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Zusammenfassung

Konvektiv erzeugte Zirruswoken bilden sich in der oberen Troposphäre durch das Aus-
fließen von Eiskristallen aus hochreichenden konvektiven Cumulonimbus-Wolken. Da diese
Zirren einfallende Sonnenstrahlung reflektieren sowie terrestrische Wärmestrahlung ab-
sorbieren und mit deutlich niedriger Temperatur re-emittieren, spielen sie eine wichtige
Rolle im System Erde-Atmosphäre. Wenig verstanden sind jedoch die Prozesse, die den
Lebenszyklus dieser Zirren bestimmen. Sie stellen eine der größten Unsicherheiten in der
atmosphärischen Fernerkundung sowie in der Klima- und Wettermodellierung dar.

Diese Arbeit untersucht die zeitliche Entwicklung der Eigenschaften von konvektiv
erzeugten Zirren während des gesamten Lebenszyklus, sowie die Zusammenhänge mit
den meteorologischen Bedingungen. Eine umfassende Beschreibung der Eigenschaften
dieses Wolkentyps wurde durch die Anwendung eines neu entwickelten Fernerkundungsal-
gorithmus namens CiPS (Cirrus Properties from SEVIRI) erreicht. Mithilfe eines Satzes
künstlicher neuronaler Netze kombiniert CiPS die großräumige Abdeckung und die hohe
zeitliche Auflösung des abbildendes Radiometer SEVIRI auf dem geostationären Satel-
liten Meteosat Second Generation mit der hohen vertikalen Auflösung und Sensitivität
bezüglich dünner Zirruswolken des Lidars CALIOP auf dem polarumlaufenden Satelliten
CALIPSO. Im Vergleich zu CALIOP erkennt CiPS 71 % bzw. 95 % aller Zirruswolken
mit einer optischen Dicke (IOT) von 0.1 und 1.0. CiPS ist zudem in der Lage gle-
ichzeitig die Wolkenhöhe, die IOT, den Eiswasserpfad (IWP) und, durch eine entsprechende
Parametrisierung, den Effektivradius der Eispartikel zu bestimmen. Dies ermöglicht die
Kombination von makroskopischen, mikrophysikalischen und optischen Eigenschaften und
somit die Interpretation der zeitlichen Entwicklung der Zirruswolken.

Zusammen mit einer Methode zur Beobachtung der konvektiven Aktivität und einem
neuen Verfolgungsalgorithmus wird CiPS zur Analyse des Lebenszyklus von 132 konvektiv
erzeugten Zirruswolken, welche im Juli 2015 über Südeuropa und Nordafrika beobachtet
wurden, verwendet. Während die optische Dicke der Zirruswolken in der gesamten Kon-
vektionsphase ansteigt, nimmt sie schnell wieder ab, sobald die Konvektion endet. Zwei
Stunden danach erreichen 92±7 % einer Zirrusfläche die Werte IOT< 1 und IWP< 30 g m−2

mit wahrscheinlichsten Werten bei 0.1–0.2 bzw. 1.5–3 g m−2. Im gleichen Zeitraum nimmt
auch die Wolkenhöhe ab. Da dies sowohl für langlebige als auch für kurzlebige Zirren gilt,
liegt die Schlussfolgerung nahe, dass die Eismenge in dieser Lebensphase hauptsächlich
durch Sedimentation gesteuert wird. Eine entsprechende Abnahme des abgeleiteten Ef-
fektivradius unterstützt diese These. Während die Konvektionsstärke keinen sichtbaren
Einfluss auf IOT und IWP hat, korreliert sie eindeutig mit der Wolkenhöhe und dem Ef-
fektivradius. Nach 2–3 Stunden sind Unterschiede im Effektivradius nicht mehr erkennbar,
was darauf hindeutet, dass die Konvektionsstärke keinen Einfluss auf die Eiskristallgrößen
bei den alternden Zirren hat. Wie ERA5 Reanalysedaten der relativen Feuchte zeigen, ist in
dieser Lebensphase insbesondere die relative Feuchte in der oberen Troposphäre wirksam.
Bei höhere relativen Feuchte entstehen mehr größere und vor allem langlebigere konvektiv
erzeugte Zirren.
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Abstract

Anvil cirrus clouds form in the upper troposphere from the outflow of ice crystals from
deep convective cumulonimbus clouds. By reflecting incoming solar radiation as well as ab-
sorbing terrestrial thermal radiation, and re-emitting it at significantly lower temperatures,
they play an important role for the Earth’s radiation budget. Nevertheless the processes
that govern their life cycle are not well understood and, hence, they remain one of the
largest uncertainties in atmospheric remote sensing and climate and weather modelling.

In this thesis the temporal evolution of the anvil cirrus properties throughout their
life cycle is investigated, as is their relationship with the meteorological conditions. For
a comprehensive retrieval of the anvil cirrus properties, a new algorithm for the remote
sensing of cirrus clouds called CiPS (Cirrus Properties from SEVIRI) is developed. Utilising
a set of artificial neural networks, CiPS combines the large spatial coverage and high
temporal resolution of the imaging radiometer SEVIRI aboard the geostationary satellites
Meteosat Second Generation, with the high vertical resolution and sensitivity to thin cirrus
clouds of the lidar CALIOP aboard the polar orbiting satellite CALIPSO. In comparison
to CALIOP, CiPS detects 71 % and 95 % of all cirrus clouds with an ice optical thickness
(IOT) of 0.1 and 1.0 respectively. Furthermore, CiPS retrieves the corresponding cloud top
height, IOT, ice water path (IWP) and, by parameterisation, effective ice crystal radius.
This way, macrophysical, microphysical and optical properties can be combined to interpret
the temporal evolution of the anvil cirrus clouds.

Together with a tool for identifying convective activity and a new cirrus tracking al-
gorithm, CiPS is used to analyse the life cycle of 132 anvil cirrus clouds observed over
southern Europe and northern Africa in July 2015. Although the anvil cirrus clouds grow
optically thick during the convective phase, they become thinner at a rapid pace as con-
vection ceases. Two hours after the last observed convective activity, 92±7 % of the anvil
cirrus area has IOTCiPS < 1 and IWPCiPS < 30 g m−2 on average, with highest probability
density around 0.1–0.2 and 1.5–3 g m−2 respectively. During the same time period, the
cloud top height is observed to decrease. Since this is observed for both long-lived and
short-lived anvil cirrus, it is deduced that in this life phase the amount of ice in the anvil
is mainly controlled by sedimentation. This is in line with a corresponding decrease in the
estimated effective radius. While the convective strength has no evident effect on the IOT
and IWP, stronger vertical updraught is clearly correlated with higher cloud top height
and larger effective radius. Larger ice crystals are, however, observed to be removed effec-
tively within 2-3 h after convection has ceased, suggesting that the convective strength has
no impact on the ice crystal sizes in ageing anvils. In this life stage, upper tropospheric
relative humidity, as derived from ERA5 reanalysis data, is shown to have a larger impact
on the anvil cirrus life cycle, where higher relative humidity govern larger and especially
more long-lived anvil cirrus clouds.
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Chapter 1

Introduction

Cirrus clouds are optically thin clouds in the upper troposphere made up of ice crystals.
The name cirrus, which is Latin for lock of hair, refers to their common wispy visual ap-
pearance. Anvil cirrus is a type of cirrus cloud that forms from the convective outflow
of ice crystals from deep convective cumulonimbus (thunderstorm) clouds. Cumulonimbus
clouds form when sufficiently moist air is convected through an unstable troposphere, lead-
ing to condensation of water vapour and formation of cloud droplets and, when sufficiently
cold, ice crystals. The altitude at which a rising air parcel has the same temperature as
its environment is known as the equilibrium level of the atmosphere and marks the end of
convective transport. When the rising air approaches this level it spreads horizontally due
to temperature inversion. The horizontal spread of ice crystals from the convective core in
all directions together with horizontal winds that blow the ice crystals downwind, leads to
the characteristic flat anvil formed cirrus clouds. If the upward motion is strong enough,
the rising air might penetrate the equilibrium level leading to a so-called overshooting
top. The anvil shaped cirrus clouds can also form due to strong vertical wind shear that

Figure 1.1: Anvil cirrus cloud (greyish) together with parent cumulonimbus cloud and
overshooting top (white) observed over the U.S. on 29 May 2012. Photo: R. Welser (DLR).
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spreads the ice crystals horizontally. Figure 1.1 shows an anvil cirrus and its source cumu-
lonimbus cloud over the U.S., photographed from the DLR (German Aerospace Center)
research aircraft Falcon. The brighter white colours represent the cumulonimbus cloud and
the overshooting top, whereas the dimmer greyish colours constitute the out-flowing ice
crystals forming the anvil cirrus. Furthermore, Fig. 1.2 shows an illustrative drawing of
the formation of anvil cirrus clouds, where moist air is entrained at lower levels, convected
through the troposphere and later spread horizontally around the height of the tropopause
and transported with the wind.
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Tropopause
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cloud top
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Figure 1.2: Illustration of an anvil cirrus
cloud forming from the outflow of ice crystals
from a deep convective cumulonimbus cloud
near the tropopause. Figure adapted from
Wallace and Hobbs (2006).

Several conditions are necessary for
anvil cirrus clouds to form. Substantial
moisture that can be entrained at lower lev-
els and brought through the troposphere is
a prerequisite for deep convection to occur.
Whether the state of the atmosphere aids
or impedes vertical motion of the moist air,
is referred to as atmospheric instability. In
a stable atmosphere a lifted air parcel will
return to its initial position, whereas in a
conditionally unstable atmosphere a lifted
air parcel may start to rise without any ex-
ternal forcing if the level of free convection
is reached, i.e. the point where a lifted air
parcel becomes warmer and less dense than
the surrounding air. To initiate the vertical
motion, an external force is required that

can lift the moist air to the level of free convection. Such forces can be e.g. low-level
air convergence, cold fronts, surface heating and orographic lifting. The spatial exten-
sion of the anvil cirrus in the initial phase is partly related to the size of the convective
system, which in turn depends on the low-level moisture and the strength of the vertical
updraught. The vertical updraught of moisture from lower levels offers a continuous sup-
ply of new ice crystals at the anvil level, typically with larger ice crystals and wider size
distributions closer to the convective updraught (Yuan et al., 2011). The spatial exten-
sion and persistence of the anvil cirrus and the temporal evolution of the microphysical
properties, especially after the convective source has disappeared, further depends on the
meteorological conditions in the upper troposphere where the convective outflow and anvil
cirrus cloud formation takes place. Lower temperatures and more moisture associated with
higher supersaturation aid the persistence of anvil cirrus. Ice supersaturation, i.e. a relative
humidity with respect to ice above 100 %, is required for ice crystal persistence through
growth by water vapour deposition. In a dry upper atmosphere the anvil cirrus is likely
to quickly dissipate due to the absence of deposition growth together with sedimentation
and sublimation of the anvil cirrus ice crystals. Substantial moisture in the upper tro-
posphere could, however, have a negative feedback on the anvil cirrus persistence, due to
sedimentation of large, rapidly growing, ice crystals. Figure 1.3 shows a simple, but yet
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Figure 1.3: Illustration of the life cycle of a convective system and following anvil cirrus.
Convective, transition and cirrus refer the parts of the cloud with an albedo > 0.7, 0.5–0.7,
≤ 0.5 respectively. Figure adapted from Machado and Rossow (1993).

representative, schematic of the different stages/types of convective systems and follow-
ing anvil cirrus as illustrated by Machado and Rossow (1993); from a compact convective
core, to a growing anvil and increasing fraction of thin anvil cirrus, to the dissipation and
breaking into scattered fragments.

Anvil cirrus typically reach sizes of hundreds of km across (e.g. Machado et al., 1998)
and are predominantly found in the tropics where low-level temperatures and moisture are
commonly sufficiently high to generate wide spread areas of deep convection and hence
anvil cirrus (e.g. Liu et al., 2007; Sassen et al., 2009). Although not as frequently, anvil
cirrus clouds are commonly observed during summertime in the mid-latitudes as well. In
Europe, they usually form along mountain ridges like e.g. the Alps, Pyrenees, Apennines
and Dinaric Alps (e.g. Morel and Senesi, 2002), where the orographic lifting can trigger
deep convection and hence anvil cirrus formation.

Anvil cirrus clouds, like all cirrus clouds, play an important role for the Earth’s energy
budget as they reflect incoming solar radiation and absorb outgoing terrestrial thermal
radiation. In general, the net radiative forcing by cirrus clouds strongly depends on the
height, thickness and microphysical properties (e.g. ice crystal shape, size distribution and
ice water content) of the cloud (e.g. Fu and Liou, 1993; Zhang et al., 1999; Meerkötter
et al., 1999; Liou, 2002; Wendisch et al., 2007). While the cooling effect through reflection
of solar radiation is likely to be the dominant process for thick anvil cirrus clouds, it can be
outweighed by the absorption and trapping of thermal radiation in ageing thinning anvil
cirrus, leading to a positive net radiative forcing and warming of the Earth–atmosphere
system, as is the case for thin cirrus clouds (e.g. Jensen et al., 1994; Chen et al., 2000).
This is especially true for anvil cirrus that remain into the night, where the net radiative
forcing is bound to be positive, independent of the optical and physical properties of the
cloud. Deep convection and anvil cirrus further affects the Earth’s climate by moistening
the upper troposphere through the vertical transport of water vapour and, to some degree,
the sublimation of cloud ice crystals (e.g. Luo and Rossow, 2004; Soden, 2004; Horváth
and Soden, 2008; Wright et al., 2009, and references therein).

Potential anvil cirrus feedback mechanisms on a warming climate further demonstrate
the importance of understanding the physical processes of anvil cirrus clouds. The “ther-
mostat hypothesis” (Ramanathan and Collins, 1991) describes an increase in anvil cirrus
amount with increasing sea surface temperature, leading to increased albedo and hence a
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negative feedback on a warming climate. On the contrary, the “iris hypothesis” (Lindzen
et al., 2001) suggests that higher sea surface temperatures lead to enhanced precipitation
and rainout of cloud condensate, leading to reduced anvil cirrus cloud amount. The feed-
back is nevertheless assumed to be negative as a result of the reduced absorption of long-
wave radiation. According to the “fixed anvil temperature (FAT) hypothesis” (Hartmann
and Larson, 2002) anvil cirrus top temperatures remain constant in a warming climate,
leading to increased anvil cirrus top height and hence a positive feedback on the climate.
Furthermore the “stability iris” hypothesis (Bony et al., 2016) suggests that as anvil cirrus
clouds rise in a warming climate, the convective outflow and hence the anvil cirrus amount
is reduced due to increased stability at the detrainment level.

Despite decades of research, cirrus clouds continue to introduce large uncertainties in
climate and weather models (Waliser et al., 2009; Eliasson et al., 2011). Understanding
the interaction between deep convection and upper-level cloudiness (cirrus) through anvil
cirrus formation, and the related feedbacks on a warming climate is recognised as one of
the grand challenges in atmospheric research by the World Climate Research Programme
(WCRP; Bony et al., 2015). As part of WCRP, the GEWEX (Global Energy and Water
Cycle Experiment) process evaluation study on upper tropospheric clouds and convection
aims to better understand and quantify the relationship between deep convection and anvil
cirrus (Stubenrauch et al., 2017). Anvil cirrus and stratiform convective outflow is also
one of the scientific topics within the German-wide research initiative HD(CP)2 (High
Definition Clouds and Precipitation for advancing Climate Prediction), aiming towards
an improved representation of anvil cirrus clouds in weather and climate models using
enhanced observational data on cloud physical processes.

The ambition with this thesis is to increase the understanding of the temporal evolution
of thin anvil cirrus clouds and their optical, macrophysical and microphysical properties
throughout their life cycle, using satellite remote sensing data. Over the years, numerous
remote sensing studies have been performed on the temporal evolution of deep convective
systems and anvil cirrus clouds. A well-established positive correlation between the size of
convective systems and anvil cirrus and their observed lifetime has been shown in several
studies (e.g. Chen and Houze, 1997; Machado et al., 1998; Mathon and Laurent, 2001; Inoue
et al., 2009; Feng et al., 2012; Imaoka and Nakamura, 2012). During the convective phase,
the production of anvil cirrus generally outweighs the growth of the convective core itself,
leading to a continuously increasing fraction of cirrus (e.g. Machado et al., 1998; Inoue
et al., 2009; Imaoka and Nakamura, 2012; Fiolleau and Roca, 2013; Protopapadaki et al.,
2017). The anvil coverage and ice water path (IWP) has been observed to peak approx. 1–
5 h after the convective intensity peaks (e.g. Soden, 2004; Horváth and Soden, 2008; Sohn
et al., 2008; Schröder et al., 2009), but can grow for longer time scales (≈ 15 h) as well (Luo
and Rossow, 2004). The peak anvil coverage is followed by a gradual thinning during the
dissipating phase with decreasing anvil cirrus coverage, optical thickness and IWP (e.g.
Luo and Rossow, 2004; Mace et al., 2006; Horváth and Soden, 2008). Luo and Rossow
(2004) and Bouniol et al. (2016) also observe reduced cloud top height for ageing anvil
cirrus clouds. Although the number of convective systems decreases almost exponentially
with their observed lifetime with most systems having observed lifetimes below ≈ 5 h (Chen
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and Houze, 1997; Mathon and Laurent, 2001; Feng et al., 2012; Imaoka and Nakamura,
2012), lifetimes of several days are also possible. E.g. Luo and Rossow (2004) observe anvil
cirrus lifetimes of 19–30±16 h, which suggests additional meteorological conditions and
processes, in addition to the initial convection that maintains the anvil. Feng et al. (2012)
show that lifetimes longer than 6 h are characterised by higher mid-upper tropospheric
relative humidity and wind shear. It has also been widely shown that stronger convective
updraught associated with colder cloud top temperatures govern larger more long-lived
anvil cirrus clouds (e.g. Machado and Rossow, 1993; Machado et al., 1998; Chou and Neelin,
1999; Horváth and Soden, 2008; Schröder et al., 2009; Feng et al., 2012; Protopapadaki
et al., 2017), higher optical thickness (Machado and Rossow, 1993) and higher IWP (for
IWP& 20 g m−2; Horváth and Soden, 2008). Stronger convection can also increase the
anvil spreading time i.e. the time lag between peak convective intensity and peak anvil
coverage (Horváth and Soden, 2008).

To study the temporal evolution of convective systems and anvil cirrus clouds, most of
the previous studies listed above use observations from geostationary imaging radiometers
like the Japanese GMS (Geostationary Meteorological Satellites) and MTSAT (Multifunc-
tional Transport Satellites), US GOES (Geostationary Operational Environmental Satel-
lites) and European MFG/MSG (Meteosat First/Second generation) that possess a large
spatial coverage and high temporal resolution, required to study the temporal evolution
of individual cloud systems. An object or pattern tracking technique is usually combined
with brightness temperature thresholds to identify convective systems and subdivide them
into classes like convective core and anvil cirrus respectively. Doing so, they are somewhat
limited to the thicker anvil cirrus though, since thin cirrus are not well defined by such
thresholds and already difficult to detect due to the limited sensitivity to thin cirrus by
geostationary imagers. Using data from infrared sounders like AIRS (Atmospheric Infrared
Sounder), the sensitivity to thin cirrus can be increased (as in Protopapadaki et al., 2017,
with a reliable detection down to visible optical thickness 0.2). The polar orbit of AIRS is,
however, insufficient for studying the temporal evolution and life cycle of individual anvil
cirrus clouds.

Luo and Rossow (2004) and Horváth and Soden (2008) use data from polar orbiting
and geostationary imagers together with split-window techniques to determine the cloud
optical and physical properties in order to analyse the temporal evolution of the anvil cirrus
optical thickness and IWP. Still with a limited accuracy to thin cirrus clouds though, with
observed optical thickness and IWP down to approx. 1.0 and 20 g m−2 respectively.

While passive sensors view an area large enough to study the horizontal structure
of anvil cirrus clouds, active radar and lidar instruments (TRMM-PR (Tropical Rainfall
Measuring Mission - Precipitation Radar), CPR (Cloud Profiling Radar), CALIOP (Cloud-
Aerosol Lidar with Orthogonal Polarization)) can be used to study their microphysical
properties and vertical structure (e.g. Mace et al., 2006; Futyan and Del Genio, 2007; Yuan
et al., 2011; Bouniol et al., 2016). Decreasing radar reflectivities and narrower distributions
have been observed with increasing distance to the convective core, representing different
ages of the anvil (Yuan et al., 2011; Bouniol et al., 2016). This is in line with the idea that
close to the convective core, many ice crystals are present with a wide size distribution,
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while with increasing distance from the core, more and more of the larger ice crystals
sediment, leading to lower radar reflectivities. The small spatial scale, also together with
the poor temporal resolution of space-borne active sensors, is, however, insufficient for life
cycle analysis of individual anvil cirrus clouds, even if geostationary imaging data can be
used to relate the observed properties to a given anvil cirrus age and/or life cycle stage by
tracking the observed cloud backwards in time (Mace et al., 2006; Futyan and Del Genio,
2007; Bouniol et al., 2016).

Although some of the studies have included mid-latitude anvil cirrus clouds (e.g. Machado
et al., 1998; Feng et al., 2012), the large majority of the previous work has been limited to
tropical convective systems and anvil cirrus.

Scientific objectives of this thesis

The main limiting factors for studying the temporal evolution of anvil cirrus clouds through-
out their life cycle have been the low sensitivity to thin cirrus by passive sensors (especially
in geostationary orbits), the small spatial scale of profiling lidar and radar as well as the
low temporal resolution of polar orbiting satellite instruments. The goal with this thesis is
to combine the large spatial scale and high temporal resolution of geostationary imagers
(required to study the anvil cirrus life cycle) and the high sensitivity to thin cirrus clouds
by space-borne lidars (required to discern thin cirrus and their properties) with a new
cirrus retrial algorithm and while doing so, allow for a comprehensive and quantitative
analysis of the anvil cirrus life cycle, focusing on the thin part of the anvil cirrus (visible
optical thickness < 2).

While much of the previous work on the life cycle and temporal evolution of anvil
cirrus clouds has focused on the morphology and horizontal structure of anvil cirrus clouds
using brightness temperature or emissivity thresholds, the strength and novelty of this
study is the combination of the large spatial coverage and high temporal resolution (from
the geostationary imager) together with the high sensitivity to thin cirrus clouds by the
new cirrus retrieval algorithm, that allows for detection of thin anvil cirrus clouds and the
retrieval of the corresponding cloud top height (CTH), ice optical thickness (IOT), IWP
and, by parameterisation, effective radius (REF) every 5 min. This allows for a quantitative
analysis of the anvil cirrus optical, mircrophysical and macrophysical properties throughout
the entire life cycle and makes it possible to address scientific questions related to the
physical processes of anvil cirrus clouds. Thus, the following scientific question (SQ) is
addressed

SQ-1 How do the anvil cirrus properties, including spatial extension, cloud top height, ice
optical thickness, ice water path and effective radius evolve with time throughout the
anvil cirrus life cycle?

The global mean surface temperature increase is likely to exceed 1.5 K by the end of the
21th century relative to 1850 to 1900 (with higher temperature increments over land) unless
greenhouse gas emissions peak and rapidly start to decrease before 2020. If the greenhouse
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gas emissions continue to increase until around 2040, it is more likely than unlikely that
the global temperature increase exceeds 2 K (Collins et al., 2013; van Vuuren et al., 2011).
With increasing surface temperatures, not only more, but also stronger convection can be
expected. While the relationship between the strength of the convective updraught and the
anvil cirrus size and lifetime has been presented in the literature, this thesis aims towards
an increased understanding of the relationship between the convective strength and the
anvil cirrus optical and physical properties as well as their temporal evolution. Hence, the
following scientific question is addressed

SQ-2 How does the convective strength affect the anvil cirrus properties and their temporal
evolution?

To further investigate the observed variability of the anvil cirrus life cycle, the following
scientific question is finally addressed

SQ-3 How do the meteorological conditions influence the life cycle of anvil cirrus clouds?

To approach and answer the scientific questions, this thesis is divided into five subse-
quent chapters. Chapter 2 describes the theoretical background of this study including the
theory of electromagnetic radiation, atmospheric radiative transfer and satellite remote
sensing of cirrus clouds. The satellite instruments, methods and data used in this study
are introduced and described in Chap. 3. Chapter 4 presents the new algorithm for the
geostationary remote sensing of thin cirrus clouds: CiPS - Cirrus Properties from SEVIRI.
Sects. 4.1–4.7 describe the technical development of CiPS, while a detailed validation and
characterisation of CiPS as well as a comparison with independent data is presented in
Sects. 4.9, 4.10 and 4.11 respectively. Chapter 5 present the life cycle analysis of anvil
cirrus clouds. First, the cirrus tracking algorithm is described in Sect. 5.1. Second, the
temporal evolution of the anvil cirrus properties throughout the life cycle is analysed in
Sect. 5.3 (case study) and Sect. 5.4.1 (statistical approach) respectively, using CiPS as the
main tool (SQ-1 ). Third, the relationship between the convective strength and the cir-
rus properties and their temporal evolution is investigated in Sect. 5.4.2 (SQ-2 ). Fourth,
the relationship between modelled meteorological conditions (convective available poten-
tial energy, humidity, temperature, horizontal wind speeds) and the anvil cirrus lifetime
and maximum spatial extension is investigated in Sect. 5.4.3 (SQ-3 ). Finally, the conclu-
sions drawn from this study together with an outlook is presented in Chap. 6. A list of
abbreviations is available in Appendix A.



8 1. Introduction



Chapter 2

Theoretical background and satellite
remote sensing of cirrus clouds

Parts of the text in Sect. 2.2 in this chapter have been published in Strandgren et al. (2017a)
and Strandgren et al. (2017b).

2.1 Fundamentals of atmospheric radiative transfer

Electromagnetic radiation propagating through the atmosphere and interacting with its
matter is described by the theory of atmospheric radiative transfer. Electromagnetic ra-
diation refers to oscillating electric and magnetic fields that carry electromagnetic energy
as they propagate through a medium. Understanding atmospheric radiative transfer is
essential in order to understand and interpret satellite remote sensing in any form.

2.1.1 Radiative quantities

Electromagnetic radiation consists of a stream of photons and is characterised by its fre-
quency ν, i.e. by the rate at which it oscillates and its wavelength λ, i.e. the distance
between two repetitive patterns

λ =
c

ν
[m] , (2.1a)

where c is the speed of light in vacuum. The energy of a photon is described by the
Planck-Einstein1 relation

E = h ν =
h c

λ
[J] , (2.2)

where h = 6.626 · 10−34 J s is the Planck constant. Since c and h are constants, the
energy of the photons and the electromagnetic radiation itself is directly related to the
wavelength/frequency.

1after the German physicists Max Planck (1858–1947) and Albert Einstein (1879–1955)
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The radiant flux (or radiant power) Φ describes the radiant energy per unit time

Φ =
dE

dt
[W] , (2.3)

and the irradiance I describes the radiant flux received by a surface element dA per unit
area

I =
dΦ

dA
[W m−2] . (2.4)

The radiance L describes the radiant flux received by or leaving a surface element dA per
unit projected area in a specified direction Ω̂, within a solid angle dΩ, oriented at an angle
ϑ to the normal direction n̂ of the surface element

L =
d2 Φ

cos(ϑ) dAdΩ
[W m−2 sr−1] . (2.5)

Figure 2.1 shows a graphical interpretation of the radiance as measured by a satellite
sensor. The field of view of the sensor covers an area element dA of the observed surface.
The satellite sensor does not measure all radiant flux leaving the surface element, but the
radiant flux propagating in the direction of the satellite sensor (Ω̂) within the solid angle
dΩ. Due to the slant view of the sensor, the projected area is calculated as cos(ϑ) dA, where
ϑ is the angle between Ω̂ and the normal n̂ to the surface element dA. The solid angle
is expressed in units of steradians (sr) and remains constant with increasing/decreasing
distance between the observed object and the sensor.

dA

sensor

dΩ

^n

ϑ

surface

Ω^

projected area: 
cos(ϑ)dA

Figure 2.1: Graphical interpretation of the radiance of a surface element dA measured by
a satellite sensor with solid angle dΩ, oriented at an angle ϑ to the normal direction n̂ of
the surface element.

Finally, the spectral radiance describes the radiance at a given wavelength/frequency and
is defined as

Lλ =
d3 Φ

cos(ϑ) dAdΩ dλ
[W m−2 sr−1 nm−1] . (2.6)
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2.1.2 Black body radiation

All bodies emit electromagnetic radiation according to their temperature T that can be
characterised by Eqs. (2.3)–(2.6). A black body is an idealised body that absorbs all incident
electromagnetic radiation. According to Kirchhoff’s2 law, any body in thermal equilibrium
must re-emit all absorbed radiation at a given wavelength. The electromagnetic radiation
emitted (in all directions and at all wavelengths) by a black body in thermal equilibrium
is described by Planck’s law

Bλ(T ) =
2h c2

λ5
1

exp
(

h c
λ kB T

)
− 1

[W m−2 sr−1 nm−1] , (2.7)

where kB = 1.381 · 10−23 J K−1 is the Boltzmann3 constant. The spectral black body radi-
ance Bλ is accordingly a function of the black body’s temperature alone and independent
of any other property of the black body. Black bodies only exist in theory and a grey body4

at temperature T emits only a fraction of the electromagnetic radiation that a black body
at the same temperature would emit. This fraction is known as the spectral directional
emissivity ελ

ελ =
Lλ

Bλ(T )
. (2.8)

2.1.3 Interactions with atmospheric matter

As electromagnetic radiation propagates through the atmosphere, gas molecules, aerosols,
cloud droplets and ice crystals interact with the radiation through absorption, emission
and scattering.

Absorption describes the process when an atom or molecule extracts energy from the
incident beam of radiation according to Eq. (2.2) and transitions to a higher energy
level. Processes requiring energy and hence leading to photon absorption include: (1)
atomic/molecular electronic transitions to a higher-energy electron shell, (2) changes in
molecular vibrational motion and (3) changes in molecular rotational motion. The energy
required to reach a higher energy level is discrete, leading to the characteristic spectral
lines and bands of given atoms and molecules.

Emission describes the process when an atom or molecule transitions to a lower en-
ergy level and emits a photon with corresponding energy (and wavelength) according to
Eq. (2.2). The processes causing emission are similar to those of absorption.

2after the German physicist Gustav Kirchhoff (1824–1887)
3after the Austrian physicist Ludwig Boltzmann (1844–1906)
4a body that does not absorb all incident electromagnetic radiation is usually referred to as a grey body
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Figure 2.2: The angular distribution of visible radiation at 0.5µm by spherical particles of
three sizes: (a) 10−4 µm, (b) 0.1 µm and (c) 1 µm. The forward scattering pattern for the
1 µm particle is extremely large and is scaled for presentation purposes. Figure adapted
from Liou (2002).

Scattering describes the redirection of electromagnetic radiation from the direction of
propagation. How the incident radiation is scattered depends on the wavelength and the
properties of the scattering molecule or particle (size, shape, refractive index). The size
parameter x describes the relationship between the wavelength of the incoming electro-
magnetic radiation λ and the radius of a scattering particle r

x =
2πr

λ
. (2.9)

Figure 2.2 shows the scattering pattern of electromagnetic radiation with λ = 0.5 µm
scattered by spherical particles with three different sizes: (a) 10−4 µm, (b) 0.1 µm and (c)
1 µm. It is clear that larger particles concentrate the scattered radiation in the forward
direction, with increasingly complex scattering patterns. The angular re-distribution of
scattered radiation from the incident direction Ω′ to any direction Ω is described by the
scattering phase function P (Ω′,Ω).

The scattering by particles much smaller than the wavelength (x << 1), as in Fig. 2.2a,
is usually referred to Rayleigh5 scattering. Under Rayleigh scattering conditions, the scat-
tering efficiency is proportional to λ−4, meaning that shorter wavelengths are scattered
more effectively. This explains, for example, the characteristic blue colour of the sky, since
the shorter blue wavelengths are scattered most effectively by the air molecules that are
significantly smaller (≈ 10−4 µm) than the visible spectrum of the solar radiation (0.39–
0.7 µm). Scattering by spherical particles with sizes comparable to, or larger than, the
wavelength (x & 1) can be derived from Maxwell’s6 equations. This is usually referred to
as the Mie7 solution. In contrast to Rayleigh scattering, scattering efficiency is not (as)
wavelength dependent for Mie scattering. This explains, for example, the characteristic
white colour of clouds, since the scattering cloud droplets, that have sizes (≈ 10 µm) ap-
prox. ten times the wavelength of visible solar radiation, scatter all visible wavelengths
as effectively. In contrast to cloud liquid water droplets, that can be approximated as

5after the British physicist Lord Rayleigh (John William Strutt, 1842-1919)
6after the Scottish mathematician and physicist James Clerk Maxwell (1831–1879)
7after the German physicist Gustav Mie (1868–1957)
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spherical, cloud ice crystals have a variety of more complex shapes. Consequently, an ex-
act solution for the scattering by ice crystals covering all shapes and sizes present in the
atmosphere does not exist. Instead the scattering properties can be derived for a set of ide-
alised crystal shapes, e.g. hexagonal plates, (hollow) columns, (hollow) bullet rosettes and
droxtals, for a range of sizes using various methods (e.g. conventional/improved geometric-
optics, T-matrix, finite difference time domain). The total scattering effect by an ensemble
of ice crystals can then be estimated by averaging the scattering properties over multiple
size distributions with prescribed crystal shapes (see e.g. Yang et al. (2015) and references
therein for details).

2.1.4 The equation of radiative transfer

A beam of electromagnetic radiation propagating through an atmospheric volume V with
area A, infinitesimal thickness ds containing N particles will lose energy due to absorption
and scattering. The combined loss in energy/radiance due to absorption and scattering is
known as extinction and given by

dLext,λ

ds
= −N σext,λ

Ads
Lλ

= −N
V
σext,λ Lλ

= −nσext,λ Lλ
= −βext,λ Lλ ,

(2.10)

where σext,λ is the extinction cross section8 (in m2) at wavelength λ, V is the volume (in
m3), n is the particle number density (in m−3) and βext,λ is the extinction coefficient (in
m−1). As mentioned above, the extinction constitutes the attenuation due to absorption
and scattering and βext,λ is defined as the sum of the absorption coefficient βabs,λ and the
scattering coefficient βsca,λ

βext,λ = βabs,λ + βsca,λ . (2.11)

The absorption and scattering coefficients describe the radiant attenuation per unit length
in the direction of propagation due to absorption and scattering inside the volume.

Solving Eq. (2.10) for a path through the atmosphere ranging from e.g. the Earth’s
surface (s = 0) to the top of atmosphere (s = TOA) yields the Beer-Lambert-Bouguer9 law

Lλ(TOA) = Lλ(0) exp

(
−
∫ TOA

0

βext,λ(s) ds

)
= Lλ(0) exp(−τ(TOA)) , (2.12)

8The extinction cross section is a measure for the probability that the electromagnetic radiation will
interact with a particle, either by scattering or absorption. It is defined as the ratio between the scattered
or absorbed radiant flux (Eq. 2.3) and the irradiance (Eq. 2.4)

9after the German physicist August Beer (1825–1863) and the French mathematicians Johann Heinrich
Lambert (1728–1777) and Pierre Bouguer (1698–1758)
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where

τ =

∫ TOA

0

βext,λ(s) ds (2.13)

is known as the optical thickness of the atmospheric path length. The Beer-Lambert-
Bouguer law quantifies the radiative attenuation due to absorption and scattering along
the path length and thus the spectral radiance of up-welling electromagnetic radiation at
TOA.

The beam will also gain radiant energy along the direction of propagation due to emis-
sion by the medium. Any body with a temperature T will emit radiation in all directions
according to Planck’s law (Eq. 2.7). Hence, the gain in spectral radiance due to emission
along the path length is given by

dLemi,λ = βemi,λ dsBλ(T ) , (2.14)

where βemi,λ is the emission coefficient of the medium. Assuming local thermodynamic
equilibrium (LTE) and invoking Kirchhoff’s law, Eq. (2.14) can be written as

dLemi,λ

ds
= βabs,λBλ(T ) . (2.15)

Finally, the beam can gain energy if radiation from the outside is scattered into the direction
of propagation. The gain in spectral radiance due to scattering from an arbitrary direction
Ω′ into the direction of propagation Ω is given by

dLsca,λ(Ω
′,Ω) = βsca,λ dsP (Ω′,Ω)Lλ(Ω

′) . (2.16)

Integrating over all incident angles Ω′ yields

dLsca,λ(Ω)

ds
=
βsca,λ
4π

∫
4π

P (Ω′,Ω)Lλ(Ω
′) dΩ′ . (2.17)

Combining Eqs. (2.10), (2.15) and (2.17), the equation of radiative transfer can be formu-
lated

dLλ
ds

=
dLext,λ

ds
+
dLemi,λ

ds
+
dLsca,λ(Ω)

ds

= −βext,λ Lλ + βabs,λBλ(T ) +
βsca,λ
4π

∫
4π

P (Ω′,Ω)Lλ(Ω
′) dΩ′ .

(2.18)

The equation of radiative transfer describes the change in spectral radiance for a beam of
electromagnetic radiation propagating through an atmospheric volume with thickness ds
due to interaction (scattering, absorption, emission) with matter inside the volume.
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2.2 Satellite remote sensing of cirrus clouds

An analytical solution to Eq. (2.18) does not exist, and even if it would, it relies on several
assumptions (e.g. LTE, spectral radiation (at one wavelength/frequency), elastic scattering
(no change in wavelength/frequency), homogeneous layer) and the inversion from radiances
measured from space to e.g. cirrus cloud properties would be an ill-posed problem with
too many unknowns compared to the number of satellite measurements. Nevertheless,
cirrus clouds and clouds in general can be identified and their properties estimated from
satellite platforms using two approaches: passive and active remote sensing. The following
subsections focus on the satellite remote sensing of cirrus clouds, but describe general
methods used for liquid water clouds (and thick ice clouds) as well.

2.2.1 Cirrus cloud properties

To study cirrus clouds from space it is central to distinguish the cirrus clouds from the
surrounding cirrus-free areas i.e. to derive a cirrus cloud flag (CCF), that classifies each
observed scene as cirrus-free or cirrus-covered. The cloud top height (CTH) describes the
distance between the Earth’s surface and the top of the cirrus cloud. The CTH is an im-
portant variable as it is closely related to the cloud top temperature and hence determines
the outgoing thermal radiation. The ice optical thickness (IOT) stems from Eq. (2.13)
and is defined as the vertically integrated attenuation of electromagnetic radiation due
to scattering and absorption by cloud ice crystals within an atmospheric column ranging
from the surface (z = 0) to the top of atmosphere (z = TOA). Similarly, the ice water
path (IWP) is defined as the vertically integrated mass of ice within the same atmospheric
column

IWP =

∫ TOA

0

IWC(z) dz [g m−2] , (2.19)

where the ice water content (IWC) measures the mass of ice per unit volume of air

IWC =

∫
ρiceV (r)n(r)dr [g m−3] , (2.20)

where ρice = 917 000 g m−3 is the mass density of ice and V (r) and n(r) are the mean
volume and number of cloud ice crystals in the size interval r to r+ dr per unit volume of
air. Hence,

Vice =

∫
V (r)n(r)dr [m3 m−3] , (2.21)

is the total volume of ice per unit volume of air. IWP and IWC are, in contrast to IOT,
physical quantities, that can be directly used for comparisons with climate and weather
models. The effective radius (REF; Hansen and Travis, 1974) describes the area weighted
mean radius for an ensemble of cloud particles. For spherical cloud particles it is defined
as the ratio between the third and second moment of the cloud particle size distribution

REF =

∫
rπr2n(r)dr∫
πr2n(r)dr

[m] . (2.22)
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Several definitions of the effective radius for an ensemble of non-spherical ice crystals have
been presented in the literature (see e.g. McFarquhar and Heymsfield (1998) for an inter-
comparison). In this study the following definition is used

REF =
3Vice
4Aice

[m] , (2.23)

where Aice is the total projected area of ice per unit volume of air. The fraction 3/4 is
introduced in order to solve Eq. (2.22) for spherical particles. Following Eqs. (2.20) and
(2.21) the total volume of ice per unit volume of air can be expressed in terms of IWC

Vice = IWC/ρice [m3 m−3] . (2.24)

Similarly, the total projected area of ice per unit volume of air can be expressed in terms
of the (volume) extinction coefficient βext

Aice =

∫
A(r)n(r)dr =

∫
σext(r)

Qext

n(r)dr =
βext
Qext

[m2 m−3] , (2.25)

where A(r) is the mean projected area of cloud ice crystals in the size interval r to r + dr
per unit volume of air and Qext is the (constant) extinction efficiency. Using Eqs. (2.24)
and (2.25), Eq. (2.23) can be rewritten as

REF =
3Qext IWC

4ρiceβext
≈ 3 IWC

2ρiceβext
[m] , (2.26)

for larger ice crystals (REF & 10µm), for which Qext ≈ 2 (e.g. Schumann et al., 2011).
Eq. (2.26) is used to estimate the effective radius of cloud ice crystals by e.g. Jensen et al.
(2009) and Hong and Liu (2015).

2.2.2 Passive satellite remote sensing

Passive satellite sensors like the imaging radiometers SEVIRI (Spinning Enhanced Visible
Infrared Imager; Schmetz et al., 2002), ABI (Advanced Baseline Imager; Schmit et al.,
2015), MODIS (Moderate Resolution Imaging Spectroradiometer; King et al., 1992) and
AVHRR (Advanced Very High Resolution Radiometer; Hastings and Emery, 1992) measure
radiances of thermal radiation emitted by the Earth and reflected solar radiation leaving
the Earth–atmosphere system at TOA. A passive imaging radiometer cannot resolve ver-
tical cloud features and has a limited sensitivity to thin and sub-visual (visible optical
thickness < 0.03) cirrus clouds, but typically it views an area large enough (by scanning
or otherwise) to observe complete cloud systems.

Imaging radiometers measure the TOA radiances within given wavelength ranges, re-
ferred to as channels or spectral bands. Hence, the measured radiances in the thermal
range cannot be described directly with Eq. (2.7), but are instead given by

L =

∫
ϕλLλdλ∫
ϕλdλ

=

∫
ϕλBλ(Tb)dλ∫

ϕλdλ
, (2.27)



2.2 Satellite remote sensing of cirrus clouds 17

where ϕλ is the spectral response function10 of a given channel/band and the (equivalent
black body) brightness temperature (Tb) represent the temperature a black body would
have in order to emit according to the spectral radiance Lλ of the observed grey body. For
channels in the solar spectrum, the reflectance R can be calculated, describing the incident
solar radiation reflected by the observed object

R =
π
∫
ϕλLλdλ

cos(ϑ�)
∫
ϕλIλdλ

=
πL

cos(ϑ�)I
, (2.28)

where Iλ is the spectral solar irradiance, I is the solar irradiance received by a given channel
and ϑ� is the solar zenith angle.

The atmosphere itself is largely transparent to incoming shortwave radiation and the
amount of reflected solar radiation reaching TOA in clear sky conditions (no clouds or
aerosols) is directly related to the Earth’s surface albedo. Ice crystals and liquid water
droplets are generally effective scatterers of solar radiation, leading to increasing reflected
solar radiation and radiances at TOA in the presence of clouds, distinguishing them from
surrounding cloud free scenes.

The solar radiation that is not reflected back to space by the Earth’s surface and at-
mosphere is absorbed by the Earth-atmosphere system. The absorbed radiation is later
re-emitted according to the Earth’s and atmosphere’s temperature (Eq. 2.7) and emissivity
(Eq. 2.8). Most of the emitted radiation is at longer wavelengths, referred to as (longwave)
thermal radiation. Cloud ice crystals and water droplets may absorb thermal radiation
and emit it in all directions. The radiant energy emitted by a cloud out to space depends
mainly on its top temperature. Hence, cirrus clouds located higher up in the atmosphere,
at colder temperatures, emit less thermal radiation out to space, leading to lower radiances
in the thermal spectra at TOA. The loss in thermal radiation at TOA is further enhanced
with increasing absorption by the cloud. Less thermal radiation reaches TOA if the ab-
sorbing cloud is optically thicker, since a larger fraction of the thermal radiation is emitted
back towards the Earth’s surface, resulting in a stronger radiative contrast to (cirrus) cloud
free scenes. On the contrary, an optically thin (e.g. sub-visual) cirrus, transmits most of
the up-welling thermal radiation and absorbs (and emits) a comparably small fraction,
leaving a weak mark on the TOA radiances and thus a small radiative contrast to (cirrus)
cloud free scenes. This makes it difficult to discern optically thin cirrus clouds from the
surrounding cirrus-free regions using imaging radiometers. Atmospheric gases also absorb
and emit parts of the thermal radiation, with water vapour (H2O), carbon dioxide (CO2),
methane (CH4) and ozone (O3) being some of the most important absorbers of thermal
radiation in the atmosphere. The absorption by the single molecules strongly depends on
the wavelength of the thermal radiation and there are spectral regions where the atmo-
sphere is mostly transparent to thermal radiation (atmospheric windows). Similarly, there
are spectral regions where thermal radiation is strongly absorbed by atmospheric gases, for
example by water vapour around 5–7 µm, reducing or even obscuring the radiative signals
from the Earth’s surface and clouds in the lower troposphere. The thermal radiation at

10the relative efficiency of a sensor to detect photons as a function of wavelength.
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TOA, reaching a passive imaging radiometer, thus consists of the radiation directly trans-
mitted from the Earth’s surface and the radiation absorbed and emitted out to space by
clouds, aerosols and atmospheric gases. Hence, different cirrus clouds leave their unique
mark on the TOA radiances observed by an imaging radiometer, depending primarily on
the cirrus cloud temperature (height) and optical properties, but also on the presence
and properties of underlying liquid water clouds, aerosols, atmospheric gas concentrations
and the Earth’s surface properties (temperature, emissivity), which regulate the thermal
radiation emitted by the Earth.

To study cirrus clouds, their life cycle and climate impact, large-scale satellite observa-
tions with imaging radiometers are crucial. Cirrus clouds can be detected from space-borne
imaging radiometers (e.g. Saunders and Kriebel, 1988; Derrien et al., 1993; Ackerman et al.,
1998; Kriebel et al., 2003; Derrien and LeGléau, 2005; Krebs et al., 2007) by applying spec-
tral tests on brightness temperatures and temperature differences (e.g. Inoue, 1985; Ack-
erman et al., 1990). Krebs et al. (2007) extend the multispectral threshold test approach
by introducing morphological tests that take into account the shape of high-level clouds
in thermal channels characterised by strong water vapour absorption. Near-infrared water
vapour absorption channels can also be used to detect cirrus clouds (Gao et al., 2002).
Due to the limited sensitivity to thin cirrus clouds, algorithms utilising spectral and mor-
phological threshold tests tend to miss a large fraction of those thin cirrus (e.g. Ackerman
et al., 2008; Stubenrauch et al., 2010) and thus introduce a bias into the climate impact of
cirrus clouds. Another well-known problem related to cirrus cloud detection from passive
imagers is the difficulty to distinguish between cirrus clouds and cold surfaces in the polar
regions (e.g. Holz et al., 2008).

The CTH is an important variable as it regulates the outgoing longwave radiation. It
can be retrieved from passive satellite imagers during both day and night using e.g. radiance
ratioing (also referred to as CO2 absorption, CO2 slicing and split window technique)
(Smith et al., 1970; Smith and Platt, 1978; Menzel et al., 1983; Eyre and Menzel, 1989;
Zhang and Menzel, 2002; Menzel et al., 2008), radiance fitting (e.g. Szejwach, 1982; Nieman
et al., 1993; Schmetz et al., 1993) and optimal estimation (e.g. Heidinger and Pavolonis,
2009; Sayer et al., 2011; Watts et al., 2011). An intercomparison of different techniques
currently used for SEVIRI is presented in Hamann et al. (2014).

Nakajima and King (1990) introduced a commonly applied approach for the retrieval of
optical thickness and effective radius of clouds from reflected solar radiation in two spectral
channels (e.g. Platnick et al., 2003; Bugliaro et al., 2011; Stengel et al., 2014) for both ice
clouds and liquid water clouds. From the optical thickness and effective radius the liquid
water path (LWP) and IWP can be estimated for liquid and icy pixels respectively. The
solar dependence does, however, limit this approach to daytime and the retrieval becomes
ambiguous for optically thin clouds (Nakajima and King, 1990). The same properties can
be retrieved for optically thinner cirrus clouds during night as well using only thermal
observations (e.g. Prabhakara et al., 1988; Ackerman et al., 1990; Yue and Liou, 2009;
Minnis et al., 2011; Heidinger et al., 2015; Wang et al., 2016), but with a limited accuracy
due to the low sensitivity to large ice crystal sizes and large optical thicknesses.
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2.2.3 Active satellite remote sensing

Active satellite sensors like CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization;
Winker et al., 2003, 2009) and CPR (Cloud Profiling Radar; Stephens et al., 2002) emit
visible (CALIOP) and microwave (CPR) radiation and measure the radiation backscattered
by clouds and aerosols. Lidar and radar are short for Light/Radio Detection and Ranging.
The main principle is to emit radiation and identify objects like airplanes, rain drops,
cloud droplets, ice crystals or aerosol particles due to their stronger backscatter compared
to the background molecular backscatter (detection). When an object has been identified,
the distance between the transmitter and the object can be derived (ranging) from the
time it took for the transmitted, backscattered radiation to return to the receiver and the
speed of light. By measuring the power of the backscattered radiation for a small path
length ds (given by the vertical resolution), the level of attenuation of the layer can be
estimated. This is expressed as the extinction (lidar) and reflectivity (radar). Repeating
this down to the Earth’s surface results in vertical profiles of extinction coefficients (lidar).
By integrating the extinction coefficients for a given cloud or aerosol layer detected in the
altitude range s1 − s2 (see Eq. (2.13)) the optical thickness of that cloud or aerosol layer
can be estimated (e.g. Young and Vaughan, 2009). With information about the position of
the spacecraft, the height of the cloud or aerosol layer with respect to the Earth’s surface
(e.g. the CTH) can be determined.

The active satellite remote sensing using radar/lidar allows for vertical profiling of
clouds and aerosols along the satellite track with a high sensitivity to thin cirrus clouds
(using the lidar). However, those sensors have a small footprint and observe only at nadir,
which leads to a poor spatial coverage and low temporal resolution.

2.2.4 Synergistic satellite retrievals

Observations from different satellite orbits generate additional advantages and limitations.
Sensors observing the Earth from polar orbits (e.g. MODIS, AVHRR, CALIOP and CPR)
have a near-global coverage and high spatial resolution, but a low to poor temporal resolu-
tion, depending on the swath width/spatial coverage. In contrast, a geostationary imager
like SEVIRI lacks a global coverage, but has a constant large field of view, which allows
for a high temporal resolution of 15 min (Schmetz et al., 2002) required to study the tem-
poral evolution, life cycle and physical processes of clouds. The advantages of individual
instruments can be combined to enhance cloud retrievals if two or more complementary
satellite sensors operate aboard the same satellite platform (e.g. the synergistic retrievals
for the IIR (Imaging Infrared Radiometer) thermal camera and CALIOP by Garnier et al.,
2012, 2013, 2015) or fly in a satellite constellation like the A-Train (e.g. the synergistic
retrievals for lidar and radar or lidar, radar and imager by Donovan and van Lammeren,
2001; Delanoë and Hogan, 2008, 2010; Deng et al., 2010; Ceccaldi et al., 2013). Combin-
ing the advantages of satellite sensors operating in different orbits is more challenging, as
they observe given scenes at different times from possibly different perspectives. Neverthe-
less, the information from available sensor collocations can be used to learn relationships
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between different sets of observations, e.g. through machine learning.
Artificial neural networks (ANNs; Sect. 3.3) are a powerful tool for combining the

advantages of different satellite sensors operating in different orbits. With ANNs, the
relationship between observations of one set of sensors and the retrieval outcome of another
set of sensors can be approximated by learning from available sensor collocations. This has
been done by learning and approximating the relationship between collocated passive and
active satellite observations in order to indirectly increase the sensitivity and accuracy of
the passive satellite retrievals (e.g. Kox et al., 2014; Holl et al., 2014; Minnis et al., 2016).
The ultimate goal with such an approach is to retrieve active-like (cirrus) cloud properties
from passive satellite observations alone.



Chapter 3

Instrumentation, methods and data

The text in Sects. 3.3, 3.4.3, 3.5 and parts of the text in Sect. 3.2 in this chapter have been
published in Strandgren et al. (2017a).

In this chapter the remote sensing instruments, data and methods used to develop CiPS
(Cirrus Properties from SEVIRI; Chap. 4) and analyse the life cycle of anvil cirrus clouds
are introduced. This includes instruments, methods and data developed by others than
the PhD candidate. The two main tools used to analyse the anvil cirrus life cycle have
been developed by the PhD candidate and are described in full detail in Chaps. 4 and 5.
This includes the CiPS algorithm and the cirrus cloud tracking algorithm respectively.

3.1 SEVIRI aboard the Meteosat Second Generation

SEVIRI is a passive imaging radiometer operating aboard the geostationary Meteosat
Second Generation (MSG) satellites since 2004. SEVIRI is the main instrument used for
the analysis presented in Chap. 5 as well as the main source of input data for CiPS.

SEVIRI measures the up-welling radiation within 12 channels in the visible to thermal
infrared spectrum, in which the radiances (Eq. 2.27) are measured and the corresponding
brightness temperatures (Eq. 2.27) and reflectances (Eq. 2.28) retrieved. The operational
MSG satellite is positioned ca. 35 800 km above the Earth’s Equator at 0°E giving SEVIRI
an excellent view of the Earth from its remote location, with a spatial coverage from
approx. 80°W to 80°E and 80°S to 80°N (from now on referred to as the SEVIRI disc). The
broadband high resolution visible (HRV) channel has a limited coverage and includes the
European and most of the African continent. The spatial sampling of SEVIRI is 3×3 km2 at
nadir (1×1 km2 for the HRV channel) which increases to approx. 3.5×5 km2 on average over
Europe. The SEVIRI channel characteristics are summarised in Table 3.1. Furthermore,
Fig. 3.1 shows the spectral response functions of the SEVIRI narrowband channels (1–11
in ascending order from left to right) together with simulated spectra of reflected solar
radiation and outgoing longwave radiation. Channels 1–3 and 12 measure reflected solar



22 3. Instrumentation, methods and data

Table 3.1: Characteristics of the SEVIRI spectral bands. Table adapted from Schmetz
et al. (2002).

Channel
Spectral band

/ µm
Central wavelength

λc / µm
Spatial sampling
at nadir / km2

1 VIS 0.6 0.56− 0.71 0.635 3× 3

2 VIS 0.8 0.74− 0.88 0.81 3× 3

3 NIR 1.6 1.50− 1.78 1.64 3× 3

4 IR 3.9 3.48− 4.36 3.90 3× 3

5 WV 6.2 5.35− 7.15 6.25 3× 3

6 WV 7.3 6.85− 7.85 7.35 3× 3

7 IR 8.7 8.30− 9.10 8.70 3× 3

8 IR 9.7 9.38− 9.94 9.66 3× 3

9 IR 10.8 9.80− 11.80 10.80 3× 3

10 IR 12.0 11.00− 13.00 12.00 3× 3

11 IR 13.4 12.40− 14.40 13.40 3× 3

12 HRV 0.4− 1.1 - 1× 1

Figure 3.1: The spectral response functions of the SEVIRI narrowband channels 1–11 to-
gether with simulated spectra of reflected solar radiation and outgoing longwave radiation.
Figure adapted from Vázquez-Navarro et al. (2013).
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radiation, whereas channels 5–11 measure the terrestrial thermal radiation. Channel 4 is a
mixed channel measuring both reflected solar and terrestrial thermal radiation. Channels
5–11 have a weak solar contribution which allows for observations during both day and
night. Due to the stationary position above a fixed point on the Earth (0°E/0°N in
operational mode) SEVIRI has a high temporal resolution of 15 min. Limiting the spatial
coverage to the upper part of the SEVIRI disc (north of approx. 15°N), the temporal
resolution can be increased to 5 min using the rapid scanning service.

For a graphical interpretation of the SEVIRI channel observations, Fig. 3.2 shows the
reflectances R retrieved from the three narrowband solar channels (1–3) and the brightness
temperatures (from now on also denoted as BT) retrieved from the mixed solar/thermal
channel (4) and the seven thermal channels (5–11). This gives a good overview of (1) the
type of data that SEVIRI retrieves every 15 minutes and (2) the spatial coverage of the
SEVIRI narrowband channels. The channel number and name is included in the lower
left corner of the respective figures and the data range represented by the colour scale
is included in the respective lower right corners. The black stripe along the south-east
border only present in the solar channels indicates night time conditions and hence the
absence of reflected solar radiation. The lower-right figure is a false colour RGB composite
using the three SEVIRI channels centred at 0.6, 0.8 and 10.8 µm (channels 1, 2, 9). With
this channel combination, thick and thin cirrus clouds are identified as white and bluish,
whereas the warmer liquid water clouds are recognised as yellow. A band of cirrus clouds
is observed along the intertropical convergence zone (ITCZ). Furthermore several frontal
(cirrus) clouds are observed over Europe and the southern and northern Atlantic Ocean.
In the tropics, large areas of shallow cumulus clouds can be seen over the Atlantic Ocean.

In channels 1, 2, 3 (and 12, not shown here), bright desert areas and especially clouds
have a strong signal as they reflect a large fraction of the incoming solar radiation. Ice
crystals do, however, absorb and transmit solar radiation comparably effectively in the
range 1.50−1.78 µm (channel 3) leading to lower reflectances by high cirrus clouds for this
channel compared to channels 1 and 2. Similarly, areas with lower albedo, like forests and
especially the ocean, have low reflectances in the solar channels.

In the thermal spectrum the atmospheric gas absorption of longwave thermal radiation
plays an important role at certain wavelengths. The two water vapour channels (6 and
7) are characterised by strong absorption by water vapour, consequently those channels
give information about the large-scale water vapour structures in the troposphere. Upper
level cirrus clouds located above the altitudes where the contribution to the water vapour
channels peak further absorb the emit thermal radiation leading to lower radiances and
brightness temperatures (Sect. 2.2.2). Channel 5 is located more in the centre of the water
vapour absorption band, leading to less transmission/contribution from the lower tropo-
sphere and hence generally lower brightness temperatures and weaker radiative contrast
between (thin) cirrus and cirrus-free areas. It is clear that the surface and low-level clouds,
e.g. the shallow cumulus over the tropical Atlantic Ocean, cannot be identified in the two
water vapour channels.

The three window channels (7, 9 and 10) are characterised by little atmospheric gas
absorption of thermal radiation (Sect. 2.2.2). In these channels, most of the thermal
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Figure 3.2: The reflectances (R) and brightness temperatures (BT) retrieved from the three
solar narrowband (1–3) and eight thermal (4–11) SEVIRI channels respectively. The images
were retrieved on 1 June 2015 at 12:30 UTC from MSG-3/SEVIRI. The channel number
and name together with the data range represented by the colour scale is included below
the respective figures. Higher reflectances and brightness temperatures are represented by
brighter colours. The lower-right figure is a false colour RGB composite using the three
SEVIRI channels 1, 2 and 9 (inverted) centred at 0.6, 0.8 and 10.8µm respectively. Please
note that the broadband HRV channel is not depicted here.

radiation emitted by the Earth reaches the satellite if no absorbing/scattering atmospheric
particulates are present. Consequently the Earth’s surface can be recognised and especially
warm surfaces like deserts lead to high radiances and brightness temperatures observed by
the satellite. The low liquid water clouds scatter, absorb and emit parts of the up-welling
thermal radiation and due to the colder temperatures at the cloud level, this results in
reduced radiances and brightness temperatures. This can be seen for the shallow marine
cumulus over the tropical Atlantic Ocean, recognised as yellow in the RGB. The high cirrus
clouds emit an even smaller fraction of the absorbed up-welling thermal radiation due to
the considerably lower temperatures at the cirrus altitudes. Consequently, high cirrus
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clouds can easily be identified in those channels due to the large difference in brightness
temperatures compared to cirrus free areas. From 8.7 to 12.0µm the absorption of thermal
radiation by ice increases with the wavelength, making thin cirrus clouds more pronounced
in channel 9 and especially channel 10. This is difficult to recognise by eye in Fig. 3.2,
but by looking at brightness temperature differences between the window channels, as in
Figs. 4.4 and 4.5, thin cirrus clouds can be identified more effectively. Channel 4 is also a
window channel (centred at 3.9 µm), but adjacent to the CO2 absorption band at 4–5 µm.
Higher radiances and brightness temperatures are observed with channel 4 compared to
channels 7, 9 and 10, both for cloudy and cloud-free areas. This is mainly an effect of the
reflected solar radiation that is not considered in the brightness temperature definition, but
nevertheless contributes to the observed radiances and indirectly increases the brightness
temperatures.

Channels 8 and 11 are characterised by moderate absorption of thermal radiation by
ozone and CO2 respectively. Consequently lower brightness temperatures are observed for
those channels compared to the window channels.

3.2 CALIOP aboard CALIPSO

CALIOP was launched as the main instrument aboard the CALIPSO (Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations) satellite in 2006. CALIPSO is flying in
a sun-synchronous orbit as part of the A-Train (Stephens et al., 2002). Cirrus cloud
properties derived from CALIOP retrievals are used as training reference data for CiPS as
well as for the validation and characterisation in Chap. 4.

CALIOP is an elastic backscatter lidar operating at two wavelengths: 532 and 1064 nm.
By emitting approx. 20 laser pulses per second, a ∼70 m footprint is produced every 335 m
on the Earth’s surface, resulting in curtains of attenuated backscatter profiles along the
CALIPSO track (Winker et al., 2009). The left panel in Fig. 3.3 shows a vertical profile of
the CALIOP attenuated backscatter coefficients at 532 nm, averaged over 5 km in the hor-
izontal. The right panel shows a 20 min orbit segment of CALIOP attenuated backscatter
coefficients. The red arrow at the top shows the location where the vertical profile in the
left panel was retrieved. Such vertical profiles are continuously retrieved at both 532 nm
and 1064 nm as CALIPSO orbits the Earth. Due to the enhanced backscatter by clouds,
aerosols and the surface of the Earth, those can be discerned from the background molec-
ular backscatter intensity. If a layer of atmospheric particulates is too optically thick,
the laser beam will get saturated, meaning that the backscatter return is too weak to be
discerned form the background molecular backscatter. This is evident around 3–17°N and
39–45°N, where no signal is received from low altitudes. Due to the narrow swath width,
CALIOP has a poor temporal resolution of around 16 days.

A long set of algorithms are applied to the backscatter profiles in order to detect cloud
and aerosol layers (Vaughan et al., 2009), differentiate between the two (Liu et al., 2009),
determine the cloud phase (Hu et al., 2009) and finally derive profiles of volume extinction
coefficients (Young and Vaughan, 2009). For the cloudy regions where the cloud phase
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Figure 3.3: Left: 5 km horizontal average of the attenuated backscatter coefficients ac-
quired by CALIOP at 532 nm on 13 August 2006. Right: A 20 min orbit segment of
attenuated backscatter coefficients illustrating the type of data CALIOP retrieves. The
red arrow on top of the right panel shows the location where the vertical profile in the left
panel was retrieved. Figure reproduced from Vaughan et al. (2009).

is determined to be ice, the IWC is calculated from the retrieved extinction coefficients
using a parameterisation derived by Heymsfield et al. (2005) based on extensive in situ
measurements. The layer IOT and IWP are obtained by integrating the vertical profiles
of extinction coefficients and IWC.

3.3 Artificial neural networks

An artificial neural network (ANN) consists of a number of neurons that exchange infor-
mation with each other, in a similar manner as biological nerve cells transmit information
via synapses in the human brain. By assigning each neuron-neuron connection a numeric
tunable weight, the ANN has the ability to learn patterns and approximate functions. The
goal of an ANN is to derive a vector of unknown output variables given a vector of known
input data. This tool is applied in Sect. 3.4.3 and Chap. 4 to the remote sensing of cirrus
clouds and is thus introduced in the following.

3.3.1 Multilayer perceptron

In this study a multilayer perceptron (MLP), a feed-forward ANN, is used. An MLP
consists of three major units; (1) the input layer, (2) the output layer and (3) the hidden
layer(s). The input layer holds as many neurons as input variables and the output layer as
many neurons as desired output variables. The hidden layer(s) hold an arbitrary number of
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Input layer
Input neurons

Hidden layer(s)
Hidden neurons

Output layer
Output neurons

Connections

Figure 3.4: Generic structure of a multilayer perceptron (MLP), a form of a feed-forward
ANN used in this study. Figure reproduced from Strandgren et al. (2017a).

additional neurons distributed over an arbitrary number of hidden layers (Haykin, 1999).
All connections between the neurons within the MLP are in the forward direction (input
layer → hidden layer(s) → output layer). Connections backward or within a layer are
forbidden (Rumelhart et al., 1986). The value of a neuron is calculated by processing
the output from the preceding neurons connected to that neuron and the corresponding
weights through an activation function. These non-linear functions allow the ANN to solve
complex problems with a limited number of neurons (Haykin, 1999). A generic structure of
an MLP is illustrated in Fig. 3.4. In addition to the input and hidden neurons, a constant
bias neuron is commonly added to the input and hidden layers in order to give the MLP
more flexibility during the training.

When the MLP is given a vector of input data it uses the connection weights, possible
bias neurons and the activation function to estimate the vector of output data. Thus, it is
crucial that the weights and bias neurons are assigned correct values.

3.3.2 Learning through back-propagation

The weights are tuned by training the MLP, which is done with a teacher–trainer approach,
more known as supervised training. A commonly used training algorithm is the back-
propagation algorithm. The most essential steps in the back-propagation algorithm are
explained below, but for the curious reader the algorithm as a whole is well explained in
Rumelhart et al. (1986).

Using back-propagation the network is fed with a set of training examples where the
vector of input variables as well as the vector of expected output variables is known. From
the training input data the MLP estimates its own output data using the current weights.
From the vector of estimated output and the corresponding vector of expected output the
total error E (squared difference) is calculated. The error is then propagated backwards
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through the MLP and used to update each weight using gradient descent in such a way
that the total error is minimised. Each weight is updated using the following equation:

w∗ij = wij − η
δE

δwij
= wij −∆wij , (3.1)

where wij and w∗ij are the old and new values for a weight connecting the two neurons i

and j. δE
δwij

describes how much a change in wij affects the total error E. To adjust how

aggressive the weight updates should be, a learning rate η is multiplied with δE
δwij

before the

weight update. A larger learning rate means larger changes in the weights and thus a faster
training. This can, however, lead to an oscillation of the total error around a minimum
solution. With a small learning rate the total error will not oscillate around a minimum
solution, but the training is slower and the risk of getting stuck in local minima is higher.
By introducing a momentum term α, possible oscillations in the iterative search for the
minimum error are attenuated, which allows for a larger learning rate. The momentum
makes use of the previous update of the corresponding weight in order to get a weighted
sum of the current and previous error gradients. The momentum term is added to the
second term on the right-hand side of Eq. (3.1) such that

∆wkij = η
δE

δwij
+ α∆wk−1ij , (3.2)

where k represents the kth update of the weight wij, meaning that ∆wk−1ij is the previous
update of weight wij (Rumelhart et al., 1986).

To find the minimum total error between the estimated and expected output vectors for
a complex problem and tune the weights accordingly, a large training dataset is required.
Training an MLP is an iterative process, where each training example is presented to
the ANN multiple times until a satisfying result has been achieved. With common ANN
terminology the training completes one iteration every time the weights are updated and
one epoch when all training examples contained in the training dataset have been presented
to the ANN. The amount of iterations required for one epoch does therefore depend on
the amount of training examples the ANN is given for every update of the weights, i.e.
the batch size. With stochastic gradient descent (sometimes referred to as momentum
stochastic gradient descent, when the momentum term is used) the weights are updated
for each training example (batch size = 1), whereas for full batch gradient descent the
weights are updated using all training examples at once (batch size = N , where N is the
total number of training examples). Stochastic gradient descent leads to a noisy error
gradient whereas the full batch gradient descent requires more computational power to
converge. With mini-batch gradient descent an intermediate number of training examples
is used for each weight update (1 < batch size < N).

While in recent years very potent new learning methods that are based on back-
propagation were developed, stochastic gradient descent is still the most used method
due to its simplicity and robustness (Schmidhuber, 2015).
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3.4 Supporting data

3.4.1 Cb-TRAM

Cb-TRAM (Cumulonimbus Tacking and Monitoring; Zinner et al., 2008, 2013; Merk and
Zinner, 2013) was initially developed to identify, track, monitor and nowcast deep con-
vection and early stages of it from SEVIRI. Parts of Cb-TRAM are used to identify deep
convective cumulonimbus clouds and monitor their convective activity in Chap. 5, and
Cb-TRAM thus shortly introduced here.

Cb-TRAM identifies three stages of thunderstorm development/activity (Zinner et al.,
2013):

Stage 1 early development

Stage 2 rapid development/convective initiation,

Stage 3 mature stage.

Stage 2, which represents rapid cooling in the upper troposphere, is defined as regions with
a brightness temperature cooling of more than 1 K (15 min)−1 in the water vapour channel
centred at 6.2µm. Stage 3 targets mature convective cell patterns, including the active
cell centres within a developed anvil cirrus cloud. To this end, the brightness temperature
difference between the two channels centred at 6.2 and 10.8µm (BT6.2 µm − BT10.8µm) is
used together with texture/smoothness information from the HRV channel (WV 6.2 during
night time). Furthermore, the brightness temperature difference BT10.8 µm − BT12.0µm is
used to identify and exclude cirrus clouds that match these two criteria (Zinner et al.,
2013). Stage 1 is not used in this study and therefore not further described here. Using
Cb-TRAM Stage 2 and 3, 85 to 95 % of all thunderstorms (> 10 flashes pixel−1 (15 min)−1)
are detected on average during daytime (Zinner et al., 2013).

3.4.2 ECMWF ERA5

The European Centre for Medium-Range Weather Forecasts (ECMWF) recently released
the first segment of the fifth major global reanalysis dataset ERA5. For ERA5, ECMWF
uses a wealth of past and present satellite and in situ measurements in order to model a
long time series of climate data. ERA5 provides estimates of more than 240 atmospheric,
land and oceanic climate variables, both at the surface and at 137 pressure levels (down to
0.01 hPa). Two major improvements over its predecessor, ERA-Interim, are the increased
spatial resolution from 79 km to 31 km globally and the increased temporal resolution from
6 h to 1 h for analysis data (Hersbach and Dee, 2016).

ERA5 air temperature, relative humidity (RH), convective available potential energy
(CAPE) and horizontal wind analysis data are used in Chap. 5 to characterise the meteo-
rological conditions in which deep convective cumulonimbus clouds and anvil cirrus form.
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3.4.3 COCS

The COCS (Cirrus Optical properties from CALIOP and SEVIRI; Kox et al., 2014) algo-
rithm retrieves CTH and IOT of cirrus clouds from SEVIRI. It combines Version 2 (V2)
CALIOP level 2 (L2) cloud layer data, SEVIRI thermal observations and auxiliary data
using an ANN in order to retrieve CALIOP-like cirrus properties for the full SEVIRI field
of view every 15 min and 24 h per day. The cirrus properties retrieved with COCS are used
for comparison with CiPS in Sect. 4.9 and COCS is thus shortly introduced here.

COCS is an MLP with 10 input neurons (7 BTs and BT differences, viewing zenith
angle (VZA), land–sea mask and latitude), 2 output neurons (IOT and CTH) and 600
neurons in one single hidden layer. COCS was trained with 3 years of data including
SEVIRI observations from both MSG-1 and MSG-2. The detection of cirrus clouds takes
place indirectly in COCS: a pixel is cirrus-covered if its IOT (IOTCOCS) ≥ 0.1, meaning
that pixels with IOTCOCS < 0.1 are considered too uncertain and regarded as cirrus-free.
The value of 0.1 was chosen as a trade-off between high probability of detection (Eq. 3.3)
and low false alarm rate (Eq. 3.4).

The V2 CALIOP L2 cloud layer products contain no information on data quality and
the feature classification flag and feature optical thickness among other variables were
released as beta products (early release). V2 CALIOP layer data used in Kox et al. (2014)
therefore had to fulfil three filtering conditions to be classified as a cirrus cloud: (1) to
exclude inaccurate retrievals due to diverging extinction retrievals in opaque cloud layers,
the maximum IOT was limited to 2.5. (2) To ensure that the cirrus clouds were not falsely
classified layers of aerosols or liquid water clouds, the mid-layer temperature had to be
243 K or colder. (3) The layer top height had to exceed 9.5 km in the tropics and 4.5 km
in polar regions, with a linear decrease between these two values in mid-latitudes.

3.5 Validation metrics

This section introduces the validation metrics used for the validation and characterisation
of CiPS in Chap. 4. The probability of detection (POD) is used to measure how efficiently
CiPS detects cirrus clouds and is given by

POD =
NTP

NTP +NFN

, (3.3)

where the number of true positives, NTP, is all points correctly classified as cirrus and the
number of false negatives, NFN, all cirrus clouds that remain undetected. The denominator,
NTP + NFN, is thus the total number of points with a reference cirrus cloud. The false
alarm rate (FAR) measures the fraction of cirrus-free points that are falsely classified as
being cirrus clouds:

FAR =
NFP

NFP +NTN

. (3.4)
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Table 3.2: Contingency table for the cirrus detection from CALIOP and CiPS. Table
reproduced from Strandgren et al. (2017a).

CALIOP

Cirrus No cirrus

CiPS
Cirrus NTP NFP

No cirrus NFN NTN

The number of false positives, NFP, is all points falsely classified as cirrus (false alarms)
and the number of true negatives, NTN, all points correctly identified as cirrus-free. The
denominator, NFP + NTN, is thus the total number of points with no reference cirrus
cloud. The corresponding CALIOP data are used as a reference when calculating the
POD and FAR in Chap. 4. Table 3.2 clarifies the quantities used to calculate the two
metrics. The POD and FAR are also used to measure how effectively CiPS can determine
the opacity/transparency of detected cirrus clouds.

The mean percentage error (MPE) and mean absolute percentage error (MAPE) are
used to measure the accuracy of the retrieved cirrus properties with respect to CALIOP.
The MPE is given by

MPE =
100 %

N

N∑
i=1

Ei −Oi

Oi

, (3.5)

where O is the observed reference value by CALIOP and E the estimated value by CiPS.
The sum spans over all samples i = 1, . . . , N used for the evaluation. The MPE gives
information about the direction of the deviations, i.e. whether CiPS tends to overestimate
(positive MPE) or underestimate (negative MPE) the values with respect to CALIOP.
When calculating the MPE, over- and underestimations can cancel out each other, poten-
tially leading to zero MPE (bias) even if the magnitude of the errors is large. Therefore
the MAPE has been considered as well. The MAPE is given by

MAPE =
100 %

N

N∑
i=1

∣∣∣∣Ei −Oi

Oi

∣∣∣∣ (3.6)

and gives information about the average magnitude of the errors relative to the expected
reference values observed by CALIOP. A vanishing MAPE means no deviation from the
observed values and a perfect correlation.
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Chapter 4

CiPS - Cirrus Properties from
SEVIRI

The results and text in this chapter (except Sects. 4.11 and 4.12) have been published in
Strandgren et al. (2017a) and Strandgren et al. (2017b).

CiPS is a new algorithm for cirrus cloud remote sensing with SEVIRI that exploits the basic
idea of COCS: retrieving cirrus properties using ANNs trained with CALIOP and SEVIRI
data. However, CiPS clearly differs from COCS in the implementation of this idea and the
achieved performance. For a more accurate cirrus detection and determination of CTH and
IOT, CiPS utilises a different set of input parameters including numerical weather model
data and information from nearby pixels. In addition, CiPS classifies each pixel as either
cirrus-free, transparent cirrus or opaque cirrus by means of dedicated classification ANNs.
As CALIOP gets saturated for thicker clouds, the opacity information is an important
additional piece of information in order to better characterise the cirrus and the reliability
of the ANN results that was absent in COCS. Furthermore, CiPS is trained to retrieve
the IWP, resulting in a total of three climate relevant cirrus cloud properties that can
be estimated during both day and night for the full SEVIRI field of view every 15 min.
CiPS targets thin cirrus clouds, as those clouds are most difficult to retrieve using thermal
satellite observations from geostationary orbits. Although the approach of training a set of
ANNs with lidar data does not directly increase SEVIRI’s sensitivity to thin cirrus clouds,
it is expected to allow for a more effective exploitation of the SEVIRI spectral information,
compared to present spectral threshold tests and physically based retrievals, indirectly
increasing the sensitivity to thin cirrus clouds.

4.1 Multiple artificial neural networks

In contrast to COCS, which uses one single ANN to retrieve IOT and CTH, CiPS utilises
four ANNs, making it possible to customise the input variables, training data and ANN
structures individually for each task to be solved.
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1. The first ANN is a classification network trained to detect cirrus clouds using a bi-
nary cirrus cloud flag (CCF). Due to the continuous activation function used by the
ANN (Sect. 3.3.1), the retrieved value of the CCF neuron is a real number in the
interval (0,1) represented by a 32 bit floating point number. This value can be in-
terpreted as a cirrus probability, where high and low values indicate a high and low
probability of cirrus presence respectively. This provides at least three major advan-
tages over an IOT threshold-based detection. (1) The CCF detection threshold (0–1)
can be determined depending on the application. A higher threshold means a lower
FAR (Eq. 3.4), whereas a lower threshold means a higher POD (Eq. 3.3). (2) The
cirrus detection is independent of the IOT and not limited to cirrus clouds with an
estimated optical thickness greater than 0.1, as is the case for COCS. (3) Since no
additional information is needed for the pixels classified as cirrus-free by the cirrus
detection ANN, the ANNs for CTH, IOT, IWP and opacity information retrieval can
be trained only with cases where cirrus clouds are present. This excludes a large
number of largely different input data combinations representing the same “cirrus”
properties, i.e. the situations where IOT = IWP = 0.

2. The second ANN is used for the CTH retrieval.

3. The third ANN is used for the IOT/IWP retrieval. These two variables are provided
by the same network since they are physically closely related (Heymsfield et al., 2005).

4. CALIOP cannot provide accurate IOT/IWP retrievals for thicker cirrus clouds where
the laser beam is completely attenuated. Hence the estimated IOT and IWP by CiPS
for such situations should not be trusted. Therefore a second classification network
is introduced with CiPS, trained to identify the cirrus clouds where CALIOP gets
saturated. Similarly to the cirrus detection ANN, the opacity classification ANN
retrieves real numbers in the interval (0,1), which can be regarded as an opacity
probability information. From here a binary opacity flag (OPF) is obtained using
a suitable opacity classification threshold (Sect. 4.6).

4.2 Input data

The CiPS input data selection is based on physical considerations. The following subsec-
tions introduce all input data used to train and apply CiPS. An overview is provided in
Table 4.1.

4.2.1 Brightness temperatures from SEVIRI

CiPS works pixel by pixel and uses the single brightness temperatures from the SEVIRI
channels centred at 6.2, 7.3, 8.7, 10.8, 12.0 and 13.4µm. Water vapour channels (centred
at 6.2 and 7.3µm) should help detecting ice clouds (see e.g. Krebs et al., 2007), identifying
opaque pixels as well as determining its height, together with the CO2 channel centred
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at 13.4 µm (e.g. Menzel et al., 1983, 2008). Window channels (8.7, 10.8, 12.0 µm) and
especially their brightness temperature differences are both useful for detection (e.g. Inoue,
1985) and for the optical thickness determination (e.g. Ackerman et al., 1990). The ozone
channel centred at 9.7 µm is excluded because its sensitivity peaks in the stratosphere,
where no cirrus clouds are present, and because of its strong annual cycle due to the ozone
variability (Ewald et al., 2013). Channels with significant solar contribution are excluded
in order to have the same conditions and similar performance during both day and night.
Furthermore, CiPS exploits the information from nearby SEVIRI pixels by utilising the
regional maximum brightness temperature from the window channels (for all ANNs, as
a proxy for cirrus-free conditions) and the regional average brightness temperature from the
water vapour channels (only for cirrus detection and opacity classification, as a proxy for the
smoothness of the surroundings). The regional maximum brightness temperature is defined
as the maximum brightness temperature within a 19× 19 pixels large box (corresponding
to an area of ≈ 57 × 57 km2 at nadir) centred at the pixel under consideration. Similarly
the regional average brightness temperature is defined as the boxcar average temperature
within the same box (inspired by Krebs et al., 2007). The box size of 19 × 19 pixels is
chosen such that the region is small enough to reduce the risk of unrepresentative maximum
temperatures over inhomogeneous surfaces (e.g. coast lines) but large enough to increase
the chance of capturing a representative cirrus-free pixel.

4.2.2 Surface temperature from ECMWF

With CiPS, modelled data from the ECMWF ERA-Interim reanalysis dataset (Dee et al.,
2011) are introduced to the list of input variables. The modelled surface temperature, Tsurf,
from ECMWF provides a cirrus-free characterisation of the surface and should be useful
in all ANNs. It also helps the ANNs to distinguish between cirrus clouds and cold surfaces
like Greenland and Antarctica. The temporal resolution of 6 h and spatial grid of 0.125◦

is used.

4.2.3 Auxiliary data

Along with the SEVIRI and ECMWF data, CiPS uses information about the latitude,
the viewing zenith angle (VZA) of SEVIRI, two surface type flags (seawater and perma-
nent ice and snow) and the day of year (DOY, 1–365; to avoid a hard transition from
31 December to 1 January, two input neurons are used for the DOY: sin(2πDOY/365)
and cos(2πDOY/365)). Latitude and DOY are selected since the appearance of cirrus
and their top height strongly depends on general circulation and convective strength, with
higher clouds in the tropics and generally lower clouds towards the polar regions and with
stronger convection in summer with respect to spring/autumn and, of course, winter in
mid-latitudes. VZA shall account for the path length of radiation through the atmosphere,
while the two selected surface types identify on one side (sea) thermally quite homogeneous
surfaces and on the other side (ice/snow) cold surfaces with similar absorption properties
as the ice clouds. In total, 18 input variables are used for the cirrus detection and opacity
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Table 4.1: Input data used to train the four ANNs contained in CiPS. regavg is re-
gional average, regmax is regional maximum, DOYSIN = sin(2πDOY/365) and DOYCOS =
cos(2πDOY/365). Table adapted from Strandgren et al. (2017a).

CCF OPF CTH IOT/IWP

BT6.2µm X X X X

BT7.3µm X X X X
BT8.7µm X X X X
BT10.8µm X X X X

BT12.0µm X X X X
BT13.4µm X X X X
BT6.2µm, regavg X X

BT7.3µm, regavg X X
BT8.7µm, regmax X X X X
BT10.8µm, regmax X X X X

BT12.0µm, regmax X X X X
Tsurf X X X X
Latitude X X X X

VZA X X X X
Water flag X X X X
Snow/ice flag X X X X

DOYSIN X X X X

DOYCOS X X X X

classification and 16 input variables for the CTH, IOT and IWP retrievals (see Table 4.1).
Although the selection of input quantities is inspired by physical principles, the task of
combining input variables is left to the ANNs.

4.3 Output data: cirrus properties from CALIOP

The training reference data, including a CCF and an OPF as well as the CTH, IOT
and IWP, are derived from the Version 3 (V3) CALIOP L2 5 km cloud and aerosol layer
products (CAL LID L2 05kmC|ALay-Prov-V3-0X CALIPSO Science Team, 2015a,b,c,d).
Major improvements with respect to V2 data include enhanced cloud–aerosol discrimi-
nation, improved cloud thermodynamic phase determination, more accurate estimates of
layer spatial and optical properties as well as an improved estimate of the low cloud frac-
tion. Furthermore, new products like the IWP and retrieval uncertainties are included.
Most importantly, the maturity level of all products used to develop CiPS has been up-
graded from beta status to provisional or higher, meaning that the data have at least been
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compared to independent sources in order to correct obvious artefacts (NASA Atmospheric
Science Data Center, 2010).

Even though the cloud and aerosol layer products are reported with a spatial resolution
of 5 km, two additional coarser resolutions of 20 and 80 km are used to detect the cloud and
aerosol layers reported in the 5 km products (Vaughan et al., 2009). At a spatial resolution
of 5 km, the signal-to-noise ratio (SNR) of a faint cirrus or aerosol layer is usually too
weak to be distinguished from the clear-sky atmospheric signal. By averaging 4 or 16
consecutive 5 km profiles the SNR is increased, which allows for detection of very thin
cirrus and aerosol layers. For example if a thin cirrus cloud with an optical thickness
of 0.1 and a top altitude of 10 km is identified only when 16 consecutive 5 km profiles are
averaged (80 km spatial resolution), 16 consecutive bins in the L2 5 km cloud layer data will
report an optical thickness of 0.1 and a top altitude of 10 km. This can result in a vertical
overlap between layers detected at different spatial resolutions. This is accounted for by
identifying the part of an icy layer vertically overlapped by another layer (water cloud or
aerosol) detected at a higher spatial resolution and correcting the corresponding extinction
coefficients, IWC and CTH accordingly. The column IOT and IWP are then derived by
combining the properties of all icy layers in each profile. Finally, the OPF is extracted
from the “Opacity Flag” product. The Opacity Flag gives the information whether the
CALIOP backscatter signal was completely attenuated within a detected layer. During the
CALIOP retrieval, a cirrus cloud layer is classified as opaque if it is the lowermost layer
and not identified as a surface return (Vaughan et al., 2005). A digital elevation model
is partly used to identify surface returns, meaning that high cirrus clouds should not be
falsely classified with respect to transparency. Cirrus cloud layers detected at the coarser
20 or 80 km resolutions are classified as transparent if the corresponding base altitude is
higher than the lowermost detected feature in at least 50 % of the 4 or 16 consecutive 5 km
profiles that constitute the 20 and 80 km averages.

The minimum detectable backscatter of CALIOP depends on the scattering target (the
cirrus cloud in this case), the altitude as well as the vertical and horizontal averaging of
the data (McGill et al., 2007). Davis et al. (2010) show that CALIOP can detect approx.
one-third of the sub-visual cirrus clouds with an optical thickness below 0.01.

With the improved quality of the V3 CALIOP products, the filtering processes applied
to the V2 data used for COCS can be omitted (see Sect. 3.4.3). To assure a high-quality
dataset, the extinction quality control flag, retrieval uncertainties and the feature classi-
fication flag including the quality assessments have been considered though. All columns
containing at least one layer with unknown feature type, unknown cloud phase or a fea-
ture/phase quality assessment flag less than 3 (high confidence) are excluded. Addition-
ally, only those columns with solely constrained or unconstrained cirrus/ice cloud retrievals
where the initial lidar ratio remained unchanged during the solution process are included.
Furthermore, the columns containing stratospheric features are excluded due to lack of
information about whether the features are stratospheric clouds or aerosol layers.

The CALIOP products are chosen as training reference data for CiPS as they should
provide the most accurate estimates of especially CTH but also IOT for thin cirrus clouds
from space. It is important to note that an ANN can never be better than its training
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reference and all deficiencies and/or biases in the training reference data will be inherited
by the ANN. Since possibly inherited artefacts of the ANN will not show when validated
against independent CALIOP retrievals, one must be aware of the accuracy and limitations
of the training data.

Yorks et al. (2011) and Hlavka et al. (2012) validate the spatial and optical properties
of cirrus clouds from the V3 CALIOP products using the airborne Cloud Physics Lidar
(CPL; McGill et al., 2002) during the CALIPSO-CloudSat Validation Experiment (CC-
VEX). CPL has a higher SNR, higher vertical and horizontal resolution and lower multiple
scattering compared to CALIOP, making it the most comprehensive tool for validating the
CALIOP retrieved cirrus properties. Ten underpass flights with CALIOP were performed
and over 9500 bins of collocated extinction coefficients were obtained. During the 10 flights,
extinction coefficients ranging from approx. 0.001 to 10 km−1 and column optical thickness
up to approx. 3 were retrieved. CALIOP and CPL agree on 90 % of the scene classifications
(cirrus or no cirrus) on average. For all bins classified as cirrus by CPL, CALIOP agrees
on 82 % and for the bins classified as cirrus-free by CPL, CALIOP agrees on 91 %. For
cases where both CALIOP and CPR detect cirrus, the agreement in cirrus top height is
excellent (Yorks et al., 2011).

For transparent cirrus layers the agreement in IOT between CALIOP and CPL is good
with on average 15 % higher extinction for CALIOP (0.65 in correlation between CALIOP
and CPL). For the unconstrained retrievals where the initial lidar ratio remains unchanged
the average difference in extinction is only 7 % (0.80 in correlation between CALIOP and
CPL; Hlavka et al., 2012). The latter are the ones used to train CiPS (see above), along
with the constrained retrievals. At the time of the CC-VEX campaign (between 26 July
and 14 August 2006) the laser of CALIOP was pointing just 0.3◦ from nadir leading to
a strong specular reflection by layers of horizontally orientated ice (HOI) (Winker et al.,
2009). This led to disagreements in the extinction retrieval with CPL, whose laser pointed
2◦ from nadir and therefore only received a very small fraction of specular reflections from
the HOI (Hlavka et al., 2012). Since November 2007 the CALIOP lidar points 3◦ from nadir
in order to overcome this issue for layers with HOI. When the column optical thickness is
derived for all cirrus-covered bins, the relative difference between CALIOP and CPL is only
2.2 % due to cancellation of opposing CALIOP effects. Holz et al. (2016) recently showed
that the single-layer IOT derived from unconstrained CALIOP retrievals is low-biased with
respect to a single-channel thermal/infrared IOT retrieval combining CALIOP/MODIS
observations and forward radiative transfer modelling. The bias is shown to increase with
increasing IOT.

The accuracy of the CALIOP IWC/IWP is directly related to the accuracy of the
extinction retrievals as well as the IWC parameterisation from Heymsfield et al. (2005).
A proper independent validation of the CALIOP IWC/IWP is a difficult task due to the
lack of reference data at a comparable spatial and temporal resolution. Protat et al. (2010)
evaluate the IWC parameterisation used for CALIOP for tropical cirrus using ground-based
radar–lidar retrievals. The results suggest that the parameterisation is quite robust and
is shown to work well at most altitudes. Above ≈ 12 km the IWC is clearly underesti-
mated with respect to the ground-based radar–lidar retrieval. Avery et al. (2012) evaluate
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the CALIOP IWC using coincident data from CloudSat and in situ measurements inside
a tropical convective cloud. At the lower altitudes (8–12 km), the CALIOP IWC is under-
estimated with respect to the in situ measurements, which could be attributed to a lower
penetration depth of CALIOP and the removal of CALIOP layers containing HOI. Between
12 and 14 km the agreement between the CALIOP IWC and the in situ measurements is
good. At all altitudes CALIOP seems to underestimate the IWC with respect to CloudSat.
Wu et al. (2014) show that the V3 CALIOP IWC agrees well with airborne in situ mea-
surements up to approx. 20 mg m−3 at an altitude of 12 km. The CALIOP IWC agrees well
with the CloudSat IWC within the regions where their sensitivities overlap. This occurs
between 5 and 20 mg m−3 at an altitude of 12 km and between 30 and 200 mg m−3 at 15 km.

In the following, all quantities referring to CALIOP will be denoted as IOTCALIOP,
IWPCALIOP and CTHCALIOP.

4.4 Data preparation

To learn the relationship between the SEVIRI, ECMWF, auxiliary data and the cirrus
properties from CALIOP, an extensive dataset is created containing spatial and temporal
collocations of all variables. The training dataset covers the time period from April 2007 to
January 2013, which is the time when MSG-2 was the operational satellite at 0.0◦ E. CiPS
is restricted to MSG-2 alone, to avoid mixing data from multiple SEVIRI instruments since
their characteristics are slightly different.

4.4.1 Data collocation

For this time period all quality-controlled CALIOP data within the SEVIRI field of view
are identified and collocated with single SEVIRI pixels in time and space. Due to the
different viewing geometries of SEVIRI and CALIOP, the same cloud seen by SEVIRI
and CALIOP at the same time appears to be located at two different positions. The
magnitude of this displacement depends on the VZA and the altitude of the cloud layer.
This effect has been corrected for using the latitude, longitude and CTH from CALIOP
(parallax correction) to project ice clouds onto the SEVIRI grid. The cirrus properties
from CALIOP are spatially collocated with SEVIRI observations from the pixel having the
largest overlap with the 5 km CALIOP orbit segment. The data are temporally collocated
by identifying the SEVIRI observation that has the smallest difference in acquisition time
compared to CALIOP. With a temporal resolution of 15 min for SEVIRI, the maximum
difference in acquisition time between SEVIRI and CALIOP is 7.5 min.

When collocating SEVIRI and CALIOP observations with the purpose of training an
ANN one must consider two aspects. (1) Even though the 5 km average of CALIOP point
measurements fits the spatial resolution of SEVIRI (3× 3 km2 at nadir and approx. 3.5×
5 km2 in mid-latitudes) quite well in the along-track direction, the two observations differ
largely in scale in the across-track direction as the footprint of CALIOP is approx. 70 m wide
at the Earth’s surface. Consequently the 5 km CALIOP orbit segment is representative
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only for a relatively small fraction of a SEVIRI pixel. This will induce inevitable errors and
lead to imperfect information used to train the ANN. This is especially relevant for partial
cloud cover, where CALIOP may observe a cloud-free area in an otherwise cloud-covered
SEVIRI pixel. If the error from imperfect collocations is random, this will have a limited
effect on the ANN. Only if there is a recurrent systematic difference as a result of the
different spatial scales this will lead to biased retrievals (Holl et al., 2014). (2) Although
cirrus clouds leave their mark on both SEVIRI and CALIOP measurements in a similar
way, SEVIRI does not share CALIOP’s possibility of discerning vertically separated ice
clouds, liquid water clouds and aerosols. Consequently SEVIRI should not be expected
to discern the signal from liquid water clouds and aerosols when retrieving the IOT as
effectively as CALIOP.

The ECMWF surface temperatures are spatially collocated with the satellite observa-
tions using nearest neighbour. For the temporal collocation, the ECMWF reanalysis data
are linearly interpolated between the ECMWF 6 h time steps and the satellite acquisition
time.

4.4.2 Training and validation data

The full collocated dataset, covering the entire SEVIRI disc and a time period of almost
6 years, contains close to 50 million collocations. Of those collocations, 80 % are used to
create the four datasets required for the training of the four ANNs contained in CiPS. For
the CCF ANN, both cirrus-free collocations and collocations with transparent and opaque
cirrus clouds are included in the training dataset. Collocations with no cirrus cloud present
are excluded from the training datasets used to train the OPF ANN as well as the CTH and
IOT/IWP retrieval ANNs, since those networks will be applied only on pixels identified
as cirrus-covered by the CCF ANN. Furthermore, the IOT/IWP ANN is trained only
with collocations containing transparent cirrus clouds, where the CALIOP signal was not
saturated such that the true, rather than the apparent, IOT and IWP could be retrieved.
Figure 4.1 shows the relative number distributions of the IOT, IWP and CTH retrieved by
CALIOP. It is clear that the collocation dataset is unbalanced in several aspects. The IOT
and IWP have exponential distributions with very few thicker cirrus clouds. Similarly there
are comparably few low and high cirrus clouds available and the CTH distribution has two
peaks, corresponding to mid-latitudes and tropics. To improve the end performance for
those rare points the unbalance of the training datasets is reduced “by hand”. For the cirrus
detection and IOT/IWP ANNs, four duplicates of all cirrus clouds with IOTCALIOP ≥ 1.0
have been added to the training datasets. Similarly four duplicates of all cirrus clouds with
CTHCALIOP > 17 km or CTH CALIOP < 5 km have been added to the CTH training dataset.
For the opacity classification ANN, four duplicates of all opaque cirrus clouds have been
added to the training dataset. This approach does not introduce any new information
that the ANNs can learn from but does increase the weight of the added points during the
training. Adding too few duplicates has a negligible effect whereas too many duplicates
give the added points too strong an impact during the training. By testing different
numbers, four duplicates are seen to yield the best results for all ANNs. Furthermore,
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Figure 4.1: The relative number distribution of the cirrus IOT (bin size = 0.2), IWP
(bin size = 5 g m−2) and CTH (bin size = 1 km), from almost 6 years of V3 CALIOP L2
layer data over the SEVIRI disc. Figure reproduced from Strandgren et al. (2017a).

the IOT and IWP are transformed to their logarithmic counterparts before the training
(IOT∗ = log10(IOT), IWP∗ = log10(IWP/1 g m−2)). Finally, the single input variables are
normalised to have zero mean and unit variance (LeCun et al., 1998) and the output data
are scaled to fit the ranges of the activation functions (Sect. 4.5) used by the ANNs.

The remaining 20 % of the collocation dataset is used for validation. Half of these
data are used to create internal validation datasets that are used to monitor the error
against independent data during the training in order to avoid overfitting (see Sect. 4.5)
and to determine training meta-parameters, ANN structures (see Sect. 4.7) and classifica-
tion thresholds (see Sect. 4.6). The internal validation datasets have been filtered in the
same manner as the training datasets but have not been balanced by adding duplicates of
selected points. The second half of the validation data are used for final validating and
characterising CiPS (and COCS) presented in Sects. 4.9 and 4.10 respectively. These final
validation data are not used for any purpose during the development and training of CiPS.
With common ANN terminology the internal and final validation data are usually referred
to as validation and test data respectively.

4.5 Training

To train and apply CiPS the Fast Artificial Neural Network library (FANN; Nissen, 2003)
is used. The four ANNs contained in CiPS are trained using the standard back-propagation
algorithm and mini-batch gradient descent described in Sect. 3.3.2.

Three hidden layers are used for the cirrus cloud detection, two for the CTH and
IOT/IWP retrievals and a single hidden layer for the opacity classification. All ANNs
use 16 hidden neurons per hidden layer (see Sect. 4.7 for details on the MLP structures).
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For the classification ANNs (CCF, OPF) the sigmoid activation function is used for both
hidden and output layers, whereas the tanh activation function is used for hidden and
output layers for the regression ANNs (CTH and IOT/IWP). A batch size of 1024 is used,
meaning that the ANNs look at 1024 input and output data combinations before each
weight update. The value of 1024 was chosen as a trade-off between the noise in the error
gradient that increases with smaller batch sizes and the required computational power that
increases with larger batch sizes. The learning rate and momentum are sensitive to the
problem that should be solved, the corresponding training data as well as the number of
input and output variables (Schaul et al., 2013). To find the optimal values an extensive
iterative test approach is performed. For this test a large GPU cluster (120 teraFLOPS –
20 NVIDIA GTX Titan GPUs) is used to train numerous ANNs with different numbers of
hidden layers and hidden neurons and a wide range of learning rates and momentum values.
To find the optimal values for each meta-parameter, a random search according to Bergstra
and Bengio (2012) is performed within intervals chosen based on expert knowledge. Sets
of meta-parameters are randomly drawn from the pre-defined intervals and used to train
corresponding sets of ANNs. Assuming an infinite number of samples, this procedure can
be regarded as a global optimisation technique. The optimal set of meta-parameters is
defined as the one that minimises the mean square error (MSE) between the ANN and the
internal validation data. All resulting optima are well within these chosen intervals, so it is
assumed that the choice of the intervals does not introduce any distortion or bias. For both
the classification and regression tasks a learning rate around 0.05 and momentum around
0.99 are found to provide ANNs with the lowest MSE against the independent internal
validation data.

The ANNs are initially trained using 25 % of the training data. This is done in order to
speed up the training. This first phase continues until the accuracy of the ANNs does no
longer improve with respect to the internal validation data. During this first phase of the
training a rough estimate of the error gradient is sufficient as the general direction towards
a minimum solution is searched for. Thus a larger learning rate and smaller mini-batches
are preferred. When the ANN approaches the region of an optimal solution, those large
step-sizes and small mini-batches are too blunt to find the finer structures needed to solve
the problem better. Thus the learning rate and batch size should be adjusted accordingly
in order to make smaller and more informed steps in the search space. During this iterative
tuning phase, the learning rate is reduced by a factor of 4 and the batch size is increased
by a factor of 2. In order to not impede the effect of the finer learning rate and batch size,
the momentum is reduced accordingly. Furthermore the size of the training dataset, which
started at 25 % during the first phase, is increased by a factor of 2. This is a schedule
procedure that is commonly used in the machine learning/ANN community. As the tuning
phase continues the meta-parameters are refined according to the schedule above as soon as
the total error stops to decrease with respect to the internal validation dataset. The tuning
phase and thereby the training stops when the respective ANNs have reached a point where
additional epochs do not reduce the error, using 100 % of the respective training datasets.

To avoid overfitting, the error against the independent internal validation datasets
(Sect. 4.4.2) is always monitored. Overfitting occurs when an ANN learns the training
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dataset itself rather than the relationship between the input and output variables and
thus loses its ability to generalise. To make sure that the ANNs are not overfitting, the
updated weights are only saved if the error against the internal validation dataset decreases;
otherwise the training continues but the set of weights having the current minimum error
against the internal validation dataset is kept.

For each task/ANN the training is repeated twice in order to reduce the risk of having
a bad end performance as a result of a bad set of initial weights (from Widrow and Nguyen’s
algorithm; Nguyen and Widrow, 1990). In the end, only the best performing network is
used. The differences between the two networks trained for each task/ANN are, however,
very small (ca. 3� relative difference in MSE).

Using a common standard desktop PC (using 1 core @ 3.40 GHz, Intel Core i5-3570),
the final set of ANNs, called CiPS, takes approx. 60 s to process a complete SEVIRI image
(3712× 3712 pixels) including I/O. Approximately 40 s are needed for the cirrus cloud
detection and another 20–30 s for the opacity classification as well as the retrieval of CTH,
IOT and IWP. The cirrus cloud detection takes longer as this ANN must be applied to all
SEVIRI pixels, whereas the other ANNs only have to be applied to those pixels classified
as icy by CiPS. This is ca. 10 times faster than the combined CTH and IOT retrieval
by COCS (Kox et al., 2014). ANN computations are highly parallelisable, meaning that
the computation time can be reduced significantly by distributing the computations across
multiple cores.

4.6 Cirrus detection and opacity classification thresh-

olds

As described in Sect. 4.1 the thresholds for the CiPS CCF and OPF ANNs can be selected
between 0 and 1 depending on the application. These two thresholds are chosen based on
a trade-off between the POD (Eq. 3.3) and FAR (Eq. 3.4) using the internal validation
dataset. Figure 4.2 shows the FAR and POD of the CiPS classification ANNs as a function
of classification threshold (also known as the receiver operating characteristic curve). It
is clear that the two quantities are anti-correlated where a lower threshold yields a higher
POD, but this comes at the expense of an increased FAR and vice versa. For the applica-
tion, validation, characterisation and anvil cirrus life cycle analysis presented in thesis, as
well as for the standard usage of CiPS, a CCF threshold of 0.62 is chosen, resulting in a to-
tal POD of 71 % and a FAR of 3.9 %. The low POD is a direct effect of the large amount
of very thin to sub-visual cirrus (IOT < 0.03) that CiPS does not detect (see Figs. 4.1 and
4.7). For the OPF a threshold of 0.86 is chosen, resulting in a POD of 71 % and a FAR of
4.0 % for the cirrus clouds that CiPS successfully detects. The two thresholds chosen for
CiPS are indicated in Fig. 4.2 with red circles.
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Figure 4.2: The POD and FAR of the CiPS cirrus cloud detection and opacity classification
ANNs as a function of classification threshold. The red circles indicate the final thresholds
selected for the two ANNs. Figure adapted from Strandgren et al. (2017a).

4.7 Evaluating different MLP structures

When developing CiPS, several ANNs with different MLP structures were trained in order
to investigate the effect of the MLP structure on the end performance and to determine the
respective structures that offer the best trade-off between accuracy and application time.
For each ANN contained in CiPS several networks with different structures were trained
using one, two and three hidden layers with either 16 or 64 hidden neurons per hidden
layer. For the single hidden layer structures a network with 128 hidden neurons is also
trained. Also here the training is repeated twice for each network in order to reduce the
risk of having a bad end performance as a result of a bad set of initial weights. Again, only
the best performing network among the two is further evaluated after the training. All
different structures are trained according to the first phase as explained above (Sect. 4.5),
i.e. using 25 % of the respective datasets. After this stage the accuracy of the different
MLP structures is evaluated and compared using the internal validation datasets. This
investigation was used to determine the MLP structures used for CiPS (see Sect. 4.5).

Figure 4.3a shows the difference in POD (Eq. 3.3) between each structure and the least
complex structure, which has one hidden layer and 16 hidden neurons (denoted as 1–16) for
the cirrus cloud detection ANN with respect to CALIOP for the seven different structures
that were investigated. Similarly, Fig. 4.3b and c show the difference in MAPE (Eq. 3.6)
between each structure and the least complex one for the CTH and IOT retrieval ANNs
respectively. The MAPE behaviour of the IWP is very similar to the MAPE of the IOT and
is therefore not presented here. For the OPF, the structure of the network does not seem
to have any significant influence on the performance and is thus not presented here. For
the cirrus detection and IOT retrieval, only the transparent cirrus clouds are considered.
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Figure 4.3: The difference in accuracy be-
tween each MLP structure and the least
complex MLP structure having one hid-
den layer with 16 hidden neurons (1–16).
(a) The difference in POD for the cir-
rus cloud detection, (b) the difference in
MAPE for the CTH retrieval and (c) the
difference in MAPE for the IOT retrieval.
The number to the left of the hyphen is
the number of hidden layers and the num-
ber to the right the number of hidden
neurons per hidden layer. Figure adapted
from Strandgren et al. (2017a).

Please note that for a better visualisation for the lower IOT values, the horizontal axes
in Fig. 4.3a and c are divided into one logarithmic range (IOTCALIOP < 1.0) and one
linear range (IOTCALIOP ≥ 1.0). Furthermore, Table 4.2 lists the approximate amount of
time required to process 1 million data points/pixels (including I/O) with the different
structures using the above specified desktop PC.

In all cases, already small networks produce reasonable results. In many cases differ-
ences between structures are not very large. Nevertheless, it is also clear that larger ANNs

Table 4.2: Approximate time required to process 1 million data points using the different
ANN structures investigated in this study. The number to the left of the hyphen is the
number of hidden layers and the number to the right the number of hidden neurons per
hidden layer. Table reproduced from Strandgren et al. (2017a).

Structure 1–16 2–16 3–16 1–64 1–128 2–64 3–64

Time / s 2.1 3.1 4.0 5.2 9.5 14.4 23.6
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can always solve the problems in a more accurate way and especially for the cirrus cloud
detection it is beneficial to either use more hidden neurons or add more hidden layers rather
than using a simple structure with one hidden layer and 16 hidden neurons (1–16). Using
two or three hidden layers with 64 hidden neurons each (2–64, 3–64) yields a POD that
is up to 8 percentage points higher compared to one hidden layer with 16 hidden neurons
(1–16). Similarly, a structure with three hidden layers and 16 hidden neurons (3–16) yields
a POD that is up to 5.5 percentage points higher compared to the structure with one
hidden layer and 16 hidden neurons (1–16). Although three hidden layers with 64 neurons
each (3–64) offer the highest accuracy for all cases, such a complex structure processes
the data significantly slower by a factor of 8 or 6 compared to the smaller structures with
2 or 3 hidden layers and 16 neurons per layer. For the IOT retrieval, a larger ANN is
mostly beneficial for the thinner cirrus and the MAPE with respect to CALIOP seems to
be saturated and hardly improvable for IOTCALIOP > 0.1 using this approach and training
data. For the sub-visual cirrus, the MAPE with respect to the CALIOP reference IOT
is up to 13 percentage points lower using two hidden layers instead of one hidden layer
with 16 hidden neurons each. For the CTH retrieval, only marginal improvements in the
MAPE with respect to CALIOP (≈ 0.1–0.5 percentage points) are observed using the more
complex structures in comparison to the least complex one (1–16). Only for the lowermost
clouds (CTHCALIOP < 6.0 km) is the advantage of using more hidden layers and neurons
more evident.

4.8 Applying CiPS to a real scene

In this section CiPS is applied to the MSG-3 SEVIRI scene acquired on 1 June 2015
12:30 UTC (same scene as in Fig. 3.2). Figure 4.4a shows a false colour RGB composite
for the full SEVIRI disc using the three SEVIRI channels centred at 0.6, 0.8 and 10.8 µm.
Remember, that with this channel combination the thick and thin cirrus clouds are identi-
fied as white and bluish, whereas the warmer liquid water clouds are recognised as yellow.
As already described in Sect. 3.1, a band of cirrus clouds can be seen along the ITCZ.
Furthermore several frontal (cirrus) clouds can be seen over Europe and the southern and
northern Atlantic Ocean. In the tropics, large areas of shallow cumulus clouds can be
seen over the Atlantic Ocean. Figure 4.5a shows a subset of the SEVIRI disc consisting
of 350×350 pixels comprising western and central Europe. Two large cirrus clouds can
be seen ranging from the south-western parts of France towards the Alps and southern
parts of Scandinavia. Also over England and Norway, cirrus clouds are present and clearly
visible in the RGB. Liquid water clouds are mainly present over the central parts of France,
Switzerland and Germany as well as over the North Sea, Mediterranean Sea and southern
parts of Scandinavia. For an enhanced view of thin cirrus clouds, Fig. 4.4b and 4.5b show
the corresponding brightness temperatures difference between the SEVIRI channels cen-
tred at 8.7µm and 10.8µm. In those pictures, cirrus clouds are characterised by positive
or slightly negative values.

Figure 4.4c and 4.5c show the cirrus cloud mask retrieved by CiPS for the same scenes.
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Figure 4.4: (a) MSG-3/SEVIRI false colour RGB composite for the entire SEVIRI disc
on 1 June 2015 at 12:30 UTC, the corresponding (b) brightness temperature difference
BT8.7µm−BT10.8 µm and the (c) cirrus cloud mask with opacity information, (d) CTH, (e)
IOT and (f) IWP retrieved by CiPS.

The blue and grey areas show all pixels that CiPS classifies as cirrus, of which the grey
pixels are classified as opaque. This means that for the grey pixels the retrieved IOT and
IWP is likely to be underestimated. Figure 4.4d-f and 4.5d-f show the corresponding CTH,
IOT and IWP retrieved by CiPS.

CiPS clearly detects all cirrus clouds that can be identified in the false colour RGB
composites (Fig. 4.4a and 4.5a) and from the brightness temperature differences (Fig. 4.4b
and 4.5b). The OPF correlates well with the cirrus brightness in the RGB. The brightest
parts of the cirrus clouds, which represent the thickest parts, are classified as opaque by
CiPS. CiPS captures the latitude dependency of the CTH, with generally lower values at
higher latitudes. Elevated heights for the thicker cirrus cloud areas are also observed. The
cloud edges are generally seen to have lower altitudes, which could indicate ice crystal
sedimentation or partial cloud cover inside the SEVIRI pixels. As expected, the IOT
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Figure 4.5: (a) MSG-3/SEVIRI false colour RGB composite over parts of Europe on 1 June
2015 at 12:30 UTC, the corresponding (b) brightness temperature difference BT8.7 µm −
BT10.8µm and the (c) cirrus cloud mask with opacity information, (d) CTH, (e) IOT and
(f) IWP retrieved by CiPS. Figure reproduced from Strandgren et al. (2017a).

and IWP are well correlated and qualitatively the values correspond well to the level of
transparency of the different cirrus clouds seen in Fig. 4.4a and 4.5a. For a quantitative
evaluation of the IOT and IWP as well as the other quantities, readers are referred to
Sect. 4.9.

4.9 Validating CiPS against CALIOP

In this section the performance of CiPS is validated against V3 CALIOP products using
the 10 % subset (≈ 4.9 million collocations) of the full collocation dataset excluded from the
training of CiPS (Sect. 4.4.2). The results are presented for the full SEVIRI field of view.
Since CiPS and COCS share the concept of using ANNs trained with primarily SEVIRI
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Figure 4.6: Top: the FAR of the CCF retrieved by (a) CiPS and (b) COCS. Bottom:
the absolute number of false alarms by (c) CiPS and (d) COCS for the approx. 3.3
million cirrus-free points included in the final validation dataset. Figure reproduced from
Strandgren et al. (2017a).

and CALIOP data, the corresponding validation results of COCS are also presented.
An in-depth characterisation of CiPS with respect to (1) the relative importance of the

different input variables, (2) the effect of the underlying surface type as well as underlying
liquid water clouds and aerosol layers on the cirrus cloud retrieval, (3) the retrieval errors
as a function of IOTCALIOP and CTHCALIOP combined and (4) the sensitivity to radiometric
noise in the SEVIRI input data is presented in Sect. 4.10.

4.9.1 Cirrus cloud classification

The CCF of CiPS and COCS and the OPF of CiPS are evaluated as a function of the
geographic position. This aspect is interesting due to the very different meteorological
conditions present on the SEVIRI disc. Figure 4.6a and b show the gridded FAR (Eq. 3.4)
for the CCF of CiPS and COCS, respectively, over 5◦ × 5◦ boxes, using the V3 CALIOP
products as reference.

As mentioned in Sect. 4.6 the average FAR for the CiPS cirrus detection is 3.9 %.
The FAR is sensitive to the frequency of the events, meaning that over regions where the
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natural probability of cirrus presence is high, a single false alarm will have a larger impact
on the total FAR than over regions where the natural probability of cirrus presence is low.
Although the FAR of CiPS is relatively homogeneous across the SEVIRI disc, this effect
can be observed with higher FARs along the ITCZ and lower FARs over the Sahara, for
example.
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Figure 4.7: The POD of CiPS and COCS as
a function of the IOT retrieved by CALIOP.
Figure reproduced from Strandgren et al.
(2017a).

COCS has an equally low FAR over arid
regions but has a clearly higher FAR in gen-
eral. In particular over icy surfaces like
Greenland and Antarctica, COCS overes-
timates the cirrus presence, with FARs up
to approx. 90 %. But for high latitudes in
general, the FAR of COCS remains higher
than CiPS. In the polar regions (latitude ≥
65◦N/S) the average FAR is 33 % for COCS
and 5.3 % for CiPS. Also over Europe the
FAR of CiPS is clearly lower. Further-
more, COCS strongly overestimates the cir-
rus presence around the sub-satellite point
of SEVIRI. For VZAs smaller than 15◦,
COCS has an average FAR of 23 %. This
deficiency is not shown by CiPS, which has
an average FAR of 8.5 % for the same area.

Furthermore, a false alarm of COCS has IOTCOCS ≥ 0.1, whereas a false alarm of CiPS
can have an IOTCiPS down to 0.0, i.e. IOTCiPS > 0.0.

Due to the high probability of cirrus cloud presence along the ITCZ, the effect of the
higher FAR of CiPS over this region is small, since a high cirrus probability prevents false
alarms from occurring. Figure 4.6c and d show the total number of false alarms/positives
NFP by CiPS and COCS, respectively, i.e. the total number of cirrus-free points in the
validation dataset (approx. 3.3 millions) that are falsely classified as cirrus. Again the
numbers are calculated over 5◦ × 5◦ boxes. Even if the probability of having a false alarm
by CiPS is higher than the average FAR along the ITCZ (Fig. 4.6a), the absolute number of
false alarms is just as high as for most regions across the SEVIRI disc (Fig. 4.6c). Looking
at NFP by COCS (Fig. 4.6d), more false alarms are observed at high latitudes (especially
over icy surfaces), over Europe and around the sub-satellite point.

The FAR can easily be optimised by reducing the number of detected cirrus clouds (see
Fig. 4.2). Thus it is necessary to simultaneously look at the performance in cirrus detection
alongside the false alarm analysis. A reduced POD would be a natural effect if the FAR
is reduced, but despite the low FAR of CiPS the POD remains high. Figure 4.7 shows
the POD of CiPS, again in comparison to COCS. The POD is a function of IOTCALIOP

and within each IOTCALIOP interval the POD given by Eq. (3.3) is calculated, using the
V3 CALIOP products as reference. For a better visualisation the POD is presented with
a logarithmic scale for IOTCALIOP < 1.0 and with a linear scale for IOTCALIOP ≥ 1.0. For
cirrus clouds with IOTCALIOP > 1.0, CiPS and COCS perform similarly. A strong difference
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is instead seen for the thin cirrus clouds, where CiPS detects more cirrus clouds compared
to COCS. For example at IOTCALIOP = 0.1, CiPS detects 71 % of the cirrus clouds and
COCS 43 %. A higher POD for thin cirrus clouds is an important improvement when
studying contrail cirrus or the cirrus life cycle for example. Figure 4.7 only presents the
results for the transparent cirrus clouds where the CALIOP laser was not saturated. For the
opaque cirrus clouds the average POD is 98 % for both CiPS and COCS. The geographical
dependency of POD is clearly anti-correlated with the geographical dependency of the
FAR, meaning that CiPS has its highest and lowest POD over regions where the natural
probability of cirrus presence is high and low respectively. Apart from that, the POD of
CiPS is homogeneous across the SEVIRI disc.
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Figure 4.8: FAR of the CiPS OPF (opac-
ity flag). Figure reproduced from Strandgren
et al. (2017a).

Figure 4.8 shows the FAR of the CiPS
OPF, again over 5◦ × 5◦ boxes, using the
V3 CALIOP products as reference. Since
the OPF is a new variable introduced with
CiPS, the results cannot be compared to
COCS. As mentioned in Sect. 4.6 the av-
erage POD and FAR is 71 and 4.0 % re-
spectively. Both quantities are relatively
homogeneous across the SEVIRI disc, but
the risk of falsely classifying a transparent
cirrus cloud as opaque is slightly lower in
the tropical regions (latitude < 30◦N/S).

4.9.2 Cirrus cloud properties

Figure 4.9 shows two density scatter plots,
with CTHCALIOP on the horizontal axes and
CTHCiPS (Fig. 4.9a) and CTHCOCS (Fig. 4.9b) on the vertical axes. The colour shows the
normalised relative frequency, which is the relative frequency normalised to the interval
0–1. Along with the scatter plots the MPE and MAPE (Eqs. 3.5 and 3.6) of CiPS and
COCS with respect to CALIOP as a function of CTHCALIOP are shown (Fig. 4.9c). CiPS
and COCS are validated using their own respective cirrus flags, meaning that CTHCiPS is
validated using the cirrus-covered points that CiPS detects, whereas CTHCOCS is validated
using those cirrus-covered points that COCS detects. Using a common cirrus flag (i.e.
those cirrus-covered points that both CiPS and COCS detect) shows marginal differences,
with slightly reduced errors for CiPS, as a result of the reduced amount of very thin cirrus
that only CiPS detect, for which the CTH is more difficult to accurately estimate.

With CiPS the CTH is retrieved with a higher accuracy compared to COCS, especially
for high and low cirrus clouds. The correlation between CALIOP and CiPS is 0.90. For
CALIOP and COCS, the correlation is 0.82.

The MPE shows that CiPS overestimates and underestimates the CTH of the lowest
and highest cirrus clouds, respectively, even if the errors are smaller than for COCS. From
8 to 15 km the MPE is close to zero, meaning that the CTH retrieval by CiPS is unbiased
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Figure 4.9: Density scatter plots with the CTH retrieved by (a) CiPS and (b) COCS on
the vertical axes and the corresponding V3 CALIOP data on the horizontal axes. The grey
lines represent the 1–1 line. (c) The MAPE (solid) and MPE (dash) of the CTH retrieved
by CiPS and COCS with respect to the CTH measured by CALIOP. Figure reproduced
from Strandgren et al. (2017a).

in this CTHCALIOP range. The MAPE shows that the average magnitude of the CiPS
error is 10 % or less for cirrus clouds having a CTH above 8 km. Furthermore, the MAPE
clearly shows the better accuracy of CiPS. For example, for cirrus clouds with a CTHCALIOP

between 4 and 5 km, representing mid-level clouds with icy tops, the MAPE is 38 % for
CiPS. For COCS the corresponding number is 107 % with solely overestimated values
(MAPE = MPE). This is mainly an effect of the CTH filtering used for COCS (Sect. 3.4.3),
which excluded cirrus clouds with a CTHCALIOP < 4.5 km from the training dataset, leading
to strong overestimations of lower values. Furthermore, this type of low cirrus/icy clouds
are found in the polar regions (see Fig. 4.10b), where the retrieval conditions for SEVIRI
are more challenging with larger VZAs and pixel sizes.

The CTH has a strong latitude dependency and the CiPS results shown in Fig. 4.9 are
not representative for all latitudes. Figure 4.10a shows the MPE of the CTHCiPS retrievals
with respect to CALIOP as a function of CTHCALIOP and the latitude. Figure 4.10b shows
the corresponding occurrences of the points that make up the statistics shown in Fig. 4.10a.
Please remember that the validation dataset is a random subset of CALIOP data collected
over a time period of almost 6 years and hence represents the natural latitudinal distribu-
tion of CTHs.

The MPE shows a clear latitude dependency and in contrast to Fig. 4.9c, where CiPS is
shown to have no bias (MPE≈ 0) between 8 and 15 km, it can be seen that the CTHCALIOP

limit when CiPS starts to over- and underestimate the CTH increases towards the Equator.
At higher latitudes (e.g. over Europe), it is clear that CiPS is more likely to underestimate
the CTH also for lower CTHCALIOP around 11–14 km, with an increasing bias towards
higher latitudes. Similarly the CTHCiPS for cirrus clouds with CTHCALIOP < 13 km is
more likely to be overestimated along the ITCZ, with increasing errors towards the Equa-
tor. From Fig. 4.10b it is clear that the situations with higher errors and stronger biases
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Figure 4.10: (a) Two-dimensional histogram showing the MPE of the CTHCiPS retrieval
as a function of the reference CTH retrieval by CALIOP and the latitude. (b) The cor-
responding occurrences of the points that make up the statistics shown in (a). Figure
adapted from Strandgren et al. (2017a).

(|MPE| & 20 %) are comparably rare and that CTHCiPS is unbiased for the more frequent
combinations of CTHCALIOP and latitude.

Note the difference between the CiPS CTH retrieval and standard ones (e.g. Menzel
et al., 2008), where the determination of CTH requires the knowledge of the appropriate
vertical temperature profile from NWP (numerical weather prediction) models, while CiPS
only requires the surface skin temperature from a NWP along with the SEVIRI brightness
temperatures and auxiliary data.

Figure 4.11 shows again two density scatter plots, now with IOTCALIOP on the horizontal
axes and IOTCiPS (Fig. 4.11a) and IOTCOCS (Fig. 4.11b) on the vertical axes. As before
the colour shows the normalised relative frequency. Only transparent cirrus clouds, where
CALIOP was not saturated, are included here. The two algorithms are validated using
their respective cirrus cloud flags (as explained above for the CTH). This is not 100 %
true for the IOTCOCS scatter plot, however, where all points with a retrieved IOTCOCS >
0.0 are included. Instead the black grid on top of the scatter plot illustrates the area
where COCS does not detect any cirrus clouds as a result of the COCS cirrus detection
threshold at IOTCOCS = 0.1 (Sect. 3.4.3). A relatively large scatter is observed for both
algorithms. CiPS shows a better correlation with the CALIOP retrievals though. The
correlation between CiPS and CALIOP is 0.65, whereas the correlation between COCS
and CALIOP is 0.61. Furthermore, CiPS shows higher frequencies along the 1–1 line down
to IOTCALIOP≈ 0.09, but also below this value the correlation between CALIOP and CiPS
is evident. Only below IOTCALIOP = 0.04 does the correlation get lost.

For a better visualisation of the lower IOT range, where most points are located, the
density scatter plots have logarithmic axes. This does, however, visually reduce the errors,
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Figure 4.11: Density scatter plots with the IOT retrieved by (a) CiPS and (b) COCS on
the vertical axes and the corresponding V3 CALIOP data on the horizontal axes. The grey
lines represent the 1–1 line. (c) The MAPE (solid) and MPE (dash) of the IOT retrieved
by CiPS and COCS with respect to the IOT retrieved by CALIOP. The black grid on top
of the right scatter plot illustrates the area where COCS does not detect any cirrus clouds
as a results of the COCS cirrus detection threshold at IOTCOCS = 0.1 (Sect. 3.4.3). Figure
reproduced from Strandgren et al. (2017a).

so for a quantitative evaluation attention should be paid to Fig. 4.11c showing the MPE and
MAPE of CiPS and COCS with respect to CALIOP. The MPE and MAPE are functions of
IOTCALIOP and again the results are presented using a logarithmic scale for IOTCALIOP <
1.0 and a linear scale for IOTCALIOP ≥ 1.0. From the MAPE the low accuracy of CiPS for
sub-visual cirrus clouds becomes evident. For IOTCALIOP < 0.03, MAPE = MPE, meaning
that CiPS entirely overestimates the IOT in this region. For COCS, the same is observed
for IOTCALIOP < 0.1 as a direct effect of the inability of COCS to detect cirrus clouds
with an IOTCOCS < 0.1. The opposite is observed for thicker cirrus clouds (IOTCALIOP &
2.0), where both CiPS and COCS entirely underestimate the IOT (MAPE = −MPE).
With CiPS the IOT can be retrieved with a MAPE of 50 % or less for cirrus clouds with
0.35 . IOTCALIOP . 1.8. Similarly the MAPE of the retrieved IOTCiPS is 100 % or
less for cirrus clouds with IOTCALIOP > 0.07 and 230 % or less down to sub-visual cirrus
clouds (IOTCALIOP > 0.03). The corresponding MAPEs for the IOT retrieved by COCS
within the same IOTCALIOP intervals are 59, 290 and 720 %. A MAPE of 100 % might seem
high, but one should keep in mind that this translates into small absolute errors for such
thin cirrus clouds. For the lower IOTCALIOP range, a similar scatter is observed between
IOTCALIOP and modelled IOT from infrared radiances for thin cirrus clouds in Holz et al.
(2016).

Figure 4.12 shows a density scatter plot with IWPCALIOP on the horizontal axis and
IWPCiPS on the vertical axis (Fig. 4.12a) together with the MPE and MAPE (Eqs. 3.5 and
3.6) of CiPS with respect to CALIOP as a function of IWPCALIOP (Fig. 4.12b). Please
note that again the density scatter plot has logarithmic axes and the retrieval errors are
presented using logarithmic scale for the thinner cirrus clouds (IWPCALIOP < 10.0 g m−2)
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Figure 4.12: (a) Density scatter plot with the IWP retrieved by CiPS on the vertical axis
and the corresponding V3 CALIOP data on the horizontal axis. The grey line represents
the 1–1 line. (b) The MAPE (solid) and MPE (dash) of the IWP retrieved by CiPS
with respect to the IWP retrieved by CALIOP. Figure reproduced from Strandgren et al.
(2017a).

and with linear scale for the thicker ones (IWPCALIOP ≥ 10.0 g m−2). Since the IWP is
not retrieved by COCS, no additional results are shown here for comparison. Again only
transparent cirrus clouds are included.

The scatter between IWPCiPS and IWPCALIOP is very similar to that between IOTCiPS

and IOTCALIOP. This is not surprising since the IWC from CALIOP is retrieved from
the measured extinction coefficients using a parameterisation. The correlation between
CiPS and CALIOP is, however, slightly lower for the IWP retrieval (0.59) compared to
the IOT retrieval. This is also expected since possible deficiencies in the CALIOP IWC
parameterisation will make it more difficult for the ANN to learn the relationship between
the input data and the IWP. Nevertheless, these results show that the ANN is capable of
reproducing this relationship in a good way. With CiPS the IWP can be retrieved with
a MAPE of 100 % or less for cirrus clouds with IWPCALIOP > 1.7 g m−2 and 200 % or less
down to IWPCALIOP≈ 0.7 g m−2. Please note that deviations of 100 % are common even
when microwave information is considered (e.g. Holl et al., 2014, even if their error measure
is different).

In contrast to the CTHCiPS retrieval, CiPS shows a stable performance for the IOT and
IWP retrievals across all latitudes (not shown here). The only anomaly observed is that
the CiPS retrieval errors for thin to sub-visual cirrus are lower over convergence zones like
the ITCZ, where they are mostly found (Sassen et al., 2009; Martins et al., 2011).

As expected and as seen in Figs. 4.9, 4.11 and 4.12, CiPS is not able to perfectly model
the CALIOP cirrus properties using the SEVIRI, ECMWF and auxiliary data. There
are several sources of error that add to the final performance of CiPS. Most importantly
CALIOP and SEVIRI have different sensitivities to cirrus clouds. This is especially clear
for thin to sub-visual cirrus clouds where CALIOP is able to accurately retrieve the top
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height and optical properties. Such faint cirrus leave a considerably weaker or no mark
on the SEVIRI observations though, making it difficult to inversely determine the cirrus
properties. Similarly the CTH is not necessarily defined equally by CALIOP and SEVIRI,
as CALIOP is able to discern thinner icy layers at the cloud top that may appear as
“invisible” to SEVIRI. Also for thicker cirrus clouds where both CALIOP and SEVIRI
(thermal observations) approach the point of saturation, the different sensitivities lead to
ambiguous collocations. When an ANN is trained with a set of different output values
that correspond to approximately the same input data as a result of the lower sensitivity,
the ANN will not be able to model an accurate relationship. The reason for this is that
the input vector contains no information on how the difference in sensitivity affects the
target values. This can be regarded as an unknown hidden variable. This weakness is not
specific to ANNs but applies to all regression models minimising the squared error. When
such a set of incomplete input data (in the sense that there is a strong hidden variable) is
given to the final ANN, it will output a conservative mean value that can be understood as
an average over the distribution of the most likely solutions weighted by their probability.
The larger the difference in sensitivity is, the higher the variance within the distribution
of the most likely solutions will be, leading to larger retrieval errors. Throughout most of
the output data range this error will be random. But, obviously, the distribution of the
most likely solutions cannot be centred around the extreme values leading to systematic
over- and underestimations of low and high output values when a conservative mean value
is calculated. This effect increases towards the extreme values as the desired output value
is skewed towards the edge of the distribution of the most likely solutions. This effect
is clearly seen in Figs. 4.11c and 4.12c where low and high IOTCALIOP/IWPCALIOP are
over- and underestimated respectively. This is to some extent also seen for the CTHCiPS

retrieval in Fig. 4.9c, especially for low CTHCALIOP. Due to the randomness of the effects
a lower sensitivity introduces, adding information about the magnitude of the sensitivity
to the input vector is not likely to improve this situation. The larger CTHCiPS retrieval
errors observed for low clouds can also be attributed to the smaller temperature contrast
with respect to the surface temperature and thus the weaker radiative signal that those
clouds have compared to higher cirrus clouds. Another source of error that amplifies the
effect discussed above is the risk that there are additional variables relevant for finding an
accurate relationship that are not represented by the vector of input data.

As discussed in Sect. 4.4.1, imperfect collocations as a result of the different spatial
scales of CALIOP and SEVIRI together with partial cloud cover or spatially inhomogeneous
clouds will further add to the retrieval errors. In a situation where CALIOP observed
a small optically thin area of an otherwise optically thick cirrus inside a SEVIRI pixel,
CiPS is likely to overestimate IOTCALIOP and IWPCALIOP. Similarly if CALIOP observed
a small optically thick area of an otherwise optically thin cirrus inside a SEVIRI pixel,
CiPS is likely to underestimate IOTCALIOP and IWPCALIOP.

Improvements with respects to COCS can be attributed to several factors. (1) New
input data including the modelled surface skin temperature and the regional maximum and
average brightness temperatures. (2) The training meta-parameters and ANN structures
have been thoroughly investigated and optimised for CiPS. (3) The training of CiPS was
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more rigorous, with mini-batch learning rather than stochastic learning as well as a tuning
phase with gradually increasing batch size and gradually decreasing learning rate and
momentum. Furthermore an internal validation dataset was used during the training of
CiPS in order to monitor the accuracy and avoid overfitting. (4) The use of the more
accurate V3 CALIOP data as training reference. (5) The use of multiple ANNs. COCS uses
one single ANN trained with cirrus-covered as well as cirrus-free pixels. On the contrary,
the CiPS ANNs that retrieve the CTH, IOT, IWP and OPF were trained exclusively with
cirrus-covered pixels, resulting in lower retrieval errors of CiPS. The larger retrieval errors
of COCS for thin cirrus clouds also affect the IOT dependent cirrus cloud detection of
COCS, with both a lower POD and a higher FAR compared to CiPS.

4.10 Characterising CiPS

Although ANNs are a powerful alternative to physically based cloud retrievals (e.g. Platnick
et al., 2003; Bugliaro et al., 2011; Minnis et al., 2011; Stengel et al., 2014; Heidinger et al.,
2015; Wang et al., 2016; Iwabuchi et al., 2016), they are trained to learn patterns and model
relationships, and physical principles are not imposed for the scenes being investigated.
Consequently, ANNs will in general perform better for retrieval scenes that occur more
frequently in the training dataset as those scenes will have a stronger weight during the
training. This, together with the fact that ANNs provide no direct uncertainty estimates,
highlights the importance of properly characterising the ANN retrievals. In Sect. 4.9 the
CiPS retrieval accuracy for cirrus detection, opacity classification and derivation of the
physical and optical properties CTH, IOT and IWP with respect to CALIOP was presented.
In this section, a more differentiated investigation is performed that aims at characterising
the ANNs according to various aspects. First, despite the fact that CiPS input quantities
have been selected according to physical principles (see Sect. 4.2), it is unclear which
importance the single input variables have been assigned by the ANNs. This a posteriori
examination also gives hints about the ability of the ANNs to model physical relationships
among the variables. Second, the combination of cirrus products from visible backscattered
vertically resolved “monochromatic” lidar radiation (CALIOP) and thermal “columnar”
narrowband brightness temperatures from imager channels (SEVIRI) is supported by the
knowledge that cirrus clouds leave their mark on both measurements types in a “similar”
way: for instance, both methods are sensitive to visible IOT up to ca. 5 (e.g. DeSlover
et al., 1999). Nevertheless, CALIOP’s ability of discerning vertical features (ice clouds,
liquid water clouds, aerosols) is not shared by SEVIRI, which poses the question whether
the proposed CALIOP–SEVIRI synergy is always meaningful. To clarify this aspect, the
CiPS performance is investigated for various vertical arrangements of cloud and aerosol
layers and for various surface types. Furthermore, cirrus clouds are classified according
to their IOT and CTH to provide a better understanding of the CiPS retrieval errors
(magnitude and bias). Finally, the sensitivity to radiometric noise in the SEVIRI data is
quantified.
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4.10.1 Relative importance of the CiPS input data
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Figure 4.13: Relative importance of the CiPS
input variables (vertical axis) for the four
ANNs (horizontal axis). The blue shades fur-
ther highlight the magnitude of the relative
importance with fading colours for decreasing
importance. Figure reproduced from Strand-
gren et al. (2017b).

To understand, improve and extend CiPS
and similar ANN-based retrieval algo-
rithms, it is valuable to understand what
input data have essential contributions to
the solution of a given problem. Important
input variables are identified by the ANN
and given a strong weight during the train-
ing. Similarly, less important input vari-
ables are given a weaker weight and thus
a smaller role in retrieving the output data.

The importance of an input variable
can be estimated as the euclidean length
of the vector holding all weights that con-
nect that input neuron with the hidden neu-
rons in the first hidden layer (LeCun et al.,
1990). The importance (or total weight)
of an input variable i is thus calculated as

Wi =
√
w2
i,1 + w2

i,2 + · · ·+ w2
i,N , where wi,1

to wi,N are the single weights connecting
input variable i with the N neurons in the
first hidden layer. Figure 4.13 shows the
relative importance of the 18 input vari-
ables used by CiPS. The relative impor-
tance of all input variables is calculated as
W ∗
i = 100 % ×Wi/(W1 + W2 + . . . + W18)

for the respective ANNs such that the sum
of the relative importance across all input
variables adds up to 100 % for each ANN.
The four columns represent the four ANNs.
No relative importance of the regional average brightness temperatures is reported for the
CTHCiPS, IOTCiPS and IWPCiPS retrievals since those are used exclusively for the cirrus
detection and opacity classification (see Sect. 4.2).

It is clear that the window channels of SEVIRI are essential for the detection and opacity
classification of cirrus clouds as well as for the determination of IOTCiPS and IWPCiPS. This
reflects the importance of these channels in physically based retrievals (e.g. Ewald et al.,
2013; Heidinger et al., 2015; Iwabuchi et al., 2016). For the CTHCiPS retrieval, the latitude
is the dominant input variable, followed by the water vapour channels. Similarly the DOY
has a comparably strong importance for the CTHCiPS retrieval. The relative importance of
BT13.4µm is surprisingly low for the CTHCiPS retrieval, although observations from around
13.4µm are commonly used by the CO2-slicing method for CTH retrievals (e.g. Menzel
et al., 2008). This is a hint that the ANN may model a statistical, rather than physical,
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relationship between the input and output variables, as the CTH has an annual cycle
and a clear latitude dependency (Stubenrauch et al., 2013). It might also be that the
13.4µm brightness temperature only provides redundant information with respect to CTH
since also water vapour channels and surface skin temperatures are available to the ANN
(see discussion about the physical motivation of the input variables in Sect. 4.2). For the
CCFCiPS, OPFCiPS, IOTCiPS and IWPCiPS retrievals, the DOY has a very low importance
and consequently a minor contribution to the retrievals. The surface temperature from
the model is clearly helpful for determining the CTHCiPS, IOTCiPS and IWPCiPS. The
information about whether the Earth’s surface is covered by permanent ice or snow is
valuable for the cirrus detection as well as the IOTCiPS and IWPCiPS retrievals, whereas
the surface water flag has a comparably small contribution to the retrievals. Exploiting the
information from nearby SEVIRI pixels using the regional maximum and regional average
temperatures is clearly helpful in all aspects; their relative importance is comparable to the
relative importance of Tsurf for the CTHCiPS, IOTCiPS and IWPCiPS retrievals, for example.

4.10.2 The CiPS retrieval accuracy for different surface types

In this section the performance of CiPS is characterised with respect to a set of five land
surface type classes extracted from MODIS level 3 (L3) data. For this section as well as
for Sects. 4.10.3 and 4.10.4 the performance of CiPS is always evaluated with respect to
the cirrus cloud retrievals by CALIOP using the final validation dataset (see Sect. 4.4.2)
used to validate CiPS in Sect. 4.9.

4.10.2.1 Surface type classes from MODIS

The International Geosphere-Biosphere Programme (IGBP; Loveland and Belward, 1997)
has defined 17 land surface types including 11 natural vegetation classes, 3 developed
and mosaicked land classes and 3 non-vegetated land classes. The MODIS L3 product
MCD12C1 (Friedl et al., 2010) provides the majority land cover type at a resolution of
0.05◦ according to the IGBP classification. The MCD12C1 V051 dataset for 2012 has
first been reprojected to the SEVIRI grid using the nearest neighbour method. Then,
for characterising CiPS with respect to the underlying surface type, the different surface
type classes have been grouped into the five following classes: (1) water including ocean,
lakes, rivers and wetlands; (2) barren including surfaces covered by soil, sand and rocks
with a maximum vegetation of 10 %; (3) permanent ice and snow including surfaces per-
manently covered by ice and/or snow; (4) forest including all surfaces dominated by trees
(canopy cover > 60 %); and (5) vegetation excluding forest including all surfaces with
other types of vegetation i.e. shrublands, savannahs, grasslands and croplands. Detailed
information about the IGBP surface types can be found in Loveland and Belward (1997).

These surface types are expected to have different spectral properties and humidity
contents that might affect the thermal SEVIRI channels (Sect. 3.1) and therefore the CiPS
ANNs. The geographical coverage of the five surface type classes used in this study is
visualised in Fig. 4.14. Please note that the barren class is composed mostly of bright
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desert surfaces on the SEVIRI disc. Hence the results presented for barren in this section
are mostly representative for retrievals over desert and only to a very limited extent for
retrievals over other types of barren present in e.g. the Andes and Iceland. Permanent ice
and snow is only found in Greenland, Antarctica, and to a limited extent in high mountain
ranges.

4.10.2.2 Cirrus cloud detection

Figure 4.14: Visualisation of the geographi-
cal coverage of the five surface type classes
across the SEVIRI disc. Figure reproduced
from Strandgren et al. (2017b).

The CCFCiPS is evaluated as a function
of the underlying surface type using the
POD (Eq. 3.3) and the FAR (Eq. 3.4).
To avoid the presence of (liquid water
cloud/aerosol) layers between cirrus and
surface that would shield radiation emit-
ted by the surface, the CALIOP L2 data
are used to identify and include only those
profiles with clear air (at most a faint
aerosol layer with aerosol optical thickness
(AOT) ≤ 0.2) below a possible transpar-
ent cirrus cloud in the analysis (see class
C1 (for POD) and class C7 (for FAR) in
Sect. 4.10.3.1 and Fig. 4.17). In total ap-
prox. 600 000 such collocations are available
in the extended final validation dataset,
with the largest number of occurrences over
water (360 000) and the smallest number
over barren (36 000). The goal of the OPF
retrieved by CiPS is to detect cirrus clouds
that are opaque, i.e. where the vertical
structure below the cirrus is unknown for
CiPS/CALIOP. Consequently, the OPF of
CiPS is not characterised for the different surface types as it cannot be ruled out that there
are no liquid water clouds or aerosol layers with AOT > 0.2 below an opaque cirrus. Please
note that the more accurate OPF of CALIOP is used to identify profiles with opaque cirrus
clouds that are excluded from the analysis as explained in Sect. 4.10.3.1. Also remember
that the terms “transparent” and “opaque” in this context are solely related to the satu-
ration of the CALIOP laser beam and tell whether it was able to fully penetrate the cirrus
cloud (transparent cirrus) or not (opaque cirrus).

Figure 4.15 shows the POD of CiPS for the five surface type classes as a function of
IOTCALIOP. For a better visualisation of thin cirrus, the scale is again logarithmic for
IOTCALIOP < 1.0 and linear for IOTCALIOP ≥ 1.0. As a reference, the average POD for
all surface types is included (black line). A lower limit of 10 samples is required for the
statistics, so no POD over barren is available for thicker cirrus clouds (IOTCALIOP & 3.0).
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The same is done for the remainder of this section.
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Figure 4.15: The cirrus POD of CiPS as
a function of the IOT retrieved by CALIOP
for the five surface type classes. Note that the
line colours correspond to the colours used in
Fig. 4.14. Figure reproduced from Strandgren
et al. (2017b).

CiPS has a clearly lower POD over bar-
ren and permanent ice and snow for cirrus
clouds with IOTCALIOP . 0.5: up to 20 %
less cirrus clouds are detected than on aver-
age. Both are known to be difficult (cirrus)
cloud retrieval conditions (Frey et al., 2008;
Holz et al., 2008). Over ice and snow the
radiative contrast between the cirrus and
the cold surface is reduced, making the cir-
rus cloud detection more difficult. Further-
more, mixed-phase clouds or supercooled
liquid water layers above ice layers in the
polar regions (Mioche et al., 2015; Verlinde
et al., 2007; Shupe et al., 2006) may also
reduce the POD as CiPS requires the wa-
ter to be frozen to be classified as a cirrus.
Moreover, temperature inversions, frequent
in these areas (Wetzel and Brümmer, 2011),
can make the cloud top of low ice clouds
(Devasthale et al., 2011) appear warmer
than the snow/ice-covered surface and thus
reduce their detection (Wilson et al., 1993; Gao et al., 1998). Furthermore, the retrieval
conditions over Greenland and Antarctica are the least favourable ones for SEVIRI, with
the largest VZAs and pixel sizes. The FAR over permanent ice and snow is 4.3 %, which
is higher than the average FAR of 3.2 % over all surface types. Barren is to a large extent
made up by deserts, where cirrus clouds rarely form, yet they can be found there when
they drift towards mid-latitudes after formation in the ITCZ. The ANN is likely to learn
such a pattern of low occurrence frequency and thus miss more thin cirrus in those regions.
This is supported by the fact that the FAR is lowest over barren, where only 1.1 % of the
cirrus-free cases are falsely classified as cirrus. The highest POD is observed over forest:
up to 15 % more than on average for IOTCALIOP up to 0.5. This is due to the high cirrus
cloud occurrence over the tropical rainforests that increases the POD in a similar manner
as the POD is reduced over barren. Again this is supported by the highest FAR of 7.1 %
over forest. Similar trends could be seen in Fig. 4.6, with the minimum FAR over the
Sahara and the maximum FAR above the African and South American rainforests. Water
and other vegetation (vegetation excluding forest) have similar POD, but the cirrus de-
tection is slightly better over homogeneous water surfaces than over vegetation excluding
forest. The corresponding FARs are 3.1 % over water and 3.5 % over vegetation excluding
forest. Notice finally that due to their large number over the SEVIRI disc the water pixels
dominate the average curve.
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Figure 4.16: The MAPE (solid) and MPE
(dash) of the (a) CTHCiPS, (b) IOTCiPS

and (c) IWPCiPS retrievals as functions
of the corresponding reference retrievals
from CALIOP. The retrieval errors of
CiPS are presented for the five surface
type classes introduced in Sect. 4.10.2.1.
Figure adapted from Strandgren et al.
(2017b).

4.10.2.3 Cirrus cloud properties

Figure 4.16 shows the MAPE and MPE for the (a) CTHCiPS, (b) IOTCiPS and (c) IWPCiPS

retrievals as functions of the corresponding reference retrievals by CALIOP and the five
surface type classes. Within each CTHCALIOP, IOTCALIOP and IWPCALIOP interval in
Fig. 4.16, the MAPE and MPE given by Eq. (3.6) and (3.5) is calculated. Please note
that again the results are presented with a logarithmic scale for IOTCALIOP < 1.0 and
IWPCALIOP < 10.0 g m−2 and with a linear scale for IOTCALIOP ≥ 1.0 and IWPCALIOP ≥
10.0 g m−2. The average MAPE and MPE (bias) over all surface type classes are included as
reference. Again, only those profiles with clear air (no liquid water clouds and AOT ≤ 0.2)
below the cirrus cloud are considered.

Mostly the same patterns of the MAPE and MPE are observed as in Sect. 4.9.2, namely
that CiPS tends to overestimate the CTH for low cirrus/ice clouds and slightly underes-
timate the CTH for high cirrus. Similarly the IOT and IWP is predominantly over- and
underestimated for the lower and upper extreme values respectively.

Overall, the CTHCiPS retrieval is mostly insensitive to the underlying surface type for
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CTHCALIOP > 8.0 km. A stronger underestimation of CTHCALIOP (20–40 %) is, however,
observed over permanent ice and snow for high cirrus clouds (CTHCALIOP > 12 km). Those
are cirrus/ice clouds that extend into the stratosphere. A stronger tendency for underesti-
mations is observed also for lower clouds over permanent ice and snow. For the lowermost
cirrus clouds, the CTHCiPS retrieval is best over permanent ice and snow. This is most
likely due to the fact that the average CTH is lowest in the polar regions, making it easier
for the ANN to model and estimate the CTH for low cirrus/ice clouds there. In contrast,
barren, forest and vegetation excluding forest do, to a large extent, cover regions where
the CTH is typically higher, making it more difficult to model and estimate the CTH for
low cirrus. Over desert, where the air is dry, it is plausible that the signal from the water
vapour channels (which were shown to have strong relative importance for the CTHCiPS re-
trieval in Sect. 4.10.1) peak at lower altitudes in the atmosphere compared to more moist
regions, resulting in biases for the CTH retrieval over barren. On average the CTH is
estimated with the lowest MAPE and bias over homogeneous water surfaces.

The underlying surface type has a similar effect on the IOTCiPS retrieval as on the
IWPCiPS retrieval. For IOTCALIOP > 0.5 and IWPCALIOP > 10.0 g m−2, the underlying
surface type has no effect on the IOTCiPS/IWPCiPS retrievals; i.e. already for these low
values of IOTCALIOP/IWPCALIOP are the characteristics of surface radiation negligible. For
thinner cirrus clouds the retrieval errors increase substantially over permanent ice and
snow. This should be related to the effects discussed above, namely the reduced radiative
contrast of the cirrus above cold snow and ice and the unfavourable conditions for SEVIRI
in the polar regions. IOTCiPS/IWPCiPS retrievals over barren are also less certain for thin
cirrus clouds. Deserts are characterised by a lower emissivity at 8.7 µm than at 10.8 or
12.0µm (e.g. Hulley et al., 2015; De Paepe and Dewitte, 2009; Trigo et al., 2008). It is
possible that this induces larger IOTCiPS/IWPCiPS retrieval errors because the ANN cannot
localise desert regions unambiguously using only latitude and VZA. The retrieval errors
over vegetation excluding forest are close or identical to the average performance for all
IOTCALIOP and IWPCALIOP. The lowest IOTCiPS and IWPCiPS retrieval errors are again
obtained over homogeneous water surfaces as well as over forest.

4.10.3 The CiPS retrieval accuracy for different vertical cloud–
aerosol structures

In this section the performance of CiPS is characterised with respect to a set of seven verti-
cal cloud–aerosol structure classes derived from the V3 CALIOP L2 layer products. This is
important in order to understand the accuracy of the retrievals for different scattering and
absorbing atmospheres. Although the OPF already yields quality information indicating
when the IOTCiPS and IWPCiPS retrievals can be trusted, there is still the chance that the
passive instrument SEVIRI is not able to deal with all possible vertical arrangements of
clouds and aerosols as the active instrument CALIOP does, since SEVIRI lacks the vertical
resolution.

The characterisation is performed for all surface types combined. Although the retrieval
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accuracy shows a dependency on the underlying surface type (Sect. 4.10.2), the effect of
liquid water clouds and aerosol layers below the cirrus cloud has a similar effect on the
cirrus cloud retrieval over all underlying surface types (not shown here). The patterns
and results obtained for all surface types combined (presented here) are consequently to
a large extent representative for the single surface types as well. Due to the large coverage
of oceans on the SEVIRI disc (see Fig. 4.14), the results presented here are, however, more
representative for retrievals over water.

Again, only the CiPS quantities CCFCiPS, CTHCiPS, IOTCiPS and IWPCiPS are charac-
terised for the different vertical cloud–aerosol structures. The OPFCiPS is excluded from
the analysis since its goal is to detect cirrus clouds where the vertical structure below the
cirrus cannot be resolved by CALIOP. Opaque cirrus clouds are identified and excluded
using the OPF of CALIOP as described in the following section.

4.10.3.1 Vertical cloud–aerosol structures from CALIOP

The final validation dataset presented in Sect. 4.4.2 is extended to characterise the entire
atmospheric column observed by CALIOP (and SEVIRI). The column optical thickness
and the corresponding top and base heights for aerosol layers, cirrus clouds and liquid water
clouds are derived from the CALIOP cloud and aerosol layer products (see Sect. 4.3). The
column AOT is read from the “Column Optical Depth Aerosols 532” product contained in
the L2 aerosol layer products. The corresponding top and base heights of the upper and low-
ermost aerosol layers are read from the “Layer Base Altitude” and “Layer Top Altitude”
products. Finally the opacity information is retrieved from the “Opacity Flag”. For clouds,
the column optical thickness is reported for liquid water and ice clouds combined. The
cloud properties, including IOT, liquid water optical thickness, the corresponding top and
base heights and the opacity information, are instead derived using the same approach
used to derive the cirrus cloud properties in Sect. 4.3. Notice that mixed-phase clouds,
i.e. layers where ice and supercooled liquid water coexist, are classified as either liquid,
ice or unknown phase clouds by CALIOP. The high confidence criteria imposed to the
CALIOP cloud phase (see below) shall, however, constrain the selected cloud and cloud
profiles to high confidence liquid and high confidence ice clouds. Nevertheless, especially
at high latitudes, an uncertainty remains due to the difficult cloud phase determination
(Cesana et al., 2016).

Using the vertical position, optical thickness and opacity information of all clouds and
aerosol layers, the seven vertical cloud–aerosol structure classes listed below are created.
To analyse the effect of thicker aerosol layers on the cirrus cloud retrieval by CiPS, only
those aerosol layers with an AOT > 0.2 are acknowledged. These aerosols come mainly
from desert dust (Weinzierl et al., 2011; Groß et al., 2015) but also from biomass burning
(Rosário et al., 2011; Ten Hoeve et al., 2012) or, sometimes, sea salt (Toth et al., 2013).
It is assumed that AOT ≤ 0.2 is a good approximation for the AOT of typical aerosol
loads. In comparison, the rural aerosol model by Shettle (1989) in the boundary layer
for spring–summer conditions and a visibility of 50 km together with background aerosol
above 2 km represent an AOT of 0.162.
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C1 Profiles where only transparent cirrus clouds (and possible aerosols with AOT ≤ 0.2)
are observed.

C2 Profiles where cirrus clouds are observed over an aerosol layer with AOT > 0.2.

C3 Profiles where cirrus clouds are observed above a low opaque liquid water cloud. To
ensure that the cirrus is well separated from the water cloud, the vertical distance
between the two has to be 4.0 km or more. This class aims to capture scenes with
cirrus clouds over low-level clouds. The threshold of 4 km was chosen such that it
is applicable both in the tropical regions as well as at higher latitudes, where the
vertical separation between high-level cirrus clouds and low-level clouds is smaller.

C4 Profiles where cirrus clouds are observed vertically close or adjacent to an opaque
liquid water cloud. To ensure that the cirrus is close to the water cloud, the vertical
distance between the two has to be 0.5 km or less. This spatial separation value
enables to neglect small cloud gaps due to turbulence, evaporation, sedimentation or
wind shear inside clouds. This class aims to capture mainly convective clouds with
a cirrus shield/anvil.

C5 Profiles where only opaque liquid water clouds are observed. No cirrus clouds are
present.

C6 Profiles where only an aerosol layer with AOT > 0.2 is observed. No clouds are present.

C7 Profiles where only clear sky or aerosols with AOT ≤ 0.2 are observed. No clouds are
present.

Please note that all liquid water clouds were opaque for the CALIOP lidar. Hence there is
the possibility of having a thicker aerosol layer below the liquid water clouds. The effect of
the aerosol layer is, however, assumed to be negligible due to the use of observations in the
infrared spectrum where the liquid cloud is also opaque. This vertical cloud–aerosol struc-
ture information is extracted and appended to the corresponding collocations contained in
the final validation dataset (Sect. 4.4.2) forming the extended final validation dataset. For
a graphical interpretation of the vertical cloud–aerosol structure classification, all classes
are visualised in Fig. 4.17. The number of samples for each class is also indicated; class C7
with more the 1.7 million samples is the most common situation, while C4 with less than
14 000 samples the most seldom.

Some CALIOP profiles do not fit into one of the seven classes, for example if the cirrus
cloud is opaque or if the vertical distance between a cirrus cloud and an underlying liquid
water cloud is between 0.5 and 4.0 km. Furthermore, all CALIOP retrievals used for the
validation of CiPS in Sect. 4.9 do not necessarily pass the quality screening, since liquid
water clouds and aerosols are included as well. In total, 75 % of the CALIOP retrievals
contained in the final validation dataset passed the quality screening and could be grouped
into one of the seven classes. The remaining 25 % were excluded from the present analysis.
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Figure 4.17: Visualisation of the seven vertical cloud–aerosol structure classes. Classes C1–
C4 contain transparent cirrus clouds and are used to characterise the CiPS cirrus cloud
detection (probability of detection) together with the CTHCiPS, IOTCiPS and IWPCiPS

retrievals. Classes C5–C7 contain no cirrus clouds and are used to characterise the false
alarm rate of the CiPS cirrus cloud detection. Figure reproduced from Strandgren et al.
(2017b).

4.10.3.2 Cirrus cloud detection

Figure 4.18a shows the POD of CiPS as a function of IOTCALIOP for the vertical cloud–
aerosol structure classes C1–C4, i.e. those classes defined in Sect. 4.10.3.1 that contain
cirrus clouds. For a better visualisation the scale is again logarithmic for IOTCALIOP < 1.0
and linear for IOTCALIOP ≥ 1.0. As a reference, the average POD for all cirrus clouds in
the dataset, including those that did not fit any of the four classes C1–C4, is included.

The cirrus cloud detection by CiPS shows little interference with different vertical
cloud–aerosol structures. It is, however, considerably easier for CiPS to detect a thin
cirrus cloud when a liquid water cloud is present vertically close to the base altitude of the
cirrus (C4). Even for sub-visual cirrus the POD is close to 60 % in such situations. If the
vertical separation between the cirrus cloud and the liquid water cloud is larger (≥ 4.0 km,
C3), only a marginal increase in POD with respect to profiles with no liquid water cloud
below the cirrus is observed. For thicker cirrus clouds with IOTCALIOP > 1.0, the POD is
close to 100 % with a liquid water cloud below the cirrus (C3 and C4), compared to 95 %
for scenes with only a transparent cirrus cloud (C1). An aerosol layer has a small effect
on the CiPS cirrus detection in general, but for cirrus clouds with IOTCALIOP < 0.08 an
aerosol layer appears to attenuate the radiative contrast of the cirrus, leading to a slightly
lower POD.
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Figure 4.18: (a) The cirrus POD of CiPS as a function of the IOT retrieved by CALIOP
for the vertical cloud–aerosol structure classes C1–C4 along with the average POD over
the full final validation dataset. (b) The FAR of CiPS for scenes with liquid water clouds
(C5) as a function of the corresponding top temperature of the liquid water clouds. Along
with the FAR, the relative frequency of occurrence of the different liquid water cloud top
temperatures is shown. Figure adapted from Strandgren et al. (2017b).

For scenes with clear sky (C7) or thicker aerosol layers (C6) CiPS has a FAR of 3.2 %,
meaning that it correctly classifies close to 97 % of such scenes as cirrus-free (not further
shown here). An increased average FAR of 5.5 % is obtained when a liquid water cloud
is present (C5). This is a result of CiPS falsely classifying some high liquid water clouds
as cirrus clouds. Figure 4.18b shows the FAR for scenes with liquid water clouds (C5) as
a function of the liquid water cloud top temperature along with the relative frequency of
occurrence of the different cloud top temperatures. It is clear that the colder (higher up)
the liquid water cloud is, the higher is the risk of falsely classifying it as a cirrus cloud.
At temperatures below −30 ◦C, the FAR is approx. 35–65 %. The relative frequency of
such supercooled liquid water clouds is, however, low. Most liquid water clouds have a top
temperature between −15 and +15 ◦C and thus a clearly lower FAR of less than 5.0 %.

4.10.3.3 Cirrus cloud properties

Figure 4.19 shows the MAPE and MPE for the (a) CTHCiPS, (b) IOTCiPS and (c) IWPCiPS

retrievals as functions of the corresponding reference retrievals by CALIOP and the vertical
cloud–aerosol structure.

Within each CTHCALIOP, IOTCALIOP and IWPCALIOP interval in Fig. 4.19, the MAPE
and MPE given by Eq. (3.6) and (3.5) are calculated. Again the results are presented with
a logarithmic scale for IOTCALIOP < 1.0 and IWPCALIOP < 10.0 g m−2 and with a linear
scale for IOTCALIOP ≥ 1.0 and IWPCALIOP ≥ 10.0 g m−2. The average retrieval errors for
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Figure 4.19: The MAPE (solid) and MPE
(dash) of the (a) CTHCiPS, (b) IOTCiPS

and (c) IWPCiPS retrievals as functions
of the corresponding reference retrievals
from CALIOP. The retrieval errors of
CiPS are presented for the four verti-
cal cloud–aerosol structure classes C1–
C4, representing different cloud remote
sensing situations. Figure adapted from
Strandgren et al. (2017b).

all vertical cloud–aerosol structures are included as a reference.
The presence of liquid water clouds (C3 and C4) has a negligible effect on the CTHCiPS

retrieval. An aerosol layer below the cirrus cloud introduces a stronger positive bias (pos-
itive MPE), with a MAPE and MPE of up to 70 % for the lowermost cirrus clouds. This
is not necessarily an effect of the aerosol layer itself, and it is likely to be related to the
fact that most aerosol layers with AOT > 0.2 are found in the tropical regions (not shown
here), where CTHs are typically higher leading to a stronger tendency of overestimating
comparably low CTHs. This effect is seen to diminish with increasing CTHCALIOP. At
CTHCALIOP = 9.0 km the MAPE introduced by an underlying aerosol layer is approx. 5 %
larger compared to retrievals without an aerosol layer. Above 13 km, the aerosol layer has
no effect on the CTHCiPS retrieval error.

The presence of a low liquid water cloud below the cirrus (C3) has a negligible effect
on the IOTCiPS and IWPCiPS retrievals, with the same MPE and MAPE as for situations
with solely clear sky or background aerosols below the cirrus cloud (C1). If the liquid
water cloud is located vertically close or adjacent to the cirrus (C4), the retrieval error
clearly increases for thin cirrus clouds. The increase in error for those retrievals is seen
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for IOTCALIOP . 0.5 and IWPCALIOP . 10.0 g m−2 and increases rapidly with decreasing
IOTCALIOP and IWPCALIOP. At IOTCALIOP ≈ 0.08 and IWPCALIOP ≈ 2.0 g m−2, the MAPE
is 200 % for class C4, which is about twice the error of the IOTCiPS/IWPCiPS retrievals for
situations with solely clear sky or background aerosols below the cirrus cloud (C1). This
pattern is to be expected as it is impossible for a radiometer to know where the transition
between ice and liquid water occurs when the two clouds are not vertically well separated,
especially since the liquid water cloud is thick and thus opaque to infrared radiation.
Furthermore, it is more difficult to extract information about the cirrus from the brightness
temperature differences, also utilising the regional maximum brightness temperatures, if
the vertical separation, and hence the radiative contrast between the cirrus cloud and the
underlying liquid water cloud, is small. A corresponding increase is observed for the MPE,
meaning that the increased MAPE is a result of larger overestimations of IOTCiPS and
IWPCiPS.

Opposite to the CTHCiPS retrieval, an aerosol layer below the cirrus cloud (C2) reduces
the IOTCiPS and IWPCiPS retrieval errors for thin cirrus clouds. This does not imply that
it is easier to retrieve the IOTCiPS and IWPCiPS of thin cirrus clouds when an aerosol
layer is present below the cirrus. It is rather related to the fact that CiPS predominantly
overestimate IOTCALIOP and IWPCALIOP for thin cirrus, an effect that is reduced if an
aerosol layer is present below the cirrus.

4.10.4 The CiPS retrieval errors as a function of ice optical thick-
ness and cloud top height

In this section the retrieval errors of CiPS are investigated as a function of IOTCALIOP

and CTHCALIOP. This gives information about typical errors of CiPS for different types
of cirrus clouds (e.g. low and thick or high and thin cirrus). To remove any effects from
different vertical cloud–aerosol structures, again only those profiles with transparent cirrus
clouds and possible faint aerosols (AOT ≤ 0.2) as defined by CALIOP L2 data are used
(class C1 in Sect. 4.10.3.1). This distribution is depicted in Fig. 4.20c, which represents
a 2-D histogram with IOTCALIOP on the horizontal axis and CTHCALIOP on the vertical
axis. The colour map shows the number of occurrences for each combination of IOTCALIOP

and CTHCALIOP of class C1 in the extended final validation dataset. As mentioned in
Sect. 4.4.2, both the final validation dataset and the training datasets used to train CiPS
consist of a random subset of CALIOP data collected over a time period of almost 6 years
and do to some extent (limited by the sun-synchronous orbit of CALIPSO) represent the
natural distribution of IOT and CTH frequencies and their combinations. The occurrences
in Fig. 4.20c are thus to a large extent representative for the corresponding occurrences in
the dataset used to train CiPS as well. The highest occurrence of cirrus clouds in Fig. 4.20c
is between 9 and 17 km, with tropical cirrus covering the high-altitude cirrus fraction and
mid- to low-latitude cirrus covering the low-altitude cirrus fraction. Low cirrus clouds are
thicker than high cirrus, with an occurrence peak for cirrus with CTHCALIOP between 10.5
and 12.5 km and IOTCALIOP between 0.3 and 1.0.
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Figure 4.20: (a) Two-dimensional histogram showing the MAPE of the CTHCiPS re-
trievals as a function of the reference retrieval quantities IOTCALIOP and CTHCALIOP.
(b) Two-dimensional histogram showing the MPE of the CTHCiPS retrievals as a function
of IOTCALIOP and CTHCALIOP. (c) Two-dimensional histogram showing the number of
occurrences for different combinations of IOTCALIOP and CTHCALIOP. (d) The MAPE of
the CTHCiPS retrievals for the different IOTCALIOP/CTHCALIOP combinations as a function
of the number of occurrences (each diamond represents two corresponding grid boxes in
(a) and (c)). Figure reproduced from Strandgren et al. (2017b).

Figure 4.20a and b show two 2-D histograms with the IOTCALIOP and CTHCALIOP on
the horizontal and vertical axes respectively. The colour maps show the MAPE and MPE
of the CTHCiPS retrievals with respect to the reference CALIOP data.

The CTHCiPS retrieval shows a stable performance with a MAPE between 5 and 15 %
for most combinations of top height and optical thickness. For optically thin cirrus clouds,
radiation from below has a larger contribution to the observed brightness temperatures,
which reduces the radiative contrast between the cirrus cloud and the underlying surface
(Sect.2.2.2). Similarly, the radiative contrast decreases if the cirrus cloud is located fur-
ther down in the atmosphere at warmer temperatures, with more water vapour above the
cirrus cloud that makes the interpretation of window channel brightness temperatures and
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brightness temperature differences more difficult. These effects can be seen in the retrieval
errors, with generally decreasing MAPE for increasing CTHCALIOP and IOTCALIOP. It is
clear that the combination of low and optically thin cirrus induce the maximum CTHCiPS

retrieval errors (MAPE & 25 %) while high and optically thick cirrus induce the minimum
CTHCiPS retrieval errors (MAPE ≈ 5 %). The lowest retrieval errors are observed at high
altitudes (CTHCALIOP ∈ [15, 17] km), where the CTHCiPS can be retrieved with a small
error also for sub-visual cirrus. Similar features are observed using an optimal estimation
method in Iwabuchi et al. (2016). For thin to sub-visual cirrus clouds, CiPS is more likely
to overestimate the CTH (positive MPE). With increasing IOTCALIOP the bias weakens,
and for IOTCALIOP > 0.05 and CTHCALIOP > 8 km CiPS is mostly unbiased (MPE ≈ 0).
As already discussed in Sect. 4.9.2, the extreme high and low CTHCALIOP are primarily
under- and overestimated though, irrespective of IOTCALIOP.

A correlation between higher MAPE and a low number of occurrences is evident. For the
region of low optically thin cirrus, where the MAPE of the CTHCiPS retrieval is highest,
there are only few points. This is further clarified in Fig. 4.20d, showing the MAPE
of the CTHCiPS retrieval as a function of the number of occurrences. Each diamond in
Fig. 4.20d represents one pair of grid boxes in Fig. 4.20a and c (708 pairs of boxes with
valid data are represented). It is clear that the high MAPEs rarely occur and that most
CTHCiPS retrievals have comparably low MAPEs. This provides primarily three pieces of
information. (1) The learning of the ANNs is sensitive to the distribution of the training
dataset, leading to difficulties to accurately retrieve the cirrus properties for comparably
rare situations. An effort was made to balance the training datasets for CiPS by adding
duplicates for some rare situations (Sect. 4.4.2) to increase their weight during the training.
This approach does not, however, introduce any new information that the ANNs can learn
from. Nevertheless, not even a perfectly balanced dataset is likely to result in an ANN
that performs equally well for all kinds of cirrus clouds and retrieval conditions, as certain
retrieval conditions have physical limitations, as discussed above for low and optically thin
cirrus clouds. CiPS can also retrieve the CTH for high sub-visual cirrus clouds with a low
MAPE despite few occasions. (2) With comparably few occasions, the high MAPEs of
CiPS have a small effect for the average usage of CiPS, as the MAPE for the comparably
common situations is low. (3) Due to their few occurrences, the high MAPEs of CiPS have
a low statistical value such that these values have to be treated with caution.

On average CiPS can retrieve the CTH with a MAPE around 8 % and zero bias (MPE)
for the most common combinations of CTHCALIOP and IOTCALIOP. Taking the number of
occurrences into account, which represents the natural distribution of transparent cirrus
clouds over clear air observed by CALIOP, 37 % of all CTHCiPS retrievals have a MAPE
of 5 % or less. Another 27 and 16 % of all retrievals have a MAPE between 5 and 10 and
between 10 and 15 % respectively.

Figure 4.21 is similar to Fig. 4.20, but here the IOTCiPS retrieval errors are in focus.
Figure 4.21a–c again show 2-D histograms with IOTCALIOP on the horizontal axes and
CTHCALIOP on the vertical axes. The colour maps show (a) the MAPE and (b) the MPE
of the IOTCiPS retrievals with respect to the CALIOP reference retrievals and (c) the cor-
responding number of occurrences for the different IOTCALIOP/CTHCALIOP combinations.
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Figure 4.21: (a) Two-dimensional histogram showing the MAPE of the IOTCiPS re-
trievals as a function of the reference retrieval quantities IOTCALIOP and CTHCALIOP.
(b) Two-dimensional histogram showing the MPE of the IOTCiPS retrievals as a function
of IOTCALIOP and CTHCALIOP. (c) Two-dimensional histogram showing the number of
occurrences for different combinations of IOTCALIOP and CTHCALIOP. (d) The MAPE of
the IOTCiPS retrievals for the different IOTCALIOP/CTHCALIOP combinations as a function
of the number of occurrences (each diamond represents two corresponding grid boxes in
(a) and (c)). Figure reproduced from Strandgren et al. (2017b).

Figure 4.21c is consequently a duplicate of Fig. 4.20c but is included twice for the reader’s
convenience. Please note that the retrieval errors are significantly larger for IOTCiPS com-
pared to CTHCiPS and the axes for the MAPE and MPE now range from 0 to 500 % and
from −500 to 500 % respectively. The MAPE of the IOTCiPS retrievals as a function of
the number of occurrences is shown in Fig. 4.21d. Similarly to the CTHCiPS retrievals, the
IOTCiPS retrieval errors show clear patterns across the IOTCALIOP and CTHCALIOP domains.
The large retrieval errors for thin cirrus clouds already shown in Sect. 4.9.2 are evident but
are seen to decrease with increasing CTHCALIOP. Above 14 km CiPS can estimate the IOT
with a MAPE (Fig. 4.21a) of 30–120 % down to sub-visual cirrus clouds. Again, the combi-
nation of low (CTHCALIOP < 8 km) and optically thin (IOTCALIOP < 0.1) cirrus induces the
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largest IOTCiPS retrieval errors (MAPE > 150 %), while high (CTHCALIOP > 13 km) and
optically thicker (IOTCALIOP > 0.06) cirrus induce the smallest retrieval errors (MAPE be-
tween 30 and 80 % and MPE close to zero). Furthermore, there is a band with IOTCALIOP

between 0.2 and 0.5 at 4 km height that expands with CTHCALIOP to reach IOTCALIOP

between 0.1 and 1.0 at 16 km where the MAPE is smaller than 50 %. The smallest bias
(MPE, Fig. 4.21b) is observed where the MAPE is lowest and increases slightly with de-
creasing CTHCALIOP. For IOTCALIOP > 0.3, the IOTCiPS retrieval has a negative or zero
bias on average (MPE between −80 and 0 %), whereas for IOTCALIOP < 0.3 the IOTCiPS

retrieval has no or a positive (up to 400 % or more) bias.
Again an evident correlation between low MAPEs and a high number of occurrences is

observed (Fig. 4.21d). Even though high MAPEs of 800 % are possible, the large majority
of the IOTCiPS retrievals have MAPEs between 50 and 150 %. Please also note that a 800 %
MAPE observed at IOTCALIOP = 0.01 translates into a small absolute error (0.08). Similar
optical thickness retrieval errors are shown for the optimal estimation retrieval by Iwabuchi
et al. (2016), demonstrating that the large errors are not an artefact of the ANN but rather
due to physical constraints discussed above. There are approx. 250 points/diamonds with
less than 200 occurrences and low MAPE (< 100 %). Those points represent cirrus clouds
with a comparably high optical thickness (IOTCALIOP & 1.5). In this region CiPS pre-
dominantly underestimates IOTCALIOP, meaning that the MAPE of the IOTCiPS retrieval
is bounded above by 100 %.

On average CiPS can retrieve the IOT with a MAPE around 50 % and bias around
±10 % for the most common combinations of CTHCALIOP and IOTCALIOP. Taking the
number of occurrences into account, again representing the natural distribution of trans-
parent cirrus clouds over clear air observed by CALIOP, 55 % of all IOTCiPS retrievals have
a MAPE of 50 % or less. Another 28 % of the retrievals have a MAPE between 50 and
100 %, meaning that only 17 % of the retrievals have a MAPE larger than 100 %.

The corresponding results for the IWPCiPS retrieval are similar to the IOTCiPS with 48
and 31 % of all IWPCiPS retrievals having a MAPE of 50 % or less and between 50 and
100 % respectively. Due to the similarities with the IOTCiPS retrieval, the IWPCiPS retrieval
errors as a function of CTHCALIOP and IOTCALIOP are not further presented here.

4.10.5 Noise sensitivity analysis of CiPS

In this section the effect of small noisy perturbations in the input data from SEVIRI prop-
agating through the ANNs is quantified. The noise sensitivity analysis is performed for
the CTHCiPS, IOTCiPS and IWPCiPS retrievals. The final validation dataset described in
Sect. 4.4.2 is used for this purpose in order to have a large temporal and spatial cover-
age. CiPS classifies 1.3 million points in the final validation dataset as icy, for which the
CTHCiPS, IOTCiPS and IWPCiPS is retrieved. Along with the standard CiPS retrieval using
the observed SEVIRI brightness temperatures, another 100 retrievals for every point are
performed where the SEVIRI brightness temperatures are randomly perturbed within the
respective radiometric noise estimate ranges.



74 4. CiPS - Cirrus Properties from SEVIRI

Table 4.3: Radiometric noise estimates of MSG-2/SEVIRI thermal channels (first column,
including the channel centre wavelength λc) at the reported reference brightness tempera-
tures (second column; EUMETSAT, 2007) and at typical brightness temperatures observed
for cirrus cloud retrievals (third column). Table reproduced from Strandgren et al. (2017b).

λc / µm NE∆T / K

6.2 0.05 @ 250 K 0.11 @ 225 K

7.3 0.05 @ 250 K 0.07 @ 237 K

8.7 0.075 @ 300 K 0.15 @ 252 K

10.8 0.07 @ 300 K 0.12 @ 253 K

12.0 0.10 @ 300 K 0.16 @ 251 K

13.4 0.205 @ 270 K 0.27 @ 239 K

4.10.5.1 Perturbing the SEVIRI brightness temperatures

Estimates of the radiometric noise levels of the SEVIRI thermal channels can be derived
from measurements of the internal black body calibration target and are reported as noise-
equivalent temperature differences (NE∆T ) at given reference temperatures in EUMET-
SAT (2007) and summarised in Table 4.3 (second column) for all channels (first column)
used by CiPS (see Sect. 4.2). However, these reference temperatures are higher than for
typical cirrus cloud retrievals. Therefore, the reported noise levels are scaled to the respec-
tive cirrus cloud brightness temperatures observed by SEVIRI. In a first step the NE∆T are
converted to NE∆R (noise-equivalent radiance differences) using the derivative of Planck’s
law (with respect to temperature, T ) at the reported reference temperatures and respec-
tive wavelengths (the centre channel wavelength in the first column of Table 4.3 is used
for this purpose). In a second step the NE∆R are converted back to NE∆T at the bright-
ness temperature of the corresponding cirrus cloud retrievals (P. Schöbel-Pattiselanno,
EUMETSAT, personal communication, 2017). This results in an individual noise level
estimate for all brightness temperatures observed by SEVIRI and used for the standard
CiPS retrieval. So with 1.3 million cirrus cloud retrievals in the final validation dataset
and 9 SEVIRI brightness temperatures as input (6 brightness temperatures and 3 regional
maximum temperatures, Sect. 4.2), a total of 9×1.3×106 individual radiometric noise level
estimates are obtained. Please note that those are not metrologically traceable per-pixel
noise estimates; instead all noise estimates are directly related via the observed brightness
temperatures to the overall noise estimates of the single channels reported in the second
column in Table 4.3. For a statistical analysis, however, those estimates are sufficient.

When the radiometric noise in the respective channels is scaled to the observed bright-
ness temperatures, colder cirrus cloud observations get higher radiometric noise levels com-
pared to warmer observations. The third column in Table 4.3 shows the radiometric noise
levels for the six SEVIRI channels used by CiPS at reference brightness temperatures given
by typical cirrus cloud observations. Those reference temperatures constitute the average
brightness temperatures observed by the respective channels across all CiPS cirrus cloud
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retrievals in the final validation dataset. It is clear that the noise level estimates of the
cirrus cloud observations are higher compared to the noise levels at the warmer reference
brightness temperatures reported by EUMETSAT (2007).

Each of the 9 × 1.3 × 106 brightness temperature observations in the final validation
dataset is associated with a Gaussian distribution with zero mean and standard deviation
provided by the 9× 1.3× 106 individual radiometric noise level estimates produced above.
Each Gaussian distribution is finally sampled randomly 100 times yielding 9×1.3×106×100
uncorrelated noise perturbations across the different SEVIRI input brightness tempera-
tures. Hence, a set of 100 randomly perturbed retrievals is obtained for each cirrus cloud
retrieval in the final validation dataset that can be directly compared to the corresponding
standard (unperturbed) retrieval of CiPS.

4.10.5.2 Noise sensitivity of CiPS

The noise sensitivity of the CTHCiPS, IOTCiPS and IWPCiPS retrievals is determined by
calculating the root-mean-square deviation (RMSD) between the standard retrievals and
the corresponding 100 perturbed retrievals for the 1.3 million icy collocations. The RMSD
is defined as

RMSD =

√√√√ 1

100

100∑
i=1

(S − Pi)2, (4.1)

where S is the standard CiPS retrieval and Pi are the perturbed retrievals (i = 1, . . . , 100).
The sum spans over all 100 perturbed retrievals.

Figure 4.22 shows the RMSD for (a) CTHCiPS, (b) IOTCiPS and (c) IWPCiPS as func-
tions of the respective quantities. For IOTCiPS and IWPCiPS only retrievals classified as
transparent by CiPS (OPFCiPS = 0) are included. This reduces the number of samples
from 1.3 to approx. 1 million. Please note that again the results are presented with a log-
arithmic scale for IOTCALIOP < 1.0 and IWPCALIOP < 10.0 g m−2 and with a linear scale
for IOTCALIOP ≥ 1.0 and IWPCALIOP ≥ 10.0 g m−2. The surface type and the vertical
cloud–aerosol structures are not taken into account for the noise sensitivity analysis and
the reported results represent the average sensitivity to radiometric noise across all retrieval
conditions.

The CTHCiPS retrieval is clearly robust with a low sensitivity to noise in the SEVIRI
input data. The RMSD is around 100 m throughout the whole CTHCiPS range.

The IOTCiPS and IWPCiPS retrievals have similar noise sensitivities. The RMSD is
less than 10 % of the corresponding IOTCiPS/IWPCiPS throughout most of the IOTCiPS

and IWPCiPS ranges. Only for sub-visual cirrus the RMSD of CiPS is higher. For thicker
cirrus, the IOTCiPS and IWPCiPS retrievals become more robust to SEVIRI noise as the
respective curves flatten towards a constant sensitivity around 1.5 and 30 g m−2 for IOTCiPS

and IWPCiPS respectively. For thin cirrus clouds, a small change in IOT/IWP induces
a comparably large change in the cloud radiative properties. Similarly, a small change in
the cloud radiative properties has a larger effect on the IOT and IWP for thin cirrus clouds
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Noise sensitivity of CiPS

Figure 4.22: The noise sensitivity of the (a) CTHCiPS, (b) IOTCiPS and (c) IWPCiPS

retrievals. The noise sensitivity is reported as the RMSD between the CiPS standard
retrieval and 100 retrievals where the SEVIRI input data are randomly perturbed within
the radiometric noise range of SEVIRI. Figure adapted from Strandgren et al. (2017b).

compared to thicker cirrus where the IOT and IWP is higher. Consequently a small noisy
perturbation applied to the SEVIRI input data has a larger impact on the IOTCiPS and
IWPCiPS retrievals for thin cirrus clouds, leading to higher relative RMSD for thin cirrus
and decreasing relative RMSD for thicker cirrus.

A noise sensitivity of 0.001 at a retrieved optical thickness of 0.01 is low and one
may expect noise to have a stronger impact on the retrievals for such faint cirrus. The
reported radiometric noise estimates of SEVIRI are, however, very low. Even for cold cirrus
cloud retrievals, the radiometric noise level is between 0.07 and 0.27 K on average for the
six SEVIRI channels (see third column in Table 4.3), which corresponds to 0.3–1.1� of
the observed average brightness temperatures. Furthermore, the noise is assumed to be
Gaussian and peaks at zero across all perturbed retrievals and the individual SEVIRI input
variables.

In Sect. 4.10.4 the retrieval error of CiPS is assessed to ≈ 5–15 and ≈ 50–150 % for the
CTHCiPS and IOTCiPS/IWPCiPS retrievals respectively. In this section the radiometric noise
of SEVIRI is shown to have a minor contribution to the retrieval error. Thus it is clear
that the major part of the retrieval error stems from the clearly different characteristics
and sensitivities of SEVIRI and CALIOP.
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4.11 Intercomparison with independent lidar data

As explained in Sect.4.3, CiPS is bound to inherit all systematic errors of its training refer-
ence, CALIOP. As such errors do not show when validated against independent CALIOP
data, as in Sects. 4.9–4.10, it is wise to compare the CiPS retrievals with external cirrus
cloud retrievals. In this section this is done by comparison with both ground-based and
airborne lidar data.

4.11.1 The ground-based lidar RAMSES

RAMSES (Raman Lidar for Atmospheric Moisture Sensing; Reichardt et al., 2012; Re-
ichardt, 2014) is a ground-based Raman lidar with an integrated spectrometer (actually
two, but the second is not relevant here) operated at DWD (German Meteorological Ser-
vice) in Lindenberg, Germany. RAMSES is sensitive to the inelastic Raman backscatter
by water molecules in all three phases and measures, in addition to vertical profiles of
water vapour mixing ratio and temperature, the optical properties of clouds at 355 nm,
and cloud water content. Direct measurement of the latter is available at night only. To
obtain estimates of IWC and, by vertical integration, IWP with RAMSES during daytime
as well, a temperature dependent relation between IWC and the s-polarized (perpendicular
to the plane of incidence) backscatter coefficient has been established.

The cirrus cloud properties retrieved by CiPS have been compared to the counter-
parts retrieved by RAMSES at 11 occasions (selected by J. Reichardt (DWD)) in 2015/16,
when stable cirrus clouds were observed over Lindenberg. CiPS data have been spatially
collocated with the RAMSES retrievals using parallax correction and nearest neighbour.
Figure 4.23 shows the temporal evolution of the cirrus IOT and IWP retrieved by CiPS
and RAMSES at one such occasion (8–9 November 2015). RAMSES IOT has been cor-
rected for multiple scattering effects. Grey areas represent cirrus classified as opaque by
CiPS, i.e. where IOTCiPS and IWPCiPS retrievals are considered unreliable. It is clear that
CiPS detects all cirrus clouds observed by RAMSES. Also the opacity classification is ac-
curate, and in nearly all situations where CiPS underestimates the high IOTRAMSES and
IWPRAMSES, CiPS classifies the cirrus as opaque. There are, however, situations where
such opaque cirrus and hence underestimated IOTCiPS and IWPCiPS are not identified. In
general the agreement for the IOT and IWP is very good given the different sensitivities
and observation techniques, with a linear correlation of 0.93 and 0.88 respectively. CiPS
does, however, underestimate the IOTCiPS and IWPCiPS around 16:00, 17:00–17:30 and
18:30 UTC. There are also some differences between the IOT and IWP retrievals. For
example around 22:00–22:30 UTC, when CiPS underestimates the IOT, but accurately re-
trieves the IWP. Similarly, CiPS overestimates the IWP, but accurately retrieves the IOT
around 20:15–20:45 UTC. This suggests imperfections in the parameterisation used to es-
timate the IWC (from the CALIOP extinction coefficients) and by vertical integration the
IWPCALIOP used to train CiPS.

Fig. 4.24 shows two scatter plots with the IOT and IWP retrieved by CiPS and RAM-
SES for all eleven occasions. The RAMSES data, retrieved at a higher temporal resolution,
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Figure 4.23: The IOT and IWP retrieved by CiPS and the ground-based Raman lidar
RAMSES on 8–9 November 2015. Grey areas represent cirrus classified as opaque by
CiPS.

have been averaged to the temporal resolution of CiPS. Furthermore, all retrievals classified
as opaque by CiPS have been excluded. The agreement is generally good with a linear cor-
relation of 0.81 and 0.70 for IOT and IWP respectively. Despite a good correlation, a slight
negative bias for thinner cirrus is observed for CiPS, especially for the IWPCiPS retrieval
(IWPRAMSES . 5 g m−2). Many occurrences below the 1-1 line could also be seen with
respect to CALIOP in Figs. 4.11a and 4.12a. Moreover, CiPS tends to overestimate the
IWP and to some extent the IOT with respect to RAMSES around IWPRAMSES ≈ 12 g m−2

and IOTRAMSES ≈ 1.0 respectively
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Figure 4.24: Scatter plots with the IOT and IWP retrieved by CiPS on the vertical axes
and the corresponding RAMSES data on the horizontal axes. The grey lines represent the
1–1 line.
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4.11.2 The airborne lidar WALES

WALES (Water Vapor Lidar Experiment in Space; Wirth et al., 2009; Kiemle et al., 2008)
is an airborne differential absorption lidar developed at DLR. In addition to four channels
around 932 nm for the retrieval of vertical profiles of water vapour mixing ratio, WALES
is equipped with a polarization-sensitive high spectral resolution channel (Esselborn et al.,
2008) at 532 nm, which allows for separation between molecular and particulate backscatter
and hence measurements of particulate extinction, and by vertical integration, optical
thickness. Measured extinction coefficients do, however, not account for multiple scattering
effects, that increase with optical thickness.

During the Midlatitude Cirrus experiment (ML-CIRRUS; Voigt et al., 2017) in 2014, the
German research aircraft HALO flew over a cluster of optically thin (IOT. 0.2) contrails,
for which WALES could measure the extinction by ice and hence the IOT, with little effect
from multiple scattering due to the low optical thickness. Figure 4.25 shows the WALES
IOT for a time period of ≈ 12 min together with the corresponding IOT retrieved by CiPS.
Although there are deviations, CiPS captures the evolution of the IOT very well, given
the low optical thickness and the different observation techniques and sensitivities, with
remarkable agreement for especially the first part. CiPS data are only shown where CiPS
actually detects cirrus, leading to a small data gap around 15.86–15.88 h, where the contrail
cluster remains undetected.

Figure 4.25: IOT retrieved by CiPS and the airborne high spectral resolution lidar WALES
for an optically thin contrail cluster. WALES data are shown at full temporal resolu-
tion (dotted line) and as averages over the SEVIRI/CiPS pixels (solid line). Figure by
L. Bugliaro (DLR).
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4.12 Estimating the ice crystal effective radius

The effective radius (Sect. 2.2.1) is an important variable since it is closely related to
the physical processes in cirrus clouds. The effective radius cannot be derived from CiPS
(nor CALIOP) directly, but following Eq. (2.26) and assuming vertical homogeneity of
the effective radius, it can be estimated from the two validated quantities IOTCiPS and
IWPCiPS using the standard formula

REFCiPS =
3 · 106

2ρice [g m−3]

IWPCiPS [g m−2]

IOTCiPS [−]
= 1.64 · IWPCiPS

IOTCiPS

[µm] . (4.2)

Since IOTCiPS and IWPCiPS both refer to the (same) upper part of the cloud, they should be
affected similarly by the saturation of CiPS. Hence, the fraction IWPCiPS/IOTCiPS allows
for REFCiPS retrievals for the entire cirrus (spatially) and not only for the pixels classified
as transparent by CiPS. The accuracy of the REFCiPS estimates is directly related to the
accuracy of IOTCiPS, IWPCiPS as well as the parameterisation in Eq. (4.2). Assuming
vertical homogeneity in the anvil cirrus can introduce further uncertainties, but for the
purpose of this thesis, which is to investigate patterns in the temporal evolution of the ice
crystal sizes in anvil cirrus clouds, this parametrisation is assumed to be sufficient. The
same formula is used by e.g. Bugliaro et al. (2011) and Stengel et al. (2014). Using IOTCiPS

and IWPCiPS derived for the 1.3 million pixels in the final validation dataset (Sect.4.4.2)
classified as cirrus by CiPS, REFCiPS is sensitive to values ranging from 16 to 50µm.



Chapter 5

The life cycle of anvil cirrus clouds

In this chapter the life cycle of anvil cirrus clouds and the temporal evolution of their
macrophysical, microphysical and optical properties are analysed. CiPS (Chap. 4) is the
primary tool for this task, together with a new cirrus tracking algorithm that has been
developed in order to track the anvil cirrus clouds from the first detection after convective
initiation of the cumulus clouds, until the dissipation of the anvil cirrus. Moreover, Cb-
TRAM Stage 3 data (Sect. 3.4.1) are used to identify deep convective clouds and the
combination of Cb-TRAM Stage 2 and 3 is used to monitor the convective activity of
those clouds. Please note that the tracking and nowcasting of Cb-TRAM are not used
for this study. Furthermore, the coldest brightness temperatures observed at 10.8 µm in
the convective cores (approx. absolute cloud top temperatures) have been used as a proxy
for the convective strength to analyse the relationship between convective strength and
anvil cirrus properties. Finally, modelled data from the ECMWF reanalysis dataset ERA5
(Sect. 3.4.2) have been used to characterise the meteorological conditions where the anvil
cirrus clouds form, in order to investigate what meteorological conditions govern large and
long-lived anvil cirrus clouds.

5.1 Cirrus tracking algorithm

To analyse the properties of selected anvil cirrus clouds throughout their life cycle, a cirrus
tracking algorithm has been developed. To this end a pattern oriented cross-correlation
technique is used. Cross-correlation is a commonly used technique for tracking clouds and
deriving cloud motion vectors from geostationary imagers (e.g. Leese et al., 1971; Schmetz
et al., 1993; Bolliger et al., 2003). The tracking algorithm works in synergy with CiPS and
relies on its cirrus cloud masks.

5.1.1 Selecting a target to track

Figure 5.1 visualises the graphical user interface for the target selection developed for the
new tracking algorithm. Figure 5.1a shows a false colour composite over south central
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Figure 5.1: (a) MSG-2/SEVIRI false colour composite over south central Europe on 7 July
2015 at 14:00 UTC. (b) The corresponding CiPS cirrus cloud mask with individual cirrus
clouds labelled with different colours. The pointer visualises the cloud selected with point-
and-click by the user. (c) Same as (b), but with the selected cirrus cloud highlighted in
red for confirmation that the correct cloud was selected. All cirrus clouds smaller than 5
SEVIRI pixels are filtered out.

Europe on 7 July 2015 at 14:00 UTC as reference. The first step in the tracking algorithm
is to choose a time when the tracking shall start. The algorithm then generates an image
with an overview of all cirrus clouds (in the pre-defined geographical area) detected by
CiPS (see Fig. 5.1b). To increase the contrast between different cirrus clouds, all clouds
are labelled with individual colours. The second step is to select which cirrus cloud to
track; this is done by simply clicking at the desired cloud. A new image is generated,
highlighting the selected cirrus cloud (see Fig. 5.1c). If this is confirmed to be the desired
cloud (with a terminal command by the user), the tracking starts. If not, the previous
image with an overview of all cirrus clouds is re-generated (Fig. 5.1b) such that a new
cirrus cloud can be selected.

5.1.2 Tracking the target

When a tracking target has been selected, the algorithm starts to track the selected cirrus
cloud forward in time (with a similar approach as e.g. Bolliger et al. (2003)). The concept
of the cirrus tracking technique is shown in a schematic form in Fig. 5.2. Figure 5.2a
shows a cirrus cloud mask at time t, with the tracked cirrus cloud highlighted in red.
The minimum bounding box enclosing the selected cirrus cloud at the present time slot
t is identified as shown in Fig. 5.2b. Next, a search domain (dashed blue in Fig. 5.2b)
is identified, in which the tracked cirrus will be searched for in the next time slot t + dt.
The search domain is defined as the area covered by the minimum bounding box at t, plus
x SEVIRI pixels in each direction. The number x is set by the user and determines the
maximum allowed cloud displacement between two time steps. With small x (x→ 0), the
tracking reminds of an overlapping tracking technique, where the tracked cirrus is expected
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Figure 5.2: (a) Schematic cirrus cloud mask with the tracked cirrus cloud highlighted in
red. (b) Same as (a), but including the minimum bounding box enclosing the tracked
cirrus cloud and the outline of the search domain used to identify the tracked cirrus at
t+dt. (c) Schematic cirrus cloud mask at t+dt. (d) same as (c), but including the search
domain (solid blue, from (b)) and the point of maximum correlation (Rmax) between the
minimum bounding box (solid red) enclosing the tracked cirrus cloud at t (transparent red)
and the sub-domains of the search domain. (e) The cirrus cloud mask at t + dt with the
cirrus cloud(s) identified as the tracked cirrus highlighted in blue.

to spatially overlap with itself across two time slots (e.g. Williams and Jr., 1987; Arnaud
et al., 1992). A larger x gives the tracking more flexibility since such an overlap in space
and time is not required, which makes the tracking of small dissipating cloud fragments
possible. In this study, the number x is set to equal the temporal resolution of the CiPS
data in minutes (similar to Bolliger et al. (2003)). A temporal resolution dt of 5 min results
in a search domain 5 pixels larger than the minimum bounding box in all directions. With
pixel sizes of approx. 3.5× 5 km2 over Europe, this leads to a search domain that encloses
any cloud moving at a speed of up to 58–83 m s−1. For a few selected cases, a smaller x has
been used in order to avoid that the wrong anvil cirrus is identified as the tracked cirrus
in cases where more cirrus clouds are present close to each other.

Figure 5.2c shows the cirrus cloud mask at the next time slot t+dt. The search domain
(solid blue in Fig. 5.2d) identified above at t is directly transferred to the cirrus cloud mask
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at t+dt. Next, the bounding box (solid red in Fig. 5.2d) including the corresponding binary
cirrus cloud mask of the tracked cirrus from time slot t (transparent red in Fig. 5.2d) is
cross-correlated with the cirrus cloud mask enclosed by the search domain at t+dt. During
the cross-correlation process the cirrus cloud mask (of the tracked cirrus) at t enclosed by
the minimum bounding box is shifted pixel-wise in the horizontal and vertical direction
within the search domain of the cirrus cloud mask at t + dt. At each position the linear
Pearson correlation coefficient is calculated between the cirrus cloud mask of the tracked
cirrus at t enclosed by the minimum bounding box and the sub-domain of the cirrus cloud
mask at t+ dt and the position of maximum correlation Rmax is identified. A cirrus cloud
patch in the cirrus cloud mask at t + dt is considered to be part of the tracked cirrus
if it is completely or partly covered by the tracked cirrus enclosed by the bounding box
from the previous time slot t at the point of maximum correlation. Such an overlap is
represented by the darker red colour in Fig. 5.2d. This allows for a simultaneous tracking
of multiple cirrus clouds in the likely event that the tracked cirrus breaks up into multiple
smaller cloud patches. The cirrus cloud patches identified as the tracked cirrus at t + dt
are highlighted in blue in Fig. 5.2e. With this technique also the smaller patch no longer
attached to the larger cirrus at t + dt is identified as the tracked cloud. With a pure
overlapping technique, without cross-correlation, that cirrus cloud patch would have been
missed. When the tracked cirrus has been identified at t + dt, a new minimum bounding
box enclosing the tracked cirrus as well as a new search domain for the next time slot
t+ 2dt is defined. This procedure is repeated until the tracked cirrus cloud can no longer
be detected (no valid correlation in the search domain). At that point, the tracking is
repeated, but backwards in time starting again from the time slot t, defined above as the
tracking starting time.

The output from the tracking algorithm is the information about which pixels at a
specific time slot are part of the tracked cirrus cloud. The tracking algorithm itself is, in
principle, not limited to cirrus clouds, but can also be used to track low liquid water clouds
or other objects. In that case a corresponding cloud/pattern mask, that discriminates the
clouds/patterns from the surroundings, must be provided instead of the cirrus clouds mask
of CiPS.

5.2 Study region and anvil cirrus dataset

In this thesis, the life cycle of anvil cirrus clouds observed over Europe and the northernmost
parts of Africa in July 2015 is analysed. This is the area observed by SEVIRI using the
rapid scanning service (Sect. 3.1), which allows for a temporal resolution of 5 min for
SEVIRI products (CiPS and Cb-TRAM). In a warming climate, where the amount of deep
convection and anvil cirrus clouds can be expected to increase, it is also relevant to focus
on the mid-latitudes where convective systems and anvil cirrus clouds can cover large areas
during the summer season, making them an important component in the Earth’s energy
budget as well as the hydrological cycle. Moreover, one should not assume that previous
findings on the anvil cirrus life cycle from studies focusing on the tropics (e.g. Machado
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and Rossow, 1993; Chen and Houze, 1997; Mathon and Laurent, 2001; Luo and Rossow,
2004; Soden, 2004; Horváth and Soden, 2008; Sohn et al., 2008; Schröder et al., 2009;
Inoue et al., 2009; Imaoka and Nakamura, 2012; Fiolleau and Roca, 2013; Protopapadaki
et al., 2017) hold true for the mid-latitudes as well. To analyse the temporal evolution of
the anvil cirrus properties from convective initiation until the anvil has fully dissipated or
can no longer be detected by CiPS, spatially isolated anvil cirrus clouds are favourable.
Therefore, anvil cirrus clouds are excluded from the analysis if throughout their life cycle
they merge with another cirrus cloud that does not stem from the convective cell(s) from
which the tracked anvil cirrus formed.

In total, 132 isolated anvil cirrus clouds were identified (by visual inspection of false
colour composites), classified as cirrus clouds (with CiPS), classified as having a convective
origin (using Cb-TRAM Stage 3, see Sect. 3.4.1) and tracked, as described above, from the
first detection after convective initiation to the point when they are too optically thin for
CiPS to detect them. The information from Cb-TRAM Stage 2 and 3 is used to objectively
identify convective activity in the cumulonimbus clouds from which the anvil cirrus form.

Figure 5.3 shows the trajectories of all tracked anvil cirrus clouds. Most of the isolated
anvil cirrus clouds are found in southern Europe and the northernmost parts of western
Africa. Here, the air in sufficiently warm and moist in summer to generate deep convection,
and frontal cirrus clouds comparably rare which governs formation of isolated anvil cirrus
clouds. Nearly all anvils originate from cumulonimbus clouds that form over land and
typically in areas with high orography, which further governs the formation of cumulonim-
bus clouds and hence anvil cirrus clouds. Although cumulonimbus clouds are commonly
observed in the Alps and Pyrenees during the summer season (Morel and Senesi, 2002), it
rarely leads to the formation of isolated anvil cirrus clouds. The trajectories vary among
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Figure 5.3: Trajectories of the 132 anvil cirrus clouds (w.r.t. the centroid) whose life cycles
are analysed in this chapter. The circles (◦) indicate the point of formation and crosses
(×) the point of the last detection.
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the tracked anvil cirrus, but often an eastward direction induced by the westerlies can be
observed.
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Figure 5.4: Local times of first and last detec-
tion (by CiPS) of the 132 isolated convective
systems and following anvil cirrus clouds.

Figure 5.4 shows the distribution of the
local time when the convective systems
and anvil cirrus clouds are first and last
detected. Similar to the climatology of
mesoscale convective systems over Europe
by Morel and Senesi (2002), most convec-
tive systems from which the anvils form are
usually first detected at afternoon, between
12:00–17:00, while last detection usually oc-
curs between 18:00–24:00. A substantial
part of the anvils remain into late evening,
where their radiative forcing on the Earth–
atmosphere system is bound to be positive.

5.3 Case study

In this section, the anvil cirrus life cycle is analysed with a case study (a statistical analysis
is presented in Sect. 5.4). The purpose of the case study is to illustrate the concept of using
CiPS, the tracking algorithm and parts of Cb-TRAM for the analysis of the anvil cirrus life
cycle. A case study also allows for a more detailed analysis and is helpful for interpreting
the results of the statistical analysis.

The anvil cirrus cloud analysed in this section was observed over Italy on 7–8 July
2015. The cloud was first observed by CiPS at 7 July 11:30 UTC and last observed 14
hours later at 01:25 UTC on 8 July. This anvil cirrus is selected for the case study since
it is comparably large and long-lived, but still spatially isolated from other cirrus clouds.
Hence, it is more representative for larger mesoscale convective systems. Furthermore, the
long lifetime allows for detailed analysis of the different life cycle stages. Please note that in
the following the term lifetime refers to the anvil cirrus lifetime observed by CiPS (i.e. from
first detection after convective initiation to last detection by CiPS), which might deviate
from the actual lifetime due to CiPS lower sensitivity to sub-visual cirrus clouds. This
anvil cirrus is also interesting since it was observed several hours after sunset, where it has
an entirely warming effect on the Earth–atmosphere system. Although this anvil cirrus is
larger and more long-lived than most of the other anvil cirrus clouds tracked and analysed
in this study, the temporal evolution of its properties is to a large extent representative for
the ensemble of anvil cirrus clouds analysed in Sect. 5.4.

Figure 5.5 shows the temporal evolution of the anvil cirrus cloud at a temporal reso-
lution of 30 min using SEVIRI false colour RGB composites. The red contours show the
cirrus cloud mask of CiPS and the purple contours show the areas of convective activity
as observed with Cb-TRAM. The time is normalized with respect to the point of last
convective activity that was observed at 16:50 UTC. Hence 00:00 h represents 16:50 UTC
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t= 7:00h t= 7:30h t= 8:00h t= 8:30h

Figure 5.5: SEVIRI false colour RGB composites showing the temporal evolution (at 30 min
temporal resolution) of the anvil cirrus cloud over Italy on 7–8 July, 2015. The red and
purple contours show the CiPS cirrus cloud mask and the area of convective activity as
observed with Cb-TRAM (Stage 2 and 3) respectively. The time has been normalised with
respect to the point of last convective activity that was observed by Cb-TRAM at 16:50
UTC, such that a positive t indicates that convection has ceased. In the absence of solar
radiation, the RGB composites rely on a single thermal channel leading to a solely blue
contribution after sunset.

and e.g. ±04:00 h represents 20:50 UTC and 12:50 UTC respectively. This way a positive
time always indicates that convection has ceased. Normalising the lifetime with respect
to the point of last observed convective activity (similar to e.g. Luo and Rossow, 2004),
rather than a normalisation (e.g. between 0 and 1) of the entire lifetime (e.g. Fiolleau and
Roca, 2013) or a normalisation with respect to the observed peak in convective activity
(e.g. Soden, 2004; Sohn et al., 2008; Horváth and Soden, 2008; Schröder et al., 2009) allows
for a more differentiated analysis of the life cycle phases and a better understanding of the
temporal evolution and dissipation of the anvil cirrus from the point when the convective
updraught of moisture ceases and the anvil has to “live on its own”.

5.3.1 Temporal evolution of the anvil cirrus properties

Figure 5.6 shows the temporal evolution of the spatial extension, i.e. the horizontal area
at the cloud top, throughout the life cycle of the anvil cirrus cloud shown in Fig. 5.5 at
the full temporal resolution of 5 min. The blue colour represents the cirrus area classified
as transparent by CiPS, whereas the grey colour represents the area classified as opaque
by CiPS i.e. where IOTCiPS and IWPCiPS should not be trusted (Sect. 4.1). Again the
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Figure 5.6: Temporal evolution of the anvil cirrus spatial extension together with infor-
mation about cirrus transparency/opacity as classified by CiPS. t = 0 h denotes the point
when the last convective activity was observed with Cb-TRAM.

time has been normalised with respect to the point when the last convective activity was
observed with Cb-TRAM.

During the convective phase (negative t) the anvil cirrus grows spatially at a rather
constant pace of 10–15 000 km2 h−1. When convection ceases the anvil cirrus continues to
grow for another two hours, but at a reduced pace of around 5 000 km2 h−1. As soon as
the maximum spatial extension of approx. 70 000 km2 is reached, the anvil cirrus starts to
become smaller at an increasing pace for ≈ 4 h and then at a constant and comparably
high pace (w.r.t. the growth) for another 2.5 h until the observed anvil covers an area of
10 000 km2. During the last 2 h the anvil cirrus is continuously becoming smaller at a
decreasing pace until it can no longer be detected by CiPS approx. 8.5 h after convection
ceased. During the convective stage (negative t), the opaque fraction is generally increasing,
until 66 % of the anvil is classified as opaque at t = −1.5 h. At this point the fraction of
transparent cirrus starts to increase slowly for 2 h and then rapidly ca. 0.5 h after convection
ceased. 2 h after convection has ceased, 80 % of the cirrus is transparent and after another
2 h, there are no opaque pixels left. Thus, the anvil is becoming thinner, although it
increases in size after convection has ceased. Please remember that the transparency and
opacity indicate whether the observed cirrus is optically thin enough (transparent) or too
optically thick (opaque) for CiPS to retrieve reliable IOTCiPS and IWPCiPS.

Figure 5.7 shows the temporal evolution of the (a) CTHCiPS, (b) IOTCiPS, (c) IWPCiPS

and (d) REFCiPS throughout the life cycle of the anvil cirrus at a temporal resolution of
5 min. Due to the lack of reliable IOTCiPS or IWPCiPS data for opaque pixels, no information
is available for the median, 75th and 95th percentiles during large parts of the convective
stage.

In the very beginning CTHCiPS increases rapidly as the cumulonimbus cloud develops
in the vertical. The updraught of moisture leads to ice crystal formation and growth,



90 5. The life cycle of anvil cirrus clouds

-4 -2 0 2 4 6 8
Time relative to last detected convective activity t / h

6

8

10

12

14

C
T

H
C

iP
S

/ k
m

Median 25th ⁄ 75th percentile 5th ⁄ 95th percentile

-4 -2 0 2 4 6 8
Time relative to last detected convective activity t / h

0

10

20

30

40

50

IW
P

C
iP

S
/ g

m
−2

Median 25th ⁄ 75th percentile 5th ⁄ 95th percentile -4 -2 0 2 4 6 8
Time relative to last detected convective activity t / h

0.0

0.5

1.0

1.5

2.0

IO
T

C
iP

S

Median 25th ⁄ 75th percentile 5th ⁄ 95th percentile

-4 -2 0 2 4 6 8
Time relative to last detected convective activity t / h

10

20

30

40

50

R
E

F
C

iP
S

/µ
m

Median 25th ⁄ 75th percentile 5th ⁄ 95th percentile

(a)

(c) (d)

(b)

Figure 5.7: Temporal evolution of the anvil cirrus (a) CTHCiPS, (b) IOTCiPS, (c) IWPCiPS

and (d) REFCiPS throughout the life cycle. t = 0 h denotes the point when the last
convective activity was observed with Cb-TRAM.

which is reflected in the corresponding initial growth of IOTCiPS, IWPCiPS and REFCiPS.
Notice that the first part of convection, where liquid droplets are formed, is not observed
by CiPS. Due to additional, less developed, convective cores starting shortly after the first
detection, there is a sudden drop in the anvil properties at t = −5 h. After approx. two
hours (t = −3 h) the convective system is fully developed with a median CTHCiPS of 12.5 km
and with 25 % of the anvil above 13 km. During the convective phase, the cirrus is mostly
too thick for CiPS to retrieve reliable IOTCiPS and IWPCiPS; up to 65–70 % of the anvil is
opaque or has IOTCiPS ≥ 2.0 and IWPCiPS ≥ 50 g m−2. 25 % of the anvil is comparably
thin though, probably as a result of the convective outflow, with IOTCiPS < 0.2− 0.7 and
IWPCiPS < 4 − 16 g m−2. REFCiPS is comparably homogeneous. The median, 25th and
5th REFCiPS percentiles increase during the first phase of convection, with values around
28, 35 and 38 µm respectively at t = −1 h. The 95th percentile remains constant around
40µm during the convective phase, suggesting a continuous supply of larger ice crystals
that compensates for those lost due to sedimentation.

When convection ceases (at t = 0 h) the anvil cirrus starts to lose both height, IOT and
IWP. The decrease in IOTCiPS and IWPCiPS is quite rapid and already three hours after
convection has ceased, 95 % of the anvil cirrus has IOTCiPS . 1.4 and IWPCiPS . 30 g m−2.
Furthermore, 50 % of the anvil cirrus has IOTCiPS . 0.5 and IWPCiPS . 10 g m−2. While
the median, 75th and 95th CTHCiPS percentiles clearly decreases, from 12.3–13.5 km at
t = 0 h to 10–10.6 km at t = 8 h, the 5th CTHCiPS percentile remains constant around
9 km. This could be an indication that ice crystals falling below ≈ 9 km either sublime or
melt. During the same time period, and starting already before convection ceases, REFCiPS
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continuously decreases. This supports the idea that larger ice crystals continuously fall out
with a limited production of new large crystals towards the end of, and especially after,
the convective updraught.

5.4 Statistical analysis

In this section the life cycle of anvil cirrus clouds is investigated with a statistical approach
using all 132 isolated anvil cirrus clouds, whose trajectories are depicted in Fig. 5.3. First,
the temporal evolution of CTHCiPS, IOTCiPS, IWPCiPS and REFCiPS probability density
functions is investigated. Second, the effect of the convective strength on the anvil cirrus
properties and their temporal evolution is analysed. Third, ECMWF ERA-5 data are used
to investigate under what meteorological conditions, large and long-lived anvil cirrus clouds
form.

5.4.1 Temporal evolution of the anvil cirrus properties

Figure 5.8 shows the temporal evolution of the spatial extension for the 132 isolated anvil
cirrus clouds (Sect. 5.2). Again the time has been normalised with respect to the point
of last detected convective activity for each individual anvil, such that a positive t means
that deep convection is no longer active according to Cb-TRAM. The lifetime and spatial
extension is highly variable between the single anvil cirrus as a result of variable meteo-
rological conditions (e.g. temperature, humidity, atmospheric instability). Some anvils are
only observed for 1–2 h after convection has ceased and reach a maximum spatial extension
of approx. 1000 km2, while others grow up to 80 times larger and are observed for up to
15 h. The well-established positive correlation between the size of convective systems and
anvil cirrus and their observed lifetime (e.g. Chen and Houze, 1997; Machado et al., 1998;
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Figure 5.8: Temporal evolution of the spatial extension for the 132 isolated anvil cirrus
clouds. The line colours correspond to those used for the trajectories depicted in Fig. 5.3.
t = 0 h denotes the point when the last convective activity was observed with Cb-TRAM.
The anvil cirrus cloud analysed in Sect. 5.3 is indicated with an arrow.
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Mathon and Laurent, 2001; Inoue et al., 2009; Feng et al., 2012; Imaoka and Nakamura,
2012) is clearly represented by this dataset as well. For most anvil cirrus clouds, the maxi-
mum spatial extension is reached shortly after the point of last observed convective activity
(t = 0.35 ± 0.9 h on average), which is shorter than for the case study, where the growth
continued for two hours after convection ceased (see Fig. 5.6). This should be in line with
the typical anvil spreading time (between peak convective activity and maximum spatial
extension) of approx. 1–5 h observed in previous studies (e.g. Soden, 2004; Horváth and So-
den, 2008; Sohn et al., 2008; Schröder et al., 2009). While the average time it takes to reach
the point of maximum spatial extension is 2.6±1.6 h, it takes slightly longer, 3.2±2.0 h, for
the anvil cirrus to dissipate and become invisible to CiPS. There are, however, cases that
deviate from this pattern where the dissipation is slower, with especially two anvil cirrus
clouds that live for 13–15 h after convection has ceased. Most likely, those anvils formed in
and/or were transported to areas with meteorological conditions favourable for the anvil
cirrus to persist (as proposed by Luo and Rossow, 2004), such as ice supersaturated regions.

Figures 5.9–5.12 show the temporal evolution of the CTHCiPS, IOTCiPS, IWPCiPS and
REFCiPS probability density functions at a temporal resolution of 60 min. The solid lines
represent the mean value across the ensemble of 132 anvil cirrus clouds and the shaded areas
represent the corresponding standard deviations. Again the time has been normalised with
respect to the point of last convective activity and ranges from four hours before convection
ceases (t = −4 h) up to ten hours after (t = 10 h). Please note that the number of anvil
cirrus (N) used to calculate the statistics at each time step varies due to the varying
lifetimes of the individual anvil cirrus clouds and that only a few isolated anvils cirrus
were observed longer than 8 h after convection ceased (Fig. 5.8), making the statistical
analysis towards the end of the life cycle less certain for those long-lived anvil cirrus. All
pixels classified as opaque by CiPS are contained in the last respective bins for IOTCiPS

and IWPCiPS. Please note that the probability density function data are available at 5 min
temporal resolution but shown at 1 h resolution here due to limited space.

For CTHCiPS, a comparably large variability in the form of larger standard deviations is
observed. This can be attributed to varying tropopause and equilibrium layer heights and
different convective strengths (Sect. 5.4.2). Nevertheless, similar patterns in the temporal
evolution of CTHCiPS are observed. During the convective stage (negative t), the maximum
relative frequency is shifted towards higher CTHCiPS (≈ 10− 11 km on average). But even
at t = 0 h, CTHCiPS < 8 km are observed and minimum CTHCiPS around 6 km indicates
that convection has brought up liquid water to this height before freezing. When convection
ceases the anvil cirrus sink for a short period of time until most of the anvil top remains
quite stable around 8.5–10.5 km on average from approx. 3 h after convection has ceased and
onwards. A general decrease with time as seen for the case study and with active satellite
remote sensing in Bouniol et al. (e.g. 2016) is not present here. It is also evident that the
lower parts of the anvil are removed as convections ceases, possibly due to sublimation at
those lower warmer altitudes.

For IOTCiPS and IWPCiPS, the variability across the ensemble of anvil cirrus clouds is
comparably small. During the convective phase the anvil cirrus are mostly too thick for
CiPS to retrieve reliable IOTCiPS and IWPCiPS and when convection ceases at t = 0 h, ap-
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Figure 5.9: Temporal evolution of the anvil cirrus average CTHCiPS probability density
function (solid lines) and corresponding standard deviations (shaded areas) at a temporal
resolution of 60 min. t = 0 h denotes the point when the last convective activity was
observed with Cb-TRAM.

prox. 55 % of the anvil is opaque or have IOTCiPS > 1.0 or IWPCiPS > 30 g m−2 on average.
For the thinner 45 % of the anvil, IOTCiPS and IWPCiPS are quite evenly distributed be-
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Figure 5.10: Temporal evolution of the anvil cirrus average IOTCiPS probability density
function (solid lines) and corresponding standard deviations (shaded areas) at a temporal
resolution of 60 min. t = 0 h denotes the point when the last convective activity was
observed with Cb-TRAM.

tween 0.15–0.8 and 3–20 g m−2 respectively at this point. When convection ceases IOTCiPS

and IWPCiPS decrease rapidly, even more rapidly than for the case study. Within 2 h after
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Figure 5.11: Temporal evolution of the anvil cirrus average IWPCiPS probability density
function (solid lines) and corresponding standard deviations (shaded areas) at a temporal
resolution of 60 min. t = 0 h denotes the point when the last convective activity was
observed with Cb-TRAM.

convection has ceased, the relative frequency of the rightmost bins, containing pixels that
are opaque or have IOTCiPS > 1.0 and IWPCiPS > 30 g m−2 respectively, is reduced from
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Figure 5.12: Temporal evolution of the anvil cirrus average REFCiPS probability density
function (solid lines) and corresponding standard deviations (shaded areas) at a temporal
resolution of 60 min. t = 0 h denotes the point when the last convective activity was
observed with Cb-TRAM.

55 % to 8±6.6 % on average. This is considerably faster than the decrease in IOT and
IWP for tropical anvils observed by Luo and Rossow (2004), Horváth and Soden (2008)



5.4 Statistical analysis 97

and (Mace et al., 2006). The anvils are gradually becoming thinner with time during the
non-convective stage, with the maximum relative frequencies being shifted towards lower
IOTCiPS and IWPCiPS. Four hours after convection has ceased and onwards, most of the
anvil has IOTCiPS ≈ 0.07− 0.4 and IWPCiPS ≈ 1.0− 6.0 g m−2 on average.

REFCiPS slightly increases during the convective stage and when the convective activity
is observed to cease at t = 0 h, REFCiPS peaks at 35µm. When convection ceases there is
a sudden drop in REFCiPS, possibly due to quick sedimentation of the larger ice crystals,
and 2 h after convection the relative frequency peaks below 30 µm. 5 h after convection
has ceased and onwards, most REFCiPS are observed in the range 20–30 µm on average,
with decreasing crystal sizes. This is in line with the decreasing radar reflectivities and
narrowing reflectivity distributions observed by Yuan et al. (2011), suggesting smaller ice
crystals and less ice crystal size variability further away from the convective event. The
numbers are similar to the average REF of 33µm retrieved in the upper part of a tropical
anvil cirrus from in situ measurements (Jensen et al., 2009). Larger average REF (40–
48µm) sampled from the same in situ flight, but 2–3 km from the cloud top indicate that
REFCiPS is probably more representative for the upper part of the anvil cirrus and not
sensitive to larger aggregates located further down in the anvil.

While small standard deviations from the average curve are observed for the temporal
evolution of IOTCiPS and IWPCiPS, comparably large standard deviation are observed for
REFCiPS and especially CTHCiPS. This is an indication that different meteorological con-
ditions and properties of the convective system might have a comparably small impact on
IOTCiPS and IWPCiPS compared to REFCiPS and CTHCiPS, where more variability among
the 132 anvil cirrus clouds is observed.

5.4.2 Relationship between convective strength and the anvil cir-
rus life cycle

In a warming climate, more and stronger convection can be expected. In this section,
this is addressed by defining a proxy for convective strength and analysing the anvil cirrus
properties and their temporal evolution throughout the life cycle as a function of this proxy.
Moreover, variability in the convective strength might explain some of the variability with
respect to the life cycle of anvil cirrus clouds and the temporal evolution of their properties
observed in Sect. 5.4.1.

For this study the coldest SEVIRI brightness temperature observed at 10.8 µm (BTmin
10.8µm)

throughout the anvil cirrus life cycle is used as a proxy for the convective strength. For
deep convective cumulonimbus clouds, opaque (ε ≈ 1) to up-welling thermal radiation,
BT10.8µm is a good estimate for the absolute cloud top temperature, since no radiation is
transmitted from below and there is little water vapour above the cloud. The estimated
cloud top temperature of an opaque cumulonimbus cloud is, in turn, a valid proxy for
the convective strength, as it gives a good indication about how deep in the troposphere
the convection could reach, which is directly related to the strength of the convective
updraught. Similar proxies have been used in the literature (Machado et al., 1998; Pro-
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Figure 5.13: (a) The temporal evolution of the anvil cirrus spatial extension as a function of
convective strength. (b) Same as (a), but divided into four classes of increasing convective
strength (see text for information about the classification). Solid lines represent the mean
values of the respective classes and the shaded areas the corresponding standard deviations.
t = 0 h denotes the point when the last convective activity was observed with Cb-TRAM.

topapadaki et al., 2017). Other proxies including information about spatial extension and
duration of convective activity as observed by Cb-TRAM have been considered, but the
present proxy was concluded to be best suited for this study. The brightness temperature
at 10.8 µm is a good estimate of the cloud top temperature only for opaque clouds. As
the cloud emissivity decreases the observed brightness temperatures have a larger contri-
bution from emitting cloud/land surfaces below (Sect. 2.2.2), leading to higher brightness
temperatures and increasing deviations from the absolute cloud top temperatures. Hence,
the brightness temperatures alone cannot be used to estimate the top temperature or top
height of the anvil cirrus throughout the life cycle.

Figure 5.13a shows the temporal evolution of the anvil cirrus spatial extension (same as
Fig. 5.8) as a function of the convective strength proxy (colours). Brighter colours represent
colder cloud brightness/top temperatures and hence stronger convection. In Fig. 5.13b,
the anvil cirrus clouds have been divided into four equally large convective strength classes
using the three BTmin

10.8µm quartiles (Q1 = 219 K, Q2 = 224 K, Q3 = 229 K) representing
anvil cirrus clouds originating from convective systems with
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Weak BTmin
10.8µm ≥ 229 K

Moderate 229 K > BTmin
10.8µm ≥ 224 K

Strong 224 K > BTmin
10.8µm ≥ 219 K

Very strong 219 K > BTmin
10.8µm.

The solid lines represent the mean for the respective classes and the shaded areas the
corresponding standard deviations. Hence the purple line represents the strongest 25 %
of the anvils and the green line the weakest 25 %. The number of anvils that make up
the statistics does again vary with time, as all anvils are observed for unequally long
time periods. Please see Figs. 5.9–5.12, for an estimate on how the number of anvils N
decreases away from t = 0 h and keep in mind that those anvils are further divided into
four classes. Furthermore, Fig. 5.14 shows a scatter plot with the lifetime and maximum
spatial extension of the anvil cirrus as a function of the convective strength proxy (colours).
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Figure 5.14: The anvil cirrus lifetime and
maximum spatial extension as a function of
convective strength.

In line with the results of previous stud-
ies (e.g. Machado et al., 1998; Horváth and
Soden, 2008; Schröder et al., 2009; Feng
et al., 2012; Protopapadaki et al., 2017),
the convective strength is clearly corre-
lated with the lifetime and the maximum
spatial extension that the anvils reach.
Stronger convection, as defined here, repre-
sents colder cloud top temperatures, which
favours ice supersaturation and hence anvil
persistence. This is especially clear in
Fig. 5.13b, where stronger convection is ob-
served to consistently generate larger and
more long-lived anvil cirrus. This pattern
can also be seen in Fig. 5.14, with gener-
ally increasing lifetime and maximum spa-
tial extension with increasing convective
strength. There are also deviations from
this pattern though and a wide scatter in
general. This is, however, expected, since the proxy of convective strength does not take
the number of convective cores into account. Hence a large system that originates from 10
convective cores may have the same convective strength as a smaller single core system if
they reach as high up in the atmosphere. This does not invalidate the proxy for convec-
tive strength, since it strives to represent the strength in the vertical, and not horizontal,
development.

Figure 5.15 shows the temporal evolution of CTHCiPS for the four convective strength
classes defined above at the full 5 min temporal resolution. As expected, higher CTHCiPS

are observed in case of stronger convection since the convective proxy aims to estimate the
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Figure 5.15: The temporal evolution of the anvil cirrus CTHCiPS (median and 25th/75th
percentiles) for four classes of increasing convective strength. Solid lines represent the
mean values of the respective classes and the shaded areas the corresponding standard
deviations. t = 0 h denotes the point when the last convective activity was observed with
Cb-TRAM.

coldest observed cloud temperature, which is closely related to the top height of the anvil.
CTHCiPS increases (both median and percentiles) up to the point of last convective activity,
then starts to decrease for about 2 h and remains at a comparably constant height on
average. The anvils (median and percentiles) are consistently observed at higher altitudes
if the convection is stronger, also several hours after convection has ceased. A distinct
pattern is that the anvils are observed to sink faster as convection ceases if the convective
strength is weaker. For the strongest 25 %, the median CTHCiPS decreases by 0.8 km in 2 h
as convection ceases, for the weakest 25 %, the corresponding decrease in height is 2 km.
Similar patterns are observed for the 25th/75th percentiles as well. This suggests that
sedimentation is an important process as convection stops and ≈ 2 h onwards, especially
for anvils that form from weaker convective systems and do not reach sufficiently favourable
conditions for ice crystal deposition growth and hence anvil persistence. Anvils originating
from stronger convective systems reaching colder temperatures where ice supersaturation
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Figure 5.16: The temporal evolution of the anvil cirrus IWPCiPS (median and 25th/75th
percentiles) for four classes of increasing convective strength. Solid lines represent the
mean values of the respective classes and the shaded areas the corresponding standard
deviations. t = 0 h denotes the point when the last convective activity was observed with
Cb-TRAM.

and hence anvil cirrus persistence is more likely, would be more likely to remain for longer
time periods and at higher altitudes, despite sedimentation processes. This would be
supported by the smaller spatial extension and shorter lifetimes for the anvils originating
from weaker convective systems. It is, however, unclear if such a sedimentation process
would be directly observed from the retrieved CTHCiPS, as small ice crystals might be
expected to remain at higher altitudes.

Figure 5.16 shows the temporal evolution of IWPCiPS for the same four convective
strength classes. Again, limited data are available during the convective stage due to
the saturation of CiPS at high IWP/IOT. Neither for the median IWPCiPS, nor the per-
centiles, an evident relationship between the convective strength and the IWPCiPS is ob-
served. Only for the weakest 25 %, IWPCiPS is observed to reach lower values (median
IWPCiPS = 2 − 4 g m−2) during the first hours after convection has ceased in comparison
to anvils forming from stronger convective systems. For the remaining classes, IWPCiPS is
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Figure 5.17: The temporal evolution of the anvil cirrus REFCiPS (median and 25th/75th
percentiles) for four classes of increasing convective strength. Solid lines represent the
mean values of the respective classes and the shaded areas the corresponding standard
deviations. t = 0 h denotes the point when the last convective activity was observed with
Cb-TRAM.

rather similar for the different convective strength classes, with no apparent relationship
with the convective strength. This suggests that the detrained ice crystals are effectively
distributed horizontally, leading to a more widespread (Fig. 5.13), but not necessarily
(optically) thicker anvil. This is different from the clear trend of higher average IWP
for stronger convective systems observed for tropical convective systems in Horváth and
Soden (2008). That pattern is, however, only shown for the thicker part of the anvil
(IWP& 20 g m−2), where IWPCiPS retrievals are usually not possible. In contrast to weaker
systems, stronger convection is observed to produce a considerable fraction (25 %) of thin
anvil cirrus (IWPCiPS < 8 g m−2) already during the convective phase, probably because
stronger convection is usually associated with larger convective systems and hence more
convective outflow of thin cirrus. In Fig. 5.11, comparably small standard deviations in the
IWPCiPS probability density functions were observed, indicating little variability in anvil
IWP despite different conditions and properties of the deep convective systems from which
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the anvils form. Fig. 5.16 suggests that this is true with respect to the convective strength
for at least the thin part of the anvil cirrus. On the contrary, the anvil CTHCiPS, which
clearly increases with convective strength (Fig. 5.15), was observed to have significantly
higher standard deviations in Fig. 5.9. Similar patterns are observed for the relationship
between convective strength and IOTCiPS and are therefore not further shown here.

Figure 5.17 shows the temporal evolution of REFCiPS, again for the same four convec-
tive strength classes. An evident drop by ≈ 5 µm is observed within 2 h after convection
ceases, together with a continuous decrease thereafter. This was observed in Fig. 5.12,
but is more evident in Fig. 5.17. This is in line with the idea of sedimentation being an
important process within 2 h after convection has ceased, as discussed above. Stronger
convection is also observed to generate larger ice crystals initially. For the median and
75th percentile, the classes of stronger convection almost exclusively show higher REFCiPS

during the convective stage and up to 2 h after convection has ceased. This could be re-
lated to the longer vertical transport into the upper troposphere with stronger convective
updraught, meaning that the ice crystals have more time to grow. As convection ceases,
REFCiPS for anvils originating from stronger convective systems, having higher REFCiPS at
t = 0 h, is observed to decrease faster compared to the REFCiPS for anvils originating from
weaker convective systems, possibly due to higher fall speeds and thus, effective removal
of larger ice crystals by sedimentation. 2–3 h after convection has ceased (and thereafter),
only small differences in REFCiPS are observed across the classes of convective strength,
indicating that the convective strength does not affect the ice crystal sizes in ageing anvils.
Instead ice supersaturation is likely to control anvil persistence through ice crystal growth
by deposition at this life cycle stage.

5.4.3 Relationship between the meteorological conditions and
the anvil cirrus life cycle

To further investigate observed variabilities in the anvil cirrus life cycle, the relationship
between the meteorological conditions and the observed anvil cirrus life cycle is analysed
in this section. To this end, ECMWF ERA5 reanalysis data (Sect. 3.4.2) are used to
characterise the meteorological conditions where the deep convective cumulonimbus and
anvil cirrus clouds form. Notice that deep convection is parameterised, not resolved, in
the ECMWF model. All ERA5 data have been re-projected onto the SEVIRI grid using
nearest neighbour. High low-level moisture and atmospheric instability were introduced in
Chap. 1 as two key conditions for deep convection and anvil cirrus to form. While relative
humidity (RH) is a measure for moisture, convective available potential energy (CAPE)
is a good indicator for the instability within the conditionally unstable atmospheric layer
between the level of free convection and the equilibrium level. CAPE (measured in J kg−1)
is the energy an air parcel would have if brought from the level of free convection to the
equilibrium level and is calculated as the vertical integral of the local buoyancy exerted on
the air parcel between these two levels. It is directly related to the maximum potential
vertical updraught speed and an increasing CAPE indicates increasing instability. Higher
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RH in the lower troposphere is expected to govern larger and possibly more long-lived anvil
cirrus clouds, as it indicates that more moisture can be entrained into the deep convective
system, transported vertically and detrained at the anvil cirrus level.

For each cumulonimbus cloud, from which the anvils form, average RH (over liquid
water) between 850 and 1000 hPa (≈ 100–1500 m) and CAPE are collected from each ERA5
1 h time step over the area of convective activity (using Cb-TRAM). The data are averaged
in space for each 1 h time step and later across all ERA5 time steps within the time period of
observed convective activity. Hence, no interpolation is performed between the ERA5 time
steps and the intermediate 5 min time steps of SEVIRI (as in Sect. 4.4.1). Since especially
CAPE weakens as convection is initiated, a temporal offset of approx. -2 h (M. Köhler,
DWD, personal communication, 2017) is used in order to allow for temporal differences
in convective initiation between model and observation, meaning that the ERA5 data are
collected before the convective event was observed from SEVIRI. Furthermore, for each
ERA5 time step with observed convective activity (using Cb-TRAM), the area of maximum
CAPE is searched for in the vicinity (≈ 50 km; M. Köhler, DWD, personal communication,
2017) of the area of convective activity in order to allow for spatial differences between
model and observation. For example if 100 pixels with convective activity are observed by
Cb-TRAM at a given time step, CAPE is calculated as the average across the 100 highest
CAPE values (after re-projection onto the SEVIRI grid) in the vicinity of the observed
convective activity.
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Figure 5.18: The relationship between the
modelled CAPE and the proxy for convective
strength (BTmin

10.8µm).

First, Fig. 5.18 shows the relationship
between CAPE and the proxy for convec-
tive strength, defined and used in the previ-
ous section. Although there is a trend of in-
creasing CAPE for decreasing BTmin

10.8µm, the
scatter between the two quantities is gener-
ally very large. This shows that the two
quantities to a large extent provide differ-
ent information and suggests that an under-
standing and knowledge of neither CAPE
nor BTmin

10.8µm is sufficient for fully under-
standing anvil cirrus clouds and their tem-
poral evolution. Figure 5.19 shows the
anvil cirrus lifetime (symbol colour) and the
corresponding maximum spatial extension
(symbol size) as a function of CAPE and
the average RH between 850 and 1000 hPa.
Also here a generally large scatter is ob-
served, further demonstrating the impor-
tance of better understanding anvil cirrus

clouds and the physical processes that govern their life cycle. Nevertheless, higher CAPE
usually leads to more long-lived, and to some extent larger, anvil cirrus. Even though
some of the smaller short-lived anvils have CAPE > 1500 − 2000 J kg−1, this seems to be
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an approximate threshold that the larger more long-lived anvils surpass. The low-level
RH has no obvious impact on the anvil spatial extension and lifetime. In contrast to the
expectation (see above), there is no positive correlation between the low-level RH and the
anvil cirrus spatial extension and lifetime. Instead, generally larger and more long-lived
anvils with CAPE > 3000 J kg−1 tend to have lower RH between 850–1000 hPa than the
generally smaller and more short-lived anvils with CAPE < 1500 J kg−1.
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Figure 5.19: The anvil cirrus lifetime (symbol
colour) and maximum spatial extension (sym-
bol size) as a function of modelled CAPE and
RH between 850 and 1000 hPa.

While the CAPE and RH from 850 to
1000 hPa target the convective cumulonim-
bus cloud from which the anvil cirrus even-
tually form, the relative humidity over ice
(RHi), temperature, horizontal wind speeds
and vertical wind shear are used to charac-
terise the meteorological conditions in the
upper troposphere, where the convective
outflow and anvil cirrus formation takes
place. As explained in Chap. 1, RHi above
100 % i.e. ice supersaturation is required for
ice crystal growth by water vapour deposi-
tion and hence essential for anvil cirrus per-
sistence. The horizontal wind speed is di-
rectly related to the formation of the anvil
as it distributes the ice crystals detrained
from the deep convective cloud. Further-
more, strong vertical wind shear in the up-
per troposphere can have at least two effects
on the anvil cirrus. If the anvil is optically
thick, stronger wind shear could distribute the ice more effectively, leading to more wide-
spread anvil cirrus (Feng et al., 2012). On the contrary, if the anvil is optically thin,
stronger wind shear might tear the anvil apart, reducing both its spatial extension and
lifetime. The RHi, temperature and horizontal wind speeds have been averaged over the
entire area covered by the anvil cirrus during its lifetime (without the ≈ 50 km spatial offset
used to calculate the average CAPE). However, no temporal averaging has been performed,
instead all data have been collected ≈ 2 h before the first detection by CiPS. This way, the
upper tropospheric conditions that the anvils form in are obtained, with minimal impact by
(modelled) convection itself. The Goff–Gratch formulas (Goff and Gratch, 1946) together
with the ERA5 temperatures have been used to convert RH to RHi.

Figure 5.20 shows vertical profiles of RHi (left) and horizontal wind speed (right) as
a function of observed anvil cirrus persistence after convection has ceased (top) and the
maximum spatial extension (bottom). Vertical profiles are shown for all anvil cirrus indi-
vidually (left panels), but also for three classes of spatial extension and persistence (right
panels) in order to more effectively see general trends. Again the solid lines represent the
mean values for the respective classes and the shaded areas the corresponding standard
deviations. It is clear that larger and especially more long-lived anvils are associated with
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Figure 5.20: Vertical profiles of RHi ((a) and (c)) and horizontal wind speed ((b) and
(d)) as a function of anvil persistence after convection has ceased ((a) and (b)) and
the maximum spatial extension ((c) and (d)). The respective left panels show vertical
profiles for each individual anvil cirrus, whereas the respective right panels show RHi
and horizontal wind speed for three classes of anvil persistence and maximum spatial
extension respectively, where the solid lines and shaded areas represent the mean values
and corresponding standard deviations respectively. N is the number of anvil cirrus in
each class.

higher RHi in the upper troposphere, where e.g. 225 and 300 hPa corresponds to 11.5 and
9.6 km on average across the anvil cirrus dataset respectively, i.e. an altitude range where
a large part of the anvil cirrus form (see Figs. 5.9 and 5.15). Although the standard devi-
ations between the different classes overlap, it shows that higher RHi govern larger anvils
that persist for longer time periods after convection has ceased. In the lower troposphere,
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RHi is generally higher for the small and short-lived anvils, indicating that RHi in the
lower troposphere has a comparably small effect on the anvil cirrus life cycle compared to
RHi in the upper troposphere, which is in line with the weak/absent positive correlation
between the average RH between 850–1000 hPa and the anvil cirrus lifetime and spatial
extension in Fig. 5.19. Although the trend is not as strong as for RHi, higher wind speeds
in the upper troposphere tend to reduce the anvil cirrus spatial extension and persistence
after convection has ceased. Especially smaller (< 2500 km2) and short-lived (< 4 h) anvil
cirrus clouds are associated with higher wind speeds in the upper troposphere. Feng et al.
(2012) also investigate the vertical profiles of RH and horizontal winds from reanalysis data
(North America Regional Reanalysis) for anvil cirrus clouds observed over the U.S. In con-
trast to what is shown in this study, they show clearly increasing horizontal wind speeds in
the upper troposphere for larger anvil cirrus clouds, but with little effect on the observed
anvil lifetime. Furthermore, they show significantly higher RH between 300–700 hPa for
more long-lived anvils, a pattern also not evident in this study. On the other hand, they
also show a trend of increasing RH in the upper troposphere for more long-lived anvils,
similar to what is seen here. It is possible that the differences between the two studies are
related to differences in the reanalysis data, but more likely due to the fact that Feng et al.
(2012) collect the reanalysis data during the developing and mature stages of the convec-
tive system, whereas in this study the data are collected around 2 h before the convective
system was first observed, in order to capture the meteorological conditions of the air mass
in which the anvil cirrus form. Hence, it is likely that they already observe the effect of
convection in their vertical profiles of horizontal winds and RH.

Figure 5.21 further shows the anvil persistence after convection has ceased (symbol
colour) and the corresponding maximum spatial extension (symbol size) for the individual
anvil cirrus clouds as a function of the average (a) RHi and temperature and (b) hori-
zontal wind speed and vertical wind shear in the upper tropospheric layer 225–300 hPa.
The vertical wind shear in this upper tropospheric layer is calculated as the difference
between the average horizontal wind speeds at 225 and 300 hPa respectively. The clear
correlation between the temperature and RHi is controlled by the Clausius–Clapeyron re-
lation, describing the decrease in saturation vapour pressure, i.e. the ability of the air
to hold moisture, with decreasing temperature. Similar to Fig. 5.20, colder temperatures
and higher RHi are associated with longer anvil persistence and to some extent larger
spatial extension. Lower RHi (. 30 %) generally leads to small and especially short-lived
anvils, whereas higher RHi (& 60 %) govern larger and especially more long-lived anvils.
There are situations where a low temperature and high RHi still result in small short-lived
anvils, this could either be an effect of rapid sedimentation as a result of rapid deposition
growth or inaccurate RHi estimates that might not capture small scale variations. For the
horizontal wind speed and the vertical wind shear, the correlation with the anvil cirrus
spatial extension and persistence after convection has ceased is weaker. Most of the small
short-lived anvils do, however, tend to have higher horizontal wind speeds (& 20 m s−1)
and/or stronger vertical wind shear (& 7 m s−1) compared to larger anvil cirrus observed
for longer time periods after convection has ceased. Again, there are exceptions from this
general pattern though. Two possible effects of strong vertical wind shear on the anvil cir-
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Figure 5.21: The observed anvil cirrus persistence after convection has ceased (symbol
colour) and the maximum spatial extension (symbol size) as a function of modelled upper
tropospheric (a) temperature and RHi and (b) horizontal wind speed and vertical wind
shear.

rus life cycle were discussed above, where strong vertical wind shear could lead to (1) more
efficient horizontal spreading of the ice crystals and thus larger anvils if there is sufficient
ice available (2) the anvil being torn apart if there is too little ice available, leading to a
reduced anvil cirrus coverage and persistence. It is possible that both, opposing, effects
are in play here, leading to ambiguous results.



Chapter 6

Summary, conclusions and outlook

This thesis aims towards new insights in the life cycle of anvil cirrus clouds that form in
the upper troposphere from the outflow of ice crystals from deep convective cumulonimbus
clouds. This is addressed by means of geostationary satellite remote sensing, which allows
for a large spatial coverage and a temporal resolution of up to 5 min, making it possible
to track and study individual anvil cirrus clouds continuously throughout their life cycle,
from the convective initiation until the dissipation.

In order to study new perspectives of the anvil cirrus life cycle and the temporal evolu-
tion of their optical, macrophysical and microphysical properties, the new algorithm CiPS
(Cirrus Properties from SEVIRI; Chap. 4) has been developed. CiPS uses a set of four
artificial neural networks (ANNs) for the geostationary remote sensing of thin cirrus clouds
during day and night from MSG/SEVIRI with unprecedented accuracy for a geostationary
passive instrument. In comparison to its training reference data, the space-borne lidar
CALIOP, CiPS detects 71 % and 95 % of all cirrus clouds with an IOT of 0.1 and 1.0
respectively, with an average false alarm rate of 4 % across the SEVIRI disc. For pixels
classified as icy, CiPS retrieves the corresponding CTH (cloud top height) with relative
retrieval errors less than 10 % for 64 % of the scenes with transparent cirrus (over clear air)
of varying optical thickness and cloud top height. Similarly, 37 % of the CTHCiPS retrievals
have errors less than 5 %. CiPS further retrieves the IOTCiPS (ice optical thickness) and
IWPCiPS (ice water path) with relative errors less than 50 % for 55 % and 48 % of the re-
trievals respectively. The combined retrieval of IOTCiPS and IWPCiPS, further allows for
parameterised effective radius (REFCiPS) estimates. Furthermore, CiPS is able to identify
cirrus clouds too optically thick for reliable IOTCiPS and IWPCiPS retrievals. Intercom-
parisons with independent airborne and ground-based lidar data further demonstrate the
robustness of the CiPS retrievals.

Even though the development of CiPS is based on physical considerations with respect
to the selection of training input and output data, the training, and thus the retrieval, is
purely mathematical. Nevertheless, the validation and characterisation show that CiPS to a
large extent have similar limitations as physically based retrieval algorithms. For example
CiPS struggles for optically thin (IOTCALIOP . 0.08) cirrus/ice clouds at low altitudes
(CTHCALIOP . 8 km) as well as over barren (dominated by desert) and permanent ice and
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snow, conditions that are known to induce difficulties for (cirrus) cloud remote sensing
(Frey et al., 2008; Holz et al., 2008). Retrievals over vegetated land surfaces show a similar
accuracy as retrievals over homogeneous water surfaces. CiPS can effectively separate the
signal contribution from the observed cirrus cloud and underlying liquid water clouds and
aerosol layers. While the IOTCiPS/IWPCiPS retrieval errors clearly increase if a liquid water
cloud is vertically close (< 0.5 km) to a thin (IOT.0.3) cirrus cloud, no or small effects on
the retrieval accuracy are observed if the vertical separation between the cirrus cloud and
the liquid water cloud is large (> 4 km).

To answer the first scientific question raised in Chap. 1

SQ-1 How do the anvil cirrus properties, including spatial extension, cloud top height, ice
optical thickness, ice water path and effective radius evolve with time throughout the
anvil cirrus life cycle?

CiPS has been used in synergy with a new cirrus tracking algorithm and a tool for monitor-
ing convective activity to analyse the temporal evolution of the optical, macrophysical and
microphysical properties throughout the life cycle of 132 isolated anvil cirrus clouds, mostly
observed in the Mediterranean region in July 2015. The ensemble of tracked anvil cirrus
clouds shows large variability with respect to spatial extension and lifetime. Some anvils
are only observed for 1-2 h after convection has ceased, with a maximum spatial extension
of ≈ 1000 km2, whereas others are observed for 13–15 h and reaching spatial extensions of
up to ≈ 70 000 km2. During the convective stage, the anvil cirrus are mostly too thick for
CiPS to retrieve reliable IOTCiPS and IWPCiPS. But as convection ceases, the anvils are
rapidly becoming thinner and 2 h after convection has ceased, 92±7 % of the anvil area has
IOTCiPS < 1 and IWPCiPS < 30 g m−2 on average with highest probability density around
0.1–0.2 and 1.5–3 g m−2 respectively. 5 h after convection has ceased, only 13 % of the
anvils could still be observed, having IOTCiPS ≈ 0.07− 0.4 and IWPCiPS ≈ 1.0− 6.0 g m−2

on average. CTHCiPS and REFCiPS both increase during the convective phase followed by
a drop in both height and ice crystal size for approx. 2 h after convection has ceased.

To further investigate observed variabilities in the anvil cirrus life cycle and aiming for
an increased understanding of the relationship between convective strength, expected to
increase in a warming climate, and the anvil cirrus properties and their temporal evolution,
the following scientific question was raised in Chap. 1

SQ-2 How does the convective strength affect the anvil cirrus properties and their temporal
evolution?

To answer this question, a proxy for the convective strength is defined as the coldest
brightness temperature observed by SEVIRI at 10.8 µm for the respective anvil cirrus
clouds (approx. coldest cloud top temperature). Anvils originating from weaker convective
systems, observed at lower altitudes (CTHCiPS), lose height significantly faster within 2 h
after convection ceases, compared to anvils forming from stronger convective systems. A
corresponding decrease in REFCiPS indicates that sedimentation is an important process
controlling the anvil cirrus persistence and life cycle as convection ceases, especially for
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weak convective systems, that do not reach as cold temperatures and hence less favourable
conditions for ice supersaturation. If colder temperatures and ice supersaturation is reached
with stronger convection, this could allow for deposition growth and hence longer anvil
persistence at higher altitudes.

Stronger convection is also observed to produce larger ice crystals (REFCiPS) during
the convective phase. The larger crystals are observed to be removed rather fast though
and 2–3 h after convection has ceased only small differences in REFCiPS are observed for
anvils originating from strong and weak convective systems, indicating that even though
the convective strength appear to affect REFCiPS during the convective phase and shortly
thereafter, it has no or little impact on the ice crystal sizes in ageing anvils. No obvious
and consistent relationship is observed between the convective strength and IWPCiPS (and
IOTCiPS) and its temporal evolution. This is supported by the comparably low variability
in the temporal evolution of IOTCiPS and IWPCiPS discussed above. It is also evident
that anvils forming from stronger convective systems grow larger, indicating that the ice
crystals are distributed in the horizontal, rather than the vertical, leading to little impact
on vertically integrated quantities like IWPCiPS and IOTCiPS.

Differences in the anvil cirrus life cycle cannot be explained solely by the convective
strength and there has to be further conditions that control the life cycle of especially
ageing anvil cirrus. Hence the following scientific question was raised in Chap. 1 to better
understand the impact of the meteorological conditions on the anvil cirrus life cycle

SQ-3 How do the meteorological conditions influence the life cycle of anvil cirrus clouds?

ECMWF ERA5 analysis data at 1 h temporal resolution have been used to characterise the
meteorological conditions in which the deep convective cumulonimbus clouds and the anvil
cirrus form. More convective available potential energy (CAPE) is generally associated
with long-lived and to some extent larger convective systems and following anvil cirrus,
whereas low-level moisture, defined as the average relative humidity (RH) between 850–
1000 hPa, shows no clear relationship with the anvil cirrus lifetime and spatial extension.

RH over ice (RHi) and temperature in the upper troposphere (225-300 hPa) show a clear
correlation with the maximum spatial extension and observed persistence after convection
has ceased. The smallest anvils observed for ≈ 1–2 h after convection has ceased generally
form in air with warmer temperatures and lower RHi, whereas colder temperatures (.
228 K) and higher RHi (& 60 %) govern larger and especially more long-lived anvil cirrus.
Dividing the 132 anvil cirrus clouds in three classes of increasing maximum spatial extension
and observed persistence after convection has ceased respectively, further clarifies the trend
of higher RHi in the upper troposphere for larger and more long-lived anvil cirrus clouds
and suggests a comparably weak impact by high RH in the lower troposphere. Moreover,
high horizontal wind speeds in the upper troposphere tend to reduce the anvil cirrus lifetime
and spatial extension.
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Outlook

This thesis provides a new cirrus retrieval algorithm and new insights in the life cycle and
temporal evolution of anvil cirrus clouds. But it also opens up for further studies in the fu-
ture. First and foremost, more anvil cirrus clouds could be identified, tracked and analysed
in order to have a stronger statistical significance. This can be done by (1) extending the
time period from one month to several months or years and (2) also including non-isolated
anvil cirrus clouds until the point where they merge with other cirrus. Extending the study
time period to several months or years would, however, require a more automatized proce-
dure for detecting and tracking the convective clouds and the anvil cirrus. To further the
understanding of the physical properties, one should also extend the analysis of the ERA5
variables and investigate their impact on the anvil cirrus microphysical properties retrieved
by CiPS. Moreover, it would be interesting to perform a similar study on tropical anvil
cirrus clouds and compare the life cycles and the temporal evolution of the anvil cirrus
properties between tropics and mid-latitudes. As aerosols can act as cloud condensation
nuclei, it would be interesting to study the temporal evolution of the anvil cirrus proper-
ties as a function of e.g. aerosol optical thickness, possibly differentiating between different
aerosol types like wildfire smoke, desert dust and sea salt. One could also analyse the tem-
poral evolution of outgoing longwave radiation and reflected solar radiation throughout the
life cycle to better understand how they interact with shortwave and longwave radiation
and hence contribute to the radiation budget.

A given next step, already in progress within the HD(CP)2 project, is the evaluation of
the representation of anvil cirrus in climate and weather models using CiPS. The temporal
evolution of the cirrus coverage and CTH retrieved by CiPS have recently been compared
to the corresponding anvil cirrus properties modelled by the ICON large eddy model, NWP
and general circulation model, within a closed domain over Germany for several days where
deep convection was observed. The high resolution large eddy model data also allow for
further investigation of the physical processes that control the anvil cirrus life cycle.

Since neither CiPS, nor the cirrus tracking algorithm, is limited to anvil cirrus clouds,
they could be used to study the temporal evolution of other natural or anthropogenic
(contrails) cirrus clouds as well. The high temporal resolution of CiPS, also allows for
further studies on the diurnal cycles of cirrus coverage and cirrus properties.

To further evaluate the accuracy of CiPS an extended intercomparison with RAMSES
(and SPARE-ICE (Holl et al., 2014)), covering a time period of two years, is currently
being prepared. Continuous improvements of the CALIOP products also allow for further
improvements of CiPS. Based on the analysis in Sect. 4.10.1, one could further optimise the
set of input variables for CiPS and possibly introduce new input data, such as temperature
and humidity profiles and surface emissivities to further improve the accuracy. Moreover,
training CiPS with synergistic lidar/radar retrievals could allow for retrievals of higher
IOT and IWP. Extending CiPS to the new generation Japanese and U.S. geostationary
imagers (Himawari/AHI, GOES/ABI), with similar channels like SEVIRI, would allow for
near global retrievals of cirrus cloud properties and anvil cirrus analysis at a temporal
resolution of 15 min.
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List of abbreviations

ABI Advanced Baseline Imager

AHI Advanced Himawari Imager

AIRS Atmospheric Infrared Sounder

ANN Artificial Neural Network

AOT Aerosol Optical Thickness

AVHRR Advanced Very High Resolution Radiometer

BT Brightness Temperature

CALIOP Cloud Aerosol Lidar with Orthogonal Polarization

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

CAPE Convective Available Potential Energy

Cb-TRAM Cumulonimbus Tracking and Monitoring

CC-VEX CALIPSO-CloudSat Validation Experiment

CCF Cirrus Cloud Flag

CiPS Cirrus Properties from SEVIRI

COCS Cirrus Optical Properties from CALIOP and SEVIRI

CPL Cloud Physics Lidar

CPR Cloud Profiling Radar

CTH Cloud Top Height

DAAD German Academic Exchange Service (Deutscher Akademischer Austauschdienst)

DLR German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt)

DOY Day of Year

DWD German Meteorological Service (Deutscher Wetterdienst)

ECMWF European Centre for Medium-Range Weather Forecasts

ERA ECMWF Reanalysis

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites

FANN Fast Artificial Neural Network Library
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FAR False Alarm Rate

FAT Fixed Anvil Temperature

GEWEX Global Energy and Water Cycle Experiment

GMS Geostationary Meteorological Satellites

GOES Geostationary Operational Environmental Satellite

HALO High Altitude and Long range research aircraft

HD(CP)2 High Definition Clouds and Precipitation for Advancing Climate Prediction

HOI Horizontally Orientated Ice

HRV High Resolution Visible

ICON Icosahedral Nonhydrostatic

IGBP International Geosphere-Biosphere Programme

IIR Imaging Infrared Radiometer

IOT Ice Optical Thickness

IR Infrared

ITCZ Intertropical Convergence Zone

IWC Ice Water Content

IWP Ice Water Path

L2 Level 2

L3 Level 3

LIDAR Light Detection and Ranging

MAPE Mean Absolute Percentage Error

MFG Meteosat First Generation

MHS Microwave Humidity Sounder

ML-CIRRUS Midlatitude Cirrus Experiment

MLP Multilayer Perceptron

MODIS Moderate Resolution Imaging Spectroradiometer

MPE Mean Percentage Error

MSE Mean Square Error

MSG Meteosat Second Generation

MTSAT Multifunctional Transport Satellites

NE∆T Noise-Equivalent Temperature Difference

NE∆R Noise-Equivalent Radiance Difference

NIR Near Infrared

NWP Numerical Weather Prediction

OPF Opacity Flag

POD Probability of Detection

RADAR Radio Detection and Ranging
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RAMSES Raman Lidar for Atmospheric Moisture Sensing

RH Relative Humidity

RMSD Root-Mean-Square Deviation

SEVIRI Spinning Enhanced Visible and Infrared Imager

SNR Signal-to-Noise Ratio

SQ Scientific Question

TOA Top of Atmosphere

TRMM Tropical Rainfall Measuring Mission

UTC Coordinated Universal Time

V2 Version 2

V3 Version 3

VIS Visible

VZA Viewing Zenith Angle

WALES Water Vapor Lidar Experiment in Space

WCRP World Climate Research programme

WV Water Vapour
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