## Functional and phylogenetic analysis of the endosomal-targeted proteins CML4 and CML5 in *Arabidopsis thaliana*

Dissertation

der Fakultät für Biologie

der

Ludwig-Maximilians-Universität München

Vorgelegt von

Henning Ruge

München, den 21.12.2017

Gutachter/in: 1. Prof. Dr. Ute C. Vothknecht

### 2. Prof. Dr. Peter Geigenberger

Datum der Einreichung: 21.12.2017

Datum der Promotion: 07.05.18

## Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass die vorliegende Dissertation von mir selbständig und ohne unerlaubte Hilfe angefertigt wurde.

### Erklärung

Diese Dissertation wurde keiner weiteren Prüfungskommission weder in Teilen noch als Ganzes vorgelegt. Ich habe nicht versucht, anderweitig eine Dissertation einzureichen oder mich einer Doktorprüfung zu unterziehen.

München, 07.08.2018

Ort, Datum

Henning Ruge

## Content

| 1. | Int | roducti                                                                                            | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                         |
|----|-----|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|    | 1.1 | Calciu                                                                                             | m ions – tight regulation of a cytotoxic second messenger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                         |
|    | 1.2 | $Ca^{2+}sa$                                                                                        | gnatures and their translation into cellular responses by Ca <sup>2+</sup> -sensor proteins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                         |
|    | 1.3 | The er                                                                                             | ndomembrane system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 13                                                                                      |
|    | 1.4 | Aim o                                                                                              | f this work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 15                                                                                      |
| 2. | Ma  | terial a                                                                                           | and methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 16                                                                                      |
|    | 2.1 | Mater                                                                                              | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 16                                                                                      |
|    |     | 2.1.1                                                                                              | Chemicals, enzymes and kits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 16                                                                                      |
|    |     | 2.1.2                                                                                              | Seeds and bacterial strains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 16                                                                                      |
|    |     | 2.1.3                                                                                              | Vectors, constructs and primers. GST – glutathione S-transferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 17                                                                                      |
|    |     | 2.1.4                                                                                              | Blotting membranes, protein and DNA ladders, chromatography resins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 21                                                                                      |
|    |     | 2.1.5                                                                                              | Antisera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 21                                                                                      |
|    | 2.2 | Metho                                                                                              | ds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 21                                                                                      |
|    |     | 2.2.1                                                                                              | Molecular biological and cell biological methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 21                                                                                      |
|    |     | 2.2.2                                                                                              | Biochemical methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 31                                                                                      |
|    |     | 2.2.3                                                                                              | Bioinformatical methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 35                                                                                      |
| 3. | Res | sults                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 37                                                                                      |
|    |     | · ·                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |
|    | 3.1 | In-dep<br>topolo                                                                                   | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and gy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 37                                                                                      |
|    | 3.1 | In-dep<br>topolo<br>3.1.1                                                                          | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein in Brassicaceae species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 37<br>s<br>. 37                                                                         |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2                                                                 | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and<br>gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 37<br>s<br>. 37<br>39                                                                   |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2<br>3.1.3                                                        | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and<br>gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts<br>Detailed analysis of AtCML5-YEP sub-cellular localisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 37<br>s<br>. 37<br>. 39<br>41                                                           |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4                                               | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and<br>gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts<br>Detailed analysis of AtCML5-YFP sub-cellular localisation<br>Topology elucidation for AtCML5-YFP and AtCML5 <sub>1-28</sub> -YFP via protease<br>protection assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 37<br>s<br>. 37<br>. 39<br>. 41<br>44                                                   |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>Functi                                     | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and<br>gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts<br>Detailed analysis of AtCML5-YFP sub-cellular localisation<br>Topology elucidation for AtCML5-YFP and AtCML5 <sub>1-28</sub> -YFP via protease<br>protection assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 37<br>s<br>. 37<br>. 37<br>. 39<br>. 41                                                 |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>Functi<br>3.2.1                            | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts<br>Detailed analysis of AtCML5-YFP sub-cellular localisation<br>Topology elucidation for AtCML5-YFP and AtCML5 <sub>1-28</sub> -YFP via protease<br>protection assay<br>onal analysis of AtCML4 and AtCML5.<br><i>In vivo</i> measurement of $[Ca^{2+}]_f$ fluctuations in close proximity to membranes<br><i>A. thaliana</i>                                                                                                                                                                                                                                                                                                                                       | . 37<br>s<br>. 37<br>. 37<br>. 39<br>. 41<br>. 44<br>. 46<br>s in<br>. 46                 |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>Functi<br>3.2.1<br>3.2.2                   | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and<br>gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts<br>Detailed analysis of AtCML5-YFP sub-cellular localisation<br>Topology elucidation for AtCML5-YFP and AtCML5 <sub>1-28</sub> -YFP via protease<br>protection assay<br>onal analysis of AtCML4 and AtCML5<br><i>In vivo</i> measurement of $[Ca^{2+}]_f$ fluctuations in close proximity to membranes<br><i>A. thaliana</i><br>Interaction partner identification via Ca <sup>2+</sup> -dependent pull-down assay from<br>microsome/cytoplasm extracts from <i>A. thaliana</i> leaf tissue                                                                                                                                                                      | . 37<br>s<br>. 37<br>. 39<br>. 41<br>. 44<br>. 46<br>s in<br>. 46<br>s . 50               |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>Functi<br>3.2.1<br>3.2.2<br>3.2.3          | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and<br>gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts<br>Detailed analysis of AtCML5-YFP sub-cellular localisation<br>Topology elucidation for AtCML5-YFP and AtCML5 <sub>1-28</sub> -YFP via protease<br>protection assay<br>onal analysis of AtCML4 and AtCML5<br><i>In vivo</i> measurement of $[Ca^{2+}]_{f}$ fluctuations in close proximity to membranes<br><i>A. thaliana</i><br>Interaction partner identification via $Ca^{2+}$ -dependent pull-down assay from<br>microsome/cytoplasm extracts from <i>A. thaliana</i> leaf tissue<br>Microscopic co-localisation analysis of potential interaction partners of<br>AtCML4 and AtCML5.                                                                        | . 37<br>s<br>. 37<br>. 39<br>. 41<br>. 44<br>. 46<br>s in<br>. 46<br>. 50                 |
|    | 3.1 | In-dep<br>topolo<br>3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>Functi<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4 | th characterisation of AtCML4 and AtCML5 sub-cellular localisation and<br>gy<br>Sequence analysis of the N-terminus of AtCML4- and AtCML5-like protein<br>in Brassicaceae species<br>Analysis of AtCML4 and AtCML5 co-localisation in <i>N. benthamiana</i><br>protoplasts and endogenous promoter-driven expression in <i>A. thaliana</i><br>protoplasts<br>Detailed analysis of AtCML5-YFP sub-cellular localisation<br>Topology elucidation for AtCML5-YFP and AtCML5 <sub>1-28</sub> -YFP via protease<br>protection assay<br>onal analysis of AtCML4 and AtCML5<br><i>In vivo</i> measurement of $[Ca^{2+}]_{f}$ fluctuations in close proximity to membranes<br><i>A. thaliana</i><br>Interaction partner identification via Ca <sup>2+</sup> -dependent pull-down assay from<br>microsome/cytoplasm extracts from <i>A. thaliana</i> leaf tissue<br>Microscopic co-localisation analysis of potential interaction partners of<br>AtCML4 and AtCML5<br>Phenotypic analysis of an <i>atcml5</i> knock-out mutant line | . 37<br>s<br>. 37<br>. 39<br>. 41<br>. 44<br>. 46<br>s in<br>. 46<br>. 50<br>. 54<br>. 57 |

|    |      |          | phenotype analysis                                                       | 60    |
|----|------|----------|--------------------------------------------------------------------------|-------|
|    |      | 3.2.6    | Detection of endogenous AtCML4 protein levels with monoclonal antibodi   | es    |
|    |      |          |                                                                          | 62    |
|    |      | 3.2.7    | Promoter activity analysis for AtCML4 and AtCML5                         | 64    |
|    | 3.3  | Phylog   | enetic analysis of CMLs harbouring a signal-anchor sequence similar to   |       |
|    |      | AtCM     | L4 and AtCML5 in the green lineage                                       | 72    |
| 4. | Dis  | cussion  |                                                                          | 77    |
| 5. | Ab   | breviati | ons                                                                      | 87    |
| 6. | Ref  | ferences |                                                                          | 88    |
| Sı | ımn  | nary     |                                                                          | . 102 |
| Z  | usan | nmenfa   | ssung                                                                    | . 103 |
| A  | ckno | owledge  | ments                                                                    | . 104 |
| A  | рреі | ndices   |                                                                          | . 105 |
|    | Ap   | pendix I | . Species list for sequence alignment in Figure 1                        | . 105 |
|    | Ap   | pendix I | I. MASCOT analysis of peptides identified in mass spectrometric analysis | 106   |
|    | Ap   | pendix I | II. Protein sequences subjected to phylogenetic analysis                 | . 108 |
|    | Ap   | pendix I | V. MSA of CMLs with AtCML4_5-like N-terminus                             | . 134 |
|    | Ap   | pendix V | 7. License and official OUP permission for Figure 16                     | . 148 |

## 1. Introduction

#### 1.1 Calcium ions – tight regulation of a cytotoxic second messenger

Calcium ions  $(Ca^{2+})$  are essential ions to biological systems and serve various functions, e.g. as structural element in proteins (Drucker et al. 1971) and tissues (Baker et al. 1946, Demarty *et al.* 1984). However,  $Ca^{2+}$  also play a vital role as second messengers in eukaryotic systems. Plants are sessile life forms and therefore require mechanisms for perceiving changes in environmental conditions and for initiating responses on a cellular level, in order to maintain fitness for their habitat. Therefore, plants encode an extensive set of sensor and signal transducer proteins to decode  $Ca^{2+}$  signals, which are invoked by external and internal stimuli (reviewed in Clapham 1995, Dodd et al. 2010, Kudla et al. 2010, Perochon et al. 2011).  $Ca^{2+}$  signalling potentially already emerged in the last common ancestor of eukaryotes. and from there on evolution of proteins participating in  $Ca^{2+}$  signalling proceeded differently in unikonta and bikonta (Plattner et al. 2015, Marchadier et al. 2016). The variety of processes involving Ca<sup>2+</sup> as second messenger in plants comprises response to abiotic and biotic stress factors, hormone signalling and growth regulation pathways, interaction with symbiotic partners and others (Zhou et al. 2009, Drerup et al. 2013, Miller et al. 2013, Zhang et al. 2016, Ligaba-Osena et al. 2017). Many of these processes involve elevations in cytoplasmic free calcium ion concentration ( $[Ca^{2+}]_f$ ) that would - given a permanent establishment - be cytotoxic due to the potential of  $Ca^{2+}$  to form insoluble complexes with free phosphate, leading to energetic breakdown of the cell. This favoured the development of mechanisms to sequester Ca<sup>2+</sup> in storage compartments, e.g. endoplasmic reticulum (ER), apoplast and vacuole. These processes are mediated by the activity of ATP-dependent pumps (Bonza et al. 2000, Schiøtt et al. 2004, Kamrul Huda et al. 2013) and Ca<sup>2+</sup>/H<sup>+</sup> -antiporters (Cheng et al. 2005, Hirschi et al. 1996) in the respective compartment membranes. This tight maintenance of low cytoplasmic base levels of  $[Ca^{2+}]_f$  is one of the reasons for which  $Ca^{2+}$  can serve as potent second messengers. However, in order to evoke transient elevations in cytoplasmic  $[Ca^{2+}]_{f}$ , the presence of channels facilitating transport across the membranes of the internal calcium stores is essential. Whereas in *Homo sapiens* eight different types of Ca<sup>2+</sup> channels are present, higher plants harbour a less diverse set of proteins mediating Ca<sup>2+</sup> influx into the cytoplasm. The Arabidopsis thaliana (A. thaliana) genome encodes one two-pore channel, 20 glutamate receptors, 20 cyclic nucleotide-gated channels and ten

mechanosensitive ion channels (Verret *et al.* 2010). In addition, there is a set of osmosensing channels, termed OSCAs (Yuan *et al.* 2014). Through their opposed and tightly controlled functions  $Ca^{2+}$ -permeable channels together with  $Ca^{2+}/H^+$ -antiporters and  $Ca^{2+}$ -ATPases generate, modulate and terminate stimulus-specific  $Ca^{2+}$  signals in the cell. However, these signals need to be perceived and translated into a specific cellular response, which requires a toolset of  $Ca^{2+}$ -binding proteins that has evolved to a system of low diversity but high versatility in the plant kingdom.

# 1.2 Ca<sup>2+</sup> signatures and their translation into cellular responses by Ca<sup>2+</sup>-sensor proteins

Investigation of  $Ca^{2+}$  as second messenger gave rise to the question of the mechanisms establishing a sufficient degree of specificity, since a vast variety of stimuli evoke Ca<sup>2+</sup> fluxes in a cell, often within the same compartment. One level of specificity has been found to be constituted by the spatiotemporal patterning of  $[Ca^{2+}]_f$  alterations as well as the modulation of their amplitude (McAinsh et al. 2009, McAinsh et al. 1998), termed Ca<sup>2+</sup> "signatures". A key feature of Ca<sup>2+</sup> rendering it an ideal locally acting second messenger is its very low diffusion rate in an environment like the cytoplasm, due to interaction with other ions, lipids or proteins (Allbritton *et al.* 1992). This allows for large amounts of  $Ca^{2+}$  to be accumulated in a limited volume of cellular space, reducing the absolute amount of  $Ca^{2+}$  required to elevate the  $[Ca^{2+}]_{f}$ in the defined area. Further, it represents the basis for the occurrence of Ca<sup>2+</sup> microdomains providing additional signal specificity by triggering only Ca<sup>2+</sup>-binding proteins present in this very sub-domain of the respective cellular compartment. Last, it enables  $[Ca^{2+}]_{f}$  oscillations to be modulated at high frequencies and with high amplitudes, for under these conditions, channel conductance and transporter kinetics represent the major limiting factors. Additionally, it has been shown that the stimulus-specific  $Ca^{2+}$  signatures are different depending on the cell type they are invoked in, adding another layer of complexity, but also specificity to the  $Ca^{2+}$  signalling network (Martí *et al.* 2013).

Further specificity is established by a range of  $Ca^{2+}$ -binding proteins in plant cells, their defined sub-cellular localisation and expression patterns. Despite a huge variety of these proteins in plants, mainly three groups shape the  $Ca^{2+}$  signature-decoding protein landscape in the green lineage of organisms: calmodulins (CAMs) and calmodulin-like proteins (CMLs), calcium-dependent protein kinases (CDPKs) and the two-component system of calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) (Edel *et al.* 2017, Edel *et al.* 

*al.* 2014, Bender *et al.* 2013, Kudla *et al.* 2010, Luan 2009, Batistič *et al.* 2009, McCormack *et al.* 2005, McCormack *et al.* 2003). These sensor proteins can be grouped according to whether they possess enzymatic activity (CDPKs; termed "signal responders"), or whether they modulate the activity of their interaction partners following a Ca<sup>2+</sup>-dependent change in their own conformation (CAMs, CBLs, CMLs; termed "sensor relays") (Sanders *et al.* 2002).

#### <u>CIPKS</u>

Since CIPKs do not harbour motifs for Ca<sup>2+</sup> binding and constitute the main downstream targets for CBLs hitherto identified (Guo et al. 2002, Costa et al. 2017, Drerup et al. 2013, Steinhorst et al. 2015, Guo et al. 2001, Shi et al. 1999), the combination of CBL-CIPKs resembles a chimera of both aforementioned groups. However, there is evidence for CBL10 in A. thaliana directly interacting with TOC34, thereby negatively affecting its GTPase activity (Cho et al. 2016). CBL proteins share major parts of their sequence with calcineurin B and neuronal Ca<sup>2+</sup> sensors from the animal system (Liu et al. 1998), containing four EF-hands, of which the first one comprises 14 amino acids instead of the canonical twelve, and they do not harbour any intrinsic enzymatic activity (Nagae et al. 2003). The sub-cellular localisation and often the physiological function of CBLs are influenced by the presence of motifs for myristoylation and other lipid modifications (Ishitani et al. 2000, Batistič et al. 2008), N-terminal signal-anchors, and tonoplast targeting signals (reviewed in Mao et al. 2016). Multiple interactions between the ten CBLs and 26 CIPKs in A. thaliana increase the versatility of this two-component signalling system (Batistic et al. 2004, Drerup et al. 2013, Tang et al. 2012). Upon binding of Ca<sup>2+</sup>, CBLs change their globular conformation and expose hydrophobic residues serving as interaction interface with the NAF-domain of CIPKs (Sanchez-Barrena et al. 2005, Guo et al. 2001), thereby releasing the autoinhibition of the kinase. Functional investigations on CBLs and CIPKs have shown their major role in ion homeostasis (Tang et al. 2015) and stress signalling, especially abscissic acid (ABA)-related stress responses to drought and salt (Sanyal et al. 2017, Tang et al. 2012, Guo et al. 2002). Several CBL-CIPK pathways include regulation of ion channels or pumps, e.g. CBL4-CIPK24 activates an Na<sup>+</sup>/H<sup>+</sup> -exchanger in the plasma membrane in response to salt stress (Qiu et al. 2002); CBL10-CIPK24 regulates a Na<sup>+</sup>/H<sup>+</sup> -exchanger in the tonoplast membrane influencing ion homeostasis (Kim et al. 2007); CBL4-CIPK6 alters AKT2 channel conductance and localisation (Held et al. 2011). Additionally, CBL-CIPK complexes have been found to provide a functional link between  $Ca^{2+}$  and reactive oxygen species-signalling (Drerup et al. 2013). However, the significance of CBL-CIPK complexes is not restricted to

stress response scenarios. It has been shown that pollen tube growth in Arabidopsis is retarded in plants with altered CBL3 and CBL2 transcript abundance. This macroscopic phenotype has been linked to distorted vacuole morphology and indicates a constitutive role of both proteins in regulating vacuolar and ultimately developmental processes (Steinhorst *et al.* 2015). In general, the role of CBL-CIPKs, independent of their influence on development, response to salt stress or osmotic stress, is remarkably often related to ion redistribution or homeostasis.

#### **CDPKs**

Though CDPKs and CIPKs are similar in terms of their kinase activity being constitutively repressed by an autoinhibitory domain, CDPKs do not require proteins like CBLs for activation. C-terminal to their autoinhibitory domain, they usually harbour a CAM-domain, which undergoes sequential conformational changes resulting in the dislocation of the inhibitory domain (Chandran et al. 2006). Autophosphorylation is common among CDPKs and has recently been shown for AtCPK28 to lead to increased sensitisation towards  $Ca^{2+}$ , probably providing a mechanism for priming the kinase for subsequent Ca<sup>2+</sup> stimuli after an initial triggering  $[Ca^{2+}]_{f}$  elevation (Bender *et al.* 2017). Similar to CBLs, CDPKs in A. thaliana can be clustered according to their sub-cellular localisation, which ranges from exclusively membrane associated, e.g. AtCPK7 and AtCPK9 to mainly membrane associated, e.g. AtCPK2 and AtCPK25, or membrane localised and soluble, e.g. AtCPK5 and AtCPK3 (Boudsocq et al. 2012). This behaviour can be at least partially attributed to the finding that CDPKs are often myristoylated and/or palmitoylated, providing them with a membrane anchor. Although many CDPKs have been found to be plasma membrane-localised, the sub-cellular destinations of CDPKs are diverse (summarised in Simeunovic et al. 2016). Alterations of the acylation status of AtCPK16 affecting its sub-cellular localisation indicated a potential regulatory function of reversible acylations on CDPK activity (Stael et al. 2011). Additionally, CDPKs display differences in the following three parameters: i)  $Ca^{2+}$  binding affinity, ii) the extent to which their enzymatic activity is dependent on  $Ca^{2+}$  binding, iii) the extent to which their affinity towards  $Ca^{2+}$  is altered depending on the substrate they bind (Boudsocq et al. 2012). Differences in these characteristics probably further determine the wide range of physiological functions, served by CDPKs (Gao et al. 2014, Simeunovic et al. 2016, Ormancey et al. 2017). AtCPK11 and AtCPK24 have been shown to regulate the pollen tube-specific potassium channel AtSPIK by  $Ca^{2+}$ -dependent and  $Ca^{2+}$ -independent phosphorylation, respectively, which in turn affects pollen tube growth. Additionally, AtCPK11 acts in ABA-induced ethylene production by phosphorylating AtACS6, a synthase of the ethylene precursor, which then leads to reduction of root growth (Luo *et al.* 2014). AtCPK28 is involved in developmental processes regulated by jasmonic acid (JA) and gibberellic acid (GA) involving stem elongation and vascular architecture (Matschi *et al.* 2013, Matschi *et al.* 2015).

#### **CAMs and CMLs**

In addition to phosphorylation as translation of  $Ca^{2+}$  signals into cellular response, the  $Ca^{2+}$ sensor toolkit comprises proteins, CAMs and CMLs, that modulate effector protein function directly via interaction. CAM harbours no other functional domains than EF-hands required for Ca<sup>2+</sup> binding and its evolutionary origins can be traced back to the common ancestor of all eukaryotes, since it is ubiquitously present in proteomes of species from simple amoeba and algae up to mammals and angiosperms (reviewed in Plattner 2017, McCormack et al. 2003). A potential homologue of CAM has been identified in the genome of the prokaryote Streptomyces erythraeus, emphasising its long phylogenetic roots (Swan et al. 1987). Apo-CAM is a globular, acidic protein of 149 amino acids, which form four EF-hands that can bind  $Ca^{2+}$  in a cooperative fashion (Klevit *et al.* 1984).  $Ca^{2+}$  binding induces a conformational change of the protein, leading to exposure of hydrophobic residues (Zhang et al. 1995, Ikura et al. 1992). Together with a variety of hydrophilic amino acids these residues form an α-helical interface between the N-terminal EF-hand pair (N-lobe) and the C-terminal EF-hand pair (C-lobe) that enables holo-CAM to bind other proteins in a Ca<sup>2+</sup>-dependent manner (Chattopadhvava et al. 1992). The interaction establishment process involves initial electrostatic interactions followed by hydrophobic interactions, which determine affinity and specificity of the binding, and conformational changes in the flexible CAM and its target structure (Liu et al. 2017). The large amount of methionine residues exposed upon Ca2+ binding, significantly contribute to the interaction partner promiscuity of CAM due to their highly flexible side chains (Zhang et al. 1995, Liu et al. 2017). The classical CAM target short  $\alpha$ -helical peptide characterised by the consensus sequence motif is а IQXXXRGXXXR (in which X represents any amino acid), which was first discovered as interaction interface in unconventional mysosins (Espreafico et al. 1992). Spacing of the hydrophobic residues rather than overall sequence is the interaction efficacy-determining feature of this peptide. Different variations of this motif, including the 1-8-14 and 1-5-10 motif (numbers indicate positions of conserved hydrophobic residues required for interaction) have been identified in various proteins (summarised in Rhoads et al. 1997). In accordance with the broad interaction partner specificity of CAMs, the cellular functions they are involved in are very diverse. Among CAMs in Arabidopsis AtCAM7 is especially noteworthy, because it has been shown to directly bind Z-box DNA via its Arg<sub>127</sub> residue, whereas the highly similar AtCAM2, AtCAM3 and AtCAM5 do not display DNA-binding capacity (Kumar et al. 2016). AtCAM7 serves as transcription factor enhancing the expression of light-induced genes, thereby actively influencing photomorphogenesis of A. thaliana seedlings (Kushwaha et al. 2008). In this respect it also interacts with AtHY5, a bZIP transcription factor involved in orchestrating photomorphogenesis and different hormone signalling pathways, in a Ca<sup>2+</sup>-dependent manner, driving AtHY5 expression (Abbas et al. 2014). Further, AtCAM7 was found to interact with the ATP-binding cassette transporter AtPEN3, which is a mediator of non-host resistance in Arabidopsis triggered upon recognition of pathogen-associated molecular patterns (Campe et al. 2016). There are also indications for a role of CAMs in regulating the import machinery of mitochondria (Parvin et al. 2017) and peroxisomes as well as peroxisomal enzymes (Corpas et al. 2014, Corpas et al. 2017). Despite their lack of motifs/domains other than EF-hand domains, CAMs exert their function as sensor relays in a vast variety of physiological processes. Whereas CAMs have retained their invariant structure in animal and plant cells alike, a rather similar but structurally more diverse Ca<sup>2+</sup> sensor protein family has evolved in the bikonta lineage, the CMLs.

McCormack and Braam analysed CAM and CAM-related proteins in the A. thaliana proteome, and classified proteins as CMLs if they showed at least 16 % overall amino acid identity to CAM and contained at least two EF-hands (with the exception of CML1 containing only one EF-hand). Their sequence analyses showed that the seven CAMs in A. thaliana, which represent three isoforms, display only little sequence diversity. However, the sequence similarities between CMLs vary to great extent, which probably even affects the Ca<sup>2+</sup> binding capabilities of different EF-hands and interaction partner variety in single proteins (McCormack et al. 2003). Similar analyses have also been carried out in species, including Oryza sativa (Boonburapong et al. 2007), Brassica rapa subsp. pekinensis (Nie et al. 2017) and Lotus japonicus (Liao et al. 2017). Additionally, expression analyses in A. thaliana and Oryza sativa have revealed that whereas CAMs are ubiquitously expressed, CMLs display strong variation in their spatiotemporal expression patterns. This indicates cellular functions specific to those organs or developmental stages rather than constitutive roles of these proteins (McCormack et al. 2005, Boonburapong et al. 2007). Given the great number of CML genes in Arabidopsis, hitherto only a small fraction of CMLs have been functionally analysed and since investigations indicated single CMLs to be potentially involved in a

variety of pathways, determination of the entire set of functions for each CML is challenging. AtCML24 is expressed in pollen tubes and has been shown to affect pollen tube growth by regulating cytoplasmic  $Ca^{2+}$  and  $K^{+}$  levels and the correct establishment of the actin cytoskeleton required for pollen tube elongation (Yang et al. 2014). Additionally, it interacts with AtATG4b, a component of the autophagy system (Tsai et al. 2013b), which is also vital for pollen tube growth. A similar function has been attributed to AtCML25, which also controls inward  $Ca^{2+}$  and  $K^{+}$  fluxes and influences pollen tube growth and pollen fertility (Wang et al. 2015). Another CML involved in developmental process control is AtCML42, which is expressed in various cell types, e.g. support cells at the basis of trichomes, and is required for establishment of trichome architecture (Dobney et al. 2009). Furthermore, AtCML42 has been found to be a repressor of herbivore attack response mediated by JA (Vadassery et al. 2012), exemplifying the versatility of CML function in cellular processes. Expression analyses for AtCML37, AtCML38 and AtCML39 showed constitutive expression of these genes in root cortex, root tip and stipules (AtCML37), guard cells of developing leaves and lateral root buds (AtCML38) and pollen (AtCML39), indicating tissue-specific functions (Vanderbeld et al. 2007). Another example of a CML potentially involved in developmental and stress signalling is AtCML43, whose expression is constitutive in root tips and is triggered in more proximal parts of the root by ectopic salicylic acid (SA) application (Bender et al. 2014). In addition to differential expression patterns, structural differences of CMLs add further potential to functional diversification. Aside from sequence alterations within the EF-hands themselves, several CMLs harbour either N- or C-terminal sequence stretches pre- or succeeding their set of EF-hands, which might affect their target specificity and sub-cellular localisation. The sequence of AtCML3 contains a C-terminal "SNL" tripeptide targeting it to peroxisomes, where it mediates the dimerisation of the peroxisomal protease AtDEG15, thereby modulating its cleavage behaviour (Dolze et al. 2013). The N-terminal sequence stretch of AtCML30 targets this sensor to mitochondria (Chigri et al. 2012). AtCML36, which contains a 60 amino acid N-terminal stretch, has been shown to be bound to the plasma membrane and activate AtACA8 to remove Ca<sup>2+</sup> from the cytoplasm following transient  $[Ca^{2+}]_{f}$  elevation (Benschop *et al.* 2007, Astegno *et al.* 2017). Initial investigation of AtCML4 and AtCML5, two paralogous Ca<sup>2+</sup> sensors in Arabidopsis, revealed them to be unique among the different CMLs, CDPKs and CBL-CIPKs investigated hitherto, for they were found to be localised at vesicle membranes, where none of the other  $Ca^{2+}$  sensor proteins had been detected before (Flosdorff 2014). These two  $Ca^{2+}$  sensors suggest a potential link between  $Ca^{2+}$  signalling and the vesicular trafficking system, which was thus far unprecedented.

#### **1.3** The endomembrane system

The compartmentalisation of the cytoplasm by means of membrane-enclosed domains is a key characteristic of eukaryotic cells. The major components of this system are the ER, the Golgi apparatus, the vacuole(s) and the plasma membrane, which are interconnected by a variety of tubular structures or transient vesicles mediating soluble and membrane-bound cargo transport. By definition, the plasma membrane is not an endomembrane due to its cell-delimiting nature enclosing the cytoplasm, but since it is a main destination and origin for vesicular trafficking, it is functionally connected. The correct sorting and distribution of soluble and membrane-bound cargo among the components of this system is a requirement for functionality and perturbations of the sorting processes are often related to severe phenotypes (Zhao et al. 2016, Laval et al. 2003, Hirano et al. 2011). Proteins synthesised at the ER enter anterograde transport towards the Golgi either in a receptor-dependent or receptor-independent (bulk flow) fashion (Malkus et al. 2002). Through special motifs, e.g. diacidic patches (Hanton et al. 2005), the cargo receptors and other transmembrane proteins are recognised by Sec24 (Pagant et al. 2015) in complex with Sec23 and Sar1 (Bi et al. 2002) on the cytoplasmic ER surface, by which they are gathered into domains. Sar1 mediates membrane curvature and fission (Hariri et al. 2014, Hanna et al. 2016) and recruits the outer coat proteins Sec13 and Sec31, which stabilise the curved membrane and complete the COPII complex required for anterograde transport (Townley et al. 2008). The function of these proteins has been mostly studied in yeast and functional complementation assays have proven the similar function of their plant homologues (De Craene et al. 2014). However, there is still ongoing debate about whether there is a tubular connection between ER and Golgi, for their physical interaction has been shown (Sparkes et al. 2009) and might coexist with the COPII-coated vesicle pathway. In yeast and mammals, most ER-resident proteins are transported back from the *cis*-Golgi via vesicles coated by the heptameric COPI complex, the coatomer (Letourneur et al. 1994). Despite lack of information on the specific function of the respective COPI components in the plant system, the localisation of the coatomer subunits to the *cis*-Golgi and their requirement for retrograde transport and cell viability has been shown. Comparable to Sar1 for COPII function, the GTPase ARF1 has been found to be required for this process (Pimpl et al. 2000, Ahn et al. 2015, Langhans et al. 2008). Cargo is further transported along the Golgi cisternae towards the trans-Golgi network (TGN), which merges with early endosomes (EE) originating from the endocytic pathway. Soluble cargo destined for lytic vacuoles and protein storage vacuoles are bound by the vacuolar sorting proteins VPS1, VPS3 and VPS4 (Lee et al. 2013) and FRET-FLIM analyses have revealed that cargo binding events occur in ER and Golgi, but further transport through TGN and multivesicularbodies (MVB) towards the vacuole are VSR-independent and probably occur by default (Künzl et al. 2016). Whereas export of VSRs from the ER towards cis-Golgi is mediated receptor-independently in bulk flow, the cytosolic tail of VSRs with their YMPL motif interacts with AP1, an adaptor protein in the clathrin coat of vesicles, and thus enables transport towards the vacuole instead of the plasma membrane (Gershlick et al. 2014). Cargo derived from endocytosis and destined to be degraded in the lytic vacuole, progresses from the TGN/EE via MVBs and the (late) pre-vacuolar compartment (PVC) to the vacuole. This involves maturation processes including alterations in luminal pH, vesicle structure and protein composition (Shen et al. 2013, Martinière et al. 2013, Scheuring et al. 2011, Nodzyński et al. 2013). The retromer complex is required for the recycling of VSRs back to the Golgi from TGN and MVBs and retromer subunit mutants can cause severe structural abnormalities in the PVC (Oliviusson et al. 2006, Nodzyński et al. 2013, Niemes et al. 2010). Transmembrane proteins and soluble cargo to be secreted into the apoplast are transported towards the plasma membrane in clathrin-coated vesicles (Larson et al. 2017). Clathrin complexes are also required for endocytosis similar to the animal system, and additionally for recycling plasma membrane proteins back to the cell surface (Kitakura et al. 2011, Bandmann et al. 2012). Concomitantly to the described trafficking processes, pathways directly linking ER and tonoplast (Viotti et al. 2013) or Golgi and tonoplast exist (Hinz et al. 1999, Hillmer et al. 2001, Wen et al. 2015).

Implications for  $Ca^{2+}$  in endomembrane system function are represented by the role of annexins as  $Ca^{2+}$  binding proteins in the tethering of ER and plasma membrane at specific junction sites. Additionally,  $Ca^{2+}$  have been shown to serve as electrostatic bridging ions during membrane fusion (Tsai *et al.* 2013a) and their binding to phosphoinositides alters the relative orientation of head groups, thereby influencing binding of lipid-interacting proteins (Bilkova *et al.* 2017).

#### **1.4** Aim of this work

In contrast to the animal system, in which CAM has been implicated in vesicle fusion events (Mills *et al.* 2001), evidence for  $Ca^{2+}$  sensors mediating such processes in plants is currently missing. In spite of their wide association with membranes, thus far no CBL or CDPK was shown to be associated with vesicular membranes of the endosomal system. The only exception is AtCBL10, which is anchored in the tonoplast and membranes of the PVC (Kim *et al.* 2007). This raises the question for the function and evolutionary origin of  $Ca^{2+}$  sensors on the surface of plant endosomal membranes, as presented by AtCML4 and AtCML5.

To elucidate the physiological function of AtCML4 and AtCML5, different approaches have to be followed, including i) the potential phenotypes of atcml4 and atcml5 loss-of-function single and *atcml4/atcml5* loss-of-function double mutants, ii) the spatiotemporal expression patterns of AtCML4 and AtCML5 and iii) the identification of potential interaction partners of AtCML4 and AtCML5. An RNA interference-approach has to be used in wild-type and atcml5 knock-out mutant plants to generate atcml4 and atcml4/atcml5 loss-of-function mutants, respectively. Thus generated and previously available mutant plants are to be analysed regarding their phenotypes under different growth conditions, including the simulation of various stress scenarios. Furthermore, wild-type plants need to be stably transformed to express LUCIFERASE reporter constructs under the control of the AtCML4 and the AtCML5 promoters to analyse at which developmental time points and in which tissues AtCML4 and AtCML5, respectively, are expressed. Potential interaction partners of AtCML4 and AtCML5 have to be identified in a pull-down approach, using recombinantly expressed variants of both proteins as bait. Additionally, the sub-cellular localisation of AtCML4 and AtCML5 has to be further dissected by quantitative assessment of microscopic data gained from in planta co-expression of compartment marker constructs with fluorescent fusion constructs of AtCML4 and AtCML5. In relation to that, the N-terminus of both proteins needs to be analysed with regard to its sequence and effect on overall protein topology. Also, the phylogenetic origin, development and distribution of CMLs targeted to the endosomal system within the green lineage of plants should be investigated.

## 2. Material and methods

#### 2.1 Material

#### 2.1.1 Chemicals, enzymes and kits

If not otherwise mentioned, all chemicals were of premium quality and have been purchased from known suppliers. Dexamethasone and (D)-luciferin were purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA). Restriction enzymes required for cloning were supplied by New England Biolabs (Boston, MD, USA) or Fermentas (St. Leon Roth, Germany). T4-DNA ligase was supplied by Fermentas (St. Leon Roth, Germany). DNA extraction from agarose gels and out of polymerase chain reactions (PCR) were performed with the Nucleospin Extract II Kit by Macherey-Nagel (Düren, Germany). Plasmid DNA isolation from *Escherichia coli* (*E. coli*) cells was performed using the Nucleobond PC 100 and PC 500 kits by Macherey-Nagel (Düren, Germany).

#### 2.1.2 Seeds and bacterial strains

Propagation of plasmid DNA was performed in E. coli strain DH5a (NEB, Boston, MD, USA), whereas protein expression was performed in BL21-CodonPlus(DE3)-RIPL cells CA, USA). transformation (Agilent technologies, Santa Clara. Transient of Nicotiana benthamiana (*N. benthamiana*) plants was performed with Agrobacterium rhizogenes (A. rhizogenes) strain LBA1334 (Visser et al. 1989), whereas stable transformation of A. thaliana plants was carried out with Agrobacterium tumefaciens (A. tumefaciens) strain GV3101 (Vahala et al. 1989).

Seed material for the T-DNA insertion line GABI-Kat 703E02 was supplied by the GABI-Kat project (Bielefeld, Germany). Arabidopsis wild-type (WT) seed material was purchased from LEHLE SEEDS (Round Rock, TX, USA) or The European Arabidopsis Stock Centre NASC (Nottingham, UK) and *N. benthamiana* seed material was supplied by the in-house plant cultivation facility. Seed material for plants stably transformed with the pOpOff2-LUC construct, were kindly provided by Iris Finkemeier (WWU Münster, Münster, Germany).

## **2.1.3** Vectors, constructs and primers. GST – glutathione S-transferase.

General description of basic vectors used in this work

| pBIN19-AN-YFP | Binary vector applied for stable <i>A. thaliana</i> or transient <i>N. benthamiana</i> transformation. If not indicated otherwise, restriction sites ApaI/NotI were used for the fusion gene or KpnI/ApaI for the promoter. Selection markers: Kanamycin/BASTA.                                                                           | Supplied by Dr Norbert<br>Mehlmer (Mehlmer et al.<br>2012)                                   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| pBIN19-ANX    | Binary vector applied for stable <i>A. thaliana</i><br>or transient <i>N. benthamiana</i> transformation.<br>Derived from pBIN19-AN-YFP. If not<br>indicated otherwise, restriction sites used for<br>cloning were ApaI/NotI and NotI/XhoI for<br>the fusion gene or KpnI/ApaI for the<br>promoter. Selection markers:<br>Kanamycin/BASTA | Designed in this work                                                                        |
| pGEX4T-3      | Vector for expression fusion proteins with<br>N-terminal GST tag in <i>E. coli</i> , restriction<br>sites used for cloning were BamHI/NotI.<br>Selection marker: Ampicillin                                                                                                                                                               | GE Healthcare Europe<br>GmbH, Freiburg,<br>Germany                                           |
| pGREENII      | Vector for transformation of <i>A. thaliana</i> leaf<br>mesophyll protoplasts. Used for expression<br>of fusion proteins under control of<br>endogenous promoter regions. Restriction<br>sites used for cloning: EcoRI/XhoI for<br>promoter, NcoI/SpeI for fusion genes.<br>Selection marker: Ampicillin                                  | Kindly provided by Dr<br>Peter Pimpl (ZMBP,<br>University of Tübingen,<br>Tübingen, Germany) |
| pSOUP         | Helper plasmid for amplification of pGREENII plasmids in <i>A. rhizogenes</i> . Selection marker: Tetracyclin                                                                                                                                                                                                                             | Supplied by Nottingham<br>Arabidopsis Stock Centre<br>(Nottingham, UK)                       |
| pOpOff2       | Vector for stable transformation of <i>A. thaliana</i> plants. Allows inducible expression of nucleotide sequences serving as double-stranded RNA samples for RNAi, cloning is described in 2.2.1.6. Selection marker: Spectinomycin/Hygromycin B                                                                                         | Kindly provided by Prof<br>Dr Katrin Philippar<br>(Wielopolska et al. 2005)                  |

| Denotation                                     | Vector        | Description                                                                                                        |
|------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------|
| CML5-YFP*                                      | pBIN19-AN-YFP | At2g43290 CDS                                                                                                      |
| CML4-mCherry                                   | pBIN19-AN-YFP | At3g59440 CDS                                                                                                      |
| CML4-YFP                                       | pBIN19-AN-YFP | At3g59440 CDS                                                                                                      |
| CML5 <sub>1-28</sub> -YFP*                     | pBIN19-AN-YFP | AAs 1-28 of At2g43290 (NTs 1-84)                                                                                   |
| AtARA6-mCherry*                                | pBIN19-AN-YFP | At3g54840.1 CDS                                                                                                    |
| GmMAN1-mCherry*                                | pBIN19-AN-YFP | (Nelson <i>et al.</i> 2007)                                                                                        |
| AtWAK1-mCherry-HDEL*                           | pBIN19-AN-YFP | (Nelson <i>et al.</i> 2007)                                                                                        |
| mCherry-SKL                                    | pBIN19-AN-YFP | mCherry protein followed by AA stretch "SKL"                                                                       |
| <i>pAtCML5</i> ::CML5 <sub>1-28</sub> -YFP-AEQ | pBIN19-AN-YFP | Promoter region and 5'UTR of At2g43290<br>(1123 NTs upstream of CDS), followed by<br>NTs 1-84 of the At2g43290 CDS |
| <i>pUBI</i> ::CML4                             | pBIN19-ANX    | Ubiquitin promoter followed by<br>At3g59440 CDS                                                                    |
| <i>pUBI</i> ::CML5                             | pBIN19-ANX    | Ubiquitin promoter followed by<br>At2g34290 CDS                                                                    |
| pAtCML5::CML5                                  | pBIN19-ANX    | Promoter region and 5'UTR of At2g43290 (1123 NTs upstream of CDS), followed by At2g43290 CDS                       |
| <i>pAtCML4</i> ::LUC                           | pBIN19-ANX    | Promoter region and 5'UTR of At3g59440<br>(1822 NTs upstream of CDS), followed by<br>FIREFLY LUCIFERASE CDS        |
| pAtCML5::LUC                                   | pBIN19-ANX    | Promoter region and 5'UTR of At2g43290<br>(1123 NTs upstream of CDS), followed by<br>FIREFLY LUCIFERASE CDS        |
| GST-CML5 <sub>21-215</sub>                     | pGEX4T-3      | NTs 61-648 of At2g43290 CDS                                                                                        |
| GST-CML4 <sub>21-195</sub>                     | pGEX4T-3      | NTs 61-588 of At3g59440 CDS                                                                                        |
| <i>pAtCML4</i> ::CML5-YFP                      | pGREENII      | Promoter region and 5'UTR of At3g59440<br>(1822 NTs upstream of CDS), followed by<br>At2g43290 CDS                 |
| <i>pAtCML5</i> ::CML5-YFP                      | pGREENII      | Promoter region and 5'UTR of At2g43290<br>(1123 NTs upstream of CDS), followed by<br>At2g43290 CDS                 |
| siRNA-CML4 <sub>1-300</sub>                    | pOpOff2       | NTs 1-300 of At3g59440 CDS                                                                                         |

Table 1: Plasmids used in this work.AA – amino acid, CDS – coding sequence, NT – nucleotide, GST –glutathione S-transferase, \* - construct supplied by AG Vothknecht or donor mentioned

**Table 2: Primers used for cloning procedures.** The restriction sites utilised are denoted in every primer name.Fw - forward primer, Rv - reverse primer, CDS - coding sequence, NT - nucleotide

| Primer name        | Sequence (5'→3')    | Amplicon                                 |  |
|--------------------|---------------------|------------------------------------------|--|
| Fw_CML4_XhoI       | AAGCTCGAGATGGTGAGA  | At3g59440 CDS                            |  |
|                    |                     |                                          |  |
| Rv_CML4_NcoI       |                     | At3g59440 CDS                            |  |
|                    |                     |                                          |  |
| EW VED CMI 4 Neel  | GACITIAGCAAIAGAICAG | VEP CDS                                  |  |
| FW_IFF_CMIL4_INCOI |                     |                                          |  |
|                    | A                   |                                          |  |
| Rv_YFP_SpeI        | CCCCCCCCCCCTCTGTAC  | YFP CDS                                  |  |
| Eur CMI SanaaDramC |                     | 1123 NTs unstream of At2g43290           |  |
| FW_CWILSSpectronic | TTTCAGTTATTTCTC     | CDS to the 3' end of the CDS             |  |
|                    |                     |                                          |  |
| Rv_CML5_PromCDS5   | AAGCTCGAGAACTGTTGA  | 1123 N Is upstream of At2g43290          |  |
| UTR_Xhol           | АТСАСААСТС          | CDS to the 3 end of the CDS              |  |
| Fw CML5 XhoI       | GCCAAGCTCGAGATGGTG  | At3g43290 CDS                            |  |
|                    | AGAATATTCCTTCTC     |                                          |  |
| Rv CML5 NcoI       | TCGCCCTTGCTCACCATGG | At3g43290 CDS                            |  |
|                    | CATTACTGCTGCTAAAG   |                                          |  |
| Fw YFP CML5 Ncol   | CTTTAGCAGCAGTAATGCC | YFP CDS                                  |  |
|                    | ATGGTGAGCAAGGGCGA   |                                          |  |
| Rv YFP SpeI        | AATCCTCGGACTAGTCTAG | YFP CDS                                  |  |
| 1                  | CGCCCGCTCTTGTAC     |                                          |  |
| Fw_CML4_PromCDS5   | CTTGAATTCTTTTCTGTCT | 1822 NTs upstream of At3g59440           |  |
| UTR_EcoRI          | GAATCTCTG           | CDS to the 3 <sup>°</sup> end of the CDS |  |
| Rv_CML4_PromCDS5   | AAGCTCGAGAACTCTTGG  | 1822 NTs upstream of At3g59440           |  |
| UTR _XhoI          | CTTTG               | CDS to the 3' end of the CDS             |  |
| FwCML5_Promspec_   | GGCGGTACCACATTTTTTC | 1123 NTs upstream of At2g43290           |  |
| KpnI               | AGTTATTTTGTG        | CDS to the 5' end of the CDS             |  |
| Rv CML5 Prom5UTR   | AAGGGGCCCAACTGTTGA  | 1123 NTs upstream of At2g43290           |  |
|                    | ATCACAACTC          | CDS to the 5' end of the CDS             |  |
| Fw_CML4_Prom_Kpn   | GAAGGTACCTTTTCTGTCT | 1822 NTs upstream of At3g59440           |  |
| Ι                  | GAATCTCTGAGTTTAGG   | CDS to the 5' end of the CDS             |  |
| Rv CML4 Prom5UTR   | AAGGGGCCCAACTCTTGG  | 1822 NTs upstream of At3g59440           |  |
| ApaI               | CTTTGTTGAGAAC       | CDS to the 5' end of the CDS             |  |
|                    | TCCGGGCCCATGGTGAGC  | mCharry CDS                              |  |
| mcnerry_Apa1_IW    | AAGGGCG             |                                          |  |
| mChanny SVI Matt   | CGTTAGCGGCCGCTTACAA | mCherry CDS with SKL coding              |  |
| menerry_SKL_Noti_r | TTTTGACTTGTACAGCTCG | NTs                                      |  |
| v                  | TC                  | 1110                                     |  |

| At3g61760_cDNA_fw                       | ATGGAGAGTTTGATTGCG<br>CTTGTGAAC       | At3g61760 CDS                                                               |
|-----------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|
| At3g61760_cDNA_rv                       | CTTGGACCAAGCAACTGC<br>TTCAATATC       | At3g61760 CDS                                                               |
| At3g61760_Apa_fw                        | TTCGGGCCCATGGAGAGT<br>TTGATTGCGCTTG   | At3g61760 CDS                                                               |
| At3g61760_Not_rv                        | AACGCGGCCGCACTTGGA<br>CCAAGCAACTG     | At3g61760 CDS                                                               |
| At4g11850_cDNA_fw                       | ATGGCGTATCATCCGGCTT<br>ATACTGAG       | At4g11850 CDS                                                               |
| At4g11850_cDNA_rv                       | TATGGTGAGGTTTTCTTGT<br>AGTGCAAGG      | At4g11850 CDS                                                               |
| At4g11850_Apa_fw                        | TTCGGGCCCATGGCGTATC<br>ATCCGGCTTATAC  | At4g11850 CDS                                                               |
| At4g11850_Not_rv                        | AGGGCGGCCGCATATGGT<br>GAGGTTTTCTTGTAG | At4g11850 CDS                                                               |
| 5g55050_cDNA_fw                         | ATGCCGACGAACAACACT<br>CCG             | At5g55050 CDS                                                               |
| 5g55050_cDNA_rv                         | TCATGTAGAGACCAACTG<br>AGTAAGAG        | At5g55050 CDS                                                               |
| 5g55050_Apa_fw                          | TTGGGGGCCCATGCCGACG<br>AACAACACTC     | At5g55050 CDS                                                               |
| 5g55050_Not_rv                          | CAAGCGGCCGCCTGTAGA<br>GACCAACTG       | At5g55050 CDS                                                               |
| Fw_PreCis_BamHI                         | CCTGGATCCTTAGAAGTGT<br>TATTTCAGGGCC   | BamHI site, and recognition site<br>for PreScission protease                |
| Fw_CML5 <sub>61-648</sub> _PreCis       | TGTTATTTCAGGGCCCGAA<br>GAAGCTACGAACTC | At2g43290 CDS NTs 61-588 with<br>N-terminal PreScission<br>recognition site |
| Rv_CML5stop_NotI                        | AGGGCGGCCGCTCAATTA<br>CTGCTGC         | At2g43290 CDS                                                               |
| Fw_CML4ab <sub>61-588</sub> _Pre<br>Cis | TGTTATTTCAGGGCCCGAA<br>GAAGCTTAGAG    | At3g59440 CDS NTs 61-588 with<br>N-terminal PreScission<br>recognition site |
| Rv_CML4stop_NotI                        | AGGGCGGCCGCTCATGAT<br>CTATTGC         | At3g59440 CDS                                                               |
| C4_TOPO_Fw                              | CACCATGGTGAGAGTCTT<br>TCTTC           | NTs 1-300 of At3g59440 CDS                                                  |
| C4_TOPO_Rw                              | GCATCCATCTTCTGGATCA<br>TCTG           | NTs 1-300 of At3g59440 CDS                                                  |

#### 2.1.4 Blotting membranes, protein and DNA ladders, chromatography resins

The protein ladders used for SDS-PAGE analysis were the PageRuler<sup>TM</sup> Plus Prestained Protein Ladder (Thermo Fisher Scientific, Waltham, MA, USA) and the Peqlab Marker Gold I (Peqlab, Wilmington, DE, USA). The DNA ladder applied in agarose gel nucleic acid analysis was the 1 kb plus GeneRuler<sup>TM</sup> DNA Ladder (Thermo Fisher Scientific, Waltham, MA, USA). For western blot analysis, proteins were transferred onto nitrocellulose membranes Portran BA 83, 0.2  $\mu$ m (Schleicher und Schüll, Dassel, Germany); Whatman paper was supplied by GE Healthcare (GE Healthcare Europe GmbH, Freiburg, Germany). Isolation of glutathione S-transferase (GST)-tagged proteins was performed on glutathione sepharose 4B resin (GE Healthcare Europe GmbH, Freiburg, Germany). Tag-independent immobilisation of proteins was performed using CNBr-activated sepharose 4B (GE Healthcare Europe GmbH, Freiburg, Germany).

#### 2.1.5 Antisera

Detection of YFP-tagged proteins and mCherry-tagged proteins was performed with the rat monoclonal primary antibodies  $\alpha$ -GFP 3H9 and  $\alpha$ -RFP 5F8 (ChromoTek, Martinsried, Germany). Horse radish peroxidase-coupled AffiniPure Goat  $\alpha$ -rat IgG-IgM (Jackson ImmunoResearch, PA, USA) was used as secondary antibody. Antibodies against AtCML4 (clones 28C11 and 15A3-131) as well as secondary sub-class-specific mouse  $\alpha$ -rat and rat  $\alpha$ -mouse antibodies were supplied by the Monoclonal Antibody core facility (HelmholtzZentrum Munich, Neuherberg, Germany).

#### 2.2 Methods

#### 2.2.1 Molecular biological and cell biological methods

#### 2.2.1.1 General methods

Cultivation of bacteria, DNA extraction via alkaline lysis, concentration determination of isolated DNA and standard other molecular biological methods were performed according to Sambrook and Russel (Sambrook *et al.* 2006). Chemical competence of *E. coli* cells was established as published (Hanahan 1983). *E. coli* cells were transformed with plasmids via heat-shock method as published (Pope *et al.* 1996). To prepare and transform

electro-competent *A. rhizogenes* cells, guidelines presented in the "Micropulser<sup>™</sup> Electroporation Apparatus Operation Instructions and Application Guide" by BIO-RAD (Bio-Rad Laboratories, Inc., Hercules, CA, USA) were followed.

#### 2.2.1.2 Cultivation of A. thaliana plants, seed sterilisation, stress assays

*A. thaliana* plants were either cultivated on soil or under sterile conditions on  $\frac{1}{2}$  MS (Murashige & Skoog) medium solidified by addition of 1 % plant agar (DUCHEFA BIOCHEMIE B.V., RV Haarlem, The Netherlands). Cultivation conditions were as follows: 100  $\mu$ M s<sup>-1</sup> m<sup>-2</sup> photons (unless indicated otherwise) light intensity, 16 h light / 8 h dark period (unless indicated otherwise), light period temperature: 22°C, dark period temperature: 18°C.

*A. thaliana* seeds were sterilised prior to cultivation under sterile conditions. For that, seeds were submerged for 10 min in 400  $\mu$ l of sterilisation solution (1:1 ratio ddH<sub>2</sub>O and DanKlorix drain cleaning agent), followed by five washing steps, during which the seeds were rinsed with 700  $\mu$ l of sterile ddH<sub>2</sub>O to remove sterilisation solution remnants.

After the seeds were placed on either soil or sterile ½ MS medium, dormancy was overcome by cultivation at 4°C in the dark for 2 d (stratification), prior to cultivation under the conditions mentioned above. Salt stress and osmotic stress conditions were simulated under sterile conditions by addition of either 100 mM NaCl or 200 mM mannitol to the cultivation medium. Root growth analysis was carried out by cultivation of plants under sterile conditions in a vertical fashion. Growth of etiolated seedlings was achieved by cultivating the seeds under standard growth conditions for 6 h after stratification to induce germination, and subsequent cultivation for 5 d under the same conditions under exclusion of light.

After photo documentation of the cultivation plates, root or hypocotyl lengths were measured using ImageJ. The data were analysed in box plots and subjected to statistical analysis of potential differences applying Student's *t*-test.

To induce small interfering RNA (siRNA) expression in plants stably transformed with the pOpOff2 plasmid, the plants were cultivated under sterile conditions with 20  $\mu$ M Dexamethasone or a comparable amount of DMSO as solvent control added to the medium.

#### 2.2.1.3 Polymerase chain reaction

For amplification of DNA fragments from genomic or plasmid DNA either Taq polymerase (Genaxxon bioscience GmbH, Ulm, Germany) or Phusion polymerase (New England Biolabs GmbH, Frankfurt am Main, Germany) were applied according to manufacturer's instructions, using the assay compositions displayed in Table 3.

|                                | Taq polymerase | Phusion polymerase |
|--------------------------------|----------------|--------------------|
| DNA template<br>(5-50 ng/µl)   | 1.00 µl        | 1.00 µl            |
| Forward primer<br>(20 pmol/µl) | 0.25 µl        | 0.25 µl            |
| Reverse primer<br>(20 pmol/µl) | 0.25 µl        | 0.25 µl            |
| dNTPs<br>(20 mM each)          | 0.25 µl        | 0.25 µl            |
| MgCl <sub>2</sub> (25 mM)      | 1.25 μl        | -                  |
| Buffer (10 x)                  | 2.50 μl        | 5.00 µl            |
| Polymerase                     | 0.20 µl        | 0.20 µl            |
| ddH <sub>2</sub> 0             | 19.30 µl       | 18.75 µl           |
| Total                          | 25.00 μl       | 25.00 µl           |

Table 3: Composition of the standard PCR mix for Taq and Phusion polymerase

PCR was carried out following the protocol in Table 4. Denaturation temperature was adjusted to 94°C for Taq polymerase or 98°C for phusion polymerase. Hybridisation temperature was determined empirically for each primer pair (\*). Elongation time was estimated depending on expected PCR product size and polymerase applied (#).

**Table 4: Standard PCR protocol.** \* - hybridisation temperature depended on the primer pair applied in the reaction. # - elongation temperature was chosen according to expected product size and polymerase applied in the reaction.

| Initial denaturation | 94 °C / 98 °C | 180 s    |           |
|----------------------|---------------|----------|-----------|
| Denaturation         | 94 °C / 98 °C | 30 s     |           |
| Hybridisation        | *             | 30 s     | 35 cycles |
| Elongation           | 72 °C         | #        |           |
| Final elongation     | 72 °C         | 600 s    |           |
| Pause                | 4 °C          | $\infty$ |           |

PCR products were analysed on agarose gels (see 2.2.1.4) and purified using the PCR and gel extraction kit Nucleospin II by Macherey-Nagel (Dühren, Germany) according to manufacturer's instructions.

#### 2.2.1.4 Agarose gel electrophoresis

DNA samples were analysed by separation on 1 % NEEO agarose ultra quality (Roth GmbH, Karlsruhe, Germany). Nucleic acids were labelled via in-gel staining with DNA stain G (SERVA Electrophoresis GmbH, Heidelberg, Germany) according to manufacturer's instructions and separation of DNA fragments was carried out at 150 V for 10-15 min. Documentation was performed on a Gerix<sup>®</sup> 1000 gel documentation system (biostep GmbH, Burkhardtsdorf, Germany).

#### 2.2.1.5 Cut-and-paste cloning of DNA fragments into vectors

In order to clone *A. thaliana* genes into plasmids of choice for downstream application, genes were amplified from genomic DNA (gDNA) using 5'overhang primers for addition of suitable restriction sites. If genes of interest were already present in a vector system, plasmid DNA was used as template for PCR. Subsequently, PCR amplicons were purified as described in 2.2.1.3. Vector DNA and purified PCR products were treated with the respective restriction enzymes by New England Biolabs GmbH (Frankfurt am Main, Germany) or Fermentas (St. Leon Roth, Germany) according to manufacturer's instructions using the restrictions sites indicated in Table 1 and Table 2. Restriction fragments were separated on agarose gels (see 2.2.1.4), purified (see 2.2.1.3) and ligation was carried out at 22°C for a minimum of 1 h with T4 DNA ligase (New England Biolabs GmbH, Frankfurt am Main, Germany) applying a molar vector:insert ratio of 1:4 in a 20 µl reaction assay, which was subsequently used for transformation of chemically competent *E. coli* cells via heat-shock (see 2.2.1.1).

#### 2.2.1.6 Generation of inducible knock-down lines via the pOpOff2 vector

For generation of stable transgenic *atcml4* knock-down lines, the coding sequence (CDS) of At3g59440 was screened for sections that might serve as well-suited targets for siRNA-based post-transcriptional silencing, applying the Clontech RNA interference (RNAi) target

sequence selector tool (http://bioinfo.clontech.com/rnaidesigner/sirnaSequenceDesign.do, Takara Bio USA, Mountain View, CA, USA, as accessed on 21 August 2017). Nucleotides 1-300 of the *AtCML4* CDS were chosen as target region and amplified via site-specific PCR (see 2.2.1.3) for further TOPO<sup>®</sup> cloning into vector pENTR (Thermo Fisher Scientific, Waltham, MA, USA). The resulting clones were checked via sequencing by the in-house sequencing service (Sequencing unit LMU Biocenter, Munich, Germany) and one of them was applied in an LR-cloning (Thermo Fisher Scientific, Waltham, MA, USA) reaction according to manufacturer's instructions to transfer the insert into the binary vector pOpOff2 (Wielopolska *et al.* 2005) for stable transformation of *A. thaliana* plants.

#### 2.2.1.7 Isolation of gDNA from A. thaliana

In order to isolate gDNA from *A. thaliana* for amplification of genomic sequences, a single leaf was submerged in 410  $\mu$ l of extraction buffer (200 mM Tris-HCl, pH 7.5, 250 mM NaCl, 0.5 % SDS (w/v)) and lysed in the TissueLyser II (Qiagen, produced by Retsch, Hilden, Germany) for 45 s at 30 Hz. Separation of DNA and cell debris was achieved by centrifugation at 17,000 x g and room temperature for 10 min. 300  $\mu$ l of the supernatant were mixed with 300  $\mu$ l of isopropanol to precipitate the DNA. Separation of DNA and solvent was achieved by centrifugation at 17,000 x g and room temperature for 10 min. The supernatant was discarded. After air-drying the DNA pellet, it was dissolved in 40  $\mu$ l of ddH<sub>2</sub>O.

#### 2.2.1.8 Stable transformation and downstream selection of A. thaliana plants

Stable transformation of *A. thaliana* plants by floral dip method was performed according to a protocol published by Zhang and colleagues (Zhang *et al.* 2006). Plants stably transformed with the pOpOff2 were selected as described by Harrison and colleagues (Harrison *et al.* 2006). Plants stably transformed with pBIN19-NA-YFP plasmid derivatives were cultivated on soil and sprayed with a 0.25 % BASTA solution when they entered the 4-leaf developmental stage and a second time seven days later.

#### 2.2.1.9 Transient transformation of *N. benthamiana* leaf cells

Transient transformation of *N. benthamiana* leaf cells was performed with the *A. rhizogenes* strain LBA1334. For this, bacterial cells transformed with the respective constructs for fusion protein expression, were cultivated overnight at 28°C with 150 rpm agitation. The bacteria were pelleted via centrifugation at 4,000 x g and room temperature for 10 min. The resulting pellet was resuspended in infiltration solution (10 mM MES-KOH pH 5.6, 10 mM MgCl<sub>2</sub>, 100  $\mu$ M acetosyringon) and adjusted to an optical density at 600 nm (OD<sub>600</sub>) of 0.5 in case of single transformation with one construct or OD<sub>600</sub> of 1, if the plants were to be co-infiltrated with two different constructs from two different transgenic bacterial cell lines. Subsequently, the cell suspensions were incubated at room temperature with 100 rpm agitation in the dark for at least 2 h to allow for expression of tumour inducing genes in the Agrobacterium cells. The suspensions were applied to the abaxial side of the leaves of 3–4 week-old *N. benthamiana* plants, using an Injekt<sup>®</sup>-F syringe (B. Braun Melsungen AG, Melsungen, Germany) without needle. The plants were sprayed with water and left in the dark at room temperature overnight, before they were cultivated for 2-3 d at 28°C.

#### 2.2.1.10 Isolation of *N. benthamiana* leaf mesophyll cell protoplasts

All required buffers and their respective composition are listed in Table 5 below. 48 h after transient transformation of *N. benthamiana* leaf cells (see 2.2.1.9), leaf material was checked for expression of fluorescent fusion proteins using a fluorescence microscope DM1000 (Leica Microsystems, Wetzlar, Germany). Expressing leaves were harvested for isolation of mesophyll cell protoplasts and sliced into ribbons of approx. 5 mm width. 10 ml of F-PIN buffer were supplemented with 1 % (w/v) Cellulase R10 and 0.3 % (w/v) Macerozyme R10 and incubated at 55°C with agitation for 10 min to activate the enzymes. Ten of the previously prepared leaf slices were submerged in 10 ml of room temperature F-PIN buffer and infiltrated with the solution via repeated application of vacuum. The suspended leaf pieces were incubated on a horizontal shaker for 90 min at 80 rpm in the dark, followed by 1 min of incubation at 160 rpm to release the protoplasts from the surrounding tissue debris. The cells were filtered through a 100  $\mu$ m nylon mesh and transferred to a centrifugation vessel, in which the suspension was overlaid by 2 ml of F-PCN buffer. Intact protoplasts were separated from cellular debris by centrifugation for 10 min at room temperature and 70 x g in a SIGMA 3K30 centrifuge with a 11391 swing-out rotor (SciQuip Ltd., Newtown, Wem, Shropshire,

Ireland). Intact protoplasts accumulated at the interface between the two buffer phases and were transferred into 10 ml of washing buffer, prior to centrifugation for 10 min at room temperature and 50 x g to pellet the cells. The supernatant was discarded and the cell pellet was gently resuspended in an appropriate amount of F-PCN buffer to yield a cell density suitable for subsequent microscopic analysis (see 2.2.1.12).

**Table 5: Composition of solutions required for protoplast isolation from** *N. benthamiana* **leaf tissue.** Micro MS (Murashige & Skoog micro nutrients) composition has been published (Murashige *et al.* 1962). All solutions were filtrated through a 0.45 μm filter for sterility.

|                    | KNO3                                   | 1012 mg       |                        |
|--------------------|----------------------------------------|---------------|------------------------|
| Maana MS           | CaCl2 x 2 H2O                          | 440 mg        |                        |
| madified (10x)     | MgSO4 x 7 H2O                          | 370 mg        |                        |
| mounned (10x)      | KH2PO4                                 | 170 mg        |                        |
|                    | ddH2O                                  | ad 100 ml     |                        |
|                    | Myo-inositol                           | 10 g          |                        |
|                    | Thiamine-HCl                           | 50 mg         |                        |
|                    | Ca-panthotenate                        | 100 mg        |                        |
| PC vitamins (500x) | Nicotinic acid                         | 100 mg        |                        |
|                    | Pyridoxine-HCl                         | 100 mg        |                        |
|                    | Biotin                                 | 1 mg          |                        |
|                    | ddH <sub>2</sub> O                     | ad 100 ml     |                        |
|                    | Macro MS-modified (10x)                | 100 ml        |                        |
|                    | Micro MS (1000x)                       | 1 ml          | A divisted to 550 mOsm |
| EDIN               | PC Vitamins (500x)                     | 2 ml          | Adjusted to 550 mOsm   |
| Γ-ΓΙΝ              | MES                                    | 1952 mg       | with sucrose           |
|                    | Sucrose                                | Approx. 120 g | рп э.ө                 |
|                    | ddH <sub>2</sub> O                     | ad 1000 ml    |                        |
|                    | Macro MS-modified (10x)                | 100 ml        |                        |
|                    | Micro MS (1000x)                       | 1 ml          | Adjusted to 550 mOsm   |
| E DCN              | PC Vitamins (500x)                     | 2 ml          | with glucoso           |
| <b>F-FCIN</b>      | MES                                    | 1952 mg       | nH 5 8                 |
|                    | Glucose                                | Approx. 80 g  | p11 5.8                |
|                    | ddH <sub>2</sub> O                     | ad 1000 ml    |                        |
|                    | MgCl <sub>2</sub> x 6 H <sub>2</sub> O | 3.05 g        | Adjusted to 550 mOsm   |
| Wash huffar        | MES                                    | 1 g           | with mannital          |
| vvasii DullCl      | Mannitol (0.5 M)                       | Approx. 90 g  | nH 5.8                 |
|                    | ddH <sub>2</sub> O                     | ad 1000 ml    | p11 5.0                |

#### 2.2.1.11 Isolation and transformation of A. thaliana leaf mesophyll cell protoplasts

The composition of all buffers required for isolation and transformation of protoplasts from A. thaliana are listed in Table 6. Solutions and materials used were sterilised by filtration and the whole procedure was carried out under sterile conditions. Centrifugation steps were carried out in a SIGMA 3K30 centrifuge with an 11391 swing-out rotor (SciQuip Ltd., Newtown, Wem, Shropshire, Ireland). 14 day-old A. thaliana plants sterilely cultivated on  $\frac{1}{2}$  MS medium solidified with 0.5°% plant agar were used for protoplast isolation. The cotyledons of approx. 100 plants were suspended in 9 ml of MMC buffer, cut with a sterile razor blade and incubated in the dark at room temperature for 1 h. 500 µl of macerozyme solution and 500 µl of cellulose solution were added and the suspension was incubated overnight in the dark at 21°C. To separate the protoplasts from cell debris, the solution was gently stirred and filtered through a 100 µm nylon mesh. Concentration of the isolated cells was achieved via centrifugation for 10 min at 50 x g and room temperature. The supernatant was discarded and the cells were resuspended in 8 ml of MSC solution, which was subsequently overlaid by 2 ml of MMM solution. Separation of intact protoplasts from damaged cells was achieved by centrifugation at 70 x g and room temperature for 10 min. Intact protoplasts, which accumulated at the interface between the two buffer phases, were transferred to a new vessel and resuspended in 9 ml of MMM solution for washing. Separation of the cells from surrounding medium was accomplished by centrifugation at 50 x g and room temperature for 10 min. The supernatant was discarded, the cells were resuspended in 100 µl of MMM solution and transferred into a small Petri dish. 5 µl of a  $4 \mu g/\mu l$  solution of the respective plasmid DNA required for transformation were added. Subsequently, 125 µl of freshly prepared PEG4000 solution were added and the mixture was incubated for 7.5 min at room temperature. Then, 125 µl of MMM solution were added, followed by 2 min of incubation at room temperature. After addition of 2.5 µl of PCA medium the Petri dish was sealed with parafilm for overnight incubation of the protoplast suspension in the dark at room temperature. The following day, microscopic analysis was performed (see 2.2.1.12).

Table 6: Buffers and solutions required for isolation and transformation of protoplasts from *A. thaliana* seedlings. All solutions were filtrated through a 0.45  $\mu$ m filter for sterility. NAA – 1-Naphthaleneacetic acid, MES – 2-(N-Morpholino)ethanesulfonic acid, PEG – polyethylene glycol. \* - Gamborg B5 medium (DUCHEFA BIOCHEMIE B.V., RV Haarlem, The Netherlands)

|                     | MES                        | 10 mM    | Adjusted to 550 mOsm with   |
|---------------------|----------------------------|----------|-----------------------------|
| MMC                 | CaCl <sub>2</sub>          | 20 mM    | mannitol                    |
|                     | Mannitol                   | 0.5 M    | pH 5.8                      |
|                     | MES                        | 10 mM    | Adjusted to 550 mOsm with   |
| MSC                 | MgCl <sub>2</sub>          | 20 mM    | sucrose                     |
|                     | Sucrose                    | 120 g/l  | pH 5.8                      |
|                     | MES                        | 10 mM    | Adjusted to 550 mOsm with   |
| MMM                 | MgCl <sub>2</sub>          | 10 mM    | mannitol                    |
|                     | MgSO <sub>4</sub>          | 10 mM    | nH 5.8                      |
|                     | Mannitol                   | 0.5 M    | p11 5.8                     |
|                     | Gamborg B5 medium *        | 1x       |                             |
|                     | MgSO4                      | 746 mg/l |                             |
|                     | CaCl                       | 450 mg/l | Adjusted to 550 mOsm with   |
| PCA medium          | Glutamin                   | 50 mg/l  | glucose                     |
|                     | Casein hydrolysate         | 100 mg/l | pH 5.8                      |
|                     | NAA                        | 0.5 mg/l |                             |
|                     | Glucose                    | 70 g/l   |                             |
|                     | PEG4000                    | 2 g      |                             |
|                     | Mannitol (1M)              | 1 ml     |                             |
| PEG4000 Solution    | $Ca(NO_3)_2$ (1M)          | 500 µl   |                             |
|                     | Sterile ddH <sub>2</sub> O | 1.75 ml  |                             |
|                     |                            |          | Supernatant separated from  |
|                     | Macerozyme                 | 1 g      | insoluble fraction by       |
| Macerozyme solution | MMM solution               | ad 10 ml | centrifugation for 1 min at |
|                     |                            |          | 10,000 x g                  |
|                     |                            |          | Supernatant separated from  |
|                     | Cellulase                  | 1 g      | insoluble fraction by       |
| Cellulase solution  | MMM solution               | ad 10 ml | centrifugation for 1 min at |
|                     |                            |          | 10,000 x g                  |

## 2.2.1.12 Microscopic analysis of *A. thaliana* and *N. benthamiana* leaf mesophyll protoplasts

Analysis of isolated protoplasts was carried out using a Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems, Wetzlar, Germany). For detection of YFP, samples were excited at 488 nm using an argon laser and emission was detected between 500 nm and

550 nm with a Leica HyD<sup>TM</sup> detector (Leica Microsystems, Wetzlar, Germany). Excitation of fusion constructs containing mCherry was performed at 561 nm using a diode-pumped solid-state continuous wave laser and the detection range of the HyD<sup>TM</sup> detector was set to 595-620 nm. Chlorophyll fluorescence was captured via photomultiplier tubes (GaAsP detector) set to detect signals in the spectral range between 680 nm and 750 nm.

### 2.2.1.13 In vivo [Ca<sup>2+</sup>]<sub>f</sub> measurements in A. thaliana seedlings

A. thaliana seedlings stably expressing either AtCML5<sub>1-28</sub>-YFP-AEQ, AtOEP7-YFP-AEQ or AtCPK17(G2A)-YFP-AEQ have been cultivated for 14 d as described in 2.2.1.2. Plants of each genotype were pooled in one well of a 6-well cultivation plate and immersed in ddH<sub>2</sub>O containing 2.5 µM coelenterazine for reconstitution of holo-aequorin overnight in the dark at room temperature. Afterwards, the plants were transferred to a Berthold 96-well plate for analysis in a TriStar<sup>2</sup> LB 942 Multimode reader (BERTHOLD TECHNOLOGIES GmbH & Co. KG, Bad Wildbad, Germany) loading each well with one plant and adding 100 µl of ddH<sub>2</sub>O. Measurement took place in a well-by-well consecutive fashion. The measurement was divided into two phases. During the first 1800 s the luminescence reporting the *in vivo*  $[Ca^{2+}]_{f}$ was detected. After induction of the discharge of the aequorin pool in the plant achieved by injection of 100 µl of a 3 µM CaCl<sub>2</sub> / 20 % ethanol solution, luminescence was detected for another 1800 s to allow for subsequent determination of total aequorin amount that had been available for reporting  $[Ca^{2+}]_f$  changes in each plant. The luminescence was determined in photon counts per second at a 1 s interval. The determined values at each time point were used to calculate *in vivo*  $[Ca^{2+}]_f$  at a given time by a correlation equation determined by Allen et al. (1977) and specifically adjusted for the aequorin variant present in the constructs used here by Brini et al. (1995).

#### 2.2.1.14 Luciferase-based promoter activity reporter assay in A. thaliana plants

The whole assay was conducted under reduced light-conditions. *A. thaliana* plants stably expressing FIREFLY LUCIFERASE under the control of either *AtCML4* or *AtCML5* promoters were chosen for analysis after cultivation of 5, 14 or 28 d of cultivation under sterile conditions. *In vivo* supply of the enzyme with its substrate (D)-Luciferin was achieved by submerging the entire plants in an aequous solution of 20  $\mu$ M (D)-luciferin (Sigma-

Aldrich, St. Louis, MO, USA) and applying a light vacuum for up to 3 min. After arranging the plants on a moisturised glass plate, photo documentation of LUCIFERASE activity was performed using an ImageQuant LAS4000 system (GE Healthcare, Freiburg, Germany).

#### 2.2.2 Biochemical methods

#### 2.2.2.1 SDS-PAGE analysis of protein samples

For analysis on SDS-PAGE, protein samples were mixed with the appropriate amount of 2x or 4x Laemmli buffer (Laemmli 1970) depending on overall sample volume and incubated at 96°C for 3 min for protein denaturation. Polyacrylamide gels were prepared with Tris-glycine buffer according to the expected size of the proteins of interest. For size estimation, either 7.5  $\mu$ l of Peqlab Marker Gold I (Peqlab, Wilmington, DE, USA) or 5  $\mu$ l of PageRuler<sup>TM</sup> protein ladder plus prestained marker (Thermo Fisher Scientific, Waltham, MA, USA) were used. Samples were separated at 20 A for 1 h and detection of proteins was achieved either via Coomassie or silver staining of the gels (see 2.2.2.2).

#### 2.2.2.2 Coomassie and silver staining of SDS-PAGE gels

After gel electrophoresis, SDS-PAGE gels were incubated for 20 min with agitation in a Coomassie staining solution (20 % isopropanol, 20 % acetic acid, 0.3 % Coomassie R, 0.06 % Coomassie G). This was followed by incubation in a destaining solution (10 % isopropanol, 10 % acetic acid) for background staining reduction, until an optimal signal-to-noise ratio was achieved.

Silver staining was carried out following a published protocol (Blum et al. 1987).

#### 2.2.2.3 Western blot protein analysis

Protein samples were separated via SDS-PAGE (see 2.2.2.1) and subsequently transferred onto 7.5 cm x 8.5 cm nitrocellulose membranes (Schleicher und Schüll, Dassel, Germany) at 64 A for 45 min according to an established protocol (Kyhse-Andersen 1984). Then, the transfer membranes were incubated in blocking buffer (1 x TBS, 0.05 % Tween  $20^{\text{®}}$ , 3 % milk powder) for 30 min with agitation and room temperature to saturate the binding capacity of the membrane. This was followed by incubation with the respective antibodies (see Table 7)

diluted in TBS-T (1 x TBS, 0.05 % Tween 20<sup>®</sup>) with agitation at 4°C overnight. Afterwards, membranes were washed three times for 10 min with blocking buffer to remove excess antibody. Then, the corresponding secondary antibody diluted in TBS-T was applied for 1 h at room temperature with agitation at the dilutions indicated in Table 7. Afterwards, membranes were washed twice for 10 min with blocking buffer and once for 10 min with TBS-T without milk powder to remove excess antibody. Detection of the secondary antibody was achieved by overlaying the transfer membranes with Western Lightning *Plus* ECL solutions (PerkinElmer Inc., Waltham, MA, USA), previously mixed at a 1:1 ratio according to manufacturer's instructions. After 1 min of incubation in the dark, the result of the western blot was documented using an ImageQuant LAS4000 system (GE Healthcare Europe GmbH, Freiburg, Germany) in precision mode.

| Antibody                  | <b>Dilution factor</b> |
|---------------------------|------------------------|
| α-GFP (rat)               | 1,000                  |
| α-RFP (rat)               | 1,000                  |
| α-rat (goat)              | 10,000                 |
| 28C11 α-AtCML4 (rat)      | 1,000                  |
| 15A3-131 α-AtCML4 (mouse) | 1,000                  |
| α-rat (mouse)             | 10,000                 |
| α-mouse (rat)             | 10,000                 |

#### 2.2.2.4 Purification of proteins on glutathione sepharose 4B resin

GST-tagged proteins were expressed in *E. coli* cells and purified directly from the cell lysate. If not indicated otherwise, all steps were carried out at 4°C. Approximately 500 ml of cell culture were used to harvest cells via centrifugation for 10 min at 6,000 x g. The supernatant was discarded and the cells were resuspended in binding buffer (140 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>, 2 mM DTT, adjusted to pH 7.3). Cell lysis was achieved by physical rupture in a French press device (unknown manufacturer), followed by three sonication pulses of 10 s duration at 50 % amplitude to fragment genomic DNA reducing viscosity of the suspension. Soluble proteins were separated from aggregated and membrane proteins as well as cell debris by centrifugation at 20,000 x g for 30 min. The pellet was discarded, whereas

the supernatant containing the soluble protein fraction was further processed. 500 µl of glutathione sepharose 4B resin (GE Healthcare GmbH, Freiburg, Germany) were added onto a column and washed with five bed volumes of ddH<sub>2</sub>O to remove storage buffer ethanol, followed by rinsing with five bed volumes of binding buffer to equilibrate the resin. Subsequently, the resin was incubated with the bacterial lysate for 1 h with agitation in a 360° overhead rotator. Afterwards, the flow-through of the column was collected and the resin was washed with 200 bed volumes of binding buffer to remove unspecifically retained proteins. Elution was carried out by incubating the resin with one bed volume of elution buffer (50 mM Tris-HCl, 10 mM reduced glutathione, 10 mM DTT, adjusted to pH 8.0) at 25°C for 10 min. The flow-through was collected. This procedure was repeated five times. Samples of all steps of the purification process were analysed via SDS-PAGE (see 2.2.2.1) followed by Coomassie staining of the gels (see 2.2.2.2) to assess purification efficacy.

#### 2.2.2.5 Dialysis of proteins

In order to change the buffer composition of previously isolated proteins, a dialysis approach was chosen. For that, isolated proteins were transferred into regenerated cellulose Spectra/Por dialysis tubes (Spectrum Laboratories Inc., Los Angeles, CA, USA) with 20 kDa size exclusion limit. The tubes were then incubated overnight with agitation at 4°C in an external buffer solution. The volume ratio of sample buffer inside the tube to dialysis buffer surrounding the tube was of ratio 1:100 to guarantee optimum buffer exchange.

#### 2.2.2.6 Coupling of proteins to CNBr-activated sepharose 4B

Proteins previously purified on glutathione sepharose (see 2.2.2.4) were dialysed (see 2.2.2.5) to substitute the coupling buffer (0.1 M NaHCO<sub>3</sub>, 0.5 M NaCl, adjusted to pH 8.3) for GST elution buffer. The required amount of CNBr-activated sepharose B (GE Healthcare, Freiburg, Germany) was estimated according to manufacturer's instructions and determined by the amount of protein to be coupled, which was approximated by comparison to a protein standard on SDS-PAGE gels. Proteins were coupled to CNBr-activated sepharose according to manufacturer's instructions. The coupling result was analysed via SDS-PAGE (see 2.2.2.1) followed by Coomassie staining (see 2.2.2.2).

#### 2.2.2.7 Isolation of microsomal fractions from *N. benthamiana* leaf material

Tobacco leaves transiently expressing various YFP or mCherry fusion proteins were harvested for isolation of microsomal fractions and chloroplasts. To confirm expression of the fusion proteins in leaf mesophyll cells, leaves were analysed by fluorescence microscopy 48 h after Agrobacterium infiltration. The whole subsequent isolation procedure was performed at 4°C. To yield microsomal fractions, leaves were homogenised in microsome homogenisation buffer (50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 0.5 M sucrose) and filtered through a 30  $\mu$ m nylon mesh. Enrichment of the microsome-containing fraction was achieved by differential centrifugation for 10 min at 4,200 x g to pellet chloroplasts (pellet was discarded), followed by 10 min of centrifugation at 10,000 x g to pellet mitochondria and nuclei (pellet was discarded). Finally, cytoplasm and microsomal fraction were separated by 1 h of centrifugation at 100,000 x g. The supernatant was discarded and the pellet was resuspended in thermolysin buffer (10 mM Tris-HCl, pH 7.5, 0.25 M sucrose, 2 mM CaCl<sub>2</sub>) for performance of the protease protection assay.

#### 2.2.2.8 Thermolysin treatment of isolated microsomal fractions

To 50 µl of isolated microsomal fractions (see 2.2.2.7) resuspended in thermolysin buffer (10 mM Tris-HCl, pH 7.5, 0.25 M sucrose, 2 mM CaCl<sub>2</sub>), thermolysin was added to a final concentration of 2 µg/µl. The same volume of buffer was added to a negative control sample. After 20 min of incubation at 4°C both samples were mixed with EDTA solution to a final concentration of 5 mM EDTA to stop the reaction. The samples were subjected to centrifugation for 10 min at 4°C and 289,000 x g to separate membrane fraction from soluble protein fraction. 17 µl of 4x Laemmli buffer (Laemmli 1970) were added to supernatant and resuspended membrane fraction alike and the samples were incubated for 3 min at 96°C. The samples were separated on SDS-PAGE (see 2.2.2.1) followed by western blot protein analysis with  $\alpha$ -GFP or  $\alpha$ -RFP antibody (see 2.2.2.3).

## 2.2.2.9 Pull-down of *A. thaliana* proteins from combined microsome/cytoplasm extracts on CNBr-activated sepharose coated with recombinant protein

All steps of the procedure were carried out at 4°C, if not indicated otherwise. Microsome and cytoplasmic fractions from *A. thaliana* leaf material were isolated as described in 2.2.2.7 with two alterations: The microsome homogenisation buffer had a different composition (50 mM

Tris-HCl, pH 7.5, 0.5 M sucrose) and the final centrifugation step to separate microsomal from cytoplasmic fraction was omitted. The extract was separated into two fractions of which one was adjusted to a final concentration of 1 mM CaCl<sub>2</sub>, whereas the other one was adjusted to a final concentration 5 mM EDTA / 5 mM EGTA. The CNBr-sepharose samples, to which the previously purified recombinant proteins were coupled (see 2.2.2.4, 2.2.2.5, 2.2.2.6), were also separated into two fractions each. One fraction was equilibrated by addition of five bed volumes of calcium-containing extraction buffer (50 mM Tris-HCl, pH 7.5, 1 mM CaCl<sub>2</sub>, 0.5 M sucrose), whereas the other one was treated with an equal amount of EDTA/EGTA-containing extraction buffer (50 mM Tris-HCl, pH 7.5, 5 mM EDTA, 5 mM EGTA, 0.5 M sucrose). The resins were incubated with the respective calcium- or EDTA/EGTA-containing plant extract fraction for 1 h on a 360° overhead rotator. The supernatant was collected via gravitational flow and the resins were washed with 200 bed volumes of the according calcium- or EDTA/EGTA-containing extraction buffers to remove unspecifically retained proteins. Elution of the proteins was carried out twice for 10 min. Therefore, half a bed volume of the opposite buffer fraction (calcium-containing buffer for EDTA/EGTA-equilibrated resin and vice versa) was added to the respective resins. Samples of all steps of the pull-down were analysed on SDS-PAGE (see 2.2.2.1) followed by silver staining of the gel (see 2.2.2.2).

#### 2.2.3 **Bioinformatical methods**

Accession numbers for analysed protein sequences were obtained from the protein database of the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/protein, U.S. National Library of Medicine, Bethesda, MD, USA, as accessed on 21 August 2017), as well as Phytozome 12 (Joint Genome Institute, U.S. Deptartment of Energy, CA, USA, as accessed on 21 August 2017) and are listed in Appendix III. Generation of sequence alignments was performed using the online version of the MAFFT tool version 7 (http://mafft.cbrc.jp/alignment/server/index.html, as accessed on 21 August 2017) applying the L-INS-i algorithm (Katoh et al. 2005) and the Blosum62 substitution matrix (Henikoff et al. 1993). Similarity-based shading of residues in multiple sequence alignments (MSAs) was performed the Boxshade v3.21 using server (http://www.ch.embnet.org/software/BOX form.html, as accessed on 21 August 2017, Swiss Institute of Bioinformatics, Lausanne, Switzerland). MSA processing for removal of positions

including gaps prior to reconstruction of phylogenetic trees was performed via the Gap Strip/Squeeze tool v2.1.0 (https://www.hiv.lanl.gov/content/sequence/GAPSTREEZE/gap.html, as accessed on 21 August 2017, HIV Database, www.hiv.lanl.gov, Gap Strip/Squeeze) with 0 % gap tolerance. To reconstruct maximum-likelihood phylogeny trees, RaxML Blackbox (http://embnet.vitalit.ch/raxml-bb/, as accessed on 21 August 2017, (Stamatakis *et al.* 2008)) applying the Blosum62 substitution model (Henikoff *et al.* 1993) was used. Therefore, substitution rate heterogeneity across sites was mapped with a gamma distribution. For evaluation of branch support a non-parametric rapid bootstrap approach with 100 repetitions was applied.

Overall similarity between sequences was determined using the LALIGN tool (http://www.ch.embnet.org/software/LALIGN\_form.html, as accessed on 21 August 2017, (Huang *et al.* 1991)). Consensus sequence visualisation was done with the WebLogo server v. 2.8.2 (http://weblogo.berkeley.edu/, as accessed on 21 August 2017, (Schneider *et al.* 1990, Crooks *et al.* 2004)). Prediction of transmembrane domain potential in an amino acid sequence was performed using the Tmpred server (http://www.ch.embnet.org/software/TMPRED\_form.html, as accessed on 21 August 2017, Swiss Institute of Bioinformatics, Lausanne, Switzerland, (Hofmann *et al.* 1993)).

Search for promoter region sequences for AT2G43290 and AT3G59440 was conducted on databases Aramemnon 8.1 (http://aramemnon.botanik.uni-koeln.de/, as accessed 21 August 2017, Flügge Lab, University of Cologne) and The Arabidopsis Gene Regulatory Information Server, AGRIS (http://arabidopsis.med.ohio-state.edu/, as accessed on 21 August 2017, The Ohio State University).

In silico analysis of expression levels and promoter cis-elements of AT2G43290 and AT3G59440 was performed using the Transcriptome Variation Analysis Database (http://travadb.org, as accessed on 21 August 2017) (Klepikova et al. 2015, Klepikova et al. 2016. Kasianov al. **AtGenExpress** Visualization et 2017), the Tool (http://jsp.weigelworld.org/expviz/, 21 2017, as accessed on August Max-Planck-Institute for developmental biology, Tübingen, Germany), the Arabidopsis cis-regulatory element database (http://arabidopsis.med.ohio-state.edu/AtcisDB/, as accessed on 21 August 2017, The Ohio State University, OH, USA) and the e-FP browser (http://bar.utoronto.ca/efp arabidopsis/cgi-bin/efpWeb.cgi, as accessed on 21 August 2017, University of Toronto, Toronto, Canada).
## 3. Results

## 3.1 In-depth characterisation of AtCML4 and AtCML5 sub-cellular localisation and topology

## 3.1.1 Sequence analysis of the N-terminus of AtCML4- and AtCML5-like proteins in Brassicaceae species

The *A. thaliana* genome encodes over 50 CML proteins (McCormack *et al.* 2003) and three CAM isoforms in six different genes. Whereas CAMs are highly conserved in their sequence and consist of four EF-hand motifs for Ca<sup>2+</sup> binding, CMLs are rather diverse. Most of these proteins contain four EF-hands similar to classical CAMs, but there is a group of CMLs in which the EF-hand number varies from one, e.g. AtCML1 to six, e.g. AtCML12. In addition to that, many CMLs have a much longer amino acid sequence compared to canonical CAMs, and often comprise N-terminal sequences potentially serving as sub-cellular targeting signals. AtCML4 and AtCML5 are characterised by the presence of a CAM-domain consisting of four EF-hands. Further, they possess an N-terminal sequence pattern marking the beginning of the first of the four EF-hand motifs. This N-terminus is divided into an N-proximal region of very high conservation between AtCML4 and AtCML5 comprising amino acids 1-32, whereas the rest of the N-terminal stretch shows strong dissimilarity.

BLAST search analysis for proteins with similar sequence in the proteome of other Brassicaceae species, namely *Arabidopsis lyrata* (*A. lyrata*), *Brassica rapa* subsp. *pekinensis* (*B. Rapa*), *Brassica napus* (*B. Napus*), *Brassica oleracea* var. *oleracea* (*B. Oleracea*), *Capsella rubella* (*C. rubella*), *Eutrema salsugineum* (*E. salsugineum*), and *Raphanus sativus* (*R. Sativus*) revealed the presence of highly similar, potentially orthologous proteins for both AtCML4 and AtCML5. As shown in Figure 1 each of these proteins contains a similar N-terminal region with the same overall structure.



Figure 1: Identity-shaded multiple sequence alignment of the N-terminal region of AtCML4- and AtCML5-like proteins in Brassicaceae species. The N-terminal region of all sequences is divided into a conserved sequence stretch and a variable part. The highly conserved region between  $M_1$  and  $R_{24}$  ( $Q_{24}$ ) displays the common features indicative of a signal-anchor domain consisting of a hydrophobic transmembrane domain between residues  $M_1$  and  $V_{19}$ , followed by a positive net charge originating from  $K_{21}$ ,  $K_{22}$  and in most sequences  $R_{24}$  (red box, only exception is AraLyC5L with a  $Q_{24}$ ), relative to the flanking region on the N-terminal end of the transmembrane domain. Downstream of residue  $Y_{32}$  the N-proximal sequence stretch is significantly less conserved between the two groups of AtCML4-like proteins and AtCML5-like proteins. Black shading – identical residue present in at least 85 % of all sequences at the respective position. For species list see Appendix I.

Analysis of this N-terminal region with prediction tools recognising the propensity for transmembrane domain formation in an amino acid sequence, revealed a potential  $\alpha$ -helical domain between amino acid M<sub>1</sub> and V<sub>19</sub> that could serve as membrane anchor. This stretch is followed by two lysine residues and an arginine residue, K<sub>21</sub>, K<sub>22</sub> and R<sub>24</sub>. The only exception from that is the CML5-like from *A. lyrata* (AraLyC5L), in which an aspartate is found in position 24. This causes an electrostatic gradient of increasing positive charge along the transmembrane region from the N-terminal towards the C-terminal flanking region, which – among other criteria like hydrophobicity and hydrophobicity distribution within the transmembrane region – is considered to be a typical structural element of a signal-anchor domain in a type-III single-pass transmembrane protein (Harley *et al.* 1998). Following the so-called "positive-inside-rule", this structure is known to result in a topology, in which the C-terminal part of the protein is located in the cytoplasm, whereas the N-terminus protrudes into the lumen of a membrane-enclosed compartment or the extracellular space (Harley *et al.* 1998). Heijne 1994).

## 3.1.2 Analysis of AtCML4 and AtCML5 co-localisation in *N. benthamiana* protoplasts and endogenous promoter-driven expression in *A. thaliana* protoplasts

Previous analyses regarding the sub-cellular localisation of AtCML5-GFP constructs in *A. thaliana* protoplasts revealed that the protein is localised in circular structures that are part of the endomembrane system of the cells, indicating a membrane association. However, there was no experimental evidence, whether AtCML4 and AtCML5 co-localised, although this was an obvious assumption due to the high degree of sequence conservation within the N-terminal region, which had been proven to determine its sub-cellular localisation in previous studies (Flosdorff 2014).

In order to determine, whether AtCML4 and AtCML5 do indeed co-localise *in vivo*, protoplasts of *N. benthamiana* plants transiently co-expressing AtCML4-mCherry and AtCML5-YFP were analysed via confocal laser scanning microscopy (see Figure 2A). Fluorescence signals emanating from both proteins clearly originated from the same sub-cellular localisation indicating co-localisation of the analysed constructs, thereby underlining the speculative conclusions drawn from bioinformatic analysis (see 3.1.1). This was also analysed quantitatively (see 3.1.3).

The unusual shape of the fluorescence signals detected for both fusion constructs, displaying a circular geometry indicative of enlarged vesicles, gave rise to the question as to whether this might be an artefact of the 35S-promoter-driven expression of the constructs. To exclude this as potential cause, genomic regions upstream of *AtCML4 (pATCML4)* and *AtCML5 (pATCML5)* (see 2.1.3), predicted to include promoter elements of the respective genes, were cloned to control the expression of AtCML4-YFP (*pAtCML4*::AtCML4-YFP) and AtCML5-YFP (*pAtCML5*::AtCML5-YFP), respectively, in transiently transformed *A. thaliana* protoplasts, replacing the 35S-promoter (see Figure 2B).



**Figure 2**: **Microscopic localisation analysis of AtCML4-mCherry and AtCML5-YFP.** (A) Protoplasts isolated from *N. benthamiana* plants transiently co-expressing AtCML4-mCherry and AtCML5-YFP showed significant overlap of fluorescence signals, indicating their co-localisation within the same compartment. (B) Comparison of AtCML5-YFP transiently expressed in tobacco leaf cells under the control of a 35S-promoter (row 1) with AtCML4-YFP and AtCML5-YFP expressed under control of *AtCML4* and *AtCML5* promoter region, respectively, (rows 2 and 3). *pAtCML4*::AtCML4-YFP and *pAtCML5*::AtCML5-YFP displayed circular fluorescence patterns similar to the structures detected upon 35S-promoter-driven expression in *N. benthamiana* cells. Analyses were carried out applying confocal laser scanning microscopy (single images, layer density 40 nm). White bars represent the scale of indicated size.

Analysis of *A. thaliana* protoplasts transiently expressing AtCML4-YFP and AtCML5-YFP, under control of *AtCML4* or *AtCML5* promoter region, respectively, revealed that the circular structures with unusually large diameters, previously observed under 35S-promoter driven expression, were not a result of strong overexpression of the fusion proteins. All three samples were analysed under the same conditions with identical microscope parameters except for the gain of the detector for the YFP channel. To receive comparable signal intensity, this parameter was set to 235.3 % and 71.8 % for samples under endogenous and 35S-promoter control, respectively. This indicated the substantially higher abundance of YFP-fusion construct in overexpressing protoplasts compared to cells, in which expression was driven by the endogenous promoters of both genes.

### 3.1.3 Detailed analysis of AtCML5-YFP sub-cellular localisation

Previously performed co-localisation experiments with AtCML5-YFP and AtARA6-mCherry, a RabGTPase labelling late endosomes (Ueda *et al.* 2004), had revealed a partial overlap between their fluorescence signals. However, a similar partial overlap had been observed, when AtCML5-YFP was expressed with the *cis*-Golgi marker GmMANI-mCherry, which is an  $\alpha$ -1,2-MANNOSIDASE I from *Glycine max* (Saint-Jore-Dupas *et al.* 2006). Therefore, it was difficult to determine, which compartment AtCML5 ultimately resides in.

To elucidate the localisation of AtCML5, a more detailed analysis was conducted in protoplasts of *N. benthamiana* plants co-expressing AtCML5-YFP with marker proteins for peroxisomes (mCherry-SKL), *cis*-Golgi vesicles (GmMAN1-mCherry), late PVC (AtARA6-mCherry), as well as with AtCML4-mCherry. Co-localisation with GmMAN1-mCherry and AtARA6-mCherry had not been analysed in a quantitative fashion before. Additionally, fluorescence signal overlap between AtARA6-mCherry and AtCML5-YFP in *N. benthamiana* protoplasts had not been shown in previous analyses.



**Figure 3: Co-expression analysis of AtCML5-YFP and different mCherry-fused marker constructs.** Co-expression of AtCML5-YFP and several marker constructs in tobacco leaf cells was performed to subsequently gain quantitative data on the extent of overlap between the fluorescence signals in the different samples. Signal overlaps (indicated by white signal colour in the merge) with mCherry-tagged AtARA6 and GmMAN1 were observed in circular structures. Co-expression with AtCML4-mCherry served as positive control displaying complete signal overlap, whereas signals from mCherry-SKL in peroxisomes did not occur in the same positions with AtCML5-YFP, rendering it a suitable negative control. Data displayed here are examples of the microscopic data used for quantitative analysis shown below. White bars represent the scale of indicated size.

Microscopic analysis of tobacco cells expressing AtCML5-YFP and GmMAN1-mCherry or AtARA6-mCherry, respectively, showed overlaps of the different fluorescent signals in both cases (see Figure 3, rows 2 and 3). Overlaps primarily occurred at positions, where the signals were circular, indicating the co-localisation in vesicular structures. Signal geometries retrieved for these marker constructs, which usually appear as punctae upon single expression (Ueda et al. 2004, Saint-Jore-Dupas et al. 2006), were observed to be of circular character when co-expressed with AtCML5-YFP. Co-localisation never occurred at positions, at which the marker construct signals showed punctae. Protoplasts co-expressing AtCML5-YFP and the ER marker AtWAK2-mCherry-HDEL only showed signal overlaps where the YFP signal did not occur in circular structures. However, in these positions the geometry of the signals differed, whereas ER marker signals were filamentous with defined edges, YFP signals were of diffuse character indicative of a cytoplasmic localisation. Therefore, an alleged co-localisation of the two protein populations at these positions might be false-positive due to insufficient resolution. In contrast to that, AtCML4-mCherry and AtCML5-YFP signals overlapped independent of signal geometry. No overlap at all was observed for the signals in cells co-expressing AtCML5-YFP and mCherry-SKL, as had previously already been shown (Flosdorff 2014) and was repeated here to serve as example for spatially non-correlated signals in the quantitative analysis of the microscopic co-expression data described below.

Quantitative analysis of the co-expression of AtCML5-YFP with different marker constructs in *N. benthamiana* protoplasts was performed to unambiguously determine the final localisation of AtCML5 *in vivo*. For quantification of the spatial correlation between signals emanating from AtCML5-YFP and the respective mCherry-fused marker constructs, microscopic data (examples shown in Figure 3) were analysed employing the "Coloc2" plugin of the Fiji Software (ImageJ 1.51n, Wayne Rasband, National Institute of Health, Bethesda, MD, USA) with Costes threshold regression. The software calculates Pearson's correlation coefficient as a numerical measure for spatial correlation of the signals detected in two separate channels of a microscopic image. The correlation coefficients derived from five different cells per construct combination were calculated and are depicted as box plot (see Figure 4).



Figure 4: Spatial correlation of signals from AtCML5-YFP and different marker constructs co-expressed in *N. benthamiana* protoplasts. Microscopic data of *N. benthamiana* protoplasts co-expressing AtCML5-YFP and mCherry-fused markers were analysed employing the Fiji Software plugin "Coloc 2" with Costes threshold regression. Pearson's R values were determined for each cell, describing the extent of spatial correlation between fluorescence signals from AtCML5-YFP and the respective co-expressed construct. Person's R values depicted as box plot are derived from five different cells per fusion construct combination. R = +/- 1 indicates absolute spatial co-occurrence of two signals. With R values between 0.45 and 0.65 AtCML5-YFP shows a significant but partial co-localisation with markers for *cis*-Golgi and the late PVC.

Correlation values of 0.8-0.9 for signals between AtCML5-YFP and AtCML5-mCherry served as a measure for near-absolute co-localisation, whereas correlation values of 0-0.05 between mCherry-SKL and AtCML5-YFP signal occurrence defined the example for spatially unrelated signals. Most of the analysed cells co-expressing AtCML5-YFP and the ER marker AtWAK2-mCherry-HDEL showed a spatial correlation that was in a range comparable to the negative control, however stronger variation occurred. The median of signal correlation of AtCML5-YFP with the markers for *cis*-Golgi and the PVC was at 0.46 (*cis*-Golgi, marked by GmMAN1-mCherry) and 0.64 (late PVC, marked by AtARA6-mCherry), respectively. So the fraction of AtCML5-YFP co-localising with AtARA6-mCherry was slightly larger.

## **3.1.4** Topology elucidation for AtCML5-YFP and AtCML5<sub>1-28</sub>-YFP via protease protection assay

The alleged localisation of AtCML5 (and AtCML4) on vesicular structures of the endomembrane system raised the further question, whether the catalytical CAM-domain

resides in the vesicular lumen or the cytoplasm.

A common procedure to analyse the topology of a membrane-bound protein is to perform a protease protection assay on isolated membrane fractions containing the protein of interest. The protease thermolysin is often applied in this assay, but others e.g. proteinase K or trypsin can also be utilised (Bendz et al. 2013). Thermolysin is incapable of entering the isolated membrane vesicles, leaving luminal proteins and transmembrane sections of integral membrane proteins unaffected, whereas protein domains protruding from the cytoplasmic surface of the isolated membranous compartments are proteolytically degraded. To perform this assay, microsomes from *N. benthamiana* plants transiently expressing AtCML5-YFP, AtCML5<sub>1-28</sub>-YFP or AtWAK2-mCherry-HDEL were isolated (see 2.2.2.7) and treated with  $2 \mu g/\mu l$  thermolysin (see 2.2.2.8) to degrade proteins outside of or on the cytoplasmic surface of the membranous compartments. Treatment of microsomes with an equivalent amount of protease-free assay buffer served as control. The result of the procedure was determined by SDS-PAGE separation followed by western blot analysis using  $\alpha$ -GFP and  $\alpha$ -mCherry antibodies (see Figure 5). AtCML5<sub>1-28</sub>-YFP, a fusion protein containing the first 28 amino acids of AtCML5 fused to YFP, had previously been shown to be sufficient for anchoring the protein in the membrane (Flosdorff 2014). It was included in this assay in addition to the full-length AtCML5 protein, because it resembles the in vivo conditions more closely with the fusion protein being of comparable size as the endogenous full-length AtCML5.



Figure 5: Thermolysin treatment of microsomes isolated from *N. benthamiana* leaves. Isolated membrane fractions from tobacco expressing either AtCML5-YFP, AtCML5<sub>1-28</sub>-YFP or AtWAK2-mCherry-HDEL were treated with 2  $\mu$ g/ $\mu$ l thermolysin (+) or the respective amount of buffer (-) to shave membrane proteins exposed to the cytoplasm. The assay was analysed via SDS-PAGE followed by western blot analysis using  $\alpha$ -GFP and  $\alpha$ -mCherry antibodies. Whereas the signals for AtCML5-YFP and AtCML5<sub>1-28</sub>-YFP either vanished or significantly decreased upon thermolysin treatment, indicating their exposure on the cytoplasmic surface of the vesicles, the signal for AtWAK2-mCherry-HDEL remained unaltered, because the marker is an ER resident luminal protein protected from the protease by the surrounding membranes. Modified from (Ruge *et al.* 2016).

In the control samples, which were treated with buffer instead of thermolysin, signals for all protein constructs could be detected by western blot analysis (see Figure 5, left lanes). In thermolysin-treated samples, no signal was observed for microsomes containing AtCML5-YFP and the signal for AtCML5<sub>1-28</sub>-YFP was significantly reduced in intensity (see Figure 5, right lanes). By contrast, the luminal ER control protein AtWAK2-Cherry-HDEL was not affected by the treatment, visualised by the unaltered signal intensity in both treated and untreated microsomal fractions (see Figure 5, bottom right lane). This result indicates that the full-length protein AtCML5, as well as its first 28 amino acids have a topology with their carboxy termini being exposed on the cytoplasmic surface of the vesicles. Therefore, AtCML5 and probably also AtCML4, have their CAM-domains protruding into the cytoplasm, rendering them capable of detecting  $[Ca^{2+}]_f$  fluctuations in the cytoplasm in close proximity to endosomal membranes.

This raised the question as to whether the two proteins detect changes in cytoplasmic  $[Ca^{2+}]_f$ similar to cytosolic, non-membrane-attached  $Ca^{2+}$  sensors or whether they might be exposed to a microdomain around the vesicles characterised by  $[Ca^{2+}]_f$  different to those in the remaining cytoplasm. In the latter case, the proteins would selectively react to  $[Ca^{2+}]_f$ fluctuations in close vicinity to the vesicular membranes, e.g. caused by  $Ca^{2+}$  efflux from the vesicular lumen.

### 3.2 Functional analysis of AtCML4 and AtCML5

## 3.2.1 In vivo measurement of $[Ca^{2+}]_f$ fluctuations in close proximity to membranes in A. thaliana

To analyse the  $[Ca^{2+}]_f$  in the vicinity of AtCML4 and AtCML5 *in vivo*, *A. thaliana* plants were stably transformed to express AtCML5<sub>1-28</sub>-YFP-AEQ, a protein containing the membrane anchor of AtCML5 fused to the yellow fluorescent protein (YFP) and the Ca<sup>2+</sup> sensor apo-aequorin (AEQ). This allowed the direct comparison to plants expressing the same YFP-AEQ fusion protein in the cytosol that were previously described (Mehlmer *et al.* 2012). AEQUORIN was originally isolated from the jellyfish family Aequorea (Shimomura *et al.* 1962) and requires the presence of coelenterazine, a prosthetic group, in order to be fully functional as a Ca<sup>2+</sup> sensor. The protein is capable of reporting changes in cellular Ca<sup>2+</sup> at physiological concentrations, by catalysing the decarboxylation of coelenterazine, which emits luminescence light with an intensity peak at 469 nm.  $Ca^{2+}$  are required as cofactors for the reaction. Under physiological  $[Ca^{2+}]_f$ , there is a double logarithmic correlation between detected luminescence light and the  $[Ca^{2+}]_f$  (Allen *et al.* 1977). The expression of the sensor construct was driven by the *AtCML5* promoter region to minimise the population of fusion proteins being mistargeted to the cytoplasm due to overexpression conditions. Plants expressing either a cytoplasmic  $Ca^{2+}$  sensor, AtCPK17(G2A)-YFP-AEQ, or a sensor attached to the cytoplasmic surface of the chloroplast outer envelope, AtOEP7-YFP-AEQ , served as controls for detection of  $[Ca^{2+}]_f$  fluctuations in the entire cytoplasm or in close proximity to membranes. Their expression was driven by a 35S-promoter. Both of these sensor constructs had previously been analysed and published to be functional (Mehlmer *et al.* 2012). A schematic view of the applied sensor constructs, their relative size and sub-cellular localisation, as well as the result of basal  $[Ca^{2+}]_f$  levels reported by these fusion proteins are shown in Figure 6.



**Figure 6:** *In vivo*  $[Ca^{2+}]_f$  **fluctuation measurement.** (A) Schematic drawing of the applied sensor constructs AtCML5<sub>1-28</sub>-YFP-AEQ, AtOEP7-YFP-AEQ and AtCPK17(G2A)-YFP-AEQ with their relative size and (B) their sub-cellular localisation. Whereas AtCPK17(G2A)-YFP-AEQ senses  $[Ca^{2+}]_f$  changes in the whole cytoplasm, as well as in vicinity to all membranes facing it, AtCML5<sub>1-28</sub>-YFP-AEQ and AtOEP7-YFP-AEQ only sense cytoplasmic  $[Ca^{2+}]_f$  fluctuations in close proximity to endosomal membranes and chloroplast outer envelope, respectively. The relative size of the displayed schematic cell and its compartments do not resemble the *in vivo* relations. (C) Basal  $[Ca^{2+}]_f$  levels in 5 day-old *A. thaliana* seedlings detected by the respective stably expressed sensor construct differed significantly, with  $[Ca^{2+}]_i$  having been highest close to endosomal membranes (approx. 0.9-1  $\mu$ M), exceeding the  $[Ca^{2+}]_f$  around chloroplasts (approx. 0.2  $\mu$ M) and the  $[Ca^{2+}]_f$  in the microdomain surrounding the vesicles also are less steady and vary more strongly between the different plants analysed.  $[Ca^{2+}]_f$  for each plant line shown in the graph are mean values of the  $[Ca^{2+}]_f$  measured in ten (eight) different plants. Error bars indicate the standard error.

Instead of using the full-length AtCML5 for targeting the sensor construct to the respective endosomal vesicles, only the first 28 amino acids of AtCML5 comprising the signal-anchor were chosen. This reduced the distance of the sensor protein AEQ to the membrane, thereby allowing for a higher probability of detecting differences in the local  $[Ca^{2+}]_{f}$  within the microdomain surrounding the vesicles compared to  $[Ca^{2+}]_{f}$  in the remaining cytoplasm. The AtOEP7-YFP-AEO is of comparable size sensor protein and topology as AtCML5<sub>1-28</sub>-YFP-AEQ, but anchored in the outer envelope of chloroplasts, which defined it as ideal control for the detection of  $[Ca^{2+}]_{f}$  levels in the cytoplasmic environment surrounding a membrane-enclosed compartment. Additionally, it granted the possibility of distinguishing between stimuli that selectively evoked  $[Ca^{2+}]_{f}$  fluctuations around either endosomes (see Figure 6 B, blue halo around vesicle) or chloroplasts (see Figure 6 B, red halo around chloroplast). In order to separate this from  $[Ca^{2+}]_{f}$  changes in the whole cytoplasm (see Figure 6 B, regions coloured green), the sensor construct AtCPK17(G2A)-YFP-AEQ was included in the analysis.

Prior to consecutive analysis of the plants stably expressing the respective sensor constructs, the AEQ moiety of the sensors had to be reconstituted with its prosthetic group coelenterazine. Since the binding of coelenterazine by AEQ is the rate-limiting step in the decarboxylation reaction catalysed by holo-AEQUORIN, the reconstitution was performed by immersing the plants in de-ionised water including 2.5 µM coelenterazine and incubating them overnight in the dark. The measured luminescence intensity values were translated into [Ca<sup>2+</sup>]<sub>f</sub>, applying an algorithm specifically designed for the AEQUORIN isoform present in the constructs (2.2.1.13). In comparison to the  $[Ca^{2+}]_f$  reported by AtCPK17(G2A)-YFP-AEQ  $([Ca^{2+}]_{Cyt})$  to be approx. 0.18  $\mu$ M, the  $[Ca^{2+}]_{f}$  around the chloroplasts  $([Ca^{2+}]_{Chl})$  as detected by AtOEP7-YFP-AEQ was slightly elevated to 0.2 µM. This showed that there is only a minor difference in the basal levels of  $[Ca^{2+}]_{Cvt}$  in the whole cytoplasm and the region in close vicinity to the chloroplast membrane. In strong contrast to that was the basal  $[Ca^{2+}]_{f}$  level detected around the endosomes, marked by AtCML5<sub>1-28</sub>-YFP-AEQ, [Ca<sup>2+</sup>]<sub>End</sub>. In this region the  $[Ca^{2+}]_f$  was less steady and fluctuated around a value of 0.9  $\mu$ M, indicating the existence of a potential  $Ca^{2+}$  microdomain around certain populations of endosomal vesicles. Due to a lack of time, initial analyses involving the application of different stimuli, e.g. salt stress, cold stress, osmotic stress, triggering Ca<sup>2+</sup> fluxes have been performed, but more experiments are required for valid results.

# **3.2.2** Interaction partner identification via Ca<sup>2+</sup>-dependent pull-down assay from microsome/cytoplasm extracts from *A. thaliana* leaf tissue

The topology of AtCML5 with its CAM-domain protruding into the cytoplasm enables it to bind potential interaction partners localised either in the cytoplasm or attached to the membranes of the vesicles AtCML5 is anchored in or even attached to other vesicles in sufficient proximity. Therefore, pull-down assays to find interaction partners of AtCML5 in combined microsome and cytoplasm extracts were performed.

To isolate potential interaction partners from combined microsome and cytoplasm extracts from *A. thaliana* leaf tissue, AtCML5 was heterologously expressed in *E. coli* with an N-terminal GST tag for purification. Heterologous expression of the tagged full-length AtCML5 yielded only small amounts of soluble recombinant protein, probably due to enhanced aggregation of the overexpressed protein, stimulated by the hydrophobicity of its membrane anchor, which ultimately resulted in degradation of the protein. Therefore, a GST-tagged, truncated version of AtCML5 lacking the first 20 amino acids comprising its signal-anchor domain was used (GST-AtCML5<sub>21-215</sub>). Recombinant GST was chosen to serve as negative control in the pull-down assay and was expressed, purified and subsequently processed equally to GST-AtCML5<sub>21-215</sub>.

Isolation of the soluble recombinant protein from E. coli lysates was performed on a Glutathione sepharose 4B resin (GE Healthcare Europe GmbH, Freiburg, Germany) yielding large amounts of sufficiently pure recombinant protein (see 2.2.2.4). Due to the abundance of glutathione S-transferases and other glutathione-binding proteins in extracts from A. thaliana, the pull-down could not be performed on GST-AtCML5<sub>21-215</sub>-coated glutathione sepharose. Hence, the fusion protein had to be eluted and subsequently transferred into a new buffer environment via overnight dialysis at 4°C (see 2.2.2.5) to prepare it for coupling to a CNBr-activated sepharose 4B resin (GE Healthcare Europe GmbH, Freiburg, Germany). This pre-activated resin is designed for coupling proteins in a tag-independent manner, requiring only free amino groups being available as active coupling moiety in the respective protein. After covalently linking the purified protein to the resin material (see 2.2.2.6), microsome/cytoplasm extracts previously adjusted to contain either 1 mM CaCl<sub>2</sub> (+ Ca<sup>2+</sup>) or 5 mM EDTA / 5 mM EGTA (-  $Ca^{2+}$ ) were added to the resin (see 2.2.2.9 for details). The goal was to transfer AtCML5<sub>21-215</sub> from its apo- to its holo-state by supplying it with Ca<sup>2+</sup>, thus enabling it to bind potential interaction partners in the extract. Elution was accomplished by removing the Ca<sup>2+</sup> via addition of an EDTA/EGTA-containing buffer, transferring

AtCML5<sub>21-215</sub> to its apo-state again, thereby causing the release of the previously bound interacting proteins. The eluted fractions were analysed via SDS-PAGE followed by silver staining (see Figure 7). Protein bands occurring exclusively in the elution of the "+ Ca<sup>2+</sup>" sample, but not in the "– Ca<sup>2+</sup>" sample or the GST controls were considered potential interaction partners. The assay was repeated three times, the results were compared and bands that re-occurred at least in two of the assays were isolated and sent for mass spectrometric analysis by the *Zentrallabor für Proteinanalytik* at the BMC, LMU Munich. A schematic overview of the experimental procedure and representative elutions analysed via SDS-PAGE are shown in Figure 7.



Figure 7:  $Ca^{2^+}$ -dependent pull-down assay of potential binding partners from *A. thaliana* microsome/cytoplasm extracts from leaf tissue. (A) Schematic overview of the workflow to isolate potential interaction partners from an *A. thaliana* leaf tissue extract in a Ca<sup>2+</sup>-dependent manner, applying the recombinant construct GST-AtCML5<sub>21-215</sub> as bait and GST as bait control. (B) SDS-PAGE analysis of the different elution fractions from GST-AtCML5<sub>21-215</sub> or GST-coated CNBr resins in the presence or absence of Ca<sup>2+</sup>. Potential interaction partners represented by bands present in lane 1, but none of the other lanes, are marked by boxes. These bands were isolated from the gel and analysed by mass spectrometry for identification.

Unfortunately, the elutions also contained large amounts of GST-AtCML $5_{21-215}$  or GST, which should have been retained on the column. Due to the design of the assay and its conduction, it

А

is possible that small fractions of the matrix material contaminated the elutions. However, this was unlikely to have affected the overall result of the assay, since it was still possible to detect bands, exclusively present in the elution of interest (see Figure 7, GST-AtCML5<sub>21-215</sub>,  $+ Ca^{2+}$ ).

The isolated bands detected via SDS-PAGE followed by silver staining were submitted to the protein analysis core facility (*Zentrallabor für Proteinanalytik*, BMC, LMU Munich), where peptides were generated via tryptic digest, followed by separation via short gradient nano-liquid chromatography and subsequent analysis via quadrupol/ion-trap mass spectrometry. The identities of the proteins from which the analysed peptides were derived, were determined by comparison of the mass spectrometry analysis results with the MASCOT database.

Out of the list of detected proteins, two candidates were selected as potential interactors: DYNAMIN-RELATED PROTEIN 1B (AT3G61760, further referred to as "AtDRP1B"), identified with 100 % probability based on two detected peptides and PHOSPHOLIPASE D GAMMA 1 (AT4G11850, further referred to as "AtPLDGAMMA1"), identified with 100 % probability based on six detected peptides (see Appendix II for detailed mass spectrometry analysis data). Dynamin-related GTPases are involved in various processes, such as endocytosis (Collings *et al.* 2008) and cytokinesis (Miyagishima *et al.* 2008) and AtDRP1A was reported to be localised in the *trans*-Golgi network (Sawa *et al.* 2005).

As presented in 3.1.2, AtCML5-YFP-labelled structures indicative of vesicles with enlarged lumina, which suggested a potential role of AtCML5 in vesicular fusion processes. This had also been previously shown and hypothesised (Flosdorff 2014). Since dynamin-related proteins had been shown to play a role in vesicular trafficking (Kang *et al.* 2003), AtDRP1B was considered to be a promising candidate for interaction with AtCML5. AtPLDGAMMA1 had been shown to influence coatomer assembly by producing phosphatidic acid through hydrolytic cleavage (Ktistakis *et al.* 1996). AtARF1 had been found to regulate AtPLDGAMMA1 activity, but an additional Ca<sup>2+</sup>-dependent regulation could not be excluded.

Apart from these two proteins, a third candidate was selected for further analysis as potential interaction partner: a GDSL-motif esterase/acyltransferase/lipase (AT5g55050, further referred to as "AtGML"). Proteins belonging to this family of enzymes have broad substrate specificity due to their highly flexible active site, but only for a few members their molecular function has been elucidated, yet. The protein was included in further analyses, because it was

identified as potential interaction partner of AtCML5 by mass spectrometric analysis following a pull-down assay of different setup in a previous study (Flosdorff 2014), but had not been investigated in detail.

# 3.2.3 Microscopic co-localisation analysis of potential interaction partners of AtCML4 and AtCML5

Concomitant to biochemical interaction studies between the potential interaction partners (see 3.2.2) and AtCML4 or AtCML5, their sub-cellular localisation relative to AtCML4 and AtCML5 was analysed. To that end, *N. benthamiana* plants co-expressing either AtDRP1B or AtPLDGAMMA1 (both as mCherry fusion constructs) together with AtCML5-YFP were used for protoplast isolation and subsequent microscopic analysis (see Figure 8 B). Since expression of the AtGML fused to mCherry failed and an AtCML5-mCherry construct was not reliably expressed either, a YFP fusion construct of the lipase was chosen to be co-expressed with AtCML4-mCherry (see Figure 8 A), which has previously been shown to co-localise with AtCML5-YFP (see 3.1.2).



**Figure 8:** Analysis of AtCML4-mCherry and AtCML5-YFP co-expressed with different interaction partner candidates. (A) Analysis of *N. benthamiana* leaf protoplasts co-expressing AtGML-YFP and AtCML4-mCherry suggested that the lipase localises to vesicular structures, indicated by its punctuate fluorescence patterns, but there was no co-localisation with AtCML4-mCherry detectable. (B) Protoplasts co-expressing AtCML5-YFP together with AtDRP1B-mCherry or AtPLDGAMMA1-mCherry showed no co-localisation of either construct with AtCML5-YFP. Still, both potential interacting partners might be localised in vesicles, since their fluorescence signals occurred in punctae. It is noteworthy that in protoplasts expressing AtCML5-YFP and AtPLDGAMMA1-mCherry, AtCML5-YFP-labelled vesicles were unusually enlarged and often displayed a distorted structure (red arrows) not resembling the isodiametric, circular shape that had been observed in other samples before. AtPLDGAMMA1-mCherry signals occurred as small and also large punctae (white arrows), which resembled (C) the signals of AtCML5-YFP when detected in accumulations of a large number of vesicles. However, AtPLDGAMMA1-mCherry signals also appeared as ring-shaped structures with large luminal volumes (data not shown). White bar represents scale of indicated size.

Microscopic analysis of fluorophore-tagged versions of all three potential interaction partners expressed in N. benthamiana leaf tissue, showed their localisation in vesicular structures, indicated by the punctuate signal character. However, there was no visible overlap with the signals originating from AtCML5-YFP or AtCML4-mCherry, respectively, suggesting that they are localised in different vesicles of the endomembrane system. In contrast to AtGML-YFP and AtDRP1B-mCherry, AtPLDGAMMA1-mCherry signals sometimes also occurred in foci of high fluorescence intensity and spatial spread (compare Figure 8 B and C, white arrows) as often observed for AtCML5-YFP signals in cells with very high levels of expression (see Figure 8 C, white arrows). In addition to that, signals originating from AtCML5-YFP and AtPLDGAMMA1-mCherry both appeared in circular structures with unusually large diameter albeit not overlapping (see Figure 8B, red arrows). Very often, these structures were not isodiametric as observed for AtCML5-YFP upon single expression or co-expression with other fusion proteins (see Figure 2 and Figure 3). Whether this peculiar behaviour of the structures indicated a potential interaction of AtCML5 and AtPLDGAMMA1 in planta, or whether this was merely an effect caused by AtPLDGAMMA1-mCherry overexpression, could not be deduced from the microscopic data.

In general, the lack of co-localisation of two proteins does not equal functional independence. Especially in a compartment like the vesicular trafficking system, in which vesicle populations interchange and maturation processes coincide with retrograde transport pathways, interaction between proteins in different compartment populations occurs frequently (Mover et al. 2001). Therefore, biochemical studies were attempted to elucidate, whether the identified proteins were indeed interaction partners of AtCML4 or AtCML5. In order to perform such assays, heterologous expression of the proteins and purification was required. However, the potential interactors proved difficult to express in E. coli and different approaches for expression conditions, fusion tags and bacterial strains were tested, but the proteins were either not expressed at all, or only at minor amounts which complicated downstream analyses. All three proteins were predicted to contain transmembrane domains, which often cause difficulties upon expression in E. coli, due to their tendency to lead to aggregation of the recombinant proteins in the bacterial cytoplasm. In order to circumvent this problem, expression with an N-terminal maltose-binding protein tag was tested. Unfortunately, even this expression system, although specifically designed for heterologous membrane protein expression, did not result in a significant improvement of the expression. Since these experiments were carried out in the late phase of this work, biochemical evidence

for potential interaction could not be provided.

Information about the function of a protein can also be deduced from phenotypic analysis of mutant plants. Hence, such analyses were carried out in parallel to biochemical and microscopic approaches.

### 3.2.4 Phenotypic analysis of an *atcml5* knock-out mutant line

For many genes in A. thaliana mutant lines have been generated by random insertion of T-DNAs, interrupting genes in either their exons, introns or regulating regions like the promoter, 5'UTR or 3'UTR (untranslated region) (Koncz et al. 1992). These DNA fragments randomly inserted into the plant cell genome usually comprise several thousand base pairs, interfering with gene expression. The most reliable T-DNA insertion lines in terms of preventing a functional protein from being expressed from such genes are those, in which the insertion occurs inside an exon, which is present in all splicing variants of the gene. In case of AtCML5, the GABI-Kat 703E02 line is commercially available and was generated by infecting WT A. thaliana plants of ecotype Columbia with an Agrobacterium strain carrying the inserted T-DNA on a pGABI1 plasmid. The T-DNA is located within the only exon of AtCML5 and it had previously been shown via reverse transcription PCR that this mutant line does not produce a functional AtCML5 mRNA, thus rendering it a homozygous knock-out mutant (atcml5-ko) (Flosdorff 2014). Phenotypic analysis under standard growth conditions (100 µM s<sup>-1</sup> m<sup>-2</sup> photons, 16 h light/8 h dark, 22°C day/18°C night temperature) had been performed, but no phenotypic differences could be detected in comparison to WT plants grown under identical conditions. However, AtCML5 might be i) required in processes like certain stress-induced pathways that have not been triggered under artificial climate chamber and greenhouse cultivation conditions; or ii) AtCML4 being highly similar in sequence might complement for the function of AtCML5, or iii) the phenotypic abnormalities were not detectable by the applied means of analysis.

In order to analyse this further, *atcml5-ko* mutant and WT plants were subjected to different kinds of treatment (see 2.2.1.2). Plants were cultivated under sterile conditions on  $\frac{1}{2}$  MS medium solidified with 1 % plant agar to apply various kinds of stresses, e.g. salt stress by addition of 100 mM NaCl to the medium, osmotic stress by addition of 200 mM mannitol to the medium, growth under high light conditions (150  $\mu$ M s<sup>-1</sup> m<sup>-2</sup> photons). Root growth was analysed by vertical cultivation of plants under sterile conditions with and without addition of

3-indol acetic acid (IAA, 15 nM). Hypocotyl growth analyses were conducted by stratification of seeds for 2 d in the dark at 4°C, followed by 6 h of exposure to light (100  $\mu$ M s<sup>-1</sup> m<sup>-2</sup> photons, 22°C) to induce germination, followed by 5 d of growth in the dark at 22°C to trigger etiolated growth of hypocotyls. Under none of the cultivation conditions significant differences between WT and mutant plant phenotype could be detected.

The only experiment, in which some minor differences between WT and mutant plants could be observed, was the analysis of the shoot length at different time points under standard growth conditions. During the development of Arabidopsis plants there is a shift from a vegetative to a generative growth phase, which is characterised by the production of a primary inflorescence, whose growth is controlled by the shoot apical meristem. This process is followed by the development of flower buds and secondary inflorescences that diverge laterally from the primary inflorescence. A variety of regulatory mechanisms control this and other developmental transition processes in plants (reviewed in Huijser et al. 2011, Poethig 1990). The development of the shoot of WT and *atcml5-ko* was monitored daily by measuring the distance from the rosette centre to the tip of the shoot, from which the pedicels of the apical flowers develop. Since not all plants cultivated together also entered the generative growth phase at the same time, only plants showing beginning shoot growth on the same day, were compared with one another. The values of the measured shoot length for plants of each group were analysed in a box plot and are displayed in Figure 9 for every second day of measurement. The day on which the first plants entered the generative growth phase was marked as day 1.



Figure 9: Analysis of the shoot length in *A. thaliana* WT and *atcml5-ko* plants. Comparison of the shoot length in mm of WT and *atcml5-ko* plants entering generative growth phase on (A) day 1, (B) day 2 or (C) day 3. The values of the measured shoot length development for the plants of the respective genotype on each day are shown as box plot. The day the first plants showed shoot growth was defined as day 1. There were minor differences in the development of the shoot between WT and *atcml5-ko* plants. *Atcml5-ko* plants that started generative growth on day 2, had significantly longer shoots than the WT after day 8 and a similar tendency was observed in *atcml5-ko* plants analysed since day 1. However, no such effect was detected in plants that entered the generative growth phase on the third day of analysis. Significance values were determined by Student's *t*-test (\* = p<0.05, \*\* = p<0.01). The amount of plants of each genotype compared in the assay is indicated in brackets in the legends of the graphs.

Analysis of the plants was carried out at the same time every day. Three groups of plants, defined by the day they entered the generative growth phase and started producing a visible shoot, were analysed and compared. Only the group starting generative growth on day 2 showed differences in shoot length between the two genotypes that were statistically significant on the last days of analysis (see Figure 9B, days 9 to 13). In this group *atcml5-ko* plants had longer shoots than the compared WT plants. A similar tendency, though not statistically significant, could be observed in the group of plants entering generative growth phase on day 1 (see Figure 9A). Group three, in which shoot development began on day 3 of the analysis did not show any differences at all (see Figure 9 C). Other experiments of equal setup returned similar results, rendering any deduction about an involvement of AtCML5 in developmental processes affecting shoot growth poorly supported. A potential phenotype caused by the lack of functional AtCML5 could be attenuated by functional complementation via AtCML4. In order to exclude this possibility, *atcml4/atcml5* double knock-out plants had to be analysed.

One option to generate a double mutant was to use a plant line, in which the *AtCML4* gene was disrupted by a T-DNA insertion, and to cross it with *atcml5-ko* plants. Several T-DNA insertion lines of *A. thaliana* are available, but unfortunately, for none of these lines, the disruption of the *AtCML4* gene by a T-DNA insertion could be confirmed via site-specific PCR. Hence, other methods had to be chosen to reduce or completely abolish expression of *AtCML4 in planta*. A small interfering RNA (siRNA)-based approach was selected to down-regulate *AtCML4* gene expression on a post-transcriptional level.

## **3.2.5** Stable siRNA-based reduction of *AtCML4* transcript abundance *in planta* for phenotype analysis

In order to knock-down *AtCML4 in planta* with only minor or no effects on *AtCML5* transcript abundance, a region in the *AtCML4* gene serving as guide RNA source to ensure mRNA degradation had to be determined. This region had to be specific to the *AtCML4* transcript, so that the *AtCML5* mRNA would remain unaffected. Figure 10 shows an excerpt of a sequence alignment of the CDSs of *AtCML4* and *AtCML5* to highlight the sequence stretches identified as described in 2.2.1.6 to serve as potential guide RNAs.

| AtCML4    | 1   | ATGGTGAGAGTCTTTCTTCTCTCTACAACCTCTTTAACTCCTTTCTTCTT            |
|-----------|-----|---------------------------------------------------------------|
| AtCML5    | 1   | ATGGTGAGAATATTCCTTCTCTCTACAATATACTAAATTCGTTTCTTCTCTCTC        |
| consensus | 1   | ******* * ** ********* * * ** ** ******                       |
|           |     |                                                               |
|           |     |                                                               |
| AtCML4    | 61  | AAGAAGCTTAGAGTTTTCTTCCCTCCTTCTTGGTACATCGACGACAAGAACCCA        |
| AtCML5    | 61  | AAGAAGCTACGAACTCTTTTCCCCTCTTTCTTGGTTCGACAAAACTCTCCACAAGAACTCA |
| consensus | 61  | ****** ** * * ****** ***** * * * * * * *                      |
|           |     |                                                               |
|           |     |                                                               |
| AtCML4    | 115 | CCACCGCCTGATGAATCGGAAACT                                      |
| AtCML5    | 121 | CCACCGTCTCCGTCAACGATGTTACCTTCTCCATCATCTTCTTCAGCGCCGACGAAAAGA  |
| consensus | 121 | ***** ** ** ** ****                                           |
|           |     |                                                               |
|           |     |                                                               |
| AtCML4    | 139 | GAATCTCCGGTAGATCTAAAACGAGTGTTTCAGATGTTCGACAAGAACGGAGATGGACGC  |
| AtCML5    | 181 | ATAGATCCGTCCGAGCTCAAACGCGTTTTCCAGATGTTCGACAAGAACGGTGACGGTCGA  |
| consensus | 181 | * **** ** ** ***** ** ** **************                       |
|           |     |                                                               |
|           |     |                                                               |
| AtCML4    | 199 | ATCACAAAGGAAGAGCTGAACGATTCTCTAGAGAATCTAGGAATCTTTATGCCTGACAAA  |
| AtCML5    | 241 | ATCACAAAGGAAGAGCTCAACGACTCGCTTGAGAATCTTGGAATCTACATACCAGACAAA  |
| consensus | 241 | *****************                                             |
|           |     |                                                               |
|           |     |                                                               |
| AtCML4    | 259 | GATCTGATCCAGATGATCCAGAAGATGGATGCAAATGGAGA] Remaining          |
| AtCML5    | 301 | GATCTGACTCAAAATGATCCACAAGATCGATGCTAACGGTGA                    |
| CONSENSUS | 301 | ***** ** ** ****** ***** ***** ** ** **                       |

**Figure 10: Partial sequence alignment of** *AtCML4* and *AtCML5* CDSs. The alignment of the CDSs of *AtCML4* and *AtCML5* focused on the first 300 NTs and 342 NTs, respectively. In this region, all positions in the *AtCML4* CDS serving as potential targets for guide RNAs (red markups), were found in positions, which display at least one mismatch to the *AtCML5* CDS. Hence, they were expected to allow for a maximum degree of specificity given the high similarity between the CDSs of the two genes. Only the relevant part of the entire sequence alignment is shown, which is indicated by the bracket at the end of the alignment. Asterisks in the consensus line mark positions at which both CDSs are identical.

The partial sequence stretch of AtCML4 comprising NTs 1-300 as displayed in Figure 10 was introduced into the pOpOff2 vector designed by Wielopolska and colleagues (2005) for stable transformation of A. thaliana WT and atcml5-ko plants to generate single knock-down (atcml4-kd) and double knock-down / knock-out (atcml4-kd / atcml5-ko) plants, respectively. This vector allows for expression of a hairpin RNA of desired sequence under the control of a dexamethasone-inducible pOp promoter (Craft et al. 2005). This hairpin RNA is the basis for the post-transcriptional silencing of gene expression by RNAi, which is an important defence mechanism in plants as reaction to virus infection (reviewed in Susi et al. 2004). The RNAi-based reduction of transcript abundance can result in a significant decrease in the concentration of the protein encoded by the respective mRNA.

After transformation of the plants and several rounds of selection via growth on Hygromycin B-containing medium, two lines of each genotype were chosen for further analyses. A plant line stably transformed with the pOpOff2 vector harbouring the CDS of firefly luciferase (pOpOff2-LUC) was used as vector control in all assays. In order to exclude the possibility of DMSO, the solvent for dexamethasone, having any impact on plant cultivation, all assays were concomitantly performed on medium containing dexamethasone and on medium containing an equal amount of DMSO.

The plants were analysed under standard growth conditions to determine, whether the mutant lines displayed defects in development. For that, plants were cultivated in a horizontal and a vertical fashion for 21 days each. Since no differences between either *atcml4-kd* or *atcml4-kd/atcml5-ko* lines and the control plants could be detected, growth under different stress conditions was examined. In order to analyse hypocotyl elongation, seedlings were cultivated in the dark as described in 2.2.1.2. Additionally, phenotypic differences upon cultivation under salt stress (100 mM NaCl), osmotic stress (200 mM mannitol) or hormone influence (15 nM IAA) were analysed. However, no significant differences between the mutant lines and the control lines could be detected under any cultivation condition. Shoot growth under prolonged cultivation conditions could not be analysed, because RNAi induction by dexamethasone is not feasible in a soil-based plant cultivation system.

A potential function-related phenotype can also be caused by overexpression of genes. For this reason, *A. thaliana* WT plants were stably transformed with pBIN19-ANX constructs to express either *AtCML4* or *AtCML5* under the control of the endogenous promoter of the *UBIQUITIN* gene (see 2.1.3). This promoter is active throughout the whole plant and since it is an endogenous promoter, silencing effects on transcriptional level as observed for the viral 35S-promoter can be avoided. In addition, *atcml5-ko* and WT plants were transformed with a pBIN19-ANX construct to express *AtCML5* under control of its endogenous promoter in order to generate a rescue line as control and a mild overexpressor line for further phenotypic analyses. Though the plants have already been subjected to two rounds of selection, phenotypic analyses could not be carried out due to a lack of time.

### 3.2.6 Detection of endogenous AtCML4 protein levels with monoclonal antibodies

While a lack of transcript should guarantee the absence of protein, complete confirmation can only be obtained by analyses of protein levels. This is especially important in case of inducible RNAi lines. However, for both AtCML4 and AtCML5 no sufficiently selective antibody was available. The only polyclonal antibody that would detect purified, recombinant AtCML5<sub>29-215</sub> did not have sufficient specificity towards AtCML5 and western blots on

concentrated leaf extracts would yield signals from several bands that did not correspond to the expected size of AtCML5. Therefore, monoclonal peptide antibodies against regions specific to either AtCML4 or AtCML5 were raised (Monoclonal Antibody core facility HelmholtzZentrum Munich, Neuherberg, Germany).

| AtCML4 | 1   | MVRVFLLYNLFNSFLLCLVPKKLRVFFPPSWYIDDKNPPPPDESETES 48                       |
|--------|-----|---------------------------------------------------------------------------|
| AtCML5 | 1   | MVRIFLLYNILNSFLLSLVPKKLRTLFPLSWFDKTLHKNSPPSPSTMLPSPSSSSAPTKR 60           |
|        |     |                                                                           |
| AtCML4 | 49  | PVDLKRVFQMFDKNGDGRITKEELNDSLENLGIFMPDKDLIQMIQKMDANGDGCVDIN 106            |
| AtCML5 | 61  | IDPSELKRVFQMFDKNGDGRITKEELNDSLENLGIYIPDKDLTQMIHKIDANGDGCVDID 120          |
|        |     | * ****************                                                        |
| AtCML4 | 107 | EFESLYGSIVEEKEEGDMRDAFNVFDQDGDGFITVEELNSVMTSLGLKQGKTLE 160                |
| AtCML5 | 121 | EFESLYSSIVDEHHNDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLD 180          |
|        |     | ***** *** * ** ** *********************                                   |
| AtCML4 | 161 | CCKEMIMQVDEDGDGRVNYKEFLQMMKSGDFSNRS 195                                   |
| AtCML5 | 181 | GCKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSN 215<br>** ***** **************** * ** |

В

А



Figure 11: Testing of monoclonal anti-AtCML4 antibodies. (A) Sequence alignment of AtCML4 and AtCML5 amino acid sequences with markups for the sequence stretches within each protein, which monoclonal peptide antibodies have been raised against. (B) Western blot analysis to test specificity and sensitivity of two anti-AtCML4 antibody clones, 28C11 and 15A3-131. Both antibodies detected recombinant GST-tagged AtCML4<sub>21-195</sub> protein purified on glutathione sepharose 4B, but did not show cross-reactivity for similarily purified GST-AtCML5<sub>21-215</sub>. In WT *A. thaliana* crude leaf extracts, endogenous AtCML4 could not be detected. Compared to clone 28C11, the signals derived from antibody clone 15A3-131 marked more protein bands at lower molecular range than the 47 kDa of full-length fusion construct, which correspond to degradation products that have been observed to occur during purification of the fusion proteins. It also showed a higher intensity at the position the full-length fusion protein is expected to migrate (red box).

The two peptides identified as suitable targets for antibody production were chosen according to their antigenicity and whether they would allow for sufficient specificity of the corresponding antibodies to reduce off-target recognition. In accordance, the target peptides for both proteins were located in regions, characterised by low similarity between AtCML4 and AtCML5 (see grey boxes, Figure 11 A). Due to difficulties with the hybridoma cell lines used for production of the anti-AtCML5 antibodies, only final anti-AtCML4 antibodies from two different cell lines could be obtained (see Figure 11 B).

After initial screenings of preliminary antibody clones with regard to their specificity and cross-reactivity, two clones, 28C11 from rat and 15A3-131 from mouse, were established and tested further. Both antibodies detected GST-AtCML4<sub>21-195</sub>, resulting in a signal at about 47 kDa and showed a sufficient degree of specificity, since no signal could be detected for the lanes loaded with comparable amounts of purified GST-AtCML5<sub>21-215</sub>. Unfortunately, detection of endogenous amounts of AtCML4 in crude leaf extracts of WT *A. thaliana* was not possible. A potential reason could be the very low expression levels of AtCML4 as predicted by different Arabidopsis gene expression databases relying on microarray bulk data (see Table 8).

#### 3.2.7 Promoter activity analysis for AtCML4 and AtCML5

Dissection of promoter activity of a gene can provide valuable information that might help elucidate the potential function of the corresponding protein based on tissue- and/or developmental stage-specific expression of the gene.

Several databases (see 2.2.3) were screened for information regarding the spatial and temporal patterning of gene expression, promoter activity in response to biotic and abiotic stimuli and the *cis*-elements identified in the promoter sequence of *AtCML4* and *AtCML5*. The most relevant are listed in Table 8.

**Table 8:** *In silico* **analysis of** *AtCML4* **and** *AtCML5* **expression levels and promoter sequence.** Microarray data for organ-specific expression were supplied by the Transcriptome Variation Analysis Database, whereas information on promoter *cis*-elements is derived from the Arabidopsis *cis*-regulatory element database (see 2.2.3).

|                                 | Organ                                                  | Absolute normalised expression counts |                                        |             |  |  |  |
|---------------------------------|--------------------------------------------------------|---------------------------------------|----------------------------------------|-------------|--|--|--|
|                                 | Organ                                                  | A                                     | tCML4                                  | AtCML5      |  |  |  |
|                                 | Flowers                                                |                                       | 3-12                                   | 1013-1881   |  |  |  |
|                                 | Sepals (flower 3)                                      |                                       | 1                                      | 3580        |  |  |  |
| u                               | Petals (flower 3)                                      |                                       | 1                                      | 6288        |  |  |  |
| ssio                            | Anthers (flower 1)                                     |                                       | 2                                      | 5235        |  |  |  |
| pre                             | Siliques (without seeds)                               |                                       | 0-16                                   | 2385-9493   |  |  |  |
| exl                             | Hypocotyl (1-day seedling)                             |                                       | 12                                     | 2407        |  |  |  |
| rgan-specific                   | Apical meristem with adjacent tissues (1-day seedling) |                                       | 48                                     | 1280        |  |  |  |
|                                 | Senescent petiole                                      |                                       | 0                                      | 4962        |  |  |  |
|                                 | Senescent vein                                         |                                       | 1                                      | 5586        |  |  |  |
| 0                               | First elongated internode                              |                                       | 10                                     | 2638        |  |  |  |
|                                 | Root apex                                              |                                       | 66                                     | 1344        |  |  |  |
|                                 | Root (without apex)                                    |                                       | 71                                     | 2927        |  |  |  |
|                                 | Dry seeds                                              |                                       | 0                                      | 54          |  |  |  |
|                                 | Leaf petiole                                           |                                       | 16-22                                  | 229-336     |  |  |  |
|                                 |                                                        |                                       |                                        |             |  |  |  |
|                                 | AtCML4                                                 |                                       | AtCML5                                 |             |  |  |  |
| S                               | ATB2/AtbZIP53/AtbZIP44/GB                              | F5 BS in                              | Bellringer/replumless/pennywise BS1 IN |             |  |  |  |
| Promoter<br><i>cis</i> -element | ProDH                                                  |                                       | AG                                     |             |  |  |  |
|                                 | ARF1 binding site motif                                |                                       | GATA promoter motif [LRE]              |             |  |  |  |
|                                 | RAV1-A binding site motif                              |                                       | RAV1-A binding site motif              |             |  |  |  |
|                                 | W-box promoter motif                                   |                                       | MYB4 binding                           | site motif  |  |  |  |
|                                 |                                                        |                                       | SOULREP3 bin                           | nding motif |  |  |  |

High expression levels of *AtCML5* were found in a variety of organs with the exception of dry seeds (54) and leaf petioles (229-336), in which expression was significantly lower. Peak values of normalised expression were found in petals (6288), siliques (up to 9493) and senescent veins (5586). By contrast, *AtCML4* is generally expressed to a much lower extent than *AtCML5*, showing highest expression in the apical meristem (48) and in root tissue (66-71).

The promoters for *AtCML4* and *AtCML5* as listed in the Arabidopsis *cis*-regulatory element database (see 2.2.3) comprise 478 and 2910 base pairs, respectively. Hence, the amount of

detected *cis*-elements is correspondingly smaller for *AtCML4*. The identified motifs indicated *AtCML4* to be regulated by auxin (ARF1 binding site motif), abscisic acid (RAV1-A binding site motif, W-box promoter motif), as well as transcription factors of the bZIP family under hypoosmolarity conditions (ATB2/AtbZIP53/AtbZIP44/GBF5 BS in ProDH). The potential promoter sequence of *AtCML5* contains a variety of *cis*-elements, of which the most abundant ones indicated that the gene might also be regulated by abscisic acid (RAV1-A binding site motif) and could be involved in light-dependent processes (GATA promoter motif, SOULREP3 binding motif, MYB4 binding site motif). Additionally, a sequence stretch known to be bound by the proteins BELLRINGER, REPLUMLESS and PENNYWISE had been identified, which would link *AtCML5* expression to patterning processes in fruit, shoot and flower. Judging from the *cis*-elements, *AtCML4* seems to be controlled mainly by phytohormones, whereas the *AtCML5* promoter region is characterised by several binding motifs involved in light-dependent regulation. Hence, databases were screened for potential up- or down-regulation of *AtCML4* and *AtCML5* in response to abiotic stresses and hormones (Table 9).

**Table 9: Response of** *AtCML4* and *AtCML5* promoter activity to hormone influence and abiotic stress stimuli. The listed changes in expression level compared to untreated control samples were provided by the AtGen Express Visualization Tool (see 2.2.3).

|                             | Hormono                                           | Expression level compared to control samples |                           |  |  |  |  |  |
|-----------------------------|---------------------------------------------------|----------------------------------------------|---------------------------|--|--|--|--|--|
| nse                         |                                                   | AtCML4                                       | AtCML5                    |  |  |  |  |  |
| ods                         | Abscisic acid (10 µM)                             | Unaffected                                   | Elevated                  |  |  |  |  |  |
| one res                     | 1-aminocyclopropane-1-<br>carboxylic acid (10 μM) | Unaffected                                   | Decreased                 |  |  |  |  |  |
| Horme                       | Brassinolide (10 nM)                              | Unaffected                                   | Elevated                  |  |  |  |  |  |
|                             | 3-indol acetic acid $(1 \mu M)$                   | Unaffected                                   | Elevated                  |  |  |  |  |  |
|                             | Methyl-jasmonate (1 µM)                           | Unaffected                                   | Decreased                 |  |  |  |  |  |
|                             |                                                   |                                              |                           |  |  |  |  |  |
| Stress stimulus<br>response | Stress stimulus                                   | Expression level compared to control samples |                           |  |  |  |  |  |
|                             | Stress stillulus                                  | AtCML4                                       | AtCML5                    |  |  |  |  |  |
|                             | Cold                                              | Unaffected                                   | Elevated (root tissue)    |  |  |  |  |  |
|                             | Osmotic                                           | Unaffected                                   | Elevated (root tissue)    |  |  |  |  |  |
|                             | Drought                                           | Unaffected                                   | Elevated (root tissue)    |  |  |  |  |  |
|                             | Heat                                              | Unaffected                                   | Decreased (aerial tissue) |  |  |  |  |  |

According to the AtGen Express Visualization Tool (see 2.2.3), AtCML4 expression is unaffected by treatments with different hormones or by influence of abiotic stress stimuli. Considering the presence of auxin- and abscisic acid-responsive *cis*-elements in the *AtCML4* promoter region, the lack of response to treatment with these hormones is surprising. By contrast, AtCML5 expression was found to be elevated, when abscisic acid (ABA), brassinolide or auxins (AUX, 3-indol acetic acid) were applied. ABA is often involved in abiotic stress response, but also plays a role in root architecture development (reviewed in Harris 2015). Brassinolide and AUX are key hormones in the regulation of growth processes, especially in mediating growth by cell elongation (reviewed in Vaughan-Hirsch et al. 2017, Clouse 1996). In this respect, the fact that AtCML5 expression is elevated upon treatment with ABA corresponds to its enhanced expression upon cold, osmotic and drought stress Down-regulation of AtCML5 expression under influence of either conditions. 1-aminocyclopropane-1-carboxylic acid (ACC) (reviewed in Bleecker et al. 1997) or methyl-jasmonate (Chen et al. 2017), which are both directly or indirectly (ACC is a biosynthetic precursor of ethylene) involved in senescence promoting processes (reviewed in Bleecker et al. 1997, Chen et al. 2017), further indicated a role of AtCML5 in growth-promoting processes.

Overall, whereas *AtCML5* seemed to be almost ubiquitously expressed and controlled by many different factors of abiotic and biotic character, *AtCML4* expression levels are very low and the lack of response to stimuli of any kind raised the question as to whether it is actively involved in any cellular processes at all. In order to compare the *in silico* data to *in vivo* information on the expression of both genes, a promoter activity reporter assay was conducted.

One possible approach to analyse promoter activity of a gene *in vivo* is to express a reporter protein under the control of the respective promoter. Different reporter genes, e.g. GLUCORONIDASE (GUS), FIREFLY LUCIFERASE (LUC) or fluorescent proteins can be chosen with different advantages and disadvantages. To analyse the promoter activity of *AtCML4* and *AtCML5*, 1822 nucleotides (for *AtCML4*) and 1123 nucleotides (for *AtCML5*) upstream of the respective CDS were cloned into a pBIN19-ANX plasmid to drive the expression of a LUC gene (*pAtCML4*::LUC, *pAtCML5*::LUC) (see 2.1.3). *A. thaliana* WT plants were transformed using these plasmids and selected to yield several independent lines for each genotype via their plasmid-encoded BASTA resistance. The cloned regions were chosen according to promoter sequence predictions in the Aramemnon and AGRIS

databases (see 2.2.3) and comprise putative promoter regions and 5'UTRs as well as the *cis*-elements listed in Table 8. Differences in the promoter region length as displayed in the databases result from the application of different prediction methods for promoter sequences.

Plants sterilely cultivated for either 5, 14 or 28 d were infiltrated with a 20  $\mu$ M aqueous (D)-luciferin (LUCIFERASE substrate) solution under vacuum application, arranged on a moisturised glass plate and subsequently analysed with an LAS4000 ImageQuant system (see 2.2.1.14).



**Figure 12:** LUCIFERASE activity in *pAtCML4*::LUC *A. thaliana* plants. Analysis of (A, B) 28 d-old, (C-E) 14 d-old and (F-H) 5 d-old plants expressing *LUC* under control of the *AtCML4* promoter. Both plants in (A) and (B) showed a strong LUC activity in the leaf veins, the pedicel (blue arrows) and distinct parts of the root including the primary root and lateral roots of larger diameter than the majority of lateral roots. In addition, foci of luminescence could be detected at different positions along the lateral roots (A, B, red arrows). 14 d-old seedlings also showed high LUC activity in root and hypocotyl (C-E) accompanied by luminescence foci all along the primary root (C, E, red arrow). Luminescence also emanated from the centre of the rosette, along the petioles and also from the veins (E), as well as along the margins of some leaves at the transition zone between petiole and leaf blade (C, D, blue circle). In accordance, 5 d-old seedlings showed strong luminescence in the upper primary root, the hypocotyl, the hypocotyl apex (F-H, red circle) as well as the cotyledon veins (G, H).



**Figure 13: LUCIFERASE activity in** *pAtCML5***::LUC** *A. thaliana* **plants.** Analysis of (**A**, **B**, **H**, **I**) 28 d-old, (**C-E**) 14 d-old and (**F**, **G**) 5 d-old plants expressing *LUC* under control of the *AtCML5* promoter. Adult *pAtcml5*::LUC plants displayed strong LUC activity in the sink organs, which was restricted to the primary root and some lateral roots. The petioles and veins as well as the area of petals and sepals (**A**, blue circle) were also marked by LUC activity. Additionally, luminescence foci occurred at the leaf margins labelling positions at which hydathodes are located (**A**, **B**, blue arrows, magnified in **H**, **I**). 14 d-old plants showed strong LUC activity in the primordial root, hypocotyl, petioles and leaf veins, 5 d-old plants showed strong LUC activity in the primordial root, hypocotyl, petioles and leaf veins, 5 d-old plants showed strong LUC expression at the leaf apex (**F**, **G**, green arrows).

*pAtCML4::*LUC and *pAtCML5::*LUC seedlings after 5 d of cultivation showed a similar LUC activity distribution in primordial root, hypocotyl, petioles and veins. In both cases LUC activity was high at the hypocotyl apex, where the petioles diverge and which later forms the rosette centre (see Figure 12 F-H, Figure 13 F, G, red circle). This observation already indicated that the promoters of *AtCML4* and *AtCML5* are active in the vascular tissue or adjacent cells. The major difference between the two was a strong expression in *pAtCML5::*LUC at the leaf apex (see Figure 13 F, G, green arrows).

A similar distribution of promoter activity could be observed in 14 day-old seedlings, but *AtCML4* promoter activity seemed less pronounced within the leaf veins and the roots compared to the *AtCML5* promoter (compare Figure 12 D and Figure 12 E). However, direct comparison of expression levels is difficult, due to the non-quantitative character of the assay. At this developmental stage, *pAtCML4*::LUC seedlings also showed LUC activity at the basal leaf margins close to the transition zone to the petiole (see Figure 12 C, D, blue circle).

pAtCML4::LUC adult plants displayed LUC activity in roots and the vascular system extending from petioles to leaf veins and through the inflorescence stem to the pedicels and petals (see Figure 12 A, blue arrows). The plant displayed in Figure 12 B also showed expression at the basis of cauline leaves, and flowers (blue arrows), but expression in the shoot could not be detected. This might be due to an increased shoot diameter compared to the plant shown in Figure 12 A, resulting in reduced signal intensity in tissues localised in a proximal part of the organ, e.g. the vascular system. pAtCML5::LUC plants also showed expression in cauline leaves and sepals (see Figure 13 A, blue circle), as well as the shoot (data not shown). LUC expression in root tissue was similar for pAtCML4::LUC and pAtCML5::LUC plants, characterised by expression in the primary root and several lateral roots, whereas the majority of lateral roots showed no expression at all or only localised in foci at distinct positions along the root length (see Figure 12 B, Figure 13 A, B, red arrows). One feature only observed in plants expressing LUC under AtCML5 promoter control, was the occurrence of luminescence signals in distinct foci along the leaf margins (see Figure 13 A, B, magnified in H, I, blue arrows), which correspond to hydathodes. Hydathodes are a special type of opening in the terminal leaf tissue or at trichome tips (trichome hydathodes), which is characterised by the involvement in active or passive secretion of water in liquid form, termed guttation (Sitte et al. 2002).

## **3.3** Phylogenetic analysis of CMLs harbouring a signal-anchor sequence similar to AtCML4 and AtCML5 in the green lineage

Closely connected to the function of AtCML4 and AtCML5 is the question as to when in the evolutionary history of the green lineage, these  $Ca^{2+}$  sensors at endosomal membranes emerged. The high degree of sequence conservation in the N-terminal region of both proteins as depicted in Figure 1 allowed further analysis, how far the existence of CMLs with such a targeting sequence could be traced back in the plant kingdom.

In an initial analysis (Ruge *et al.* 2016), protein sequences of AtCML4 and AtCML5 were applied in a screening for sequentially similar protein sequences in the species of the green lineage, by using a reverse best-hit BLAST approach. This led to the identification of three populations of protein sequences across different plant families that were distinguished by the sequence of the N-terminal extension rather than the sequence of the CAM-domain. All these proteins share strong similarities in the most N-proximal part of the sequence, the signal-anchor domain. However, they differ in the variable region. Due to their significant sequence similarity in this sequence part to either AtCML4 or AtCML5, two of these groups could be unequivocally termed "AtCML4-like" and "AtCML5-like" proteins, respectively. These proteins were only detected in members of the Brassicaceae family. The third group was termed "AtCML4\_5-like" proteins, because the variable sequences in this group shared overall much less similarity and could not be closely correlated to either AtCML4 or AtCML5.

During a further analysis, proteins were found in the databases, which also contained a highly similar N-terminal signal-anchor, but displayed a high degree of similarity to either AtCML3 or AtCML7 in the CAM-domain. CML3 and CML7 in *A. thaliana* are highly similar in their CAM-domain and lack the N-proximal region present in AtCML4 or AtCML5. Therefore, the analysis was extended to include the sequence of AtCML3 to find AtCML3-like proteins harbouring an AtCML4\_5-like N-terminus, with the specific characteristics outlined in Figure 1. This led to the identification of AtCML3-like and AtCML7-like proteins with a signal-anchor domain. Furthermore, the collected sequences were analysed in an MSA to identify a consensus for the conserved sequence stretch in the N-terminus of all the protein sequences retrieved by this approach. This consensus was then used as query in a similar search, in order to identify potential CMLs that do not share sufficient similarity in the region of their CAM-domain to be identified by submitting the sequences of AtCML3, AtCML4 or AtCML5 as query in a BLAST search, but still harbour an AtCML4\_5-like N-terminus.
Appendix III provides a list of all sequences retrieved in this approach with their sequence, corresponding plant species, family and order, as well as their name as depicted in the phylogenetic tree (see Figure 14). After analysing the sequences in an MSA (see Appendix IV) and removal of gap-containing positions for reconstruction of the phylogenetic tree, identical sequences were removed from the data set prior to tree reconstruction. The remaining sequence was given a special name, by which all species also possessing the respective protein can be identified using the list in Appendix III (e.g. Bna1Bol2, representing BraNaC5L1 and BraOlC5L2). AtCML24 (AraThC24) was chosen as outgroup, because it does not belong to sub-group VII within the CMLs of *A. thaliana*, and is therefore sufficiently phylogenetically different to serve as outgroup allowing to root the tree. Applying the method of maximum-likelihood, phylogenetic relations between the protein sequences from the data set were inferred (Figure 14).



Figure 14: Maximum-likelihood tree depicting the relative similarity between AtCML3-, AtCML4-, AtCML5-, AtCML6- and AtCML7-like proteins with an AtCML4\_5-like signal-anchor sequence in different plant species. The proteins in the tree could be grouped according to their similarity to AtCML4 and AtCML5 (restricted to Brassicaceae and Cleomaceae) or AtCML3 and AtCML7 with respect to their CAM-domain. Only one protein with similarity to AtCML6 was identified (ElaGuC6L). With the exception of RapSaC3L2 (dark grey box), no AtCML3- or AtCML7-like proteins harbouring an AtCML4\_5-like signal-anchor sequence could be identified in species of the Brassicaceae family. The corresponding plant families and orders for the represented species are depicted in blue (dicots), green (early-diverging dicots) and red (monocots). AtCML24 (AraThC24) served as outgroup to root the tree. Probability values for the nodes were retrieved by rapid bootstrap analysis with 100 repetitions and are depicted colour-coded.

Dotted or continuous blue lines in the tree group proteins according to the different plant families and plant orders. CMLs harbouring a conserved AtCML4 5-like N-terminal domain could be identified in many different dicot plant species as well as some monocots, namely Musa accuminata subsp. malaccensis, Elaeis guineensis, Phoenix dactylifera and Dendrobium catenatum (see Figure 14, red labels). In all of them the N-proximal region preceding the CAM-domain includes the highly conserved N-terminal signal-anchor followed by a less conserved variable region. The preservation of this sequence among distantly related angiosperm orders supports its biological relevance. Interestingly, only in species of the Brassicaceae family orthologues for both AtCML4 and AtCML5 were identified. Species belonging to other plant families were found to only harbour AtCML3-like, AtCML7-like or, in one case, AtCML6-like (ElaGu6L) proteins with a similar N-terminal signal-anchor. These families range from Carricaceae (CarPaC3L, Figure 14, light grey box), a Brassicales family, over the phylogenetically distant Nelumbonaceae and Papaveraceae, early-diverging eudicots (see Figure 14, green labels), to some monocot families (see Figure 14, red labels). The only exception is *Tarenava hassleriana*, which was found to contain one protein similar to AtCML4 and AtCML5 (TarHaC4 5L). However, since it shares a comparable overall similarity with AtCML4 (88.7 % similarity) and AtCML5 (86.1 % similarity) alike, it could not be unambiguously correlated with one of them and was thus termed to be AtCML4 5-like. The majority of angiosperm families contain AtCML3-like and AtCML7-like proteins with this specific signal-anchor, instead of AtCML4, AtCML5 and their orthologues. Divergence of the Brassicaceae and Cleomaceae gave rise to AtCML4-, AtCML5- and AtCML4 5-likes, whereas AtCML3- and AtCML7-likes lost the N-terminal sequence extension. Among the analysed angiosperm species the preservation of the paralogous pair of AtCML4 and AtCML5 and their homologues is unique among the members of the Brassicaceae family. Some of these species even contain several copies of both paralogues, e.g. Brassica napa or Camelina sativa. For both AtCML4- and AtCML5-likes, sequence features within the variable part of the N-terminal extension (see Figure 1) and the CAM-domain (see Appendix IV), which are specific to the respective orthologue group, can be found.

Sequence analysis of the conserved part of the N-terminus in the proteins depicted in Figure 14 led to the generation of a consensus sequence, which unravelled a difference between the AtCML4-like and AtCML5-likes in the Brassicaceae species compared to most of the proteins from other organisms. The sequences of ElaGuC3L2, CajCa3L1, CamSaC4L1, CamSaC4L2 and MusAcC3L5 were excluded from the analysis, for they contained additional residues

marking them as outliers, and RapSaC3L2 was omitted, due to its lack of the residues forming the TMD. The resulting sequence logo is shown in Figure 15.



**Figure 15:** Sequence logo of the conserved AtCML4\_5-like N-terminus in the analysed proteins. With the exception of RapSaC3L2, CajCa3L1, CamSaC4L1, CamSaC4L2, MusAcC3L5, ElaGuC3L2 and AraThC24 all proteins depicted in the phylogenetic tree (see Figure 14) were analysed in an MSA and a sequence logo covering the highly conserved region ranging from position 7 to 42 was generated with the WebLogo server tool (see 2.2.3). The residues constituting the TMD were determined by Tmpred server (see 2.2.3). Except for proteins found in *J. Curca, H. Annuus* and *C. follicularis*, all analysed proteins from non-Brassicaceae families were found to share the presence of four residues, preceding the highly conserved N-terminus found in the Brassicaceae species. The sequence logo also outlines the high degree of conservation for basic residues at positions 31, 32 and 34, which determine the topology of the proteins within the membrane.

The sequence logo showed that the highly conserved N-terminus characterising all the analysed proteins starts with residue 7 of 42 and exists in two different variants. In case of all proteins of the Brassicaceae species, as well as *Jatrophus curca*, *Helianthus annuus* and *Cephalotus follicularis* the conserved part starts with position 11, whereas the other variant is preceded by four additional residues and is the dominant form detected in proteins of species outside of the Brassicaceae family. Some of these proteins also contain more additional N-terminal residues, but they are not widely conserved. Since residues 11 to 30 are sufficient to serve as functional signal-anchor, the function of these four additional residues remains unclear, even though position 10 is predicted to also be part of the membrane-spanning section of the signal-anchor in the respective proteins.

In some species that fall within the phylogenetic distribution indicated by the tree, no CML with an AtCML4\_5-like N-terminus could be identified in the database: *Asparagus officinalis*, *Beta vulgaris subs. vulgaris*, *Citrullus lanatus*, *Morus notabilis*, *Phalaenopsis equestris*.

# 4. Discussion

Ca<sup>2+</sup> serve as second messengers in animal and plant cells and although both systems have developed various and, in case of CAM, conserved sets of  $Ca^{2+}$ -sensing proteins, the enormous diversity of CMLs is a plant-specific trait (Zhu et al. 2015, Plattner et al. 2015). Sequence diversity of CMLs is high and many harbour sequence stretches in addition to their CAM-domain, potentially affecting their sub-cellular localisation. Members of this protein family have been detected at the plasma membrane, the nucleus and for certain CMLs; direct correlations between their sequence and their sub-cellular localisation in mitochondria or peroxisomes have been made (Benschop et al. 2007, Chigri et al. 2012, Flosdorff 2014). The relevance of the N-terminal sequence extension of AtCML5 for its localisation in vesicles labelled by GmMAN1 and AtARA6 had previously been shown (Flosdorff 2014). However, it was hitherto unknown that the first 24 amino acids of AtCML4 and AtCML5 harbour features characteristic of a signal-anchor domain, comprising a TMD (amino acids 1-20) with an electrostatic charge gradient with a positive net charge on its C-proximal end (see Figure 1). Further, this sequence stretch is highly conserved among orthologues of AtCML4 and AtCML5 in other species belonging to the Brassicaceae family. According to analyses by Harley, Heijne and colleagues, the features of this conserved N-terminus suggested a topology for AtCML4 and AtCML5, in which the CAM-domain of both proteins protrudes into the cytoplasm (Heijne 1994, Harley et al. 1998). The signal-anchor sequence serves as translocation signal for the ER recognised by the SRP-complex and as membrane anchor at the same time (High et al. 1991). The topology hypothesis was experimentally proven in a protease protection assay on isolated membrane fractions, in which the YFP tag of a C-terminally labelled AtCML5 fusion protein was not protected from the protease activity (compare left with right lane in Figure 5). The similar behaviour of a comparable fusion construct with only the signal-anchor domain of AtCML5 instead of the full-length protein showed that it is indeed the N-terminus causing this topology.

It is obvious to assume a similar topology for AtCML4, since it shares substantially high sequence similarity with AtCML5 within its 28 N-terminal amino acids and was found to be localised in the same compartment (see Figure 2 A). Quantitative analysis of AtCML5-YFP localisation in tobacco protoplasts revealed that it partially co-localises with the *cis*-Golgi marker GmMAN1-mCherry and that a slightly bigger fraction showed overlap with the late PVC marker AtARA6-mCherry (see Figure 4). Initial analyses of the sub-cellular localisation

of GmMAN1 have revealed that there is a major population of the protein labelling the *cis*-Golgi, whereas smaller fractions also occurred in medial and *trans*-Golgi as well as the TGN/EE (Saint-Jore-Dupas et al. 2006). Further, it has been found that under overexpression conditions, AtARA6 also labels TGN structures (Bottanelli et al. 2012), potentially rendering its co-localisation with AtCML5 artificial. Probably, the main localisation for AtCML5 is in Golgi cisternae membranes. This would be corroborated by the unusually large diameter of the structures observed by YFP-fusion expressions of AtCML4 and AtCML5 in Arabidopsis (see Figure 2) and tobacco cells (data not shown) under 35S- and endogenous promoter-driven expression conditions. Similar observations in Arabidopsis had previously been made for structures labelled by the Golgi cisternae proteins AtGNOM (Naramoto et al. 2014) and AtERD2 (Boevink et al. 1998) as well as a constitutive GTP-binding form of the MVB protein Rab5-GTPase AtARA7 (Jia et al. 2013). However, the latter example was characterised by enhanced homotypic fusion and therefore does not resemble the native state of the system; AtARA7-labelled structures usually appear as punctae in microscopic analyses (Ueda et al. 2004, Haas et al. 2007). It has been shown that Ca<sup>2+</sup> and pH are critical determinants for the binding of soluble cargo by VSRs; however, Ca<sup>2+</sup> seem to be the major component in this system (Watanabe et al. 2002, Kirsch et al. 1994). The ER in plants is assumed to serve as a major  $Ca^{2+}$  storage compartment, probably with  $[Ca^{2+}]_f$  within the high micro molar range in its lumen (Stael et al. 2012). This is emphasised by the presence of several Ca<sup>2+</sup>-ATPases in the ER membrane (Hong et al. 1999, Liang et al. 1997). Analyses with a  $Ca^{2+}$  sensor construct anchored in the membranes of the Golgi stack have revealed the resting concentration in the lumen to be approx. 700 nM, which is several times lower than the assumed  $[Ca^{2+}]_f$  in the ER lumen (Ordenes *et al.* 2012). Considering the observation that cargo binding by VSRs occurs in ER and cis-Golgi and that cargo is released in the TGN (Künzl *et al.* 2016), it is likely to assume that the  $[Ca^{2+}]_{f}$  in the TGN lumen is even lower than in the Golgi. Concomitantly, the luminal pH in ER, Golgi and TGN has been shown to follow a gradient beginning at 7.1-7.5 in the ER and ranging from 6.8-6.9 in the Golgi to 6.1-6.5 in the TGN (Shen et al. 2013, Martinière et al. 2013). Whereas the influx of protons from the cytoplasm mediated by the vacuolar H<sup>+</sup>-ATPase in the TGN membranes explains the low pH in the TGN (Dettmer et al. 2006), decrease in luminal Ca<sup>2+</sup> probably occurs via yet unidentified channels in Golgi and TGN membranes. Since this influences cargo trafficking, it can be considered a constitutive process and would explain the 4-5 times higher resting  $[Ca^{2+}]_{f}$  in the vicinity of AtCML5-positive compartments compared to the  $[Ca^{2+}]_{f}$  measured around chloroplasts or in the entire cytoplasm (see Figure 6). Measurements of luminal Golgi  $[Ca^{2+}]_f$  resulted in similarly unsteady graphs in comparison to measurements of cytosolic  $[Ca^{2+}]_f$  (Ordenes *et al.* 2012) as retrieved by the AtCML5<sub>1-28</sub>-YFP-AEQ sensor in this work (see Figure 6, blue and green graphs), indicating a compartment-specific behaviour of the  $[Ca^{2+}]_f$ .

Although  $Ca^{2+}$  channels have not yet been identified in Golgi, TGN or MVB membranes, the  $Ca^{2+}/Mn^{2+}$ -selective cation pump AtECA3 has been found to be localised in Golgi stacks (Mills *et al.* 2008) and also MVBs (Li *et al.* 2008), hence showing a similar sub-cellular distribution as AtCML4 and AtCML5. Li and colleagues have proven that *eca3* mutants are characterised by increased protein secretion (Li *et al.* 2008), which can probably be explained by reduced luminal  $[Ca^{2+}]_f$  in the Golgi lumen. This might lead to premature dissociation of VSRs from their vacuole-destined cargo, which then travels to the plasma membrane by default. Since similar phenotypes were observed in *vsr* mutant plants, this indicates that VSR function is abolished or reduced when  $Ca^{2+}$  homeostasis in the Golgi is perturbed. This is further supported by the observation that activity of the  $Ca^{2+}$ -ATPase SPCA1 was found to be required for  $Ca^{2+}$ -dependent cargo binding and membrane association of the cargo receptor Cab45 in the TGN lumen of HeLa cells (von Blume *et al.* 2012).

Taking into account the sub-cellular localisation of AtCML4 and AtCML5, the measured  $[Ca^{2+}]_{f}$  in the vicinity of AtCML5-labelled structures and the fact that AtPLDy1 and AtDRP1B were identified as potential interaction partners of AtCML5 in a pull-down assay (see 3.2.2), the following working model could be envisioned describing the function of AtCML5 and potentially AtCML4 in vivo. AtCML4 and AtCML5 are located at the interface of maturation of trans-Golgi cisternae into tubulovesicular TGN structures. Here, they serve as sensors for the maturation process characterised by the efflux of Ca<sup>2+</sup> from the Golgi/early stage-TGN lumen, which is required for cargo release from VSRs concomitantly to luminal acidification (Watanabe et al. 2002, Dettmer et al. 2006). Along with cargo release, processes involving recycling of VSRs by the retromer complex (Niemes et al. 2010), formation of clathrin-coated (Teh et al. 2013) secretory vesicles and MVB maturation (Scheuring et al. 2011) coincide. AtCML5 could activate AtPLDy1 and AtDRP1B to facilitate membrane curvature by generation of phosphatidic acid from more complex lipids and fission of the thus forming membrane bottleneck, respectively, to separate the nascent vesicles from the donor membrane. Hence, AtCML5 would coordinate the luminal cargo release from VSRs with the formation of the transport vesicles, in order to avoid premature vesicle detachment. In yeast, it has been shown that  $Ca^{2+}/CAM$  is required for late stages in fusion of vesicles with vacuoles and the authors speculated on a role of CAM in triggering membrane mixing proteins (Peters et al. 1998). Ca<sup>2+</sup>/CAM has also been found to stabilise the interaction between early endosome antigen 1, a protein essential for homotypic early endosome fusion in animal cells, and membranes in COS-7 cells (Lawe et al. 2003). Therefore, an involvement of AtCML5 in vesicular trafficking processes is not unlikely. As previously described, AtCML4 and AtCML5 might not localise to the late PVC, because the observed partial overlap with AtARA6 was probably the result of artificial AtARA6 mislocalisation. Further, since TGN structures usually appear as punctae in confocal microscopic analyses (Bottanelli et al. 2012, Künzl et al. 2016, Robinson et al. 2011), it is also possible that AtCML4 and AtCML5 are exclusively localised at Golgi stacks. Similar to AtGNOM, which co-localises with the TMD of sialyl transferase from rat, a trans-Golgi marker (Naramoto et al. 2014, Boevink et al. 1998), but also influences AtPIN1 recycling to the plasma membrane (Geldner et al. 2003), AtCML5 could still interact with AtPLDy1 and AtDRP1B on the TGN membrane. This would explain the lack of co-localisation of both AtPLD1 $\gamma$  and AtDRP1B with AtCML5-YFP as displayed in Figure 8, since both potential interacting proteins showed a fluorescence pattern typical of post-Golgi compartments. However, in this scenario the partial co-localisation with AtARA6 cannot be explained. Nevertheless, the hypothesis explained above is still suited to connect the indications retrieved from the experimental data and is further supported by other aspects. AtDRP1B is very weakly expressed several parts of the plant, including hypocotyl, cotyledon and juvenile leaves (Collings et al. 2008), which were found to be characterised by a high activity of the AtCML5 promoter (see Figure 13). Hence, the identification of AtDRP1B in the pull-down assay (see 3.2.2) is likely not a false-positive hit. Further, the related protein AtDRP1A has been shown to be involved in trafficking processes and plants lacking functional AtDRP1A have defects in cell expansion and vascular continuity in leaves (Collings et al. 2008, Sawa et al. 2005). Therefore, a role of AtDRP1B in vesicular trafficking processes seems likely. AtPLDy1 was found to be expressed in different tissues with the highest levels in roots (Qin et al. 2006), which also showed high activity of the AtCML5 promoter region (see Figure 13). Further, PLDs were demonstrated to promote separation of nascent secretory vesicles from the TGN in the animal GH3 cell line (Chen et al. 1997).

The results of the *in vivo* analysis of promoter activity for *AtCML5* (see Figure 13) were partially in line with the data retrieved by *in silico* analysis of *AtCML5* expression (see Table

1 and Table 9). The high expression levels of *AtCML5* in the different organs shown in Table 8 were in accordance with AtCML5 promoter activity in the area of the central cylinder in the root, as well as the vascular and adjacent tissues. Indication for an involvement of AtCML5 in growth-affecting processes as provided by the stimulating effect of growth-promoting hormones (AUX, brassinolide) and the down-regulation of AtCML5 expression in response to negative regulators of growth (jasmonate, ACC), would not be contradicted by the results of the LUC-based promoter activity assay, showing its expression throughout almost all parts of the plant. Additionally, the presence of promoter cis-elements involved in light-response (GATA, MYB4, SOULREP3-binding motifs) and meristem function (Bellringer/replumless/pennywise BS1 IN AG) further support the indication for AtCML5 being involved in long-term growth-regulation, rather than triggering short-term responses to external or internal stimuli. However, the response to ABA in combination with the AtCML5 promoter activity detected in hydathodes (see Figure 13 H, I) renders a potential role in water homeostasis possible as well.

Comparison of AtCML4 promoter activity data as obtained by the in vivo LUC-based assay revealed a significant difference to the information received by in silico analysis in terms of tissue expression levels (compare Figure 12 to Table 8). Although expression levels could not be quantitatively assessed in the assay, AtCML4 promoter activity was sufficiently high to result in LUC levels in the analysed plants that would allow signal detection with the same detector setting parameters as for pAtCML5::LUC plants. Hence, the signal intensities between the two different reporter plant populations did not differ severely. This is in contradiction to the organ-specific expression values determined by microarray analysis as displayed in Table 8. It is possible that the promoter activity is repressed at the original AtCML4 locus and this repression is lacking at the sites of T-DNA insertion of the *pAtCML4*::LUC construct. Despite the differences between *AtCML4* and *AtCML5* expression patterns retained from in silico analysis, in vivo analysis showed that - with minor differences - both genes are expressed in the same parts of the plant, e.g. roots, leaf veins, petioles, in the developmental stages analysed. Whereas for AtCML5 speculations about potential functions supported by in vivo and in silico data can be made, the potential role of AtCML4 remains difficult to evaluate.

Unfortunately, phenotypic analysis of the single and double mutant plants analysed did not yield any conclusive results, thereby not providing any information on potential pathways AtCML4 and AtCML5 might be involved in. However, phylogenetic analysis of both proteins

revealed valuable details about the evolutionary background of these Ca<sup>2+</sup> sensors and allow for speculation about their potential impact on plant development. The main characteristic of AtCML4 and AtCML5, separating them from the other CMLs in clade VII of Arabidopsis CMLs, is the presence of signal-anchor preceding the CAM-domain (see Figure 1). The relevance of the N-terminal signal-anchor for sub-cellular targeting had previously been proven (Flosdorff 2014, Ruge et al. 2016) and in this work it was found to place AtCML4 and AtCML5 in an endomembrane-associated microdomain with a  $[Ca^{2+}]_{f}$  environment distinct of that in the cytoplasm (see 3.2.1). Hence, it was interesting to analyse whether the Ca<sup>2+</sup>-sensing function at this sub-cellular localisation was phylogenetically conserved in plants, that is, whether CMLs with a similar signal-anchor sequence could also be found in other species of the green lineage. The phylogenetic analysis (see 3.3) revealed that the occurrence of a paralogous pair of AtCML4-like and AtCML5-like proteins as found in A. thaliana was restricted to species of the Brassicaceae family (see Figure 14, on the left). The most closely related family of Brassicaceae within the Brassicales order is the Cleomaceae family, which is represented in this analysis by Tarenaya hassleriana. This species encodes only one CML with a comparable signal-anchor sequence and about equal sequence similarity to both AtCML4 and AtCML5. Hence, the gene duplication event that gave rise to the paralogous AtCML4-like and AtCML5-like proteins in the Brassicaceae probably occurred after their divergence from the other Brassicales species, but before the divergence of Brassicaceae members. The split of Brassicaceae from Cleomaceae is supposed to have occurred approx. 20 million years ago (Wikström et al. 2001) and a whole-genome duplication event that might have given rise to AtCML4 and AtCML5 occurred after the split (Schranz et al. 2006). Carica papaya, a Carricaceae species belonging to the Brassicales, also contains a CML with a homologous signal-sequence (CarPa3L, Figure 14, light grey box), but it displays more sequence similarity to AtCML3 than to AtCML4 or AtCML5. Further, CMLs with an AtCML4/5-like signal-anchor sequence were detected in plant species outside the Brassicales. However, all of them shared highest sequence similarity to either AtCML3 or AtCML7. Significantly more of these species contain an AtCML3-like rather than an AtCML7-like protein with a signal-anchor sequence, therefore an AtCML3-like protein has to be considered the phylogenetic origin of AtCML4 and AtCML5 in Brassicaceae. In addition, it is likely to assume that there was a gene duplication event within the Brassicales, leading to the emergence of two AtCML3-like proteins with a signal-anchor sequence. Then, one of the two was subject to deletions and lost the whole N-terminal sequence extension,

whereas the other was altered within the CAM-domain leading to the AtCML4/5-like protein as found in Tarenava hassleriana. An indication for the loss of the formerly present signal-anchor within one of the original AtCML3-like genes is provided by the presence of an AtCML3-like protein with degenerate N-terminal extension in Raphanus а sativus (RapSaC3L2, Figure 14, dark grey box). Its N-terminus lacks a considerable amount of residues of the TMD region (TMD displayed in Figure 15) required for membrane interaction. It might be a remnant of the described process. Analysis of the signal-anchor sequence of most proteins displayed in Figure 14 revealed that Jatrophus curca, Helianthus annuus, Cephalotus follicularis and the Brassicaceae species contain a signal-anchor domain that is four residues shorter on the N-terminal end than the one in the CMLs of all other analysed species (Figure 15). However, it is unclear why these residues were lost in the CMLs of these particular species, but only the residue at position -1 respective to the shorter signal-anchor sequence is supposed to contribute to the TMD as predicted by Tmpred (see 2.2.3). Further, none of the species other than Raphanus sativus contain an AtCML4- or AtCML5-like protein together with a signal-anchor-harbouring AtCML3- or AtCML7-like protein. Additionally, only in Brassicaceae, some species contain AtCML3-like proteins with a C-terminal peroxisomal targeting sequence similar to AtCML3 in A. thaliana (Chigri et al. 2012). This shows that the emergence of AtCML4- and AtCML5-like proteins coincided not only with a loss of the whole N-terminal sequence in AtCML3, but also with a potential change in its localisation to peroxisomes or maybe the cytoplasm (for AtCML3-like proteins without a targeting signal). Together, these findings underline the complex phylogenetic history of CML clade VII in A. thaliana, which is characterised by duplication and deletion events affecting certain protein domains or entire genes. This exacerbates the elucidation of a clear phylogenetic relationship with deductions regarding origin, localisation and function of the respective proteins.

In order to illustrate the complicated phylogenetic relationship for better understanding, Figure 16 provides an overview of the conservation of a CML with an AtCML4/5-like signal-anchor sequence across a huge variety of dicot species (blue), some early-diverging dicots (green) and even a few monocot species (red), which emphasises the evolutionary pressure on and physiological relevance of this protein.



**Figure 16: Phylogenetic tree of angiosperm orders.** The tree depicts the phylogenetic relations between the known angiosperm orders with coloured markups for those orders, in which a CML with an AtCML4/5-like signal-anchor sequence was detected. Red – monocots, green – early-diverging dicots, blue – eudicots. This tree was originally published in "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV" (The Angiosperm Phylogeny 2016) and was slightly altered and incorporated here by permission of Oxford University Press (see Appendix V).

The wide distribution over many dicot and some monocot species, together with the fact that no comparable homologue could be identified in earlier stages of plant evolution, indicates that the Golgi-targeted CMLs are required for an angiosperm-specific trait, potentially predominant in dicot species. Taking into account the expression patterns of AtCML4 and AtCML5 as found in the LUCIFERASE-based promoter activity assay (see Figure 12 and Figure 13, leaf veins and hypocotyl apex) a role for both proteins in the development of vascular tissue, especially leaf venation could be envisioned. The complexity of vein architecture, represented by the vein density per leaf area, has been shown to have risen significantly from ferns and early seed plants to angiosperms (Boyce et al. 2009). Furthermore, whereas most leaves of most monocots are characterised by several parallel primary veins with few interconnections, dicot leaves display a more hierarchical, ramified structure with several higher orders of veins and extensive interconnections and tapering towards the leaf margin also occurring in secondary veins (reviewed in Sack et al. 2013). Photosynthetic mesophyll delimits water transport and a more complex venation system improves water transport towards stomata whilst maintaining optimum water supply to the surrounding mesophyll. This leads to higher photosynthetic rates, due to improved transpiration activity (Brodribb et al. 2007). Sack and Scoffoni further mention that certain monocot families, e.g. banana family, to which *Musa accuminata* subsp. *malaccensis* belongs, have developed vein architectures similar to eudicots (Sack et al. 2013). Musa accuminata subsp. malaccensis was found to contain two AtCML3-like proteins with an AtCML4/5 signal-anchor sequence (see Figure 14, MusAcC3L4, MusAcC3L5). Whether the other species shown to contain signal-anchor-carrying AtCML3-like proteins also have eudicot-like vein systems should be further investigated. Several species falling within the phylogenetic distribution displayed in Figure 15 were found not to contain a CML with an AtCML4/5-like signal-anchor sequence (see 3.3). However, all of these species are currently in a very early annotation state, rendering sequence information retrieved from the databases less reliable as for organisms in an advanced state of genome annotation, e.g. A. thaliana, for which also experimental evidence for bioinformatically inferred annotations exists. Thus, the fact that these species seem entirely devoid of CMLs with a comparable pre-sequence, has to be considered only tentative.

The results presented here provide a basis for further analyses to determine the physiological function of AtCML4 and AtCML5 in the future. However, the lack of a visible phenotype in the mutant plants analysed under the described conditions impedes the determination of their function. In addition to the mutant lines generated in this work, a double knock-out line lacking functional *AtCML4* and *AtCML5* should be generated to avoid potential complementation effects. To assess the mutants regarding their protein levels, the monoclonal antibodies raised in this work (see 3.2.6) could be utilised. However, enriched membrane fractions should be used for analysis, since whole-plant extracts do not contain enough protein to be detected by western blot analysis with the given antibodies, at least in case of

AtCML4 (see Figure 11, leaf extract). Further, the antibodies could be used for co-immunoprecipitation experiments to either identify more potential interaction partners, or to verify AtPLD $\gamma$ 1 and AtDPR1B as binding partners in an approach different to the pull-down presented here (see 3.2.2). Also, future analyses performed with the *pAtCML5*::AtCML5<sub>1-28</sub>-YFP-AEQ sensor should be conducted in comparison to control constructs, whose expression is driven by the same promoter, to measure Ca<sup>2+</sup> signals only in those cells *pAtCML5*::AtCML5<sub>1-28</sub>-YFP-AEQ is expressed in. Additionally, prior to utilising plants expressing sensor constructs under endogenous promoter control, a calibration curve correlating relative luminescence counts and [Ca<sup>2+</sup>]<sub>f</sub> should be established for these constructs to provide precision across the whole range of physiological [Ca<sup>2+</sup>]<sub>f</sub>.

# 5. Abbreviations

| ACA                | Autoinhibited Ca <sup>2+</sup> -ATPase                |
|--------------------|-------------------------------------------------------|
| CAM                | Calmodulin                                            |
| cAMP               | Cyclic adenosine monophosphate                        |
| CAX                | Ca <sup>2+</sup> /H <sup>+</sup> -antiporter          |
| CBL                | Calcineurin B-like protein                            |
| CDS                | Coding sequence                                       |
| cGMP               | Cyclic guanosine monophosphate                        |
| CML                | Calmodulin-like protein                               |
| CNBr               | Cyanide bromide                                       |
| CNGC               | Cyclic nucleotide-gated channel                       |
| СРК                | Calcium-dependent protein kinase                      |
| ddH <sub>2</sub> O | Double de-ionised water                               |
| DMSO               | Dimethylsulfoxide                                     |
| DNA                | Deoxyribonucleic acid                                 |
| DTT                | Dithiotreitol                                         |
| ECA                | ER-type Ca <sup>2+</sup> -ATPase                      |
| EEs                | Early endosomes                                       |
| GFP                | Green fluorescent protein                             |
| gDNA               | Genomic DNA                                           |
| GLR                | Glutamate receptor                                    |
| GST                | Glutathione S-transferase                             |
| LEs                | Late endosomes                                        |
| McsS               | Mechanosensitive channel                              |
| MVBs               | Multivesicular bodies                                 |
| PAGE               | Poly acrylamide gel electrophoresis                   |
| PCR                | Polymerase chain reaction                             |
| PMCA               | Plasma membrane Ca <sup>2+</sup> -ATPase              |
| PVC                | Pre-vacuolar compartment                              |
| PVDF               | Poly vinyleden fluoride                               |
| RFP                | Red fluorescent protein                               |
| RNA                | Ribonucleic acid                                      |
| RNAi               | RNA interference                                      |
| SDS                | Sodium dodecylsulfate                                 |
| SERCA              | (Sarco)endoplasmic reticulum Ca <sup>2+</sup> -ATPase |
| siRNA              | Small interfering RNA                                 |
| TBS                | Tris-buffered saline                                  |
| UTR                | Untranslated region                                   |
| VGCC               | Voltage-gated Ca <sup>2+</sup> channel                |
| YFP                | Yellow fluorescent protein                            |
|                    |                                                       |

### 6. References

- Abbas, N., J. P. Maurya, D. Senapati, S. N. Gangappa & S. Chattopadhyay (2014) Arabidopsis CAM7 and HY5 Physically Interact and Directly Bind to the HY5 Promoter to Regulate Its Expression and Thereby Promote Photomorphogenesis. *The Plant Cell*, 26, 1036-1052.
- Ahn, H.-K., Y. W. Kang, H. M. Lim, I. Hwang & H.-S. Pai (2015) Physiological Functions of the COPI Complex in Higher Plants. *Molecules and Cells*, 38, 866-875.
- Allbritton, N. L., T. Meyer & L. Stryer (1992) Range of Messenger Action of Calcium Ion and Inositol 1,4,5-Trisphosphate. *Science*, 258, 1812-1815.
- Allen, D., Blinks & F. Prendergast (1977) Aequorin luminescence: relation of light emission to calcium concentration--a calcium-independent component. *Science*, 195, 996-998.
- Astegno, A., M. C. Bonza, R. Vallone, V. La Verde, M. D'Onofrio, L. Luoni, B. Molesini & P. Dominici (2017) Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity. *Journal of Biological Chemistry*, 292, 15049-15061.
- Baker, S. L., E. C. Butterworth & F. A. Langley (1946) The calcium and nitrogen content of human bone tissue cleaned by micro-dissection. *Biochemical Journal*, 40, 391-396.
- Bandmann, V., J. D. Müller, T. Köhler & U. Homann (2012) Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. *FEBS Letters*, 586, 3626-3632.
- Batistic, O. & J. Kudla (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. *Planta*, 219, 915-924.
- Batistič, O. & J. Kudla (2009) Plant calcineurin B-like proteins and their interacting protein kinases. *Biochimica et Biophysica Acta (BBA) Molecular Cell Research*, 1793, 985-992.
- Batistič, O., N. Sorek, S. Schültke, S. Yalovsky & J. Kudla (2008) Dual Fatty Acyl Modification Determines the Localization and Plasma Membrane Targeting of CBL/CIPK Ca(2+) Signaling Complexes in Arabidopsis. *The Plant Cell*, 20, 1346-1362.
- Bender, K. W., R. K. Blackburn, J. Monaghan, P. Derbyshire, F. L. H. Menke, C. Zipfel, M. B. Goshe, R. E. Zielinski & S. C. Huber (2017) Autophosphorylation-based Calcium Ca2+Sensitivity Priming and Ca2+/Calmodulin Inhibition of Arabidopsis thaliana Ca2+dependent Protein Kinase 28 (CPK28). *The Journal of Biological Chemistry*, 292, 3988-4002.
- Bender, Kyle W., S. Dobney, A. Ogunrinde, D. Chiasson, Robert T. Mullen, Howard J. Teresinski, P. Singh, K. Munro, Steven P. Smith & Wayne A. Snedden (2014) The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca2+ sensor in Arabidopsis. *Biochemical Journal*, 457, 127-136.
- Bender, K. W. & W. A. Snedden (2013) Calmodulin-related proteins step out from the shadow of their namesake. *Plant Physiology*, 163, 486-495.
- Bendz, M., M. Skwark, D. Nilsson, V. Granholm, S. Cristobal, L. Käll & A. Elofsson (2013) Membrane protein shaving with thermolysin can be used to evaluate topology predictors. *Proteomics*, 13, 1467-1480.
- Benschop, J. J., S. Mohammed, M. O'Flaherty, A. J. R. Heck, M. Slijper & F. L. H. Menke

(2007) Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. *Molecular & Cellular Proteomics*, 6, 1198-1214.

- Bi, X., R. A. Corpina & J. Goldberg (2002) Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. *Nature*, 419, 271-277.
- Bilkova, E., R. Pleskot, S. Rissanen, S. Sun, A. Czogalla, L. Cwiklik, T. Róg, I. Vattulainen, P. S. Cremer, P. Jungwirth & Ü. Coskun (2017) Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition. *Journal of the American Chemical Society*, 139, 4019-4024.
- Bleecker, A. B. & S. E. Patterson (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. *The Plant Cell*, 9, 1169-1179.
- Blum, H., H. Beier & H. J. Gross (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. *Electrophoresis*, 8, 93-99.
- Boevink, P., K. Oparka, S. S. Cruz, B. Martin, A. Betteridge & C. Hawes (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. *The Plant Journal*, 15, 441-447.
- Bonza, M. C., P. Morandini, L. Luoni, M. Geisler, M. G. Palmgren & M. I. De Michelis (2000) At-ACA8 Encodes a Plasma Membrane-Localized Calcium-ATPase of Arabidopsis with a Calmodulin-Binding Domain at the N Terminus. *Plant Physiology*, 123, 1495-1506.
- Boonburapong, B. & T. Buaboocha (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. *BMC Plant Biology*, 7, 1-17.
- Bottanelli, F., D. C. Gershlick & J. Denecke (2012) Evidence for Sequential Action of Rab5 and Rab7 GTPases in Prevacuolar Organelle Partitioning. *Traffic*, 13, 338-354.
- Boudsocq, M., M.-J. Droillard, L. Regad & C. Laurière (2012) Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium? *Biochemical Journal*, 447, 291-299.
- Boyce, C. K., T. J. Brodribb, T. S. Feild & M. A. Zwieniecki (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. *Proceedings of the Royal Society B: Biological Sciences*, 276, 1771-1776.
- Brini, M., R. Marsault, C. Bastianutto, J. Alvarez, T. Pozzan & R. Rizzuto (1995) Transfected Aequorin in the Measurement of Cytosolic Ca2+ Concentration ([Ca2+]c): A CRITICAL EVALUATION. *Journal of Biological Chemistry*, 270, 9896-9903.
- Brodribb, T. J., T. S. Feild & G. J. Jordan (2007) Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. *Plant Physiology*, 144, 1890-1898.
- Campe, R., C. Langenbach, F. Leissing, G. V. Popescu, S. C. Popescu, K. Goellner, G. J. M. Beckers & U. Conrath (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. *New Phytologist*, 209, 294-306.
- Chandran, V., E. J. Stollar, K. Lindorff-Larsen, J. F. Harper, W. J. Chazin, C. M. Dobson, B. F. Luisi & J. Christodoulou (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. *Journal of Molecular Biology*, 357, 400-410.
- Chattopadhyaya, R., W. E. Meador, A. R. Means & F. A. Quiocho (1992) Calmodulin structure refined at 1.7 A resolution. *Journal of Molecular Biology*, 228, 1177-1192.

- Chen, Y.-G., A. Siddhanta, C. D. Austin, S. M. Hammond, T.-C. Sung, M. A. Frohman, A. J. Morris & D. Shields (1997) Phospholipase D Stimulates Release of Nascent Secretory Vesicles from the *trans*-Golgi Network. *The Journal of Cell Biology*, 138, 495-504.
- Chen, Y., Y. Wang, J. Huang, C. Zheng, C. Cai, Q. Wang & C.-A. Wu (2017) Salt and methyl jasmonate aggravate growth inhibition and senescence in Arabidopsis seedlings via the JA signaling pathway. *Plant Science*, 261, 1-9.
- Cheng, N.-H., J. K. Pittman, T. Shigaki, J. Lachmansingh, S. LeClere, B. Lahner, D. E. Salt & K. D. Hirschi (2005) Functional Association of Arabidopsis CAX1 and CAX3 Is Required for Normal Growth and Ion Homeostasis. *Plant Physiology*, 138, 2048-2060.
- Chigri, F., S. Flosdorff, S. Pilz, E. Kolle, E. Dolze, C. Gietl & U. C. Vothknecht (2012) The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. *Plant Molecular Biology*, 78, 211-222.
- Cho, J. H., J. H. Lee, Y. K. Park, M. N. Choi & K.-N. Kim (2016) Calcineurin B-like Protein CBL10 Directly Interacts with TOC34 (Translocon of the Outer Membrane of the Chloroplasts) and Decreases Its GTPase Activity in Arabidopsis. *Frontiers in Plant Science*, 7, 1911.
- Clapham, D. E. (1995) Calcium signaling. Cell, 80, 259-268.
- Clouse, S. D. (1996) Plant Chromosomes: Brassinosteroids in the spotlight. *Current Biology*, 6, 658-661.
- Collings, D. A., L. K. Gebbie, P. A. Howles, U. A. Hurley, R. J. Birch, A. H. Cork, C. H. Hocart, T. Arioli & R. E. Williamson (2008) Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion. *Journal of Experimental Botany*, 59, 361-376.
- Corpas, F. J. & J. B. Barroso (2014) Peroxisomal plant nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin. *FEBS Letters*, 588, 2049-2054.
- Corpas, F. J. & J. B. Barroso (2017) Calmodulin antagonist affects peroxisomal functionality by disrupting both peroxisomal Ca2+ and protein import. *Journal of Cell Science*, E1-E14.
- Costa, A., L. Luoni, C. A. Marrano, K. Hashimoto, P. Köster, S. Giacometti, M. I. De Michelis, J. Kudla & M. C. Bonza (2017) Ca2+-dependent phosphoregulation of the plasma membrane Ca2+-ATPase ACA8 modulates stimulus-induced calcium signatures. *Journal of Experimental Botany*, 68, 3215-3230.
- Craft, J., M. Samalova, C. Baroux, H. Townley, A. Martinez, I. Jepson, M. Tsiantis & I. Moore (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. *The Plant Journal*, 41, 899-918.
- Crooks, G. E., G. Hon, J.-M. Chandonia & S. E. Brenner (2004) WebLogo: A Sequence Logo Generator. *Genome Research*, 14, 1188-1190.
- De Craene, J.-O., F. Courte, B. Rinaldi, C. Fitterer, M. C. Herranz, C. Schmitt-Keichinger, C. Ritzenthaler & S. Friant (2014) Study of the Plant COPII Vesicle Coat Subunits by Functional Complementation of Yeast Saccharomyces cerevisiae Mutants. *PLoS ONE*, 9, e90072.
- Demarty, M., C. Morvan & M. Thellier (1984) Calcium and the cell wall. *Plant, Cell & Environment*, 7, 441-448.

- Dettmer, J., A. Hong-Hermesdorf, Y.-D. Stierhof & K. Schumacher (2006) Vacuolar H+-ATPase Activity Is Required for Endocytic and Secretory Trafficking in Arabidopsis. *The Plant Cell*, 18, 715-730.
- Dobney, S., D. Chiasson, P. Lam, S. P. Smith & W. A. Snedden (2009) The Calmodulinrelated Calcium Sensor CML42 Plays a Role in Trichome Branching. *The Journal of Biological Chemistry*, 284, 31647-31657.
- Dodd, A. N., J. Kudla & D. Sanders (2010) The language of calcium signaling. *Annual Review of Plant Biology*, 61, 593-620.
- Dolze, E., F. Chigri, T. Howing, G. Hierl, E. Isono, U. C. Vothknecht & C. Gietl (2013) Calmodulin-like protein AtCML3 mediates dimerization of peroxisomal processing protease AtDEG15 and contributes to normal peroxisome metabolism. *Plant Molecular Biology*, 83, 607-624.
- Drerup, M. M., K. Schlücking, K. Hashimoto, P. Manishankar, L. Steinhorst, K. Kuchitsu & J. Kudla (2013) The Calcineurin B-Like Calcium Sensors CBL1 and CBL9 Together with Their Interacting Protein Kinase CIPK26 Regulate the Arabidopsis NADPH Oxidase RBOHF. *Molecular Plant*, 6, 559-569.
- Drucker, H. & S. L. Borchers (1971) The role of calcium in thermolysin: Effect on kinetic properties and autodigestion. *Archives of Biochemistry and Biophysics*, 147, 242-248.
- Edel, K. H. & J. Kudla (2014) Increasing complexity and versatility: How the calcium signaling toolkit was shaped during plant land colonization. *Cell Calcium*, 57, 231-246.
- Edel, K. H., E. Marchadier, C. Brownlee, J. Kudla & A. M. Hetherington (2017) The Evolution of Calcium-Based Signalling in Plants. *Current Biology*, 27, R667-R679.
- Espreafico, E. M., R. E. Cheney, M. Matteoli, A. A. Nascimento, P. V. De Camilli, R. E. Larson & M. S. Mooseker (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. *The Journal of Cell Biology*, 119, 1541-1557.
- Flosdorff, S. 2014. Lokalisierung und Charakterisierung Calmodulin-ähnlicher Proteine aus Arabidopsis thaliana. In *LMU Biocentre Biology Dep. I*, 99. Ludwig-Maximilians-University.
- Gao, X., K. Cox Jr. & P. He (2014) Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity. *Plants*, 3, 160.
- Geldner, N., N. Anders, H. Wolters, J. Keicher, W. Kornberger, P. Muller, A. Delbarre, T. Ueda, A. Nakano & G. Jürgens (2003) The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth. *Cell*, 112, 219-230.
- Gershlick, D. C., C. de Marcos Lousa, O. Foresti, A. J. Lee, E. A. Pereira, L. L. P. daSilva, F. Bottanelli & J. Denecke (2014) Golgi-Dependent Transport of Vacuolar Sorting Receptors Is Regulated by COPII, AP1, and AP4 Protein Complexes in Tobacco. *The Plant Cell*, 26, 1308-1329.
- Guo, Y., U. Halfter, M. Ishitani & J.-K. Zhu (2001) Molecular Characterization of Functional Domains in the Protein Kinase SOS2 That Is Required for Plant Salt Tolerance. *The Plant Cell*, 13, 1383-1400.
- Guo, Y., L. Xiong, C. P. Song, D. Gong, U. Halfter & J. K. Zhu (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis.

Developmental Cell, 3, 233-244.

- Haas, T. J., M. K. Sliwinski, D. E. Martínez, M. Preuss, K. Ebine, T. Ueda, E. Nielsen, G. Odorizzi & M. S. Otegui (2007) The Arabidopsis AAA ATPase SKD1 Is Involved in Multivesicular Endosome Function and Interacts with Its Positive Regulator LYST-INTERACTING PROTEIN5. *The Plant Cell*, 19, 1295-1312.
- Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. *Journal of Molecular Biology*, 166, 557-580.
- Hanna, M. G., I. Mela, L. Wang, R. M. Henderson, E. R. Chapman, J. M. Edwardson & A. Audhya (2016) Sar1 GTPase Activity Is Regulated by Membrane Curvature. *The Journal* of *Biological Chemistry*, 291, 1014-1027.
- Hanton, S. L., L. Renna, L. E. Bortolotti, L. Chatre, G. Stefano & F. Brandizzi (2005) Diacidic Motifs Influence the Export of Transmembrane Proteins from the Endoplasmic Reticulum in Plant Cells. *The Plant Cell*, 17, 3081-3093.
- Hariri, H., N. Bhattacharya, K. Johnson, A. J. Noble & S. M. Stagg (2014) Insights into the Mechanisms of Membrane Curvature and Vesicle Scission by the Small GTPase Sar1 in the Early Secretory Pathway. *Journal of Molecular Biology*, 426, 3811-3826.
- Harley, C. A., J. A. Holt, R. Turner & D. J. Tipper (1998) Transmembrane Protein Insertion Orientation in Yeast Depends on the Charge Difference across Transmembrane Segments, Their Total Hydrophobicity, and Its Distribution. *Journal of Biological Chemistry*, 273, 24963-24971.
- Harris, J. M. (2015) Abscisic Acid: Hidden Architect of Root System Structure. *Plants*, 4, 548-572.
- Harrison, S. J., E. K. Mott, K. Parsley, S. Aspinall, J. C. Gray & A. Cottage (2006) A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. *Plant Methods*, 2, 1-7.
- Heijne, G. V. (1994) Membrane Proteins: From Sequence to Structure. Annual Review of Biophysics and Biomolecular Structure, 23, 167-192.
- Held, K., F. Pascaud, C. Eckert, P. Gajdanowicz, K. Hashimoto, C. Corratgé-Faillie, J. N. Offenborn, B. Lacombe, I. Dreyer, J.-B. Thibaud & J. Kudla (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. *Cell Research*, 21, 1116-1130.
- Henikoff, S. & J. G. Henikoff (1993) Performance evaluation of amino acid substitution matrices. *Proteins: Structure, Function, and Bioinformatics,* 17, 49-61.
- High, S., N. Flint & B. Dobberstein (1991) Requirements for the membrane insertion of signal-anchor type proteins. *The Journal of Cell Biology*, 113, 25-34.
- Hillmer, S., A. Movafeghi, D. G. Robinson & G. Hinz (2001) Vacuolar Storage Proteins Are Sorted in the *Cis*-Cisternae of the Pea Cotyledon Golgi Apparatus. *The Journal of Cell Biology*, 152, 41-50.
- Hinz, G., S. Hillmer, M. Bäumer & I. Hohl (1999) Vacuolar Storage Proteins and the Putative Vacuolar Sorting Receptor BP-80 Exit the Golgi Apparatus of Developing Pea Cotyledons in Different Transport Vesicles. *The Plant Cell*, 11, 1509-1524.
- Hirano, T., T. Matsuzawa, K. Takegawa & M. H. Sato (2011) Loss-of-Function and Gain-of-Function Mutations in FAB1AB Impair Endomembrane Homeostasis, Conferring

Pleiotropic Developmental Abnormalities in Arabidopsis. Plant Physiology, 155, 797-807.

- Hirschi, K. D., R. G. Zhen, K. W. Cunningham, P. A. Rea & G. R. Fink (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. *Proceedings of the National Academy of Sciences*, 93, 8782-8786.
- Hofmann, K. & W. Stoffel (1993) TMBASE A database of membrane spanning protein segments. *Biological Chemistry Hoppe-Seyler*, 374.
- Hong, B., A. Ichida, Y. Wang, J. Scott Gens, B. G. Pickard & J. F. Harper (1999) Identification of a Calmodulin-Regulated Ca2+-ATPase in the Endoplasmic Reticulum. *Plant Physiology*, 119, 1165-1176.
- Huang, X. & W. Miller (1991) A time-efficient, linear-space local similarity algorithm. *Advances in Applied Mathematics*, 12, 337-357.
- Huijser, P. & M. Schmid (2011) The control of developmental phase transitions in plants. *Development*, 138, 4117-4129.
- Ikura, M., G. M. Clore, A. M. Gronenborn, G. Zhu, C. B. Klee & A. Bax (1992) Solution Structure of a Calmodulin-Target Peptide Complex by Multidimensional NMR. *Science*, 256, 632-638.
- Ishitani, M., J. Liu, U. Halfter, C.-S. Kim, W. Shi & J.-K. Zhu (2000) SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding. *The Plant Cell*, 12, 1667-1677.
- Jia, T., C. Gao, Y. Cui, J. Wang, Y. Ding, Y. Cai, T. Ueda, A. Nakano & L. Jiang (2013) ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. *Journal of Experimental Botany*, 64, 2817-2829.
- Kamrul Huda, K. M., S. Yadav, M. S. Akhter Banu, D. K. Trivedi & N. Tuteja (2013) Genome-wide analysis of plant-type II Ca2+ATPases gene family from rice and Arabidopsis: Potential role in abiotic stresses. *Plant Physiology and Biochemistry*, 65, 32-47.
- Kang, B.-H., J. S. Busse & S. Y. Bednarek (2003) Members of the Arabidopsis Dynamin-Like Gene Family, ADL1, Are Essential for Plant Cytokinesis and Polarized Cell Growth. *The Plant Cell*, 15, 899-913.
- Kasianov, A. S., A. V. Klepikova, I. V. Kulakovskiy, E. S. Gerasimov, A. V. Fedotova, E. G. Besedina, A. S. Kondrashov, M. D. Logacheva & A. A. Penin (2017) High-quality genome assembly of Capsella bursa-pastoris reveals asymmetry of regulatory elements at early stages of polyploid genome evolution. *The Plant Journal*, 91, 278-291.
- Katoh, K., K.-i. Kuma, H. Toh & T. Miyata (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. *Nucleic Acids Research*, 33, 511-518.
- Kim, B.-G., R. Waadt, Y. H. Cheong, G. K. Pandey, J. R. Dominguez-Solis, S. Schültke, S. C. Lee, J. Kudla & S. Luan (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. *The Plant Journal*, 52, 473-484.
- Kirsch, T., N. Paris, J. M. Butler, L. Beevers & J. C. Rogers (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. *Proceedings of the National Academy of Sciences*, 91, 3403-3407.
- Kitakura, S., S. Vanneste, S. Robert, C. Löfke, T. Teichmann, H. Tanaka & J. Friml (2011) Clathrin Mediates Endocytosis and Polar Distribution of PIN Auxin Transporters in

Arabidopsis. The Plant Cell, 23, 1920-1931.

- Klepikova, A. V., A. S. Kasianov, E. S. Gerasimov, M. D. Logacheva & A. A. Penin (2016) A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. *The Plant Journal*, 88, 1058-1070.
- Klepikova, A. V., M. D. Logacheva, S. E. Dmitriev & A. A. Penin (2015) RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. *BMC Genomics*, 16, 466.
- Klevit, R. E., D. C. Dalgarno, B. A. Levine & R. J. P. Williams (1984) 1H-NMR studies of calmodulin. *European Journal of Biochemistry*, 139, 109-114.
- Koncz, C., K. Nemeth, G. P. Redei & J. Schell (1992) T-DNA insertional mutagenesis in Arabidopsis. *Plant Molecular Biology*, 20, 963-976.
- Ktistakis, N. T., H. A. Brown, M. G. Waters, P. C. Sternweis & M. G. Roth (1996) Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. *The Journal of Cell Biology*, 134, 295-306.
- Kudla, J., O. Batistic & K. Hashimoto (2010) Calcium signals: the lead currency of plant information processing. *The Plant Cell*, 22, 541-563.
- Kumar, S., M. Mazumder, N. Gupta, S. Chattopadhyay & S. Gourinath (2016) Crystal structure of Arabidopsis thaliana calmodulin7 and insight into its mode of DNA binding. *FEBS Letters*, 590, 3029-3039.
- Künzl, F., S. Früholz, F. Fäßler, B. Li & P. Pimpl (2016) Receptor-mediated sorting of soluble vacuolar proteins ends at the *trans*-Golgi network/early endosome. *Nature Plants*, 2, 1-10.
- Kushwaha, R., A. Singh & S. Chattopadhyay (2008) Calmodulin7 Plays an Important Role as Transcriptional Regulator in Arabidopsis Seedling Development. *The Plant Cell*, 20, 1747-1759.
- Kyhse-Andersen, J. (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. *Journal of Biochemical and Biophysical Methods*, 10, 203-209.
- Laemmli, U. K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. *Nature*, 227, 680-685.
- Langhans, M., M. J. Marcote, P. Pimpl, G. Virgili-López, D. G. Robinson & F. Aniento (2008) In vivo Trafficking and Localization of p24 Proteins in Plant Cells. *Traffic*, 9, 770-785.
- Larson, E. R., E. Van Zelm, C. Roux, A. Marion-Poll & M. R. Blatt (2017) Clathrin Heavy Chain Subunits Coordinate Endo- and Exocytic Traffic and Affect Stomatal Movement. *Plant Physiology*, 175, 708-720.
- Laval, V., F. Masclaux, A. Serin, M. Carrière, C. Roldan, M. Devic, R. F. Pont-Lezica & J. P. Galaud (2003) Seed germination is blocked in Arabidopsis putative vacuolar sorting receptor (atbp80) antisense transformants. *Journal of Experimental Botany*, 54, 213-221.
- Lawe, D. C., N. Sitouah, S. Hayes, A. Chawla, J. V. Virbasius, R. Tuft, K. Fogarty, L. Lifshitz, D. Lambright & S. Corvera (2003) Essential role of Ca2+/Calmodulin in Early Endosome Antigen-1 Localization. *Molecular Biology of the Cell*, 14, 2935-2945.
- Lee, Y., M. Jang, K. Song, H. Kang, M. H. Lee, D. W. Lee, J. Zouhar, E. Rojo, E. J. Sohn & I. Hwang (2013) Functional Identification of Sorting Receptors Involved in Trafficking of Soluble Lytic Vacuolar Proteins in Vegetative Cells of Arabidopsis. *Plant Physiology*, 161,

121-133.

- Letourneur, F., E. C. Gaynor, S. Hennecke, C. Démollière, R. Duden, S. D. Emr, H. Riezman & P. Cosson (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. *Cell*, 79, 1199-1207.
- Li, X., S. Chanroj, Z. Wu, S. M. Romanowsky, J. F. Harper & H. Sze (2008) A Distinct Endosomal Ca(2+)/Mn(2+) Pump Affects Root Growth through the Secretory Process. *Plant Physiology*, 147, 1675-1689.
- Liang, F., K. W. Cunningham, J. F. Harper & H. Sze (1997) ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. *Proceedings of the National Academy of Sciences*, 94, 8579-8584.
- Liao, J., J. Deng, Z. Qin, J. Tang, M. Shu, C. Ding, J. Liu, C. Hu, M. Yuan, Y. Huang, R. Yang & Y. Zhou (2017) Genome-Wide Identification and Analyses of Calmodulins and Calmodulin-like Proteins in Lotus japonicas. *Frontiers in Plant Science*, 8, 482.
- Ligaba-Osena, A., Z. Fei, J. Liu, Y. Xu, J. Shaff, S.-C. Lee, S. Luan, J. Kudla, L. Kochian & M. Piñeros (2017) Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis. *New Phytologist*, 214, 830-841.
- Liu, F., X. Chu, H. P. Lu & J. Wang (2017) Molecular mechanism of multispecific recognition of Calmodulin through conformational changes. *Proceedings of the National Academy of Sciences*, 114, E3927-E3934.
- Liu, J. & J.-K. Zhu (1998) A Calcium Sensor Homolog Required for Plant Salt Tolerance. *Science*, 280, 1943-1945.
- Luan, S. (2009) The CBL-CIPK network in plant calcium signaling. *Trends in Plant Science*, 14, 37-42.
- Luo, X., Z. Chen, J. Gao & Z. Gong (2014) Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. *The Plant Journal*, 79, 44-55.
- Malkus, P., F. Jiang & R. Schekman (2002) Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. *The Journal of Cell Biology*, 159, 915-921.
- Mao, J., S. M. Manik, S. Shi, J. Chao, Y. Jin, Q. Wang & H. Liu (2016) Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. *Genes* (*Basel*), 7, 1-15.
- Marchadier, E., M. E. Oates, H. Fang, P. C. J. Donoghue, A. M. Hetherington & J. Gough (2016) Evolution of the Calcium-Based Intracellular Signaling System. *Genome Biology* and Evolution, 8, 2118-2132.
- Martí, M. C., M. A. Stancombe & A. A. R. Webb (2013) Cell- and Stimulus Type-Specific Intracellular Free Ca(2+) Signals in Arabidopsis. *Plant Physiology*, 163, 625-634.
- Martinière, A., E. Bassil, E. Jublanc, C. Alcon, M. Reguera, H. Sentenac, E. Blumwald & N. Paris (2013) In Vivo Intracellular pH Measurements in Tobacco and Arabidopsis Reveal an Unexpected pH Gradient in the Endomembrane System. *The Plant Cell*, 25, 4028-4043.
- Matschi, S., K. Hake, M. Herde, B. Hause & T. Romeis (2015) The Calcium-Dependent Protein Kinase CPK28 Regulates Development by Inducing Growth Phase-Specific, Spatially Restricted Alterations in Jasmonic Acid Levels Independent of Defense Responses in Arabidopsis. *The Plant Cell*, 27, 591-606.

- Matschi, S., S. Werner, W. X. Schulze, J. Legen, H. H. Hilger & T. Romeis (2013) Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development. *The Plant Journal: For Cell and Molecular Biology*, 73, 883-896.
- McAinsh, M. R. & A. M. Hetherington (1998) Encoding specificity in Ca2+ signalling systems. *Trends in Plant Science*, 3, 32-36.
- McAinsh, M. R. & J. K. Pittman (2009) Shaping the calcium signature. *New Phytologist*, 181, 275-294.
- McCormack, E. & J. Braam (2003) Calmodulins and related potential calcium sensors of Arabidopsis. *New Phytologist*, 159, 585-598.
- McCormack, E., Y. C. Tsai & J. Braam (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. *Trends in Plant Science*, 10, 383-389.
- Mehlmer, N., N. Parvin, C. H. Hurst, M. R. Knight, M. Teige & U. C. Vothknecht (2012) A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. *Journal of Experimental Botany*, 63, 1751-1761.
- Miller, J. B., A. Pratap, A. Miyahara, L. Zhou, S. Bornemann, R. J. Morris & G. E. D. Oldroyd (2013) Calcium/Calmodulin-Dependent Protein Kinase Is Negatively and Positively Regulated by Calcium, Providing a Mechanism for Decoding Calcium Responses during Symbiosis Signaling. *The Plant Cell*, 25, 5053-5066.
- Mills, I. G., S. Urbe & M. J. Clague (2001) Relationships between EEA1 binding partners and their role in endosome fusion. *Journal of Cell Science*, 114, 1959-1965.
- Mills, R. F., M. L. Doherty, R. L. López-Marqués, T. Weimar, P. Dupree, M. G. Palmgren, J. K. Pittman & L. E. Williams (2008) ECA3, a Golgi-Localized P(2A)-Type ATPase, Plays a Crucial Role in Manganese Nutrition in Arabidopsis. *Plant Physiology*, 146, 116-128.
- Miyagishima, S.-y., H. Kuwayama, H. Urushihara & H. Nakanishi (2008) Evolutionary linkage between eukaryotic cytokinesis and chloroplast division by dynamin proteins. *Proceedings of the National Academy of Sciences*, 105, 15202-15207.
- Moyer, Bryan D., Bernard B. Allan & William E. Balch (2001) Rab1 Interaction with a GM130 Effector Complex Regulates COPII Vesicle *cis*-Golgi Tethering. *Traffic*, 2, 268-276.
- Murashige, T. & F. Skoog (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. *Physiologia Plantarum*, 15, 473-497.
- Nagae, M., A. Nozawa, N. Koizumi, H. Sano, H. Hashimoto, M. Sato & T. Shimizu (2003) The Crystal Structure of the Novel Calcium-binding Protein AtCBL2 from Arabidopsis thaliana. *Journal of Biological Chemistry*, 278, 42240-42246.
- Naramoto, S., M. S. Otegui, N. Kutsuna, R. de Rycke, T. Dainobu, M. Karampelias, M. Fujimoto, E. Feraru, D. Miki, H. Fukuda, A. Nakano & J. Friml (2014) Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. *The Plant Cell*, 26, 3062-3076.
- Nelson, B. K., X. Cai & A. Nebenführ (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. *The Plant Journal*, 51, 1126-1136.
- Nie, S., M. Zhang & L. Zhang (2017) Genome-wide identification and expression analysis of

calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). *BMC Genomics*, 18, 1-12.

- Niemes, S., M. Langhans, C. Viotti, D. Scheuring, M. San Wan Yan, L. Jiang, S. Hillmer, D. G. Robinson & P. Pimpl (2010) Retromer recycles vacuolar sorting receptors from the *trans*-Golgi network. *The Plant Journal*, 61, 107-121.
- Nodzyński, T., M. I. Feraru, S. Hirsch, R. De Rycke, C. Niculaes, W. Boerjan, J. Van Leene, G. De Jaeger, S. Vanneste & J. Friml (2013) Retromer Subunits VPS35A and VPS29 Mediate Prevacuolar Compartment (PVC) Function in Arabidopsis. *Molecular Plant*, 6, 1849-1862.
- Oliviusson, P., O. Heinzerling, S. Hillmer, G. Hinz, Y. C. Tse, L. Jiang & D. G. Robinson (2006) Plant Retromer, Localized to the Prevacuolar Compartment and Microvesicles in Arabidopsis, May Interact with Vacuolar Sorting Receptors. *The Plant Cell*, 18, 1239-1252.
- Ordenes, V. R., I. Moreno, D. Maturana, L. Norambuena, A. J. Trewavas & A. Orellana (2012) In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics. *Cell Calcium*, 52, 397-404.
- Ormancey, M., P. Thuleau, C. Mazars & V. Cotelle (2017) CDPKs and 14-3-3 Proteins: Emerging Duo in Signaling. *Trends in Plant Science*, 22, 263-272.
- Pagant, S., A. Wu, S. Edwards, F. Diehl & Elizabeth A. Miller (2015) Sec24 Is a Coincidence Detector that Simultaneously Binds Two Signals to Drive ER Export. *Current Biology*, 25, 403-412.
- Parvin, N., C. Carrie, I. Pabst, A. Lasser, D. Laha, M. V. Paul, P. Geigenberger, R. Heermann, K. Jung, U. C. Vothknecht & F. Chigri (2017) TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana. *Molecular Plant*, 10, 575-589.
- Perochon, A., D. Aldon, J. P. Galaud & B. Ranty (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. *Biochimie*, 93, 2048-2053.
- Peters, C. & A. Mayer (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. *Nature*, 396, 575-580.
- Pimpl, P., A. Movafeghi, S. Coughlan, J. Denecke, S. Hillmer & D. G. Robinson (2000) In Situ Localization and in Vitro Induction of Plant COPI-Coated Vesicles. *The Plant Cell*, 12, 2219-2235.
- Plattner, H. (2017) Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. *Journal of Eukaryotic Microbiology*, 1-60.
- Plattner, H. & A. Verkhratsky (2015) The ancient roots of calcium signalling evolutionary tree. *Cell Calcium*, 57, 123-132.
- Poethig, R. S. (1990) Phase Change and the Regulation of Shoot Morphogenesis in Plants. *Science*, 250, 923-930.
- Pope, B. & H. M. Kent (1996) High efficiency 5 min transformation of Escherichia coli. *Nucleic Acids Research*, 24, 536-537.
- Qin, C., M. Li, W. Qin, S. C. Bahn, C. Wang & X. Wang (2006) Expression and characterization of Arabidopsis phospholipase Dγ2. *Biochimica et Biophysica Acta (BBA)* -*Molecular and Cell Biology of Lipids*, 1761, 1450-1458.

- Qiu, Q.-S., Y. Guo, M. A. Dietrich, K. S. Schumaker & J.-K. Zhu (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. *Proceedings of the National Academy of Sciences*, 99, 8436-8441.
- Rhoads, A. R. & F. Friedberg (1997) Sequence motifs for calmodulin recognition. *The FASEB Journal*, 11, 331-340.
- Robinson, D. G., D. Scheuring, S. Naramoto & J. Friml (2011) ARF1 Localizes to the Golgi and the *Trans*-Golgi Network. *The Plant Cell*, 23, 846-849.
- Ruge, H., S. Flosdorff, I. Ebersberger, F. Chigri & U. C. Vothknecht (2016) The calmodulinlike proteins AtCML4 and AtCML5 are single-pass membrane proteins targeted to the endomembrane system by an N-terminal signal anchor sequence. *Journal of Experimental Botany*, 67, 3985-3996.
- Sack, L. & C. Scoffoni (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. *New Phytologist*, 198, 983-1000.
- Saint-Jore-Dupas, C., A. Nebenfuhr, A. Boulaflous, M. L. Follet-Gueye, C. Plasson, C. Hawes, A. Driouich, L. Faye & V. Gomord (2006) Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. *The Plant Cell*, 18, 3182-3200.
- Sambrook, J. & D. W. Russell (2006) A Laboratory Manual. *Cold Spring Harbor Protocols*, 2006.
- Sanchez-Barrena, M. J., M. Martinez-Ripoll, J. K. Zhu & A. Albert (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. *Journal of Molecular Biology*, 345, 1253-1264.
- Sanders, D., J. Pelloux, C. Brownlee & J. F. Harper (2002) Calcium at the Crossroads of Signaling. *The Plant Cell*, 14, S401-S417.
- Sanyal, S. K., P. Kanwar, A. K. Yadav, C. Sharma, A. Kumar & G. K. Pandey (2017) Arabidopsis CBL interacting protein kinase 3 interacts with ABR1, an APETALA2 domain transcription factor, to regulate ABA responses. *Plant Science*, 254, 48-59.
- Sawa, S., K. Koizumi, S. Naramoto, T. Demura, T. Ueda, A. Nakano & H. Fukuda (2005) DRP1A Is Responsible for Vascular Continuity Synergistically Working with VAN3 in Arabidopsis. *Plant Physiology*, 138, 819-826.
- Scheuring, D., C. Viotti, F. Krüger, F. Künzl, S. Sturm, J. Bubeck, S. Hillmer, L. Frigerio, D. G. Robinson, P. Pimpl & K. Schumacher (2011) Multivesicular Bodies Mature from the *Trans*-Golgi Network/Early Endosome in Arabidopsis. *The Plant Cell*, 23, 3463-3481.
- Schiøtt, M., S. M. Romanowsky, L. Bækgaard, M. K. Jakobsen, M. G. Palmgren & J. F. Harper (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. *Proceedings of the National Academy of Sciences of the United States of America*, 101, 9502-9507.
- Schneider, T. D. & R. M. Stephens (1990) Sequence logos: a new way to display consensus sequences. *Nucleic Acids Research*, 18, 6097-6100.
- Schranz, M. E. & T. Mitchell-Olds (2006) Independent Ancient Polyploidy Events in the Sister Families Brassicaceae and Cleomaceae. *The Plant Cell*, 18, 1152-1165.
- Shen, J., Y. Zeng, X. Zhuang, L. Sun, X. Yao, P. Pimpl & L. Jiang (2013) Organelle pH in the Arabidopsis Endomembrane System. *Molecular Plant*, 6, 1419-1437.

- Shi, J., K.-N. Kim, O. Ritz, V. Albrecht, R. Gupta, K. Harter, S. Luan & J. Kudla (1999) Novel Protein Kinases Associated with Calcineurin B–like Calcium Sensors in Arabidopsis. *The Plant Cell*, 11, 2393-2405.
- Shimomura, O., F. H. Johnson & Y. Saiga (1962) Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. *Journal of Cellular and Comparative Physiology*, 59, 223-239.
- Simeunovic, A., A. Mair, B. Wurzinger & M. Teige (2016) Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. *Journal of Experimental Botany*, 67, 3855-3872.
- Sitte, P., W. E. W., J. W. Kadereit, A. Bresinsky & C. Körner. 2002. *Strasburger Lehrbuch der Botanik*. Berlin: Spektrum Akademischer Verlag GmbH Heidelberg.
- Sparkes, I. A., T. Ketelaar, N. C. A. De Ruijter & C. Hawes (2009) Grab a Golgi: Laser Trapping of Golgi Bodies Reveals in vivo Interactions with the Endoplasmic Reticulum. *Traffic*, 10, 567-571.
- Stael, S., R. G. Bayer, N. Mehlmer & M. Teige (2011) Protein N-acylation overrides differing targeting signals. *FEBS Letters*, 585, 517-522.
- Stael, S., B. Wurzinger, A. Mair, N. Mehlmer, U. C. Vothknecht & M. Teige (2012) Plant organellar calcium signalling: an emerging field. *Journal of Experimental Botany*, 63, 1525-1542.
- Stamatakis, A., P. Hoover, J. Rougemont & S. Renner (2008) A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Systematic Biology*, 57, 758-771.
- Steinhorst, L., A. Mahs, T. Ischebeck, C. Zhang, X. Zhang, S. Arendt, S. Schultke, I. Heilmann & J. Kudla (2015) Vacuolar CBL-CIPK12 Ca(2+)-sensor-kinase complexes are required for polarized pollen tube growth. *Current Biology*, 25, 1475-1482.
- Susi, P., M. Hohkuri, T. Wahlroos & N. J. Kilby (2004) Characteristics of RNA Silencing in Plants: Similarities and Differences Across Kingdoms. *Plant Molecular Biology*, 54, 157-174.
- Swan, D. G., R. S. Hale, N. Dhillon & P. F. Leadlay (1987) A bacterial calcium-binding protein homologous to calmodulin. *Nature*, 329, 84-85.
- Tang, R.-J., H. Liu, Y. Yang, L. Yang, X.-S. Gao, V. J. Garcia, S. Luan & H.-X. Zhang (2012) Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. *Cell Research*, 22, 1650-1665.
- Tang, R.-J., F.-G. Zhao, V. J. Garcia, T. J. Kleist, L. Yang, H.-X. Zhang & S. Luan (2015) Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. *Proceedings of the National Academy of Sciences*, 112, 3134-3139.
- Teh, O.-K., Y. Shimono, M. Shirakawa, Y. Fukao, K. Tamura, T. Shimada & I. Hara-Nishimura (2013) The AP-1 μ Adaptin is Required for KNOLLE Localization at the Cell Plate to Mediate Cytokinesis in Arabidopsis. *Plant and Cell Physiology*, 54, 838-847.
- The Angiosperm Phylogeny, G. (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society*, 181, 1-20.
- Townley, A. K., Y. Feng, K. Schmidt, D. A. Carter, R. Porter, P. Verkade & D. J. Stephens (2008) Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent

collagen secretion and is essential for normal craniofacial development. *Journal of Cell Science*, 121, 3025-3034.

- Tsai, H.-H. G., W.-F. Juang, C.-M. Chang, T.-Y. Hou & J.-B. Lee (2013a) Molecular mechanism of Ca2+ -catalyzed fusion of phospholipid micelles. *Biochimica et Biophysica Acta (BBA) Biomembranes*, 1828, 2729-2738.
- Tsai, Y.-C., Y. Koo, N. A. Delk, B. Gehl & J. Braam (2013b) Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. *The Plant Journal*, 73, 325-335.
- Ueda, T., T. Uemura, M. H. Sato & A. Nakano (2004) Functional differentiation of endosomes in Arabidopsis cells. *The Plant Journal*, 40, 783-789.
- Vadassery, J., M. Reichelt, B. Hause, J. Gershenzon, W. Boland & A. Mithöfer (2012) CML42-Mediated Calcium Signaling Coordinates Responses to Spodoptera Herbivory and Abiotic Stresses in Arabidopsis. *Plant Physiology*, 159, 1159-1175.
- Vahala, T., P. Stabel & T. Eriksson (1989) Genetic transformation of willows (Salix spp.) by Agrobacterium tumefaciens. *Plant Cell Reports*, 8, 55-58.
- Vanderbeld, B. & W. A. Snedden (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. *Plant Molecular Biology*, 64, 683-697.
- Vaughan-Hirsch, J., B. Goodall & A. Bishopp (2017) North, East, South, West: mapping vascular tissues onto the Arabidopsis root. *Current Opinion in Plant Biology*, 41, 16-22.
- Verret, F., G. Wheeler, A. R. Taylor, G. Farnham & C. Brownlee (2010) Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling. *New Phytologist*, 187, 23-43.
- Viotti, C., F. Krüger, M. Krebs, C. Neubert, F. Fink, U. Lupanga, D. Scheuring, Y. Boutté, M. Frescatada-Rosa, S. Wolfenstetter, N. Sauer, S. Hillmer, M. Grebe & K. Schumacher (2013) The Endoplasmic Reticulum Is the Main Membrane Source for Biogenesis of the Lytic Vacuole in Arabidopsis. *The Plant Cell*, 25, 3434-3449.
- Visser, R. G. F., E. Jacobsen, B. Witholt & W. J. Feenstra (1989) Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. *Theoretical and Applied Genetics*, 78, 594-600.
- von Blume, J., A.-M. Alleaume, C. Kienzle, A. Carreras-Sureda, M. Valverde & V. Malhotra (2012) Cab45 is required for Ca2+-dependent secretory cargo sorting at the *trans*-Golgi network. *The Journal of Cell Biology*, 199, 1057-1066.
- Wang, S.-S., W.-Z. Diao, X. Yang, Z. Qiao, M. Wang, B. R. Acharya & W. Zhang (2015) Arabidopsis thaliana CML25 mediates the Ca2+ regulation of K+ transmembrane trafficking during pollen germination and tube elongation. *Plant, Cell & Environment*, 38, 2372-2386.
- Watanabe, E., T. Shimada, M. Kuroyanagi, M. Nishimura & I. Hara-Nishimura (2002) Calcium-mediated Association of a Putative Vacuolar Sorting Receptor PV72 with a Propeptide of 2S Albumin. *Journal of Biological Chemistry*, 277, 8708-8715.
- Wen, L., M. Fukuda, M. Sunada, S. Ishino, Y. Ishino, T. W. Okita, M. Ogawa, T. Ueda & T. Kumamaru (2015) Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm. *Journal of Experimental*

Botany, 66, 6137-6147.

- Wielopolska, A., H. Townley, I. Moore, P. Waterhouse & C. Helliwell (2005) A high-throughput inducible RNAi vector for plants. *Plant Biotechnology Journal*, 3, 583-590.
- Wikström, N., V. Savolainen & M. W. Chase (2001) Evolution of the angiosperms: calibrating the family tree. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 268, 2211-2220.
- Yang, X., S.-S. Wang, M. Wang, Z. Qiao, C.-C. Bao & W. Zhang (2014) Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. *Plant Molecular Biology*, 86, 225-236.
- Yuan, F., H. Yang, Y. Xue, D. Kong, R. Ye, C. Li, J. Zhang, L. Theprungsirikul, T. Shrift, B. Krichilsky, D. M. Johnson, G. B. Swift, Y. He, J. N. Siedow & Z.-M. Pei (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. *Nature*, 514, 367-371.
- Zhang, F., L. Li, Z. Jiao, Y. Chen, H. Liu, X. Chen, J. Fu, G. Wang & J. Zheng (2016) Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. *Plant Science*, 253, 118-129.
- Zhang, M., T. Tanaka & M. Ikura (1995) Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. *Nature Structural Biology*, 2, 758-767.
- Zhang, X., R. Henriques, S.-S. Lin, Q.-W. Niu & N.-H. Chua (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. *Nature Protocols*, 1, 641-646.
- Zhao, B., H. Shi, W. Wang, X. Liu, H. Gao, X. Wang, Y. Zhang, M. Yang, R. Li & Y. Guo (2016) Secretory COPII Protein SEC31B Is Required for Pollen Wall Development. *Plant Physiology*, 172, 1625-1642.
- Zhou, L., Y. Fu & Z. Yang (2009) A Genome-wide Functional Characterization of Arabidopsis Regulatory Calcium Sensors in Pollen Tubes. *Journal of Integrative Plant Biology*, 51, 751-761.
- Zhu, X., C. Dunand, W. Snedden & J. P. Galaud (2015) CaM and CML emergence in the green lineage. *Trends in Plant Science*, 20, 483-489.

# **Summary**

In this work, the two Ca<sup>2+</sup> sensors AtCML4 and AtCML5 from *A. thaliana* were analysed regarding their topology, sub-cellular localisation, potential cellular function and phylogenetic origin. The proteins were found to be co-localised and quantitative assessment of co-localisation experiments revealed further that AtCML5 co-localises with GmMAN1, a Golgi stack marker and AtARA6, a marker for the late PVC, to almost similar extent. However, the circular geometry of the structures observed for AtCML4 and AtCML5 under overexpression conditions, as well as under control of their native promoter, led to the conclusion that these proteins predominantly reside in Golgi cisternae membranes. Sequence analyses showed that AtCML4 and AtCML5 harbour an N-terminal signal-anchor sequence typical of type-III single-pass transmembrane proteins. Protease protection assays on isolated membrane fractions confirmed that the N-terminal domain of AtCML5 anchors the protein in the membrane with its CAM-domain protruding into the cytoplasm. Transgenic A. thaliana plant lines stably expressing a  $Ca^{2+}$  sensor fusion construct with the signal-anchor sequence of AtCML5 (pAtCML5::AtCML5<sub>1-28</sub>-YFP-AEQ) revealed that the protein is targeted to a microdomain with a basal  $[Ca^{2+}]_f$  4-5 times higher compared to the remaining cytoplasm. Together with the identification of AtPLDy1 and AtDRP1B as potential interaction partners, it can be hypothesised that AtCML5 senses Ca<sup>2+</sup> efflux from the Golgi lumen, and promotes vesicle budding processes via its interaction partners, thereby coupling the Golgi-internal cargo sorting processes to the formation of vesicles for further trafficking to the vacuole or the plasma membrane. Phylogenetic analysis of AtCML4 and AtCML5 with a special focus on their N-terminal signal-anchor sequence unravelled that the proteins probably originated from an AtCML3-like protein with a similar signal-anchor, which was found to be conserved among a huge variety of dicot species and some monocots. This indicated an angiosperm-specific, predominantly dicot-typical function of these proteins. In vivo expression patterns analysed in a LUCIFERASE-based promoter activity assay revealed AtCML4 and AtCML5 to be expressed in roots, hypocotyls, stem, petioles and leaf vascular tissue. Expression in secondary leaves and petals could also be detected and the AtCML5 promoter was further active in hydathodes. A potential function of AtCML4 and AtCML5 could be connected to the formation of the vascular tissue network architecture, whose complexity has been found to be unprecedentedly high in angiosperms and specifically in dicots.

# Zusammenfassung

In dieser Arbeit wurden die zwei Calciumsensoren AtCML4 und AtCML5 aus A. thaliana bezüglich ihrer Topologie, sub-zellulären Lokalisierung, potentiellen zellulären Funktion und ihres phylogenetischen Ursprungs untersucht. Es wurde festgestellt, dass beide Proteine identisch lokalisiert sind und quantitative Analysen zeigten weiterhin, dass AtCML5 zu nahezu gleichen Teilen mit dem Golgi-Zisternen Marker GmMAN1 und AtARA6 - einem Marker für das späte prävakuoläre Kompartiment - kolokalisiert. Allerdings markierte AtCML5-YFP unabhängig von seinem Expressionslevel große zirkuläre Strukturen, was deutlich auf eine Lokalisation im Golgi-Apparat hinwies. Sequenzanalysen zeigten, dass AtCML4 und AtCML5 über eine N-terminale Signal-Anker Sequenz verfügen, welche die Proteine als Typ-III Singlepass-Transmembranproteine kennzeichnet. Proteasebehandlungen isolierter Membranfraktionen bestätigten, dass die N-terminale Domäne von AtCML5 das Protein in der Membran verankert, sodass seine CAM-Domäne ins Zytoplasma weist. In transgenen A. thaliana Linien, die stabil ein Fusionskonstrukt aus diesem N-terminus und einem Calciumreporter (pAtCML5::AtCML5<sub>1-28</sub>-YFP-AEQ) exprimierten, war die basale  $[Ca^{2+}]_f$  4-5 mal höher als im Gesamtzytoplasma in Kontrollpflanzen. Da zugleich AtPLDy1 und AtDRP1B als potentielle AtCML5 Interaktionspartner identifiziert wurden, wäre es möglich, dass AtCML5 von Ca<sup>2+</sup> Strömen aus dem Golgi aktiviert wird und mittels seiner Interaktionspartner Vesikelabschnürung an Proteinsortierungsprozesse koppelt. Phylogenetische Analysen deuten darauf hin, dass AtCML4 und AtCML5 von einem AtCML3-ähnlichen Protein mit einem homologen Signal-Anker abstammen. Dieser Vorgänger ist in diversen Dikotyledonenspezies und einigen Monokotyledonenarten konserviert, was auf eine Angiosperm-spezifische Funktion hindeutet, die möglicherweise primär in dikotyledonen Pflanzen relevant ist. In LUCIFERASE-basierten Promoteraktivitätsstudien wurde festgestellt, dass AtCML4 und AtCML5 stark in Wurzeln, Spross, Hypokotyl und Blattgefäßen exprimiert sind. Auch in Kelchblättern und Sekundärblättern waren die Promotoren der beiden Gene aktiv. Überdies wird AtCML5 in Hydathoden exprimiert. Eine potentielle Funktion von AtCML4 und AtCML5 könnte im Zusammenhang mit der Ausbildung des Blattgefäßnetzwerks stehen. Dies würde dazu passen, dass die Komplexität dieses Netzwerks in Angiospermen und besonders in Dikotyledonen deutlich ausgeprägter ist als in anderen Tracheophyten.

# Acknowledgements

I am profoundly grateful to Prof Dr Ute C. Vothknecht for offering me the opportunity to working on this project. During the time in her laboratory, I learned a lot from her example, especially – but not only – with regard to scientific thinking, and grew significantly as a scientist and a person. Her way of providing constructive criticism and constant support, together with being a highly skilled, always objective and responsible group leader will always serve as reference for excellent leadership to me.

I am also very grateful to Dr Fatima Chigri and Dr Norbert Mehlmer, who always let me share in their extensive scientific experience and knowledge to help me find alternative solutions to persistent problems without becoming tired of answering all my questions.

I would also like to cordially thank Julia Faltermeier and Edoardo Cutolo, who were one of the reasons for my good times in the lab, even in case of depression over failed experiments or confusing results. Julia was exceptionally proficient in establishing order in a laboratory with two chaotic young men and her cheerful character made the bad days bearable and the good days great. I also truly miss the long evenings spent with Edoardo, discussing our recent scientific problems or pondering about life in general, whilst switching from the lab with pipette and samples to the kitchen with beer and "Brezn", and back again.

To all my friends I am incredibly grateful for their patience and their understanding attitude, when I was complaining about experiments not working or plants not growing, which often made me come late to our gatherings. They always brought me back on track, when I felt like all my efforts were leading to no fruitful end and even helped me out with valuable advice on scientific matters. On top of that, they always managed to make me feel at home – priceless.

Finally, I would like to express my deepest gratitude to my family and foremost to my parents, who spent so much of their time helping me get to where I am now and always made it seem as if it was no effort at all. Their constant support and interest in my work are as invaluable to me as their opinion and advice. Such a family is not to just be taken for granted.

# Appendices

| Abbreviation in MSA | Species                          |
|---------------------|----------------------------------|
| AraLy               | Arabidopsis lyrata subsp. lyrata |
| AraTh               | Arabidopsis thaliana             |
| CapRu               | Capsella rubella                 |
| EutSa               | Eutrema salsugineum              |
| BraNa               | Brassica napa                    |
| BraRa               | Brassica rapa subsp. pekinensis  |
| BraOl               | Brassica oleracea var. oleracea  |
| RapSa               | Raphanus sativus                 |

Appendix I. Species list for sequence alignment in Figure 1

#### Appendix II. MASCOT analysis of peptides identified in mass spectrometric analysis

| Peptide            | Protein<br>identification<br>probability | Mascot<br>ion<br>score | Actual<br>peptide<br>mass<br>(AMU) | Peptide<br>start<br>index | Peptide<br>stop<br>index |
|--------------------|------------------------------------------|------------------------|------------------------------------|---------------------------|--------------------------|
| TVIVDAEAAQNR       | 99,7%                                    | 67,0                   | 1.285,66                           | 372                       | 383                      |
| EVPVGTVSVYNSPR     | 100,0%                                   | 40,0                   | 1.502,77                           | 669                       | 682                      |
| KKVEGEK            | 100,0%                                   | 34,9                   | 816,47                             | 74                        | 80                       |
| KPPQPNANANAAQVQALK | 100,0%                                   | 34,9                   | 1.859,00                           | 683                       | 700                      |
| LGGMLSGLGR         | 100,0%                                   | 21,1                   | 975,52                             | 64                        | 73                       |
| SSSDDSLLR          | 100,0%                                   | 38,5                   | 978,46                             | 473                       | 481                      |

### Phospholipase D gamma 1 (PLDGAMMA1), OS=Arabidopsis thaliana

PLDG1\_ARATH (100%), 95.589,0 Da

Phospholipase D gamma 1 OS=Arabidopsis thaliana GN=PLDGAMMA1 PE=1 SV=1

6 exclusive unique peptides, 6 exclusive unique spectra, 6 total spectra, 70/858 amino acids (8% coverage)

| ΜΑΥΗΡΑΥΤΕΤ | MSMGGGSSHG                       | GGQQYVPFAT               | SSGSLRVELL          | HGNLDIWVKE |
|------------|----------------------------------|--------------------------|---------------------|------------|
| AKHLPNMDGF | H N R <mark>L G G M L S G</mark> | LGRKKVEGEK               | SSKITSDPYV          | TVSISGAVIG |
| RTFVISNSEN | PVWMQHFDVP                       | VAHSAAEVHF               | VVKDSDIIGS          | QIMGAVGIPT |
| EQLCSGNRIE | GLFPILNSSG                       | KPCKQGAVLG               | LSIQYTPMER          | MRLYQMGVGS |
| GNECVGVPGT | YFPLRKGGRV                       | TLYQDAHVDD               | GTLPSVHLDG          | GIQYRHGKCW |
| EDMADAIRQA | RRLIYITGWS                       | VFHPVRLVRR               | TNDPTEGTLG          | ELLKVKSQEG |
| VRVLVLVWDD | PTSRSLLGFK                       | TQGVMNTSDE               | ETRRFFKHSS          | VQVLLCPRSG |
| GKGHSFIKKS | EVGTIYTHHQ                       | KTVIVDAEAA               | <b>QNR</b> RKIVAFV  | GGLDLCNGRF |
| DTPKHPLFRT | LKTLHKDDFH                       | NPNFVTTADD               | GPREPWHDLH          | SKIDGPAAYD |
| VLANFEERWM | KASKPRGIGK                       | LK <mark>SSSDDSLL</mark> | R I D R I P D I V G | LSEASSANDN |
| DPESWHVQVF | RSIDSSSVKG                       | FPKDPKEATG               | RNLLCGKNIL          | IDMSIHAAYV |
| KAIRSAQHFI | YIENQYFLGS                       | SFNWDSNKDL               | GANNLIPMEI          | ALKIANKIRA |
| REKFAAYIVI | PMWPEGAPTS                       | NPIQRILYWQ               | нктмаммуат          | IYKALVEVGL |
| DSQFEPQDFL | N F F C L G T R <b>E V</b>       | <b>PVGTVSVYNS</b>        | PRKPPQPNAN          | ANAAQVQALK |
| SRRFMIYVHS | KGMVVDDEFV                       | LIGSANINQR               | SLEGTRDTEI          | AMGGYQPHYS |
| WAMKGSRPHG | QIFGYRMSLW                       | AEHLGFLEQG               | FEEPENMECV          | RRVRQLSELN |
| WRQYAAEEVT | EMSGHLLKYP                       | VQVDRTGKVS               | SLPGCETFPD          | LGGKIIGSFL |
| ALQENLTI   |                                  |                          |                     |            |



| <b>Dynamin-related</b> | protein 1B | (DRP1B), C | <b>DS=Arabidopsis</b> | thaliana |
|------------------------|------------|------------|-----------------------|----------|
| •                      | 1          | ( ))       |                       |          |

| Peptide    | Protein<br>identification<br>probability | Mascot<br>ion score | Actual<br>peptide<br>mass<br>(AMU) | Peptide<br>start<br>index | Peptide<br>stop<br>index |
|------------|------------------------------------------|---------------------|------------------------------------|---------------------------|--------------------------|
| IPGLQSLITK | 99,5%                                    | 0,220               | 1.068,66                           | 372                       | 383                      |
| LYMIMEICR  | 99,7%                                    | 1,61                | 1.227,57                           | 669                       | 682                      |

2 exclusive unique peptides, 2 exclusive unique spectra, 2 total spectra, 19/610 amino acids (3% coverage)

| MESLIALVNK  | IQRACTALGD | HGEGSSLPTL | WDSLPAIAVV               | GGQSSGKSSV               |
|-------------|------------|------------|--------------------------|--------------------------|
| LESVVGKDFL  | PRGAGIVTRR | PLVLQLHRID | ЕGКЕҮАЕҒМН               | LPKKKFTDFA               |
| AVRQEISDET  | DRETGRSSKV | ISTVPIHLSI | FSPNVVNLTL               | VDLPGLTKVA               |
| VDGQPESIVQ  | DIENMVRSFI | EKPNCIILAI | SPANQDLATS               | DAIKISREVD               |
| PKGDRTFGVL  | TKIDLMDQGT | NAVDILEGRG | YKLRYPWVGV               | VNRSQADI <u>NK</u>       |
| SVDMIAARRR  | ERDYFQTSPE | YRHLTERMGS | EYLGKMLSKH               | LEVVIKSR <mark>IP</mark> |
| GLQSLITK TI | SELETELSRL | GKPVAADAGG | K <mark>lymimeicr</mark> | AFDQTFKEHL               |
| DGTRSGGEKI  | NSVFDNQFPA | AIKRLQFDKH | LSMDNVRKLI               | TEADGYQPHL               |
| IAPEQGYRRL  | IESCLVSIRG | PAEAAVDAVH | SILKDLIHKS               | MGETSELKQY               |
| PTLRVEVSGA  | AVDSLDRMRD | ESRKATLLLV | DMESGYLTVE               | FFRKLPQDSE               |
| KGGNPTHSIF  | DRYNDAYLRR | IGSNVLSYVN | MVCAGLRNSI               | PKSIVYCQVR               |
| EAKRSLLDIF  | FTELGQKEMS | KLSKLLDEDP | AVQQRRTSIA               | KRLELYRSAQ               |
| TDIEAVAWSK  |            |            |                          |                          |



DRP1B\_ARATH (100%), 68.086,1 Da Dynamin-related protein 1B OS=Arabidopsis thaliana GN=DRP1B PE=2 SV=1

| Label in<br>MSA and<br>phylogenet<br>ic tree | Sequence<br>>XP_018490833.1 PREDICTED:<br>calmodulin-like protein 3<br>[Raphanus sativus]<br>MATNLLKLSSQIRRLSPITRSLTIRT<br>SATSTTSSGSKKMD0AELSRIFOMFD                                                                                                                                                                                                  | Species<br>snn:<br>tr | Family     | Order    | Names of<br>combined<br>sequences<br>in tree |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|----------|----------------------------------------------|
| RapSaC3                                      | RNGDGKITKQELSDSLENLGIYIPDK<br>DLVQMIEKIDLNGDGYVDIEEFGGLY<br>QSIMEDRDEEEDIREAFNVFDQNRDG<br>FITVEELRSVLSSLGLKQGRTLEDCK<br>RMISKVDVDGDGMVNFKEFKQMMKGG<br>GFAALESSL                                                                                                                                                                                        | Raphanus s            | Brassica   | Brassic  |                                              |
| EucGrC3L2                                    | <pre>&gt;XP_010069294.1 PREDICTED:<br/>calmodulin-like protein 3<br/>[Eucalyptus grandis]<br/>MPAIITRIFLLYHLLHTWFHYLVPKK<br/>LRVYLPPSWSPLRLDPTPPPLPRSLS<br/>LVKAPMDAAELKRVFQMFDRNGDGRI<br/>TKKELSDSLENLGIYIPDKELAEMIE<br/>KIDVNGDGCVDIDEFGALYRSIMEER<br/>DEEEDMREAFNVFDQNGDGFITVDEL<br/>RSVLASLGLKQGRTLEDCKRMIMKVD<br/>VDGDGMVDFKEFKQMMKGGGFSALS</pre> | Eucalyptus grandis    | Myrtaceae  | Myrtales |                                              |
| ZizJuC3L2                                    | >XP_015886996.1 PREDICTED:<br>calmodulin-like protein 3<br>[Ziziphus jujuba]<br>MPTIFLRIFLIYNLFNSLLLSLVPKK<br>IRHFFPPSWFPLQAPPLPSPPSPPSS<br>SCSFLAQKRMDPTELKRVFQMFDRNG<br>DGRITKKELNDSLENLGIFIPDKELT<br>QMIEKIDVNGDGCVDMDEFGELYQSI<br>MDEKDEEEDMREAFNVFDQNGDGFIT<br>VDELRSVLASLGLKQGRTVEDCKRMI<br>MKVDVDGDGMVNYKEFKQMMKGGGFS<br>ALS                    | Ziziphus jujuba       | Rhamnaceae | Rosales  |                                              |

Appendix III. Protein sequences subjected to phylogenetic analysis
| LotJaC7L  | >CAB63264.3 calcium-<br>binding protein [Lotus<br>japonicus]<br>MPTILHRIFLLYNLLNSFLLSLVPKK<br>VIAFLPQSWFPHQTPSFSSSSSSSS<br>RGNLVIQKTTDDCDPCQLLPLDTSLI<br>PKMDPTELKRVFQMFDRNGDGRITKK<br>ELNDSLENLGIFIPDKELTQMIERID<br>VNGDGCVDIDEFGELYQSIMDERDEE<br>EDMREAFNVFDQNGDGFITVEELRTV<br>LASLGIKQGRTVEDCKKMIMKVDVDG<br>DGMVDYKEFKQMMKGGGFSALT                                             | Lotus japonicus               | Fabaceae | Fabales |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|---------|--|
| VigAnC3L1 | >XP_017425433.1 PREDICTED:<br>calmodulin-like protein 7<br>[Vigna angularis]<br>MPTIMLRFFLLYNLLRPFLLCLVPKK<br>VRAILSPSWFRSSSTTAPTPTQPSSS<br>SSSSAFTRISLSMDPNELKRVFQMF<br>DRNGDGRITKKELSDSLDNLGIFIPD<br>KELTVMIERIDVNGDGCVDIDEFGEL<br>YQTIMDERDEEDDMREAFNVFDQNGD<br>GFITVEELRTVLSSLGLKQGRTVEDC<br>KKMIMKVDVDGDGMVDYKEFKQMMKG<br>GGFSALT                                            | Vigna angularis               | Fabaceae | Fabales |  |
| VigRaC3L1 | <pre>&gt;XP_014521900.1 PREDICTED:<br/>calmodulin-like protein 7<br/>[Vigna radiata var.<br/>radiata]<br/>MPTIMLRFFLLYNLLRPFLLCLVPKK<br/>VRAILSPSWFRSSTTTTAPTPTQPSS<br/>SSSSSSSAITRISLSMDPNELKRVF<br/>QMFDRNGDGRITKKELSDSLDNLGIF<br/>IPDKELTVMIERIDVNGDGCVDIDEF<br/>GELYQTIMDERDEEDDMREAFNVFDQ<br/>NGDGFITVEELRTVLSSLGLKQGRTV<br/>EDCKKMIMKVDVDGDGMVDYKEFKQM<br/>MKGGGFSALT</pre> | Vigna radiata var.<br>radiata | Fabaceae | Fabales |  |

| PhaVuC3L1 | >XP_007150430.1<br>hypothetical protein<br>PHAVU_005G152900g<br>[Phaseolus vulgaris]<br>MPTILHRFFLLYNLLHPFLLFLVPKK<br>VRAILSPSWFRSTTTPPPPSSSSSRL<br>ITTISPPMDPHELKRVFQMFDRNGDG<br>RITKKELNDSLENLGIFIPDKELTLM<br>IERIDVNGDGCVDIDEFGELYQHIMD<br>DRDEDEDMREAFNVFDQNGDGFITVE<br>ELRTVLSSLGLKQGRTVEDCKKMIMK<br>VDVDGDGMVDYKEFKQMMKGGGFSAL<br>T                                           | Phaseolus vulgaris | Fabaceae | Fabales |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|---------|--|
| GlyMaC3L1 | <pre>&gt;NP_001236739.2 EF-hand,<br/>calcium binding motif-<br/>containing protein<br/>precursor [Glycine max]<br/>MPTILHRIFLLYNLVHSFLLCLVPKK<br/>VRPFLPPSWFQTKTITAPSSSSSSS<br/>SARIIKRTTMDPNELKRVFQMFDRNG<br/>DGRITKKELNDSLENLGIFIPDKELG<br/>QMIERIDVNGDGCVDIDEFGELYQTI<br/>MDERDEEEDMREAFNVFDQNADGFIT<br/>VDELRTVLSSLGLKQGRTVQDCKNMI<br/>SKVDVDGDGMVDFKEFKQMMKGGGFS<br/>ALT</pre> | Glycine max        | Fabaceae | Fabales |  |
| CajCaC3L1 | >XP_020223613.1<br>calmodulin-like protein 7<br>[Cajanus cajan]<br>MPTIFHRIVVVYEVLYPFLVRLIPKK<br>VRAFFPSAGGSWSSQKSRRTSMDPQE<br>LRRVFQMFDRNGDGRITKKELSDSLE<br>NLGIFIPDKELSLMIEKIDVNGDGCV<br>DIDEFGELYQTIMDERDEEEDMREAF<br>NVFDQNGDGFITVDELRTVLSSLGLK<br>QGRTVEDCKNMIMKVDVDGDGMVDFK<br>EFKHMMKGGGFNALT                                                                                | Cajanus cajan      | Fabaceae | Fabales |  |
| PruMuC3L2 | >XP_008237262.1 PREDICTED:<br>calmodulin-like protein 3<br>[Prunus mume]<br>MPTIFPRIFLIYNLLNTFLLSLVPKN<br>LRPLLPSSWFPCQTNLVATNTPLPHF<br>PPSSSSSSLPCGAPKVIR<br>MDPNELKRVFQMFDRNGDGRITKQEL<br>NDSLENLGIFIPDKELFNMIQKIDVD<br>GDGCVDIDEFGELYQSIMDERDEDED<br>MKEAFNVFDQNGDGFITVDELRSVLS<br>SLGLKQGRTIEDCKRMIMKVDVDGDG<br>RVNYKEFKQMMKGGGFSALS                                            | Prunus mume        | Rosaceae | Rosales |  |

| PruPeC3L2  | >XP_020411008.1<br>calmodulin-like protein 3<br>[Prunus persica]<br>MPTIFPRIFLIYNLLNTFLLSLVPKN<br>LRPLLPSSWFPCQTNLVATNTSLPHF<br>PPSSSSSSLPLPLPLPCG<br>APKVIRMDPNELKRVFQMFDRNGDGR<br>ITKQELNDSLENLGIFIPDKELFNMI<br>QKIDVNGDGCVDIDEFGELYQSIMDE<br>RDEDEDMKEAFNVFDQNGDGFITVDE<br>LRSVLSSLGLKQGRTIEDCKRMIMKV<br>DVDGDGRVNYKEFKQMMKGGGFSALS                   | Prunus persica         | Rosaceae | Rosales |          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|---------|----------|
| PruAvC3L   | >XP_021808428.1<br>calmodulin-like protein 3<br>[Prunus avium]<br>MPTIFPRIFLIYNLLNTFLLSLVPKN<br>LRPLLPSSWFPCQTNLVATSTPLPHF<br>PPSSSSSSCGAHKVIRMDPNELKRV<br>FQMFDRNGDGRITKQELNDSLENLGI<br>FIPDKELFNMIQKIDVNGDGCVDIDE<br>FGELYQSIMDERDEDEDMKEAFNVFD<br>QNGDGFITVDELRSVLSSLGLKQGRT<br>IEDCKRMIMKVDVDGDGRVNYKEFKQ<br>MMKGGGFSALS                             | Prunus avium           | Rosaceae | Rosales | MalPyC3L |
| MalDoC3L4  | >XP_008369144.1 PREDICTED:<br>calmodulin-like protein 3<br>[Malus domestica]<br>MPTIFPRIFLIYNLLNTFLLSLVPKH<br>LRHLLPSSWFPHHTTLLDTKTPSPQP<br>PPPSSLSLPLPLPSGGAC<br>HVRMDPNELKRVFQMFDRNGDGRITK<br>QELNDSLENLGIYIPDKELFNMIEKI<br>DVNGDGCVDIDEFGELYQSIMDERDE<br>EEDMKEAFNVFDQNGDGFITVDELRS<br>VLSSLGLKQGRTIEDCKRMIMKVDVD<br>GDGRVNFKEFRQMMKGGGFSALS          | Malus domestica        | Rosaceae | Rosales | MalPyC3L |
| Pyrbrc3_7L | >XP_009347665.1 PREDICTED:<br>calmodulin-like protein 7<br>[Pyrus x bretschneideri]<br>MPTIFRRIFLIYNLLNTFLLSLVPKH<br>LRPLLPSSWFPHHTTLLDTKTPSPQP<br>PPPSLLSLPLPLPLPSGG<br>ACHVRMDPNELKRVFQMFDRNGDGRI<br>TKQELNDSLENLGIYIPDKELFNMIE<br>KIDVNGDGCVDIDEFGELYQSIMDER<br>DEEEDMKEAFNVFDQNGDGFITVDEL<br>RSVLSSLGLKQGRTIEDCKRMIMKVD<br>VDGDGRVNYKEFRQMMKGGGFSALS | Pyrus x bretschneideri | Rosaceae | Rosales |          |

| PopEuC3L2 | >XP_011037098.1 PREDICTED:<br>calmodulin-like protein 3<br>[Populus euphratica]<br>MPTILLRIFLLYNLLNSFLLSLVPKK<br>LRFLLPTSWYHHHQANTNTSWCHPHQ<br>ANTNTKKPSSLLPSPSFVLTRMDQAE<br>LKRVFQMFDRNGDGKITKKELNDSLE<br>NLGIFIPDKELTQMIETIDVNGDGCV<br>DIDEFGELYQSLMDEKDEEEDMREAF<br>KVFDQNGDGFITVDELRSVLASLGLK<br>QGRTLEDCKRMIMKVDVDGDGMVDYK<br>EFKKMMKGGGFSALG       | Populus euphratica  | Salicaceae | Malpighiales |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|--------------|--|
| PopTrC3L1 | >XP_006372871.1<br>hypothetical protein<br>POPTR_0017s05860g [Populus<br>trichocarpa]<br>MPTILLRIFLLYNLLNSFLLSLVPKK<br>LRFLLPTSWYHPHQANTNTSWCHPHQ<br>ANTNTKKPSSLLPSPSFVLARMDQAE<br>LKRVFQMFDRNGDGKITKKELNDSLE<br>NLGIFIPDKELTQMIETIDVDGDGCV<br>DIDEFGELYQSLMDDKDEEEDMREAF<br>KVFDQNGDGFITVDELRSVLASLGLK<br>QGRTLEDCKRMIMKVDVDGDGMVDYK<br>EFKKMMKGGGFSALG | Populus trichocarpa | Salicaceae | Malpighiales |  |
| PopEuC3L3 | >XP_011012929.1 PREDICTED:<br>calmodulin-like protein 3<br>[Populus euphratica]<br>MRTILLRIFLLYNLLNSFLLSLVPKK<br>LRFLLPTSWYHHPHQAITNTRKPSSL<br>LPSSSNFVVKRMDQAELKRVFQMFDR<br>NGDGRITQKELNDSLENIGIFIPDKE<br>LTQMIENIDANGDGCVDIDEFGELYR<br>SLMDEKDEEEDMREAFNVFDQNGDGF<br>ITVEELRSVLASLGLKQGRTFEDCKR<br>MIMKVDVDGDGMVDYREFQKMMKGGG<br>FSAVG                 | Populus trichocarpa | Salicaceae | Malpighiales |  |
| PopEuC3L4 | >XP_011026425.1 PREDICTED:<br>calmodulin-like protein 3<br>[Populus euphratica]<br>MRTILLRIFLLYNLLNSFLLSLVPKK<br>LRFLLPTSWYHHPHQAITNTRKPSSL<br>LPSSSNFAVKRMDQAELKRVFQMFDR<br>NGDGRITQKELNDSLENIGIFIPDKE<br>LTQMIENIDANGDGCVDIDEFGELYR<br>SLMDEKDEEEDMREAFNVFDQNGDGF<br>ITVDELRSVLASLGLKQGRTFEDCKR<br>MIMKVDVDGDGMVDYREFQKMMKGGG<br>FSAVG                 | Populus trichocarpa | Salicaceae | Malpighiales |  |

| PopTrC3L3 | >XP_002310432.2<br>hypothetical protein<br>POPTR_0007s01960g [Populus<br>trichocarpa]<br>MRTILLRIFLLYNLLNSFLLSLVPKK<br>LRFLLPTSWYHHPHQAITNTKKPSSL<br>LPSSSNFVLKRMDQAELKRVFQMFDR<br>NGDGRITQKELNDSLENIGIFIPDKE<br>LTQMIEKIDVNGDGCVDIDEFGELYQ<br>SLMDEKDEEEDMREAFNVFDQNGDGF<br>ITVDELRSVLASLGLKQGRTFEDCKR<br>MIMKVDVDGDGMVDYREFKKMMKGGG<br>FSAVG | Populus trichocarpa | Salicaceae    | Malpighiales |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|--------------|--|
| CarPaC3L  | >XP_021906924.1<br>calmodulin-like protein 7<br>[Carica papaya]<br>MPTILLRIFLVYNLLNSILLYLIPKK<br>LRGFLPPSWYPHPHPHHHHHQQQQQP<br>NLVLDSSSKSPSPSPSSVSGLKRMDS<br>AELKRVFQMFDKNGDGRITKKELNDS<br>LENLGIFIPDKELAQMIEKIDVNGDG<br>CVDIDEFGSLYKSIMDEHDEEEDMRE<br>AFNVFDQNGDGFITVDELKSVLASLG<br>LKQGKTVEDCKKMIMQVDEDGDGMVN<br>YKEFRQMMKGGGFSALS           | Carica papaya       | Carricaceae   | Brassicales  |  |
| JatCuC3L2 | >XP_012065170.1<br>calmodulin-like protein 3<br>[Jatropha curcas]<br>MLKIFLLYHLLHSLLVYLLPKKLRFL<br>LPSSWLPHQANFPPNKKPPSSSSNTS<br>SSSSSVVHKRMDTTELRRVFQMFDR<br>NGDGRITRKELSDSLENLGIFIPDSE<br>LTQMIDNIDVNGDGCVDIEEFGVLYQ<br>SIMDERDEEEDMREAFNVFDRNGDGY<br>ITVDELRSVLASLGLKQGKAVEDCKR<br>MIMRVDVDGDGMVNFMEFKQMMKGGG<br>FSALS                      | Jatropha curcas     | Euphorbiaceae | Malpighiales |  |
| HevBraC3L | >XP_021652705.1<br>calmodulin-like protein 3<br>[Hevea brasiliensis]<br>MPTILLTIFLLYNLLNSFLLYLIPKK<br>LRTFFLPSSWCSHQANSLFKQQTLPP<br>SSSSSAAAVVRKRMDSVELARVFQMF<br>DRNGDGRITKKELNDSLENLGIFIPD<br>LELTQMIQNIDVNGDGCVDIDEFGAL<br>YQSIMDERDEEEDMKEAFNVFDQNGD<br>GYITVDELRSVLAALGLKQGRTLEDC<br>KTMIMKVDVDGDGMVNFKEFKQMMKG<br>GGFSALG                | Hevea brasiliensis  | Euphorbiaceae | Malpighiales |  |

| VitViC3L2 | >XP_002266359.1 PREDICTED:<br>calmodulin-like protein 3<br>[Vitis vinifera]<br>MPTFLHRIFLLYNLLNSLVLFLVPKK<br>LRIFLPTSWFHPHQTQEANLVDSKTS<br>KTPGRSLVSRKRMESAEMKRVFQMFD<br>RNGDGRITKTELNDSLENLGIYIPDK<br>DLAQMIEKIDVNGDGCVDIDEFRALY<br>ESIMEEKDEDEDMKEAFNVFDQNGDG<br>FITVDELKSVLGSLGLRHGRTVEDCK<br>RMIMKVDEDGDGKVDLKEFKQMMRGG<br>GFSALS        | Vitis vinifera      | Vitaceae | Vitales    |            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------|------------|
| CicArC7L  | >XP_012570335.1 PREDICTED:<br>calmodulin-like protein 7<br>[Cicer arietinum]<br>MPTILLRIFLLYNVVNSFLISLVPKK<br>LRTFFPHSWFSHQTLKTNLNTTTLSS<br>SKKGFVVITKSITMDPNELKRVFQMF<br>DRNDDGRITKKELNDSLENLGIFIPD<br>KELSQMIEKIDVNRDGCVDIEEFREL<br>YESIMNGREEEEEEDMREAFNVFDQN<br>GDGFISVEELRSVLVTLGLKQGRTVE<br>DCKKMIGKVDVDGDGLVDYKEFVQMM<br>KGGGFTALS    | Cicer arietinum     | Fabaceae | Fabales    |            |
| MedTrC7L  | >XP_003597517.1 EF hand<br>calcium-binding family<br>protein [Medicago<br>truncatula]<br>MPTILLRIFLLYNVVNSFLISLVPKK<br>LITFFPHSWFTHQTLTTPSSTSKRGL<br>VFTKTITMDPNELKRVFQMFDRNDDG<br>RITKKELNDSLENLGIFIPDKELSQM<br>IEKIDVNRDGCVDIEEFRELYESIMS<br>ERDEEEEEDMREAFNVFDQNGDGFIS<br>VDELRSVLVSLGLKQGRTVEDCKKMI<br>GTVDVDGNGLVDYKEFKQMMKGGGFT<br>ALS | Medicago truncatula | Fabaceae | Fabales    |            |
| CitClC3L2 | >XP_006443024.1<br>hypothetical protein<br>CICLE_v10022299mg [Citrus<br>clementina]<br>MRFILLRIFLLYTFILHLLPKKLRRF<br>LPRSWFPAPALGPSLSSQSNTNPTRS<br>TMDQAELDRVFQMFDHNGDGRISKKE<br>LNDSLENLGIYIPDVELTQMIERIDV<br>NGDGCVDIDEFGALYKSIMEEKDEEE<br>DMKEAFNVFDQNGDGFITFDELKSVL<br>GSLGLKQGRTVEDCKRMIMKVDVDGD<br>GMVDYKEFKQMMKGGGFSALT               | Citrus clementina   | Rutaceae | Sapindales | cic12cisi2 |

| CitSiC3L2 | >XP_006478702.1 PREDICTED:<br>calmodulin-like protein 3<br>[Citrus sinensis]<br>MRFILLRIFLLYTFILHLLPKKLRRF<br>LPRSWFPAPALGPSLSSQSNTNPTRS<br>TMDQAELDRVFQMFDHNGDGRISKKE<br>LNDSLENLGIYIPDVELTQMIERIDV<br>NGDGCVDIDEFGALYKSIMEEKDEEE<br>DMKEAFNVFDQNGDGFITFDELKSVL<br>GSLGLKQGRTVEDCKRMIMKVDVDGD<br>GMVDYKEFKQMMKGGGFSALT                                           | Citrus sinensis     | Rutaceae  | Sapindales | cic12ciSi2 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|------------|------------|
| ElaGuC3L1 | >XP_019708251.1 PREDICTED:<br>calmodulin-like protein 3<br>[Elaeis guineensis]<br>MPTVLLRISLICHLLKTLLHYFLPKK<br>LSFLRTAKVSAPRVFILATPPGMDPS<br>ELKRVFQMFDRNGDGRITKKELSDSL<br>ENLGIYIPEGDLEAMIEKIDANGDGC<br>VDVEEFGALYQNIMDERDEEEDMREA<br>FNVFDQNGDGFITVEELRSVLASLGL<br>KQGRTVEDCRRMISKVDADGDGMVNF<br>KEFKQMMRGGGFAALS                                              | Elaeis guineensis   | Arecaceae | Arecales   |            |
| ElaGuC3L2 | >XP_010912790.2 PREDICTED:<br>calmodulin-like protein 3<br>[Elaeis guineensis]<br>MALKPPFLQPFSPPIPPHHSLHWQSP<br>PPPLNSPMPTVFLRISLICHLLNSLL<br>HYFLPHKLISLLLPSSRSSSGRPRVL<br>ILATPPEMDPSELKRVFQMFDRNGDG<br>RITKKELSDSLENLGIYIPEGDLESM<br>IGKIDVNGDGCVDIEEFGALYQTIMD<br>ERDEEEDMREAFNVFDQNGDGFITVE<br>ELRSVLASLGLKQGRTVEDCRRMISK<br>VDVDGDGMVNFKEFKQMMRGGGFAAL<br>G | Elaeis guineensis   | Arecaceae | Arecales   |            |
| PhoDaC3L  | >XP_008791779.1 PREDICTED:<br>calmodulin-like protein 3<br>[Phoenix dactylifera]<br>MPPVLLRISLVCHLLNSLLHYFLPHK<br>LSSLLPSSWLPRACLQEPAPDAAKAP<br>SHCPSPRSSPCPRVSILATPPGMEPS<br>ELKRVFQMFDRNGDGRITKKELGDSL<br>ENLGIHIPEGDLESMIGKIDANGDGC<br>VDIEEFGALYQTIMDERDEEEDMREA<br>FNVFDQNGDGFITVEELRSVLASLGL<br>KQGRTVEDCRKMITKVDVDGDGMVDF<br>KEFKQMMRGGGFAALS              | Phoenix dactylifera | Arecaceae | Arecales   |            |

| MacCoC3L | >OVA04582.1 EF-hand domain<br>[Macleaya cordata]<br>MPTVFLRISLLINLLNSILFYFFPNK<br>LKSILPPSWFPNSHQSFSTNSTTSIP<br>NTTIIPSTFSSSSSSSLPSSSSLIQQ<br>EVMDPAELKRVFQMFDRNGDGRITKK<br>ELSDSLDNLGIFIPDKDLTQMIEKID<br>VNGDGCVDIDEFGALYQTIMDEKDEE<br>EDMREAFNVFDQNGDGFITVEELRSV<br>LSSLGLKQGRTVEDCRRMIRKVDVDG<br>DGMVNFKEFKQMMRGGGFAALS                               | Macleaya cordata    | Papaveraceae  | Ranunculales |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|--------------|--|
| EryGuC3L | >XP_012851006.1 PREDICTED:<br>calmodulin-like protein 3<br>[Erythranthe guttata]<br>MPTILLRIFLLYKLLNTIFLYLVPKK<br>LRTFLPPSWYPYLHQQEQQKQQKHNN<br>TNTINEPASPSSSPVISPLHKFPRRM<br>DADELRRVFQMFDRNGDGRITQKELS<br>DSLENMGIFIPDKELSQMIDKIDVNG<br>DGCVDIEEFGNLYQNIMDERDEEEDM<br>REAFNVFDQNGDGFITVDELKAVLAS<br>LGLKQGRAVEDCKKMIMRVDADGDGM<br>VNFTEFKQMMRGGGFAALGN | Erythranthe guttata | Phrymaceae    | Lamiales     |  |
| SesInC3L | >XP_011084127.1<br>calmodulin-like protein 3<br>[Sesamum indicum]<br>MPTILLRIFLVYNLILSYLVPKKLRA<br>YLPSSWYPYQQQQQQQQVKKEPTVA<br>LSSSIVPSSRIVIHRRMDPNELKRVF<br>QMFDRNGDGRITKQELSDSLHNMGIS<br>IPDEELTQMIDKVDINGDGCVDIDEF<br>GTLYQTIMDERDEEEDMKEAFNVFDQ<br>NGDGFISVDELKSVLVSLGLKQGKAA<br>EDCRQMIMRVDVDGDGMVNFSEFKQM<br>MRGGGFAALTN                          | Sesamum indicum     | Pedaliaceae   | Lamiales     |  |
| RicCoC3L | >XP_015583372.1 PREDICTED:<br>calmodulin-like protein 3<br>[Ricinus communis]<br>MPTILLRIFLLYNLLNSFLLSLVPKK<br>LVRFFVPSSWYNSNTHQANLLINQEL<br>QQQEEEEETLVVPSAARKRMDSTELK<br>KVFQMFDTNGDGRITKEELNGSLENL<br>GIFIPDKELSQMMETIDVNGDGGVDI<br>EEFGALYQSIMDEKDEDEDMREAFNV<br>FDQNGDGYITGDELRSVLASLGLKQG<br>RTAEDCKKIIMKVDVDGDGMVDFKEF<br>KQMMKGGVFTALSSCN        | Ricinus communis    | Euphorbiaceae | Malpighiales |  |

| GOSArC7L  | >XP_017647023.1 PREDICTED:<br>calmodulin-like protein 7<br>[Gossypium arboreum]<br>MPSLLFRIFLLYNLLLDYLVPRKLKS<br>FLSPSCTITTPFVSVGGETEKNPSPA<br>VALASVSPRCPLKRMDAAELKRVFQL<br>FDKNGDGSISKKELNDSLENMGICIP<br>DPELTQMIEKIDVNGDKCIDIDEFSE<br>LYRSIMDNKDEEEDMKEAFNVFDQNG<br>DGYISVEELRSVLESLGLKQGKGIED<br>CKRMITKVDVDGDGRVNFMEFKQMMK<br>GGGFTAMA  | Gossypium arboreum   | Malvaceae | Malvales |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|----------|--|
| TheCaC3L2 | >XP_007033950.2 PREDICTED:<br>calmodulin-like protein 7<br>[Theobroma cacao]<br>MPTVLLRIFLVYNLVLDYLVPKKLKT<br>FLPSSWIPTRTLVSTGSESKTHTSTS<br>PAPESASAPASSACCPQRMDGAELKR<br>VFQMFDKNGDGRITKKELNDSLENLG<br>IFIPDGELTHMIEKIDVNGDNCVDID<br>EFGELYHSIMDDKDEEEDMKEAFNVF<br>DQNGDGYISVDELRSVLVSLGLKQGK<br>TIEDCKRMIMKVDVDGDGRVNFKEFK<br>QMMKGGGFSALT | Theobroma cacao      | Malvaceae | Malvales |  |
| CorOlC3L  | >OMP07050.1 Calcium-<br>binding EF-hand [Corchorus<br>olitorius]<br>MPTVLLRIFLLYNLVLDYLVPKKLKT<br>FLPSSWIPPPPTHTLVSTATESKSSS<br>SPEPAPAPASPSCRRQSQRMDAAELK<br>RVFQLFDKNGDGRISKQELNDSLENL<br>GIFIPDGELTQMIEKIDVNGDNCVDI<br>DEFGELYQSIMDGKDEEEDMKDAFNV<br>FDQNGDGFISVDELRSVLVSLGLKQG<br>KTIEDCKRMIMKVDADGDGRVNFKEF<br>KQMMKGGGFSALT            | Corchorus olitorius  | Malvaceae | Malvales |  |
| CorCaC3L  | >OMO52915.1 Calcium-<br>binding EF-hand [Corchorus<br>capsularis]<br>MPTVLLRIFLLYNLVLDYLVPKKLKT<br>FLPSSWIPPPTHTFVSTVTESKSSSS<br>PEPAAAPPASPSCRRQSQRMDAAELK<br>RVFQLFDKNGDGRISKQELNDSLENL<br>GIFIPDGELTQMIEKIDVNGDNCVDI<br>DEFGELYQSIMDGKDEEEDMKDAFNV<br>FDQNGDGFISVDELRSVLISLGLKQG<br>KTIEDCKRMIMKVDADGDGRVNFKEF<br>KQMMKGGGFSALT           | Corchorus capsularis | Malvaceae | Malvales |  |

| PunGrC3L  | >OWM87900.1 hypothetical<br>protein CDL15_Pgr000317<br>[Punica granatum]<br>MLMPTILKRIFLIYNLLLYFVPKKLR<br>PFLPSPSWFCSAVSGTANGNVVLLPS<br>PSLRARKATVMDPTELRRVFQMFDRN<br>GDGSISKKELADSLENLGIFIPDKEL<br>EDMIRRIDANGDGCVDIEEFEALYRS<br>IMDERDEEEDMKEAFNVFDQNGDGFI<br>TVDELRSVLASLGLKQGRTIEDCKRM<br>IMKVDVDGDGRVNYKEFKQMMKGGGF<br>SALS              | Punica granatum      | Lythraceae | Myrtales  |          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-----------|----------|
| SolLyC3L1 | >Solyc06g073245.1<br>MQFPAIFFKTRCIFNLFNPILLSLLP<br>KKLISFLPPSWFHQKRIHSRSPAPPQ<br>QSPVSVSDAVESHQKRMDSDELRRIF<br>QIFDRNGDGRITKNELNSSLENMGIF<br>IPDPELIQMIEKIDVNGDGCVDIDEF<br>GSLYQTIMDERDEEEDMREAFNVFDQ<br>NGDGFICVEELKSVLASLGLKQGRTV<br>EDCKQMINKVDIDGDGMVNYDEFKQM<br>MRGGGDM                                                                  | Solanum lycopersicum | Solanaceae | Solanales |          |
| SolTuC3L1 | >XP_006347296.1 PREDICTED:<br>calmodulin-like protein 3<br>[Solanum tuberosum]<br>MQFPAIFFKTRFIYNLFNPILLSLLP<br>KKLISFLPPSWFHQKHLHSRSPAPPQ<br>QSPVSVSDAVQSHIQKRMDSDELRRI<br>FQIFDRNGDGRITKNELNDSLENMGI<br>FIPDPELIEMIEKIDVNGDGCVDIDE<br>FGSLYQTIMDERDEEEDMREAFNVFD<br>QNGDGFICVDELKSVLASLGLKQGRT<br>VEDCKQMINKVDIDGDGMVNFAEFKQ<br>MMRGGGFAALS | Solanum tuberosum    | Solanaceae | Solanales |          |
| AraDuC3L2 | >XP_015935524.1<br>calmodulin-like protein 3<br>[Arachis duranensis]<br>MPAILLLYNILNSFLISLIPKKLRPF<br>FPFSWFPHQTNNTSSSSSSSSSPR<br>ASRAIIITKTRIMDPNEL<br>RRVFQMFDRNGDGRISRSELTVSLEN<br>LGIFIPDKELAQMIDKIDANGDGFVD<br>VEEFGELYESIMVERGDEEEDMKEAF<br>NVFDQNGDGFISVEELRAVLSSLGLK<br>QGRTDEDCKKMIMKVDADGDGMVNYG<br>EFKQMMKGGGFSALS                 | Arachis duranensis   | Fabaceae   | Fabales   | ADu2AIp2 |

| AraIpC3L2 | <pre>&gt;XP_016171630.1 calmodulin-like protein 3 [Arachis ipaensis] MPAILLLYNILNSFLISLIPKKLRPF FPFSWFPHQTNNTSSSSSSSSSPR ASRAIIITKTRIMDPNEL RRVFQMFDRNGDGRISRSELTVSLEN LGIFIPDKELAQMIDKIDANGDGFVD VEEFGELYESIMVERGDEEEDMKEAF NVFDQNGDGFISVEELRAVLSSLGLK QGRTDEDCKKMIMKVDADGDGMVNYG EFKQMMKGGGFSALS</pre>                                                                                          | Arachis ipaensis                     | Fabaceae     | Fabales      | ADu2AIp2 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|--------------|----------|
| MusAcC3L4 | <pre>&gt;XP_009417008.1 PREDICTED:<br/>calmodulin-like protein 3<br/>[Musa acuminata subsp.<br/>malaccensis]<br/>MELTPMPAIFVGIFLICHHLNSRLLR<br/>FLPEKLISLLLPFSWHPPTSKDGLSP<br/>PATALSSIASFRSPSFGPKASARVMD<br/>PSELKRVFQMFDRNGDGRITKTELSD<br/>SLENLGIYIPEAELASMIEKIDVNGD<br/>GCVDMDEFGALYRSIMDERDEEEDMR<br/>EAFNVFDQNGDGYISVEELRSVLVSL<br/>GVKQGRTAEDCRMMINKVDVDGDGRV<br/>DFKEFKQMMKGGGFAALS</pre> | Musa acuminata subsp.<br>malaccensis | Musaceae     | Zingiberales |          |
| AraLYC4L  | >XP_020881472.1<br>calmodulin-like protein 4<br>[Arabidopsis lyrata subsp.<br>lyrata]<br>MVRVFLPYNLFNSFLLCLVPKKLRVF<br>FPPSWYIDDKNPPQSKSESESPGRRD<br>PVDLKRVFQMFDKNGDGRITKEELND<br>SLENLGIFMPDKDLVQMIQKMDANGD<br>GIVDIKEFESLYGSIVEEKEEEDMRD<br>AFNVFDQDGDGFITVEELKSVMASLG<br>LKQGKTLECCKEMIKQVDEDGDGRVN<br>YMEFLQMMKSGDFSNRS                                                                      | Arabidopsis lyrata<br>subsp. lyrata  | Brassicaceae | Brassicales  |          |
| AraThC4   | >NP_191503.1 Calcium-<br>binding EF-hand family<br>protein [Arabidopsis<br>thaliana]<br>MVRVFLLYNLFNSFLLCLVPKKLRVF<br>FPPSWYIDDKNPPPPDESETESPVDL<br>KRVFQMFDKNGDGRITKEELNDSLEN<br>LGIFMPDKDLIQMIQKMDANGDGCVD<br>INEFESLYGSIVEEKEEGDMRDAFNV<br>FDQDGDGFITVEELNSVMTSLGLKQG<br>KTLECCKEMIMQVDEDGDGRVNYKEF<br>LQMMKSGDFSNRS                                                                           | Arabidopsis thaliana                 | Brassicaceae | Brassicales  |          |

| CamSaC4L1 | >XP_010512205.1 PREDICTED:<br>calmodulin-like protein 4<br>[Camelina sativa]<br>MVKSVFLLYNLFHSFLLCLVPKKLRV<br>LFPPSWYIDDKNPPPPSQVETESPGR<br>TDLVDLKRVFQMFDKNGDGRITKEEL<br>NDSLENLGIFMPDKDLIQMIQKMDAN<br>GDGCVDINEFESLYGSIVEEKEEEDM<br>RDAFNVFDQDGDGFITVKELKSVMAS<br>LGLKQGRTLKCCKEMIMQVDEDGDGR<br>VNYKEFLQMMKSVGFSNRS                | Camelina sativa  | Brassicaceae | Brassicales |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------|--|
| CamSaC4L2 | >XP_010469361.1 PREDICTED:<br>calmodulin-like protein 4<br>[Camelina sativa]<br>MVRSVFLLYNLFHSFLLCLVPKKLRV<br>LFPPSWYIDDKNPPPPSQLETESPGR<br>TDLVDLKRVFQMFDKNGDGRITKEEL<br>NDSLENLGIFMPDKDLIQMIQKMDAN<br>GDGCVDINEFESLYGSIVEEKEEEDM<br>RDAFNVFDQDGDGFITVKELKSVMAS<br>LGLKQGRTLKCCKEMIMQVDEDGDGR<br>VNYKEFLQMMKSVGFSNRS                | Camelina sativa  | Brassicaceae | Brassicales |  |
| CapRuC4L  | >XP_006291828.1<br>hypothetical protein<br>CARUB_v10018003mg, partial<br>[Capsella rubella]<br>MVRVFLLYSLFNSFLLSLVPKKLRVL<br>FPPSWYIDDKNPPPVPSQSETESPGR<br>TDPVDLKRVFQMFDKNGDGRITKEEL<br>NDSLENLGIFMPDKDLIQMIQKMDAN<br>GDGCVDINEFESLYGSIVEEKEEEDM<br>RDAFNVFDQDGDGFISVEELKSVMAS<br>LGLKQGKTLKCCKEMIMQVDEDGDGR<br>VDYKEFLQMMKSGGFSNRA | Capsella rubella | Brassicaceae | Brassicales |  |
| BraNaC4L1 | >XP_013663730.1 PREDICTED:<br>calmodulin-like protein 4<br>isoform X3 [Brassica<br>napus]<br>MVRVILLYNLLNSFLLCLVPKKLRVL<br>FPPSWYTDDKITPPSESECSLRTDPV<br>DLKRVFQMFDKNGDGRITKEELNDSL<br>ENLGIFMPDKDLIQMIRKMDANGDGC<br>VDINEFESLYGSIVEEKEEEDMRDAF<br>NVFDQDGDGFISVEELKSVMASLGLK<br>QGKTLKCCKEMITQVDEDGDGRVNYK<br>EFLQMMKSGGFSNRSS      | Brassica napus   | Brassicaceae | Brassicales |  |

| BraRaC4L1 | >XP_009116605.1 PREDICTED:<br>calmodulin-like protein 4<br>[Brassica rapa]<br>MVRVFLLYNLLNSFLLCLVPKKLRVL<br>FPPSWYTDDKITPPSESECSLRTDPV<br>DLKRVFQMFDKNGDGRITKEELNDSL<br>ENLGIFMPDKDLIQMIRKMDANGDGC<br>VDINEFESLYGSIVEEKEEEDMRDAF<br>NVFDQDGDGFISVEELKSVMASLGLK<br>QGKTLKCCKAMITQVDEDGDGRVNYK<br>EFLQMMKSGGFSNRSS                       | Brassica rapa                      | Brassicaceae | Brassicales |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|-------------|--|
| BraOlC4L2 | >XP_013603279.1 PREDICTED:<br>calmodulin-like protein 4<br>[Brassica oleracea var.<br>oleracea]<br>MVRVFLLYNLLNSFLLCLVPKKLRVL<br>FPPSWYTDDKITPPSESECSLRTDPV<br>DLKRVFQMFDKNGDGRITKEELNDSL<br>ENLGIFMPDKDLIQMIQKMDANGDGC<br>VDINEFESLYGSIVEEKEEEDMRDAF<br>NVFDQDGDGFISVEELKSVMASLGLK<br>QGKTLKCCKEMITQVDEDGDGRVNYK<br>EFLQMMKSGGFSNSSSD | Brassica oleracea var.<br>oleracea | Brassicaceae | Brassicales |  |
| RapSaC4L2 | >XP_018489165.1 PREDICTED:<br>calmodulin-like protein 4<br>[Raphanus sativus]<br>MVRVFLLYNLLNSFLLCLVPKKLRVL<br>FPPSWYTEDKIPPPPESECSLRTEPV<br>DLKRVFQMFDKNGDGRITKEELNDSL<br>ENLGIFMPDKDLIQMIQKMDANGDGC<br>VDINEFESLYGSIVEEKEEEDMRDAF<br>NVFDQDGDGFISVEELKSVMASLGLK<br>QGKTLKCCKEMITQVDEDGDGRVNYN<br>EFLQMMKSGGFSNRS                     | Raphanus sativus                   | Brassicaceae | Brassicales |  |
| BraNaC4L2 | >XP_013699103.1 PREDICTED:<br>calmodulin-like protein 4<br>[Brassica napus]<br>MVRVFLLYNLINSFLLYLVPKKLRVL<br>FPPSWYIDDNIPPPLSEPEPKSQTRT<br>DPVDLKQVFQMFDKNGDGRITKEELN<br>DSLENLGIFMPDKDLIQMIHKMDANG<br>DGCVDIHEFESLYGSIVEEKEEEDMR<br>DAFNVFDQDGDGFISVEELKSVMASL<br>GLKQGKTLECCKEMIMQVDEDGDGRV<br>NYKEFLQMMKTGGFNNRSSSSN                | Brassica napus                     | Brassicaceae | Brassicales |  |

| BraOlC4L1 | >XP_013588571.1 PREDICTED:<br>calmodulin-like protein 4<br>[Brassica oleracea var.<br>oleracea]<br>MVRVFLLYNLINSFLLCLVPKKLRVL<br>FPPSWYIDDNIPPPLSEPEPKSQTRT<br>DPVDLKQVFQMFDKNGDGRITKEELN<br>DSLENLGIFMPDKDLIQMIHKMDANG<br>DGCVDIHEFESLYGSIVEEKEEEDMR<br>DAFHVFDQDGDGFISVEELKSVMASL<br>GLKQGKTLECCKEMIMQVDEDGDGRV<br>NYKEFLQMMKTGGFNNRSSSSN | Brassica oleracea var.<br>oleracea | Brassicaceae | Brassicales |          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|-------------|----------|
| BraNaC4L3 | >XP_013648300.1 PREDICTED:<br>calmodulin-like protein 4<br>[Brassica napus]<br>MVRVFLLYNLINSFLLCLVPKKLRVL<br>FPPSWYIDDNIPPPLSEPEPKSQTRT<br>DPVDLKQVFQMFDKNGDGRITKEELN<br>DSLENLGIFMPDKDLIQMIHKMDANG<br>DGCVDIHEFESLYGSIVVEKEEEDMR<br>DAFNVFDQDGDGFISVEELKSVMASL<br>GLKQGKTLECCKEMIMQVDEDGDGRV<br>NYKEFLQMMKTGGFSNTSSSN                      | Brassica napus                     | Brassicaceae | Brassicales | BNa3BRa2 |
| BraRaC4L2 | >XP_009104207.1 PREDICTED:<br>calmodulin-like protein 4<br>[Brassica rapa]<br>MVRVFLLYNLINSFLLCLVPKKLRVL<br>FPPSWYIDDNIPPPLSEPEPKSQTRT<br>DPVDLKQVFQMFDKNGDGRITKEELN<br>DSLENLGIFMPDKDLIQMIHKMDANG<br>DGCVDIHEFESLYGSIVVEKEEEDMR<br>DAFNVFDQDGDGFISVEELKSVMASL<br>GLKQGKTLECCKEMIMQVDEDGDGRV<br>NYKEFLQMMKTGGFSNTSSSN                       | Brassica rapa                      | Brassicaceae | Brassicales | BNa3BRa2 |
| RapSaC4L1 | >XP_018442929.1 PREDICTED:<br>calmodulin-like protein 4<br>[Raphanus sativus]<br>MVRVFLLYNLINSFLLCLIPKKLRVL<br>FPPSWYMDDNIPPPLSEPEPESREAR<br>TDPVDLKRVFQMFDKNGDGRITKEEL<br>NDSLENLGIFMPDKDLIQMIKNIDAN<br>GDGCVDIQEFESLYGSIVQEKEEEDM<br>RDAFNVFDQDGDGFISVEELKSVMSS<br>LGLKQVKTLECCKEMIMQVDEDGDGR<br>VNYKEFLQMMKTGGVSNTSSSS                   | Raphanus sativus                   | Brassicaceae | Brassicales |          |

| EutSaC4L   | >XP_006402687.1<br>hypothetical protein<br>EUTSA_v10006367mg [Eutrema<br>salsugineum]<br>MVRVFLLYNLFNSILLCLVPKKLRVL<br>FPHSWIIDDKNPPPSKSESPARTDPV<br>DLKRVFQMFDKNGDGRITKEELNDSL<br>ENLGIFMPEKDLIQMIQKMDANGDGC<br>VDIHEFESLYSSIVEEKVDEDMRDAF<br>NVFDQDGDGYITVEELKSVMASLGLK<br>QGKTLECCKDMITQVDEDGDGRVNYK<br>EFLQMMKSGGFSNNRSSSN                       | Eutrema salsugineum                 | Brassicaceae | Brassicales |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|-------------|--|
| TarHaC4_5L | >XP_010526084.1 PREDICTED:<br>calmodulin-like protein 4<br>[Tarenaya hassleriana]<br>MPAVMVRIFLLYNLFNSFLLCLVPKK<br>LRGIFPPSWYPHHVDDDNPKNPPPSS<br>SPSPSPPPARVDPVELKRVFQMFDKN<br>GDGRITKEELNDSLENLGLFLPDREL<br>AQMIQKIDANGDGCVDMDEFESLYKS<br>IVDQSDKDDDMRDAFDVFDQDGDGFI<br>TVEELKSVMGSLGLKQGKTLEDCKKM<br>IMQVDVDGDGRVNYKEFLQMMKSGDL                    | Tarenaya hassleriana                | Cleomaceae   | Brassicales |  |
| АгаГУС5Г   | >XP_002881895.1<br>calmodulin-like protein 5<br>[Arabidopsis lyrata subsp.<br>lyrata]<br>MVRIFLLYNILNSFLLSLVPKKLQTL<br>FPLSWLDKTLHKNSPPSPSTMLPSPP<br>SSSAPTKRIDPSELKRVFQMFDKNGD<br>GRITKEELNDSLENLGIYIPDKDLTQ<br>MIHKIDANGDGCVDIDEFESLYSSIV<br>DEHHNDGETEEEDMKDAFNVFDQDGD<br>GFITVDELKSVMASLGLKQGKTLDGC<br>KKMIMQVDADGDGRVNYKEFLQMMKG<br>GG<br>FSSSN | Arabidopsis lyrata subsp.<br>lyrata | Brassicaceae | Brassicales |  |
| AraThC5    | >NP_565996.1 Calcium-<br>binding EF-hand family<br>protein [Arabidopsis<br>thaliana]<br>MVRIFLLYNILNSFLLSLVPKKLRTL<br>FPLSWFDKTLHKNSPPSPSTMLPSPS<br>SSSAPTKRIDPSELKRVFQMFDKNGD<br>GRITKEELNDSLENLGIYIPDKDLTQ<br>MIHKIDANGDGCVDIDEFESLYSSIV<br>DEHHNDGETEEEDMKDAFNVFDQDGD<br>GFITVEELKSVMASLGLKQGKTLDGC<br>KKMIMQVDADGDGRVNYKEFLQMMKG<br>GGFSSSN      | Arabidopsis thaliana                | Brassicaceae | Brassicales |  |

| CamSaC5L1 | >XP_010508448.1 PREDICTED:<br>calmodulin-like protein 5<br>[Camelina sativa]<br>MVRIFVLYNILNSFLLSLVPKKLRTL<br>FPLSWFDKTLHKNSPPSPPTMLPSPS<br>SSSSSSVPTKRIDPSDLKRVFQMFDK<br>NGDGRITKEELNDSLENLGIYIPDKD<br>LTQMIHKIDANGDGCVDIDEFESLYS<br>SIVDEHQNDGETEEEDMKDAFNVFDQ<br>DGDGFITVEELKSVMASLGLKQGKTL<br>DGCKKMIMQVDADGDGRVNYKEFLQM<br>MKGGGFSSSN    | Camelina sativa     | Brassicaceae | Brassicales |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-------------|--|
| CamSaC5L3 | >XP_010517888.1 PREDICTED:<br>calmodulin-like protein 5<br>[Camelina sativa]<br>MVRIFVLYNILNSFLLSLVPKKLRTL<br>FPLSWFDKTLHKNSPPSPSTMLPSPS<br>SSSSSSVPTKRIDPSELKRVFQMFDK<br>NGDGRITKEELNDSLENLGIYIPDKD<br>LTQMIHKIDANGDGCVDKDEFESLYS<br>SIVDEHQKDGETEEEDMKDAFNVFDQ<br>DGDGFITVEELKSVMASLGLKQGKTL<br>DGCKKMIMQVDADGDGRVNYKEFLQM<br>MKGGGFSSSN    | Camelina sativa     | Brassicaceae | Brassicales |  |
| CamSaC5L2 | >XP_010506196.1 PREDICTED:<br>calmodulin-like protein 5<br>[Camelina sativa]<br>MVRIFVLYNILNSFLLSLVPKKLRSL<br>FPLSWFDKTLHKNSPPSPPTMLPSPS<br>SSSSSVPTKRIDPSELKRVFQMFDKN<br>GDGRITKEELNDSLENLGIYIPDKDL<br>TQMIHKIDANGDGCVDIDEFESLYSS<br>IVDEHQNDGETEEENMKDAFNVFDQD<br>GDGFITVEELKSVMASLGLKQGKTLD<br>GCKKMIMQVDADGDGRVNYKEFLQMM<br>KGGGFSSSN     | Camelina sativa     | Brassicaceae | Brassicales |  |
| EutSaC5L  | >XP_006397493.1<br>hypothetical protein<br>EUTSA_v10001753mg [Eutrema<br>salsugineum]<br>MVRIFLLYNLLNSFL<br>LSLVPKKLRSLFPLSWFDKTLHKTSP<br>SSMLPSPSPSSAPTKRTDPSELKRVF<br>QMFDKNGDGRITKEELNDSLENLGIY<br>IPDKDLTQMIHKIDANGDGCVDIDEF<br>ESLYSSIVDEHHNDGETEEEDMKDAF<br>NVFDQDGDGFITVEELKSVMASLGLK<br>QGKTLDGCKKMIMQVDADGDGRVNYK<br>EFLQMMKGGGFSSSN | Eutrema salsugineum | Brassicaceae | Brassicales |  |

| CapRuC5L  | >XP_006296176.1<br>hypothetical protein<br>CARUB_v10025336mg<br>[Capsella rubella]<br>MVRIFLLYNILNSFLLSLVPKKLRSL<br>FPLSWFDKTLHMNSPPSPPTMLPSPS<br>SSPLPTKKIDPSELKRVFQMFDKNGD<br>GRITKEELNDSLENLGIYIPDQDLTQ<br>MIHKIDANGDGCVDIDEFESLYGSIV<br>DEHHNDGGTEEEDMKDAFNVFDQDGD<br>GFITVEELKSVMASLGLKQGKTLDGC<br>KKMIMQVDADGDGRVNYKEFLQMMKG<br>GGFSSSSN                                   | Capsella rubella                   | Brassicaceae | Brassicales |          |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|-------------|----------|
| BraNaC5L1 | >XP_013688028.1 PREDICTED:<br>calmodulin-like protein 5<br>[Brassica napus]<br>MVRIFLLYNLLNSFLLSLVPKKLRSL<br>FPLSWFDKTPHKNSSMLPSPSPSSAP<br>TRKTDPSELKRVFQTFDKNGDGRITK<br>TELNDSLENLGIYIPDKDLTQMIHNI<br>DANGDGCVDIDEFESLYSSIVDEHRK<br>DGETEEDDMKDAFNVFDQDGDGFITV<br>EELKSVMGSLGLKQGKTLEGCKKMIM<br>QVDGDGDGRVNYKEFLQMMRGGGFSC<br>SNN                                               | Brassica napus                     | Brassicaceae | Brassicales | BNa1B012 |
| Bra01C5L2 | <pre>&gt;XP_013631723.1 PREDICTED:<br/>calmodulin-like protein 5<br/>[Brassica oleracea var.<br/>oleracea]<br/>MVRIFLLYNLLNSFLLSLVPKKLRSL<br/>FPLSWFDKTPHKNSSMLPSPSPSSAP<br/>TRKTDPSELKRVFQTFDKNGDGRITK<br/>TELNDSLENLGIYIPDKDLTQMIHNI<br/>DANGDGCVDIDEFESLYSSIVDEHRK<br/>DGETEEDDMKDAFNVFDQDGDGFITV<br/>EELKSVMGSLGLKQGKTLEGCKKMIM<br/>QVDGDGDGRVNYKEFLQMMRGGGFSC<br/>SNN</pre> | Brassica oleracea var.<br>oleracea | Brassicaceae | Brassicales | BNa1B012 |

| BraNaC5L2 | >XP_013664170.1 PREDICTED:<br>calmodulin-like protein 5<br>[Brassica napus]<br>MVRIFLLYNLLNSFLLSLVPKKLRTL<br>FPLSWFDKTPHKNSSMLLSPSPSSAP<br>SIKTDPTELKRVFQTFDKNGDGRITK<br>TELNDSLENLGIYIPDQELTQMIHNI<br>DANGDGCVDIDEFESLYSSIVDEHRK<br>DGETEEEDMKDAFNVFDQDGDGFITV<br>EELKSVMGSLGLKQGKTLEGCKKMIM<br>QVDGDGDGRVNYKEFLQMMKGGGFSC<br>SN                                                   | Brassica napus                     | Brassicaceae | Brassicales |          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|-------------|----------|
| BraRaC5L1 | >XP_009150184.1 PREDICTED:<br>calmodulin-like protein 5<br>[Brassica rapa]<br>MVRIFLLYNLLNSFLLSLVPKKLRTL<br>FTLSWFDKTPHKNSSMLPSPSPSSAP<br>SIKTDPTELKRVFQTFDKNGDGRITK<br>TELNDSLENLGIYIPDKELTQMIHNI<br>DANGDGCVDIDEFESLYSSIVDEHRK<br>DGETEEEDMKDAFNVFDQDGDGFITV<br>EELKSVMGSLGLKQGKTLEGCKKMIM<br>QVDGDGDGRVNYKEFLQMMKGGGFSC<br>SN                                                    | Brassica rapa                      | Brassicaceae | Brassicales |          |
| BraNaC5L3 | >XP_013683810.1 PREDICTED:<br>calmodulin-like protein 5<br>[Brassica napus]<br>MMRIFLLYNLLNSFLLSLVPKKLRTL<br>FSLSWFDKTLHKNSPPSPSMLPSPSP<br>SSTPTTKIDPSELKRVFQTFDKNGDG<br>RITKQELKDSLENLGIYIPDKDLTQM<br>IHNIDTNHDGCVDIDEFESLYKSIVD<br>EHHNDGETEEEDMKEAFNVFDQDGDG<br>FITVEELKSVMGSLGLKQGKTQEGCK<br>KMIMQVDVDGDGRVNYKEFLQMMKGD<br>GFSSRS                                               | Brassica napus                     | Brassicaceae | Brassicales | BN53B051 |
| Bra01C5L1 | <pre>&gt;XP_013625660.1 PREDICTED:<br/>calmodulin-like protein 5<br/>[Brassica oleracea var.<br/>oleracea]<br/>MMRIFLLYHLLNSFLLSLVPKKLRTL<br/>FSLSWFDKTLHKNSPPSPSMLPSPSP<br/>SSTPTTKIDPSELKRVFQTFDKNGDG<br/>RITKQELKDSLENLGIYIPDKDLTQM<br/>IHNIDTNHDGCVDIDEFESLYKSIVD<br/>EHHNDGETEEEDMKEAFNVFDQDGDG<br/>FITVEELKSVMGSLGLKQGKTQEGCK<br/>KMIMQVDVDGDGRVNYKEFLQMMKGD<br/>GFSSSS</pre> | Brassica oleracea var.<br>oleracea | Brassicaceae | Brassicales | BN53B051 |

| BraRaC5L2 | >XP_009133590.1 PREDICTED:<br>calmodulin-like protein 5<br>[Brassica rapa]<br>MVRIFLLYNLLNSFLLSLVPKKLRTL<br>FSLSWFDKTLHKNSPPSPSMLPSPSP<br>SSTPTTKIDPSELKRVFQTFDKNGDG<br>RITKQELKDSLENLGIYIPDKDLTQM<br>IHNIDTNHDGCVDIDEFESLYRSIVN<br>EHHNDGETKEEDMKEAFNVFDQDGDG<br>FITVEELKSVMSSLGLKQGKTLEGCK<br>KMIMQVDVDGDGRVNYKEFLQMMKGD<br>GFSRSS                                 | Brassica rapa                        | Brassicaceae | Brassicales  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|--------------|--|
| RapSaC5L1 | >XP_018472925.1 PREDICTED:<br>calmodulin-like protein 5<br>[Raphanus sativus]<br>MVRIFLLYSLLNSFLLSLLPKKLRTL<br>FPLSWFDKTLHKNSPPSASMLPSPSP<br>SPSSASTRKIDPSELKRVFQTFDKNG<br>DGRITKQELNNSLENLGIYIPDKDLT<br>QMIHNIDKNHDGCVDIDEFESLYRSI<br>VDEHHNDGETEEEDMKEAFNVFDQDG<br>DGFITVEELKSVLASLGLKQGKTLEG<br>CKKMIMQVDSDGDGRVNYKEFLQMMK<br>GGGFSSSG                            | Raphanus sativus                     | Brassicaceae | Brassicales  |  |
| MusAcC3L5 | >XP_009392598.1 PREDICTED:<br>calmodulin-like protein 3<br>[Musa acuminata subsp.<br>malaccensis]<br>MELTPLPIVLVRLSLLCLRLISRLLY<br>FLPKKLTSLLLSPSSSSSSSSSPSHE<br>NPAASFTSTVAARPASSAPSMDPSEL<br>KPVFHMFDRNGDGRITKEELSDSLRN<br>LGMRVPEAELASMIERIDANGDGYVD<br>SDEFATLYRSIMEERDEEEEDMREAF<br>NVFDRNGDGFITVEELRSVLASLGLK<br>QGRTAEDCKTMINTVDVDGDGMVDFK<br>EFRQMMNGGGFAASS | Musa acuminata subsp.<br>malaccensis | Musaceae     | Zingiberales |  |

| DauCaC3L2 | >XP_017250190.1 PREDICTED:<br>calmodulin-like protein 3<br>[Daucus carota subsp.<br>sativus]<br>MLKHKAISAILLRAFLFYNVLNSILA<br>YLVPKKLRNYVPTFWYSREAGIDRNH<br>TNLTSSNTELTLHFPRMEADELRKVF<br>EMFDHNGDGRITKQELNESLEKMGIF<br>IPDQELTQMIEKIDVNNDGCVDIDEF<br>GDLYQNIMNTREEEEDMKEAFSVFDQ<br>NGDGFITVDELKSVLASLGLKQGRTE<br>EDCKTMIMKVDVDGDGRVNFNEFKAM<br>MRGGGFAALN | Daucus carota subsp.<br>sativus | Apiineae      | Apiales    |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|------------|--|
| CepFoC3L  | <pre>&gt;GAV85659.1 EF_hand_5 domain-containing protein [Cephalotus follicularis] MLRISLVYNLLNTFLLSLVPKKLIPA SWYHHQNNHIVDTKTLPPPLPPLARA QKRMDPTELDRVFQMFDRNGDGRITK MELNESLEKLGMFIPDKELTRMIEKI DVDGDGCVDIDEFGALYRSLMDHEVD DDEEEEEDMMKEAFNVFDSNGDGFIS VDELRSVFVSLGVKQGRTIEDCKKMI MKVDVDGDGKVDYEEFKQMMKGGGGG FSSLS</pre>                                      | Cephalotus follicularis         | Cephalotaceae | Oxalidales |  |
| HelanC3L  | >OTG32667.1 putative<br>calcium-binding EF-hand<br>family protein [Helianthus<br>annuus]<br>MPRIFLLYNLIYSIFLSFLPKNLRHY<br>LPKSHTQQQQQQIQNDTVSQPSQPPQ<br>TPRTSRMNPDQLQRIFQMFDKNNDGT<br>ITKHELNESLENMKIFISDEDLVRMI<br>DKVDINNDGCVDLDEFGVLYKEIMDN<br>QENEEDMMEAFNVFDQNRDGFIAVEE<br>LRSVLESLGLKQGKVVDDCRRMIMKV<br>DVDGDGRVSFNEFKEMMKSGGFVNLA<br>QS             | Helianthus annuus               | Asteraceae    | Asterales  |  |
| VigAnC3L2 | >XP_017407196.1 PREDICTED:<br>calmodulin-like protein 5<br>[Vigna angularis]<br>MPTIMLRFFLLYNLLRPFLLCLVPKK<br>VRAILSPSWFRSSSTTAPTPTQPSSS<br>SSSSSAFTRISLSMDPNELKRVFQMF<br>DRNGDGRITKKELSDSLDNLGIFIPD<br>KELTVMIERIDVNGDGCVDIDEFGEL<br>YQTIMDERDEEDDMREAFNDIYIYIL<br>YLDILITKIYKIYSPLHSFKKHFIKV<br>WSLY                                                     | Vigna angularis                 | Fabaceae      | Fabales    |  |

| AraThC24 | >NP_198593.1 EF hand<br>calcium-binding protein<br>family [Arabidopsis<br>thaliana]<br>MSSKNGVVRSCLGSMDDIKKVFQRFD<br>KNGDGKISVDELKEVIRALSPTASPE<br>ETVTMMKQFDLDGNGFIDLDEFVALF<br>QIGIGGGGNNRNDVSDLKEAFELYDL<br>DGNGRISAKELHSVMKNLGEKCSVQD<br>CKKMISKVDIDGDGCVNFDEFKKMMS<br>NGGGA                                                                                   | Arabidopsis thaliana | Brassicaceae | Brassicales |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------|--|
| ElaGuC6L | >XP_010927373.1 PREDICTED:<br>calmodulin-like protein 6<br>[Elaeis guineensis]<br>MAALLFFAILFTCGLINSYFFLHPPK<br>LLTRLASFLYVTSTPKPIVKTPSKDG<br>KEVVVSEIVTDKAGIETVFATFDKDG<br>DGFITTEELEESFKRLGLFSTRNEIV<br>SMMKRVDANGDGLIDLEEFGELYDSL<br>GRGRGGGDGDERGERGKEEEEEGEVE<br>LREAFDVFDENGDGLITVEELGLVLA<br>SLGLKRGATVEDCRDMIRKVDLDGDG<br>MVDFGEFKKMMVEGVKLF               | Elaeis guineensis    | Acecaceae    | Arecales    |  |
| CapAnC3L | >XP_016541129.1<br>PREDICTED: calmodulin-<br>like protein 3 [Capsicum<br>annuum]<br>MFTLLTILFLAFLFIIGLITTFFNF<br>PTNKFQSLIQKISLKSPSLQEKTII<br>TPSPSITMVDKKVMNRSNNY<br>NKVELRSIFATFDKNNDGYITKQEL<br>KLSLKNIGIFMEDKDIVEMVEKVDS<br>NKDGLIDLDEFCDLCHTYLG<br>IEEVSNESEMNEEEVANREKDLKDA<br>FDVFDHDKDGLISKEELSKILSTLG<br>MKEGKKLDYCKEMIKKVDVD<br>GDGMVNFDEFKKMMKACGTLIPFS | Capsicum annuum      | Solanaceae   | Solanales   |  |

| CucMeC7L | >XP_008457058.1 PREDICTED:<br>calmodulin-like protein 7<br>[Cucumis melo]<br>MEPIFNFLLLSVLFVAGFVNFLLYFP<br>TKRFTAWFQSIKPSSQIPHFKSTPLQ<br>PPPPPPPPPPPPPSAME<br>LKKVFGTFDKNDDGFITKKELMESLK<br>SMRMMITEKDAEEMLKEVDENGDGLI<br>DFEEFCVLGEKLLMGFEE<br>NKKTSVGDDEEGLKDAFGVFDKDSDG<br>LISVEELSLVLCSLGMNEGKIVENCK<br>EMIRKVDLDGDGMVNFDE<br>FKKMMRNGVSILTSS        | Cucumis melo         | Cucurbitaceae | Cucurbitales |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--------------|--|
| CucSaC3L | >XP_004139293.1 PREDICTED:<br>calmodulin-like protein 3<br>[Cucumis sativus]<br>MEPIFNFLLLSVLFVAGFINFLLYFP<br>SKRFSAWFQSIKPSSQITHFKSTPLQ<br>PPPPPSPSPSPSPSPPPSA<br>MEMKKVFGTFDKNDDGFITKKELMES<br>LKSMRMMITEKDAEEMLKGVDENGDG<br>LIDFEEFCVLGGKLMMGF<br>EENKKTSVEDEEDELKDAFGVFDKDS<br>DGLISVEELSLVLCSLGMNEGKIVEN<br>CKEMIRKVDLDGDGMVNF<br>DEFKKMMRNGVTILTSS | Cucumis sativus      | Cucurbitaceae | Cucurbitales |  |
| DenCaC3L | >XP_020688260.1<br>calmodulin-like protein 3<br>[Dendrobium catenatum]<br>MAALILFALLFLCGLLNSLFFPSSKL<br>LPWFHSLLLSAISPPKPKPNPPPKPD<br>LTKERRANRSESLADSLN<br>LKTLFSTFDADGDGYISTAELNDSLR<br>RLGLHATGDDLTNMMERVDANGDGLI<br>DLNEFKELCASLGSEGEG<br>EADEDRELREAFEVFDDNGDGLITVE<br>ELSLVLKSLGLRQGDRAEACRDMINR<br>VDLDGDGMVNFEEFKRMM<br>VVDGGGSFF                | Dendrobium catenatum | Orchidaceae   | Asparagales  |  |

| GosRaC7L  | >XP_012455812.1 PREDICTED:<br>calmodulin-like protein 7<br>[Gossypium raimondii]<br>MPTFLFRIFLLYNLLLDYLVPRKLKS<br>FLSPSCTTTTPFVSVGGETEKNPSPA<br>VALASVSPRCPLKRMDAA<br>ELKRVFQLFDKNGDGTISKKELNDSL<br>ENMGICIPDPELTQMIEKIDVNGDKC<br>IDIDEFSELYRSIMDNKD<br>EEEDMKEAFNVFDQNGDGYISVEELR<br>SVLESLGIKQGKGIEDCKRMITKVDV<br>DGDGRVNFMEFKQMMKGG<br>GFTAMA               | Gossypium raimondii | Malvaceae     | Malvales  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|-----------|--|
| JugReC3L  | >XP_018836651.1 PREDICTED:<br>calmodulin-like protein 3<br>[Juglans regia]<br>MAIITVLLLAVLFIAGLVNILFRFPT<br>KKFYASLKYVPANKSSSNISTTSPPT<br>SHKERSPHNKAELKKIFA<br>TFDKNGDGFITKQEMRESLKNIKMVV<br>TDKEVEEMVVKVDANGDGLIEFDEFC<br>VLCESMVSEERAAGNYDE<br>GDGAKGVESSEGTGDEEDDLKEAFDV<br>FDKDRDGLITVEELGLVLCSLGLKEG<br>KKKEDCKEMIRNVDMDGD<br>GMVNFDEFKKMMKGGGRLLLAS     | Juglans regia       | Juglandaceae  | Fagales   |  |
| NelNuC3L1 | >XP_010241567.1 PREDICTED:<br>calmodulin-like protein 3<br>[Nelumbo nucifera]<br>MMALVLLAVLFVCGLINSVFFLPPKK<br>VITWIQSFPPISRSCTSITPPASVTV<br>MASDKKKESAHDRAELRN<br>IFATFDKNSDGFINKEELTESLKNIG<br>ISTTDAEVKDMIERLDANKDGLIDLD<br>EFCKLYDSVGKPQDRGRK<br>DGEEGSTEEEDGGVDQEMELKEAFDV<br>FDGNKDGLITVEELSLVLESLGLKQG<br>WKSEDCKEMIRSVDMDGD<br>GMVNFEEFKKMMMKAGGCLVSLS | Nelumbo nucifera    | Nelumbonaceae | Proteales |  |

| INuC3L2  | >XP_010250191.1 PREDICTED:<br>calmodulin-like protein 3<br>[Nelumbo nucifera]<br>MVMAFVLLAVFFVCGLVNSLFYLPPK<br>KLLAWIQALIPIAKPSLITSPATTTT<br>TTSSDKAELRNVFATFDK<br>NSDGIITEEELRESLKNIGFSITDTD<br>LVHMVEKLDSNRDGLIDLEEFSKLYE                                                                                                                                                    | o nucifera           | nbonaceae  | oteales   |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-----------|--|
| NeJ      | SVGISRSKQRGGRDGELL<br>DCREEEEVDEERDLKEAFDVFDGNRD<br>GLITVEELSLVLSSLGLKQGLRSEDC<br>REMIKSVDMDGDGMVNFE<br>EFKKMMMKAGGSCVGIS                                                                                                                                                                                                                                                      | Nelumb               | Nelun      | Fro       |  |
| NİCAtC3L | >XP_019255618.1 PREDICTED:<br>calmodulin-like protein 3<br>[Nicotiana attenuata]<br>MSTVLSIFFLAILFIIGLITTLLNFP<br>KEKFQTLIQSISLKSPPLHENRISTT<br>CSSSRSMDEKKVKNSSIK<br>STSSNNYNKLELRSIFATFDKNNDGY<br>ITKQELKLSLKNIGIFIEDKDIIDMV<br>EKVDSNKDGLIDIDEFYQ<br>LCHTFLGIEAVNEEEESNREKDLKDA<br>FDVFDYDKDGLISVEELSKILSSLGL<br>RQGKKLDYCKEMISKVDV<br>DGDGMVNFDEFKKMIKGCGTLVPIS            | Nicotiana attenuata  | Solanaceae | Solanales |  |
| NİCSYC3L | >XP_009778097.1 PREDICTED:<br>calmodulin-like protein 3<br>[Nicotiana sylvestris]<br>MLTLSILFLAFLFILGLITTLFNFPT<br>KKFQSWIFSLSIKAQTPSSSPLFKNS<br>TSTSPPLVEQKIMKRSTS<br>NSHNKVELRSIFATFDKNNDGYITKQ<br>ELKQSLNNIGIYMEDRDIVEMVEKVD<br>SNKDGLIDLDEFYELCHS<br>FLGIQGVIGSQENSGEMNQEEEANRE<br>RDLKDAFDVFDYDKDGLISEEELSKV<br>LSSLGLNQGKKLEDCKEM<br>IRKIDVDGDGMVNFDEFKKMMKLGGR<br>LIPIS | Nicotiana sylvestris | Solanaceae | Solanales |  |

| NİCTAC3L | >XP_016440228.1 PREDICTED:<br>calmodulin-like protein 3<br>[Nicotiana tabacum]<br>MLTLSILFLAFLFILGLITTLFNFPT<br>KKFQSWIFSLSIKAQTPSSSPLFKNS<br>TSTSPPLVEQKIMKRSTS<br>NSHNKVELRSIFATFDKNNDGYITKQ<br>ELKQSLNNIGIYMEDRDIVEMVEKVD<br>SNKDGLIDLDEFYELCHS<br>FLGIQGVIGSQENSGEMNQEEEANRE<br>RDLKDAFDVFDYDKDGLISEEELSKV<br>LSSLGLNQGKKLEDCKEM<br>IRKIDVDGDGMVNFDEFKKMMKLGGR<br>LIPIS            | Nicotiana tabacum         | Solanaceae | Solanales |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|-----------|--|
| NİCTOC3L | >XP_009608019.1 PREDICTED:<br>calmodulin-like protein 3<br>[Nicotiana<br>tomentosiformis]<br>MLTLSILFLALLFILGLITTLFNFPT<br>KKFQSWIYSLSIKAQTPTPSPLVKNS<br>TLSSPPMAEQKIMRRSTS<br>NSHNKVELRSIFATFDKNNDGYITKQ<br>ELKQSLKNIGIYMEDIDIVEMVEKVD<br>SNKDGLIDLDEFYELCHS<br>FLGIEGIIGSQENSGEMNQEEEANRE<br>RDLKDAFDVFDYDKDGLISEEELSKV<br>LSSLGLNQGKKLEDCKEM<br>IRKIDVDGDGMVNFDEFKKMMKVGGR<br>LIPIS | Nicotiana tomentosiformis | Solanaceae | Solanales |  |

| RapSaC3L2  | MATNLLKLSS                                                   |
|------------|--------------------------------------------------------------|
| EucGrC3L2  | MPAIITR-IFLLYHLLHTWFHYLVPK                                   |
| ZizJuC3L2  | MPTIFLR-IFLIYNLFNSLLLSLVPK                                   |
| LotJaC7L   | MPTILHR-IFLLYNLLNSFLLSLVPK                                   |
| VigAnC3L1  | MPTIMLR-FFLLYNLLRPFLLCLVPK                                   |
| VigRaC3L1  | MPTIMLR-FFLLYNLLRPFLLCLVPK                                   |
| PhaVuC3L1  | MPTILHR-FFLLYNLLHPFLLFLVPK                                   |
| GlyMaC3L1  | MPTILHR-IFLLYNLVHSFLLCLVPK                                   |
| CajCaC3L1  | MPTIFHR-IVVVYEVLYPFLVRLIPK                                   |
| PruMuC3L2  | MPTIFPR-IFLIYNLLNTFLLSLVPK                                   |
| PruPeC3L2  | MPTIFPR-IFLIYNLLNTFLLSLVPK                                   |
| PruAvC3L   | MPTIFPR-IFLIYNLLNTFLLSLVPK                                   |
| MalPyC3L   | MPTIFRR-IFLIYNLLNTFLLSLVPK                                   |
| PopEuC3L2  | MPTILLR-IFLLYNLLNSFLLSLVPK                                   |
| PopTrC3L1  | MPTILLR-IFLLYNLLNSFLLSLVPK                                   |
| PopEuC3L3  | MRTILLR-IFLLYNLLNSFLLSLVPK                                   |
| PopEuC3L4  | MRTILLR-IFLLYNLLNSFLLSLVPK                                   |
| PopTrC3L3  | MRTILLR-IFLLYNLLNSFLLSLVPK                                   |
| CarPaC3L   | MPTILLR-IFLVYNLLNSILLYLIPK                                   |
| JatCuC3L2  | MLK-IFLLYHLLHSLLVYLLPK                                       |
| HevBraC3L  | MPTILLT-IFLLYNLLNSFLLYLIPK                                   |
| VitViC3L2  | MPTFLHR-IFLLYNLLNSLVLFLVPK                                   |
| CicArC7L   | MPTILLR-IFLLYNVVNSFLISLVPK                                   |
| MedTrC7L   | MPTILLR-IFLLYNVVNSFLISLVPK                                   |
| CiCl2CiSi2 | MRFILLR-IFLLYTFILHLLPK                                       |
| ElaGuC3L1  | MPTVLLR-ISLICHLLKTLLHYFLPK                                   |
| ElaGuC3L2  | -MALKPPFLQPFSPPIPPHHSLHWQSPPPPLNSPMPTVFLR-ISLICHLLNSLLHYFLPH |
| PhoDaC3L   | MPPVLLR-ISLVCHLLNSLLHYFLPH                                   |
| MacCoC3L   | MPTVFLR-ISLLINLLNSILFYFFPN                                   |
| EryGuC3L   | MPTILLR-IFLLYKLLNTIFLYLVPK                                   |
| SesInC3L   | MPTILLR-IFLVYNLILSYLVPK                                      |
| RicCoC3L   | MPTILLR-IFLLYNLLNSFLLSLVPK                                   |
| GosArC7L   | MPSLLFR-IFLLYNLLLDYLVPR                                      |
| GosRaC7L   | MPTFLFR-IFLLYNLLLDYLVPR                                      |
| TheCaC3L2  | MPTVLLR-IFLVYNLVLDYLVPK                                      |
| CorOlC3L   | MPTVLLR-IFLLYNLVLDYLVPK                                      |
| CorCaC3L   | MPTVLLR-IFLLYNLVLDYLVPK                                      |
| PunGrC3L   | -MLMPTILKR-IFLIYNLLLYFVPK                                    |
| SolLyC3L1  | -MQFPAIFFK-TRCIFNLFNPILLSLLPK                                |

# Appendix IV. MSA of CMLs with AtCML4\_5-like N-terminus

| SolTuC3L1  | -MQFPAIFFK-TRFIYNLFNPILLSLLPK    |
|------------|----------------------------------|
| ADu2AIp2   | LLYNILNSFLISLIPK                 |
| MusAcC3L4  | -MELTPMPAIFVG-IFLICHHLNSRLLRFLPE |
| AraLyC4L   | MVR-VFLPYNLFNSFLLCLVPK           |
| AraThC4    | MVR-VFLLYNLFNSFLLCLVPK           |
| CamSaC4L1  | MVKSVFLLYNLFHSFLLCLVPK           |
| CamSaC4L2  | MVRSVFLLYNLFHSFLLCLVPK           |
| CapRuC4L   | MVR-VFLLYSLFNSFLLSLVPK           |
| BraNaC4L1  | MVR-VILLYNLLNSFLLCLVPK           |
| BraRaC4L1  | MVR-VFLLYNLLNSFLLCLVPK           |
| BraOlC4L2  | MVR-VFLLYNLLNSFLLCLVPK           |
| RapSaC4L2  | MVR-VFLLYNLLNSFLLCLVPK           |
| BraNaC4L2  | MVR-VFLLYNLINSFLLYLVPK           |
| BraOlC4L1  | MVR-VFLLYNLINSFLLCLVPK           |
| BNa3BRa2   | MVR-VFLLYNLINSFLLCLVPK           |
| RapSaC4L1  | MVR-VFLLYNLINSFLLCLIPK           |
| EutSaC4L   | MVR-VFLLYNLFNSILLCLVPK           |
| TarHaC4_5L | MPAVMVR-IFLLYNLFNSFLLCLVPK       |
| AraLyC5L   | MVR-IFLLYNILNSFLLSLVPK           |
| AraThC5    | MVR-IFLLYNILNSFLLSLVPK           |
| CamSaC5L1  | MVR-IFVLYNILNSFLLSLVPK           |
| CamSaC5L3  | MVR-IFVLYNILNSFLLSLVPK           |
| CamSaC5L2  | MVR-IFVLYNILNSFLLSLVPK           |
| EutSaC5L   | MVR-IFLLYNLLNSFLLSLVPK           |
| CapRuC5L   | MVR-IFLLYNILNSFLLSLVPK           |
| BNa1BO12   | MVR-IFLLYNLLNSFLLSLVPK           |
| BraNaC5L2  | MVR-IFLLYNLLNSFLLSLVPK           |
| BraRaC5L1  | MVR-IFLLYNLLNSFLLSLVPK           |
| BN53B051   | MMR-IFLLYNLLNSFLLSLVPK           |
| BraRaC5L2  | MVR-IFLLYNLLNSFLLSLVPK           |
| RapSaC5L1  | MVR-IFLLYSLLNSFLLSLLPK           |
| MusAcC3L5  | -MELTPLPIVLVR-LSLLCLRLISRLLYFLPK |
| DauCaC3L2  | MLKHKAISAILLR-AFLFYNVLNSILAYLVPK |
| CepFoC3L   | MLR-ISLVYNLLNTFLLSLVPK           |
| HelAnC3L   | MPR-IFLLYNLIYSIFLSFLPK           |
| VigAnC3L2  | MPTIMLR-FFLLYNLLRPFLLCLVPK       |
| ElaGuC6L   | MAALLFFA-ILFTCGLINS-YFFLHPP      |
| CapAnC3L   | MFTLLTILFLA-FLFIIGLITT-FFNFPTN   |
| NicAtC3L   | MSTVLSIFFLA-ILFIIGLITT-LLNFPKE   |
| NsyNtaC3   | -MLTLSILFLA-FLFILGLITT-LFNFPTK   |
| NicToC3L   | -MLTLSILFLA-LLFILGLITT-LFNFPTK   |

| JugReC3L  | -MAI | -ITVLLLA-VLFIAGLVNI-LFRFPTK |
|-----------|------|-----------------------------|
| NelNuC3L1 | M    | -MALVLLA-VLFVCGLINS-VFFLPPK |
| NelNuC3L2 | MV   | -MAFVLLA-VFFVCGLVNS-LFYLPPK |
| CucMeC7L  | MEPI | -FNFLLLS-VLFVAGFVNF-LLYFPTK |
| CucSaC3L  | MEPI | -FNFLLLS-VLFVAGFINF-LLYFPSK |
| DenCaC3L  | M    | -AALILFA-LLFLCGLLNS-LF-FPSS |
| AraThC24  | M    |                             |

| RapSaC3L2  | QI-RR-LSPI       |                   |                 | -TRSLTIRT- | SA- |
|------------|------------------|-------------------|-----------------|------------|-----|
| EucGrC3L2  | KL-RV-YLPPSWS    | SPLR              | LD              | PTPP       | PL- |
| ZizJuC3L2  | KI-RH-FFPPSWH    | FPLQ              | APPLPS          | PPSP       | PS- |
| LotJaC7L   | KV-IA-FLPQSWH    | PHQ               | TPSFSS          | SSSS-      | ss- |
| VigAnC3L1  | KV-RA-ILSPSWH    | RSS               | STTAPTPTQ       | PSSSS-     | ss- |
| VigRaC3L1  | KV-RA-ILSPSWI    | FRSST             | TTTAPTPTQ       | PSSSSSS-·  | ss- |
| PhaVuC3L1  | KV-RA-ILSPSWH    | RST               | TTPP            | PPSS-      | ss- |
| GlyMaC3L1  | KV-RP-FLPPSWH    | FQTK              | TITAPS          | SSSS-      | ss- |
| CajCaC3L1  | KV-RA-FFPSAGGSWS | 5                 |                 |            |     |
| PruMuC3L2  | NL-RP-LLPSSW     | FPCQ              | TNLVATNTP       | -LPHFPPSS- | ss- |
| PruPeC3L2  | NL-RP-LLPSSW     | FPCQ              | TNLVATNTS       | -LPHFPPSS- | ss- |
| PruAvC3L   | NL-RP-LLPSSW     | EPCQ              | TNLVATSTP       | -LPHFPPSS- | ss- |
| MalPyC3L   | HL-RP-LLPSSWH    | PHH               | TTLLDTKTP       | -SPQPPPPS- | LL- |
| PopEuC3L2  | KL-RF-LLPTSWY    | (HHHQANTN)        | ISWCHPHQANTNTK  | KPSS-·     | LL- |
| PopTrC3L1  | KL-RF-LLPTSWY    | (HPHQANTN)        | ISWCHPHQANTNTK  | KPSS-·     | LL- |
| PopEuC3L3  | KL-RF-LLPTSWY    | <i>с</i> ннр      | HQAITNTR        | KPSS-·     | LL- |
| PopEuC3L4  | KL-RF-LLPTSWY    | <i>с</i> ннр      | HQAITNTR        | KPSS-      | LL- |
| PopTrC3L3  | KL-RF-LLPTSWY    | <i>с</i> ннр      | HQAITNTK        | KPSS-·     | LL- |
| CarPaC3L   | KL-RG-FLPPSWY    | <b>/</b> РНРНРННН | HHQQQQQPNLVL    | DSSSKSP-   | SP- |
| JatCuC3L2  | KL-RF-LLPSSWI    | СРНQ              | ANFPPNKKP       | PSSSSNT-   | ss- |
| HevBraC3L  | KL-RTFFLPSSWO    | СSHQ              | ANSLFKQQ        | TLPPS-·    | ss- |
| VitViC3L2  | KL-RI-FLPTSWH    | HPH               | QTQEANLV        | DSKTS      | KT- |
| CicArC7L   | KL-RT-FFPHSWH    | SHQ               | TLKTNLNT        | TTLSSS-·   | KK- |
| MedTrC7L   | KL-IT-FFPHSWH    | THQ               | TL              | TTPSST-·   | SK- |
| CiCl2CiSi2 | KL-RR-FLPRSWH    | FPAP              | AL              | GPSL-      | ss- |
| ElaGuC3L1  | KLS-FLRTAKV      | /                 |                 | SA         | P-  |
| ElaGuC3L2  | KL-IS-LLLPSSH    | ۶                 |                 | SSSG-      | RP- |
| PhoDaC3L   | KL-SS-LLPSSWI    | LPRACLQEPA        | APDAAKAPSHC     | PSPRSSP-   | CP- |
| MacCoC3L   | KL-KS-ILPPSWI    | FPNSHQSFS1        | NSTTSIPNTTIIPS  | TFSSSSSSS- | LP- |
| EryGuC3L   | KL-RT-FLPPSWY    | YPYLHQQEQQ        | )KQQKHNNTNTI-NE | PASPSSS-   | PV- |
| SesInC3L   | KL-RA-YLPSSWY    | YPYQQQQQQQ        | QQQVKKEPTVA     | LSSS-      | IV- |
| RicCoC3L   | KLVRF-FVPSSWY    | NSNTHQ            | ANLLINQEL       | QQQEEEE-   | ET- |

| GosArC7L   | KL-KS-FLSP   | -SCT    | -ITTPFVSVG | GETEKNPS   | PAVA     | -LA- |
|------------|--------------|---------|------------|------------|----------|------|
| GosRaC7L   | KL-KS-FLSP   | -SCT    | -TTTPFVSVG | GETEKNPS   | PAVA     | -LA- |
| TheCaC3L2  | KL-KT-FLPS   | -SWI    | -PTRTLVSTG | SESKTHTSTS | PAPESA   | -SA- |
| CorOlC3L   | KL-KT-FLPS   | -SWIPPI | PPTHTLVSTA | TESKSSSS   | PEPA     | -PA- |
| CorCaC3L   | KL-KT-FLPS   | -SWI-PI | PPTHTFVSTV | TESKSSSS   | PEPA     | -AAP |
| PunGrC3L   | KL-RP-FLPSP- | -SWF    | -CSA       | VSGTANGN   | VVLL     | -PS- |
| SolLyC3L1  | KL-IS-FLPP   | -SWF    | -HQKRIHS   | RSPAPPQQ   | SPVS     | -VS- |
| SolTuC3L1  | KL-IS-FLPP   | -SWF    | -HQKHLHS   | RSPAPPQQ   | SPVS     | -VS- |
| ADu2AIp2   | KL-RP-FFPF   | -SWF    | -PHQ       | TNNTSSSS   | SSSSSSPR | RAS- |
| MusAcC3L4  | KL-ISLLLPF   | -SWH    | -PPTSKD    | GLSPPATAL  | SSIASF   | -RS- |
| AraLyC4L   | KL-RV-FFPP   | -SWY    | -IDD       | KNPP       |          | -QS- |
| AraThC4    | KL-RV-FFPP   | -SWY    | -IDD       | KNPPP      |          | -PD- |
| CamSaC4L1  | KL-RV-LFPP   | -SWY    | -IDD       | KNPPP      |          | -PS- |
| CamSaC4L2  | KL-RV-LFPP   | -SWY    | -IDD       | KNPPP      |          | -PS- |
| CapRuC4L   | KL-RV-LFPP   | -SWY    | -IDD       | KNPPPV     |          | -PS- |
| BraNaC4L1  | KL-RV-LFPP   | -SWY    | -TDD       | KITPP      |          |      |
| BraRaC4L1  | KL-RV-LFPP   | -SWY    | -TDD       | KITPP      |          |      |
| BraOlC4L2  | KL-RV-LFPP   | -SWY    | -TDD       | KITPP      |          |      |
| RapSaC4L2  | KL-RV-LFPP   | -SWY    | -TED       | KIPPP      |          |      |
| BraNaC4L2  | KL-RV-LFPP   | -SWY    | -IDD       | NIPPP      |          | -LS- |
| BraOlC4L1  | KL-RV-LFPP   | -SWY    | -IDD       | NIPPP      |          | -LS- |
| BNa3BRa2   | KL-RV-LFPP   | -SWY    | -IDD       | NIPPP      |          | -LS- |
| RapSaC4L1  | KL-RV-LFPP   | -SWY    | -MDD       | NIPPP      |          | -LS- |
| EutSaC4L   | KL-RV-LFPH   | -SWI    | -IDD       | KNPPP      |          |      |
| TarHaC4_5L | KL-RG-IFPP   | -SWY    | -PHHVDDDNP | KNPPP      |          | -SS- |
| AraLyC5L   | KL-QT-LFPL   | -SWL    | -DKTLH     | KNSPPSP    | STML     | -PS- |
| AraThC5    | KL-RT-LFPL   | -SWF    | -DKTLH     | KNSPPSP    | STML     | -PS- |
| CamSaC5L1  | KL-RT-LFPL   | -SWF    | -DKTLH     | KNSPPSP    | PTML     | -PS- |
| CamSaC5L3  | KL-RT-LFPL   | -SWF    | -DKTLH     | KNSPPSP    | STML     | -PS- |
| CamSaC5L2  | KL-RS-LFPL   | -SWF    | -DKTLH     | KNSPPSP    | PTML     | -PS- |
| EutSaC5L   | KL-RS-LFPL   | -SWF    | -DKTLH     | KTSP       | SSML     | -PS- |
| CapRuC5L   | KL-RS-LFPL   | -SWF    | -DKTLH     | MNSPPSP    | PTML     | -PS- |
| BNa1BO12   | KL-RS-LFPL   | -SWF    | -DKTPH     | KN         | SSML     | -PS- |
| BraNaC5L2  | KL-RT-LFPL   | -SWF    | -DKTPH     | KN         | SSML     | -LS- |
| BraRaC5L1  | KL-RT-LFTL   | -SWF    | -DKTPH     | KN         | SSML     | -PS- |
| BN53B051   | KL-RT-LFSL   | -SWF    | -DKTLH     | KNSPPS     | PSML     | -PS- |
| BraRaC5L2  | KL-RT-LFSL   | -SWF    | -DKTLH     | KNSPPS     | PSML     | -PS- |
| RapSaC5L1  | KL-RT-LFPL   | -SWF    | -DKTLH     | KNSPPS     | ASMLPS   | -PS- |
| MusAcC3L5  | KL-TS-LLLSP- | -SSS    | -SS        | SSSSPSHEN  | PAASFTS  | -TV- |
| DauCaC3L2  | KL-RN-YVPT   | -FWY    | -SRE       | AGIDRNH    | TNLT     | -SS- |
| CepFoC3L   | KLIPA        | -SWY    | -ННQ       | NNHIVDT    | KTLP     | -PP- |

| HelAnC3L  | NL-RH-YLPKSHTQQQ   | QQQIQND  | TVSQ   | PS- |
|-----------|--------------------|----------|--------|-----|
| VigAnC3L2 | KV-RA-ILSPSWFRSS   | Q        | PSSSS- | ss- |
| ElaGuC6L  | KL-LT-RLASFLYVTST- | PKPIVK   | TPSK-  | DG- |
| CapAnC3L  | KF-QS-LIQKISLKSPSI | QEKTI    | ITPS-  | PS- |
| NicAtC3L  | KF-QT-LIQSISLKSPPI | HENRIS   | TTCS-  | ss- |
| NsyNtaC3  | KF-QS-WIFSLSIKAQTE | SSSPLFK  | NSTS-  | TS- |
| NicToC3L  | KF-QS-WIYSLSIKAQTE | TPSPLVK  | NSTL-  | ss- |
| JugReC3L  | KF-YA-SLKYVPANKSSS |          | NIST-  | TS- |
| NelNuC3L1 | KV-IT-WIQSFPPISR   |          | SCTS-  | IT- |
| NelNuC3L2 | KL-LA-WIQALIPIAK   |          | PSLI-  | TS- |
| CucMeC7L  | RF-TA-WFQSIKPSSQIF | HFKSTPLQ | PPPP-  |     |
| CucSaC3L  | RF-SA-WFQSIKPSSQII | HFKSTPLQ | PPPP-  | PS- |
| DenCaC3L  | KL-LP-WFHSLLLSAISE | PKPKPN   | PPPK-  |     |
| AraThC24  |                    |          |        | ss- |

| RapSaC3L2  | TSTTSSG-SKKMDQAELSRIFQMFDRNGDGKITKQEI                     |
|------------|-----------------------------------------------------------|
| EucGrC3L2  | PRSLSLV-KAPMDAAELKRVFQMFDRNGDGRITKKEI                     |
| ZizJuC3L2  | SSCSFLA-QKRMDPTELKRVFQMFDRNGDGRITKKEI                     |
| LotJaC7L   | SRGNLVIQKTTDDCDPCQL-LPLDTSL-IPKMDPTELKRVFQMFDRNGDGRITKKEI |
| VigAnC3L1  | SSAFTRI-SLSMDPNELKRVFQMFDRNGDGRITKKEI                     |
| VigRaC3L1  | SSAITRI-SLSMDPNELKRVFQMFDRNGDGRITKKEI                     |
| PhaVuC3L1  | SREITTI-SPPMDPHELKRVFQMFDRNGDGRITKKEI                     |
| GlyMaC3L1  | SSARIIK-RTTMDPNELKRVFQMFDRNGDGRITKKEI                     |
| CajCaC3L1  | SQKSR-RTSMDPQELRRVFQMFDRNGDGRITKKEI                       |
| PruMuC3L2  | SSLPCGAPK-VIRMDPNELKRVFQMFDRNGDGRITKQEI                   |
| PruPeC3L2  | SSLPLPLPLPCGAPK-VIRMDPNELKRVFQMFDRNGDGRITKQEI             |
| PruAvC3L   | SSSCGAHK-VIRMDPNELKRVFQMFDRNGDGRITKQEI                    |
| MalPyC3L   | SLPLPLPLPSGGAC-HVRMDPNELKRVFQMFDRNGDGRITKQEI              |
| PopEuC3L2  | PSPSFV-LTRMDQAELKRVFQMFDRNGDGKITKKEI                      |
| PopTrC3L1  | PSPSFV-LARMDQAELKRVFQMFDRNGDGKITKKEI                      |
| PopEuC3L3  | PSSSNFV-VKRMDQAELKRVFQMFDRNGDGRITQKEI                     |
| PopEuC3L4  | PSSSNFA-VKRMDQAELKRVFQMFDRNGDGRITQKEI                     |
| PopTrC3L3  | PSSSNFV-LKRMDQAELKRVFQMFDRNGDGRITQKEI                     |
| CarPaC3L   | SPSSVSG-LKRMDSAELKRVFQMFDKNGDGRITKKEI                     |
| JatCuC3L2  | SSSSSVV-HKRMDTTELRRVFQMFDRNGDGRITRKEI                     |
| HevBraC3L  | SSPAAAVV-RKRMDSVELARVFQMFDRNGDGRITKKEI                    |
| VitViC3L2  | PGRSLVS-RKRMESAEMKRVFQMFDRNGDGRITKTEI                     |
| CicArC7L   | GFVVITK-SITMDPNELKRVFQMFDRNDDGRITKKEI                     |
| MedTrC7L   | RGLVFTK-TITMDPNELKRVFQMFDRNDDGRITKKEI                     |
| CiCl2CiSi2 | QST-RSTMDQAELDRVFQMFDHNGDGRISKKEI                         |

| ElaGuC3L1  | RVFILAT-PPGMDPSELKRVFQMFDRNGDGRITKKEL     |
|------------|-------------------------------------------|
| ElaGuC3L2  | RVLILAT-PPEMDPSELKRVFQMFDRNGDGRITKKEL     |
| PhoDaC3L   | RVSILAT-PPGMEPSELKRVFQMFDRNGDGRITKKEL     |
| MacCoC3L   | SSSSLIQ-QEVMDPAELKRVFQMFDRNGDGRITKKEL     |
| EryGuC3L   | ISPLHKF-PRRMDADELRRVFQMFDRNGDGRITQKEL     |
| SesInC3L   | PSSRIVI-HRRMDPNELKRVFQMFDRNGDGRITKQEL     |
| RicCoC3L   | LVVPSAA-RKRMDSTELKKVFQMFDTNGDGRITKEEL     |
| GosArC7L   | SVSPRCP-LKRMDAAELKRVFQLFDKNGDGSISKKEL     |
| GosRaC7L   | SVSPRCP-LKRMDAAELKRVFQLFDKNGDGTISKKEL     |
| TheCaC3L2  | PASSACC-PQRMDGAELKRVFQMFDKNGDGRITKKEL     |
| CorOlC3L   | PASPSC-RRQ-SQRMDAAELKRVFQLFDKNGDGRISKQEL  |
| CorCaC3L   | PASPSC-RRQ-SQRMDAAELKRVFQLFDKNGDGRISKQEL  |
| PunGrC3L   | PSLRARK-ATVMDPTELRRVFQMFDRNGDGSISKKEL     |
| SolLyC3L1  | DAQKRMDSDELRRIFQIFDRNGDGRITKNEL           |
| SolTuC3L1  | DAPQSHI-QKRMDSDELRRIFQIFDRNGDGRITKNEL     |
| ADu2AIp2   | RAK-TRIMDPNELRRVFQMFDRNGDGRISRSEL         |
| MusAcC3L4  | PSFGPKAS-ARVMDPSELKRVFQMFDRNGDGRITKTEL    |
| AraLyC4L   | KSBSES-PGRRDPVDLKRVFQMFDKNGDGRITKEEL      |
| AraThC4    | ESPVDLKRVFQMFDKNGDGRITKEEL                |
| CamSaC4L1  | QVETES-PGRTDLVDLKRVFQMFDKNGDGRITKEEL      |
| CamSaC4L2  | QLBTES-PGRTDLVDLKRVFQMFDKNGDGRITKEEL      |
| CapRuC4L   | QSBTES-PGRTDPVDLKRVFQMFDKNGDGRITKEEL      |
| BraNaC4L1  | -SESEC-SLRTDPVDLKRVFQMFDKNGDGRITKEEL      |
| BraRaC4L1  | -SESEC-SLRTDPVDLKRVFQMFDKNGDGRITKEEL      |
| BraOlC4L2  | -SESEC-SLRTDPVDLKRVFQMFDKNGDGRITKEEL      |
| RapSaC4L2  | -PESEC-SLRTEPVDLKRVFQMFDKNGDGRITKEEL      |
| BraNaC4L2  | EPEPKS-QTRTDPVDLKQVFQMFDKNGDGRITKEEL      |
| BraOlC4L1  | EPEPKS-QTRTDPVDLKQVFQMFDKNGDGRITKEEL      |
| BNa3BRa2   | EPEPKS-QTRTDPVDLKQVFQMFDKNGDGRITKEEL      |
| RapSaC4L1  | EPEPESREARTDPVDLKRVFQMFDKNGDGRITKEEL      |
| EutSaC4L   | -SKSES-PARTDPVDLKRVFQMFDKNGDGRITKEEL      |
| TarHaC4_5L | SPSPSPP-PARVDPVELKRVFQMFDKNGDGRITKEEL     |
| AraLyC5L   | PPSSSAP-TKRIDPSELKRVFQMFDKNGDGRITKEEL     |
| AraThC5    | PSP-TKRIDPSELKRVFQMFDKNGDGRITKEEL         |
| CamSaC5L1  | PSSSSSSSVP-TKRIDPSDLKRVFQMFDKNGDGRITKEEL  |
| CamSaC5L3  | PSPSSSSSSVP-TKRIDPSELKRVFQMFDKNGDGRITKEEL |
| CamSaC5L2  | PSPSSSS-SVP-TKRIDPSELKRVFQMFDKNGDGRITKEEL |
| EutSaC5L   | PSPSSAP-TKRTDPSELKRVFQMFDKNGDGRITKEEL     |
| CapRuC5L   | PSP-TKKIDPSELKRVFQMFDKNGDGRITKEEL         |
| BNa1BOl2   | PSPSSAP-TRKTDPSELKRVFQTFDKNGDGRITKTEL     |
| BraNaC5L2  | PSPSSAP-SIKTDPTELKRVFQTFDKNGDGRITKTEL     |

| BraRaC5L1 | PS         | PSSAP-SIKTDPTELKRVFQTFDKNGDGRITKTEL   |
|-----------|------------|---------------------------------------|
| BN53B051  | PS         | PSSTP-TTKIDPSELKRVFQTFDKNGDGRITKQEL   |
| BraRaC5L2 | PS         | PSSTP-TTKIDPSELKRVFQTFDKNGDGRITKQEL   |
| RapSaC5L1 | PS         | PSSAS-TRKIDPSELKRVFQTFDKNGDGRITKQEL   |
| MusAcC3L5 | AA         | RPASS-APSMDPSELKPVFHMFDRNGDGRITKEEL   |
| DauCaC3L2 | NT         | ELTLH-FPRMEADELRKVFEMFDHNGDGRITKQEL   |
| CepFoC3L  | LP         | PLARA-QKRMDPTELDRVFQMFDRNGDGRITKMEL   |
| HelAnC3L  | QP         | PQTPR-TSRMNPDQLQRIFQMFDKNNDGTITKHEL   |
| VigAnC3L2 | SS         | AFTRI-SLSMDPNELKRVFQMFDRNGDGRITKKEL   |
| ElaGuC6L  | KE         | VVVS-EIVTDKAGIETVFATFDKDGDGFITTEEL    |
| CapAnC3L  | ITMVDKKVMN | R-SNNYNKVELRSIFATFDKNNDGYITKQEL       |
| NicAtC3L  | RSMDEKKVKN | SSIKSTS-SNNYNKLELRSIFATFDKNNDGYITKQEL |
| NsyNtaC3  | PPLVEQKI   | MKRST-SNSHNKVELRSIFATFDKNNDGYITKQEL   |
| NicToC3L  | PPMAEQKI   | MRRST-SNSHNKVELRSIFATFDKNNDGYITKQEL   |
| JugReC3L  | PP         | TSHKE-RSPHNKAELKKIFATFDKNGDGFITKQEM   |
| NelNuC3L1 | PPASVTVMA  | SDKKK-ESAHDRAELRNIFATFDKNSDGFINKEEL   |
| NelNuC3L2 | PA         | TTTT-TTSSDKAELRNVFATFDKNSDGIITEEEL    |
| CucMeC7L  | PP         | PPPP-PPPPSAMELKKVFGTFDKNDDGFITKKEL    |
| CucSaC3L  | PS         | PSPS-PPPPSAMEMKKVFGTFDKNDDGFITKKEL    |
| DenCaC3L  | PDLTKER    | RANRS-ESLADSLNLKTLFSTFDADGDGYISTAEL   |
| AraThC24  | KN         | GVVR-SCLGSMDDIKKVFQRFDKNGDGKISVDEL    |

| RapSaC3L2 | SDSLENLGIYIPDKDLVQMIEKIDLNGDGYVDIEEFGGLYQSIM | Е |
|-----------|----------------------------------------------|---|
| EucGrC3L2 | SDSLENLGIYIPDKELAEMIEKIDVNGDGCVDIDEFGALYRSIM | E |
| ZizJuC3L2 | NDSLENLGIFIPDKELTQMIEKIDVNGDGCVDMDEFGELYQSIM | D |
| LotJaC7L  | NDSLENLGIFIPDKELTQMIERIDVNGDGCVDIDEFGELYQSIM | D |
| VigAnC3L1 | SDSLDNLGIFIPDKELTVMIERIDVNGDGCVDIDEFGELYQTIM | D |
| VigRaC3L1 | SDSLDNLGIFIPDKELTVMIERIDVNGDGCVDIDEFGELYQTIM | D |
| PhaVuC3L1 | NDSLENLGIFIPDKELTLMIERIDVNGDGCVDIDEFGELYQHIM | D |
| GlyMaC3L1 | NDSLENLGIFIPDKELGQMIERIDVNGDGCVDIDEFGELYQTIM | D |
| CajCaC3L1 | SDSLENLGIFIPDKELSLMIEKIDVNGDGCVDIDEFGELYQTIM | D |
| PruMuC3L2 | NDSLENLGIFIPDKELFNMIQKIDVDGDGCVDIDEFGELYQSIM | D |
| PruPeC3L2 | NDSLENLGIFIPDKELFNMIQKIDVNGDGCVDIDEFGELYQSIM | D |
| PruAvC3L  | NDSLENLGIFIPDKELFNMIQKIDVNGDGCVDIDEFGELYQSIM | D |
| MalPyC3L  | NDSLENLGIYIPDKELFNMIEKIDVNGDGCVDIDEFGELYQSIM | D |
| PopEuC3L2 | NDSLENLGIFIPDKELTQMIETIDVNGDGCVDIDEFGELYQSLM | D |
| PopTrC3L1 | NDSLENLGIFIPDKELTQMIETIDVDGDGCVDIDEFGELYQSLM | D |
| PopEuC3L3 | NDSLENIGIFIPDKELTQMIENIDANGDGCVDIDEFGELYRSLM | D |
| PopEuC3L4 | NDSLENIGIFIPDKELTQMIENIDANGDGCVDIDEFGELYRSLM | D |
| PopTrC3L3 | NDSLENIGIFIPDKELTQMIEKIDVNGDGCVDIDEFGELYQSLM | D |

| CarPaC3L   | NDSLENLGIFIPDKELAQMIEKIDVNGDGCVDIDEFGSLYKSIM | -D   |
|------------|----------------------------------------------|------|
| JatCuC3L2  | SDSLENLGIFIPDSELTQMIDNIDVNGDGCVDIEEFGVLYQSIM | -D   |
| HevBraC3L  | NDSLENLGIFIPDLELTQMIQNIDVNGDGCVDIDEFGALYQSIM | -D   |
| VitViC3L2  | NDSLENLGIYIPDKDLAQMIEKIDVNGDGCVDIDEFRALYESIM | -E   |
| CicArC7L   | NDSLENLGIFIPDKELSQMIEKIDVNRDGCVDIEEFRELYESIM | -NGR |
| MedTrC7L   | NDSLENLGIFIPDKELSQMIEKIDVNRDGCVDIEEFRELYESIM | -S   |
| CiCl2CiSi2 | NDSLENLGIYIPDVELTQMIERIDVNGDGCVDIDEFGALYKSIM | -Е   |
| ElaGuC3L1  | SDSLENLGIYIPEGDLEAMIEKIDANGDGCVDVEEFGALYQNIM | -D   |
| ElaGuC3L2  | SDSLENLGIYIPEGDLESMIGKIDVNGDGCVDIEEFGALYQTIM | -D   |
| PhoDaC3L   | GDSLENLGIHIPEGDLESMIGKIDANGDGCVDIEEFGALYQTIM | -D   |
| MacCoC3L   | SDSLDNLGIFIPDKDLTQMIEKIDVNGDGCVDIDEFGALYQTIM | -D   |
| EryGuC3L   | SDSLENMGIFIPDKELSQMIDKIDVNGDGCVDIEEFGNLYQNIM | -D   |
| SesInC3L   | SDSLHNMGISIPDEELTQMIDKVDINGDGCVDIDEFGTLYQTIM | -D   |
| RicCoC3L   | NGSLENLGIFIPDKELSQMMETIDVNGDGGVDIEEFGALYQSIM | -D   |
| GosArC7L   | NDSLENMGICIPDPELTQMIEKIDVNGDKCIDIDEFSELYRSIM | -D   |
| GosRaC7L   | NDSLENMGICIPDPELTQMIEKIDVNGDKCIDIDEFSELYRSIM | -D   |
| TheCaC3L2  | NDSLENLGIFIPDGELTHMIEKIDVNGDNCVDIDEFGELYHSIM | -D   |
| CorOlC3L   | NDSLENLGIFIPDGELTQMIEKIDVNGDNCVDIDEFGELYQSIM | -D   |
| CorCaC3L   | NDSLENLGIFIPDGELTQMIEKIDVNGDNCVDIDEFGELYQSIM | -D   |
| PunGrC3L   | ADSLENLGIFIPDKELEDMIRRIDANGDGCVDIEEFEALYRSIM | -D   |
| SolLyC3L1  | NSSLENMGIFIPDPELIQMIEKIDVNGDGCVDIDEFGSLYQTIM | -D   |
| SolTuC3L1  | NDSLENMGIFIPDPELIEMIEKIDVNGDGCVDIDEFGSLYQTIM | -D   |
| ADu2AIp2   | TVSLENLGIFIPDKELAQMIDKIDANGDGFVDVEEFGELYESIM | -V   |
| MusAcC3L4  | SDSLENLGIYIPEAELASMIEKIDVNGDGCVDMDEFGALYRSIM | -D   |
| AraLyC4L   | NDSLENLGIFMPDKDLVQMIQKMDANGDGIVDIKEFESLYGSIV | -Е   |
| AraThC4    | NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV | -Е   |
| CamSaC4L1  | NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV | -Е   |
| CamSaC4L2  | NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV | -Е   |
| CapRuC4L   | NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV | -Е   |
| BraNaC4L1  | NDSLENLGIFMPDKDLIQMIRKMDANGDGCVDINEFESLYGSIV | -Е   |
| BraRaC4L1  | NDSLENLGIFMPDKDLIQMIRKMDANGDGCVDINEFESLYGSIV | -Е   |
| BraOlC4L2  | NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV | -Е   |
| RapSaC4L2  | NDSLENLGIFMPDKDLIQMIQKMDANGDGCVDINEFESLYGSIV | -E   |
| BraNaC4L2  | NDSLENLGIFMPDKDLIQMIHKMDANGDGCVDIHEFESLYGSIV | -E   |
| BraOlC4L1  | NDSLENLGIFMPDKDLIQMIHKMDANGDGCVDIHEFESLYGSIV | -E   |
| BNa3BRa2   | NDSLENLGIFMPDKDLIQMIHKMDANGDGCVDIHEFESLYGSIV | -V   |
| RapSaC4L1  | NDSLENLGIFMPDKDLIQMIKNIDANGDGCVDIQEFESLYGSIV | -Q   |
| EutSaC4L   | NDSLENLGIFMPEKDLIQMIQKMDANGDGCVDIHEFESLYSSIV | -E   |
| TarHaC4_5L | NDSLENLGLFLPDRELAQMIQKIDANGDGCVDMDEFESLYKSIV | -D   |
| AraLyC5L   | NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIV | -D   |
| AraThC5    | NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIV | -D   |

| CamSaC5L1 | NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIVD                |
|-----------|--------------------------------------------------------------|
| CamSaC5L3 | NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDKDEFESLYSSIVD                |
| CamSaC5L2 | NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIVD                |
| EutSaC5L  | NDSLENLGIYIPDKDLTQMIHKIDANGDGCVDIDEFESLYSSIVD                |
| CapRuC5L  | NDSLENLGIYIPDQDLTQMIHKIDANGDGCVDIDEFESLYGSIVD                |
| BNa1BO12  | NDSLENLGIYIPDKDLTQMIHNIDANGDGCVDIDEFESLYSSIVD                |
| BraNaC5L2 | NDSLENLGIYIPDQELTQMIHNIDANGDGCVDIDEFESLYSSIVD                |
| BraRaC5L1 | NDSLENLGIYIPDKELTQMIHNIDANGDGCVDIDEFESLYSSIVD                |
| BN53B051  | KDSLENLGIYIPDKDLTQMIHNIDTNHDGCVDIDEFESLYKSIVD                |
| BraRaC5L2 | KDSLENLGIYIPDKDLTQMIHNIDTNHDGCVDIDEFESLYRSIVN                |
| RapSaC5L1 | NNSLENLGIYIPDKDLTQMIHNIDKNHDGCVDIDEFESLYRSIVD                |
| MusAcC3L5 | SDSLRNLGMRVPEAELASMIERIDANGDGYVDSDEFATLYRSIMEE               |
| DauCaC3L2 | NESLEKMGIFIPDQELTQMIEKIDVNNDGCVDIDEFGDLYQNIMNN               |
| CepFoC3L  | NESLEKLGMFIPDKELTRMIEKIDVDGDGCVDIDEFGALYRSLM-DHEVDDD         |
| HelAnC3L  | NESLENMKIFISDEDLVRMIDKVDINNDGCVDLDEFGVLYKEIMDD               |
| VigAnC3L2 | SDSLDNLGIFIPDKELTVMIERIDVNGDGCVDIDEFGELYQTIMD                |
| ElaGuC6L  | EESFKRLGLFSTRNEIVSMMKRVDANGDGLIDLEEFGELYDSLGRGRGGGDGDE       |
| CapAnC3L  | KLSLKNIGIFMEDKDIVEMVEKVDSNKDGLIDLDEFCDLCHTYL-GIEEVSN         |
| NicAtC3L  | KLSLKNIGIFIEDKDIIDMVEKVDSNKDGLIDIDEFYQLCHTFL-GIEAV           |
| NsyNtaC3  | KQSLNNIGIYMEDRDIVEMVEKVDSNKDGLIDLDEFYELCHSFL-GIQGVIGSQEN     |
| NicToC3L  | KQSLKNIGIYMEDIDIVEMVEKVDSNKDGLIDLDEFYELCHSFL-GIEGIIGSQEN     |
| JugReC3L  | RESLKNIKMVVTDKEVEEMVVKVDANGDGLIEFDEFCVLCESMV-SEERAAGNYDEGDGA |
| NelNuC3L1 | TESLKNIGISTTDAEVKDMIERLDANKDGLIDLDEFCKLYDSVGKPQDRGRKDGE      |
| NelNuC3L2 | RESLKNIGFSITDTDLVHMVEKLDSNRDGLIDLEEFSKLYESVGISRSKQRGGRDGE    |
| CucMeC7L  | MESLKSMRMMITEKDAEEMLKEVDENGDGLIDFEEFCVLGEKLLMGFEEN           |
| CucSaC3L  | MESLKSMRMMITEKDAEEMLKGVDENGDGLIDFEEFCVLGGKLMMGFEEN           |
| DenCaC3L  | NDSLRRLGLHATGDDLTNMMERVDANGDGLIDLNEFKELCASLGS                |
| AraThC24  | KEVIRALSPTASPEETVTMMKQFDLDGNGFIDLDEFVALFQIGI-GGGGN           |

| RapSaC3L2 | DR-DEEEDIREAFNVFDQNRDGFITVEELRSVLSSLGLKQGRTLED |
|-----------|------------------------------------------------|
| EucGrC3L2 | ER-DEEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTLED |
| ZizJuC3L2 | EK-DEEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTVED |
| LotJaC7L  | ER-DEEEDMREAFNVFDQNGDGFITVEELRTVLASLGIKQGRTVED |
| VigAnC3L1 | ER-DEEDDMREAFNVFDQNGDGFITVEELRTVLSSLGLKQGRTVED |
| VigRaC3L1 | ER-DEEDDMREAFNVFDQNGDGFITVEELRTVLSSLGLKQGRTVED |
| PhaVuC3L1 | DR-DEDEDMREAFNVFDQNGDGFITVEELRTVLSSLGLKQGRTVED |
| GlyMaC3L1 | ER-DEEEDMREAFNVFDQNADGFITVDELRTVLSSLGLKQGRTVQD |
| CajCaC3L1 | ER-DEEEDMREAFNVFDQNGDGFITVDELRTVLSSLGLKQGRTVED |
| PruMuC3L2 | ER-DEDEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED |
| PruPeC3L2 | ER-DEDEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED |

| PruAvC3L   | ER-DEDEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED   |
|------------|--------------------------------------------------|
| MalPyC3L   | ER-DEEEDMKEAFNVFDQNGDGFITVDELRSVLSSLGLKQGRTIED   |
| PopEuC3L2  | EK-DEEEDMREAFKVFDQNGDGFITVDELRSVLASLGLKQGRTLED   |
| PopTrC3L1  | DK-DEEEDMREAFKVFDQNGDGFITVDELRSVLASLGLKQGRTLED   |
| PopEuC3L3  | EK-DEEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTFED   |
| PopEuC3L4  | EK-DEEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTFED   |
| PopTrC3L3  | EK-DEEEDMREAFNVFDQNGDGFITVDELRSVLASLGLKQGRTFED   |
| CarPaC3L   | EH-DEEEDMREAFNVFDQNGDGFITVDELKSVLASLGLKQGKTVED   |
| JatCuC3L2  | ER-DEEEDMREAFNVFDRNGDGYITVDELRSVLASLGLKQGKAVED   |
| HevBraC3L  | ER-DEEEDMKEAFNVFDQNGDGYITVDELRSVLAALGLKQGRTLED   |
| VitViC3L2  | EK-DEDEDMKEAFNVFDQNGDGFITVDELKSVLGSLGLRHGRTVED   |
| CicArC7L   | EE-EEEEDMREAFNVFDQNGDGFISVEELRSVLVTLGLKQGRTVED   |
| MedTrC7L   | ER-DEEEEEDMREAFNVFDQNGDGFISVDELRSVLVSLGLKQGRTVED |
| CiCl2CiSi2 | EK-DEEEDMKEAFNVFDQNGDGFITFDELKSVLGSLGLKQGRTVED   |
| ElaGuC3L1  | ER-DEEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTVED   |
| ElaGuC3L2  | ER-DEEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTVED   |
| PhoDaC3L   | ER-DEEEDMREAFNVFDQNGDGFITVEELRSVLASLGLKQGRTVED   |
| MacCoC3L   | EK-DEEEDMREAFNVFDQNGDGFITVEELRSVLSSLGLKQGRTVED   |
| EryGuC3L   | ER-DEEEDMREAFNVFDQNGDGFITVDELKAVLASLGLKQGRAVED   |
| SesInC3L   | ER-DEEEDMKEAFNVFDQNGDGFISVDELKSVLVSLGLKQGKAAED   |
| RicCoC3L   | EK-DEDEDMREAFNVFDQNGDGYITGDELRSVLASLGLKQGRTAED   |
| GosArC7L   | NK-DEEEDMKEAFNVFDQNGDGYISVEELRSVLESLGLKQGKGIED   |
| GosRaC7L   | NK-DEEEDMKEAFNVFDQNGDGYISVEELRSVLESLGIKQGKGIED   |
| TheCaC3L2  | DK-DEEEDMKEAFNVFDQNGDGYISVDELRSVLVSLGLKQGKTIED   |
| CorOlC3L   | GK-DEEEDMKDAFNVFDQNGDGFISVDELRSVLVSLGLKQGKTIED   |
| CorCaC3L   | GK-DEEEDMKDAFNVFDQNGDGFISVDELRSVLISLGLKQGKTIED   |
| PunGrC3L   | ER-DEEEDMKEAFNVFDQNGDGFITVDELRSVLASLGLKQGRTIED   |
| SolLyC3L1  | ER-DEEEDMREAFNVFDQNGDGFICVEELKSVLASLGLKQGRTVED   |
| SolTuC3L1  | ER-DEEEDMREAFNVFDQNGDGFICVDELKSVLASLGLKQGRTVED   |
| ADu2AIp2   | ERGDEEEDMKEAFNVFDQNGDGFISVEELRAVLSSLGLKQGRTDED   |
| MusAcC3L4  | ER-DEEEDMREAFNVFDQNGDGYISVEELRSVLVSLGVKQGRTAED   |
| AraLyC4L   | EKEEEDMRDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLEC     |
| AraThC4    | EKEEGDMRDAFNVFDQDGDGFITVEELNSVMTSLGLKQGKTLEC     |
| CamSaC4L1  | EKEEEDMRDAFNVFDQDGDGFITVKELKSVMASLGLKQGRTLKC     |
| CamSaC4L2  | EKEEEDMRDAFNVFDQDGDGFITVKELKSVMASLGLKQGRTLKC     |
| CapRuC4L   | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC     |
| BraNaC4L1  | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC     |
| BraRaC4L1  | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC     |
| BraOlC4L2  | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC     |
| RapSaC4L2  | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLKC     |
| BraNaC4L2  | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLEC     |

| BraOlC4L1  | EKEEEDMRDAFHVFDQDGDGFISVEELKSVMASLGLKQGKTLEC            |
|------------|---------------------------------------------------------|
| BNa3BRa2   | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMASLGLKQGKTLEC            |
| RapSaC4L1  | EKEEEDMRDAFNVFDQDGDGFISVEELKSVMSSLGLKQVKTLEC            |
| EutSaC4L   | EKVDEDMRDAFNVFDQDGDGYITVEELKSVMASLGLKQGKTLEC            |
| TarHaC4_5L | QS-DKDDDMRDAFDVFDQDGDGFITVEELKSVMGSLGLKQGKTLED          |
| AraLyC5L   | EH-HNDGETEEEDMKDAFNVFDQDGDGFITVDELKSVMASLGLKQGKTLDG     |
| AraThC5    | EH-HNDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG     |
| CamSaC5L1  | EH-QNDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG     |
| CamSaC5L3  | EH-QKDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG     |
| CamSaC5L2  | EH-QNDGETEEENMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG     |
| EutSaC5L   | EH-HNDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG     |
| CapRuC5L   | EH-HNDGGTEEEDMKDAFNVFDQDGDGFITVEELKSVMASLGLKQGKTLDG     |
| BNa1BOl2   | EH-RKDGETEEDDMKDAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTLEG     |
| BraNaC5L2  | EH-RKDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTLEG     |
| BraRaC5L1  | EH-RKDGETEEEDMKDAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTLEG     |
| BN53B051   | EH-HNDGETEEEDMKEAFNVFDQDGDGFITVEELKSVMGSLGLKQGKTQEG     |
| BraRaC5L2  | EH-HNDGETKEEDMKEAFNVFDQDGDGFITVEELKSVMSSLGLKQGKTLEG     |
| RapSaC5L1  | EH-HNDGETEEEDMKEAFNVFDQDGDGFITVEELKSVLASLGLKQGKTLEG     |
| MusAcC3L5  | ER-DEEEEDMREAFNVFDRNGDGFITVEELRSVLASLGLKQGRTAED         |
| DauCaC3L2  | TR-EEEEDMKEAFSVFDQNGDGFITVDELKSVLASLGLKQGRTEED          |
| CepFoC3L   | EE-EEEDMMKEAFNVFDSNGDGFISVDELRSVFVSLGVKQGRTIED          |
| HelAnC3L   | NQ-ENEEDMMEAFNVFDQNRDGFIAVEELRSVLESLGLKQGKVVDD          |
| VigAnC3L2  | ER-DEEDDMREAFNDIYIYILYLDILITKI-YKIYSPLHS                |
| ElaGuC6L   | -RGERGKEEEE-EGEVELREAFDVFDENGDGLITVEELGLVLASLGLKRGATVED |
| CapAnC3L   | -ESEMNEEEVA-NREKDLKDAFDVFDHDKDGLISKEELSKILSTLGMKEGKKLDY |
| NicAtC3L   | NEEEES-NREKDLKDAFDVFDYDKDGLISVEELSKILSSLGLRQGKKLDY      |
| NsyNtaC3   | -SGEMNQEEEA-NRERDLKDAFDVFDYDKDGLISEEELSKVLSSLGLNQGKKLED |
| NicToC3L   | -SGEMNQEEEA-NRERDLKDAFDVFDYDKDGLISEEELSKVLSSLGLNQGKKLED |
| JugReC3L   | -KGVESSEGTG-DEEDDLKEAFDVFDKDRDGLITVEELGLVLCSLGLKEGKKKED |
| NelNuC3L1  | EGSTEEEDGGV-DQEMELKEAFDVFDGNKDGLITVEELSLVLESLGLKQGWKSED |
| NelNuC3L2  | -LLDCREEEEV-DEERDLKEAFDVFDGNRDGLITVEELSLVLSSLGLKQGLRSED |
| CucMeC7L   | KKTSVG-DDEEGLKDAFGVFDKDSDGLISVEELSLVLCSLGMNEGKIVEN      |
| CucSaC3L   | KKTSVE-DEEDELKDAFGVFDKDSDGLISVEELSLVLCSLGMNEGKIVEN      |
| DenCaC3L   | EGEGEA-DEDRELREAFEVFDDNGDGLITVEELSLVLKSLGLRQGDRAEA      |
| AraThC24   | NR-NDVSDLKEAFELYDLDGNGRISAKELHSVMKNLGEKCSVQD            |

| RapSaC3L2 | CKRMISKVDVDGDGMVNFKEFKQMMKGGGFAALESSL- |
|-----------|----------------------------------------|
| EucGrC3L2 | CKRMIMKVDVDGDGMVDFKEFKQMMKGGGFSALS     |
| ZizJuC3L2 | CKRMIMKVDVDGDGMVNYKEFKQMMKGGGFSALS     |
| LotJaC7L  | CKKMIMKVDVDGDGMVDYKEFKQMMKGGGFSALT     |
| VigAnC3L1  | CKKMIMKVDVDGDGMVDYKEFKQMMKGGGFSALT     |
|------------|----------------------------------------|
| VigRaC3L1  | CKKMIMKVDVDGDGMVDYKEFKQMMKGGGFSALT     |
| PhaVuC3L1  | CKKMIMKVDVDGDGMVDYKEFKQMMKGGGFSALT     |
| GlyMaC3L1  | CKNMISKVDVDGDGMVDFKEFKQMMKGGGFSALT     |
| CajCaC3L1  | CKNMIMKVDVDGDGMVDFKEFKHMMKGGGFNALT     |
| PruMuC3L2  | CKRMIMKVDVDGDGRVNYKEFKQMMKGGGFSALS     |
| PruPeC3L2  | CKRMIMKVDVDGDGRVNYKEFKQMMKGGGFSALS     |
| PruAvC3L   | CKRMIMKVDVDGDGRVNYKEFKQMMKGGGFSALS     |
| MalPyC3L   | CKRMIMKVDVDGDGRVNYKEFRQMMKGGGFSALS     |
| PopEuC3L2  | CKRMIMKVDVDGDGMVDYKEFKKMMKGGGFSALG     |
| PopTrC3L1  | CKRMIMKVDVDGDGMVDYKEFKKMMKGGGFSALG     |
| PopEuC3L3  | CKRMIMKVDVDGDGMVDYREFQKMMKGGGFSAVG     |
| PopEuC3L4  | CKRMIMKVDVDGDGMVDYREFQKMMKGGGFSAVG     |
| PopTrC3L3  | CKRMIMKVDVDGDGMVDYREFKKMMKGGGFSAVG     |
| CarPaC3L   | CKKMIMQVDEDGDGMVNYKEFRQMMKGGGFSALS     |
| JatCuC3L2  | CKRMIMRVDVDGDGMVNFMEFKQMMKGGGFSALS     |
| HevBraC3L  | CKTMIMKVDVDGDGMVNFKEFKQMMKGGGFSALG     |
| VitViC3L2  | CKRMIMKVDEDGDGKVDLKEFKQMMRGGGFSALS     |
| CicArC7L   | CKKMIGKVDVDGDGLVDYKEFVQMMKGGGFTALS     |
| MedTrC7L   | CKKMIGTVDVDGNGLVDYKEFKQMMKGGGFTALS     |
| CiCl2CiSi2 | CKRMIMKVDVDGDGMVDYKEFKQMMKGGGFSALT     |
| ElaGuC3L1  | CRRMISKVDADGDGMVNFKEFKQMMRGGGFAALS     |
| ElaGuC3L2  | CRRMISKVDVDGDGMVNFKEFKQMMRGGGFAALG     |
| PhoDaC3L   | CRKMITKVDVDGDGMVDFKEFKQMMRGGGFAALS     |
| MacCoC3L   | CRRMIRKVDVDGDGMVNFKEFKQMMRGGGFAALS     |
| EryGuC3L   | CKKMIMRVDADGDGMVNFTEFKQMMRGGGFAALGN    |
| SesInC3L   | CRQMIMRVDVDGDGMVNFSEFKQMMRGGGFAALTN    |
| RicCoC3L   | CKKIIMKVDVDGDGMVDFKEFKQMMKGGVFTALSSCN- |
| GosArC7L   | CKRMITKVDVDGDGRVNFMEFKQMMKGGGFTAMA     |
| GosRaC7L   | CKRMITKVDVDGDGRVNFMEFKQMMKGGGFTAMA     |
| TheCaC3L2  | CKRMIMKVDVDGDGRVNFKEFKQMMKGGGFSALT     |
| CorOlC3L   | CKRMIMKVDADGDGRVNFKEFKQMMKGGGFSALT     |
| CorCaC3L   | CKRMIMKVDADGDGRVNFKEFKQMMKGGGFSALT     |
| PunGrC3L   | CKRMIMKVDVDGDGRVNYKEFKQMMKGGGFSALS     |
| SolLyC3L1  | CKQMINKVDIDGDGMVNYDEFKQMMRGGGDM        |
| SolTuC3L1  | CKQMINKVDIDGDGMVNFAEFKQMMRGGGFAALS     |
| ADu2AIp2   | CKKMIMKVDADGDGMVNYGEFKQMMKGGGFSALS     |
| MusAcC3L4  | CRMMINKVDVDGDGRVDFKEFKQMMKGGGFAALS     |
| AraLyC4L   | CKEMIKQVDEDGDGRVNYMEFLQMMKSGDFSNRS     |
| AraThC4    | CKEMIMQVDEDGDGRVNYKEFLQMMKSGDFSNRS     |
| CamSaC4L1  | CKEMIMQVDEDGDGRVNYKEFLQMMKSVGFSNRS     |

| CamSaC4L2  | CKEMIMQVDEDGDGRVNYKEFLQMMKSVGFSNRS     |
|------------|----------------------------------------|
| CapRuC4L   | CKEMIMQVDEDGDGRVDYKEFLQMMKSGGFSNRA     |
| BraNaC4L1  | CKEMITQVDEDGDGRVNYKEFLQMMKSGGFSNRSS    |
| BraRaC4L1  | CKAMITQVDEDGDGRVNYKEFLQMMKSGGFSNRSS    |
| BraOlC4L2  | CKEMITQVDEDGDGRVNYKEFLQMMKSGGFSNSSSSD- |
| RapSaC4L2  | CKEMITQVDEDGDGRVNYNEFLQMMKSGGFSNRS     |
| BraNaC4L2  | CKEMIMQVDEDGDGRVNYKEFLQMMKTGGFNNRSSSSN |
| BraOlC4L1  | CKEMIMQVDEDGDGRVNYKEFLQMMKTGGFNNRSSSSN |
| BNa3BRa2   | CKEMIMQVDEDGDGRVNYKEFLQMMKTGGFSNTSSSN- |
| RapSaC4L1  | CKEMIMQVDEDGDGRVNYKEFLQMMKTGGVSNTSSSS- |
| EutSaC4L   | CKDMITQVDEDGDGRVNYKEFLQMMKSGGFSNNRSSSN |
| TarHaC4_5L | CKKMIMQVDVDGDGRVNYKEFLQMMKSGDL         |
| AraLyC5L   | CKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSN     |
| AraThC5    | CKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSN     |
| CamSaC5L1  | CKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSN     |
| CamSaC5L3  | CKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSN     |
| CamSaC5L2  | CKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSN     |
| EutSaC5L   | CKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSN     |
| CapRuC5L   | CKKMIMQVDADGDGRVNYKEFLQMMKGGGFSSSSN    |
| BNa1BOl2   | CKKMIMQVDGDGDGRVNYKEFLQMMRGGGFSCSNN    |
| BraNaC5L2  | CKKMIMQVDGDGDGRVNYKEFLQMMKGGGFSCSN     |
| BraRaC5L1  | CKKMIMQVDGDGDGRVNYKEFLQMMKGGGFSCSN     |
| BN53B051   | CKKMIMQVDVDGDGRVNYKEFLQMMKGDGFSSRS     |
| BraRaC5L2  | CKKMIMQVDVDGDGRVNYKEFLQMMKGDGFSRSS     |
| RapSaC5L1  | CKKMIMQVDSDGDGRVNYKEFLQMMKGGGFSSSG     |
| MusAcC3L5  | CKTMINTVDVDGDGMVDFKEFRQMMNGGGFAASS     |
| DauCaC3L2  | CKTMIMKVDVDGDGRVNFNEFKAMMRGGGFAALN     |
| CepFoC3L   | CKKMIMKVDVDGDGKVDYEEFKQMMKGGGGGFSSLS   |
| HelAnC3L   | CRRMIMKVDVDGDGRVSFNEFKEMMKSGGFVNLAQS   |
| VigAnC3L2  | FKKHFIKVWSLYWSLY                       |
| ElaGuC6L   | CRDMIRKVDLDGDGMVDFGEFKKMMVEGVKLF       |
| CapAnC3L   | CKEMIKKVDVDGDGMVNFDEFKKMMKACGTLIPFS    |
| NicAtC3L   | CKEMISKVDVDGDGMVNFDEFKKMIKGCGTLVPIS    |
| NsyNtaC3   | CKEMIRKIDVDGDGMVNFDEFKKMMKLGGRLIPIS    |
| NicToC3L   | CKEMIRKIDVDGDGMVNFDEFKKMMKVGGRLIPIS    |
| JugReC3L   | CKEMIRNVDMDGDGMVNFDEFKKMMKGGGRLLLAS    |
| NelNuC3L1  | CKEMIRSVDMDGDGMVNFEEFKKMMMKAGGCLVSLS   |
| NelNuC3L2  | CREMIKSVDMDGDGMVNFEEFKKMMMKAGGSCVGIS   |
| CucMeC7L   | CKEMIRKVDLDGDGMVNFDEFKKMMRNGVSILTSS    |
| CucSaC3L   | CKEMIRKVDLDGDGMVNFDEFKKMMRNGVTILTSS    |
| DenCaC3L   | CRDMINRVDLDGDGMVNFEEFKRMMVVDGGGSFF     |

AraThC24 CKKMISKVDIDGDGCVNFDEFKKMMS--NGGGA-----

## **Appendix V. License and official OUP permission for Figure 16** AgtDef

Dear Henning Ruge,

RE: Figure 1. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* (2016) 181 (1): 1-20

Oxford University Press controls the copyright of the article in *Botanical Journal of the Linnean Society* on behalf of The Linnean Society of London.

Further to your Rightslink License #4221440271927, dated 03.11.17, we hereby acknowledge that you wish to adapt the above material for 'Functional and phylogenetic analysis of the endosomal targeted proteins CML4 and CML5 in Arabidopsis thaliana' in your thesis/dissertation. We therefore grant Mr. Henning Ruge the non-exclusive right to use the above material in this way, subject to payment of the fee (if applicable) and adherence to the terms and conditions as specified in your license.

Kind regards,

Aaron Edwards | Permissions Assistant|Rights Department Academic and Journals Divisions|Global Business Development Oxford University Press | Great Clarendon Street | Oxford | OX2 6DP

OXFORD UNIVERSITY PRESS LICENSE TERMS AND CONDITIONS

Nov 03, 2017

This Agreement between Mr. Henning Ruge ("You") and Oxford University Press ("Oxford University Press") consists of your license details and the terms and conditions provided by Oxford University Press and Copyright Clearance Center.

| License Number               | 4221440271927                                                                                                         |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| License date                 | Nov 03, 2017                                                                                                          |
| Licensed content publisher   | Oxford University Press                                                                                               |
| Licensed content publication | Botanical Journal of the Linnean Sociey                                                                               |
| Licensed content title       | An update of the Angiosperm Phylogeny Group classification for<br>the orders and families of flowering plants: APG IV |
| Licensed content author      | Chase, M. W.                                                                                                          |
| Licensed content date        | Apr 6, 2016                                                                                                           |
| Type of Use                  | Thesis/Dissertation                                                                                                   |
| Institution name             |                                                                                                                       |
| Title of your work           | Functional and phylogenetic analysis of the endosomal targeted proteins CML4 and CML5 in Arabidopsis thaliana         |
| Publisher of your work       | n/a                                                                                                                   |
| Expected publication date    | Dec 2017                                                                                                              |
| Permissions cost             | 0.00 EUR                                                                                                              |
| Value added tax              | 0.00 EUR                                                                                                              |
| Total                        | 0.00 EUR                                                                                                              |
|                              | Mr. Henning Ruge                                                                                                      |
| Requestor Location           |                                                                                                                       |
|                              | Germany<br>Attn: Mr. Henning Ruge                                                                                     |
| Publisher Tax ID             | GB125506730                                                                                                           |
| Billing Type                 | Invoice                                                                                                               |
| Billing Address              | Mr. Henning Ruge                                                                                                      |

Attn: Mr. Henning Ruge

0.00 EUR

Total