
 

 

 

Functional and phylogenetic analysis  
of the endosomal-targeted proteins 

CML4 and CML5 in Arabidopsis thaliana 
 

 

 

 

 

Dissertation 

der Fakultät für Biologie 

der 

Ludwig-Maximilians-Universität München 

 

 

Vorgelegt von 

Henning Ruge 

 

München, den 21.12.2017 

 



 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter/in:  1. Prof. Dr. Ute C. Vothknecht 

   2. Prof. Dr. Peter Geigenberger 

 

Datum der Einreichung: 21.12.2017 

Datum der Promotion: 07.05.18 



 

3 

 

 

 

 

 

Eidesstattliche Erklärung 

 

Ich versichere hiermit an Eides statt, dass die vorliegende Dissertation von mir selbständig 

und ohne unerlaubte Hilfe angefertigt wurde. 

 

 

 

Erklärung 

 

Diese Dissertation wurde keiner weiteren Prüfungskommission weder in Teilen noch als 

Ganzes vorgelegt. Ich habe nicht versucht, anderweitig eine Dissertation einzureichen oder 

mich einer Doktorprüfung zu unterziehen. 

 

 

 

 

 

 

 

 

       München, 07.08.2018                       

    Ort, Datum        Henning Ruge 

 



TABLE OF CONTENT 

4 

 

Content 

1. Introduction ......................................................................................................................... 6 

1.1 Calcium ions – tight regulation of a cytotoxic second messenger ................................. 6 

1.2 Ca2+ signatures and their translation into cellular responses by Ca2+-sensor proteins ... 7 

1.3 The endomembrane system .......................................................................................... 13 

1.4 Aim of this work ........................................................................................................... 15 

2. Material and methods ....................................................................................................... 16 

2.1 Material ......................................................................................................................... 16 

2.1.1 Chemicals, enzymes and kits ............................................................................ 16 

2.1.2 Seeds and bacterial strains ................................................................................ 16 

2.1.3 Vectors, constructs and primers. GST – glutathione S-transferase. ................. 17 

2.1.4 Blotting membranes, protein and DNA ladders, chromatography resins ......... 21 

2.1.5 Antisera ............................................................................................................. 21 

2.2 Methods ........................................................................................................................ 21 

2.2.1 Molecular biological and cell biological methods ............................................ 21 

2.2.2 Biochemical methods ....................................................................................... 31 

2.2.3 Bioinformatical methods .................................................................................. 35 

3. Results ................................................................................................................................. 37 

3.1 In-depth characterisation of AtCML4 and AtCML5 sub-cellular localisation and 
topology ........................................................................................................................ 37 

3.1.1 Sequence analysis of the N-terminus of AtCML4- and AtCML5-like proteins 
in Brassicaceae species ..................................................................................... 37 

3.1.2 Analysis of AtCML4 and AtCML5 co-localisation in N. benthamiana 
protoplasts and endogenous promoter-driven expression in A. thaliana 
protoplasts ......................................................................................................... 39 

3.1.3 Detailed analysis of AtCML5-YFP sub-cellular localisation ........................... 41 

3.1.4 Topology elucidation for AtCML5-YFP and AtCML51-28-YFP via protease 
protection assay ................................................................................................ 44 

3.2 Functional analysis of AtCML4 and AtCML5 ............................................................. 46 

3.2.1 In vivo measurement of [Ca2+]f fluctuations in close proximity to membranes in 
A. thaliana ........................................................................................................ 46 

3.2.2 Interaction partner identification via Ca2+-dependent pull-down assay from 
microsome/cytoplasm extracts from A. thaliana leaf tissue ............................. 50 

3.2.3 Microscopic co-localisation analysis of potential interaction partners of 
AtCML4 and AtCML5 ..................................................................................... 54 

3.2.4 Phenotypic analysis of an atcml5 knock-out mutant line ................................. 57 

3.2.5 Stable siRNA-based reduction of AtCML4 transcript abundance in planta for 



TABLE OF CONTENT 

5 

 

phenotype analysis ............................................................................................ 60 

3.2.6 Detection of endogenous AtCML4 protein levels with monoclonal antibodies
 .......................................................................................................................... 62 

3.2.7 Promoter activity analysis for AtCML4 and AtCML5 ..................................... 64 

3.3 Phylogenetic analysis of CMLs harbouring a signal-anchor sequence similar to 
AtCML4 and AtCML5 in the green lineage ................................................................. 72 

4. Discussion ........................................................................................................................... 77 

5. Abbreviations ..................................................................................................................... 87 

6. References .......................................................................................................................... 88 

Summary ............................................................................................................................... 102 

Zusammenfassung ................................................................................................................ 103 

Acknowledgements ............................................................................................................... 104 

Appendices ............................................................................................................................ 105 

Appendix I. Species list for sequence alignment in Figure 1 ......................................... 105 

Appendix II. MASCOT analysis of peptides identified in mass spectrometric analysis 106 

Appendix III. Protein sequences subjected to phylogenetic analysis ............................... 108 

Appendix IV. MSA of CMLs with AtCML4_5-like N-terminus ..................................... 134 

Appendix V. License and official OUP permission for Figure 16 .................................. 148 

 

 

 



INTRODUCTION 

6 

 

1. Introduction 

1.1 Calcium ions – tight regulation of a cytotoxic second messenger 

Calcium ions (Ca2+) are essential ions to biological systems and serve various functions, e.g. 

as structural element in proteins (Drucker et al. 1971) and tissues (Baker et al. 1946, Demarty 

et al. 1984). However, Ca2+ also play a vital role as second messengers in eukaryotic systems. 

Plants are sessile life forms and therefore require mechanisms for perceiving changes in 

environmental conditions and for initiating responses on a cellular level, in order to maintain 

fitness for their habitat. Therefore, plants encode an extensive set of sensor and signal 

transducer proteins to decode Ca2+ signals, which are invoked by external and internal 

stimuli (reviewed in Clapham 1995, Dodd et al. 2010, Kudla et al. 2010, Perochon et al. 

2011). Ca2+ signalling potentially already emerged in the last common ancestor of eukaryotes, 

and from there on evolution of proteins participating in Ca2+ signalling proceeded differently 

in unikonta and bikonta (Plattner et al. 2015, Marchadier et al. 2016). The variety of 

processes involving Ca2+ as second messenger in plants comprises response to abiotic and 

biotic stress factors, hormone signalling and growth regulation pathways, interaction with 

symbiotic partners and others (Zhou et al. 2009, Drerup et al. 2013, Miller et al. 2013, Zhang 

et al. 2016, Ligaba-Osena et al. 2017). Many of these processes involve elevations in 

cytoplasmic free calcium ion concentration ([Ca2+]f) that would - given a permanent 

establishment - be cytotoxic due to the potential of Ca2+ to form insoluble complexes with 

free phosphate, leading to energetic breakdown of the cell. This favoured the development of 

mechanisms to sequester Ca2+ in storage compartments, e.g. endoplasmic reticulum (ER), 

apoplast and vacuole. These processes are mediated by the activity of ATP-dependent pumps 

(Bonza et al. 2000, Schiøtt et al. 2004, Kamrul Huda et al. 2013) and Ca2+/H+ -antiporters 

(Cheng et al. 2005, Hirschi et al. 1996) in the respective compartment membranes. This tight 

maintenance of low cytoplasmic base levels of [Ca2+]f is one of the reasons for which Ca2+can 

serve as potent second messengers. However, in order to evoke transient elevations in 

cytoplasmic [Ca2+]f, the presence of channels facilitating transport across the membranes of 

the internal calcium stores is essential. Whereas in Homo sapiens eight different types of Ca2+ 

channels are present, higher plants harbour a less diverse set of proteins mediating Ca2+ influx 

into the cytoplasm. The Arabidopsis thaliana (A. thaliana) genome encodes one two-pore 

channel, 20 glutamate receptors, 20 cyclic nucleotide-gated channels and ten 
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mechanosensitive ion channels (Verret et al. 2010). In addition, there is a set of osmosensing 

channels, termed OSCAs (Yuan et al. 2014). Through their opposed and tightly controlled 

functions Ca2+-permeable channels together with Ca2+/H+ -antiporters and Ca2+-ATPases 

generate, modulate and terminate stimulus-specific Ca2+ signals in the cell. However, these 

signals need to be perceived and translated into a specific cellular response, which requires a 

toolset of Ca2+-binding proteins that has evolved to a system of low diversity but high 

versatility in the plant kingdom. 

1.2 Ca2+ signatures and their translation into cellular responses by Ca2+-sensor 
proteins 

Investigation of Ca2+ as second messenger gave rise to the question of the mechanisms 

establishing a sufficient degree of specificity, since a vast variety of stimuli evoke Ca2+ fluxes 

in a cell, often within the same compartment. One level of specificity has been found to be 

constituted by the spatiotemporal patterning of [Ca2+]f alterations as well as the modulation of 

their amplitude (McAinsh et al. 2009, McAinsh et al. 1998), termed Ca2+ “signatures”. A key 

feature of Ca2+ rendering it an ideal locally acting second messenger is its very low diffusion 

rate in an environment like the cytoplasm, due to interaction with other ions, lipids or proteins 

(Allbritton et al. 1992). This allows for large amounts of Ca2+ to be accumulated in a limited 

volume of cellular space, reducing the absolute amount of Ca2+ required to elevate the [Ca2+]f 

in the defined area. Further, it represents the basis for the occurrence of Ca2+ microdomains 

providing additional signal specificity by triggering only Ca2+-binding proteins present in this 

very sub-domain of the respective cellular compartment. Last, it enables [Ca2+]f oscillations to 

be modulated at high frequencies and with high amplitudes, for under these conditions, 

channel conductance and transporter kinetics represent the major limiting factors. 

Additionally, it has been shown that the stimulus-specific Ca2+ signatures are different 

depending on the cell type they are invoked in, adding another layer of complexity, but also 

specificity to the Ca2+ signalling network (Martí et al. 2013). 

Further specificity is established by a range of Ca2+-binding proteins in plant cells, their 

defined sub-cellular localisation and expression patterns. Despite a huge variety of these 

proteins in plants, mainly three groups shape the Ca2+ signature-decoding protein landscape in 

the green lineage of organisms: calmodulins (CAMs) and calmodulin-like proteins (CMLs), 

calcium-dependent protein kinases (CDPKs) and the two-component system of calcineurin 

B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) (Edel et al. 2017, Edel et 
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al. 2014, Bender et al. 2013, Kudla et al. 2010, Luan 2009, Batistič et al. 2009, McCormack 

et al. 2005, McCormack et al. 2003). These sensor proteins can be grouped according to 

whether they possess enzymatic activity (CDPKs; termed “signal responders”), or whether 

they modulate the activity of their interaction partners following a Ca2+-dependent change in 

their own conformation (CAMs, CBLs, CMLs; termed “sensor relays”) (Sanders et al. 2002). 

CIPKS 
Since CIPKs do not harbour motifs for Ca2+ binding and constitute the main downstream 

targets for CBLs hitherto identified (Guo et al. 2002, Costa et al. 2017, Drerup et al. 2013, 

Steinhorst et al. 2015, Guo et al. 2001, Shi et al. 1999), the combination of CBL-CIPKs 

resembles a chimera of both aforementioned groups. However, there is evidence for CBL10 in 

A. thaliana directly interacting with TOC34, thereby negatively affecting its GTPase 

activity (Cho et al. 2016). CBL proteins share major parts of their sequence with 

calcineurin B and neuronal Ca2+ sensors from the animal system (Liu et al. 1998), containing 

four EF-hands, of which the first one comprises 14 amino acids instead of the canonical 

twelve, and they do not harbour any intrinsic enzymatic activity (Nagae et al. 2003). The 

sub-cellular localisation and often the physiological function of CBLs are influenced by the 

presence of motifs for myristoylation and other lipid modifications (Ishitani et al. 2000, 

Batistič et al. 2008), N-terminal signal-anchors, and tonoplast targeting signals (reviewed in 

Mao et al. 2016). Multiple interactions between the ten CBLs and 26 CIPKs in A. thaliana 

increase the versatility of this two-component signalling system (Batistic et al. 2004, Drerup 

et al. 2013, Tang et al. 2012). Upon binding of Ca2+, CBLs change their globular 

conformation and expose hydrophobic residues serving as interaction interface with the 

NAF-domain of CIPKs (Sanchez-Barrena et al. 2005, Guo et al. 2001), thereby releasing the 

autoinhibition of the kinase. Functional investigations on CBLs and CIPKs have shown their 

major role in ion homeostasis (Tang et al. 2015) and stress signalling, especially abscissic 

acid (ABA)-related stress responses to drought and salt (Sanyal et al. 2017, Tang et al. 2012, 

Guo et al. 2002). Several CBL-CIPK pathways include regulation of ion channels or pumps, 

e.g. CBL4-CIPK24 activates an Na+/H+ -exchanger in the plasma membrane in response to 

salt stress (Qiu et al. 2002); CBL10-CIPK24 regulates a Na+/H+ -exchanger in the tonoplast 

membrane influencing ion homeostasis (Kim et al. 2007); CBL4-CIPK6 alters AKT2 channel 

conductance and localisation (Held et al. 2011). Additionally, CBL-CIPK complexes have 

been found to provide a functional link between Ca2+- and reactive oxygen species-signalling 

(Drerup et al. 2013). However, the significance of CBL-CIPK complexes is not restricted to 
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stress response scenarios. It has been shown that pollen tube growth in Arabidopsis is retarded 

in plants with altered CBL3 and CBL2 transcript abundance. This macroscopic phenotype has 

been linked to distorted vacuole morphology and indicates a constitutive role of both proteins 

in regulating vacuolar and ultimately developmental processes (Steinhorst et al. 2015). In 

general, the role of CBL-CIPKs, independent of their influence on development, response to 

salt stress or osmotic stress, is remarkably often related to ion redistribution or homeostasis. 

CDPKs 
Though CDPKs and CIPKs are similar in terms of their kinase activity being constitutively 

repressed by an autoinhibitory domain, CDPKs do not require proteins like CBLs for 

activation. C-terminal to their autoinhibitory domain, they usually harbour a CAM-domain, 

which undergoes sequential conformational changes resulting in the dislocation of the 

inhibitory domain (Chandran et al. 2006). Autophosphorylation is common among CDPKs 

and has recently been shown for AtCPK28 to lead to increased sensitisation towards Ca2+, 

probably providing a mechanism for priming the kinase for subsequent Ca2+ stimuli after an 

initial triggering [Ca2+]f elevation (Bender et al. 2017). Similar to CBLs, CDPKs in 

A. thaliana can be clustered according to their sub-cellular localisation, which ranges from 

exclusively membrane associated, e.g. AtCPK7 and AtCPK9 to mainly membrane associated, 

e.g. AtCPK2 and AtCPK25, or membrane localised and soluble, e.g. AtCPK5 and 

AtCPK3 (Boudsocq et al. 2012). This behaviour can be at least partially attributed to the 

finding that CDPKs are often myristoylated and/or palmitoylated, providing them with a 

membrane anchor. Although many CDPKs have been found to be plasma 

membrane-localised, the sub-cellular destinations of CDPKs are diverse (summarised in 

Simeunovic et al. 2016). Alterations of the acylation status of AtCPK16 affecting its 

sub-cellular localisation indicated a potential regulatory function of reversible acylations on 

CDPK activity (Stael et al. 2011). Additionally, CDPKs display differences in the following 

three parameters: i) Ca2+ binding affinity, ii) the extent to which their enzymatic activity is 

dependent on Ca2+ binding, iii) the extent to which their affinity towards Ca2+ is altered 

depending on the substrate they bind (Boudsocq et al. 2012). Differences in these 

characteristics probably further determine the wide range of physiological functions, served 

by CDPKs (Gao et al. 2014, Simeunovic et al. 2016, Ormancey et al. 2017). AtCPK11 and 

AtCPK24 have been shown to regulate the pollen tube-specific potassium channel AtSPIK by 

Ca2+-dependent and Ca2+-independent phosphorylation, respectively, which in turn affects 

pollen tube growth. Additionally, AtCPK11 acts in ABA-induced ethylene production by 
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phosphorylating AtACS6, a synthase of the ethylene precursor, which then leads to reduction 

of root growth (Luo et al. 2014). AtCPK28 is involved in developmental processes regulated 

by jasmonic acid (JA) and gibberellic acid (GA) involving stem elongation and vascular 

architecture (Matschi et al. 2013, Matschi et al. 2015).  

CAMs and CMLs 
In addition to phosphorylation as translation of Ca2+ signals into cellular response, the Ca2+ 

sensor toolkit comprises proteins, CAMs and CMLs, that modulate effector protein function 

directly via interaction. CAM harbours no other functional domains than EF-hands required 

for Ca2+ binding and its evolutionary origins can be traced back to the common ancestor of all 

eukaryotes, since it is ubiquitously present in proteomes of species from simple amoeba and 

algae up to mammals and angiosperms (reviewed in Plattner 2017, McCormack et al. 2003). 

A potential homologue of CAM has been identified in the genome of the prokaryote 

Streptomyces erythraeus, emphasising its long phylogenetic roots (Swan et al. 1987). 

Apo-CAM is a globular, acidic protein of 149 amino acids, which form four EF-hands that 

can bind Ca2+ in a cooperative fashion (Klevit et al. 1984). Ca2+ binding induces a 

conformational change of the protein, leading to exposure of hydrophobic residues (Zhang et 

al. 1995, Ikura et al. 1992). Together with a variety of hydrophilic amino acids these residues 

form an α-helical interface between the N-terminal EF-hand pair (N-lobe) and the C-terminal 

EF-hand pair (C-lobe) that enables holo-CAM to bind other proteins in a Ca2+-dependent 

manner (Chattopadhyaya et al. 1992). The interaction establishment process involves initial 

electrostatic interactions followed by hydrophobic interactions, which determine affinity and 

specificity of the binding, and conformational changes in the flexible CAM and its target 

structure (Liu et al. 2017). The large amount of methionine residues exposed upon Ca2+ 

binding, significantly contribute to the interaction partner promiscuity of CAM due to their 

highly flexible side chains (Zhang et al. 1995, Liu et al. 2017). The classical CAM target 

motif is a short α-helical peptide characterised by the consensus sequence 

IQXXXRGXXXR (in which X represents any amino acid), which was first discovered as 

interaction interface in unconventional mysosins (Espreafico et al. 1992). Spacing of the 

hydrophobic residues rather than overall sequence is the interaction efficacy-determining 

feature of this peptide. Different variations of this motif, including the 1-8-14 and 1-5-10 

motif (numbers indicate positions of conserved hydrophobic residues required for interaction) 

have been identified in various proteins (summarised in Rhoads et al. 1997). In accordance 

with the broad interaction partner specificity of CAMs, the cellular functions they are 
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involved in are very diverse. Among CAMs in Arabidopsis AtCAM7 is especially noteworthy, 

because it has been shown to directly bind Z-box DNA via its Arg127 residue, whereas the 

highly similar AtCAM2, AtCAM3 and AtCAM5 do not display DNA-binding 

capacity (Kumar et al. 2016). AtCAM7 serves as transcription factor enhancing the 

expression of light-induced genes, thereby actively influencing photomorphogenesis of 

A. thaliana seedlings (Kushwaha et al. 2008). In this respect it also interacts with AtHY5, a 

bZIP transcription factor involved in orchestrating photomorphogenesis and different 

hormone signalling pathways, in a Ca2+-dependent manner, driving AtHY5 expression (Abbas 

et al. 2014). Further, AtCAM7 was found to interact with the ATP-binding cassette transporter 

AtPEN3, which is a mediator of non-host resistance in Arabidopsis triggered upon recognition 

of pathogen-associated molecular patterns (Campe et al. 2016). There are also indications for 

a role of CAMs in regulating the import machinery of mitochondria (Parvin et al. 2017) and 

peroxisomes as well as peroxisomal enzymes (Corpas et al. 2014, Corpas et al. 2017). Despite 

their lack of motifs/domains other than EF-hand domains, CAMs exert their function as 

sensor relays in a vast variety of physiological processes. Whereas CAMs have retained their 

invariant structure in animal and plant cells alike, a rather similar but structurally more 

diverse Ca2+ sensor protein family has evolved in the bikonta lineage, the CMLs. 

McCormack and Braam analysed CAM and CAM-related proteins in the A. thaliana 

proteome, and classified proteins as CMLs if they showed at least 16 % overall amino acid 

identity to CAM and contained at least two EF-hands (with the exception of CML1 containing 

only one EF-hand). Their sequence analyses showed that the seven CAMs in A. thaliana, 

which represent three isoforms, display only little sequence diversity. However, the sequence 

similarities between CMLs vary to great extent, which probably even affects the Ca2+ binding 

capabilities of different EF-hands and interaction partner variety in single proteins 

(McCormack et al. 2003). Similar analyses have also been carried out in species, including 

Oryza sativa (Boonburapong et al. 2007), Brassica rapa subsp. pekinensis (Nie et al. 2017) 

and Lotus japonicus (Liao et al. 2017). Additionally, expression analyses in A. thaliana and 

Oryza sativa have revealed that whereas CAMs are ubiquitously expressed, CMLs display 

strong variation in their spatiotemporal expression patterns. This indicates cellular functions 

specific to those organs or developmental stages rather than constitutive roles of these 

proteins (McCormack et al. 2005, Boonburapong et al. 2007). Given the great number of 

CML genes in Arabidopsis, hitherto only a small fraction of CMLs have been functionally 

analysed and since investigations indicated single CMLs to be potentially involved in a 
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variety of pathways, determination of the entire set of functions for each CML is challenging. 

AtCML24 is expressed in pollen tubes and has been shown to affect pollen tube growth by 

regulating cytoplasmic Ca2+ and K+ levels and the correct establishment of the actin 

cytoskeleton required for pollen tube elongation (Yang et al. 2014). Additionally, it interacts 

with AtATG4b, a component of the autophagy system (Tsai et al. 2013b), which is also vital 

for pollen tube growth. A similar function has been attributed to AtCML25, which also 

controls inward Ca2+ and K+ fluxes and influences pollen tube growth and pollen fertility 

(Wang et al. 2015). Another CML involved in developmental process control is AtCML42, 

which is expressed in various cell types, e.g. support cells at the basis of trichomes, and is 

required for establishment of trichome architecture (Dobney et al. 2009). Furthermore, 

AtCML42 has been found to be a repressor of herbivore attack response mediated by 

JA (Vadassery et al. 2012), exemplifying the versatility of CML function in cellular processes. 

Expression analyses for AtCML37, AtCML38 and AtCML39 showed constitutive expression 

of these genes in root cortex, root tip and stipules (AtCML37), guard cells of developing 

leaves and lateral root buds (AtCML38) and pollen (AtCML39), indicating tissue-specific 

functions (Vanderbeld et al. 2007). Another example of a CML potentially involved in 

developmental and stress signalling is AtCML43, whose expression is constitutive in root tips 

and is triggered in more proximal parts of the root by ectopic salicylic acid (SA) 

application (Bender et al. 2014). In addition to differential expression patterns, structural 

differences of CMLs add further potential to functional diversification. Aside from sequence 

alterations within the EF-hands themselves, several CMLs harbour either N- or C-terminal 

sequence stretches pre- or succeeding their set of EF-hands, which might affect their target 

specificity and sub-cellular localisation. The sequence of AtCML3 contains a C-terminal 

“SNL” tripeptide targeting it to peroxisomes, where it mediates the dimerisation of the 

peroxisomal protease AtDEG15, thereby modulating its cleavage behaviour (Dolze et al. 

2013). The N-terminal sequence stretch of AtCML30 targets this sensor to mitochondria 

(Chigri et al. 2012). AtCML36, which contains a 60 amino acid N-terminal stretch, has been 

shown to be bound to the plasma membrane and activate AtACA8 to remove Ca2+ from the 

cytoplasm following transient [Ca2+]f elevation (Benschop et al. 2007, Astegno et al. 2017). 

Initial investigation of AtCML4 and AtCML5, two paralogous Ca2+ sensors in Arabidopsis, 

revealed them to be unique among the different CMLs, CDPKs and CBL-CIPKs investigated 

hitherto, for they were found to be localised at vesicle membranes, where none of the other 

Ca2+ sensor proteins had been detected before (Flosdorff 2014). These two Ca2+ sensors 
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suggest a potential link between Ca2+ signalling and the vesicular trafficking system, which 

was thus far unprecedented. 

1.3 The endomembrane system 

The compartmentalisation of the cytoplasm by means of membrane-enclosed domains is a key 

characteristic of eukaryotic cells. The major components of this system are the ER, the Golgi 

apparatus, the vacuole(s) and the plasma membrane, which are interconnected by a variety of 

tubular structures or transient vesicles mediating soluble and membrane-bound cargo 

transport. By definition, the plasma membrane is not an endomembrane due to its 

cell-delimiting nature enclosing the cytoplasm, but since it is a main destination and origin for 

vesicular trafficking, it is functionally connected. The correct sorting and distribution of 

soluble and membrane-bound cargo among the components of this system is a requirement for 

functionality and perturbations of the sorting processes are often related to severe 

phenotypes (Zhao et al. 2016, Laval et al. 2003, Hirano et al. 2011). Proteins synthesised at 

the ER enter anterograde transport towards the Golgi either in a receptor-dependent or 

receptor-independent (bulk flow) fashion (Malkus et al. 2002). Through special motifs, e.g. 

diacidic patches (Hanton et al. 2005), the cargo receptors and other transmembrane proteins 

are recognised by Sec24 (Pagant et al. 2015) in complex with Sec23 and Sar1 (Bi et al. 2002) 

on the cytoplasmic ER surface, by which they are gathered into domains. Sar1 mediates 

membrane curvature and fission (Hariri et al. 2014, Hanna et al. 2016) and recruits the outer 

coat proteins Sec13 and Sec31, which stabilise the curved membrane and complete the COPII 

complex required for anterograde transport (Townley et al. 2008). The function of these 

proteins has been mostly studied in yeast and functional complementation assays have proven 

the similar function of their plant homologues (De Craene et al. 2014). However, there is still 

ongoing debate about whether there is a tubular connection between ER and Golgi, for their 

physical interaction has been shown (Sparkes et al. 2009) and might coexist with the 

COPII-coated vesicle pathway. In yeast and mammals, most ER-resident proteins are 

transported back from the cis-Golgi via vesicles coated by the heptameric COPI complex, the 

coatomer (Letourneur et al. 1994). Despite lack of information on the specific function of the 

respective COPI components in the plant system, the localisation of the coatomer subunits to 

the cis-Golgi and their requirement for retrograde transport and cell viability has been shown. 

Comparable to Sar1 for COPII function, the GTPase ARF1 has been found to be required for 

this process (Pimpl et al. 2000, Ahn et al. 2015, Langhans et al. 2008). Cargo is further 
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transported along the Golgi cisternae towards the trans-Golgi network (TGN), which merges 

with early endosomes (EE) originating from the endocytic pathway. Soluble cargo destined 

for lytic vacuoles and protein storage vacuoles are bound by the vacuolar sorting proteins 

VPS1, VPS3 and VPS4 (Lee et al. 2013) and FRET-FLIM analyses have revealed that cargo 

binding events occur in ER and Golgi, but further transport through TGN and 

multivesicularbodies (MVB) towards the vacuole are VSR-independent and probably occur 

by default (Künzl et al. 2016). Whereas export of VSRs from the ER towards cis-Golgi is 

mediated receptor-independently in bulk flow, the cytosolic tail of VSRs with their YMPL 

motif interacts with AP1, an adaptor protein in the clathrin coat of vesicles, and thus enables 

transport towards the vacuole instead of the plasma membrane (Gershlick et al. 2014). Cargo 

derived from endocytosis and destined to be degraded in the lytic vacuole, progresses from 

the TGN/EE via MVBs and the (late) pre-vacuolar compartment (PVC) to the vacuole. This 

involves maturation processes including alterations in luminal pH, vesicle structure and 

protein composition (Shen et al. 2013, Martinière et al. 2013, Scheuring et al. 2011, 

Nodzyński et al. 2013). The retromer complex is required for the recycling of VSRs back to 

the Golgi from TGN and MVBs and retromer subunit mutants can cause severe structural 

abnormalities in the PVC (Oliviusson et al. 2006, Nodzyński et al. 2013, Niemes et al. 2010). 

Transmembrane proteins and soluble cargo to be secreted into the apoplast are transported 

towards the plasma membrane in clathrin-coated vesicles (Larson et al. 2017). Clathrin 

complexes are also required for endocytosis similar to the animal system, and additionally for 

recycling plasma membrane proteins back to the cell surface (Kitakura et al. 2011, Bandmann 

et al. 2012). Concomitantly to the described trafficking processes, pathways directly linking 

ER and tonoplast (Viotti et al. 2013) or Golgi and tonoplast exist (Hinz et al. 1999, Hillmer et 

al. 2001, Wen et al. 2015). 

Implications for Ca2+ in endomembrane system function are represented by the role of 

annexins as Ca2+ binding proteins in the tethering of ER and plasma membrane at specific 

junction sites. Additionally, Ca2+ have been shown to serve as electrostatic bridging ions 

during membrane fusion (Tsai et al. 2013a) and their binding to phosphoinositides alters the 

relative orientation of head groups, thereby influencing binding of lipid-interacting proteins 

(Bilkova et al. 2017). 
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1.4 Aim of this work 

In contrast to the animal system, in which CAM has been implicated in vesicle fusion events 

(Mills et al. 2001), evidence for Ca2+ sensors mediating such processes in plants is currently 

missing. In spite of their wide association with membranes, thus far no CBL or CDPK was 

shown to be associated with vesicular membranes of the endosomal system. The only 

exception is AtCBL10, which is anchored in the tonoplast and membranes of the PVC (Kim et 

al. 2007). This raises the question for the function and evolutionary origin of Ca2+ sensors on 

the surface of plant endosomal membranes, as presented by AtCML4 and AtCML5. 

To elucidate the physiological function of AtCML4 and AtCML5, different approaches have 

to be followed, including i) the potential phenotypes of atcml4 and atcml5 loss-of-function 

single and atcml4/atcml5 loss-of-function double mutants, ii) the spatiotemporal expression 

patterns of AtCML4 and AtCML5 and iii) the identification of potential interaction partners of 

AtCML4 and AtCML5. An RNA interference-approach has to be used in wild-type and 

atcml5 knock-out mutant plants to generate atcml4 and atcml4/atcml5 loss-of-function 

mutants, respectively. Thus generated and previously available mutant plants are to be 

analysed regarding their phenotypes under different growth conditions, including the 

simulation of various stress scenarios. Furthermore, wild-type plants need to be stably 

transformed to express LUCIFERASE reporter constructs under the control of the AtCML4 

and the AtCML5 promoters to analyse at which developmental time points and in which 

tissues AtCML4 and AtCML5, respectively, are expressed. Potential interaction partners of 

AtCML4 and AtCML5 have to be identified in a pull-down approach, using recombinantly 

expressed variants of both proteins as bait. Additionally, the sub-cellular localisation of 

AtCML4 and AtCML5 has to be further dissected by quantitative assessment of microscopic 

data gained from in planta co-expression of compartment marker constructs with fluorescent 

fusion constructs of AtCML4 and AtCML5. In relation to that, the N-terminus of both 

proteins needs to be analysed with regard to its sequence and effect on overall protein 

topology. Also, the phylogenetic origin, development and distribution of CMLs targeted to the 

endosomal system within the green lineage of plants should be investigated. 
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2. Material and methods 

2.1 Material 

2.1.1 Chemicals, enzymes and kits 

If not otherwise mentioned, all chemicals were of premium quality and have been purchased 

from known suppliers. Dexamethasone and (D)-luciferin were purchased from 

Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA). Restriction enzymes required for 

cloning were supplied by New England Biolabs (Boston, MD, USA) or Fermentas (St. Leon 

Roth, Germany). T4-DNA ligase was supplied by Fermentas (St. Leon Roth, Germany). DNA 

extraction from agarose gels and out of polymerase chain reactions (PCR) were performed 

with the Nucleospin Extract II Kit by Macherey-Nagel (Düren, Germany). Plasmid DNA 

isolation from Escherichia coli (E. coli) cells was performed using the Nucleobond PC 100 

and PC 500 kits by Macherey-Nagel (Düren, Germany). 

 

2.1.2 Seeds and bacterial strains 

Propagation of plasmid DNA was performed in E. coli strain DH5α (NEB, Boston, MD, 

USA), whereas protein expression was performed in BL21-CodonPlus(DE3)-RIPL cells 

(Agilent technologies, Santa Clara, CA, USA). Transient transformation of 

Nicotiana benthamiana (N. benthamiana) plants was performed with 

Agrobacterium rhizogenes (A. rhizogenes) strain LBA1334 (Visser et al. 1989), whereas 

stable transformation of A. thaliana plants was carried out with Agrobacterium tumefaciens 

(A. tumefaciens) strain GV3101 (Vahala et al. 1989). 

Seed material for the T-DNA insertion line GABI-Kat 703E02 was supplied by the GABI-Kat 

project (Bielefeld, Germany). Arabidopsis wild-type (WT) seed material was purchased from 

LEHLE SEEDS (Round Rock, TX, USA) or The European Arabidopsis Stock Centre 

NASC (Nottingham, UK) and N. benthamiana seed material was supplied by the in-house 

plant cultivation facility. Seed material for plants stably transformed with the pOpOff2-LUC 

construct, were kindly provided by Iris Finkemeier (WWU Münster, Münster, Germany). 
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2.1.3 Vectors, constructs and primers. GST – glutathione S-transferase. 

General description of basic vectors used in this work 

pBIN19-AN-YFP Binary vector applied for stable A. thaliana 
or transient N. benthamiana transformation. 
If not indicated otherwise, restriction sites 
ApaI/NotI were used for the fusion gene or 
KpnI/ApaI for the promoter. Selection 
markers: Kanamycin/BASTA. 
 

Supplied by Dr Norbert 
Mehlmer (Mehlmer et al. 
2012) 

pBIN19-ANX Binary vector applied for stable A. thaliana 
or transient N. benthamiana transformation. 
Derived from pBIN19-AN-YFP. If not 
indicated otherwise, restriction sites used for 
cloning were ApaI/NotI and NotI/XhoI for 
the fusion gene or KpnI/ApaI for the 
promoter. Selection markers: 
Kanamycin/BASTA 
 

Designed in this work 

pGEX4T-3 Vector for expression fusion proteins with 
N-terminal GST tag in E. coli, restriction 
sites used for cloning were BamHI/NotI. 
Selection marker: Ampicillin 
 

GE Healthcare Europe 
GmbH, Freiburg, 
Germany 

pGREENII Vector for transformation of A. thaliana leaf 
mesophyll protoplasts. Used for expression 
of fusion proteins under control of 
endogenous promoter regions. Restriction 
sites used for cloning: EcoRI/XhoI for 
promoter, NcoI/SpeI for fusion genes. 
Selection marker: Ampicillin 
 

Kindly provided by Dr 
Peter Pimpl (ZMBP, 
University of Tübingen, 
Tübingen, Germany) 

pSOUP Helper plasmid for amplification of 
pGREENII plasmids in A. rhizogenes. 
Selection marker: Tetracyclin 

Supplied by Nottingham 
Arabidopsis Stock Centre 
(Nottingham, UK) 
 

pOpOff2 Vector for stable transformation of 
A. thaliana plants. Allows inducible 
expression of nucleotide sequences serving 
as double-stranded RNA samples for RNAi, 
cloning is described in 2.2.1.6. Selection 
marker: Spectinomycin/Hygromycin B 

Kindly provided by Prof 
Dr Katrin Philippar 
(Wielopolska et al. 2005) 

 



METHODS 

18 

 

Table 1: Plasmids used in this work. AA – amino acid, CDS – coding sequence, NT – nucleotide, GST – 
glutathione S-transferase, * - construct supplied by AG Vothknecht or donor mentioned 

Denotation Vector Description 

CML5-YFP* pBIN19-AN-YFP At2g43290 CDS 
CML4-mCherry pBIN19-AN-YFP At3g59440 CDS 
CML4-YFP pBIN19-AN-YFP At3g59440 CDS 
CML51-28-YFP* pBIN19-AN-YFP AAs 1-28 of At2g43290 (NTs 1-84) 
AtARA6-mCherry* pBIN19-AN-YFP At3g54840.1 CDS 
GmMAN1-mCherry* pBIN19-AN-YFP (Nelson et al. 2007) 
AtWAK1-mCherry-HDEL* pBIN19-AN-YFP (Nelson et al. 2007) 

mCherry-SKL pBIN19-AN-YFP 
mCherry protein followed by AA stretch 
“SKL” 

pAtCML5::CML51-28-YFP-
AEQ 

pBIN19-AN-YFP 
Promoter region and 5’UTR of At2g43290 
(1123 NTs upstream of CDS), followed by 
NTs 1-84 of the At2g43290 CDS 

pUBI::CML4 pBIN19-ANX 
Ubiquitin promoter followed by 
At3g59440 CDS 

pUBI::CML5 pBIN19-ANX 
Ubiquitin promoter followed by 
At2g34290 CDS 

pAtCML5::CML5 pBIN19-ANX 
Promoter region and 5’UTR of At2g43290 
(1123 NTs upstream of CDS), followed by 
At2g43290 CDS 

pAtCML4::LUC pBIN19-ANX 
Promoter region and 5’UTR of At3g59440 
(1822 NTs upstream of CDS), followed by 
FIREFLY LUCIFERASE CDS 

pAtCML5::LUC pBIN19-ANX 
Promoter region and 5’UTR of At2g43290 
(1123 NTs upstream of CDS), followed by 
FIREFLY LUCIFERASE CDS 

GST-CML521-215 pGEX4T-3 NTs 61-648 of At2g43290 CDS 
GST-CML421-195 pGEX4T-3 NTs 61-588 of At3g59440 CDS 

pAtCML4::CML5-YFP pGREENII 
Promoter region and 5’UTR of At3g59440 
(1822 NTs upstream of CDS), followed by 
At2g43290 CDS 

pAtCML5::CML5-YFP pGREENII 
Promoter region and 5’UTR of At2g43290 
(1123 NTs upstream of CDS), followed by 
At2g43290 CDS 

siRNA-CML41-300 pOpOff2 NTs 1-300 of At3g59440 CDS 
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Table 2: Primers used for cloning procedures. The restriction sites utilised are denoted in every primer name. 
Fw – forward primer, Rv – reverse primer, CDS – coding sequence, NT – nucleotide 

Primer name Sequence (5’3’) Amplicon 

Fw_CML4_XhoI 
AAGCTCGAGATGGTGAGA
GTCTTTC 

At3g59440 CDS 

Rv_CML4_NcoI 
TCGCCCTTGCTCACCATGG
CTGATCTATTGCTAAAGTC 

At3g59440 CDS 

Fw_YFP_CML4_NcoI 
GACTTTAGCAATAGATCAG
CCATGGTGAGCAAGGGCG
A 

YFP CDS 

Rv_YFP_SpeI 
AATCCTCGGACTAGTCTAG
CGCCCGCTCTTGTAC 

YFP CDS 

Fw_CML5specPromC
DS5UTR_EcoRI 

GCAACTTGAATTCACATTT
TTTCAGTTATTTTGTG 

1123 NTs upstream of At2g43290 
CDS to the 3’ end of the CDS 

Rv_CML5_PromCDS5
UTR _XhoI 

AAGCTCGAGAACTGTTGA
ATCACAACTC 

1123 NTs upstream of At2g43290 
CDS to the 3’ end of the CDS 

Fw_CML5_XhoI 
GCCAAGCTCGAGATGGTG
AGAATATTCCTTCTC 

At3g43290 CDS 

Rv_CML5_NcoI 
TCGCCCTTGCTCACCATGG
CATTACTGCTGCTAAAG 

At3g43290 CDS 

Fw_YFP_CML5_NcoI 
CTTTAGCAGCAGTAATGCC
ATGGTGAGCAAGGGCGA 

YFP CDS 

Rv_YFP_SpeI 
AATCCTCGGACTAGTCTAG
CGCCCGCTCTTGTAC 

YFP CDS 

Fw_CML4_PromCDS5
UTR_EcoRI 

CTTGAATTCTTTTCTGTCT
GAATCTCTG 

1822 NTs upstream of At3g59440 
CDS to the 3’ end of the CDS 

Rv_CML4_PromCDS5
UTR _XhoI 

AAGCTCGAGAACTCTTGG
CTTTG 

1822 NTs upstream of At3g59440 
CDS to the 3’ end of the CDS 

FwCML5_Promspec_
KpnI 

GGCGGTACCACATTTTTTC
AGTTATTTTGTG 

1123 NTs upstream of At2g43290 
CDS to the 5’ end of the CDS 

Rv_CML5_Prom5UTR
_ApaI 

AAGGGGCCCAACTGTTGA
ATCACAACTC 

1123 NTs upstream of At2g43290 
CDS to the 5’ end of the CDS 

Fw_CML4_Prom_Kpn
I 

GAAGGTACCTTTTCTGTCT
GAATCTCTGAGTTTAGG 

1822 NTs upstream of At3g59440 
CDS to the 5’ end of the CDS 

Rv_CML4_Prom5UTR
_ApaI 

AAGGGGCCCAACTCTTGG
CTTTGTTGAGAAC 

1822 NTs upstream of At3g59440 
CDS to the 5’ end of the CDS 

mCherry_ApaI_fw 
TCCGGGCCCATGGTGAGC
AAGGGCG 

mCherry CDS 

mCherry_SKL_NotI_r
v 

CGTTAGCGGCCGCTTACAA
TTTTGACTTGTACAGCTCG
TC 

mCherry CDS with SKL-coding 
NTs 
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At3g61760_cDNA_fw 
ATGGAGAGTTTGATTGCG
CTTGTGAAC 

At3g61760 CDS 

At3g61760_cDNA_rv 
CTTGGACCAAGCAACTGC
TTCAATATC 

At3g61760 CDS 

At3g61760_Apa_fw 
TTCGGGCCCATGGAGAGT
TTGATTGCGCTTG 

At3g61760 CDS 

At3g61760_Not_rv 
AACGCGGCCGCACTTGGA
CCAAGCAACTG 

At3g61760 CDS 

At4g11850_cDNA_fw 
ATGGCGTATCATCCGGCTT
ATACTGAG 

At4g11850 CDS 

At4g11850_cDNA_rv 
TATGGTGAGGTTTTCTTGT
AGTGCAAGG 

At4g11850 CDS 

At4g11850_Apa_fw 
TTCGGGCCCATGGCGTATC
ATCCGGCTTATAC 

At4g11850 CDS 

At4g11850_Not_rv 
AGGGCGGCCGCATATGGT
GAGGTTTTCTTGTAG 

At4g11850 CDS 

5g55050_cDNA_fw 
ATGCCGACGAACAACACT
CCG 

At5g55050 CDS 

5g55050_cDNA_rv 
TCATGTAGAGACCAACTG
AGTAAGAG 

At5g55050 CDS 

5g55050_Apa_fw 
TTGGGGCCCATGCCGACG
AACAACACTC 

At5g55050 CDS 

5g55050_Not_rv 
CAAGCGGCCGCCTGTAGA
GACCAACTG 

At5g55050 CDS 

Fw_PreCis_BamHI 
CCTGGATCCTTAGAAGTGT
TATTTCAGGGCC 

BamHI site, and recognition site 
for PreScission protease 

Fw_CML561-648_PreCis 
TGTTATTTCAGGGCCCGAA
GAAGCTACGAACTC 

At2g43290 CDS NTs 61-588 with 
N-terminal PreScission 
recognition site 

Rv_CML5stop_NotI 
AGGGCGGCCGCTCAATTA
CTGCTGC 

At2g43290 CDS 

Fw_CML4ab61-588_Pre
Cis 

TGTTATTTCAGGGCCCGAA
GAAGCTTAGAG 

At3g59440 CDS NTs 61-588 with 
N-terminal PreScission 
recognition site 

Rv_CML4stop_NotI 
AGGGCGGCCGCTCATGAT
CTATTGC 

At3g59440 CDS 

C4_TOPO_Fw 
CACCATGGTGAGAGTCTT
TCTTC 

NTs 1-300 of At3g59440 CDS 

C4_TOPO_Rw 
GCATCCATCTTCTGGATCA
TCTG 

NTs 1-300 of At3g59440 CDS 
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2.1.4 Blotting membranes, protein and DNA ladders, chromatography resins 

The protein ladders used for SDS-PAGE analysis were the PageRuler™ Plus Prestained 

Protein Ladder (Thermo Fisher Scientific, Waltham, MA, USA) and the Peqlab Marker Gold I 

(Peqlab, Wilmington, DE, USA). The DNA ladder applied in agarose gel nucleic acid analysis 

was the 1 kb plus GeneRuler™ DNA Ladder (Thermo Fisher Scientific, Waltham, MA, USA). 

For western blot analysis, proteins were transferred onto nitrocellulose membranes Portran 

BA 83, 0.2 µm (Schleicher und Schüll, Dassel, Germany); Whatman paper was supplied by 

GE Healthcare (GE Healthcare Europe GmbH, Freiburg, Germany). Isolation of glutathione 

S-transferase (GST)-tagged proteins was performed on glutathione sepharose 4B resin (GE 

Healthcare Europe GmbH, Freiburg, Germany). Tag-independent immobilisation of proteins 

was performed using CNBr-activated sepharose 4B (GE Healthcare Europe GmbH, Freiburg, 

Germany). 

 

2.1.5 Antisera 

Detection of YFP-tagged proteins and mCherry-tagged proteins was performed with the rat 

monoclonal primary antibodies α-GFP 3H9 and α-RFP 5F8 (ChromoTek, Martinsried, 

Germany). Horse radish peroxidase-coupled AffiniPure Goat α-rat IgG-IgM (Jackson 

ImmunoResearch, PA, USA) was used as secondary antibody. Antibodies against 

AtCML4 (clones 28C11 and 15A3-131) as well as secondary sub-class-specific mouse α-rat 

and rat α-mouse antibodies were supplied by the Monoclonal Antibody core facility 

(HelmholtzZentrum Munich, Neuherberg, Germany). 

 

2.2 Methods 

2.2.1 Molecular biological and cell biological methods 

2.2.1.1 General methods 

Cultivation of bacteria, DNA extraction via alkaline lysis, concentration determination of 

isolated DNA and standard other molecular biological methods were performed according to 

Sambrook and Russel (Sambrook et al. 2006). Chemical competence of E. coli cells was 

established as published (Hanahan 1983). E. coli cells were transformed with plasmids via 

heat-shock method as published (Pope et al. 1996). To prepare and transform 
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electro-competent A. rhizogenes cells, guidelines presented in the “Micropulser™ 

Electroporation Apparatus Operation Instructions and Application Guide” by BIO-RAD (Bio-

Rad Laboratories, Inc., Hercules, CA, USA) were followed. 

 

2.2.1.2 Cultivation of A. thaliana plants, seed sterilisation, stress assays 

A. thaliana plants were either cultivated on soil or under sterile conditions on 

½ MS (Murashige & Skoog) medium solidified by addition of 1 % plant agar (DUCHEFA 

BIOCHEMIE B.V., RV Haarlem, The Netherlands). Cultivation conditions were as follows: 

100 µM s-1 m-2 photons (unless indicated otherwise) light intensity, 16 h light / 8 h dark 

period (unless indicated otherwise), light period temperature: 22°C, dark period temperature: 

18°C. 

A. thaliana seeds were sterilised prior to cultivation under sterile conditions. For that, seeds 

were submerged for 10 min in 400 µl of sterilisation solution (1:1 ratio ddH2O and DanKlorix 

drain cleaning agent), followed by five washing steps, during which the seeds were rinsed 

with 700 µl of sterile ddH2O to remove sterilisation solution remnants. 

After the seeds were placed on either soil or sterile ½ MS medium, dormancy was overcome 

by cultivation at 4°C in the dark for 2 d (stratification), prior to cultivation under the 

conditions mentioned above. Salt stress and osmotic stress conditions were simulated under 

sterile conditions by addition of either 100 mM NaCl or 200 mM mannitol to the cultivation 

medium. Root growth analysis was carried out by cultivation of plants under sterile conditions 

in a vertical fashion. Growth of etiolated seedlings was achieved by cultivating the seeds 

under standard growth conditions for 6 h after stratification to induce germination, and 

subsequent cultivation for 5 d under the same conditions under exclusion of light. 

After photo documentation of the cultivation plates, root or hypocotyl lengths were measured 

using ImageJ. The data were analysed in box plots and subjected to statistical analysis of 

potential differences applying Student’s t-test. 

To induce small interfering RNA (siRNA) expression in plants stably transformed with the 

pOpOff2 plasmid, the plants were cultivated under sterile conditions with 

20 µM Dexamethasone or a comparable amount of DMSO as solvent control added to the 

medium. 
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2.2.1.3 Polymerase chain reaction 

For amplification of DNA fragments from genomic or plasmid DNA either Taq polymerase 

(Genaxxon bioscience GmbH, Ulm, Germany) or Phusion polymerase (New England Biolabs 

GmbH, Frankfurt am Main, Germany) were applied according to manufacturer’s instructions, 

using the assay compositions displayed in Table 3. 

 
Table 3: Composition of the standard PCR mix for Taq and Phusion polymerase 

 Taq polymerase Phusion polymerase 
DNA template 
(5-50 ng/µl) 

1.00 µl 1.00 µl 

Forward primer 
(20 pmol/µl) 0.25 µl 0.25 µl 

Reverse primer 
(20 pmol/µl) 0.25 µl 0.25 µl 

dNTPs 
(20 mM each) 0.25 µl 0.25 µl 

MgCl2 (25 mM) 1.25 µl - 
Buffer (10 x) 2.50 µl 5.00 µl 
Polymerase 0.20 µl 0.20 µl 
ddH20 19.30 µl 18.75 µl 
Total 25.00 µl 25.00 µl 

 

 

PCR was carried out following the protocol in Table 4. Denaturation temperature was adjusted 

to 94°C for Taq polymerase or 98°C for phusion polymerase. Hybridisation temperature was 

determined empirically for each primer pair (*). Elongation time was estimated depending on 

expected PCR product size and polymerase applied (#). 

 
Table 4: Standard PCR protocol. * - hybridisation temperature depended on the primer pair applied in the 
reaction. # - elongation temperature was chosen according to expected product size and polymerase applied in 
the reaction. 

Initial denaturation 94 °C / 98 °C 180 s  

Denaturation 94 °C / 98 °C 30 s  
Hybridisation * 30 s 35 cycles 
Elongation 72 °C #  
Final elongation 72 °C 600 s  
Pause 4 °C ∞  
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PCR products were analysed on agarose gels (see 2.2.1.4) and purified using the PCR and gel 

extraction kit Nucleospin II by Macherey-Nagel (Dühren, Germany) according to 

manufacturer’s instructions. 

 

2.2.1.4 Agarose gel electrophoresis 

DNA samples were analysed by separation on 1 % NEEO agarose ultra quality (Roth GmbH, 

Karlsruhe, Germany). Nucleic acids were labelled via in-gel staining with 

DNA stain G (SERVA Electrophoresis GmbH, Heidelberg, Germany) according to 

manufacturer’s instructions and separation of DNA fragments was carried out at 150 V for 

10-15 min. Documentation was performed on a Gerix® 1000 gel documentation system 

(biostep GmbH, Burkhardtsdorf, Germany). 

 

2.2.1.5 Cut-and-paste cloning of DNA fragments into vectors 

In order to clone A. thaliana genes into plasmids of choice for downstream application, genes 

were amplified from genomic DNA (gDNA) using 5’overhang primers for addition of suitable 

restriction sites. If genes of interest were already present in a vector system, plasmid DNA 

was used as template for PCR. Subsequently, PCR amplicons were purified as described in 

2.2.1.3. Vector DNA and purified PCR products were treated with the respective restriction 

enzymes by New England Biolabs GmbH (Frankfurt am Main, Germany) or Fermentas (St. 

Leon Roth, Germany) according to manufacturer’s instructions using the restrictions sites 

indicated in Table 1 and Table 2. Restriction fragments were separated on agarose gels (see 

2.2.1.4), purified (see 2.2.1.3) and ligation was carried out at 22°C for a minimum of 1 h with 

T4 DNA ligase (New England Biolabs GmbH, Frankfurt am Main, Germany) applying a 

molar vector:insert ratio of 1:4 in a 20 µl reaction assay, which was subsequently used for 

transformation of chemically competent E. coli cells via heat-shock (see 2.2.1.1). 

 

2.2.1.6 Generation of inducible knock-down lines via the pOpOff2 vector 

For generation of stable transgenic atcml4 knock-down lines, the coding sequence (CDS) of 

At3g59440 was screened for sections that might serve as well-suited targets for siRNA-based 

post-transcriptional silencing, applying the Clontech RNA interference (RNAi) target 
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sequence selector tool (http://bioinfo.clontech.com/rnaidesigner/sirnaSequenceDesign.do, 

Takara Bio USA, Mountain View, CA, USA, as accessed on 21 August 2017). Nucleotides 

1-300 of the AtCML4 CDS were chosen as target region and amplified via site-specific PCR 

(see 2.2.1.3) for further TOPO® cloning into vector pENTR (Thermo Fisher Scientific, 

Waltham, MA, USA). The resulting clones were checked via sequencing by the in-house 

sequencing service (Sequencing unit LMU Biocenter, Munich, Germany) and one of them 

was applied in an LR-cloning (Thermo Fisher Scientific, Waltham, MA, USA) reaction 

according to manufacturer’s instructions to transfer the insert into the binary vector pOpOff2 

(Wielopolska et al. 2005) for stable transformation of A. thaliana plants. 

 

2.2.1.7 Isolation of gDNA from A. thaliana 

In order to isolate gDNA from A. thaliana for amplification of genomic sequences, a single 

leaf was submerged in 410 µl of extraction buffer (200 mM Tris-HCl, pH 7.5, 250 mM NaCl, 

0.5 % SDS (w/v)) and lysed in the TissueLyser II (Qiagen, produced by Retsch, Hilden, 

Germany) for 45 s at 30 Hz. Separation of DNA and cell debris was achieved by 

centrifugation at 17,000 x g and room temperature for 10 min. 300 µl of the supernatant were 

mixed with 300 µl of isopropanol to precipitate the DNA. Separation of DNA and solvent was 

achieved by centrifugation at 17,000 x g and room temperature for 10 min. The supernatant 

was discarded. After air-drying the DNA pellet, it was dissolved in 40 µl of ddH2O. 

 

2.2.1.8 Stable transformation and downstream selection of A. thaliana plants 

Stable transformation of A. thaliana plants by floral dip method was performed according to a 

protocol published by Zhang and colleagues (Zhang et al. 2006). Plants stably transformed 

with the pOpOff2 were selected as described by Harrison and colleagues (Harrison et al. 

2006). Plants stably transformed with pBIN19-NA-YFP plasmid derivatives were cultivated 

on soil and sprayed with a 0.25 % BASTA solution when they entered the 4-leaf 

developmental stage and a second time seven days later. 
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2.2.1.9 Transient transformation of N. benthamiana leaf cells 

Transient transformation of N. benthamiana leaf cells was performed with the A. rhizogenes 

strain LBA1334. For this, bacterial cells transformed with the respective constructs for fusion 

protein expression, were cultivated overnight at 28°C with 150 rpm agitation. The bacteria 

were pelleted via centrifugation at 4,000 x g and room temperature for 10 min. The resulting 

pellet was resuspended in infiltration solution (10 mM MES-KOH pH 5.6, 10 mM MgCl2, 

100 µM acetosyringon) and adjusted to an optical density at 600 nm (OD600) of 0.5 in case of 

single transformation with one construct or OD600 of 1, if the plants were to be co-infiltrated 

with two different constructs from two different transgenic bacterial cell lines. Subsequently, 

the cell suspensions were incubated at room temperature with 100 rpm agitation in the dark 

for at least 2 h to allow for expression of tumour inducing genes in the Agrobacterium cells. 

The suspensions were applied to the abaxial side of the leaves of 3–4 week-old 

N. benthamiana plants, using an Injekt®-F syringe (B. Braun Melsungen AG, Melsungen, 

Germany) without needle. The plants were sprayed with water and left in the dark at room 

temperature overnight, before they were cultivated for 2-3 d at 28°C. 

 

2.2.1.10 Isolation of N. benthamiana leaf mesophyll cell protoplasts 

All required buffers and their respective composition are listed in Table 5 below. 48 h after 

transient transformation of N. benthamiana leaf cells (see 2.2.1.9), leaf material was checked 

for expression of fluorescent fusion proteins using a fluorescence microscope DM1000 (Leica 

Microsystems, Wetzlar, Germany). Expressing leaves were harvested for isolation of 

mesophyll cell protoplasts and sliced into ribbons of approx. 5 mm width. 10 ml of F-PIN 

buffer were supplemented with 1 % (w/v) Cellulase R10 and 0.3 % (w/v) Macerozyme R10 

and incubated at 55°C with agitation for 10 min to activate the enzymes. Ten of the previously 

prepared leaf slices were submerged in 10 ml of room temperature F-PIN buffer and 

infiltrated with the solution via repeated application of vacuum. The suspended leaf pieces 

were incubated on a horizontal shaker for 90 min at 80 rpm in the dark, followed by 1 min of 

incubation at 160 rpm to release the protoplasts from the surrounding tissue debris. The cells 

were filtered through a 100 µm nylon mesh and transferred to a centrifugation vessel, in 

which the suspension was overlaid by 2 ml of F-PCN buffer. Intact protoplasts were separated 

from cellular debris by centrifugation for 10 min at room temperature and 70 x g in a SIGMA 

3K30 centrifuge with a 11391 swing-out rotor (SciQuip Ltd., Newtown, Wem, Shropshire, 
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Ireland). Intact protoplasts accumulated at the interface between the two buffer phases and 

were transferred into 10 ml of washing buffer, prior to centrifugation for 10 min at room 

temperature and 50 x g to pellet the cells. The supernatant was discarded and the cell pellet 

was gently resuspended in an appropriate amount of F-PCN buffer to yield a cell density 

suitable for subsequent microscopic analysis (see 2.2.1.12). 

 
Table 5: Composition of solutions required for protoplast isolation from N. benthamiana leaf tissue. Micro 
MS (Murashige & Skoog micro nutrients) composition has been published (Murashige et al. 1962). All solutions 
were filtrated through a 0.45 µm filter for sterility. 

Macro MS 
modified (10x) 

KNO3 
CaCl2 x 2 H2O 
MgSO4 x 7 H2O 
KH2PO4 
ddH2O 

1012 mg 
440 mg 
370 mg 
170 mg 
ad 100 ml 

 

PC vitamins (500x) 

Myo-inositol 
Thiamine-HCl 
Ca-panthotenate 
Nicotinic acid 
Pyridoxine-HCl 
Biotin 
ddH2O 

10 g 
50 mg 
100 mg 
100 mg 
100 mg 
1 mg 
ad 100 ml 

 

F-PIN 

Macro MS-modified (10x) 
Micro MS (1000x) 
PC Vitamins (500x) 
MES 
Sucrose 
ddH2O 

100 ml 
1 ml 
2 ml 
1952 mg 
Approx. 120 g 
ad 1000 ml 

Adjusted to 550 mOsm 
with sucrose 
pH 5.8 

F-PCN 

Macro MS-modified (10x) 
Micro MS (1000x) 
PC Vitamins (500x) 
MES 
Glucose 
ddH2O 

100 ml 
1 ml 
2 ml 
1952 mg 
Approx. 80 g 
ad 1000 ml 

Adjusted to 550 mOsm 
with glucose 
pH 5.8 

Wash buffer 

MgCl2 x 6 H2O 
MES 
Mannitol (0.5 M) 
ddH2O 

3.05 g 
1 g 
Approx. 90 g 
ad 1000 ml 

Adjusted to 550 mOsm 
with mannitol 
pH 5.8 
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2.2.1.11 Isolation and transformation of A. thaliana leaf mesophyll cell protoplasts 

The composition of all buffers required for isolation and transformation of protoplasts from 

A. thaliana are listed in Table 6. Solutions and materials used were sterilised by filtration and 

the whole procedure was carried out under sterile conditions. Centrifugation steps were 

carried out in a SIGMA 3K30 centrifuge with an 11391 swing-out rotor (SciQuip Ltd., 

Newtown, Wem, Shropshire, Ireland). 14 day-old A. thaliana plants sterilely cultivated on 

½ MS medium solidified with 0.5°% plant agar were used for protoplast isolation. The 

cotyledons of approx. 100 plants were suspended in 9 ml of MMC buffer, cut with a sterile 

razor blade and incubated in the dark at room temperature for 1 h. 500 µl of macerozyme 

solution and 500 µl of cellulose solution were added and the suspension was incubated 

overnight in the dark at 21°C. To separate the protoplasts from cell debris, the solution was 

gently stirred and filtered through a 100 µm nylon mesh. Concentration of the isolated cells 

was achieved via centrifugation for 10 min at 50 x g and room temperature. The supernatant 

was discarded and the cells were resuspended in 8 ml of MSC solution, which was 

subsequently overlaid by 2 ml of MMM solution. Separation of intact protoplasts from 

damaged cells was achieved by centrifugation at 70 x g and room temperature for 10 min. 

Intact protoplasts, which accumulated at the interface between the two buffer phases, were 

transferred to a new vessel and resuspended in 9 ml of MMM solution for washing. 

Separation of the cells from surrounding medium was accomplished by centrifugation at 

50 x g and room temperature for 10 min. The supernatant was discarded, the cells were 

resuspended in 100 µl of MMM solution and transferred into a small Petri dish. 5 µl of a 

4 µg/µl solution of the respective plasmid DNA required for transformation were added. 

Subsequently, 125 µl of freshly prepared PEG4000 solution were added and the mixture was 

incubated for 7.5 min at room temperature. Then, 125 µl of MMM solution were added, 

followed by 2 min of incubation at room temperature. After addition of 2.5 µl of PCA medium 

the Petri dish was sealed with parafilm for overnight incubation of the protoplast suspension 

in the dark at room temperature. The following day, microscopic analysis was performed (see 

2.2.1.12). 

 

 

 

 



METHODS 

29 

 

Table 6: Buffers and solutions required for isolation and transformation of protoplasts from A. thaliana 
seedlings. All solutions were filtrated through a 0.45 µm filter for sterility. NAA – 1-Naphthaleneacetic acid, 
MES – 2-(N-Morpholino)ethanesulfonic acid, PEG – polyethylene glycol. * - Gamborg B5 medium (DUCHEFA 
BIOCHEMIE B.V., RV Haarlem, The Netherlands) 

MMC 
MES 
CaCl2 
Mannitol 

10 mM 
20 mM 
0.5 M  

Adjusted to 550 mOsm with 
mannitol 
pH 5.8 

MSC 
MES 
MgCl2 
Sucrose 

10 mM 
20 mM 
120 g/l  

Adjusted to 550 mOsm with 
sucrose 
pH 5.8 

MMM 

MES 
MgCl2 
MgSO4 
Mannitol 

10 mM 
10 mM 
10 mM 
0.5 M  

Adjusted to 550 mOsm with 
mannitol 
pH 5.8 

PCA medium 

Gamborg B5 medium * 
MgSO4 
CaCl 
Glutamin 
Casein hydrolysate 
NAA 
Glucose 

1x 
746 mg/l 
450 mg/l 
50 mg/l 
100 mg/l 
0.5 mg/l 
70 g/l 

Adjusted to 550 mOsm with 
glucose 
pH 5.8 

PEG4000 solution 

PEG4000 
Mannitol (1M) 
Ca(NO3)2 (1M) 
Sterile ddH2O 

2 g 
1 ml 
500 µl 
1.75 ml 

 

Macerozyme solution 
Macerozyme 
MMM solution 

1 g 
ad 10 ml 

Supernatant separated from 
insoluble fraction by 
centrifugation for 1 min at 
10,000 x g 

Cellulase solution 
Cellulase 
MMM solution 

1 g 
ad 10 ml 

Supernatant separated from 
insoluble fraction by 
centrifugation for 1 min at 
10,000 x g 

 

 

2.2.1.12 Microscopic analysis of A. thaliana and N. benthamiana leaf mesophyll 
protoplasts 

Analysis of isolated protoplasts was carried out using a Leica TCS SP5 confocal laser 

scanning microscope (Leica Microsystems, Wetzlar, Germany). For detection of YFP, samples 

were excited at 488 nm using an argon laser and emission was detected between 500 nm and 
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550 nm with a Leica HyD™ detector (Leica Microsystems, Wetzlar, Germany). Excitation of 

fusion constructs containing mCherry was performed at 561 nm using a diode-pumped 

solid-state continuous wave laser and the detection range of the HyD™ detector was set to 

595-620 nm. Chlorophyll fluorescence was captured via photomultiplier tubes (GaAsP 

detector) set to detect signals in the spectral range between 680 nm and 750 nm. 

 

2.2.1.13 In vivo [Ca2+]f measurements in A. thaliana seedlings 

A. thaliana seedlings stably expressing either AtCML51-28-YFP-AEQ, AtOEP7-YFP-AEQ or 

AtCPK17(G2A)-YFP-AEQ have been cultivated for 14 d as described in 2.2.1.2. Plants of 

each genotype were pooled in one well of a 6-well cultivation plate and immersed in ddH2O 

containing 2.5 µM coelenterazine for reconstitution of holo-aequorin overnight in the dark at 

room temperature. Afterwards, the plants were transferred to a Berthold 96-well plate for 

analysis in a TriStar² LB 942 Multimode reader (BERTHOLD TECHNOLOGIES GmbH & 

Co. KG, Bad Wildbad, Germany) loading each well with one plant and adding 100 µl of 

ddH2O. Measurement took place in a well-by-well consecutive fashion. The measurement was 

divided into two phases. During the first 1800 s the luminescence reporting the in vivo [Ca2+]f 

was detected. After induction of the discharge of the aequorin pool in the plant achieved by 

injection of 100 µl of a 3 µM CaCl2 / 20 % ethanol solution, luminescence was detected for 

another 1800 s to allow for subsequent determination of total aequorin amount that had been 

available for reporting [Ca2+]f changes in each plant. The luminescence was determined in 

photon counts per second at a 1 s interval. The determined values at each time point were 

used to calculate in vivo [Ca2+]f at a given time by a correlation equation determined by Allen 

et al. (1977) and specifically adjusted for the aequorin variant present in the constructs used 

here by Brini et al. (1995). 

 

2.2.1.14 Luciferase-based promoter activity reporter assay in A. thaliana plants 

The whole assay was conducted under reduced light-conditions. A. thaliana plants stably 

expressing FIREFLY LUCIFERASE under the control of either AtCML4 or AtCML5 

promoters were chosen for analysis after cultivation of 5, 14 or 28 d of cultivation under 

sterile conditions. In vivo supply of the enzyme with its substrate (D)-Luciferin was achieved 

by submerging the entire plants in an aequous solution of 20 µM (D)-luciferin (Sigma-
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Aldrich, St. Louis, MO, USA) and applying a light vacuum for up to 3 min. After arranging 

the plants on a moisturised glass plate, photo documentation of LUCIFERASE activity was 

performed using an ImageQuant LAS4000 system (GE Healthcare, Freiburg, Germany). 

 

2.2.2 Biochemical methods 

2.2.2.1 SDS-PAGE analysis of protein samples 

For analysis on SDS-PAGE, protein samples were mixed with the appropriate amount of 2x or 

4x Laemmli buffer (Laemmli 1970) depending on overall sample volume and incubated at 

96°C for 3 min for protein denaturation. Polyacrylamide gels were prepared with Tris-glycine 

buffer according to the expected size of the proteins of interest. For size estimation, either 

7.5 µl of Peqlab Marker Gold I (Peqlab, Wilmington, DE, USA) or 5 µl of PageRuler™ 

protein ladder plus prestained marker (Thermo Fisher Scientific, Waltham, MA, USA) were 

used. Samples were separated at 20 A for 1 h and detection of proteins was achieved either via 

Coomassie or silver staining of the gels (see 2.2.2.2). 

 

2.2.2.2 Coomassie and silver staining of SDS-PAGE gels 

After gel electrophoresis, SDS-PAGE gels were incubated for 20 min with agitation in a 

Coomassie staining solution (20 % isopropanol, 20 % acetic acid, 0.3 % Coomassie R, 

0.06 % Coomassie G). This was followed by incubation in a destaining 

solution (10 % isopropanol, 10 % acetic acid) for background staining reduction, until an 

optimal signal-to-noise ratio was achieved. 

Silver staining was carried out following a published protocol (Blum et al. 1987). 

 

2.2.2.3 Western blot protein analysis 

Protein samples were separated via SDS-PAGE (see 2.2.2.1) and subsequently transferred 

onto 7.5 cm x 8.5 cm nitrocellulose membranes (Schleicher und Schüll, Dassel, Germany) at 

64 A for 45 min according to an established protocol (Kyhse-Andersen 1984). Then, the 

transfer membranes were incubated in blocking buffer (1 x TBS, 0.05 % Tween 20®, 3 % milk 

powder) for 30 min with agitation and room temperature to saturate the binding capacity of 

the membrane. This was followed by incubation with the respective antibodies (see Table 7) 
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diluted in TBS-T (1 x TBS, 0.05 % Tween 20®) with agitation at 4°C overnight. Afterwards, 

membranes were washed three times for 10 min with blocking buffer to remove excess 

antibody. Then, the corresponding secondary antibody diluted in TBS-T was applied for 1 h at 

room temperature with agitation at the dilutions indicated in Table 7. Afterwards, membranes 

were washed twice for 10 min with blocking buffer and once for 10 min with TBS-T without 

milk powder to remove excess antibody. Detection of the secondary antibody was achieved by  

overlaying the transfer membranes with Western Lightning Plus ECL solutions (PerkinElmer 

Inc., Waltham, MA, USA), previously mixed at a 1:1 ratio according to manufacturer’s 

instructions. After 1 min of incubation in the dark, the result of the western blot was 

documented using an ImageQuant LAS4000 system (GE Healthcare Europe GmbH, Freiburg, 

Germany) in precision mode. 

 
Table 7: Antibodies applied in western blot analysis. Donor species 
are indicated in brackets. 

Antibody Dilution factor 
α-GFP (rat) 1,000 
α-RFP (rat) 1,000 
α-rat (goat) 10,000 
28C11 α-AtCML4 (rat) 1,000 
15A3-131 α-AtCML4 (mouse) 1,000 
α-rat (mouse) 10,000 
α-mouse (rat) 10,000 

 

 

2.2.2.4 Purification of proteins on glutathione sepharose 4B resin 

GST-tagged proteins were expressed in E. coli cells and purified directly from the cell lysate. 

If not indicated otherwise, all steps were carried out at 4°C. Approximately 500 ml of cell 

culture were used to harvest cells via centrifugation for 10 min at 6,000 x g. The supernatant 

was discarded and the cells were resuspended in binding buffer (140 mM NaCl, 2.7 mM KCl, 

10 mM Na2HPO4, 2 mM DTT, adjusted to pH 7.3). Cell lysis was achieved by physical 

rupture in a French press device (unknown manufacturer), followed by three sonication pulses 

of 10 s duration at 50 % amplitude to fragment genomic DNA reducing viscosity of the 

suspension. Soluble proteins were separated from aggregated and membrane proteins as well 

as cell debris by centrifugation at 20,000 x g for 30 min. The pellet was discarded, whereas 
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the supernatant containing the soluble protein fraction was further processed. 500 µl of 

glutathione sepharose 4B resin (GE Healthcare GmbH, Freiburg, Germany) were added onto 

a column and washed with five bed volumes of ddH2O to remove storage buffer ethanol, 

followed by rinsing with five bed volumes of binding buffer to equilibrate the resin. 

Subsequently, the resin was incubated with the bacterial lysate for 1 h with agitation in a 360° 

overhead rotator. Afterwards, the flow-through of the column was collected and the resin was 

washed with 200 bed volumes of binding buffer to remove unspecifically retained proteins. 

Elution was carried out by incubating the resin with one bed volume of elution buffer (50 mM 

Tris-HCl, 10 mM reduced glutathione, 10 mM DTT, adjusted to pH 8.0) at 25°C for 10 min. 

The flow-through was collected. This procedure was repeated five times. Samples of all steps 

of the purification process were analysed via SDS-PAGE (see 2.2.2.1) followed by Coomassie 

staining of the gels (see 2.2.2.2) to assess purification efficacy. 

 

2.2.2.5 Dialysis of proteins 

In order to change the buffer composition of previously isolated proteins, a dialysis approach 

was chosen. For that, isolated proteins were transferred into regenerated cellulose Spectra/Por 

dialysis tubes (Spectrum Laboratories Inc., Los Angeles, CA, USA) with 20 kDa size 

exclusion limit. The tubes were then incubated overnight with agitation at 4°C in an external 

buffer solution. The volume ratio of sample buffer inside the tube to dialysis buffer 

surrounding the tube was of ratio 1:100 to guarantee optimum buffer exchange. 

 

2.2.2.6 Coupling of proteins to CNBr-activated sepharose 4B 

Proteins previously purified on glutathione sepharose (see 2.2.2.4) were dialysed (see 2.2.2.5) 

to substitute the coupling buffer (0.1 M NaHCO3, 0.5 M NaCl, adjusted to pH 8.3) for GST 

elution buffer. The required amount of CNBr-activated sepharose B (GE Healthcare, Freiburg, 

Germany) was estimated according to manufacturer’s instructions and determined by the 

amount of protein to be coupled, which was approximated by comparison to a protein 

standard on SDS-PAGE gels. Proteins were coupled to CNBr-activated sepharose according 

to manufacturer’s instructions. The coupling result was analysed via SDS-PAGE (see 2.2.2.1) 

followed by Coomassie staining (see 2.2.2.2). 
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2.2.2.7 Isolation of microsomal fractions from N. benthamiana leaf material 

Tobacco leaves transiently expressing various YFP or mCherry fusion proteins were harvested 

for isolation of microsomal fractions and chloroplasts. To confirm expression of the fusion 

proteins in leaf mesophyll cells, leaves were analysed by fluorescence microscopy 48 h after 

Agrobacterium infiltration. The whole subsequent isolation procedure was performed at 4°C. 

To yield microsomal fractions, leaves were homogenised in microsome homogenisation 

buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 0.5 M sucrose) and filtered through a 30 µm 

nylon mesh. Enrichment of the microsome-containing fraction was achieved by differential 

centrifugation for 10 min at 4,200 x g to pellet chloroplasts (pellet was discarded), followed 

by 10 min of centrifugation at 10,000 x g to pellet mitochondria and nuclei (pellet was 

discarded). Finally, cytoplasm and microsomal fraction were separated by 1 h of 

centrifugation at 100,000 x g. The supernatant was discarded and the pellet was resuspended 

in thermolysin buffer (10 mM Tris-HCl, pH 7.5, 0.25 M sucrose, 2 mM CaCl2) for 

performance of the protease protection assay. 

 

2.2.2.8 Thermolysin treatment of isolated microsomal fractions 

To 50 µl of isolated microsomal fractions (see 2.2.2.7) resuspended in thermolysin buffer 

(10 mM Tris-HCl, pH 7.5, 0.25 M sucrose, 2 mM CaCl2), thermolysin was added to a final 

concentration of 2 µg/µl. The same volume of buffer was added to a negative control sample. 

After 20 min of incubation at 4°C both samples were mixed with EDTA solution to a final 

concentration of 5 mM EDTA to stop the reaction. The samples were subjected to 

centrifugation for 10 min at 4°C and 289,000 x g to separate membrane fraction from soluble 

protein fraction. 17 µl of 4x Laemmli buffer (Laemmli 1970) were added to supernatant and 

resuspended membrane fraction alike and the samples were incubated for 3 min at 96°C. The 

samples were separated on SDS-PAGE (see 2.2.2.1) followed by western blot protein analysis 

with α–GFP or α–RFP antibody (see 2.2.2.3). 

 

2.2.2.9 Pull-down of A. thaliana proteins from combined microsome/cytoplasm 
extracts on CNBr-activated sepharose coated with recombinant protein 

All steps of the procedure were carried out at 4°C, if not indicated otherwise. Microsome and 

cytoplasmic fractions from A. thaliana leaf material were isolated as described in 2.2.2.7 with 

two alterations: The microsome homogenisation buffer had a different composition (50 mM 
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Tris-HCl, pH 7.5, 0.5 M sucrose) and the final centrifugation step to separate microsomal 

from cytoplasmic fraction was omitted. The extract was separated into two fractions of which 

one was adjusted to a final concentration of 1 mM CaCl2, whereas the other one was adjusted 

to a final concentration 5 mM EDTA / 5 mM EGTA. The CNBr-sepharose samples, to which 

the previously purified recombinant proteins were coupled (see 2.2.2.4, 2.2.2.5, 2.2.2.6), were 

also separated into two fractions each. One fraction was equilibrated by addition of five bed 

volumes of calcium-containing extraction buffer (50 mM Tris-HCl, pH 7.5, 1 mM CaCl2, 

0.5 M sucrose), whereas the other one was treated with an equal amount of 

EDTA/EGTA-containing extraction buffer (50 mM Tris-HCl, pH 7.5, 5 mM EDTA, 5 mM 

EGTA, 0.5 M sucrose). The resins were incubated with the respective calcium- or 

EDTA/EGTA-containing plant extract fraction for 1 h on a 360° overhead rotator. The 

supernatant was collected via gravitational flow and the resins were washed with 200 bed 

volumes of the according calcium- or EDTA/EGTA-containing extraction buffers to remove 

unspecifically retained proteins. Elution of the proteins was carried out twice for 10 min. 

Therefore, half a bed volume of the opposite buffer fraction (calcium-containing buffer for 

EDTA/EGTA-equilibrated resin and vice versa) was added to the respective resins. Samples 

of all steps of the pull-down were analysed on SDS-PAGE (see 2.2.2.1) followed by silver 

staining of the gel (see 2.2.2.2). 

 

2.2.3 Bioinformatical methods 

Accession numbers for analysed protein sequences were obtained from the protein database of 

the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/protein, 

U.S. National Library of Medicine, Bethesda, MD, USA, as accessed on 21 August 2017), as 

well as Phytozome 12 (Joint Genome Institute, U.S. Deptartment of Energy, CA, USA, as 

accessed on 21 August 2017) and are listed in Appendix III. Generation of sequence 

alignments was performed using the online version of the MAFFT tool version 7 

(http://mafft.cbrc.jp/alignment/server/index.html, as accessed on 21 August 2017) applying 

the L-INS-i algorithm (Katoh et al. 2005) and the Blosum62 substitution matrix (Henikoff et 

al. 1993). Similarity-based shading of residues in multiple sequence alignments (MSAs) was 

performed using the Boxshade server v3.21 

(http://www.ch.embnet.org/software/BOX_form.html, as accessed on 21 August 2017, Swiss 

Institute of Bioinformatics, Lausanne, Switzerland). MSA processing for removal of positions 



METHODS 

36 

 

including gaps prior to reconstruction of phylogenetic trees was performed via the Gap 

Strip/Squeeze tool v2.1.0 

(https://www.hiv.lanl.gov/content/sequence/GAPSTREEZE/gap.html, as accessed on 21 

August 2017, HIV Database, www.hiv.lanl.gov, Gap Strip/Squeeze) with 0 % gap tolerance. 

To reconstruct maximum-likelihood phylogeny trees, RaxML Blackbox (http://embnet.vital-

it.ch/raxml-bb/, as accessed on 21 August 2017, (Stamatakis et al. 2008)) applying the 

Blosum62 substitution model (Henikoff et al. 1993) was used. Therefore, substitution rate 

heterogeneity across sites was mapped with a gamma distribution. For evaluation of branch 

support a non-parametric rapid bootstrap approach with 100 repetitions was applied. 

Overall similarity between sequences was determined using the LALIGN tool 

(http://www.ch.embnet.org/software/LALIGN_form.html, as accessed on 21 August 2017, 

(Huang et al. 1991)). Consensus sequence visualisation was done with the WebLogo server 

v. 2.8.2 (http://weblogo.berkeley.edu/, as accessed on 21 August 2017, (Schneider et al. 1990, 

Crooks et al. 2004)). Prediction of transmembrane domain potential in an amino acid 

sequence was performed using the Tmpred server 

(http://www.ch.embnet.org/software/TMPRED_form.html, as accessed on 21 August 2017, 

Swiss Institute of Bioinformatics, Lausanne, Switzerland, (Hofmann et al. 1993)). 

Search for promoter region sequences for AT2G43290 and AT3G59440 was conducted on 

databases Aramemnon 8.1 (http://aramemnon.botanik.uni-koeln.de/, as accessed 21 August 

2017, Flügge Lab, University of Cologne) and The Arabidopsis Gene Regulatory Information 

Server, AGRIS (http://arabidopsis.med.ohio-state.edu/, as accessed on 21 August 2017, The 

Ohio State University). 

In silico analysis of expression levels and promoter cis-elements of AT2G43290 and 

AT3G59440 was performed using the Transcriptome Variation Analysis Database 

(http://travadb.org, as accessed on 21 August 2017) (Klepikova et al. 2015, Klepikova et al. 

2016, Kasianov et al. 2017), the AtGenExpress Visualization 

Tool (http://jsp.weigelworld.org/expviz/, as accessed on 21 August 2017, 

Max-Planck-Institute for developmental biology, Tübingen, Germany), the Arabidopsis 

cis-regulatory element database (http://arabidopsis.med.ohio-state.edu/AtcisDB/, as accessed 

on 21 August 2017, The Ohio State University, OH, USA) and the e-FP browser 

(http://bar.utoronto.ca/efp_arabidopsis/cgi-bin/efpWeb.cgi, as accessed on 21 August 2017, 

University of Toronto, Toronto, Canada). 
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3. Results 

3.1 In-depth characterisation of AtCML4 and AtCML5 sub-cellular localisation and 
topology 

3.1.1 Sequence analysis of the N-terminus of AtCML4- and AtCML5-like proteins in 
Brassicaceae species 

The A. thaliana genome encodes over 50 CML proteins (McCormack et al. 2003) and three 

CAM isoforms in six different genes. Whereas CAMs are highly conserved in their sequence 

and consist of four EF-hand motifs for Ca2+ binding, CMLs are rather diverse. Most of these 

proteins contain four EF-hands similar to classical CAMs, but there is a group of CMLs in 

which the EF-hand number varies from one, e.g. AtCML1 to six, e.g. AtCML12. In addition 

to that, many CMLs have a much longer amino acid sequence compared to canonical CAMs, 

and often comprise N-terminal sequences potentially serving as sub-cellular targeting signals. 

AtCML4 and AtCML5 are characterised by the presence of a CAM-domain consisting of four 

EF-hands. Further, they possess an N-terminal sequence stretch of 50 and 64 amino acids, 

respectively, which precedes an (E/D)LKR sequence pattern marking the beginning of the 

first of the four EF-hand motifs. This N-terminus is divided into an N-proximal region of very 

high conservation between AtCML4 and AtCML5 comprising amino acids 1-32, whereas the 

rest of the N-terminal stretch shows strong dissimilarity. 

BLAST search analysis for proteins with similar sequence in the proteome of other 

Brassicaceae species, namely Arabidopsis lyrata (A. lyrata), Brassica rapa subsp. pekinensis 

(B. Rapa), Brassica napus (B. Napus), Brassica oleracea var. oleracea (B. Oleracea), 

Capsella rubella (C. rubella), Eutrema salsugineum (E. salsugineum), and 

Raphanus sativus (R. Sativus) revealed the presence of highly similar, potentially orthologous 

proteins for both AtCML4 and AtCML5. As shown in Figure 1 each of these proteins contains 

a similar N-terminal region with the same overall structure. 
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3.1.2 Analysis of AtCML4 and AtCML5 co-localisation in N. benthamiana protoplasts 
and endogenous promoter-driven expression in A. thaliana protoplasts 

Previous analyses regarding the sub-cellular localisation of AtCML5-GFP constructs in 

A. thaliana protoplasts revealed that the protein is localised in circular structures that are part 

of the endomembrane system of the cells, indicating a membrane association. However, there 

was no experimental evidence, whether AtCML4 and AtCML5 co-localised, although this was 

an obvious assumption due to the high degree of sequence conservation within the N-terminal 

region, which had been proven to determine its sub-cellular localisation in previous studies 

(Flosdorff 2014). 

In order to determine, whether AtCML4 and AtCML5 do indeed co-localise in vivo, 

protoplasts of N. benthamiana plants transiently co-expressing AtCML4-mCherry and 

AtCML5-YFP were analysed via confocal laser scanning microscopy (see Figure 2A). 

Fluorescence signals emanating from both proteins clearly originated from the same 

sub-cellular localisation indicating co-localisation of the analysed constructs, thereby 

underlining the speculative conclusions drawn from bioinformatic analysis (see 3.1.1). This 

was also analysed quantitatively (see 3.1.3). 

The unusual shape of the fluorescence signals detected for both fusion constructs, displaying a 

circular geometry indicative of enlarged vesicles, gave rise to the question as to whether this 

might be an artefact of the 35S-promoter-driven expression of the constructs. To exclude this 

as potential cause, genomic regions upstream of AtCML4 (pATCML4) and AtCML5 

(pATCML5) (see 2.1.3), predicted to include promoter elements of the respective genes, were 

cloned to control the expression of AtCML4-YFP (pAtCML4::AtCML4-YFP) and 

AtCML5-YFP (pAtCML5::AtCML5-YFP), respectively, in transiently transformed 

A. thaliana protoplasts, replacing the 35S-promoter (see Figure 2B). 
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Analysis of A. thaliana protoplasts transiently expressing AtCML4-YFP and AtCML5-YFP, 

under control of AtCML4 or AtCML5 promoter region, respectively, revealed that the circular 

structures with unusually large diameters, previously observed under 35S-promoter driven 

expression, were not a result of strong overexpression of the fusion proteins. All three samples 

were analysed under the same conditions with identical microscope parameters except for the 

gain of the detector for the YFP channel. To receive comparable signal intensity, this 

parameter was set to 235.3 % and 71.8 % for samples under endogenous and 35S-promoter 

control, respectively. This indicated the substantially higher abundance of YFP-fusion 

construct in overexpressing protoplasts compared to cells, in which expression was driven by 

the endogenous promoters of both genes. 

 

3.1.3 Detailed analysis of AtCML5-YFP sub-cellular localisation 

Previously performed co-localisation experiments with AtCML5-YFP and AtARA6-mCherry, 

a RabGTPase labelling late endosomes (Ueda et al. 2004), had revealed a partial overlap 

between their fluorescence signals. However, a similar partial overlap had been observed, 

when AtCML5-YFP was expressed with the cis-Golgi marker GmMANI-mCherry, which is 

an α-1,2-MANNOSIDASE I from Glycine max (Saint-Jore-Dupas et al. 2006). Therefore, it 

was difficult to determine, which compartment AtCML5 ultimately resides in. 

To elucidate the localisation of AtCML5, a more detailed analysis was conducted in 

protoplasts of N. benthamiana plants co-expressing AtCML5-YFP with marker proteins for 

peroxisomes (mCherry-SKL), cis-Golgi vesicles (GmMAN1-mCherry), late 

PVC (AtARA6-mCherry), as well as with AtCML4-mCherry. Co-localisation with 

GmMAN1-mCherry and AtARA6-mCherry had not been analysed in a quantitative fashion 

before. Additionally, fluorescence signal overlap between AtARA6-mCherry and 

AtCML5-YFP in N. benthamiana protoplasts had not been shown in previous analyses. 
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Microscopic analysis of tobacco cells expressing AtCML5-YFP and GmMAN1-mCherry or 

AtARA6-mCherry, respectively, showed overlaps of the different fluorescent signals in both 

cases (see Figure 3, rows 2 and 3). Overlaps primarily occurred at positions, where the signals 

were circular, indicating the co-localisation in vesicular structures. Signal geometries 

retrieved for these marker constructs, which usually appear as punctae upon single expression 

(Ueda et al. 2004, Saint-Jore-Dupas et al. 2006), were observed to be of circular character 

when co-expressed with AtCML5-YFP. Co-localisation never occurred at positions, at which 

the marker construct signals showed punctae. Protoplasts co-expressing AtCML5-YFP and 

the ER marker AtWAK2-mCherry-HDEL only showed signal overlaps where the YFP signal 

did not occur in circular structures. However, in these positions the geometry of the signals 

differed, whereas ER marker signals were filamentous with defined edges, YFP signals were 

of diffuse character indicative of a cytoplasmic localisation. Therefore, an alleged 

co-localisation of the two protein populations at these positions might be false-positive due to 

insufficient resolution. In contrast to that, AtCML4-mCherry and AtCML5-YFP signals 

overlapped independent of signal geometry. No overlap at all was observed for the signals in 

cells co-expressing AtCML5-YFP and mCherry-SKL, as had previously already been 

shown (Flosdorff 2014) and was repeated here to serve as example for spatially 

non-correlated signals in the quantitative analysis of the microscopic co-expression data 

described below. 

Quantitative analysis of the co-expression of AtCML5-YFP with different marker constructs 

in N. benthamiana protoplasts was performed to unambiguously determine the final 

localisation of AtCML5 in vivo. For quantification of the spatial correlation between signals 

emanating from AtCML5-YFP and the respective mCherry-fused marker constructs, 

microscopic data (examples shown in Figure 3) were analysed employing the “Coloc2” plugin 

of the Fiji Software (ImageJ 1.51n, Wayne Rasband, National Institute of Health, Bethesda, 

MD, USA) with Costes threshold regression. The software calculates Pearson’s correlation 

coefficient as a numerical measure for spatial correlation of the signals detected in two 

separate channels of a microscopic image. The correlation coefficients derived from five 

different cells per construct combination were calculated and are depicted as box plot (see 

Figure 4). 
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Figure 4: Spatial correlation of signals from AtCML5-YFP and different marker constructs co-expressed 
in N. benthamiana protoplasts. Microscopic data of N. benthamiana protoplasts co-expressing AtCML5-YFP 
and mCherry-fused markers were analysed employing the Fiji Software plugin “Coloc 2” with Costes threshold 
regression. Pearson’s R values were determined for each cell, describing the extent of spatial correlation between 
fluorescence signals from AtCML5-YFP and the respective co-expressed construct. Person’s R values depicted 
as box plot are derived from five different cells per fusion construct combination. R = +/- 1 indicates absolute 
spatial co-occurrence of two signals. With R values between 0.45 and 0.65 AtCML5-YFP shows a significant but 
partial co-localisation with markers for cis-Golgi and the late PVC. 

Correlation values of 0.8-0.9 for signals between AtCML5-YFP and AtCML5-mCherry 

served as a measure for near-absolute co-localisation, whereas correlation values of 0-0.05 

between mCherry-SKL and AtCML5-YFP signal occurrence defined the example for spatially 

unrelated signals. Most of the analysed cells co-expressing AtCML5-YFP and the ER marker 

AtWAK2-mCherry-HDEL showed a spatial correlation that was in a range comparable to the 

negative control, however stronger variation occurred. The median of signal correlation of 

AtCML5-YFP with the markers for cis-Golgi and the PVC was at 0.46 (cis-Golgi, marked by 

GmMAN1-mCherry) and 0.64 (late PVC, marked by AtARA6-mCherry), respectively. So the 

fraction of AtCML5-YFP co-localising with AtARA6-mCherry was slightly larger. 

 

3.1.4 Topology elucidation for AtCML5-YFP and AtCML51-28-YFP via protease 
protection assay 

The alleged localisation of AtCML5 (and AtCML4) on vesicular structures of the 

endomembrane system raised the further question, whether the catalytical CAM-domain 
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In the control samples, which were treated with buffer instead of thermolysin, signals for all 

protein constructs could be detected by western blot analysis (see Figure 5, left lanes). In 

thermolysin-treated samples, no signal was observed for microsomes containing 

AtCML5-YFP and the signal for AtCML51-28-YFP was significantly reduced in intensity (see 

Figure 5, right lanes). By contrast, the luminal ER control protein AtWAK2-Cherry-HDEL 

was not affected by the treatment, visualised by the unaltered signal intensity in both treated 

and untreated microsomal fractions (see Figure 5 , bottom right lane). This result indicates 

that the full-length protein AtCML5, as well as its first 28 amino acids have a topology with 

their carboxy termini being exposed on the cytoplasmic surface of the vesicles. Therefore, 

AtCML5 and probably also AtCML4, have their CAM-domains protruding into the 

cytoplasm, rendering them capable of detecting [Ca2+]f fluctuations in the cytoplasm in close 

proximity to endosomal membranes. 

This raised the question as to whether the two proteins detect changes in cytoplasmic [Ca2+]f 

similar to cytosolic, non-membrane-attached Ca2+ sensors or whether they might be exposed 

to a microdomain around the vesicles characterised by [Ca2+]f different to those in the 

remaining cytoplasm. In the latter case, the proteins would selectively react to [Ca2+]f 

fluctuations in close vicinity to the vesicular membranes, e.g. caused by Ca2+ efflux from the 

vesicular lumen. 

 

3.2 Functional analysis of AtCML4 and AtCML5 

3.2.1 In vivo measurement of [Ca2+]f fluctuations in close proximity to membranes in 
A. thaliana 

To analyse the [Ca2+]f in the vicinity of AtCML4 and AtCML5 in vivo, A. thaliana plants were 

stably transformed to express AtCML51-28-YFP-AEQ, a protein containing the membrane 

anchor of AtCML5 fused to the yellow fluorescent protein (YFP) and the Ca2+ sensor 

apo-aequorin (AEQ). This allowed the direct comparison to plants expressing the same 

YFP-AEQ fusion protein in the cytosol that were previously described (Mehlmer et al. 2012). 

AEQUORIN was originally isolated from the jellyfish family Aequorea (Shimomura et al. 

1962) and requires the presence of coelenterazine, a prosthetic group, in order to be fully 

functional as a Ca2+ sensor. The protein is capable of reporting changes in cellular Ca2+ at 

physiological concentrations, by catalysing the decarboxylation of coelenterazine, which 
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emits luminescence light with an intensity peak at 469 nm. Ca2+ are required as cofactors for 

the reaction. Under physiological [Ca2+]f, there is a double logarithmic correlation between 

detected luminescence light and the [Ca2+]f (Allen et al. 1977). The expression of the sensor 

construct was driven by the AtCML5 promoter region to minimise the population of fusion 

proteins being mistargeted to the cytoplasm due to overexpression conditions. Plants 

expressing either a cytoplasmic Ca2+ sensor, AtCPK17(G2A)-YFP-AEQ, or a sensor attached 

to the cytoplasmic surface of the chloroplast outer envelope, AtOEP7-YFP-AEQ , served as 

controls for detection of [Ca2+]f fluctuations in the entire cytoplasm or in close proximity to 

membranes. Their expression was driven by a 35S-promoter. Both of these sensor constructs 

had previously been analysed and published to be functional (Mehlmer et al. 2012). A 

schematic view of the applied sensor constructs, their relative size and sub-cellular 

localisation, as well as the result of basal [Ca2+]f levels reported by these fusion proteins are 

shown in Figure 6. 
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Instead of using the full-length AtCML5 for targeting the sensor construct to the respective 

endosomal vesicles, only the first 28 amino acids of AtCML5 comprising the signal-anchor 

were chosen. This reduced the distance of the sensor protein AEQ to the membrane, thereby 

allowing for a higher probability of detecting differences in the local [Ca2+]f within the 

microdomain surrounding the vesicles compared to [Ca2+]f in the remaining cytoplasm. The 

sensor protein AtOEP7-YFP-AEQ is of comparable size and topology as 

AtCML51-28-YFP-AEQ, but anchored in the outer envelope of chloroplasts, which defined it 

as ideal control for the detection of [Ca2+]f levels in the cytoplasmic environment surrounding 

a membrane-enclosed compartment. Additionally, it granted the possibility of distinguishing 

between stimuli that selectively evoked [Ca2+]f fluctuations around either endosomes (see 

Figure 6 B, blue halo around vesicle) or chloroplasts (see Figure 6 B, red halo around 

chloroplast). In order to separate this from [Ca2+]f changes in the whole cytoplasm (see Figure 

6 B, regions coloured green), the sensor construct AtCPK17(G2A)-YFP-AEQ was included in 

the analysis. 

Prior to consecutive analysis of the plants stably expressing the respective sensor constructs, 

the AEQ moiety of the sensors had to be reconstituted with its prosthetic group 

coelenterazine. Since the binding of coelenterazine by AEQ is the rate-limiting step in the 

decarboxylation reaction catalysed by holo-AEQUORIN, the reconstitution was performed by 

immersing the plants in de-ionised water including 2.5 µM coelenterazine and incubating 

them overnight in the dark. The measured luminescence intensity values were translated into 

[Ca2+]f, applying an algorithm specifically designed for the AEQUORIN isoform present in 

the constructs (2.2.1.13). In comparison to the [Ca2+]f reported by AtCPK17(G2A)-YFP-AEQ 

([Ca2+]Cyt) to be approx. 0.18 µM, the [Ca2+]f around the chloroplasts ([Ca2+]Chl) as detected 

by AtOEP7-YFP-AEQ was slightly elevated to 0.2 µM. This showed that there is only a 

minor difference in the basal levels of [Ca2+]Cyt in the whole cytoplasm and the region in close 

vicinity to the chloroplast membrane. In strong contrast to that was the basal [Ca2+]f level 

detected around the endosomes, marked by AtCML51-28-YFP-AEQ, [Ca2+]End. In this region 

the [Ca2+]f was less steady and fluctuated around a value of 0.9 µM, indicating the existence 

of a potential Ca2+ microdomain around certain populations of endosomal vesicles. Due to a 

lack of time, initial analyses involving the application of different stimuli, e.g. salt stress, cold 

stress, osmotic stress, triggering Ca2+ fluxes have been performed, but more experiments are 

required for valid results. 
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3.2.2 Interaction partner identification via Ca2+-dependent pull-down assay from 
microsome/cytoplasm extracts from A. thaliana leaf tissue 

The topology of AtCML5 with its CAM-domain protruding into the cytoplasm enables it to 

bind potential interaction partners localised either in the cytoplasm or attached to the 

membranes of the vesicles AtCML5 is anchored in or even attached to other vesicles in 

sufficient proximity. Therefore, pull-down assays to find interaction partners of AtCML5 in 

combined microsome and cytoplasm extracts were performed. 

To isolate potential interaction partners from combined microsome and cytoplasm extracts 

from A. thaliana leaf tissue, AtCML5 was heterologously expressed in E. coli with an 

N-terminal GST tag for purification. Heterologous expression of the tagged full-length 

AtCML5 yielded only small amounts of soluble recombinant protein, probably due to 

enhanced aggregation of the overexpressed protein, stimulated by the hydrophobicity of its 

membrane anchor, which ultimately resulted in degradation of the protein. Therefore, a 

GST-tagged, truncated version of AtCML5 lacking the first 20 amino acids comprising its 

signal-anchor domain was used (GST-AtCML521-215). Recombinant GST was chosen to serve 

as negative control in the pull-down assay and was expressed, purified and subsequently 

processed equally to GST-AtCML521-215. 

Isolation of the soluble recombinant protein from E. coli lysates was performed on a 

Glutathione sepharose 4B resin (GE Healthcare Europe GmbH, Freiburg, Germany) yielding 

large amounts of sufficiently pure recombinant protein (see 2.2.2.4). Due to the abundance of 

glutathione S-transferases and other glutathione-binding proteins in extracts from A. thaliana, 

the pull-down could not be performed on GST-AtCML521-215-coated glutathione sepharose. 

Hence, the fusion protein had to be eluted and subsequently transferred into a new buffer 

environment via overnight dialysis at 4°C (see 2.2.2.5) to prepare it for coupling to a 

CNBr-activated sepharose 4B resin (GE Healthcare Europe GmbH, Freiburg, Germany). This 

pre-activated resin is designed for coupling proteins in a tag-independent manner, requiring 

only free amino groups being available as active coupling moiety in the respective protein. 

After covalently linking the purified protein to the resin material (see 2.2.2.6), 

microsome/cytoplasm extracts previously adjusted to contain either 1 mM CaCl2 (+ Ca2+) or 

5 mM EDTA / 5 mM EGTA (- Ca2+) were added to the resin (see 2.2.2.9 for details). The goal 

was to transfer AtCML521-215 from its apo- to its holo-state by supplying it with Ca2+, thus 

enabling it to bind potential interaction partners in the extract. Elution was accomplished by 

removing the Ca2+ via addition of an EDTA/EGTA-containing buffer, transferring 
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AtCML521-215 to its apo-state again, thereby causing the release of the previously bound 

interacting proteins. The eluted fractions were analysed via SDS-PAGE followed by silver 

staining (see Figure 7). Protein bands occurring exclusively in the elution of the “+ Ca2+“ 

sample, but not in the ”– Ca2+“ sample or the GST controls were considered potential 

interaction partners. The assay was repeated three times, the results were compared and bands 

that re-occurred at least in two of the assays were isolated and sent for mass spectrometric 

analysis by the Zentrallabor für Proteinanalytik at the BMC, LMU Munich. A schematic 

overview of the experimental procedure and representative elutions analysed via SDS-PAGE 

are shown in Figure 7. 
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is possible that small fractions of the matrix material contaminated the elutions. However, this 

was unlikely to have affected the overall result of the assay, since it was still possible to detect 

bands, exclusively present in the elution of interest (see Figure 7, GST-AtCML521-215, + Ca2+). 

The isolated bands detected via SDS-PAGE followed by silver staining were submitted to the 

protein analysis core facility (Zentrallabor für Proteinanalytik, BMC, LMU Munich), where 

peptides were generated via tryptic digest, followed by separation via short gradient 

nano-liquid chromatography and subsequent analysis via quadrupol/ion-trap mass 

spectrometry. The identities of the proteins from which the analysed peptides were derived, 

were determined by comparison of the mass spectrometry analysis results with the MASCOT 

database.  

Out of the list of detected proteins, two candidates were selected as potential interactors: 

DYNAMIN-RELATED PROTEIN 1B (AT3G61760, further referred to as “AtDRP1B”), 

identified with 100 % probability based on two detected peptides and PHOSPHOLIPASE D 

GAMMA 1 (AT4G11850, further referred to as “AtPLDGAMMA1”), identified with 100 % 

probability based on six detected peptides (see Appendix II for detailed mass spectrometry 

analysis data). Dynamin-related GTPases are involved in various processes, such as 

endocytosis (Collings et al. 2008) and cytokinesis (Miyagishima et al. 2008) and AtDRP1A 

was reported to be localised in the trans-Golgi network (Sawa et al. 2005). 

As presented in 3.1.2, AtCML5-YFP-labelled structures indicative of vesicles with enlarged 

lumina, which suggested a potential role of AtCML5 in vesicular fusion processes. This had 

also been previously shown and hypothesised (Flosdorff 2014). Since dynamin-related 

proteins had been shown to play a role in vesicular trafficking (Kang et al. 2003), AtDRP1B 

was considered to be a promising candidate for interaction with AtCML5. AtPLDGAMMA1 

had been shown to influence coatomer assembly by producing phosphatidic acid through 

hydrolytic cleavage (Ktistakis et al. 1996). AtARF1 had been found to regulate 

AtPLDGAMMA1 activity, but an additional Ca2+-dependent regulation could not be 

excluded. 

Apart from these two proteins, a third candidate was selected for further analysis as potential 

interaction partner: a GDSL-motif esterase/acyltransferase/lipase (AT5g55050, further 

referred to as “AtGML”). Proteins belonging to this family of enzymes have broad substrate 

specificity due to their highly flexible active site, but only for a few members their molecular 

function has been elucidated, yet. The protein was included in further analyses, because it was 
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identified as potential interaction partner of AtCML5 by mass spectrometric analysis 

following a pull-down assay of different setup in a previous study (Flosdorff 2014), but had 

not been investigated in detail. 

 

3.2.3 Microscopic co-localisation analysis of potential interaction partners of AtCML4 
and AtCML5 

Concomitant to biochemical interaction studies between the potential interaction partners (see 

3.2.2) and AtCML4 or AtCML5, their sub-cellular localisation relative to AtCML4 and 

AtCML5 was analysed. To that end, N. benthamiana plants co-expressing either AtDRP1B or 

AtPLDGAMMA1 (both as mCherry fusion constructs) together with AtCML5-YFP were used 

for protoplast isolation and subsequent microscopic analysis (see Figure 8 B). Since 

expression of the AtGML fused to mCherry failed and an AtCML5-mCherry construct was 

not reliably expressed either, a YFP fusion construct of the lipase was chosen to be 

co-expressed with AtCML4-mCherry (see Figure 8 A), which has previously been shown to 

co-localise with AtCML5-YFP (see 3.1.2). 



Figure 8
partner candidates.
AtCML4
fluorescence patterns, but there 
co-expressing 
co-localisation of either construct with 
in vesicles, since the
AtCML5
often displayed a distorted 
observed in other samples before
(white arrows), which rese
number of vesicles
large luminal volumes (data not shown

8: Analysis of 
partner candidates. 

4-mCherry suggested
fluorescence patterns, but there 

expressing AtCML
localisation of either construct with 
vesicles, since their fluorescence signals occurred in punctae

5-YFP and AtPLD
often displayed a distorted 
observed in other samples before
(white arrows), which rese
number of vesicles. However,
large luminal volumes (data not shown

nalysis of AtCML4-
 (A) Analysis of

suggested that the lipase localises to vesicular structures, indicated by its
fluorescence patterns, but there was

AtCML5-YFP together with 
localisation of either construct with 

ir fluorescence signals occurred in punctae
AtPLDGAMMA1

often displayed a distorted structure
observed in other samples before. AtPLD
(white arrows), which resembled (C

However, AtPLD
large luminal volumes (data not shown

-mCherry and 
Analysis of N. benthamiana 

that the lipase localises to vesicular structures, indicated by its
was no co-localisation with 

YFP together with AtDRP
localisation of either construct with AtCML5-YFP. 

ir fluorescence signals occurred in punctae
GAMMA1-mCherry, 
structure (red arrows)

AtPLDGAMMA1
C) the signals of 

AtPLDGAMMA1
large luminal volumes (data not shown). White bar represents scale of indica

mCherry and AtCML5-
benthamiana leaf protoplasts co

that the lipase localises to vesicular structures, indicated by its
localisation with 
AtDRP1B–mCherry 

YFP. Still, both potential interacting partners might be localised 
ir fluorescence signals occurred in punctae

mCherry, AtCML5-YFP
(red arrows) not resembling the 

GAMMA1-mCherry signals 
the signals of AtCML5

GAMMA1-mCherry signals
White bar represents scale of indica

-YFP co-expressed 
leaf protoplasts co

that the lipase localises to vesicular structures, indicated by its
localisation with AtCML4-mCherry 

mCherry or AtPLD
Still, both potential interacting partners might be localised 

ir fluorescence signals occurred in punctae. It is noteworthy that
YFP-labelled vesicles

not resembling the isodiametric
rry signals occurred as small and also large punctae

5-YFP when detected in accumulation
mCherry signals also appeared 

White bar represents scale of indica

expressed with different interaction 
leaf protoplasts co-expressing

that the lipase localises to vesicular structures, indicated by its
mCherry detectable

AtPLDGAMMA1
Still, both potential interacting partners might be localised 

It is noteworthy that in protoplasts expressing 
labelled vesicles were unusually

isodiametric, circular
occurred as small and also large punctae

detected in accumulation
appeared as ring-

White bar represents scale of indicated size. 

R

 
with different interaction 

expressing AtGML-
that the lipase localises to vesicular structures, indicated by its 

detectable. (B) Protoplasts 
GAMMA1-mCherry showed no

Still, both potential interacting partners might be localised 
in protoplasts expressing 

were unusually enlarged and 
circular shape that had been 

occurred as small and also large punctae
detected in accumulations of a large 

-shaped structures

RESULTS 

55 

 

 
with different interaction 

-YFP and 
 punctuate 
Protoplasts 
showed no 

Still, both potential interacting partners might be localised 
in protoplasts expressing 

enlarged and 
shape that had been 

occurred as small and also large punctae 
s of a large 

structures with 



RESULTS 

56 

 

Microscopic analysis of fluorophore-tagged versions of all three potential interaction partners 

expressed in N. benthamiana leaf tissue, showed their localisation in vesicular structures, 

indicated by the punctuate signal character. However, there was no visible overlap with the 

signals originating from AtCML5-YFP or AtCML4-mCherry, respectively, suggesting that 

they are localised in different vesicles of the endomembrane system. In contrast to 

AtGML-YFP and AtDRP1B-mCherry, AtPLDGAMMA1-mCherry signals sometimes also 

occurred in foci of high fluorescence intensity and spatial spread (compare Figure 8 B and C, 

white arrows) as often observed for AtCML5-YFP signals in cells with very high levels of 

expression (see Figure 8 C, white arrows). In addition to that, signals originating from 

AtCML5-YFP and AtPLDGAMMA1-mCherry both appeared in circular structures with 

unusually large diameter albeit not overlapping (see Figure 8B, red arrows). Very often, these 

structures were not isodiametric as observed for AtCML5-YFP upon single expression or 

co-expression with other fusion proteins (see Figure 2 and Figure 3). Whether this peculiar 

behaviour of the structures indicated a potential interaction of AtCML5 and AtPLDGAMMA1 

in planta, or whether this was merely an effect caused by AtPLDGAMMA1-mCherry 

overexpression, could not be deduced from the microscopic data. 

In general, the lack of co-localisation of two proteins does not equal functional independence. 

Especially in a compartment like the vesicular trafficking system, in which vesicle 

populations interchange and maturation processes coincide with retrograde transport 

pathways, interaction between proteins in different compartment populations occurs 

frequently (Moyer et al. 2001). Therefore, biochemical studies were attempted to elucidate, 

whether the identified proteins were indeed interaction partners of AtCML4 or AtCML5. In 

order to perform such assays, heterologous expression of the proteins and purification was 

required. However, the potential interactors proved difficult to express in E. coli and different 

approaches for expression conditions, fusion tags and bacterial strains were tested, but the 

proteins were either not expressed at all, or only at minor amounts which complicated 

downstream analyses. All three proteins were predicted to contain transmembrane domains, 

which often cause difficulties upon expression in E. coli, due to their tendency to lead to 

aggregation of the recombinant proteins in the bacterial cytoplasm. In order to circumvent this 

problem, expression with an N-terminal maltose-binding protein tag was tested. 

Unfortunately, even this expression system, although specifically designed for heterologous 

membrane protein expression, did not result in a significant improvement of the expression. 

Since these experiments were carried out in the late phase of this work, biochemical evidence 
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for potential interaction could not be provided. 

Information about the function of a protein can also be deduced from phenotypic analysis of 

mutant plants. Hence, such analyses were carried out in parallel to biochemical and 

microscopic approaches. 

 

3.2.4 Phenotypic analysis of an atcml5 knock-out mutant line 

For many genes in A. thaliana mutant lines have been generated by random insertion of 

T-DNAs, interrupting genes in either their exons, introns or regulating regions like the 

promoter, 5’UTR or 3’UTR (untranslated region) (Koncz et al. 1992). These DNA fragments 

randomly inserted into the plant cell genome usually comprise several thousand base pairs, 

interfering with gene expression. The most reliable T-DNA insertion lines in terms of 

preventing a functional protein from being expressed from such genes are those, in which the 

insertion occurs inside an exon, which is present in all splicing variants of the gene. In case of 

AtCML5, the GABI-Kat 703E02 line is commercially available and was generated by 

infecting WT A. thaliana plants of ecotype Columbia with an Agrobacterium strain carrying 

the inserted T-DNA on a pGABI1 plasmid. The T-DNA is located within the only exon of 

AtCML5 and it had previously been shown via reverse transcription PCR that this mutant line 

does not produce a functional AtCML5 mRNA, thus rendering it a homozygous knock-out 

mutant (atcml5-ko) (Flosdorff 2014). Phenotypic analysis under standard growth 

conditions (100 µM s-1 m-2 photons, 16 h light/8 h dark, 22°C day/18°C night temperature) 

had been performed, but no phenotypic differences could be detected in comparison to WT 

plants grown under identical conditions. However, AtCML5 might be i) required in processes 

like certain stress-induced pathways that have not been triggered under artificial climate 

chamber and greenhouse cultivation conditions; or ii) AtCML4 being highly similar in 

sequence might complement for the function of AtCML5, or iii) the phenotypic abnormalities 

were not detectable by the applied means of analysis. 

In order to analyse this further, atcml5-ko mutant and WT plants were subjected to different 

kinds of treatment (see 2.2.1.2). Plants were cultivated under sterile conditions on ½ MS 

medium solidified with 1 % plant agar to apply various kinds of stresses, e.g. salt stress by 

addition of 100 mM NaCl to the medium, osmotic stress by addition of 200 mM mannitol to 

the medium, growth under high light conditions (150 µM s-1 m-2 photons). Root growth was 

analysed by vertical cultivation of plants under sterile conditions with and without addition of 
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3-indol acetic acid (IAA, 15 nM). Hypocotyl growth analyses were conducted by stratification 

of seeds for 2 d in the dark at 4°C, followed by 6 h of exposure to light (100 µM s-1 m-2 

photons, 22°C) to induce germination, followed by 5 d of growth in the dark at 22°C to 

trigger etiolated growth of hypocotyls. Under none of the cultivation conditions significant 

differences between WT and mutant plant phenotype could be detected.  

The only experiment, in which some minor differences between WT and mutant plants could 

be observed, was the analysis of the shoot length at different time points under standard 

growth conditions. During the development of Arabidopsis plants there is a shift from a 

vegetative to a generative growth phase, which is characterised by the production of a primary 

inflorescence, whose growth is controlled by the shoot apical meristem. This process is 

followed by the development of flower buds and secondary inflorescences that diverge 

laterally from the primary inflorescence. A variety of regulatory mechanisms control this and 

other developmental transition processes in plants (reviewed in Huijser et al. 2011, Poethig 

1990). The development of the shoot of WT and atcml5-ko was monitored daily by measuring 

the distance from the rosette centre to the tip of the shoot, from which the pedicels of the 

apical flowers develop. Since not all plants cultivated together also entered the generative 

growth phase at the same time, only plants showing beginning shoot growth on the same day, 

were compared with one another. The values of the measured shoot length for plants of each 

group were analysed in a box plot and are displayed in Figure 9 for every second day of 

measurement. The day on which the first plants entered the generative growth phase was 

marked as day 1. 
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Analysis of the plants was carried out at the same time every day. Three groups of plants, 

defined by the day they entered the generative growth phase and started producing a visible 

shoot, were analysed and compared. Only the group starting generative growth on day 2 

showed differences in shoot length between the two genotypes that were statistically 

significant on the last days of analysis (see Figure 9B, days 9 to 13). In this group atcml5-ko 

plants had longer shoots than the compared WT plants. A similar tendency, though not 

statistically significant, could be observed in the group of plants entering generative growth 

phase on day 1 (see Figure 9A). Group three, in which shoot development began on day 3 of 

the analysis did not show any differences at all (see Figure 9 C). Other experiments of equal 

setup returned similar results, rendering any deduction about an involvement of AtCML5 in 

developmental processes affecting shoot growth poorly supported. A potential phenotype 

caused by the lack of functional AtCML5 could be attenuated by functional complementation 

via AtCML4. In order to exclude this possibility, atcml4/atcml5 double knock-out plants had 

to be analysed. 

One option to generate a double mutant was to use a plant line, in which the AtCML4 gene 

was disrupted by a T-DNA insertion, and to cross it with atcml5-ko plants. Several T-DNA 

insertion lines of A. thaliana are available, but unfortunately, for none of these lines, the 

disruption of the AtCML4 gene by a T-DNA insertion could be confirmed via site-specific 

PCR. Hence, other methods had to be chosen to reduce or completely abolish expression of 

AtCML4 in planta. A small interfering RNA (siRNA)-based approach was selected to 

down-regulate AtCML4 gene expression on a post-transcriptional level. 

 

3.2.5 Stable siRNA-based reduction of AtCML4 transcript abundance in planta for 
phenotype analysis 

In order to knock-down AtCML4 in planta with only minor or no effects on AtCML5 

transcript abundance, a region in the AtCML4 gene serving as guide RNA source to ensure 

mRNA degradation had to be determined. This region had to be specific to the AtCML4 

transcript, so that the AtCML5 mRNA would remain unaffected. Figure 10 shows an excerpt 

of a sequence alignment of the CDSs of AtCML4 and AtCML5 to highlight the sequence 

stretches identified as described in 2.2.1.6 to serve as potential guide RNAs. 
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firefly luciferase (pOpOff2-LUC) was used as vector control in all assays. In order to exclude 

the possibility of DMSO, the solvent for dexamethasone, having any impact on plant 

cultivation, all assays were concomitantly performed on medium containing dexamethasone 

and on medium containing an equal amount of DMSO. 

The plants were analysed under standard growth conditions to determine, whether the mutant 

lines displayed defects in development. For that, plants were cultivated in a horizontal and a 

vertical fashion for 21 days each. Since no differences between either atcml4-kd or 

atcml4-kd/atcml5-ko lines and the control plants could be detected, growth under different 

stress conditions was examined. In order to analyse hypocotyl elongation, seedlings were 

cultivated in the dark as described in 2.2.1.2. Additionally, phenotypic differences upon 

cultivation under salt stress (100 mM NaCl), osmotic stress (200 mM mannitol) or hormone 

influence (15 nM IAA) were analysed. However, no significant differences between the 

mutant lines and the control lines could be detected under any cultivation condition. Shoot 

growth under prolonged cultivation conditions could not be analysed, because RNAi 

induction by dexamethasone is not feasible in a soil-based plant cultivation system. 

A potential function-related phenotype can also be caused by overexpression of genes. For 

this reason, A. thaliana WT plants were stably transformed with pBIN19-ANX constructs to 

express either AtCML4 or AtCML5 under the control of the endogenous promoter of the 

UBIQUITIN gene (see 2.1.3). This promoter is active throughout the whole plant and since it 

is an endogenous promoter, silencing effects on transcriptional level as observed for the viral 

35S-promoter can be avoided. In addition, atcml5-ko and WT plants were transformed with a 

pBIN19-ANX construct to express AtCML5 under control of its endogenous promoter in 

order to generate a rescue line as control and a mild overexpressor line for further phenotypic 

analyses. Though the plants have already been subjected to two rounds of selection, 

phenotypic analyses could not be carried out due to a lack of time. 

 

3.2.6 Detection of endogenous AtCML4 protein levels with monoclonal antibodies 

While a lack of transcript should guarantee the absence of protein, complete confirmation can 

only be obtained by analyses of protein levels. This is especially important in case of 

inducible RNAi lines. However, for both AtCML4 and AtCML5 no sufficiently selective 

antibody was available. The only polyclonal antibody that would detect purified, recombinant 

AtCML529-215 did not have sufficient specificity towards AtCML5 and western blots on 
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corresponding antibodies to reduce off-target recognition. In accordance, the target peptides 

for both proteins were located in regions, characterised by low similarity between AtCML4 

and AtCML5 (see grey boxes, Figure 11 A). Due to difficulties with the hybridoma cell lines 

used for production of the anti-AtCML5 antibodies, only final anti-AtCML4 antibodies from 

two different cell lines could be obtained (see Figure 11 B). 

After initial screenings of preliminary antibody clones with regard to their specificity and 

cross-reactivity, two clones, 28C11 from rat and 15A3-131 from mouse, were established and 

tested further. Both antibodies detected GST-AtCML421-195, resulting in a signal at about 

47 kDa and showed a sufficient degree of specificity, since no signal could be detected for the 

lanes loaded with comparable amounts of purified GST-AtCML521-215. Unfortunately, 

detection of endogenous amounts of AtCML4 in crude leaf extracts of WT A. thaliana was 

not possible. A potential reason could be the very low expression levels of AtCML4 as 

predicted by different Arabidopsis gene expression databases relying on microarray bulk 

data (see Table 8).  

 

3.2.7 Promoter activity analysis for AtCML4 and AtCML5 

Dissection of promoter activity of a gene can provide valuable information that might help 

elucidate the potential function of the corresponding protein based on tissue- and/or 

developmental stage-specific expression of the gene. 

Several databases (see 2.2.3) were screened for information regarding the spatial and temporal 

patterning of gene expression, promoter activity in response to biotic and abiotic stimuli and 

the cis-elements identified in the promoter sequence of AtCML4 and AtCML5. The most 

relevant are listed in Table 8.  
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Table 8: In silico analysis of AtCML4 and AtCML5 expression levels and promoter sequence. Microarray 
data for organ-specific expression were supplied by the Transcriptome Variation Analysis Database, whereas 
information on promoter cis-elements is derived from the Arabidopsis cis-regulatory element database (see 
2.2.3). 

O
rg

an
-s
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ci

fic
 e
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n 

Organ 
Absolute normalised expression counts 

AtCML4 AtCML5 
Flowers 3-12 1013-1881 
Sepals (flower 3) 1 3580 
Petals (flower 3) 1 6288 
Anthers (flower 1) 2 5235 
Siliques (without seeds) 0-16 2385-9493 
Hypocotyl (1-day seedling) 12 2407 
Apical meristem with adjacent 
tissues (1-day seedling) 

48 1280 

Senescent petiole 0 4962 
Senescent vein 1 5586 
First elongated internode 10 2638 
Root apex 66 1344 
Root (without apex) 71 2927 
Dry seeds 0 54 
Leaf petiole 16-22 229-336 
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AtCML4 AtCML5 
ATB2/AtbZIP53/AtbZIP44/GBF5 BS in 
ProDH 

Bellringer/replumless/pennywise BS1 IN 
AG  

ARF1 binding site motif GATA promoter motif [LRE] 
RAV1-A binding site motif  RAV1-A binding site motif  
W-box promoter motif  MYB4 binding site motif 
 SOULREP3 binding motif 

 

High expression levels of AtCML5 were found in a variety of organs with the exception of dry 

seeds (54) and leaf petioles (229-336), in which expression was significantly lower. Peak 

values of normalised expression were found in petals (6288), siliques (up to 9493) and 

senescent veins (5586). By contrast, AtCML4 is generally expressed to a much lower extent 

than AtCML5, showing highest expression in the apical meristem (48) and in root 

tissue (66-71).  

The promoters for AtCML4 and AtCML5 as listed in the Arabidopsis cis-regulatory element 

database (see 2.2.3) comprise 478 and 2910 base pairs, respectively. Hence, the amount of 
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detected cis-elements is correspondingly smaller for AtCML4. The identified motifs indicated 

AtCML4 to be regulated by auxin (ARF1 binding site motif), abscisic acid (RAV1-A binding 

site motif, W-box promoter motif), as well as transcription factors of the bZIP family under 

hypoosmolarity conditions (ATB2/AtbZIP53/AtbZIP44/GBF5 BS in ProDH). The potential 

promoter sequence of AtCML5 contains a variety of cis-elements, of which the most abundant 

ones indicated that the gene might also be regulated by abscisic acid (RAV1-A binding site 

motif) and could be involved in light-dependent processes (GATA promoter motif, 

SOULREP3 binding motif, MYB4 binding site motif). Additionally, a sequence stretch 

known to be bound by the proteins BELLRINGER, REPLUMLESS and PENNYWISE had 

been identified, which would link AtCML5 expression to patterning processes in fruit, shoot 

and flower. Judging from the cis-elements, AtCML4 seems to be controlled mainly by 

phytohormones, whereas the AtCML5 promoter region is characterised by several binding 

motifs involved in light-dependent regulation. Hence, databases were screened for potential 

up- or down-regulation of AtCML4 and AtCML5 in response to abiotic stresses and 

hormones (Table 9). 

 
Table 9: Response of AtCML4 and AtCML5 promoter activity to hormone influence and abiotic stress 
stimuli. The listed changes in expression level compared to untreated control samples were provided by the 
AtGen Express Visualization Tool (see 2.2.3). 

H
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e 
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sp
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se
 Hormone 

Expression level compared to control samples 
AtCML4 AtCML5 

Abscisic acid (10 µM) Unaffected Elevated 
1-aminocyclopropane-1-
carboxylic acid (10 µM) 

Unaffected Decreased 

Brassinolide (10 nM) Unaffected Elevated 
3-indol acetic acid (1 µM) Unaffected Elevated 
Methyl-jasmonate (1 µM) Unaffected Decreased 
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 Stress stimulus 
Expression level compared to control samples 

AtCML4 AtCML5 
Cold Unaffected Elevated (root tissue) 
Osmotic Unaffected Elevated (root tissue) 
Drought Unaffected Elevated (root tissue) 
Heat Unaffected Decreased (aerial tissue) 
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According to the AtGen Express Visualization Tool (see 2.2.3), AtCML4 expression is 

unaffected by treatments with different hormones or by influence of abiotic stress stimuli. 

Considering the presence of auxin- and abscisic acid-responsive cis-elements in the AtCML4 

promoter region, the lack of response to treatment with these hormones is surprising. By 

contrast, AtCML5 expression was found to be elevated, when abscisic acid (ABA), 

brassinolide or auxins (AUX, 3-indol acetic acid) were applied. ABA is often involved in 

abiotic stress response, but also plays a role in root architecture development (reviewed in 

Harris 2015). Brassinolide and AUX are key hormones in the regulation of growth processes, 

especially in mediating growth by cell elongation (reviewed in Vaughan-Hirsch et al. 2017, 

Clouse 1996). In this respect, the fact that AtCML5 expression is elevated upon treatment with 

ABA corresponds to its enhanced expression upon cold, osmotic and drought stress 

conditions. Down-regulation of AtCML5 expression under influence of either 

1-aminocyclopropane-1-carboxylic acid (ACC) (reviewed in Bleecker et al. 1997) or 

methyl-jasmonate (Chen et al. 2017), which are both directly or indirectly (ACC is a 

biosynthetic precursor of ethylene) involved in senescence promoting processes (reviewed in 

Bleecker et al. 1997, Chen et al. 2017), further indicated a role of AtCML5 in 

growth-promoting processes. 

Overall, whereas AtCML5 seemed to be almost ubiquitously expressed and controlled by 

many different factors of abiotic and biotic character, AtCML4 expression levels are very low 

and the lack of response to stimuli of any kind raised the question as to whether it is actively 

involved in any cellular processes at all. In order to compare the in silico data to in vivo 

information on the expression of both genes, a promoter activity reporter assay was 

conducted. 

One possible approach to analyse promoter activity of a gene in vivo is to express a reporter 

protein under the control of the respective promoter. Different reporter genes, e.g. 

GLUCORONIDASE (GUS), FIREFLY LUCIFERASE (LUC) or fluorescent proteins can be 

chosen with different advantages and disadvantages. To analyse the promoter activity of 

AtCML4 and AtCML5, 1822 nucleotides (for AtCML4) and 1123 nucleotides (for AtCML5) 

upstream of the respective CDS were cloned into a pBIN19-ANX plasmid to drive the 

expression of a LUC gene (pAtCML4::LUC, pAtCML5::LUC) (see 2.1.3). A. thaliana WT 

plants were transformed using these plasmids and selected to yield several independent lines 

for each genotype via their plasmid-encoded BASTA resistance. The cloned regions were 

chosen according to promoter sequence predictions in the Aramemnon and AGRIS 
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databases (see 2.2.3) and comprise putative promoter regions and 5’UTRs as well as the 

cis-elements listed in Table 8. Differences in the promoter region length as displayed in the 

databases result from the application of different prediction methods for promoter sequences. 

Plants sterilely cultivated for either 5, 14 or 28 d were infiltrated with a 20 µM aqueous 

(D)-luciferin (LUCIFERASE substrate) solution under vacuum application, arranged on a 

moisturised glass plate and subsequently analysed with an LAS4000 ImageQuant system (see 

2.2.1.14). 
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pAtCML4::LUC and pAtCML5::LUC seedlings after 5 d of cultivation showed a similar LUC 

activity distribution in primordial root, hypocotyl, petioles and veins. In both cases LUC 

activity was high at the hypocotyl apex, where the petioles diverge and which later forms the 

rosette centre (see Figure 12 F-H, Figure 13 F, G, red circle). This observation already 

indicated that the promoters of AtCML4 and AtCML5 are active in the vascular tissue or 

adjacent cells. The major difference between the two was a strong expression in 

pAtCML5::LUC at the leaf apex (see Figure 13 F, G, green arrows). 

A similar distribution of promoter activity could be observed in 14 day-old seedlings, but 

AtCML4 promoter activity seemed less pronounced within the leaf veins and the roots 

compared to the AtCML5 promoter (compare Figure 12 D and Figure 12 E). However, direct 

comparison of expression levels is difficult, due to the non-quantitative character of the assay. 

At this developmental stage, pAtCML4::LUC seedlings also showed LUC activity at the basal 

leaf margins close to the transition zone to the petiole (see Figure 12 C, D, blue circle). 

pAtCML4::LUC adult plants displayed LUC activity in roots and the vascular system 

extending from petioles to leaf veins and through the inflorescence stem to the pedicels and 

petals (see Figure 12 A, blue arrows). The plant displayed in Figure 12 B also showed 

expression at the basis of cauline leaves, and flowers (blue arrows), but expression in the 

shoot could not be detected. This might be due to an increased shoot diameter compared to the 

plant shown in Figure 12 A, resulting in reduced signal intensity in tissues localised in a 

proximal part of the organ, e.g. the vascular system. pAtCML5::LUC plants also showed 

expression in cauline leaves and sepals (see Figure 13 A, blue circle), as well as the shoot 

(data not shown). LUC expression in root tissue was similar for pAtCML4::LUC and 

pAtCML5::LUC plants, characterised by expression in the primary root and several lateral 

roots, whereas the majority of lateral roots showed no expression at all or only localised in 

foci at distinct positions along the root length (see Figure 12 B, Figure 13 A, B, red arrows). 

One feature only observed in plants expressing LUC under AtCML5 promoter control, was the 

occurrence of luminescence signals in distinct foci along the leaf margins (see Figure 13 A, B, 

magnified in H, I, blue arrows), which correspond to hydathodes. Hydathodes are a special 

type of opening in the terminal leaf tissue or at trichome tips (trichome hydathodes), which is 

characterised by the involvement in active or passive secretion of water in liquid form, termed 

guttation (Sitte et al. 2002). 
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3.3 Phylogenetic analysis of CMLs harbouring a signal-anchor sequence similar to 
AtCML4 and AtCML5 in the green lineage 

Closely connected to the function of AtCML4 and AtCML5 is the question as to when in the 

evolutionary history of the green lineage, these Ca2+ sensors at endosomal membranes 

emerged. The high degree of sequence conservation in the N-terminal region of both proteins 

as depicted in Figure 1 allowed further analysis, how far the existence of CMLs with such a 

targeting sequence could be traced back in the plant kingdom. 

In an initial analysis (Ruge et al. 2016), protein sequences of AtCML4 and AtCML5 were 

applied in a screening for sequentially similar protein sequences in the species of the green 

lineage, by using a reverse best-hit BLAST approach. This led to the identification of three 

populations of protein sequences across different plant families that were distinguished by the 

sequence of the N-terminal extension rather than the sequence of the CAM-domain. All these 

proteins share strong similarities in the most N-proximal part of the sequence, the 

signal-anchor domain. However, they differ in the variable region. Due to their significant 

sequence similarity in this sequence part to either AtCML4 or AtCML5, two of these groups 

could be unequivocally termed “AtCML4-like” and “AtCML5-like” proteins, respectively. 

These proteins were only detected in members of the Brassicaceae family. The third group 

was termed “AtCML4_5-like” proteins, because the variable sequences in this group shared 

overall much less similarity and could not be closely correlated to either AtCML4 or 

AtCML5. 

During a further analysis, proteins were found in the databases, which also contained a highly 

similar N-terminal signal-anchor, but displayed a high degree of similarity to either AtCML3 

or AtCML7 in the CAM-domain. CML3 and CML7 in A. thaliana are highly similar in their 

CAM-domain and lack the N-proximal region present in AtCML4 or AtCML5. Therefore, the 

analysis was extended to include the sequence of AtCML3 to find AtCML3-like proteins 

harbouring an AtCML4_5-like N-terminus, with the specific characteristics outlined in Figure 

1. This led to the identification of AtCML3-like and AtCML7-like proteins with a 

signal-anchor domain. Furthermore, the collected sequences were analysed in an MSA to 

identify a consensus for the conserved sequence stretch in the N-terminus of all the protein 

sequences retrieved by this approach. This consensus was then used as query in a similar 

search, in order to identify potential CMLs that do not share sufficient similarity in the region 

of their CAM-domain to be identified by submitting the sequences of AtCML3, AtCML4 or 

AtCML5 as query in a BLAST search, but still harbour an AtCML4_5-like N-terminus. 
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Appendix III provides a list of all sequences retrieved in this approach with their sequence, 

corresponding plant species, family and order, as well as their name as depicted in the 

phylogenetic tree (see Figure 14). After analysing the sequences in an MSA (see Appendix 

IV) and removal of gap-containing positions for reconstruction of the phylogenetic tree, 

identical sequences were removed from the data set prior to tree reconstruction. The 

remaining sequence was given a special name, by which all species also possessing the 

respective protein can be identified using the list in Appendix III (e.g. Bna1Bol2, representing 

BraNaC5L1 and BraOlC5L2). AtCML24 (AraThC24) was chosen as outgroup, because it 

does not belong to sub-group VII within the CMLs of A. thaliana, and is therefore sufficiently 

phylogenetically different to serve as outgroup allowing to root the tree. Applying the method 

of maximum-likelihood, phylogenetic relations between the protein sequences from the data 

set were inferred (Figure 14). 
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Dotted or continuous blue lines in the tree group proteins according to the different plant 

families and plant orders. CMLs harbouring a conserved AtCML4_5-like N-terminal domain 

could be identified in many different dicot plant species as well as some monocots, namely 

Musa accuminata subsp. malaccensis, Elaeis guineensis, Phoenix dactylifera and 

Dendrobium catenatum (see Figure 14, red labels). In all of them the N-proximal region 

preceding the CAM-domain includes the highly conserved N-terminal signal-anchor followed 

by a less conserved variable region. The preservation of this sequence among distantly related 

angiosperm orders supports its biological relevance. Interestingly, only in species of the 

Brassicaceae family orthologues for both AtCML4 and AtCML5 were identified. Species 

belonging to other plant families were found to only harbour AtCML3-like, AtCML7-like or, 

in one case, AtCML6-like (ElaGu6L) proteins with a similar N-terminal signal-anchor. These 

families range from Carricaceae (CarPaC3L, Figure 14, light grey box), a Brassicales family, 

over the phylogenetically distant Nelumbonaceae and Papaveraceae, early-diverging 

eudicots (see Figure 14, green labels), to some monocot families (see Figure 14, red labels). 

The only exception is Tarenaya hassleriana, which was found to contain one protein similar 

to AtCML4 and AtCML5 (TarHaC4_5L). However, since it shares a comparable overall 

similarity with AtCML4 (88.7 % similarity) and AtCML5 (86.1 % similarity) alike, it could 

not be unambiguously correlated with one of them and was thus termed to be AtCML4_5-like. 

The majority of angiosperm families contain AtCML3-like and AtCML7-like proteins with 

this specific signal-anchor, instead of AtCML4, AtCML5 and their orthologues. Divergence of 

the Brassicaceae and Cleomaceae gave rise to AtCML4-, AtCML5- and AtCML4_5-likes, 

whereas AtCML3- and AtCML7-likes lost the N-terminal sequence extension. Among the 

analysed angiosperm species the preservation of the paralogous pair of AtCML4 and AtCML5 

and their homologues is unique among the members of the Brassicaceae family. Some of 

these species even contain several copies of both paralogues, e.g. Brassica napa or Camelina 

sativa. For both AtCML4- and AtCML5-likes, sequence features within the variable part of 

the N-terminal extension (see Figure 1) and the CAM-domain (see Appendix IV), which are 

specific to the respective orthologue group, can be found. 

Sequence analysis of the conserved part of the N-terminus in the proteins depicted in Figure 

14 led to the generation of a consensus sequence, which unravelled a difference between the 

AtCML4-like and AtCML5-likes in the Brassicaceae species compared to most of the proteins 

from other organisms. The sequences of ElaGuC3L2, CajCa3L1, CamSaC4L1, CamSaC4L2 

and MusAcC3L5 were excluded from the analysis, for they contained additional residues 
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4. Discussion 

Ca2+ serve as second messengers in animal and plant cells and although both systems have 

developed various and, in case of CAM, conserved sets of Ca2+-sensing proteins, the 

enormous diversity of CMLs is a plant-specific trait (Zhu et al. 2015, Plattner et al. 2015). 

Sequence diversity of CMLs is high and many harbour sequence stretches in addition to their 

CAM-domain, potentially affecting their sub-cellular localisation. Members of this protein 

family have been detected at the plasma membrane, the nucleus and for certain CMLs; direct 

correlations between their sequence and their sub-cellular localisation in mitochondria or 

peroxisomes have been made (Benschop et al. 2007, Chigri et al. 2012, Flosdorff 2014). The 

relevance of the N-terminal sequence extension of AtCML5 for its localisation in vesicles 

labelled by GmMAN1 and AtARA6 had previously been shown (Flosdorff 2014). However, it 

was hitherto unknown that the first 24 amino acids of AtCML4 and AtCML5 harbour features 

characteristic of a signal-anchor domain, comprising a TMD (amino acids 1-20) with an 

electrostatic charge gradient with a positive net charge on its C-proximal end (see Figure 1). 

Further, this sequence stretch is highly conserved among orthologues of AtCML4 and 

AtCML5 in other species belonging to the Brassicaceae family. According to analyses by 

Harley, Heijne and colleagues, the features of this conserved N-terminus suggested a topology 

for AtCML4 and AtCML5, in which the CAM-domain of both proteins protrudes into the 

cytoplasm (Heijne 1994, Harley et al. 1998). The signal-anchor sequence serves as 

translocation signal for the ER recognised by the SRP-complex and as membrane anchor at 

the same time (High et al. 1991). The topology hypothesis was experimentally proven in a 

protease protection assay on isolated membrane fractions, in which the YFP tag of a 

C-terminally labelled AtCML5 fusion protein was not protected from the protease 

activity (compare left with right lane in Figure 5). The similar behaviour of a comparable 

fusion construct with only the signal-anchor domain of AtCML5 instead of the full-length 

protein showed that it is indeed the N-terminus causing this topology. 

It is obvious to assume a similar topology for AtCML4, since it shares substantially high 

sequence similarity with AtCML5 within its 28 N-terminal amino acids and was found to be 

localised in the same compartment (see Figure 2 A). Quantitative analysis of AtCML5-YFP 

localisation in tobacco protoplasts revealed that it partially co-localises with the cis-Golgi 

marker GmMAN1-mCherry and that a slightly bigger fraction showed overlap with the late 

PVC marker AtARA6-mCherry (see Figure 4). Initial analyses of the sub-cellular localisation 
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of GmMAN1 have revealed that there is a major population of the protein labelling the 

cis-Golgi, whereas smaller fractions also occurred in medial and trans-Golgi as well as the 

TGN/EE (Saint-Jore-Dupas et al. 2006). Further, it has been found that under overexpression 

conditions, AtARA6 also labels TGN structures (Bottanelli et al. 2012), potentially rendering 

its co-localisation with AtCML5 artificial. Probably, the main localisation for AtCML5 is in 

Golgi cisternae membranes. This would be corroborated by the unusually large diameter of 

the structures observed by YFP-fusion expressions of AtCML4 and AtCML5 in 

Arabidopsis (see Figure 2) and tobacco cells (data not shown) under 35S- and endogenous 

promoter-driven expression conditions. Similar observations in Arabidopsis had previously 

been made for structures labelled by the Golgi cisternae proteins AtGNOM (Naramoto et al. 

2014) and AtERD2 (Boevink et al. 1998) as well as a constitutive GTP-binding form of the 

MVB protein Rab5-GTPase AtARA7 (Jia et al. 2013). However, the latter example was 

characterised by enhanced homotypic fusion and therefore does not resemble the native state 

of the system; AtARA7-labelled structures usually appear as punctae in microscopic 

analyses (Ueda et al. 2004, Haas et al. 2007). It has been shown that Ca2+ and pH are critical 

determinants for the binding of soluble cargo by VSRs; however, Ca2+ seem to be the major 

component in this system (Watanabe et al. 2002, Kirsch et al. 1994). The ER in plants is 

assumed to serve as a major Ca2+ storage compartment, probably with [Ca2+]f within the high 

micro molar range in its lumen (Stael et al. 2012). This is emphasised by the presence of 

several Ca2+-ATPases in the ER membrane (Hong et al. 1999, Liang et al. 1997). Analyses 

with a Ca2+ sensor construct anchored in the membranes of the Golgi stack have revealed the 

resting concentration in the lumen to be approx. 700 nM, which is several times lower than 

the assumed [Ca2+]f in the ER lumen (Ordenes et al. 2012). Considering the observation that 

cargo binding by VSRs occurs in ER and cis-Golgi and that cargo is released in the TGN 

(Künzl et al. 2016), it is likely to assume that the [Ca2+]f in the TGN lumen is even lower than 

in the Golgi. Concomitantly, the luminal pH in ER, Golgi and TGN has been shown to follow 

a gradient beginning at 7.1-7.5 in the ER and ranging from 6.8-6.9 in the Golgi to 6.1-6.5 in 

the TGN (Shen et al. 2013, Martinière et al. 2013). Whereas the influx of protons from the 

cytoplasm mediated by the vacuolar H+-ATPase in the TGN membranes explains the low pH 

in the TGN (Dettmer et al. 2006), decrease in luminal Ca2+ probably occurs via yet 

unidentified channels in Golgi and TGN membranes. Since this influences cargo trafficking, it 

can be considered a constitutive process and would explain the 4-5 times higher resting 

[Ca2+]f in the vicinity of AtCML5-positive compartments compared to the [Ca2+]f measured 
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around chloroplasts or in the entire cytoplasm (see Figure 6). Measurements of luminal Golgi 

[Ca2+]f resulted in similarly unsteady graphs in comparison to measurements of cytosolic 

[Ca2+]f (Ordenes et al. 2012) as retrieved by the AtCML51-28-YFP-AEQ sensor in this 

work (see Figure 6, blue and green graphs), indicating a compartment-specific behaviour of 

the [Ca2+]f. 

Although Ca2+ channels have not yet been identified in Golgi, TGN or MVB membranes, the 

Ca2+/Mn2+-selective cation pump AtECA3 has been found to be localised in Golgi 

stacks (Mills et al. 2008) and also MVBs (Li et al. 2008), hence showing a similar 

sub-cellular distribution as AtCML4 and AtCML5. Li and colleagues have proven that eca3 

mutants are characterised by increased protein secretion (Li et al. 2008), which can probably 

be explained by reduced luminal [Ca2+]f in the Golgi lumen. This might lead to premature 

dissociation of VSRs from their vacuole-destined cargo, which then travels to the plasma 

membrane by default. Since similar phenotypes were observed in vsr mutant plants, this 

indicates that VSR function is abolished or reduced when Ca2+ homeostasis in the Golgi is 

perturbed. This is further supported by the observation that activity of the Ca2+-ATPase 

SPCA1 was found to be required for Ca2+-dependent cargo binding and membrane association 

of the cargo receptor Cab45 in the TGN lumen of HeLa cells (von Blume et al. 2012).  

Taking into account the sub-cellular localisation of AtCML4 and AtCML5, the measured 

[Ca2+]f in the vicinity of AtCML5-labelled structures and the fact that AtPLDγ1 and AtDRP1B 

were identified as potential interaction partners of AtCML5 in a pull-down assay (see 3.2.2), 

the following working model could be envisioned describing the function of AtCML5 and 

potentially AtCML4 in vivo. AtCML4 and AtCML5 are located at the interface of maturation 

of trans-Golgi cisternae into tubulovesicular TGN structures. Here, they serve as sensors for 

the maturation process characterised by the efflux of Ca2+ from the Golgi/early stage-TGN 

lumen, which is required for cargo release from VSRs concomitantly to luminal 

acidification (Watanabe et al. 2002, Dettmer et al. 2006). Along with cargo release, processes 

involving recycling of VSRs by the retromer complex (Niemes et al. 2010), formation of 

clathrin-coated (Teh et al. 2013) secretory vesicles and MVB maturation (Scheuring et al. 

2011) coincide. AtCML5 could activate AtPLDγ1 and AtDRP1B to facilitate membrane 

curvature by generation of phosphatidic acid from more complex lipids and fission of the thus 

forming membrane bottleneck, respectively, to separate the nascent vesicles from the donor 

membrane. Hence, AtCML5 would coordinate the luminal cargo release from VSRs with the 

formation of the transport vesicles, in order to avoid premature vesicle detachment. In yeast, it 
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has been shown that Ca2+/CAM is required for late stages in fusion of vesicles with vacuoles 

and the authors speculated on a role of CAM in triggering membrane mixing proteins (Peters 

et al. 1998). Ca2+/CAM has also been found to stabilise the interaction between early 

endosome antigen 1, a protein essential for homotypic early endosome fusion in animal cells, 

and membranes in COS-7 cells (Lawe et al. 2003). Therefore, an involvement of AtCML5 in 

vesicular trafficking processes is not unlikely. As previously described, AtCML4 and 

AtCML5 might not localise to the late PVC, because the observed partial overlap with 

AtARA6 was probably the result of artificial AtARA6 mislocalisation. Further, since TGN 

structures usually appear as punctae in confocal microscopic analyses (Bottanelli et al. 2012, 

Künzl et al. 2016, Robinson et al. 2011), it is also possible that AtCML4 and AtCML5 are 

exclusively localised at Golgi stacks. Similar to AtGNOM, which co-localises with the TMD 

of sialyl transferase from rat, a trans-Golgi marker (Naramoto et al. 2014, Boevink et al. 

1998), but also influences AtPIN1 recycling to the plasma membrane (Geldner et al. 2003), 

AtCML5 could still interact with AtPLDγ1 and AtDRP1B on the TGN membrane. This would 

explain the lack of co-localisation of both AtPLD1γ and AtDRP1B with AtCML5-YFP as 

displayed in Figure 8, since both potential interacting proteins showed a fluorescence pattern 

typical of post-Golgi compartments. However, in this scenario the partial co-localisation with 

AtARA6 cannot be explained. Nevertheless, the hypothesis explained above is still suited to 

connect the indications retrieved from the experimental data and is further supported by other 

aspects. AtDRP1B is very weakly expressed several parts of the plant, including hypocotyl, 

cotyledon and juvenile leaves (Collings et al. 2008), which were found to be characterised by 

a high activity of the AtCML5 promoter (see Figure 13). Hence, the identification of 

AtDRP1B in the pull-down assay (see 3.2.2) is likely not a false-positive hit. Further, the 

related protein AtDRP1A has been shown to be involved in trafficking processes and plants 

lacking functional AtDRP1A have defects in cell expansion and vascular continuity in 

leaves (Collings et al. 2008, Sawa et al. 2005). Therefore, a role of AtDRP1B in vesicular 

trafficking processes seems likely. AtPLDγ1 was found to be expressed in different tissues 

with the highest levels in roots (Qin et al. 2006), which also showed high activity of the 

AtCML5 promoter region (see Figure 13). Further, PLDs were demonstrated to promote 

separation of nascent secretory vesicles from the TGN in the animal GH3 cell line (Chen et al. 

1997).  

The results of the in vivo analysis of promoter activity for AtCML5 (see Figure 13) were 

partially in line with the data retrieved by in silico analysis of AtCML5 expression (see Table 
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1 and Table 9). The high expression levels of AtCML5 in the different organs shown in Table 

8 were in accordance with AtCML5 promoter activity in the area of the central cylinder in the 

root, as well as the vascular and adjacent tissues. Indication for an involvement of AtCML5 in 

growth-affecting processes as provided by the stimulating effect of growth-promoting 

hormones (AUX, brassinolide) and the down-regulation of AtCML5 expression in response to 

negative regulators of growth (jasmonate, ACC), would not be contradicted by the results of 

the LUC-based promoter activity assay, showing its expression throughout almost all parts of 

the plant. Additionally, the presence of promoter cis-elements involved in light-response 

(GATA, MYB4, SOULREP3-binding motifs) and meristem 

function (Bellringer/replumless/pennywise BS1 IN AG) further support the indication for 

AtCML5 being involved in long-term growth-regulation, rather than triggering short-term 

responses to external or internal stimuli. However, the response to ABA in combination with 

the AtCML5 promoter activity detected in hydathodes (see Figure 13 H, I) renders a potential 

role in water homeostasis possible as well.  

Comparison of AtCML4 promoter activity data as obtained by the in vivo LUC-based assay 

revealed a significant difference to the information received by in silico analysis in terms of 

tissue expression levels (compare Figure 12 to Table 8). Although expression levels could not 

be quantitatively assessed in the assay, AtCML4 promoter activity was sufficiently high to 

result in LUC levels in the analysed plants that would allow signal detection with the same 

detector setting parameters as for pAtCML5::LUC plants. Hence, the signal intensities 

between the two different reporter plant populations did not differ severely. This is in 

contradiction to the organ-specific expression values determined by microarray analysis as 

displayed in Table 8. It is possible that the promoter activity is repressed at the original 

AtCML4 locus and this repression is lacking at the sites of T-DNA insertion of the 

pAtCML4::LUC construct. Despite the differences between AtCML4 and AtCML5 expression 

patterns retained from in silico analysis, in vivo analysis showed that – with minor 

differences – both genes are expressed in the same parts of the plant, e.g. roots, leaf veins, 

petioles, in the developmental stages analysed. Whereas for AtCML5 speculations about 

potential functions supported by in vivo and in silico data can be made, the potential role of 

AtCML4 remains difficult to evaluate. 

Unfortunately, phenotypic analysis of the single and double mutant plants analysed did not 

yield any conclusive results, thereby not providing any information on potential pathways 

AtCML4 and AtCML5 might be involved in. However, phylogenetic analysis of both proteins 
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revealed valuable details about the evolutionary background of these Ca2+ sensors and allow 

for speculation about their potential impact on plant development. The main characteristic of 

AtCML4 and AtCML5, separating them from the other CMLs in clade VII of Arabidopsis 

CMLs, is the presence of signal-anchor preceding the CAM-domain (see Figure 1). The 

relevance of the N-terminal signal-anchor for sub-cellular targeting had previously been 

proven (Flosdorff 2014, Ruge et al. 2016) and in this work it was found to place AtCML4 and 

AtCML5 in an endomembrane-associated microdomain with a [Ca2+]f environment distinct of 

that in the cytoplasm (see 3.2.1). Hence, it was interesting to analyse whether the 

Ca2+-sensing function at this sub-cellular localisation was phylogenetically conserved in 

plants, that is, whether CMLs with a similar signal-anchor sequence could also be found in 

other species of the green lineage. The phylogenetic analysis (see 3.3) revealed that the 

occurrence of a paralogous pair of AtCML4-like and AtCML5-like proteins as found in 

A. thaliana was restricted to species of the Brassicaceae family (see Figure 14, on the left). 

The most closely related family of Brassicaceae within the Brassicales order is the 

Cleomaceae family, which is represented in this analysis by Tarenaya hassleriana. This 

species encodes only one CML with a comparable signal-anchor sequence and about equal 

sequence similarity to both AtCML4 and AtCML5. Hence, the gene duplication event that 

gave rise to the paralogous AtCML4-like and AtCML5-like proteins in the Brassicaceae 

probably occurred after their divergence from the other Brassicales species, but before the 

divergence of Brassicaceae members. The split of Brassicaceae from Cleomaceae is supposed 

to have occurred approx. 20 million years ago (Wikström et al. 2001) and a whole-genome 

duplication event that might have given rise to AtCML4 and AtCML5 occurred after the 

split (Schranz et al. 2006). Carica papaya, a Carricaceae species belonging to the Brassicales, 

also contains a CML with a homologous signal-sequence (CarPa3L, Figure 14, light grey 

box), but it displays more sequence similarity to AtCML3 than to AtCML4 or AtCML5. 

Further, CMLs with an AtCML4/5-like signal-anchor sequence were detected in plant species 

outside the Brassicales. However, all of them shared highest sequence similarity to either 

AtCML3 or AtCML7. Significantly more of these species contain an AtCML3-like rather than 

an AtCML7-like protein with a signal-anchor sequence, therefore an AtCML3-like protein has 

to be considered the phylogenetic origin of AtCML4 and AtCML5 in Brassicaceae. In 

addition, it is likely to assume that there was a gene duplication event within the Brassicales, 

leading to the emergence of two AtCML3-like proteins with a signal-anchor sequence. Then, 

one of the two was subject to deletions and lost the whole N-terminal sequence extension, 
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whereas the other was altered within the CAM-domain leading to the AtCML4/5-like protein 

as found in Tarenaya hassleriana. An indication for the loss of the formerly present 

signal-anchor within one of the original AtCML3-like genes is provided by the presence of an 

AtCML3-like protein with a degenerate N-terminal extension in Raphanus 

sativus (RapSaC3L2, Figure 14, dark grey box). Its N-terminus lacks a considerable amount 

of residues of the TMD region (TMD displayed in Figure 15) required for membrane 

interaction. It might be a remnant of the described process. Analysis of the signal-anchor 

sequence of most proteins displayed in Figure 14 revealed that Jatrophus curca, Helianthus 

annuus, Cephalotus follicularis and the Brassicaceae species contain a signal-anchor domain 

that is four residues shorter on the N-terminal end than the one in the CMLs of all other 

analysed species (Figure 15). However, it is unclear why these residues were lost in the CMLs 

of these particular species, but only the residue at position -1 respective to the shorter 

signal-anchor sequence is supposed to contribute to the TMD as predicted by Tmpred (see 

2.2.3). Further, none of the species other than Raphanus sativus contain an AtCML4- or 

AtCML5-like protein together with a signal-anchor-harbouring AtCML3- or AtCML7-like 

protein. Additionally, only in Brassicaceae, some species contain AtCML3-like proteins with 

a C-terminal peroxisomal targeting sequence similar to AtCML3 in A. thaliana (Chigri et al. 

2012). This shows that the emergence of AtCML4- and AtCML5-like proteins coincided not 

only with a loss of the whole N-terminal sequence in AtCML3, but also with a potential 

change in its localisation to peroxisomes or maybe the cytoplasm (for AtCML3-like proteins 

without a targeting signal). Together, these findings underline the complex phylogenetic 

history of CML clade VII in A. thaliana, which is characterised by duplication and deletion 

events affecting certain protein domains or entire genes. This exacerbates the elucidation of a 

clear phylogenetic relationship with deductions regarding origin, localisation and function of 

the respective proteins. 

In order to illustrate the complicated phylogenetic relationship for better understanding, 

Figure 16 provides an overview of the conservation of a CML with an AtCML4/5-like 

signal-anchor sequence across a huge variety of dicot species (blue), some early-diverging 

dicots (green) and even a few monocot species (red), which emphasises the evolutionary 

pressure on and physiological relevance of this protein. 
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vascular tissue, especially leaf venation could be envisioned. The complexity of vein 

architecture, represented by the vein density per leaf area, has been shown to have risen 

significantly from ferns and early seed plants to angiosperms (Boyce et al. 2009). 

Furthermore, whereas most leaves of most monocots are characterised by several parallel 

primary veins with few interconnections, dicot leaves display a more hierarchical, ramified 

structure with several higher orders of veins and extensive interconnections and tapering 

towards the leaf margin also occurring in secondary veins (reviewed in Sack et al. 2013). 

Photosynthetic mesophyll delimits water transport and a more complex venation system 

improves water transport towards stomata whilst maintaining optimum water supply to the 

surrounding mesophyll. This leads to higher photosynthetic rates, due to improved 

transpiration activity (Brodribb et al. 2007). Sack and Scoffoni further mention that certain 

monocot families, e.g. banana family, to which Musa accuminata subsp. malaccensis belongs, 

have developed vein architectures similar to eudicots (Sack et al. 2013). Musa accuminata 

subsp. malaccensis was found to contain two AtCML3-like proteins with an AtCML4/5 

signal-anchor sequence (see Figure 14, MusAcC3L4, MusAcC3L5). Whether the other 

species shown to contain signal-anchor-carrying AtCML3-like proteins also have eudicot-like 

vein systems should be further investigated. Several species falling within the phylogenetic 

distribution displayed in Figure 15 were found not to contain a CML with an AtCML4/5-like 

signal-anchor sequence (see 3.3). However, all of these species are currently in a very early 

annotation state, rendering sequence information retrieved from the databases less reliable as 

for organisms in an advanced state of genome annotation, e.g. A. thaliana, for which also 

experimental evidence for bioinformatically inferred annotations exists. Thus, the fact that 

these species seem entirely devoid of CMLs with a comparable pre-sequence, has to be 

considered only tentative. 

The results presented here provide a basis for further analyses to determine the physiological 

function of AtCML4 and AtCML5 in the future. However, the lack of a visible phenotype in 

the mutant plants analysed under the described conditions impedes the determination of their 

function. In addition to the mutant lines generated in this work, a double knock-out line 

lacking functional AtCML4 and AtCML5 should be generated to avoid potential 

complementation effects. To assess the mutants regarding their protein levels, the monoclonal 

antibodies raised in this work (see 3.2.6) could be utilised. However, enriched membrane 

fractions should be used for analysis, since whole-plant extracts do not contain enough protein 

to be detected by western blot analysis with the given antibodies, at least in case of 
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AtCML4 (see Figure 11, leaf extract). Further, the antibodies could be used for 

co-immunoprecipitation experiments to either identify more potential interaction partners, or 

to verify AtPLDγ1 and AtDPR1B as binding partners in an approach different to the 

pull-down presented here (see 3.2.2). Also, future analyses performed with the 

pAtCML5::AtCML51-28-YFP-AEQ sensor should be conducted in comparison to control 

constructs, whose expression is driven by the same promoter, to measure Ca2+ signals only in 

those cells pAtCML5::AtCML51-28-YFP-AEQ is expressed in. Additionally, prior to utilising 

plants expressing sensor constructs under endogenous promoter control, a calibration curve 

correlating relative luminescence counts and [Ca2+]f should be established for these constructs 

to provide precision across the whole range of physiological [Ca2+]f. 
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5. Abbreviations 
ACA Autoinhibited Ca2+-ATPase 
CAM Calmodulin 
cAMP Cyclic adenosine monophosphate 
CAX Ca2+/H+ -antiporter 
CBL Calcineurin B-like protein 
CDS Coding sequence 
cGMP Cyclic guanosine monophosphate 
CML Calmodulin-like protein 
CNBr Cyanide bromide 
CNGC Cyclic nucleotide-gated channel 
CPK Calcium-dependent protein kinase 
ddH2O Double de-ionised water 
DMSO Dimethylsulfoxide 
DNA Deoxyribonucleic acid 
DTT Dithiotreitol 
ECA ER-type Ca2+-ATPase 
EEs Early endosomes 
GFP Green fluorescent protein 
gDNA Genomic DNA 
GLR Glutamate receptor 
GST Glutathione S-transferase 
LEs Late endosomes 
McsS Mechanosensitive channel 
MVBs Multivesicular bodies 
PAGE Poly acrylamide gel electrophoresis 
PCR Polymerase chain reaction 
PMCA Plasma membrane Ca2+-ATPase 
PVC Pre-vacuolar compartment 
PVDF Poly vinyleden fluoride 
RFP Red fluorescent protein 
RNA Ribonucleic acid 
RNAi RNA interference 
SDS Sodium dodecylsulfate 
SERCA (Sarco)endoplasmic reticulum Ca2+-ATPase 
siRNA Small interfering RNA 
TBS Tris-buffered saline 
UTR Untranslated region 
VGCC Voltage-gated Ca2+ channel 
YFP Yellow fluorescent protein 
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Summary 

In this work, the two Ca2+ sensors AtCML4 and AtCML5 from A. thaliana were analysed 

regarding their topology, sub-cellular localisation, potential cellular function and phylogenetic 

origin. The proteins were found to be co-localised and quantitative assessment of 

co-localisation experiments revealed further that AtCML5 co-localises with GmMAN1, a 

Golgi stack marker and AtARA6, a marker for the late PVC, to almost similar extent. 

However, the circular geometry of the structures observed for AtCML4 and AtCML5 under 

overexpression conditions, as well as under control of their native promoter, led to the 

conclusion that these proteins predominantly reside in Golgi cisternae membranes. Sequence 

analyses showed that AtCML4 and AtCML5 harbour an N-terminal signal-anchor sequence 

typical of type-III single-pass transmembrane proteins. Protease protection assays on isolated 

membrane fractions confirmed that the N-terminal domain of AtCML5 anchors the protein in 

the membrane with its CAM-domain protruding into the cytoplasm. Transgenic A. thaliana 

plant lines stably expressing a Ca2+ sensor fusion construct with the signal-anchor sequence of 

AtCML5 (pAtCML5::AtCML51-28-YFP-AEQ) revealed that the protein is targeted to a 

microdomain with a basal [Ca2+]f 4-5 times higher compared to the remaining cytoplasm. 

Together with the identification of AtPLDγ1 and AtDRP1B as potential interaction partners, it 

can be hypothesised that AtCML5 senses Ca2+ efflux from the Golgi lumen, and promotes 

vesicle budding processes via its interaction partners, thereby coupling the Golgi-internal 

cargo sorting processes to the formation of vesicles for further trafficking to the vacuole or the 

plasma membrane. Phylogenetic analysis of AtCML4 and AtCML5 with a special focus on 

their N-terminal signal-anchor sequence unravelled that the proteins probably originated from 

an AtCML3-like protein with a similar signal-anchor, which was found to be conserved 

among a huge variety of dicot species and some monocots. This indicated an 

angiosperm-specific, predominantly dicot-typical function of these proteins. In vivo 

expression patterns analysed in a LUCIFERASE-based promoter activity assay revealed 

AtCML4 and AtCML5 to be expressed in roots, hypocotyls, stem, petioles and leaf vascular 

tissue. Expression in secondary leaves and petals could also be detected and the AtCML5 

promoter was further active in hydathodes. A potential function of AtCML4 and AtCML5 

could be connected to the formation of the vascular tissue network architecture, whose 

complexity has been found to be unprecedentedly high in angiosperms and specifically in 

dicots. 
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Zusammenfassung 

In dieser Arbeit wurden die zwei Calciumsensoren AtCML4 und AtCML5 aus A. thaliana 

bezüglich ihrer Topologie, sub-zellulären Lokalisierung, potentiellen zellulären Funktion und 

ihres phylogenetischen Ursprungs untersucht. Es wurde festgestellt, dass beide Proteine 

identisch lokalisiert sind und quantitative Analysen zeigten weiterhin, dass AtCML5 zu 

nahezu gleichen Teilen mit dem Golgi-Zisternen Marker GmMAN1 und AtARA6 - einem 

Marker für das späte prävakuoläre Kompartiment - kolokalisiert. Allerdings markierte 

AtCML5-YFP unabhängig von seinem Expressionslevel große zirkuläre Strukturen, was 

deutlich auf eine Lokalisation im Golgi-Apparat hinwies. Sequenzanalysen zeigten, dass 

AtCML4 und AtCML5 über eine N-terminale Signal-Anker Sequenz verfügen, welche die 

Proteine als Typ-III Singlepass-Transmembranproteine kennzeichnet. Proteasebehandlungen 

isolierter Membranfraktionen bestätigten, dass die N-terminale Domäne von AtCML5 das 

Protein in der Membran verankert, sodass seine CAM-Domäne ins Zytoplasma weist. In 

transgenen A. thaliana Linien, die stabil ein Fusionskonstrukt aus diesem N-terminus und 

einem Calciumreporter (pAtCML5::AtCML51-28-YFP-AEQ) exprimierten, war die basale 

[Ca2+]f 4-5 mal höher als im Gesamtzytoplasma in Kontrollpflanzen. Da zugleich AtPLDγ1 

und AtDRP1B als potentielle AtCML5 Interaktionspartner identifiziert wurden, wäre es 

möglich, dass AtCML5 von Ca2+ Strömen aus dem Golgi aktiviert wird und mittels seiner 

Interaktionspartner Vesikelabschnürung an Proteinsortierungsprozesse koppelt. 

Phylogenetische Analysen deuten darauf hin, dass AtCML4 und AtCML5 von einem 

AtCML3-ähnlichen Protein mit einem homologen Signal-Anker abstammen. Dieser 

Vorgänger ist in diversen Dikotyledonenspezies und einigen Monokotyledonenarten 

konserviert, was auf eine Angiosperm-spezifische Funktion hindeutet, die möglicherweise 

primär in dikotyledonen Pflanzen relevant ist. In LUCIFERASE-basierten 

Promoteraktivitätsstudien wurde festgestellt, dass AtCML4 und AtCML5 stark in Wurzeln, 

Spross, Hypokotyl und Blattgefäßen exprimiert sind. Auch in Kelchblättern und 

Sekundärblättern waren die Promotoren der beiden Gene aktiv. Überdies wird AtCML5 in 

Hydathoden exprimiert. Eine potentielle Funktion von AtCML4 und AtCML5 könnte im 

Zusammenhang mit der Ausbildung des Blattgefäßnetzwerks stehen. Dies würde dazu passen, 

dass die Komplexität dieses Netzwerks in Angiospermen und besonders in Dikotyledonen 

deutlich ausgeprägter ist als in anderen Tracheophyten. 
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Appendices 

Appendix I. Species list for sequence alignment in Figure 1 

Abbreviation in MSA Species 

AraLy Arabidopsis lyrata subsp. lyrata 

AraTh Arabidopsis thaliana 

CapRu Capsella rubella 

EutSa Eutrema salsugineum 

BraNa Brassica napa 

BraRa Brassica rapa subsp. pekinensis 

BraOl Brassica oleracea var. oleracea 

RapSa Raphanus sativus 

 

  



Appendix II.

 

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

TVIVD

EVPVGTVSVYNSPR

KKVEGEK

KPPQPNANANAAQVQALK

LGGMLSGLGR

SSSDDSLLR

 

Appendix II. MASCOT 

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

Peptide

TVIVDAEAAQNR

EVPVGTVSVYNSPR

KKVEGEK 

KPPQPNANANAAQVQALK

LGGMLSGLGR 

SSSDDSLLR 

MASCOT analysis of peptides identified in mass spectrometric analysis

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

Peptide 

AEAAQNR 

EVPVGTVSVYNSPR 

KPPQPNANANAAQVQALK

analysis of peptides identified in mass spectrometric analysis

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

Protein 

identification 

probability

99,7%

100,0%

100,0%

KPPQPNANANAAQVQALK 100,0%

100,0%

100,0%

analysis of peptides identified in mass spectrometric analysis

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

Protein 

identification 

probability 

Mascot 

score

99,7% 

100,0% 

100,0% 

100,0% 

100,0% 

100,0% 

analysis of peptides identified in mass spectrometric analysis

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

Mascot 

ion 

score 

Actual 

peptide 

mass 

(AMU)

67,0 1.285,66

40,0 1.502,77

34,9 

34,9 1.859,00

21,1 

38,5 

analysis of peptides identified in mass spectrometric analysis

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

Actual 

peptide 

mass 

(AMU) 

Peptide 

1.285,66 

1.502,77 

816,47 

1.859,00 

975,52 

978,46 

APPENDICES

analysis of peptides identified in mass spectrometric analysis

Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana 

Peptide 

start 

index 

Peptide 

372 

669 

74 

683 

64 

473 
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analysis of peptides identified in mass spectrometric analysis 

Peptide 

stop 

index 

383 

682 

80 

700 

73 

481 

 

 



Dynamin

IPGLQSLITK

LYMIMEICR

 

 

Dynamin-related protein 1B (DRP1B), OS=Arabidopsis thaliana

Peptide 

IPGLQSLITK 

LYMIMEICR 

 

ated protein 1B (DRP1B), OS=Arabidopsis thaliana

identification 

  

ated protein 1B (DRP1B), OS=Arabidopsis thaliana

Protein 

identification 

probability

99,5%

99,7%

 

ated protein 1B (DRP1B), OS=Arabidopsis thaliana

Protein 

identification 

probability 

Mascot 

ion score

99,5% 0,220

99,7% 

ated protein 1B (DRP1B), OS=Arabidopsis thaliana

Mascot 

ion score 

Actual 

peptide 

mass 

(AMU)

0,220 1.068,66

1,61 1.227,57

ated protein 1B (DRP1B), OS=Arabidopsis thaliana 

Actual 

peptide 

mass 

(AMU) 

Peptide 

1.068,66 

1.227,57 

APPENDICES

Peptide 

start 

index 

Peptide 

372 

669 
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Peptide 

stop 

index 

383 

682 
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Appendix III. Protein sequences subjected to phylogenetic analysis 

Label in 
MSA and 

phylogenet
ic tree 

Sequence Species Family Order 

Names of 
combined 
sequences 
in tree 

R
a
p
S
a
C
3
L
2
 

 

>XP_018490833.1 PREDICTED: 
calmodulin-like protein 3 
[Raphanus sativus] 
MATNLLKLSSQIRRLSPITRSLTIRT
SATSTTSSGSKKMDQAELSRIFQMFD
RNGDGKITKQELSDSLENLGIYIPDK
DLVQMIEKIDLNGDGYVDIEEFGGLY
QSIMEDRDEEEDIREAFNVFDQNRDG
FITVEELRSVLSSLGLKQGRTLEDCK
RMISKVDVDGDGMVNFKEFKQMMKGG
GFAALESSL 

R
a
p
h
a
n
u
s
 
s
a
t
i
v
u
s
 

B
r
a
s
s
i
c
a
c
e
a
e
 

B
r
a
s
s
i
c
a
l
e
s
 

 

E
u
c
G
r
C
3
L
2
 

 

>XP_010069294.1 PREDICTED: 
calmodulin-like protein 3 
[Eucalyptus grandis] 
MPAIITRIFLLYHLLHTWFHYLVPKK
LRVYLPPSWSPLRLDPTPPPLPRSLS
LVKAPMDAAELKRVFQMFDRNGDGRI
TKKELSDSLENLGIYIPDKELAEMIE
KIDVNGDGCVDIDEFGALYRSIMEER
DEEEDMREAFNVFDQNGDGFITVDEL
RSVLASLGLKQGRTLEDCKRMIMKVD
VDGDGMVDFKEFKQMMKGGGFSALS 
 

E
u
c
a
l
y
p
t
u
s
 
g
r
a
n
d
i
s
 

M
y
r
t
a
c
e
a
e
 

M
y
r
t
a
l
e
s
 

 

Z
i
z
J
u
C
3
L
2
 

 

>XP_015886996.1 PREDICTED: 
calmodulin-like protein 3 
[Ziziphus jujuba] 
MPTIFLRIFLIYNLFNSLLLSLVPKK
IRHFFPPSWFPLQAPPLPSPPSPPSS
SCSFLAQKRMDPTELKRVFQMFDRNG
DGRITKKELNDSLENLGIFIPDKELT
QMIEKIDVNGDGCVDMDEFGELYQSI
MDEKDEEEDMREAFNVFDQNGDGFIT
VDELRSVLASLGLKQGRTVEDCKRMI
MKVDVDGDGMVNYKEFKQMMKGGGFS
ALS 
 

Z
i
z
i
p
h
u
s
 
j
u
j
u
b
a
 

R
h
a
m
n
a
c
e
a
e
 

R
o
s
a
l
e
s
 

 



APPENDICES 

109 

 

L
o
t
J
a
C
7
L
 

>CAB63264.3 calcium-
binding protein [Lotus 
japonicus] 
MPTILHRIFLLYNLLNSFLLSLVPKK
VIAFLPQSWFPHQTPSFSSSSSSSSS
RGNLVIQKTTDDCDPCQLLPLDTSLI
PKMDPTELKRVFQMFDRNGDGRITKK
ELNDSLENLGIFIPDKELTQMIERID
VNGDGCVDIDEFGELYQSIMDERDEE
EDMREAFNVFDQNGDGFITVEELRTV
LASLGIKQGRTVEDCKKMIMKVDVDG
DGMVDYKEFKQMMKGGGFSALT 
 

L
o
t
u
s
 
j
a
p
o
n
i
c
u
s
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
 

 

V
i
g
A
n
C
3
L
1
 

>XP_017425433.1 PREDICTED: 
calmodulin-like protein 7 
[Vigna angularis] 
MPTIMLRFFLLYNLLRPFLLCLVPKK
VRAILSPSWFRSSSTTAPTPTQPSSS
SSSSSAFTRISLSMDPNELKRVFQMF
DRNGDGRITKKELSDSLDNLGIFIPD
KELTVMIERIDVNGDGCVDIDEFGEL
YQTIMDERDEEDDMREAFNVFDQNGD
GFITVEELRTVLSSLGLKQGRTVEDC
KKMIMKVDVDGDGMVDYKEFKQMMKG
GGFSALT 
 

V
i
g
n
a
 
a
n
g
u
l
a
r
i
s
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
 

 

V
i
g
R
a
C
3
L
1
 

>XP_014521900.1 PREDICTED: 
calmodulin-like protein 7 
[Vigna radiata var. 
radiata] 
MPTIMLRFFLLYNLLRPFLLCLVPKK
VRAILSPSWFRSSTTTTAPTPTQPSS
SSSSSSSSAITRISLSMDPNELKRVF
QMFDRNGDGRITKKELSDSLDNLGIF
IPDKELTVMIERIDVNGDGCVDIDEF
GELYQTIMDERDEEDDMREAFNVFDQ
NGDGFITVEELRTVLSSLGLKQGRTV
EDCKKMIMKVDVDGDGMVDYKEFKQM
MKGGGFSALT 
 

V
i
g
n
a
 
r
a
d
i
a
t
a
 
v
a
r
.
 

r
a
d
i
a
t
a
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
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P
h
a
V
u
C
3
L
1
 

>XP_007150430.1 
hypothetical protein 
PHAVU_005G152900g 
[Phaseolus vulgaris] 
MPTILHRFFLLYNLLHPFLLFLVPKK
VRAILSPSWFRSTTTPPPPSSSSSRL
ITTISPPMDPHELKRVFQMFDRNGDG
RITKKELNDSLENLGIFIPDKELTLM
IERIDVNGDGCVDIDEFGELYQHIMD
DRDEDEDMREAFNVFDQNGDGFITVE
ELRTVLSSLGLKQGRTVEDCKKMIMK
VDVDGDGMVDYKEFKQMMKGGGFSAL
T 
 

P
h
a
s
e
o
l
u
s
 
v
u
l
g
a
r
i
s
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
 

 

G
l
y
M
a
C
3
L
1
 

>NP_001236739.2 EF-hand, 
calcium binding motif-
containing protein 
precursor [Glycine max] 
MPTILHRIFLLYNLVHSFLLCLVPKK
VRPFLPPSWFQTKTITAPSSSSSSSS
SARIIKRTTMDPNELKRVFQMFDRNG
DGRITKKELNDSLENLGIFIPDKELG
QMIERIDVNGDGCVDIDEFGELYQTI
MDERDEEEDMREAFNVFDQNADGFIT
VDELRTVLSSLGLKQGRTVQDCKNMI
SKVDVDGDGMVDFKEFKQMMKGGGFS
ALT 
 

G
l
y
c
i
n
e
 
m
a
x
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
 

 

C
a
j
C
a
C
3
L
1
 

>XP_020223613.1 
calmodulin-like protein 7 
[Cajanus cajan] 
MPTIFHRIVVVYEVLYPFLVRLIPKK
VRAFFPSAGGSWSSQKSRRTSMDPQE
LRRVFQMFDRNGDGRITKKELSDSLE
NLGIFIPDKELSLMIEKIDVNGDGCV
DIDEFGELYQTIMDERDEEEDMREAF
NVFDQNGDGFITVDELRTVLSSLGLK
QGRTVEDCKNMIMKVDVDGDGMVDFK
EFKHMMKGGGFNALT 
 

C
a
j
a
n
u
s
 
c
a
j
a
n
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
 

 

P
r
u
M
u
C
3
L
2
 

>XP_008237262.1 PREDICTED: 
calmodulin-like protein 3 
[Prunus mume] 
MPTIFPRIFLIYNLLNTFLLSLVPKN
LRPLLPSSWFPCQTNLVATNTPLPHF
PPSSSSSSLPCGAPKVIR 
MDPNELKRVFQMFDRNGDGRITKQEL
NDSLENLGIFIPDKELFNMIQKIDVD
GDGCVDIDEFGELYQSIMDERDEDED
MKEAFNVFDQNGDGFITVDELRSVLS
SLGLKQGRTIEDCKRMIMKVDVDGDG
RVNYKEFKQMMKGGGFSALS 
 

P
r
u
n
u
s
 
m
u
m
e
 

R
o
s
a
c
e
a
e
 

R
o
s
a
l
e
s
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P
r
u
P
e
C
3
L
2
 

>XP_020411008.1 
calmodulin-like protein 3 
[Prunus persica] 
MPTIFPRIFLIYNLLNTFLLSLVPKN
LRPLLPSSWFPCQTNLVATNTSLPHF
PPSSSSSSLPLPLPLPCG 
APKVIRMDPNELKRVFQMFDRNGDGR
ITKQELNDSLENLGIFIPDKELFNMI
QKIDVNGDGCVDIDEFGELYQSIMDE
RDEDEDMKEAFNVFDQNGDGFITVDE
LRSVLSSLGLKQGRTIEDCKRMIMKV
DVDGDGRVNYKEFKQMMKGGGFSALS 
 

P
r
u
n
u
s
 
p
e
r
s
i
c
a
 

R
o
s
a
c
e
a
e
 

R
o
s
a
l
e
s
 

 

P
r
u
A
v
C
3
L
 

>XP_021808428.1 
calmodulin-like protein 3 
[Prunus avium] 
MPTIFPRIFLIYNLLNTFLLSLVPKN
LRPLLPSSWFPCQTNLVATSTPLPHF
PPSSSSSSSCGAHKVIRMDPNELKRV
FQMFDRNGDGRITKQELNDSLENLGI
FIPDKELFNMIQKIDVNGDGCVDIDE
FGELYQSIMDERDEDEDMKEAFNVFD
QNGDGFITVDELRSVLSSLGLKQGRT
IEDCKRMIMKVDVDGDGRVNYKEFKQ
MMKGGGFSALS 
 

P
r
u
n
u
s
 
a
v
i
u
m
 

R
o
s
a
c
e
a
e
 

R
o
s
a
l
e
s
 

M
a
l
P
y
C
3
L
 

M
a
l
D
o
C
3
L
4
 

 

>XP_008369144.1 PREDICTED: 
calmodulin-like protein 3 
[Malus domestica] 
MPTIFPRIFLIYNLLNTFLLSLVPKH
LRHLLPSSWFPHHTTLLDTKTPSPQP
PPPSSLSLPLPLPSGGAC 
HVRMDPNELKRVFQMFDRNGDGRITK
QELNDSLENLGIYIPDKELFNMIEKI
DVNGDGCVDIDEFGELYQSIMDERDE
EEDMKEAFNVFDQNGDGFITVDELRS
VLSSLGLKQGRTIEDCKRMIMKVDVD
GDGRVNFKEFRQMMKGGGFSALS 
 

M
a
l
u
s
 
d
o
m
e
s
t
i
c
a
 

R
o
s
a
c
e
a
e
 

R
o
s
a
l
e
s
 

M
a
l
P
y
C
3
L
 

P
y
r
B
r
C
3
_
7
L
 

>XP_009347665.1 PREDICTED: 
calmodulin-like protein 7 
[Pyrus x bretschneideri] 
MPTIFRRIFLIYNLLNTFLLSLVPKH
LRPLLPSSWFPHHTTLLDTKTPSPQP
PPPSLLSLPLPLPLPSGG 
ACHVRMDPNELKRVFQMFDRNGDGRI
TKQELNDSLENLGIYIPDKELFNMIE
KIDVNGDGCVDIDEFGELYQSIMDER
DEEEDMKEAFNVFDQNGDGFITVDEL
RSVLSSLGLKQGRTIEDCKRMIMKVD
VDGDGRVNYKEFRQMMKGGGFSALS 
 P

y
r
u
s
 
x
 
b
r
e
t
s
c
h
n
e
i
d
e
r
i
 

R
o
s
a
c
e
a
e
 

R
o
s
a
l
e
s
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P
o
p
E
u
C
3
L
2
 

>XP_011037098.1 PREDICTED: 
calmodulin-like protein 3 
[Populus euphratica] 
MPTILLRIFLLYNLLNSFLLSLVPKK
LRFLLPTSWYHHHQANTNTSWCHPHQ
ANTNTKKPSSLLPSPSFVLTRMDQAE
LKRVFQMFDRNGDGKITKKELNDSLE
NLGIFIPDKELTQMIETIDVNGDGCV
DIDEFGELYQSLMDEKDEEEDMREAF
KVFDQNGDGFITVDELRSVLASLGLK
QGRTLEDCKRMIMKVDVDGDGMVDYK
EFKKMMKGGGFSALG 
 

P
o
p
u
l
u
s
 
e
u
p
h
r
a
t
i
c
a
 

S
a
l
i
c
a
c
e
a
e
 

M
a
l
p
i
g
h
i
a
l
e
s
 

 

P
o
p
T
r
C
3
L
1
 

>XP_006372871.1 
hypothetical protein 
POPTR_0017s05860g [Populus 
trichocarpa] 
MPTILLRIFLLYNLLNSFLLSLVPKK
LRFLLPTSWYHPHQANTNTSWCHPHQ
ANTNTKKPSSLLPSPSFVLARMDQAE
LKRVFQMFDRNGDGKITKKELNDSLE
NLGIFIPDKELTQMIETIDVDGDGCV
DIDEFGELYQSLMDDKDEEEDMREAF
KVFDQNGDGFITVDELRSVLASLGLK
QGRTLEDCKRMIMKVDVDGDGMVDYK
EFKKMMKGGGFSALG 
 

P
o
p
u
l
u
s
 
t
r
i
c
h
o
c
a
r
p
a
 

S
a
l
i
c
a
c
e
a
e
 

M
a
l
p
i
g
h
i
a
l
e
s
 

 

P
o
p
E
u
C
3
L
3
 

>XP_011012929.1 PREDICTED: 
calmodulin-like protein 3 
[Populus euphratica] 
MRTILLRIFLLYNLLNSFLLSLVPKK
LRFLLPTSWYHHPHQAITNTRKPSSL
LPSSSNFVVKRMDQAELKRVFQMFDR
NGDGRITQKELNDSLENIGIFIPDKE
LTQMIENIDANGDGCVDIDEFGELYR
SLMDEKDEEEDMREAFNVFDQNGDGF
ITVEELRSVLASLGLKQGRTFEDCKR
MIMKVDVDGDGMVDYREFQKMMKGGG
FSAVG 
 

P
o
p
u
l
u
s
 
t
r
i
c
h
o
c
a
r
p
a
 

S
a
l
i
c
a
c
e
a
e
 

M
a
l
p
i
g
h
i
a
l
e
s
 

 

P
o
p
E
u
C
3
L
4
 

>XP_011026425.1 PREDICTED: 
calmodulin-like protein 3 
[Populus euphratica] 
MRTILLRIFLLYNLLNSFLLSLVPKK
LRFLLPTSWYHHPHQAITNTRKPSSL
LPSSSNFAVKRMDQAELKRVFQMFDR
NGDGRITQKELNDSLENIGIFIPDKE
LTQMIENIDANGDGCVDIDEFGELYR
SLMDEKDEEEDMREAFNVFDQNGDGF
ITVDELRSVLASLGLKQGRTFEDCKR
MIMKVDVDGDGMVDYREFQKMMKGGG
FSAVG 
 

P
o
p
u
l
u
s
 
t
r
i
c
h
o
c
a
r
p
a
 

S
a
l
i
c
a
c
e
a
e
 

M
a
l
p
i
g
h
i
a
l
e
s
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P
o
p
T
r
C
3
L
3
 

>XP_002310432.2 
hypothetical protein 
POPTR_0007s01960g [Populus 
trichocarpa] 
MRTILLRIFLLYNLLNSFLLSLVPKK
LRFLLPTSWYHHPHQAITNTKKPSSL
LPSSSNFVLKRMDQAELKRVFQMFDR
NGDGRITQKELNDSLENIGIFIPDKE
LTQMIEKIDVNGDGCVDIDEFGELYQ
SLMDEKDEEEDMREAFNVFDQNGDGF
ITVDELRSVLASLGLKQGRTFEDCKR
MIMKVDVDGDGMVDYREFKKMMKGGG
FSAVG 
 

P
o
p
u
l
u
s
 
t
r
i
c
h
o
c
a
r
p
a
 

S
a
l
i
c
a
c
e
a
e
 

M
a
l
p
i
g
h
i
a
l
e
s
 

 

C
a
r
P
a
C
3
L
 

>XP_021906924.1 
calmodulin-like protein 7 
[Carica papaya] 
MPTILLRIFLVYNLLNSILLYLIPKK
LRGFLPPSWYPHPHPHHHHHQQQQQP
NLVLDSSSKSPSPSPSSVSGLKRMDS
AELKRVFQMFDKNGDGRITKKELNDS
LENLGIFIPDKELAQMIEKIDVNGDG
CVDIDEFGSLYKSIMDEHDEEEDMRE
AFNVFDQNGDGFITVDELKSVLASLG
LKQGKTVEDCKKMIMQVDEDGDGMVN
YKEFRQMMKGGGFSALS 
 

C
a
r
i
c
a
 
p
a
p
a
y
a
 

C
a
r
r
i
c
a
c
e
a
e
 

B
r
a
s
s
i
c
a
l
e
s
 

 

J
a
t
C
u
C
3
L
2
 

>XP_012065170.1 
calmodulin-like protein 3 
[Jatropha curcas] 
MLKIFLLYHLLHSLLVYLLPKKLRFL
LPSSWLPHQANFPPNKKPPSSSSNTS
SSSSSSVVHKRMDTTELRRVFQMFDR
NGDGRITRKELSDSLENLGIFIPDSE
LTQMIDNIDVNGDGCVDIEEFGVLYQ
SIMDERDEEEDMREAFNVFDRNGDGY
ITVDELRSVLASLGLKQGKAVEDCKR
MIMRVDVDGDGMVNFMEFKQMMKGGG
FSALS 
 

J
a
t
r
o
p
h
a
 
c
u
r
c
a
s
 

E
u
p
h
o
r
b
i
a
c
e
a
e
 

M
a
l
p
i
g
h
i
a
l
e
s
 

 

H
e
v
B
r
a
C
3
L
 

>XP_021652705.1 
calmodulin-like protein 3 
[Hevea brasiliensis] 
MPTILLTIFLLYNLLNSFLLYLIPKK
LRTFFLPSSWCSHQANSLFKQQTLPP
SSSSSAAAVVRKRMDSVELARVFQMF
DRNGDGRITKKELNDSLENLGIFIPD
LELTQMIQNIDVNGDGCVDIDEFGAL
YQSIMDERDEEEDMKEAFNVFDQNGD
GYITVDELRSVLAALGLKQGRTLEDC
KTMIMKVDVDGDGMVNFKEFKQMMKG
GGFSALG 
 

H
e
v
e
a
 
b
r
a
s
i
l
i
e
n
s
i
s
 

E
u
p
h
o
r
b
i
a
c
e
a
e
 

M
a
l
p
i
g
h
i
a
l
e
s
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V
i
t
V
i
C
3
L
2
 

>XP_002266359.1 PREDICTED: 
calmodulin-like protein 3 
[Vitis vinifera] 
MPTFLHRIFLLYNLLNSLVLFLVPKK
LRIFLPTSWFHPHQTQEANLVDSKTS
KTPGRSLVSRKRMESAEMKRVFQMFD
RNGDGRITKTELNDSLENLGIYIPDK
DLAQMIEKIDVNGDGCVDIDEFRALY
ESIMEEKDEDEDMKEAFNVFDQNGDG
FITVDELKSVLGSLGLRHGRTVEDCK
RMIMKVDEDGDGKVDLKEFKQMMRGG
GFSALS 
 

V
i
t
i
s
 
v
i
n
i
f
e
r
a
 

V
i
t
a
c
e
a
e
 

V
i
t
a
l
e
s
 

 

C
i
c
A
r
C
7
L
 

>XP_012570335.1 PREDICTED: 
calmodulin-like protein 7 
[Cicer arietinum] 
MPTILLRIFLLYNVVNSFLISLVPKK
LRTFFPHSWFSHQTLKTNLNTTTLSS
SKKGFVVITKSITMDPNELKRVFQMF
DRNDDGRITKKELNDSLENLGIFIPD
KELSQMIEKIDVNRDGCVDIEEFREL
YESIMNGREEEEEEDMREAFNVFDQN
GDGFISVEELRSVLVTLGLKQGRTVE
DCKKMIGKVDVDGDGLVDYKEFVQMM
KGGGFTALS 
 

C
i
c
e
r
 
a
r
i
e
t
i
n
u
m
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
 

 

M
e
d
T
r
C
7
L
 

>XP_003597517.1 EF hand 
calcium-binding family 
protein [Medicago 
truncatula] 
MPTILLRIFLLYNVVNSFLISLVPKK
LITFFPHSWFTHQTLTTPSSTSKRGL
VFTKTITMDPNELKRVFQMFDRNDDG
RITKKELNDSLENLGIFIPDKELSQM
IEKIDVNRDGCVDIEEFRELYESIMS
ERDEEEEEDMREAFNVFDQNGDGFIS
VDELRSVLVSLGLKQGRTVEDCKKMI
GTVDVDGNGLVDYKEFKQMMKGGGFT
ALS 
 

M
e
d
i
c
a
g
o
 
t
r
u
n
c
a
t
u
l
a
 

F
a
b
a
c
e
a
e
 

F
a
b
a
l
e
s
 

 

C
i
t
C
l
C
3
L
2
 

>XP_006443024.1 
hypothetical protein 
CICLE_v10022299mg [Citrus 
clementina] 
MRFILLRIFLLYTFILHLLPKKLRRF
LPRSWFPAPALGPSLSSQSNTNPTRS
TMDQAELDRVFQMFDHNGDGRISKKE
LNDSLENLGIYIPDVELTQMIERIDV
NGDGCVDIDEFGALYKSIMEEKDEEE
DMKEAFNVFDQNGDGFITFDELKSVL
GSLGLKQGRTVEDCKRMIMKVDVDGD
GMVDYKEFKQMMKGGGFSALT 
 

C
i
t
r
u
s
 
c
l
e
m
e
n
t
i
n
a
 

R
u
t
a
c
e
a
e
 

S
a
p
i
n
d
a
l
e
s
 

C
i
C
l
2
C
i
S
i
2
 



APPENDICES 

115 

 

C
i
t
S
i
C
3
L
2
 

>XP_006478702.1 PREDICTED: 
calmodulin-like protein 3 
[Citrus sinensis] 
MRFILLRIFLLYTFILHLLPKKLRRF
LPRSWFPAPALGPSLSSQSNTNPTRS
TMDQAELDRVFQMFDHNGDGRISKKE
LNDSLENLGIYIPDVELTQMIERIDV
NGDGCVDIDEFGALYKSIMEEKDEEE
DMKEAFNVFDQNGDGFITFDELKSVL
GSLGLKQGRTVEDCKRMIMKVDVDGD
GMVDYKEFKQMMKGGGFSALT 
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>XP_019708251.1 PREDICTED: 
calmodulin-like protein 3 
[Elaeis guineensis] 
MPTVLLRISLICHLLKTLLHYFLPKK
LSFLRTAKVSAPRVFILATPPGMDPS
ELKRVFQMFDRNGDGRITKKELSDSL
ENLGIYIPEGDLEAMIEKIDANGDGC
VDVEEFGALYQNIMDERDEEEDMREA
FNVFDQNGDGFITVEELRSVLASLGL
KQGRTVEDCRRMISKVDADGDGMVNF
KEFKQMMRGGGFAALS 
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>XP_010912790.2 PREDICTED: 
calmodulin-like protein 3 
[Elaeis guineensis] 
MALKPPFLQPFSPPIPPHHSLHWQSP
PPPLNSPMPTVFLRISLICHLLNSLL
HYFLPHKLISLLLPSSRSSSGRPRVL
ILATPPEMDPSELKRVFQMFDRNGDG
RITKKELSDSLENLGIYIPEGDLESM
IGKIDVNGDGCVDIEEFGALYQTIMD
ERDEEEDMREAFNVFDQNGDGFITVE
ELRSVLASLGLKQGRTVEDCRRMISK
VDVDGDGMVNFKEFKQMMRGGGFAAL
G 
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>XP_008791779.1 PREDICTED: 
calmodulin-like protein 3 
[Phoenix dactylifera] 
MPPVLLRISLVCHLLNSLLHYFLPHK
LSSLLPSSWLPRACLQEPAPDAAKAP
SHCPSPRSSPCPRVSILATPPGMEPS
ELKRVFQMFDRNGDGRITKKELGDSL
ENLGIHIPEGDLESMIGKIDANGDGC
VDIEEFGALYQTIMDERDEEEDMREA
FNVFDQNGDGFITVEELRSVLASLGL
KQGRTVEDCRKMITKVDVDGDGMVDF
KEFKQMMRGGGFAALS 
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>OVA04582.1 EF-hand domain 
[Macleaya cordata] 
MPTVFLRISLLINLLNSILFYFFPNK
LKSILPPSWFPNSHQSFSTNSTTSIP
NTTIIPSTFSSSSSSSLPSSSSLIQQ
EVMDPAELKRVFQMFDRNGDGRITKK
ELSDSLDNLGIFIPDKDLTQMIEKID
VNGDGCVDIDEFGALYQTIMDEKDEE
EDMREAFNVFDQNGDGFITVEELRSV
LSSLGLKQGRTVEDCRRMIRKVDVDG
DGMVNFKEFKQMMRGGGFAALS 
 

M
a
c
l
e
a
y
a
 
c
o
r
d
a
t
a
 

P
a
p
a
v
e
r
a
c
e
a
e
 

R
a
n
u
n
c
u
l
a
l
e
s
 

 

E
r
y
G
u
C
3
L
 

>XP_012851006.1 PREDICTED: 
calmodulin-like protein 3 
[Erythranthe guttata] 
MPTILLRIFLLYKLLNTIFLYLVPKK
LRTFLPPSWYPYLHQQEQQKQQKHNN
TNTINEPASPSSSPVISPLHKFPRRM
DADELRRVFQMFDRNGDGRITQKELS
DSLENMGIFIPDKELSQMIDKIDVNG
DGCVDIEEFGNLYQNIMDERDEEEDM
REAFNVFDQNGDGFITVDELKAVLAS
LGLKQGRAVEDCKKMIMRVDADGDGM
VNFTEFKQMMRGGGFAALGN 
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>XP_011084127.1 
calmodulin-like protein 3 
[Sesamum indicum] 
MPTILLRIFLVYNLILSYLVPKKLRA
YLPSSWYPYQQQQQQQQQVKKEPTVA
LSSSIVPSSRIVIHRRMDPNELKRVF
QMFDRNGDGRITKQELSDSLHNMGIS
IPDEELTQMIDKVDINGDGCVDIDEF
GTLYQTIMDERDEEEDMKEAFNVFDQ
NGDGFISVDELKSVLVSLGLKQGKAA
EDCRQMIMRVDVDGDGMVNFSEFKQM
MRGGGFAALTN 
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>XP_015583372.1 PREDICTED: 
calmodulin-like protein 3 
[Ricinus communis] 
MPTILLRIFLLYNLLNSFLLSLVPKK
LVRFFVPSSWYNSNTHQANLLINQEL
QQQEEEEETLVVPSAARKRMDSTELK
KVFQMFDTNGDGRITKEELNGSLENL
GIFIPDKELSQMMETIDVNGDGGVDI
EEFGALYQSIMDEKDEDEDMREAFNV
FDQNGDGYITGDELRSVLASLGLKQG
RTAEDCKKIIMKVDVDGDGMVDFKEF
KQMMKGGVFTALSSCN 
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>XP_017647023.1 PREDICTED: 
calmodulin-like protein 7 
[Gossypium arboreum] 
MPSLLFRIFLLYNLLLDYLVPRKLKS
FLSPSCTITTPFVSVGGETEKNPSPA
VALASVSPRCPLKRMDAAELKRVFQL
FDKNGDGSISKKELNDSLENMGICIP
DPELTQMIEKIDVNGDKCIDIDEFSE
LYRSIMDNKDEEEDMKEAFNVFDQNG
DGYISVEELRSVLESLGLKQGKGIED
CKRMITKVDVDGDGRVNFMEFKQMMK
GGGFTAMA 
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>XP_007033950.2 PREDICTED: 
calmodulin-like protein 7 
[Theobroma cacao] 
MPTVLLRIFLVYNLVLDYLVPKKLKT
FLPSSWIPTRTLVSTGSESKTHTSTS
PAPESASAPASSACCPQRMDGAELKR
VFQMFDKNGDGRITKKELNDSLENLG
IFIPDGELTHMIEKIDVNGDNCVDID
EFGELYHSIMDDKDEEEDMKEAFNVF
DQNGDGYISVDELRSVLVSLGLKQGK
TIEDCKRMIMKVDVDGDGRVNFKEFK
QMMKGGGFSALT 
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>OMP07050.1 Calcium-
binding EF-hand [Corchorus 
olitorius] 
MPTVLLRIFLLYNLVLDYLVPKKLKT
FLPSSWIPPPPTHTLVSTATESKSSS
SPEPAPAPASPSCRRQSQRMDAAELK
RVFQLFDKNGDGRISKQELNDSLENL
GIFIPDGELTQMIEKIDVNGDNCVDI
DEFGELYQSIMDGKDEEEDMKDAFNV
FDQNGDGFISVDELRSVLVSLGLKQG
KTIEDCKRMIMKVDADGDGRVNFKEF
KQMMKGGGFSALT 
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>OMO52915.1 Calcium-
binding EF-hand [Corchorus 
capsularis] 
MPTVLLRIFLLYNLVLDYLVPKKLKT
FLPSSWIPPPTHTFVSTVTESKSSSS
PEPAAAPPASPSCRRQSQRMDAAELK
RVFQLFDKNGDGRISKQELNDSLENL
GIFIPDGELTQMIEKIDVNGDNCVDI
DEFGELYQSIMDGKDEEEDMKDAFNV
FDQNGDGFISVDELRSVLISLGLKQG
KTIEDCKRMIMKVDADGDGRVNFKEF
KQMMKGGGFSALT 
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>OWM87900.1 hypothetical 
protein CDL15_Pgr000317 
[Punica granatum] 
MLMPTILKRIFLIYNLLLYFVPKKLR
PFLPSPSWFCSAVSGTANGNVVLLPS
PSLRARKATVMDPTELRRVFQMFDRN
GDGSISKKELADSLENLGIFIPDKEL
EDMIRRIDANGDGCVDIEEFEALYRS
IMDERDEEEDMKEAFNVFDQNGDGFI
TVDELRSVLASLGLKQGRTIEDCKRM
IMKVDVDGDGRVNYKEFKQMMKGGGF
SALS 
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>Solyc06g073245.1 
MQFPAIFFKTRCIFNLFNPILLSLLP
KKLISFLPPSWFHQKRIHSRSPAPPQ
QSPVSVSDAVESHQKRMDSDELRRIF
QIFDRNGDGRITKNELNSSLENMGIF
IPDPELIQMIEKIDVNGDGCVDIDEF
GSLYQTIMDERDEEEDMREAFNVFDQ
NGDGFICVEELKSVLASLGLKQGRTV
EDCKQMINKVDIDGDGMVNYDEFKQM
MRGGGDM 
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>XP_006347296.1 PREDICTED: 
calmodulin-like protein 3 
[Solanum tuberosum] 
MQFPAIFFKTRFIYNLFNPILLSLLP
KKLISFLPPSWFHQKHLHSRSPAPPQ
QSPVSVSDAVQSHIQKRMDSDELRRI
FQIFDRNGDGRITKNELNDSLENMGI
FIPDPELIEMIEKIDVNGDGCVDIDE
FGSLYQTIMDERDEEEDMREAFNVFD
QNGDGFICVDELKSVLASLGLKQGRT
VEDCKQMINKVDIDGDGMVNFAEFKQ
MMRGGGFAALS 
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>XP_015935524.1 
calmodulin-like protein 3 
[Arachis duranensis] 
MPAILLLYNILNSFLISLIPKKLRPF
FPFSWFPHQTNNTSSSSSSSSSSPRR
ASRAIIITKTRIMDPNEL 
RRVFQMFDRNGDGRISRSELTVSLEN
LGIFIPDKELAQMIDKIDANGDGFVD
VEEFGELYESIMVERGDEEEDMKEAF
NVFDQNGDGFISVEELRAVLSSLGLK
QGRTDEDCKKMIMKVDADGDGMVNYG
EFKQMMKGGGFSALS 
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>XP_016171630.1 
calmodulin-like protein 3 
[Arachis ipaensis] 
MPAILLLYNILNSFLISLIPKKLRPF
FPFSWFPHQTNNTSSSSSSSSSSPRR
ASRAIIITKTRIMDPNEL 
RRVFQMFDRNGDGRISRSELTVSLEN
LGIFIPDKELAQMIDKIDANGDGFVD
VEEFGELYESIMVERGDEEEDMKEAF
NVFDQNGDGFISVEELRAVLSSLGLK
QGRTDEDCKKMIMKVDADGDGMVNYG
EFKQMMKGGGFSALS 
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>XP_009417008.1 PREDICTED: 
calmodulin-like protein 3 
[Musa acuminata subsp. 
malaccensis] 
MELTPMPAIFVGIFLICHHLNSRLLR
FLPEKLISLLLPFSWHPPTSKDGLSP
PATALSSIASFRSPSFGPKASARVMD
PSELKRVFQMFDRNGDGRITKTELSD
SLENLGIYIPEAELASMIEKIDVNGD
GCVDMDEFGALYRSIMDERDEEEDMR
EAFNVFDQNGDGYISVEELRSVLVSL
GVKQGRTAEDCRMMINKVDVDGDGRV
DFKEFKQMMKGGGFAALS 
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>XP_020881472.1 
calmodulin-like protein 4 
[Arabidopsis lyrata subsp. 
lyrata] 
MVRVFLPYNLFNSFLLCLVPKKLRVF
FPPSWYIDDKNPPQSKSESESPGRRD
PVDLKRVFQMFDKNGDGRITKEELND
SLENLGIFMPDKDLVQMIQKMDANGD
GIVDIKEFESLYGSIVEEKEEEDMRD
AFNVFDQDGDGFITVEELKSVMASLG
LKQGKTLECCKEMIKQVDEDGDGRVN
YMEFLQMMKSGDFSNRS 
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>NP_191503.1 Calcium-
binding EF-hand family 
protein [Arabidopsis 
thaliana] 
MVRVFLLYNLFNSFLLCLVPKKLRVF
FPPSWYIDDKNPPPPDESETESPVDL
KRVFQMFDKNGDGRITKEELNDSLEN
LGIFMPDKDLIQMIQKMDANGDGCVD
INEFESLYGSIVEEKEEGDMRDAFNV
FDQDGDGFITVEELNSVMTSLGLKQG
KTLECCKEMIMQVDEDGDGRVNYKEF
LQMMKSGDFSNRS 
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>XP_010512205.1 PREDICTED: 
calmodulin-like protein 4 
[Camelina sativa] 
MVKSVFLLYNLFHSFLLCLVPKKLRV
LFPPSWYIDDKNPPPPSQVETESPGR
TDLVDLKRVFQMFDKNGDGRITKEEL
NDSLENLGIFMPDKDLIQMIQKMDAN
GDGCVDINEFESLYGSIVEEKEEEDM
RDAFNVFDQDGDGFITVKELKSVMAS
LGLKQGRTLKCCKEMIMQVDEDGDGR
VNYKEFLQMMKSVGFSNRS 
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>XP_010469361.1 PREDICTED: 
calmodulin-like protein 4 
[Camelina sativa] 
MVRSVFLLYNLFHSFLLCLVPKKLRV
LFPPSWYIDDKNPPPPSQLETESPGR
TDLVDLKRVFQMFDKNGDGRITKEEL
NDSLENLGIFMPDKDLIQMIQKMDAN
GDGCVDINEFESLYGSIVEEKEEEDM
RDAFNVFDQDGDGFITVKELKSVMAS
LGLKQGRTLKCCKEMIMQVDEDGDGR
VNYKEFLQMMKSVGFSNRS 
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>XP_006291828.1 
hypothetical protein 
CARUB_v10018003mg, partial 
[Capsella rubella] 
MVRVFLLYSLFNSFLLSLVPKKLRVL
FPPSWYIDDKNPPPVPSQSETESPGR
TDPVDLKRVFQMFDKNGDGRITKEEL
NDSLENLGIFMPDKDLIQMIQKMDAN
GDGCVDINEFESLYGSIVEEKEEEDM
RDAFNVFDQDGDGFISVEELKSVMAS
LGLKQGKTLKCCKEMIMQVDEDGDGR
VDYKEFLQMMKSGGFSNRA 
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>XP_013663730.1 PREDICTED: 
calmodulin-like protein 4 
isoform X3 [Brassica 
napus] 
MVRVILLYNLLNSFLLCLVPKKLRVL
FPPSWYTDDKITPPSESECSLRTDPV
DLKRVFQMFDKNGDGRITKEELNDSL
ENLGIFMPDKDLIQMIRKMDANGDGC
VDINEFESLYGSIVEEKEEEDMRDAF
NVFDQDGDGFISVEELKSVMASLGLK
QGKTLKCCKEMITQVDEDGDGRVNYK
EFLQMMKSGGFSNRSS 
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>XP_009116605.1 PREDICTED: 
calmodulin-like protein 4 
[Brassica rapa] 
MVRVFLLYNLLNSFLLCLVPKKLRVL
FPPSWYTDDKITPPSESECSLRTDPV
DLKRVFQMFDKNGDGRITKEELNDSL
ENLGIFMPDKDLIQMIRKMDANGDGC
VDINEFESLYGSIVEEKEEEDMRDAF
NVFDQDGDGFISVEELKSVMASLGLK
QGKTLKCCKAMITQVDEDGDGRVNYK
EFLQMMKSGGFSNRSS 
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>XP_013603279.1 PREDICTED: 
calmodulin-like protein 4 
[Brassica oleracea var. 
oleracea] 
MVRVFLLYNLLNSFLLCLVPKKLRVL
FPPSWYTDDKITPPSESECSLRTDPV
DLKRVFQMFDKNGDGRITKEELNDSL
ENLGIFMPDKDLIQMIQKMDANGDGC
VDINEFESLYGSIVEEKEEEDMRDAF
NVFDQDGDGFISVEELKSVMASLGLK
QGKTLKCCKEMITQVDEDGDGRVNYK
EFLQMMKSGGFSNSSSSD 
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>XP_018489165.1 PREDICTED: 
calmodulin-like protein 4 
[Raphanus sativus] 
MVRVFLLYNLLNSFLLCLVPKKLRVL
FPPSWYTEDKIPPPPESECSLRTEPV
DLKRVFQMFDKNGDGRITKEELNDSL
ENLGIFMPDKDLIQMIQKMDANGDGC
VDINEFESLYGSIVEEKEEEDMRDAF
NVFDQDGDGFISVEELKSVMASLGLK
QGKTLKCCKEMITQVDEDGDGRVNYN
EFLQMMKSGGFSNRS 
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>XP_013699103.1 PREDICTED: 
calmodulin-like protein 4 
[Brassica napus] 
MVRVFLLYNLINSFLLYLVPKKLRVL
FPPSWYIDDNIPPPLSEPEPKSQTRT
DPVDLKQVFQMFDKNGDGRITKEELN
DSLENLGIFMPDKDLIQMIHKMDANG
DGCVDIHEFESLYGSIVEEKEEEDMR
DAFNVFDQDGDGFISVEELKSVMASL
GLKQGKTLECCKEMIMQVDEDGDGRV
NYKEFLQMMKTGGFNNRSSSSN 
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>XP_013588571.1 PREDICTED: 
calmodulin-like protein 4 
[Brassica oleracea var. 
oleracea] 
MVRVFLLYNLINSFLLCLVPKKLRVL
FPPSWYIDDNIPPPLSEPEPKSQTRT
DPVDLKQVFQMFDKNGDGRITKEELN
DSLENLGIFMPDKDLIQMIHKMDANG
DGCVDIHEFESLYGSIVEEKEEEDMR
DAFHVFDQDGDGFISVEELKSVMASL
GLKQGKTLECCKEMIMQVDEDGDGRV
NYKEFLQMMKTGGFNNRSSSSN 
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>XP_013648300.1 PREDICTED: 
calmodulin-like protein 4 
[Brassica napus] 
MVRVFLLYNLINSFLLCLVPKKLRVL
FPPSWYIDDNIPPPLSEPEPKSQTRT
DPVDLKQVFQMFDKNGDGRITKEELN
DSLENLGIFMPDKDLIQMIHKMDANG
DGCVDIHEFESLYGSIVVEKEEEDMR
DAFNVFDQDGDGFISVEELKSVMASL
GLKQGKTLECCKEMIMQVDEDGDGRV
NYKEFLQMMKTGGFSNTSSSN 
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>XP_009104207.1 PREDICTED: 
calmodulin-like protein 4 
[Brassica rapa] 
MVRVFLLYNLINSFLLCLVPKKLRVL
FPPSWYIDDNIPPPLSEPEPKSQTRT
DPVDLKQVFQMFDKNGDGRITKEELN
DSLENLGIFMPDKDLIQMIHKMDANG
DGCVDIHEFESLYGSIVVEKEEEDMR
DAFNVFDQDGDGFISVEELKSVMASL
GLKQGKTLECCKEMIMQVDEDGDGRV
NYKEFLQMMKTGGFSNTSSSN 
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>XP_018442929.1 PREDICTED: 
calmodulin-like protein 4 
[Raphanus sativus] 
MVRVFLLYNLINSFLLCLIPKKLRVL
FPPSWYMDDNIPPPLSEPEPESREAR
TDPVDLKRVFQMFDKNGDGRITKEEL
NDSLENLGIFMPDKDLIQMIKNIDAN
GDGCVDIQEFESLYGSIVQEKEEEDM
RDAFNVFDQDGDGFISVEELKSVMSS
LGLKQVKTLECCKEMIMQVDEDGDGR
VNYKEFLQMMKTGGVSNTSSSS 
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>XP_006402687.1 
hypothetical protein 
EUTSA_v10006367mg [Eutrema 
salsugineum] 
MVRVFLLYNLFNSILLCLVPKKLRVL
FPHSWIIDDKNPPPSKSESPARTDPV
DLKRVFQMFDKNGDGRITKEELNDSL
ENLGIFMPEKDLIQMIQKMDANGDGC
VDIHEFESLYSSIVEEKVDEDMRDAF
NVFDQDGDGYITVEELKSVMASLGLK
QGKTLECCKDMITQVDEDGDGRVNYK
EFLQMMKSGGFSNNRSSSN 
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>XP_010526084.1 PREDICTED: 
calmodulin-like protein 4 
[Tarenaya hassleriana] 
MPAVMVRIFLLYNLFNSFLLCLVPKK
LRGIFPPSWYPHHVDDDNPKNPPPSS
SPSPSPPPARVDPVELKRVFQMFDKN
GDGRITKEELNDSLENLGLFLPDREL
AQMIQKIDANGDGCVDMDEFESLYKS
IVDQSDKDDDMRDAFDVFDQDGDGFI
TVEELKSVMGSLGLKQGKTLEDCKKM
IMQVDVDGDGRVNYKEFLQMMKSGDL 
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>XP_002881895.1 
calmodulin-like protein 5 
[Arabidopsis lyrata subsp. 
lyrata] 
MVRIFLLYNILNSFLLSLVPKKLQTL
FPLSWLDKTLHKNSPPSPSTMLPSPP
SSSAPTKRIDPSELKRVFQMFDKNGD
GRITKEELNDSLENLGIYIPDKDLTQ
MIHKIDANGDGCVDIDEFESLYSSIV
DEHHNDGETEEEDMKDAFNVFDQDGD
GFITVDELKSVMASLGLKQGKTLDGC
KKMIMQVDADGDGRVNYKEFLQMMKG
GG 
FSSSN 
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>NP_565996.1 Calcium-
binding EF-hand family 
protein [Arabidopsis 
thaliana] 
MVRIFLLYNILNSFLLSLVPKKLRTL
FPLSWFDKTLHKNSPPSPSTMLPSPS
SSSAPTKRIDPSELKRVFQMFDKNGD
GRITKEELNDSLENLGIYIPDKDLTQ
MIHKIDANGDGCVDIDEFESLYSSIV
DEHHNDGETEEEDMKDAFNVFDQDGD
GFITVEELKSVMASLGLKQGKTLDGC
KKMIMQVDADGDGRVNYKEFLQMMKG
GGFSSSN 
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>XP_010508448.1 PREDICTED: 
calmodulin-like protein 5 
[Camelina sativa] 
MVRIFVLYNILNSFLLSLVPKKLRTL
FPLSWFDKTLHKNSPPSPPTMLPSPS
SSSSSSVPTKRIDPSDLKRVFQMFDK
NGDGRITKEELNDSLENLGIYIPDKD
LTQMIHKIDANGDGCVDIDEFESLYS
SIVDEHQNDGETEEEDMKDAFNVFDQ
DGDGFITVEELKSVMASLGLKQGKTL
DGCKKMIMQVDADGDGRVNYKEFLQM
MKGGGFSSSN 
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>XP_010517888.1 PREDICTED: 
calmodulin-like protein 5 
[Camelina sativa] 
MVRIFVLYNILNSFLLSLVPKKLRTL
FPLSWFDKTLHKNSPPSPSTMLPSPS
SSSSSSVPTKRIDPSELKRVFQMFDK
NGDGRITKEELNDSLENLGIYIPDKD
LTQMIHKIDANGDGCVDKDEFESLYS
SIVDEHQKDGETEEEDMKDAFNVFDQ
DGDGFITVEELKSVMASLGLKQGKTL
DGCKKMIMQVDADGDGRVNYKEFLQM
MKGGGFSSSN 
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>XP_010506196.1 PREDICTED: 
calmodulin-like protein 5 
[Camelina sativa] 
MVRIFVLYNILNSFLLSLVPKKLRSL
FPLSWFDKTLHKNSPPSPPTMLPSPS
SSSSSVPTKRIDPSELKRVFQMFDKN
GDGRITKEELNDSLENLGIYIPDKDL
TQMIHKIDANGDGCVDIDEFESLYSS
IVDEHQNDGETEEENMKDAFNVFDQD
GDGFITVEELKSVMASLGLKQGKTLD
GCKKMIMQVDADGDGRVNYKEFLQMM
KGGGFSSSN 
 

C
a
m
e
l
i
n
a
 
s
a
t
i
v
a
 

B
r
a
s
s
i
c
a
c
e
a
e
 

B
r
a
s
s
i
c
a
l
e
s
 

 

E
u
t
S
a
C
5
L
 

>XP_006397493.1 
hypothetical protein 
EUTSA_v10001753mg [Eutrema 
salsugineum] 
MVRIFLLYNLLNSFL 
LSLVPKKLRSLFPLSWFDKTLHKTSP
SSMLPSPSPSSAPTKRTDPSELKRVF
QMFDKNGDGRITKEELNDSLENLGIY
IPDKDLTQMIHKIDANGDGCVDIDEF
ESLYSSIVDEHHNDGETEEEDMKDAF
NVFDQDGDGFITVEELKSVMASLGLK
QGKTLDGCKKMIMQVDADGDGRVNYK
EFLQMMKGGGFSSSN 
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>XP_006296176.1 
hypothetical protein 
CARUB_v10025336mg 
[Capsella rubella] 
MVRIFLLYNILNSFLLSLVPKKLRSL
FPLSWFDKTLHMNSPPSPPTMLPSPS
SSPLPTKKIDPSELKRVFQMFDKNGD
GRITKEELNDSLENLGIYIPDQDLTQ
MIHKIDANGDGCVDIDEFESLYGSIV
DEHHNDGGTEEEDMKDAFNVFDQDGD
GFITVEELKSVMASLGLKQGKTLDGC
KKMIMQVDADGDGRVNYKEFLQMMKG
GGFSSSSN 
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>XP_013688028.1 PREDICTED: 
calmodulin-like protein 5 
[Brassica napus] 
MVRIFLLYNLLNSFLLSLVPKKLRSL
FPLSWFDKTPHKNSSMLPSPSPSSAP
TRKTDPSELKRVFQTFDKNGDGRITK
TELNDSLENLGIYIPDKDLTQMIHNI
DANGDGCVDIDEFESLYSSIVDEHRK
DGETEEDDMKDAFNVFDQDGDGFITV
EELKSVMGSLGLKQGKTLEGCKKMIM
QVDGDGDGRVNYKEFLQMMRGGGFSC
SNN 
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>XP_013631723.1 PREDICTED: 
calmodulin-like protein 5 
[Brassica oleracea var. 
oleracea] 
MVRIFLLYNLLNSFLLSLVPKKLRSL
FPLSWFDKTPHKNSSMLPSPSPSSAP
TRKTDPSELKRVFQTFDKNGDGRITK
TELNDSLENLGIYIPDKDLTQMIHNI
DANGDGCVDIDEFESLYSSIVDEHRK
DGETEEDDMKDAFNVFDQDGDGFITV
EELKSVMGSLGLKQGKTLEGCKKMIM
QVDGDGDGRVNYKEFLQMMRGGGFSC
SNN 
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>XP_013664170.1 PREDICTED: 
calmodulin-like protein 5 
[Brassica napus] 
MVRIFLLYNLLNSFLLSLVPKKLRTL
FPLSWFDKTPHKNSSMLLSPSPSSAP
SIKTDPTELKRVFQTFDKNGDGRITK
TELNDSLENLGIYIPDQELTQMIHNI
DANGDGCVDIDEFESLYSSIVDEHRK
DGETEEEDMKDAFNVFDQDGDGFITV
EELKSVMGSLGLKQGKTLEGCKKMIM
QVDGDGDGRVNYKEFLQMMKGGGFSC
SN 
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>XP_009150184.1 PREDICTED: 
calmodulin-like protein 5 
[Brassica rapa] 
MVRIFLLYNLLNSFLLSLVPKKLRTL
FTLSWFDKTPHKNSSMLPSPSPSSAP
SIKTDPTELKRVFQTFDKNGDGRITK
TELNDSLENLGIYIPDKELTQMIHNI
DANGDGCVDIDEFESLYSSIVDEHRK
DGETEEEDMKDAFNVFDQDGDGFITV
EELKSVMGSLGLKQGKTLEGCKKMIM
QVDGDGDGRVNYKEFLQMMKGGGFSC
SN 
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>XP_013683810.1 PREDICTED: 
calmodulin-like protein 5 
[Brassica napus] 
MMRIFLLYNLLNSFLLSLVPKKLRTL
FSLSWFDKTLHKNSPPSPSMLPSPSP
SSTPTTKIDPSELKRVFQTFDKNGDG
RITKQELKDSLENLGIYIPDKDLTQM
IHNIDTNHDGCVDIDEFESLYKSIVD
EHHNDGETEEEDMKEAFNVFDQDGDG
FITVEELKSVMGSLGLKQGKTQEGCK
KMIMQVDVDGDGRVNYKEFLQMMKGD
GFSSRS 
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>XP_013625660.1 PREDICTED: 
calmodulin-like protein 5 
[Brassica oleracea var. 
oleracea] 
MMRIFLLYHLLNSFLLSLVPKKLRTL
FSLSWFDKTLHKNSPPSPSMLPSPSP
SSTPTTKIDPSELKRVFQTFDKNGDG
RITKQELKDSLENLGIYIPDKDLTQM
IHNIDTNHDGCVDIDEFESLYKSIVD
EHHNDGETEEEDMKEAFNVFDQDGDG
FITVEELKSVMGSLGLKQGKTQEGCK
KMIMQVDVDGDGRVNYKEFLQMMKGD
GFSSSS 
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>XP_009133590.1 PREDICTED: 
calmodulin-like protein 5 
[Brassica rapa] 
MVRIFLLYNLLNSFLLSLVPKKLRTL
FSLSWFDKTLHKNSPPSPSMLPSPSP
SSTPTTKIDPSELKRVFQTFDKNGDG
RITKQELKDSLENLGIYIPDKDLTQM
IHNIDTNHDGCVDIDEFESLYRSIVN
EHHNDGETKEEDMKEAFNVFDQDGDG
FITVEELKSVMSSLGLKQGKTLEGCK
KMIMQVDVDGDGRVNYKEFLQMMKGD
GFSRSS 
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>XP_018472925.1 PREDICTED: 
calmodulin-like protein 5 
[Raphanus sativus] 
MVRIFLLYSLLNSFLLSLLPKKLRTL
FPLSWFDKTLHKNSPPSASMLPSPSP
SPSSASTRKIDPSELKRVFQTFDKNG
DGRITKQELNNSLENLGIYIPDKDLT
QMIHNIDKNHDGCVDIDEFESLYRSI
VDEHHNDGETEEEDMKEAFNVFDQDG
DGFITVEELKSVLASLGLKQGKTLEG
CKKMIMQVDSDGDGRVNYKEFLQMMK
GGGFSSSG 
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>XP_009392598.1 PREDICTED: 
calmodulin-like protein 3 
[Musa acuminata subsp. 
malaccensis] 
MELTPLPIVLVRLSLLCLRLISRLLY
FLPKKLTSLLLSPSSSSSSSSSPSHE
NPAASFTSTVAARPASSAPSMDPSEL
KPVFHMFDRNGDGRITKEELSDSLRN
LGMRVPEAELASMIERIDANGDGYVD
SDEFATLYRSIMEERDEEEEDMREAF
NVFDRNGDGFITVEELRSVLASLGLK
QGRTAEDCKTMINTVDVDGDGMVDFK
EFRQMMNGGGFAASS 
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>XP_017250190.1 PREDICTED: 
calmodulin-like protein 3 
[Daucus carota subsp. 
sativus] 
MLKHKAISAILLRAFLFYNVLNSILA
YLVPKKLRNYVPTFWYSREAGIDRNH
TNLTSSNTELTLHFPRMEADELRKVF
EMFDHNGDGRITKQELNESLEKMGIF
IPDQELTQMIEKIDVNNDGCVDIDEF
GDLYQNIMNTREEEEDMKEAFSVFDQ
NGDGFITVDELKSVLASLGLKQGRTE
EDCKTMIMKVDVDGDGRVNFNEFKAM
MRGGGFAALN 
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>GAV85659.1 EF_hand_5 
domain-containing protein 
[Cephalotus follicularis] 
MLRISLVYNLLNTFLLSLVPKKLIPA
SWYHHQNNHIVDTKTLPPPLPPLARA
QKRMDPTELDRVFQMFDRNGDGRITK
MELNESLEKLGMFIPDKELTRMIEKI
DVDGDGCVDIDEFGALYRSLMDHEVD
DDEEEEEDMMKEAFNVFDSNGDGFIS
VDELRSVFVSLGVKQGRTIEDCKKMI
MKVDVDGDGKVDYEEFKQMMKGGGGG
FSSLS 
 C
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>OTG32667.1 putative 
calcium-binding EF-hand 
family protein [Helianthus 
annuus] 
MPRIFLLYNLIYSIFLSFLPKNLRHY
LPKSHTQQQQQQIQNDTVSQPSQPPQ
TPRTSRMNPDQLQRIFQMFDKNNDGT
ITKHELNESLENMKIFISDEDLVRMI
DKVDINNDGCVDLDEFGVLYKEIMDN
QENEEDMMEAFNVFDQNRDGFIAVEE
LRSVLESLGLKQGKVVDDCRRMIMKV
DVDGDGRVSFNEFKEMMKSGGFVNLA
QS 
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>XP_017407196.1 PREDICTED: 
calmodulin-like protein 5 
[Vigna angularis] 
MPTIMLRFFLLYNLLRPFLLCLVPKK
VRAILSPSWFRSSSTTAPTPTQPSSS
SSSSSAFTRISLSMDPNELKRVFQMF
DRNGDGRITKKELSDSLDNLGIFIPD
KELTVMIERIDVNGDGCVDIDEFGEL
YQTIMDERDEEDDMREAFNDIYIYIL
YLDILITKIYKIYSPLHSFKKHFIKV
WSLY 
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>NP_198593.1 EF hand 
calcium-binding protein 
family [Arabidopsis 
thaliana] 
MSSKNGVVRSCLGSMDDIKKVFQRFD
KNGDGKISVDELKEVIRALSPTASPE
ETVTMMKQFDLDGNGFIDLDEFVALF
QIGIGGGGNNRNDVSDLKEAFELYDL
DGNGRISAKELHSVMKNLGEKCSVQD
CKKMISKVDIDGDGCVNFDEFKKMMS
NGGGA 
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>XP_010927373.1 PREDICTED: 
calmodulin-like protein 6 
[Elaeis guineensis] 
MAALLFFAILFTCGLINSYFFLHPPK
LLTRLASFLYVTSTPKPIVKTPSKDG
KEVVVSEIVTDKAGIETVFATFDKDG
DGFITTEELEESFKRLGLFSTRNEIV
SMMKRVDANGDGLIDLEEFGELYDSL
GRGRGGGDGDERGERGKEEEEEGEVE
LREAFDVFDENGDGLITVEELGLVLA
SLGLKRGATVEDCRDMIRKVDLDGDG
MVDFGEFKKMMVEGVKLF 
 

E
l
a
e
i
s
 
g
u
i
n
e
e
n
s
i
s
 

A
c
e
c
a
c
e
a
e
 

A
r
e
c
a
l
e
s
 

 

C
a
p
A
n
C
3
L
 

>XP_016541129.1 
PREDICTED: calmodulin-
like protein 3 [Capsicum 
annuum] 
MFTLLTILFLAFLFIIGLITTFFNF
PTNKFQSLIQKISLKSPSLQEKTII
TPSPSITMVDKKVMNRSNNY 
NKVELRSIFATFDKNNDGYITKQEL
KLSLKNIGIFMEDKDIVEMVEKVDS
NKDGLIDLDEFCDLCHTYLG 
IEEVSNESEMNEEEVANREKDLKDA
FDVFDHDKDGLISKEELSKILSTLG
MKEGKKLDYCKEMIKKVDVD 
GDGMVNFDEFKKMMKACGTLIPFS 
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>XP_008457058.1 PREDICTED: 
calmodulin-like protein 7 
[Cucumis melo] 
MEPIFNFLLLSVLFVAGFVNFLLYFP
TKRFTAWFQSIKPSSQIPHFKSTPLQ
PPPPPPPPPPPPPPSAME 
LKKVFGTFDKNDDGFITKKELMESLK
SMRMMITEKDAEEMLKEVDENGDGLI
DFEEFCVLGEKLLMGFEE 
NKKTSVGDDEEGLKDAFGVFDKDSDG
LISVEELSLVLCSLGMNEGKIVENCK
EMIRKVDLDGDGMVNFDE 
FKKMMRNGVSILTSS 
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>XP_004139293.1 PREDICTED: 
calmodulin-like protein 3 
[Cucumis sativus] 
MEPIFNFLLLSVLFVAGFINFLLYFP
SKRFSAWFQSIKPSSQITHFKSTPLQ
PPPPPSPSPSPSPPPPSA 
MEMKKVFGTFDKNDDGFITKKELMES
LKSMRMMITEKDAEEMLKGVDENGDG
LIDFEEFCVLGGKLMMGF 
EENKKTSVEDEEDELKDAFGVFDKDS
DGLISVEELSLVLCSLGMNEGKIVEN
CKEMIRKVDLDGDGMVNF 
DEFKKMMRNGVTILTSS 
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>XP_020688260.1 
calmodulin-like protein 3 
[Dendrobium catenatum] 
MAALILFALLFLCGLLNSLFFPSSKL
LPWFHSLLLSAISPPKPKPNPPPKPD
LTKERRANRSESLADSLN 
LKTLFSTFDADGDGYISTAELNDSLR
RLGLHATGDDLTNMMERVDANGDGLI
DLNEFKELCASLGSEGEG 
EADEDRELREAFEVFDDNGDGLITVE
ELSLVLKSLGLRQGDRAEACRDMINR
VDLDGDGMVNFEEFKRMM 
VVDGGGSFF 
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>XP_012455812.1 PREDICTED: 
calmodulin-like protein 7 
[Gossypium raimondii] 
MPTFLFRIFLLYNLLLDYLVPRKLKS
FLSPSCTTTTPFVSVGGETEKNPSPA
VALASVSPRCPLKRMDAA 
ELKRVFQLFDKNGDGTISKKELNDSL
ENMGICIPDPELTQMIEKIDVNGDKC
IDIDEFSELYRSIMDNKD 
EEEDMKEAFNVFDQNGDGYISVEELR
SVLESLGIKQGKGIEDCKRMITKVDV
DGDGRVNFMEFKQMMKGG 
GFTAMA 
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>XP_018836651.1 PREDICTED: 
calmodulin-like protein 3 
[Juglans regia] 
MAIITVLLLAVLFIAGLVNILFRFPT
KKFYASLKYVPANKSSSNISTTSPPT
SHKERSPHNKAELKKIFA 
TFDKNGDGFITKQEMRESLKNIKMVV
TDKEVEEMVVKVDANGDGLIEFDEFC
VLCESMVSEERAAGNYDE 
GDGAKGVESSEGTGDEEDDLKEAFDV
FDKDRDGLITVEELGLVLCSLGLKEG
KKKEDCKEMIRNVDMDGD 
GMVNFDEFKKMMKGGGRLLLAS 
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>XP_010241567.1 PREDICTED: 
calmodulin-like protein 3 
[Nelumbo nucifera] 
MMALVLLAVLFVCGLINSVFFLPPKK
VITWIQSFPPISRSCTSITPPASVTV
MASDKKKESAHDRAELRN 
IFATFDKNSDGFINKEELTESLKNIG
ISTTDAEVKDMIERLDANKDGLIDLD
EFCKLYDSVGKPQDRGRK 
DGEEGSTEEEDGGVDQEMELKEAFDV
FDGNKDGLITVEELSLVLESLGLKQG
WKSEDCKEMIRSVDMDGD 
GMVNFEEFKKMMMKAGGCLVSLS 
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>XP_010250191.1 PREDICTED: 
calmodulin-like protein 3 
[Nelumbo nucifera] 
MVMAFVLLAVFFVCGLVNSLFYLPPK
KLLAWIQALIPIAKPSLITSPATTTT
TTSSDKAELRNVFATFDK 
NSDGIITEEELRESLKNIGFSITDTD
LVHMVEKLDSNRDGLIDLEEFSKLYE
SVGISRSKQRGGRDGELL 
DCREEEEVDEERDLKEAFDVFDGNRD
GLITVEELSLVLSSLGLKQGLRSEDC
REMIKSVDMDGDGMVNFE 
EFKKMMMKAGGSCVGIS 
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>XP_019255618.1 PREDICTED: 
calmodulin-like protein 3 
[Nicotiana attenuata] 
MSTVLSIFFLAILFIIGLITTLLNFP
KEKFQTLIQSISLKSPPLHENRISTT
CSSSRSMDEKKVKNSSIK 
STSSNNYNKLELRSIFATFDKNNDGY
ITKQELKLSLKNIGIFIEDKDIIDMV
EKVDSNKDGLIDIDEFYQ 
LCHTFLGIEAVNEEEESNREKDLKDA
FDVFDYDKDGLISVEELSKILSSLGL
RQGKKLDYCKEMISKVDV 
DGDGMVNFDEFKKMIKGCGTLVPIS 
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>XP_009778097.1 PREDICTED: 
calmodulin-like protein 3 
[Nicotiana sylvestris] 
MLTLSILFLAFLFILGLITTLFNFPT
KKFQSWIFSLSIKAQTPSSSPLFKNS
TSTSPPLVEQKIMKRSTS 
NSHNKVELRSIFATFDKNNDGYITKQ
ELKQSLNNIGIYMEDRDIVEMVEKVD
SNKDGLIDLDEFYELCHS 
FLGIQGVIGSQENSGEMNQEEEANRE
RDLKDAFDVFDYDKDGLISEEELSKV
LSSLGLNQGKKLEDCKEM 
IRKIDVDGDGMVNFDEFKKMMKLGGR
LIPIS 
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>XP_016440228.1 PREDICTED: 
calmodulin-like protein 3 
[Nicotiana tabacum] 
MLTLSILFLAFLFILGLITTLFNFPT
KKFQSWIFSLSIKAQTPSSSPLFKNS
TSTSPPLVEQKIMKRSTS 
NSHNKVELRSIFATFDKNNDGYITKQ
ELKQSLNNIGIYMEDRDIVEMVEKVD
SNKDGLIDLDEFYELCHS 
FLGIQGVIGSQENSGEMNQEEEANRE
RDLKDAFDVFDYDKDGLISEEELSKV
LSSLGLNQGKKLEDCKEM 
IRKIDVDGDGMVNFDEFKKMMKLGGR
LIPIS 
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>XP_009608019.1 PREDICTED: 
calmodulin-like protein 3 
[Nicotiana 
tomentosiformis] 
MLTLSILFLALLFILGLITTLFNFPT
KKFQSWIYSLSIKAQTPTPSPLVKNS
TLSSPPMAEQKIMRRSTS 
NSHNKVELRSIFATFDKNNDGYITKQ
ELKQSLKNIGIYMEDIDIVEMVEKVD
SNKDGLIDLDEFYELCHS 
FLGIEGIIGSQENSGEMNQEEEANRE
RDLKDAFDVFDYDKDGLISEEELSKV
LSSLGLNQGKKLEDCKEM 
IRKIDVDGDGMVNFDEFKKMMKVGGR
LIPIS 
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Appendix IV. MSA of CMLs with AtCML4_5-like N-terminus 

RapSaC3L2  ----------------------------------MATNLLK----------------LSS 

EucGrC3L2  ----------------------------------MPAIITR-IFLLYHLLHTWFHYLVPK 

ZizJuC3L2  ----------------------------------MPTIFLR-IFLIYNLFNSLLLSLVPK 

LotJaC7L   ----------------------------------MPTILHR-IFLLYNLLNSFLLSLVPK 

VigAnC3L1  ----------------------------------MPTIMLR-FFLLYNLLRPFLLCLVPK 

VigRaC3L1  ----------------------------------MPTIMLR-FFLLYNLLRPFLLCLVPK 

PhaVuC3L1  ----------------------------------MPTILHR-FFLLYNLLHPFLLFLVPK 

GlyMaC3L1  ----------------------------------MPTILHR-IFLLYNLVHSFLLCLVPK 

CajCaC3L1  ----------------------------------MPTIFHR-IVVVYEVLYPFLVRLIPK 

PruMuC3L2  ----------------------------------MPTIFPR-IFLIYNLLNTFLLSLVPK 

PruPeC3L2  ----------------------------------MPTIFPR-IFLIYNLLNTFLLSLVPK 

PruAvC3L   ----------------------------------MPTIFPR-IFLIYNLLNTFLLSLVPK 

MalPyC3L   ----------------------------------MPTIFRR-IFLIYNLLNTFLLSLVPK 

PopEuC3L2  ----------------------------------MPTILLR-IFLLYNLLNSFLLSLVPK 

PopTrC3L1  ----------------------------------MPTILLR-IFLLYNLLNSFLLSLVPK 

PopEuC3L3  ----------------------------------MRTILLR-IFLLYNLLNSFLLSLVPK 

PopEuC3L4  ----------------------------------MRTILLR-IFLLYNLLNSFLLSLVPK 

PopTrC3L3  ----------------------------------MRTILLR-IFLLYNLLNSFLLSLVPK 

CarPaC3L   ----------------------------------MPTILLR-IFLVYNLLNSILLYLIPK 

JatCuC3L2  --------------------------------------MLK-IFLLYHLLHSLLVYLLPK 

HevBraC3L  ----------------------------------MPTILLT-IFLLYNLLNSFLLYLIPK 

VitViC3L2  ----------------------------------MPTFLHR-IFLLYNLLNSLVLFLVPK 

CicArC7L   ----------------------------------MPTILLR-IFLLYNVVNSFLISLVPK 

MedTrC7L   ----------------------------------MPTILLR-IFLLYNVVNSFLISLVPK 

CiCl2CiSi2 ----------------------------------MRFILLR-IFLLY----TFILHLLPK 

ElaGuC3L1  ----------------------------------MPTVLLR-ISLICHLLKTLLHYFLPK 

ElaGuC3L2  -MALKPPFLQPFSPPIPPHHSLHWQSPPPPLNSPMPTVFLR-ISLICHLLNSLLHYFLPH 

PhoDaC3L   ----------------------------------MPPVLLR-ISLVCHLLNSLLHYFLPH 

MacCoC3L   ----------------------------------MPTVFLR-ISLLINLLNSILFYFFPN 

EryGuC3L   ----------------------------------MPTILLR-IFLLYKLLNTIFLYLVPK 

SesInC3L   ----------------------------------MPTILLR-IFLVYNLI---LSYLVPK 

RicCoC3L   ----------------------------------MPTILLR-IFLLYNLLNSFLLSLVPK 

GosArC7L   ----------------------------------MPSLLFR-IFLLYNLL---LDYLVPR 

GosRaC7L   ----------------------------------MPTFLFR-IFLLYNLL---LDYLVPR 

TheCaC3L2  ----------------------------------MPTVLLR-IFLVYNLV---LDYLVPK 

CorOlC3L   ----------------------------------MPTVLLR-IFLLYNLV---LDYLVPK 

CorCaC3L   ----------------------------------MPTVLLR-IFLLYNLV---LDYLVPK 

PunGrC3L   -ML-------------------------------MPTILKR-IFLIYNL----LLYFVPK 

SolLyC3L1  -MQ-------------------------------FPAIFFK-TRCIFNLFNPILLSLLPK 
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SolTuC3L1  -MQ-------------------------------FPAIFFK-TRFIYNLFNPILLSLLPK 

ADu2AIp2   ----------------------------------MPAIL-----LLYNILNSFLISLIPK 

MusAcC3L4  -MEL----------------------------TPMPAIFVG-IFLICHHLNSRLLRFLPE 

AraLyC4L   --------------------------------------MVR-VFLPYNLFNSFLLCLVPK 

AraThC4    --------------------------------------MVR-VFLLYNLFNSFLLCLVPK 

CamSaC4L1  --------------------------------------MVKSVFLLYNLFHSFLLCLVPK 

CamSaC4L2  --------------------------------------MVRSVFLLYNLFHSFLLCLVPK 

CapRuC4L   --------------------------------------MVR-VFLLYSLFNSFLLSLVPK 

BraNaC4L1  --------------------------------------MVR-VILLYNLLNSFLLCLVPK 

BraRaC4L1  --------------------------------------MVR-VFLLYNLLNSFLLCLVPK 

BraOlC4L2  --------------------------------------MVR-VFLLYNLLNSFLLCLVPK 

RapSaC4L2  --------------------------------------MVR-VFLLYNLLNSFLLCLVPK 

BraNaC4L2  --------------------------------------MVR-VFLLYNLINSFLLYLVPK 

BraOlC4L1  --------------------------------------MVR-VFLLYNLINSFLLCLVPK 

BNa3BRa2   --------------------------------------MVR-VFLLYNLINSFLLCLVPK 

RapSaC4L1  --------------------------------------MVR-VFLLYNLINSFLLCLIPK 

EutSaC4L   --------------------------------------MVR-VFLLYNLFNSILLCLVPK 

TarHaC4_5L ----------------------------------MPAVMVR-IFLLYNLFNSFLLCLVPK 

AraLyC5L   --------------------------------------MVR-IFLLYNILNSFLLSLVPK 

AraThC5    --------------------------------------MVR-IFLLYNILNSFLLSLVPK 

CamSaC5L1  --------------------------------------MVR-IFVLYNILNSFLLSLVPK 

CamSaC5L3  --------------------------------------MVR-IFVLYNILNSFLLSLVPK 

CamSaC5L2  --------------------------------------MVR-IFVLYNILNSFLLSLVPK 

EutSaC5L   --------------------------------------MVR-IFLLYNLLNSFLLSLVPK 

CapRuC5L   --------------------------------------MVR-IFLLYNILNSFLLSLVPK 

BNa1BOl2   --------------------------------------MVR-IFLLYNLLNSFLLSLVPK 

BraNaC5L2  --------------------------------------MVR-IFLLYNLLNSFLLSLVPK 

BraRaC5L1  --------------------------------------MVR-IFLLYNLLNSFLLSLVPK 

BN53BO51   --------------------------------------MMR-IFLLYNLLNSFLLSLVPK 

BraRaC5L2  --------------------------------------MVR-IFLLYNLLNSFLLSLVPK 

RapSaC5L1  --------------------------------------MVR-IFLLYSLLNSFLLSLLPK 

MusAcC3L5  -MEL----------------------------TPLPIVLVR-LSLLCLRLISRLLYFLPK 

DauCaC3L2  MLKH----------------------------KAISAILLR-AFLFYNVLNSILAYLVPK 

CepFoC3L   --------------------------------------MLR-ISLVYNLLNTFLLSLVPK 

HelAnC3L   --------------------------------------MPR-IFLLYNLIYSIFLSFLPK 

VigAnC3L2  ----------------------------------MPTIMLR-FFLLYNLLRPFLLCLVPK 

ElaGuC6L   ---M------------------------------AALLFFA-ILFTCGLINS-YFFLHPP 

CapAnC3L   MFTL------------------------------LTILFLA-FLFIIGLITT-FFNFPTN 

NicAtC3L   MSTV------------------------------LSIFFLA-ILFIIGLITT-LLNFPKE 

NsyNtaC3   -MLT------------------------------LSILFLA-FLFILGLITT-LFNFPTK 

NicToC3L   -MLT------------------------------LSILFLA-LLFILGLITT-LFNFPTK 
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JugReC3L   -MAI------------------------------ITVLLLA-VLFIAGLVNI-LFRFPTK 

NelNuC3L1  ---M------------------------------MALVLLA-VLFVCGLINS-VFFLPPK 

NelNuC3L2  --MV------------------------------MAFVLLA-VFFVCGLVNS-LFYLPPK 

CucMeC7L   MEPI------------------------------FNFLLLS-VLFVAGFVNF-LLYFPTK 

CucSaC3L   MEPI------------------------------FNFLLLS-VLFVAGFINF-LLYFPSK 

DenCaC3L   ---M------------------------------AALILFA-LLFLCGLLNS-LF-FPSS 

AraThC24   ---M-------------------------------------------------------- 

                                                                        

 

RapSaC3L2  QI-RR-LSPI------------------------------------TRSLTIRT---SA- 

EucGrC3L2  KL-RV-YLPP---SWS---PLR-----------LD---------------PTPP---PL- 

ZizJuC3L2  KI-RH-FFPP---SWF---PLQ-----------APPLPS-----------PPSP---PS- 

LotJaC7L   KV-IA-FLPQ---SWF---PHQ-----------TPSFSS-----------SSSS---SS- 

VigAnC3L1  KV-RA-ILSP---SWF---RSS-----------STTAPTPTQ-----P--SSSS---SS- 

VigRaC3L1  KV-RA-ILSP---SWF---RSST----------TTTAPTPTQ-----PSSSSSS---SS- 

PhaVuC3L1  KV-RA-ILSP---SWF---RST-----------TTPP-------------PPSS---SS- 

GlyMaC3L1  KV-RP-FLPP---SWF---QTK-----------TITAPS-----------SSSS---SS- 

CajCaC3L1  KV-RA-FFPSAGGSWS-------------------------------------------- 

PruMuC3L2  NL-RP-LLPS---SWF---PCQ-----------TNLVATNTP----LPHFPPSS---SS- 

PruPeC3L2  NL-RP-LLPS---SWF---PCQ-----------TNLVATNTS----LPHFPPSS---SS- 

PruAvC3L   NL-RP-LLPS---SWF---PCQ-----------TNLVATSTP----LPHFPPSS---SS- 

MalPyC3L   HL-RP-LLPS---SWF---PHH-----------TTLLDTKTP----SPQPPPPS---LL- 

PopEuC3L2  KL-RF-LLPT---SWY---HHHQANTNTSWCHPHQANTNTK---------KPSS---LL- 

PopTrC3L1  KL-RF-LLPT---SWY---HPHQANTNTSWCHPHQANTNTK---------KPSS---LL- 

PopEuC3L3  KL-RF-LLPT---SWY---HHP-----------HQAITNTR---------KPSS---LL- 

PopEuC3L4  KL-RF-LLPT---SWY---HHP-----------HQAITNTR---------KPSS---LL- 

PopTrC3L3  KL-RF-LLPT---SWY---HHP-----------HQAITNTK---------KPSS---LL- 

CarPaC3L   KL-RG-FLPP---SWY---PHPHPHHHH---HQQQQQPNLVL-----DSSSKSP---SP- 

JatCuC3L2  KL-RF-LLPS---SWL---PHQ-----------ANFPPNKKP-----PSSSSNT---SS- 

HevBraC3L  KL-RTFFLPS---SWC---SHQ-----------ANSLFKQQ--------TLPPS---SS- 

VitViC3L2  KL-RI-FLPT---SWF---HPH-----------QTQEANLV--------DSKTS---KT- 

CicArC7L   KL-RT-FFPH---SWF---SHQ-----------TLKTNLNT-------TTLSSS---KK- 

MedTrC7L   KL-IT-FFPH---SWF---THQ-----------TL-------------TTPSST---SK- 

CiCl2CiSi2 KL-RR-FLPR---SWF---PAP-----------AL---------------GPSL---SS- 

ElaGuC3L1  KL--S-FLRT---AKV----------------------------------SA------P- 

ElaGuC3L2  KL-IS-LLLP---SSR----------------------------------SSSG---RP- 

PhoDaC3L   KL-SS-LLPS---SWL---PRACLQEPA---PDAAKAPSHC------PSPRSSP---CP- 

MacCoC3L   KL-KS-ILPP---SWF---PNSHQSFST---NSTTSIPNTTIIPSTFSSSSSSS---LP- 

EryGuC3L   KL-RT-FLPP---SWY---PYLHQQEQQ---KQQKHNNTNTI-NE--PASPSSS---PV- 

SesInC3L   KL-RA-YLPS---SWY---PYQQQQQQQ---QQVKKEPTVA---------LSSS---IV- 

RicCoC3L   KLVRF-FVPS---SWY---NSNTHQ--------ANLLINQEL-----QQQEEEE---ET- 
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GosArC7L   KL-KS-FLSP---SCT---ITTPFVSVG---GETEKNPS-----------PAVA---LA- 

GosRaC7L   KL-KS-FLSP---SCT---TTTPFVSVG---GETEKNPS-----------PAVA---LA- 

TheCaC3L2  KL-KT-FLPS---SWI---PTRTLVSTG---SESKTHTSTS-------PAPESA---SA- 

CorOlC3L   KL-KT-FLPS---SWIPPPPTHTLVSTA---TESKSSSS-----------PEPA---PA- 

CorCaC3L   KL-KT-FLPS---SWI-PPPTHTFVSTV---TESKSSSS-----------PEPA---AAP 

PunGrC3L   KL-RP-FLPSP--SWF---CSA-----------VSGTANGN---------VVLL---PS- 

SolLyC3L1  KL-IS-FLPP---SWF---HQKRIHS-------RSPAPPQQ---------SPVS---VS- 

SolTuC3L1  KL-IS-FLPP---SWF---HQKHLHS-------RSPAPPQQ---------SPVS---VS- 

ADu2AIp2   KL-RP-FFPF---SWF---PHQ-----------TNNTSSSS-------SSSSSSPRRAS- 

MusAcC3L4  KL-ISLLLPF---SWH---PPTSKD--------GLSPPATAL--------SSIASF-RS- 

AraLyC4L   KL-RV-FFPP---SWY---IDD-----------KNPP--------------------QS- 

AraThC4    KL-RV-FFPP---SWY---IDD-----------KNPPP-------------------PD- 

CamSaC4L1  KL-RV-LFPP---SWY---IDD-----------KNPPP-------------------PS- 

CamSaC4L2  KL-RV-LFPP---SWY---IDD-----------KNPPP-------------------PS- 

CapRuC4L   KL-RV-LFPP---SWY---IDD-----------KNPPPV------------------PS- 

BraNaC4L1  KL-RV-LFPP---SWY---TDD-----------KITPP---------------------- 

BraRaC4L1  KL-RV-LFPP---SWY---TDD-----------KITPP---------------------- 

BraOlC4L2  KL-RV-LFPP---SWY---TDD-----------KITPP---------------------- 

RapSaC4L2  KL-RV-LFPP---SWY---TED-----------KIPPP---------------------- 

BraNaC4L2  KL-RV-LFPP---SWY---IDD-----------NIPPP-------------------LS- 

BraOlC4L1  KL-RV-LFPP---SWY---IDD-----------NIPPP-------------------LS- 

BNa3BRa2   KL-RV-LFPP---SWY---IDD-----------NIPPP-------------------LS- 

RapSaC4L1  KL-RV-LFPP---SWY---MDD-----------NIPPP-------------------LS- 

EutSaC4L   KL-RV-LFPH---SWI---IDD-----------KNPPP---------------------- 

TarHaC4_5L KL-RG-IFPP---SWY---PHHVDDDNP-----KNPPP-------------------SS- 

AraLyC5L   KL-QT-LFPL---SWL---DKTLH---------KNSPPSP----------STML---PS- 

AraThC5    KL-RT-LFPL---SWF---DKTLH---------KNSPPSP----------STML---PS- 

CamSaC5L1  KL-RT-LFPL---SWF---DKTLH---------KNSPPSP----------PTML---PS- 

CamSaC5L3  KL-RT-LFPL---SWF---DKTLH---------KNSPPSP----------STML---PS- 

CamSaC5L2  KL-RS-LFPL---SWF---DKTLH---------KNSPPSP----------PTML---PS- 

EutSaC5L   KL-RS-LFPL---SWF---DKTLH---------KTSP-------------SSML---PS- 

CapRuC5L   KL-RS-LFPL---SWF---DKTLH---------MNSPPSP----------PTML---PS- 

BNa1BOl2   KL-RS-LFPL---SWF---DKTPH---------KN---------------SSML---PS- 

BraNaC5L2  KL-RT-LFPL---SWF---DKTPH---------KN---------------SSML---LS- 

BraRaC5L1  KL-RT-LFTL---SWF---DKTPH---------KN---------------SSML---PS- 

BN53BO51   KL-RT-LFSL---SWF---DKTLH---------KNSPPS-----------PSML---PS- 

BraRaC5L2  KL-RT-LFSL---SWF---DKTLH---------KNSPPS-----------PSML---PS- 

RapSaC5L1  KL-RT-LFPL---SWF---DKTLH---------KNSPPS-----------ASMLPS-PS- 

MusAcC3L5  KL-TS-LLLSP--SSS---SS------------SSSSPSHEN-----PAASFTS---TV- 

DauCaC3L2  KL-RN-YVPT---FWY---SRE-----------AGIDRNH----------TNLT---SS- 

CepFoC3L   KL-----IPA---SWY---HHQ-----------NNHIVDT----------KTLP---PP- 
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HelAnC3L   NL-RH-YLPK---SHT---QQQ-----------QQQIQND----------TVSQ---PS- 

VigAnC3L2  KV-RA-ILSP---SWF---RSS-----------STTAPTPT---QP----SSSS---SS- 

ElaGuC6L   KL-LT-RLAS---FLY---VTST------------PKPIVK---------TPSK---DG- 

CapAnC3L   KF-QS-LIQK---ISL---KSPSL-----------QEKTI----------ITPS---PS- 

NicAtC3L   KF-QT-LIQS---ISL---KSPPL-----------HENRIS---------TTCS---SS- 

NsyNtaC3   KF-QS-WIFS---LSI---KAQTP----------SSSPLFK---------NSTS---TS- 

NicToC3L   KF-QS-WIYS---LSI---KAQTP----------TPSPLVK---------NSTL---SS- 

JugReC3L   KF-YA-SLKY---VPA---NKSSS--------------------------NIST---TS- 

NelNuC3L1  KV-IT-WIQS---FPP---ISR----------------------------SCTS---IT- 

NelNuC3L2  KL-LA-WIQA---LIP---IAK----------------------------PSLI---TS- 

CucMeC7L   RF-TA-WFQS---IKP---SSQIPH--------FKSTPLQ----------PPPP------ 

CucSaC3L   RF-SA-WFQS---IKP---SSQITH--------FKSTPLQ----------PPPP---PS- 

DenCaC3L   KL-LP-WFHS---LLL---SAISP-----------PKPKPN---------PPPK------ 

AraThC24   ---------------------------------------------------------SS- 

                                                                        

 

RapSaC3L2  TS--------------------TTSS---G-SKKMDQAELSRIFQMFDRNGDGKITKQEL 

EucGrC3L2  PR--------------------SLSL---V-KAPMDAAELKRVFQMFDRNGDGRITKKEL 

ZizJuC3L2  SS--------------------CSFL---A-QKRMDPTELKRVFQMFDRNGDGRITKKEL 

LotJaC7L   SRGNLVIQKTTDDCDPCQL-LPLDTS---L-IPKMDPTELKRVFQMFDRNGDGRITKKEL 

VigAnC3L1  SS--------------------AFTR---I-SLSMDPNELKRVFQMFDRNGDGRITKKEL 

VigRaC3L1  SS--------------------AITR---I-SLSMDPNELKRVFQMFDRNGDGRITKKEL 

PhaVuC3L1  SR--------------------LITT---I-SPPMDPHELKRVFQMFDRNGDGRITKKEL 

GlyMaC3L1  SS--------------------ARII---K-RTTMDPNELKRVFQMFDRNGDGRITKKEL 

CajCaC3L1  ----------------------SQKS---R-RTSMDPQELRRVFQMFDRNGDGRITKKEL 

PruMuC3L2  SS------------------LPCGAP---K-VIRMDPNELKRVFQMFDRNGDGRITKQEL 

PruPeC3L2  SS------------LPLPLPLPCGAP---K-VIRMDPNELKRVFQMFDRNGDGRITKQEL 

PruAvC3L   SS-------------------SCGAH---K-VIRMDPNELKRVFQMFDRNGDGRITKQEL 

MalPyC3L   SL-------------PLPLPLPSGGA---C-HVRMDPNELKRVFQMFDRNGDGRITKQEL 

PopEuC3L2  PS---------------------PSF---V-LTRMDQAELKRVFQMFDRNGDGKITKKEL 

PopTrC3L1  PS---------------------PSF---V-LARMDQAELKRVFQMFDRNGDGKITKKEL 

PopEuC3L3  PS--------------------SSNF---V-VKRMDQAELKRVFQMFDRNGDGRITQKEL 

PopEuC3L4  PS--------------------SSNF---A-VKRMDQAELKRVFQMFDRNGDGRITQKEL 

PopTrC3L3  PS--------------------SSNF---V-LKRMDQAELKRVFQMFDRNGDGRITQKEL 

CarPaC3L   SP--------------------SSVS---G-LKRMDSAELKRVFQMFDKNGDGRITKKEL 

JatCuC3L2  SS--------------------SSSV---V-HKRMDTTELRRVFQMFDRNGDGRITRKEL 

HevBraC3L  SS--------------------AAAV---V-RKRMDSVELARVFQMFDRNGDGRITKKEL 

VitViC3L2  PG--------------------RSLV---S-RKRMESAEMKRVFQMFDRNGDGRITKTEL 

CicArC7L   GF--------------------VVIT---K-SITMDPNELKRVFQMFDRNDDGRITKKEL 

MedTrC7L   RG--------------------LVFT---K-TITMDPNELKRVFQMFDRNDDGRITKKEL 

CiCl2CiSi2 QS--------------------NTNP---T-RSTMDQAELDRVFQMFDHNGDGRISKKEL 
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ElaGuC3L1  RV--------------------FILA---T-PPGMDPSELKRVFQMFDRNGDGRITKKEL 

ElaGuC3L2  RV--------------------LILA---T-PPEMDPSELKRVFQMFDRNGDGRITKKEL 

PhoDaC3L   RV--------------------SILA---T-PPGMEPSELKRVFQMFDRNGDGRITKKEL 

MacCoC3L   SS--------------------SSLI---Q-QEVMDPAELKRVFQMFDRNGDGRITKKEL 

EryGuC3L   IS--------------------PLHK---F-PRRMDADELRRVFQMFDRNGDGRITQKEL 

SesInC3L   PS--------------------SRIV---I-HRRMDPNELKRVFQMFDRNGDGRITKQEL 

RicCoC3L   LV--------------------VPSA---A-RKRMDSTELKKVFQMFDTNGDGRITKEEL 

GosArC7L   SV--------------------SPRC---P-LKRMDAAELKRVFQLFDKNGDGSISKKEL 

GosRaC7L   SV--------------------SPRC---P-LKRMDAAELKRVFQLFDKNGDGTISKKEL 

TheCaC3L2  PA--------------------SSAC---C-PQRMDGAELKRVFQMFDKNGDGRITKKEL 

CorOlC3L   PA--------------------SPSC-RRQ-SQRMDAAELKRVFQLFDKNGDGRISKQEL 

CorCaC3L   PA--------------------SPSC-RRQ-SQRMDAAELKRVFQLFDKNGDGRISKQEL 

PunGrC3L   PS--------------------LRAR---K-ATVMDPTELRRVFQMFDRNGDGSISKKEL 

SolLyC3L1  DA--------------------VESH-----QKRMDSDELRRIFQIFDRNGDGRITKNEL 

SolTuC3L1  DA--------------------VQSH---I-QKRMDSDELRRIFQIFDRNGDGRITKNEL 

ADu2AIp2   RA--------------------IIIT---K-TRIMDPNELRRVFQMFDRNGDGRISRSEL 

MusAcC3L4  PSF-------------------GPKA---S-ARVMDPSELKRVFQMFDRNGDGRITKTEL 

AraLyC4L   KS---------------------ESE---S-PGRRDPVDLKRVFQMFDKNGDGRITKEEL 

AraThC4    ES---------------------ETE---S------PVDLKRVFQMFDKNGDGRITKEEL 

CamSaC4L1  QV---------------------ETE---S-PGRTDLVDLKRVFQMFDKNGDGRITKEEL 

CamSaC4L2  QL---------------------ETE---S-PGRTDLVDLKRVFQMFDKNGDGRITKEEL 

CapRuC4L   QS---------------------ETE---S-PGRTDPVDLKRVFQMFDKNGDGRITKEEL 

BraNaC4L1  -S---------------------ESE---C-SLRTDPVDLKRVFQMFDKNGDGRITKEEL 

BraRaC4L1  -S---------------------ESE---C-SLRTDPVDLKRVFQMFDKNGDGRITKEEL 

BraOlC4L2  -S---------------------ESE---C-SLRTDPVDLKRVFQMFDKNGDGRITKEEL 

RapSaC4L2  -P---------------------ESE---C-SLRTEPVDLKRVFQMFDKNGDGRITKEEL 

BraNaC4L2  EP---------------------EPK---S-QTRTDPVDLKQVFQMFDKNGDGRITKEEL 

BraOlC4L1  EP---------------------EPK---S-QTRTDPVDLKQVFQMFDKNGDGRITKEEL 

BNa3BRa2   EP---------------------EPK---S-QTRTDPVDLKQVFQMFDKNGDGRITKEEL 

RapSaC4L1  EP---------------------EPE---SREARTDPVDLKRVFQMFDKNGDGRITKEEL 

EutSaC4L   -S---------------------KSE---S-PARTDPVDLKRVFQMFDKNGDGRITKEEL 

TarHaC4_5L SP--------------------SPSP---P-PARVDPVELKRVFQMFDKNGDGRITKEEL 

AraLyC5L   PP--------------------SSSA---P-TKRIDPSELKRVFQMFDKNGDGRITKEEL 

AraThC5    PS--------------------SSSA---P-TKRIDPSELKRVFQMFDKNGDGRITKEEL 

CamSaC5L1  PS--------------------SSSSSSVP-TKRIDPSDLKRVFQMFDKNGDGRITKEEL 

CamSaC5L3  PS--------------------SSSSSSVP-TKRIDPSELKRVFQMFDKNGDGRITKEEL 

CamSaC5L2  PS--------------------SSSS-SVP-TKRIDPSELKRVFQMFDKNGDGRITKEEL 

EutSaC5L   PS--------------------PSSA---P-TKRTDPSELKRVFQMFDKNGDGRITKEEL 

CapRuC5L   PS--------------------SSPL---P-TKKIDPSELKRVFQMFDKNGDGRITKEEL 

BNa1BOl2   PS--------------------PSSA---P-TRKTDPSELKRVFQTFDKNGDGRITKTEL 

BraNaC5L2  PS--------------------PSSA---P-SIKTDPTELKRVFQTFDKNGDGRITKTEL 
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BraRaC5L1  PS--------------------PSSA---P-SIKTDPTELKRVFQTFDKNGDGRITKTEL 

BN53BO51   PS--------------------PSST---P-TTKIDPSELKRVFQTFDKNGDGRITKQEL 

BraRaC5L2  PS--------------------PSST---P-TTKIDPSELKRVFQTFDKNGDGRITKQEL 

RapSaC5L1  PS--------------------PSSA---S-TRKIDPSELKRVFQTFDKNGDGRITKQEL 

MusAcC3L5  AA--------------------RPAS---S-APSMDPSELKPVFHMFDRNGDGRITKEEL 

DauCaC3L2  NT--------------------ELTL---H-FPRMEADELRKVFEMFDHNGDGRITKQEL 

CepFoC3L   LP--------------------PLAR---A-QKRMDPTELDRVFQMFDRNGDGRITKMEL 

HelAnC3L   QP--------------------PQTP---R-TSRMNPDQLQRIFQMFDKNNDGTITKHEL 

VigAnC3L2  SS--------------------AFTR---I-SLSMDPNELKRVFQMFDRNGDGRITKKEL 

ElaGuC6L   KE---------------------VVV---S-EIVTDKAGIETVFATFDKDGDGFITTEEL 

CapAnC3L   IT--MVDKKVMN-----------------R-SNNYNKVELRSIFATFDKNNDGYITKQEL 

NicAtC3L   RS--MDEKKVKN--------SSIKST---S-SNNYNKLELRSIFATFDKNNDGYITKQEL 

NsyNtaC3   PP--LVEQKI------------MKRS---T-SNSHNKVELRSIFATFDKNNDGYITKQEL 

NicToC3L   PP--MAEQKI------------MRRS---T-SNSHNKVELRSIFATFDKNNDGYITKQEL 

JugReC3L   PP--------------------TSHK---E-RSPHNKAELKKIFATFDKNGDGFITKQEM 

NelNuC3L1  PPASVTVMA-------------SDKK---K-ESAHDRAELRNIFATFDKNSDGFINKEEL 

NelNuC3L2  PA---------------------TTT---T-TTSSDKAELRNVFATFDKNSDGIITEEEL 

CucMeC7L   PP---------------------PPP---P-PPPPSAMELKKVFGTFDKNDDGFITKKEL 

CucSaC3L   PS---------------------PSP---S-PPPPSAMEMKKVFGTFDKNDDGFITKKEL 

DenCaC3L   PD--LTKER-------------RANR---S-ESLADSLNLKTLFSTFDADGDGYISTAEL 

AraThC24   KN---------------------GVV---R-SCLGSMDDIKKVFQRFDKNGDGKISVDEL 

                                                   

 

RapSaC3L2  SDSLENLGIYIPDKDLVQMIEKIDLNGDGYVDIEEFGGLYQSIM----------E----- 

EucGrC3L2  SDSLENLGIYIPDKELAEMIEKIDVNGDGCVDIDEFGALYRSIM----------E----- 

ZizJuC3L2  NDSLENLGIFIPDKELTQMIEKIDVNGDGCVDMDEFGELYQSIM----------D----- 

LotJaC7L   NDSLENLGIFIPDKELTQMIERIDVNGDGCVDIDEFGELYQSIM----------D----- 

VigAnC3L1  SDSLDNLGIFIPDKELTVMIERIDVNGDGCVDIDEFGELYQTIM----------D----- 

VigRaC3L1  SDSLDNLGIFIPDKELTVMIERIDVNGDGCVDIDEFGELYQTIM----------D----- 

PhaVuC3L1  NDSLENLGIFIPDKELTLMIERIDVNGDGCVDIDEFGELYQHIM----------D----- 

GlyMaC3L1  NDSLENLGIFIPDKELGQMIERIDVNGDGCVDIDEFGELYQTIM----------D----- 

CajCaC3L1  SDSLENLGIFIPDKELSLMIEKIDVNGDGCVDIDEFGELYQTIM----------D----- 

PruMuC3L2  NDSLENLGIFIPDKELFNMIQKIDVDGDGCVDIDEFGELYQSIM----------D----- 

PruPeC3L2  NDSLENLGIFIPDKELFNMIQKIDVNGDGCVDIDEFGELYQSIM----------D----- 

PruAvC3L   NDSLENLGIFIPDKELFNMIQKIDVNGDGCVDIDEFGELYQSIM----------D----- 

MalPyC3L   NDSLENLGIYIPDKELFNMIEKIDVNGDGCVDIDEFGELYQSIM----------D----- 

PopEuC3L2  NDSLENLGIFIPDKELTQMIETIDVNGDGCVDIDEFGELYQSLM----------D----- 

PopTrC3L1  NDSLENLGIFIPDKELTQMIETIDVDGDGCVDIDEFGELYQSLM----------D----- 

PopEuC3L3  NDSLENIGIFIPDKELTQMIENIDANGDGCVDIDEFGELYRSLM----------D----- 

PopEuC3L4  NDSLENIGIFIPDKELTQMIENIDANGDGCVDIDEFGELYRSLM----------D----- 

PopTrC3L3  NDSLENIGIFIPDKELTQMIEKIDVNGDGCVDIDEFGELYQSLM----------D----- 
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CarPaC3L   NDSLENLGIFIPDKELAQMIEKIDVNGDGCVDIDEFGSLYKSIM----------D----- 

JatCuC3L2  SDSLENLGIFIPDSELTQMIDNIDVNGDGCVDIEEFGVLYQSIM----------D----- 

HevBraC3L  NDSLENLGIFIPDLELTQMIQNIDVNGDGCVDIDEFGALYQSIM----------D----- 

VitViC3L2  NDSLENLGIYIPDKDLAQMIEKIDVNGDGCVDIDEFRALYESIM----------E----- 

CicArC7L   NDSLENLGIFIPDKELSQMIEKIDVNRDGCVDIEEFRELYESIM----------N---GR 

MedTrC7L   NDSLENLGIFIPDKELSQMIEKIDVNRDGCVDIEEFRELYESIM----------S----- 

CiCl2CiSi2 NDSLENLGIYIPDVELTQMIERIDVNGDGCVDIDEFGALYKSIM----------E----- 

ElaGuC3L1  SDSLENLGIYIPEGDLEAMIEKIDANGDGCVDVEEFGALYQNIM----------D----- 

ElaGuC3L2  SDSLENLGIYIPEGDLESMIGKIDVNGDGCVDIEEFGALYQTIM----------D----- 

PhoDaC3L   GDSLENLGIHIPEGDLESMIGKIDANGDGCVDIEEFGALYQTIM----------D----- 

MacCoC3L   SDSLDNLGIFIPDKDLTQMIEKIDVNGDGCVDIDEFGALYQTIM----------D----- 

EryGuC3L   SDSLENMGIFIPDKELSQMIDKIDVNGDGCVDIEEFGNLYQNIM----------D----- 

SesInC3L   SDSLHNMGISIPDEELTQMIDKVDINGDGCVDIDEFGTLYQTIM----------D----- 

RicCoC3L   NGSLENLGIFIPDKELSQMMETIDVNGDGGVDIEEFGALYQSIM----------D----- 

GosArC7L   NDSLENMGICIPDPELTQMIEKIDVNGDKCIDIDEFSELYRSIM----------D----- 

GosRaC7L   NDSLENMGICIPDPELTQMIEKIDVNGDKCIDIDEFSELYRSIM----------D----- 

TheCaC3L2  NDSLENLGIFIPDGELTHMIEKIDVNGDNCVDIDEFGELYHSIM----------D----- 

CorOlC3L   NDSLENLGIFIPDGELTQMIEKIDVNGDNCVDIDEFGELYQSIM----------D----- 

CorCaC3L   NDSLENLGIFIPDGELTQMIEKIDVNGDNCVDIDEFGELYQSIM----------D----- 

PunGrC3L   ADSLENLGIFIPDKELEDMIRRIDANGDGCVDIEEFEALYRSIM----------D----- 

SolLyC3L1  NSSLENMGIFIPDPELIQMIEKIDVNGDGCVDIDEFGSLYQTIM----------D----- 

SolTuC3L1  NDSLENMGIFIPDPELIEMIEKIDVNGDGCVDIDEFGSLYQTIM----------D----- 

ADu2AIp2   TVSLENLGIFIPDKELAQMIDKIDANGDGFVDVEEFGELYESIM----------V----- 

MusAcC3L4  SDSLENLGIYIPEAELASMIEKIDVNGDGCVDMDEFGALYRSIM----------D----- 

AraLyC4L   NDSLENLGIFMPDKDLVQMIQKMDANGDGIVDIKEFESLYGSIV----------E----- 

AraThC4    NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV----------E----- 

CamSaC4L1  NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV----------E----- 

CamSaC4L2  NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV----------E----- 

CapRuC4L   NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV----------E----- 

BraNaC4L1  NDSLENLGIFMPDKDLIQMIRKMDANGDGCVDINEFESLYGSIV----------E----- 

BraRaC4L1  NDSLENLGIFMPDKDLIQMIRKMDANGDGCVDINEFESLYGSIV----------E----- 

BraOlC4L2  NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV----------E----- 

RapSaC4L2  NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV----------E----- 

BraNaC4L2  NDSLENLGIFMPDKDLIQMIHKMDANGDGCVDIHEFESLYGSIV----------E----- 

BraOlC4L1  NDSLENLGIFMPDKDLIQMIHKMDANGDGCVDIHEFESLYGSIV----------E----- 

BNa3BRa2   NDSLENLGIFMPDKDLIQMIHKMDANGDGCVDIHEFESLYGSIV----------V----- 

RapSaC4L1  NDSLENLGIFMPDKDLIQMIKNIDANGDGCVDIQEFESLYGSIV----------Q----- 

EutSaC4L   NDSLENLGIFMPEKDLIQMIQKMDANGDGCVDIHEFESLYSSIV----------E----- 

TarHaC4_5L NDSLENLGLFLPDRELAQMIQKIDANGDGCVDMDEFESLYKSIV----------D----- 

AraLyC5L   NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIV----------D----- 

AraThC5    NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIV----------D----- 
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CamSaC5L1  NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIV----------D----- 

CamSaC5L3  NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDKDEFESLYSSIV----------D----- 

CamSaC5L2  NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIV----------D----- 

EutSaC5L   NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIV----------D----- 

CapRuC5L   NDSLENLGIYIPDQDLTQMIHKIDANGDGCVDIDEFESLYGSIV----------D----- 

BNa1BOl2   NDSLENLGIYIPDKDLTQMIHNIDANGDGCVDIDEFESLYSSIV----------D----- 

BraNaC5L2  NDSLENLGIYIPDQELTQMIHNIDANGDGCVDIDEFESLYSSIV----------D----- 

BraRaC5L1  NDSLENLGIYIPDKELTQMIHNIDANGDGCVDIDEFESLYSSIV----------D----- 

BN53BO51   KDSLENLGIYIPDKDLTQMIHNIDTNHDGCVDIDEFESLYKSIV----------D----- 

BraRaC5L2  KDSLENLGIYIPDKDLTQMIHNIDTNHDGCVDIDEFESLYRSIV----------N----- 

RapSaC5L1  NNSLENLGIYIPDKDLTQMIHNIDKNHDGCVDIDEFESLYRSIV----------D----- 

MusAcC3L5  SDSLRNLGMRVPEAELASMIERIDANGDGYVDSDEFATLYRSIM----------E----- 

DauCaC3L2  NESLEKMGIFIPDQELTQMIEKIDVNNDGCVDIDEFGDLYQNIM----------N----- 

CepFoC3L   NESLEKLGMFIPDKELTRMIEKIDVDGDGCVDIDEFGALYRSLM-DHEVDD---D----- 

HelAnC3L   NESLENMKIFISDEDLVRMIDKVDINNDGCVDLDEFGVLYKEIM----------D----- 

VigAnC3L2  SDSLDNLGIFIPDKELTVMIERIDVNGDGCVDIDEFGELYQTIM----------D----- 

ElaGuC6L   EESFKRLGLFSTRNEIVSMMKRVDANGDGLIDLEEFGELYDSLG--RGRGGGDGD----E 

CapAnC3L   KLSLKNIGIFMEDKDIVEMVEKVDSNKDGLIDLDEFCDLCHTYL-GIEEV----S----N 

NicAtC3L   KLSLKNIGIFIEDKDIIDMVEKVDSNKDGLIDIDEFYQLCHTFL-GIEAV---------- 

NsyNtaC3   KQSLNNIGIYMEDRDIVEMVEKVDSNKDGLIDLDEFYELCHSFL-GIQGVIGSQE----N 

NicToC3L   KQSLKNIGIYMEDIDIVEMVEKVDSNKDGLIDLDEFYELCHSFL-GIEGIIGSQE----N 

JugReC3L   RESLKNIKMVVTDKEVEEMVVKVDANGDGLIEFDEFCVLCESMV-SEERAAGNYDEGDGA 

NelNuC3L1  TESLKNIGISTTDAEVKDMIERLDANKDGLIDLDEFCKLYDSVG--KPQDRGRKD---GE 

NelNuC3L2  RESLKNIGFSITDTDLVHMVEKLDSNRDGLIDLEEFSKLYESVGISRSKQRGGRD---GE 

CucMeC7L   MESLKSMRMMITEKDAEEMLKEVDENGDGLIDFEEFCVLGEKLLMGFEE-----N----- 

CucSaC3L   MESLKSMRMMITEKDAEEMLKGVDENGDGLIDFEEFCVLGGKLMMGFEE-----N----- 

DenCaC3L   NDSLRRLGLHATGDDLTNMMERVDANGDGLIDLNEFKELCASLG----------S----- 

AraThC24   KEVIRALSPTASPEETVTMMKQFDLDGNGFIDLDEFVALFQIGI-GGGG-----N----- 

                       

 

RapSaC3L2  ---------DR-D-----EEEDIREAFNVFDQNRDGFITVEELRSVLSSLGLKQGRTLED 

EucGrC3L2  ---------ER-D-----EEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTLED 

ZizJuC3L2  ---------EK-D-----EEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTVED 

LotJaC7L   ---------ER-D-----EEEDMREAFNVFDQNGDGFITVEELRTVLASLGIKQGRTVED 

VigAnC3L1  ---------ER-D-----EEDDMREAFNVFDQNGDGFITVEELRTVLSSLGLKQGRTVED 

VigRaC3L1  ---------ER-D-----EEDDMREAFNVFDQNGDGFITVEELRTVLSSLGLKQGRTVED 

PhaVuC3L1  ---------DR-D-----EDEDMREAFNVFDQNGDGFITVEELRTVLSSLGLKQGRTVED 

GlyMaC3L1  ---------ER-D-----EEEDMREAFNVFDQNADGFITVDELRTVLSSLGLKQGRTVQD 

CajCaC3L1  ---------ER-D-----EEEDMREAFNVFDQNGDGFITVDELRTVLSSLGLKQGRTVED 

PruMuC3L2  ---------ER-D-----EDEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED 

PruPeC3L2  ---------ER-D-----EDEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED 
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PruAvC3L   ---------ER-D-----EDEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED 

MalPyC3L   ---------ER-D-----EEEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED 

PopEuC3L2  ---------EK-D-----EEEDMREAFKVFDQNGDGFITVDELRSVLASLGLKQGRTLED 

PopTrC3L1  ---------DK-D-----EEEDMREAFKVFDQNGDGFITVDELRSVLASLGLKQGRTLED 

PopEuC3L3  ---------EK-D-----EEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTFED 

PopEuC3L4  ---------EK-D-----EEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTFED 

PopTrC3L3  ---------EK-D-----EEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTFED 

CarPaC3L   ---------EH-D-----EEEDMREAFNVFDQNGDGFITVDELKSVLASLGLKQGKTVED 

JatCuC3L2  ---------ER-D-----EEEDMREAFNVFDRNGDGYITVDELRSVLASLGLKQGKAVED 

HevBraC3L  ---------ER-D-----EEEDMKEAFNVFDQNGDGYITVDELRSVLAALGLKQGRTLED 

VitViC3L2  ---------EK-D-----EDEDMKEAFNVFDQNGDGFITVDELKSVLGSLGLRHGRTVED 

CicArC7L   ---------EE-E-----EEEDMREAFNVFDQNGDGFISVEELRSVLVTLGLKQGRTVED 

MedTrC7L   ---------ER-D---EEEEEDMREAFNVFDQNGDGFISVDELRSVLVSLGLKQGRTVED 

CiCl2CiSi2 ---------EK-D-----EEEDMKEAFNVFDQNGDGFITFDELKSVLGSLGLKQGRTVED 

ElaGuC3L1  ---------ER-D-----EEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTVED 

ElaGuC3L2  ---------ER-D-----EEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTVED 

PhoDaC3L   ---------ER-D-----EEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTVED 

MacCoC3L   ---------EK-D-----EEEDMREAFNVFDQNGDGFITVEELRSVLSSLGLKQGRTVED 

EryGuC3L   ---------ER-D-----EEEDMREAFNVFDQNGDGFITVDELKAVLASLGLKQGRAVED 

SesInC3L   ---------ER-D-----EEEDMKEAFNVFDQNGDGFISVDELKSVLVSLGLKQGKAAED 

RicCoC3L   ---------EK-D-----EDEDMREAFNVFDQNGDGYITGDELRSVLASLGLKQGRTAED 

GosArC7L   ---------NK-D-----EEEDMKEAFNVFDQNGDGYISVEELRSVLESLGLKQGKGIED 

GosRaC7L   ---------NK-D-----EEEDMKEAFNVFDQNGDGYISVEELRSVLESLGIKQGKGIED 

TheCaC3L2  ---------DK-D-----EEEDMKEAFNVFDQNGDGYISVDELRSVLVSLGLKQGKTIED 

CorOlC3L   ---------GK-D-----EEEDMKDAFNVFDQNGDGFISVDELRSVLVSLGLKQGKTIED 

CorCaC3L   ---------GK-D-----EEEDMKDAFNVFDQNGDGFISVDELRSVLISLGLKQGKTIED 

PunGrC3L   ---------ER-D-----EEEDMKEAFNVFDQNGDGFITVDELRSVLASLGLKQGRTIED 

SolLyC3L1  ---------ER-D-----EEEDMREAFNVFDQNGDGFICVEELKSVLASLGLKQGRTVED 

SolTuC3L1  ---------ER-D-----EEEDMREAFNVFDQNGDGFICVDELKSVLASLGLKQGRTVED 

ADu2AIp2   ---------ERGD-----EEEDMKEAFNVFDQNGDGFISVEELRAVLSSLGLKQGRTDED 

MusAcC3L4  ---------ER-D-----EEEDMREAFNVFDQNGDGYISVEELRSVLVSLGVKQGRTAED 

AraLyC4L   ---------EK-------EEEDMRDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLEC 

AraThC4    ---------EK-------EEGDMRDAFNVFDQDGDGFITVEELNSVMTSLGLKQGKTLEC 

CamSaC4L1  ---------EK-------EEEDMRDAFNVFDQDGDGFITVKELKSVMASLGLKQGRTLKC 

CamSaC4L2  ---------EK-------EEEDMRDAFNVFDQDGDGFITVKELKSVMASLGLKQGRTLKC 

CapRuC4L   ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC 

BraNaC4L1  ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC 

BraRaC4L1  ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC 

BraOlC4L2  ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC 

RapSaC4L2  ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC 

BraNaC4L2  ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLEC 
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BraOlC4L1  ---------EK-------EEEDMRDAFHVFDQDGDGFISVEELKSVMASLGLKQGKTLEC 

BNa3BRa2   ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLEC 

RapSaC4L1  ---------EK-------EEEDMRDAFNVFDQDGDGFISVEELKSVMSSLGLKQVKTLEC 

EutSaC4L   ---------EK-------VDEDMRDAFNVFDQDGDGYITVEELKSVMASLGLKQGKTLEC 

TarHaC4_5L ---------QS-D-----KDDDMRDAFDVFDQDGDGFITVEELKSVMGSLGLKQGKTLED 

AraLyC5L   ---------EH-HNDGETEEEDMKDAFNVFDQDGDGFITVDELKSVMASLGLKQGKTLDG 

AraThC5    ---------EH-HNDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG 

CamSaC5L1  ---------EH-QNDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG 

CamSaC5L3  ---------EH-QKDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG 

CamSaC5L2  ---------EH-QNDGETEEENMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG 

EutSaC5L   ---------EH-HNDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG 

CapRuC5L   ---------EH-HNDGGTEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG 

BNa1BOl2   ---------EH-RKDGETEEDDMKDAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTLEG 

BraNaC5L2  ---------EH-RKDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTLEG 

BraRaC5L1  ---------EH-RKDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTLEG 

BN53BO51   ---------EH-HNDGETEEEDMKEAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTQEG 

BraRaC5L2  ---------EH-HNDGETKEEDMKEAFNVFDQDGDGFITVEELKSVMSSLGLKQGKTLEG 

RapSaC5L1  ---------EH-HNDGETEEEDMKEAFNVFDQDGDGFITVEELKSVLASLGLKQGKTLEG 

MusAcC3L5  ---------ER-D----EEEEDMREAFNVFDRNGDGFITVEELRSVLASLGLKQGRTAED 

DauCaC3L2  ---------TR-E-----EEEDMKEAFSVFDQNGDGFITVDELKSVLASLGLKQGRTEED 

CepFoC3L   ---------EE-E-----EEDMMKEAFNVFDSNGDGFISVDELRSVFVSLGVKQGRTIED 

HelAnC3L   ---------NQ-E-----NEEDMMEAFNVFDQNRDGFIAVEELRSVLESLGLKQGKVVDD 

VigAnC3L2  ---------ER-D-----EEDDMREAFN------DIYIYILYLDILITKI-YKIYSPLHS 

ElaGuC6L   -RGERGKEEEE-E-----GEVELREAFDVFDENGDGLITVEELGLVLASLGLKRGATVED 

CapAnC3L   -ESEMNEEEVA-N-----REKDLKDAFDVFDHDKDGLISKEELSKILSTLGMKEGKKLDY 

NicAtC3L   -----NEEEES-N-----REKDLKDAFDVFDYDKDGLISVEELSKILSSLGLRQGKKLDY 

NsyNtaC3   -SGEMNQEEEA-N-----RERDLKDAFDVFDYDKDGLISEEELSKVLSSLGLNQGKKLED 

NicToC3L   -SGEMNQEEEA-N-----RERDLKDAFDVFDYDKDGLISEEELSKVLSSLGLNQGKKLED 

JugReC3L   -KGVESSEGTG-D-----EEDDLKEAFDVFDKDRDGLITVEELGLVLCSLGLKEGKKKED 

NelNuC3L1  EGSTEEEDGGV-D-----QEMELKEAFDVFDGNKDGLITVEELSLVLESLGLKQGWKSED 

NelNuC3L2  -LLDCREEEEV-D-----EERDLKEAFDVFDGNRDGLITVEELSLVLSSLGLKQGLRSED 

CucMeC7L   -----KKTSVG-D-----DEEGLKDAFGVFDKDSDGLISVEELSLVLCSLGMNEGKIVEN 

CucSaC3L   -----KKTSVE-D-----EEDELKDAFGVFDKDSDGLISVEELSLVLCSLGMNEGKIVEN 

DenCaC3L   -----EGEGEA-D-----EDRELREAFEVFDDNGDGLITVEELSLVLKSLGLRQGDRAEA 

AraThC24   ---------NR-N-----DVSDLKEAFELYDLDGNGRISAKELHSVMKNLGEKC--SVQD 

                                  

 

RapSaC3L2  CKRMISKVDVDGDGMVNFKEFKQMMK--GGGFAALESSL- 

EucGrC3L2  CKRMIMKVDVDGDGMVDFKEFKQMMK--GGGFSALS---- 

ZizJuC3L2  CKRMIMKVDVDGDGMVNYKEFKQMMK--GGGFSALS---- 

LotJaC7L   CKKMIMKVDVDGDGMVDYKEFKQMMK--GGGFSALT---- 
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VigAnC3L1  CKKMIMKVDVDGDGMVDYKEFKQMMK--GGGFSALT---- 

VigRaC3L1  CKKMIMKVDVDGDGMVDYKEFKQMMK--GGGFSALT---- 

PhaVuC3L1  CKKMIMKVDVDGDGMVDYKEFKQMMK--GGGFSALT---- 

GlyMaC3L1  CKNMISKVDVDGDGMVDFKEFKQMMK--GGGFSALT---- 

CajCaC3L1  CKNMIMKVDVDGDGMVDFKEFKHMMK--GGGFNALT---- 

PruMuC3L2  CKRMIMKVDVDGDGRVNYKEFKQMMK--GGGFSALS---- 

PruPeC3L2  CKRMIMKVDVDGDGRVNYKEFKQMMK--GGGFSALS---- 

PruAvC3L   CKRMIMKVDVDGDGRVNYKEFKQMMK--GGGFSALS---- 

MalPyC3L   CKRMIMKVDVDGDGRVNYKEFRQMMK--GGGFSALS---- 

PopEuC3L2  CKRMIMKVDVDGDGMVDYKEFKKMMK--GGGFSALG---- 

PopTrC3L1  CKRMIMKVDVDGDGMVDYKEFKKMMK--GGGFSALG---- 

PopEuC3L3  CKRMIMKVDVDGDGMVDYREFQKMMK--GGGFSAVG---- 

PopEuC3L4  CKRMIMKVDVDGDGMVDYREFQKMMK--GGGFSAVG---- 

PopTrC3L3  CKRMIMKVDVDGDGMVDYREFKKMMK--GGGFSAVG---- 

CarPaC3L   CKKMIMQVDEDGDGMVNYKEFRQMMK--GGGFSALS---- 

JatCuC3L2  CKRMIMRVDVDGDGMVNFMEFKQMMK--GGGFSALS---- 

HevBraC3L  CKTMIMKVDVDGDGMVNFKEFKQMMK--GGGFSALG---- 

VitViC3L2  CKRMIMKVDEDGDGKVDLKEFKQMMR--GGGFSALS---- 

CicArC7L   CKKMIGKVDVDGDGLVDYKEFVQMMK--GGGFTALS---- 

MedTrC7L   CKKMIGTVDVDGNGLVDYKEFKQMMK--GGGFTALS---- 

CiCl2CiSi2 CKRMIMKVDVDGDGMVDYKEFKQMMK--GGGFSALT---- 

ElaGuC3L1  CRRMISKVDADGDGMVNFKEFKQMMR--GGGFAALS---- 

ElaGuC3L2  CRRMISKVDVDGDGMVNFKEFKQMMR--GGGFAALG---- 

PhoDaC3L   CRKMITKVDVDGDGMVDFKEFKQMMR--GGGFAALS---- 

MacCoC3L   CRRMIRKVDVDGDGMVNFKEFKQMMR--GGGFAALS---- 

EryGuC3L   CKKMIMRVDADGDGMVNFTEFKQMMR--GGGFAALGN--- 

SesInC3L   CRQMIMRVDVDGDGMVNFSEFKQMMR--GGGFAALTN--- 

RicCoC3L   CKKIIMKVDVDGDGMVDFKEFKQMMK--GGVFTALSSCN- 

GosArC7L   CKRMITKVDVDGDGRVNFMEFKQMMK--GGGFTAMA---- 

GosRaC7L   CKRMITKVDVDGDGRVNFMEFKQMMK--GGGFTAMA---- 

TheCaC3L2  CKRMIMKVDVDGDGRVNFKEFKQMMK--GGGFSALT---- 

CorOlC3L   CKRMIMKVDADGDGRVNFKEFKQMMK--GGGFSALT---- 

CorCaC3L   CKRMIMKVDADGDGRVNFKEFKQMMK--GGGFSALT---- 

PunGrC3L   CKRMIMKVDVDGDGRVNYKEFKQMMK--GGGFSALS---- 

SolLyC3L1  CKQMINKVDIDGDGMVNYDEFKQMMR--GGGDM------- 

SolTuC3L1  CKQMINKVDIDGDGMVNFAEFKQMMR--GGGFAALS---- 

ADu2AIp2   CKKMIMKVDADGDGMVNYGEFKQMMK--GGGFSALS---- 

MusAcC3L4  CRMMINKVDVDGDGRVDFKEFKQMMK--GGGFAALS---- 

AraLyC4L   CKEMIKQVDEDGDGRVNYMEFLQMMK--SGDFSNRS---- 

AraThC4    CKEMIMQVDEDGDGRVNYKEFLQMMK--SGDFSNRS---- 

CamSaC4L1  CKEMIMQVDEDGDGRVNYKEFLQMMK--SVGFSNRS---- 



APPENDICES 

146 

 

CamSaC4L2  CKEMIMQVDEDGDGRVNYKEFLQMMK--SVGFSNRS---- 

CapRuC4L   CKEMIMQVDEDGDGRVDYKEFLQMMK--SGGFSNRA---- 

BraNaC4L1  CKEMITQVDEDGDGRVNYKEFLQMMK--SGGFSNRSS--- 

BraRaC4L1  CKAMITQVDEDGDGRVNYKEFLQMMK--SGGFSNRSS--- 

BraOlC4L2  CKEMITQVDEDGDGRVNYKEFLQMMK--SGGFSNSSSSD- 

RapSaC4L2  CKEMITQVDEDGDGRVNYNEFLQMMK--SGGFSNRS---- 

BraNaC4L2  CKEMIMQVDEDGDGRVNYKEFLQMMK--TGGFNNRSSSSN 

BraOlC4L1  CKEMIMQVDEDGDGRVNYKEFLQMMK--TGGFNNRSSSSN 

BNa3BRa2   CKEMIMQVDEDGDGRVNYKEFLQMMK--TGGFSNTSSSN- 

RapSaC4L1  CKEMIMQVDEDGDGRVNYKEFLQMMK--TGGVSNTSSSS- 

EutSaC4L   CKDMITQVDEDGDGRVNYKEFLQMMK--SGGFSNNRSSSN 

TarHaC4_5L CKKMIMQVDVDGDGRVNYKEFLQMMK--SGDL-------- 

AraLyC5L   CKKMIMQVDADGDGRVNYKEFLQMMK--GGGFSSSN---- 

AraThC5    CKKMIMQVDADGDGRVNYKEFLQMMK--GGGFSSSN---- 

CamSaC5L1  CKKMIMQVDADGDGRVNYKEFLQMMK--GGGFSSSN---- 

CamSaC5L3  CKKMIMQVDADGDGRVNYKEFLQMMK--GGGFSSSN---- 

CamSaC5L2  CKKMIMQVDADGDGRVNYKEFLQMMK--GGGFSSSN---- 

EutSaC5L   CKKMIMQVDADGDGRVNYKEFLQMMK--GGGFSSSN---- 

CapRuC5L   CKKMIMQVDADGDGRVNYKEFLQMMK--GGGFSSSSN--- 

BNa1BOl2   CKKMIMQVDGDGDGRVNYKEFLQMMR--GGGFSCSNN--- 

BraNaC5L2  CKKMIMQVDGDGDGRVNYKEFLQMMK--GGGFSCSN---- 

BraRaC5L1  CKKMIMQVDGDGDGRVNYKEFLQMMK--GGGFSCSN---- 

BN53BO51   CKKMIMQVDVDGDGRVNYKEFLQMMK--GDGFSSRS---- 

BraRaC5L2  CKKMIMQVDVDGDGRVNYKEFLQMMK--GDGFSRSS---- 

RapSaC5L1  CKKMIMQVDSDGDGRVNYKEFLQMMK--GGGFSSSG---- 

MusAcC3L5  CKTMINTVDVDGDGMVDFKEFRQMMN--GGGFAASS---- 

DauCaC3L2  CKTMIMKVDVDGDGRVNFNEFKAMMR--GGGFAALN---- 

CepFoC3L   CKKMIMKVDVDGDGKVDYEEFKQMMKGGGGGFSSLS---- 

HelAnC3L   CRRMIMKVDVDGDGRVSFNEFKEMMK--SGGFVNLAQS-- 

VigAnC3L2  FKKHFIKV---------WSLY------------------- 

ElaGuC6L   CRDMIRKVDLDGDGMVDFGEFKKMMV--EGVKLF------ 

CapAnC3L   CKEMIKKVDVDGDGMVNFDEFKKMMK--ACGTLIPFS--- 

NicAtC3L   CKEMISKVDVDGDGMVNFDEFKKMIK--GCGTLVPIS--- 

NsyNtaC3   CKEMIRKIDVDGDGMVNFDEFKKMMK--LGGRLIPIS--- 

NicToC3L   CKEMIRKIDVDGDGMVNFDEFKKMMK--VGGRLIPIS--- 

JugReC3L   CKEMIRNVDMDGDGMVNFDEFKKMMK--GGGRLLLAS--- 

NelNuC3L1  CKEMIRSVDMDGDGMVNFEEFKKMMM--KAGGCLVSLS-- 

NelNuC3L2  CREMIKSVDMDGDGMVNFEEFKKMMM--KAGGSCVGIS-- 

CucMeC7L   CKEMIRKVDLDGDGMVNFDEFKKMMR--NGVSILTSS--- 

CucSaC3L   CKEMIRKVDLDGDGMVNFDEFKKMMR--NGVTILTSS--- 

DenCaC3L   CRDMINRVDLDGDGMVNFEEFKRMMVVDGGGSFF------ 
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AraThC24   CKKMISKVDIDGDGCVNFDEFKKMMS--NGGGA------- 
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Appendix V. License and official OUP permission for Figure 16 

AgtDef 

  

Dear Henning Ruge, 

  

RE: Figure 1. An update of the Angiosperm Phylogeny Group classification for the orders and 

families of flowering plants: APG IV. Botanical Journal of the Linnean Society (2016) 181 

(1): 1-20 

  

Oxford University Press controls the copyright of the article in Botanical Journal of the 

Linnean Society on behalf of The Linnean Society of London. 

Further to your Rightslink License #4221440271927, dated 03.11.17, we hereby acknowledge 

that you wish to adapt the above material for ‘Functional and phylogenetic analysis of the 

endosomal targeted proteins CML4 and CML5 in Arabidopsis thaliana’ in your 

thesis/dissertation. We therefore grant Mr. Henning Ruge the non-exclusive right to use the 

above material in this way, subject to payment of the fee (if applicable) and adherence to the 

terms and conditions as specified in your license. 

Kind regards, 

  

Aaron Edwards | Permissions Assistant|Rights Department   

Academic and Journals Divisions|Global Business Development   

Oxford University Press | Great Clarendon Street | Oxford | OX2 6DP  
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TERMS AND CONDITIONS 
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This Agreement between Mr. Henning Ruge ("You") and Oxford University Press ("Oxford 
University Press") consists of your license details and the terms and conditions provided by 
Oxford University Press and Copyright Clearance Center. 

License Number 4221440271927 

License date Nov 03, 2017 

Licensed content 
publisher Oxford University Press 

Licensed content 
publication Botanical Journal of the Linnean Sociey 

Licensed content title An update of the Angiosperm Phylogeny Group classification for 
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Licensed content 
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Licensed content date Apr 6, 2016 
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Title of your work  Functional and phylogenetic analysis of the endosomal targeted 
proteins CML4 and CML5 in Arabidopsis thaliana 
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work  n/a 
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Permissions cost 0.00 EUR 

Value added tax 0.00 EUR 

Total 0.00 EUR 
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