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 I 

Summary 

Visual attentional impairments, including both spatially lateralized and non-lateralized 

attentional functions, are commonly reported in psychiatric and neurological conditions. The 

first part of this dissertation presents two studies that were conceived as double-blind, 

randomized, sham-controlled trials to (i) assess the (to-be specified) sub-components of 

attentional deficits resulting from major depressive disorder (MDD) and, respectively, 

schizophrenia, and (ii) examined for (any) specific attentional benefits induced by a single 

session anodal transcranial direct current stimulation (tDCS) over the left dorsolateral 

prefrontal cortex (dlPFC) in both patient groups compared to healthy controls. In MDD 

patients, parametric assessment of attentional functions yielded a significantly reduced rate of 

visual information uptake. Stimulating the prefrontal alertness system by means of tDCS 

ameliorated this deficit 24 hours after the stimulation. In terms of the neurophysiological 

basis, this effect on processing speed might be attributable to tDCS-induced N-methyl-D-

aspartate receptor-dependent plasticity effects. On a larger-scale level, these after-effects may 

be indicative of tDCS-induced changes in the functional connectivity of fronto-parietal 

alertness networks, which enhance perceptual processing speed. Furthermore, they suggest 

that even a single session of tDCS over the dlPFC can give rise to lasting neuro-cognitive 

benefits resulting from an amelioration of cortical under-arousal beyond the time periods of 

unspecific tDCS-induced excitability increases. In schizophrenia patients, a reduced general 

attentional capacity in terms of both visual processing speed and short-term memory deficits 

were revealed to characterize attentional impairments. Concerning the efficacy of tDCS for 

improving cognition, results pointed to an interfering, rather than an ameliorating, effect of 

anodal prefrontal tDCS on practice-dependent improvements in processing speed. Thus, it 

cannot be ruled out that the stimulation parameters applied entail cognitive safety risks for 

schizophrenia patients. No tDCS-induced effects were found in healthy controls.  



 II 

Study III reported in the second part of the dissertation was concerned with the 

behavioural consequences of selective attentional impairments in patients, with a focus on 

perceptual processing, specifically, on whether or not selective attention plays a role in visual 

grouping processes – a longstanding issue in basic attention research. This issue was 

addressed by examining whether the breakdown of selective attention in extinction patients 

(who suffer from a lateral bias of spatial attention) is associated with impairments in 

grouping operations. In more detail, using a visual search paradigm adopted from basic 

research, study III investigated how the patients would detect Kanizsa-type (grouped) target 

shapes in the presence of ‘ungrouped’ and partially grouped nontarget configurations 

(composed of the same elements). With single objects, patients did not perform significantly 

different from healthy controls. When confronted with a competitive search situation that 

presented multiple to-be-grouped items (of targets and nontargets), an extinction-specific 

spatial bias manifested in the patients characterized by preserved grouping in the right, 

attended hemifield and compromised grouping in the left, less attended, hemifield. This 

pattern points to a crucial contribution of selective attention to visual object integration 

processes. 
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 1 

1 Introduction 

Patients with psychiatric and neurological disorders commonly show deficits in visual 

attention. ‘Visual attention’ is defined as a set of cognitive processes controlling the selection 

of behaviourally relevant and inhibition of irrelevant information from cluttered visual 

environments. These attentional mechanisms are necessary as the capacity of our processing 

systems is limited – leading to a competition of visual objects for access to awareness 

(Broadbent, 1958; for review Desimone & Duncan, 1995; Kastner & Ungerleider, 2000; 

Schneider & Shiffrin, 1977). 

Visual attentional processing has been conceptualised as being composed of different 

spatially lateralized and non-lateralized sub-components, or core functions, including spatial 

and non-spatial attentional selectivity processes, the speed of visual information uptake and 

the capacity of visual short-term memory (vSTM) (Bundesen, 1990, 1998). Conceivably, a 

breakdown in any of these sub-components may result in impaired attentional performance. 

However, the specific attentional sub-components underlying deficient cognition in various 

neurological and psychiatric disorders remain poorly understood. Further knowledge about 

affected sub-components is important for all endeavours aiming to develop reliable 

diagnostic methods and efficient treatment options for cognitive impairments. For example, 

based on (to-be-established) specific deficit profiles, those patients at risk of a greater degree 

of functional and behavioural impairment, and thus in need of specific treatment, can better 

be identified. Likewise, based on specific deficit profiles, a better distinction of various 

disorders in terms of neuro-cognitive deficits can be achieved.  

Investigations targeting this issue can be informed by theories of normal attentional 

function (Peers et al., 2005). The ‘Theory of Visual Attention’ (TVA), originally proposed by 

Claus Bundesen (Bundesen, 1990), integrates the different attentional sub-components in a
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unified quantitative model, thus providing a theoretical and computational framework for 

assessing behavioural attentional effects. Importantly, and in contrast to conventional 

neuropsychological tests, attentional assessment based on TVA is highly sensitive and can be 

used to quantify the different, specific attentional core functions in an independent manner.  

Given this, TVA-based attentional assessment provides a suitable foundation, both 

theoretically and experimentally, for the aim of the first part of this cumulative dissertation: 

namely, to assess and modulate – by means of transcranial direct current stimulation (tDCS) 

– specific attentional impairments in patients suffering from MDD and schizophrenia, 

respectively. 

The investigation of patients suffering from attentional disorders also provides a 

means to address general-psychological questions as to the role of attentional functions in 

normal information processing. That is, beyond clinical research, patients can be used as a 

model to examine normal attentional functioning by studying the consequences, and causes, 

of the failure of certain (core) functions in patients. One of the most prominent lines of 

research in this (neuropsychological) endeavour has focused on extinction patients, who 

suffer from unilateral deficits in selective attention after brain damage, which proved to be a 

useful approach for understanding normal attentional processes (e.g., Mattingley, Davis, & 

Driver, 1997; Conci, Böbel, Matthias, Keller, Müller, & Finke, 2009). 

A long-standing question of basic attention research concerns the contribution of 

selective attention to visual processing mechanisms such as perceptual grouping. Grouping 

processes organize non-contiguous parts of the image into coherent entities by segmenting 

regions or by linking edge segments to form continuous object boundaries (e.g., Driver, 

Davis, Russell, Turatto, & Freeman, 2001; Koffka, 1935; Wertheimer, 1923). Both 

perceptual and attentional processes are relevant for perceiving a coherent, integrated world 

and, with regard to action control, these two constructs are assumed to be closely connected 
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(Gillebert & Humphreys, 2013). However, the relationship between selective attention and 

object integration by means of perceptual grouping is a topic of long-standing debate. 

Previous studies examining the contribution of attention in perceptual grouping have yielded 

inconsistent findings: some have proposed an involvement of selective attention (e.g., 

Treisman & Gelade, 1980), while others have argued that perceptual grouping occurs pre-

attentively, in an automatic manner (Driver & Baylis, 1998; Gilchrist, Humphreys, & 

Riddoch, 1996; Scholl, 2001). On this background, the study presented in the second part of 

this dissertation was designed to explore the extent to which attention is required for object 

integration processes by means of perceptual grouping. More specifically, pursuing an 

approach that combined neuropsychological with general attention research, the study 

examined extinction patients with unilateral deficits in selective attention to assess whether 

perceptual grouping can occur without selective attention or whether it relies on the 

availability of attentional resources (Gillebert & Humphreys, 2013). – The following sections 

of the introduction will introduce the two parts of this dissertation in more detail. 
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1.1 Part one: Visual attentional dysfunctions in major depression 

and schizophrenia and their modulation by tDCS 
In this section, the theoretical framework of the first part of this dissertation, based on 

Bundesen’s Theory of Visual Attention (TVA), is outlined, with a focus on TVA’s basic 

assumptions and neural interpretation. Sub-section 1.1.2 presents the background of studies I 

and II, outlining current research on visual attentional deficits in MDD and schizophrenia. 

Sub-section 1.1.3 presents the methodological approach taken by both studies, introducing 

the measurement of visual attention based on TVA and tDCS as potential means to modulate 

attentional (dys-)functions in patients and healthy humans. Finally, the aims and central 

research questions addressed by these studies are outlined. 

1.1.1 Theoretical framework studies I and II: Theory of Visual Attention 
1.1.1.1 TVA – its basic assumptions 

The theoretical framework of attentional assessment in studies I and II is provided by 

Bundesen’s Theory of Visual Attention (Bundesen, 1990, 1998; Bundesen, Habekost, & 

Kyllingsbaek, 2005) – a mathematical model conceiving visual attention as a multi- 

component process permitting the observer to select behaviourally relevant information 

(Vangkilde, Bundesen, & Coull, 2011). Conceptually, TVA is linked to the biased 

competition account (for review Desimone & Duncan, 1995; Duncan, Humphreys, & Ward, 

1997). Accordingly, it assumes that the encoding of objects and their features for selection 

into a capacity-limited vSTM relies on a parallel-competitive race. In TVA, this process of 

encoding into vSTM is equivalent to making a perceptual categorization in terms of ‘object ! 

has feature i’ or ‘object ! belongs to category i’. That is, when object ! is selected, it is 

explicitly (in a reportable manner) recognized as possessing feature i or as being a member of 

category i. Thus, in contrast to other models of visual attention that consider stimulus 

selection and recognition as two processes operating successively (Broadbent, 1958; Deutsch 
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& Deutsch, 1963), TVA assumes a parallel, combined implementation of the two processes 

in the form of a competitive race. 

As the vSTM storage capacity is limited to a few elements (Cowan, 2001; Luck & 

Vogel, 1997; Sperling, 1963), only those objects that win the race will be categorized, that is, 

encoded into vSTM. The competing objects’ likelihoods (#) of winning the race are not 

equal; rather, for a specific object !, the likelihood depends on (i) the (bottom-up) sensory 

evidence (%) that object ! is part of a certain category, (ii) the observer’s attentional (i.e., 

perceptual decision) bias (&')	and (iii) the attentional weight assigned to the object ()*). The 

latter is determined by a pertinence value (+,) reflecting the (top-down) importance of 

attending to objects of category -. This biased competition principle is expressed 

mathematically by TVA’s weight and rate equations. The probability #(!, /) that a 

categorization is encoded into vSTM is given by: 

#(!, /) = %(!, /)&'
)*

∑ )22∈4
 

The first factor of the equation, %(!, /), denotes the strength of the sensory evidence that 

element x belongs to category /. The second factor, &', denotes the perceptual decision bias 

associated with category i (0 < &' < 1). The third factor reflects the relative attentional 

weight of object !, defined as the weight of object !,	)*, relative to the summed attentional 

weights of all other objects in the visual field 8. The weight of object !,	)*, is calculated as: 

	)* =9%(!, -)+,
,∈:

 

Accordingly, the weight of object	! is determined by the sensory evidence, %(!, -), that 

object ! belongs to category - of ;, defining the set of all perceptual categories, and the 

pertinence value of category	-, +,, indicating the behavioural importance of attending to 

objects of category -. – A comprehensive mathematical description of TVA can be found 
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elsewhere (Bundesen, 1990, 1998; Duncan et al., 1999; Kyllingsbæk, 2006).  

 

1.1.1.2 Neural Theory of Visual Attention 

In general, visual attentional processing relies on the activity of a widely distributed network 

ranging from sensory areas in the posterior cortex to high-level regions in the parietal and 

frontal lobes as well as basal ganglia structures (for review Habekost & Starrfelt, 2009). This 

is in agreement with the neural TVA model (NTVA; Bundesen et al., 2005; Bundesen, 

Habekost, & Kyllingsbaek, 2011), providing a neural interpretation of TVA’s rate and weight 

equations and asserting the significance of these brain structures for visual information 

processing. According to NTVA, the perceptual cycle progresses in the form of a two-wave 

process. During the first, pre-attentive wave of unselective processing, the objects’ attentional 

weights are calibrated. During the second wave of selective processing, the most relevant 

objects, those with the highest attentional weight, are encoded into vSTM. More specifically, 

during the pre-attentive wave of unselective processing, sensory information is forwarded 

from the eye via the lateral geniculate nucleus (LGN) to visual areas in striatal and 

extrastriatal cortex where the sensory evidences % of the objects are computed. Multiplied by 

pertinence values +, arising from higher-order brain regions outside visual cortex, the 

resulting weighting signals are represented in a saliency map located in the broadly 

interconnected pulvinar nucleus of the thalamus. By dynamic remapping of receptive fields, 

cortical processing capacity is reallocated across the objects in the visual field in accordance 

with the computed weights ): the higher the attentional weight of an object, the more 

capacity (i.e., neurons) is allocated to it. Thus, attentional selection of an object during the 

second wave of processing directly arises from the amount of neurons, reflecting the 

attentional weight, allocated to that object (Bundesen et al., 2005). The resulting % values, 

multiplied by & values, determine the neuronal activation level (#) representing an object. As 
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soon as the vSTM map of locations, putatively located in the thalamic reticular nucleus 

(TRN), is set, objects in the visual field start to race for entry into vSTM. The fastest objects, 

that is, those with the highest # values, will be encoded into vSTM. The latter is conceived as 

a feedback mechanism: neuronal activity representing the winners of the race is maintained 

by being incorporated into a feedback loop between sensory areas and the thalamus or frontal 

cortex (for review Habekost & Starrfelt, 2009).  

In summary, TVA provides a mathematical formulation of normal visual attentional 

processing, integrating its different facets into a unitary framework. According to TVA, the 

perceptual cycle is completed in terms of an encoding race governed by the algebraic 

operations of the weight and rate equations. The NTVA provides an interpretation of these 

equations at the neuronal level, assuming that visual attentional processing is carried out by a 

distributed network ranging from sensory areas in the posterior cortex to higher-order regions 

in the parietal and frontal lobes as well as basal ganglia structures (for review Habekost & 

Starrfelt, 2009). The reliance on coordinated network activity makes visual attentional 

processing highly vulnerable to neural network abnormalities (Habekost & Rostrup, 2006), a 

characteristic feature of psychiatric conditions such as MDD and schizophrenia (e.g., Barch 

& Ceaser, 2012; Fornito, Yoon, Zalesky, Bullmore, & Carter, 2011; Kaiser, Andrews-Hanna, 

Wager, & Pizzagalli, 2015; Levin, Heller, Mohanty, Herrington, & Miller, 2007; Roiser et 

al., 2013). 

1.1.2 Background to studies I and II: Visual attentional deficits in MDD 

and schizophrenia 
Major depressive disorder and schizophrenia are serious mental disorders, arising from a 

complex interplay among predisposing genetic, environmental and personal vulnerabilities 

(Rutter, 2002; Tsuang, Stone, & Faraone, 2001). Cardinal symptoms of MDD include 

sustained depressed mood, loss of interest or pleasure, fatigue, feelings of guilt or 
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worthlessness, disturbed sleep or appetite. Schizophrenia is marked by hallucinations, 

delusions, disorganized speech or behaviour and negative symptoms (American Psychiatric 

Association, 2013). Next to these disorder-specific symptoms, patients often suffer from 

cognitive deficits, which partly remit, but sometimes persist even beyond depressive or 

psychotic episodes (Heaton et al., 2001; Schaefer, Giangrande, Weinberger, & Dickinson, 

2013; Trivedi & Greer, 2014; Tyson, Laws, Flowers, Tyson, & Mortimer, 2006; Weiland-

Fiedler et al., 2004).  

Cognitive impairments in these patient groups include, but are not limited to, 

mnemonic, executive and space- and object-based attentional deficits, with the latter 

constituting core cognitive deficits (for review Elvevag & Goldberg, 2000; Nuechterlein et 

al., 2004; Rock, Roiser, Riedel, & Blackwell, 2014). Previous studies revealed below-average 

performance both in MDD and schizophrenia patients on various attention tasks such as 

simple reaction time (Egeland et al., 2003; Mialet, Pope, & Yurgelun-Todd, 1996), 

continuous performance (Egeland et al., 2003; Porter, Gallagher, Thompson, & Young, 

2003), working memory span (Channon, Baker, & Robertson, 1993; Erickson et al., 2015; 

Johnson et al., 2013; Ravnkilde et al., 2002), and digit symbol coding tasks (Austin et al., 

1992; Dickinson, Ramsey, & Gold, 2007; Knowles, David, & Reichenberg, 2010) as well as 

the Trail Making Test (Austin et al., 1992; Mahurin et al., 2006). 

Despite being indicative of attentional deficits in MDD and schizophrenia, in these 

studies, the test performance cannot be straightforwardly related to more basic components of 

visual attention such as processing speed, vSTM or attentional selectivity. This is because 

these rather simple tasks – that, admittedly, can be applied in a time-economic fashion with 

minimal effort – lack good psychometric properties such as sensitivity or specificity. Instead, 

performance of these tasks is determined by multiple, hardly separable, cognitive functions. 

For example, in the Trail Making Test, different functional aspects, such as psychomotor 
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speed, visual search, executive and attentional components, all contribute to overall task 

performance (Salthouse, 2011). Likewise, in digit symbol coding tasks, efficient task 

performance requires both processing of visual information and fast motor actions. Therefore, 

a poor test result is a rather nonspecific finding that does not allow for fine-grained 

conclusions to be drawn about specific neuro-cognitive sub-mechanisms underlying the 

observed attentional deficits. A meaningful neuro-cognitive test, by contrast, would be 

expected to yield an unconfounded measure for a specific aspect (or aspects) of cognitive 

processing. Parameter-based attentional assessments based on Bundesen’s TVA (Bundesen, 

1990) constitute a method that meets these requirements – and that were therefore employed 

in the studies reported in the first part of the present dissertation. 

1.1.3  Methodological approach studies I and II 
1.1.3.1 Parametric evaluation of visual attentional deficits based on TVA 

Combining the conceptual framework of Bundesen’s TVA with simple psychophysical tasks 

– specifically, whole- and partial-report of briefly presented letters – allows the measurement 

of latent, mathematically independent parameters determining an individual’s efficiency in 

visual attentional processing. In the typical whole-report task (illustrated in Figure 2A, p. 34), 

six letters are briefly flashed, either unmasked or terminated by post-display masking stimuli, 

on a computer screen and participants are instructed to verbally report as many letters as 

possible. For a detailed description of the whole-report task procedure, see studies I and II of 

this dissertation (pp. 32 et seq. and pp. 70 et seq.). By means of a (TVA model-based) fitting 

algorithm using the maximum likelihood principle (e.g., Ross, 2000), three mathematically 

independent capacity parameters of visual attention can be estimated from the behavioural 

data of the whole-report task, namely: (i) parameter C, the visual processing speed defined as 

the sum of the processing rates for all objects in the visual field (< = ∑#), (ii) parameter K, 

the storage capacity of vSTM in terms of the maximum number of objects that can be 
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maintained, in reportable form, at a given point of time, and (iii) parameter t0, the minimum 

time, or threshold, for perceptual encoding (in milliseconds).  

In the partial-report task (illustrated in Figure 2B, p. 34), participants are instructed to 

report pre-specified target letters that differ from distractors with respect to colour (target = 

red; distractor = blue). For a detailed description of the partial-report task procedure, see 

studies I and II of this dissertation (pp. 35 et seq. and pp. 73 et seq.). Based on the 

behavioural data generated in the partial-report task, two mathematically independent 

weighting parameters of visual attention can be estimated using TVA-based model fitting 

procedures, namely: (i) parameter	=, the efficiency of top-down control, reflecting the 

allocation of attentional resources across targets and distractors (i.e., target-coloured and 

nontarget-coloured letters, respectively), and (ii) parameter )>, the spatial distribution of 

attentional weights across the left and right visual hemifields. A comprehensive account on 

the model fitting procedure is available elsewhere (Duncan et al., 1999; Kyllingsbæk, 2006). 

Benefits of a parametric evaluation of visual attentional deficits based on TVA. In 

terms of practicality, the ease of implementing the TVA-based attentional assessment is a 

clear advantage of this approach. That is, estimates of distinct, core attentional parameters 

can be derived from performance in two psychophysical tasks within the same test routine 

with similar stimulus and response requirements. Furthermore, the simple instructions to 

perform the whole- and partial-report tasks as well as the non-speeded task responses (purely 

verbal reports) permit the assessment of patients with severe cognitive or motor impairments 

(Bublak et al., 2005; Duncan et al., 1999; Finke, Bublak, Dose, Müller, & Schneider, 2006). 

Methodologically, the good psychometric properties – in particular, high cognitive specificity 

of the estimated parameters – are a major strength of the TVA-based assessment (for review 

Habekost & Starrfelt, 2009). Mathematically independent fitting techniques yield precise 

quantifications of distinct, theoretically-grounded attentional parameters. In addition, based 
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on the neural model of the TVA (NTVA; Bundesen et al., 2005, 2011), an interpretation of 

the parameters at the neuronal level can be derived. This contrasts with most conventional 

neuro-cognitive tests, which are typically not grounded in a coherent theoretical framework 

and whose measures principally reflect task-specific and largely indistinguishable attentional 

demands – thus limiting their diagnostic potential with regard to revealing specific 

dysfunctions. Moreover, TVA-based measurement yields fairly consistent results both within 

and across test runs with low measurement error (Finke et al., 2005; Habekost, Petersen, & 

Vangkilde, 2014; Habekost & Rostrup, 2006). The method’s sensitivity is another crucial 

advantage. Consequently, even minor cognitive deficits often missed by conventional 

methods can reliably be identified (Habekost & Rostrup, 2006), and even subtle performance 

changes arising from experimental manipulations, such as alertness modulations, can be 

picked up (Finke et al., 2010; Finke et al., 2012). 

Taken together, these benefits render the TVA-based attentional assessment a 

valuable tool for studying attentional processing both in healthy persons and patients 

exhibiting attentional disturbances. A range of studies have already used this approach to 

investigate attentional processing in various clinical conditions, such as neglect (e.g., Duncan 

et al., 1999), dyslexia (e.g., Stenneken et al., 2011), neurodegenerative diseases (e.g., Redel et 

al., 2012) or neurodevelopmental disorders (e.g., Finke et al., 2011). However, despite the 

obvious benefits – in terms of theoretical grounding and cognitive specificity – of TVA-based 

attention assessment, prior to the present thesis work, there were no (published) studies that 

applied this approach in MDD and schizophrenia. Studies I and II of the present dissertation, 

for the first time, made use of this approach in these two major forms of psychiatric 

disorders, with the aim of (i) identifying attentional dysfunctions in these conditions in terms 

of a precise (TVA-based) parameter profile and (ii) examining for potential improvements in 

attentional processing by means of tDCS. 
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1.1.3.2 Transcranial direct current stimulation (tDCS) 

Method and physiological mechanisms. During tDCS, a low-amplitude (0.5–2 mA) direct 

current, that is, a unidirectional flow of electric charge, is applied by saline-soaked sponge 

electrodes attached to the scalp to excite the underlying neural tissue (Nitsche & Paulus, 

2000; Nitsche & Paulus, 2001). The principal physiological mechanism, generally inferred 

from studies of the primary motor cortex, is a shift in the neuronal resting membrane 

potentials (Bindman, Lippold, & Redfearn, 1964; Creutzfeldt, Fromm, & Kapp, 1962). 

Specifically, it was found that anodal (i.e., surface-positive) tDCS leads to a tonic 

depolarization of neurons, and hence increases neuronal spike activity. Cathodal (i.e., 

surface-negative) tDCS, by contrast, induces a hyperpolarization of neurons, and hence 

decreases neuronal spike activity. Consequently, this kind of bipolar stimulation modulates 

cortical excitability in an excitatory and inhibitory manner, respectively (Nitsche et al., 2003; 

Nitsche & Paulus, 2011). Stimulation effects are observable not only during, but also after, 

tDCS application as a function of stimulation duration and current intensity (for review Utz, 

Dimova, Oppenländer, & Kerkhoff, 2010). Even short stimulation durations of only 10 

minutes were shown to induce enduring effects of about 1 hour in the human motor cortex 

(Nitsche & Paulus, 2000; Nitsche & Paulus, 2001). Such long-term effects of tDCS are 

ascribed to calcium-dependent plasticity changes driven by the glutamatergic system. 

Previous studies revealed that blockade of glutamatergic N-methyl-D-aspartate (NMDA) 

receptors, by the antagonist dextromethorphan, abolishes tDCS after-effects (Nitsche et al., 

2003), whereas the NMDA receptor agonist D-cycloserine extends and calcium channel 

blockade abolishes the after-effects of anodal tDCS (Nitsche et al., 2003; Nitsche, Jaussi, et 

al., 2004; Nitsche, Liebetanz, et al., 2004). 

Restoration of attentional dysfunctions in psychiatric conditions by tDCS. tDCS not 

only provokes regional effects underneath the electrodes, but also alters cortical network 
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connectivity between functionally associated areas (Polanía, Paulus, Antal, & Nitsche, 2011; 

Polanía, Paulus, & Nitsche, 2012). For example, in healthy humans, anodal tDCS of the left 

dlPFC was previously shown to induce a bilateral modulation of intrinsic fronto-parietal 

networks (Keeser, Meindl, et al., 2011; Keeser, Padberg, et al., 2011). Intrinsic activity in 

these networks plays an important role in a range of, particularly, alertness-dependent, 

cognitive processes (Clemens et al., 2011; for review Corbetta & Shulman, 2002; Kastner & 

Ungerleider, 2000; Sturm & Willmes, 2001), and abnormal intrinsic fronto-parietal network 

activity is also discussed as underlying cause of attentional deficits in MDD and 

schizophrenia (Barch & Ceaser, 2012; Fornito et al., 2011; Kaiser et al., 2015; Levin et al., 

2007; Roiser et al., 2013).  

Owing to these neuro-modulatory properties, prefrontal tDCS is an interesting method 

to assess and modify the behavioural and physiological basis of cognitive processes both in 

healthy humans and patients suffering from psychiatric disorders (Shin, Foerster, & Nitsche, 

2015). Specifically, modulating functional connectivity within compromised fronto-parietal 

networks via prefrontal tDCS might be a promising treatment option for restoring attentional 

dysfunctions in MDD and schizophrenia (for review Hoy & Fitzgerald, 2010; Mondino et al., 

2014). Preliminary evidence suggests a beneficial effect of prefrontal tDCS on attentional 

tasks such as symbol-digit modalities tests or n-back tasks in MDD and schizophrenia (Hoy, 

Arnold, Emonson, Daskalakis, & Fitzgerald, 2014; Loo et al., 2012; Oliveira et al., 2013); 

still, the availability of data is scarce, not allowing definite conclusions. Moreover, these 

studies exclusively combined tDCS with conventional neuro-cognitive tasks possessing poor 

cognitive specificity and sensitivity. As such, these tasks are not appropriate to disentangle 

potential tDCS-induced effects on different cognitive sub-components like processing speed, 

short-term storage or top-down control processes, all controlled to some extent by prefrontal 

brain systems. Therefore, the basal cognitive ‘mediators’ of tDCS-induced benefits remain 
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unknown. On the one hand, the finding of prefrontal tDCS-induced changes in fronto-parietal 

alertness networks, implies that the beneficial cognitive effect should specifically result from 

a tDCS-induced increase of alertness levels (Keeser, Meindl, et al., 2011). On the other hand, 

considering that various cognitive functions rely on networks encompassing the dlPFC 

(Niendam et al., 2012), other modes of actions such as gains in short-term storage (e.g., for 

review Brunoni & Vanderhasselt, 2014) or attentional selectivity (e.g., Brosnan & Wiegand, 

2017), are also possible as underlying the tDCS-induced cognitive benefits. Given this, 

combining tDCS with the cognitive highly specific, sensitive and theoretically-grounded 

TVA approach (Bundesen, 1990) may provide a good means to unravel even subtle effects of 

prefrontal tDCS on different neuro-cognitive parameters independently.  

1.1.4  Aims and research questions studies I and II  
The overall aim of the first two studies reported in this dissertation was to investigate and 

modulate the neuro-cognitive mechanisms underlying attentional deficits in MDD and 

schizophrenia. To this end, both studies were designed as double-blind, randomized, sham-

controlled single-session tDCS studies that employed mathematical data modelling based on 

Bundesen’s TVA in MDD and schizophrenia patients to address the following questions: 

First, what are the specific patterns of visual attention impairments in MDD and, 

respectively, schizophrenia arising from abnormal activation patterns within fronto-parietal 

networks? To establish this, TVA-based parametric attention assessment was used to isolate 

and quantify – potentially compromised – core attention functions in an unconfounded 

manner. The resulting attentional parameters were compared between each patient group and 

healthy controls. Second, does altering the neuronal activity patterns by anodal tDCS, applied 

to the left dlPFC (2mA), modulate specifically alertness-dependent attentional functions in 

MDD and schizophrenia or are other modes of action mediating possible benefits? Third, do 

patients and healthy participants respond differently to prefrontal tDCS? Fourth, how 
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enduring are potential tDCS-induced after-effects, that is, can they be observed 24 hours after 

stimulation, beyond time periods of unspecific excitability increases? To answer these 

questions, the two studies compared the effects induced by a single-session active tDCS to 

those induced by sham tDCS on the various TVA parameters both in patients and healthy 

controls across three time points: before, immediately after, and 24 hours after tDCS 

intervention.   
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1.2 Part two: On the contributions of selective attention to object 

integration processes 
In the following section, the theoretical background of study III of this cumulative 

dissertation is presented by providing a brief overview of current research on the relationship 

between selective attention and object integration processes. Next, the rationale of the study 

as well as the methodological approach, based on visual search in parietal extinction, is 

described. Finally, the aim and central research questions addressed in this study are outlined. 

1.2.1  Background to study III  
The human visual system is equipped with mechanisms permitting the rapid, and apparently 

effortless, grouping of elements in complex visual scenes. These mechanisms organize 

unstructured or non-contiguous local elements into behaviourally meaningful representations, 

such as global forms or objects, by delineating regions with uniform properties or by linking 

(aligned) edges into object boundaries (e.g., Driver et al., 2001; Koffka, 1935; Wertheimer, 

1923). This early process of perceptual organization is a pre-condition for the creation of a 

representation of the world with separable, integrated entities that can be efficiently acted 

upon. A central controversy in visual attention research concerns the involvement, or 

contribution, of selective attention to processes of perceptual grouping and object integration. 

Some studies suggest that only basic visual features are encoded automatically at pre-

attentive processing stages, whereas attention is required to effectively bind parts into 

coherent wholes (e.g., Treisman & Gelade, 1980). In contrast, others propose that pre-

attentive processes suffice to render and represent complete objects (Driver & Baylis, 1998; 

Gilchrist et al., 1996; Scholl, 2001). 

Previous studies that have dealt with the role of selective attention in object 

integration principally fall into two main groups: (i) studies that employed visual search 

paradigms and (ii) studies that investigated patients with unilateral deficits in selective 
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attention. 

The visual search task is a prominent paradigm in attention research (Duncan & 

Humphreys, 1989; Treisman & Gelade, 1980; for review Wolfe, 1994). The task requires 

observers to indicate, as rapidly and accurately as possible, whether a predefined target is 

present or absent in a display containing a variable number of nontarget, or distractor, stimuli. 

Visual search studies that examined whether object integration operates pre-attentively or 

requires selective attention often used an illusory ‘Kanizsa figure’, comprised of spatially 

discontinuous (‘pacman’-type) components, as target stimulus (Kanizsa, 1976). The 

perception of an illusory Kanizsa figure as a single geometrical shape involves grouping 

operations, making this stimulus particularly suited for investigating object integration 

processes. In the relevant search studies, a Kanizsa target shape was presented among 

nontargets that were composed of the same ‘pacman’ inducer elements which were, however, 

rotated such as not to give rise to the percept of a coherent figure. By varying the number of 

nontargets and the target-nontarget similarity – by rotating the nontarget inducers to construct 

nontargets more (partially grouped) or less similar (ungrouped) to the target – the cognitive 

demands involved in target detection can be systematically manipulated. This renders the 

visual search paradigm useful for studying the role of attention (Fuller et al., 2006). The 

reaction time (RT) taken to decide whether a target is present or absent in the display can be 

plotted as a function of the search display size (i.e., the number of items in the display). The 

slope of the search function denotes the search rate, permitting inferences to be made about 

the time required to examine an individual item in the display. Based on this, it is possible to 

draw conclusions about search efficiency: A search function that rises only very slightly with 

increasing display size is taken to be indicative of efficient search processes operating 

spatially in parallel, or pre-attentively. In contrast, a linear increase of the search function is 
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indicative of the involvement of selective attentive processes in discerning target presence 

(e.g., Treisman & Souther, 1985; Treisman & Gelade, 1980). 

The question whether selective attention is required to effectively bind parts into 

coherent wholes has not yet been resolved conclusively in the visual search literature. 

Whereas some studies reported evidence that Kanizsa figures are formed automatically by 

low-level, pre-attentive grouping mechanisms (Conci, Müller, & Elliott, 2007, 2009; Davis & 

Driver, 1994; Gurnsey, Humphrey, & Kapitan, 1992), others (Grabowecky & Treisman, 

1989; Gurnsey, Poirier, & Gascon, 1996; Li, Cave, & Wolfe, 2008) found that searching for a 

Kanizsa figure among nontarget configurations led to RTs that increased with the number of 

display items – the implication being that selective attention is required for object integration.  

Another line of research investigating the contribution of selective attention to 

processes of object integration is based on studying brain-damaged patients that exhibit a 

selective impairment of attentional mechanisms. For example, patients with right inferior 

parietal lobe lesions frequently demonstrate attentional deficits of hemispatial neglect and 

extinction (Karnath, Milner, & Vallar, 2002; Kerkhoff, 2001). That is, patients often fail to 

attend and respond to sensory stimuli located on the contralesional side of space, without 

necessarily suffering from any primary disorder of sensation or movement (Corbetta, 

Kincade, Lewis, Snyder, & Sapir, 2005; for review Corbetta & Shulman, 2011; Heilman, 

Bowers, Valenstein, & Watson, 1987; Heilman, Watson, Valenstein, & Heilman, 1993). 

However, in extinction, hemi-inattention towards the contralesional, left hemifield occurs 

only when the visual system is burdened by the presence of multiple objects (Karnath, 1988; 

Riddoch & Humphreys, 1983). In particular, a contralesional item can be reported normally 

when presented in isolation, but the same stimulus is ‘extinguished’ or only poorly identified 

when accompanied by a competing ipsilesional stimulus (Bender, 1952). 

Rather than resulting from a deficit in spatial orienting, it is suggested that a 
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competitive disadvantage for selection from the contralesional field, due to disrupted 

processes of selective attention, results in this striking phenomenon of extinction (Baylis & 

Driver, 1993; Humphreys, Romani, Olson, Riddoch, & Duncan, 1994; Ward & Goodrich, 

1996). In line with this account of extinction in terms of a pathological, competitive bias 

against the contralesional hemifield (for review Desimone & Duncan, 1995; Kinsbourne, 

1993), the lack of attention to stimuli on the left is not absolute, that is, it does not manifest as 

an all-or-none phenomenon. Rather, it reflects a relative difference, with substantially fewer 

attentional resources being allocated to the contralesional hemifield (see also Bays, Singh-

Curry, Gorgoraptis, Driver, & Husain, 2010). 

Despite this hemi-inattention, extinction patients are reported to have preserved access 

to integrated object information across the whole visual field (e.g., Driver, Baylis, & Rafal, 

1992; Gilchrist et al., 1996; Ward, Goodrich, & Driver, 1994). Thus, for instance, studies 

revealed intact processing for object groupings and processes underlying figure-ground 

segmentation (e.g., Brooks, Wong, & Robertson, 2005; Conci, Böbel, et al., 2009; Driver et 

al., 1992; Gilchrist et al., 1996; Marshall & Halligan, 1994; Pavlovskaya, Sagi, Soroker, & 

Ring, 1997; Robertson, Eglin, & Knight, 2003; Ward et al., 1994). Stimulus segments that 

could be grouped across hemifields into a coherent object reduced extinction relative to an 

ungrouped stimulus – indicating that attentional deficits can be modulated by perceptual 

grouping. For example, a single-case study by Mattingley et al. (1997; see also Conci, Böbel, 

et al., 2009) reported preserved access to fragmentary bilateral stimulus segments only when 

these could be grouped across hemifields to form a Kanizsa square, but not when grouping 

was prevented. These results are indicative of early, pre-attentive integration of the elements 

into a (illusory) figure, which can be accessed despite extinction, that is, in the absence of 

selective visual attention (Ro & Rafal, 1996; Vuilleumier & Landis, 1998; Vuilleumier, 

Valenza, & Landis, 2001). 
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1.2.2 Rationale and methodological approach study III 
As described in the preceding paragraph, previous studies addressing the role of selective 

attention in object integration either made use of visual search paradigms or investigated 

patients with unilateral deficits in selective attention. However, to our knowledge, no study 

has explicitly evaluated object integration processes in parietal extinction within a visual 

search context. That is, in the patient studies reviewed above, the typical stimulus displays 

consisted merely of a single grouped stimulus that had to be identified. Accordingly, from the 

patient studies, it is difficult to tell whether and how patients with extinction would benefit 

from grouping when being presented with multiple stimuli in the context of a visual search 

task. On the basis of the available work on extinction, it is not clear how visual search for an 

illusory figure would be affected by attentional impairments. On this background, the 

methodological approach adopted by study III of this dissertation was based on combining 

these two lines of investigation by examining object integration in visual search in patients 

with left-sided parietal extinction. Besides allowing a comparison between the two 

paradigms, employing a visual search task in patients does also provide a measure of 

performance in a more realistic scenario that affords higher ecological validity compared to a 

situation in which only a single item has to be identified. 

1.2.3  Aims and research questions study III 
Study III aimed to investigate the relationship between selective attention and object 

integration in a visual search task that presented to-be-grouped targets and nontargets to 

extinction patients with unilateral deficits of selective attention and healthy controls, 

respectively. Specifically, the effect of ‘grouped’ nontarget configurations that induced 

partial illusory shape groupings (in the left and the right visual field, respectively) was 

compared with the effect of symmetric but ‘ungrouped’ nontargets on the performance of 

visual search for Kanizsa target squares.  
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The following research questions were addressed: First, in patients with extinction, 

does partial shape information in nontargets reduce search efficiency in a manner similar to 

that seen in healthy participants (Conci, Gramann, Müller, & Elliott, 2006; Conci et al., 

2007)? To address this question, we compared search performance for ungrouped nontargets 

with performance for partially grouped, that is, potentially interfering, nontargets. Second, 

how does the lateralization of attention in extinction affect search? That is, how do target-

nontarget interference effects differ when partial shape information in nontargets is present in 

the less attended (left-grouped nontargets) versus the more attended hemifield (right-grouped 

nontargets)? To address this question, partial groupings in the left and, respectively, the right 

half of the nontarget items were systematically compared in terms of their relative costs on 

performance.  
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2 Original Studies 

 
2.1 Study I: Single-session transcranial direct current 

stimulation induces enduring enhancement of visual 

processing speed in patients with major depression 

In this paper, we report a double-blind, randomized, sham-controlled tDCS study that 

employed mathematical data modelling based on Bundesen’s TVA in MDD patients to assess 

(i) the specific attentional functions affected in MDD patients compared to a healthy control 

group, (ii) the specific attentional benefits induced by a single session anodal tDCS over the 

left dlPFC, and (iii) the longevity of potential tDCS effects. MDD was found to be associated 

with a significantly reduced rate of visual information uptake. Furthermore, activating the 

prefrontal alertness system by means of tDCS ameliorated this deficit. These results imply 

that even a single session of anodal tDCS over the dlPFC has relatively enduring effects – 

even going beyond the stimulation intervention – on an attention function depending on 

intrinsic alertness, and more specifically on visual processing speed. By contrast, we did not 

find similar tDCS-induced effects in healthy control participants. 

 

This article was published in European Archives of Psychiatry and Clinical Neuroscience in 

2016.
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2.1.1 Abstract 
Attentional deficits are considered key cognitive symptoms in major depressive disorder 

(MDD) arising from abnormal activation patterns within dorsolateral prefrontal cortex 

(dlPFC) alertness networks. Altering these activity patterns with transcranial direct current 

stimulation (tDCS) might thus ameliorate alertness-dependent cognitive deficits in MDD 

patients. In a double-blind, randomized, sham-controlled study we investigated the effect of a 

single session of anodal tDCS (2 mA) applied to the left dlPFC on different parameters of 

visual attention based on Bundesen’s Theory of Visual Attention (TVA; Bundesen, 1990) in 

a group of 20 patients with MDD and a control group of 20 healthy participants. The 

parametric attention assessment took place before, immediately after and 24 hours after tDCS 

intervention. It revealed a selective impairment in visual processing speed as a primary 

functional deficit in MDD at baseline assessment. Furthermore, a significant stimulation 

condition × time interaction showed that verum tDCS over the left dlPFC resulted in a 

processing speed enhancement 24 hours post stimulation in MDD patients. In healthy control 

participants, we did not find similar tDCS-induced effects. Our results suggest that even a 

single session of tDCS over the dlPFC can induce enduring neuro-cognitive benefits that 

indicate an amelioration of cortical under-arousal in MDD patients in a time frame beyond 

that of immediate excitability increases that are directly induced by the current. 
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2.1.2 Introduction 
Attentional dysfunctions play a major role in patients with major depressive disorder (MDD) 

with respect to quality of life and clinical outcome (Paelecke-Habermann, Pohl, & Leplow, 

2005; Watts & Sharrock, 1985). Furthermore, they are a major cognitive target in the 

dimensional approach to diagnosis and treatment according to the research domain criteria 

initiative of the National Institute of Mental Health (Insel et al., 2010). In this regard, 

transcranial direct current stimulation (tDCS) gained increasing interest as a non-invasive, 

safe treatment option with promising application not only for the clinical symptoms of MDD, 

but also for the restoration of cognitive functions (De Raedt, Vanderhasselt, & Baeken, 2015; 

Plewnia, Schroeder, & Wolkenstein, 2015). 

TDCS modulates activity in specific brain regions by delivering weak direct current 

via two scalp electrodes with anodal and cathodal polarity. The immediate effect of anodal 

stimulation with standard parameters is a depolarization of the resting membrane potential of 

the stimulated neurons, and thus an increased neuronal excitability in underlying cortical 

regions (Bindman, Lippold, & Redfearn, 1964; Nitsche et al., 2008; Nitsche & Paulus, 2011; 

Utz, Dimova, Oppenländer, & Kerkhoff, 2010). However, even single tDCS sessions of only 

a few minutes can lead to more enduring effects lasting for several minutes to hours (Kuo & 

Nitsche, 2012; Nitsche & Paulus, 2000; Nitsche et al., 2003). As such so-called after-effects 

are, for example, reduced by the N-methyl-D-aspartate (NMDA)-receptor antagonist 

dextromethorphan, it is suggested that they are controlled by NMDA-dependent processes 

(Nitsche et al., 2003). Likewise, the partial NMDA agonist D-cycloserine was shown to 

prolong anodal tDCS-induced after-effects (Nitsche et al., 2004). TDCS also influences 

functional brain connectivity (Shin, Foerster, & Nitsche, 2015); particularly anodal 

stimulation over the left dorsolateral prefrontal cortex (dlPFC) was shown to stimulate resting 

state connectivity in bilateral fronto-parietal intrinsic brain networks in healthy adults 



Study I: Influence of tDCS on Attention in MDD  

 25 

(Keeser, Meindl, et al., 2011). Importantly, the effects of anodal tDCS are assumed to be 

modulated by the initial degree of activation and connectivity in the stimulated network 

(Jacobson, Koslowsky, & Lavidor, 2012). These intrinsic networks encompassing fronto-

parietal areas are strongly linked to the state of alertness (Clemens et al., 2011; Coull, 

Frackowiak, & Frith, 1998; Sturm et al., 1999), and therefore their potential modulation by 

means of tDCS might mainly affect alertness-dependent functions (Keeser, Meindl, et al., 

2011) – and particularly so in MDD patients with postulated under-activated left dlPFC 

networks (Baxter et al., 1989; Coan & Allen, 2004; Fitzgerald, Laird, Maller, & Daskalakis, 

2008; Grimm et al., 2008; Heller & Nitscke, 1997; Walter, Wolf, Spitzer, & Vasic, 2007). As 

alertness denotes the general level of reactivity and sensitivity to external stimuli (Posner & 

Petersen, 1990), it is particularly the speed by which stimuli are processed that is expected to 

be modulated by altering the state of alertness. In line with that, several studies, both in 

healthy controls and patients, reported that an increased state of alertness, e.g. by means of 

cueing or stimulant medication, led to faster visual processing (e.g., Finke et al., 2010; Finke 

et al., 2012; Matthias et al., 2010; Vangkilde, Bundesen, & Coull, 2011). The demonstration 

of modulations on the functional level would be important for estimating the potential clinical 

significance of those on the brain network level. However, single direct current stimulations 

will only result in small effects on cognition in healthy volunteers and patients (Berryhill, 

Peterson, Jones, & Stephens, 2014; Brunoni & Vanderhasselt, 2014), and therefore their 

assessment has to be based on sensitive tools. Furthermore, it might be possible that tDCS-

induced alertness modulations result from multiple effects on diverse basic attentional 

mechanisms beyond processing speed, such as short-term storage or top-down control 

processes, all relying to some extent on prefrontal brain systems. Thus, measures that are 

applied to assess tDCS-induced benefits should be useful in disentangling these potential 

effects by indicating changes in each of these cognitive functions in a specific, distinct 
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manner. However, most previous studies on the effects of tDCS over the dlPFC in MDD 

patients assessed attention functions to monitor potential negative cognitive effects 

(Demirtas-Tatlidede, Vahabzadeh-Hagh, & Pascual-Leone, 2013), and thus used time-

economic screening tools that do not deliver such fine-grained information. For example, 

even though dlPFC stimulation was reported to improve performance of MDD patients in the 

go-no-go task (Boggio et al., 2007) and the symbol-digit modalities test (Loo et al., 2012), it 

is not clear what underlying more basal attentional mechanisms are mediating these benefits. 

In healthy adults, similarly, it was repeatedly reported that left dlPFC stimulation leads to 

better performance in the Sternberg task and n-back tasks, but as the cognitive specificity of 

these tasks is rather poor it is not possible to assess whether tDCS indeed increases alertness 

– and hence, accelerates the encoding of incoming information – or whether these benefits 

result from other modes of actions such as gains in short-term storage (Brunoni & 

Vanderhasselt, 2014; Fregni et al., 2005; Keeser, Padberg, et al., 2011; Mulquiney, Hoy, 

Daskalakis, & Fitzgerald, 2011; Ohn et al., 2008; Teo, Hoy, Daskalakis, & Fitzgerald, 2011; 

Zaehle, Sandmann, Thorne, Jancke, & Herrmann, 2011). To summarize, it is challenging to 

characterise the precise neuro-cognitive modulations in attention functions that correspond to 

the tDCS-induced modulation on the brain network level. Furthermore, it is not clear whether 

(and how) MDD patients and normal participants respond differently to dlPFC tDCS.  

In contrast to conventional neuropsychological tests, the parametric attentional 

assessment based on Bundesen’s ‘Theory of Visual Attention’ (TVA; Bundesen, 1990, 1998; 

Bundesen, Habekost, & Kyllingsbaek, 2005) is highly sensitive and cognitively specific, and 

therefore enables explicit differentiations between specific attentional parameters defining the 

individual efficiency in visual attention processing: namely, perceptual processing speed 

(parameter C), visual short-term memory (vSTM) storage capacity (parameter K), and top-

down control (parameter α). Employing two simple psychophysical tasks, whole- and partial-
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report of briefly presented letters, TVA-based assessment allows extracting and exactly 

quantifying these different attentional parameters in a mathematically independent way, 

unconfounded by potential motor side effects, within the same tasks and with similar 

stimulus and response requirements (Bublak et al., 2005; Finke et al., 2010; Vangkilde et al., 

2011). With these features, the TVA-based parametric assessment is optimally suited for the 

aim of this randomized, double-blind, sham-controlled study to assess whether – in 

agreement with previous reports of a close connection between alertness and the TVA 

parameter visual processing speed C (Finke et al., 2010; Finke et al., 2012; Matthias et al., 

2010; Vangkilde et al., 2011) – a modulation of the fronto-parietal alertness network by 

means of single session of anodal tDCS is specifically associated with perceptual speed 

enhancements or alternatively accompanied, or even prompted, by other effects (i.e., changes 

in vSTM capacity and/or top-down control processes). Another aim of this study was to test 

the consolidation of potential after-effects beyond time periods where stimulation induces 

unspecific cortical excitability changes. For this purpose, the attentional parameters were 

assessed once 24 hours prior to tDCS, immediately afterwards and 24 hours post stimulation.  

 

2.1.3 Methods 
Participants 

Twenty patients (11 male; age range: 22–48 years; mean age = 35.35; SD = 7.56) diagnosed 

with MDD (according to ICD-10: F32.1–3 and F33.1–3) were recruited from the Department 

of Psychiatry and Psychotherapy (LMU Munich). The patient screening, carried out by 

clinical psychiatrists, consisted of an assessment of psychopathological symptoms (Hamilton 

Depression Scale HAMD; Hamilton, 1960), disease severity (Clinical Global Impression 

Scale CGI; Guy, 1976), functioning (Global Assessment of Functioning Scale GAF; 

American Psychiatric Association, 2013) and a standardized test of hand preference 
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(Oldfield, 1971).  

Participants with an IQ below 86 – as measured by means of the German Multiple-

Choice Vocabulary Test (MWT-B; Lehrl, Triebig, & Fischer, 1995) – were excluded from 

participation, as well as those suffering from red-green colour blindness. Further exclusion 

criteria consisted of a history of seizures, pregnancy, metallic foreign body implants and 

enhanced/reduced scalp sensitivity. Additionally, patients with suicidal intent were excluded 

from participation. All patients were receiving stable antidepressant drug therapy during the 

study period. Medications were: Mirtazapine (n = 7, 7–45 mg/d), Venlafaxine (n = 8, 150–

375 mg/d), Vortioxetin (n = 1, 5 mg/d), Bupropion (n = 1, 150 mg/d), Duloxetin (n = 1, 120 

mg/d), Quetiapine (n = 3, 20–200 mg/d), Amitriptyline (n = 3, 25–150 mg/d), Opipramol (n = 

1, 50 mg/d), Citalopram (n = 2, 20–40 mg/d), Escitalopram (n = 3, 10 mg/d), Sertraline (n = 

1; 100 mg/d), Lithium (n = 1, 450 mg/d), Risperidon (n = 2, 0.5 mg/d), Aripiprazol (n = 4; 5–

12.5 mg), Lorazepam (n = 6, 0.5–1.5 mg/d), Zopiclon (n = 2, 3.75–7.5 mg/d), Agomelatin (n 

= 2, 50 mg/d), and Pregabalin (n = 1, 150 mg/d). 

The healthy control group consisted of 20 participants (10 male; age range: 22–48 

years; mean age = 31.7; SD = 8.43) who were recruited from the same geographic area. None 

of the healthy control participants reported any (family) history of mental illness. All 

participants had normal or corrected-to-normal vision. The demographic details for each 

participant group, including information about IQ and handedness, as well as the clinical 

characteristics of the patients are summarized in Table 1. Participants provided written 

informed consent prior to the first experimental session and were compensated with 60€ for 

their participation. The study was approved by the LMU Munich Medical Faculty’s ethical 

committee and conformed to the Declaration of Helsinki. 
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Table 1 Group Demographics and MDD Ratings. 

 MDD Patients  Healthy Controls 

 Verum Sham p  Verum Sham p 

Age  34.9 (9.37) 35.8 (5.75) .80   30.8 (9.34) 32.6 (7.52) .64 
Gender (m/f) 6/4 5/5 .65   5/5 5/5 1.0 
Handedness (r/l/a) 9/1/0 8/1/1 .59   9/1/0 9/1/0 1.0 
Education (years) 11.2 (1.62) 11.6 (1.43) .57   12.8 (.42) 12.9 (.32) .56 
MWT-B 105.3 (15.67) 103.4 (15.07) .79   105.8 (14.48) 118.6 (20.81) .13 
Duration disorder (years) 5.7 (7.13) 4.49 (4.8) .65   – – – 
HAMD 18.5 (6.1) 19.8 (8.07) .69   – – – 
CGI 4.6 (.52) 4.5 (.53) .67   – – – 

GAF 54.3 (19.48) 53.1 (7.11) .86   – – – 

Note. Data are presented as means (standard deviations) or frequencies. MWT-B = German 

Multiple-Choice Vocabulary Test (Lehrl et al., 1995); HAMD = Hamilton Depression Scale 

(Hamilton, 1960); GAF = Global Assessment of Functioning Scale (American Psychiatric 

Association, 2013); CGI = Clinical Global Impression Scale (Guy, 1976); f: female; m: male; 

r: right; l: left; a: ambidextrous. P-values refer to a statistical comparison between the verum 

and sham condition.  

 

Experimental procedure  

Participants were randomly assigned to either the verum or sham tDCS condition by means 

of a computer-generated randomization list (https://www.random.org/lists/) for which the 

access during the study was restricted to two researchers (AH / WS). Neither the participants 

nor the experimenters were informed about the respective stimulation condition. Ten patients 

received verum left-anodal tDCS, the remaining 10 patients underwent sham tDCS. 

Similarly, 10 healthy control participants received verum tDCS and 10 healthy controls 

received sham tDCS. After being randomly assigned to the particular tDCS condition, 

participants underwent four experimental sessions each lasting between 60 and 90 minutes 

(see Figure 1). On session 1 (practice session), which could take place one to four days prior 

to the second test session, participants were familiarized with the TVA-based assessment and 

were trained on the respective tasks in order to avoid later practice effects. The following 
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three test sessions were conducted on consecutive days at about the same daytime each. On 

session 2 (baseline test), a baseline TVA-based whole- and partial-report assessment took 

place. On session 3 (post test), participants first obtained either verum 2 mA anodal or sham 

tDCS over the left dlPFC for 20 minutes and, directly afterwards, whole- and partial-report 

tasks were again applied. On session 4 (follow-up test), a follow-up assessment of the 

attentional parameters was conducted. 

 

Figure 1 General experimental procedure. 

 

TVA framework  

TVA is a mathematical model, linked to the biased-competition account of visual attention 

(Desimone & Duncan, 1995). Accordingly, TVA assumes a parallel-competitive race of all 

objects and their features for selection into a capacity-limited vSTM store, representing what 

we consciously perceive and use for goal-directed actions. Access to vSTM depends on a 

speed criterion: only those objects processed fastest will enter the store and can become 

conscious (Bundesen, 1990). Object selection is thus determined by (1) its processing rate, 

and (2) the available size of the vSTM store, as a filled store no longer allows selection. 

Further, the probability of object selection into vSTM is defined by the attentional weight 

assigned to an object driven by both bottom-up factors such as stimulus saliency, as well as 

intentional, top-down determinants, such as task instructions. Consequently, only part of the 

objects will be represented within vSTM and will be accessible for further processing and 

goal-directed actions.  
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24 h 24 hDay 1 Day 2 Day 3 Day 4



Study I: Influence of tDCS on Attention in MDD  

 31 

General method for whole- and partial-report 

TVA-based testing was conducted in a dimly lit and sound-attenuated experimental 

laboratory room at the Psychiatric Clinic of the Ludwig-Maximilians-Universität München 

(LMU Munich). Within one test session, each participant completed the whole- and partial-

report task, each lasting about 30 minutes. Task order was counterbalanced across 

participants. Stimuli were presented on a 27-inch PC monitor (1024 × 768 pixel resolution) 

with a refresh rate of 100 Hz. The distance between the monitor and the eyes of the 

participants was approximately 60 cm. In both tasks, each trial started with the presentation 

of a white central fixation point (diameter: 1 cm) for 1000 ms on a black background. 

Participants were instructed to keep fixation throughout the whole trial. After a delay of 250 

ms, red and/or blue letters were briefly presented on a black background. The exposure 

durations were determined individually in a pretest to meet a criterion value. Stimuli 

consisted of target letters randomly chosen from a predefined set of the following letters: 

ABCDEFGHJKLMNOPRSTUVWXZ. On a given trial, a particular letter appeared only 

once. Stimuli were either masked, by a blue-red scattered square (»1.5° visual angle) 

presented for 500 ms, or unmasked. In unmasked conditions, the effective exposure durations 

are prolonged by several hundred milliseconds due to visual persistence (Sperling, 1960). 

The participant had to report those letters she/he perceived with reasonable certainty, in 

arbitrary order and without speed stressing. The experimenter typed the responses on a 

keyboard and initiated the next trial by pressing the space bar.  

After each block, participants received a visual performance feedback indicating the 

percentage of correctly reported letters out of all reported ones. Participants should aim for 

correctness between 70 and 90% by avoiding too conservative and too liberal responses. In 

total, the partial-report task consisted of 288 trials and the whole-report task of 140 trials, 

separated into blocks of 48 and 35 trials, respectively. Within each block, each display 
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condition was presented equally often in randomized order.  

TVA-based whole-report. A representative whole-report trial is depicted in Figure 

2A. On each trial, participants were briefly presented with six letters, either all red or blue, 

appearing on an imaginary circle with a radius of 6 cm (5.73° of visual angle) around the 

fixation point. The task of the participant was to identify and report as many letters as 

possible.  

In order to individually adjust five exposure durations appropriate for the capabilities 

of a given participant, a pretest of four blocks of 12 trials each was performed prior to the 

main whole-report task in each test session. As in the main task, participants were instructed 

to report as many letters as possible. The exposure duration adjusting trials were organized in 

triples consisting of two ‘easy’ trials (i.e., one longer and one unmasked trial) and one 

adjusting trial in which initially, the six letters were flashed for 80 ms. If participants were 

able to report at least one letter correctly, exposure durations were decreased in steps of 10 

ms until the lowest individual threshold, for which no letter could be reported anymore, was 

identified. Based on this threshold a corresponding set of four additional, longer exposure 

durations was chosen for the subsequent main whole-report task (e.g., 10, 20, 40, 90, and 200 

ms). In these five conditions letters were masked. Additionally, in two unmasked conditions, 

letters were presented in the second shortest and the longest exposure duration condition. 

This resulted in seven ‘effective’ exposure duration conditions. In unmasked displays the 

effective exposure duration is prolonged due to the visual afterimage by a constant duration. 

This prolongation is defined by parameter µ (given in ms). This parameter is not relevant in 

the current study as it mainly serves the valid estimation of the parameters of interest. The 

patient group’s average minimum exposure duration was 20.5 ms (SD = 7.59 ms) and did not 

differ significantly (t(38) = .30, p = .77) from that of the control group, which was on average 

20 ms (SD = 0 ms). Within each block, the resulting seven different effective exposure 
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duration conditions were equally frequent. 

Based on the performance in the whole-report task, the individual processing capacity 

aspects reflected by the TVA parameters perceptual processing speed C and vSTM capacity 

K, can be estimated by mathematical data modelling. The best-fitting TVA parameter values 

to the observed data of each participant were estimated by a maximum likelihood fitting 

algorithm described in detail by Kyllingsbæk (2006).  

Performance (i.e., the number of letters reported correctly) was measured as a 

function of exposure duration. In TVA, stimulus processing is a dynamic process in which 

the probability for an object to be selected increases with increasing exposure duration. 

Presenting the stimuli with various exposure durations enabled us to examine the whole range 

of attentional performance aspects including both very early and late aspects of the 

participant’s whole-report functions, thereby allowing a reliable model fit of the data (Finke 

et al., 2005). Within the TVA approach, an exponential growth function, relating the mean 

number of reported objects to the exposure duration, models the probability of stimulus 

identification. The growth parameter reveals the attentional processing speed (C), the rate at 

which stimuli are processed (measured in visual elements per second), and the asymptotic 

level of the function specifies the storage capacity (K), i.e., the maximum number of objects 

that can be registered in parallel and transferred into a vSTM store where information is kept 

online for a short period of time. The intercept of the curve with the x-axis describes the 

parameter perceptual threshold t0, i.e., the individual minimal effective exposure duration in 

ms below which the number of correctly reported stimuli is zero (for illustration see Figure 

3).  
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Figure 2 (A) Procedure used for the assessment of the TVA whole-report task. After the 

presentation of a central fixation point for 1000 ms and a brief delay of 250 ms, six letters are 

flashed in an imaginary circle either in red or blue font for one of five individually adjusted 

exposure durations (identified in a pretest). In these five exposure duration conditions, letters 

are masked for 500 ms. In two unmasked conditions, letters were presented in the second 

shortest and longest exposure duration condition. (B) Trial sequence and (C) display types of 

TVA partial-report task. After the presentation of a central fixation point for 1000 ms and a 

brief delay of 250 ms, one of the 16 possible display types appears for a predetermined 

individual exposure duration. Following that, presented stimuli (T = target = red letters; D = 

distractor = blue letters) are masked for 500 ms. 
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TVA-based partial-report. In the partial-report task participants were instructed to 

report predefined target letters, which differed from distractors with respect to colour (target 

= red; distractor = blue). In each trial, either a single target (letter) or a target plus distractor 

(letter) or two targets appeared at the corners of an imaginary square located 7.5 cm around 

the fixation point. All letters were masked for 500 ms. If two letters were presented on the 

display, they were either flashed in a row or in a column, but never diagonally.  

In total, the partial-report task consisted of sixteen conditions, which were 

counterbalanced across all six blocks: target appearing alone (T; four possible alternatives: 

upper right/left or lower right/left corner), target appearing with distractor (T-D; eight 

possible alternatives), and two targets appearing together (T-T; four possible alternatives). 

For an exemplary partial-report trial sequence and all possible display types see Figure 2B 

and 2C. 

As for the whole-report task, the exposure duration of the flashed letter(s) was 

individually determined for each participant prior to the main task. To that end, a pretest was 

performed: First, 24 trials with an initial exposure duration of 80 ms were presented. This 

was decreased by steps of 10 ms if participants were able to report two letters in the target-

target condition. In contrast, if they could only name one of the two target letters, exposure 

duration was kept at 80 ms, and if none of the two targets could be reported, exposure 

duration was increased by steps of 10 ms until participants could name, on average, one letter 

per trial correctly. Subsequently, 24 trials were run and performance at the calculated 

exposure duration was checked for the different experimental conditions. If participants 

reported 70–90 % of the single targets (T) and at least 50 % of the dual targets (T-T) 

correctly, the exposure duration was kept for the main partial-report task. If not, exposure 

durations were increased or decreased manually by the experimenter and performance was 

rechecked in another round of 24 trials. The patient group’s average exposure duration was 
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82.67 ms (SD = 27.14) and did not differ significantly (t(38) = 0.85, p = .40) from those of 

the control group that was on average 75.33 ms (SD = 27.69). Based on the performance in 

the partial-report task, the attentional selectivity parameter estimate (i.e., TVA parameter α) 

was derived from mathematical data modelling. From the probability of stimulus 

identification, attentional weights are derived for targets ()?) and distractors ()@). From 

these values one can draw inferences about the distribution of attentional resources across 

targets and distractors (Duncan et al., 1999), represented by the parameter top down control 

α. In formal terms this is expressed as the ratio of distractor (D) to target (T) weights: 

)@ )?⁄ . An α close to zero indicates high selectivity, i.e., targets receive more weight than 

distractors. Values of α close to 1 signify no selectivity. 

 

Transcranial direct current stimulation 

Transcranial direct current stimulation was delivered by a CE-certified direct current 

stimulator (neuroConn GmbH, Germany). Conductive rubber surface electrodes with a size 

of 35 cm2 (5 × 7 cm) were covered with saline-soaked sponges and were placed on the scalp 

and the frontal head. For both verum and sham stimulation, the same electrode configuration 

was used with the anode placed above the left dorsolateral prefrontal cortex (dlPFC; F3 

position according to the international EEG 10-20 system) and the reference electrode placed 

above the right supraorbital area. The F3-position has been linked to Brodmann areas 8, 9 or 

46 on the medial frontal gyrus (Herwig, Satrapi, & Schonfeldt-Lecuona, 2003; Homan, 

Herman, & Purdy, 1987) and this is representative for the left dlPFC. This electrode 

configuration is standardly used in physiological studies (e.g., Nitsche et al., 2008) and also 

in several behavioural studies this electrode montage was found to modulate cognitive 

parameters both in healthy participants and patients (e.g., Keeser, Meindl, et al., 2011; Palm 

et al., 2012). One stimulation session lasted 20 minutes during which constant current of 2 
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mA intensity was applied. To minimize the itching sensation at the onset of stimulation, 

current intensity was turned on in a ramp-like fashion until 2 mA was reached (15 seconds) 

and was ramped down correspondingly at the end of stimulation (15 seconds). In order to 

guarantee a successful blinding of participants, sham stimulation was performed in the same 

way as active stimulation, but the current was turned off after 45 seconds of tDCS so that 

participants could perceive the itching sensation at the beginning of the stimulation. 

Programming and encoding the stimulation routines in the stimulation device beforehand and 

by a person who was not the experimenter enabled a double-blind design in which both 

participants and experimenter were blind regarding the type of stimulation applied. Verum 

and sham stimulation was applied in different subgroups of participants. During the 

stimulation participants sat on a comfortable chair without being engaged in any task. As we 

were mainly interested in tDCS after-effects on attentional functions – both immediate and 

longer lasting ones of potential clinical relevance – tDCS was applied in an ‘offline’ protocol. 

Immediately after the tDCS intervention, patients completed the comfort rating scale, which 

is a self-rated questionnaire monitoring potential adverse effects resulting from the tDCS 

treatment (Palm et al., 2014). 

 

Data analysis 

For statistical analyses, IBM SPSS statistics version 22 was used. The level of significance 

was set to alpha = .05. Independent t-tests and χ2-tests were used to compare groups with 

respect to demographic variables and clinical measures. In order to compare attentional 

parameters at baseline between the healthy control and the MDD patient group one-way 

analyses of variance (ANOVA) were conducted. In order to control for differences in 

education levels, these analyses were repeated using ‘education’ as covariate. Parameters at 

baseline in participants assigned to the verum vs. sham tDCS condition within these two 
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groups were compared by independent t-tests. To investigate the effect of tDCS on the 

attentional parameters at the three different time points, 2 × 3 mixed-factorial ANOVAs with 

the between-subjects factor stimulation condition (verum vs. sham tDCS) and the within-

subjects factor time point (baseline, post and follow-up) were carried out separately for the 

healthy control and the MDD patient group. In order to assess the magnitude of the observed 

effects we measured Cohen’s d, defined as the difference between two group means divided 

by the pooled standard deviation (Cohen, 1988). The integrity of blinding was assessed by 

means of χ2-tests to compare participants’ judgements of whether verum or sham tDCS had 

been applied between the verum and sham stimulation condition. Furthermore, independent t-

tests were used to compare comfort ratings regarding the time during and after the 

stimulation between participants assigned to the verum and sham stimulation condition in the 

healthy control and the MDD patient group, respectively.  

 

2.1.4 Results 
Demographic and clinical characteristics 

MDD patients did not differ significantly from the healthy controls with respect to age (t(38) 

= 1.45, p = .16), gender (χ2(1) = 0.10, p = .75), IQ (t(38) = -1.47, p = .15) and handedness 

(χ2(2) = 1.03, p = .60). However, there was a subtle, but significant difference between the 

healthy control (M = 12.8 years) and MDD patient group (M = 11.4 years) with respect to 

education level (t(38) = -4.2, p < .05). In both groups, participants receiving verum and sham 

stimulation did not differ significantly from each other with respect to any of the 

demographic and clinical characteristics (all ps ≥ .13; see Table 1). 

Baseline task performance – healthy control versus MDD patient group 

Whole-report results 

Figure 3 depicts the whole-report performance in terms of the mean numbers of correctly 
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reported letters as a function of the (effective) exposure duration in one representative MDD 

patient and healthy control participant. The curves represent the best fits from TVA to the 

observed data points derived by the maximum likelihood method (e.g., Kyllingsbæk, 2006). 

The TVA fitting procedure yielded fairly close fits to the observed scores. The predicted 

values accounted for r2 = 93% of the variance of the observed mean scores. For each single 

participant, TVA model fitting yielded individual estimates for perceptual processing speed 

C, vSTM storage capacity K and the minimal effective exposure duration t0.  

Minimal effective exposure duration t0. As depicted in Figure 3, below a certain 

minimal effective exposure duration t0, participants were not able to report any letter 

correctly. Estimates of minimal effective exposure duration t0 were basically comparable 

between MDD patients (M = 11.42 ms, SD = 11.55 ms) and healthy controls (M = 7.52ms, 

SD = 7.43 ms), as indicated by a non-significant main effect of group (F(1, 38) = 1.84, p = 

.18; see Table 2). The statistical results were confirmed when including ‘education’ as 

covariate (F(2, 37) =.14, p = .71). There was no significant correlation between the TVA 

parameter t0 and ‘education’ neither in the healthy control (r(18) = -.29, p = .22) nor in the 

MDD patient group (r(18) = -.22, p = .35). 

Perceptual processing speed C. Analysis revealed a significant main effect of group 

(F(1, 38) = 11.82, p = .01) indicating that processing speed was lower in MDD patients (M = 

27.17 elements/second, SD = 10.16) than in healthy controls (M = 43.86 elements/second, SD 

= 19.18; see Table 2). Accordingly, in Figure 3, the MDD patient’s whole-report function is 

characterized by a shallower slope in comparison to the control participant, indicating that the 

rate of information uptake at a given time unit is significantly reduced. The computation of 

Cohen’s d yielded a large effect size (d = 1.1) and a nonoverlap of 58.9% in the two 

distributions of C scores. The statistical results were confirmed when including ‘education’ as 

covariate (F(2, 37) = 6.28, p = .02). There was no significant correlation between the TVA 
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parameter C and ‘education’ neither in the healthy control (r(18) = .23, p = .34) nor in the 

MDD patient group (r(18) = .09, p = .69).  

Visual short-term memory capacity K. The main effect of group was not significant 

(F(1, 38) = 2.43, p = .13) indicating that vSTM was basically comparable between groups 

(see Table 2). Figure 3 accordingly illustrates that when exposure durations were increased, 

performance of the representative MDD patient and the representative healthy control 

participant reached an asymptotic value at approximately the same level. This value (K) is 

typically interpreted as the maximum storage capacity of vSTM (Sperling, 1967). In the 

present study, the mean number of items that can be represented was 3.67 (SD = .94) for the 

healthy control participants and 3.23 (SD = .85) for the patients. The statistical results were 

confirmed when including ‘education’ as covariate (F(2, 37) = .12, p = .74). There was no 

significant correlation between the TVA parameter K and ‘education’, neither in the healthy 

control (r(18) = .32, p = .18) nor in the MDD patient group (r(18) = .34, p = .15). 

 

 

Figure 3 Whole-report performance (= number of correctly reported letters) of a 

representative MDD patient (A) and a healthy control participant (B) as a function of 

exposure duration. Circles show observed values (= obs), dashed lines represent the best fits 

of the observed scores by the applied model (pred = predicted). Maximum vSTM capacity K 

is indicated by the horizontal dashed line. The dashed slope line reflects processing speed C.  
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Table 2 TVA Whole- and Partial-Report Parameters at Baseline for the MDD Patient and 

Healthy Control Group 

  MDD Patients  Healthy Controls  Statistical 
comparison 

  Mean SD  Mean SD  p 

C 27.17 10.16   43.86 19.18   .01 
K 3.23 .85   3.67 .94   .13 
t0 11.42 11.55   7.25 7.43   .18 
α .46 .26   .36 .22   .21 

Note. C: visual perceptual processing speed (elements/sec); K: visual working memory 

storage capacity (number of elements); t0: minimal effective exposure duration; α: efficiency 

of top-down control.  

 

Partial-report results 

Based on the partial-report performance, the attentional selectivity parameter estimate, i.e., 

top-down control α, was derived from mathematical data modelling. The predicted data of the 

partial-report task fitted the observed data closely for each of the three conditions (single-

target T, dual-target T-T, target-distractor T-D) as indicated by a mean Pearson product-

moment correlation r of .95. The predicted values accounted for r2 = 90% of the variance of 

the observed mean scores. Figure 4 depicts the mean partial-report accuracy of the MDD 

patient and the healthy control group, for the single target (none), the target plus distractor 

(D) and the target plus target (T) conditions across the left and right hemifield. A one-way 

ANOVA was performed to assess whether the two groups differ in top-down control. 

Top-down control α. Analysis revealed statistically comparable estimates of top-

down control in both MDD patients (M = .46, SD =.26) and healthy controls (M = .36, SD = 

.22) (F(2, 37) = 1.77, p = .21; see Table 2). The statistical results were confirmed when 

including ‘education’ as covariate (F(2, 37) = 3.46, p = .19). There was no significant 

correlation between the TVA parameter α and ‘education’ in the MDD patient group (r(18) = 

.23, p = .34). In the healthy control group there was a moderate positive correlation between 
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the TVA parameter α and ‘education’ (r(18) = .50; p = .03). From Figure 4 it can be inferred 

that, for both the patients and the healthy control participants, performance was highest in the 

single target condition (“none”). Adding a distractor (D) only slightly impaired performance, 

whereas adding a second target (T) noticeably reduced accuracy. Overall, the pattern of 

performance illustrates comparable top-down control in both MDD patients and healthy 

controls.  

 

Figure 4 Mean partial-report accuracy (= percentage of correctly reported target letters) of 

healthy controls and MDD patients in the single target (none), the target plus distractor (D) 

and the target plus target (T) conditions across the left and right hemifield. Error bars reflect 

standard errors of the mean.  

 

Immediate and enduring stimulation effects on attentional parameters  

Healthy controls 

At baseline, participants in the verum and sham group did not differ significantly with respect 

to any of the assessed TVA parameters (all ts ≤ 1.42, all ps ≥ .08). Means and standard 

deviations are depicted in Table 3. 

Whole-report performance. In order to assess immediate and enduring effects of 

tDCS on visual processing speed C and vSTM capacity K, separate 2 × 3 mixed-design 

ANOVAs with time point (baseline, post and follow-up test) as within-subjects factor and 

stimulation condition (verum vs. sham tDCS) as between-subjects factor were carried out. 

There was a significant main effect of time point on processing speed (F(2, 36) = 4.05, p = 
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.03, hp2 =.18) suggesting an increasing processing speed from baseline to post and then to 

follow-up test. The main effect of stimulation condition was not significant (p = .23). Most 

critically, the interaction between time point and stimulation condition was not significant 

(F(2, 36) = .23, p = .80, hp2 = .01; see Figure 5), indicating that the difference between 

processing at different time points was not modulated by tDCS. Rather this finding suggests 

unspecific practice effects due to repeated testing with whole- and partial-report paradigms. 

For the parameters vSTM storage capacity K and minimal effective exposure duration t0, no 

significant main or interaction effects were found (all ps ≥.12). See Table 3 for respective 

means and standard deviations.  

Partial-report performance. For the parameter top-down control α, analysis yielded 

no significant main or interaction effect (all ps > .26). See Table 3 for respective means and 

standard deviations.  

 

Table 3 TVA Whole- and Partial-Report Parameters in the Healthy Control Group for the 

Three Time Points (Baseline, Post, Follow-up) 

  Baseline Post Follow-up 

 tDCS condition M SD M SD M SD 

C Verum 38.59 16.76 41.53 17.11 46.18 19.92 
  Sham 49.13 20.84 54.69 22.49 56.09 28.29 
K Verum 3.47 .82 3.33 .84 3.48 .78 
  Sham 3.88 1.04 3.86 .93 4.01 1.02 
t0 Verum 9.54 7.96 7.49 8.08 6.82 6.38 
  Sham 4.96 6.43 6.80 4.11 3.77 4.82 
α Verum .27 .20 .22 .26 .33 .16 
  Sham .45 .21 .42 .20 .39 .11 

Note. C: visual perceptual processing speed (elements/sec); K: visual working memory 

storage capacity (number of elements); t0: minimal effective exposure duration; α: efficiency 

of top-down control. 
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MDD patients 

Analysis of variance yielded no significant baseline differences between MDD patients in the 

verum and sham tDCS group in any of the TVA parameters (all ts ≤ .74, all ps ≥ .47). See 

Table 4 for respective means and standard deviations. 

Whole-report performance. The same mixed-factorial ANOVA as conducted for the 

healthy control group revealed a significant main effect of time point (F(2, 36) = 4.21, p = 

.02, hp2 = .19) and a significant interaction between tDCS condition and time point on 

processing speed (F(2, 36) = 3.63, p = .04, hp2 = .17) in the MDD patient group. Separate 

ANOVAs were computed for the two tDCS conditions to analyse the interaction. There was 

no main effect of time point in the sham group (F(2, 18) = .23, p =.80). In the verum group, 

the effect of time point was significant (F(2, 18) = 8.51, p = .01). Post-hoc testing with 

Bonferroni correction for multiple comparisons revealed that processing speed C did not 

differ significantly between baseline test (M = 25.75, SD = 7.59) and post test (M = 26.22, SD 

= 9.02; p > .05, 95% CI [-8.26; 7.32]), but at follow-up test (M = 34.77, SD = 9.46) it was 

significantly increased both compared to baseline (p = .02, 95% CI [1.51; 16.54]) and post 

test (p = .01, 95% CI [2.26; 14.84]; see Figure 5). An alternative analysis comparing the 

mean baseline-normalized performance both at the post test and the follow-up test between 

the two stimulation conditions (verum vs. sham) in MDD patients yielded a similar result: the 

analysis of covariance (ANCOVA) on the post test processing speed performance covarying 

the pretest performance revealed a non-significant main effect of stimulation condition (F(1, 

17) = .52, p = .48; pairwise comparison 95% CI [-10.91; 5.34]; mean difference (verum vs. 

sham) = -2.79). The ANCOVA on the follow-up processing speed performance covarying 

the pretest performance revealed a borderline significant result (F(1, 17) = 4.44, p = .05; 

pairwise comparison 95% CI [-.010; 14.30] mean difference (verum vs sham) = 7.14), 

indicating that patients of the verum condition exhibited a greater mean increase in 
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processing speed than those of the sham condition. On average patients receiving verum 

stimulation could process about 9 elements/sec more (40%) at the follow-up compared to the 

baseline test and about 8 elements/sec (37%) more compared to the post test. These effects 

were large, as indicated by a value of Cohen’s d of 1.1 (baseline vs. follow-up) and .9 (post 

vs. follow-up). 

 

Figure 5 Effects of tDCS on mean perceptual processing speed C (measured in elements/sec) 

in healthy controls and MDD patients. Processing speed was assessed at baseline, directly 

after tDCS (post) and 24 hours after tDCS (follow-up).  

Error bars represent standard errors of the means, * p < .05. 

 

For the parameters vSTM storage capacity K and minimal effective exposure duration 

t0, analyses yielded statistically non-significant effects (all ps ≥ .98). See Table 4 for means 

and standard deviations.  

Partial-report performance. Analysis revealed a significant main effect of time 

point (F(2, 36) = 3.24, p = .05) for the parameter top-down control indicating that the 

efficiency of selection increased in both groups from baseline to post and from baseline to 

follow-up test. The time point × tDCS condition interaction was not significant (F(2, 36) = 

.27, p = .76), indicating that the stimulation did not modulate the increase in top-down 

control. See Table 4 for respective means and standard deviations. 
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Table 4 TVA Whole- and Partial-Report Parameters in the MDD Patient Group for the Three 

Time Points (Baseline, Post, Follow-up) 

  Baseline Post Follow-up 

 tDCS condition M SD M SD M SD 
C Verum 25.75 7.59 26.22 9.02 34.77 9.46 
 Sham 28.59 12.48 30.43 10.46 29.77 11.75 

K Verum 3.22 .84 3.39 .74 3.40 .70 
 Sham 3.24 .90 3.29 .80 3.33 .71 

t0 Verum 13.35 14.10 7.44 5.78 11.86 6.79 
 Sham 9.48 6.47 10.12 6.47 7.11 8.50 
α Verum .46 .23 .40 .18 .32 .24 
 Sham .46 .30 .32 .19 .31 .13 

Note. C: visual perceptual processing speed (elements/sec); K: visual working memory 

storage capacity (number of elements); t0: minimal effective exposure duration; α: efficiency 

of top-down control.  

 

Integrity of blinding and comfort rating 

Of the MDD patients, 80% in the verum and 60% in the sham condition rated that they 

received verum stimulation. The distribution of sham and verum ratings did not differ 

significantly between conditions (χ2(1) = .95, p = .33). Of the healthy control participants, 

70% in the verum and 30% in the sham condition rated that they received verum stimulation. 

The distribution of sham and verum ratings did not differ significantly between conditions 

(χ2(1) = 3.20, p = .07). Comfort ratings regarding the time during and after the stimulation did 

not differ significantly between participants in the verum and sham condition within the 

MDD patient group and healthy control group, respectively (all ts ≤ 2.01, all ps ≥ .06). 

 

2.1.5 Discussion 
In the present study, we (i) compared parameters of visual attention between patients with 

MDD and healthy control participants, (ii) investigated the alertness-modulating effect of a 

single session of tDCS over the dlPFC on attention parameters in these groups, focussing on 
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alertness-dependent visual processing speed, and finally we (iii) tested the longevity of 

potential effects. Parameters of visual processing speed and further parameters of attention 

were quantified by applying TVA-based whole- and partial-report paradigms before, right 

after and 24 hours after tDCS treatment. Our main finding was a significant time point × 

stimulation interaction in MDD patients indicating that processing speed (as the only 

impaired baseline parameter) was exclusively enhanced in MDD patients 24 hours following 

a single session of verum, but not sham, anodal 2mA tDCS applied to the left dlPFC. 

Attentional deficits at baseline assessment. At baseline, patients with MDD showed 

a significant visual perceptual slowing, as indicated by a processing speed that was 38% 

lower than that of healthy control participants. Our results go beyond previous publications 

and expand our knowledge of cognitive slowing in MDD patients: first, the theory-driven 

parametric approach delivers information on cognitively ‘pure’ mechanisms. It was reported 

previously that MDD patients perform slowly on attention-related tasks (Lee, Hermens, 

Porter, & Redoblado-Hodge, 2012; Lim et al., 2013; Paelecke-Habermann et al., 2005; 

Tsourtos, Thompson, & Stough, 2002). However, in such clinically established tasks multiple 

cognitive functions determine the overall performance and the contribution of these functions 

cannot be disentangled. By the use of the theory-driven parametric approach, we could 

demonstrate that, within the same letter report paradigms also used for demonstrating 

processing speed slowing, MDD patients did not show significant changes in vSTM storage 

capacity, minimal effective exposure duration or top-down control. These results, that are in 

line with the TVA model (Vangkilde, Coull, & Bundesen, 2012; Vangkilde, Petersen, & 

Bundesen, 2013) of alertness-related changes in processing speed and not in other attentional 

parameters, indicate that a reduced speed of visual information processing might be a core 

constraint in attentional processing in MDD. While the results need to be replicated in larger 

samples, at present state they imply that this slowing is not a secondary consequence of, for 
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example, limitations to short-term maintenance or from abnormal distractibility levels. 

Notably, such a basic impairment in processing speed will lead to below-average 

performance in all tasks that require speeded processing of multiple visual stimuli. Thus, it 

might well explain observed impairments in various tasks including those used to assess 

higher-order cognitive functions (e.g., Lim et al., 2013). 

Second, the TVA-based assessment is not confounded with possible changes in motor 

performance. This is important since, in MDD patients, unspecific psychomotor effects that 

could result, for example, from pharmacological treatment, might affect response times in 

tasks that require fast motor performance. As the TVA-based assessment measures speed via 

report performance across different exposure durations, we can infer that slowing in 

processing speed parameter C indeed reflects cognitive (rather than unspecific motor) 

slowing. 

Third, based on the neural TVA model (NTVA, Bundesen et al., 2005), an 

interpretation of perceptual slowing at the neuronal level is for the first time possible. The 

neural interpretation of TVA makes a specific link between the speed of visual categorization 

of an object and activations in the set of neurons that represent this object. That is, both the 

number of neurons representing object x and the activation level of the individual neurons 

representing object x are determinative of the speed at which the object is perceptually 

categorized. Thus, a strict TVA-based interpretation of our results is that MDD leads to a 

pathological reduction of the set of neurons that are allocated to the processing of visual 

information or to a decrease in the individual activation level of these neurons. This 

mechanistic description might be too simplified to account for complex processes on the 

brain network level. In more general terms, the close relationship between the TVA 

parameter visual processing speed to the concept of alertness, both theoretically (Bundesen et 

al., 2005) and empirically (e.g., Finke et al., 2010; Finke et al., 2012; Matthias et al., 2010; 
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Vangkilde et al., 2011), implies a pathologically low arousal resulting from functional 

connectivity changes in fronto-parietal alertness networks in MDD patients (Clemens et al., 

2011; Coull et al., 1998; Sturm et al., 1999).  

TDCS-induced changes: No immediate effects of tDCS in MDD patients or 

control participants. No significant effects were revealed directly following the application 

of verum compared to sham tDCS in the MDD patient or the healthy control group. These 

results are important, as they indicate that changes in resting state membrane potentials of 

neurons induced by tDCS over the dlPFC do not lead to immediate changes in processing 

speed. Thus, effects found later on cannot result from such unspecific arousal effects.  

TDCS-induced changes: Significant improvement of visual processing speed in 

MDD patients in follow-up assessment. The significant time point × stimulation interaction 

in the MDD patient group indicated that, in the verum group, a significant enhancement of 

parameter processing speed C was found exclusively at the follow-up assessment, while no 

comparable effects were found in the sham group. These findings imply that even a single 

session of excitatory 2 mA tDCS over the left dlPFC leads to enduring modifications in 

fronto-parietal alertness networks on the brain level that in turn give rise to enhanced 

alertness-dependent processing speed on the neuro-cognitive level. In terms of the 

neurophysiological basis, this delayed effect on processing speed, observed 24 hours after the 

stimulation, is most likely not the result of immediate membrane polarization effects. Rather, 

the durable enhancement of processing speed could result from tDCS-induced NMDA-

receptor-dependent plasticity effects (Liebetanz, Nitsche, Tergau, & Paulus, 2002; Nitsche et 

al., 2003; Stagg & Nitsche, 2011). On a large-scale level, these after-effects may indicate 

tDCS-induced changes in the intrinsic fronto-parietal alertness network. Such functional 

connectivity changes might occur, and/or manifest in behavioural changes, with a certain 

delay following the stimulation (Keeser, Meindl, et al., 2011; Polanía, Paulus, Antal, & 
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Nitsche, 2011). Further tDCS studies which combine attention with resting state fMRI 

assessment could test these assumptions more directly. 

A NTVA-based interpretation of our results implies that tDCS over the dlPFC 

reactivates the pathologically under-aroused processing system in MDD patients via 

mechanisms that lead to a higher number of neurons involved in processing visual 

information and/or that increase the excitability level of these neurons. Thus, the results 

imply that enhancement of prefrontal activity and/or modulation of functional connectivity 

within the compromised intrinsic alertness system of MDD patients by means of tDCS 

(Heller & Nitscke, 1997; Keeser, Meindl, et al., 2011; Posner & Petersen, 1990) triggers 

increased activation within the visual perceptual system when faced with visual target 

information. Given the overall relevance of intrinsic alertness to various tasks requiring fast 

information processing speed, our results imply benefits in daily life, and thus clinical 

behavioural relevance of brain activity and connectivity modulations induced by tDCS over 

the dlPFC. While there is previous evidence that single sessions of dlPFC tDCS can 

ameliorate unspecific cognitive deficits in MDD (Boggio et al., 2007; Oliveira et al., 2013; 

Wolkenstein & Plewnia, 2013), we provide novel evidence for enduring beneficial effects – 

especially on the alertness-related visual processing speed. 

To the best of our knowledge similar consolidating effects of single sessions of tDCS 

were so far only documented for stroke patients who showed improved attentional 

performance even for four weeks (Wilkinson et al., 2014). It is of course important to 

determine to what degree repetitive stimulation leads to more pronounced and enhanced 

longevity of the benefits. However, before testing attentional parameter changes in a more 

comprehensive, repetitive treatment study in MDD patients, it was important, as a proof of 

concept, to demonstrate that tDCS over the dlPFC does actually affect these parameters 

(Boggio, Asthana, Costa, Valasek, & Osorio, 2015).  
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We found differential effects of tDCS depending on the analysed attention parameter 

and participant group. First, tDCS influenced only the processing speed parameter C in MDD 

patients, whereas there was no indication of changes in the remaining TVA attention 

parameters. This is exactly the effect that was most likely to be expected since processing 

speed involves the function that should be modulated by activating the fronto-parietal 

alertness network. Furthermore, this is the function for which there is a possibility to 

ameliorate a deficit by means of tDCS which in turn should be reflected in an enhancing 

effect on the TVA parameter processing speed C, i.e., on the function showing a deficit. This 

implies that tDCS affects core deficits rather than improving performance on attention-related 

tasks indirectly via other modes of actions. Further, note that the only parameter enhanced by 

verum tDCS, processing speed C, was also the only parameter that differed between MDD 

patients and controls at baseline assessment. Second, we did not find a specific effect of 

verum tDCS in healthy control participants. Admittedly, they exhibited a better processing 

speed with increasing practice, however, the lacking interaction between time point and tDCS 

condition indicated that these slight practice effects did not differ between healthy control 

participants in the verum and sham condition. These results imply that effects of tDCS over 

the dlPFC critically depend on baseline performance level and might be restricted to low-

performing participants, similar to cognitive enhancement effects of psychostimulant drugs 

(Finke et al., 2010; Müller, Steffenhagen, Regenthal, & Bublak, 2004). The neural 

underpinning of baseline and treatment response differences in MDD patients compared to 

healthy control participants might be a difference in baseline cortical activity. As baseline 

activity is considered to be a crucial tDCS response determinant (e.g., Jacobson et al., 2012), 

the likelihood of prefrontal tDCS to affect cognitive performance might be related to the 

initial degree of activation (and possibly connectivity) of the fronto-parietal system. 

Importantly, the relationship between arousal level and cognitive performance is assumed to 
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follow an inverted U-shape function, with a small range of optimal performance at medium 

arousal level (Yerkes & Dodson, 1908). Hence, in patients with MDD characterized by 

hypoactivated PFC areas (e.g., Baxter et al., 1989; Fitzgerald et al., 2008), tDCS might shift 

the degree of activation into the optimum range, while healthy participants with normal 

baseline arousal levels might not further benefit from tDCS-induced arousal increases. 

Limitations. This study is limited by the fact that all patients were on antidepressant 

medication, implying that the effect of MDD on cognition as well as the tDCS effect could 

not be investigated independently of potential confounding medication effects. However, 

despite the concurrent intake of antidepressant medications, MDD patients demonstrated a 

specific cognitive impairment (i.e., reduced processing speed). In contrast, a medication-

induced effect should be reflected in ‘global’ effects affecting all parameters. Moreover, in 

studies employing a repetitive stimulation protocol, therapeutic tDCS is typically applied 

add-on to antidepressant medications (Brunoni et al., 2016). Therefore, our result of tDCS-

induced cognitive effects despite concurrent antidepressant medication, is highly relevant. 

Furthermore, four patients of the sham condition and two of the verum condition had the 

possibility to receive rescue medication with benzodiazepines (maximum 1.5 mg lorazepam 

equivalents, but no permanent treatment with benzodiazepines) during the study. 

Moreover, the current sample size is rather small. Thus, replicating this study with a 

larger sample is necessary to further confirm the robustness of the results. The two study 

groups differed significantly with respect to education level. While our confirmatory analyses 

controlling for education influences replicated all our results, further testing with a strict 

matching procedure by recruiting patients who correspond to healthy controls with respect to 

every demographical variable is warranted. Our results support a functional contribution of 

the dlPFC to alertness-dependent visual processing speed. However, we cannot exclude that 

the beneficial effects attributed to anodal dlPFC stimulation are confounded by effects 
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induced by the cathode positioned on the right supraorbital region. To avoid these potential 

cathodal stimulation effects, an extracephalic electrode configuration could be considered 

alternatively but this would possibly also influence the cortical current flow (Wolkenstein & 

Plewnia, 2013). Finally, we did not evaluate more enduring stimulation after-effects, for 

example, one week post stimulation. Therefore, future studies should conduct long-term 

follow-ups to assess the stability of the effects going beyond 24 hours after stimulation.  

Concluding remarks. The parametric assessment of attentional functions based on 

the TVA enabled us to tease apart the rather subtle effects of tDCS over the left dlPFC on 

different neuro-cognitive components. That is, in line with the known relevance of fronto-

parietal networks to the state of alertness, we were able to identify a specific beneficial effect 

on TVA parameter visual processing speed C. As this effect was specific for the MDD 

patient group (and not found in healthy participants), processing speed enhancements 

following stimulation of left dlPFC seem to be more pronounced and might even be restricted 

to participants with low baseline activity in left fronto-parietal systems.  

Taken together, by combining tDCS with TVA analysis in a partial- and whole-report 

paradigm in a sham-controlled, randomized, double-blind study, we were able to show (i) 

that MDD is associated with a significantly reduced rate of visual information uptake and, 

most critically, (ii) that activating the prefrontal alertness system by means of tDCS 

ameliorated this deficit. Our results suggest that even a single session of anodal tDCS over 

the dlPFC has relatively enduring effects – even going beyond the stimulation intervention – 

on an attention function depending on intrinsic alertness, and more specifically on visual 

processing speed.  
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2.2 Study II: Parameter-based evaluation of attentional 

impairments in schizophrenia and their modulation by 

prefrontal transcranial direct current stimulation 

In this paper, we report a double-blind, randomized, sham-controlled tDCS study that 

employed mathematical data modelling based on Bundesen’s TVA in schizophrenia patients 

to assess (i) the specific attentional functions affected in schizophrenia patients compared to a 

healthy control group, (ii) the specific attentional benefits induced by a single session anodal 

tDCS over the left dlPFC, and (iii) the longevity of potential effects. Results revealed a 

significantly reduced visual processing speed and short-term memory storage capacity as 

primary sources of attentional deficits in schizophrenia. Furthermore, prefrontal tDCS 

interfered with (rather than enhanced) practice effects on visual processing speed in 

schizophrenia. This finding of a potential tDCS-induced disrupting effect on practice-

dependent improvements in processing speed calls for further investigations and highlights 

the need for more neuroscience-based research in schizophrenia before tDCS can be broadly 

used as treatment option in all sectors of the healthcare system. 

 

This article was published in Frontiers in Psychiatry in 2017. 



Study II: Influence of tDCS on Attention in Schizophrenia 

 60 

2.2.1 Abstract 
Attentional dysfunctions constitute core cognitive symptoms in schizophrenia, but the precise 

underlying neuro-cognitive mechanisms remain to be elucidated. In this randomized, double-

blind, sham-controlled study, we applied, for the first time, a theoretically grounded 

modelling approach based on Bundesen’s Theory of Visual Attention (TVA) to (i) identify 

specific visual attentional parameters affected in schizophrenia and (ii) assess, as a proof of 

concept, the potential of single-dose anodal transcranial direct current stimulation (tDCS; 20 

minutes, 2 mA) to the left dorsolateral prefrontal cortex (dlPFC) to modulate these attentional 

parameters. To that end, attentional parameters were measured before (baseline), immediately 

after, and 24 hours after the tDCS intervention in 20 schizophrenia patients and 20 healthy 

controls. At baseline, analyses revealed significantly reduced visual processing speed and 

visual short-term memory storage capacity in schizophrenia. A significant stimulation 

condition × time point interaction in the schizophrenia patient group indicated improved 

processing speed at the follow-up session only in the sham condition (a practice effect), 

whereas performance remained stable across the three time points in patients receiving verum 

stimulation. In healthy controls, anodal tDCS did not result in a significant change in 

attentional performance. With regard to question (i) above, these findings are indicative of a 

processing speed and short-term memory deficit as primary sources of attentional deficits in 

schizophrenia. With regard to question (ii), the efficacy of single-dose anodal tDCS for 

improving (speed aspects of visual) cognition, it appears that prefrontal tDCS (at the settings 

used in the present study), rather than ameliorating the processing speed deficit in 

schizophrenia, actually may interfere with practice-dependent improvements in the rate of 

visual information uptake. Such potentially unexpected effects of tDCS ought to be taken into 

consideration when discussing its applicability in psychiatric populations.   
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2.2.2  Introduction 
Visual attention dysfunctions, ranging from impairments in processing speed and visual 

short-term memory (vSTM) capacity to deficient top-down control (Dickinson, Ramsey, & 

Gold, 2007; Erickson et al., 2015; Forbes, Carrick, McIntosh, & Lawrie, 2009; Gold, Fuller, 

Robinson, Braun, & Luck, 2007; Johnson et al., 2013; Lee & Park, 2005), are commonly 

reported in schizophrenia and schizophrenia-spectrum disorders. However, the question of 

the precise neuro-cognitive mechanisms underlying the difficulties in attention tasks has not 

yet been resolved conclusively. For instance, it remains elusive whether both processing 

speed and working memory (WM) functions are affected in schizophrenia (Brebion, David, 

Jones, & Pilowsky, 2009) or whether slowed encoding processes are responsible for the 

reduced vSTM storage capacity in the respective attention tasks (Brebion, Amador, Smith, & 

Gorman, 1998; Dickinson et al., 2007; Rodriguez-Sanchez, Crespo-Facorro, Gonzalez-

Blanch, Perez-Iglesias, & Vazquez-Barquero, 2007). Likewise, it is not clear whether the 

impaired encoding processes arise from impaired top-down controlled distractor inhibition 

(Barch & Ceaser, 2012; Erickson et al., 2014; Gold et al., 2006; Gold, Wilk, McMahon, 

Buchanan, & Luck, 2003; Hahn et al., 2010).  

To determine whether these deficits can be attributed to losses of specific fundamental 

attention functions, a theoretically grounded modelling approach is required that can isolate 

and quantify (potentially compromised) core functions in an unconfounded measurement. 

Such an approach is provided by Bundesen’s Theory of Visual Attention (TVA) (Bundesen, 

1990), which already proved valuable for systematically characterizing cognitive deficits in 

diverse neuropsychiatric and neurological disorders (Finke, Bublak, Dose, Müller, & 

Schneider, 2006; Finke et al., 2011; Gögler et al., 2016). By combining this framework 

theory with simple psychophysical tests of whole- and partial-report of briefly presented 

letters, it is possible to derive independent estimates of parameters reflecting the individual 
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efficiency of core visual attention functions. Two of these parameters, visual processing 

speed, the rate of information uptake per second (C), and vSTM storage capacity, the 

maximum number of visual objects that can be represented at one time (K), capture general 

capacity aspects of the system; and the top-down control parameter (α) describes the system’s 

(top-down) attentional selectivity. The ability of the TVA-based approach to provide 

‘process-pure’ and independent measures of the various attention functions has been 

demonstrated in a range of studies revealing disorder-specific patterns of attentional deficits, 

for instance, selective impairment in only one parameter but not the others (Finke et al., 

2006; Finke et al., 2011). Similarly, in healthy individuals, externally induced modulations of 

the alertness level have been shown to specifically increase processing speed, without 

influencing vSTM storage capacity (Finke et al., 2012). Furthermore, as the tasks do not 

require speeded responses, the parameters can be estimated uninfluenced by (e.g., 

antipsychotic drug-induced) motor side effects. Importantly also, unlike most standard neuro-

cognitive tests, TVA-based assessment is highly sensitive so that even subtle deviations of 

cognitive performance from the norm can reliably be detected (Habekost & Bundesen, 2003). 

Given these advantages, the TVA-based approach is well suited for the prime purpose of the 

present study: to identify the specific attentional functions that are compromised in 

schizophrenia. 

A secondary aim of this study was to investigate whether the compromised attentional 

performance in schizophrenia patients can be modulated by means of prefrontal transcranial 

direct current stimulation (tDCS). On a neuronal level, abnormal activation patterns within 

dorsolateral prefrontal cortex (dlPFC) attention networks are discussed as the underlying 

source of these attentional impairments (Barch et al., 2001; Barch & Ceaser, 2012; Cannon et 

al., 2005; Corbetta & Shulman, 2002; Minzenberg, Laird, Thelen, Carter, & Glahn, 2009; 

Reichenberg & Harvey, 2007). Accordingly, modulation of intrinsic prefrontal networks 



Study II: Influence of tDCS on Attention in Schizophrenia 

 63 

through tDCS has recently been proposed as potential non-invasive and safe treatment option 

for the remediation of cognitive dysfunctions in schizophrenia patients (Hoy & Fitzgerald, 

2010; Mondino et al., 2014). TDCS modulates cortical excitability by passing small direct 

currents on to the scalp via electrodes with anodal and cathodal polarity. While short-term 

tDCS effects are attributed to tonic modulations of the resting membrane potential of cortical 

neurons affecting their firing rates, prolonged after-effects are presumed to be controlled by 

protein-synthesis dependent processes at the synaptic level (Liebetanz, Nitsche, Tergau, & 

Paulus, 2002; Nitsche et al., 2003; Nitsche et al., 2004; Nitsche et al., 2005). Preliminary 

studies already provided promising results regarding the potential of tDCS to remediate 

cognitive deficits in psychiatric diseases, for example, in patients with major depression 

(Boggio et al., 2007; Gögler et al., 2016; Wolkenstein & Plewnia, 2013) or alcohol 

dependence (Nakamura-Palacios et al., 2012). However, with respect to schizophrenia, the 

available evidence is scarce and mixed (Hasan, Strube, Palm, & Wobrock, 2016; Mervis, 

Capizzi, Boroda, & MacDonald, 2017): one study applied 20 minutes of anodal tDCS with 2 

mA to the left dlPFC and could not show that anodal tDCS improves performance on a 

procedural learning task in the whole sample, but still had a beneficial effect in a subgroup of 

patients (Vercammen et al., 2011). Another single-session experiment reported a positive 

effect of 2 mA anodal, but not 1 mA or sham, tDCS to the left dlPFC on a working memory 

task, 20 and 40 minutes after stimulation (Hoy, Arnold, Emonson, Daskalakis, & Fitzgerald, 

2014). By contrast, in another study, a similar stimulation protocol was shown to be 

ineffective to influence cognitive functions measured by the MATRICS consensus cognitive 

battery composite score (Rassovsky et al., 2015). To expand our knowledge about the 

possible efficacy of tDCS in schizophrenia, in the second step of this proof-of-principle 

study, we explored whether the modulation of intrinsic networks through single-dose tDCS 

can have a functional significance for cognitive, and more specifically, visual attentional 
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processes in schizophrenia (Boggio, Asthana, Costa, Valasek, & Osorio, 2015). As anodal 

tDCS applied to the left dlPFC was previously shown to modulate intrinsic fronto-parietal 

networks in healthy humans, the beneficial cognitive effect of prefrontal tDCS has been 

attributed to an increase of the state of alertness (Keeser et al., 2011). Consequently, we 

hypothesized that prefrontal tDCS would influence particularly alertness-dependent cognitive 

processes, such as the speed by which visual stimuli are processed (Finke et al., 2010; 

Matthias et al., 2010; Vangkilde, Bundesen, & Coull, 2011). On the other hand, tDCS could 

also affect other attentional components such as vSTM storage capacity or attentional 

selectivity, subserved, at least partly, by prefrontal cortex and its functional and structural 

connections. 

Measures assessing tDCS-induced benefits should be able to disentangle the potential 

effects on different attentional component processes subserved by prefrontal cortex (Barch & 

Ceaser, 2012; Cummings, 1993; Hoy et al., 2014; Rossi, Pessoa, Desimone, & Ungerleider, 

2009). Furthermore, as the effects induced by single-dose tDCS are subtle (Berryhill, 

Peterson, Jones, & Stephens, 2014; Brunoni & Vanderhasselt, 2014), highly sensitive tools 

are a prerequisite for reliably detecting any (likely small) modulations of the various 

cognitive sub-processes. Previous studies using pharmacological interventions or cue stimuli 

have already revealed the high sensitivity of TVA parameters even to small manipulations of 

the alertness level (Finke et al., 2010; Finke et al., 2012; Matthias et al., 2010; Vangkilde et 

al., 2011). In this respect, TVA-based parametric attentional assessment provides, arguably, 

the best available tool for the aims of the present study, to (i) create a meaningful ‘attentional 

profile’ of schizophrenia patients and (ii) to examine for (subtle) tDCS-induced changes in 

attentional functions in these patients.  
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2.2.3 Methods 
Participants 

Twenty patients with a ICD-10 diagnosis of schizophrenia or schizophrenia-spectrum 

disorder (F20 = 19; F25 = 1), recruited from the Department of Psychiatry and Psychotherapy 

(LMU München), and the same 20, demographically matched, healthy controls that 

participated in our previous study (Gögler et al., 2016), were included in the investigation 

(see Table 1 and 2 for demographic and clinical data). The diagnoses, according to the WHO 

ICD-10 criteria for schizophrenia or schizophrenia-spectrum disorder, were made by two 

clinical psychiatrists of whom one (AH) is a member of this study group. 

Patients were assessed for psychopathological symptoms [Positive and Negative Syndrome 

Scale PANSS; Calgary Depression Rating Scale for Schizophrenia (CDSS)] (Addington, 

Addington, & Schissel, 1990; Kay, Fiszbein, & Opler, 1987), disease severity [Clinical 

Global Impression Scale (CGI)] (Guy, 1976), and functioning [Global Assessment of 

Functioning Scale (GAF)] (American Psychiatric Association, 2013). The clinical rater (IP) 

was not involved in any other aspects of the study and had undergone extensive training in 

the use of the scales. Participants with a contraindication to tDCS were excluded. Further 

exclusion criteria were an IQ below 86 [German Multiple-Choice Vocabulary Test (MWT-

B)] (Lehrl, Triebig, & Fischer, 1995), red-green colour blindness, and suicidal intent. All 

except one patient received second-generation antipsychotics and one patient received an 

additional first-generation antipsychotic medication. 68% of the patients received 

antipsychotic monotherapy. Furthermore, all patients were clinically stable as indicated by 

the PANSS values (see Table 2). Participants gave written informed consent and were 

monetarily compensated for their participation. The study conformed to the Declaration of 

Helsinki and was granted ethical approval by the LMU München Medical Faculty ethics 

committee. The study was registered at www.drks-neu.uniklinik-freiburg.de (identifier: 
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DRKS 00011665) and the WHO international clinical trials registry platform 

(http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00011665). 

 

Table 1 Group Demographics. 

 Schizophrenia Patients  Healthy Controls p 

Age 36.55 (9.16)  31.7 (8.31) .09 
Gender (m/f) 13/7  10/10 .34 

Handedness (r/l/a) 18/1/1  18/2/0 .51 

Education (years) 10.5 (1.57)  12.8 (.37) .01 

Verbal IQ (MWT-B) 106.88 (16.11)  112.2 (18.64) .37 

Note. Data are presented as means ± standard deviations or frequencies. MWT-B German 

Multiple-Choice Vocabulary Test; f female; m male; r right; l left; a ambidextrous. P-values 

refer to a statistical comparison between the schizophrenia patient and healthy control group. 

 

Table 2 Comparison of Demographics and Clinical Ratings for Verum and Sham Groups.  

  Schizophrenia Patients  Healthy Controls 

  Verum Sham p  Verum Sham p 

Age  33.2 (7.67) 39.9 (9.65) .54   30.8 (9.34) 32.6 (7.52) .64 
Gender (m/f) 4/6 3/7 .64   5/5 5/5 1.0 
Handedness (r/l/a) 9/1/0 9/0/1 .37   9/1/0 9/1/0 1.0 
Education (years) 10.8 (1.93) 10.2 (1.14) .41   12.8 (.42) 12.9 (.32) .56 
MWT-B 110.62 (20.6) 103.13 (9.99) .38   105.8 (14.48) 118.6 (20.81) .13 
Duration of illness (years) 7.15 (5.87) 6.56 (5.22) .82   – – – 
CDSS 5.9 (3.81) 4.5 (2.8) .36   – – – 
GAF 56.9 (8.17) 62.67 (5.29) .09   – – – 
CGI 4.2 (.63) 3.7 (.48) .06   – – – 

PANSS score               

   Positive 13.4 (4.22) 12.0 (3.86) .45   – – – 

   Negative 18.3 (3.89) 16.4 (6.19) .42   – – – 

   General 31.4 (5.74) 29.0 (8.82) .48   – – – 

   Total 63.1 (11.93) 57.4 (18.14) .42   – – – 

CPZ equivalents 437.5 (244.73) 443.47 (490.26) .97   – – – 

Antidepressants (y/n) 2/8 5/5 .35   – – – 

Mood stabilizer (y/n) 1/9 0/10 1.0  – – – 

Note. Data are presented as means ± standard deviations or frequencies. MWT-B German 

Multiple-Choice Vocabulary Test; CDSS Calgary Depression Rating Scale for 
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Schizophrenia; GAF Global Assessment of Functioning Scale; CGI Clinical Global 

Impression Scale; PANSS Positive and Negative Syndrome Scale; f female; m male; r right; l 

left; a ambidextrous; CPZ Chlorpromazine. P-values refer to a statistical comparison between 

verum and sham condition within the schizophrenia patient and healthy control group.  

 

Study protocol  

The experiment consisted of four sessions taking place on consecutive days at about the same 

daytime each. On day 1, participants were trained on the respective tasks of the TVA-based 

assessment. On day 2, a baseline TVA-based assessment was conducted (T0) and participants 

were randomly assigned to either the verum or the sham tDCS condition. On day 3, the TVA-

based assessment (T1) took place straightaway after the tDCS (anodal or sham), and on day 

4, a follow-up assessment of the attentional parameters (T2) was conducted to examine for 

the consolidation of potential tDCS after-effects (see Figure 1).  

Figure 1 Flow-chart of the experiments. 

 

Attentional assessment based on Bundesen’s Theory of Visual Attention 

Framework of the TVA approach 

TVA is a comprehensive mathematical model of selective attention (Bundesen, 1990; 

Bundesen, Habekost, & Kyllingsbaek, 2005), which conceives of visual processing as a parallel 

competitive race of objects in the visual field for representation in a capacity-limited vSTM 

store (Desimone & Duncan, 1995): only those objects that are processed fastest will win the 

competition, that is, will be encoded in vSTM and thus become available for conscious report. 

Practice
Parametric attention
assessment

Baseline Test T0
Parametric attention
assessment

Post Test T1
Parametric attention
assessment

Follow-up Test T2
Parametric attention
assessment

tDCS

20 minutes
2mA or sham
Anode: F3 (EEG 10-20)
Cathode: FP2 (EEG 10-20)

24 h 24 hDay 1 Day 2 Day 3 Day 4
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The speed with which an object in the display is processed depends on the attentional weight 

assigned to it. Both bottom-up and top-down factors, such as, respectively, stimulus saliency 

and fit with instructed (selection-relevant) target features, are crucial determinants of the 

magnitude of the attentional weight allocated to an object. Accordingly, only part of the objects 

will be represented within vSTM and can be used for further processing and goal-directed 

actions.  

General method for TVA whole- and partial-report  

Experiments took place in a dimly lit experimental laboratory at the Psychiatric Clinic of the 

Ludwig-Maximilians-Universität München (LMU Munich). TVA whole- and partial-report 

tasks were completed within one test session lasting about 1 hour; task order was 

counterbalanced across participants. Stimuli were presented on a 27-inch PC monitor on a 

black background, with a refresh rate of 100 Hz and a resolution of 1024 × 768 pixel. The 

viewing distance was set to approximately 60 cm. A trial started with the presentation of a 

white central fixation point (diameter: 1 cm) for 1000 ms which participants were instructed 

to fixate throughout the whole trial. After 250 ms, red and/or blue letters were briefly flashed 

on the display with exposure durations that were adjusted individually according to a 

criterion value in a pretest. The letters were randomly selected from a predefined set 

(ABCDEFGHJKLMNOPRSTUVWXZ), with a letter never appearing repeatedly in one trial. 

The stimuli display was either followed by an empty black screen or a pattern mask 

consisting of a blue-red scattered square (»1.5° visual angle) visible for 500 ms at each 

stimulus location. The participant was instructed to report the letters in any order and without 

speed stressing. The experimenter typed the responses on a keyboard and then initialized the 

next trial. After each block, a visual performance feedback informed the participants about 

the amount of correctly named letters out of all reported ones (in %). To avoid too 
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conservative and too liberal responses, participants should aim for correctness between 70–

90%.  

TVA-based whole-report. On each trial six letters, either all red or blue, appeared on 

an imaginary circle with a radius of 6 cm (5.73° of visual angle) around the fixation point 

(see Figure 2). Participants had to identify and report as many letters as possible.  

To find the five adequate exposure durations for a given participant a pretest of four 

blocks à 12 trials was conducted prior to the main whole-report task in each test session. 

Three types of trials were used in this pretest: two ‘easy’ trials (i.e., one longer and one 

unmasked trial) and one adjusting trial in which initially, the six letters were flashed for 80 

ms. If the participant could correctly identify at least one letter, exposure durations were 

decreased in steps of 10 ms until the lowest individual threshold, for which no letter could be 

reported anymore, was detected. This threshold was used to find an adequate set of four 

additional, longer exposure durations for the subsequent whole-report task (e.g., 10, 20, 40, 

90, and 200 ms). In these five conditions letters were masked. Additionally, in two unmasked 

conditions, letters were presented in the second shortest and the longest exposure duration 

condition. Consequently, there were seven ‘effective’ exposure duration conditions. In 

unmasked trials an afterimage of the display emerges which extends the effective exposure 

durations by a constant duration which is defined by parameter µ (given in ms) (Sperling, 

1960). The patient group’s average minimum exposure duration was 21 ms (SD = 4.47 ms) 

and did not differ significantly (t(38) = -1.1, p = .32) from that of the control group, which 

was on average 20 ms (SD = 0 ms). 

 In total, the whole-report task consisted of 140 trials, separated into 4 blocks of 35 

trials. Within each block, each display condition was presented equally often in randomized 

order. Based on the performance in the whole report task, the individual processing capacity 

aspects reflected by the TVA parameters perceptual processing speed C and vSTM capacity 
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K, can be estimated by mathematical data modelling (Kyllingsbæk, 2006). The probability of 

stimulus identification is modelled by an exponential growth function, relating the mean 

number of reported objects to the exposure duration. The use of seven effective exposure 

durations allows a broad depiction of the performance spectrum including early and late 

aspects of participant’s whole-report functions, and consequently a reliable model fit of the 

data. The growth parameter reveals the rate at which stimuli are processed (measured in 

visual elements per second; C), and the asymptote specifies the maximum number of objects 

that can be represented within vSTM store (K) (see Figure 3). Two further parameters, 

minimum effective exposure duration t0 and effective additional exposure duration in 

unmasked displays µ, were also estimated (and did not differ significantly between groups 

and were not modulated by tDCS). These parameters merely serve the valid estimation of the 

parameters of interest but apart from this, they were of no further relevance in the present 

study.  
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Figure 2 (A) Theory of Visual Attention (TVA) whole-report task procedure. After the 

presentation of a central fixation circle for 1000 ms and a brief delay of 250 ms, six letters are 

flashed in an imaginary circle either in red or blue font for one of five individually adjusted 

exposure durations (identified in a pretest). In these five exposure duration conditions letters 

were masked for 500 ms. In two unmasked conditions, letters were presented in the second 

shortest and the longest exposure duration condition. (B) Trial sequence and (C) display 

types of TVA partial-report task. After the presentation of a central fixation circle for 1000 

ms and a brief delay of 250 ms, one of the 16 possible display types appears for a 

predetermined individual exposure duration. Following that, presented stimuli (T = target = 

red letters; D = distractor = blue letters) are masked for 500 ms. 
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TVA-based partial-report. On each trial either one or two letters (1 target, 2 targets 

or a target plus distractor) were flashed in the corners of an imaginary square (located 7.5 cm 

around the fixation point). If two letters were presented on the display, they either appeared 

in a row or in a column, but never diagonally. Participants had to report target letters (in red 

colour) only, whilst ignoring distractors (blue). The stimulus arrays (see Figure 2B) appeared 

in randomized order and stimuli were always masked for 500 ms. The partial-report task 

consisted of sixteen conditions (4 single-target T, 8 target plus distractor T-D, 4 dual-target 

conditions T-T), which were counterbalanced across all six blocks (see Figure 2C). A pretest 

(2 blocks of 24 trials) was used to determine the individual exposure durations of the 

presented letter(s): first, letters were displayed with an initial exposure duration of 80 ms. If 

participants could identify two letters in the dual-target condition, exposure duration was 

decreased by steps of 10 ms until they could name, on average, one letter per trial correctly, 

whereas the exposure duration was increased by steps of 10 ms if they could not identify any 

letter. Exposure duration was kept unchanged, if they could identify one of the two target 

letters. Next, performance at the determined exposure duration was verified for the different 

experimental conditions in another turn of 24 trials. An adequate performance is denoted by 

correctly reported letters of 70–90 % for single target conditions (T) and at least 50 % for 

dual-target conditions. Otherwise exposure durations were in- or decreased manually by the 

experimenter and performance was rechecked in another turn of 24 trials. The patient group’s 

average exposure duration was 81.5 ms (SD = 32.85) and did not differ significantly (t(38) = 

.95, p = .38) from those of the control group, that was on average 75.33 ms (SD = 27.69). The 

partial-report task consisted of 288 trials separated into 6 blocks of 48 trials. From the 

probability of stimulus identification, attentional weights are derived for targets ()?) and 

distractors ()@). Parameter α is defined as the ratio of distractor to target weights ()@ )?⁄ ) 

and reflects top-down efficacy, i.e., the ability to prioritize task-relevant over task-irrelevant 
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information. Values of α close to zero indicate a high selectivity, i.e., targets receive more 

weight than distractors. Values of α close to one signify no selection and values larger than 

one imply that distractors receive more weight than targets, and hence were seen more easily. 

 

Transcranial direct current stimulation 

TDCS was delivered by a CE-certified stimulator (neuroConn, Germany) through saline-

soaked surface sponge electrodes (35 cm2) at 2 mA for 20 minutes (plus 15 seconds fade-in 

and fade-out). The anode was placed above the left dlPFC located via F3 (EEG 10-20 

system). This position covers Brodmann areas 8, 9 or 46 on the medial frontal gyrus – areas 

representative of the left dlPFC (Herwig, Satrapi, & Schonfeldt-Lecuona, 2003; Homan, 

Herman, & Purdy, 1987). The cathode was placed above the right supraorbital area (FP2). 

This is the standard electrode montage used in physiological studies (Nitsche & Paulus, 

2011), and also in behavioural studies, this electrode montage was reported to modulate 

cognition both in healthy humans and patients (Boggio et al., 2007; Hoy et al., 2014; Keeser 

et al., 2011).  

Based on previous publications, sham stimulation was performed in the same way as 

verum stimulation, but the current was applied only for 30 seconds (plus 15 seconds fade-in 

and fade-out) (Gandiga, Hummel, & Cohen, 2006; Poreisz, Boros, Antal, & Paulus, 2007). 

Participants were randomly assigned to verum or sham tDCS by a computer-generated 

randomization list (https://www.random.org/lists/). To ensure double-blindness of both 

participants and experimenter, the experimenter did not have access to this list during the 

study; moreover, tDCS was performed by investigators not otherwise involved in the 

examination of patients. Ten patients received verum left-anodal tDCS, and the remaining 10 

patients underwent sham tDCS. Similarly, 10 healthy control participants received verum 

tDCS and 10 healthy controls received sham tDCS. During the stimulation, participants were 
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not performing any task. This ‘offline’ protocol was chosen as we were mainly interested in 

tDCS after-effects on attentional functions – both immediate and longer lasting ones of 

potential clinical relevance. Potential tDCS-induced adverse effects were examined by a post-

hoc comfort rating scale filled in by the participants (Palm et al., 2014). 

 

Data analysis 

Data were analysed using IBM SPSS 22. The alpha level was set to .05. Baseline group 

differences in demographic and clinical variables were analysed using independent t-tests for 

continuous variables and χ2-tests or, where appropriate, Fisher’s exact tests, for categorical 

variables. Baseline group differences in attentional performance as well as baseline 

differences in attentional performance, demographic and clinical characteristics (patients) in 

participants assigned to the verum versus sham tDCS conditions within these two groups 

were analysed by independent t-tests. Cohen’s d was calculated as a measure of the effect 

size for the group differences in attentional performance (Cohen, 1988). To assess immediate 

and enduring effects of tDCS on the attentional parameters, two-way mixed ANOVAs were 

performed with time point (T0, T1, T2) as within-subject factor and stimulation condition 

(verum vs. sham tDCS) as between-subjects factor, separately for the healthy control and the 

schizophrenia patient group. Mauchly’s test of sphericity was used to test the assumption of 

sphericity and, if significant, we applied Huyn-Feldt correction. In case of a significant 

interaction, the data was tested for simple main effects of time point, that is, we assessed 

differences in attentional parameters between time points for each level of the between-

subjects factor stimulation condition.  

By means of χ2-tests, we assessed whether the number of participants who believed to 

have received verum stimulation differed between the verum and sham conditions. 

Furthermore, comfort ratings were compared between participants of the verum and sham 
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conditions through independent t-tests. 

 

2.2.4 Results 
All schizophrenia patients and healthy control participants completed the entire experiment.  

No unexpected adverse effects of tDCS, such as skin burns, pain or headache, were reported 

or revealed by the comfort rating questionnaire.  

Demographic and clinical characteristics 

The schizophrenia patient and healthy control groups were matched according to age (p = .09), 

gender (p =.34), IQ (p = .37), and handedness (p = .51). The two groups differed significantly 

with respect to education level (p < .01). In both groups, participants receiving verum and sham 

stimulation did not differ significantly with respect to any of the demographic and clinical 

characteristics (all ps ≥ .06; Table 2).  

Baseline task performance – healthy control versus schizophrenia patient group 

Whole-report results 

In Figure 3, the mean number of correct reports as a function of the (effective) exposure 

duration is depicted for one representative schizophrenia patient and one healthy control 

participant. The curves represent the maximum likelihood fits to the observed data, which 

correlated fairly well. TVA’s best fits accounted for r2 = 92% of the variance of the observed 

mean scores at the different exposure durations. Based on mathematical data modelling of the 

performance (correct letter reports) in the whole-report task (Kyllingsbæk, 2006), individual 

estimates were derived for perceptual processing speed C and vSTM storage capacity K. 

Table 3 depicts all means and standard deviations of the respective baseline TVA parameters 

in the healthy controls and schizophrenia patients. 

Perceptual processing speed C. Analysis revealed processing speed to be 

significantly lower in schizophrenia patients (M = 29.55 items/second, SD = 21.22) than in 



Study II: Influence of tDCS on Attention in Schizophrenia 

 76 

healthy controls (M = 43.86 items/second, SD = 19.18; t(38) = 2.24, p = .03; see Figure 4). 

This effect is also illustrated by the slope of the whole-report functions depicted in Figure 3, 

which is steeper for the representative control participant than for the schizophrenia patient. 

Thus, the rate of visual information uptake within a given unit of time is significantly reduced 

in schizophrenia. Computation of Cohen’s d yielded a medium to large effect size (d = .7) 

and a 43% non-overlap of the two distributions of C scores.  

Visual short-term memory capacity K. Analysis disclosed vSTM storage capacity to 

be significantly decreased in schizophrenia patients (M = 3.01, SD = 0.78 items) compared to 

healthy controls (M = 3.67, SD = 0.94 items; t(38) = 2. 42, p = .02; see Figure 4). As can be 

seen from Figure 3, as exposure duration increases, report performance approaches an 

asymptotic level, which represents the (depicted individuals’) vSTM storage capacity: the 

patient’s asymptote is lower than that of the healthy control participant – illustrating that the 

mean number of items that can be represented in vSTM is reduced in schizophrenia. The 

effect size is large (d = .8), with a 47.4% non-overlap of the two distributions of K scores. 

 

 

Figure 3 Whole-report performance of a representative schizophrenia patient (A) and a 

healthy control participant (B). Mean number of correct letter reports as a function of 

exposure duration. Circles represent observed values (= obs), dashed lines represent the best 

fits of the observed scores by the applied model (pred = predicted). The estimate of visual 

short-term memory capacity K and processing speed C is indicated by the horizontal and 

diagonal dashed lines, respectively.  
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Table 3 TVA Whole- and Partial-Report Parameters at Baseline for the Schizophrenia 

Patient and Healthy Control Group. 

 Schizophrenia Patients  Healthy Controls   

 M SD  M SD  p 

C 29.55 21.21   43.86 19.18   .03 
K 3.01 .78   3.67 .94   .02 
α .35 .18   .36 .22   .93 

Note. C: Visual perceptual processing speed (elements/sec); K: Visual short-term memory 

capacity (number of elements); α: efficiency of top-down control. P-values refer to a 

statistical comparison between the schizophrenia patient and healthy control group.  

 

 

Figure 4 Whole- and partial-report results. Mean estimates and standard errors for the TVA 

parameters processing speed C, short-term memory capacity K and efficiency of top-down 

control α. 

 

Partial-report results 

Mathematical modelling of performance in the partial-report task permits inferences to be 

drawn about the functioning of attentional selectivity, reflected in the top-down control 

parameter α (Kyllingsbæk, 2006). There was again a close correspondence between the 

observed performance at the different exposure durations and TVA’s best fits to the data: the 

predicted values accounted for r2 = 91% of the variance of the observed mean scores.  

Top-down control α. Analysis revealed statistically comparable estimates of top-
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down control α between schizophrenia patients (M = .35, SD = .18) and healthy controls (M = 

.36, SD = .22; t(38) = .09, p = .93; see Figure 4).  

 

Immediate and enduring effects of tDCS on attentional parameters  

Healthy controls 

For processing speed C, the ANOVA revealed the main effect of time point to be significant: 

processing speed increased from baseline to post and then to follow-up test (F(2, 36) = 4.05, 

p = .03; see Figure 5). No other significant effects were obtained (all ps ≥ .12; for means and 

standard deviations, see Table 4). As these are the results of our in-house, ‘historical healthy-

control cohort’, we refer to Gögler et al. (2016) for a more detailed description of the 

findings. 

 

Figure 5 Effects of tDCS on mean perceptual processing speed C in healthy controls and 

schizophrenia patients. Processing speed was assessed at baseline (T0), directly after tDCS 

(T1) and 24 hours after tDCS (T2).  

Error bars represent standard errors of the means, * p < .05. 
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Table 4 TVA Whole-and Partial-Report Parameters in the Healthy Control and 

Schizophrenia Patient Groups for the Three Time Points (T0, T1, T2). 
  T0 T1 T2 
 tDCS condition M SD M SD M SD 

Healthy controls       
C Verum 38.59 16.76 41.53 17.11 46.18 19.92 
  Sham 49.13 20.84 54.69 22.49 56.09 28.29 

K Verum 3.47 .82 3.33 .84 3.48 .78 
  Sham 3.88 1.04 3.86 .93 4.01 1.02 
α Verum .27 .20 .22 .26 .33 .16 
  Sham .45 .21 .42 .20 .39 .11 

Schizophrenia patients       
C Verum 31.36 16.83 34.33 19.02 33.92 19.01 
  Sham 27.73 25.69 39.02 41.92 46.01 44.91 
K Verum 3.40 .64 3.47 .59 3.64 .64 
  Sham 2.63 .75 3.06 .69 3.03 .59 
α Verum .36 .15 .40 .17 .42 .27 
  Sham .34 .21 .38 .18 .36 .13 

Note. C: Visual perceptual processing speed (elements/sec); K: Visual short-term memory 

capacity (number of elements); α: efficiency of top-down control. 

 

Schizophrenia patients 

Baseline comparisons between verum and sham condition. For the schizophrenia patients, 

analyses revealed no significant baseline differences between the verum and sham tDCS 

conditions for the TVA parameters processing speed C and top-down control α (all ts ≤ .37, 

all ps ≥ .30). However, there was a significant difference with respect to parameter K: 

patients in the verum condition exhibited a significantly higher vSTM capacity (M = 3.39, SD 

= .64 items) than patients in the sham condition (M = 2.63, SD = .75 items; t(18) = 2.44, p = 

.03). See Table 4 for respective means and standard deviations. 

TDCS effects on whole-report performance. For processing speed, analysis 

revealed a significant main effect of time point (F(2, 36) = 6.72, p = .01) and a significant 

interaction between tDCS condition and time point (F(1.64, 29.44) = 3.67, p = .04) in the 

patient group. Separate ANOVAs computed for the two tDCS conditions (to follow up the 
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interaction) revealed the effect of time point to be significant for the sham group (F(1.41, 

12.67) = 6.48, p = .02): processing speed C increased somewhat from the baseline (M = 

27.73, SD = 25.69 items/second) to the post test (M = 39.02, SD = 41.92 items/second), 

yielding a trend-level difference (t(9) = -2.04, p = .07); and there was a further increase to 

the follow-up test, manifesting in a statistically reliable difference between the baseline and 

follow-up tests (M = 46.01, SD = 44.91 items/second; t(9) = -2.87, p = .02; see Figure 5). On 

average, patients receiving sham stimulation could process some 18 elements/second (67%) 

more at the follow-up compared to the baseline test. A Cohen’s d of .50 indicated a medium 

effect size. In contrast to the sham group, there was no main effect of time point for the 

verum group, (F(2, 18) = .69, p = .51), that is, processing speed C remained stable across the 

various time points of testing. At the single-subject level, only a single patient (out of ten) in 

the verum condition showed an increase in the parameter processing speed C from baseline to 

follow-up testing considering a threshold of ³ 50% improvement. In contrast, seven out of 

ten patients in the sham condition showed an increase in processing speed (³ 50%) from 

baseline to follow-up testing. A Fisher’s Exact test between tDCS condition (sham/verum) 

and ‘improvement ³ 50%’ (yes/no) yielded a significant association between tDCS condition 

and ‘improvement’, p = .02.  

For the parameter vSTM storage capacity K, analysis yielded a significant main effect 

of time point (F(2, 36) = 4.87, p = .01): the patients’ ability to represent items in vSTM 

increased from baseline to post and further to follow-up test. However, the time point × tDCS 

condition interaction was not significant (F(2, 36) = 1.36, p = .27). 

TDCS effects on partial-report performance. For the parameter top-down control 

α, analysis yielded no statistically reliable effects (all ps ≥ .56). We repeated these analyses 

using ‘GAF’ and ‘CGI’ as covariates, which confirmed the results for all three parameters, 

and therefore indicate that the observed tDCS effect in the schizophrenia patient group cannot 
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be explained by differences in these clinical characteristics between the verum and sham 

condition. 

 

Integrity of blinding and comfort rating 

Participants were successfully blinded: of the schizophrenia patients, nine patients in the 

verum and seven in the sham condition indicated that they had received verum stimulation 

(χ2(1) = 1.25, p = .26). Of the healthy controls, seven participants in the verum and three in 

the sham condition believed that they had received verum stimulation (χ2(1) = 3.20, p = .07). 

Within both the schizophrenia patient and the healthy control group, there were no significant 

differences between participants in the verum and sham conditions with respect to comfort 

ratings (sum score of the 10-point Likert scales) relating to the time during and after the 

stimulation (all ts ≤ 2.01, all ps ≥ .06). 

 

2.2.5 Discussion 
The present study had two objectives. First, we applied mathematical data modelling based 

on Bundesen’s TVA to isolate the particular attentional deficits in schizophrenia patients 

compared to healthy controls. Second, we assessed whether these deficits could be modulated 

by means of a single, 20-minutes tDCS session with 2 mA over the dlPFC. In brief, we found 

an altered pattern of attentional parameters, expressed by significantly reduced visual 

processing speed C and vSTM storage capacity K. However, contrary to our hypothesis, we 

did not find evidence that verum tDCS, compared to sham stimulation, would improve 

attentional functioning. Instead, a differential development from baseline to follow-up 

assessment indicated that the normal, practice-dependent increase in visual processing speed 

that occurs with repeated application of the whole-report task (shown by healthy controls and 
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patients in the sham group) disappears when verum tDCS is applied to the left dlPFC in 

schizophrenia patients.  

Visual perceptual slowing and vSTM capacity deficit at baseline assessment. To 

our knowledge, this is the first study applying TVA-based parametric attentional assessment 

in schizophrenia patients. This enabled us to isolate an impairment of general attentional 

capacity (without an impairment of attentional selectivity) as the primary factor 

compromising visual attentional functioning in schizophrenia. Specifically, at baseline, 

schizophrenia patients exhibited significantly reduced visual processing speed C and vSTM 

storage capacity K. The neural interpretation of the TVA (NTVA) (Bundesen et al., 2005) 

attributes processing speed changes to changes in either the activation level or the overall 

number of the neurons that are devoted to processing the visual information presented. On 

this notion, our results imply that schizophrenia leads to a reduced overall arousal level of the 

brain, likely owing to changes in the excitability of the alertness network. NTVA furthermore 

assumes that vSTM storage relies on a cortical-thalamic circuitry supporting activity in 

reverberating loops. Accordingly, our finding of schizophrenia patients exhibiting a reduction 

in the amount of information they can maintain in vSTM would imply that the functional 

integrity of this system is impaired. 

From a general point of view, our findings are in line with previous reports of processing speed 

and vSTM deficits in schizophrenia revealed by means of various other testing procedures 

(Erickson et al., 2015; Mesholam-Gately, Giuliano, Goff, Faraone, & Seidman, 2009; 

Nuechterlein et al., 2004; Perlstein, Carter, Noll, & Cohen, 2001). They also replicate high 

effect sizes for differences in vSTM storage capacity estimates between schizophrenia patients 

and healthy controls based on experimental measures (Gold et al., 2010; Gold et al., 2003; 

Johnson et al., 2013). However, using the TVA approach, which is based on a well-grounded 

computational theory, we could assess relevant and distinct attentional components of interest 
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in an independent manner – without confounding speed of information uptake, vSTM capacity, 

and distractibility (Bublak et al., 2005; Finke et al., 2005; Vangkilde et al., 2011). Extracting 

these components within the same tasks with identical stimuli and response requirements 

revealed an attentional profile specific for schizophrenia. As selectivity aspects of attention 

were not significantly altered in schizophrenia patients compared to healthy controls, we can 

rule out that the capacity limitations are secondary consequences of impaired top-down control. 

This is again in line with previous reports of preserved attentional control of information 

encoding into short-term memory (Gold et al., 2006). Note that the present results have no 

bearing with regard to top-down controlled processing in situations with (bottom-up) highly 

salient distractors. There is evidence that patients with schizophrenia exhibit deficits in 

attentional selection when salient distractors compete for attentional selection (Hahn et al., 

2010). Furthermore, our results are unlikely attributable to unspecific antipsychotic drug-

induced motor side-effects, as the TVA-based assessment requires only unspeeded verbal 

responses. Similarly, these visual attentional deficits are unlikely attributable to eye movement 

impairments, often reported in schizophrenia patients (e.g., Levy et al, 2010), as the TVA-

based assessment uses very brief exposure durations below the latency of saccadic eye 

movements. Besides, eye movement abnormalities should be reflected in elevated perceptual 

thresholds (parameter t0). However, this parameter was found to be not significantly different 

between patients and healthy controls. The latter also implies that motivational impairments 

unlikely underlie the observed visual attentional deficits. 

TDCS-based modulation of attentional parameters. Unexpectedly, we found a 

significant increase in the (impaired) parameter processing speed C at the follow-up 

assessment only in patients receiving sham (but not verum) tDCS. That is, single-session 

verum tDCS over the dlPFC appears to be ineffective, or maybe even harmful, for improving 

attentional functioning in schizophrenia – a finding that echoes those of a recent study (Palm 
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et al., 2016) which assessed the effect of two-week dlPFC tDCS on the secondary outcomes 

WM (SOPT), processing speed (TMT-A), and executive functioning (TMT-B) in 

schizophrenia patients with predominantly negative symptoms. In contrast, in the present 

study, tDCS did not influence information uptake processes in healthy control participants. 

This differential effect of tDCS on the processing speed parameter C in healthy participants 

and in those suffering from schizophrenia may be explained by unexpected effects of tDCS in 

schizophrenia. Schizophrenia is a disorder of disturbed neuronal plasticity with alterations in 

glutamatergic neurotransmission (Hasan et al. 2013), is characterized by a dysfunction in 

interneurons and GABAergic neurotransmission affecting microcircuity (Benes et al. 2015) 

and a dopaminergic dysbalance is evident (Howes and Kapur, 2008). TDCS effects are 

dependent on NMDA, GABA and dopaminergic receptor activity (Ziemann et al. 2015) and 

have been discussed not only to act at the soma of pyramidal neurons, but possibly also on 

the interneuron level (Jackson et al. 2016). Due to these alterations that are all related to the 

mode of action of tDCS, one could speculate that tDCS may have unexpected clinical and 

neurophysiological effects in schizophrenia patients. 

Two potential mechanisms, which cannot be differentiated based on our study, might 

be responsible for the reduction in processing speed increase from baseline to follow-up 

testing. First, given that we observed practice-dependent enhancement of visual processing 

speed from baseline to follow-up assessment in healthy participants in both the sham and the 

verum group and in schizophrenia patients in the sham group, the application of tDCS in 

schizophrenia patients might interfere with practice effects that likely rely on implicit 

procedural learning of performing the whole-report task. Alternatively, tDCS might impact 

processing speed by reducing the overall arousal level in schizophrenia patients’ brains for at 

least 24 hours. Thus, for patients in the verum group, even though they received the same 

amount of whole-report training as the sham group, the training benefits are effectively 
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nulled by the lowered arousal level. The present results highlight the need for further safety 

assessments in tDCS studies involving psychiatric patients and, more particularly, for more 

systematic evaluation of tDCS effects on cognition before embarking on large-scale clinical 

trials. 

Our results suggest that the applied stimulation parameters – tDCS for 20 minutes at 2 

mA over the left dlPFC – are not appropriate for ameliorating attentional dysfunctions (as 

assessed by TVA) in schizophrenia patients. This appears to be at odds with other studies that 

used similar tDCS protocols and reported beneficial effects in reducing negative symptoms 

and improving cognitive functions in schizophrenia (Hoy et al., 2014; Palm et al., 2016) and 

other psychiatric disorders (Boggio et al., 2007). Reasons for the unfavourable effects on 

cognition obtained in the present study might be the relatively high intensity and duration of 

the stimulation. Although these settings are typical for the field of cognitive neuroscience, 

they have yielded unexpected effects in previous tDCS studies of motor cortex, where 

nonlinear effects of dosage have been reported with healthy participants: greater tDCS 

intensity, rather than being associated with higher efficacy of stimulation, shifted the 

excitability alterations (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013). Moreover, the 

individual response variability of tDCS at both 1 mA and 2 mA (Lopez-Alonso, Fernandez-

Del-Olmo, Costantini, Gonzalez-Henriquez, & Cheeran, 2015; Strube et al., 2016; Wiethoff, 

Hamada, & Rothwell, 2014) may hamper the efficacy of our intervention in the given 

population offering an alternative explanation of the here reported unexpected findings. As 

the positioning of the electrodes can impact tDCS effects (Nitsche & Paulus, 2000), our 

negative finding might also have been the result of non-optimal electrode montage: it cannot 

be ruled out that the ‘reference’ electrode over the right supraorbital area induced 

confounding effects and that, for instance, larger (being less active) or extracephalic 

reference electrodes might have produced a different outcome. Likewise, although in imaging 
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studies this kind of electrode configuration was shown to modulate fronto-parietal attention 

networks (Keeser et al., 2011), the position of the ‘active’ electrode above the left dlPFC 

might have been inappropriate for modulating visual attentional functions in schizophrenia 

patients. Finally, it should be borne in mind that schizophrenia patients exhibit significant 

alterations in dopaminergic transmission and that all antipsychotics act on dopamine 

receptors. In this context, dopaminergic modulation has been shown to impact the efficacy of 

tDCS in a non-linear manner, resulting, for example, in a reversal of plasticity effects 

(Agarwal et al., 2016; Monte-Silva et al., 2009). 

Limitations. First, the sample size of this proof-of-concept study, while being 

comparable with other studies in the field, was relatively small, increasing the probability of 

a type II error. Therefore, findings must be confirmed in a larger sample before generalizing 

these results. The limited sample size and the use of a between-subjects design may limit our 

findings. Albeit not likely, as the groups were comparable with respect to the initial visual 

processing speed parameter, it cannot be excluded that the observed effect may be explained 

in partly by differences in clinical and sociodemographic characteristics between both 

conditions. Moreover, as all patients received antipsychotic medication, the effect of tDCS on 

our cognitive parameters could not be investigated independently of potential confounding 

medication effects. However, Pearson correlations between CPZ and cognitive performance 

(C, K, α) at study inclusion did not correlate significantly (C: r = .37, p = .11; K: r = .44, p = 

.18; α: r = .41, p = .08), indicating that antipsychotic doses had no impact on our outcome 

variables. Regarding tDCS effects, we cannot rule out that these may have resulted from 

interactions between medication and tDCS yielding the unfavourable outcome. As outlined 

above, antipsychotic drug-induced dopaminergic modulations can affect tDCS-induced 

changes in cortical excitability and plasticity (Agarwal et al., 2016; Monte-Silva et al., 2009). 

However, as tDCS is considered an add-on treatment option, experimental trials with 
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medicated patients would, arguably, be representative for a clinical setting.  

Conclusions. In the present study, employing TVA-based parametric assessment of 

attentional functions, schizophrenia patients were revealed to exhibit a characteristic pattern of 

attentional capacity impairments: a significantly reduced rate of visual information uptake (per 

time unit) and a significantly reduced vSTM storage capacity (in terms of the number of items 

that can be maintained simultaneously). Combining this approach with a tDCS intervention 

revealed that 20 minutes of 2 mA prefrontal tDCS interferes with (rather than enhances) 

practice effects on visual processing speed in schizophrenia. This finding of a potential tDCS-

induced disrupting effect on the here investigated cognitive domain calls for further 

investigation and highlights the need for more neuroscience-based research in schizophrenia. 
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2.3 Study III: Object integration requires attention: Visual 

search for Kanizsa figures in parietal extinction 

In this paper, we report a study that investigates the interaction between object integration 

processes (i.e., perceptual grouping) and attentional selection mechanisms. For this purpose, 

we tested a group of extinction patients suffering from a lateral bias of spatial attention and a 

group of healthy controls in a visual search paradigm that presented to-be grouped nontarget 

and target Kanizsa figures. Results revealed generally comparable search performance in 

both patients and controls, and evidence for preserved grouping in displays with single 

objects. By contrast, an extinction-specific spatial bias emerged in the patients particularly 

when confronted with a competitive search situation that presented multiple to-be-grouped 

items. From this pattern of results, we conclude that perceptual grouping crucially depends on 

the degree of competition among visual input. Together, our results indicate that object 

integration requires attention, thus challenging accounts according to which pre-attentive 

processing suffices to represent complete objects.  

 

This article was published in Neuropsychologia in 2016.
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2.3.1 Abstract 
The contribution of selective attention to object integration is a topic of debate: integration of 

parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-

attentive, automatic coding processes or from higher-order processes involving selective 

attention. Previous studies have attempted to examine the role of selective attention in object 

integration either by employing visual search paradigms or by studying patients with 

unilateral deficits in selective attention. Here, we combined these two approaches to 

investigate object integration in visual search in a group of five patients with left-sided 

parietal extinction. Our search paradigm was designed to assess the effect of left- and right-

grouped nontargets on detecting a Kanizsa target square. The results revealed comparable 

reaction time (RT) performance in patients and controls when they were presented with 

displays consisting of a single to-be-grouped item that had to be classified as target vs. 

nontarget. However, when display size increased to two items, patients showed an extinction-

specific pattern of enhanced RT costs for nontargets that induced a partial shape grouping on 

the right, i.e., in the attended hemifield (relative to the ungrouped baseline). Together, these 

findings demonstrate a competitive advantage for right-grouped objects, which in turn 

indicates that in parietal extinction, attentional competition between objects particularly 

limits integration processes in the contralesional, i.e., left hemifield. These findings imply a 

crucial contribution of selective attentional resources to visual object integration.  
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2.3.2 Introduction 
Visual scenes are typically cluttered, containing multiple objects that compete for access to 

awareness. In order to select relevant objects, our visual system has developed effective 

mechanisms that structure and organize this rather complex input. One relevant mechanism is 

the integration of visual object information by means of perceptual grouping. Grouping 

processes organize non-contiguous parts into coherent entities by segmenting regions or by 

linking edge segments to form continuous object boundaries (e.g., Driver, Davis, Russell, 

Turatto, & Freeman, 2001; Koffka, 1935; Wertheimer, 1923). A prominent example 

illustrating grouping processes is the illusory ‘Kanizsa figure’, that is, the holistic percept of a 

bounded and foregrounded geometric figure (triangle, square) that is actually comprised of 

spatially disjointed elements (Kanizsa, 1976).  

Models of visual perception and attention converge on the view of object integration 

being the outcome of separable processes of grouping and, respectively, selective attention. 

However, the extent to which attention is required for integrating fragmentary object 

information into coherent wholes is a point of contention between the various theoretical 

frameworks. Some theories assume that only basic visual features are coded automatically 

and in parallel across the visual field at pre-attentive stages of processing, and attention is 

required for grouping processes to engage in the integration of features and object fragments 

into complete-object representations (e.g., Treisman & Gelade, 1980). Other models, by 

contrast, postulate that visual grouping processes operate already at low-level, pre-attentive 

stages prior to the engagement of selective attention (Driver & Baylis, 1998; Gilchrist, 

Humphreys, & Riddoch, 1996; Scholl, 2001).  

The visual search paradigm (Duncan & Humphreys, 1989; Treisman & Gelade, 1980; 

Wolfe, 1994) provides one approach for examining whether visual object integration operates 

pre-attentively or requires selective attention. Relevant studies have, for instance, used search 
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displays containing an illusory Kanizsa figure as target presented among varying numbers of 

nontargets that are composed of the same “pacman” inducer elements which, however, are 

arranged such as not to give rise to the impression of a coherent shape – the task being to 

discern the presence of a Kanizsa figure as quickly and accurately as possible. The slope of 

the function relating detection latency, that is, reaction time (RT), to the number of 

configurations in the display (the display size) yields an estimate of search efficiency. If the 

slope is flat, search is considered efficient and operating spatially in parallel, pre-attentively. 

By contrast, an increase in RTs with increasing display size is taken as evidence for the 

involvement of selective attentive processes in discerning target presence (e.g., Treisman & 

Souther, 1985; Treisman & Gelade, 1980). Results of studies that employed visual search for 

Kanizsa figures are equivocal. A number of studies (Conci, Müller, & Elliott, 2007, 2009; 

Davis & Driver, 1994, 1998; Gurnsey, Humphrey, & Kapitan, 1992) reported flat slopes, 

indicative of Kanizsa figures being formed automatically by low-level, pre-attentive grouping 

mechanisms. In contrast, search for an ungrouped target configuration has turned out to be 

rather inefficient, indicating that an ungrouped target configuration is much harder to detect 

than a comparable, grouped (Kanizsa) target amongst identical nontargets (Conci et al., 2007; 

Conci, Töllner, Leszczynski, & Müller, 2011; Nie, Maurer, Müller, & Conci, 2016; Wiegand 

et al., 2015). Consistent with this, Conci et al. (2007) also observed that nontargets interfered 

with Kanizsa target detection when they rendered Kanizsa-like surface information, that is, 

partial shape groupings that increased the similarity of the nontargets to the target. In 

contrast, other studies (Grabowecky & Treisman, 1989; Gurnsey, Poirier, & Gascon, 1996; 

Li, Cave, & Wolfe, 2008) reported that RTs in search for Kanizsa figures increased with 

increasing display size, implying that selective attention is required for integrating the 

(correctly aligned) pacman elements into a coherent figure. – Thus, taken together, the 

question of whether or not focal attention is required to effectively bind parts into coherent 



Study III: Object Integration and Parietal Extinction 

 97 

wholes has not yet been resolved conclusively. 

An alternative approach used to examine whether attention is necessary for integrating 

separable elements into wholes is to investigate visual grouping in patients suffering from 

unilateral deficits in selective attention. Patients with left-sided hemi-neglect or extinction 

often fail to attend and respond to sensory stimuli located in the contralesional hemispace, 

without necessarily suffering from any primary disorder of sensation or movement (Corbetta, 

Kincade, Lewis, Snyder, & Sapir, 2005; Corbetta & Shulman, 2011; Heilman, Bowers, 

Valenstein, & Watson, 1987; Heilman, Watson, Valenstein, & Heilman, 1993). These deficits 

typically result from right-hemisphere lesions, mostly in the inferior parietal lobe. 

Interestingly, in extinction, a stimulus presented in the contralesional hemifield can be 

detected or identified when presented alone. However, when presented simultaneously with 

ipsilesional stimuli, the same stimulus is disregarded, or only poorly identified (Bender, 

1952). That is, patients show hemi-inattention towards the contralesional, left hemifield 

(Karnath, 1988; Riddoch & Humphreys, 1983), often failing to respond to stimuli on the left. 

However, consistent with accounts of extinction in terms of a pathological, competitive bias 

against the contralesional hemifield (Kinsbourne, 1993; Desimone & Duncan, 1995), the lack 

of attention to stimuli on the left is not absolute; rather, it is relative: fewer attentional 

resources are allocated to the contralesional than to the ipsilesional hemifield (see also Bays, 

Singh-Curry, Gorgoraptis, Driver, & Husain, 2010). Most studies suggest that, despite their 

hemi-inattention, neglect patients nevertheless have preserved access to integrated object 

information across the whole visual field (e.g., Driver, Baylis, & Rafal, 1992; Gilchrist et al., 

1996; Ward, Goodrich, & Driver, 1994). For instance, a single-case study by Mattingley, 

Davis, and Driver (1997; see also Conci et al., 2009) observed preserved access to 

fragmentary bilateral stimulus segments when these could be grouped across hemifields to 

form a Kanizsa square. Mattingley et al. presented a sequence of displays, each starting with 
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the presentation of four circles, arranged around fixation. On each trial, quarter-segments 

were briefly removed from the circles either from the left, from the right, from both sides, or 

not at all. The task of the patient with left-sided extinction was to detect the sides of the 

offsets. When the configuration of stimulus segments prevented grouping, bilateral removal 

of quarter-segments induced clear signs of extinction: the patient missed left-sided offsets far 

more often in trials with offsets on both sides compared to trials with unilateral left offsets. 

However, when the stimulus configuration could be grouped to form a Kanizsa square, 

resulting in a coherent object forming a single perceptual unit, extinction was less severe and 

the patient detected the offsets on both sides. This result is indicative of early, pre-attentive 

integration of the elements into a (illusory) figure, which can be accessed despite extinction, 

that is, in the absence of selective visual attention (Ro & Rafal, 1996; Vuilleumier & Landis, 

1998; Vuilleumier, Valenza, & Landis, 2001).  

In the above-mentioned patient studies, the typical stimulus displays merely consisted 

of a single grouped stimulus that had to be identified. Arguably, a more realistic, or 

ecologically valid, scenario may be provided by visual search paradigms, in which observers 

are presented with multiple stimuli. Despite this, to date, there are only few studies that 

examined search behaviour in patients with neglect or extinction (e.g., Aglioti, Smania, 

Barbieri, & Corbetta, 1997; Behrmann, Watt, Black, & Barton, 1997; Pavlovskaya, Ring, 

Groswasser, & Hochstein, 2002; Riddoch & Humphreys, 1987). To our knowledge, none of 

them explicitly evaluated object integration processes in displays that contain multiple 

stimuli. It is thus unknown whether the pathological bias in selective attention also gives rise 

to a bias in visual grouping processes during search for an illusory figure. Given this, in the 

present study, we combined these two approaches and investigated object integration in 

visual search for Kanizsa squares in patients with extinction. In more detail, we compared the 

effect of ‘grouped’ nontarget configurations, which induce partial illusory shape groupings, 
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versus that of symmetric but ‘ungrouped’ nontargets on the performance of visual search for 

Kanizsa squares (see Figure 1 for examples of possible stimulus configurations). Critical 

questions were whether, in patients with extinction, (i) the additional surface information 

provided by grouped nontargets would interfere with Kanizsa target detection in the same 

way as it does in healthy participants (Conci, Gramann, Müller, & Elliott, 2006; Conci et al., 

2007) and (ii) whether the effects would be distinct for left- versus right-grouped nontargets.  

If object integration processes indeed operate pre-attentively and are, thus, preserved 

in patients with extinction (Conci, Böbel, et al., 2009; Mattingley et al., 1997), then the 

interference induced by grouped nontargets should be comparable to that in healthy 

participants and should generally exceed that induced by baseline, ungrouped nontargets. If, 

however, selective attention is needed for the integration of parts into wholes (e.g., Treisman 

& Gelade, 1980), a diverging pattern is to be expected in patients with extinction: left-

grouped nontargets containing a partial shape in the left, less attended, hemifield should 

interfere less than right-grouped nontargets, containing a partial shape in the right, more 

attended, hemifield. 
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Figure 1. (A) Examples of the target Kanizsa square and of the grouped and ungrouped 

nontarget stimuli. Example displays: (B) two-item target-present search display, (C) two-item 

target-absent display, and (D) one-item target-absent display presenting an ungrouped 

nontarget (B), two left-grouped nontargets (C), and one right-grouped nontarget (D), 

respectively.  

 

2.3.3 Methods 
Participants  

Five right-handed patients (4 male, 1 female; mean age: 63 years; age range: 52–72 years) 

who had suffered a right-hemispheric stroke and exhibited clinical signs of left-sided visual 

hemi-neglect were recruited from the Schoen Clinic Bad Aibling, Germany, and tested within 

2–9 weeks post injury. All patients had normal or corrected-to-normal visual acuity and were 
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tested for visual field deficits using Goldmann kinetic perimetry. Motor functioning was 

preserved in all patients. All patients were tested with standardized neuropsychological 

neglect tests such as the conventional part of the Behavioural Inattention Test (BIT; Wilson, 

Cockburn, & Halligan, 1987), including the cancellation, visual search, line bisection, figure 

copying, and representational drawing subtests, or the Bells test (Gauthier, Dehaut, & 

Joanette, 1989). Based on these assessments, mild to moderate signs of visuo-spatial neglect 

were verified in each patient. Lesions were confined to either right-sided inferior-parietal and 

temporo-parietal or fronto-parietal areas (see Figure 2). 

 

Figure 2 Lesion locations in each patient reconstructed for eight transversal slices (left) and 

their positions in sagittal orientation (right). 

 

The patients were compared against an age- and gender-matched healthy control group of 10 

right-handed participants (6 male and 4 female; mean age: 68.3 years; age range: 63–72 

P1

P2

P3

P4

P5
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years) who were paid for their participation. Controls did not differ significantly from 

patients with respect to age (t(13) = 1.71, p = .11) or gender (χ2(1) = 0.60, p = .44). They all 

had normal or corrected-to-normal vision. None of them reported any history of neurological 

or psychiatric disease. Informed consent according to the Declaration of Helsinki II was 

obtained from all participants. Table 1 summarizes the demographic and clinical data of all 

patients and controls.  

 

Table 1 Clinical and demographic data of patients and control participants.  

 Sex Hand Age Infarction 
Type 

VF 
Deficit 

TSI 
(weeks) 

Patients       

P1 m r 52 MCA Q, l, s 2 

P2 m r 72 MCA - 9 

P3 f r 57 MCA  - 5 

P4 m r 71 SC  - 8 

P5 m r 63 MCA RH, l 7 

Group Average       

Patients 4m/1f 5r 63.0   6.2 

Controls 6m/4f 10r 68.3    

[Abbreviations: VF – visual field; TSI – time since injury; m – male; f – female; r – right; l – 

left; MCA – medial cerebral artery; SC – striato capsular; Q – quadrantanopia; RH – residual 

hemianopia; s – superior] 

 

Apparatus and stimuli 

The experiments were performed on an IBM-PC compatible computer using Matlab routines 

and Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997). A standard computer 

mouse (which was rotated by 90°) served as response device. The distance between the 
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monitor and the eyes of the participants was approximately 57 cm; a head and chin rest was 

used to maintain head position. Stimuli were presented in light grey (3.81 cd/m2) against a 

black (0.02 cd/m2) background at 2 possible locations on a 17-inch monitor screen (1024 × 

768 pixel screen resolution, 70-Hz refresh rate). Stimuli were presented centrally either above 

or below the fixation cross (see Figure 1 for example displays). Each stimulus configuration, 

composed of four pacman inducers with a diameter of 0.7°, was diagonally offset by 4.1° of 

visual angle from a centrally presented fixation cross. At a viewing distance of 57 cm, each 

candidate grouping subtended a visual angle of 2.3° × 2.3°. As depicted in Figure 1A, the 

target was defined as a Kanizsa square. Nontarget configurations were constructed by 

rotating inducer elements: for the baseline, ungrouped nontarget configuration, all four 

pacman inducers were rotated by 180° relative to the inducers of the target. For right-grouped 

nontargets, the inducers in the left half of a nontarget configuration were rotated by 180°, 

whereas the (other) inducers in the right half were identical in orientation to those of the 

target. For left-grouped nontargets, the inducers in the right half of a nontarget configuration 

were rotated by 180°, whereas the inducers in the left half were identical in orientation to 

those of the target. Accordingly, grouped nontargets were made up of partial Kanizsa shape 

stimuli, with partial shapes on either the left or the right side, engendering the emergence of 

incomplete surface information. That is, grouped nontargets gave rise to unilateral partial 

groupings, with the grouping location (left vs. right) being varied.  

 

Procedure  

The experiment was performed in a dimly lit experimental laboratory room. Each trial started 

with the presentation of a central fixation cross for 500 ms. The fixation cross was followed 

by the search display, to which participants had to respond. The display contained either one 

or two candidate objects, which were presented at central positions above and/or below the 
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fixation cross. In the one-item condition, either the target or one possible nontarget 

(ungrouped, left-grouped, or right-grouped) was presented at one of the two possible stimulus 

locations. In the two-item target-present condition, the target was always presented together 

with a nontarget (ungrouped, left-grouped, or right-grouped). In the two-item target-absent 

condition, two nontargets of the same type were displayed, that is, both nontargets were 

ungrouped, left-grouped, or right-grouped configurations (see Figure 1). Following stimulus 

onset, participants had to maintain central fixation and to make a speeded target-absent 

versus target-present response by pressing the corresponding keys of the computer mouse. 

Target-present/-absent responses were assigned to either the upper/lower or the lower/upper 

keys of the rotated mouse, in counterbalanced order across participants. Participants were 

instructed to respond, as quickly and accurately as possible, using the right-hand index and 

middle fingers; their right arm positioned such that the fingers were comfortably placed on 

the rotated mouse. Displays remained on the screen until participants responded, with a time-

out of 2500 ms. In case of an incorrect response or a time-out, a feedback signal (a “minus” 

sign) was presented for 1000 ms in the centre of the screen. The inter-trial interval was 1000 

ms.  

Participants first performed one practice block, consisting of 20 randomly generated 

trials, prior to the actual experiment, to familiarize them with the task. Subsequently, 480 

experimental trials were presented in 12 blocks consisting of 40 trials each. The independent 

variables of the experiment were the between-subjects factor group (patients, controls) and 

the within-subject factors target (present, absent), nontarget type (ungrouped, right-grouped, 

left-grouped), and display size (one item, two items). The type of nontarget was kept constant 

throughout a block of trials, in order to maximize the difference in search RTs between 

ungrouped and grouped nontargets (Töllner, Conci, & Müller, 2015) while keeping the 

difficulty of the task appropriate for the patients. All blocks were presented in pseudo-
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random order on an observer-by-observer basis. Search displays contained a target in 50% of 

all trials, with targets presented equally likely above or below the central fixation cross. The 

dependent measures obtained and analysed were the search RTs plus estimates of perceptual 

sensitivity, d’, and the response criterion, c, based on signal detection theory (Green & Swets, 

1966). The sensitivity d’ reflects the relationship of the rate of hits (i.e., correct detection of a 

target when one is present) to that of false alarms (i.e., erroneous ‘target-present’ response 

when no target is present) for each condition, where d’ is estimated as:  

d’ = z(proportion hits) – z(proportion false alarms). Technically, d’ represents the distance 

between the means of the sensory evidence distributions produced by ‘noise alone’ and 

‘signal plus noise’; accordingly, higher scores of d’ indicate enhanced ability to discriminate 

between signal and noise. The response criterion represents the critical strength of sensory 

evidence required to decide ‘signal plus noise’ versus ‘noise alone’, where c is estimated as 

follows: c = –0,5 *(z(proportion hits) + z(proportion false alarms)). Values of c < 0 are 

indicative of ‘liberal’ responding (i.e., maximizing hits at the expense of false alarms), values 

> 0 of ‘conservative’ responding (i.e., minimizing false alarms at the expense of hits). For 

calculating these parameters, we corrected extreme hit rates of 1.0 and, respectively, false-

alarm rates of 0 as follows: 1 − 1/(2n) for hits, and 1/(2n) for false alarms, where n refers to 

the number of total hits or false alarms (Macmillan & Creelman, 1991). 

 

2.3.4 Results 
Data were analysed in two sequential steps. The first analysis aimed at providing an overview 

of the general task performance, comparing search performance for ungrouped nontargets 

(i.e., baseline performance) with performance for partially grouped, that is, potentially 

interfering nontargets. As previous work in healthy observers had shown that partial shape 

information in nontargets can substantially reduce search efficiency (Conci et al., 2006; 
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2007), the current analysis was designed to establish, in the first instance, whether 

comparable effects would also be seen in patients with extinction. The subsequent analysis 

was performed to examine more specifically how the lateralization of attention in extinction 

would affect search. To this end, partial groupings in the left or right half of the nontarget 

items were systematically compared in terms of their relative costs on performance.  

 

Target-nontarget interference effects 

The first analysis compared search RTs as well as signal detection (d’ and c) scores for 

partially grouped vs. ungrouped (i.e., baseline) nontarget conditions. Note that, for this initial 

analysis, data were collapsed across left- and right-grouped nontargets. Individual mean RTs 

were computed for each variable combination excluding error responses. Figure 3 presents 

the mean RTs for the patient group (A) and the control group (B). Each graph plots RTs as a 

function of display size, separately for target-absent/-present and ungrouped/grouped 

nontarget configuration conditions. Note that Figure 3 depicts different data points for the 

single-item target-present conditions. This is due to (single-item) target-present trials being 

sorted according to the respective nontarget types within a given block of trials. That is, even 

though the single target displays were physically identical in these blocks (always consisting 

of one Kanizsa square target), RTs to these displays differed according to the types of 

nontargets that were presented in the respective blocks.  

RT analysis. Mean RTs were compared by means of a mixed-design analysis of 

variance (ANOVA), with the between-subjects factor group and the within-subject factors 

display size, target, and nontarget type. This ANOVA revealed significant main effects of 

display size (F(1, 13) = 44.55, p < .01), target (F(1, 13) = 12.58, p < .01), nontarget type 

(F(1, 13) = 28.97, p < .01), and group (F(1, 13) = 15.14, p < .01). Mean RTs increased with 

the number of to-be searched items (103 ms vs. 126 ms) and were overall faster in target-
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present than in target-absent conditions (105 ms vs. 124 ms). In addition, responses were 

slower in the grouped compared to the ungrouped nontarget condition (121 ms vs. 108 ms), 

and for the patient group compared to control participants (135 ms vs. 94 ms). Moreover, 

several interactions were significant. First, the target × group interaction (F(1, 13) = 10.67, p 

< .01) was due to the patients exhibiting slower responses (by 37 ms) to target-absent than to 

target-present displays, while the control participants showed no difference (2 ms). 

Furthermore, the display size × target × group interaction was significant (F(1, 13) = 6.33, p 

= .03), due to patients showing consistent increases, with display size, in target-present and 

target-absent RTs (increases of 22 and 29 ms/item, respectively, p = .24), while for controls 

target-present slopes were somewhat steeper than target-absent slopes (22 and 19 ms/item, 

respectively, p = .07). Finally, a significant display size × target × nontarget type interaction 

(F(1, 13) = 6.85, p = .02) showed that additional surface information in grouped nontargets 

reduced search efficiency particularly on target-absent trials (search slopes in ungrouped and 

grouped nontargets were 17 and 26 ms/item, respectively, p = .01), while no difference in 

search efficiency was evident for target-present trials (ungrouped and grouped nontarget 

slopes: 22 and 23 ms/item, respectively, p > .05). No other significant effects were obtained 

(all ps > .11). In summary, patients were slowed overall, but particularly so when the target 

was absent and when the display size was high. Importantly, however, there was no 

indication that the overall effect induced by grouped nontargets differed between groups. 

That is, nontargets that induce partial shape groupings seemed to affect RTs similarly in both 

groups, particularly on target-absent trials. This suggests that patients based their search on 

an integrated (grouped) target representation, rather than on the constituent, individual local 

elements; in the latter case, search would have been expected to be much more inefficient 

(Conci et al., 2007).  



Study III: Object Integration and Parietal Extinction 

 108 

Sensitivity and criterion analysis. Accuracy data was used to obtain estimates of 

perceptual sensitivity and response criteria in target-present/-absent decisions. The overall 

level of accuracy was reasonably comparable in patients and controls (t(13) = -1.67, p = .12), 

with a mean error rate of 5.3% (SD = 6.91) and 1.8% (SD = 1.23), respectively. Next, d’ and 

c scores were analysed using (separate) mixed-design ANOVAs, with the between-subjects 

factor group and the within-subject factors display size and nontarget type, analogous to the 

RT analysis above (note that RT and sensitivity/criterion measures are essentially unrelated 

and may therefore reveal a diverging pattern of effects). Both ANOVAs revealed the main 

effect of display size to be significant: sensitivity scores d’ were reduced for two-item 

compared to one-item displays (mean d’: 3.8 vs. 4.2, F(1, 13) = 14.57, p < .01); at the same 

time, the response criterion was set somewhat more conservatively for two-item compared to 

one-item displays (mean c: .28 vs. .01, F(1, 13) = 17.42, p < .01). No other significant effects 

were obtained (all ps > .09). 

 

 

Figure 3 Mean RTs in the patient (A) and the control (B) group as a function of display size 

(1 item, 2 items) for the different target (solid line: absent, dotted line: present) and nontarget 

type (black: ungrouped, red: grouped) conditions. Error bars represent ±1 standard error of 
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the mean. Note that, as the nontarget type was kept constant throughout a block of trials, the 

data points obtained differed between the nontarget type conditions; this also applies to the 

single-item condition, in which the respective nontarget was presented only on target-absent 

trials (but not on target-present trials). 

 

Nontarget lateralization  

A second set of analyses was performed to examine whether and how target-nontarget 

interference differs when partial shape information in nontargets is present in the less 

attended versus the more attended hemifield. To this end, we determined the costs 

engendered by the distinct, unilateral groupings, by subtracting RTs and, respectively, d’ and 

c in the ungrouped nontarget condition from those in the left- and right-grouped nontarget-

type conditions. Figure 4 depicts the RT costs (in ms) as a function of the nontarget grouping 

location for both patients and controls. Separate graphs depict the results for one-item 

displays (target-absent) and two-item displays (for target-present and target-absent 

conditions, respectively). Note that, because of the (logical) lack of nontargets in target-

present one-item displays, costs could not be computed for this condition. 

 RT analysis. 

One-item displays. For the RT analysis, one-item displays were analysed by a mixed-

design ANOVA with the between-subjects factor group (patients, control) and the within-

subject factor nontarget grouping location (left-grouped, right-grouped nontarget), which did 

not reveal any significant effects (all ps > .10). As depicted in Figure 4A, the RT costs were 

statistically comparable for left- and right-grouped nontargets (99 ms vs. 59 ms; non-

significant main effect of grouping location). Also, the costs were comparable between 

patients and controls (81 ms vs. 77 ms; non-significant main effect of group). These findings 

show overall comparable RT patterns in both patients and controls, and no evidence for any 
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type of strategy, such as a tendency of the patients to perform the task by primarily 

responding to the cut-out segments in the right, unimpaired hemifield.  

Two-item displays. A mixed-design ANOVA on two-item displays with the between-

subjects factor group (patients, control) and the within-subject factors nontarget grouping 

location and target (absent, present) yielded no significant main effects (all ps > .16). 

However, the nontarget grouping location × group interaction (F(1, 13) = 8.26, p = .01) was 

significant: while costs were statistically comparable for left-grouped nontargets in both 

patients and controls (103 ms vs. 180 ms) (t(13) = .975, p = .35), the costs for right-grouped 

nontargets were much greater in patients than in control participants (285 ms vs. 83 ms) 

(t(13) = –2.48, p = .03). No other significant effects were obtained (all ps > .34). To 

summarize, in patients with extinction, the RT costs induced by grouped nontargets in visual 

search for a Kanizsa figure were comparable to those of control participants only with single-

item displays. When display size increased to two items, patients showed systematic 

unilateral deficits, namely: enhanced costs for nontarget objects with a partial shape in the 

right, that is, the more attended hemifield. 

Sensitivity and criterion analysis. For one-item displays, analogous ANOVAs of the 

d’ and c costs did not reveal any significant main or interaction effects (all ps > .26, overall 

mean costs in d’ = –.06 and in c = .07). For two-item displays, the ANOVAs revealed a 

significant main effect of nontarget grouping location (F(1, 13) = 13.01, p < .01) for d’: 

sensitivity costs were increased with left- as compared to right-grouped nontargets (–.47 vs. 

.07). Note that more negative values of d’ costs, as depicted here, are indicative of a 

reduction in sensitivity for the grouped relative to the ungrouped condition. No other 

significant effects were obtained (overall mean costs in c: –.52; all ps > .25). The lack of 

group effects indicates that patients and controls differ neither with respect to the response 

criterion (i.e., the strength of sensory evidence required to respond target-present rather than 
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target-absent), nor with respect to perceptual sensitivity (i.e., the ability to discriminate signal 

from noise), despite of an overall reduction in sensitivity in both groups for left-grouped 

nontargets.  

 

Figure 4 Mean RT costs as a function of nontarget grouping location (black: left-grouped, 

white: right-grouped) for patients and controls, separately for one-item displays [target-absent 

(A)] and two-item displays [for target-absent (B) and -present (C) conditions, respectively]. 

Error bars represent ±1 standard error of the mean.  

 

2.3.5 Discussion 
The present study was designed to assess the relationship between selective attention and 

object integration (in the left and the right visual field) in a visual search paradigm that 

presented to-be-grouped targets and nontargets to both extinction patients with unilateral 

deficits of selective attention and healthy controls. Our main results were that (i) partially 

grouped nontargets induced overall comparable interference in patients and controls and that 

(ii) for single item configurations, effects of left-sided groupings were comparable to those of 

right-sided groupings in both participant groups. Finally, (iii) clear effects of extinction 

manifested in particular with two-item displays, where stronger RT costs emerged for 

nontargets that were similar to the targets in the intact, more attended hemifield, compared to 

the less attended hemifield. From these findings, we conclude that a bias in attention leads to 

biased grouping operations in competitive search situations in particular, i.e., preserved 
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grouping in the right, attended, and compromised grouping in the left, less attended, 

hemifield. In our view this points to a crucial contribution of selective attention to visual 

object integration processes.  

Target-nontarget shape interference. In an initial, overall analysis, we assessed the 

effect of partial shape information in nontargets on visual search for a target Kanizsa figure, 

without differentiating between left- and right-grouped nontargets. Results revealed a 

pronounced slowing of search for grouped nontargets relative to the ungrouped (i.e., baseline) 

condition with increasing display size and particularly on target-absent trials. This reduction 

in search speed brought about by grouped nontargets was in general comparable between 

patients and controls, suggesting an overall similar pattern of nontarget interference. 

However, extinction patients were particularly slowed when no target was present. Signal 

detection analysis further revealed a similar pattern of performance in patients and controls, 

with a reduced sensitivity and a slight shift in the decision criterion (towards more 

conservative responding) for two-item compared to one-item displays.  

Our finding that partial shape information in nontargets reduces search efficiency in 

both patients and controls is in line with previous reports from healthy participants (Conci et 

al., 2006; Conci et al., 2007; Töllner et al., 2015). This pattern of interference can be 

explained in terms of similarity-based (interference) search models (Duncan & Humphreys, 

1989), which assume that an increase in similarity between targets and nontargets reduces the 

efficiency of target detection. In terms of biased-competition accounts (Desimone & Duncan, 

1995), grouped nontargets would gain more attentional weight, compared to ungrouped 

nontargets, due to their better match with the task-relevant Kanizsa square target; as a result, 

the grouped nontarget would be favoured for visual selection (Conci et al., 2006; Conci et al., 

2007). In the context of the current experiment, with Kanizsa figures (i.e., grouped objects) 

presented as targets, it is reasonable to assume that target-nontarget similarity is largely 
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determined by integrated object attributes, that is, the output of object completion processes 

that involve grouping mechanisms, such as grouping by closure/good continuation. In this 

view, target selection and similarity-based interference effects in both healthy participants 

and patients are driven by integrated object information (Conci et al., 2007). 

In line with the assumption that grouping and similarity interact, search efficiency was 

previously shown to be markedly reduced for ungrouped relative to grouped target 

configurations, even though the similarity between targets and nontargets was the same in 

both cases (Conci et al., 2007). Thus, if patients’ search was based on the individual local 

elements (i.e., the ungrouped pacman inducers) rather than an integrated (grouped) target 

representation, a divergent pattern of performance would be expected, with patients 

exhibiting significantly reduced search efficiency compared to controls. This was clearly not 

the case. Hence, the pattern of search performance observed in the present study most likely 

reflects processing of grouped objects, rather than being akin to search for ungrouped items 

that do not require object integration to the same extent. 

The finding that target-absent trials in particular exhibited a difference in search 

efficiency between grouped and ungrouped nontargets indicates that partial surface 

information primarily affected search when participants allocated attentional resources to the 

nontargets. In contrast, according to a biased-competition account of attention (Bundesen, 

1990; Desimone & Duncan, 1995), on target-present trials, nontarget stimuli compete with 

the more salient target stimulus. Attentional weight, which is biased towards the most salient 

stimulus, is thus withdrawn from the nontargets. Equal search performance for target-present 

grouped and ungrouped nontarget trials thus indicates that when less attentional capacity was 

allocated towards partial groupings, these might have been reduced in priority (in both 

healthy controls and extinction patients). We interpret this finding as an indication that 

attentional resources can modulate partial shape groupings. 
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Spatial attentional bias modulates grouping. Follow-on comparisons of 

interference effects induced by left- versus right-grouped nontargets revealed a specific 

pattern related to extinction, with a crucial difference between conditions with two-item, 

relative to one-item, search displays. With displays containing only one item, extinction 

patients showed the same pattern of search interference effects as healthy participants, 

without any differential RT costs between left- and right-grouped nontargets. This indicates 

that patients were able to integrate the stimulus configurations presented into completed 

shapes, without differences as to whether a given partial shape was present on the left, less 

attended, or on the right, more attended, side. That is, in essence, both types of grouped 

nontargets could be differentiated reliably from the completed square in the target Kanizsa 

figure. This finding in principle confirms previous reports in patients with unilateral deficits 

in selective attention, who, in general, showed preserved grouping with displays that 

presented a single, to-be-grouped object configuration (e.g., Conci, Böbel, et al., 2009; Driver 

et al., 1992; Mattingley et al., 1997; Ro & Rafal, 1996; Vuilleumier & Landis, 1998; 

Vuilleumier et al., 2001). Thus, in one-item displays, access to left- as well as right-grouped 

stimulus configurations was unaffected by extinction, that is: object integration mechanisms 

were functioning uncompromised across both halves of the visual field. This agrees with 

behavioural and electrophysiological studies of healthy participants, which revealed search 

for Kanizsa figures to be efficient, with object completion being associated with early stages 

of visual processing (e.g., Abu Bakar, Liu, Conci, Elliott, & Ioannides, 2008; Conci, Böbel, 

et al., 2009; Conci et al., 2011; Wiegand et al., 2015). Our findings also agree with studies 

reporting an influence of unconscious access to contralesional visual information in 

extinction patients (Conci, Böbel, et al., 2009; Driver & Vuilleumier, 2001; Finke et al., 

2009; Marshall & Halligan, 1994; Mattingley et al., 1997). Accordingly, at least in conditions 

that require basic perceptual processing of a single candidate target object, patients with 
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deficits in attentional orienting are not necessarily impaired in integrating parts into wholes – 

thus, in principle supporting object-based accounts of attention (see also Driver et al., 1992; 

Ward et al., 1994).  

In contrast to ‘normal’ performance with single-item presentations, when attention 

had to be distributed among multiple stimuli (i.e., in two-item displays), a spatially lateralized 

interference pattern emerged in extinction patients: relative to controls, patients showed a 

marked increase in interference when nontargets induced a partial shape grouping on their 

right, more attended, side – whereas nontargets with a partial shape grouping on the left, that 

is, their less attended, side interfered comparably (or numerically even less) relative to 

control participants. Restated, extinction patients showed less efficient search than controls 

when presented with multiple (i.e., two) objects that contained similar shape information as 

the target in the right hemifield; by contrast, interfering information in the left hemifield did 

not lead to elevated costs at all.  

In the control group, we found a tendency towards the opposite effect: left-grouped 

nontargets interfered (at least numerically) more than right-grouped nontargets. Thus, in 

healthy participants, object integration processes were biased towards the left when 

attentional resources had to be distributed in a competitive search situation. This may be 

associated with a slight, though highly replicable, attentional bias towards the left in healthy 

participants with both unilateral and bilateral stimulation, which has been referred to as 

‘pseudo-neglect’ (Jewell & McCourt, 2000) and ‘pseudo-extinction’ (Goodbourn & 

Holcombe, 2015), respectively.  

The spatially lateralized pattern of interference with two-item displays might be 

explained in terms of biased competition among visual inputs for limited processing capacity 

(Bundesen, 1990; Desimone & Duncan, 1995). In a non-competitive search situation, that is, 

when only a single item is presented in the display, there is no need for attention to be 
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distributed. Accordingly, despite the well-documented attentional bias towards ipsilesional 

stimuli in extinction (e.g., Baylis & Driver, 1993; Humphreys, Romani, Olson, Riddoch, & 

Duncan, 1994), a left- or right-grouped nontarget would receive the full amount of available 

capacity, enabling a decision to be made between target presence and absence. However, 

distributing attention among multiple candidate target stimuli (in two-item displays) reduces 

the amount of attention that can be allocated to each single stimulus. In this situation, 

extinction patients allocate attentional weight predominantly to the right hemifield (Duncan 

et al., 1999), as a result of which target-nontarget similarity is primarily evaluated in the right 

(rather than the left) half of a given stimulus configuration. Due to this extinction-specific 

spatial attentional bias, right-grouped nontargets have a competitive advantage in the race for 

selection.  

Overall, this pattern of results suggests a crucial link between perceptual grouping and 

attention: faced with multiple stimuli, extinction patients are impaired in engaging 

mechanisms of perceptual grouping in the contralesional field that would permit the target to 

be discerned from more or less similar nontargets. Thus, contrary to the interpretations drawn 

from a number of previous studies of extinction patients (e.g., Conci, Böbel, et al., 2009; 

Driver et al., 1992; Gilchrist et al., 1996; Mattingley et al., 1997; Ward et al., 1994), grouping 

operations are not (completely) automatic and (fully) available at pre-attentive stages; rather, 

attention is required to effectively bind parts into coherent wholes. It follows, in line with the 

notion of a competitive bias against left-sided information in extinction (Driver, Mattingley, 

Rorden, & Davis, 1997; Duncan, Humphreys, & Ward, 1997; Kinsbourne, 1993), that object 

integration depends on the degree of competition among the elements in the visual input: 

integration is successful only if sufficient attentional capacity is available, in which case the 

spatial bias in extinction patients is considerably reduced. By contrast, when there is 

competition among several stimuli, the (distributed) attentional resources are insufficient to 
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permit object integration, leading to a strong bias. This implies that the pathological 

attentional bias gives rise to a grouping bias, with less effective grouping in the unattended 

field. 

While processes of object integration were clearly impaired in extinction patients 

presented with multiple objects, the account sketched above – in terms of multi-item 

‘competition’ and ‘distributed attention’ – would imply that some basic grouping processes 

are actually functioning relatively normally. The notions of competition and distributed 

attention presuppose that there are primitive entities that compete for the allocation of 

attention or across which attentional resources can be distributed. In this view, a first, 

unselective wave of processing would determine potentially relevant clusters, whereas the 

selection of grouped items is then determined in a second wave of processing, which 

crucially depends on attention (Bundesen, Habekost, & Kyllingsbaek, 2005). Phenomenally, 

the pacman stimuli in Figure 1B and 1C form two clusters discernible (even or especially) at 

low spatial scale: one above and one below the fixation cross. That these stimuli are clustered 

into separate entities already implies a grouping process: grouping based on proximity (and 

perhaps similarity), and this process would have to operate logically prior to the allocation or 

distribution of attention (e.g., attention can only be spread across both clusters if these are in 

some way represented, for instance, on some attention-guiding saliency map). This base-level 

process would precede Kanizsa-type Gestalt formation, where the processes involved in the 

latter – contour interpolation and region filling-in – may be dependent on attention. In other 

words, there are likely to be more primitive grouping processes that presumably operate pre-

attentively (rough formation of clusters) and more complex processes that render the 

boundary contour and enclosed, filled-in regions (object integration), which are dependent on 

attention (see also Roelfsema, 2006 for a comparable theoretical framework). Although the 

task used in the present study was not designed to dissociate these two stages of grouping, the 
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pattern of deficits displayed by the extinction patients (increased difficulty with multiple 

objects) implies that it is the latter, more sophisticated processes of object integration that are 

especially compromised by the non-availability of attentional resources. 

Taken together, our results in patients and healthy participants indicate that object 

binding requires attention, thus challenging accounts according to which pre-attentive 

processing suffices to render and represent complete objects (Driver & Baylis, 1998; Scholl, 

2001, for reviews). Our results imply that integrating features into complete objects can only 

be achieved efficiently when sufficient attention is distributed across fragmentary, to-be-

grouped visual elements.  
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3 General conclusions and future directions 

Studies I and II of the first part of this dissertation combined parametric assessment of 

attentional functions based on TVA (Bundesen, 1990) with a tDCS intervention to (i) specify 

attentional dysfunctions in MDD and, respectively, schizophrenia in terms of establishing a 

concrete parameter profile, and (ii) to examine for potential tDCS-induced effects on 

attentional processing. 

Taken together, with regard to question (i) above, the TVA-based assessment proved 

to be a sensitive method for unveiling attentional deficits in both MDD and schizophrenia. In 

MDD patients, the parametric attention assessment yielded a selective impairment in visual 

processing speed as a core constraint in attentional processing. In schizophrenia patients, the 

assessment revealed an impairment of general attentional capacity as the primary factor 

compromising visual attentional functioning. These findings corroborate the TVA-based 

approach’s usefulness not only for neuroscientific but also clinical questions. Specifically, the 

clinical utility of the approach lies in its potential to complement basic diagnosis in terms of a 

detailed parameter profile of attentional deficits (for review Habekost, 2015). Determining a 

detailed attentional profile is important in many respects. It provides useful information for 

therapeutic approaches, for instance, for the individual adjustment of therapeutic measures 

according to the specific attentional deficits. Furthermore, as neuro-cognitive functions are 

considered crucial determinants for the functional outcome of patients (Buist-Bouwman et 

al., 2008; Jaeger, Berns, Uzelac, & Davis-Conway, 2006; McIntyre et al., 2013), outcome 

measures can be predicted more reliably based on a better identification of the degree of 

cognitive impairments. Moreover, a detailed characterization of disorder-specific 

impairments of attentional sub-components can be used for a more refined distinction of 

various disorders in terms of neuro-cognitive deficits. Standard neuro-cognitive tests often 

fall short in providing such a detailed attentional profile in clinical conditions such as MDD
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 and schizophrenia, characterized by abnormalities in large-scale brain networks (for review 

Habekost, 2015). 

The present results add to the theoretical understanding of attentional dysfunctions in 

MDD and schizophrenia. Future studies can build on these findings in several ways. In 

particular, studies combining TVA-based assessment with neuroimaging measures would be 

of major interest. This combination is particularly promising for expanding our understanding 

of the neural underpinnings of disease effects on attentional parameters in psychiatric 

conditions – a question that has received only limited attention to date. Likewise, studies that 

aim to establish the relation between TVA parameters and clinically relevant behaviour or 

biological disease markers would further enhance the clinical relevance of such 

comprehensive approaches (Habekost, 2015). 

With regard to question (ii), the tDCS-induced modulation of attentional parameters, 

the combined TVA-tDCS approach turned out to be useful in teasing apart the rather subtle 

stimulation effects on different neuro-cognitive components. In MDD patients, tDCS 

influenced only the processing speed parameter C, whereas there was no indication of 

changes in the other TVA attention parameters. More specifically, the visual processing 

speed deficit was ameliorated by activating the prefrontal alertness system by means of tDCS 

in MDD patients. This suggests that even a single session of anodal tDCS over the dlPFC has 

relatively enduring effects – going beyond the stimulation intervention – on alertness-

dependent visual processing speed. 

The present results in MDD patients are promising and inspire further questions for 

future therapeutic and experimental studies in MDD. For instance, future studies should 

combine tDCS with functional brain imaging techniques, such as functional magnetic 

resonance imaging (fMRI) or electroencephalography (EEG). Such a combined approach 

could expand our understanding of the underlying mode of action of prefrontal tDCS effects 
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with regard to large-scale brain networks, and help develop carefully targeted administration 

of tDCS for research and clinical purposes (Meinzer et al., 2014). Another question to 

address in future studies concerns whether, and to what extent, combining tDCS with an 

additional behavioural intervention, such as cognitive training, could enhance and prolong 

tDCS-induced effects in MDD patients (Martin, Liu, Alonzo, Green, & Loo, 2014; Martin et 

al., 2013). Given that cognitive training and neuromodulation, by means of tDCS, both affect 

neuroplasticity, their combination could promote greater, synergistic effects (Looi et al., 

2016) – an open question that requires further investigation.  

To be clinically relevant, tDCS should induce more stable changes in cortical function 

and behaviour. Such long-term tDCS effects might be achieved by repetitive stimulation 

protocols (Nitsche & Paulus, 2011). Therefore, as a next step, more comprehensive, repetitive 

treatment studies would have to determine to what degree repetitive stimulation leads to more 

pronounced and enhanced consolidation of the tDCS-induced benefits in MDD (Boggio, 

Asthana, Costa, Valasek, & Osorio, 2015). The currently proceeding multicentre study 

‘Transcranial direct current stimulation as treatment for major depression – a prospective 

multicentre double blind randomized placebo controlled trial’ (Padberg et al., 2017) in which 

patients receive a 6-weeks treatment with tDCS – was designed to explore this question in 

more detail. Among others, this clinical trial includes an adjunctive TVA-based attentional 

assessment, carried out by our research group, to investigate the sustained efficacy of 

repetitive tDCS on neuro-cognitive parameters. Patients are tested with the TVA-based 

attentional assessment before tDCS treatment (baseline), during the treatment (at week 4 and 

6) and in a follow-up session at week 30. This study will complement the present data and 

reveal whether tDCS-induced neuro-cognitive benefits in MDD patients can be boosted and 

prolonged by repetitive tDCS applications.  
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In contrast to the beneficial tDCS effects on visual processing speed in MDD patients 

revealed in study I, the findings of study II, with schizophrenia patients, were less promising. 

In particular, prefrontal tDCS did interfere with (rather than enhance) practice effects on 

visual processing speed. In light of this outcome, it cannot be ruled out that the stimulation 

parameters applied may entail cognitive safety risks for schizophrenia patients. This finding 

of a potential tDCS-induced disruption effect on the cognitive domain investigated here in 

schizophrenia highlights the need for more neuroscience-based research on schizophrenia and 

safety assessments in future tDCS studies involving psychiatric patients. For instance, prior 

to the setup of large-scale clinical trials, future studies would be well advised to 

systematically evaluate tDCS effects, in terms of dosage and electrode positioning, on 

cognitive parameters in schizophrenia. 

 

The study reported in the second part of this dissertation dealt with the behavioural 

consequences of impairments in basal cognitive functions on information processing. 

Specifically, study III investigated the effects of selective attentional deficits on perceptual 

processes with a focus on object integration through perceptual grouping, drawing on visual 

search performance of neuropsychological patients suffering from extinction as a result of 

brain damage. The results revealed that an extinction-specific bias in attention leads to biased 

grouping operations in competitive search situations in particular: grouping operations were 

preserved in the right, attended hemifield, whereas they were compromised in the left, less 

attended hemifield. The pattern of results, in patients and healthy participants, indicates that 

object binding requires attention, thus challenging accounts according to which pre-attentive 

processing suffices to render and represent complete objects (for review Driver & Baylis, 

1998; Scholl, 2001). Instead, integrating features into complete objects can, arguably, only be 

achieved efficiently when sufficient attention is distributed across fragmentary, to-be-

grouped visual elements. 
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Study III is not only relevant from a clinical point of view, but it also provides 

important evidence for informing fundamental research. That is, by employing a patient-

based approach, study III contributed to our understanding of the role of selective attention in 

visual object integration processes – a long-standing and much debated issue in the basic 

research field of visual attention. In brief, study III goes beyond merely clinical studies (such 

as studies I and II) and provides an example of how patient studies can provide a useful 

approach for the examination of basic research questions. 

Future studies that apply this experimental approach, based on visual search, to other 

patient populations, for instance psychiatric patients, might prove very interesting as well. 

For example, future studies might investigate the extent to which attentional impairments in 

psychiatric conditions, such as those revealed in studies I and II of this dissertation, are 

reflected in everyday life tasks applying typical perceptual situations such as visual search. 

Visual search is a central task in everyday life, which, in healthy humans, involves attentional 

processes controlling the perception of salient and less salient stimuli. By implication, 

alterations in visual attention, as observed in different clinical conditions, may give rise to 

visual search deficits that, eventually, may also help explain everyday life consequences in 

the respective patients. 

Previous research has shown that reduced visual processing speed impairs the 

perception and interpretation of complex visual material (e.g., Finke et al., 2007; Neitzel et 

al., 2016). Likewise, basal attentional dysfunctions in psychiatric conditions might lead to 

alterations in visual perception – specifically perceptual grouping operations – in these 

patients. A study of our research group is currently underway to investigate this question 

further in patients with schizophrenia. To this end, we employed a variant of a visual search 

task with Kanizsa figures, similar to that used in study III. In healthy observers, search 

performance has been shown to be substantially modulated by grouping of a coherent global 
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shape from local stimulus fragments (Conci, Müller, & Elliott, 2007). Whether this also holds 

true for schizophrenia patients will be revealed by examining search performance in these 

patients. This will shed light on how schizophrenia influences the structuring of visual 

information and the allocation of attention to a grouped target. More detailed information 

about a potential relationship between attentional dysfunctions and perceptual processes in 

schizophrenia might, ultimately, contribute to a better understanding of the disorder.   

By the same token, future studies that apply the experimental approach taken in 

studies I and II, in which a TVA-based attentional assessment was combined with tDCS, to 

patients with extinction might also prove very interesting. In an ongoing pilot study, our 

research group has pursued this approach in a group of neglect and extinction patients to 

explore the specific attentional impairments as well as tDCS-induced effects on attentional 

parameters in these patients. Similarly, combining tDCS with a visual search task, such as the 

one employed in study III of this thesis, would be an equally interesting avenue to be taken in 

future studies. This could shed light on the efficacy of tDCS to augment visual search 

performance, for example, by reducing a decrement in vigilance.  

To conclude, the three studies reported in this dissertation contribute to our 

understanding about pathological as well as normal visual attentional processing. The first 

two studies relied on a framework of normal visual attention based on Bundesen’s TVA 

(Bundesen, 1990) to provide a comprehensive description of the pattern of attentional deficits 

in MDD and schizophrenia patients and their modulation by means of tDCS. The study in the 

second part employed a different approach based on the investigation of patients with 

selective deficits in attention, the aim being to help resolve a long-standing debate in the field 

of visual attention research, namely, the contribution of selective attention to object 

integration processes. Taken together, the findings of the three studies provide a promising 

basis for future therapeutic and experimental investigations.
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Deutsche Zusammenfassung 

Psychiatrische und neurologische Erkrankungen gehen häufig mit Defiziten der visuellen 

Aufmerksamkeit einher, die oftmals auch über die klinische Remission hinaus bestehen 

bleiben (Heaton et al., 2001; Schaefer, Giangrande, Weinberger, & Dickinson, 2013; Trivedi 

& Greer, 2014; Tyson, Laws, Flowers, Tyson, & Mortimer, 2006; Weiland-Fiedler et al., 

2004). Visuelle Aufmerksamkeitsprozesse beinhalten verschiedene räumlich lateralisierte 

und nicht lateralisierte Subkomponenten, wie beispielsweise attentionale Selektivität, 

Verarbeitungsgeschwindigkeit oder Kurzzeitgedächtnisspeicherkapazität (Bundesen, 1990, 

1998). Defizite in jeder einzelnen Subkomponente können prinzipiell zu einer verminderten 

Aufmerksamkeitsleistung führen. Die spezifischen attentionalen Subkomponenten, die den 

kognitiven Defiziten dieser Erkrankungen zugrunde liegen, sind jedoch nur unzureichend 

aufgeklärt.  

Eine präzise Erfassung der attentionalen Leistungseinbußen ist von großer 

Wichtigkeit. Spezifisches Wissen über diese Defizite liefert wertvolle Informationen für 

Therapieansätze, die daraufhin entsprechend angepasst werden können. Außerdem dient eine 

präzise Diagnostik des Ausmaßes kognitiver Defizite einer zuverlässigen Vorhersage des 

Erkrankungsverlaufs. Darüber hinaus ermöglicht sie eine bessere Abgrenzung verschiedener 

Erkrankungen in Hinsicht auf charakteristische neuro-kognitive Defizite.  

Hierfür werden Methoden benötigt, die eine zuverlässige Bestimmung der Defizite im 

klinischen Kontext erlauben. Insbesondere muss ein Instrument zur Messung von 

Aufmerksamkeit die verschiedenen attentionalen Einzelfunktionen erfassen können. Ein 

Verfahren, das sich hierfür sehr gut eignet und daher die theoretische und experimentelle 

Grundlage des ersten Teils dieser Dissertation bildet, ist die parameterbasierte Messung von 

Aufmerksamkeitsfunktionen, basierend auf Bundesens mathematisch begründeter Theory of 

Visual Attention (TVA) (Bundesen, 1990). Dieses Verfahren weist, im Gegensatz zu
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konventionellen neuropsychologischen Tests, eine große Testsensitivität auf und ermöglicht 

die Schätzung von vier mathematisch unabhängigen Aufmerksamkeitsparametern. Diese sind 

die allgemeine Verarbeitungsgeschwindigkeit C, die Speicherkapazität des visuellen 

Kurzzeitgedächtnisses K, die Top-Down-Kontrolle α und die räumliche 

Aufmerksamkeitsverteilung wλ.  

Der erste Teil der vorliegenden kumulativen Dissertation beinhaltet zwei doppelt-

verblindete, placebokontrollierte und randomisierte Studien, in denen dieses 

parameterbasierte Verfahren eingesetzt wurde. Ziel war es hierbei, die visuellen 

Aufmerksamkeitsleistungen bei klinisch depressiven (Studie I) und schizophrenen Patienten 

(Studie II) in Hinblick auf mögliche Einbußen gegenüber gesunden Kontrollprobanden zu 

untersuchen. Als ursächlich für die Aufmerksamkeitsdefizite werden 

Aktivitätsveränderungen in dorsolateralen präfrontalen Alertness-Netzwerken diskutiert (z.B. 

Barch & Ceaser, 2012; Kaiser, Andrews-Hanna, Wager, & Pizzagalli, 2015). Eine 

Wiederherstellung dieser Aktivitätsveränderungen mittels transkranieller 

Gleichstromstimulation (tDCS) könnte also Alertness-abhängige kognitive Defizite in diesen 

Patienten verbessern. Daher war ein weiteres Ziel dieser Studien, die Auswirkung einer 

einmaligen anodalen Gleichstromstimulation (2 mA, 20 Minuten) über dem dorsolateralen 

präfrontalen Kortex auf bestimmte Aufmerksamkeitsfunktionen zu untersuchen. Zu diesem 

Zweck wurden die TVA-basierten Aufmerksamkeitsparameter vor, unmittelbar nach und 24 

Stunden nach der Stimulationsbehandlung gemessen. Bei Patienten mit majorer Depression 

ergab die parametrische Aufmerksamkeitsmessung eine signifikante Reduktion der 

Verarbeitungsgeschwindigkeit (C) gegenüber den gesunden Kontrollprobanden. Die 

Aufmerksamkeitsschwierigkeiten der Patienten mit majorer Depression sind also auf eine 

verlangsamte Aufnahme visueller Informationen zurückzuführen. Es ist auszuschließen, dass 

diese Verlangsamung motorischer Natur ist, da die TVA-basierte Aufmerksamkeitstestung 



Deutsche Zusammenfassung 

 131 

lediglich die reine Aufmerksamkeitsleistung, bereinigt um die motorische Komponente, 

erfasst. Das Defizit in der Verarbeitungsgeschwindigkeit konnte mittels einer einmaligen 

Gleichstromstimulationsbehandlung des präfrontalen Alertness-Systems verbessert werden. 

Dieser Effekt wurde 24 Stunden nach Beendigung der Stimulation beobachtet. Aus 

neurophysiologischer Sicht ist dieser Stimulationseffekt auf die 

Verarbeitungsgeschwindigkeit möglicherweise auf tDCS-induzierte N-Methyl-D-Aspartat 

(NMDA) Rezeptor-abhängige Plastizitätseffekte zurückzuführen. Auf Netzwerkebene 

könnten diese Nacheffekte tDCS-induzierte Veränderungen der funktionellen Konnektivität 

in frontoparietalen Alertness-Netzwerken indizieren, die sich auf Verhaltensebene in 

retardierten Effekten manifestieren. Diese Ergebnisse deuten an, dass sogar eine einmalige 

präfrontale Gleichstromstimulationsbehandlung länger anhaltende neuro-kognitive Effekte 

bewirken kann. Dies spricht für eine über Zeitperioden unspezifischer tDCS-induzierter 

Erregbarkeitssteigerung hinausgehende Erhöhung der kortikalen Untererregung. 

Schizophrenie-Patienten zeigten gegenüber gesunden Kontrollprobanden eine 

signifikante Reduktion der allgemeinen Verarbeitungskapazität (C und K), die den 

Aufmerksamkeitsschwierigkeiten zugrunde zu liegen scheinen. Bezüglich einer 

kognitionsverbessernden Wirksamkeit der tDCS ergaben die vorliegenden Ergebnisse 

vielmehr einen interferierenden als verbessernden Effekt auf einen übungsabhängigen 

Anstieg der Verarbeitungsgeschwindigkeit der anodalen präfrontalen tDCS. Anhand dieser 

Ergebnisse kann nicht ausgeschlossen werden, dass die angewandten Stimulationsparameter 

ein kognitives Sicherheitsrisiko für Schizophrenie-Patienten darstellen. Bei gesunden 

Kontrollprobanden zeigten sich keine tDCS-induzierten Effekte.  

Die Untersuchung von Patienten mit Aufmerksamkeitsstörungen ermöglicht 

allgemeinpsychologische Fragestellungen anzugehen, die sich mit der Rolle von 

Aufmerksamkeitsfunktionen für die Informationsverarbeitung befassen. Außerhalb der 
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klinischen Forschung besteht demgemäß die Möglichkeit, Patienten als Modell dafür zu 

nutzen, um bei einem Ausfall bestimmter Funktionen Rückschlüsse über ihre Bedeutung zu 

gewinnen. Speziell die Untersuchung von Patienten mit Extinktion, die eine 

rechtshemisphärische Hirnschädigung erlitten haben, ist in diesem Zusammenhang von 

großem Interesse.  

Eine relevante allgemeinpsychologische Frage betrifft die Bedeutung selektiver 

Aufmerksamkeit für Wahrnehmungsprozesse. Wahrnehmung und Aufmerksamkeit sind im 

Dienste der Handlungssteuerung zwei eng miteinander verbundene Konstrukte. Jedoch ist bis 

dato nicht abschließend geklärt, ob selektive Aufmerksamkeit für die perzeptuelle Integration 

von Objektelementen erforderlich ist. Die Ergebnisse vorhandener Studien sind nicht 

eindeutig: während einige Studien darauf hindeuten, dass selektive Aufmerksamkeit eine 

wichtige Rolle für Objektintegrationsprozesse spielt (z.B. Treisman & Gelade, 1980), 

behaupten andere, dass diese Prozesse präattentiv und automatisch ablaufen (Driver & 

Baylis, 1998; Gilchrist, Humphreys, & Riddoch, 1996; Scholl, 2001). Im zweiten Teil der 

vorliegenden Dissertation wurde daher die Rolle selektiver Aufmerksamkeit in 

Objektintegrationsprozessen genauer analysiert. Diese Fragestellung wurde anhand der 

Untersuchung aufmerksamkeitsgestörter Patienten, die einen lateralen Bias der räumlichen 

Aufmerksamkeit zeigen, angegangen. Insbesondere wurde im Rahmen einer visuellen 

Suchaufgabe geprüft, ob und in welchem Maße selektive Aufmerksamkeitsdefizite bei 

Patienten mit Extinktion zu Schwierigkeiten bei Objektintegrationsprozessen führen. Bei 

Darbietung eines Einzelreizes, der entweder einen zu gruppierenden Distraktor oder eine zu 

gruppierende Zielreiz Kanizsa Figur darstellte, zeigten Patienten keine signifikanten 

Unterschiede in der Suchleistung gegenüber gesunden Kontrollprobanden. In einer 

kompetitiven Suchsituation, in der mehrere zu gruppierende Objekte präsentiert wurden, 

zeigte sich dahingegen ein extinktionsspezifischer räumlicher Bias. Basierend auf diesen 
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Ergebnissen kann geschlussfolgert werden, dass in kompetitiven Suchsituationen ein 

Aufmerksamkeitsbias zu unausgewogenen Gruppierungsoperationen führt: intakte 

Gruppierung im rechten, beachteten, und eingeschränkte Gruppierung im linken, weniger 

beachteten Hemifeld. Dieses Ergebnis deutet auf einen wichtigen Beitrag selektiver 

Aufmerksamkeit zu Objektintegrationsprozessen hin.
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