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Einleitung 2 

1 Einleitung 

Die vorliegende Habilitationsschrift ist eine Zusammenfassung meiner Forschungsergebnisse aus 15 

Originalpublikationen, die den Schwerpunkt meiner Forschungsarbeit bilden. Das Ziel meines 

Habilitationsprojekts war die biophysikalische Untersuchung von rezeptorgesteuerten transient receptor 

potential classical (TRPC)-Kationenkanälen und die Identifizierung ihrer physiologischen Bedeutung. 

Insbesondere sollte die Rolle der TRPC-Kanäle für die Mechanosensorik und Mechanotransduktion im 

Gefäßsystem und in Podozyten untersucht werden. Hierzu sollten insbesondere folgende Frage-

stellungen beantwortet werden:  

1. Welche physiologische Bedeutung besitzen TRPC-Kationenkanäle? 

2. Welche Rolle spielen TRPC-Kationenkanäle für die Mechanosensorik in Blutgefäßen? 

3. Welche Bedeutung haben TRPC-Kationenkanäle für die Mechanosensorik in Podozyten?
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1.1 Einführung in das Forschungsgebiet 

TRPC-Kationenkanäle gehören zur großen Kanalfamilie der TRP-Kationenkanäle, welche aufgrund von 

Aminosäuresequenzvergleichen in sieben Familien untergliedert werden. Bei den TRPC-Kanälen 

handelt es sich um nicht-selektive, rezeptorgesteuerte Kationenkanäle, die in Abhängigkeit von der 

Phospholipase C (PLC) durch Gq/11-Protein-gekoppelte Rezeptoren aktiviert werden (Rohacs, 2013). 

Das „C“ steht für „classical“ oder „canonical“ und leitet sich von den an der Photorezeption in der 

Fruchtfliege Drosophila melanogaster beteiligten TRP-Kanälen her, die eine ausgeprägte Homologie zu 

TRPC-Kanälen aufweisen. Alle TRP-Kanäle sind als Tetramere aus vier Proteinuntereinheiten 

aufgebaut, was mit Hilfe von Kristallstrukturanalysen dreier verwandter Kanäle aus der Vanilloid-

Kanalfamilie, TRPV1 (Gao et al., 2016), TRPV2 (Huynh et al., 2016) und TRPV6 (Saotome et al., 2016), 

kürzlich bestätigt wurde. Darüber hinaus ist bekannt, dass TRPC-Kanäle sowohl als Homotetramere als 

auch als Heterotetramere vorkommen können. Die TRPC-Kanalfamilie besteht aus sieben Mitgliedern, 

die aufgrund ihrer Sequenzhomologie in weitere Unterfamilien unterteilt werden: TRPC1, TRPC4/5 und 

TRPC3/6/7. TRPC2 besitzt hierbei eine Sonderrolle, da dieser Kanal beim Menschen aufgrund von 

mehreren Stopcodonen innerhalb des offenen Leserahmens nicht funktionell exprimiert wird und daher 

ein Pseudogen darstellt (Zhu et al., 1996; Vannier et al., 1999; Yildirim et al., 2003).  

TRPC-Kanäle gelten allgemein als rezeptorgesteuerte Kanäle, allerdings ist dieser Signalweg noch 

nicht für alle TRPC-Kanäle im Detail aufgeklärt. Die Aktivierung von Gq/11-Protein-gekoppelten 

Rezeptoren führt zur Aktivierung der PLC, wodurch Phosphatidylinositol-4,5-bisphosphat (PIP2) in die 

beiden Botenstoffe Inositol-1,4,5-trisphosphat und 1,2-Diacyl-sn-glycerol (DAG) sowie in ein Oxonium 

(Gudermann und Mederos y Schnitzler, 2010; Huang et al., 2010) gespalten wird. Es besteht ein breiter 

Konsens darüber, dass die TRPC-Kanalunterfamilie TRPC3/6/7 durch DAG, das Spaltprodukt von PIP2, 

aktivierbar ist (Hofmann et al., 1999). Allerdings ist bisher nicht bekannt, ob DAG direkt am Kanal bindet 

oder ob es indirekt zur Kanalaktivierung beiträgt. Auch TRPC2 wurde bereits als DAG-sensitiv 

beschrieben (Lucas et al., 2003). Hingegen galten TRPC4- und TRPC5-Kanäle bislang als 

unempfindlich gegenüber DAG (Hofmann et al., 1999). Es zeigte sich sogar eine Inhibition von basalen 

TRPC5-Strömen durch DAG oder das membranpermeable DAG-Analogon 1-Oleoyl-2-acetyl-sn-

glycerol (OAG) (Venkatachalam et al., 2003). Außerdem ist bekannt, dass die Proteinkinase C (PKC) 

an der TRPC5-Kanalinhibition durch DAG beteiligt ist (Venkatachalam et al., 2003) und dass TRPC4- 

und TRPC5-Kanäle durch Depletion von PIP2 aktiviert werden (Otsuguro et al., 2008; Trebak et al., 

2009). Hier besteht ein Gegensatz zu TRPC6- und TRPC7-Kanälen, die durch PIP2-Depletion inhibiert 

werden (Itsuki et al., 2014). 

Schon früh gab es Hinweise, dass endogen exprimierte TRPC5-Kanäle ebenfalls DAG-sensitiv sein 

könnten (Lee et al., 2003). Allerdings fehlten bisher jegliche mechanistische Einsichten in die Gq/11-

Protein-vermittelte TRPC4- und TRPC5-Kanalaktivierung. Ein auffälliger struktureller Unterschied 

zwischen TRPC4/5 und den gut charakterisierten DAG-sensitiven TRPC3/6/7-Kanälen ist das PDZ 

(Post synaptic density-95/Drosophila Disc large/Zona occludentes-1 Protein)-Bindemotiv mit der 

Aminosäuresequenz „VTTRL“ am Ende des C-Terminus (Tang et al., 2000; Mery et al., 2002; Obukhov 

und Nowycky, 2004). Zudem ist bekannt, dass dieses C-terminale PDZ-Bindemotiv eine PKC-

Phosphorylierungsstelle enthält, die für die Inaktivierung von TRPC5-Strömen nach Rezeptoraktivierung 

entscheidend ist (Zhu et al., 2005). Dieses PDZ-Bindemotiv ermöglicht Interaktionen mit den Na+/H+ 

exchanger regulatory factor (NHERF)-Proteinen NHERF1 und NHERF2. Die Adapterproteine NHERF1 

und NHERF2 sind strukturell nah verwandt, können Homo- und Heterodimere bilden (Shenolikar et al., 

2001) und besitzen jeweils zwei PDZ-Bindedomänen sowie eine C-terminale Bindedomäne, über die 
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eine Verknüpfung an das Aktinzytoskelett über Interaktionen mit Vertretern der Ezrin-, Radixin- und 

Moesin-Proteinfamilie ermöglicht wird (Tang et al., 2000). Daher werden NHERF1 und NHERF2 

hauptsächlich als Adapterproteine angesehen, die die Aufgabe haben, integrale Membranproteine mit 

dem Zytoskelett zu verknüpfen und die Lokalisation der Transmembranproteine an der Zellmembran zu 

erhöhen (Shenolikar und Weinman, 2001). Neben dieser Verankerungsfunktion sind NHERF-Proteine 

wichtig für die Aufrechterhaltung von essentiellen Zellfunktionen z.B. in Niere und Dünndarm wo sie mit 

Transportern, Ionenkanälen, Signalproteinen, Transkriptionsfaktoren, Enzymen, G-Protein-gekoppelten 

Rezeptoren und Tyrosinkinase-Rezeptoren interagieren (Hall et al., 1998a; Hall et al., 1998b; Hall et al., 

1999; Maudsley et al., 2000; Weinman et al., 2006). Durch ihre Adapterfunktion regulieren sie 

zellspezifisch erstens den Phosphattransport in proximalen Tubuluszellen (Cunningham et al., 2010), 

zweitens die Aktivität des Glutamat-Transporters GLAST und des metabotropen Glutamatrezeptors 

mGlu5 in Astrozyten (Paquet et al., 2006; Ritter et al., 2011) und drittens den Ionentransport im 

Dünndarm (Ghishan und Kiela, 2012). Zudem beeinflussen NHERF-Proteine die Proliferation 

(Bhattacharya et al., 2012; Kruger et al., 2013) und sind möglicherweise an der Karzinogenese und 

Progression von Leberkrebs, Brustkrebs, Dickdarmkrebs, kleinzelligem Lungenkarzinom sowie 

Glioblastom beteiligt (Voltz et al., 2001; Georgescu et al., 2008; Lee et al., 2011; Mangia et al., 2015). 

Die subzelluläre NHERF1-Expression spielt hierbei vermutlich eine entscheidende Rolle. In 

Brustkrebszellen ist eine hohe zytoplasmatische Expression mit hoher Aggressivität und schlechter 

Prognose assoziiert und könnte daher als Marker für die Prognose der Krebserkrankung herangezogen 

werden (Saponaro et al., 2014). Eine aberrante nukleäre NHERF1-Expression hingegen könnte bei der 

Karzinogenese und Progression von Kolonkarzinomen eine Rolle spielen (Saponaro et al., 2014). 

Ferner ist die NHERF-Interaktion wichtig für die Funktion des Chloridkanals cystic fibrosis 

transmembrane conductance regulator „CFTR“ (Holcomb et al., 2015). Mutationen dieses Kanals führen 

zur autosomal-rezessiv vererbten Mukoviszidose (zystische Fibrose) (Guggino und Stanton, 2006) und 

zur kongenitalen Aplasie des Vas deferens „CAVD“ (Cuppens und Cassiman, 2004). Obwohl die 

Interaktionen von NHERF1 oder NHERF2 mit den C-Termini von TRPC4 und TRPC5 mittels 

Koimmunpräzipitationen mehrfach gezeigt und sogar funktionelle Untersuchungen mit der Patch-

Clamp-Technik durchgeführt wurden (Tang et al., 2000; Obukhov und Nowycky, 2004; Lee-Kwon et al., 

2005), konnte lediglich die typische leichte Erhöhung der Zellmembranexpression, wie sie beim CFTR 

und anderen integralen Membranproteinen bereits beschrieben wurde, beobachtet werden. Im Rahmen 

dieses Habilitationsprojektes sollte daher genau untersucht werden, ob durch die NHERF-Verankerung 

spezielle Kanalfunktionen beeinflusst werden. 

Für einige TRPC-Kanäle wurde neben der Agonisten-induzierten, rezeptorgesteuerten Kanalaktivierung 

ein speichergesteuerter Aktivierungsmechanismus postuliert. Dieser Aktivierungsmechanismus beruht 

auf der Beobachtung, dass eine Entleerung der intrazellulären Calciumspeicher einen Calciumeinstrom 

in die Zelle auslösen kann. Der klassische speichergesteuerte, hoch selektive Calciumeinstrom wurde 

zuerst in Mastzellen charakterisiert und als „calcium release-activated current“ (ICRAC) bezeichnet (Hoth 

und Penner, 1992). Inzwischen ist bekannt, dass sogenannte Orai-Kanäle in der Zellmembran 

zusammen mit den calciumsensorischen transmembranären STIM 1-Proteinen im endoplasmatischen 

Retikulum die molekularen Korrelate für diesen speichergesteuerten Calciumeinstrom darstellen (Feske 

et al., 2006; Vig et al., 2006; Zhang et al., 2006). Darüber hinaus wurden jedoch unselektive 

speichergesteuerte Ströme beobachtet, die durch TRPC-Kanäle vermittelt sein könnten (Parekh und 

Putney, 2005; Worley et al., 2007; Birnbaumer, 2009; Lee et al., 2010). Insbesondere wurde der TRPC1-

Kanal als beteiligte Komponente am speichergesteuerten calciumselektiven Einstrom ICRAC (Mori et al., 

2002; Ong et al., 2013) sowie am speichergesteuerten unselektiven Einstrom (Zhu et al., 1996; Kiselyov 

et al., 1998; Singh et al., 2002; Liao et al., 2007; Cheng et al., 2008; Yuan et al., 2009) beschrieben. Für 

die Beteiligung von TRPC1 an diesen beiden speichergesteuerten Einströmen gibt es derzeit zwei 



Einleitung 5 

verschiedene Vorstellungsmodelle aus der Forschergruppe von Indu Ambudkar aus Bethesda. Das 

ältere Modell geht davon aus, dass präformierte homomere TRPC1-Kanäle in Vesikeln unterhalb der 

Zellmembran vorliegen. Durch die STIM 1-induzierten Orai-vermittelten hochselektiven Calcium-

einströme, die die freie Calciumkonzentration unterhalb der Zellmembran kurzfristig stark lokal erhöhen, 

kommt es zur Translokalisation der Vesikel zur Zellmembran und zur Vesikelverschmelzung mit der 

Zellmembran, so dass die vesikulär vorliegenden präformierten TRPC1-Kanäle aus ihrer Warteposition 

befreit werden und in die Zellmembran inserieren. Dort bewirken sie den speichergesteuerten 

unselektiven Einstrom (Cheng et al., 2011). Das jüngere Modell beruht darauf, dass bestimmte TRPC1-

Proteinisoformen stets in der Zellmembran vorliegen und als akzessorische Untereinheiten die Orai-

Kanalkomplexe hinsichtlich ihrer Calciumselektivität beeinflussen. Je mehr diese bestimmten TRPC1-

Proteinisoformen in der Zellmembran vorliegen, desto unselektiver ist der speichergesteuerte Einstrom 

an Calciumionen (Ong et al., 2013). Allerdings gibt es auch experimentell gut belegte Ergebnisse, die 

eine Beteiligung von TRPC1-Kanälen am speichergesteuerten Calciumeinstrom ausschließen (Sinkins 

et al., 1998; Lintschinger et al., 2000; Wedel et al., 2007). Aufgrund dieser diskrepanten Ergebnisse zur 

Beteiligung des TRPC1 an den speichergesteuerten Einströmen (Nesin und Tsiokas, 2014), sollten im 

Rahmen dieses Habilitationsprojekts die Stromveränderungen in verschiedenen Zellsystemen zum 

einen durch überexprimierende TRPC1-Proteine und zum anderen durch Herunterregulation endogener 

TRPC1-Proteine charakterisiert werden.  

Außer TRPC1- wurden auch TRPC3- (Zagranichnaya et al., 2005; Kim et al., 2006; Liu et al., 2007a), 

TRPC4- (Philipp et al., 2000; Freichel et al., 2001; Tiruppathi et al., 2002; Wang et al., 2004), TRPC5- 

(Zeng et al., 2004; Xu et al., 2006; Liu et al., 2007a), TRPC6- (Brechard et al., 2008; Selli et al., 2009) 

und TRPC7-Kanäle (Lievremont et al., 2004; Zagranichnaya et al., 2005) als speichergesteuert 

beschrieben. Eingige dieser Ergebnisse, die für eine speichergesteuerte Aktivierung dieser TRPC-

Kanäle sprechen, sind durch ihre methodischen Limitationen wenig belastbar, da überwiegend nur 

Messungen der freien intrazellulären Calciumkonzentration mit dem klassischen Speicherentleerungs-

protokoll durchgeführt wurden. Es handelt sich um eine intrazelluläre Speicherentleerung mittels eines 

Inhibitors der Calciumpumpe des sarkoplasmatischen bzw. endoplasmatischen Retikulums in 

calciumfreier extrazellulärer Lösung und die anschließende Applikation von Calcium- oder Barium-

haltiger extrazellulärer Lösung. Dieses Protokoll beeinflusst nicht nur das intrazelluläre Milieu bezüglich 

des Calciums, sondern ändert auch zusätzlich den Phoshorylierungszustand der Zelle, wodurch 

zelluläre Effektoren wie Ionenkanäle, Transporter und Enzyme mitbeeinflusst werden. Häufig fehlen in 

den oben genannten Studien elektrophysiologische Untersuchungen, die als Nagelprobe dienen, um 

eindeutig speichergesteuerte Kanäle zu identifizieren. 

Außerdem wurde ein weiterer nicht rezeptorgesteuerter, jedoch direkt mechanisch gesteuerter 

Aktivierungsmechanismus bei TRPC1-, TRPC5- und TRPC6-Kanälen beschrieben (Inoue et al., 2009b). 

Die Forschergruppe von Owen Hamill aus Galveston (USA) konnte zeigen, dass endogene TRPC1-

Proteine in Oozyten von Xenopus laevis am membrandehnungsaktiven Calciumeinstrom beteiligt sind 

und dass heterolog überexprimierte, humane TRPC1-Proteine einen membrandehnungsaktiven 

Calciumeinstrom hervorrufen (Maroto et al., 2005). Zwei weitere Forschergruppen, eine von Félix Viana 

de la Iglesia aus Alicante (Spanien) und eine von Xiaqiang Yao aus Hongkong (China), konnten 

mechanosensitive TRPC5-Ströme sowohl heterolog in Überexpressionssystemen (Gomis et al., 2008; 

Jemal et al., 2014; Shen et al., 2015) als auch endogen in Barorezeptorneuronen (Lau et al., 2016) 

beschreiben. Darüber hinaus wurden mechanosensitive TRPC6-Ströme erstens in der 

Gefäßmuskulatur (Welsh et al., 2002), zweitens im Überexpressionssystem (Spassova et al., 2006) und 

drittens in Podozyten (Huber et al., 2007) beobachtet. Allerdings konnte in keiner dieser 

Untersuchungen eindeutig gezeigt werden, ob es sich tatsächlich um direkte, mechanische TRPC1-, 
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TRPC5- oder TRPC6-Kanalaktivierungen handelt. Daher war die Untersuchung zur intrinsischen 

Mechanosensitivität von TRPC-Kanälen ein zentrales Ziel dieses Habilitationsprojektes. 

Für die intrinsische Mechanosensitivität von integralen Membranproteinen existieren zwei 

Modellvorstellungen (Christensen und Corey, 2007; Inoue et al., 2009b; Mederos y Schnitzler et al., 

2011). Zum einen gibt es die Vorstellung, dass ein integrales Membranprotein allein über die 

Veränderung des seitlichen Druckspannungsprofils der Phospholipiddoppelschicht (Cantor, 1997) 

Konformationsänderungen ohne die Beteiligung des Zytoskeletts oder der extrazellulären Matrix 

durchführt. Somit beeinflusst die veränderte Membranspannung bzw. das veränderte seitliche 

Druckspannungsprofil der Membran die flexiblen Strukturen des integralen Membranproteins und führt 

zu einer aktiven Proteinkonformation (Cantor, 1999; Bezrukov, 2000). Neben diesem sogenannten 

Membranmodell, das für bakterielle mechanosensitive Ionenkanäle zutrifft (Martinac, 2004), gibt es zum 

anderen die Vorstellung eines sogenannten Verankerungsmodells. Es beruht auf dem mechano-

sensitiven Multiproteinkanalkomplex des Fadenwurms Caenorhabditis elegans mit porenbildenden 

Kanalproteinen aus der Degenerin-Familie, die homolog zum epithelialen Natriumkanal sind (Chalfie 

und Sulston, 1981; Chalfie und Au, 1989; Bianchi, 2007; Chalfie, 2009). Dieser Ionenkanalkomplex 

weist Verankerungen sowohl mit der extrazellulären Matrix als auch mit dem Zytoskelett auf (Fronius 

und Clauss, 2008). Mechanische Kräfte führen über diese starren Verankerungen des 

Ionenkanalkomplexes zu Konformationsänderungen und letztendlich zur Öffnung der Kanalpore.  

Ein solcher mechanosensitiver Kanalkomplex wurde bei Säugetier-Podozyten von Tobias B. Huber und 

seinen Forscherkollegen aus Freiburg (Deutschland) postuliert (Huber et al., 2007). Die Podozyten bei 

Säugetieren sind hochdifferenzierte Epithelzellen, die mit ihren vielfach miteinander verzahnten 

Fortsätzen zum einen die innere Auskleidung der Bowman-Kapsel bilden und zum anderen zusammen 

mit der Basalmembran und der Endothelzellschicht den glomerulären Filterapparat für die 

Primärharnbildung aufbauen. Dabei sind Podozyten mit ihrer hochdynamischen und hochdifferenzierten 

Schlitzmembran entscheidend verantwortlich für die glomeruläre Filterfunktion, die darin besteht, 

einerseits eine hohe hydraulische Permeabilität und andererseits eine ausreichende Impermeabilität für 

Plasmaproteine zu gewährleisten. Eine chronische Überdruckbelastung, wie etwa bei der 

Nephrosklerose durch Hypertonie, führt letztendlich immer zu einer Podozytenschädigung und damit zu 

einer Dysfunktion der Schlitzmembranen (Dasgupta et al., 2007; Wang et al., 2009a). Diese 

histologischen, physiologischen und pathophysiologischen Merkmale der Podozyten unterstützen stark 

das bis jetzt nicht widerlegte Hubersche Postulat für eine Existenz eines podozytären molekularen 

Mechanosensors. Es wird aber auch zurzeit nicht ernsthaft und wissenschaftlich begründet bestritten. 

Interessanterweise exprimieren Podozyten das integrale Membranprotein Podocin, das ein 

Aminosäuresequenzhomologon von MEC-2 darstellt, welches wiederum am Aufbau des 

mechanosensitiven Kanalkomplexes in Caenorhabditis elegans beteiligt ist (Huang et al., 1995; Boute 

et al., 2000). Somit besteht die Möglichkeit, dass Podocin ein Bestandteil des podozytären 

Mechanosensors sein könnte. Zudem ist bekannt, dass Mutationen im Podocin-Gen zu einer 

progredienten Nierenerkrankung, der fokalen segmentalen Glomerulosklerose (FSGS) führen 

(Tsukaguchi et al., 2002; Monteiro et al., 2006; Tonna et al., 2008). Neben der genuinen FSGS (siehe 

Seite 11) kann sich eine FSGS auch symptomatisch durch zum Beispiel eine Hypertonie-induzierte 

Hyperfiltration entwickeln, also wieder durch eine chronische Überdruckbelastung. Da Podocin und der 

Kationenkanal TRPC6 physisch miteinander interagieren und einen Proteinkomplex in der 

Schlitzmembran bilden (Huber et al., 2006), wurde von Tobias B. Huber und seinen Forscherkollegen 

ein intrinsisch mechanosensitiver Ionenkanalkomplex aus TRPC6 und Podocin als podozytärer 

molekularer Mechanosensor vorgeschlagen (Huber et al., 2007). Hierbei konnte zum einen mittels 

Koimmunpräzipitationen die physische Interaktion zwischen TRPC6 und Podocin und zum anderen 
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mittels Elektronenmikroskopie die Kolokalisation in der Schlitzmembran nachgewiesen werden. Zudem 

zeigten sich in TRPC6 und Podocin koexprimierenden Oozyten größere durch das DAG-Analogon 

OAG-induzierte Stromantworten als bei TRPC6 allein exprimierenden Oozyten (Huber et al., 2006), die 

aber in beiden Fällen eine ungewöhnlich langsame Aktivierungskinetik aufwiesen und nicht wie üblich 

inaktivierten. Die zur Identifizierung benötigten Strom-Spannungskennlinien fehlen leider, so dass nicht 

eindeutig geklärt ist, ob die beobachteten induzierten Ströme wirklich auf TRPC6-Kanalströmen 

beruhen. Darüber hinaus fehlen jegliche Experimente zur Mechanosensitivität des TRPC6-Podocin-

Kanalkomplexes. Die Aufklärung der Rolle von TRPC6 für die Mechanosensitivität von Podozyten war 

daher ein weiteres Ziel dieses Habilitationsprojektes.  

Neben der direkten Mechanosensitivität von integralen Membranproteinen gemäß des Membran- oder 

Verankerungsmodells besteht auch die Möglichkeit einer indirekten Mechanosensitivität. Im Falle eines 

Ionenkanals bedeutet das, dass dieser selbst nicht intrinsisch mechanosensitiv ist, sondern erst nach 

Aktivierung eines weiteren mechanosensensitiven Proteins über einen zwischengeschalteten 

Signaltransduktionsweg aktiviert wird (Mederos y Schnitzler et al., 2011). Diese indirekte mechanische 

Kanalaktivierung sollte durch den zusätzlichen Signaltransduktionsweg langsamer ablaufen als die 

direkte mechanische Kanalaktivierung laut des Verankerungs- oder Membranmodells 

(zusammengefasst in Mederos y Schnitzler et al. (2011) und Storch et al. (2012b)). Im Rahmen dieses 

Forschungsprojekts sollte daher auch die Möglichkeit einer indirekten Mechanosensitivität von TRPC-

Kanälen in Betracht gezogen werden. 

Neben dem genauen Aktivierungsmechanismus ist auch die physiologische Rolle der TRPC-Kanäle 

noch nicht vollständig aufgeklärt. Obwohl TRPC1 der erste in Säugetierzellen charakterisierte TRP-

Kanal ist, gibt es immer noch große Kontroversen bezüglich der Funktion dieses Kanals. So ist bisher 

noch immer unklar, ob TRPC1-Kanalproteine überhaupt funktionelle homotetramere Kanäle bilden 

können. Es besteht jedoch Konsens darüber, dass TRPC1 heteromere Kanalkomplexe mit anderen 

TRPC-Proteinen bilden kann (Strübing et al., 2001, 2003). TRPC1 ist stark in Neuronen exprimiert und 

vermittelt in kultivierten embryonalen Neuronen von Xenopus eine positive axonale Chemotaxis (Wang 

und Poo, 2005). Außerdem bewirkt TRPC1 das durch metabotrope Glutamatrezeptoren induzierte, 

langsame, exzitatorische postsynaptische Potential in Purkinjezellen (Kim et al., 2003) und wirkt 

neuroprotektiv gegen exogene Neurotoxine (Bollimuntha et al., 2005). Des Weiteren verstärkt TRPC1 

den Differenzierungsstatus der hippocampalen Neuronenzelllinie H19-7 (Wu et al., 2004). Hingegen 

erhöht TRPC1 die Proliferation von neuronalen Progenitorzellen aus dem Hippocampus (Li et al., 2012) 

und aus dem sogenannten Spiralganglion der Cochlea (Chen et al., 2015). Außerdem fördert der 

Calciumeinstrom über TRPC1 in Zellen der Unterkieferspeicheldrüse die Speichelsekretion (Liu et al., 

2007b; Sun et al., 2015). Im kardiovaskulären System spielt TRPC1 ebenfalls eine Rolle für die 

Proliferation sowie für den Gefäßtonus. TRPC1 wirkt in vitro proliferationsfördernd auf glatte 

Muskelzellen aus der menschlichen Aorta (Erac et al., 2016). Zudem wurde eine erhöhte TRPC1-

Expression in glatten Muskelzellen und in Herzmuskelzellen nach einer Stenose beobachtet (Kumar et 

al., 2006; Ohba et al., 2007). In beiden Fälle wirkt TRPC1 in vitro proliferationsfördernd. Dies wurde bei 

glatten Muskelzellen aus Saphenus-Venen des Menschen und aus Karotiden von Schweinen, Ratten 

und Mäusen (Kumar et al., 2006), sowie bei Herzmuskelzellen aus Ratten (Ohba et al., 2007) 

festgestellt. Somit sollen TRPC1-Kanäle für die Entwicklung einer kardialen Hypertrophie verantwortlich 

sein. Des Weiteren bewirken TRPC1-Kanäle in der glatten Gefäßmuskulatur eine Vasokonstriktion 

(Kunichika et al., 2004; Lin et al., 2004; Bergdahl et al., 2005; Wolfle et al., 2010) und im Endothel eine 

Vasodilatation (Kochukov et al., 2013; Greenberg et al., 2017; Qu et al., 2017) unabhängig davon, ob 

es sich um große (Kunichika et al., 2004; Lin et al., 2004; Kochukov et al., 2013) oder kleine 

Leitungsgefäße (Greenberg et al., 2017; Qu et al., 2017) oder Widerstandsgefäße (Bergdahl et al., 2005; 
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Wolfle et al., 2010) handelt und unabhängig davon, ob die Gefäße im Niederdruck- (Kunichika et al., 

2004; Lin et al., 2004; Qu et al., 2017) oder im Hochdruckbereich liegen (Bergdahl et al., 2005; Wolfle 

et al., 2010; Kochukov et al., 2013; Greenberg et al., 2017). Der genaue Signalweg zur Vasodilatation 

durch endotheliale TRPC1-Kanäle ist Stickstoffmonoxid-vermittelt, jedoch im Detail nicht geklärt.  

Die DAG-sensitiven TRPC2-Kanäle (Lucas et al., 2003) werden höchstwahrscheinlich bei allen 

Makrosmatikern wie bei den meisten Fischen und den meisten Säugetieren funktionell exprimiert (Liman 

und Dulac, 2007). Bei den bekannten Mikrosmatikern wie den Hominiden und den anderen 

Schmalnasenaffen ist TRPC2 nicht funktionell exprimiert und liegt als Pseudogen vor (Liman und Innan, 

2003; Zhang und Webb, 2003). Die Zell-, Gewebe- und Organexpression von TRPC2 beschränkt sich 

auf die Schilddrüse (Tornquist et al., 2014), den Hoden (Vannier et al., 1999), den Erythrozyten 

(Hirschler-Laszkiewicz et al., 2012) und das Jacobsonsche Organ, das auch als Vomeronasalorgan 

(VNO) bezeichnet wird (Liman et al., 1999; Hofmann et al., 2000). Die Funktion von TRPC2-Kanälen in 

der Schilddrüse wurde bisher nur von der Forschergruppe von Kid Törnquist aus Turku (Finnland) 

untersucht und ist noch weitgehend ungeklärt. In den Spermien sollen TRPC2-Kanäle die 

Akrosomreaktion vermitteln (Jungnickel et al., 2001), die das Eindringen des Spermiums in die Eizelle 

ermöglicht. Zudem sollen TRPC2-Kanäle in Erythrozyten die durch oxidativen Stress hervorgerufene 

hämolytische Anämie bewirken (Hirschler-Laszkiewicz et al., 2012). Im VNO sind TRPC2-Kanäle für die 

Wahrnehmung von Pheromonen entscheidend und der Verlust von TRPC2 in beiden Geschlechtern 

führt zu einer gestörten Pheromonwahrnehmung und folglich zu einer beeinträchtigten olfaktorischen 

Geschlechtererkennung und zu einem verringerten Aggressionsverhalten (Leypold et al., 2002; Stowers 

et al., 2002). Insbesondere paaren sich TRPC2-gendefiziente Männchen mit anderen Männchen 

(Stowers et al., 2002) und TRPC2-gendefiziente Weibchen zeigen sogar männliches Sexualverhalten 

(Kimchi et al., 2007). Da TRPC2-Kanäle im heterologen Überexpressionssystem nicht funktionell 

untersucht werden können, beschränkte sich die biophysikalische Charakterisierung dieses Kanals 

bisher im Wesentlichen auf die endogene Expression in olfaktorischen Zellen des VNO.  

TRPC3-Kanäle sind stark im zentralen Nervensystem sowie im kardiovaskulären System exprimiert. Als 

erstes konnten Gen-Funktionsbeziehungen mit der TRPC3-gendefizienten Mauslinie erfolgreich 

untersucht werden. Es ergaben sich auffällige extrapyramidale Koordinationsstörungen, die sich durch 

das Fehlen des TRPC3-Kanal-vermittelten Calcium-Einstroms in Purkinjezellen begründen ließen 

(Hartmann et al., 2008). Des Weiteren konnte mittels des bekannten Alkylierungsmittels 

Ethylnitrosoharnstoff eine Mauslinien-Mutante generiert werden, die einen ataxischen Phänotyp 

aufwies, welcher sich auf eine Punktmutation durch den Aminosäureaustausch T635A im TRPC3-Gen 

zurückführen lies. Die Forschergruppe von Dame Kay Davies in Oxford (England) konnte bei dieser als 

„Moonwalker“ bezeichneten Mauslinie eine gestörte Differenzierung in der frühen postnatalen 

Entwicklung und eine immense Degeneration in der späten postnatalen Entwicklung von Purkinjezellen 

im Cerebellum beobachten, die sich durch eine nicht näher analysierte rezeptorgesteuerte TRPC3-

vermittelte Kanalaktivitätserhöhung begründete (Becker et al., 2009). Inzwischen konnte ein weiterer 

zerebellarer Zelltyp, die sogenannten unipolaren Bürstenzellen (Typ II) mit einer hohen TRPC3-

Expression identifiziert werden. Diese Bürstenzellen sind glutamaterge Interneurone, die hauptsächlich 

in der inneren Körnerzellschicht des Lobulus IX und X lokalisiert sind (Dino et al., 1999). Sie vermitteln 

eine exzitatorische Vorsteuerung auf die sogenannten Körnerzellen, die wiederum die Purkinjezellen 

exzitatorisch ansteuern (Dino et al., 2000). Diese Bürstenzellen degenerieren massiv innerhalb der 

ersten vier postnatalen Wochen bei der Moonwalker-Mauslinie (Sekerkova et al., 2013). Aufgrund des 

Funktionszusammenhangs und der Koinzidenz von Bürstenzell-Degeneration und Ataxie, ist die 

TRPC3-T635A Expression in den unipolaren Bürstenzellen (Typ II) ursächlich und die späte 

Purkinjezell-Degeneration eine pathogenetische Konsequenz. Erstaunlicherweise gibt es bis dato 
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lediglich nur Indizien für die molekularen Ursachen der erhöhten Kanalaktivität von TRPC3-T635A. 

Zuletzt wurde eine Wasserstoff-Brückenbindung an T635 für wichtig erachtet, die eine geschlossene 

Kanalkonformation stabilisieren soll (Hanson et al., 2015). Dieses Threonin befindet sich in der zweiten 

intrazellulären Schleife an der sich die 5. transmembranäre Domäne anschließt, die dort an der 

intrazellulären Seite die Kanalporenwand bildet. Kleinste molekulare Verschiebungen in dieser 

Porenwand beeinflussen das Schaltverhalten von vielen ähnlich aufgebauten Ionenkanälen, so dass 

eine intrinsische Kanalfunktionsstörung naheliegend ist. Erstaunlicherweise steht immer noch eine 

gründliche biophysikalische Untersuchung der TRPC3-T635A-Kanalmutante aus, wie z. B. eine 

Charakterisierung der Basalaktivität (Dietrich et al., 2003) und eine Einzelkanalanalyse in einem 

heterologen Expressionssystem, bei der die Offen- und Geschlossenzeiten des Kanals statistisch 

erfasst werden.  

Im Blutgefäßsystem finden sich TRPC3-Kanäle im Endothel des Niederdrucksystems zum Beispiel in 

der Nabelschnurvene (Groschner et al., 1998) und in der Lungenarterie (Kamouchi et al., 1999), aber 

auch im Endothel des Hochdrucksystems, zum Beispiel in den afferenten Arteriolen der Niere (Thilo et 

al., 2009) und in den Koronararterien (Smedlund und Vazquez, 2008). Während die physiologische 

Rolle samt Aktivierungsmechanismus von TRPC3-Kanälen im Endothel des Niederdrucksystems völlig 

unklar ist (Groschner et al., 1998; Kamouchi et al., 1999), sind hohe Expressionen von TRPC3-Kanälen 

im Endothel des Hochdrucksystems mit pathophysiologischen Funktionen wie der akzelerierten 

Hypertonie (Thilo et al., 2009) und der Arteriosklerose (Smedlund et al., 2015) assoziiert. Abgesehen 

von der endothelialen Expression konnten zwei unabhängige Forschergruppen TRPC3-Expressionen 

in der glatten Muskulatur von Widerstandsgefäßen nachweisen (Xi et al., 2008; Park et al., 2011). Auch 

hier ist der Aktivierungsmechanismus umstritten. Die Forschergruppe von Jonathan Jaggar aus 

Memphis (USA) hat Indizien für ein IP3-gesteuertes physisches Koppeln zwischen einer unterhalb der 

Zellmembran vorliegenden IP3-Rezeptorisoform und den TRPC3-Kanälen in der Zellmembran 

gefunden, die zu einer Kanalaktivierung führen (Xi et al., 2008; Adebiyi et al., 2010). Hingegen findet 

die Forschergruppe von Min Goo Lee aus Seoul (Korea) eine alpha-Adrenozeptor-gesteuerte TRPC3-

Kanalaktivierung unter der Kontrolle einer Serin-Threonin-Kinase, der sogenannten WNK4 (Park et al., 

2011). Patienten mit Mutationen in dieser Kinase zeigen einen Pseudohypoaldosteronismus vom Typ 

II, der mit einer Hypertonie einhergeht. Diese Hypertonie begründet sich nicht nur durch die WNK4-

bedingte Hyperfunktion des Natrium-Chlorid-Symporters im distalen Nephron, sondern auch durch die 

rezeptorgesteuerte WNK4-unkontrollierte Hyperaktivität von TRPC3-Kanälen in der glatten Muskulatur 

von Widerstandsgefäßen (Park et al., 2011). 

Vier unabhängige Forschergruppen konnten zeigen, dass TRPC3-Kanäle in Herzmuskelzellen von 

Mäusen (Nakayama et al., 2006; Wu et al., 2010; Han et al., 2016) und Ratten (Onohara et al., 2006) 

sowie in der Herzmuskelzelllinie HL-1 exprimieren (Poteser et al., 2011) und eine entscheidende 

pathophysiologische Rolle spielen (Nakayama et al., 2006; Onohara et al., 2006; Wu et al., 2010; 

Poteser et al., 2011; Han et al., 2016). Hierbei bewirkt der Calciumeinstrom durch TRPC3-Kanäle eine 

Herzhypertrophie durch die Aktivierung der Calcium- und Calmodulin-abhängigen Serin/Threonin-

Proteinphosphatase Calcineurin, wodurch es zur Dephosphorylierung von NFAT („nuclear factor of 

activated T cells“), einem Transkriptionsfaktor von T-Lymphozyten, kommt. Dieser dephosphorylierte 

Transkriptionsfaktor transloziert in den Zellkern und beeinflusst die Genexpression. Interessanterweise 

soll die Calcineurin-Aktivierung erst nach der Bindung von Calcineurin an das durch die Proteinkinase 

C phosphorylierbare Threonin an der Position 573 des TRPC3-Kanals geschehen (Poteser et al., 2011). 

Pharmakologische Interventionen mit Angiotensin II und/oder Phenylephrin über mehrtägige Infusionen 

sowie die transversale Aortenkonstriktion führen somit zu einer Genregulation, die eine Hypertonie-

induzierte Herzhypertrophie verursacht. Neben den typischen Herzhypertrophie-sensitiven Genen 
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scheint sogar die Expression des spannungsgesteuerten Calciumkanals in Herzmuskelzellen 

beeinflusst zu werden (Han et al., 2016).  

TRPC4- und TRPC5-Kanäle sind in zahlreichen Geweben exprimiert, unter anderem im Gehirn, in der 

Niere und im Gefäßsystem. Besonders hoch ist ihre Expression im zentralen Nervensystem. Hier sind 

sie an der Funktion der Amygdala beteiligt. TRPC4- und TRPC5-Kanäle vermitteln dort den Zustand 

hoher Angst gegenüber aversiven Reizen (Riccio et al., 2009; Riccio et al., 2014). Außerdem spielen 

TRPC4- und TRPC5-Kanäle in der Amygdala eine wichtige Rolle für das peripher induzierte 

neuropathische Schmerzsyndrom. Mikroinjektionen mit dem TRPC4- und TRPC5-Kanalblocker ML-204 

in die Amygdala von Ratten verringerten sowohl das sensorische als auch das affektive 

Schmerzempfinden (Wei et al., 2015). Somit könnten ZNS-gängige TRPC4- und TRPC5-Kanalblocker 

in Zukunft als neuartige Anxiolytika oder sogar als sprunginnovative Analgetika gegen periphere 

Neuropathien eingesetzt werden. Abgesehen davon verursachten TRPC5-Kanäle in hippocampalen 

CA1-Pyramidenzellen aufgrund ihrer Calcium- und Natriumpermeabilität langanhaltende und 

weitgehend konstante Membranpotentialdepolarisationen, die sogenannten Plateaupotentiale (Tai et 

al., 2011). Das Auftreten dieser Plateaupotentiale wird bei der iktalen Phase eines epileptischen Anfalls 

beobachtet (Dichter und Ayala, 1987; Fraser und MacVicar, 1996). In Übereinstimmung mit diesem 

neurophysiologischen Befund wies die TRPC5-gendefiziente Mauslinie geringere epileptische 

Anfallsstärken auf (Phelan et al., 2013). Daher könnten TRPC5-Kanalblocker möglicherweise als 

Antiepileptika eingesetzt werden. TRPC5-Kanäle hemmen zudem sowohl das Längenwachstum von 

hippocampalen Neuriten als auch von Filopodien am Wachstumskegel von aussprossenden Axonen, 

wodurch sich die axonale Wegfindung verschlechtert (Greka et al., 2003). Außerdem haben TRPC5- 

und TRPC6-Kanäle entgegengesetzte Wirkungen auf das Aktinzytoskelett von Podozyten und 

Fibroblasten. Die rezeptorgesteuerte Aktivierung von TRPC5 in beiden Zelltypen durch Angiotensin II 

führt zur Reduktion von parallelen Stressfasern und damit zu einem motilen und nicht-kontraktilen 

Phänotyp in vitro (Tian et al., 2010). Diese Art von Reorganisation des Zytoskeletts geht mit einer 

Podozytenschädigung einher, die zur Zerstörung der Schlitzmembran und letztlich zur Proteinurie führt 

(Takeda et al., 2001; Asanuma et al., 2006; Faul et al., 2007). Hingegen verstärkt eine TRPC6-

Aktivierung durch Angiotensin II die parallele Stressfaserbildung, wodurch ein kontraktiler aber nicht-

motiler Phänotyp ausgebildet wird (Tian et al., 2010). 

Darüber hinaus wird neuerdings eine pathophysiologische Bedeutung von TRPC4- und TRPC5-

Kanälen in Krebszellen diskutiert. Eine erhöhte TRPC5-Kanalaktivität führt sowohl in Brustkrebszellen 

(Ma et al., 2012) als auch in kolorektalen Krebszellen (Wang et al., 2015) zu einer verstärkten 

Expression des bestuntersuchten ABC-Transporters P-Glykoprotein (MDR1). Dieser Transporter ist das 

wichtigste molekulare Korrelat für die Resistenz von Zytostatika und eliminiert zum Beispiel das 

bekannte und viel eingesetzte Interkalantium Doxorubicin, den Mitosehemmer Paclitaxel und den 

Antimetaboliten 5-Fluoruracil. Im Fall des Brustkrebses soll die verstärkte MDR1-Expression über den 

Transkriptionsfaktor NFATc3 und im Fall des Dickdarmkrebs über β-Catenin, einem Strukturprotein, das 

ebenfalls als Transkriptionsfaktor fungiert, geschehen (Ma et al., 2012; Wang et al., 2015). Im 

Gegensatz dazu zeigen die Befunde mit dem potenten TRPC4- und TRPC5-Kanalaktivator (-)-Englerin 

A, der in nanomolaren Konzentrationen mit einem EC50-Wert von 20 bis 28 nM wirkt, ausgeprägte 

zytotoxische Effekte auf diverse Krebszelllinien (Akbulut et al., 2015; Carson et al., 2015). (-)-Englerin 

A wirkt sogar bei tripel-negativen Brustkrebszellen zytotoxisch (Ratnayake et al., 2009), bei denen 

sowohl Östrogen- und Progesteronrezeptoren als auch Rezeptoren für den „human epidermal growth 

factor“ (HER2) als Zielstrukturen für Pharmaka fehlen. Diese Art des Mammakarzinoms gilt als 

besonders aggressiv (Dent et al., 2007) und findet sich bei ca. 15% aller Brustkrebspatientinnen (Gluz 

et al., 2009). Zur Behandlung des tripel-negativen Mammakarzinoms gibt es außer der Operation bisher 

nur eine breit wirkende, ungerichtete Chemotherapie. Leider kommt es trotz Chemotherapie innerhalb 
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der ersten drei Jahre häufig zu Rezidiven, wodurch sich die Überlebensrate der Patientinnen deutlich 

verringert (Liedtke et al., 2008). Eine zielgerichtetere medikamentöse Therapie könnte in Zukunft die 

Prognose von Patientinnen mit tripel-negativem Mammakarzinom verbessern.  

Des Weiteren verstärkt eine TRPC5-Kanalaktivität die Angiogenese beim Brustkrebs durch Aktivierung 

des Transkriptionsfaktors Hypoxie-induzierter Faktor 1 (HIF-1) und anschließender Bildung des 

„vascular endothelial growth factors“ (VEGF) (Zhu et al., 2015). Im Gegensatz dazu hemmt die TRPC4-

Kanalaktivität in Nierenzellkarzinomzellen die dortige Angiogenese über das sekretierte 

antiangiogenetisch wirkende Thrombospondin-1 (Veliceasa et al., 2007). Davon abgesehen steigert die 

TRPC4- und TRPC5-Kanalaktivität in Endothelzellen die Vaskulogenese (Antigny et al., 2012; Song et 

al., 2015), was eher für eine proangiogenetische Wirkung von TRPC4 und TRPC5 spricht. Da eine 

erhöhte Expression von TRPC1-, TRPC3-, TRPC4- und TRPC6-Kanälen in Ovarialkrebszellen zu einer 

vermehrten Migration und Proliferation von Krebszellen führte und somit tumorigen wirkte (Zeng et al., 

2013), könnten auch TRPC1-, TRPC3- und TRPC6-Kanäle als Zielstrukturen für Chemotherapeutika in 

Frage kommen. Zurzeit gibt es jedoch mehr Belege für TRPC4- und TRPC5-Kanäle als entscheidende 

Zielstrukturen für onkologische Therapien.  

TRPC6-Kanäle sind stark exprimiert in der glatten Gefäßmuskulatur, in Lunge, Gehirn, Plazenta, Milz, 

Eierstöcken, Dünndarm, sowie in Neutrophilen und in Fußfortsätzen von Podozyten (zusammengefasst 

in Nilius und Owsianik (2011)). Zahlreiche physiologische Funktionen von TRPC6-Kanälen wurden 

bereits identifiziert. Im neuronalen System begünstigen sie die Synthese von Endocannabinoiden 

(Bardell und Barker, 2010), verstärken das Dendriten-Wachstum (Tai et al., 2008; Heiser et al., 2013) 

und erhöhen die neuronale Plastizität (Heiser et al., 2013). Im vaskulären System sind TRPC6-Kanäle 

von Bedeutung für die α1-Adrenozeptor-vermittelte Vasokonstriktion (Hill et al., 2006) und für die 

Proliferation der glatten Gefäßmuskulatur (Yu et al., 2003; Wang et al., 2016). Darüber hinaus wirken 

TRPC6-Kanäle proangiogenetisch (Hamdollah Zadeh et al., 2008; Ge et al., 2009). Außerdem bewirkt 

ein niedriger extrazellulärer pH-Wert eine TRPC6-Aktivierung, was zur Hemmung der 

Thrombozytenaggregation führt (Berna-Erro et al., 2014). Auch Oxidationsmittel wie Wasserstoffperoxid 

können TRPC6-Kanäle aktivieren und sogar deren Zellmembranexpression erhöhen (Graham et al., 

2010). Interessanterweise wurden Patientenmutationen im TRPC6-Gen gefunden ähnlich wie beim 

Podocin-Gen (siehe Seite 6), die zur genuinen FSGS führen (Reiser et al., 2005; Winn et al., 2005; 

Heeringa et al., 2009; Santin et al., 2009; Zhu et al., 2009; Gigante et al., 2011; Chiluiza et al., 2013; 

Hofstra et al., 2013; Zhang et al., 2013; Riehle et al., 2016). Vermutlich bewirken diese TRPC6-

Mutationen eine Podozytenschädigung durch eine Zerstörung der Schlitzmembran, die für die Filtration 

des Primärharns entscheidend ist. Bei FSGS-Patienten äußert sich die Beeinträchtigung der 

Barrierefunktion von Podozyten in Proteinurie und führt zur progredienten chronischen 

Niereninsuffizienz bis hin zu einem vollständigen terminalen Nierenversagen.  

TRPC7-Kanäle wurden bisher von allen TRPC-Kanälen am wenigsten untersucht. Daher ist noch relativ 

wenig über die physiologische und pathophysiologische Rolle dieser Kanäle bekannt. TRPC7-Kanäle 

sind unter anderem im zentralen Nervensystem, in der Hypophyse, in der Niere (Riccio et al., 2002), im 

Herz, in der Lunge (Jang et al., 2012), im Endothel (Yip et al., 2004) und in der glatten Gefäßmuskulatur 

exprimiert (Walker et al., 2001; Maruyama et al., 2006; Ju et al., 2010). Möglicherweise führt die TRPC7-

Kanalaktivierung in rhythmusgebenden Zellen des Atemzentrums zur Erhöhung der Atemfrequenz 

(Ben-Mabrouk und Tryba, 2010). Ferner wird vermutet, dass TRPC7-Kanäle für das verstärkte 

Zellwachstum bei Patienten mit autosomal dominanter polyzystischer Niere verantwortlich sind (Miyagi 

et al., 2009). Zudem gibt es Hinweise, dass myokardiale TRPC7-Kanäle an der Entstehung von 

Arrhythmien (Alvarez et al., 2008) und an der myokardialen Apoptose (Satoh et al., 2007) beteiligt sind. 

Widersprüchliche Ergebnisse finden sich zur Rolle von TRPC7 für den Pupillenlichtreflex. Die 
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Forschergruppe von King-Wai Yau aus Baltimore (USA) beobachtete, dass bei TRPC6- und TRPC7-

doppelt gendefizienten Mäusen die lichtinduzierte Aktivierung von photosensitiven retinalen 

Ganglienzellen vollständig fehlt und schlussfolgerten, dass heteromere TRPC6/7-Kanäle an der 

lichtinduzierten Depolarisation maßgebend beteiligt sind (Xue et al., 2011). Im Gegensatz dazu konnte 

die Forschergruppe von Paulo Kofuji aus Minneapolis (USA) mit Hilfe der beiden TRPC3- und TRPC7-

einfach-gendefizienten Mauslinien eine Beteiligung von TRPC3 und TRPC7 an der lichtinduzierten 

Aktivierung von retinalen Ganglienzellen ausschließen und beobachteten lediglich bei TRPC6-einfach-

gendefizienten Mäusen eine verminderte lichtinduzierte Ganglienzelldepolarisation (Perez-Leighton et 

al., 2011). In einem Postskriptum führen die Forscher aus Baltimore erstaunlicherweise diese 

Diskrepanz auf die verwendeten unterschiedlichen Patch-Clamp-Konfigurationen der Ganzzell-

ableitungen zurück: „perforated patch“-Ableitungen bei Xue et al. (2011) und konventionelle 

Ganzzellableitungen bei Perez-Leighton et al. (2011). Deshalb bleibt die physiologische Bedeutung von 

TRPC-Kanälen in retinalen Ganglienzellen bisher noch unklar und sollte in Zukunft gewissenhaft und 

kritisch analysiert werden.  

Zusammengefasst lässt sich sagen, dass TRPC-Kanäle an zahlreichen physiologischen und 

pathophysiologischen Prozessen im Organismus beteiligt sind. Obwohl die Anzahl der Publikationen zu 

TRPC-Kanälen ständig steigt, handelt es sich häufig um Einzelbefunde oder bruchstückhafte 

Ergebnisse, die oft nicht validiert genug oder sogar widersprüchlich sind, sodass immer noch, nach 

zurzeit mehr als 3000 Publikationen zu TRPC-Kanälen, viele und selbst generelle Fragen zur Funktion 

von TRPC-Kanälen unbeantwortet bleiben. Diese Publikationsflut erinnert an das von Yuri Lazebnik aus 

Cold Spring Habour sehr treffend am Beispiel der Apoptose beschriebene Phänomen der Akkumulation 

von wissenschaftlichen Ergebnissen (Lazebnik, 2002), die eher Verwirrung hervorrufen und keinen 

fundamentalen Erkenntnisgewinn bringen. Nur ein systembiologischer Ansatz, bei dem Forscher 

Kanalaktivierungen und –inaktivierungen sowie dynamische Interaktion und deren Störungen bei TRPC-

Kanälen quantitativ analysieren, trägt zu einem tiefen Verständnis der zell- und pathophysiologischen 

Rolle bei (Schneider und Klabunde, 2013; Munaron, 2015). Sowohl die detallierte biophysikalische 

Charakterisierung und insbesondere die Aufklärung des Aktivierungsmechanismus von TRPC-Kanälen 

als auch die weitergehende Erforschung der physiologischen und pathophysiologischen Relevanz von 

TRPC-Kanälen stehen immer noch aus und sollten im Rahmen dieses Habilitationsprojektes untersucht 

werden. 
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2 Zusammenfassung der Forschungsergebnisse 

2.1 Welche physiologische Bedeutung besitzen TRPC-Kationen-

kanäle? 

Im Rahmen dieses Habilitationsprojektes wurden die Kationenkanäle TRPC1, TRPC4, TRPC5 und 

TRPC6 zunächst biophysikalisch charakterisiert und anschließend folgte die Untersuchung ihrer 

physiologischen Bedeutung. Zur Charakterisierung von TRPC1-Kanälen wurden von uns 

elektrophysiologische Ganzzellableitungen im heterologen Überexpressionssystem mit TRPC1-

überexprimierenden humanen embryonalen Nierenzellen (Storch et al., 2012a) und mit endogen 

TRPC1-exprimierenden primären, isolierten glatten Gefäßmuskelzellen (Dietrich et al., 2007) sowie 

immortalisierten Gonadotropin-Releasing-Hormon-(GnRH)-freisetzenden Neuronen (Storch et al., 

2012a) durchgeführt. Hierbei zeigte sich, dass TRPC1-Proteine nicht in der Lage sind, funktionelle 

homomere und rezeptorgesteuerte (Storch et al., 2012a) oder speichergesteuerte Kationenkanäle 

auszubilden (Dietrich et al., 2007; Storch et al., 2012a). Die Forschergruppe von Mohamed Trebak aus 

Hershey (USA) bestätigte inzwischen, dass TRPC1-Proteine in glatten Gefäßmuskelzellen nicht für den 

speichergesteuerten Calciumeinstrom verantwortlich sind (Potier et al., 2009). Im Gegensatz dazu 

betrachten die Forschergruppen von Indu Ambudkar aus Bethesda (USA) und Albrecht Schwab aus 

Münster (Deutschland) TRPC1-Kanäle weiterhin als hochgradig calciumleitende und speicher-

gesteuerte Kanäle (Ambudkar, 2007; Fabian et al., 2008; Fabian et al., 2011; Ambudkar et al., 2017). 

Dieser Widerspruch wird üblicherweise durch die Verwendung unterschiedlicher Zellsysteme begründet 

(Zellen aus der Unterkieferspeicheldrüse bei Indu Ambudkar (Liu et al., 2007b; Sun et al., 2015) und 

Nierenepithelzellen bei Albrecht Schwab (Fabian et al., 2008; Fabian et al., 2011)), was aber auch 

andererseits bedeutet, dass der Aktivierungsmechanismus keine intrinsische Leistung des Kanals sein 

kann. 

Unsere Ergebnisse zeigen weiterhin, dass TRPC1-Proteine die Fähigkeit besitzen, funktionelle hetero-

tetramere, rezeptorgesteuerte Kanalkomplexe mit anderen TRPC-Proteinuntereinheiten zu bilden 

(Storch et al., 2012a), und zwar nicht nur wie bereits beschrieben mit TRPC4 und TRPC5 (Strübing et 

al., 2001; Hofmann et al., 2002), sondern auch mit TRPC3, TRPC6 und TRPC7. In diesen 

Kanalkomplexen sind TRPC1-Proteine nicht nur akzessorische β-Untereinheiten, sondern sie sind an 

der Porenbildung beteiligt und reduzieren die Calciumpermeabilität (Storch et al., 2012a). Die Funktion 

von TRPC1-Proteinen als Suppressoren der Calciumpermeabilität wird dadurch untermauert, dass 

Aminosäureaustausche in der mutmaßlichen Porenregion von TRPC1 die Calciumpermeabilität 

zusätzlich verringerten (Storch et al., 2012a). Diese den Calciumeinstrom beeinträchtigende Funktion 

von TRPC1 wurde inzwischen von mehreren Forschergruppen, zum Beispiel von Dean D. Metcalfe aus 

Bethesda (USA), von Insuk So aus Seoul zusammen mit Hyum In Kim aus Suwon (Korea) und von 

Cigdem Selli aus Izmir (Türkei) unabhängig bestätigt (Medic et al., 2013; Kim et al., 2014; Erac et al., 

2016). Zudem können TRPC1-Proteine vermutlich mit TRPV6, einem Vertreter der transient receptor 

potential vanilloid (TRPV)-Kanalfamilie, einen heteromeren Kanalkomplex bilden und wirken hier 

ebenfalls als Suppressoren des Calciumeinstroms (Schindl et al., 2012). 

Die physiologische Bedeutung des reduzierten Calciumeinstroms in TRPC1-exprimierenden Zellen 

wurde von uns in GnRH-freisetzenden Neuronen, die eine besonders hohe endogene TRPC1-
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Expression aufweisen, genauer untersucht. Auch in diesen Zellen waren TRPC1-Proteine 

Suppressoren der Calciumpermeabilität und die Herunterregulation der TRPC1-Expression verursachte 

einen erhöhten Calciumeinstrom, der sowohl zellmotilitäts- als auch zellmigrationsfördernd wirkte 

(Storch et al., 2012a). Um die physiologische Funktion von TRPC1 zu charakterisieren, wurden zudem 

TRPC1-gendefiziente Mäuse herangezogen. Diese Mäuse wiesen zunächst im Vergleich zu Wildtyp-

Mäusen keine erkennbaren Unterschiede auf (Dietrich et al., 2007). Dennoch konnten wir in Kooperation 

mit Norbert Weissmann aus Gießen (Deutschland) eine pathophysiologische Bedeutung von TRPC1 in 

präkapillären Lungenarterien identifizieren. TRPC1-gendefiziente Mäuse entwickelten keine Hypoxie-

induzierte Hypertonie. Daher ist TRPC1 in glatten Muskelzellen aus präkapillären Lungenarterien 

offenbar für die Entstehung der Hypoxie-induzierten pulmonalen Hypertonie, einer Lungenerkrankung, 

die bislang nicht gezielt medikamentös behandelt werden kann, entscheidend (Malczyk et al., 2013). 

Somit könnte TRPC1 eine neue Zielstruktur für innovative Pharmaka zur Behandlung der pulmonalen 

Hypertonie bei Hypoxie darstellen.  

Überdies wurde im Rahmen dieses Habilitationsprojektes die gestörte Calciumhomöostase von 

differenzierten, ventrikulären Kardiomyozyten aus induzierten pluripotenten Stammzellen (iPS) von 

Patienten mit einer katecholaminergen polymorphen ventrikulären Tachykardie (catecholaminergic 

polymorphic ventricular tachycardia [CPVT]) elektrophysiologisch charakterisiert. Bei dieser vererbten, 

meist durch Mutationen im Ryanodin Typ 2-Rezeptor-Gen verursachten Erkrankung des Herzmuskels, 

die mit einer unkontrollierten Calciumfreisetzung aus dem sarkoplasmatischen Retikulum einhergeht, 

lösen Katecholamine wie Adrenalin und Noradrenalin lebensbedrohliche Arrhythmien aus. Außer der 

Behandlung mit Betablockern, die jedoch bei 30% der Patienten keine ausreichende Wirkung hat, sowie 

dem Einsatz von implantierbaren Defibrillatoren gibt es derzeit noch keine kausale Therapie. Wir 

konnten zeigen, dass das Muskelrelaxans Dantrolen, das die Calciumfreisetzung aus dem 

sarkoplasmatischen Retikulum durch eine Ryanodin-Rezeptorblockade hemmt, antiarrhythmisch wirkt 

(Jung et al., 2012b). Daher könnte möglicherweise in Zukunft eine Indikationserweiterung für Dantrolen 

als Antiarrhythmikum beantragt werden. Mit dieser Forschungsarbeit wurden somit Ryanodin-

Rezeptorblocker als eine neue Klasse von Antiarrhythmika zur kausalen Behandlung von CPVT-

Patienten identifiziert. 

Da TRPC4- und TRPC5-Kanäle im Allgemeinen als rezeptorgesteuert betrachtet werden, der genaue 

Signalweg zur Kanalaktivierung jedoch weitgehend unklar ist, setzten wir uns zum Ziel, diesen 

Signalweg aufzuklären. Entgegen früherer anderslautender Befunde (Hofmann et al., 1999) zeigten 

unsere Untersuchungen, dass TRPC4- und TRPC5-Kanäle ebenso wie TRPC3-, TRPC6- und TRPC7-

Kanäle DAG-sensitiv sind (Storch et al., 2017a). Im Gegensatz zu TRPC3, TRPC6 und TRPC7 wird 

jedoch die DAG-Sensitivität von TRPC4 und TRPC5 durch die Adapterproteine NHERF1 und NHERF2 

(siehe Seite 3 und 4) eng reguliert. NHERF-Proteine stellen somit dynamische Regulatoren der TRPC4- 

und TRPC5-Kanalaktivität dar. Mittels intermolekularer Förster-Resonanz-Energietransfer (FRET)-

Messungen konnten wir die dynamische Interaktion zwischen TRPC5 und NHERF1 sowie die 

Abspaltung von NHERF1 vom C-Terminus von TRPC5 sowohl nach Rezeptoraktivierung als auch nach 

PIP2-Depletion nachweisen. Außerdem konnten wir zeigen, dass Rezeptoraktivierungen und PIP2-

Depletionen C-terminale Konformationsänderungen bei TRPC5-Kanälen auslösen. In jedem Fall riefen 

die Dissoziationen von NHERF-Proteinen vom C-Terminus eine DAG-Aktivierbarkeit von TRPC4- und 

TRPC5-Kanälen hervor. Voraussetzung für die NHERF-Interaktion war der Phosphorylierungsstatus 

des C-Terminus von TRPC4 und TRPC5. Erst nach Phosphorylierung eines C-terminalen Threonins im 

C-terminalen PDZ-Bindemotiv „VTTRL“ (siehe Seite 3) durch die Proteinkinase C konnten NHERF-

Proteine am C-Terminus binden und die DAG-Aktivierbarkeit von TRPC4 und TRPC5 unterdrücken. 
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Die Ergebnisse unserer Untersuchung führen zu einem neuen Modell der rezeptorgesteuerten TRPC4- 

und TRPC5-Kanalaktivierung: Die Stimulation von Gq/11-Protein-gekoppelten Rezeptoren bewirkt 

demnach eine Aktivierung der PLC wodurch PIP2 in die beiden Botenstoffe IP3 und DAG gespalten wird. 

Die PIP2-Spaltung ruft eine C-terminale Konformationsänderung bei TRPC4 und TRPC5 hervor und 

verursacht dadurch eine Abspaltung von NHERF-Proteinen vom C-Terminus. Diese Abspaltung führt 

zu einer DAG-sensitiven Kanalkonformation, sodass das PIP2-Spaltprodukt DAG nun den Kanal 

aktivieren kann. Das Modell der rezeptorgesteuerten TRPC4/5-Aktivierung ist in Abbildung 7 der 

Publikation Storch et al. (2017a) dargestellt. Dieser Signalweg spielt unter anderem in endogen TRPC4-

exprimierenden proximalen Tubuluszellen und in endogen TRPC5-exprimierenden hippocampalen 

Neuronen eine Rolle (Storch et al., 2017a). Mit dieser Arbeit konnten wir zum ersten Mal zeigen, dass 

alle TRPC-Kanäle DAG-sensitiv sind, weshalb nun ein Paradigmenwechsel bei der Einteilung von 

TRPC-Kanälen in DAG-sensitive und DAG-insensitive Unterfamilien dringend erforderlich ist. Zudem 

vereint dieser neue Signalweg die zum Teil widersprüchlichen Ergebnisse anderer Forschergruppen. 

Die hier gewonnenen Erkenntnisse ermöglichen tiefere Einblicke in den Aktivierungsmechanismus von 

TRPC4- und TRPC5-Kationenkanälen, was letztlich eine notwendige Voraussetzung ist für das 

genauere Verständnis der zell- und pathophysiologischen Rolle dieser Kationenkanäle. Darüber hinaus 

konnten wir eine völlig neue Funktion von NHERF-Proteinen als dynamische Regulatoren der TRPC4- 

und TRPC5-Kanalaktivität entschlüsseln (Gough, 2017). Diese Erkenntnisse zur Rolle von NHERF-

Proteinen könnten in Zukunft dazu beitragen, die physiologische und pathophysiologische Bedeutung 

dieser Adapterproteine besser zu verstehen. Eine interessante pathophysiologische Bedeutung kommt 

der Interaktion von NHERF-Adapterproteinen mit missgefalteten CFTR-Kanälen aus Mukoviszidose-

Patienten zu. Diese NHERF-Interaktion bewirkt eine Stabilisierung und verbesserte Plasmamembran-

expression der missgefalteten CFTR-Kanäle (Loureiro et al., 2015), wodurch deren eingeschränkte 

Funktion teilweise wiederhergestellt werden kann. Da TRPC4- und TRPC5-Kanäle ebenso wie NHERF-

Proteine in Tumorzellen exprimiert sind und dort das Tumorwachstum beeinflussen (siehe Seite 4 und 

Seite 10), könnte die von uns identifizierte dynamische Interaktion sogar für die Krebstherapie von 

medizinischer Relevanz sein. Zukünftige Untersuchungen werden zeigen müssen, ob Kanal-NHERF-

Proteinkomplexe tatsächlich als neue Angriffspunkte für Arzneimittel in Frage kommen. 

Das nächste Ziel war die Aufklärung der physiologischen Bedeutung von TRPC6-Kationenkanälen. 

Dazu wurden TRPC6-gendefiziente Mäuse herangezogen und es wurden elektrophysiologische 

Ganzzellableitungen von primären isolierten, glatten Muskelzellen aus Gehirnarterien von TRPC6-

gendefizienten und Wildtyp-Mäusen durchgeführt. Entgegen unserer Erwartungen waren in TRPC6-

gendefizienten glatten Muskelzellen erhöhte basale und OAG-induzierte Stromantworten sowie stärker 

depolarisierte Membranpotentiale im Vergleich zu Wildtyp-Zellen zu beobachten (Dietrich et al., 2005). 

Die erhöhten Ströme und Ruhemembranpotentiale waren auf eine kompensatorische Hochregulation 

von TRPC3-Kanälen in der glatten Gefäßmuskulatur zurückzuführen, die gegenüber TRPC6-Kanälen 

eine höhere Basalaktivität besitzen (Dietrich et al., 2003). Die erhöhte TRPC3-Kanalaktivität äußerte 

sich unter anderem in einem gesteigerten Tonus der glatten Muskulatur (Dietrich et al., 2005). Diese 

kompensatorische TRPC3-Überexpression in Aorta und Zerebralarterien war weder in der pulmonalen 

präkapillären Gefäßmuskulatur noch im mikrovaskulären pulmonalen Endothel von TRPC6-

gendefizienten Mäusen zu beobachten und beschränkte sich daher offenbar auf das Hochdrucksystem. 

Im Rahmen einer Kooperation mit der Forschergruppe von Norbert Weissmann zeigte sich im 

Mausmodell, dass die Hypoxie-induzierte Aktivierung von TRPC6-Kanälen in präkapillären 

Lungenarterien entscheidend ist für die Entstehung der akuten Hypoxie-induzierten pulmonalen 

Vasokonstriktion, einer Autoregulation der pulmonalen Gefäßmuskulatur, die auch als Euler-Liljestrand-

Mechanismus bekannt ist (Weissmann et al., 2006). Darüber hinaus verbessert TRPC6 offenbar den 

alveolären Gasaustausch (Weissmann et al., 2006). Mittels elektrophysiologischer Ganzzellmessungen 
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von isolierten präkapillären, pulmonalen TRPC6-gendefizienten Gefäßmuskelzellen konnten wir auch 

auf Einzelzellebene zeigen, dass im Gegensatz zu Wildtyp-Zellen Hypoxie keine Stromerhöhungen 

hervorruft, was darauf hinweist, dass Hypoxie zu TRPC6-Kanalaktivierungen führt. Die Beteiligung von 

TRPC6 an der akuten Hypoxie-induzierten pulmonalen Vasokonstriktion konnte inzwischen von der 

Forschergruppe von Michael Schäfer aus Leipzig (Deutschland) bestätigt werden (Urban et al., 2016). 

Darüber hinaus waren auch in isolierten pulmonalen TRPC6-gendefizienten Endothelzellen im 

Gegensatz zu Wildtyp-Endothelzellen keine Hypoxie-induzierten Stromerhöhungen zu beobachten 

(Weissmann et al., 2012). Zusammengefasst konnten wir folgenden Hypoxie-induzierten Signalweg in 

mikrovaskulären pulmonalen Endothelzellen identifizieren: Hypoxie führt zur Entstehung von reaktiven 

Sauerstoffspezies, wodurch es zur Aktivierung der PLC-Isoform β und zur Inhibition der DAG-Kinase 

kommt. Dadurch akkumuliert DAG in pulmonalen Endothelzellen, was zur Aktivierung von endothelialen 

TRPC6-Kanälen führt. Der Calciumeinstrom durch TRPC6-Kanäle erhöht die Gefäßpermeabilität, 

sodass es zur Bildung von Lungenödemen kommt. Ein Modell zu diesem Signalweg ist in der Publikation 

Weissmann et al. (2012) in der dortigen Abbildung 7C abgebildet. In Kooperation mit der 

Forschergruppe von Norbert Weissmann zeigte sich im Tiermodell, dass diese Hypoxie-induzierte 

TRPC6-Aktivierung in Endothelzellen essentiell ist für den Pathomechanismus des Hypoxie-induzierten 

Lungenperfusionsschadens. Eine Sauerstoffunterversorgung der Lunge führt bei Reperfusion, z.B. nach 

einer Lungentransplantation, häufig zu schweren Lungenödemen. TRPC6-Kanalblocker könnten 

möglicherweise in Zukunft diesen Lungenreperfusionsschaden verhindern. Die Aktivierung von TRPC6-

Kanälen durch reaktive Sauerstoffspezies wurde auch von anderen Forschergruppen zum Beispiel von 

Chengchun Tang aus Nanjing (China) und von He-Ping Ma aus Atlanta (USA) zusammen mit Xue-Qi Li 

aus Harbin (China) in Podozyten (Wang et al., 2009b; Liu et al., 2013) sowie von Rong Ma aus Fort 

Worth (USA) in Gefäßmuskelzellen (Ding et al., 2011) beschrieben. 

Zudem konnten wir zeigen, dass TRPC6-Kanäle an der Entstehung der Lungenfibrose maßgeblich 

beteiligt sind (Hofmann et al., 2017). Dazu wurde in Mäusen eine experimentelle Lungenfibrose mit 

Bleomycin ausgelöst, einem metallbindenden Glykoprotein, welches durch DNA-Fragmentierung und 

DNA-Synthesehemmung zytotoxisch wirkt und als Chemotherapeutikum vor allem bei Hodentumoren, 

Plattenepithelkarzinomen und Lymphomen eingesetzt wird. Das lungentoxische Bleomycin (Cooper et 

al., 1988), ruft im Tiermodell eine Interleukin-abhängige Entzündungsreaktion, eine erhöhte 

Collagenproduktion und eine Einschränkung des Lungenvolumens hervor, was sich schließlich als 

Krankheitsbild der Lungenfibrose manifestiert (Phan et al., 1981; Phan et al., 1985; Gharaee-Kermani 

und Phan, 1997; Izbicki et al., 2002; Shi et al., 2014; Williamson et al., 2015; Braun et al., 2017). TRPC6-

gendefiziente Mäuse zeigten nach der Behandlung mit Bleomycin signifikant höhere Überlebensraten 

als Wildtyp-Mäuse. Die höheren Überlebensraten der TRPC6-gendefizienten Mäuse waren teilweise 

auf eine geringere Collagenproduktion in der Lunge zurückzuführen. Die überlebenden TRPC6-

gendefizienten Mäuse waren vor einer Lungenfibrose geschützt und zeigten fast normale 

Lungenfunktionen. Bei Wildtyp-Mäusen bewirkte die Bleomycin-Behandlung eine TRPC6-

Hochregulation in Lungenfibroblasten, wodurch Stressfasern vermehrt gebildet und schließlich die 

Kontraktion der Lungenmuskulatur beeinträchtigt wurde. Darüber hinaus waren TRPC6-Kanäle für die 

Differenzierung von Fibroblasten zu Myofibroblasten verantwortlich, einem essentiellen Schritt bei der 

Entstehung der Lungenfibrose. Ähnliche Befunde zur Funktion von TRPC6 als Promotor der 

Myofibroblastendifferenzierung wurden auch von der Forschergruppe von Jeffery D. Molkentin aus 

Cincinnati (USA) berichtet (Davis et al., 2012). In dieser Untersuchung zeigten TRPC6-gendefiziente 

Mäuse eine Beeinträchtigung der dermalen und kardialen Wundheilung. Vermutlich spielt auch der 

TRPV4-Kanal bei der Entstehung der Lungenfibrose eine wichtige Rolle (Rahaman et al., 2014). 

Wahrscheinlich ist TRPC6 in frühen und TRPV4 eher in späteren Stadien an der Pathogenese der 
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Lungenfibrose beteiligt. Die Lungenfibrose, unter der in Deutschland ca. 14.000 Patienten leiden, gilt 

momentan noch als unheilbar und es werden dringend kausal wirkende Medikamente benötigt. 

Möglicherweise könnten TRPC6- und TRPV4-Kanalblocker als innovative, kausal wirkende 

Therapieansätze geeignet sein. 

Zusammengefasst zeigen unsere Befunde, dass TRPC1-Proteine offenbar keine funktionellen 

homoterameren Kanäle bilden, jedoch in heterotetrameren Kanalkomplexen mit anderen TRPC-

Kanaluntereinheiten als Suppressoren der Calciumpermeabilität fungieren. Überdies konnten wir den 

Signalweg der rezeptorgesteuerten TRPC4- und TRPC5-Kanalaktivierung aufklären und zeigen, dass 

alle TRPC-Kanäle DAG-sensitiv sind und dass die Kanalaktivität von TRPC4 und TRPC5 dynamisch 

reguliert wird durch eine C-terminale Interaktion mit NHERF-Adapterproteinen. Außerdem identifizierten 

wir eine pathophysiologische Funktion von TRPC1 in präkapillären pulmonalen glatten Muskelzellen für 

die Entstehung der Hypoxie-induzierten pulmonalen Hypertonie, weshalb TRPC1-Kanalblocker als 

neue Therapieoption in Betracht gezogen werden können. Zudem konnten wir zeigen, dass TRPC6-

Kanäle in präkapillären pulmonalen glatten Muskelzellen die physiologische Funktion der Hypoxie-

induzierten pulmonalen Vasokonstriktion (den sog. Euler-Liljestrand-Mechanismus) vermitteln. Darüber 

hinaus sind TRPC6-Kanäle an zwei pathophysiologischen Vorgängen beteiligt. Zum einen vermitteln 

TRPC6-Kanäle im mikrovaskulären pulmonalen Endothel den ischämischen Lungenreperfusions-

schaden nach Lungentransplantationen und zum anderen beteiligen sie sich in Lungenfibroblasten an 

der Entstehung der Lungenfibrose. Da die Behandlung mit TRPC6-Kanalblockern bei Patienten mit 

progredienter Lungenfibrose die gewünschte und wichtige pulmonalphysiologische Reaktion, den Euler-

Liljestrand-Mechanismus, außer Kraft setzen könnte, ist diese Therapieoption höchstwahrscheinlich 

hinfällig. Jedoch bei den ex vivo Lungentransplantaten, wo der Euler-Liljestrand-Mechanismus nicht 

aktiv ist, stellt ein TRPC6-Kanalblocker eine sprunginnovative Therapieoption als präventive Maßnahme 

gegen den Lungenreperfusionsschaden dar. 
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2.2 Welche Rolle spielen TRPC-Kationenkanäle für die Mechano-

sensorik in Blutgefäßen? 

Blutgefäße haben die Fähigkeit, mechanische Kräfte wahrzunehmen und diese in biologische 

Reaktionen umzuwandeln. Zwei verschiedene mechanische Reize treten in Blutgefäßen auf: der 

Blutdruck und der Blutfluss (zusammengefasst in Hill-Eubanks et al. (2014)). Der Blutdruck führt zur 

Dehnung der Gefäßwand und dadurch zur mechanischen Aktivierung von Gefäßmuskelzellen, wodurch 

es zur glatten Muskelzellkontraktion und schließlich zur Vasokonstriktion kommt. Dieser Mechanismus 

ist als myogener Gefäßtonus oder Bayliss-Effekt - nach seinem Entdecker Sir William Maddock Bayliss 

(Bayliss, 1902) - bekannt und stellt einen Autoregulationsmechanismus von kleinen Arterien und 

Arteriolen dar, bei dem ein steigender Blutdruck eine Vasokonstriktion bewirkt (Davis und Hill, 1999). 

Diese Autoregulation dient der Konstanthaltung der kapillären Durchblutung von Organen und Geweben 

und wird unabhängig vom Endothel durch mechanosensitive glatte Gefäßmuskelzellen in diesen 

sogenannten Widerstandsgefäßen ausgelöst. Ein erhöhter intravasaler Druck bewirkt einen 

Calciumeinstrom, wodurch es zur Kontraktion der glatten Muskelzellen und letztlich zur Vasokonstriktion 

kommt. Neben dem Blutdruck stellt der Blutfluss ebenfalls einen mechanischen Stimulus dar. Der 

Blutfluss übt Scherkräfte auf das Endothel aus und führt dadurch zur Aktivierung von mechanosensitiven 

Endothelzellen. Die mechanische Endothelzellaktivierung bewirkt schließlich eine Vasodilatation, die 

als Fluss-induzierte Vasodilatation bezeichnet wird (Hull et al., 1986; Kuo et al., 1990; Pohl et al., 1991; 

Falcone et al., 1993). Dieser Mechanismus verursacht eine adäquate Durchblutungssteigerung und 

kann bei vorliegender Endothelschädigung z.B. im Rahmen einer Arteriosklerose (Davies et al., 2005) 

gestört sein.  

Obwohl der myogene Gefäßtonus schon vor 115 Jahren beschrieben wurde, waren die 

Mechanosensoren in glatten Muskelzellen auf molekularer Ebene lange Zeit weitgehend unbekannt. 

Daher war ein Ziel dieses Habilitationsprojektes, die Mechanosensoren in Gefäßmuskelzellen zu 

identifizieren. Diverse Proteine, vor allem integrale Membranproteine, wurden als potentielle 

Mechanosensoren diskutiert (zusammengefasst in Storch et al. (2012b)). Unter anderem wurde 

vermutet, dass TRPC-Kanäle Mechanosensoren in der Gefäßmuskulatur darstellen. Da TRPC1 als 

mechanosensitiv galt (Maroto et al., 2005) und in der glatten Gefäßmuskulatur exprimiert ist, wurde die 

Rolle von TRPC1-Proteinen als Mechanosensoren in glatten Muskelzellen und deren Bedeutung für 

den myogenen Gefäßtonus genauer untersucht. Der myogene Gefäßtonus war in Gehirnarterien von 

TRPC1-gendefizienten Mäusen jedoch unverändert (Dietrich et al., 2007). Auch die biophysikalische 

Untersuchung von mechanisch stimulierten isolierten TRPC1-gendefizienten glatten Gefäß-

muskelzellen aus Gehirnarterien ergab keine Unterschiede zu Wildtyp-Zellen (Dietrich et al., 2007). 

Demnach spielen TRPC1-Kanäle offenbar keine entscheidende Rolle für die Mechanosensorik 

oder -transduktion, was inzwischen auch im heterologen Expressionssystem von Philip Gottlieb aus 

Buffalo (USA) im Rahmen eines Kooperationsprojektes mit Kollegen aus Galvesteon (USA), aus 

Valbonne (Frankreich) und aus Brisbane und Perth (Australien) bestätigt wurde (Gottlieb et al., 2008). 

Auch die als mechanosensitiv beschrieben TRPC5-Kanäle (Gomis et al., 2008; Jemal et al., 2014; Shen 

et al., 2015; Lau et al., 2016) waren nicht mechanosensitiv bei heterologer Überexpression. Erst die 

Koexpression von G-Protein-gekoppelten Rezeptoren führte zu mechanisch induzierbaren Strömen 

(diese Daten sind nicht publiziert), woraus wir schlussfolgerten, dass TRPC5-Kanäle nicht intrinsisch 

mechanosensitiv sind. Das nächste Ziel war die Untersuchung der von mehreren Forschergruppen aus 
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Burlington (USA), aus Baltimore (USA), aus Freiburg (Deutschland) und aus Fukuoka (Japan) 

postulierten intrinsischen Mechanosensitivität von TRPC6-Kanälen (Welsh et al., 2002; Spassova et al., 

2006; Huber et al., 2007; Inoue et al., 2009a). Dazu wurden von uns zunächst elektrophysiologische 

Untersuchungen im heterologen Überexpressionssystem durchgeführt. TRPC6-überexprimierende 

Zellen waren nicht mechanosensitiv, weder nach mechanischer Stimulation durch hypoosmolare 

Zellschwellung noch nach Applikation von Überdruck, Sog oder Zugkraft über die Patchpipette 

(Mederos y Schnitzler et al., 2008). Die fehlende intrinsische Mechanosensitivität von TRPC6 wurde 

inzwischen ebenso wie die fehlende intrinsische Mechanosensitivität von TRPC1 in einer 

gemeinschaftlichen Forschungsarbeit bestätigt (Gottlieb et al., 2008). Zur Untersuchung der Bedeutung 

von TRPC6-Kanälen für den myogenen Gefäßtonus wurden zudem TRPC6-gendefiziente Mäuse 

herangezogen. Diese Mäuse wiesen einen erhöhten Blutdruck sowie einen erhöhten Tonus der glatten 

Gefäßmuskulatur auf, was sich in einer verstärkten Konstriktion von Aortenringen und in einem bereits 

bei niedrigeren intravasalen Drücken einsetzenden myogenen Gefäßtonus zeigte und auf eine 

kompensatorische Hochregulation von TRPC3-Kanälen in den untersuchten Zerebralarterien 

zurückzuführen war (Dietrich et al., 2005). 

Überraschenderweise führte erst die Koexpression von Gq/11-Protein-gekoppelten Rezeptoren zu 

mechanisch induzierbaren TRPC6-Stromantworten (Mederos y Schnitzler et al., 2008), was darauf 

hindeutet, dass Gq/11-Protein-gekoppelte Rezeptoren mechanosensitiv sind. Diverse Gq/11-Protein-

gekoppelte Rezeptoren wie der Histamin H1-, der muskarinische M5-, der Angiotensin II AT1-, der 

Endothelin ETA- und der Vasopressin V1A-Rezeptor wurden von uns als intrinsisch mechanosensitiv 

identifiziert (Mederos y Schnitzler et al., 2008). Außerdem zeigte sich, dass die mechanisch induzierte 

Rezeptoraktivierung Agonisten-unabhängig ist. Mechanosensitive Rezeptoren sind zudem von 

wichtiger physiologischer Bedeutung in der glatten Gefäßmuskulatur. Wir konnten zeigen, dass 

insbesondere der in der glatten Gefäßmuskulatur stark exprimierte mechanosensitive AT1-Rezeptor den 

myogenen Gefäßtonus von Gehirnarterien aus Ratten (Mederos y Schnitzler et al., 2008) und von 

Nierenarterien (Mederos y Schnitzler et al., 2008) und Mesenterialarterien aus Mäusen (Blodow et al., 

2014) vermittelt. Zusammengefasst sind mechanosensitive Rezeptoren und nicht TRPC6-Kanäle die 

Mechanosensoren in der glatten Gefäßmuskulatur. TRPC6-Kanäle stellen hier vermutlich 

Mechanotransduktoren dar, die nach mechanischer Rezeptoraktivierung über eine Signalkaskade 

aktiviert werden und daher als indirekt mechanosensitiv klassifiziert werden können. Zum Modell der 

Rolle von AT1-Rezeptoren und TRPC6-Kanälen für den myogenen Tonus siehe Abbildung 1 in Mederos 

y Schnitzler et al. (2011).  

Da Nager im Gegensatz zum Menschen zwei Isoformen des AT1-Rezeptors besitzen, nämlich AT1A und 

AT1B, war das nächste Ziel unserer Forschungsarbeit, die Bedeutung beider Rezeptorisoformen für den 

myogenen Tonus mittels gendefizienter Mausmodelle genauer zu untersuchen. Der myogene Tonus 

war nur in AT1B- jedoch nicht in AT1A-Rezeptor-gendefizienten Mesenterialarterien bei physiologischen 

intravasalen Drücken reduziert (Blodow et al., 2014), was zeigt, dass der AT1B-Rezeptor für den 

myogenen Gefäßtonus entscheidend ist. Die besondere Bedeutung der AT1B-Rezeptoren für den 

myogenen Tonus wird dadurch unterstützt, dass AT1B-Rezeptoren in kleinen Widerstandsgefäßen 

wesentlich stärker exprimiert sind als AT1A-Rezeptoren (Blodow et al., 2014). Außerdem war der 

myogene Gefäßtonus bei Angiotensinogen-gendefizienten Mäusen, die kein Angiotensin II bilden 

können, und bei Wildtyp-Mäusen nach Inkubation der Gefäßabschnitte mit dem ACE-Hemmer 

Captopril, der ebenfalls die Angiotensin II-Bildung unterdrückt, unverändert (Blodow et al., 2014). Somit 

ist der myogene Tonus tatsächlich unabhängig vom endogenen Agonisten Angiotensin II. Entgegen 

unserer Erwartungen zeigten jedoch AT1A/1B-doppelt-gendefiziente Mäuse einen erhöhten myogenen 

Tonus bei niedrigen intravasalen Drücken bis 70 mmHg und erst bei hohen intravasalen Drücken war 
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der myogener Tonus reduziert (Storch et al., 2015). Der erhöhte myogene Tonus war auf eine 

kompensatorische Hochregulation des Gq/11-Protein-gekoppelten Cysteinyl-Leukotrien 1 (CysLT1) 

Rezeptors zurückzuführen. Eine CysLT1-Rezeptorblockade mit zwei verschiedenen selektiven 

Antagonisten verringerte den myogenen Tonus sowohl bei AT1A/1B-doppelt-gendefizienten als auch bei 

Wildtyp-Arterien (Storch et al., 2015). Zudem zeigte sich, dass AT1B- und CysLT1-Rezeptoren 

gemeinsam für ca. 63% des myogenen Tonus verantwortlich sind. Das entspricht in etwa dem Anteil 

des gesamten Gq/11-Protein-vermittelten Signalwegs am myogenen Tonus (Storch et al., 2015). 

Demnach vermitteln AT1B- und CysLT1-Rezeptoren über den Gq/11-Signalweg ca. 63% des myogenen 

Tonus. Für die restlichen 37% des myogenen Tonus müssen demnach andere mechanisch induzierte 

Signalwege eine Rolle spielen. Eine schematische Darstellung dieser Befunde befindet sich in 

Abbildung 1 in Mederos y Schnitzler et al. (2016) und eine Übersicht zu anderen potentiellen 

Mechanosensoren ist in Abbildung 1 in Storch et al. (2012b) schematisch dargestellt. 

Inzwischen wurde die intrinsische Mechanosensitivität des AT1-Rezeptors von uns und von drei 

weiteren unabhängigen Forschergruppen, Issei Komuro aus Chiba (Japan), von Howard A. Rockman 

aus Durham (USA) und von Scott Early aus Reno (USA), beschrieben, und zwar im heterologen 

Überexpressionssystem (Zou et al., 2004; Mederos y Schnitzler et al., 2008; Yasuda et al., 2008; 

Rakesh et al., 2010), im Herzen, wo sie eine mechanisch-induzierte Herzhypertrophie auslösen (Zou et 

al., 2004; Rakesh et al., 2010) und in der glatten Gefäßmuskulatur, wo sie am myogenen Gefäßtonus 

beteiligt sind (Mederos y Schnitzler et al., 2008; Blodow et al., 2014; Pires et al., 2017). Die 

Forschergruppe von Scott Early bestätigte kürzlich sogar die Rolle der AT1B-Rezeptorisoform für den 

myogenen Gefäßtonus (Pires et al., 2017). Auch der H1-Rezeptor wurde inzwischen von einer 

Forschergruppe aus den Niederlanden als mechanosensitiver Rezeptor verifiziert (Adjobo-Hermans et 

al., 2011). Darüber hinaus wurde ein weiterer Gq/11-Protein-gekoppelter Rezeptor als mechanosensitiv 

charakterisiert und zwar der Bradykinin B2-Rezeptor, der vermutlich einen Sensor für Scherkräfte in 

Endothelzellen darstellt (Chachisvilis et al., 2006). Auch die Gs-gekoppelten Dopamin D5-Rezeptoren 

wurden als Sensoren für Scherkräfte in embryonalen Endothelzellen identifiziert (Abdul-Majeed und 

Nauli, 2011). Außerdem konnten die Gq/11- und Gs-gekoppelten Parathormon (PTH1)-Rezeptoren in 

Knochenzellen als Sensoren für Scherkräfte charakterisiert werden (Zhang et al., 2009). Auch drei Gi/o-

Protein-gekoppelte Rezeptoren wurden als mechanosensitiv gegenüber Scherkräften beschrieben, 

nämlich der Formylpeptid FPR1-Rezeptor in Neutrophilen, der die Ausstülpung von Pseudopodien 

verringert (Makino et al., 2006), der endotheliale Apelinrezeptor, der die Scherkraft-induzierte 

Polarisierung von Endothelzellen vermittelt (Kwon et al., 2016; Zhao et al., 2016) und der endotheliale 

Sphingosin-1-Phosphate S1P1-Rezeptor, der für das Scherkraft-induzierte Auswachsen von Gefäßen 

während der Angiogenese entscheidend ist (Jung et al., 2012a). 

Überdies wurden kürzlich sogenannte Adhäsions-G-Protein-gekoppelte Rezeptoren als Mechano-

sensoren beschrieben. Vermutlich sind die Adhäsions-G-Protein-gekoppelten Rezeptoren sowohl für 

die Propriozeption in der Fruchtfliege Drosophila melanogaster (Scholz et al., 2015) als auch für die 

mechanisch induzierte Skelettmuskelhypertrophie (White et al., 2014) sowie für die mechanisch 

induzierte Myelinisierung (Petersen et al., 2015) entscheidend. Adhäsions-G-Protein-gekoppelte 

Rezeptoren besitzen eine auffällig lange extrazelluläre und eine Autoproteolyse-induzierende Domäne, 

die ein N-terminales Fragment vom Rezeptor abspalten kann. Der lange N-Terminus ist in der 

extrazellulären Matrix verankert und es wird vermutet, dass dieser für die Wahrnehmung mechanischer 

Kräfte verantwortlich sein könnte. Zusätzlich gibt es wahrscheinlich C-terminale Verankerungen von 

Adhäsions-G-Protein-gekoppelten Rezeptoren mit dem Zytoskelett (zusammengefasst in Scholz et al. 

(2016)), weshalb diese Rezeptoren naheliegende Kandidatenproteine für das Verankerungsmodell 

darstellen könnten. Die wachsende Zahl an Forschungsergebnissen zu mechanosensitiven G-Protein-
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gekoppelten Rezeptoren zeigt, dass dieser Aktivierungsmechanismus in diversen Zellen und Geweben 

von Bedeutung ist. Es bleibt spannend, ob zukünftige Untersuchungen weitere physiologische oder 

pathophysiologische Funktionen von mechanosensitiven G-Protein-gekoppelten Rezeptoren aufdecken 

können. 

In einem weiteren Forschungsprojekt beschäftigten wir uns mit der Bestimmung von Gi/o- und Gs-

Protein-vermittelten intrazellulären cAMP-Spiegelveränderungen mit Hilfe von FRET-basierten cAMP-

Sensoren, die in Zukunft als Werkzeuge zur Charakterisierung der Mechanosensitivität von Gi/o- und Gs-

gekoppelten Rezeptoren dienen sollen. Die biochemische Standardmethode zur cAMP-Spiegel-

bestimmung ist ein radioaktives Vielzellassay, das zwar gut etabliert, höchst sensitiv und reproduzierbar 

ist (Salomon, 1991), jedoch keine Bestimmung von lokalen cAMP-Spiegelveränderungen mit hoher 

zeitlicher Auflösung in einzelnen Zellen ermöglicht. Zur dynamischen Messung des cAMP-Spiegels in 

Einzelzellen eigenen sich auf FRET basierende cAMP-Sensoren besser als radioaktive Vielzellassays. 

Die bereits etablierten FRET-Sensoren wurden allerdings bisher nur für die Bestimmung von Gs-Protein-

vermittelten cAMP-Spiegelzunahmen eingesetzt (DiPilato et al., 2004; Nikolaev et al., 2004; Ponsioen 

et al., 2004; Klarenbeek et al., 2011; Klarenbeek et al., 2015), jedoch nicht für Gi/o-Protein vermittelte 

cAMP-Spiegelabnahmen, die deutlich schwerer zu bestimmen sind, da sie wesentlich geringer sind als 

die Gs-Protein vermittelten cAMP-Spiegelzunahmen. Unter Einsatz verschiedener cAMP-Sensoren und 

durch Optimierung der Versuchsbedingungen konnten wir zeigen, dass FRET-basierte cAMP-Sensoren 

tatsächlich zur Messung von cAMP-Spiegelabnahmen nach Gi/o-Stimulation geeignet sind (Storch et al., 

2017b). Hierbei war noch nicht einmal eine künstliche Erhöhung des basalen intrazellulären cAMP-

Spiegels durch Vorbehandlung der Zellen mit dem Adenylylcyclaseaktivator Forskolin oder mit dem 

nicht-selektiven Phosphodiesteraseinhibitor 3-Isobutyl-1-methylxanthin (IBMX) erforderlich. Sowohl 

Forskolin als auch IBMX beeinflussen zahlreiche weitere Proteinfunktionen und Signalwege in der Zelle, 

die wiederum die Rezeptorfunktion beeinflussen können, weshalb die Vermeidung dieser beiden 

Substanzen einen großen Vorteil darstellt. Somit konnten wir eine valide und reliabele Messmethode 

ausarbeiten, um mit Hilfe von FRET-basierten cAMP-Sensoren Gi/o-Protein-vermittelte Abnahmen der 

intrazellulären cAMP-Konzentration mit hoher Sensitivität und sowohl mit zeitlicher als auch mit 

räumlicher Auflösung zu detektieren. 

Zusammengefasst konnten wir zeigen, dass TRPC-Kanäle in der glatten Gefäßmuskulatur nicht als 

Mechanosensoren sondern als Mechanotransduktoren fungieren. Im vaskulären System wurden 

glattmuskuläre Gq/11-Protein-gekoppelte AT1B- und CysLT1-Rezeptoren als direkte Mechanosensoren 

identifiziert, die in Abhängigkeit vom Gq/11-Protein-Signalweg für ca. 63% des myogenen Tonus 

verantwortlich sind. Demnach müssen andere, mechanisch induzierte Signalwege für die übrigen ca. 

37% des myogenen Tonus verantwortlich sein. Zur Bedeutung von mechanosensitiven G-Protein-

gekoppelten Rezeptoren im Endothel gibt es bereits erste Befunde verschiedener Forschergruppen. 

Allerdings steht die Untersuchung der Bedeutung von endothelialen mechanosensitiven Rezeptoren für 

die Fluss-induzierte Vasodilatation noch aus. 
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2.3 Welche Bedeutung haben TRPC-Kationenkanäle für die 

Mechanosensorik in Podozyten? 

Der TRPC6-Kanal wurde wie bereits oben beschrieben (siehe Seite 6 und 11) als Mechanosensor in 

Podozyten diskutiert, da zum einen Mutationen im TRPC6-Gen mit Podozytenschädigungen und dem 

Krankheitsbild der FSGS assoziiert sind (Reiser et al., 2005; Winn et al., 2005; Heeringa et al., 2009; 

Santin et al., 2009; Zhu et al., 2009; Gigante et al., 2011; Chiluiza et al., 2013; Hofstra et al., 2013; 

Zhang et al., 2013; Riehle et al., 2016), und da zum anderen vermutet wird, dass TRPC6-Kanäle in 

Podozyten einen mechanosensitiven Ionenkanalkomplex mit Podocin bilden (Huber et al., 2007), der 

an der Entstehung einer Podozytenschädigung durch chronische Überdruckbelastung beteiligt sein 

könnte. Die Rekonstitution dieses Kanalkomplexes aus TRPC6 und den Schlitzmembranproteinen 

Podocin, Nephrin und CD2AP im heterologen Überexpressionssystem führte jedoch nicht zur 

Mechanosensitivität, so dass diese TRPC6-Kanalkomplexe zumindest im heterologen 

Expressionsmodell nicht mechanosensitiv sind (Forst et al., 2016). Wir konnten jedoch zeigen, dass 

primäre Kurzzeit-kultivierte und immortalisierte Podozyten mechanosensitiv sind und dass mechanische 

Stimulation Kanalströme mit einer charakteristischen, einwärtsgerichteten Stromspannungsbeziehung 

in Podozyten hervorrufen kann. Um herauszufinden, ob endogene TRPC6-Kanalkomplexe in Podozyten 

mechanosensitiv sind, wurden zunächst TRPC6-gendefiziente Mäuse untersucht. Es waren keine 

Unterschiede zwischen mechanisch induzierten Kationenströmen von Wildtyp- und TRPC6-

gendefizienten Podozyten zu beobachten. Sogar TRPC1/3/6-dreifach-gendefiziente Podozyten zeigten 

gleich große mechanisch induzierte Stromantworten wie Wildtyp-Podozyten und zwar sowohl in 

Anwesenheit als auch in Abwesenheit des unselektiven TRPC-Kanalblockers SKF-96365 (Forst et al., 

2016). Diese Ergebnisse demonstrieren, dass TRPC-Kanäle offenbar keine Rolle für die 

Mechanosensorik oder –transduktion in Podozyten spielen. 

Da auch Mutationen im PLCε-Gen (Hinkes et al., 2006) mit dem Krankheitsbild der FSGS assoziiert 

sind und TRPC6-Kanäle PLC-abhängig aktiviert werden, haben wir darüber hinaus die Bedeutung von 

PLCε für die TRPC6-Aktivierung in Podozyten genauer untersucht. TRPC6 und PLCε waren sowohl im 

heterologen Überexpressionssystem als auch in Podozyten kolokalisiert und bildeten Proteinkomplexe. 

In beiden Zellsystemen führten Agonisten-induzierte Rezeptoraktivierungen und G-Protein-

Aktivierungen durch das nicht-hydrolysierbare Guanosintriphosphat (GTP)-Analogon GTPβS über die 

Patch-Pipette zur Zunahme von TRPC6-Strömen (Kalwa et al., 2015). Die Herunterregulationen sowohl 

von PLCε als auch von der am häufigsten exprimierten PLC-Variante PLCβ1 verursachten jeweils 

Stromreduktionen um etwa 50%. Dieser Befund deutet darauf hin, dass beide PLC-Varianten 

gleichermaßen an der TRPC6-Kanalaktivierung beteiligt sind und dass beide Signalwege additiv wirken. 

Eine TRPC6-Patientenmutante, die mit dem Auftreten von FSGS assoziiert ist, war ebenfalls PLCε- und 

PLCβ1-abhängig aktivierbar. Insgesamt sind PLCε und PLCβ1 beide zu gleichen Teilen an der 

rezeptorgesteuerten TRPC6-Kanalaktivierung beteiligt (Kalwa et al., 2015). Somit konnte keine 

einzigartige Funktion von PLCε in Podozyten identifiziert werden, die den Pathomechanismus der durch 

eine PLCε-Mutation ausgelösten FSGS erklären könnte, so dass hier in Zukunft weitere 

Untersuchungen zur Aufklärung dieses Pathomechanismus notwendig sind. 

Unsere Daten zur fehlenden Mechanosensitivität von podozytären TRPC6-Kanälen stehen im 

Gegensatz zu den Befunden aus der Forschergruppe von Stuart Dryer aus Houston (USA) (Anderson 

et al., 2013). Die in dieser Arbeit dargestellten mechanisch induzierten Ströme in Podozyten wurden als 
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TRPC6-Ströme bezeichnet. Sie weisen jedoch eine starke Auswärtsrektifizierung im Gegensatz zu den 

von uns beobachteten mechanisch induzierten Strömen auf. Ähnliche auswärtsrektifizierende Ströme 

konnten wir nur in nicht mit Chloridkanalblockern vorbehandelten Podozyten beobachten. Vermutlich 

führen mechanische Stimulationen zur Aktivierung von endogenen Volumen-regulierten Chloridkanälen 

(volume regulated anion channels [VRACs]) in Podozyten (Pedersen et al., 2016). Da diese VRAC-

Ströme in unseren Händen die unselektiven Kationenströme in Podozyten überlagerten, wurden alle 

Messungen in Anwesenheit von Chloridkanalblockern durchgeführt. Folglich ist nicht auszuschließen, 

dass die konträren Befunde der Forschergruppe von Stuart Dryer sich dadurch erklären lassen, dass in 

deren Untersuchungen hauptsächlich Chlorid- und nicht Kationenströme gemessen wurden.  

Ebenso wie TRPC6-Kanäle konnten wir Gq/11-Protein-gekoppelte Rezeptoren als Mechanosensoren in 

Podozyten ausschließen. Eine Blockade des gesamten Gq/11-Signalwegs hatte keinen Einfluss auf die 

beobachteten mechanisch induzierten Stromanstiege und Calciumeinströme (Forst et al., 2016). 

Demnach scheint der Gq/11-Protein/TRPC-Signalweg keine Bedeutung für die Mechanosensorik 

oder -transduktion in Podozyten zu haben. Stattdessen fanden wir heraus, dass unselektive, trimerisch 

aufgebaute, Adenosintriphosphat (ATP)-gesteuerte (P2)-Kationenkanäle aus der X-Unterfamilie (P2X-

Kanäle) stark in Podozyten exprimiert sind und sowohl durch Agonistenstimulation mit ATP als auch 

durch mechanische Stimulation aktiviert werden. Beide Stimuli führten zu charakteristischen 

einwärtsrektifizierenden Stromspannungsverläufen. Durch den Einsatz verschiedener selektiver und 

unselektiver P2X-Kanalblocker konnten schließlich P2X4-Kanäle als mechanisch aktivierbar identifiziert 

werden (Forst et al., 2016). Dieser Befund wurde mit Hilfe von isolierten Podozyten aus einer P2X4-

gendefizienten Mauslinie bestätigt. P2X4-Kanäle waren jedoch nicht intrinsisch mechanosensitiv, weder 

im heterologen Expressionssystem noch in Podozyten, sondern sie wurden durch extrazelluläres ATP 

aktiviert, das durch mechanische Stimulation freigesetzt wurde (Forst et al., 2016). Somit stellen P2X4-

Kanäle in Podozyten offenbar keine Mechanosensoren, sondern Mechanotransduktoren dar.  

Auch diese Ergebnisse decken sich nicht mit den Ergebnissen einer weiteren Arbeit aus der 

Forschergruppe von Stuart Dryer (Roshanravan und Dryer, 2014). In dieser Publikation wurde Suramin 

in einer Konzentration von 50 µM eingesetzt, die ausreichend ist, um P2X1-, P2X2-, P2X2-, P2X5- und 

P2X6-Kanäle sowie P2Y-Rezeptoren zu blockieren. Suramin verursachte ebenso wie ein PLC-Inhibitor 

eine Stromreduktion, woraus eine Beteiligung von P2Y-Rezeptoren abgeleitet wurde. Die 

Forschergruppe kam zu dem Schluss, dass eine Freisetzung von ATP zur Aktivierung von P2Y-

Rezeptoren führt, wodurch wiederum TRPC6-Kanäle aktiviert werden. In unseren Händen hingegen 

hatte Suramin in einer Konzentration von 50 µM keinerlei Einfluss auf die Stromhöhe. Daraus 

schlussfolgerten wir, dass die mechanisch induzierten Ströme in Podozyten unabhängig sind sowohl 

von P2Y-Rezeptoren, als auch von P2X1-, P2X2-, P2X2-, P2X5- und P2X6-Kanälen. Zudem konnten wir mit 

Hilfe eines potenten und selektiven Gq/11-Protein-Inhibitors zeigen, dass der Gq/11-Protein-Signalweg 

nicht an der Mechanosensorik oder -transduktion in Podozyten beteiligt ist (Forst et al., 2016). Diese 

Befunde und der Einsatz des selektiven P2X4-Kanalblockers 5-(3-Bromophenyl)-1,3-dihydro-2H-

benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD), der in unseren Händen die mechanisch induzierten 

Ströme unterdrückte, führte schließlich zur Identifizierung von P2X4-Kanälen als Mechanotransduktoren 

in Podozyten. Auffällig sind auch in dieser Forschungsarbeit die dargestellten auswärtsrektifizierenden 

Stromspannungsbeziehungen. Während bei Roshanravan und Dryer (2014) ATP-induzierte 

auswärtsrektifizierende Ströme zu sehen sind, die als TRPC6-Ströme aufgefasst wurden, konnten wir 

bei unseren Experimenten nur einwärtsrektifizierende Ströme beobachten. Vermutlich sind diese 

gegensätzlichen Befunde wiederum durch den fehlenden Einsatz von Chloridkanalblockern in der 

Forschungsarbeit von Roshanravan und Dryer (2014) zu erklären. Auch hier liegt die Vermutung nahe, 

dass Chlorid- statt Kationenströme gemessen wurden.  
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Zusätzlich wurde von uns die Rolle von Cholesterol für die Mechanosensitivität von Podozyten 

untersucht. Cholesterol ist ein wichtiger, die Fluidität der Zellmembran bestimmender Zellmembran-

bestandteil, der für die Exozytose entscheidend ist (Lang, 2007). Außerdem wird ein Zusammenhang 

zwischen Cholesterolgehalt und Podozytenschädigung vermutet (Fornoni et al., 2014). Die Depletion 

von Cholesterol in Podozyten verringerte die Mechanosensitivität, während die ATP-induzierten P2X4-

Kationenströme unbeeinflusst blieben (Forst et al., 2016). Daher erhöht Cholesterol offenbar die 

Mechanosensitivität von Podozyten. 

Auch die Rolle des Schlitzmembranproteins Podocin wurde von uns genauer analysiert, da Mutationen 

im Podocin-Gen FSGS ebenfalls mit FSGS assoziiert sind (Tsukaguchi et al., 2002; Monteiro et al., 

2006; Tonna et al., 2008). Die podozytenspezifische Herunterregulation der Genexpression von 

Podocin führte zum Verlust der mechanisch induzierten Stromantworten in Podozyten (Forst et al., 

2016). Daher spielt Podocin offenbar eine wichtige Rolle für die Mechanosensorik oder -transduktion in 

Podozyten, was in zukünftigen Untersuchungen genauer analysiert werden sollte. Auch dieses Ergebnis 

steht im Gegensatz zu Befunden aus der Forschergruppe von Stuart Dryer (Anderson et al., 2013). 

Seine Forschergruppe führte die Herunterregulation der Podocinexpression mittels siRNA zu erhöhten, 

mechanisch induzierten Stromantworten. Diese Unterschiede könnten außer an den nicht unterdrückten 

endogenen VRAC-Strömen auch durch unspezifische Nebeneffekte der verwendeten siRNA auf die 

Expression anderer Proteine erklärt werden. Überdies stehen diese Ergebnisse in auffälligem 

Gegensatz zu den Ergebnissen, dass TRPC6-Kanäle erst im Komplex mit Podocin mechanosensitiv 

werden (Huber et al., 2007), so dass die Herunterregulation von Podocin die Mechanosensitivität 

verringern statt erhöhen sollte. Dieser eklatante Widerspruch wurde in der Arbeit von Anderson et al. 

(2013) jedoch nicht diskutiert. Alles in allem sind die Ergebnisse der beiden Forschungsarbeiten aus 

der Forschergruppe von Stuart Dryer zur Rolle von TRPC6 in Podozyten (Anderson et al., 2013; 

Roshanravan und Dryer, 2014) aufgrund von messmethodischen Mängeln und von Fehlinterpretationen 

hinsichtlich der beobachteten Ströme in Podozyten sehr fraglich.  

Darüber hinaus wurde von uns die Auswirkung von mechanischer Belastung auf das Aktinzytoskelett 

von Podozyten untersucht, da bei diesen hochdifferenzierten Zellen das Aktinzytoskelett eng reguliert 

ist und eine Desorganisation des Zytoskeletts eine beginnende Podozytenschädigung kennzeichnet 

(siehe auch Seite 10) (Endlich und Endlich, 2006; Faul et al., 2007; Mathieson, 2010; Endlich und 

Endlich, 2012; Endlich et al., 2017). Dazu wurden primäre Podozyten auf Silikonmembranen kultiviert 

und einer zweistündigen, zyklischen und radialen Membrandehnung ausgesetzt. Diese mechanische 

Belastung führte zu Umstrukturierungen des Aktinzytoskeletts, die durch Applikation des selektiven 

P2X4-Kanalblockers 5-BDBD signifikant reduziert werden konnten (Forst et al., 2016).  

Zusammengefasst konnten wir zeigen, dass die Mechanosensorik und -transduktion in Podozyten 

unabhängig ist von TRPC-Kanälen und G-Protein-gekoppelten Rezeptoren. Stattdessen führt 

Membrandehnung über eine Vesikelverschmelzung zu einer ATP-Freisetzung und zur nachfolgenden 

Aktivierung von mechanotransduktorischen unselektiven P2X4-Kanälen. Der Calciumeinstrom durch 

diese Kanäle verursacht eine Umstrukturierung des Aktinzytoskeletts und führt letztlich zu einer 

Podozytenschädigung, die durch den P2X4-Kanalblocker 5-BDBD zumindest teilweise verhindert 

werden kann. Ein Modell für die Mechanotransduktion in Podozyten und für die Rolle von P2X4-Kanälen 

ist in der Publikation Forst et al. (2016) in der Abbildung 6J dargestellt. Möglicherweise können in 

Zukunft P2X4-Kanalblocker zur Behandlung von mechanisch induzierten Podozytenschädigungen z.B. 

durch glomeruläre Hypertension (Pullen und Fornoni, 2016; Endlich et al., 2017) therapeutisch 

eingesetzt werden. P2X4-Kanalblocker werden derzeit bereits als Zielstrukturen für Analgetika diskutiert 

(zusammengefasst in Stokes et al. (2017)), da P2X4-Kanäle stark in Neuronen und Gliazellen exprimiert 
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sind und sowohl neuropathische Schmerzen (Coull et al., 2005; Ulmann et al., 2008; Tsuda et al., 2009) 

als auch die Neuroinflammation (Ulmann et al., 2010) verstärken. 

Eine mechanotransduktorische Rolle von P2X4-Kanälen wurde bereits in Endothelzellen beschrieben 

(Yamamoto et al., 2000; Yamamoto et al., 2006). Bei diesen Zellen führten Scherkräfte zur Freisetzung 

von ATP (Yamamoto et al., 2000). Auch im heterologen Expressionssystem in Oozyten wurden P2X4-

Kanäle als Mechanotransduktoren charakterisiert (Yamamoto et al., 2000; Kessler et al., 2011). Die 

Untersuchung P2X4-gendefizienter Mäusen zeigte zudem eine verringerte Blutfluss-induzierte 

Vasodilatation und einen erhöhten Blutdruck (Yamamoto et al., 2006), der sich vermutlich auf die 

geringere Fluss-induzierte Vasodilatation in diesen Tieren zurückführen ließ. Trotz des chronisch 

erhöhten Blutdrucks wurde bisher bei P2X4-gendefizienten Mäusen keine Nierenschädigung 

beschrieben. Möglicherweise wirkt das Fehlen von P2X4-Kanälen im kompletten Mausorganismus 

protektiv auf die Podozytenfunktion. Diese protektive Wirkung muss im Detail noch untersucht werden. 

Kürzlich konnte bei der ersten Maus mit endothelspezifischer und induzierbarer Herunterregulation von 

P2X4-Kanälen eine stärkere ischämische Nervenschädigung im Vergleich zu Wildtyp-Mäusen 

beobachtet werden (Ozaki et al., 2016). Im Endothel von Gehirnarterien wirken P2X4-Kanäle daher 

vermutlich neuroprotektiv und schützen vor einer ischämischen Nervenschädigungen z.B. nach einem 

Schlaganfall (Ozaki et al., 2016). Mit Hilfe von podozytenspezifischen, induzierbaren P2X4-

gendefizienten Mäusen könnte die Funktion von P2X4-Kanälen in Podozyten in Zukunft genauer 

untersucht werden.  

Zusammengefasst sind in Podozyten weder TRPC6-Kanäle noch Gq/11-Protein-gekoppelte Rezeptoren 

für die Mechanosensorik oder -transduktion von Bedeutung. Stattdessen stellen purinerge P2X4-

Kationenkanäle Mechanotransduktoren in Podozyten dar und werden durch extrazelluläres ATP 

aktiviert, das durch mechanische Stimulation freigesetzt wird. Die Mechanosensoren in Podozyten 

wurden bisher noch nicht identifiziert. Mechanische Belastung bewirkt über P2X4-Kanalaktivierung eine 

Umstrukturierung des Aktinzytoskeletts, die durch P2X4-Kanalblocker zumindest teilweise verhindert 

werden kann. Somit könnten P2X4-Kanalblocker innovative Therapieoptionen zur Behandlung von 

mechanisch induzierten Podozytenschäden bei hypertensiver Nephropathie darstellen. 



Ausblick 26 

3 Ausblick 

Die gewonnenen Erkenntnisse aus diesem Habilitationsprojekt erweitern das Wissen über die 

physiologische und pathophysiologische Bedeutung von Rezeptoren und Kationenkanälen aus der 

TRPC- und P2X-Kationenkanalfamilie. Einige mechanistische und weitere medizinisch relevante 

Aspekte sollten in zukünftigen Forschungsprojekten genauer untersucht werden. Insbesondere sollte in 

Zukunft auf einen systembiologischen Ansatz Wert gelegt werden, der Quantifizierungen von 

Aktivierungs- und Inaktivierungskinetiken von Kanälen und genaue zeitliche und räumliche Analysen zu 

deren Signaltransduktionskaskaden in den Vordergrund stellt.  

Es wäre lohnenswert, weitere mechanistische Aspekte der Aktivierung von TRPC-Kanälen genauer zu 

analysieren. Zum einen sollten die von uns beobachteten Konformationsänderungen bei TRPC-Kanälen 

weiter detailliert analysiert werden. Neben Einzelkanaluntersuchungen könnte die Methode des 

intramolekularen dynamischen FRET eingesetzt werden. Diese Untersuchungen könnten Aufschluss 

geben über die verschiedenen aktiven und inaktiven Kanalkonformationen, die bisher aufgrund der 

fehlenden Kristallstrukturanalysen von TRPC-Kanälen nicht bekannt sind. Mit Hilfe von Licht-

schaltbaren DAG-Derivaten lassen sich zudem von Einwasch- und Auswascheffekten unbeeinflusste, 

exakte Aktivierungs- und Inaktivierungskinetiken bestimmen, die das Schaltverhalten der TRPC-Kanäle 

genau beschreiben, was sonst nur über aufwendige Einzelkanalanalysen möglich wäre. Zum anderen 

sollte die DAG-Bindestelle durch gezielte Aminosäureaustausche aufgefunden werden. Hierbei werden 

die Kanalkonstrukte für den intramolekularen dynamischen FRET hilfreich sein. 

Die Mechanosensorik von G-Protein-gekoppelten Rezeptoren sollte unbedingt auf der molekularen 

Ebene weiter untersucht werden. Hierbei sollte eine systematische Untersuchung durchgeführt werden 

mit dem Ziel, einzelne Aminosäuren oder Aminosäurenbereiche zu identifizieren, die für die 

mechanosensorische Funktion verantwortlich sind. Hierzu könnte die Methode des intramolekularen 

dynamischen FRET helfen, Änderungen von Rezeptorkonformationen zu detektieren. Des Weiteren 

sollte der Einfluss der Zellmembran mit ihrer Zusammensetzung und ihren chemo-physikalischen 

Eigenschaften, sowie der Einfluss des Zytoskeletts auf die molekularen mechanoperzeptorischen 

Eigenschaften von G-Protein-gekoppelten Rezeptoren bestimmt werden. Diese Untersuchungen 

könnten Aufschluss geben, ob bei Rezeptoren das Membran- oder das Verankerungsmodell gültig ist. 

Zudem sollte die Rolle von mechanosensitiven G-Protein-gekoppelten Rezeptoren in verschiedenen 

Geweben und Organen systematischer und detaillierter erforscht werden. 

Die Mechanosensitivität von Podozyten in Bezug auf molekulare und pathophysiologische Aspekte ist 

weitgehend unverstanden und eine umfassende Erforschung dieser Aspekte ist von wichtiger 

medizinischer Relevanz, um in Zukunft bei chronischer mechanischer Überlastung der Niere eine 

kausale protektive Therapie zu etablieren. Zum einen stellt sich auf der molekularen Ebene die Frage 

nach der Identität des Mechanosensors. Möglicherweise beteiligt sich Podocin an einem 

mechanosensorischen Proteinkomplex. Zum anderen sollte die pathophysiologische Rolle von P2X4-

Kanälen und der protektive Effekt von P2X4-Kanalblockern auf Podozyten im Tiermodell sowohl bei 

Wildtyp- als auch bei podozytenspezifischen P2X4-gendefizienten Mäusen genauer untersucht werden. 
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