrus
Clirrus Nrp Npp

No cirrus Ny Nrn

CGiPS

The number of false positives, Npp, is all points falsely classified as cirrus (false alarms)
and the number of true negatives, Nty, all points correctly identified as cirrus-free. The
denominator, Ngp + Ntn, is thus the total number of points with no reference cirrus
cloud. The corresponding CALIOP data are used as a reference when calculating the
POD and FAR in Chap. 4. Table 3.2 clarifies the quantities used to calculate the two
metrics. The POD and FAR are also used to measure how effectively CiPS can determine
the opacity/transparency of detected cirrus clouds.

The mean percentage error (MPE) and mean absolute percentage error (MAPE) are

used to measure the accuracy of the retrieved cirrus properties with respect to CALIOP.
The MPE is given by

100% <X B, — O,
MPE = 3.5

=1

where O is the observed reference value by CALIOP and E the estimated value by CiPS.
The sum spans over all samples ¢ = 1,..., N used for the evaluation. The MPE gives
information about the direction of the deviations, i.e. whether CiPS tends to overestimate
(positive MPE) or underestimate (negative MPE) the values with respect to CALIOP.
When calculating the MPE, over- and underestimations can cancel out each other, poten-
tially leading to zero MPE (bias) even if the magnitude of the errors is large. Therefore
the MAPE has been considered as well. The MAPE is given by

N

100 %
MAPE =
N %

E - O,
O;

(3.6)

and gives information about the average magnitude of the errors relative to the expected
reference values observed by CALIOP. A vanishing MAPE means no deviation from the
observed values and a perfect correlation.
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Chapter 4

CiPS - Cirrus Properties from
SEVIRI

The results and text in this chapter (except Sects. 4.11 and 4.12) have been published in
Strandgren et al. (2017a) and Strandgren et al. (2017b).

CiPS is a new algorithm for cirrus cloud remote sensing with SEVIRI that exploits the basic
idea of COCS: retrieving cirrus properties using ANNs trained with CALIOP and SEVIRI
data. However, CiPS clearly differs from COCS in the implementation of this idea and the
achieved performance. For a more accurate cirrus detection and determination of CTH and
IOT, CiPS utilises a different set of input parameters including numerical weather model
data and information from nearby pixels. In addition, CiPS classifies each pixel as either
cirrus-free, transparent cirrus or opaque cirrus by means of dedicated classification ANNs.
As CALIOP gets saturated for thicker clouds, the opacity information is an important
additional piece of information in order to better characterise the cirrus and the reliability
of the ANN results that was absent in COCS. Furthermore, CiPS is trained to retrieve
the IWP, resulting in a total of three climate relevant cirrus cloud properties that can
be estimated during both day and night for the full SEVIRI field of view every 15 min.
CiPS targets thin cirrus clouds, as those clouds are most difficult to retrieve using thermal
satellite observations from geostationary orbits. Although the approach of training a set of
ANNs with lidar data does not directly increase SEVIRI’s sensitivity to thin cirrus clouds,
it is expected to allow for a more effective exploitation of the SEVIRI spectral information,
compared to present spectral threshold tests and physically based retrievals, indirectly
increasing the sensitivity to thin cirrus clouds.

4.1 Multiple artificial neural networks

In contrast to COCS, which uses one single ANN to retrieve IOT and CTH, CiPS utilises
four ANNs, making it possible to customise the input variables, training data and ANN
structures individually for each task to be solved.
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. The first ANN is a classification network trained to detect cirrus clouds using a bi-

nary cirrus cloud flag (CCF). Due to the continuous activation function used by the
ANN (Sect. 3.3.1), the retrieved value of the CCF neuron is a real number in the
interval (0,1) represented by a 32bit floating point number. This value can be in-
terpreted as a cirrus probability, where high and low values indicate a high and low
probability of cirrus presence respectively. This provides at least three major advan-
tages over an IOT threshold-based detection. (1) The CCF detection threshold (0-1)
can be determined depending on the application. A higher threshold means a lower
FAR (Eq. 3.4), whereas a lower threshold means a higher POD (Eq. 3.3). (2) The
cirrus detection is independent of the IOT and not limited to cirrus clouds with an
estimated optical thickness greater than 0.1, as is the case for COCS. (3) Since no
additional information is needed for the pixels classified as cirrus-free by the cirrus
detection ANN, the ANNs for CTH, IOT, IWP and opacity information retrieval can
be trained only with cases where cirrus clouds are present. This excludes a large
number of largely different input data combinations representing the same “cirrus”
properties, i.e. the situations where IOT = IWP = 0.

. The second ANN is used for the CTH retrieval.
. The third ANN is used for the IOT /IWP retrieval. These two variables are provided

by the same network since they are physically closely related (Heymsfield et al., 2005).

. CALIOP cannot provide accurate IOT /IWP retrievals for thicker cirrus clouds where

the laser beam is completely attenuated. Hence the estimated IOT and IWP by CiPS
for such situations should not be trusted. Therefore a second classification network
is introduced with CiPS, trained to identify the cirrus clouds where CALIOP gets
saturated. Similarly to the cirrus detection ANN, the opacity classification ANN
retrieves real numbers in the interval (0,1), which can be regarded as an opacity
probability information. From here a binary opacity flag (OPF) is obtained using
a suitable opacity classification threshold (Sect. 4.6).

4.2 Input data

The CiPS input data selection is based on physical considerations. The following subsec-
tions introduce all input data used to train and apply CiPS. An overview is provided in
Table 4.1.

4.2.1 Brightness temperatures from SEVIRI

CiPS works pixel by pixel and uses the single brightness temperatures from the SEVIRI
channels centred at 6.2, 7.3, 8.7, 10.8, 12.0 and 13.4 pm. Water vapour channels (centred
at 6.2 and 7.3 pm) should help detecting ice clouds (see e.g. Krebs et al., 2007), identifying
opaque pixels as well as determining its height, together with the COy channel centred
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at 13.4pm (e.g. Menzel et al., 1983, 2008). Window channels (8.7, 10.8, 12.0jum) and
especially their brightness temperature differences are both useful for detection (e.g. Inoue,
1985) and for the optical thickness determination (e.g. Ackerman et al., 1990). The ozone
channel centred at 9.7pm is excluded because its sensitivity peaks in the stratosphere,
where no cirrus clouds are present, and because of its strong annual cycle due to the ozone
variability (Ewald et al., 2013). Channels with significant solar contribution are excluded
in order to have the same conditions and similar performance during both day and night.
Furthermore, CiPS exploits the information from nearby SEVIRI pixels by utilising the
regional maximum brightness temperature from the window channels (for all ANNs,; as
a proxy for cirrus-free conditions) and the regional average brightness temperature from the
water vapour channels (only for cirrus detection and opacity classification, as a proxy for the
smoothness of the surroundings). The regional maximum brightness temperature is defined
as the maximum brightness temperature within a 19 x 19 pixels large box (corresponding
to an area of ~57 x 57km? at nadir) centred at the pixel under consideration. Similarly
the regional average brightness temperature is defined as the boxcar average temperature
within the same box (inspired by Krebs et al., 2007). The box size of 19 x 19 pixels is
chosen such that the region is small enough to reduce the risk of unrepresentative maximum
temperatures over inhomogeneous surfaces (e.g. coast lines) but large enough to increase
the chance of capturing a representative cirrus-free pixel.

4.2.2 Surface temperature from ECMWF

With CiPS, modelled data from the ECMWF ERA-Interim reanalysis dataset (Dee et al.,
2011) are introduced to the list of input variables. The modelled surface temperature, Ty,
from ECMWF provides a cirrus-free characterisation of the surface and should be useful
in all ANNSs. It also helps the ANNs to distinguish between cirrus clouds and cold surfaces
like Greenland and Antarctica. The temporal resolution of 6 h and spatial grid of 0.125°
is used.

4.2.3 Auxiliary data

Along with the SEVIRI and ECMWF data, CiPS uses information about the latitude,
the viewing zenith angle (VZA) of SEVIRI, two surface type flags (seawater and perma-
nent ice and snow) and the day of year (DOY, 1-365; to avoid a hard transition from
31 December to 1 January, two input neurons are used for the DOY: sin(27r DOY/365)
and cos(2r DOY/365)). Latitude and DOY are selected since the appearance of cirrus
and their top height strongly depends on general circulation and convective strength, with
higher clouds in the tropics and generally lower clouds towards the polar regions and with
stronger convection in summer with respect to spring/autumn and, of course, winter in
mid-latitudes. VZA shall account for the path length of radiation through the atmosphere,
while the two selected surface types identify on one side (sea) thermally quite homogeneous
surfaces and on the other side (ice/snow) cold surfaces with similar absorption properties
as the ice clouds. In total, 18 input variables are used for the cirrus detection and opacity
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Table 4.1: Input data used to train the four ANNs contained in CiPS. regavg is re-
gional average, regmax is regional maximum, DOYgy = sin(27 DOY/365) and DOY cos =
cos(2m DOY/365). Table adapted from Strandgren et al. (2017a).

CCF OPF CTH IOT/IWP

BT6.2um v v v v
BT73um v v v v
BTs.74m v v v v
BT108um v v v v
BT12.0pum v v v v
BT15.4um v v v v
N

BT7.3um, regavg v v

BTg 7 um, regmax v v v v
BT108um,regmax v v v v
BT12.0pm, regmax v v v v
Tt v v v v
Latitude v v v v
VZA v v v v
Water flag v v v v
Snow /ice flag v v v v
DOYgsin v v v v
DOYcos v v v v

classification and 16 input variables for the CTH, IOT and IWP retrievals (see Table 4.1).
Although the selection of input quantities is inspired by physical principles, the task of
combining input variables is left to the ANNs.

4.3 Output data: cirrus properties from CALIOP

The training reference data, including a CCF and an OPF as well as the CTH, 10T
and IWP, are derived from the Version 3 (V3) CALIOP L2 5km cloud and aerosol layer
products (CAL_LID_L2_05kmC|ALay-Prov-V3-0X CALIPSO Science Team, 2015a,b,c,d).
Major improvements with respect to V2 data include enhanced cloud—aerosol discrimi-
nation, improved cloud thermodynamic phase determination, more accurate estimates of
layer spatial and optical properties as well as an improved estimate of the low cloud frac-
tion. Furthermore, new products like the IWP and retrieval uncertainties are included.
Most importantly, the maturity level of all products used to develop CiPS has been up-
graded from beta status to provisional or higher, meaning that the data have at least been
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compared to independent sources in order to correct obvious artefacts (NASA Atmospheric
Science Data Center, 2010).

Even though the cloud and aerosol layer products are reported with a spatial resolution
of 5 km, two additional coarser resolutions of 20 and 80 km are used to detect the cloud and
aerosol layers reported in the 5km products (Vaughan et al., 2009). At a spatial resolution
of 5km, the signal-to-noise ratio (SNR) of a faint cirrus or aerosol layer is usually too
weak to be distinguished from the clear-sky atmospheric signal. By averaging 4 or 16
consecutive 5km profiles the SNR is increased, which allows for detection of very thin
cirrus and aerosol layers. For example if a thin cirrus cloud with an optical thickness
of 0.1 and a top altitude of 10km is identified only when 16 consecutive 5km profiles are
averaged (80 km spatial resolution), 16 consecutive bins in the L2 5 km cloud layer data will
report an optical thickness of 0.1 and a top altitude of 10 km. This can result in a vertical
overlap between layers detected at different spatial resolutions. This is accounted for by
identifying the part of an icy layer vertically overlapped by another layer (water cloud or
aerosol) detected at a higher spatial resolution and correcting the corresponding extinction
coefficients, IWC and CTH accordingly. The column IOT and IWP are then derived by
combining the properties of all icy layers in each profile. Finally, the OPF is extracted
from the “Opacity_Flag” product. The Opacity_Flag gives the information whether the
CALIOP backscatter signal was completely attenuated within a detected layer. During the
CALIOP retrieval, a cirrus cloud layer is classified as opaque if it is the lowermost layer
and not identified as a surface return (Vaughan et al., 2005). A digital elevation model
is partly used to identify surface returns, meaning that high cirrus clouds should not be
falsely classified with respect to transparency. Cirrus cloud layers detected at the coarser
20 or 80km resolutions are classified as transparent if the corresponding base altitude is
higher than the lowermost detected feature in at least 50 % of the 4 or 16 consecutive 5 km
profiles that constitute the 20 and 80 km averages.

The minimum detectable backscatter of CALIOP depends on the scattering target (the
cirrus cloud in this case), the altitude as well as the vertical and horizontal averaging of
the data (McGill et al., 2007). Davis et al. (2010) show that CALIOP can detect approx.
one-third of the sub-visual cirrus clouds with an optical thickness below 0.01.

With the improved quality of the V3 CALIOP products, the filtering processes applied
to the V2 data used for COCS can be omitted (see Sect. 3.4.3). To assure a high-quality
dataset, the extinction quality control flag, retrieval uncertainties and the feature classi-
fication flag including the quality assessments have been considered though. All columns
containing at least one layer with unknown feature type, unknown cloud phase or a fea-
ture/phase quality assessment flag less than 3 (high confidence) are excluded. Addition-
ally, only those columns with solely constrained or unconstrained cirrus/ice cloud retrievals
where the initial lidar ratio remained unchanged during the solution process are included.
Furthermore, the columns containing stratospheric features are excluded due to lack of
information about whether the features are stratospheric clouds or aerosol layers.

The CALIOP products are chosen as training reference data for CiPS as they should
provide the most accurate estimates of especially CTH but also IOT for thin cirrus clouds
from space. It is important to note that an ANN can never be better than its training
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reference and all deficiencies and/or biases in the training reference data will be inherited
by the ANN. Since possibly inherited artefacts of the ANN will not show when validated
against independent CALIOP retrievals, one must be aware of the accuracy and limitations
of the training data.

Yorks et al. (2011) and Hlavka et al. (2012) validate the spatial and optical properties
of cirrus clouds from the V3 CALIOP products using the airborne Cloud Physics Lidar
(CPL; McGill et al., 2002) during the CALIPSO-CloudSat Validation Experiment (CC-
VEX). CPL has a higher SNR, higher vertical and horizontal resolution and lower multiple
scattering compared to CALIOP, making it the most comprehensive tool for validating the
CALIOP retrieved cirrus properties. Ten underpass flights with CALIOP were performed
and over 9500 bins of collocated extinction coefficients were obtained. During the 10 flights,
extinction coefficients ranging from approx. 0.001 to 10km ™! and column optical thickness
up to approx. 3 were retrieved. CALIOP and CPL agree on 90 % of the scene classifications
(cirrus or no cirrus) on average. For all bins classified as cirrus by CPL, CALIOP agrees
on 82% and for the bins classified as cirrus-free by CPL, CALIOP agrees on 91%. For
cases where both CALIOP and CPR detect cirrus, the agreement in cirrus top height is
excellent (Yorks et al., 2011).

For transparent cirrus layers the agreement in IOT between CALIOP and CPL is good
with on average 15 % higher extinction for CALIOP (0.65 in correlation between CALIOP
and CPL). For the unconstrained retrievals where the initial lidar ratio remains unchanged
the average difference in extinction is only 7% (0.80 in correlation between CALIOP and
CPL; Hlavka et al., 2012). The latter are the ones used to train CiPS (see above), along
with the constrained retrievals. At the time of the CC-VEX campaign (between 26 July
and 14 August 2006) the laser of CALIOP was pointing just 0.3° from nadir leading to
a strong specular reflection by layers of horizontally orientated ice (HOI) (Winker et al.,
2009). This led to disagreements in the extinction retrieval with CPL, whose laser pointed
2° from nadir and therefore only received a very small fraction of specular reflections from
the HOI (Hlavka et al., 2012). Since November 2007 the CALIOP lidar points 3° from nadir
in order to overcome this issue for layers with HOI. When the column optical thickness is
derived for all cirrus-covered bins, the relative difference between CALIOP and CPL is only
2.2% due to cancellation of opposing CALIOP effects. Holz et al. (2016) recently showed
that the single-layer IOT derived from unconstrained CALIOP retrievals is low-biased with
respect to a single-channel thermal/infrared IOT retrieval combining CALIOP/MODIS
observations and forward radiative transfer modelling. The bias is shown to increase with
increasing IOT.

The accuracy of the CALIOP ITWC/IWP is directly related to the accuracy of the
extinction retrievals as well as the IWC parameterisation from Heymsfield et al. (2005).
A proper independent validation of the CALIOP TWC/IWP is a difficult task due to the
lack of reference data at a comparable spatial and temporal resolution. Protat et al. (2010)
evaluate the IWC parameterisation used for CALIOP for tropical cirrus using ground-based
radar—lidar retrievals. The results suggest that the parameterisation is quite robust and
is shown to work well at most altitudes. Above ~12km the IWC is clearly underesti-
mated with respect to the ground-based radar-lidar retrieval. Avery et al. (2012) evaluate
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the CALIOP IWC using coincident data from CloudSat and in situ measurements inside
a tropical convective cloud. At the lower altitudes (8-12km), the CALIOP IWC is under-
estimated with respect to the in situ measurements, which could be attributed to a lower
penetration depth of CALIOP and the removal of CALIOP layers containing HOI. Between
12 and 14 km the agreement between the CALIOP IWC and the in situ measurements is
good. At all altitudes CALIOP seems to underestimate the IWC with respect to CloudSat.
Wu et al. (2014) show that the V3 CALIOP IWC agrees well with airborne in situ mea-
surements up to approx. 20 mg m~—? at an altitude of 12km. The CALIOP IWC agrees well
with the CloudSat IWC within the regions where their sensitivities overlap. This occurs
between 5 and 20 mg m~3 at an altitude of 12 km and between 30 and 200 mg m—2 at 15 km.

In the following, all quantities referring to CALIOP will be denoted as I0T¢ari0p,
IWPcariop and CTHcariop-

4.4 Data preparation

To learn the relationship between the SEVIRI, ECMWF, auxiliary data and the cirrus
properties from CALIOP, an extensive dataset is created containing spatial and temporal
collocations of all variables. The training dataset covers the time period from April 2007 to
January 2013, which is the time when MSG-2 was the operational satellite at 0.0° E. CiPS
is restricted to MSG-2 alone, to avoid mixing data from multiple SEVIRI instruments since
their characteristics are slightly different.

4.4.1 Data collocation

For this time period all quality-controlled CALIOP data within the SEVIRI field of view
are identified and collocated with single SEVIRI pixels in time and space. Due to the
different viewing geometries of SEVIRI and CALIOP, the same cloud seen by SEVIRI
and CALIOP at the same time appears to be located at two different positions. The
magnitude of this displacement depends on the VZA and the altitude of the cloud layer.
This effect has been corrected for using the latitude, longitude and CTH from CALIOP
(parallax correction) to project ice clouds onto the SEVIRI grid. The cirrus properties
from CALIOP are spatially collocated with SEVIRI observations from the pixel having the
largest overlap with the 5km CALIOP orbit segment. The data are temporally collocated
by identifying the SEVIRI observation that has the smallest difference in acquisition time
compared to CALIOP. With a temporal resolution of 15min for SEVIRI, the maximum
difference in acquisition time between SEVIRI and CALIOP is 7.5 min.

When collocating SEVIRI and CALIOP observations with the purpose of training an
ANN one must consider two aspects. (1) Even though the 5km average of CALIOP point
measurements fits the spatial resolution of SEVIRI (3 x 3km? at nadir and approx. 3.5 X
5km? in mid-latitudes) quite well in the along-track direction, the two observations differ
largely in scale in the across-track direction as the footprint of CALIOP is approx. 70 m wide
at the Earth’s surface. Consequently the 5km CALIOP orbit segment is representative
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only for a relatively small fraction of a SEVIRI pixel. This will induce inevitable errors and
lead to imperfect information used to train the ANN. This is especially relevant for partial
cloud cover, where CALIOP may observe a cloud-free area in an otherwise cloud-covered
SEVIRI pixel. If the error from imperfect collocations is random, this will have a limited
effect on the ANN. Only if there is a recurrent systematic difference as a result of the
different spatial scales this will lead to biased retrievals (Holl et al., 2014). (2) Although
cirrus clouds leave their mark on both SEVIRI and CALIOP measurements in a similar
way, SEVIRI does not share CALIOP’s possibility of discerning vertically separated ice
clouds, liquid water clouds and aerosols. Consequently SEVIRI should not be expected
to discern the signal from liquid water clouds and aerosols when retrieving the IOT as
effectively as CALIOP.

The ECMWF surface temperatures are spatially collocated with the satellite observa-
tions using nearest neighbour. For the temporal collocation, the ECMWF reanalysis data
are linearly interpolated between the ECMWEF 6 h time steps and the satellite acquisition
time.

4.4.2 Training and validation data

The full collocated dataset, covering the entire SEVIRI disc and a time period of almost
6 years, contains close to 50 million collocations. Of those collocations, 80 % are used to
create the four datasets required for the training of the four ANNs contained in CiPS. For
the CCF ANN, both cirrus-free collocations and collocations with transparent and opaque
cirrus clouds are included in the training dataset. Collocations with no cirrus cloud present
are excluded from the training datasets used to train the OPF ANN as well as the CTH and
IOT/TWP retrieval ANNs, since those networks will be applied only on pixels identified
as cirrus-covered by the CCF ANN. Furthermore, the IOT/ITWP ANN is trained only
with collocations containing transparent cirrus clouds, where the CALIOP signal was not
saturated such that the true, rather than the apparent, IOT and IWP could be retrieved.
Figure 4.1 shows the relative number distributions of the IOT, IWP and CTH retrieved by
CALIOP. It is clear that the collocation dataset is unbalanced in several aspects. The IOT
and IWP have exponential distributions with very few thicker cirrus clouds. Similarly there
are comparably few low and high cirrus clouds available and the CTH distribution has two
peaks, corresponding to mid-latitudes and tropics. To improve the end performance for
those rare points the unbalance of the training datasets is reduced “by hand”. For the cirrus
detection and IOT /TWP ANNs, four duplicates of all cirrus clouds with IOTcariop > 1.0
have been added to the training datasets. Similarly four duplicates of all cirrus clouds with
CTHeariop > 17km or CTH cariop < 5 km have been added to the CTH training dataset.
For the opacity classification ANN, four duplicates of all opaque cirrus clouds have been
added to the training dataset. This approach does not introduce any new information
that the ANNs can learn from but does increase the weight of the added points during the
training. Adding too few duplicates has a negligible effect whereas too many duplicates
give the added points too strong an impact during the training. By testing different
numbers, four duplicates are seen to yield the best results for all ANNs. Furthermore,
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Figure 4.1: The relative number distribution of the cirrus IOT (bin size = 0.2), IWP
(bin size = 5gm~2) and CTH (bin size = 1km), from almost 6 years of V3 CALIOP L2
layer data over the SEVIRI disc. Figure reproduced from Strandgren et al. (2017a).

the IOT and IWP are transformed to their logarithmic counterparts before the training
(IOT* = log,o(IOT), IWP* = log,,(IWP/1gm™?)). Finally, the single input variables are
normalised to have zero mean and unit variance (LeCun et al., 1998) and the output data
are scaled to fit the ranges of the activation functions (Sect. 4.5) used by the ANNs.

The remaining 20 % of the collocation dataset is used for validation. Half of these
data are used to create internal validation datasets that are used to monitor the error
against independent data during the training in order to avoid overfitting (see Sect. 4.5)
and to determine training meta-parameters, ANN structures (see Sect. 4.7) and classifica-
tion thresholds (see Sect. 4.6). The internal validation datasets have been filtered in the
same manner as the training datasets but have not been balanced by adding duplicates of
selected points. The second half of the validation data are used for final validating and
characterising CiPS (and COCS) presented in Sects. 4.9 and 4.10 respectively. These final
validation data are not used for any purpose during the development and training of CiPS.
With common ANN terminology the internal and final validation data are usually referred
to as validation and test data respectively.

4.5 Training

To train and apply CiPS the Fast Artificial Neural Network library (FANN; Nissen, 2003)
is used. The four ANNs contained in CiPS are trained using the standard back-propagation
algorithm and mini-batch gradient descent described in Sect. 3.3.2.

Three hidden layers are used for the cirrus cloud detection, two for the CTH and
IOT/TWP retrievals and a single hidden layer for the opacity classification. All ANNs
use 16 hidden neurons per hidden layer (see Sect. 4.7 for details on the MLP structures).
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For the classification ANNs (CCF, OPF) the sigmoid activation function is used for both
hidden and output layers, whereas the tanh activation function is used for hidden and
output layers for the regression ANNs (CTH and IOT/IWP). A batch size of 1024 is used,
meaning that the ANNs look at 1024 input and output data combinations before each
weight update. The value of 1024 was chosen as a trade-off between the noise in the error
gradient that increases with smaller batch sizes and the required computational power that
increases with larger batch sizes. The learning rate and momentum are sensitive to the
problem that should be solved, the corresponding training data as well as the number of
input and output variables (Schaul et al., 2013). To find the optimal values an extensive
iterative test approach is performed. For this test a large GPU cluster (120 teraFLOPS —
20 NVIDIA GTX Titan GPUs) is used to train numerous ANNs with different numbers of
hidden layers and hidden neurons and a wide range of learning rates and momentum values.
To find the optimal values for each meta-parameter, a random search according to Bergstra
and Bengio (2012) is performed within intervals chosen based on expert knowledge. Sets
of meta-parameters are randomly drawn from the pre-defined intervals and used to train
corresponding sets of ANNs. Assuming an infinite number of samples, this procedure can
be regarded as a global optimisation technique. The optimal set of meta-parameters is
defined as the one that minimises the mean square error (MSE) between the ANN and the
internal validation data. All resulting optima are well within these chosen intervals, so it is
assumed that the choice of the intervals does not introduce any distortion or bias. For both
the classification and regression tasks a learning rate around 0.05 and momentum around
0.99 are found to provide ANNs with the lowest MSE against the independent internal
validation data.

The ANNS are initially trained using 25 % of the training data. This is done in order to
speed up the training. This first phase continues until the accuracy of the ANNs does no
longer improve with respect to the internal validation data. During this first phase of the
training a rough estimate of the error gradient is sufficient as the general direction towards
a minimum solution is searched for. Thus a larger learning rate and smaller mini-batches
are preferred. When the ANN approaches the region of an optimal solution, those large
step-sizes and small mini-batches are too blunt to find the finer structures needed to solve
the problem better. Thus the learning rate and batch size should be adjusted accordingly
in order to make smaller and more informed steps in the search space. During this iterative
tuning phase, the learning rate is reduced by a factor of 4 and the batch size is increased
by a factor of 2. In order to not impede the effect of the finer learning rate and batch size,
the momentum is reduced accordingly. Furthermore the size of the training dataset, which
started at 25% during the first phase, is increased by a factor of 2. This is a schedule
procedure that is commonly used in the machine learning/ANN community. As the tuning
phase continues the meta-parameters are refined according to the schedule above as soon as
the total error stops to decrease with respect to the internal validation dataset. The tuning
phase and thereby the training stops when the respective ANNs have reached a point where
additional epochs do not reduce the error, using 100 % of the respective training datasets.

To avoid overfitting, the error against the independent internal validation datasets
(Sect. 4.4.2) is always monitored. Overfitting occurs when an ANN learns the training
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dataset itself rather than the relationship between the input and output variables and
thus loses its ability to generalise. To make sure that the ANNs are not overfitting, the
updated weights are only saved if the error against the internal validation dataset decreases;
otherwise the training continues but the set of weights having the current minimum error
against the internal validation dataset is kept.

For each task/ANN the training is repeated twice in order to reduce the risk of having
a bad end performance as a result of a bad set of initial weights (from Widrow and Nguyen’s
algorithm; Nguyen and Widrow, 1990). In the end, only the best performing network is
used. The differences between the two networks trained for each task/ANN are, however,
very small (ca. 3 %o relative difference in MSE).

Using a common standard desktop PC (using 1 core @ 3.40 GHz, Intel Core i5-3570),
the final set of ANNs, called CiPS, takes approx. 60s to process a complete SEVIRI image
(3712 x 3712 pixels) including 1/O. Approximately 40s are needed for the cirrus cloud
detection and another 20-30s for the opacity classification as well as the retrieval of CTH,
IOT and IWP. The cirrus cloud detection takes longer as this ANN must be applied to all
SEVIRI pixels, whereas the other ANNs only have to be applied to those pixels classified
as icy by CiPS. This is ca. 10 times faster than the combined CTH and IOT retrieval
by COCS (Kox et al., 2014). ANN computations are highly parallelisable, meaning that
the computation time can be reduced significantly by distributing the computations across
multiple cores.

4.6 Cirrus detection and opacity classification thresh-
olds

As described in Sect. 4.1 the thresholds for the CiPS CCF and OPF ANNSs can be selected
between 0 and 1 depending on the application. These two thresholds are chosen based on
a trade-off between the POD (Eq. 3.3) and FAR (Eq. 3.4) using the internal validation
dataset. Figure 4.2 shows the FAR and POD of the CiPS classification ANNSs as a function
of classification threshold (also known as the receiver operating characteristic curve). It
is clear that the two quantities are anti-correlated where a lower threshold yields a higher
POD, but this comes at the expense of an increased FAR and vice versa. For the applica-
tion, validation, characterisation and anvil cirrus life cycle analysis presented in thesis, as
well as for the standard usage of CiPS, a CCF threshold of 0.62 is chosen, resulting in a to-
tal POD of 71 % and a FAR of 3.9 %. The low POD is a direct effect of the large amount
of very thin to sub-visual cirrus (I0OT < 0.03) that CiPS does not detect (see Figs. 4.1 and
4.7). For the OPF a threshold of 0.86 is chosen, resulting in a POD of 71 % and a FAR of
4.0 % for the cirrus clouds that CiPS successfully detects. The two thresholds chosen for
CiPS are indicated in Fig. 4.2 with red circles.
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Figure 4.2: The POD and FAR of the CiPS cirrus cloud detection and opacity classification
ANNSs as a function of classification threshold. The red circles indicate the final thresholds
selected for the two ANNs. Figure adapted from Strandgren et al. (2017a).

4.7 Evaluating different MLP structures

When developing CiPS, several ANNs with different MLP structures were trained in order
to investigate the effect of the MLP structure on the end performance and to determine the
respective structures that offer the best trade-off between accuracy and application time.
For each ANN contained in CiPS several networks with different structures were trained
using one, two and three hidden layers with either 16 or 64 hidden neurons per hidden
layer. For the single hidden layer structures a network with 128 hidden neurons is also
trained. Also here the training is repeated twice for each network in order to reduce the
risk of having a bad end performance as a result of a bad set of initial weights. Again, only
the best performing network among the two is further evaluated after the training. All
different structures are trained according to the first phase as explained above (Sect. 4.5),
i.e. using 25% of the respective datasets. After this stage the accuracy of the different
MLP structures is evaluated and compared using the internal validation datasets. This
investigation was used to determine the MLP structures used for CiPS (see Sect. 4.5).
Figure 4.3a shows the difference in POD (Eq. 3.3) between each structure and the least
complex structure, which has one hidden layer and 16 hidden neurons (denoted as 1-16) for
the cirrus cloud detection ANN with respect to CALIOP for the seven different structures
that were investigated. Similarly, Fig. 4.3b and ¢ show the difference in MAPE (Eq. 3.6)
between each structure and the least complex one for the CTH and IOT retrieval ANNs
respectively. The MAPE behaviour of the IWP is very similar to the MAPE of the IOT and
is therefore not presented here. For the OPF, the structure of the network does not seem
to have any significant influence on the performance and is thus not presented here. For
the cirrus detection and IOT retrieval, only the transparent cirrus clouds are considered.
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Please note that for a better visualisation for the lower IOT values, the horizontal axes
in Fig. 4.3a and ¢ are divided into one logarithmic range (IOTcapiop < 1.0) and one
linear range (I0Tcapiop > 1.0). Furthermore, Table 4.2 lists the approximate amount of
time required to process 1 million data points/pixels (including I/0O) with the different
structures using the above specified desktop PC.

In all cases, already small networks produce reasonable results. In many cases differ-
ences between structures are not very large. Nevertheless, it is also clear that larger ANNs

Table 4.2: Approximate time required to process 1 million data points using the different
ANN structures investigated in this study. The number to the left of the hyphen is the
number of hidden layers and the number to the right the number of hidden neurons per
hidden layer. Table reproduced from Strandgren et al. (2017a).

Structure 1-16 2-16 3-16 1-64 1-128 264 3-64
Time / s 2.1 3.1 4.0 5.2 95 144 236
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can always solve the problems in a more accurate way and especially for the cirrus cloud
detection it is beneficial to either use more hidden neurons or add more hidden layers rather
than using a simple structure with one hidden layer and 16 hidden neurons (1-16). Using
two or three hidden layers with 64 hidden neurons each (2-64, 3-64) yields a POD that
is up to 8 percentage points higher compared to one hidden layer with 16 hidden neurons
(1-16). Similarly, a structure with three hidden layers and 16 hidden neurons (3-16) yields
a POD that is up to 5.5 percentage points higher compared to the structure with one
hidden layer and 16 hidden neurons (1-16). Although three hidden layers with 64 neurons
each (3-64) offer the highest accuracy for all cases, such a complex structure processes
the data significantly slower by a factor of 8 or 6 compared to the smaller structures with
2 or 3 hidden layers and 16 neurons per layer. For the IOT retrieval, a larger ANN is
mostly beneficial for the thinner cirrus and the MAPE with respect to CALIOP seems to
be saturated and hardly improvable for IOTcariop > 0.1 using this approach and training
data. For the sub-visual cirrus, the MAPE with respect to the CALIOP reference 10T
is up to 13 percentage points lower using two hidden layers instead of one hidden layer
with 16 hidden neurons each. For the CTH retrieval, only marginal improvements in the
MAPE with respect to CALIOP (= 0.1-0.5 percentage points) are observed using the more
complex structures in comparison to the least complex one (1-16). Only for the lowermost
clouds (CTHearop < 6.0km) is the advantage of using more hidden layers and neurons
more evident.

4.8 Applying CiPS to a real scene

In this section CiPS is applied to the MSG-3 SEVIRI scene acquired on 1 June 2015
12:30 UTC (same scene as in Fig. 3.2). Figure 4.4a shows a false colour RGB composite
for the full SEVIRI disc using the three SEVIRI channels centred at 0.6, 0.8 and 10.8 pm.
Remember, that with this channel combination the thick and thin cirrus clouds are identi-
fied as white and bluish, whereas the warmer liquid water clouds are recognised as yellow.
As already described in Sect. 3.1, a band of cirrus clouds can be seen along the ITCZ.
Furthermore several frontal (cirrus) clouds can be seen over Europe and the southern and
northern Atlantic Ocean. In the tropics, large areas of shallow cumulus clouds can be
seen over the Atlantic Ocean. Figure 4.5a shows a subset of the SEVIRI disc consisting
of 350x350 pixels comprising western and central Europe. Two large cirrus clouds can
be seen ranging from the south-western parts of France towards the Alps and southern
parts of Scandinavia. Also over England and Norway, cirrus clouds are present and clearly
visible in the RGB. Liquid water clouds are mainly present over the central parts of France,
Switzerland and Germany as well as over the North Sea, Mediterranean Sea and southern
parts of Scandinavia. For an enhanced view of thin cirrus clouds, Fig. 4.4b and 4.5b show
the corresponding brightness temperatures difference between the SEVIRI channels cen-
tred at 8.7pum and 10.8 ym. In those pictures, cirrus clouds are characterised by positive
or slightly negative values.

Figure 4.4c and 4.5¢ show the cirrus cloud mask retrieved by CiPS for the same scenes.
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Figure 4.4: (a) MSG-3/SEVIRI false colour RGB composite for the entire SEVIRI disc
on 1 June 2015 at 12:30 UTC, the corresponding (b) brightness temperature difference
BTs 7um — BT108um and the (c) cirrus cloud mask with opacity information, (d) CTH, (e)
IOT and (f) IWP retrieved by CiPS.
