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IV. Summary 
 
Arbuscular mycorrhiza (AM) is an ancient symbiosis, established between 

80% of land plants and obligate biotrophic fungi belonging to the class 
glomeromycotina. AM is an essential component in natural ecosystems, as it plays 
a major role in the global carbon cycle, enhances plant growth in nutrient deficient 
soil and is thus believed to sustain whole environ such as tropical rain forests. It 
also has a great fertilizing potential for sustainable practices in agriculture. Crucial 
for this symbiosis is the formation of highly branched tree-like structures called 
arbuscules by the fungus, inside root cortical cells of the host plant. These fungal 
structures deliver mineral nutrients after taking them up from the soil via 
extraradical hyphae, mainly phosphate and nitrogen, which are difficult to access 
for the plant. In turn, the fungus receives up to 20% of photosynthetically fixed 
carbon. Arbuscule formation is accompanied by massive transcriptional changes in 
the colonized cell. In addition, the cell undergoes subcellular rearrangements to 
accommodate the arbuscule. This is associated with the formation of a plant-derived 
membrane, called peri-arbuscular membrane, which surrounds the arbuscule and 
separates the fungal hyphae from the plant cytoplasm. The well-ordered and 
complex AM developmental steps, are regulated by the plant and depend on its 
nutritional status.  

Although arbuscule development is crucial for this symbiosis, the molecular 
basis of its development is poorly understood. A Lotus japonicus plant mutant 
reduced and degenerate arbuscules (red) found in a former study by forward genetics 
screen is perturbed in arbuscule development. To identify plant genes essential for 
arbuscule development, we investigated genes perturbed in red. Rough mapping 
indicated presence of two mutations in red, causative for the arbuscule phenotype. 
Complementation analysis confirmed causative mutations in a gene encoding a 
GRAS-type transcription factor named REDUCED ARBUSCULAR MYCORRHIZA 
1 (RAM1) and in a gene encoding a lipid biosynthesis enzyme GLYCEROL 3-
PHOSPHATE ACYL TRANSFERASE 6 (GPAT6/RAM2).  
  In this doctoral thesis, I found that the AM symbiosis-specifically induced 
gene RAM1, is a principal regulator of arbuscule development. It is directly 
regulated by a complex of CYCLOPS and DELLA. CYCLOPS, is a DNA-binding 
transcription factor and a central regulator of symbiotic signaling and DELLA is a 
negative regulator of hormonal gibberellic acid (GA) signaling. The CYCLOPS-
DELLA complex activates RAM1 expression via binding of CYCLOPS to a novel cis-
element in the RAM1 promoter. Thus, we presented for the first time a target gene 
of CYCLOPS in AM symbiosis and a regulatory node integrating symbiosis 
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(CYCLOPS) and hormonal GA signaling (DELLA). This direct connection may be 
important for the plant to connect symbiosis with its nutritional and therefore 
physiological status. Further, I revealed that RAM1 acts as a transcriptional 
activator of genes required for AM development, downstream of CCaMK and 
CYCLOPS. Ectopic expression of RAM1 induced AM-specific genes such as RAM2 
in absence of AM-fungi. In frame of another thesis, they showed that RAM2 
participate in an AM-specific lipid biosynthesis pathway and is essential for 
arbuscule development. RAM2 acts downstream of another lipid biosynthetic gene 
DIS (encoding ß-keto-acyl ACP synthase I), which is also indispensable for 
arbuscule development. RAM2 uses C16:0 fatty acids synthesized by DIS as 
substrates for synthesis of ß-monoacylglycerol. C16:0 is the predominant form of 
fatty acid found in AM fungi. Textbook knowledge exhibited carbohydrate as the 
only form of carbon supplied to the AM fungus, which is subsequently used to 
synthesis lipids. However, whole genome sequence analysis indicated that AM 
fungi lack genes encoding protein responsible for the de novo synthesis of C16:0 fatty 
acid. They further showed that the lipid containing C16:0 fatty acid synthesized by 
RAM2 is supplied to AM-fungi as a plant-derived carbon source.  

Arbuscule development can be conceptually divided into distinct steps by 
plant mutants, indicating that the respective gene product regulates the step-wise 
development of arbuscule. Accumulating evidences indicate transcriptional 
changes during arbuscule development occurs in successive but overlapping 
waves. For example, genes upregulated in the arbuscule containing cells might be 
also activated in neighboring cells preparing to accommodate arbuscule. These cells 
undergoing subcellular rearrangement forming a pre-penetration apparatus (PPA) 
do not have visible fungal structures. Transcriptomic analysis from cells containing 
only visible fungal structure, limit to relate the gene activation to individual stages 
of arbuscule development and PPA formation. To correlate the promoter activity of 
genes with the precise stages of arbuscule development, I designed a construct 
which allows visualization of the fungus in living roots due to accumulation of 
fluorescent protein mCherry in the apoplastic space surrounding the fungal 
hyphae. AM specific SbtM1 promoter used to drive mCherry is active across all 
stages of arbuscule development including cells undergoing rearrangement to form 
PPA. Using this construct, I showed that DIS and RAM2 promoters are activated 
during all the stages of arbuscule maturation, but become inactive during arbuscule 
degeneration. 
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V. Zusammenfassung 
 

Arbuskuläre Mykorrhiza (AM) ist eine evolutionär alte Symbiose, die zwischen 80% 
aller Landpflanzen und den obligat-biotrophen Pilzen der Glomeromycotina 
ausgebildet wird. Sie leistet einen entscheidenden Beitrag für natürliche 
Ökosysteme indem sie eine wichtige Rolle im globalen Kohlenstoffkreislauf 
einnimmt und Pflanzenwachstum in nährstoffarmen Böden verbessert. Somit wird 
angenommen, dass die arbuskuläre Mykorrhiza Symbiose ganze Lebensräume, wie 
zum Beispiel Regenwälder, aufrechterhält. Darüber hinaus bietet AM ein großes 
Potential für die zusätzliche Nährstoffzufuhr in der nachhaltigen Landwirtschaft. 
Entscheidend für die Symbiose ist die Ausbildung der Arbuskel. Hierbei handelt es 
sich um stark-verzweigte baumförmige Strukturen des Pilzes, welche in den 
Wurzeln der Wirtspflanze - im Inneren der Kortexzellen - ausgebildet werden. Jene 
Strukturen liefern der Pflanze Mineralstoffe - insbesondere Phosphat und Nitrat – 
nachdem diese von den extraradikalen Hypen aus dem Boden aufgenommen 
wurden.  Im Gegenzug erhält der Pilz bis zu 20% des mittels Photosynthese 
gebundenen pflanzlichen Kohlenstoffs. Die Ausbildung der Arbuskel geht mit 
drastischen transkriptionellen Veränderungen der kolonisierten Zellen einher. 
Zusätzlich findet eine subzelluläre Umstrukturierung der Zelle statt, um den 
Arbuskel zu beherbergen. Diese Umstrukturierung steht in Verbindung mit dem 
Aufbau der periarbuskulären Membran. Diese Membran pflanzlichen Ursprungs 
umhüllt den Arbuskel und separiert die Hyphen des Pilzes vom Zytoplasma der 
Pflanzenzelle. Die wohlgeordneten und komplexen Entwicklungsabschnitte der 
arbuskulären Mykorrhiza innerhalb der Wurzel werden von der Pflanze reguliert 
und hängen von deren Nährstoffbedarf ab. 

Wenngleich die Entwicklung der Arbuskel entscheidend für diese Symbiose 
ist, sind ihre molekularen Grundlagen bisher kaum verstanden. Eine Lotus japonicus 
Mutante „reduced and degenerate arbuscules“ (red), welche in einem vorwärts 
gerichteten genetischen Screen gefunden wurde, ist in der Arbuskelverzweigung 
beeinträchtigt. Um Gene zu identifizieren, die entscheidend für die 
Arbuskelentwicklung sind, suchte ich nach den Mutationen in red. Eine grobe 
Genkartierung weißt auf zwei Mutationen in red hin, die den Arbuskelphänotyp 
der Mutante verantworten. Komplementierungsstudien bestätigten die 
verursachenden Mutationen.  Eines der Gene kodiert für REDUCED 
ARBUSCULAR MYCORRHIZA 1 (RAM1), aus der Familie der GRAS-
Transkriptionsfaktoren. Das andere kodiert für das Lipidbiosynthese Enzym 
GLYCEROL 3-PHOSPHATE ACYL TRANSFERASE 6 (GPAT6) RAM2. 
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In dieser Doktorarbeit fand ich heraus, dass das symbiose-spezifisch 
induzierte Gen RAM1 einen bedeutenden Regulator der Arbuskelentwicklung 
darstellt und direkt durch einen Komplex aus CYCLOPS und DELLA reguliert 
wird. CYCLOPS ist ein DNA-bindender Transkriptionsfaktor und ein zentrales 
Mitglied der symbiotischen Signaltransduktionskette. DELLA stellt einen negativen 
Regulator der Signalübertragung des Pflanzenhormons Gibberellin (GA) dar. Der 
CYCLOPS-DELLA Komplex aktiviert die RAM1 Expression mittels Bindung von 
CYCLOPS an ein neues cis-Element innerhalb des RAM1 Promoters. Damit gelang 
es uns nicht nur erstmals ein Zielgen von CYCLOPS in der AM Symbiose zu 
entdecken, sondern auch einen regulatorischen Knotenpunkt, der den Symbiose-
Signalweg (CYCLOPS) mit einem Hormonsignalweg (DELLA) verknüpft, zu 
finden. Diese unmittelbare Verknüpfung ist womöglich für die Pflanze relevant, um 
die Symbiose auf die Nährstofflage und somit auf den physiologischen Zustand der 
Pflanze abzustimmen. Darüber hinaus konnte ich herausfinden, dass RAM1 als 
transkriptioneller Aktivator für AM-entwicklungsbestimmende Gene fungiert, 
welche CCaMK und CYCLOPS nachgelagert sind. Ektopische Expression von RAM1 
induziert AM-spezifische Gene wie zum Beispiel RAM2 in Abwesenheit des Pilzes. 
In Rahmen einer anderen Arbeit konnte gezeigt werden, dass RAM2 Teil des AM-
spezifischen Lipidbiosynthesewegs und unerlässlich für die Arbuskelentwicklung 
ist. RAM2 agiert unterhalb eines weiteren Lipidbiosynthesegens DIS (kodierend für 
eine ß-keto-acyl ACP Synthase I), welches ebenfalls für die Arbuskelentwicklung 
wesentlich ist. RAM2 verwendet von DIS hergestellte C16:0 Fettsäuren als Substrat 
für die Synthese von ß-Monoacylglycerol. In AM-Pilzen sind vorwiegend C16:0 
Fettsäuren zu finden. Jedoch deuteten Genomsequenzierungen darauf hin, dass 
arbuskulären Mykorrhizapilzen die Gene fehlen, welche Proteine für die de novo 
Synthese von C16:0 Fettsäuren kodieren. Fachbuchwissen führte bisher 
Kohlenhydrate als einzige Form des Kohlenstoffs an, welcher dem Pilz zur 
Verfügung gestellt und im Pilz als Kohlenstoffquelle für die Lipidsynthese 
verwendet wird. Darüber hinaus konnte in jener Arbeit gezeigt werden, dass C16:0 
Fettsäuren enthaltende Lipide, die von RAM2 hergestellt werden, AM-Pilzen als 
zusätzliche Kohlenstoffquelle pflanzlichen Ursprungs dienen.  

Die Entwicklung der Arbuskeln kann mit Hilfe von Pflanzenmutanten 
konzeptionell in getrennte Abschnitte eingeteilt werden. Dies weißt darauf hin, dass 
das Produkt eines entsprechenden Genes die stufenweise Entwicklung des 
Arbuskels kontrolliert. Sich häufende Hinweise legen nahe, dass sich während der 
Arbuskelentwicklung transkriptionelle Änderungen in Zellen des inneren Kortexes 
in aufeinanderfolgenden aber dennoch überlappenden Wellen ereignen. 
Beispielsweise können Gene, die in einer Arbuskel-beherbergenden Zelle 
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hochreguliert sind, auch in benachbarten Zellen aktiviert sein um auf die 
bevorstehende Kolonisierung vorzubereiten. Die Zellen, welche diese 
Umstrukturierung und Ausbildung des Prä-Penetrationsapparats (PPA) erfahren, 
zeigen keinerlei Anwesenheit von erkennbaren pilzlichen Strukturen. 
Transkriptomanalysen von erkennbar Pilz-bergenden Zellen, limitieren die 
Aussagekraft der Verknüpfung von Genaktivierung mit den einzelnen Abschnitten 
der Arbuskelentwicklung, unter Einbezug der PPA Ausbildung. Um die 
Promoteraktivität von Genen auf einzelne Entwicklungsabschnitte der Arbuskel 
beziehen zu können, habe ich zum ersten Mal ein Konstrukt angewandt, das die 
Visualisierung des Pilzes in lebenden Wurzeln ermöglicht. Dies geschieht durch die 
Akkumulation des Fluorophors mCherry im Appoplasten, welcher die Pilzhyphen 
umgibt. Der AM-spezifische SbtM1 Promoter, der verwendet wurde um mCherry zu 
exprimieren, ist in allen Teilabschnitten der Arbuskelentwicklung aktiviert - auch 
in jenen Zellen, die für die PPA-Ausbildung umstrukturiert werden. Unter 
Verwendung dieses Konstrukts zeigte ich, dass sowohl der DIS als auch der RAM2 
Promotor in allen Abschnitten der Arbuskelreifung aktiviert wird. Während der 
Degeneration der Arbuskeln sind jedoch beide Promotoren inaktiv. 
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VI. Introduction  
 

1. Arbuscular mycorrhiza symbiosis 
 
Arbuscular mycorrhiza (AM) symbiosis is established between 70-90% of land 
plants and fungi belonging to monophyletic phylum glomeromycotina (Parniske 
2008, Spatafora et al. 2016). AM is one of the plant adaptations to enhance the 
mineral nutrients acquisition, mainly phosphate, from the poor nutrient soil via the 
vast fungal network (Carbonnel and Gutjahr 2014). The AM structures were 
discovered in a fossil of an early Devonian land plant suggesting AM existed more 
than 400 million years ago and might have played a role in the origin of land plants 
(Remy et al. 1994). In exchange of mineral nutrients, the plant provide up to 20% of 
photosynthetically fixed carbon (Bago et al. 2000, Smith and Read 2008, Smith and 
Smith 2011, Jiang et al. 2017, Keymer et al. 2017, Luginbuehl et al. 2017, Roth and 
Paszkowski 2017). Phosphate is a macronutrient essential for the plant growth and 
development (Carbonnel and Gutjahr 2014). The total pool of phosphate available 
in the soil may be high, often present in inaccessible form or not reachable by the 
plant roots. Up to 20 to 80% of phosphate available in soil is found in organic form 
(Richardson 1994). The concentration of inorganic phosphate rarely exceeds 10µM, 
the most readily accessed by plants (Bieleski 1973). After nitrogen, phosphate is 
second major limiting macronutrient for plant growth and development. In 
addition to AM symbiosis, to enhance the uptake of the available phosphate in 
deficient condition, plants have inducible high-affinity phosphate transporters 
(Smith 2002) and can change the root architecture (Watt and Evans 1999, Williamson 
et al. 2001). AM symbiosis also plays a vital role in global carbon cycle as 
approximately, 5 billion tons of carbon per year is anticipated to be consumed by 
AM fungi (Parniske 2008) thereby sequestering the atmospheric carbon dioxide to 
the soil organic carbon (Bago et al. 2000). In addition to the nutrient supply, the 
mycorrhizal fungus enhances the fitness of the host plant by enhancing the abiotic 
(drought, salinity or heavy metals) and biotic (leaf pathogens) stress resistance 
(Augé 2001, Ruiz-Lozano 2003, Göhre and Paszkowski 2006, Liu et al. 2007, 
Gianinazzi et al. 2010).   
 

2. Arbuscular mycorrhiza development 
 
The host plant controls the development of AM depending on its phosphate status 
(Carbonnel and Gutjahr 2014). For example, at high phosphate availability, plant 
favors direct and non-symbiotic uptake by the root system and inhibits symbiotic 
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uptake of phosphate via AM symbiosis (Balzergue et al. 2010, Breuillin et al. 2010, 
Carbonnel and Gutjahr 2014). Thus, it is a plant strategy to limit plant derived 
carbon consumption of the AM fungi by inhibiting its development in the roots in 
a phosphate sufficient condition. Despite of broad range of plant and fungal species 
involved, the AM development stages are relatively similar. Extensive forward and 
reverse genetic studies in the model legumes Medicago truncatula and Lotus japonicus 
led to discovery of the genes and stages involved in the AM development (MacLean 
et al. 2017). The AM development can be divided into four distinct stages: Pre-
contact stage, hyphopodium formation, intraradical hyphae formation, arbuscule 
development and degeneration (Gutjahr and Parniske 2013). However, AM 
development being an asynchronous process, different AM development steps 
exists in the same root system simultaneously. 
 
i. Pre-contact phase 
 
A reciprocal exchange of diffusible signaling molecule between the host plant and 
AM fungi takes place in the pre-symbiotic stage (MacLean et al. 2017) (Figure 1). 
Plant roots exude strigolactones (SLs) in phosphate deficient conditions (Yoneyama 
et al. 2007, Kretzschmar et al. 2012, Yoneyama et al. 2012) (Figure 1). SLs induces 
fungal spore germination, enhance metabolic activity and hyphal growth and 
branching (Buée et al. 2000, Akiyama et al. 2005, Besserer et al. 2006, Yoneyama et 
al. 2007, Besserer et al. 2008). SLs are carotenoid-derived plant phytohormones 
discovered to act as germination stimulants for a parasitic weeds such as Striga lutea 
(Cook et al. 1966, Cook et al. 1972). In return, the AM fungi growing towards the 
host root, secrete diffusible signaling molecule(s) called Myc Factors (MacLean et 
al. 2017) (Figure 1). Myc Factors activates certain plant responses, such as 
transcriptional activation of plant genes (Kosuta et al. 2003, Navazio et al. 2007, 
Kuhn et al. 2010, Mukherjee and Ané 2010, Ortu et al. 2012), nuclear calcium spiking 
(Kosuta et al. 2008, Chabaud et al. 2011, Sun et al. 2015), starch accumulation 
(Gutjahr et al. 2009) and lateral root formation (Olah et al. 2005, Mukherjee and Ané 
2010, Sun et al. 2015). The Myc Factors are shown to be a mixture of short-chain 
chitin oligomers (Myc-COs) and lipochitooligosaccharides (Myc-LCOs) (Maillet et 
al. 2011, Genre et al. 2013). The Myc-LCOs are structurally very similar to Nod 
Factors, secreted by the rhizobial bacteria that forms root nodule symbiosis (RNS) 
with legumes (Oldroyd and Downie 2004, Maillet et al. 2011).  
 
ii. Hyphopodium formation 
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Upon reaching the host root surface, the fungal hypha differentiates to form an 
attachment structure called hyphopodium (Figure 1) (Gutjahr and Parniske 2013). 
Hyphopodium formation was triggered by isolated cell wall fragment of the host 
plant D. carota but not by the non-host plant B. vulgaris (Nagahashi and Douds 1997). 
Thus, a cell wall signal was sufficient and does not require an intact host root or a 
host-root secreted signal for hyphopodium formation (Nagahashi and Douds 1997). 
Cell wall composition seems to be a key factor for fungal recognition, however very 
little is known.  

 
iii. Formation of intraradical hyphae 
 
From the hyphopodia, the fungus forms a peg-like structure in order to penetrate 
outer epidermal cell intracellularly as shown in M. truncatula (Figure 1) or between 
two anticlinal cell walls of two adjacent epidermal cells as shown in M. truncatula 
and L. japonicus (Bonfante et al. 2000, Genre et al. 2005, Genre et al. 2008). However, 
it has been observed that the fungal hyphae passing intercellularly, transverse 
intracellularly either the exodermis or the outer cortical cell layer to reach the inner 
cortex in M. truncatula, D. carota and L. japonicus (Bonfante et al. 2000, Demchenko 
et al. 2004, Genre et al. 2008). This obligatory step to cross intracellularly at least 
once, might be a check point held by the plant for controlling the root colonization. 
Once the fungal hyphae reach the inner cortex, it spread longitudinally in the 
apoplastic space and differentiate to form arbuscules in the inner cortical cells 
(MacLean et al. 2017) (Figure 1). 
 

 
Figure 1. Schematic representation of cell and stage specific gene expression 
corresponding to AM developmental stages (Figure from Pimprikar and Gutjahr 2018). 
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iv. Arbuscule development and degeneration 
 
The arbuscule is the primary site, where mineral nutrients are transferred to the host 
plant by the fungus in exchange of plant-derived carbon (Luginbuehl and Oldroyd 
2017, MacLean et al. 2017) and therefore is at the heart of AM symbiosis. Fungal 
hyphae in the inner cortical cell layer colonize in two morphological types, called 
Arum- and Paris- type (Bonfante and Genre 2008). The type of colonization depends 
on the AM fungal and host genotype. In Arum-type, the hyphae spread intercellular 
in the apoplastic space and differentiate to forms highly branched tree-like 
structures termed terminal arbuscules (Bonfante and Genre 2008). The Arum-type 
colonization is found in most of the legumes, including Lotus japonicus (Figure 1). In 
Paris-type, the hyphae spread intracellularly and subsequently differentiate to form 
coils and intercalary arbuscule (Bonfante and Genre 2008). The Paris-type 
colonization is found in carrot (Bonfante and Genre 2008). Several intermediate 
morphologies ranging between Arum- to Paris- type were observed by Dickson and 
co-workers depending on the host plant and fungus combination (Dickson 2004). 
The mechanism underlying the formation of different types of arbuscule 
morphologies in the cortical cell layers is still unknown.  
 The most studied Arum-type arbuscule development, can be divided into six 
different genetically separable steps (Gutjahr and Parniske 2013, Pimprikar and 
Gutjahr 2018, In press)  (Figure 2): (0) Unchanged cortex cell prior to PPA formation; 
(I) formation of the pre-penetration apparatus (PPA) in inner cortical cell; (II) the 
intercellular fungal hypha enters the cell and forms arbuscule trunk; (III) the 
arbuscule trunk subsequently differentiates to form coarse and low-order 
branching, forming an immature arbuscule; (IV) the immature arbuscule further 
undergoes branching to form thin and high-order branches, developing a mature 
arbuscule; (V) the mature arbuscule collapses and is subsequently degraded. The 
collapsed arbuscule is separated by formation of septa from the other fungal 
network in the root (Gutjahr and Parniske 2013, Pimprikar and Gutjahr 2018).  
 

 
Figure 2. Schematic representation of stages of arbuscule development (modified from 
Pimprikar and Gutjahr, 2018 modified from Gutjahr and Parniske., 2013). Six different 
stages (0 to V) of arbuscule development.  
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 The hyphal entry into the cortical cell at stage II of arbuscule development 
takes place by invagination of plant plasma membrane which is then de novo 
extended by exocytosis to envelop every hyphal branching during stage III and IV 
of mature arbuscule development, termed as peri-arbuscular membrane (PAM) 
(Figure 2) (Gutjahr and Parniske 2013). De novo plant synthesized PAM, prevents 
direct contact of the fungal hyphae with the plant cytoplasm and serves as a 
symbiotic interface for the nutrient exchange between the symbionts (Gutjahr and 
Parniske 2013) (Figure 2).  The space between the fungal plasma membrane and the 
PAM creates an apoplastic compartment called as peri-arbuscular space (PAS) 
(Figure 2) (Gutjahr and Parniske 2013). Thus, the metabolites transferred between 
the fungus and the plant have to cross the two membranes via the PAS (Parniske 
2008). Accumulation of several transporters such as; a PHOSPHATE 
TRANSPORTER 4 (PT4) and the heterodimer of the two half-size ATP binding 
cassette (ABC) transporters STR1 and -2 localize to the branch domain of the PAM 
in M. truncatula (Pumplin and Harrison 2009, Zhang et al. 2010). Revolutionary 
work carried out by Pumplin and co-worker showed that although the PAM is in 
continuum with the plant plasma membrane, it consists of the two distinct domain 
depending on the protein composition within the arbuscule containing cell; PAM 
surrounding (i) the arbuscule trunk called as trunk domain and (ii) arbuscule 
branching called as branch domain (Pumplin and Harrison 2009, Pumplin et al. 
2012). The plant plasma membrane and the trunk domain has similar protein 
composition (Pumplin and Harrison 2009, Pumplin et al. 2012). For example, GFP 
tagged proteins localization studies during arbuscule development in M. truncatula 
revealed that BLUE COPPER PROTEIN 1 (BCP1) was exclusively localized to plant 
plasma membrane and trunk domain whereas the PT4 was specifically localized to 
the branch domain (Pumplin and Harrison 2009). Promoter and protein-GFP fusion 
studies revealed that the plant plasma membrane localized transporter proteins: a 
PHOSPHATE TRANSPORTER 1 (PT1), a monosaccharide transporter (STP) and a 
POLYOL TRANSPORTER (PLT) were redirected to the branch domain when 
driven under the control of the PT4 promoter from Medicago, which is active in cells 
containing arbuscule with branches (Pumplin et al. 2012). While, all three proteins 
PT1, STP and PLT localized to plasma membrane when expressed under the 
Cauliflower mosaic virus (CaMV) 35S promoter in the non-colonized cells (Pumplin et 
al. 2012). Thus, these results together suggest that the precise temporal regulation 
of the gene is critical for the protein subcellular localization during arbuscule 
development resulting in a differential composition of the PAM as compared to the 
plasma membrane (Pumplin et al. 2012). Temporal regulation of the promoter 
determining the subcellular localization of the protein can be achieved by coupling 
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with transient redirected secretion of newly synthesized protein predominantly 
towards the developing PAM during arbuscule formation (Pumplin et al. 2012). 
Consistent with this, SbtM1 promoter driving a signal peptide fused to Venus 
localizes to PAS (Takeda et al. 2009). An Arabidopsis aquaporin PIP2a and Medicago 
PHOSPHATE TRANSPORTER 1 (PT1) are normally localized to the plasma 
membrane (Cutler et al. 2000, Pumplin et al. 2012). However, PIP2a was retained in 
the endoplasmic reticulum while PT1 localized to PAM when driven by the PT4 
promoter (Pumplin et al. 2012). In contrast, PT4 was retained in the endoplasmic 
reticulum whereas PT1 and PIP2a localized to the plasma membrane when 
expressed ectopically under CaMV 35S promoter (Pumplin et al. 2012). These 
observations indicate that there should be an additional signal resident in the 
protein sequence required for cargo selection, which enables entry into the secretion 
pathway during arbuscule development (Pumplin et al. 2012). Thus, together it can 
be concluded that the timing of expression coupled with cargo selection enabling 
entry into the transient redirected secretion predominant towards developing 
arbuscule, determines the subcellular localization of the newly synthesized protein 
during arbuscule development. 

 
3. Function of AM  

 
The exchange of nutrients is the foundation of the symbiosis, which occurs at the 
symbiotic interface (MacLean et al. 2017). The extraradical fungal hyphae acquire 
phosphate from the soil and transport it in the form of polyphosphate to the 
arbuscule site (Ezawa et al. 2002, Parniske 2008). The phosphate is then released 
from polyphosphate in the intraradical hyphae by polyphosphate catabolism 
(Ezawa et al. 2002, Parniske 2008). The phosphate is then discharged into the 
common apoplast via phosphate transporters localized in the fungal plasma 
membrane (Figure 3) (Ezawa et al. 2002, Karandashov and Bucher 2005, Javot et al. 
2007a, Parniske 2008). Subsequently, the plant phosphate transporters, such as PT4, 
localized to the PAM import the phosphate into the cytoplasm of the host cell 
(Figure 3) (Javot et al. 2007b). AM fungi not only supply phosphate but also nitrogen 
to the host root. The AM fungi can acquire nitrogen from organic material (Hodge 
et al. 2001). Similarly to the Phosphate uptake, AM-fungal ammonium transporters 
are predicted to be involved in the uptake of nitrogen by extraradical hyphae 
(López-Pedrosa et al. 2006). The long distance transport of the nitrogen probably 
takes place in the form of arginine (Figure 3) (Govindarajulu et al. 2005, Cruz et al. 
2007). The nitrogen is then released to the plant in carbon-free form probably such 
as ammonium (Figure 3) (Govindarajulu et al. 2005). An AM-specific ammonium 



 

 25 

transporter situated on the PAM is predicted to involve in the uptake of ammonium 
or nitrate (Guether et al. 2009b, Kobae et al. 2010, Breuillin-Sessoms et al. 2015). AM 
fungi being obligate biotrophs, depends on the photoautotrophic partner for 
completing their life cycle and produce next generation spores (Smith and Read 
2008). 13C-labelled tracer based Nuclear magnetic resonance (NMR) studies 
indicated hexose sugar as the major form of carbon supplied to the fungus by plants 
(Figure 3) (Shachar-Hill et al. 1995). Reduction in expression of the high affinity 
monosaccharide transporter 2 (MST2) from Glomus by host induced gene silencing 
results in malformed arbuscule (Helber et al. 2011). This designates the importance 
of hexose transfer to the intraradical hyphae. AM fungi store carbon essentially in 
the form of lipids, mainly triacylglycerol (TAG). The major form of fatty acids (FAs) 
found in AM fungi are 16:0 (palmitic acid) and 16:1ω5 (palmitvaccenic acid). The 
16:1ω5 FAs is specific to AM fungi and certain bacteria and therefore used for 
detection of AM fungi (Graham et al. 1995, Bentivenga and Morton 1996, Madan et 
al. 2002, Trépanier et al. 2005). It was predicted that the hexose sugars supplied by 
the host plant are directly metabolized by the AM fungi or used as a precursor 
molecule for the lipid biosynthesis (Pfeffer et al. 1999). Interestingly, de novo FA 
biosynthesis was only observed inside the host root and not in the extraradical 
mycelia or spores. These observations led to the conclusion that the fungus can 
biosynthesize lipid only in colonized roots (Pfeffer et al. 1999, Trépanier et al. 2005). 
However, recent sequencing of whole genome of the AM fungi Rhizophagus 
irregularis, Gigaspora margarita and Gigaspora rosea revealed the absence of genes 
encoding the multidomain cytosolic fatty acid synthase (FAS) subunit responsible 
for de novo synthesis of 16:0 FA. However, genes encoding enzymes required for the 
16:0 FA elongation to higher chain length and for FA desaturation, are present 
(Trépanier et al. 2005, Wewer et al. 2014, Ropars et al. 2016, Salvioli et al. 2016, Tang 
et al. 2016). Lipids are the major form of carbon storage in AM fungi and important 
for their growth and reproduction (Trépanier et al. 2005). However, the source of 
16:0 FA in AM fungi was for a long time mysterious. Recent studies showed that 
plant host not only provide carbohydrate but also lipids to the AM fungi (Jiang et 
al. 2017, Keymer et al. 2017, Luginbuehl et al. 2017).  
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Figure 3. Nutrients transport and exchange between the two symbionts in AM symbiosis 
(Figure from Parniske 2008).   
 

4. Cellular changes during AM development 
 
The host root cell undergoes distinct cellular changes to accommodate the fungal 
structures. Live imaging of AM colonized Medicago hairy root clones expressing 
appropriate GFP-labelled cellular markers for monitoring cytoskeleton and ER 
revolutionized the understanding about the host cellular changes during AM 
development (Genre et al. 2005, Genre et al. 2008). The epidermal cell nucleus 
migrates to position itself directly below the hyphopodium formation. The nucleus 
moves across the cell towards the opposite side of the cell, forming a tunnel-like 
structure called pre-penetration apparatus (PPA) (Genre et al. 2005). The PPA is a 
cytoplasmic bridge and surrounded by the plant plasma membrane and cellular 
components (Genre et al. 2005). The fungal hyphae grow through the PPA once it is 
fenced by the plant plasma membrane forming a symbiotic interface. Outer cortical 
cells below the epidermal cell in contact with the hyphopodium respond even 
before the physical contact by the fungal hyphae (Genre et al. 2008, Sieberer et al. 
2012). The adjacent outer cortical cells below the colonized epidermal cell undergo 
low-frequency peri-nuclear calcium spiking followed by the nuclear migration and 
forms reversible transcellular PPA formation (Sieberer et al. 2012). However, the 
underlying cortical cell, which will subsequently get colonized, switches to high-
frequency perinuclear calcium spiking before colonization (Sieberer et al. 2012). The 
PPA and the plant plasma membrane encapsulation escort the intracellular fungal 
growth traversing several cell layers, to reach the inner cortex of the root (Genre et 
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al. 2005, Genre et al. 2008, Gutjahr and Parniske 2013). The PPA dismantle, the 
nucleus migrates to the cell periphery, and the calcium spiking disappears once the 
fungal hyphae have marched the cell (Genre et al. 2005, Genre et al. 2008, Sieberer 
et al. 2012, Gutjahr and Parniske 2013). PPAs are also observed prior to arbuscule 
development in the inner cortical cell and it proceeds in a similar fashion as during 
initial fungal penetration through the epidermal cell (Genre et al. 2008). 
 Drastic cellular rearrangement takes place in the inner cortical cell to 
accommodate the highly branched arbuscule. The arbuscule development is 
accompanied by the fragmentation of the large central vacuole resulting in the 
formation of a tubular network (Pumplin and Harrison 2009). Massive cytoskeleton 
rearrangement takes place not only in the arbuscule containing cell but also in cells 
adjacent to the intercellular hyphae or arbuscule containing cell (Blancaflor et al. 
2001). In arbuscule containing cells, actin filaments and microtubules form a dense 
network bounding the arbuscule branches and enclosing the arbuscule (Genre and 
Bonfante 1998, Blancaflor et al. 2001). The plastids and mitochondria increase in 
number and plastidial stromules form interconnected networks around the 
arbuscule (Fester et al. 2001, Hans et al. 2004, Lohse et al. 2005). Similarly, aggregates 
of mitochondria, endoplasmic reticulum, and Golgi bodies are observed nearby the 
arbuscule (Cox and Sanders 1974, Scannerini and Bonfante-Fasolo 1983, Lohse et al. 
2005). The nucleus moves from the periphery of the cell to the center of the 
arbuscule. The nucleus increases in size, which might indicate endoreduplication or 
chromatin decondensation for the massive transcriptional reprogramming 
observed prior to and during arbuscule formation (Balestrini et al. 1992, Genre et al. 
2008). 
 

5. Signal transduction during AM development  
 

AM development in the plant root requires a conceptual signaling cascade called 
common symbiotic signaling pathway, which is shared with another root 
endosymbiosis, the root nodule symbiosis (RNS) formed between legumes and 
rhizobia bacteria converting atmospheric nitrogen into ammonia (Kistner and 
Parniske 2002, Kistner et al. 2005). The rhizobia bacteria are accommodated in a 
specialized organ known as the root nodule (Held et al. 2010). Genes such as 
SYMRK, CASTOR, POLLUX, CNGC15, MCA8, NUP85, NUP133, NENA, VAPYRIN, 
CCAMK, CYCLOPS and DELLA are classified as common symbiotic genes, required 
for both endosymbiosis (Endre et al. 2002, Stracke et al. 2002, Ane et al. 2004, Levy 
et al. 2004, Mitra et al. 2004, Imaizumi-Anraku et al. 2005, Kanamori et al. 2006, 
Tirichine et al. 2006, Saito et al. 2007, Charpentier et al. 2008, Yano et al. 2008, Groth 
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et al. 2010, Capoen et al. 2011, Murray et al. 2011, Venkateshwaran et al. 2012, Floss 
et al. 2013, Charpentier et al. 2016, Fonouni-Farde et al. 2016, Jin et al. 2016). 
 The Myc Factors released by the AM fungi in the pre-contact phase 
are perceived by plant plasma membrane localized receptor(s), most probably 
belonging to class LysM receptor kinases (Antolín-Llovera et al. 2012), although, the 
bona-fide Myc Factor-specific receptor is still unidentified (Figure 4). In M. 
truncatula, the treatment with sulphated and non-sulphated Myc-LCO lead to 
partially specific transcriptional response indicating that more than one receptor is 
required for the perception of Myc Factor (Czaja et al. 2012, Camps et al. 2015). 
Several studies using knockout or knockdown of a gene encoding receptor-like 
kinase in different species, revealed their role in early AM developmental step. 
Downregulation of LysM receptor-like kinase 10 (LYK10) in S. lycopersicum resulted in 
complete absence of colonization or in rare cases spores or extraradical hyphae were 
observed around the root without penetration in tomato (Buendia et al. 2016). Also, 
RNAi knockdown of NOD FACTOR PROTEIN (NFP) in Parasponia andersonii 
perturbed colonization by AM fungi (Op den Camp et al. 2011). It has been shown 
in rice that silencing or knockout of the LysM Receptor-Like Kinase 1 (OSCERK1) leads 
to a delay in fungal penetration (Miyata et al. 2014, Zhang et al. 2015a). Also, the 
Oscerk1 mutant failed to induce nuclear calcium spiking upon treatment with Myc-
CO supporting its role in the perception of one or more Myc Factors (Carotenuto et 
al. 2017). Thus, several receptors or co-receptor (AM specific and non-specific) 
might act in concert to induce AM-specific signaling responses, upon perception of 
Myc Factor for the establishment of AM (Figure 4). The receptor like kinase 
SYMBIOSIS RECEPTOR KINASE (SYMRK) required for microbial entry in both 
endosymbiosis, has been shown to interact with the NOD FACTOR RECEPTOR 1 
(NFR1) and NFR5 in Lotus (Stracke et al. 2002, Antolín-Llovera et al. 2014). It is also 
required for the generation of calcium spiking upon Myc Factor treatment (Sun et 
al. 2015) and likely acts as a co-receptor in Nod- and Myc Factor perception. 
SYMRK/DMI2 interacts with a 3-hydroxy-3-methylglutaryl coenzyme A reductase 
1 (HMGR1), involved in the production of mevalonate (Figure 4) (Kevei et al. 2007). 
Application of mevalonate was sufficient to induce nuclear calcium spiking in 
response to Myc Factor in wild-type and dmi2 mutant in Medicago indicating that 
mevalonate or a downstream metabolite could act as a second messenger upon 
perception of Myc Factor in the common symbiotic pathway (Venkateshwaran et 
al. 2015). Calcium spiking in the nucleus is generated by three recently discovered 
three cyclic nucleotide-gated channels 15 (CNGC15s) (Charpentier et al. 2016) and 
the pump MCA8 (Capoen et al. 2011). Knockdown of MCA8 or CNGC15s using 
RNAi method, perturbed calcium spiking and root colonization by AM fungi 



 

 29 

(Capoen et al. 2011, Charpentier et al. 2016). CASTOR and POLLUX are potassium 
channels likely acting as counter ion channels (Imaizumi-Anraku et al. 2005, 
Charpentier et al. 2008, Venkateshwaran et al. 2012). The precise role of NUP85, 
NUP133 and NENA in calcium spiking is still not well understood (Kanamori et al. 
2006, Saito et al. 2007, Groth et al. 2010, Binder and Parniske 2013). They are 
predicted to be involved directly or indirectly in the generation or maintenance of 
calcium spiking (Binder and Parniske 2013).  
 The nuclear calcium spiking is deciphered by a nuclear-localized 
CALCIUM- AND CALMODULIN-DEPENDENT KINASE (CCaMK) in both 
endosymbiosis (Levy et al. 2004). CCaMK contains a calmodulin binding domain 
and three EF-hands in addition to a kinase domain. The kinase activity is de-
inhibited upon binding of calcium (Ca2+) and calmodulin (CaM) (Miller et al. 2013). 
CCaMK is considered to be a master regulator of both endosymbiosis. In AM, the 
ccamk mutant fails to allow formation intraradical hyphae and arbuscule in 
Medicago, Lotus and Rice (Levy et al. 2004, Mitra et al. 2004, Kistner et al. 2005, 
Gutjahr et al. 2008). In addition, expression of the gain-of-function CCaMKT265D (Thr 
is substituted by Asp at the auto-phosphorylation site in the kinase domain confers 
Ca2+ independent activation) under 35S promoter restored AM development in the 
common symbiotic mutants perturbed in the genes required to generate the calcium 
spiking such as symrk, castor, pollux, nup85 and nup133 (Hayashi et al. 2010). Thus, 
auto-active CCaMK can compensate for the loss of the upstream genes required for 
generation of calcium spiking and can activate the downstream symbiotic 
responses. Furthermore, an auto-active CCaMK314(T265D), which solely contains the 
kinase domain under the 35S promoter was sufficient to induce cytoplasmic 
aggregations resembling to PPA-like structures in cortical cells, in the absence of the 
AM fungi (Takeda et al. 2012). In addition, the deregulated CCaMK314(T265D) was able 
to induce AM-specific marker genes such as SbtM1, RAM1, RAM2 and Vpy upon 
overexpression in the absence of AM fungi (Takeda et al. 2015). However, CCaMK-
independent transcriptional responses were observed indicating parallel signaling 
pathways (Czaja et al. 2012, Camps et al. 2015).  
 One of the transcription factors essential for both endosymbiosis is 
CYCLOPS (Gutjahr et al. 2008, Yano et al. 2008) (Figure 4). CYCLOPS encodes a 
nuclear coiled-coil DNA-binding transcription factor (Messinese et al. 2007, Yano et 
al. 2008, Singh et al. 2014). In AM, the cyclops mutant fails to allow arbuscule 
formation but permits establishment of intraradical hyphae in L. japonicus and O. 
sativa (Gutjahr et al. 2008, Yano et al. 2008, Singh et al. 2014). CCaMK physically 
interact with CYCLOPS and form a CCaMK-CYCLOPS complex in the nucleus 
(Messinese et al. 2007, Yano et al. 2008). This complex appears to be preassembled 
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as the interaction was shown in the absence of the calcium spiking (Yano et al. 2008). 
The genes induced during arbuscule development such as SbtM1 and PT4 are 
dependent on CYCLOPS (Takeda et al. 2011). CYCLOPS binds DNA in a sequence-
specific manner and transactivates a nodulation-specific gene NIN upon 
phosphorylation by CCaMK (Singh et al. 2014). A phosphomimetic version of 
CYCLOPS was able to transactivate NIN in transactivation assay in Nicotiana 
benthamiana leaves and was able to induce spontaneous root nodule organogenesis 
in the absence of rhizobia and CCaMK (Singh et al. 2014). Although CYCLOPS is 
essential for induction of several AM-specific genes, the direct targets of CYCLOPS 
in AM development were unknown when I started my Ph.D. thesis.  
 

 
Figure 4. Overview of signal transduction via common symbiosis signaling upon 
perception of Myc Factor in the root cell (Modified from Singh and Parniske 2012).   

 
DELLA protein is the most downstream component known so far in common 

symbiotic signaling. DELLA is classified as a common symbiotic gene because it is 
also required for establishment of both endosymbiosis (Floss et al. 2013, Floss et al. 
2016, Fonouni-Farde et al. 2016, Jin et al. 2016, Pimprikar et al. 2016). DELLA protein 
belongs to family of GRAS-type (for GA3 insensitive, GAI; Repressor of GAI, RGA; 
And Scarecrow, SCR) transcription factors and acts as repressor of GA signaling 
(Hauvermale et al. 2012). The stability of DELLA proteins depends on the hormone 
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gibberellin (GA) (Davière and Achard 2016). GA is involved in regulation of plant 
growth and development (Fleet and Sun 2005). GAs are biosynthesized from 
carotenoid precursors and the bioactive GA pool is regulated by biosynthesis and 
metabolism (Yamaguchi 2008, Hedden and Thomas 2012). At low GA condition, 
DELLA modulate the transcription activation of genes by interacting with DNA 
binding transcription factors (Davière and Achard 2016) (Figure 5). GA is perceived 
by the soluble alpha/beta hydrolase receptor GIBBERELLIN-INSENSITIVE 
DWARF-1 (GID1), subsequently interacts with DELLA via the N-terminus of 
DELLA, which contains the DELLA and TVHYNP domain (Davière and Achard 
2016). The GID1-GA-DELLA complex interacts with the SCFSLY1complex, which 
polyubiquitylates DELLA (Davière and Achard 2016). Upon polyubiquitylation, 
DELLA is degraded via the 26S proteasome  (Silverstone et al. 2001, Davière and 
Achard 2013, Davière and Achard 2016) (Figure 5). It is known for a long time that 
GA treatment perturbs AM development and specifically arbuscule formation (El 
Ghachtouli et al. 1996). Treatment with bioactive GA to colonized wild-type roots 
of M. truncatula and L. japonicus roots showed intraradical hyphae formation but 
lack of arbuscules, suggesting a positive role of DELLA protein in arbuscule 
development (Floss et al. 2013, Takeda et al. 2015, Pimprikar et al. 2016). Similarly, 
della mutants in Medicago display intraradical hyphae formation but hardly any 
arbuscule (El Ghachtouli et al. 1996, Floss et al. 2013, Foo et al. 2013, Yoshida et al. 
2014, Takeda et al. 2015, Floss et al. 2017), indicating DELLA proteins are essential 
for arbuscule formation. However, the arbuscule formed in rare cases in these 
mutant showed wild-type degree of branching indicating the role of DELLA 
proteins in arbuscule initiation (Floss et al. 2013, Floss et al. 2017). The exact 
arbuscule developmental stage at which DELLA proteins are required is still 
unclear. DELLA proteins might be required for PPA formation, arbuscule trunk 
formation or first order arbuscule branching during arbuscule development 
(Pimprikar and Gutjahr, 2018. In press). However, upon inoculation with AM fungi, 
the plant cell showed nucleus enlargement and movement underneath the fungal 
hypha prior to hyphal entry in the della mutant suggesting DELLA proteins are not 
required for PPA formation (Ivanov and Harrison 2014). Interestingly, this cellular 
response is also not dependent on CCaMK (Genre et al. 2009) and thus might be 
independent of CCaMK-CYCLOPS and DELLA, possibly because it does not 
require transcriptional regulation. Removal of the DELLA or the TVHYNP domain 
from the DELLA protein makes DELLA insensitive to degradation even in presence 
of GA and leads to its accumulation (Willige et al. 2007). Also, the AM development 
in M. truncatula and L. japonicus roots became insensitive to GA treatment upon 
ectopic expression of della-Δ18, a resistant to degradation DELLA protein lacking 18 
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amino acids including the DELLA domain (Floss et al. 2013, Takeda et al. 2015, 
Pimprikar et al. 2016). However, the exact mode of action of GA/DELLA module in 
AM development was not understood when I started my doctoral thesis work. 

 

 
Figure 5. A schematic representation of the GA perception (Adopted from Davière and 
Achard 2016).  
 

6. Transcriptional changes during AM development 
 
AM colonization is accompanied by immense transcriptional changes (Liu et al. 
2003, Güimil et al. 2005, Hohnjec et al. 2005, Liu et al. 2007, Fiorilli et al. 2009, 
Guether et al. 2009a, Gaude et al. 2012, Schaarschmidt et al. 2013, Handa et al. 2015). 
The genes activated during the AM development are involved in signaling, 
transcriptional regulation, protein biosynthesis, nutrient transport, cell wall 
synthesis, plant metabolite biosynthesis and lipid metabolism (Liu et al. 2003, 
Frenzel et al. 2005, Güimil et al. 2005, Hohnjec et al. 2005, Fiorilli et al. 2009, Guether 
et al. 2009a). These sets of genes confirm host root cellular reprogramming towards 
AM symbiotic nutrient uptake. The distinctive transcriptional changes to the 
specific stages of AM development are still not well understood as it is an 
asynchronous process, with several developmental stages (hyphopodium, 
intracellular hyphae, vesicles and arbuscules) simultaneously present in the root 
system. However, in the recent years, application of fungal signaling molecule to 
non-colonized roots and by laser microdissection of root cells containing different 
fungal structures has partially circumvented this problem. The transcriptional 
regulation during the pre-contact phase has been studied by application of 
geminating spore exudates (GSE) or synthetically isolated Myc-LCOs or Myc-COs 
(Czaja et al. 2012, Miyata et al. 2014, Camps et al. 2015, Giovannetti et al. 2015, 
Gutjahr et al. 2015, Hohnjec et al. 2015). The first transcriptome associated with 
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hyphopodium formation was studied by manual dissection of the hyphopodia 
containing root pieces from the hairy root culture of Medicago and using 
suppressive-subtractive cDNA library sequencing (Siciliano et al. 2007). Further, the 
transcriptional changes in arbuscule containing cells were investigated using laser 
microdissection in combination with qPCR or microarray hybridization (Fiorilli et 
al. 2009, Gomez et al. 2009, Gaude et al. 2012, Hogekamp and Küster 2013). 
Hogekamp and Küster (2013) carried out the most comprehensive comparative 
transcriptomic study. The largest number of transcripts found were related to 
arbuscule containing cells, which is in line with drastic the developmental changes 
required to host an arbuscule. The transcriptional changes during arbuscule 
development are divided into at least two waves of cell autonomous gene 
expression changes. The first wave consists of genes induced prior to and during 
arbuscule development such as SbtM1 and BCP1.  The second wave consists of 
genes induced during arbuscule development and specific to arbuscule containing 
cells such as PT4 and AMT2.2 (Gutjahr and Parniske 2013). 
 

7. Genes required during AM development 
 
i) Genes required for hyphopodium formation 

 
A DWARF 14 LIKE (D14L) gene encoding a receptor alpha/beta hydrolase is shown 
to be essential for recognition of the AM fungi as the d14l mutant is perturbed in 
formation of hyphopodia in rice (Gutjahr et al. 2015). Consistent with the AM 
phenotype, the transcript profile of the Osd14l compared to wild-type upon 
treatment with germinating spore exudate indicates that D14L-mediated signaling 
plays a role in pre-contact stage (Gutjahr et al. 2015). D14L is predicted to be the 
receptor of an unknown endogenous signaling molecule. D14L-mediated signaling 
require the F-box protein MORE AXILLARY GROWTH 2 (MAX2). Knockout of 
MAX2 in rice have been shown to have strong reduction of AM colonization. 
Further, it remains to be studied that if this pathway required for hyphopodia 
formation crosstalk with the common symbiotic pathway. 
 

ii) Genes required for mature arbuscule formation  
 
Several targeted or non-targeted approaches led to the discovery of number of genes 
required for the development of arbuscule. CYCLOPS encodes a transcription 
factor, required for the development of arbuscule in L. japonicus and O. sativa 
(Gutjahr et al. 2008, Yano et al. 2008, Singh et al. 2014). DELLA acting as a central 
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regulator of GA signaling by repressing GA response (described in detail above), 
was shown to be required for the arbuscule initiation as discussed above (Floss et 
al. 2013, Floss et al. 2017). In the last few years, several studies reported genes 
encoding GRAS-type transcription factors other than DELLA such REDUCED 
ARBUSCULAR MYCORRHIZA 1 (RAM1), REQUIRED FOR ARBUSCULE 
DEVELOPMENT 1 (RAD1) and MYCORRHIZA INDUCED GRAS 1 (MIG1) are 
required for arbuscule development (Gobbato et al. 2012, Park et al. 2015, Rich et al. 
2015, Xue et al. 2015, Heck et al. 2016, Pimprikar et al. 2016). Role of RAM1 and 
RAD1 during arbuscule development are discussed in detail in the discussion part 
of this thesis. Downregulation of MIGs in Lotus by RNAi resulted in smaller and 
distorted arbuscule, although the total colonization remained unchanged (Heck et 
al. 2016). Overexpression of Δ18-DELLA restored the arbuscule development in the 
hairy root co-expressing RNAi construct targeting MIGs indicating that DELLA can 
compensate for the reduction in MIG expression when stabilized (Heck et al. 2016). 
MIG1 interacts physically with DELLA in Y2H and bimolecular fluorescence 
complementation assay (BiFC) in N. benthamiana leaves (Heck et al. 2016). 
Overexpression of MIG1 and DELLA1 was shown to increase the cell width and 
number of cortex cell layers and therefore root diameter. Thus, it is possible that 
MIG interacts with DELLA to regulate the cortex cell development during arbuscule 
development (Heck et al. 2016). However, overexpression of MIG1 did not induce 
genes required for arbuscule development in absence of fungus (Park et al. 2015, 
Floss et al. 2016, Heck et al. 2016). Thus, it is still not well understood how MIG1 
can control the arbuscule branching by regulating the cell size.  

RAM2 is shown to be one of the targets of RAM1 and required for arbuscule 
development (discussed in detail in the discussion part of this thesis) (Wang et al. 
2012). Two M. truncatula genes, STR and STR2 encoding half ABC transporters are 
essential for arbuscule development as the downregulation of the respective genes 
led to a developmental arrest at the bird foot stage (Zhang et al. 2010). STR and STR2 
form heterodimers in the branch domain of the PAM. Because of its PAM 
localization, the STR/STR2 complex is predicted to export a small molecule into the 
PAS, although the nature of this molecule is still not known (Zhang et al. 2010). 
Another transporter localizing to PAM is PT4, which belongs to the Pht1 subfamily 
I (Harrison et al. 2002). PT4 is known to import phosphate delivered by the AM 
fungi into the plant cell cytoplasm containing arbuscule (Harrison et al. 2002, Javot 
et al. 2007b, Pumplin and Harrison 2009). The Medicago pt4 mutant displayed 
premature death of arbuscules and the total root length colonization was strongly 
reduced (Javot et al. 2007b). However, the pt4 phenotype was restored by nitrogen 
starvation indicating that nitrogen delivery can promote arbuscule maintenance 
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(Guether et al. 2009b, Kobae et al. 2010, Javot et al. 2011, Breuillin-Sessoms et al. 
2015).  The AMMONIUM TRANSPORTER 2.2 (AMT2.2) in L. japonicus is one of the 
highly upregulated genes during AM colonization, specifically in arbuscule 
containing cells, and is involved in symbiotic nitrogen uptake (Guether et al. 2009a, 
Guether et al. 2009b). Consistent with its predicted function, AMT2.2 also localizes 
to the PAM (Kobae et al. 2010, Breuillin-Sessoms et al. 2015) 
 The plant derived membrane around the arbuscule harbors AM specific 
proteins such as PT4 (as described above). However, these proteins must be secreted 
and incorporated into the newly synthesized PAM. Exocytotic pathway has been 
shown to plays an important role in arbuscule development (Genre et al. 2012). For 
example, VAMP721d and VAMP712e localizing to the PAM, are indispensable for 
the arbuscule development (Ivanov et al. 2012). Downregulation of L. japonicus gene 
LjVTI12 by RNAi, displayed stunted arbuscule formation. LjVTI12 encodes a Qb-
SNARE family protein, which is thought to be involved in vesicle docking (Lota et 
al. 2013). Similarly, silencing of SYP132A encoding a t-SNARE protein displayed 
significant reduction in arbuscule formation (Pan et al. 2016). Subsequently, Zhang 
and co-worker showed that the EXO70I subunit of the exocyst complex is necessary 
for the arbuscule formation as the exo70i mutant displayed stunted arbuscules in 
Medicago (Zhang et al. 2015b). EXO70I was also shown to be essential for the 
incorporation of STR and STR2 into the PAM (Zhang et al. 2015b). It is predicted 
that the EXO70I might be also important in incorporation of other PAM localized 
proteins or expansion of the PAM. Several other EXO70s are transcriptionally 
induced in arbuscule containing cells, indicating that several EXO70 subunits might 
act in concert to support the development of arbuscules (Zhang et al. 2015b). EXO70I 
physically interacts and partially co-localizes with a plant-specific protein called 
VAPYRIN (Zhang et al. 2015b). VAPYRIN was shown to be required for the 
epidermal entry by AM fungi in M. truncatula and P. hybrida. The fungus was able 
to form intraradical hyphae in rare cases when it managed to enter the root but 
could not form arbuscule indicating role of VAPYRIN in cell penetration during AM 
development (Reddy et al. 2007, Feddermann et al. 2010, Pumplin et al. 2010, 
Murray et al. 2011).  
 

iii) Genes required for arbuscule degeneration 
 
Arbuscules are regularly turned over with a life span of around 2-3 days in rice 
(Kobae and Hata 2010). However, the life span of arbuscules differs among 
individual arbuscule and also depends on plant and fungal species involved in the 
symbiosis (Brown and King 1982, Alexander et al. 1989, Kobae and Hata 2010). The 
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biological relevance of arbuscule turnover has not been well understood but from 
the phenotype of nutrient transporter mutants such as pt4 in Medicago, it has been 
suggested a regulatory mechanism to control efficient delivery of nutrients and 
avoid fungal parasitism (Javot et al. 2007b, Gutjahr and Parniske 2017).  In 2017, 
Floss and co-worker found that the transcription factor MYB1 plays an important 
role in arbuscule degeneration. Arbuscule life is restored to normal in the pt4 myb1 
double mutant in M. truncatula, indicating that MYB1 accelerates the transcriptional 
program for the degeneration of the arbuscule in the pt4 mutant background (Floss 
et al. 2017). However, the myb1 mutant in Medicago did not show increase in life 
span of the arbuscule. The Mtpt4 mutant upon colonization displayed increased 
expression of genes involved in degradative processes such as a range of hydrolases 
(proteases, lipases, chitinases) and ripening-related proteins, indicating that plant 
cells play an important role in the arbuscule degeneration. Consistently, MYB1 
overexpression induced the expression of marker genes for arbuscule degeneration 
such as CYSTEINE PROTEASE 3 (CP3) in the absence of fungus whereas upon 
colonization, it increased arbuscule degeneration and affected root length 
colonization. However, the induction of arbuscule degeneration marker genes upon 
overexpression of MYB1 was absent in nsp1 and della double mutants. Subsequently, 
it was shown that MYB1 interact with NSP1 and DELLA1 in Y2H and co-
immunoprecipitation (CoIP) from N. benthamiana leaves indicating that MYB1 
might form a complex with NSP1 and DELLA1 to activate the arbuscule 
degeneration program (Floss et al. 2017). Although, in the myb1 mutant, induction 
of the arbuscule degeneration marker by colonization was only mildly affected 
indicating redundancy at the level of MYB1 in the presence of PT4 (Floss et al. 2017). 
However, it is still not well understood what triggers the arbuscule degeneration. 
The putative homolog of MYB1 in Lotus was described to be induced in arbuscule 
containing cells and root meristem, named MERISTEM AND MYCORRHIZA 
INDUCED (MAMI) (Volpe et al. 2013). However, the RNAi construct targeting 
MAMI showed no AM phenotype but significant reduction in lateral root branching 
of hairy root culture, which is consistent with the Floss et al 2017 results (Volpe et 
al. 2013). In contrast to the Medicago MYB1, overexpression of MAMI did not led to 
premature arbuscule degeneration in Lotus. This discrepancy can be due to weak 
35S promoter activity in Lotus roots or the two copies of MAMI in Lotus might have 
gained specialized function, one specifically induced and essential for arbuscule 
degeneration and the other for the lateral root development (Volpe et al. 2013, Floss 
et al. 2017).  
 

iv) Genes regulating the amount of colonization 
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GRAS protein NODULATION SIGNALING PATHWAY 1 (NSP1) and NPS2 have 
been shown to regulate the quantitative colonization (Liu et al. 2011, Lauressergues 
et al. 2012, Delaux et al. 2013, Takeda et al. 2013). They were initially implicated in 
root nodule symbiosis (Kaló et al. 2005, Smit et al. 2005). In M. truncatula, mutation 
in NSP1 and NSP2 lead to significant reduction in colonization (Lauressergues et al. 
2012, Delaux et al. 2013) but in L. japonicus only nsp1 showed decrease in 
colonization but not nsp2 mutants. However, this discrepancy within the species is 
surprising based on interaction studies in yeast and N. benthamiana, NSP1 and NSP2 
are shown to interacts physically (Hirsch et al. 2009, Jin et al. 2016) indicating that 
this interaction might not be crucial for AM symbiosis. NSP1 and NSP2 are shown 
to form homodimer as well as heterodimer with other proteins (Hirsch et al. 2009). 
NSP2 interact with proteins such as RAM1, RAD1, DELLA and NSP1 whereas NSP1 
interacts with NSP2, MIG1 and MYB1. These protein complexes might be involved 
in induction of specific set of genes (Hirsch et al. 2009, Gobbato et al. 2012, Park et 
al. 2015, Xue et al. 2015, Fonouni-Farde et al. 2016, Heck et al. 2016, Jin et al. 2016, 
Floss et al. 2017). Both NSP1 and NSP2 are predicted to be involved in strigolactones 
biosynthesis as the nsp1 and nsp2 mutants are affected in the expression of 
strigolactones biosynthesis genes and strigolactones production (Liu et al. 2011). 
Strigolactones are important plant root exudates which activate AM fungi in the 
pre-contact phase and thus AM development is strongly reduced in mutants 
perturbed in strigolactones biosynthesis or exudation (Waters et al. 2017). However, 
full colonization was not restored in nsp1 mutant by exogenous application of 
strigolactones (Takeda et al. 2013) indicating that additional factors reduce the 
colonization in nsp1 in L. japonicus. NSP1 is activated by Myc-LCO and is important 
for the induction of several genes in response to Myc-LCO perception (Delaux et al. 
2013, Camps et al. 2015, Hohnjec et al. 2015). Some of these genes might be 
participating in the promotion of root length colonization. An apoplastic localized 
plant protease, SbtM1 belonging to subtilase family, is required for AM colonization 
as suppression of SbtM1 via RNAi caused decrease in total root length colonization 
in L. japonicus (Takeda et al. 2009). SbtM1 is induced upon colonization and SbtM1 
signal peptide fused to fluorophore driven by SbtM1 promoter, indicated SbtM1 
localization to PAS in Lotus (Takeda et al. 2009). Together these results suggest that 
SbtM1 cleaves of specific substrate present in the PAS essential for AM development 
(Takeda et al. 2009).  

The NSP2 transcript is post transcriptionally regulated by a microRNA called 
miR171h (Lauressergues et al. 2012, Hofferek et al. 2014). According to the in silico 
analysis, miR171h and its binding site in NSP2 are conserved across AM competent 
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plant species (Lauressergues et al. 2012). Consistent with these observations, 
miR171h overexpression causes reduction in colonization whereas overexpression 
of NSP2 gene resistant to miR171h leads to significant increase in colonization. In 
non-manipulated roots, miR171h is predicted to downregulate NSP2 in the root tip, 
which is generally not colonized. Consistent with this hypothesis, overexpression 
of NSP2 resistant to miR171h leads to colonization in the root tip (Lauressergues et 
al. 2012). miR171h accumulation is regulated by the physiological status of the plant 
as it accumulates in high phosphate and low nitrogen, whereas it  decreases in low 
phosphate and high nitrogen (Hofferek et al. 2014). Together, this results indicates 
that miR171h and NSP2 are responsible for quantitative colonization of the root 
depending on the nutrient availability. The other members of the miR171 family are 
known to target the LOST MERISTEMS (LOM) gene, encoding a GRAS-type 
transcription factor and required for the maintenance of shoot and root 
indeterminacy by regulating meristem cell differentiation (Stuurman et al. 2002, 
Engstrom et al. 2010, Schulze et al. 2010). In M. truncatula, LOM1 is known to 
regulate the quantitative colonization as RNAi construct targeting LOM1 resulted 
in decrease root length colonization. LOM1 and LOM2 in Medicago are targeted by 
miR171a-f except miR171b (Couzigou et al. 2017). Expression of LOM1 resistant to 
miR171 members results in LOM1 transcript accumulation and thereby increase in 
colonization level under its native promoter (Couzigou et al. 2017). miR171b is 
assumed to protect the LOM1 from cleavage by the other miR171 family members, 
as miR171b is able to anneal with LOM1 transcript but is unable to cleave the 
transcript via DICER due to presence of a mismatch at the cleavage site. This 
mismatch is conserved across AM competent species but not in A. thaliana 
indicating a strategy to fine tune the spatio-temporal expression of LOM1 via mi171-
target mimicry pair and may be advantageous for AM (Couzigou et al. 2017). 
Indeed, the promoter of LOM1 and other member of miR171a-f except miR171b are 
active throughout the root and the miR171b promoter shows activity only in the 
colonized root areas. This expression pattern of the promoters indicates that 
miR171b protect LOM1 transcript and leads to its accumulation in the colonized 
area while in non-colonized part of the root, LOM1 is downregulated by the other 
members of miR171 (Couzigou et al. 2017).  
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VII. Aims of the thesis 
 
At the start of my doctoral thesis the majority of plant genes known to be 

required for AM development were essential for intracellular accommodation of the 
fungus in the epidermis. They represent a subset of genes required for root nodule 
symbiosis in legumes. However, specific responses have to be generated 
downstream or in parallel of common symbiotic signaling for the induction of a 
specific developmental program to allow either AM or RNS. Very few candidate 
genes involved specifically in AM development were known. These were required 
for the development and maintenance of arbuscules. In the past, a forward genetic 
screen was carried out in the L. japonicus ecotype Gifu (Groth et al. 2013). This led 
to the identification of an AM-specific plant mutant called reduced and degenerate 
arbuscules (red), which is perturbed in matured development of arbuscule branching 
leading to formation of stunted arbuscule (Groth et al. 2013). Co-segregation 
analysis along with positional mapping and next generation sequencing revealed 
two mutations in red located on chromosome 1 and 6 (Groth et al. 2013). 

The first aim of this doctoral thesis was to identify the causative mutation(s) 
in red by fine-mapping using SSR markers and next generation sequencing 
technology. I found a mutation on chromosome 1 in REDUCED ARBUSCULAR 
MYCORRHIZA 1 (RAM1), encoding a protein belonging to GRAS-type 
transcription factors family and on chromosome 6 in RAM2, encoding a glycerol 3-
phosphate acyl transferase 6. RAM1 was specifically and strongly induced upon 
colonization by AM fungi in wild-type roots. Therefore, the second aim of my thesis 
was to determine how the promoter of RAM1 is regulated. I found that RAM1 is 
transcriptionally activated by a complex of CCaMK-CYCLOPS and DELLA via 
binding of CYCLOPS to a novel cis-element in the RAM1 promoter. RAM1 appears 
to act as a transcription factor, inducing genes required for arbuscule development 
such as RAM2. RAM2 is also strongly induced upon colonization by AM fungi. 
Thus, the third aim of my thesis was to investigate the promoter activity of RAM2 
using a promoter-reporter system during root colonization. RAM2 promoter is 
specifically active in the cortical cells of root containing arbuscule. To further 
correlate RAM2 promoter activity with the precise stage(s) of arbuscule 
development, I designed a construct which enabled for the first time visualization 
of the different developmental stages of arbuscule including pre-penetration 
apparatus formation in live roots.  
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VIII. Results 
 

Paper I: A CCaMK-CYCLOPS-DELLA complex activates transcription of RAM1 to 
regulate arbuscule branching 

 
Reference: Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, Karl 
L, Floss DS, Harrison MJ, Parniske M, Gutjahr C (2016). A CCaMK-CYCLOPS-
DELLA complex activates transcription of RAM1 to regulate arbuscule branching. 
Current Biology 26: 987-998. 
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SUMMARY

Intracellular arbuscular mycorrhiza symbiosis be-
tween plants and glomeromycotan fungi leads to
formation of highly branched fungal arbuscules that
release mineral nutrients to the plant host. Their
development is regulated in plants by a mecha-
nistically unresolved interplay between symbiosis,
nutrient, and hormone (gibberellin) signaling. Using
a positional cloning strategy and a retrotransposon
insertion line, we identify two novel alleles of Lotus ja-
ponicus REDUCED ARBUSCULAR MYCORRHIZA1
(RAM1) encoding a GRAS protein. We confirm that
RAM1 isacentral regulatorof arbusculedevelopment:
arbuscule branching is arrested in L. japonicus ram1
mutants, and ectopic expression of RAM1 activates
genes critical for arbuscule development in the
absence of fungal symbionts. Epistasis analysis pla-
ces RAM1 downstream of CCaMK, CYCLOPS, and
DELLAbecause ectopic expression ofRAM1 restores
arbuscule formation in cyclops mutants and in the
presence of suppressive gibberellin. The correspond-
ing proteins form a complex that activates RAM1
expression via binding of CYCLOPS to a cis element
in the RAM1 promoter. We thus reveal a transcrip-
tional cascade in arbuscule development that em-
ploys thepromoter ofRAM1as integrator of symbiotic
(transmittedviaCCaMKandCYCLOPS)andhormonal
(gibberellin) signals.

INTRODUCTION

In arbuscular mycorrhiza (AM) symbioses, fungi of the glomero-

mycota deliver mineral nutrients, especially phosphate and nitro-

gen, to the plant in exchange for organic carbon [1]. Mineral

nutrient release occurs via highly branched fungal structures,

the arbuscules, that develop inside root cortex cells [2]. Arbus-

cule formation is determined by preceding developmental

changes in the host cell and progresses in distinct steps that

can be genetically dissected with plant mutants [3]. Although

several plant genes required for these distinct steps have been

identified, it remains unknown how plant cell developmental

changes during arbuscule development are regulated and

executed mechanistically and how the individual encoded pro-

teins are functionally connected.

In legumes, AM and root nodule symbioses development

require a set of common symbiosis genes [4, 5], some of which

encode signal transduction proteins. Signaling is initiated upon

perception of microbial N-acetyl-glucosamine-containing mole-

cules such as lipochito-oligosaccharides or chitin oligomers by

receptor-like kinases [6], which triggers nuclear calcium spiking

[7]. A nuclear localized calcium and calmodulin-dependent

kinase (CCaMK) [8] interacts with and phosphorylates the tran-

scription factor CYCLOPS that directly activates the nodula-

tion-specific gene NODULE INCEPTION (NIN) [9, 10]. In AM

symbiosis, CYCLOPS is required for arbuscule initiation [9, 11]

and expression of colonization marker genes such as SbtM1,

PT4 in Lotus japonicus, or AM10 and PT11 in rice [12, 13]. Over-

expression of a dominant active version of CCaMK (CCaMK314)

can induce transcription of AM-related marker genes such as

SbtM1, RAM1, RAM2, and Vapyrin in the absence of AM fungi

and calcium spiking [14], and the expression of SbtM1, RAM1,

and Vapyrinwas shown to depend on CCaMK [12, 15, 16]. Taken

together, this suggests that the CCaMK-CYCLOPS complex

regulates genes during AM symbiosis. However, its precise hier-

archical placement and its direct target promoters in the AM

transcriptional regulatory cascade have been elusive.

An important physiological signal that inhibits arbuscule for-

mation is the plant hormone gibberellin (GA) [17–20]. Conversely,

arbuscule formation requires the presence of DELLA proteins

[18–20], repressors of GA signaling that are stable in the absence

of GA and degraded upon GA perception [21]. Although the

DELLA/GA module is a key player in the regulation of arbuscule

development and therefore a major determinant of quantitative

nutrient transfer, its mechanistic function and its position in the

interplay with symbiosis signaling remain unknown. GA-medi-

ated degradation of DELLA requires an N-terminal DELLA

domain, and deletion of this domain confers stability of the

resulting DDELLA version toward the presence of GA [22]. 35S

promoter-driven DELLAD18 can restore arbuscule formation in

the presence of GA and in roots of a cyclopsmutant [20]. Further-

more, ectopic expression of DELLAD18 can induce RAM1 and

other genes required for arbuscule development, in the absence

of the symbiotic fungus [23]. This suggests that DELLAmight act

downstream of or at the same hierarchy level as CYCLOPS [20]
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and upstream of RAM1 and other arbuscule-related genes [23].

However, the mechanistic relationship between CYCLOPS and

DELLA aswell as the direct targets of these proteins in AMdevel-

opment remained unresolved. RAM1 encodes a GRAS protein

that is required for arbuscule branching and induction of marker

genes related to arbuscule development inMedicago truncatula,

L. japonicus, and Petunia hybrida [23–25]. Ectopic expression of

RAM1 can induce arbuscule-development-related genes, indi-

cating that it might act as a transcriptional regulator [23].

A forward genetics screen in L. japonicus has been performed

to find novel host regulators and executors of arbuscule develop-

ment [26]. Here, we identified a novel allele of L. japonicus ram1

as causal for perturbance in arbuscule branching in one of the

mutants. We discovered that RAM1 is transcriptionally regulated

by a complex comprising CCaMK, CYCLOPS, and DELLA and

CYCLOPS directly binds to the RAM1 promoter. The CCaMK-

CYCLOPS-DELLA complex therefore constitutes a major regu-

latory hub interconnecting symbiosis and GA signaling during

arbuscule development.

RESULTS

red Carries a Nonsense Mutation in RAM1, Encoding a
GRAS Protein
The L. japonicus mutant reduced and degenerate arbuscules

(red; SL0181-N), found in a forward genetics screen, displays

reduced root colonization and a strong defect in arbuscule

branching. Rough mapping had identified two loci containing

causal mutations on chromosome 1 and 6 segregating in the

progeny of SL0181-N [26]. The mutation on chromosome 6

appeared to be heterozygous in individual mutants in the M2

generation because we could retrieve single mutants of the

mutation on chromosome 1 in subsequent generations that

displayed the aberrant arbuscule phenotype (Figures 1B and

2A). This was confirmed by outcrossing an M6 individual of

the SL0181-N line (M1619) to ecotype MG20 and segregation

analysis of the AM phenotype in the resulting F2 population.

Using a combination of classical mapping and next-generation

sequencing, we identified two nonsense mutations in open

reading frames in the mapping interval between the markers

TM1666 and TM0356 on chromosome 1 (Figure S1A). One

candidate mutation was a C to T transition at position 115 of

chr1.CM1852.30.r2.m, replacing the codon for amino acid 39

of the encoded GRAS protein with a stop codon (Figure S1).

It represents a novel L. japonicus allele of the previously iden-

tified M. truncatula REDUCED ARBUSCULAR MYCORRHIZA

1 (RAM1) and P. hybrida ATYPICAL ARBUSCULE (ATA) [15,

25] (Figure S2). Because two retrotransposon (LORE1) insertion

mutants of L. japonicus RAM1 have previously been described

by reverse genetics [24], we named the mutant carrying the

novel ram1 allele ram1-3 (Figures 1A and 1B). Transformation

of ram1-3 hairy roots with the wild-type RAM1 gene including

its own promoter restored arbuscule branching, confirming

that the nonsense mutation in the RAM1 gene caused the

stunted arbuscule phenotype. An independent additional

mutant (ram1-4) carrying a retrotransposon (LORE1) insertion

in exon 2 phenocopied ram1-3 with respect to arbuscule

branching (Figures 1A and 1B) and extent of root colonization

(Figure 2A).

RAM1-Dependent Gene Regulation
To assess at which stage of arbuscule development L. japonicus

ram1 mutants are perturbed, we examined the expression of

marker genes associated with arbuscule initiation (SbtM1,

BCP1, and Vapyrin A and B) and branching (RAM2, STR,

PT4, and AMT2.2) [3]. Of these, STR and RAM2 are similarly to

RAM1 required for the development of fine arbuscule branches

[27–29]. All marker genes except Vapyrin A and AMT2.2 were

induced in both ram1mutants upon AM colonization (Figure 2B).

Nonetheless, overexpression ofRAM1 driven by the ubiquitously

active L. japonicus ubiquitin promoter (pUbi:RAM1) induced

all marker genes with the exception of BCP1, Vapyrin A, and

Vapyrin B in the absence of AM fungi (Figure 3B). Thus, RAM1

is sufficient to induce arbuscule-development-related genes,

even for some that do not require RAM1 for induction.

AM-Induced RAM1 Transcription Depends on CYCLOPS

Consistent with an important role of RAM1 in AM development,

RAM1 transcripts strongly accumulated in colonized roots (Fig-

ures 1C–1E) whereas only background levels were detectable

in control roots, stems, leaves, and flowers (Figure 1C). To

detect the activity pattern of the RAM1 promoter, the same

2-kb RAM1 promoter fragment (including the 50 UTR) used to

successfully restore wild-type-like colonization in ram1-3 (Fig-

ure 1A) was coupled to the uidA gene (pRAM1:GUS). Strong

GUS activity was detected specifically in colonized, but not in

non-inoculated roots (Figure 1F). RAM1 promoter activity was

restricted to colonized root segments, in which it was detected

in all tissue layers independently of whether the fragments con-

tained arbuscules or intraradical hyphae (Figures 1G–1I). In

ram1 mutants, transcript accumulation from the ram1 mutant

alleles as well as pRAM1:GUS expression was also observed

in response to AM colonization (Figures 2B–2D), indicating

that RAM1 transcription does not depend on RAM1 itself. How-

ever, as previously reported for Medicago [15], RAM1 was

not induced by AM fungi in a ccamk-13 mutant that does not

allow intraradical colonization (Figures 1D and 1E). Induction

was also absent from two allelic cyclops mutants (cyclops-3

and -4; Figures 1D–1F and 1J), although they were colonized

by intraradical hyphae (Figure 1D), which in the wild-type

were associated with RAM1 promoter activity (Figure 1I). This

indicates that RAM1 transcriptional activation depends on the

CCaMK-CYCLOPS complex (Figure 1D).

RAM1 Expression Is Sufficient to Trigger Symbiotic
Transcriptional Regulation Downstream of CCaMK and
CYCLOPS

To investigate whether RAM1 acts downstream of CCaMK

andCYCLOPS, we examined whether ectopicRAM1 expression

could restore arbuscule formation in hairy roots of the ccamk-13

mutant and the two allelic cyclops mutants. Indeed, numerous

arbuscules formed in hairy roots of cyclops-3 and -4 transformed

with pUbi:RAM1, whereas none of the mutants allowed arbus-

cule development when transformed with the empty vector

control. This demonstrates that RAM1 expression independent

of CYCLOPS is sufficient to restore arbuscule development

in cyclops (Figure 3A). However, in ccamk-13 mutant roots,

RAM1 overexpression did not restore arbuscule formation

(Figure 3A).
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Colonization of cyclops-3 roots that expressed pUbi:RAM1

led to transcript accumulation of the AM marker genes SbtM1,

BCP1, Vapyrin B, PT4, AMT2.2, RAM2, and STR to similar levels

as in colonized wild-type transformed with an empty vector.

Most importantly, overexpression of RAM1 activated all tested

marker genes with the exception of Vapyrin A, Vapyrin B, and

BCP1 in wild-type [23] and cyclops-3 in the absence of the fun-

gus (Figure 3B). Fungus-independent expression of symbiosis-

regulated genes was also observed in ccamk-13 transformed

with pUbi:RAM1. This is particularly interesting because the

same construct did not restore colonization and arbuscule for-

mation in the inoculated ccamk-13 mutant (Figures 3A, 3B, and

S3). These data establish thatRAM1 overexpression can bypass

the lack ofCCaMK orCYCLOPS because it is sufficient to induce

AM-associated marker genes. Thus, RAM1 acts as a transcrip-

tional activator downstream of CCaMK and CYCLOPS.

RAM1 Overexpression Restores Arbuscule Formation in
the Presence of GA
In M. truncatula, arbuscule formation is inhibited by GA

treatment [20]. Inhibition can be prevented by a GA-resistant

version of DELLA (p35S:DELLA1D18) [20]. Ectopic expression
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Figure 1. Identification and Expression

Pattern of L. japonicus RAM1

(A) Gene structure of L. japonicus RAM1 with

locations of the identified stop codon mutation

(star, ram1-3) and the LORE1 insertion (triangle,

ram1-4). Black boxes indicate exons separated by

introns (thin lines).

(B) Laser scanning confocal images of L. japonicus

hairy roots colonized by R. irregularis. Wild-type

and ram1-3 mutant transformed with an empty

vector control, ram1-3 transformed with a genomic

fragment containing the wild-type RAM1 gene, and

a 1,861-bp RAM1 promoter fragment upstream of

the transcriptional start site and of ram1-4 mutant

roots at 5 weeks post-inoculation (wpi) are shown;

scale bar, 25 mm. Close up of arbuscules; scale bar,

5 mm. The fungus is stained with WGA-Alexa-

Fluor488. Numbers indicate root systems with the

displayed phenotype per total number of analyzed

transgenic root systems. White arrowheads indi-

cate arbuscules.

(C)RAM1 expression in different plant organs and in

roots colonized by R. irregularis (roots AM) at 5 wpi

as determined by qRT-PCR. Expression of the

housekeeping gene EF1alpha was used for

normalization. Different letters indicate different

statistical groups (ANOVA; post hoc Tukey; n = 15;

F4,8 = 27.08; p % 0.001).

(D) Percent root length colonization of wild-type,

ccamk-13, cyclops-3, and cyclops-4 roots by

R. irregularis at 3.5 wpi as determined by gridline

intersect method. Different letters indicate different

statistical groups (ANOVA; post hoc Tukey; n = 12;

F(total)3,8 = 4.71; F(hyphopodia)3,8 = 4.21; F(int.

hyphae)3,8 = 37.12; F(arbuscules)3,8 = 127.9;

F(vesicles)3,8 = 127.9; p(total, hyphopodia) % 0.05;

p(int. hyphae, arbuscules, vesicles) % 0.001).

(E) RAM1 expression in roots colonized by

R. irregularis as determined by qRT-PCR. Expres-

sion of the housekeeping gene Ubiquitin10 was

used for normalization. Root samples from the

same pots as in (D) were used. Different letters

indicate different statistical groups (ANOVA; post

hoc Tukey; n = 24; F7,15 = 17.24; p % 0.001).

(F–J) RAM1 promoter activity in L. japonicus roots

colonized with R. irregularis at 5 wpi. RAM1 pro-

moter activity is indicated by blue GUS staining.

(F) GUS staining of entire root systems.

(G–J) Colonization in longitudinal root sections (G, I,

and J) and a cross-section (H) is visualized by green

fluorescent WGA-AlexaFluor488 staining.

See also Figures S1 and S2 and Tables S1 and S2.

Current Biology 26, 1–12, April 25, 2016 ª2016 Elsevier Ltd All rights reserved 3

Please cite this article in press as: Pimprikar et al., A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule
Branching, Current Biology (2016), http://dx.doi.org/10.1016/j.cub.2016.01.069



ofM. truncatula DELLA1D18 can also restore arbuscule formation

in cyclops-3mutants similar to ectopic expression of RAM1 [20],

and it can induce RAM1 expression in the absence of fungus

[23]. This suggests that DELLA and RAM1 may act sequentially.

To address this, we examined whether pUbi:RAM1 restores

arbuscule formation in Lotus roots in the presence of GA. As a

positive control, we included hairy roots expressing a GA-resis-

tantDELLA1 version of L. japonicus (p35S:DELLA1D17), similar to

the published construct containing Medicago DELLA1D18 [20].
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Figure 2. AM Marker Gene Expression in

L. japonicus ram1 Mutants

(A) Percent root length colonization at 5 wpi with

R. irregularis of wild-type, ram1-3, and ram1-4

mutant as determined by gridline intersect

method. Different letters indicate statistically

different groups (ANOVA; post hoc Tukey; n =

12; F(total)2,9 = 76.08; F(hyphopodia)2,9 = 2.79;

F(int. hyphae)2,9 = 80.11; F(arbuscules)2,9 = 58.16;

F(vesicles)2,9 = 308.6; p % 0.001 int. hyphae,

intraradical hyphae).

(B) Transcript accumulation of RAM1 and AM

marker genes in root material from the experiment

shown in (A) upon colonization by R. irregularis.

Transcript accumulation was determined by

qRT-PCR, and the housekeeping gene Ubiquitin10

was used for normalization. Different letters indi-

cate different statistical groups (ANOVA; post hoc

Tukey; n = 24; F(RAM1)5,18 = 186.1; F(SbtM1)5,18 =

959.7; F(BCP1)5,18 = 506.6; F(PT4)5,18 = 45.44;

F(AMT2.2)5,18 = 158.9; F(RAM2)5,18 = 226.9;

F(STR)5,18 = 913.1; p % 0.001).

(C and D) pRAM1:GUS expression in the ram1-3

mutant at 5 wpi with R. irregularis. Blue GUS

staining is visible in whole roots (C) and correlates

with colonized areas indicated by green fluorescent

WGA-AlexaFluor488 staining (D). Numbers indicate

root systemswith the displayed phenotype per total

number of analyzed transgenic root systems.

See also Tables S1 and S2.

GA treatment inhibited arbuscule forma-

tion and accordingly AM-related marker

gene expression in roots transformed

with an empty vector. Roots transformed

with p35S:DELLA1D17 or pUbi:RAM1

restored arbuscule formation and marker

gene expression (Figures 4A and 4B)

although the plants had responded to GA

with increased shoot elongation (Fig-

ure S4). This indicates that RAM1 can

either replace DELLA (because the two

proteins are highly related; Figure S2) or

is required at a lower hierarchy level than

DELLA. However, 35S promoter-driven

expression of DELLA1D17 in the ram1-3

mutant did not restore fine branching of

arbuscules (Figure 5A), although in the

wild-type, it was sufficient to support for-

mation of fully developed arbuscules in

the presence of GA (Figure 4). Similarly,

root treatment with the GA biosynthesis

inhibitor paclobutrazol (PAC), which promotes accumulation of

DELLA proteins [30], did not restore fine branching nor quantita-

tive colonization (Figures 5B, S5A, and S5B), although it was suf-

ficient to restore formationof fully branchedarbuscules incyclops

mutants (Figures 5B and S5A), similar to p35S:DELLA1D18

expression [20]. Taken together, these data indicate that

DELLA cannot replace RAM1. Moreover, also in Lotus, ectopic

DELLA1D17 expression and PAC treatment activated RAM1

transcription in the absence of the fungus (Figures 5C–5E) [23],
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indicating that DELLA is involved in RAM1’s transcriptional

regulation.

The RAM1 Promoter Is Activated by a Complex of
CCaMK314, CYCLOPS, and DELLA
A gain-of-function version of CCaMK (CCaMK314) consisting of

the first 314 amino acids that constitute only the kinase domain

but lack the autoinhibitory domain can activate RAM1 tran-

script accumulation in the absence of AM fungi [14]. These

data together with our findings that RAM1 acts downstream of

the CCaMK phosphorylation target CYCLOPS in arbuscule

development and can be activated by DELLA1D17 (Figures 3,

4, and 5) [23] suggested that RAM1 transcription could be

directly regulated by CYCLOPS and/or DELLA. To test this in

transactivation assays, pRAM1:GUS was co-expressed with

NLS-CCaMK314-dsRed, 3xHA-CYCLOPS, and DELLA1D17 in

Nicotiana benthamiana leaves (Figure 6A). The reporter was ex-

pressed when both CYCLOPS and the autoactive CCaMK314

were co-transformed with pRAM1:GUS, indicating that

CYCLOPS is sufficient to induce the RAM1 promoter in

N. benthamiana leaves in the presence of CCaMK314. When

DELLA1D17 was combined with CCaMK314 and CYCLOPS, re-

porter expression level was higher than that induced by the

combination of CCaMK314 and CYCLOPS (Figure 6A). The

amplification of pRAM1 activation was specific for DELLA
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Figure 3. RAM1 Overexpression Restores

Symbiotic Signaling in ccamk and cyclops

Mutants

(A) Laser scanning confocal images of hairy roots of

L. japonicus wild-type, ccamk-13, cyclops-3, and

cyclops-4 mutants transformed with an empty

vector control (upper panel) and with pUbi:RAM1

(lower panel) and colonized by R. irregularis at 5

wpi; scale bar, 100 mm. Insets show close up of

arbuscules; scale bar, 5 mm. The fungus is stained

with WGA-AlexaFluor488. Numbers indicate root

systems with the displayed phenotype per total

number of analyzed transgenic root systems.

(B) Transcript accumulation of AM marker genes in

non-colonized hairy roots of wild-type, ccamk-13,

and cyclops-3 transformed with an empty vector or

with pUbi:RAM1 at 6 wpi. Transcript accumulation

was assessed by qRT-PCR, and expression of the

housekeeping gene Ubiquitin10 was used for

normalization. Statistical analysis used a Welch t

test (n = 6; #p% 0.1; *p% 0.05; **p% 0.01; ***p%

0.001).

See also Figure S3 and Tables S1 and S2.

because the related GRAS protein RAM1

did not enhance the effect of CCaMK314

and CYCLOPS on reporter expression

(Figure 6A). This suggests that CCaMK314,

CYCLOPS, and DELLA together activate

the RAM1 promoter.

Congruently, we observed that the

previously reported fungus-independent

induction of RAM1 by CCaMK314 in

L. japonicus hairy roots [14] was abolished

in a cyclops-3 mutant and also by GA

treatment in the wild-type (Figure 6B), showing that RAM1

expression depends on CYCLOPS as well as DELLA. DELLA

proteins typically regulate promoter activation by interacting

with DNA-binding transcription factors [31, 32]. Therefore, we

asked whether DELLA would also physically interact with the

DNA-binding transcription factor CYCLOPS [10] during RAM1

promoter activation. To test physical interaction, we performed

Y2H assays (Figure 6C). Both CYCLOPS and DELLA show

strong autoactivation in yeast when coupled with the DNA-bind-

ing domain of the yeast GAL4 protein [10, 33]. Therefore, we

coupled full-length CYCLOPS to the GAL4 activation domain

(AD) and fused truncated versions of DELLA1 (F1 and M5; Fig-

ure 6C) that were previously reported not to show autoactivation

in yeast [33], to the GAL4 binding domain (BD). The combination

of DELLA M5 and CYCLOPS promoted yeast growth without

autoactivation, indicating that DELLA1 and CYCLOPS can

interact in yeast and that the interaction site of DELLA1 is likely

positioned between amino acids 381 and 408 (Figure 6C). How-

ever, in yeast, DELLA1 did not directly interact with full-length

CCaMK or CCaMK314 (Figure S6A). Interaction of CYCLOPS

with DELLA1D17 or full-length DELLA1 was also indicated by

bimolecular fluorescence complementation (BiFC) (Figure 6D)

and by co-immunoprecipitation (coIP) (Figure 6E). Both versions

of DELLA also interacted with CYCLOPS when CCaMK314 was

co-expressed in N. benthamiana leaf cells and with CCaMK in
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the presence of CYCLOPS, indicating that all three proteins form

a complex (Figures 6D and 6E). Furthermore, we observed by

coIP that also the CYCLOPS ortholog of M. truncatula called

INTERACTING PROTEIN of DMI3 (IPD3) interacts with DELLA2

of M. truncatula (Figure S6B). Thus, CYCLOPS interaction with

DELLA is conserved within the legumes and among different

DELLA isoforms.

CYCLOPS Transactivates the RAM1 Promoter via Direct
Binding to a cis Element
In order to identify the cis element responsible for CYCLOPS-

mediated RAM1 activation, we performed promoter deletion

studies in N. benthamiana leaves. pRAM1 deletion constructs

were co-transformed with NLS-CCaMK314-dsRed and 3xHA-

CYCLOPS, because these two proteins are sufficient for

pRAM1 activation (Figure 6A). A 30-bp response element

‘‘AMCYC-RE’’ 280 bp upstream of the transcriptional start
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Figure 4. RAM1 Overexpression Restores

Arbuscule Formation in the Presence of GA

(A) Laser scanning confocal images of wild-

type roots of L. japonicus transformed with an

empty vector (left), p35S:DELLA1D17 (middle), and

pUbi:RAM1 (right) and colonized by R. irregularis.

The roots were watered with solvent (0.002%

ethanol) or 1 mM gibberellic acid3 (GA3) at 5 wpi.

Treatment started at 1 wpi; scale bar, 100 mm. In-

sets show close ups of arbuscules; scale bar, 5 mm.

The fungus is stained with WGA-AlexaFluor488.

Numbers indicate root systems with the displayed

phenotype per total number of analyzed transgenic

root systems.

(B) Transcript accumulation of AMmarker genes as

assessed by qRT-PCR in R. irregularis-colonized

hairy roots of wild-type, transformed with an empty

vector, with p35S:DELLA1D17 or with pUbi:RAM1.

Expression of the housekeeping gene Ubiquitin10

was used for normalization. Root samples from

the same pots as in (A) were used. Different

letters indicate different statistical groups

(ANOVA; post hoc Tukey; n = 18; F(SbtM1)5,12 =

11.23; F(BCP1)5,12 = 10.96; F(PT4)5,12 = 15.21;

F(AMT2.2)5,12 = 15.20; p % 0.001).

See also Figure S4 and Tables S1 and S2.

site (Figures 7A and 7B) was identified

as essential for activation by the

CCaMK314/CYCLOPS complex. In elec-

trophoretic mobility shift assays (EMSAs),

CYCLOPS-min, containing the binding

and activation domain of CYCLOPS [10],

bound the AMCYC-RE probe. This inter-

action was sequence specific because

competition for binding to the labeled

probe was successful with unlabeled

wild-type AMCYC-RE, but unsuccessful

with mutated AMCYC-RE (mAMCYC-RE)

(Figure 7C). Taken together, this indicates

that CYCLOPS activates the RAM1 pro-

moter through direct binding at the

AMCYC-RE. In order to test the relevance

of this element in AMsymbiosis, we analyzed apromoter deletion

series in Lotus roots colonized byR. irregularis and found that the

�325-bp promoter fragment containing this element was suffi-

cient to drive GUS expression in colonized roots (Figure S7).

DISCUSSION

Arbuscule development is accompanied by profound structural

rearrangements of the host cortex cell. Genetic evidence dem-

onstrates that the host cell plays a major role in determining

the size, shape, and branching pattern of arbuscules [3, 34].

Many transcription-factor-encoding genes are activated during

arbuscule formation [24, 35, 36]. This might reflect complex reg-

ulatory networks mediating host cell reorganization and arbus-

cule development. However, the genetic relevance, mechanistic

role, and connectivity among these transcription factors are

largely unknown.
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Here, we describe a central regulatory cascade in which the

GRAS protein RAM1 is an essential regulator of arbuscule forma-

tion because, as also reported previously, (1) ram1 mutants are

perturbed in arbuscule branching (Figure 1A) and (2) ectopic

RAM1 expression is sufficient to induce genes with established

functions in arbuscule development (Figure 2B) such as STR

and RAM2 [23–25, 27–29]. The transcriptional activation of

target genes by ectopic RAM1 expression in the absence of

the fungus strongly suggests that RAM1 acts as a transcription

factor. Nevertheless, most examined marker genes were

induced upon colonization in roots of two allelic ram1 mutants
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Figure 5. Stabilized DELLA Induces Fungus-

Independent RAM1 Transcription

(A) Laser scanning confocal images of hairy roots of

L. japonicus wild-type and ram1-3 mutant trans-

formed with an empty vector control and ram1-3

transformed with p35S:DELLA1D17 colonized by

R. irregularis at 5 wpi. The scale bars represent

25 mM. Insets show close ups of arbuscules; scale

bars, 5 mm. Numbers indicate root systems with the

displayed phenotype per total number of analyzed

transgenic root systems. In (A) and (B), the fungus

was stained with WGA-AlexaFluor488. Numbers

indicate root systemswith the displayed phenotype

per total number of analyzed root systems.

(B) Laser scanning confocal images of L. japonicus

wild-type, ccamk-13, cyclops-3, cyclops-4, and

ram1-3 roots colonized by R. irregularis at 5 wpi

treated with solvent (0.01% ethanol) or 1 mM

paclobutrazol (PAC). Treatment started at 1 wpi.

(C) Transcript accumulation of RAM1 in non-colo-

nized wild-type hairy roots transformed with an

empty vector or with p35S:DELLA1D17 as assessed

by qRT-PCR. In (C) and (D), expression of the

housekeeping gene Ubiquitin10 was used for

normalization. Statistical comparisons were per-

formed for each genotype separately (t test; **p %

0.01; ***p % 0.001).

(D) Transcript accumulation of RAM1 in non-

colonized wild-type, ccamk-13, cyclops-3, and

cyclops-4 roots treated with solvent (0.01%

ethanol) or 1 mM PAC at 5 weeks post-planting as

assessed by qRT-PCR. Treatment started at

1 week post-planting (wpp).

(E) Promoter activity visualized by blue GUS stain-

ing in L. japonicus wild-type hairy root systems in

response to solvent (0.01% ethanol) and 1 mMPAC

at 5 weeks post-planting. Treatment started at

1 wpp. Treatments were performed in absence of

the fungus.

See also Figure S5 and Tables S1 and S2.

(Figure 2). Among them, STR, PT4, and

AMT2.2 encode transporter proteins that

localize to the peri-arbuscular membrane

[27, 37, 38]. Peri-arbuscular membrane

localization of PT4 depends on its pro-

moter and thus likely the timing of expres-

sion [39]. It has therefore been proposed

that all genes encoding peri-arbuscular

membrane localized transporters may be

co-regulated [3]. However, L. japonicus

ram1 mutants dissect AMT2.2 from PT4 expression (Figure 2B),

indicating different players inducing peri-arbuscular membrane

localized transporter-encoding genes (Figure 7D). Marker gene

induction in L. japonicus ram1 contrasts withRAM1 dependence

of arbuscule-related marker genes including PT4, RAM2, and

STR in Petunia and Medicago [15, 23–25]. This partial redun-

dancy at the level of RAM1 appears therefore specific to

L. japonicus. Nevertheless, the redundant factor in L. japonicus

is insufficient to support arbuscule branching, suggesting that

RAM1 target genes co-regulated with AMT2.2 are responsible

for the ram1 phenotype (Figure 7D). Several GRAS protein
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encoding genes such as the closely related REQUIRED FOR

ARBUSCULE DEVELOPMENT (RAD1) or TF124 are induced

upon AM [23, 24] and could act redundantly with RAM1.

Our data reveal RAM1 as an entry point into AM-specific

transcriptional regulation downstream of CYCLOPS, because

the RAM1 promoter is induced by CYCLOPS and autoactive

CCaMK and overexpression of RAM1 restores arbuscule forma-

tion in cyclops mutants (Figure 3). We identified a cis element

(AMCYC-RE) that is bound by CYCLOPS and required for

RAM1 promoter activation. It contains a palindrome that has

computationally been identified in promoters of several AM-

induced genes [40]. It is possible that the CCaMK-CYCLOPS
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Figure 6. A Complex of CCaMK314,

CYCLOPS, and DELLA Activates the RAM1

Promoter

(A) Transactivation assay in Nicotiana benthamiana

leaves showing that the RAM1 promoter is induced

by a combination of CYCLOPS and CCaMK314

and more strongly induced with additional co-

expression of DELLA1D17. The pRAM1:GUS re-

porter plasmid was co-transformed with plasmids

containing the genomic sequence of the proteins

indicated at the y axis driven by constitutive pro-

moters. Boxplots represent GUS activity from 6–12

replicate leaf disks. Bold black line, median; box,

interquartile range; whiskers highest and lowest

data point within 1.5 interquartile range; dots, out-

liers outside the 1.5 interquartile range. Different

letters indicate different statistical groups (ANOVA;

post hoc Tukey; F11,116 = 68.91; p % 0.001). As-

terisks indicate statistical significant differences

(**p % 0.001) in pairwise comparisons by t test.

(B) RAM1 transcript accumulation in wild-type (WT)

and cyclops-3 hairy roots transformed with an

empty vector, with a kinase-dead version of

CCaMK314 (pUBI:CCamK314 G30E-NLS), or with

pUBI:CCamK314-NLS at 5 wpp in absence of AM

fungi. Roots were treated with solvent (0.002%

ethanol) or 1 mM GA. Treatment started at 1 wpp.

RAM1 transcript accumulation was assessed by

qRT-PCR and normalized with the expression value

of Ubiquitin10. Different letters indicate different

statistical groups (ANOVA; post hoc Tukey; n = 21;

F6,14 = 11.31; p % 0.001). n.a., not analyzed.

(C) GAL4-based yeast two-hybrid assay for interac-

tion of CYCLOPS as prey (AD) and different DELLA1

versions as bait (BD). The well-established interac-

tion between CCaMK and CYCLOPSwas used as a

positive control and all coding-sequence-containing

plasmids in combination with the complementary

empty vector as negative controls. Transformed

yeast strains were dropped at optical density 600

(OD600) = 0.6, 0.06 (1:10), and 0.006 (1:100) on syn-

thetic medium lacking Leu and Trp (�LW) or lacking

Leu, Trp, and His (�LWH) and containing 15 mM

3-AT to suppress autoactivation.

(D) Analysis for interaction of CYCLOPS and DELLA

using bimolecular fluorescence complementation in

N. benthamiana leaf epidermal cells. Leaves were

transiently transformed with T-DNAs containing the

indicated genes, and images were taken 72 hr after

infiltration. YFPN, N-terminal half of YFP; YFPC,

C-terminal half of YFP. Yellow fluorescence in-

dicates interaction. Overlays of confocal and bright

field images are shown. The size bars represent

100 mm. Insets are high-magnification micrographs

of yellowfluorescing nuclei. The sizebars represent 5 mm.The interaction ofCYCLOPSwithCCaMKwasused as apositive control andwith the kinase-dead version

CCaMKK44A as a negative control [10].

(E) Co-immunoprecipitation assay showing interaction of CYCLOPS and DELLA1D17 in presence of CCaMK in N. benthamiana leaves. For the input blots, 0.3%

input extract was loaded to detect 3xHA-CYCLOPS and MYC-DELLA1D17. After co-immunoprecipitation, 30% of the eluate was loaded, detecting both

3xHA-CYCLOPS and MYC-DELLA1D17.

See also Figure S6 and Tables S1 and S2.
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Figure 7. The CCaMK314-CYCLOPS Complex Transactivates the RAM1 Promoter through Binding to the Palindrome-Containing Response

Element AMCYC-RE

(A and B) Identification of a CYCLOPS responsive cis element in the RAM1 promoter. Indicated promoter fragments were fused to the uidA gene, and these

constructs were transformed (gray) or co-transformed with p35S:CYCLOPS and p35S:CCaMK314 (white) into N. benthamiana leaf cells. Boxplots represent GUS

(legend continued on next page)
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complex governs this regulon. AMCYC-RE differs from the pre-

viously identified CYC-RE in the NIN promoter [10]. Thus, cis

element binding specificity by transcription factor complexes

might be involved in the decision between AM and root nodule

symbiosis downstream of common symbiosis signaling.

The failure to restore colonization of ccamk-13 mutants is

probably due to absence of cortical colonization of ccamk-13

mutant roots with fungal hyphae, which is the prerequisite for

arbuscule formation. It likely requires phosphorylation of addi-

tional CCaMK targets [41]. Still, ccamk mutants are able to

trigger at least parts of the cortical program as evidenced by

induction of arbuscule-related marker genes by pUbi:RAM1

expression. Fungus-independent induction of arbuscule-devel-

opment-related genes by pUbi:RAM1 (Figure 3B) recapitulates

the previously described induction of RAM1, SbtM1, and

RAM2 by p35S-driven expression of CCaMK314 [14]. Thus,

we reveal a key transcriptional regulatory cascade coordi-

nating arbuscule development in which an activated CCaMK-

CYCLOPS complex induces RAM1 expression, and RAM1

subsequently activates SbtM1, RAM2, STR, and other genes

required for arbuscule development (Figure 7D).

Our analyses also resolve a role of DELLA proteins in arbus-

cule formation. Although our experiments involve only the GA-

resistant DELLA1, results from GA and PAC treatments and

the notion that DELLAs are replaceable and act redundantly

[20, 42] suggest an involvement of DELLA proteins in general.

They act upstream of RAM1 (Figures 4 and 5) and participate

in the complex with CCaMK and CYCLOPS that induces

RAM1 expression and therefore in the transcriptional cascade

that starts AM-specific transcriptional regulation downstream

of CYCLOPS (Figures 6 and 7). DELLAs themselves are likely

not AM-specific factors as GA not only inhibits AM symbiosis

but also nodulation [43]. Given that both CYCLOPS and

DELLA are required for CCaMK314-mediated RAM1 induction,

it is somewhat surprising that DELLA1D18 [20] and PAC treat-

ment (Figure 5B) can restore arbuscule formation in cyclops

mutants and spontaneously induce RAM1. This conundrum

might point to a role of CYCLOPS in stabilizing DELLA to facil-

itate DELLA association with yet additional unknown tran-

scriptional regulators that participate in activating the RAM1

promoter and become sufficient in the presence of stabilized

DELLA (Figure 7D).

Arbuscule formation is tightly controlled by the plant and

needs to be synchronized with its nutritional and physiological

needs. For example, colonization is inhibited by far-red light

and arbuscule development is inhibited at high P-levels

[44, 45]. This likely involves plant hormone signaling [45], which

integrates plant physiology with development [41]. The RAM1

promoter emerges as a central integration node of symbiotic

(CCaMK/CYCLOPS) and hormonal (DELLA/GA) signaling and

may be an important target during adaptation of AM develop-

ment to the plant physiological status.
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activity in 8–13 (A) or 12–16 (B) replicate leaf disks from independent plants collected in three temporally independent experiments. Bold black line, median; box,

interquartile range; whiskers highest and lowest data point within 1.5 interquartile range; dots, outliers outside the 1.5 interquartile range.

(A) Approximately 100 bp (left) and�30 bp (right) deletion series of the RAM1 promoter placed the CYCLOPS response element (AMCYC-RE) between�325 bp

and�265 bp upstream of the transcriptional start site (TSS). Gray bar indicates the position of theAMCYC-response element (AMCYC-RE) shown in (B). Different

letters indicate different statistical groups (ANOVA; post hoc Tukey; p % 0.001; F(left)9,101 = 23.28; F(right)5,51 = 50.11).

(B) Upper graph: the promoter region between �331 and �280 contains a GC-rich palindromic sequence (blue) required for RAM1 promoter activation.

Mutation (red) of the palindrome (fragment M1) reduces transactivation whereas mutation of a random upstream sequence (fragment M2) does not change

transactivation level. Lower graph: fusion of a 23 tandem repeat of the AMCYC-RE to the 35S minimal promoter is sufficient for transactivation by

the CCaMK314-CYCLOPS complex. Different letters indicate different statistical groups (ANOVA; post hoc Tukey; p % 0.001; F(upper graph)7/105 = 138.4;

F(lower graph)3/49 = 250.9).

(C) CYCLOPS specifically binds the RAM1 promoter. EMSA was performed using 6xHis-CYCLOPSmin (100 pmol) and CY5-labeled AMCYC-RE (100 fmol) as

probe. For specificity, unlabeled competitor DNA carrying either the wild-type (AMCYC-RE) or mutated palindrome (mAMCYC-RE) were added in 10-, 20-, or

30-fold molar excess. The arrow and arrowhead indicate the position of the specifically bound and the free probe, respectively. Samples were resolved on a 6%

polyacrylamide gel.

(D) Proposed transcriptional cascade regulating arbuscule development. CYCLOPS and DELLA form a complex with CCaMK that is activated by signaling from

arbuscular mycorrhiza fungi (AMF). This complex activates transcription of RAM1 through direct binding of CYCLOPS to the AMCYC response element in the

RAM1 promoter. Restoration of arbuscule formation in cyclops mutants by stabilization of DELLA [20] (this work) suggests that DELLA might also interact with

another transcription factor (X) that binds theRAM1 promoter and becomes sufficient for induction whenDELLA is stabilized. Gibberellin (GA) causes degradation

of DELLA and therefore inhibits RAM1 expression and arbuscule formation. In concert with a partially redundant factor (Y), RAM1 directly or indirectly activates

downstream genes required for arbuscule initiation, branching, and function such as SbtM1,STR,RAM2, and PT4. Transcriptional activation ofAMT2.2 and likely

other genes essential for arbuscule branching fully depends on RAM1.

See also Figure S7 and Tables S1 and S2.

10 Current Biology 26, 1–12, April 25, 2016 ª2016 Elsevier Ltd All rights reserved

Please cite this article in press as: Pimprikar et al., A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule
Branching, Current Biology (2016), http://dx.doi.org/10.1016/j.cub.2016.01.069

http://dx.doi.org/10.1016/j.cub.2016.01.069
http://dx.doi.org/10.1016/j.cub.2016.01.069


ACKNOWLEDGMENTS

We thankMakoto Hayashi (RIKEN, Yokohama, Japan) for theRFP-CCaMK314-

NLS plasmid. This work was supported by the Collaborative Research Center

(SFB924) ‘‘Molecular mechanisms regulating yield and yield stability in plants’’

of the German Research Foundation (DFG). C.G. was supported by the Emmy

Noether program (GU1423/1-1) of the DFG during part of the study.

Received: September 25, 2015

Revised: December 15, 2015

Accepted: January 28, 2016

Published: March 24, 2016

REFERENCES

1. Smith, S.E., and Smith, F.A. (2011). Roles of arbuscular mycorrhizas in

plant nutrition and growth: new paradigms from cellular to ecosystem

scales. Annu. Rev. Plant Biol. 62, 227–250.

2. Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R., and Harrison, M.J.

(2007). A Medicago truncatula phosphate transporter indispensable for

the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 104,

1720–1725.

3. Gutjahr, C., and Parniske, M. (2013). Cell and developmental biology of

arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29, 593–617.

4. Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endo-

symbioses. Nat. Rev. Microbiol. 6, 763–775.

5. Oldroyd, G.E. (2013). Speak, friend, and enter: signalling systems that

promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol.

11, 252–263.

6. Antolı́n-Llovera, M., Ried, M.K., Binder, A., and Parniske, M. (2012).

Receptor kinase signaling pathways in plant-microbe interactions. Annu.

Rev. Phytopathol. 50, 451–473.

7. Sun, J., Miller, J.B., Granqvist, E., Wiley-Kalil, A., Gobbato, E., Maillet, F.,

Cottaz, S., Samain, E., Venkateshwaran, M., Fort, S., et al. (2015).

Activation of symbiosis signaling by arbuscular mycorrhizal fungi in le-

gumes and rice. Plant Cell 27, 823–838.

8. Miller, J.B., Pratap, A., Miyahara, A., Zhou, L., Bornemann, S., Morris, R.J.,

and Oldroyd, G.E.D. (2013). Calcium/Calmodulin-dependent protein

kinase is negatively and positively regulated by calcium, providing amech-

anism for decoding calcium responses during symbiosis signaling. Plant

Cell 25, 5053–5066.

9. Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K.,

Markmann, K., White, C., Schuller, B., Sato, S., et al. (2008). CYCLOPS,

a mediator of symbiotic intracellular accommodation. Proc. Natl. Acad.

Sci. USA 105, 20540–20545.

10. Singh, S., Katzer, K., Lambert, J., Cerri, M., and Parniske, M. (2014).

CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbi-

otic root nodule development. Cell Host Microbe 15, 139–152.

11. Kistner, C., Winzer, T., Pitzschke, A., Mulder, L., Sato, S., Kaneko, T.,

Tabata, S., Sandal, N., Stougaard, J., Webb, K.J., et al. (2005). Seven

Lotus japonicus genes required for transcriptional reprogramming of

the root during fungal and bacterial symbiosis. Plant Cell 17, 2217–

2229.

12. Takeda, N., Haage, K., Sato, S., Tabata, S., and Parniske, M. (2011).

Activation of a Lotus japonicus subtilase gene during arbuscular mycor-

rhiza is dependent on the common symbiosis genes and two cis-active

promoter regions. Mol. Plant Microbe Interact. 24, 662–670.

13. Gutjahr, C., Banba, M., Croset, V., An, K., Miyao, A., An, G., Hirochika, H.,

Imaizumi-Anraku, H., and Paszkowski, U. (2008). Arbuscular mycorrhiza-

specific signaling in rice transcends the common symbiosis signaling

pathway. Plant Cell 20, 2989–3005.

14. Takeda, N., Handa, Y., Tsuzuki, S., Kojima, M., Sakakibara, H., and

Kawaguchi, M. (2015). Gibberellins interfere with symbiosis signaling

and gene expression and alter colonization by arbuscular mycorrhizal

fungi in Lotus japonicus. Plant Physiol. 167, 545–557.
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Fig. S1 related to Fig. 1. Identification of the ram1-3 mutation. (A) Genetic map of 
the red locus on chromosome 1. Numbers next to marker positions refer to the 
proportion of recombinant individuals among the number of analyzed F2 mutant plants. 
Previous rough mapping (markers in grey) had positioned the mutation on the long arm 
of chromosome 1 close to the marker TM1666 [S1].  Further fine mapping (markers in 
black) placed the causative mutation north of TM1666 and narrowed down an interval 
between TM1666 and TM0356. By re-sequencing the mutant genome using next 
generation sequencing two nonsense mutations (black stars) were found in open 
reading frames of Lj1g3v3597200.1 (FAD Oxidoreductase) and chr1.CM1852.30.r2.m 
(GRAS protein encoding RAM1) within this interval. A third mutation causing a glycine to 
alanine replacement in Lj1g3v3329020.1 (flowering locus T like) was detected close to 
the interval. Red arrows indicate the genomic interval that was searched for mutations 
using NGS data. (B) The RAM1 gene is composed of two exons (black boxes). The 
untranslated regions (UTRs) comprise 143 bp (5’ UTR) and 432 bp (3’ UTR). c RAM1 
contains the domains of a canonical GRAS protein with a variable N-terminal region and 
a conserved C-terminal region that contains two leucine heptad repeats (LHRI and II), a 
VHIID domain, a PFYRE domain and a SAW domain [S2].  
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Fig. S2 related to Fig. 1. Phylogenetic tree of GRAS proteins in L. japonicus. 
Proteins from Lotus japonicus (n=50), Medicago truncatula (n=47), Arabidopsis thaliana 
(n=33), and Oryza sativa (n=49) were included into the tree. Protein sequences were 
aligned using MAFFT. MEGA5 was used to generate a Maximum-likelihood tree. 
Bootstrap values from 1000 replicates are indicated at each node. Bootstrap values 
below 50 were omitted from the tree. Brackets indicate clades containing characterized 
proteins.  

 

	

Fig. S3 related to Fig. 3. RAM1 overexpression restores marker gene expression in 
inoculated ccamk and cyclops mutants. Transcript accumulation at 6 wpi of AM 
marker genes in hairy roots of wild type, ccamk-13 and cyclops-3 transformed with an 
empty vector or with pUbi:RAM1 and colonized by R. irregularis. Inoculated plants were 
grown in parallel with those used for Fig. 2b. Transcript accumulation was assessed by 
qRT-PCR and expression of the housekeeping gene Ubiquitin10 was used for 
normalization. Statistical analysis used a Welch t-test (n = 6, # p ≤ 0. 1, * p ≤ 0.05, ** p ≤ 
0.01, *** p ≤ 0.001).  
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Fig. S4 related to Fig. 4. Developmental phenotype after GA treatment. Chimeric 
plants with WT shoots and transgenic hairy roots show clear shoot-elongation 
responses to 1 µM GA 4 weeks after treatment.  
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Fig. S5 related to Fig. 5. Arbuscule phenotypes after PAC treatment. (A) Laser 
scanning confocal images of roots of L. japonicus wild-type, ccamk-13, cyclops-3, 
cyclops-4 and ram1-3 colonized by R. irregularis at 5 wpi treated with solvent (0.01 % 
ethanol) or 1 µM paclobutrazol (PAC). Treatment was started at 1 wpi. The fungus was 
stained with WGA-AlexaFluor488. The close-up images of the experiment displayed in 
Fig. 5b clearly show that arbuscule formation and branching is fully restored by PAC 
treatment in cyclops mutants, while arbuscule branches in the ram1 mutant still appear 
crude, branching remains underdeveloped and multiple septa are visible (white arrow 
heads).  (B) Percent root length colonization at 5 wpi with R. irregularis of wild type and 
ram1-3 treated with solvent (0.01 % ethanol) or 1 µM paclobutrazol (PAC) as 
determined by the gridline intersect method. Different letters indicate statistically 
different groups (ANOVA; posthoc Tukey; n = 12; F(total)3,8 = 37.02, F(hyphpodia) 3,8 = 
2.32, F(int. hyphae)3,8 = 38.23, F(arbuscles)3,8 = 45.86, F(vesicles) 3,8 = 70.92; p ≤ 0.001). 
int. hyphae, intraradical hyphae.  
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Fig. S6 related to Fig. 6. Interaction of DELLA with the CCaMK-CYCLOPS complex. 
(A) L. japonicus DELLA1 does not interact with CCaMK or CCaMK314 in a binary 
interaction examined by yeast two-hybrid assay. (B) M. truncatula IPD3 
(Medtr5g026850) interacts with DELLA2. Co-immunoprecipitation assay showing the 
physical interaction between M. truncatula IPD3 and DELLA2 in leaves of N. 
benthamiana. To increase sensitivity a GA-insensitive mutant protein of DELLA2 
(DELLA2Δ18) was used. For the input blots, 2.5% input extract was loaded to detect HA-
IPD3, 0.5% input extract to detect YFP-DELLA2Δ18, and 0.1% input extract to detect 
GFP. Asterisk indicates unspecific band.  

 

 

Fig. S7 related to Fig. 7. A 325 bp RAM1 promoter fragment is sufficient to drive 
GUS-expression in colonized L. japonicus roots. Activity of RAM1 promoter 
fragments in wild-type L. japonicus roots colonized with R. irregularis at 6 wpi. Promoter-
fragment activity is indicated by blue GUS-staining. Numbers above the roots indicated 
the length of the promoter fragment upstream of the transcriptional start site. Numbers 
below the roots indicate transgenic root systems with blue GUS-staining as compared to 
the total number of analyzed transgenic root systems.  
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Supplemental experimental procedures 
 
Plant material, growth conditions and inoculation with AM fungi.  For all 
experiments L. japonicus ecotype Gifu wild type and mutants were used. The mutants 
ccamk-13, cyclops-3 and cyclops-4 have been previously described [S3, S4]. The ram1-
3 mutant was derived from the line SL0181-N [S1] (see identification of RAM1). The 
ram1-4 mutant corresponds to the LORE1 insertion line 30054130 [S5] and carries a 
LORE1 insertion after 1284 bp from ATG in the genomic sequence of RAM1. Seeds 
were scarified with sand paper and surface sterilized with 1% NaClO. Imbibed seeds 
were germinated on 0.8% Bacto Agar (Difco) at 24°C for 10 - 14 days. Plantlets were 
then transferred to pots (6-9 per pot) containing a sand-vermiculite mix (2:1) and grown 
at 24 °C constant temperature, 60% air humidity and 16-h-light/8-h-dark cycles. Each 
pot was fertilized once a week with 30 ml of modified half-strength B&D medium [S6] 
containing 5 µM phosphate and twice a week with a 1:1 mix of tap water and deionized 
water. For arbuscular mycorrhiza colonization plants were inoculated with 500 spores 
per plant of R. irregularis DAOM197198 (SYMPLANTA, Munich Germany or 
Agronutrition, Toulouse France). For treatment with gibberellin3 (GA3) or pacloputrazol 
(PAC) 50 mM and 10 mM stock solution of GA3 (Sigma, G7645) and PAC (Fluka, 
46046) respectively were prepared in absolute ethanol. Plants were watered three times 
a week with 30 ml of 1 μM GA3 or PAC solution per pot containing 6-9 plants. The 
control plants received 30 ml of control solution containing an equivalent volume of 
absolute ethanol. The treatment was started 1 week post inoculation with R. irregularis 
or post planting.  

Visualization and quantification of root colonization. R. irregularis in colonized L. 
japonicus roots was stained with acid ink [S7]. Root length colonization was quantified 
using a modified gridline intersect method [S8] and 10X magnification at a light 
microscope (Leica, type 020-518500 DM/LS). For confocal laser scanning microscopy 
using a Leica SP5 fungal structures were stained with 1 μg WGA Alexa Fluor 488 
(Molecular Probes, http://www.lifetechnologies.com/) [S9]. 
 
Identification of RAM1 by map-based cloning and next generation sequencing.  
The L. japonicus mutant reduced and degenerate arbuscules (red, line SL0181-N [S1]) 
resulting from an EMS mutagenesis program [S4, S10] was outcrossed to the ecotype 
MG20 and previously found to segregate for two mutations, one on chromosome 1 
linked to marker TM1666 and one on chromosome 6 [S1]. To identify SL0181-N-specific 
mutations linked to the red locus, we employed a genome re-sequencing strategy using 
DNA from an M6 mutant family (seedbag 88820).  Nuclear DNA [S11] of Gifu wild-type 
and the SL0181-N mutant was subjected to paired end sequencing (2x100bp) of a 300-
500 bp insert library, on an Illumina Hi-Seq 2000 instrument resulting in between 16.7 
and 19.5 Gigabases per sample, equivalent to roughly 35-41 fold coverage assuming a 
genome size of 470 Megabases.  Reads were mapped to the reference genome of 
MG20 v2.5 [S12] and single nucleotide polymorphisms identified using CLC Genomics 
Workbench (CLC bio, Aarhus, Denmark). SL0181-N-specific SNPs were identified by 
subtracting Gifu/MG-20 from SL0181-N/MG-20 polymorphisms. In parallel we produced 
a new SL0181-N outcross to MG20 using a plant from the same M6 family (seedbag 
88820) that had been used for re-sequencing the mutant genome. The F2 generation of 



this outcross segregated for only one mutation as 9 out of 60 individuals exhibited the 
mutant phenotype (χ2: P(3:1)=0.83). Fine mapping using additional markers South of 
TM0166 revealed that the new F2 population only contained the mutant locus on 
chromosome 1. Inspection of the polymorphisms in the candidate interval (Figure S1) 
identified three SNPs. One caused a stop codon mutation in chr1.CM1852.30.r2.m, 
which encodes the GRAS protein REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1). 
The other two were in open reading frames of Lj1g3v3329020.1 (flowering locus T like) 
and Lj1g3v3597200.1 (FAD Oxidoreductase). Co-segregation analysis using KASP 
assay (http://www.lgcgroup.com), transgenic complementation and phenotyping of an 
independent ram1 mutant (ram1-4) generated by LORE1 insertion [S5] confirmed that 
the mutation in RAM1 caused the stunted arbuscule phenotype. Untranslated regions of 
RAM1 were determined using the Ambion FirstChoice® RLM RACE kit according to 
manufacturers instructions (http://www.ambion.de/). L. japonicus RAM1 sequence 
information can be found under the NCBI accession number KU557503. 
 
Gene expression analysis. For analysis of transcript levels by qRT-PCR, plant tissue 
was rapidly shock frozen in liquid nitrogen. RNA was extracted using the Spectrum Plant 
Total RNA Kit (www.sigmaaldrich.com). The RNA was treated with Invitrogen DNAse I 
amp. grade (www.invitrogen.com) and tested for purity by PCR. cDNA synthesis was 
performed with 1 µg RNA using the Superscript III kit (www.invitrogen.com). Real time 
RT-PCR was performed with GoTaq G2 DNA polymerase (Promega), 5 x colorless 
GoTaq Buffer (Promega) and SYBR Green I (Invitrogen S7563, 10,000x concentrated, 
500 µl) - diluted 100-fold in DMSO for storage and subsequently diluted another 50-
times in 10mM Tris, pH 8.0 as working solution. Primers were designed with primer3 
[S13] and are shown in Table S1. The qPCR reaction was run on an iCycler (Biorad, 
www.bio-rad.com/) according to manufacturers instructions. Thermal cycler conditions 
were: 95°C 2 min, 45 cycles of 95°C 30 sec, 58°/60°C/62°C 30sec and 72°C 20 sec 
followed by dissociation curve analysis. Expression levels were calculated according to 
the ΔΔCt method [S14]. For each genotype and treatment three to four biological 
replicates were monitored and each sample was represented by two to three technical 
replicates.                                                                           

Plasmid generation. Genes and promoter regions were amplified using Phusion PCR 
according to standard protocols and using primers indicated in Table S1. Plasmids were 
constructed by gateway cloning using pENTR-D/TOPO (Invitrogen) as entry vector and 
LR clonase (Invitrogen) for recombination into the destination vector or by golden gate 
cloning [S15] as indicated in Table S2. 
 
Plant transformation. For induction of transgenic hairy roots L. japonicus hypocotyls 
were transformed with plasmids shown in Table S3 using transgenic A. rhizogenes 
AR1193 as described [S16]. Transformed roots were screened by stereomicroscope 
(Leica MZ16 FA) using a mCherry fluorescent transformation marker. Nicotiana 
benthamiana leaves were transiently transformed by infiltration of transgenic A. 
tumefaciens strain AGL1 as described [S3]. 
 
Promoter GUS analysis and transactivation assay. L. japonicus hairy roots 
transformed with plasmids containing pRAM1:GUS constructs (Table S2) were 



subjected to GUS staining as described [S16]. Transactivation assays in N.  
benthamiana leaves were performed as described [S17].  
 
Yeast-two-hybrid and BiFC assay. Coding sequences of DELLA and deletion versions 
thereof were cloned into a Gateway modified yeast vectors pBDGAL4-GW (Stratagene). 
pBDGAL4-GW and pADGAL4-GW containing CCaMK and CYCLOPS sequences were 
obtained from [S3]. Constructs are listed in Table S2. Transformation of the yeast 
reporter strain HF7c and drop test were performed according to standard protocols 
(Stratagene product manual). BiFC analyses using plasmids listed in Table S2 were 
performed as described previously [S3]. For each interaction a mix of three transformed 
A. tumefaciens strains was infiltrated into N. benthamiana leaves: Two contained one of 
the split-YFP plasmids and the third one contained either a plasmid expressing free RFP 
(pK9) or RFP-CCamK314. 	

Co-immunoprecipitation assay and Western blot for L. japonicus proteins. For co-
immunoprecipitation assays, appropriate plasmids were transiently expressed in four 
weeks old N. benthamiana leaves. For that purpose, an equal volume of mixture of A. 
tumefaciens (strain AGL1) cultures containing desired plasmids was adjusted to a final 
OD600 of 0.25 with infiltration buffer (10 mM MgCl2, 10 mM MES, 150 µM 
acetosyringone, pH 5.6). Per assay, one entire leaf from three plants was infiltrated with 
the A. tumefaciens mixture using a needle-less syringe. Two days after infiltration, 
leaves were collected and frozen in liquid nitrogen. Leaves were ground in liquid 
nitrogen and homogenized in 5 mL cold buffer lysis buffer (Miltenyl Protein Isolation kit) 
containing protease inhibitors (Sigma-Aldrich). Samples were incubated at 4°C on a 
rotating wheel for 10 min and centrifuged at 10,000 rpm for 15 min at 4°C. The 
supernatant was passed through a 0.45 µm sterile syringe filter, and filtrated extract was 
added to 50 µL μMACS c-myc tagged magnetic beads (μMACS c-myc tagged Protein 
Isolation Kit, Miltenyl, 130-091-123). Filtrate extract containing the c-myc tagged 
magnetic beads were incubated on a rotating wheel for 2 hours at 4°C. Subsequent 
steps were performed according to the manufacturers instruction (μMACS c-myc tagged 
Protein Isolation Kit, Miltenyl, 130-091-123). The resulting 60 µL supernatants were 
subjected to Western blot analysis, where 10 µL i.e, 0.2% (anti-Myc) and 25 µL i.e, 0.5%  
(anti-HA) aliquots were loaded onto an SDS gel.  
For Western blot analysis, proteins were separated on 10% (w/v) SDS gels and 
transferred to 0.45 µm Immobilon®FL PVDF membranes (Millipore) using the BioRad 
minigel and blotting system. Membranes were blocked in 5% instant nonfat dry milk 
(w/v, milk powder) in PBS-T (PBS, 0.05% Tween-20) and probed with the primary 
antibody (anti-Myc, Roche or anti-HA-peroxidase conjugated, Roche) in 5% instant 
nonfat dry milk (w/v) in PBS-T overnight at 4°C. Membranes were washed and either 
processed for detection or incubated with peroxidase-conjugated anti-mouse secondary 
antibody (Biomol) for 3 hours at 4°C. Bound antibodies were detected using the Super 
Signal West Femto Maximum sentivity substrate (34096) for Anti-HA and Pierce ECL 
western blotting substrate (32106) for Anti-Myc. 
 
Co-immunoprecipitation assay and Western blot for M. truncatula proteins. 
Transient expression of proteins in N. benthamiana leaves and protein extraction was 
performed as for L. japonicus proteins except that the A. tumefaciens strain GV2260 and 



5 ml cold extraction buffer (150 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% glycerol, 10 
mM EDTA, 20 mM NaF, 10 mM DTT, 0.5% (w/v) polyvinylpyrrolidone, 0.1% Tween-20, 
protease inhibitors (Sigma-Aldrich)) per 2 g powdered tissue were used. Samples were 
incubated on ice until entirely thawn and centrifuged at 3,200 g for 15 min at 4°C. The 
supernatant was passed through a 0.45 µm sterile syringe filter (Corning®), and 1.5 mL 
filtrated extract was added to 20 µL equilibrated GFP-binding affinity resin (GFP-
Trap®_A beads, ChromoTek). Samples were incubated on a rotating wheel overnight at 
4°C. GFP-Trap®_A beads were collected by centrifugation at 2,000 g for 2 min at 4°C 
and washed three times with 1 mL wash buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
0.5 mM EDTA, 0.1% Tween-20). Proteins were eluted by adding 40 µL 2x SDS-sample 
buffer followed by incubation for 10 min at 95°C. The resulting supernatants were 
subjected to Western blot analysis, where 3 µL (anti-GFP) and 25 µL (anti-HA) aliquots 
were loaded onto an SDS-PAA gel.  
For Western blot analysis, proteins were separated on 10% (w/v) SDS-PAA gels and 
transferred to 0.45 µm Immobilon®FL PVDF membranes (Millipore) using the BioRad 
minigel and blotting system. Membranes were blocked in 5% instant nonfat dry milk 
(w/v, Carnation milk, Nestlé) in PBS-T (PBS, 0.05% Tween-20) and probed with the 
primary antibody (anti-GFP, Roche or anti-HA, Sigma-Aldrich) in 5% instant nonfat dry 
milk (w/v) in PBS-T overnight at 4°C. Membranes were washed and incubated with 
either peroxidase-conjugated anti-mouse secondary antibody (Promega) (input blots) or 
Infrared IRDye®-labeled secondary antibodies (LI-COR® Biosciences) (IP blots) for 2 
hours at room temperature. Bound antibodies were detected using the Immobilon™ 
Western Chemiluminescent HRP Substrate (Millipore) or the Odyssey® Infrared Imaging 
System (LI-COR® Biosciences).	

Electrophoretic Mobility Shift Assay (EMSA). Recombinantly expressed 6xHis-
CYCLOPSmin (100 pmol) was equilibrated in binding buffer (10 mM Tris-HCl pH 6.8, 200 
mM KCl, 0.5 mM DTT, 2.5% (vol/vol) glycerol, 5 mM MgCl2, 10 ng/μl poly (dI-dC) and 
0.2 mM EDTA) and 100 fmol of a random DNA sequence (5’-
TTCTGGTTTATATAGAAACTCAAGTGAAGA-3’) to reduce unspecific binding. The 
mixture was incubated with 10-, 20- and 30-fold molar excess of competitor DNA on ice 
for 10 min. 100 fmol 5´ CY5-labeled AMCYC-RE probe was added and binding reaction 
was performed for 15 min at room temperature. Samples were resolved on 6 % native, 
pre-run polyacrylamide gels in 0.5x TBE pH 8.3. Electrophoresis was conducted for 10 
min at 150 V until samples entered the gel and then reduced to 100 V for 60 min. CY5-
labeled DNA was visualized with the Typhoon TriO phosphoimager (Amersham 
Biosciences). Complementary pairs of CY5-labeled and unlabeled oligonucleotide 
probes correspond to (lines indicate the mutated palindrome): 	

AMCYC-RE_Fwd GTGAACAGATGGGCCGGCCCAAAAAGTGGG 
CY5- AMCYC -RE_Rev CY5-CCCACTTTTTGGGCCGGCCCATCTGTTCAC 
m AMCYC -RE_Fwd GTGAACAGATTTTAATTAAAAAAAAGTGGG 
m AMCYC -RE_Rev CCCACTTTTTTTTAATTAAAATCTGTTCAC 



Phylogenetic analysis. GRAS protein sequences from A. thaliana and O. sativa were 
retrieved from the Plant Transcription Factor Database (Perez-Rodriguez, et al., 2009). 
The sequences of DELLA1, 2 and 3 from M. truncatula were taken from [S18]. The other 
GRAS proteins from M. truncatula and L. japonicus were identified using tBLASTn 
against the NCBI database and the Lotus genome V2.5 (http://www.kazusa.or.jp/lotus/) 
respectively. GRAS proteins from L. japonicus that were not available in the Lotus 
genome sequence V2.5 were identified by tBLASTn in an in-house genome generated 
by next generation sequencing using CLC Main Workbench. All of them (except RAM1) 
were afterwards found in the new release of the Lotus genome V3.0 and renamed 
accordingly. The MAFFT alignment of the protein sequences was used to generate a 
Maximum-likelihood tree with 1000 bootstrap replicates in MEGA5 [S19].   
Statistical analysis. All statistical analyses were performed in R-studio (www.r-
project.org). To ensure equal variance gene expression data and GUS-activity data 
(transactivation assay) were log10 transformed and % colonization was arcsin 
transformed before analysis.  
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Table S1. Primers Used in This Study, Related to Figures 1-7 

 
   

Use Name Sequence 

pRAM1 fragment  1 
cloning for pRAM1:RAM1 
and pRAM1:GUS 

PP2 ATGAAGACTTTACGGGTCTCAGCGGGTAAGAGATA
ATGCGCGTTTGG 

PP132 TAGAAGACAAGATCAAATATCATTGTAATGCCTAC
ATC 

pRAM1 fragment  2 
cloning for pRAM1:RAM1 
and pRAM1:GUS 

PP133 ATGAAGACTTGATCTGTATTCAAAATTATGAATAAA
TTAC 

PP3 ATGAAGACTTCAGAGGTCTCACAGAGTTTTGTCTTTT
TGGTAGAACAGAAA 

GUS cloning for 
pRAM1:GUS to localize 
promoter activity 

PP97 ATGGTCTCATCTGAACAATGTTACGTCCTGTAGAAA
CCCCAAC 

PP98 TAGGTCTCAGATTTCATTGTTTGCCTCCCTGCTG 

CCaMK314 fragment 1 
cloning for overexpression 
of CCaMK314 

PP82 ATGAAGACTTTACGGGTCTCACACCATGGGATATGA
TCAAACCAGAAAG 

PP83 TAGAAGACAATGACCACATGTCACTCTTGGCAG 

CCaMK314 fragment 2 
cloning for overexpression 
of CCaMK314 

PP84 ATGAAGACTTGTCACTGGGAGTGATTCTATATATC 

PP85 TAGAAGACAATTTCTCATAGAAACTGAAATTCCCA 

CCaMK314 fragment 3 
cloning for overexpression 
of CCaMK314 

PP86 TAGAAGACAAGAAAACTTGGAAGGGCATTAC 

PP87 ATGAAGACTTCAGAGGTCTCACCTTAATCTCAGGGT
CCATTTGCTC 

RAM1 fragment A cloning 
for pRAM1:RAM1 and 
pUbi:RAM1  

PP5 ATGAAGACTTTACGGGTCTCACACCATGATCAATTC
AATGTGTGGAAG 

PP6 TAGAAGACAAAACCTTGTTTGATGAATTTGAATACC 

RAM1 fragment B cloning 
for pRAM1:RAM1 and 
pUbi:RAM1 

PP7 ATGAAGACTTGGTTTCTTCTGATATTGGAAGCTC 

PP8 TAGAAGACAATCCCTGCTTAAGCTATGCAA 

RAM1 fragment C cloning 
for pRAM1:RAM1 and 
pUbi:RAM1 

PP9 ATGAAGACTTGGGACTCTGGTTGATCCTACC 

PP10 TAGAAGACAACCTTATCATGGACAACAAATTCC 

RAM1 fragment D cloning 
for pRAM1:RAM1 and 
pUbi:RAM1 

PP11 TAGAAGACAAAAGGGACCAAGCACCTAACA 

PP12 ATGAAGACTTCAGAGGTCTCACCTTGCATCTCCATG
CAGAGGC 

DELLA1Δ17 fragment A 
cloning for 
p35S:DELLA1Δ17 and 
pUbi:Myc DELLA1Δ17 

PP60 ATGAAGACTTTACGGGTCTCACACCATGAAGAGAG
ATCACCAAGATAGCTG 

PP61 TAGAAGACAAATCAACTCCGGCGGCGCC 

DELLA1Δ17 fragment B 
cloning for 
p35S:DELLA1Δ17 and 
pUbi:Myc DELLA1Δ17 

PP62 ATGAAGACTTTGATGTTGCCCAGAAGATGGAACA 

PP63 TAGAAGACAAAACCCTTGAAGCGTTGTTGTTGAG 

DELLA1 fragment B 
cloning for ENTR-
DELLA1 

PP134 ATGAAGACTTTGATGAGCTTCTGGCGGCTTTAGG 

PP135 TAGAAGACAAAACCCTTGAAGCGTTGTTGTTGAG 

DELLA1Δ17 fragment C 
cloning for 

PP65 ATGAAGACTTGGTTTTCAACGATGATTCTGAATAC 

PP66 TAGAAGACAATTTCAATCGCTTGGGTTCG 
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p35S:DELLA1Δ17 and 
pUbi:Myc DELLA1Δ17 
DELLA1Δ17 fragment D 
cloning for 
p35S:DELLA1Δ17 and 
pUbi:Myc DELLA1Δ17 

PP67 ATGAAGACTTGAAAACATGGTCAATCAAATC 

PP68 TAGAAGACAAAACTGAGTTGACAGCGAC 

DELLA1Δ17 fragment E 
cloning for 
p35S:DELLA1Δ17 and 
pUbi:Myc DELLA1Δ17 

PP69 ATGAAGACTTAGTTTTCGAGCTCCACCGCATGTTAG 

PP70 TAGAAGACAATTCGTGCCGCTCGACCCG 

DELLA1Δ17 fragment F 
cloning for 
p35S:DELLA1Δ17 and 
pUbi:Myc DELLA1Δ17 

PP71 TAGAAGACAACGAAACCCTGGTCCAATGGAGGAC 

PP72 ATGAAGACTTCAGAGGTCTCACCTTCGACTCACTGG
GTTGTGGAAGCTTC 

DELLA1 fragment cloning 
for ENTR-DELLA1 

PP136 TTTGGTCTCTCACCATGAAGAGAGATCACCAAGATA
GCTG 

PP137 AAAGGTCTCACCTTCGACTCACTGGGTTGTGGAAG 

DELLA1Δ17 fragment 
cloning for ENTR- 
DELLA1Δ17 

PP138 TTTGGTCTCTCACCATGAAGAGAGATCACCAAGATA
GCTG 

PP139 AAAGGTCTCACCTTCGACTCACTGGGTTGTGGAAG 

DELLA1-F1 fragment 
cloning for ENTR- 
DELLA1-F1 

PP140 TTTGGTCTCTCACCATGAAGAGAGATCACCAAGATA
GCTG 

PP141 AAAGGTCTCACCTTTTGAGCAAGCTGAGCGAGC 

DELLA1-M5 fragment 
cloning for ENTR-
DELLA1-M5 

PP142 TTTGGTCTCTCACCATGAAGCGATTGAAGACATGGT
C 

PP143 AAAGGTCTCACCTTCGACTCACTGGGTTGTGGAAG 

pRAM1 fragment for LIIIβ 
F A-B pRAM1_1057:GUS 

MB2 ATGGTCTCAGCGGATAATTGTTCACGGTGAAAATAG
AAG 

MB1 TAGGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAGA
AA 

pRAM1 fragment for LIIIβ 
F A-B pRAM1_355:GUS 

MB3 ATGGTCTCAGCGGATGCCCATGATTGCAAAAG 

MB1 TAGGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAGA
AA 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_962:GUS 

MB4 TTTCGTCTCAGCGGGATCTGTATTCAAAATTATGAAT
AAA 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_866:GUS 

MB5 TTTCGTCTCAGCGGCAAGTGCATATAAATTCATTTTT
TCA 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_771:GUS 

MB6 TTTCGTCTCAGCGGCTTGAAATAAGAAAAATTATAG
TGAA 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_658:GUS 

MB7 TTTCGTCTCAGCGGTCACATTCACATTGACTTTTCT 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_570:GUS 

MB8 TTTCGTCTCAGCGGTTACATATTTCATTTCTCTCACTC
CT 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_470:GUS 

MB9 TTTCGTCTCAGCGGATTTTGGTCCACAAATTATTTAT
TAT 
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PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_206:GUS 

MB10 TTTCGTCTCAGCGGAGTTAAAACAGGTAATCCTAAC
TG 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_325:GUS 

MP1 TTTCGTCTCAGCGGTTCAAAAAGAACCTTGTGAAC 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_294:GUS 

MP2 TTTCGTCTCAGCGGGCCCAAAAAGTGGGGTC 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_265:GUS 

MP3 TTTCGTCTCAGCGGTGTCCTCATTAACAAGCACAAG 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 1-2 pRAM1_235:GUS 

MP4 TTTCGTCTCAGCGGAGCCTTCTGAAAGCACAAG 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 3-4 
pRAM1_325_M1:GUS 

KK1 TTTCGTCTCAGCGGTTCAAAAAGAACCTTGTGAACA
GATTTTAATTAAAAAAAAGTGGGGTCCACCAAACT
ATTTGTCCTCAT 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 3-4 
pRAM1_325_M2:GUS 

KK2 TTTCGTCTCAGCGGTTAAAAAATAAAATTTTTAAAA
TATGGGCCGGCCCAAAAAGTGGGGTCCACCAAACT
ATTTGTCCTCAT 

PP96 TTTCGTCTCACAGAGTTTTGTCTTTTTGGTAGAACAG 

pRAM1 fragment for LIIIβ 
fin 3-4 AMCYC-RE_ 
p35Smin:GUS 

PP161 TTTCGTCTCAGCGGAGTGATTTCAAAAAGAACCTTG
TGAACAGATGGGCCGGCCCAAAAAGTGGGCGCAAG
ACCCTTCCTCTATATAAG 

PP160 TTTCGTCTCACAGACGATCCCCTGTAATTGTAATTG 

pRAM1 fragment for LIIIβ 
fin 3-4 2XAMCYC-RE_ 
p35Smin:GUS 

PP162 TTTCGTCTCAGCGGGTGAACAGATGGGCCGGCCCAA
AAAGTGGGGTGAACAGATGGGCCGGCCCAAAAAGT
GGGCGCAAGACCCTTCCTCTATATAAG 

PP160 TTTCGTCTCACAGACGATCCCCTGTAATTGTAATTG 

pRAM1 fragment for LIIIβ 
fin 3-4 2XmAMCYC-RE_ 
p35Smin:GUS  

PP163 TTTCGTCTCAGCGGGTGAACAGATTTTAATTAAAAA
AAAGTGGGGTGAACAGATTTTAATTAAAAAAAAGT
GGGCGCAAGACCCTTCCTCTATATAAG 

Overexpression of 
DELLA2Δ18 for  

DELL
A2Δ18 1 

GTGAAAGATGAAGAGAGAGCATAAGCTTGAACATG
AAG 

DELL
A2Δ18 
2 

GAGCAACTTCACCACCACCGTCGTCTTCCCAACAAA
C 

Overexpression of 
DELLA2Δ18 

DELL
A2Δ18 
3 

AGTTGAATCAGTGCGAAACCACCACTGAGTTAG 

DELL
A2Δ18 
4 

CGGTGGTGGTGAAGTTGCTCAAAAACTTGAACAACT
TG 

Overexpression of 
DELLA2Δ18 

DELL
A2Δ18 
5 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGA
AGAGAGAGCATAAGCTTG 

DELL
A2Δ18 
6 

GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAGTG
CGAAACCACCACTGAG 
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Overexpression of IPD3 IPD3_
1 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGG
AAGGGAGAGGATTTTCTGG 

IPD3_
2 

GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAAAT
CTTTCCAGTTTCTGATAG 

qPCR Ubiquitin [S16] Ubi F ATGCAGATCTTCGTCAAGACCTTG 

Ubi R ACCTCCCCTCAGACGAAG 

qPCR EF1alpha [S16] EF1al
pha F 

GCAGGTCTTTGTGTCAAGTCTT 

EF1al
pha R 

CGATCCAGAACCCAGTTCT 

qPCR 3’UTR RAM1 PP99 TGCATTGAATCATGCTACGTT 

PP100 CCTTGTGGAGACCATCCATT 

qPCR SbtM1 [S1] SbtM1 
F 

CACGTTGTTAGGACCCCAAT 

SbtM1 
R 

TTGAGCAGCACCCTCTCTATC 

qPCR BCP1 [S1] BCP1 
F 

TCATCTGTCCTTGGGGTCAT 

BCP1 
R 

CAGCTGCAGAAGTTGCATTT 

qPCR PT4 [S1] PT4 F GAATAAAGGGGCCAAAATCG 

PT4 R GCTGTATCCTATCCCCATGC 

qPCR AMT2.2 [S1] AMT2
.2 F 

TGGTTCAACTTTTCGTTCCA 

AMT2
.2 R 

CTTATCACCCTGACCCCAGA 

qPCR RAM2 [S20] RAM2 
F 

ATCCTATGAGTGCACTAGCTTTACTAGAAG 

RAM2 
R 

AACGAGCAAATTAAAACTGAAAGAGAGTAC 

qPCR STR [S21] STR F CTATATTGGTGACGAGGGAAGG 

STR R GTCCTGAGGTAGGTTCATCCAG 

qPCR Vapyrin A [S22] Vapyr
in A F 

GCTATCTCACAGAAGAGACC 

Vapyr
in A R 

AACAGAGTCACCAGAACC 

qPCR Vapyrin B Vapyr
in B F 

CCATCAATGGAAGGGATCAG 

Vapyr
in B R 

TCGATCCCTTTCTCCACAAG 

qPCR CDS RAM1 SC307 TGGAGGAAGATCATGGAAGG 

SC308 AGCAACAAGCACCCTTTGTC 

 
Table S2. Plasmid used in this study, Related to Figure 1-7 
 

Purpose Name Description 
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Golden gate level III 
plasmids 

    

ram1-3 transgenic 
complementation (Fig 1B) 

LIIIβ F A-B pRAM1:RAM1 Assembled by BpiI cut ligation 
from: LIIc F 1-2 pRAM1:RAM1 + 
LII 2-3 ins (BB43) + LIIc R 3-4 
pUbi:mCherry + LII 4-6 dy (BB41) 
+ LIIIβ F A-B (BB53) 

Localization of RAM1 
promoter activity and 
transactivation assay (Fig 1F-
J, 2C-D, 5E, 6A, 7A) 

LIIIβ F A-B pRAM1:GUS Assembled by BpiI cut ligation 
from: LIIc F 1-2 pRAM1:GUS + 
LII 2-3 ins (BB43) + LIIc R 3-4 
pUbi:mCherry + LII 4-6 dy (BB41) 
+ LIIIβ F A-B (BB53) 

Overexpression of RAM1 
(Fig 3A-B, 4A-B S3 and S4) 

LIIIβ F A-B pUbi:RAM1 Assembled by BpiI cut ligation 
from: LIIc F 1-2 pUbi:RAM1 + LII 
2-3 ins (BB43) + LIIc R 3-4 
p35S:mCherry + LII 4-6 dy (BB41) 
+ LIIIβ F A-B (BB53) 

Overexpression of 
DELLA1Δ17  (Fig 4A-B, 5A, C 
and S4) 

LIIIβ F A-B p35S:DELLA1Δ17 Assembled by BpiI cut ligation 
from: LIIc F 1-2 p35S:DELLA1Δ17 
+ LII 2-3 ins (BB43) + LIIc R 3-4 
pUbi:mCherry + LII 4-6 dy (BB41) 
+ LIIIβ F A-B (BB53) 

Overexpression of CCaMK314 

(Fig 6B) 
LIIIβ F A-B pUbi:CCaMK314 Assembled by BpiI cut ligation 

from: LII 1-3 dy (BB38) + LIIc R 
3-4 p35S:mCherry + LII 4-5 dy 
(BB40) + LIIc R 5-6 
pUbi:CCaMK314+ LIIIβ F A-B 
(BB53) 

Overexpression of 
CCaMK314G30E (Fig 6B) 

LIIIβ F A-B 
pUbi:CCaMK314G30E 

Assembled by BpiI cut ligation 
from: LII 1-3 dy (BB38) + LIIc R 
3-4 p35S:mCherry + LII 4-5 dy 
(BB40) + LIIc R 5-6 
pUbi:CCaMK314G30E + LIIIβ F A-
B (BB53) 

Empty vector  EV Assembled by BpiI cut ligation 
from: LII 1-3 dy (BB38) + LIIc R 
3-4 p35S:mCherry + LII 4-6 dy 
(BB41) + LIIIβ F A-B (BB53) 

Overexpression of 
DELLA1Δ17 (Fig 6E) 

LIIIβ F A-B pUbi:Myc: 
DELLA1Δ17 

Assembled by BpiI cut ligation 
from: LIIc F 1-2 
pUbi:Myc:DELLA1Δ17 + LII 2-3 
ins (BB43) + LIIc R 3-4 
p35S:mCherry + LII 4-6 dy (BB41) 
+ LIIIβ F A-B (BB53) 

Overexpression of CCaMK 
(Fig 6E) 

p35S:GFP:CCaMK LR reaction with CCaMK cDNA 
entry clone [S3] and pK7FWG0 
[S23] 

Transactivation of promoters 
and localization of promoter 
activity 

LIIIβ fin 1-2 pOI:GUS Assembled by BpiI cut ligation 
from: LIIc F 1-2 pOI:GUS + LII 2-
3 ins (BB43) + LIIc R 3-4 
pUbi:mCherry + LII 4-6 dy (BB41) 
+ LIIIβ fin (BB52) 
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Transactivation and 
localization of 
pRAM1_1057:GUS (Fig. 7A, 
S7) 

LIIIβ F A-B pRAM1_1057:GUS Assembled by BpiI cut ligation 
from: LIIc F 1-2 
pRAM1_1057:GUS + LII 2-3 ins 
(BB43) + LIIc R 3-4 pUbi:mCherry 
+ LII 4-6 dy (BB41) + LIIIβ F A-B 
(BB53) 

Transactivation and 
localization of 
pRAM1_962:GUS (Fig. 7A) 

LIIIβ fin1-2 pRAM1_962:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MB4 + PP96 

Transactivation and 
localization of 
pRAM1_866:GUS (Fig. 7A) 

LIIIβ fin1-2 pRAM1_866:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MB5 + PP96 

Transactivation and 
localization of 
pRAM1_771:GUS (Fig. 7A) 

LIIIβ fin1-2 pRAM1_771:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MB6 + PP96 

Transactivation and 
localization of 
pRAM1_658:GUS (Fig. 7A) 

LIIIβ fin1-2 pRAM1_658:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MB7 + PP96 

Transactivation and 
localization of 
pRAM1_570:GUS (Fig. 7A) 

LIIIβ fin1-2 pRAM1_570:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MB8 + PP96 

Transactivation and 
localization of 
pRAM1_470:GUS (Fig. 7A) 

LIIIβ fin1-2 pRAM1_470:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MB9 + PP96 

Transactivation and 
localization of 
pRAM1_355:GUS (Fig. 7A) 

LIIIβ F A-B pRAM1_355:GUS Assembled by BpiI cut ligation 
from: LIIc F 1-2 
pRAM1_355:GUS + LII 2-3 ins 
(BB43) + LIIc R 3-4 pUbi:mCherry 
+ LII 4-6 dy (BB41) + LIIIβ F A-B 
(BB53) 

Transactivation and 
localization of 
pRAM1_206:GUS (Fig. 7a, S7) 

LIIIβ fin1-2 pRAM1_206:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MB10 + PP96 

Transactivation and 
localization of 
pRAM1_325:GUS (Fig. 7A, 
S7) 

LIIIβ fin1-2 pRAM1_325:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MP1 + PP96 

Transactivation and 
localization of 
pRAM1_294:GUS (Fig. 7A, 
S7) 

LIIIβ fin1-2 pRAM1_294:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MP2 + PP96 

Transactivation and 
localization of 
pRAM1_265:GUS (Fig. 7A, 
S7) 

LIIIβ fin1-2 pRAM1_265:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MP3 + P96 

Transactivation and 
localization of 
pRAM1_235:GUS (Fig. 7A, 
S7) 

LIIIβ fin1-2 pRAM1_235:GUS Assembled by Esp3I cut ligation 
from: LIIIβ fin 1-2 pOI:GUS + 
Fragment: MP4 + PP96 

Transactivation of promoter LIIIβ fin 3-4 pOI :GUS Assembled by BpiI cut ligation 
from: LIIc 1-2 pUbi:mCherry + LII 
2-3 ins (BB43) + LIIc F 3-4 
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pOI:GUS + LII 4-6 dy (BB41) + 
LIIIβ fin (BB52) 

Transactivation of 
pRAM1_325_M1:GUS (Fig. 
7a)  

LIIIβ fin 3-4 
pRAM1_325_M1:GUS 

Assembled by Esp3I cut ligation 
from: LIIIβ fin 3-4 pOI:GUS + 
Fragment: KK1+ P96 

Transactivation of 
pRAM1_325_M2:GUS (Fig. 
7B) 

LIIIβ fin 3-4 
pRAM1_325_M2:GUS 

Assembled by Esp3I cut ligation 
from: LIIIβ fin 3-4 pOI:GUS + 
Fragment: KK2+ P96 

Transactivation  of AMCYC-
RE_ p35Smin:GUS (Fig. 7B) 

LIIIβ fin 3-4 
p35Smin_AMCYC-RE:GUS  

Assembled by Esp3I cut ligation 
from: LIIIβ fin 3-4 pOI:GUS + 
Fragment: PP161+PP160  

Transactivation of 
2XAMCYC-RE_ 
p35Smin:GUS (Fig. 7B) 

LIIIβ fin 3-4 
p35Smin_2XAMCYC-RE:GUS 
(RE):GUS 

Assembled by Esp3I cut ligation 
from: LIIIβ fin 3-4 pOI:GUS + 
Fragment: PP162+PP160 

Transactivation of 
2XmAMCYC-RE_ 
p35Smin:GUS (Fig. 7B) 

LIIIβ fin 3-4 
p35Smin_2XmAMCYC-
RE:GUS  

Assembled by Esp3I cut ligation 
from: LIIIβ fin 3-4 pOI:GUS + 
Fragment: PP163+PP160  

      

Golden gate level II plasmids     

  LIIc F 1-2 pRAM1:RAM1 Assembled by BsaI cut ligation 
from: LI A-B pRAM1 + LI B-C dy 
(BB06) + LI C-D RAM1 + LI D-E 
dy (BB08) + LI E-F nos-T (G006) 
+ LI F-G dy (BB09) + LIIc F 1-2 
(BB30) 

  LIIc F 1-2 pRAM1:GUS Assembled by BsaI cut ligation 
from: LI A-B pRAM1 + LI B-C dy 
(BB06) + LI C-D GUS + LI D-E dy 
(BB08) + LI E-F nos-T (G006) + LI 
F-G dy (BB09) + LIIc F 1-2 (BB30) 

  LIIc F 1-2 pUbi:RAM1 Assembled by BsaI cut ligation 
from: LI A-B pUbi (G007) + LI B-
C dy (BB06) + LI C-D RAM1 + LI 
D-E dy (BB08) + LI E-F nos-T 
(G006) + LI F-G dy (BB09) + LIIc 
F 1-2 (BB30) 

  LIIc F 1-2 p35S:DELLA1Δ17 Assembled by BsaI cut ligation 
from: LI A-B p35S (G005) + LI B-
C (BB06) dy + LI C-D DELLA1Δ17 
+ LI D-E dy (BB08) + LI E-F nos-
T (G006) + LI F-G dy (BB09) + 
LIIc F 1-2 (BB30) 

  LIIc F 1-2 pUbi:Myc:DELLA1Δ17 Assembled by BsaI cut ligation 
from: LI A-B pUbi (G007) + LI B-
C Myc (G069) dy + LI C-D 
DELLA1Δ17 + LI D-E dy (BB08) + 
LI E-F nos-T (G006) + LI F-G dy 
(BB09) + LIIc F 1-2 (BB30) 

  LIIc R 3-4 pUbi:mCherry Assembled by BsaI cut ligation 
from: LI A-B pUbi (G007) + LI B-
C (BB06) dy + LI C-D mCherry 
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(G023) + LI D-E (BB08) dy + LI E-
F 35S-T (G059) + LI F-G dy 
(BB09) + LIIc R 3-4 (BB34) 

  LIIc R 3-4 p35S:mCherry Assembled by BsaI cut ligation 
from: LI A-B p35S (G005) + LI B-
C dy (BB06) + LI C-D mCherry 
(G023) + LI D-E (BB08) dy + LI E-
F 35S-T (G059) + LI F-G dy 
(BB09) + LIIc R 3-4 (BB34) 

  LIIc R 5-6 pUbi:CCaMK314 Assembled by BsaI cut ligation 
from: LI A-B pUbi (G007) + LI B-
C dy (BB06) + LI C-D CCaMK314 
+ LI D-E dy (BB08) + LI E-F HSP-
T (G045) + LI F-G dy (BB09) + 
LIIc R 5-6 (BB37) 

  LIIc R 5-6 pUbi:CCaMK314G30E Assembled by BsaI cut ligation 
from: LI A-B pUbi (G007) + LI B-
C dy (BB06) + LI C-D 
CCaMK314G30E+ LI D-E dy 
(BB08) + LI E-F HSP-T (G045) + 
LI F-G dy (BB09) + LIIc R 5-6 
(BB37) 

  LIIc F 1-2 pRAM1_1057:GUS Assembled by BsaI cut ligation 
from: LI A-B pRAM1_1057 + LI 
B-C dy (BB06) + LI C-D GUS + LI 
D-E dy (BB08) + LI nos-T (G006) 
+ LI F-G dy (BB09) + LIIc F 1-2 
(BB30) 

  LIIc F 1-2 pRAM1_355:GUS Assembled by BsaI cut ligation 
from: LI A-B pRAM1_355 + LI B-
C dy (BB06) + LI C-D GUS + LI 
D-E dy (BB08) + LI nos-T (G006) 
+ LI F-G dy (BB09) + LIIc F 1-2 
(BB30) 

  LIIc F 1-2 pOI:GUS Assembled by BsaI cut ligation 
from: LI A-B Esp3I-lacZ dy 
(G082) + LI B-C dy (BB06) + LI C-
D GUS + LI D-E dy (BB08) + LI 
nos-T (G006) + LI F-G dy (BB09) 
+ LIIc F 1-2 (BB30) 

  LIIc F 3-4 pOI:GUS Assembled by BsaI cut ligation 
from: LI A-B Esp3I-lacZ dy 
(G082) + LI B-C dy (BB06) + LI C-
D GUS + LI D-E dy (BB08) + LI 
nos-T (G006) + LI F-G dy (BB09) 
+ LIIc F 3-4 (BB33) 

  LIIc F 1-2 pUbi:mCherry Assembled by BsaI cut ligation 
from: LI A-B pUbi (G007) + LI B-
C (BB06) dy + LI C-D mCherry 
(G023) + LI D-E (BB08) dy + LI E-
F 35S-T (G059) + LI F-G dy 
(BB09) + LIIc F 1-2 (BB30) 
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Golden gate level I plasmids     

  LI A-B pRAM1 Assembled from two PCR 
amplified fragment from L. 
japonicus Gifu genomic DNA 
with primers. Assembly by BpiI 
cut ligation into LI-BpiI (BB03). 
Fragment 1: PP2+PP132 
Fragment 2: PP133+PP3 

  LI C-D RAM1 Assembled by BpiI cut ligation 
from: L0 RAM1A + L0 RAM1B + 
L0 RAM1C + L0 RAM1D + LI-
BpiI (BB03) 

  LI C-D GUS PCR amplification of 1.838 kb 
fragment from LI-GUS (Singh, et 
al. 2014) with primers PP97 + 
PP98. Assembly by SmaI cut 
ligation into LI-pUC57 (BB02) 

  LI C-D DELLA1Δ17 Assembled by BpiI cut ligation 
from: L0 DELLA1Δ17A + L0 
DELLA1Δ17B + L0 DELLA1Δ17C + 
L0 DELLA1Δ17D + L0 
DELLA1Δ17E + L0 DELLA1Δ17F + 
LI-BpiI (BB03) 

  LI C-D DELLA1 Assembled by BpiI cut ligation 
from: L0 DELLA1Δ17A + L0 
DELLA1B + L0 DELLA1Δ17C + L0 
DELLA1Δ17D + L0 DELLA1Δ17E + 
L0 DELLA1Δ17F + LI-BpiI (BB03) 

  LI C-D CCaMK314 Assembled from three PCR 
amplified fragment from RFP-
Kinase (CCaMK314)+NLS 
(pK7WGR2) [S24] with primers. 
Assembly by BpiI cut ligation 
into LI-BpiI (BB03). Fragment 1: 
PP82+PP83 Fragment 2: 
PP84+PP85 Fragment 3: 
PP86+PP87 

  LI C-D CCaMK314G30E Assembled from three PCR 
amplified fragment from RFP-
Kinase G30E (CCaMK314)+NLS 
(pK7WGR2) [S3] with primers. 
Assembly by BpiI cut ligation 
into LI-BpiI (BB03). Fragment 1: 
PP82+PP83 Fragment 2: 
PP84+PP85 Fragment 3: 
PP86+PP87 

  LI A-B pRAM1_1057 Assembled by SmaI blunt end 
cut ligation: pUC57 (BB02) + 
Fragment: MB2 + MB1 
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  LI A-B pRAM1_355 Assembled by SmaI blunt end 
cut ligation: pUC57 (BB02) + 
Fragment: MB3 + MB1 

      

Golden gate level 0 plasmids     

  L0 RAM1A PCR amplification of 638 bp 
fragment L. japonicus Gifu 
genomic DNA with primers PP5 
+ PP6. Assembly by SmaI cut 
ligation into LI-Amp (BB01) 

  L0 RAM1B PCR amplification of 486 bp 
fragment L. japonicus Gifu 
genomic DNA with primers PP7 
+ PP8. Assembly by SmaI cut 
ligation into LI-Amp (BB01) 

  L0 RAM1C PCR amplification of 850 bp 
fragment L. japonicus Gifu 
genomic DNA with primers PP9 
+ PP10. Assembly by StuI cut 
ligation into LI-Amp (BB01) 

  L0 RAM1D PCR amplification of 468 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP11 + PP12. Assembly by SmaI 
cut ligation into LI-Amp (BB01) 

  L0 DELLA1Δ17A PCR amplification of 185 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP60 + PP61. Assembly by SmaI 
cut ligation into LI-Amp (BB01) 

  L0 DELLA1Δ17B PCR amplification of 282 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP62 + PP63. Assembly by SmaI 
cut ligation into LI-Amp (BB01) 

  L0 DELLA1B PCR amplification of 333 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP134 + PP135. Assembly by 
SmaI cut ligation into LI-Amp 
(BB01) 

  L0 DELLA1Δ17C PCR amplification of 129 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP65 + PP66. Assembly by SmaI 
cut ligation into LI-Amp (BB01) 

  L0 DELLA1Δ17D PCR amplification of 714 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP67 + PP68. Assembly by StuI 
cut ligation into LI-Amp (BB01) 
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  L0 DELLA1Δ17E PCR amplification of 330 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP69 + PP70. Assembly by SmaI 
cut ligation into LI-Amp (BB01) 

  L0 DELLA1Δ17F PCR amplification of 255 bp 
fragment L. japonicus Gifu 
genomic DNA with primers 
PP71 + PP72. Assembly by SmaI 
cut ligation into LI-Amp (BB01) 

      

Gateway expression 
plasmids 

    

Transactivation assay (Fig. 
6A, 7A-B) 

pAMPATp35S:3xHA-
CYCLOPS 

[S17] 

Transactivation assay (Fig. 
6A, 7A-B) 

Kinase-RFP (CCaMK314)+NLS 
(pK7WGR2) 

[S24] 

Y2H assay (Fig. 6C, S6A) pAD-DELLA1-F1 LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1-F1 with pAD-GAL4 

Y2H assay (Fig. 6C, S6A) pAD-DELLA1-M5 LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1-M5 with pAD-GAL4 

Y2H assay (Fig. 6C, S6A) pBD-CCaMK [S3] 

Y2H assay (Fig. S6A) pAD-CCaMK assembled as described [S3] 

Y2H assay (Fig. S6A) pBD-CCaMK314 [S3] 

Y2H assay (Fig. 6C) pBD-DELLA1 LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1 with pBD-GAL4 

Y2H assay (Fig. 6C) pBD-DELLA1Δ17 LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1Δ17 with pBD-GAL4 

Y2H assay (Fig. 6C, S6A) pBD-DELLA1-F1 LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1-F1 with pBD-GAL4 

Y2H assay (Fig. 6C, S6A) pBD-DELLA1-M5 LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1-M5 with pBD-GAL4 

Y2H assay (Fig. 6C) pAD-CYCLOPS [S3] 

BiFC assay (Fig. 6D) DELLA1-YFPN LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1 PvuI/NruI digested 
product with pSPYNE 

BiFC assay (Fig. 6D) DELLA1Δ17-YFPN LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA1Δ17 PvuI/NruI digested 
product with pSPYNE 

BiFC assay (Fig. 6D) YFPc-CCaMK assembled as described [S3] 

BiFC assay (Fig. 6D) CCaMK-YFPN [S3] 

BiFC assay (Fig. 6D) CCaMKK44A-YFPN [S3] 
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BiFC assay (Fig. 6D) YFPC-CYCLOPS [S3] 

CoIP from Medicago (Fig 
S6B) 

YFP- DELLA2Δ18 LR clonase (Invitrogen) 
recombination of ENTR- 
DELLA2Δ18 with pEarleyGate104 
[S25] 

CoIP from Medicago (Fig 
S6B) 

HA-IPD3 LR clonase (Invitrogen) 
recombination of ENTR- IPD3 
with pEarleyGate201 [S25] 

      

Gateway entry plasmids     

  ENTR-DELLA1 PCR amplification of 1804 bp 
fragment from LI DELLA1 with 
primers PP136+ PP137. 
Assembly by BsaI cut ligation 
into pENTR-BsaI 

  ENTR-DELLA1Δ17 PCR amplification of 1753 bp 
fragment from LI DELLA1Δ17 
with primers PP138 + PP139. 
Assembly by BsaI cut ligation 
into pENTR-BsaI 

  ENTR-DELLA1-F1 PCR amplification of 1171 bp 
fragment from LI DELLA1 with 
primers PP140 + PP141. 
Assembly by BsaI cut ligation 
into pENTR-BsaI 

  ENTR-DELLA1-M5 PCR amplification of 1255 bp 
fragment from LI DELLA1 with 
primers PP142 + PP143. 
Assembly by BsaI cut ligation 
into pENTR-BsaI 

  DELLA2 Δ18  Fusion PCR as in [S12] of 
fragment 1 amplified using 
primers DELLA2Δ18 1+ 
DELLA2Δ18 2 and fragment 2 
amplified using primers 
DELLA2Δ18 3+ DELLA2Δ184 

  ENTR- DELLA2 Δ18 BP clonase reaction: 

PCR fragment amplified using 
primers DELLA2Δ18 5+ 
DELLA2Δ18 6 and pDONR207 
(Invitrogen)  

  ENTR-IPD3 BP clonase reaction: 
PCR fragment amplified using 
primers IPD3_1+ IPD3_2 and 
pDONR207 (Invitrogen)  
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Lipid transfer from plants to arbuscular
mycorrhiza fungi
Andreas Keymer1†, Priya Pimprikar1†, Vera Wewer2‡, Claudia Huber3,
Mathias Brands2, Simone L Bucerius1, Pierre-Marc Delaux4, Verena Klingl1,
Edda von Röpenack-Lahaye5§, Trevor L Wang6, Wolfgang Eisenreich3,
Peter Dörmann2, Martin Parniske1, Caroline Gutjahr1*

1Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich,
Germany; 2Institute of Molecular Physiology and Biotechnology of Plants, University
of Bonn, Bonn, Germany; 3Biochemistry, Technical University Munich, Garching,
Germany; 4Laboratoire de Recherche en Sciences Végétale, Centre National de la
Recherche Scientifique, Toulouse, France; 5Faculty of Biology, Plant Sciences, LMU
Munich, Biocenter Martinsried, Munich, Germany; 6John Innes Centre, Norwich
Research Park, Norwich, United Kingdom

Abstract Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant

hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies

suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo

fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward

genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of

lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and

accumulation of emblematic fungal 16:1w5 FAs. Using isotopolog profiling we demonstrate that
13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid

transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific

lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled

by sugars but depends on lipid transfer from plant hosts.

DOI: 10.7554/eLife.29107.001

Introduction
Arbuscular mycorrhiza (AM) is a widespread symbiosis between most land plants and fungi of the

Glomeromycota (Smith and Read, 2008). The fungi provide mineral nutrients to the plant. These

nutrients are taken up from the soil and released inside root cortex cells at highly branched hyphal

structures, the arbuscules (Javot et al., 2007). For efficient soil exploration, arbuscular mycorrhiza

fungi (AMF) develop extended extraradical hyphal networks. Their growth requires a large amount

of energy and carbon building blocks, which are transported mostly as lipid droplets and glycogen

to the growing hyphal tips (Bago et al., 2002, 2003). AMF are obligate biotrophs, as they depend

on carbon supply by their host (Smith and Read, 2008). In the past, detailed 13C-labeled tracer-

based NMR studies demonstrated that hexose sugars are a major vehicle for carbon transfer from

plants to fungi (Shachar-Hill et al., 1995). In addition, a fungal hexose transporter, with high trans-

port activity for glucose is required for arbuscule development and quantitative root colonization as

shown by host induced gene silencing (Helber et al., 2011), indicating the importance of hexose

transfer for intra-radical fungal development.

AMF store carbon mainly in the form of lipids (Trépanier et al., 2005). The predominant storage

form is triacylglycerol (TAG) and the major proportion of FAs found in AMF is composed of 16:0

(palmitic acid), and of 16:1w5 (palmitvaccenic acid). The latter is specific to AM fungi and certain

Keymer et al. eLife 2017;6:e29107. DOI: 10.7554/eLife.29107 1 of 33
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bacteria and is frequently used as marker for the detection of AM fungi in soil (Graham et al., 1995;

Bentivenga and Morton, 1996; Madan et al., 2002; Trépanier et al., 2005). Fungus-specific

16:1w5 FAs are not exclusive to glycerolipids but also incorporated into membrane phospholipids

(van Aarle and Olsson, 2003). Furthermore, 18:1w7 and 20:1q11 are considered specific for AMF

but do not occur in all AMF species (Madan et al., 2002; Stumpe et al., 2005).

It has long been assumed that AMF use sugars as precursors for lipid biosynthesis (Pfeffer et al.,

1999). However, de novo biosynthesis of fungal fatty acids (FAs) was only observed inside colonized

roots and not in extraradical mycelia or spores (Pfeffer et al., 1999; Trépanier et al., 2005). The

authors concluded that AM fungi can produce FAs only inside the host. The hypothesis that plants

directly provide lipids to the fungus could not be supported at that time (Trépanier et al., 2005),

due to experimental limitations and the lack of appropriate plant mutants. However, recently avail-

able whole genome sequences of AMF have revealed that genes encoding multi-domain cytosolic

FA synthase subunits, typically responsible for most of the de novo 16:0 FA synthesis in animals and

fungi, are absent from the genomes of the model fungi Rhizophagus irregularis, Gigaspora margarita

and Gigaspora rosea (Wewer et al., 2014; Ropars et al., 2016; Salvioli et al., 2016; Tang et al.,

2016). Hence, AMF appear to be unable to synthesize sufficient amounts of 16:0 FAs, but their

genomes do encode the enzymatic machinery for 16:0 FA elongation to higher chain length and for

FA desaturation (Trépanier et al., 2005; Wewer et al., 2014).

Development of fungal arbuscules is accompanied by activation of a cohort of lipid biosynthesis

genes in arbuscocytes (arbuscule-containing plant cells) (Gaude et al., 2012a, 2012b). Furthermore,

lipid producing plastids increase in numbers and together with other organelles such as the endo-

plasmic reticulum change their position and gather in the vicinity of the arbuscule (Lohse et al.,

2005; Ivanov and Harrison, 2014), symptomatic of high metabolic activity to satisfy the high

eLife digest Most land plants are able to form partnerships with certain fungi – known as

arbuscular mycorrhiza fungi – that live in the soil. These fungi supply the plant with mineral nutrients,

especially phosphate and nitrogen, in return for receiving carbon-based food from the plant. To

exchange nutrients, the fungi grow into the roots of the plant and form highly branched structures

known as arbuscules inside plant cells.

Due to the difficulties of studying this partnership, it has long been believed that plants only

provide sugars to the fungus. However, it has recently been discovered that these fungi lack

important genes required to make molecules known as fatty acids. Fatty acids are needed to make

larger fat molecules that, among other things, store energy for the organism and form the

membranes that surround each of its cells. Therefore, these results raise the possibility that the plant

may provide the fungus with some of the fatty acids the fungus needs to grow.

Keymer, Pimprikar et al. studied how arbuscules form in a plant known as Lotus japonicus, a close

relative of peas and beans. The experiments identified a set of mutant L. japonicus plants that had

problems forming arbuscules. These plants had mutations in several genes involved in fat production

that are only active in plant cells containing arbuscules.

Further experiments revealed that certain fat molecules that are found in fungi, but not plants,

were present at much lower levels in samples from mutant plants colonized with the fungus,

compared to samples from normal plants colonized with the fungus. This suggests that the fungi

colonizing the mutant plants may be starved of fat molecules. Using a technique called stable

isotope labelling it was possible to show that fatty acids made in normal plants can move into the

colonizing fungus.

The findings of Keymer, Pimprikar et al. provide evidence that the plant feeds the fungus not only

with sugars but also with fat molecules. The next challenge will be to find out exactly how the fat

molecules are transferred from the plant cell to the fungus. Many crop plants are able to form

partnerships with arbuscular mycorrhizal fungi. Therefore, a better understanding of the role of fat

molecules in these relationships may help to breed crop plants that, by providing more support to

their fungal partner, may grow better in the field.

DOI: 10.7554/eLife.29107.002
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demands of arbscocytes for metabolites including lipids. The importance of plant lipid biosynthesis

for arbuscule development has been demonstrated by Medicago truncatula mutants in AM-specific

paralogs of two lipid biosynthesis genes FatM and REDUCED ARBUSCULAR MYCORRHIZA2

(RAM2) (Wang et al., 2012; Bravo et al., 2017). FatM encodes an ACP-thioesterase, which termi-

nates fatty acid chain elongation in the plastid by cleaving the ACP off the acyl group releasing free

FAs and soluble ACP (Jones et al., 1995). RAM2 encodes a glycerol 3-phosphate acyl transferase

(GPAT) and is most similar to Arabidopsis GPAT6. In Arabidopsis, GPAT6 acetylates the sn-2 posi-

tion of glycerol-3-phosphate with an FA and cleaves the phosphate from lysophosphatidic acid,

thereby producing sn-2-monoacylglycerol (ßMAG, Yang et al., 2010). Mutations in both FatM and

RAM2 impair arbuscule branching (Wang et al., 2012; Bravo et al., 2017). In addition, arbuscule

branching requires a complex of two half ABC transporters STR and STR2 (Zhang et al., 2010;

Gutjahr et al., 2012). The substrate of STR/STR2 is unknown but other members of the ABCG trans-

porter family are implicated in lipid transport (Wittenburg and Carey, 2002; Wang et al., 2011;

Fabre et al., 2016; Hwang et al., 2016; Lee et al., 2016). Therefore, and due to its localization in

the peri-arbuscular membrane (Zhang et al., 2010) it was speculated that the STR/STR2 complex

may transport lipids towards arbuscules (Gutjahr et al., 2012; Bravo et al., 2017). Transcriptional

activation of RAM2 and STR is controlled by the GRAS transcription factor REDUCED ARBUSCULAR

MYCORRHIZA1 (RAM1) (Gobbato et al., 2012; Park et al., 2015; Pimprikar et al., 2016) and also

in ram1 mutants, arbuscule branching is impaired (Park et al., 2015; Xue et al., 2015;

Pimprikar et al., 2016). Thus, RAM1, FatM, RAM2 and STR/STR2 appear to form an AM-specific

operational unit for lipid biosynthesis and transport in arbuscocytes. Consistently, they were found

to be absent from genomes of plants that have lost the ability to form AM (Delaux et al., 2014;

Favre et al., 2014; Bravo et al., 2016).

Here, we analyzed two Lotus japonicus mutants identified in a forward genetic screen, which are

impaired in arbuscule branching (Groth et al., 2013). Positional cloning combined with genome

resequencing revealed mutations in a novel AM-specific b-keto-acyl ACP synthase I (KASI) gene and

in the L. japonicus ortholog of M. truncatula RAM2. KASI likely acts upstream of RAM2 in producing

16:0 FAs. The identity of the genes and the phenotypes led us to hypothesize that AMF may depend

on delivery of 16:0 FAs from the plant host. Using a combination of microscopic mutant characteriza-

tion, lipidomics and isotopolog profiling of 16:0 and 16:1w5 FAs in roots and extraradical fungal

mycelium, we provide strong evidence for requirement of both genes for AM-specific lipid biosyn-

thesis and cross-kingdom lipid transfer from plants to AMF.

Results

Two L. japonicus arbuscule-branching mutants are defective in lipid-
biosynthesis genes
We previously identified two L. japonicus mutants disorganized arbuscules (dis-1, SL0154-N) and

SL0181-N (red) deficient in arbuscule branching (Groth et al., 2013) (Figure 1A–B). Both mutants

also suffered from a reduction in root length colonization and blocked the formation of lipid-contain-

ing vesicles of the fungus Rhizophagus irregularis (Figure 1C–D). We identified the causative muta-

tions with a combination of classical mapping and next generation sequencing (see Materials and

methods). DIS encodes a b-keto-acyl ACP synthase I (KASI, Figure 1—figure supplements 1A–C

and 2). KASI enzymes catalyze successive condensation reactions during fatty acyl chain elongation

from C4:0-ACP to C16:0-ACP (Li-Beisson et al., 2010). SL0181-N carries one mutation (ram2-1) in

the L. japonicus orthologue of the previously identified Medicago truncatula REDUCED ARBUSCU-

LAR MYCORRHIZA2 (RAM2, Figure 1—figure supplements 3 and 4). Arabidopsis GPAT6 has been

shown to produce ß-MAG with a preference for 16:0 FAs (Yang et al., 2012). Therefore, we hypoth-

esized that DIS and RAM2 act in the same biosynthetic pathway.

We identified additional allelic dis mutants by TILLING (Figure 1—figure supplement 1E,

Supplementary file 1) (Perry et al., 2003) and a ram2 mutant caused by a LORE1 insertion in the

RAM2 gene (Figure 1—figure supplement 3B) (Małolepszy et al., 2016). Among the allelic dis

mutants we chose dis-4 for further investigation because it suffers from a glycine replacement at the

border of a conserved ß-sheet (Figure 1—figure supplement 2), which likely affects protein folding

(Perry et al., 2009). Both allelic mutants dis-4 and ram2-2 phenocopied dis-1 and ram2-1,
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respectively. Furthermore, transgenic complementation of both dis-1 and ram2-1 with the wild-type

versions of the mutated genes restored arbuscule-branching and wild-type-like levels of root length

colonization and vesicle formation (Figure 1A-B). Taken together this confirmed identification of

both causal mutations.
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Figure 1. DIS and RAM2 are required for arbuscule branching and vesicle formation. Arbuscule phenotype and complementation of dis (A) and ram2

(B) mutants. The fungus was stained with wheat-germ agglutinin (WGA)-AlexaFluor488. (C-D) Percent root length colonization of dis (C) and ram2 (D)

mutants as compared to wild-type. Different letters indicate significant differences among treatments (ANOVA; posthoc Tukey). (C): n = 13; p�0.1, F2,10
= 8.068 (total & int. hyphae); p�0.001 F2,10 = 124.5 (arbuscules); p�0.001, F2,10 = 299.1 (vesicles) (D): n = 15; p�0.1, F2,12 = 10.18 (total & int. hyphae);

p�0.001 F2,12 = 57.86 (arbuscules); p�0.001, F2,12 = 72.37 (vesicles). (A-D) Plants were inoculated with R. irregularis and harvested at 5 weeks post

inoculation (wpi).

DOI: 10.7554/eLife.29107.003

The following figure supplements are available for figure 1:

Figure supplement 1. Identification of the dis mutation.

DOI: 10.7554/eLife.29107.004

Figure supplement 2. Protein sequence alignment of L. japonicus DIS with other KASI proteins.

DOI: 10.7554/eLife.29107.005

Figure supplement 3. Identification of mutation in the RAM2 gene.

DOI: 10.7554/eLife.29107.006

Figure supplement 4. Protein sequence alignment of L.

DOI: 10.7554/eLife.29107.007
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DIS and RAM2 expression in arbuscocytes is sufficient for arbuscule
development
Transcript levels of both DIS and RAM2 increased in colonized roots (Figure 3—figure supplement

1A). To analyze the spatial activity pattern of the DIS and RAM2 promoters during colonization we

fused 1.5 kb for DIS and 2.275 kb for RAM2 upstream of the translational start site to the uidA gene.

Consistent with a role of both genes in arbuscule development GUS activity was predominantly

detected in arbuscocytes (arbuscule-containing cells) in both wild-type and the corresponding

mutant roots (Figure 2—figure supplement 1A–B).

To correlate promoter activity with the precise stage of arbuscule development we used nuclear

localized YFP as a reporter. To visualize the fungus, the promoter:reporter cassette was co-trans-

formed with a second expression cassette containing secreted mCherry fused to the SbtM1 pro-

moter. This promoter drives expression in colonized cells, in cells neighboring apoplastically growing

hyphae and in cells forming pre-penetration apparatuus (PPAs, cytoplasmic aggregations that

assemble in cortex cells prior to arbuscule development) (Genre et al., 2008; Takeda et al., 2009,

2012). When expressed under the control of the SbtM1 promoter, secreted mCherry accumulates in

the apoplast surrounding fungal structures and PPAs, thereby revealing the silhouette of these struc-

tures (Figure 2A–B, Videos 1–2). Nuclear localized YFP fluorescence indicated activity of both pro-

moters in cells containing PPAs (c, Videos 1–2) and containing sparsely branched (d) or mature (e)

arbuscules. Furthermore, we rarely detected YFP fluorescence in non-colonized cells in direct neigh-

borhood of arbuscocytes, which were possibly preparing for PPA formation (a). However, YFP signal

was absent from cells containing collapsed arbuscules (f), indicating that the promoters were active

during arbuscule development and growth but inactive during arbuscule degeneration (Figure 2A–

B). RAM2 promoter activity was strictly correlated with arbuscocytes, while the DIS promoter

showed additional activity in cortical cells of non-colonized root segments (Figure 2A–B, Figure 2—

figure supplement 1C–D, Videos 3–6).

To examine, whether arbuscocyte-specific expression of DIS and RAM2 is sufficient for fungal

development we complemented the dis-1 and ram2-1 mutants with the corresponding wild-type

genes fused to the arbuscocyte-specific PT4 promoter (Volpe et al., 2013). This restored arbuscule-

branching, vesicle formation as well as root length colonization in the mutants (Figure 2C–F), show-

ing that arbuscocyte-specific expression of DIS and RAM2 suffices to support AM development.

Thus, expression of lipid biosynthesis genes in arbuscocytes is not only important for arbuscule

branching but also for vesicle formation and quantitative colonization.

The KASI family comprises three members in L. japonicus
Growth and development of dis and ram2 mutants are not visibly affected (Figure 3—figure supple-

ment 2), although they carry defects in important lipid biosynthesis genes. RAM2 is specific to AM-

competent plants (Wang et al., 2012; Delaux et al., 2014; Favre et al., 2014; Bravo et al., 2016)

and activated in an AM-dependent manner (Figure 2, Figure 3—figure supplement 1A)

(Gobbato et al., 2012, 2013). Plants contain an additional GPAT6 paralog, which likely fulfills the

housekeeping function (Figure 1—figure supplement 4, Yang et al., 2012; Delaux et al., 2015). To

understand whether the same applies to DIS we searched the L. japonicus genome for additional

KASI genes. We detected three paralogs KASI, DIS and DIS-LIKE (Figure 1—figure supplement

1D–E and Figure 1—figure supplement 2), of which only DIS was transcriptionally activated in AM

roots (Figure 3—figure supplement 1A). Phylogenetic analysis revealed a split of seed plant KASI

proteins into two different clades, called KASI and DIS (Figure 3). Members of the KASI clade, are

presumably involved in housekeeping functions as this clade contains the product of the KASI single

copy gene in Arabidopsis (Wu and Xue, 2010). Members of the DIS clade are found specifically in

AM-host dicotyledons and in a gymnosperm (Figure 3). As confirmed by synteny analysis (Figure 3—

figure supplement 3), DIS is absent from all eight analyzed non-host dicotyledon genomes, a phylo-

genetic pattern similar to other symbiosis genes (Delaux et al., 2014; Favre et al., 2014;

Bravo et al., 2016). The occurrence of DIS in Lupinus species, which lost AM competence but still

form root nodule symbiosis, may be a relic from the AM competent ancestor. An apparently, Lotus-

specific, and thus recent duplication of the DIS gene resulted in an 87% identical copy (DIS-LIKE)

located directly adjacent to DIS in a tail-to-tail orientation (Figure 1—figure supplements 1B–C,

2). DIS-LIKE was expressed at very low levels and not induced upon AM (Figure 3—figure
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apoplastic space surrounding pre-penetration apparatuus (PPAs) and fungal structures, thereby evidencing the silhouette of these structures. a

Figure 2 continued on next page
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supplement 1A). Nevertheless, because of its sequence similarity to DIS, we examined whether DIS-

LIKE is also required for arbuscule formation using the dis-like-5 mutant, which suffers from a glycine

replacement at position 180 at the border of a highly conserved b-sheet that likely affects protein

function (Perry et al., 2009) (Supplementary file 1, Figure 1—figure supplement 2). However, in

roots of dis-like-5 AM and arbuscule development was indistinguishable from wild type (Figure 3—

figure supplement 1B). Therefore, DIS-LIKE might have lost its major role in arbuscule development

after the duplication.

DIS functions like a canonical KASI in planta
We examined whether DIS can substitute the phylogenetically related housekeeping KASI. To this

end we transgenically complemented an Arabidopsis kasI mutant (Wu and Xue, 2010) with Lotus

DIS driven by the Arabidopsis KASI promoter. Arabidopsis kasI exhibits an altered FA profile and

reduced rosette growth (Wu and Xue, 2010). Complementation with DIS restored both wild-type-

like rosette growth and FA accumulation. The kasI phenotypes persisted when the dis-1 mutant

allele was transformed as a negative control (Figure 4C–E). In the reverse cross-species complemen-

tation AtKASI driven by the DIS promoter restored colonization, arbuscule branching and vesicle

Figure 2 continued

Colonized root, b non-colonized part of colonized root, c PPAs, (white arrow heads indicate the silhouette of fungal intraradical hyphae) d small

arbuscules, e fully developed arbuscules f collapsed arbuscules. Merged confocal and bright field images of whole mount roots are shown. (C-D)

Transgenic complementation of dis-1 (C) and ram2-1 (D) hairy roots with the respective wild-type gene driven by the PT4 promoter. The mutant gene

was used as negative control. White arrowheads indicate arbuscules. (E-F) Quantification of AM colonization in transgenic roots shown in (C-D).

Different letters indicate significant differences (ANOVA; posthoc Tukey; n = 15; p�0.001) among genotypes for each fungal structure separately. Int.

hyphae, intraradical hyphae. (E): F2,12 = 26.53 (total), F2,12 = 46.97 (arbuscules), F2,12 = 27.42 (vesicles). (F) F2,12 = 341.5 (total), F2,12 = 146.3 (arbuscules),

F2,12 = 35.86 (vesicles).

DOI: 10.7554/eLife.29107.008

The following figure supplement is available for figure 2:

Figure supplement 1. DIS and RAM2 promoter activity in wild type and dis and ram2 mutants.

DOI: 10.7554/eLife.29107.009

Video 1. 3D animation of Figure 2Ac illustrating that

the silhouette of the fungal intraradical hyphae (red

fluorescent vertical line) aligns with the silhouette of

pre-penetration apparatuus (red fluorescent bag-like

structure). Yellow fluorescence in nuclei indicates

activation of pDIS:YFP.

DOI: 10.7554/eLife.29107.010

Video 2. 3D animation of Figure 2Bc illustrating that

the silhouette of the fungal intraradical hyphae (red

fluorescent vertical line) aligns with the silhouette of

pre-penetration apparatuus (red fluorescent bag-like

structure). Yellow fluorescence in nuclei indicates

activation of pRAM2:YFP.

DOI: 10.7554/eLife.29107.011
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formation in dis-1 roots (Figure 4A–B). Further-

more, DIS contains a KASI-typical plastid transit peptide and - as predicted - localizes to plastids in

Nicotiana benthamiana leaves and L. japonicus roots (Figure 1—figure supplement 1F Figure 4F–

G). Thus, the enzymatic function of DIS is equivalent to the housekeeping KASI of Arabidopsis and

the AM-specific function must result from its AM-dependent expression pattern.

Video 3. Scan through confocal z-stack of Figure 2Aa

illustrating correlation of DIS promoter activity with

arbuscocytes.

DOI: 10.7554/eLife.29107.012

Video 4. Scan through confocal z-stack of Figure 2Ab

illustrating DIS promoter activity exclusively in the cortex.

DOI: 10.7554/eLife.29107.013

Video 5. Scan through confocal z-stack of Figure 2Ba

illustrating correlation of RAM2 promoter activity with

arbuscocytes.

DOI: 10.7554/eLife.29107.014

Video 6. Scan through confocal z-stack of Figure 2Bb

illustrating absence of RAM2 promoter activity from

non-colonized cells.

DOI: 10.7554/eLife.29107.015
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Figure 3. Phylogenetic tree of KASI proteins in land plants. Protein sequences were aligned using MAFFT.

Phylogenetic trees were generated by neighbor-joining implemented in MEGA5 (Tamura et al., 2011). Partial gap
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The AM-specific increase in 16:0 and 16:1v5 FA containing lipids is
abolished in the dis mutant
To characterize the role of DIS in determining the lipid composition of non-colonized and colonized

roots we quantified triacylglycerols (TAGs), diacylglycerols (DAGs), galactolipids and phospholipids

in wild-type and dis-1. The lipid profile of colonized roots contains both plant and fungal lipids, how-

ever using the fungal marker FA 16:1w5 and previous data on fungus-specific lipids (Wewer et al.,

2014), many fungal lipids can be clearly distinguished from plant lipids. The lipid profile of non-colo-

nized roots was not affected by the dis-1 mutation. However, the strong and significant increase of

16:0 and 16:1 (most probably fungus-specific 16:1w5) containing TAGs, which is characteristic for

colonization of wild-type roots (Wewer et al., 2014) was abolished in dis-1 (Figure 5A–D, Figure 5—

figure supplement 1B). Also, AM- and fungus-specific DAG and phospholipid molecular species

were enhanced in colonized wild-type roots but not in colonized dis-1 roots (Figure 5—figure sup-

plements 1A and 2). In contrast, galactolipids were not affected by root colonization or genotype

(Figure 5—figure supplement 3). In summary, DIS affects the glycerolipid and phospholipid profile

of colonized L. japonicus roots and does not interfere with lipid accumulation in the non-colonized

state. Most lipids affected by the DIS mutation are fungus-specific and therefore reflect the amount

of root colonization and of fungal lipid-containing vesicles. However, since the root lipid profile is

hardly affected, absence of FA elongation by DIS was the cause of reduced lipid accumulation and

root colonization.

RAM1, DIS, RAM2 and STR are required for accumulation of AM
signature lipids
Similar to dis and ram2 L. japonicus mutants in the ABCG half-transporter STR and the GRAS protein

RAM1 are affected in arbuscule branching (Kojima et al., 2014; Pimprikar et al., 2016; Xue et al.,

2015), quantitative root colonization and formation of lipid-containing fungal vesicles (Figure 5—fig-

ure supplement 4). Moreover, the AM-dependent transcriptional activation of DIS and KASIII, the

latter of which is a single copy gene in L. japonicus and produces precursors for DIS-activity by cata-

lyzing FA chain elongation from C2 to C4, was absent from ram1 mutants (Figure 6). In contrast,

induction of the single copy gene KASII, which elongates fatty acyl chains from C16 to C18 was not

hampered by RAM1 deficiency. Thus, RAM1 may play an important role in the regulation of lipid bio-

synthesis in arbuscocytes, since it also mediates expression of RAM2 and STR (Gobbato et al.,

2012; Park et al., 2015; Pimprikar et al., 2016; Luginbuehl et al., 2017).

We hypothesized that RAM1, DIS, RAM2 and STR form a specific operational unit for lipid biosyn-

thesis and transport in arbuscocytes. Therefore, we directly compared their impact on the AM-spe-

cific root lipid profile and measured galactolipids, phospholipids, TAGs and also total and free fatty

acids in colonized roots of ram1, dis, ram2, str mutants and wild-type in parallel. Consistent with our

previous observation in dis-1, galactolipid accumulation was similar in colonized roots of wild-type

and all mutants (Figure 5—figure supplement 3C–D). In contrast, total 16:0 FAs (FAMEs) as well as

16:1 and 18:1 (likely 18:1w7 FA of fungal origin) FAs were strongly reduced in all colonized mutants

compared to the corresponding wild-type. Free FAs showed a similar pattern except for 18:1 FAs

Figure 3 continued

deletion (95%) was used together with the JTT substitution model. Bootstrap values were calculated using 500

replicates. DIS likely originated before the angiosperm divergence (red star).

DOI: 10.7554/eLife.29107.016

The following source data and figure supplements are available for figure 3:

Source data 1. Accession numbers for protein sequences used in the phyologenic tree.

DOI: 10.7554/eLife.29107.017

Figure supplement 1. Transcript accumulation of KASI and RAM2 genes.

DOI: 10.7554/eLife.29107.018

Figure supplement 2. Shoot phenotypes of dis and ram2 mutants.

DOI: 10.7554/eLife.29107.019

Figure supplement 3. Genomic comparison of the DIS locus in host and non-host species.

DOI: 10.7554/eLife.29107.020
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Figure 4. DIS function is equivalent to a canonical KASI. (A) Microscopic AM phenotype of transgenic dis-1 mutant and wild-type hairy roots

transformed with either an empty vector (EV) or the Arabidopsis KASI gene fused to the L. japonicus DIS promoter. White arrowheads indicate

arbuscules. (B) Quantification of AM colonization in transgenic roots of dis-1 transformed with EV (open circles), dis-1 transformed with pDIS-AtKASI

(grey circles) and wild-type transformed with EV (black squares). int. hyphae, intraradical hyphae. Different letters indicate significant differences

(ANOVA; posthoc Tukey; n = 15; p�0.001) among genotypes for each fungal structure separately. F2,12 = 0.809 (total and intraradical hyphae), F2,12 =

43.65 (arbuscules), F2,12 = 0.0568 (vesicles). (C) Rosettes of Arabidopsis, kasI mutant, Col-0 wild-type plants and kasI mutant plants transformed either
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(Figure 5—figure supplement 5). Also for TAGs and phospholipids, AMF-specific molecular species

and 16:0 FA containing molecular species were strongly reduced in all mutants (Figure 5E–H, Fig-

ure 5—figure supplements 6–11). However, the two allelic ram2 mutants formed an exception.

They specifically over-accumulated 16:0-16:0 FA-containing phospholipids in particular 32:0 PA and

32:0-PC but also to a smaller extend 32:0-PE and 32:0-PI (Figure 5—figure supplements 6–10). A

similar pattern was observed for tri-16:0 TAGs (Figure 5F). This suggests that RAM2 acts down-

stream of DIS in a biosynthetic pathway and uses the 16:0 FAs synthesized by DIS in arbuscocytes as

substrates. In the absence of functional RAM2 the FA products of DIS, are probably redirected into

phospholipid biosynthesis and storage lipid biosynthesis via PA and PC (Li-Beisson et al., 2010)

leading to the observed higher accumulation of 16:0 FA containing lipid species in ram2 mutants.

This higher accumulation of specific lipids did not correlate with colonization levels in ram2 mutants

(Figure 5—figure supplement 4) confirming that reduced colonization levels are not the primary

cause for altered lipid profiles in the colonized mutant roots. Instead, defective AM-specific lipid bio-

synthesis in the mutants more likely impairs fungal development.

The abundance of 16:0 ß-monoacyl-glycerol is reduced in all mutants
The first step in TAG and phospholipid production after FA biosynthesis is the esterification of FAs

with glycerol by GPATs in the plastid or endoplasmic reticulum to produce a-MAGs (sn1/3-MAGs,

Li-Beisson et al., 2010). RAM2 is predicted to produce a different type of glycerolipid ß-MAG (sn2-

MAG) with a preference towards 16:0 and 18:1 FAs (Yang et al., 2010; Wang et al.,

2012; Yang et al., 2012). To examine the role of RAM2 in MAG biosynthesis, we quantified a-MAG

and ß-MAG species in colonized roots of wild-type and all mutants. The abundance of ß-MAGs was

generally lower than that of a-MAGs (Figure 7). The amount of most a-MAG species did not differ

among the genotypes. Only the fungus-specific 16:1 and 18:1w7 a-MAGs were reduced in all

mutants reflecting the lower fungal biomass (Figure 7A). Fungus-specific ß-MAGs with 16:1 and

18:1w7 acyl groups were not detected and most ß-MAG molecular species accumulated to similar

levels in all genotypes. Exclusively the levels of 16:0 ß-MAGs were significantly lower in all mutants

as compared to the corresponding wild-type roots (Figure 7B). This supports a role of RAM2 in 16:0

ß-MAG synthesis during AM and a role of DIS in providing 16:0 FA precursors for RAM2 activity. A

low accumulation, of 16:0 ß-MAGs in ram1 mutants is consistent with RAM1’s role in regulating the

FA and lipid biosynthesis genes (Figure 6) (Gobbato et al., 2012; Pimprikar et al., 2016). In str

16:0 ß-MAGs likely did not accumulate because of reduced RAM2 expression in str roots due to low

root length colonization and/or a regulatory feedback loop (Bravo et al., 2017).

DIS, RAM2 and STR are required for transfer of 13C label from plant to
fungus
In plants, ß-MAGs serve as precursors for cutin polymers at the surface of aerial organs (Yang et al.,

2012; Yeats et al., 2012). For their use in membrane or storage lipid biosynthesis they first need to

be isomerized to a-MAGs (Li-Beisson et al., 2010). The recruitment of a GPAT6 (RAM2) instead of a

a-MAG-producing GPAT for AM-specific lipid synthesis supports the idea that RAM2-products are

destined for something else than membrane biosynthesis of the host cell. Since AM fungal genomes

lack genes encoding cytosolic FA synthase subunits (Wewer et al., 2014; Ropars et al., 2016;

Figure 4 continued

with the native AtKASI gene, the dis-1 mutant or the DIS wild-type gene driven by the Arabidopsis KASI promoter at 31 days post planting. (D) Rosette

fresh weight of kasI mutant, Col-0 wild-type plants, one transgenic pAtKASI:AtKASI complementation line (Wu and Xue, 2010) and two independent

transgenic lines each of kasI mutant plants transformed either with the dis-1 mutant or the DIS wild-type gene driven by the Arabidopsis KASI promoter

at 31 days post planting. Different letters indicate significant differences (ANOVA; posthoc Tukey; n = 70; p�0.001; F6,63 = 34.06) among genotypes. (E)

Q-TOF MS/MS analysis of absolute amount of digalactosyldiacylglycerols (DGDG) containing acyl chains of 16:x + 18:x(34:x DGDG) or di18:x(36:x

DGDG) derived from total leaf lipids of the different Arabidopsis lines. Different letters indicate significant differences (ANOVA; posthoc Tukey; n = 32;

(p�0.05, F 6,25 = 14.48 (36:6)). (F) Subcellular localization of DIS in transiently transformed Nicotiana benthamiana leaves. Free RFP localizes to the

nucleus and cytoplasm (upper panel). RFP fused to DIS co-localizes with the Arabidopsis light harvesting complex protein AtLHCB1.3-GFP in

chloroplasts (lower panel). (G) Subcellular localization in plastids of DIS-YFP expressed under the control of the L. japonicus Ubiquitin promoter in R.

irregularis colonized (upper panel) and non-colonized (lower panel) L. japonicus root cortex cells. BF, bright field; IH, intercellular hypha; A, arbuscule.

DOI: 10.7554/eLife.29107.021
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Figure 5. Lack of characteristic accumulation of triacylglycerols in AM-defective mutants. (A-D) Quantitative accumulation of (A) total triacylglycerols, (B)

tri16:0-triacylglycerol (C) tri16:x-triacylglycerols and (D) of triacylglycerols harbouring 16:x and 18:x FA-chains in non-colonized and R. irregularis

colonized wild-type and dis-1 roots. Different letters indicate significant differences (ANOVA; posthoc Tukey) (A): n = 18; p�0.001; F3,14 = 68.16. (B):

n = 18; p�0.001; F3,14 = 68.48. (C): n = 19; p�0.01, F3,15 = 7.851 (16:1-16:1-16:1); p�0.001, F3,15 = 14.52 (16:0-16:1-16:1); p�0.001, F3,15 = 39.22 (16:0-16:0-

16:1). (D): n = 19; p�0.001, F3,15 = 12.15 (48:x), F3,15 = 15.56 (50:x); p�0.01, F3,15 = 22.93 (54:x). (E-G) Quantitative accumulation of (E) total

triacylglycerols, (F) tri16:0-triacylglycerols, (G) tri16:x-triacylglycerols and (H) of triacylglycerols harbouring 16:x and 18:x FA-chains in colonized roots of

L. japonicus wild-type Gifu, wild-type MG-20 and arbuscule-defective mutants. Different letters indicate significant differences (ANOVA; posthoc Tukey).
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Tang et al., 2016) we hypothesized that 16:0 ß-MAGs synthesized by DIS- and RAM2 are predomi-

nantly delivered to the fungus. To test this hypothesis, we examined lipid transfer by FA isotopolog

profiling. Isotopologs are molecules that differ only in their isotopic composition. For isotopolog

profiling an organism is fed with a heavy isotope labelled precursor metabolite. Subsequently the

labelled isotopolog composition of metabolic products is analyzed. The resulting characteristic isoto-

polog pattern yields information about metabolic pathways and fluxes (Ahmed et al., 2014).

We could not detect fungus-specific 16:1w5 ß-MAGs in colonized roots (Figure 7B). Therefore,

we reasoned that either a downstream metabolite of ß-MAG is transported to the fungus, or alterna-

tively, ß-MAG is rapidly metabolized in the fungus prior to desaturation of the 16:0 acyl residue.

Since the transported FA groups can be used by the fungus for synthesizing a number of different

lipids, we focused on total 16:0 FA methyl esters (FAMEs, subsequently called FAs for simplicity) and

16:1w1 FAMEs as markers for lipid transfer. We fed L. japonicus wild-type, dis-1, ram2-1 and str with

[U-13C6]glucose and then measured the isotopolog composition of 16:0 FAs and 16:1w5 FAs in L.

japonicus roots and in associated extraradical fungal mycelium with spores. To generate sufficient

hyphal material for our measurements the fungus was pre-grown on split Petri dishes in presence of

a carrot hairy root system as nurse plant (Figure 8—figure supplement 1). Once the fungal myce-

lium had covered the plate, L. japonicus seedlings were added to the plate on the side opposing the

carrot root. During the whole experiment, the fungus was simultaneously supported by the carrot

hairy root and the L. japonicus seedling. Once the L. japonicus roots had been colonized, labelled

glucose was added to the side containing L. japonicus. After an additional week, FAs were esterified

and extracted from colonized L. japonicus roots and from the associated extraradical mycelium and

the total amount of 13C labelled 16:0 and 16:1w5 FAs as well as their isotopolog composition was

determined. In L. japonicus wild-type 13C-labeled 16:0 and 16:1w5 FAs were detected in colonized

Figure 5 continued

(E): n = 40; p�0.001; F8,31 = 38.42. (F) Left: absolute tri16:0 TAG content: n = 40; p�0.001; F8,31 = 19.05. Right: tri16:0 TAG proportion among all TAGs,

n = 40; p�0.001; F8,31 = 14.21. (G): p�0.001; n = 41, F8,32 = 86.16 (16:1-16:1-16:1); n = 39, F8,30 = 24.16 (16:0-16:1-16:1); n = 40, F8,31 = 17.67 (16:0-16:0-

16:1). (H): n = 40; p�0.001, F8,31 = 39.26 (48:x), F8,31 = 28.93 (50:x); p�0.01, F8,31 = 19.78 (52:x); p�0.05, F8,31 = 13.77 (54:x). (A-H) Bars represent

means ±standard deviation (SD) of 3–5 biological replicates.

DOI: 10.7554/eLife.29107.022

The following source data and figure supplements are available for figure 5:

Source data 1. Raw data for lipid profiles in Figure 5 and Figure 5—figure supplements 1–3 and 5–11.

DOI: 10.7554/eLife.29107.023

Figure supplement 1. Diacylglycerol (DAG) and triacylglycerol (TAG) profiles of L. japonicus WT and dis-1 control and AM roots.

DOI: 10.7554/eLife.29107.024

Figure supplement 2. Profiles of phospholipids in non-colonized and colonized L. japonicus WT Gifu and dis-1 roots.

DOI: 10.7554/eLife.29107.025

Figure supplement 3. MGDG and DGDG profiles do not differ among L. japonicus wild-type and mutant roots.

DOI: 10.7554/eLife.29107.026

Figure supplement 4. All arbuscule-deficient mutants show reduced root length colonization.

DOI: 10.7554/eLife.29107.027

Figure supplement 5. Total fatty acid and free fatty acid profiles of colonized L. japonicus WT and AM-defective mutant roots.

DOI: 10.7554/eLife.29107.028

Figure supplement 6. Triacylglycerol (TAG) profiles of colonized L. japonicus WT and AM-defective mutant roots.

DOI: 10.7554/eLife.29107.029

Figure supplement 7. Phosphatidic acid (PA) profiles in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.030

Figure supplement 8. Profile of phosphatidylcholines (PC) in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.031

Figure supplement 9. Phosphatidylethanolamine (PE) profile in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.032

Figure supplement 10. Phosphatidylinositol (PI) profile in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.033

Figure supplement 11. Phosphatidylserine (PS) profile in L. japonicus WT and AM-defective mutants.

DOI: 10.7554/eLife.29107.034
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roots as well as in the extraradical fungal mycelium (Figure 8A–B, Figure 8—figure supplement

2A–B), indicating that 13C-labelled organic compounds were transferred from the root to the fungus.

No labelled FAs were detected in the fungal mycelium when the fungus was supplied with [U-13C6]

glucose in absence of a plant host (Figure 8A–B, Figure 8—figure supplements 2A–B,3), indicating

that the fungus itself could not metabolize labelled glucose to synthesize FAs. The three mutants

incorporated 13C into 16:0 FAs at similar amounts as the wild-type but hardly any 13C was trans-

ferred to the fungus (Figure 8A–B, Figure 8—figure supplement 2A–B).

Host plants determine the isotopolog pattern of fungal FAs
Remarkably, the isotopolog profile of 16:0 FAs was close to identical between colonized L. japonicus

roots and the connected extraradical mycelium, for 11 independent samples of wild-type Gifu

(Figure 8C–D, Figure 8—figure supplement 4) and for 5 independent samples of wild-type MG20

(Figure 8—figure supplement 2C–D). Moreover, the isotopolog profile of fungus-specific 16:1w5

FAs mirrored the profile of 16:0 FAs (Figure 8C, Figure 8—figure supplements 2,4). Pattern con-

servation between root and associated extraradical mycelium occurred independently of pattern var-

iation among individual samples. Since the fungus does not incorporate 13C into the analyzed FAs in

the absence of the plant (Figure 8A–B, Figure 8—figure supplement 2A–B) this conserved pattern

demonstrates transfer of 16:0 FA-containing lipids from the host plant to the fungus because the

plant determines the isotopolog pattern of fungal 16:0 and 16:1w5 FAs. The 16:0 FA isotopolog pat-

tern of colonized dis-1, ram2 and str mutant roots resembled the wild-type profile, indicating intact

uptake and metabolism of labelled glucose. However, the 16:0 FA isotopolog pattern of the
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extraradical mycelium associated with mutant roots and the fungal 16:1w5 FA profile inside and out-

side the roots differed strongly from the 16:0 FA profile of the mutant host roots (Figure 8C, Fig-

ure 8—figure supplements 2C,4), consistent with very low FA transfer from the mutant plants to

the fungus. The losses in isotopolog profile conservation between plant and fungal FAs in the

mutants likely result from dilution of labelled FAs by unlabeled FAs from the carrot hairy root

(Figure 8D, Figure 8—figure supplements 1 and 2D) and/or from biases due to quantification of

FAs at the detection limit.

To confirm that the plant determines the fungal FA isotopolog pattern we switched plant system

and profiled isotopologs after labelling carrot root organ culture (ROC) in the absence of L.
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japonicus seedlings (Figure 8D, Figure 8—figure supplement 1). In these root organ cultures, sugar

uptake from the medium does not compete with photosynthesis, as in whole seedlings. Additionally,

the carrot roots explore a larger surface of the Petri dish, increasing access to substances in the

nutrient medium. Consequently, and likely because of increased uptake of labelled glucose from the

medium, the isotopolog pattern of carrot ROCs differed from Lotus and was shifted towards more

highly labeled 16:0 FA isotopologs. This fingerprint was again recapitulated in the extraradical fungal

mycelium as well as in fungus-specific 16:1w5 FAs inside and outside the root for 10 independent

samples (Figure 8C, Figure 8—figure supplement 4). These data provide strong support for direct

transfer of a 16:0 FA containing lipid from plants to AMF (Figure 9).

Discussion
Here we identified DIS and RAM2, two AM-specific paralogs of the lipid biosynthesis genes KASI

and GPAT6 using forward genetics in Lotus japonicus. The dis and ram2 mutants enabled us to dem-

onstrate lipid transfer from plants to AMF using isotopolog profiling.

During AM symbiosis, an array of lipid biosynthesis genes is induced in arbuscocytes

(Gaude et al., 2012a, 2012b), indicating a large demand for lipids in these cells. Indeed, two genes

encoding lipid biosynthesis enzymes, the thioesterase FatM and the GPAT6 RAM2, have previously

been shown to be required for arbuscule branching in M. truncatula (Wang et al., 2012;

Bravo et al., 2017; Jiang et al., 2017). Both enzymes have a substrate preference for 16:0 FAs

(Salas and Ohlrogge, 2002; Yang et al., 2012; Bravo et al., 2017) and, consistent with this, we and

others observed that colonized ram2 mutant roots over-accumulate 16:0 FA containing phospholi-

pids and TAGs (Figure 7, [Bravo et al., 2017]), indicating re-channeling of superfluous 16:0 FAs in

the absence of RAM2 function and placing RAM2 downstream of FatM (Figure 9).

Our discovery of DIS, a novel and AM-specific KASI gene, now provides evidence for the enzyme

which synthesizes these 16:0 FAs in arbuscocytes. The arbuscule phenotype, as well as the lipid pro-

file of colonized dis mutants is very similar to fatm and ram2 mutants except for the accumulation of

16:0 FA-containing lipids in ram2 (Figure 1, Figure 5 and all figure supplements), consistent with

the predicted function. Together, this strongly suggests that DIS, FatM and RAM2 act in the same

lipid biosynthesis pathway, which is specifically and cell-autonomously induced when a resting root

cortex cell differentiates into an arbuscocyte (Figure 2A–B, Figure 9, [Bravo et al., 2017]). Interest-

ingly, DIS was exclusively found in genomes of AM-competent dicotyledons and a gymnosperm (Fig-

ure 3). This implies that DIS has been lost at the split of the mono- from dicotyledons. Despite the

Figure 8 continued

**p<0.01, *p<0.05). (C) Relative fraction of 13C isotopologs for 16:0 FAs of three replicates of carrot, L. japonicus WT Gifu, dis-1, ram2-1 in control roots

(upper panel) and AM roots and each of the associated R. irregularis extraradical mycelia with spores (middle panel) and 16:1w5 FAs in AM roots and

extraradical mycelia with spores (lower panel). Individual bars and double bars indicate individual samples. Values from roots are indicated by ‘R’ and

from fungal extraradical mycelia with spores by ‘M’. For carrot and L. japonicus WT the 13C labelling pattern of 16:0 and 16:1w5 FAs in the plant is

recapitulated in the fungal extraradical mycelium. Extraradical mycelium associated with dis-1 and ram2-1 does not mirror these patterns. Compare

bars for AM roots and extraradical mycelium side by side. Black numbers indicate 13C o. e. for individual samples. Colors indicate 13C-isotopologs

carrying one, two, three, etc. 13C-atoms (M + 1, M + 2, M + 3, etc.). (D) Schematic and simplified illustration of carbon flow and 12C vs.13C-carbon

contribution to plant lipid metabolism and transport to the fungus in the two-compartment cultivation setup used for isotope labelling. Carbohydrate

metabolism and transport is omitted for simplicity. ERM, extraradical mycelium.

DOI: 10.7554/eLife.29107.037

The following source data and figure supplements are available for figure 8:

Source data 1. Raw data for isotopolog profiles in Figure 8 and Figure 8—figure supplements 2,4.

DOI: 10.7554/eLife.29107.038

Figure supplement 1. Two-compartment cultivation setup used for labelling experiments.

DOI: 10.7554/eLife.29107.039

Figure supplement 2. Isotopolog profiles of wild-type MG20 and str.

DOI: 10.7554/eLife.29107.040

Figure supplement 3. Proportion of 16:0 and 16:1w5 FA containing only non-labelled 12C in plant and fungal tissue.

DOI: 10.7554/eLife.29107.041

Figure supplement 4. Isotopolog profiles of additional samples.

DOI: 10.7554/eLife.29107.042
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Figure 9. Schematic representation of plant fatty acid and lipid biosynthesis in a non-colonized root cell and a root cell colonized by an arbuscule. In

non-colonized cells FAs are synthesized in the plastid, bound via esterification to glycerol to produce LPA in the ER, where further lipid synthesis and

modification take place. Upon arbuscule formation AM-specific FA and lipid biosynthesis genes encoding DIS, FatM and RAM2 are activated to

synthesize specifically high amounts of 16:0 FAs and 16:0-ß-MAGs or further modified lipids (this work and Bravo et al., 2017). These are transported

Figure 9 continued on next page
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phylogenetic divergence, DIS and the single copy housekeeping KASI gene of Arabidopsis are inter-

changeable (Figure 5). Therefore, the specificity of DIS to function in AM symbiosis is probably

encoded in its promoter (Figure 2). In monocotyledons, the promoter of the housekeeping KASI

gene may have acquired additional regulatory elements, sufficient for arbuscocyte-specific activa-

tion, thus making DIS dispensable.

We provide several pieces of complementary evidence that lipids synthesized by DIS and RAM2

in the arbuscocyte are transferred from plants to AMF and are required for fungal development. We

fed host plants with [U-13C6]glucose and subsequently determined the isotopolog profile of freshly

synthetized 16:0 and 16:1w5 FAs in roots and associated fungal extraradical mycelia (Figure 8). This

showed that: (1) AMF were unable to incorporate 13C into FAs when fed with [U-13C6]glucose in

absence of the host plant. (2) When associated with a wild-type host, the fungal extraradical myce-

lium accumulated 13C labelled 16:0 FAs and the isotopolog profile of these 16:0 FAs was almost

identical with the host profile. (3) The 16:0 FA isotopolog fingerprint differed strongly between two

different wild-type plant systems (Lotus seedling and carrot hairy root) but for each of them the fun-

gal mycelium recapitulated the isotopolog profile. Therefore clearly, the plant dominates the profile

of the fungus, because it is impossible that the fungus by itself generates the same FA isotopolog

pattern as the plant – especially in the absence of cytosolic FA synthase. Therefore, this result pro-

vides compelling evidence for interkingdom transfer of 16:0 FAs from plants to AMF. (4) In agree-

ment, the isotopolog profile of fungus-specific 16:1 w5 FAs inside and outside the root also

resembled the plant 16:0 FA profile. (5) Colonized dis and ram2 mutant roots resembled the 16:0

FA isotopolog profile of L. japonicus wild-type roots. However, the 16:0 FA profile of the fungal

extraradical mycelium and the 16:1w5 FA profile inside the roots showed a very different pattern,

consistent with very low transport of labelled FAs to the fungus when associated with the mutants.

(6) DIS and RAM2 are specifically required for the synthesis of 16:0 ß-MAG (Figure 7) and the pre-

dominant FA chain length found in AM fungi is precisely 16. (7) dis and ram2 roots do not allow the

formation of lipid-containing fungal vesicles and accumulate very low levels of fungal signature lipids

(Figure 5 and figure supplements). Together this strongly supports the idea that DIS and RAM2 are

required to provide lipids for transfer to the fungus. Consequently, in the mutants, the fungus is

deprived of lipids.

The L. japonicus mutants were originally identified due to their defective arbuscule branching

(Groth et al., 2013). The promoters of DIS and RAM2 are active in arbusocytes and already during

PPA formation, the earliest visible stage of arbuscocyte development. Together with the stunted

arbuscule phenotype of dis, ram2 and fatm mutants (Figure 1 [Bravo et al., 2017]) this suggests

that plant lipids are needed for arbuscule growth, probably to provide material for the extensive

plasma-membrane of the highly branched fungal structure. It also indicates that the arbuscule dic-

tates development of the AMF as a whole, since lipid uptake at the arbuscule is required for vesicle

formation, full exploration of the root and development of extraradical mycelia and spores. Defec-

tive arbuscule development was also observed for the different and phylogenetically distantly

related AMF Gigaspora rosea (Groth et al., 2013), which similar to R. irregularis lacks genes encod-

ing cytosolic FA synthase from their genomes (Wewer et al., 2014; Tang et al., 2016). Hence the

dependence on plant lipids delivered at the arbuscule is likely a common phenomenon among AMF

and a hallmark of AMF obligate biotrophy.

Despite the obvious central importance of lipid uptake by the arbuscule, the fungus can initially

colonize the mutant roots with a low amount of intraradical hyphae and stunted arbuscules (Figure 1,

Figure 5—figure supplement 4). The construction of membranes for this initial colonization may be

supported by the large amounts of lipids stored in AMF spores. This would be consistent with the

frequent observation that in wild-type roots, at initial stages of root colonization, AMF form

Figure 9 continued

from the plant cell to the fungus. The PAM-localized ABCG transporter STR/STR2 is a hypothetical candidate for lipid transport across the PAM.

Desaturation of 16:0 FAs by fungal enzymes (Wewer et al., 2014) leads to accumulation of lipids containing specific 16:1w5 FAs. Mal-CoA, Malonyl-

Coenzyme A; FA, fatty acid; KAS, b-keto-acyl ACP synthase; GPAT, Glycerol-3-phosphate acyl transferase; PAM, periarbuscular membrane; LPA,

lysophosphatic acid; MAG, monoacylglycerol; DAG, diacylglycerol; TAG, triacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PE,

phosphatidylethanolamine; PS, phosphatidylserine; CDP-DAG, cytidine diphosphate diacylglycerol; PG, phosphatidylglycerol; PI, phosphatidylinositol.
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arbuscules immediately after reaching the inner cortex and before colonizing longer distances, possi-

bly as a strategy to accquire lipids quickly after the reserves in the spore have been depleted. Alter-

natively, it is possible that plant housekeeping enzymes provide lipids to intraradical hyphae before

arbuscule formation. Activity of the housekeeping KASI may also be responsible for slightly higher

colonization levels observed for dis in some experiments as compared to other mutants.

It has recently been reported that photosynthetic wild-type nurse plants can restore arbuscule-

branching in Medicago ram2 and str mutants (Jiang et al., 2017; Luginbuehl et al., 2017), suggest-

ing that lipids can be supplied to arbuscules via the extraradical hyphal network and intraradical

hyphae through this route support arbuscule fine-branching. Based on four observations, we favor

an alternative szenario, in which lipids need to be provided cell-autonomously by the arbuscocyte to

support arbuscule fine-branching. However, we cannot exclude that our observations differ from the

reported observations due to growth conditions or plant species. (1) Presence of nurse carrot hairy

roots did not restore arbuscule branching in dis, ram2 and str (Figure 8—figure supplement 1C–F).

(2) dis and ram2 were found in a forward genetics screen based on their stunted arbuscule pheno-

type. In this screen, the fungal inoculum was provided via chive nurse plants (Groth et al., 2013). (3)

Map-based cloning of Lotus dis, ram2 and str (Kojima et al., 2014) was performed with segregating

mutant populations grown in the same pot, in which the wild-type and heterozygeous siblings acted

as nurse plants on the homozygeous mutants. In this system, the stunted arbuscule phenotype was

easily observable. (4) Arbuscule branching in a rice str mutant was not restored by wild type nurse

plants (Gutjahr et al., 2012).

It still remains to be shown, which types of lipids are transported from the plant arbuscocyte to

the fungal arbuscule and how. RAM2 is the most downstream acting enzyme in arbuscocyte-specific

lipid biosynthesis known to date (Figure 9). It is predicted to synthesize ß-MAG and we and others

have shown that 16:0 ß-MAGs are indeed reduced in colonized roots of dis, fatm and ram2 mutants,

providing evidence that this is likely the case (Figure 7, [Bravo et al., 2017]). Although, we cannot

exclude that a downstream metabolite of 16:0 ß-MAG is transported to the fungus, 16:0 ß-MAG as

transport vehicle for 16:0 FAs to the fungus is a good candidate because conceptually this molecule

may bear certain advantages. It has been shown in Arabidopsis that ß-MAGs are not used for plant

storage or membrane lipid biosynthesis but rather as pre-cursors for cuticle formation (Li et al.,

2007). The production of ß-MAGs could therefore, be a way, to withdraw FAs from the plants own

metabolism to make them available to the fungus. In addition, ß-MAGs are small and amphiphilic

and could diffuse across the short distance of the hydrophilic apoplastic space between plant and

fungal membrane. At the newly growing arbuscule branches the distance between the plant and fun-

gal membrane is indeed very small and has been measured to be 80–100 nm on TEM images of

high-pressure freeze-substituted samples (Bonfante, 2001). However, we could not detect fungus-

specific 16:1w5 ß-MAGs in colonized roots. This could mean that the fungus metabolizes them

before desaturation of the 16:0 FAs to synthesize membrane and storage lipids. Alternatively, ß-

MAGs may not be taken up by the fungus. ß-MAGs are known to isomerize to a-MAGs in acid or

basic conditions (Iqbal and Hussain, 2009). It is therefore, possible that they isomerize in the acidic

periarbuscular space (Guttenberger, 2000) before being taken up by the arbuscule.

How are MAGs transported across the peri-arbuscular membrane? Good candidates for MAG

transporters are the ABCG half transporters STR and STR2. Similar ABCG transporters have been

implicated genetically in cuticle formation, which also requires ß-MAGs (Pighin et al., 2004;

Panikashvili et al., 2011; Yeats et al., 2012). The half ABCG transporters STR and STR2 are both

independently required for arbuscule branching and they need to interact to form a full transporter

(Zhang et al., 2010). We found that colonized roots of a L. japonicus str mutant, did not allow the

formation of fungal vesicles and had the same lipid profile as dis and ram2 (Figure 5 and figure sup-

plements). Furthermore, our 13C labelling experiment demonstrated that str mutants do not transfer

lipids to the fungus (Figure 8—figure supplement 2). Although these are encouraging indications,

strong evidence for the role of STR in lipid transport across the periarbuscular membrane is still lack-

ing and the substrate of STR remains to be determined. Therefore, currently, it cannot be excluded

that mutation of str has an indirect effect on lipid transport and alternative mechanisms for example

lipid translocation via vesicle fission and fusion are possible. Nevertheless, also in AMF, several ABC

transporter genes are expressed in planta (Tisserant et al., 2012; Tang et al., 2016). They are not

characterized, but if lipid transport via ABC transporters instead of other mechanisms would play a

role, some of them could be involved in uptake of lipids into the fungal cytoplasm.
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We found that mutants in the GRAS gene RAM1 are impaired in AM-specific lipid accumulation

in colonized roots and in AM-mediated activation of DIS and the single copy gene KASIII (Figure 6),

in addition to FatM, RAM2 and STR (Wang et al., 2012; Park et al., 2015; Pimprikar et al., 2016;

Luginbuehl et al., 2017). This suggests that plants have evolved an AM-specific regulatory module

for lipid production in arbuscocytes and delivery to the fungus. It remains to be shown, whether

RAM1 regulates lipid biosynthesis genes directly and how this occurs mechanistically.

Our finding that plants transfer lipids to AMF completely changes the previous view that the fun-

gus receives only sugars from the plant (Pfeffer et al., 1999; Trépanier et al., 2005). It will now be

interesting to determine the relative contributions of sugar and lipid transfer to AMF, and whether

this may be a determinant of variation in root length colonization and extraradical mycelium forma-

tion depending on the plant-fungal genotype combination (Sawers et al., 2017). An interesting

question refers to why AMF have lost the genes encoding cytosolic FA synthase to depend on the

lipid biosynthesis machinery of the host. FA biosynthesis consumes more energy than biosynthesis of

carbohydrates and organic carbon provided by the plant needs to be transported in fungal hyphae

over long distances from the inside of the root to the extremities of the extraradical mycelium.

Therefore, it is conceivable that supply of plant lipids to the fungus plus fungal lipid transport is

more energy efficient for the symbiosis as a whole than fungal carbohydrate transport plus fungal

lipid biosynthesis. Hence, inter-organismic lipid transfer followed by loss of fungal FA biosynthesis

genes may have been selected for during evolution because it likely optimized the symbiosis for

most rapid proliferation of extraradical mycelium, thus ensuring efficient mineral nutrient acquisition

from the soil for supporting the plant host. Lipid transfer across kingdoms has also been observed in

human parasites or symbiotic bacteria of insects (Caffaro and Boothroyd, 2011; Elwell et al., 2011;

Herren et al., 2014). It will be interesting to learn whether this is a more widespread phenomenon

among biotrophic inter-organismic interactions.

Materials and methods

Plant growth and inoculation with AM fungi
Lotus japonicus ecotype Gifu wild-type, ram1-3, ram1-4, dis-1, dis-4, dis-like-5, ram2-1, ram2-2 and

ecotype MG-20 wild-type and str mutant (kindly provided by Tomoko Kojima (NARO, Tochigi,

Japan) seeds were scarified and surface sterilized with 1% NaClO. Imbibed seeds were germinated

on 0.8% Bacto Agar (Difco) at 24˚C for 10–14 days. Seedlings were cultivated in pots containing

sand/vermiculite (2/1 vol.) as substrate. For colonization with Rhizophagus irregularis roots were

inoculated with 500 spores (SYMPLANTA, Munich, Germany or Agronutrition, Toulouse, France) per

plant. Plants were harvested 5 weeks post inoculation (wpi); except for dis-1 complementation in

Figure 1A, which was harvested at 4 wpi. Arabidopsis thaliana seeds of Col-0 wild-type, kasI mutant

in the Col-0 background and the transgenically complemented kasI mutant were surface sterilized

with 70% EtOH +0.05% Tween 20% and 100% EtOH, germinated on MS-Medium for 48 hr at 4˚C in

the dark followed by 5–6 days at 22˚C (8 hr light/dark).

Identification of DIS by map-based cloning and next generation
sequencing
The L. japonicus dis mutant (line SL0154, [Groth et al., 2013]) resulting from an EMS mutagenesis

program (Perry et al., 2003, 2009) was backcrossed to ecotype Gifu wild-type and outcrossed to

the polymorphic mapping parent ecotype MG-20. The dis locus segregated as a recessive mono-

genic trait and was previously found to be linked to marker TM2249 on chromosome 4 (Groth et al.,

2013). We confirmed the monogenic segregation as 26 of 110 individuals originating from the cross

to MG-20 (c2: P(3:1)=0.74) and 32 of 119 individuals originating from the cross to Gifu (c2: P(3:1)

=0.63) exhibited the mutant phenotype. To identify SL0154-specific mutations linked to the dis

locus, we employed a genome re-sequencing strategy. Nuclear DNA of Gifu wild-type and the

SL0154 mutant was subjected to paired end sequencing (2 � 100 bp) of a 300–500 bp insert library,

on an Illumina Hi-Seq 2000 instrument resulting in between 16.7 and 19.5 Gigabases per sample,

equivalent to roughly 35–41 fold coverage assuming a genome size of 470 Megabases. Reads were

mapped to the reference genome of MG-20 v2.5 (Sato et al., 2008) and single nucleotide polymor-

phisms identified using CLC genomics workbench (CLC bio, Aarhus, Denmark). SL0154-specific
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SNPs were identified by subtracting Gifu/MG-20 from SL0154/MG-20 polymorphisms. 19 potentially

EMS induced (11x G->A, 8x C->T) SNPs called consistently in all mapped reads from SL0514 but not

in Gifu were identified between the markers TM0046/TM1545, the initial dis target region (Fig-

ure 1—figure supplement 1A. In a screen for recombination events flanking the dis locus, 63

mutants out of 254 total F2 individuals of a cross MG-20 x SL0154 were genotyped with markers

flanking the dis locus (Figure 1—figure supplement 1B). Interrogating recombinant individuals with

additional markers in the region narrowed down the target interval between TM2249 and BM2170

(2 cM according to markers; ca. 650 kb). In this interval, 3 SL0154-specific SNPs with typical EMS sig-

nature (G to A transition) remained, of which one was predicted to be located in exon 3 of

CM0004.1640.r2 (reference position 40381558 in L. japonicus genome version 2.5; http://www.

kazusa.or.jp/lotus/), a gene annotated as ketoacyl-(acyl carrier protein) synthase. This co-segregation

together with phenotyping of one additional mutant allele obtained through TILLING

(Supplementary file 1, [Perry et al., 2003, 2009]) as well as transgenic complementation

(Figure 1A)) confirmed the identification of the mutation causing the dis phenotype of the SL0514

line. The two remaining mutations in the target region were located in a predicted intron of chr4.

CM0004.1570.r2.a, a cyclin-like F-box protein (reference position: 40356684) and in a predicted

intergenic region (reference position: 40364479). Untranslated regions of DIS and DIS-LIKE were

determined using the Ambion FirstChoice RLM RACE kit according to manufacturer‘s instructions

(http://www.ambion.de/). DIS sequence information can be found under the NCBI accession number

KX880396.

Identification of RAM2 by map-based cloning and Sanger sequencing
The L. japonicus Gifu mutant reduced and degenerate arbuscules (red, line SL0181-N) resulting from

an EMS mutagenesis (Perry et al., 2003, 2009) was outcrossed to the ecotype MG-20 and previ-

ously reported to segregate for two mutations, one on chromosome 1 and one on chromosome 6

(Groth et al., 2013). They were separated by segregation and the mutation on chromosome 1 was

previously found in the GRAS transcription factor gene REDUCED ARBUSCULAR MYCORRHIZA 1

(RAM1) (Pimprikar et al., 2016). A plant from the F2 population, which showed wild-type phenotype

but was heterozygous for the candidate interval on chromosome 6 and homozygous Gifu for the

candidate interval on chromosome 1 was selfed for producing an F3. The F3 generation segregated

for only one mutation as 38 out of 132 individuals exhibited the mutant phenotype (c2: P(3:1)=0.68).

A plant from the F3 population, which displayed wild-type phenotype but was heterozygous for the

candidate interval on chromosome 6 was selfed for producing an F4. The F4 generation also segre-

gated for only one mutation as 17 out of 87 individuals exhibited the mutant phenotype (c2: P(3:1)

=0.76). To identify the mutation on chromosome 6 linked to the previously identified interval

(Groth et al., 2013), we employed additional markers for fine mapping in F3 segregating and F4

mutant populations. This positioned the causative mutation between TM0082 and TM0302 (Fig-

ure 1—figure supplement 3A). Due to a suppression of recombination in this interval we could not

get closer to the mutation and also next generation sequencing (see [Pimprikar et al., 2016] for the

methodology) failed to identify a causative mutation. The Medicago truncatula ram2 mutant displays

stunted arbuscules similar to our mutant (Wang et al., 2012). L. japonicus RAM2 had not been

linked to any chromosome but was placed on chromosome 0, which prevented identification of a

RAM2 mutation in the target interval on chromosome 6. Therefore, we sequenced the RAM2 gene

by Sanger sequencing. Indeed, mutants with stunted arbuscule phenotype in the F3 and F4 genera-

tion carried an EMS mutation at base 1663 from G to A leading to amino acid change from Glycine

to Glutamic acid, which co-segregated with the mutant phenotype (Figure 1—figure supplement

3B-C). An additional allelic mutant ram2-2 (Figure 1—figure supplement 3B) caused by a LORE1

retrotransposon insertion (Małolepszy et al., 2016) and transgenic complementation with the wild-

type RAM2 gene confirmed that the causative mutation affects RAM2 (Figure 1B). Untranslated

regions of RAM2 were determined using the Ambion FirstChoice(R) RLM RACE kit according to

manufacturer’s instructions (http://www.ambion.de/). A 1345 bp long sequence upstream of ATG

was available from the http://www.kazusa.or.jp/lotus/blast.html. To enable cloning a 2275 bp pro-

moter fragment upstream of ATG of RAM2 the remaining upstream sequence of 1047 bp was deter-

mined by primer walking on TAC Lj T46c08. L. japonicus RAM2 sequence information can be found

under the NCBI accession number KX823334 and the promoter sequence under the number

KX823335.
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Plasmid generation
Genes and promoter regions were amplified using Phusion PCR according to standard protocols

and using primers indicated in Supplementary file 2. Plasmids were constructed as indicated in

Supplementary file 3. For localization of DIS in L. japonicus hairy roots the LIII tricolor plasmid

(Binder et al., 2014) was used. The plasmid containing 35S:RFP for localization of free RFP in Nicoti-

ana benthamiana leaves was taken from Yano et al. (2008).

Induction of transgenic hairy roots in L. japonicus
Hypocotyls of L. japonicus were transformed with plasmids shown in Supplementary file 3 for hairy

root induction using transgenic Agrobacterium rhizogenes AR1193 as described (Takeda et al.,

2009).

Floral dipping and rosette growth assay of Arabidopsis thaliana
Five plants per pot were sown. One week before transformation the primary bolt was cut off to

induce growth of secondary floral bolts. 5 ml LB culture of A. tumefaciens transformed with a binary

vector was incubated at 28˚C, 300 rpm over night. 500 ml of the preculture was added to 250 ml LB

medium with appropriate antibiotics. This culture was incubated again at 28˚C, 300 rpm over night

until an OD600 of 1.5 was reached. Plants were watered and covered by plastic bags the day before

the dipping to ensure high humidity. The cells were harvested by centrifugation (10 min, 5000 rpm)

and resuspended in infiltration medium (0.5 x MS medium, 5% sucrose). The resuspended cell cul-

ture was transferred to a box and Silwet L-77 was added (75 ml to 250 ml medium). The floral bolts

of the plants were dipped into the medium for 5 s and put back into plastic bags and left in horizon-

tal position for one night. After that, plants were turned upright, bags were opened and mature sili-

ques were harvested. For rosette growth assays T3 plants were used. 31 days post sowing the

rosettes were photographed and then cut and dried in an oven at 65˚C for the determination of

rosette dry weight.

Spatial analysis of promoter activity
For promoter:GUS analysis L. japonicus hairy roots transformed with plasmids containing the DIS

and RAM2 promoter fused to the uidA gene and colonized by R. irregularis were subjected to GUS

staining as described (Takeda et al., 2009). To correlate DIS and RAM2 promoter activity precisely

with the stage of arbuscule development two expression cassettes were combined in the same

golden gate plasmid for simultaneous visualization of arbuscule stages and promoter activity. The

fungal silhouette including all stages of arbuscule development and pre-penetration apparatuus

were made visible by expressing secretion peptide coupled mCherry under the control of the SbtM1

promoter region comprising 704 bp upstream of the SbtM1 gene (Takeda et al., 2009). Promoter

activity was visualized using a YFP reporter fused to a nuclear localization signal (NLS).

Transient transformation of N. benthamiana leaves
N. benthamiana leaves were transiently transformed by infiltration of transgenic A. tumefaciens

AGL1 as described (Yano et al., 2008).

Real time qRT-PCR
For analysis of transcript levels, plant tissues were rapidly shock frozen in liquid nitrogen. RNA was

extracted using the Spectrum Plant Total RNA Kit (www.sigmaaldrich.com). The RNA was treated

with Invitrogen DNAse I amp. grade (www.invitrogen.com) and tested for purity by PCR. cDNA syn-

thesis was performed with 500 ng RNA using the Superscript III kit (www.invitrogen.com). qRT-PCR

was performed with GoTaq G2 DNA polymerase (Promega), 5 x colorless GoTaq Buffer (Promega)

and SYBR Green I (Invitrogen S7563, 10.000x concentrated, 500 ml) - diluted to 100x in DMSO. Pri-

mers (Supplementary file 2) were designed with primer3 (58). The qPCR reaction was run on an iCy-

cler (Biorad, www.bio-rad.com/) according to manufacturer’s instructions. Thermal cycler conditions

were: 95˚C 2 min, 45 cycles of 95˚C 30 s, 60˚C/62˚C 30 s and 72˚C 20 s followed by dissociation

curve analysis. Expression levels were calculated according to the DDCt method (Rozen and Skalet-

sky, 2000). For each genotype and treatment three to four biological replicates were tested and

each sample was represented by two to three technical replicates.
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Sequence alignement and phylogeny
L. japonicus KASI, DIS, DIS-LIKE, RAM2, Lj1g3v2301880.1 (GPAT6) protein sequences were retrieved

from Lotus genome V2.5 and V3.0 respectively (http://www.kazusa.or.jp/lotus/) and A. thaliana KASI,

E. coli KASI, E. coli KASII, M. truncatula RAM2 and Medtr7g067380 (GPAT6) were obtained from

NCBI (http://www.ncbi.nlm.nih.gov). The sequences from L. japonicus were confirmed with a

genome generated by next generation sequencing in house. Protein alignment for DIS was per-

formed by CLC Main Workbench (CLC bio, Aarhus, Denmark). The Target Peptide was predicted

using TargetP 1.0 Server (www.cbs.dtu.dk/services/TargetP-1.0/). RAM2 Protein alignment was per-

formed by MEGA7 using ClustalW. The percentage identity matrix was obtained by Clustal Omega

(http://www.ebi.ac.uk/Tools/msa/clustalo/).

To collect sequences for phylogeny construction corresponding to potential DIS orthologs, Lotus

DIS and KASI (outgroup) protein sequences were searched in genome and transcriptome datasets

using BLASTp and tBLASTn respectively. The list of species and the databases used are indicated in

Figure 3—source data 1. Hits with an e-value >10�50 were selected for the phylogenetic analysis.

Collected sequences were aligned using MAFFT (http://mafft.cbrc.jp/alignment/server/) and the

alignment manually checked with Bioedit. Phylogenetic trees were generated by Neighbor-joining

implemented in MEGA5 (Tamura et al., 2011). Partial gap deletion (95%) was used together with

the JTT substitution model. Bootstrap values were calculated using 500 replicates.

Synteny analysis
A ~200 kb sized region in the L. japonicus genome containing the DIS locus (CM00041640.r2.a) was

compared to the syntenic region in A. thaliana (Col-0) using CoGe Gevo (https://genomevolution.

org/CoGe/GEvo.pl - (Lyons et al., 2008) as described in Delaux et al. (2014). Loci encompassing

DIS orthologs from Medicago truncatula, Populus trichocarpa, Carica papaya, Phaseolus vulgaris and

Solanum lycopersicum were added as controls.

AM staining and quantification
Rhizophagus irregularis in colonized L. japonicus roots was stained with acid ink (Vierheilig et al.,

1998). Root length colonization was quantified using a modified gridline intersect method

(McGonigle et al., 1990). For confocal laser scanning microscopy (CLSM) fungal structures were

stained with 1 mg WGA Alexa Fluor 488 (Molecular Probes, http://www.lifetechnologies.com/) (Pan-

chuk-Voloshina et al., 1999).

Microscopy
For quantification of AM colonization in L. japonicus roots a light microscope (Leica) with a 20x mag-

nification was used. For observation of GUS-staining in L. japonicus hairy roots an inverted micro-

scope (Leica DMI6000 B) was used with 10x and 20x magnification. Transformed roots were

screened by stereomicroscope (Leica MZ16 FA) using an mCherry fluorescent transformation marker

or the pSbtM1:mCherry marker for fungal colonization (for Figure 2A and B). Confocal microscopy

(Leica SP5) for WGA-AlexaFluor488 detection using 20x and 63x magnification was performed as

described (Groth et al., 2010). Transgenic roots showing mCherry fluorescence signal due to SbtM1

promoter activity linked with fungal colonization were cut into pieces immediately after harvesting.

The living root pieces were placed on a glass slide with a drop of water, covered by a cover slip and

immediately subjected to imaging. Sequential scanning for the YFP and RFP signal was carried out

simultaneously with bright field image acquisition. YFP was excited with the argon ion laser 514 nm

and the emitted fluorescence was detected from 525 to 575 nm; RFP was excited with the Diode-

Pumped Solid State laser at 561 nm and the emitted fluorescence was detected from 580 to 623

nm. Images were acquired using LAS AF software. Several z-optical sections were made per area of

interest and assembled to a z-stack using Fiji. The z-stack movies and 3D projections were produced

using the 3D viewer function in Fiji (Schindelin et al., 2012).

Extraction and purification of phospho- and glycoglycerolipids and
triacylglycerols
Approximately 50–100 mg of root or leaf material was harvested, weighed and immediately frozen

in liquid nitrogen to avoid lipid degradation. The frozen samples were ground to a fine powder
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before extraction with organic solvents. Total lipids were extracted as described previously

(Wewer et al., 2011, 2014). Briefly, 1 mL chloroform/methanol/formic acid (1:1:0.1, v/v/v) was

added and the sample was shaken vigorously. At this point the internal standards for TAG and fatty

acid analysis were added. Phase separation was achieved after addition of 0.5 mL 1M KCl/0.2 M

H3PO4 and subsequent centrifugation at 4000 rpm for 5 min. The lipid-containing chloroform phase

was transferred to a fresh glass tube and the sample was re-extracted twice with chloroform. The

combined chloroform phases were dried under a stream of air and lipids were re-dissolved in 1 mL

chloroform to yield the total lipid extract.

For phospho- and glycerolipid analysis 20 ml of the total lipid extract were mixed with 20 ml of the

internal standard mix and 160 ml of methanol/chloroform/300 mM ammonium acetate (665:300:35,

v/v/v) (Welti et al., 2002). For triacylglycerol analysis 500 ml of the total lipid extract were purified

by solid phase extraction on Strata silica columns (1 ml bed volume; Phenomenex) as described

(Wewer et al., 2011). TAGs were eluted from the silica material with chloroform, dried under a

stream of air and re-dissolved in 1 mL methanol/chloroform/300 mM ammonium acetate

(665:300:35, v/v/v).

Extraction and purification of free fatty acids and monoacylglycerol
(MAG)
Total lipids were extracted into chloroform and dried as described above. 15–0 FA and a mixture of

15–0 a-MAG and b-MAG were added as internal standard before the extraction. Dried extracts

were resuspended in 1 ml n-hexane and applied to silica columns for solid-phase extraction with a

n-hexane:diethylether gradient. Free fatty acids were eluted with a mixture of 92:8 (v/v) n-hexane:

diethylether as described bevore (Gasulla et al., 2013) and pure diethylether were used for elution

of MAG.

Analysis of total fatty acids and free fatty acids by GC-FID
For measurement of total fatty acids, 100 ml of the total lipid extract were used. For measurement of

free fatty acids, the SPE-fraction containing free fatty acids was used. Fatty acid methyl esters

(FAMEs) were generated from acyl groups of total lipids and free fatty acids by addition of 1 mL 1N

methanolic HCL (Sigma) to dried extracts and incubation at 80˚C for 30 min (Browse et al., 1986).

Subsequently, FAMEs were extracted by addition of 1 mL n-hexane and 1 mL of 0.9% (w/v) NaCl

and analyzed on a gas chromatograph with flame-ionization detector (GC-FID, Agilent 7890A

PlusGC). FAMEs were separated on an SP 2380 fused silica GC column (Supelco, 30 mx 0.53 mm,

0.20 mm film) as described (Wewer et al., 2013), with a temperature -gradient starting at 100˚C,
increased to 160˚C with 25˚C/min, then to 220˚C with10˚C/min and reduced to 100˚C with 25 ˚C/
min. FAMEs were quantified in relation to the internal standard pentadecanoic acid (15:0).

For MAG measurement, dried diethylether fractions were resuspended in 4:1 (v/v %) pyridine:N-

Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), incubated at 80˚C for 30 min, dried and re-sus-

pended in hexane prior to application on an Agilent 7890A Plus gas chromatography-mass spec-

trometer. MAGs were quantified by extracted ion monitoring, using [M+ - 103] for a-MAGs and [M+

- 161] for b-MAGs as previously reported for 16:0 MAG (Destaillats et al., 2010) and 24:0 MAG

(Li et al., 2007).

Quantification of glycerolipids by Q-TOF MS/MS
Phosphoglycerolipids (PC, PE, PG, PI, PS), glycoglycerolipids (MGDG, DGDG, SQDG) and triacylgly-

cerol (TAG) were analyzed in positive mode by direct infusion nanospray Q-TOF MS/MS on an Agi-

lent 6530 Q-TOF instrument as described previously (Lippold et al., 2012; Gasulla et al., 2013). A

continuous flow of 1 ml/min methanol/chloroform/300 mM ammonium acetate (665:300:35, v/v/v)

(Welti et al., 2002) was achieved using a nanospray infusion ion source (HPLC/chip MS 1200 with

infusion chip). Data are displayed as X:Y, where X gives the number of C atoms of the fatty acid

chain and Y the amount of desaturated carbo-carbon bonds inside that fatty acid chain.

Internal standards
Internal standards for phospho- and glycoglycerolipid analysis were prepared as described previ-

ously (Gasulla et al., 2013; Wewer et al., 2014). The following standards were dissolved in 20 ml of
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chloroform/methanol (2:1, v/v): 0.2 nmol of each di14:0-PC, di20:0-PC, di14:0-PE, di20:0-PE, di14:0

PG, di20:0 PG, di14:0 PA and di20:0 PA; 0.03 nmol of di14:0-PS and di20:0-PS; 0.3 nmol of 34:0-PI;

0.15 nmol of 34:0-MGDG, 0.10 nmol of 36:0-MGDG; 0.2 nmol of 34:0-DGDG, 0.39 nmol of 36:0

DGDG and 0.4 nmol of 34:0 SQDG. 1 nmol each of tridecanoin (tri-10:0) and triundecenoin (tri-11:1),

and 2 nmol each of triarachidin (tri-20:0) and trierucin (tri22:1) were used as internal standards for

TAG quantification (Lippold et al., 2012). For quantification of total fatty acids and free fatty acids 5

mg of pentadecanoic acid (FA 15:0) was added to the samples (Wewer et al., 2013).

Cultivation and 13C-Labeling of L. japonicus and Daucus carota hairy
roots
To determine lipid transfer from L. japonicus to the fungus we used the carrot root organ culture sys-

tem (Bécard et al., 1988) to obtain sufficient amounts of fungal material for isotopolog profiling.

(On petri dishes this was not possible with L. japonicus and in particular the lipid mutants alone).

One compartment (carrot compartment) of the 2- compartmented petri dish system

(Trépanier et al., 2005) was filled with MSR-medium (3% gelrite) containing 10% sucrose to support

the shoot-less carrot root, and the other compartment (Lotus compartment) was filled with MSR-

medium (3% gelrite) without sucrose. Ri T-DNA transformed Daucus carota hairy roots were placed

in the carrot compartment. 1 week later, roots were inoculated with R. irregularis. Petri dishes were

incubated at constant darkness and 30˚C. Within 5 weeks R. irregularis colonized the carrot roots

and its extraradical mycelium spread over both compartments of the petri dish and formed spores.

At this stage two 2 week old L. japonicus seedlings (WT, dis-1, ram2-1) were placed into the Lotus

compartment (Figure 8—figure supplement 1).

The plates were incubated at 24˚C (16 hr light/8 hr dark). To keep the fungus and root in the dark

the petri dishes were covered with black paper. 3 weeks after Lotus seedlings were placed into the

petri dish [U-13C6]glucose (100 mg diluted in 2 ml MSR-medium) (Sigma-Aldrich) was added to the

Lotus compartment. Therefore, only Lotus roots but not the carrot roots took up label. For transfer

experiments with carrot roots no Lotus plant was placed into the Lotus compartment and the

[U-13C6]glucose was added to the carrot compartment. 1 week after addition of [U-13C6]glucose the

roots were harvested. The extraradical mycelium was extracted from the agar using citrate buffer pH

6 and subsequent filtration, after which it was immediately shock-frozen in liquid nitrogen.

Isotopolog profiling of 13C-labelled 16:0 and 16:1v5 fatty acids
Root and fungal samples were freeze dried and subsequently derivatised with 500 ml MeOH contain-

ing 3 M HCl (Sigma-Aldrich) at 80˚C for 20 hr. MeOH/HCL was removed under a gentle stream of

nitrogen and the methyl esters of the fatty acids were solved in 100 ml dry hexane.

Gas chromatography mass spectrometry was performed on a GC-QP 2010 plus (Shimadzu, Duis-

burg, Germany) equipped with a fused silica capillary column (equity TM-5; 30 m by 0.25 mm,0.25-m

m film thickness; Supelco, Bellafonte, PA). The mass detector worked in electron ionization (EI)

mode at 70 eV. An aliquot of the solution was injected in split mode (1:5) at an injector and interface

temperature of 260˚C. The column was held at 170˚C for 3 min and then developed with a tempera-

ture gradient of 2 ˚C/min to a temperature of 192˚C followed by a temperature gradient of 30˚C/
min to a final temperature of 300˚C. Samples were analyzed in SIM mode (m/z values 267 to 288) at

least three times. Retention times for fatty acids 16:1w5 (unlabeled m/z 268) and 16:0 (unlabeled m/

z 270) are 12.87 min and 13.20 min, respectively. Data were collected with LabSolution software (Shi-

madzu, Duisburg, Germany). The overall 13C enrichment and the isotopolog compositions were cal-

culated according to (Lee et al., 1991) and (Ahmed et al., 2014). The software package is open

source and can be downloaded by the following link: http://www.tr34.uni-wuerzburg.de/software_

developments/isotopo/.

Four independent labeling experiments were performed. Overall excess (o.e.) is an average value

of 13C atoms incorporated into 16:0/16:1w5 fatty acids.

Data availability
Lunularia cruciata: For this species, the raw RNAseq reads have been previously deposited to NCBI

under the accession number SRR1027885. It is annotated with Rhizophagus irregularis (10% of

sequences) as the transcriptome was partly prepared from Lunularia plant tissue colonized by the
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fungus Rhizophagus irregularis. The corresponding Lunularia transcriptomic assembly is available at

www.polebio.lrsv.ups-tlse.fr/Luc_v1/

Statistics
All statistical analyses (Source code 1) were performed and all boxplots were generated in R (www.

r-project.org).
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Supplementary table S1. Mutations in DIS and DIS-LIKE identified by TILLING 

or in a LORE1 insertion collection.  

 

Allele  Line ID aa change / insertion Source  
    
dis-1  SL0154-N G190R (Groth et al., 2013) 
dis-2 30035849 LORE1 intron 2 insertion (Małolepszy et al., 2016) 
dis-3 SL4113-1 T221I RevGen, UK 
dis-4 SL0614-1 G314D RevGen, UK 
dis-5 SL5510-1 E338K RevGen, UK 
dis-6 SL0494-1 P376L RevGen, UK 
    
disl-1 SL3509-1 P61S RevGen, UK 
disl-2 30034395 LORE1 exon 2 insertion (Małolepszy et al., 2016) 
disl-3 SL1481-1 D109N RevGen, UK 
disl-4 SL5555-1 G176E RevGen, UK 
disl-5 SL1474-1 G180E RevGen, UK 
disl-6 SL4156-1 V193M RevGen, UK 

 
 
Groth M, Kosuta S, Gutjahr C, Haage K, Hardel SL, Schaub M, Brachmann A, Sato S, Tabata S, 

Findlay K, et al. 2013. Two Lotus japonicus symbiosis mutants impaired at distinct steps of 
arbuscule development. The Plant Journal 75: 117-129. 10.1111/tpj.12220. 

Małolepszy A, Mun T, Sandal N, Gupta V, Dubin M, Urbański D, Shah N, Bachmann A, Fukai E, 
Hirakawa H, et al. 2016. The LORE1 insertion mutant resource. Plant Journal: DOI: 
10.1111/tpj.13243. 10.1111/tpj.13243. 

 

Supplementary table S2. Primers used in this study.  

 

Purpose Name  Sequence 
gDIS cloning for 
pDIS:gDIS 

SH71 
SH72 

CACCGGAACGGGACAAAAGACTCC 
TTAGGGCCTGAATGGAGCAAAGACAA 
 

pDIS cloning for 
pDIS:GUS  

SH94 
SH104 

 

ATTTAAGCTTGGAACGGGACAAAAGACTCC 
AATCAGGATCCTGTTCAATGTGTCTGTGGCA 
 

DIS cloning for DIS-
RFP localization in N. 
benthamiana  

SH93 
SH92 

CACCATGGCAAGCATTGCTGGTTC 
GGGCCTGAATGGAGCAAAGACAAC 
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pLjPT4 cloning for 
pPT4:DIS 

CG466 
CG467 

TTTGGTCTCTGCGGGGACTCAAGAAACCATGCTATC 
TTTGGTCTCTCAGACTTGAACGATGTCGATTTAGTTTG 

DIS/dis-1 frag.1 
cloning for 
pPT4:DIS/dis-1 

SH124 
 
SH125 

ATGAAGACTTTACGGGTCTCACACCATGGCAAGCATT
GCTGGTTC 
TTGAAGACTTTTCGATTTCAGGGCTCTCTTTGTTACCTG
ATGACAACAAGCACCCTTTTGG 

DIS/dis-1 frag.1 
cloning for 
pPT4:DIS/dis-1 

SH126 
SH127 

TTGAAGACTTCGAAACCCTGATGATTATT 
ATGAAGACTTCAGAGGTCTCACCTTGGGCCTGAATGG
AGCAA 
 

pDIS cloning for 
pDIS:AtKASI 

SH122 
 
SH123 

ATGAAGACTTTACGGGTCTCAGCGGGGAACGGGACAA
AAGACTCC 
ATGAAGACTTCAGAGGTCTCAGGTGTGTTCAATGTGTC
TGTGG 

pAtKASI cloning for 
pAtKASI:LjDIS 

SH113 
SH109 

TTGGTCTCACACCGAGTCACAAAGATGCTATCG 
GGTCTCACCATGGTGGATCCAGAAATTGAGAG 

3’UTR AtKASI 
cloning for 
pAtKASI:LjDIS 

SH118 
SH119 

TGAGGTCTCGTTTCTTCATACCTTTTAGATTC 
TGAGGTCTCGCCTTCAGTATAAATCTAATTTCTTC 

gDIS frag.1 cloning 
for pAtKASI:LjDIS 

SH110 
SH114 

TGAGGTCTCTATGGCAAGCATTGCTGGTTCATG 
TGAGGTCTCTTTCGATTTCAGGGCTCTCT 

gDIS frag.2 cloning 
for pAtKASI:LjDIS 
 

SH115 
SH117 

TTGGTCTCACGAAACCCTGATGATTATTAG 
TGAGGTCTCGGAAATTAGGGCCTGAATGGAGC 

AtKASI frag.1 
cloning for 
pDIS:AtKASI 

CG455 
 
CG456 

ATGAAGACTTTACGGGTCTCACACCATGCAAGCTCTTC
AATCTTCATCTCT 
ATGAAGACTTGTCGCAAAGGTCGCGCATTG 

AtKASI frag.2 
cloning for 
pDIS:AtKASI 

CG457 
CG458 

ATGAAGACTTCGACGACAACAACGTTCCTTCA 
ATGAAGACTTGAGTCCCATACCAGTAATGACAAC 

AtKASI frag.3 
cloning for 
pDIS:AtKASI 

CG459 
CG460 

ATGAAGACTTACTCGTCTCTGTGTTTGGTAACG 
ATGAAGACTTTGGCTCTCTCCAAAACAAAATGTCA 

AtKASI frag.4 
cloning for 
pDIS:AtKASI 

CG461 
CG462 

ATGAAGACTTGCCACTAATTGTTGTATGCCCTAATAG 
ATGAAGACTTCAGAGGTCTCACCTTTCAGGGTTTGAAG
GCAGAGAAGGC 

qPCR of LjEF1alpha  EF1alpha_F 
EF1alpha_R 

GCAGGTCTTTGTGTCAAGTCTT 
CGATCCAGAACCCAGTTCT 

qPCR of LjKASI LjKASI_qPCR_F 
LjKASI_qPCR_R 

TCCCAACGCTAACTTCAAGC 
 
CCCTGCATCATTGAGGCTAT 
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qPCR of LjKASII AK42 
AK43 

CGAGAAAGACTTGATCTCCCCAG 
CGTGGTTACATCACTTGGTCATG 
 

qPCR of LjKASIII AK44 
AK45 

GATTTGCATAGTAATGGTGATGG 
GCATGAATATGAGGACTGCTTGG 
 

qPCR of LjDIS qPCR_DIS4_F 
qPCR_DIS4_R 

CATTCATTGATTTCGGGACA 
CCAAACACAGAAGCAGATCAGA 

qPCR of LjDIS-like qPCR_DISL4_F 
qPCR_DISL4_R 

CATGTTATCGATTTGTGTTTGGA 
TGACTACTACCCATTTGCTGAAAG 

qPCR of LjUbiquitin 
 

qPCR_F_LjUbi 
qPCR_R_LjUbi  
 

ATGCAGATCTTCGTCAAGACCTT 
ACCTCCCCTCAGACGAAG  
 

qPCR of LjRAM2 PP101 
PP102 

ATCCTATGAGTGCACTAGCTTTACTAGAAG 
AACGAGCAAATTAAAACTGAAAGAGAGTAC 

qPCR for LjSbtM1  CACGTTGTTAGGACCCCAAT 
TTGAGCAGCACCCTCTCTATC 
 

qPCR for LjBCP1  TCATCTGTCCTTGGGGTCAT 
CAGCTGCAGAAGTTGCATTT 
 

qPCR for LjPT4  GAATAAAGGGGCCAAAATCG 
GCTGTATCCTATCCCCATGC 
 

qPCR for LjAMT2.2  TGGTTCAACTTTTCGTTCCA 
CTTATCACCCTGACCCCAGA 
 

qPCR for LjSTR  CTATATTGGTGACGAGGGAAGG 
GTCCTGAGGTAGGTTCATCCAG 
 

pRAM2_1a cloning 
for 
pRAM2:gRAM2 and 
pRAM2:GUS  

PP103 
PP104 

ATGAAGACTTTACGGGTCTCAGCGGGATTGAAAGCTT
CCCCATAG 
TAGAAGACAAATCTTCTCCTAGTATTTTTTTTTTAAAG 

pRAM2_1b cloning 
for 
pRAM2:gRAM2 and 
pRAM2:GUS 

PP105 
PP106 

ATGAAGACTTAGATCATTCCACGGAGGAG 
ATGAAGACTTCAGAGGTCTCACAGAGGTGAATGCACT
TGTTGTTACTC 

gRAM2 cloning for 
pPT4:gRAM2/ram2-1 

AK20 
AK21 

ATGAAGACTTTACGGGTCTCACACCATGGTGTCATCA
ACG 
ATGAAGACTTCAGAGGTCTCACCTTGCAACCCATGAC
TTTGTTTG 
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pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP132 
 GTCGTTTTAGAAGAATTTTTTG 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP133 
 AGGATAGGCTCAATACTTTGA 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP134 
 ATGGGTGAAAGTGGTAAGATGG 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP135 
 GCGTGACAAACATGGAAGG 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP136 
 AGCAAAGTTGGGGGAGAAAT 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP137 
 AGGTGGGTATTGGAGGTGGA 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP138 
 ACACTTAAAAAAGAACGGAG 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP139 
 CTCTAACAATCCACTATCTTG 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP140 
 CACACAAGAACTTCATGCAC 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP141 
 GAGCTTGATCACCTACTAATTAT 

 

pRAM2 primer 
walking using TAC 
Lj T46c08 
 

PP142 
 CTTGTATGCCAGCAGCCTCAGAG 

 

pSbtM1 frag.1 cloning 
for pSbtM1:SPP-
mCherry 
 

JAVA-23 
JAVA-24 
 

ATGAAGACTTTACGGGTCTCAGCGGAACATTGAGGAC
AGATTAAGG 
TAGAAGACAATTGCCTTCATTTGTGCCAAA 
 

pSbtM1 frag.2 cloning 
for pSbtM1:SPP-
mCherry 
 

JAVA-25 
JAVA-26 
 

TAGAAGACAAGCAAATAAACCGTCCAAGGC 
ATGAAGACTTCAGAGGTCTCTCAGAGCTCCATCTTTAA
TTGGAATTTGATG 
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SbtM1 secretion 
signal peptide 
cloning for 
pSbtM1:SPP-
mCherry 

SC278 
SC279 
 

TATGGTCTCATCTGATGGAGCAAACCAAGTATAGGA 
TATGGTCTCAGGTGTCATGCTCTTGGCCTTCCT 
 

 

 

Supplementary table S3: Plasmids used in this study  

Produced by classical cloning, Gateway cloning (Entry plasmids and Destination plasmids) 

and Golden Gate cloning (Level I, II and III). The Golden Gate toolbox is described in (48). 

EV, empty vector; HR, hairy root; trafo, transformation  

 

Purpose Name Description 

 

 

dis-1 transgenic 
complementation 

(Fig. 1A) 

Entry: pENTR-pDIS:gDIS PCR amplification of DIS promoter and gene with 
primers SH71 + SH72 and subcloning into pENTR/D-
TOPO. 

HR Trafo: pDIS:gDIS LR clonase (Invitrogen) recombination of ENTR-
pDIS:gDIS with pK7RWG2.0 w/o 35S promoter (56). 

HR Trafo: EV Removal of Gateway casette from pK7RWG2.0 w/o 
35S promoter (Antolín-Llovera et al., 2014) by EcoRV 
digest and religation.  

Localization of 
DIS promoter 
activity (Fig. 
2_S1) 

pDIS-GUS PCR amplification of 1.5 kb DIS promoter region with 
primers SH94 + SH104 and insertion into the HindIII 
and BamHI restriction sites of pBI101(Jefferson et al., 
1987). 

 

 

Cross species 
complementation 
of Arabidopsis kasI 
mutant with 
LjDIS (Fig. 4C)  

Entry: pENTR-
pAtKASI:DIS:3’ UTR 
AtKASI (pCG92) 

Entry: pENTR-
pAtKASI:DIS:3’ UTR 
AtKASI (pCG93) 

Arabidopsis Trafo: 
pKASI:DIS (pCG94) 

Arabidopsis Trafo: 
pKASI:dis-1 (pCG95) 

Assembled from L0 pAtKASI, L0 DIS, L0 3’ UTR KASI 
and pENTR-BsaI (BB04) by BsaI cut ligation  

Assembled from L0 pAtKASI, L0 dis-1, L0 3’ UTR KASI 
and pENTR-BsaI (BB04) by BsaI cut ligation 

 

LR clonase (Invitrogen) recombination of pCG92 with 
pMDC99 (Curtis & Grossniklaus, 2003).  

LR clonase (Invitrogen) recombination of pCG93 with 
pMDC99 (Curtis & Grossniklaus, 2003). 

 

Localization of 
DIS in N. 
benthamiana 
leaves (Fig. 4F) 

Entry: pENTR-DIS w/o 
stop 

N. benthamiana Trafo: 
p35S:DIS:RFP 

N. benthamiana Trafo: 
p35S:AtLhcb1.3:YFP 

PCR amplification of DIS gene with primers SH93 + 
SH92 and subcloning into pENTR/D-TOPO. 

LR clonase (Invitrogen) recombination of ENTR- 
pENTR-DIS w/o stop with pK7RWG2.0 (Karimi et al., 
2002). 
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LR clonase (Invitrogen) recombination of pENTR/D-
TOPO-AtLhcb1.3 w/o stop (kind gift from Jürgen Soll) 
with pB7FWG2.0 (Karimi et al., 2002). 

 

Golden Gate level 0 and I (L0, LI) elements 

 L0 pAtKASI PCR amplification of AtKASI 1.3 kb promoter 
fragment with SH113 + SH109 and assembly by StuI 
cut ligation into L0 pUC57 plasmid (BB01).  

 L0 DIS and  

L0 dis-1 

Assembled by StuI cut ligation into L0 pUC57 plasmid 
(BB01) from 2 PCR fragments amplified from genomic 
DNA of L. japonicus Gifu wild type (DIS) and dis-1 
mutant (dis-1). Primers: 

Fragment 1: SH110 + SH 114 

Fragment 2: SH115 + SH117 

 L0 3’ UTR AtKASI 3’ UTR of AtKASI (343 bp) was PCR amplified with 
primers SH118 + SH119 and assembled by StuI cut 
ligation into L0 pUC57 plasmid (BB01). 

 L0 pRAM2A 

 

PCR amplification of 906 bp fragment L. japonicus Gifu 
genomic DNA with primers PP103+PP104. Assembly 
by SmaI cut ligation into LI-Amp (BB01) 
 

 L0 pRAM2B 

 

PCR amplification of 1434 bp fragment L. japonicus 
Gifu genomic DNA with primers PP105+PP106. 
Assembly by SmaI cut ligation into LI-Amp (BB01) 
 

 LI A-C pDIS (pCG124) PCR amplification of 1.5 kb DIS promoter from L. 
japonicus Gifu genomic DNA with primers SH122 + 
SH123 and BpiI cut ligation into LI-BpiI (BB03) 
plasmid. 

 LI C-D AtKASI (pCG125) Assembled 4 PCR fragments amplified from A. 
thaliana Col-0 gDNA by BpiI cut ligation into LI-BpiI 
plasmid (BB03). Primers: 

Fragment 1: CG455 + CG456 

Fragment 2: CG457 + CG458 

Fragment 3: CG459 + CG460 

Fragment 4: CG461 + CG462 

 LI A-B pPT4 PCR amplification of 2.2 kb PT4 promoter region from 
L. japonicus Gifu genomic DNA with primers CG466 + 
CG467 and assembly by BpiI cut ligation into LI-BpiI 
plasmid (BB03). 
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 LI C-D DIS  

LI C-D dis-1 

Assembled from two PCR amplified fragments from 
genomic DNA of L. japonicus Gifu wild type (DIS) and 
dis-1 mutant (dis-1). Assembly by BpiI cut ligation into 
LI-BpiI plasmid (BB03). Primers: 

Fragment 1: SH124 + SH138 

Fragment 2: SH126 + SH127 

 LI A-B pRAM2 Assembled by BpiI cut ligation from: L0 pRAM2A + L0 
pRAM2B + LI-BpiI (BB03) 
 

 LI C-D RAM2 

LI C-D ram2-1 

PCR amplification of 1998 bp fragment L. japonicus 
Gifu genomic DNA with primers AK20 + AK21. 
Assembled by SmaI blunt end cut ligation: pUC57 
(BB02) + Fragment: AK20 + AK21 
 

 LI C-D GUS 

 

(Pimprikar et al., 2016) 

 LI A-B pSbtM1 PCR amplification of 559 bp fragment with primers JAVA-
23 + JAVA-24 and of 211 bp fragment with primers JAVA-
25 + JAVA-26 from pENTR D-TOPO pSbtM1. Assembled 
by BpiI cut ligation from 559 bp fragment + 211 bp 
fragment + LI-BpiI (BB03) 
 

 LI B-C SSP (SbtM1 
secretion signal peptide) 

 

PCR amplification of 135 bp fragment L. japonicus Gifu 
genomic DNA with primers SC278 + SC279. Assembly by 
SmaI cut ligation into LI-pUC57 (BB02) 
 

 

Golden Gate level II (LII) plasmids 

 LII R 3-4 p35S:mCherry 
(selection marker for HR)  

Assembled by BsaI cut ligation from:  

LI A-C p35S (G009) + LI C-D mCherry (G057) + LI dy 
D-E (B008) + LI E-F 35S-T (G059) + LI dy F-G (BB09) + 
LII R 3-4 

 LII F 1-2 pDIS:AtKASI 
(pCG126) 

 

Assembled by BsaI cut ligation from:  

LI A-C pDIS + LI C-D AtKASI + LI dy D-E (BB08) + LI 
E-F nos-T(G006) + LI dy F-G (BB09) + LIIc F 1-2 (BB30) 

 LII F 1-2 pDIS:EV 
(pCG127) 

 

Assembled by BsaI cut ligation from:  

LI A-C pDIS + LI dy C-D (BB07) + LI dy D-E (BB08) + 
LI E-F nos-T(G006) + LI dy F-G (BB09) + LIIc F 1-2 
(BB30) 

 LII F 1-2 pPT4:DIS 
(pCG130) 

 

Assembled by BsaI cut ligation from:  

LI A-B pPT4 + LI dy B-C (BB06) + LI C-D DIS + LI E-F 
nos-T(G006) + LI dy F-G (BB09) + LIIc F 1-2 (BB30) 

 LII F 1-2 pPT4:dis-1 
(pCG131) 

Assembled by BsaI cut ligation from:  
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 LI A-B pPT4 + LI dy B-C (BB06) + LI C-D dis-1+ LI E-F 
nos-T(G006) + LI dy F-G (BB09) + LIIc F 1-2 (BB30) 

 LIIc F 1-2 pRAM2:gRAM2 
pPP106 

Assembled by BsaI cut ligation from: LI A-B pRAM2 + 
LI B-C dy (BB06) + LI C-D RAM2 + LI D-E dy (BB08) + 
LI E-F nos-T (G006) + LI F-G dy (BB09) + LIIc F 1-2 
(BB30) 
 

 LII F 3-4 pPT4:gRAM2  

(pAK12) 

Assembled by BsaI cut ligation from:  

LI A-B pPT4 + LI dy B-C (BB06) + LI C-D RAM2 + LI 
E-F nos-T(G006) + LI dy F-G (BB09) + LIIc F 3-4 (BB34) 

 LII F 3-4 pPT4:gram2-1 

(pAK13) 

Assembled by BsaI cut ligation from:  

LI A-B pPT4 + LI dy B-C (BB06) + LI C-D ram2 + LI E-
F nos-T(G006) + LI dy F-G (BB09) + LIIc F 3-4 (BB34) 

 LIIc F 1-2 pRAM2:GUS 
pPP107 

Assembled by BsaI cut ligation from: LI A-B pRAM2 + 
LI B-C dy (BB06) + LI C-D GUS + LI D-E dy (BB08) + 
LI E-F nos-T (G006) + LI F-G dy (BB09) + LIIc F 1-2 
(BB30) 
 

 LIIc R 3-4 pUbi:mCherry 
(pPP101) 

(Pimprikar et al., 2016) 

 LIIβ F 5-6 pPOI:NLS-
2XYFP:NosT 
(pGC134) 

Assembled by BsaI cut ligation from: LI A-B Esp3I-
lacZ dy (G082) + LI B-C NLS (G60) + LI C-D YFP (G54) 
+ LI D-E YFP (G12) + LI E-F Nos-T (G006) + LI F-G dy 
(BB09) + LIIβ F 5-6 (BB28) 

 LIIc F 1-2 pSbtM1:SPP-
mCherry: HspT 
(pPP137) 

Assembled by BsaI cut ligation from: LI A-B pSbtM1 + 
LI B-C SPP + LI C-D mCherry + LI D-E dy (BB08) + LI 
E-F Hsp-T (G045) + LI F-G dy (BB09) + LIIc F 1-2 (BB30) 

 

Golden Gate level III (LIII) plasmids for plant transformation 

ram2-1 transgenic 
complementation 
(Fig. 1A) 
 

LIIIβ F A-B pRAM2:RAM2 
(pPP162) 

Assembled by BpiI cut ligation from: LIIc F 1-2 
pRAM2:RAM2 + LII 2-3 ins (BB43) + LIIc R 3-4 
pUbi:mCherry + LII 4-6 dy (BB41) + LIIIβ F A-B (BB53) 
 

Localization of 
DIS promoter 
activity (Fig 2_S1) 
 

LIIIβ F A-B pDIS:GUS 
(pMP2) 

Assembeled by Esp3I Cut-Ligation. PCR product of 
pDIS + pPP170 [LIIc F 1-2 pRAM1:GUS + LII 2-3 ins 
(BB43) + LIIc R 3-4 pUbi:mCherry + LII 4-6 dy (BB41) + 
LIIIβ F A-B (BB53)] (Pimprikar et al., 2016). 

Localization of 
RAM2 promoter 
activity (Fig 2_S1) 
 

LIIIβ F A-B pRAM2:GUS 
(pPP163) 

Assembled by BpiI cut ligation from: LIIc F 1-2 
pRAM2:GUS + LII 2-3 ins (BB43) + LIIc R 3-4 
pUbi:mCherry + LII 4-6 dy (BB41) + LIIIβ F A-B (BB53) 
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Cross species 
complementation 
of dis-1 mutant 
with Arabidopsis 
KASI (Fig. 2C) 

LIIIβ F A-B pDIS:AtKASI 
(pCG128) 

 

LIIIβ F A-B pDIS:EV 
(pCG129) 

Assembled by BpiI cut ligation from: 

LII F 1-2 pDIS:AtKASI + LII ins 2-3 (BB43) + LII R 3-4 
p35S:mCherry + L II dy 4-6 (BB41) + LIIIβ F A-B 

Assembled by BpiI cut ligation from:  

LII F 1-2 pDIS:EV + LII ins 2-3 (BB43) + LII R 3-4 
p35S:mCherry + L II dy 4-6 (BB41) + LIIIβ F A-B 

 
 
dis-1 transgenic 
complementation 
with pPT4:DIS 
(Fig. 2C) 

LIIIβ F A-B pPT4:DIS 
(pCG132) 

 

LIIIβ F A-B pPT4:dis-1 
(pCG133) 

 

Assembled by BpiI cut ligation from: 

LII F 1-2 pPT4:DIS + LII ins 2-3 (BB43) + LII R 3-4 
p35S:mCherry + L II dy 4-6 (BB41) + LIIIβ F A-B 

Assembled by BpiI cut ligation from: 

LII F 1-2 pPT4:dis-1 + LII ins 2-3 (BB43) + LII R 3-4 
p35S:mCherry + L II dy 4-6 (BB41) + LIIIβ F A-B 

ram2-1 transgenic 
complementation 
with pPT4:RAM2 
(Fig. 2C) 

LIIIβ F A-B pPT4:RAM2 
(pAK14) 

 

LIIIβ F A-B pPT4:ram2-1 
(pAK15) 

 

Assembled by BpiI cut ligation from: 

LII F 1-2 pUbi:mCherry + LII ins 2-3 (BB43) + LII F 3-4 
pPT4:gRAM2 + L II dy 4-6 (BB41) + LIIIβ F A-B 

Assembled by BpiI cut ligation from: 

LII F 1-2 pUbi:mCherry + LII ins 2-3 (BB43) + LII F 3-4 
pPT4:ram2-1 + L II dy 4-6 (BB41) + LIIIβ F A-B 

Esp3I compatible 
destination 
backbone for 
Localization of 
promoter activity  

Esp3I cut ligation 
compatible backbone: 
LIIIβ F A-B pSbtM1:SP-
mCherry_pPOI:NLS-
2XYFP (pPP217) 

Assembled by BpiI cut ligation from: LIIc F 1-2 
pSbtM1:SP-mCherry: HspT + LII 2-3 ins (BB43) + LII 3-
4 dy (BB64) + LII 4-5 ins (BB44) + LIIβ F 5-6 
pPOI:NLS-2XYFP:NosT + LIIIβ F A-B (BB53) 

 

BsaI compatible 
destination 
backbone for 
Localization of 
promoter activity  

BsaI cut ligation 
compatible backbone: 
LIIIβ F A-B pSbtM1:SP-
mCherry_pPOI:NLS-
2XYFP (pPP218) 

Assembled by Esp3I cut ligation from: LIIIβ F A-B 
pSbtM1:SP-mCherry_pPOI:NLS-2XYFP + LI A-B 
Esp3I-ccdB dy (G084) 

 

Localization of 
promoter activity 
of pDIS (Fig 2A) 

LIIIβ F A-B 
pSbtM1:SSP:mCherry+pDI
S:NLS-2xYFP (pPP241) 

 

 

Assembled by BsaI cut ligation from: 

LI A-B pDIS + LIIIβ F A-B pSbtM1:SP-
mCherry_pPOI:NLS-2XYFP (pPP218) 

 

Localization of 
promoter activity 
of pRAM2 (Fig 
2B) 

LIIIβ F A-B 
pSbtM1:SSP:mCherry+pRA
M2:NLS-2xYFP (pPP238) 

 

Assembled by BsaI cut ligation from: 

LI A-B pRAM2 + LIIIβ F A-B pSbtM1:SP-
mCherry_pPOI:NLS-2XYFP (pPP218) 
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Supplemetary Table 4: Accession numbers for protein sequences used in the phyologenic 
tree (Figure 3) 
 

Species Ge
ne 

Accession 
numbers 

Database 

Arabidopsis lyrata KA
SI 

494344 www.phytozome.com 

Arabidopsis thaliana KA
SI 

AT5G46290.3 www.phytozome.com 

Beta vulgaris KA
SI 

21760 ecdj.t1 http://bvseq.molgen.mpg.de/index.sht
ml 

Brachypodium 
distachyon 

KA
SI 

Bradi1g19190.1 
/ 
Bradi1g46610.1 

www.phytozome.com 

Brassica rapa KA
SI 

Bra025025 / 
Bra017565 / 
Bra022029 

www.phytozome.com 

Capsella rubella KA
SI 

Carubv1002634
4m 

www.phytozome.com 

Carica papaya KA
SI 

evm.model.sup
ercontig 166.28 

www.phytozome.com 

Carica papaya DI
S 

evm.model.sup
ercontig 79.6 

www.phytozome.com 

Cunninghamia 
lanceolata 

KA
SI 

JU992615.1 NCBI 

Cunninghamia 
lanceolata 

DI
S 

JU992615.1 NCBI 

Cuscuta sativa KA
SI 

GAQC01004821
.1 

NCBI 

Glycine max KA
SI 

Glyma08g08910
.1 / 

www.phytozome.com 



 

 142 

Glyma05g25970
.1 

Glycine max DI
S 

Glyma08g02850
.1 / 
Glyma18g10220
.1 / 
Glyma05g36690
.2 

www.phytozome.com 

Gossipium raimondii KA
SI 

Gorai.009G1564
00.1 / 
Gorai.010G1656
00.1 

www.phytozome.com 

Gossipium raimondii DI
S 

Gorai.004G1318
00.1 

www.phytozome.com 

Lotus japonicus KA
SI 

chr4.CM0007.85
0.r2.d 

http://www.kazusa.or.jp/lotus/blast.ht
ml 

Lotus japonicus DI
S / 
DI
S-
like 

chr4.CM0004.16
40.r2.a / 
chr4.CM0004.16
50.r2.a 

http://www.kazusa.or.jp/lotus/blast.ht
ml 

Lunularia cruciata DI
S-
KA
SI 

contig3372 http://www.polebio.lrsv.ups-
tlse.fr/Luc_v1/Luc_v1.fa  

Lupinus albus KA
SI 

25301 NCBI 

Lupinus albus DI
S 

32493 NCBI 

Lupinus angustifolius DI
S 

AOCW0116011
0.1 

NCBI 

Medicago truncatula KA
SI 

Medtr4g096690.
1 

www.phytozome.com 

Medicago truncatula DI
S 

Medtr8g099695.
1 

www.phytozome.com 

Mimulus guttatus KA
SI 

mgv1a005817m www.phytozome.com 

Mimulus guttatus DI
S 

mgv1a006855m 
/ 
mgv1a024999m 
/ 
mgv1a005480m 

www.phytozome.com 

Oryza sativa KA
SI 

Os06g09630.1 www.phytozome.com 

Panicum virgatum KA
SI 

Pavirv00002168
m / 
Pavirv00070739

www.phytozome.com 
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m / 
Pavirv00049911
m 

Phaeseolus vulgaris KA
SI 

Phvul.002G1943
00.1 

www.phytozome.com 

Phaeseolus vulgaris DI
S 

Phvul.002G3004
00.1 

www.phytozome.com 

Physcomitrella patens DI
S-
KA
SI 

XP_001762687.1 
/ 
XP_001762048.1 
/ 
XP_001776124.1 

NCBI 

Pohlia nutans DI
S-
KA
SI 

GACA01011151
.1 

NCBI 

Populus trichocarpa KA
SI 

XP_002305334.1 
/ 
XP_002316735.1 

NCBI 

Populus trichocarpa DI
S 

XP_002303661.2 
/ 
XP_002299456.1 

NCBI 

Selaginella 
moellendorffii 

DI
S-
KA
SI 

XP_002960175.1 
/ 
XP_002964698.1 
/ 
XP_002961627.1 

NCBI 

Setaria italica KA
SI 

Si033275m / 
Si039166m / 
Si006383m 

www.phytozome.com 

Solanum lycopersicum KA
SI 

Solyc08g016170.
2.1 

www.phytozome.com 

Solanum lycopersicum DI
S 

Solyc08g082620.
2.1 

www.phytozome.com 

Solanum tuberosum KA
SI 

PGSC0003DMP
400014579 

www.phytozome.com 

Solanum tuberosum DI
S 

PGSC0003DMP
400021710 

www.phytozome.com 

Sorghum bicolor KA
SI 

Sb02g041620.1 / 
Sb10g006430.1 

www.phytozome.com 

Thellungiella halophila KA
SI 

Thhalv10000874
m 

www.phytozome.com 

Theobroma cacao KA
SI 

Thecc1EG02951
3t1 

www.phytozome.com 

Theobroma cacao DI
S 

Thecc1EG01649
8t1 

www.phytozome.com 
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Utricularia giba KA
SI 

Scf00389.g16797
.t1 

http://genomevolution.org/CoGe/Orga
nismView.pl?oid=36222 

Vitis vinifera KA
SI 

XP_002272874.2 NCBI 

Vitis vinifera DI
S 

XP_002265207.1 NCBI 

Zea mays KA
SI 

GRMZM2G012
863 / 
GRMZM2G135
498  

www.phytozome.com 

 
Lunularia 

cruciata 

D

I

S

-

K

A

S

I 

contig

3372 

http://

www.

polebi

o.lrsv.

ups-

tlse.fr/

Luc_v

1/Luc_

v1.fa  

MAATSAVVGASFQGLRAVDGRAVSEVSVLRGSRVSKPS

AQHRFARELSQNGARAMAATTTAPKRETDPKKRVVITG

MGVVSVFGNDVDIFYDKLLEGQSGISLIDRFDASTFPTKF

GGQIRGFSSQGYIDGKNDRRLDDCLRYCLVSGQKGLEH

AGLGGEKLNEVDKQRVGVLVGTGMGGLSVFSDGVQAL

IEKGYKRITPFFIPYAITNMASALLAIELGLMGPNYSISTA

CATSNYCFYAAANHIRRGEADIMVAGGTEAAIIPVGLG

GFVACRALSTRNDDPQTASRPWDKDREGFVMGEGAGV

LVMESLEHALKRGAPILAEYLGGAVNCDAYHMTDPRA

DGLGVSTCIERSLEDAGVSPEEVNYINAHATSTIVGDLAE

VNALKKVFKDGSEIKMNATKSMIGHCLGAAGGLEAIAT

IQAINTGWLHPTINQFNPEEAVTFDTVANVKKQHQVNI

GISNSFGFGGHNSCVVFGPYNG* 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 

 145 

IX. General discussion 
 
The major benefit of arbuscular mycorrhiza symbiosis for both partners is the 
exchange of nutrients (MacLean et al. 2017). The nutrients are trafficked across the 
PAM which encapsulates every hypha of arbuscule formed in the inner cortical cell 
of the host. Thus, the degree of arbuscule branching determines the surface area of 
the symbiotic interface and thereby the rate of the nutrient transfer. Despite the 
importance of arbuscule development for AM symbiosis, most regulatory 
molecular mechanism governing arbuscule branching and transcriptional 
complexes inducing AM-specific genes are still elusive. Transcriptomic analysis 
revealed that the largest number of transcript accumulated specifically in the cells 
containing arbuscules (Hogekamp and Küster 2013). The majority of transcripts 
accumulating during AM development encode putative transcription factors, 
indicating complex transcriptional networks (Xue et al. 2015). The L. japonicus Gifu 
red (reduced and degenerate arbuscule) mutant found in forward genetics screen 
carried two mutations causative for the arbuscule phenotype (Groth et al. 2013). We 
separated the two mutations by segregation and the single homozygous mutants 
obtained were used for the following studies. The first mutation was found in the 
RAM1 gene on chromosome 1. RAM1 encodes a GRAS-type transcription factor 
family protein, which is essential for arbuscule branching. On the contrary, RAM1 
was previously found to be essential for the early stage of interaction during AM 
development, as the deletion mutant ram1-1 in M. truncatula showed absence of root 
length colonization with significant reduction in hyphopodia formation (Gobbato 
et al. 2012). A set of genes induced by Myc-LCO were shown to be dependent on 
RAM1 (Hohnjec et al. 2015), supporting the role of RAM1 in early stage of AM 
development.  However, two other reports from L. japonicus and P. hybrida indicated 
role of RAM1 in arbuscule branching and not in hyphopodia formation (Rich et al. 
2015, Xue et al. 2015). Likewise, a weak mutant allele of RAM1 in Medicago displayed 
stunted arbuscule in rare cases where the fungus was able to colonize the inner 
cortex of the root (Gobbato et al. 2013). However, it is possible that certain growth 
or inoculation conditions caused the reduction in hyphopodium formation on the 
root surface of Medicago ram1-1 mutant reported in Gobbato et al., (2012). For 
example, AM colonization is reduced in low red and far red light condition or at 
high phosphate concentration (Javot et al. 2007a, Nagata et al. 2015). Re-analysis of 
AM phenotype in the ram1-1 mutant in Medicago in various condition by Park and 
co-worker from another lab revealed that RAM1 is not necessary for hyphopodium 
formation or hyphal entry into the host root but for arbuscule branching (Park et al. 
2015). Thus, RAM1 was re-assigned to play a major role in arbuscule branching and 
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development. In addition to the arbuscule branching phenotype, ram1 mutants in 
L. japonicus, M. truncatula, and P. hybrida also displayed significantly reduced root 
length colonization (Park et al. 2015, Rich et al. 2015, Xue et al. 2015, Pimprikar et al. 
2016). Decreased root length colonization might be a consequence of stunted 
arbuscule formation inhibiting the AM fungus to spread in the root. Additionally, 
RAM1 may play a minor role in the pre-contact stage ultimately resulting in less 
colonized roots. Therefore, the role of RAM1 in the pre-symbiotic phase needs to be 
re-investigated carefully.  

The L. japonicus ram1-3 and ram1-4 mutants in this study showed absence of 
induction of AMT2.2 and DIS upon colonization. Conversely, ram1 mutants in M. 
truncatula were perturbed in the induction of genes such as BCP1, PT4, RAM2, STR, 
AMT2.4, AMT2.5, Vapyrin (Park et al. 2015, Luginbuehl et al. 2017). Also, ram1 
mutant in P. hybrida did not display induction of genes such as BCP1, PT4, PT5, 
RAM2, STR, STR2, AMT2, Vapyrin upon colonization (Rich et al. 2015, Rich et al. 
2017a). The differential set of RAM1-dependent genes in Medicago and Petunia as 
compared to Lotus might be due to species-specific genetic redundancy at the level 
of RAM1. Phylogenetic analysis of GRAS-type transcription factor from L. japonicus, 
M. truncatula, and O. sativa indicated that the closest homolog of RAM1 is RAD1 
(Xue et al. 2015, Pimprikar et al. 2016). Promoter activity of RAD1 specifically in 
colonized root is similar to the promoter activity of RAM1 in L. japonicus (Xue et al. 
2015, Pimprikar et al. 2016). Most importantly RAD1 is also essential for arbuscule 
development in L. japonicus as rad1 mutant displayed stunted arbuscule (Xue et al. 
2015), supporting the hypothesis that RAD1 and RAM1 might be partially 
redundant in function. However, in M. truncatula, rad1 mutants show a weaker 
phenotype, with reduce root length colonization but normally developed arbuscule 
(Park et al. 2015). Thus, it appears that the relative importance of RAM1 and RAD1 
in supporting arbuscule formation differs between Lotus and Medicago. This may 
also explain the different effects of the RAM1 mutation on induction of genes 
required for AM development in the two species. Interestingly, RAD1 is shown to 
interact with RAM1 and NSP2 in Y2H, BiFC and CoIP in L. japonicus and M. 
truncatula (Park et al. 2015, Xue et al. 2015). Additionally, RAM1 was shown to form 
a complex with NSP2 using BiFC (Gobbato et al. 2012). Thus, it is possible that 
RAM1, NSP2 and RAD1 forms heterocomplexes and co-regulate certain set of 
genes. However, formation and biological relevance of this dimeric or trimeric 
complexes need to be analyzed in vivo. It was proposed that RAM1 and NSP2 act 
together to regulate the expression of genes required for AM development 
analogous to the NSP1-NSP2 complex in root nodule symbiosis (Gobbato et al. 
2012). Thus, it is possible that different GRAS transcription factor complexes 
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regulate different sets of genes during AM symbiosis. Nevertheless, the putative 
partially redundant factor at the level of RAM1 in L. japonicus was unable to induce 
AMT2.2 and DIS indicating RAM1 is essential to regulate genes co-regulated with 
AMT2.2 and DIS (Pimprikar et al. 2016).  
 Although the CCaMK-CYCLOPS complex and DELLA are indispensable for 
AM development, their direct targets in AM were not known until I started my 
doctoral thesis. The specific induction upon colonization (Gobbato et al. 2012, Park 
et al. 2015, Xue et al. 2015, Pimprikar et al. 2016) and the AM-specific promoter 
activity of RAM1 suggested an AM-induced spatial and temporal regulatory 
mechanism governing its activation. Epistatic analysis carried out in this thesis, 
placed RAM1 downstream of CCaMK and CYCLOPS, as RAM1 induction was 
absent in ccamk and cyclops AM colonized L. japonicus roots and ectopic expression 
of RAM1 could restore arbuscule formation in cyclops mutants (Pimprikar et al. 
2016).  CYCLOPS is shown to bind the promoter and activate transcription of the 
nodulation specific gene NIN upon phosphorylation by CCaMK (Singh et al. 2014). 
Transcriptional activation of RAM1 by ectopic expression of auto-active NLS-
CCaMK314 (containing solely kinase domain) in absence of AM fungus in wild-type 
(Takeda et al. 2015, Pimprikar et al. 2016) but not in cyclops (Pimprikar et al. 2016), 
indicated that RAM1 activation via CCaMK314 is dependent on CYCLOPS. Further, 
transactivation assay in N. benthamiana indicated that CYCLOPS phosphorylation 
by CCaMK is also a pre-requisite for RAM1 transcriptional activation as reporter 
activity under the RAM1 promoter was only detected in presence of both CCaMK314 

and CYCLOPS. A deletion series and mutational analysis of the RAM1 promoter by 
transactivation assays in N. benthamiana indicated that CYCLOPS acts via a 
palindromic cis-element named AMCYC-RE upon phosphorylation by NLS-
CCaMK314 (Pimprikar et al. 2016). The palindromic AMCYC-RE found in the RAM1 
promoter in this study, was already reported to be present in several AM-specific 
induced genes via computational analysis (Favre et al. 2014). Presence of AMCYC-
RE in several AM-induced genes suggests that CYCLOPS might play a role in 
activating these genes. Using EMSA, we showed that CYCLOPS binds directly to 
the AMCYC-RE element in a sequence-specific manner (Pimprikar et al. 2016). 
Similarly, CYCLOPS was presented to bind cis-elements, which differ from the 
AMCYC-RE in the NIN and ERN1 promoter using EMSA (Table 1, Singh et al. 2014, 
Pimprikar et al. 2016, Cerri et al. 2017). Though, the CYCLOPS binding cis-element 
in RAM1, NIN and ERN1 promoter differs in sequence from each other, they are all 
rich in GC content.  
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Table 1: Known CYCLOPS bound cis-elements 
Gene CYC-RE element 

sequence 
Base 
number 

GC content 
(%) 

RAM1 ATGGGCCGGCCCAA 14 71.4 
NIN TTGCCATGTGGCAC 14 57.14 
ERN1 CCTCCATGTGGCAG 14 64.28 

 
The cis-element in the RAM1 promoter bound by CYCLOPS is a perfect palindromic 
sequence whereas in NIN, the palindrome is separated by two nucleotide bases. 
Often, presence of a palindromic cis-element in a promoter indicates formation of a 
dimer. This hypothesis is consistent with CYCLOPS forming homodimers in BiFC 
assays (Yano et al. 2008). Thus, it is possible that CYCLOPS forms a homodimer to 
activate RAM1. The diversity in cis-elements bound by CYCLOPS indicates that 
CYCLOPS is able to bind diverse DNA sequences rich in GC content. Deviation 
from the consensus sequence in cis-regulatory elements may allow formation of 
multiple different transcription factor complexes, resulting in differential 
transcriptional responses (Ramos and Barolo 2013) for the establishment of AM or 
root nodule symbiosis. Thus, to generate specific response, it is possible that 
CYCLOPS interacts with different transcription factors. Ectopic expression of 
degradation insensitive DELLA induced AM-specific genes such as BCP1 in 
Medicago and RAM1 in Lotus in absence of AM fungi (Floss et al. 2016, Pimprikar et 
al. 2016), indicating that DELLA acts as a transcriptional activator during AM 
development. Several other experimental outcomes in this thesis indicate that 
DELLA and CYCLOPS both participate in the transcriptional activation of RAM1. 
In this study, we show that DELLA interacts with CYCLOPS in Y2H, BiFC and CoIP 
but not with CCaMK in Y2H and participates in transcriptional activation of RAM1. 
DELLA belongs to a GRAS-type transcription factor family which have been 
exclusively detected in plants (Bolle 2004). Based on electrophoresis mobility shift 
gel assays (EMSA), NODULATION SIGNALING PATHWAY 1 (NSP1) from M. 
truncatula and SCARECROW-LIKE 7 (SCL7) from rice belonging to the GRAS-type 
transcription factor family, have so far been suggested to bind DNA (Hirsch et al. 
2009, Li et al. 2016). However, no evidence for DNA-binding is present for DELLA 
and other GRAS-type transcription factors except NSP1 and SCL7. DELLA is shown 
to act as a transcriptional modifier via interaction with DNA-binding transcription 
factors such as C2H2 zinc finger transcription factors of the INDETERMINATE 
DOMAIN (IDD) proteins family (Fukazawa et al. 2014, Yoshida et al. 2014, 
Fukazawa et al. 2017). Also, SHORT-ROOT (SHR) and SCARECROW (SCR) 
belonging to the GRAS-type family bind to IDD10 called JACKDAW (JKD) (Hirano 
et al. 2017). The crystal structure of the trimeric complex of SCR-SHR-JKD 
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confirmed that SHR and SCR do not contain a DNA-binding domain and that the 
DNA binding is mediated via the JKD (Hirano et al. 2017).  The CYCLOPS-DELLA 
interaction was confirmed by another study, in which IPD3, an ortholog of 
CYCLOPS in M. truncatula was shown to interact with DELLA1, -2 and -3 in Y2H, 
BiFC and CoIP (Jin et al. 2016). The formation of CYCLOPS-DELLA complex was 
also evident from transactivation assays in N. benthamiana, in which addition of 
DELLA to CYCLOPS and CCaMK enhanced the activation of the RAM1 promoter. 
Similarly, Jin and co-worker showed that presence of DELLA in addition to CCaMK 
and CYCLOPS in yeast three-hybrid assays, results in increased activation of the 
reporter. Presence of CCaMK in this experiment enhanced the interaction between 
IPD3 and DELLA in yeast (Jin et al. 2016). Using in vitro kinase assay they showed 
that CCaMK phosphorylates CYCLOPS but not DELLA and presence of DELLA 
protein enhanced the intensity of phosphorylation of IPD3 by CCaMK (Jin et al. 
2016). It has been shown that CCaMK phosphorylates CYCLOPS at position S50 and 
S154, which is essential for establishment of both RNS and AM symbiosis as 
mutated CYCLOPS with a serine replacement to alanine failed to complement 
cyclops-3 mutant roots for AM and root nodule symbiosis (Singh et al. 2014). 
Interestingly, the serine replacement to aspartate at position S50 and S154 resulted 
in gain-of-function phenotype leading to formation of spontaneous nodules even in 
absence of rhizobia bacteria in root nodule symbiosis (Singh et al. 2014). The 
phosphoablative mutant version of CYCLOPS protein did not interact with DELLA 
in the yeast three hybrid assay (Jin et al. 2016), indicating that phosphorylation of 
CYCLOPS at position S50 and S154 by CCaMK might be a prerequisite for 
interaction with DELLA. Based on these results, it can be hypothesized that CCaMK 
upon activation, phosphorylates CYCLOPS at specific residues, which enables 
interaction with DELLA. In summary, I demonstrated that RAM1 is 
transcriptionally activated by a CCaMK-CYCLOPS-DELLA complex via direct 
binding of CYCLOPS to the AMCYC-RE element in the RAM1 promoter. DELLA 
was shown to interact with other GRAS-type transcription factors; NSP2, MIG1, 
RAD1, DELLA INTERACTING PROTEIN 1 (DIP1) and Myb family protein MYB1 
in Y2H, BiFC or CoIP (Yu et al. 2013, Floss et al. 2016, Fonouni-Farde et al. 2016, 
Heck et al. 2016, Jin et al. 2016, Floss et al. 2017), important for AM development. 
DELLA appear to act at multiple stages of arbuscule development as it interact with 
protein required for different stages during arbuscule development (Floss et al. 
2016, Fonouni-Farde et al. 2016, Heck et al. 2016, Jin et al. 2016, Pimprikar et al. 2016, 
Floss et al. 2017). However, these interaction of DELLA with different transcription 
factors might be responsible for generating specific responses enabling progression 
from one developmental stage of arbuscule to the next. Here, we assume an 
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additional DNA-binding transcription factor interacting with DELLA protein, 
involved in transcriptional activation of RAM1. As RAM1 was transcriptionally 
activated upon treatment with Paclobutrazol (PAC) in absence of AM fungi in ccamk 
and cyclops roots. Further, expression of della1-Δ18 and PAC treatment restored 
wild-type arbuscule formation in cyclops. In addition, we showed that CYCLOPS-
DELLA complex activate transcription of RAM1 by CYCLOPS binding to DNA 
directly. Thus, together these results indicates that DELLA can transcriptionally 
activate RAM1 even in absence of CYCLOPS (Pimprikar et al. 2016). Thus, this 
dilemma can be resolved by assuming an additional DNA-binding protein X, which 
also interact with DELLA and becomes sufficient in the absence of CYCLOPS when 
DELLA is stabilized. We showed for the first time that RAM1 as an entry point into 
AM-specific transcriptional activation downstream of common symbiotic signaling 
components CYCLOPS and DELLA. 

The second mutation in the red mutant was found in a lipid biosynthesis gene 
named REDUCED ARBUSCULAR MYCORRHIZA 2 (RAM2). The L. japonicus 
RAM2 locus was not associated with any chromosome but was placed on 
chromosome 0. Our mapping analysis showed that the second mutation in red is 
linked to chromosome 6. Confirmation that the mutation in RAM2 is causative for 
the red phenotype, indicated that the RAM2 gene is located on chromosome 6. 
RAM2 encodes a glycerol 3-phosphate acyl transferase 6 (GPAT6). In Arabidopsis 
and Medicago, GPAT6 was shown to specifically produce sn-2-monoacylglycerol (ß-
MAG) for cutin biosynthesis by acetylating the sn-2 position of glycerol-3-
phosphate with a fatty acid and cleaves the phosphate from the lysophosphatidic 
acid (Yang et al. 2010, Luginbuehl et al. 2017). RAM2 is essential for arbuscule 
development in L. japonicus as ram2 mutants (segregants from the red mutant 
containing only one mutation in RAM2 on chromosome 6) in Lotus displayed 
stunted arbuscules. In addition, the ram2 mutant showed a significant reduction in 
root length colonization and blocked the formation of lipid-containing vesicles of 
the AM fungus Rhizophagus irregularis (Keymer et al. 2017). In contrast, in a previous 
publication, a ram2 mutant in Medicago showed significant reduction in hyphopodia 
number and root length colonization (Wang et al. 2012). However, when the AM 
fungus managed to enter the root, it displayed stunted arbuscules (Wang et al. 
2012). External supply of the C16 aliphatic fatty acids associated with cutin restored 
the number of hyphopodia to the level of wild-type (Wang et al. 2012), supporting 
role of RAM2 in the production of cutin monomers and thus essential for early 
contact phase (Wang et al. 2012). Cutin monomers are predicted to act as chemical 
signaling molecules required for hyphopodia formation, as for appressorium 
formation of pathogenic fungi on the leaf surface (Murray et al. 2013). However, 
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subsequent studies, reported that the ram2 mutant in Medicago displays aberrant 
arbuscules but no hyphopodium phenotype (Bravo et al. 2017, Keymer et al. 2017). 
Furthermore, another PhD thesis (Andreas Keymer) reports that the ram2 mutant 
can be complemented by transgenic expression of RAM2 under control of the PT4 
promoter, which is only active in cells containing arbuscule (Keymer et al. 2017). 
Thus, the difference in the ram2 phenotype in the previous report (Wang et al. 2012) 
as compared to others reports (Bravo et al. 2017, Jiang et al. 2017, Keymer et al. 2017, 
Luginbuehl et al. 2017) needs to be carefully re-examined. 

Ectopic expression of RAM1 in absence of fungus, induced AM-specific 
genes including RAM2, SbtM1, PT4, and AMT2.2 in wild-type, ccamk, and cyclops 
mutant roots in L. japonicus. However, these genes were still induced in ram1 mutant 
root in L. japonicus upon colonization except AMT2.2 indicating that RAM1 is 
sufficient but not required for induction of RAM2, SbtM1 and PT4 downstream of 
CCaMK and CYCLOPS. In contrast, RAM2 induction was absent in ram1 mutant of 
M. truncatula and P. hybrida (Park et al. 2015, Rich et al. 2015, Xue et al. 2015, 
Pimprikar et al. 2016, Luginbuehl et al. 2017, Rich et al. 2017a), indicating species-
specific redundancy at level of RAM1 for regulation of RAM2. In addition, 
overexpression of NLS-CCaMK314 under the 35S promoter in wild-type Lotus hairy 
roots, transcriptionally activate the AM-marker genes SbtM1 and RAM2 in addition 
to RAM1 in absence of the AM fungi (Takeda et al. 2015). Taken together, these 
results indicate that CYCLOPS upon phosphorylation by CCaMK transcriptionally 
activate RAM1 and RAM1 may be involved in activation of RAM2 downstream of 
CCaMK-CYCLOPS complex. However, to activate the transcription of genes, it is 
likely that RAM1 interacts with DNA-binding transcription factors. RAM1 was 
shown to bind RAM2 promoter in a Chromatin immunoprecipitation-polymerase 
chain reaction (ChIP-PCR) assay using antibodies against native RAM1 protein 
from wild-type but not from ram1 mutant colonized roots in Medicago (Gobbato et 
al. 2012). It remains to be investigated, whether RAM1 directly binds to DNA as 
ChIP involving crosslinking steps can fix protein complexes. Thus, this evidence 
fails to rule out the possibility that RAM1 does not interact with another DNA-
binding transcription factor. Furthermore, transcriptomic analysis in Medicago 
indicated that RAM1 is required for induction of genes associated with lipid and 
carbohydrate metabolism during AM colonization (Luginbuehl et al. 2017). Many 
plant lipid biosynthesis genes are specifically induced during arbuscule formation 
(Gomez et al. 2009, Gaude et al. 2012, Hogekamp and Küster 2013). Several of these 
genes are AM-specific duplications of housekeeping lipid biosynthesis genes and 
are conserved exclusively in plants that establish AM symbiosis (Bravo et al. 2016). 
Recently, it has been shown that plant genes involved in lipid biosynthesis 
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including RAM2 are essential for arbuscule development (Bravo et al. 2017, Jiang et 
al. 2017, Keymer et al. 2017, Luginbuehl et al. 2017). Overexpression or knockdown 
of lipid biosynthesis genes results in respectively increased or decreased root length 
colonization in Medicago (Jiang et al. 2017). Further, mutations in several lipid 
biosynthesis genes lead to under-developed arbuscules indicating that lipids are 
required for arbuscule development (Bravo et al. 2017, Jiang et al. 2017, Keymer et 
al. 2017, Luginbuehl et al. 2017). Thus, it is possible that a major role of RAM1 in 
arbuscule development is to activate the transcription of lipid biosynthetic genes. 
Consistent with this hypothesis, overexpression of RAM1 induced the lipid 
biosynthesis gene FatM in addition to RAM2 in absence of AM fungi in Medicago 
(Luginbuehl et al. 2017). RAM1 was also essential for transcriptional activation of 
two more lipid biosynthetic genes KASIII and DIS (Keymer et al. 2017). KASIII is a 
single copy gene in L. japonicus and encodes ß-keto-acyl ACP synthase III, which 
produces precursors for DISORGANIZED ARBUSCULES/KASI (DIS/KASI) by 
catalyzing fatty acyl chain elongation from C2:0-ACP to C4:0-ACP (Keymer et al. 
2017). In the frame of another Ph.D. thesis work (unfinished), Simone Bucerius and 
co-workers found an additional AM specific lipid biosynthetic gene DIS required 
for arbuscule development through forward genetics. DIS encodes a ß-keto-acyl 
ACP synthase I (KASI) (Keymer et al. 2017). This gene was further characterized by 
Andreas Keymer (doctoral thesis to be completed). According to its homology with 
Arabidopsis KASI, DIS is predicted to catalyze condensation reactions from C4:0-
ACP to C16:0-ACP during fatty acyl chain elongation (Li-Beisson et al. 2010). It was 
observed that ram2 but not dis over-accumulates C16:0 fatty acids containing 
phospholipids and triacylglycerol. This observation indicates that RAM2 uses C16:0 
fatty acids synthesized by DIS as substrates for synthesis of ß-MAG (Keymer et al. 
2017). Congruously, RAM2 (GPAT6) was shown to have substrate specificity for 
C16:0 fatty acids (Yang et al. 2012, Luginbuehl et al. 2017). Together, these results 
suggest that RAM2 acts downstream of DIS in same lipid biosynthesis pathway. 
Genetics and phenotyping approaches integrated with lipidomics and isotopolog 
profiling of roots, intraradical and extraradical AM fungal hyphae revealed that 
plant lipids synthesized by DIS and RAM2 in the arbuscule containing cells are 
supplied to the fatty acid auxotrophic AM fungi (Jiang et al. 2017, Keymer et al. 
2017, Luginbuehl et al. 2017). Thus, all together we demonstrated that plants 
provide not only carbohydrate but also lipid to the AM fungi during symbiosis. 
However, it is still not well understood how lipids are transported from plants to 
fungi. Potential candidates which might be involved in lipid export are the two half 
ABCG transporters STR and STR2. STR could be implicated in lipid export from the 
arbuscule-containing cell based on analogy with the function of other ABCG 
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transporter family members (Zhang et al. 2010, Gutjahr et al. 2012, Lee et al. 2016). 
STR and STR2 are individually essential for arbuscule development as the half 
ABCG transporter STR and STR2 interact to form a full transporter (Zhang et al. 
2010). Consistent with its predicted role in lipid export during arbuscule 
development, the STR protein localizes to the PAM (Zhang et al. 2010). Ectopic 
expression of RAM1 induces STR in absence of AM fungi (Pimprikar et al. 2016). 
The ram1, ram2, dis and str mutant in L. japonicus showed strong reduction in 
accumulation of AM-specific lipids in colonized roots (Keymer et al. 2017). Thus, 
RAM1 is sufficient for transcriptional activation of lipid biosynthesis and export 
genes, which likely act in a pathway, which is crucial for arbuscule development.  

Due to simultaneous presence of different stages of AM development in the 
same root, it is challenging to attribute transcriptional changes to specific stage of 
AM development. Pharmacological application of synthetic fungal molecules to 
non-colonized roots, and separation of cells containing specific fungal structures 
using laser microdissection, partially revealed transcriptional changes during 
different AM developmental stages (Balestrini et al. 2007, Gomez et al. 2009, Czaja 
et al. 2012, Gaude et al. 2012, Hogekamp and Küster 2013, Miyata et al. 2014, Camps 
et al. 2015, Giovannetti et al. 2015, Gutjahr et al. 2015, Hohnjec et al. 2015). Similarly, 
arbuscule development takes place in a step-wise manner but is an asynchronous 
process such that all stages (stage 0 to stage V, as shown in the introduction) are 
simultaneously present in the root (Gutjahr and Parniske 2013). Protein products of 
the genes required for these stages must precisely guide the step-wise development 
of the arbuscule. Transcriptional changes during arbuscule development likely 
occur in a successive but overlapping manner (Gutjahr and Parniske 2013). The 
transcriptome of arbuscule containing cells was investigated in detail using laser 
microdissection of cells containing arbuscules followed by qPCR or microarray 
hybridization (Fiorilli et al. 2009, Gomez et al. 2009, Gaude et al. 2012, Hogekamp 
and Küster 2013). However, this method failed to correlate the transcriptional 
changes in arbuscule containing cells to particular developmental stage(s) of 
arbuscule. In addition, this approach could not analyze cells forming a PPA (stage 
0 of arbuscule development) due to absence of a visible fungal structure. Until now 
it was not possible to trace the arbuscule developmental stages in live roots. The 
staining methods used to stain the fungal structure inside the roots, killed the roots. 
In this thesis, I designed a construct, which will help to correlate promoter activity 
to different developmental stages of AM and arbuscule including cells undergoing 
early cellular changes in live roots. Using the same construct, I could co-visualize 
arbuscule-developmental stages and promoter activity in living roots to show that 
DIS and RAM2 promoters are active prior to and during arbuscule development but 
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promoter activity is absent during arbuscule degeneration (Keymer et al. 2017). In 
addition, DIS promoter activity was visible in the cortical cells of non-colonized but 
inoculated roots. Thus, activity of RAM2 and DIS promoters indicates that cells 
prior to and during arbuscule development are engaged in production of lipids 
which is subsequently supplied to the fungus. Thus, the construct I designed is not 
only useful for localizing the promoter activity in live roots but also enable to follow 
micro-activity of promoter during arbuscule development.  
 

 
 
Figure 5: RAM1 is a central regulator of arbuscule development (strongly 
modified from Singh and Parniske, 2012). Model summarizing transcriptional 
regulation of RAM1, targets of RAM1 and their predicted function in L. japonicus. 
Nuclear calcium spiking generated upon Myc Factor perception by the calcium 
spiking machinery (CASTOR, POLLUX, MCA8, NUP85, NUP133, NENA, 
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CNGC15s) is decoded by CCaMK (Calcium and Calmodulin dependent Kinase) 
which then interacts and phosphorylate CYCLOPS (Levy et al. 2004, Mitra et al. 
2004, Kistner et al. 2005, Messinese et al. 2007, Gutjahr et al. 2008, Yano et al. 2008, 
Singh and Parniske 2012, Singh et al. 2014, Pimprikar et al. 2016). The CCaMK-
CYCLOPS-DELLA complex activates the transcription of REDUCED 
ARBUSCULAR MYCORRHIZA 1 (RAM1) by direct binding of CYCLOPS to 
AMCYC-RE in the RAM1 promoter. We hypothesize that an unknown DNA-
binding transcription factor X also interacts with DELLA in addition to CYCLOPS 
to activate the transcription of RAM1. RAM1 likely interacts with an unknown DNA 
binding transcription factor Z, which leads to the activation of the genes SbtM1, PT4, 
AMT2.2, STR, KASIII, DIS and RAM2. The unknown partially redundant factor Y 
acts at the level of RAM1 in the activation of SbtM1, PT4, STR and RAM2 in L. 
japonicus. The predicted subtilase (SbtM1) with unknown function localizes to the 
peri-arbuscular space (PAS) (Takeda et al. 2009). The PHOSPHATE 
TRANSPORTER 4 (PT4) and the AMMONIUM TRANSPORTER 2.2 (AMT2.2) are 
localized to the peri-arbuscular membrane (PAM) and are required for phosphate 
and nitrogen uptake from the peri-arbuscular space (PAS) delivered by the 
arbuscule (Harrison et al. 2002, Pumplin and Harrison 2009, Kobae et al. 2010, 
Breuillin-Sessoms et al. 2015). KASIII (ß-KETO-ACYL ACP SYNTHASE III) in L. 
japonicus produces a precursor for DISORGANIZED ARBUSCULES (DIS, ß-KETO-
ACYL ACP SYNTHASE I) activity by catalyzing fatty acyl chain elongation from 
C2 to C4 (Keymer et al. 2017). DIS catalyzes condensation reactions from C4:0-ACP 
to C16:0-ACP during fatty acyl chain elongation (Keymer et al. 2017). REDUCED 
ARBUSCULAR MYCORRHIZA 2 (RAM2) acts downstream of DIS to synthesizes 
ß-MAG using C16:0-ACP (Keymer et al. 2017). STR localizes to the PAM and is 
predicted to export lipids synthesized by RAM2 to the arbuscule (Zhang et al. 2010, 
Jiang et al. 2017, Keymer et al. 2017, Luginbuehl et al. 2017). The exported lipids are 
then desaturated by fungal enzymes leading to accumulation of fungus-specific 
lipids containing 16:1 ω5 fatty acids (Luginbuehl and Oldroyd 2017, MacLean et al. 
2017, Rich et al. 2017b). ACP, ACYL-CARRIER PROTEIN; Ca2+, calcium ions; CoA, 
Coenzyme A; K+, potassium ions; Mal-CoA, Malonyl-Coenzyme A; MAG, 
monoacylglycerol; NH4+, ammonium; Pi, phosphate. 
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X. Outlook 
 
Several experiments in L. japonicus and M. truncatula indicated that RAM1 is 
essential for AM-specific activation of a whole cohort of genes encoding proteins 
with diverse function, required for arbuscule development (Park et al. 2015, Rich et 
al. 2015, Xue et al. 2015, Pimprikar et al. 2016, Keymer et al. 2017, Luginbuehl et al. 
2017). Thus, identifying all targets of RAM1 will help to understand the biology of 
complex arbuscule development and function. One of the approaches for 
identifying RAM1 targets would be to compare the transcriptome of colonized and 
non-colonized wild-type and ram1 mutant roots by RNAseq in L. japonicus. A 
similar approach in M. truncatula and P. hybrid indicated AM induced genes were 
dependent on RAM1 (Luginbuehl et al. 2017, Rich et al. 2017a). However, RAM1 
requirement for the induction of AM-specific genes varies within L. japonicus, M. 
truncatula and P. hybrida (Park et al. 2015, Rich et al. 2015, Xue et al. 2015, Pimprikar 
et al. 2016, Keymer et al. 2017, Luginbuehl et al. 2017) and therefore comparative 
studies for targets of RAM1 will increase our understanding of micro-diversification 
of gene regulatory network within closely related species such as legumes L. 
japonicus and M. truncatula. Understanding the role of the targets of RAM1 via 
reverse genetics will be next step towards increasing our current knowledge about 
arbuscule development. Many GRAS-type transcription factor family proteins are 
predicted to lack the ability to bind to the DNA directly and probably activate the 
transcription of gene via interaction with other DNA-binding transcription factor 
(Fukazawa et al. 2014, Yoshida et al. 2014, Fukazawa et al. 2017, Hirano et al. 2017). 
As RAM1 is also a GRAS-type transcription factor (Gobbato et al. 2012), it is possible 
that RAM1 interacts with proteins binding to DNA directly to activate transcription 
of genes required for arbuscule development. Therefore, it will be interesting to 
reveal RAM1 interacting partners and thereby the transcription factor complexes 
involved in the activation of RAM1 targets. RAM1 interacting partners can be 
identified by a Y2H screen of a cDNA library from AM colonized wild-type roots 
using RAM1 as a bait or by pull-down of protein complexes from colonized ram1 
transgenic hairy roots transformed with a construct expressing tagged RAM1 
followed by protein identification via mass spectrometry. Furthermore, the 
idenfication of cis-regulatory elements in the promoter of the RAM1-target genes 
required for their activation via RAM1-containing transcription factor complexes 
will guide us to understand, which other genes could be regulated via same 
transcriptional complexes. AM development is tightly regulated by physiological 
and nutritional status of plants, likely via plant hormones. For example, high 
phosphate level or far-red light inhibit AM development (Breuillin et al. 2010, 



 

 157 

Nagata et al. 2015). Also, in my thesis I showed that the GA regulated DELLA 
protein is required for activation of RAM1. Therefore, investigating whether other 
plant hormones participate in the transcriptional regulation of RAM1 (for example 
activation) will be a step toward understanding how plants regulate AM symbiosis 
depending on their physiological and nutritional status. 
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